(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

A61K

English

PCT/US2003/028547

(10) International Publication Number WO 2004/030615 A2

(43) International Publication Date 15 April 2004 (15.04.2004)

(51) International Patent Classification7:

(21) International Application Number:

(22) International Filing Date: 29 September 2003 (29.09.2003)

English (25) Filing Language:

(26) Publication Language:

(30) Priority Data:

2 October 2002 (02.10.2002)

(71) Applicant (for all designated States except US): GENEN-TECH, INC. [US/US]; 1 DNA Way, South San Francisco.

CA 94080-4990 (US). (72) Inventors; and

60/414,971

(75) Inventors/Applicants (for US only): WU, Thomas, D. [US/US]: 41 Nevada Street, San Francisco, CA 94110 (US). ZHANG, Zemin [US/US]; 876 Taurus Drive, Foster City, CA 94404 (US). ZHOU, Yan [CN/US]; #111, 525 N Curtis Avenue, Alhambra, CA 91801 (US).

- Agents: KRESNAK, Mark T. et al.; c/o Genentech, Inc., MS49, 1 DNA Way, South San Francisco, CA 94080-4990 (2LD
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: COMPOSITIONS AND METHODS FOR THE DIAGNOSIS AND TREATMENT OF TUMOR

10

15

20

25

30

WO 2004/030615 PCT/US2003/028547

COMPOSITIONS AND METHODS FOR THE DIAGNOSIS AND TREATMENT OF TUMOR

FIELD OF THE INVENTION

The present invention is directed to compositions of matter useful for the diagnosis and treatment of tumor in mammals and to methods of using those compositions of matter for the same.

BACKGROUND OF THE INVENTION

Malignant tumors (cancers) are the second leading cause of death in the United States, after heart disease (Boring et al., CA Cancel J. Ciln. 43:7 (1993)). Cancer is characterized by the increase in the number of abnormal, or neoplastic, cells derived from a normal tissue which proliferate to form a tumor mass, the invasion of adjacent tissues by these neoplastic tumor cells, and the generation of malignant cells which eventually spread via the blood or lymphatic system to regional lymph nodes and to distant sites via a process called metastasis. In a cancerous state, a cell proliferates under conditions in which normal cells would not grow. Cancer manifests itself in a wide variety of forms, characterized by different degrees of invasiveness and as pressiveness.

In attempts to discover effective cellular targets for cancer diagnosis and therapy, researchers have sought to identify transmembrane or otherwise membrane-associated polypeptides that are specifically expressed on the surface of one or more particular type(s) of cancer cell as compared to on one or more normal non-cancerous cell(s). Often, such membrane-associated polypeptides are more abundantly expressed on the surface of the cancer cells as compared to on the surface of the cancer cells as compared to on the surface of the non-cancerous cells. The identification of such tumor-associated cell surface antigen polypeptides has given rise to the ability to specifically target cancer cells for destruction via antibody-based therapies. In this regard, it is noted that antibody-based therapy has proved very effective in the treatment of certain cancers. For example, HERCEPTIN® and RITUXAN® (both from Genentech Inc., South San Francisco, California) are antibodies that have been used successfully to treat breast cancer and non-Hodgkin's lymphoma, respectively. More specifically, HERCEPTIN® is a recombinant DNA-derived humanized monoclonal antibody that selectively binds to the extracellular domain of the human epidermal growth factor receptor 2 (HER2) proto-oncogene. HER2 protein overexpression is observed in 25-30% of primary breast cancers. RITUXAN® is a genetically engineered chimeric murine/human monoclonal antibody directed against the CD20 antigen found on the surface of normal and malignant B lymphocytes. Both these antibodies are recombinantly produced in CHO cells.

In other attempts to discover effective cellular targets for cancer diagnosis and therapy, researchers have sought to identify (1) non-membrane-associated polypeptides that are specifically produced by one or more particular type(s) of cancer cell(s) as compared to by one or more particular type(s) of non-cancerous normal cell(s), (2) polypeptides that are produced by cancer cells at an expression level that is significantly higher than that of one or more normal non-cancerous cell(s), or (3) polypeptides whose expression is specifically limited

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

to only a single (or very limited number of different) tissue type(s) in both the cancerous and non-cancerous state (e.g., normal prostate and prostate tumor tissue). Such polypeptides may remain intracellularly located or may be secreted by the cancer cell. Moreover, such polypeptides may be expressed not by the cancer cell itself, but rather by cells which produce and/or secrete polypeptides having a potentiating or growth-enhancing effect on cancer cells. Such secreted polypeptides are often proteins that provide cancer cells with a growth advantage over normal cells and include such things as, for example, angiogenic factors, cellular adhesion factors, growth factors, and the like. Identification of antagonists of such non-membrane associated polypeptides would be expected to serve as effective therapeutic agents for the treatment of such cancers. Furthermore, identification of the expression pattern of such polypeptides would be useful for the diagnosis of particular cancers in mammals.

Despite the above identified advances in mammalian cancer therapy, there is a great need for additional diagnostic and therapeutic agents capable of detecting the presence of tumor in a mammal and for effectively inhibiting neoplastic cell growth, respectively. Accordingly, it is an objective of the present invention to identify; (1) cell membrane-associated polypeptides that are more abundantly expressed on one or more type(s) of cancer cell(s) as compared to on normal cells or on other different cancer cells, (2) non-membrane-associated polypeptides that are specifically produced by one or more particular type(s) of cancer cell(s) (or by other cells that produce polypeptides having a potentiating effect on the growth of cancer cells) as compared to by one or more particular type(s) of non-cancerous normal cell(s), (3) non-membrane-associated polypeptides that are produced by cancer cells at an expression level that is significantly higher than that of one or more normal noncancerous cell(s), or (4) polypeptides whose expression is specifically limited to only a single (or very limited number of different) tissue type(s) in both a cancerous and non-cancerous state (e.g., normal prostate and prostate tumor tissue), and to use those polypeptides, and their encoding nucleic acids, to produce compositions of matter useful in the therapeutic treatment and diagnostic detection of cancer in mammals. It is also an objective of the present invention to identify cell membrane-associated, secreted or intracellular polypeptides whose expression is limited to a single or very limited number of tissues, and to use those polypeptides, and their encoding nucleic acids, to produce compositions of matter useful in the therapeutic treatment and diagnostic detection of cancer in mammals.

SUMMARY OF THE INVENTION

A. Embodiments

In the present specification, Applicants describe for the first time the identification of various cellular polypeptides (and their encoding nucleic acids or fragments thereof) which are expressed to a greater degree on the surface of or by one or more types of cancer cell(s) as compared to on the surface of or by one or more types of normal non-cancer cells. Alternatively, such polypeptides are expressed by cells which produce and/or secrete polypeptides having a potentiating or growth-enhancing effect on cancer cells. Again alternatively, such polypeptides may not be overexpressed by tumor cells as compared to normal cells of the same tissue type, but rather may be specifically expressed by both tumor cells and normal cells of only a single or very limited

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

number of tissue types (preferably tissues which are not essential for life, e.g., prostate, etc.). All of the above polypeptides are herein referred to as Tumor-associated Antigenic Target polypeptides ("TAT" polypeptides) and are expected to serve as effective targets for cancer therapy and diagnosis in mammals.

Accordingly, in one embodiment of the present invention, the invention provides an isolated nucleic acid molecule having a nucleotide sequence that encodes a tumor-associated antigenic target polypeptide or fragment thereof (a "TAT" polypeptide).

In certain aspects, the isolated nucleic acid molecule comprises a nucleotide sequence having at least about 80% nucleic acid sequence identity, alternatively at least about 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% nucleic acid sequence identity, to (a) a DNA molecule encoding a full-length TAT polypeptide having an amino acid sequence as disclosed herein, a TAT polypeptide amino acid sequence lacking the signal peptide as disclosed herein, an extracellular domain of a transmembrane TAT polypeptide, with or without the signal peptide, as disclosed herein or any other specifically defined fragment of a full-length TAT polypeptide amino acid sequence as disclosed herein, or (b) the complement of the DNA molecule of (a).

In other aspects, the isolated nucleic acid molecule comprises a nucleotide sequence having at least about 80% nucleic acid sequence identity, alternatively at least about 81%, 82%, 83%, 84%, 85%, 85%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% nucleic acid sequence identity, to (a) a DNA molecule comprising the coding sequence of a full-length TAT polypeptide cDNA as disclosed herein, the coding sequence of a TAT polypeptide lacking the signal peptide as disclosed herein, the coding sequence of an attracellular domain of a transmembrane TAT polypeptide, with or without the signal peptide, as disclosed herein or the coding sequence of any other specifically defined fragment of the full-length TAT polypeptide amino acid sequence as disclosed herein, or (b) the complement of the DNA molecule of (a).

In further aspects, the invention concerns an isolated nucleic acid molecule comprising a nucleotide sequence having at least about 80% nucleic acid sequence identity, alternatively at least about 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% nucleic acid sequence identity, to (a) a DNA molecule that encodes the same mature polypeptide encoded by the full-length coding region of any of the human protein cDNAs deposited with the ATCC as disclosed herein, or (b) the complement of the DNA molecule of (a).

Another aspect of the invention provides an isolated nucleic acid molecule comprising a nucleotide sequence encoding a TAT polypeptide which is either transmembrane domain-deleted or transmembrane domain-inactivated, or is complementary to such encoding nucleotide sequence, wherein the transmembrane domain(s) of such polypeptide(s) are disclosed herein. Therefore, soluble extracellular domains of the herein described TAT polypeptides are contemplated.

In other aspects, the present invention is directed to isolated nucleic acid molecules which hybridize to (a) a nucleotide sequence encoding a TAT polypeptide having a full-length amino acid sequence as disclosed herein, a TAT polypeptide amino acid sequence lacking the signal peptide as disclosed herein, an extracellular

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

domain of a transmembrane TAT polypeptide, with or without the signal peptide, as disclosed herein or any other specifically defined fragment of a full-length TAT polypeptide amino acid sequence as disclosed herein, or (b) the complement of the nucleotide sequence of (a). In this regard, an embodiment of the present invention is directed to fragments of a full-length TAT polypeptide coding sequence, or the complement thereof, as disclosed herein, that may find use as, for example, hybridization probes useful as, for example, diagnostic probes, antisense oligonucleotide probes, or for encoding fragments of a full-length TAT polypeptide that may optionally encode a polypeptide comprising a binding site for an anti-TAT polypeptide antibody, a TAT binding oligopeptide or other small organic molecule that binds to a TAT polypeptide. Such nucleic acid fragments are usually at least about 5 nucleotides in length, alternatively at least about 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620, 630, 640, 650, 660, 670, 680, 690, 700, 710, 720, 730, 740, 750, 760, 770, 780, 790, 800, 810, 820, 830, 840, 850, 860, 870, 880, 890, 900, 910, 920, 930, 940, 950, 960, 970, 980, 990, or 1000 nucleotides in length, wherein in this context the term "about" means the referenced nucleotide sequence length plus or minus 10% of that referenced length. It is noted that novel fragments of a TAT polypeptide-encoding nucleotide sequence may be determined in a routine manner by aligning the TAT polypeptide-encoding nucleotide sequence with other known nucleotide sequences using any of a number of well known sequence alignment programs and determining which TAT polypeptide-encoding nucleotide sequence fragment(s) are novel. All of such novel fragments of TAT polypeptide-encoding nucleotide sequences are contemplated herein. Also contemplated are the TAT polypeptide fragments encoded by these nucleotide molecule fragments, preferably those TAT polypeptide fragments that comprise a binding site for an anti-TAT antibody, a TAT binding oligopeptide or other small organic molecule that binds to a TAT polypeptide.

In another embodiment, the invention provides isolated TAT polypeptides encoded by any of the isolated nucleic acid sequences hereinabove identified.

In a certain aspect, the invention concerns an isolated TAT polypeptide, comprising an amino acid sequence having at least about 80% amino acid sequence identity, alternatively at least about 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% amino acid sequence identity, to a TAT polypeptide having a full-length amino acid sequence as disclosed herein, a TAT polypeptide amino acid sequence lacking the signal peptide as disclosed herein, an extracellular domain of a transmembrane TAT polypeptide protein, with or without the signal peptide, as disclosed herein, an amino acid sequence encoded by any of the nucleic acid sequences disclosed herein or any other specifically defined fragment of a full-length TAT polypeptide amino acid sequence as disclosed herein.

In a further aspect, the invention concerns an isolated TAT polypeptide comprising an amino acid sequence having at least about 80% amino acid sequence identity, alternatively at least about 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% amino acid

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

sequence identity, to an amino acid sequence encoded by any of the human protein cDNAs deposited with the ATCC as disclosed herein.

In a specific aspect, the invention provides an isolated TAT polypeptide without the N-terminal signal sequence and/or without the initiating methionine and is encoded by a nucleotide sequence that encodes such an amino acid sequence as hereinbefore described. Processes for producing the same are also herein described, wherein those processes comprise culturing a host cell comprising a vector which comprises the appropriate encoding nucleic acid molecule under conditions suitable for expression of the TAT polypeptide and recovering the TAT polypeptide from the cell culture.

Another aspect of the invention provides an isolated TAT polypeptide which is either transmembrane domain-deleted or transmembrane domain-inactivated. Processes for producing the same are also herein described, wherein those processes comprise culturing a host cell comprising a vector which comprises the appropriate encoding nucleic acid molecule under conditions suitable for expression of the TAT polypeptide and recovering the TAT polypeptide from the cell culture.

In other embodiments of the present invention, the invention provides vectors comprising DNA encoding any of the herein described polypeptides. Host cells comprising any such vector are also provided. By way of example, the host cells may be CHO cells, *E. coli* cells, or yeast cells. A process for producing any of the herein described polypeptides is further provided and comprises culturing host cells under conditions suitable for expression of the desired polypeptide and recovering the desired polypeptide from the cell culture.

In other embodiments, the invention provides isolated chimeric polypeptides comprising any of the herein described TAT polypeptides fused to a heterologous (non-TAT) polypeptide. Example of such chimeric molecules comprise any of the herein described TAT polypeptides fused to a heterologous polypeptide such as, for example, an epitope tag sequence or a Fc region of an immunoglobulin.

In another embodiment, the invention provides an antibody which binds, preferably specifically, to any of the above or below described polypeptides. Optionally, the antibody is a monoclonal antibody, antibody fragment, chimeric antibody, humanized antibody, single-chain antibody or antibody that competitively inhibits the binding of an anti-TAT polypeptide antibody to its respective antigenic epitope. Antibodies of the present invention may optionally be conjugated to a growth inhibitory agent or cytotoxic agent such as a toxin, including, for example, a maytansinoid or calicheamicin, an antibiotic, a radioactive isotope, a nucleolytic enzyme, or the like. The antibodies of the present invention may optionally be produced in CHO cells or bacterial cells and preferably induce death of a cell to which they bind. For diagnostic purposes, the antibodies of the present invention may be detectably labeled, attached to a solid support, or the like.

In other embodiments of the present invention, the invention provides vectors comprising DNA encoding any of the herein described antibodies. Host cell comprising any such vector are also provided. By way of example, the host cells may be CHO cells, E. coli cells, or yeast cells. A process for producing any of the herein described antibodies is further provided and comprises culturing host cells under conditions suitable for expression of the desired antibody and recovering the desired antibody from the cell culture.

In another embodiment, the invention provides oligopeptides ("TAT binding oligopeptides") which

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

bind, preferably specifically, to any of the above or below described TAT polypeptides. Optionally, the TAT binding oligopeptides of the present invention may be conjugated to a growth inhibitory agent or cytotoxic agent such as a toxin, including, for example, a maytansinoid or calicheamicin, an antibiotic, a radioactive isotope, a nucleolytic enzyme, or the like. The TAT binding oligopeptides of the present invention may optionally be produced in CHO cells or bacterial cells and preferably induce death of a cell to which they bind. For diagnostic purposes, the TAT binding oligopeptides of the present invention may be detectably labeled, attached to a solid support, or the like.

In other embodiments of the present invention, the invention provides vectors comprising DNA encoding any of the herein described TAT binding oligopeptides. Host cell comprising any such vector are also provided. By way of example, the host cells may be CHO cells, E. coli cells, or yeast cells. A process for producing any of the herein described TAT binding oligopeptides is further provided and comprises culturing host cells under conditions suitable for expression of the desired oligopeptide and recovering the desired oligopeptide from the cell culture.

In another embodiment, the invention provides small organic molecules ("TAT binding organic molecules") which bind, preferably specifically, to any of the above or below described TAT polypeptides. Optionally, the TAT binding organic molecules of the present invention may be conjugated to a growth inhibitory agent or cytotoxic agent such as a toxin, including, for example, a maytansinoid or calicheamicin, an antibiotic, a radioactive isotope, a nucleolytic enzyme, or the like. The TAT binding organic molecules of the present invention preferably induce death of a cell to which they bind. For diagnostic purposes, the TAT binding organic molecules of the present invention may be detectably labeled, attached to a solid support, or the like.

In a still further embodiment, the invention concerns a composition of matter comprising a TAT polypeptide as described herein, a chimeric TAT polypeptide as described herein, an anti-TAT antibody as described herein, a TAT binding oligopeptide as described herein, or a TAT binding organic molecule as described herein, in combination with a carrier. Optionally, the carrier is a pharmaceutically acceptable carrier.

In yet another embodiment, the invention concerns an article of manufacture comprising a container and a composition of matter contained within the container, wherein the composition of matter may comprise a TAT polypeptide as described herein, a chimeric TAT polypeptide as described herein, an anti-TAT antibudy as described herein, a TAT binding oligopeptide as described herein, or a TAT binding organic molecule as described herein. The article may further optionally comprise a label affixed to the container, or a package insert included with the container, that refers to the use of the composition of matter for the therapeutic treatment or diagnostic detection of a tumor.

Another embodiment of the present invention is directed to the use of a TAT polypeptide as described herein, a chimeric TAT polypeptide as described herein, an anti-TAT polypeptide antibody as described herein, a TAT binding oligopeptide as described herein, or a TAT binding organic molecule as described herein, for the preparation of a medicament useful in the treatment of a condition which is responsive to the TAT polypeptide, chimeric TAT polypeptide, anti-TAT polypeptide antibody, TAT binding oligopeptide, or TAT

binding organic molecule.

5

10

15

20

25

30

35

B. Additional Embodiments

Another embodiment of the present invention is directed to a method for inhibiting the growth of a cell that expresses a TAT polypeptide, wherein the method comprises contacting the cell with an antibody, an oligopeptide or a small organic molecule that binds to the TAT polypeptide, and wherein the binding of the antibody, oligopeptide or organic molecule to the TAT polypeptide causes inhibition of the growth of the cell expressing the TAT polypeptide. In preferred embodiments, the cell is a cancer cell and binding of the antibody, oligopeptide or organic molecule to the TAT polypeptide causes death of the cell expressing the TAT polypeptide. Optionally, the antibody is a monoclonal antibody, antibody fragment, chimeric antibody, humanized antibody, or single-chain antibody. Antibodies, TAT binding oligopeptides and TAT binding organic molecules employed in the methods of the present invention may optionally be conjugated to a growth inhibitory agent or cytotoxic agent such as a toxin, including, for example, a maytansinoid or calicheamicin, an antibiotic, a radioactive isotope, a nucleolytic enzyme, or the like. The antibodies and TAT binding oligopeptides employed in the methods of the present invention may optionally be produced in CHO cells or bacterial cells.

Yet another embodiment of the present invention is directed to a method of therapeutically treating a mammal having a cancerous tumor comprising cells that express a TAT polypeptide, wherein the method comprises administering to the mammal a therapeutically effective amount of an antibody, an oligopeptide or a small organic molecule that binds to the TAT polypeptide, thereby resulting in the effective therapeutic treatment of the tumor. Optionally, the antibody is a monoclonal antibody, antibody fragment, chimeric antibody, humanized antibody, or single-chain antibody. Antibodies, TAT binding oligopeptides and TAT binding organic molecules employed in the methods of the present invention may optionally be conjugated to a growth inhibitory agent or cytotoxic agent such as a toxin, including, for example, a maytansinoid or calicheamicin, an antibiotic, a radioactive isotope, a nucleolytic enzyme, or the like. The antibodies and oligopeptides employed in the methods of the present invention may optionally be produced in CHO cells or bacterial cells.

Yet another embodiment of the present invention is directed to a method of determining the presence of a TAT polypeptide in a sample suspected of containing the TAT polypeptide, wherein the method comprises exposing the sample to an antibody, oligopeptide or small organic molecule that binds to the TAT polypeptide and determining binding of the antibody, oligopeptide or organic molecule to the TAT polypeptide in the sample, wherein the presence of such binding is indicative of the presence of the TAT polypeptide in the sample. Optionally, the sample may contain cells (which may be cancer cells) suspected of expressing the TAT polypeptide. The antibody, TAT binding oligopeptide or TAT binding organic molecule employed in the method may optionally be detectably labeled, attached to a solid support, or the like.

A further embodiment of the present invention is directed to a method of diagnosing the presence of a tumor in a mammal, wherein the method comprises detecting the level of expression of a gene encoding a TAT polypeptide (a) in a test sample of tissue cells obtained from said mammal, and (b) in a control sample of known normal non-cancerous cells of the same tissue origin or type, wherein a higher level of expression of the

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

TAT polypeptide in the test sample, as compared to the control sample, is indicative of the presence of tumor in the mammal from which the test sample was obtained.

Another embodiment of the present invention is directed to a method of diagnosing the presence of a tumor in a mammal, wherein the method comprises (a) contacting a test sample comprising tissue cells obtained from the mammal with an antibody, oligopeptide or small organic molecule that binds to a TAT polypeptide and (b) detecting the formation of a complex between the antibody, oligopeptide or small organic molecule and the TAT polypeptide in the test sample, wherein the formation of a complex is indicative of the presence of a tumor in the mammal. Optionally, the antibody, TAT binding oligopeptide or TAT binding organic molecule employed is detectably labeled, attached to a solid support, or the like, and/or the test sample of tissue cells is obtained from an individual suspected of having a cancerous tumor.

Yet another embodiment of the present invention is directed to a method for treating or preventing a cell proliferative disorder associated with altered, preferably increased, expression or activity of a TAT polypeptide, the method comprising administering to a subject in need of such treatment an effective amount of an antagonist of a TAT polypeptide. Preferably, the cell proliferative disorder is cancer and the antagonist of the TAT polypeptide is an anti-TAT polypeptide antibody, TAT binding oligopeptide, TAT binding organic molecule or antisense oligonucleotide. Effective treatment or prevention of the cell proliferative disorder may be a result of direct killing or growth inhibition of cells that express a TAT polypeptide or by antagonizing the cell growth potentiaring activity of a TAT polypeptide.

Yet another embodiment of the present invention is directed to a method of binding an antibody, oligopeptide or small organic molecule to a cell that expresses a TAT polypeptide, wherein the method comprises contacting a cell that expresses a TAT polypeptide with said antibody, oligopeptide or small organic molecule under conditions which are suitable for binding of the antibody, oligopeptide or small organic molecule to said TAT polypeptide and allowing binding therebetween.

Other embodiments of the present invention are directed to the use of (a) a TAT polypeptide, (b) a nucleic acid encoding a TAT polypeptide or a vector or host cell comprising that nucleic acid, (c) an anti-TAT polypeptide antibody, (d) a TAT-binding oligopeptide, or (e) a TAT-binding small organic molecule in the preparation of a medicament useful for (i) the therapeutic treatment or diagnostic detection of a cancer or tumor, or (ii) the therapeutic treatment or prevention of a cell proliferative disorder.

Another embodiment of the present invention is directed to a method for inhibiting the growth of a cancer cell, wherein the growth of said cancer cell is at least in part dependent upon the growth potentiating effect(s) of a TAT polypeptide (wherein the TAT polypeptide may be expressed either by the cancer cell itself or a cell that produces polypeptide(s) that have a growth potentiating effect on cancer cells), wherein the method comprises contacting the TAT polypeptide with an antibody, an oligopeptide or a small organic molecule that binds to the TAT polypeptide, thereby antagonizing the growth-potentiating activity of the TAT polypeptide and number in turn, inhibiting the growth of the cancer cell. Preferably the growth of the cancer cell is completely inhibited. Even more preferably, binding of the antibody, oligopeptide or small organic molecule to the TAT polypeptide induces the death of the cancer cell. Optionally, the antibody is a monoclonal antibody, antibody fragment,

10

15

20

25

30

WO 2004/030615 PCT/US2003/028547

chimeric antibody, humanized antibody, or single-chain antibody. Antibodies, TAT binding oligopeptides and TAT binding organic molecules employed in the methods of the present invention may optionally be conjugated to a growth inhibitory agent or cytotoxic agent such as a toxin, including, for example, a maytansinoid or calicheamicin, an antibiotic, a radioactive isotope, a nucleolytic enzyme, or the like. The antibodies and TAT binding oligopeptides employed in the methods of the present invention may optionally be produced in CHO cells or hacterial cells.

Yet another embodiment of the present invention is directed to a method of therapeutically treating a tumor in a mammal, wherein the growth of said tumor is at least in part dependent upon the growth potentiating effect(s) of a TAT polypeptide, wherein the method comprises administering to the mammal a therapeutically effective amount of an antibody, an oligopeptide or a small organic molecule that binds to the TAT polypeptide, thereby antagonizing the growth potentiating activity of said TAT polypeptide and resulting in the effective therapeutic treatment of the tumor. Optionally, the antibody is a monoclonal antibody, antibody fragment, chimeric antibody, humanized antibody, or single-chain antibody. Antibodies, TAT binding oligopeptides and TAT binding organic molecules employed in the methods of the present invention may optionally be conjugated to a growth inhibitory agent or cytotoxic agent such as a toxin, including, for example, a maytansinoid or calicheamicin, an antibiotic, a radioactive isotope, a nucleolytic enzyme, or the like. The antibodies and oligopeptides employed in the methods of the present invention may optionally be produced in CHO cells or bacterial cells.

Yet further embodiments of the present invention will be evident to the skilled artisan upon a reading of the present specification.

BRIEF DESCRIPTION OF THE DRAWINGS

In the list of figures for the present application, specific cDNA sequences which are upregulated in certain tumor tissues as compared to their normal tissue counterparts are individually identified with a designation beginning with the letters "DNA" followed by a specific numerical designation. A full or partial length protein sequence that is encoded by a cDNA sequence identified and shown herein is individually identified with a designation beginning with the letters "PRO" followed by a specific numerical designation. Figures showing encoded amino acid sequences immediately follow the figure showing the cDNA sequence encoding that specific amino acid sequence. If start and/or stop codons have been identified in a cDNA sequence shown in the attached figures, they are shown in bold and underlined font.

List of Figures

	,
Figure 1: DNA323717, XM .059201, gen.XM .059201	Figure 53: PRO80499
Figure 2: DNA323718, XM_117159, gen.XM_117159	Figure 54: DNA323743, XM_086587, gen.XM_086587
Figure 3: DNA323719, XM_114062, gen.XM_114062	Figure 55: DNA323744, XM_059230, gen.XM_059230
Figure 4: DNA323720, XM.086178, gen.XM.086178	Figure 56: PRO80501
Figure 5: PRO80480	Figure 57A-B; DNA323745, XM_048780,
Figure 6: DNA323721, XM_051556, gen.XM_051556	gen.XM_048780
Figure 7: PRO80481	Figure 58: DNA323746, XM_053183, gen.XM_053183
Figure 8: DNA323722, NM_017891, gen.NM_017891	Figure 59: DNA323747, XM_165442, gen.XM_165442
Figure 9: PRO80482	Figure 60: DNA323748, NM_033440, gen.NM_033440
Figure 10: DNA323723, NM_018188, gen.NM_018188	Figure 61: PRO2269
Figure 11: PRO80483	Figure 62: DNA323749, NM_024329, gen.NM_024329
Figure 12: DNA323724, NM _002617, gen. NM _002617	Figure 63: PRO80505
Figure 13: PRO23746	Figure 64: DNA323750, XM_018205, gen.XM_018205
Figure 14: DNA323725, XM _049742, gen.XM _049742	Figure 65: PRO80506
Figure 15: DNA323726, NM .033534, gen.NM .033534	Figure 66: DNA323751, XM_011650, gen.XM_011650
Figure 16: PRO80484	Figure 67: DNA323752, XM_017315, gen.XM_017315
Figure 17: DNA323727, NM_014188, gen.NM_014188	Figure 68A-B: DNA323753, XM_030470,
Figure 18: PRO80485	gen.XM_030470
Figure 19: DNA323728, XM \(\D86180, gen.XM \(\D86180 \)	Figure 69: DNA323754, NM _004930, gen.NM _004930
Figure 20: DNA323729, XM_166599, gen.XM_166599	Figure 70: PRO80510
Figure 21: PRO80487	Figure 71: DNA323755, NM .003689, gen.NM .003689
Figure 22: DNA323730, NM .017900, gen.NM .017900	Figure 72: PRO80511
Figure 23: PRO80488	Figure 73: DNA323756, NM_016183, gen.NM_016183
Figure 24: DNA323731, XM_001589, gen.XM_001589	
Figure 25: PRO80489	Figure 75: DNA323757, XM_015234, gen.XM_015234
Figure 26: DNA323732, NM_016176, gen.NM_016176	Figure 76A-B: DNA323758, XM_027916,
Figure 27: PRO80490	gen.XM_027916
Figure 28: DNA323733, XM_117692, gen.XM_117692	Figure 77: DNA323759, XM033683, gen.XM033683
Figure 29: DNA323734, XM_086360, gen. XM_086360	Figure 78: DNA323760, XM_001826, gen.XM_001826
Figure 30: PRO80492	Figure 79: DNA323761, XM_033654, gen.XM_033654
Figure 31: DNA287173, NM_001428, gen. NM_001428	Figure 80: PRO80517
Figure 32: PRO69463	Figure 81: DNA323762, NM_001791, gen.NM_001791
Figure 33: DNA323735, XM .001299, gen. XM .001299	Figure 82: PRO26194
Figure 34: DNA323736, NM_000983, gen.NM_000983	Figure 83: DNA323763, NM_005826, gen.NM_005826
Figure 35: PRO80493	Figure 84: PRO60815
Figure 36A-B: DNA227821, NM_014851,	Figure 85: DNA323764, XM_086357, gen.XM_086357
gen.NM-014851	Figure 86: PRO80518
Figure 37: PRO38284	Figure 87: DNA323765, NM_000975, gen.NM_000975
Figure 38A-B: DNA323737, XM_086204,	Figure 88: PRO80519
gen.XM_086204	Figure 89: DNA323766, NM007260, gen.NM .007260
Figure 39: PRO80494	Figure 90: PRO61250
Figure 40: DNA323738, XM_030920, gen.XM_030920	Figure 91: DNA323767, NM_017761, gen.NM_017761
Figure 41: DNA323739, NM_018948, gen.NM_018948	Figure 92: PRO80520
Figure 42: DNA273712, NM_007262, gen.NM_007262	Figure 93: DNA323768, NM _006625, gen.NM _006625
Figure 43: PRO61679	Figure 94: PRO22196
Figure 44: DNA151148, NM_004781, gen.NM_004781	Figure 95: DNA323769, NM_054016, gen.NM_054016
Figure 45: PRO12618	Figure 96: PRO80521
Figure 46: DNA323740, XM_086151, gen.XM_086151	Figure 97: DNA323770, XM .086375, gen. XM .086375
Figure 47: PRO80497	Figure 98: DNA323771, XM .006290, gen.XM .006290
Figure 48: DNA171408, NM_004401, gen.NM_004401	Figure 99: DNA323772, NM015484, gen.NM015484
Figure 49: PRO20136	Figure 100: PRO80524
Figure 50: DNA323741, NM _003132, gen.NM _003132	Figure 101A-B: DNA323773, XM_001616,
Figure 51: PRO80498	gen.XM_001616
Figure 52: DNA323742, XM_086586, gen.XM_086586	Figure 102: DNA323774, XM_058240,

PCT/US2003/028547

gen.XM 058240 oen.XM 086444 Figure 137: DNA323797, NM_024640. Figure 103: DNA323775, XM_059117, pen.XM .059117 een.NM 024640 Figure 138: PRO80547 Figure 104: PRO80527 Figure 139A-B: DNA323798, XM_049310, Figure 105: DNA226262, NM .005563, gen.NM_005563 gen.XM_049310 Figure 140: DNA323799, XM_113374, Figure 106: PRO36725 Figure 107: DNA323776, NM_022778, gen.XM_113374 Figure 141: DNA323800, XM .002105, gen. NM .022778 Figure 108: PRO80528 gen.XM_002105 Figure 109: DNA323777, XM_017846, Figure 142: DNA323801, NM_014571, gen.NM_014571 gen.XM_017846 Figure 110: DNA323778, NM _005517, Figure 143: PRO80550 Figure 144: DNA323802, XM_165438, gen.NM_005517 gen.XM_165438 Figure 111: PRO80530 Figure 145: DNA323803, XM_029844. Figure 112A-C: DNA323779, XM_046918, gen.XM_029844 gen.XM_046918 Figure 113: DNA323780, XM .002114, Figure 146: DNA188748, NM .006559, gen.NM_006559 gen.XM_002114 Figure 114: DNA323781, XM_059066. Figure 147: PRO22304 gen.XM_059066 Figure 148: DNA323804, NM _003757, Figure 115: PRO80533 gen.NM_003757 Figure 116: DNA323782, NM .018066, Figure 149: PRO80553 Figure 150: DNA323805, NM_004964. gen.NM_018066 gen.NM_004964 Figure 117: PRO80534 Figure 151: PRO80554 Figure 118: DNA323783, NM .006600, Figure 152: DNA323806, NM _023009, gen.NM_006600 Figure 119: PRO80535 gen.NM_023009 Figure 153: PRO80555 Figure 120: DNA323784, XM_059067, Figure 154: DNA323807, XM_030423, gen.XM_059067 gen.XM_030423 Figure 121: PRO80536 Figure 155A-B: DNA323808, XM .036299, Figure 122: DNA323785, NM_032872, gen.NM. 032872 gen.XM_036299 Figure 156: PRO80557 Figure 123: PRO80537 Figure 124: DNA196349, NM_006990. Figure 157: DNA227213, NM .. 003680. gen.NM_006990 gen.NM_003680 Figure 125: PRO24856 Figure 158: PRO37676 Figure 159: DNA323809, NM _006112, Figure 126: DNA323788, XM..001640, gen.NM_006112 gen.XM_001640 Figure 127: DNA323789, NM _002946. Figure 160: PRO80558 Figure 161: DNA323810, XM_018136, gen.NM_002946 Figure 128: PRO59099 gen.XM_018136 Figure 162: PRO80559 Figure 129: DNA323790, XM_114044, Figure 163: DNA323811, XM_117184, gen.XM_114044 Figure 130: DNA323791, XM .. 059088, gen.XM_117184 Figure 164: PRO80560 gen.XM_059088 Figure 131: DNA323792, NM _031459, Figure 165: DNA323812, NM.017825, gen.NM_017825 gen.NM_031459 Figure 166: PRO80561 Figure 132: PRO80542 Figure 167: DNA189315, NM ..014408. Figure 133: DNA323793, XM_010664, gen.XM_010664 gen.NM_014408 Figure 134: DNA323794, XM .001812, Figure 168: PRO22262 Figure 169A-B: DNA323813, XM_029031. gen.XM_001812 gen.XM_029031 Figure 135: DNA323795, XM_001807, Figure 170: PRO80562 gen.XM_001807 Figure 136: DNA323796, XM_086444. Figure 171: DNA323814, XM_059171,

Figure 205: PRO80574

Figure 207: PRO80575

gen.NM_024602

Figure 206: DNA323827, NM _024602,

PCT/US2003/028547

Figure 208: DNA323828, XM _046557. gen.XM_059171 gen.XM_046557 Figure 172: PRO80563 Figure 173; DNA83085, NM_000760, gen.NM_000760 Figure 209: PRO80576 Figure 210: DNA323829, NM .001012, Figure 174: PRO2583 Figure 175: DNA323815, XM_165984. gen.NM_001012 Figure 211: PRO10760 gen.XM_165984 Figure 212: DNA323830, XM_046551, Figure 176: DNA323816, XM_029842, gen.XM_046551 gen.XM_029842 Figure 213A-B: DNA323831, XM_027983, Figure 177: PRO2851 gen.XM_027983 Figure 178: DNA323817, XM_086384, Figure 214: DNA323832, XM_086324, gen.XM_086384 gen.XM_086324 Figure 179: PRO80565 Figure 180A-C: DNA274487, NM_014747. Figure 215: PRO80579 Figure 216: DNA323833, XM_032391. gen.NM_014747 gen.XM_032391 Figure 181: PRO62389 Figure 217: PRO80580 Figure 182: DNA323818, XM_010712, Figure 218: DNA103214, NM_006066, gen.XM_010712 gen.NM_006066 Figure 183: DNA323819, NM_024664, Figure 219: PRO4544 gen.NM_024664 Figure 220: DNA304686, NM .002574, Figure 184: PRO80567 gen.NM.002574 Figure 185: DNA323820, XM_059214, Figure 221: PRO71112 gen.XM_059214 Figure 222: DNA323834, NM _032756, Figure 186: PRO80568 Figure 187: DNA323821, XM_046349, gen.NM_032756 Figure 223: PRO80581 gen.XM_046349 Figure 188: DNA103253, NM _006516, Figure 224: DNA323835, XM_059133, gen.XM_059133 gen.NM_006516 Figure 189: PRO4583 Figure 225: PRO80582 Figure 226: DNA323836, XM_027313, Figure 190: DNA323822, XM _086543, gen.XM_027313 gen.XM_086543 Figure 191: PRO80570 Figure 227: PRO80583 Figure 228: DNA323837, XM_054868, Figure 192: DNA274745, NM _006824, gen.XM_054868 gen.NM_006824 Figure 229: DNA323838, NM 001262, Figure 193: PRO62518 gen.NM_001262 Figure 194: DNA273060, NM_001255, Figure 230: PRO59546 gen.NM_001255 Figure 231: DNA323839, XM_086391. Figure 195; PRO61125 Figure 196: DNA323823, NM_030587, gen.XM_086391 Figure 232: PRO80584 gen. NM_030587 Figure 233: DNA323840, XM_114798, Figure 197: PRO80571 gen.XM_114798 Figure 198: DNA323824, XM_097649, Figure 234: PRO80585 gen.XM_097649 Figure 235: DNA272748, NM_002979, Figure 199: DNA256503, NM _003780, gen.NM _002979 gen.NM_003780 Figure 236: PRO60860 Figure 200: PRO51539 Figure 201: DNA323825, XM_046450, Figure 237: DNA323841, XM_038911, gen.XM_046450 gen.XM_038911 Figure 238: PRO80586 Figure 202A-B: DNA 272024, NM_014663, Figure 239: DNA323842, NM_018070, gen.NM_014663 Figure 203: PRO60298 gen.NM_018070 Figure 204: DNA323826, XM _046565, Figure 240: PRO80587 Figure 241: DNA323843, NM_024603, gen.XM_046565 gen.NM_024603

Figure 242: PRO80588

gen.XM_086389

Figure 243: DNA323844, XM_086389,

Figure 278: PRO80607 Figure 244: DNA323845, XM_038852. gen.XM_038852 Figure 279: DNA323865, XM_086165. gen.XM_086165 Figure 245: DNA323846, NM_032864, Figure 280: DNA323866, XM_086167. gen.NM_032864 Figure 246: PRO80591 gen.XM_086167 Figure 281: DNA323867, XM_086166. Figure 247: DNA323847, NM_024586, gen.NM_024586 gen.XM_086166 Figure 282: DNA323868, XM_086138, Figure 248: PRO80592 Figure 249A-B: DNA323848, XM_097565, gen.XM_086138 Figure 283: PRO80611 gen.XM_097565 Figure 284: DNA323869, NM_000969, Figure 250: DNA323849, XM .001472, gen.XM_001472 gen.NM_000969 Figure 285: PRO80612 Figure 251A-C: DNA323850, XM_055481, Figure 286: DNA323870, XM_088863. gen.XM_055481 Figure 252: PRO80593 gen.XM_088863 Figure 253: DNA323851, XM _010615, Figure 287: PRO80613 gen.XM_010615 Figure 288: DNA271003, NM .003729. Figure 254A-B: DNA323852, XM_089138, gen.NM_003729 Figure 289; PRO59332 gen.XM_089138 Figure 290: DNA323871, XM_165981, Figure 255: PRO80595 gen.XM_165981 Figure 256A-B: DNA323853, XM_059180, gen.XM_059180 Figure 291: PRO80614 Figure 292: DNA275139, NM_013296, Figure 257: DNA323854, XM_015717. gen.XM_015717 gen.NM_013296 Figure 258: PRO80597 Figure 293: PRO62849 Figure 294: DNA323872, XM_058702, Figure 259: DNA323855, XM_114125, gen.XM_114125 gen.XM_058702 Figure 260: DNA323856, NM_015640, Figure 295: DNA323873, XM_054978. gen.NM.015640 gen.XM_054978 Figure 261: PRO80599 Figure 296: DNA323874, NM .032636, Figure 262: DNA323857, NM_017768, gen.NM_032636 gen.NM_017768 Figure 297: PRO80617 Figure 298: DNA323875, NM .006513, Figure 263: PRO80600 gen.NM_006513 Figure 264: DNA323858, XM_165977, Figure 299: PRO80618 gen.XM_165977 Figure 265: DNA323859, XM .086343, Figure 300: DNA323876, NM_006621. gen.XM_086343 gen.NM_006621 Figure 301: PRO80619 Figure 266: PRO80602 Figure 302A-B: DNA323877, NM .007158, Figure 267: DNA269708, NM _007034, gen.NM_007034 gen.NM_007158 Figure 268: PRO58118 Figure 303: PRO80620 Figure 304: DNA323878, XM _086132, Figure 269: DNA323860, NM .001554, gen.NM_001554 gen.XM_086132 Figure 270: PRO80603 Figure 305: PRO80621 Figure 271: DNA226260, NM_006769, Figure 306: DNA323879, NM_004000, gen.NM_006769 gen.NM_004000 Figure 272: PRO36723 Figure 307: PRO80622 Figure 273: DNA323861, NM_004261, Figure 308: DNA 323880, NM _001688, gen.NM_004261 gen.NM_001688 Figure 274: PRO80604 Figure 309: PRO80623 Figure 275: DNA323862, XM _165983, Figure 310: DNA323881, NM_019099, gen.NM_019099 gen.XM_165983 Figure 276: DNA323863, XM_016164, Figure 311: PRO80624 Figure 312A-B: DNA323882, NM_000701, gen.XM_016164 Figure 277: DNA323864, XM_086164, gen.NM_000701 Figure 313: PRO80625 gen.XM_086164

PCT/US2003/028547

gen.NM_002810 Figure 314A-B: DNA323883, XM_018332, gen.XM_018332 Figure 349; PRO61638 Figure 315A-B: DNA323884, XM_040709. Figure 350: DNA290284, NM .005997. gen.XM_040709 gen.NM_005997 Figure 351: PRO70433 Figure 316: PRO80627 Figure 317: DNA323885, XM 086518, Figure 352: DNA323903, XM_097639, gen.XM_086518 gen.XM_097639 Figure 318A-D: DNA323886, XM_034671. Figure 353: DNA323904, XM_041879, gen.XM_034671 gen.XM_041879 Figure 319: DNA323887, XM_034662, Figure 354: DNA323905, XM .041884. gen XM 034662 gen XM 041884 Figure 320: PRO80630 Figure 355: PRO80644 Figure 321: DNA323888, XM .039721. Figure 356: DNA225809, NM_000396. gen.NM_000396 gen.XM_039721 Figure 322: PRO80631 Figure 357: PRO36272 Figure 323A-B: DNA 323889, XM _086397. Figure 358: DNA323906, NM_025150. gen.XM_086397 gen.NM_025150 Figure 324A-B: DNA323890, XM_086515. Figure 359: PRO80645 gen.XM 086515 Figure 360: DNA323907, XM_114098, Figure 325: PRO80633 gen.XM_114098 Figure 326: DNA323891, XM_016480, Figure 361: DNA323908, XM_113369, gen.XM_016480 gen.XM_113369 Figure 327: DNA323892, XM_165975. Figure 362: PRO80646 gen.XM_165975 Figure 363: DNA323909, XM .099467. Figure 328: DNA323893, NM_016361. gen.XM_099467 gen.NM_016361 Figure 364: DNA323910, NM_002965. Figure 329: PRO231 gen.NM_002965 Figure 330: DNA323894, XM_059210. Figure 365: PRO80648 gen.XM_059210 Figure 366: DNA323911, XM_086400, Figure 331: DNA323895, XM_086296, gen.XM_086400 gen.XM_086296 Figure 367: DNA210134, NM .014624, Figure 332: DNA323896, NM _030920. gen.NM_014624 gen.NM_030920 Figure 368: PRO33679 Figure 333: PRO80638 Figure 369: DNA304666, NM_002961, Figure 334: DNA323897, NM_016022, gen.NM_002961 gen.NM_016022 Figure 370: PRO71093 Figure 335: PRO80639 Figure 371: DNA304720, NM_019554. Figure 336: DNA323898, NM .031901, gen.NM_019554 gen.NM_031901 Figure 372: PRO71146 Figure 337: PRO80640 Figure 373: DNA323912, XM_165976, Figure 338A-B: DNA323899, XM_088788, gen.XM_165976 gen.XM_088788 Figure 374: DNA227577, NM _006271, Figure 339: PRO80641 gen.NM_006271 Figure 340: DNA274759, NM _005620. Figure 375: PRO38040 gen.NM_005620 Figure 376: DNA323913, XM_114097, Figure 341: PRO62529 gen.XM_114097 Figure 342: DNA323900, XM_001468, Figure 377: DNA323914, XM_040009. gen.XM_001468 gen.XM_040009 Figure 343: PRO49642 Figure 378: PRO80651 Figure 344: DNA323901, NM_006862, Figure 379: DNA323915, NM_024330, gen.NM_006862 gen.NM_024330 Figure 345: PRO80642 Figure 380: PRO703 Figure 346: DNA227529, NM_002796, Figure 381: DNA323916, NM_012437, gen.NM_002796 gen.NM_012437 Figure 347: PRO37992 Figure 382: PRO80652 Figure 348: DNA323902, NM_002810, Figure 383: DNA323917, XM_086271.

PCT/US2003/028547

WO 2004/030615

gen.XM 086271

Figure 384: DNA323918, XM_114055, gen.XM_114055 Figure 385: PRO37535 Figure 386: DNA323919, XM_113360, gen.XM_113360 Figure 387: PRO80654 Figure 388: DNA323920, XM_086564, gen.XM_086564 Figure 389: DNA323921, NM .005973, gen.NM_005973 Figure 390: PRO80656 Figure 391: DNA323922, XM_044077, gen.XM_044077 Figure 392: DNA323923, NM_001878, gen.NM 001878 Figure 393: PRO80657 Figure 394: DNA323924, NM ..021948, gen.NM 021948 Figure 395: PRO6018 Figure 396: DNA273088, NM .006365, gen.NM_006365 Figure 397: PRO61146 Figure 398: DNA323925, XM_044127, gen.XM_044127 Figure 399: PRO80658 Figure 400: DNA323926, XM:053245, gen.XM_053245 Figure 401: PRO80659 Figure 402: DNA257916, NM_032323, gen.NM_032323 Figure 403: PRO52449 Figure 404: DNA323927, NM_005572, gen.NM_005572 Figure 405: PRO80660 Figure 406: DNA323928, XM_044166, gen.XM_044166 Figure 407: PRO80661 Figure 408: DNA323929, XM_044128, gen.XM_044128 Figure 409: DNA226125, NM ..003145, gen.NM_003145 Figure 410: PRO36588 Figure 411A-B: DNA323930, XM_044172, gen.XM_044172 Figure 412: DNA323931, NM_032292. gen.NM_032292 Figure 413: PRO80664 Figure 414: DNA323932, NM _004632, gen.NM_004632 Figure 415: PRO80665

Figure 416: DNA323933, XM_044075,

gen.XM_044075

gen.NM_018253

Figure 417: PRO80666 Figure 418: DNA323934, NM_018253, Figure 420: DNA323935, NM_018116, gen NM 018116 Figure 421: PRO80668 Figure 422: DNA323936, NM_002004, gen.NM_002004 Figure 423: PRO80669 Figure 424: DNA323937, NM .005698, gen.NM_005698 Figure 425: PRO80670 Figure 426: DNA323938, NM_052837. gen.NM_052837 Figure 427: PRO80671 Figure 428: DNA194600, NM_006589. gen.NM_006589 Figure 429: PRO23942 Figure 430: DNA323939, XM .086567. gen.XM_086567 Figure 431: PRO80672 Figure 432: DNA323940, XM_086552, gen.XM_086552 Figure 433: DNA323941, XM .036744, gen.XM_036744 Figure 434: DNA323942, NM_130898, gen.NM_130898 Figure 435; PRO80675 Figure 436: DNA226793, NM_006694. gen.NM_006694 Figure 437: PRO37256 Figure 438: DNA294794, NM_002870. gen.NM _002870 Figure 439: PRO70754 Figure 440: DNA323943, NM .001030, gen.NM_001030 Figure 441: PRO80676 Figure 442: DNA323944, XM _036829, gen.XM_036829 Figure 443: PRO80677 Figure 444: DNA323945, NM _015449. gen.NM_015449 Figure 445: PRO80678 / Figure 446: DNA323946, NM .014847, gen.NM_014847 Figure 447: PRO80679 Figure 448: DNA323947, XM_036934, gen.XM_036934 Figure 449: PRO80680 Figure 450A-B: DNA323948, XM_036845. gen.XM_036845 Figure 451: DNA323949, XM_010636, gen.XM_010636 Figure 452: DNA323950, NM_006556, gen.NM_006556 Figure 453: PRO62574 Figure 454: DNA323951, XM .034082, gen.XM_034082

Figure 419: PRO80667

PCT/US2003/028547

Figure 455: DNA323952, NM _025207, gen.NM_025207 Figure 456: PRO80684 Figure 457: DNA103436, NM_003815, gen.NM_003815 Figure 458: PRO4763 Figure 459: DNA323953, NM_003516, gen.NM .003516 Figure 460: PRO80685 Figure 461: DNA323954, NM_005850, gen.NM_005850 Figure 462: PRO59725 Figure 463A-B: DNA323955, NM _014849, gen.NM_014849 Figure 464: PRO80686 Figure 465: DNA323956, XM_059094, gen.XM_059094 Figure 466: DNA323957, XM_058247, gen.XM_058247 Figure 467: PRO80688 Figure 468: DNA323958, NM _003779, gen.NM_003779 Figure 469: PRO80689 Figure 470: DNA323959, NM .004550. gen.NM_004550 Figure 471: PRO58974 Figure 472: DNA323960, XM_085581, gen.XM_085581 Figure 473: DNA323961, XM_113379, gen.XM_113379 Figure 474: DNA226619, NM_003564, gen.NM_003564 Figure 475: PRO37082 Figure 476A-B: DNA323962, XM_049680, gen.XM_049680 Figure 477: DNA323963, XM_165443. gen.XM_165443 Figure 478: PRO80693 Figure 479: DNA323964, XM_086381, gen.XM_086381 Figure 480: PRO80694 Figure 481A-B: DNA323965, NM _002857, gen.NM_002857 Figure 482: PRO80695 Figure 483A-B: DNA323966, XM..049690, gen.XM_049690 Figure 484: DNA323967, XM_114153, gen.XM_114153 Figure 485: DNA323968, XM_086378. gen.XM_086378 Figure 486: DNA323969, XM .001897, gen.XM_001897 Figure 487: PRO10002

Figure 488: DNA323970, NM_052862.

gen.NM_052862

Figure 489: PRO80699

Figure 490: DNA323971, XM_086481, gen.XM. 086481 Figure 491: PRO80700 Figure 492: DNA323972, XM_059191, gen.XM_059191 Figure 493: DNA323973, XM_086485, gen.XM_086485 Figure 494: DNA323974, XM_086484. gen.XM_086484 Figure 495: DNA323975, XM_047479, gen.XM 047479 Figure 496: PRO80704 Figure 497: DNA323976, NM_003617, gen.NM_003617 Figure 498: PRO37806 Figure 499: DNA254298, NM .025226, gen.NM_025226 Figure 500: PRO49409 Figure 501: DNA323977, XM .034000, gen.XM_034000 Figure 502: PRO80705 Figure 503: DNA323978, NM_032738, gen.NM_032738 Figure 504: PRO329 Figure 505: DNA323979, NM_000569. gen.NM_000569 Figure 506: PRO80706 Figure 507: DNA323980, XM_088945, gen.XM_088945 Figure 508: PRO80707 Figure 509: DNA323981, XM_060331, gen.XM_060331 Figure 510: PRO80708 Figure 511: DNA323982, NM_004905, gen.NM_004905 Figure 512: PRO80709 Figure 513: DNA323983, NM_017847, gen.NM 017847 Figure 514: PRO80710 Figure 515A-B: DNA323984, XM_051877, gen.XM_051877 Figure 516: PRO62077 Figure 517: DNA323985, NM .005717, gen.NM_005717 Figure 518: PRO80711 Figure 519A-B: DNA271986, NM_014837, gen.NM_014837 Figure 520: PRO60261 Figure 521A-B: DNA323986, XM_056923, gen.XM_056923 Figure 522: DNA323987, XM_046464, gen.XM_046464 Figure 523: DNA323988, XM_002068, gen.XM_002068 Figure 524A-B: DNA323989, XM_001289, gen.XM_001289

PCT/US2003/028547

Figure 560A-B: DNA324007, XM_114030. Figure 525: DNA323990, XM_114109, gen.XM_114030 gen.XM_114109 Figure 561: DNA324008, XM_097519. Figure 526: PRO80714 Figure 527: DNA323991, NM_022371, gen.XM 097519 Figure 562: DNA324009, XM_059120. gen.NM_022371 gen.XM_059120 Figure 528: PRO80715 Figure 529: DNA323992. NM _004673. Figure 563: PRO80730 Figure 564: DNA324010, NM_016456, gen.NM_004673 gen.NM_016456 Figure 530: PRO188 Figure 531: DNA323993, XM_060517, Figure 565: PRO1248 Figure 566: DNA324011, XM_036556, gen.XM_060517 gen.XM_036556 Figure 532: DNA323994, XM_165978, Figure 567: DNA324012, XM _001914, gen.XM_165978 gen.XM_001914 Figure 533: PRO80717 Figure 568: DNA324013, XM _001916. Figure 534: DNA323995, XM_117181, gen.XM_001916 gen.XM_117181 Figure 569: DNA324014, NM _018085, Figure 535: DNA323996, NM_018122. gen.NM_018085 gen.NM_018122 Figure 536: PRO80719 Figure 570: PRO80734 Figure 571: DNA324015, NM_006335. Figure 537: DNA323997, XM_042967, gen.NM_006335 gen.XM_042967 Figure 572: PRO80735 Figure 538: DNA323998, XM_086494, Figure 573: DNA324016, XM_036500, gen.XM_086494 Figure 539: PRO80720 gen.XM_036500 Figure 574: PRO80736 Figure 540: DNA290234, NM_002923, Figure 575: DNA324017, XM .036507, gen.NM_002923 gen.XM_036507 Figure 541: PRO70333 Figure 576: DNA 196344, NM _004767, Figure 542: DNA323999, XM_086328, gen.NM_004767 gen.XM_086328 Figure 577: PRO24851 Figure 543: DNA324000, XM_086282, gen.XM_086282 Figure 578: DNA247474, NM_014176, gen.NM_014176 Figure 544: DNA324001, XM_053633, Figure 579: PRO44999 gen.XM_053633 Figure 580A-B: DNA324018, XM_084055, Figure 545: DNA256905, NM_138391, gen.XM_084055 gen.NM_138391 Figure 581: DNA324019, XM_010682, Figure 546: PRO51836 gen.XM_010682 Figure 547: DNA324002, XM_015434, Figure 582: DNA324020, XM_117185, gen.XM_015434 Figure 548: DNA324003, NM .006763. gen.XM_117185 Figure 583: DNA324021, XM .055880, gen.NM_006763 Figure 549: PRO80725 gen.XM_055880 Figure 584: PRO80740 Figure 550: DNA227246, NM .005686, Figure 585: DNA193882, NM_014184, gen.NM_005686 gen.NM_014184 Figure 551: PRO37709 Figure 586: PRO23300 Figure 552: DNA324004, XM_058405, Figure 587: DNA324022, NM_018212, gen.XM_058405 gen.NM_018212 Figure 553A-B: DNA226005, NM .000228, Figure 588: PRO80741 gen.NM_000228 Figure 589: DNA324023, XM_086431, Figure 554: PRO36468 gen.XM.086431 Figure 555: DNA324005, NM_015714, Figure 590: PRO80742 gen.NM_015714 Figure 591: DNA324024, XM_037329, Figure 556: PRO11582 Figure 557: DNA324006, XM_086142, gen.XM_037329 Figure 592: DNA324025, XM_086432, gen.XM_086142 Figure 558: DNA83046, NM_000574, gen.NM_000574 gen.XM_086432 Figure 593A-B: DNA324026, XM_010732, Figure 559: PRO2569

gen.XM_056970 gen.XM_010732 Figure 594: DNA227504, NM .000447. Figure 629: PRO80762 gen.NM 000447 Figure 630: DNA324046, NM .032324, Figure 595: PRO37967 gen.NM_032324 Figure 596: DNA324027, NM_012486, Figure 631: PRO80763 Figure 632: DNA324047, XM_086257, gen.NM_012486 Figure 597: PRO80745 gen.XM_086257 Figure 598A-B: DNA324028, XM_113361, Figure 633: PRO80764 Figure 634: DNA324048, XM_114137. gen.XM_113361 Figure 599A-B: DNA324029, XM _001958, gen.XM_114137 gen.XM .001958 Figure 635: PRO80765 Figure 600: DNA324030, XM_016199, Figure 636: DNA324049, NM _000143. gen.XM_016199 gen.NM_000143 Figure 601: DNA324031, XM_086244, Figure 637: PRO62607 Figure 638: DNA324050, XM_090833, gen.XM_086244 Figure 602: DNA324032, XM_086245, gen.XM_090833 Figure 639: DNA324051, NM_130398, gen.XM_086245 Figure 603: DNA254346, NM .024709, gen.NM_130398 Figure 640: PRO80767 gen.NM 024709 Figure 604: PRO49457 Figure 641: DNA324052, XM_117196. Figure 605: DNA324033, XM_088107, gen.XM..117196 gen.XM_088107 Figure 642: DNA324053, XM_018041. Figure 606: DNA324034, NM_032890. gen.XM_018041 gen.NM_032890 Figure 643: DNA324054, NM .001011. Figure 607: PRO80752 gen.NM_001011 Figure 644: PRO10692 Figure 608: DNA324035, XM_052974. gen.XM_052974 Figure 645: DNA324055, NM_024027, gen.NM_024027 Figure 609: PRO80753 Figure 610: DNA324036, XM_047499, Figure 646: PRO1182 gen.XM_047499 Figure 647: DNA324056, NM _016030, Figure 611: PRO80754 gen.NM_016030 Figure 648: PRO80770 Figure 612: DNA324037, NM_000858, Figure 649: DNA103217, NM .003310. gen.NM_000858 Figure 613: PRO80755 gen.NM_003310 Figure 614: DNA324038, NM_024319. Figure 650: PRO4547 Figure 651: DNA275195, NM_001034, gen.NM_024319 gen.NM_001034 Figure 615: PRO80756 Figure 616: DNA324039, XM _047545. Figure 652: PRO62893 gen.XM_047545 Figure 653: DNA324057, XM_059368, Figure 617: PRO4914 gen.XM_059368 Figure 618A-B: DNA324040, XM_056884. Figure 654: PRO80771 gen.XM_056884 Figure 655: DNA324058, NM_006826, Figure 619: DNA324041, XM_098599, gen.NM 006826 Figure 656: PRO70258 gen.XM_098599 Figure 620: DNA324042, XM_165439, Figure 657: DNA324059, NM _005378, gen.NM..005378 gen.XM_165439 Figure 621: PRO80759 Figure 658: PRO80772 Figure 622: DNA324043, XM_089030, Figure 659: DNA324060, NM_002539, gen.NM_002539 gen.XM_089030 Figure 623: PRO80760 Figure 660: PRO80773 Figure 661: DNA324061, XM_096149, Figure 624: DNA82328, NM .000029, gen.NM .000029 Figure 625: PRO1707 gen.XM_096149 Figure 626: DNA324044, NM_014236. Figure 662: DNA275049, NM .004939, gen.NM_014236 gen.NM_004939

Figure 663: PRO62770

Figure 664A-B: DNA324062, XM_036450,

Figure 627: PRO80761

Figure 628: DNA324045, XM .056970,

PCT/US2003/028547

gen.XM 036450 Figure 665: DNA324063, XM_103946. gen.XM_103946 Figure 666: PRO80775 Figure 667: DNA324064, NM_014713. gen.NM_014713 Figure 668: PRO80776 Figure 669: DNA324065, XM_087206. gen.XM_087206 Figure 670: DNA324066, NM..106552. gen.NM_106552 Figure 671: PRO80778 Figure 672: DNA324067, XM_092135, gen.XM_092135 Figure 673: PRO80779 Figure 674: DNA324068, NM_017910. gen.NM_017910 Figure 675: PRO80780 Figure 676: DNA324069, XM_092517. gen.XM_092517 Figure 677: PRO80781 Figure 678A-B: DNA324070, NM_025203. gen.NM_025203 Figure 679: PRO80782 Figure 680: DNA324071, XM_002480, gen.XM_002480 Figure 681: DNA324072, NM_002707. gen.NM_002707 Figure 682: PRO12199 Figure 683: DNA324073, XM_087151. gen.XM_087151 Figure 684: DNA227165, NM_014748. gen.NM_014748 Figure 685: PRO37628 Figure 686: DNA324074, NM .015636. gen.NM_015636 Figure 687: PRO80785 Figure 688: DNA273800, NM _001521. gen.NM_001521 Figure 689: PRO61761 Figure 690: DNA324075, XM_047175. gen.XM_047175 Figure 691: PRO80786 Figure 692A-B: DNA324076, NM_004341. gen.NM_004341 Figure 693: PRO80787 Figure 694: DNA324077, NM_016085. gen.NM_016085 Figure 695: PRO80788 Figure 696: DNA324078, NM_080592, gen.NM_080592 Figure 697: PRO80789 Figure 698: DNA227545, NM _021095. gen.NM_021095 Figure 699: PRO38008 Figure 700: DNA324079, XM_002435.

gen.XM_002435 Figure 701: DNA324080, NM 000221 gen.NM_000221 Figure 702: PRO80790 Figure 703: DNA271243, NM_006488. gen.NM 006488 Figure 704: PRO59558 Figure 705: DNA324081, NM_007046. gen.NM_007046 Figure 706: PRO9886 Figure 707: DNA324082, NM_021831. gen.NM_021831 Figure 708: PRO80791 Figure 709: DNA324083, NM_020134. gen.NM_020134 Figure 710: PRO80792 Figure 711: DNA103593, NM_000183. gen.NM_000183 Figure 712: PRO4917 Figure 713: DNA324084, NM_000182. gen.NM_000182 Figure 714: PRO80793 Figure 715: DNA324085, XM_097976. gen.XM_097976 Figure 716A-B: DNA324086, XM 039712. gen.XM_039712 Figure 717: DNA324087, NM, 022552. gen.NM_022552 Figure 718: PRO80796 Figure 719: DNA324088, NM _024572. gen.NM_024572 Figure 720; PRO80797 Figure 721: DNA324089, NM_018607. gen.NM_018607 Figure 722: PRO80798 Figure 723; DNA324090, XM_165448. gen.XM_165448 Figure 724: PRO80799 Figure 725: DNA324091, XM_087195. gen.XM_087195 Figure 726: DNA324092, XM_087193. gen.XM_087193 Figure 727; DNA324093, NM_138801. gen.NM_138801 Figure 728: PRO80802 Figure 729: DNA324094, XM .098004. gen.XM_098004 Figure 730: PRO80803 Figure 731: DNA324095, XM 031519. gen.XM_031519 Figure 732: PRO80804 Figure 733A-B: DNA324096, XM_031527, gen.XM_031527 Figure 734: DNA324097, XM_038576. gen.XM_038576 Figure 735: PRO80806

PCT/IIS2003/028547

WO 2004/030615

Figure 736: DNA324098, XM 117264.

gen.XM_117264 Figure 737: PRO80807 Figure 738A-B: DNA324099, XM_031626. gen.XM_031626 Figure 739: PRO80808 Figure 740: DNA324100, XM_057664. gen.XM_057664 Figure 741: DNA226428, NM 000251. gen.NM_000251 Figure 742: PRO36891 Figure 743: DNA324101, XM_087211, gen.XM_087211 Figure 744A-B: DNA275066, NM_000179. geh.NM_000179 Figure 745: PRO62786 Figure 746A-C: DNA270154, NM_003128, gen.NM_003128 Figure 747: PRO58543 Figure 748: DNA324102, XM_087051. gen.XM_087051 Figure 749; DNA324103, NM 002954 gen.NM_002954 Figure 750: PRO62239 Figure 751: DNA271060, NM 002453. gen.NM_002453 Figure 752: PRO59384 Figure 753: DNA324104, XM_048088. gen.XM_048088 Figure 754: PRO80811 Figure 755: DNA324105, XM_010886, gen.XM_010886 Figure 756: PRO80812 Figure 757: DNA324106, XM_045283, gen,XM_045283 Figure 758: PRO80813 Figure 759: DNA324107, NM_006430. gen.NM_006430 Figure 760: PRO80814 Figure 761A-B: DNA324108, NM_003400, gen.NM_003400 Figure 762: PRO59544 Figure 763: DNA324109, XM_018301. gen.XM_018301 Figure 764: DNA324110, NM_005917. gen.NM_005917 Figure 765: PRO4918 Figure 766: DNA324111, XM_016843. gen.XM_016843 Figure 767: PRO80816 Figure 768: DNA324112, XM_088638. gen.XM_088638 Figure 769: PRO80817 Figure 770; DNA324113, XM_002647. gen.XM_002647 Figure 771: DNA324114, XM_010881,

gen.XM_010881 Figure 772: DNA324115, XM_087069. gen.XM_087069 Figure 773: DNA324116, XM_016625. gen.XM_016625 Figure 774: PRO80820 Figure 775: DNA324117, XM 087068. gen.XM_087068 Figure 776: DNA324118, XM .002674. gen.XM_002674 Figure 777: DNA324119, XM_065884. gen.XM_065884 Figure 778: PRO80823 Figure 779A-B: DNA324120, XM_002739, gen.XM_002739 Figure 780: DNA324121, XM_031596, gen.XM_031596 Figure 781: PRO61325 Figure 782: DNA324122, XM_031585. gen.XM_031585 Figure 783: DNA324123, XM_031586. gen.XM_031586 Figure 784: DNA324124, XM_018039. gen.XM_018039 Figure 785: DNA324125, NM .032822. gen.NM_032822 Figure 786: PRO80827 Figure 787A-B: DNA324126, XM_096172. gen.XM_096172 Figure 788A-B: DNA324127, XM_002727. gen.XM_002727 Figure 789: DNA324128, NM_003124. gen.NM_003124 Figure 790: PRO80830 Figure 791: DNA324129, XM_086980 gen.XM_086980 Figure 792; DNA227795, NM_006429. gen.NM_006429 Figure 793: PRO38258 Figure 794: DNA287167, NM_006636. gen.NM_006636 Figure 795: PRO59136 Figure 796: DNA324130, NM_033046. gen.NM_033046 Figure 797: PRO80832 Figure 798: DNA324131, NM_133637, gen.NM_133637 Figure 799: PRO80833 Figure 800: DNA324132, XM_035220, gen.XM_035220 Figure 801: DNA324133, NM_013247. gen.NM_013247 Figure 802: PRO80835 Figure 803: DNA227528, NM_021103. gen.NM_021103 Figure 804; PRO37991

Figure 805: DNA324134, XM_086920. gen.XM_087122 Figure 840: PRO80853 gen XM 086920 Figure 841: DNA324154, XM .018540, Figure 806: DNA150725, NM_001747. gen.NM_001747 gen.XM_018540 Figure 807: PRO12792 Figure 842: DNA324155, XM_087040, Figure 808: DNA324135, NM .005911. gen XM 087040 Figure 843: DNA324156, NM_032212. gen.NM_005911 Figure 809: PRO80837 gen.NM_032212 Figure 844: PRO80856 Figure 810: DNA324136, NM 032827. Figure 845: DNA324157, XM_002217, gen.NM_032827 gen.XM_002217 Figure 811: PRO80838 Figure 846: PRO80857 Figure 812: DNA324137, NM_017952. gen.NM_017952 Figure 847: DNA324158, NM_000576, Figure 813: PRO80839 gen.NM_000576 Figure 814: DNA227190, NM _006839. Figure 848: PRO65 gen.NM_006839 Figure 849: DNA324159, XM_086923, Figure 815: PRO37653 gen.XM_086923 Figure 850: DNA324160, XM_086925, Figure 816: DNA324138, XM_114215, gen.XM_086925 gen.XM.114215 Figure 851 A-B: DNA324161, XM_114266. Figure 817: DNA324139, XM_052989. gen.XM_114266 gen.XM_052989 Figure 852: PRO80860 Figure 818: DNA324140, XM_049116, Figure 853: DNA324162, XM_002704, gen.XM_049116 Figure 819: PRO80842 gen.XM_002704 Figure 854: DNA194740, NM_005291, Figure 820A-B: DNA324141, XM_049108, gen.NM_005291 gen.XM_049108 Figure 855: PRO24028 Figure 821: PRO80843 Figure 856A-B: DNA324163, XM_114267, Figure 822: DNA324142, XM_049113, gen, XM_049113 gen.XM_114267 Figure 823: DNA324143, XM_002611. Figure 857: DNA324164, XM .034952, gen.XM_002611 gen.XM_034952 Figure 824A-B: DNA324144, XM_114247, Figure 858: DNA324165, XM .086950, gen.XM 086950 gen_XM_114247 Figure 859A-B: DNA255531, NM_017751. Figure 825: DNA324145, NM_017789, gen.NM_017751 gen.NM_017789 Figure 826: PRO80846 Figure 860: PRO50596 Figure 861: DNA324166, XM_017698, Figure 827: DNA324146, NM_001862, gen.XM_017698 . gen_NM_001862 Figure 862: DNA324167, XM_030529, Figure 828: PRO80847 gen.XM_030529 Figure 829: DNA324147, NM_005783, Figure 863: PRO80866 gen, NM _005783 Figure 864: DNA275240, NM_005915, Figure 830: PRO80848 gen.NM_005915 Figure 831A-B: DNA324148, XM_037108, Figure 865: PRO62927 gen.XM_037108 Figure 866: DNA324168, XM.043173, Figure 832: DNA324149, NM_000993, gen.NM_000993 gen.XM_043173 Figure 867: DNA324169, XM_092489, Figure 833: PRO11197 Figure 834: DNA324150, NM_017546, gen.XM_092489 Figure 868: PRO80868 gen.NM_017546 Figure 869: DNA324170, XM..115672, Figure 835: PRO80850 Figure 836: DNA324151, NM_001450, gen.XM..115672 Figure 870: PRO80869 gen.NM_001450 Figure 871: DNA324171, NM_020548, Figure 837: PRO80851 Figure 838: DNA324152, XM_114229, gen.NM_020548 Figure 872: PRO60753 gen.XM_114229 Figure 839: DNA324153, XM .. 087122, Figure 873: DNA324172, XM_037101,

gen.XM_015920

PCT/US2003/028547

gen.XM_037101 Figure 910: DNA324190, XM_166007. Figure 874: PRO80870 gen.XM_166007 Figure 875: DNA324173, NM .032390, Figure 911: DNA324191, XM_015922. gen.NM 032390 gen.XM_015922 Figure 876: PRO80871 Figure 912: DNA324192, XM .087061. Figure 877: DNA324174, XM_002447, gen.XM ..087061 gen.XM 002447 Figure 913: PRO80888 Figure 878: DNA324175, NM_033416. Figure 914: DNA324193, XM_087062, gen.NM_033416 gen.XM 087062 Figure 879: PRO80873 Figure 915: PRO80889 Figure 880: DNA324176, XM_016288. Figure 916: DNA324194, NM_001463, gen.XM_016288 gen.NM_001463 Figure 881: DNA272127, NM _003937. Figure 917: PRO80890 gen.NM_003937 Figure 918: DNA324195, XM 092158 Figure 882: PRO60397 gen.XM_092158 Figure 883: DNA324177, XM_030582. Figure 919; PRO80891 gen.XM 030582 Figure 920: DNA324196, XM_059351. Figure 884: PRO80875 gen.XM_059351 Figure 885: DNA324178, NM_015702, Figure 921A-B: DNA324197, NM_000090, gen.NM_015702 gen.NM_000090 Figure 886: PRO80876 Figure 922: PRO2665 Figure 887: DNA324179, NM_016838, Figure 923: DNA324198, NM 014585. gen.NM_016838 gen.NM_014585 Figure 888: PRO80877 Figure 924: PRO37675 Figure 889: DNA324180, NM_016839, Figure 925: DNA324199, XM_010778, gen.NM_016839 gen.XM_010778 Figure 890: PRO80878 Figure 926: DNA324200, XM_086961, Figure 891: DNA324181, XM .087118. gen.XM_086961 gen.XM_087118 Figure 927: DNA324201, XM_165994, Figure 892: PRO80879 gen.XM_165994 Figure 893: DNA324182, XM_165998. Figure 928: DNA324202, XM_045170. gen.XM_165998 gen.XM_045170 Figure 894: DNA324183, NM_001935. Figure 929: DNA324203, XM_113390. gen.NM_001935 gen.XM_113390 Figure 895: PRO80881 Figure 930: DNA299899, NM 002157. Figure 896: DNA324184, NM_020675. gen.NM_002157 gen.NM_020675 Figure 931: PRO62760 Figure 897: PRO80882 Figure 932; DNA324204, XM .087045. Figure 898: DNA88051, NM_000079, gen.NM_000079 gen.XM_087045 Figure 899: PRO2146 Figure 933: DNA324205, XM .086944. Figure 900: DNA324185, XM_166008, gen.XM_086944 gen.XM_166008 Figure 934: DNA271608, NM_014670, Figure 901: DNA324186, XM_087240, gen.NM_014670 gen.XM_087240 Figure 935: PRO59895 Figure 902: PRO11403 Figure 936: DNA324206, XM_027963, Figure 903: DNA324187, NM_013341. gen.XM_027963 gen.NM_013341 Figure 937: PRO80900 Figure 904: PRO80883 Figure 938: DNA324207, XM_010852. Figure 905: DNA304805, NM_031942. gen.XM_010852 gen.NM_031942 Figure 939: PRO80901 Figure 906: PRO69531 Figure 940: DNA324208, XM_028034, Figure 907: DNA324188, XM_059465. gen.XM_028034 gen.XM_059465 Figure 941: DNA324209, NM_015934, Figure 908: PRO80884 gen.NM_015934 Figure 909: DNA324189, XM _015920, Figure 942: DNA324210, XM_087028,

gen.XM_087028

Figure 943: PRO80903

PCT/US2003/028547

Figure 944: DNA324211, XM _092346. gen.XM_092346 Figure 945: PRO80904 Figure 946: DNA324212, XM .002669. gen.XM_002669 Figure 947: PRO80905 Figure 948: DNA324213, NM .021121, gen.NM 021121 Figure 949: PRO23124 Figure 950: DNA324214, NM _001959, gen.NM_001959 Figure 951: PRO23124 Figure 952: DNA324215, XM 030834 gen.XM_030834 Figure 953: PRO80906 Figure 954A-C: DNA324216, XM_055254, gen.XM 055254 Figure 955: DNA324217, NM_004044, gen.NM_004044 Figure 956: PRO80908 Figure 957: DNA324218, XM_114298. gen.XM_114298 Figure 958: DNA324219, NM_021141, gen.NM_021141 Figure 959: PRO59313 Figure 960A-B: DNA324220, XM_098048. gen.XM_098048 Figure 961: PRO80910 Figure 962: DNA324221, XM_098047. gen.XM_098047 Figure 963: PRO80911 Figure 964: DNA324222, XM_002636, gen.XM_002636 Figure 965: DNA324223, XM .087181. gen.XM_087181 Figure 966: DNA324224, NM_000998. gen.NM _000998 Figure 967: PRO10498 Figure 968: DNA324225, XM_059422, gen.XM_059422 Figure 969: PRO9984 Figure 970: DNA324226, XM_092545, gen.XM_092545 Figure 971: DNA324227, XM_059461. gen.XM_059461 Figure 972: PRO80915 Figure 973: DNA324228, NM_018674, gen.NM_018674 Figure 974: PRO80916 Figure 975: DNA324229, XM_050962. gen.XM_050962 Figure 976: PRO80917 Figure 977: DNA194827, NM_012100. gen.NM_012100 Figure 978: PRO24091

gen.XM_050638 Figure 980A-B: DNA324231, NM _002846, gen.NM_002846 Figure 981: PRO2610 Figure 982: DNA324232, NM_006000. gen.NM_006000 Figure 983: PRO26228 Figure 984: DNA324233, XM .050891. gen.XM_050891 Figure 985: DNA324234, XM _087162, gen.XM_087162 Figure 986: DNA324235, XM .058098. gen.XM_058098 Figure 987: PRO80920 Figure 988: DNA324236, NM_022453. gen.NM_022453 Figure 989: PRO80921 Figure 990: DNA324237, NM_032726. gen.NM_032726 Figure 991: PRO70675 Figure 992: DNA324238, XM_010866. gen.XM_010866 Figure 993: DNA324239, XM_087166. gen.XM_087166 Figure 994: DNA254204, NM .001087. gen.NM_001087 Figure 995: PRO49316 Figure 996: DNA324240, NM .005731. gen.NM_005731 Figure 997: PRO80924 Figure 998; DNA189697, NM_004846. gen NM 004846 Figure 999: PRO23123 Figure 1000: DNA324241, NM_025202, gen.NM _025202 Figure 1001: PRO80925 Figure 1002: DNA324242, XM_115825, gen.XM_115825 Figure 1003: PRO80926 Figure 1004: DNA324243, XM_010858, gen.XM_010858 Figure 1005: PRO80927 Figure 1006: DNA324244, XM .002540. gen.XM_002540 Figure 1007: DNA324245, XM_048690. gen.XM_048690 Figure 1008: PRO80929 Figure 1009: DNA324246, NM_030926. gen.NM_030926 Figure 1010: PRO80930 Figure 1011: DNA324247, XM_087218. gen.XM_087218 Figure 1012: DNA324248, NM _004509, gen.NM_004509 Figure 1013: PRO80932

Figure 979: DNA324230, XM_050638.

PCT/US2003/028547

Figure 1049: DNA324269, NM_006354, Figure 1014: DNA324249, NM_004510, gen.NM_006354 gen.NM_004510 Figure 1050: PRO80952 Figure 1015: PRO80933 Figure 1051: DNA324270, NM_133480, Figure 1016: DNA324250, NM_080424, gen.NM_133480 gen.NM_080424 Figure 1052: PRO80953 Figure 1017: PRO80934 Figure 1053; DNA324271, NM_133481, Figure 1018: DNA324251, NM_018410, gen.NM_133481 gen.NM_018410 Figure 1054: PRO80954 Figure 1019: PRO80935 Figure 1055: DNA324272, NM_005718, Figure 1020: DNA324252, NM .017974, gen.NM_005718 gen.NM_017974 Figure 1056: PRO80955 Figure 1021: PRO80936 Figure 1057: DNA324273, NM_015644, Figure 1022A-B: DNA324253, XM_096169. gen.XM_096169 gen.NM_015644 Figure 1058: PRO80956 Figure 1023: PRO80937 Figure 1024: DNA150884, NM_005855. Figure 1059: DNA324274, XM_059561, gen.XM_059561 gen.NM_005855 Figure 1060: DNA324275, XM_052310, Figure 1025: PRO12520 gen.XM_052310 Figure 1026A-B: DNA324254, NM_004735, Figure 1061: PRO80958 gen.NM_004735 Figure 1062: DNA269910, NM_006395, Figure 1027: PRO80938 gen.NM_006395 Figure 1028A-C: DNA324255, XM_030203, Figure 1063: PRO58308 gen.XM_030203 Figure 1064: DNA324276, NM .000994, Figure 1029; DNA324256, XM_059372, gen.NM_000994 gen.XM_059372 Figure 1030: DNA324257, NM_002712, Figure 1065: PRO80959 Figure 1066: DNA151017, NM _004844, gen.NM _002712 gen.NM_004844 Figure 1031: PRO80941 Figure 1067: PRO12841 Figure 1032A-B: DNA324258, XM_042326, Figure 1068: DNA324277, XM_059557, gen.XM_042326 Figure 1033: PRO80942 gen.XM_059557 Figure 1034: DNA324259, NM_004404, Figure 1069: PRO80960 Figure 1070A-B: DNA324278, XM_042860, gen.NM_004404 gen.XM_042860 Figure 1035: PRO80943 Figure 1071: PRO80961 Figure 1036: DNA324260, XM_002742, Figure 1072: DNA324279, XM_042841, gen.XM_002742 gen.XM_042841 Figure 1037: DNA324261, NM_138483, Figure 1073: PRO80962 gen.NM_138483 Figure 1074: DNA324280, XM_053712, Figure 1038: PRO80945 Figure 1039: DNA324262, XM_115706, gen.XM_053712 Figure 1075: DNA324281, XM_087284, gen.XM_115706 gen.XM_087284 Figure 1040: DNA324263, XM_115722, Figure 1076: DNA324282, NM_002948, gen.XM_115722 gen.NM_002948 Figure 1041: DNA324264, XM_084141, gen.XM_084141 Figure 1077: PRO6360 Figure 1042: DNA324265, XM_005086, Figure 1078: DNA324283, XM_053323, gen.XM_053323 gen.XM_005086 Figure 1043: DNA324266, NM_015453, Figure 1079A-B: DNA324284, NM_001068, gen.NM_001068 gen.NM_015453 Figure 1080: PRO80966 Figure 1044: PRO80949 Figure 1045; DNA324267, NM _022485, Figure 1081: DNA252367, NM_017801, gen.NM_017801 gen.NM_022485 Figure 1046: PRO80950 Figure 1082: PRO48357 Figure 1083: DNA324285, XM_093624, Figure 1047A-B: DNA324268, XM_054520, gen.XM_054520 gen.XM_093624 Figure 1084: PRO80967 Figure 1048: PRO80951

Figure 1085: DNA324286, XM_046401, gen.XM_087588 Figure 1121; DNA324302, XM_166011, gen.XM_046401 Figure 1086: DNA324287, NM_022461, gen.XM_166011 Figure 1122A-B: DNA324303, XM_114364. gen.NM_022461 Figure 1087: PRO80969 gen.XM_114364 Figure 1123 A-B: DNA324304, XM_033294. Figure 1088: DNA324288, XM_113410, gen.XM_113410 gen.XM_033294 Figure 1124; PRO80983 Figure 1089: DNA88100, NM_000404, gen.NM_000404 Figure 1125: DNA324305, NM_138614, Figure 1090: PRO2172 gen.NM_138614 Figure 1126: PRO80984 Figure 1091: DNA324289, XM_091076, Figure 1127: DNA324306, XM_002899, gen.XM_091076 gen.XM_002899 Figure 1092: PRO80970 Figure 1128: DNA225910, NM_004345. Figure 1093A-B: DNA271187, NM_005109, gen.NM_005109 gen.NM_004345 Figure 1094: PRO59504 Figure 1129: PRO36373 Figure 1095: DNA324290, NM .002468, Figure 1130: DNA324307, XM_010953, gen.XM_010953 gen.NM_002468 Figure 1096: PRO36735 Figure 1131: DNA324308, XM_051518. Figure 1097; DNA269930, NM_001607, gen.XM_051518 gen.NM_001607 Figure 1132A-D: DNA324309, NM_001407, Figure 1098: PRO58328 gen.NM_001407 Figure 1099; DNA270401, NM_003149. Figure 1133: PRO50095 gen.NM_003149 Figure 1134; DNA324310, NM .003365, gen.NM_003365 Figure 1100: PRO58784 Figure 1135: PRO80988 Figure 1101: DNA324291, XM_087370. gen.XM_087370 Figure 1136: DNA324311, XM .. 003245, gen.XM_003245 Figure 1102: PRO80971 Figure 1137: DNA324312, XM_047561, Figure 1103: DNA324292, XM_098158, gen.XM_047561 gen.XM_098158 Figure 1104: PRO80972 Figure 1138: PRO80990 Figure 1105: DNA324293, XM_017364, Figure 1139: DNA324313, XM_116853. gen.XM_017364 gen.XM_116853 Figure 1106: DNA324294, XM_087349, Figure 1140A-B: DNA324314, XM_113405. gen.XM_087349 gen.XM_113405 Figure 1107: PRO80974 Figure 1141: DNA324315, XM_114323, gen_XM_114323 Figure 1108: DNA226547, NM_002295, gen.NM_002295 Figure 1142: PRO80993 Figure 1109: PRO37010 Figure 1143: DNA324316, XM_002828, gen.XM_002828 Figure 1110: DNA324295, NM_003973, Figure 1144: PRO80994 gen.NM_003973 Figure 1111: PRO80975 Figure 1145: DNA150976, NM_022171, Figure 1112: DNA324296, XM_030417, gen.NM_022171 Figure 1146: PRO12565 gen.XM_030417 Figure 1113: DNA324297, NM_020347, Figure 1147: DNA324317, XM_041507, gen.NM_020347 gen.XM_041507 Figure 1114; PRO80977 Figure 1148: PRO71103 Figure 1115: DNA324298, XM_087346. Figure 1149: DNA103505, NM _004636, gen.XM_087346 gen.NM_004636 Figure 1116: PRO80978 Figure 1150: PRO4832 Figure 1117: DNA324299, XM_096198. Figure 1151: DNA324318, NM .006764, gen.XM_096198 gen.NM_006764 Figure 1118: PRO80979 Figure 1152: PRO80995 Figure 1119: DNA324300, XM_003222, Figure 1153: DNA150562, NM_007275,

gen.NM_007275

Figure 1154: PRO12779

gen.XM_003222

Figure 1120: DNA324301, XM_087588.

Figure 1191: PRO81010 Figure 1155: DNA254582, NM_004635, Figure 1192; DNA324336, XM_166015, gen.NM_004635 Figure 1156: PRO49685 gen.XM_166015 Figure 1193: DNA324337, XM_113395, Figure 1157: DNA324319, NM_052859, gen.XM_113395 gen.NM_052859 Figure 1194: PRO81012 Figure 1158: PRO80996 Figure 1195: DNA269730, NM_014814, Figure 1159: DNA324320, NM .001064. gen.NM_001064 gen.NM_014814 Figure 1196: PRO58140 Figure 1160: PRO80997 Figure 1197: DNA324338, XM _036938, Figure 1161: DNA324321, XM_041211, gen.XM_041211 gen.XM_036938 Figure 1198: DNA324339, XM_029369, Figure 1162: DNA324322, XM_003213. gen.XM_003213 gen.XM_029369 Figure 1163A-C: DNA324323, XM_037423. Figure 1199: DNA324340, XM_076414, gen.XM_076414 gen.XM_037423 Figure 1200: PRO81015 Figure 1164: PRO80999 Figure 1201: DNA324341, XM_093546, Figure 1165A-B: DNA227307, NM .007184, gen.NM_007184 gen_XM_093546 Figure 1166: PRO37770 Figure 1202; DNA324342, XM_113409, gen.XM_113409 Figure 1167: DNA324324, NM_000688, gen.NM_000688 Figure 1203: DNA324343, XM_087268, gen.XM_087268 Figure 1168: PRO81000 Figure 1204: DNA324344, XM_116071, Figure 1169: DNA324325, XM_067715, gen.XM_067715 gen.XM_116071 Figure 1170: DNA324326, NM .000992, Figure 1205: DNA324345, XM_116072. gen.NM_000992 gen.XM_116072 Figure 1171: PRO62153 Figure 1206: DNA324346, NM_000986, gen.NM_000986 Figure 1172: DNA324327, NM .000666, Figure 1207: PRO10602 gen.NM_000666 Figure 1173: PRO81002 Figure 1208: DNA324347, XM_015462. gen.XM_015462 Figure 1174: DNA324328, NM_032750, Figure 1209: DNA324348, XM_167366, gen.NM_032750 gen.XM_167366 Figure 1175: PRO81003 Figure 1176: DNA324329, NM_033008, Figure 1210: PRO81022 Figure 1211: DNA324349, XM_087331. gen.NM_033008 gen.XM_087331 Figure 1177: PRO81004 Figure 1178: DNA324330, NM_033010, Figure 1212: PRO81023 Figure 1213: DNA324350, XM .039952. gen.NM_033010 gen.XM_039952 Figure 1179: PRO81005 Figure 1214: DNA324351, XM _045290. Figure 1180: DNA324331, NM_020418, gen.XM_045290 gen.NM_020418 Figure 1181: PRO81006 Figure 1215: PRO81025 Figure 1182: DNA273919, NM_004704, Figure 1216A-B: DNA324352, NM _007085. gen.NM_007085 gen.NM_004704 Figure 1217: PRO2077 Figure 1183: PRO61870 Figure 1184A-B: DNA324332, XM_087448, Figure 1218: DNA324353, NM _004547, gen.XM_087448 gen.NM_004547 Figure 1185: PRO81007 Figure 1219: PRO81026 Figure 1186: DNA324333, XM _002855, Figure 1220: DNA324354, XM_027161, gen.XM_027161 gen.XM_002855 Figure 1221A-B: DNA324355, XM_032269. Figure 1187: DNA324334, XM_002854, gen.XM_032269 gen.XM_002854 Figure 1222: PRO81028 Figure 1188; DNA0, NM _002854, gen.NM _002854 Figure 1189: PRO Figure 1223: DNA88547, NM_006810,

Figure 1190: DNA324335, XM_096195,

gen.XM_096195

gen.NM_006810

Figure 1224: PRO2837

Figure 1225: DNA324356, XM_114301. Figure 1259; PRO81046 Figure 1260: DNA324378, NM_000532. gen.XM_114301 Figure 1226: PRO81029 gen.NM_000532 Figure 1227: DNA324357, XM_098173. Figure 1261: PRO81047 Figure 1262: DNA324379, XM_036118. gen.XM_098173 Figure 1228: PRO81030 gen.XM 036118 Figure 1263: DNA324380, XM_084123. Figure 1229: DNA324358, XM_042618, gen.XM_042618 gen.XM 084123 Figure 1230: PRO81031 Figure 1264: DNA324381, XM_018149. Figure 1231: DNA324359, XM_084129, gen.XM_018149 gen.XM_084129 Figure 1265: DNA324382, XM, 087342. gen.XM_087342 Figure 1232: DNA324360, XM_098154, gen.XM_098154 Figure 1266: DNA324383, XM_059516, Figure 1233: PRO81033 gen.XM_059516 Figure 1234: DNA324361, XM_050552, Figure 1267; DNA324384, XM_087341, gen.XM_050552 gen.XM_087341 Figure 1235: DNA324362, NM_032343, Figure 1268: DNA324385, XM_165451, gen.NM_032343 gen.XM_165451 Figure 1236: PRO81034 Figure 1269: PRO81053 Figure 1270: DNA269858, NM _004766, Figure 1237; DNA324363, XM_051264, gen.XM_051264 gen.NM_004766 Figure 1238A-B: DNA324364, NM_013336, Figure 1271: PRO58259 gen.NM_013336 Figure 1272: DNA324386, NM_030921. Figure 1239: PRO1314 gen.NM_030921 Figure 1240: DNA324365, XM_067264. Figure 1273: PRO51109 gen.XM_067264 Figure 1274: DNA324387, XM_002859, Figure 1241: PRO81036 gen.XM_002859 Figure 1242: DNA324366, XM_114309, Figure 1275: DNA324388, XM_166014, gen.XM_114309 gen.XM_166014 Figure 1243: DNA324367, XM_084111, Figure 1276: DNA324389, NM_013363, gen.XM_084111 gen.NM_013363 Figure 1277: PRO287 Figure 1244: DNA324368, XM_113397, Figure 1278: DNA324390, XM_058267, gen.XM_113397 Figure 1245: DNA324369, XM_098111, gen.XM_058267 Figure 1279: PRO81056 gen.XM_098111 Figure 1246: DNA324370, NM_004637, Figure 1280A-B: DNA324391, NM _032383. gen.NM_004637 gen.NM_032383 Figure 1247: PRO81040 Figure 1281: PRO81057 Figure 1248: DNA324371, NM_020701. Figure 1282: DNA324392, NM_015472. gen.NM_015472 gen.NM_020701 Figure 1249: PRO81041 Figure 1283: PRO81058 Figure 1250: DNA324372, NM_003418, Figure 1284: DNA324393, NM_014445, gen.NM_003418 gen.NM_014445 Figure 1251: PRO81042 Figure 1285: PRO11048 Figure 1252: DNA324373, XM_059583, Figure 1286: DNA324394, XM_042168, gen.XM_059583 gen.XM_042168 Figure 1253: PRO81043 Figure 1287: PRO81059 Figure 1254: DNA324374, XM_113417, Figure 1288 A-B: DNA324395, XM_114356. gen.XM_113417 gen.XM_114356 Figure 1255: DNA324375, XM_093487, Figure 1289: DNA324396, XM_105236, gen.XM_093487 gen.XM_105236 Figure 1256A-B: DNA324376, XM_030812. Figure 1290: DNA324397, XM_010978. gen.XM_030812 gen.XM_010978 Figure 1257: PRO58177 Figure 1291: DNA324398, XM_017356, Figure 1258A-B: DNA324377, XM_039805, gen.XM_017356 gen.XM_039805 Figure 1292A-B: DNA324399, XM_039796,

PCT/US2003/028547

gen.XM_039796 Figure 1327: DNA89239, NM. 000893. gen.NM_000893 Figure 1293: PRO81064 Figure 1294: DNA324400, XM_016334. Figure 1328: PRO2906 Figure 1329: DNA324420, XM_113422, gen.XM_016334 Figure 1295: DNA324401, XM_116058. gen.XM_113422 gen.XM_116058 Figure 1330: DNA225592, NM_001622, Figure 1296: DNA324402, XM_113408, gen.NM_001622 gen.XM_113408 Figure 1331: PRO36055 Figure 1297: DNA324403, NM_002492. Figure 1332: DNA324421, XM_005180, gen.NM_002492 gen.XM_005180 Figure 1298: PRO81068 Figure 1333: DNA324422, XM_087392. Figure 1299: DNA324404, XM_037381, gen.XM_087392 Figure 1334: PRO81086 gen.XM_037381 Figure 1335A-B: DNA272605, NM_003722, Figure 1300: DNA324405, XM _037377. gen.XM_037377 gen.NM_003722 Figure 1301: PRO69681 Figure 1336: PRO60741 Figure 1302A-B: DNA324406, XM_087254. Figure 1337: DNA324423, XM_117311, gen.XM_087254 gen.XM_117311 Figure 1303: PRO81070 Figure 1338: DNA324424, XM_116034, Figure 1304: DNA324407, XM_037600, gen.XM_116034 gen.XM_037600 Figure 1339; PRO81088 Figure 1305: PRO81071 Figure 1340A-B: DNA324425, XM_084110, Figure 1306: DNA324408, NM_018023, gen.XM_084110 gen.NM_018023 Figure 1341: DNA324426, XM_038243, Figure 1307: PRO81072 gen.XM_038243 Figure 1308: DNA324409, XM_093423, Figure 1342: PRO81090 Figure 1343: DNA324427, XM_087359, gen.XM_093423 Figure 1309: PRO81073 gen.XM_087359 Figure 1310: DNA324410, XM_029136, Figure 1344: DNA324428, XM_114328, gen.XM_029136 gen.XM_114328 Figure 1311: PRO81074 Figure 1345: DNA324429, XM_098109. Figure 1312: DNA324411, XM_087322. gen.XM_098109 gen.XM_087322 Figure 1346: PRO81093 Figure 1313A-B: DNA324412, XM_029132. Figure 1347: DNA324430, XM_087410. gen.XM_029132 gen.XM_087410 Figure 1314A-B: DNA324413, XM_029104, Figure 1348: DNA324431, NM_033316, gen.XM_029104 gen.NM_033316 Figure 1315: DNA324414, XM_084120. Figure 1349: PRO81095 gen.XM_084120 Figure 1350: DNA324432, XM_166017, Figure 1316: DNA254620, NM _005787, gen.XM_166017 gen.NM_005787 Figure 1351: PRO81096 Figure 1317: PRO49722 Figure 1352: DNA79129, NM_001647, Figure 1318: DNA324415, NM _032331. gen.NM_001647 gen.NM_032331 Figure 1353: PRO2551 Figure 1319: PRO81079 Figure 1354; DNA324433, NM_032288. Figure 1320: DNA324416, XM_011074, gen.NM_032288 gen.XM_011074 Figure 1355: PRO81097 Figure 1321: PRO81080 Figure 1356; DNA324434, XM_086228. Figure 1322: DNA324417, XM_087295, gen.XM_086228 gen.XM_087295 Figure 1357: PRO81098 Figure 1323: DNA324418, XM_087289, Figure 1358: DNA324435, XM_087278, gen.XM_087289 gen.XM_087278 Figure 1324: PRO81082 Figure 1359: DNA324436, XM_018523, Figure 1325: DNA324419, XM_105658. gen.XM_018523 gen.XM_105658 Figure 1360: DNA324437, XM .087297, Figure 1326: PRO81083 gen.XM_087297

gen.NM_001313

PCT/US2003/028547

Figure 1397: PRO60542 Figure 1361: DNA324438, XM_002255, Figure 1398A-B: DNA324455, XM_052626. gen.XM_002255 Figure 1362: PRO81102 gen.XM_052626 Figure 1399: PRO81118 Figure 1363: DNA324439, XM_053122, Figure 1400: DNA324456, NM_016930, gen.XM_053122 Figure 1364: DNA324440, XM_042695. gen.NM_016930 Figure 1401: PRO81119 gen.XM_042695 Figure 1365: DNA324441, XM_011160. Figure 1402: DNA324457, XM_035824, gen.XM_011160 gen.XM_035824 Figure 1366: DNA324442, NM_007100. Figure 1403: PRO81120 Figure 1404; DNA324458, NM_033296. gen.NM_007100 Figure 1367: PRO81106 gen.NM_033296 Figure 1368; DNA139747, NM _002477, Figure 1405; PRO81121 Figure 1406: DNA324459, NM_138699, gen.NM_002477 gen.NM_138699 Figure 1369: PRO9785 Figure 1370: DNA253804, NM _032219. Figure 1407: PRO81122 Figure 1408; DNA324460, XM_116285. gen.NM_032219 Figure 1371: PRO49209 gen.XM_116285 Figure 1409: PRO81123 Figure 1372: DNA324443, NM_138385, gen.NM_138385 Figure 1410: DNA324461, XM_041221, gen.XM_041221 Figure 1373: PRO81107 Figure 1374: DNA324444, NM _006342, Figure 1411: PRO81124 gen.NM_006342 Figure 1412: DNA324462, XM_117351, Figure 1375: PRO81108 gen.XM_117351 Figure 1376A-C: DNA324445, NM_133330, Figure 1413: DNA324463, XM_039165, gen.XM_039165 gen.NM_133330 Figure 1414: DNA324464, NM_025205, Figure 1377: PRO81109 Figure 1378A-C: DNA324446, NM_014919, gen.NM_025205 Figure 1415: PRO81127 gen.NM_014919 Figure 1416: DNA324465, XM_039173, Figure 1379: PRO81110 Figure 1380A-C: DNA324447, NM _133332. gen.XM_039173 Figure 1417: DNA324466, XM_039176, gen.NM_133332 Figure 1381: PRO81111 gen.XM_039176 Figure 1418: DNA324467, XM_087583, Figure 1382: DNA324448, NM_005663. gen.XM_087583 gen.NM_005663 Figure 1419: DNA324468, NM_017491, Figure 1383: PRO81112 Figure 1384A-B: DNA324449, XM_098248, gen.NM_017491 Figure 1420: PRO12077 gen.XM_098248 Figure 1421: DNA324469, NM_005112, Figure 1385: PRO81113 Figure 1386: DNA270615, NM _002938, gen.NM_005112 gen.NM_002938 Figure 1422; PRO81131 Figure 1387: PRO58986 Figure 1423: DNA324470, XM_011129, Figure 1388A-B: DNA324450, NM_014190, gen.XM_011129 Figure 1424A-B: DNA324471, XM_052530, gen.NM_014190 Figure 1389: PRO81114 gen.XM_052530 Figure 1425: DNA324472, NM_000661, Figure 1390A-B: DNA324451, NM_014189, gen.NM_000661 gen.NM_014189 Figure 1391: PRO81115 Figure 1426: PRO81134 Figure 1427A-B: DNA324473, NM_002913, Figure 1392: DNA324452, XM_035572, gen.XM_035572 gen.NM_002913 Figure 1393: PRO81116 Figure 1428: PRO81135 Figure 1394A-B: DNA324453, NM_014556, Figure 1429A-B: DNA324474, XM_047477, gen.NM_014556 gen.XM_047477 Figure 1395: PRO81117 Figure 1430: DNA324475, NM_004181, Figure 1396: DNA324454, NM_001313, gen.NM_004181

Figure 1431: PRO81137

	VD 4 00/202
Figure 1432: DNA324476, XM_003435,	gen.XM_096203
gen.XM_003435	Figure 1465: DNA324498, XM_084158,
Figure 1433: DNA324478, XM_010941,	gen.XM_084158
gen.XM_010941	Figure 1466: DNA324499, XM_034710,
Figure 1434: DNA324479, XM_059593,	gen.XM_034710
gen.XM_059593	Figure 1467: PRO81156
Figure 1435: DNA324480, NM_001553,	Figure 1468: DNA324500, XM .034713,
gen.NM_001553	gen.XM_034713
Figure 1436: PRO81141	Figure 1469: DNA324501, XM_059633,
Figure 1437: DNA257511, NM_032313,	gen.XM_059633
gen.NM_032313	Figure 1470: DNA324502, XM_114426,
Figure 1438: PRO52083	gen.XM_114426
Figure 1439: DNA324481, XM_071623,	Figure 1471: DNA324503, XM_056957,
gen.XM_071623	gen.XM_056957
Figure 1440A-B: DNA324482, XM_036002,	Figure 1472: DNA324504, XM_088472,
gen.XM_036002	gen.XM_088472
Figure 1441: DNA324483, XM_058927,	Figure 1473: DNA324505, XM_114424,
gen.XM_058927	gen.XM_114424
Figure 1442: DNA324484, XM_059628,	Figure 1474A-B: DNA324506, XM_042301,
gen.XM_059628	gen.XM_042301
Figure 1443: DNA324485, XM_046057,	Figure 1475: PRO81163
gen.XM_046057	Figure 1476: DNA324507, XM_017925,
Figure 1444: PRO81146	gen.XM_017925
Figure 1445: DNA324486, XM_031320,	Figure 1477: DNA324508, XM_052336,
gen.XM_031320	gen.XM_052336
Figure 1446: DNA225919, NM_001134,	Figure 1478: DNA324509, NM _002106,
gen.NM_001134	gen.NM_002106
Figure 1447: PRO36382	Figure 1479: PRO10297
Figure 1448A-B: DNA324487, XM_003511,	Figure 1480: DNA324510, XM_085068,
gen.XM_003511	gen.XM_085068
Figure 1449: DNA324488, NM _006835,	Figure 1481: PRO81166
gen.NM_006835	Figure 1482: DNA324511, XM_165473,
Figure 1450: PRO4605	gen.XM_165473
Figure 1451: DNA324489, XM_003305,	Figure 1483: DNA324512, XM_087514,
gen.XM_003305	gen.XM_087514
Figure 1452: DNA324490, XM_113425,	Figure 1484: DNA324513, XM_116247,
gen.XM_113425	gen.XM_116247
Figure 1453: DNA324491, XM_001389,	Figure 1485: DNA324514, NM_002358,
gen.XM_001389	gen.NM_002358
Figure 1454: PRO81148	Figure 1486: PRO81169
Figure 1455: DNA324492, XM_087527,	Figure 1487: DNA324515, XM_050200,
gen.XM_087527	gen.XM_050200
Figure 1456: DNA324493, XM_035986,	Figure 1488: PRO81170
gen.XM_035986	Figure 1489: DNA225584, NM _001154,
Figure 1457A-B; DNA324494, NM_014933,	gen.NM_001154
gen.NM_014933	Figure 1490: PRO36047
Figure 1458: PRO81150	Figure 1491: DNA324516, NM_024900,
Figure 1459: DNA290585, NM_000582,	gen.NM_024900
	Figure 1492: PRO81171
gen.NM_000582	Figure 1492: PRO61171 Figure 1493: DNA324517, XM_040752,
Figure 1460: PRO70536	gen.XM_040752
Figure 1461: DNA324495, XM_055551,	Figure 1494: DNA324518, NM_002413,
gen.XM_055551	gen.NM_002413
Figure 1462: PRO81151	Figure 1495: PRO60956
Figure 1463: DNA324496, XM_087498,	Figure 1495: PRO60956 Figure 1496: DNA324519, XM_114401,
gen.XM_087498 Figure 1464: DNA324497, XM_096203,	
	gen.XM_114401

PCT/US2003/028547

WO 2004/030615

Figure 1497: DNA324520, XM_068164. gen.XM 068164 Figure 1498: PRO81174 Figure 1499; DNA324521, XM_060067, gen.XM_060067 Figure 1500: DNA324522, XM .. 003555, gen.XM_003555 Figure 1501: PRO81176 Figure 1502: DNA324523, XM_034321, gen.XM_034321 Figure 1503: PRO81177 Figure 1504: DNA324524, NM_006439. gen.NM_006439 Figure 1505: PRO81178 Figure 1506: DNA324525, NM_001006, gen.NM_001006 Figure 1507: PRO81179 Figure 1508: DNA227575, NM _005141, gen.NM_005141 Figure 1509: PRO38038 Figure 1510: DNA324526, XM_114368, gen.XM_114368 Figure 1511A-B: DNA225920, NM_000508, gen.NM_000508 Figure 1512: PRO36383 Figure 1513: DNA324527, NM_021871. gen.NM_021871 Figure 1514: PRO81181 Figure 1515: DNA225921, NM _000509, gen.NM_000509 Figure 1516: PRO36384 Figure 1517: DNA324528, NM_021870, gen.NM .021870 Figure 1518: PRO81182 Figure 1519: DNA324529, XM .059623. gen.XM_059623 Figure 1520: DNA324530, XM_106246. gen.XM_106246 Figure 1521: PRO81184 Figure 1522: DNA324531, NM_002129, gen.NM_002129 Figure 1523: PRO81185 Figure 1524: DNA324532, XM_040321, gen.XM_040321 Figure 1525: DNA324533, XM_015563, gen.XM_015563 Figure 1526: DNA324534, NM_024748, gen.NM_024748 Figure 1527: PRO81188 Figure 1528: DNA324535, XM_165470, gen.XM_165470 Figure 1529: PRO81189 Figure 1530A-E: DNA324536, XM_003477, gen.XM_003477 Figure 1531: DNA324537, XM_165465,

gen.XM_165465

Figure 1532: DNA324538, XM_116204. gen.XM 116204 Figure 1533: DNA324539, XM_116205. gen.XM_116205 Figure 1534: DNA324540, XM_098405, gen.XM_098405 Figure 1535: DNA324541, XM_052313, gen.XM_052313 Figure 1536: PRO81195 Figure 1537: DNA324542, XM_087659, gen.XM_087659 Figure 1538: PRO81196 Figure 1539: DNA324543, XM_029096, gen.XM_029096 Figure 1540: DNA324544, XM_003825, gen.XM_003825 Figure 1541; DNA324545, XM_057994, gen.XM .057994 Figure 1542: PRO81199 Figure 1543: DNA324546, XM_087686, gen.XM_087686 Figure 1544: DNA324547, XM_017641. gen.XM_017641 Figure 1545: DNA324548, NM.030782, gen.NM_030782 Figure 1546: PRO81202 Figure 1547: DNA324549, XM_084168, gen.XM_084168 Figure 1548: DNA324550, XM_057492, gen.XM_057492 Figure 1549: DNA324551, XM_087597, gen.XM_087597 Figure 1550: DNA324552, XM_087601, gen.XM_087601 Figure 1551: DNA324554, XM_087599. gen.XM_087599 Figure 1552: DNA324555, XM_114435. gen.XM_114435 Figure 1553: DNA324556, XM_087600, gen.XM_087600 Figure 1554: DNA324557, XM_016170, gen.XM_016170 Figure 1555: DNA324558, XM_114434. gen.XM_114434 Figure 1556: DNA324559, XM_113452, gen.XM_113452 Figure 1557: DNA324560, XM_071580, gen.XM_071580 Figure 1558: PRO81213 Figure 1559: DNA324561, XM_087713, gen.XM_087713 Figure 1560: PRO81214 Figure 1561: DNA324562, XM_094440, gen.XM_094440 Figure 1562: DNA324563, XM..106739, gen.XM_106739

Figure 1563: PRO81216 Figure 1597: DNA324584, XM_087610. gen.XM 087610 Figure 1564; DNA324564, XM_087614, Figure 1598: DNA288259, NM_031966. gen.XM 087614 Figure 1565: DNA324565, XM .004009. gen.NM 031966 gen.XM_004009 Figure 1599: PRO4676 Figure 1566; PRO81219 Figure 1600: DNA 324585, XM .042025. Figure 1567: DNA324566, XM_114437. gen.XM 042025 Figure 1601: PRO81238 gen.XM_114437 Figure 1568: DNA324567, XM_043771. Figure 1602: DNA324586, NM_005713, gen.XM_043771 gen.NM_005713 Figure 1569: PRO81221 Figure 1603: PRO81239 Figure 1604: DNA324587, XM_059709, Figure 1570: DNA324568, NM .000997. gen.NM_000997 gen.XM_059709 Figure 1571: PRO11077 Figure 1605: PRO81240 Figure 1572: DNA324569, XM_003869, Figure 1606: DNA324588, XM_116447, gen.XM_003869 gen.XM.116447 Figure 1573: DNA227173, NM_001465, Figure 1607: PRO81241 gen.NM_001465 Figure 1608: DNA324589, XM_037260, gen.XM_037260 Figure 1574: PRO37636 Figure 1575: DNA324570, NM_018034, Figure 1609: DNA324590, XM_098351, gen.NM_018034 gen.XM_098351 Figure 1610: DNA324591, XM_098354, Figure 1576: PRO81223 gen.XM_098354 Figure 1577: DNA324571, NM_032637, Figure 1611: DNA324592, XM_098352, gen.NM_032637 gen.XM_098352 Figure 1578: PRO81224 Figure 1579: DNA324572, NM .005983, Figure 1612: DNA324593, XM_166037, gen.NM .005983 gen.XM_166037 Figure 1580: PRO81225 Figure 1613: PRO81246 Figure 1581A-B: DNA324573, XM_003896, Figure 1614: DNA324594, XM_041694, gen.XM_003896 gen.XM_041694 Figure 1615: DNA324595, XM_165488, Figure 1582: DNA287282, NM_002130, gen.NM .002130 gen.XM_165488 Figure 1583: PRO69554 Figure 1616: PRO81248 Figure 1584: DNA324574, XM_114442, Figure 1617: DNA324596, XM_059669, gen.XM_059669 gen.XM_114442 Figure 1585: PRO81227 Figure 1618: PRO81249 Figure 1586: DNA324575, XM_114439, Figure 1619: DNA324597, XM_027964. gen.XM_114439 gen.XM_027964 Figure 1587: DNA324576, XM_114440, Figure 1620: PRO81250 Figure 1621: DNA324598, XM_088020. gen.XM_114440 Figure 1588A-B: DNA324577, XM_032902, gen.XM_088020 Figure 1622: DNA324599, XM_117387, gen.XM .032902 Figure 1589: PRO81230 gen.XM_117387 Figure 1590: DNA324578, XM_032895, Figure 1623: DNA324600, XM_114469, gen.XM_032895 gen.XM_114469 Figure 1591: DNA324579, XM_084179, Figure 1624: DNA324601, NM_001207. gen.XM_084179 gen.NM_001207 Figure 1625: PRO22771 Figure 1592: DNA324580, XM_041712, Figure 1626A-B: DNA324602, XM_032553, gen.XM_041712 Figure 1593: DNA324581, XM_116439, gen.XM_032553 Figure 1627: DNA254147, NM _000521, gen.XM_116439 Figure 1594: PRO81234 gen.NM_000521 Figure 1595: DNA324582, XM_087611, Figure 1628: PRO49262 Figure 1629: DNA324603, NM_031482. gen.XM_087611 Figure 1596: DNA324583, XM_059653, gen.NM_031482

gen.XM_059653

Figure 1630: PRO81254

Figure 1631: DNA324604, XM_087790. Figure 1666: DNA324622, XM .003830. gen.XM 087790 gen.XM_003830 Figure 1632: DNA324605, NM 001025. Figure 1667: PRO81269 gen.NM_001025 Figure 1668; DNA324623, XM_037002, Figure 1633: PRO10685 gen.XM_037002 Figure 1634: DNA324606, XM_098362, Figure 1669: DNA324624, XM_166026. gen.XM_098362 gen.XM_166026 Figure 1635: PRO81256 Figure 1670; DNA324625, XM_041059. Figure 1636: DNA324607, NM _003401. gen.XM_041059 gen.NM_003401 Figure 1671: DNA83020, NM_000358, Figure 1637: PRO70327 gen.NM_000358 Figure 1638: DNA290231, NM_022550, Figure 1672: PRO2561 gen.NM_022550 Figure 1673: DNA324626, NM_003687, Figure 1639: PRO70327 gen.NM_003687 Figure 1640: DNA324608, XM _017857. Figure 1674: PRO81272 gen.XM_017857 Figure 1675: DNA324627, XM _034862, Figure 1641: DNA324609, XM_117398, gen.XM_034862 gen.XM_117398 Figure 1676: PRO34544 Figure 1642A-B: DNA257253, NM_032280. Figure 1677: DNA 103380, NM _003374, gen.NM_032280 gen.NM_003374 Figure 1643: PRO51851 Figure 1678: PRO4710 Figure 1644; DNA324610, XM_003771. Figure 1679: DNA324628, XM _017474, gen.XM_003771 gen.XM_017474 Figure 1645; PRO81259 Figure 1680: PRO63082 Figure 1646A-B: DNA269816, NM .002397, Figure 1681A-B: DNA324629, NM_014829. gen.NM_002397 gen.NM_014829 Figure 1647: PRO58219 Figure 1682: PRO81273 Figure 1683A-B: DNA324630, XM_114482, Figure 1648: DNA324611, XM_116427, gen.XM_116427 gen.XM_114482 Figure 1649: PRO81260 Figure 1684: PRO81274 Figure 1650: DNA324612, NM .004772, Figure 1685: DNA324631, NM_004893. gen.NM_004772 gen.NM-004893 Figure 1651: PRO81261 Figure 1686: PRO81275 Figure 1652: DNA324613, XM_016674, Figure 1687: DNA269809, NM_006805, gen.XM_016674 gen.NM_006805 Figure 1653: PRO81262 Figure 1688: PRO58213 Figure 1654: DNA324614, XM_113463, Figure 1689: DNA226872, NM_001964. gen.XM_113463 gen.NM_001964 Figure 1655: DNA324615, XM _034744, Figure 1690: PRO37335 gen.XM_034744 Figure 1691: DNA324632, XM_116307, Figure 1656: DNA324616, XM _087745. gen.XM_116307 gen_XM_087745 Figure 1692: PRO81276 Figure 1657: PRO81264 Figure 1693: DNA324633, NM .004134. Figure 1658: DNA324617, XM .018473, gen.NM_004134 gen.XM_018473 Figure 1694: PRO81277 Figure 1659: PRO81265 Figure 1695: DNA324634, XM_038221. Figure 1660: DNA324618, XM .087635, gen.XM_038221 gen.XM_087635 Figure 1696: PRO81278 Figure 1661: PRO81266 Figure 1697: DNA271931, NM_005754, Figure 1662: DNA324619, XM_087637, gen.NM_005754 gen_XM_087637 Figure 1698: PRO60207 Figure 1663: DNA324620, XM_166027, Figure 1699: DNA324635, XM_003841, gen.XM_166027 gen.XM_003841 Figure 1664: DNA324621, NM_014035, Figure 1700: DNA324636, XM_032759, gen.NM_014035 gen.XM_032759 Figure 1665: PRO1285 Figure 1701; DNA324637, XM_017591.

gen.XM_017591 gen.NM 018913 Figure 1702: DNA324638, NM_006058, Figure 1737: PRO81293 Figure 1738A-B: DNA324656, NM_018914, gen.NM_006058 gen.NM 018914 Figure 1703: PRO81280 Figure 1739: PRO81294 Figure 1704: DNA324639, NM_002084, gen.NM_002084 Figure 1740A-B: DNA324657, NM_018915. gen.NM 018915 Figure 1705: PRO81281 Figure 1741: PRO36020 Figure 1706: DNA324640, NM_018047, Figure 1742A-B: DNA324658, NM_018916. gen.NM_018047 gen.NM 018916 Figure 1707: PRO81282 Figure 1708: DNA324641, NM _005617, Figure 1743: PRO81295 Figure 1744A-B: DNA324659, NM_018917. gen.NM_005617 Figure 1709: PRO10849 gen.NM_018917 Figure 1710: DNA324642, XM_003937, Figure 1745: PRO81296 Figure 1746A-B: DNA324660, NM _018918. gen.XM_003937 Figure 1711: DNA324643, XM_087621, gen_NM_018918 Figure 1747: PRO81297 gen.XM_087621 Figure 1748A-B: DNA324661, NM_018919, Figure 1712A-B: DNA324644, XM_003789, gen.NM_018919 gen.XM_003789 Figure 1749: PRO81298 Figure 1713: DNA324645, XM ,087652, gen.XM _087652 Figure 1750A-B: DNA324662, NM_018920, Figure 1714: DNA324646, XM_068853, gen.NM_018920 Figure 1751: PRO81299 gen.XM_068853 Figure 1752A-B: DNA324663, NM_018921, Figure 1715: PRO81286 gen.NM_018921 Figure 1716: DNA324647, XM_116465, gen.XM_116465 Figure 1753: PRO81300 Figure 1754A-B: DNA324664, NM_018922, Figure 1717: PRO81287 gen.NM_018922 Figure 1718: DNA302020, NM _005573, Figure 1755: PRO81301 gen.NM .005573 Figure 1719: PRO70993 Figure 1756A-B: DNA324665, NM_018923, Figure 1720: DNA324648, XM_113467, gen.NM_018923 Figure 1757: PRO81302 gen.XM_113467 Figure 1721: DNA271626, NM_014773, Figure 1758A-B: DNA324666, NM_018924, gen.NM_018924 gen.NM_014773 Figure 1722: PRO59913 Figure 1759: PRO81303 Figure 1723A-B: DNA324649, XM_056315, Figure 1760A-B: DNA324667, NM_018925, gen.NM_018925 gen.XM_056315 Figure 1761: PRO81304 Figure 1724: DNA324650, NM_024668, Figure 1762A-B: DNA324668, NM .018926. gen.NM_024668 gen.NM_018926 Figure 1725: PRO81289 Figure 1726: DNA324651, NM .080670. Figure 1763: PRO81305 Figure 1764A-B: DNA324669, NM_018927, gen.NM_080670 Figure 1727: PRO81290 gen.NM_018927 Figure 1765: PRO37091 Figure 1728A-B: DNA324652, NM .002588, gen.NM_002588 Figure 1766A-B: DNA324670, NM _018928. Figure 1729: PRO81291 gen.NM .018928 Figure 1730A-B: DNA324653, NM .003735, Figure 1767: PRO81306 gen.NM_003735 Figure 1768A-B: DNA324671, NM_018929. Figure 1731: PRO81292 gen.NM_018929 Figure 1732A-B: DNA150679, NM .003736, Figure 1769: PRO81307 Figure 1770A-B: DNA324672, NM_032088, gen.NM_003736 Figure 1733: PRO12416 gen.NM_032088 Figure 1734A-B: DNA324654, NM .018912, Figure 1771: PRO81308 Figure 1772A-B: DNA324673, NM_032092, gen.NM_018912

gen.NM_032092

Figure 1773: PRO81309

Figure 1735: PRO36058

Figure 1736A-B: DNA324655, NM .018913,

PCT/US2003/028547

Figure 1774: DNA324674, NM_032403, Figure 1809: PRO81327 Figure 1810: DNA324694, XM_116856. gen.NM_032403 Figure 1775: PRO81310 gen.XM 116856 Figure 1811: DNA324695, XM_003716. Figure 1776: DNA324675, NM .032402, gen.NM_032402 gen.XM_003716 Figure 1777: PRO81311 Figure 1812: DNA227320, NM_003714. Figure 1778: DNA324676, XM_098387, gen.NM_003714 Figure 1813: PRO37783 gen.XM_098387 Figure 1814: DNA324696, NM .032361, Figure 1779: DNA324677, NM .002109. gen.NM_032361 gen.NM_002109 Figure 1780: PRO4908 Figure 1815: PRO81330 Figure 1816: DNA324697, XM_087773, Figure 1781: DNA324678, XM_084180. gen.XM_084180 gen.XM_087773 Figure 1782: PRO81313 Figure 1817: DNA324698, XM_114457, Figure 1783: DNA324679, XM .039975. gen.XM_114457 gen.XM_039975 Figure 1818: DNA324699, XM_165483. gen.XM_165483 Figure 1784: PRO81314 Figure 1819: DNA324700, XM_114453, Figure 1785: DNA324680, NM_033551, gen.XM_114453 gen.NM_033551 Figure 1820: DNA324701, XM_165484, Figure 1786: PRO81315 Figure 1787: DNA324681, NM_004821. gen.XM_165484 Figure 1821: DNA324702, XM_030771, gen.NM_004821 Figure 1788: PRO81316 gen.XM_030771 Figure 1822: PRO19615 Figure 1789: DNA324682, XM_068395, Figure 1823: DNA324703, XM _030777. gen.XM 068395 Figure 1790: PRO81317 gen.XM_030777 Figure 1824: DNA324704, XM_030782, Figure 1791: DNA226418, NM .004060. gen.NM_004060 gen.XM_030782 Figure 1792: PRO36881 Figure 1825: PRO81336 Figure 1793A-B: DNA324683, XM_056963, Figure 1826: DNA324705, NM_030567, gen.XM_056963 gen.NM_030567 Figure 1794: PRO81318 Figure 1827: PRO81337 Figure 1795: DNA324684, NM_004219, Figure 1828: DNA225909, NM_000505. gen.NM_004219 gen.NM .000505 Figure 1796: PRO81319 Figure 1829: PRO36372 Figure 1797: DNA324685, XM_094243, Figure 1830: DNA274206, NM_006816. gen.XM_094243 gen.NM_006816 Figure 1798A-B: DNA324686, XM_047964. Figure 1831: PRO62135 Figure 1832: DNA324706, NM_031300, gen.XM_047964 Figure 1799: DNA324687, XM_016345, gen.NM_031300 gen.XM_016345 Figure 1833: PRO81338 Figure 1800: DNA324688, NM_002887, Figure 1834; DNA324707, NM_013237, gen.NM_002887 gen.NM_013237 Figure 1835: PRO81339 Figure 1801: PRO81323 Figure 1802: DNA324689, XM_166029, Figure 1836: DNA324708, NM_002011, gen.XM_166029 gen.NM .002011 Figure 1803: DNA324690, NM_002520, Figure 1837: PRO81340 gen.NM_002520 Figure 1838: DNA324709, NM_022963. Figure 1804: PRO58993 gen.NM_022963 Figure 1805: DNA324691, XM_043340. Figure 1839: PRO81341 gen.XM_043340 Figure 1840: DNA324710, XM_038946. Figure 1806: PRO81325 gen.XM_038946 Figure 1807: DNA324692, XM_116340, Figure 1841: DNA324711, XM_113454, gen.XM_116340 gen.XM_113454 Figure 1808A-B: DNA324693, XM_043388, Figure 1842: DNA324712, XM_166028, gen.XM_043388 gen.XM_166028

PCT/HS2003/028547 WO 2004/030615

Figure 1877: DNA324731, XM_168123. Figure 1843: DNA324713, NM_015043. gen.NM.015043 gen.XM_168123 Figure 1844: PRO81345 Figure 1878: DNA324732, XM_166457. Figure 1845: DNA324714, XM_113468, gen.XM_166457 gen.XM_113468 Figure 1879: DNA324733, XM_166469, Figure 1846: DNA324715, NM_014275, gen.XM_166469 Figure 1880: DNA324734, NM_018135. gen.NM_014275 Figure 1847: PRO1927 gen.NM_018135 Figure 1848: DNA324716, NM _054013, Figure 1881: PRO81359 gen.NM_054013 Figure 1882A-B: DNA324735, XM_166340. Figure 1849: PRO81347 gen XM 166340 Figure 1850: DNA270675, NM .005520, Figure 1883: DNA324736, XM_087960. gen.NM_005520 gen.XM_087960 Figure 1884: DNA324737, XM_166362, Figure 1851: PRO59040 Figure 1852: DNA324717, NM .006098. gen.XM_166362 gen.NM .006098 Figure 1885: PRO81362 Figure 1853: PRO25849 Figure 1886: DNA227204, NM_015388. Figure 1854: DNA269593, NM_005110. gen.NM_015388 Figure 1887: PRO37667 gen.NM_005110 Figure 1855: PRO58006 Figure 1888: DNA324738, XM_166425, Figure 1856: DNA324718, XM_116365, gen.XM_166425 gen.XM_116365 Figure 1889: PRO81363 Figure 1857: DNA324719, XM_116511. Figure 1890: DNA324739, NM_057161. gen.XM_116511 gen.NM_057161 Figure 1858: DNA324720, XM_087823. Figure 1891: PRO81364 gen.XM_087823 Figure 1892: DNA270613, NM_006245, Figure 1859A-C: DNA324721, XM_053955. gen.NM_006245 gen.XM_053955 Figure 1893: PRO58984 Figure 1860: DNA324722, XM_113476, Figure 1894: DNA324740, NM _006586, gen.XM_113476 gen.NM_006586 Figure 1861: DNA324723, XM_116514, Figure 1895: PRO81365 gen.XM_116514 Figure 1896: DNA324741, XM_166402, Figure 1862: DNA324724, XM _094741, gen.XM_166402 gen.XM_094741 Figure 1897: PRO81366 Figure 1863: DNA324725, NM _025168. Figure 1898: DNA324742, NM .001760, gen.NM_025168 gen.NM_001760 Figure 1864: PRO81354 Figure 1899: PRO81367 Figure 1865A-B: DNA324726, XM_165740. Figure 1900: DNA287246, NM_004053. gen.XM_165740 gen_NM_004053 Figure 1866: DNA272171, NM _002388. Figure 1901: PRO69521 Figure 1902: DNA324743, NM _017601, gen.NM_002388 Figure 1867: PRO60438 gen_NM_017601 Figure 1868: DNA324727, XM_167169. Figure 1903: PRO81368 gen.XM_167169 Figure 1904: DNA275630, NM_006708. Figure 1869: PRO81355 gen.NM_006708 Figure 1870: DNA324728, NM_014452. Figure 1905: PRO63253 gen.NM_014452 Figure 1906: DNA324744, NM_014341, Figure 1871: PRO868 gen.NM_014341 Figure 1872: DNA324729, XM_166349, Figure 1907: PRO81369 gen.XM_166349 Figure 1908: DNA304460, NM_016059, Figure 1873: PRO81356 gen.NM_016059 Figure 1874: DNA304680, NM .007355, Figure 1909: PRO4984 gen.NM_007355 Figure 1910: DNA324745, XM_166412. Figure 1875: PRO71106 gen.XM_166412 Figure 1876: DNA324730, XM_165772, Figure 1911: PRO81370 gen.XM_165772

Figure 1912: DNA304716, NM _078467,

PCT/US2003/028547

gen.NM_078467 gen.NM_022551 Figure 1913: PRO71142 Figure 1914: DNA324746, XM_166417. gen.XM_166417 Figure 1915: PRO81371 Figure 1916A-B: DNA324747, NM_003137, gen.NM_003137 Figure 1917: PRO81372 Figure 1918A-B: DNA324748, NM .004117, gen.NM_004117 Figure 1919: PRO36841 Figure 1920: DNA324749, XM_166419, gen.XM_166419 Figure 1921: DNA324750, XM_165794, gen.XM_165794 Figure 1922: DNA324751, NM_007104, gen.NM_007104 Figure 1923: PRO10360 Figure 1924: DNA324752, NM_024294, gen.NM_024294 Figure 1925: PRO81375 Figure 1926: DNA324753, NM_022758, gen.NM_022758 Figure 1927: PRO50582 Figure 1928: DNA324754, XM_168070, gen.XM_168070 Figure 1929: DNA324755, NM _012391. gen.NM_012391 Figure 1930: PRO81377 Figure 1931; DNA324756, XM_166459, gen.XM_166459 Figure 1932: DNA324757, XM_166333, gen.XM_166333 Figure 1933: PRO81379 Figure 1934: DNA324758, XM_058039, gen.XM_058039 Figure 1935: PRO81380 Figure 1936: DNA324759, XM_087990, gen.XM_087990 Figure 1937; DNA324760, XM_165743, gen.XM_165743 Figure 1938: DNA324761, XM_166360, gen.XM_166360 Figure 1939: DNA324763, XM_059801, gen.XM_059801 Figure 1940: DNA324764, XM_166363, gen.XM_166363

Figure 1941: DNA324765, XM_016857,

Figure 1942: DNA227442, NM_001350.

Figure 1944: DNA324766, NM .005452,

gen.XM_016857

gen.NM_001350

gen.NM_005452

Figure 1943: PRO37905

Figure 1945: PRO81387
Figure 1946: DNA304661, NM_022551,

Figure 1947: PRO71088 Figure 1948: DNA324767, XM_165747, gen.XM_165747 Figure 1949: DNA324768, XM_165698, gen.XM, 165698 Figure 1950: PRO4884 Figure 1951A-B: DNA324769, XM_165770, gen.XM 165770 Figure 1952: DNA287227, NM _004159, gen.NM_004159 Figure 1953: PRO69506 Figure 1954: DNA324770, XM_165717, gen.XM. 165717 Figure 1955: DNA324771, XM_166480, gen.XM_166480 Figure 1956: DNA324772, XM_165801, gen.XM_165801 Figure 1957A-B: DNA324773, NM _000592, gen.NM_000592 Figure 1958; PRO36316 Figure 1959: DNA324774, NM_001710, gen.NM_001710 Figure 1960: PRO36305 Figure 1961: DNA227607, NM _005346, gen.NM_005346 Figure 1962: PRO38070 Figure 1963: DNA304668, NM_005345, gen.NM_005345 Figure 1964: PRO71095 Figure 1965: DNA324775, NM_021177, gen.NM_021177 Figure 1966: PRO81394 Figure 1967A-B: DNA272263, NM _006295, gen.NM_006295 Figure 1968: PRO70138 Figure 1969: DNA287319, NM .001288, gen.NM_001288 Figure 1970: PRO69584 Figure 1971: DNA324776, NM_001320, gen.NM_001320 Figure 1972: PRO63052 Figure 1973A-B: DNA324777, NM_004639, gen.NM_004639 Figure 1974: PRO81395 Figure 1975A-B: DNA324778, NM _080703, gen.NM_080703 Figure 1976: PRO81396 Figure 1977A-B: DNA324779, NM_080702, gen.NM_080702 Figure 1978: PRO81397 Figure 1979A-B: DNA324780, NM .004638, gen.NM_004638 Figure 1980: PRO81398 Figure 1981A-B: DNA324781, NM _080686, gen.NM_080686

gen.NM .018950 Figure 1982: PRO81399 Figure 2018: PRO81414 Figure 1983: DNA324782, XM_165771, Figure 2019: DNA324800, XM_166392, gen.XM_165771 Figure 1984: DNA324783, NM_080598, gen.XM_166392 gen.NM_080598 Figure 2020: PRO81415 Figure 1985: PRO71125 Figure 2021: DNA324801, XM_166336, gen.XM_166336 Figure 1986: DNA304699, NM_004640. gen.NM_004640 Figure 2022: PRO81416 Figure 1987; PRO71125 Figure 2023: DNA324802, XM_167128. gen.XM_167128 Figure 1988: DNA324784, XM _165765, Figure 2024: PRO23797 gen.XM_165765 Figure 1989: PRO81400 Figure 2025: DNA324803, XM_167161. Figure 1990: DNA324785, XM _087945. gen.XM_167161 Figure 2026: PRO81417 gen.XM_087945 Figure 1991: PRO81401 Figure 2027: DNA324804, NM_013375. Figure 1992: DNA324786, XM_166381, gen.NM_013375 gen.XM_166381 Figure 2028: PRO81418 Figure 1993: PRO81402 Figure 2029: DNA324805, NM_007047, Figure 1994; DNA324787, XM_168104. gen.NM_007047 Figure 2030: PRO81419 gen.XM_168104 Figure 2031: DNA324806, XM_167179, Figure 1995: DNA324788, XM _166401, gen.XM_167179 gen.XM_166401 Figure 2032: DNA290785, NM .003107, Figure 1996: PRO81404 Figure 1997: DNA271040, NM _001517, gen.NM_003107 gen.NM_001517 Figure 2033: PRO70544 Figure 1998: PRO59365 Figure 2034: DNA150772, NM_003472, Figure 1999A-B: DNA324789, XM_165738, gen.NM_003472 gen.XM_165738 Figure 2035: PRO12797 Figure 2000: DNA324790, XM .087939. Figure 2036A-B: DNA324807, XM_165728. gen.XM_087939 gen.XM_165728 Figure 2001: PRO81406 Figure 2037: DNA324808, XM_165749. Figure 2002: DNA324791, XM_166353, gen_XM_165749 gen.XM _166353 Figure 2038: PRO81421 Figure 2039A-B: DNA324809, NM .004973, Figure 2003: PRO1112 Figure 2004A-B: DNA324792, XM_166376, gen.NM_004973 Figure 2040: PRO81422 gen.XM_166376 Figure 2005: PRO81407 Figure 2041: DNA324810, XM_167196, Figure 2006A-B: DNA324793, XM_165799, gen.XM_167196 Figure 2042: DNA324811, XM_166446, gen.XM_165799 Figure 2007: DNA290264, NM_025263, gen.XM_166446 gen.NM_025263 Figure 2043: PRO81424 Figure 2008: PRO70393 Figure 2044A-C: DNA324812, XM_165777, Figure 2009: DNA324794, XM_166361. gcn.XM_165777 gen.XM_166361 Figure 2045: DNA324813, XM_037875, Figure 2010: PRO81409 gen.XM_037875 Figure 2011: DNA324795, XM _165764, Figure 2046: PRO81426 Figure 2047: DNA324814, XM_167225, gen.XM_165764 Figure 2012: PRO81410 gen XM 167225 Figure 2013: DNA324796, XM_165758, Figure 2048: PRO81427 gen.XM_165758 Figure 2049: DNA324815, XM_166357, Figure 2014: PRO81411 gen.XM_166357 Figure 2015: DNA324797, XM_166406, Figure 2050: DNA324816, NM .001069, gen.NM_001069 gen.XM_166406 Figure 2016: DNA324798, XM_165809, Figure 2051; PRO81429 Figure 2052: DNA324817, NM_001500, gen.XM_165809

gen.NM_001500

Figure 2017: DNA324799, NM _018950.

gen.XM_068919

Figure 2086: PRO81448

PCT/US2003/028547

Figure 2053: PRO81430 Figure 2087: DNA324839, XM_167016. Figure 2054A-B: DNA324818, XM_166042. gen.XM_167016 Figure 2088: PRO81449 gen.XM_166042 Figure 2055: PRO51389 Figure 2089: DNA324840, XM_087855. Figure 2056: DNA324819, XM_052721, gen.XM 087855 gen.XM 052721 Figure 2090: DNA324841, XM 087853. Figure 2057: DNA324820, XM_165499. gen.XM 087853 Figure 2091: DNA324842, XM_165669. gen.XM_165499 Figure 2058: DNA324821, XM_114497. gen.XM_165669 gen.XM_114497 Figure 2092: DNA324843, XM_166303. Figure 2059: DNA324822, XM _011117, gen.XM_166303 Figure 2093: PRO81453 gen.XM_011117 Figure 2060: DNA324823, XM ..094855, Figure 2094: DNA324844, XM_167027, gen.XM 094855 gen.XM_167027 Figure 2061: PRO81435 Figure 2095: PRO81454 Figure 2062: DNA324824, XM_059776. Figure 2096: DNA324845, XM_167037. gen.XM_059776 gen.XM_167037 Figure 2063: PRO81436 Figure 2097: PRO81455 Figure 2064: DNA324825, XM_055641. Figure 2098: DNA324846, XM_018182. gen.XM_055641 gen.XM_018182 Figure 2065: DNA324826, XM_004151, Figure 2099: DNA227924, NM_000165, gen.XM_004151 gen.NM_000165 Figure 2066: DNA324827, NM_133645, Figure 2100: PRO38387 gen.NM_133645 Figure 2101: DNA324847, XM_166310, Figure 2067: PRO81439 gen.XM_166310 Figure 2068: DNA324828, XM_097453, Figure 2102: PRO81457 Figure 2103: DNA324848, XM..168054, gen.XM_097453 Figure 2069: DNA324829, XM_029228, gen.XM_168054 Figure 2104: DNA271418, NM_003287, gen.XM_029228 Figure 2070: DNA103471, NM..006670, gen.NM_003287 gen.NM_006670 Figure 2105: PRO59717 Figure 2071: PRO4798 Figure 2106: DNA324849, XM_114492. Figure 2072; DNA324830, XM_068963, gen.XM_114492 Figure 2107: DNA324850, XM_037056. gen.XM_068963 Figure 2073: PRO81441 gen.XM_037056 Figure 2074: DNA324831, XM_040623. Figure 2108: DNA324851, XM_098468, gen.XM_040623 gen.XM_098468 Figure 2075: DNA324832, NM_020320, Figure 2109: PRO19933 Figure 2110: DNA324852, XM.004526, gen.NM_020320 Figure 2076: PRO81443 gen.XM_004526 Figure 2111: DNA324853, NM_001016. Figure 2077: DNA324833, NM_014107, gen.NM_001016 gen.NM_014107 Figure 2112: PRO81462 Figure 2078: PRO81444 Figure 2113: DNA324854, XM _004297, Figure 2079A-B: DNA324834, XM_084204, gen.XM_084204 gen.XM_004297 Figure 2080: DNA324835, XM_017517, Figure 2114: DNA324855, XM_004256, gen.XM_017517 gen.XM_004256 Figure 2081: DNA324836, NM_032929. Figure 2115: PRO81464 gen.NM_032929 Figure 2116: DNA324856, NM_014320. Figure 2082: PRO81446 gen.NM_014320 Figure 2083: DNA324837, XM_003611. Figure 2117: PRO81465 gen.XM_003611 Figure 2118: DNA324857, XM_059741, Figure 2084: PRO81447 gen.XM_059741 Figure 2119: DNA324858, XM .017831, Figure 2085: DNA324838, XM _068919,

gen.XM_017831 Figure 2120: PRO81467 Figure 2121: DNA324859, XM .049899.

Figure 2152: DNA324882, XM_071937,

gen.XM_071937

Figure 2153: PRO81487

PCT/US2003/028547

Figure 2154: DNA324883, XM_087991.

WO 2004/030615

gen.XM_087991 gen.XM_049899 Figure 2122: DNA324860, XM _004379. Figure 2155: DNA324884, NM_005514. gen.NM_005514 gen.XM_004379 Figure 2156: PRO81490 Figure 2123A-C: DNA324861, XM_087834. Figure 2157: DNA324885, XM_166327. gen.XM_087834 Figure 2124A-B: DNA324862, XM_087836. gen.XM_166327 Figure 2158: PRO81491 gen.XM_087836 Figure 2125: PRO81471 Figure 2159: DNA324886, XM_165692, Figure 2126: DNA324863, NM_005389, gen.XM_165692 gen.NM_005389 Figure 2160: DNA324887, XM_117449, Figure 2127: PRO66279 gen.XM_117449 Figure 2128A-C: DNA324864, XM_029746, Figure 2161: DNA324888, XM_086428, gen.XM_086428 gen.XM 029746 Figure 2162: PRO81494 Figure 2129: PRO66282 Figure 2130: DNA324865, XM_004383. Figure 2163: DNA324889, NM _032350, gen.XM_004383 gen.NM_032350 Figure 2131: DNA324866, XM_059745, Figure 2164: PRO81495 gen.XM_059745 Figure 2165: DNA324890, NM.013393, Figure 2132: DNA324867, XM_033912, gen.NM_013393 gen.XM_033912 Figure 2166: PRO81496 Figure 2133: PRO81474 Figure 2167: DNA324891, XM_165860, Figure 2134: DNA324868, XM_033910, gen.XM_165860 Figure 2168: DNA324892, XM_166541. gen.XM_033910 gen.XM_166541 Figure 2135: DNA324870, NM _003181, Figure 2169: PRO81498 gen.NM_003181 Figure 2170A-B: DNA324893, XM_166523, Figure 2136: PRO81476 Figure 2137: DNA324871, NM _002793, gen.XM..166523 Figure 2171: PRO81499 gen.NM_002793 Figure 2172: DNA324894, NM_016003, Figure 2138: PRO81477 gen.NM_016003 Figure 2139: DNA324872, XM_044866, Figure 2173: PRO81500 gen.XM_044866 Figure 2174: DNA225631, NM_001101, Figure 2140: DNA324873, XM_116524, gen.NM_001101 gen.XM_116524 Figure 2141: DNA324874, XM_059773. Figure 2175: PRO36094 Figure 2176: DNA274326, NM_003088, gen.XM_059773 Figure 2142: DNA324875, XM_084998, gen.NM _003088 Figure 2177: PRO62244 gen.XM_084998 Figure 2178: DNA324895, NM_006303, Figure 2143: PRO81481 Figure 2144: DNA324876, XM .058266, gen.NM_006303 Figure 2179: PRO81501 gen.XM_058266 Figure 2145: DNA324877, XM .042422, Figure 2180: DNA324896, NM_014413, gen.NM_014413 gen.XM_042422 Figure 2181: PRO60579 Figure 2146A-B: DNA324878, XM_054706, gen.XM_054706 Figure 2182: DNA247595, NM ..006908, Figure 2147: DNA324879, XM_166049, gen,NM ..006908 Figure 2183: PRO45014 gen.XM_166049 Figure 2184: DNA324897, NM _006854, Figure 2148: DNA324880, XM_042473. gen.XM_042473 gen.NM .006854 Figure 2185: PRO12468 Figure 2149: PRO81486 Figure 2150: DNA324881, XM_167046, Figure 2186: DNA324898, NM .024067, gen.XM_167046 gen.NM_024067 Figure 2151: PRO23797 Figure 2187: PRO81502

gen.NM_002947

Figure 2189: PRO81503

Figure 2188: DNA324899, NM_002947,

Figure 2190: DNA324900, XM_166531. gen XM 166494 gen.XM_166531 Figure 2225; DNA324920, XM_107825, Figure 2191: DNA324901, XM_166540, gen.XM_107825 Figure 2226A-B: DNA324921, NM_022748. gen.XM_166540 Figure 2192: PRO81505 gen.NM_022748 Figure 2227: PRO81523 Figure 2193: DNA 193955, NM .002489. Figure 2228: DNA324922, NM_000598, gen.NM_002489 Figure 2194: PRO23362 gen.NM_000598 Figure 2195: DNA324902, XM_088264. Figure 2229: PRO119 gen.XM_088264 Figure 2230A-B: DNA324923, XM_166594. gen.XM_166594 Figure 2196: PRO81506 Figure 2231: PRO81524 Figure 2197: DNA324903, XM_165841, Figure 2232A-B: DNA275334, NM_030900, gen.XM_165841 gen.NM_030900 Figure 2198: DNA324904, XM_166521, gen.XM_166521 Figure 2233: PRO63009 Figure 2234: DNA324924, NM_031443. Figure 2199: PRO81508 Figure 2200: DNA324905, XM_166506, gen.NM_031443 Figure 2235: PRO81525 gen.XM_166506 Figure 2236: DNA324925, NM_012412. Figure 2201: PRO81509 Figure 2202: DNA324906, XM _166505, gen.NM_012412 Figure 2237: PRO61812 gen.XM_166505 Figure 2203: DNA324907, XM_166514, Figure 2238: DNA324926, NM_021130, gen.NM_021130 gen.XM_166514 Figure 2204: DNA324908, XM_166515, Figure 2239: PRO7427 Figure 2240A-B: DNA324927, XM_165877, gen.XM_166515 Figure 2205: DNA324909, XM _166512, gen.XM_165877 Figure 2241: PRO81526 gen.XM_166512 Figure 2242: DNA227268, NM_019082, Figure 2206: DNA227929, NM_019059. gen.NM_019059 gen.NM_019082 Figure 2207: PRO38392 Figure 2243: PRO37731 Figure 2208A-B: DNA324910, NM_018947, Figure 2244: DNA324928, XM_015258, gen.NM_018947 gen.XM_015258 Figure 2245: DNA324929, XM_165870, Figure 2209: PRO81514 Figure 2210: DNA324911, NM _002137, gen.XM_165870 Figure 2246: DNA273865, NM .006230. gen.NM_002137 Figure 2211: PRO81515 gen.NM_006230 Figure 2212: DNA324912, NM_031243, Figure 2247: PRO61824 Figure 2248A-B: DNA324930, XM_165882, gen.NM_031243 gen.XM_165882 Figure 2213: PRO6373 Figure 2249: DNA324931, XM_165867, Figure 2214: DNA324913, NM_007276. gen.XM_165867 gen.NM_007276 Figure 2215: PRO81516 Figure 2250: PRO61688 Figure 2251: DNA324932, NM_014063, Figure 2216: DNA324914, NM_016587. gen.NM_016587 gen.NM_014063 Figure 2217: PRO81517 Figure 2252: PRO81529 Figure 2218: DNA324915, XM_040853, Figure 2253: DNA324933, XM_165872, gen.XM_040853 gen.XM_165872 Figure 2219: DNA324916, XM_166509, Figure 2254: DNA304707, NM_002787. gen.XM_166509 gen.NM_002787 Figure 2220: DNA324917, XM_166513, Figure 2255: PRO71133 gen.XM_166513 Figure 2256: DNA324934, XM_016733. Figure 2221: PRO81520 gen.XM_016733 Figure 2222: DNA324918, XM_166504, Figure 2257: PRO81531 gen.XM_166504 Figure 2258: DNA324935, XM_165876, Figure 2223: PRO81521 gen.XM_165876 Figure 2259A-B: DNA324936, NM_014800, Figure 2224: DNA324919, XM_166494,

Figure 2293: DNA324953, NM_016328.

gen.NM_016328

Figure 2294: PRO81550

PCT/US2003/028547

gen.NM_014800 Figure 2295A-B: DNA324954, NM_032999, Figure 2260: DNA324937, NM_130442, gen.NM_032999 gen.NM_130442 Figure 2296: PRO81551 Figure 2297: DNA324955, XM_088239. Figure 2261: PRO81534 Figure 2262: DNA226416, NM .000385. gen.XM_088239 gen.NM_000385 Figure 2298: PRO81552 Figure 2263: PRO36879 Figure 2299A-B: DNA324956, XM_167500. Figure 2264A-B: DNA324938, XM_167339, gen.XM_167500 gen.XM_167339 Figure 2300A-B: DNA324957, XM_167504. Figure 2265: DNA287189, NM_002047, gen.XM_167504 gen.NM_002047 Figure 2301: DNA324958, XM_167498, Figure 2266: PRO69475 gen.XM_167498 Figure 2267: DNA324939, XM_170195, Figure 2302: DNA324959, XM_168454, gen.XM_170195 gen.XM_168454 Figure 2268: PRO81536 Figure 2303: PRO81556 Figure 2269: DNA324940, XM_168378. Figure 2304: DNA324960, NM_031925. gen.XM_168378 gen.NM_031925 Figure 2270: PRO81537 Figure 2305: PRO81557 Figure 2271: DNA324941, XM_168354. Figure 2306: DNA324961, NM_005918. gen.XM_168354 gen.NM_005918 Figure 2272: PRO81538 Figure 2307: PRO81558 Figure 2273: DNA324942, XM_167494. Figure 2308: DNA304710, NM_001540. gen.XM_167494 gen.NM_001540 Figure 2274: DNA103588, NM_001762, Figure 2309: PRO71136 gen.NM_001762 Figure 2310: DNA324962, XM _168470, Figure 2275: PRO4912 gen.XM_168470 Figure 2276: DNA324943, XM_037741, Figure 2311: DNA324963, XM_168461, gen.XM_037741 gen.XM_168461 Figure 2312A-B: DNA324964, XM_167502, Figure 2277: PRO81540 Figure 2278: DNA324944, XM_050265. gen.XM_167502 Figure 2313: DNA324965, XM_017442. gen.XM_050265 Figure 2279: PRO81541 gen.XM_017442 Figure 2280: DNA324945, XM_017483. Figure 2314: PRO81561 gen.XM_017483 Figure 2315: DNA324966, XM_168450. Figure 2281A-B: DNA324946, XM_018359, gen.XM_168450 gen.XM_018359 Figure 2316: DNA324967, XM_168435, gen.XM_168435 Figure 2282: DNA324947, XM_059876, gen.XM_059876 Figure 2317: DNA324968, XM_168464. Figure 2283: PRO81544 gen.XM_168464 Figure 2284: DNA324948, NM _032951. Figure 2318: DNA324969, XM_170427. gen.NM_032951 gen.XM_170427 Figure 2285: PRO81545 Figure 2319A-B: DNA324971, NM_015068, Figure 2286: DNA324949, NM_032953. gen.NM_015068 gen.NM_032953 Figure 2320: PRO81566 Figure 2287: PRO81546 Figure 2321A-B: DNA324972, XM_167476. Figure 2288: DNA324950, NM .022170, gen.XM_167476 gen.NM_022170 Figure 2322: DNA324973, XM_168181, Figure 2289: PRO81547 gen.XM_168181 Figure 2290: DNA324951, NM_031992, Figure 2323: DNA324974, XM_168251, gen.NM_031992 gen.XM_168251 Figure 2291: PRO81548 Figure 2324: PRO81569 Figure 2292: DNA324952, XM _004901, Figure 2325: DNA324975, XM_167477, gen.XM_004901 gen.XM_167477

gen.NM_005837

Figure 2327: PRO81571

Figure 2326: DNA324976, NM _005837,

PCT/US2003/028547

Figure 2328: DNA324977, XM_167483, gen NM 057089 Figure 2364: PRO81588 gen.XM_167483 Figure 2329: DNA324978, XM_167484. Figure 2365: DNA324995, NM _001283, gen.NM_001283 gen.XM_167484 Figure 2366: PRO41882 Figure 2330: PRO81572 Figure 2331: DNA324979, NM_030935, Figure 2367: DNA324996, NM _003378, gen.NM_003378 gen.NM_030935 Figure 2368: PRO81589 Figure 2332: PRO81573 Figure 2333: DNA324980, NM_019606, Figure 2369: DNA324997, NM _001084. gen.NM_001084 gen.NM_019606 Figure 2334: PRO81574 Figure 2370: PRO58437 Figure 2371: DNA270711, NM_006349, Figure 2335: DNA324981, NM_024070, gen.NM_006349 gen.NM_024070 Figure 2336: PRO81575 Figure 2372: PRO59074 Figure 2373: DNA324998, NM _024653, Figure 2337: DNA324982, XM_084241, gen.XM_084241 gen.NM_024653 Figure 2338: DNA324983, NM .006833, Figure 2374: PRO81590 Figure 2375: DNA324999, XM _168548, gen.NM_006833 gen. XM_168548 Figure 2339: PRO22897 Figure 2340: DNA324984, NM_032164. Figure 2376: DNA325000, NM _032958, gen.NM_032164 gen.NM_032958 Figure 2341: PRO81578 Figure 2377: PRO81591 Figure 2342: DNA304801, NM_004889, Figure 2378: DNA325001, NM _002803, gen.NM_002803 gen.NM_004889 Figure 2379: PRO81592 Figure 2343: PRO71211 Figure 2344: DNA324985, NM .006693, Figure 2380: DNA325002, XM .168572, gen.XM_168572 gen.NM_006693 Figure 2345: PRO81579 Figure 2381: DNA325003, XM_071605, Figure 2346: DNA324986, XM_165839, gen.XM_071605 Figure 2382: PRO81594 gen.XM_165839 Figure 2383: DNA325004, XM .033876. Figure 2347: PRO81580 Figure 2348: DNA272090, NM_005720, gen.XM_033876 gen.NM_005720 Figure 2384: PRO81595 Figure 2349: PRO60360 Figure 2385A-B: DNA325005, XM_027214, Figure 2350: DNA324987, XM_165836. gen.XM_027214 gen.XM_165836 Figure 2386: DNA325006, XM .088073, Figure 2351A-B: DNA324988, XM _166482, gen.XM_088073 Figure 2387: DNA325007, XM_072430. gen.XM_166482 Figure 2352: DNA324989, XM_088180, gen.XM_072430 Figure 2388: PRO81598 gen.XM_088180 Figure 2389: DNA325008, XM .050430, Figure 2353A-B: DNA324990, XM_166485. gen.XM_050430 gen.XM_166485 Figure 2354: PRO81584 Figure 2390: PRO81599 Figure 2391: DNA325009, NM_001753, Figure 2355: DNA324991, NM _001673, gen.NM_001673 gen.NM_001753 Figure 2356: PRO81585 Figure 2392: PRO81600 Figure 2393: DNA226560, NM .006136, Figure 2357: DNA324992, NM .133436, gen.NM_133436 gen.NM_006136 Figure 2358: PRO81586 Figure 2394: PRO37023 Figure 2359: DNA324993, XM_168586, Figure 2395: DNA325010, XM_012284, gen.XM_168586 gen.XM_012284 Figure 2360: PRO81587 Figure 2396: DNA325011, NM _005000, Figure 2361: DNA83141, NM .000602, gen.NM 005000 Figure 2397: PRO59380 gen.NM_000602

gen.NM_001662

Figure 2362: PRO2604 Figure 2363: DNA324994, NM_057089, Figure 2398: DNA325012, NM .001662,

PCT/US2003/028547

gen.XM_016700 Figure 2399: PRO39773 Figure 2434: DNA325035, XM_042781, Figure 2400: DNA325013, XM_011618, gen.XM_011618 gen.XM_042781 Figure 2435; DNA304685, NM_003143, Figure 2401: PRO81602 Figure 2402: DNA325014, XM_004627, gen.NM_003143 Figure 2436; PRO71111 gen.XM_004627 Figure 2437: DNA325036, NM_018238, Figure 2403: DNA325015, XM_045401, gen.XM_045401 gen.NM_018238 Figure 2404: DNA325016, XM_114602, Figure 2438: PRO81625 Figure 2439: DNA325037, XM_035107, gen.XM_114602 Figure 2405: PRO81605 gen.XM_035107 Figure 2440: DNA325038, NM_003461. Figure 2406: DNA325017, XM_117481, gen.XM_117481 gen.NM_003461 Figure 2407A-C: DNA325018, XM_045856. Figure 2441: PRO10194 gen.XM_045856 Figure 2442; DNA325039, NM_004911, Figure 2408: PRO81607 gen.NM_004911 Figure 2443: PRO2733 Figure 2409A-B: DNA325019, XM_088105. gen.XM_088105 Figure 2444A-B: DNA325040, XM_114578, Figure 2410: PRO81608 gen.XM_114578 Figure 2411: DNA325020, XM_011548, Figure 2445: PRO81627 Figure 2446; DNA325041, XM _088135, gen.XM_011548 gen.XM_088135 Figure 2412: PRO81609 Figure 2447: DNA325042, XM _098654, Figure 2413: DNA325021, XM _045952, gen.XM_098654 gen.XM_045952 Figure 2414: DNA325022, XM .046001, Figure 2448: PRO81629 gen.XM_046001 Figure 2449: DNA325043, NM _023942. Figure 2415: PRO81611 gen.NM_023942 Figure 2416: DNA325023, XM_088099, Figure 2450: PRO81630 Figure 2451: DNA325044, NM _138434, gen.XM_088099 Figure 2417: DNA325024, XM_040498, gen.NM_138434 Figure 2452: PRO81631 gen.XM_040498 Figure 2418: DNA325025, XM_088103, Figure 2453: DNA325045, XM _084238, gen.XM_088103 gen.XM_084238 Figure 2454A-B: DNA325046, XM _032216, Figure 2419: PRO81614 gen.XM_032216 Figure 2420: DNA325026, XM_088122, Figure 2455A-B: DNA325047, XM ..032121, gen.XM_088122 Figure 2421: PRO81615 gen.XM_032121 Figure 2456: DNA325048, NM _031434, Figure 2422: DNA325027, XM_088119, gen.NM_031434 gen.XM_088119 Figure 2457: PRO1555 Figure 2423: DNA325028, NM_001628, Figure 2458: DNA226337, NM_005692, gen.NM_001628 Figure 2424: PRO81617 gen.NM_005692 Figure 2425: DNA325029, NM_020299, Figure 2459: PRO36800 Figure 2460: DNA325049, NM_005614, gen.NM_020299 gen.NM_005614 Figure 2426: PRO81618 Figure 2427: DNA325030, NM_024033, Figure 2461: PRO37938 gen.NM_024033 Figure 2462A-B: DNA325050, NM_053043, Figure 2428: PRO81619 gen.NM_053043 Figure 2429: DNA325031, XM_114555, Figure 2463: PRO81634 Figure 2464: DNA325051, NM _022458, gen.XM_114555 Figure 2430: DNA325032, XM_059839, gen.NM_022458 Figure 2465: PRO81635 gen.XM_059839 Figure 2431: PRO81621 Figure 2466: DNA325052, XM _098669, Figure 2432: DNA325033, XM..095146, gen.XM_098669 Figure 2467: DNA325053, NM _017760, 095146_gen.XM Figure 2433: DNA325034, XM_016700. gen.NM_017760

Ti 0460 PPO01627	Figure 2503: DNA325073, NM _025232,
Figure 2468: PRO81637	gen.NM_025232
Figure 2469: DNA325054, XM_036413,	Figure 2504: PRO81653
gen.XM_036413	
Figure 2470A-B: DNA325055, XM _032944,	Figure 2505: DNA325074, XM_027440,
gen.XM .032944	gen.XM_027440
Figure 2471: DNA325056, XM_117444,	Figure 2506: DNA225671, NM .001831,
gen.XM_117444	gen_NM_001831
Figure 2472: DNA325057, XM_117452,	Figure 2507: PRO36134
gen.XM_117452	Figure 2508: DNA325075, NM_024567,
Figure 2473: DNA325058, XM_070203,	gen.NM_024567
gen.XM_070203	Figure 2509: PRO81654
Figure 2474: PRO81641	Figure 2510: DNA325076, NM_018250,
Figure 2475: DNA325059, XM_095371,	gen.NM_018250
gen.XM_095371	Figure 2511: PRO81655
Figure 2476: DNA325060, NM _004084,	Figure 2512: DNA227267, NM_018660,
gen.NM_004084	gen.NM_018660
Figure 2477: PRO2570	Figure 2513: PRO37730
Figure 2478: DNA325061, NM .005217,	Figure 2514A-B: DNA325077, XM_095545,
gen.NM_005217	gen.XM_095545
Figure 2479: PRO9980	Figure 2515: DNA325078, XM_088338,
Figure 2480: DNA325062, XM_070188,	gen.XM_088338
gen.XM_070188	Figure 2516: PRO81657
Figure 2481: PRO81643	Figure 2517: DNA325079, XM_114617,
Figure 2482: DNA325063, XM_035680,	gen.XM_114617
gen.XM_035680	Figure 2518: PRO81658
Figure 2483: DNA325064, XM_035662,	Figure 2519: DNA325080, XM .088336,
gen.XM_035662	gen.XM_088336
Figure 2484: PRO3344	Figure 2520: PRO81659
Figure 2485: DNA325065, XM_005305,	Figure 2521: DNA325081, XM_047083,
gen.XM_005305	gen.XM_047083
	Figure 2522: PRO81660
Figure 2486: PRO81645	Figure 2523: DNA325082, XM_114618,
Figure 2487: DNA325066, XM_050293,	gen.XM_114618
gen.XM_050293	Figure 2524: PRO81661
Figure 2488A-B: DNA325067, XM_027679,	Figure 2525: DNA325083, XM_050215,
gen.XM_027679	gen.XM_050215
Figure 2489: PRO81647	Figure 2526: DNA325084, XM_113531,
Figure 2490A-B: DNA325068, XM_027651,	gen.XM_113531
gen.XM_027651	Figure 2527: DNA325085, NM_018310,
Figure 2491: DNA274178, NM_005775,	
gen.NM_005775	gen.NM_018310 Figure 2528: PRO81664
Figure 2492: PRO62108	Figure 2529: DNA325086, XM_088294,
Figure 2493: DNA325069, XM_113557,	
gen.XM_113557	gen.XM_088294
Figure 2494: PRO81649	Figure 2530: DNA325087, XM_013112,
Figure 2495: DNA83022, NM .001199,	gen.XM_013112
gen.NM_001199	Figure 2531: DNA325088, XM_059933,
Figure 2496: PRO2042	gen.XM_059933
Figure 2497: DNA325070, NM_006128,	Figure 2532: PRO1108
gen.NM_006128	Figure 2533: DNA325089, XM_011629,
Figure 2498: PRO81650	gen.XM_011629
Figure 2499: DNA325071, NM_006131,	Figure 2534: DNA325090, NM _000930,
gen.NM.006131	gen.NM_000930
Figure 2500: PRO81651	Figure 2535: PRO4
Figure 2501: DNA325072, NM_006132,	Figure 2536: DNA325091, NM _000931,
gen.NM_006132	gen.NM_000931
Figure 2502: PRO81652	Figure 2537: PRO81668

Figure 2570: PRO81685

Figure 2571: DNA325112, XM_050731,

PCT/US2003/028547

Figure 2538: DNA325092, NM_033011, gen.XM 050731 Figure 2572: DNA325113, XM_088325. gen.NM_033011 Figure 2539: PRO81669 gen.XM 088325 Figure 2573: PRO81687 Figure 2540: DNA325093, XM_166063, Figure 2574: DNA325114, XM_088323. gen.XM_166063 Figure 2541: DNA325094, NM_025070. gen.XM 088323 Figure 2575: DNA325115, NM_001444. gen.NM_025070 Figure 2542: PRO81671 gen.NM_001444 Figure 2543A-B: DNA325095, XM_030268. Figure 2576: PRO81689 gen.XM_030268 Figure 2577: DNA325116, XM_013127, Figure 2544: DNA325096, XM_030274, gen.XM_013127 Figure 2578: PRO81690 gen.XM_030274 Figure 2545: PRO81673 Figure 2579: DNA325117, XM_165514, Figure 2546: DNA151010, NM_003350, gen.XM_165514 Figure 2580: PRO81691 gen.NM_003350 Figure 2547: PRO12838 Figure 2581: DNA325118, XM_017816. Figure 2548; DNA325097, XM_113540. gen.XM_017816 gen.XM_113540 Figure 2582: DNA325119, XM_098747, gen.XM_098747 Figure 2549: PRO81674 Figure 2550: DNA325098, NM _006330. Figure 2583: DNA325120, XM_050506, gen.NM_006330 gen.XM_050506 Figure 2551: PRO59230 Figure 2584: DNA325121, NM_024613, Figure 2552: DNA325099, NM_001023, gen.NM_024613 Figure 2585: PRO81695 gen.NM_001023 Figure 2553: PRO58263 Figure 2586: DNA325122, XM_011642, Figure 2554: DNA325100, XM_095667, gen.XM_011642 Figure 2587: PRO81696 gen.XM_095667 Figure 2588: DNA325123, NM_000989, Figure 2555: PRO81675 Figure 2556: DNA325101, XM_114640, gen.NM_000989 gen.XM_114640 Figure 2589: PRO11265 Figure 2590: DNA325124, NM_003406, Figure 2557: DNA325102, XM_057780. gen.XM_057780 gen.NM_003406 Figure 2558: DNA325103, XM_166064, Figure 2591: PRO71091 Figure 2592: DNA325125, XM_011657, gen.XM_166064 Figure 2559: DNA325104, XM_088399, gen.XM_011657 Figure 2593: DNA131588, NM_002568. gen.XM_088399 Figure 2560: DNA325105, XM_088401, gen.NM_002568 gen.XM_088401 Figure 2594: PRO7445 Figure 2561: DNA325106, XM_042658. Figure 2595: DNA325126, XM_018287, gen.XM_042658 gen.XM_018287 Figure 2562: DNA325107, XM_011769, Figure 2596: DNA325127, NM_001568, gen.XM_011769 gen.NM_001568 Figure 2563: DNA325108, XM _044627, Figure 2597; PRO81699 Figure 2598: DNA325128, NM_003756, gen.XM_044627 Figure 2564: DNA325109, XM_098761, gen.NM_003756 gen.XM_098761 Figure 2599: PRO81700 Figure 2565: DNA226496, NM .006837, Figure 2600A-B: DNA272050, NM .006265. gen.NM_006837 gen.NM_006265 Figure 2566: PRO36959 Figure 2601: PRO60321 Figure 2567: DNA325110, NM_014294, Figure 2602: DNA325129, NM_052886, gen.NM_014294 gen.NM_052886 Figure 2603: PRO81701 Figure 2568: PRO23248 Figure 2569: DNA325111, NM_000971, Figure 2604: DNA325130, XM_016047, gen.NM_000971 gen.XM_016047

gen.XM_005060

Figure 2605: DNA325131, XM _005060,

PCT/US2003/028547

Figure 2606: DNA325132, NM _005005. Figure 2639: PRO81722 Figure 2640: DNA325156, XM_088550, gen.NM 005005 Figure 2607: PRO81704 gen.XM_088550 Figure 2641: DNA325157, XM_088552, Figure 2608: DNA325133, XM_037657, gen.XM_037657 gen.XM_088552 Figure 2609: DNA325134, XM_029567, Figure 2642: DNA325158, XM_088553. gen.XM_029567 gen.XM_088553 Figure 2610: PRO81705 Figure 2643: PRO81725 Figure 2611: DNA325135, XM_088316. Figure 2644: DNA325159, XM_059979, gen.XM_059979 gen.XM_088316 Figure 2645: DNA325160, XM_167558, Figure 2612: DNA325136, XM .051298. gen.XM_167558 gen.XM 051298 Figure 2646: DNA325161, XM_039654, Figure 2613: DNA325137, XM_088370, gen.XM_039654 gen XM_088370 Figure 2614: DNA325138, NM_016647, Figure 2647: DNA325162, XM.060006. gen.NM_016647 gen.XM_060006 Figure 2648: PRO81729 Figure 2615: PRO23201 Figure 2649: DNA325163, NM_001122, Figure 2616: DNA325139, NM_052963, gen.NM_052963 gen.NM_001122 Figure 2617: PRO81708 Figure 2650: PRO81730 Figure 2651: DNA325164, NM_001010. Figure 2618: DNA325140, XM_049247, gen.NM_001010 gen.XM_049247 Figure 2652: PRO10824 Figure 2619: DNA325141, XM_058968. Figure 2653: DNA325165, NM_058195, gen.XM_058968 Figure 2620: DNA325143, NM_023078, gen.NM_058195 Figure 2654: PRO81731 gen.NM_023078 Figure 2655: DNA325166, NM_000077, Figure 2621: PRO81711 gen.NM_000077 Figure 2622: DNA325144, XM_117487, gen.XM_117487 Figure 2656: PRO36693 Figure 2623: DNA325145, XM_049226, Figure 2657: DNA325167, NM .058196, gen.XM_049226 gen.NM_058196 Figure 2658: PRO81732 Figure 2624: PRO81714 Figure 2659: DNA325168, XM_017931. Figure 2625: DNA325146, XM_114613, gen.XM_017931 gen.XM_114613 Figure 2660: DNA271847, NM_001539, Figure 2626: DNA325147, XM_035368, gen.NM_001539 gen.XM_035368 Figure 2661: PRO60127 Figure 2627: DNA325148, XM_113532, Figure 2662: DNA270991, NM .004323, gen.XM_113532 gen.NM_004323 Figure 2628: DNA325149, XM_088321, Figure 2663: PRO59321 gen.XM_088321 Figure 2664: DNA325169, NM_016410, Figure 2629: DNA325150, XM .035373, gen.XM_035373 gen.NM_016410 Figure 2665: PRO81734 Figure 2630: PRO81719 Figure 2631: DNA325151, XM_035370, Figure 2666: DNA325170, XM_005543, gen.XM_005543 gen.XM_035370 Figure 2667: PRO38028 Figure 2632: PRO81720 Figure 2633: DNA325152, NM_000973, Figure 2668: DNA325171, NM_001842, gen.NM_000973 gen.NM_001842 Figure 2634: PRO22907 Figure 2669: PRO21481 Figure 2670: DNA226345, NM .005866. Figure 2635: DNA325153, NM _033301, gen.NM_005866 gen.NM_033301 Figure 2636: PRO22907 Figure 2671: PRO36808 Figure 2637: DNA325154, XM_049421, Figure 2672: DNA325172, XM_088563, gen.XM_049421 gen.XM_088563 Figure 2638: DNA325155, XM_034640, Figure 2673: DNA325173, XM_059998, gen.XM_059998 gen.XM_034640

gen.NM_031263

Figure 2709: PRO81748

PCT/US2003/028547

Figure 2710: DNA325188, XM_018006, Figure 2674: PRO59579 Figure 2675: DNA325174, NM_013442, gen.XM_018006 Figure 2711: DNA325189, XM_017996, gen,NM_013442 gen.XM_017996 Figure 2676; PRO9819 Figure 2712: DNA325190, XM_016113, Figure 2677; DNA325175, XM_114661, gen.XM_016113 gen.XM_114661 Figure 2713: PRO81751 Figure 2678: PRO81736 Figure 2714: DNA272655, NM_001827, Figure 2679: DNA325176, XM ..048479, gen.NM_001827 gen.XM_048479 Figure 2680: DNA290319, NM_003289, Figure 2715: PRO60781 Figure 2716A-B: DNA325191, NM .002161, gen.NM_003289 gen.NM_002161 Figure 2681: PRO70595 Figure 2682A-C: DNA325177, NM_006289, Figure 2717: PRO81752 Figure 2718A-B: DNA325192, NM_013417, gen.NM_006289 gen.NM_013417 Figure 2683: PRO81738 Figure 2719: PRO81753 Figure 2684: DNA325178, XM_048518, Figure 2720A-B: DNA325193, XM_046863, gen.XM_048518 gen.XM_046863 Figure 2685: PRO81739 Figure 2721: PRO81754 Figure 2686: DNA325179, XM_048539, Figure 2722: DNA325194, XM_046836, gen.XM .048539 gen.XM_046836 Figure 2687: PRO81740 Figure 2723: DNA275322, NM .003837, Figure 2688: DNA325180, XM_114662, gen.NM_003837 gen.XM_114662 Figure 2724: PRO63000 Figure 2689: DNA325181, NM_001833, Figure 2725A-B: DNA325195, XM_098943, gen.NM..001833 gen.XM_098943 Figure 2690: PRO81742 Figure 2726: DNA325196, XM_016308. Figure 2691: DNA227491, NM_007096. gen.XM_016308 gen.NM_007096 Figure 2727: DNA325197, XM .005525, Figure 2692: PRO37954 Figure 2693: DNA254771, NM_012203, gen.XM_005525 Figure 2728: DNA325198, NM .003389, gen.NM_012203 gen.NM_003389 Figure 2694; PRO49869 Figure 2729: PRO81759 Figure 2695: DNA89242, NM_000700, Figure 2730: DNA325199, NM_033219, gen.NM_000700 gen.NM_033219 Figure 2696: PRO2907 Figure 2731: PRO81760 Figure 2697: DNA325182, XM _041020, Figure 2732: DNA325200, NM .006401, gen.XM_041020 gen.NM_006401 Figure 2698: PRO81743 Figure 2733: PRO81761 Figure 2699: DNA325183, XM_114686, Figure 2734: DNA272213, NM_002486, gen.XM_114686 gen.NM_002486 Figure 2700: DNA325184, XM_088637, Figure 2735: PRO60475 gen.XM_088637 Figure 2736: DNA325201, NM_001333, Figure 2701: DNA287216, NM .021154, gen.NM_001333 gen.NM_021154 Figure 2737: PRO81762 Figure 2702: PRO69496 Figure 2738: DNA325202, XM_116818, Figure 2703: DNA288247, NM_058179, gen.NM_058179 gen.XM_116818 Figure 2739: PRO81763 Figure 2704: PRO70011 Figure 2740: DNA254543, NM _006808, Figure 2705: DNA325185, XM .071178, gen.NM_006808 gen.XM_071178 Figure 2741: PRO49648 Figure 2706: PRO81746 Figure 2742: DNA325203, XM_070873, Figure 2707: DNA325186, XM .005490, gen.XM_070873 gen.XM_005490 Figure 2743: PRO81764 Figure 2708: DNA325187, NM_031263,

gen.XM_042788

Figure 2744: DNA325204, XM_042788,

Figure 2745: PRO81765 Figure 2779: PRO81780 Figure 2780: DNA325222, NM..000976, Figure 2746; DNA257309, NM .032342, gen.NM_032342 gen.NM 000976 Figure 2747: PRO51901 Figure 2781: PRO62236 Figure 2782: DNA218841, NM_012098, Figure 2748: DNA325205, XM_088569. gen.XM_088569 gen.NM_012098 Figure 2749: PRO81766 Figure 2783: PRO34473 Figure 2750: DNA325206, XM_088571. Figure 2784A-B: DNA325223, XM_052725, gen.XM_088571 gen.XM_052725 Figure 2751: DNA271722, NM_004697. Figure 2785: PRO81781 gen.NM_004697 Figure 2786: DNA325224, XM_011752, Figure 2752: PRO60006 gen.XM_011752 Figure 2753: DNA325207, NM_017443, Figure 2787: DNA325225, XM_026944. gen.NM_017443 gen.XM_026944 Figure 2754: PRO81768 Figure 2788: PRO81783 Figure 2755A-C: DNA325208, XM_005348. Figure 2789; DNA325226, XM_116806. gen.XM_005348 gen.XM_116806 Figure 2756: DNA325209, XM_114646. Figure 2790A-B: DNA325227, NM_005347, gen.XM_114646 gen.NM_005347 Figure 2757: DNA325210, XM_038391, Figure 2791: PRO81785 gen.XM_038391 Figure 2792: DNA325228, NM_005833, Figure 2758: PRO81771 gen.NM_005833 Figure 2759A-B: DNA325211, XM_045296, Figure 2793: PRO81786 gen.XM_045296 Figure 2794; DNA325229, NM .007209. Figure 2760: DNA325212, XM_005365. gen.NM_007209 gen.XM_005365 Figure 2795: PRO61897 Figure 2761: DNA289530, NM_004435. Figure 2796: DNA88350, NM_000177, gen.NM_004435 gen.NM_000177 Figure 2762: PRO70290 Figure 2797: PRO2758 Figure 2763: DNA287271, NM_032799. Figure 2798A-B: DNA325230, XM_011749. gen.NM_032799 gen.XM_011749 Figure 2799: DNA325231, XM_114679, Figure 2764: PRO69542 Figure 2765: DNA325213, XM.,026987, gen.XM_114679 gen.XM_026987 Figure 2800: DNA325232, XM_087041, Figure 2766: DNA325214, XM .026985. gen.XM..087041 Figure 2801: DNA325233, XM_114678, gen.XM_026985 Figure 2767: DNA225630, NM_016174, gen.XM_114678 gen.NM_016174 Figure 2802: DNA325234, XM_114677. Figure 2768: PRO36093 gen.XM_114677 Figure 2769: DNA325215, XM_026968. Figure 2803: DNA325235, XM_087038. gen.XM_026968 gen.XM ..087038 Figure 2770: PRO81775 Figure 2804: DNA325236, XM_059637. Figure 2771: DNA325216, XM .026951, gen.XM_059637 Figure 2805: PRO81792 gen.XM_026951 Figure 2772: DNA325217, NM_025072, Figure 2806: DNA325237, NM ..000368, gen.NM_025072 gen.NM_000368 Figure 2773: PRO33818 Figure 2807: PRO60115 Figure 2774: DNA325218, XM_033424, Figure 2808: DNA325238, XM_033385, gen.XM_033424 gen.XM_033385 Figure 2775: DNA325219, NM_004957, Figure 2809A-B: DNA325239, XM_033380, gen.NM_004957 gen.XM_033380 Figure 2776: PRO81778 Figure 2810: PRO81794 Figure 2777: DNA325220, XM_033457. Figure 2811: DNA325240, XM_033362. gen.XM_033457 gen.XM_033362 Figure 2778A-B: DNA325221, XM_033460. Figure 2812: PRO81795 gen.XM_033460 Figure 2813: DNA325241, XM_059986,

PCT/US2003/028547

gen.XM_059986 gen.XM_088459 Figure 2814: PRO81796 Figure 2848: PRO81815 Figure 2849: DNA325264, XM_054752. Figure 2815A-B: DNA325242, XM_033361, gen.XM_054752 gen.XM_033361 Figure 2850: PRO81816 Figure 2816: PRO81797 Figure 2817A-B: DNA325243, XM_033360, Figure 2851: DNA325265, XM_084270, gen.XM_033360 gen.XM_084270 Figure 2852: DNA325266, XM_054763, Figure 2818: DNA325244, XM_033359, gen.XM_054763 gen.XM_033359 Figure 2853: PRO81817 Figure 2819A-B: DNA325245, XM .033355, Figure 2854: DNA325267, XM_114655, gen.XM_033355 Figure 2820: DNA325246, NM .014285, gen.XM_114655 Figure 2855: DNA325268, XM_038030, gen.NM_014285 gen.XM_038030 Figure 2821: PRO81800 Figure 2856: PRO59351 Figure 2822: DNA325247, NM_054012, Figure 2857: DNA325269, XM_072526, gen.NM_054012 Figure 2823: PRO81801 gen.XM_072526 Figure 2858: PRO81819 Figure 2824: DNA325248, XM_035103, Figure 2859: DNA325270, XM_059961, gen.XM_035103 gen.XM_059961 Figure 2825: DNA325249, XM_035109, Figure 2860: DNA325271, NM _032928, gen.XM_035109 Figure 2826: DNA325250, NM_000972, gen.NM_032928 Figure 2861: PRO81821 gen.NM_000972 Figure 2827; PRO81804 Figure 2862: DNA325272, NM_014172. Figure 2828: DNA325251, NM _033161, gen.NM_014172 Figure 2863: PRO81822 gen.NM_033161 Figure 2829: PRO81805 Figure 2864: DNA325273, XM_038049. gen.XM_038049 Figure 2830: DNA325252, NM .000787, Figure 2865: PRO62069 gen.NM_000787 Figure 2866: DNA325274, XM -038063, Figure 2831: PRO81806 gen.XM_038063 Figure 2832A-B: DNA325253, XM_011778, Figure 2867: PRO81823 gen.XM_011778 Figure 2868: DNA325275, NM_000954. Figure 2833: DNA325254, XM_088426, gen.XM_088426 gen.NM_000954 Figure 2869: PRO81824 Figure 2834: DNA325255, NM _002003, Figure 2870: DNA325276, XM_088461, gen.NM_002003 gen.XM_088461 Figure 2835: PRO1910 Figure 2871: DNA325277, XM_059966, Figure 2836: DNA325256, NM_058199, gen.NM_058199 gen.XM_059966 Figure 2872: PRO81826 Figure 2837: PRO81809 Figure 2838: DNA325257, XM_059945, Figure 2873: DNA325278, XM_114649, gen.XM_059945 gen.XM_114649 Figure 2874: DNA325279, XM_117519, Figure 2839: DNA325258, XM_088422, gen.XM_117519 gen.XM_088422 Figure 2875: DNA325280, XM_053206, Figure 2840: PRO81811 Figure 2841: DNA325259, XM_029168, gen.XM_053206 Figure 2876: DNA325281, XM_040272, gen.XM_029168 gen.XM_040272 Figure 2842: PRO81812 Figure 2877: PRO58939 Figure 2843: DNA325260, XM_098913, Figure 2878: DNA325282, XM .005724, gen.XM_098913 Figure 2844: PRO81813 gen.XM_005724 Figure 2879: DNA325283, XM_040267, Figure 2845: DNA325261, XM_114669, gen.XM_040267 gen.XM_114669 Figure 2880: PRO81831 Figure 2846: DNA325262, XM_113564, Figure 2881: DNA325284, XM_048859, gen.XM_113564 gen.XM_048859 Figure 2847A-B: DNA325263, XM_088459,

PCT/HS2003/028547

WO 2004/030615

Figure 2917: PRO81849 Figure 2882: PRO62617 Figure 2918: DNA325305, XM_166665. Figure 2883: DNA325285, NM _003739, gen.XM 166665 gen.NM_003739 Figure 2919A-B: DNA325306, NM_002211. Figure 2884: PRO81832 gen.NM_002211 Figure 2885: DNA325286, XM_060976, Figure 2920: PRO81851 gen.XM 060976 Figure 2886: PRO81833 Figure 2921A-B: DNA325307, XM_165567, Figure 2887: DNA325287, XM_167626, gen.XM_165567 Figure 2922: DNA325308, XM_166157, gen.XM_167626 Figure 2888: PRO81834 gen.XM_166157 Figure 2923: DNA325309, NM_032023, Figure 2889: DNA325288, XM_165555, gen.XM_165555 gen.NM_032023 Figure 2924: PRO52537 Figure 2890: PRO81835 Figure 2925: DNA325310, XM_165560. Figure 2891: DNA325289, NM_001494, gen.XM_165560 gen.NM_001494 Figure 2926: DNA325311, XM_165563, Figure 2892: PRO81836 Figure 2893: DNA325290, NM 032905. gen.XM_165563 Figure 2927: DNA325312, XM_113615. gen.NM_032905 gen.XM_113615 Figure 2894: PRO81837 Figure 2928: PRO81855 Figure 2895: DNA325291, NM_005174. gen.NM_005174 Figure 2929: DNA325313, XM_165890, Figure 2896: PRO81838 gen.XM_165890 Figure 2897; DNA325292, XM_165557, Figure 2930: DNA325314, XM_061126. gen.XM_061126 gen.XM_165557 Figure 2898: DNA325293, XM_167374, Figure 2931: DNA325315, XM_061125, gen.XM_061125 gen.XM_167374 Figure 2899: DNA273759, NM_006023, Figure 2932: PRO81858 Figure 2933: DNA325316, XM_054474, gen.NM_006023 Figure 2900: PRO61721 gen.XM_054474 Figure 2934: DNA325317, XM_165888. Figure 2901: DNA325294, XM_167411. gen.XM_165888 gen.XM_167411 Figure 2935: DNA325318, XM_054475, Figure 2902: DNA325295, NM .031453, gen.XM_054475 gen.NM_031453 Figure 2903: PRO81841 Figure 2936: PRO81861 Figure 2937: DNA325319, XM_015652, Figure 2904: DNA325296, XM_167414, gen.XM_015652 gen.XM_167414 Figure 2938: PRO81862 Figure 2905: PRO12851 Figure 2939: DNA325320, XM_036593, Figure 2906: DNA325297, XM_166717, gen.XM_166717 gen.XM_036593 Figure 2907: PRO81842 Figure 2940: PRO81863 Figure 2908: DNA325298, XM_005100, Figure 2941; DNA325321, XM_165891, gen.XM_005100 gen.XM_165891 Figure 2909: DNA325299, XM_038536, Figure 2942: DNA325322, XM_084450. gen.XM_084450 gen.XM_038536 Figure 2943: PRO81865 Figure 2910A-B: DNA325300, XM_084420, gen.XM_084420 Figure 2944: DNA325323, XM_084385, gen.XM_084385 Figure 2911: DNA325301, XM_084429, Figure 2945: DNA325324, NM_021226. gen.XM_084429 gen.NM_021226 Figure 2912: PRO81846 Figure 2913A-C: DNA325302, XM_165551, Figure 2946: PRO81867 gen.XM_165551 Figure 2947: DNA 193957, NM _003055, Figure 2914: DNA325303, XM_059720, gen.NM_003055 Figure 2948: PRO23364 gen.XM_059720 Figure 2949: DNA325325, NM_032997, Figure 2915: PRO81848

gen.NM_032997

Figure 2950: PRO81868

Figure 2916A-B: DNA325304, NM_019619,

gen.NM_019619

Figure 2985: PRO81882

Figure 2986: DNA304459, NM_005729,

PCT/US2003/028547

gen.NM_005729 Figure 2951: DNA287642, NM_018464. Figure 2987: PRO37073 gen NM 018464 Figure 2988; DNA325342, XM_166629, Figure 2952: PRO9902 Figure 2953: DNA325326, XM_084451. gen.XM_166629 Figure 2989: PRO81883 gen.XM_084451 Figure 2990; DNA 103506, NM _001157. Figure 2954: PRO81869 Figure 2955: DNA325327, NM_012207, gen.NM_001157 Figure 2991: PRO4833 gen.NM_012207 Figure 2992: DNA325343, XM_016093, Figure 2956: PRO81870 gen.XM_016093 Figure 2957: DNA325328, NM .024045, Figure 2993: PRO81884 gen.NM_024045 Figure 2958: PRO81871 Figure 2994: DNA325344, XM_084467, Figure 2959: DNA325329, NM_004728, gen.XM.084467 Figure 2995: PRO81885 gen.NM_004728 Figure 2996: DNA304488, NM_032333. Figure 2960: PRO81872 gen.NM_032333 Figure 2961: DNA88562, NM_002727, gen.NM_002727 Figure 2997: PRO71057 Figure 2998: DNA325345, XM -043589, Figure 2962: PRO2842 Figure 2963: DNA325330, XM_167395. gen.XM_043589 Figure 2999: DNA325346, XM .043605, gen.XM_167395 gen.XM_043605 Figure 2964: DNA227172, NM_021129, Figure 3000: DNA325347, XM_087480, gen.NM 021129 gen.XM_087480 Figure 2965: PRO37635 Figure 2966A-B: DNA325331, XM_166125, Figure 3001: PRO81887 gen.XM_166125 Figure 3002: DNA325348, NM_002921. Figure 2967; PRO81874 gen.NM_002921 Figure 2968: DNA325332, XM_044354, Figure 3003: PRO81888 Figure 3004: DNA226217, NM_005271. gen.XM_044354 Figure 2969: PRO81875 gen.NM.005271 Figure 3005: PRO36680 Figure 2970: DNA325333, XM_032520. Figure 3006: DNA325349, XM _089551, gen.XM_032520 gen.XM_089551 Figure 2971: DNA325334, NM_019058, Figure 3007: PRO81889 gen.NM_019058 Figure 2972: PRO81877 Figure 3008: DNA287237, NM_001613, gen.NM_001613 Figure 2973: DNA325335, XM_045140. Figure 3009: PRO39648 gen.XM_045140 Figure 3010: DNA325350, XM_084477, Figure 2974: PRO2875 gen.XM_084477 Figure 2975: DNA325336, XM_116863, Figure 3011: PRO69523 gen.XM_116863 Figure 3012: DNA325351, XM_084480, Figure 2976: DNA325337, XM_032476, gen.XM_032476 gen.XM_084480 Figure 3013A-B: DNA325352, NM _013451, Figure 2977: DNA325338, XM_114894, gen.XM_114894 gen.NM_013451 Figure 3014: PRO12813 Figure 2978: DNA325339, NM_033022, Figure 3015: DNA325353, XM_018167, gen.NM_033022 Figure 2979: PRO81881 gen.XM_018167 Figure 2980: DNA325340, NM_001026, Figure 3016: DNA325354, XM_084372, gen.XM_084372 gen.NM_001026 Figure 2981: PRO11139 Figure 3017: DNA325355, NM_020992, Figure 2982: DNA103421, NM_003375, gen.NM_020992 gen.NM .003375 Figure 3018: PRO81893 Figure 3019: DNA325356, XM_089514, Figure 2983: PRO4749 Figure 2984A-B: DNA325341, XM _166093, gen.XM_089514 Figure 3020A-B: DNA325357, XM_058343, gen.XM_166093

gen.XM_058343

Figure 3021: PRO81895

Figure 3022: DNA325358, XM_058602, Figure 3058A-B: DNA325377, XM_005938. gen.XM_058602 gen.XM_005938 Figure 3023: PRO81896 Figure 3059A-B: DNA325378, XM .031992. Figure 3024A-B: DNA325359, NM_015179, gen.XM 031992 gen.NM_015179 Figure 3060: PRO81912 Figure 3025: PRO81897 Figure 3061: DNA 325379, NM 032747. Figure 3026: DNA325360, XM_083842, gen.NM_032747 gen.XM_083842 Figure 3062: PRO81913 Figure 3063: DNA325380, NM_005004. Figure 3027: PRO69473 gen.NM_005004 Figure 3028: DNA325361, XM_084413. Figure 3064: PRO81914 gen.XM_084413 Figure 3065: DNA325381, XM_030447, Figure 3029: DNA325362, NM_022362, gen.NM_022362 gen.XM_030447 Figure 3030: PRO81899 Figure 3066: DNA273521, NM_002079. Figure 3031: DNA325363, NM_032112. gen.NM_002079 gen.NM_032112 Figure 3067: PRO61502 Figure 3032: PRO81900 Figure 3068A-B: DNA325382, NM_032211. Figure 3033: DNA325364, NM .021830. gen.NM_032211 gen.NM_021830 Figure 3069: PRO81916 Figure 3034: PRO81901 Figure 3070; DNA325383, NM_031484, Figure 3035A-B: DNA325365, XM_046743, gen.NM_031484 gen.XM_046743 Figure 3071: PRO81917 Figure 3036: PRO81902 Figure 3072: DNA325384, XM_084632, Figure 3037: DNA325366, NM_013274. gen.XM_084632 gen.NM_013274 Figure 3073: DNA325385, XM_084359, Figure 3038: PRO8 1903 gen.XM_084359 Figure 3039: DNA325367, NM_022039. Figure 3074A-D: DNA325386, XM_045667. gen.NM_022039 gen.XM_045667 Figure 3040: PRO81904 Figure 3075; DNA325387, XM_109162. Figure 3041A-B: DNA325368, XM_031866. gen.XM_109162 gen.XM_031866 Figure 3076: DNA227509, NM_000274. Figure 3042A-B: DNA325369, NM_015062, gen.NM_000274 gen.NM_015062 Figure 3077: PRO37972 Figure 3043: PRO81905 Figure 3078: DNA325388, XM_058361, Figure 3044A-B: DNA325370, XM_031890, gen.XM_058361 Figure 3079: PRO81922 gen.XM_031890 Figure 3045A-B: DNA325371, NM_004193, Figure 3080: DNA325389, XM_084505, gen.NM_004193 gen_XM_084505 Figure 3046: PRO81907 Figure 3081: PRO81923 Figure 3047: DNA325372, NM_024040. Figure 3082A-B: DNA325390, XM_049795. gen.NM_024040 gen.XM_049795 Figure 3048: PRO81908 Figure 3083: PRO81924 Figure 3049: DNA325373, XM_031949, Figure 3084: DNA325391, XM_058406. gen.XM_031949 gen.XM_058406 Figure 3050: PRO4900 Figure 3085: PRO81925 Figure 3086: DNA325392, XM_055573, Figure 3051A-B: DNA144601, NM_016169, gen.NM_016169 gen.XM_055573 Figure 3087: PRO60991 Figure 3052: PRO34073 Figure 3053: DNA325374, XM_005698, Figure 3088: DNA325393, XM_005969, gen.XM_005698 gen.XM_005969 Figure 3054: PRO81909 Figure 3089: DNA325394, NM _007190, Figure 3055: DNA325375, NM_006523, gen.NM_007190 gen.NM_006523 Figure 3090: PRO81926 Figure 3056: PRO59043 Figure 3091: DNA325395, NM_000982,

gen.NM_000982

Figure 3092: PRO81927

Figure 3057: DNA325376, XM_018279,

gen.XM_018279

PCT/US2003/028547

Figure 3093: DNA269952, NM_004725. Figure 3129; DNA325412, XM .044932. gen.NM_004725 gen.XM_044932 Figure 3094: PRO58348 Figure 3130: PRO81943 Figure 3131A-B: DNA325413, XM_044957. Figure 3095: DNA325396, NM_024942. gen.NM 024942 gen.XM_044957 Figure 3096: PRO81928 Figure 3132: PRO81944 Figure 3097: DNA325397, NM_016567. Figure 3133: DNA325414, NM _001909, gen.NM_016567 gen.NM 001909 Figure 3098: PRO81929 Figure 3134: PRO292 Figure 3099: DNA325398, NM_004092. Figure 3135: DNA325415, XM_006475, gen.NM_004092 gen.XM 006475 Figure 3100: PRO81930 Figure 3136: DNA325416, XM_006483. Figure 3101: DNA269431, NM _006659, gen.XM_006483 gen.NM_006659 Figure 3137: DNA325417, NM_001751, Figure 3102: PRO57854 gen.NM_001751 Figure 3103: DNA325399, XM _005675, Figure 3138: PRO69635 gen.XM_005675 Figure 3139: DNA325418, XM_114981, Figure 3104: DNA325400, XM_114862, gen.XM_114981 gen.XM_114862 Figure 3140: PRO81945 Figure 3105: PRO81932 Figure 3141; DNA325419, XM_083852. Figure 3106: DNA325401, XM _088009, gen.XM_083852 gen.XM_088009 Figure 3142: DNA325420, NM 000559. Figure 3107; DNA325402, NM_016526. gen.NM _000559 gen.NM_016526 Figure 3143: PRO81946 Figure 3108: PRO81934 Figure 3144: DNA325421, NM_000184. Figure 3109: DNA255696, NM_021932, gen.NM_000184 gen.NM_021932 Figure 3145: PRO81947 Figure 3110: PRO50756 Figure 3146: DNA325422, NM_005330. Figure 3111: DNA325403, XM_043220, gen.NM 005330 gen.XM_043220 Figure 3147: PRO81948 Figure 3112: PRO81935 Figure 3148: DNA325423, XM_015243. Figure 3113: DNA255078, NM_006435. gen.XM_015243 gen.NM_006435 Figure 3149: DNA325424, NM_015324, Figure 3114: PRO50165 gen.NM_015324 Figure 3115: DNA325404, NM _002339, Figure 3150: PRO81950 gen.NM_002339 Figure 3151: DNA325425, XM_006424, Figure 3116: PRO81936 gen.XM_006424 Figure 3117: DNA325405, XM_028192, Figure 3152: DNA325426, XM_113238. gen.XM_028192 gen.XM_113238 Figure 3118: PRO81937 Figure 3153A-C: DNA325427, XM _052786, Figure 3119: DNA325406, XM_096544, gen.XM_052786 gen.XM_096544 Figure 3154: PRO81953 Figure 3120: DNA325407, NM_000612, Figure 3155: DNA325428, NM _000990, gen.NM_000612 gen.NM_000990 Figure 3121: PRO124 Figure 3156: PRO25985 Figure 3122: DNA325408, XM_084742, Figure 3157A-B: DNA325429, XM_045750, gen.XM_084742 gen.XM_045750 Figure 3123: PRO81939 Figure 3158: PRO81954 Figure 3124: DNA325409, XM_084739, Figure 3159: DNA325430, XM_058414, gen.XM_084739 gen.XM_058414 Figure 3125: DNA325410, XM _058505, Figure 3160: PRO81955 gen.XM_058505 Figure 3161A-B: DNA325431, XM_049197, Figure 3126: PRO81941 gen.XM_049197 Figure 3127: DNA325411, XM_006139, Figure 3162: PRO81956 gen.XM_006139 Figure 3163A-B: DNA325432, NM_001418. Figure 3128: PRO81942 gen.NM_001418

Figure 3197: DNA325454, NM _003646,

PCT/US2003/028547

Figure 3164: PRO81957 gen.NM_003646 Figure 3198: PRO81977 Figure 3165; DNA325433, XM_096520, Figure 3199: DNA325455, NM_004551, gen.XM_096520 gen.NM_004551 Figure 3166: PRO81958 Figure 3167: DNA325434, XM_006212, Figure 3200: PRO81978 gen.XM_006212 Figure 3201: DNA325456, XM_006170, gen.XM_006170 Figure 3168: PRO81959 Figure 3202: DNA325457, XM_037173, Figure 3169: DNA325435, XM _084527, gen.XM_084527 gen XM 037173 Figure 3203: PRO81980 Figure 3170: DNA325436, XM_016139. gen.XM_016139 Figure 3204: DNA150974, NM_005693, Figure 3171: DNA325437, NM _001017, gen.NM 005693 Figure 3205: PRO12224 gen.NM_001017 Figure 3206: DNA226080, NM_001610. Figure 3172: PRO11262 gen.NM_001610 Figure 3173: DNA325438, NM .014267, gen.NM_014267 Figure 3207: PRO36543 Figure 3174: PRO81962 Figure 3208: DNA270134, NM_000107. gen.NM_000107 Figure 3175: DNA97285, NM _005566, Figure 3209: PRO58523 gen.NM_005566 Figure 3176: PRO3632 Figure 3210: DNA325458, NM_016223, Figure 3177; DNA325439, XM_115081, gen.NM_016223 Figure 3211: PRO81981 gen.XM_115081 Figure 3178: DNA325440, XM_036339, Figure 3212: DNA325459, XM_037147, gen.XM_037147 gen.XM_036339 Figure 3213: PRO81982 Figure 3179: PRO81964 Figure 3180: DNA325441, XM _084514, Figure 3214: DNA325460, XM_015705, gen.XM_084514 gen.XM_015705 Figure 3181: PRO81965 Figure 3215: DNA272728, NM_003146, Figure 3182: DNA325442, XM .084516, gen.NM_003146 Figure 3216: PRO60847 gen.XM_084516 Figure 3217: DNA325461, XM_165611, Figure 3183: DNA325443, XM_084515. gen.XM_165611 gen.XM_084515 Figure 3184: DNA325444, XM _084517, Figure 3218: DNA287417, NM_024098, gen.NM_024098 gen.XM_084517 Figure 3219: PRO69674 Figure 3185: DNA325445, XM _034431, Figure 3220: DNA227088, NM_014502, gen.XM_034431 gen.NM_014502 Figure 3186: PRO11691 Figure 3187: DNA325446, XM _030326, Figure 3221: PRO37551 gen.XM_030326 Figure 3222: DNA325462, XM_165610, Figure 3188: DNA325447, NM _057174, gen.XM_165610 gen.NM_057174 Figure 3223A-B: DNA325463, XM_165612, Figure 3189: PRO81970 gen.XM_165612 Figure 3190: DNA325448, NM _004813, Figure 3224: DNA325464, XM_166234, gen.XM_166234 gen.NM_004813 Figure 3191: PRO81971 Figure 3225: DNA325465, NM_015533. Figure 3192: DNA325449, XM_167437, gen_NM_015533 Figure 3226: PRO81988 gen.XM_167437 Figure 3193: DNA325450, XM_054856, Figure 3227: DNA325466, XM_166232, gen.XM_166232 gen.XM_054856 Figure 3194: DNA325451, XM_004330, Figure 3228A-B: DNA325467, XM_167748, gen.XM_167748 gen.XM_004330 Figure 3195; DNA325452, XM_084681, Figure 3229: PRO81990 Figure 3230: DNA325468, NM .004739, gen.XM_084681 gen.NM_004739 Figure 3196: DNA325453, XM _006297, Figure 3231: PRO81991 gen.XM_006297

Figure 3232: DNA325469, NM_014610,

Figure 3267: PRO82005

PCT/US2003/028547

gen.NM_014610 Figure 3268: DNA325488, XM_113223, gen.XM 113223 Figure 3233: PRO81992 Figure 3269: DNA325489, XM_045642, Figure 3234: DNA325470, XM_167747, gen.XM_045642 gen.XM_167747 Figure 3270: DNA325490, XM_006533, Figure 3235: PRO81993 Figure 3236: DNA287254, NM_024099, gen, XM_006533 Figure 3271: DNA325491, XM_045613, gen.NM_024099 Figure 3237: PRO69528 gen.XM_045613 Figure 3238: DNA325471, NM_015853. Figure 3272: PRO59721 Figure 3273A-B: DNA325492, XM_045612, gen.NM_015853 Figure 3239: PRO81994 gen.XM_045612 Figure 3240: DNA325472, NM_032667, Figure 3274: PRO82009 Figure 3275: DNA325493, XM_113224, gen.NM_032667 Figure 3241: PRO81995 gen.XM_113224 Figure 3276: DNA325494, XM_045499, Figure 3242: DNA325473, NM _006362, gen.XM_045499 gen.NM_006362 Figure 3277: PRO82011 Figure 3243: PRO81996 Figure 3278: DNA325495, XM_045525, Figure 3244: DNA325474, XM_167716, gen.XM_167716 gen.XM_045525 Figure 3279: DNA325496, NM_013265, Figure 3245: DNA75863, NM _002411, gen.NM_002411 gen.NM_013265 Figure 3246: PRO2018 Figure 3280: PRO82013 Figure 3281: DNA325497, XM_006529. Figure 3247: DNA325475, XM_087710, gen.XM_006529 gen.XM_087710 Figure 3282: PRO60008 Figure 3248: DNA325476, XM_167726, Figure 3283: DNA 325498, XM _053787, gen.XM_167726 gen.XM_053787 Figure 3249: DNA325477, NM _004265, Figure 3284: DNA269803, NM_001667, gen.NM_004265 gen.NM_001667 Figure 3250: PRO12878 Figure 3251A-B: DNA325478, NM_013402. Figure 3285: PRO58207 gen.NM_013402 Figure 3286: DNA325499, XM_115031, gen.XM_115031 Figure 3252: PRO81999 Figure 3253: DNA325479, NM_004111. Figure 3287: DNA325500, XM_084702, gen.NM_004111 gen.XM_084702 Figure 3288: DNA325501, XM_053796, Figure 3254: PRO69568 gen.XM_053796 Figure 3255; DNA325480, XM_048286, Figure 3289: DNA325502, NM .002689, gen.XM_048286 Figure 3256: DNA325481, NM_004322. gen.NM_002689 Figure 3290: PRO82018 gen.NM_004322 Figure 3257: PRO20117 Figure 3291A-D: DNA325503, XM_167804, Figure 3258: DNA325482, NM _032989, gen.XM_167804 gen.NM_032989 Figure 3292: PRO82019 Figure 3259: PRO20117 Figure 3293: DNA325504, XM_166235. Figure 3260: DNA325483, XM_011988, gen.XM_166235 Figure 3294: DNA325505, XM_166236, gen.XM_011988 Figure 3261: DNA325484, NM_031472, gen.XM_166236 Figure 3295: DNA270721, NM_006842. gen.NM_031472 Figure 3262: PRO82002 gen.NM_006842 Figure 3296: PRO59084 Figure 3263: DNA325485, XM_037808, gen.XM_037808 Figure 3297: DNA 189687, NM_000852, Figure 3264; DNA325486, NM_004074, gen.NM_000852 Figure 3298: PRO25845 gen.NM_004074 Figure 3299: DNA325506, NM _007103, Figure 3265: PRO82004 Figure 3266: DNA325487, NM_017670. gen.NM_007103 gen.NM_017670 Figure 3300: PRO58606

Figure 3301: DNA325507, NM_005851,

PCT/US2003/028547

gen.XM_166253 gen.NM .005851 Figure 3337: DNA325526, NM_001293, Figure 3302: PRO69461 Figure 3303A-B: DNA325508, XM_165598, gen.NM_001293 gen.XM 165598 Figure 3338: PRO82034 Figure 3339: DNA325527, XM_042852, Figure 3304: DNA325509, NM_006019. gen.NM 006019 oen XM 042852 Figure 3340: PRO82035 Figure 3305: PRO82023 Figure 3341: DNA325528, XM_165628, Figure 3306: DNA325510, NM .006053, gen.XM_165628 gen.NM.006053 Figure 3342A-B: DNA325529, NM _080491. Figure 3307: PRO24831 gen.NM_080491 Figure 3308: DNA325511, XM_166196, Figure 3343: PRO82037 gen.XM_166196 Figure 3344A-B: DNA325530, NM_012296, Figure 3309: PRO82024 Figure 3310: DNA325512, XM_165600. gen.NM_012296 Figure 3345: PRO60311 gen.XM_165600 Figure 3311A-B: DNA325513, NM_053056, Figure 3346: DNA325531, NM_032379, gen.NM_032379 gen.NM_053056 Figure 3347: PRO82038 Figure 3312: PRO4870 Figure 3313: DNA 103474, NM _003824, Figure 3348: DNA325532, NM_007173, gen.NM_007173 gen.NM_003824 Figure 3349: DNA325533, XM_166239, Figure 3314: PRO4801 gen.XM_166239 Figure 3315: DNA325514, XM_096486, Figure 3350: DNA325534, XM_084610. gen.XM_096486 Figure 3316A-B: DNA325515, NM_003626, gen.XM_084610 Figure 3351: PRO82040 gen.NM_003626 Figure 3352; DNA325535, XM_058450, Figure 3317: PRO82027 Figure 3318A-B: DNA325516, XM_167853. gen.XM_058450 Figure 3353; DNA325536, XM_084601, gen.XM_167853 gen.XM_084601 Figure 3319: PRO82028 Figure 3354: PRO82042 Figure 3320: DNA325517, NM_014042, gen.NM_014042 Figure 3355A-B: DNA325537, XM_006464. Figure 3321: PRO82029 gen.XM_006464 Figure 3322A-B: DNA325518, NM_001567, Figure 3356: PRO82043 Figure 3357: DNA325538, XM_084570. gen.NM_001567 gen.XM_084570 Figure 3323: PRO61238 Figure 3324: DNA325519, XM_167433, Figure 3358: DNA325539, XM _051435, gen.XM_051435 gen.XM_167433 Figure 3325: DNA325520, XM_165616, Figure 3359; DNA325540, NM _001467, gen.NM_001467 gen.XM_165616 Figure 3360: PRO82045 Figure 3326: DNA325521, NM_032871, Figure 3361: DNA325541, NM_001028, gen.NM_032871 Figure 3327: PRO57307 gen.NM_001028 Figure 3328: DNA325522, XM_165631, Figure 3362: PRO82046 Figure 3363: DNA325542, XM_113230, gen.XM_165631 Figure 3329: DNA254186, NM_014752, gen.XM_113230 Figure 3364: DNA325543, XM_115062. gen.NM_014752 Figure 3330: PRO49298 gen.XM_115062 Figure 3331: DNA325523, NM .001005, Figure 3365: DNA325544, XM_115063, gen.XM_115063 gen.NM_001005 Figure 3366: DNA325545, XM_113229. Figure 3332: PRO82032 gen.XM_113229 Figure 3333: DNA88176, NM_001235, gen.NM_001235 Figure 3367A-B: DNA325546, XM_051489, gen.XM_051489 Figure 3334: PRO2685 Figure 3335A-B: DNA325524, XM_165627. Figure 3368: PRO82050 gen.XM_165627 Figure 3369: DNA325547, NM_022003, Figure 3336: DNA325525, XM_166253, gen.NM_022003

gen.XM_166181

gen.XM_052862

Figure 3404: DNA325564, XM_052862,

PCT/US2003/028547

Figure 3370: PRO82051 Figure 3405: PRO82066 Figure 3371: DNA325548, XM_006432. Figure 3406: DNA325565, XM_166177, gen.XM_166177 gen.XM_006432 Figure 3372: PRO82052 Figure 3407; DNA325566, XM 165571, Figure 3373: DNA325549, XM_051716, gen.XM_165571 gen.XM_051716 Figure 3408: PRO82068 Figure 3374; DNA325550, NM_025164. Figure 3409: DNA325567, XM_166174, gen.XM_166174 gen.NM_025164 Figure 3375: PRO82054 Figure 3410: PRO82069 Figure 3376: DNA225752, NM .000039. Figure 3411: DNA325568, NM_001274, gen.NM_000039 gen.NM_001274 Figure 3377: PRO36215 Figure 3412: PRO12187 Figure 3413: DNA325569, XM_165586, Figure 3378: DNA325551, XM_052113, gen.XM_052113 gen.XM_165586 Figure 3414: DNA325570, XM_165584, Figure 3379: PRO82055 gen.XM_165584 Figure 3380: DNA271324, NM_006169, Figure 3415: DNA257965, NM_032873, gen.NM_006169 Figure 3381: PRO59629 gen.NM_032873 Figure 3382: DNA325552, XM _084658. Figure 3416: PRO52492 gen.XM_084658 Figure 3417: DNA325571, XM_167780, Figure 3383: PRO82056 gen.XM_167780 Figure 3384: DNA325553, NM _000795, Figure 3418; DNA325572, XM_166743, gen.XM_166743 gen.NM_000795 Figure 3385: PRO12448 Figure 3419: PRO82072 Figure 3386: DNA325554, NM_017868. Figure 3420: DNA325573, NM _012101, gen.NM_017868 gen.NM_012101 Figure 3421: PRO82073 Figure 3387: PRO82057 Figure 3422: DNA325574, NM_058193, Figure 3388: DNA325555, XM _084654, gen.NM_058193 gen.XM_084654 Figure 3423: PRO82074 Figure 3389: PRO82058 Figure 3390: DNA272413, NM -003002, Figure 3424: DNA325575, XM_084522, gen.XM_084522 gen.NM_003002 Figure 3391: PRO60666 Figure 3425: PRO82075 Figure 3392: DNA271843, NM .004398, Figure 3426: DNA325576, XM -091786, gen.XM_091786 gen.NM_004398 Figure 3393: PRO60123 Figure 3427: DNA325577, XM_165390, Figure 3394: DNA325556, XM_017369, gen.XM_165390 gen.XM_017369 Figure 3428: DNA325578, XM_084525. Figure 3395: DNA325557, NM_032299. gen.XM_084525 Figure 3429A-B: DNA325579, XM .010494, gen.NM_032299 gen.XM_010494 Figure 3396: PRO82060 Figure 3430A-B: DNA325580, NM_015064, Figure 3397: DNA325558, XM_055369, gen.XM_055369 gen.NM_015064 Figure 3398: DNA325559, XM_051430, Figure 3431: PRO82078 Figure 3432: DNA325581, NM _030775, gen.XM_051430 Figure 3399: DNA325560, XM _006467. gen.NM_030775 gen.XM_006467 Figure 3433: PRO71031 Figure 3400: DNA325561, XM_113226, Figure 3434: DNA297398, NM _032642, gen.XM_113226 gen.NM_032642 Figure 3401: DNA325562, XM_165592. Figure 3435: PRO71031 gen.XM_165592 Figure 3436: DNA325582, XM_017080, Figure 3402: PRO82064 gen.XM_017080 Figure 3437: DNA325583, XM_113739, Figure 3403: DNA325563, XM_166181, gen.XM_113739

Figure 3438: PRO82080 Figure 3439: DNA325584, NM .002014,

PCT/US2003/028547

gen.NM_002014 Figure 3474: PRO36095 Figure 3475A-B: DNA325602, XM_006958. Figure 3440: PRO59262 Figure 3441: DNA325585, XM_096661, gen.XM_096661 Figure 3442: DNA325586, NM_018463, gen.NM_018463 Figure 3443: PRO82082 Figure 3444: DNA325587, NM_021953, gen.NM_021953 Figure 3445: PRO82083 Figure 3446: DNA325588, NM_031465, gen.NM_031465 Figure 3447: PRO82084 Figure 3448: DNA325589, NM_005002, gen.NM_005002 Figure 3449; PRO82085 Figure 3450: DNA325590, XM_033227, gen.XM_033227 Figure 3451: DNA325591, XM_116926, gen.XM_116926 Figure 3452: DNA88114, NM_001734, gen.NM_001734 Figure 3453: PRO2660 Figure 3454: DNA325592, XM_058574, gen.XM_058574 Figure 3455: DNA325593, NM_007273, gen.NM_007273 Figure 3456: PRO36970 Figure 3457 A-B: DNA325594, XM_032588, gen.XM_032588 Figure 3458: DNA325595, NM_001975, gen.NM_001975 Figure 3459: PRO38010 Figure 3460: DNA325596, NM_000365, gen.NM_000365 Figure 3461: PRO69549 Figure 3462: DNA325597, XM_032614, gen.XM_032614 Figure 3463: DNA325598, NM_002075, gen.NM_002075 Figure 3464: PRO82091 Figure 3465: DNA325599, XM_165910, gen.XM_165910 Figure 3466: DNA151827, NM_005439, gen.NM_005439 Figure 3467: PRO12902 Figure 3468A-B: DNA254624, NM_001273, gen.NM_001273 Figure 3469; PRO49726 Figure 3470: DNA325600, NM_015438, gen.NM_015438 Figure 3471: PRO82093 Figure 3472: DNA325601, XM_033263, gen.XM_033263 Figure 3473: DNA225632, NM_002046. gen.NM_002046

gen.XM_006958 Figure 3476: DNA83180, NM_002342. gen.NM 002342 Figure 3477: PRO2622 Figure 3478: DNA103514, NM_001038, gen.NM_001038 Figure 3479; PRO4841 Figure 3480: DNA188396, NM_001065, gen.NM_001065 Figure 3481: PRO21924 Figure 3482A-C: DNA 325603, XM_006947, gen.XM_006947 Figure 3483A-B: DNA325604, XM _006936. gen.XM_006936 Figure 3484: PRO82097 Figure 3485A-B: DNA325605, XM _006925, gen.XM_006925 Figure 3486: DNA325606, XM_096630, gen.XM_096630 Figure 3487: PRO82099 Figure 3488: DNA325607, XM_084901. gen.XM_084901 Figure 3489: DNA226028, NM_002355. gen.NM_002355 Figure 3490: PRO36491 Figure 3491: DNA325608, XM _031807, gen.XM_031807 Figure 3492: PRO82101 Figure 3493A-B: DNA325609, XM .049663, gen.XM_049663 Figure 3494; DNA325610, XM_012159, gen.XM_012159 Figure 3495; DNA325611, XM _084922. gen.XM_084922 Figure 3496: DNA325612, NM _031289. gen.NM_031289 Figure 3497: PRO82104 Figure 3498; DNA226771, NM .003979. gen.NM_003979 Figure 3499: PRO37234 Figure 3500: DNA325613, XM_084918, gen.XM_084918 Figure 3501: DNA325614, NM_007178, gen.NM_007178 Figure 3502: PRO82106 Figure 3503: DNA325615, XM _041100, gen.XM_041100 Figure 3504A-B: DNA325616, XM .058567, gen.XM_058567 Figure 3505: PRO82107 Figure 3506A-B: DNA325617, XM_166605, gen.XM_166605 Figure 3507: DNA325618, XM_029805, gen.XM_029805

Figure 3508: PRO82109 Figure 3543: DNA325636, XM_012272. Figure 3509: DNA325619, NM_005889. gen.XM_012272 gen.NM_005889 Figure 3544: PRO82127 Figure 3545A-B: DNA325637, XM_056481. Figure 3510: PRO82110 Figure 3511: DNA256072, NM_001644. gen.XM_056481 Figure 3546: DNA325638, NM _006262. gen.NM_001644 Figure 3512: PRO51121 gen.NM .006262 Figure 3513: DNA325620, NM_018686, Figure 3547: PRO82129 Figure 3548: DNA325639, NM_018113. gen.NM 018686 Figure 3514: PRO82111 gen.NM_018113 Figure 3515: DNA325621, XM.084770. Figure 3549: PRO82130 gen.XM_084770 Figure 3550: DNA271344, NM_001659, gen.NM_001659 Figure 3516: PRO82112 Figure 3517: DNA325622, NM_018048, Figure 3551: PRO59647 gen.NM_018048 Figure 3552: DNA325640, NM_017822. Figure 3518: PRO82113 gen.NM_017822 Figure 3519: DNA325623, XM_113730, Figure 3553: PRO82131 Figure 3554A-E: DNA325641, XM_028760. gen.XM_113730 Figure 3520: DNA150978, NM 007244. gen.XM_028760 gen.NM_007244 Figure 3555: DNA272379, NM _002733. Figure 3521: PRO11601 gen.NM_002733 Figure 3522: DNA325624, NM .006250. Figure 3556: PRO60634 gen.NM_006250 Figure 3557: DNA325642, XM_084866, Figure 3523: PRO82115 gen.XM_084866 Figure 3558: PRO82133 Figure 3524: DNA79313, NM_005042. gen.NM_005042 Figure 3559: DNA325643, XM_006826, Figure 3525: PRO2555 gen.XM_006826 Figure 3560: DNA325644, XM_113719, Figure 3526; DNA150997, NM_004982. gen.NM .004982 gen.XM_113719 Figure 3527: PRO12573 Figure 3561: DNA325645, XM_028662, Figure 3528; DNA325625, XM_050074, gen.XM_028662 gen.XM_050074 Figure 3562: DNA325646, XM_035497. Figure 3529: DNA325626, NM_024854, gen.XM_035497 gen.NM_024854 Figure 3563: PRO82137 Figure 3564: DNA325647, XM_035490. Figure 3530: PRO82117 Figure 3531: DNA325627, XM_084807, gen.XM_035490 gen.XM .084807 Figure 3565: PRO82138 Figure 3532: DNA325628, XM_165906. Figure 3566: DNA325648, NM _013277, gen.XM_165906 gen.NM_013277 Figure 3533A-B: DNA325629, XM_038659, Figure 3567: PRO82139 Figure 3568: DNA325649, NM _003076, gen.XM_038659 Figure 3534: PRO82120 gen.NM_003076 Figure 3569: PRO82140 Figure 3535: DNA325630, XM_006694, gen.XM_006694 Figure 3570: DNA325650, XM_115117, Figure 3536: DNA325631, XM_006748, gen.XM_115117 Figure 3571: DNA325651, XM_035485, gen.XM_006748 Figure 3537: PRO82122 gen.XM_035485 Figure 3572A-B: DNA325652, NM_016357. Figure 3538: DNA325632, XM_016640. gen.XM_016640 gen.NM_016357 Figure 3539: DNA325633, XM_096146, Figure 3573: PRO82143 Figure 3574: DNA325653, NM .005171. gen.XM_096146 Figure 3540A-B: DNA325634, XM_084841. gen.NM_005171 gen.XM_084841 Figure 3575: PRO60924 Figure 3541: PRO82125 Figure 3576: DNA325654, NM_014033,

gen.NM_014033

Figure 3577: PRO4348

Figure 3542: DNA325635, XM_090218,

gen.XM_090218

Figure 3578: DNA325655, XM .096620, Figure 3611: PRO82162 Figure 3612: DNA325674, NM_031157, gen.XM_096620 Figure 3579: DNA325656, XM _165905, gen.NM 031157 Figure 3613: PRO82163 gen.XM_165905 Figure 3580: DNA325657, XM_015481. Figure 3614: DNA325675, NM_004178. gen.XM_015481 een NM 004178 Figure 3581: DNA325658, XM_049148. Figure 3615: PRO82164 gen.XM_049148 Figure 3616: DNA325676, NM_134323. Figure 3582: DNA325659, XM_084885. gen.NM_134323 gen.XM_084885 Figure 3617: PRO82165 Figure 3583: DNA325660, XM_084884. Figure 3618: DNA325677, NM_134324. gen.XM_084884 gen.NM_134324 Figure 3584: DNA325661, XM_113726. Figure 3619: PRO82166 gen.XM_113726 Figure 3620: DNA290294, NM_005016. Figure 3585: DNA325662, XM_015476. gen.NM_005016 gen.XM_015476 Figure 3621: PRO70453 Figure 3586; DNA325663, XM _049141. Figure 3622: DNA325678, NM_031989. gen.XM_049141 gen.NM_031989 Figure 3587: PRO82152 Figure 3623: PRO82167 Figure 3588: DNA227191, NM_021934, Figure 3624: DNA325679, XM_028643. gen.NM_021934 gen.XM_028643 Figure 3589; PRO37654 Figure 3625: PRO82168 Figure 3626: DNA325680, XM_006710. Figure 3590: DNA325664, XM_083868, gen.XM_006710 gen.XM_083868 Figure 3591: DNA270458, NM_002273, Figure 3627: PRO82169 gen.NM_002273 Figure 3628: DNA227094, NM_005594, Figure 3592: PRO58837 gen.NM_005594 Figure 3593: DNA227092, NM_000224, Figure 3629: PRO37557 gen.NM_000224 Figure 3630: DNA325681, XM_084824. Figure 3594: PRO37555 gen.XM_084824 Figure 3595: DNA325665, XM_029728, Figure 3631: DNA304783, NM_014255. gen.XM_029728 gen.NM_014255 Figure 3596: DNA325666, XM_015468. Figure 3632: PRO4426 Figure 3633: DNA325682, XM_165903, gen.XM_015468 Figure 3597: PRO82155 gen.XM_165903 Figure 3634: DNA325683, XM_115140, Figure 3598: DNA325667, XM_012162, gen.XM_012162 gen.XM_115140 Figure 3599: DNA325668, XM_084789, Figure 3635: DNA325684, XM_113712, gen.XM_084789 gen.XM_113712 Figure 3600: DNA196351, NM_002178, Figure 3636: DNA325685, NM .006601, gen.NM_002178 gen.NM_006601 Figure 3601: PRO3449 Figure 3637: PRO82174 Figure 3602A-B: DNA325669, XM_029631. Figure 3638: DNA325686, XM_012182, gen.XM_029631 gen.XM_012182 Figure 3603: PRO82158 Figure 3639: PRO82175 Figure 3604: DNA325670, NM_015665, Figure 3640: DNA325687, XM_048943. gen.NM_015665 gen.XM_048943 Figure 3605: PRO82159 Figure 3641: DNA325688, XM_053164, Figure 3606: DNA325671, NM .014311, gen.XM_053164 gen.NM_014311 Figure 3642: DNA325689, XM_048991, Figure 3607: PRO82160 gen.XM_048991 Figure 3608: DNA325672, XM_096606, Figure 3643: DNA325690, NM_024068, gen.XM_096606 gen.NM_024068 Figure 3609: PRO82161 Figure 3644: PRO82179

gen.XM_056346

Figure 3645A-B: DNA325691, XM_056346,

Figure 3610: DNA325673, NM_018457,

gen.NM_018457

Figure 3681: DNA325710, NM_005981.

PCT/US2003/028547

Figure 3646: DNA325692, NM_021019, gen.NM_005981 gen.NM_021019 Figure 3682: PRO4666 Figure 3647: PRO82181 Figure 3683: DNA325711, NM_000075. Figure 3648: DNA325693, NM_079423, gen.NM 000075 gen.NM_079423 Figure 3684: PRO4873 Figure 3649: PRO82182 Figure 3685: DNA325712, NM 052984. Figure 3650: DNA325694, NM _079425. gen.NM_052984 gen.NM_079425 Figure 3686: PRO82194 Figure 3651: PRO82183 Figure 3687: DNA325713, NM_000785. Figure 3652: DNA325695, XM_049048, gen.NM_000785 gen.XM_049048 Figure 3688: PRO58440 Figure 3653: PRO82184 Figure 3689: DNA325714, NM .005371. Figure 3654: DNA325696, NM_021104. gen.NM .005371 gen.NM_021104 Figure 3690: PRO82195 Figure 3655: PRO11213 Figure 3691: DNA325715, NM_023032. Figure 3656: DNA325697, NM_001029, gen.NM_023032 gen.NM 001029 Figure 3692: PRO82196 Figure 3657: PRO10838 Figure 3693: DNA325716, NM _023033, Figure 3658: DNA325698, XM_001482, gen.NM_023033 gen.XM_001482 Figure 3694: PRO82197 Figure 3659: DNA325699, XM_049150. Figure 3695: DNA325717, NM .005726. gen.XM_049150 gen.NM_005726 Figure 3660: DNA325700, NM_006928, Figure 3696: PRO82198 gen.NM_006928 Figure 3697: DNA325718, NM_006576, Figure 3661: PRO2846 gen.NM_006576 Figure 3662: DNA325701, XM_056353. Figure 3698: PRO82199 gen.XM_056353 Figure 3699A-B: DNA325719, XM 096038. Figure 3663: DNA325702, NM_001780. gen.XM_096038 gen.NM_001780 Figure 3700: DNA325720, XM .056681, Figure 3664: PRO283 gen.XM_056681 Figure 3665: DNA325703, NM _031479, Figure 3701: PRO82201 gen.NM_031479 Figure 3702: DNA325721, XM_084909. Figure 3666: PRO21773 gen.XM_084909 Figure 3667A-: DNA137231, NM_005269, Figure 3703: PRO82202 gen.NM_005269 Figure 3704: DNA325722, XM .004098, Figure 3668: PRO9112 gen.XM_004098 Figure 3705: DNA325723, XM_084912, Figure 3669; DNA325704, NM _004990. gen.NM_004990 gen.XM_084912 Figure 3670: PRO82188 Figure 3706: PRO82204 Figure 3671: DNA325705, XM_058528, Figure 3707: DNA325724, XM_040221, gen.XM_058528 gen.XM_040221 Figure 3672: DNA325706, XM _084801, Figure 3708: DNA325725, XM_016605, gen.XM_084801 gen.XM_016605 Figure 3673: PRO82190 Figure 3709: PRO82206 Figure 3674: DNA325707, XM_048603, Figure 3710: DNA325726, XM_017508. gen.XM_048603 gen.XM_017508 Figure 3675: PRO82191 Figure 3711: PRO82207 Figure 3676: DNA325708, NM_133483, Figure 3712: DNA325727, NM_032338, gen.NM_133483 gen.NM_032338 Figure 3677: PRO82192 Figure 3713: PRO82208 Figure 3678: DNA79101, NM_006812, Figure 3714A-B: DNA325728, XM_052460, gen.NM_006812 gen.XM_052460 Figure 3679: PRO2549 Figure 3715: DNA325729, XM_083866, Figure 3680: DNA325709, XM .096566, gen.XM_083866 gen.XM_096566 Figure 3716: PRO82210

Figure 3717: DNA304694, NM_020401.

gen.NM_002345

PCT/US2003/028547

Figure 3753: PRO9987 gen.NM_020401 Figure 3754; DNA325747, XM_167518, Figure 3718: PRO71120 Figure 3719: DNA325730, XM .052474, gen.XM_167518 Figure 3755: DNA325748, XM_052542, gen.XM_052474 gen.XM_052542 Figure 3720: DNA227474, NM _015646, gen.NM_015646 Figure 3756: PRO82223 Figure 3757: DNA325749, NM_003877. Figure 3721: PRO37937 gen.NM_003877 Figure 3722: DNA325731, XM_053952, Figure 3758: PRO12839 gen.XM_053952 Figure 3759; DNA325750, XM_012219. Figure 3723: PRO82212 Figure 3724: DNA227171, NM _014515, gen.XM_012219 Figure 3760: PRO69473 gen.NM 014515 Figure 3761: DNA325751, XM_012145, Figure 3725: PRO37634 gen.XM_012145 Figure 3726: DNA325732, XM _046041, Figure 3762: PRO82224 gen.XM_046041 Figure 3763: DNA274361, NM _000895, Figure 3727: DNA271492, NM _006530. gen.NM_000895 gen.NM_006530 Figure 3764: PRO62273 Figure 3728: PRO59785 Figure 3765: DNA325752, XM .006887, Figure 3729; DNA226014, NM_000239, gen.XM_006887 gen.NM_000239 Figure 3730: PRO36477 Figure 3766: DNA325753, XM _006589, Figure 3731: DNA325733, XM .084645. gen.XM_006589 Pigure 3767: DNA325754, XM_090458, gen.XM_084645 Figure 3732A-B: DNA325734, XM .039395, gen.XM_090458 Figure 3768: PRO82227 gen.XM_039395 Figure 3769: DNA325755, XM_052641, Figure 3733: PRO82213 gen.XM_052641 Figure 3734; DNA325736, XM_040644, gen.XM_040644 Figure 3770: PRO82228 Figure 3771A-B: DNA325756, XM_049211, Figure 3735: PRO82214 gen.XM_049211 Figure 3736A-B: DNA325737, XM_006578, Figure 3772: DNA325757, XM_049201, gen.XM_006578 gen.XM .049201 Figure 3737: DNA325738, XM_038308, Figure 3773: DNA325758, XM_058556, gen.XM_038308 gen.XM_058556 Figure 3738: PRO82215 Figure 3774: DNA325759, XM_083864, Figure 3739: DNA325739, XM _096597, gen.XM_083864 gen.XM_096597 Figure 3740: DNA325740, NM_001920, Figure 3775: DNA325760, XM _062437, gen.XM_062437 gen.NM_001920 Figure 3776: PRO82232 Figure 3741: PRO2841 Figure 3742: DNA325741, NM_133503, Figure 3777: DNA254777, NM_014325, gen.NM_014325 gen.NM_133503 Figure 3778; PRO49875 Figure 3743: PRO2841 Figure 3744: DNA325742, NM_133504, Figure 3779: DNA325761, XM _090413, gen.XM_090413 gen.NM_133504 Figure 3780: PRO82233 Figure 3745: PRO82218 Figure 3781: DNA325762, NM.000970, Figure 3746: DNA325743, NM_133505, gen.NM_000970 gen.NM_133505 Figure 3782: PRO82234 Figure 3747: PRO82219 Figure 3783: DNA325763, XM_084800, Figure 3748: DNA325744, NM_133507, gen.NM_133507 gen.XM_084800 Figure 3784: PRO82235 Figure 3749: PRO82220 Figure 3750: DNA325745, NM_133506, Figure 3785: DNA325764, NM_006817, gen.NM_133506 gen.NM_006817 Figure 3786: PRO70694 Figure 3751: PRO82221 Figure 3787A-C: DNA325765, XM_083892, Figure 3752: DNA325746, NM _002345, gen.XM_083892

PCT/US2003/028547

Figure 3788A-B: DNA325766, XM_084941. pen.NM_014868 Figure 3824: PRO59042 gen.XM_084941 Figure 3825: DNA325787, XM_052893, Figure 3789: PRO82237 gen.XM_052893 Figure 3790A-B: DNA325767, NM _057169, Figure 3826A-B: DNA325788, XM_045802. gen.NM_057169 Figure 3791: PRO82238 gen.XM_045802 Figure 3827: DNA302016, NM _001002, Figure 3792A-B: DNA325768, NM_014776, gen.NM_001002 gen.NM_014776 Figure 3828: PRO70989 Figure 3793: PRO82239 Figure 3829: DNA325789, NM_053275, Figure 3794: DNA325769, NM_032904, gen.NM_053275 gen.NM_032904 Figure 3830: PRO70989 Figure 3795: PRO82240 Figure 3831: DNA325790, NM_006253, Figure 3796A-B: DNA325770, XM _007003, gen.NM_006253 gen.XM_007003 Figure 3832: PRO82259 Figure 3797; DNA325771, XM_007002, Figure 3833: DNA325791, XM_045187, gen.XM_007002 gen.XM_045187 Figure 3798: DNA325772, XM_056996, Figure 3834: DNA325792, XM_045963, gen.XM_056996 gen.XM_045963 Figure 3799: PRO82243 Figure 3835: DNA325793, XM_006595, Figure 3800: DNA325773, XM_084946, gen.XM_006595 gen.XM_084946 Figure 3836; DNA325794, XM_012124, Figure 3801: PRO82244 gen.XM_012124 Figure 3802: DNA325775, XM_027102, Figure 3837: DNA325795, NM_002813, gen.XM_027102 gen.NM_002813 Figure 3803: PRO82245 Figure 3838: PRO82263 Figure 3804: DNA325776, XM .084948, Figure 3839: DNA325796, NM_019887. gen.XM_084948 gen.NM_019887 Figure 3805: DNA325777, NM_007062, Figure 3840: PRO69471 gen.NM_007062 Figure 3841A-B: DNA325797, XM_038791, Figure 3806: PRO82247 gen.XM_038791 Figure 3807: DNA325778, NM _006825, Figure 3842: PRO82264 gen.NM_006825 Figure 3843: DNA325798, NM_016638, Figure 3808: PRO82248 gen.NM_016638 Figure 3809: DNA325779, XM_115197, Figure 3844: PRO82265 gen.XM_115197 Figure 3845; DNA325799, XM_116913, Figure 3810: DNA325780, NM_017901, gen.XM_116913 gen.NM_017901 Figure 3811: PRO82250 Figure 3846; PRO82266 Figure 3847: DNA325800, NM .006815, Figure 3812: DNA325781, NM_032814, gen.NM_006815 gen.NM_032814 Figure 3848: PRO4793 Figure 3813: PRO82252 Figure 3849: DNA325801, XM_006566, Figure 3814: DNA325782, XM _084889, gen.XM_006566 gen.XM_084889 Figure 3850: PRO82267 Figure 3815: PRO82253 Figure 3851: DNA325802, NM .032656, Figure 3816: DNA325783, NM_002567, gen.NM_032656 gen.NM_002567 Figure 3817: PRO59001 Figure 3852: PRO82268 Figure 3853: DNA325803, XM_055013, Figure 3818: DNA325784, XM_084808, gen.XM_055013 gen.XM_084808 Figure 3854: PRO82269 Figure 3819: DNA325785, XM .096572. Figure 3855: DNA325804, XM_113737, gen.XM_096572 Figure 3820: PRO82255 gen.XM_113737 Figure 3856A-C: DNA325805, XM_045602, Figure 3821: DNA325786, XM_045010, gen.XM_045602 gen.XM_045010 Figure 3857: DNA325806, XM_087955, Figure 3822: PRO82256

Figure 3823: DNA270677, NM _014868,

gen.XM_087955

Figure 3858: PRO82272 Figure 3893: DNA325825, XM_085017. Figure 3859A-B: DNA325807, XM_044334, gen.XM_085017 gen.XM_044334 Figure 3894: PRO82291 Figure 3860: PRO82273 Figure 3895: DNA325826, XM 017432. Figure 3861: DNA325808, XM_012184, gen.XM_017432 gen.XM_012184 Figure 3896A-B: DNA270254, NM 002015. Figure 3862: DNA325809, XM_113702. gen.NM_002015 gen.XM_113702 Figure 3897: PRO58642 Figure 3863: PRO82275 Figure 3898: DNA325827, NM_005830. Figure 3864A-B: DNA270015, NM_003453, gen.NM_005830 gen.NM_003453 Figure 3899: PRO58092 Figure 3865: PRO58410 Figure 3900: DNA281436, NM .003295. Figure 3866: DNA226853, NM_004004, gen.NM_003295 gen.NM_004004 Figure 3901: PRO66275 Figure 3867; PRO37316 Figure 3902: DNA325828, XM_038371. Figure 3868: DNA325810, XM, 167911 gen.XM_038371 gen.XM_167911 Figure 3903A-B: DNA325829, XM_165636. Figure 3869: DNA325811, XM_167918. gen.XM_165636 gen.XM_167918 Figure 3904: DNA325830, XM_166266. Figure 3870: DNA325812, XM_084982, gen.XM_166266 gen.XM_084982 Figure 3905: PRO82295 Figure 3871: PRO82278 Figure 3906: DNA325831, NM_014166, Figure 3872: DNA325813, NM_024026, gen.NM_014166 gen.NM_024026 Figure 3907: PRO82296 Figure 3873: PRO82279 Figure 3908: DNA325832, NM_021999. Figure 3874: DNA325814, XM_012638. gen.NM_021999 gen.XM_012638 Figure 3909: PRO1869 Figure 3875: PRO82280 Figure 3910: DNA325833, NM_030925, Figure 3876: DNA325815, XM_167439, gen.NM_030925 gen.XM_167439 Figure 3911: PRO82297 Figure 3877: DNA325816, XM_167906. Figure 3912: DNA274058, NM_016119, gen.XM_167906 gen.NM_016119 Figure 3878A-B: DNA325817, NM 014778. Figure 3913: PRO61999 gen.NM_014778 Figure 3914: DNA325834, NM .032565, Figure 3879: PRO82283 gen.NM_032565 Figure 3880: DNA325818, XM_169414. Figure 3915: PRO11982 gen.XM_169414 Figure 3916: DNA325835, XM_085044, Figure 3881A-B: DNA325819, NM_006646, gen.XM_085044 gen.NM.006646 Figure 3917: DNA325836, XM_165639. Figure 3882: PRO82285 gen.XM_165639 Figure 3883: DNA325820, XM_167892. Figure 3918: DNA325837, XM_018399, gen.XM_167892 gen.XM_018399 Figure 3884: DNA325821, NM .015932, Figure 3919: PRO82300 gen.NM_015932 Figure 3920: DNA325838, XM_058977, Figure 3885: PRO82287 gen.XM_058977 Figure 3886: DNA325822, XM_166273, Figure 3921: DNA325839, XM_015840. gen.XM_166273 gen.XM_015840 Figure 3887: DNA304669, NM_002128, Figure 3922: PRO82302 gen.NM_002128 Figure 3923: DNA325840, XM_007199. Figure 3888: PRO71096 gen.XM_007199 Figure 3889: DNA325823, NM_014887, Figure 3924: DNA325841, XM_016351. gen.NM_014887 gen.XM_016351 Figure 3890: PRO82289 Figure 3925: DNA325842, XM_041209. Figure 3891: DNA325824, NM _002915, gen.XM_041209

gen.XM_058611

Figure 3926: DNA325843, XM_058611,

gen.NM_002915

Figure 3892: PRO82290

Figure 3927: PRO82305 Figure 3961: PRO82325 Figure 3928: DNA325844, XM_041473. Figure 3962: DNA210180, NM_005132, gen.XM_041473 gen NM 005132 Figure 3929: PRO82306 Figure 3963: PRO33717 Figure 3930: DNA325845, XM_032443, Figure 3964: DNA325867, XM_033337. gen.XM_032443 gen XM 033337 Figure 3931: DNA325847, XM 048957. Figure 3965: PRO82326 gen.XM_048957 Figure 3966; DNA325868, XM_096772, Figure 3932; DNA325848, XM .015842. gen.XM_096772 gen.XM_015842 Figure 3967; DNA325869, XM _007293. Figure 3933: DNA325849, XM .084997. gen.XM_007293 gen.XM_084997 Figure 3968: DNA325870, XM_007288. Figure 3934: PRO82311 gen.XM_007288 Figure 3935: DNA325850, NM_024089. Figure 3969A-B: DNA325871, XM_033391. gen.NM_024089 gen.XM_033391 Figure 3936: PRO82312 Figure 3970: PRO82329 Figure 3937A-B: DNA325851, XM_049904. Figure 3971: DNA325872, NM .017815. gen.XM_049904 gen.NM_017815 Figure 3938: DNA325852, NM_024537. Figure 3972: PRO82330 gen.NM_024537 Figure 3973: DNA325873, NM_006109. Figure 3939: PRO82314 gen.NM_006109 Figure 3940: DNA325853, NM_023011. Figure 3974: PRO82331 gen.NM_023011 Figure 3975; DNA325874, XM_033435. Figure 3941: PRO82315 gen.XM_033435 Figure 3942: DNA325854, NM_080687. Figure 3976: DNA225865, NM 004995. gen.NM_080687 gen.NM_004995 Figure 3943: PRO82316 Figure 3977: PRO36328 Figure 3944: DNA325855, XM_041484, Figure 3978: DNA325875, XM_058647. gen.XM_041484 gen.XM_058647 Figure 3945: PRO82317 Figure 3979: PRO82333 Figure 3946A-B: DNA325856, XM_113752. Figure 3980: DNA325876, XM_033445. gen.XM_113752 gen.XM_033445 Figure 3947: PRO82318 Figure 3981: DNA325877, NM .005015. Figure 3948: DNA325857, XM_115215. gen.NM_005015 gen.XM_115215 Figure 3982: PRO82334 Figure 3983: DNA325878, XM_012377, Figure 3949: DNA325858, XM_046651. gen.XM_046651 gen.XM_012377 Figure 3950: DNA325859, XM_046648, Figure 3984: DNA227321, NM_001344, gen.XM_046648 gen.NM_001344 Figure 3951: DNA325860, XM _046642, Figure 3985: PRO37784 gen.XM_046642 Figure 3986: DNA325879, XM_058646. Figure 3952: PRO10404 gen.XM_058646 Figure 3953: DNA325861, XM_017914. Figure 3987: DNA325880, XM _085106, gen.XM_017914 gen.XM_085106 Figure 3954: PRO82321 Figure 3988: DNA325881, NM_019852. Figure 3955: DNA325862, XM_085166. gen.NM_019852 gen.XM_085166 Figure 3989: PRO82338 Figure 3956: PRO82322 Figure 3990: DNA325882, XM_012376. Figure 3957: DNA325863, XM .007316, gen.XM_012376 gen.XM_007316 Figure 3991: DNA325883, XM -033553, Figure 3958: DNA325864, XM_007315, gen.XM_033553 gen.XM_007315 Figure 3992; DNA226105, NM_002934. Figure 3959: DNA325865, XM_033251. gen.NM_002934 gen,XM_033251 Figure 3993: PRO36568 Figure 3960; DNA325866, NM_024658. Figure 3994: DNA325884, XM_033595,

gen.XM_033595

gen.NM_024658

Figure 4031: DNA325905, XM _085125, Figure 3995: PRO2871 Figure 3996: DNA325885, XM_007491. gen.XM_085125 gen.XM 007491 Figure 4032: DNA325906, XM_031025, Figure 3997: DNA325886, NM _001641. gen.XM_031025 gen.NM_001641 Figure 4033: DNA325907, XM_085066, Figure 3998; PRO82342 gen.XM_085066 Figure 3999; DNA325887, NM_080648, Figure 4034: DNA325908, XM_096744, gen.NM_080648 gen.XM_096744 Figure 4000: PRO82343 Figure 4035: DNA325909, NM_016445. Figure 4001: DNA325888, NM_080649, gen.NM_016445 gen.NM 080649 Figure 4036: PRO82364 Figure 4002: PRO82344 Figure 4037: DNA325910, NM_016026. Figure 4003: DNA325889, NM_017807, gen.NM_016026 Figure 4038: PRO82365 gen.NM_017807 Figure 4004: PRO82345 Figure 4039: DNA325911, XM_031074, Figure 4005A-C: DNA325890, XM .007488, gen.XM_031074 Figure 4040: DNA325912, NM_001102. gen.XM_007488 Figure 4006: DNA325891, NM_021178, gen.NM_001102 Figure 4041: PRO82367 gen.NM_021178 Figure 4007: PRO82347 Figure 4042: DNA225649, NM_022137, gen.NM_022137 Figure 4008: DNA325892, XM_041235, Figure 4043: PRO36112 gen.XM_041235 Figure 4009: PRO82348 Figure 4044: DNA325913, XM_085065. Figure 4010: DNA 325893, NM _002028, gen.XM_085065 gen.NM_002028 Figure 4045: DNA325914, XM_007441, Figure 4011: PRO82349 gen.XM_007441 Figure 4012: DNA325894, NM .002083, Figure 4046: DNA325915, NM_006821, gen.NM .006821 gen.NM_002083 Figure 4047: PRO82369 Figure 4013: PRO82350 Figure 4014A-B: DNA325895, XM_085127, Figure 4048: DNA325916, NM_006432, gen.NM_006432 gen.XM_085127 Figure 4049: PRO2066 Figure 4015: PRO82351 Figure 4016A-B: DNA325896, NM_001530, Figure 4050A-B: DNA325917, XM_085151. gen.XM_085151 gen.NM_001530 Figure 4017: PRO82352 Figure 4051: PRO82370 Figure 4052: DNA325918, NM_002632, Figure 4018: DNA325897, XM_058210, gen.XM_058210 gen.NM_002632 Figure 4053: PRO82371 Figure 4019: DNA325898, XM_085141. Figure 4054: DNA325919, XM_085162, gen.XM_085141 Figure 4020: DNA325899, NM_021728, gen.XM_085162 Figure 4055: DNA325920, NM_012111, gen.NM_021728 Figure 4021: PRO82355 gen.NM_012111 Figure 4022: DNA325900, NM_002306. Figure 4056: PRO82373 Figure 4057: DNA325921, NM_024824, gen.NM_002306 Figure 4023: PRO82356 gen.NM_024824 Figure 4024: DNA325901, XM_007328, Figure 4058: PRO82374 gen.XM_007328 Figure 4059: DNA269498, NM_002802, Figure 4025A-B: DNA325902, XM_051712, gen.NM_002802 gen.XM_051712 Figure 4060: PRO57917 Figure 4061: DNA325922, XM_058677, Figure 4026: PRO82357 Figure 4027: DNA325903, XM .007324, gen.XM_058677 Figure 4062: PRO82375 gen.XM_007324 Figure 4063: DNA325923, NM_006888. Figure 4028: PRO82358 Figure 4029: DNA325904, NM_002863, gen.NM_006888 Figure 4064: PRO4904 gen.NM_002863 Figure 4030: PRO82359 Figure 4065: DNA325924, NM_001275,

PCT/US2003/028547

gen.NM_001275 Figure 4066: PRO2054 Figure 4067: DNA325925, XM_029288, gen.XM_029288 Figure 4068A-B: DNA325926, XM_016487, gen.XM_016487 Figure 4069: DNA325927, NM_020414, gen.NM_020414 Figure 4070: PRO62099 Figure 4071: DNA325928, XM_016486, gen.XM_016486 Figure 4072: DNA325929, XM_007483, gen.XM_007483 Figure 4073: DNA325930, XM_028358, gen.XM_028358 Figure 4074: DNA325931, XM_028347, gen.XM_028347 Figure 4075: DNA325932, XM_028322, gen.XM_028322 Figure 4076: PRO82381 Figure 4077: DNA325933, XM_056317, gen.XM_056317 Figure 4078: PRO82382 Figure 4079: DNA151893, NM_021966, gen.NM_021966 Figure 4080: PRO12916 Figure 4081: DNA325934, XM_007272, gen.XM_007272 Figure 4082; DNA325935, XM .090914, gen.XM_090914 Figure 4083: PRO82383 Figure 4084: DNA325936, NM_022747, gen.NM_022747 Figure 4085: PRO82384 Figure 4086: DNA325937, XM _041014, gen.XM_041014 Figure 4087: PRO60575 Figure 4088: DNA325938, NM _003836, gen.NM_003836 Figure 4089: PRO82385 Figure 4090A-B: DNA325939, XM .040952, gen.XM_040952 Figure 4091: DNA325940, XM_058618, gen.XM_058618 Figure 4092: DNA325941, NM .005348, gen.NM _005348 Figure 4093: PRO82388 Figure 4094: DNA325942, XM .040942, gen.XM_040942 Figure 4095: DNA226324, NM .014226, gen.NM_014226 Figure 4096: PRO36787 Figure 4097A-B: DNA325943, XM_007254, gen.XM_007254

Figure 4098A-B: DNA325944, NM .001969,

gen.NM_001969

gen.XM_040898 Figure 4101: DNA325946, NM_005432, gen.NM_005432 Figure 4102: PRO60070 Figure 4103A-B: DNA325947, XM_050278. gen.XM_050278 Figure 4104: PRO82393 Figure 4105: DNA325948, XM_113759, gen.XM_113759 Figure 4106: DNA325949, NM .006427, gen.NM_006427 Figure 4107: PRO82395 Figure 4108: DNA325950, NM_021709, gen.NM_021709 Figure 4109: PRO82396 Figure 4110: DNA103509, NM .005163, gen.NM_005163 Figure 4111: PRO4836 Figure 4112: DNA325951, NM_017955, gen.NM_017955 Figure 4113: PRO82397 Figure 4114: DNA325952, XM_088588, gen.XM_088588 Figure 4115: DNA325953, XM_060012, gen.XM_060012 Figure 4116: DNA325954, XM_034953, gen.XM_034953 Figure 4117: PRO82400 Figure 4118: DNA325955, XM_058636. gen.XM_058636 Figure 4119: DNA325956, XM_035014, gen.XM_035014 Figure 4120: DNA325957, XM_088587, gen.XM_088587 Figure 4121: DNA325958, XM_088589, gen.XM_088589 Figure 4122: DNA325959, XM_071801, gen.XM_071801 Figure 4123: DNA325960, XM_018054, gen.XM_018054 Figure 4124: DNA325961, XM_091108, gen.XM_091108 Figure 4125A-B: DNA325962, XM_039225, gen.XM_039225 Figure 4126: PRO82408 Figure 4127: DNA325963, XM_165921, gen.XM_165921 Figure 4128: PRO82409 Figure 4129: DNA325964, XM_007751, gen.XM_007751 Figure 4130: DNA325965, XM .085203, gen.XM_085203 Figure 4131: PRO82411 Figure 4132: DNA325966, XM_085204,

Figure 4099: PRO82391

Figure 4100: DNA325945, XM_040898,

Figure 4166: PRO82429

PCT/US2003/028547

Figure 4167A-B: DNA325986, XM_007531. gen.XM_085204 Figure 4133: DNA325967, XM_012398. gen.XM_007531 Figure 4168: DNA 325987, NM_014444. gen.XM_012398 Figure 4134A-B: DNA325968, XM_036727, gen_NM_014444 Figure 4169: PRO82431 gen.XM_036727 Figure 4135; DNA325969, XM_017240, Figure 4170A-B: DNA227206, NM_005657, gen.XM_017240 gen.NM_005657 Figure 4171: PRO37669 Figure 4136: DNA325970, NM_020149, Figure 4172: DNA325988, NM _020990. gen.NM_020149 gen.NM_020990 Figure 4137: PRO82415 Figure 4173: PRO82432 Figure 4138A-B: DNA325971, XM_031617, Figure 4174: DNA325989, NM .005313, gen.XM_031617 Figure 4139A-B: DNA325972, NM_001211. gen.NM_005313 Figure 4175: PRO2732 gen.NM_001211 Figure 4176: DNA325990, NM_005770, Figure 4140: PRO82417 Figure 4141A-B: DNA151831, NM .004573. gen.NM_005770 Figure 4177: PRO82433 gen.NM_004573 Figure 4178: DNA325991, NM _004048. Figure 4142: PRO12198 Figure 4143: DNA325973, NM_130468, gen.NM_004048 Figure 4179: PRO4379 gen.NM_130468 Figure 4180: DNA325992, XM _032403. Figure 4144: PRO82418 Figure 4145: DNA325974, XM_031554. gen.XM_032403 Figure 4181: PRO82434 gen.XM_031554 Figure 4146: PRO82419 Figure 4182: DNA219233, NM .014335, Figure 4147: DNA325975, XM_031515, gen.NM_014335 Figure 4183: PRO34557 gen.XM_031515 Figure 4184A-C: DNA325993, XM .034890, Figure 4148: DNA325976, NM_024111, gen.XM_034890 gen.NM_024111 Figure 4149: PRO82421 Figure 4185: PRO82435 Figure 4186; DNA325994, XM_058684, Figure 4150: DNA325977, NM .032196. gen.XM_058684 gen.NM_032196 Figure 4187: DNA325995, NM _003104, Figure 4151: PRO82422 gen.NM_003104 Figure 4152: DNA325978, NM_016359, Figure 4188: PRO82437 gen.NM_016359 Figure 4189: DNA325996, XM_007651, Figure 4153: PRO82423 Figure 4154: DNA325979, NM_018454, gen.XM_007651 Figure 4190: PRO82438 gen.NM_018454 Figure 4191: DNA325997, XM_090991, Figure 4155: PRO82424 gen.XM_090991 Figure 4156A-B: DNA325980, XM_007545, Figure 4192: PRO82439 gen.XM_007545 Figure 4193: DNA325998, NM_016304, Figure 4157: DNA325981, XM_091159, gen.XM_091159 gen.NM_016304 Figure 4194: PRO82440 Figure 4158: PRO82425 Figure 4195: DNA325999, NM_017610, Figure 4159: DNA325982, XM_031718, gen.NM_017610 gen.XM_031718 Figure 4160: DNA325983, XM_085307, Figure 4196: PRO82441 Figure 4197: DNA326000, NM_004701. gen.XM_085307 Figure 4161: DNA227559, NM_000070, gen.NM_004701 Figure 4198: PRO82442 gen.NM_000070 Figure 4199A-B: DNA326001, XM_012418, Figure 4162: PRO38022 gen.XM_012418 Figure 4163A-B: DNA325984, XM_113823, Figure 4200: DNA326002, XM_039702, gen.XM_113823 Figure 4164; PRO82428 gen.XM_039702 Figure 4165: DNA325985, XM .016713, Figure 4201: PRO82444 Figure 4202; DNA326003, XM_113266, gen.XM_016713

gen.XM_113266

PCT/US2003/028547

Figure 4203: DNA326004, NM_001218, Figure 4238: PRO82460 gen.NM_001218 Figure 4239: DNA326022, XM_015366. Figure 4204: PRO54594 gen XM 015366 Figure 4205: DNA326005, NM_015920. Figure 4240: PRO82461 gen.NM_015920 Figure 4241: DNA326023, XM .096060. Figure 4206: PRO82446 gen.XM_096060 Figure 4207: DNA326006, XM, 113268. Figure 4242: DNA287331, NM, 002654 gen.XM_113268 gen.NM_002654 Figure 4208: DNA255340, NM .017684. Figure 4243: PRO69595 gen.NM_017684 Figure 4244: DNA326024, XM _037778. Figure 4209: PRO50409 gen.XM_037778 Figure 4210: DNA326007, NM_002537. Figure 4245: DNA326025, XM 096842 gen.NM_002537 gen.XM_096842 Figure 4211: DNA326008, XM_085283. Figure 4246; DNA326026, NM .022369. gen.XM_085283 gen.NM_022369 Figure 4212: PRO82448 Figure 4247: PRO82465 Figure 4213: DNA326009, XM_016985. Figure 4248: DNA326027, NM_032907, gen.XM_016985 gen.NM_032907 Figure 4214; DNA234442, NM_014736. Figure 4249: PRO82466 gen.NM_014736 Figure 4250: DNA326028, XM_058699, Figure 4215; PRO38852 gen.XM_058699 Figure 4216: DNA326010, NM_022048. Figure 4251: DNA326029, XM_118637, gen.NM_022048 gen.XM_118637 Figure 4217: PRO82450 Figure 4252: DNA326030, XM_053585. Figure 4218: DNA326011, NM_000942. gen.XM_053585 gen.NM_000942 Figure 4253; PRO82469 Figure 4219: PRO2720 Figure 4254: DNA326031, XM_085239. Figure 4220: DNA326012, XM_050964. gen.XM_085239 gen.XM_050964 Figure 4255: PRO82470 Figure 4221: DNA326013, XM_007623, Figure 4256: DNA326032, XM _034897. gen.XM_007623 gen.XM_034897 Figure 4222A-B: DNA326014, NM_133375. Figure 4257A-B: DNA326033, XM_057020. gen.NM_133375 gen.XM_057020 Figure 4223: PRO82453 Figure 4258: PRO82472 Figure 4224; DNA226646, NM_017882. Figure 4259: DNA326034, NM_000743, gen.NM_017882 gen.NM_000743 Figure 4225: PRO37109 Figure 4260: PRO61219 Figure 4226: DNA326015, NM_015322, Figure 4261: DNA326035, NM .002789, gen.NM_015322 gen.NM_002789 Figure 4227: PRO82454 Figure 4262: PRO60499 Figure 4228: DNA326016, NM_001003. Figure 4263: DNA326036, XM_091100. gen.NM_001003 gen.XM_091100 Figure 4229: PRO82455 Figure 4264: PRO82473 Figure 4230A-B: DNA326017, XM_051463, Figure 4265: DNA255370, NM_012170, gen.XM_051463 gen.NM_012170 Figure 4231: PRO82456 Figure 4266: PRO50438 Figure 4232: DNA326018, NM_018357, Figure 4267: DNA273014, NM_000126. gen.NM_018357 gen.NM_000126 Figure 4233: PRO82457 Figure 4268: PRO61085 Figure 4234: DNA326019, XM_063639, Figure 4269: DNA326037, XM_044565, gen.XM .063639 gen.XM_044565 Figure 4235: PRO82458 Figure 4270: DNA326038, NM_025234. Figure 4236: DNA326020, XM_085249, gen.NM_025234 gen.XM_085249 Figure 4271: PRO82475 Figure 4237: DNA326021, XM_016076. Figure 4272: DNA326039, XM_044569, gen.XM_016076

gen.XM_044569

PCT/US2003/028547

Figure 4307A-B: DNA326060, XM_044533. Figure 4273: DNA326040, NM_005724. gen.XM_044533 gen.NM_005724 Figure 4274: PRO730 Figure 4308: PRO82495 Figure 4275: DNA326041, XM_049354, Figure 4309A-C: DNA326061, XM_054900. gen.XM_054900 gen.XM_049354 Figure 4310: DNA326062, NM .032162. Figure 4276: PRO82477 Figure 4277: DNA326042, NM_007364, gen.NM_032162 gen.NM_007364 Figure 4311A-B: DNA326063, XM_015835, Figure 4278: DNA326043, XM_044593, gen.XM..015835 Figure 4312: DNA326064, NM .018668. gen.XM_044593 Figure 4279: DNA 326044, NM .006791. gen NM 018668 Figure 4313: PRO82499 gen.NM_006791 Figure 4280: PRO82479 Figure 4314: DNA326065, XM_085262, Figure 4281: DNA326045, XM_060042, gen XM 085262 Figure 4315: DNA326066, NM_033544, gen.XM_060042 gen.NM_033544 Figure 4282: DNA326046, XM_085215, gen.XM_085215 Figure 4316: PRO82501 Figure 4283: DNA326047, NM_001021, Figure 4317: DNA326067, XM .049372, gen.NM_001021 gen.XM_049372 Figure 4284: PRO82482 Figure 4318: PRO82502 Figure 4319: DNA326068, XM_017971, Figure 4285: DNA326048, XM_031404, gen.XM_031404 gen.XM_017971 Figure 4286: DNA326049, XM .096844. Figure 4320: DNA275181, NM_003090. gen.XM_096844 gen.NM_003090 Figure 4287: DNA326050, XM_045681. Figure 4321: PRO62882 gen.XM_045681 Figure 4322: DNA326069, XM_012462, Figure 4288: PRO82485 gen.XM_012462 Figure 4323A-B: DNA326070, XM_085525, Figure 4289: DNA326051, XM_085280, gen.XM_085280 gen.XM_085525 Figure 4290: DNA326052, NM_022839, Figure 4324: PRO82505 Figure 4325: DNA326071, XM_165923, gen.NM_022839 Figure 4291: PRO82487 gen.XM_165923 Figure 4292: DNA326053, XM_031354, Figure 4326: DNA326072, XM_113836, gen.XM_031354 gen.XM_113836 Figure 4293: DNA326054, NM_002168, Figure 4327: DNA326073, NM_017668, gen.NM_002168 gen.NM_017668 Figure 4294: PRO82489 Figure 4328: PRO82508 Figure 4295: DNA326055, XM_031292, Figure 4329: DNA326074, XM_027309, gen.XM_031292 gen.XM_027309 Figure 4296: DNA326056, NM _022566, Figure 4330: PRO82509 Figure 4331: DNA326075, XM_018432, gen.NM_022566 Figure 4297: PRO82491 gen.XM_018432 Figure 4298A-B: DNA326057, XM _051860. Figure 4332: PRO82510 gen.XM_051860 Figure 4333: DNA326076, XM_115352. Figure 4299: PRO82492 gen.XM_115352 Figure 4300: DNA275144, NM_000137. Figure 4334: DNA326077, XM .027365. gen.NM_000137 gen.XM_027365 Figure 4301: PRO62852 Figure 4335: DNA326078, NM_016641. Figure 4302: DNA326058, NM_016645, gen.NM_016641 gen.NM_016645 Figure 4336: PRO38464 Figure 4303: PRO82493 Figure 4337: DNA326079, XM _058796, Figure 4304: DNA326059, XM_044523, gen.XM_058796 gen.XM_044523 Figure 4338: DNA326080, XM_017984, Figure 4305: DNA150485, NM_006384. gen.XM_017984 gen.NM_006384 Figure 4339: PRO82513 Figure 4306; PRO12774 Figure 4340: DNA326081, NM_020677.

gen.NM_020677 Figure 4377: PRO82524 Figure 4341: PRO82514 Figure 4378: DNA326097, NM_023936. Figure 4342: DNA 326082, XM 036680 gen NM 023936 gen.XM 036680 Figure 4379: PRO82525 Figure 4343: PRO37961 Figure 4380: DNA326098, XM 034590. Figure 4344A-B; DNA326083, XM_048119. gen.XM_034590 gen.XM_048119 Figure 4381: PRO82526 Figure 4345; PRO82515 Figure 4382; DNA326099, NM 002952 Figure 4346: DNA326084, NM_024589. gen.NM_002952 gen.NM_024589 Figure 4383: PRO82527 Figure 4347: PRO82516 Figure 4384: DNA326100, NM 006453 Figure 4348: DNA326085, XM 050534. gen.NM_006453 gen.XM_050534 Figure 4385: PRO82528 Figure 4349: PRO82517 Figure 4386: DNA326101, NM_014353, Figure 4350; DNA326086, NM_024571. gen.NM_014353 gen.NM_024571 Figure 4387: PRO82529 Figure 4351: PRO82518 Figure 4388: DNA326102, NM_032271. Figure 4352: DNA326087, XM_027558. gen.NM_032271 gen.XM_027558 Figure 4389: PRO82530 Figure 4353: DNA326088, XM _008126, Figure 4390: DNA326103, XM_028848, gen.XM_008126 gen.XM_028848 Figure 4354: DNA326089, NM_000517. Figure 4391: PRO82531 gen.NM_000517 Figure 4392: DNA326104, NM_006711, Figure 4355: PRO3629 gen.NM_006711 Figure 4356: DNA326090, NM _000558. Figure 4393: PRO82532 gen.NM_000558 Figure 4394: DNA326105, NM_080594. Figure 4357: PRO3629 gen.NM_080594 Figure 4358: DNA326091, NM_018032. Figure 4395: PRO82533 gen.NM_018032 Figure 4396: DNA326106, NM_024339, Figure 4359: PRO38311 gen.NM_024339 Figure 4360: DNA273839, NM _006428, Figure 4397: PRO82534 Figure 4398: DNA326107, NM_016639, gen.NM_006428 Figure 4361: PRO61799 gen.NM_016639 Figure 4362A-B: DNA256844, NM _005632, Figure 4399: PRO12683 gen.NM_005632 Figure 4400: DNA326108, NM_021195. Figure 4363: PRO51775 gen.NM_021195 Figure 4364: DNA326092, XM_083939, Figure 4401: PRO82535 gen.XM_083939 Figure 4402: DNA326109, NM_004203. Figure 4365: PRO82521 gen.NM _004203 Figure 4366: DNA326093, NM_058192, Figure 4403: PRO82536 gen.NM_058192 Figure 4404: DNA326110, XM_058784. Figure 4367: PRO82522 gen.XM_058784 Figure 4368: DNA326094, XM_027412, Figure 4405: PRO82537 gen.XM_027412 Figure 4406: DNA326111, NM_024507, Figure 4369: PRO82523 gen.NM_024507 Figure 4370: DNA256886, NM_014587, Figure 4407: PRO82538 Figure 4408: DNA326112, NM_006799, gen.NM_014587 Figure 4371: PRO51815 gen.NM_006799 Figure 4372A-B: DNA326095, NM _001287. Figure 4409: PRO303 gen.NM_001287 Figure 4410A-C: DNA326113, XM_036528, Figure 4373: PRO38480 gen.XM_036528 Figure 4374: DNA254781, NM_016111, Figure 4411: DNA326114, NM_025108. gen.NM 016111 gen.NM_025108 Figure 4375: PRO49879 Figure 4412: PRO82540 Figure 4376: DNA326096, XM_034586, Figure 4413A-C: DNA326115, XM_165411,

gen.XM_165411

gen.XM_034586

Figure 4446; DNA289522, NM _005003,

Figure 4448: DNA326135, XM _085340,

gen.NM_005003

Figure 4447: PRO70276

WO 2004/030615

PCT/US2003/028547

Figure 4414: DNA326116, NM_016292, gen XM 085340 Figure 4449; DNA326136, NM _003752. gen.NM_016292 Figure 4415: PRO82542 gen.NM_003752 Figure 4450: PRO60325 Figure 4416: DNA326117, NM .002484, Figure 4451: DNA326137, NM_012248. gen.NM_002484 Figure 4417: PRO82543 gen.NM_012248 Figure 4418: DNA326118, XM_113845. Figure 4452: PRO82560 Figure 4453A-B: DNA326138, XM_046035. gen.XM_113845 Figure 4419; PRO82544 gen, XM_046035 Figure 4420: DNA326119, XM_113843, Figure 4454: DNA326139, NM_024671, gen.NM_024671 gen.XM_113843 Figure 4455: PRO82562 Figure 4421: DNA97293, NM .. 003366, Figure 4456: DNA326140, NM_033410, gen.NM_003366 gen.NM_033410 Figure 4422: PRO3640 Figure 4457: PRO82563 Figure 4423: DNA326120, NM_006110, Figure 4458: DNA326141, NM .024031, gen.NM_006110 gen.NM_024031 Figure 4424: PRO82546 Figure 4459: PRO82564 Figure 4425: DNA326121, XM _085445, Figure 4460A-B: DNA326142, XM_034375, gen.XM_085445 Figure 4426: DNA326122, XM_113876, gen.XM_034375 gen.XM_113876 Figure 4461: DNA326143, XM_012569, Figure 4427 A-B: DNA326123, XM_055195, gen.XM_012569 Figure 4462: DNA326144, XM .050194, gen.XM_055195 gen.XM_050194 Figure 4428: PRO82548 Figure 4463: DNA326145, XM_008106, Figure 4429: DNA326124, XM_113291, gen.XM_008106 gen.XM_113291 Figure 4464: PRO82567 Figure 4430A-B: DNA326125, XM_007988, Figure 4465: DNA326146, NM_004960, gen.XM_007988 gen.NM_004960 Figure 4431: DNA326126, XM_113874, Figure 4466: PRO82568 gen.XM_113874 Figure 4467: DNA326147, XM_113293, Figure 4432: DNA326127, XM _102377, gen.XM_102377 gen.XM_113293 Figure 4468: DNA326148, NM_022744, Figure 4433: PRO82551 gen.NM_022744 Figure 4434; DNA326128, XM .. 086278, Figure 4469: PRO82570 gen.XM_086278 Figure 4470: DNA326149, NM_024048, Figure 4435: DNA326129, XM_085452, gen.XM_085452 gen.NM_024048 Figure 4436: DNA326130, NM_018054, Figure 4471: PRO82571 Figure 4472: DNA326150, XM .018088, gen.NM_018054 Figure 4437: PRO82554 gen.XM_018088 Figure 4473: PRO82572 Figure 4438A-B: DNA326131, XM_056260, Figure 4474: DNA326151, XM_007963, gen.XM_056260 gen.XM_007963 Figure 4439: PRO82555 Figure 4440; DNA326132, NM_032626, Figure 4475: PRO82573 gen.NM_032626 Figure 4476: DNA274002, NM_014321, Figure 4441: PRO82556 gen.NM_014321 Figure 4477: PRO61948 Figure 4442: DNA326133, NM _005030, Figure 4478: DNA326152, XM_015700, gen.NM_005030 Figure 4443: PRO82557 gen.XM_015700 Figure 4444: DNA326134, NM .032486, Figure 4479: DNA326153, XM_051219, gen.NM_032486 gen.XM_051219 Figure 4445: PRO82558 Figure 4480: DNA326154, XM_085393,

gen.XM_085393 Figure 4481: PRO82576

gen.XM_085395

Figure 4482: DNA326155, XM_085395,

PCT/US2003/028547

Figure 4483: DNA326156, XM _091270, Figure 4518: DNA326174, NM _002720, gen.XM_091270 gen.NM_002720 Figure 4519: PRO42208 Figure 4484: DNA326157, XM_165656. gen.XM_165656 Figure 4520: DNA287355, NM _000034, Figure 4485: DNA326158, NM_032330, gen.NM. 000034 Figure 4521: PRO69617 gen.NM_032330 Figure 4486: PRO82579 Figure 4522: DNA326175, NM_031478, Figure 4487; DNA254532, NM_001043. gen.NM_031478 gen.NM_001043 Figure 4523: PRO82593 Figure 4524: DNA326176, XM_085434. Figure 4488: PRO49639 Figure 4489: DNA326159, XM 165658. gen.XM_085434 Figure 4525; PRO82594 gen.XM_165658 Figure 4490: DNA326160, XM_166285, Figure 4526: DNA326177, XM_058116, gen.XM_166285 gen.XM_058116 Figure 4491: DNA326161, XM_166282, Figure 4527: DNA326178, XM_165649, gen.XM_165649 gen.XM_166282 Figure 4528: DNA326179, XM_165647, Figure 4492: PRO82582 Figure 4493: DNA326162, XM_165657, gen.XM_165647 gen.XM_165657 Figure 4529: PRO82597 Figure 4530: DNA194805, NM_014685, Figure 4494: PRO82583 Figure 4495: DNA326163, NM_032038, gen.NM_014685 Figure 4531: PRO24075 gen.NM_032038 Figure 4532: DNA326180, XM_166277, Figure 4496: PRO82584 Figure 4497: DNA326164, XM _008065, gen.XM_166277 Figure 4533: PRO82598 gen.XM_008065 Figure 4498: DNA326165, NM_017458, Figure 4534: DNA326181, XM_165645, gen.NM_017458 gen.XM_165645 Figure 4499: PRO82585 Figure 4535: DNA326182, NM_018110. gen.NM_018110 Figure 4500: DNA326166, NM_005115. gen.NM_005115 Figure 4536: PRO82599 Figure 4501: PRO82586 Figure 4537: DNA326183, XM_165648, Figure 4502: DNA326167, NM_024516, gen.XM_165648 gen.NM_024516 Figure 4538; DNA326184, XM_167453. Figure 4503: PRO82587 gen.XM_167453 Figure 4539: DNA326185, NM_022770, Figure 4504: DNA326168, XM_113299, gen.XM_113299 gen.NM_022770 Figure 4505: DNA326169, XM_055771, Figure 4540: PRO82602 Figure 4541: DNA326186, XM _167456, gen.XM_055771 Figure 4506: PRO82589 gen.XM_167456 Figure 4507: DNA271171, NM _007317, Figure 4542: PRO82603 Figure 4543: DNA326187, XM .. 058745, gen.NM_007317 Figure 4508: PRO59491 gen.XM_058745 Figure 4544: DNA326188, XM_091420, Figure 4509: DNA326170, XM _008064, gen_XM_008064 gen.XM_091420 Figure 4510: PRO82590 Figure 4545: DNA326189, NM_004691. gen.NM_004691 Figure 4511: DNA326171, NM .003123, Figure 4546: PRO82606 gen.NM_003123 Figure 4547: DNA326190, NM_000196, Figure 4512: PRO2355 Figure 4513: DNA326172, XM_085442, gen.NM_000196 Figure 4548: PRO82607 gen.XM_085442 Figure 4549A-B: DNA326191, NM_004360. Figure 4514: DNA326173, XM_055132, gen.XM_055132 gen.NM_004360 Figure 4515: PRO82592 Figure 4550: PRO2672 Figure 4551: DNA326192, XM_039306, Figure 4516: DNA274180, NM _007074, gen.XM_039306 gen.NM_007074 Figure 4552: PRO82608 Figure 4517: PRO62110

PCT/US2003/028547

gen.NM_018124 Figure 4553: DNA326193, NM_030579, Figure 4589: PRO82623 gen.NM_030579 Figure 4590: DNA326210, XM .091399, Figure 4554: PRO82609 gen.XM_091399 Figure 4555: DNA326194, XM _012487, Figure 4591: PRO82624 gen.XM_012487 Figure 4592A-B: DNA326211, NM_014003, Figure 4556: DNA326195, NM 014062, gen.NM_014003 gen.NM_014062 Figure 4593: PRO82625 Figure 4557: PRO82611 Figure 4594: DNA326212, NM_017853, Figure 4558: DNA326196, XM_085471, gen.NM_017853 gen.XM_085471 Figure 4595: PRO82626 Figure 4559: PRO82612 Figure 4596: DNA326213, XM_042621, Figure 4560: DNA326197, XM_113855, gen.XM_113855 gen.XM_042621 Figure 4597: DNA326214, XM, 064091, Figure 4561: DNA326198, XM_085475, gen.XM_085475 gen.XM_064091 Figure 4562: DNA326199, XM_028151. Figure 4598: PRO82627 Figure 4599: DNA326215, XM_085981, gen.XM_028151 gen.XM_085981 Figure 4563: PRO82615 Figure 4564: DNA275408, NM .001605. Figure 4600A-B: DNA326216, XM_051778, gen.XM_051778 gen.NM_001605 Figure 4565: PRO63068 Figure 4601: PRO82629 Figure 4566: DNA326200, NM .007242. Figure 4602: DNA326217, NM_004483, gen.NM_004483 gen.NM_007242 Figure 4603: PRO82630 Figure 4567: PRO82616 Figure 4604: DNA326218, NM_020188, Figure 4568: DNA189703, NM_005548, gen.NM_020188 gen.NM_005548 Figure 4605: PRO82631 Figure 4569: PRO22637 Figure 4606: DNA326219, XM_033922, Figure 4570: DNA326201, XM_113853, gen.XM_113853 gen.XM_033922 Figure 4607: PRO82632 Figure 4571: DNA326202, NM_032140, Figure 4608: DNA326220, XM_113840, gen.NM_032140 gen.XM_113840 Figure 4572: PRO82618 Figure 4609: PRO82633 Figure 4573: DNA326203, NM_030819, Figure 4610: DNA326221, NM_016095. gen.NM_030819 Figure 4574: PRO82619 gen.NM_016095 Figure 4611: PRO82634 Figure 4575: DNA304704, NM_005796, gen.NM.005796 Figure 4612: DNA326222, NM _006067, gen_NM_006067 Figure 4576: PRO71130 Figure 4613: PRO50658 Figure 4577: DNA326204, XM_043047, gen.XM_043047 Figure 4614: DNA326223, NM_001861, Figure 4578: PRO49967 gen.NM_001861 Figure 4615: PRO82635 Figure 4579: DNA88261, NM .001907, Figure 4616A-B: DNA326224, XM_085483, gen.NM_001907 gen.XM_085483 Figure 4580: PRO2719 Figure 4617: DNA326225, NM_017566, Figure 4581 A-B: DNA 326205, NM .005072, gen.NM_017566 gen.NM_005072 Figure 4618: PRO82637 Figure 4582: PRO4814 Figure 4619: DNA326226, XM_057150, Figure 4583: DNA326206, XM_165410, gen.XM_165410 gen.XM_057150 Figure 4620: PRO82638 Figure 4584: DNA326207, NM_017803, Figure 4621: DNA326227, XM_058739, gen.NM_017803 Figure 4585: PRO82621 gen.XM_058739 Figure 4622: DNA326228, XM_085327, Figure 4586A-B: DNA326208, NM_004555, gen.NM_004555 gen.XM_085327 Figure 4623: PRO82640 Figure 4587: PRO82622 Figure 4588A-B: DNA326209, NM_018124, Figure 4624: DNA326229, XM_047436,

Figure 4657: PRO82659

Figure 4658: DNA326250, XM .008509.

PCT/US2003/028547

gen.XM_047436 gen.XM_008509 Figure 4625: PRO82641 Figure 4659: DNA326251, XM_085687. Figure 4626: DNA227234, NM_002386, gen.XM 085687 Figure 4660: PRO82661 gen.NM_002386 Figure 4627: PRO37697 Figure 4661: DNA326252, XM_027825, Figure 4628: DNA326230, NM_014972, gen.XM_027825 Figure 4662: PRO82662 gen.NM_014972 Figure 4629: PRO82642 Figure 4663: DNA326253, XM _053717, Figure 4630: DNA326231, XM_071873, gen.XM_053717 gen.XM_071873 Figure 4664: PRO82663 Figure 4631: PRO82643 Figure 4665: DNA326254, NM .005022. Figure 4632: DNA326232, XM_047525, gen.NM_005022 gen.XM_047525 Figure 4666: PRO62780 Figure 4633: DNA326233, NM_000977. Figure 4667A-B: DNA326255, XM _028398, gen.XM_028398 gen.NM_000977 Figure 4668: PRO82664 Figure 4634: PRO82645 Figure 4669: DNA326256, NM_000018, Figure 4635: DNA326234, NM_033251, gen.NM_033251 gen.NM _000018 Figure 4636: PRO82646 Figure 4670: PRO66265 Figure 4671: DNA326257, XM_008334, Figure 4637: DNA326235, XM_085408, gen.XM_085408 gen.XM_008334 Figure 4638: DNA326236, NM_004933. Figure 4672: DNA326258, NM _024297. gen.NM_004933 gen.NM_024297 Figure 4639: PRO2198 Figure 4673: PRO82665 Figure 4640: DNA326237, XM_113882, Figure 4674: DNA326259, XM _113324, gen.XM_113882 gen.XM_113324 Figure 4641: DNA326238, XM_010938. Figure 4675: DNA326260, XM_012676, gen.XM_012676 gen.XM_010938 Figure 4642: DNA326239, NM_006761, Figure 4676: PRO82667 gen.NM_006761 Figure 4677: DNA326261, XM_085691, gen.XM_085691 Figure 4643: PRO39530 Figure 4644A-B: DNA326240, XM_017096, Figure 4678: DNA326262, XM .028417, gen.XM_028417 gen.XM_017096 Figure 4645: DNA326241, XM_033714, Figure 4679: PRO82669 gen.XM_033714 Figure 4680A-B: DNA326263, XM_041964. Figure 4646A-B: DNA326242, XM _033689, gen.XM_041964 gen.XM_033689 Figure 4681: PRO82670 Figure 4647: DNA326243, NM_002615. Figure 4682: DNA326264, NM _019013. gen.NM_002615 gen.NM_019013 Figure 4648: DNA326244, XM_056082, Figure 4683: PRO82671 gen.XM_056082 Figure 4684: DNA326265, XM_008538, Figure 4649: PRO82654 gen.XM_008538 Figure 4650: DNA326245, XM 008557. Figure 4685: PRO82672 gen.XM_008557 Figure 4686: DNA326266, XM_008441, Figure 4651: DNA326246, XM_045183, gen.XM_008441 gen.XM_045183 Figure 4687: DNA97300, NM_001416. Figure 4652: PRO82656 gen.NM_001416 Figure 4653: DNA326247, XM_113901. Figure 4688: PRO3647 gen.XM_113901 Figure 4689: DNA326267, NM _004870. Figure 4654: DNA326248, NM_080822, gen.NM_004870 gen.NM_080822 Figure 4690: PRO82674 Figure 4655: PRO82658 Figure 4691: DNA326268, NM_006942, Figure 4656A-B: DNA326249, XM_029438, gen.NM_006942 gen.XM_029438 Figure 4692: PRO82675

gen.XM_008679

Figure 4693: DNA326269, XM_008679,

PCT/US2003/028547

Figure 4694: DNA326270, XM_008231. gen.XM_051763 Figure 4728: DNA290292, NM_018955. gen.XM 008231 Figure 4695: DNA326271, XM_113328. gen.NM_018955 gen.XM_113328 Figure 4729: PRO70449 Figure 4696: DNA326272, XM_113929, Figure 4730: DNA326289, XM_058900. gen.XM_058900 gen.XM_113929 Figure 4697: DNA326273, NM_001970, Figure 4731: PRO82691 Figure 4732: DNA326290, XM_039921. gen.NM 001970 Figure 4698: PRO82678 gen.XM_039921 Figure 4733: PRO82692 Figure 4699: DNA297388, NM_004217, Figure 4734: DNA326291, XM_012549. gen.NM 004217 Figure 4700: PRO70812 gen.XM_012549 Figure 4701: DNA326274, XM_165421, Figure 4735: DNA326292, XM_085548. gen.XM_165421 gen.XM_085548 Figure 4702: PRO82679 Figure 4736: PRO82694 Figure 4703: DNA326275, XM_113325, Figure 4737: DNA326293, NM_018019. gen.XM_113325 gen.NM_018019 Figure 4704: DNA326276, XM_165422, Figure 4738: PRO82695 Figure 4739: DNA326294, NM_138427, gen.XM_165422 Figure 4705: PRO49182 gen.NM_138427 Figure 4740: PRO82696 Figure 4706: DNA326277, XM_113931, gen.XM_113931 Figure 4741: DNA326295, XM_085545, Figure 4707: DNA326278, XM_036659, gen.XM_085545 gen.XM_036659 Figure 4742A-B: DNA227084, NM _004176, Figure 4708: DNA103401, NM_003876, gen.NM_004176 gen.NM_003876 Figure 4743: PRO37547 Figure 4709: PRO4729 Figure 4744: DNA326296, XM_012615. Figure 4710A-B: DNA326279, XM_042698, gen.XM_012615 Figure 4745: DNA326297, XM_085722. gen.XM 042698 Figure 4711: PRO82683 gen.XM_085722 Figure 4712A-B: DNA326280, XM_017234, Figure 4746: PRO82699 Figure 4747: DNA255414, NM _018242, gen.XM .017234 Figure 4713: DNA326281, XM_165418, gen.NM_018242 Figure 4748: PRO50481 gen.XM_165418 Figure 4714: DNA304715, NM_000987, Figure 4749: DNA326298, XM_045044, gen.NM_000987 gen.XM_045044 Figure 4715: PRO71141 Figure 4750: DNA326299, XM _008323, Figure 4716A-B: DNA326282, NM_004618, gen.XM_008323 gen.NM_004618 Figure 4751: DNA326300, XM _045535, Figure 4717: PRO62981 gen.XM_045535 Figure 4718: DNA326283, XM_085743, Figure 4752A-B: DNA326301, XM_045551, gen.XM_085743 gen.XM_045551 Figure 4719A-B: DNA254198, NM_002018, Figure 4753: PRO82702 gen.NM_002018 Figure 4754: DNA326302, XM_097204, gen.XM_097204 Figure 4720: PRO49310 Figure 4721A-B: DNA326284, XM_039910. Figure 4755: DNA326303, XM_058867. gen.XM_039910 gen.XM_058867 Figure 4722: PRO82687 Figure 4756: PRO82704 Figure 4723A-C: DNA326285, XM_113310, Figure 4757: DNA326304, XM_085672, gen.XM_113310 gen.XM_085672 Figure 4724: DNA326286, XM_085613, Figure 4758: DNA326305, XM_031536. gen.XM_085613 gen.XM_031536 Figure 4725: DNA326287, NM_006470, Figure 4759: PRO82706 gen.NM_006470 Figure 4760: DNA326306, XM_008486, Figure 4726: PRO82689 gen.XM_008486 Figure 4727: DNA326288, XM_051763, Figure 4761: DNA326307, NM _015584,

Figure 4798: DNA326324, NM_000981. gen.NM 015584 Figure 4762: PRO82707 gen.NM_000981 Figure 4799: PRO4738 Figure 4763: DNA326308, NM_000638. Figure 4800A-B: DNA326325, XM_008150, gen_NM_000638 Figure 4764: PRO82708 gen.XM_008150 Figure 4765 A-B: DNA326309, XM_031466, Figure 4801: DNA326326, NM _000978, gen.NM_000978 gen.XM_031466 Figure 4802: PRO82724 Figure 4766: PRO82709 Figure 4767: DNA326310, XM .031415, Figure 4803: DNA326327, XM_058830, gen.XM_058830 gen.XM_031415 Figure 4768; DNA326311, XM_117066. Figure 4804: PRO82725 Figure 4805; DNA270979, NM .002809, gen.XM_117066 Figure 4769: DNA326312, XM .031427. gen.NM_002809 Figure 4806: PRO59309 gen.XM_031427 Figure 4770: PRO82712 Figure 4807: DNA326328, NM -000422, Figure 4771: DNA326313, NM_032322, gen.NM_000422 Figure 4808: PRO82726 gen.NM_032322 Figure 4809: DNA326329, XM _008579, Figure 4772: PRO82713 Figure 4773A-B: DNA326314, XM_050101. gen.XM_008579 Figure 4810: DNA326330, NM _002276. gen.XM_050101 gen.NM_002276 Figure 4774: PRO82714 Figure 4811: PRO82728 Figure 4775: DNA326315, XM_056730, Figure 4812: DNA272889, NM_002275, gen.XM .056730 Figure 4776: PRO82715 gen.NM_002275 Figure 4777; DNA326316, XM_008462. Figure 4813: PRO60979 gen.XM_008462 Figure 4814: DNA326331, NM _002274, Figure 4778: DNA287427, NM_002815. gen.NM 002274 Figure 4815: PRO82729 gen.NM_002815 Figure 4816: DNA326332, NM_000526, Figure 4779: PRO69684 Figure 4780: DNA326317, NM .015544, gen.NM_000526 Figure 4817: PRO82730 gen.NM_015544 Figure 4781: PRO82717 Figure 4818: DNA326333, XM_049937, Figure 4782: DNA188351, NM_005623, gen.XM_049937 Figure 4819A-B: DNA326334, XM_113334, gen.NM_005623 Figure 4783; PRO21887 gen.XM_113334 Figure 4820: DNA226389, NM .000964, Figure 4784: DNA326318, NM_002878, gen.NM_002878 gen.NM_000964 Figure 4821: PRO36852 Figure 4785: PRO82718 Figure 4822: DNA326335, NM_006455, Figure 4786: DNA326319, NM_133627, gen.NM_006455 gen.NM_133627 Figure 4823: PRO82732 Figure 4787: PRO82719 Figure 4788: DNA326320, NM_133630, Figure 4824: DNA326336, XM_113938, gen.NM_133630 gen.XM_113938 Figure 4789: PRO82720 Figure 4825: DNA326337, XM _036465, Figure 4790: DNA326321, NM_133629. gen.XM_036465 gen.NM_133629 Figure 4826: DNA326338, XM_055061, Figure 4791: PRO82721 gen.XM_055061 Figure 4792: DNA326322, NM_018096. Figure 4827A-B: DNA326339, XM 036462, gen.NM_018096 gen.XM_036462 Figure 4793: PRO37791 Figure 4828: PRO82736 Figure 4794A-B: DNA326323, XM_039474, Figure 4829: DNA326340, XM _048654, gen.XM_048654 gen.XM_039474 Figure 4795: PRO82722 Figure 4830: DNA326341, NM .025197, Figure 4796A-B: DNA66475, NM _004448, gen.NM_025197 Figure 4831: PRO82737 gen.NM_004448

Figure 4832: DNA326342, XM.054038,

Figure 4797: PRO1204

Figure 4867: DNA326358, XM_008401,

gen_XM_008401

PCT/US2003/028547

gen.XM_054038 Figure 4868: PRO82754 Figure 4869: DNA326359, XM_008402. Figure 4833: PRO82738 Figure 4834: DNA326343, NM_002265. gen.XM_008402 Figure 4870: PRO82755 gen.NM_002265 Figure 4871: DNA326360, NM_017595. Figure 4835: PRO82739 Figure 4836: DNA326344, XM .032201, gen.NM_017595 Figure 4872: PRO82756 gen.XM_032201 Figure 4873: DNA326361, XM_085636, Figure 4837: PRO82740 Figure 4838: DNA326345, NM_012138, gen.XM_085636 Figure 4874: PRO82757 gen.NM_012138 Figure 4875: DNA326362, NM _006373, Figure 4839: PRO82741 Figure 4840: DNA326346, XM_018534, gen.NM_006373 Figure 4876: PRO82758 gen.XM_018534 Figure 4841: DNA227873, NM_001050, Figure 4877: DNA196642, NM .005440, gen.NM_001050 gen.NM_005440 Figure 4842: PRO38336 Figure 4878: PRO25115 Figure 4843: DNA270975, NM .000386, Figure 4879A-B: DNA270901, NM_004247. gen.NM_004247 gen.NM_000386 Figure 4844: PRO59305 Figure 4880: DNA326363, XM_050159. Figure 4845: DNA88378, NM_002087, gen.XM_050159 gen.NM_002087 Figure 4881: DNA326364, XM_083983. Figure 4846: PRO2769 gen.XM_083983 Figure 4847: DNA326347, NM .016016, Figure 4882; PRO82760 Figure 4883A-B: DNA326365, NM _021079, gen.NM_016016 Figure 4848: PRO82743 gen.NM_021079 Figure 4884: PRO82761 Figure 4849: DNA326348, XM _012642, Figure 4885: DNA326366, NM_133373, gen.XM_012642 Figure 4850A-B: DNA326349, NM_005474, gen.NM_133373 gen.NM_005474 Figure 4886: PRO82762 Figure 4887: DNA97290, NM_002512. Figure 4851: PRO82745 Figure 4852: DNA326350, XM_045901, gen.NM_002512 gen.XM 045901 Figure 4888: PRO3637 Figure 4853; PRO82746 Figure 4889: DNA227071, NM_000269. Figure 4854: DNA257428, NM _032376, gen.NM_000269 Figure 4890; PRO37534 gen.NM_032376 Figure 4855: PRO52010 Figure 4891: DNA227764, NM _003971, Figure 4856: DNA326351, XM _008351, gen.NM_003971 Figure 4892: PRO38227 gen.XM_008351 Figure 4893A-B: DNA326367, NM_020038, Figure 4857: DNA326352, XM _032852, gen.XM_032852 gen.NM_020038 Figure 4894: PRO82763 Figure 4858: PRO82748 Figure 4895A-B: DNA326368, NM _020037, Figure 4859: DNA326353, NM _025233, gen.NM_025233 gen.NM_020037 Figure 4860: PRO82749 Figure 4896: PRO82764 Figure 4861: DNA326354, XM _032817, Figure 4897: DNA326369, XM 037971. gen.XM_032817 gen.XM_037971 Figure 4898: DNA254791, NM_018346, Figure 4862: PRO82750 Figure 4863: DNA326355, XM_032813. gen.NM_018346 gen.XM_032813 Figure 4899: PRO49888 Figure 4864: DNA326356, XM_032766, Figure 4900: DNA287425, NM _018509, gen.XM_032766 gen.NM_018509 Figure 4865: DNA326357, NM .003766, Figure 4901: PRO69682 gen.NM_003766 Figure 4902A-B: DNA326370, XM_008432, Figure 4866: PRO82753 gen.XM_008432

gen.NM_000250

Figure 4903: DNA88554, NM_000250.

Figure 4904: PRO2839 Figure 4939: DNA227055, NM_002634. Figure 4905: DNA326371, XM_113919, gen.NM_002634 Figure 4940: PRO37518 gen.XM_113919 Figure 4941: DNA326390, XM_011118, Figure 4906: DNA326372, NM_017777, gen.XM_011118 gen.NM_017777 Figure 4942: DNA326391, XM_055199, Figure 4907: PRO82768 Figure 4908: DNA326373, NM_006924. gen.XM_055199 Figure 4943A-B: DNA326392, XM .044372. gen.NM_006924 Figure 4909: PRO82769 gen.XM_044372 Figure 4944: DNA326393, XM_113315, Figure 4910: DNA326374, XM_115480, gen.XM_113315 gen.XM_115480 Figure 4945: DNA326394, XM_012609, Figure 4911: DNA326375, NM_005831, gen.XM_012609 gen.NM_005831 Figure 4946: DNA326395, NM .005220, Figure 4912: PRO59328 gen.NM_005220 Figure 4913: DNA326376, XM_117061, gen.XM_117061 Figure 4947: PRO82787 Figure 4948: DNA326396, XM _085589, Figure 4914: PRO82771 gen.XM_085589 Figure 4915: DNA326377, XM_008459, Figure 4949: PRO82788 gen.XM_008459 Figure 4916A-B: DNA326378, XM_012651, Figure 4950: DNA326397, XM _012634, gen.XM_012651 gen.XM_012634 Figure 4917: DNA326379, NM_021626, Figure 4951: DNA326398, XM_085627. gen.XM_085627 gen.NM_021626 Figure 4952: PRO82790 Figure 4918: PRO302 Figure 4953: DNA150814, NM_002086, Figure 4919: DNA287291, NM_021213, gen.NM_002086 gen.NM_021213 Figure 4954: PRO12806 Figure 4920: PRO69561 Figure 4921A-B: DNA326380, NM_004859, Figure 4955: DNA326399, NM_024844, gen.NM_024844 gen.NM_004859 Figure 4956: PRO82791 Figure 4922: PRO82774 Figure 4957: DNA326400, XM_041583, Figure 4923: DNA326381, XM .083966, gen.XM_041583 gen.XM 083966 Figure 4958: DNA326401, XM _046932, Figure 4924: DNA326382, XM_044426, gen.XM_046932 gen.XM_044426 Figure 4959: PRO82792 Figure 4925: PRO82776 Figure 4960: DNA326402, NM_004524, Figure 4926: DNA326383, XM_008253, gen.XM_008253 gen.NM_004524 Figure 4927: DNA326384, XM_044394, Figure 4961: PRO82793 Figure 4962A-B: DNA326403, XM_113951, gen.XM_044394 Figure 4928: PRO10400 gen.XM_113951 Figure 4929: DNA326385, NM_017647, Figure 4963A-B: DNA88430, NM.000213, gen.NM_000213 gen.NM_017647 Figure 4964: PRO2788 Figure 4930: PRO82778 Figure 4965A-B: DNA326404, XM_036104. Figure 4931: DNA326386, NM_007372, gen.NM_007372 gen.XM_036104 Figure 4966: PRO82794 Figure 4932: PRO82779 Figure 4933: DNA326387, NM_002401, Figure 4967: DNA326405, NM .000154. gen.NM_000154 gen.NM_002401 Figure 4968: PRO82795 Figure 4934: PRO37764 Figure 4969: DNA326406, NM_005324, Figure 4935: DNA326388, XM_044376, gen.XM_044376 gen.NM_005324 Figure 4936A-B: DNA150457, NM .006039, Figure 4970: PRO11403 Figure 4971A-B: DNA326407, XM_036115, gen.NM_006039 Figure 4937: PRO12265 gen.XM_036115 Figure 4938: DNA326389, XM_044367, Figure 4972: PRO82796 gen.XM_044367 Figure 4973: DNA326408, XM_054344,

Figure 5005: PRO82812

gen.NM_016286

Figure 5006: DNA326428, NM _016286,

WO 2004/030615 PCT/US2003/028547

gen.XM 054344 Figure 5007: PRO82813 Figure 4974: PRO82797 Figure 5008: DNA326429, NM_004127, Figure 4975: DNA274755, NM_002766. gen.NM_004127 Figure 5009: PRO82814 gen.NM_002766 Figure 5010A-C: DNA326430, XM_113943, Figure 4976: PRO70703 Figure 4977A-B: DNA326409, XM_085531. gen.XM_113943 Figure 5011: DNA326431, XM_113330, gen.XM_085531 Figure 4978: DNA326410, XM_113892, gen.XM_113330 gen.XM_113892 Figure 5012: PRO82816 Figure 4979: PRO82799 Figure 5013: DNA326432, XM_113303, Figure 4980: DNA326411, XM_017578, gen.XM 113303 Figure 5014: DNA287234, NM .031968. gen.XM_017578 Figure 4981: PRO82800 gen.NM_031968 Figure 5015: PRO69513 Figure 4982: DNA326412, XM_036785, Figure 5016: DNA326433, NM_022158, gen.XM_036785 gen.NM_022158 Figure 4983: PRO39201 Figure 5017: PRO82818 Figure 4984: DNA326413, XM_097043, gen.XM_097043 Figure 5018: DNA326434, XM_038424. Figure 4985: DNA129504, NM_001168, gen.XM_038424 Figure 5019: DNA326435, XM .085735, gen.NM_001168 Figure 4986: PRO7143 gen.XM_085735 Figure 4987: DNA326414, XM_037196, Figure 5020: DNA326436, XM_046765. gen.XM_046765 gen.XM_037196 Figure 5021: DNA326437, XM_046769, Figure 4988: DNA326415, XM .037195, gen.XM_046769 gen.XM_037195 Figure 5022: DNA326438, XM_046767, Figure 4989: DNA326416, XM_045104, gen.XM_046767 gen.XM_045104 Figure 4990: PRO37540 Figure 5023: DNA273694, NM_006101, gen.NM_006101 Figure 4991: DNA326417, XM_085563, Figure 5024: PRO61661 gen.XM_085563 Figure 5025 A-B: DNA326439, XM_028744. Figure 4992A-B: DNA326418, XM .085716, gen.XM_028744 gen.XM_085716 Figure 5026: DNA326440, XM_165954, Figure 4993: PRO82805 Figure 4994A-B: DNA326419, XM_049934, gen.XM_165954 Figure 5027: DNA326441, XM_041678. gen.XM_049934 Figure 4995: DNA326420, XM_049931, gen.XM_041678 Figure 5028: DNA326442, XM_113343, gen.XM_049931 Figure 4996A-B: DNA326421, XM_045581, gen.XM_113343 Figure 5029: PRO82825 gen.XM_045581 Figure 4997: PRO82807 Figure 5030: DNA326443, XM .067325, gen.XM_067325 Figure 4998: DNA326422, XM_113945, Figure 5031: DNA326444, XM_012741, gen.XM_113945 gen.XM_012741 Figure 4999: DNA326423, XM .046481, Figure 5032: DNA326445, NM .014214. gen.XM_046481 Figure 5000: DNA326424, XM _097195, gen.NM_014214 Figure 5033: PRO82828 gen.XM_097195 Figure 5034A-B: DNA326446, XM_035640. Figure 5001: DNA326425, XM _097193, gen.XM_035640 gen.XM_097193 Figure 5035: PRO82829 Figure 5002: DNA326426, NM_004309, Figure 5036: DNA326447, XM .016382, gen.NM_004309 Figure 5003: PRO61246 gen.XM_016382 Figure 5004: DNA326427, XM_046472, Figure 5037: DNA326448, NM .032933, gen.XM_046472 gen.NM_032933

Figure 5038: PRO82831

gen.NM_006938

Figure 5039: DNA274690, NM .006938,

Figure 5040A-B: DNA88457, NM _000227, Figure 5074: DNA326467, XM_006937. gen.XM_006937 gen.NM_000227 Figure 5041: PRO2799 Figure 5075: DNA326468, XM_085779. Figure 5042: DNA326449, XM _085791, gen.XM_085779 gen.XM. 085791 Figure 5076: DNA326469, XM_011089, Figure 5043: DNA326450, XM_085789. gen XM 011089 Figure 5077: PRO82850 gen.XM_085789 Figure 5044: PRO82833 Figure 5078: DNA326470, XM_169540, gen.XM_169540 Figure 5045: DNA326451, XM_085790. Figure 5079: PRO82851 gen.XM_085790 Figure 5080: DNA326471, XM_167008. Figure 5046: DNA326452, XM_015755, gen.XM_167008 gen.XM_015755 Figure 5047: PRO82835 Figure 5081; PRO82852 Figure 5048: DNA326453, XM_097232, Figure 5082: DNA326472, XM_048471, gen.XM_097232 gen.XM_048471 Figure 5049: DNA326454, XM _085788, Figure 5083A-B: DNA326473, XM_008812. gen.XM_008812 gen.XM_085788 Figure 5084A-B: DNA326474, XM_117096. Figure 5050: DNA88281, NM .001944, gen.XM_117096 gen.NM_001944 Figure 5085: PRO82855 Figure 5051: PRO2267 Figure 5052: DNA271841, NM_003787, Figure 5086: DNA326475, NM_002385, gen.NM_002385 gen.NM_003787 Figure 5087: PRO82856 Figure 5053: PRO60121 Figure 5088: DNA326476, XM_015241. Figure 5054: DNA326455, XM_008723, gen.XM_015241 gen.XM_008723 Figure 5055: DNA326456, XM_084007, Figure 5089A-B: DNA326477, XM .008695, gen.XM_084007 gen.XM_008695 Figure 5056: DNA256813, NM_018255, Figure 5090A-B: DNA326478, XM_041872, gen.NM_018255 gen.XM_041872 Figure 5057: PRO51744 Figure 5091: PRO82859 Figure 5058: DNA326457, XM_085775, Figure 5092: DNA326479, XM_051586, gen.XM 085775 gen. XM_051586 Figure 5059: PRO82840 Figure 5093: DNA326480, NM_003712. Figure 5060: DNA326458, NM_138443, gen.NM_003712 Figure 5094; PRO1077 gen.NM_138443 Figure 5061: PRO82841 Figure 5095: DNA326481, XM .042018, Figure 5062: DNA326459, XM_038872, gen.XM_042018 gen.XM_038872 Figure 5096: PRO2560 Figure 5063: PRO82842 Figure 5097: DNA326482, XM_114018, Figure 5064: DNA326460, XM_086779. gen.XM_114018 Figure 5098: DNA326483, NM_017876, gen.XM_086779 Figure 5065: DNA326461, XM_167363, gen.NM_017876 Figure 5099: PRO82861 gen.XM_167363 Figure 5066: DNA326462, XM_031944, Figure 5100: DNA326484, NM .031990, gen.XM_031944 gen.NM_031990 Figure 5101: PRO82862 Figure 5067: DNA326463, NM_000985, gen.NM_000985 Figure 5102: DNA326485, NM_002819, gen.NM_002819 Figure 5068: PRO82846 Figure 5069: DNA326464, NM_002396, Figure 5103: PRO62899 gen.NM _002396 Figure 5104: DNA326486, NM .005224. Figure 5070: PRO61113 gen.NM_005224 Figure 5071: DNA326465, XM_166288, Figure 5105: PRO82863 gen.XM_166288 Figure 5106: DNA326487, XM_037565, gen.XM_037565 Figure 5072: DNA326466, NM_004539, gen.NM_004539 Figure 5107: PRO82864 Figure 5073: PRO60800 Figure 5108: DNA326488, XM_092042,

PCT/US2003/028547

Figure 5142: PRO82881 gen.XM 092042 Figure 5143: DNA326510, NM_017797, Figure 5109: DNA326489, XM_037572, gen.XM 037572 gen.NM_017797 Figure 5144: PRO82882 Figure 5110: DNA326490, XM _009279, Figure 5145: DNA326511, XM_030714, gen.XM_009279 gen.XM_030714 Figure 5111: PRO82867 Figure 5146: DNA256555, NM 017572, Figure 5112: DNA326491, NM_002085, gen.NM_017572 gen.NM_002085 Figure 5113A-B: DNA326492, XM .009277, Figure 5147: PRO51586 Figure 5148A-B: DNA326512, NM_003938, gen.XM_009277 Figure 5114: DNA326493, XM .012913, gen.NM_003938 Figure 5149: PRO82884 gen.XM_012913 Figure 5115: DNA274101, NM .001687, Figure 5150A-B: DNA326513, XM_046822, gen.XM_046822 gen.NM_001687 Figure 5151: PRO82885 Figure 5116: PRO62039 Figure 5152: DNA326514, NM_007165, Figure 5117: DNA326494, XM_028067, gen.NM_007165 gen.XM_028067 Figure 5118: PRO82871 Figure 5153: PRO82886 Figure 5154: DNA287636, NM .004152, Figure 5119: DNA326495, XM_028064, gen.NM_004152 gen.XM_028064 Figure 5155: DNA326515, NM_012458, Figure 5120: DNA326496, NM_024407, gen.NM_012458 gen.NM_024407 Figure 5156: PRO82887 Figure 5121: PRO82872 Figure 5157: DNA326516, NM_032737, Figure 5122: DNA326497, NM_000156, gen.NM_032737 gen.NM_000156 Figure 5123: PRO58046 Figure 5158: PRO82888 Figure 5124: DNA326498, NM_138924, Figure 5159: DNA326517, XM_030485, gen.XM_030485 gen.NM_138924 Figure 5160: DNA326518, XM_046934, Figure 5125: PRO82873 Figure 5126: DNA326499, NM_001018, gen.XM_046934 Figure 5161: DNA326519, NM .003021, gen.NM_001018 gen.NM_003021 Figure 5127: PRO10485 Figure 5162: PRO62302 Figure 5128: DNA326500, XM_086101, Figure 5163: DNA326520, XM_055686, gen.XM_086101 Figure 5129: PRO82874 gen.XM_055686 Figure 5164: PRO37951 Figure 5130: DNA326501, XM_086102, Figure 5165: DNA326521, XM_009222, gen.XM_086102 gen.XM_009222 Figure 5131: DNA326502, XM_047584, Figure 5166: DNA326522, XM_052635, gen.XM_047584 gen.XM_052635 Figure 5132A-B: DNA326503, XM_047600, Figure 5167: PRO82892 gen.XM_047600 Figure 5133: PRO38496 Figure 5168: DNA326523, XM_052661, gen.XM_052661 Figure 5134: DNA326504, XM _097420, Figure 5169: DNA326524, NM_016263, gen.XM_097420 gen.NM_016263 Figure 5135A-B: DNA326505, XM_030721, Figure 5170: PRO82893 gen.XM_030721 Figure 5136: PRO82877 Figure 5171: DNA326525, NM.006339, Figure 5137: DNA326506, XM .030720, gen.NM_006339 gen.XM_030720 Figure 5172: PRO82894 Figure 5173: DNA326526, NM_032753, Figure 5138: DNA326507, NM _031213, gen.NM_032753 gen.NM_031213 Figure 5174: PRO82895 Figure 5139: PRO82879 Figure 5175: DNA326527, XM_056421, Figure 5140; DNA326508, XM_039723, gen.XM_039723 gen.XM_056421

gen.XM_031917

Figure 5176A-B: DNA326528, XM _031917,

Figure 5141: DNA326509, NM_001319,

gen.NM_001319

PCT/US2003/028547

gen.XM_012798 Figure 5177: PRO82897 Figure 5178: DNA326529, NM_001961, Figure 5213: DNA326548, XM_044608, gen.NM_001961 gen.XM_044608 Figure 5179: PRO62225 Figure 5214: DNA326549, NM_003624, Figure 5180: DNA326530, XM_016871, gen.NM_003624 Figure 5215: PRO82915 gen.XM_016871 Figure 5216: DNA326550, NM_016579, Figure 5181: DNA326531, NM_016539, gen.NM_016539 gen.NM_016579 Figure 5217: PRO224 Figure 5182: PRO82899 Figure 5218A-B: DNA326551, XM_048351. Figure 5183: DNA326532, XM_117122, gen.XM 117122 gen.XM_048351 Figure 5184: DNA326533, XM .031857, Figure 5219: DNA326552, XM_048364. gen.XM_031857 gen.XM_048364 Figure 5220: PRO82917 Figure 5185: PRO82901 Figure 5186: DNA326534, NM_024333, Figure 5221: DNA326553, XM_091938. gen.XM_091938 gen.NM_024333 Figure 5187: PRO82902 Figure 5222: DNA326554, XM_097300. Figure 5188: DNA326535, NM_003025, gen.XM_097300 Figure 5223: DNA326555, XM_049282. gen.NM_003025 gen.XM_049282 Figure 5189: PRO82903 Figure 5224: PRO82920 Figure 5190: DNA326536, NM .025241, Figure 5225: DNA326556, XM_058232, gen.NM_025241 Figure 5191: PRO82904 gen.XM_058232 Figure 5226: DNA326557, XM_045151. Figure 5192: DNA326537, XM_035638, gen.XM_035638 gen.XM .045151 Figure 5193: PRO82905 Figure 5227A-B: DNA326558, XM _050435, gen.XM_050435 Figure 5194A-B: DNA326538, XM_035636, gen.XM_035636 Figure 5228: PRO82923 Figure 5195: DNA326539, XM_012862, Figure 5229: DNA326559, XM_113988, gen.XM_012862 gen.XM_113988 Figure 5230: DNA326560, NM_058164, Figure 5196A-B: DNA326540, XM_035627, gen.NM_058164 gen.XM_035627 Figure 5197A-B: DNA326541, XM_035625, Figure 5231: PRO82925 Figure 5232: DNA227280, NM .020230, gen.XM_035625 Figure 5198: PRO82909 gen.NM_020230 Figure 5199: DNA274761, NM_014649, Figure 5233: PRO37743 Figure 5234: DNA270621, NM_003755, gen.NM_014649 Figure 5200: PRO62531 gen.NM_003755 Figure 5201: DNA272421, NM _006012, Figure 5235: PRO58991 gen.NM_006012 Figure 5236: DNA326561, XM_049502, gen.XM_049502 Figure 5202: PRO60674 Figure 5203: DNA326542, NM_003685, Figure 5237: DNA326562, NM_007065, gen.NM_003685 gen.NM_007065 Figure 5204: PRO82910 Figure 5238: PRO63226 Figure 5239: DNA326563, XM_049561. Figure 5205A-B: DNA326543, XM_009010, gen.XM_009010 gen.XM_049561 Figure 5206: DNA270315, NM_004240, Figure 5240: DNA326564, XM_017204. gen.XM_017204 gen.NM_004240 Figure 5207: PRO58702 Figure 5241: DNA326565, NM .005498. Figure 5208: DNA326544, NM _005490, gen.NM_005498 Figure 5242: PRO62112 gen.NM_005490 Figure 5243: DNA326566, XM_008887, Figure 5209: PRO201 Figure 5210: DNA326546, XM_044619, gen.XM_008887 gen.XM_044619 Figure 5244: DNA326567, XM .. 085862, Figure 5211: PRO82912 gen.XM _085862

Figure 5212: DNA326547, XM_012798,

Figure 5245: PRO82930

PCT/US2003/028547

WO 2004/030615

Figure 5278: PRO61977

gen_NM_004461

Figure 5279: DNA287243, NM .004461,

Figure 5246; DNA326568, XM_084014, Figure 5280: PRO69518 Figure 5281: DNA326586, XM_032020, gen.XM_084014 gen.XM 032020 Figure 5247A-B: DNA326569, XM_032710, Figure 5282: PRO2718 gen.XM_032710 Figure 5283: DNA326587, NM _005053, Figure 5248: DNA326570, XM .032719, gen.NM_005053 gen.XM_032719 Figure 5284: PRO22613 Figure 5249: PRO82933 Figure 5285; DNA326588, XM .085916, Figure 5250: DNA326571, NM_024029, gen.XM_085916 gen.NM_024029 Figure 5286: DNA326589, NM_017722, Figure 5251: PRO23794 Figure 5252: DNA326572, XM_032724, gen.NM_017722 Figure 5287: PRO82947 gen.XM_032724 Figure 5288: DNA326590, NM _003765, Figure 5253: PRO82934 Figure 5254A-B: DNA326573, NM .003072, gen.NM_003765 Figure 5289: PRO82948 gen.NM_003072 Figure 5290: DNA326591, XM_051364, Figure 5255: PRO82935 Figure 5256A-B: DNA326574, XM _009082, gen.XM_051364 Figure 5291: PRO82949 gen.XM_009082 Figure 5292: DNA326592, XM_031345, Figure 5257: DNA326575, XM _032774, gen.XM_031345 gen.XM_032774 Figure 5293: PRO82950 Figure 5258: DNA218271, NM_000121, Figure 5294: DNA326593, XM_113352, gen.NM_000121 Figure 5259: PRO34323 gen.XM_113352 Figure 5295: DNA326594, XM _058967, Figure 5260: DNA326576, XM .057074, gen.XM_058967 gen.XM_057074 Figure 5261: DNA326577, XM .032782, Figure 5296: PRO82952 Figure 5297: DNA326595, XM_085909, gen.XM_032782 Figure 5262: DNA326578, NM .032377, gen.XM_085909 Figure 5298: DNA269894, NM_002730, gen.NM_032377 Figure 5263: PRO82939 gen.NM_002730 Figure 5299: PRO58292 Figure 5264: DNA326579, XM_015697, Figure 5300: DNA326596, NM _018154, gen.XM_015697 Figure 5265: PRO82940 gen.NM_018154 Figure 5301: PRO82954 Figure 5266: DNA326580, XM_010156, Figure 5302: DNA326597, XM .031276, gen.XM_010156 Figure 5267: DNA326581, NM_001930, gen.XM_031276 Figure 5303: DNA326598, XM_031273, gen.NM_001930 gen.XM_031273 Figure 5268: PRO58446 Figure 5304: PRO82956 Figure 5269: DNA326582, NM_013406, Figure 5305: DNA326599, XM ±031263, gen.NM_013406 gen.XM_031263 Figure 5270: DNA326583, NM_013407, Figure 5306: PRO82957 gen.NM_013407 Figure 5307: DNA326600, XM _031251, Figure 5271: PRO82943 gen.XM_031251 Figure 5272: DNA103320, NM .002229, Figure 5308: DNA326601, NM_006844. gen.NM_002229 gen.NM_006844 Figure 5273: PRO4650 Figure 5309: PRO82958 Figure 5274: DNA326584, XM .009063, Figure 5310A-C: DNA326602, XM_009303, gen.XM _009063 Figure 5275: PRO82944 gen.XM_009303 Figure 5311: DNA326603, XM _086074, Figure 5276: DNA326585, XM_085917, gen.XM_085917 gen.XM_086074 Figure 5312: DNA269630, NM .003290, Figure 5277: DNA274034, NM_006397, gen.NM_006397 gen.NM_003290

Figure 5313: PRO58042

gen.NM _005370

Figure 5314: DNA326604, NM _005370,

PCT/US2003/028547

Figure 5350: DNA326625, NM _012181, Figure 5315: PRO12130 gen.NM_012181 Figure 5316: DNA326605, XM_113348, Figure 5351: PRO82980 gen.XM 113348 Figure 5352: DNA227249, NM _007263. Figure 5317: DNA326606, NM _032207, gen.NM_032207 gen.NM_007263 Figure 5318: PRO82962 Figure 5353: PRO37712 Figure 5354: DNA326626, XM _018515. Figure 5319A-B: DNA326607, NM_006387, gen.NM_006387 gen.XM_018515 Figure 5355: DNA326627, NM .033415. Figure 5320: PRO82963 gen.NM_033415 Figure 5321: DNA326608, NM_024881, gen.NM_024881 Figure 5356: PRO82982 Figure 5357: DNA326628, XM _009330, Figure 5322: PRO82964 gen.XM_009330 Figure 5323: DNA326609, NM_024104, gen.NM_024104 Figure 5358: DNA326629, NM_134440, Figure 5324: PRO82965 gen.NM_134440 Figure 5325A-C: DNA326610, XM_008854. Figure 5359: PRO82983 Figure 5360: DNA326630, NM _003721, gen.XM_008854 Figure 5326: DNA326611, NM_014173, gen.NM_003721 gen.NM_014173 Figure 5361: PRO59220 Figure 5362: DNA326631, NM_015965, Figure 5327: PRO82967 gen.NM_015965 Figure 5328: DNA287240, NM_004335, Figure 5363: PRO82984 gen.NM_004335 Figure 5364: DNA326632, XM_016378, Figure 5329: PRO29371 Figure 5330: DNA326612, XM_050660, gen.XM_016378 Figure 5365: PRO82985 gen.XM_050660 Figure 5331: DNA326613, XM_086116, Figure 5366: DNA326633, XM_114027, gen.XM_086116 gen.XM_114027 Figure 5332: DNA326614, NM _018174, Figure 5367: DNA326634, XM_165963, gen.XM_165963 gen.NM_018174 Figure 5333: PRO82970 Figure 5368: PRO82987 Figure 5334: DNA326615, NM_000980, Figure 5369: DNA326635, XM _015769, gen XM 015769 gen.NM_000980 Figure 5335: PRO82971 Figure 5370: DNA326636, XM _012812, Figure 5336: DNA326616, XM_055230, gen.XM_012812 Figure 5371: DNA326637, XM_085971, gen.XM_055230 gen.XM_085971 Figure 5337: DNA326617, XM_012179, Figure 5372: DNA326638, XM_037662, gen.XM_012179 Figure 5338A-B: DNA326618, XM_009293, gen.XM_037662 Figure 5373: PRO82991 gen.XM_009293 Figure 5374: DNA326639, NM_001238, Figure 5339: DNA326619, XM_038146, gen.NM_001238 gen.XM_038146 Figure 5375: PRO82992 Figure 5340: PRO82975 Figure 5341: DNA326620, XM_092046. Figure 5376: DNA326640, NM_057182, gen.NM_057182 gen.XM_092046 Figure 5342: PRO82976 Figure 5377: PRO4756 Figure 5343: DNA326621, XM_038098, Figure 5378: DNA326641, XM_009180, gen.XM_038098 gen.XM_009180 Figure 5344: PRO82977 Figure 5379: DNA326642, XM_117118, Figure 5345: DNA326622, NM_032627, gen.XM_117118 gen.NM_032627 Figure 5380: DNA326643, XM _092049, Figure 5346: PRO82978 gen.XM_092049 Figure 5347: DNA326623, XM_165960, Figure 5381: PRO82995 Figure 5382: DNA326644, XM_028672, gen.XM_165960 Figure 5348: PRO82979 gen.XM_028672 Figure 5349: DNA326624, XM_114004, Figure 5383: DNA326645, XM _028666, gen.XM_028666 gen.XM_114004

PCT/US2003/028547

gen.XM_059045 Figure 5384: DNA326646, XM_009338, Figure 5420: PRO83013 gen.XM_009338 Figure 5421: DNA273474, NM_005884. Figure 5385: DNA326647, XM_048258, gen.NM_005884 gen.XM_048258 Figure 5386: PRO82998 Figure 5422: PRO61458 Figure 5423: DNA326666, XM _046090, Figure 5387: DNA256836, NM_018468, gen.XM .046090 gen.NM_018468 Figure 5424: PRO83014 Figure 5388: PRO51767 Figure 5425: DNA326667, XM_086004, Figure 5389: DNA326648, NM_024321. gen.XM_086004 gen.NM_024321 Figure 5426: DNA272347, NM_001020, Figure 5390: PRO82999 gen.NM_001020 Figure 5391A-B: DNA326649, XM_049237, Figure 5427: PRO60603 gen.XM_049237 Figure 5428A-B: DNA326668, NM _003169, Figure 5392: PRO83000 Figure 5393: DNA326650, NM_032635, gen.NM_003169 Figure 5429: PRO12822 gen.NM_032635 Figure 5430: DNA326669, XM_053074, Figure 5394: PRO23845 gen.XM_053074 Figure 5395: DNA326651, XM_115615. Figure 5431: PRO83016 gen.XM_115615 Figure 5432: DNA326670, NM_016941, Figure 5396A-B: DNA326652, XM .091984, gen.NM_016941 gen.XM_091984 Figure 5433: PRO83017 Figure 5397; PRO83002 Figure 5434: DNA256840, NM_004714. Figure 5398; DNA326653, XM_085986, gen.NM_004714 gen.XM_085986 Figure 5435: PRO51771 Figure 5399: DNA326654, XM_032285, Figure 5436: DNA326671, NM_001436, gen.XM_032285 gen.NM_001436 Figure 5400: PRO83004 Figure 5437: PRO83018 Figure 5401: DNA326655, NM _002812, Figure 5438: DNA326672, XM_016410, gen.NM _002812 Figure 5402: PRO83005 gen.XM_016410 Figure 5439: DNA326673, XM_012860, Figure 5403A-E: DNA326656, XM _029455, gen.XM_012860 gen.XM_029455 Figure 5440: DNA326674, XM_097365, Figure 5404: DNA326657, XM_029450, gen.XM_097365 gen.XM_029450 Figure 5441: DNA274139, NM _006503, Figure 5405: PRO83007 gen.NM_006503 Figure 5406: DNA326658, XM .009149, Figure 5442: PRO62075 gen.XM_009149 Figure 5407: PRO62500 Figure 5443: DNA326675, XM .009203, gen.XM_009203 Figure 5408: DNA326659, XM_056602, Figure 5444: DNA326676, XM_047409, gen.XM_056602 gen.XM_047409 Figure 5409: DNA326660, NM_012237, Figure 5445: DNA326677, XM _047376, gen.NM_012237 gen.XM_047376 Figure 5410: PRO83008 Figure 5411: DNA326661, NM_030593, Figure 5446A-B: DNA326678, XM_047374, gen.XM_047374 gen.NM_030593 Figure 5447: DNA326679, XM_059052, Figure 5412: PRO83009 gen.XM_059052 Figure 5413: DNA326662, NM_017827, Figure 5448: DNA273600, NM _004596, gen.NM_017827 Figure 5414: PRO83010 gen.NM_004596 Figure 5449: PRO61575 Figure 5415: DNA326663, NM_021107, Figure 5450: DNA326680, XM _030914, gen.NM_021107 Figure 5416: PRO83011 gen.XM_030914 Figure 5417: DNA326664, NM_033363, Figure 5451: DNA326681, NM _052848, gen.NM_052848 gen.NM_033363 Figure 5452: PRO83027 Figure 5418: PRO83012 Figure 5419: DNA326665, XM _059045, Figure 5453: DNA326682, XM _008912,

gen.XM_085950 gen.XM_008912 Figure 5488: DNA326704, XM_028263. Figure 5454: DNA326683, NM_020158, gen.XM_028263 gen.NM_020158 Figure 5489: DNA326705, XM_085928, Figure 5455: PRO83029 Figure 5456: DNA326684, XM_030901, gen.XM 085928 Figure 5490: PRO36963 gen.XM_030901 Figure 5457: PRO83030 Figure 5491: DNA326706, XM_028267. gen.XM_028267 Figure 5458: DNA326685, NM_018035, Figure 5492: DNA326707, NM_013403, gen.NM 018035 gen.NM_013403 Figure 5459: PRO83031 Figure 5460: DNA326686, XM_085874, Figure 5493: PRO83050 Figure 5494: DNA103580, NM_001743, gen.XM_085874 Figure 5461: DNA326687, XM_085875, gen.NM_001743 Figure 5495; PRO4904 gen.XM_085875 Figure 5496: DNA326708, XM_009126, Figure 5462: DNA326688, XM_085876, gen.XM_009126 gen.XM_085876 Figure 5497: DNA326709, NM_006247, Figure 5463: DNA326689, XM_058949, gen.NM_006247 gen.XM_058949 Figure 5498: PRO25881 Figure 5464: PRO83035 Figure 5499: DNA326710, NM .003370, Figure 5465: DNA326690, XM_030895, gen.NM_003370 gen.XM_030895 Figure 5500: PRO83052 Figure 5466: DNA326691, XM_115603, Figure 5501: DNA326711, XM_085856, gen.XM_115603 Figure 5467: PRO83037 gen.XM_085856 Figure 5502: DNA150784, NM_001983, Figure 5468: DNA326692, NM_001022, gen.NM_001022 gen.NM_001983 Figure 5503: PRO12800 Figure 5469: PRO83038 Figure 5470: DNA326693, NM_004706. Figure 5504: DNA270931, NM_012099, gen.NM_012099 gen.NM 004706 Figure 5505: PRO59264 Figure 5471: PRO83039 Figure 5472: DNA326694, XM_008878. Figure 5506A-B: DNA257531, NM_031417, gen.NM_031417 gen.XM_008878 Figure 5473: PRO83040 Figure 5507: PRO52101 Figure 5508: DNA326712, NM_001294, Figure 5474: DNA326695, NM_022752, gen.NM_022752 gen.NM_001294 Figure 5475: PRO83041 Figure 5509: PRO83054 Figure 5510: DNA326713, XM_097274, Figure 5476: DNA 151808, NM _006494, gen.NM_006494 gen.XM_097274 Figure 5511: DNA88084, NM _000041, Figure 5477: PRO12892 gen.NM_000041 Figure 5478: DNA326696, NM_001816, Figure 5512: PRO2644 gen.NM_001816 Figure 5513: DNA256533, NM_006114, Figure 5479: PRO34151 Figure 5480: DNA326697, NM_000554, gen.NM_006114 Figure 5514: PRO51565 gen.NM_000554 Figure 5481: PRO83042 Figure 5515: DNA251057, NM_002856, Figure 5482: DNA326698, XM_049920, gen.NM_002856 Figure 5516: PRO47354 gen.XM_049920 Figure 5483: DNA326699, XM_055859, Figure 5517: DNA226011, NM_005581, gen.NM_005581 gen.XM_055859 Figure 5484A-B: DNA326700, XM _009125, Figure 5518: PRO36474 Figure 5519: DNA326714, NM_012116, gen.XM_009125 Figure 5485: DNA326701, XM_008860, gen.NM_012116 Figure 5520: PRO83056 gen.XM_008860 Figure 5521: DNA326715, XM_097275, Figure 5486: DNA326702, XM_009036, gen.XM_009036 gen.XM_097275

Figure 5487: DNA326703, XM_085950,

Figure 5522; DNA326716, XM_008851.

gen.NM_003598 gen.XM_008851 Figure 5523: DNA274289. NM _016440. Figure 5557: PRO83075 gen.NM_016440 Figure 5558: DNA326736, NM_006666, gen.NM_006666 Figure 5524: PRO62212 Figure 5559: PRO83076 Figure 5525: DNA326717, NM_012068, Figure 5560: DNA326737, XM_114024. gen NM 012068 Figure 5526; PRO83059 gen.XM_114024 Figure 5527: DNA326718, XM _085927. Figure 5561: PRO83077 Figure 5562: DNA304658, NM_000146. gen.XM_085927 Figure 5528: DNA326719, XM_084023, gen.NM_000146 gen.XM_084023 Figure 5563: PRO71085 Figure 5564: DNA326738, NM_004324, Figure 5529: DNA326720, XM_167530, gen.NM_004324 gen.XM_167530 Figure 5565: PRO38101 Figure 5530: DNA326721, XM_114025. Figure 5566: DNA326739, NM_006184, gen.XM_114025 gen.NM_006184 Figure 5531: DNA326722, XM_008985. Figure 5567: PRO83078 gen.XM_008985 Figure 5532: DNA326723, NM_030973, Figure 5568: DNA273066, NM_001190, gen.NM_030973 gen.NM_001190 Figure 5569: PRO61129 Figure 5533: PRO83065 Figure 5534: DNA326724, NM_025129, Figure 5570: DNA326740, XM_058987, gen.NM_025129 gen.XM_058987 Figure 5535: PRO83066 Figure 5571: DNA326741, NM_000979, Figure 5536: DNA326725, NM _014203, gen.NM_000979 Figure 5572: PRO83080 gen.NM_014203 Figure 5573: DNA326742, XM _085935, Figure 5537: DNA326726, XM_085934, gen.XM_085935 gen.XM_085934 Figure 5538: PRO83068 Figure 5574: DNA326743, NM_031485, Figure 5539: DNA326727, NM_001536. gen.NM_031485 Figure 5575: PRO61308 gen.NM .001536 Figure 5576: DNA103239, NM_006801, Figure 5540: PRO83069 gen.NM_006801 Figure 5541: DNA326728, XM_165432, Figure 5577: PRO4569 gen.XM_165432 Figure 5578: DNA326744, XM_046419, Figure 5542: DNA274823, NM_001571, gen.XM_046419 gen.NM_001571 Figure 5579: PRO83082 Figure 5543: PRO62582 Figure 5544A-B; DNA326729, XM _046313, Figure 5580: DNA326745, NM_002691, gen.NM_002691 gen.XM_046313 Figure 5545: PRO83071 Figure 5581: PRO83083 Figure 5546: DNA326730, NM_015953, Figure 5582: DNA326746, XM_056286, gen.XM_056286 gen.NM_015953 Figure 5547: PRO83072 Figure 5583: PRO83084 Figure 5584: DNA326747, XM_058990, Figure 5548: DNA326731, XM_027904, gen.XM_058990 gen.XM_027904 Figure 5549: DNA326732, XM_084026, Figure 5585: PRO83085 Figure 5586: DNA326748, XM_091981, gen.XM_084026 Figure 5550: DNA290260, NM_012423, gen.XM_091981 Figure 5587: PRO83086 gen.NM_012423 Figure 5588: DNA326749, NM_032712, Figure 5551: PRO70385 Figure 5552: DNA326733, XM_058991, gen.NM_032712 Figure 5589: PRO23238 gen.XM_058991 Figure 5553: PRO83073 Figure 5590: DNA83154, NM_001648, Figure 5554: DNA326734, NM_017916, gen.NM_001648 Figure 5591: PRO2109 gen.NM_017916 Figure 5592; DNA326750, XM_055658, Figure 5555: PRO83074

Figure 5556: DNA326735, NM_003598,

gen.XM_055658

Figure 5628: PRO49653

PCT/US2003/028547

Figure 5593: DNA269481, NM_001985. Figure 5629: DNA326767, XM_085972, gen.XM_085972 gen.NM.001985 Figure 5594: PRO57901 Figure 5630: PRO83103 Figure 5595: DNA326751, XM _091886. Figure 5631: DNA326768, NM _032792. gen.NM_032792 gen.XM 091886 Figure 5632: PRO83104 Figure 5596: PRO83087 Figure 5633: DNA326769, NM .001009. Figure 5597: DNA326752, XM .. 008830, gen.NM_001009 gen.XM 008830 Figure 5634; PRO83105 Figure 5598: DNA326753, XM_039908. gen.XM_039908 Figure 5635: DNA326770, XM_058125, Figure 5599: PRO83089 gen.XM 058125 Figure 5636: DNA326771, NM _024691, Figure 5600: DNA326754, NM .015629, gen.NM_024691 gen.NM_015629 Figure 5637: PRO83107 Figure 5601: PRO83090 Figure 5638; DNA297288, NM _021158, Figure 5602: DNA326755, XM_050236, gen.NM_021158 gen.XM_050236 Figure 5639: PRO70810 Figure 5603: DNA326756, XM_050589. gen.XM_050589 Figure 5640: DNA304662, NM_031229, Figure 5604: PRO83092 gen.NM_031229 Figure 5605: DNA326757, XM_117128, Figure 5641: PRO71089 Figure 5642: DNA326772, NM_031228, gen.XM_117128 Figure 5606: PRO83093 gen.NM_031228 Figure 5607: DNA326758, XM _059321, Figure 5643: PRO83108 Figure 5644: DNA326773, XM..097749, gen.XM_059321 Figure 5608: DNA326759, NM_003283, gen.XM_097749 Figure 5645: PRO83109 gen.NM_003283 Figure 5646: DNA326774, XM.055993, Figure 5609: PRO83095 Figure 5610A-B: DNA326760, NM _014931, gen.XM_055993 Figure 5647: DNA326775, XM_009622, gen.NM_014931 Figure 5611: PRO83096 gen.XM_009622 Figure 5648: DNA326776, NM _000801, Figure 5612: DNA326761, XM _035919, gen.NM_000801 gen.XM_035919 Figure 5649: PRO59142 Figure 5613: DNA326762, NM_000991. Figure 5650: DNA326777, NM _054014, gen.NM_000991 Figure 5614: PRO83098 gen.NM_054014 Figure 5651: PRO59142 Figure 5615: DNA273346, NM .014501, Figure 5652: DNA326778, NM_016143, gen.NM_014501 Figure 5616: PRO61349 gen.NM_016143 Figure 5617: DNA326763, NM _013333, Figure 5653: PRO83112 gen.NM_013333 Figure 5654: DNA287270, NM_003091. Figure 5618: PRO83099 gen.NM_003091 Figure 5619: DNA326764, NM _007279, Figure 5655: PRO69541 Figure 5656: DNA326779, NM .052881, gen.NM_007279 Figure 5620: PRO83100 gen.NM_052881 Figure 5657: PRO83113 Figure 5621: DNA326765, NM _016202, Figure 5658: DNA326780, XM_044914, gen.NM_016202 Figure 5622; PRO83101 gen.XM_044914 Figure 5659: PRO83114 Figure 5623: DNA326766, XM_034377, Figure 5660: DNA326781, XM_044915, gen.XM_034377 gen.XM_044915 Figure 5624: PRO83102 Figure 5625: DNA272062, NM _014453, Figure 5661: DNA326782, NM .006899, gen.NM_006899 gen.NM_014453 Figure 5662: PRO83116 Figure 5626: PRO60333 Figure 5627; DNA254548, NM_005762, Figure 5663: DNA326783, NM .019609, gen.NM_019609 gen.NM_005762

Figure 5664: PRO83117

PCT/US2003/028547

Figure 5665: DNA326784, NM_021826, Figure 5699: PRO83133 Figure 5700: DNA326801, XM_012970, gen.NM_021826 Figure 5666: PRO83118 gen.XM_012970 Figure 5701: DNA326802, XM_042765. Figure 5667: DNA326785, XM_045418, gen.XM_042765 gen.XM_045418 Figure 5668: DNA287261, NM_017874. Figure 5702: PRO83135 Figure 5703: DNA150548, NM .001247. gen.NM_017874 gen.NM_001247 Figure 5669: PRO69533 Figure 5670: DNA326786, XM_086710, Figure 5704: PRO12324 Figure 5705A-B: DNA326803, XM.009436. gen.XM_086710 Figure 5671: DNA326787, XM .045451. gen.XM_009436 Figure 5706: DNA326804, XM _114178, gen.XM_045451 Figure 5672: PRO83121 gen.XM_114178 Figure 5707: PRO83137 Figure 5673: DNA326788, XM_114174, Figure 5708: DNA326805, XM_046160, gen.XM_114174 Figure 5674: DNA326789, XM_045460. gen.XM_046160 Figure 5709: PRO83138 gen.XM_045460 Figure 5675: DNA326790, XM _059268, Figure 5710: DNA326806, XM_046179, gen.XM_059268 gen.XM_046179 Figure 5711: PRO83139 Figure 5676A-B: DNA271010, NM_014737, Figure 5712: DNA326807, XM_086745, gen.NM_014737 Figure 5677: PRO59339 gen.XM_086745 Figure 5678: DNA326791, XM_056035, Figure 5713: DNA326808, NM_138578, gen.NM_138578 gen.XM_056035 Figure 5714: PRO83141 Figure 5679: DNA83170, NM _001819, Figure 5715: DNA326809, NM_012112, gen.NM_001819 gen.NM_012112 Figure 5680: PRO2615 Figure 5681: DNA227348, NM_019095. Figure 5716: PRO83142 Figure 5717; DNA326810, XM_086736, gen.NM_019095 gen.XM_086736 Figure 5682: PRO37811 Figure 5718: PRO83143 Figure 5683: DNA326792; NM _003092, Figure 5719: DNA326811, NM_030815, gen.NM_003092 gen.NM_030815 Figure 5684: PRO83125 Figure 5720: PRO83144 Figure 5685: DNA287290, NM_014426, Figure 5721A-B: DNA150767, NM_014742, gen.NM_014426 Figure 5686: PRO69560 gen.NM_014742 Figure 5722: PRO12460 Figure 5687: DNA326793, XM_086701, Figure 5723A-B: DNA326812, XM_047007, gen.XM_086701 gen.XM_047007 Figure 5688: DNA326794, XM_117209, gen.XM_117209 Figure 5724: PRO83145 Figure 5689A-B: DNA326795, XM_046520, Figure 5725 A-B: DNA326813, XM_047011, gen.XM_047011 gen.XM_046520 Figure 5726: PRO83146 Figure 5690: PRO83128 Figure 5691: DNA326796, XM_115846, Figure 5727A-B: DNA326814, XM_047018, gen.XM_115846 gen.XM_047018 Figure 5728: DNA326815, XM _009450, Figure 5692: PRO83129 gen.XM _009450 Figure 5693: DNA326797, NM _080820, Figure 5729: DNA326816, NM_033197, gen.NM_080820 gen.NM_033197 Figure 5694: PRO83130 Figure 5730: PRO83149 Figure 5695: DNA326798, XM_086715, Figure 5731: DNA326817, XM _097772, gen.XM_086715 Figure 5696: DNA326799, XM_092760, gen.XM_097772 Figure 5732: PRO83150 gen.XM_092760 Figure 5697: PRO83132 Figure 5733: DNA326818, NM_016732, Figure 5698: DNA326800, NM_012255, gen.NM_016732 Figure 5734: DNA97298, NM _003908, o12255_ gen.NM

gen.XM_012931

Figure 5769: DNA326835, NM..024855.

PCT/US2003/028547

gen.NM_003908 gen.NM 024855 Figure 5770: PRO83165 Figure 5735: PRO3645 Figure 5736: DNA326819, NM_000687. Figure 5771A-B: DNA227472, NM_002660, gen.NM_002660 gen.NM_000687 Figure 5772: PRO37935 Figure 5737: PRO83152 Figure 5773: DNA326836, XM_097727. Figure 5738: DNA273517, NM_000178, gen.NM_000178 gen.XM_097727 Figure 5739: PRO61498 Figure 5774: DNA103525, NM_002466, Figure 5740: DNA326820, NM_018217. gen.NM_002466 gen.NM_018217 Figure 5775: PRO4852 Figure 5741: PRO83153 Figure 5776: DNA326837, XM 029810. Figure 5742: DNA326821, NM .002212. gen.XM_029810 Figure 5777: PRO83167 gen.NM_002212 Figure 5778: DNA326838, XM 029822. Figure 5743: PRO60945 gen.XM_029822 Figure 5744A-C: DNA326822, NM_007186. Figure 5779: DNA326839, NM _002638, gen.NM_007186 Figure 5745: DNA226758, NM_015966, gen.NM_002638 gen.NM_015966 Figure 5780: PRO2065 Figure 5746: PRO37221 Figure 5781: DNA326840, NM .003064. Figure 5747: DNA194701, NM_003915, gen.NM_003064 gen.NM_003915 Figure 5782: PRO1720 Figure 5783: DNA326841, NM_015937. Figure 5748: PRO24002 Figure 5749: DNA326823, XM _113380, gen.NM_015937 gen.XM_113380 Figure 5784: PRO83169 Figure 5750: DNA326824, NM_016558, Figure 5785: DNA273320, NM _007019, gen.NM .007019 gen.NM_016558 Figure 5751: PRO83155 Figure 5786: PRO61327 Figure 5787: DNA326842, NM_033421, Figure 5752: DNA326825, NM..015511, gen.NM_033421 gen.NM_015511 Figure 5753: PRO83156 Figure 5788: PRO83170 Figure 5754: DNA326826, XM_009501, Figure 5789: DNA88569, NM_006227, gen.NM..006227 gen.XM_009501 Figure 5755: PRO83157 Figure 5790: PRO2420 Figure 5756: DNA326827, XM_057236, Figure 5791: DNA88239, NM _004994, gen.NM_004994 gen.XM_057236 Figure 5792: PRO2711 Figure 5757: DNA326828, NM_024918. gen.NM_024918 Figure 5793: DNA326843, XM_057374, Figure 5758: PRO83159 gen.XM_057374 Figure 5794: DNA326844, XM_114163, Figure 5759: DNA326829, XM..009642, gen.XM_009642 gen.XM_114163 Figure 5760: DNA194807, NM_006698, Figure 5795A-B: DNA326845, XM_097731. gen.NM_006698 gen.XM.097731 Figure 5761: PRO24077 Figure 5796A-B: DNA326846, XM_030044. Figure 5762: DNA326830, XM_009686. gen.XM_030044 Figure 5797: PRO83174 gen.XM_009686 Figure 5763: DNA326831, NM_030877. Figure 5798: DNA326847, NM_017895, gen.NM_030877 gen.NM_017895 Figure 5764: PRO83161 Figure 5799: PRO83175 Figure 5765: DNA326832, XM_028806, Figure 5800: DNA326848, XM_097713. gen.XM_097713 gen.XM_028806 Figure 5766A-B: DNA326833, XM..028810, Figure 5801: PRO83176 gen.XM_028810 Figure 5802: DNA326849, NM_005985, Figure 5767: PRO83163 gen.NM_005985 Figure 5768: DNA326834, XM_012931, Figure 5803: PRO83177

gen.NM_003349

Figure 5804: DNA326850, NM_003349.

PCT/US2003/028547

WO 2004/030615

Figure 5805: PRO83178 Figure 5806: DNA326851, NM_022442, gen.NM 022442 Figure 5807: PRO83179 Figure 5808: DNA326852, NM_005194, gen.NM 005194 Figure 5809: DNA326853, NM_002827, gen.NM_002827 Figure 5810: PRO38066 Figure 5811: DNA326854, NM_003859, gen.NM_003859 Figure 5812; PRO83180 Figure 5813: DNA326855, XM_114165, gen.XM_114165 Figure 5814: DNA269526, NM .001324, gen.NM_001324 Figure 5815: PRO57942 Figure 5816: DNA326856, XM_009549, gen.XM_009549 Figure 5817: PRO83182 Figure 5818: DNA326857, XM_030621, gen.XM_030621 Figure 5819: DNA326858, XM_086648, gen.XM_086648 Figure 5820: PRO83183 Figure 5821: DNA326859, XM_009672, gen.XM_009672 Figure 5822: PRO83184 Figure 5823A-B: DNA326860, XM_009671, gen.XM_009671 Figure 5824: DNA326861, NM_004738, gen.NM_004738 Figure 5825: PRO983 Figure 5826: DNA326862, NM_016592, gen.NM_016592 Figure 5827: PRO83185 Figure 5828: DNA326863, NM_080425, gen.NM_080425 Figure 5829: PRO83186 Figure 5830; DNA304670, NM .000516. gen.NM_000516 Figure 5831: PRO71097 Figure 5832: DNA326864, NM _080426, gen.NM_080426 Figure 5833: PRO83187 Figure 5834: DNA326865, XM_030699, gen.XM_030699 Figure 5835: PRO83188 Figure 5836: DNA188229, NM_000114, gen.NM_000114 Figure 5837: PRO21728 Figure 5838: DNA326866, NM .002792, gen.NM_002792 Figure 5839; PRO83189 Figure 5840A-B: DNA326867, XM_037202, gen.XM_037202

Figure 5841: PRO83190 Figure 5842: DNA 326868, XM _037206, gen.XM_037206 Figure 5843: PRO83191 Figure 5844: DNA103486, NM_007002, gen.NM 007002 Figure 5845: PRO4813 Figure 5846A-D: DNA326869, XM_037217, gen.XM 037217 Figure 5847: DNA326870, NM_001024, gen.NM_001024 Figure 5848: PRO83193 Figure 5849: DNA326871, NM_018270, gen.NM_018270 Figure 5850: PRO83194 Figure 5851: DNA326872, XM_028783. gen.XM_028783 Figure 5852: PRO83195 Figure 5853: DNA326873, NM_001853. gen.NM_001853 Figure 5854: PRO83196 Figure 5855: DNA326874, NM _080796, gen.NM_080796 Figure 5856: PRO83197 Figure 5857: DNA326875, NM_022105. gen.NM_022105 Figure 5858: PRO83198 Figure 5859: DNA326876, NM_080797, gen.NM_080797 Figure 5860: PRO83199 Figure 5861: DNA326877, NM_018209, gen.NM_018209 Figure 5862: PRO83200 Figure 5863A-C: DNA326878, XM_028834. gen.XM_028834 Figure 5864: PRO83201 Figure 5865: DNA326879, NM_024299, gen.NM_024299 Figure 5866: PRO83202 Figure 5867A-C: DNA326880, XM_028918. gen.XM_028918 Figure 5868: PRO83203 Figure 5869: DNA326881, NM..032527, gen.NM_032527 Figure 5870: PRO83204 Figure 5871A-B: DNA326882, XM_028966. gen.XM_028966 Figure 5872: PRO83205 Figure 5873; DNA269746, NM_012469. gen.NM_012469 Figure 5874: PRO58155 Figure 5875: DNA326883, XM_114154, gen.XM_114154 Figure 5876: DNA326884, XM_072173, gen.XM_072173 Figure 5877: DNA326885, XM_086759,

gen.NM_013369

Figure 5912; PRO83219

PCT/US2003/028547

gen.XM_086759 Figure 5913: DNA326901, XM_036042, gen.XM_036042 Figure 5878: DNA326886, XM_086760, Figure 5914: DNA326902, XM_086770, gen.XM_086760 gen.XM_086770 Figure 5879: DNA326887, NM_021219, Figure 5915: DNA326903, NM_004928, gen.NM_021219 Figure 5880: PRO28687 gen.NM .004928 Figure 5916: PRO83222 Figure 5881: DNA 188732, NM_000484, Figure 5917: DNA326904, XM_036087, gen.NM_000484 gen.XM_036087 Figure 5882: PRO25302 Figure 5918: PRO83223 Figure 5883: DNA326888, NM_016940, Figure 5919: DNA326905, XM .. 009805, gen.NM_016940 gen.XM_009805 Figure 5884: PRO83210 Figure 5920: PRO83224 Figure 5885: DNA254572, NM_006585, Figure 5921: DNA226409, NM_004339, gen.NM_006585 Figure 5886: PRO49675 gen.NM_004339 Figure 5887: DNA326889, NM .005806, Figure 5922: PRO36872 Figure 5923; DNA326906, XM_036107, gen.NM_005806 Figure 5888: PRO83211 gen.XM_036107 Figure 5924A-B: DNA326907, XM _036175, Figure 5889: DNA326890, XM_114185, gen.XM_036175 gen.XM_114185 Figure 5890: DNA254994, NM_017613, Figure 5925: DNA326908, XM .097817, gen.XM_097817 gen.NM_017613 Figure 5926A-B; DNA326909, XM _054566, Figure 5891: PRO50083 gen.XM_054566 Figure 5892: DNA274129, NM_001697, Figure 5927: DNA326910, XM_036755, gen.NM-001697 Figure 5893: PRO62065 gen.XM_036755 Figure 5928: DNA326911, XM_086773, Figure 5894: DNA326891, NM_001757, gen.XM_086773 gen.NM_001757 Figure 5929: DNA326912, XM_097807, Figure 5895: PRO83212 gen.XM_097807 Figure 5896A-C: DNA151898, NM_003316, Figure 5930: DNA326913, XM_086777, gen.NM_003316 Figure 5897: PRO12135 gen.XM_086777 Figure 5898: DNA326892, NM_003720, Figure 5931: DNA326914, NM_002340, gen.NM_002340 gen.NM_003720 Figure 5932: PRO83233 Figure 5899: PRO83213 Figure 5933A-B: DNA326915, NM _003906, Figure 5900: DNA326893, NM_002606, gen.NM_003906 gen.NM_002606 Figure 5934: PRO83234 Figure 5901: PRO83214 Figure 5935: DNA226617, NM_006272, Figure 5902: DNA326894, XM_033015, gen.NM_006272 gen.XM_033015 Figure 5936: PRO37080 Figure 5903: DNA326895, XM_033016, Figure 5937: DNA326916, NM .033070, gen.XM_033016 Figure 5904: PRO59669 gen.NM_033070 Figure 5938: PRO83235 Figure 5905: DNA326896, NM .003681, Figure 5939: DNA255046, NM .017829, gen.NM_003681 gen.NM_017829 Figure 5906: PRO69486 Figure 5940: PRO50134 Figure 5907: DNA326897, XM_035999, Figure 5941: DNA326917, NM .001696, gen.XM_035999 Figure 5908: DNA326898, NM .020132, gen.NM_001696 Figure 5942: PRO83236 gen.NM_020132 Figure 5909: PRO83217 Figure 5943A-B: DNA326918, XM _032996, Figure 5910: DNA326899, XM_036011, gen.XM_032996 gen.XM_036011 Figure 5944: PRO83237 Figure 5945: DNA326919, XM_167538, Figure 5911: DNA326900, NM .013369,

gen.XM_167538

Figure 5946: DNA326920, XM_033090,

gen.XM_033090 Figure 5981 A-B: DNA326938, XM _037797. Figure 5947: DNA225954, NM_000407. gen.XM_037797 gen.NM_000407 Figure 5982: PRO83256 Figure 5948: PRO36417 Figure 5983: DNA326939, NM_004175. Figure 5949: DNA326921, XM_058918. gen.NM_004175 gen.XM_058918 Figure 5984: PRO83257 Figure 5950: DNA326922, XM_097833, Figure 5985: DNA326940, XM_086821. gen.XM_097833 gen.XM_086821 Figure 5951: DNA326923, NM_024627. Figure 5986: DNA326941, XM _092888. gen.NM_024627 gen.XM_092888 Figure 5952: PRO83242 Figure 5987: DNA326942, NM_005080. Figure 5953: DNA326924, XM_086809, gen.NM_005080 gen.XM_086809 Figure 5988: PRO83260 Figure 5954: DNA326925, NM_006440, Figure 5989; DNA269830, NM_005243. gen.NM_006440 gen.NM_005243 Figure 5955: PRO83244 Figure 5990: PRO58232 Figure 5956: DNA226561, NM_000754, Figure 5991: DNA326943, NM _006478, gen.NM_000754 gen.NM_006478 Figure 5957: PRO37024 Figure 5992: PRO83261 Figure 5993A-B: DNA326944, XM_037945. Figure 5958: DNA326926, NM_007310, gen.NM_007310 gen.XM_037945 Figure 5959: PRO83245 Figure 5994: DNA103462, NM_000268. Figure 5960A-B: DNA326927, XM_033813, gen.NM_000268 gen.XM_033813 Figure 5995: PRO4789 Figure 5961: DNA326928, NM_022727, Figure 5996: DNA326945, NM_032204. gen.NM_022727 gen.NM_032204 Figure 5962: PRO83247 Figure 5997: PRO83263 Figure 5963: DNA326929, XM_086805. Figure 5998: DNA326946, XM_066291, gen.XM_086805 gen.XM_066291 Figure 5964: DNA326930, XM_086873. Figure 5999: DNA326947, NM _005877. gen.XM_086873 gen.NM_005877 Figure 5965: DNA257549, NM_030573, Figure 6000: PRO62328 gen.NM_030573 Figure 6001: DNA326948, NM_016498. Figure 5966: PRO52119 gen.NM_016498 Figure 5967: DNA326931, XM .096155. Figure 6002: PRO83265 gen.XM_096155 Figure 6003: DNA254141, NM_014303, Figure 5968: DNA326932, XM_096156, gen.NM_014303 gen.XM_096156 Figure 6004: PRO49256 Figure 5969A-B: DNA326933, XM_036937. Figure 6005A-B: DNA151882, NM_014941, gen.XM_036937 gen.NM_014941 Figure 5970: PRO83252 Figure 6006: PRO12134 Figure 5971: DNA326934, XM_097886. Figure 6007: DNA326949, NM .006932, gen.XM_097886 gen.NM_006932 Figure 5972: PRO83253 Figure 6008: PRO83266 Figure 5973: DNA304835, NM_022044, Figure 6009: DNA326950, NM_134269. gen.NM_022044 gen.NM_134269 Figure 5974: PRO71242 Figure 6010: PRO83267 Figure 5975: DNA326935, NM_006115, Figure 6011: DNA270697, NM_004147, gen.NM_006115 gen.NM_004147 Figure 5976: PRO37012 Figure 6012: PRO59061 Figure 5977: DNA326936, XM_037682. Figure 6013: DNA326951, XM_059335, gen.XM_037682 gen.XM_059335 Figure 5978: PRO83254 Figure 6014: DNA326952, XM_018539, Figure 5979: DNA326937, NM .002415, gen.XM_018539 gen.NM_002415 Figure 6015: DNA326953, NM_014306. Figure 5980: PRO83255 gen.NM_014306

Figure 6050: PRO83280

gen.XM_039248

Figure 6051: DNA326968, XM .039248,

WO 2004/030615 PCT/US2003/028547

Figure 6052: DNA326969, NM_012323, Figure 6016: PRO83270 Figure 6017; DNA326954, NM_012179, gen.NM_012323 Figure 6053: PRO83282 gen.NM 012179 Figure 6018: PRO83271 Figure 6054: DNA326970, NM_012264, Figure 6019A-B: DNA326955, XM_038584, gen.NM 012264 Figure 6055; PRO12490 gen.XM_038584 Figure 6020: DNA 151752, NM_002133, Figure 6056: DNA326971, NM_015373. gen.NM_015373 gen.NM_002133 Figure 6057: PRO83283 Figure 6021: PRO12886 Figure 6058: DNA326972, NM_020243, Figure 6022: DNA326956, XM _009947, gen.NM_020243 gen.XM_009947 Figure 6023: PRO12845 Figure 6059: PRO23231 Figure 6060: DNA326973, XM_039339, Figure 6024: DNA326957, XM_114209, gen.XM_039339 gen.XM_114209 Figure 6061: DNA326974, NM_000967, Figure 6025A-B: DNA326958, NM_002473, gen.NM_002473 gen.NM_000967 Figure 6026: PRO83273 Figure 6062: PRO83285 Figure 6063: DNA326975, XM_010000, Figure 6027: DNA188740, NM_003753, gen.NM_003753 gen.XM_010000 Figure 6028: PRO22481 Figure 6064: DNA326976, XM_010002, Figure 6029: DNA326959, NM .021126, gen.XM_010002 gen.NM_021126 Figure 6065: DNA326977, XM_039372, Figure 6030: PRO70331 gen.XM_039372 Figure 6031: DNA326960, XM_009967. Figure 6066: DNA326978, XM _013010, gen.XM_013010 gen.XM_009967 Figure 6032: DNA326961, NM_013365, Figure 6067: PRO83288 Figure 6068: DNA254165, NM_000026, gen.NM_013365 Figure 6033: PRO83274 gen.NM_000026 Figure 6034: DNA290259, NM_018957. Figure 6069: PRO49278 gen.NM_018957 Figure 6070: DNA326979, NM_003932, Figure 6035: PRO70383 gen.NM_003932 Figure 6036: DNA326962, NM_020315, Figure 6071: PRO4586 gen.NM_020315 Figure 6072: DNA326980, NM _014248. Figure 6037: PRO83275 gen.NM_014248 Figure 6038: DNA304719, NM_002305, Figure 6073: PRO83289 gen.NM _002305 Figure 6074: DNA326981, XM_086844, Figure 6039: PRO71145 gen.XM_086844 Figure 6075: DNA219225, NM .002883, Figure 6040: DNA326963, NM .007032, gen.NM_007032 gen.NM_002883 Figure 6041: PRO83276 Figure 6076: PRO34531 Figure 6042: DNA326964, XM_009973. Figure 6077: DNA326982, NM_003216, gen.NM_003216 gen.XM_009973 Figure 6078; PRO83291 Figure 6043; DNA326965, XM_086830. gen.XM_086830 Figure 6079: DNA270954, NM .001098, Figure 6044; PRO83278 gen.NM_001098 Figure 6045: DNA254240, NM_016091, Figure 6080: PRO59285 gen.NM_016091 Figure 6081: DNA326983, NM .001469, Figure 6046: PRO49352 gen.NM_001469 Figure 6047A-B: DNA326966, XM_039236, Figure 6082: PRO4872 gen.XM_039236 Figure 6083: DNA326984, NM_005008. Figure 6048: PRO83279 gen.NM_005008 Figure 6049: DNA326967, NM_006941, Figure 6084: PRO83292 gen.NM_006941 Figure 6085A-B: DNA326985, NM _004599,

gen.NM_004599 Figure 6086: PRO83293

Figure 6087A-B: DNA326986, XM_010024,

PCT/US2003/028547

gen.XM_010024 gen.XM 115924 Figure 6122: DNA327007, XM .113585. Figure 6088: DNA326987, XM_040066, gen.XM. 040066 gen.XM_113585 Figure 6123A-C: DNA327008, XM_035465, Figure 6089: DNA326988, XM_013015. gen.XM_013015 gen.XM_035465 Figure 6090A-B: DNA326989, XM_084084. Figure 6124: DNA327009, NM_002414, gen.XM 084084 gen.NM_002414 Figure 6091: DNA326990, XM_040095, Figure 6125: PRO2373 gen.XM_040095 Figure 6126: DNA269793, NM_005333. Figure 6092: PRO83297 gen.NM .005333 Figure 6093: DNA326991, XM_086875, Figure 6127: PRO58198 Figure 6128: DNA327010, XM _088747, gen.XM_086875 Figure 6094; DNA326992, XM_010029, gen.XM_088747 gen.XM_010029 Figure 6129: PRO83316 Figure 6130: DNA327011, XM_114720. Figure 6095: DNA326993, NM_007311, gen.NM_007311 gen.XM_114720 Figure 6096: PRO83300 Figure 6131: DNA327012, XM_115886. Figure 6097: DNA326994, NM_015140, gen.XM_115886 gen.NM_015140 Figure 6132: DNA327013, XM_010272, Figure 6098: PRO83301 gen.XM_010272 Figure 6099: DNA326995, XM .043614, Figure 6133: PRO83319 gen.XM_043614 Figure 6134: DNA327014, NM_006746, Figure 6100: PRO83302 gen.NM_006746 Figure 6101: DNA256070, NM_022141. Figure 6135: PRO83320 gen.NM_022141 Figure 6136: DNA327015, XM_115890, Figure 6102: PRO51119 gen.XM_115890 Figure 6103: DNA326996, XM_010040. Figure 6137: PRO83321 gen.XM_010040 Figure 6138: DNA327016, NM _000284, Figure 6104: DNA237931, NM_005036, gen.NM_000284 gen.NM_005036 Figure 6139: PRO59441 Figure 6105: PRO39030 Figure 6140: DNA327017, NM_004595, Figure 6106A-B: DNA326997, XM_027143, gen.NM..004595 gen.XM_027143 Figure 6141: PRO61744 Figure 6107: PRO83304 Figure 6142: DNA327018, XM_166078, Figure 6108A-B: DNA326998, XM_010055, gen.XM_166078 gen.XM_010055 Figure 6143: DNA327019, NM_001415, Figure 6109: DNA326999, NM_025204. gen.NM_001415 gen.NM_025204 Figure 6144: PRO83323 Figure 6110: PRO83306 Figure 6145: DNA327020, XM_013086, Figure 6111: DNA327000, XM_041248, gen_XM_013086 Figure 6146: DNA327021, XM _060030, gen.XM_041248 Figure 6112: PRO83307 gen.XM_060030 Figure 6113: DNA327001, XM_092966, Figure 6147: DNA227689, NM _002364, gen.XM_092966 gen.NM_002364 Figure 6114: DNA327002, XM_037468, Figure 6148: PRO38152 gen.XM_037468 Figure 6149: DNA274829, NM _003662, Figure 6115: PRO83309 gen.NM_003662 Figure 6116: DNA327003, XM_037474. Figure 6150: PRO62588 gen.XM_037474 Figure 6151: DNA327022, XM_088619, Figure 6117: PRO83310 gen.XM_088619 Figure 6118: DNA327004, XM_013029. Figure 6152: DNA327023, XM_088622, gen.XM_013029 gen.XM_088622 Figure 6119: DNA327005, XM_114724, Figure 6153A-B: DNA327024, XM_084288. gen.XM_114724 gen.XM_084288 Figure 6120: PRO83312 Figure 6154: PRO59168 Figure 6121: DNA327006, XM _115924, Figure 6155: DNA327025, XM_054221,

PCT/US2003/028547

gen.XM_054221 gen.NM_004493 Figure 6191: PRO61938 Figure 6156: PRO83328 Figure 6192A-B: DNA327044, XM_050403. Figure 6157: DNA327026, XM_018019, gen.XM 018019 gen.XM_050403 Figure 6158: DNA327027, XM_088665, Figure 6193: PRO83343 Figure 6194: DNA327045, XM_029187. gen.XM_088665 Figure 6159: DNA327028, NM_005300, gen.XM_029187 Figure 6195: PRO83344 gen.NM_005300 Figure 6196: DNA327046, XM_013060. Figure 6160: PRO37083 Figure 6161: DNA327029, XM_018241, gen_XM_013060 Figure 6197: DNA227943, NM_006787. gen.XM_018241 Figure 6162: PRO83331 gen.NM_006787 Figure 6163: DNA327030, NM_014138, Figure 6198: PRO38406 gen.NM_014138 Figure 6199: DNA327047, NM_014481, Figure 6164: PRO83332 gen.NM_014481 Figure 6165: DNA327031, NM_005676. Figure 6200: PRO83345 Figure 6201: DNA327048, XM_034935, gen.NM_005676 gen.XM_034935 Figure 6166: PRO83333 Figure 6167: DNA327032, NM_003334. Figure 6202; PRO83346 Figure 6203: DNA327049, XM_084287, gen.NM_003334 Figure 6168: PRO83334 gen.XM_084287 Figure 6204: DNA327050, NM_007268, Figure 6169: DNA327033, XM_010378. gen.NM_007268 gen.XM_010378 Figure 6205: PRO34043 Figure 6170: DNA327034, XM_033884, Figure 6206: DNA327051, XM_015516. gen.XM_033884 Figure 6171: PRO83335 gen.XM_015516 Figure 6207A-B: DNA327052, XM_013042, Figure 6172: DNA327035, XM_033878, gen.XM_033878 gen.XM_013042 Figure 6173: DNA327036, XM_033862, Figure 6208: PRO83349 gen.XM_033862 Figure 6209: DNA327053, XM_088630, Figure 6174: DNA327037, NM_004182, gen.XM_088630 gen.NM_004182 Figure 6210: DNA327054, NM_031206, Figure 6175: PRO83337 gen.NM_031206 Figure 6211: PRO83351 Figure 6176: DNA327038, XM _047032, Figure 6212: DNA327055, XM_093050. gen.XM_047032 Figure 6177: DNA327039, XM_047024. gen.XM_093050 Figure 6213: PRO83352 gen.XM_047024 Figure 6214A-B: DNA225721, NM_018977, Figure 6178: PRO83339 Figure 6179: DNA327040, NM_017883, gen.NM_018977 Figure 6215: PRO36184 gen.NM_017883 Figure 6180: PRO83340 Figure 6216: DNA327056, XM _010141, Figure 6181: DNA238039, NM_005710, gen.XM_010141 gen.NM_005710 Figure 6217: PRO38021 Figure 6182: PRO39127 Figure 6218: DNA327057, XM_088689, Figure 6183: DNA327041, XM_054098, gen.XM_088689 gen.XM_054098 Figure 6219: PRO83353 Figure 6184: PRO83341 Figure 6220: DNA327058, XM_088688, Figure 6185: DNA327042, NM _002668, gen.XM_088688 Figure 6221: PRO83354 gen.NM_002668 Figure 6186: PRO34584 Figure 6222: DNA327059, NM_018486, Figure 6187: DNA271580, NM_014008, gen.NM_018486 gen.NM_014008 Figure 6223: PRO83355 Figure 6188: PRO59868 Figure 6224: DNA327060, NM_001007. Figure 6189A-B: DNA327043, XM .032930, gen.NM_001007 gen.XM_032930 Figure 6225: PRO42022 Figure 6190: DNA273992, NM_004493. Figure 6226: DNA327061, XM_093130,

PCT/US2003/028547

gen.XM_093130 Figure 6260: PRO83372 Figure 6227; DNA327062, XM_084296, Figure 6261: DNA327081, XM_066900, gen.XM_066900 gen.XM_084296 Figure 6228; DNA327063, XM .093241, Figure 6262: PRO83373 gen.XM_093241 Figure 6263: DNA327082, XM_104983, Figure 6229: DNA327064, XM_084283, gen.XM_104983 Figure 6264: PRO83374 gen.XM_084283 Figure 6265: DNA327083, XM_088736. Figure 6230: DNA273254, NM_000291, gen.XM_088736 gen.NM_000291 Figure 6231: PRO61271 Figure 6266: PRO83375 Figure 6267: DNA327084, XM_088738, Figure 6232: DNA327065, XM_018142, gen.XM_088738 gen.XM_018142 Figure 6268: DNA327085, XM_088739, Figure 6233: DNA327066, XM_030373, gen.XM_030373 gen.XM_088739 Figure 6234: PRO83360 Figure 6269: DNA327086, XM_010117, Figure 6235; DNA327067, XM_165533, gen_XM_010117 Figure 6270A-B: DNA76504, NM_001560, gen.XM_165533 gen.NM_001560 Figure 6236: PRO83361 Figure 6271: PRO2537 Figure 6237; DNA327068, XM_051476, gen.XM_051476 Figure 6272: DNA227181, NM_006667, Figure 6238: DNA327069, XM_051471, gen.NM_006667 Figure 6273: PRO37644 gen.XM_051471 Figure 6274: DNA327087, XM_010362, Figure 6239: DNA270496, NM_001325, gen.XM_010362 gen.NM_001325 Figure 6275: DNA327088, XM_016125, Figure 6240: PRO58875 gen.XM_016125 Figure 6241: DNA327070, XM_033147, Figure 6276: DNA327089, NM_015129. gen.XM_033147 gen.NM_015129 Figure 6242: DNA327071, NM_004085, Figure 6277: PRO83381 gen.NM_004085 Figure 6278: DNA327090, NM .001000. Figure 6243: PRO59022 Figure 6244: DNA327072, NM _021029, gen.NM_001000 gen.NM_021029 Figure 6279: PRO10935 Figure 6245: PRO10723 Figure 6280: DNA327091, XM_010436, gen.XM_010436 Figure 6246: DNA327073, NM_012286, Figure 6281: DNA327092, XM_115874, gen.NM_012286 Figure 6247: PRO83365 gen.XM_115874 Figure 6248: DNA327074, NM_024863, Figure 6282: DNA327093, XM _029461, gen.XM_029461 gen.NM_024863 Figure 6249: PRO83366 Figure 6283: PRO83383 Figure 6284: DNA327094, XM_017930. Figure 6250: DNA327075, XM _043643, gen.XM_017930 gen.XM_043643 Figure 6285: DNA227656, NM_004208, Figure 6251: DNA327076, NM_052936, gen.NM_004208 gen.NM_052936 Figure 6252: PRO83368 Figure 6286: PRO38119 Figure 6287: DNA273487, NM_004794, Figure 6253: DNA327077, XM_088710, gen.NM_004794 gen.XM_088710 Figure 6288: PRO61470 Figure 6254: PRO83369 Figure 6289: DNA327095, XM_088745, Figure 6255: DNA327078, XM_166081, gen.XM_166081 gen.XM_088745 Figure 6256: DNA327079, XM_096303, Figure 6290: PRO83385 Figure 6291: DNA327096, XM_114708, gen.XM_096303 Figure 6257: DNA254785, NM_032227, gen.XM_114708 gen.NM_032227 Figure 6292: PRO83386 Figure 6293: DNA327097, NM_016267, Figure 6258: PRO49883

Figure 6259: DNA327080, XM_115923,

gen,XM_115923

gen.NM_016267

Figure 6294: PRO83387

gen.XM_048420

Figure 6326: DNA327114, NM_006013,

PCT/US2003/028547

Figure 6295A-B: DNA327098, XM_042963, gen.NM .006013 Figure 6327: PRO62466 gen.XM_042963 Figure 6328: DNA327115, XM_048410, Figure 6296; PRO83388 Figure 6297; DNA327099, XM_042968. gen.XM 048410 Figure 6329A-C: DNA327116, XM_048404, gen.XM_042968 Figure 6298: PRO83389 gen.XM_048404 Figure 6330A-C: DNA327117, NM_004992, Figure 6299: DNA327100, XM_093219. gen.XM_093219 gen NM 004992 Figure 6300: DNA327101, NM_016249, Figure 6331: PRO83403 Figure 6332: DNA227013, NM _001569. gen.NM_016249 gen.NM_001569 Figure 6301: PRO83391 Figure 6302: DNA327102, XM_098995, Figure 6333: PRO37476 Figure 6334A-B: DNA225800, NM .000425, gen.XM_098995 Figure 6303: PRO83392 gen.NM_000425 Figure 6335: PRO36263 Figure 6304: DNA327103, XM_041921. Figure 6336A-B: DNA327118, NM_024003, gen.XM_041921 Figure 6305: PRO83393 gen.NM_024003 Figure 6337: PRO83404 Figure 6306: DNA327104, XM_048905, gen.XM_048905 Figure 6338: DNA225655, NM _006280. Figure 6307: PRO83394 gen.NM_006280 Figure 6308: DNA 327105, NM .005364. Figure 6339: PRO36118 Figure 6340: DNA276159, NM_004135. gen.NM_005364 Figure 6309: PRO83395 gen.NM_004135 Figure 6310: DNA327106, XM_010178, Figure 6341: PRO63299 Figure 6342A-B: DNA230792, NM_000033, gen.XM_010178 Figure 6311: DNA327107, XM_088592, gen.NM_000033 Figure 6343: PRO38730 gen.XM_088592 Figure 6312: PRO25245 Figure 6344: DNA 103558, NM _005745, Figure 6313: DNA327108, XM_018108, gen.NM_005745 Figure 6345: PRO4885 gen.XM_018108 Figure 6314: PRO83397 Figure 6346: DNA327119, XM_042155, gen.XM_042155 Figure 6315: DNA327109, XM_018109, Figure 6347: PRO83405 gen.XM_018109 Figure 6316: DNA327110, NM_005362, Figure 6348: DNA327120, XM_042153, gen.NM_005362 gen.XM_042153 Figure 6317: PRO24021 Figure 6349: DNA327121, XM_117555, Figure 6318: DNA254783, NM_001363, gen.XM_117555 Figure 6350: DNA327122, XM_084311. gen.NM_001363 Figure 6319: PRO49881 gen.XM_084311 Figure 6320: DNA327111, XM_049337, Figure 6351: DNA327123, XM_033232, gen.XM_049337 gen.XM_033232 Figure 6321: DNA227917, NM_019848, Figure 6352: DNA327124, XM_117539, gen.NM_019848 gen.XM_117539 Figure 6353: DNA327125, XM _027952, Figure 6322: PRO38380 Figure 6323: DNA327112, NM_004699. gen.XM_027952 gen.NM_004699 Figure 6354; DNA327126, XM_114692, gen.XM_114692 Figure 6324: PRO83400 Figure 6355A-B: DNA327127, XM_165530, Figure 6325: DNA327113, XM -048420.

gen.XM_165530

DNA Index (to Figure number)

DNA0, 1188	DNA171408, 48
DNA103214, 218	DNA188229, 5836
DNA103217, 649	DNA188351, 4782
DNA103239, 5576	DNA188396, 3480
DNA103253, 188	DNA 188732, 5882
DNA103320, 5272	DNA188740, 6027
DNA103380, 1677	DNA188748, 146
DNA103401, 4708	DNA189315, 167
DNA103421, 2982	DNA189687, 3297
DNA 103436, 457	DNA189697, 998
DNA103462, 5994	DNA189703, 4568
DNA103471,2070	DNA193882, 585
DNA103474, 3313	DNA193955, 2193
DNA103486, 5844	DNA193957, 2947
DNA103505, 1149	DNA194600, 428
DNA103506, 2990	DNA 194701, 5747
DNA103509, 4110	DNA 194740, 854
DNA103514, 3478	DNA194805, 4530
DNA103525, 5774	DNA194807, 5760
DNA103558, 6344	DNA 194827, 977
DNA103580, 5494	DNA 196344, 576
DNA103588, 2274	DNA196349, 124
DNA103593, 711	DNA196351, 3600
DNA129504, 4985	DNA 196642, 4877
DNA131588, 2593	DNA210134, 367
DNA137231, 3667	DNA210180, 3962
DNA139747, 1368	DNA218271, 5258
DNA144601,3051	DNA218841, 2782
DNA150457, 4936	DNA219225, 6075
DNA150485, 4305	DNA219233, 4182
DNA150548, 5703	DNA225584, 1489
DNA150562, 1153	DNA225592, 1330
DNA150679, 1732	DNA225630, 2767
DNA150725, 806	DNA225631, 2174
DNA150767,5721	DNA225632, 3473
DNA150772, 2034	DNA225649, 4042
DNA150784, 5502	DNA225655, 6338
DNA150814, 4953	DNA225671, 2506
DNA150884, 1024	DNA225721, 6214
DNA 150974, 3204	DNA225752, 3376
DNA150976, 1145	DNA225800, 6334
DNA150978, 3520	DNA225809, 356
DNA150997, 3526	DNA225865, 3976
DNA151010, 2546	DNA225909, 1828
DNA151017, 1066	DNA225910, 1128
DNA151148, 44	DNA225919, 1446
DNA151752, 6020	DNA225920, 1511
DNA151808, 5476	DNA225921, 1515
DNA151827, 3466	DNA225954, 5947
DNA151831,4141	DNA226005, 553
DNA151882, 6005	DNA226011, 5517
DNA151893, 4079	DNA226014, 3729
DNA151898, 5896	DNA226028, 3489

PCT/US2003/028547

WO 2004/030615

DNA226080, 3206	DNA227491, 2691
DNA226105, 3992	DNA227504, 594
DNA226125, 409	DNA227509, 3076
DNA226217, 3004	DNA227528, 803
DNA226260, 271	DNA227529, 346
DNA226262, 105	DNA227545, 698
DNA226324, 4095	DNA227559, 4161
DNA226337, 2458	DNA227575, 1508
DNA226345, 2670	DNA227577, 374
DNA226389, 4820	DNA227607, 1961
DNA226409, 5921	DNA227656, 6285
DNA226416, 2262	DNA227689, 6147
DNA226418, 1791	DNA227764, 4891
	DNA227795, 792
DNA226428, 741 DNA226496, 2565	DNA227821, 36
DNA226547, 1108	DNA227873, 4841
	DNA227917, 6321
DNA226560, 2393	
DNA226561, 5956	DNA227924, 2099
DNA226617, 5935	DNA227929, 2206
DNA226619, 474	DNA227943, 6197
DNA226646, 4224	DNA230792, 6342
DNA226758, 5745	DNA234442, 4214
DNA226771, 3498	DNA237931, 6104
DNA226793, 436	DNA238039, 6181
DNA226853, 3866	DNA247474, 578
DNA226872, 1689	DNA247595, 2182
DNA227013, 6332	DNA251057, 5515
DNA227055, 4939	DNA252367, 1081
DNA227071,4889	DNA253804, 1370
DNA227084, 4742	DNA254141, 6003
DNA227088, 3220	DNA254147, 1627
DNA227092, 3593	DNA254165, 6068
DNA227094, 3628	DNA254186, 3329
DNA227165, 684	DNA254198, 4719
DNA227171,3724	DNA254204, 994
DNA227172, 2964	DNA254240, 6045
DNA227173, 1573	DNA254298, 499
DNA227181, 6272	DNA254346, 603
DNA227190, 814	DNA254532, 4487
DNA227191, 3588	DNA254543, 2740
DNA227204, 1886	DNA254548, 5627
DNA227206, 4170	DNA254572, 5885
DNA227213, 157	DNA254582, 1155
DNA227234, 4626	DNA254620, 1316
DNA227246, 550	DNA254624, 3468
DNA227249, 5352	DNA254771, 2693
DNA227267, 2512	DNA254777, 3777
DNA227268, 2242	DNA254781, 4374
DNA227280, 5232	DNA254783, 6318
DNA227307, 1165	DNA254785, 6257
DNA227320, 1812	DNA254791, 4898
DNA227321, 3984	DNA254994, 5890
DNA227348, 5681	DNA255046, 5939
DNA227442, 1942	DNA255078, 3113
DNA227472, 5771	DNA255340, 4208
DNA227474, 3720	DNA255370, 4265
	, , , , , , , , , , , , , , , , ,

PCT/US2003/028547

DNA255414, 4747	DNA270721, 3295
DNA255531, 859	DNA270901, 4879
DNA255696, 3109	DNA270931, 5504
DNA256070, 6101	DNA270954, 6079
DNA256072, 3511	DNA270975, 4843
DNA256503, 199	DNA270979, 4805
DNA256533, 5513	DNA270991, 2662
DNA256555, 5146	DNA271003, 288
DNA256813, 5056	DNA271010, 5676
DNA256836, 5387	DNA271040, 1997
DNA256840, 5434	DNA271060,751
DNA256844, 4362	DNA271171, 4507
DNA256886, 4370	DNA271187, 1093
DNA256905, 545	DNA271243,703
DNA257253, 1642	DNA271324, 3380
DNA257309, 2746	DNA271344, 3550
	DNA271418, 2104
DNA257428,4854	DNA271416, 2104 DNA271492, 3727
DNA257511, 1437	DNA271580, 6187
DNA257531, 5506 DNA257549, 5965	DNA271608, 934
DNA257916, 402	DNA271626, 1721
DNA257965, 3415	DNA271722, 2751
DNA269431, 3101	DNA271841,5052
	DNA271843, 3392
DNA269481,5593 DNA269498,4059	DNA271847, 2660
DNA269526, 5814	DNA271931, 1697
	DNA271986, 519
DNA269593, 1854 DNA269630, 5312	DNA272024, 202
DNA269708, 267	DNA272050, 2600
DNA269730, 1195	DNA272062, 5625
DNA269746, 5873	DNA272090, 2348
DNA269793, 6126	DNA272127, 881
DNA269803, 3284	DNA272171, 1866
DNA269809, 1687	DNA272213, 2734
DNA269816, 1646	DNA272263, 1967
DNA269830, 5989	DNA272347, 5426
DNA269858, 1270	DNA272379, 3555
DNA269894, 5298	DNA272413, 3390
DNA269910, 1062	DNA272421, 5201
DNA269930, 1097	DNA272605, 1335
DNA269952, 3093	DNA272655, 2714
DNA270015, 3864	DNA272728, 3215
DNA270134, 3208	DNA272748, 235
DNA270154, 746	DNA272889, 4812
DNA270254, 3896	DNA273014, 4267
DNA270315, 5206	DNA273060, 194
DNA270401, 1099	DNA273066, 5568
DNA270458, 3591	DNA273088, 396
DNA270496, 6239	DNA273254, 6230
DNA270613, 1892	DNA273320, 5785
DNA270615, 1386	DNA273346, 5615
DNA270621, 5234	DNA273474, 5421
DNA270675, 1850	DNA273487, 6287
DNA270677, 3823	DNA273517, 5738
DNA270697, 6011 DNA270711, 2371	DNA273521, 3066 DNA273600, 5448

PCT/US2003/028547

DNA273694, 5023	DNA287290, 5685
DNA273712, 42	DNA287291, 4919
DNA273759, 2899	DNA287319, 1969
	DNA287331, 4242
DNA273800, 689	DNA287355, 4520
DNA273839, 4360	
DNA273865, 2246	DNA287417, 3218
DNA273919, 1182	DNA287425, 4900
DNA273992, 6190	DNA287427, 4778
DNA274002, 4476	DNA287636, 5154
DNA274034, 5277	DNA287642, 2951
DNA274058, 3912	DNA288247, 2703
DNA274101, 5115	DNA288259, 1598
DNA274129, 5892	DNA289522, 4446
DNA274139, 5441	DNA289530, 2761
DNA274178, 2491	DNA290231, 1638
DNA274180,4516	DNA290234, 540
DNA274206, 1830	DNA290259, 6034
DNA274289, 5523	DNA290260, 5550
DNA274326, 2176	DNA290264, 2007
DNA274361, 3763	DNA290284, 350
DNA274487, 180	DNA290292, 4728
DNA274690, 5039	DNA290294, 3620
DNA274745, 192	DNA290319, 2680
DNA274755, 4975	DNA290585, 1459
DNA274759, 340	DNA290785, 2032
DNA274761, 5199	DNA294794, 438
DNA274823, 5542	DNA297288, 5638
DNA274829, 6149	DNA297388, 4699
DNA275049, 662	DNA297398, 3434
DNA275066, 744	DNA299899, 930
DNA275139, 292	DNA302016, 3827
DNA275144, 4300	DNA302020, 1718
DNA275181, 4320	DNA304459, 2986
DNA275195, 651	DNA304460, 1908
DNA275240, 864	DNA304488, 2996
DNA275322, 2723	DNA304658, 5562
DNA275334, 2232	DNA304661, 1946
DNA275408, 4564	DNA304662, 5640
DNA275630, 1904	DNA304666, 369
DNA276159, 6340	DNA304668, 1963
DNA281436, 3900	DNA304669, 3887
DNA287167, 794	DNA304670, 5830
DNA287173, 31	DNA304680, 1874
DNA287189, 2265	DNA304685, 2435
DNA287216, 2701	DNA304686, 220
DNA287227, 1952	DNA304694, 3717
DNA287234, 5014	DNA304699, 1986
DNA287237, 3008	DNA304704, 4575
DNA287240, 5328	DNA304707, 2254
DNA287243, 5279	DNA304710, 2308
DNA287246, 1900	DNA304715, 4714
DNA287254, 3236	DNA304716, 1912
DNA287261, 5668	DNA304719, 6038
DNA287270, 5654	DNA304719, 0038 DNA304720, 371
DNA287271, 2763	DNA304783, 3631
DNA287282, 1582	DNA304801, 2342
27.11 12.01 20004 1.702	22.1.150.1001, 2542

DNA304805, 905	DNA323771,98
DNA304835, 5973	DNA323772,99
DNA323717, 1	DNA323773, 101
DNA323718, 2	DNA323774, 102
DNA323719, 3	DNA323775, 103
DNA323720, 4	DNA323776, 107
DNA323721,6	DNA323777, 109
DNA323722,8	DNA323778, 110
DNA323723, 10	DNA323779, 112
DNA323724, 12	DNA323780, 113
DNA323725, 14	DNA323781, 114
DNA323726, 15	DNA323782, 116
DNA323727, 17	DNA323783, 118
DNA323728, 19	DNA323784, 120
DNA323729, 20	DNA323785, 122
DNA323730, 22	DNA323788, 126
DNA323731, 24	DNA323789, 127
DNA323732, 26	DNA323790, 129
DNA323733, 28	DNA323791, 130
DNA323734, 29	DNA323792, 131
DNA323735, 33	DNA323793, 133
DNA323736, 34	DNA323794, 134
DNA323737, 38	DNA323795, 135
DNA323738, 40	DNA323796, 136
DNA323739, 41	DNA323797, 137
DNA323740, 46	DNA323798, 139
DNA323741, 50	DNA323799, 140
DNA323742, 52	DNA323800, 141
DNA323743, 54	DNA323801, 142
DNA323744, 55	DNA323802, 144
DNA323745, 57	DNA323803, 145
DNA323746, 58	DNA323804, 148
DNA323747, 59	DNA323805, 150
DNA323748, 60	DNA323806, 152
DNA323749, 62	DNA323807, 154
DNA323750, 64	DNA323808, 155
DNA323751, 66	DNA323809, 159
DNA323752, 67	DNA323810, 161
DNA323753, 68	DNA323811, 163
DNA323754, 69	DNA323812, 165
DNA323755, 71	DNA323813, 169
DNA323756, 73	DNA323814, 171
DNA323757,75	DNA323815, 175
DNA323758, 76	DNA323816, 176
DNA323759, 77	DNA323817, 178
DNA323760, 78	DNA323818, 182
DNA323761, 79	DNA323819, 183
DNA323762, 81	DNA323820, 185
DNA323763, 83	DNA323821, 187
DNA323764, 85	DNA323822, 190
DNA323765, 87	DNA323823, 196
DNA323766, 89	DNA323824, 198
DNA323767,91	DNA323825, 201
DNA323768,93	DNA323826, 204
DNA323769, 95	DNA323827, 206
DNA323770,97	DNA323828, 208

PCT/US2003/028547

WO 2004/030615

DNA323829, 210	DNA323885, 317
DNA323830, 212	DNA323886, 318
DNA323831, 213	DNA323887, 319
DNA323832, 214	DNA323888, 321
DNA323833, 216	DNA323889, 323
DNA323834, 222	DNA323890, 324
DNA323835, 224	DNA323891, 326
DNA323836, 226	DNA323892, 327
DNA323837, 228	DNA323893, 328
DNA323838, 229	DNA323894, 330
DNA323839, 231	DNA323895, 331
DNA323840, 233	DNA323896, 332
DNA323841, 237	DNA323897, 334
DNA323842, 239	DNA323898, 336
DNA323843, 241	DNA323899, 338
DNA323844, 243	DNA323900, 342
DNA323845, 244	DNA323901, 344
DNA323846, 245	DNA323902, 348
DNA323847, 247	DNA323903, 352
DNA323848, 249	DNA323904, 353
DNA323849, 250	DNA323905,354
DNA323850, 251	DNA323906, 358
DNA323851, 253	DNA323907, 360
DNA323852, 254	DNA323908, 361
DNA323853, 256	DNA323909, 363
DNA323854, 257	DNA323910, 364
DNA323855, 259	DNA323911, 366
DNA323856, 260	DNA323912, 373
DNA323857, 262	DNA323913, 376
DNA323858, 264	DNA323914, 377
DNA323859, 265	DNA323915, 379
DNA323860, 269	DNA323916, 381
DNA323861, 273	DNA323917, 383
DNA323862, 275	DNA323918, 384
DNA323863, 276	DNA323919, 386
DNA323864, 277	DNA323920, 388
DNA323865, 279	DNA323921, 389
DNA323866, 280	DNA323922, 391
DNA323867, 281	DNA323923, 392
DNA323868, 282	DNA323924, 394 DNA323925, 398
DNA323869, 284	DNA323925, 398 DNA323926, 400
DNA323870, 286	DNA323927, 404
DNA323871, 290 DNA323872, 294	DNA323928, 406
DNA323872, 254 DNA323873, 295	DNA323929, 408
DNA323874, 296	DNA323930, 411
DNA323875, 298	DNA323931, 412
DNA323876, 300	DNA323932, 414
DNA323877, 302	DNA323933,416
DNA323878, 304	DNA323934, 418
DNA323879, 306	DNA323935, 420
DNA323880, 308	DNA323936, 422
DNA323881,310	DNA323937, 424
DNA323882, 312	DNA323938, 426
DNA323883, 314	DNA323939, 430
DNA323884, 315	DNA323940, 432

DNA323941, 433	DNA323997, 537
DNA323942, 434	DNA323998, 538
DNA323943, 440	DNA323999, 542
DNA323944, 442	DNA324000, 543
DNA323945, 444	DNA324001, 544
DNA323946, 446	DNA324002, 547
DNA323947, 448	DNA324003, 548
DNA323948, 450	DNA324004, 552
DNA323949, 451	DNA324005, 555
DNA323950, 452	DNA324006, 557
DNA323951,454	DNA324007, 560
DNA323952, 455	DNA324008, 561
DNA323953, 459	DNA324009, 562
DNA323954, 461	DNA324010, 564
DNA323955, 463	DNA324011, 566
DNA323956, 465	DNA324012, 567
DNA323957, 466	DNA324013, 568
DNA323958, 468	DNA324014, 569
DNA323959, 470	DNA324015, 571
DNA323960, 472	DNA324016, 573
DNA323961, 473	DNA324017, 575
DNA323962, 476	DNA324018, 580
DNA323963, 477	DNA324019, 581
DNA323964, 479	DNA324020, 582
DNA323965, 481	DNA324021, 583
DNA323966, 483	DNA324022, 587
DNA323967, 484	DNA324023, 589
DNA323968, 485	DNA324024, 591
DNA323969, 486	DNA324025, 592
DNA323970, 488	DNA324026, 593
DNA323971, 490	DNA324027, 596
DNA323972, 492	DNA324028, 598
DNA323973, 493	DNA324029, 599
DNA323974, 494	DNA324030, 600
DNA323975, 495	DNA324031, 601
DNA323976, 497	DNA324032, 602
DNA323977, 501	DNA324033, 605
DNA323978, 503	DNA324034, 606
DNA323979, 505	DNA324035, 608
DNA323980, 507	DNA324036, 610
DNA323981, 509	DNA324037, 612
DNA323982, 511	DNA324038, 614
DNA323983, 513	DNA324039, 616
DNA323984, 515	DNA324040, 618
DNA323985, 517	DNA324041, 619
DNA323986, 521	DNA324042, 620
DNA323987, 522	DNA324043, 622
DNA323988, 523	DNA324044, 626
DNA323989, 524	DNA324045, 628 DNA324046, 630
DNA323990, 525 DNA323991, 527	DNA324047, 632
DNA323991, 527 DNA323992, 529	DNA324048, 634
DNA323992, 529 DNA323993, 531	DNA324049, 636
DNA323994, 532	DNA324050, 638
DNA323995, 534	DNA324051, 639
DNA323996, 535	DNA324052, 641
21,112,101,101,101	

DNA324053, 642	DNA324109, 763
DNA324054, 643	DNA324110, 764
DNA324055, 645	DNA324111, 766
	DNA324112, 768
DNA324056, 647	DNA324113,770
DNA324057, 653	DNA324114, 771
DNA324058, 655	DNA324115, 772
DNA324059,657	DNA324116, 773
DNA324060, 659	DNA324117, 775
DNA324061, 661	DNA324118, 776
DNA324062, 664	DNA324119, 777
DNA324063, 665	
DNA324064, 667	DNA324120, 779 DNA324121, 780
DNA324065, 669	
DNA324066, 670	DNA324122,782
DNA324067, 672	DNA324123, 783
DNA324068, 674	DNA324124, 784
DNA324069, 676	DNA324125, 785
DNA324070, 678	DNA324126, 787
DNA324071, 680	DNA324127, 788
DNA324072, 681	DNA324128, 789
DNA324073, 683	DNA324129, 791
DNA324074, 686	DNA324130, 796
DNA324075, 690	DNA324131, 798
DNA324076,692	DNA324132, 800
DNA324077, 694	DNA324133, 801
DNA324078, 696	DNA324134, 805
DNA324079, 700	DNA324135, 808
DNA324080, 701	DNA324136, 810
DNA324081, 705	DNA324137, 812
DNA324082, 707	DNA324138, 816
DNA324083,709	DNA324139, 817
DNA324084, 713	DNA324140, 818
DNA324085, 715	DNA324141, 820
DNA324086, 716	DNA324142, 822
DNA324087,717	DNA324143, 823
DNA324088, 719	DNA324144, 824
DNA324089, 719 DNA324089, 721	DNA324145, 825
	DNA324146,827
DNA324090, 723	DNA324147, 829
DNA324091, 725	DNA324148, 831
DNA324092, 726	DNA324149, 832
DNA324093, 727	
DNA324094, 729	DNA324150, 834
DNA324095, 731	DNA324151, 836
DNA324096, 733	DNA324152, 838
DNA324097, 734	DNA324153, 839
DNA324098, 736	DNA324154, 841
DNA324099, 738	DNA324155, 842
DNA324100, 740	DNA324156, 843
DNA324101,743	DNA324157, 845
DNA324102,748	DNA324158, 847
DNA324103, 749	DNA324159, 849
DNA324104, 753	DNA324160, 850
DNA 324105, 755	DNA324161, 851
DNA324106, 757	DNA324162, 853
DNA324107, 759	DNA 324163, 856
DNA324108, 761	DNA324164, 857
•	

DNA324165, 858	DNA324221, 962
DNA324166, 861	DNA324222, 964
DNA324167, 862	DNA324223, 965
DNA324168, 866	DNA324224, 966
DNA324169, 867	DNA324225, 968
DNA324170, 869	DNA324226, 970
DNA324171, 871	DNA324227, 971
DNA324172, 873	DNA324228, 973
DNA324173, 875	DNA324229, 975
DNA324174, 877	DNA324230, 979
DNA324175, 878	DNA324231, 980
DNA324176, 880	DNA324232, 982
DNA324177, 883	DNA324233, 984
DNA324178, 885	DNA324234, 985
DNA324179, 887	DNA324235, 986
DNA324180, 889	DNA324236, 988
DNA324181, 891	DNA324237, 990
DNA324182, 893	DNA324238, 992
DNA324183, 894	DNA324239, 993
DNA324184, 896	DNA324240, 996
DNA324185, 900	DNA324241, 1000
DNA324186, 901	DNA324241, 1000 DNA324242, 1002
	DNA324243, 1004
DNA324187, 903	DNA324244, 1006
DNA324188, 907	DNA324244, 1000 DNA324245, 1007
DNA324189, 909	
DNA324190, 910	DNA324246, 1009
DNA324191, 911	DNA324247, 1011
DNA324192, 912	DNA324248, 1012
DNA324193, 914	DNA324249, 1014 DNA324250, 1016
DNA324194,916	DNA324251, 1018
DNA324195, 918	DNA324252, 1010 DNA324252, 1020
DNA324196, 920 DNA324197, 921	DNA324253, 1020
DNA324197,921 DNA324198,923	DNA324254, 1026
DNA324199, 925	DNA324255, 1028 DNA324256, 1029
DNA324200, 926 DNA324201, 927	DNA324257, 1030
DNA324201, 927 DNA324202, 928	DNA324258, 1032
DNA324203, 929 DNA324204, 932	DNA324259, 1034 DNA324260, 1036
DNA324204, 932 DNA324205, 933	DNA324261, 1037
DNA324206, 936	DNA324262, 1039
DNA324200, 936 DNA324207, 938	
DNA324208, 940	DNA324263, 1040 DNA324264, 1041
DNA324208, 940 DNA324209, 941	DNA324265, 1042
DNA324210,942	DNA324266, 1043
DNA324211, 944	DNA324267, 1045
DNA324212, 946	DNA324268, 1047
DNA324213, 948	DNA324269, 1049
DNA324214, 950	DNA324270, 1051
DNA324215, 952	DNA324271, 1053
DNA324216, 954	DNA324272, 1055
DNA324217, 955	DNA324273, 1057
DNA324218, 957	DNA324274, 1059 DNA324275, 1060
DNA324219, 958 DNA324220, 960	DNA324275, 1060 DNA324276, 1064
D111327220, 700	DIANU 24210, 1004

DNA324277, 1068	DNA324333, 1186
DNA324278, 1070	DNA324334, 1187
DNA324279, 1072	DNA324335, 1190
DNA324280, 1074	DNA324336, 1192
DNA324281, 1075	DNA324337, 1193
DNA324282, 1076	DNA324338, 1197
DNA324283, 1078	DNA324339, 1198
DNA324284, 1079	DNA324340, 1199
DNA324285, 1083	DNA324341, 1201
DNA324286, 1085	DNA324342, 1202
DNA324287, 1086	DNA324343, 1203
DNA324288, 1088	DNA324344, 1204
DNA324289, 1091	DNA324345, 1205
DNA324290, 1095	DNA324346, 1206
DNA324291, 1101	DNA324347, 1208
DNA324292, 1103	DNA324348, 1209
DNA324293, 1105	DNA324349, 1211
DNA324294, 1106	DNA324350, 1213
DNA324295, 1110	DNA324351, 1214
DNA324296, 1112	DNA324352, 1216
DNA324297, 1113	DNA324353, 1218
DNA324298, 1115	DNA324354, 1220
DNA324299, 1117	DNA324355, 1221
DNA324300, 1119	DNA324356, 1225
DNA324301, 1120	DNA324357, 1227
DNA324302, 1121	DNA324358, 1229
DNA324303, 1122	DNA324359, 1231
DNA324304, 1123	DNA324360, 1232
DNA324305, 1125	DNA324361, 1234
DNA324306, 1127	DNA324362, 1235
DNA324307, 1130	DNA324363, 1237
DNA324308, 1131	DNA324364, 1238
DNA324309, 1132	DNA324365, 1240
DNA324310, 1134	DNA324366, 1242
DNA324311, 1136	DNA324367, 1243
DNA324312, 1137	DNA324368, 1244
DNA324313, 1139	DNA324369, 1245
DNA324314, 1140	DNA324370, 1246
DNA324315, 1141	DNA324371, 1248
DNA324316, 1143	DNA324372, 1250
DNA324317, 1147	DNA324373, 1252
DNA324318, 1151	DNA324374, 1254
DNA324319, 1157	DNA324375, 1255
DNA324320, 1159	DNA324376, 1256
DNA324321, 1161	DNA324377, 1258
DNA324322, 1162	DNA324378, 1260
DNA324323, 1163	DNA324379, 1262
DNA324324, 1167	DNA324380, 1263
DNA324325, 1169	DNA324381, 1264
DNA324326, 1170	DNA324382, 1265
DNA324327, 1172	DNA324383, 1266
DNA324328, 1174	DNA324384, 1267
DNA324329, 1176	DNA324385, 1268
DNA324330, 1178	DNA324386, 1272
DNA324331, 1180	DNA324387, 1274
DNA324331, 1184	DNA324388, 1275
2411221221221	

DNA324389, 1276	DNA324445, 1376
DNA324390, 1278	DNA324446, 1378
DNA324391, 1280	DNA324447, 1380
DNA324392, 1282	DNA324448, 1382
DNA324393, 1284	DNA324449, 1384
DNA324394, 1286	DNA324450, 1388
DNA324395, 1288	DNA324451, 1390
DNA324396, 1289	DNA324452, 1392
DNA324397, 1290	DNA324453, 1394
DNA324398, 1291	DNA324454, 1396
DNA 324399, 1292	DNA324455, 1398
DNA324400, 1294	DNA324456, 1400
DNA324401, 1295	DNA324457, 1402
DNA324402, 1296	DNA324458, 1404
DNA324403, 1297	DNA324459, 1406
DNA324404, 1299	DNA324460, 1408
DNA324405, 1300	DNA324461, 1410
DNA324406, 1302	DNA324462, 1412
DNA324407, 1304	DNA324463, 1413
DNA324408, 1306	DNA324464, 1414
DNA324409, 1308	DNA324465, 1416
DNA324410, 1310	DNA324466, 1417
DNA324411, 1312	DNA324467, 1418
DNA324412, 1313	DNA324468, 1419
DNA324413, 1314	DNA324469, 1421
DNA324414, 1315	DNA324470, 1423
DNA324415, 1318	DNA324471, 1424
DNA324416, 1320	DNA324472, 1425
DNA324417, 1322	DNA324473, 1427
DNA324418, 1323	DNA324474, 1429
DNA324419, 1325	DNA324475, 1430
DNA324420, 1329	DNA324476, 1432
DNA324421, 1332	DNA324478, 1433
DNA324422, 1333	DNA324479, 1434
DNA324423, 1337	DNA324480, 1435
DNA324424, 1338	DNA324481, 1439
DNA324425, 1340	DNA324482, 1440
DNA324426, 1341	DNA324483, 1441
DNA324427, 1343	DNA324484, 1442
DNA324428, 1344	DNA324485, 1443
DNA324429, 1345	DNA324486, 1445
DNA324430, 1347	DNA324487, 1448
DNA324431, 1348	DNA324488, 1449
DNA324432, 1350	DNA324489, 1451
DNA324433, 1354	DNA324490, 1452
DNA324434, 1356	DNA324491, 1453
DNA324435, 1358	DNA324492, 1455
DNA324436, 1359	DNA324493, 1456
DNA324437, 1360	DNA324494, 1457
DNA324438, 1361	DNA324495, 1461
DNA324439, 1363	DNA324496, 1463
DNA324440, 1364	DNA324497, 1464
DNA324441, 1365	DNA324498, 1465
DNA324442, 1366	DNA324499, 1466
DNA324443, 1372	DNA324500, 1468
DNA324444, 1374	DNA324501, 1469

DNA324502, 1470	DNA324559, 1556
DNA324503, 1471	DNA324560, 1557
DNA324504, 1472	DNA324561, 1559
DNA324505, 1473	DNA324562, 1561
DNA324506, 1474	DNA324563, 1562
DNA324507, 1476	DNA324564, 1564
DNA324508, 1477	DNA324565, 1565
DNA324509, 1478	DNA324566, 1567
DNA324510, 1480	DNA324567, 1568
DNA324511, 1482	DNA324568, 1570
DNA324511, 1462 DNA324512, 1483	DNA324569, 1572
	DNA324570, 1575
DNA324513, 1484	DNA324571, 1577
DNA324514, 1485	DNA324572, 1579
DNA324515, 1487	
DNA324516, 1491	DNA324573, 1581
DNA324517, 1493	DNA324574, 1584
DNA324518, 1494	DNA324575, 1586
DNA324519, 1496	DNA324576, 1587
DNA324520, 1497	DNA324577, 1588
DNA324521, 1499	DNA324578, 1590
DNA324522, 1500	DNA324579, 1591
DNA324523, 1502	DNA324580, 1592
DNA324524, 1504	DNA324581, 1593
DNA324525, 1506	DNA324582, 1595
DNA324526, 1510	DNA324583, 1596
DNA324527, 1513	DNA324584, 1597
DNA324528, 1517	DNA324585, 1600
DNA324529, 1519	DNA324586, 1602
DNA324530, 1520	DNA324587, 1604
DNA324531, 1522	DNA324588, 1606
DNA324532, 1524	DNA324589, 1608
DNA324533, 1525	DNA324590, 1609
DNA324534, 1526	DNA324591, 1610
DNA324535, 1528	DNA324592, 1611
DNA324536, 1530	DNA324593, 1612
DNA324537, 1531	DNA324594, 1614
DNA324538, 1532	DNA324595, 1615
DNA324539, 1533	DNA324596, 1617
DNA324540, 1534	DNA324597, 1619
DNA324541, 1535	DNA324598, 1621
DNA324542, 1537	DNA324599, 1622
DNA324543, 1539	DNA324600, 1623
DNA324544, 1540	DNA324601, 1624
	DNA324602, 1626
DNA324545, 1541	DNA324603, 1629
DNA324546, 1543	DNA324604, 1631
DNA324547, 1544	DNA324605, 1632
DNA324548, 1545	
DNA324549, 1547	DNA324606, 1634
DNA324550, 1548	DNA324607, 1636
DNA324551, 1549	DNA324608, 1640
DNA324552, 1550	DNA324609, 1641
DNA324554, 1551	DNA324610, 1644
DNA324555, 1552	DNA324611, 1648
DNA324556, 1553	DNA324612, 1650
DNA324557, 1554	DNA324613, 1652
DNA324558, 1555	DNA324614, 1654

DNA324615, 1655	DNA324671, 1768
DNA324616, 1656	DNA324672, 1770
DNA324617, 1658	DNA324673, 1772
DNA324618, 1660	DNA324674, 1774
DNA324619, 1662	DNA324675, 1776
DNA324620, 1663	DNA324676, 1778
DNA324621, 1664	DNA324677, 1779
DNA324622, 1666	DNA324678, 1781
DNA324623, 1668	DNA324679, 1783
DNA324624, 1669	DNA324680, 1785
DNA324625, 1670	DNA324681, 1787
DNA324626, 1673	DNA324682, 1789
	DNA324683, 1793
DNA324627, 1675 DNA324628, 1679	DNA324684, 1795
	DNA324685, 1797
DNA324629, 1681	DNA324686, 1798
DNA324630, 1683	DNA324687, 1799
DNA324631, 1685	DNA324688, 1800
DNA324632, 1691	DNA324689, 1802
DNA324633, 1693	DNA324690, 1803
DNA324634, 1695	DNA324691, 1805
DNA324635, 1699	DNA324692, 1807
DNA324636, 1700	DNA324693, 1808
DNA324637, 1701	DNA324694, 1810
DNA324638, 1702	DNA324695, 1811
DNA324639, 1704	DNA324696, 1814
DNA324640, 1706	DNA324697, 1816
DNA324641, 1708	DNA324698, 1817
DNA324642, 1710	DNA324699, 1818
DNA324643, 1711	DNA324700, 1819
DNA324644, 1712	DNA324700, 1819 DNA324701, 1820
DNA324645, 1713	DNA324701, 1820 DNA324702, 1821
DNA324646, 1714	
DNA324647, 1716	DNA324703, 1823
DNA324648, 1720	DNA324704, 1824 DNA324705, 1826
DNA324649, 1723	DNA324705, 1820 DNA324706, 1832
DNA324650, 1724	DNA324700, 1832 DNA324707, 1834
DNA324651, 1726	DNA324707, 1834
DNA324652, 1728	
DNA324653, 1730	DNA324709, 1838 DNA324710, 1840
DNA324654, 1734	DNA324711, 1841
DNA324655, 1736	DNA324711, 1841 DNA324712, 1842
DNA324656, 1738	
DNA324657, 1740	DNA324713, 1843
DNA324658, 1742	DNA324714, 1845
DNA324659, 1744	DNA324715, 1846
DNA324660, 1746	DNA324716, 1848
DNA324661, 1748	DNA324717, 1852
DNA324662, 1750	DNA324718, 1856
DNA324663, 1752	DNA324719, 1857
DNA324664, 1754	DNA324720, 1858
DNA324665, 1756	DNA324721, 1859
DNA324666, 1758	DNA324722, 1860
DNA324667, 1760	DNA324723, 1861
DNA324668, 1762	DNA324724, 1862
DNA324669, 1764	DNA324725, 1863
DNA324670, 1766	DNA324726, 1865

DNA324727, 1868	DNA324784, 1988
DNA324728, 1870	DNA324785, 1990
DNA324729, 1872	DNA324786, 1992
DNA324730, 1876	DNA324787, 1994
DNA324731, 1877	DNA324788, 1995
DNA324732, 1878	DNA324789, 1999
DNA324733, 1879	DNA324790, 2000
DNA324734, 1880	DNA324791, 2002
DNA324735, 1882	DNA324792, 2004
DNA324736, 1883	DNA324793, 2006
DNA324737, 1884	DNA324794, 2009
DNA324738, 1888	DNA324795, 2011
DNA324739, 1890	DNA324796, 2013
DNA324740, 1894	DNA324797, 2015
DNA324741, 1896	DNA324798, 2016
DNA324742, 1898	DNA324799, 2017
DNA324743, 1902	DNA324800, 2019
DNA324744, 1906	DNA324801, 2021
DNA324745, 1910	DNA324802, 2023
DNA324746, 1914	DNA324803, 2025
DNA324747, 1916	DNA324804, 2027
DNA324748, 1918	DNA324805, 2029
DNA324749, 1920	DNA324806, 2031
DNA324750, 1921	DNA324807, 2036
DNA324751, 1922	DNA324808, 2037
DNA324752, 1924	DNA324809, 2039
DNA324753, 1926	DNA324810, 2041
DNA324754, 1928	DNA324811, 2042
DNA324755, 1929	DNA324812, 2044
DNA324756, 1931	DNA324813, 2045
DNA324757, 1932	DNA324814, 2047
DNA324758, 1934	DNA324815, 2049
DNA324759, 1936	DNA324816, 2050
DNA324760, 1937	DNA324817, 2052
DNA324761, 1938	DNA324818, 2054
DNA324763, 1939	DNA324819, 2056
DNA324764, 1940	DNA324820, 2057
DNA324765, 1941	DNA324821, 2058
DNA324766, 1944	DNA324822, 2059
DNA324767, 1948	DNA324823, 2060
DNA324768, 1949	DNA324824, 2062
DNA324769, 1951	DNA324825, 2064
DNA324770, 1954	DNA324826, 2065
DNA324771, 1955	DNA324827, 2066
DNA324772, 1956	DNA324828, 2068
DNA324773, 1957	DNA324829, 2069
DNA324774, 1959	DNA324830, 2072
DNA324775, 1965	DNA324831, 2074
DNA324776, 1971	DNA324832, 2075
DNA324777, 1973	DNA324833, 2077
DNA324778, 1975	DNA324834, 2079
DNA324779, 1977	DNA324835, 2080
DNA324780, 1979	DNA324836, 2081
DNA324781, 1981	DNA324837, 2083
DNA324782, 1983	DNA324838, 2085
DNA324783, 1984	DNA324839, 2087

DNA324840, 2089	DNA324897, 2184
DNA324841, 2090	DNA324898, 2186
DNA324842, 2091	DNA324899, 2188
DNA324843, 2092	DNA324900, 2190
DNA324844, 2094	DNA324901, 2191
DNA324845, 2096	DNA324902, 2195
DNA324846, 2098	DNA324903, 2197
DNA324847, 2101	DNA324904, 2198
	DNA324905, 2200
DNA324848, 2103	DNA324906, 2202
DNA324849, 2106	DNA324907, 2203
DNA324850, 2107	DNA324908, 2204
DNA324851,2108	DNA324909, 2205
DNA324852, 2110	
DNA324853, 2111	DNA324910, 2208
DNA324854, 2113	DNA324911, 2210
DNA324855, 2114	DNA324912, 2212
DNA324856, 2116	DNA324913, 2214
DNA324857, 2118	DNA324914, 2216
DNA324858, 2119	DNA324915, 2218
DNA324859, 2121	DNA324916, 2219
DNA324860, 2122	DNA324917, 2220
DNA324861, 2123	DNA324918, 2222
DNA324862, 2124	DNA324919, 2224
DNA324863, 2126	DNA324920, 2225
DNA324864, 2128	DNA324921, 2226
DNA324865, 2130	DNA324922, 2228
DNA324866, 2131	DNA324923, 2230
DNA324867, 2132	DNA324924, 2234
DNA324868, 2134	DNA324925, 2236
DNA324870, 2135	DNA324926, 2238
DNA324871, 2137	DNA324927, 2240
DNA324872, 2139	DNA324928, 2244
DNA324873, 2140	DNA324929, 2245
DNA324874, 2141	DNA324930, 2248
DNA324875, 2142	DNA324931, 2249
	DNA324932, 2251
DNA324876, 2144	DNA324933, 2253
DNA324877, 2145	DNA324934, 2256
DNA324878, 2146	DNA324935, 2258
DNA324879, 2147	
DNA324880, 2148	DNA324936, 2259
DNA324881, 2150	DNA324937, 2260
DNA324882, 2152	DNA324938, 2264
DNA324883, 2154	DNA324939, 2267
DNA324884, 2155	DNA324940, 2269
DNA324885, 2157	DNA324941, 2271
DNA 324886, 2159	DNA324942, 2273
DNA324887, 2160	DNA324943, 2276
DNA324888, 2161	DNA324944, 2278
DNA324889, 2163	DNA324945, 2280
DNA324890, 2165	DNA324946, 2281
DNA324891, 2167	DNA324947, 2282
DNA324892, 2168	DNA324948, 2284
DNA324893, 2170	DNA324949, 2286
DNA324894, 2172	DNA324950, 2288
DNA324895, 2178	DNA324951, 2290
DNA324896, 2180	DNA324952, 2292
,	

DNA324953, 2293	DNA325010, 2395
DNA324954, 2295	DNA325011, 2396
DNA324955, 2297	DNA325012, 2398
DNA324956, 2299	DNA325013, 2400
DNA324957, 2300	DNA325014, 2402
	DNA325015, 2403
DNA324958, 2301 DNA324959, 2302	DNA325016, 2404
	DNA325017, 2406
DNA324960, 2304	DNA325018, 2407
DNA324961, 2306	DNA325019, 2409
DNA324962, 2310	DNA325020, 2411
DNA324963, 2311	DNA325021, 2411
DNA324964, 2312	DNA325022, 2414
DNA324965, 2313	DNA325022, 2414 DNA325023, 2416
DNA324966, 2315	
DNA324967, 2316	DNA325024, 2417
DNA324968, 2317	DNA325025, 2418
DNA324969, 2318	DNA325026, 2420
DNA324971, 2319	DNA325027, 2422
DNA324972, 2321	DNA325028, 2423
DNA324973, 2322	DNA325029, 2425
DNA324974, 2323	DNA325030, 2427
DNA324975, 2325	DNA325031, 2429
DNA324976, 2326	DNA325032, 2430
DNA324977, 2328	DNA325033, 2432
DNA324978, 2329	DNA325034, 2433
DNA324979, 2331	DNA325035, 2434
DNA324980, 2333	DNA325036, 2437
DNA324981, 2335	DNA325037, 2439
DNA324982, 2337	DNA325038, 2440
DNA324983, 2338	DNA325039, 2442
DNA324984, 2340	DNA325040, 2444
DNA324985, 2344	DNA325041, 2446
DNA324986, 2346	DNA325042, 2447
DNA324987, 2350	DNA325043, 2449
DNA324988, 2351	DNA325044, 2451
DNA324989, 2352	DNA325045, 2453
DNA324990, 2353	DNA325046, 2454
DNA324991, 2355	DNA325047, 2455
DNA324992, 2357	DNA325048, 2456
DNA324993, 2360	DNA325049, 2460
DNA324994, 2363	DNA325050, 2462
DNA324995, 2365	DNA325051, 2464
DNA324996, 2367	DNA325052, 2466
DNA324997, 2369	DNA325053, 2467
DNA324998, 2373	DNA325054, 2469
DNA324999, 2375	DNA325055, 2470
DNA325000, 2376	DNA325056, 2471
DNA325001, 2378	DNA325057, 2472
DNA325002, 2380	DNA325058, 2473
DNA325003, 2381	DNA325059, 2475
DNA325004, 2383	DNA325060, 2476
DNA325005, 2385	DNA325061, 2478
DNA325006, 2386	DNA325062, 2480
DNA325007, 2387	DNA325063, 2482
DNA325008, 2389	DNA325064, 2483
DNA325009, 2391	DNA325065, 2485

DNA325066, 2487	DNA325122, 2586
DNA325067, 2488	DNA325123, 2588
DNA325068, 2490	DNA325124, 2590
DNA325069, 2493	DNA325125, 2592
DNA325070, 2497	DNA325126, 2595
DNA325071, 2499	DNA325127, 2596
DNA325072, 2501	DNA325128, 2598
DNA325073, 2503	DNA325129, 2602
DNA325074, 2505	DNA325130, 2604
	DNA325131, 2605
DNA325075, 2508	DNA325132, 2606
DNA325076, 2510	DNA325133, 2608
DNA325077, 2514	
DNA325078, 2515	DNA325134, 2609
DNA325079, 2517	DNA325135, 2611
DNA325080, 2519	DNA325136, 2612
DNA325081, 2521	DNA325137, 2613
DNA325082, 2523	DNA325138, 2614
DNA325083, 2525	DNA325139, 2616
DNA325084, 2526	DNA325140, 2618
DNA325085, 2527	DNA325141, 2619
DNA325086, 2529	DNA325143, 2620
DNA325087, 2530	DNA325144, 2622
DNA325088, 2531	DNA325145, 2623
DNA325089, 2533	DNA325146, 2625
DNA325090, 2534	DNA325147, 2626
DNA325091, 2536	DNA325148, 2627
DNA325092, 2538	DNA325149, 2628
DNA325093, 2540	DNA325150, 2629
DNA325094, 2541	DNA325151, 2631
DNA325095, 2543	DNA325152, 2633
DNA325096, 2544	DNA325153, 2635
DNA325097, 2548	DNA325154, 2637
DNA325098, 2550	DNA325155, 2638
DNA325099, 2552	DNA325156, 2640
DNA325100, 2554	DNA325157, 2641
DNA325101, 2556	DNA325158, 2642
	DNA325159, 2644
DNA325102, 2557	DNA325160, 2645
DNA325103, 2558	DNA325161, 2646
DNA325104, 2559	
DNA325105, 2560	DNA325162, 2647
DNA325106, 2561	DNA325163, 2649
DNA325107, 2562	DNA325164, 2651
DNA325108, 2563	DNA325165, 2653
DNA325109, 2564	DNA325166, 2655
DNA325110, 2567	DNA325167, 2657
DNA325111, 2569	DNA325168, 2659
DNA325112, 2571	DNA325169, 2664
DNA325113, 2572	DNA325170, 2666
DNA325114, 2574	DNA325171, 2668
DNA325115, 2575	DNA325172, 2672
DNA325116, 2577	DNA325173, 2673
DNA325117, 2579	DNA325174, 2675
DNA325118, 2581	DNA325175, 2677
DNA325119, 2582	DNA325176, 2679
DNA325120, 2583	DNA325177, 2682
DNA325121, 2584	DNA325178, 2684
. —	

DNA325179, 2686	DNA325235, 2803
DNA325180, 2688	DNA325236, 2804
DNA325181, 2689	DNA325237, 2806
DNA325182, 2697	DNA325238, 2808
DNA325183, 2699	DNA325239, 2809
DNA325184, 2700	DNA325240, 2811
DNA325185, 2705	DNA325241, 2813
DNA325186, 2707	DNA325242, 2815
DNA325187, 2708	DNA325243, 2817
DNA325188, 2710	DNA325244, 2818
DNA325189, 2711	DNA325245, 2819
DNA325190, 2712	DNA325246, 2820
DNA325191, 2716	DNA325247, 2822
	DNA325248, 2824
DNA325192, 2718	
DNA325193, 2720	DNA325249, 2825
DNA325194, 2722	DNA325250, 2826
DNA325195, 2725	DNA325251, 2828
DNA325196, 2726	DNA325252, 2830
DNA325197, 2727	DNA325253, 2832
DNA325198, 2728	DNA325254, 2833
DNA325199, 2730	DNA325255, 2834
DNA325200, 2732	DNA325256, 2836
DNA325201, 2736	DNA325257, 2838
DNA325202, 2738	DNA325258, 2839
DNA325203, 2742	DNA325259, 2841
DNA325204, 2744	DNA325260, 2843
DNA325205, 2748	DNA325261, 2845
DNA325206, 2750	DNA325262, 2846
DNA325207, 2753	DNA325263, 2847
DNA325208, 2755	DNA325264, 2849
DNA325209, 2756	DNA325265, 2851
DNA325210, 2757	DNA325266, 2852
DNA325211, 2759	DNA325267, 2854
DNA325212, 2760	DNA325268, 2855
DNA325213, 2765	DNA325269, 2857
DNA325214, 2766	DNA325270, 2859
DNA325215, 2769	DNA325271, 2860
DNA325216, 2771	DNA325272, 2862
DNA325217, 2772	DNA325273, 2864
DNA325218, 2774	DNA325274, 2866
DNA325219, 2775	DNA325275, 2868
DNA325220, 2777	DNA325276, 2870
DNA325221, 2778	DNA 325277, 2871
DNA325222, 2780	DNA 325278, 2873
DNA325223, 2784	DNA325279, 2874
DNA325224, 2786	DNA325280, 2875
DNA325225, 2787	DNA325281, 2876
DNA325226, 2789	DNA325282, 2878
DNA325227, 2790	DNA325283, 2879
DNA325228, 2792	DNA325284, 2881
DNA325229, 2794	DNA325285, 2883
DNA325230, 2798	DNA325286, 2885
DNA325231, 2799	DNA325287, 2887
DNA325232, 2800	DNA325288, 2889
DNA325233, 2801	DNA325289, 2891
DNA325234, 2802	DNA325290, 2893
,	

DNA325291, 2895	DNA325347, 3000
DNA325292, 2897	DNA325348, 3002
DNA325293, 2898	DNA325349, 3006
DNA325294, 2901	DNA325350, 3010
DNA325295, 2902	DNA325351, 3012
DNA325296, 2904	DNA325352, 3013
DNA325297, 2906	DNA325353, 3015
DNA325298, 2908	DNA325354, 3016
DNA325299, 2909	DNA325355, 3017
DNA325300, 2910	DNA325356, 3019
DNA325301, 2911	DNA325357, 3020
DNA325302, 2913	DNA325358, 3022
DNA325303, 2914	DNA325359, 3024
DNA325304, 2916	DNA325360, 3026
DNA325305, 2918	DNA325361, 3028
DNA325306, 2919	DNA325362, 3029
DNA325307, 2921	DNA325363, 3031
DNA325308, 2922	DNA325364, 3033
DNA325309, 2923	DNA325365, 3035
DNA325310, 2925	DNA325366, 3037
DNA325311, 2926	DNA325367, 3039
DNA325312, 2927	DNA325368, 3041
DNA325313, 2929	DNA325369, 3042
DNA325314, 2930	DNA325370, 3044
DNA325315, 2931	DNA325371, 3045
DNA325316, 2933	DNA325372, 3047
DNA325317, 2934	DNA325373, 3049
DNA325318, 2935	DNA325374, 3053
DNA325319, 2937	DNA325375, 3055
DNA325320, 2939	DNA325376, 3057
DNA325321, 2941	DNA325377, 3058
DNA325322, 2942	DNA325378, 3059
DNA325323, 2944	DNA325379, 3061
DNA325324, 2945	DNA325380, 3063
DNA325325, 2949	DNA325381, 3065
DNA325326, 2953	DNA325382, 3068
DNA325327, 2955	DNA325383, 3070
DNA325328, 2957	DNA325384, 3072
DNA325329, 2959 DNA325330, 2963	DNA325385, 3073
DNA325331, 2966	DNA325386, 3074
DNA325332, 2968	DNA325387, 3075
DNA325333, 2970	DNA325388, 3078 DNA325389, 3080
DNA325334, 2971	
DNA325335, 2973	DNA325390, 3082 DNA325391, 3084
DNA325336, 2975	DNA325391, 3084 DNA325392, 3086
DNA325337, 2976	DNA325393, 3088
DNA325338, 2977	DNA325394, 3089
DNA325339, 2978	DNA325395, 3091
DNA325340, 2980	DNA325396, 3095
DNA325341, 2984	DNA325397, 3097
DNA325342, 2988	DNA325398, 3099
DNA325343, 2992	DNA325399, 3103
DNA325344, 2994	DNA325400, 3104
DNA325345, 2998	DNA325401, 3106
DNA325346, 2999	DNA325402, 3107

PCT/IIS2003/028547

DNA325403, 3111	DNA32
DNA325404, 3115	DNA325
DNA325405, 3117	DNA32
DNA325406, 3119	DNA32
DNA325407, 3120	DNA32
DNA325408, 3122	DNA32
DNA325409, 3124	DNA32
DNA325410, 3125	DNA32
DNA325411, 3127	DNA32
DNA325412, 3129	DNA32
DNA325413, 3131	DNA32
DNA325414, 3133	DNA32
DNA325415, 3135	DNA32
DNA325416, 3136	DNA32
DNA325417, 3137	DNA32
DNA325418, 3139	DNA32
DNA325419, 3141	DNA32
DNA325420, 3142	DNA32
DNA325421, 3144	DNA32
DNA325422, 3146	DNA32
DNA325423, 3148	DNA32
DNA325424, 3149	DNA32
DNA325425, 3151	DNA32
DNA325426, 3152	DNA32
DNA325427,3153	DNA32
DNA325428, 3155	DNA32
DNA325429, 3157	DNA32
DNA325430, 3159	DNA32
DNA325431, 3161	DNA32
DNA325432, 3163	DNA32
DNA325433, 3165	DNA32
DNA325434, 3167	DNA32
DNA325435, 3169	DNA32
DNA325436, 3170	DNA32
DNA325437, 3171	DNA32
DNA325438, 3173	DNA32
DNA325439, 3177	DNA32
DNA325440, 3178	DNA32
DNA325441,3180	DNA32
DNA325442, 3182	DNA32
DNA325443, 3183	DNA32
DNA325444, 3184	DNA32
DNA325445,3185	DNA32
DNA325446, 3187	DNA32
DNA325447, 3188	DNA32
DNA325448, 3190	DNA32
DNA325449, 3192	DNA32
DNA325450, 3193	DNA32
DNA325451,3194	DNA32
DNA325452, 3195	DNA32
DNA325453, 3196	DNA32
DNA325454,3197	DNA32
DNA325455,3199	DNA32: DNA32:
DNA325456, 3201	DNA32
DNA325457, 3202	DNA32
DNA325458, 3210	DINASZ

25459, 3212 25460, 3214 25461, 3217 25462, 3222 25463, 3223 5464, 3224 5465, 3225 5466, 3227 5467, 3228 5468, 3230 5469, 3232 25470, 3234 25471, 3238 25472, 3240 25473, 3242 25474, 3244 25475, 3247 25476, 3248 25477, 3249 5478, 3251 5479, 3253 5480, 3255 25481, 3256 25482, 3258 25483, 3260 25484, 3261 5485, 3263 25486, 3264 25487, 3266 25488, 3268 25489, 3269 25490, 3270 25491, 3271 25492, 3273 25493, 3275 25494, 3276 25495, 3278 25496, 3279 25497, 3281 25498, 3283 25499, 3286 25500, 3287 25501, 3288 25502, 3289 25503, 3291 25504, 3293 25505, 3294 25506, 3299 25507, 3301 25508, 3303 25509, 3304 25510, 3306 25511, 3308 25512, 3310 25513, 3311 25514, 3315

DNA325515, 3316	DNA325571, 3417
DNA325516,3318	DNA325572, 3418
DNA325517,3320	DNA325573, 3420
DNA325518, 3322	DNA325574, 3422
DNA325519, 3324	DNA325575, 3424
DNA325520, 3325	DNA325576, 3426
DNA325521, 3326	DNA325577, 3427
DNA325522, 3328	DNA325578, 3428
DNA325523, 3331	DNA325579, 3429
DNA325524, 3335	DNA325580, 3430
DNA325525, 3336	DNA325581,3432
DNA325526, 3337	DNA325582, 3436
DNA325527, 3339	DNA325583, 3437
DNA325528, 3341	DNA325584, 3439
DNA325529, 3342	DNA325585, 3441
DNA325530, 3344	DNA325586, 3442
DNA325531,3346	DNA325587, 3444
DNA325532, 3348	DNA325588, 3446
DNA325533, 3349	DNA325589, 3448
DNA325534, 3350	DNA325590, 3450
DNA325535, 3352	DNA325591, 3451
DNA325536, 3353	DNA325592, 3454
DNA325537, 3355	DNA325593, 3455
DNA325538, 3357	DNA325594, 3457
DNA325539, 3358	DNA325595, 3458
DNA325540, 3359	DNA325596, 3460
DNA325541, 3361	DNA325597, 3462
DNA325542, 3363	DNA325598, 3463
DNA325543, 3364	DNA325599, 3465
DNA325544, 3365	DNA325600, 3470
DNA325545, 3366 DNA325546, 3367	DNA325601, 3472 DNA325602, 3475
DNA325547, 3369	DNA325603, 3482
DNA325548, 3371	DNA325604, 3483
DNA325549, 3373	DNA325605, 3485
DNA325550, 3374	DNA325606, 3486
DNA325551, 3378	DNA325607, 3488
DNA325552, 3382	DNA325608, 3491
DNA325553, 3384	DNA325609, 3493
DNA325554, 3386	DNA325610, 3494
DNA325555, 3388	DNA325611, 3495
DNA325556, 3394	DNA325612, 3496
DNA325557, 3395	DNA325613, 3500
DNA325558, 3397	DNA325614, 3501
DNA325559, 3398	DNA325615, 3503
DNA325560, 3399	DNA325616, 3504
DNA325561, 3400	DNA325617, 3506
DNA325562, 3401	DNA325618, 3507
DNA325563, 3403	DNA325619, 3509
DNA325564, 3404	DNA325620, 3513
DNA325565, 3406	DNA325621, 3515
DNA325566, 3407	DNA325622, 3517
DNA325567, 3409	DNA325623, 3519
DNA325568, 3411	DNA325624, 3522
DNA325569, 3413	DNA325625, 3528
DNA325570, 3414	DNA325626, 3529

DNA325627, 3531	DNA325683, 3634
DNA325628, 3532	DNA325684, 3635
DNA325629, 3533	DNA325685, 3636
DNA325630, 3535	DNA325686, 3638
DNA325631, 3536	DNA325687, 3640
DNA325632, 3538	DNA325688, 3641
DNA325633, 3539	DNA325689, 3642
DNA325634, 3540	DNA325690, 3643
DNA325635, 3542	DNA325691, 3645
DNA325636, 3543	DNA325692, 3646
DNA325637, 3545	DNA325693, 3648
DNA325638, 3546	DNA325694, 3650
DNA325639, 3548	DNA325695, 3652
DNA325640, 3552	DNA325696, 3654
DNA325641, 3554	DNA325697, 3656
DNA325642, 3557	DNA325698, 3658
DNA325643, 3559	DNA325699, 3659
DNA325644, 3560	DNA325700, 3660
DNA325645, 3561	
DNA325646, 3562	DNA325701, 3662
DNA325647, 3564	DNA325702, 3663
DNA325648, 3566	DNA325703, 3665
	DNA325704, 3669
DNA325649, 3568 DNA325650, 3570	DNA325705, 3671
DNA325651, 3571	DNA325706, 3672
DNA325652, 3572	DNA325707, 3674
DNA325653, 3574	DNA325708, 3676
DNA325654, 3576	DNA325709, 3680
	DNA325710, 3681
DNA325655, 3578 DNA325656, 3579	DNA325711, 3683
DNA325657, 3580	DNA325712, 3685
DNA325658, 3581	DNA325713, 3687
DNA325659, 3582	DNA325714, 3689
DNA325660, 3583	DNA325715, 3691
	DNA325716, 3693
DNA325661, 3584	DNA325717, 3695
DNA325662, 3585	DNA325718, 3697
DNA325664, 3500	DNA325719, 3699
DNA325664, 3590	DNA325720, 3700
DNA325666, 3595	DNA325721, 3702
DNA325666, 3596 DNA325667, 3598	DNA325722, 3704
	DNA325723, 3705
DNA325668, 3599	DNA325724, 3707
DNA325669, 3602 DNA325670, 3604	DNA325725, 3708
	DNA325726, 3710
DNA325671, 3606	DNA325727, 3712
DNA325672, 3608	DNA325728, 3714
DNA325673, 3610	DNA325729, 3715
DNA325674, 3612	DNA325730, 3719
DNA325675, 3614	DNA325731, 3722
DNA325676, 3616	DNA325732, 3726
DNA325677, 3618	DNA325733, 3731
DNA325678, 3622	DNA325734, 3732
DNA325679, 3624	DNA325736, 3734
DNA325680, 3626	DNA325737, 3736
DNA325681,3630	DNA325738, 3737
DNA325682, 3633	DNA325739, 3739

DNA325740, 3740	DNA325797, 3841
DNA325741, 3742	DNA325798, 3843
DNA325742, 3744	DNA325799, 3845
DNA325743, 3746	DNA325800, 3847
DNA325744, 3748	DNA325801, 3849
DNA325745, 3750	DNA325802, 3851
DNA325746, 3752	DNA325803, 3853
DNA325740, 3752 DNA325747, 3754	DNA325804, 3855
DNA325748, 3755	DNA325805, 3856
DNA325749, 3757	DNA325806, 3857
DNA325750, 3759	DNA325807, 3859
DNA325751, 3761	DNA325808, 3861
DNA325752, 3765	DNA325809, 3862
	DNA325810, 3868
DNA325753, 3766	DNA325811, 3869
DNA325754, 3767	DNA325812, 3870
DNA325755, 3769	DNA325812, 3870
DNA325756, 3771	DNA325814, 3874
DNA325757, 3772	DNA325815, 3876
DNA325758, 3773	DNA325816, 3877
DNA325759, 3774	DNA325817, 3878
DNA325760, 3775	
DNA325761, 3779	DNA325818, 3880
DNA325762, 3781	DNA325819, 3881
DNA325763, 3783	DNA325820, 3883
DNA325764, 3785	DNA325821, 3884
DNA325765, 3787	DNA325822, 3886
DNA325766, 3788	DNA325823, 3889
DNA325767, 3790	DNA325824, 3891
DNA325768, 3792	DNA325825, 3893
DNA325769, 3794	DNA325826, 3895
DNA325770, 3796	DNA325827, 3898
DNA325771, 3797	DNA325828, 3902
DNA325772, 3798	DNA325829, 3903
DNA325773, 3800	DNA325830, 3904
DNA325775, 3802	DNA325831, 3906
DNA325776, 3804	DNA325832, 3908
DNA325777, 3805	DNA325833, 3910
DNA325778, 3807	DNA325834, 3914
DNA325779, 3809	DNA325835, 3916
DNA325780, 3810	DNA325836, 3917
DNA325781, 3812	DNA325837, 3918
DNA325782, 3814	DNA325838, 3920
DNA325783, 3816	DNA325839, 3921
DNA325784, 3818	DNA325840, 3923
DNA325785, 3819	DNA325841, 3924
DNA325786, 3821	DNA325842, 3925
DNA325787, 3825	DNA325843, 3926
DNA325788, 3826	DNA325844, 3928
DNA325789, 3829	DNA325845, 3930
DNA325790, 3831	DNA325847, 3931
DNA325791,3833	DNA325848, 3932
DNA325792, 3834	DNA325849, 3933
DNA325793, 3835	DNA325850, 3935
DNA325794, 3836	DNA325851, 3937
DNA325795, 3837	DNA325852, 3938
DNA325796, 3839	DNA325853, 3940

PCT/US2003/028547

DNA325854, 3942 DNA325910, 4037 DNA325911,4039 DNA325855, 3944 DNA325912, 4040 DNA325856, 3946 DNA325913, 4044 DNA325857, 3948 DNA325858, 3949 DNA325914, 4045 DNA325915, 4046 DNA325859, 3950 DNA325916, 4048 DNA325860, 3951 DNA325917, 4050 DNA325861, 3953 DNA325862, 3955 DNA325918, 4052 DNA325919, 4054 DNA325863, 3957 DNA325864, 3958 DNA325865, 3959 DNA325866, 3960 DNA325867, 3964 DNA325868, 3966 DNA325869, 3967 DNA325870, 3968 DNA325871, 3969 DNA325872, 3971 DNA325873, 3973 DNA325874, 3975 DNA325875, 3978 DNA325876, 3980 DNA325877, 3981 DNA325878, 3983 DNA325879, 3986 DNA325880 3987 DNA325881 3988 DNA325882, 3990 DNA325883, 3991 DNA325884, 3994 DNA325885, 3996 DNA325886, 3997 DNA325887, 3999 DNA325888, 4001 DNA325889, 4003 DNA325890, 4005 DNA325891, 4006 DNA325892, 4008 DNA325893, 4010 DNA325894, 4012 DNA325895, 4014 DNA325896, 4016 DNA325897, 4018 DNA325898, 4019 DNA325899, 4020 DNA325900, 4022 DNA325901, 4024 DNA325902, 4025 DNA325903, 4027 DNA325904, 4029 DNA325905, 4031 DNA325906, 4032 DNA325907, 4033 DNA325908, 4034 DNA325909, 4035

DNA325920, 4055 DNA325921, 4057 DNA325922, 4061 DNA325923, 4063 DNA325924, 4065 DNA325925 4067 DNA325926, 4068 DNA325927, 4069 DNA325928, 4071 DNA325929, 4072 DNA325930, 4073 DNA325931, 4074 DNA325932, 4075 DNA325933, 4077 DNA325934, 4081 DNA325935, 4082 DNA325936, 4084 DNA325937, 4086 DNA325938, 4088 DNA325939, 4090 DNA325940, 4091 DNA325941, 4092 DNA325942, 4094 DNA325943, 4097 DNA325944, 4098 DNA325945, 4100 DNA325946, 4101 DNA325947, 4103 DNA325948, 4105 DNA325949, 4106 DNA325950, 4108 DNA325951.4112 DNA325952, 4114 DNA325953, 4115 DNA325954, 4116 DNA325955, 4118 DNA325956, 4119 DNA325957, 4120 DNA325958, 4121 DNA325959, 4122 DNA325960, 4123 DNA325961, 4124 DNA325962, 4125 DNA325963, 4127 DNA325964, 4129 DNA325965, 4130

DNA325966, 4132	DNA326022, 4239
DNA325967, 4133	DNA326023, 4241
DNA325968, 4134	DNA326024, 4244
DNA325969, 4135	DNA326025, 4245
DNA325970, 4136	DNA326026, 4246
DNA325971, 4138	DNA326027, 4248
DNA325972, 4139	DNA 326028, 4250
DNA325973, 4143	DNA326029, 4251
DNA325974, 4145	DNA326030, 4252
DNA325975, 4147	DNA326031, 4254
DNA325976, 4148	DNA326032, 4256
DNA325977, 4150	DNA326033, 4257
DNA325978, 4152	DNA326034, 4259
DNA325979, 4154	DNA326035, 4261
DNA325980, 4156	DNA326036, 4263
DNA325981, 4157	DNA326037, 4269
DNA325982, 4159	DNA326038, 4270
DNA325983, 4160	DNA326039, 4272
DNA325984, 4163	DNA326040, 4273
DNA325985, 4165	DNA326041, 4275
DNA325986, 4167	DNA326042, 4277
DNA325987, 4168	DNA326043, 4278
DNA325988, 4172	DNA326044, 4279
DNA325989, 4174	DNA326045, 4281
DNA325990,4176	DNA326046, 4282
DNA325991, 4178	DNA326047, 4283
DNA325992, 4180	DNA326048, 4285
DNA325993, 4184	DNA326049, 4286
DNA325994, 4186	DNA326050, 4287
DNA325995, 4187	DNA326051, 4289
DNA325996,4189	DNA326052, 4290
DNA325997,4191	DNA326053, 4292
DNA325998, 4193	DNA326054, 4293
DNA325999, 4195	DNA326055, 4295
DNA326000,4197	DNA326056, 4296
DNA326001,4199	DNA326057, 4298
DNA326002, 4200	DNA326058, 4302
DNA326003, 4202	DNA326059, 4304
DNA326004, 4203	DNA326060, 4307
DNA326005, 4205	DNA326061, 4309
DNA326006, 4207	DNA326062, 4310
DNA326007, 4210	DNA326063, 4311
DNA326008, 4211	DNA326064, 4312
DNA326009, 4213	DNA326065, 4314
DNA326010, 4216	DNA326066, 4315
DNA326011, 4218	DNA 326067, 4317
DNA326012, 4220	DNA326068, 4319
DNA326013, 4221	DNA326069, 4322
DNA326014, 4222	DNA326070, 4323
DNA326015, 4226	DNA326071, 4325
DNA326016, 4228	DNA326072, 4326
DNA326017, 4230	DNA326073, 4327
DNA326018, 4232	DNA326074, 4329
DNA326019, 4234	DNA326075, 4331
DNA326020, 4236	DNA326076, 4333
DNA326021, 4237	DNA326077, 4334
· · · · · · · · · · · · · · · · · · ·	

DNA326078, 4335	DNA326134, 4444
DNA326079, 4337	DNA326135, 4448
DNA326080, 4338	DNA326136, 4449
DNA326081, 4340	DNA326137, 4451
DNA326082, 4342	DNA326138, 4453
DNA326083, 4344	DNA326139, 4454
DNA326084, 4346	DNA326140, 4456
DNA326085, 4348	DNA326141, 4458
DNA326086, 4350	DNA326142, 4460
DNA326087, 4352	DNA326143, 4461
DNA326088, 4353	DNA326144, 4462
DNA326089, 4354	DNA326145, 4463
DNA326090, 4356	DNA326146, 4465
DNA326091, 4358	DNA326147, 4467
DNA326092, 4364	DNA326148, 4468
DNA326093, 4366	DNA326149, 4470
DNA326094, 4368	DNA326150, 4472
DNA326095, 4372	DNA326151, 4474
DNA326096, 4376	DNA326152, 4478
DNA326097, 4378	DNA326153, 4479
DNA326098, 4380	DNA326154, 4480
DNA326099, 4382	DNA326155, 4482
DNA326100, 4384	DNA326156, 4483
DNA326101, 4386	DNA326157, 4484
DNA326102, 4388	DNA326158, 4485
DNA326103, 4390	DNA326159, 4489
DNA326104, 4392	DNA326160, 4490
DNA326105, 4394	DNA326161, 4491
DNA326106, 4396	DNA326162, 4493
DNA326107, 4398	DNA326163, 4495
DNA326108, 4400	DNA326164, 4497
DNA326109, 4402	DNA326165, 4498
DNA326110, 4404	DNA326166, 4500
DNA326111, 4406	DNA326167, 4502
DNA326112, 4408	DNA326168, 4504
DNA326113, 4410	DNA326169, 4505
DNA326114, 4411	DNA326170, 4509
DNA326115, 4413	DNA326171, 4511
DNA326116, 4414	DNA326172, 4513
DNA326117, 4416	DNA326173, 4514
DNA326118, 4418	DNA326174, 4518
DNA326119, 4420	DNA326175, 4522
DNA326120, 4423	DNA326176, 4524
DNA326121, 4425	DNA326177, 4526
DNA326122, 4426	DNA326178, 4527
DNA326123, 4427	DNA326179, 4528
DNA326124, 4429	DNA326180, 4532
DNA326125, 4430	DNA326181, 4534
DNA326126, 4431	DNA326182, 4535
DNA326127, 4432	DNA326183, 4537
DNA326128, 4434	DNA326184, 4538
DNA326129, 4435	DNA326185, 4539
DNA326130, 4436	DNA326186, 4541
DNA326131, 4438	DNA326187, 4543
DNA326132, 4440	DNA326188, 4544
DNA326133, 4442	DNA326189, 4545

DNA326190, 4547	DNA326246, 4651
DNA326191, 4549	DNA326247, 4653
DNA326192, 4551	DNA326248, 4654
DNA326193, 4553	DNA326249, 4656
DNA326194, 4555	DNA326250, 4658
DNA326195, 4556	DNA326251, 4659
DNA326196, 4558	DNA326252, 4661
DNA326197, 4560	DNA326253, 4663
DNA326198, 4561	DNA326254, 4665
DNA326199, 4562	DNA326255, 4667
DNA326200, 4566	DNA326256, 4669
DNA326201, 4570	DNA326257, 4671
DNA326202, 4571	DNA326258, 4672
DNA326203, 4573	DNA326259, 4674
DNA326204, 4577	DNA326260, 4675
DNA326205, 4581	DNA326261, 4677
DNA326206,4583	DNA326262, 4678
DNA326207, 4584	DNA326263, 4680
DNA326208, 4586	DNA326264, 4682
DNA326209, 4588	DNA326265, 4684
DNA326210, 4590	DNA326266, 4686
DNA326211, 4592	DNA326267, 4689
DNA326212, 4594	DNA326268, 4691
DNA326213, 4596	DNA326269, 4693
DNA326214, 4597	DNA326270, 4694
DNA326215, 4599	DNA326271, 4695
DNA326216, 4600	DNA326272, 4696
DNA326217, 4602	DNA326273, 4697
DNA326218, 4604	DNA326274, 4701
DNA326219,4606	DNA326275, 4703
DNA326220, 4608	DNA326276, 4704
DNA326221, 4610	DNA326277, 4706
DNA326222, 4612	DNA326278, 4707
DNA326223, 4614	DNA326279, 4710
DNA326224, 4616	DNA326280, 4712
DNA326225, 4617	DNA326281, 4713
DNA326226, 4619	DNA326282, 4716
DNA326227, 4621	DNA326283, 4718
DNA326228, 4622	DNA326284, 4721
DNA326229, 4624	DNA326285, 4723
DNA326230, 4628	DNA326286, 4724
DNA326231, 4630	DNA326287, 4725
DNA326232, 4632	DNA326288, 4727
DNA326233, 4633	DNA326289, 4730
DNA326234, 4635	DNA326290, 4732
DNA326235, 4637	DNA326291, 4734
DNA326236, 4638	DNA326292, 4735
DNA326237, 4640	DNA326293, 4737
DNA326238, 4641	DNA326294, 4739
DNA326239, 4642	DNA326295, 4741
DNA326240, 4644	DNA326296, 4744
DNA326241, 4645	DNA326297, 4745
DNA326242, 4646	DNA326298, 4749
DNA326243, 4647	DNA326299, 4750
DNA326244, 4648	DNA326300, 4751
DNA326245, 4650	DNA326301, 4752

DNA326302, 4754	DNA326358, 4867
DNA326303,4755	DNA326359, 4869
DNA326304, 4757	DNA326360, 4871
DNA326305, 4758	DNA326361, 4873
	DNA326362, 4875
DNA326306, 4760	
DNA326307, 4761	DNA326363, 4880
DNA326308, 4763	DNA326364, 4881
DNA326309, 4765	DNA326365, 4883
DNA326310, 4767	DNA326366, 4885
DNA326311, 4768	DNA326367, 4893
DNA326312, 4769	DNA326368, 4895
DNA326313, 4771	DNA326369, 4897
DNA326314, 4773	DNA326370, 4902
DNA326315, 4775	DNA326371, 4905
DNA326316, 4777	DNA326372, 4906
DNA326317, 4780	DNA326373, 4908
DNA326318, 4784	DNA326374, 4910
DNA326319, 4786	DNA326375, 4911
DNA326320, 4788	DNA326376, 4913
DNA326321, 4790	DNA326377, 4915
DNA326322, 4792	DNA326378, 4916
DNA326323, 4794	DNA326379, 4917
DNA326324, 4798	DNA326380, 4921
DNA326325, 4800	DNA326381, 4923
DNA326326, 4801	DNA326382, 4924
DNA326327, 4803	DNA326383, 4926
DNA326328, 4807	DNA326384, 4927
DNA326329, 4809	DNA326385, 4929
DNA326330, 4810	DNA326386, 4931
DNA326331, 4814	DNA326387, 4933
DNA326332, 4816	DNA326388, 4935
DNA326333, 4818	DNA326389, 4938
DNA326334, 4819	DNA326390, 4941
DNA326335, 4822	DNA326391, 4942
DNA326336, 4824	DNA326392, 4943
DNA326337, 4825	DNA326393, 4944
DNA326338, 4826	DNA326394, 4945
DNA326339, 4827	DNA326395, 4946
DNA326340, 4829	DNA326396, 4948
DNA326341, 4830	DNA326397, 4950
DNA326342, 4832	DNA326398, 4951
DNA326343, 4834	DNA326399, 4955
DNA326344, 4836	DNA326400, 4957
DNA326345, 4838	DNA326401, 4958
DNA326346, 4840	DNA326402, 4960
DNA326347, 4847	DNA326403, 4962
DNA326348, 4849	DNA326404, 4965
DNA326349, 4850	DNA326405, 4967
DNA326350, 4852	DNA326406, 4969
DNA326351, 4856	DNA326407, 4971
DNA326352, 4857	DNA326408, 4973
DNA326353, 4859	DNA326409, 4977
DNA326354, 4861	DNA326410, 4978
DNA326355, 4863	DNA326411, 4980
DNA326356, 4864	DNA326412, 4982
DNA326357, 4865	DNA326413, 4984

DNA326414, 4987	DNA326470, 5078
DNA326415, 4988	DNA326471, 5080
DNA326416, 4989	DNA326472, 5082
DNA326417, 4991	DNA326473, 5083
DNA326418, 4992	DNA326474, 5084
DNA326419, 4994	DNA326475, 5086
DNA326420, 4995	DNA326476, 5088
DNA326421, 4996	DNA326477, 5089
DNA326422, 4998	DNA326478, 5090
DNA326423, 4999	DNA326479, 5092
DNA326424, 5000	DNA326480, 5093
DNA326425, 5001	DNA326481, 5095
DNA326426, 5002	DNA326482, 5097
DNA326427, 5004	DNA326483, 5098
DNA326428, 5006	DNA326484, 5100
DNA326429, 5008	DNA326485, 5102
DNA326430, 5010	DNA326486, 5104
DNA326431,5011	DNA326487, 5106
DNA326432, 5013	DNA326488, 5108
DNA326433, 5016	DNA326489, 5109
DNA326434, 5018	DNA326490, 5110
DNA326435, 5019	DNA326491, 5112
DNA326436, 5020	DNA326492, 5113
DNA326437, 5021	DNA326493, 5114
DNA326438, 5022	DNA326494, 5117
DNA326439, 5025	DNA326495, 5119
DNA326440, 5026	DNA326496, 5120
DNA326441, 5027	DNA326497, 5122
DNA326442, 5028	DNA326498, 5124
DNA326443, 5030	DNA326499, 5126
DNA326444, 5031	DNA326500, 5128
DNA326445, 5032	DNA326501, 5130
DNA326446, 5034	DNA326502, 5131
DNA326447, 5036	DNA326503, 5132
DNA326448, 5037	DNA326504, 5134
DNA326449, 5042	DNA326505, 5135
DNA326450, 5043	DNA326506, 5137
DNA326451, 5045	DNA326507, 5138
DNA326452, 5046	DNA326508, 5140
DNA326453, 5048	DNA326509, 5141
DNA326454, 5049	DNA326510, 5143
DNA326455, 5054	DNA326511, 5145
DNA326456, 5055	DNA326512, 5148
DNA326457, 5058	DNA326513, 5150
DNA326458, 5060	DNA326514, 5152
DNA326459, 5062	DNA326515, 5155
DNA326460, 5064	DNA326516, 5157
DNA326461,5065	DNA326517, 5159
DNA326462, 5066	DNA326518, 5160
DNA326463, 5067	DNA326519, 5161
DNA326464, 5069	DNA326520, 5163
DNA326465, 5071	DNA326521, 5165
DNA326466, 5072	DNA326522, 5166
DNA326467, 5074	DNA326523, 5168
DNA326468, 5075	DNA326524, 5169
DNA326469, 5076	DNA326525, 5171

DNA326526, 5173	DNA326583, 5270
DNA326527, 5175	DNA326584, 5274
DNA326528, 5176	DNA326585, 5276
DNA326529, 5178	DNA326586, 5281
DNA326530, 5180	DNA326587, 5283
DNA326531, 5181	DNA326588, 5285
DNA326532, 5183	DNA326589, 5286
DNA326533, 5184	DNA326590, 5288
DNA326534, 5186	DNA326591, 5290
DNA326535, 5188	DNA326592, 5292
DNA326536,5190	DNA326593, 5294
DNA326537, 5192	DNA326594, 5295
DNA326538, 5194	DNA326595, 5297
DNA326539, 5195	DNA326596, 5300
DNA326540, 5196	DNA326597, 5302
DNA326541, 5197	DNA326598, 5303
DNA326542, 5203	DNA326599, 5305
DNA326543, 5205	DNA326600, 5307
DNA326544, 5208	DNA326601, 5308
DNA326546, 5210	DNA326602, 5310
DNA326547, 5212	DNA326603, 5311
DNA326548, 5213	DNA326604, 5314
	DNA326605, 5316
DNA326549, 5214	DNA326606, 5317
DNA326550, 5216	DNA326607, 5319
DNA326551, 5218	DNA326608, 5321
DNA326552, 5219	DNA326609, 5323
DNA326553,5221	DNA326610, 5325
DNA326554, 5222	DNA326611, 5326
DNA326555, 5223	DNA326612, 5330
DNA326556, 5225	DNA326613, 5331
DNA326557,5226	DNA326614, 5332
DNA326558, 5227	DNA326615, 5334
DNA326559, 5229	DNA326616, 5336
DNA326560, 5230	DNA326617, 5337
DNA326561, 5236	DNA326618, 5338
DNA326562, 5237	DNA326619, 5339
DNA326563, 5239	DNA326620, 5341
DNA326564, 5240	DNA326621, 5343
DNA326565, 5241	DNA326622, 5345
DNA326566, 5243	DNA326623, 5347
DNA326567, 5244	DNA326624, 5349
DNA326568, 5246	DNA326625, 5350
DNA326569, 5247	DNA326626, 5354
DNA326570, 5248	DNA326627, 5355
DNA326571, 5250	
DNA326572, 5252	DNA326628, 5357
DNA326573, 5254	DNA326629, 5358
DNA326574, 5256	DNA326630, 5360
DNA326575, 5257	DNA326631, 5362
DNA326576, 5260	DNA326632, 5364
DNA326577, 5261	DNA326633, 5366
DNA326578, 5262	DNA326634, 5367
DNA326579, 5264	DNA326635, 5369
DNA326580, 5266	DNA326636, 5370
DNA326581, 5267	DNA326637, 5371
DNA326582, 5269	DNA326638, 5372

DNA326639, 5374	DNA326695, 5474
DNA326640, 5376	DNA326696, 5478
DNA326641, 5378	DNA326697, 5480
DNA326642, 5379	DNA326698, 5482
DNA326643, 5380	DNA326699, 5483
DNA326644, 5382	DNA326700, 5484
DNA326645, 5383	DNA326701, 5485
DNA326646, 5384	DNA326702, 5486
DNA326647, 5385	DNA326703, 5487
DNA326648, 5389	DNA326704, 5488
DNA326649, 5391	DNA326705, 5489
DNA326650, 5393	DNA326706, 5491
DNA326651, 5395	DNA326707, 5492
DNA326652, 5396	DNA326708, 5496
DNA326653, 5398	DNA326709, 5497
DNA326654, 5399	DNA326710, 5499
DNA326655, 5401	DNA326711, 5501
DNA326656, 5403	DNA326712, 5508
DNA326657, 5404	DNA326713, 5510
DNA326658, 5406	DNA326714, 5519
DNA326659, 5408	DNA326715, 5521
DNA326660, 5409	DNA326716, 5522
DNA326661, 5411	DNA326717, 5525
DNA326662, 5413	DNA326718, 5527
DNA326663,5415	DNA326719, 5528
DNA326664, 5417	DNA326720, 5529
DNA326665, 5419	DNA326721, 5530
DNA326666, 5423	DNA326722, 5531
DNA326667, 5425	DNA326723, 5532
DNA326668, 5428	DNA326724, 5534
DNA326669, 5430	. DNA326725, 5536
DNA326670, 5432	DNA326726, 5537
DNA326671, 5436	DNA326727, 5539
DNA326672, 5438	DNA326728, 5541
DNA326673, 5439	DNA326729, 5544
DNA326674, 5440	DNA326730, 5546
DNA326675, 5443	DNA326731, 5548
DNA326676, 5444	DNA326732, 5549
DNA326677, 5445	DNA326733, 5552
DNA326678, 5446	DNA326734, 5554
DNA326679, 5447	DNA326735, 5556
DNA326680, 5450	DNA326736, 5558
DNA326681, 5451	DNA326737, 5560
DNA326682, 5453	DNA326738, 5564
DNA326683, 5454	DNA326739, 5566
DNA326684, 5456	DNA326740, 5570
DNA326685, 5458	DNA326741, 5571
DNA326686, 5460	DNA326742, 5573
DNA326687, 5461	DNA326743, 5574
DNA326688, 5462	DNA326744, 5578
DNA326689, 5463	DNA326745, 5580
DNA326690, 5465	DNA326746, 5582
DNA326691, 5466	DNA326747, 5584
DNA326692, 5468	DNA326748, 5586
DNA326693, 5470	DNA326749, 5588
DNA326694, 5472	DNA326750, 5592
	•

DNA326751, 5595	DNA326807, 5712
DNA326752, 5597	DNA326808, 5713
DNA326753, 5598	DNA326809, 5715
DNA326754, 5600	DNA326810, 5717
DNA326755, 5602	DNA326811, 5719
DNA326756, 5603	DNA326812, 5723
DNA326757, 5605	DNA326813, 5725
DNA326758, 5607	DNA326814, 5727
DNA326759, 5608	DNA326815, 5728
DNA326760, 5610	DNA326816, 5729
	DNA326817, 5731
DNA326761, 5612	DNA326818, 5733
DNA326762, 5613	DNA326819, 5736
DNA326763, 5617	DNA326820, 5740
DNA326764, 5619	
DNA326765, 5621	DNA326821, 5742 DNA326822, 5744
DNA326766, 5623	
DNA326767, 5629	DNA326823, 5749
DNA326768, 5631	DNA326824, 5750
DNA326769, 5633	DNA326825, 5752
DNA326770, 5635	DNA326826, 5754
DNA326771, 5636	DNA326827, 5756
DNA326772, 5642	DNA326828, 5757
DNA326773, 5644	DNA326829, 5759
DNA326774, 5646	DNA326830, 5762
DNA326775, 5647	DNA326831, 5763
DNA326776, 5648	DNA326832, 5765
DNA326777, 5650	DNA326833, 5766
DNA326778, 5652	DNA326834, 5768
DNA326779, 5656	DNA326835, 5769
DNA326780, 5658	DNA326836, 5773
DNA326781, 5660	DNA326837, 5776
DNA326782, 5661	DNA326838, 5778
DNA326783, 5663	DNA326839, 5779
DNA326784, 5665	DNA326840, 5781
DNA326785, 5667	DNA326841, 5783
DNA326786, 5670	DNA326842, 5787
DNA326787, 5671	DNA326843, 5793
DNA326788, 5673	DNA326844, 5794
DNA326789, 5674	DNA326845, 5795
DNA326790, 5675	DNA326846, 5796
DNA326791, 5678	DNA326847, 5798
DNA326792, 5683	DNA326848, 5800
DNA326793, 5687	DNA326849, 5802
DNA326794, 5688	DNA326850, 5804
DNA326795, 5689	DNA326851,5806
DNA326796, 5691	DNA326852, 5808
DNA326797, 5693	DNA326853, 5809
DNA326798, 5695	DNA326854, 5811
DNA326799, 5696	DNA326855, 5813
DNA326800, 5698	DNA326856, 5816
DNA326801, 5700	DNA326857, 5818
DNA326802, 5701	DNA326858, 5819
DNA326803, 5705	DNA326859, 5821
DNA326804, 5706	DNA326860, 5823
DNA326805, 5708	DNA326861, 5824
DNA326806, 5710	DNA326862, 5826
DIAD20000, 3 / 10	211122002, 3020

DNA326863, 5828	DNA326919, 5945
DNA326864, 5832	DNA326920, 5946
DNA326865, 5834	DNA326921, 5949
DNA326866, 5838	DNA326922, 5950
DNA326867, 5840	DNA326923, 5951
DNA326868, 5842	DNA326924, 5953
DNA326869, 5846	DNA326925, 5954
DNA326870, 5847	DNA326926, 5958
DNA326871, 5849	DNA326927, 5960
DNA326872, 5851	DNA326928, 5961
DNA326873, 5853	DNA326929, 5963
DNA326874, 5855	DNA326930, 5964
DNA326875, 5857	DNA326931, 5967
DNA326876, 5859	DNA326932, 5968
	DNA326933, 5969
DNA326877, 5861 DNA326878, 5863	DNA326934, 5971
	DNA326935, 5975
DNA326879, 5865	DNA326936, 5977
DNA326880, 5867	
DNA326881, 5869	DNA326937, 5979
DNA326882, 5871 DNA326883, 5875	DNA326938, 5981 DNA326939, 5983
DNA326884, 5876	DNA326940, 5985
DNA326885, 5877	DNA326941, 5986
DNA326886, 5878	DNA326942, 5987
DNA326887, 5879	DNA326943, 5991
DNA326888, 5883	DNA326944, 5993
DNA326889, 5887	DNA326945, 5996
DNA326890, 5889	DNA326946, 5998
DNA326891, 5894	DNA326947, 5999
DNA326892, 5898	DNA326948, 6001
DNA326893, 5900	DNA326949, 6007
DNA326894, 5902	DNA326950, 6009
DNA326895, 5903	DNA326951, 6013
DNA326896, 5905	DNA326952, 6014
DNA326897, 5907	DNA326953, 6015
DNA326898, 5908	DNA326954, 6017
DNA326899, 5910	DNA326955, 6019
DNA326900, 5911	DNA326956, 6022
DNA326901, 5913	DNA326957, 6024
DNA326902, 5914	DNA326958, 6025
DNA326903, 5915	DNA326959, 6029
DNA326904, 5917	DNA326960, 6031
DNA326905, 5919	DNA326961, 6032
DNA326906, 5923	DNA326962, 6036
DNA326907, 5924	DNA326963, 6040
DNA326908, 5925	DNA326964, 6042
DNA326909, 5926	DNA326965, 6043
DNA326910, 5927	DNA326966, 6047
DNA326911, 5928	DNA326967, 6049
DNA326912, 5929	DNA326968, 6051
DNA326913, 5930	DNA326969, 6052
DNA326914, 5931	DNA326970, 6054
DNA326915, 5933	DNA326971, 6056
DNA326916, 5937	DNA326972, 6058
DNA326917, 5941	DNA326973, 6060
DNA326918, 5943	DNA326974, 6061

DNA326975, 6063	DNA327031, 6165
DNA326976, 6064	DNA327032, 6167
DNA326977, 6065	DNA327033, 6169
DNA326978, 6066	DNA327034, 6170
DNA326979, 6070	DNA327035, 6172
DNA326980, 6072	DNA327036, 6173
DNA326981,6074	DNA327037, 6174
DNA326982, 6077	DNA327038, 6176
DNA326983, 6081	DNA327039, 6177
DNA326984, 6083	DNA327040, 6179
DNA326985, 6085	DNA327041, 6183
DNA326986, 6087	DNA327042, 6185
DNA326987, 6088	DNA327043, 6189
DNA326988, 6089	DNA327044, 6192
	DNA327045, 6194
DNA326989, 6090	DNA327046, 6196
DNA326990, 6091	DNA327047, 6199
DNA326991, 6093	DNA327048, 6201
DNA326992, 6094	DNA327049, 6203
DNA326993, 6095	DNA327050, 6204
DNA326994,6097	DNA327050, 0204 DNA327051, 6206
DNA326995, 6099	DNA327052, 6207
DNA326996, 6103	DNA327052, 6207
DNA326997, 6106	
DNA326998, 6108	DNA327054, 6210
DNA326999,6109	DNA327055, 6212
DNA327000, 6111	DNA327056, 6216
DNA327001,6113	DNA327057, 6218
DNA327002, 6114	DNA327058, 6220
DNA327003,6116	DNA327059, 6222
DNA327004,6118	DNA327060, 6224
DNA327005, 6119	DNA327061, 6226
DNA327006,6121	DNA327062, 6227
DNA327007,6122	DNA327063, 6228
DNA327008,6123	DNA327064, 6229
DNA327009, 6124	DNA327065, 6232
DNA327010, 6128	DNA327066, 6233
DNA327011, 6130	DNA327067, 6235
DNA327012,6131	DNA327068, 6237
DNA327013, 6132	DNA327069, 6238
DNA327014,6134	DNA327070, 6241
DNA327015,6136	DNA327071, 6242
DNA327016, 6138	DNA327072, 6244
DNA327017, 6140	DNA327073, 6246
DNA327018, 6142	DNA327074, 6248
DNA327019, 6143	DNA327075, 6250
DNA327020, 6145	DNA327076, 6251
DNA327021,6146	DNA327077, 6253
DNA327022, 6151	DNA327078, 6255
DNA327023, 6152	DNA327079, 6256
DNA327024, 6153	DNA327080, 6259
DNA327025, 6155	DNA327081, 6261
DNA327026,6157	DNA327082, 6263
DNA327027, 6158	DNA327083, 6265
DNA327028, 6159	DNA327084, 6267
DNA327029, 6161	DNA327085, 6268
DNA327030, 6163	DNA327086, 6269

PCT/US2003/028547

DNA327087, 6274
DNA327088, 6275
DNA327089, 6276
DNA327090, 6278
DNA327091, 6280
DNA327092, 6281
DNA327093, 6282
DNA327094, 6284
DNA327095, 6289
DNA327096, 6291
DNA327097,6293
DNA327098, 6295
DNA327099, 6297
DIVAS27099, 0297
DNA327100, 6299
DNA327101, 6300
DNA327102, 6302
DNA327103, 6304
DNA327104, 6306
DNA32/104, 0306
DNA327105, 6308
DNA327106, 6310
DNA327107, 6311
DNA327108, 6313
DNA327108, 0313
DNA327109,6315
DNA327110, 6316
DNA327111, 6320
DNA327112, 6323
DNA327113, 6325
DNA327113, 0323
DNA327114, 6326
DNA327115, 6328
DNA327116, 6329
DNA327117, 6330
DNA327118, 6336
DNA327119, 6346
DIVA327119, 0340
DNA327120, 6348
DNA327121, 6349
DNA327122, 6350
DNA327123, 6351
DNA327124, 6352
DNA327125, 6353
DNA327123,0333
DNA327126, 6354
DNA327127, 6355
DNA66475, 4796
DNA75863, 3245
DNA76504, 6270
DNIA 70101 2670
DNA79101, 3678
DNA79129, 1352
DNA79313, 3524
DNA82328, 624
DNA83020, 1671
DNA83022, 2495
D11/163044, 2493
DNA83046, 558
DNA83085, 173
DNA83141, 2361
DNA83154, 5590
DNA83170, 5679
DNA83180, 3476
D14/03100,34/0

DNA88051, 898 DNA88084, 5511 DNA88100, 1089 DNA88114, 3452 DNA88176, 3333 DNA88239, 5791 DNA88261, 4579 DNA88281, 5050 DNA88350, 2796 DNA88378, 4845 DNA88430, 4963 DNA88457, 5040 DNA88547, 1223 DNA88554, 4903 DNA88562, 2961 DNA88569, 5789 DNA89239, 1327 DNA89242, 2695 DNA97285, 3175 DNA97290, 4887 DNA97293, 4421 DNA97298, 5734 DNA97300, 4687

PCT/US2003/028547

PRO Index (to Figure number)

PRO, 1189	PRO12520, 1025
PRO10002, 487	PRO12565, 1146
PRO10194, 2441	PRO12573, 3527
PRO10297, 1479	PRO12618, 45
PRO10360, 1923	PRO12683, 4399
PRO10400, 4928	PRO12774, 4306
PRO10404, 3952	PRO12779, 1154
PRO10485, 5127	PRO12792, 807
PRO10498, 967	PRO12797, 2035
PRO10602, 1207	PRO12800, 5503
PRO10685, 1633	PRO12806, 4954
PRO10692, 644	PRO12813, 3014
PRO10723, 6245	PRO12822, 5429
PRO10760, 211	PRO12838, 2547
PRO1077, 5094	PRO12839, 3758
PRO10824, 2652	PRO12841, 1067
PRO10838, 3657	PRO12845, 6023
PRO10849, 1709	PRO1285, 1665
PRO10935, 6279	PRO12851, 2905
PRO11048, 1285	PRO12878, 3250
PRO11077, 1571	PRO12886, 6021
PRO1108, 2532	PRO12892, 5477
PRO1112, 2003	PRO12902, 3467
PRO11139, 2981	PRO12916, 4080
PRO11197, 833	PRO1314, 1239
PRO11213, 3655	PRO1555, 2457
PRO11262, 3172	PRO1707, 625
PRO11265, 2589	PRO1720, 5782
PRO11403, 902, 4970	PRO1869, 3909
PRO11582, 556	PRO188, 530
PRO11601, 3521	PRO1910, 2835
PRO11691, 3186	PRO1927, 1847
PRO1182, 646	PRO19615, 1822
PRO119, 2229	PRO19933, 2109
PRO11982, 3915	PRO201, 5209
PRO1204, 4797	PRO20117, 3257, 3259
PRO12077, 1420	PRO20136, 49
PRO12130, 5315	PRO2018, 3246
PRO12134, 6006	PRO2042, 2496
PRO12135, 5897	PRO2054, 4066
PRO12187, 3412	PRO2065, 5780
PRO12198, 4142	PRO2066, 4049
PRO12199, 682	PRO2077, 1217
PRO12224, 3205	PRO2109, 5591
PRO12265, 4937	PRO2146, 899
PRO12324, 5704	PRO21481, 2669
PRO124, 3121	PRO2172, 1090
PRO12416, 1733	PRO21728, 5837
PRO12448, 3385	PRO21773, 3666
PRO12460, 5722	PRO21887, 4783
PRO12468, 2185	PRO21924, 3481
PRO1248, 565	PRO2198, 4639
PRO12490, 6055	PRO22196, 94

PRO22262, 168	PRO2615, 5680
PRO22304, 147	PRO26194, 82
PRO224, 5217	PRO2622, 3477
PRO22481, 6028	PRO26228, 983
PRO22613, 5284	PRO2644, 5512
PRO22637, 4569	PRO2660, 3453
PRO2267, 5051	PRO2665, 922
PRO2269, 61	PRO2672, 4550
PRO22771, 1625	PRO2685, 3334
PRO22897, 2339	PRO2711, 5792
PRO22907, 2634, 2636	PRO2718, 5282
PRO231, 329	PRO2719, 4580
PRO23123, 999	PRO2720, 4219
PRO23124, 949, 951	PRO2732, 4175
PRO23201, 2615	PRO2733, 2443
PRO23231, 6059	PRO2758, 2797
PRO23238, 5589	PRO2769, 4846
PRO23248, 2568	PRO2788, 4964
PRO23300, 586	PRO2799, 5041
PRO23362, 2194	PRO283, 3664
PRO23364, 2948	PRO2837, 1224
PRO2355, 4512 PRO2373, 6125	PRO2839, 4904 PRO2841, 3741, 3743
PRO23746, 13	
PRO23794, 5251	PRO2842, 2962
PRO23797, 2024, 2151	PRO2846, 3661
PRO23845, 5394	PRO2851, 177 PRO28687, 5880
PRO23942, 429	PRO287, 1277
PRO24002, 5748	PRO2871, 3995
PRO24021, 6317	PRO2875, 2974
PRO24028, 855	PRO2906, 1328
PRO24075, 4531	PRO2907, 2696
PRO24077, 5761	PRO292, 3134
PRO24091, 978	PRO29371, 5329
PRO2420, 5790	PRO302, 4918
PRO24831, 3307	PRO303, 4409
PRO24851, 577	PRO329, 504
PRO24856, 125	PRO3344, 2484
PRO25115, 4878	PRO33679, 368
PRO25245, 6312	PRO33717, 3963
PRO25302, 5882	PRO33818, 2773
PRO2537, 6271	PRO34043, 6205
PRO2549, 3679	PRO34073, 3052
PRO2551, 1353	PRO34151, 5479
PRO2555, 3525	PRO34323, 5259
PRO2560, 5096	PRO34473, 2783
PRO2561, 1672	PRO3449, 3601
PRO2569, 559	PRO34531, 6076
PRO2570, 2477	PRO34544, 1676
PRO2583, 174	PRO34557, 4183
PRO25845, 3298	PRO34584, 6186
PRO25849, 1853	PRO36020, 1741
PRO25881, 5498	PRO36047, 1490
PRO25985, 3156	PRO36055, 1331
PRO2604, 2362	PRO36058, 1735
PRO2610, 981	PRO36093, 2768

PRO36094, 2175	PRO37091, 1765
PRO36095, 3474	PRO37109, 4225
PRO36112, 4043	PRO37221, 5746
PRO36118, 6339	PRO37234, 3499
PRO36134, 2507	PRO37256, 437
PRO36184, 6215	PRO37316, 3867
PRO36215, 3377	PRO37335, 1690
PRO36263, 6335	PRO37476, 6333
PRO36272, 357	PRO37518, 4940
PRO3629, 4355, 4357	PRO37534, 4890
PRO36305, 1960	PRO37535, 385
PRO36316, 1958	PRO37540, 4990
PRO3632, 3176	PRO37547, 4743
PRO36328, 3977	PRO37551, 3221
PRO3637, 4888	PRO37555, 3594
PRO36372, 1829	PRO37557, 3629
PRO36373, 1129	PRO37628, 685
PRO36382, 1447	PRO37634, 3725
PRO36383, 1512	PRO37635, 2965
PRO36384, 1516	PRO37636, 1574
PRO3640, 4422	PRO37644, 6273
PRO36417, 5948	PRO37653, 815 PRO37654, 3589
PRO3645, 5735	PRO37667, 1887
PRO36468, 554	PRO37669, 4171
PRO3647, 4688 PRO36474, 5518	PRO37675, 924
PRO36477, 3730	PRO37676, 158
PRO36491, 3490	PRO37697, 4627
PRO36543, 3207	PRO37709, 551
PRO36568, 3993	PRO37712, 5353
PRO36588, 410	PRO37730, 2513
PRO36680, 3005	PRO37731, 2243
PRQ36693, 2656	PRO37743, 5233
PRO36723, 272	PRO37764, 4934
PRO36725, 106	PRO37770, 1166
PRO36735, 1096	PRO37783, 1813
PRO36787, 4096	PRO37784, 3985
PRO36800, 2459	PRO37791, 4793
PRO36808, 2671	PRO37806, 498
PRO36841, 1919	PRO37811, 5682
PRO36852, 4821	PRO37905, 1943
PRO36872, 5922	PRO37935, 5772
PRO36879, 2263	PRO37937, 3721
PRO36881, 1792	PRO37938, 2461
PRO36891, 742	PRO37951, 5164
PRO36959, 2566	PRO37954, 2692
PRO36963, 5490	PRO37961, 4343
PRO36970, 3456	PRO37967, 595
PRO37010, 1109	PRO37972, 3077
PRO37012, 5976	PRO37991, 804
PRO37023, 2394	PRO37992, 347
PRO37024, 5957	PRO38008, 699 PRO38010, 3459
PRO37073, 2987 PRO37080, 5936	PRO38010, 3439 PRO38021, 6217
PRO37082, 475	PRO38022, 4162
PRO37082, 473	PRO38028, 2667
11001000,0100	

PRO38038, 1509		PRO4813, 5845
PRO38040, 375		PRO4814, 4582
PRO38066, 5810		PRO4832, 1150
PRO38070, 1962		PRO4833, 2991
PRO38101, 5565		PRO48357, 1082
PRO38119, 6286		PRO4836, 4111
PRO38152, 6148		PRO4841, 3479
PRO38227, 4892		PRO4852, 5775
PRO38258, 793		PRO4870, 3312
PRO38284, 37		PRO4872, 6082
PRO38311, 4359		PRO4873, 3684
PRO38336, 4842		PRO4884, 1950
PRO38380, 6322		PRO4885, 6345
	,	
PRO38387, 2100	,	PRO4900, 3050
PRO38392, 2207		PRO4904, 4064, 5495
PRO38406, 6198		PRO4908, 1780
PRO38464, 4336		PRO4912, 2275
PRO38480, 4373		PRO4914, 617
PRO38496, 5133		PRO4917, 712
PRO38730, 6343		PRO4918, 765
PRO38852, 4215		PRO49182, 4705
PRO39030, 6105		PRO49209, 1371
PRO39127, 6182		PRO49256, 6004
PRO39201, 4983		PRO49262, 1628
PRO39530, 4643		PRO49278, 6069
PRO39648, 3009		PRO49298, 3330
PRO39773, 2399		PRO49310, 4720
PRO4, 2535		PRO49316, 995
PRO41882, 2366		PRO49352, 6046
PRO42022, 6225		PRO49409, 500
PRO42208, 4519		PRO49457, 604
PRO4348, 3577		PRO49639, 4488
PRO4379, 4179		PRO49642, 343
PRO4426, 3632		PRO49648, 2741
PRO44999, 579		PRO49653, 5628
PRO45014, 2183		PRO49675, 5886
PRO4544, 219		PRO49685, 1156
PRO4547, 650		PRO49722, 1317
PRO4569, 5577		PRO49726, 3469
PRO4583, 189		
		PRO4984, 1909
PRO4586, 6071		PRO49869, 2694
PRO4665, 1450		PRO49875, 3778
PRO4650, 5273		PRO49879, 4375
PRO4666, 3682		PRO49881, 6319
PRO4676, 1599		PRO49883, 6258
PRO4710, 1678		PRO49888, 4899
PRO4729, 4709		PRO49967, 4578
PRO47354, 5516		PRO50083, 5891
PRO4738, 4799		PRO50095, 1133
PRO4749, 2983		PRO50134, 5940
PRO4756, 5377		PRO50165, 3114
PRO4763, 458		PRO50409, 4209
PRO4789, 5995		PRO50438, 4266
PRO4793, 3848		PRO50481, 4748
PRO4798, 2071		PRO50582, 1927
PRO4801, 3314		PRO50596, 860
•		

PRO50658, 4613	PRO58642, 3897
PRO50756, 3110	PRO58702, 5207
PRO51109, 1273	PRO58784, 1100
PRO51119, 6102	PRO58837, 3592
PRO51121, 3512	PRO58875, 6240
PRO51389, 2055	PRO58939, 2877
PRO51539, 200	PRO58974, 471
PRO51565, 5514	PRO58984, 1893
PRO51586, 5147	PRO58986, 1387
PRO51744, 5057	PRO58991, 5235
PRO51767, 5388	PRO58993, 1804
PRO51771, 5435	PRO59001, 3817
PRO51775, 4363	PRO59022, 6243
PRO51815, 4371	PRO59040, 1851
PRO51836, 546	PRO59042, 3824
PRO51851, 1643	PRO59043, 3056
PRO51901, 2747	PRO59061, 6012
	PRO59074, 2372
PRO52010, 4855	PRO59084, 3296
PRO52083, 1438	PRO59099, 128
PRO52101, 5507	PRO59136, 795
PRO52119, 5966	PRO59142, 5649, 5651
PRO52449, 403	PRO59168, 6154
PRO52492, 3416	PRO59220, 5361
PRO52537, 2924	
PRO54594, 4204	PRO59230, 2551
PRO57307, 3327	PRO59262, 3440
PRO57854, 3102	PRO59264, 5505
PRO57901, 5594	PRO59285, 6080
PRO57917, 4060	PRO59305, 4844
PRO57942, 5815	PRO59309, 4806
PRO58006, 1855	PRO59313, 959
PRO58042, 5313	PRO59321, 2663
PRO58046, 5123	PRO59328, 4912
PRO58092, 3899	PRO59332, 289
PRO58118, 268	PRO59339, 5677
PRO58140, 1196	PRO59351, 2856
PRO58155, 5874	PRO59365, 1998
PRO58177, 1257	PRO59380, 2397
PRO58198, 6127	PRO59384, 752
PRO58207, 3285	PRO59441, 6139
PRO58213, 1688	PRO59491, 4508
PRO58219, 1647	PRO59504, 1094
PRO58232, 5990	PRO59544, 762 .
PRO58259, 1271	PRO59546, 230
PRO58263, 2553	PRO59558, 704
PRO58292, 5299	PRO59579, 2674
PRO58308, 1063	PRO59629, 3381
PRO58328, 1098	PRO59647, 3551
PRO58348, 3094	PRO59669, 5904
PRO58410, 3865	PRO59717, 2105
PRO58437, 2370	PRO59721, 3272
PRO58440, 3688	PRO59725, 462
PRO58446, 5268	PRO59785, 3728
PRO58523, 3209	PRO59868, 6188
PRO58543, 747	PRO59895, 935
PRO58606, 3300	PRO59913, 1722

PRO60006, 2752	PRO61502, 3067
PRO60008, 3282	PRO61575, 5449
PRO60070, 4102	PRO61638, 349
PRO60115, 2807	PRO61661, 5024
PRO60121,5053	PRO61679, 43
PRO60123, 3393	PRO61688, 2250
PRO60127, 2661	PRO61721, 2900
PRO6018, 395	PRO61744, 6141
PRO60207, 1698	PRO61761, 689
	PRO61799, 4361
PRO60261, 520	PRO61812, 2237
PRO60298, 203	PRO61824, 2247
PRO60311, 3345	PRO61870, 1183
PRO60321, 2601	PRO61897, 2795
PRO60325, 4450	
PRO60333, 5626	PRO61938, 6191
PRO60360, 2349	PRO61948, 4477
PRO60397, 882	PRO61977, 5278
PRO60438, 1867	PRO61999, 3913
PRO60475, 2735	PRO62039, 5116
PRO60499, 4262	PRO62065, 5893
PRO60542, 1397	PRO62069, 2865
PRO60575, 4087	PRO62075, 5442
PRO60579, 2181	PRO62077, 516
PRO60603, 5427	PRO62099, 4070
PRO60634, 3556	PRO62108, 2492
PRO60666, 3391	PRO62110, 4517
PRO60674, 5202	PRO62112, 5242
PRO60741, 1336	PRO62135, 1831
PRO60753, 872	PRO62153, 1171
PRO60781, 2715	PRO62212, 5524
PRO60800, 5073	PRO62225, 5179
PRO60815, 84	PRO62236, 2781
PRO60847, 3216	PRO62239, 750
PRO60860, 236	PRO62244, 2177
PRO60924, 3575	PRO62273, 3764
PRO60945, 5743	PRO62302, 5162
PRO60956, 1495	PRO62328, 6000
	PRO62389, 181
PRO60979, 4813	PRO62466, 6327
PRO60991, 3087	PRO62500, 5407
PRO61085, 4268	PRO62518, 193
PRO61113, 5070	PRO62529, 341
PRO61125, 195	
PRO61129, 5569	PRO62531, 5200
PRO61146, 397	PRO62574, 453
PRO61219, 4260	PRO62582, 5543
PRO61238, 3323	PRO62588, 6150
PRO61246, 5003	PRO62607, 637
PRO61250, 90	PRO62617, 2882
PRO61271, 6231	PRO62760, 931
PRO61308, 5575	PRO62770, 663
PRO61325, 781	PRO62780, 4666
PRO61327, 5786	PRO62786, 745
PRO61349, 5616	PRO62849, 293
PRO61458, 5422	PRO62852, 4301
PRO61470, 6288	PRO62882, 4321
PRO61498, 5739	PRO62893, 652

PRO62899, 5103	PRO70333, 541
PRO62927, 865	PRO70383, 6035
PRO62981, 4717	PRO70385, 5551
PRO63000, 2724	PRO70393, 2008
PRO63009, 2233	PRO70433, 351
PRO63052, 1972	PRO70449, 4729
PRO63068, 4565	PRO70453, 3621
PRO63082, 1680	PRO70536, 1460
PRO63226, 5238	PRO70544, 2033
PRO63253, 1905	PRO70595, 2681
PRO63299, 6341	PRO70675, 991
PRO6360, 1077	PRO70694, 3786
PRO6373, 2213	PRO70703, 4976
PRO65, 848	PRO70754, 439
PRO66265, 4670	PRO70810, 5639
PRO66275, 3901	PRO70812, 4700
PRO66279, 2127	PRO70989, 3828, 3830
PRO66282, 2129	PRO70993, 1719
PRO69461, 3302	PRO71031, 3433, 3435
	PRO71057, 2997
PRO69463, 32	PRO71085, 5563
PRO69471, 3840	PRO71088, 1947
PRO69473, 3027, 3760 PRO69475, 2266	PRO71089, 5641
PRO69486, 5906	PRO71091, 2591
PRO69496, 2702	PRO71093, 370
	PRO71095, 1964
PRO69506, 1953	PRO71096, 3888
PRO69513, 5015	PRO71097, 5831
PRO69518, 5280	PRO71103, 1148
PRO69521, 1901	PRO71106, 1875
PRO69523, 3011	PRO71111, 2436
PRO69528, 3237	PRO71112, 221
PRO69531, 906	PRO711120, 3718
PRO69533, 5669	PRO71125, 1985, 1987
PRO69541, 5655	PRO71123, 1985, 1987 PRO71130, 4576
PRO69542, 2764	PRO71133, 2255
PRO69549, 3461	PRO71136, 2203
PRO69554, 1583	PRO71141, 4715
PRO69560, 5686	PRO71142, 1913
PRO69561, 4920	PRO71145, 6039
PRO69568, 3254	PRO71146, 372
PRO69584, 1970	PRO71211, 2343
PRO69595, 4243	PRO71242, 5974
PRO69617, 4521	PRO71242, 3974 PRO7143, 4986
PRO69635, 3138	PRO730, 4274
PRO69674, 3219	PRO7427, 2239
PRO69681, 1301	PRO7445, 2594
PRO69682, 4901	
PRO69684, 4779	PRO80480, 5 PRO80481, 7
PRO70011, 2704	
PRO70138, 1968	PRO80482, 9 PRO80483, 11
PRO70258, 656	PRO80484, 16
PRO70276, 4447	PRO80485, 18
PRO70290, 2762	PRO80485, 18 PRO80487, 21
PRO703, 380	
PRO70327, 1637, 1639	PRO80488, 23 PRO80489, 25
PRO70331, 6030	1 KU0U407, 2J

PRO80490, 27	PRO80587, 240
PRO80492, 30	PRO80588, 242
PRO80493, 35	PRO80591, 246
PRO80494, 39	PRO80592, 248
PRO80497, 47	PRO80593, 252
PRO80498, 51	PRO80595, 255
PRO80499, 53	PRO80597, 258
PRO80501, 56	PRO80599, 261
PRO80505, 63	PRO80600, 263
PRO80506, 65	PRO80602, 266
PRO80510, 70	PRO80603, 270
PRO80511, 72	PRO80604, 274
PRO80512, 74	PRO80607, 278
PRO80517, 80	PRO80611, 283
PRO80518, 86	PRO80612, 285
PRO80519, 88	PRO80613, 287
PRO80520, 92	PRO80614, 291
PRO80521, 96	PRO80617, 297
PRO80524, 100	PRO80618, 299
PRO80527, 104	PRO80619, 301
PRO80528, 108	PRO80620, 303
PRO80530, 111	PRO80621, 305
PRO80533, 115	PRO80622, 307
PRO80534, 117	PRO80623, 309
PRO80535, 119	PRO80624, 311
PRO80536, 121	PRO80625, 313
PRO80537, 123	PRO80627, 316
PRO80542, 132	PRO80630, 320 PRO80631, 322
PRO80547, 138	
PRO80550, 143	PRO80633, 325 PRO80638, 333
PRO80553, 149	PRO80639, 335
PRO80554, 151	PRO80640, 337
PRO80555, 153	PRO80641, 339
PRO80557, 156 PRO80558, 160	PRO80642, 345
PRO80559, 162	PRO80644, 355
PRO80560, 164	PRO80645, 359
PRO80561, 166	PRO80646, 362
PRO80562, 170	PRO80648, 365
PRO80563, 172	PRO80651, 378
PRO80565, 179	PRO80652, 382
PRO80567, 184	PRO80654, 387
PRO80568, 186	PRO80656, 390
PRO80570, 191	PRO80657, 393
PRO80571, 197	PRO80658, 399
PRO80574, 205	PRO80659, 401
PRO80575, 207	PRO80660, 405
PRO80576, 209	PRO80661, 407
PRO80579, 215	PRO80664, 413
PRO80580, 217	PRO80665, 415
PRO80581, 223	PRO80666, 417
PRO80582, 225	PRO80667, 419
PRO80583, 227	PRO80668, 421
PRO80584, 232	PRO80669, 423
PRO80585, 234	PRO80670, 425
PRO80586, 238	PRO80671, 427

PRO80672, 431	PRO80775, 666
PRO80675, 435	PRO80776, 668
PRO80676, 441	PRO80778, 671
PRO80677, 443	PRO80779, 673
PRO80678, 445	PRO80780, 675
PRO80679, 447	PRO80781, 677
PRO80680, 449	PRO80782, 679
PRO80684, 456	PRO80785, 687
PRO80685, 460	PRO80786, 691
PRO80686, 464	PRO80787, 693
PRO80688, 467	PRO80788, 695
PRO80689, 469	PRO80789, 697
PRO80693, 478	PRO80790, 702
PRO80694, 480	PRO80791, 708
PRO80695, 482	PRO80792, 710
PRO80699, 489	PRO80793, 714
PRO80700, 491	PRO80796, 718
PRO80704, 496	PRO80797, 720
PRO80705, 502	PRO80798, 722
PRO80706, 506	PRO80799, 724
PRO80707, 508	PRO80802, 728
PRO80708, 510	PRO80803, 730
PRO80709, 512	PRO80804, 732
PRO80710, 514	PRO80806, 735
PRO80711, 518	PRO80807, 737
PRO80714, 526	PRO80808, 739
PRO80715, 528	PRO80811, 754
PRO80717, 533	PRO80812, 756
PRO80719, 536	PRO80813, 758
PRO80720, 539	PRO80814, 760
PRO80725, 549	PRO80816, 767
PRO80730, 563	PRO80817, 769
PRO80734, 570	PRO80820, 774
PRO80735, 572	PRO80823, 778
PRO80736, 574	PRO80827, 786
PRO80740, 584	PRO80830, 790 PRO80832, 797
PRO80741, 588	PRO80833, 799
PRO80742, 590	PRO80835, 802
PRO80745, 597	PRO80837, 809
PRO80752, 607	PRO80838, 811
PRO80753, 609 PRO80754, 611	PRO80839, 813
PRO80755, 613	PRO80842, 819
PRO80756, 615	PRO80843, 821
PRO80759, 621	PRO80846, 826
PRO80760, 623	PRO80847, 828
PRO80761, 627	PRO80848, 830
PRO80762, 629	PRO80850, 835
PRO80763, 631	PRO80851, 837
PRO80764, 633	PRO80853, 840
PRO80765, 635	PRO80856, 844
PRO80767, 640	PRO80857, 846
PRO80770, 648	PRO80860, 852
PRO80771, 654	PRO80866, 863
PRO80772, 658	PRO80868, 868
PRO80773, 660	PRO80869, 870

PRO80870, 874	PRO80959, 1065
PRO80871, 876	PRO80960, 1069
PRO80873, 879	PRO80961, 1071
PRO80875, 884	PRO80962, 1073
PRO80876, 886	PRO80966, 1080
PRO80877, 888	PRO80967, 1084
PRO80878, 890	PRO80969, 1087
PRO80879, 892	PRO80970, 1092
PRO80881, 895	PRO80971, 1102
PRO80882, 897	PRO80972, 1104
PRO80883, 904	PRO80974, 1107
PRO80884, 908	PRO80975, 1111
PRO80888, 913	PRO80977, 1114
PRO80889, 915	PRO80978, 1116
PRO80890, 917	PRO80979, 1118
PRO80891, 919	PRO80983, 1124
PRO80900, 937	PRO80984, 1126
PRO80901, 939	PRO80988, 1135
PRO80901, 939 PRO80903, 943	PRO80990, 1138
PRO80904, 945	PRO80993, 1142
PRO80905, 947	PRO80994, 1144
PRO80906, 953	PRO80995, 1152
PRO80908, 956	PRO80996, 1158
PRO80910, 961	PRO80997, 1160
PRO80911, 963	PRO80999, 1164
PRO80911, 903 PRO80915, 972	PRO81000, 1168
PRO80916, 974	PRO81002, 1173
PRO80917, 976	PRO81003, 1175
PRO80920, 987	PRO81004, 1177
PRO80921, 989	PRO81005, 1179
PRO80924, 997	PRO81006, 1181
PRO80925, 1001	PRO81007, 1185
PRO80926, 1003	PRO81010, 1191
PRO80927, 1005	PRO81012, 1194
PRO80929, 1008	PRO81015, 1200
PRO80930, 1010	PRO81022, 1210
PRO80932, 1013	PRO81023, 1212
PRO80933, 1015	PRO81025, 1215
PRO80934, 1017	PRO81026, 1219
PRO80935, 1019	PRO81028, 1222
PRO80936, 1021	PRO81029, 1226
PRO80937, 1023	PRO81030, 1228
PRO80938, 1027	PRO81031, 1230
PRO80941, 1031	PRO81033, 1233
PRO80942, 1033	PRO81034, 1236
PRO80943, 1035	PRO81036, 1241
PRO80945, 1038	PRO81040, 1247
PRO80949, 1044	PRO81041, 1249
PRO80950, 1046	PRO81042, 1251
PRO80951, 1048	PRO81043, 1253
PRO80952, 1050	PRO81046, 1259
PRO80953, 1052	PRO81047, 1261
PRO80954, 1054	PRO81053, 1269
PRO80955, 1056	PRO81056, 1279
PRO80956, 1058	PRO81057, 1281
PRO80958, 1051	PRO81058, 1283
11000000, 1001	

PRO81059, 1287	PRO81174, 1498
PRO81064, 1293	PRO81176, 1501
PRO81068, 1298	PRO81177, 1503
PRO81070, 1303	PRO81178, 1505
PRO81071, 1305	PRO81179, 1507
PRO81072, 1307	PRO81181, 1514
PRO81073, 1309	PRO81182, 1518
PRO81074, 1311	PRO81184, 1521
PRO81079, 1319	PRO81185, 1523
PRO81080, 1321	PRO81188, 1527
PRO81082, 1324	PRO81189, 1529
PRO81083, 1326	PRO81195, 1536
PRO81086, 1334	PRO81196, 1538
PRO81088, 1339	PRO81199, 1542
PRO81090, 1342	PRO81202, 1546
PRO81093, 1346	PRO81213, 1558
PRO81095, 1349	PRO81214, 1560
PRO81096, 1351	PRO81216, 1563
PRO81090, 1351 PRO81097, 1355	PRO81219, 1566
PRO81098, 1357	PRO81221, 1569
PRO81102, 1362	PRO81223, 1576
PRO81106, 1367	PRO81224, 1578
PRO81107, 1373	PRO81225, 1580
	PRO81227, 1585
PRO81108, 1375	PRO81230, 1589
PRO81109, 1377	PRO81234, 1594
PRO81110, 1379	PRO81238, 1601
PRO81111, 1381	PRO81239, 1603
PRO81112, 1383	PRO81240, 1605
PRO81113, 1385	PRO81241, 1607
PRO81114, 1389	PRO81246, 1613
PRO81115, 1391	PRO81248, 1616
PRO81116, 1393 PRO81117, 1395	PRO81249, 1618
	PRO81250, 1620
PRO81118, 1399 PRO81119, 1401	PRO81254, 1630
	PRO81256, 1635
PRO81120, 1403 PRO81121, 1405	PRO81259, 1645
	PRO81260, 1649
PRO81122, 1407 PRO81123, 1409	PRO81261, 1651
PRO81124, 1411	PRO81262, 1653
PRO81127, 1415	PRO81264, 1657
PRO81131, 1422	PRO81265, 1659
PRO81134, 1426	PRO81266, 1661
PRO81135, 1428	PRO81269, 1667
PRO81137, 1431	PRO81272, 1674
	PRO81273, 1682
PRO81141, 1436	PRO81274, 1684
PRO81146, 1444	PRO81275, 1686
PRO81148, 1454 PRO81150, 1458	PRO81276, 1692
PRO81151, 1462	PRO81277, 1694
PRO81151, 1462 PRO81156, 1467	PRO81278, 1696
	PRO81280, 1703
PRO81163, 1475	PRO81281, 1705
PRO81166, 1481	PRO81282, 1707
PRO81169, 1486	PRO81286, 1715
PRO81170, 1488	PRO81287, 1717
PRO81171, 1492	11001201, 1/11

PRO81289, 1725	PRO81372, 1917
PRO81290, 1727	PRO81375, 1925
PRO81291, 1729	PRO81377, 1930
PRO81292, 1731	PRO81379, 1933
PRO81293, 1737	PRO81380, 1935
PRO81294, 1739	PRO81387, 1945
PRO81295, 1743	PRO81394, 1966
PRO81296, 1745	PRO81395, 1974
PRO81297, 1747	PRO81396, 1976
PRO81298, 1749	PRO81397, 1978
PRO81299, 1751	PRO81398, 1980
PRO81300, 1753	PRO81399, 1982
PRO81301, 1755	PRO81400, 1989
PRO81302, 1757	PRO81401, 1991
PRO81303, 1759	PRO81402, 1993
PRO81304, 1761	PRO81404, 1996
	PRO81406, 2001
PRO81305, 1763	PRO81407, 2005
PRO81306, 1767	PRO81409, 2010
PRO81307, 1769	PRO81410, 2012
PRO81308, 1771	PRO81411, 2014
PRO81309, 1773	PRO81414, 2018
PRO81310, 1775	PRO81415, 2020
PRO81311, 1777	PRO81416, 2022
PRO81313, 1782	PRO81417, 2026
PRO81314, 1784	PRO81418, 2028
PRO81315, 1786	PRO81419, 2030
PRO81316, 1788	PRO81419, 2030
PRO81317, 1790	PRO81422, 2040
PRO81318, 1794	PRO81424, 2043
PRO81319, 1796	PRO81426, 2046
PRO81323, 1801	PRO81427, 2048
PRO81325, 1806	PRO81427, 2048 PRO81429, 2051
PRO81327, 1809	PRO81430, 2053
PRO81330, 1815	PRO81435, 2061
PRO81336, 1825	PRO81436, 2063
PRO81337, 1827	
PRO81338, 1833	PRO81439, 2067 PRO81441, 2073
PRO81339, 1835	
PRO81340, 1837	PRO81443, 2076 PRO81444, 2078
PRO81341, 1839	
PRO81345, 1844	PRO81446, 2082
PRO81347, 1849	PRO81447, 2084
PRO81354, 1864	PRO81448, 2086
PRO81355, 1869	PRO81449, 2088
PRO81356, 1873	PRO81453, 2093
PRO81359, 1881	PRO81454, 2095
PRO81362, 1885	PRO81455, 2097
PRO81363, 1889	PRO81457, 2102
PRO81364, 1891	PRO81462, 2112
PRO81365, 1895	PRO81464, 2115
PRO81366, 1897	PRO81465, 2117
PRO81367, 1899	PRO81467, 2120
PRO81368, 1903	PRO81471, 2125
PRO81369, 1907	PRO81474, 2133
PRO81370, 1911	PRO81476, 2136
PRO81371, 1915	PRO81477, 2138

PRO81481, 2143	PRO81579, 2345
PRO81486, 2149	PRO81580, 2347
PRO81487, 2153	PRO81584, 2354
PRO81490, 2156	PRO81585, 2356
PRO81491, 2158	PRO81586, 2358
PRO81494, 2162	PRO81587, 2360
PRO81495, 2164	PRO81588, 2364
PRO81496, 2166	PRO81589, 2368
PRO81498, 2169	PRO81590, 2374
PRO81499, 2171	PRO81591, 2377
PRO81500, 2173	PRO81592, 2379
PRO81501, 2179	PRO81594, 2382
PRO81502, 2187	PRO81595, 2384
PRO81503, 2189	PRO81598, 2388
PRO81505, 2192	PRO81599, 2390
PRO81506, 2196	PRO81600, 2392
PRO81508, 2199	PRO81602, 2401
PRO81509, 2201	PRO81605, 2405
PRO81514, 2209	PRO81607, 2408
PRO81515, 2211	PRO81608, 2410
PRO81516, 2215	PRO81609, 2412
PRO81510, 2215 PRO81517, 2217	PRO81611, 2415
PRO81520, 2221	PRO81614, 2419
PRO81521, 2223	PRO81615, 2421
PRO81523, 2227	PRO81617, 2424
PRO81524, 2231	PRO81618, 2426
PRO81525, 2235	PRO81619, 2428
PRO81526, 2241	PRO81621, 2431
PRO81529, 2252	PRO81625, 2438
PRO81525, 2252 PRO81531, 2257	PRO81627, 2445
PRO81534, 2261	PRO81629, 2448
PRO81536, 2268	PRO81630, 2450
PRO81537, 2270	PRO81631, 2452
PRO81538, 2272	PRO81634, 2463
PRO81540, 2277	PRO81635, 2465
PRO81541, 2279	PRO81637, 2468
PRO81544, 2283	PRO81641, 2474
PRO81544, 2285	PRO81643, 2481
	PRO81645, 2486
PRO81546, 2287 PRO81547, 2289	PRO81647, 2489
PRO81548, 2291	PRO81649, 2494
PRO81550, 2294	PRO81650, 2498
PRO81551, 2296	PRO81651, 2500
PRO81551, 2296 PRO81552, 2298	PRO81652, 2502
PRO81552, 2298 PRO81556, 2303	PRO81653, 2504
	PRO81654, 2509
PRO81557, 2305 PRO81558, 2307	PRO81655, 2511
PRO81561, 2314	PRO81657, 2516
PRO81566, 2320	PRO81658, 2518
PRO81569, 2320 PRO81569, 2324	PRO81659, 2520
PRO81569, 2524 PRO81571, 2327	PRO81660, 2522
	PRO81661, 2524
PRO81572, 2330	PRO81664, 2528
PRO81573, 2332	PRO81668, 2537
PRO81574, 2334	PRO81669, 2539
PRO81575, 2336	PRO81671, 2542
PRO81578, 2341	110000, 1, 10

PRO81673, 2545	PRO81792, 2805
PRO81674, 2549	PRO81794, 2810
PRO81675, 2555	PRO81795, 2812
PRO81685, 2570	PRO81796, 2814
PRO81687, 2573	PRO81797, 2816
PRO81689, 2576	PRO81800, 2821
PRO81690, 2578	PRO81801, 2823
PRO81691, 2580	PRO81804, 2827
PRO81695, 2585	PRO81805, 2829
PRO81696, 2587	PRO81806, 2831
PRO81699, 2597	PRO81809, 2837
PRO81700, 2599	PRO81811, 2840
PRO81701, 2603	PRO81812, 2842
PRO81704, 2607	PRO81813, 2844
PRO81705, 2610	PRO81815, 2848
PRO81708, 2617	PRO81816, 2850
PRO81711, 2621	PRO81817, 2853
PRO81714, 2624	PRO81819, 2858
PRO81719, 2630	PRO81821, 2861
PRO81720, 2632	PRO81822, 2863
PRO81722, 2639	PRO81823, 2867
PRO81725, 2643	PRO81824, 2869
PRO81729, 2648	PRO81826, 2872
PRO81730, 2650	PRO81831, 2880
PRO81731, 2654	PRO81832, 2884
PRO81732, 2658	PRO81833, 2886
PRO81734, 2665	PRO81834, 2888
PRO81736, 2678	PRO81835, 2890
PRO81738, 2683	PRO81836, 2892
PRO81739, 2685	PRO81837, 2894
PRO81740, 2687	PRO81838, 2896
PRO81742, 2690	PRO81841, 2903
PRO81743, 2698	PRO81842, 2907
PRO81746, 2706	PRO81846, 2912
PRO81748, 2709	PRO81848, 2915
PRO81751, 2713	PRO81849, 2917
PRO81752, 2717	PRO81851, 2920
PRO81753, 2719	PRO81855, 2928
PRO81754, 2721	PRO81858, 2932
PRO81759, 2729	PRO81861, 2936
PRO81760, 2731	PRO81862, 2938
PRO81761, 2733	PRO81863, 2940
PRO81762, 2737	PRO81865, 2943
PRO81763, 2739	PRO81867, 2946
PRO81764, 2743	PRO81868, 2950
PRO81765, 2745	PRO81869, 2954
PRO81766, 2749	PRO81870, 2956
PRO81768, 2754	PRO81871, 2958
PRO81771, 2758	PRO81872, 2960
PRO81775, 2770	PRO81874, 2967
PRO81778, 2776	PRO81875, 2969
PRO81780, 2779	PRO81877, 2972
PRO81781, 2785	PRO81881, 2979
PRO81783, 2788	PRO81882, 2985
PRO81785, 2791	PRO81883, 2989
PRO81786, 2793	PRO81884, 2993

PRO81885, 2995	PRO81965,3181
PRO81887, 3001	PRO81970, 3189
PRO81888, 3003	PRO81971, 3191
PRO81889, 3007	PRO81977, 3198
PRO81893, 3018	PRO81978, 3200
PRO81895, 3021	PRO81980, 3203
PRO81896, 3023	PRO81981, 3211
PRO81897, 3025	PRO81982, 3213
PRO81899, 3030	PRO81988, 3226
PRO81900, 3032	PRO81990, 3229
PRO81901, 3034	PRO81991, 3231
PRO81902, 3036	PRO81992, 3233
PRO81903, 3038	PRO81993, 3235
PRO81904, 3040	PRO81994, 3239
PRO81905, 3043	PRO81995, 3241
PRO81907, 3046	PRO81996, 3243
PRO81908, 3048	PRO81999, 3252
PRO81909, 3054	PRO82002, 3262
PRO81912, 3060	PRO82004, 3265
PRO81913, 3062	PRO82005, 3267
PRO81914, 3064	PRO82009, 3274
PRO81916, 3069	PRO82011, 3277
PRO81917, 3071	PRO82013, 3280
PRO81922, 3079	PRO82018, 3290
PRO81923, 3081	PRO82019, 3292
PRO81924, 3083	PRO82023, 3305 PRO82024, 3309
PRO81925, 3085	PRO82027, 3317
PRO81926, 3090	PRO82028, 3319
PRO81927, 3092	PRO82029, 3319 PRO82029, 3321
PRO81928, 3096	PRO82032, 3332
PRO81929, 3098	PRO82032, 3332 PRO82034, 3338
PRO81930, 3100	PRO82035, 3340
PRO81932, 3105	PRO82037, 3343
PRO81934, 3108 PRO81935, 3112	PRO82038, 3347
	PRO82040, 3351
PRO81936, 3116 PRO81937, 3118	PRO82042, 3354
PRO81937, 3116 PRO81939, 3123	PRO82043, 3356
PRO81939, 3123 PRO81941, 3126	PRO82045, 3360
PRO81942, 3128	PRO82046, 3362
PRO81943, 3130	PRO82050, 3368
PRO81944, 3132	PRO82051, 3370
PRO81945, 3140	PRO82052, 3372
PRO81946, 3143	PRO82054, 3375
PRO81947, 3145	PRO82055, 3379
PRO81948, 3147	PRO82056, 3383
PRO81950, 3150	PRO82057, 3387
PRO81953, 3154	PRO82058, 3389
PRO81954, 3158	PRO82060, 3396
PRO81955, 3160	PRO82064, 3402
PRO81956, 3162	PRO82066, 3405
PRO81957, 3164	PRO82068, 3408
PRO81958, 3166	PRO82069, 3410
PRO81959, 3168	PRO82072, 3419
PRO81962, 3174	PRO82073, 3421
PRO81964, 3179	PRO82074, 3423

PRO82075, 3425	PRO82188, 3670
PRO82078, 3431	PRO82190, 3673
PRO82080, 3438	PRO82191, 3675
PRO82082, 3443	PRO82192, 3677
PRO82083, 3445	PRO82194, 3686
PRO82084, 3447	PRO82195, 3690
PRO82085, 3449	PRO82196, 3692
PRO82091, 3464	PRO82197, 3694
PRO82093, 3471	PRO82198, 3696
PRO82097, 3484	PRO82199, 3698
PRO82099, 3487	PRO82201, 3701
PRO82101, 3492	PRO82202, 3703
PRO82104, 3497	PRO82204, 3706
PRO82106, 3502	PRO82206, 3709
PRO82107, 3505	PRO82207, 3711
PRO82109, 3508	PRO82208, 3713
PRO82110, 3510	PRO82210, 3716
PRO82111, 3514	PRO82212, 3723
PRO82112, 3516	PRO82213, 3733
PRO82113, 3518	PRO82214, 3735
PRO82115, 3523	PRO82215, 3738
PRO82117, 3530	PRO82218, 3745
PRO82120, 3534	PRO82219, 3747
PRO82122, 3537	PRO82220, 3749
PRO82125, 3541	PRO82221, 3751
PRO82127, 3544	PRO82223, 3756
PRO82129, 3547	PRO82224, 3762
PRO82130, 3549	PRO82227, 3768
PRO82131, 3553	PRO82228, 3770
PRO82133, 3558	PRO82232, 3776
PRO82137, 3563	PRO82233, 3780
PRO82138, 3565	PRO82234, 3782
PRO82139, 3567	PRO82235, 3784
PRO82140, 3569	PRO82237, 3789
PRO82143, 3573	PRO82238, 3791
PRO82152, 3587	PRO82239, 3793
PRO82155, 3597	PRO82240, 3795
PRO82158, 3603	PRO82243, 3799
PRO82159, 3605	PRO82244, 3801
PRO82160, 3607	PRO82245, 3803
PRO82161, 3609	PRO82247, 3806
PRO82162, 3611	PRO82248, 3808
PRO82163, 3613	PRO82250, 3811
PRO82164, 3615	PRO82252, 3813
PRO82165, 3617	PRO82253, 3815
PRO82166, 3619	PRO82255, 3820
PRO82167, 3623	PRO82256, 3822
PRO82168, 3625	PRO82259, 3832
PRO82169, 3627	PRO82263, 3838
PRO82174, 3637	PRO82264, 3842
PRO82175, 3639	PRO82265, 3844
PRO82179, 3644	PRO82266, 3846
PRO82181, 3647	PRO82267, 3850
PRO82182, 3649	PRO82268, 3852
PRO82183, 3651	PRO82269, 3854
PRO82184, 3653	PRO82272, 3858

PRO82273, 3860	PRO82373, 4056
PRO82275, 3863	PRO82374, 4058
PRO82278, 3871	PRO82375, 4062
PRO82279, 3873	PRO82381, 4076
PRO82280, 3875	PRO82382, 4078
PRO82283, 3879	PRO82383, 4083
PRO82285, 3882	PRO82384, 4085
PRO82287, 3885	PRO82385, 4089
PRO82289, 3890	PRO82388, 4093
PRO82290, 3892	PRO82391, 4099
PRO82291, 3894	PRO82393, 4104
PRO82295, 3905	PRO82395, 4107
PRO82296, 3907	PRO82396, 4109
PRO82297, 3911	PRO82397, 4113
PRO82300, 3919	PRO82400, 4117
PRO82302, 3922	PRO82408, 4126
PRO82305, 3927	PRO82409, 4128
PRO82306, 3929	PRO82411, 4131
PRO82311, 3934	PRO82415, 4137
PRO82312, 3936	PRO82417, 4140
PRO82314, 3939	PRO82418, 4144
PRO82315, 3941	PRO82419, 4146
PRO82316, 3943	PRO82421, 4149
PRO82317, 3945	PRO82422, 4151
PRO82318, 3947	PRO82423, 4153
PRO82321, 3954	PRO82424, 4155
PRO82322, 3956	PRO82425, 4158
	PRO82428, 4164
PRO82325, 3961 PRO82326, 3965	PRO82429, 4166
	PRO82431, 4169
PRO82329, 3970	PRO82432, 4173
PRO82330, 3972	PRO82433, 4177
PRO82331, 3974	PRO82434, 4181
PRO82333, 3979	PRO82435, 4185
PRO82334, 3982	PRO82437, 4188
PRO82338, 3989	PRO82438, 4190
PRO82342, 3998	PRO82439, 4192
PRO82343, 4000	PRO82440, 4194
PRO82344, 4002	PRO82441, 4196
PRO82345, 4004	PRO82442, 4198
PRO82347, 4007	PRO82444, 4201
PRO82348, 4009	PRO82446, 4206
PRO82349, 4011	PRO82448, 4212
PRO82350, 4013	PRO82450, 4217
PRO82351, 4015	PRO82453, 4223
PRO82352, 4017	PRO82454, 4227
PRO82355, 4021	PRO82455, 4229
PRO82356, 4023	PRO82456, 4231
PRO82357, 4026	PRO82457, 4233
PRO82358, 4028	PRO82458, 4235
PRO82359, 4030	PRO82460, 4238
PRO82364, 4036	PRO82461, 4240
PRO82365, 4038	PRO82465, 4247
PRO82367, 4041	PRO82466, 4249
PRO82369, 4047	PRO82469, 4253
PRO82370, 4051	PRO82470, 4255
PRO82371, 4053	11002.70, 4200

PRO82472, 4258	PRO82560, 4452
PRO82473, 4264	PRO82562, 4455
PRO82475, 4271	PRO82563, 4457
PRO82477, 4276	PRO82564, 4459
PRO82479, 4280	PRO82567, 4464
PRO82482, 4284	PRO82568, 4466
PRO82485, 4288	PRO82570, 4469
PRO82487, 4291	PRO82571, 4471
	PRO82572, 4473
PRO82489, 4294	PRO82573, 4475
PRO82491, 4297	PRO82576, 4481
PRO82492, 4299	PRO82579, 4486
PRO82493, 4303	PRO82582, 4492
PRO82495, 4308	PRO82583, 4494
PRO82499, 4313	PRO82584, 4496
PRO82501, 4316	PRO82585, 4499
PRO82502, 4318	PRO82586, 4501
PRO82505, 4324	PRO82587, 4503
PRO82508, 4328	PRO82589, 4506
PRO82509, 4330	PRO82590, 4510
PRO82510, 4332	PRO82592, 4515
PRO82513, 4339	PRO82593, 4513
PRO82514, 4341	PRO82594, 4525
PRO82515, 4345	PRO82594, 4525 PRO82597, 4529
PRO82516, 4347	PRO82598, 4533
PRO82517, 4349	
PRO82518, 4351	PRO82599, 4536
PRO82521, 4365	PRO82602, 4540
PRO82522, 4367	PRO82603, 4542
PRO82523, 4369	PRO82606, 4546
PRO82524, 4377	PRO82607, 4548
PRO82525, 4379	PRO82608, 4552
PRO82526, 4381	PRO82609, 4554
PRO82527, 4383	PRO82611, 4557
PRO82528, 4385	PRO82612, 4559
PRO82529, 4387	PRO82615, 4563
PRO82530, 4389	PRO82616, 4567
PRO82531, 4391	PRO82618, 4572
PRO82532, 4393	PRO82619, 4574
PRO82533, 4395	PRO82621, 4585
PRO82534, 4397	PRO82622, 4587
PRO82535, 4401	PRO82623, 4589
PRO82536, 4403	PRO82624, 4591
PRO82537, 4405	PRO82625, 4593
PRO82538, 4407	PRO82626, 4595
PRO82540, 4412	PRO82627, 4598
PRO82542, 4415	PRO82629, 4601
PRO82543, 4417	PRO82630, 4603
PRO82544, 4419	PRO82631, 4605
PRO82546, 4424	PRO82632, 4607
PRO82548, 4428	PRO82633, 4609
PRO82551, 4433	PRO82634, 4611
PRO82554, 4437	PRO82635, 4615
PRO82555, 4439	PRO82637, 4618
PRO82556, 4441	PRO82638, 4620
PRO82557, 4443	PRO82640, 4623
PRO82558, 4445	PRO82641, 4625

PRO82642, 4629	PRO82738, 4833
PRO82643, 4631	PRO82739, 4835
PRO82645, 4634	PRO82740, 4837
PRO82646, 4636	PRO82741, 4839
PRO82654, 4649	PRO82743, 4848
PRO82656, 4652	PRO82745, 4851
PRO82658, 4655	PRO82746, 4853
PRO82659, 4657	PRO82748, 4858
PRO82661, 4660	PRO82749, 4860
PRO82662, 4662	PRO82750, 4862
PRO82663, 4664	PRO82753, 4866
PRO82664, 4668	PRO82754, 4868
PRO82665, 4673	PRO82755, 4870
PRO82667, 4676	PRO82756, 4872
PRO82669, 4679	PRO82757, 4874
PRO82670, 4681	PRO82758, 4876
PRO82671, 4683	PRO82760, 4882
PRO82672, 4685	PRO82761, 4884
PRO82674, 4690	PRO82762, 4886
PRO82675, 4692	PRO82763, 4894
PRO82678, 4698	PRO82764, 4896
PRO82679, 4702	PRO82768, 4907
PRO82683, 4711	PRO82769, 4909
PRO82687, 4722	PRO82771, 4914
PRO82689, 4726	PRO82774, 4922
PRO82691, 4731	PRO82776, 4925
PRO82692, 4733	PRO82778, 4930
PRO82694, 4736	PRO82779, 4932
PRO82695, 4738	PRO82787, 4947
PRO82696, 4740	PRO82788, 4949
PRO82699, 4746	PRO82790, 4952
PRO82702, 4753	PRO82791, 4956
PRO82704, 4756	PRO82792, 4959
PRO82706, 4759	PRO82793, 4961
PRO82707, 4762	PRO82794, 4966
PRO82708, 4764	PRO82795, 4968
PRO82709, 4766	PRO82796, 4972
PRO82712, 4770	PRO82797, 4974
PRO82713, 4772	PRO82799, 4979
PRO82714, 4774	PRO82800, 4981 PRO82805, 4993
PRO82715, 4776	PRO82807, 4997
PRO82717, 4781	PRO82812, 5005
.PRO82718, 4785	PRO82813, 5007
PRO82719, 4787	PRO82814, 5009
PRO82720, 4789	PRO82816, 5012
PRO82721, 4791	PRO82818, 5017
PRO82722, 4795	PRO82825, 5029
PRO82724, 4802	PRO82828, 5023
PRO82725, 4804	PRO82829, 5035
PRO82726, 4808	PRO82831, 5038
PRO82728, 4811	PRO82833, 5044
PRO82729, 4815	PRO82835, 5047
PRO82730, 4817	PRO82840, 5059
PRO82732, 4823	PRO82841, 5061
PRO82736, 4828	PRO82842, 5063
PRO82737, 4831	110020.2, 5005

PRO82846, 5068	PRO82952, 5296
PRO82850, 5077	PRO82954, 5301
PRO82851, 5079	PRO82956, 5304
PRO82852, 5081	PRO82957, 5306
PRO82855, 5085	PRO82958, 5309
PRO82856, 5087	PRO82962, 5318
PRO82859, 5091	PRO82963, 5320
PRO82861, 5099	PRO82964, 5322
PRO82862, 5101	PRO82965, 5324
PRO82863, 5105	PRO82967, 5327
PRO82864, 5107	PRO82970, 5333
PRO82867, 5111	PRO82971, 5335
PRO82871, 5118	PRO82975, 5340
PRO82872, 5121	PRO82976, 5342
PRO82873, 5125	PRO82977, 5344
PRO82874, 5129	PRO82978, 5346
PRO82877, 5136	PRO82979, 5348
PRO82879, 5139	PRO82980, 5351
PRO82881, 5142	PRO82982, 5356
PRO82882, 5144	PRO82983, 5359
PRO82884, 5149	PRO82984, 5363
PRO82885, 5151	PRO82985, 5365
PRO82886, 5153	PRO82987, 5368
PRO82887, 5156	PRO82991, 5373
PRO82888, 5158	PRO82992, 5375
PRO82892, 5167	PRO82995, 5381
PRO82893, 5170	PRO82998, 5386
PRO82894, 5172	PRO82999, 5390
PRO82895, 5174	PRO83000, 5392
PRO82897, 5177	PRO83002, 5397
PRO82899, 5182	PRO83004, 5400
PRO82901, 5185	PRO83005, 5402
PRO82902, 5187	PRO83007, 5405
PRO82903, 5189	PRO83008, 5410
PRO82904, 5191	PRO83009, 5412
PRO82905, 5193	PRO83010, 5414
PRO82909, 5198	PRO83011, 5416
PRO82910, 5204	PRO83012, 5418
PRO82912, 5211	PRO83013, 5420
PRO82915, 5215	PRO83014, 5424
PRO82917, 5220	PRO83016, 5431
PRO82920, 5224	PRO83017, 5433
PRO82923, 5228	PRO83018, 5437
PRO82925, 5231	PRO83027, 5452
PRO82930, 5245	PRO83029, 5455
PRO82933, 5249	PRO83030, 5457
PRO82934, 5253	PRO83031, 5459
PRO82935, 5255	PRO83035, 5464
PRO82939, 5263	PRO83037, 5467
PRO82940, 5265	PRO83038, 5469
PRO82943, 5271	PRO83039, 5471
PRO82944, 5275	PRO83040, 5473
PRO82947, 5287	PRO83041, 5475
PRO82948, 5289	PRO83042, 5481
PRO82949, 5291	PRO83050, 5493
PRO82950, 5293	PRO83052, 5500
1 1002/30, 32/3	11005052,5500

PRO83054, 5509	PRO83141,5714
PRO83056, 5520	PRO83142, 5716
PRO83059, 5526	PRO83143, 5718
PRO83065, 5533	PRO83144, 5720
	PRO83145, 5724
PRO83066, 5535	PRO83146, 5726
PRO83068, 5538	PRO83149, 5730
PRO83069, 5540	PRO83150, 5732
PRO83071, 5545	PRO83152, 5737
PRO83072, 5547	PRO83153, 5741
PRO83073, 5553	PRO83155, 5751
PRO83074, 5555	PRO83156, 5753
PRO83075, 5557	PRO83157, 5755
PRO83076, 5559	PRO83159, 5758
PRO83077, 5561	PRO83161, 5764
PRO83078, 5567	PRO83163, 5767
PRO83080, 5572	PRO83165, 5770
PRO83082, 5579	PRO83167, 5777
PRO83083, 5581	PRO83169, 5784
PRO83084, 5583	PRO83170, 5788
PRO83085, 5585	PRO83174, 5797
PRO83086, 5587	PRO83175, 5799
PRO83087, 5596	PRO83176, 5801
PRO83089, 5599	PRO83170, 5801 PRO83177, 5803
PRO83090, 5601	PRO83178, 5805
PRO83092, 5604	PRO83178, 5807
PRO83093, 5606	PRO83180, 5812
PRO83095, 5609	PRO83182, 5817
PRO83096, 5611	PRO83183, 5820
PRO83098, 5614	PRO83184, 5822
PRO83099, 5618	PRO83185, 5827
PRO83100, 5620	PRO83186, 5829
PRO83101, 5622	PRO83187, 5833
PRO83102, 5624	PRO83188, 5835
PRO83103, 5630	PRO83189, 5839
PRO83104, 5632	PRO83190, 5841
PRO83105, 5634	PRO83191, 5843
PRO83107, 5637	PRO83193, 5848
PRO83108, 5643	PRO83194, 5850
PRO83109, 5645	PRO83195, 5852
PRO83112, 5653	PRO83196, 5854
PRO83113, 5657	PRO83197, 5856
PRO83114, 5659	PRO83198, 5858
PRO83116, 5662	PRO83199, 5860
PRO83117, 5664	PRO83200, 5862
PRO83118, 5666	PRO83201, 5864
PRO83121, 5672	PRO83202, 5866
PRO83125, 5684	PRO83203, 5868
PRO83128, 5690	PRO83204, 5870
PRO83129, 5692	PRO83205, 5872
PRO83130, 5694	PRO83203, 3872 PRO83210, 5884
PRO83132, 5697	PRO83211, 5888
PRO83133, 5699	PRO83212, 5895
PRO83135, 5702	PRO83212, 3893 PRO83213, 5899
PRO83137, 5707	PRO83214, 5901
PRO83138, 5709	PRO83217, 5909
PRO83139, 5711	11003217,3303

PRO83219, 5912	PRO83323, 6144
PRO83222, 5916	PRO83328, 6156
PRO83223, 5918	PRO83331, 6162
PRO83224, 5920	PRO83332, 6164
PRO83233, 5932	PRO83333, 6166
PRO83234, 5934	PRO83334, 6168
PRO83235, 5938	PRO83335, 6171
PRO83236, 5942	PRO83337, 6175
PRO83237, 5944	PRO83339, 6178
PRO83242, 5952	PRO83340, 6180
PRO83244, 5955	PRO83341, 6184
PRO83245, 5959	PRO83343, 6193
PRO83247, 5962	PRO83344, 6195
PRO83252, 5970	PRO83345, 6200
PRO83253, 5972	PRO83346, 6202
PRO83254, 5978	PRO83349, 6208
PRO83255, 5980	PRO83351, 6211
	PRO83352, 6213
PRO83256, 5982	PRO83353, 6219
PRO83257, 5984	
PRO83260, 5988	PRO83354, 6221
PRO83261, 5992	PRO83355, 6223
PRO83263, 5997	PRO83360, 6234
PRO83265, 6002	PRO83361, 6236
PRO83266, 6008	PRO83365, 6247
PRO83267, 6010	PRO83366, 6249
PRO83270, 6016	PRO83368, 6252
PRO83271, 6018	PRO83369, 6254
PRO83273, 6026	PRO83372, 6260
PRO83274, 6033	PRO83373, 6262
PRO83275, 6037	PRO83374, 6264
PRO83276, 6041	PRO83375, 6266
PRO83278, 6044	PRO83381, 6277
PRO83279, 6048	PRO83383, 6283
PRO83280, 6050	PRO83385, 6290
PRO83282, 6053	PRO83386, 6292
PRO83283, 6057	PRO83387, 6294
PRO83285, 6062	PRO83388, 6296
PRO83288, 6067	PRO83389, 6298
PRO83289, 6073	PRO83391,6301
PRO83291, 6078	PRO83392, 6303
PRO83292, 6084	PRO83393, 6305
PRO83293, 6086	PRO83394, 6307
PRO83297, 6092	PRO83395, 6309
PRO83300, 6096	PRO83397, 6314
PRO83301, 6098	PRO83400, 6324
PRO83302, 6100	PRO83403, 6331
PRO83304, 6107	PRO83404, 6337
PRO83306, 6110	PRO83405, 6347
PRO83307, 6112	PRO868, 1871
PRO83309, 6115	PRO9112, 3668
PRO83310, 6117	PRO9785, 1369
PRO83312, 6120	PRO9819, 2676
PRO83316, 6129	PRO983, 5825
PRO83319, 6133	PRO9886, 706
PRO83320, 6135	PRO9902, 2952
PRO83321, 6137	PRO9980, 2479

PCT/US2003/028547

PRO9984, 969 PRO9987, 3753

Accession Index (to Figure number)

NM ,000018, 4669	NM_000484, 5882
NM .000026, 6068	NM_000505, 1828
NM 000029, 624	NM_000508, 1511
NM .000033, 6342	NM_000509, 1515
NM .000034, 4520	NM_000516, 5830
NM.000039, 3376	NM_000517, 4354
NM_000041, 5511	NM_000521, 1627
NM.000070, 4161	NM_000526, 4816
NM 000075, 3683	NM_000532, 1260
NM .000077, 2655	NM_000554, 5480
NM_000079, 898	NM_000558, 4356
NM .000090, 921	NM_000559, 3142
NM 000107,3208	NM_000569, 505
NM_000114, 5836	NM_000574, 558
NM_000121,5258	NM_000576, 847
NM_000126, 4267	NM_000582, 1459
NM.000137, 4300	NM_000592, 1957
NM 000143, 636	NM_000598, 2228
NM .000146, 5562	NM_000602, 2361
NM .000154, 4967	NM_000612, 3120
NM_000156, 5122	NM_000638, 4763
NM .000165, 2099	NM_000661, 1425
NM .000177, 2796	NM_000666, 1172
NM.000178, 5738	NM_000687,5736
NM_000179,744	NM_000688, 1167
NM .000182, 713	NM_000700, 2695
NM.000183, 711	NM_000701,312
NM .000184, 3144	NM_000743, 4259
NM .000196, 4547	NM_000754, 5956
NM .000213, 4963	NM_000760, 173
NM_000221,701	NM_000785, 3687
NM .000224, 3593	NM_000787, 2830
NM_000227, 5040	NM_000795,3384
NM_000228, 553	NM_000801, 5648
NM_000239, 3729	NM_000852, 3297
NM_000250, 4903	NM_000858, 612
NM_000251,741	NM_000893, 1327
NM .000268, 5994	NM_000895, 3763
NM_000269, 4889	NM_000930, 2534
NM_000274, 3076	NM_000931, 2536
NM_000284, 6138	NM_000942, 4218
NM_000291,6230	NM_000954, 2868
NM_000358, 1671	NM_000964, 4820
NM_000365, 3460	NM_000967, 6061
NM_000368, 2806	NM_000969, 284
NM_000385, 2262	NM_000970, 3781
NM_000386, 4843	NM_000971;2569
NM 000396, 356	NM_000972, 2826
NM_000404, 1089	NM_000973, 2633
NM 000407, 5947	NM_000975, 87
NM_000422, 4807	NM_000976, 2780
NM_000425,6334	NM_000977, 4633
NM_000447, 594	NM_000978, 4801
1111 JUUTT 1, JOT	111111111111111111111111111111111111111

NM_000979, 5571	NM_001168, 4985
NM .000980, 5334	NM_001190, 5568
NM .000981, 4798	NM_001199, 2495
NM .000982, 3091	NM_001207, 1624
NM .000983, 34	NM .001211, 4139
NM .000985, 5067	NM .001218, 4203
NM_000986, 1206	NM_001235, 3333
NM .000987, 4714	NM_001238, 5374
NM 000989, 2588	NM_001247, 5703
NM_000990, 3155	NM_001255, 194
NM.000991, 5613	NM_001262, 229
NM_000992, 1170	NM_001273, 3468
NM_000993, 832	NM_001274, 3411
NM_000994, 1064	NM_001275, 4065
NM_000997, 1570	NM_001283, 2365
NM_000998,966	NM_001287, 4372
NM_001000, 6278	NM_001288, 1969
NM_001002, 3827	NM_001293, 3337
NM.001003, 4228	NM_001294, 5508
NM.001005, 3331	NM_001313, 1396
NM_001006, 1506	NM_001319, 5141
NM_001007, 6224	NM_001320, 1971
NM_001009, 5633	NM_001324, 5814
NM_001010, 2651	NM_001325, 6239
NM_001011, 643	NM_001333, 2736
NM_001012, 210	NM_001344, 3984
NM_001016, 2111	NM .001350, 1942
NM_001017, 3171	NM_001363, 6318
NM_001018,5126	NM_001407, 1132
NM_001020, 5426	NM_001415, 6143
NM .001021, 4283	NM 001416, 4687
NM_001022, 5468	NM_001418, 3163
NM_001023, 2552	NM_001428, 31
NM_001024, 5847	NM_001436, 5436
NM_001025, 1632	NM_001444, 2575
NM_001026, 2980	NM.001450, 836
NM_001028, 3361	NM.001463, 916
NM_001029, 3656	NM.001465, 1573
NM.001030, 440	NM_001467, 3359
NM_001034,651	NM_001469, 6081
NM_001038, 3478	NM_001494, 2891
NM_001043, 4487	NM .001500, 2052 NM .001517, 1997
NM_001050, 4841	NM .001521, 689
NM_001064, 1159	NM_001530, 4016
NM_001065, 3480	NM_001536, 5539
NM_001068, 1079	NM 001539, 2660
NM 001069, 2050 NM 001084, 2369	NM .001540, 2308
NM .001087, 994	NM_001553, 1435
NM_001087, 994 NM_001098, 6079	NM 001554, 269
NM .001101, 2174	NM_001560, 6270
NM_001102, 4040	NM_001567, 3322
NM_001122, 2649	NM_001568, 2596
NM .001134, 1446	NM_001569, 6332
NM_001154, 1489	NM_001571, 5542
NM .001157, 2990	NM_001605, 4564

	•
NM_001607, 1097	NM_002015, 3896
NM_001610, 3206	NM_002018, 4719
NM_001613, 3008	NM_002028, 4010
NM_001622, 1330	NM_002046, 3473
NM_001628, 2423	NM_002047, 2265
NM_001641, 3997	NM_002075, 3463
NM_001644, 3511	NM_002079, 3066
NM_001647, 1352	NM_002083, 4012
NM .001648, 5590	NM_002084, 1704
NM_001659, 3550	NM_002085,5112
NM_001662, 2398	NM .002086, 4953
NM_001667,3284	NM .002087, 4845
NM .001673, 2355	NM .002106, 1478
NM_001687,5115	NM_002109, 1779
NM_001688, 308	NM_002128, 3887
NM .001696, 5941	NM_002129, 1522
NM_001697, 5892	NM .002130, 1582
NM_001710, 1959	NM_002133, 6020
NM_001734, 3452	NM_002137, 2210
NM_001743, 5494	NM_002157, 930
NM_001747, 806	NM_002161, 2716
NM_001751,3137	NM_002168, 4293
NM_001753, 2391	NM_002178,3600
NM_001757,5894	NM.002211, 2919
NM.001760, 1898	NM.002212, 5742
NM_001762, 2274	NM_002229, 5272
NM_001780, 3663	NM .002265, 4834
NM_001791, 81	NM.002273, 3591
NM_001816,5478	NM_002274, 4814
NM_001819, 5679	NM_002275,4812
NM_001827, 2714	NM_002276, 4810
NM_001831, 2506 NM_001833, 2689	NM_002295, 1108
	NM_002305, 6038
NM .001842, 2668 NM .001853, 5853	NM_002306,4022
NM_001861, 4614	NM_002339, 3115 NM_002340, 5931
NM_001862, 827	NM.002340, 3931
NM_001878,392	NM_002342, 3476
NM.001907, 4579	NM_002345, 3732
NM.001909, 3133	NM_002358, 1485
NM.001920, 3740	NM_002364, 6147
NM_001930,5267	NM_002385, 5086
NM_001935, 894	NM_002386, 4626
NM_001944,5050	NM_002388, 1866
NM_001959, 950	NM_002396, 5069
NM_001961, 5178	NM_002397, 1646
NM.001964, 1689	NM_002401, 4933
NM_001969, 4098	NM_002411, 3245
NM_001970, 4697	NM_002413, 1494
NM.001975,3458	NM_002414, 6124
NM_001983, 5502	NM_002415, 5979
NM.001985, 5593	NM_002453, 751
NM_002003, 2834	NM_002466, 5774
NM_002004,422	NM_002468, 1095
NM_002011, 1836	NM 002473, 6025
NM_002014, 3439	NM_002477, 1368

NM _002484, 4416	NM .002923, 540
NM_002486, 2734	NM_002934, 3992
NM .002489, 2193	NM .002938, 1386
NM_002492, 1297	NM_002946, 127
NM .002512, 4887	NM_002947, 2188
NM_002520, 1803	NM_002948, 1076
NM .002537, 4210	NM .002952, 4382
NM 002539, 659	NM .002954, 749
NM.002567, 3816	NM .002961, 369
NM_002568, 2593	NM .002965, 364
NM_002574, 220	NM_002979, 235
NM_002588, 1728	
NM_002606, 5900	NM 003002, 3390
NM_002615, 4647	NM .003021, 5161
NM .002617, 12	NM .003025, 5188
NM_002632, 4052	NM_003055, 2947
NM_002634, 4939	NM .003064, 5781
NM_002638, 5779	NM_003072, 5254
NM_002654, 4242	NM_003076, 3568
NM_002660, 5771	NM_003088, 2176
NM_002668, 6185	NM_003090, 4320
NM_002689, 3289	NM_003091,5654
NM .002691, 5580	NM_003092, 5683
NM_002707, 681	NM_003104, 4187
NM_002712, 1030	NM .003107, 2032
NM .002720, 4518	NM .003123, 4511
NM.002727, 2961	NM_003124, 789
NM_002730, 5298	NM .003128, 746
NM_002733, 3555	NM .003132, 50
NM .002766, 4975	NM_003137, 1916
NM_002787, 2254	NM_003143, 2435
NM_002789, 4261	NM_003145,409
NM .002792, 5838	NM_003146, 3215
NM_002793,2137	NM_003149, 1099
NM_002796,346	NM_003169, 5428
NM_002802, 4059	NM .003181, 2135 NM .003216, 6077
NM_002803, 2378	
NM_002809, 4805	NM_003283, 5608
NM_002810, 348	NM_003287, 2104
NM_002812, 5401	NM .003289, 2680 NM .003290, 5312
NM_002813, 3837	NM .003295, 3900
NM_002815, 4778	
NM_002819, 5102	NM .003310, 649
NM .002827, 5809	NM .003316, 5896 NM .003334, 6167
NM_002846, 980	NM_003349, 5804
NM.002854, 1188	
NM.002856, 5515	NM 003350, 2546
NM .002857, 481	NM .003365, 1134
NM .002863, 4029	NM 003366, 4421 NM 003370, 5400
NM_002870, 438	NM 003370, 5499
NM_002878, 4784	NM 003374, 1677
NM_002883,6075	NM .003375, 2982
NM.002887, 1800	NM_D03378, 2367
NM_002913, 1427	NM_003389, 2728
NM .002915, 3891	NM_003400, 761
NM_002921, 3002	NM_003401, 1636
	NM_003406, 2590

NM .003418, 1250	NM .004053, 1900
NM .003453, 3864	NM_004060, 1791
NM_003461, 2440	NM_004074, 3264
NM .003472, 2034	NM_004084, 2476
NM ,003516, 459	NM_004085, 6242
NM .003564, 474	NM_004092, 3099
NM .003598, 5556	NM .004111, 3253
NM .003617, 497	NM .004117, 1918
NM .003624, 5214	NM_004127, 5008
NM .003626, 3316	NM_004134, 1693
NM .003646, 3197	NM_004135, 6340
NM .003662, 6149	NM_004147, 6011
NM .003680, 157	NM .004152, 5154
NM .003681, 5905	NM .004159, 1952
NM .003685, 5203	NM .004175, 5983
NM .003687, 1673	NM .004176, 4742
NM .003689, 71	NM .004178, 3614
NM .003712, 5093	NM_004181, 1430
NM .003714, 1812	NM .004182, 6174
NM .003720, 5898	NM .004193, 3045
NM_003721, 5360	NM .004203, 4402
NM .003722, 1335	NM .004208, 6285
NM_003729, 288	NM_004217, 4699
NM .003725, 1730	NM .004219, 1795
NM.003736, 1730	NM .004240, 5206
NM .003739, 2883	NM .004247, 4879
NM_003752, 4449	NM .004261, 273
NM_003753, 6027	NM_004265, 3249
NM .003755, 5234	NM .004309, 5002
	NM .004322, 3256
NM .003756, 2598	NM .004323, 2662
NM .003757, 148	NM .004324, 5564
NM_003765, 5288 NM_003766, 4865	NM .004335, 5328
NM_003779, 468	NM_004339, 5921
NM_003780, 199	NM_004341, 692
	NM_004345, 1128
NM_003787, 5052	NM_004360, 4549
NM_003815, 457	NM_004398, 3392
NM_003824, 3313 NM_003836, 4088	NM_004401, 48
NM_003837, 2723	NM_004404, 1034
NM_003859, 5811	NM .004435, 2761
	NM .004448, 4796
NM_003876, 4708	NM_004461, 5279
NM_003877,3757	NM .004483, 4602
NM .003906, 5933	NM_004493, 6190
NM_003908, 5734	NM_004509, 1012
NM_003915, 5747	
NM .003932, 6070	NM 004510, 1014
NM_003937, 881	NM .004524, 4960
NM_003938, 5148	NM 004539, 5072
NM_003971, 4891	NM .004547, 1218
NM_003973, 1110	NM .004550, 470
NM_003979, 3498	NM .004551, 3199
NM_004000, 306 NM_004004_3866	NM 004555, 4586
NM_004004, 3866	NM .004573, 4141
NM_004044, 955	NM_004595, 6140 NM_004596, 5448
NM_004048,4178	14101 2042 90, 3448

NM .004599, 6085	NM_005015, 3981
NM_004618, 4716	NM .005016, 3620
NM_004632,414	NM £005022, 4665
NM_004635, 1155	NM .005030, 4442
NM_004636, 1149	NM .005036, 6104
NM_004637, 1246	NM .005042, 3524
NM_004638, 1979	NM .005053, 5283
NM_004639, 1973	NM .005072, 4581
NM_004640, 1986	NM .005080, 5987
NM .004673, 529	NM_005109, 1093
NM_004691, 4545	NM .005110, 1854
NM_004697, 2751	NM_005112, 1421
NM_004699, 6323	NM _005115, 4500
NM_004701, 4197	NM .005132, 3962
NM_004704, 1182	NM .005141, 1508
NM_004706, 5470	NM_005163,4110
NM_004714, 5434	NM_005171, 3574
NM .004725, 3093	NM .005174, 2895
NM_004728, 2959	NM _005194, 5808
NM.004735, 1026	NM .005217, 2478
NM_004738, 5824	NM ,005220, 4946
NM_004739, 3230	NM 005224, 5104
NM_004766, 1270	NM .005243, 5989
NM_004767, 576	NM 2005269, 3667
NM_004772, 1650	NM .005271, 3004
NM_004781,44	NM .005291, 854
NM_004794, 6287	NM .005300, 6159
NM.004813,3190	NM .005313, 4174
NM_004821, 1787	NM .005324, 4969
NM_004844, 1066	NM_005330, 3146
NM_004846, 998	NM_005333,6126
NM_004859, 4921	NM .005345, 1963
NM_004870, 4689	NM .005346, 1961
NM_004889, 2342	NM_005347, 2790
NM_004893, 1685	NM_005348, 4092
NM_004905, 511	NM .005362, 6316
NM_004911,2442	NM_005364, 6308
NM_004928, 5915	NM_005370, 5314
NM_004930, 69	NM_005371, 3689
NM_004933, 4638	NM_005378,657
NM_004939, 662	NM .005389, 2126
NM_004957, 2775	NM .005432, 4101 NM .005439, 3466
NM_004960, 4465	
NM_004964, 150	NM .005440, 4877 NM .005452, 1944
NM_004973, 2039	NM £005474, 4850
NM_004982, 3526 NM_004990, 3669	NM_005490, 5208
NM_004992, 6330	NM .005498, 5241 NM .005514, 2155
NM_004994, 5791 NM_004995, 3976	NM_005517, 110
NM_005000, 2396	NM £05517, 110 NM £05520, 1850
NM.005002, 3448	NM £05520, 1850
NM_005003, 4446	NM_005563, 105
NM_005004, 3063	NM_005566, 3175
NM_005005,2606	NM .005572, 404
NM.005008, 6083	NM_005573, 1718

NM_005581, 5517	NM_006019, 3304
NM .005594, 3628	NM_006023, 2899
NM_005614, 2460	NM_006039,4936
NM_005617, 1708	NM_006053,3306
NM_005620, 340	NM.006058, 1702
NM .005623, 4782	NM_006066, 218
NM .005632, 4362	· NM_006067, 4612
NM .005657, 4170	NM_006098, 1852
NM .005663, 1382	NM_006101, 5023
NM_005676,6165	NM_006109, 3973
NM.005686, 550	NM .006110, 4423
NM_005692, 2458	NM_006112, 159
NM_005693, 3204	NM.006114, 5513
NM .005698, 424	NM_006115, 5975
NM .005710, 6181	NM .006128, 2497
NM .005713, 1602	NM .006131, 2499
NM_005717, 517	NM .006132, 2501
NM_005718, 1055	NM .006136, 2393
NM_005720, 2348	NM_006169, 3380
NM_005724, 4273	NM .006184, 5566
NM £005726, 3695	NM .006227, 5789
NM_005729, 2986	NM .006230, 2246
NM_005731, 996	NM .006245, 1892
NM_005745, 6344	NM .006247, 5497
NM.005754, 1697	NM .006250, 3522
NM .005762, 5627	NM .006253, 3831
NM .005770, 4176	NM .006262, 3546
NM .005775, 2491	NM .006265, 2600
NM .005783, 829	NM .006271, 374
NM_005787, 1316	NM_006272, 5935
NM .005796, 4575	NM .006280, 6338
NM .005806, 5887	NM_006289, 2682
NM .005826, 83	NM_006295, 1967
NM .005830, 3898	NM_006303, 2178
NM_005831, 4911	NM_006330, 2550
NM_005833, 2792	NM_006335, 571
NM_005837, 2326	NM .006339, 5171
NM_005850, 461	NM_006342, 1374
NM_005851, 3301	NM .006349, 2371 NM .006354, 1049
NM_005855, 1024 NM_005866, 2670	NM .006362, 3242
NM_005877, 5999	NM .006365, 396
NM_005884, 5421	NM_006373, 4875
NM_005889, 3509	NM .006384, 4305
NM_005911,808	NM_006387, 5319
NM_005915,864	NM .006395, 1062
NM_005917, 764	NM_006397, 5277
NM .005918, 2306	NM_006401, 2732
NM.005973, 389	NM_006427, 4106
NM_005981, 3681	NM .006428, 4360
NM .005983, 1579	NM .006429, 792
NM .005985, 5802	NM .006430, 759
NM .005997, 350	NM .006432, 4048
NM .006000, 982	NM .006435, 3113
NM .006012, 5201	NM .006439, 1504
NM .006013, 6326	NM .006440, 5954
•	.,

PCT/US2003/028547

NM_006453,4384	NM .006842, 3295
NM .006455, 4822	NM 006844, 5308
NM 006470, 4725	NM_006854, 2184
NM_006478, 5991	NM .006862, 344
NM_006488, 703	NM_006888, 4063
NM £006494, 5476	NM_006899, 5661
NM .006503, 5441	NM_006908, 2182
NM .006513, 298	NM_006924, 4908
NM_006516, 188	NM_006928, 3660
NM_006523, 3055	NM_006932, 6007
NM 006530, 3727	NM_006938, 5039
NM .006556, 452	NM .006941, 6049
NM .006559, 146	NM .006942, 4691
NM 006576, 3697	NM 006990, 124
NM .006585, 5885	NM .007002, 5844
NM_006586, 1894	NM_007019, 5785
NM .006589, 428	NM .007032, 6040
NM .006600, 118	NM .007034, 267
NM_006601,3636	NM .007046, 705
NM_006621, 300	NM .007047, 2029
NM_006625, 93	NM .007062, 3805
NM .006636, 794	. NM .007065, 5237
NM 006646, 3881	NM .007074, 4516
NM 006659, 3101	NM 007085, 1216
NM 006666, 5558	NM_007096, 2691
NM 006667, 6272	NM_007100, 1366
NM .006670, 2070 NM .006693, 2344	, NM_007103, 3299
NM .006694, 436	NM_007104, 1922
NM .006698, 5760	NM_007158,302
NM 006708, 1904	NM_007165, 5152
NM 006711,4392	NM .007173, 3348
NM 006746, 6134	NM_007178, 3501
NM 006761,4642	NM_007184, 1165
NM .006763, 548	NM_007186, 5744
NM_006764, 1151	NM_007190, 3089
NM 006769, 271	NM .007209, 2794
NM_006787, 6197	NM_007242, 4566
NM .006791, 4279	NM .007244, 3520 NM .007260, 89
NM .006799, 4408	NM .007262, 42
NM_006801,5576	NM .007263, 5352
NM .006805, 1687	NM .007268, 6204
NM_006808, 2740	NM .007273, 3455
NM_006810, 1223	NM 007275, 1153
NM_006812, 3678	NM .007276, 2214
NM .006815, 3847	NM_007279, 5619
NM_006816, 1830	NM_007310, 5958
NM_006817, 3785	NM_007311,6095
NM_006821,4046	NM_007317, 4507
NM .006824, 192	NM .007355, 1874
NM_006825, 3807	NM .007364, 4277
NM_006826, 655	NM .007372, 4931
NM_006833, 2338	NM_012068, 5525
NM_006835, 1449	NM_012098, 2782
NM_006837, 2565	NM_012099, 5504
NM_006839,814	NM 012100, 977
	·

NM_012101,3420	NM 014173, 5326
NM_012111, 4055	NM_014176, 578
NM_012112,5715	NM_014184, 585
NM 012116, 5519	NM_014188, 17
NM D12138, 4838	NM_014189, 1390
NM_012170, 4265	NM 014190, 1388
NM_012179,6017	NM_014203, 5536
NM_012181,5350	NM_014214, 5032
NM .012203, 2693	NM .014226, 4095
NM_012207, 2955	NM_014236, 626
NM_012237, 5409	NM_014248, 6072
NM_012248, 4451	NM_014255, 3631
NM_012255, 5698	NM_014267, 3173
NM_012264, 6054	NM_014275, 1846
NM_012286, 6246	NM_014285, 2820
NM .012296, 3344	NM_014294, 2567
NM_012323, 6052	NM_014303, 6003
NM_012391, 1929	NM_014306, 6015
NM .012412, 2236	NM_014311, 3606
NM .012423, 5550	NM_014320, 2116
NM .012437, 381	NM_014321, 4476
NM 012458, 5155	NM_014325, 3777
NM .012469, 5873	NM_014335, 4182
NM _012486, 596	NM_014341, 1906
NM .013237, 1834	NM_014353, 4386
NM_013247, 801	NM_014408, 167
NM_013265, 3279	NM_014413, 2180
NM_013274, 3037	NM_014426, 5685
NM_013277, 3566	NM_014444, 4168
NM_013296, 292	NM_014445, 1284
NM_013333,5617	NM_014452, 1870
NM .013336, 1238	NM_014453, 5625
NM_013341, 903	NM_014481,6199
NM_013363, 1276	NM_014501, 5615
NM_013365,6032	NM_014502, 3220
NM_013369, 5911	NM_014515, 3724
NM D13375, 2027 NM D13393, 2165	NM_014556, 1394 NM_014571, 142
NM_013402, 3251	NM.014585, 923
NM D13403, 5492	NM_014587, 4370
NM 013406, 5269	NM_014610, 3232
NM D13407, 5270	NM_014624, 367
NM 013417, 2718	NM_014649, 5199
NM 013442, 2675	NM_014663, 202
NM_013451, 3013	NM_014670, 934
NM_014003, 4592	NM_014685, 4530
NM_014008, 6187	NM_014713, 667
NM_014033,3576	NM_014736, 4214
NM_014035, 1664	NM_014737, 5676
NM_014042,3320	NM_014742, 5721
NM_014062, 4556	NM_014747, 180
NM_014063, 2251	NM_014748, 684
NM_014107, 2077	NM_014752, 3329
NM_014138, 6163	NM_014773, 1721
NM_014166, 3906	NM_014776, 3792
NM_014172, 2862	NM_014778, 3878

NM_014800, 2259	NM £16085, 694
NM_014814, 1195	NM £16091, 6045
NM_014829, 1681	NM .016095, 4610
NM_014837, 519	NM_016111,4374
NM_014847, 446	NM_016119,3912
NM .014849, 463	NM .016143, 5652
NM_014851, 36	NM_016169, 3051
NM_014868, 3823	NM_016174, 2767
NM_014887, 3889	NM 016176, 26
NM_014919, 1378	NM.016183,73
NM_014931, 5610	NM_016202, 5621
NM_014933, 1457	NM_016223, 3210
NM_014941, 6005	NM_016249, 6300
NM .014972, 4628	NM_016263, 5169
NM .015043, 1843	NM .016267, 6293
NM_015062, 3042	NM_016286, 5006
NM_015064, 3430	NM_016292, 4414
NM_015068, 2319	NM_016304, 4193
NM_015129, 6276	NM.016328, 2293
NM_015140, 6097	NM_016357, 3572
NM_015179, 3024	NM_016359, 4152
NM_015322, 4226	NM_016361, 328
NM_015324, 3149	NM_016410, 2664
NM_015373, 6056	NM_016440, 5523
NM_015388, 1886	NM .016445, 4035
NM .015438, 3470	NM_016456, 564
NM .015449, 444	NM_016498,6001
NM_015453, 1043	NM_016526, 3107
NM_015472, 1282	NM_016539,5181
NM_015484, 99	NM_016558, 5750
NM_015511, 5752	NM_016567, 3097
NM_015533, 3225	NM_016579, 5216
NM .015544, 4780	NM_016587, 2216
NM 015584, 4761	NM_016592, 5826
NM_D15629, 5600	NM_D16638, 3843 NM_D16639, 4398
NM_015636, 686	NM.016641, 4335
NM_015640, 260	NM 016645, 4302
NM_015644, 1057	NM_016647, 2614
NM_015646, 3720 NM_015665, 3604	NM_D16732, 5733
NM_015702, 885	NM_016838, 887
NM_015714, 555	NM_016839, 889
NM_015853, 3238	NM_016930, 1400
NM_015920, 4205	NM_016940, 5883
NM.015932, 3884	NM_016941,5432
NM 015934, 941	NM_017443, 2753
NM_015937,5783	NM_017458,4498
NM_015953, 5546	NM_017491, 1419
NM_015965, 5362	NM_017546, 834
NM_015966, 5745	NM_017566, 4617
NM_016003, 2172	NM_017572, 5146
NM_016016, 4847	NM 017595, 4871
NM_016022, 334	NM_017601, 1902
NM_016026, 4037	NM_017610, 4195
NM_016030, 647	NM_017613, 5890
NM_016059, 1908	NM_017647, 4929

PCT/US2003/028547

NM_017668, 4327 NM_017608, 44208 NM_017762, 2528 NM_017762, 2467 NM_017761, 369 NM_017761, 369 NM_017761, 369 NM_017768, 262 NM_017777, 4906 NM_017789, 262 NM_017777, 4906 NM_017803, 4584 NM_017801, 1081 NM_017803, 4584 NM_017801, 3971 NM_017802, 3552 NM_017827, 5413 NM_017828, 3865 NM_017828, 3865 NM_017828, 3865 NM_017828, 3617 NM_017916, 5554 NM_018032, 4338 NM_018032, 4338 NM_018032, 4338 NM_018032, 4338 NM_018032, 4338 NM_018032, 4336 NM_018063, 1675 NM_018064, 1706 NM_018066, 116 NM_018066, 1702 NM_018085, 569 NM_018086, 569 NM_018108, 558	
NM .018070, 239 NM .018085, 569	
NM 018096, 4792	
NM D18110, 4535	
NM D18113, 3548 NM D18116, 420	
NM .018122, 535	
NM_018124,4588	
NM D18135, 1880	
NM_018154,5300	
NM 018174, 5332	
NM £018188, 10	

NIM 018209, 5861 NM .018212, 587 NM_018217, 5740 NM .018238, 2437 NM 018242, 4747 NM 018250, 2510 NM 018253, 418 NM 018255, 5056 NM 018270, 5849 NM 018310, 2527 NM 018346, 4898 NM 018357, 4232 NM 018410, 1018 NM.018454, 4154 NM 018457, 3610 NM 018463, 3442 NM_018464, 2951 NM.018468, 5387 NM 018486, 6222 NM_018509, 4900 NM_018607, 721 NM 018660, 2512 NM 018668, 4312 NM D18674, 973 NM.018686, 3513 NM 018912, 1734 NM 018913, 1736 NM 018914, 1738 NM 018915, 1740 NM 018916, 1742 NM_018917, 1744 NM 018918, 1746 NM_018919, 1748 NM_018920, 1750 NM 018921, 1752 NM .018922, 1754 NM .018923, 1756 NM.018924, 1758 NM_018925, 1760 NM 018926, 1762 NM_018927, 1764 NM_018928, 1766 NM 018929, 1768 NM 018947, 2208 NM 018948, 41 NM.018950, 2017 NM 018955, 4728 NM £018957, 6034 NM 018977, 6214 NM D19013, 4682 NM .019058, 2971 NM .019059, 2206 NM_019082, 2242 NM_019095,5681 NM_019099, 310 NM 019554, 371

NM D19606, 2333	NM .021932, 3109
NM_019609, 5663	NM_021934, 3588
NM.019619, 2916	NM_021948, 394
NM .019848, 6321	NM_021953, 3444
NM £019852, 3988	NM_021966, 4079
NM .019887, 3839	NM_021999, 3908
NM .020037, 4895	NM_022003, 3369
NM D20038, 4893	NM_022039, 3039
NM D20132, 5908	NM .022044, 5973
NM_020134, 709	NM_022048, 4216
NM_020149, 4136	NM .022105, 5857
NM D20158, 5454	NM .022137, 4042
NM_020188, 4604	NM_022141, 6101
NM .020230, 5232	NM.022158, 5016
NM £020243, 6058	NM_022170, 2288
NM.020299, 2425	NM_022171, 1145
NM.020315,6036	NM.022362, 3029
NM_020320, 2075	NM_022369,4246
NM.020347, 1113	NM_022371,527
NM .020401, 3717	NM .022442, 5806
NM_020414, 4069	NM .022453, 988
NM.020418, 1180	NM .022458, 2464
NM_020548, 871	NM .022461, 1086
NM_020675, 896	NM_022485, 1045
NM 020677, 4340	NM_022550, 1638
NM .020701, 1248	NM_022551, 1946
NM_020990, 4172	NM .022552, 717
NM_020992, 3017	NM .022566, 4296
NM.021019, 3646	NM.022727, 5961
NM_021029, 6244	NM D22744, 4468
NM_021079, 4883	NM D22747, 4084
NM_021095, 698	NM D22748, 2226
NM_021103, 803	NM_022752, 5474
NM_021104, 3654	NM_022758, 1926
NM_021107, 5415	NM_022770, 4539
NM_021121,948	NM_022778, 107
NM_021126, 6029	NM.022839, 4290
NM.021129, 2964	NM_022963, 1838
NM.021130, 2238	NM D23009, 152
NM.021141,958	NM_023011, 3940
NM_021154, 2701	NM_023032, 3691
NM .021158, 5638	NM D23033, 3693
NM 021177, 1965	NM_023078, 2620
NM_021178, 4006 NM_021195, 4400	NM_023936, 4378
NM_021213, 4919	NM .023942, 2449
NM_021219, 5879	NM_024003, 6336
NM.021226, 2945	NM_024026, 3872
NM.021626, 4917	NM D24027, 645
NM_021709, 4108	NM_024029, 5250
NM_021728, 4020	NM .024031, 4458
NM D21826, 5665	NM_024033, 2427
NM D21830, 3033	NM.024040, 3047
NM.021831,707	NM 024045, 2957
NM_021870, 1517	NM D24048, 4470 NM D24067, 2186
NM.021871, 1513	NM D24067, 2186 NM D24068, 3643
	14141_1024008, 3043

NM 024070, 2335	NM_025204, 6109
NM_024089, 3935	NM_025205, 1414
NM_024098, 3218	NM_025207, 455
NM_024099, 3236	NM_025226, 499
NM_024104, 5323	NM_025232, 2503
NM_024111, 4148	NM_025233, 4859
NM_024294, 1924	NM_025234, 4270
NM_024297, 4672	NM_025241, 5190
NM_024299, 5865	NM_025263, 2007
NM .024319, 614	NM_030567, 1826
NM .024321, 5389	NM_030573, 5965
NM_024329, 62	NM_030579, 4553
NM .024330, 379	NM_030587, 196
NM_024333, 5186	NM_030593, 5411
NM .024339, 4396	NM_030775, 3432
NM_024407, 5120	NM_030782, 1545
NM_024507, 4406	NM .030815, 5719
NM_024516, 4502	NM .030819, 4573
NM .024537, 3938	NM_030877, 5763
NM_024567, 2508	NM_030900, 2232
NM_024571, 4350	NM .030920, 332
NM_024572, 719	NM .030921, 1272
NM .024586, 247	NM_030925, 3910
NM .024589, 4346	NM_030926, 1009
NM_024602, 206	NM .030935, 2331
NM_024603, 241	NM_030973, 5532
NM_024613, 2584	NM_031157, 3612
NM_024627, 5951	NM .031206, 6210
NM_024640, 137	NM_031213, 5138
NM .024653, 2373	NM_031228, 5642
NM_024658, 3960	NM_031229, 5640
NM_024664, 183	NM_031243, 2212
NM_024668, 1724	NM_031263, 2708
NM_024671, 4454	NM_031289, 3496
NM_024691, 5636	NM_031300, 1832
NM_024709, 603	NM_031417, 5506
NM_024748, 1526	NM_031434, 2456
NM_024824, 4057	NM_031443, 2234
NM .024844, 4955	NM .031453, 2902
NM .024854, 3529 NM .024855, 5769	NM_031459, 131
	NM .031465, 3446
NM D24863, 6248	NM .031472, 3261
NM_024881, 5321 NM_024900, 1491	NM .031478, 4522
NM .024918, 5757	NM_031479, 3665
NM_024918, 3757	NM_031482, 1629 NM_031484, 3070
NM_025070, 2541	NM 031485, 5574
NM_025072, 2772	NM_031901, 336
NM_025108, 4411	NM_031925, 2304
NM .025129, 5534	NM_031942, 905
NM_025150, 358	NM_031966, 1598
NM 025164, 3374	NM_031968, 5014
NM .025168, 1863	NM 031989, 3622
NM_025197, 4830	NM 031990, 5100
NM .025202, 1000	NM_031992, 2290
NM_025203, 678	NM .032023, 2923

NTM 022029 4405

PCT/US2003/028547

NM .032038, 4495
NM_032088, 1770
NM_032092, 1772
NM_032112,3031
NM_032140, 4571
NM_032162, 4310
NM_032164, 2340
NM 032196, 4150
NM_032204, 5996
NM_032207,5317
NM.032211, 3068
NM_032212, 843
NM_032219, 1370
NM .032227, 6257
NM_032271,4388
NM .032280, 1642
NM_032288, 1354
NM_032292, 412
NM .032299, 3395
NM_032313, 1437
NM_032322,4771
NM_032323, 402
NM 032324, 630
NM .032330, 4485
NM_032331, 1318
NM_032333, 2996
NM_032338, 3712
NM_032342, 2746
NM_032343, 1235
NM .032350, 2163
NM_032361, 1814
NM_032376, 4854
NM_032377, 5262
NM_032379, 3346
NM_032383, 1280
NM_032390, 875
NM_032402, 1776
NM_032403, 1774
NM_032486, 4444
NM_032527, 5869
NM_032565,3914
NM_032626, 4440
NM_032627, 5345
NM_032635, 5393
NM_032636, 296
NM_032637, 1577
NM_032642, 3434
NM .032656, 3851
NM 032667, 3240 NM 032712, 5588
NM_D32712, 5588
NM .032726, 990
NM_032737, 5157
NM_032738, 503
NM_032747, 3061
NM_032750, 1174
NM .032753, 5173

NM 032756, 222 NM 032792, 5631 NM 032799, 2763 NM_032814, 3812 NM_032822, 785 NM 032827, 810 NM_032864, 245 NM_032871, 3326 NM_032872, 122 NM_032873, 3415 NM_032890, 606 NM_032904, 3794 NM_032905, 2893 NM_032907, 4248 NM_032928, 2860 NM_032929, 2081 NM 032933, 5037 NM 032951, 2284 NM 032953, 2286 NM_032958, 2376 NM 032989, 3258 NM 032997, 2949 NM 032999, 2295 NM_033008, 1176 NM 033010, 1178 NM .033011, 2538 NM_033022, 2978 NM 033046, 796 NM .033070, 5937 NM_033161, 2828 NM 033197, 5729 NM 033219, 2730 NM_033251,4635 NM_033296, 1404 NM 033301, 2635 NM 033316, 1348 NM_033363, 5417 NM 033410, 4456 NM 033415, 5355 NM_033416, 878 NM.033421,5787 NM .033440, 60 NM_033534, 15 NM .033544, 4315 NM 033551, 1785 NM 052837, 426 NM .052848, 5451 NM .052859, 1157 NM .052862, 488 NM .052881, 5656 NM_052886, 2602 NM 052936, 6251 NM_052963, 2616 NM .052984, 3685 NM_053043, 2462 NM.053056, 3311

NM_053275, 3829	NM 133627, 4786
NM_054012, 2822	NM 133629, 4790
NM_054013, 1848	NM 133630, 4788
NM_054014,5650	NM 133637, 798
NM_054016,95	NM_133645, 2066
NM_057089, 2363	NM 134269, 6009
NM_057161, 1890	NM 134323, 3616
NM_057169, 3790	NM_134324, 3618
NM.057174, 3188	NM 134440, 5358
NM_057182, 5376	NM_138385, 1372
NM.058164,5230	NM 138391, 545
NM_058179, 2703	NM 138427, 4739
NM_058192, 4366	NM 138434, 2451
NM_058193, 3422	NM 138443,5060
NM_058195, 2653	NM_138483, 1037
NM_058196, 2657	NM 138578, 5713
NM_058199, 2836	NM_138614, 1125
NM_078467, 1912	NM 138699, 1406
NM_079423, 3648	NM_138801,727
NM_079425, 3650	NM_138924,5124
NM .080424, 1016	\$73.4 001200 624
NM_080425,5828	XM_001289, 524 XM_001299, 33
NM_080426, 5832	XM_001389, 1453
NM_080491,3342	XM_001468, 342
NM .080592, 696	XM_001472, 250
NM_080594, 4394	XM_001482, 3658
NM_080598, 1984	XM_001589, 24
NM_080648, 3999	XM_001616, 101
NM_080649, 4001	XM_001640, 126
NM 080670, 1726	XM_001807, 135
NM_080686, 1981	XM_001812, 134
NM .080687, 3942 NM .080702, 1977	XM_001826,78
NM_080703, 1975	XM_001897, 486
NM 080796, 5855	XM_001914, 567
NM_080797, 5859	XM .001916, 568
NM_080820, 5693	XM_001958, 599
NM .080822, 4654	XM_002068,523
NM_106552, 670	XM_002105, 141
NM 130398, 639	XM_002114, 113
NM 130442, 2260	XM_002217,845
NM_130468, 4143	XM_002255, 1361
NM 130898, 434	XM_002435,700
NM 133330, 1376	XM_002447, 877
NM_133332, 1380	XM_002480, 680
NM_133373,4885	XM_002540, 1006
NM 133375, 4222	XM_002611, 823
NM 133436, 2357	XM.002636, 964
NM_133480, 1051	XM_002647,770
NM_133481, 1053	XM_002669, 946
NM_133483,3676	XM_002674, 776 XM_002704, 853
NM 133503, 3742	XM_002727, 788
NM_133504, 3744	XM_002739,779
NM_133505, 3746	XM_002742, 1036
NM_133506, 3750	XM_002828, 1143
NM_133507, 3748	XM_002854, 1187

XM_002855, 1186	XM.006475	. 3135
XM.002859, 1274	XM_006483	
XM.002899, 1127	XM_006529	
XM_003213, 1162	XM_006533	
XM_003222, 1119	XM_006566	
XM_003245, 1136	XM_006578	
XM_003305, 1451	XM_006589	
XM_003435, 1432	XM_006595	
XM_003477, 1530	XM_006694	
XM.003511, 1448	XM_006710	
XM_003555, 1500	XM_006748	
XM_003611, 2083	XM .006826	
XM_003716, 1811	XM_006887	
XM_003771, 1644	XM .006925	
XM_003789, 1712	XM .006936	
XM.003825, 1540	XM .006937	
	XM .006947	
XM_003830, 1666	XM .006958	
XM_003841, 1699	XM .007002	
XM .003869, 1572	XM .007002	
XM_003896, 1581	XM_007199	
XM_003937, 1710	XM_007254	
XM_004009, 1565	XM_007272	
XM .004098, 3704	XM .007288	
XM.004151, 2065	XM .007293	
XM_004256, 2114		
XM_004297, 2113	XM.007315	
XM.004330, 3194	XM_007316 XM_007324	
XM_004379, 2122	XM .007328	
XM_004383, 2130	XM .007441	
XM_004526, 2110	XM_007483	
XM_004627, 2402	XM .007488	
XM_004901, 2292	XM .007491	
XM_005060, 2605	XM_007531	
XM_005086, 1042 XM_005100, 2908	XM_007545	
	XM 007623	
XM_005180, 1332	XM 007623	
XM_005305, 2485 XM_005348, 2755	XM_007751	
	XM_007963	
XM_005365, 2760 XM_005490, 2707	XM_007988	
XM_005525, 2727	XM_008064	
	XM_008065	
XM_005543, 2666 XM_005675, 3103	XM .008106	
XM_005698, 3053	XM_008126	
XM_005724, 2878	XM_008150	
XM_005938, 3058	XM_008231	
XM_005969, 3088	XM_008253	
	XM .008323	
XM .006139, 3127 XM .006170, 3201	XM .008334	
XM_006212, 3167	XM_008351	
XM_006290, 98	XM_008401	
XM_006297, 3196	XM_008401	
XM_006424,3151	XM_008432	
XM .006432, 3371	XM_008441	
XM_006464, 3355	XM_008459	
XM_006467, 3399	XM_008462	
MINI TOO 40 1, 2322	AWI 1008402	,

XM_008486, 4760	XM_010272, 6132
XM 008509, 4658	XM_010362, 6274
XM_008538, 4684	XM_010378, 6169
XM .008557, 4650	XM_010436, 6280
XM_008579, 4809	XM 010494, 3429
XM .008679, 4693	XM_010615, 253
XM_008695, 5089	XM_010636, 451
XM_008723,5054	XM_010664, 133
XM_008812,5083	XM_010682, 581
XM.008830, 5597	XM_010712, 182
XM_008851,5522	XM 010732, 593
XM_008854, 5325	XM.010778,925
XM_008860, 5485	XM.010852, 938
XM.008878, 5472	XM_010858, 1004
XM_008887,5243	XM.010866, 992
XM .008912, 5453	XM.010881,771
XM .008985, 5531	XM_010886, 755
XM_009010,5205	XM_010938, 4641
XM_009036,5486	XM_010941, 1433
XM .009063, 5274	XM.010953, 1130
XM .009082, 5256	XM_010978, 1290
XM .009125, 5484	XM.011074, 1320
XM_009126,5496	XM_011089, 5076
XM_009149, 5406	XM.011117, 2059
XM.009180, 5378	XM_011118, 4941
XM_009203, 5443	XM_011129, 1423
XM_009222, 5165	XM.011160, 1365
XM_009277, 5113	XM_011548, 2411
XM.009279, 5110	XM_011618, 2400
XM_009293, 5338	XM_011629, 2533
XM_009303, 5310	XM_011642, 2586 XM_011650, 66
XM .009330, 5357 XM .009338, 5384	XM.011657, 2592
XM_009436, 5705	XM_011749, 2798
XM_009450, 5728	XM_011752, 2786
XM_009501,5754	XM_011769, 2562
XM_009549, 5816	XM_011778, 2832
XM_009622, 5647	XM_011988, 3260
XM_009642, 5759	XM_012124, 3836
XM.009671, 5823	XM_012145, 3761
XM_009672, 5821	XM 012159, 3494
XM_009686, 5762	XM.012162, 3598
XM_009805, 5919	XM.012179, 5337
XM_009947, 6022	XM.012182, 3638
XM.009967,6031	XM_012184,3861
XM.009973,6042	XM_012219, 3759
XM.010000, 6063	XM.012272, 3543
XM .010002, 6064	XM .012284, 2395
XM_010024,6087	XM_012376, 3990
XM.010029, 6094	XM_012377, 3983
XM_010040,6103	XM_012398, 4133
XM_010055,6108	XM_012418, 4199
XM.010117, 6269	XM_012462, 4322
XM.010141, 6216	XM_012487, 4555
XM_010156, 5266 XM_010178_6310	XM.012549, 4734 XM.012569, 4461
XM_010178, 6310	AM 112309, 4401

XM .012609, 4945	XM_016288, 880
XM_012615, 4744	XM_016308, 2726
XM_012634, 4950	XM_016334, 1294
XM.012638,3874	XM_016345, 1799
XM .012642, 4849	XM_016351, 3924
XM_012651, 4916	XM .016378, 5364
XM D12676, 4675	XM_016382, 5036
XM_012741,5031	XM_016410, 5438
XM_012798,5212	XM_016480, 326
XM_012812,5370	XM.016486, 4071
XM .012860, 5439	XM_016487, 4068
XM .012862, 5195	XM_016605, 3708
XM .012913,5114	XM.016625,773
XM D12931, 5768	XM_D16640, 3538
XM_012970,5700	XM_016674, 1652
XM_013010, 6066	XM_016700, 2433
XM_013015, 6089	XM_016713, 4165
XM_D13015, 0085 XM_D13029, 6118	XM.016733, 2256
XM.013042, 6207	XM_016843,766
XM_013060, 6196	XM_016857, 1941
XM D13086, 6145	XM.016871,5180
XM .013112, 2530	XM.016985, 4213
XM_013127, 2577	XM_017080, 3436
XM.015234,75	XM.017096, 4644
XM.015241,5088	XM_017204,5240
XM_015241, 5086 XM_015243, 3148	XM.017234,4712
XM D15258, 2244	XM.017240, 4135
XM_015366, 4239	XM_017315, 67
XM_015434, 547	XM_017356, 1291
XM.015462, 1208	XM_017364, 1105
XM.015468, 3596	XM.017369, 3394
XM_015476, 3585	XM_017432, 3895
XM_015481,3580	XM.017442, 2313
XM_015516, 6206	XM_017474, 1679
XM.015563, 1525	XM_017483, 2280
XM.015652, 2937	XM_017508, 3710
XM.015697, 5264	XM_017517, 2080
XM_015700, 4478	XM_017578, 4980
XM_015705, 3214	XM_017591, 1701
XM_015717, 257	XM_017641, 1544
XM.015755, 5046	XM_017698, 861
XM_015769, 5369	XM.017816, 2581
XM.015835, 4311	XM.017831, 2119
XM_015840, 3921	XM_017846, 109
XM.015842, 3932	XM_017857, 1640
XM.015920, 909	XM.017914, 3953
XM_015922,911	XM .017925, 1476
XM.016047, 2604	XM_017930, 6284
XM.016076, 4237	XM.017931, 2659
XM 016093, 2992	XM_017971, 4319
XM_016113,2712	XM.017984, 4338
XM.016125, 6275	XM_017996, 2711
XM .016139, 3170	XM.018006, 2710
XM.016164, 276	XM.018019, 6157
XM.016170, 1554	XM_018039, 784
XM.016199, 600	XM .018041, 642

XM.018054, 4123	XM.028347, 4074
XM_018088, 4472	XM_028358, 4073
XM_018108,6313	XM_028398,4667
XM_018109, 6315	XM 028417, 4678
XM_018136, 161	XM.028643,3624
XM .018142, 6232	XM_028662, 3561
XM .018149, 1264	XM_028666, 5383
XM D18167, 3015	XM_028672, 5382
XM _018182, 2098	XM_028744, 5025
XM_018205, 64	XM_028760, 3554
XM_018241, 6161	XM_028783, 5851
XM_018279, 3057	XM.028806, 5765
XM_D18287, 2595	XM.028810, 5766
XM_018301, 763	XM_028834, 5863
XM_018332, 314	XM.028848, 4390
XM_018359, 2281	XM_028918, 5867
XM_D18399, 3918	XM_028966, 5871
XM_018432, 4331	XM_029031, 169
XM_018473, 1658	XM_D29096, 1539
XM_018515, 5354	XM_029104, 1314
XM_018523, 1359	XM_029132, 1313
XM_018534,4840	XM.029136, 1310
XM_018539,6014	XM_029168, 2841
XM_018540, 841	XM_029187, 6194
XM_026944, 2787	XM.029228, 2069
XM_026951,2771	XM_029288, 4067
XM_026968, 2769	XM_029369, 1198
XM_026985, 2766	XM_029438, 4656
XM_026987, 2765	XM_029450, 5404
XM.027102, 3802	XM.D29455, 5403
XM_027143,6106 XM_027161,1220	XM_029461,6282
XM .027214, 2385	XM_029567, 2609
XM.027309, 4329	XM_029631, 3602
XM_027313, 226	XM_029728, 3595 XM_029746, 2128
XM.027365, 4334	
XM_027412, 4368	XM_029805, 3507 XM_029810, 5776
XM_027440, 2505	XM.029822, 5778
XM_027558, 4352	XM 029842, 176
XM_027651, 2490	XM.029844, 145
XM_027679, 2488	XM 030044, 5796
XM_027825, 4661	XM_030203, 1028
XM_027904,5548	XM_030268, 2543
XM_027916, 76	XM_030274, 2544
XM_027952, 6353	XM_030326, 3187
XM_027963, 936	XM.030373, 6233
XM_027964, 1619	XM_030417, 1112
XM_027983, 213	XM.030423, 154
XM D28034, 940	XM_030447, 3065
XM .028064, 5119	XM_030470, 68
XM_028067, 5117	XM.030485, 5159
XM_028151,4562	XM.030529, 862
XM_028192, 3117	XM_030582, 883
XM 028263, 5488	XM_030621,5818
XM_028267, 5491	XM.030699, 5834
XM_028322, 4075	XM_030714, 5145

XM_030720, 5137	XM_032588, 3457
XM_030721, 5135	XM_032614, 3462
XM_030771, 1821	XM .032710, 5247
XM_030777, 1823	XM_032719, 5248
XM_030782, 1824	XM_032724, 5252
XM_030812, 1256	XM_032759, 1700
XM.030834, 952	XM_032766, 4864
XM.030895, 5465	XM_032774, 5257
XM .030901, 5456	XM_032782, 5261
XM_030914, 5450	XM_032813,4863
XM_030920,40	XM_032817, 4861
XM_031025, 4032	XM_032852,4857
XM .031074, 4039	XM_032895, 1590
XM _031251, 5307	XM_032902, 1588
XM_031263,5305	XM_032930, 6189
XM_031273,5303	XM_032944, 2470
XM_031276, 5302	XM_032996, 5943
XM_031292, 4295	XM.033015,5902
XM_031320, 1445	XM .033016, 5903
XM_031345, 5292	XM_033090, 5946
XM_031354,4292	XM_033147, 6241
XM .031404, 4285	XM_033227, 3450
XM_031415, 4767	XM_033232, 6351
XM.031427,4769	XM_033251, 3959
XM .031466, 4765	XM_033263, 3472
XM_031515, 4147	XM_033294, 1123
XM_031519,731	XM_033337, 3964
XM .031527, 733	XM_033355, 2819
XM_031536,4758	XM_033359, 2818
XM .031554, 4145	XM_033360, 2817
XM .031585, 782	XM_033361, 2815
XM_031586, 783	XM.033362, 2811
XM_031596, 780	XM_033380, 2809
XM_031617, 4138	XM_033385, 2808
XM_031626, 738	XM.033391, 3969
XM_031718, 4159	XM.033424, 2774
XM_031807,3491	XM_033435, 3975
XM_031857,5184	XM_033445, 3980
XM.031866, 3041	XM_033457, 2777
XM_031890, 3044	XM_033460, 2778
XM.031917, 5176	XM.033553, 3991
XM.031944,5066	XM.033595, 3994
XM_031949, 3049	XM_033654,79
XM_031992, 3059	XM.033683,77
XM_032020, 5281	XM_033689, 4646
XM .032121, 2455	XM_033714,4645
XM.032201,4836	XM_033813,5960
XM_032216, 2454	XM_033862, 6173
XM 032269, 1221	XM_033876, 2383
XM .032285, 5399	XM.033878, 6172
XM.032391, 216	XM_033884, 6170
XM_032403,4180	XM_033910, 2134
XM 032443, 3930	XM .033912, 2132
XM 032476, 2976	XM_033922, 4606
XM .032520, 2970	XM.034000, 501
XM 032553, 1626	XM .034082, 454
A1133233, 1020	26.7.354002,454

XM .034321, 1502	XM_036465,4825
XM_034375, 4460	XM_036500, 573
XM_034377, 5623	XM_036507, 575
XM_034431,3185	XM_036528, 4410
XM_034586, 4376	XM_036556, 566
XM_034590, 4380	XM.036593, 2939
XM_034640, 2638	XM_036659, 4707
XM_034662, 319	XM.036680, 4342
XM_034671, 318	XM_036727, 4134
XM_034710, 1466	XM_036744, 433
XM .034713, 1468	XM_036755, 5927
XM_034744, 1655	XM_036785, 4982
XM_034862, 1675	XM_036829, 442
XM_034890, 4184	XM_036845, 450
XM 034897, 4256	XM_036934, 448
XM 034935,6201	XM_036937, 5969
XM .034952, 857	XM_036938, 1197
XM 034953,4116	XM_037002, 1668
XM 035014, 4119	XM_037056, 2107
XM_035103, 2824	XM_037101, 873
XM .035107, 2439	XM_037108, 831
XM.035109, 2825	XM .037147, 3212
XM 035220, 800	XM_037173, 3202
XM 035368, 2626	XM_037195, 4988
XM_035370, 2631	XM_037196, 4987
XM_035373, 2629	XM_037202, 5840
XM_035465, 6123	XM.037206, 5842
XM_035485, 3571	XM.037217, 5846
XM_035490, 3564	XM_037260, 1608
XM.035497, 3562	XM.037329, 591
XM_035572, 1392	XM_037377, 1300
XM_035625, 5197	XM.037381, 1299
XM.035627,5196	XM.037423, 1163
XM_035636, 5194	XM_037468, 6114
XM .035638, 5192	XM_037474, 6116
XM_035640, 5034	XM 037565, 5106
XM 035662, 2483	XM_037572, 5109
XM.035680, 2482	XM_037600, 1304
XM.035824, 1402	XM_037657, 2608
XM_035919, 5612	XM_037662, 5372
XM 035986, 1456	XM_037682, 5977
XM_035999,5907	XM_037741, 2276
XM_036002, 1440	XM_037778, 4244
XM_036011,5910	XM.037797, 5981
XM_036042, 5913	XM_037808, 3263
XM_036087, 5917	XM.037875, 2045
XM_036104, 4965	XM_037945, 5993
XM_036107, 5923	XM_037971, 4897
XM_036115, 4971	XM 038030, 2855
XM_036118, 1262	XM 038049, 2864
XM.036175,5924	XM.038063, 2866
XM_036299, 155	XM 038098, 5343
XM.036339, 3178	XM 038146, 5339
XM .036413, 2469	XM_038221, 1695
XM_036450,664	XM 038243, 1341
XM_036462, 4827	XM.038308, 3737

XM_038371, 3902	XM_041211, 1161
XM_038391, 2757	XM_041221, 1410
XM_038424,5018	XM_041235, 4008
XM.038536, 2909	XM_041248, 6111
XM.038576,734	XM_041473,3928
XM 038584, 6019	XM_041484, 3944
XM.038659, 3533	XM_041507, 1147
XM_038791, 3841	XM_041583, 4957
XM_038852, 244	XM_041678, 5027
XM_038872,5062	XM_041694, 1614
XM_038911, 237	XM_041712, 1592
XM.038946, 1840	XM_041872, 5090
XM_039165, 1413	XM_041879, 353
XM_039173, 1416	XM_041884, 354
	XM_041921, 6304
XM_039176, 1417	XM .041964, 4680
XM_039225,4125	XM .042018, 5095
XM_039236, 6047	
XM.039248, 6051	XM.042025, 1600
XM.039306, 4551	XM_042153, 6348 XM_042155, 6346
XM_039339, 6060	
XM_039372,6065	XM_042168, 1286
XM.039395, 3732	XM_042301, 1474
XM_039474, 4794	XM .042326, 1032
XM_039654, 2646	XM_042422, 2145
XM_039702,4200	XM_042473, 2148
XM_039712,716	XM .042618, 1229
XM_039721, 321	XM_042621, 4596
XM_039723,5140	XM_042658, 2561
XM.039796, 1292	XM_042695, 1364
XM_039805, 1258	XM_042698, 4710
XM_039908, 5598	XM_042765, 5701
XM_039910, 4721	XM.042781, 2434
XM_039921,4732	XM_042788, 2744
XM_039952, 1213	XM_042841, 1072
XM.039975, 1783	XM_042852, 3339
XM_040009, 377	XM.042860, 1070
XM_040066, 6088	XM_042963, 6295
XM_040095,6091	XM .042967, 537
XM_040221,3707	XM .042968, 6297
XM_040267, 2879	XM_043047, 4577
XM_040272, 2876	XM .043173, 866
XM.040321, 1524	XM .043220, 3111
XM_040498, 2417	XM .043340, 1805
XM_040623, 2074	XM_043388, 1808
XM_040644, 3734	XM .043589, 2998
XM.040709, 315	XM .043605, 2999
XM_040752, 1493	XM_043614, 6099
XM.040853, 2218	XM .043643, 6250
XM.040898, 4100	XM .043771, 1568
XM.040942, 4094	XM .044075, 416
XM.040952, 4090	XM_044077,391
XM.041014, 4086	XM.044127, 398
XM.041020, 2697	XM.044128, 408
XM.041059, 1670	XM_044166, 406
XM.D41100,3503	XM.044172,411
XM_041209, 3925	XM .044334, 3859
	,5055

PCT/US2003/028547

XM_046160, 5708 XM 044354, 2968 XM_046179, 5710 XM 044367, 4938 XM 044372, 4943 XM_046313, 5544 XM 044376, 4935 XM 046349, 187 XM .044394, 4927 XM_046401, 1085 XM 044426, 4924 XM 046419 5578 XM 044523 4304 XM 046450 201 XM_044533, 4307 XM_046464, 522 XM 046472, 5004 XM 044565, 4269 XM.046481.4999 XM 044569, 4272 XM .046520, 5689 XM_044593, 4278 XM .044608, 5213 XM_046551, 212 XM .044619. 5210 XM .046557, 208 XM.044627, 2563 XM_046565, 204 XM 044866, 2139 XM_046642, 3951 XM .044914, 5658 XM_046648, 3950 XM.044915, 5660 XM 046651 3949 XM.044932, 3129 XM 046743, 3035 XM_044957, 3131 XM_046765, 5020 XM_046767, 5022 XM_045010, 3821 XM_046769, 5021 XM_045044, 4749 XM 045104, 4989 XM_046822,5150 XM.046836, 2722 XM_045140, 2973 XM_045151, 5226 XM_046863, 2720 XM.045170, 928 XM 046918, 112 XM_045183,4651 XM 046932, 4958 XM 045187, 3833 XM 046934, 5160 XM 045283, 757 XM 047007, 5723 XM .045290, 1214 XM.047011, 5725 XM_045296, 2759 XM_047018.5727 XM_045401, 2403 XM_047024, 6177 XM_045418, 5667 XM_047032, 6176 XM 045451, 5671 XM 047083 2521 XM_045460.5674 XM .047175, 690 XM 045499, 3276 XM 047374, 5446 XM 045525, 3278 XM .047376, 5445 XM.045535, 4751 XM 047409, 5444 XM .045551, 4752 XM.047436, 4624 XM_045581, 4996 XM.047477, 1429 XM.045602, 3856 XM_047479, 495 XM.045612, 3273 XM_047499, 610 XM_045613.3271 XM_047525, 4632 XM_045642, 3269 XM_047545, 616 XM_045667, 3074 XM_047561, 1137 XM_045681, 4287 XM.047584.5131 XM_045750, 3157 XM_047600, 5132 XM_045802, 3826 XM_047964, 1798 XM_045856, 2407 XM_048088,753 XM .045901, 4852 XM.048119.4344 XM.045952, 2413 XM.048258, 5385 XM_045963, 3834 XM_048286, 3255 XM 046001, 2414 XM_048351,5218 XM_046035, 4453 XM .048364, 5219 XM_046041, 3726 XM_048404, 6329 XM_046057, 1443 XM.048410, 6328 XM_046090, 5423 XM_048420, 6325

XM 048471,5082	XM_050430, 2389
XM_048479, 2679	XM_050435, 5227
XM_048518, 2684	XM_050506, 2583
XM_048539, 2686	XM_050534, 4348
XM_048603, 3674	XM_050552, 1234
XM_048654, 4829	XM_050589, 5603
XM_048690, 1007	XM_050638, 979
XM_048780, 57	XM_050660, 5330
XM_048859, 2881	XM_050731, 2571
XM_048905, 6306	XM_050891,984
XM_048943,3640	XM .050962, 975
XM_048957, 3931	XM_050964, 4220
XM_048991, 3642	XM.051219,4479
XM_049048, 3652	XM .051264, 1237
XM.049108, 820	XM_051298, 2612
XM.049113, 822	XM .051364, 5290
XM_049116, 818	XM_051430, 3398
XM_049141,3586	XM.051435, 3358
XM.049148, 3581	XM .051463, 4230
XM.049150, 3659	XM .051471, 6238
XM.049197, 3161	XM 051476, 6237
XM.049201,3772	XM.051489, 3367
XM.049211,3771	XM 051518, 1131
XM .049226, 2623	XM 051556, 6
XM_049237, 5391	XM 051586, 5092
XM.049247, 2618	XM 051712, 4025
XM.049282, 5223	XM .051716, 3373
XM_049310, 139	XM .051763, 4727
XM_049337,6320	XM 051778, 4600
XM_049354, 4275	XM_D51860, 4298
XM_049372, 4317	XM.051877, 515
XM_049421, 2637	XM_052113, 3378
XM_D49421, 2037 XM_D49502, 5236	XM.052310, 1060
XM_049561, 5239	XM .052313, 1535
XM_049663, 3493	XM .052336, 1477
XM.049680, 476	XM 052460, 3714
XM.049690, 483	XM 052400, 3714 XM 052474, 3719
XM.049742, 14	XM .052530, 1424
XM .049795, 3082	XM .052542, 3755
XM_049899, 2121	XM_052626, 1398
XM_049904, 3937	XM.052635, 5166
XM_049920, 5482	XM_052641,3769
XM .049931, 4995	XM_052661,5168
XM 049934, 4994	XM.052721, 2056
XM.049937, 4818	XM_052725, 2784
XM.050074, 3528	
XM.050101, 4773	XM_052786, 3153
XM.050159, 4880	XM.052862, 3404
XM D50194, 4462	XM_052893, 3825
	XM_052974, 608
XM_050200, 1487	XM_052989,817
XM_050215, 2525 XM_050226, 5602	XM.053074, 5430
XM_050236, 5602	XM.053122, 1363
XM.050265, 2278	XM 053164, 3641
XM_050278, 4103 XM_050203, 2487	XM 053183, 58
XM_050293, 2487	XM_053206, 2875
XM_050403, 6192	XM_053245, 400

XM_053323, 1078	XM.056923, 521
XM_053585, 4252	XM 056957, 1471
XM_053633,544	XM_056963, 1793
XM_053712, 1074	XM_056970, 628
XM_053717, 4663	XM_056996, 3798
XM_053787, 3283	XM .057020, 4257
XM_053796, 3288	XM_057074, 5260
XM .053952, 3722	XM .057150, 4619
XM.053955, 1859	XM .057236, 5756
XM_054038, 4832	XM .057374, 5793
XM .054098, 6183	XM.057492, 1548
XM_054221, 6155	XM.057664, 740
XM_054344, 4973	XM_057780, 2557
XM_054474, 2933	XM_057994, 1541
XM .054475, 2935	XM_058039, 1934
XM .054520, 1047	XM.058098, 986
XM_054566, 5926	XM 058116, 4526
XM.054706, 2146	XM .058125, 5635
XM .054752, 2849	XM_058210, 4018
XM_054763, 2852	XM_058232, 5225
XM.054856, 3193	XM.058240, 102
XM_054868, 228	XM_058247, 466
XM.054900, 4309	XM .058266, 2144
XM_054978, 295	XM.058267, 1278
XM.055013, 3853	XM .058343, 3020
XM_055061, 4826	XM.058361, 3078
XM.055132,4514	XM .058405, 552
XM_055195, 4427	XM .058406, 3084
XM_055199, 4942	XM.058414, 3159
XM_055230, 5336	XM_058450, 3352
XM_055254, 954	XM .058505, 3125
XM_055369, 3397	XM 058528, 3671
XM_055481, 251	XM.058556, 3773
XM_055551,1461	XM 058567, 3504
XM_055573, 3086	XM .058574, 3454
XM.055641, 2064	XM.058602, 3022
XM .055658, 5592	XM .058611, 3926
XM_055686, 5163	XM.058618, 4091
XM_055771, 4505	XM.058636, 4118
XM_055859, 5483	XM .058646, 3986
XM .055880, 583	XM_058647, 3978
XM.055993, 5646	XM .058677, 4061
XM .056035, 5678	XM.058684, 4186
XM_056082, 4648	XM.058699, 4250
XM_056260, 4438	XM_058702, 294
XM .056286, 5582	XM .058739, 4621
XM.056315, 1723	XM_058745, 4543
XM .056317, 4077	XM_058784, 4404
XM .056346, 3645	XM .058796, 4337
XM .056353, 3662	XM .058830, 4803
XM .056421, 5175	XM .058867, 4755
XM_056481, 3545	XM .058900, 4730
XM.056602, 5408	XM.058918, 5949
XM.056681, 3700	XM.058927, 1441
XM.056730, 4775	XM .058949, 5463
XM.056884, 618	XM .058967, 5295

XM.058968, 2619	XM .059998, 2673
XM_058977, 3920	XM_060006, 2647
XM.058987, 5570	XM 060012, 4115
XM_058990, 5584	XM_060030, 6146
XM_058991, 5552	XM_060042, 4281
XM.059045, 5419	XM_060067, 1499
XM.059052, 5447	XM_060331, 509
XM.059066, 114	XM.060517, 531
XM_059067, 120	XM_060976, 2885
XM .059088, 130	XM.061125, 2931
XM.059094, 465	XM.061126, 2930
XM_059117, 103	XM.062437, 3775
XM_059120, 562	XM_063639, 4234
XM.059133, 224	XM_064091, 4597
XM.059171, 171	XM_065884,777
XM.059180, 256	XM_066291, 5998
XM_059191,492	XM £066900, 6261
XM.059201, 1	XM_067264, 1240
XM.059210, 330	XM.067325, 5030
XM.059214, 185	XM.067715, 1169
XM.059230, 55	XM.068164, 1497
XM_059268, 5675	XM.068395, 1789
XM.059321, 5607	XM.068853, 1714
XM_059335, 6013	XM.068919, 2085
XM_059351,920	XM_068963, 2072
XM_059368, 653	XM_070188, 2480
XM_059372, 1029	XM.070203, 2473
XM.059422, 968	XM_070873, 2742
XM.059461,971 XM.059465,907	XM_071178, 2705
XM.059516, 1266	XM_071580, 1557
XM.059557, 1068	XM.071605, 2381
XM.059561, 1059	XM 071623, 1439
XM.059583, 1252	XM.071801, 4122
XM_059593, 1434	XM.071873, 4630 XM.071937, 2152
XM_059623, 1519	XM.072173, 5876
XM_059628, 1442	XM.072430, 2387
XM_059633, 1469	XM_072526, 2857
XM_059637, 2804	XM_076414, 1199
XM.059653, 1596	XM_083842, 3026
XM.059669, 1617	XM_083852, 3141
XM_059709, 1604	XM_083864, 3774
XM_059720, 2914	XM_083866, 3715
XM .059741, 2118	XM.083868, 3590
XM_059745, 2131	XM_083892, 3787
XM_059773, 2141	XM.083939, 4364
XM.059776, 2062	XM_083966, 4923
XM.059801, 1939	XM_083983, 4881
XM_059839, 2430	XM_084007, 5055
XM.059876, 2282	XM_084014, 5246
XM.059933, 2531	XM_084023, 5528
XM.059945, 2838	XM 084026, 5549
XM_059961, 2859	XM_084055,580
XM_059966, 2871	XM 084084, 6090
XM.059979, 2644	XM.084110, 1340
XM.059986, 2813	XM.084111, 1243

WO 2004/030615 PCT/US2003/028547

XM_084120, 1315	XM_084884, 3583
XM_084123, 1263	XM.084885, 3582
XM_084129, 1231	XM.084889, 3814
XM_084141, 1041	XM_084901,3488
XM_084158, 1465	XM_084909, 3702
XM_084168, 1547	XM_084912, 3705
XM_084179, 1591	XM_084918, 3500
XM_084180, 1781	XM_084922, 3495
XM_084204, 2079	XM_084941,3788
XM_084238, 2453	XM_084946, 3800
XM_084241, 2337	XM_084948, 3804
XM_084270, 2851	XM_084982, 3870
XM_084283, 6229	XM_084997, 3933
XM_084287, 6203	XM.084998, 2142
XM_084288, 6153	XM_085017, 3893
XM .084296, 6227	XM.085044, 3916
XM_084311,6350	XM_085065, 4044
XM_084359, 3073	XM .085066, 4033
XM.084372, 3016	XM_085068, 1480
XM_084385, 2944	XM_085106, 3987
XM_084413, 3028	XM .085125, 4031
XM_084420, 2910	XM_085127, 4014
XM_D84429,2911	XM.085141, 4019
XM_084450, 2942	XM_085151, 4050
XM_D84451, 2953	XM_085162, 4054
XM D84467, 2994	XM.085166, 3955
XM_D84477, 3010	XM.085203, 4130
XM_084480, 3012	XM_085204, 4132
XM_084505, 3080	XM.085215, 4282
XM_084514, 3180	XM.085239, 4254
XM.084515, 3183	XM.085249, 4236
XM_D84516, 3182	XM_085262, 4314
XM_D84517, 3184	XM_085280, 4289
XM_084522, 3424	XM_085283, 4211
XM D84525, 3428	XM_085307, 4160
XM_084527, 3169	XM_085327, 4622
XM_084570, 3357	XM_085340, 4448
XM_D84601,3353	XM_085393, 4480
XM_084610, 3350	XM_085395, 4482
XM_D84632, 3072	XM .085408, 4637
XM_084645, 3731	XM .085434, 4524
XM D84654, 3388	XM.085442, 4513
XM_084658, 3382	XM_085445, 4425
XM_084681, 3195	XM_085452, 4435
	XM_085471, 4558
XM_084702, 3287 XM_084739, 3124	XM_085475, 4561
	XM 085483, 4616
XM_084742, 3122 XM_084770, 3515	XM.085525, 4323
	XM .085531, 4977
XM_D84789, 3599 XM_D84800, 3783	XM .085545, 4741
XM_084801, 3672	XM .085548, 4735
XM.084807, 3531	XM .085563, 4991
XM .084808, 3818	XM .085581, 472
XM_D84808, 3616 XM_D84824, 3630	XM .085589, 4948
XM .084841, 3540	XM_085613, 4724
XM.084866, 3557	XM.085627, 4951
VIAT 700-2000' 272'	241303021, 4931

XM_085636, 4873	XM_086328, 542
XM_085672, 4757	XM_086343, 265
XM .085687, 4659	XM_086357, 85
XM_085691,4677	XM_086360, 29
XM .085716, 4992	XM_086375, 97
XM_085722, 4745	XM_086378, 485
XM_085735, 5019	XM_086381, 479
XM .085743, 4718	XM_086384, 178
XM_085775, 5058	XM_086389, 243
XM_085779,5075	XM_086391, 231
XM _085788, 5049	XM_086397, 323
XM_085789, 5043	XM_086400, 366
XM_085790, 5045	XM_086428, 2161
XM_085791,5042	XM_086431, 589
XM_085856, 5501	XM_086432, 592
XM_085862, 5244	XM_086444, 136
XM_085874, 5460	XM_086481, 490
XM_085875, 5461	XM_086484, 494
XM_085876, 5462	XM_086485,493
XM_085909, 5297	XM_086494, 538
XM_085916, 5285	XM_086515, 324
XM_085917, 5276	XM_086518, 317
XM_085927, 5527	XM_086543, 190
XM_085928, 5489	XM_086552, 432
XM_085934, 5537	XM_086564, 388
XM_085935, 5573	XM_086567, 430
XM_085950, 5487	XM_086586, 52
XM_085971, 5371 XM_085972, 5629	XM_086587, 54
XM_D85981, 4599	XM_086648, 5819
XM D85986, 5398	XM 086701, 5687
XM_086004, 5425	XM_086710, 5670 XM_086715, 5695
XM_086074, 5311	XM_086736, 5717
XM_086101, 5128	XM_086745, 5712
XM_086102, 5130	XM_086759, 5877
XM_086116, 5331	XM .086760, 5878
XM_086132,304	XM_086770, 5914
XM_086138, 282	XM_086773, 5928
XM_086142,557	XM_086777, 5930
XM_086151,46	XM_086779, 5064
XM_086164, 277	XM_086805, 5963
XM_086165,279	XM_086809, 5953
XM_086166, 281	XM_086821, 5985
XM_086167, 280	XM_086830, 6043
XM_086178,4	XM_086844, 6074
XM_086180, 19	XM_086873, 5964
XM_086204, 38	XM .086875, 6093
XM_086228, 1356	XM_086920, 805
XM_086244, 601	XM .086923, 849
XM .086245, 602	XM_086925, 850
XM_086257, 632	XM 086944, 933
XM_086271,383	XM_086950, 858
XM _086278, 4434	XM_086961, 926
XM_086282, 543	XM 086980, 791
XM 086296, 331	XM_087028, 942
XM_086324, 214	XM_087038, 2803

WO 2004/030615 PCT/US2003/028547

XM_087040, 842	XM_087686, 1543
XM_087041, 2800	XM_087710, 3247
XM_087045, 932	XM_087713, 1559
XM_087051, 748	XM_087745, 1656
XM_087061,912	XM_087773, 1816
XM _087062, 914	XM_087790, 1631
XM _087068, 775	XM_087823, 1858
XM 087069, 772	XM_087834, 2123
XM_087118, 891	XM_087836, 2124
XM_087122, 839	XM_087853, 2090
XM_087151,683	XM_087855, 2089
XM_087162, 985	XM_087939, 2000
XM_087166, 993	XM_087945, 1990
XM_087181,965	XM_087955, 3857
XM_087193,726	XM_087960, 1883
XM_087195, 725	XM_087990, 1936
XM_087206, 669	XM_087991, 2154
XM_087211,743	XM_088009, 3106
XM_087218, 1011	XM_088020, 1621
XM .087240, 901 XM .087254, 1302	XM_088073, 2386
XM 087268, 1203	XM_088099, 2416
XM_087278, 1358	XM 088103, 2418
XM_087284, 1075	XM_088105, 2409
XM_087289, 1323	XM_088107, 605
XM_087295,1322	XM 088119, 2422
XM_087297, 1360	XM .088122, 2420 XM .088135, 2446
XM_087322, 1312	XM D88180, 2352
XM_087331,1211	XM_088239, 2297
XM .087341, 1267	XM_088264, 2195
XM_087342, 1265	XM_088294, 2529
XM.087346, 1115	XM.088316, 2611
XM 087349, 1106	XM_088321, 2628
XM 087359, 1343	XM .088323, 2574
XM .087370, 1101	XM_088325, 2572
XM .087392, 1333	XM.088336, 2519
XM_087410, 1347	XM_088338, 2515
XM_087448, 1184	XM_088370, 2613
XM_087480, 3000	XM .088399, 2559
XM 087498, 1463	XM_088401, 2560
XM_087514, 1483	XM_088422, 2839
XM_087527, 1455	XM_088426, 2833
XM .087583, 1418	XM .088459, 2847
XM_087588, 1120	XM_088461, 2870
XM .087597, 1549	XM_088472, 1472
XM_087599, 1551	XM_088550, 2640
XM_087600, 1553	XM_088552, 2641
XM_087601, 1550	XM_088553, 2642
XM 087610, 1597 YM 087611, 1505	XM_088563, 2672
XM 087611, 1595 XM 087614, 1564	XM 088569, 2748
XM_087621, 1711	XM_088571, 2750
XM 087635, 1660	XM_088587, 4120
XM_087637, 1662	XM_088588, 4114
XM_087652, 1713	XM_088589, 4121 XM_088592, 6311
XM_087659, 1537	XM 088619, 6151
	VIAT 7000013, 0131

XM_088622, 6152	XM_093546, 1201
XM_088630, 6209	XM_093624, 1083
XM_088637, 2700	XM_094243, 1797
XM_088638, 768	XM_094440, 1561
XM_088665, 6158	XM_094741, 1862
XM_088688, 6220	XM_094855,2060
XM 088689, 6218	XM.095146, 2432
XM_088710, 6253	XM_095371, 2475
XM_088736, 6265	XM_095545, 2514
XM_088738,6267	XM_095667, 2554
XM_088739, 6268	XM_096038, 3699
XM_088745, 6289	XM_096060, 4241
XM_088747, 6128	XM .096146, 3539
XM_088788, 338	XM_096149, 661
XM_088863,286	XM_096155, 5967
XM_088945,507	XM_096156,5968
XM_089030, 622	XM_096169, 1022
XM_089138, 254	XM_096172, 787
XM_089514, 3019	XM .096195, 1190
XM_089551,3006	XM_096198, 1117
XM .090218, 3542	XM_096203, 1464
XM.090413, 3779	XM_096303,6256
XM_090458,3767	XM_096486, 3315
XM .090833,638	XM 096520, 3165
XM_090914, 4082	
XM.090991, 4191	XM.096544,3119
	XM_096566, 3680
XM.091076, 1091 XM.091100, 4263	XM_096572, 3819
	XM_096597, 3739
XM .091108, 4124	XM_096606, 3608
XM_091159, 4157 XM_091270, 4483	XM_096620, 3578
XM 091399, 4590	XM_096630, 3486
XM 091420, 4544	XM 096661, 3441
XM.091786, 3426	XM_096744, 4034
XM D91886,5595	XM_096772, 3966
XM 091938, 5221	XM_096842, 4245
XM 091981, 5586	XM 096844, 4286
XM 091984, 5396	XM_097043, 4984
XM .092042, 5108	XM_097193, 5001
XM .092046, 5341	XM_097195, 5000
XM_092049,5380	XM .097204, 4754
	XM_097232, 5048
XM_092135,672	XM.097274, 5510
XM_092158,918	XM_097275, 5521
XM.092346, 944	XM_097300, 5222
XM .092489, 867	XM_097365, 5440
XM_092517,676	XM_097420, 5134
XM_092545, 970	XM_097453, 2068
XM_092760, 5696	XM_D97519, 561
XM 092888, 5986	XM_097565, 249
XM .092966, 6113	XM .097639, 352
XM_093050, 6212	XM_097649, 198
XM_093130, 6226	XM_097713, 5800
XM_093219, 6299	XM_097727, 5773
XM_093241, 6228	XM_097731, 5795
XM_093423, 1308	XM_097749, 5644
XM_093487, 1255	XM_097772, 5731

XM_097807, 5929	XM_113330, 5011
XM .097817, 5925	XM_113334, 4819
XM_097833, 5950	XM_113343, 5028
XM_097886, 5971	XM _113348, 5316
XM 097976, 715	XM 113352, 5294
XM_098004,729	XM_113360, 386
XM_098047, 962	XM_113361,598
XM_098048, 960	XM_113369, 361
XM_098109, 1345	XM_113374, 140
XM_098111,1245	XM 113379, 473
XM_098154, 1232	XM_113380, 5749
XM_098158, 1103	XM _113390, 929
XM_098173, 1227	XM_113395, 1193
XM_098248, 1384	XM_113397, 1244
XM_098351, 1609	XM_113405, 1140
XM_098352, 1611	XM_113408, 1296
XM_098354, 1610	XM_113409, 1202
XM_D98362, 1634	XM_113410, 1088
XM_098387, 1778	XM 113417, 1254
XM_098405, 1534	XM_113422, 1329
XM_098468, 2108	XM 113425, 1452
XM_098599, 619	XM 113452, 1556
XM_098654, 2447	XM 113454, 1841
XM_098669, 2466	XM_113463, 1654
XM_098747, 2582	XM 113467, 1720
XM_098761,2564	XM_113468, 1845
XM_098913, 2843	XM_113476, 1860
XM_098943,2725	XM_113531, 2526
XM_098995, 6302	XM_113532, 2627
XM_099467,363	XM_113540, 2548
XM_102377, 4432	XM_113557, 2493
XM_103946, 665	XM_113564, 2846
XM_104983,6263	XM_113585, 6122
XM_105236, 1289	XM_113615, 2927
XM_105658, 1325	XM 113702, 3862
XM_106246, 1520	XM 113712, 3635
XM_106739, 1562	XM_113719, 3560
XM 107825, 2225	XM_113726, 3584
XM_109162, 3075	XM_113730, 3519
XM_113223, 3268	XM J 13737, 3855
XM_113224, 3275	XM_113739, 3437
XM_113226, 3400 XM_113229, 3366	XM_113752, 3946
	XM_J13759, 4105
XM_113230, 3363	XM_113823, 4163
XM_113238, 3152	XM_113836,4326
XM_113266, 4202 XM_113268, 4207	XM_113840, 4608
XM_113268, 4207 XM_113201_4420	XM_113843, 4420
XM_113291, 4429 XM_113293, 4467	XM_113845,4418 XM_113853_4570
XM_113299,4504	XM_113853, 4570 XM_113855, 4560
XM_113299,4304 XM_113303,5013	XM_113874, 4431
XM_113310, 4723	XM_113876, 4426
XM_113315, 4944	XM_113882, 4640
XM_113324,4674	XM 113892, 4978
XM_113325, 4703	XM_113901, 4653
XM_113328, 4695	XM_113919, 4905
,	

PCT/HS2003/028547

WO 2004/030615

XM 113929 4696 XM 114497 2058 XM 113931, 4706 XM .114555, 2429 XM 113938, 4824 XM 114578, 2444 XM 113943.5010 XM 114602.2404 XM_113945, 4998 XM 114613, 2625 XM 113951, 4962 XM 114617, 2517 XM 113988, 5229 XM 114618, 2523 XM 114004, 5349 XM 114640, 2556 XM 114018, 5097 XM 114646, 2756 XM_114024,5560 XM 114649, 2873 XM 114025, 5530 XM_114655, 2854 XM_114027, 5366 XM 114661, 2677 XM _114030, 560 XM .114662, 2688 XM 114044 129 XM_114669, 2845 XM_114055, 384 XM_114677, 2802 XM 114062.3 XM 114678 2801 XM 114097, 376 XM 114679, 2799 XM .114098, 360 XM 114686, 2699 XM.114109.525 XM 114692, 6354 XM.114125, 259 XM 114708, 6291 XM 114137, 634 XM.114720, 6130 XM 114153 484 XM.114724.6119 XM_114154, 5875 XM_114798, 233 XM 114163, 5794 XM_114862, 3104 XM_114165, 5813 XM _114894, 2977 XM_114174, 5673 XM_114981, 3139 XM J 14178, 5706 XM 115031, 3286 XM_114185,5889 XM J 15062, 3364 XM 114209, 6024 XM _15063, 3365 XM 114215, 816 XM 15081, 3177 XM_114229, 838 XM 115117, 3570 XM_114247, 824 XM.115140.3634 XM J 14266, 851 XM 115197, 3809 XM_114267, 856 XM.115215, 3948 XM 114298, 957 XM.115352, 4333 XM J 14301, 1225 XM _15480, 4910 XM 114309, 1242 XM 115603 5466 XM_114323, 1141 XM_115615, 5395 XM 114328, 1344 XM 115672, 869 XM 114356, 1288 XM_115706, 1039 XM J 14364, 1122 XM 115722, 1040 XM_114368, 1510 XM J 15825, 1002 XM.114401, 1496 XM _1 15846, 5691 XM _114424, 1473 XM J 15874, 6281 XM_114426, 1470 XM 115886, 6131 XM_114434, 1555 XM .115890, 6136 XM_114435, 1552 XM 115923, 6259 XM J 14437, 1567 XM.115924.6121 XM J 14439, 1586 XM_116034, 1338 XM J 14440, 1587 XM J 16058, 1295 XM_114442, 1584 XM J 16071, 1204 XM 114453, 1819 XM J 16072, 1205

XM 114457, 1817

XM J 14469, 1623

XM J 14482, 1683

XM _14492, 2106

XM 116204 1532

XM 116205, 1533

XM 116247, 1484

XM_116285, 1408

WO 2004/030615 PCT/US2003/028547

XM_116307, 1691	XM_165451, 1268
XM_116340, 1807	XM_165465, 1531
XM_116365, 1856	XM_165470, 1528
XM_116427, 1648	XM_165473, 1482
XM_116439, 1593	XM_165483, 1818
XM_116447, 1606	XM_165484, 1820
XM_116465, 1716	XM_165488, 1615
XM_116511, 1857	XM _165499, 2057
XM_116514, 1861	XM_165514, 2579
XM_116524,2140	XM_165530, 6355
XM_116806, 2789	XM_165533, 6235
XM_116818, 2738	XM_165551, 2913
XM_116853, 1139	XM_165555, 2889
XM_116856, 1810	XM_165557, 2897
XM_116863, 2975	XM_165560, 2925
XM_116053, 2975 XM_116913, 3845	XM_165563, 2926
	XM 165567, 2921
XM_116926, 3451	XM_165571, 3407
XM_117061,4913	
XM_117066, 4768	XM 165584, 3414
XM_117096, 5084	XM_165586, 3413 XM_165592, 3401
XM_117118,5379	
XM_117122, 5183	XM 165598, 3303
XM_117128, 5605	XM_165600, 3310
XM_117159, 2	XM 165610, 3222
XM_117181,534	XM_165611, 3217
XM_117184, 163	XM_165612, 3223
XM_117185, 582	XM_165616, 3325
XM_117196, 641	XM_165627, 3335
XM_117209,5688	XM_165628, 3341
XM_117264,736	XM_165631,3328
XM_117311, 1337	XM_165636, 3903
XM_117351, 1412	XM_165639, 3917
XM_117387, 1622	XM_165645, 4534
XM_117398, 1641	XM_165647, 4528
XM_117444, 2471	XM_165648, 4537
XM_117449, 2160	XM_165649, 4527
XM_117452, 2472	XM_165656, 4484
XM_117481, 2406	XM_165657, 4493
XM_117487, 2622	XM_165658, 4489
XM_117519, 2874	XM_165669, 2091
XM_117539, 6352	XM_165692, 2159
XM_117555,6349	XM_165698, 1949
XM_117692, 28	XM_165717, 1954
XM_118637,4251	XM_165728, 2036
XM_165390, 3427	XM_165738, 1999
XM_165410, 4583	XM_165740, 1865
XM_165411, 4413	XM_165743, 1937
XM 165418, 4713	XM_165747, 1948
XM_165421, 4701	XM _165749, 2037
XM_165422, 4704	XM_165758, 2013
XM_165432, 5541	XM_165764, 2011
XM_165438, 144	XM_165765, 1988
XM_165439, 620	XM_165770, 1951
XM 165442, 59	XM_165771, 1983
XM_165443, 477	XM_165772, 1876
XM_165448, 723	XM_165777, 2044

WO 2004/030615 PCT/US2003/028547

XM .165794, 1921	XM 166177, 3406
XM 165799, 2006	XM_166181, 3403
XM_165801, 1956	XM_166196, 3308
XM 165809, 2016	XM_166232, 3227
XM 165836, 2350	XM 166234, 3224
XM 165839, 2346	XM_166235, 3293
XM_165841,2197	XM 166236, 3294
XM_165860, 2167	XM 166239, 3349
XM 165867, 2249	XM 166253, 3336
XM 165870, 2245	XM 166266, 3904
XM 165872, 2253	XM 166273, 3886
XM 165876, 2258	XM 166277, 4532
XM_165877, 2240	XM 166282, 4491
XM 165882, 2248	XM 166285, 4490
XM_165888, 2934	XM 166288, 5071
XM_165890, 2929	XM 166303, 2092
XM 165891, 2941	XM .166310, 2101
XM_165903, 3633	XM 166327, 2157
XM_165905, 3579	XM 166333, 1932
XM 165906, 3532	XM_166336, 2021
XM_165910, 3465	XM 166340, 1882
XM 165921, 4127	XM 166349, 1872
XM 165923, 4325	XM_166353, 2002
XM 165954, 5026	XM_166357, 2049
XM 165960, 5347	XM_166360, 1938
XM_165963, 5367	XM_166361, 2009
XM 165975, 327	XM_166362, 1884
XM 165976, 373	XM_166363, 1940
XM_165977, 264	XM_166376, 2004
XM 165978, 532	XM_166381, 1992
XM_165981, 290	XM_166392, 2019
XM_165983, 275	XM_166401, 1995
XM_165984, 175	XM_166402, 1896
XM 165994, 927	XM_166406, 2015
XM_165998, 893	XM_166412, 1910
XM_166007,910 XM_166008_000	XM_166417, 1914
XM_166008, 900 XM_166011, 1121	XM_166419, 1920 XM_166425, 1888
XM_166014, 1275	XM 166446, 2042
XM 166015, 1192	XM 166457, 1878
XM 166017, 1350	XM.166459, 1931
XM_166026, 1669	XM_166469, 1879
XM 166027, 1663	XM 166480, 1955
XM 166028, 1842	XM 166482, 2351
XM 166029, 1802	XM 166485, 2353
XM_166037, 1612	XM 166494, 2224
XM 166042, 2054	XM 166504, 2222
XM 166049, 2147	XM 166505, 2202
XM_166063,2540	XM 166506, 2200
XM_166064, 2558	XM 166509, 2219
XM 166078, 6142	XM 166512, 2205
XM 166081, 6255	XM 166513, 2220
XM 166093, 2984	XM 166514, 2203
XM_166125, 2966	XM_166515, 2204
XM 166157, 2922	XM_166521, 2198
XM 166174, 3409	XM 166523, 2170

VM 166521 2100

PCT/US2003/028547

XM 166531, 2190
XM_166540, 2191,
XM_166541, 2168
XM_166594, 2230
XM_166599, 20
XM_166605,3506
XM 166629, 2988
XM 166665, 2918
XM 166717, 2906
XM_166743, 3418
XM 167008 5080
XM 167008, 5080 XM 167016, 2087
XM 167027, 2094
XM 167037 2096
XM_167037, 2096 XM_167046, 2150
XM_167128, 2023
YM 167161 2025
XM_167161, 2025 XM_167169, 1868
YM 167106 2041
VM 167225 2047
VM 167330 2264
XM_167179, 2031 XM_167196, 2041 XM_167225, 2047 XM_167339, 2264 XM_167363, 5065
VM 167366 1200
XM_167366, 1209 XM_167374, 2898
XM 167395, 2963
XM_167411, 2901
XM_167411, 2901 XM_167414, 2904
XM_167433, 3324
XM_16/433, 3324
XM_167437, 3192 XM_167439, 3876
XM 167459, 3870
XM 167453, 4538
XM_167456, 4541 XM_167476, 2321
XM_16/4/6, 2321
XM_167477, 2325
XM_167483,2328 XM_167484,2329
XM_167494, 2273 XM_167498, 2301
XM 167498, 2301
XM_167500, 2299
XM_167502, 2312 XM_167504, 2300
XM.16/504, 2300
XM_167518, 3754 XM_167530, 5529 XM_167538, 5945
XM.167530, 5529
XM 167538, 5945
XM_167558, 2645 XM_167626, 2887 XM_167716, 3244
XM 167626, 2887
ALVI 10//10, 3244
XM_167716, 3244 XM_167726, 3248 XM_167747, 3234 XM_167748, 3228 XM_167780, 3417
XM 167749, 3234
AM 107/48, 3228
XM_167804, 3417 XM_167804, 3291
ANI 167062 2210
XM_167853, 3318 XM_167892, 3883
AIVI_10/892, 3883
XM_167906, 3877

XM 167911, 3868 XM_167918, 3869 XM_168054, 2103 XM_168070, 1928 XM_168104, 1994 XM 168123, 1877 XM 168181, 2322 XM 168251, 2323 XM_168354, 2271 XM 168378, 2269 XM_168435, 2316 XM 168450, 2315 XM_168454, 2302 XM_168461, 2311 XM_168464, 2317 XM_168470, 2310 XM_168548, 2375 XM.168572, 2380 XM_168586, 2360 XM.169414, 3880 XM_169540, 5078 XM_170195, 2267 XM.170427, 2318

PCT/US2003/028547

Source Index (to Figure number)

Source Index (to Figure number)	
gen.NM_000018,4669	gen.NM_000484,5882
gen.NM_000026,6068	gen.NM_000505,1828
gen.NM_000029,624	gen.NM_000508,1511
gen.NM_000033,6342	gen,NM_000509,1515
gen.NM_000034,4520	gen.NM_000516,5830
gen.NM_000039,3376	gen.NM_000517,4354
gen.NM_000041,5511	gen.NM_000521,1627
gen.NM_000070.4161	gen.NM_000526,4816
gen.NM_000075,3683	gen.NM_000532,1260
gen.NM_000077,2655	gen.NM_000554,5480
gen.NM_000079,898	gen.NM_000558,4356
gen.NM_000090,921	gen.NM_000559,3142
gen.NM_000107,3208	gen.NM_000569,505
gen.NM_000114.5836	gen.NM_000574,558
gen.NM_000121,5258	gen.NM_000576,847
gen.NM_000126,4267	gen.NM_000582,1459
gen.NM_000137,4300	gen.NM_000592,1957
gen.NM_000143.636	gen.NM_000598,2228
gen.NM_000146,5562	gen.NM_000602,2361
gen.NM_000154,4967	gen.NM_000612,3120
gen.NM_000156.5122	gen.NM_000638,4763
gen.NM_000165,2099	gen.NM_000661,1425
gen.NM_000177,2796	gen.NM_000666,1172
gen.NM_000178,5738	gen.NM_000687,5736
gen.NM .000179,744	gen.NM_000688,1167
gen.NM_000182.713	gen.NM_000700, 2695
gen.NM_000183.711	gen.NM_000701,312
gen.NM_000184,3144	gen.NM_000743,4259
gen.NM_000196,4547	gen.NM_000754.5956
gen.NM_000213,4963	gen.NM_000760,173
gen.NM_000221.701	gen.NM_000785,3687
gen.NM_000224, 3593	gen.NM_000787,2830
gen.NM_000227,5040	gen.NM_000795,3384
gen,NM_000228,553	gen.NM_000801,5648
gen.NM_000239, 3729	gen.NM .000852,3297
gen.NM_000250, 4903	gen.NM_000858,612
gen.NM_000251,741	gen.NM_000893,1327
gen.NM_000268.5994	gen.NM_000895,3763
gen.NM_000269,4889	gen.NM_000930,2534
gen.NM_000274,3076	gen.NM_000931,2536
gen.NM_000284,6138	gen.NM_000942,4218
gen.NM_000291,6230	gen.NM_000954.2868
gen.NM_000358, 1671	gen.NM_000964,4820
gen.NM_000365,3460	gen.NM_000967,6061
gen.NM_000368,2806	gen.NM_000969,284
gen.NM_000385,2262	gen.NM_000970.3781
gen.NM_000386,4843	gen.NM_000971,2569
gen.NM_000396,356	gen.NM_000972,2826
gen.NM_000404,1089	gen.NM_000973,2633
gen.NM_000407,5947	gen.NM_000975,87
gen.NM_000422,4807	gen.NM_000976,2780
gen.NM_000425,6334	gen.NM_000977,4633
gen.NM_000447,594	gen.NM_000978,4801
- ·	5

WO 2004/030615 PCT/US2003/028547

gen.NM_000979,5571	gen.NM_001168,4985
gen.NM_000980.5334	gen.NM_001190,5568
gen.NM_000981,4798	gen.NM_001199,2495
gen.NM_000981,4790	gen.NM_001207,1624
gen.NM_000982,3091	gen.NM_001211,4139
gen.NM_000985,5067	gen.NM_001218,4203
gen.NM_000986, 1206	gen.NM_001235,3333
gen.NM_000980, 1200	gen.NM_001238,5374
gen.NM_000989,2588	gen.NM_001247,5703
gen.NM_000990,3155	gen.NM_001255, 194
gen.NM_000991,5613	gen.NM_001262,229
gen.NM_000992, 1170	gen.NM_001273,3468
gen.NM_000993,832	gen.NM_001274,3411
gen.NM_000993,832	gen.NM_001275,4065
gen.NM_000994, 1004	gen.NM_001283,2365
gen.NM_000998, 966	gen.NM_001287,4372
gen.NM_001000,6278	gen.NM_001288,1969
gen.NM_001000, 0278	gen.NM_001293,3337
gen.NM_001002,3827	gen.NM_001294,5508
gen.NM_001005,4226	gen.NM_001313,1396
gen.NM_001006,1506	gen.NM_001319,5141
gen.NM_001007,6224	gen.NM_001320,1971
gen.NM_001009,5633	gen.NM_001324,5814
gen.NM_001010, 2651	gen.NM_001325,6239
gen.NM_001011,643	gen.NM_001323,0235
gen.NM_001012,210	gen.NM_001344,3984
gen.NM_001016,2111	gen.NM_001350,1942
gen.NM_001017,3171	gen.NM_001363,6318
gen.NM_001018,5126	gen.NM_001407,1132
gen.NM_001020, 5426	gen.NM_001415.6143
gen.NM_001021,4283	gen.NM_001416,4687
gen.NM_001022,5468	gen.NM_001418,3163
gen.NM_001023,2552	gen.NM_001428,31
gen.NM_001024,5847	gen.NM_001436,5436
gen.NM_001025, 1632	gen.NM_001444, 2575
gen.NM_001026.2980	gen.NM_001450,836
gen.NM_001028,3361	gen.NM_001463,916
gen.NM_001029.3656	gen.NM_001465, 1573
gen.NM_001030,440	gen.NM_001467,3359
gen,NM_001034,651	gen.NM_001469,6081
gen.NM_001038,3478	gen.NM_001494,2891
gen.NM_001043,4487	gen.NM_001500, 2052
gen.NM_001050,4841	gen.NM_001517,1997
gen.NM_001064, 1159	gen.NM_001521,689
gen.NM_001065,3480	gen.NM_001530.4016
gen,NM_001068,1079	gen.NM_001536,5539
gen,NM_001069,2050	gen.NM_001539, 2660
gen.NM_001084,2369	gen.NM_001540,2308
gen.NM_001087,994	gen.NM_001553,1435
gen.NM_001098,6079	gen.NM_001554,269
gen.NM_001101,2174	gen.NM_001560,6270
gen.NM_001102,4040	gen.NM_001567,3322
gen.NM_001122, 2649	gen.NM_001568,2596
gen.NM_001134, 1446	gen.NM_001569,6332
gen.NM_001154, 1489	gen.NM_001571,5542
gen.NM_001157, 2990	gen.NM_001605,4564

PCT/US2003/028547

gen.NM 001607 1097 gen.NM_001610,3206 gen.NM_001613,3008 gen.NM_001622,1330 gen.NM_001628,2423 gen.NM_001641.3997 gen.NM_001644.3511 gen.NM_001647, 1352 gen.NM_001648,5590 gen.NM_001659,3550 gen.NM_001662,2398 gen.NM_001667,3284 gen.NM _001673,2355 gen.NM_001687.5115 gen.NM_001688,308 gen.NM_001696,5941 gen.NM_001697,5892 gen.NM_001710,1959 gen.NM..001734, 3452 gen.NM_001743,5494 gen.NM_001747,806 gen.NM 001751.3137 gen.NM.001753.2391 gen.NM_001757.5894 gen.NM 001760, 1898 gen.NM_001762, 2274 gen.NM_001780,3663 gen.NM_001791.81 gen.NM_001816,5478 gen.NM_001819,5679 gen.NM_001827,2714 gen.NM_001831,2506 gen.NM.001833, 2689 gen.NM_001842,2668 gen.NM_001853.5853 gen.NM_001861,4614 gen.NM_001862,827 gen.NM_001878,392 gen.NM_001907,4579 gen.NM_001909, 3133 gen.NM_001920,3740 gen.NM_001930,5267 gen.NM 001935.894 gen.NM_001944,5050 gen.NM_001959.950 gen.NM_001961.5178 gen.NM_001964, 1689 gen.NM_001969,4098 gen.NM_001970,4697 gen.NM_001975,3458 gen.NM .001983,5502 gen.NM_001985,5593 gen.NM_002003, 2834 gen.NM_002004,422 gen.NM_002011,1836 gen.NM_002014.3439

gen NM 002015.3896 gen.NM_002018.4719 gen.NM_002028,4010 gen.NM_002046.3473 gen.NM_002047,2265 gen.NM_002075.3463 gen.NM_002079,3066 gen.NM_002083,4012 gen.NM_002084.1704 gen.NM_002085,5112 gen.NM_002086,4953 gen.NM_002087,4845 gen.NM_002106, 1478 gen.NM_002109,1779 gen.NM_002128.3887 gen.NM_002129, 1522 gen.NM_002130,1582 gen.NM_002133,6020 gen.NM_002137,2210 gen.NM_002157,930 gen.NM_002161,2716 gen,NM_002168,4293 gen.NM_002178.3600 gen.NM_002211, 2919 gen.NM_002212,5742 gen.NM_002229,5272 gen.NM_002265,4834 gen.NM_002273,3591 gen.NM_002274.4814 gen.NM_002275.4812 gen.NM_002276,4810 gen.NM_002295,1108 gen.NM_002305,6038 gen.NM_002306,4022 gen.NM_002339,3115 gen.NM_002340,5931 gen.NM _002342, 3476 gen.NM_002345.3752 gen.NM_002355,3489 gen.NM_002358, 1485 gen.NM_002364,6147 gen.NM_002385.5086 gen.NM_002386.4626 gen.NM_002388, 1866 gen.NM_002396,5069 gen.NM_002397,1646 gen.NM_002401,4933 gen.NM_002411,3245 gen.NM_002413,1494 gen.NM_002414,6124 gen.NM_002415,5979 gen.NM_002453.751 gen.NM_002466,5774 gen.NM_002468, 1095 gen.NM_002473,6025 gen.NM_002477,1368

PCT/US2003/028547

gen.NM_002484,4416
gen.NM_002486,2734
gen.NM_002489,2193
gen.NM_002492,1297
gen.NM_002512,4887
gen.NM _002520, 1803
gen.NM_002537,4210
gen.NM_002539,659
gen.NM_002567,3816
gen.NM_002568,2593
gen.NM_002574,220
gen.NM_002588, 1728
gen.NM_002606,5900
gen.NM_002615,4647 gen.NM_002617,12
gen.NM .002632,4052 gen.NM .002634,4939
gen.NM_002638,5779
gen.NM_002654,4242
gen.NM_002660,5771
gen.NM_002668,6185
gen.NM_002689,3289
gen.NM_002691,5580
gen.NM_002707,681
gen.NM_002712,1030
gen.NM_002720,4518 gen.NM_002727,2961
gen.NM_002727,2961
gen.NM_002730,5298
gen.NM .002733,3555
gen.NM.002766,4975
gen.NM_002787,2254
gen.NM_002789,4261
gen.NM_002792,5838 gen.NM_002793,2137
gen.NM_002793,2137
gen.NM_002796,346
gen.NM_002802,4059
gen.NM_002803,2378 gen.NM_002809,4805
gen.NM_002810,348
gen.NM 002812 5401
gen.NM.002812,5401 gen.NM.002813,3837
gen.NM_002815,4778
gen.NM_002819,5102
gen.NM_002827,5809
gen.NM .002846,980
gen. NM .002854, 1188
gen.NM_002856,5515 gen.NM_002857,481 gen.NM_002863,4029
gen.NM_002857,481
gen.NM_002863,4029
gen.NM_002870,438
gen NM 002878 4784
gen.NM_002883,6075
gen.NM_002887,1800
gen.NM_002913,1427 gen.NM_002915,3891
gen.NM_002915,3891
gen.NM_002921,3002

gen.NM_002923.540 gen.NM_002934.3992 gen.NM_002938,1386 gen.NM_002946,127 gen.NM_002947,2188 gen.NM_002948.1076 gen.NM_002952,4382 gen.NM_002954.749 gen.NM_002961.369 gen.NM_002965,364 gen.NM_002979.235 gen.NM_003002,3390 gen.NM_003021,5161 gen.NM_003025.5188 gen.NM_003055.2947 gen.NM_003064.5781 gen.NM_003072,5254 gen.NM _003076,3568 gen.NM_003088,2176 gen.NM_003090,4320 gen.NM_003091,5654 gen.NM_003092,5683 gen.NM_003104,4187 gen.NM_003107.2032 gen.NM_003123.4511 gen.NM_003124,789 gen.NM_003128,746 gen.NM_003132.50 gen.NM_003137, 1916 gen.NM_003143,2435 gen.NM_003145,409 gen.NM_003146,3215 gen.NM_003149,1099 gen.NM_003169,5428 gen.NM_003181,2135 gen.NM_003216,6077 gen.NM_003283,5608 gen.NM_003287,2104 gen.NM_003289,2680 gen.NM_003290,5312 gen.NM_003295,3900 gen.NM_003310,649 gen.NM_003316,5896 gen.NM_003334,6167 gen.NM_003349,5804 gen.NM _003350, 2546 gen.NM_003365,1134 gen.NM_003366.4421 gen.NM_003370,5499 gen.NM_003374,1677 gen.NM_003375,2982 gen.NM_003378,2367 gen.NM_003389,2728 gen.NM_003400,761 gen.NM_003401, 1636 gen.NM_003406,2590

PCT/US2003/028547

gen.NM_003418, 1250 gen.NM 003453,3864 gen.NM 003461,2440 gen.NM_003472, 2034 gen.NM_003516.459 gen.NM_003564.474 gen.NM_003598,5556 gen.NM 003617,497 gen.NM 003624.5214 gen.NM_003626,3316 gen.NM 003646.3197 gen.NM 003662,6149 gen.NM, 003680, 157 gen.NM_003681,5905 gen.NM_003685,5203 gen.NM_003687, 1673 gen.NM_003689,71 gen.NM_003712,5093 gen.NM_003714.1812 gen.NM_003720,5898 gen.NM_003721,5360 gen.NM_003722,1335 gen.NM_003729,288 gen.NM_003735, 1730 gen.NM_003736, 1732 gen.NM_003739,2883 gen.NM 003752,4449 gen.NM_003753,6027 gen.NM 003755, 5234 gen.NM 003756, 2598 gen.NM_003757,148 gen.NM_003765,5288 gen.NM_003766,4865 gen.NM_003779,468 gen.NM_003780, 199 gen.NM_003787,5052 gen.NM_003815,457 gen.NM_003824,3313 gen.NM_003836,4088 gen.NM_003837.2723 gen.NM_003859.5811 gen.NM_003876,4708 gen.NM_003877.3757 gen.NM_003906.5933 gen.NM_003908,5734 gen.NM_003915.5747 gen.NM_003932,6070 gen.NM_003937,881 gen.NM_003938.5148 gen.NM_003971,4891 gen.NM_003973,1110 gen.NM_003979,3498 gen.NM_004000,306 gen.NM_004004,3866 gen.NM_004044,955 gen.NM_004048,4178

gen.NM_004053.1900 gen.NM_004060,1791 gen.NM_004074,3264 gen.NM_004084,2476 gen.NM_004085,6242 gen.NM_004092,3099 gen.NM_004111.3253 gen.NM_004117, 1918 gen.NM_004127,5008 gen.NM_004134, 1693 gen.NM_004135,6340 gen.NM_004147,6011 gen.NM_004152.5154 gen.NM_004159,1952 gen.NM_004175.5983 gen.NM_004176,4742 gen.NM_004178,3614 gen.NM_004181,1430 gen.NM_004182.6174 gen.NM_004193,3045 gen.NM_004203,4402 gen.NM_004208,6285 gen.NM_004217,4699 gen.NM_004219,1795 gen.NM_004240,5206 gen.NM_004247,4879 gen.NM_004261.273 gen.NM_004265.3249 gen.NM_004309,5002 gen_NM_004322,3256 gen.NM_004323, 2662 gen.NM_004324,5564 gen.NM_004335,5328 gen.NM_004339.5921 gen.NM_004341.692 gen.NM_004345,1128 gen.NM_004360,4549 gen.NM_004398,3392 gen.NM_004401,48 gen.NM_004404, 1034 gen.NM_004435,2761 gen.NM_004448,4796 gen.NM_004461.5279 gen.NM_004483,4602 gen.NM_004493,6190 gen.NM_004509,1012 gen.NM_004510,1014 gen.NM_004524,4960 gen.NM _004539.5072 gen.NM_004547.1218 gen.NM_004550,470 gen.NM_004551,3199 gen.NM_004555,4586 gen.NM_004573,4141 gen.NM_004595,6140 gen.NM_004596,5448

PCT/US2003/028547

gen.NM_004599.6085 gen.NM 004618,4716 gen.NM 004632,414 gen.NM 004635, 1155 gen.NM 004636, 1149 gen.NM 004637, 1246 gen.NM_004638, 1979 gen.NM 004639,1973 gen NM 004640, 1986 gen.NM 004673.529 gen.NM_004691.4545 gen.NM_004697,2751 gen.NM 004699.6323 gen.NM_004701.4197 gen.NM 004704, 1182 gen.NM_004706.5470 gen.NM_004714.5434 gen.NM_004725.3093 gen.NM_004728, 2959 gen.NM .004735, 1026 gen.NM_004738, 5824 gen.NM_004739, 3230 gen.NM_004766,1270 gen.NM_004767,576 gen.NM_004772, 1650 gen.NM_004781,44 gen.NM 004794.6287 gen.NM_004813.3190 gen.NM_004821.1787 gen.NM_004844, 1066 gen.NM_004846.998 gen.NM 004859.4921 gen.NM_004870,4689 gen.NM_004889,2342 gen.NM_004893, 1685 gen.NM_004905,511 gen.NM_004911, 2442 gen.NM_004928,5915 gen.NM_004930,69 gen.NM_004933.4638 gen.NM_004939,662 gen.NM_004957,2775 gen.NM_004960,4465 gen.NM_004964, 150 gen.NM_004973, 2039 gen.NM_004982,3526 gen.NM_004990, 3669 gen.NM_004992.6330 gen.NM_004994,5791 gen.NM_004995,3976 gen.NM_005000,2396 gen.NM_005002,3448 gen.NM_005003,4446 gen.NM_005004,3063 gen.NM_005005, 2606 gen.NM_005008, 6083

gen.NM_005015.3981 gen.NM 005016.3620 gen.NM_005022.4665 gen.NM_005030,4442 gen.NM_005036.6104 gen.NM_005042,3524 gen.NM_005053,5283 gen.NM_005072,4581 gen.NM_005080, 5987 gen.NM_005109, 1093 gen.NM 005110.1854 gen.NM 005112 1421 gen.NM_005115,4500 gen.NM_005132,3962 gen.NM_005141, 1508 gen.NM .005163.4110 gen.NM_005171,3574 gen.NM_005174,2895 gen.NM_005194.5808 gen.NM_005217.2478 gen.NM_005220.4946 gen.NM_005224.5104 gen.NM .005243.5989 gen.NM_005269.3667 gen.NM_005271,3004 gen.NM_005291.854 gen.NM 005300 6159 gen.NM_005313,4174 gen.NM_005324,4969 gen.NM_005330,3146 gen.NM_005333.6126 gen.NM_005345, 1963 gen.NM_005346, 1961 gen.NM_005347,2790 gen.NM_005348,4092 gen.NM_005362,6316 gen.NM_005364,6308 gen.NM_005370,5314 gen.NM_005371,3689 gen.NM_005378,657 gen.NM_005389,2126 gen.NM_005432,4101 gen.NM_005439.3466 gen.NM_005440,4877 gen.NM_005452, 1944 gen.NM_005474,4850 gen.NM_005490.5208 gen.NM_005498, 5241 gen.NM_005514.2155 gen.NM_005517, 110 gen.NM_005520, 1850 gen.NM_005548, 4568 gen.NM_005563, 105 gen.NM_005566,3175 gen.NM_005572,404 gen.NM_005573,1718

PCT/US2003/028547

gen.NM_006019.3304 gen.NM_005581,5517 gen.NM_006023.2899 gen.NM 005594, 3628 gen.NM_005614.2460 gen.NM_006039.4936 gen.NM_006053.3306 gen.NM_005617,1708 gen.NM 005620,340 gen.NM_006058,1702 gen.NM 005623,4782 gen.NM_006066.218 gen NM 005632, 4362 gen.NM_006067.4612 gen.NM_005657.4170 gen_NM_006098, 1852 gen.NM 005663, 1382 gen.NM_006101.5023 gen.NM 005676.6165 gen.NM_006109.3973 gen NM 005686, 550 gen.NM_006110.4423 gen.NM_006112.159 gen.NM_005692, 2458 gen.NM_005693, 3204 gen.NM_006114,5513 gen.NM_006115.5975 gen.NM_005698,424 gen.NM_005710.6181 gen.NM_006128.2497 gen.NM_005713, 1602 gen.NM_006131, 2499 gen.NM_005717.517 gen.NM_006132, 2501 gen.NM_005718,1055 gen.NM_006136, 2393 gen.NM_005720,2348 gen.NM_006169,3380 gen.NM_005724,4273 gen.NM_006184,5566 gen.NM_005726,3695 gen.NM_006227,5789 gen.NM 005729, 2986 gen.NM_006230, 2246 gen.NM_005731.996 gen.NM..006245.1892 gen.NM_006247.5497 gen.NM 005745,6344 gen.NM .005754, 1697 gen.NM_006250,3522 gen.NM_005762.5627 gen.NM_006253.3831 gen.NM_006262.3546 gen.NM 005770.4176 gen.NM_006265.2600 gen.NM_005775.2491 gen.NM_005783,829 gen.NM_006271, 374 gen,NM_005787,1316 gen.NM_006272, 5935 gen.NM_006280,6338 gen.NM_005796,4575 gen.NM_006289.2682 gen.NM_005806,5887 gen.NM_005826,83 gen.NM_006295, 1967 gen.NM_005830,3898 gen.NM_006303, 2178 gen.NM_005831,4911 gen.NM_006330, 2550 gen.NM_005833,2792 gen.NM_006335,571 gen.NM_005837,2326 gen.NM_006339,5171 gen.NM_005850,461 gen.NM_006342,1374 gen.NM_005851,3301 gen.NM_006349,2371 gen.NM_005855, 1024 gen.NM_006354, 1049 gen.NM_005866, 2670 gen.NM_006362,3242 gen.NM_005877,5999 gen.NM_006365,396 gen.NM_005884, 5421 gen.NM_006373,4875 gen.NM .005889, 3509 gen.NM_006384.4305 gen.NM_005911.808 gen.NM_006387.5319 gen.NM_005915, 864 gen.NM_006395.1062 gen.NM_005917.764 gen.NM_006397.5277 gen NM 005918, 2306 gen.NM_006401.2732 gen.NM_005973,389 gen.NM_006427,4106 gen.NM_005981,3681 gen.NM_006428,4360 gen.NM_005983, 1579 gen.NM_006429,792 gen.NM_005985.5802 gen.NM_006430,759 gen.NM_005997,350 gen.NM_006432, 4048 gen.NM_006000,982 gen.NM_006435,3113 gen.NM_006012,5201 gen.NM_006439, 1504 gen.NM_006013.6326 gen.NM_006440.5954

PCT/US2003/028547

gen.NM_006453,4384
gen.NM_006455,4822
gen.NM_006470,4725
gen.NM_006478,5991
gen.NM_006488,703
gen.NM_006494,5476
gen.NM_006503,5441
gen.NM_006513, 298
gen.NM_006516,188
gen.NM_006523,3055
gen.NM_006530,3727
gen.NM_006556,452
gen.NM_006559, 146
gen.NM_006559,146 gen.NM_006576,3697
gen.NM _006585, 5885
gen.NM .006586.1894
gen.NM _006586, 1894 gen.NM _006589, 428
gen.NM_006600,118
gen.NM_006601,3636
gen.NM_006621,300
gen NIM 006625 93
gen.NM_006636,794
gen.NM_006646,3881
gen.NM_006659,3101
gen.NM_006666,5558
gen.NM_006667,6272
gen.NM_006670, 2070
gen.NM_006693,2344
gen.NM_006694,436
gen.NM_006698,5760
gen.NM_006708,1904
gen.NM_006711,4392
gen NM 006746 6134
gen.NM_006761,4642 gen.NM_006763,548
gen NM 006763 548
gen.NM 006764.1151
gen.NM_006764,1151 gen.NM_006769,271 gen.NM_006787,6197
gen NM 006787 6197
gen NM 006791 4279
gen.NM_006791,4279 gen.NM_006799,4408
gen.NM_006801,5576
gen.NM_006805,1687
gen.NM_006808,2740
gen.NM_006810,1223
gen.NM_006812,3678
gen.NM_006815,3847
gen.NM_006816.1830
gen.NM_006816,1830 gen.NM_006817,3785
gen.NM_006821,4046
gen.NM_006824,192
gen.NM_006825,3807
gen.NM_006826,655
gen NM 006833.2338
gen.NM_006835,1449
gen.NM_006837, 2565
gen.NM_006839,814

gen NM 006842, 3295 gen.NM_006844,5308 gen.NM_006854.2184 gen.NM_006862,344 gen.NM_006888.4063 gen.NM_006899.5661 gen.NM_006908.2182 gen.NM_006924,4908 gen.NM_006928.3660 gen.NM_006932,6007 gen.NM_006938,5039 gen.NM_006941.6049 gen.NM_006942,4691 gen.NM_006990, 124 gen.NM_007002, 5844 gen.NM_007019,5785 gen.NM_007032,6040 gen.NM_007034,267 gen.NM_007046.705 gen.NM_007047, 2029 gen.NM_007062.3805 gen.NM_007065.5237 gen.NM_007074.4516 gen.NM_007085, 1216 gen.NM_007096.2691 gen.NM_007100,1366 gen.NM_007103.3299 gen.NM_007104, 1922 gen.NM_007158.302 gen.NM_007165.5152 gen.NM_007173,3348 gen.NM_007178,3501 gen.NM_007184,1165 gen.NM_007186,5744 gen.NM_007190,3089 gen.NM_007209, 2794 gen.NM_007242,4566 gen.NM_007244,3520 gen.NM_007260.89 gen.NM_007262,42 gen.NM_007263,5352 gen.NM_007268,6204 gen.NM_007273,3455 gen.NM_007275,1153 gen.NM_007276,2214 gen.NM_007279.5619 gen.NM_007310,5958 gen.NM_007311,6095 gen.NM_007317,4507 gen.NM_007355, 1874 gen.NM_007364,4277 gen.NM_007372,4931 gen.NM_012068, 5525 gen.NM_012098, 2782 gen.NM_012099.5504 gen.NM_012100,977

PCT/US2003/028547

gen.NM_012101.3420 gen.NM_012111,4055 gen.NM_012112,5715 gen.NM_012116.5519 gen.NM_012138,4838 gen.NM_012170.4265 gen.NM_012179.6017 gen.NM_012181.5350 gen.NM_012203.2693 gen.NM_012207,2955 gen.NM_012237,5409 gen.NM_012248.4451 gen.NM_012255,5698 gen.NM_012264,6054 gen.NM_012286,6246 gen.NM 012296.3344 gen.NM_012323,6052 gen.NM_012391, 1929 gen.NM_012412,2236 gen.NM_012423,5550 gen.NM_012437.381 gen.NM_012458,5155 gen.NM_012469,5873 gen.NM_012486,596 gen.NM_013237,1834 gen.NM_013247,801 gen.NM_013265,3279 gen.NM_013274,3037 gen.NM_013277,3566 gen.NM_013296,292 gen.NM_013333,5617 gen.NM_013336, 1238 gen.NM_013341,903 gen.NM_013363,1276 gen.NM_013365,6032 gen.NM_013369.5911 gen.NM_013375,2027 gen.NM_013393,2165 gen.NM_013402.3251 gen.NM_013403,5492 gen.NM_013406,5269 gen.NM_013407,5270 gen.NM_013417,2718 gen.NM_013442,2675 gen.NM_013451,3013 gen.NM_014003,4592 gen.NM_014008, 6187 gen.NM_014033, 3576 gen.NM_014035, 1664 gen.NM_014042.3320 gen.NM_014062,4556 gen.NM_014063, 2251 gen.NM_014107,2077 gen.NM_014138,6163 gen.NM_014166,3906 gen.NM_014172,2862

gen NM 014173.5326 gen.NM_014176.578 gen.NM_014184,585 gen.NM_014188,17 gen.NM_014189,1390 gen.NM_014190,1388 gen.NM_014203.5536 gen.NM_014214,5032 gen.NM_014226,4095 gen.NM_014236,626 gen.NM_014248,6072 gen.NM_014255,3631 gen.NM_014267,3173 gen.NM_014275, 1846 gen.NM_014285,2820 pen.NM 014294 2567 gen.NM 014303.6003 gen.NM_014306,6015 gen.NM_014311.3606 gen.NM_014320,2116 gen.NM_014321.4476 gen.NM_014325,3777 gen.NM_014335,4182 gen.NM_014341, 1906 gen.NM_014353,4386 gen.NM_014408, 167 gen.NM_014413,2180 gen.NM_014426,5685 gen.NM_014444,4168 gen.NM_014445,1284 gen.NM_014452,1870 gen.NM 014453.5625 gen.NM_014481,6199 gen.NM_014501,5615 gen.NM_014502,3220 gen.NM_014515,3724 gen.NM_014556, 1394 gen.NM_014571,142 gen.NM_014585.923 gen.NM_014587,4370 gen.NM_014610,3232 gen.NM_014624,367 gen.NM_014649,5199 gen.NM_014663,202 gen.NM_014670,934 gen.NM_014685,4530 gen.NM_014713,667 gen.NM_014736,4214 gen.NM_014737,5676 gen.NM_014742,5721 gen.NM_014747,180 gen.NM_014748.684 gen.NM_014752,3329 gen.NM_014773,1721 gen.NM_014776,3792 gen.NM_014778,3878

WQ 2004/030615 PCT/US2003/028547

gen.NM_014800,2259	gen.NM_016085,694
gen.NM_014814,1195	gen.NM_016091,6045
gen.NM_014829,1681	gen.NM_016095,4610
gen.NM_014837,519	gen.NM_016111,4374
gen.NM_014847,446	gen.NM_016119,3912
gen.NM_014849,463	gen.NM_016143,5652
gen.NM_014851,36	gen.NM_016169,3051
gen.NM_014868,3823	gen.NM_016174,2767
gen.NM_014887,3889	gen.NM_016176,26
gen.NM_014919,1378	gen.NM_016183,73
gen.NM_014931,5610	gen.NM_016202,5621
gen.NM_014933,1457	gen.NM_016223,3210
gen.NM_014941,6005	gen.NM_016249,6300
gen.NM_014972,4628	gen.NM_016263,5169
gen.NM_015043,1843	gen.NM_016267,6293
gen.NM_015062,3042	gen.NM_016286,5006
gen.NM_015064,3430	gen.NM_016292,4414
gen.NM_015068,2319	gen.NM_016304,4193
gen.NM_015129,6276	gen.NM_016328,2293
gen.NM_015140,6097	gen.NM_016357,3572
gen.NM_015179,3024	gen.NM_016359,4152
gen.NM_015322,4226	gen.NM_016361,328
gen.NM_015324,3149	gen.NM_016410,2664
gen.NM_015373,6056	gen.NM_016440,5523
gen.NM_015388, 1886	gen.NM_016445,4035
gen.NM_015438,3470	gen.NM_016456,564
gen.NM_015449,444	gen.NM_016498,6001
gen.NM_015453,1043	gen.NM_016526,3107
gen.NM_015472, 1282	gen.NM_016539,5181
gen.NM_015484,99	gen.NM_016558,5750
gen.NM_015511,5752	gen.NM_016567,3097
gen.NM_015533,3225	gen.NM_016579,5216
gen.NM_015544,4780	gen.NM_016587,2216
gen.NM_015584,4761	gen.NM_016592,5826
gen.NM_015629,5600	gen.NM_016638,3843
gen.NM_015636,686	gen.NM_016639,4398
gen.NM_015640,260	gen.NM_016641,4335
gen.NM_015644,1057	gen.NM_016645,4302
gen.NM_015646,3720	gen.NM_016647,2614
gen.NM_015665,3604	gen.NM_016732,5733
gen.NM:015702, 885	gen.NM_016838,887
gen.NM_015714,555	gen.NM_016839,889
gen.NM_015853,3238	gen.NM_016930, 1400
gen.NM_015920,4205	gen.NM_016940,5883
gen.NM_015932,3884	gen.NM_016941,5432
gen.NM_015934,941	gen.NM_017443,2753
gen.NM_015937,5783	gen.NM_017458,4498
gen.NM_015953,5546	gen.NM_017491,1419
gen.NM_015965,5362	gen.NM_017546,834
gen.NM_015966,5745	gen.NM_017566,4617
gen.NM_016003,2172	gen.NM_017572,5146
gen.NM_016016,4847	gen.NM_017595,4871
gen.NM_016022,334 gen.NM_016026,4037	gen.NM_017601, 1902 gen.NM_017610, 4195
gen.NM_016030,647	gen.NM_017610,4195 gen.NM_017613.5890
gen.NM_016059,1908	gen.NM_017647,4929
Reuriant"010003' 1200	gen.141v1_01/04/,4929

PCT/US2003/028547

gen.NM 017668,4327 gen.NM_017670.3266 gen.NM_017684,4208 gen.NM_017722.5286 gen.NM_017751,859 gen.NM_017760.2467 gen.NM_017761.91 gen.NM_017768,262 gen.NM 017777,4906 gen.NM_017789,825 gen.NM_017797,5143 gen.NM_017801, 1081 gen.NM_017803,4584 gen.NM_017807,4003 gen.NM_017815,3971 gen.NM_017822,3552 gen.NM_017825,165 gen.NM_017827,5413 gen.NM_017829,5939 gen.NM_017847,513 gen.NM_017853.4594 gen.NM_017868.3386 gen.NM_017874.5668 gen.NM.017876.5098 gen.NM_017882_4224 gen.NM_017883,6179 gen.NM_017891.8 gen.NM_017895.5798 gen.NM_017900.22 gen,NM_017901.3810 gen.NM_017910,674 gen.NM_017916.5554 gen.NM_017952,812 gen.NM_017955.4112 gen.NM_017974, 1020 gen.NM_018019.4737 gen.NM_018023, 1306 gen.NM_018032,4358 gen.NM_018034, 1575 gen.NM_018035,5458 gen.NM_018047, 1706 gen.NM 018048 3517 gen.NM 018054.4436 gen.NM_018066,116 gen.NM_018070.239 gen.NM_018085.569 gen.NM_018096, 4792 gen.NM_018110.4535 gen.NM_018113,3548 gen.NM_018116,420 gen.NM_018122,535 gen.NM_018124,4588 gen.NM_018135,1880 gen.NM_018154,5300 gen.NM_018174,5332 gen.NM_018188,10

gen.NM_018209.5861 gen.NM_018212,587 gen.NM_018217.5740 gen.NM_018238.2437 gen.NM_018242,4747 gen.NM_018250.2510 gen.NM_018253.418 gen.NM_018255.5056 gen.NM_018270.5849 gen.NM_018310,2527 gen.NM_018346,4898 gen.NM_018357.4232 gen.NM_018410,1018 gen.NM_018454,4154 gen.NM_018457,3610 gen.NM_018463.3442 gen.NM_018464,2951 gen.NM_018468,5387 gen.NM_018486.6222 gen.NM_018509.4900 gen.NM_018607,721 gen.NM_018660.2512 gen.NM_018668.4312 gen.NM_018674.973 gen.NM_018686.3513 gen.NM_018912.1734 gen.NM_018913, 1736 gen.NM_018914, 1738 gen.NM_018915,1740 gen.NM_018916,1742 gen.NM_018917,1744 gen.NM_018918,1746 gen.NM_018919,1748 gen.NM_018920,1750 gen.NM_018921, 1752 gen.NM _018922,1754 gen.NM_018923.1756 gen.NM_018924, 1758 gen.NM_018925, 1760 gen.NM_018926,1762 gen.NM_018927,1764 gen NM 018928, 1766 gen.NM_018929, 1768 gen.NM_018947,2208 gen.NM_018948.41 gen.NM_018950,2017 gen.NM_018955,4728 gen.NM_018957,6034 gen.NM_018977,6214 gen.NM_019013.4682 gen.NM_019058,2971 gen.NM_019059,2206 gen.NM_019082,2242 gen.NM_019095,5681 gen.NM_019099,310 gen.NM_019554,371

PCT/US2003/028547

gen.NM_019606, 2333
gen.NM_019609,5663
gen.NM_019619,2916
gen.NM_019848,6321
gen.NM_019852,3988
gen.NM_019852,3988 gen.NM_019887,3839
gen.NM_020037,4895
gen.NM_020038,4893
gen.NM_020038,4893 gen.NM_020132,5908
gen.NM_020134,709
gen.NM_020149,4136
gen.NM_020158,5454
gen.NM_020188,4604
gen.NM _020230, 5232
gen.NM_020243,6058
gen.NM_020299,2425
gen.NM_020315,6036
gen.NM_020320,2075
gen.NM_020347,1113
gen.NM_020401,3717
gen.NM_020414,4069
gen.NM_020418,1180
gen.NM_020548,871
gen.NM_020675,896
gen.NM _020677,4340
gen.NM_020701,1248
gen.NM_020990,4172
gen.NM_020992,3017
gen.NM_021019,3646
gen.NM_021029,6244
gen.NM_021079,4883 gen.NM_021095,698
gen.NM_021095,698
gen.NM_021103,803
gen.NM_021104,3654 gen.NM_021107,5415
gen.NM_021107,5415
gen.NM_021121,948
gen.NM_021126,6029
gen.NM_021129,2964
gen.NM_021130,2238
gen.NM_021141,958
gen.NM_021154,2701 gen.NM_021158,5638
gen.NM_021158,5638
gen.NM_021177,1965
gen.NM_021178,4006
gen.NM_021195,4400
gen.NM_021213,4919 gen.NM_021219,5879
gen.NM_021226,2945
gen.NM_021626,4917
gen.NM_021709,4108
gen.NM_021728,4020 gen.NM_021826,5665
gen.inM_U21826, 3663
gen.NM .021830,3033
gen.NM_021831,707 gen.NM_021870,1517
gen.NM_021871,1513
gen.14141_0210/1,1313

gen.NM_021932,3109 gen.NM_021934,3588 gen.NM_021948.394 gen.NM_021953.3444 gen_NM_021966.4079 gen.NM_021999,3908 gen,NM_022003,3369 gen. NM .022039.3039 gen.NM_022044,5973 gen.NM_022048,4216 gen NM 022105, 5857 gen.NM_022137,4042 gen.NM_022141,6101 gen.NM_022158.5016 gen.NM_022170.2288 gen.NM_022171.1145 gen.NM_022362, 3029 gen.NM_022369, 4246 gen.NM_022371.527 gen.NM_022442.5806 gen.NM_022453.988 gen.NM_022458, 2464 gen.NM_022461,1086 gen.NM_022485,1045 gen.NM_022550, 1638 gen.NM_022551,1946 gen.NM_022552,717 gen.NM_022566, 4296 gen.NM. 022727, 5961 gen.NM_022744,4468 gen.NM_022747,4084 gen.NM_022748,2226 gen.NM_022752,5474 gen.NM_022758,1926 gen.NM_022770,4539 gen.NM_022778, 107 gen.NM_022839,4290 gen.NM_022963,1838 gen.NM_023009,152 gen.NM_023011,3940 gen.NM _023032,3691 gen.NM_023033,3693 gen.NM_023078.2620 gen.NM_023936.4378 gen.NM_023942, 2449 gen.NM_024003.6336 gen.NM_024026,3872 gen.NM_024027,645 gen.NM_024029,5250 gen.NM_024031,4458 gen.NM_024033,2427 gen.NM_024040,3047 gen.NM_024045,2957 gen.NM_024048,4470 gen.NM_024067,2186 gen.NM_024068,3643

gen.NM_024070,2335	gen.NM_025204,6109
gen.NM_024089.3935	gen.NM_025205,1414
gen.NM_024098,3218	gen.NM_025207,455
gen.NM_024099,3236	gen.NM_025226,499
gen.NM_024104,5323	gen.NM_025232, 2503
gen.NM_024111.4148	gen.NM_025233,4859
gen.NM_024294, 1924	gen.NM_025234,4270
gen.NM_024297,4672	gen.NM_025241,5190
gen.NM_024299,5865	gen.NM_025263,2007
gen.NM_024319,614	gen.NM_030567, 1826
gen.NM_024321,5389	gen.NM_030573,5965
gen.NM_024329,62	gen.NM_030579,4553
gen.NM_024330,379	gen.NM_030587, 196
gen.NM_024333,5186	gen.NM_030593,5411
gen.NM_024339,4396	gen.NM_030775,3432
gen.NM_024407,5120	gen.NM_030782,1545
gen.NM_024507,4406	gen.NM_030815,5719
gen.NM_024516.4502	gen.NM_030819,4573
gen.NM_024537,3938	gen.NM_030877,5763
gen.NM_024567,2508	gen.NM_030900,2232
gen.NM_024571,4350	gen.NM_030920,332
gen.NM_024572,719	gen.NM_030921, 1272
gen.NM_024586.247	gen.NM_030925,3910
gen.NM_024589,4346	gen.NM_030926, 1009
gen.NM_024602,206	gen.NM_030935,2331
gen.NM_024603, 241	gen.NM_030973.5532
gen.NM_024613,2584	gen.NM_031157.3612
gen.NM_024627,5951	gen.NM_031206,6210
gen.NM_024640,137	gen.NM_031213,5138
gen.NM_024653,2373	gen.NM_031228,5642
gen.NM_024658,3960	gen.NM_031229,5640
gen.NM_024664,183	gen.NM_031243,2212
gen.NM_024668,1724	gen.NM_031263,2708
gen.NM_024671,4454	gen.NM_031289,3496
gen.NM_024691,5636	gen.NM_031300,1832
gen.NM_024709,603	gen.NM_031417,5506
gen.NM_024748, 1526	gen.NM .031434,2456
gen.NM_024824,4057	gen.NM_031443,2234
gen.NM_024844,4955	gen.NM_031453,2902
gen.NM_024854,3529	gen.NM_031459,131
gen.NM_024855,5769	gen.NM_031465,3446
gen.NM_024863,6248	gen.NM_031472,3261
gen.NM_024881,5321	gen.NM_031478,4522
gen.NM_024900,1491	gen.NM_031479,3665
gen.NM_024918,5757	gen.NM_031482,1629
gen.NM_024942,3095	gen.NM_031484,3070
gen.NM_025070,2541	gen.NM_031485,5574
gen.NM_025072,2772	gen.NM_031901,336
gen.NM_025108,4411	gen.NM_031925,2304
gen.NM_025129,5534	gen.NM_031942,905
gen.NM_025150,358	gen.NM_031966,1598
gen.NM_025164,3374	gen.NM_031968,5014
gen.NM .025168, 1863	gen.NM_031989,3622
gen.NM_025197,4830	gen.NM_031990,5100
gen.NM_025202,1000 gen.NM_025203,678	gen.NM_031992,2290
gon.14141_0202003,070	gen.NM_032023,2923

WO 2004/030615 PCT/US2003/028547

gen.NM_032038,4495	gen.NM_032756,222
gen.NM_032088,1770	gen.NM_032792,5631
gen.NM_032092,1772	gen.NM_032799,2763
gen.NM_032112,3031	gen.NM_032814,3812
gen.NM_032140,4571	gen.NM_032822,785
gen.NM_032162,4310	gen.NM_032827,810
gen.NM_032164,2340	gen.NM_032864,245
gen.NM_032196,4150	gen.NM_032871,3326
gen.NM_032204,5996	gen.NM_032872, 122
gen.NM_032207,5317	gen.NM_032873,3415
gen.NM_032211,3068	gen.NM_032890,606
gen.NM_032212,843	gen.NM_032904,3794
gen.NM_032219.1370	gen.NM_032905,2893
gen.NM_032227,6257	gen.NM_032907,4248
gen.NM_032271,4388	gen.NM_032928,2860
gen.NM_032280,1642	gen.NM_032929,2081
gen.NM_032288, 1354	gen.NM_032933,5037
gen.NM_032292,412	gen.NM_032951,2284
gen.NM_032299,3395	gen.NM_032953,2286
gen.NM_032313,1437	gen.NM_032958,2376
gen.NM_032322,4771	gen.NM_032989,3258
gen.NM_032323,402	gen.NM_032997,2949
gen.NM_032324,630	gen.NM_032999,2295
gen.NM_032330,4485	gen.NM_033008,1176
gen.NM_032331,1318	gen.NM_033010,1178
gen.NM_032333,2996	gen.NM_033011,2538
gen.NM_032338,3712	gen.NM_033022,2978
gen.NM_032342,2746	gen.NM_033046,796
gen.NM_032343, 1235	gen.NM_033070,5937
gen.NM_032350,2163	gen.NM_033161,2828
gen.NM_032361,1814	gen.NM_033197,5729
gen.NM_032376,4854	gen.NM_033219,2730
gen.NM_032377,5262	gen.NM_033251,4635
gen.NM_032379,3346	gen.NM_033296,1404
gen.NM_032383,1280	gen.NM_033301,2635
gen.NM_032390,875	gen.NM_033316,1348
gen.NM_032402,1776	gen.NM_033363,5417
gen.NM_032403,1774	gen.NM_033410,4456
gen.NM_032486,4444	gen.NM_033415,5355
gen.NM_032527,5869	gen.NM_033416,878
gen.NM_032565,3914	gen.NM_033421,5787
gen.NM_032626,4440	gen.NM_033440,60
gen.NM_032627,5345	gen.NM_033534,15
gen.NM_032635,5393	gen.NM_033544,4315
gen.NM_032636,296	gen.NM_033551,1785
gen.NM_032637,1577	gen.NM_052837,426
gen.NM_032642,3434	gen.NM_052848,5451
gen.NM_032656,3851	gen.NM_052859,1157
gen.NM_032667,3240	gen.NM_052862,488
gen.NM_032712,5588	gen.NM_052881,5656
gen.NM_032726,990	gen.NM_052886,2602
gen.NM_032737,5157	gen.NM_052936,6251
gen.NM_032738,503	gen.NM_052963,2616
gen.NM_032747,3061	gen.NM_052984,3685
gen.NM_032750,1174	gen.NM_053043,2462
gen.NM_032753,5173	gen.NM_053056,3311
Power	5

PCT/US2003/028547

gen.NM_053275,3829
gen.NM_054012,2822
gen.NM_054013,1848
gen.NM_054014,5650
gen.NM_054016,95
gen.NM_057089,2363
gen.NM_057161,1890
gen.NM_057169,3790
gen.NM_057174,3188
gen.NM_057182,5376
gen.NM_058164,5230
gen.NM_058179,2703
gen.NM_058192,4366
gen.NM_058193,3422
gen.NM_058195,2653
gen.NM_058196,2657
gen.NM_058199,2836
gen.NM_078467, 1912
gen.NM_079423,3648
gen.NM_079425,3650
gen.NM_080424, 1016 gen.NM_080425, 5828
gen.NM .080426,5832
gen.NM_080491,3342
gen.NM_080592,696
gen.NM .080594,4394
gen.NM_080598,1984
gen.NM_080648,3999
gen.NM_080649,4001
gen.NM_080670, 1726
gen.NM_080686, 1981
gen.NM_080687,3942
gen.NM_080702,1977
gen.NM_080703, 1975
gen.NM_080796,5855
gen.NM_080797,5859
gen.NM_080820,5693
gen.NM_080822,4654
gen.NM_106552,670
gen.NM_130398,639
gen.NM_130442,2260
gen.NM_130468,4143
gen.NM_130898,434
gen.NM_133330, 1376
gen.NM_133332, 1380
gen.NM_133373,4885
gen.NM_133375,4222 gen.NM_133436,2357
gen.NM_133480, 1051
gen.NM_133481,1053
gen.NM_133483,3676
gen.NM_133503,3742
gen.NM_133504,3744
gen.NM_133505,3746
gen.NM_133506,3750
gen.NM_133507,3748
-

gen.NM_133629,4790 gen.NM_133630,4788 gen.NM_133637.798 gen.NM_133645,2066 gen.NM_134269,6009 gen.NM_134323.3616 gen.NM_134324,3618 gen.NM_134440,5358 gen.NM_138385, 1372 gen.NM_138391,545 gen.NM_138427,4739 gen.NM_138434,2451 gen.NM_138443,5060 gen.NM_138483, 1037 gen.NM 138578,5713 gen.NM_138614.1125 gen.NM_138699, 1406 gen.NM_138801.727 gen.NM_138924,5124 gen.XM_001289.524 gen.XM_001299.33 gen.XM_001389,1453 gen.XM_001468,342 gen.XM_001472, 250 gen.XM_001482,3658 gen.XM_001589,24 gen.XM_001616, 101 gen.XM_001640, 126 gen.XM_001807, 135 gen.XM_001812,134 gen.XM_001826.78 gen.XM_001897,486 gen.XM_001914.567 gen.XM_001916.568 gen.XM_001958.599 gen.XM_002068,523 gen.XM_002105,141 gen.XM_002114,113 gen.XM_002217,845 gen.XM_002255, 1361 gen.XM_002435,700 gen.XM_002447,877 gen.XM_002480,680 gen.XM_002540, 1006 gen.XM_002611,823 gen.XM_002636,964 gen.XM_002647,770 gen.XM_002669.946 gen.XM_002674,776 gen.XM_002704,853 gen.XM_002727,788 gen.XM_002739,779 gen.XM_002742,1036 gen.XM_002828, 1143 gen.XM_002854,1187

gen.NM_133627,4786

WO 2004/030615 PCT/US2003/028547

gen.XM_002855,1186	gen.XM_006475,3135
gen.XM_002859, 1274	gen.XM_006483,3136
gen.XM_002899,1127	gen.XM_006529,3281
gen.XM_003213,1162	gen.XM_006533,3270
gen.XM_003222,1119	gen.XM_006566,3849
gen.XM_003245,1136	gen.XM_006578,3736
gen.XM_003305,1451	gen.XM_006589,3766
gen.XM_003435,1432	gen.XM_006595,3835
gen.XM_003477,1530	gen.XM_006694,3535
gen.XM_003511,1448	gen.XM_006710,3626
gen.XM_003555,1500	gen.XM_006748,3536
gen.XM_003611,2083	gen.XM_006826,3559
gen.XM_003716,1811	gen.XM_006887,3765
gen.XM_003771,1644	gen.XM_006925,3485
gen.XM_003789,1712	gen.XM_006936,3483
gen.XM_003825,1540	gen.XM_006937,5074
gen.XM_003830,1666	gen.XM_006947,3482
gen.XM_003841,1699	gen.XM_006958,3475
gen.XM_003869,1572	gen.XM_007002,3797
gen.XM_003896, 1581	gen.XM_007003,3796
gen.XM_003937, 1710	gen.XM_007199,3923
gen.XM_004009,1565	gen.XM_007254,4097
gen.XM_004098,3704	gen.XM_007272,4081
gen.XM_004151,2065	gen.XM_007288,3968
gen.XM_004256,2114	gen.XM_007293,3967
gen.XM_004297,2113	gen.XM_007315,3958
gen.XM_004330,3194	gen.XM_007316,3957
gen.XM_004379,2122	gen.XM_007324,4027
gen.XM_004383,2130	gen.XM_007328,4024
gen.XM_004526,2110	gen.XM_007441,4045
gen.XM_004627,2402	gen.XM_007483,4072
gen.XM_004901,2292	gen.XM_007488,4005
gen.XM_005060,2605	gen.XM_007491,3996
gen.XM_005086,1042	gen.XM_007531,4167
gen.XM_005100,2908	gen.XM_007545,4156
gen.XM_005180,1332	gen.XM_007623,4221
gen.XM_005305,2485	gen.XM_007651,4189
gen.XM_005348,2755	gen.XM_007751,4129
gen.XM_005365,2760	gen.XM_007963,4474
gen.XM_005490,2707	gen.XM_007988,4430
gen.XM_005525,2727	gen.XM_008064,4509
gen.XM_005543,2666	gen.XM_008065,4497
gen.XM_005675,3103	gen.XM_008106,4463
gen.XM_005698,3053	gen.XM_008126,4353
gen.XM_005724,2878	gen.XM_008150,4800
gen.XM_005938,3058	gen.XM_008231,4694
gen.XM_005969,3088	gen.XM_008253,4926
gen.XM_006139,3127	gen.XM_008323,4750
gen.XM_006170,3201	gen.XM_008334,4671
gen.XM_006212,3167	gen.XM_008351,4856
gen.XM_006290,98	gen.XM_008401,4867
gen.XM_006297,3196	gen.XM_008402,4869
gen.XM_006424,3151	gen.XM_008432,4902
gen.XM_006432,3371	gen.XM_008441,4686
gen.XM_006464,3355	gen.XM_008459,4915
gen.XM_006467,3399	gen.XM_008462,4777

PCT/US2003/028547

gen.XM_008486.4760 gen.XM 010272,6132 gen.XM_008509,4658 gen.XM_010362,6274 gen.XM_008538,4684 gen.XM_010378,6169 gen.XM_008557,4650 gen.XM_010436,6280 gen_XM_008579,4809 gen.XM_010494,3429 gen_XM_008679,4693 gen.XM 010615.253 gen.XM_008695,5089 gen.XM_010636,451 gen.XM_008723,5054 gen.XM_010664,133 gen.XM_008812,5083 gen.XM_010682,581 gen.XM_010712.182 gen.XM_008830,5597 gen.XM_008851,5522 gen.XM_010732,593 gen.XM_008854,5325 gen.XM_010778,925 gen.XM_008860,5485 gen.XM_010852.938 gen.XM. 010858, 1004 gen.XM_008878,5472 gen.XM_008887,5243 gen.XM_010866,992 gen XM 008912,5453 gen.XM 010881.771 gen.XM_008985,5531 gen.XM_010886.755 gen.XM_009010,5205 gen.XM_010938,4641 gen.XM_009036,5486 gen.XM_010941.1433 gen.XM_009063,5274 gen.XM_010953,1130 gen.XM_009082,5256 gen.XM_010978,1290 gen.XM_009125,5484 gen.XM_011074,1320 gen.XM_009126,5496 gen.XM_011089,5076 gen.XM_009149,5406 gen.XM_011117,2059 gen.XM_009180.5378 gen.XM_011118,4941 gen.XM_009203,5443 gen.XM_011129, 1423 gen.XM_009222,5165 gen.XM_011160,1365 gen.XM_009277,5113 gen.XM_011548,2411 gen.XM_009279,5110 gen.XM_011618,2400 gen.XM_009293,5338 gen.XM_011629,2533 gen, XM_009303, 5310 gen.XM_011642,2586 gen.XM.009330, 5357 gen.XM_011650.66 gen.XM_011657, 2592 gen.XM.009338.5384 gen.XM_009436,5705 gen.XM_011749.2798 gen.XM_009450,5728 gen.XM_011752,2786 gen.XM_009501,5754 gen.XM_011769,2562 gen.XM_009549.5816 gen.XM_011778,2832 gen.XM_011988,3260 gen.XM_009622,5647 gen.XM_009642,5759 gen.XM_012124,3836 gen.XM_012145,3761 gen.XM_009671,5823 gen.XM_009672,5821 gen.XM_012159.3494 gen.XM_009686,5762 gen.XM_012162,3598 gen.XM_012179,5337 gen.XM_009805,5919 gen.XM_009947,6022 gen.XM_012182,3638 gen.XM_009967.6031 pen.XM_012184,3861 gen.XM_009973,6042 gen.XM_012219.3759 gen.XM _010000,6063 gen.XM_012272,3543 gen.XM_010002,6064 gen.XM_012284,2395 gen.XM_010024,6087 gen.XM_012376,3990 gen.XM_010029,6094 gen.XM_012377,3983 gen.XM_010040,6103 gen.XM_012398,4133 gen.XM_010055,6108 gen.XM_012418,4199 gen.XM_010117,6269 gen.XM_012462,4322 gen.XM_010141,6216 gen.XM_012487,4555 gen.XM_010156,5266 gen.XM_012549,4734 gen.XM_010178,6310 gen.XM_012569,4461

PCT/US2003/028547

gen.XM_012609,4945
gen.XM_012615,4744
gen.XM012634,4950
gcii.X[v]_012034,4930
gen.XM_012638, 3874
gen.XM_012642,4849
gen.XM_012651,4916
gen.XM_012676, 4675
gen.XM_012741,5031
gen.AWL012741,3031
gen.XM_012798,5212
gen.XM_012812,5370
gen.XM_012860,5439
gen.XM_012862,5195
gen.XM_012913,5114
gen.AWL012913,5114
gen.XM_012931,5768
gen.XM_012970,5700
gen.XM.013010,6066
gen.XM_013015,6089
gen.XM_013029,6118
gen.AMI_013029,0116
gen.XM_013042,6207
gen,XM_013060,6196
gen.XM_013086,6145
gen.XM_013112,2530
gen.XM_013127,2577
gen.AM.015127,2577
gen.XM_015234,75
gen.XM_015241,5088
gen.XM_015243,3148
gen.XM_015258,2244
gen.XM_015366,4239
gen.XM_015434,547
gen.AM.015454,547
gen.XM_015462, 1208
gen.XM_015468,3596
gen.XM_015476,3585
gen.XM_015481,3580
gen.XM_015516,6206
gen.XM_015563,1525 gen.XM_015652,2937
gcii.Xiii 3015505, 1525
gen.AMJ013032,2937
gen.XM_015697,5264
gen.XM_015700,4478
gen.XM_015705,3214
gen.XM_015717,257
gen.XM_015755,5046
gen.XM_015769, 5369
gen.XM_015835,4311
gen.XM_015840,3921
gen.XM_015842,3932
gen.XM_015920,909
gen.XM_015922,911
gen.XM_016047, 2604
gen.AWL010047,2004
gen.XM_016076,4237
gen.XM_016093, 2992
gen.XM_016113,2712
gen.XM_016113,2712 gen.XM_016125,6275
gen.XM_016125,6275
gen.XM_016125,6275 gen.XM_016139,3170
gen.XM_016125,6275 gen.XM_016139,3170 gen.XM_016164,276
gen.XM_016125,6275 gen.XM_016139,3170 gen.XM_016164,276 gen.XM_016170,1554
gen.XM_016125,6275 gen.XM_016139,3170 gen.XM_016164,276

gen.XM_016288,880 gen.XM_016308.2726 gen,XM_016334,1294 gen.XM_016345,1799 gen.XM.016351.3924 gen.XM 016378,5364 gen.XM_016382,5036 gen.XM_016410,5438 gen.XM_016480,326 gen.XM_016486.4071 gen.XM_016487,4068 gen.XM_016605,3708 gen.XM_016625,773 gen.XM_016640.3538 gen.XM_016674, 1652 gen.XM_016700,2433 gen.XM_016713,4165 gen.XM_016733,2256 gen.XM_016843.766 gen.XM_016857, 1941 gen.XM_016871,5180 gen.XM_016985,4213 gen.XM_017080,3436 gen.XM_017096.4644 gen.XM_017204,5240 gen.XM_017234,4712 gen.XM_017240,4135 gen.XM_017315.67 gen.XM_017356, 1291 gen.XM_017364, 1105 gen.XM_017369.3394 gen.XM_017432.3895 gen.XM_017442,2313 gen.XM_017474, 1679 gen.XM_017483,2280 gen.XM_017508,3710 gen.XM_017517, 2080 gen.XM_017578,4980 gen.XM_017591,1701 gen.XM_017641, 1544 gen.XM_017698,861 gen.XM_017816,2581 gen.XM_017831,2119 gen.XM_017846,109 gen.XM_017857,1640 gen.XM_017914,3953 gen.XM_017925, 1476 gen.XM_017930,6284 gen.XM_017931,2659 gen.XM_017971,4319 gen.XM_017984,4338 gen.XM_017996,2711 gen.XM_018006,2710 gen.XM_018019,6157 gen.XM_018039,784 gen.XM_018041,642

PCT/US2003/028547

gen.XM_018054,4123
gen.XM_018088,4472
gen.XM_018108,6313
gen.XM_018109,6315
gen.XM_018136,161
gen.XM_018142,6232
gen.XM_018149,1264
gen.XM_018167,3015
gen.XM_018182,2098
gen.XM_018205,64
gen.XM_018241,6161
gen.XM_018279,3057 gen.XM_018287,2595
gen.XM_018301,763
gen.XM_018332_314
gen.XM_018332,314 gen.XM_018359,2281
gen.XM_018399,3918
gen.XM_018432,4331
gen.XM_018473,1658
gen.XM_018515,5354
gen.XM_018523,1359
gen.XM_018534,4840 gen.XM_018539,6014
gen.XM_018539,6014
gen.XM_018540,841
gen.XM_026944,2787
gen.XM_026951,2771
gen.XM_026968,2769
gen.XM_026985, 2766
gen.XM_026987,2765 gen.XM_027102,3802
gen.XM_027143,6106
gen.XM_027161,1220
gen.XM_027214,2385
gen.XM_027309,4329
gen.XM_027313,226
gen.XM_027365,4334 gen.XM_027412,4368
gen.XM_027412,4368
gen.XM_027440, 2505
gen.XM_027558,4352
gen.XM_027651,2490
gen.XM_027679,2488
gen.XM_027825,4661
gen.XM_027904,5548 gen.XM_027916,76
gen.XM _027952,6353
gen.XM_027963,936
gen.XM_027964, 1619
gen.XM_027983,213
gen.XM_028034,940
gen.XM _028064,5119
gen.XM_028067,5117
gen.XM_028151,4562 gen.XM_028192,3117
gen.XM_028263,5488
gen.XM_028267,5491
gen.XM_028322,4075

gen.XM_028347.4074 gen.XM_028358.4073 gen.XM_028398,4667 gen.XM_028417.4678 gen.XM_028643,3624 gen.XM_028662,3561 gen.XM 028666,5383 gen.XM 028672,5382 gen.XM_028744,5025 gen.XM_028760,3554 gen.XM_028783.5851 gen.XM_028806,5765 gen.XM_028810,5766 gen.XM_028834,5863 gen.XM_028848,4390 gen.XM_028918,5867 gen.XM_028966,5871 gen.XM_029031.169 gen.XM_029096,1539 gen.XM_029104,1314 gen.XM_029132,1313 gen.XM_029136,1310 gen.XM_029168, 2841 gen.XM_029187,6194 gen.XM_029228, 2069 gen.XM_029288,4067 gen.XM_029369,1198 gen.XM_029438,4656 gen.XM_029450,5404 gen.XM_029455.5403 gen.XM_029461,6282 gen.XM_029567, 2609 gen.XM_029631.3602 gen.XM_029728,3595 gen.XM_029746,2128 gen.XM_029805,3507 gen.XM_029810.5776 gen.XM_029822,5778 gen.XM_029842, 176 gen.XM_029844, 145 gen.XM_030044,5796 gen.XM_030203,1028 gen.XM_030268,2543 gen.XM_030274,2544 gen.XM_030326,3187 gen.XM_030373,6233 gen.XM_030417,1112 gen.XM_030423,154 gen.XM_030447, 3065 gen.XM_030470.68 gen.XM_030485,5159 gen.XM_030529,862 gen.XM_030582,883 gen.XM_030621,5818 gen.XM_030699,5834 gen,XM_030714,5145

PCT/US2003/028547

gen.XM_030720, 5137 gen.XM_032588,3457 gen.XM_032614.3462 gen.XM_030721,5135 gen.XM_030771.1821 gen.XM_032710.5247 gen.XM_032719,5248 gen.XM_030777, 1823 gen.XM_030782, 1824 gen.XM_032724,5252 gen.XM 030812.1256 gen.XM 032759,1700 gen.XM_030834,952 gen. XM_032766, 4864 gen.XM_032774.5257 gen.XM_030895,5465 gen.XM_030901,5456 gen.XM_032782.5261 gen.XM_032813,4863 gen.XM_030914,5450 gen.XM_032817.4861 gen.XM_030920,40 gen.XM_031025,4032 gen.XM_032852,4857 gen.XM_032895.1590 gen.XM_031074,4039 gen.XM_031251,5307 gen.XM_032902, 1588 gen.XM_031263,5305 gen.XM_032930,6189 gen.XM 031273, 5303 gen.XM_032944,2470 gen.XM_031276,5302 gen.XM 032996.5943 gen.XM_031292,4295 gen.XM_033015,5902 gen.XM_031320,1445 gen.XM_033016,5903 gen XM_031345, 5292 gen.XM_033090,5946 gen.XM_031354,4292 gen.XM_033147.6241 gen.XM_031404,4285 gen.XM_033227,3450 gen.XM_033232,6351 gen.XM_031415,4767 gen.XM_033251,3959 gen.XM_031427,4769 gen.XM_031466,4765 gen.XM_033263.3472 gen.XM_031515,4147 gen.XM_033294,1123 gen.XM_031519.731 gen.XM_033337,3964 gen.XM_031527,733 gen.XM_033355, 2819 gen.XM_031536, 4758 gen.XM_033359, 2818 gen.XM_031554,4145 gen.XM_033360,2817 gen.XM_031585,782 gen.XM_033361,2815 gen.XM_031586,783 gen.XM_033362, 2811 gen.XM_031596,780 gen.XM_033380,2809 gen.XM_031617,4138 gen.XM_033385,2808 gen.XM_031626,738 gen.XM_033391,3969 gen.XM_031718,4159 gen.XM_033424,2774 gen_XM_031807.3491 gen.XM_033435,3975 gen.XM_033445,3980 gen.XM_031857.5184 gen.XM_031866, 3041 gen.XM_033457,2777 gen,XM_031890,3044 gen.XM_033460, 2778 gen.XM_031917.5176 gen.XM_033553,3991 gen.XM_031944,5066 gen.XM_033595, 3994 gen.XM_031949, 3049 gen.XM_033654.79 gen.XM_031992, 3059 gen.XM_033683.77 gen.XM_032020.5281 gen.XM_033689,4646 gen.XM_032121,2455 gen.XM_033714,4645 gen.XM_032201,4836 gen.XM_033813,5960 gen.XM_032216, 2454 gen.XM 033862.6173 gen.XM_032269, 1221 gen.XM_033876,2383 gen.XM_032285,5399 gen.XM_033878.6172 gen.XM_032391,216 gen.XM_033884.6170 gen.XM_032403,4180 gen.XM_033910,2134 gen.XM_032443.3930 gen.XM_033912,2132 gen.XM_033922,4606 gen.XM_032476,2976 gen.XM_032520,2970 gen.XM_034000,501 gen.XM_032553, 1626 gen.XM_034082,454

PCT/IIS2003/028547

gen.XM_034321,1502	gen.XM_036465,4825
gen.XM_034375,4460	gen.XM_036500,573
gen.XM_034377,5623	gen.XM_036507,575
gen.XM_034431,3185	gen.XM_036528,4410
gen.XM_034586,4376	gen.XM_036556,566
gen.XM_034590,4380	gen.XM_036593, 2939
gen.XM_034640, 2638	gen.XM_036659,4707
gen.XM_034662,319	gen.XM_036680,4342
gen.XM_034671,318	gen.XM_036727,4134
gen.XM_034710,1466	gen.XM_036744,433
gen.XM_034713,1468	gen.XM_036755,5927
gen.XM_034744,1655	gen.XM_036785,4982
gen.XM_034862,1675	gen.XM_036829,442
gen.XM_034890,4184	gen.XM_036845,450
gen.XM_034897,4256	gen.XM_036934,448
gen.XM_034935,6201	gen.XM_036937,5969
gen.XM_034952,857	gen.XM_036938,1197
gen.XM_034953,4116	gen.XM_037002, 1668
gen.XM_035014,4119	gen.XM_037056,2107
gen.XM_035103,2824	gen.XM_037101,873
gen.XM_035107,2439	gen.XM_037108,831
gen.XM_035109,2825	gen.XM_037147,3212
gen.XM_035220,800	gen.XM_037173,3202
gen.XM_035368,2626	gen.XM_037195,4988
gen.XM_035370,2631	gen.XM_037196,4987
gen.XM.035373, 2629	gen.XM_037202,5840
gen.XM_035465,6123	gen.XM_037206,5842
gen.XM_035485,3571	gen.XM_037217,5846
gen.XM_035490,3564	gen.XM_037260,1608
gen.XM_035497,3562	gen.XM_037329,591
gen.XM_035572,1392	gen.XM_037377,1300
gen.XM_035625,5197 gen.XM_035627,5196	gen.XM_037381,1299
gen.XM_035636,5194	gen.XM_037423,1163
gen.XM_035638,5194	gen.XM_037468,6114
gen.XM_035640,5034	gen.XM_037474,6116 gen.XM_037565,5106
gen.XM_035662,2483	gen.XM_037572,5109
gen.XM_035680,2482	gen.XM_037600,1304
gen.XM_035824, 1402	gen.XM_037657,2608
gen.XM_035919,5612	gen.XM_037662,5372
gen_XM_035986,1456	gen.XM_037682,5977
gen.XM_035999,5907	gen.XM_037741,2276
gen.XM_036002,1440	gen.XM_037778,4244
gen.XM_036011,5910	gen.XM_037797,5981
gen.XM_036042.5913	gen.XM_037808,3263
gen.XM_036087.5917	gen.XM_037875,2045
gen.XM_036104,4965	gen.XM_037945,5993
gen.XM.036107,5923	gen.XM_037971,4897
gen.XM_036115,4971	gen.XM_038030, 2855
gen.XM_036118, 1262	gen.XM_038049, 2864
gen.XM_036175,5924	gen.XM_038063,2866
gen.XM_036299,155	gen.XM_038098,5343
gen.XM_036339,3178	gen.XM_038146,5339
gen.XM_036413,2469	gen.XM_038221, 1695
gen.XM_036450,664	gen.XM_038243, 1341
gen.XM_036462,4827	gen.XM_038308,3737

PCT/US2003/028547

gen.XM_038371,3902
gen.XM_038391,2757
gen.XM_038424,5018
gen.XM_038536,2909
gen.XM_038576,734
gen.XM_038584,6019
gen.XM_038659,3533
gen.XM_038791,3841
gen.XM_038852,244
gen.XM_038872,5062
gen.XM_038911,237
gen.XM_038946,1840
gen.XM_039165, 1413
gen.XM_039173,1416
gen.XM_039176,1417
gen.XM_039225,4125
gen.XM_039223,4123
gen.XM_039236,6047 gen.XM_039248,6051
gen.XM .039248,6051
gen.XM_039306,4551
gen.XM_039339,6060
gen.XM_039372,6065
gen.XM_039395,3732
gen.XM_039474,4794
gen.XM_039654,2646 gen.XM_039702,4200
gen.XM_039702,4200
gen.XM_039712,716
gen.XM_039721,321
gen.XM .039723,5140
gen.XM .039796, 1292
gen.XM_039805, 1258
gen.XM_039908,5598
gen_XM_039910,4721
gen.XM_039921,4732
gen.XM_039952,1213
gen.XM_039975,1783
gen.XM_040009,377
gen.XM_040066,6088
gen.XM_040095,6091
gen.XM_040221, 3707
gen.XM_040267,2879
gen.XM_040272,2876
gen.XM_040321, 1524
gen.XM_040498,2417
gen.XM_040623,2074
gen.XM_040644,3734
gen.XM_040709,315 gen.XM_040752,1493
gen.XM_040752, 1493
gen.XM_040853,2218
gen.XM_040898,4100
gen.XM_040942,4094
gen.XM_040952,4090
gen.XM_041014,4086
gen.XM_041020,2697
gen.XM_041020, 2697 gen.XM_041059, 1670
gen.XM_041009,1070
gen.XM_041209,3925
gen.Alvi 2041 209, 3923

gen.XM .041211.1161 gen.XM_041221,1410 gen.XM_041235.4008 gen.XM_041248,6111 gen.XM_041473,3928 gen.XM_041484,3944 gen.XM_041507, 1147 gen.XM_041583,4957 gen.XM_041678.5027 gen.XM_041694,1614 gen. XM_041712, 1592 gen.XM_041872,5090 gen.XM_041879.353 gen.XM_041884,354 gen.XM_041921,6304 gen.XM_041964,4680 gen.XM_042018,5095 gen.XM_042025, 1600 gen.XM_042153,6348 gen.XM_042155,6346 gen.XM_042168, 1286 gen.XM_042301.1474 gen.XM_042326, 1032 gen.XM_042422, 2145 gen.XM_042473.2148 gen.XM_042618.1229 gen.XM_042621.4596 gen.XM_042658,2561 gen.XM_042695,1364 gen.XM_042698,4710 gen.XM_042765, 5701 gen.XM_042781,2434 gen.XM_042788,2744 gen.XM_042841,1072 gen.XM_042852,3339 gen.XM_042860, 1070 gen.XM_042963,6295 gen.XM_042967.537 gen.XM_042968.6297 gen.XM_043047,4577 gen.XM_043173,866 gen.XM_043220,3111 gen.XM_043340, 1805 gen.XM_043388, 1808 gen.XM_043589,2998 gen.XM_043605,2999 gen.XM_043614,6099 gen.XM_043643,6250 gen.XM_043771, 1568 gen.XM_044075.416 gen.XM_044077,391 gen.XM_044127,398 gen.XM_044128,408 gen.XM_044166,406 gen.XM_044172,411 gen.XM_044334,3859

gen.XM_044354,2968	gen.XM_046160,5708
gen.XM_044367,4938	gen.XM_046179,5710
gen.XM_044372,4943	gen.XM_046313,5544
gen.XM_044376,4935	gen.XM_046349,187
gen.XM_044394,4927	gen.XM_046401,1085
gen.XM_044426,4924	gen.XM_046419,5578
gen.XM_044523,4304	gen.XM_046450,201
gen.XM_044533,4307	gen.XM_046464,522
gen.XM_044565,4269	gen.XM_046472,5004
gen.XM_044569,4272	gen.XM_046481,4999
gen.XM_044593,4278	gen.XM_046520,5689
gen.XM_044608,5213	gen.XM_046551,212
gen.XM_044619,5210	gen.XM_046557,208
gen.XM_044627,2563	gen.XM_046565,204
gen.XM_044866,2139	gen.XM_046642,3951
gen.XM_044914,5658	gen.XM_046648,3950
gen.XM_044915,5660	gen.XM_046651,3949
gen.XM_044932,3129	gen.XM_046743,3035
gen.XM_044957,3131	gen.XM_046765,5020
gen.XM_045010,3821	gen.XM_046767,5022
gen.XM_045044,4749	gen.XM_046769,5021
gen.XM_045104,4989	gen.XM_046822,5150
gen.XM .045140,2973	gen.XM_046836,2722
gen.XM_045151,5226	gen.XM_046863,2720
gen.XM_045170,928	gen.XM_046918,112
gen.XM_045183,4651	gen.XM_046932,4958
gen.XM_045187,3833	gen.XM_046934,5160
gen.XM_045283,757	gen.XM_047007,5723
gen.XM_045290,1214 gen.XM_045296,2759	gen.XM_047011,5725
gen.XM_045296,2759 gen.XM_045401,2403	gen.XM_047018,5727
gen.XM_045418,5667	gen.XM_047024,6177 gen.XM_047032,6176
gen.XM_045451,5671	gen.XM_047083,2521
gen.XM_045460, 5674	gen.XM_047175.690
gen.XM_045499,3276	gen.XM_047374,5446
gen.XM_045525,3278	gen.XM_047376,5445
gen.XM_045535,4751	gen.XM_047409,5444
gen.XM_045551,4752	gen.XM_047436,4624
gen.XM_045581,4996	gen.XM_047477,1429
gen.XM_045602,3856	gen.XM_047479,495
gen.XM_045612,3273	gen.XM_047499,610
gen.XM_045613,3271	gen.XM_047525,4632
gen.XM_045642,3269	gen.XM_047545,616
gen.XM_045667,3074	gen.XM_047561,1137
gen.XM_045681,4287	gen.XM_047584,5131
gen.XM .045750,3157	gen.XM_047600,5132
gen.XM_045802,3826	gen.XM_047964, 1798
gen.XM_045856,2407	gen.XM_048088,753
gen.XM_045901,4852	gen.XM_048119,4344
gen.XM_045952,2413	gen.XM_048258,5385
gen.XM_045963,3834	gen.XM_048286,3255
gen.XM_046001,2414	gen.XM_048351,5218
gen.XM_046035,4453	gen.XM_048364,5219
gen.XM_046041,3726	gen.XM_048404, 6329
gen.XM_046057,1443	gen.XM_048410,6328
gen.XM_046090,5423	gen.XM_048420,6325

PCT/US2003/028547

30 4 040491 5000
gen.XM_048471,5082
gen.XM_048479,2679
gen.XM_048518,2684
gen.XM_048539,2686
gen.XM_048603,3674
gen.XM_048654,4829
gen.XM _048690, 1007
gen.XM _048780,57
gen.XM_048859,2881
gen.XM_048905,6306
gen.XM_048943,3640
gen.XM_048957,3931
gen.XM_048991,3642
gen.XM_049048,3652
gen.XM_049108,820
gen.XM_049113,822
gen.XM_049116,818
gen.XM_049141,3586
gen.XM_049148,3581
gen.XM_049150,3659
gen.XM_049197,3161
gen.XM_049201,3772
gen.XM_049211,3771
gen.XM_049226,2623
gen.XM_049237,5391
gen.XM_049247,2618
gen.XM_049282,5223
gen.XM_049310, 139
gen.XM_049337,6320
gen.XM_049354,4275 gen.XM_049372,4317
gen.XM_049421,2637 gen.XM_049502,5236
gen.XM_049561,5239
gen.XM_049663,3493
gen.XM_049680,476
gen.XM_049690,483
gen.XM_049742,14
gen.XM_049795,3082
gen.XM_049899,2121
gen.XM_049904,3937
gen.XM_049920, 5482
gen.XM_049931,4995
gen.XM_049934,4994
gen.XM_049937,4818
gen.XM_050074,3528
gen.XM_050101,4773
gen.XM_050159,4880
gen.XM_050194,4462
gen.XM .050200, 1487
gen.XM_050215,2525
gen.XM_050236,5602
gen.XM_050265,2278
gen.XM_050278,4103
gen.XM .050293,2487
gen.XM_050403,6192

gen.XM_050430.2389 gen.XM_050435.5227 gen.XM_050506.2583 gen.XM_050534,4348 gen.XM_050552,1234 gen XM 050589 5603 gen.XM_050638,979 gen.XM_050660,5330 gen.XM_050731,2571 gen.XM_050891,984 gen.XM_050962,975 gen.XM_050964, 4220 gen.XM_051219,4479 gen.XM_051264, 1237 gen.XM_051298,2612 gen.XM_051364,5290 gen.XM_051430,3398 gen.XM_051435,3358 gen.XM_051463,4230 gen.XM_051471,6238 gen.XM_051476,6237 gen.XM_051489,3367 gen.XM_051518,1131 gen.XM_051556.6 gen.XM_051586.5092 gen.XM_051712,4025 gen.XM_051716.3373 gen.XM_051763.4727 gen.XM_051778.4600 gen.XM_051860.4298 gen.XM_051877.515 gen.XM_052113.3378 gen.XM_052310, 1060 gen.XM_052313,1535 gen.XM_052336,1477 gen.XM_052460,3714 gen.XM_052474,3719 gen.XM_052530,1424 gen.XM_052542,3755 gen.XM_052626, 1398 gen.XM_052635,5166 gen.XM_052641,3769 gen.XM_052661.5168 gen.XM_052721,2056 gen.XM_052725,2784 gen.XM_052786.3153 gen.XM_052862,3404 gen.XM_052893,3825 gen.XM_052974,608 gen.XM_052989,817 gen.XM_053074,5430 gen.XM_053122,1363 gen.XM_053164,3641 gen.XM_053183,58 gen.XM_053206,2875 gen.XM_053245.400

PCT/US2003/028547

gen.XM_053323, 1078
gen.XM_053585, 4252
gen.XM_053633,544
gen.AM_053633,544
gen.XM_053712, 1074
gen.XM_053717,4663
gen.XM_053787,3283
gen.XM_053796,3288
gen.XM_053952,3722
gen.XM_053955, 1859
gen.XM_054038,4832
gen.XM_054098,6183
gen.XM_054221,6155
gen.XM_054344,4973
gen.XM_054474,2933
gen.XM_054475,2935
gen.XM_054520, 1047
gen.XM_054566,5926
gen.XM_054706,2146
gen.XM_054752,2849
gen.XM_054763,2852
gen, XM_054856, 3193
gen.XM_054868,228
gen.XM_054900, 4309
gen.XM_054900,4309 gen.XM_054978,295
gen.XM_055013,3853
gen.XM_055061,4826
gen.XM_055132,4514
gen.XM_055195,4427
gen.XM_055199,4942
gen.XM_055230, 5336
gen.XM_055254,954
gen.XM_055369,3397
gen.XM_055481,251
gen.XM_055551, 1461
gen.XM_055573,3086
gen.XM_055641,2064
gen.XM_055658,5592 gen.XM_055686,5163
gen.XM_055686,5163
gen.XM_055771,4505
gen.XM_055859,5483
gen.XM_055880,583
gen.XM_055993,5646
gen.XM_056035, 5678
gen.XM_056082,4648
gen.XM_056260, 4438
gen.XM_056286,5582
gen.XM_056315, 1723
gen.XM_056315,1723 gen.XM_056317,4077
gen.XM_056346,3645
gen.XM_056353, 3662
nen YM 056421 5175
gen.XM_056481,3545 gen.XM_056602,5408
gen.XM_056602,5408
gen.XM_056681.3700
gen.XM_056730,4775
gen.XM_056884,618

gen.XM_056923,521 gen.XM_056957,1471 gen.XM_056963,1793 gen.XM_056970,628 gen.XM_056996,3798 gen,XM_057020.4257 gen.XM_057074,5260 gen.XM_057150,4619 gen.XM_057236,5756 gen.XM_057374,5793 gen.XM_057492, 1548 gen.XM_057664,740 gen.XM_057780.2557 gen.XM_057994,1541 gen.XM_058039, 1934 gen.XM_058098.986 gen.XM_058116.4526 gen.XM_058125.5635 gen.XM_058210.4018 gen.XM_058232.5225 gen.XM_058240, 102 gen.XM_058247,466 gen.XM_058266,2144 gen.XM_058267,1278 gen.XM_058343,3020 gen.XM_058361,3078 gen.XM_058405,552 gen.XM_058406,3084 gen.XM_058414,3159 gen.XM_058450,3352 gen.XM_058505,3125 gen.XM_058528,3671 gen.XM_058556,3773 gen.XM_058567,3504 gen.XM_058574,3454 gen.XM_058602,3022 gen.XM_058611.3926 gen.XM_058618.4091 gen.XM_058636,4118 gen.XM_058646.3986 gen.XM_058647,3978 gen.XM_058677,4061 gen.XM_058684,4186 gen.XM_058699,4250 gen.XM_058702,294 gen.XM_058739,4621 gen.XM_058745,4543 gen.XM_058784,4404 gen.XM_058796,4337 gen.XM_058830,4803 gen.XM_058867,4755 gen.XM_058900,4730 gen.XM_058918,5949 gen.XM_058927, 1441 gen.XM_058949, 5463 gen.XM_058967,5295

PCT/US2003/028547

gen.XM_058968,2619
gen.XM_058977,3920
gen.XM_058987,5570
gen.XM_058990,5584
gen.XM_058991,5552
gen.XM_059045,5419
gen.XIVI_059045,5419
gen.XM_059052,5447 gen.XM_059066,114
gen.XM_059066,114
gen.XM_059067,120
gen.XM_059088,130
gen.XM_059094,465
gen.XM _059117, 103
gen.XM_059120,562
gen.XM_059120,562 gen.XM_059133,224
gen.XM_059171,171
gen.XM_059180,256
gen.XM_059191,492
gen.XM_059201,1
gen.XM_059210,330
gen.XM_059214,185
gen.XM_059230,55
gen.XM_059268,5675
gen.AM 050221 5607
gen.XM_059321,5607 gen.XM_059335,6013
gen.XM_059351,920
gen.XM_059368,653
gen.XM_059372, 1029
gen.XM_059422,968 gen.XM_059461,971
gen.XM_059461,971
gen.XM_059465,907
gen.XM_059516,1266
gen.XM_059557, 1068
gen.XM_059561, 1059
gen.XM_059583,1252
gen.XM_059593,1434
gen.XM_059623,1519
gen.XM_059628, 1442 gen.XM_059633, 1469
gen.XM_059633,1469
gen.XM_059637,2804
gen.XM_059653,1596
gen.XM_059669, 1617
gen.XM_059709,1604
gen.XM_059720,2914
gen.XM_059741,2118
gen.XM_059745,2131
gen.XM_059773,2141
gen.XM_059776,2062 gen.XM_059801,1939
gen.XM_059801, 1939
gen.XM_059839,2430
gen.XM_059839,2430 gen.XM_059876,2282
gen.XM_059933,2531
gen.XM_059945,2838
gen.XM_059961,2859
gen,XM_059966,2871
gen.XM_059979,2644
gen.XM_059986,2813
-

gen.XM_059998.2673 gen.XM_060006,2647 gen.XM_060012,4115 gen.XM_060030.6146 gen.XM_060042.4281 gen.XM_060067, 1499 gen.XM_060331.509 gen.XM_060517,531 gen.XM_060976,2885 gen.XM_061125,2931 gen.XM_061126,2930 gen.XM_062437,3775 gen.XM_063639,4234 gen.XM_064091,4597 gen.XM_065884,777 gen.XM 066291,5998 gen.XM_066900,6261 gen.XM_067264, 1240 gen.XM .067325.5030 gen.XM_067715,1169 gen.XM_068164,1497 gen.XM_068395,1789 gen.XM_068853, 1714 gen.XM_068919,2085 gen.XM_068963,2072 gen.XM_070188, 2480 gen.XM_070203,2473 gen.XM_070873,2742 gen.XM_071178,2705 gen.XM_071580, 1557 gen.XM_071605,2381 gen.XM_071623,1439 gen.XM_071801,4122 gen.XM_071873,4630 gen.XM_071937,2152 gen.XM_072173,5876 gen.XM_072430,2387 gen.XM_072526.2857 gen.XM_076414, 1199 gen.XM_083842,3026 gen.XM_083852,3141 gen.XM_083864,3774 gen.XM_083866,3715 gen.XM_083868,3590 gen.XM_083892,3787 gen.XM_083939, 4364 gen.XM .083966, 4923 gen.XM_083983,4881 gen.XM_084007,5055 gen.XM_084014,5246 gen.XM_084023,5528 gen.XM_084026,5549 gen.XM_084055,580 gen.XM_084084,6090 gen.XM_084110,1340 gen.XM_084111, 1243

gen.XM_084120, 1315	gen.XM_084884,3583
gen.XM_084123, 1263	gen.XM_084885,3582
gen.XM_084129,1231	gen.XM_084889,3814
gen.XM_084141,1041	gen.XM_084901,3488
gen.XM_084158, 1465	gen.XM_084909,3702
gen.XM_084168,1547	gen.XM_084912,3705
gen.XM_084179,1591	gen.XM_084918,3500
gen.XM_084180, 1781	gen.XM_084922,3495
gen.XM_084204,2079	gen.XM_084941,3788
gen.XM_084238,2453	gen.XM_084946,3800
gen.XM_084241,2337	gen.XM_084948,3804
gen.XM_084270,2851	gen.XM_084982,3870
gen.XM_084283,6229	gen.XM_084997,3933
gen.XM_084287,6203	gen.XM_084998,2142
gen.XM_084288.6153	gen.XM_085017,3893
gen.XM_084296,6227	gen.XM_085044,3916
gen.XM_084311,6350	gen.XM_085065, 4044
gen.XM_084359,3073	gen.XM_085066,4033
gen.XM_084372,3016	gen.XM_085068,1480
gen.XM_084385.2944	gen.XM_085106,3987
gen.XM_084413,3028	gen.XM_085125,4031
gen.XM_084420, 2910	gen.XM_085127,4014
gen.XM_084429,2911	gen.XM_085141,4019
gen.XM_084450, 2942	gen.XM_085151,4050
gen.XM_084451,2953	gen.XM_085162,4054
gen.XM_084467,2994	gen.XM_085166,3955
gen.XM_084477,3010	gen.XM_085203,4130
gen.XM_084480.3012	gen.XM_085204,4132
gen.XM_084505,3080	gen.XM_085215,4282
gen.XM_084514,3180	gen.XM_085239,4254
gen.XM_084515,3183	gen.XM_085249,4236
gen.XM_084516,3182	gen.XM_085262,4314
gen.XM_084517,3184	gen.XM_085280,4289
gen.XM_084522,3424	gen.XM_085283,4211
gen.XM_084525,3428	gen.XM_085307,4160
gen.XM_084527,3169	gen.XM_085327,4622
gen.XM_084570,3357	gen.XM_085340,4448
gen.XM_084601,3353	gen.XM_085393,4480
gen.XM_084610,3350	gen.XM_085395,4482
gen.XM_084632,3072	gen.XM_085408,4637
gen.XM_084645,3731	gen.XM_085434,4524
gen.XM_084654,3388	gen.XM_085442,4513
gen.XM_084658,3382	gen.XM_085445,4425
gen.XM_084681,3195	gen.XM_085452,4435
gen.XM_084702,3287	gen.XM_085471,4558
gen.XM_084739,3124	gen.XM_085475,4561
gen.XM_084742,3122	gen.XM_085483,4616
gen.XM_084770,3515	gen.XM_085525,4323
gen.XM _084789,3599	gen.XM_085531,4977
gen.XM_084800,3783	gen.XM_085545,4741
gen.XM_084801,3672	gen.XM_085548,4735
gen.XM_084807,3531	gen.XM_085563,4991
gen.XM_084808,3818	gen.XM_085581,472
gen.XM_084824,3630	gen.XM_085589,4948
gen.XM_084841,3540	gen.XM_085613,4724
gen.XM_084866,3557	gen.XM_085627,4951

gen.XM_085636,4873	gen.XM_086328,542
gen.XM_085672,4757	gen.XM_086343, 265
gen.XM_085687,4659	gen.XM_086357,85
gen.XM_085691,4677	gen.XM_086360,29
gen.XM_085716,4992	gen.XM_086375,97
gen.XM_085722,4745	gen.XM_086378,485
gen.XM_085735,5019	gen.XM_086381,479
gen.XM_085743,4718	gen.XM_086384,178
gen.XM_085775,5058	gen.XM_086389,243
gen.XM_085779,5075	gen.XM_086391,231
gen.XM_085788,5049	gen.XM_086397,323
gen.XM_085789,5043	gen.XM_086400,366
gen.XM_085790,5045	gen.XM_086428,2161
gen.XM_085791,5042	gen.XM_086431,589
gen.XM_085856,5501	gen.XM_086432,592
gen.XM_085862,5244	gen.XM_086444, 136
gen.XM_085874,5460	gen.XM_086481,490
gen.XM_085874,5461	gen.XM_086484,494
gen.XM_085876,5462	gen.XM_086485,493
gen.XM_085909,5297	gen.XM_086494,538
gen.XM_085916,5285	gen.XM_086515,324
gen,XM_085917,5276	gen.XM_086518,317
gen.XM_085927,5527	gen.XM_086543,190
gen.XM_085928,5489	gen.XM_086552,432
gen.XM_085934,5537	gen.XM_086564,388
gen.XM_085935,5573	gen.XM_086567,430
gen.XM_085950,5487	gen.XM_086586,52
gen.XM_085971,5371	gen.XM_086587,54
gen.XM_085971,5571	gen.XM_086648,5819
gen.XM_085981,4599	gen.XM_086701,5687
gen.XM_085986,5398	gen.XM_086710,5670
gen.XM_086004,5425	gen.XM_086715,5695
gen.XM_086074.5311	gen.XM_086736,5717
gen.XM_086101,5128	gen.XM_086745,5712
gen.XM_086102,5130	gen.XM_086759.5877
gen.XM_086116,5331	gen.XM_086760,5878
gen.XM_086132,304	gen.XM_086770,5914
gen.XM_086138,282	gen.XM_086773,5928
gen.XM_086142,557	gen.XM_086777,5930
gen.XM_086151,46	gen.XM_086779,5064
gen.XM_086164,277	gen.XM_086805, 5963
gen.XM_086165,279	gen,XM_086809,5953
gen.XM_086166,281	gen.XM_086821,5985
gen.XM_086167,280	gen.XM_086830,6043
gen.XM_086178,4	gen.XM _086844,6074
gen.XM_086180,19	gen.XM_086873,5964
gen.XM_086204,38	gen.XM_086875,6093
gen.XM_086228.1356	gen.XM_086920, 805
gen.XM_086244,601	gen.XM_086923,849
gen.XM_086245,602	gen.XM_086925,850
gen.XM_086257,632	gen.XM_086944,933
gen.XM_086271,383	gen.XM_086950,858
gen.XM_086278,4434	gen.XM_086961,926
gen.XM_086282,543	gen.XM_086980,791
gen.XM_086296.331	gen.XM_087028,942
gen.XM_086324,214	gen.XM_087038, 2803
0	8

gen.XM_087040,842	gen.XM_087686,1543
gen.XM_087041,2800	gen.XM_087710,3247
gen.XM_087045,932	gen.XM_087713,1559
gen.XM_087051,748	gen.XM_087745,1656
gen.XM_087061,912	gen.XM_087773,1816
gen.XM_087062,914	gen.XM_087790, 1631
gen.XM_087068,775	gen.XM_087823,1858
gen.XM_087069,772	gen XM 087834 2123
gen.XM_087118,891	gen.XM_087836,2124
gen.XM_087122,839	gen.XM_087853, 2090
gen.XM_087151,683	gen.XM_087855,2089
gen.XM_087162.985	gen.XM_087939,2000
gen.XM_087166,993	gen.XM_087945,1990
gen.XM_087181,965	gen.XM_087955,3857
gen.XM_087193,726	gen.XM_087960, 1883
gen.XM_087195,725	gen.XM_087990,1936
gen.XM_087206,669	gen.XM_087991,2154
gen.XM_087211,743	gen.XM_088009,3106
gen.XM_087218,1011	gen.XM_088020, 1621
gen.XM_087240,901	gen.XM_088073,2386
gen.XM_087254, 1302	gen.XM_088099,2416
gen.XM_087268,1203	gen.XM_088103,2418
gen.XM_087278,1358	gen.XM_088105, 2409
gen.XM_087284,1075	gen.XM_088107,605
gen.XM_087289,1323	gen.XM_088119,2422
gen.XM_087295,1322	gen.XM_088122,2420
gen.XM_087297,1360	gen.XM_088135,2446
gen.XM_087322,1312	gen.XM_088180,2352
gen.XM_087331,1211	gen.XM_088239, 2297
gen.XM_087341,1267	gen.XM_088264,2195
gen.XM_087342, 1265	gen.XM_088294,2529
gen.XM_087346,1115	gen.XM_088316,2611
gen.XM_087349,1106	gen.XM_088321,2628
gen.XM _087359, 1343	gen.XM_088323,2574
gen.XM_087370,1101	gen.XM_088325,2572
gen.XM_087392, 1333	gen.XM_088336, 2519
gen.XM_087410, 1347	gen.XM_088338,2515
gen.XM_087448,1184	gen.XM_088370,2613
gen.XM_087480,3000	gen.XM_088399,2559
gen.XM_087498,1463	gen.XM_088401,2560
gen.XM_087514,1483	gen.XM_088422,2839
gen.XM_087527,1455	gen.XM_088426,2833
gen.XM_087583, 1418	gen.XM_088459,2847
gen.XM_087588,1120	gen.XM_088461,2870
gen.XM_087597,1549	gen.XM_088472,1472
gen.XM_087599,1551	gen.XM_088550,2640
gen.XM_087600,1553	gen.XM_088552,2641
gen.XM_087601,1550	gen.XM_088553,2642
gen.XM_087610,1597	gen.XM_088563,2672
gen.XM_087611,1595	gen.XM_088569,2748
gen.XM_087614,1564	gen.XM_088571,2750
gen.XM_087621,1711	gen.XM_088587,4120
gen.XM_087635,1660 gen.XM_087637,1662	gen.XM_088588,4114 gen.XM_088589,4121
gen.XM_087652,1713	gen.XM_088592,6311
gen.XM_087659,1713	gen.XM_088619,6151
gon.Aut_00/035, 133/	ReirVivi 7000013'0121

PCT/US2003/028547

gen.XM_088622,6152	
gen.XM_088630,6209	
gen.XM_088637,2700	
gen.XM_088638,768	
gen.XM_088665,6158	
gen.XM_088688,6220	
gen.XM_088689,6218	
gen.XM_088710,6253	
gen.XM _088736, 6265	
gen.XM_088738,6267	
gen.XM _088739,6268	
gen.XM_088745,6289	
gen.XM_088747,6128	
gen.XM_088788,338	
gen.XM_088863,286	
gen.XM_088945,507	
gen.XM_089030,622	
gen.XM_089138,254	
gen.XM_089514,3019	
gen.XM_089551,3006	
gen.XM_090218,3542	
gen.XM_090413,3779	
gen.XM_090458,3767	
gen.XM_090833,638	
gen.XM_090914,4082	
gen.XM_090991,4191	
gen.XM_091076, 1091	
gen.XM_091100,4263	
gen.XM_091108,4124	
gen.XM_091159,4157	
gen.XM_091270,4483	
gen.XM_091399,4590	
gen.XM_091420,4544	
gen.XM_091786,3426	
gen.XM_091886,5595	
gen.XM_091938,5221	
gen.XM_091981,5586	
gen.XM_091984,5396	
gen.XM_092042,5108	
gen.XM_092046,5341	
gen.XM_092049,5380	
gen.XM_092135,672	
gen.XM_092158,918	
gen.XM_092346,944	
gen.XM_092489,867	
gen.XM_092517,676	
gen.XM_092545,970	
gen.XM_092760,5696	
gen.XM_092888,5986	
gen.XM_092966,6113	
gen.XM_093050,6212	
gen.XM_093130,6226	
gen.XM_093219,6299	
gen.XM_093241,6228	
gen.XM_093423,1308	
gen.XM_093487, 1255	

gen.XM_093546, 1201 gen.XM_093624, 1083 gen.XM_094243, 1797 gen.XM_094440, 1561 gen.XM_094741,1862 gen.XM_094855, 2060 gen.XM 095146 2432 gen.XM_095371,2475 gen.XM_095545.2514 gen.XM_095667.2554 gen.XM_096038,3699 gen.XM_096060,4241 gen.XM_096146,3539 gen.XM_096149,661 gen.XM_096155,5967 gen.XM_096156_5968 gen.XM 096169 1022 gen.XM_096172,787 gen.XM_096195_1190 gen.XM_096198,1117 gen.XM_096203.1464 gen.XM_096303.6256 gen.XM 096486,3315 gen, XM_096520, 3165 gen,XM_096544.3119 gen.XM_096566,3680 gen.XM_096572,3819 gen.XM_096597.3739 gen.XM_096606,3608 gen.XM_096620,3578 gen.XM_096630,3486 gen.XM_096661.3441 gen.XM_096744,4034 gen.XM_096772.3966 gen.XM_096842, 4245 gen.XM_096844,4286 gen.XM_097043,4984 gen.XM_097193,5001 gen.XM_097195,5000 gen.XM_097204,4754 gen.XM_097232,5048 gen.XM_097274,5510 gen.XM_097275,5521 gen.XM_097300,5222 gen.XM_097365_5440 gen.XM_097420.5134 gen.XM_097453,2068 gen.XM_097519.561 gen.XM_097565,249 gen.XM_097639,352 gen.XM_097649,198 gen.XM_097713,5800 gen,XM_097727,5773 gen.XM_097731,5795 gen.XM_097749,5644 gen.XM_097772_5731

gen.XM_097807,5929	gen.XM_113330,5011
gen.XM_097817,5925	gen.XM_113334,4819
gen.XM_097833,5950	gen.XM_113343,5028
gen.XM _097886,5971	gen.XM_113348,5316
gen.XM_097976,715	gen.XM_113352,5294
gen.XM_098004,729	gen.XM_113360,386
gen.XM_098047,962	gen.XM_113361,598
gen.XM_098048,960	gen.XM_113369,361
gen.XM_098109, 1345	gen.XM_113374,140
gen.XM_098111,1245	gen.XM_113379,473
gen.XM_098154, 1232	gen.XM_113380,5749
gen.XM_098158, 1103	gen.XM_113390,929
gen.XM_098173, 1227	gen.XM_113395,1193
gen.XM_098248,1384	gen.XM_113397, 1244
gen.XM_098351,1609	gen.XM_113405,1140
gen.XM_098352,1611	gen.XM_113408, 1296
gen.XM_098354, 1610	gen.XM_113409, 1202
gen.XM_098362, 1634	gen.XM_113410,1088
gen.XM _098387,1778	gen.XM_113417,1254
gen.XM_098405, 1534	gen.XM_113422,1329
gen.XM_098468,2108	gen.XM_113425,1452
gen.XM_098599,619	gen.XM_113452, 1556
gen.XM_098654,2447	gen.XM_113454,1841
gen.XM_098669, 2466	gen.XM_113463,1654
gen.XM_098747,2582	gen.XM_113467,1720
gen.XM_098761, 2564	gen.XM_113468,1845
gen.XM_098913,2843	gen.XM_113476,1860
gen.XM_098943,2725	gen.XM_113531,2526
gen.XM_098995,6302 gen.XM_099467,363	gen.XM_113532,2627
gen.XM_102377,4432	gen.XM_113540,2548
gen.XM_103946,665	gen.XM_113557,2493 gen.XM_113564,2846
gen.XM_104983,6263	gen.XM_113585,6122
gen.XM_105236,1289	gen.XM_113615,2927
gen.XM_105658,1325	gen.XM_113702,3862
gen.XM_106246,1520	gen.XM_113712,3635
gen.XM_106739,1562	gen.XM_113719,3560
gen.XM_107825, 2225	gen.XM_113726,3584
gen.XM_109162,3075	gen.XM_113730,3519
gen.XM_113223,3268	gen.XM_113737,3855
gen.XM_113224,3275	gen.XM_113739,3437
gen.XM_113226,3400	gen.XM_113752,3946
gen.XM_113229,3366	gen.XM_113759,4105
gen.XM_113230,3363	gen. XM_113823,4163
gen.XM_113238,3152	gen.XM_113836,4326
gen.XM_113266, 4202	gen.XM_113840,4608
gen.XM_113268,4207	gen.XM_113843,4420
gen.XM_113291,4429	gen.XM_113845,4418
gen.XM_113293,4467	gen.XM_113853,4570
gen.XM_113299,4504	gen.XM_113855,4560
gen.XM_113303,5013	gen.XM_113874,4431
gen.XM_113310,4723 gen.XM_113315,4944	gen.XM_113876,4426
gen.XM_113315,4944 gen.XM_113324,4674	gen.XM_113882,4640
gen.XM_113325,4703	gen.XM_113892,4978 gen.XM_113901.4653
gen.XM_113328,4695	gen.XM_113901,4653 gen.XM_113919,4905
D 13320, 4033	gcii.Aivi_113919,4903

gen.XM_113929,4696	gen.XM_114497,2058
gen.XM_113931,4706	gen.XM_114555,2429
gen.XM_113938,4824	gen.XM_114578,2444
gen.XM_113943,5010	gen.XM_114602,2404
gen.XM_113945,4998	gen.XM_114613,2625
gen.XM_113951,4962	gen.XM_114617,2517
gen.XM_113988,5229	gen.XM_114618,2523
gen.XM_114004,5349	gen.XM_114640,2556
gen.XM_114018,5097	gen.XM_114646,2756
gen.XM_114024,5560	gen.XM_114649,2873
gen.XM_114025,5530	gen.XM_114655,2854
gen.XM_114027,5366	gen.XM_114661,2677
gen.XM_114030,560	gen.XM_114662,2688
gen.XM_114044,129	gen.XM_114669,2845
gen.XM_114055,384	gen.XM_114677,2802
gen.XM_114062,3	gen.XM_114678,2801
gen.XM_114097,376	gen.XM_114679,2799
gen.XM_114098,360	gen.XM_114686,2699
gen.XM_114109,525	gen.XM_114692,6354
gen.XM_114125,259	gen.XM_114708,6291
gen.XM_114137,634	gen.XM_114720,6130
gen.XM_114153,484	gen.XM_114724,6119
gen.XM_114154,5875	gen.XM_114798,233
gen.XM_114163,5794	gen.XM_114862,3104
gen.XM_114165,5813	gen.XM_114894,2977
gen.XM_114174,5673	gen.XM_114981,3139
gen.XM_114178,5706	gen.XM_115031,3286
gen.XM_114185,5889	gen.XM_115062,3364
gen.XM_114209,6024	gen.XM_115063,3365
gen.XM_114215,816	gen.XM_115081,3177
gen.XM_114229,838	gen.XM_115117,3570
gen.XM_114247,824	gen.XM_115140,3634
gen.XM_114266,851	gen.XM_115197,3809
gen.XM_114267,856	gen.XM_115215,3948
gen.XM_114298,957	gen.XM_115352,4333
gen.XM_114301, 1225	gen.XM_115480,4910
gen.XM_114309,1242	gen.XM_115603,5466
gen.XM_114323,1141	gen.XM_115615,5395
gen.XM_114328, 1344	gen.XM_115672,869
gen.XM_114356,1288	gen.XM_115706, 1039
gen.XM_114364,1122	gen.XM_115722,1040
gen.XM_114368,1510	gen.XM_115825,1002
gen.XM_114401, 1496	gen.XM_115846,5691
gen.XM_114424,1473	gen.XM_115874,6281
gen.XM_114426, 1470	gen.XM_115886,6131
gen.XM_114434, 1555	gen.XM_115890,6136
gen.XM_114435,1552	gen.XM_115923,6259
gen.XM_114437,1567	gen.XM_115924,6121
gen.XM_114439, 1586	gen.XM_116034,1338
gen.XM_114440, 1587	gen.XM_116058,1295
gen.XM_114442, 1584	gen.XM_116071,1204
gen.XM_114453, 1819	gen.XM_116072,1205
gen.XM_114457, 1817	gen.XM_116204,1532
gen.XM_114469,1623	gen.XM_116205,1533
gen.XM_114482, 1683	gen.XM_116247,1484
gen.XM_114492,2106	gen.XM_116285,1408

gen.XM_116307,1691	gen.XM_165451,1268
gen.XM_116340, 1807	gen.XM_165465, 1531
gen.XM_116365, 1856	gen.XM_165470, 1528
gen.XM_116427,1648	gen.XM_165473,1482
gen.XM_116439, 1593	gen.XM_165483, 1818
gen.XM_116447, 1606	gen.XM_165484, 1820
gen.XM_116465, 1716	gen.XM_165488, 1615
gen.XM_116511,1857	gen.XM_165499,2057
gen.XM_116514, 1861	gen.XM_165514,2579
gen.XM_116524,2140	gen.XM_165530,6355
gen.XM_116806,2789	gen.XM_165533,6235
gen.XM_116818,2738	gen.XM_165551,2913
gen.XM_116853,1139	gen.XM_165555,2889
gen.XM_116856, 1810	gen.XM_165557,2897
gen.XM_116863, 2975	gen.XM_165560.2925
gen.XM_116913,3845	gen.XM_165563,2926
gen.XM_116926,3451	gen.XM_165567,2921
gen.XM_117061,4913	gen.XM_165571,3407
gen.XM_117066,4768	gen.XM_165584,3414
gen.XM_117096,5084	gen.XM_165586,3413
gen.XM_117118.5379	gen.XM_165592.3401
gen.XM_117122,5183	gen.XM_165598,3303
gen.XM_117128,5605	gen.XM_165600,3310
gen.XM_117159,2	gen.XM_165610,3222
gen.XM_117181,534	gen.XM_165611,3217
gen.XM_117184, 163	gen.XM_165612,3223
gen.XM_117185,582	gen.XM_165616,3325
gen.XM_117196.641	gen.XM_165627,3335
gen.XM_117209.5688	gen.XM_165628,3341
gen.XM_117264,736	gen.XM_165631.3328
gen.XM_117311,1337	gen.XM_165636,3903
gen.XM_117351,1412	gen.XM_165639,3917
gen.XM_117387, 1622	gen.XM_165645,4534
gen.XM_117398, 1641	gen.XM_165647,4528
gen.XM_117444,2471	gen.XM_165648,4537
gen.XM_117449,2160	gen.XM_165649,4527
gen.XM_117452,2472	gen.XM_165656,4484
gen.XM_117481,2406	gen.XM_165657,4493
gen.XM_117487,2622	gen.XM_165658.4489
gen.XM_117519,2874	gen.XM_165669,2091
gen.XM_117539,6352	gen.XM_165692,2159
gen.XM_117555,6349	gen.XM_165698,1949
gen.XM_117692,28	gen.XM_165717, 1954
gen.XM_118637,4251	gen.XM_165728,2036
gen.XM_165390,3427	gen.XM_165738,1999
gen.XM_165410,4583	gen.XM_165740, 1865
gen.XM_165411,4413	gen.XM_165743,1937
gen.XM_165418,4713	gen.XM_165747, 1948
gen.XM_165421,4701	gen.XM_165749,2037
gen.XM_165422,4704	gen.XM_165758,2013
gen.XM_165432,5541	gen.XM_165764,2011
gen.XM_165438,144	gen.XM_165765, 1988
gen.XM_165439,620	gen.XM_165770,1951
gen.XM_165442.59	gen.XM_165771, 1983
gen.XM_165443,477	gen.XM_165772, 1876
gen.XM_165448,723	gen.XM_165777,2044
· · - , ·	BUILINITE 103 / / /, 2044

PCT/US2003/028547

gen.XM_165794, 1921
gen.XM_165799,2006
gen.XM_165801, 1956
gen.XM_165809,2016
gen.XM_165836,2350 gen.XM_165839,2346
gen.XM_165839,2346
gen.XM_165841,2197
gen.XM_165860,2167
gen.XM_165867,2249
gen.XM_165870,2245 gen.XM_165872,2253
gen_XM_165872, 2253
gen.XM_165876,2258
gen.XM_165877, 2240
gen.XM_165882,2248
gen.XM_165888,2934
gen.XM_165890,2929
gen.XM_165891.2941
gen.XM_165891,2941 gen.XM_165903,3633
gen.XM_165905, 3579
gen.XM_165906,3532
gen.XM_165910.3465
gen.XM_165910,3465 gen.XM_165921,4127
gen.XM_165923,4325 gen.XM_165954,5026 gen.XM_165960,5347
gen.XM_165954.5026
gen.XM_165960,5347
gen.XM_165963.5367
gen.XM_165975,327
gen.XM_165976,373
gen.XM_165976,373 gen.XM_165977,264
pen XM 165978 532
gen.XM_165981,290 gen.XM_165983,275
gen.XM_165983,275
gen.XM_165984,175
gen.XM _165994,92/
gen.XM_165998,893 gen.XM_166007,910
gen.XM_166007,910
gen.XM_166008,900 gen.XM_166011,1121 gen.XM_166014,1275
gen.XM_166011,1121
gen.XM_166014, 1275
gen.XM_166015,1192
gen.XM_166017,1350
gen.XM.166026,1669 gen.XM.166027,1663 gen.XM.166028,1842 gen.XM.166029,1802 gen.XM.166037,1612 gen.XM.166042,2054
gen.XM_166027,1663
gen.XM_166028,1842
gen.XM_166029,1802
gen.XM_166037,1612
gen.XM_166042,2054
gen.XM_166049,2147
gen.XM_166063,2540 gen.XM_166064,2558
166064, 2558 gen.XM
pen XM 166078 6142
gen.XM_166081,6255
gen.XM_166093,2984
gen.XM_166125,2966
gen.XM_166081,6255 gen.XM_166093,2984 gen.XM_166125,2966 gen.XM_166157,2922
gen.XM_166174,3409

gen.XM_166177,3406 gen.XM_166181,3403 gen.XM_166196,3308 gen.XM_166232,3227 gen.XM_166234,3224 gen.XM_166235,3293 gen.XM_166236,3294 gen.XM_166239,3349 gen.XM_166253,3336 gen.XM_166266,3904 gen.XM_166273.3886 gen.XM 166277.4532 gen.XM_166282,4491 gen.XM_166285.4490 gen.XM 166288,5071 gen.XM_166303,2092 gen.XM_166310,2101 gen.XM_166327,2157 gen.XM_166333,1932 gen.XM _166336, 2021 gen.XM_166340,1882 gen.XM_166349,1872 gen.XM_166353,2002 gen.XM_166357, 2049 gen.XM_166360, 1938 gen.XM_166361,2009 gen.XM 166362, 1884 gen.XM_166363, 1940 gen.XM_166376,2004 gen.XM 166381, 1992 gen.XM_166392, 2019 gen.XM_166401.1995 gen.XM_166402, 1896 gen.XM_166406,2015 gen.XM_166412, 1910 gen.XM_166417, 1914 gen.XM_166419, 1920 gen.XM_166425,1888 gen.XM_166446,2042 gen.XM_166457, 1878 gen.XM_166459,1931 gen.XM_166469, 1879 gen.XM_166480, 1955 gen.XM_166482,2351 gen.XM_166485,2353 gen.XM_166494,2224 gen.XM_166504,2222 gen.XM_166505.2202 gen.XM_166506, 2200 gen.XM_166509, 2219 gen.XM_166512,2205 gen.XM_166513,2220 gen.XM_166514,2203 gen.XM_166515,2204 gen.XM_166521,2198 gen.XM_166523,2170

gen XM 166531 2190 gen.XM_166540,2191 gen.XM_166541,2168 gen.XM_166594,2230 gen.XM_166599.20 gen.XM_166605,3506 gen.XM_166629.2988 gen.XM_166665,2918 gen.XM_166717,2906 gen.XM_166743.3418 gen.XM 167008 5080 gen.XM_167016,2087 gen.XM_167027, 2094 gen.XM_167037, 2096 gen.XM_167046,2150 gen.XM_167128_2023 gen.XM_167161,2025 gen.XM_167169,1868 gen.XM_167179, 2031 gen.XM_167196,2041 gen.XM_167225, 2047 gen.XM_167339,2264 gen.XM_167363,5065 gen.XM_167366,1209 gen.XM_167374, 2898 gen.XM_167395, 2963 gen.XM_167411.2901 gen.XM_167414.2904 gen.XM_167433,3324 gen.XM_167437,3192 gen.XM_167439.3876 gen.XM 167453,4538 gen.XM_167456.4541 gen.XM_167476,2321 gen.XM_167477, 2325 gen.XM_167483, 2328 gen.XM_167484, 2329 gen.XM_167494,2273 gen.XM_167498,2301 gen.XM_167500, 2299 gen.XM_167502, 2312 gen.XM_167504, 2300 gen.XM_167518,3754 gen.XM_167530.5529 gen.XM_167538,5945 gen.XM_167558, 2645 gen.XM_167626,2887 gen.XM_167716.3244 gen.XM_167726,3248 gen.XM_167747.3234 gen.XM_167748,3228 gen.XM_167780,3417 gen.XM_167804.3291 gen.XM_167853.3318 gen.XM_167892, 3883 gen.XM_167906.3877

gen XM 167911.3868 gen.XM_167918.3869 gen.XM_168054,2103 gen.XM_168070,1928 gen.XM_168104.1994 gen.XM_168123,1877 gen.XM_168181.2322 gen.XM_168251, 2323 gen.XM_168354, 2271 gen.XM_168378, 2269 gen.XM_168435, 2316 gen.XM_168450, 2315 gen.XM_168454, 2302 gen.XM_168461,2311 gen.XM_168464,2317 gen.XM_168470,2310 gen.XM_168548,2375 gen.XM_168572.2380 gen.XM_168586,2360 gen.XM_169414.3880 gen.XM_169540,5078 gen.XM_170195,2267 gen.XM_170427,2318

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Definitions

I.

5

10

15

20

25

30

35

The terms "TAT polypeptide" and "TAT" as used herein and when immediately followed by a numerical designation, refer to various polypeptides, wherein the complete designation (i.e., TAT/number) refers to specific polypeptide sequences as described herein. The terms "TAT/number polypeptide" and "TAT/number" wherein the term "number" is provided as an actual numerical designation as used herein encompass native sequence polypeptides, polypeptide variants and fragments of native sequence polypeptides and polypeptide variants (which are further defined herein). The TAT polypeptides described herein may be isolated from a variety of sources, such as from human tissue types or from another source, or prepared by recombinant or synthetic methods. The term "TAT polypeptide" refers to each individual TAT/number polypeptide disclosed herein. All disclosures in this specification which refer to the "TAT polypeptide" refer to each of the polypeptides individually as well as jointly. For example, descriptions of the preparation of, purification of, derivation of, formation of antibodies to or against, formation of TAT binding oligopeptides to or against, formation of TAT binding organic molecules to or against, administration of, compositions containing, treatment of a disease with, etc., pertain to each polypeptide disclosed herein.

A "native sequence TAT polypeptide" comprises a polypeptide having the same amino acid sequence as the corresponding TAT polypeptide derived from nature. Such native sequence TAT polypeptides can be isolated from nature or can be produced by recombinant or synthetic means. The term "native sequence TAT polypeptide" specifically encompasses naturally-occurring truncated or secreted forms of the specific TAT polypeptide (e.g., an extracellular domain sequence), naturally-occurring variant forms (e.g., alternatively spliced forms) and naturally-occurring allelic variants of the polypeptide. In certain embodiments of the invention, the native sequence TAT polypeptides disclosed herein are mature or full-length native sequence polypeptides comprising the full-length amino acids sequences shown in the accompanying figures. Start and stop codons (if indicated) are shown in bold font and underlined in the figures. Nucleic acid residues indicated as "N" in the accompanying figures are any nucleic acid residue. However, while the TAT polypeptides disclosed in the accompanying figures are shown to begin with methionine residues designated herein as amino acid position 1 in the figures, it is conceivable and possible that other methionine residues located either upstream or downstream from the amino acid position 1 in the figures may be employed as the starting amino acid residue for the TAT polypeptides.

The TAT polypeptide "extracellular domain" or "ECD" refers to a form of the TAT polypeptide which is essentially free of the transmembrane and cytoplasmic domains. Ordinarily, a TAT polypeptide ECD will have less than 1% of such transmembrane and/or cytoplasmic domains and preferably, will have less than 0.5% of such domains. It will be understood that any transmembrane domains identified for the TAT polypeptides of the present invention are identified pursuant to criteria routinely employed in the art for identifying that type of hydrophobic domain. The exact boundaries of a transmembrane domain may vary but most likely by no more than about 5 amino acids at either end of the domain as initially identified herein. Optionally, therefore, an

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

extracellular domain of a TAT polypeptide may contain from about 5 or fewer amino acids on either side of the transmembrane domain/extracellular domain boundary as identified in the Examples or specification and such polypeptides, with or without the associated signal peptide, and nucleic acid encoding them, are contemplated by the present invention.

The approximate location of the "signal peptides" of the various TAT polypeptides disclosed herein may be shown in the present specification and/or the accompanying figures. It is noted, however, that the C-terminal boundary of a signal peptide may vary, but most likely by no more than about 5 amino acids on either side of the signal peptide C-terminal boundary as initially identified herein, wherein the C-terminal boundary of the signal peptide may be identified pursuant to criteria routinely employed in the art for identifying that type of amino acid sequence element (e.g., Nielsen et al., Prot. Eng. 10:1-6 (1997) and von Heinje et al., Nucl. Acids. Res. 14:4683-4690 (1986)). Moreover, it is also recognized that, in some cases, cleavage of a signal sequence from a secreted polypeptide is not entirely uniform, resulting in more than one secreted species. These mature polypeptides, where the signal peptide is cleaved within no more than about 5 amino acids on either side of the C-terminal boundary of the signal peptide as identified herein, and the polynucleotides encoding them, are contemplated by the present invention.

"TAT polypeptide variant" means a TAT polypeptide, preferably an active TAT polypeptide, as defined herein having at least about 80% amino acid sequence identity with a full-length native sequence TAT polypeptide sequence as disclosed herein, a TAT polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a TAT polypeptide, with or without the signal peptide, as disclosed herein or any other fragment of a full-length TAT polypeptide sequence as disclosed herein (such as those encoded by a nucleic acid that represents only a portion of the complete coding sequence for a full-length TAT polypeptide). Such TAT polypeptide variants include, for instance, TAT polypeptides wherein one or more amino acid residues are added, or deleted, at the N- or C-terminus of the full-length native amino acid sequence. Ordinarily, a TAT polypeptide variant will have at least about 80% amino acid sequence identity, alternatively at least about 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% amino acid sequence identity, to a full-length native sequence TAT polypeptide sequence as disclosed herein, a TAT polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a TAT polypeptide, with or without the signal peptide, as disclosed herein or any other specifically defined fragment of a full-length TAT polypeptide sequence as disclosed herein. Ordinarily, TAT variant polypeptides are at least about 10 amino acids in length, alternatively at least about 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600 amino acids in length, or more. Optionally, TAT variant polypeptides will have no more than one conservative amino acid substitution as compared to the native TAT polypeptide sequence, alternatively no more than 2, 3, 4, 5, 6, 7, 8, 9, or 10 conservative amino acid substitution as compared to the native TAT polypeptide sequence.

"Percent (%) amino acid sequence identity" with respect to the TAT polypeptide sequences identified

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

herein is defined as the percentage of amino acid residues in a candidate sequence that are identical with the amino acid residues in the specific TAT polypeptide sequence, after aligning the sequences and introducing gaps. if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Alignment for purposes of determining percent amino acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software. Those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared. For purposes herein, however, % amino acid sequence identity values are generated using the sequence comparison computer program ALIGN-2, wherein the complete source code for the ALIGN-2 program is provided in Table 1 below. The ALIGN-2 sequence comparison computer program was authored by Genentech, Inc. and the source code shown in Table 1 below has been filed with user documentation in the U.S. Copyright Office, Washington D.C., 20559, where it is registered under U.S. Copyright Registration No. TXU510087. The ALIGN-2 program is publicly available through Genentech, Inc., South San Francisco, California or may be compiled from the source code provided in Table 1 below. The ALIGN-2 program should be compiled for use on a UNIX operating system, preferably digital UNIX V4.0D. All sequence comparison parameters are set by the ALIGN-2. program and do not vary.

In situations where ALIGN-2 is employed for amino acid sequence comparisons, the % amino acid sequence identity of a given amino acid sequence A to, with, or against a given amino acid sequence B (which can alternatively be phrased as a given amino acid sequence A that has or comprises a certain % amino acid sequence identity to, with, or against a given amino acid sequence B) is calculated as follows:

100 times the fraction X/Y

where X is the number of amino acid residues scored as identical matches by the sequence alignment program ALIGN-2 in that program's alignment of A and B, and where Y is the total number of amino acid residues in B. It will be appreciated that where the length of amino acid sequence A is not equal to the length of amino acid sequence B, the % amino acid sequence identity of A to B will not equal the % amino acid sequence identity of B to A. As examples of % amino acid sequence identity calculations using this method, Tables 2 and 3 demonstrate how to calculate the % amino acid sequence identity of the amino acid sequence designated "Comparison Protein" to the amino acid sequence designated "TAT", wherein "TAT" represents the amino acid sequence of a hypothetical TAT polypeptide of interest, "Comparison Protein" represents the amino acid sequence of a polypeptide against which the "TAT" polypeptide of interest is being compared, and "X, "Y" and "Z" each represent different hypothetical amino acid residues. Unless specifically stated otherwise, all % amino acid sequence identity values used herein are obtained as described in the immediately preceding paragraph using the ALIGN-2 computer program.

"TAT variant polynucleotide" or "TAT variant nucleic acid sequence" means a nucleic acid molecule

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

which encodes a TAT polypeptide, preferably an active TAT polypeptide, as defined herein and which has at least about 80% nucleic acid sequence identity with a nucleotide acid sequence encoding a full-length native sequence TAT polypeptide sequence as disclosed herein, a full-length native sequence TAT polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a TAT polypeptide, with or without the signal peptide, as disclosed herein or any other fragment of a full-length TAT polypeptide sequence as disclosed herein (such as those encoded by a nucleic acid that represents only a portion of the complete coding sequence for a full-length TAT polypeptide). Ordinarily, a TAT variant polymucleotide will have at least about 80% nucleic acid sequence identity, alternatively at least about 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% nucleic acid sequence identity with a nucleic acid sequence encoding a full-length native sequence TAT polypeptide sequence as disclosed herein, a full-length native sequence TAT polypeptide, with or without the signal sequence, as disclosed herein or any other fragment of a full-length TAT polypeptide sequence as disclosed herein. Variants do not encompass the native nucleotide sequence.

Ordinarily, TAT variant polynucleotides are at least about 5 nucleotides in length, alternatively at least about 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620, 630, 640, 650, 660, 670, 680, 690, 700, 710, 720, 730, 740, 750, 760, 770, 780, 790, 800, 810, 820, 830, 840, 850, 860, 870, 880, 890, 900, 910, 920, 930, 940, 950, 960, 970, 980, 990, or 1000 nucleotides in length, wherein in this context the term "about" means the referenced nucleotide sequence length plus or minus 10% of that referenced length.

"Percent (%) nucleic acid sequence identity" with respect to TAT-encoding nucleic acid sequences identified herein is defined as the percentage of nucleotides in a candidate sequence that are identical with the nucleotides in the TAT nucleic acid sequence of interest, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity. Alignment for purposes of determining percent nucleic acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software. For purposes herein, however, % nucleic acid sequence identity values are generated using the sequence comparison computer program ALIGN-2, wherein the complete source code for the ALIGN-2 program is provided in Table 1 below. The ALIGN-2 sequence comparison computer program was authored by Genentech, Inc., and the source code shown in Table 1 below has been filed with user documentation in the U.S. Copyright Office, Washington D.C., 20559, where it is registered under U.S. Copyright Registration No. TXUS10087. The ALIGN-2 program is publicly available through Genentech, Inc., South San Francisco, California or may be compiled from the source code provided in Table 1 below. The ALIGN-2 program should be compiled for use on a UNIX operating system, preferably digital UNIX V4.0D. All sequence comparison

parameters are set by the ALIGN-2 program and do not vary.

In situations where ALIGN-2 is employed for nucleic acid sequence comparisons, the % nucleic acid sequence identity of a given nucleic acid sequence C to, with, or against a given nucleic acid sequence D (which can alternatively be phrased as a given nucleic acid sequence C that has or comprises a certain % nucleic acid sequence identity to, with, or against a given nucleic acid sequence D) is calculated as follows:

100 times the fraction W/Z

where W is the number of nucleotides scored as identical matches by the sequence alignment program ALIGN-2 in that program's alignment of C and D, and where Z is the total number of nucleotides in D. It will be appreciated that where the length of nucleic acid sequence C is not equal to the length of nucleic acid sequence D, the % nucleic acid sequence identity of C to D will not equal the % nucleic acid sequence identity of D to C. As examples of % nucleic acid sequence identity calculations, Tables 4 and 5, demonstrate how to calculate the % nucleic acid sequence identity of the nucleic acid sequence designated "Comparison DNA" to the nucleic acid sequence designated "TAT-DNA", wherein "TAT-DNA" represents a hypothetical TAT-encoding nucleic acid sequence of interest, "Comparison DNA" represents the nucleotide sequence of a nucleic acid molecule against which the "TAT-DNA" nucleic acid molecule of interest is being compared, and "N", "L" and "V" each represent different hypothetical nucleotides. Unless specifically stated otherwise, all % nucleic acid sequence identity values used herein are obtained as described in the immediately preceding paragraph using the ALIGN-2 computer program.

In other embodiments, TAT variant polynucleotides are nucleic acid molecules that encode a TAT polypeptide and which are capable of hybridizing, preferably under stringent hybridization and wash conditions, to nucleotide sequences encoding a full-length TAT polypeptide as disclosed herein. TAT variant polypeptides may be those that are encoded by a TAT variant polynucleotide.

The term "full-length coding region" when used in reference to a nucleic acid encoding a TAT polypeptide refers to the sequence of nucleotides which encode the full-length TAT polypeptide of the invention (which is often shown between start and stop codons, inclusive thereof, in the accompanying figures). The term "full-length coding region" when used in reference to an ATCC deposited nucleic acid refers to the TAT polypeptide-encoding portion of the cDNA that is inserted into the vector deposited with the ATCC (which is often shown between start and stop codons, inclusive thereof, in the accompanying figures).

"Isolated," when used to describe the various TAT polypeptides disclosed herein, means polypeptide that has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials that would typically interfere with diagnostic or therapeutic uses for the polypeptide, and may include enzymes, hormones, and other proteinaceous or non-proteinaceous solutes. In preferred embodiments, the polypeptide will be purified (1) to a degree sufficient to totain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (2) to homogeneity by SDS-PAGE under non-reducing or reducing conditions using Coomassie blue or,

5

10

15

20

25

30

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

preferably, silver stain. Isolated polypeptide includes polypeptide in sinu within recombinant cells, since at least one component of the TAT polypeptide natural environment will not be present. Ordinarily, however, isolated polypeptide will be prepared by at least one purification step.

An *isolated* TAT polypeptide-encoding nucleic acid or other polypeptide-encoding nucleic acid is a nucleic acid molecule that is identified and separated from at least one contaminant nucleic acid molecule with which it is ordinarily associated in the natural source of the polypeptide-encoding nucleic acid. An isolated polypeptide-encoding nucleic acid molecule is other than in the form or setting in which it is found in nature. Isolated polypeptide-encoding nucleic acid molecules therefore are distinguished from the specific polypeptide-encoding nucleic acid molecule as it exists in natural cells. However, an isolated polypeptide-encoding nucleic acid molecule includes polypeptide-encoding nucleic acid molecules contained in cells that ordinarily express the polypeptide where, for example, the nucleic acid molecule is in a chromosomal location different from that of natural cells.

The term "control sequences" refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism. The control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.

Nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, "operably linked" means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.

"Stringency" of hybridization reactions is readily determinable by one of ordinary skill in the art, and generally is an empirical calculation dependent upon probe length, washing temperature, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes need lower temperatures. Hybridization generally depends on the ability of denatured DNA to reanneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature which can be used. As a result, it follows that higher relative temperatures would tend to make the reaction conditions more stringent, while lower temperatures less so. For additional details and explanation of stringency of hybridization reactions, see Ausubel et al., Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995).

"Stringent conditions" or "high stringency conditions", as defined herein, may be identified by those that: (1) employ low ionic strength and high temperature for washing, for example 0.015 M sodium

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate at 50°C; (2) employ during hybridization a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1% polyvinylpyrrolidone/50mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 42°C; or (3) overnight hybridization in a solution that employs 50% formamide, 5 x SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5 x Denhardt's solution, sonicated salmon sperm DNA (50 µg/ml), 0.1% SDS, and 10% dextran sulfate at 42°C, with a 10 minute wash at 42°C in 0.2 x SSC (sodium chloride/sodium citrate) followed by a 10 minute high-stringency wash consisting of 0.1 x SSC containing EDTA at 55°C.

"Moderately stringent conditions" may be identified as described by Sambrook et al., Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Press, 1989, and include the use of washing solution and hybridization conditions (e.g., temperature, ionic strength and %SDS) less stringent that those described above. An example of moderately stringent conditions is overnight incubation at 37°C in a solution comprising: 20% formamide, 5 x SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5 x Denhardt's solution, 10% dextran sulfate, and 20 mg/ml denatured sheared salmon sperm DNA, followed by washing the filters in 1 x SSC at about 37-50°C. The skilled artisan will recognize how to adjust the temperature, ionic strength, etc. as necessary to accommodate factors such as probe length and the like.

The term "epitope tagged" when used herein refers to a chimeric polypeptide comprising a TAT polypeptide or anti-TAT antibody fused to a "tag polypeptide". The tag polypeptide has enough residues to provide an epitope against which an antibody can be made, yet is short enough such that it does not interfere with activity of the polypeptide to which it is fused. The tag polypeptide preferably also is fairly unique so that the antibody does not substantially cross-react with other epitopes. Suitable tag polypeptides generally have at least six amino acid residues and usually between about 8 and 50 amino acid residues (preferably, between about 10 and 20 amino acid residues).

"Active" or "activity" for the purposes herein refers to form(s) of a TAT polypeptide which retain a biological and/or an immunological activity of native or naturally-occurring TAT, wherein "biological" activity refers to a biological function (either inhibitory or stimulatory) caused by a native or naturally-occurring TAT other than the ability to induce the production of an antibody against an antigenic epitope possessed by a native or naturally-occurring TAT and an "immunological" activity refers to the ability to induce the production of an antibody against an antigenic epitope possessed by a native or naturally-occurring TAT.

The term "antagonist" is used in the broadest sense, and includes any molecule that partially or fully blocks, inhibits, or neutralizes a biological activity of a native TAT polypeptide disclosed herein. In a similar manner, the term "agonist" is used in the broadest sense and includes any molecule that mimics a biological activity of a native TAT polypeptide disclosed herein. Suitable agonist or antagonist molecules specifically include agonist or antagonist antibodies or antibody fragments, fragments or amino acid sequence variants of native TAT polypeptides, peptides, antisense oligonucleotides, small organic molecules, etc. Methods for identifying agonists or antagonists of a TAT polypeptide may comprise contacting a TAT polypeptide with a candidate agonist or antagonist molecule and measuring a detectable change in one or more biological activities

normally associated with the TAT polypeptide.

5

10

15

20

25

30

35

"Treating" or "treatment" or "alleviation" refers to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) the targeted pathologic condition or disorder. Those in need of treatment include those already with the disorder as well as those prone to have the disorder in whom the disorder is to be prevented. A subject or mammal is successfully "treated" for a TAT polypeptide-expressing cancer if, after receiving a therapeutic amount of an anti-TAT antibody, TAT binding oligopeptide or TAT binding organic molecule according to the methods of the present invention, the patient shows observable and/or measurable reduction in or absence of one or more of the following: reduction in the number of cancer cells or absence of the cancer cells; reduction in the tumor size; inhibition (i.e., slow to some extent and preferably stop) of cancer cell infiltration into peripheral organs including the spread of cancer into soft tissue and bone; inhibition (i.e., slow to some extent and-preferably stop) of tumor metastasis; inhibition, to some extent, of tumor growth; and/or relief to some extent, one or more of the symptoms associated with the specific cancer; reduced morbidity and mortality, and improvement in quality of life issues. To the extent the anti-TAT antibody or TAT binding oligopeptide may prevent growth and/or kill existing cancer cells, it may be cytostatic and/or cytotoxic. Reduction of these signs or symptoms may also be felt by the patient.

The above parameters for assessing successful treatment and improvement in the disease are readily measurable by routine procedures familiar to a physician. For cancer therapy, efficacy can be measured, for example, by assessing the time to disease progression (TTP) and/or determining the response rate (RR). Metastasis can be determined by staging tests and by bone scan and tests for calcium level and other enzymes to determine spread to the bone. CT scans can also be done to look for spread to the pelvis and lymph nodes in the area. Chest X-rays and measurement of liver enzyme levels by known methods are used to look for metastasis to the lungs and liver, respectively. Other routine methods for monitoring the disease include transrectal ultrasonography (TRUS) and transrectal needle biopsy (TRNB).

For bladder cancer, which is a more localized cancer, methods to determine progress of disease include urinary cytologic evaluation by cystoscopy, monitoring for presence of blood in the urine, visualization of the urothelial tract by sonography or an intravenous pyelogram, computed tomography (CT) and magnetic resonance imaging (MRI). The presence of distant metastases can be assessed by CT of the abdomen, chest x-rays, or radionuclide imaging of the skeleton.

"Chronic" administration refers to administration of the agent(s) in a continuous mode as opposed to an acute mode, so as to maintain the initial therapeutic effect (activity) for an extended period of time.

"Intermittent" administration is treatment that is not consecutively done without interruption, but rather is cyclic in nature.

"Mammal" for purposes of the treatment of, alleviating the symptoms of or diagnosis of a cancer refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, cats, cattle, horses, sheep, pigs, goats, rabbits, etc. Preferably, the mammal is human.

Administration "in combination with" one or more further therapeutic agents includes simultaneous

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

(concurrent) and consecutive administration in any order.

"Carriers" as used herein include pharmaceutically acceptable carriers, excipients, or stabilizers which are nontoxic to the cell or mammal being exposed thereto at the dosages and concentrations employed. Often the physiologically acceptable carrier is an aqueous pH buffered solution. Examples of physiologically acceptable carriers include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptide; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mamose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; saltforming counterions such as sodium; and/or nonionic surfactants such as TWEEN®, polyethylene glycol (PEG), and PLURONICS®.

By "solid phase" or "solid support" is meant a non-aqueous matrix to which an antibody, TAT binding oligopeptide or TAT binding organic molecule of the present invention can adhere or attach. Examples of solid phases encompassed herein include those formed partially or entirely of glass (e.g., controlled pore glass), polysaccharides (e.g., agarose), polyacrylamides, polystyrene, polyvinyl alcohol and silicones. In certain embodiments, depending on the context, the solid phase can comprise the well of an assay plate; in others it is a purification column (e.g., an affinity chromatography column). This term also includes a discontinuous solid phase of discrete particles, such as those described in U.S. Patent No. 4,275,149.

A "liposome" is a small vesicle composed of various types of lipids, phospholipids and/or surfactant which is useful for delivery of a drug (such as a TAT polypeptide, an antibody thereto or a TAT binding oligopeptide) to a mammal. The components of the liposome are commonly arranged in a bilayer formation, similar to the lipid arrangement of biological membranes.

A "small" molecule or "small" organic molecule is defined herein to have a molecular weight below about 500 Daltons.

An "effective amount" of a polypeptide, antibody, TAT binding oligopeptide, TAT binding organic molecule or an agonist or antagonist thereof as disclosed herein is an amount sufficient to carry out a specifically stated purpose. An "effective amount" may be determined empirically and in a routine manner, in relation to the stated purpose.

The term "therapeutically effective amount" refers to an amount of an antibody, polypeptide, TAT binding oligopeptide, TAT binding organic molecule or other drug effective to "treat" a disease or disorder in a subject or mammal. In the case of cancer, the therapeutically effective amount of the drug may reduce the number of cancer cells; reduce the tumor size; inhibit (i.e., slow to some extent and preferably stop) cancer cell infiltration into peripheral organs; inhibit (i.e., slow to some extent and preferably stop) tumor metastasis; inhibit, to some extent, tumor growth; and/or relieve to some extent one or more of the symptoms associated with the cancer. See the definition herein of "treating". To the extent the drug may prevent growth and/or kill existing cancer cells, it may be cytostatic and/or cytotoxic.

A "growth inhibitory amount" of an anti-TAT antibody, TAT polypeptide, TAT binding oligopeptide

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

or TAT binding organic molecule is an amount capable of inhibiting the growth of a cell, especially tumor, e.g., cancer cell, either in vitro or in vivo. A "growth inhibitory amount" of an anti-TAT antibody, TAT polypeptide, TAT binding oligopeptide or TAT binding organic molecule for purposes of inhibiting neoplastic cell growth may be determined empirically and in a routine manner.

A "cytotoxic amount" of an anti-TAT antibody, TAT polypeptide, TAT binding oligopeptide or TAT binding organic molecule is an amount capable of causing the destruction of a cell, especially tumor, e.g., cancer cell, either in vitro or in vivo. A "cytotoxic amount" of an anti-TAT antibody, TAT polypeptide, TAT binding oligopeptide or TAT binding organic molecule for purposes of inhibiting neoplastic cell growth may be determined empirically and in a routine manner.

The term "antibody" is used in the broadest sense and specifically covers, for example, single anti-TAT monoclonal antibodies (including agonist, antagonist, and neutralizing antibodies), anti-TAT antibody compositions with polyepitopic specificity, polyclonal antibodies, single chain anti-TAT antibodies, and fragments of anti-TAT antibodies (see below) as long as they exhibit the desired biological or immunological activity. The term "immunoglobulin" (Ig) is used interchangeable with antibody herein.

An "isolated antibody" is one which has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials which would interfere with diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes. In preferred embodiments, the antibody will be purified (1) to greater than 95% by weight of antibody as determined by the Lowry method, and most preferably more than 99% by weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using Coomassie blue or, preferably, silver stain. Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step.

The basic 4-chain antibody unit is a heterotetrameric glycoprotein composed of two identical light (L) chains and two identical heavy (H) chains (an IgM antibody consists of 5 of the basic heterotetramer unit along with an additional polypeptide called J chain, and therefore contain 10 antigen binding sites, while secreted IgA antibodies can polymerize to form polyvalent assemblages comprising 2-5 of the basic 4-chain units along with J chain). In the case of IgGs, the 4-chain unit is generally about 150,000 daltons. Each L chain is linked to a H chain by one covalent disulfide bond, while the two H chains are linked to each other by one or more disulfide bonds depending on the H chain isotype. Each H and L chain also has regularly spaced intrachain disulfide bridges. Each H chain has at the N-terminus, a variable domain (V_H) followed by three constant domains (C_H) for each of the α and γ chains and four C_H domains for μ and α isotypes. Each L chain has at the N-terminus, a variable domain (V_H) followed by a constant domain (C_H) at its other end. The V_H is aligned with the V_H and the V_H and the V_H and the first constant domain of the heavy chain (C_H). Particular amino acid residues are believed to form an interface between the light chain and heavy chain variable domains. The pairing of a V_H and V_L together forms a single antigen-binding site. For the structure and properties of the

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

different classes of antibodies, see, e.g., <u>Basic and Clinical Immunology</u>, 8th edition, Daniel P. Stites, Abba I. Terr and Tristram G. Parslow (eds.), Appleton & Lange, Norwalk, CT, 1994, page 71 and Chapter 6.

The L chain from any vertebrate species can be assigned to one of two clearly distinct types, called kappa and lambda, based on the amino acid sequences of their constant domains. Depending on the amino acid sequence of the constant domain of their heavy chains (C_{tb}), immunoglobulins can be assigned to different classes or isotypes. There are five classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, having heavy chains designated α , δ , ϵ , γ , and μ , respectively. The γ and α classes are further divided into subclasses on the basis of relatively minor differences in C_{tt} sequence and function, e.g., humans express the following subclasses: IgG1, IgG2, IgG3, IgG4, IgA1, and IgA2.

The term "variable" refers to the fact that certain segments of the variable domains differ extensively in sequence among antibodies. The V domain mediates antigen binding and define specificity of a particular antibody for its particular antigen. However, the variability is not evenly distributed across the 110-amino acid span of the variable domains. Instead, the V regions consist of relatively invariant stretches called framework regions (FRs) of 15-30 amino acids separated by shorter regions of extreme variability called "hypervariable regions" that are each 9-12 amino acids long. The variable domains of native heavy and light chains each comprise four FRs, largely adopting a β-sheet configuration, connected by three hypervariable regions, which form loops connecting, and in some cases forming part of, the β-sheet structure. The hypervariable regions in each chain are held together in close proximity by the FRs and, with the hypervariable pregions from the other chain, contribute to the formation of the antigen-binding site of antibodies (see Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD. (1991)). The constant domains are not involved directly in binding an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody dependent cellular cytotoxicity (ADCC).

The term "hypervariable region" when used herein refers to the amino acid residues of an antibody which are responsible for antigen-binding. The hypervariable region generally comprises amino acid residues from a "complementarity determining region" or "CDR" (e.g. around about residues 24-34 (L1), 50-56 (L2) and 89-97 (L3) in the V_L, and around about 1-35 (H1), 50-65 (H2) and 95-102 (H3) in the V_H, Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD. (1991)) and/or those residues from a "hypervariable loop" (e.g. residues 26-32 (L1), 50-52 (L2) and 91-96 (L3) in the V_L, and 26-32 (H1), 53-55 (H2) and 96-101 (H3) in the V_H; Chothia and Lesk I. Mol. Biol. 196:901-917 (1987)).

The term "monoclonal antibody" as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to polyclonal antibody preparations which include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen. In addition to their specificity, the monoclonal antibodies are advantageous in that they may be synthesized uncontaminated by other antibodies.

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

The modifier "monoclonal" is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies useful in the present invention may be prepared by the hybridoma methodology first described by Kohler et al., Nature, 256:495 (1975), or may be made using recombinant DNA methods in bacterial, eukaryotic animal or plant cells (see, e.g., U.S. Patent No. 4,816,567). The "monoclonal antibodies" may also be isolated from phage antibody libraries using the techniques described in Clackson et al., Nature, 352:624-628 (1991) and Marks et al., J. Mol. Biol., 222:581-597 (1991), for example.

The monoclonal antibodies herein include "chimeric" antibodies in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (see U.S. Patent No. 4,816,567; and Morrison et al., Proc. Natl. Acad. Sci. USA, 81:6851-6855 (1984)). Chimeric antibodies of interest herein include "primatized" antibodies comprising variable domain antigen-binding sequences derived from a non-human primate (e.g. Old World Monkey, Ape etc), and human constant region sequences.

An "intact" antibody is one which comprises an antigen-binding site as well as a C_L and at least heavy chain constant domains, C_R 1, C_R 2 and C_R 3. The constant domains may be native sequence constant domains (e.g. human native sequence constant domains) or amino acid sequence variant thereof. Preferably, the intact antibody has one or more effector functions.

"Antibody fragments" comprise a portion of an intact antibody, preferably the antigen binding or variable region of the intact antibody. Examples of antibody fragments include Fab, Fab', F(ab') 2, and Fv fragments; diabodies; linear antibodies (see U.S. Patent No. 5,641,870, Example 2; Zapata et al., Protein Eng.. 8(10): 1057-1062 [1995]); single-chain antibody molecules; and multispecific antibodies formed from antibody fragments.

Papain digestion of antibodies produces two identical antigen-binding fragments, called "Fab" fragments, and a residual "Fe" fragment, a designation reflecting the ability to crystallize readily. The Fab fragment consists of an entire L chain along with the variable region domain of the H chain (V_{tt}) , and the first constant domain of one heavy chain (C_{tt}) . Each Fab fragment is monovalent with respect to antigen binding, i.e., it has a single antigen-binding site. Pepsits treatment of an antibody yields a single large F(ab') fragment which roughly corresponds to two disulfide linked Fab fragments having divalent antigen-binding activity and is still capable of cross-linking antigen. Fab' fragments differ from Fab fragments by having additional few residues at the carboxy terminus of the C_{R1} domain including one or more cysteines from the antibody hinge region. Fab'-SH is the designation herein for Fab' in which the cysteine residue(s) of the constant domains bear a free thiol group. $F(ab')_2$ antibody fragments originally were produced as pairs of Fab' fragments which have hinge cysteines between them. Other chemical couplings of antibody fragments are also known.

The Fc fragment comprises the carboxy-terminal portions of both H chains held together by disulfides.

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

The effector functions of antibodies are determined by sequences in the Fc region, which region is also the part recognized by Fc receptors (FcR) found on certain types of cells.

"Pv" is the minimum antibody fragment which contains a complete antigen-recognition and -binding site. This fragment consists of a dimer of one heavy- and one light-chain variable region domain in tight, non-covalent association. From the folding of these two domains emanate six hypervariable loops (3 loops each from the H and L chain) that contribute the amino acid residues for antigen binding and confer antigen binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.

"Single-chain Fv" also abbreviated as "sFv" or "scFv" are antibody fragments that comprise the V_H and V_L antibody domains connected into a single polypeptide chain. Preferably, the sFv polypeptide further comprises a polypeptide linker between the V_H and V_L domains which enables the sFv to form the desired structure for antigen binding. For a review of sFv, see Pluckthun in The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg and Moore eds., Springer-Verlag, New York, pp. 269-315 (1994); Borrebaeck 1995, infra.

The term "diabodies" refers to small antibody fragments prepared by constructing sFv fragments (see preceding paragraph) with short linkers (about 5-10 residues) between the V_H and V_L domains such that interchain but not intra-chain pairing of the V domains is achieved, resulting in a bivalent fragment, i.e., fragment having two antigen-binding sites. Bispecific diabodies are heterodimers of two "crossover" sFv fragments in which the V_H and V_L domains of the two antibodies are present on different polypeptide chains. Diabodies are described more fully in, for example, EP 404,097; WO 93/11161; and Hollinger et al., Proc. Natl. Acad. Sci. USA, 90:6444-6448 (1993).

"Humanized" forms of non-human (e.g., rodent) antibodies are chimeric antibodies that contain minimal sequence derived from the non-human antibody. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a hypervariable region of the recipient are replaced by residues from a hypervariable region of a non-human species (donor antibody) such as mouse, rat, rabbit or non-human primate having the desired antibody specificity, affinity, and capability. In some instances, framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, humanized antibodies may comprise residues that are not found in the recipient antibody or in the donor antibody. These modifications are made to further refine antibody performance. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable loops correspond to those of a non-human immunoglobulin and all or substantially all of the FRs are those of a human immunoglobulin sequence. The humanized antibody optionally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. For further details, see Jones et al., Nature 321:522-525 (1986); Riechmann et al., Nature 332:323-329 (1988); and Presta, Curr. Op. Struct. Biol., 2:593-596 (1992).

A "species-dependent antibody," e.g., a mammalian anti-human IgE antibody, is an antibody which

10

15

20

25

WO 2004/030615 PCT/US2003/028547

has a stronger binding affinity for an antigen from a first mammalian species than it has for a homologue of that antigen from a second mammalian species. Normally, the species-dependent antibody "bind specifically" to a human antigen (i.e., has a binding affinity (Kd) value of no more than about 1×10^{-9} M, preferably no more than about 1×10^{-9} M but has a binding affinity for a homologue of the antigen from a second non-human mammalian species which is at least about 50 fold, or at least about 1000 fold, weaker than its binding affinity for the human antigen. The species-dependent antibody can be of any of the various types of antibodies as defined above, but preferably is a humanized or human antibody.

A "TAT binding oligopeptide" is an oligopeptide that binds, preferably specifically, to a TAT polypeptide as described herein. TAT binding oligopeptides may be chemically synthesized using known oligopeptide synthesis methodology or may be prepared and purified using recombinant technology. TAT binding oligopeptides are usually at least about 5 amino acids in length, alternatively at least about 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100 amino acids in length or more, wherein such oligoneptides that are capable of binding, preferably specifically, to a TAT polypeptide as described herein. TAT binding oligopeptides may be identified without undue experimentation using well known techniques. In this regard, it is noted that techniques for screening oligopeptide libraries for oligopeptides that are capable of specifically binding to a polypeptide target are well known in the art (see, e.g., U.S. Patent Nos, 5,556,762, 5,750,373, 4,708,871, 4,833,092, 5,223,409, 5,403,484, 5,571,689, 5,663,143; PCT Publication Nos. WO 84/03506 and WO84/03564; Geysen et al., Proc. Natl. Acad. Sci. U.S.A., 81;3998-4002 (1984); Gevsen et al., Proc. Natl. Acad. Sci. U.S.A., 82:178-182 (1985); Gevsen et al., in Synthetic Peptides as Antigens, 130-149 (1986); Gevsen et al., J. Immunol. Meth., 102:259-274 (1987); Schoofs et al., J. Immunol., 140:611-616 (1988), Cwirla, S. E. et al. (1990) Proc. Natl. Acad. Sci. USA, 87:6378; Lowman, H.B. et al. (1991) Biochemistry, 30:10832; Clackson, T. et al. (1991) Nature, 352: 624; Marks, J. D. et al. (1991), J. Mol. Biol., 222:581; Kang, A.S. et al. (1991) Proc. Natl. Acad. Sci. USA, 88:8363, and Smith, G. P. (1991) Current Opin, Biotechnol., 2:668).

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

A "TAT binding organic molecule" is an organic molecule other than an oligopeptide or antibody as defined herein that binds, preferably specifically, to a TAT polypeptide as described herein. TAT binding organic molecules may be identified and chemically synthesized using known methodology (see, e.g., PCT Publication Nos. WO00/0823 and WO00/39585). TAT binding organic molecules are usually less than about 2000 daltons in size, alternatively less than about 1500, 750, 500, 250 or 200 daltons in size, wherein such organic molecules that are capable of binding, preferably specifically, to a TAT polypeptide as described herein may be identified without undue experimentation using well known techniques. In this regard, it is noted that techniques for screening organic molecule libraries for molecules that are capable of binding to a polypeptide target are well known in the art (see, e.g., PCT Publication Nos. WO00/00823 and WO00/39585).

An antibody, oligopeptide or other organic molecule "which binds" an antigen of interest, e.g. a tumorassociated polypeptide antigen target, is one that binds the antigen with sufficient affinity such that the antibody. oligopeptide or other organic molecule is useful as a diagnostic and/or therapeutic agent in targeting a cell or tissue expressing the antigen, and does not significantly cross-react with other proteins. In such embodiments, the extent of binding of the antibody, oligopeptide or other organic molecule to a "non-target" protein will be less than about 10% of the hinding of the antibody, oligopeptide or other organic molecule to its particular target protein as determined by fluorescence activated cell sorting (FACS) analysis or radioimmunoprecipitation (RIA). With regard to the binding of an antibody, oligopeptide or other organic molecule to a target molecule, the term "specific binding" or "specifically binds to" or is "specific for" a particular polypeptide or an epitope on a particular polypeptide target means binding that is measurably different from a non-specific interaction. Specific binding can be measured, for example, by determining binding of a molecule compared to binding of a control molecule, which generally is a molecule of similar structure that does not have binding activity. For example, specific binding can be determined by competition with a control molecule that is similar to the target, for example, an excess of non-labeled target. In this case, specific binding is indicated if the binding of the labeled target to a probe is competitively inhibited by excess unlabeled target. The term "specific binding" or "specifically binds to" or is "specific for" a particular polypeptide or an epitope on a particular polypeptide target as used herein can be exhibited, for example, by a molecule having a Kd for the target of at least about 10⁻⁴ M. alternatively at least about 10⁻⁵ M, alternatively at least about 10⁻⁶ M, alternatively at least about 10⁻⁷ M, alternatively at least about 10-8 M, alternatively at least about 10-9 M, alternatively at least about 10-10 M, alternatively at least about 1011 M, alternatively at least about 1012 M, or greater. In one embodiment, the term "specific binding" refers to binding where a molecule binds to a particular polypeptide or epitope on a particular polypeptide without substantially binding to any other polypeptide or polypeptide epitope.

An antibody, oligopeptide or other organic molecule that "inhibits the growth of tumor cells expressing a TAT polypeptide" or a "growth inhibitory" antibody, oligopeptide or other organic molecule is one which results in measurable growth inhibition of cancer cells expressing or overexpressing the appropriate TAT polypeptide. The TAT polypeptide may be a transmembrane polypeptide expressed on the surface of a cancer cell or may be a polypeptide that is produced and secreted by a cancer cell. Preferred growth inhibitory anti-TAT antibodies, oligopeptides or organic molecules inhibit growth of TAT-expressing tumor cells by greater

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

than 20%, preferably from about 20% to about 50%, and even more preferably, by greater than 50% (e.g., from about 50% to about 100%) as compared to the appropriate control, the control typically being tumor cells not treated with the antibody, oligopeptide or other organic molecule being tested. In one embodiment, growth inhibition can be measured at an antibody concentration of about 0.1 to 30 μ g/ml or about 0.5 nM to 200 nM in cell culture, where the growth inhibition is determined 1-10 days after exposure of the tumor cells to the antibody. Growth inhibition of tumor cells in two can be determined unarious ways such as is described in the Experimental Examples section below. The antibody is growth inhibitory in vivo if administration of the anti-TAT antibody at about 1 μ g/kg to about 100 mg/kg body weight results in reduction in tumor size or tumor cell proliferation within about 5 days to 3 months from the first administration of the antibody, preferably within about 5 to 30 days.

An antibody, oligopeptide or other organic molecule which "induces apoptosis" is one which induces programmed cell death as determined by binding of annexin V, fragmentation of DNA, cell strinkage, dilation of endoplasmic reticulum, cell fragmentation, and/or formation of membrane vesicles (called apoptotic bodies). The cell is usually one which overexpresses a TAT polypeptide. Preferably the cell is a tumor cell, e.g., a prostate, breast, ovarian, stomach, endometrial, lung, kidney, colon, bladder cell. Various methods are available for evaluating the cellular events associated with apoptosis. For example, phosphatidyl serine (PS) translocation can be measured by annexin binding; DNA fragmentation can be evaluated through DNA laddering; and nuclear/chromatin condensation along with DNA fragmentation can be evaluated by any increase in hypodiploid cells. Preferably, the antibody, oligopeptide or other organic molecule which induces apoptosis is one which results in about 2 to 50 fold, preferably about 5 to 50 fold, and most preferably about 10 to 50 fold, induction of annexin binding relative to untreated cell in an annexin binding assay.

Antibody "effector functions" refer to those biological activities attributable to the Fc region (a native sequence Fc region or amino acid sequence variant Fc region) of an antibody, and vary with the antibody isotype. Examples of antibody effector functions include: C1q binding and complement dependent cytotoxicity; Fc receptor binding; antibody-dependent cell-mediated cytotoxicity (ADCC); phagocytosis; down regulation of cell surface receptors (e.g., B cell receptor); and B cell activation.

"Antibody-dependent cell-mediated cytotoxicity" or "ADCC" refers to a form of cytotoxicity in which secreted Ig bound onto Fc receptors (FcRs) present on certain cytotoxic cells (e.g., Nanıral Killer (NK) cells, neutrophils, and macrophages) enable these cytotoxic effector cells to bind specifically to an antigen-bearing target cell and subsequently kill the target cell with cytotoxins. The antibodies "arm" the cytotoxic cells and are absolutely required for such killing. The primary cells for mediating ADCC, NK cells, express Fc yRIII only, whereas monocytes express FcyRI, FcyRII and FcyRIII. FcR expression on hematopoieticells is summarized in Table 3 on page 464 of Ravetch and Kinet, <u>Annu. Rev. Immunol.</u>, 9:457-92 (1991). To assess ADCC activity of a molecule of interest, an in vitro ADCC assay, such as that described in US Patent No. 5,00,362 or 5,821,337 may be performed. Useful effector cells for such assays include peripheral blood mononuclear cells (PBMC) and Natural Killer (NK) cells. Alternatively, or additionally, ADCC activity of the molecule of interest may be assessed in vivo, e.g., in a animal model such as that disclosed in Clynes et al.

(USA) 95:652-656 (1998).

5

10

15

20

25

30

35

"Fc receptor" or "FcR" describes a receptor that binds to the Fc region of an antibody. The preferred FcR is a native sequence human FcR. Moreover, a preferred FcR is one which binds an IgG antibody (a gamma receptor) and includes receptors of the FcγRI, FcγRII and FcγRIII subclasses, including allelic variants and alternatively spliced forms of these receptors. FcγRII receptors include FcγRIIA (an "activating receptor") and FcγRIIB (an "inhibiting receptor"), which have similar amino acid sequences that differ primarily in the cytoplasmic domains thereof. Activating receptor Fc γRIIA contains an immunoreceptor tyrosine-based activation motif (ITIAM) in its cytoplasmic domain. Inhibiting receptor FcγRIIB contains an immunoreceptor tyrosine-based inhibition motif (ITIAM) in its cytoplasmic domain. (see review M. in Daëron, Annu. Rev. Immunol. 15:203-234 (1997)). FcRs are reviewed in Ravetch and Kinet, Annu. Rev. Immunol. 9:457-492 (1991); Capel et al., Immunomethods 4:25-34 (1994); and de Haas et al., I. Lab. Clin. Med. 126:330-41 (1995). Other FcRs, including those to be identified in the future, are encompassed by the term "FcR" herein. The term also includes the neonatal receptor, FcRn, which is responsible for the transfer of maternal IgGs to the fetus (Guyer et al., I. Immunol. 117:587 (1976) and Kim et al., I. Immunol. 24:249 (1994)).

"Human effector cells" are leukocytes which express one or more FcRs and perform effector functions. Preferably, the cells express at least Fc γRIII and perform ADCC effector function. Examples of human leukocytes which mediate ADCC include peripheral blood mononuclear cells (PBMC), natural killer (NK) cells, monocytes, cytotoxic T cells and neutrophils; with PBMCs and NK cells being preferred. The effector cells may be isolated from a native source, e.g., from blood.

"Complement dependent cytotoxicity" or "CDC" refers to the lysis of a target cell in the presence of complement. Activation of the classical complement pathway is initiated by the binding of the first component of the complement system (Clq) to antibodies (of the appropriate subclass) which are bound to their cognate antigen. To assess complement activation, a CDC assay, e.g., as described in Gazzano-Santoro et al., <u>J. Immunol, Methods</u> 202:163 (1996), may be performed.

The terms "cancer" and "cancerous" refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth. Examples of cancer include, but are not limited to, carcinoma, lymphoma, blastoma, sarcoma, and leukemia or lymphoid malignancies. More particular examples of such cancers include squamous cell cancer (e.g., epithelial squamous cell cancer), lung cancer including small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung and squamous carcinoma of the lung, cancer of the peritoneum, hepatoceltilar cancer, gastric or stomach cancer including gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, cancer of the urinary tract, hepatoma, breast cancer, colon cancer, rectal cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland carcinoma, kidney or renal cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma, anal carcinoma, penile carcinoma, melanoma, multiple myeloma and B-cell lymphoma, brain, as well as head and neck cancer, and associated metastases.

The terms "cell proliferative disorder" and "proliferative disorder" refer to disorders that are

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

associated with some degree of abnormal cell proliferation. In one embodiment, the cell proliferative disorder is cancer.

"Tumor", as used herein, refers to all neoplastic cell growth and proliferation, whether malignant or benigm, and all pre-cancerous and cancerous cells and tissues.

An antibody, oligopeptide or other organic molecule which "induces cell death" is one which causes a viable cell to become nonviable. The cell is one which expresses a TAT polypeptide, preferably a cell that overexpresses a TAT polypeptide as compared to a normal cell of the same tissue type. The TAT polypeptide may be a transmembrane polypeptide expressed on the surface of a cancer cell or may be a polypeptide that is produced and secreted by a cancer cell. Preferably, the cell is a cancer cell, e.g., a breast, ovarian, stomach, endometrial, salivary gland, lung, kidney, colon, thyroid, pancreatic or bladder cell. Cell death in vitro may be determined in the absence of complement and immune effector cells to distinguish cell death induced by antibody-dependent cell-mediated cytotoxicity (ADCC) or complement dependent cytotoxicity (CDC). Thus, the assay for cell death may be performed using heat inactivated serum (i.e., in the absence of complement and in the absence of immune effector cells. To determine whether the antibody, oligopeptide or other organic molecule is able to induce cell death, loss of membrane integrity as evaluated by uptake of propidium iodide (PI), trypan blue (see Moore et al. Cytotechnology 17:1-11 (1995)) or 7AAD can be assessed relative to untreated cells. Preferred cell death-inducing antibodies, oligopeptides or other organic molecules are those which induce PI uptake in the PI uptake assay in BT474 cells.

A "TAT-expressing cell" is a cell which expresses an endogenous or transfected TAT polypeptide either on the cell surface or in a secreted form. A "TAT-expressing cancer" is a cancer comprising cells that have a TAT polypeptide present on the cell surface or that produce and secrete a TAT polypeptide. A "TATexpressing cancer" optionally produces sufficient levels of TAT polypeptide on the surface of cells thereof, such that an anti-TAT antibody, oligopeptide ot other organic molecule can bind thereto and have a therapeutic effect with respect to the cancer. In another embodiment, a "TAT-expressing cancer" optionally produces and secretes sufficient levels of TAT polypeptide, such that an anti-TAT antibody, oligopeptide ot other organic molecule antagonist can bind thereto and have a therapeutic effect with respect to the cancer. With regard to the latter, the antagonist may be an antisense oligonucleotide which reduces, inhibits or prevents production and secretion of the secreted TAT polypeptide by tumor cells. A cancer which "overexpresses" a TAT polypeptide is one which has significantly higher levels of TAT polypeptide at the cell surface thereof, or produces and secretes, compared to a noncancerous cell of the same tissue type. Such overexpression may be caused by gene amplification or by increased transcription or translation. TAT polypeptide overexpression may be determined in a diagnostic or prognostic assay by evaluating increased levels of the TAT protein present on the surface of a cell, or secreted by the cell (e.g., via an immunohistochemistry assay using anti-TAT antibodies prepared against an isolated TAT polypeptide which may be prepared using recombinant DNA technology from an isolated nucleic acid encoding the TAT polypeptide; FACS analysis, etc.). Alternatively, or additionally, one may measure levels of TAT polypeptide-encoding nucleic acid or mRNA in the cell, e.g., via fluorescent in situ hybridization using a nucleic acid based probe corresponding to a TAT-encoding nucleic acid or the complement

thereof; (FISH; see WO98/45479 published October, 1998), Southern blotting, Northern blotting, or polymerase chain reaction (PCR) techniques, such as real time quantitative PCR (RT-PCR). One may also study TAT polypeptide overexpression by measuring shed antigen in a biological fluid such as serum, e.g, using antibody-based assays (see also, e.g., U.S. Patent No. 4,933,294 issued June 12, 1990; WO91/05264 published April 18, 1991; U.S. Patent 5,401,638 issued March 28, 1995; and Sias et al., J. Immunol. Methods 132:73-80 (1990)). Aside from the above assays, various in vivo assays are available to the skilled practitioner. For example, one may expose cells within the body of the patient to an antibody which is optionally labeled with a detectable label, e.g., a radioactive isotope, and binding of the antibody to cells in the patient can be evaluated, e.g., by external scanning for radioactivity or by analyzing a biopsy taken from a patient previously exposed to the antibody.

10

15

5

As used herein, the term "immunoadhesin" designates antibody-like molecules which combine the binding specificity of a heterologous protein (an "adhesin") with the effector functions of immunoglobulin constant domains. Structurally, the immunoadhesins comprise a fusion of an amino acid sequence with the desired binding specificity which is other than the antigen recognition and binding site of an antibody (i.e., is "heterologous"), and an immunoglobulin constant domain sequence. The adhesin part of an immunoadhesin molecule typically is a contiguous amino acid sequence comprising at least the binding site of a receptor or a ligand. The immunoglobulin constant domain sequence in the immunoadhesin may be obtained from any immunoglobulin, such as IgG-1, IgG-2, IgG-3, or IgG-4 subtypes, IgA (including IgA-1 and IgA-2), IgE, IgD or IgM.

20

The word "label" when used herein refers to a detectable compound or composition which is conjugated directly or indirectly to the antibody, oligopeptide or other organic molecule so as to generate a "labeled" antibody, oligopeptide or other organic molecule. The label may be detectable by itself (e.g. radioisotope labels or fluorescent labels) or, in the case of an enzymatic label, may catalyze chemical alteration of a substrate compound or composition which is detectable.

25

The term "cytotoxic agent" as used herein refers to a substance that inhibits or prevents the function of cells and/or causes destruction of cells. The term is intended to include radioactive isotopes (e.g., $\frac{N^2}{N^2}$, 1^{123}

35

30

A "growth inhibitory agent" when used herein refers to a compound or composition which inhibits growth of a cell, especially a TAT-expressing cancer cell, either in vitro or in vivo. Thus, the growth inhibitory agent may be one which significantly reduces the percentage of TAT-expressing cells in S phase. Examples of growth inhibitory agents include agents that block cell evele progression (at a place other than S phase), such

as agents that induce G1 arrest and M-phase arrest. Classical M-phase blockers include the vincas (vincristine and vinblastine), taxanes, and topoisomerase II inhibitors such as doxorubicin, epirubicin, daunorubicin, etoposide, and bleomycin. Those agents that arrest G1 also spill over into S-phase arrest, for example, DNA alkylating agents such as tamoxifen, prednisone, dacarbazine, mechlorethamine, cisplatin, methotrexate, 5-fluorouracil, and ara-C. Further information can be found in the Molecular Basis of Cancer, Mendelsohn and Israel, eds., Chapter 1, entitled "Cell cycle regulation, oncogenes, and antineoplastic drugs" by Murakami et al. (WB Saunders: Philadelphia, 1995), especially p. 13. The taxanes (paclitaxel and docetaxel) are anticancer drugs both derived from the yew tree. Docetaxel (TAXOTERE®, Rhone-Poulenc Rorer), derived from the European yew, is a semisynthetic analogue of paclitaxel (TAXOL®, Bristol-Myers Squibb). Paclitaxel and docetaxel promote the assembly of microtubules from tubulin dimers and stabilize microtubules by preventing depolymerization, which results in the inhibition of mitosis in cells.

"Doxorubicin" is an anthracycline antibiotic. The full chemical name of doxorubicin is (8S-cis)-10-[(3-amino-2,3,6-trideoxya-L-lyxo-hexapyranosyl)oxy]-7,8,9,10-tetrahydro-6,8,11-trihydroxy-8-(hydroxyacetyl)-1-methoxy-5.12-nanhthacenedione.

The term "cytokine" is a generic term for proteins released by one cell population which act on another cell as intercellular mediators. Examples of such cytokines are lymphokines, monokines, and traditional polypeptide hormones. Included among the cytokines are growth hormone such as human growth hormone, Nmethional human growth hormone, and boying growth hormone; parathyroid hormone; thyroxine; insulin; proinsulin; relaxin; prorelaxin; glycoprotein hormones such as follicle stimulating hormone (FSH), thyroid stimulating hormone (TSH), and luteinizing hormone (LH); henatic growth factor; fibroblast growth factor; prolactin; placental lactogen; tumor necrosis factor-α and -β; mullerian-inhibiting substance; mouse gonadotropin-associated peptide; inhibin; activin; vascular endothelial growth factor; integrin; thrombopoietin (TPO); nerve growth factors such as NGF-β; platelet-growth factor; transforming growth factors (TGFs) such as TGF-α and TGF- β; insulin-like growth factor-I and -II; erythropoietin (EPO); osteoinductive factors; interferons such as interferon -α, -β, and -γ; colony stimulating factors (CSFs) such as macrophage-CSF (M-CSF); granulocyte-macrophage-CSF (GM-CSF); and granulocyte-CSF (G-CSF); interleukins (ILs) such as IL-1, IL- 1a, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-11, IL-12; a tumor necrosis factor such as TNF-α or TNF-8; and other polypeptide factors including LIF and kit ligand (KL). As used herein, the term cytokine includes proteins from natural sources or from recombinant cell culture and biologically active equivalents of the native sequence cytokines.

5

10

15

20

25

PCT/US2003/028547

The term "package insert" is used to refer to instructions customarily included in commercial packages of therapeutic products, that contain information about the indications, usage, dosage, administration, contraindications and/or warnings concerning the use of such therapeutic products.

45

50

PCT/US2003/028547

Table 1

```
/*
          * C-C increased from 12 to 15
          * 7 is average of EO
          * B is average of ND
5
          * match with stop is _M; stop-stop = 0; J (joker) match = 0
                                   /* value of a match with a stop */
         #define M
10
                   dav[26][26] = {
         int
                ABCDEFGHIJKLMNOPORSTUVWXYZ*/
                    {2, 0, 2, 0, 0, -4, 1, -1, -1, 0, -1, -2, -1, 0, M, 1, 0, -2, 1, 1, 0, 0, -6, 0, -3, 0},
         /* A */
                    {0, 3, 4, 3, 2, -5, 0, 1, -2, 0, 0, -3, -2, 2, M, -1, 1, 0, 0, 0, 0, -2, -5, 0, -3, 1},
         /* B */
                    {2, 4, 15, -5, -5, -4, -3, -3, -2, 0, -5, -6, -5, -4, M, -3, -5, -4, 0, -2, 0, -2, -8, 0, 0, -5}, {0, 3, -5, 4, 3, -6, 1, 1, -2, 0, 0, -4, -3, 2, M, -1, 2, -1, 0, 0, 0, -2, -7, 0, -4, 2},
         /* C */
15
         /* D */
                    {0, 2, -5, 3, 4, -5, 0, 1, -2, 0, 0, -3, -2, 1, M, -1, 2, -1, 0, 0, 0, -2, -7, 0, -4, 3},
         /* E */
                    {-4,-5,-4,-6,-5, 9,-5,-2, 1, 0,-5, 2, 0,-4, M,-5,-5,-4,-3,-3, 0,-1, 0, 0, 7,-5},
         /* F */
                    {1, 0, -3, 1, 0, -5, 5, -2, -3, 0, -2, -4, -3, 0, M, -1, -1, -3, 1, 0, 0, -1, -7, 0, -5, 0},
          /* G */
                    {-1, 1, -3, 1, 1, -2, -2, 6, -2, 0, 0, -2, -2, 2, M, 0, 3, 2, -1, -1, 0, -2, -3, 0, 0, 2},
         /* H */
                    20
          /* I */
          1+3+1
                    {-1, 0, -5, 0, 0, -5, -2, 0, -2, 0, 5, -3, 0, 1, M, -1, 1, 3, 0, 0, 0, -2, -3, 0, -4, 0},
          /* K */
                    /* L */
          /* M */
25
          /* N */
          /*O*/
                    /* P */
          /* O */
          /* R */
                     30
          1 $ $ */
          /* T */
          /* U */
                     {0,-2,-2,-2,-1,-1,-2,4,0,-2,2,2,2,-M,-1,-2,-2,-1,0,0,4,-6,0,-2,-2},
          /* V */
                     {-6,-5,-8,-7,-7, 0,-7,-3,-5, 0,-3,-2,-4,-4,-M,-6,-5, 2,-2,-5, 0,-6,17, 0, 0,-6},
          /* W */
                     35
          /* X */
                     {-3, -3, 0, -4, -4, 7, -5, 0, -1, 0, -4, -1, -2, -2, M, -5, -4, -4, -3, -3, 0, -2, 0, 0, 10, -4}, {0, 1, -5, 2, 3, -5, 0, 2, -2, 0, 0, -2, -1, 1, M, 0, 3, 0, 0, 0, 0, -2, -6, 0, -4, 4}
          /* Y */
          /* Z */
          3:
40
```

PCT/HS2003/028547

Table 1 (cont')

```
#include < stdio.h>
          #include < ctype.h>
 5
           #define MAXIMP
                                        16
                                                 /* max jumps in a diag */
          #define MAXGAP
                                        24
                                                 /* don't continue to penalize gaps larger than this */
                                        1004
          #define IMPS
                                                 /* max jmps in an path */
                                                 /* save if there's at least MX-1 bases since last jmp */
          #define MX
10
                                        3
                                                 /* value of matching bases */
          #define DMAT
          #define DMIS
                                        0
                                                 /* penalty for mismatched bases */
                                                 /* penalty for a gap */
          #define DINSO
                                        8
          #define DINS1
                                        1
                                                 /* penalty per base */
15
          #define PINSO
                                                 /* penalty for a gap */
                                                 /* penalty per residue */
          #define PINS1
          struct jmp {
                                        n[MAXJMP];
                                                           /* size of jmp (neg for dely) */
20
                    unsigned short
                                        x[MAXJMP];
                                                           /* base no. of imp in seq x */
                                                           /* limits seg to 2 16 -1 */
          }:
          struct diag {
                                                           /* score at last jmp */
                     int
                                        score;
25
                                        offset;
                                                           /* offset of prev block */
                    long
                                                           /* current imp index */
                    short
                                        ijmp;
                    struct imp
                                       ip:
                                                           /* list of jmps */
          }:
30
          struct path {
                                                 /* number of leading spaces */
                    int
                    short
                              n[JMPS]; /* size of imp (gap) */
                    int
                              x[JMPS]; /* loc of jmp (last elem before gap) */
          3:
35
          char
                              *ofile:
                                                           /* output file name */
          char
                              *namex[2]:
                                                           /* seg names: getsegs() */
          char
                              *prog;
                                                           /* prog name for err msgs */
          char
                              *seqx[21:
                                                           /* seqs: getseqs() */
40
                                                           /* best diag: nw() */
          int
                              dmax:
                              dmax0:
                                                           /* final diag */
          int
                                                           /* set if dna: main() */
          int
                              dna;
                                                           /* set if penalizing end gaps */
          int
                              endgaps;
          int
                              gapx, gapy;
                                                           /* total gaps in seqs */
45
          int
                              len0, len1;
                                                           /* seq lens */
                                                           /* total size of gaps */
          int
                              ngapx, ngapy;
          int
                              smax:
                                                           /* max score: nw() */
                              *xbm:
                                                           /* bitmap for matching */
          int
          long
                             offset:
                                                           /* current offset in jmp file */
50
          struct
                    diag
                              *dx:
                                                          /* holds diagonals */
          struct
                    path
                              pp[2];
                                                           /* holds path for segs */
                              *calloc(), *malloc(), *index(), *strcpy();
          char
                              *getseq(), *g calloc();
          char
```

PCT/US2003/028547

```
/* Needleman-Wunsch alignment program
           * usage: progs file1 file2
              where file1 and file2 are two dna or two protein sequences.
           * The sequences can be in upper- or lower-case an may contain ambiguity
 5
             Any lines beginning with ';', '>' or '<' are ignored
             Max file length is 65535 (limited by unsigned short x in the imp struct)
           * A sequence with 1/3 or more of its elements ACGTU is assumed to be DNA
           * Output is in the file "align.out"
10
           * The program may create a tmp file in /tmp to hold info about traceback.
           * Original version developed under BSD 4.3 on a vax 8650
          #include "nw.h"
          #include "day.h"
15
                    dbval[26] = {
          static
                    1,14,2,13,0,0,4,11,0,0,12,0,3,15,0,0,0,5,6,8,8,7,9,0,10,0
          3:
20
          static
                    128, 256, 0xFFFFFFF, 1 < < 10, 1 < < 11, 1 < < 12, 1 < < 13, 1 < < 14,
                    1<<15, 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22,
                    1<<23, 1<<24, 1<<25|(1<<('E'-'A'))|(1<<('Q'-'A'))
25
          }:
                                                                                                                        main
          main(ac, av)
                    int
30
                    char
                             *av[]:
                    prog = av[0];
                    if (ac != 3) {
                             forintf(stderr, "usage; %s file1 file2\n", prog);
                             fprintf(stderr, "where file1 and file2 are two dna or two protein sequences.\n"); fprintf(stderr, "The sequences can be in upper- or lower-case\n");
35
                             forintf(stderr, "Any lines beginning with ';' or '<' are ignored\n");
                             fprintf(stderr, "Output is in the file \"align.out\"\n");
                             exit(1):
40
                    namex[0] = av[1];
                    namex[1] = av[2];
                    seqx[0] = getseq(namex[0], &len0):
                    seqx[1] = getseq(namex[1], &len1);
45
                    xbm = (dna)? dbval : pbval;
                                                /* 1 to penalize endgaps */
                    endgaps = 0;
                    ofile = "align.out":
                                                         /* output file */
50
                                       /* fill in the matrix, get the possible jmps */
                    nw();
                                       /* get the actual imps */
                    readimpsO:
                                       /* print stats, alignment */
                    print();
                                       /* unlink any tmp files */}
                    cleanup(0):
```

PCT/IIS2003/028547

```
/* do the alignment, return best score: main()
           * dna: values in Fitch and Smith, PNAS, 80, 1382-1386, 1983
           * pro: PAM 250 values
           * When scores are equal, we prefer mismatches to any gap, prefer
 5
           * a new gap to extending an ongoing gap, and prefer a gap in seqx
           * to a gap in seq y.
           */
                                                                                                                                   nw
          nw()
           {
                                                             /* segs and ptrs */
10
                     char
                                         *px, *py;
                                         *ndely, *dely;
                                                             /* keep track of dely */
                     int
                                                             /* keep track of delx */
                     Int
                                         ndelx. delx:
                                                             /* for swapping row0, row1 */
                     int
                                         *tmp:
                                         mis:
                                                             /* score for each type */
                     int
                                         ins0, ins1:
                                                             /* insertion penalties */
15
                     int
                                                             /* diagonal index */
                     register
                                         id:
                     register
                                         ij;
                                                             /* jmp index */
                                                             /* score for curr, last row */
                     register
                                         *co10, *col1;
                                                             /* index into seas */
                     register
                                         xx, yy;
20
                     dx = (struct diag *)g_calloc("to get diags", len0+len1+1, sizeof(struct diag));
                     ndely = (int *)g_calloc("to get ndely", len1+1, sizeof(int));
                     dely = (int *)g_calloc(*to get dely", len1+1, sizeof(int));
col0 = (int *)g_calloc(*to get col0", len1+1, sizeof(int));
                     col1 = (int *)g_calloc("to get col1", len1+1, sizeof(int));
25
                     ins0 = (dna)? DINS0 : PINS0;
                     ins1 = (dna)? DINS1 : PINS1;
                     smax = -10000;
                     if (endgaps) {
30
                               for (col0[0] = delv[0] = -ins0, yy = 1; yy <= len1; yy++) {
                                         col0[yy] = dely[yy] = col0[yy-1] - ins1;

ndely[yy] = yy;
                                                   /* Waterman Bull Math Biol 84 */
                               col0f01 = 0:
35
                     else
                               for (yy = 1; yy <= len1; yy++)
                                         dely[yy] = -ins0;
                     /* fill in match matrix
40
                     for (px = seqx[0], xx = 1; xx <= len0; px++, xx++) {
                               /* initialize first entry in col
                               if (endgaps) {
                                         if (xx == 1)
45
                                                   col1[0] = delx = -(ins0+ins1);
                                          else
                                                   col1f01 = delx = col0f01 - ins1;
                                          ndelx = xx;
50
                               else {
                                          co11[0] = 0;
                                          delx = -ins0;
                                          ndelx = 0:
55
                               }
```

PCT/US2003/028547

```
...nw
                            for (py = seqx[1], yy = 1; yy <= len1; py++, yy++) {
                                     mis = col0[yy-1];
                                      if (dna)
                                               mis += (xbm[*px-'A']&xbm[*py-'A'])? DMAT : DMIS;
 5
                                      else
                                               mis += day[*px-'A'][*py-'A'];
                                      /* update penalty for del in x seq;
10
                                      * favor new del over ongong del
                                       * ignore MAXGAP if weighting endgaps
                                       */
                                      if (endgaps | | ndely[yy] < MAXGAP) {
                                               if (col0[yy] - ins0 > = dely[yy]) {
                                                        dely[yy] = col0[yy] - (ins0 + ins1);
15
                                                        ndely[yy] = 1;
                                               } else {
                                                        dely[yy] -= ins1;
                                                        ndelv[vv]++:
20
                                      } else {
                                               if (col0[yy] - (ins0 + ins1) > = dely[yy]) {
                                                         dely[yy] = col0[yy] - (ins0 + ins1);
                                                        ndely[yy] = 1:
25
                                               } else
                                                        ndely[yy]++;
                                      }
                                      /* update penalty for del in y seq;
30
                                       * favor new del over ongong del
                                      if (endgaps | | ndelx < MAXGAP) {
                                               If (col1[yy-1] - ins0 > = delx) {
                                                         delx = col1[yy-1] - (ins0+ins1);
                                                         ndelx = 1:
35
                                                } else {
                                                         delx -= ins1:
                                                         ndelx++:
                                       } else {
 40
                                                if (col1[yy-1] - (ins0 + ins1) > = delx) {
                                                         delx = col1[yy-1] - (ins0+ins1);
                                                         ndelx = 1;
                                                } else
                                                         ndelx++;
 45
                                       3
                                       /* pick the maximum score; we're favoring
                                       * mis over any del and delx over dely
 50
                                                                                                                      ...nw
                                       id = xx - yy + len1 - 1;
                                       if (mis >= delx && mis >= dely[yy])
                                                coll[yy] = mis;
 55
```

PCT/US2003/028547

```
Table 1 (cont')
                                        else if (delx > = dely(yy)) {
                                                  coll[yy] = delx;
                                                  ii = dx[id].iimp:
                                                  if (dx[id].jp.n[0] && (ldna | | (ndelx > = MAXJMP)
                                                  && xx > dx[id].ip.x[ij]+MX() | | mis > dx[id].score+DINS()) {
 5
                                                            dx[id].ijmp++;
                                                            if (++ij > = MAXJMP) {
                                                                      writeimns(id):
                                                                      ii = dx[id].ijmp = 0;
                                                                      dx[id].offset = offset;
offset += sizeof(struct jmp) + sizeof(offset);
10
                                                            }
                                                  dx[id].jp.n[ij] = ndelx;
                                                  dx[id].ip.x[ii] = xx;
15
                                                  dx[id].score = delx;
                                        }
else {
                                                  coll[yy] = dely[yy];
                                                   ij = dx[id].ijmp;
20
                     if (dx[id], ip.n[0] && (ldna | | (ndely[yy] > = MAXJMP)
                                                   && xx > dx[id].jp.x[ij]+MX) | | mis > dx[id].score+DINS0)) {
                                                            dx[id].ijmp++;
                                                            if (++ij > = MAXJMP) {
                                                                      writejmps(id);
2.5
                                                                       ij = dx[id].ijmp = 0;
                                                                      dx[id].offset = offset;
offset += sizeof(struct jmp) + sizeof(offset);
                                                             3
30
                                                   dx[idl.ip.n[ii] = -ndely[yy];
                                                   dx[id].jp.x[ij] = xx;
                                                   dx[id].score = dely[yy];
                                         \inf_{x} (xx = = len0 && yy < len1) 
35
                                                   /* last col
                                                   */
                                                   if (endgaps)
                                                             col1[yy] -= ins0+ins1*(len1-yy);
                                                   if (coll[vv] > smax) {
40
                                                             smax = coll[yy];
                                                             dmax = id;
                                                   }
45
                               if (endgaps && xx < len0)
                                         col1[yy-1] -= ins0 + ins1*(len0-xx);
                               if (coll[yy-1] > smax) {
                                         smax = coll[vv-1];
                                         dmax = id:
50
                               tmp = col0; col0 = col1; col1 = tmp;
                                                                                 }
                      (void) free((char *)ndely);
                      (void) free((char *)dely);
                     (void) free((char *)col0);
(void) free((char *)col1);
 55
                                                                       }
```

pr align();

PCT/US2003/028547

print

```
* print() -- only routine visible outside this module
 5
            * getmat() -- trace back best path, count matches: print()
            * pr_align() -- print alignment of described in array pfl: print()
            * dumpblock() - dump a block of lines with numbers, stars: pr align()
            * nums() - put out a number line: dumpblock()
            * putline() -- put out a line (name, [num], seq, [num]): dumpblock()
10
            * stars() - - put a line of stars; dumpblock()
            * stripname() -- strip any path and prefix from a sequame
           #include "nw.h"
15
           #define SPC
                                3
                                          /* maximum output line */
           #define P_LINE 256
           #define P SPC
                                3
                                          /* space between name or num and seq */
20
           extern
                      day[26][26];
                      olen:
                                          /* set output line length */
           int
           FILE
                      *fx:
                                          /* output file */
25
           print()
                                lx, ly, firstgap, lastgap;
                                                              /* overlap */
                      int
                      if ((fx = fopen(ofile, "w")) == 0) {
                                fprintf(stderr, "%s: can't write %s\n", prog, ofile);
30
                                cleamin(1):
                      , fprintf(fx, '<first sequence: %s (length = %d)\n', namex[0], len0); fprintf(fx, '<second sequence: %s (length = %d)\n', namex[1], len1);
35
                      olen = 60:
                      lx = len0;
                      ly = len1:
                      firstgap = lastgap = 0;
                      if (dmax < len1 - 1) {
                                                    /* leading gap in x */
                                pp[0].spc = firstgap = len1 - dmax - 1;
ly -= pp[0].spc;
40
                      else if (dmax > len1 - 1) { /* leading gap in y */
                                pp[1].spc = firstgap = dmax - (len1 - 1);
                                lx -= pp[1].spc;
45
                                                     /* trailing gap in x */
                      if (dmax0 < len0 - 1) {
                                lastgap = len0 - dmax0 -1;
                                lx -= lastgap;
50
                      else if (dmax0 > len0 -.1) { /* trailing gap in y */
                                lastgap = dmax0 - (len0 - 1);
                                ly -= lastgap:
55
                      getmat(lx, ly, firstgap, lastgap);
```

PCT/IIS2003/028547

```
* trace back the best path, count matches
          static
                                                                                                                     getmat
 5
          getmat(lx, ly, firstgap, lastgap)
                             lx, ly:
                                                         /* "core" (minus endgaps) */
                    int
                    int
                             firstgap, lastgap;
                                                         /* leading trailing overlap */
          {
                                      nm, i0, i1, siz0, siz1;
                    int
10
                    char
                                      outx[32]:
                    double
                                      pct;
                    register
                                      n0, n1;
                    register char
                                       *p0, *p1;
                    /* get total matches, score
15
                    i0 = i1 = siz0 = siz1 = 0:
                    p0 = seqx[0] + pp[1].spc;
                    p1 = seqx[1] + pp[0].spc;
                    n0 = pp[1].spc + 1;
20
                    n1 = pp[0].spc + 1;
nm = 0;
                    while ( *p0 && *p1 ) {
                             if (siz0) {
                                      p1++:
25
                                      n1++:
                                      sizO-:
                              else if (siz1) {
                                      p0++;
30
                                      n0++;
                                      siz1-;
                             }
else {
                                      if (xbm[*p0-'A']&xbm[*p1-'A'])
35
                                                nm++;
                                      if (n0++==pp[0].x[i0])
                                                siz0 = pp[0].n[i0++];
                                      if(n1++==pp[1].x[i1])
                                               siz1 = pp[1].n[i1++];
                                      p0++:
40
                                      p1++;
                             }
                    }
45
                    /* pct homology:
                     * if penalizing endgaps, base is the shorter seq
                     * else, knock off overhangs and take shorter core
                    */
                    if (endgaps)
50
                             lx = (len0 < len1)? len0 : len1;
                    else
                             lx = (lx < ly)? lx : ly;
                    pct = 100.*(double)nm/(double)lx;
                    fprintf(fx, "\n");
55
                    fprintf(fx, " < %d match%s in an overlap of %d: %.2f percent similarity\n",
                             nm, (nm == 1)? "" : "es", lx, pct);
```

PCT/US2003/028547

```
Table 1 (cont')
                                                                                                                         ...getmat
                     forintf(fx, " < gaps in first sequence: %d", gapx);
                    if (gapx) {
                               (void) sprintf(outx, " (%d %s%s)",
                                        ngapx, (dna)? "base": "residue", (ngapx == 1)? "": "s");
 5
                               forintf(fx. "%s", outx);
                     fprintf(fx, ", gaps in second sequence: %d", gapy);
                     if (gapy) {
                               ngapy, (dna)? "base": "residue", (ngapy == 1)? "": "s"); fprintf(fx, "%s", outx);
10
                     if (dna)
                               fprintf(fx.
                               "\n<score: %d (match = %d, mismatch = %d, gap penalty = %d + %d per base)\n",
                               smax, DMAT, DMIS, DINSO, DINS1);
15
                     else
                               "\n<score: %d (Dayhoff PAM 250 matrix, gap penalty = %d + %d per residue)\n",
                               smax, PINSO, PINS1);
20
                     if (endgaps)
                               fprintf(fx.
                               "<endgaps penalized. left endgap: %d %s%s, right endgap: %d %s%s\n",
                               firstgap, (dna)? "base" : "residue", (firstgap == 1)? "" : "s", lastgap, (dna)? "base" : "residue", (lastgap == 1)? "" : "s");
2.5
                     مءام
                               fprintf(fx, " < endgaps not penalized\n"):
                                                   /* matches in core - for checking */
            static
                               nm:
                                                   /* lengths of stripped file names */
            static
                               lmax;
                                                   /* imp index for a path */
30
            static
                               ii[2];
                                                   /* number at start of current line */
            ctatic
                               nc[2]:
                                                   /* current elem number -- for gapping */
            static
                               ni[2];
            static
                               siz[2];
                                                   /* ptr to current element */
            static char
                               *ps[2];
                                                   /* ptr to next output char slot */
35
            static char
                               *po[2];
                                                   /* output line */
            static char
                               out[2][P LINE];
                               star[P LINE];
                                                   /* set by stars() */
            static char
            * print alignment of described in struct path pp[]
40
            static
                                                                                                                           pr_align
           pr_align()
                      int
                                                    /* char count */
                                         nn:
45
                      int
                                         more:
                      register
                                         i:
                      for (i = 0, lmax = 0; i < 2; i++)
                               nn = stripname(namex[i]);
                               if (nn > lmax)
50
                                         lmax = nn;
                               nc[i] = 1;
                               ni[i] = 1;
                               siz[i] = ii[i] = 0;
                               ps[i] = seqx[i];
55
```

}

po[i] = out[i];

PCT/US2003/028547

```
...pr align
                    for (nn = nm = 0, more = 1; more;) {
                             for (i = more = 0; i < 2; i++)
 5
                                       * do we have more of this sequence?
                                       */
                                       if (!*ps[i])
                                                continue:
                                       more++;
10
                                       if (pp[i].spc) { /* leading space */
                                                 *po[i]++ = ' ';
                                                pp[i].spc--:
                                       else if (siz[i]) { /* in a gap */
                                                *po[i]++ = '-':
15
                                                siz[i]--:
                                       }
else {
                                                          /* we're putting a seq element
                                                           */
20
                                                 *po[i] = *ps[i];
                                                if (islower(*ps[i]))
                                                          *ps[i] = toupper(*ps[i]);
                                                pofil++:
                                                ps[i]++;
25
                                                 * are we at next gap for this seq?
                                                if (ni[i] == pp[i].x[ij[i]]) \{
                                                           * we need to merge all gaps
30
                                                           * at this location
                                                          siz[i] = pp[i].n[ij[i]++];
                                                          while (ni[i] = pp[i].x[ij[i])

siz[i] + pp[i].n[ij[i]++];
35
                                                nifi]++:
                                       }
                             if (++nn == olen | | !more && nn) {
40
                                       dumpblock();
                                       for (i = 0; i < 2; i++)
                                                po[i] = out[i];
                                       nn = 0:
45
                             }
                    }
           * dump a block of lines, including numbers, stars: pr_align()
50
          static
                                                                                                                 dumpblock
          dumpblock()
                    register i:
55
                    for (i = 0; i < 2; i++)
                             po[i] = '0';
```

55

putline(ix) int ix;

PCT/US2003/028547

putline

```
...dumpblock
                  (void) putc('\n', fx);
                  for (i = 0; i < 2; i++)
                          if (*out[i] && (*out[i] != ' ' || *(po[i]) != ' ')) {
                                   if (i = 0)
 5
                                            nums(i);
                                    if (i == 0 && *out[1])
                                            stars():
                                    putline(i):
                                    if (i == 0 && *out[1])
10
                                             fprintf(fx, star);
                                    if (i = = 1)
                                            nums(i);
                           }
15
          * put out a number line: dumpblock()
20
          static
                                                                                                               nums
          nums(ix)
                                    /* index in out[] holding seq line */
                           ix:
                  Int
                                    nline[P_LINE];
                  char
25
                  register
                                    i, j;
                                    *pn, *px, *py;
                   register char
                  for (pn = nline, i = 0; i < lmax+P_SPC; i++, pn++)
                           *pn = ' ':
                  30
                           else {
                                    if (i%10 == 0 || (i == 1 && nc[ix]!= 1)) {
                                             j = (i < 0)? -i : i;
                                             for (px = pn; j; j/= 10, px--)
35
                                                      px = j\%10 + '0';
                                             if(i < 0)
                                                      *px = '-';
40
                                    else
                                             *pn = ' ';
                                    i++;
                            }
45
                   *pn = '\0';
                   ncfix1 = i:
                   for (pn = nline; *pn; pn++)
                           (void) putc(*pn, fx);
                   (void) putc('\n', fx);
 50
           * put out a line (name, [num], seq, [num]): dumpblock()
          static
```

PCT/US2003/028547

```
...putline
                  int
                                    *px;
                  register char
 5
                  for (px = namex[ix], i = 0; *px && *px != ':'; px++, i++)
                           (void) putc(*px, fx);
                  for (; i < lmax+P_SPC; i++)
                           (void) putc(' ', fx);
10
                  /* these count from 1:
                   * nifl is current element (from 1)
                   * nc is number at start of current line
                  for (px = out[ix]; *px; px++)
15
                           (void) putc(*px&0x7F, fx);
                  (void) putc('\n', fx);
          }
20
           * put a line of stars (seqs always in out[0], out[1]): dumpblock()
          static
                                                                                                                 stars
25
          stars()
          {
                   register char
                                     *p0, *p1, cx, *px;
                   30
                            return;
                   px = star;
                   for (i = lmax+P_SPC; i; i--)
                            *px++ = '';
35
                   for (p0 = out[0], p1 = out[1]; *p0 && *p1; p0++, p1++) {
                            if (isalpha(*p0) && isalpha(*p1)) {
                                     if (xbm[*p0-'A']&xbm[*p1-'A']) {
    cx = '*';
 40
                                              nm++:
                                     else if (!dna && _day[*p0-'A'][*p1-'A'] > 0)

cx = '.';
 45
                                     else
                                              cx = ' ';
                             else
                                     cx = ' ';
 50
                             *px + + = cx;
                    *_{px++} = '\n';
                    *px = '0':
 55
           }
```

PCT/US2003/028547

```
* strip path or prefix from pn, return len: pr_align()
           static
                                                                                                                            stripname
 5
           stripname(pn)
                                *pn;
                                          /* file name (may be path) */
                      char
           {
                      register char
                                          *px, *py;
                     py = 0;

for (px = pn; *px; px++)

if (*px == '/')

ny = px
10
                                          py = px + 1;
                      if (py)
15
                                (vold) strcpy(pn, py);
                      return(strlen(pn));
           }
20
```

```
* cleanup() -- cleanup any tmp file
           * getseq() -- read in seq, set dna, len, maxlen
           * g calloc() -- calloc() with error checkin
            * readjmps() -- get the good jmps, from tmp file if necessary
 5
            * writeimps() -- write a filled array of jmps to a tmp file: nw()
          #include "nw.h"
          #include < sys/file.h>
10
                                                                        /* tmn file for imps */
                     *jname = "/tmp/homgXXXXXX";
           char
           FILE
                     *fi:
                                                                        /* cleanup tmp file */
                     cleanup();
           int
           long
                     lseek();
15
            * remove any tmp file if we blow
                                                                                                                              cleanup
           cleanup(i)
                                i:
20
                      if (fj)
                                (vold) unlink(jname);
                      exit(i):
25
            * read, return ptr to seq, set dna, len, maxlen
* skip lines starting with ';', '<', or '>'
            * seq in upper or lower case
             */
30
            char
                                                                                                                                 getseq
            getseq(file, len)
                                           /* file name */
                                 *file:
                      char
                                           /* seg len */
                      int
                                 *len:
                                           line[1024], *pseq;
 35
                      char
                                           *px, *py;
                      register char
                                           natge, tlen;
                      int
                                           *fp;
                      FILE
                      if ((fp = fopen(file, "r")) == 0) {
                                 forintf(stderr, "%s: can't read %s\n", prog, file);
 40
                                 exit(1);
                      tlen = natgc = 0;
                      while (fgets(line, 1024, fp)) {
    if (*line == ';' | | *line == '<' | | *line == '>')
 45
                                           continue:
                                 for (px = line; *px != '\n'; px + +)
                                           if (isupper(*px) | islower(*px))
                                                     tlen++:
 50
                       if ((pseq = malloc((unsigned)(tlen+6))) == 0) {
                                 fprintf(stderr, "%s: malloc() failed to get %d bytes for %s\n", prog, tlen+6, file);
                                 exit(1);
                       pseq[0] = pseq[1] = pseq[2] = pseq[3] = '\0';
 55
```

PCT/HS2003/028547

```
...getsea
                    py = pseq + 4;
*len = tlen;
                    rewind(fp);
 5
                    while (fgets(line, 1024, fp)) {
                             if (*line == ';' || *line == '<' || *line == '>')
                                       continue:
                              for (px = line; *px != '\n'; px ++) {
                                       if (isupper(*px))
10
                                                 *py++ = *px;
                                       else if (islower(*px))
                                       *py++ = toupper(*px);
if (index("ATGCU",*(py-1)))
                                                 natgc++:
15
                              }
                     *py++ = '\0';
                    *py = '\0':
                    (void) fclose(fp):
20
                    dna = natgc > (tlen/3);
                    return(pseq+4);
           char
                                                                                                                      g calloc
           g calloc(msg, nx, sz)
25
                    char
                              *msg;
                                                 /* program, calling routine */
                                                 /* number and size of elements */
                    int
                              nx. sz:
           {
                                        *px, *calloc();
                    char
                    if ((px = calloc((unsigned)nx, (unsigned)sz)) == 0) {
30
                              if (*msg) {
                                        fprintf(stderr, "%s: g_calloc() failed %s (n=%d, sz=%d)\n", prog, msg, nx, sz);
35
                     return(px);
           }
           * get final jmps from dx[] or tmp file, set pp[], reset dmax: main()
40
                                                                                                                    readjmps
           readjmps()
           {
                     int
                                        fd = -1:
                                        siz, i0, i1;
                     int
45
                    register i, j, xx;
                    if (fj) {
                              (void) fclose(fj);
                              if ((fd = open(jname, O_RDONLY, 0)) < 0) {
                                        fprintf(stderr, "%s: can't open() %s\n", prog, jname);
50
                                        cleanup(1):
                              }
                     for (i = i0 = i1 = 0, dmax0 = dmax, xx = len0; ; i++) {
                              while (1) {
                                              = dx[dmax].ijmp; j >= 0 && dx[dmax].ip.x[j] >= xx; i--)
55
```

offset = 0.

3

55

WO 2004/030615 PCT/US2003/028547

Table 1 (cont')

```
...readjmps
                                          if (i < 0 && dx[dmax].offset && fj) {
                                                    (void) lseek(fd, dx[dmax].offset, 0);
                                                    (void) read(fd, (char *)&dx[dmax].jp, sizeof(struct jmp));
                                                    (void) read(fd, (char *)&dx[dmax].offset, sizeof(dx[dmax].offset));
 5
                                                    dx[dmax].ijmp = MAXJMP-1;
                                          else
                                                    break:
                                if (i > = JMPS) {
                                          fprintf(stderr, "%s: too many gaps in alignment\n", prog);
10
                                          cleanup(1):
                                if (i > = 0) \{
                                          siz = dx(dmax).ip.n(i):
                                          xx = dx[dmax].jp.x[j];
15
                                          dmax += siz;
                                          if (siz < 0) {
                                                                        /* gap in second seq */
                                                    pp[1].n[i1] = -siz;
                                                    xx += siz:
                                                                                                                   */
                                                    /* id = xx - yy + len1 - 1
20
                                                    pp[1].x[i1] = xx - dmax + len1 - 1;
                                                    gapy++;
                                                    ngapy -= siz;
           /* ignore MAXGAP when doing endgaps */
                                                    siz = (-siz < MAXGAP | | endgaps)? -siz : MAXGAP;
2.5
                                                    i1++;
                                          else if (siz > 0) { /* gap in first seq */
                                                    pp[0].n[i0] = siz;
                                                    pp[0].x[i0] = xx:
30
                                                    gapx++:
                                                    ngapx += siz:
           /* ignore MAXGAP when doing endgaps */
                                                     siz = (siz < MAXGAP | | endgaps)? siz : MAXGAP;
                                                     i0++:
35
                                          }
                                }
else
                                          break;
40
                      /* reverse the order of imps */
                      for (j = 0, i0-; j < i0; j++, i0--) {
                                i = pp[0].n[j]; pp[0].n[j] = pp[0].n[i0]; pp[0].n[i0] = i;

i = pp[0].x[j]; pp[0].x[j] = pp[0].x[i0]; pp[0].x[i0] = i;
45
                      for (j = 0, i1-; j < i1; j++, i1-) {
                                i = pp[1].n[j]: pp[1].n[j] = pp[1].n[i1]: pp[1].n[i1] = i;

i = pp[1].x[j]: pp[1].x[j] = pp[1].x[i1]: pp[1].x[i1] = i;
50
                      if (fd > = 0)
                                (void) close(fd);
                      if (f) {
                                (void) unlink(jname);
                                f_i = 0;
```

3

PCT/US2003/028547

```
* write a filled imp struct offset of the prev one (if any): nw()
                                                                                                                                                                  writejmps
  5
               writejmps(ix)
                             int
                                          ix:
                                          *mktemp();
                            char
                            if (!fj) {
10
                                         if (mktemp(jname) < 0) {
    fprintf(stderr, "%s: can't mktemp() %s\n", prog, jname);
    cleanup(1);</pre>
                                          if ((fj = fopen(jname, "w")) == 0) {
    fprintf(stderr, "%s: can't write %s\n", prog, jname);
15
                                                        exit(1);
                             (void) fwrite((char *)&dx[ix].jp, sizeof(struct jmp), 1, fj);
(void) fwrite((char *)&dx[ix].offset, sizeof(dx[ix].offset), 1, fj);
20
               }
```

Table 2

TAT

XXXXXXXXXXXXX

(Length = 15 amino acids)

Comparison Protein

XXXXXYYYYYYY

(Length = 12 amino acids)

5 % amino acid sequence identity =

(the number of identically matching amino acid residues between the two polypeptide sequences as determined by ALIGN-2) divided by (the total number of amino acid residues of the TAT polypeptide) =

10 5 divided by 15 = 33.3%

Table 3

TAT

15

20

XXXXXXXXX

(Length = 10 amino acids)

Comparison Protein

XXXXXYYYYYYYZZYZ

(Length = 15 amino acids)

% amino acid sequence identity =

(the number of identically matching amino acid residues between the two polypeptide sequences as determined by ALIGN-2) divided by (the total number of amino acid residues of the TAT polypeptide) =

5 divided by 10 = 50%

Table 4

25

TAT-DNA
Comparison DNA

(Length = 14 nucleotides)

(Length = 16 nucleotides)

% nucleic acid sequence identity =

30

(the number of identically matching nucleotides between the two nucleic acid sequences as determined by ALIGN-2) divided by (the total number of nucleotides of the TAT-DNA nucleic acid sequence) = 6 divided by 14 = 42.9%

Table 5

TAT-DNA Comparison DNA (Length = 12 nucleotides)
(Length = 9 nucleotides)

5 % nucleic acid sequence identity =

(the number of identically matching nucleotides between the two nucleic acid sequences as determined by ALIGN-2) divided by (the total number of nucleotides of the TAT-DNA nucleic acid sequence) =

10 4 divided by 12 = 33.3%

15

20

25

30

35

II. Compositions and Methods of the Invention

A. Anti-TAT Antibodies

In one embodiment, the present invention provides anti-TAT antibodies which may find use herein as therapeutic and/or diagnostic agents. Exemplary antibodies include polyclonal, monoclonal, humanized, bispecific, and heteroconjugate antibodies.

1. Polyclonal Antibodies

Polyclonal antibodies are preferably raised in animals by multiple subcutaneous (sc) or intraperitoneal (ip) injections of the relevant antigen and an adjuvant. It may be useful to conjugate the relevant antigen (especially when synthetic peptides are used) to a protein that is immunogenic in the species to be immunized. For example, the antigen can be conjugated to keyhole limpet hemocyanin (KLH), serum albumin, bovine thyroglobulin, or soybean trypsin inhibitor, using a bifunctional or derivatizing agent, e.g., maleimidobenzoyl sulfosuccinimide ester (conjugation through cysteine residues), N-hydroxysuccinimide (through lysine residues), glutaraldehyde, succinic anhydride, SOCl₂, or R¹N=C=NR, where R and R¹ are different alkyl groups.

Animals are immunized against the antigen, immunogenic conjugates, or derivatives by combining, e.g., 100 µg or 5 µg of the protein or conjugate (for rabbits or mice, respectively) with 3 volumes of Freund's complete adjuvant and injecting the solution intradermally at multiple sites. One month later, the animals are boosted with 1/5 to 1/10 the original amount of peptide or conjugate in Freund's complete adjuvant by subcutaneous injection at multiple sites. Seven to 14 days later, the animals are bled and the serum is assayed for antibody titer. Animals are boosted until the titer plateaus. Conjugates also can be made in recombinant cell culture as protein fusions. Also, aggregating agents such as alum are suitably used to enhance the immune response.

Monoclonal Antibodies

Monoclonal antibodies may be made using the hybridoma method first described by Kohler et al., Nature, 256:495 (1975), or may be made by recombinant DNA methods (U.S. Patent No. 4,816,567).

In the hybridoma method, a mouse or other appropriate host animal, such as a hamster, is immunized

as described above to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the protein used for immunization. Alternatively, lymphocytes may be immunized in vitro. After immunization, lymphocytes are isolated and then fused with a myeloma cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, pp. 59-103 (Academic Press, 1986)).

The hybridoma cells thus prepared are seeded and grown in a suitable culture medium which medium preferably contains one or more substances that inhibit the growth or survival of the unfused, parental myeloma cells (also referred to as fusion partner). For example, if the parental myeloma cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the selective culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (HAT medium), which substances prevent the growth of HGPRT-deficient cells.

Preferred fusion partner myeloma cells are those that fuse efficiently, support stable high-level production of antibody by the selected antibody-producing cells, and are sensitive to a selective medium that selects against the unfused parental cells. Preferred myeloma cell lines are murine myeloma lines, such as those derived from MOPC-21 and MPC-11 mouse tumors available from the Salk Institute Cell Distribution Center, San Diego, California USA, and SP-2 and derivatives e.g., X63-Ag8-653 cells available from the American Type Culture Collection, Manassas, Virginia, USA. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, J. Immunol... 133:3001 (1984); and Brodeur et al., Monoclonal Antibody Production Techniques and Applications, pp. 51-63 (Marcel Dekker, Inc., New York, 1987)).

Culture medium in which hybridoma cells are growing is assayed for production of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by hybridoma cells is determined by immunoprecipitation or by an *in vitro* binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunosorbent assay (ELISA).

The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis described in Munson et al., Anal_Bjochem., 107:220 (1980).

Once hybridoma cells that produce antibodies of the desired specificity, affinity, and/or activity are identified, the clones may be subcloned by limiting dilution procedures and grown by standard methods (Goding, Monoclonal Antibodies: Principles and Practice, pp.59-103 (Academic Press, 1986)). Suitable culture media for this purpose include, for example, D-MEM or RPMI-1640 medium. In addition, the hybridoma cells may be grown in vivo as ascites tumors in an animal e.g., by i.p. injection of the cells into mice.

The monoclonal antibodies secreted by the subclones are suitably separated from the culture medium, ascites fluid, or serum by conventional antibody purification procedures such as, for example, affinity chromatography (e.g., using protein A or protein G-Sepharose) or ion-exchange chromatography, hydroxylapatite chromatography, gel electrophoresis, dialysis, etc.

DNA encoding the monoclonal antibodies is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the

30

5

10

15

20

25

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

heavy and light chains of murine antibodies). The hybridoma cells serve as a preferred source of such DNA. Once isolated, the DNA may be placed into expression vectors, which are then transfected into host cells such as *E. coli* cells, simian COS cells, Chinese Hamster Ovary (CHO) cells, or myeloma cells that do not otherwise produce antibody protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. Review articles on recombinant expression in bacteria of DNA encoding the antibody include Skerra et al., Curr. Opinion in Immunol., 5:256-262 (1993) and Plückthun, Immunol. Revs. 130:151-188 (1992).

In a further embodiment, monoclonal antibodies or antibody fragments can be isolated from antibody phage libraries generated using the techniques described in McCafferty et al., Nature, 382:552-554 (1990). Clackson et al., Nature, 352:624-628 (1991) and Marks et al., J.Mol. Biol., 222:581-597 (1991) describe the isolation of murine and human antibodies, respectively, using phage libraries. Subsequent publications describe the production of high affinity (nM range) human antibodies by chain shuffling (Marks et al., Bio/Technology. 10:779-783 (1992)), as well as combinatorial infection and in vivo recombination as a strategy for constructing very large phage libraries (Waterhouse et al., Nuc. Acids. Res. 21:2265-2266 (1993)). Thus, these techniques are viable alternatives to traditional monoclonal antibody hybridoma techniques for isolation of monoclonal antibodies.

The DNA that encodes the antibody may be modified to produce chimeric or fusion antibody polypeptides, for example, by substituting human heavy chain and light chain constant domain (C _H and C_L) sequences for the homologous murine sequences (U.S. Patent No. 4,816,567; and Morrison, et al., <u>Proc. Natl Acad. Sci. USA</u>, 81:6851 (1984)), or by fusing the immunoglobulin coding sequence with all or part of the coding sequence for a non-immunoglobulin polypeptide (heterologous polypeptide). The non-immunoglobulin polypeptide sequences can substitute for the constant domains of an antibody, or they are substituted for the variable domains of one antigen-combining site of an antibody to create a chimeric bivalent antibody comprising one antigen-combining site having specificity for an antigen and another antigen-combining site having specificity for a different antigen.

Human and Humanized Antibodies

The anti-TAT antibodies of the invention may further comprise humanized antibodies or human antibodies. Humanized forms of non-human (e.g., murine) antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab') 2 or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. Humanized antibodies include human immunoglobulins (recipient antibody) in which residues from a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity. In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are

10

15

20

2.5

30

35

WO 2004/030615 PCT/US2003/028547

those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin [Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-329 (1988); and Presta, Curr. Op. Struct. Biol., 2:593-596 (1992)].

Methods for humanizing non-human antibodies are well known in the art. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as "import" residues, which are typically taken from an "import" variable domain. Humanization can be essentially performed following the method of Winter and eo-workers [Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)], by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such "humanized" antibodies are chimeric antibodies (U.S. Patent No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.

The choice of human variable domains, both light and heavy, to be used in making the humanized antibodies is very important to reduce antigenicity and HAMA response (human anti-mouse antibody) when the antibody is intended for human therapeutic use. According to the so-called 'best-fit' method, the sequence of the variable domain of a rodent antibody is screened against the entire library of known human variable domain sequences. The human V domain sequence which is closest to that of the rodent is identified and the human framework region (FR) within it accepted for the humanized antibody (Sims et al., I. Immunol. 151:2296 (1993); Chothia et al., I. Mol. Biol., 196:901 (1987)). Another method uses a particular framework region derived from the consensus sequence of all human antibodies of a particular suggroup of light or heavy chains. The same framework may be used for several different humanized antibodies (Carter et al., Proc. Natl. Acad. Sci. USA, 89:4285 (1992); Presta et al., I. Immunol. 151:2623 (1993)).

It is further important that antibodies be humanized with retention of high binding affinity for the antigen and other favorable biological properties. To achieve this goal, according to a preferred method, humanized antibodies are prepared by a process of analysis of the parental sequences and various conceptual humanized products using three-dimensional models of the parental and humanized sequences. Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art. Computer programs are available which illustrate and display probable three-dimensional conformations structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, i.e., the analysis of residues that influence the ability of the candidate immunoglobulin to bind its antigen. In this way, FR residues can be selected and combined from the recipient and import sequences so that the desired antibody characteristic, such as increased affinity for the target antigen(s), is achieved. In general, the hypervariable region residues are directly and most substantially involved in influencing antigen binding.

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

Various forms of a humanized anti-TAT antibody are contemplated. For example, the humanized antibody may be an antibody fragment, such as a Fab, which is optionally conjugated with one or more cytotoxic agent(s) in order to generate an immunoconjugate. Alternatively, the humanized antibody may be an intact antibody, such as an intact IgG1 antibody.

As an alternative to humanization, human antibodies can be generated. For example, it is now possible to produce transgenic animals (e.g., mice) that are capable, upon immunization, of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production. For example, it has been described that the homozygous deletion of the antibody heavy-chain joining region (I_H) gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production. Transfer of the human germ-line immunoglobulin gene array into such germ-line mutant mice will result in the production of human antibodies upon antigen challenge. See, e.g., Jakobovits et al., Proc. Natl. Acad. Sci. USA, 90:2551 (1993); Jakobovits et al., Nature, 362:255-258 (1993); Bruggemann et al., Year in Immuno. 7:33 (1993); U.S. Patent Nos. 5,545,806, 5,569,825, 5,591,669 (all of GenPharm); 5,545,807; and WO 97/17852.

Alternatively, phage display technology (McCafferty et al., Nature 348:552-553 [1990]) can be used to produce human antibodies and antibody fragments in vitro, from immunoglobulin variable (V) domain gene repertoires from unimmunized donors. According to this technique, antibody V domain genes are cloned inframe into either a major or minor coat protein gene of a filamentous bacteriophage, such as M13 or fd, and displayed as functional antibody fragments on the surface of the phage particle. Because the filamentous particle contains a single-stranded DNA copy of the phage genome, selections based on the functional properties of the antibody also result in selection of the gene encoding the antibody exhibiting those properties. Thus, the phage mimics some of the properties of the B-cell. Phage display can be performed in a variety of formats, reviewed in, e.g., Johnson, Kevin S. and Chiswell, David J., Current Opinion in Structural Biology 3:564-571 (1993). Several sources of V-gene segments can be used for phage display. Clackson et al. Nature 352:624-628 (1991) isolated a diverse array of anti-oxazolone antibodies from a small random combinatorial library of V genes derived from the spleens of immunized mice. A repertoire of V genes from unimmunized human donors can be constructed and antibodies to a diverse array of antigens (including self-antigens) can be isolated essentially following the techniques described by Marks et al., J. Mol. Biol, 222:581-597 (1991), or Griffith et al., EMBO J. 12:725-734 (1993). See, also, U.S. Patent Nos. 5,565,332 and 5,573,905.

As discussed above, human antibodies may also be generated by in vitro activated B cells (see U.S. Patents 5.567.610 and 5.229.275).

Antibody fragments

In certain circumstances there are advantages of using antibody fragments, rather than whole antibodies. The smaller size of the fragments allows for rapid clearance, and may lead to improved access to solid tumors.

Various techniques have been developed for the production of antibody fragments. Traditionally, these fragments were derived via proteolytic digestion of intact antibodies (see, e.g., Morimoto et al., <u>Journal of Biochemical and Biophysical Methods</u> 24:107-117 (1992); and Brennan et al., <u>Science</u>, 229:81 (1985)).

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

However, these fragments can now be produced directly by recombinant host cells. Fab, Fv and ScFv antibody fragments can all be expressed in and secreted from E. coll, thus allowing the facile production of large amounts of these fragments. Antibody fragments can be isolated from the antibody phage libraries discussed above. Alternatively, Fab'-SH fragments can be directly recovered from E. coll and chemically coupled to form F(ab')₂ fragments (Carter et al., Bio/Technology 10:163-167 (1992)). According to another approach, F(ab')₂ fragments can be isolated directly from recombinant host cell culture. Fab and F(ab')₂ fragment with increased in vivo half-life comprising a salvage receptor binding epitope residues are described in U.S. Patent No. 5,869,046. Other techniques for the production of antibody fragments will be apparent to the skilled practitioner. In other embodiments, the antibody of choice is a single chain Fv fragment (scFv). See WO 93/16185; U.S. Patent No. 5,571,894; and U.S. Patent No. 5,587,458. Fv and sFv are the only species with intact combining sites that are devoid of constant regions; thus, they are suitable for reduced nonspecific binding during in vivo use. sFv fusion proteins may be constructed to yield fusion of an effector protein at either the amino or the carboxy terminus of an sFv. See Antibody Engineering, ed. Borrebaeck, supra. The antibody fragments may also be a "linear antibody", e.g., as described in U.S. Patent 5,641,870 for example. Such linear antibody fragments may be monospecific or bispecific.

Bispecific Antibodies

Bispecific antibodies are antibodies that have binding specificities for at least two different epitopes. Exemplary bispecific antibodies may bind to two different epitopes of a TAT protein as described herein. Other such antibodies may combine a TAT binding site with a binding site for another protein. Alternatively, an anti-TAT arm may be combined with an arm which binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g. CD3), or Fc receptors for IgG (Fc γR), such as FcγRI (CD64), FcγRII (CD32) and FcγRIII (CD16), so as to focus and localize cellular defense mechanisms to the TAT-expressing cell. Bispecific antibodies may also be used to localize cytotoxic agents to cells which express TAT. These antibodies possess a TAT-binding arm and an arm which binds the cytotoxic agent (e.g., saporin, anti-interferon-α, vinca alkaloid, ricin A chain, methotrexate or radioactive isotope hapten). Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g., F(ab¹), bispecific antibodies).

WO 96/16673 describes a bispecific anti-ErbB2/anti-FcγRIII antibody and U.S. Patent No. 5,837,234 discloses a bispecific anti-ErbB2/anti-FcγRI antibody. A bispecific anti-ErbB2/Fc α antibody is shown in WO98/02463. U.S. Patent No. 5,821,337 teaches a bispecific anti-ErbB2/anti-CD3 antibody.

Methods for making bispecific antibodies are known in the art. Traditional production of full length bispecific antibodies is based on the co-expression of two immunoglobulin heavy chain-light chain pairs, where the two chains have different specificities (Millstein et al., Nature 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of 10 different antibody molecules, of which only one has the correct bispecific structure. Purification of the correct molecule, which is usually done by affinity chromatography steps, is rather cumbersome, and the product yields are low. Similar procedures are disclosed in WO 93/08829, and in Traunecker et al., EMBO L. 10:3655-3659 (1991).

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

According to a different approach, antibody variable domains with the desired binding specificities (antibody-antigen combining sites) are fused to immunoglobulin constant domain sequences. Preferably, the fusion is with an Ig heavy chain constant domain, comprising at least part of the hinge, $C_{H}2$, and $C_{H}3$ regions. It is preferred to have the first heavy-chain constant region ($C_{H}1$) containing the site necessary for light chain bonding, present in at least one of the fusions. DNAs encoding the immunoglobulin heavy chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host cell. This provides for greater flexibility in adjusting the mutual proportions of the three polypeptide fragments in embodiments when unequal ratios of the three polypeptide chains used in the construction provide the optimum yield of the desired bispecific antibody. It is, however, possible to insert the coding sequences for two or all three polypeptide chains into a single expression vector when the expression of at least two polypeptide chains in equal ratios results in high yields or when the ratios have no significant affect on the yield of the desired chain combination.

In a preferred embodiment of this approach, the bispecific antibodies are composed of a hybrid immunoglobulin heavy chain with a first binding specificity in one arm, and a hybrid immunoglobulin heavy chain-light chain pair (providing a second binding specificity) in the other arm. It was found that this asymmetric structure facilitates the separation of the desired bispecific compound from unwanted immunoglobulin chain combinations, as the presence of an immunoglobulin light chain in only one half of the bispecific molecule provides for a facile way of separation. This approach is disclosed in WO 94/04690. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology 121:210 (1986).

According to another approach described in U.S. Patent No. 5,731,168, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the C_H3 domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g., tyrosine or tryptophan). Compensatory "cavities" of identical or similar size to the large side chains (s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g., alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.

Bispecific antibodies include cross-linked or "heteroconjugate" antibodies. For example, one of the antibodies in the heteroconjugate can be coupled to avidin, the other to biotin. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Patent No. 4,676,980), and for treatment of HIV infection (WO 91/00360, WO 92/200373, and EP 03089). Heteroconjugate antibodies may be made using any convenient cross-linking methods. Suitable cross-linking agents are well known in the art, and are disclosed in U.S. Patent No. 4,676,980, along with a number of cross-linking techniques.

Techniques for generating bispecific antibodies from antibody fragments have also been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan et al., Science 229:81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

F(ab')₂ fragments. These fragments are reduced in the presence of the dithiol complexing agent, sodium arsenite, to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab' fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab'-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.

Recent progress has facilitated the direct recovery of Fab'-SH fragments from E. coli, which can be chemically coupled to form bispecific antibodies. Shalaby et al., <u>I. Exp. Med.</u> 175: 217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab')₂ molecule. Each Fab' fragment was separately secreted from E. coli and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.

Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., <u>I. Immunol.</u> 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The "diabody" technology described by Hollinger et al., <u>Proc. Natl. Acad. Sci. USA</u> 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a V_H connected to a V_L by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the V_H and V_L domains of one fragment are forced to pair with the complementary V_L and V_H domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See Gruber et al., <u>J. Immunol.</u> 152:5368 (1994).

Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al., <u>J. Immunol.</u> 147:60 (1991).

Heteroconjugate Antibodies

Heteroconjugate antibodies are also within the scope of the present invention. Heteroconjugate antibodies are composed of two covalently joined antibodies. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells [U.S. Patent No. 4,676,980], and for treatment of HIV infection [WO 91/00360; WO 92/200373; EP 03089]. It is contemplated that the antibodies may be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins may be constructed using a disulfide exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate and those disclosed, for example, in U.S. Patent No. 4,676,980.

Multivalent Antibodies

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

A multivalent antibody may be internalized (and/or catabolized) faster than a bivalent antibody by a cell expressing an antigen to which the antibodies bind. The antibodies of the present invention can be multivalent antibodies (which are other than of the IgM class) with three or more antigen binding sites (e.g. tetravalent antibodies), which can be readily produced by recombinant expression of nucleic acid encoding the polypeptide chains of the antibody. The multivalent antibody can comprise a dimerization domain and three or more antigen binding sites. The preferred dimerization domain comprises (or consists of) an Fc region or a hinge region. In this scenario, the antibody will comprise an Fc region and three or more antigen binding sites amino-terminal to the Fc region. The preferred multivalent antibody herein comprises (or consists of) three to about eight, but preferably four, antigen binding sites. The multivalent antibody comprises at least one polypeptide chain (and preferably two polypeptide chains), wherein the polypeptide chain(s) comprise two or more variable domains. For instance, the polypeptide chain(s) may comprise VD1-(X1) "-VD2-(X2),-Fc, wherein VD1 is a first variable domain. VD2 is a second variable domain, Fc is one polypeptide chain of an Fc region, X1 and X2 represent an amino acid or polypeptide, and n is 0 or 1. For instance, the polypeptide chain(s) may comprise: VH-CH1-flexible linker-VH-CH1-Fc region chain; or VH-CH1-VH-CH1-Fc region chain. The multivalent antibody herein preferably further comprises at least two (and preferably four) light chain variable domain polypeptides. The multivalent antibody herein may, for instance, comprise from about two to about eight light chain variable domain polypeptides. The light chain variable domain polypeptides contemplated here comprise a light chain variable domain and, optionally, further comprise a CL domain.

8. Effector Punction Engineering

It may be desirable to modify the antibody of the invention with respect to effector function, e.g., so as to enhance antigen-dependent cell-mediated cyotoxicity (ADCC) and/or complement dependent cytotoxicity (CDC) of the antibody. This may be achieved by introducing one or more amino acid substitutions in an Fe region of the antibody. Alternatively or additionally, cysteine residue(s) may be introduced in the Fe region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated may have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al. J. Exp Med., 176:1191-1195 (1992) and Shopes, B. J. Immunol., 148:2918-2922 (1992). Homodimeric antibodies with enhanced anti-tumor activity may also be prepared using heterobifunctional cross-linkers as described in Wolff et al., Cancer Research 53:2560-2565 (1993). Alternatively, an antibody can be engineered which has dual Fe regions and may thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al., Anti-Cancer Drug Design 3:219-230 (1989).

To increase the serum half life of the antibody, one may incorporate a salvage receptor binding epitope

To increase the serum half life of the antibody, one may incorporate a salvage receptor binding epitope into the antibody (especially an antibody fragment) as described in U.S. Patent 5,739,277, for example. As used herein, the term "salvage receptor binding epitope" refers to an epitope of the Fc region of an IgG molecule (e.g., IgG₁, IgG₂, IgG₃, or IgG₄) that is responsible for increasing the *in vivo* serum half-life of the IgG molecule.

Immunoconjugates

The invention also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

agent such as a chemotherapeutic agent, a growth inhibitory agent, a toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioacniugate).

Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes. A variety of radionuclides are available for the production of radioconjugated antibodies. Examples include 212Bi. 131I. 131 In. 90 Y. and 186 Re. Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT). bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2.6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science, 238: 1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026.

Conjugates of an antibody and one or more small molecule toxins, such as a calicheamicin, maytansinoids, a trichothene, and CC1065, and the derivatives of these toxins that have toxin activity, are also contemplated herein.

Maytansine and maytansinoids

In one preferred embodiment, an anti-TAT antibody (full length or fragments) of the invention is conjugated to one or more maytansinoid molecules.

Maytansinoids are mitototic inhibitors which act by inhibiting tubulin polymerization. Maytansine was first isolated from the east African shrub Maytenus serrata (U.S. Patent No. 3,896,111). Subsequently, it was discovered that certain microbes also produce maytansinoids, such as maytansinol and C-3 maytansinol error (U.S. Patent No. 4,151,042). Synthetic maytansinol and derivatives and analogues thereof are disclosed, for example, in U.S. Patent Nos. 4,137,230; 4,248,870; 4,256,746; 4,260,608; 4,265,814; 4,294,757; 4,307,016; 4,308,268; 4,308,269; 4,309,428; 4,313,946; 4,315,929; 4,317,821; 4,322,348; 4,331,598; 4,361,650; 4,364,866; 4,424,219; 4,450,254; 4,362,663; and 4,371,533, the disclosures of which are hereby expressly incorporated by reference.

Maytansinoid-antibody conjugates

In an attempt to improve their therapeutic index, maytansine and maytansinoids have been conjugated to antibodies specifically binding to tumor cell antigens. Immunoconjugates containing maytansinoids and their therapeutic use are disclosed, for example, in U.S. Patent Nos. 5,208,020, 5,416,064 and European Patent EP

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

0 425 235 B1, the disclosures of which are hereby expressly incorporated by reference. Liu et al., Proc. Natl. Acad. Sci. USA 93:8618-8623 (1996) described immunoconjugates comprising a maytansinoid designated DM1 linked to the monoclonal antibody C242 directed against human colorectal cancer. The conjugate was found to be highly cytotoxic towards cultured colon cancer cells, and showed antitumor activity in an in vivo tumor growth assay. Chari et al., Cancer Research 52:127-131 (1992) describe immunoconjugates in which a maytansinoid was conjugated via a disulfide linker to the murine antibody A7 binding to an antigen on human colon cancer cell lines, or to another murine monoclonal antibody TA.1 that binds the HER-2/neu oncogene. The cytotoxicity of the TA.1-maytansonoid conjugate was tested in vitro on the human breast cancer cell line SK-BR-3, which expresses 3 x 10⁵ HER-2 surface antigens per cell. The drug conjugate achieved a degree of cytotoxicity similar to the free maytansonid drug, which could be increased by increasing the number of maytansinoid molecules per antibody molecule. The A7-maytansinoid conjugate showed low systemic cytotoxicity in mice.

Anti-TAT polypeptide antibody-maytansinoid conjugates (immunoconjugates)

Anti-TAT antibody-maytansinoid conjugates are prepared by chemically linking an anti-TAT antibody to a maytansinoid molecule without significantly diminishing the biological activity of either the antibody or the maytansinoid molecule. An average of 3-4 maytansinoid molecules conjugated per antibody molecule has shown efficacy in enhancing cytotoxicity of target cells without negatively affecting the function or solubility of the antibody, although even one molecule of toxin/antibody would be expected to enhance cytotoxicity or the use of naked antibody. Maytansinoids are well known in the art and can be synthesized by known techniques or isolated from natural sources. Suitable maytansinoids are disclosed, for example, in U.S. Patent No. 5,208,020 and in the other patents and nonpatent publications referred to hereinabove. Preferred maytansinoids are maytansinol and maytansinol analogues modified in the aromatic ring or at other positions of the maytansinol molecule, such as various maytansinol esters.

There are many linking groups known in the art for making antibody-maytansinoid conjugates, including, for example, those disclosed in U.S. Patent No. 5,208,020 or EP Patent 0 425 235 B1, and Chari et al., <u>Cancer Research</u> 52:127-131 (1992). The linking groups include disufide groups, thioether groups, acid labile groups, photolabile groups, peptidase labile groups, or esterase labile groups, as disclosed in the above-identified patents, disulfide and thioether groups being preferred.

Conjugates of the antibody and maytansinoid may be made using a variety of bifunctional protein coupling agents such as N-succinimidyl-3-(2-pyridyldithio) propionate (SPDP), succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate, iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as toluene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). Particularly preferred coupling agents include N-succinimidyl-3-(2-pyridyldithio) propionate (SPDP) (Carlsson et al. <u>Biochem. J.</u> 173:723-737 [1978]) and N-succinimidyl-4-(2-pyridyldithio)pentanoate (SPP) to provide for a disulfide linkage.

The linker may be attached to the maytansinoid molecule at various positions, depending on the type of the link. For example, an ester linkage may be formed by reaction with a hydroxyl group using conventional coupling techniques. The reaction may occur at the C-3 position having a hydroxyl group, the C-14 position modified with hydroxymethyl, the C-15 position modified with a hydroxyl group, and the C-20 position having a hydroxyl group. In a preferred embodiment, the linkage is formed at the C-3 position of maytansinol or a maytansinol analogue.

Calicheamicin

5

10

15

20

25

30

35

Another immunoconjugate of interest comprises an anti-TAT antibody conjugated to one or more calicheamicin molecules. The calicheamicin family of antibiotics are capable of producing double-stranded DNA breaks at sub-picomolar concentrations. For the preparation of conjugates of the calicheamicin family, see U.S. patents 5,712,374, 5,714,586, 5,793,116, 5,767,285, 5,770,701, 5,770,701, 5,773,001, 5,877,296 (all to American Cyanamid Company). Structural analogues of calicheamicin which may be used include, but are not limited to, γ_1^1 , α_2^1 , α_3^1 , N-acetyl- γ_1^1 , PSAG and θ^1 (Himman et al., Cancer Research 53:3336-3342 (1993), Lode et al., Cancer Research 58:2925-2928 (1998) and the aforementioned U.S. patents to American Cyanamid). Another anti-tumor drug that the antibody can be conjugated is QFA which is an antifolate. Both calicheamicin and QFA have intracellular sites of action and do not readily cross the plasma membrane. Therefore, cellular uptake of these agents through antibody mediated internalization greatly enhances their cytotoxic effects.

Other cytotoxic agents

Other antitumor agents that can be conjugated to the anti-TAT antibodies of the invention include BCNU, streptozoicin, vincristine and 5-fluorouracil, the family of agents known collectively LL-E33288 complex described in U.S. patents 5,053,394, 5,770,710, as well as esperamicins (U.S. patent 5,877,296).

Enzymatically active toxins and fragments thereof which can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin and the tricothecenes. See, for example, WO 93/21232 published October 28, 1993.

The present invention further contemplates an immunoconjugate formed between an antibody and a compound with nucleolytic activity (e.g., a ribonuclease or a DNA endonuclease such as a deoxyribonuclease; DNase).

For selective destruction of the tumor, the antibody may comprise a highly radioactive atom. A variety of radioactive isotopes are available for the production of radioconjugated anti-TAT antibodies. Examples include At²¹¹, I¹³¹, I¹²⁵, V⁹⁰, Re¹⁸⁶, Re¹⁸⁸, Sm¹⁵³, Bi²¹², P⁵², Pb²¹² and radioactive isotopes of Lu. When the conjugate is used for diagnosis, it may comprise a radioactive atom for scintigraphic studies, for example te^{99m} or I¹²³, or a spin label for nuclear magnetic resonance (NMR) imaging (also known as magnetic resonance

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

imaging, mri), such as iodine-123 again, iodine-131, indium-111, fluorine-19, carbon-13, nitrogen-15, oxygen-17, gadolinium, manganese or iron.

The radio- or other labels may be incorporated in the conjugate in known ways. For example, the peptide may be biosynthesized or may be synthesized by chemical amino acid synthesis using suitable amino acid precursors involving, for example, fluorine-19 in place of hydrogen. Labels such as to^{59m} or I¹²³, .Re¹⁸⁶, Re¹⁸⁸ and In¹¹¹ can be attached via a cysteine residue in the peptide. Yttrium-90 can be attached via a lysine residue. The IODOGEN method (Fraker et al (1978) Biochem. Biophys. Res. Commun. 80: 49-57 can be used to incorporate iodine-123. "Monoclonal Antibodies in Immunoscintigraphy" (Chatal, CRC Press 1989) describes other methods in detail.

Conjugates of the antibody and cytotoxic agent may be made using a variety of bifunctional protein coupling agents such as N-succinimidyl-3-(2-pyridyldithio) propionate (SPDP), succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate, iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxi active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026. The linker may be a "cleavable linker" facilitating release of the cytotoxic drug in the cell. For example, an acid-labile linker, peptidase-sensitive linker, photolabile linker, dimethyl linker or disulfide-containing linker (Chari et al., Cancer Research 52:127-131 (1992); U.S. Patent No. 5,208,020) may be used.

Alternatively, a fusion protein comprising the anti-TAT antibody and cytotoxic agent may be made, e.g., by recombinant techniques or peptide synthesis. The length of DNA may comprise respective regions encoding the two portions of the conjugate either adjacent one another or separated by a region encoding a linker peptide which does not destroy the desired properties of the conjugate.

In yet another embodiment, the antibody may be conjugated to a "receptor" (such streptavidin) for utilization in tumor pre-targeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a "ligand" (e.g., avidin) which is conjugated to a cytotoxic agent (e.g., a radionucleotide).

Immunoliposomes

The anti-TAT antibodies disclosed herein may also be formulated as immunoliposomes. A "liposome" is a small vesicle composed of various types of lipids, phospholipids and/or surfactant which is useful for delivery of a drug to a mammal. The components of the liposome are commonly arranged in a bilayer formation, similar to the lipid arrangement of biological membranes. Liposomes containing the antibody are prepared by methods known in the art, such as described in Epstein et al., <u>Proc. Natl. Acad. Sci. USA</u> 82:3688 (1985); Hwang et al., <u>Proc. Natl. Acad. Sci. USA</u> 77:4030 (1980); U.S. Pat. Nos. 4,485,045 and 4,544,545;

and WO97/38731 published October 23, 1997. Liposomes with enhanced circulation time are disclosed in U.S. Patent No. 5,013,556.

Particularly useful liposomes can be generated by the reverse phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol and PEG-derivatized phosphatidylchanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter. Fab' fragments of the antibody of the present invention can be conjugated to the liposomes as described in Martin et al., <u>J. Biol. Chem.</u> 257:286-288 (1982) via a disulfide interchange reaction. A chemotherapeutic agent is optionally contained within the liposome. See Gabizon et al., <u>J. National Cancer Inst.</u> 81(19):1484 (1989).

B. TAT Binding Oligopeptides

5

10

15

20

25

30

35

TAT binding oligopeptides of the present invention are oligopeptides that bind, preferably specifically. to a TAT polypeptide as described herein. TAT binding oligopeptides may be chemically synthesized using known oligopeptide synthesis methodology or may be prepared and purified using recombinant technology. TAT binding oligopeptides are usually at least about 5 amino acids in length, alternatively at least about 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100 amino acids in length or more, wherein such oligopeptides that are capable of binding, preferably specifically, to a TAT polypeptide as described herein. TAT binding oligopeptides may be identified without undue experimentation using well known techniques. In this regard, it is noted that techniques for screening oligopeptide libraries for oligopeptides that are capable of specifically binding to a polypeptide target are well known in the art (see, e.g., U.S. Patent Nos. 5,556,762, 5,750,373, 4,708,871, 4,833,092, 5,223,409, 5,403,484, 5,571,689, 5,663,143; PCT Publication Nos. WO 84/03506 and WO84/03564; Geysen et al., Proc. Natl. Acad. Sci. U.S.A., 81:3998-4002 (1984); Geysen et al., Proc. Natl. Acad. Sci. U.S.A., 82:178-182 (1985); Geysen et al., in Synthetic Peptides as Antigens, 130-149 (1986); Geysen et al., J. Immunol. Meth., 102:259-274 (1987); Schoofs et al., J. Immunol., 140:611-616 (1988), Cwirla, S. E. et al. (1990) Proc. Natl. Acad. Sci. USA, 87:6378; Lowman, H.B. et al. (1991) Biochemistry, 30:10832; Clackson, T. et al. (1991) Nature, 352: 624; Marks, J. D. et al. (1991), J. Mol. Biol., 222:581; Kang, A.S. et al. (1991) Proc. Natl. Acad. Sci. USA, 88:8363, and Smith, G. P. (1991) Current Opin. Biotechnol., 2:668).

In this regard, bacteriophage (phage) display is one well known technique which allows one to screen large oligopeptide libraries to identify member(s) of those libraries which are capable of specifically binding to a polypeptide target. Phage display is a technique by which variant polypeptides are displayed as fusion proteins to the coat protein on the surface of bacteriophage particles (Scott, J.K. and Smith, G. P. (1990) Science 249: 386). The utility of phage display lies in the fact that large libraries of selectively randomized protein variants (or randomly cloned cDNAs) can be rapidly and efficiently sorted for those sequences that bind to a target molecule with high affinity. Display of peptide (Cwirla, S. E. et al. (1990) Proc. Natl. Acad. Sci.

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

USA, 87:6378) or protein (Lowman, H.B. et al. (1991) Biochemistry, 30:10832; Clackson, T. et al. (1991) Nature, 352: 624; Marks, J. D. et al. (1991), J. Mol. Biol., 222:581; Kang, A.S. et al. (1991) Proc. Natl. Acad. Sci. USA, 88:8363) libraries on phage have been used for screening millions of polypeptides or oligopeptides for ones with specific binding properties (Smith, G. P. (1991) Current Opin. Biotechnol., 2:668). Sorting phage libraries of random mutants requires a strategy for constructing and propagating a large number of variants, a procedure for affinity purification using the target receptor, and a means of evaluating the results of binding enrichments. U.S. Patent Nos. 5,223,409, 5,403,484, 5,571,689, and 5,663,143.

Although most phage display methods have used filamentous phage, lambdoid phage display systems (WO 95/34683; U.S. 5,627,024), T4 phage display systems (Ren, Z-J. et al. (1998) Gene 215:439; Zhu, Z. (1997) CAN 33:534; Jiang, J. et al. (1997) can 128:44380; Ren, Z-J. et al. (1997) CAN 127:215644; Ren, Z-J. (1996) Protein Sci. 5:1833; Efimov, V. P. et al. (1995) Virus Genes 10:173) and T7 phage display systems (Smith, G. P. and Scott, J.K. (1993) Methods in Enzymology, 217, 228-257; U.S. 5,766,905) are also known.

Many other improvements and variations of the basic phage display concept have now been developed. These improvements enhance the ability of display systems to screen peptide libraries for binding to selected target molecules and to display functional proteins with the potential of screening these proteins for desired properties. Combinatorial reaction devices for phage display reactions have been developed (WO 98/14277) and phage display libraries have been used to analyze and control bimolecular interactions (WO 98/20169; WO 98/20159) and properties of constrained helical peptides (WO 98/20036). WO 97/35196 describes a method of isolating an affinity ligand in which a phage display library is contacted with one solution in which the ligand will bind to a target molecule and a second solution in which the affinity ligand will not bind to the target molecule, to selectively isolate binding ligands. WO 97/46251 describes a method of biopanning a random phage display library with an affinity purified antibody and then isolating binding phage, followed by a micropanning process using microplate wells to isolate high affinity binding phage. The use of Staphbylococcus aureus protein A as an affinity tag has also been reported (Li et al. (1998) Mol Biotech., 9:187). WO 97/47314 describes the use of substrate subtraction libraries to distinguish enzyme specificities using a combinatorial library which may be a phage display library. A method for selecting enzymes suitable for use in detergents using phage display is described in WO 97/09446. Additional methods of selecting specific binding proteins are described in U.S. Patent Nos. 5,498,538, 5,432,018, and WO 98/15833.

Methods of generating peptide libraries and screening these libraries are also disclosed in U.S. Patent Nos. 5,723,286, 5,432,018, 5,580,717, 5,427,908, 5,498,530, 5,770,434, 5,734,018, 5,698,426, 5,763,192, and 5,723,323.

C. TAT Binding Organic Molecules

TAT binding organic molecules are organic molecules other than oligopeptides or antibodies as defined herein that bind, preferably specifically, to a TAT polypeptide as described herein. TAT binding organic molecules may be identified and chemically synthesized using known methodology (see, e.g., PCT Publication Nos. WO00/00823 and WO00/39585). TAT binding organic molecules are usually less than about 2000 daltons in size, alternatively less than about 1500, 750, 500, 250 or 200 daltons in size, wherein such organic molecules

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

that are capable of binding, preferably specifically, to a TAT polypeptide as described herein may be identified without undue experimentation using well known techniques. In this regard, it is noted that techniques for screening organic molecule libraries for molecules that are capable of binding to a polypeptide target are well known in the art (see, e.g., PCT Publication Nos. WOO0/00823 and WOO0/39585). TAT binding organic molecules may be, for example, aldehydes, ketones, oximes, hydrazones, semicarbazones, carbazides, primary amines, secondary amines, tertiary amines, N-substituted hydrazines, hydrazides, alcohols, ethers, thiosthiochers, disulfides, carboxylic acids, esters, amides, ureas, carbamates, carbonates, ketals, thioketals, acetals, thioacetals, aryl halides, aryl sulfonates, alkyl halides, alkyl sulfonates, aromatic compounds, heterocyclic compounds, anilines, alkenes, alkynes, diols, amino alcohols, oxazolidines, oxazolines, thiazolidines, thiazolines, enamines, sulfonamides, epoxides, aziridines, isocyanates, sulfonyl chlorides, diazo compounds, acid chlorides, or the like.

D. <u>Screening for Anti-TAT Antibodies, TAT Binding Oligopeptides and TAT Binding Organic</u> <u>Molecules With the Desired Properties</u>

Techniques for generating antibodies, oligopeptides and organic molecules that bind to TAT polypeptides have been described above. One may further select antibodies, oligopeptides or other organic molecules with certain biological characteristics, as desired.

The growth inhibitory effects of an anti-TAT antibody, oligopeptide or other organic molecule of the invention may be assessed by methods known in the art, e.g., using cells which express a TAT polypeptide either endogenously or following transfection with the TAT gene. For example, appropriate tumor cell lines and TAT-transfected cells may treated with an anti-TAT monoclonal antibody, oligopeptide or other organic molecule of the invention at various concentrations for a few days (e.g., 2-7) days and stained with crystal violet or MTT or analyzed by some other colorimetric assay. Another method of measuring proliferation would be by comparing 3H-thymidine uptake by the cells treated in the presence or absence an anti-TAT antibody, TAT binding oligopeptide or TAT binding organic molecule of the invention. After treatment, the cells are harvested and the amount of radioactivity incorporated into the DNA quantitated in a scintillation counter. Appropriate positive controls include treatment of a selected cell line with a growth inhibitory antibody known to inhibit growth of that cell line. Growth inhibition of tumor cells in vivo can be determined in various ways known in the art. Preferably, the tumor cell is one that overexpresses a TAT polypeptide. Preferably, the anti-TAT antibody, TAT binding oligopeptide or TAT binding organic molecule will inhibit cell proliferation of a TATexpressing tumor cell in vitro or in vivo by about 25-100% compared to the untreated tumor cell, more preferably, by about 30-100%, and even more preferably by about 50-100% or 70-100%, in one embodiment, at an antibody concentration of about 0.5 to 30 µg/ml. Growth inhibition can be measured at an antibody concentration of about 0.5 to 30 µg/ml or about 0.5 nM to 200 nM in cell culture, where the growth inhibition is determined 1-10 days after exposure of the tumor cells to the antibody. The antibody is growth inhibitory in vivo if administration of the anti-TAT antibody at about 1 µg/kg to about 100 mg/kg body weight results in reduction in tumor size or reduction of tumor cell proliferation within about 5 days to 3 months from the first administration of the antibody, preferably within about 5 to 30 days.

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

To select for an anti-TAT antibody, TAT binding oligopeptide or TAT binding organic molecule which induces cell death, loss of membrane integrity as indicated by, e.g., propidium iodide (PI), trypan blue or 7AAD uptake may be assessed relative to control. A PI uptake assay can be performed in the absence of complement and immune effector cells. TAT polypeptide-expressing tumor cells are incubated with medium alone or medium containing the appropriate anti-TAT antibody (e.g. at about 10 µg/ml), TAT binding oligopeptide or TAT binding organic molecule. The cells are incubated for a 3 day time period. Following each treatment, cells are washed and aliquoted into 35 mm strainer-capped 12 x 75 tubes (1ml per tube, 3 tubes per treatment group) for removal of cell clumps. Tubes then receive PI (10 µg/ml). Samples may be analyzed using a FACSCAN® flowcytometer and FACSCONVERT® CellQuest software (Becton Dickinson). Those anti-TAT antibodies, TAT binding oligopeptides or TAT binding organic molecules that induce statistically significant levels of cell death as determined by PI uptake may be selected as cell death-inducing anti-TAT antibodies, TAT binding oligopeptides or TAT binding organic molecules.

To screen for antibodies, oligopeptides or other organic molecules which bind to an epitope on a TAT polypeptide bound by an antibody of interest, a routine cross-blocking assay such as that described in Antibodies.A Laboratory Manual. Cold Spring Harbor Laboratory, Ed Harlow and David Lane (1988), can be performed. This assay can be used to determine if a test antibody, oligopeptide or other organic molecule binds the same site or epitope as a known anti-TAT antibody. Alternatively, or additionally, epitope mapping can be performed by methods known in the art. For example, the antibody sequence can be mutagenized such as by alanine scanning, to identify contact residues. The mutant antibody is initially tested for binding with polyclonal antibody ensure proper folding. In a different method, peptides corresponding to different regions of a TAT polypeptide can be used in competition assays with the test antibodies or with a test antibody and an antibody with a characterized or known epitope.

E. Antibody Dependent Enzyme Mediated Prodrug Therapy (ADEPT)

The antibodies of the present invention may also be used in ADEPT by conjugating the antibody to a prodrug-activating enzyme which converts a prodrug (e.g., a peptidyl chemotherapeutic agent, see WO81/01145) to an active anti-cancer drug. See, for example, WO 88/07378 and U.S. Patent No. 4,975,278.

The enzyme component of the immunoconjugate useful for ADEPT includes any enzyme capable of acting on a prodrug in such a way so as to covert it into its more active, cytotoxic form.

Enzymes that are useful in the method of this invention include, but are not limited to, alkaline phosphatase useful for converting phosphate-containing prodrugs into free drugs; arylsulfatase useful for converting sulfate-containing prodrugs into free drugs; cytosine deaminase useful for converting non-toxic 5-fluorocytosine into the anti-cancer drug, 5-fluorocytosine leaminase useful for converting non-toxic subtilisin, carboxypeptidases and cathepsins (such as cathepsins B and L), that are useful for converting peptide-containing prodrugs into free drugs; D-alanylcarboxypeptidases, useful for converting prodrugs that contain D-amino acid substituents; carbohydrate-cleaving enzymes such as β-galactosidase and neuraminidase useful for converting glycosylated prodrugs into free drugs; β-lactamase useful for converting drugs derivatized with β-lactams into free drugs; and penicillin amidases, such as penicillin V amidase or penicillin G amidase, useful

for converting drugs derivatized at their amine nitrogens with phenoxyacetyl or phenylacetyl groups, respectively, into free drugs. Alternatively, antibodies with enzymatic activity, also known in the art as "abzymes", can be used to convert the prodrugs of the invention into free active drugs (see, e.g., Massey, Nature 328:457-458 (1987)). Antibody-abzyme conjugates can be prepared as described herein for delivery of the abzyme to a tumor cell population.

5

The enzymes of this invention can be covalently bound to the anti-TAT antibodies by techniques well known in the art such as the use of the heterobifunctional crosslinking reagents discussed above. Alternatively, fusion proteins comprising at least the antigen binding region of an antibody of the invention linked to at least a functionally active portion of an enzyme of the invention can be constructed using recombinant DNA techniques well known in the art (see, e.g., Neuberger et al., Nature 312:604-608 (1984).

10

F. Full-Length TAT Polypeptides

The present invention also provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as TAT polypeptides. In particular, cDNAs (partial and full-length) encoding various TAT polypeptides have been identified and isolated, as disclosed in further detail in the Examples below.

15

As disclosed in the Examples below, various cDNA clones have been deposited with the ATCC. The actual nucleotide sequences of those clones can readily be determined by the skilled artisan by sequencing of the deposited clone using routine methods in the art. The predicted amino acid sequence can be determined from the nucleotide sequence using routine skill. For the TAT polypeptides and encoding nucleic acids described herein, in some cases, Applicants have identified what is believed to be the reading frame best identifiable with the sequence information available at the time.

20

G. Anti-TAT Antibody and TAT Polypeptide Variants

25

In addition to the anti-TAT antibodies and full-length native sequence TAT polypeptides described herein, it is contemplated that anti-TAT antibody and TAT polypeptide variants can be prepared. Anti-TAT antibody and TAT polypeptide variants can be prepared by introducing appropriate nucleotide changes into the encoding DNA, and/or by synthesis of the desired antibody or polypeptide. Those skilled in the art will appreciate that amino acid changes may alter post-translational processes of the anti-TAT antibody or TAT polypeptide, such as changing the number or position of glycosylation sites or altering the membrane anchoring characteristics.

30

Variations in the anti-TAT antibodies and TAT polypeptides described herein, can be made, for example, using any of the techniques and guidelines for conservative and non-conservative mutations set forth, for instance, in U.S. Patent No. 5,364,934. Variations may be a substitution, deletion or insertion of one or more codons encoding the antibody or polypeptide that results in a change in the amino acid sequence as compared with the native sequence antibody or polypeptide. Optionally the variation is by substitution of at least one amino acid with any other amino acid in one or more of the domains of the anti-TAT antibody or TAT polypeptide. Guidance in determining which amino acid residue may be inserted, substituted or deleted without adversely affecting the desired activity may be found by comparing the sequence of the anti-TAT antibody or

10

15

20

WO 2004/030615 PCT/US2003/028547

TAT polypeptide with that of homologous known protein molecules and minimizing the number of amino acid sequence changes made in regions of high homology. Amino acid substitutions can be the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, such as the replacement of a leucine with a serine, i.e., conservative amino acid replacements. Insertions or deletions may optionally be in the range of about 1 to 5 amino acids. The variation allowed may be determined by systematically making insertions, deletions or substitutions of amino acids in the sequence and testing the resulting variants for activity exhibited by the full-length or mature native sequence.

Anti-TAT antibody and TAT polypeptide fragments are provided herein. Such fragments may be truncated at the N-terminus or C-terminus, or may lack internal residues, for example, when compared with a full length native antibody or protein. Certain fragments lack amino acid residues that are not essential for a desired biological activity of the anti-TAT antibody or TAT polypeptide.

Anti-TAT antibody and TAT polypeptide fragments may be prepared by any of a number of conventional techniques. Desired peptide fragments may be chemically synthesized. An alternative approach involves generating antibody or polypeptide fragments by enzymatic digestion, e.g., by treating the protein with an enzyme known to cleave proteins at sites defined by particular amino acid residues, or by digesting the DNA with suitable restriction enzymes and isolating the desired fragment. Yet another suitable technique involves isolating and amplifying a DNA fragment encoding a desired antibody or polypeptide fragment, by polymerase chain reaction (PCR). Oligonucleotides that define the desired termini of the DNA fragment are employed at the 5' and 3' primers in the PCR. Preferably, anti-TAT antibody and TAT polypeptide fragments share at least one biological and/or immunological activity with the native anti-TAT antibody or TAT polypeptide disclosed herein.

In particular embodiments, conservative substitutions of interest are shown in Table 6 under the heading of preferred substitutions. If such substitutions result in a change in biological activity, then more substantial changes, denominated exemplary substitutions in Table 6, or as further described below in reference to amino acid classes, are introduced and the products screened.

PCT/US2003/028547

		Table 6	
	Original	Exemplary	Preferred
	Residue	Substitutions	Substitutions
		•	
	Ala (A)	val; leu; ile	val
5	Arg (R)	lys; gln; asn	lys
	Asn (N)	gln; his; lys; arg	gln
	Asp (D)	glu .	glu
	Cys (C)	ser	ser
	Gln (Q)	asn	asn
10	Glu (E)	asp	asp
	Gly (G)	pro; ala	ala
	His (H)	asn; gln; lys; arg	arg
	Ile (I)	leu; val; met; ala; phe;	
		norleucine	leu
15	Leu (L)	norleucine; ile; val;	
		met; ala; phe	ile
	Lys (K)	arg; gln; asn	arg
	Met (M)	leu; phe; ile	leu
	Phe (F)	leu; val; ile; ala; tyr	leu
20	Pro (P)	ala	ala
	Ser (S)	thr	thr
	Thr (T)	ser	ser
	Trp (W)	tyr; phe	tyr
	Tyr (Y)	trp; phe; thr; ser	phe
25	Val (V)	ile; leu; met; phe;	
		ala; norleucine	leu

Substantial modifications in function or immunological identity of the anti-TAT antibody or TAT polypeptide are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. Naturally occurring residues are divided into groups based on common side-chain properties:

- (1) hydrophobic: norleucine, met, ala, val, leu, ile;
- (2) neutral hydrophilic: cys, ser, thr;
- (3) acidic: asp, glu;

30

35

40

- (4) basic: asn, gln, his, lys, arg;
- (5) residues that influence chain orientation: gly, pro; and
- (6) aromatic: trp, tyr, phe.

Non-conservative substitutions will entail exchanging a member of one of these classes for another class. Such substituted residues also may be introduced into the conservative substitution sites or, more preferably, into the remaining (non-conserved) sites.

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

The variations can be made using methods known in the art such as oligonucleotide-mediated (site-directed) mutagenesis, alanine scanning, and PCR mutagenesis. Site-directed mutagenesis [Carter et al., Nucl. Acids Res., 12:4331 (1986); Zoller et al., Nucl. Acids Res., 10:6487 (1987)], cassette mutagenesis [Wells et al., Gene, 34:315 (1985)], restriction selection mutagenesis [Wells et al., Philos, Trans. R. Soc. London SerA. 317:415 (1986)] or other known techniques can be performed on the cloned DNA to produce the anti-TAT antibody or TAT polypeptide variant DNA.

Scanning amino acid analysis can also be employed to identify one or more amino acids along a contiguous sequence. Among the preferred scanning amino acids are relatively small, neutral amino acids. Such amino acids include alanine, glycine, serine, and cysteine. Alanine is typically a preferred scanning amino acid among this group because it eliminates the side-chain beyond the beta-carbon and is less likely to alter the main-chain conformation of the variant [Cunningham and Wells, Science, 244:1081-1085 (1989)]. Alanine is also typically preferred because it is the most common amino acid. Further, it is frequently found in both buried and exposed positions [Creighton, The Proteins, (W.H. Freeman & Co., N.Y.); Chothia, J. Mol. Biol., 150:1 (1976)]. If alanine substitution does not yield adequate amounts of variant, an isoteric amino acid can be used.

Any cysteine residue not involved in maintaining the proper conformation of the anti-TAT antibody or TAT polypeptide also may be substituted, generally with serine, to improve the oxidative stability of the molecule and prevent aberrant crosslinking. Conversely, cysteine bond(s) may be added to the anti-TAT antibody or TAT polypeptide to improve its stability (particularly where the antibody is an antibody fragment such as an Fv fragment).

A particularly preferred type of substitutional variant involves substituting one or more hypervariable region residues of a parent antibody (e.g., a humanized or human antibody). Generally, the resulting variant(s) selected for further development will have improved biological properties relative to the parent antibody from which they are generated. A convenient way for generating such substitutional variants involves affinity maturation using phage display. Briefly, several hypervariable region sites (e.g., 6-7 sites) are mutated to generate all possible amino substitutions at each site. The antibody variants thus generated are displayed in a monovalent fashion from filamentous phage particles as fusions to the gene III product of M13 packaged within each particle. The phage-displayed variants are then screened for their biological activity (e.g., binding affinity) as herein disclosed. In order to identify candidate hypervariable region sites for modification, alanine scanning mutagenesis can be performed to identify hypervariable region residues contributing significantly to antigen binding. Alternatively, or additionally, it may be beneficial to analyze a crystal structure of the antigen-antibody complex to identify contact points between the antibody and human TAT polypeptide. Such contact residues and neighboring residues are candidates for substitution according to the techniques elaborated herein. Once such variants are generated, the panel of variants is subjected to screening as described herein and antibodies with superior properties in one or more relevant assays may be selected for further development.

Nucleic acid molecules encoding amino acid sequence variants of the anti-TAT antibody are prepared by a variety of methods known in the art. These methods include, but are not limited to, isolation from a natural source (in the case of naturally occurring amino acid sequence variants) or preparation by oligonucleotide-

10

15

20

25

30

WO 2004/030615 PCT/US2003/028547

mediated (or site-directed) mutagenesis, PCR mutagenesis, and cassette mutagenesis of an earlier prepared variant or a non-variant version of the anti-TAT antibody.

H. Modifications of Anti-TAT Antibodies and TAT Polypeptides

Covalent modifications of anti-TAT antibodies and TAT polypeptides are included within the scope of this invention. One type of covalent modification includes reacting targeted amino acid residues of an anti-TAT antibody or TAT polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or the N- or C- terminal residues of the anti-TAT antibody or TAT polypeptide. Derivatization with bifunctional agents is useful, for instance, for crosslinking anti-TAT antibody or TAT polypeptide to a water-insoluble support matrix or surface for use in the method for purifying anti-TAT antibodies, and vice-versa. Commonly used crosslinking agents include, e.g., 1,1-bis(diazoactyl)-2-phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, for example, esters with 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3'-dithiobis(succinimidyl)propionate), bifunctional maleimides such as bis-N-maleimido-1,8-octane and agents such as methyl-3-[(p-azidophenyl)dithio]propioimidate.

Other modifications include deamidation of glutaminyl and asparaginyl residues to the corresponding glutamyl and aspartyl residues, respectively, hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl or threonyl residues, methylation of the α -amino groups of lysine, arginine, and histidine side chains [T.E. Creighton, Proteins: Structure and Molecular Properties, W.H. Freeman & Co., San Francisco, pp. 79-86 (1983)], acetylation of the N-terminal amine, and amidation of any C-terminal carboxyl group.

Another type of covalent modification of the anti-TAT antibody or TAT polypeptide included within the scope of this invention comprises altering the native glycosylation pattern of the antibody or polypeptide. "Altering the native glycosylation pattern" is intended for purposes herein to mean deleting one or more carbohydrate moieties found in native sequence anti-TAT antibody or TAT polypeptide (either by removing the underlying glycosylation site or by deleting the glycosylation by chemical and/or enzymatic means), and/or adding one or more glycosylation sites that are not present in the native sequence anti-TAT antibody or TAT polypeptide. In addition, the phrase includes qualitative changes in the glycosylation of the native proteins, involving a change in the nature and proportions of the various carbohydrate moieties present.

Glycosylation of antibodies and other polypeptides is typically either N-linked or O-linked. N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue. The tripeptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain. Thus, the presence of either of these tripeptide sequences in a polypeptide creates a potential glycosylation site. O-linked glycosylation refers to the attachment of one of the sugars N-accylgalactosamine, galactose, or xylose to a hydroxyamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylysine may also be used.

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

Addition of glycosylation sites to the anti-TAT antibody or TAT polypeptide is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above-described tripeptide sequences (for N-linked glycosylation sites). The alteration may also be made by the addition of, or substitution by, one or more serine or threonine residues to the sequence of the original anti-TAT antibody or TAT polypeptide (for O-linked glycosylation sites). The anti-TAT antibody or TAT polypeptide amino acid sequence may optionally be altered through changes at the DNA level, particularly by mutating the DNA encoding the anti-TAT antibody or TAT polypeptide at preselected bases such that codons are generated that will translate into the desired amino acids.

Another means of increasing the number of carbohydrate moieties on the anti-TAT antibody or TAT polypeptide is by chemical or enzymatic coupling of glycosides to the polypeptide. Such methods are described in the art, e.g., in WO 87/05330 published 11 September 1987, and in Aplin and Wriston, CRC Crit. Rev. Biochem., pp. 259-306 (1981).

Removal of carbohydrate moieties present on the anti-TAT antibody or TAT polypeptide may be accomplished chemically or enzymatically or by mutational substitution of codons encoding for amino acid residues that serve as targets for glycosylation. Chemical deglycosylation techniques are known in the art and described, for instance, by Hakimuddin, et al., Arch. Biochem. Biophys., 259:52 (1987) and by Edge et al., Anal, Biochem., 118:131 (1981). Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety of endo- and exo-glycosidases as described by Thotakura et al., Meth. Enzymol., 138:350 (1987).

Another type of covalent modification of anti-TAT antibody or TAT polypeptide comprises linking the antibody or polypeptide to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol (PEG), polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Patent Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337. The antibody or polypeptide also may be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization (for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacylate) microcapsules, respectively), in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nanoparticles and nanocapsules), or in macroemulsions. Such techniques are disclosed in Remington's Pharmaceutical Sciences, 16th edition, Oslo, A., Ed., (1980).

The anti-TAT antibody or TAT polypeptide of the present invention may also be modified in a way to form chimeric molecules comprising an anti-TAT antibody or TAT polypeptide fused to another, heterologous polypeptide or amino acid sequence.

In one embodiment, such a chimeric molecule comprises a fusion of the anti-TAT antibody or TAT polypeptide with a tag polypeptide which provides an epitope to which an anti-tag antibody can selectively bind. The epitope tag is generally placed at the amino- or carboxyl- terminus of the anti-TAT antibody or TAT polypeptide. The presence of such epitope-tagged forms of the anti-TAT antibody or TAT polypeptide can be detected using an antibody against the tag polypeptide. Also, provision of the epitope tag enables the anti-TAT

WO 2004/030615 PCT/US2003/028547

antibody or TAT polypeptide to be readily purified by affinity purification using an anti-tag antibody or another type of affinity matrix that binds to the epitope tag. Various tag polypeptides and their respective antibodies are well known in the art. Examples include poly-histidine (poly-his) or poly-histidine-glycine (poly-his-gly) tags; the flu HA tag polypeptide and its antibody 12CA5 [Field et al., Mol. Cell. Biol., §2159-2165 (1988)]; the e-myc tag and the 8F9, 3C7, 6E10, G4, B7 and 9E10 antibodies thereto [Evan et al., Molecular and Cell. Biology, £:3610-3616 (1985)]; and the Herpes Simplex virus glycoprotein D (gD) tag and its antibody [Paborsky et al., Protein Engineering, 3(6):547-553 (1990)]. Other tag polypeptides include the Flag-peptide [Hopp et al., BioTechnology, £:1204-1210 (1988)]; the KT3 epitope peptide [Martin et al., Science, 255:192-194 (1992)]; an α-tubulin epitope peptide [Skinner et al., J. Biol. Chem., 266:15163-15166 (1991)]; and the T7 gene 10 protein peptide tag [Lutz-Freyermuth et al., Proc. Natl. Acad. Sci. USA, 87:6393-6397 (1990)].

10

15

5

In an alternative embodiment, the chimeric molecule may comprise a fusion of the anti-TAT antibody or TAT polypeptide with an immunoglobulin or a particular region of an immunoglobulin. For a bivalent form of the chimeric molecule (also referred to as an "immunoadhesin"), such a fusion could be to the Fc region of an IgG molecule. The Ig fusions preferably include the substitution of a soluble (transmembrane domain detect or inactivated) form of an anti-TAT antibody or TAT polypeptide in place of at least one variable region within an Ig molecule. In a particularly preferred embodiment, the immunoglobulin fusion includes the hinge, CH₂ and CH₃, or the hinge, CH₁, CH₂ and CH₃ regions of an IgG1 molecule. For the production of immunoglobulin fusions see also US Patent No. 5,428,130 issued June 27, 1995.

Preparation of Anti-TAT Antibodies and TAT Polypeptides

20

25

The description below relates primarily to production of anti-TAT antibodies and TAT polypeptides by culturing cells transformed or transfected with a vector containing anti-TAT antibody- and TAT polypeptide encoding nucleic acid. It is, of course, contemplated that alternative methods, which are well known in the art, may be employed to prepare anti-TAT antibodies and TAT polypeptides. For instance, the appropriate amino acid sequence, or portions thereof, may be produced by direct peptide synthesis using solid-phase techniques [see, e.g., Stewart et al., Solid-Phase Peptide Synthesis, W.H. Freeman Co., San Francisco, CA (1969); Merrifield, J. Am. Chem. Soc., 85:2149-2154 (1963)]. In vitro protein synthesis may be performed using manual techniques or by automation. Automated synthesis may be accomplished, for instance, using an Applied Biosystems Peptide Synthesizer (Foster City, CA) using manufacturer's instructions. Various portions of the anti-TAT antibody or TAT polypeptide may be chemically synthesized separately and combined using chemical or enzymatic methods to produce the desired anti-TAT antibody or TAT polypeptide.

30

Isolation of DNA Encoding Anti-TAT Antibody or TAT Polypeptide

DNA encoding anti-TAT antibody or TAT polypeptide may be obtained from a cDNA library prepared from tissue believed to possess the anti-TAT antibody or TAT polypeptide mRNA and to express it at a detectable level. Accordingly, human anti-TAT antibody or TAT polypeptide DNA can be conveniently obtained from a cDNA library prepared from human tissue. The anti-TAT antibody- or TAT polypeptide encoding gene may also be obtained from a genomic library or by known synthetic procedures (e.g., automated

WO 2004/030615 PCT/US2003/028547

nucleic acid synthesis).

5

10

15

20

25

30

35

Libraries can be screened with probes (such as oligonucleotides of at least about 20-80 bases) designed to identify the gene of interest or the protein encoded by it. Screening the cDNA or genomic library with the selected probe may be conducted using standard procedures, such as described in Sambrook et al., Molecular Cloning: A Laboratory Manual (New York: Cold Spring Harbor Laboratory Press, 1989). An alternative means to isolate the gene encoding anti-TAT antibody or TAT polypeptide is to use PCR methodology [Sambrook et al., supra: Dieffenbach et al., PCR Primer: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1995)].

Techniques for screening a cDNA library are well known in the art. The oligonucleotide sequences selected as probes should be of sufficient length and sufficiently unambiguous that false positives are minimized. The oligonucleotide is preferably labeled such that it can be detected upon hybridization to DNA in the library being screened. Methods of labeling are well known in the art, and include the use of radiolabels like ³²P-labeled ATP, biotinylation or enzyme labeling. Hybridization conditions, including moderate stringency and high stringency, are provided in Sambrook et al., <u>supra.</u>

Sequences identified in such library screening methods can be compared and aligned to other known sequences deposited and available in public databases such as GenBank or other private sequence databases. Sequence identity (at either the amino acid or nucleotide level) within defined regions of the molecule or across the full-length sequence can be determined using methods known in the art and as described herein.

Nucleic acid having protein coding sequence may be obtained by screening selected cDNA or genomic libraries using the deduced amino acid sequence disclosed herein for the first time, and, if necessary, using conventional primer extension procedures as described in Sambrook et al., supra, to detect precursors and processing intermediates of mRNA that may not have been reverse-transcribed into cDNA.

Selection and Transformation of Host Cells

Host cells are transfected or transformed with expression or cloning vectors described herein for antiTAT antibody or TAT polypeptide production and cultured in conventional nutrient media modified as
appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired
sequences. The culture conditions, such as media, temperature, pH and the like, can be selected by the skilled
artisan without undue experimentation. In general, principles, protocols, and practical techniques for
maximizing the productivity of cell cultures can be found in Mammalian Cell Biotechnology: a Practical
Approach, M. Butler, ed. (IRL Press, 1991) and Sambrook et al., supprac.

Methods of eukaryotic cell transfection and prokaryotic cell transformation are known to the ordinarily skilled artisan, for example, CaCl₃, CaPO₄, liposome-mediated and electroporation. Depending on the host cell used, transformation is performed using standard techniques appropriate to such cells. The calcium treatment employing calcium chloride, as described in Sambrook et al., <u>supra</u>, or electroporation is generally used for prokaryotes. Infection with *Agrobacterium tumefaciens* is used for transformation of certain plant cells, as described by Shaw et al., <u>Gene</u>, <u>23</u>:315 (1983) and WO 89/05859 published 29 June 1989. For mammalian cells without such cell walls, the calcium phosphate precipitation method of Graham and van der Eb, <u>Virology</u>.

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

\$\frac{52}{2}\cdot 457 (1978)\$ can be employed. General aspects of mammalian cell host system transfections have been described in U.S. Patent No. 4,399,216. Transformations into yeast are typically carried out according to the method of Van Solingen et al., \$\frac{1}{2}\text{Bett.}\$, \$\frac{130}{2}\text{946}\$ (1977) and Hsiao et al., \$\frac{Proc.}{1}\text{Natl.}\$ Acad. \$\frac{Sci.}{2}\text{USA}\$. \$\frac{76}{2}\text{3829}\$ (1979). However, other methods for introducing DNA into cells, such as by nuclear microinjection, electroporation, bacterial protoplast fusion with intact cells, or polycations, e.g., polybrene, polyornithine, may also be used. For various techniques for transforming mammalian cells, see Keown et al., \$\frac{Methods in}{2}\text{Enzymology}\$, 185:527-537 (1990) and Mansour et al., \$\frac{Nature}{2}\text{336:348-352}\$ (1988).

Suitable host cells for cloning or expressing the DNA in the vectors herein include prokaryote, veast, or higher eukaryote cells. Suitable prokaryotes include but are not limited to eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as E. coli. Various E. coli strains are publicly available, such as E. coli K12 strain MM294 (ATCC 31,446); E. coli X1776 (ATCC 31,537); E. coli strain W3110 (ATCC 27,325) and K5 772 (ATCC 53,635). Other suitable prokaryotic host cells include Enterobacteriaceae such as Escherichia, e.g., E. coli, Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella, e.g., Salmonella typhimurium, Serratia, e.g., Serratia marcescans, and Shigella, as well as Bacilli such as B. subtilis and B. licheniformis (e.g., B. licheniformis 41P disclosed in DD 266,710 published 12 April 1989), Pseudomonas such as P. aeruginosa, and Streptomyces. These examples are illustrative rather than limiting. Strain W3110 is one particularly preferred host or parent host because it is a common host strain for recombinant DNA product fermentations. Preferably, the host cell secretes minimal amounts of proteolytic enzymes. For example, strain W3110 may be modified to effect a genetic mutation in the genes encoding proteins endogenous to the host, with examples of such hosts including E. coli W3110 strain 1A2, which has the complete genotype tonA; E. coli W3110 strain 9E4, which has the complete genotype tonA ptr3; E. coli W3110 strain 27C7 (ATCC 55,244), which has the complete genotype tonA ptr3 phoA E15 (argF-lac)169 degP ompT kan'; E. coli W3110 strain 37D6, which has the complete genotype tonA ptr3 phoA E15 (argF-lac)169 degP ompT rbs7 ilvG karl; E. coli W3110 strain 40B4, which is strain 37D6 with a non-kanamycin resistant degP deletion mutation; and an E. coli strain having mutant periplasmic protease disclosed in U.S. Patent No. 4,946,783 issued 7 August 1990. Alternatively, in vitro methods of cloning, e.g., PCR or other nucleic acid polymerase reactions, are suitable.

Full length antibody, antibody fragments, and antibody fusion proteins can be produced in bacteria, in particular when glycosylation and Fc effector function are not needed, such as when the therapeutic antibody is conjugated to a cytotoxic agent (e.g., a toxin) and the immunoconjugate by itself shows effectiveness in tumor cell destruction. Full length antibodies have greater half life in circulation. Production in E. coli is faster and more cost efficient. For expression of antibody fragments and polypeptides in bacteria, see, e.g., U.S. 5,648,237 (Carter et. al.), U.S. 5,789,199 (Joly et al.), and U.S. 5,840,523 (Simmons et al.) which describes translation initiation regio (TIR) and signal sequences for optimizing expression and secretion, these patents incorporated herein by reference. After expression, the antibody is isolated from the E. coli cell paste in a soluble fraction and can be purified through, e.g., a protein A or G column depending on the isotype. Final purification can be carried out similar to the process for purifying antibody expressed e.g., in CHO cells.

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for anti-TAT antibody- or TAT polypeptide-encoding vectors. Saccharomyces cerevisiae is a commonly used lower eukaryotic host microorganism. Others include Schizosaccharomyces pombe (Beach and Nurse. Nature, 290: 140 [1981]: EP 139.383 published 2 May 1985); Kluyveromyces hosts (U.S. Patent No. 4.943.529; Fleer et al., Bio/Technology, 9:968-975 (1991)) such as, e.g., K. lactis (MW98-8C, CBS683. CBS4574: Louvencourt et al., J. Bacteriol., 154(2):737-742 [1983]), K. fragilis (ATCC 12,424), K. bulgaricus (ATCC 16,045), K. wickeramii (ATCC 24,178), K. waltii (ATCC 56,500), K. drosophilarum (ATCC 36,906; Van den Berg et al., Bio/Technology, 8:135 (1990)), K. thermotolerans, and K. marxianus; yarrowia (EP 402.226); Pichia pastoris (EP 183,070; Sreekrishna et al., J. Basic Microbiol., 28:265-278 [1988]); Candida; Trichoderma reesia (EP 244,234); Neurospora crassa (Case et al., Proc. Natl. Acad. Sci. USA, 76:5259-5263 [1979]); Schwanniomyces such as Schwanniomyces occidentalis (EP 394,538 published 31 October 1990); and filamentous fungi such as, e.g., Neurospora, Penicillium, Tolypocladium (WO 91/00357 published 10 January 1991), and Aspereillus hosts such as A. vidulans (Ballance et al., Biochem, Biophys, Res. Commun., 112:284-289 [1983]; Tilburn et al., Gene, 26:205-221 [1983]; Yelton et al., Proc. Natl. Acad. Sci. USA, 81: 1470-1474 [1984]) and A. niger (Kelly and Hynes, EMBO J., 4:475-479 [1985]). Methylotropic yeasts are suitable herein and include, but are not limited to, yeast capable of growth on methanol selected from the genera consisting of Hansenula, Candida, Kloeckera, Pichia, Saccharomyces, Torulopsis, and Rhodotorula. A list of specific species that are exemplary of this class of yeasts may be found in C. Anthony, The Biochemistry of Methylotrophs, 269 (1982).

Suitable host cells for the expression of glycosylated anti-TAT antibody or TAT polypeptide are derived from multicellular organisms. Examples of invertebrate cells include insect cells such as Drosophila S2 and Spodoptera S79, as well as plant cells, such as cell cultures of cotton, corn, potato, soybean, petunia, tomato, and tobacco. Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts such as Spodoptera frugiperda (caterpillar), Aedes aegypti (mosquito), Aedes albopictus (mosquito), Drosophila melanogaster (fruitfly), and Bombyx mori have been identified. A variety of viral strains for transfection are publicly available, e.g., the L-1 variant of Autographa californica NPV and the Bm-5 strain of Bombyx mori NPV, and such viruses may be used as the virus herein according to the present invention, particularly for transfection of Spodoptera frugiperda cells.

However, interest has been greatest in vertebrate cells, and propagation of vertebrate cells in culture (tissue culture) has become a routine procedure. Examples of useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., <u>I. Gen Virol.</u>, 36:59 (1977)); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary cells/-DHFR (CHO, Urlaub et al., <u>Proc. Natl., Acad. Sci. USA</u>77:4216 (1980)); mouse sertoli cells (TM4, Mather, <u>Biol. Reprod.</u>, 23:243-251 (1980)); monkey kidney cells (CVI ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2,

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

HB 8065); mouse mammary tumor (MMT 060562, ATCC CCL51); TRI cells (Mather et al., Annals N.Y. Acad. Sci. 383:44-68 (1982)); MRC 5 cells; FS4 cells; and a human hepatoma line (Hep G2).

Host cells are transformed with the above-described expression or cloning vectors for anti-TAT antibody or TAT polypeptide production and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences.

Selection and Use of a Replicable Vector

The nucleic acid (e.g., cDNA or genomic DNA) encoding anti-TAT antibody or TAT polypeptide may be inserted into a replicable vector for cloning (amplification of the DNA) or for expression. Various vectors are publicly available. The vector may, for example, be in the form of a plasmid, cosmid, viral particle, or phage. The appropriate nucleic acid sequence may be inserted into the vector by a variety of procedures. In general, DNA is inserted into an appropriate restriction endonuclease site(s) using techniques known in the art. Vector components generally include, but are not limited to, one or more of a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence. Construction of suitable vectors containing one or more of these components employs standard ligation techniques which are known to the skilled artisan.

The TAT may be produced recombinantly not only directly, but also as a fusion polypeptide with a heterologous polypeptide, which may be a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide. In general, the signal sequence may be a component of the vector, or it may be a part of the anti-TAT antibody- or TAT polypeptide-encoding DNA that is inserted into the vector. The signal sequence may be a prokaryotic signal sequence selected, for example, from the group of the alkaline phosphatase, penicilinase, lpp, or heat-stable enterotoxin Il leaders. For yeast secretion the signal sequence may be, e.g., the yeast invertase leader, alpha factor leader (including Saccharomyces and Kluyveromyces α -factor leaders, the latter described in U.S. Patent No. 5,010,182), or acid phosphatase leader, the C. albicans glucoamylase leader (EP 362,179 published 4 April 1990), or the signal described in WO 90/13646 published 15 November 1990. In mammalian cell expression, mammalian signal sequences may be used to direct secretion of the protein, such as signal sequences from secreted polypeptides of the same or related species, as well as viral secretory leaders.

Both expression and cloning vectors contain a nucleic acid sequence that enables the vector to replicate in one or more selected host cells. Such sequences are well known for a variety of bacteria, yeast, and viruses. The origin of replication from the plasmid pBR322 is suitable for most Gram-negative bacteria, the 2µ plasmid origin is suitable for yeast, and various viral origins (SV40, polyoma, adenovirus, VSV or BPV) are useful for cloning vectors in mammalian cells.

Expression and cloning vectors will typically contain a selection gene, also termed a selectable marker. Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g., the gene encoding D-alanine racemase for Bacilli.

An example of suitable selectable markers for mammalian cells are those that enable the identification

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

of cells competent to take up the anti-TAT antibody- or TAT polypeptide-encoding nucleic acid, such as DHFR or thymidine kinase. An appropriate host cell when wild-type DHFR is employed is the CHO cell line deficient in DHFR activity, prepared and propagated as described by Urlaub et al., <u>Proc. Natl. Acad. Sci. USA</u>, 77:4216 (1980). A suitable selection gene for use in yeast is the upl gene present in the yeast plasmid YRp7 [Stinchcomb et al., <u>Nature</u>, 282:39 (1979); Kingsman et al., <u>Gene</u>, 7:141 (1979); Tschemper et al., <u>Gene</u>, 10:157 (1980)]. The trp1 gene provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example, ATCC No. 44076 or PEP4-1 [Jones, Genetics, §5:12 (1977)].

Expression and cloning vectors usually contain a promoter operably linked to the anti-TAT antibodyor TAT polypeptide-encoding nucleic acid sequence to direct mRNA synthesis. Promoters recognized by a
variety of potential host cells are well known. Promoters suitable for use with prokaryotic hosts include the
lactamase and lactose promoter systems [Chang et al., Nature, 275:615 (1978); Goeddel et al., Nature, 281:544
(1979)], alkaline phosphatase, a tryptophan (trp) promoter system [Goeddel, Nucleic Acids Res., 8:4057 (1980);
EP 36,776], and hybrid promoters such as the tac promoter [deBoer et al., Proc. Natl. Acad. Sci. USA, 80:2125 (1983)]. Promoters for use in bacterial systems also will contain a Shine-Dalgarno (S.D.) sequence operably
linked to the DNA encoding anti-TAT antibody or TAT polypeptide.

Examples of suitable promoting sequences for use with yeast hosts include the promoters for 3-phosphoglycerate kinase [Hitzeman et al., 1, 1610, Chem., 255:2073 (1980)] or other glycolytic enzymes [Hess et al., 1, Adv. Enzyme Reg., 7:149 (1968); Holland, Biochemistry, 17:4900 (1978)], such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase.

Other yeast promoters, which are inducible promoters having the additional advantage of transcription controlled by growth conditions, are the promoter regions for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, metallothionein, glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization. Suitable vectors and promoters for use in yeast expression are further described in EP 73.657.

Anti-TAT antibody or TAT polypeptide transcription from vectors in mammalian host cells is controlled, for example, by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus (UK 2,211,504 published 5 July 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and Simian Virus 40 (SV40), from heterologous mammalian promoters, e.g., the actin promoter or an immunoglobulin promoter, and from heat-shock promoters, provided such promoters are compatible with the host cell systems.

Transcription of a DNA encoding the anti-TAT antibody or TAT polypeptide by higher eukaryotes may be increased by inserting an enhancer sequence into the vector. Enhancers are cis-acting elements of DNA, usually about from 10 to 300 bp, that act on a promoter to increase its transcription. Many enhancer sequences are now known from mammalian genes (globin, elastase, albumin, α -fetoprotein, and insulin). Typically, however, one will use an enhancer from a eukaryotic cell virus. Examples include the SV40 enhancer on the

10

15

20

25

WO 2004/030615 PCT/US2003/028547

late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers. The enhancer may be spliced into the vector at a position 5' or 3' to the anti-TAT antibody or TAT polypeptide coding sequence, but is preferably located at a site 5' from the promoter.

Expression vectors used in eukaryotic host cells (yeast, fungi, insect, plant, animal, human, or nucleated cells from other multicellular organisms) will also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5' and, occasionally 3', untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding anti-TAT antibody or TAT polypeptide.

Still other methods, vectors, and host cells suitable for adaptation to the synthesis of anti-TAT antibody or TAT polypeptide in recombinant vertebrate cell culture are described in Gething et al., Nature, 293:620-625 (1981); Mantei et al., Nature, 281:40-46 (1979); EP 117,060; and EP 117,058.

Culturing the Host Cells

The host cells used to produce the anti-TAT antibody or TAT polypeptide of this invention may be cultured in a variety of media. Commercially available media such as Ham's F10 (Sigma), Minimal Essential Medium ((MEM), (Sigma), RPMI-1640 (Sigma), and Dulbecco's Modified Eagle's Medium ((DMEM), Sigma) are suitable for culturing the host cells. In addition, any of the media described in Ham et allMeth. Enz. 58:44 (1979), Barnes et al., Anal. Biochem.102:255 (1980), U.S. Pat. Nos. 4,767,704; 4,657,866; 4,927,762; 4,560,655; or 5,122,469; WO 90/03430; WO 87/00195; or U.S. Patent Re. 30,985 may be used as culture media for the host cells. Any of these media may be supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, or epidermal growth factor), salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as HEPES), nucleotides (such as adenosine and thymidine), antibiotics (such as GENTAMYCIN™ drug), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range), and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art. The culture conditions, such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.

WO 2004/030615

5

10

15

20

25

30

35

PCT/US2003/028547

5. Detecting Gene Amplification/Expression

Gene amplification and/or expression may be measured in a sample directly, for example, by conventional Southern blotting, Northern blotting to quantitate the transcription of mRNA [Thomas, Proc. Natl. Acad. Sci. USA. 77:5201-5205 (1980)], dot blotting (DNA analysis), or in situ hybridization, using an appropriately labeled probe, based on the sequences provided herein. Alternatively, antibodies may be employed that can recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. The antibodies in turn may be labeled and the assay may be carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected.

Gene expression, alternatively, may be measured by immunological methods, such as immunohistochemical staining of cells or tissue sections and assay of cell culture or body fluids, to quantitate directly the expression of gene product. Antibodies useful for immunohistochemical staining and/or assay of sample fluids may be either monoclonal or polyclonal, and may be prepared in any mammal. Conveniently, the antibodies may be prepared against a native sequence TAT polypeptide or against a synthetic peptide based on the DNA sequences provided herein or against exogenous sequence fused to TAT DNA and encoding a specific antibody epitope.

Purification of Anti-TAT Antibody and TAT Polypeptide

Forms of anti-TAT antibody and TAT polypeptide may be recovered from culture medium or from host cell lysates. If membrane-bound, it can be released from the membrane using a suitable detergent solution (e.g. Triton-X 100) or by enzymatic cleavage. Cells employed in expression of anti-TAT antibody and TAT polypeptide can be disrupted by various physical or chemical means, such as freeze-thaw cycling, sonication, mechanical disruption, or cell lysing agents.

It may be desired to purify anti-TAT antibody and TAT polypeptide from recombinant cell proteins or polypeptides. The following procedures are exemplary of suitable purification procedures: by fractionation on an ion-exchange column; ethanol precipitation; reverse phase HPLC; chromatography on silica or on a cation-exchange resin such as DEAE; chromatofocusing; SDS-PAGE; ammonium sulfate precipitation; gel filtration using, for example, Sephadex G-75; protein A Sepharose columns to remove contaminants such as IgG; and metal chelating columns to bind epitope-tagged forms of the anti-TAT antibody and TAT polypeptide. Various methods of protein purification may be employed and such methods are known in the art and described for example in Deutscher, Methods in Enzymology, 182 (1990); Scopes, Protein Purification: Principles and Practice, Springer-Verlag, New York (1982). The purification step(s) selected will depend, for example, on the nature of the production process used and the particular anti-TAT antibody or TAT polypeptide produced.

When using recombinant techniques, the antibody can be produced intracellularly, in the periplasmic space, or directly secreted into the medium. If the antibody is produced intracellularly, as a first step, the particulate debris, either host cells or lysed fragments, are removed, for example, by centrifugation or ultrafiltration. Carter et al., <u>Bio/Technology</u> 10:163-167 (1992) describe a procedure for isolating antibodies which are secreted to the periplasmic space of *E. coli*. Briefly, cell paste is thawed in the presence of sodium

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

acetate (pH 3.5), EDTA, and phenylmethylsulfonylfluoride (PMSF) over about 30 min. Cell debris can be removed by centrifugation. Where the antibody is secreted into the medium, supernatants from such expression systems are generally first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit. A protease inhibitor such as PMSF may be included in any of the foregoing steps to inhibit proteolysis and antibiotics may be included to prevent the growth of adventitious contaminants.

The antibody composition prepared from the cells can be purified using, for example, hydroxylapatite chromatography, gel electrophoresis, dialysis, and affinity chromatography, with affinity chromatography being the preferred purification technique. The suitability of protein A as an affinity ligand depends on the species and isotype of any immunoglobulin Fc domain that is present in the antibody. Protein A can be used to purify antibodies that are based on human $\gamma 1$, $\gamma 2$ or $\gamma 4$ heavy chains (Lindmark et al., J. Immunol. Meth. 62:1-13 (1983)). Protein G is recommended for all mouse isotypes and for human v3 (Guss et al., EMBO J. 5:15671575 (1986)). The matrix to which the affinity ligand is attached is most often agarose, but other Mechanically stable matrices such as controlled pore glass or matrices are available. poly(styrenedivinyl)benzene allow for faster flow rates and shorter processing times than can be achieved with agarose. Where the antibody comprises a C,3 domain, the Bakerbond ABX resin (J. T. Baker, Phillipsburg, NI) is useful for purification. Other techniques for protein purification such as fractionation on an ion-exchange column, ethanol precipitation, Reverse Phase HPLC, chromatography on silica, chromatography on heparin SEPHAROSE™ chromatography on an anion or cation exchange resin (such as a polyaspartic acid column), chromatofocusing, SDS-PAGE, and ammonium sulfate precipitation are also available depending on the antibody to be recovered.

Following any preliminary purification step(s), the mixture comprising the antibody of interest and contaminants may be subjected to low pH hydrophobic interaction chromatography using an elution buffer at a pH between about 2.5-4.5, preferably performed at low salt concentrations (e.g., from about 0-0.25M salt).

J. Pharmaceutical Formulations

Therapeutic formulations of the anti-TAT antibodies, TAT binding oligopeptides, TAT binding organic molecules and/or TAT polypeptides used in accordance with the present invention are prepared for storage by mixing the antibody, polypeptide, oligopeptide or organic molecule having the desired degree of purity with optional pharmaceutically acceptable carriers, excipients or stabilizers (Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980)), in the form of lyophilized formulations or aqueous solutions. Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as acetate, Tris, phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinypyrrolidone; amino acids such as glycine, glutamine, asparagine,

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; tonicifiers such as trehalose and sodium chloride; sugars such as sucrose, mannitol, trehalose or sorbitol; surfactant such as polysorbate; salt-forming counter-ions such as sodium; metal complexes (e.g., Zn-protein complexes); and/or non-ionic surfactants such as TWEEN®, PLURONICS® or polyethylene glycol (PEG). The antibody preferably comprises the antibody at a concentration of between 5-200 mg/ml, preferably between 10-100 mg/ml.

The formulations herein may also contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other. For example, in addition to an anti-TAT antibody, TAT binding oligopeptide, or TAT binding organic molecule, it may be desirable to include in the one formulation, an additional antibody, e.g., a second anti-TAT antibody which binds a different epitope on the TAT polypeptide, or an antibody to some other target such as a growth factor that affects the growth of the particular cancer. Alternatively, or additionally, the composition may further comprise a chemotherapeutic agent, cytotoxic agent, cytotkine, growth inhibitory agent, anti-hormonal agent, and/or cardioprotectant. Such molecules are suitably present in combination in amounts that are effective for the purpose intended.

The active ingredients may also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions. Such techniques are disclosed in Remington's Pharmaceutical Sciences, 16th edition, Osol, A. Ed. (1980).

Sustained-release preparations may be prepared. Suitable examples of sustained-release preparations include semi-permeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and γ ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT® (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(-)-3-hydroxybutyric acid.

The formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes.

K. <u>Diagnosis and Treatment with Anti-TAT Antibodies, TAT Binding Oligopeptides and TAT</u> Binding Organic Molecules

To determine TAT expression in the cancer, various diagnostic assays are available. In one embodiment, TAT polypeptide overexpression may be analyzed by immunohistochemistry (IHC). Parrafin embedded tissue sections from a tumor biopsy may be subjected to the IHC assay and accorded a TAT protein staining intensity criteria as follows:

. 5

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

Score 0 - no staining is observed or membrane staining is observed in less than 10% of tumor cells.

Score 1+ - a faint/barely perceptible membrane staining is detected in more than 10% of the tumor cells. The cells are only stained in part of their membrane.

Score 2+ - a weak to moderate complete membrane staining is observed in more than 10% of the tumor cells.

Score 3+ - a moderate to strong complete membrane staining is observed in more than 10% of the tumor cells.

Those tumors with 0 or 1+ scores for TAT polypeptide expression may be characterized as not overexpressing TAT, whereas those tumors with 2+ or 3+ scores may be characterized as overexpressing TAT.

Alternatively, or additionally, FISH assays such as the INFORM® (sold by Ventana, Arizona) or PATHVISION® (Vysis, Illinois) may be carried out on formalin-fixed, paraffin-embedded tumor tissue to determine the extent (if any) of TAT overexpression in the tumor.

TAT overexpression or amplification may be evaluated using an in vivo diagnostic assay, e.g., by administering a molecule (such as an antibody, oligopeptide or organic molecule) which binds the molecule to be detected and is tagged with a detectable label (e.g., a radioactive isotope or a fluorescent label) and externally scanning the patient for localization of the label.

As described above, the anti-TAT antibodies, oligopeptides and organic molecules of the invention have various non-therapeutic applications. The anti-TAT antibodies, oligopeptides and organic molecules of the present invention can be useful for diagnosis and staging of TAT polypeptide-expressing cancers (e.g., in radioimaging). The antibodies, oligopeptides and organic molecules are also useful for purification or immunoprecipitation of TAT polypeptide from cells, for detection and quantitation of TAT polypeptide in vitro, e.g., in an ELISA or a Western blot, to kill and eliminate TAT-expressing cells from a population of mixed cells as a step in the purification of other cells.

Currently, depending on the stage of the cancer, cancer treatment involves one or a combination of the following therapies: surgery to remove the cancerous tissue, radiation therapy, and chemotherapy. Anti-TAT antibody, oligopeptide or organic molecule therapy may be especially desirable in elderly patients who do not tolerate the toxicity and side effects of chemotherapy well and in metastatic disease where radiation therapy has limited usefulness. The tumor targeting anti-TAT antibodies, oligopeptides and organic molecules of the invention are useful to alleviate TAT-expressing cancers upon initial diagnosis of the disease or during relapse. For therapeutic applications, the anti-TAT antibody, oligopeptide or organic molecule can be used alone, or in combination therapy with, e.g., hormones, antiangiogens, or radiolabelled compounds, or with surgery, cryotherapy, and/or radiotherapy. Anti-TAT antibody, oligopeptide or organic molecule treatment can be administered in conjunction with other forms of conventional therapy, either consecutively with, pre- or post-conventional therapy. Chemotherapeutic drugs such as TAXOTERE® (docetaxel), TAXOL® (palictaxel), estramustine and mitoxantrone are used in treating cancer, in particular, in good risk patients. In the present method of the invention for treating or alleviating cancer, the cancer patient can be administered anti-TAT

WO 2004/030615 PCT/US2003/028547

antibody, oligopeptide or organic molecule in conjuction with treatment with the one or more of the preceding chemotherapeutic agents. In particular, combination therapy with palictaxel and modified derivatives (see, e.g., EPO600517) is contemplated. The anti-TAT antibody, oligopeptide or organic molecule will be administered with a therapeutically effective dose of the chemotherapeutic agent. In another embodiment, the anti-TAT antibody, oligopeptide or organic molecule is administered in conjunction with chemotherapy to enhance the activity and efficacy of the chemotherapeutic agent, e.g., paclitaxel. The Physicians' Desk Reference (PDR) discloses dosages of these agents that have been used in treatment of various cancers. The dosing regimen and dosages of these aforementioned chemotherapeutic drugs that are therapeutically effective will depend on the particular cancer being treated, the extent of the disease and other factors familiar to the physician of skill in the art and can be determined by the physician.

10

5

In one particular embodiment, a conjugate comprising an anti-TAT antibody, oligopeptide or organic molecule conjugated with a cytotoxic agent is administered to the patient. Preferably, the immunoconjugate bound to the TAT protein is internalized by the cell, resulting in increased therapeutic efficacy of the immunoconjugate in killing the cancer cell to which it binds. In a preferred embodiment, the cytotoxic agent targets or interferes with the nucleic acid in the cancer cell. Examples of such cytotoxic agents are described above and include mavansinoids, calicheamicins, ribonucleases and DNA endonucleases.

15

The anti-TAT antibodies, oligopeptides, organic molecules or toxin conjugates thereof are administered to a human patient, in accord with known methods, such as intravenous administration, e.g.,, as a bolus or by continuous infusion over a period of time, by intramuscular, intraperitoneal, intracerobrospinal, subcutaneous, intra-articular, intrasynovial, intrathecal, oral, topical, or inhalation routes. Intravenous or subcutaneous administration of the antibody, oligopeptide or organic molecule is preferred.

20

Other therapeutic regimens may be combined with the administration of the anti-TAT antibody, oligopeptide or organic molecule. The combined administration includes co-administration, using separate formulations or a single pharmaceutical formulation, and consecutive administration in either order, wherein preferably there is a time period while both (or all) active agents simultaneously exert their biological activities. Preferably such combined therapy results in a synergistic therapeutic effect.

25

It may also be desirable to combine administration of the anti-TAT antibody or antibodies, oligopeptides or organic molecules, with administration of an antibody directed against another tumor antigen associated with the particular cancer.

30

In another embodiment, the therapeutic treatment methods of the present invention involves the combined administration of an anti-TAT antibody (or antibodies), oligopeptides or organic molecules and one or more chemotherapeutic agents or growth inhibitory agents, including co-administration of cocktails of different chemotherapeutic agents. Chemotherapeutic agents include estramustine phosphate, prednimustine, cisplatin, 5-fluorouracil, melphalan, cyclophosphamide, hydroxyurea and hydroxyureatxannes (such as paclitaxel and doxetaxel) and/or anthracycline antibiotics. Preparation and dosing schedules for such chemotherapeutic agents may be used according to manufacturers' instructions or as determined empirically by the skilled practitioner. Preparation and dosing schedules for such chemotherapy are also described in Chemotherapy

35

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

Service Ed., M.C. Perry, Williams & Wilkins, Baltimore, MD (1992).

The antibody, oligopeptide or organic molecule may be combined with an anti-hormonal compound; e.g., an anti-estrogen compound such as tamoxifen; an anti-progesterone such as onapristone (see, EP 616 812); or an anti-androgen such as flutamide, in dosages known for such molecules. Where the cancer to be treated is androgen independent cancer, the patient may previously have been subjected to anti-androgen therapy and, after the cancer becomes androgen independent, the anti-TAT antibody, oligopeptide or organic molecule (and optionally other agents as described herein) may be administered to the patient.

Sometimes, it may be beneficial to also co-administer a cardioprotectant (to prevent or reduce myocardial dysfunction associated with the therapy) or one or more cytokines to the patient. In addition to the above therapeutic regimes, the patient may be subjected to surgical removal of cancer cells and/or radiation therapy, before, simultaneously with, or post antibody, oligopeptide or organic molecule therapy. Suitable dosages for any of the above co-administered agents are those presently used and may be lowered due to the combined action (synergy) of the agent and anti-TAT antibody, oligopeptide or organic molecule.

For the prevention or treatment of disease, the dosage and mode of administration will be chosen by the physician according to known criteria. The appropriate dosage of antibody, oligopeptide or organic molecule will depend on the type of disease to be treated, as defined above, the severity and course of the disease, whether the antibody, oligopeptide or organic molecule is administered for preventive or therapeutic purposes, previous therapy, the patient's clinical history and response to the antibody, oligopeptide or organic molecule, and the discretion of the attending physician. The antibody, oligopeptide or organic molecule is suitably administered to the patient at one time or over a series of treatments. Preferably, the antibody, oligopeptide or organic molecule is administered by intravenous infusion or by subcutaneous injections. Depending on the type and severity of the disease, about 1 µg/kg to about 50 mg/kg body weight (e.g., about 0.1-15mg/kg/dose) of antibody can be an initial candidate dosage for administration to the patient, whether, for example, by one or more separate administrations, or by continuous infusion. A dosing regimen can comprise administering an initial loading dose of about 4 mg/kg, followed by a weekly maintenance dose of about 2 mg/kg of the anti-TAT antibody. However, other dosage regimens may be useful. A typical daily dosage might range from about 1 μg/kg to 100 mg/kg or more, depending on the factors mentioned above. For repeated administrations over several days or longer, depending on the condition, the treatment is sustained until a desired suppression of disease symptoms occurs. The progress of this therapy can be readily monitored by conventional methods and assays and based on criteria known to the physician or other persons of skill in the art.

Aside from administration of the antibody protein to the patient, the present application contemplates administration of the antibody by gene therapy. Such administration of nucleic acid encoding the antibody is encompassed by the expression "administering a therapeutically effective amount of an antibody". See, for example, W096/07321 published March 14, 1996 concerning the use of gene therapy to generate intracellular antibodies.

There are two major approaches to getting the nucleic acid (optionally contained in a vector) into the patient's cells; in vivo and ex vivo. For in vivo delivery the nucleic acid is injected directly into the patient,

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

usually at the site where the antibody is required. For ex vivo treatment, the patient's cells are removed, the nucleic acid is introduced into these isolated cells and the modified cells are administered to the patient either directly or, for example, encapsulated within porous membranes which are implanted into the patient (see, e.g., U.S. Patent Nos. 4,892,538 and 5,283,187). There are a variety of techniques available for introducing nucleic acids into viable cells. The techniques vary depending upon whether the nucleic acid is transferred into cultured cells in vitro, or in vivo in the cells of the intended host. Techniques suitable for the transfer of nucleic acid into mammalian cells in vitro include the use of liposomes, electroporation, microinjection, cell fusion, DEAE-dextran, the calcium phosphate precipitation method, etc. A commonly used vector forex vivo delivery of the gene is a retroviral vector.

The currently preferred in vivo nucleic acid transfer techniques include transfection with viral vectors (such as adenovirus, Herpes simplex I virus, or adeno-associated virus) and lipid-based systems (useful lipids for lipid-mediated transfer of the gene are DOTMA, DOPE and DC-Chol, for example). For review of the currently known gene marking and gene therapy protocols see Anderson et al., Science 256:808-813 (1992). See also WO 93/25673 and the references cited therein.

The anti-TAT antibodies of the invention can be in the different forms encompassed by the definition of "antibody" herein. Thus, the antibodies include full length or intact antibody, antibody fragments, native sequence antibody or amino acid variants, humanized, chimeric or fusion antibodies, immunoconjugates, and functional fragments thereof. In fusion antibodies an antibody sequence is fused to a heterologous polypeptide sequence. The antibodies can be modified in the Fc region to provide desired effector functions. As discussed in more detail in the sections herein, with the appropriate Fc regions, the naked antibody bound on the cell surface can induce cytotoxicity, e.g., via antibody-dependent cellular cytotoxicity (ADCC) or by recruiting complement in complement dependent cytotoxicity, or some other mechanism. Alternatively, where it is desirable to eliminate or reduce effector function, so as to minimize side effects or therapeutic complications, certain other Fc regions may be used.

In one embodiment, the antibody competes for binding or bind substantially to, the same epitope as the antibodies of the invention. Antibodies having the biological characteristics of the present anti-TAT antibodies of the invention are also contemplated, specifically including the *in vivo* tumor targeting and any cell proliferation inhibition or cytotoxic characteristics.

Methods of producing the above antibodies are described in detail herein.

The present anti-TAT antibodies, oligopeptides and organic molecules are useful for treating a TATexpressing cancer or alleviating one or more symptoms of the cancer in a mammal. Such a cancer includes prostate cancer, cancer of the urinary tract, lung cancer, breast cancer, colon cancer and ovarian cancer, more specifically, prostate adenocarcinoma, renal cell carcinomas, colorectal adenocarcinomas, lung adenocarcinomas, lung squamous cell carcinomas, and pleural mesothelioma. The cancers encompass metastatic cancers of any of the preceding. The antibody, oligopeptide or organic molecule is able to bind to at least a portion of the cancer cells that express TAT polypeptide in the mammal. In a preferred embodiment, the antibody, oligopeptide or organic molecule is effective to destroy or kill TAT-expressing tumor cells or inhibit

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

the growth of such tumor cells, in vitro or in vivo, upon binding to TAT polypeptide on the cell. Such an antibody includes a naked anti-TAT antibody (not conjugated to any agent). Naked antibodies that have cytotoxic or cell growth inhibition properties can be further harnessed with a cytotoxic agent to render them even more potent in tumor cell destruction. Cytotoxic properties can be conferred to an anti-TAT antibody by, e.g., conjugating the antibody with a cytotoxic agent, to form an immunoconjugate as described herein. The cytotoxic agent or a growth inhibitory agent is preferably a small molecule. Toxins such as calicheamicin or a maytansipoid and analogs or derivatives thereof, are preferable.

The invention provides a composition comprising an anti-TAT antibody, oligopeptide or organic molecule of the invention, and a carrier. For the purposes of treating cancer, compositions can be administered to the patient in need of such treatment, wherein the composition can comprise one or more anti-TAT antibodies present as an immunoconjugate or as the naked antibody. In a further embodiment, the compositions can comprise these antibodies, oligopeptides or organic molecules in combination with other therapeutic agents such as cytotoxic or growth inhibitory agents, including chemotherapeutic agents. The invention also provides formulations comprising an anti-TAT antibody, oligopeptide or organic molecule of the invention, and a carrier. In one embodiment, the formulation is a therapeutic formulation comprising a pharmaceutically acceptable carrier.

Another aspect of the invention is isolated nucleic acids encoding the anti-TAT antibodies. Nucleic acids encoding both the H and L chains and especially the hypervariable region residues, chains which encode the native sequence antibody as well as variants, modifications and humanized versions of the antibody, are encompassed.

The invention also provides methods useful for treating a TAT polypeptide-expressing cancer or alleviating one or more symptoms of the cancer in a mammal, comprising administering a therapeutically effective amount of an anti-TAT antibody, oligopeptide or organic molecule to the mammal. The antibody, oligopeptide or organic molecule to the mammal. The antibody, oligopeptide or organic molecule therapeutic compositions can be administered short term (acute) or chronic, or intermittent as directed by physician. Also provided are methods of inhibiting the growth of, and killing a TAT polypeptide-expressing cell.

The invention also provides kits and articles of manufacture comprising at least one anti-TAT antibody, oligopeptide or organic molecule. Kits containing anti-TAT antibodies, oligopeptides or organic molecules find use, e.g., for TAT cell killing assays, for purification or immunoprecipitation of TAT polypeptide from cells. For example, for isolation and purification of TAT, the kit can contain an anti-TAT antibody, oligopeptide or organic molecule coupled to beads (e.g., sepharose beads). Kits can be provided which contain the antibodies, oligopeptides or organic molecules for detection and quantitation of TAT in vitro, e.g., in an ELISA or a Western blot. Such antibody, oligopeptide or organic molecule useful for detection may be provided with a label such as a fluorescent or radiolabel.

L. Articles of Manufacture and Kits

Another embodiment of the invention is an article of manufacture containing materials useful for the treatment of anti-TAT expressing cancer. The article of manufacture comprises a container and a label or

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

package insert on or associated with the container. Suitable containers include, for example, bottles, vials, syringes, etc. The containers may be formed from a variety of materials such as glass or plastic. The container holds a composition which is effective for treating the cancer condition and may have a sterile access port (for example the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle). At least one active agent in the composition is an anti-TAT antibody, oligopeptide or organic molecule of the invention. The label or package insert indicates that the composition is used for treating cancer. The label or package insert will further comprise instructions for administering the antibody, oligopeptide or organic molecule composition to the cancer patient. Additionally, the article of manufacture may further comprise a second container comprising a pharmaceutically-acceptable buffer, such as bacteriostatic water for injection (BWFI), phosphate-buffered saline, Ringer's solution and dextrose solution. It may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, and syringes.

Kits are also provided that are useful for various purposes, e.g., for TAT-expressing cell killing assays, for purification or immunoprecipitation of TAT polypeptide from cells. For isolation and purification of TAT polypeptide, the kit can contain an anti-TAT antibody, oligopeptide or organic molecule coupled to beads (e.g., sepharose beads). Kits can be provided which contain the antibodies, oligopeptides or organic molecules for detection and quantitation of TAT polypeptide in witro, e.g., in an ELISA or a Western blot. As with the article of manufacture, the kit comprises a container and a label or package insert on or associated with the container. The container holds a composition comprising at least one anti-TAT antibody, oligopeptide or organic molecule of the invention. Additional containers may be included that contain, e.g., diluents and buffers, control antibodies. The label or package insert may provide a description of the composition as well as instructions for the intended in vitro or diagnostic use.

M. Uses for TAT Polypeptides and TAT-Polypeptide Encoding Nucleic Acids

Nucleotide sequences (or their complement) encoding TAT polypeptides have various applications in the art of molecular biology, including uses as hybridization probes, in chromosome and gene mapping and in the generation of anti-sense RNA and DNA probes. TAT-encoding nucleic acid will also be useful for the preparation of TAT polypeptides by the recombinant techniques described herein, wherein those TAT polypeptides may find use, for example, in the preparation of anti-TAT antibodies as described herein.

The full-length native sequence TAT gene, or portions thereof, may be used as hybridization probes for a cDNA library to isolate the full-length TAT cDNA or to isolate still other cDNAs (for instance, those encoding naturally-occurring variants of TAT or TAT from other species) which have a desired sequence identity to the native TAT sequence disclosed herein. Optionally, the length of the probes will be about 20 to about 50 bases. The hybridization probes may be derived from at least partially novel regions of the full length native nucleotide sequence wherein those regions may be determined without undue experimentation or from genomic sequences including promoters, enhancer elements and introns of native sequence TAT. By way of example, a screening method will comprise isolating the coding region of the TAT gene using the known DNA sequence to synthesize a selected probe of about 40 bases. Hybridization probes may be labeled by a variety

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

of labels, including radionucleotides such as ³²P or ³⁵S, or enzymatic labels such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems. Labeled probes having a sequence complementary to that of the TAT gene of the present invention can be used to screen libraries of human cDNA, genomic DNA or mRNA to determine which members of such libraries the probe hybridizes to. Hybridization techniques are described in further detail in the Examples below. Any EST sequences disclosed in the present application may similarly be employed as probes, using the methods disclosed herein.

Other useful fragments of the TAT-encoding nucleic acids include antisense or sense oligonucleotides comprising a singe-stranded nucleic acid sequence (either RNA or DNA) capable of binding to target TAT mRNA (sense) or TAT DNA (antisense) sequences. Antisense or sense oligonucleotides, according to the present invention, comprise a fragment of the coding region of TAT DNA. Such a fragment generally comprise at least about 14 nucleotides, preferably from about 14 to 30 nucleotides. The ability to derive an antisense or a sense oligonucleotide, based upon a cDNA sequence encoding a given protein is described in, for example, Stein and Cohen (Cancer Res. 48:2659, 1988) and van der Krol et al. (BioTechniques 6:958, 1988).

Binding of antisense or sense oligonucleotides to target nucleic acid sequences results in the formation of duplexes that block transcription or translation of the target sequence by one of several means, including enhanced degradation of the duplexes, premature termination of transcription or translation, or by other means. Such methods are encompassed by the present invention. The antisense oligonucleotides thus may be used to block expression of TAT proteins, wherein those TAT proteins may play a role in the induction of cancer in mammals. Antisense or sense oligonucleotides further comprise oligonucleotides having modified sugarphosphodiester backbones (or other sugar linkages, such as those described in WO 91/06629) and wherein such sugar linkages are resistant to endogenous nucleases. Such oligonucleotides with resistant sugar linkages are stable in vivo (i.e., capable of resisting enzymatic degradation) but retain sequence specificity to be able to bind to target nucleotide sequences.

Preferred intragenic sites for antisense binding include the region incorporating the translation initiation/start codon (5'-AUG/5'-ATG) or termination/stop codon (5'-UAA, 5'-UAG and 5'-UGA/5'-TAA, 5'-TAG and 5'-TGA) of the open reading frame (ORF) of the gene. These regions refer to a portion of the mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5' or 3') from a translation initiation or termination codon. Other preferred regions for antisense binding include: introns; exons; intron-exon junctions; the open reading frame (ORF) or "coding region," which is the region between the translation initiation codon and the translation termination codon; the 5' cap of an mRNA which comprises an N7-methylated guanosine residue joined to the 5'-most residue of the mRNA via a 5'-5' triphosphate linkage and includes 5' cap structure itself as well as the first 50 nucleotides adjacent to the cap; the 5' untranslated region (5' UTR), the portion of an mRNA in the 5' direction from the translation initiation codon, and thus including nucleotides between the 5' cap site and the translation initiation codon of an mRNA or corresponding nucleotides on the gene; and the 3' untranslated region (3' UTR), the portion of an mRNA in the 3' direction from the translation termination codon, and thus including nucleotides between the translation termination codon and 3' end of an mRNA or corresponding nucleotides on the gene.

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

Specific examples of preferred antisense compounds useful for inhibiting expression of TAT proteins include oligonucleotides containing modified backbones or non-natural internucleoside linkages. Oligonucleotides having modified backbones include those that retain a phosphorus atom in the backbone and those that do not have a phosphorus atom in the backbone. For the purposes of this specification, and as sometimes referenced in the art, modified oligonucleotides that do not have a phosphorus atom in their internucleoside backbone can also be considered to be oligonucleosides. Preferred modified oligonucleotide backbones include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotri-esters, methyl and other alkyl phosphonates including 3'-alkylene phosphonates, 5'-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3'-amino phosphoramidate and amino alkylphosphoramidates, thio no phosphoramidates, thio no alkylphosphonates, thio no alkylphosphoramidates, the alkylphosphoramidates alkylphosphoramidateselenophosphates and borano-phosphates having normal 3'-5' linkages, 2'-5' linked analogs of these, and those having inverted polarity wherein one or more internucleotide linkages is a 3' to 3', 5' to 5' or 2' to 2' linkage. Preferred oligonucleotides having inverted polarity comprise a single 3' to 3' linkage at the 3'-most internucleotide linkage i.e. a single inverted nucleoside residue which may be abasic (the nucleobase is missing or has a hydroxyl group in place thereof). Various salts, mixed salts and free acid forms are also included. Representative United States patents that teach the preparation of phosphorus-containing linkages include, but are not limited to, U.S. Pat. Nos.: 3,687,808; 4,469,863; 4,476,301; 5,023,243; 5,177,196; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455,233; 5.466.677; 5.476,925; 5,519,126; 5,536,821; 5,541,306; 5,550,111; 5,563,253; 5,571,799; 5,587,361; 5,194,599; 5,565,555; 5,527,899; 5,721,218; 5,672,697 and 5,625,050, each of which is herein incorporated by reference.

Preferred modified oligonucleotide backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; include backbones; methylene formacetyl and thioformacetyl backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; alkene containing backbones; amide backbones; and others having mixed N, O, S and CH. sub. 2 component parts. Representative United States patents that teach the preparation of such oligonucleosides include, but are not limited to, U.S. Pat. Nos.: 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,264,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,602,240; 5,602,240; 5,602,240; 5,602,046; 5,601,289; 5,601,289; 5,602,240; 5,603,312; 5,633,360; 5,677,437; 5,792,608; 5,646,269 and 5,677,439, each of which is herein incorporated by reference.

In other preferred antisense oligonucleotides, both the sugar and the internucleoside linkage, i.e., the backbone, of the nucleotide units are replaced with novel groups. The base units are maintained for hybridization with an appropriate nucleic acid target compound. One such oligomeric compound, an oligonucleotide mimetic

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). In PNA compounds, the sugar-backbone of an oligonucleotide is replaced with an amide containing backbone, in particular an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. Representative United States patents that teach the preparation of PNA compounds include, but are not limited to, U.S. Pat. Nos.: 5,539,082; 5,714,331; and 5,719,262, each of which is herein incorporated by reference. Further teaching of PNA compounds can be found in Nielsen et al., Science, 1991, 254, 1497-1500.

Preferred antisense oligonucleotides incorporate phosphorothioate backbones and/or heteroatom backbones, and in particular -CH₂-NH-O-CH₂-, -CH₂-N(CH₃)-O-CH₂- [known as a methylene (methylimino) or MMI backbone], -CH₂-O-N(CH₃)-CH₂-, -CH₂-N(CH₃)-N(CH₃)-CH₂- and -O-N(CH₃)-CH₂- (wherein the native phosphodiester backbone is represented as -O-P-O-CH₂-] described in the above referenced U.S. Pat. No. 5,489,677, and the amide backbones of the above referenced U.S. Pat. No. 5,602,240. Also preferred are antisense oligonucleotides having morpholino backbone structures of the above-referenced U.S. Pat. No. 5,034,506.

Modified oligonucleotides may also contain one or more substituted sugar moieties. Preferred oligonucleotides comprise one of the following at the 2' position: OH; F; O-alkyl, S-alkyl, or N-alkyl; Oalkenyl, S-alkeynyl, or N-alkenyl; O-alkynyl, S-alkynyl or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C_{1} to C_{10} alkyl or C_{2} to C_{10} alkenyl and alkynyl. Particularly preferred are O[(CH₂)_nO]_mCH₃, O(CH₂)_nOCH₃, O(CH₂)_nNH₂, O(CH₂)_nCH₃, O(CH₂)_nONH₂, and O(CH₂),ON[(CH₂),CH₃)]₂, where n and m are from 1 to about 10. Other preferred antisense oligonucleotides comprise one of the following at the 2' position: C₁ to C₁₀ lower alkyl, substituted lower alkyl, alkenyl, alkynyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH3, OCN, Cl, Br, CN, CF3, OCF3, SOCH3, SO2 CH3, ONO2, NO2, N3, NH2, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of an oligonucleotide, or a group for improving the pharmacodynamic properties of an oligonucleotide, and other substituents having similar properties. A preferred modification includes 2'-methoxyethoxy (2'-O-CH2CH2OCH3, also known as 2'-O-(2-methoxyethyl) or 2'-MOE) (Martin et al., Helv. Chim. Acta, 1995, 78, 486-504) i.e., an alkoxyalkoxy group. A further preferred modification includes 2'-dimethylaminooxyethoxy, i.e., a O(CH₂)₂ON(CH₃)₂ group, also known as 2'-DMAOE, as described in examples hereinbelow, and 2'-dimethylaminoethoxyethoxy (also known in the art as 2'-O-dimethylaminoethoxyethyl or 2'-DMAEOE), i.e., 2'-O-CH2-O-CH2-N(CH2).

A further prefered modification includes Locked Nucleic Acids (LNAs) in which the 2'-hydroxyl group is linked to the 3' or 4' carbon atom of the sugar ring thereby forming a bicyclic sugar moiety. The linkage is preferably a methelyne (-CH₂-)_a group bridging the 2' oxygen atom and the 4' carbon atom wherein n is 1 or 2. LNAs and preparation thereof are described in WO 98/39352 and WO 99/14226.

Other preferred modifications include 2'-methoxy (2'-O-CH₃), 2'-aminopropoxy (2'-OCH₂CH₂CH₂

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

NH₃), 2'-allyl (2'-CH₂-CH=CH₃), 2'-O-allyl (2'-O-CH₂-CH=CH₃) and 2'-fluoro (2'-F). The 2'-modification may be in the arabino (up) position or ribo (down) position. A preferred 2'-arabino modification is 2'-F. Similar modifications may also be made at other positions on the oligonucleotide, particularly the 3' position of the sugar on the 3' terminal nucleotide or in 2'-5' linked oligonucleotides and the 5' position of 5' terminal nucleotide. Oligonucleotides may also have sugar mimetics such as cyclobutyl moieties in place of the pentoturanosyl sugar. Representative United States patents that teach the preparation of such modified sugar structures include, but are not limited to, U.S. Pat. Nos.: 4,981,957; 5,118,800; 5,319,080; 5,359,044; 5,393,878; 5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811; 5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,646,265; 5,658,873; 5,670,633; 5,792,747; and 5,700,920, each of which is herein incorporated by reference in its entirety.

Oligonucleotides may also include nucleobase (often referred to in the art simply as "base") modifications or substitutions. As used herein, "unmodified" or "natural" nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleobases include other synthetic and natural nucleobases such as 5-methylcytosine (5-me-C). 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine. 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl (-C=C-CH₂ or -CH₂-C=CH) uracil and cytosine and other alkynyl derivatives of pyrimidine bases, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines, 5-halo particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 2-F-adenine, 2-amino-adenine, 8-azaguanine and 8-azaguanine, 7-deazaguanine and 7-deazaadenine and 3-deazaguanine and 3-deazaadenine. Further modified nucleobases include tricyclic pyrimidines such as phenoxazine cytidine(1H-pyrimido[5,4-b][1,4]benzoxazin-2(3H)-one), phenothiazine cytidine (1H-pyrimido[5,4-b][1,4]benzothiazin-2(3H)-one), G-clamps such as a substituted phenoxazine cytidine 9-(2-aminoethoxy)-H-pyrimido[5,4-b][1,4]benzoxazin-2(3H)-one), carbazole cytidine (2H-pyrimido[4,5-b]indol-2-one), pyridoindole cytidine (H-pyrido[3',2':4,5]pyrrolo[2,3-d]pyrimidin-2-one). Modified nucleobases may also include those in which the purine or pyrimidine base is replaced with other heterocycles, for example 7-deaza-adenine, 7-deazaguanosine, 2-aminopyridine and 2-pyridone. Further nucleobases include those disclosed in U.S. Pat. No. 3,687,808, those disclosed in The Concise Encyclopedia Of Polymer Science And Engineering, pages 858-859, Kroschwitz, J. I., ed. John Wiley & Sons. 1990, and those disclosed by Englisch et al., Angewandte Chemie, International Edition, 1991, 30, 613. Certain of these nucleobases are particularly useful for increasing the binding affinity of the oligomeric compounds of the invention. These include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine, 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2. degree. C. (Sanghvi et al, Antisense Research and Applications, CRC Press, Boca Raton, 1993, pp. 276-278) and are preferred base substitutions, even more particularly when combined with 2'-O-methoxyethyl sugar modifications. Representative United States patents

WO 2004/030615 PCT/US2003/028547

that teach the preparation of modified nucleobases include, but are not limited to: U.S. Pat. No. 3,687,808, as well as U.S. Pat. Nos.: 4,845,205; 5,130,302; 5,134,066; 5,175,273; 5,367,066; 5,432,272; 5,457,187; 5,459,255; 5,484,908; 5,502,177; 5,525,711; 5,525,540; 5,587,469; 5,594,121, 5,596,091; 5,614,617; 5,645,985; 5,830,653; 5,763,588; 6,005,096; 5,681,941 and 5,750,692, each of which is herein incorporated by reference.

10

5

15

25

20

30

35

Another modification of antisense oligonucleotides chemically linking to the oligonucleotide one or more mojeties or conjugates which enhance the activity, cellular distribution or cellular uptake of the oligonucleotide. The compounds of the invention can include conjugate groups covalently bound to functional groups such as primary or secondary hydroxyl groups. Conjugate groups of the invention include intercalators, reporter molecules, polyamines, polyamides, polyethylene glycols, polyethers, groups that enhance the pharmacodynamic properties of oligomers, and groups that enhance the pharmacokinetic properties of oligomers. Typical conjugates groups include cholesterols, lipids, cation lipids, phospholipids, cationic phospholipids, biotin, phenazine, folate, phenanthridine, anthraquinone, acridine, fluoresceins, rhodamines, coumarins, and dyes. Groups that enhance the pharmacodynamic properties, in the context of this invention, include groups that improve oligomer uptake, enhance oligomer resistance to degradation, and/or strengthen sequence-specific hybridization with RNA. Groups that enhance the pharmacokinetic properties, in the context of this invention, include groups that improve oligomer uptake, distribution, metabolism or excretion. Conjugate moieties include but are not limited to lipid moieties such as a cholesterol moiety (Letsinger et al., Proc. Natl. Acad. Sci. USA, 1989, 86, 6553-6556), cholic acid (Manoharan et al., Bioorg. Med. Chem. Let., 1994, 4, 1053-1060), a thioether, e.g., hexyl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660, 306-309; Manoharan et al., Bioorg. Med. Chem. Let., 1993, 3, 2765-2770), a thiocholesterol (Oberhauser et al., Nucl. Acids Res., 1992, 20, 533-538), an aliphatic chain, e.g., dodecandiol or undecyl residues (Saison-Behmoaras et al., EMBO J., 1991, 10, 1111-1118; Kabanov et al., FEBS Lett., 1990, 259, 327-330; Svinarchuk et al., Biochimie, 1993, 75, 49-54), a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethyl-animonium 1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate (Manoharan et al., Tetrahedron Lett., 1995, 36, 3651-3654; Shea et al., Nucl. Acids Res., 1990, 18, 3777-3783), a polyamine or a polyethylene glycol chain (Manoharan et al., Nucleosides & Nucleotides, 1995, 14, 969-973), or adamantane acetic acid (Manoharan et al., Tetrahedron Lett., 1995, 36, 3651-3654), a palmityl moiety (Mishra et al., Biochim. Biophys. Acta, 1995, 1264, 229-237), or an octadecylamine or hexylamino-carbonyl-oxycholesterol moiety. Oligonucleotides of the invention may also be conjugated to active drug substances, for example, aspirin, warfarin, phenylbutazone, ibuprofen, suprofen, fenbufen, ketoprofen, (S)-(+)-pranoprofen, carprofen, dansylsarcosine, 2.3.5-triiodobenzoic acid, flufenamic acid, folinic acid, a benzothiadiazide, chlorothiazide, a diazepine, indomethicin, a barbiturate, a cephalosporin, a sulfa drug, an antidiabetic, an antibacterial or an antibiotic. Oligonucleotide-drug conjugates and their preparation are described in U.S. patent application Ser. No. 09/334.130 (filed Jun. 15, 1999) and United States patents Nos.: 4,828,979; 4,948,882; 5,218,105; 5,525,465; 5,541,313; 5,545,730; 5,552,538; 5,578,717, 5,580,731; 5,580,731; 5,591,584; 5,109,124; 5,118,802;

5,138,045; 5,414,077; 5,486,603; 5,512,439; 5,578,718; 5,608,046; 4,587,044; 4,605,735; 4,667,025;

WO 2004/030615 PCT/US2003/028547

4,762,779; 4,789,737; 4,824,941; 4,835,263; 4,876,335; 4,904,582; 4,958,013; 5,082,830; 5,112,963; 5,214,136; 5,082,830; 5,112,963; 5,214,136; 5,082,830; 5,112,963; 5,214,136; 5,245,022; 5,254,469; 5,258,506; 5,262,536; 5,272,250; 5,292,873; 5,317,098; 5,371,241, 5,391,723; 5,416,203, 5,451,463; 5,510,475; 5,512,667; 5,514,785; 5,565,552; 5,567,810; 5,574,142; 5,585,481; 5,587,371; 5,595,726; 5,597,696; 5,599,923; 5,599,928 and 5,688,941, each of which is herein incorporated by reference.

It is not necessary for all positions in a given compound to be uniformly modified, and in fact more

5

10

15

than one of the aforementioned modifications may be incorporated in a single compound or even at a single nucleoside within an oligonucleotide. The present invention also includes antisense compounds which are chimeric compounds. "Chimeric" antisense compounds or "chimeras," in the context of this invention, are antisense compounds, particularly oligonucleotides, which contain two or more chemically distinct regions, each made up of at least one monomer unit, i.e., a nucleotide in the case of an oligonucleotide compound. These oligonucleotides typically contain at least one region wherein the oligonucleotide is modified so as to confer upon the oligonucleotide increased resistance to nuclease degradation, increased cellular uptake, and/or increased binding affinity for the target nucleic acid. An additional region of the oligonucleotide may serve as a substrate for enzymes capable of cleaving RNA:DNA or RNA:RNA hybrids. By way of example, RNase H is a cellular endonuclease which cleaves the RNA strand of an RNA: DNA duplex. Activation of RNase H, therefore, results in cleavage of the RNA target, thereby greatly enhancing the efficiency of oligonucleotide inhibition of gene expression. Consequently, comparable results can often be obtained with shorter oligonucleotides when chimeric oligonucleotides are used, compared to phosphorothioate deoxyoligonucleotides hybridizing to the same target region. Chimeric antisense compounds of the invention may be formed as composite structures of two or more oligonucleotides, modified oligonucleotides, oligonucleosides and/or oligonucleotide mimetics as described above. Preferred chimeric antisense oligonucleotides incorporate at least one 2' modified sugar (preferably 2'-O-(CH₂)₂-O-CH₃) at the 3' terminal to confer nuclease resistance and a region with at least 4 contiguous 2'-H sugars to confer RNase H activity. Such compounds have also been referred to in the art as hybrids or gapmers. Preferred gapmers have a region of 2' modified sugars (preferably 2'-O-(CH₂)₂-O-CH₃) at the 3'-terminal and at the 5' terminal separated by at least one region having at least 4 contiguous 2'-H sugars and preferably incorporate phosphorothicate backbone linkages. Representative United States patents that teach the preparation of such hybrid structures include, but are not limited to, U.S. Pat. Nos. 5,013,830; 5,149,797; 5,220,007;

25

30

20

each of which is herein incorporated by reference in its entirety.

The antisense compounds used in accordance with this invention may be conveniently and routinely made through the well-known technique of solid phase synthesis. Equipment for such synthesis is sold by several vendors including, for example, Applied Biosystems (Foster City, Calif.). Any other means for such synthesis known in the art may additionally or alternatively be employed. It is well known to use similar techniques to prepare oligonucleotides such as the phosphorothioates and alkylated derivatives. The compounds of the invention may also be admixed, encapsulated, conjugated or otherwise associated with other molecules,

5,256,775; 5,366,878; 5,403,711; 5,491,133; 5,565,350; 5,623,065; 5,652,355; 5,652,356; and 5,700,922,

35

molecule structures or mixtures of compounds, as for example, liposomes, receptor targeted molecules, oral,

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

rectal, topical or other formulations, for assisting in uptake, distribution and/or absorption. Representative United States patents that teach the preparation of such uptake, distribution and/or absorption assisting formulations include, but are not limited to, U.S. Pat. Nos. 5,108,921; 5,354,844; 5,416,016; 5,459,127; 5,521,291; 5,543,158; 5,547,932; 5,583,020; 5,591,721; 4,426,330; 4,534,899; 5,013,556; 5,108,921; 5,213,804; 5,227,170; 5,264,221; 5,356,633; 5,395,619; 5,416,016; 5,417,978; 5,462,854; 5,469,854; 5,512,295; 5,527,528; 5,534,259; 5,543,152; 5,556,948; 5,580,575; and 5,595,756, each of which is herein incorporated by reference.

Other examples of sense or antisense oligonucleotides include those oligonucleotides which are covalently linked to organic moieties, such as those described in WO 90/10048, and other moieties that increases affinity of the oligonucleotide for a target nucleic acid sequence, such as poly-(L-lysine). Further still, intercalating agents, such as ellipticine, and alkylating agents or metal complexes may be attached to sense or antisense oligonucleotides to modify binding specificities of the antisense or sense oligonucleotide for the target nucleotide sequence.

Antisense or sense oligonucleotides may be introduced into a cell containing the target nucleic acid sequence by any gene transfer method, including, for example, CaPO 4-mediated DNA transfection, electroporation, or by using gene transfer vectors such as Epstein-Barr virus. In a preferred procedure, an antisense or sense oligonucleotide is inserted into a suitable retroviral vector. A cell containing the target nucleic acid sequence is contacted with the recombinant retroviral vector, either in vivo or ex vivo. Suitable retroviral vectors include, but are not limited to, those derived from the murine retrovirus M-MuLV, N2 (a retrovirus derived from M-MuLV), or the double copy vectors designated DCT5A, DCT5B and DCT5C (see WO 90/13641).

Sense or antisense oligonucleotides also may be introduced into a cell containing the target nucleotide sequence by formation of a conjugate with a ligand binding molecule, as described in WO 91/04753. Suitable ligand binding molecules include, but are not limited to, cell surface receptors, growth factors, other cytokines, or other ligands that bind to cell surface receptors. Preferably, conjugation of the ligand binding molecule does not substantially interfere with the ability of the ligand binding molecule to bind to its corresponding molecule or receptor, or block entry of the sense or antisense oligonucleotide or its conjugated version into the cell.

Alternatively, a sense or an antisense oligonucleotide may be introduced into a cell containing the target nucleic acid sequence by formation of an oligonucleotide-lipid complex, as described in WO 90/10448. The sense or antisense oligonucleotide-lipid complex is preferably dissociated within the cell by an endogenous lipase.

Antisense or sense RNA or DNA molecules are generally at least about 5 nucleotides in length, alternatively at least about 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620, 630, 640, 650, 660, 670, 680, 690, 700, 710,

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

720, 730, 740, 750, 760, 770, 780, 790, 800, 810, 820, 830, 840, 850, 860, 870, 880, 890, 900, 910, 920, 930, 940, 950, 960, 970, 980, 990, or 1000 nucleotides in length, wherein in this context the term "abour" means the referenced nucleotide sequence length plus or minus 10% of that referenced length.

The probes may also be employed in PCR techniques to generate a pool of sequences for identification of closely related TAT coding sequences.

Nucleotide sequences encoding a TAT can also be used to construct hybridization probes for mapping the gene which encodes that TAT and for the genetic analysis of individuals with genetic disorders. The nucleotide sequences provided herein may be mapped to a chromosome and specific regions of a chromosome using known techniques, such as in situ hybridization, linkage analysis against known chromosomal markers, and hybridization screening with libraries.

When the coding sequences for TAT encode a protein which binds to another protein (example, where the TAT is a receptor), the TAT can be used in assays to identify the other proteins or molecules involved in the binding interaction. By such methods, inhibitors of the receptor/ligand binding interaction can be identified. Proteins involved in such binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction. Also, the receptor TAT can be used to isolate correlative ligand(s). Screening assays can be designed to find lead compounds that mimic the biological activity of a native TAT or a receptor for TAT. Such screening assays will include assays amenable to high-throughput screening of chemical libraries, making them particularly suitable for identifying small molecule drug candidates. Small molecules contemplated include synthetic organic or inorganic compounds. The assays can be performed in a variety of formats, including protein-protein binding assays, biochemical screening assays, immunoassays and cell based assays, which are well characterized in the art.

Nucleic acids which encode TAT or its modified forms can also be used to generate either transgenic animals or "knock out" animals which, in turn, are useful in the development and screening of therapeutically useful reagents. A transgenic animal (e.g., a mouse or rat) is an animal having cells that contain a transgene, which transgene was introduced into the animal or an ancestor of the animal at a prenatal, e.g., an embryonic stage. A transgene is a DNA which is integrated into the genome of a cell from which a transgenic animal develops. In one embodiment, cDNA encoding TAT can be used to clone genomic DNA encoding TAT in accordance with established techniques and the genomic sequences used to generate transgenic animals that contain cells which express DNA encoding TAT. Methods for generating transgenic animals, particularly animals such as mice or rats, have become conventional in the art and are described, for example, in U.S. Patent Nos. 4,736,866 and 4,870,009. Typically, particular cells would be targeted for TAT transgene incorporation with tissue-specific enhancers. Transgenic animals that include a copy of a transgene encoding TAT introduced into the germ line of the animal at an embryonic stage can be used to examine the effect of increased expression of DNA encoding TAT. Such animals can be used as tester animals for reagents thought to confer protection from, for example, pathological conditions associated with its overexpression. In accordance with this facet of the invention, an animal is treated with the reagent and a reduced incidence of the pathological condition, compared to untreated animals bearing the transgene, would indicate a potential

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

therapeutic intervention for the pathological condition.

Alternatively, non-human homologues of TAT can be used to construct a TAT "knock out" animal which has a defective or altered gene encoding TAT as a result of homologous recombination between the endogenous gene encoding TAT and altered genomic DNA encoding TAT introduced into an embryonic stem cell of the animal. For example, cDNA encoding TAT can be used to clone genomic DNA encoding TAT in accordance with established techniques. A portion of the genomic DNA encoding TAT can be deleted or replaced with another gene, such as a gene encoding a selectable marker which can be used to monitor integration. Typically, several kilobases of unaltered flanking DNA (both at the 5' and 3' ends) are included in the vector [see e.g., Thomas and Capecchi, Cell, 51:503 (1987) for a description of homologous recombination vectors]. The vector is introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced DNA has homologously recombined with the endogenous DNA are selected [see e.g., Li et al., Cell, 69:915 (1992)]. The selected cells are then injected into a blastocyst of an animal (e.g., a mouse or rat) to form aggregation chimeras [see e.g., Bradley, in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, E. J. Robertson, ed. (IRL, Oxford, 1987), pp. 113-152]. A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term to create a "knock out" animal. Progeny harboring the homologously recombined DNA in their germ cells can be identified by standard techniques and used to breed animals in which all cells of the animal contain the homologously recombined DNA. Knockout animals can be characterized for instance, for their ability to defend against certain pathological conditions and for their development of pathological conditions due to absence of the TAT polypeptide.

Nucleic acid encoding the TAT polypeptides may also be used in gene therapy. In gene therapy applications, genes are introduced into cells in order to achieve in vivo synthesis of a therapeutically effective genetic product, for example for replacement of a defective gene. "Gene therapy" includes both conventional gene therapy where a lasting effect is achieved by a single treatment, and the administration of gene therapeutic agents, which involves the one time or repeated administration of a therapeutically effective DNA or mRNA. Antisense RNAs and DNAs can be used as therapeutic agents for blocking the expression of certain genes in vivo. It has already been shown that short antisense oligonucleotides can be imported into cells where they act as inhibitors, despite their low intracellular concentrations caused by their restricted uptake by the cell membrane. (Zamecnik et al., Proc. Natl. Acad. Sci. USA 83:4143-4146 [1986]). The oligonucleotides can be modified to enhance their uptake, e.g. by substituting their negatively charged phosphodiester groups by uncharged groups.

There are a variety of techniques available for introducing nucleic acids into viable cells. The techniques vary depending upon whether the nucleic acid is transferred into cultured cells in vitro, or in vivo in the cells of the intended host. Techniques suitable for the transfer of nucleic acid into mammalian cells in vitro include the use of liposomes, electroporation, microinjection, cell fusion, DEAE-dextran, the calcium phosphate precipitation method, etc. The currently preferred in vivo gene transfer techniques include transfection with viral (typically retroviral) vectors and viral coat protein-liposome mediated transfection (Dzau

WO 2004/030615 PCT/US2003/028547

et al., <u>Trends in Biotechnology</u> 11, 205-210 [1993]). In some situations it is desirable to provide the nucleic acid source with an agent that targets the target cells, such as an antibody specific for a cell surface membrane protein or the target cell, a ligand for a receptor on the target cell, etc. Where liposomes are employed, proteins which bind to a cell surface membrane protein associated with endocytosis may be used for targeting and/or to facilitate uptake, e.g. capsid proteins or fragments thereof tropic for a particular cell type, antibodies for proteins which undergo internalization in cycling, proteins that target intracellular localization and enhance intracellular half-life. The technique of receptor-mediated endocytosis is described, for example, by Wu et al., 1. Biol. Chem. 262, 4429-4432 (1987); and Wagner et al., Proc. Natl. Acad. Sci. USA 87, 3410-3414 (1990). For review of sene marking and gene therapy protocols see Anderson et al., Science 256, 808-813 (1992).

The nucleic acid molecules encoding the TAT polypeptides or fragments thereof described herein are useful for chromosome identification. In this regard, there exists an ongoing need to identify new chromosome markers, since relatively few chromosome marking reagents, based upon actual sequence data are presently available. Each TAT nucleic acid molecule of the present invention can be used as a chromosome marker.

The TAT polypeptides and nucleic acid molecules of the present invention may also be used diagnostically for tissue typing, wherein the TAT polypeptides of the present invention may be differentially expressed in one tissue as compared to another, preferably in a diseased tissue as compared to a normal tissue of the same tissue type. TAT nucleic acid molecules will find use for generating probes for PCR, Northern analysis, Southern analysis and Western analysis.

This invention encompasses methods of screening compounds to identify those that mimic the TAT polypeptide (agonists) or prevent the effect of the TAT polypeptide (antagonists). Screening assays for antagonist drug candidates are designed to identify compounds that bind or complex with the TAT polypeptides encoded by the genes identified herein, or otherwise interfere with the interaction of the encoded polypeptides with other cellular proteins, including e.g., inhibiting the expression of TAT polypeptide from cells. Such screening assays will include assays amenable to high-throughput screening of chemical libraries, making them particularly suitable for identifying small molecule drug candidates.

The assays can be performed in a variety of formats, including protein-protein binding assays, biochemical screening assays, immunoassays, and cell-based assays, which are well characterized in the art.

All assays for antagonists are common in that they call for contacting the drug candidate with a TAT polypeptide encoded by a nucleic acid identified herein under conditions and for a time sufficient to allow these two components to interact.

In binding assays, the interaction is binding and the complex formed can be isolated or detected in the reaction mixture. In a particular embodiment, the TAT polypeptide encoded by the gene identified herein or the drug candidate is immobilized on a solid phase, e.g., on a microtiter plate, by covalent or non-covalent attachments. Non-covalent attachments with a solution of the TAT polypeptide and drying. Alternatively, an immobilized antibody, e.g., a monoclonal antibody, specific for the TAT polypeptide to be immobilized can be used to anchor it to a solid surface. The assay is performed by adding the non-immobilized component, which may be labeled by a detectable label, to the

15

20

5

30

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

immobilized component, e.g., the coated surface containing the anchored component. When the reaction is complete, the non-reacted components are removed, e.g., by washing, and complexes anchored on the solid surface are detected. When the originally non-immobilized component carries a detectable label, the detection of label immobilized on the surface indicates that complexing occurred. Where the originally non-immobilized component does not carry a label, complexing can be detected, for example, by using a labeled antibody specifically binding the immobilized complex.

If the candidate compound interacts with but does not bind to a particular TAT polypeptide encoded by a gene identified herein, its interaction with that polypeptide can be assayed by methods well known for detecting protein-protein interactions. Such assays include traditional approaches, such as, e.g., cross-linking, co-immunoprecipitation, and co-purification through gradients or chromatographic columns. In addition, protein-protein interactions can be monitored by using a yeast-based genetic system described by Fields and coworkers (Fields and Song, Nature (London), 340;245-246 (1989); Chien et al., Proc. Natl. Acad. Sci. USA, 88:9578-9582 (1991)) as disclosed by Chevray and Nathans, Proc. Natl. Acad. Sci. USA, 89: 5789-5793 (1991). Many transcriptional activators, such as yeast GAL4, consist of two physically discrete modular domains, one acting as the DNA-binding domain, the other one functioning as the transcription-activation domain. The yeast expression system described in the foregoing publications (generally referred to as the "twohybrid system") takes advantage of this property, and employs two hybrid proteins, one in which the target protein is fused to the DNA-binding domain of GAL4, and another, in which candidate activating proteins are fused to the activation domain. The expression of a GAL1- lacZ reporter gene under control of a GAL4activated promoter depends on reconstitution of GAL4 activity via protein-protein interaction. Colonies containing interacting polypeptides are detected with a chromogenic substrate for β-galactosidase. A complete kit (MATCHMAKER™) for identifying protein-protein interactions between two specific proteins using the twohybrid technique is commercially available from Clontech. This system can also be extended to map protein domains involved in specific protein interactions as well as to pinpoint amino acid residues that are crucial for these interactions.

Compounds that interfere with the interaction of a gene encoding a TAT polypeptide identified herein and other intra- or extracellular components can be tested as follows: usually a reaction mixture is prepared containing the product of the gene and the intra- or extracellular component under conditions and for a time allowing for the interaction and binding of the two products. To test the ability of a candidate compound to inhibit binding, the reaction is run in the absence and in the presence of the test compound. In addition, a placebo may be added to a third reaction mixture, to serve as positive control. The binding (complex formation) between the test compound and the intra- or extracellular component present in the mixture is monitored as described hereinabove. The formation of a complex in the control reaction(s) but not in the reaction mixture containing the test compound indicates that the test compound interferes with the interaction of the test compound and its reaction partner.

To assay for antagonists, the TAT polypeptide may be added to a cell along with the compound to be screened for a particular activity and the ability of the compound to inhibit the activity of interest in the presence

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

of the TAT polypeptide indicates that the compound is an antagonist to the TAT polypeptide. Alternatively, antagonists may be detected by combining the TAT polypeptide and a potential antagonist with membrane-bound TAT polypeptide each per labeled, such as by radioactivity, such that the number of TAT polypeptide molecules bound to the receptor can be used to determine the effectiveness of the potential antagonist. The gene encoding the receptor can be identified by numerous methods known to those of skill in the art, for example, ligand panning and FACS sorting. Coligan et al., Current Protocols in Immun., 1(2): Chapter 5 (1991). Preferably, expression cloning is employed wherein polyadenylated RNA is prepared from a cell responsive to the TAT polypeptide and a cDNA library created from this RNA is divided into pools and used to transfect COS cells or other cells that are not responsive to the TAT polypeptide. Transfected cells that are grown on glass slides are exposed to labeled TAT polypeptide. The TAT polypeptide can be labeled by a variety of means including iodination or inclusion of a recognition site for a site-specific protein kinase. Following fixation and incubation, the slides are subjected to autoradiographic analysis. Positive pools are identified and sub-pools are prepared and re-transfected using an interactive sub-pooling and re-screening process, eventually yielding a sincle clone that encodes the putative receptor.

As an alternative approach for receptor identification, labeled TAT polypeptide can be photoaffinitylinked with cell membrane or extract preparations that express the receptor molecule. Cross-linked material is resolved by PAGE and exposed to X-ray film. The labeled complex containing the receptor can be excised, resolved into peptide fragments, and subjected to protein micro-sequencing. The amino acid sequence obtained from micro- sequencing would be used to design a set of degenerate oligonucleotide probes to screen a cDNA library to identify the gene encoding the putative receptor.

In another assay for antagonists, mammalian cells or a membrane preparation expressing the receptor would be incubated with labeled TAT polypeptide in the presence of the candidate compound. The ability of the compound to enhance or block this interaction could then be measured.

More specific examples of potential antagonists include an oligonucleotide that binds to the fusions of immunoglobulin with TAT polypeptide, and, in particular, antibodies including, without limitation, poly- and monoclonal antibodies and antibody fragments, single-chain antibodies, anti-idiotypic antibodies, and chimeric or humanized versions of such antibodies or fragments, as well as human antibodies and antibody fragments. Alternatively, a potential antagonist may be a closely related protein, for example, a mutated form of the TAT polypeptide that recognizes the receptor but imparts no effect, thereby competitively inhibiting the action of the TAT polypeptide.

Another potential TAT polypeptide antagonist is an antisense RNA or DNA construct prepared using antisense technology, where, e.g., an antisense RNA or DNA molecule acts to block directly the translation of mRNA by hybridizing to targeted mRNA and preventing protein translation. Antisense technology can be used to control gene expression through triple-helix formation or antisense DNA or RNA, both of which methods are based on binding of a polynucleotide to DNA or RNA. For example, the 5' coding portion of the polynucleotide sequence, which encodes the mature TAT polypeptides herein, is used to design an antisense

WO 2004/030615

PCT/US2003/028547

RNA oligonucleotide of from about 10 to 40 base pairs in length. A DNA oligonucleotide is designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res., 6:3073 (1979); Cooney et al., Science, 241: 456 (1988); Dervan et al., Science, 251:1360 (1991)), thereby preventing transcription and the production of the TAT polypeptide. The antisense RNA oligonucleotide hybridizes to the mRNA in vivo and blocks translation of the mRNA molecule into the TAT polypeptide (antisense - Okano, Neurochem., 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression (CRC Press: Boca Raton, FL, 1988). The oligonucleotides described above can also be delivered to cells such that the antisense RNA or DNA may be expressed in vivo to inhibit production of the TAT polypeptide. When antisense DNA is used, oligodeoxyribonucleotides derived from the translation-initiation site, e.g., between about -10 and +10 positions of the target gene nucleotide sequence, are preferred.

10

5

Potential antagonists include small molecules that bind to the active site, the receptor binding site, or growth factor or other relevant binding site of the TAT polypeptide, thereby blocking the normal biological activity of the TAT polypeptide. Examples of small molecules include, but are not limited to, small peptides or peptide-like molecules, preferably soluble peptides, and synthetic non-peptidyl organic or inorganic compounds.

15

Ribozymes are enzymatic RNA molecules capable of catalyzing the specific cleavage of RNA. Ribozymes act by sequence-specific hybridization to the complementary target RNA, followed by endonucleolytic cleavage. Specific ribozyme cleavage sites within a potential RNA target can be identified by known techniques. For further details see, e.g., Ross<u>Current Biology</u>, 4:469-471 (1994), and PCT publication No. WO 97/33551 (published September 18, 1997).

20

Nucleic acid molecules in triple-helix formation used to inhibit transcription should be single-stranded and composed of deoxynucleotides. The base composition of these oligonucleotides is designed such that it promotes triple-helix formation via Hoogsteen base-pairing rules, which generally require sizeable stretches of purines or pyrimidines on one strand of a duplex. For further details see, e.g., PCT publication No. WO 97/33551, supra.

2.5

These small molecules can be identified by any one or more of the screening assays discussed hereinabove and/or by any other screening techniques well known for those skilled in the art.

Isolated TAT polypeptide-encoding nucleic acid can be used herein for recombinantly producing TAT polypeptide using techniques well known in the art and as described herein. In turn, the produced TAT polypeptides can be employed for generating anti-TAT antibodies using techniques well known in the art and as described herein.

30

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

Antibodies specifically binding a TAT polypeptide identified herein, as well as other molecules identified by the screening assays disclosed hereinbefore, can be administered for the treatment of various disorders, including cancer, in the form of pharmaceutical compositions.

If the TAT polypeptide is intracellular and whole antibodies are used as inhibitors, internalizing antibodies are preferred. However, lipofections or liposomes can also be used to deliver the antibody, or an antibody fragment, into cells. Where antibody fragments are used, the smallest inhibitory fragment that specifically binds to the binding domain of the target protein is preferred. For example, based upon the variable-region sequences of an antibody, peptide molecules can be designed that retain the ability to bind the target protein sequence. Such peptides can be synthesized chemically and/or produced by recombinant DNA technology. See, e.g., Marasco et al., Proc. Natl. Acad. Sci. USA, 90: 7889-7893 (1993).

The formulation herein may also contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other. Alternatively, or in addition, the composition may comprise an agent that enhances its function, such as, for example, a cytotoxic agent, cytokine, chemotherapeutic agent, or growth-inhibitory agent. Such molecules are suitably present in combination in amounts that are effective for the purpose intended.

The following examples are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way.

All patent and literature references cited in the present specification are hereby incorporated by reference in their entirety.

EXAMPLES

Commercially available reagents referred to in the examples were used according to manufacturer's instructions unless otherwise indicated. The source of those cells identified in the following examples, and throughout the specification, by ATCC accession numbers is the American Type Culture Collection, Manassas, VA.

EXAMPLE 1: Analysis of Differential TAT Polypeptide Expression by GEPIS

An expressed sequence tag (EST) DNA database (LIFESEQ®, Incyte Pharmaceuticals, Palo Alto, CA) was searched and interesting EST sequences were identified by GEPIS. Gene expression profiling in silico (GEPIS) is a bioinformatics tool developed at Genentech, Inc. that characterizes genes of interest for new cancer therapeutic targets. GEPIS takes advantage of large amounts of EST sequence and library information to determine gene expression profiles. GEPIS is capable of determining the expression profile of a gene based upon its proportional correlation with the number of its occurrences in EST databases, and it works by integrating the LIFESEQ® EST relational database and Genentech proprietary information in a stringent and statistically meaningful way. In this example, GEPIS is used to identify and cross-validate novel tumor antigens, although GEPIS can be configured to perform either very specific analyses or broad screening tasks. For the initial screen, GEPIS is used to identify EST sequences from the LIFESEQ® database that correlate

10

WO 2004/030615 PCT/US2003/028547

to expression in a particular tissue or tissues of interest (often a tumor tissue of interest). Then, GEPIS was employed to generate a complete tissue expression profile for the various sequences of interest. Using this type of screening bioinformatics, various TAT polypeptides (and their encoding nucleic acid molecules) were identified as being significantly overexpressed in a particular type of cancer or certain cancers as compared to other cancers and/or normal non-cancerous tissues. The rating of GEPIS hits is based upon several criteria including, for example, tissue specificity, tumor specificity and expression level in normal essential and/or normal proliferating tissues. The following is a list of molecules whose tissue expression profile as determined by GEPIS evidences significant upregulation of expression in a specific tumor or tumors as compared to other tumor(s) and/or normal tissues and optionally relatively low expression in normal essential and/or normal proliferating tissues.

Under each tissue heading shown below is a list of the cDNA sequences that are detectably overexpressed in tumor tissue of the indicated tissue type as compared to normal non-tumor tissue of the same tissue type. As such, the molecules listed below (and the polypeptides they encode) are excellent nucleic acid (and polypeptide) targets for the diagnosis and therapy of cancer in mammals.

15	PERIPHERAL NERVOUS SYSTEM						
	DNA324303	DNA324573	DNA324681	DNA325296	DNA325405	DNA325407	
	DNA325408	DNA325409	DNA325410	DNA325449	DNA325503	DNA326083	
	DNA326231	DNA188229	DNA327080	DNA327081	DNA327082		
20	BRAIN						
	DNA323721	DNA323722	DNA323723	DNA323724	DNA323726	DNA323727	
	DNA323728	DNA323729	DNA323731	DNA323732	DNA287173	DNA151148	
	DNA323740	DNA323742	DNA323743	DNA323744	DNA323751	DNA323753	
	DNA323755	DNA323757	DNA323759	DNA323764	DNA323765	DNA323778	
25	DNA323781	DNA323783	DNA323785	DNA323795	DNA323796	DNA323797	
	DNA323805	DNA323810	DNA323811	DNA323812	DNA323814	DNA83085	
	DNA323817	DNA323821	DNA273060	DNA323823	DNA323824	DNA256503	
	DNA323825	DNA323826	DNA323828	DNA323829	DNA323830	DNA323833	
	DNA103214	DNA323834	DNA323837	DNA323838	DNA323839	DNA323846	
30	DNA323856	DNA323859	DNA323863	DNA323869	DNA323871	DNA323874	
	DNA323882	DNA323887	DNA323888	DNA323892	DNA323893	DNA323897	
	DNA323898	DNA323900	DNA323901	DNA323902	DNA323908	DNA210134	
	DNA323912	DNA323918	DNA323921	DNA323922	DNA323923	DNA323924	
	DNA323925	DNA323926	DNA257916	DNA323927	DNA323931	DNA323936	
35	DNA323937	DNA323938	DNA323939	DNA323940	DNA323942	DNA226793	
	DNA294794	DNA323943	DNA323944	DNA323946	DNA323947	DNA323950	

WO 2004/030615

PCT/US2003/028547

	DNA323951	DNA103436	DNA323953	DNA323958	DNA323959	DNA323961
	DNA226619	DNA323962	DNA323964	DNA323969	DNA323970	DNA323973
	DNA323974	DNA323975	DNA323976	DNA323977	DNA323979	DNA323980
	DNA323991	DNA323992	DNA323994	DNA323995	DNA324000	DNA324001
	DNA324002	DNA324003	DNA227246	DNA324004	DNA324008	DNA324009
5	DNA324010	DNA324011	DNA324012	DNA196344	DNA193882	DNA324024
	DNA324034	DNA324037	DNA324042	DNA324046	DNA324047	DNA324048
	DNA324050	DNA324051	DNA324055	DNA275195	DNA324059	DNA324060
	DNA275049	DNA324063	DNA324065	DNA324066	DNA324067	DNA324071
	DNA324072	DNA324073	DNA227165	DNA324074	DNA324076	DNA324077
10	DNA324078	DNA324079	DNA324080	DNA271243	DNA324081	DNA324082
	DNA324084	DNA324088	DNA324090	DNA324091	DNA324092	DNA324099
	DNA324101	DNA324106	DNA324109	DNA324111	DNA324112	DNA324121
	DNA324122	DNA324123	DNA324128	DNA324129	DNA227795	DNA324130
	DNA324131	DNA324132	DNA324133	DNA227528	DNA324134	DNA150725
15	DNA324136	DNA324138	DNA324139	DNA324141	DNA324146	DNA324152
	DNA324153	DNA324155	DNA324159	DNA324160	DNA324161	DNA324162
	DNA194740	DNA324166	DNA324175	DNA324176	DNA272127	DNA324177
,	DNA324182	DNA324184	DNA324186	DNA324188	DNA324194	DNA324197
	DNA324198	DNA324203	DNA324204	DNA324207	DNA324209	DNA324210
20	DNA324216	DNA324218	DNA324220	DNA324221	DNA324222	DNA324223
	DNA324224	DNA324227	DNA324228	DNA194827	DNA324230	DNA324231
	DNA324233	DNA324234	DNA324235	DNA324237	DNA324239	DNA254204
	DNA324240	DNA189697	DNA324243	DNA324246	DNA324251	DNA324253
	DNA150884	DNA324256	DNA324258	DNA324260	DNA324262	DNA324264
25	DNA324269	DNA324270	DNA324271	DNA324274	DNA324275	DNA269910
	DNA324279	DNA324285	DNA324286	DNA324288	DNA324290	DNA270401
	DNA226547	DNA324295	DNA324296	DNA324299	DNA324300	DNA324304
	DNA324305	DNA324308	DNA324309	DNA324310	DNA324313	DNA324314
	DNA324315	DNA324316	DNA324317	DNA103505	DNA324318	DNA324319
30	DNA324320	DNA324323	DNA324327	DNA324328	DNA324329	DNA324330
	DNA324331	DNA324333	DNA324336	DNA324338	DNA324342	DNA324343
	DNA324353	DNA88547	DNA324356	DNA324358	DNA324359	DNA324361
	DNA324363	DNA324364	DNA324365	DNA324366	DNA324367	DNA324368
	DNA324369	DNA324371	DNA324377	DNA324387	DNA324388	DNA324389
35	DNA324390	DNA324397	DNA324398	DNA324410	DNA324411	DNA324412
	DNA324413	DNA254620	DNA324415	DNA324417	DNA324418	DNA89239

WO 2004/030615

PCT/US2003/028547

	DNA324420	DNA225592	DNA324422	DNA324428	DNA324429	DNA324434
	DNA324435	DNA324437	DNA324441	DNA324442	DNA324443	DNA324448
	DNA324449	DNA324457	DNA324465	DNA324466	DNA324467	DNA324472
	DNA257511	DNA324483	DNA324485	DNA324486	DNA225919	DNA324487
	DNA324491	DNA324495	DNA324496	DNA324497	DNA324498	DNA324510
5	DNA324512	DNA324513	DNA324516	DNA324518	DNA324519	DNA324521
	DNA324524	DNA324525	DNA227575	DNA324526	DNA225920	DNA324527
	DNA225921	DNA324528	DNA324531	DNA324532	DNA324533	DNA324534
	DNA324538	DNA324540	DNA324541	DNA324542	DNA324545	DNA324546
	DNA324548	DNA324558	DNA324559	DNA324564	DNA324577	DNA324578
10	DNA288259	DNA324590	DNA324591	DNA324595	DNA324596	DNA324597
	DNA324600	DNA324604	DNA324605	DNA324613	DN A324614	DNA324615
	DNA324616	DNA324618	DNA324619	DNA324620	DNA324624	DNA324625
	DNA83020	DNA324626	DNA103380	DNA226872	DNA324632	DNA324640
	DNA324642	DNA324643	DNA324645	DNA324646	DNA324647	DNA324649
15	DNA324651	DNA324652	DNA324653	DNA150679	DNA324654	DNA324655
	DNA324656	DNA324657	DNA324658	DNA324659	DNA324660	DNA324661
	DNA324662	DNA324663	DNA324664	DNA324665	DNA324666	DNA324667
	DNA324668	DNA324669	DNA324670	DNA324671	DNA324672	DNA324673
	DNA324674	DNA324675	DNA324676	DNA324678	DNA324681	DNA324682
20	DNA324685	DNA324686	DNA324691	DNA324694	DNA324696	DNA324697
	DNA324698	DNA324700	DNA324701	DNA324702	DNA324704	DNA324705
	DNA225909	DNA274206	DNA324706	DNA324707	DNA324710	DNA324711
	DNA324714	DNA324715	DNA324716	DNA270675	DNA324717	DNA269593
	DNA324718	DNA324719	DNA324720	DNA324721	DNA272171	DNA324728
25	DNA324729	DNA304680	DNA324730	DNA324734	DNA324736	DNA324737
	DNA227204	DNA324738	DNA324740	DNA287246	DNA324743	DNA324745
	DNA304716	DNA324748	DNA324749	DNA324750	DNA324751	DNA324755
	DNA324756	DNA324757	DNA324758	DNA227442	DNA324766	DNA324767
	DNA324768	DNA324769	DNA287227	DNA324771	DNA324772	DNA324773
30	DNA324774	DNA272263	DNA287319	DNA324777	DNA324778	DNA324779
	DNA324782	DNA324784	DNA324785	DNA324786	DNA324787	DNA271040
	DNA324789	DNA324791	DNA324792	DNA324794	DNA324796	DNA324797
	DNA324798	DNA324799	DNA324803	DNA324804	DNA324805	DNA324809
	DNA324810	DNA324812	DNA324817	DNA324819	DNA324820	DNA324821
35	DNA324826	DNA324830	DNA324836	DNA324837	DNA324838	DNA324840
	DNA324841	DNA324842	DNA324844	DNA324853	DNA324866	DNA324873

	DNA324876	DNA324877	DNA324878	DNA324879	DNA324884	DNA324885
	DNA324886	DNA324889	DNA324890	DNA324891	DNA324892	DNA324894
	DNA225631	DNA274326	DNA324895	DNA324896	DNA324899	DNA324902
	DNA324903	DNA324906	DNA324907	DNA324908	DNA324916	DNA324917
	DNA324918	DNA324920	DNA324922	DNA275334	DNA324924	DNA324925
5	DNA324929	DNA273865	DNA324931	DNA324932	DNA304707	DNA324938
	DNA324944	DNA324945	DNA324947	DNA324952	DNA324953	DNA324955
	DNA324960	DNA304710	DNA324962	DNA324963	DNA324965	DNA324966
	DNA324968	DNA324969	DNA324972	DNA324973	DNA324974	DNA324977
	DNA324978	DNA324979	DNA324980	DNA324982	DNA324984	DNA272090
10	DNA324988	DNA324989	DNA324990	DNA324996	DNA324997	DNA324998
	DNA324999	DNA325002	DNA325005	DNA325006	DNA325012	DNA325013
	DNA325014	DNA325015	DNA325019	DNA325020	DNA325024	DNA325026
	DNA325027	DNA325032	DNA325033	DNA325034	DNA325035	DNA325037
	DNA325040	DNA325041	DNA325043	DNA325044	DNA325045	DNA325046
15	DNA325047	DNA325050	DNA325052	DNA325054	DNA325062	DNA325064
	DNA325065	DNA274178	DNA325069	DNA83022	DNA325070	DNA325071
	DNA325072	DNA325073	DNA225671	DNA325075	DNA325076	DNA227267
	DNA325082	DNA325083	DNA325084	DNA325085	DNA325088	DNA325102
	DNA325103	DNA325105	DNA325106	DNA325111	DNA325112	DNA325116
20	DNA325117	DNA325118	DNA325119	DNA325126	DNA325128	DNA325132
	DNA325136	DNA325137	DNA325138	DNA325139	DNA325140	DNA325141
	DNA325143	DNA325144	DNA325145	DNA325146	DNA325147	DNA325148
	DNA325150	DNA325151	DNA325152	DNA325153	DNA325155	DNA325156
	DNA325157	DNA325160	DNA325161	DNA325163	DNA325164	DNA325165
25	DNA325166	DNA325167	DNA325168	DNA325170	DNA325171	DNA226345
	DNA325173	DNA325174	DNA325181	DNA227491	DNA254771	DNA89242
	DNA325182	DNA325184	DNA325187	DNA325190	DNA272655	DNA275322
	DNA325197	DNA325199	DNA325200	DNA272213	DNA325202	DNA325203
	DNA325204	DNA257309	DNA325206	DNA325209	DNA325211	DNA325212
30	DNA289530	DNA287271	DNA325214	DNA325216	DNA325217	DNA325218
	DNA325219	DNA325220	DNA325221	DNA325222	DNA218841	DNA325223
	DNA325226	DNA325229	DNA88350	DNA325235	DNA325236	DNA325237
	DNA325240	DNA325243	DNA325246	DNA325247	DNA325249	DNA325250
	DNA325252	DNA325253	DNA325257	DNA325258	DNA325261	DNA325262
35	DNA325264	DNA325265	DNA325266	DNA325267	DNA325268	DNA325269
	DNA325270	DNA325271	DNA325273	DNA325274	DNA325275	DNA325276

	DNA325278	DNA325279	DNA325283	DNA325288	DNA325290	DNA325292
	DNA325293	DNA325296	DNA325301	DNA325302	DNA325303	DNA325304
	DNA325307	DNA325309	DNA325310	DNA325312	DNA325314	DNA325315
	DNA325316	DNA325318	DNA325319	DNA325320	DNA325322	DNA325324
	DNA193957	DNA325325	DNA325326	DNA325328	DNA325329	DNA325331
5	DNA325333	DNA325334	DNA325335	DNA325336	DNA325337	DNA325338
	DNA325341	DNA304459	DNA325342	DNA325343	DNA325344	DNA325346
	DNA325347	DNA325348	DNA325349	DNA325355	DNA325360	DNA325361
	DNA325362	DNA325363	DNA325364	DNA325365	DNA325369	DNA325372
	DNA325375	DNA325381	DNA325384	DNA325385	DNA325393	DNA325395
10	DNA269952	DNA325396	DNA325397	DNA325400	DNA325402	DNA325403
	DNA325404	DNA325405	DNA325407	DNA325408	DNA325409	DNA325410
	DNA325413	DNA325414	DNA325415	DNA325417	DNA325418	DNA325423
	DNA325425	DNA325426	DNA325430	DNA325434	DNA97285	DNA325446
	DNA325451	DNA325452	DNA325453	DNA325456	DNA325457	DNA150974
15	DNA325458	DNA287417	DNA227088	DNA325462	DNA325464	DNA325465
	DNA325466	DNA325469	DNA287254	DNA325471	DNA325474	DNA325476
	DNA325477	DNA325479	DNA325480	DNA325481	DNA325482	DNA325483
	DNA325484	DNA325489	DNA325491	DNA325492	DNA325493	DNA325495
	DNA325496	DNA325497	DNA325498	DNA269803	DNA325500	DNA325501
20	DNA325503	DNA325505	DNA270721	DNA189687	DNA325506	DNA325511
	DNA325512	DNA325513	DNA 103474	DNA325514	DNA325516	DNA325517
	DNA325518	DNA325519	DNA325520	DNA325521	DNA325522	DNA325523
	DNA88176	DNA325529	DNA325530	DNA325534	DNA325535	DNA325539
	DNA325540	DNA325541	DNA325544	DNA325545	DNA325546	DNA325547
25	DNA325549	DNA225752	DNA325551	DNA325553	DNA325554	DNA325557
	DNA325561	DNA325563	DNA325566	DNA 325568	DNA325571	DNA325572
	DNA325573	DNA325574	DNA325575	DNA325579	DNA325580	DNA325583
	DNA325585	DNA325586	DNA325587	DNA88114	DNA325592	DNA325593
	DNA325596	DNA325597	DNA325600	DNA325601	DNA225632	DNA83180
30	DNA325603	DNA325608	DNA325618	DNA 150997	DNA325625	DNA325631
	DNA325636	DNA325638	DNA325639	DNA325642	DNA325643	DNA325649
	DNA325650	DNA325651	DNA325652	DNA325653	DNA325654	DNA325655
	DNA325656	DNA325657	DNA325658	DNA325659	DNA325660	DNA325661
	DNA325664	DNA270458	DNA227092	DNA325665	DNA325669	DNA325670
35	DNA325673	DNA325674	DNA325675	DNA325676	DNA325677	DNA325679
	DNA325680	DNA325681	DNA325683	DNA325684	DNA325687	DNA325688

	DNA325689	DNA325690	DNA325691	DNA325695	DNA325698	DNA325702
	DNA325706	DNA79101	DNA325709	DNA325711	DNA325712	DNA325717
	DNA325720	DNA325721	DNA325723	DNA325724	DNA325731	DNA226014
	DNA325733	DNA325736	DNA325739	DNA325747	DNA325750	DNA325752
	DNA325755	DNA325758	DNA325761	DNA325762	DNA325763	DNA325766
5	DNA325768	DNA325773	DNA325775	DNA325776	DNA325782	DNA325786
	DNA325787	DNA302016	DNA325789	DNA325793	DNA325794	DNA325796
	DNA325797	DNA325802	DNA325806	DNA325807	DNA325808	DNA325809
	DNA226853	DNA325811	DNA325812	DNA325814	DNA325818	DNA325819
	DNA270254	DNA281436	DNA325837	DNA325838	DNA325840	DNA325843
10	DNA325844	DNA325850	DNA325851	DNA325852	DNA325855	DNA325856
	DNA325858	DNA325859	DNA325870	DNA325875	DNA325878	DNA325885
	DNA325895	DNA325902	DNA225649	DNA325913	DNA325915	DNA325918
	DNA325919	DNA325922	DNA325924	DNA325928	DNA325932	DNA325935
	DNA325938	DNA325942	DNA325943	DNA325946	DNA325947	DNA325949
15	DNA325950	DNA325951	DNA325956	DNA325960	DNA325974	DNA325975
	DNA325976	DNA325977	DNA325980	DNA325981	DNA325985	DNA325986
	DNA325991	DNA325992	DNA325994	DNA325995	DNA325996	DNA326002
	DNA326003	DNA326005	DNA326006	DNA326007	DNA326010	DNA326011
	DNA226646	DNA326022	DNA287331	DNA326024	DNA326025	DNA326026
20	DNA326028	DNA326029	DNA326030	DNA326032	DNA326034	DNA326038
	DNA326039	DNA326040	DNA326041	DNA326042	DNA326046	DNA326047
	DNA326049	DNA326052	DNA326053	DNA326057	DNA326061	DNA326062
	DNA326064	DNA326066	DNA326068	DNA275181	DNA326069	DNA326071
	DNA326075	DNA326076	DNA326078	DNA326079	DNA326080	DNA326085
25	DNA326086	DNA326087	DNA326091	DNA273839	DNA256844	DNA326092
	DNA326093	DNA256886	DNA326095	DNA254781	DNA326096	DNA326097
	DNA326098	DNA326099	DNA326100	DNA326102	DNA326103	DNA326109
	DNA326110	DNA326111	DNA326112	DNA326113	DNA326114	DNA326115
	DNA326116	DNA326117	DNA326120	DNA326121	DNA326122	DNA326123
30	DNA326124	DNA326125	DNA326128	DNA326129	DNA326130	DNA326132
	DNA326133	DNA326136	DNA326139	DNA326140	DNA326141	DNA326144
	DNA326145	DNA326146	DNA326147	DNA326149	DNA326154	DNA326156
	DNA326157	DNA326158	DNA254532	DNA326161	DNA326162	DNA326163
	DNA326168	DNA271171	DNA326170	DNA326171	DNA326174	DNA287355
35	DNA326177	DNA326178	DNA326182	DNA326185	DNA326186	DNA326188
	DNA326189	DNA326190	DNA326195	DNA326196	DNA326197	DNA326198

	DNA326200	DNA326201	DNA326202	DNA326204	DNA88261	DNA326205
	DNA326206	DNA326207	DNA326208	DNA326209	DNA326211	DNA326213
	DNA326214	DNA326218	DNA326219	DNA326221	DNA326222	DNA326226
	DNA326228	DNA326232	DNA326233	DNA326234	DNA326238	DNA326241
	DNA326242	DNA326248	DNA326250	DNA326251	DNA326252	DNA326253
5	DNA326254	DNA326257	DNA326258	DNA326260	DNA326264	DNA326266
3	DNA97300	DNA326267	DNA326268	DNA326269	DNA326270	DNA326271
	DNA326273	DNA297388	DNA326274	DNA326276	DNA326277	DNA326278
	DNA326283	DNA254198	DNA326288	DNA326289	DNA326290	DNA326291
	DNA326292	DNA326294	DNA326295	DNA326296	DNA255414	DNA326298
10	DNA326299	DNA326300	DNA326303	DNA326307	DNA326308	DNA326311
10	DNA326312	DNA326318	DNA326319	DNA326320	DNA326321	DNA326322
	DNA326323	DNA66475	DNA270979	DNA326328	DNA326329	DNA326330
	DNA272889	DNA326331	DNA326332	DNA326333	DNA226389	DNA326335
	DNA326336	DNA326337	DNA326340	DNA326342	DNA326343	DNA326345
15	DNA326346	DNA88378	DNA326347	DNA326350	DNA257428	DNA326353
13	DNA326354	DNA326356	DNA326359	DNA326362	DNA 196642	DNA270901
	DNA326363	DNA326366	DNA326367	DNA326368	DNA254791	DNA287425
	DNA326372	DNA326375	DNA326376	DNA326378	DNA326379	DNA287291
	DNA326381	DNA326382	DNA326383	DNA326384	DNA326386	DNA326387
20	DNA150457	DNA326389	DNA227055	DNA326392	DNA326394	DNA326396
	DNA326397	DNA326399	DNA326401	DNA326403	DNA88430	DNA326406
	DNA326411	DNA326412	DNA326413	DNA129504	DNA326415	DNA326416
	DNA326417	DNA326418	DNA326419	DNA326425	DNA326426	DNA326427
	DNA326428	DNA326429	DNA326430	DNA326431	DNA326434	DNA326438
25	DNA273694	DNA326439	DNA326449	DNA326450	DNA326451	DNA326452
	DNA326453	DNA326454	DNA326457	DNA326461	DNA326462	DNA326465
	DNA326470	DNA326471	DNA326478	DNA326481	DNA326482	DNA326483
	DNA326484	DNA326485	DNA326487	DNA326489	DNA326490	DNA326491
	DNA326492	DNA326493	DNA274101	DNA326494	DNA326495	DNA326496
30	DNA326499	DNA326502	DNA326505	DNA326506	DNA326509	DNA326510
	DNA326511	DNA326514	DNA287636	DNA326515	DNA326516	DNA326518
	DNA326519	DNA326520	DNA326521	DNA326522	DNA326523	DNA326528
	DNA326529	DNA326530	DNA326531	DNA326532	DNA326533	DNA326534
	DNA326535	DNA326536	DNA326537	DNA326538	DNA326540	DNA274761
35	DNA272421	DNA326542	DNA326546	DNA326547	DNA326548	DNA326550
	DNA326552	DNA326555	DNA326557	DNA326559	DNA227280	DNA326561

	DNA326563	DNA326569	DNA326570	DNA326571	DNA326572	DNA326575
	DNA218271	DNA326577	DNA326578	DNA326579	DNA103320	DNA326584
	DNA326585	DNA274034	DNA326586	DNA326587	DNA326588	DNA326589
	DNA326590	DNA326591	DNA326592	DNA326595	DNA326596	DNA326597
	DNA326598	DNA326599	DNA326600	DNA326601	DNA326602	DNA326603
5	DNA269630	DNA326604	DNA326605	DNA326609	DNA326610	DNA287240
	DNA326618	DNA326622	DNA326623	DNA326624	DNA326625	DNA227249
	DNA326626	DNA326628	DNA326633	DNA326634	DNA326638	DNA326641
	DNA326642	DNA326644	DNA326645	DNA326646	DNA326647	DNA256836
	DNA326648	DNA326650	DNA326653	DNA326654	DNA326656	DNA326657
10	DNA326658	DNA326659	DNA326662	DNA326663	DNA326664	DNA272347
	DNA326669	DNA326670	DNA256840	DNA326671	DNA326672	DNA326673
	DNA326674	DNA326677	DNA326679	DNA273600	DNA326680	DNA326682
	DNA326684	DNA326685	DNA326686	DNA326687	DNA326688	DNA326689
	DNA326691	DNA326692	DNA151808	DNA326696	DNA326698	DNA326699
15	DNA326700	DNA326702	DNA326705	DNA326706	DNA326710	DNA326711
	DNA326713	DNA88084	DNA256533	DNA251057	DNA326715	DNA326716
	DNA326717	DNA326718	DNA326721	DNA326722	DNA326723	DNA326726
	DNA326727	DNA326729	DNA326730	DNA326731	DNA326734	DNA326735
	DNA326736	DNA326737	DNA326739	DNA273066	DNA326742	DNA326743
20	DNA103239	DNA326744	DNA326745	DNA326746	DNA326747	DNA326748
	DNA326749	DNA269481	DNA326751	DNA326752	DNA326754	DNA326756
	DNA326758	DNA326760	DNA326761	DNA273346	DNA326763	DNA326765
	DNA326766	DNA272062	DNA326768	DNA326769	DNA326770	DNA326771
	DNA297288	DNA304662	DNA326772	DNA326774	DNA287270	DNA326780
25	DNA326781	DNA326783	DNA326785	DNA287261	DNA326789	DNA83170
	DNA326796	DNA326798	DNA326805	DNA326806	DNA150767	DNA326812
	DNA326813	DNA326817	DNA326818	DNA326819	DNA326820	DNA326821
	DNA226758	DNA194701	DNA326823	DNA326824	DNA326828	DNA326829
	DNA326831	DNA326833	DNA326835	DNA227472	DNA326836	DNA103525
30	DNA326840	DNA326841	DNA273320	DNA326842	DNA 88569	DNA326843
	DNA326848	DNA326849	DNA326852	DNA326853	DNA326856	DNA326857
	DNA326861	DNA326862	DNA326863	DNA304670	DNA326864	DNA326866
	DNA103486	DNA326869	DNA326878	DNA326879	DNA326884	DNA326886
	DNA326887	DNA326888	DNA254572	DNA326889	DNA254994	DNA326891
35	DNA326894	. DNA326896	DNA326897	DNA326901	DNA226409	DNA326908
	DNA326911	DNA326912	DNA326913	DNA326914	DNA326916	DNA255046

	WO 2004/03	30615			PCT/US2003/02854	
	DNA225954	DNA326921	DNA326922	DNA326928	DNA326929	DNA326930
	DNA257549	DNA304835	DNA326935	DNA326940	DNA269830	DNA326945
	DNA326946	DNA326948	DNA254141	DNA 151882	DNA326949	DNA326950
	DNA326951	DNA326952	DNA326953	DNA326956	DNA326958	DNA188740
	DNA326959	DNA290259	DNA304719	DNA326963	DNA326964	DNA326965
5	DNA254240	DNA326970	DNA326972	DNA326973	DNA326974	DNA326976
	DNA326977	DNA326981	DNA219225	DNA270954	DNA326983	DNA326985
	DNA326988	DNA326989	DNA326990	DNA326991	DNA326992	DNA326993
	DNA256070	DNA327000	DNA327002	DNA327003	DNA327004	DNA327005
	DNA269793	DNA327011	DNA227689	DNA274829	DNA327022	DNA327023
10	DNA327024	DNA327025	DNA327028	DNA327030	DNA327034	DNA327035
	DNA327036	DNA327042	DNA271580	DNA327043	DNA273992	DNA327045
	DNA327046	DNA327047	DNA327051	DNA327054	DNA225721	DNA327058
	DNA327059	DNA327060	DNA327061	DNA327062	DNA327067	DNA327068
	DNA327075	DNA327076	DNA327077	DNA327078	DNA327085	DNA76504
15	DNA327093	DNA273487	DNA327098	DNA327099	DNA254783	DNA227917
	DNA327112	DNA327113	DNA327115	DNA327116	DNA227013	DNA225800
	DNA327118	DNA225655	DNA327119	DNA327120	DNA327126	DNA327127
	HEAD AND N	NECK				
20	DNA323805	DNA323843	DNA323861	DNA323883	DNA323899	DNA323907
	DNA323908	DNA323909	DNA323986	DNA324001	DNA324039	DNA270154
	DNA324139	DNA324202	DNA324258	DNA324263	DNA324325	DNA324338
	DNA324393	DNA272605	DNA324425	DNA324480	DNA324588	DNA324651
	DNA324721	DNA324751	DNA324784	DNA324812	DNA324830	DNA227924
25	DNA324874	DNA324884	DNA131588	DNA89242	DNA325196	DNA325303
	DNA325352	DNA325377	DNA325503	DNA189687	DNA325526	DNA325573
	DNA150978	DNA325624	DNA79313	DNA325655	DNA325656	DNA325657
	DNA325658	DNA325661	DNA227094	DNA254777	DNA325799	DNA325801
	DNA226853	DNA325832	DNA274058	DNA325857	DNA325917	DNA325941
30	DNA325953	DNA325968	DNA325989	DNA325991	DNA326015	DNA326048
	DNA326076	DNA326119	DNA326135	DNA326159	DNA326172	DNA287355
	DNA326316	DNA326324	DNA326329	DNA326331	DNA326332	DNA88457
	DNA88281	DNA226011	DNA326738	DNA273517	DNA326839	DNA326873
	DNA326884	DNA326958	DNA327038	DNA327078		
35						
	PLACENTA					

	DNA323721	DNA323723	DNA323728	DNA323729	DNA323734	DNA287173
	DNA323736	DNA227821	DNA323738	DNA323739	DNA273712	DNA323741
	DNA323747	DNA323750	DNA323753	DNA323756	DNA323763	DNA323765
	DNA323766	DNA323773	DNA323776	DNA323777	DNA323778	DNA323781
	DNA323782	DNA323783	DNA323784	DNA196349	DNA323789	DNA323791
5	DNA323792	DNA323793	DNA323794	DNA323800	DNA323804	DNA227213
	DNA323809	DNA323811	DNA189315	DNA323817	DNA323819	DNA323820
	DNA323822	DNA274745	DNA273060	DNA272024	DNA323829	DNA323831
	DNA323832	DNA323833	DNA304686	DNA323834	DNA323835	DNA323839
	DNA323840	DNA323841	DNA323842	DNA323847	DNA323856	DNA323857
10	DNA323858	DNA323859	DNA226260	DNA323862	DNA323863	DNA323867
	DNA323868	DNA323869	DNA323870	DNA271003	DNA323871	DNA323872
	DNA323874	DNA323875	DNA323876	DNA323880	DNA323882	DNA323887
	DNA323888	DNA323891	DNA323892	DNA323896	DNA323900	DNA227529
	DNA323902	DNA323905	DNA323906	DNA227577	DNA323914	DNA323915
15	DNA323916	DNA323920	DNA323925	DNA323927	DNA226125	DNA323936
	DNA323940	DNA323941	DNA323944	DNA323947	DNA323952	DNA323954
	DNA323959	DNA323963	DNA323964	DNA323966	DNA323971	DNA323972
	DNA323973	DNA323974	DNA323980	DNA323981	DNA323996	DNA323999
	DNA324004	DNA324009	DNA324014	DNA324018	DNA324026	DNA324030
20	DNA324031	DNA324032	DNA324035	DNA324037	DNA324038	DNA324042
	DNA324043	DNA324044	DNA324047	DNA324048	DNA324049	DNA324054
	DNA275195	DNA324060	DNA324063	DNA324067	DNA324068	DNA324070
	DNA324072	DNA324073	DNA324089	DNA324090	DNA324091	DNA324092
	DNA324093	DNA324096	DNA324101	DNA275066	DNA324106	DNA324109
25	DNA324110	DNA324111	DNA324112	DNA324115	DNA324119	DNA227795
	DNA287167	DNA324130	DNA324133	DNA324134	DNA150725	DNA324140
	DNA324141	DNA324142	DNA324143	DNA324144	DNA324150	DNA324151
	DNA324152	DNA324153	DNA324154	DNA324156	DNA275240	DNA324169
	DNA324170	DNA324171	DNA324172	DNA324175	DNA324182	DNA324186
30	DNA304805	DNA324189	DNA324190	DNA324191	DNA324193	DNA324195
	DNA324199	DNA324200	DNA324201	DNA324203	DNA324204	DNA271608
	DNA324206	DNA324207	DNA324209	DNA324210	DNA324212	DNA324213
	DNA324214	DNA324215	DNA324218	DNA324219	DNA324224	DNA324226
	DNA324230	DNA189697	DNA324244	DNA324247	DNA324254	DNA324258
35	DNA324260	DNA324266	DNA324268	DNA324269	DNA324270	DNA324271
	DNA324272	DNA324274	DNA324276	DNA151017	DNA324277	DNA324281

	DNA324282	DNA324289	DNA271187	DNA269930	DNA324292	DNA324293
	DNA324294	DNA226547	DNA324295	DNA324298	DNA324302	DNA324308
	DNA324310	DNA324311	DNA324313	DNA324316	DNA 150562	DNA254582
	DNA324320	DNA324322	DNA324326	DNA324337	DNA269730	DNA324338
	DNA324339	DNA324340	DNA324341	DNA324343	DNA324344	DNA324347
5	DNA324348	DNA324350	DNA324351	DNA324358	DNA324360	DNA324365
	DNA324368	DNA324373	DNA324375	DNA324376	DNA324379	DNA324380
	DNA269858	DNA324387	DNA324390	DNA324396	DNA324398	DNA324399
	DNA324400	DNA324402	DNA324405	DNA324408	DNA324409	DNA324411
	DNA324412	DNA324416	DNA324417	DNA324418	DNA324419	DNA324423
10	DNA324430	DNA324431	DNA324432	DNA324434	DNA324436	DNA324437
	DNA324444	DNA324445	DNA324446	DNA324447	DNA324448	DNA270615
	DNA324450	DNA324451	DNA324452	DNA324459	DNA324460	DNA324461
	DNA324463	DNA324464	DNA324468	DNA324469	DNA324472	DNA324473
	DNA324478	DNA324479	DNA257511	DNA324481	DNA324483	DNA324491
15	DNA324495	DNA324496	DNA324501	DNA324502	DNA324508	DNA324510
	DNA324512	DNA324519	DNA324520	DNA324521	DNA324525	DNA324529
	DNA324530	DNA324531	DNA324537	DNA324538	DNA324539	DNA324541
	DNA324542	DNA324543	DNA324544	DNA324545	DNA324547	DNA324549
	DNA324550	DNA324561	DNA324563	DNA324564	DNA324565	DNA227173
20	DNA324570	DNA324571	DNA324572	DNA287282	DNA324576	DNA324579
	DNA324581	DNA324582	DNA324583	DNA324584	DNA288259	DNA324586
	DNA324590	DNA324591	DNA324592	DNA324593	DNA324595	DNA324596
	DNA324597	DNA324598	DNA324599	DNA324600	DNA324601	DNA324603
	DNA324604	DNA257253	DNA324611	DNA324613	DNA324616	DNA324617
25	DNA324618	DNA324619	DNA324621	DNA324622	DNA324624	DNA103380
	DNA324629	DNA324630	DNA324631	DNA324632	DNA324633	DNA324634
	DNA324641	DNA324645	DNA324646	DNA324647	DNA302020	DNA324650
	DNA324677	DNA324678	DNA324680	DNA324682	DNA226418	DNA324685
	DNA324687	DNA324688	DNA324689	DNA324690	DNA324693	DNA227320
30	DNA324696	DNA324697	DNA324707	DNA324712	DNA324715	DNA324716
	DNA270675	DNA324717	DNA324720	DNA324722	DNA324723	DNA324725
	DNA324727	DNA304680	DNA324730	DNA324735	DNA324736	DNA324737
	DNA324741	DNA324742	DNA275630	DNA324745	DNA324746	DNA324751
	DNA324752	DNA324753	DNA324754	DNA324756	DNA324759	DNA324760
35	DNA324761	DNA324763	DNA324764	DNA324765	DNA304661	DNA324771
	DNA324775	DNA324776	DNA324777	DNA324778	DNA324779	DNA324780

	DNA324781	DNA324783	DNA304699	DNA324785	DNA271040	DNA324790
	DNA324794	DNA324796	DNA324797	DNA324806	DNA324811	DNA324818
	DNA324820	DNA324822	DNA324824	DNA324827	DNA324830	DNA324832
	DNA324833	DNA324835	DNA324840	DNA324841	DNA324844	DNA324846
	DNA271418	DNA324849	DNA324853	DNA324857	DNA324859	DNA324860
5	DNA324862	DNA324864	DNA324866	DNA324868	DNA324871	DNA324872
	DNA324889	DNA324891	DNA225631	DNA274326	DNA324895	DNA247595
	DNA324898	DNA324900	DNA324901	DNA324902	DNA324909	DNA324915
	DNA324916	DNA324917	DNA324920	DNA275334	DNA324925	DNA324926
	DNA324928	DNA324929	DNA273865	DNA324934	DNA324936	DNA324937
10	DNA287189	DNA324939	DNA324940	DNA103588	DNA324950	DNA324951
	DNA324952	DNA324961	DNA324965	DNA324966	DNA324967	DNA324968
	DNA324975	DNA324976	DNA324982	DNA 324986	DNA272090	DNA324989
	DNA324990	DNA324991	DNA324992	DNA324993	DNA324994	DNA324995
	DNA270711	DNA325001	DNA325002	DNA325003	DNA325004	DNA325006
15	DNA325008	DNA325013	DNA325015	DNA325021	DNA325024	DNA325026
	DNA325027	DNA325028	DNA325030	DNA325033	DNA325034	DNA325042
	DNA325048	DNA226337	DNA325051	DNA325053	DNA325067	DNA325078
	DNA325079	DNA325080	DNA325081	DNA325087	DNA325088	DNA325095
	DNA325099	DNA325101	DNA325102	DNA325103	DNA325104	DNA325105
20	DNA325106	DNA226496	DNA325111	DNA325113	DNA325114	DNA325116
	DNA325117	DNA325118	DNA325119	DNA325123	DNA131588	DNA325126
	DNA325128	DNA325129	DNA325132	DNA325133	DNA325136	DNA325139
	DNA325140	DNA325141	DNA325144	DNA325146	DNA325150	DNA325152
	DNA325153	DNA325156	DNA325157	DNA325162	DNA325164	DNA325168
25	DNA271847	DNA270991	DNA325173	DNA325174	DNA325175	DNA325176
	DNA325179	DNA325181	DNA227491	DNA325182	DNA325183	DNA325184
	DNA325185	DNA325187	DNA325189	DNA325190	DNA325196	DNA325200
	DNA325201	DNA325202	DNA254543	DNA325206	DNA325209	DNA325213
	DNA325214	DNA325215	DNA325219	DNA325222	DNA325223	DNA325225
30	DNA325228	DNA325229	DNA325232	DNA325244	DNA325248	DNA325250
	DNA325253	DNA325259	DNA325260	DNA325263	DNA325265	DNA325272
	DNA325277	DNA325280	DNA325289	DNA325293	DNA273759	DNA325294
	DNA325301	DNA325303	DNA325305	DNA325308	DNA325311	DNA325326
	DNA325328	DNA325329	DNA325334	DNA 103421	DNA325343	DNA325344
35	DNA325346	DNA325347	DNA325353	DNA325356	DNA325358	DNA325359
	DNA325360	DNA325364	DNA325366	DNA325370	DNA325375	DNA325378

	DNA325381	DNA273521	DNA325383	DNA325384	DNA325389	DNA325394
	DNA325395	DNA269431	DNA325405	DNA325412	DNA325418	DNA325424
	DNA325430	DNA325431	DNA325439	DNA325441	DNA325442	DNA325443
	DNA325444	DNA325445	DNA325447	DNA325448	DNA325451	DNA325452
	DNA325454	DNA325455	DNA325456	DNA270134	DNA325460	DNA287417
5	DNA325463	DNA325464	DNA325465	DNA325468	DNA325470	DNA325475
	DNA325478	DNA325479	DNA325480	DNA325483	DNA325486	DNA325487
	DNA325488	DNA325490	DNA325494	DNA325498	DNA325504	DNA270721
	DNA325506	DNA325507	DNA325508	DNA325513	DNA325522	DNA325523
	DNA325527	DNA325529	DNA325530	DNA325534	DNA325535	DNA325541
10	DNA325544	DNA271843	DNA325556	DNA325557	DNA325560	DNA325567
	DNA325570	DNA325576	DNA325582	DNA325584	DNA325587	DNA325589
	DNA325593	DNA325595	DNA325596	DNA325597	DNA254624	DNA325601
	DNA225632	DNA325602	DNA325610	DNA325611	DNA325616	DNA325618
	DNA325621	DNA325625	DNA325626	DNA325627	DNA325632	DNA325633
15	DNA271344	DNA325640	DNA325642	DNA325644	DNA325645	DNA325648
	DNA227191	DNA270458	DNA227092	DNA325666	DNA325674	DNA325680
	DNA325681	DNA304783	DNA325685	DNA325686	DNA325688	DNA325689
	DNA325695	DNA325699	DNA325700	DNA325701	DNA325704	DNA325707
	DNA325711	DNA325712	DNA325720	DNA325724	DNA325727	DNA325728
20	DNA325729	DNA304694	DNA325730	DNA227474	DNA325731	DNA227171
	DNA325732	DNA271492	DNA325733	DNA325736	DNA325737	DNA325739
	DNA325750	DNA325751	DNA325752	DNA325758	DNA325760	DNA325762
	DNA325763	DNA325772	DNA325773	DNA325775	DNA325776	DNA325782
	DNA325783	DNA325784	DNA325785	DNA325786	DNA270677	DNA325787
25	DNA302016	DNA325789	DNA325792	DNA325798	DNA325802	DNA325805
	DNA325806	DNA325809	DNA270015	DNA325810	DNA325811	DNA325812
	DNA325813	DNA325814	DNA325816	DNA325818	DNA325820	DNA304669
	DNA281436	DNA325828	DNA325829	DNA325830	DNA325833	DNA325834
	DNA325837	DNA325838	DNA325843	DNA325844	DNA325847	DNA325860
30	DNA325861	DNA325862	DNA325863	DNA325865	DNA325866	DNA325867
	DNA325872	DNA325874	DNA325876	DNA325877	DNA325880	DNA325881
	DNA325882	DNA325886	DNA325887	DNA325888	DNA325889	DNA325893
	DNA325900	DNA325903	DNA325904	DNA325906	DNA325908	DNA325910
	DNA325911	DNA325912	DNA325913	DNA325921	DNA269498	DNA325922
35	DNA325925	DNA325926	DNA325927	DNA325933	DNA325935	DNA325936
	DNA325939	DNA325941	DNA325944	DNA325947	DNA325948	DNA325949

	DNA325950	DNA 103509	DNA325959	DNA325961	DNA325962	DNA325963
	DNA325965	DNA325966	DNA325972	DNA325973	DNA325980	DNA325982
	DNA325983	DNA227559	DNA325985	DNA325987	DNA325988	DNA325994
	DNA325995	DNA325997	DNA326001	DNA326002	DNA326003	DNA326010
	DNA326016	DNA326019	DNA326020	DNA326021	DNA326022	DNA326023
5	DNA287331	DNA326028	DNA326036	DNA326041	DNA326044	DNA326046
	DNA326047	DNA326050	DNA326051	DNA326056	DNA275144	DNA326058
	DNA326063	DNA326070	DNA326073	DNA326075	DNA326081	DNA326082
	DNA326084	DNA326088	DNA273839	DNA326094	DNA326097	DNA326099
	DNA326103	DNA326104	DNA326105	DNA326106	DNA326108	DNA326116
10	DNA326117	DNA326118	DNA326121	DNA326122	DNA326124	DNA326125
	DNA326128	DNA326129	DNA326134	DNA289522	DNA326136	DNA326150
	DNA326151	DNA274002	DNA326152	DNA326153	DNA326154	DNA326155
	DNA326156	DNA326157	DNA326167	DNA326168	DNA271171	DNA326173
	DNA287355	DNA326176	DNA326179	DNA194805	DNA326181	DNA326183
15	DNA326184	DNA326186	DNA326188	DNA326191	DNA326192	DNA326195
	DNA326196	DNA326197	DNA326198	DNA275408	DNA326200	DNA189703
	DNA326201	DNA326203	DNA304704	DNA326208	DNA326210	DNA326211
	DNA326212	DNA326214	DNA326217	DNA326222	DNA326223	DNA326224
	DNA326225	DNA326227	DNA227234	DNA326233	DNA326234	DNA326249
20	DNA326251	DNA326252	DNA326255	DNA326260	DNA326261	DNA326262
,	DNA97300	DNA326268	DNA326272	DNA326273	DNA326278	DNA103401
	DNA326285	DNA326288	DNA290292	DNA326289	DNA326291	DNA326292
	DNA326296	DNA326305	DNA326311	DNA326313	DNA326314	DNA326315
	DNA326316	DNA287427	DNA326322	DNA326324	DNA326325	DNA326326
25	DNA326330	DNA326334	DNA326338	DNA326339	DNA326340	DNA326342
	DNA326343	DNA326344	DNA326356	DNA326361	DNA270901	DNA326364
	DNA97290	DNA227071	DNA326369	DNA287425	DNA326377	DNA326381
	DNA326384	DNA326385	DNA326387	DNA326388	DNA227055	DNA326395
	DNA326396	DNA326397	DNA150814	DNA326399	DNA326406	DNA326407
30	DNA326408	DNA326409	DNA326410	DNA326411	DNA129504	DNA326415
	DNA326421	DNA326424	DNA326427	DNA326430	DNA326435	DNA326445
	DNA326448	DNA326449	DNA326450	DNA326451	DNA326452	DNA326453
	DNA326454	DNA256813	DNA326457	DNA326459	DNA326463	DNA326464
	DNA326466	DNA326467	DNA326468	DNA326469	DNA326471	DNA326472
35	DNA326474	DNA326477	DNA326483	DNA326484	DNA326485	DNA326486
	DNA326487	DNA326488	DNA326489	DNA326490	DNA326491	DNA326495

	DNA326496	DNA326499	DNA326507	DNA326508	DNA326510	DNA326513	
	DNA326514	DNA287636	DNA326515	DNA326516	DNA326518	DNA326520	
	DNA326524	DNA326525	DNA326529	DNA326530	DNA326544	DNA326548	
	DNA326549	DNA326551	DNA326553	DNA326557	DNA326559	DNA227280	
	DNA270621	DNA326563	DNÁ326564	DNA326565	DNA326567	DNA326569	
5	DNA326579	DNA326580	DNA326585	DNA287243	DNA326589	DNA326593	
	DNA326594	DNA326595	DNA269894	DNA326596	DNA326597	DNA326603	
	DNA326604	DNA326606	DNA326607	DNA326611	DNA326612	DNA326613	
	DNA326616	DNA326624	DNA227249	DNA326626	DNA326627	DNA326631	
	DNA326632	DNA326633	DNA326634	DNA326636	DNA326637	DNA326639	
10	DNA326640	DNA326641	DNA326643	DNA326649	DNA326651	DNA326657	
	DNA273474	DNA272347	DNA326669	DNA326671	DNA274139	DNA273600	
	DNA326680	DNA326681	DNA326683	DNA326686	DNA326687	DNA326688	
	DNA326689	DNA326690	DNA326691	DNA326695	DNA326698	DNA326702	
	DNA326704	DNA326705	DNA326706	DNA326707	DNA 103580	DNA256533	
15	DNA326714	DNA274289	DNA326717	DNA326719	DNA326720	DNA326724	
	DNA326727	DNA326728	DNA274823	DNA290260	DNA326733	DNA326736	
	DNA273066	DNA326741	DNA326742	DNA326749	DNA326755	DNA326756	
	DNA326757	DNA326758	DNA326760	DNA273346	DNA254548	DNA326767	
	DNA326769	DNA297288	DNA326775	DNA326776	DNA326777	DNA326778	
20	DNA287270	DNA326780	DNA326781	DNA326782	DNA326784	DNA326786	
	DNA326787	DNA326788	DNA271010	DNA287290	DNA326793	DNA326794	
	DNA326796	DNA326797	DNA326798	DNA326799	DNA326804	DNA326807	
	DNA326808	DNA326809	DNA326812	DNA326814	DNA326815	DNA97298	
	DNA326819	DNA326822	DNA 194701	DNA326827	DNA326831	DNA103525	
25	DNA326845	DNA326847	DNA326855	DNA326856	DNA326858	DNA326866	
	DNA 103486	DNA326870	DNA326871	DNA326873	DNA326877	DNA326879	
	DNA326880	DNA326881	DNA269746	DNA326883	DNA326884	DNA326885	
	DNA326886	DNA254572	DNA274129	DNA326895	DNA326899	DNA326900	
	DNA326901	DNA326902	DNA326915	DNA226617	DNA326917	DNA326920	
30	DNA326921	DNA326928	DNA326933	DNA326934	DNA326935	DNA 326936	
	DNA326937	DNA326938	DNA326940	DNA326941	DNA269830	DNA326943	
	DNA326944	DNA103462	DNA326946	DNA326947	DNA254141	DNA270697	
	DNA326952	DNA326953	DNA 151752	DNA326956	DNA326957	DNA188740	
	DNA326964	DNA326965	DNA254240	DNA326966	DNA326967	DNA326968	
35	DNA326974	DNA326975	DNA326976	DNA326977	DNA326978	DNA254165	
	DNA326980	DNA326981	DNA270954	DNA326983	DNA326984	DNA326985	

	WO 2004/03	0615				PCT/US2003/028547
	DNA326986	DNA326988	DNA326989	DNA326990	DNA326992	DNA326994
	DNA326996	DNA326997	DNA326999	DNA327003	DNA327005	DNA327015
	DNA327018	DNA327021	DNA327023	DNA327025	DNA327029	DNA327030
	DNA327031	DNA327032	DNA327037	DNA327039	DNA238039	DNA273992
	DNA327046	DNA327047	DNA327048	DNA327049	DNA327051	DNA327054
5	DNA327058	DNA327060	DNA327062	DNA327063	DNA327064	DNA327067
-	DNA327068	DNA327069	DNA327070	DNA327071	DNA327073	DNA327074
	DNA327077	DNA327078	DNA327079	DNA254785	DNA327086	DNA327087
	DNA327088	DNA327094	DNA327095	DNA327096	DNA327097	DNA327103
	DNA327104	DNA327105	DNA327107	DNA327108	DNA327109	DNA327110
10	DNA254783	DNA327111	DNA327114	DNA327115	DNA327116	DNA327117
	DNA227013	DNA230792	DNA103558	DNA327122	DNA327123	
	PINEAL GLAD	ND.				
	DNA287173	DNA323879	DNA323924	DNA273088	DNA323988	DNA324002
15	DNA324042	DNA324048	DNA324090	DNA324091	DNA324092	
	DNA324229	DNA324246	DNA324296	DNA324340	DNA324341	DNA324521
	DNA324554	DNA324561	DNA324575	DNA324636	DNA324642	
	DNA324737	DNA227607	DNA304668	DNA287319	DNA324784	
	DNA324816	DNA324872	DNA324885	DNA225631	DNA324905	
20	DNA226416	DNA324940	DNA324943	DNA325026	DNA325027	
	DNA325208	DNA325231	DNA325234	DNA325296	DNA325475	
	DNA325601	DNA225632	DNA325642	DNA325644	DNA325786	
	DNA325789	DNA325803	DNA325804	DNA325883	DNA325932	
	DNA287355	DNA326363	DNA326543	DNA326672	DNA326909	DNA326910
25	DNA327009	DNA327023	DNA327025	DNA327121		
		_				
	LYMPH NOD		D111000000	DNA323862	DNA323863	DNA323864
	DNA227213	DNA323858	DNA323859	DNA323802 DNA323925	DNA226619	
	DNA323866	DNA323872	DNA323887		DNA324113	
30	DNA324091	DNA324092	DNA324099	DNA324100	DNA324113	
	DNA324155	DNA324193	DNA324204	DNA324218	DNA32441	
	DNA324434	DNA324472	DNA324495	DNA324501	DNA324503	
	DNA324505	DNA324521	DNA324525	DNA324551		
	DNA324555	DNA324556	DNA324557	DNA324558	DNA324574	
35	DNA324595	DNA324596	DNA324613	DNA324632	DNA32464:	
	DNA324690	DNA304680	DNA324737	DNA324756	DNA32478:	DINA324190

	DNA324828	DNA324829	DNA324841	DNA324904	DNA324905	DNA324906
	DNA324907	DNA324908	DNA324981	DNA324982	DNA324989	DNA324991
	DNA324992	DNA325006	DNA325079	DNA325111	DNA325126	DNA325156
	DNA325157	DNA325179	DNA287216	DNA288247	DNA325231	DNA325233
	DNA325234	DNA325235	DNA325236	DNA325250	DNA325326	DNA325346
5	DNA325347	DNA325360	DNA325384	DNA325389	DNA325535	DNA325576
	DNA325601	DNA225632	DNA325625	DNA325642	DNA325683	DNA325684
	DNA325750	DNA325752	DNA325758	DNA325786	DNA302016	DNA325789
	DNA325913	DNA151893	DNA325935	DNA325954	DNA325955	DNA325985
	DNA325991	DNA325994	DNA326002	DNA326022	DNA287331	DNA326041
10	DNA326046	DNA326047	DNA326075	DNA326095	DNA326099	DNA326121
	DNA326146	DNA97300	DNA270975	DNA326373	DNA326416	DNA326427
	DNA 326449	DNA326457	DNA326459	DNA326463	DNA326633	DNA326742
	DNA326885	DNA326952	DNA326974	DNA327023	DNA327025	
15	COLON					
	DNA287173	DNA323865	DNA323867	DNA323871	DNA323947	DNA323964
	DNA324039	DNA324048	DNA324090	DNA324091	DNA324092	DNA324111
	DNA324112	DNA227795	DNA324155	DNA226547	DNA324417	DNA324418
	DNA324423	DNA324437	DNA324495	DNA324496	DNA324501	DNA324502
20	DNA324504	DNA324505	DNA324521	DNA324525	DNA324550	DNA324552
	DNA324556	DNA324557	DNA324558	DNA324575	DNA324604	DNA324613
	DNA324624	DNA324697	DNA324717	DNA324720	DNA304680	DNA324737
	DNA324756	DNA324785	DNA324790	DNA324828	DNA324829	DNA324865
	DNA324904	DNA324905	DNA324906	DNA324907	DNA324908	DNA324989
25	DNA325026	DNA325027	DNA325033	DNA325068	DNA325104	DNA325105
	DNA325106	DNA325116	DNA325128	DNA325129	DNA325156	DNA 325157
	DNA325182	DNA325183	DNA325184	DNA325231	DNA325232	DNA325233
	DNA325234	DNA325235	DNA325236	DNA325250	DNA325326	DNA325347
	DNA325358	DNA325414	DNA325418	DNA189687	DNA325570	DNA325601
30	DNA225632	DNA325605	DNA325619	DNA256072	DNA 325642	DNA 325644
	DNA270458	DNA227092	DNA325731	DNA226014	DNA325786	DNA302016
	DNA325789	DNA325810	DNA325811	DNA325812	DNA325913	DNA325914
	DNA325941	DNA325985	DNA326002	DNA287331	DNA326099	DNA326121
	DNA326122	DNA326124	DNA326136	DNA326330	DNA326396	DNA326457
35	DNA326529	DNA326617	DNA326633	DNA326634	DNA326651	DNA290260
	DNA273517	DNA326886	DNA226409	DNA326958	DNA327025	DNA327029

PCT/US2003/028547

DNA327067

	PANCREAS					
	DNA323732	DNA287173	DNA323745	DNA323778	DNA323781	DNA323783
	DNA323803	DNA323806	DNA323808	DNA323815	DNA103253	DNA304686
5	DNA323856	DNA323864	DNA323866	DNA323878	DNA323882	DNA210134
	DNA323920	DNA323923	DNA323927	DNA323951	DNA226619	DNA226005
	DNA83046	DNA324017	DNA324042	DNA324048	DNA324073	DNA324091
	DNA324092	DNA324119	DNA227795	DNA227528	DNA324139	DNA324155
	DNA324193	DNA324195	DNA324197	DNA324216	DNA324220	DNA324221
10	DNA324229	DNA324317	DNA324320	DNA324340	DNA324341	DNA324352
	DNA324364	DNA324366	DNA324367	DNA324380	DNA324398	DNA324412
	DNA324417	DNA324418	DNA324495	DNA324501	DNA324504	DNA324505
	DNA324521	DNA324536	DNA324552	DNA324557	DNA324558	DNA288259
	DNA324591	DNA83020	DNA324636	DNA324642	DNA324697	DNA324702
15	DNA324715	DNA324716	DNA324717	DNA304680	DNA324737	DNA227204
	DNA324744	DNA324756	DNA324770	DNA272263	DNA324784	DNA324790
	DNA324795	DNA324824	DNA324828	DNA324829	DNA324850	DNA324858
	DNA324880	DNA324884	DNA324885	DNA324891	DNA225631	DNA274326
	DNA324896	DNA324904	DNA324906	DNA324922	DNA324930	DNA324935
20	DNA304710	DNA324962	DNA324963	DNA324972	DNA324973	DNA324977
	DNA272090	DNA83141	DNA325009	DNA325027	DNA325033	DNA304685
	DNA325064	DNA325079	DNA325099	DNA325104	DNA325105	DNA325106
,	DNA325126	DNA325136	DNA325146	DNA325156	DNA325157	DNA290319
	DNA254771	DNA89242	DNA325184	DNA325185	DNA325202	DNA325229
25	DNA88350	DNA325233	DNA325235	DNA325236	DNA325247	DNA325254
	DNA325262	DNA325268	DNA325296	DNA325330	DNA325332	DNA325335
	DNA325336	DNA287237	DNA325355	DNA325360	DNA325384	DNA325398
	DNA325403	DNA325405	DNA325411	DNA325414	DNA325418	DNA325428
	DNA97285	DNA325450	DNA325453	DNA325475	DNA325493	DNA325506
30.	DNA325532	DNA325548	DNA325596	DNA325601	DNA225632	DNA226771
	DNA325642	DNA325655	DNA325656	DNA325657	DNA325658	DNA325660
	DNA325661	DNA325663	DNA270458	DNA227092	DNA 196351	DNA325680
	DNA325740	DNA325741	DNA325742	DNA325743	DNA325744	DNA325745
	DNA325746	DNA325750	DNA325752	DNA325757	DNA325758	DNA325760
35	DNA325775	DNA325776	DNA325786	DNA325788	DNA325803	DNA325804
	DNA325826	DNA325912	DNA103509	DNA325952	DNA325953	DNA326003

	WO 2004/03	0615			P	CT/US2003/028547
	DNA326016	DNA287331	DNA326047	DNA326053	DNA326055	DNA326058
	DNA150485	DNA326060	DNA326072	DNA326092	DNA326099	DNA326110
	DNA326129	DNA326157	DNA326165	DNA326166	DNA287355	DNA326210
	DNA326220	DNA326233	DNA326234	DNA97300	DNA326288	DNA326291
	DNA326292	DNA326300	DNA326328	DNA326330	DNA326331	DNA326333
5	DNA326352	DNA326370	DNA326378	DNA326397	DNA88430	DNA326410
	DNA326415	DNA326416	DNA326426	DNA326480	DNA326481	DNA326482
	DNA256555	DNA326523	DNA326563	DNA326577	DNA326603	DNA326604
	DNA326615	DNA326621	DNA326625	DNA227249	DNA326646	DNA326657
	DNA326663	DNA326664	DNA326665	DNA326666	DNA326667	DNA272347
10	DNA326668	DNA326669	DNA326671	DNA274139	DNA326675	DNA326680
	DNA326692	DNA326698	DNA326712	DNA326717	DNA304658	DNA326752
	DNA326760	DNA326762	DNA273346	DNA254548	DNA326769	DNA326776
	DNA326777	DNA287270	DNA326790	DNA326803	DNA326818	DNA326829
	DNA 194807	DNA 103525	DNA326860	DNA326879	DNA226409	DNA326907
15	DNA326911	DNA326912	DNA326913	DNA326952	DNA326955	DNA304719
	DNA327023	DNA327025	DNA327042	DNA273254	DNA327116	DNA227013
	DNA103558	DNA327120				
	PROSTATE					
20	DNA287173	DNA323749	DNA323774	DNA323779	DNA323780	DNA323806
	DNA323820	DNA304686	DNA323850	DNA323864	DNA323866	DNA323867
	DNA323871	DNA323877	DNA 323882	DNA227529	DNA323925	DNA323927
	DNA323944	DNA226619	DNA323964	DNA323980	DNA323982	DNA271986
	DNA324001	DNA324004	DNA 83046	DNA324023	DNA227504	DNA324027
25 .	DNA324042	DNA324048	DNA324057	DNA324058	DNA324073	DNA324090
	DNA324091	DNA324092	DNA324101	DNA324111	DNA324112	DNA324115
	DNA324116	DNA324117	DNA227795	DNA324154	DNA324155	DNA324178
	DNA324203	DNA324219	DNA324230	DNA324260	DNA324293	DNA226547
	DNA324301	DNA227307	DNA324335	DNA324340	DNA324341	DNA324354
30	DNA324406	DNA324412	DNA324417	DNA324418	DNA324437	DNA324458
	DNA324472	DNA324494	DNA324502	DNA324503	DNA324504	DNA324505
	DNA324521	DNA324525	DNA324541	DNA324550	DNA324551	DNA324552
	DNA324554	DNA324555	DNA324556	DNA324557	DNA324558	DNA324561
	DNA324566	DNA324567	DNA324575	DNA324576	DNA288259	DNA324587
35	DNA324595	DNA324596	DNA254147	DNA324604	DNA324605	DNA324613
	DNA324624	DNA324631	DNA324632	DNA324636	DNA324645	DNA324682

	DNA324690	DNA324712	DNA324715	DNA324716	DNA324720	DNA324722
	DNA304680	DNA324737	DNA324785	DNA324793	DNA324796	DNA324797
	DNA150772	DNA324825	DNA324828	DNA324829	DNA324830	DNA324841
	DNA324844 .	DNA324847	DNA324856	DNA324866	DNA225631	DNA 193955
	DNA324904	DNA324905	DNA324906	DNA227929	DNA324910	DNA324911
5	DNA324912	DNA324926	DNA103588	DNA324961	DNA325006	DNA325015
	DNA325026	DNA325027	DNA325079	DNA325086	DNA151010	DNA325098
	DNA325105	DNA325106	DNA325115	DNA325116	DNA131588	DNA325126
	DNA325127	DNA272050	DNA325129	DNA325131	DNA325156	DNA325157
	DNA325179	DNA325182	DNA325184	DNA325187	DNA325202	DNA325210
10	DNA325231	DNA325232	DNA325233	DNA325234	DNA325235	DNA325236
	DNA325250	DNA325303	DNA325326	DNA227172	DNA325335	DNA103421
	DNA325347	DNA226217	DNA325349	DNA325351	DNA325360	DNA325398
	DNA325414	DNA325432	DNA325472	DNA325475	DNA325535	DNA325558
	DNA325570	DNA325576	DNA325601	DNA225632	DNA325618	DNA325642
15	DNA325644	DNA325645	DNA325655	DNA270458	DNA325667	DNA325668
	DNA325680	DNA325681	DNA325723	DNA325731	DNA325749	DNA325750
	DNA325752	DNA325786	DNA302016	DNA325789	DNA325801	DNA325806
	DNA325811	DNA325812	DNA325814	DNA325815	DNA281436	DNA325836
	DNA325841	DNA325844	DNA325853	DNA325854	DNA325906	DNA325907
20	DNA325908	DNA325913	DNA325927	DNA325984	DNA325985	DNA325994
	DNA325998	DNA326002	DNA234442	DNA287331	DNA326041	DNA326046
	DNA326054	DNA326075	DNA326099	DNA326122	DNA326124	DNA326129
	DNA326136	DNA326155	DNA287355	DNA326194	DNA326201	DNA326233
	DNA326234	DNA326245	DNA326254	DNA97300	DNA326291	DNA326292
25	DNA326302	DNA326332	DNA326340	DNA97290	DNA326370	DNA326456
	DNA326457	DNA326459	DNA326481	DNA326482	DNA326529	DNA326599
	DNA326608	DNA326634	DNA326645	DNA326686	DNA326687	DNA326688
	DNA326692	DNA103580	DNA150784	DNA270931	DNA254548	DNA326839
	DNA326884	DNA326893	DNA326921	DNA326974	DNA327005	DNA327012
30	DNA327023	DNA327025	DNA327039	DNA273254	DNA327067	
	LIVER					
	DNA323720	DNA323733	DNA287173	DNA323758	DNA323767	DNA323778
	DNA323783	DNA 188748	DNA323808	DNA227213	DNA323810	DNA323817
35	DNA323820	DNA273060	DNA323852	DNA269708	DNA323864	DNA323865
	DNA323866	DNA323867	DNA323871	DNA323894	DNA323895	DNA274759

	DNA323913	DNA323917	DNA323922	DNA323927	DNA323934	DNA323936
	DNA323948	DNA323960	DNA226619	DNA323964	DNA323968	DNA323971
	DNA323972	DNA323973	DNA323974	DNA323983	DNA323984	DNA323989
	DNA324019	DNA254346	DNA324039	DNA324042	DNA82328	DNA324048
	DNA324053	DNA275195	DNA324063	DNA324069	DNA324090	DNA324091
5	DNA324092	DNA324095	DNA271060	DNA324111	DNA324112	DNA324118
	DNA324124	DNA324125	DNA227795	DNA287167	DNA227528	DNA324134
	DNA324139	DNA324141	DNA324154	DNA324155	DNA324158	DNA324174
	DNA324181	DNA324195	DNA324199	DNA324200	DNA324201	DNA324203
	DNA324204	DNA324205	DNA271608	DNA324208	DNA324217	DNA324229
10	DNA324238	DNA324245	DNA324258	DNA324283	DNA252367	DNA324293
	DNA226547	DNA324312	DNA324313	DNA324320	DNA324321	DNA324326
	DNA324340	DNA324341	DNA324349	DNA324351	DNA324355	DNA324370
	DNA324378	DNA324386	DNA324414	DNA324417	DNA324418	DNA324437
	DNA324439	DNA324464	DNA324474	DNA324476	DNA324481	DNA225919
15	DNA324492	DNA324495	DNA324496	DNA324501	DNA324502	DNA324503
	DNA324504	DNA324505	DNA225584	DNA324521	DNA324525	DNA324541
	DNA324550	DNA324551	DNA324552	DNA324554	DNA324555	DNA324556
	DNA324557	DNA324558	DNA324561	DNA324569	DNA324575	DNA324576
	DNA324580	DNA324581	DNA324582	DNA288259	DNA324591	DNA324596
20	DNA324600	DNA324606	DNA324613	DNA324618	DNA 103380	DNA324632
	DNA324635	DNA324636	DNA324638	DNA324648	DNA324685	DNA324687
	DNA324690	DNA324695	DNA324700	DNA324702	DNA324713	DNA324717
	DNA324722	DNA324724	DNA324726	DNA324727	DNA304680	DNA324732
	DNA324733	DNA324736	DNA324737	DNA275630	DNA324744	DNA304716
25	DNA324751	DNA324753	DNA324756	DNA287319	DNA324780	DNA324781
	DNA324783	DNA304699	DNA324785	DNA324790	DNA324802	DNA324824
	DNA324828	DNA324829	DNA324844	DNA324866	DNA324881	DNA225631
	DNA274326	DNA324902	DNA324904	DNA324905	DNA324906	DNA324907
	DNA324908	DNA324915	DNA324916	DNA324917	DNA324922	DNA324927
30	DNA324931	DNA 103588	DNA324944	DNA324950	DNA324951	DNA324961
	DNA304710	DNA324962	DNA324963	DNA324968	DNA324971	DNA324974
	DNA324977	DNA272090	DNA324989	DNA 324991	DNA324992	DNA325009
	DNA325013	DNA325018	DNA325026	DNA325027	DNA325033	DNA325036
	DNA325039	DNA325078	DNA325079	DNA325080	DNA325081	DNA32509
35	DNA325091	DNA325092	DNA325104	DNA325105	DNA325106	DNA325113
	DNA325117	DNA325118	DNA325119	DNA131588	DNA325126	DNA325135

	DNA325152	DNA325153	DNA325156	DNA325157	DNA325162	DNA325177
	DNA325179	DNA89242	DNA325182	DNA325184	DNA325185	DNA325188
	DNA325194	DNA325231	DNA325232	DNA325233	DNA325234	DNA325235
	DNA325236	DNA325250	DNA325280	DNA325281	DNA325282	DNA325287
	DNA325296	DNA325326	DNA325332	DNA325334	DNA325335	DNA325339
5	DNA325340	DNA103506	DNA325343	DNA325344	DNA325347	DNA325352
	DNA325358	DNA325360	DNA325368	DNA325388	DNA255696	DNA325403
	DNA325408	DNA325409	DNA325410	DNA325411	DNA325414	DNA325418
	DNA97285	DNA325456	DNA226080	DNA325471	DNA325473	DNA325475
	DNA325485	DNA270721	DNA325506	DNA325524	DNA325535	DNA325536
10	DNA325537	DNA325564	DNA325565	DNA325570	DNA325571	DNA325590
	DNA325591	DNA325596	DNA325599	DNA325601	DNA225632	DNA226771
	DNA325625	DNA325633	DNA325637	DNA325642	DNA325644	DNA325645
	DNA270458	DNA227092	DNA325674	DNA290294	DNA325678	DNA325680
	DNA325681	DNA325686	DNA325692	DNA325693	DNA325694	DNA325722
15	DNA325731	DNA325732	DNA325750	DNA325752	DNA325756	DNA325758
	DNA325778	DNA325779	DNA325780	DNA325786	DNA302016	DNA325789
	DNA325803	DNA325804	DNA325809	DNA325811	DNA325812	DNA325814
	DNA325823	DNA325837	DNA325838	DNA325842	DNA325845	DNA325849
	DNA325853	DNA325854	DNA325863	DNA325868	DNA325869	DNA325871
20	DNA325882	DNA325887	DNA325896	DNA325906	DNA325908	DNA325912
	DNA325929	DNA325931	DNA325935	DNA226324	DNA325949	DNA325971
	DNA325978	DNA325979	DNA325985	DNA325999	DNA326002	DNA326003
	DNA326006	DNA326017	DNA287331	DNA326069	DNA326099	DNA326101
	DNA326121	DNA326122	DNA326124	DNA326127	DNA326129	DNA326136
25	DNA326156	DNA326164	DNA287355	DNA326193	DNA326196	DNA 189703
	DNA326220	DNA326233	DNA326234	DNA326239	DNA326242	DNA326246
	DNA326247	DNA326254	DNA326256	DNA97300	DNA326273	DNA326278
	DNA254198	DNA326289	DNA326291	DNA326292	DNA326325	DNA326330
	DNA326334	DNA326339	DNA326341	DNA88378	DNA326347	DNA326352
30	DNA326357	DNA326370	DNA326380	DNA227055	DNA326406	DNA274755
	DNA326411	DNA326416	DNA326423	DNA326426	DNA326427	DNA326430
	DNA326434	DNA326437	DNA326440	DNA326449	DNA326450	DNA326451
	DNA326452	DNA326453	DNA326454	DNA326457	DNA326476	DNA326481
	DNA326482	DNA326484	DNA326485	DNA326489	DNA326497	DNA326498
35	DNA326539	DNA326548	DNA326563	DNA326579	DNA326580	DNA326586
	DNA326625	DNA227249	DNA326626	DNA326633	DNA326634	DNA326646

DNA325011

DNA325133

DNA325242

DNA325356

DNA325576

DNA325953

DNA326138

DNA326417

DNA324910

DNA272050

DNA325241

DNA325354

DNA272413

DNA325901

DNA326095

DNA326416

DNA327111

PCT/US2003/028547 WO 2004/030615 DNA326680 DNA326698 DNA326701 DNA326671 DNA326678 DNA326651 DNA 103580 DNA326713 DNA326705 DNA326706 DNA326702 DNA326703 DNA326736 DNA326741 DNA326742 DNA88084 DNA326727 DNA290260 DNA326769 DNA254548 DNA326756 DNA326758 DNA326762 DNA326752 DNA326819 DNA326772 DNA326776 DNA326777 DNA227348 DNA304662 DNA326850 DNA326851 DNA326831 DNA326832 5 DNA 194701 DNA326826 DNA269746 DNA326885 DNA269526 DNA326867 DNA326870 DNA326871 DNA326939 DNA269830 DNA326905 DNA326923 DNA326924 DNA326886 DNA326977 DNA326974 DNA326947 DNA326958 DNA 188740 DNA326964 DNA326987 DNA326992 DNA327003 DNA270954 DNA326983 DNA326981 DNA327016 DNA327023 DNA327010 DNA327013 DNA327014 10 DNA327005 DNA327050 DNA327052 DNA327053 DNA273254 DNA327025 DNA327027 DNA227656 DNA327091 DNA327068 DNA327069 DNA327065 DNA327067 DNA327106 DNA327114 DNA327116 DNA227013 15 BONE MARROW DNA323770 DNA323771 DNA323774 DNA323775 DNA323735 DNA323762 DNA323904 DNA323880 DNA323903 DNA323784 DNA323804 DNA272748 DNA324056 DNA324057 DNA323964 DNA323982 DNA324015 DNA324023 DNA324154 DNA324173 DNA324100 DNA324139 DNA324086 DNA324076 DNA324248 DNA324230 DNA324242 20 DNA324178 DNA324200 DNA324211 DNA88100 DNA324301 DNA324364 DNA324250 DNA324260 DNA324249 DNA324420 DNA324484 DNA324495 DNA324383 DNA324381 DNA324382 DNA324637 DNA324551 DNA324554 DNA324575 DNA324605 DNA324507 DNA324746 DNA324825 DNA324848 DNA324644 DNA324690 DNA304680

35 <u>TESTIS</u>
DNA287173 DNA323761 DNA323770 DNA323771 DNA323774 DNA323775

DNA324858

DNA 151010

DNA325231

DNA325345

DNA325428

DNA325733

DNA234442

DNA326390

DNA326451

DNA324856

DNA325086

DNA325184

DNA287642

DNA325399

DNA325726

DNA325998

DNA326373

DNA326450

25

30

DNA324854

DNA325031

DNA325169

DNA325299

DNA325392

DNA325668

DNA151831

DNA326365

DNA326449

DNA324905 DNA325127

DNA325234

DNA325351

DNA325461

DNA325811

DNA326035

DNA326391

DNA326942

	DNA226262	DNA323778	DNA323790	DNA323804	DNA323817	DNA323820	
	DNA323829	DNA103214	DNA304686	DNA272748	DNA323844	DNA323845	
	DNA323851	DNA323856	DNA323858	DNA323859	DNA323861	DNA323864	
	DNA323865	DNA323866	DNA323867	DNA323869	DNA323871	DNA323872	
	DNA323877	DNA323880	DNA323922	DNA323943	DNA323947	DNA323956	
5	DNA323964	DNA323967	DNA323968	DNA323973	DNA323985	DNA323993	
	DNA323998	DNA324004	DNA324009	DNA324015	DNA324023	DNA324048	
	DNA324054	DNA324058	DNA324063	DNA324090	DNA324091	DNA324092	
	DNA324100	DNA324103	DNA324111	DNA324112	DNA324114	DNA324117	
	DNA324118	DNA227795	DNA150725	DNA324147	DNA324149	DNA324154	
10	DNA324155	DNA324164	DNA324165	DNA324170	DNA324173	DNA324178	
	DNA324187	DNA304805	DNA324196	DNA324199	DNA324200	DNA324201	
	DNA299899	DNA324204	DNA271608	DNA324207	DNA324208	DNA324210	
	DNA324213	DNA324214	DNA324218	DNA324219	DNA324229	DNA324230	
	DNA324276	DNA324281	DNA324282	DNA324284	DNA324285	DNA324291	•
15	DNA324293	DNA226547	DNA324295	DNA324301	DNA324312	DNA324313	
	DNA324326	DNA324357	DNA324358	DNA324373	DNA324381	DNA324382	
	DNA324383	DNA324384	DNA324385	DNA324390	DNA324395	DNA324398	
	DNA324403	DNA324404	DNA324417	DNA324418	DNA324423	DNA324433	
	DNA324434	DNA324436	DNA324437	DNA324438	DNA324455	DNA324468	
20	DNA324469	DNA324472	DNA324478	DNA324479	DNA324481	DNA324483	
	DNA324490	DNA324491	DNA324495	DNA324496	NA324499	DNA324500	
	DNA324501	DNA324502	DNA324503	DNA324504	DNA324505	DNA324507	
	DNA324509	DNA324511	DNA324512	DNA324514	DNA324521	DNA324522	
	DNA324525	DNA324531	DNA324541	DNA324549	DNA324550	DNA324551	
25	DNA324552	DNA324554	DNA324555	DNA324556	DNA324557	DNA324558	
	DNA324568	DNA324574	DNA324575	DNA324576	DNA324579	DNA324583	
	DNA324584	DNA324585	DNA324590	DNA324591	DNA324592	DNA324595	
	DNA324596	DNA324597	DNA324598	DNA324599	DNA324600	DNA324601	
	DNA324605	DNA269816	DNA324612	DNA324613	DNA324616	DNA324622	
30	DNA324624	DNA324628	DNA324632	DNA271931	DNA324642	DNA324645	
	DNA324682	DNA324683	DNA324684	DNA324685	DNA324687	DNA324690	
	DNA324697	DNA324717	DNA324720	DNA304680	DNA324737	DNA324742	
	DNA275630	DNA324746	DNA324751	DNA324785	DNA324790	DNA324800	
	DNA324801	DNA324803	DNA150772	DNA324811	DNA324828-	DNA324829	
35	DNA324831	DNA324840	DNA324841	DNA324843	DNA324844	DNA324845	
	DNA324846	DNA324855	DNA324858	DNA324866	DNA324867	DNA324882	

	DNA324883	. DNA225631	DNA324902	DNA324904	DNA324905	DNA324906
	DNA324907	DNA324908	DNA324909	DNA324910	DNA324913	DNA324914
	DNA324915	DNA324916	DNA324917	DNA324926	DNA324928	DNA324941
	DNA324950	DNA324951	DNA324954	DNA304710	DNA324962	DNA324963
	DNA324965	DNA324966	DNA324967	DNA324968	DNA324982	DNA324989
5	DNA325002	DNA325003	DNA325006	DNA325007	DNA226560	DNA325010
	DNA325011	DNA325025	DNA325026	DNA325027	DNA325028	DNA325034
	DNA325049	DNA325078	DNA325079	DNA325080	DNA325081	DNA325086
	DNA325095	DNA325096	DNA151010	DNA325097	DNA325098	DNA325107
	DNA325111	DNA325116	DNA325117	DNA325118	DNA325119	DNA325123
10	DNA325124	DNA325125	DNA131588	DNA325127	DNA325134	DNA325141
	DNA325146	DNA325152	DNA325153	DNA325154	DNA325155	DNA325156
	DNA325157	DNA325158	DNA325159	DNA325164	DNA325169	DNA325179
	DNA325182	DNA325183	DNA325184	DNA325196	DNA325202	DNA325206
	DNA325222	DNA325229	DNA325231	DNA325232	DNA325233	DNA325234
15	DNA325235	DNA325236	DNA325250	DNA325281	DNA325282	DNA325289
	DNA325291	DNA325297	DNA325298	DNA325301	DNA287642	DNA325326
	DNA325339	DNA325340	DNA103421	DNA325345	DNA325347	DNA325349
	DNA325351	DNA325357	DNA325358	DNA325360	DNA325376	DNA325387
	DNA325392	DNA325395	DNA269952	DNA255078	DNA325428	DNA325430
20	DNA325433	DNA325434	DNA325435	DNA325436	DNA325437	DNA325438
	DNA97285	DNA325439	DNA325445	DNA254186	DNA325523	DNA325534
	DNA325535	DNA325541	DNA325549	DNA272413	DNA325564	DNA325565
	DNA325570	DNA257965	DNA325576	DNA325589	DNA325601	DNA225632
	DNA325613	DNA325615	DNA325622	DNA325625	DNA325629	DNA325630
25	DNA325632	DNA325633	DNA325635	DNA325642	DNA325644	DNA325645
	DNA325668	DNA325672	DNA325674	DNA325680	DNA325685	DNA325697
	DNA325711	DNA325720	DNA325731	DNA325732	DNA325736	DNA325748
	DNA325750	DNA325752	DNA325753	DNA325754	DNA325758	DNA325762
	DNA325782	DNA325786	DNA302016	DNA325789	DNA325806	DNA325809
30	DNA325810	DNA325811	DNA325812	DNA325814	DNA325821	DNA304669
	DNA325824	DNA325825	DNA325827	DNA325829	DNA325831	DNA325837
	DNA325838	DNA325843	DNA325844	DNA325848	DNA325860	DNA227321
	DNA325879	DNA325882	DNA325886	DNA325887	DNA325888	DNA325897
	DNA325898	DNA325901	DNA325905	DNA325906	DNA325908	DNA325913
35	DNA325922	DNA325933	DNA325934	DNA325935	DNA325939	DNA325940
	DNA325965	DNA325969	DNA325985	DNA325991	DNA325994	DNA325998

	DNA326002	DNA326003	DNA326009	DNA234442	DNA326020	DNA326021
	DNA326022	DNA287331	DNA326035	DNA326041	DNA326045	DNA326046
	DNA326047	DNA326070	DNA326075	DNA326099	DNA326128	DNA326129
	DNA326155	DNA326156	DNA274180	DNA326187	DNA326214	DNA326228
	DNA326233	DNA326234	DNA326251	DNA97300	DNA304715	DNA290292
5	DNA326289	DNA326291	DNA326292	DNA326311	DNA326364	DNA326373
	DNA326390	DNA326391	DNA326397	DNA326400	DNA326410	DNA326426
	DNA287234	DNA326449	DNA326450	DNA326451	DNA326452	DNA326453
	DNA326454	DNA326457	DNA326463	DNA326471	DNA326557	DNA326559
	DNA326579	DNA326580	DNA326603	DNA326633	DNA326634	DNA326642
10	DNA326651	DNA326686	DNA326687	DNA326688	DNA326691	DNA326692
	DNA326698	DNA290260	DNA304658	DNA326762	DNA326769	DNA326790
	DNA326791	DNA326792	DNA326796	DNA326798	DNA326837	DNA326854
	DNA326858	DNA326884	DNA326885	DNA326886	DNA326940	DNA326941
	DNA269830	DNA254240	DNA326974	DNA327005	DNA327019	DNA327020
15	DNA327021	DNA327025	DNA327026	DNA327027	DNA327029	DNA327039
	DNA327044	DNA327060	DNA327062	DNA273254	DNA327066	DNA 327067
	DNA327072	DNA327077	DNA327078	DNA327079	DNA327083	DNA327084
	DNA327098	DNA327100	DNA327114			
20	CERVIX					
	DNA324417	DNA324418	DNA324557	DNA324828	DNA324829	DNA324904
	DNA324905	DNA324906	DNA325231	DNA325234		
	NERVOUS					
25	DNA287173	DNA323760	DNA103253	DNA323848	DNA323864	DNA323865
	DNA323866	DNA323867	DNA323877	DNA323878	DNA323882	DNA323887
	DNA323925	DNA323966	DNA324107	DNA227795	DNA324135	DNA227190
	DNA324155	DNA271608	DNA324219	DNA324259	DNA324320	DNA324351
	DNA324364	DNA270615	DNA324504	DNA324505	DNA324551	DNA324552
30	DNA324554	DNA324555	DNA324556	DNA324557	DNA324558	DNA324575
	DNA324756	DNA324790	DNA324828	DNA324829	DNA324904	DNA324905
	DNA324906	DNA324907	DNA324908	DNA324982	DNA325079	DNA325187
	DNA325231	DNA325232	DNA325233	DNA325234	DNA325235	DNA325236
	DNA325416	DNA325419	DNA325432	DNA325562	DNA325602	DNA325607
35	DNA226028	DNA325647	DNA325704	DNA325759	DNA287331	DNA326077
	DNA326196	DNA326198	DNA326215	DNA326362	DNA326459	DNA326752

	DNA326846	DNA226409	DNA326956	DNA326983	DNA327058	DNA327099
	EYE					D11100000
	DNA323721	DNA287173	DNA323747	DNA323763	DNA323769	DNA226262
	DNA323778	DNA323799	DNA323807	DNA227213	DNA323817	DNA323818
5	DNA323820	DNA323829	DNA323835	DNA323839	DNA323856	DNA323858
	DNA323859	DNA323864	DNA323865	DNA323866	DNA323869	DNA323871
	DNA323872	DNA323875	DNA323887	DNA323891	DNA323892	DNA323906
	DNA323914	DNA323923	DNA323925	DNA323928	DNA323932	DNA323935
	DNA323936	DNA323947	DNA323964	DNA323971	DNA323972	DNA323973
10	DNA323974	DNA323988	DNA256905	DNA324004	DNA324009	DNA324010
	DNA247474	DNA324022	DNA324023	DNA324025	DNA324028	DNA324029
	DNA324037	DNA324048	DNA324049	DNA103217	DNA275195	DNA324059
	DNA324060	DNA324061	DNA275049	DNA324062	DNA273800	DNA324076
	DNA324083	DNA324085	DNA324087	DNA324090	DNA324091	DNA324092
15	DNA324096	DNA324100	DNA226428	DNA275066	DNA324104	DNA324106
	DNA324108	DNA324110	DNA324111	DNA324112	DNA324127	DNA227795
	DNA287167	DNA324155	DNA324157	DNA324163	DNA324164	DNA324165
	DNA324167	DNA275240	DNA324170	DNA324175	DNA324185	DNA324186
	DNA324193	DNA324199	DNA324200	DNA324201	DNA324203	DNA324204
20	DNA324207	DNA324209	DNA324210	DNA324212	DNA324213	DNA324214
	DNA324217	DNA324218	DNA324219	DNA324224	DNA324230	DNA324280
	DNA324281	DNA324282	DNA226547	DNA324295	DNA324306	DNA324307
	DNA324312	DNA324313	DNA324320	DNA324322	DNA324329	DNA324330
	DNA324331	DNA273919	DNA324332	DNA324334	DNA324338	DNA324344
25	DNA324345	DNA324347	DNA324358	DNA324359	DNA324365	DNA324372
	DNA324374	DNA324390	DNA324417	DNA324418	DNA324423	DNA324434
	DNA324436	DNA324437	DNA324448	DNA324458	DNA324461	DNA324463
	DNA324470	DNA324478	DNA324479	DNA324481	DNA324482	DNA324483
	DNA324491	DNA324495	DNA324496	DNA324501	DNA324504	DNA324505
30	DNA324510	DNA324512	DNA324519	DNA324521	DNA324525	DNA324535
	DNA324541	DNA324552	DNA324555	DNA324556	DNA324557	DNA324558
	DNA324575	DNA324584	DNA324589	DNA324590	DNA324591	DNA324594
	DNA324595	DNA324596	DNA324597	DNA324598	DNA324599	DNA324600
	DNA254147	DNA324607	DNA290231	DNA324608	DNA324609	DNA324613
35	DNA324623	DNA324624	DNA324625	DNA324632	DNA324645	DNA324682
	DNA324687	DNA324690	DNA324697	DNA324710	DNA324711	DNA324717

	DNA324718	DNA324720	DNA304680	DNA324737	DNA270613	DNA324742
	DNA287246	DNA324745	DNA304716	DNA324747	DNA324751	DNA324756
	DNA324766	DNA304661	DNA324777	DNA324778	DNA324779	DNA324785
	DNA324788	DNA324790	DNA324811	DNA324828	DNA324829	DNA324830
	DNA324839	DNA324841	DNA324844	DNA324866	DNA324902	DNA324904
5	DNA324906	DNA324907	DNA324908	DNA324915	DNA324916	DNA324917
	DNA324942	DNA 103588	DNA324948	DNA324949	DNA324950	DNA324951
	DNA324965	DNA324966	DNA324967	DNA324968	DNA324982	DNA324989
	DNA325002	DNA325003	DNA325005	DNA325006	DNA325013	DNA325015
	DNA325024	DNA325025	DNA325026	DNA325027	DNA325034	DNA325058
10	DNA325066	DNA325078	DNA325079	DNA325080	DNA325081	DNA325093
	DNA325098	DNA325110	DNA325111	DNA325116	DNA325117	DNA325118
	DNA325119	DNA325124	DNA325127	DNA325128	DNA325130	DNA325146
	DNA325152	DNA325153	DNA325155	DNA325156	DNA325157	DNA325164
	DNA325172	DNA325179	DNA325182	DNA325183	DNA325184	DNA325190
15	DNA325191	DNA325192	DNA325193	DNA325196	DNA325198	DNA325202
	DNA325206	DNA271722	DNA325207	DNA 325209	DNA325222	DNA325233
	DNA325235	DNA325236	DNA325247	DNA325256	DNA325283	DNA325289
	DNA325293	DNA325298	DNA325300	DNA325301	DNA325311	DNA325313
	DNA325317	DNA325321	DNA325323	DNA325347	DNA325351	DNA325364
20	DNA325370	DNA325376	DNA325378	DNA325382	DNA227509	DNA325389
	DNA325390	DNA325395	DNA325427	DNA325430	DNA97285	DNA325439
	DNA325442	DNA325445	DNA325451	DNA325452	DNA270134	DNA325459
	DNA272728	DNA325478	DNA325479	DNA325499	DNA270721	DNA325506
	DNA325523	DNA325526	DNA325534	DNA325535	DNA325540	DNA325542
25	DNA325543	DNA271843	DNA325559	DNA325576	DNA325577	DNA325578
	DNA325584	DNA325587	DNA325593	DNA325596	DNA325598	DNA325601
	DNA225632	DNA325607	DNA226028	DNA325612	DNA325614	DNA325625
	DNA325627	DNA325628	DNA325632	DNA325642	DNA325647	DNA325674
	DNA290294	DNA325678	DNA325680	DNA325682	DNA325683	DNA325684
30	DNA325685	DNA325688	DNA325690	DNA325695	DNA325713	DNA325719
	DNA325720	DNA325731	DNA325733	DNA325736	DNA274361	DNA325752
	DNA325757	DNA325762	DNA325769	DNA325773	DNA325775	DNA325776
	DNA325782	DNA325784	DNA325786	DNA302016	DNA325789	DNA325800
	DNA325810	DNA325811	DNA325812	DNA325817	DNA325818	DNA304669
35	DNA281436	DNA325835	DNA325837	DNA325838	DNA325843	DNA325844
	DNA210180	DNA325872	DNA325882	DNA325889	DNA325891	DNA325892

	DNA325899	DNA325906	DNA325908	DNA325922	DNA325924	DNA325933
•	DNA325935	DNA325945	DNA325964	DNA325965	DNA325975	DNA325978
	DNA325979	DNA325985	DNA325988	DNA326000	DNA326002	DNA326004
	DNA326008	DNA234442	DNA326013	DNA326016	DNA326020	DNA326021
	DNA326022	DNA326031	DNA326033	DNA255370	DNA273014	DNA326037
5	DNA326047	DNA326050	DNA326058	DNA326061	DNA326072	DNA326097
	DNA326099	DNA326104	DNA326105	DNA326116	DNA326121	DNA326122
	DNA326124	DNA326129	DNA326133	DNA326136	DNA326156	DNA326167
	DNA326175	DNA326196	DNA326197	DNA326198	DNA326214	DNA326221
	DNA326222	DNA326229	DNA326243	DNA326244	DNA326251	DNA326260
10	DNA326264	DNA326265	DNA97300	DNA297388	DNA326288	DNA290292
	DNA326289	DNA326294	DNA326296	DNA326316	DNA326322	DNA326334
	DNA326339	DNA326343	DNA326344	DNA227873	DNA326348	DNA326360
	DNA97290	DNA227071	DNA227764	DNA326376	DNA326381	DNA326393
	DNA326394	DNA326398	DNA326402	DNA326405	DNA326406	DNA326413
15	DNA326418	DNA326420	DNA326427	DNA326435	DNA326436	DNA326445
	DNA326447	DNA274690	DNA326449	DNA326450	DNA326451	DNA326452
	DNA326453	DNA326454	DNA326455	DNA326458	DNA326459	DNA326463
	DNA326466	DNA326467	DNA326473	DNA326488	DNA326520	DNA326526
	DNA326527	DNA326534	DNA326559	DNA326560	DNA326574	DNA326576
20	DNA326579	DNA326580	DNA326615	DNA326617	DNA326633	DNA326634
	DNA326642	DNA326663	DNA326664	DNA272347	DNA326669	DNA326671
	DNA326691	DNA326694	DNA326697	DNA326705	DNA326706	DNA256533
	DNA326717	DNA326718	DNA326719	DNA326720	DNA326749	DNA326753
	DNA273346	DNA326769	DNA287270	DNA326779	DNA326780	DNA326781
25	DNA326787	DNA326795	DNA326796	DNA326798	DNA326819	DNA326830
	DNA326858	DNA254572	DNA326892	DNA326894	DNA326904	DNA326919
	DNA326931	DNA326932	DNA326935	DNA326940	DNA326941	DNA269830
	DNA326946	DNA326952	DNA326956	DNA326962	DNA254240	DNA326974
	DNA326983	DNA327005	DNA327006	DNA327007	DNA327017	DNA327019
30	DNA327021	DNA327023	DNA327025	DNA327026	DNA327027	DNA327029
	DNA327046	DNA327058	DNA327060	DNA327062	DNA273254	DNA327067
	DNA327070	DNA327072	DNA327077	DNA327078	DNA327079	DNA227181
	DNA327099	DNA327114	DNA103558	DNA327125		
35	OVARY					
	DNA287173	DNA323865	DNA323867	DNA324048	DNA324148	DNA324295

	WO 2004/0	30615				PCT/US2003/028547
	DNA324340	DNA324341	DNA324642	DNA324694	DNA324697	DNA324737
	DNA324874	DNA325601	DNA225632	DNA325720	DNA325786	DNA287331
	DNA326099	DNA326657	DNA327025			
	ADIPOSE					
5	DNA325952	DNA325957	DNA325958			
	WHOLE BLO	<u>OD</u>				
	DNA323718	DNA323719	DNA323752	DNA323754	DNA323788	DNA83085
	DNA323886	DNA323889	DNA323890	DNA323911	DNA323957	DNA323980
10	DNA324002	DNA324020	DNA324021	DNA324033	DNA324040	DNA324041
	DNA324052	DNA324240	DNA324296	DNA225910	DNA324317	DNA324320
	DNA324515	DNA324560	DNA324562	DNA324722	DNA324742	DNA324784
	DNA324861	DNA324875	DNA324884	DNA324885	DNA324887	DNA324888
	DNA324923	DNA325016	DNA325017	DNA325038	DNA325055	DNA325056
15	DNA325057	DNA325059	DNA325060	DNA325061	DNA325063	DNA325177
	DNA325255	DNA88562	DNA325335	DNA325360	DNA325401	DNA325516
	DNA325609	DNA325623	DNA325631	DNA325641	DNA290294	DNA325678
	DNA226014	DNA325750	DNA325758	DNA325764	DNA325803	DNA281436
	DNA325829	DNA226105	DNA325912	DNA326089	DNA326090	DNA326113
20	DNA326115	DNA326160	DNA326240	DNA326254	DNA88378	DNA88554
	DNA326371	DNA326479	DNA326655	DNA326802	DNA326834	DNA88239
	DNA326906	DNA326958	DNA326977	DNA327052	DNA327116	
	THYROID					
25	DNA323717	DNA188748	DNA323867	DNA324154	DNA324216	DNA324295
	DNA324501	DNA324503	DNA324550	DNA324551	DNA324554	DNA324565
	DNA324697	DNA324873	DNA324874	DNA324905	DNA325191	DNA325192
	DNA325232	DNA325234	DNA325335	DNA325503	DNA325720	DNA325845
	DNA326259	DNA326275	DNA326862	DNA326863	DNA304670	DNA326864
30						
	PITUITARY G	LAND				
	DNA323717	DNA323967	DNA103593	DNA324100	DNA324293	DNA324326
	DNA324610	DNA324720	DNA324801	DNA324846	DNA324874	DNA325089
	DNA325523	DNA325533	DNA325589	DNA325617	DNA325967	DNA325970
35						
	SKIN					

	DNA323717	DNA323721	DNA323730	DNA287173	DNA227821	DNA323764	
	DNA323778	DNA323782	DNA323783	DNA323798	DNA323817	DNA323820	
	DNA323822	DNA274745	DNA323829	DNA323833	DNA323856	DNA323858	
	DNA323859	DNA323862	DNA323863	DNA323872	DNA323874	DNA323878	
	DNA227529	DNA227577	DNA323925	DNA323927	DNA323947	DNA226619	
5	DNA323980	DNA324004	DNA324009	DNA324042	DNA324047	DNA324048	
	DNA324049	DNA324060	DNA324067	DNA324102	DNA227795	DNA324134	
	DNA150725	DNA324153	DNA324178	DNA324204	DNA324207	DNA324210	
	DNA324218	DNA324224	DNA324225	DNA324229	DNA254204	DNA324258	
	DNA324294	DNA324316	DNA324317	DNA324334	DNA324338	DNA324339	
10	DNA324340	DNA324341	DNA324358	DNA324371	DNA324372	DNA324379	
	DNA324380	DNA324382	DNA324383	DNA324390	DNA324392	DNA324398	
	DNA324401	DNA324407	DNA324412	DNA79129	DNA324434	DNA324472	
	DNA324479	DNA324491	DNA324495	DNA324496	DNA324509	DNA324512	
	DNA225584	DNA324521	DNA324525	DNA324541	DNA324564	DNA288259	
15	DNA324590	DNA324591	DNA324592	DNA324595	DNA324596	DNA324597	
	DNA324598	DNA324599	DNA324600	DNA324604	DNA324613	DNA324632	
	DNA324645	DNA324678	DNA324682	DNA324687	DNA324690	DNA324692	
	DNA324697	DNA324698	DNA324704	DNA324712	DNA324714	DNA324715	
	DNA324716	DNA324717	DNA324720	DNA304680	DNA324736	DNA324737	
20	DNA324751	DNA324756	DNA272263	DNA324780	DNA324781	DNA324785	
	DNA324790	DNA324819	DNA324844	DNA324858	DNA324863	DNA324866	
	DNA324874	DNA225631	DNA324902	DNA324907	DNA324908	DNA324919	
	DNA324920	DNA324926	DNA227268	DNA103588	DNA324952	DNA324962	
	DNA324965	DNA324966	DNA324967	DNA324968	DNA324982	DNA272090	
25	DNA324989	DNA325006	DNA304685	DNA325078	DNA325079	DNA325080	
	DNA325081	DNA325090	DNA325091	DNA325092	DNA325108	DNA325111	
	DNA325116	DNA325117	DNA325118	DNA325119	DNA325126	DNA325132	
	DNA325136	DNA325141	DNA325152	DNA325153	DNA325164	DNA325177	
	DNA325183	DNA325206	DNA325209	DNA325222	DNA325223	DNA88350	
30	DNA325230	DNA325245	DNA325250	DNA325280	DNA325293	DNA325296	
	DNA325301	DNA325303	DNA325326	DNA325343	DNA325347	DNA325389	
	DNA325395	DNA325403	DNA325411	DNA325412	DNA325430	DNA97285	
	DNA325441	DNA325442	DNA325467	DNA325506	DNA325523	DNA325534	
	DNA325535	DNA325570	DNA325576	DNA325596	DNA325601	DNA225632	
35	DNA325605	DNA325606	DNA325610	DNA325625	DNA325633	DNA325642	
	DNA325644	DNA325655	DNA325656	DNA325657	DNA227092	DNA325674	

	WO 2004/0	30615				PCT/US2003/028547
	DNA325680	DNA325695	DNA325700	DNA325702	DNA325711	DNA325712
	DNA325724	DNA325733	DNA325736	DNA325738	DNA325752	DNA325770
	DNA325773	DNA325775	DNA325776	DNA325777	DNA325786	DNA325805
	DNA325810	DNA325818	DNA325837	DNA325838	DNA325890	DNA325900
	DNA325906	DNA325908	DNA325909	DNA325913	DNA325920	DNA269498
5	DNA325922	DNA325925	DNA325935	DNA325941	DNA103509	DNA325965
	DNA227559	DNA325985	DNA325994	DNA326002	DNA326003	DNA326022
	DNA287331	DNA326027	DNA326036	DNA326041	DNA326046	DNA326047
	DNA326056	DNA326076	DNA273839	DNA326099	DNA326107	DNA326116
	DNA326118	DNA326121	DNA326122	DNA326124	DNA326128	DNA326129
10	DNA326133	DNA326136	DNA326142	DNA326156	DNA326168	DNA326173
	DNA287355	DNA326178	DNA326196	DNA326197	DNA275408	DNA326251
	DNA326254	DNA97300	DNA326272	DNA326273	DNA326278	DNA326288
	DNA290292	DNA326296	DNA326311	DNA326316	DNA326324	DNA326329
,	DNA326343	DNA88378	DNA326354	DNA326355	DNA326358	DNA326362
15	DNA227071	DNA326384	DNA227055	DNA326396	DNA326397	DNA326406
	DNA326408	DNA326415	DNA326416	DNA326426	DNA326449	DNA326450
	DNA326451	DNA326452	DNA326453	DNA326454	DNA326457	DNA326463
	DNA326475	DNA326490	DNA326499	DNA326525	DNA326539	DNA326559
	DNA270621	DNA326562	DNA326579	DNA326580	DNA326595	DNA326597
20	DNA326599	DNA326603	DNA326651	DNA272347	DNA274139	DNA326680
	DNA326691	DNA326704	DNA326709	DNA304658	DNA326742	DNA326752
	DNA326760	DNA273346	DNA254548	DNA326769	DNA287270	DNA326780
	DNA326781	DNA326790	DNA326796	DNA326798	DNA150548	DNA326803
	DNA326819	DNA326821	DNA194701	DNA326825	DNA326872	DNA326884
25	DNA326886	DNA254572	DNA326901	DNA226617	DNA326921	DNA326935
	DNA326941	DNA326947	DNA326949	DNA326950	DNA326952	DNA326956
	DNA326963	DNA326967	DNA326974	DNA326981	DNA219225	DNA326983
	DNA326984	DNA326985	DNA326995	DNA327003	DNA327023	DNA327025
	DNA227943	DNA327056	DNA327057	DNA327060	DNA327062	DNA273254
30	DNA327068	DNA327101	DNA327107	DNA327110	DNA327114	DNA327115
	DNA227013					
	THYMUS					
	DNA324063	DNA324197	DNA324641	DNA324685	DNA324926	DNA325038
35	DNA325195	DNA325238	DNA325405	DNA325420	DNA325421	DNA325422
	DNA325506	DNA325645	DNA325809	DNA325930	DNA326089	DNA326090

	DNA326243	DNA326554	DNA326563	DNA326747		
	MUSCLE					
	DNA323725	DNA323732	DNA287173	DNA323736	DNA323737	DNA323740
	DNA171408	DNA323746	DNA323748	DNA323749	DNA323753	DNA323765
5	DNA323766	DNA323767	DNA323768	DNA323778	DNA323779	DNA323780
	DNA323782	DNA323784	DNA323789	DNA323792	DNA323794	DNA323798
	DNA323801	DNA323802	DNA323804	DNA227213	DNA323810	DNA323813
	DNA323816	DNA323817	DNA274487	DNA323820	DNA323821	DNA323826
	DNA323827	DNA 323829	DNA323830	DNA323833	DNA 103214	DNA323837
10	DNA323839	DNA323852	DNA323853	DNA323854	DNA323855	DNA323858
	DNA323859	DNA 323860	DNA323862	DNA323863	DNA323864	DNA323865
	DNA323866	DNA323867	DNA323869	DNA323870	DNA323871	DNA275139
	DNA323872	DNA323874	DNA323881	DNA323882	DNA323885	DNA323887
	DNA227529	DNA225809	DNA323914	DNA323925	DNA323929	DNA323930
15	DNA323933	DNA323934	DNA323936	DNA194600	DNA323947	DNA323949
	DNA323955	DNA323964	DNA323971	DNA323972	DNA323973	DNA323974
	DNA323977	DNA323978	DNA323981	DNA323987	DNA323995	DNA323997
	DNA290234	DNA324001	DNA256905	DNA324004	DNA324007	DNA324014
	DNA324016	DNA324039	DNA324045	DNA324048	DNA324049	DNA324054
20	DNA275195	DNA324058	DNA324059	DNA324060	DNA324063	DNA324064
	DNA273800	DNA324090	DNA324091	DNA324092	DNA324097	DNA324098
	DNA324109	DNA324111	DNA324112	DNA324120	DNA324126	DNA227795
	DNA324133	DNA324135	DNA324137	DNA324141	DNA324145	DNA324154
	DNA324155	DNA255531	DNA275240	DNA324168	DNA324170	DNA324182
25	DNA324183	DNA88051	DNA324197	DNA324199	DNA324200	DNA324201
	DNA324203	DNA324204	DNA324207	DNA324210	DNA324217	DNA324230
	DNA324232	DNA189697	DNA324241	DNA324243	DNA324252	DNA324255
	DNA324257	DNA324260	DNA324263	DNA324267	DNA324269	DNA324270
	DNA324271	DNA324278	DNA324282	DNA324287	DNA324294	DNA226547
30	DNA324295	DNA324297	DNA324313	DNA324318	DNA324323	DNA324324
	DNA324329	DNA324330	DNA324331	DNA324338	DNA324340	DNA324341
	DNA324358	DNA324371	DNA324390	DNA324398	DNA324400	DNA324414
	DNA324417	DNA324418	DNA324421	DNA324423	DNA324434	DNA324437
	DNA324440	DNA324454	DNA324456	DNA324461	DNA324462	DNA324469
35	DNA324472	DNA324478	DNA324479	DNA324483	DNA324488	DNA324493
	DNA324495	DNA324496	DNA324501	DNA324502	DNA324503	DNA324504

	DNA324505	DNA324510	DNA324521	DNA324523	DNA324525	DNA324538
	DNA324541	DNA324550	DNA324551	DNA324552	DNA324554	DNA324556
	DNA324557	DNA324558	DNA324564	DNA324575	DNA324583	DNA324584
	DNA288259	DNA324590	DNA324591	DNA324592	DNA324595	DNA324596
	DNA324597	DNA324598	DNA324599	DNA324600	DNA324602	DNA324604
5	DNA324608	DNA324613	DNA324624	DNA324626	DNA324627	DNA269809
	DNA324632	DNA324633	DNA324634	DNA324636	DNA324645	DNA271626
	DNA324675	DNA324678	DNA324682	DNA324685	DNA324690	DNA324696
	DNA324697	DNA274206	DNA324707	DNA324708	DNA324709	DNA324710
	DNA324711	DNA324715	DNA324716	DNA270675	DNA324717	DNA324720
10	DNA324722	DNA324723	DNA304680	DNA324737	DNA324739	DNA324744
	DNA304460	DNA324751	DNA324756	DNA324763	DNA324764	DNA324769
	DNA324770	DNA324780	DNA324781	DNA324783	DNA304699	DNA324784
	DNA324785	DNA324790	DNA324791	DNA290264	DNA 324794	DNA324811
	DNA324813	DNA324815	DNA324823	DNA 324827	DNA324828	DNA324829
15	DNA103471	DNA324834	DNA324840	DNA324841	DNA324844	DNA324846
	DNA324851	DNA324852	DNA324866	DNA324880	DNA324884	DNA324893
	DNA225631	DNA274326	DNA324896	DNA324897	DNA324902	DNA324904
	DNA324905	DNA324906	DNA324907	DNA324908	DNA324915	DNA324916
	DNA324917	DNA324921	DNA324926	DNA324932	DNA324933	DNA287189
20	DNA103588	DNA324950	DNA324951	DNA324952	DNA324957	DNA324958
	DNA324959	DNA324965	DNA324966	DNA324967	DNA324968	DNA324972
	DNA324973	DNA324977	DNA324982	DNA324983	DNA324985	DNA324989
	DNA324990	DNA324991	DNA324992	DNA325002	DNA325006	DNA325013
	DNA325015	DNA325021	DNA325022	DNA325023	DNA325024	DNA325026
25	DNA325027	DNA325034	DNA325039	DNA325045	DNA226337	DNA325062
	DNA325077	DNA325078	DNA325079	DNA325080	DNA325081	DNA325094
	DNA325095	DNA325100	DNA325103	DNA325109	DNA226496	DNA325111
	DNA325116	DNA325117	DNA325118	DNA325119	DNA325122	DNA131588
	DNA325152	DNA325153	DNA325156	DNA325157	DNA325164	DNA325168
30	DNA325174	DNA325178	DNA325179	DNA325182	DNA325183	DNA325184
	DNA287216	DNA288247	DNA325187	DNA325190	DNA325196	DNA325200
	DNA325202	DNA325205	DNA325206	DNA325210	DNA325214	DNA225630
	DNA325216	DNA325222	DNA325223	DNA325227	DNA325231	DNA325232
	DNA325233	DNA325234	DNA325235	DNA325236	DNA325239	DNA325245
35	DNA325247	DNA325250	DNA325295	DNA325296	DNA325301	DNA325303
	DNA325308	DNA325326	DNA325327	DNA325344	DNA304488	DNA325346

	DNA325347	DNA325358	DNA325360	DNA325362	DNA325367	DNA325371
	DNA325373	DNA144601	DNA325375	DNA325380	DNA325384	DNA325389
	DNA325406	DNA325407	DNA325408	DNA325409	DNA325410	DNA325411
	DNA325429	DNA325440	DNA325451	DNA325452	DNA325459	DNA272728
	DNA325463	DNA325469	DNA325474	DNA325478	DNA325494	DNA325498
5	DNA270721	DNA325515	DNA325523	DNA325531	DNA325534	DNA325535
	DNA325538	DNA325552	DNA325555	DNA325560	DNA325576	DNA325577
	DNA325580	DNA325581	DNA297398	DNA325582	DNA325584	DNA325585
	DNA325587	DNA325588	DNA325594	DNA325597	DNA254624	DNA325601
	DNA225632	DNA188396	DNA226028	DNA325618	DNA325620	DNA325625
10	DNA325627	DNA325633	DNA325637	DNA272379	DNA325642	DNA325644
	DNA325645	DNA325646	DNA325671	DNA325674	DNA325680	DNA227094
	DNA325695	DNA325703	DNA137231	DNA325704	DNA325705	DNA325706
	DNA325708	DNA79101	DNA325709	DNA325710	DNA325711	DNA325712
	DNA325714	DNA325715	DNA325716	DNA325718	DNA325720	DNA325724
15	DNA325725	DNA325731	DNA325733	DNA325734	DNA325750	DNA325752
	DNA325758	DNA325762	DNA325767	DNA325768	DNA325771	DNA325773
	DNA325775	DNA325776	DNA325781	DNA325784	DNA325786	DNA302016
	DNA325789	DNA325790	DNA325791	DNA325795	DNA325806	DNA325808
	DNA325809	DNA325810	DNA325811	DNA325812	DNA325814	DNA325815
20	DNA 325826	DNA325830	DNA325837	DNA325838	DNA325843	DNA325844
	DNA325857	DNA325867	DNA325873	DNA325874	DNA225865	DNA325879
	DNA325882	DNA325889	DNA325891	DNA325906	DNA325908	DNA325910
	DNA 325911	DNA325912	DNA325913	DNA325925	DNA325933	DNA151893
	DNA325935	DNA325937	DNA103509	DNA325954	DNA325955	DNA325965
25	DNA325966	DNA325985	DNA325994	DNA326002	DNA255340	DNA326012
	DNA326014	DNA326018	DNA326022	DNA287331	DNA326027	DNA326036
	DNA326040	DNA326041	DNA326046	DNA326047	DNA326058	DNA326059
	DNA326065	DNA326067	DNA326074	DNA326075	DNA326099	DNA326104
	DNA326105	DNA326121	DNA326122	DNA326123	NA326124	DNA326126
30	DNA326128	DNA326129	DNA326131	DNA326133	DNA326136	DNA326137
	DNA326143	DNA326147	DNA326148	DNA274002	DNA326156	DNA326157
	DNA194805	DNA326180	DNA326183	DNA326186	DNA326193	DNA326195
	DNA326196	DNA326197	DNA326199	DNA326216	DNA326235	DNA326236
	DNA326263	DNA97300	DNA297388	DNA326278	DNA326279	DNA326288
35	DNA326289	DNA326292	DNA326293	DNA326294	DNA227084	DNA326296
	DNA326298	DNA326299	DNA326301	DNA326304	DNA326305	DNA326306

	DNA326309 DNA326328 DNA326356 DNA326381	DNA326310 DNA326333 DNA326362	DNA326311 DNA326338	DNA326316 DNA326343	DNA326317 DNA326349	DNA270979 DNA326351
	DNA326356			DNA326343	DNA326349	DNA326351
		DNA326362				
	DNA326381		DNA270901	DNA326374	DNA326375	DNA326378
		DNA326397	DNA326406	DNA326411	DNA129504	DNA326416
	DNA326420	DNA326423	DNA326426	DNA326427	DNA326430	DNA326443
5	DNA326444	DNA326449	DNA326450	DNA326451	DNA326452	DNA326453
	DNA326454	DNA326457	DNA326460	DNA326463	DNA326469	DNA326487
	DNA326500	DNA326501	DNA326503	DNA326504	DNA326512	DNA326533
	DNA326539	DNA326548	DNA326550	DNA326556	DNA326558	DNA326566
	DNA326568	DNA326573	DNA326577	DNA326578	DNA326579	DNA326586
10	DNA326595	DNA326596	DNA326599	DNA326603	DNA269630	DNA326607
	DNA326614	DNA326621	DNA326625	DNA326629	DNA326630	DNA326633
	DNA326634	DNA326648	DNA326651	DNA326652	DNA273474	DNA326671
	DNA326676	DNA326680	DNA326691	DNA326693	DNA326695	DNA326698
	DNA32670	DNA326703	DNA326704	DNA326705	DNA326706	DNA326707
15	DNA326708	DNA326709	DNA257531	DNA256533	DNA326717	DNA326718
	DNA326725	DNA290260	DNA326740	DNA326745	DNA326749	DNA326752
	DNA326756	DNA326758	DNA273346	DNA326764	DNA297288	DNA287270
	DNA326789	DNA326790	DNA326796	DNA326800	DNA326805	DNA326808
	DNA326809	DNA326810	DNA326811	DNA326818	DNA326819	DNA326821
20	DNA194701	DNA326829	DNA326831	DNA103525	DNA326838	DNA326841
	DNA88239	DNA326845	DNA326850	DNA326851	DNA269526	DNA326868
	DNA326874	DNA326875	DNA326876	DNA326879	DNA326882	DNA326884
	DNA326886	DNA188732	DNA254572	DNA326890	DNA151898	DNA326894
•	DNA326898	DNA326901	DNA326904	DNA226409	DNA326906	DNA326909
25	DNA326915	DNA326921	DNA326925	DNA226561	DNA326926	DNA326927
	DNA326936	DNA326937	DNA326941	DNA269830	DNA326946	DNA326952
	DNA326953	DNA326954	DNA326956	DNA326958	DNA 188740	DNA326960
	DNA254240	DNA326974	DNA326977	DNA326979	DNA326981	DNA326982
	DNA326989	DNA326990	DNA237931	DNA 326998	DNA327001	DNA327003
30	DNA327005	DNA327008	DNA327013	DNA327023	DNA327025	DNA327029
	DNA327031	DNA327033	DNA327041	DNA227943	DNA327051	DNA327058
	DNA327060	DNA327067	DNA327068	DNA270496	DNA327077	DNA327078
	DNA327079	DNA327086	DNA327089	DNA327093	DNA327099	DNA327102
	DNA327104	DNA227013	DNA327120	DNA327122	DNA327124	DNA327125

ENDOCRINE

35

	WO 2004/030	615			PC	CT/US2003/028547
	DNA323772	DNA323943	DNA323976	DNA254298	DNA324100	DNA227528
	DNA324139	DNA324285	DNA79129	DNA324484	DNA290585	DNA324550
	DNA324642	DNA324692	DNA324910	DNA324964	DNA325350	DNA325549
	DNA325615	DNA325884	DNA325916	DNA325991	DNA326003	DNA188351
	DNA326328	DNA326619	DNA304658	DNA326790	DNA83170	
5						
	KIDNEY					
	DNA287173	DNA 103253	DNA323858	DNA323859	DNA323869	DNA323871
	DNA323872	DNA323927	DNA323947	DNA226619	DNA323964	DNA324042
	DNA324048	DNA324063	DNA324090	DNA324092	DNA324111	DNA324112
10	DNA324193	DNA324210	DNA324218	DNA324294	DNA226547	DNA324338
	DNA324340	DNA324341	DNA324347	DNA324398	DNA324417	DNA324418
	DNA324424	DNA324426	DNA324427	DNA324434	DNA324437	DNA324472
	DNA324521	DNA324525	DNA324561	DNA324595	DNA324604	DNA324613
	DNA83020	DNA324639	DNA324641	DNA324645	DNA324685	DNA324715
15	DNA324716	DNA324717	DNA324720	DNA324722	DNA324727	DNA304680
	DNA324737	DNA324751	DNA304661	DNA324790	DNA 324798	DNA324830
	DNA324844	DNA225631	DNA274326	DNA324922	DNA324926	DNA304710
	DNA324963	DNA324989	DNA324998	DNA325026	DNA325028	DNA325104
	DNA325105	DNA325106	DNA325111	DNA325126	DNA325152	DNA325153
20	DNA325182	DNA325184	DNA325222	DNA325296	DNA325303	DNA325326
	DNA325334	DNA325347	DNA325360	DNA325384	DNA325389	DNA325414
	DNA325446	DNA325475	DNA325523	DNA325535	DNA325601	DNA225632
	DNA325633	DNA325642	DNA325644	DNA270458	DNA325731	DNA325750
	DNA325752	DNA325758	DNA325786	DNA302016	DNA325789	DNA325804
25	DNA325809	DNA325810	DNA325811	DNA325812	DNA281436	DNA325935
	DNA325952	DNA325985	DNA326002	DNA326003	DNA326022	DNA287331
	DNA326041	DNA 326046	DNA326047	DNA326099	DNA326233	DNA326234
	DNA326237	DNA97300	DNA326291	DNA326292	DNA326311	DNA326370
	DNA326397	DNA 326422	DNA326463	DNA326469	DNA326559	DNA326586
30	DNA326603	DNA326633	DNA326634	DNA326692	DNA326769	DNA287270
	DNA326884	DNA326885	DNA326886	DNA326952	DNA326974	DNA327023
	DNA327025	DNA327029	DNA327067	DNA327085	DNA327116	
	LUNG					
35	DNA323717	DNA323718	DNA323719	DNA287173	DNA323740	DNA226262
	DNA323778	DNA323783	DNA274745	DNA323829	DNA323832	DNA323839

	DNA323841	DNA323856	DNA323858	DNA323859	DNA323862	DNA323863
	DNA323864	DNA323865	DNA323866	DNA323867	DNA323871	DNA323872
	DNA323878	DNA323887	DNA323892	DNA227529	DNA323902	DNA290284
	DNA323910	DNA304666	DNA304720	DNA323922	DNA323925	DNA323927
	DNA323936	DNA226793	DNA323944	DNA323945	DNA323947	DNA323954
5	DNA323959	DNA323964	DNA323965	DNA323995	DNA324005	DNA324006
	DNA324020	DNA324021	DNA324033	DNA324036	DNA324039	DNA324040
	DNA324041	DNA324042	DNA324044	DNA324047	DNA324048	DNA324049
	DNA324052	DNA324054	DNA324060	DNA324063	DNA324067	DNA324073
	DNA324090	DNA324091	DNA324092	DNA324094	DNA324101	DNA324105
10	DNA324109	DNA324111	DNA324112	DNA227795	DNA324134	DNA324148
	DNA324155	DNA324170	DNA324182	DNA324203	DNA324204	DNA324207
	DNA324210	DNA324218	DNA324232	DNA324261	DNA324265	DNA324273
	DNA324293	DNA324294	DNA226547	DNA324295	DNA324320	DNA324326
	DNA324338	DNA324339	DNA324340	DNA324341	DNA324358	DNA324365
15	DNA324380	DNA324412	DNA324414	DNA324416	DNA324417	DNA324418
	DNA324434	DNA324436	DNA324437	DNA324444	DNA324453	DNA324454
	DNA324472	DNA324475	DNA324483	DNA324491	DNA290585	DNA324502
	DNA324504	DNA324505	DNA324510	DNA324515	DNA324521	DNA324525
	DNA324541	DNA324549	DNA324552	DNA324557	DNA324558	DNA324561
20	DNA324564	DNA324579	DNA324584	DNA324591	DNA324592	DNA324596
	DNA324597	DNA324598	DNA324599	DNA324600	DNA324604	DNA324613
	DNA324633	DNA324641	DNA324643	DNA324685	DNA324697	DNA324699
	DNA324700	DNA324702	DNA324703	DNA324707	DNA324714	DNA324715
	DNA324716	DNA324717	DNA324720	DNA304680	DNA324736	DNA324737
25	DNA324745	DNA324749	DNA324751	DNA324755	DNA324756	DNA227442
	DNA324771	DNA324784	DNA324785	DNA324790	DNA324796	DNA324797
	DNA324803	DNA290785	DNA324814	DNA324815	DNA324816	DNA324819
	DNA324828	DNA324829	DNA324841	DNA324844	DNA324846	DNA271418
	DNA324870	DNA324873	DNA324874	DNA324875	DNA324884	DNA324885
30	DNA324887	DNA324888	DNA324889	DNA274326	DNA324896	DNA324900
	DNA324904	DNA324906	DNA324907	DNA324908	DNA275334	DNA324925
	DNA324926	DNA273865	DNA103588	DNA324945	DNA324946	DNA324956
	DNA324961	DNA304710	DNA324962	DNA324963	DNA324965	DNA324966
	DNA324967	DNA324968	DNA324982	DNA324983	DNA272090	DNA324989
35	DNA325002	DNA325015	DNA325016	DNA325017	DNA325024	DNA325026
	DNA325027	DNA325029	DNA325033	DNA325034	DNA325039	DNA325055

	DNA325056	DNA325057	DNA325078	DNA325079	DNA325080	DNA325081	
	DNA325100	DNA325104	DNA325105	DNA325106	DNA226496	DNA325116	
	DNA325117	DNA325118	DNA325119	DNA325128	DNA325141	DNA325146	
	DNA325152	DNA325153	DNA325156	DNA325157	DNA226345	DNA325173	
	DNA290319	DNA325182	DNA325183	DNA325184	DNA325190	DNA325196	
5	DNA325209	DNA325214	DNA325217	DNA325222	DNA325233	DNA325235	
	DNA325236	DNA325246	DNA325247	DNA325250	DNA325278	DNA325284	
	DNA325285	DNA325286	DNA325303	DNA325305	DNA325326	DNA325334	
	DNA304459	DNA325343	DNA325344	DNA325347	DNA325353	DNA325358	
	DNA325360	DNA325379	DNA325384	DNA325389	DNA325401	DNA325414	
10	DNA325418	DNA325441	DNA325451	DNA325452	DNA325456	DNA325463	
	DNA325475	DNA325479	DNA325483	DNA325502	DNA325506	DNA325509	
	DNA325510	DNA325516	DNA325522	DNA325523	DNA325527	DNA325534	
	DNA325535	DNA325550	DNA325569	DNA325570	DNA325584	DNA325593	
	DNA325595	DNA151827	DNA325601	DNA225632	DNA 103514	DNA325604	
15	DNA325618	DNA325625	DNA325633	DNA325634	DNA271344	DNA325642	
	DNA325644	DNA325645	DNA325658	DNA325659	DNA325660	DNA325662	
	DNA270458	DNA227092	DNA325674	DNA325680	DNA325686	DNA325695	
	DNA325704	DNA325711	DNA325712	DNA325720	DNA325731	DNA325750	
	DNA325752	DNA325755	DNA325757	DNA325758	DNA325773	DNA325775	
20	DNA325776	DNA325786	DNA302016	DNA325789	DNA325806	DNA325809	
	DNA325810	DNA325811	DNA325812	DNA325814	DNA325818	DNA325822	
	DNA325837	DNA325838	DNA325843	DNA325844	DNA325864	DNA325891	
	DNA325894	DNA325913	DNA325920	DNA269498	DNA325923	DNA325933	
	DNA325935	DNA325945	DNA103509	DNA325952	DNA325953	DNA325957	
25	DNA325958	DNA325965	DNA325985	DNA325988	DNA325994	DNA326002	
	DNA226646	DNA326022	DNA287331	DNA326041	DNA326046	DNA326047	
	DNA326099	DNA326102	DNA326116	DNA326121	DNA326122	DNA326124	
	DNA326128	DNA326129	DNA326133	DNA289522	DNA326136	DNA326146	
	DNA326155	DNA326156	DNA326168	DNA326169	DNA287355	DNA326177	
30	DNA326186	DNA326194	DNA326214	DNA326230	DNA326233	DNA326234	
	DNA326256	DNA326260	DNA97300	DNA326273	DNA326278	DNA326279	
	DNA326287	DNA326288	DNA326289	DNA326291	DNA326292	DNA326296	
	DNA326297	DNA326300	DNA326309	DNA326311	DNA326330	DNA272889	
	DNA270975	DNA326347	DNA270901	DNA326381	DNA326384	DNA326396	
35	DNA326404	DNA129504	DNA326414	DNA326415	DNA326416	DNA326426	
	DNA326427	DNA326429	DNA326430	DNA326432	DNA326433	DNA326440	

WO 2004/030615 PCT/US2003/028547

	DNA326441	DNA326442	DNA326446	DNA326449	DNA326450	DNA326451
	DNA326452	DNA326453	DNA 326454	DNA271841	DNA326457	DNA326459
	DNA326463	DNA326479	DNA326481	DNA326482	DNA326484	DNA326485
	DNA326487	DNA326499	DNA326512	DNA287636	DNA326516	DNA326523
	DNA326559	DNA326562	DNA326573	DNA326579	DNA326581	DNA326582
5	DNA326583	DNA326584	DNA326585	DNA274034	DNA326596	DNA326597
	DNA326603	DNA326615	DNA326625	DNA326626	DNA326633	DNA326634
	DNA326642	DNA326651	DNA326657	DNA326660	DNA326661	DNA274139
	DNA326676	DNA326683	DNA326684	DNA326685	DNA326687	DNA326688
	DNA326690	DNA326691	DNA326692	DNA326698	DNA326702	DNA103580
10	DNA326726	DNA326727	DNA326731	DNA290260	DNA326736	DNA326739
	DNA326741	DNA326742	DNA326756	DNA326758	DNA326761	DNA273346
	DNA254548	DNA326769	DNA326773	DNA287270	DNA326781	DNA326782
	DNA326787	DNA326789	DNA326798	DNA326801	DNA326808	DNA326818
	DNA326819	DNA273517	DNA 194701	DNA103525	DNA326844	DNA326884
15	DNA326885	DNA326886	DNA254572	DNA326901	DNA326902	DNA326921
	DNA326937	DNA269830	DNA326952	DNA326953	DNA326972	DNA326974
	DNA326981	DNA326983	DNA327005	DNA327023	DNA327025	DNA327029
	DNA327033	DNA327054	DNA327060	DNA327067	DNA327068	DNA327077
	DNA327078	DNA327079	DNA327085	DNA327111	DNA227013	
20						
	BREAST					
	DNA323717	DNA273712	DNA226262	DNA323778	DNA323784	DNA323804
	DNA323805	DNA323817	DNA323820	DNA323829	DNA323836	DNA323845
	DNA323858	DNA323859	DNA323862	DNA323863	DNA323867	DNA323868
25	DNA323869	DNA323870	DNA323871	DNA323872	DNA323919	DNA323922
	DNA323936	DNA323943	DNA323944	DNA323947	DNA323953	DNA323964
	DNA323980	DNA323990	DNA323998	DNA324004	DNA324009	DNA324013
	DNA324042	DNA324047	DNA324054	DNA324063	DNA324075	DNA324090
	DNA324091	DNA324092	DNA324101	DNA324103	DNA324110	DNA324111
30	DNA324112	DNA227795	DNA324134	DNA227190	DNA324149	DNA324154
	DNA324159	DNA324170	DNA324178	DNA324189	DNA324192	DNA324193
	DNA324207	DNA324210	DNA324218	DNA324224	DNA324230	DNA324236
	DNA324243	DNA324276	DNA324285	DNA226547	DNA324295	DNA150976
	DNA324320	DNA324338	DNA324340	DNA324341	DNA324346	DNA324347
35	DNA324373	DNA324390	DNA324391	DNA324394	DNA324412	DNA324417
	DNA324418	DNA324423	DNA324434	DNA324437	DNA324438	DNA139747

PCT/US2003/028547

	DNA253804	DNA324471	DNA324472	DNA324478	DNA324479	DNA324483
	DNA324489	DNA324495	DNA324502	DNA324503	DN A324506	DNA324509
	DNA324511	DNA324512	DNA225584	DNA324517	DNA324521	DNA324525
	DNA324549	DNA324550	DNA324551	DNA324554	DNA324561	DNA324564
	DNA324565	DNA324568	DNA324574	DNA324576	DNA324577	DNA324579
5	DNA324591	DNA324592	DNA324595	DNA324596	DNA324597	DNA324599
	DNA324600	DNA324601	DNA324605	DNA324613	DNA324624	DNA103380
	DNA324632	DNA324633	DNA324641	DNA324643	DNA324645	DNA324679
	DNA324682	DNA324684	DNA324685	DNA324690	DNA324712	DNA324714
	DNA324717	DNA324720	DNA324727	DNA304680	DNA324736	DNA324737
10	DNA324746	DNA324749	DNA324751	DNA324755	DNA304661	DNA287227
	DNA324773	DNA324785	DNA324790	DNA324796	DNA324797	DNA324807
	DNA324810	DNA324811	DNA324824	DNA324827	DNA324841	DNA324844
	DNA324858	DNA324866	DNA324874	DNA324878	DNA324879	DNA225631
	DNA324902	DNA324905	DNA324910	DNA324928	DNA324945	DNA304710
15	DNA324963	DNA324966	DNA324967	DNA324968	DNA304801	DNA272090
	DNA324987	DNA324989	DNA325000	DNA325006	DNA325010	DNA325015
	DNA325024	DNA325026	DNA325027	DNA325034	DNA325078	DNA325079
	DNA325080	DNA325081	DNA325099	DNA325101	DNA325103	DNA325104
	DNA325106	DNA325111	DNA325113	DNA325116	DNA325117	DNA325118
20	DNA325119	DNA325120	DNA325121	DNA325123	DNA325127	DNA325141
	DNA325152	DNA325153	DNA325155	DNA325156	DNA325157	DNA325162
	DNA325164	DNA325179	DNA325180	DNA325182	DNA325183	DNA325184
	DNA325190	DNA325200	DNA325202	DNA325206	DNA325209	DNA325222
	DNA325229	DNA325231	DNA325232	DNA325234	DNA325250	DNA325278
25	DNA325291	DNA325292	DNA325295	DNA325301	DNA325326	DNA325339
	DNA325340	DNA325343	DNA325344	DNA325346	DNA325347	DNA325356
	DNA325358	DNA325374	DNA325381	DNA325386	DNA325389	DNA325391
	DNA325395	DNA325428	DNA325430	DNA325431	DNA325436	DNA325437
	DNA97285	DNA325442	DNA325451	DNA325452	DNA75863	DNA325475
30	DNA325483	DNA325523	DNA325525	DNA325528	DNA325535	DNA325549
	DNA325576	DNA325584	DNA325596	DNA325601	DNA225632	DNA325618
	DNA325625	DNA325633	DNA325642	DNA325644	DNA325645	DNA325662
	DNA270458	DNA227092	DNA325674	DNA325680	DNA325696	DNA325697
	DNA325711	DNA325712	DNA325731	DNA325736	DNA325757	DNA325762
35	DNA325765	DNA325783	DNA325786	DNA302016	DNA325789	DNA325804
	DNA325806	DNA325809	DNA325810	DNA325811	DNA325812	DNA325814

PCT/US2003/028547

	DNA325837	DNA325838	DNA325839	DNA325843	DNA325844	DNA325848
	DNA325900	DNA325906	DNA325907	DNA325908	DNA325913	DNA325922
	DNA325930	DNA325933	DNA325935	DNA325966	DNA227559	DNA325985
	DNA325986	DNA227206	DNA325990	DNA325991	DNA219233	DNA325994
	DNA325998	DNA326000	DNA326002	DNA326022	DNA326041	DNA326046
5	DNA326047	DNA326075	DNA326079	DNA326099	DNA326113	DNA326115
	DNA97293	DNA326122	DNA326124	DNA326128	DNA326129	DNA326136
	DNA326156	DNA287355	DNA326187	DNA326233	DNA326234	DNA326251
	DNA326254	DNA326260	DNA97300	DNA326273	DNA326278	DNA326280
	DNA326281	DNA304715	DNA326282	DNA326286	DNA290292	DNA326289
10	DNA326291	DNA326292	DNA66475	DNA326324	DNA326326	DNA326327
	DNA326364	DNA326378	DNA326381	DNA326396	DNA326415	DNA326449
	DNA326450	DNA326451	DNA326452	DNA326453	DNA326454	DNA326457
	DNA326463	DNA326469	DNA326499	DNA287636	DNA326529	DNA326541
	DNA270315	DNA326546	DNA326557	DNA326559	DNA326562	DNA326579
15	DNA326615	DNA326620	DNA227249	DNA326633	DNA326634	DNA326635
*	DNA326651	DNA326657	DNA272347	DNA326669	DNA326686	DNA326687
	DNA326688	DNA326698	DN A326732	DNA290260	DNA326741	DNA326742
	DNA83154	DNA326756	DNA326758	DNA326759	DNA326769	DNA326777
	DNA287270	DNA326792	DNA326796	DNA326798	DNA326799	DNA326816
20	DNA194701	DNA 103525	DNA326841	DNA326862	DNA326863	DNA304670
	DNA326864	DNA326866	DNA326870	DNA326885	DNA326886	DNA326903
	DNA326921	DNA326952	DNA326969	DNA326971	DNA326974	DNA326981
	DNA327016	DNA327023	DNA327025	DNA327029	DNA273992	DNA327060
	DNA327062	DNA273254	DNA327067	DNA327068	DNA327073	DNA327085
25	DNA327087	DNA327090	DNA327092	DNA276159	DNA327127	
	STOMACH					
	DNA287173	DNA323805	DNA323849	DNA323864	DNA323865	DNA323866
	DNA323873	DNA323884	DNA323920	DNA323925	DNA323934	DNA323990
30	DNA324028	DNA324029	DNA324039	DNA324048	DNA324065	DNA227545
	DNA227795	DNA324155	DNA324179	DNA324180	DNA324216	DNA324243
	DNA324244	DNA324294	DNA324362	DNA324364	DNA324398	DNA324417
	DNA324418	DNA324471	DNA324504	DNA324541	DNA324552	DNA324555
	DNA324556	DNA324558	DNA324624	DNA324630	DNA304680	DNA324756
35	DNA324769	DNA324790	DNA324808	DNA324850	DNA225631	DNA324906
	DNA324907	DNA324908	DNA324922	DNA304710	DNA324962	DNA324963

	WO 2004/030	0615			P	CT/US2003/028547
	DNA324972	DNA324973	DNA324982	DNA324997	DNA325033	DNA325074
	DNA325078	DNA325079	DNA325104	DNA325105	DNA325106	DNA325148
	DNA325149	DNA325156	DNA325157	DNA89242	DNA325186	DNA325191
	DNA325192	DNA325202	DNA325224	DNA325233	DNA325235	DNA325236
	DNA325251	DNA325262	DNA325268	DNA325306	DNA325316	DNA325318
5	DNA325320	DNA325368	DNA325418	DNA97285	DNA325441	DNA325442
	DNA325444	DNA325446	DNA325474	DNA325480	DNA325506	DNA325534
	DNA325535	DNA325570	DNA325601	DNA225632	DNA325642	DNA325644
	DNA325645	DNA270458	DNA227092	DNA325773	DNA325775	DNA325776
	DNA325803	DNA325804	DNA274058	DNA325843	DNA325873	DNA325941
10	DNA325986	DNA325993	DNA326019	DNA287331	DNA326043	DNA326133
	DNA326196	DNA326284	DNA326311	DNA326333	DNA326347	DNA326397
	DNA326427	DNA326517	DNA326603	DNA326641	DNA326642	DNA326698
	DNA326750	DNA326791	DNA326846	DNA326859	DNA326862	DNA326863
	DNA304670	DNA326864	DNA326865	DNA326918	DNA326961	DNA326977
15	DNA326983	DNA327040	DNA327042	DNA327055	DNA273254	DNA327099
	DNA327116	DNA327127				
	BONE					
1	DNA323765	DNA323817	DNA323820	DNA323829	DNA323864	DNA323867
20	DNA323869	DNA323871	DNA323914	DNA323947	DNA323964	DNA324004
	DNA324009	DNA324090	DNA324091	DNA324092	DNA324111	DNA324112
	DNA324154	DNA324155	DNA324200	DNA324201	DNA324210	DNA324230
	DNA324293	DNA226547	DNA 324295	DNA324326	DNA324347	DNA324390
	DNA324417	DNA324418	DNA324423	DNA324437	DNA324472	DNA324483
25	DNA324488	DNA324501	DNA324502	DNA324503	DNA324504	DNA324505
	DNA324512	DNA324521	DNA324525	DNA324541	DNA324549	DNA324550
	DNA324551	DNA324554	DNA324555	DNA324556	DNA324557	DNA324558
	DNA324575	DNA324576	DNA324579	DNA324595	DNA324596	DNA324604
	DNA324613	DNA324624	DNA324632	DNA324641	DNA324645	DNA324682
30	DNA324687	DNA324697	DNA324717	DNA324720	DNA324737	DNA324756
	DNA304661	DNA324785	DNA324796	DNA324797	DNA 150772	DNA324828
	DNA324829	DNA324844	DNA324866	DNA324902	DNA324904	DNA324905
	DNA324906	DNA324926	DNA324989	DNA325015	DNA325024	DNA325026
	DNA325027	DNA325034	DNA325111	DNA325116	DNA131588	DNA325156
35	DNA325157	DNA325164	DNA325179	DNA325182	DNA325183	DNA325184
	DNA325202	DNA325206	DNA325222	DNA325229	DNA325231	DNA325232

10

15

WO 2004/030615 PCT/US2003/028547

DNA325234	DNA325236	DNA325250	DNA325301	DNA325303	DNA325326
DNA325339	DNA325340	DNA325347	DNA325358	DNA325395	DNA325430
DNA325437	DNA325451	DNA325452	DNA325523	DNA325558	DNA325570
DNA325576	DNA325601	DNA225632	DNA325633	DNA325731	DNA325733
DNA325736	DNA325762	DNA325786	DNA302016	DNA325789	DNA325806
DNA325810	DNA325811	DNA325812	DNA325843	DNA325844	DNA325906
DNA325908	DNA325913	DNA325922	DNA325935	DNA325985	DNA326002
DNA326041	DNA326046	DNA326099	DNA326233	DNA326234	DNA326251
DNA97300	DNA304715	DNA326286	DNA326289	DNA326381	DNA326457
DNA326580	DNA326633	DNA326634	DNA326635	DNA326651	DNA290260
DNA326796	DNA326884	DNA326886	DNA326974	DNA326977	DNA327005
DNA327025	DNA327060	DNA327062	DNA327067	DNA327114	

EXAMPLE 2: Use of TAT as a hybridization probe

The following method describes use of a nucleotide sequence encoding TAT as a hybridization probe for, i.e., diagnosis of the presence of a tumor in a mammal.

DNA comprising the coding sequence of full-length or mature TAT as disclosed herein can also be employed as a probe to screen for homologous DNAs (such as those encoding naturally-occurring variants of TAT) in human tissue cDNA libraries or human tissue genomic libraries.

WO 2004/030615 PCT/US2003/028547

Hybridization and washing of filters containing either library DNAs is performed under the following high stringency conditions. Hybridization of radiolabeled TAT-derived probe to the filters is performed in a solution of 50% formamide, 5x SSC, 0.1% SDS, 0.1% sodium pyrophosphate, 50 mM sodium phosphate, pH 6.8, 2x Denhardt's solution, and 10% dextran sulfate at 42°C for 20 hours. Washing of the filters is performed in an aqueous solution of 0.1x SSC and 0.1% SDS at 42°C.

DNAs having a desired sequence identity with the DNA encoding full-length native sequence TAT can then be identified using standard techniques known in the art.

EXAMPLE 3: Expression of TAT in E. coli

5

10

15

20

25

30

35

This example illustrates preparation of an unglycosylated form of TAT by recombinant expression in E. coli.

The DNA sequence encoding TAT is initially amplified using selected PCR primers. The primers should contain restriction enzyme sites which correspond to the restriction enzyme sites on the selected expression vector. A variety of expression vectors may be employed. An example of a suitable vector is pBR322 (derived from E. coll; see Bolivar et al., Gene, 2:95 (1977)) which contains genes for amplicillin and tetracycline resistance. The vector is digested with restriction enzyme and dephosphorylated. The PCR amplified sequences are then ligated into the vector. The vector will preferably include sequences which encode for an antibiotic resistance gene, a trp promoter, a polyhis leader (including the first six STII codons, polyhis sequence, and enterokinase cleavage site), the TAT coding region, lambda transcriptional terminator, and an argU gene.

The ligation mixture is then used to transform a selected E. coli strain using the methods described in Sambrook et al., <u>supra</u>. Transformants are identified by their ability to grow on LB plates and antibiotic resistant colonies are then selected. Plasmid DNA can be isolated and confirmed by restriction analysis and DNA sequencing.

Selected clones can be grown overnight in liquid culture medium such as LB broth supplemented with antibiotics. The overnight culture may subsequently be used to inoculate a larger scale culture. The cells are then grown to a desired optical density, during which the expression promoter is turned on.

After culturing the cells for several more hours, the cells can be harvested by centrifugation. The cell pellet obtained by the centrifugation can be solubilized using various agents known in the art, and the solubilized TAT protein can then be purified using a metal chelating column under conditions that allow tight binding of the protein.

TAT may be expressed in *E. coli* in a poly-His tagged form, using the following procedure. The DNA encoding TAT is initially amplified using selected PCR primers. The primers will contain restriction enzyme sites which correspond to the restriction enzyme sites on the selected expression vector, and other useful sequences providing for efficient and reliable translation initiation, rapid purification on a metal chelation column, and proteolytic removal with enterokinase. The PCR-amplified, poly-His tagged sequences are then ligated into an expression vector, which is used to transform an *E. coli* host based on strain 52 (W3110

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

fuhA(tonA) lon galE rpoHts(htpRts) clpP(laclq). Transformants are first grown in LB containing 50 mg/ml carbenicillin at 30°C with shaking until an O.D.600 of 3-5 is reached. Cultures are then diluted 50-100 fold into CRAP media (prepared by mixing 3.57 g (NH₂/sO₄, 0.71 g sodium citrate+2H2O, 1.07 g KCl, 5.36 g Difco yeast extract, 5.36 g Sheffield hycase SF in 500 mL water, as well as 110 mM MPOS, pH 7.3, 0.55% (w/v) glucose and 7 mM MgSO₄) and grown for approximately 20-30 hours at 30°C with shaking. Samples are removed to verify expression by SDS-PAGE analysis, and the bulk culture is centrifuged to pellet the cells. Cell pellets are frozen until purification and refolding.

E. coli paste from 0.5 to 1 L fermentations (6-10 g pellets) is resuspended in 10 volumes (w/v) in 7 M guanidine, 20 mM Tris, pH 8 buffer. Solid sodium sulfite and sodium tetrathionate is added to make final concentrations of 0.1M and 0.02 M, respectively, and the solution is stirred overnight at 4 °C. This step results in a denatured protein with all cysteine residues blocked by sulfitolization. The solution is centrifuged at 40,000 rpm in a Beckman Ultracentifuge for 30 min. The supernatant is diluted with 3-5 volumes of metal chelate column buffer (6 M guanidine, 20 mM Tris, pH 7.4) and filtered through 0.22 micron filters to clarify. The clarified extract is loaded onto a 5 ml Qiagen Ni-NTA metal chelate column equilibrated in the metal chelate column buffer. The column is washed with additional buffer containing 50 mM imidazole (Calbiochem, Utrol grade), pH 7.4. The protein is eluted with buffer containing 250 mM imidazole. Fractions containing the desired protein are pooled and stored at 4°C. Protein concentration is estimated by its absorbance at 280 nm using the calculated extinction coefficient based on its amino acid sequence.

The proteins are refolded by diluting the sample slowly into freshly prepared refolding buffer consisting of: 20 mM Tris, pH 8.6, 0.3 M NaCl, 2.5 M urea, 5 mM cysteine, 20 mM glycine and 1 mM EDTA. Refolding volumes are chosen so that the final protein concentration is between 50 to 100 micrograms/ml. The refolding solution is stirred gently at 4°C for 12-36 hours. The refolding reaction is quenched by the addition of TFA to a final concentration of 0.4% (pH of approximately 3). Before further purification of the protein, the solution is filtered through a 0.22 micron filter and acetonitrile is added to 2-10% final concentration. The refolded protein is chromatographed on a Poros R1/H reversed phase column using a mobile buffer of 0.1% TFA with elution with a gradient of acetonitrile from 10 to 80%. Aliquots of fractions with A280 absorbance are analyzed on SDS polyacrylamide gels and fractions containing homogeneous refolded protein are pooled. Generally, the properly refolded species of most proteins are eluted at the lowest concentrations of acetonitrile since those species are the most compact with their hydrophobic interiors shelded from interaction with the reversed phase resin. Aggregated species are usually eluted at higher acetonitrile concentrations. In addition to resolving misfolded forms of proteins from the desired form, the reversed phase step also removes endotoxin from the samples.

Fractions containing the desired folded TAT polypeptide are pooled and the acetonitrile removed using a gentle stream of nitrogen directed at the solution. Proteins are formulated into 20 mM Hepes, pH 6.8 with 0.14 M sodium chloride and 4% mannitol by dialysis or by gel filtration using G25 Superfine (Pharmacia) resins equilibrated in the formulation buffer and sterile filtered.

Certain of the TAT polypeptides disclosed herein have been successfully expressed and purified using

PCT/IIS2003/028547

this technique(s).

5

10

15

20

25

30

35

EXAMPLE 4: Expression of TAT in mammalian cells

This example illustrates preparation of a potentially glycosylated form of TAT by recombinant expression in mammalian cells.

The vector, pRK5 (see EP 307,247, published March 15, 1989), is employed as the expression vector. Optionally, the TAT DNA is ligated into pRK5 with selected restriction enzymes to allow insertion of the TAT DNA using ligation methods such as described in Sambrook et al., <u>supra</u>. The resulting vector is called pRK5-TAT.

In one embodiment, the selected host cells may be 293 cells. Human 293 cells (ATCC CCL 1573) are grown to confluence in tissue culture plates in medium such as DMEM supplemented with fetal calf serum and optionally, nutrient components and/or antibiotics. About 10 µg pRKS-TAT DNA is mixed with about 1 µg DNA encoding the VA RNA gene [Thimmappaya et al., Cell, 31:543 (1982)] and dissolved in 500 µl of 1 mM Tris-HCl, 0.1 mM EDTA, 0.227 M CaCl₂. To this mixture is added, dropwise, 50Qµl of 50 mM HEPES (pH 7.35), 280 mM NaCl, 1.5 mM NaPO 4, and a precipitate is allowed to form for 10 minutes at 25°C. The precipitate is suspended and added to the 293 cells and allowed to settle for about four hours at 37°C. The culture medium is aspirated off and 2 ml of 20% glycerol in PBS is added for 30 seconds. The 293 cells are then washed with serum free medium, fresh medium is added and the cells are incubated for about 5 days.

Approximately 24 hours after the transfections, the culture medium is removed and replaced with culture medium (alone) or culture medium containing 200 μC/lml ³⁸S-cysteine and 200 μC/lml ³⁸S-methionine. After a 12 hour incubation, the conditioned medium is collected, concentrated on a spin filter, and loaded onto a 15% SDS gel. The processed gel may be dried and exposed to film for a selected period of time to reveal the presence of TAT polypeptide. The cultures containing transfected cells may undergo further incubation (in serum free medium) and the medium is tested in selected bioassays.

In an alternative technique, TAT may be introduced into 293 cells transiently using the dextran sulfate method described by Somparyrae et al., Proc. Natl. Acad. Sci., 12:7575 (1981). 293 cells are grown to maximal density in a spinner flask and 700 µg pRK5-TAT DNA is added. The cells are first concentrated from the spinner flask by centrifugation and washed with PBS. The DNA-dextran precipitate is incubated on the cell pellet for four hours. The cells are treated with 20% glycerol for 90 seconds, washed with tissue culture medium, and re-introduced into the spinner flask containing tissue culture medium, 5 µg/ml bovine insulin and 0.1 µg/ml bovine transferrin. After about four days, the conditioned media is centrifuged and filtered to remove cells and debris. The sample containing expressed TAT can then be concentrated and purified by any selected method, such as dialysis and/or column chromatography.

In another embodiment, TAT can be expressed in CHO cells. The pRK5-TAT can be transfected into CHO cells using known reagents such as CaPO4 or DEAE-dextran. As described above, the cell cultures can be incubated, and the medium replaced with culture medium (alone) or medium containing a radiolabel such as ³⁴S-methionine. After determining the presence of TAT polypeptide, the culture medium may be replaced

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

with serum free medium. Preferably, the cultures are incubated for about 6 days, and then the conditioned medium is harvested. The medium containing the expressed TAT can then be concentrated and purified by any selected method.

Epitope-tagged TAT may also be expressed in host CHO cells. The TAT may be subcloned out of the pRKS vector. The subclone insert can undergo PCR to fuse in frame with a selected epitope tag such as a polyhis tag into a Baculovirus expression vector. The poly-his tagged TAT insert can then be subcloned into a SV40 driven vector containing a selection marker such as DHFR for selection of stable clones. Finally, the CHO cells can be transfected (as described above) with the SV40 driven vector. Labeling may be performed, as described above, to verify expression. The culture medium containing the expressed poly-His tagged TAT can then be concentrated and purified by any selected method, such as by Ni²⁺-chelate affinity chromatography.

TAT may also be expressed in CHO and/or COS cells by a transient expression procedure or in CHO cells by another stable expression procedure.

Stable expression in CHO cells is performed using the following procedure. The proteins are expressed as an IgG construct (immunoadhesin), in which the coding sequences for the soluble forms (e.g. extracellular domains) of the respective proteins are fused to an IgG1 constant region sequence containing the hinge, CH2 and CH2 domains and/or is a poly-His tagged form.

Following PCR amplification, the respective DNAs are subcloned in a CHO expression vector using standard techniques as described in Ausubel et al., Current Protocols of Molecular Biology, Unit 3.16, John Wiley and Sons (1997). CHO expression vectors are constructed to have compatible restriction sites 5' and 3' of the DNA of interest to allow the convenient shuttling of cDNA's. The vector used expression in CHO cells is as described in Lucas et al., Nucl. Acids Res. 24:9 (1774-1779 (1996), and uses the SV40 early promotter/enhancer to drive expression of the cDNA of interest and dihydrofolate reductase (DHFR). DHFR expression permits selection for stable maintenance of the plasmid following transfection.

Twelve micrograms of the desired plasmid DNA is introduced into approximately 10 million CHO cells using commercially available transfection reagents Superfect* (Quiagen), Dosper* or Fugene* (Boehringer Mannheim). The cells are grown as described in Lucas et al., supra. Approximately 3 x 10⁷ cells are frozen in an ampule for further growth and production as described below.

The ampules containing the plasmid DNA are thawed by placement into water bath and mixed by vortexing. The contents are pipetted into a centrifuge tube containing 10 mLs of media and centrifuged at 1000 rpm for 5 minutes. The supernatant is aspirated and the cells are resuspended in 10 mL of selective media (0.2 µm filtered PS20 with 5% 0.2 µm diafiltered fetal bovine serum). The cells are then aliquoted into a 100 mL spinner containing 90 mL of selective media. After 1-2 days, the cells are transferred into a 250 mL spinner filled with 150 mL selective growth medium and incubated at 37°C. After another 2-3 days, 250 mL, 500 mL and 2000 mL spinners are seeded with 3 x 10³ cells/mL. The cell media is exchanged with fresh media by centrifugation and resuspension in production medium. Although any suitable CHO media may be employed, a production medium described in U.S. Patent No. 5,122,469, issued June 16, 1992 may actually be used. A 3L production spinner is seeded at 1.2 x 10⁶ cells/mL. On day 0, the cell number pH ie determined. On day

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

1, the spinner is sampled and sparging with filtered air is commenced. On day 2, the spinner is sampled, the temperature shifted to 33°C, and 30 mL of 500 g/L glucose and 0.6 mL of 10% antifoam (e.g., 35% polydimethylsiloxane emulsion, Dow Corning 365 Medical Grade Emulsion) taken. Throughout the production, the pH is adjusted as necessary to keep it at around 7.2. After 10 days, or until the viability dropped below 70%, the cell culture is harvested by centrifugation and filtering through a 0.22 µm filter. The filtrate was either stored at 4°C or immediately loaded onto columns for purification.

For the poly-His tagged constructs, the proteins are purified using a Ni-NTA column (Qiagen). Before purification, imidazole is added to the conditioned media to a concentration of 5 mM. The conditioned media is pumped onto a 6 ml Ni-NTA column equilibrated in 20 mM Hepes, pH 7.4, buffer containing 0.3 M NaCl and 5 mM imidazole at a flow rate of 4-5 ml/min. at 4°C. After loading, the column is washed with additional equilibration buffer and the protein eluted with equilibration buffer containing 0.25 M imidazole. The highly purified protein is subsequently desalted into a storage buffer containing 10 mM Hepes, 0.14 M NaCl and 4% mannitol, pH 6.8, with a 25 ml G25 Superfine (Pharmacia) column and stored at -80°C.

Immunoadhesin (Fc-containing) constructs are purified from the conditioned media as follows. The conditioned medium is pumped onto a 5 ml Protein A column (Pharmacia) which had been equilibrated in 20 mM Na phosphate buffer, pH 6.8. After loading, the column is washed extensively with equilibration buffer before elution with 100 mM citric acid, pH 3.5. The eluted protein is immediately neutralized by collecting 1 ml fractions into tubes containing 275 µL of 1 M Tris buffer, pH 9. The highly purified protein is subsequently desalted into storage buffer as described above for the poly-His tagged proteins. The homogeneity is assessed by SDS polyacrylamide gels and by N-terminal amino acid sequencing by Edman degradation.

Certain of the TAT polypeptides disclosed herein have been successfully expressed and purified using this technique(s).

EXAMPLE 5: Expression of TAT in Yeast

The following method describes recombinant expression of TAT in yeast.

First, yeast expression vectors are constructed for intracellular production or secretion of TAT from the ADH2/GAPDH promoter. DNA encoding TAT and the promoter is inserted into suitable restriction enzyme sites in the selected plasmid to direct intracellular expression of TAT. For secretion, DNA encoding TAT can be cloned into the selected plasmid, together with DNA encoding the ADH2/GAPDH promoter, a native TAT signal peptide or other mammalian signal peptide, or, for example, a yeast alpha-factor or invertuse secretory signal/leader sequence, and linker sequences (if needed) for expression of TAT.

Yeast cells, such as yeast strain AB110, can then be transformed with the expression plasmids described above and cultured in selected fermentation media. The transformed yeast supernatants can be analyzed by precipitation with 10% trichloroacetic acid and separation by SDS-PAGE, followed by staining of the gels with Coomassie Blue stain.

Recombinant TAT can subsequently be isolated and purified by removing the yeast cells from the fermentation medium by centrifugation and then concentrating the medium using selected cartridge filters. The

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

concentrate containing TAT may further be purified using selected column chromatography resins.

Certain of the TAT polypeptides disclosed herein have been successfully expressed and purified using this technique(s).

EXAMPLE 6: Expression of TAT in Baculovirus-Infected Insect Cells

The following method describes recombinant expression of TAT in Baculovirus-infected insect cells.

The sequence coding for TAT is fused upstream of an epitope tag contained within a baculovirus expression vector. Such epitope tags include poly-his tags and immunoglobulin tags (like Fc regions of IgG). A variety of plasmids may be employed, including plasmids derived from commercially available plasmids such as pVL1393 (Novagen). Briefly, the sequence encoding TAT or the desired portion of the coding sequence of TAT such as the sequence encoding an extracellular domain of a transmembrane protein or the sequence encoding the mature protein if the protein is extracellular is amplified by PCR with primers complementary to the 5' and 3' regions. The 5' primer may incorporate flanking (selected) restriction enzyme sites. The product is then disested with those selected restriction enzymes and subcloned into the expression vector.

Recombinant baculovirus is generated by co-transfecting the above plasmid and BaculoGold TM virus DNA (Pharmingen) into Spodoptera frugiperda ("Sf9") cells (ATCC CRL 1711) using lipofectin (commercially available from GIBCO-BRL). After 4 - 5 days of incubation at 28°C, the released viruses are harvested and used for further amplifications. Viral infection and protein expression are performed as described by O'Reilley et al., <u>Baculovirus expression vectors</u>: A <u>Laboratory Manual</u>, Oxford: Oxford University Press (1994).

Expressed poly-his tagged TAT can then be purified, for example, by Ni ²⁺-chelate affinity chromatography as follows. Extracts are prepared from recombinant virus-infected StP cells as described by Rupert et al., Nature, 362:175-179 (1993). Briefly, StP cells are washed, resuspended in sonication buffer (25 mL Hepes, pH 7.9; 12.5 mM MgCl₂; 0.1 mM EDTA; 10% glycerol; 0.1% NP-40; 0.4 M KCl), and sonicated wrice for 20 seconds on ice. The sonicates are cleared by centrifugation, and the supernatant is diluted 50-fold in loading buffer (50 mM phosphate, 300 mM NaCl, 10% glycerol, pH 7.8) and filtered through a 0.45 μm filter. A Ni²⁺-NTA agarose column (commercially available from Qiagen) is prepared with a bed volume of 5 mL, washed with 25 mL of water and equilibrated with 25 mL of loading buffer. The filtered cell extract is loaded onto the column at 0.5 mL per minute. The column is washed to baseline A₂₈₀ with loading buffer, at which point fraction collection is started. Next, the column is washed with a secondary wash buffer (50 mM phosphate; 300 mM NaCl, 10% glycerol, pH 6.0), which elutes nonspecifically bound protein. After reaching A₂₈₀ baseline again, the column is developed with a 0 to 500 mM Imidazole gradient in the secondary wash buffer. One mL fractions are collected and analyzed by SDS-PAGE and silver staining or Western blot with Ni²⁺-NTA-conjugated to alkaline phosphatase (Qiagen). Fractions containing the eluted His₀-tagged TAT are pooled and dialyzed against loading buffer.

Alternatively, purification of the IgG tagged (or Fc tagged) TAT can be performed using known chromatography techniques, including for instance, Protein A or protein G column chromatography.

Certain of the TAT polypeptides disclosed herein have been successfully expressed and purified using

WO 2004/030615 PCT/US2003/028547

this technique(s).

5

10

15

20

25

30

35

EXAMPLE 7: Preparation of Antibodies that Bind TAT

This example illustrates preparation of monoclonal antibodies which can specifically bind TAT.

Techniques for producing the monoclonal antibodies are known in the art and are described, for instance, in Goding, <u>supra</u>. Immunogens that may be employed include purified TAT, fusion proteins containing TAT, and cells expressing recombinant TAT on the cell surface. Selection of the immunogen can be made by the skilled artisan without undue experimentation.

Mice, such as Balb/c, are immunized with the TAT immunogen emulsified in complete Freund's adjuvant and injected subcutaneously or intraperitoneally in an amount from 1-100 micrograms. Alternatively, the immunogen is emulsified in MPL-TDM adjuvant (Ribi Immunochemical Research, Hamilton, MT) and injected into the animal's hind foot pads. The immunized mice are then boosted 10 to 12 days later with additional immunogen emulsified in the selected adjuvant. Thereafter, for several weeks, the mice may also be boosted with additional immunization injections. Serum samples may be periodically obtained from the mice by retro-orbital bleeding for testing in ELISA assays to detect anti-TAT antibodies.

After a suitable antibody titer has been detected, the animals "positive" for antibodies can be injected with a final intravenous injection of TAT. Three to four days later, the mice are sacrificed and the spleen cells are harvested. The spleen cells are then fused (using 35% polyethylene glycol) to a selected murine myeloma cell line such as P3X63AgU.1, available from ATCC, No. CRL 1597. The fusions generate hybridoma cells which can then be plated in 96 well tissue culture plates containing HAT (hypoxanthine, aminopterin, and thymidine) medium to inhibit proliferation of non-fused cells, myeloma hybrids, and spleen cell hybrids.

The hybridoma cells will be screened in an ELISA for reactivity against TAT. Determination of "positive" hybridoma cells secreting the desired monoclonal antibodies against TAT is within the skill in the art.

The positive hybridoma cells can be injected intraperitoneally into syngencic Balb/c mice to produce ascites containing the anti-TAT monoclonal antibodies. Alternatively, the hybridoma cells can be grown in tissue culture flasks or roller bottles. Purification of the monoclonal antibodies produced in the ascites can be accomplished using ammonium sulfate precipitation, followed by gel exclusion chromatography. Alternatively, affinity chromatography based upon binding of antibody to protein A or protein G can be employed.

EXAMPLE 8: Purification of TAT Polypeptides Using Specific Antibodies

Native or recombinant TAT polypeptides may be purified by a variety of standard techniques in the art of protein purification. For example, pro-TAT polypeptide, mature TAT polypeptide, or pre-TAT polypeptide is purified by immunoaffinity chromatography using antibodies specific for the TAT polypeptide of interest. In general, an immunoaffinity column is constructed by covalently coupling the anti-TAT polypeptide antibody to an activated chromatographic resin.

Polyclonal immunoglobulins are prepared from immune sera either by precipitation with ammonium

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

sulfate or by purification on immobilized Protein A (Pharmacia LKB Biotechnology, Piscataway, N.J.). Likewise, monoclonal antibodies are prepared from mouse ascites fluid by ammonium sulfate precipitation or chromatography on immobilized Protein A. Partially purified immunoglobulin is covalently attached to a chromatographic resin such as CnBr-activated SEPHAROSETM (Pharmacia LKB Biotechnology). The antibody is coupled to the resin, the resin is blocked, and the derivative resin is washed according to the manufacturer's instructions

Such an immunoaffinity column is utilized in the purification of TAT polypeptide by preparing a fraction from cells containing TAT polypeptide in a soluble form. This preparation is derived by solubilization of the whole cell or of a subcellular fraction obtained via differential centrifugation by the addition of detergent or by other methods well known in the art. Alternatively, soluble TAT polypeptide containing a signal sequence may be secreted in useful quantity into the medium in which the cells are grown.

A soluble TAT polypeptide-containing preparation is passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of TAT polypeptide (e.g., high ionic strength buffers in the presence of detergent). Then, the column is eluted under conditions that disrupt antibody/TAT polypeptide binding (e.g., a low pH buffer such as approximately pH 2-3, or a high concentration of a chaotrope such as urea or thiocyanate ion), and TAT polypeptide is collected.

EXAMPLE 9: In Vitro Tumor Cell Killing Assay

Mammalian cells expressing the TAT polypeptide of interest may be obtained using standard expression vector and cloning techniques. Alternatively, many tumor cell lines expressing TAT polypeptides of interest are publicly available, for example, through the ATCC and can be routinely identified using standard ELISA or FACS analysis. Anti-TAT polypeptide monoclonal antibodies (and toxin conjugated derivatives thereof) may then be employed in assays to determine the ability of the antibody to kill TAT polypeptide expressing cells in vitro.

For example, cells expressing the TAT polypeptide of interest are obtained as described above and plated into 96 well dishes. In one analysis, the antibody/toxin conjugate (or naked antibody) is included throughout the cell incubation for a period of 4 days. In a second independent analysis, the cells are incubated for 1 hour with the antibody/toxin conjugate (or naked antibody) and then washed and incubated in the absence of antibody/toxin conjugate for a period of 4 days. Cell viability is then measured using the CellTiter-Gio Luminescent Cell Viability Assay from Promega (Cat# G7571). Untreated cells serve as a negative control.

EXAMPLE 10: In Vivo Tumor Cell Killing Assay

To test the efficacy of conjugated or unconjugated anti-TAT polypeptide monoclonal antibodies, anti-TAT antibody is injected intraperitoneally into nude mice 24 hours prior to receiving tumor promoting cells subcutaneously in the flank. Antibody injections continue twice per week for the remainder of the study. Tumor volume is then measured twice per week.

The foregoing written specification is considered to be sufficient to enable one skilled in the art to

WO 2004/030615 PCT/US2003/028547

practice the invention. The present invention is not to be limited in scope by the construct deposited, since the deposited embodiment is intended as a single illustration of certain aspects of the invention and any constructs that are functionally equivalent are within the scope of this invention. The deposit of material herein does not constitute an admission that the written description herein contained is inadequate to enable the practice of any aspect of the invention, including the best mode thereof, nor is it to be construed as limiting the scope of the claims to the specific illustrations that it represents. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and fall within the scope of the appended claims.

WO 2004/030615 PCT/US2003/028547

WHAT IS CLAIMED IS:

5

10

15

20

25

30

35

- Isolated nucleic acid having a nucleotide sequence that has at least 80% nucleic acid sequence identity to:
- (a) a DNA molecule encoding the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355):
- (b) a DNA molecule encoding the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355). Jacking its associated signal peptide;
- (c) a DNA molecule encoding an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEO ID NOS:1-6355), with its associated signal peptide;
- (d) a DNA molecule encoding an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEO ID NOS:1-6355), lacking its associated signal peptide;
 - (e) the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (f) the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
 - (g) the complement of (a), (b), (c), (d), (e) or (f).
 - Isolated nucleic acid having:
- (a) a nucleotide sequence that encodes the amino acid sequence shown in any one of Figures 1-6355 (SEO ID NOS:1-6355);
- (b) a nucleotide sequence that encodes the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (c) a nucleotide sequence that encodes an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide;
- (d) a nucleotide sequence that encodes an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
 - (e) the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (f) the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
 - (g) the complement of (a), (b), (c), (d), (e) or (f).
 - 3. Isolated nucleic acid that hybridizes to:
- (a) a nucleic acid that encodes the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (b) a nucleic acid that encodes the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (c) a nucleic acid that encodes an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide;
- (d) a nucleic acid that encodes an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

- (e) the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (f) the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
 - (g) the complement of (a), (b), (c), (d), (e) or (f).
 - 4. The nucleic acid of Claim 3, wherein the hybridization occurs under stringent conditions.
 - 5. The nucleic acid of Claim 3 which is at least about 5 nucleotides in length.
 - An expression vector comprising the nucleic acid of Claim 1, 2 or 3.
- The expression vector of Claim 6, wherein said nucleic acid is operably linked to control sequences recognized by a host cell transformed with the vector.
 - A host cell comprising the expression vector of Claim 7.
 - 9. The host cell of Claim 8 which is a CHO cell, an E. coli cell or a yeast cell.
- 10. A process for producing a polypeptide comprising culturing the host cell of Claim 8 under conditions suitable for expression of said polypeptide and recovering said polypeptide from the cell culture.
 - 11. An isolated polypeptide having at least 80% amino acid sequence identity to:
 - (a) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (b) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (c) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide;
- (d) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (e) a polypeptide encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
- (f) a polypeptide encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEO ID NOS:1-6355).
 - An isolated polypeptide having:
 - (a) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (b) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide sequence;
- (c) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide sequence;
 - (d) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEO ID NOS: 1-6355), lacking its associated signal peptide sequence;
- (e) an amino acid sequence encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEO ID NOS:1-6355); or
- (f) an amino acid sequence encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355).

10

15

20

25

35

WO 2004/030615 PCT/US2003/028547

 A chimeric polypeptide comprising the polypeptide of Claim 11 or 12 fused to a heterologous polypeptide.

- 14. The chimeric polypeptide of Claim 13, wherein said heterologous polypeptide is an epitope tag sequence or an Fc region of an immunoglobulin.
- 15. An isolated antibody that binds to a polypeptide having at least 80% amino acid sequence identity to:
 - (a) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
 - (b) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
 - (c) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide;
- (d) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (e) a polypeptide encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
- (f) a polypeptide encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355).
 - 16. An isolated antibody that binds to a polypeptide having:
 - (a) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (b) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide sequence;
- (c) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide sequence;
- (d) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide sequence;
- (e) an amino acid sequence encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEO ID NOS:1-6355); or
 - (f) an amino acid sequence encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355).
 - 17. The antibody of Claim 15 or 16 which is a monoclonal antibody.
- 30 18. The antibody of Claim 15 or 16 which is an antibody fragment.
 - 19. The antibody of Claim 15 or 16 which is a chimeric or a humanized antibody.
 - The antibody of Claim 15 or 16 which is conjugated to a growth inhibitory agent.
 - 21. The antibody of Claim 15 or 16 which is conjugated to a cytotoxic agent.
 - 22. The antibody of Claim 21, wherein the cytotoxic agent is selected from the group consisting of toxins, antibiotics, radioactive isotopes and nucleolytic enzymes.
 - The antibody of Claim 21, wherein the cytotoxic agent is a toxin.

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

24. The antibody of Claim 23, wherein the toxin is selected from the group consisting of mavtansinoid and calicheamicin.

- 25. The antibody of Claim 23, wherein the toxin is a maytansinoid.
- 26. The antibody of Claim 15 or 16 which is produced in bacteria.
- 27. The antibody of Claim 15 or 16 which is produced in CHO cells.
- 28. The antibody of Claim 15 or 16 which induces death of a cell to which it binds.
- 29. The antibody of Claim 15 or 16 which is detectably labeled.
- An isolated nucleic acid having a nucleotide sequence that encodes the antibody of Claim 15 or 16.
- 31. An expression vector comprising the nucleic acid of Claim 30 operably linked to control sequences recognized by a host cell transformed with the vector.
 - A host cell comprising the expression vector of Claim 31.
 - 33. The host cell of Claim 32 which is a CHO cell, an E. coli cell or a yeast cell.
- 34. A process for producing an antibody comprising culturing the host cell of Claim 32 under conditions suitable for expression of said antibody and recovering said antibody from the cell culture.
- 35. An isolated oligopeptide that binds to a polypeptide having at least 80% amino acid sequence identity to:
 - (a) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
 - (b) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (c) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide;
- (d) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (e) a polypeptide encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
- (f) a polypeptide encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEO ID NOS:1-6355).
 - 36. An isolated oligopeptide that binds to a polypeptide having:
 - (a) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (b) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide sequence;
 - (c) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEO ID NOS:1-6355), with its associated signal peptide sequence;
 - (d) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide sequence;
 - (e) an amino acid sequence encoded by the nucleotide sequence shown in any one of Figures 1-6355

5

10

15

20

25

30

35

PCT/US2003/028547

(SEO ID NOS:1-6355); or

(f) an amino acid sequence encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355).

- 37. The oligopentide of Claim 35 or 36 which is conjugated to a growth inhibitory agent.
- 38. The oligopeptide of Claim 35 or 36 which is conjugated to a cytotoxic agent.
- 39. The oligopeptide of Claim 38, wherein the cytotoxic agent is selected from the group consisting of toxins, antibiotics, radioactive isotopes and nucleolytic enzymes.
 - 40. The oligopeptide of Claim 38, wherein the cytotoxic agent is a toxin.
- 41. The oligopeptide of Claim 40, wherein the toxin is selected from the group consisting of maytansinoid and calicheamicin.
 - 42. The oligopeptide of Claim 40, wherein the toxin is a maytansinoid.
 - 43. The oligopeptide of Claim 35 or 36 which induces death of a cell to which it binds.
 - 44. The oligopeptide of Claim 35 or 36 which is detectably labeled.
- 45. A TAT binding organic molecule that binds to a polypeptide having at least 80% amino acid sequence identity to:
 - (a) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (b) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (c) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide;
- (d) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (e) a polypeptide encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
- (f) a polypeptide encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355).
 - 46. The organic molecule of Claim 45 that binds to a polypeptide having:
 - (a) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (b) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide sequence;
- (c) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide sequence;
- (d) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide sequence;
- (e) an amino acid sequence encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEO ID NOS:1-6355); or
 - (f) an amino acid sequence encoded by the full-length coding region of the nucleotide sequence shown

WO 2004/030615 PCT/US2003/028547

in any one of Figures 1-6355 (SEQ ID NOS:1-6355).

- 47. The organic molecule of Claim 45 or 46 which is conjugated to a growth inhibitory agent.
- 48. The organic molecule of Claim 45 or 46 which is conjugated to a cytotoxic agent.
- 49. The organic molecule of Claim 48, wherein the cytotoxic agent is selected from the group consisting of toxins, antibiotics, radioactive isotopes and nucleolytic enzymes.
 - The organic molecule of Claim 48, wherein the cytotoxic agent is a toxin.
- 51. The organic molecule of Claim 50, wherein the toxin is selected from the group consisting of maytansinoid and calicheamicin.
 - The organic molecule of Claim 50, wherein the toxin is a maytansinoid.
 - 53. The organic molecule of Claim 45 or 46 which induces death of a cell to which it binds.
- 10 54. The organic molecule of Claim 45 or 46 which is detectably labeled.
 - 55. A composition of matter comprising:
 - (a) the polypeptide of Claim 11;
 - (b) the polypeptide of Claim 12;
 - (c) the chimeric polypeptide of Claim 13;
- 15 (d) the antibody of Claim 15;

5

20

25

30

35

- (e) the antibody of Claim 16;
- (f) the oligopeptide of Claim 35;
- (g) the oligopeptide of Claim 36;
- (h) the TAT binding organic molecule of Claim 45; or
- the TAT binding organic molecule of Claim 46; in combination with a carrier.
 The composition of matter of Claim 55, wherein said carrier is a pharmaceutically acceptable
- carrier.
 - An article of manufacture comprising:
- (a) a container; and
 - (b) the composition of matter of Claim 55 contained within said container.
 - 58. The article of manufacture of Claim 57 further comprising a label affixed to said container, or a package insert included with said container, referring to the use of said composition of matter for the therapeutic treatment of or the diagnostic detection of a cancer.
- 59. A method of inhibiting the growth of a cell that expresses a protein having at least 80% amino acid sequence identity to:
 - (a) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
 - (b) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
 - (c) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide;
 - (d) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-

WO 2004/030615 PCT/US2003/028547

6355), lacking its associated signal peptide;

5

10

15

20

25

35

- (e) a polypeptide encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
- (f) a polypeptide encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), said method comprising contacting said cell with an antibody, oligopeptide or organic molecule that binds to said protein, the binding of said antibody, oligopeptide or organic molecule to said protein thereby causing an inhibition of growth of said cell.
 - The method of Claim 59, wherein said antibody is a monoclonal antibody.
 - 61. The method of Claim 59, wherein said antibody is an antibody fragment.
 - The method of Claim 59, wherein said antibody is a chimeric or a humanized antibody.
- 63. The method of Claim 59, wherein said antibody, oligopeptide or organic molecule is conjugated to a growth inhibitory agent.
- 64. The method of Claim 59, wherein said antibody, oligopeptide or organic molecule is conjugated to a cytotoxic agent.
- 65. The method of Claim 64, wherein said cytotoxic agent is selected from the group consisting of toxins, antibiotics, radioactive isotopes and nucleolytic enzymes.
 - 66. The method of Claim 64, wherein the cytotoxic agent is a toxin.
 - 67. The method of Claim 66, wherein the toxin is selected from the group consisting of maytansinoid and calicheamicin.
 - 68. The method of Claim 66, wherein the toxin is a maytansinoid.
 - The method of Claim 59, wherein said antibody is produced in bacteria.
 - 70. The method of Claim 59, wherein said antibody is produced in CHO cells.
 - 71. The method of Claim 59, wherein said cell is a cancer cell.
 - 72. The method of Claim 71, wherein said cancer cell is further exposed to radiation treatment or a chemotherapeutic agent.
 - 73. The method of Claim 71, wherein said cancer cell is selected from the group consisting of a breast cancer cell, a colorectal cancer cell, a lung cancer cell, an ovarian cancer cell, a central nervous system cancer cell, a liver cancer cell, a bladder cancer cell, a pancreatic cancer cell, a cervical cancer cell, a melanoma cell and a leukemia cell.
- 74. The method of Claim 71, wherein said protein is more abundantly expressed by said cancer cell as compared to a normal cell of the same tissue origin.
 - 75. The method of Claim 59 which causes the death of said cell.
 - 76. The method of Claim 59, wherein said protein has:
 - (a) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
 - (b) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide sequence;
 - (c) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures

10

15

20

25

30

WO 2004/030615 PCT/US2003/028547

1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide sequence;

- (d) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEO ID NOS: 1-6355), lacking its associated signal peptide sequence;
- (e) an amino acid sequence encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEO ID NOS:1-6355); or
- (f) an amino acid sequence encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355).
- 77. A method of therapeutically treating a mammal having a cancerous tumor comprising cells that express a protein having at least 80% amino acid sequence identity to:
 - (a) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (b) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (c) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide;
- (d) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (e) a polypeptide encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355): or
- (f) a polypeptide encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), said method comprising administering to said mammal a therapeutically effective amount of an antibody, oligopeptide or organic molecule that binds to said protein, thereby effectively treating said mammal.
 - 78. The method of Claim 77, wherein said antibody is a monoclonal antibody.
 - The method of Claim 77, wherein said antibody is an antibody fragment.
 - 80. The method of Claim 77, wherein said antibody is a chimeric or a humanized antibody.
- 81. The method of Claim 77, wherein said antibody, oligopeptide or organic molecule is conjugated to a growth inhibitory agent.
- 82. The method of Claim 77, wherein said antibody, oligopeptide or organic molecule is conjugated to a cytotoxic agent.
- 83. The method of Claim 82, wherein said cytotoxic agent is selected from the group consisting of toxins, antibiotics, radioactive isotopes and nucleolytic enzymes.
 - 84. The method of Claim 82, wherein the cytotoxic agent is a toxin.
 - 85. The method of Claim 84, wherein the toxin is selected from the group consisting of maytansinoid and calicheamicin.
 - 86. The method of Claim 84, wherein the toxin is a maytansinoid.
- 35 87. The method of Claim 77, wherein said antibody is produced in bacteria.
 - 88. The method of Claim 77, wherein said antibody is produced in CHO cells.

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

 The method of Claim 77, wherein said tumor is further exposed to radiation treatment or a chemotherapeutic agent.

- 90. The method of Claim 77, wherein said tumor is a breast tumor, a colorectal tumor, a lung tumor, an ovarian tumor, a central nervous system tumor, a liver tumor, a bladder tumor, a pancreatic tumor, or a cervical tumor.
- 91. The method of Claim 77, wherein said protein is more abundantly expressed by the cancerous cells of said tumor as compared to a normal cell of the same tissue origin.
 - 92. The method of Claim 77, wherein said protein has:
 - (a) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (b) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide sequence;
- (c) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide sequence;
- (d) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide sequence;
- , (e) an amino acid sequence encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
- (f) an amino acid sequence encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355).
- 93. A method of determining the presence of a protein in a sample suspected of containing said protein, wherein said protein has at least 80% amino acid sequence identity to:
 - (a) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (b) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (c) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide:
- (d) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peotide:
- (e) a polypeptide encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
- (f) a polypeptide encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), said method comprising exposing said sample to an antibody, oligopeptide or organic molecule that binds to said protein and determining binding of said antibody, oligopeptide or organic molecule to said protein in said sample, wherein binding of the antibody, oligopeptide or organic molecule to said protein is indicative of the presence of said protein in said sample.
- The method of Claim 93, wherein said sample comprises a cell suspected of expressing said protein.

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

- 95. The method of Claim 94, wherein said cell is a cancer cell.
- 96. The method of Claim 93, wherein said antibody, oligopeptide or organic molecule is detectably labeled.
 - 97. The method of Claim 93, wherein said protein has:
 - (a) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (b) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide sequence;
- (c) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide sequence;
- (d) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide sequence;
- (e) an amino acid sequence encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
- (f) an amino acid sequence encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355).
- 98. A method of diagnosing the presence of a tumor in a mammal, said method comprising determining the level of expression of a gene encoding a protein having at least 80% amino acid sequence identity to:
 - (a) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (b) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS: 1-6355), lacking its associated signal peptide;
- (c) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide;
- (d) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (e) a polypeptide encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
- (f) a polypeptide encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), in a test sample of tissue cells obtained from said mammal and in a control sample of known normal cells of the same tissue origin, wherein a higher level of expression of said protein in the test sample, as compared to the control sample, is indicative of the presence of tumor in the mammal from which the test sample was obtained.
- 99. The method of Claim 98, wherein the step of determining the level of expression of a gene encoding said protein comprises employing an oligonucleotide in an in situ hybridization or RT-PCR analysis.
- 100. The method of Claim 98, wherein the step determining the level of expression of a gene encoding said protein comprises employing an antibody in an immunohistochemistry or Western blot analysis.
 - 101. The method of Claim 98, wherein said protein has:

10

15

20

25

30

WO 2004/030615 PCT/US2003/028547

- (a) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (b) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide sequence;
- (c) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEO ID NOS:1-6355), with its associated signal peptide sequence;
- (d) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEO ID NOS:1-6355), lacking its associated signal peptide sequence;
 - (e) an amino acid sequence encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEO ID NOS:1-6355); or
- (f) an amino acid sequence encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355).
- 102. A method of diagnosing the presence of a tumor in a mammal, said method comprising contacting a test sample of tissue cells obtained from said mammal with an antibody, oligopeptide or organic molecule that binds to a protein having at least 80% amino acid sequence identity to:
 - (a) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (b) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (c) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide;
- (d) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (e) a polypeptide encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
- (f) a polypeptide encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), and detecting the formation of a complex between said antibody, oligopeptide or organic molecule and said protein in the test sample, wherein the formation of a complex is indicative of the presence of a tumor in said mammal.
- 103. The method of Claim 102, wherein said antibody, oligopeptide or organic molecule is detectably labeled.
- 104. The method of Claim 102, wherein said test sample of tissue cells is obtained from an individual suspected of having a cancerous tumor.
 - 105. The method of Claim 102, wherein said protein has:
 - (a) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
 - (b) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide sequence;
- 35 (c) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEO ID NOS:1-6355), with its associated signal peptide sequence;

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

(d) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS: 1-6355), lacking its associated signal peptide sequence;

- (e) an amino acid sequence encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEO ID NOS:1-6355); or
- (f) an amino acid sequence encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355).
- 106. A method for treating or preventing a cell proliferative disorder associated with increased expression or activity of a protein having at least 80% amino acid sequence identity to:
 - (a) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (b) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (c) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide;
- (d) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (e) a polypeptide encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
- (f) a polypeptide encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), said method comprising administering to a subject in need of such treatment an effective amount of an antagonist of said protein, thereby effectively treating or preventing said cell proliferative disorder.
 - 107. The method of Claim 106, wherein said cell proliferative disorder is cancer.
- 108. The method of Claim 106, wherein said antagonist is an anti-TAT polypeptide antibody, TAT binding oligopeptide, TAT binding organic molecule or antisense oligonucleotide.
- 109. A method of binding an antibody, oligopeptide or organic molecule to a cell that expresses a protein having at least 80% amino acid sequence identity to:
 - (a) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (b) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal pertide;
- (c) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide;
- (d) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (e) a polypeptide encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
- (f) a polypeptide encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), said method comprising contacting said cell with an antibody,

10

15

20

25

35

WO 2004/030615 PCT/US2003/028547

oligopeptide or organic molecule that binds to said protein and allowing the binding of the antibody, oligopeptide or organic molecule to said protein to occur, thereby binding said antibody, oligopeptide or organic molecule to said cell.

- 110. The method of Claim 109, wherein said antibody is a monoclonal antibody.
- 111. The method of Claim 109, wherein said antibody is an antibody fragment.
- 112. The method of Claim 109, wherein said antibody is a chimeric or a humanized antibody.
- 113. The method of Claim 109, wherein said antibody, oligopeptide or organic molecule is conjugated to a growth inhibitory agent.
- 114. The method of Claim 109, wherein said antibody, oligopeptide or organic molecule is conjugated to a cytotoxic agent.
- 115. The method of Claim 114, wherein said cytotoxic agent is selected from the group consisting of toxins, antibiotics, radioactive isotopes and nucleolytic enzymes.
 - 116. The method of Claim 114, wherein the cytotoxic agent is a toxin.
- 117. The method of Claim 116, wherein the toxin is selected from the group consisting of maytansinoid and calicheamicin.
 - 118. The method of Claim 116, wherein the toxin is a maytansinoid.
 - 119. The method of Claim 109, wherein said antibody is produced in bacteria.
 - 120. The method of Claim 109, wherein said antibody is produced in CHO cells.
 - 121. The method of Claim 109, wherein said cell is a cancer cell.
- 122. The method of Claim 121, wherein said cancer cell is further exposed to radiation treatment or a chemotherapeutic agent.
 - 123. The method of Claim 121, wherein said cancer cell is selected from the group consisting of a breast cancer cell, a colorectal cancer cell, a lung cancer cell, an ovarian cancer cell, a central nervous system cancer cell, a liver cancer cell, a bladder cancer cell, a pancreatic cancer cell, a cervical cancer cell, a melanoma cell and a leukemia cell.
- 124. The method of Claim 123, wherein said protein is more abundantly expressed by said cancer cell as compared to a normal cell of the same tissue origin.
 - 125. The method of Claim 109 which causes the death of said cell.
 - 126. Use of a nucleic acid as claimed in any of Claims 1 to 5 or 30 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer.
- 30 127. Use of a nucleic acid as claimed in any of Claims 1 to 5 or 30 in the preparation of a medicament for treating a tumor.
 - 128. Use of a nucleic acid as claimed in any of Claims 1 to 5 or 30 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder.
 - 129. Use of an expression vector as claimed in any of Claims 6, 7 or 31 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer.
 - 130. Use of an expression vector as claimed in any of Claims 6, 7 or 31 in the preparation of

. 5

PCT/US2003/028547

medicament for treating a tumor.

- 131. Use of an expression vector as claimed in any of Claims 6, 7 or 31 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder.
- 132. Use of a host cell as claimed in any of Claims 8, 9, 32, or 33 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer.
- 133. Use of a host cell as claimed in any of Claims 8, 9, 32 or 33 in the preparation of a medicament for treating a tumor.
- 134. Use of a host cell as claimed in any of Claims 8, 9, 32 or 33 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder.

10

15

20

25

30

WO 2004/030615 PCT/US2003/028547

135. Use of a polypeptide as claimed in any of Claims 11 to 14 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer.

- 136. Use of a polypeptide as claimed in any of Claims 11 to 14 in the preparation of a medicament for treating a tumor.
- 137. Use of a polypeptide as claimed in any of Claims 11 to 14 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder.
- 138. Use of an antibody as claimed in any of Claims 15 to 29 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer.
- 139. Use of an antibody as claimed in any of Claims 15 to 29 in the preparation of a medicament for treating a tumor.
- 140. Use of an antibody as claimed in any of Claims 15 to 29 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder.
- 141. Use of an oligopeptide as claimed in any of Claims 35 to 44 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer.
- 142. Use of an oligopeptide as claimed in any of Claims 35 to 44 in the preparation of a medicament for treating a tumor.
- 143. Use of an oligopeptide as claimed in any of Claims 35 to 44 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder.
- 144. Use of a TAT binding organic molecule as claimed in any of Claims 45 to 54 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer.
- 145. Use of a TAT binding organic molecule as claimed in any of Claims 45 to 54 in the preparation of a medicament for treating a tumor.
- 146. Use of a TAT binding organic molecule as claimed in any of Claims 45 to 54 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder.
- 147. Use of a composition of matter as claimed in any of Claims 55 or 56 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer.
- 148. Use of a composition of matter as claimed in any of Claims 55 or 56 in the preparation of a medicament for treating a tumor.
- 149. Use of a composition of matter as claimed in any of Claims 55 or 56 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder.
- 150. Use of an article of manufacture as claimed in any of Claims 57 or 58 in the preparation of a medicament for the therapeutic treatment or diagnostic detection of a cancer.
- 151. Use of an article of manufacture as claimed in any of Claims 57 or 58 in the preparation of a medicament for treating a tumor.

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

- 152. Use of an article of manufacture as claimed in any of Claims 57 or 58 in the preparation of a medicament for treatment or prevention of a cell proliferative disorder.
- 153. A method for inhibiting the growth of a cell, wherein the growth of said cell is at least in part dependent upon a growth potentiating effect of a protein having at least 80% amino acid sequence identity to:
 - (a) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (b) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal poptide;
- (c) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide;
- (d) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (e) a polypeptide encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
- (f) a polypeptide encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), said method comprising contacting said protein with an antibody, oligopeptide or organic molecule that binds to said protein, there by inhibiting the growth of said cell.
 - 154. The method of Claim 153, wherein said cell is a cancer cell.
 - 155. The method of Claim 153, wherein said protein is expressed by said cell.
- 156. The method of Claim 153, wherein the binding of said antibody, oligopeptide or organic molecule to said protein antagonizes a cell growth-potentiating activity of said protein.
- 157. The method of Claim 153, wherein the binding of said antibody, oligopeptide or organic molecule to said protein induces the death of said cell.
 - 158. The method of Claim 153, wherein said antibody is a monoclonal antibody.
 - 159. The method of Claim 153, wherein said antibody is an antibody fragment.
 - 160. The method of Claim 153, wherein said antibody is a chimeric or a humanized antibody.
- 161. The method of Claim 153, wherein said antibody, oligopeptide or organic molecule is conjugated to a growth inhibitory agent.
- 162. The method of Claim 153, wherein said antibody, oligopeptide or organic molecule is conjugated to a cytotoxic agent.
- 163. The method of Claim 162, wherein said cytotoxic agent is selected from the group consisting of toxins, antibiotics, radioactive isotopes and nucleolytic enzymes.
 - 164. The method of Claim 162, wherein the cytotoxic agent is a toxin.
 - 165. The method of Claim 164, wherein the toxin is selected from the group consisting of maytansinoid and calicheamicin.
 - 166. The method of Claim 164, wherein the toxin is a maytansinoid.
 - The method of Claim 153, wherein said antibody is produced in bacteria.
 - 168. The method of Claim 153, wherein said antibody is produced in CHO cells.

10

15

20

25

30

35

WO 2004/030615 PCT/US2003/028547

- 169. The method of Claim 153, wherein said protein has:
- (a) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (b) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide sequence;
- (c) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide sequence;
- (d) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEO ID NOS:1-6355), lacking its associated signal peptide sequence;
- (e) an amino acid sequence encoded by the nucleotide sequence shown in any one of Figures 1-6355
 (SEO ID NOS:1-6355); or
- (f) an amino acid sequence encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355).
- 170. A method of therapeutically treating a tumor in a mammal, wherein the growth of said tumor is at least in part dependent upon a growth potentiating effect of a protein having at least 80% amino acid sequence identity to:
 - (a) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (b) the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
- (c) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), with its associated signal peptide;
- (d) an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide;
 - (e) a polypeptide encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355); or
 - (f) a polypeptide encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), said method comprising contacting said protein with an antibody, oligopeptide or organic molecule that binds to said protein, thereby effectively treating said tumor.
 - 171. The method of Claim 170, wherein said protein is expressed by cells of said tumor.
 - 172. The method of Claim 170, wherein the binding of said antibody, oligopeptide or organic molecule to said protein antagonizes a cell growth-potentiating activity of said protein.
 - 173. The method of Claim 170, wherein said antibody is a monoclonal antibody.
 - 174. The method of Claim 170, wherein said antibody is an antibody fragment.
 - 175. The method of Claim 170, wherein said antibody is a chimeric or a humanized antibody.
 - 176. The method of Claim 170, wherein said antibody, oligopeptide or organic molecule is conjugated to a growth inhibitory agent.
 - 177. The method of Claim 170, wherein said antibody, oligopeptide or organic molecule is conjugated to a cytotoxic agent.

5

10

15

PCT/US2003/028547

- 178. The method of Claim 177, wherein said cytotoxic agent is selected from the group consisting of toxins, antibiotics, radioactive isotopes and nucleolytic enzymes.
 - 179. The method of Claim 177, wherein the cytotoxic agent is a toxin.
- 180. The method of Claim 179, wherein the toxin is selected from the group consisting of maytansinoid and calicheamicin.
 - 181. The method of Claim 179, wherein the toxin is a maytansinoid.
 - 182. The method of Claim 170, wherein said antibody is produced in bacteria.
 - 183. The method of Claim 170, wherein said antibody is produced in CHO cells.
 - 184. The method of Claim 170, wherein said protein has:
 - (a) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355);
- (b) the amino acid sequence shown in any one of Figures 1-6355 (SEQ ID NOS:1-6355), lacking its associated signal peptide sequence;
- (c) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEO ID NOS:1-6355), with its associated signal peptide sequence;
- (d) an amino acid sequence of an extracellular domain of the polypeptide shown in any one of Figures 1-6355 (SEO ID NOS:1-6355), lacking its associated signal peptide sequence;
- (e) an amino acid sequence encoded by the nucleotide sequence shown in any one of Figures 1-6355 (SEO ID NOS:1-6355); or
- (f) an amino acid sequence encoded by the full-length coding region of the nucleotide sequence shown in any one of Figures 1-6355 (SEO ID NOS:1-6355).

PCT/US2003/028547

1/6881 FIGURE 1

PCT/IIS2003/028547

2/6881 FIGURE 2

PCT/US2003/028547

3/6881 FIGURE 3

CAAGCTCATGACTCACAATGGCCTATTTAGGCCCATACCCTACGTCACGCAGCCTCCGCAGATGAGCCTACTGC
CTCACCAACCAGCCTCCACAGGCACAGCTCCATCGTTACAATGGCCTTTTAGACCCAGCTCCTGCCTCCCACCTTC
CTCTCCAGGCTCTGAACTTTCTCAGGTCTCCCTCTGTTGTCCAAGGCTGGAGTGTAGTAGTGCTATAGCAGCTGA
CTGCAGCCTCAACCTTCCAGGCTGAAGCATCCTCCCACCTCAACCTCCACGTGGCTGAGACTACAGGTGCTG
CCACTATGCCCAACTAACATTTGGAATTTTCGTATACGTGCTTCAGAGGGGTGACACGGAAACGTGGGACCAT
TCAGTTGCAGGAAAACAAGCTTAACACGCCCACTAATTCTGAATTATGCTCCTACCTCCCGGCAGCCTCCCAGG
CCCAGAACTTTTTCCCAGTCAGCCTCTACAGACCAAGCTCATGACTCACAATG

PCT/US2003/028547

FIGURE 4

GGCGCCCTGTGCCGGCCTTCGAGGGCCGCTCCTTCCTGGCCTTCCCCACTCTCCGCGCCTACCACACGCTGCGC $\tt CTGGCACTGGAATTCCGGGCGCTGGAGCCTCAGGGGCTGCTGCTGTACAATGGCAACGCCCGGGGCAAGGACTTC$ CTGGCATTGGCGCTGCTAGATGGCCGCGTGCAGCTCAGGTTTGACACAGGTTCGGGGCCGGCGGTGCTGACCAGT GCCGTGCCGGTAGAGCCGGGCCAGTGGCACCGCCTGGAGCTGTCCCGGCACTGGCGCCCGGGGCACCCTCTCGGTG GATGGTGAGACCCCTGTTCTGGGCGAGAGTCCCAGTGGCACCGACGGCCTCAACCTGGACACAGACCTCTTTGTG GGCGGCGTACCCGAGGACCAGGCTGCCGTGGCGCTGGAGCGGACCTTCGTGGGCGCCCGGCCTGAGGGGGTGCATC CGTTTGCTGGACGTCAACAACCAGCGCCTGGAGCTTGGCATTGGCCTGGGGGCTGCCACCCGAGGCTCTGGCGTG GGCAAGTGCGGGGACCACCCCTGCCTGCCCAACCCCTGCCATGCGGGGCCCCATGCCAGAACCTGGAGGCTGGA AGGTTCCATTGCCAGTGCCCGCCCGGCCGCGTCGGACCAACCTGTGCCGATGAGAGAGCCCCTGCCAGCCCAAC $\tt CCCTGCCATGGGGCGGCGCCCTGCCGTGTGCTGCCCGAGGGTGGTGCTCAGTGCGAGTGCCCCCTGGGGCGTGAGTGCCCCTGGGGCGTGAGTGCCCCTGGGGCGTGAGTGCCCCTGGGGCGTGAGTGCCCCTGGGGCGTGAGTGCCCCCTGGGGCGTGAGTGCCCCCTGGGGCGTGAGTGCCCCTGGGGCGTGAGTGCTCAGTGCCCCCTGGGGCGTGAGTGCCCCCTGGGGCGTGAGTGCCCCCTGGGGCGTGAGTGCCCCCTGGGGCGTGAGTGCCCCCTGGGGCGTGAGTGCTCAGTGCCCCCTGGGGCGTGAGTGCTCAGTGCCCCCTGGGGCGTGAGTGCTCAGTGCCCCCTGGGGCGTGAGTGCTCAGTGCCCCCTGGGGCGTGAGTGCTCAGTGCCCCCTGGGGCGTGAGTGCTCAGTGCCCCCTGGGGCGTGAGTGCTCAGTGCCCCCCTGGGGCGTGAGTGCTCAGTGCCCCCTGCGCGTGAGTGCTCAGTGCCCCCCTGGGGCGTGAGTGCCCCCCTGGGGCGTGAGTGCTCAGTGCCCCCTGGGGCGTGAGTGCCCCCCTGGGGCGTGAGTGCTCAGTGCTCAGTGCCCCCCTGGGGCGTGAGTGCTCAGTGCCCCCTGGGGCGTGAGTGCTCAGTGCCCCCTGGGGCGTGAGTGCTCA$ GGCACCTTCTGCCAGACAGCCTCGGGGCAGGACGGCTCTGGGCCCTTCCTGGCTGACTTCAACGGCTTCTCCCAC CTGGAGCTGAGAGGCCTGCACACCTTTGCACGGGGACCTGGGGGGAGAAGATGGCGCTGGAGGTCGTGTTCCTGGCA CGGGACCGCCGCCTGGAGTTCCGCTACGACCTGGGCAAGGGGGCAGCGGTCATCAGGAGCAGGGAGCCAGTCACC CTGGGAGCCTGGACCAGGGTCTCACTGGAGCGAAACGGCCGCAAGGGTGCCCTGCGTGTGGGCCGACGGCCCCCGT GTGTTGGGGGAGTCCCCGGTTCCGCACACCGTCCTCAACCTGAAGGAGCCGCTCTACGTAGGGGGCGCTCCCGAC TTCAGCAAGCTGGCCGTGCTGCCGTGTCCTCTGGCTTCGACGGTGCCATCCAGCTGGTCTCCCTCGGAGGC CGCCAGCTGCTGACCCCGGAGCACGTGCTGCGGCAGGTGGACGTCACGTCCTTTGCAGGTCACCCTGCACCCGG GGATTCTCAGGACCGCACTGCGAGAAGGGGCTGGTGGAGAAGTCAGCGGGGGACGTGGATACCTTGGCCTTTGAC GGGCGGACCTTTGTCGAGTACCTCAACGCTGTGACCGAGAGCGAGAGGCACTGCAGAGCAACCACTTTGAACTG AGCCTGCGCACTGAGGCCACGCAGGGGCTGGTGCTCTGGAGTGGCAAGGCCACGGAGCGGCAGACTATGTGGCA CTGGCCATTGTGGACGGCACCTGCAACTGAGCTACAACCTGGGCTCCCAGCCCGTGGTGCTGCGTTCCACCGTG CCCGTCAACACCCAACCGCTGGTTGCGGGTCGTGGCACATAGGGAGCAGAGGGAAGGTTCCCTGCAGGTGGGCAAT GAGGCCCTGTGACCGGCTCCTCCCCGCTGGGCGCCCCACGCAGCTGGACACTGATGGACCCCTGTGGCTTGGGCCC CTGCCGGAGCTGCCCGTGGGCCCAGCACTGCCCAAGGCCTACGGCACAGGCTTTGTGGGCTGCTTGCGGGACGTG GTGGTGGGCCGGCACCCGCTGCACCTGCTGGAGGACGCCGTCACCAAGCCAGAGCTGCGGCCCTGCCCCACCCCA TGAGCTGGCACCAGAGCCCCGCGCCCGCTGTAATTATTTTCTATTTTTGTAAACTTGTTGCTTTTTGATATGATT CCTAGTGCCGAGGGATGGACAGGCGAGGTGGCAGCGTGGAGGGCTCGGCGTGGATGGCAGCCTCAGGACACAC CCCTGCCTCAAGGTGCTGAGCCCCGGCTTGCACTGCGCCTGCCCCACGGTGTCCCCGCCGGGAAGCAGCCCGG CTGCCTCGGCCTCCTGCGCCAATACTGTGACTTCCAAACAATGTTACTGCTGGGCACAGCTCTGCGTTGCTCCCG TGCTGCCTGCGCCAGCCCCAGGCTGCTGAGGAGCAGAGCCAGACCAGGGCCGATCTGGGTGTCCTGACCCTCAG CTGGCCCTGCCCAGCCACCCTGGACATGACCGTATCCCTCTGCCACACCCCAGGCCCTGCGAGGGGCTATCGAGA GGAGCTCACTGTGGGATGGGGTTGACCTCTGCCGCCTGGCTATCTGGGCCTGGCCATGGCTGTTCTTCA TGTGTTGATTTTATTTGACCCCTGGAGTGGTGGGTCTCATCTTTCCCATCTCGCCTGAGAGCGGCTGAGGGCTGC GACCAAGGTCAAGGGGCAGGTGCAGAGGTGGCAGGGATGGCTCCGAAGCCAGAAATGCCTTAAACTGCAACGTCC CGTCCCTTCCCCACCCCATCCCATCCCCACCCCCAGCCCAGCCCAGTCCTCCTAGGAGCAGGACCCGATGAAG CGGCCGCCGCTGCGCTGCCGTGTTACTAACTCTAGTATGTTTCTGTGTCAATCGCTGTGAAATAAAGTCT GAAAACTTT

PCT/IIS2003/028547

5/6881 FIGURE 5

MLNSSLMRITLRNLEEVEFCVEDKPGTHFTPVPPTPPDACRGMLCGFGAVCEPNAEGPGRASCVCKKSPCPSVVA PVCGSDASTYSNECELQRAQCSQQRRIRLLSRGPCGSRDPCSNVTCSFGSTCARSADGLTASCLCPATCRGAPEG TVCGSDGADYPGECQLLRRACARQENVFKKFDGPCDPCOGALPDPSRSCRVNPRTRRPEMLLRPESCPAROAPVC GDDGVTYENDCVMGRSGAARGLLLQKVRSGQCQGRDQCPEPCRFNAVCLSRRGRPRCSCDRVTCDGAYRPVCAQD GRTYDSDCWRQOAECROORAIPSKHOGPCDOAPSPCLGVOCAFGATCAVKNGOAACECLOACSSLYDPVCGSDGV TYGSACELEATACTLGREIQVARKGPCDRCGQCRFGALCEAETGRCVCPSECVALAQPVCGSDGHTYPSECMLHV HACTHOISLHVASAGPCETCGDAVCAFGAVCSAGQCVCPRCEHPPPGPVCGSDGVTYGSACELREAACLOOTOIE EARAGPCEQAECGSGGSGSGEDGDCEQELCRQRGGIWDEDSEDGPCVCDFSCQSVPGSPVCGSDGVTYSTECELK KARCESQRGLYVAAQGACRGPTFAPLPPVAPLHCAQTPYGCCQDNITAARGVGLAGCPSACQCNPHGSYGGTCDP ATGQCSCRPGVGGLRCDRCEPGFWNFRGIVTDGRSGCTPCSCDPQGAVRDDCEQMTGLCSCKPGVAGPKCGQCPD GRALGPAGCEADASAPATCAEMRCEFGARCVEESGSAHCVCPMLTCPEANATKVCGSDGVTYGNECOLKTIACRO GLOISIOSLGPCQEAVAPSTHPTSASVTVTTPGLLLSOALPAPPGALPLAPSSTAHSQTTPPPSSRPRTTASVPR TTVWPVLTVPPTAPSPAPSLVASAFGESGSTDGSSDEELSGDOEASGGGSGGLEPLEGSSVATPGPPVERASCYN ${\tt SALGCCSDGKTPSLDAEGSNCPATKVFOGVLELEGVEGQELFYTPEMADPKSELFGETARSIESTLDDLFRNSDVERSELFGETARSIESTLDTARSIESTLDTARSIESTLDDLFRNSDVERSELFGETARSIESTLD$ KKDFRSVRLRDLGPGKSVRAIVDVHFDPTTAFRAPDVARALLROIOVSRRRSLGVRRPLQEHVRFMDFDWFPAFI TGATSGAIAAGATARATTASRLPSSAVTPRAPHPSHTSQPVAKTTAAPTTRRPPTTAPSRVPGRRPPAPQQPPKP CDSQPCFHGGTCQDWALGGGFTCSCPAGRGGAVCEKVLGAPVPAFEGRSFLAFPTLRAYHTLRLALEFRALEPOG LLLYNGNARGKDFLALALLDGRVQLRFDTGSGPAVLTSAVPVEPGQWHRLELSRHWRRGTLSVDGETPVLGESPS GTDGLNLDTDLFVGGVPEDQAAVALERTFVGAGLRGCIRLLDVNNQRLELGIGPGAATRGSGVGKCGDHPCLPNP $\tt CHGGAPCQNLEAGRFHCQCPPGRVGPTCADEKSPCQPNPCHGAAPCRVLPEGGAQCECPLGREGTFCQTASGQDG$ SGPFLADFNGFSHLELRGLHTFARDLGEKMALEVVFLARGPSGLLLYNGOKTDGKGDFVSLALRDRRLEFRYDLG KGAAVIRSREPVTLGAWTRVSLERNGRKGALRVGDGPRVLGESPVPHTVLNLKEPLYVGGAPDFSKLARAAAVSS GFDGAIQLVSLGGRQLLTPEHVLRQVDVTSFAGHPCTRASGHPCLNGASCVPREAAYVCLCPGGFSGPHCEKGLV EKSAGDVDTLAFDGRTFVEYLNAVTESEKALQSNHFELSLRTEATQGLVLWSGKATERADYVALAIVDGHLQLSY NLGSQPVVLRSTVPVNTNRWLRVVAHREQREGSLQVGNEAPVTGSSPLGATOLDTDGALWLGGLPELPVGPALPK AYGTGFVGCLRDVVVGRHPLHLLEDAVTKPELRPCPTP

PCT/IIS2003/028547

FIGURE 6

ACAGAGACCCCGAGTTCTACAAGTTCCTGCAGGAGAATGACCAGAGCCTGCTAAACTTCAGCGACTCGGACAGCT CTGAGGAGGAGGAGGGGCCGTTCCACTCCCTGCCAGATGTGCTGGAGGAAGCCAGTGAGGAGGAGGATGGAGCGG AGGAAGGAGAAGATGGGGACAGAGTCCCCAGAGGGGCTGAAGGGGAAGAAGAATTCTGTTCCTGTGACCGTCGCCA TGGTTGAGAGATGGAAGCAGCAAAGCAACGCCTCACTCCAAAGCTGTTCCATGAAGTGGTACAGGCGTTCC GAGCAGCTGTGGCCACCACCGAGGGGACCAGGAAAGTGCTGAGGCCAACAAATTCCAGGTCACGGACAGTGCTG CATTCAATGCTCTGGTTACCTTCTGCATCAGAGACCTCATTGGCTGTCTCCAGAAGCTGCTGTTTGGAAAGGTGG CAAAGGATAGCAGCAGGATGCTGCAGCCGTCCAGCAGCCCGCTCTGGGGGAAGCTTCGTGTGGACATCAAGGCTT ACCTGGGCTCGGCCATACAGCTGGTGTCCTGTCTGTCGGAGACGACGGTGTTGGCGGCCGTGCTGCGGCACATCA GCGTGCTGGTGCCCTGCTTCCTGACCTTCCCCAAGCAGTGCCGCATGCTGCTCAAGAAATGGTGATCGTATGGA GCACTGGGGAAGAGTCTCTGCGGGTGCTGGCTTTCCTGGTCCTCAGCAGAGTCTGCCGGCACAAGAAGGACACTT TCCTTGGCCCGTCCTCAAGCAAATGTACATCACGTATGTGAGGAACTGCAAGTTCACCTCGCCTGGTGCCCTCC ${\tt CCTTCATCAGCTGCAGTGGACCTTGACGGAGCTGCTGGCCCTGGAGCCGGGTGTGGCCTACCAGCACGCCT}$ TCCTCTACATCCGCCAGCTCGCCATACACCTGCGCAACGCCATGACCACTCGCCAAGAAGGAAACATACCAGTCTG TGTACAACTGGCAGTATGTGCACTGCCTCTTCCTGTGGTGCCGGGTCCTGAGCACTGCGGGCCCCAGCGAAGCCC TCCAGCCCTTGGTCTACCCCCTTGCCCAAGTCATCATTGGCTGTATCAAGCTCATCCCCACTGCCCGCTTCTACC CGCTGCGAATGCACTGCATCCGTGCCCTGACGCTGCTCTCGGGGGAGCTCGGGGGGCCTTCATCCCGGTGCTGCCTT TCATCCTGGAGATGTTCCAGCAGGTCGACTTCAACAGGAAGCCCAGGGGGGGCGCATGAGCTCCAACCTTCT CCGTGATCCTGAAGCTGTCCAATGTCAACCTGCAGGAGAAGGCGTACCGGGACGGCCTGGTGGAGCAGCTGTACG ACCTCACCCTGGAGTACCTGCACAGCCAGGCACACTGCATCGGCTTCCCGGAGCTGGTGCTGCCTGTGGTCCTGC AGCTGAAGTCGTTCCTCCGGGAGTGCAAGGTGGCCAACTACTGCCGGCAGGTGCAGCAGCTGCTTGGGAAGGTTC CCTGGGAGAAGCTGACCCGGGAAGAGGGGACACCCCTGACCTTGTACTACAGCCACTGGCGCAAGCTGCGTGACC TGGCTGACAGGAAGGATGAGGACAGGAAGCAATTTAAAGACCTCTTTGACCTGAACAGCTCTGAAGAGGACGACA CCGAGGGATTCTCGGAGAGAGGGGATACTGAGGCCCCTGAGCACTCGGCATGGGGTGGAAGACGATGAAGAGGACG AGGAGGAGGCGAGGAGGACAGCAACTCGGAGGATGGAGACCCAGACGCAGAGGCGGGGCTGGCCCCTGGGG AGCTGCAGCAGCTGGCCCAGGGGCCGGAGGACGAGCTGGAGGATCTGCAGCTCTCAGAGGACGACTGAGGCAGCC ${\tt CATCTGGGGGGCCTGTAGGGGCTGCCGGGCTGGTGGCCAGTGTTTCCACCTCCCTGGCAGTCAGGCCTAGAGGCT}$ CGTATCGAGAGCTGGGCTGGGCTGGTGTGGCTGCTGAAGCCCCACAGCTGTGGGCTGCTGAAGTCAGCTC CGCGGGGGAGCTGACCCTGACGTCAGCAGACCGAGACCAGTCCCAGTTCCAGGGGGAGGCCTGCAGGCCCCTGGC $\verb| CCCTTCCACCACCTCTGCCCTCCGTCTGCAGACCTCGTCCATCTGCACCAGGCTCTGCCTTCACTCCCCCAAGTC| \\$ TTTGAAAATTTGTTCCTTTGAAGTCACATTTTCTTTTAAAATTTTTTTGTTTTGCATCCGAAACCGAAACC AATAAAGCGGTGGGAGGCAGGGCCATTGTGTTG

PCT/IIS2003/028547

7/6881 FIGURE 7

MAAAGSRKRRLAELTVDEFLASGFDSESESESENSPQAETREAREAARSPDKPGGSPSASRRKGRASEHKDQLSR LKDRDPEFYKFLQENDQSLLNFSDSDSSEEEEOFHSLPDVLEEASEEEDGAEEGEOGDKYPRGLKGKKNSVEVY VAMVERMKQAAKQKLTEKLFHEVVQAFRAAVATTREGDGSAEANKFQVTDSAAFNALVTECIBLIGCLQKLLEG KVAKDSSRMLQPSSSPLWGKLRVDIKAYLGSAIQLVSCLSETTVLAAVLRHISVLVPCFLTFPKQCRMLLKRMVI VWSTGEESLRVLAFLVLSRVCRHKKDTFLGPULKQMYITYVRNCKFTSFGALPFISFMQWTLIELLALEPGOVYAHAELYFTAREATYSTYNDGVHCHFLWGRVLSTAGFSEALQPLYPLADQVITGLTKLTEALEPGOVYAHAELYFTAGAETGSFALQPLYPLADQVITGLTKLTPTAFFYPLRMHCIRALTLLSGSSGAFIPVLPFILEMFQQVDFNRKPGRMSSKPINFSVILKLSNVNLQEKAYRDGLVEQLYDLTLEYLHSQAACIGFPELVLEVVLQLKSFLRECKVANYCRQVQQLLGKVQENSAYICSRQRVSFGSSEGULYDLTLEYLHSQAACIGFPELVLFVVLQLKSFLRECKVANYCRQVQQLLGKVQENSAYICSRQRVSFGSSEGULDDLNFSEFIKRRKMADRKDEDRKGFKDLSSEEDDDTEGFSERGILRPLSTRHGVEDDEEGEEGEDSNSEDGDPDAEAGLAPGELQQLAQGPEDELEDLQLSEDD

PCT/IIS2003/028547

FIGURE 8

GTGTACGAAAGAGAAACCCGGAGGGCCCGGGGACTGGGCCCGGGGTCTGCAGGGCTCAGCTGAGCCCATGAGCTC CCAGAGCTAACCCCTGAACACCCAGGCGGGCAAAGGGCTGATGTCGGTAGTCCCCATCCTGGAGGGGCAGGCTCT CCATGGAGAACACGGCCCAGCTGCCCGAGTGCTGTGTGGATGTGGTGGGCGTCAACGCCAGCTGCCCAGGCGCAA CCCTCCCAGCCTACAACGGCTCCGAGTGTAGAAGCTTTGCTGGCCCGGGTGCGCCATTCCCCATGAACAGAAGCT CAGGGACCCCGGGCGCCACATCCTGGGGCTCCGCGCGTGGCCGCCTCCTCTTCCTGGGCACGTTCTTCATTA GCTCCGGCCTCATCCTCTCGTAGCTGGGTTCTTCTACCTCAAGCGCCTCCAGTAAACTCCCCAGGGCCTGCTACA GAAGAAACAAAGCTCCGGCCCTGCAGCCTGGCGAAGCCGCTGCAATGATCCCCCCGCCACAGTCCTCAGTACGGA AGCCGCGCTACGTCAGGCGGGAGCGGCCCCTGGACAGGGCCACGGATCCCGCTGCCTTCCCGGGGGAGGCCCGTA GGGAACCAGCACAAAGTGTTGGCATCGCCCGGCGCCCGGGACAGTCCTGGGCACAGCCTCGGCTCTGGGTCCCTC CGCCTCCCAGCGACGGCCCAAAGGGTCCCGGGCCGCCTGAGGCTCCTCCCCACCACAGCCATCTCGTTTATCG GACCAGG AGCAGGCATCCATGAGACCTCAGAGCTTCAGATCGAGGCCTTGGGGGGTCCGGGCCCCCCAGGAAAC ACGGTGAGGCCCCAGCGCCTGCAGCCAAAGCTGGCACGATCTATGGGGCAGGTGCCGCTCTGCCTAGAAAAGCCA GGGGCTCTGCCGTGCCCTCCAGAGCCCACAGCGGGCAGGACTCCTCCAGCACCACCACCACCAGTGGCCCGA GACCCCTCTGAGAACAGTGAGGCTGGTCCTCGTGCCGTTCCAGCCGGTGCCCGGCCAGTGGGGAGGACACAGCCT AGGAACCAGCTGCCTGAGACCAGGGTGCCTCTGGGCTGTCCTCCGCGTGGCGGAGACCCCAAGCACGCAGCCAC CCATTTCCGGAGCTGCAGGATAGAGCTTCCTCTTGATCTCTGTTTTTAAGCAGAAATTCATTGTGCTGAAAAGTC CTCCAGAGCTCTGTGGCCCCGCTCGGATCCGCTGGACCCCCATGCCTGGCTGATCCCTGCCCACGTGGGGCAGGC CCACATCTAACCCCCACAAGTCACTGCCTCACTGCCACCGCCAAGGCTGCCCTGGCGCTGAGTCCTGGGGTCCCT CCCGGAGTTCCTGGGAGAAAGGCGCCGTCGTGGCCGCCTCCCGCACGCCAGGCCCGGGCTCCACCGTGGGTCTCA GACGCCCTGCGGCACCGGCACCGTCTTAGCATGGGACCCCCATCTGAGGGGTGGCCTTCGGGGTCC

PCT/US2003/028547

FIGURE 9

MALRHLALLAGLLVGVASKSMENTAQLPECCVDVVGVNASCPGASLCGPGCYRRWNADGSASCVRCGNGTLPAYN GSECRSFAGPGABPPBWRSSGTPGRBHEGAPRVAASLFLGTFFISSGLILSVAGFFYLKRSSKLPRACYRRNKAP ALDPGEAAAMIPPPGSSVRKPRYVRRERPLDRATPPAAFPGEARISN

PCT/IIS2003/028547

FIGURE 10

TCCCGGCGGCGGTAGCGGCGGCGGCGGTGCGAGCATGTCGTCGCTCTTCGGCATTAACAAGGGCCCCAAGGGTGA AGGCGCGGGCCGCCGCCTTTGCCGCCCGCGCAGCCCGGGGCCGAGGCCGGGGACCGCGGCTTGGGAGA GCTGGAGCACTCGCGTTATGCCAAGGACGCCCTGAATCTGGCACAGATGCAGGAGCAGACGCTGCAGTTGGAGCA GAGGAGGAAGACCCTGAGCGAGGAGACCCGGCAGCACCAGGCCCAGGACCAAGACCAAGCTGGCCCGGCA GCGCTACGAGGACCAACTGAAGCAGCAGCAGCACTTCTCAATGAGGAGAATTTTACGGAAGCAGGAGGAGCTCCGTGCA G AAGCAGGAAGCCATGCGGCGAGCCACCGTGGAGCGGGAGATGGAGCTGCGGCACAAGAATGAGATGCTGCGAGT GGAGGCCGAGGCCCGGCGCGCCCAAGGCCGAGCGGGAGAATGCAGACATCATCCGCGAGCAGATCCGCCTGAA GGCGGCCGAGCACCGTCAGACCGTCTTGGAGTCCATCAGGACGGCTGGCACCTTGTTTGGGGAAGGATTCCGTGC CAAGAATGCCACGCTTGTCGCCGCCGCTTCATCGAGGCTCGGCTGGGGAAGCCGTCCCTAGTGAGGGAGACGTC CCGCATCACGGTGCTTGAGGCGCTGCGGCACCCCATCCAGGTCAGCCGGCGCTCCTCAGTCGACCCCAGGACGC GCTGGAGGGTGTTGTGCTCAGTCCCAGCCTGGAAGCACGGGTGCGCGACATCGCCATAGCAACAAGGAACACCAA GAAGAACCGCAGCCTGTACAGGAACATCCTGATGTACGGGCCACCAGGCACCGGGAAGACGCTGTTTGCCAAGAA ACTCGCCCTGCACTCAGGCATGGACTACGCCATCATGACAGGCGGGGACGTGGCCCCCATGGGGCGGGAAGGCGT GACCGCCATGCACAAGCTCTTTGACTGGGCCAATACCAGCCGGCGCGCCTCCTGCTCTTTGTGGATGAAGCGGA CGCCTTCCTTCGGAAGCGAGCCACCGAGAAGATAAGCGAGGACCTCAGGGCCACACTGAACGCCTTCCTGTACCG TGACCGCATCAATGAGATGGTCCACTTCGACCTGCCAGGGCAGGAGGAACGGGAGCGCCTGGTGAGAATGTATTT TGACAAGTATGTTCTTAAGCCGGCCACAGAAGGAAAGCAGCGCCTGAAGCTGGCCCAGTTTGACTACGGGAGGAA GTGCTCGGAGGTCGCTCGGCTGACGGAGGCATGTCGGGCCGGGAGATCGCTCAGCTGGCCGTGTCCTGGCAGGC CACGGCGTATGCCTCCGAGGACGGGGTCCTGACCGAGGCCATGATGGACACCCGCGTGCAAGATGCTGTCCAGCA GCACCAGCAGAAGATGTGCTGGCTGAAGGCGGAAGGGCCTGGGCGTGGGGACGAGCCTTCCCCATCCTGAGTCCA CAGGGAGATCCACAGCTCACGGAGCCTGGCCGCGGACCCCTCCCACCCCTGCCTTGCCGGCCCTGCACATTTAG GATATGCTCCTGGGTGGGGACTGGGCTGTGCCCAGGGCCTCTGTCCCCAGGATGTCTTGTGGTGCGGGTCGGCC ACTCTTGGGAGATGCATTTTCCGTCTGGCTCACAGGGGGAGGGTGAGGCTTTGCACCCCAGCCCCTGCCCAGGCC ACAGCAGAGCCAGGTGAGGGGGCGCCTGCCAGGGCCAGACCCAGGTGGGGCAGCCTGAACCCTGCTTCCCCCTGT GGCCGGCATGCCCGATCTTTCACACTCGTGACCCTGAGAGAGGAGGAGGAGGAGGAACCTGGCGGGGGTGTCT GAGGCCGCACTGTCAGCTGGCCGGTCCAAGCCTGTGGCTGGAGCTGGGGTCTGTTTACCTAATAAAGTCCCACAG GTGCCTCATT

PCT/US2003/028547

FIGURE 11

MSWLFGINKGPKGEGAGPPPPLPPAQPGAEGGGDRGLGDRPAPKDKWSNFDPTGLERAAKAARELEHSRYAKDAL NLAQMGEQTLQLEQOSKLKEYEAAVEQLKSEQIRAQAEERKKTLSEETROHQARAQYQDKLARQRYEDQLKQQQL LNEENLRKQEESVQKQEAMRRATVEREMELRHKNEMLRVEAEARARAKAAERENAD I IREQIRLKAAEHRQVVLES IRTAGTLFGEGFRAFVTDWDKVTATVAGLTLLAVGVYSAKMATLVAGRFIEARLGKPSLVRETSRITVLEALRHPIQVSRRLLSRPQDALEGVVLSPSLEARVRDIAIATRNTKKNRSLYRNILMYGPPGTGKTLFAKKLALHSGMDYAI MTGGDVAPMGREGVTAMHKLFDWANTSRRGLLLFVDEADAFLRKRATEKISEDLRATLNAFLYRTGQHSNKFMLVLASNQPEQFDWAINDRINEMVHFDLPGGERERLVRMYFDKYVLKPATEGKQRLKLAQFDYGRKCSEVARLTEGM SGREIAQLAVSWQATAYASEDGVLTEAMMDTRVQDAVQQHQQKMCVMLKAEGFGRGDEPSPS

PCT/US2003/028547

FIGURE 12

PCT/US2003/028547

13/6881 FIGURE 13

MAPAAASPPEVIRAAQKDEYYRGGLRSAAGGALHSLAGARKWLEWRKEVELLSDVAYFGLTTLAGYQTLGEEYVS
IIQVDPSRIHVPSSLRRGVLVTLHAVLPYLLDKALLPLEQELQADPDSGRPLQGSLGPGGRGCSGARRWMRHHTA
TLTEQQRRALLRAVFVLRQGLACLQRLHVAWFYIHGVFYHLAKRLTGITYLRVRSLPGEDLRARVSYRLLGVISL
LHLVLSMGLQLYGFRQRQRARKEWRLHRGLSHRRASLEERAVSRNPLCTLCLEERRHPTATPCGHLFCWECITAW
CSSKAECFLCREKFPPOKLIYLRHYR

PCT/HS2003/028547

FIGURE 14

GGGCGGCGAGTGGGGAGCGGGGCCGGGAGTGGAGCAGCCGCCGCGGGGGGACTGGACCGAGCCTCGCCGGCGCGC GTGTGGGCGCGTCAGGCCGCGACGAGGGCGCTGAGACAAATTTACATGTATTGGAGACCAGACCAGAAGCCCTTC GATCACAAACAACATCGACCCAGTGGGAAGAATCCAAATGCGCACGAGGAGGACACTGCGGGGGCACCTGGCCAA GATCTACGCCATGCACTGGGGCACAGACTCCAGGCTTCTCGTCAGTGCCTCGCAGGATGGTAAACTTATCATCTG GGACAGCTACACCACCAACAAGGTCCACGCCATCCCTCTGCGCTCCTCGGGTCATGACCTGTGCATATGCCCC TTCTGGGAACTATGTGGCCTGCGGTGGCCTGGATAACATTTGCTCCATTTACAATCTGAAAACTCGTGAGGGGAA CGTGCGCGTGAGTCGTGAGCTGGCAGGACACACAGGTTACCTGTCCTGCTGCCGATTCCTGGATGACAATCAGAT CGTCACCAGCTCTGGAGACACCACGTGTGCCCTGTGGGACATCGAGACCGGCCAGCAGACGACCACGTTTACCGG ACACACTGGAGATGTCATGAGCCTTTCTCTTGCTCCTGACACCAGACTGTTCGTCTCTGGTGCTTGTGATGCTTC AGCCAAACTCTGGGATGTGCGAGAAGGCATGTGCCGGCAGACCTTCACTGGCCACGAGTCTGACATCAATGCCAT TTGCTTCTTTCCAAATGGCAATGCATTTGCCACTGGCTCAGACGACGCCACCTGCAGGCTGTTTGACCTTCGTGC TGACCAGGAGCTCATGACTTACTCCCATGACAACATCATCTGCGGGATCACCTCTGTCTCCTTCTCCAAGAGCGG GCGCCTCCTCCTTGCTGGGTACGACGACTTCAACTGCAACGTCTGGGATGCACTCAAAGCCGACCGGGCAGGTGT GGATAGCTTCCTCAAGATCTGGAACTAACGCCAGTAGCATGTGGATGCCATGGAGACTGGAAGACCATTCCAACT TGGACGCGTTACCATGAGAGCATATCCTATCCAACCGTACTAACGTGGACACCCTACACCTCCCCTCAGAACTTC AAAAGGGCAAGATCTTTTTTCCTTCACTTATTGCTGAAACCAAGAGCACAATTCCCATTGAGAGAAAGATCTCTG CACCAGTGTATTTGAATTTTAGACCAGTGACCCTGTTTTGTGGCATTCATGCAAAACATGCTGAGGGCTTTGTTC ATCTGGTCATCGTGTCCAAATTTCAGTCATGTTTGTAGCAAGATTTTGGAAGCATTCATATTTCCTTTTTAAAAT GTATTCCTTTGTGTTCAACAGTTAATCAAAACCAGAGAGTCTAGGGCAGCCTCTCTGATGTTGTCAATGATGTAA ATTCAGTCCCTGGTTTTTAATTTTCTGTCTGATGTCACAGATCATTGTTGCACACAAACGTGGCATAGAAAAGAA CATGTTCAGAAGCCATGGGGCCAAGCACATGCGGGGACGGTCTCAAATGCGTGATCAGAGAATCCTTCACCTTTG CTGAAAAGTGAGCTCAGATCCAGCACCATGTTCCTCCTGACCCATCCTGTCTATCTTCTCAGTTGAGTTTTTAAT AAATCAATGTTTTGAAAATAATGATCTCAGACTTTCTAAGTTAAATTTTTAAAAATTTTGATTGTTTGCCATATTG GGTGGGTTTACTCTTAGAATCGCATGCTGTAGAAATGCTCAAAAGTGCATATGGGACTCAGTCCTTAGGTGTTCT TTTTCTTTTAAGAAATAACCTCTTACAGTTGTAACCATTGCGGCTCTGTCCACTTCTCGTTGCTGCTCTGTGGCA CATATCGGAAGCAGTACAGCGCGCGCTCTACACGCTTGGGTAGCGGGATAAGTCACTGTTTTCTTTATTTCTTT GGAGTGAAGAGCCTGCCCTCCTATATGGATTCTTCAGGGCCCTCCACATCTGAGGTGGCTCATTCCCATCACACA GCCCCGCCCCCCGCACTCCTTCATAGCAGCAGTAGTGGCTTCTCCATCCTGTTTTCTGCAACATTCTATACAAAA CAACAACTCTGTAGAGCTCTCTGCACCCTTACCCCTTTCCACCTTTTGTATTTAAATTTTAAAGTCAGTGTACTGC AAGGAAGCTGGATGCAAGATAGATACTATATTAAACTGTACTGTTATTTAAGATGTAATAAAGCAGTTTGACATG

PCT/HS2003/028547

15/6881 FIGURE 15

PCT/US2003/028547

16/6881 FIGURE 16

MGKTEEKGNGKGAFQERKGPLGAVRKEAGAGAQDAGAAEGAAVKKMTFSEHPYNNLRKRFGALLSDQGFDLMNKF LTYFPGRRISAEDDLKHEYFRETPLPIDPSMFPTWPAKSEQQRVKRGTSPRPPEGGLGYSQLGDDDLKETGFHLT TTNOGASAAGFGFSLKF

PCT/US2003/028547

17/6881 FIGURE 17

PCT/US2003/028547

FIGURE 18

MESSPLRVAVVCSSNQNRSMEAHNILSKRGFSVRSFGTGTHVKLPGFAPDKFNYYDFKTTYDQMYNDLLRKDKEL YTQNGILHMLDRNKRIKPRERFRPOKKDLFDLILTCEBRVYDQVVEDLNSREQETCQPVHVVNVDIQDNHEEATL GAFLICELCQCIQHTEDMENEIDELLGFEKESGRFFLHTVCFY

PCT/HS2003/028547

FIGURE 19

CCTGGCCACCGGCTCGCGCGCGTGGAGGCTGCTCCCAGCCGCCGAGTCAGACTCGGGTGGGGGTCCCGGC GCGGTAGCGGCGGCGGCGGTGCGAGCATGTCGTGGCTCTTCGGCGTTAACAAGGGCCCCAAGGGTGAAGGCGCGG CGCCCAAGGACAAATGGAGCAACTTCGACCCCACCGGCCTGGAGCGCGCCCCAAGGCGGCGCGCGAGCTGGAGC ACTCGCGTTACGCCAAGGAGGCCCTGAATCTGGCGCAGATGCAGGAGCAGACGCTGCAGTTGGAGCAACACTCCA AGACCCT GAGCGAGGAGACCCGGCAGCACCAGGCCCAGTATCAAGACAAGCTGGCCCGGCAGCGCTACG AGGACCAACTGAAGCAGCAGCAACTTCTCAATGAGGAGAATTTACGGAAGCAGGAGGAGTCCGTGCAGAAGCAGG AAGCCATGCGGCGAGCCACCGTGGAGCGGGAGATGGAGCTGCGGCACAAGAATGAGATGCTGCGAGTGGAGACCG AGGCCCGGGCGCGCCAAGGCCGAGCGGGAGAATGCAGACATCATCCGCGAGCAGATCCGCCTGAAGGCGTCCG AGCACCGTCAGACCGTCTTGGAGTCCATCAGGACGGCTGGCACCTTGTTTGGGGAAGGATTCCGTGCCTTTGTGA CGACAGCCGTCACTGGCCGCTTCATCGAGGCTCGGCTGGGGAAGCCGTCCCTAGTGAGGGAGACGTCCCGCATCA CGGTGCTGGAGGCGCTGCGGCACCCCATCCAGGTCAGCCGGCGGCTCCTCAGTCGACCCCAGGACGTGCTGGAGG GTGTTGTGCTTAGTCCCAGCCTGGAAGCACGGGTGCGCGACATCGCCATAGCAACCAGGAACACCAAGAAGAACC TGCACTCAGGCATGGACTACGCCATCATGACAGGCGGGGACGTGGCCCCCATGGGGCGGGAAGGCGTGACCGCCA TTCGGAAGCGAGCCACTGAGGAGATAAGCAAGGACCTCAGAGCCACACTGAACGCCTTCCTGTACCACATGGGCC AACACAGCAACAAATTCATGCTGGTCCTGGCCAGCAATCTGCCTGAGCAGTTCGACTGTGCCATCAACAGCCGCA GTGTTCTTAAGCCGGCCACAGAAGGAAAACGGCGCCTGAAGCTGGCCCAGTTTGACTACGGGAGGAACTGCTCGG AGGTCGCTCGGCTGACGGAGGCCATGTCGGGCCGGGAGATCGCTCAGCTGGCCGTGTCCTGGCAGGCCACGGCAT ATGCCTCCAAGGACGGGGTCCTCACTGAGGCCATGATGGACGCCTGTGTGCAAGATGCTGTCCAGCAGTACCGAC AGAAGATGCGCTGGAAGGCGGAGGGGCCTGGGCGCGGGGTCGAGCACCCCCTATCCGGAGTCCAAGGCGAGA CCCTCACCTCATGGAGCCTGGCCACGGACCCCTCCTACCCCTGCCTTGCCGGCCCCTGCACATTTAGGATATGCT GAGATGCATTTTCCGTCTGGCTCACAGGGGGAGGGTGAGGCTTTGTACCCCAGCCCCTGCCCAGGCCACTGTGAG GGTGGTGCTGGCTGAGCCCCTGGGGCAGAAGGAGTGGGGCAGGCGGGGTCTTTGTTCTCGGCTCCCACAGCAGA GCCAGGTGAGGGGGGCCTGCCAGGACTAGACAGAAGTGGGGCGGC

PCT/US2003/028547

20/6881 FIGURE 20

ATGAGGCTGCAGAGTGATGTGGGGGCCAGCGGTGACTTCATGACCACACTGCGCCCAGGTGTAAGAGGGCACGCT TCTGCCCAGGCATCGTCCATGGAAGACACGCAGTCGGCCACTGCAGCCTCGGTCCTGGGTCCCTGGGCCTGGGT CACTGGGGGCCACAGGCCACACTGAGAGACCACAGTCCTGGCATGCCATGCAGCTCCCTGTCCCCAGAGGCCATG TCAAAGGACGCCCTGAATCTGGCGCAGATGCAGGAGCAGACGCTGCAGTTGGAGCAACAGTCCAAGCTCAAACAA CTTGTCAATGAGGATTTACGGAAGCAGGAGGAGTCCGTGCAGAAGCACCATCAGACCTTCTTGGAGTCCATCAGG GCGGCTGGCACCTTGTTTGGGGAAGGATTCCGTGCCTTTGTGACAGACCGGGACAAAGTGACAGCCACGCTGCT GGGCTGACGCTGCTGGCTGTCGGGGTCTACTCAGCCAAGAATGCGACAGCCGTCACTGGCCGCTACATCGAGGCT CGGCTGGGGAAGCCGTCCCTAGTGAGGGAGACGTCCCGCATCACGGTGCTTGAGGCGCTGCGGCACCCCATCCAG CAGGTCAGCCGGCGCTCCTCAGTCGACCCCAGGACGTGCTGGAGGGTGTTGTGCTTAGTCCCAGCCTGGAAGCA CGGGTGCGCGACATCGCCATAATGACAAGGAACATCAAGAAGAACCGGGGCCTGTACAGGCACATCCTGCTGTAC GGGCCACCAGGCACCGGGAAGACGCTGTTTGCCAAGAAACTCGCCCTGCACTCAGGCATGGACTACGCCATCATG ACAGGCGGGACGTGGCCCCATGGGGCGGGAAGGCGTGACCCCCATGCACAAGCTCTTTGACTGGGCCAATACC GAGGACCTCAGGGCCACACTGAACGCCTTCCTGTACCGCACGGGCCAGCACCAACAAATTCATGCTGATCCTG GCCAGCTGCCACCCGAGCAGTTCGACTGGGCCATCAATGCCTGCATCGACGTGATGGTCCACTTCGACCTGCCA GGGCAGGAGCGGCGCCCTGGGATTGGAGGGAGAGGCTCCTCATGAGACCCCCATGTCGGGACTAGAGGGA GGTGTGGGGCGCGCTCTTGCTTCCTGCACATGTGCCTTGAGGCTGTCAGGCTCCCTGTTGCTGGCGGGCCC CGGTTTCTGAGTCCTTCTGTGCACCTGACCCAAATCCCTGCTGTCGCCAGTGACGACAAAGCTGCTCTGTTCCA AAGAGAGCCTGGTTCTCCCCTGCCGACCCCTCCACTGCCGCCTGCTCCATGCTAGACCAGCTTTCCGGGCGTCTG AAGCTGGCCCAGTTTGACTACGGGAGGAAGTGCTTAGAGATCGCTCGGCTGACAGAGGGCATGTCATGCCGGAAG ATCGCACAGCTGGCCGTGTCCTGGCAGGCCACGGCGTATGCCTCCAAGGACGGGGTCCTGACCGAGGCCATGATG GAGGACGAGCAACCCTCATCCTGA

PCT/HS2003/028547

21/6881 FIGURE 21

MRLQSDVGASGDFMTTLRPGVRGHASAQASSMEDTQSATAASVLGALGIGHWGPQATLRDHSPGMPCSSLSPEAM SKDALNLAQMGEGTLQLEQQSKLKQLVMEDLRKQEESVQKHHGTFLESIRAAGTLFGGGFRAFVTDROKVTATV. GLTLLLAVGVYSAKNATAVTGRYIEARLGKPSLVRETSRITVLEALRHPIQQVSRRLLSRPQDVLEGVVLSPSLEA RVRDIAIMTRNIKKNRGLYRHILLYGPFGTGKTLFAKKLALHSGMDYALMTGGDVAPMGREGVTAMHKLFDWANT SRRGLLLFVDEADAFLRKRATEKISEDLRATLNAFLYKTGGHSNKFMLILASCHPEQFDMAINACIDVMVHFDLP GQEFRARLGLEGEAPHETPMSGLEGEAPHGPLLASGLASLQLPHPALEPRGVGRGSCFLHMCLEAVRLPVAGGP RFLSFSVHLTQIFAVASDDKSCSVPKRAWFSPADPSTAACSMLDQLSGRLKLAQFDVGRKCLEIARLTEGMSCRK IAQLAVSWQATAYASKDGVLTEAMMDACVQDFVQQHQQMMRWLKGERPGPEDEQPSS

PCT/US2003/028547

22/6881 FIGURE 22

PCT/US2003/028547

23/6881 FIGURE 23

MLLGRLTSQLLRAVPWAGGRPPWPVSGVLGSRVCGPLYSTSPAGPGRAASLPRKGAQLELEEMLVPRKMSVSPLE SWLTARCFLPRLDTGTAGTVAPPQSYQCPPSQTGEGABQGDEGVADAPQIQCKNVLKIRRRKMNHHKYRKLVKKT RFLRRKVQEGKLRRKQIKFEKDLRRIWLKAGLKEAPEGWQTPKIYLKGK

PCT/HS2003/028547

FIGURE 24

CGCGCGGGCTCCGCCGCCGCCGCCGCC<u>ATC</u>CCGGAGACCAAGATTATCTACCACATGGACGAGGAGGAGACGCC GTACCTGGTCAAGCTGCCCGTGGCCCCGAGCGCGTCACGCTGGCCGACTTCAAGAACGTGCTCAGCAACCGGCC CGTGCACGCCTACAAATTCTTCTTTAAGTCCATGGACCAGGACTTCGGGGTGGTGAAGGAGGAGATCTTTGATGA GGGGTCCCAGGGCACGGACAGCCACACAGACCTGCCCCGCCTCTTGAGCGGACAGGCGGCATCGGGGACTCCCG GCCCCCTCCTTCCACCCAAATGTGGCCAGCAGCCGTGACGGGATGGACAACGAGACAGGCACGGAGTCCATGGT CAGTCACCGGCGGGAGCGTGCCCGACGCCGGAACCGCGAGGAGGCCGCCCGGACCAATGGGCACCCAAGGGGAGA CCGACGGCGGGATGTGGGGCTGCCCCCAGACAGCGCGTCCACCGCCCTCAGCAGCGAGCTTGAGTCCAGCAGCTT TGTGGACTCGGACGAGGATGGCAGCACGAGCAGGCTCAGCAGCTCCACGGAGCAGAGCACCTCATCCAGACTCAT CCGGAAGCACAAACGCCGGCGGAGGAAGCAGCGCCTTCGGCAGGCGGACCGGGCCTCCTTCATCAGCAGCATAAC CGACTCCACCATGTCCCTCAACATCGTCACTGTCACGCTCAACATGGAAAGACATCACTTTCTGGGCATCAGCAT CGTGGGGCAGAGCAACGACCGTGGAGACGGCGGCATCTACATTGGCTCCATCATGAAGGGCGGGGCTGTGGCCGC TGACGGCCGCATCGAGCCCGGCGACATGTTGCTGCAGGTGAATGACGTGAACTTTGAGAACATGAGCAATGACGA TGCCGTGCGGGTGCTGCGGGAGATCGTTTCCCAGACGGGGCCCATCAGCCTCACTGTGGCCAAGTGCTGGGACCC AACGCCCCGAAGCTACTTCACCGTCCCACGGGCTGACCCGGTGCGGCCCATCGACCCCGCCGCCTGGCTGTCCCA CACGGCGGCACTGACAGGAGCCCTGCCCCGCTACGAGCTGGAAGAGCGCCGCTGACGGTGAAGAGTGACATGAG CGCCGTCGTCCGGGTCATGCAGCTGCCAGACTCGGGACTGGAGATCCGCGACCGCATGTGGCTCAAGATCACCAT GGCCCGGAAGTACGCCAGCAGCTTGCTGAAGCACGGCTTCCTGCGGCACACGGTCAACAAGATCACCTTCTCCGA GCAGTGCTACTACGTCTTCGGGGATCTCTGCAGCAATCTCGCCACCCTGAACCTCAACAGTGGCTCCAGTGGGAC ${\tt TTCGGATCAGGACACGCTGGCCCCGCTGCCCCACCCGGCTGCCCCTGGCCTCTGGGTCAGGGCTACCCCTACCA}$ GTACCCGGGACCCCCACCCTGCTTCCCGCCTGCCTACCAGGACCCGGGCTTTAGCTATGGCAGCGGCAGCACCGG GAGTCAGCAGAGTGAAGGGAGCAAAAGCAGTGGGTCCACCCGGAGCAGCCGCCGGGCCCCGGGCCGTGAGAAGGA GCGTCGGGCGGCGGGGGGCTGGGGGAGTGGCAGTGAATCGGATCACACGGCACCGAGTGGGGTGGGGAGCAGCTG GCGAGAGCGTCCGGCCGGCCAGCTCAGCCGTGGCAGCAGCCCACGCAGTCAGGCCTCGGCTACCGCCCCGGGGCT CCCCCGCCCCACCCCACGACCAAGGCCTATACAGTGGTGGGGGGGCCACCCGGGGGACCCCCTGTCCGGGAGCT GGCTGCCGTCCCCCGGAATTGACAGGCAGCCGCCAGTCCTTCCAGAAGGCTATGGGGAACCCCTGCGAGTTCTT GCCCTGGCAGCCTGGCTGCTCCAGCTCCTGACAGCACCTGTGTCTGAGCAGCCGTGTTGGGGGGCGCTCCCTCTCT GCCCTCAGCGAGAGCCTCGGACCTCCCAACCCCTTGTGTCTGGTGGGGATCCCTCCTGGGATGAGGAAGACCCC $\tt CTCGGGCTCTCGGCTGACCCCCACCTCCTGCACAGCTGTGCCCAGGCCCCCAGGGTGGTCCATGCGGGGCAACCC$ AGGAGGCGACCCTGTCATCTGTCCCACCTGCTGCTGCCCCTTGGAGCAGCCTGCACCTTCTCTCCCCATCCGG CAACAGTCTGAAAGTACGTGGAGGACGGGACCGGAAGACGAGAGGGGCTGGACATCCTGCCCACCGTGTCCCAG TGGGGAGATGGGCAGTCAGGTGGCCCGTCCTTGGTGAGTGCACACACTGCGCGCACACATCGCGGCCTTCCTGGC TTCTCTGGCCCCCACGTGTCTGTGCTGTAGATACTGTATCAAAGTCCCAGCGTTTAGATGGTTAACATAGAGCTG CTTCTGTGTAAATGCTGCTTATTTTAAACACTAAAAAGCGTTTAATTTTATGGG

PCT/HS2003/028547

25/6881 FIGURE 25

MAETKIIYHMDEEETPYLVKLPVAPERVTLADFKNVLSNRPVHAYKFFFKSMDQDFGVVKEEIFDDNAKLPCFNG
RVVSWLVLAEGAHSDAGSQGTDSHTDLPPPLERTGGIGDSRPPSFHPNVASSRDGMDNETGTESMVSHRRERARR
RNREEAARTNGHPRGDRRDVGLPPDSASTALSSELESSSFVDSDEDGSTSRLSSSTEQSTSSRLIRKHKRRRKK
QRLRQADRASSFSSITDSTMSLNIVTVILMMERHHFLGISIVGQSNDRGDGGIYIGSIMKGGAVAADGGTEPGDM
LLQVNDVNFENMSNDDAVRVLREIVSQTGPISLTVAKCWDPTPRSYFTVPRADPVRPIDPAAWLSHTAALIGALP
RYELEEAPLTVKSDMSAVVRVMQLPDSGLEIRDRWMLKITIANAVIGADVVDWLYTHVEGFKERREARKYASSLL
KHGFLRHTVNKITFSEQCYYVFGDLCSNLATLNLNSGSSGTSDQDTLAPLPHPAAPWPLCQGYPVQPPPCFP
PAYQDPGFSYGSGSTGSQSSEGSKSSGSTRSSRRAPGREKERRAAGAGGSGSESDHTAPSGVGSSWRERPAGQLS
RGSSPRSQASATAPGLPPPHPTTKAYTVVGGPPGGPPVRELAAVPPELIGSRQSFQKAMGNPCEFFVDIM

PCT/US2003/028547

26/6881 FIGURE 26

GCACCGCCCCGCCGCAAGAAGATGGCAGTGGCCTGATCCGGGCCCGTTGGCGGCGTCACTGACGCTTCGCTC CGGTCCTCGGATCCCGAGCGGGGGGGGCAGACCGACTGTGAGCTGCTTGTCCCCATCCTGCGGCCGTCCTGGGG ACACAGAGCCCTCCGTGGTGCCCGGGGATTGGATTGGAGCCAGGACCTCACTTCCTCCTCTGCCCCTGCCCTGC CCCTCCAGCACCTGGCCCACACCCTGCAGCCCGCCCCATGGTCTGGCCCTGGGTGGCGATGGCGTCCAGGTGGG GTCCCTCATTGGCCTGGCTCCGTGCTCCCTTGGCTCCTTGGGGGGCAGTCCTTCTGATGGACGCGTCTGCACGGC CTGCCAACCACTCGTCCACTCGAGAGAGAGAGTAGCCAACAGGGAGGAGGAGAATGAGATCCTGCCCCCAGACCACCTGA ACGGGGTGAAGCTGGAGATGGACGGGCACCTCAATCGCGGCTTCCACCAGGAGGTCTTCCTAGGCAAGGACCTGG GTGGCTTTGATGAGGACGCGGAGCCGCGGAGCCGGAGCAGCTGATGGTCATCTTTTCCAAGGTGGATGTGA ACACTGACCGGAAGATCAGTGCCAAGGAGATGCAGCGCTGGATCATGGAGAAGACGGCCGAGCACTTCCAGGAGG CCATGGAGGAGAGCAAGACACACTTCCGCGCCGTGGACCCTGACGGGGACGGTCACGTGTCTTGGGACGAGTATA AGGTGAAGTTTTTGGCGAGTAAAGGCCATAGCGAGAAGGAGGTTGCCGACGCCATCAGGCTCAACGAGGAACTCA A GTGGA CGAGGAAACACAGGAAGTCCTGGAGAACCTGAAGGACCGCTGGTACCAGGCGGACAGCCCCCTGCAG ACCTGCTGCTGACGGAGGAGGAGTTCCTGTCGTTCCTCCACCCCGAGCACAGCCGGGGAATGCTCAGGTTCATGG TGAAGGAGATCGTCCGGGACCTGGACCAGGACGGTGACAAGCAGCTCTCTGTGCCCGAGTTCATCTCCCTGCCCG TGGGCACCGTGGAGAACCAGCAGGGCCAGGACATTGACGACAACTGGGTGAAAGACAGAAAAAAAGGAGTTTGAGG AGCTCATTGACTCCAACCACGACGGCATCGTGACCGCCGAGGAGCTGGAGAGCTACATGGACCCCATGAACGAGT ACAACGCGCTGAACGAGGCCAAGCAGATGATCGCCGTCGCCGACGAGAACCAGAACCACCACCTGGAGCCCGAGG $AGGTGCTCAAGTACAGCGAGTTCTTCACGGGCAGCAAGCTGGTGGACTACGCGCGCAGCGTGCACGAGGAGTTT{\bf T}$ GTGTCCCCTCTGCAGCGCGCACCCCGGCGGGGCTTTGGCTGTGACGCGGTCGGGGCGGGGGCTGGGCTGGGCC CCGCGGCGCCCCCCCCCGGTCCCTCGAAATCGTGGCATCTCACTTCTGAGAACGAAATCTCGCTTCAGTCA CTCTGCCGAAGGCGCTGACGGCATCGCGGCCCGGAACCTCTGGGCCCGGCCCCTCCCAGGGCCGCCCCTCCGTGGG AAAAAACAGCTCCTCCATTTCCTTGAAAACTGAACGATTATTAAAAATAGATTAAACTTCGCTGGAAATGAGTAG CCAGGAAGTTCAGGGGAGGGTGCCGGGTCCTTCCCGGGCCTGGCGTGTCGGAGCCACCCAGGTCCCGCAGCTGCC GCTTCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

PCT/US2003/028547

FIGURE 27

MVWPWVAMASRWGPLIGLAPCCLWLLGAVLLMDASARPANHSSTRERVANREENEILPPDHLNGVKLEMDGHLNR
GFHQEVFLGKDLGGFDEDAEPRRSRRKLMVIFSKVDVHTDRKISAKEMQRWIMBKTAEHFQEAMEESKTHERAVD
PDGDGHVSWDEYKVKFLASKGHSEKEVADAIRLNEELKVDEETQEVLENLKDRWYQADSPPADLLLTEEEFLSFL
HPEHSRGMLRFMYKEIVRDLDQDGDKQLSVPEFISLPVGTVENQQGQDIDDNWVKDRKKEFEELIDSNHDGIVTA
EELESYMDPMNEYNALNEAKQMIAVADENQNHHLEPEEVLKYSEFFTGSKLVDYARSVHEEF

PCT/US2003/028547

FIGURE 28

PCT/IIS2003/028547

FIGURE 29

PCT/US2003/028547

FIGURE 30

 $\verb|MpkrkaegdakgkakvkdepqrrsarlsakpappkpepkpkktpakkaekvpkgkkgkadvdthghlgtkalwCgktnlflcpllpfhlsa|$

PCT/HS2003/028547

31/6881 FIGURE 31

TAGCTAGGCAGGAAGTCGGCGCGGGCGCGCGCGGACAGTATCTGTGGGTACCCGGAGCACGGGATCTTCGCCGGT TTACGTTCACCTCGGTGTCTGCAGCACCCTCCGCTTCCTCTCGTAGGCGACGAGACCCAGTGGCTAGAAGTTCAC CATGTCTATTCTCAAGATCCATGCCAGGGAGATCTTTGACTCTCGCGGGGAATCCCACTGTTGAGGTTGATCTCTT CACCTCAAAAGGTCTCTTCAGAGCTGCTGTGCCCAGTGGTGCTTCAACTGGTATCTATGAGGCCCTAGAGCTCCG GGACAATGATAAGACTCGCTATATGGGGAAGGGTGTCTCAAAGGCTGTTGAGCACATCAATAAAACTATTGCGCC AGAAAATAAATCTAAGTTTGGTGCGAACGCCATTCTGGGGGTGTCCCTTGCCGTCTGCAAAGCTGGTGCCGTTGA CAATGTCATCAATGGCGGTTCTCATGCTGGCAACAAGCTGGCCATGCAGGAGTTCATGATCCTCCCAGTCGGTGC AGCAAACTTCAGGGAAGCCATGCGCATTGGAGCAGAGGTTTACCACAACCTGAAGAATGTCATCAAGGAGAAATA TGGGAAAGATGCCACCAATGTGGGGGATGAAGGCGGGTTTGCTCCCAACATCCTGGAGAATAAAGAAGGCCTGGA GCTGCTGAAGACTGCTATTGGGAAAGCTGGCTACACTGATAAGGTGGTCATCGGCATGGACGTAGCGGCCTCCGA GTTCTTCAGGTCTGGGAAGTATGACCTGGACTTCAAGTCTCCCGATGACCCCAGCAGGTACATCTCGCCTGACCA GCTGGCTGACCTGTACAAGTCCTTCATCAAGGACTACCCAGTGGTGTCTATCGAAGATCCCTTTGACCAGGATGA CTGGGGAGCTTGGCAGAAGTTCACAGCCAGTGCAGGAATCCAGGTAGTGGGGGATGATCTCACAGTGACCAACCC AAAGAGGATCGCCAAGGCCGTGAACGAGAGTCCTGCAACTGCCTCCTGCTCAAAGTCAACCAGATTGGCTCCGT GACCGAGTCTCTTCAGGCGTGCAAGCTGGCCCAGGCCAATGGTTGGGGCGTCATGGTGTCTCATCGTTCGGGGGGA GACTGAAGATACCTTCATCGCTGACCTGGTTGTGGGGCTGTGCACTGGGCAGATCAAGACTGGTGCCCCTTGCCG ATCTGAGCGCTTGGCCAAGTACAACCAGCTCCTCAGAATTGAAGAGCAGCTGGGCAGCAAGGCTAAGTTTGCCGG CCCCTCCCTCGTGTCAGCTCAGGCAGCTCGAGGCCCCCGACCAACACTTGCAGGGGTCCCTGCTAGTTAGCGCC CCACCGCCGTGGAGTTCGTACCGCTTCCTTAGAACTTCTACAGAAGCCCAAGCTCCCTGGAGCCCTGTTGGCAGCT CTAGCTTTGCAGTCGTGTAATTGGCCCAAGTCATTGTTTTTCTCGCCTCACTTTCCACCAAGTGTCTAGAGTCAT GTGAGCCTCGTGTCATCTCCGGGGTGGCCACAGGCTAGATCCCCGGTGGTTTTGTGCTCAAAATAAAAAGCCTCA GTGACCCATGAG

PCT/US2003/028547

32/6881 FIGURE 32

MSILKIHAREIFDSRGNPTVEVDLFTSKGLFRAAVFSGASTGIYEALELRDNDKTRYMGKGVSKAVEHINKTIAP ALVSKKLNVTEQUEKIOKLHIENDGTENKSKFGANAILGVSLAVCKAGAVEKGVELYRHIADLAGNSEVILEVER NVINGGSIAGNKLAMQEFMILEVGAANFREAMRIGAEVYHNLKNYIKEKYGKDATNVOGDGGFAPNILENKEGLE LLKTAIGKAGYTDKVVIGMDVAASEFFRSGKYDLDFKSPDDFSRYISPDQLDLYKSFIKDYPVVSIEDPPDQDD WGAWQKFTASAGIQVVGDDLTVTNPKRIAKAVNEKSCNCLLLKVNQIGSVTESLQACKLAQANGWGVMVSHRSGE TEDIFIADLVVGLCTGGIKTGAPCRSERLAKVNQLLBRIEEELGSKAKFAGRNFRNPLAK

PCT/US2003/028547

33/6881 FIGURE 33

TGGTCCCAAGGCGCGTGCTTTGCAGCAGATGTGTGACCTGGCGTTCCCCTGAGTGCTCGGAAAATGGCCTTGTCT ${\tt CAGTACTCGGTATGGGAGTCCCAAAAGACAGCTCCAGTTTTACAGGAACCTGGGCAAGTCTGGCCTGCGGGTCTCCAGGTCTCAGGGAACCTGGGCAAGTCTGGCCTGCGGGTCTCCAGGTCTCAGGGAACCTGGGCAAGTCTGGCCTGCGGGTCTCCAGGTCTCAGGGAACCTGGGCAAGTCTGGCCTGCGGGTCTCCAGGTCTCAGGTATTTACAGGAACCTGGGCAAGTCTGGCCTGCGGGTCTCCAGGTCTCAGGTATTTACAGGAACCTGGGCAAGTCTGGCCTGCGGGTCTCCAGGTCTCAGGTATTACAGGAACCTGGGCAAGTCTGGCCTGCGGGTCTCCAGGTCTCAGGTATTTACAGGAACCTGGGCAAGTCTGGCCTGCGGGTCTCCAGGTCTCAGGTCAGGTCAGGTCTCAGGTCAGGTCTCAGGTCTCAGGTCTCAGGTCTCAGGTCTCAGGTCTCAGGTCTCAGGTCTCAGGTCTAGGTCAGGTCTCAGGTCAGGTCTCAGGTCTCAGGTCTCAGGTCAGGTCTCAGGTCTCAGGTCAGGTCAGGTCTCAGGTCTCAGGTCTCAGGTCTCAGGTCTAGGTCTAGGTCAGGTCAGGTCTCAGG$ CTGCCTGGGACTTGGAACATGGGTGACCTTCGGAGGCCAGATCACCGATGAGATGGCAGAGCAGCTCATGACCTT GGCCTATGATAATGGCATCAACCTCTTCGATACAGCAGAAGTCTACGCAGCCGGCAAGGCTGAAGTGGTACTGGG GGAGACGGAGCGGGCCTGTCCAGGAAGCACATAATCGAAGGTCTGAAAGCTTCCCTGGAGCGACTGCAGCTGGA GTACGTGGATGTGGTGTTTGCCAACCGCCCGGACCCCAACACCCCGATGGAAGAGACCGTCCGCGCCATGACCCA $\tt CGTCATCAACCAGGGGATGGCCATGTACTGGGGCACGTCACGCTGGAGCTCCATGGAGATCATGGAGGCCTACTC$ CGTGGCCCGGCAGTTCAACCTGACCCCGCCCATCTGCGAGCAGGCTGAGTACCACATGTTCCAGCGTGAGAAAGT GGAGGTGCAGCTGCCGGAGCTGTTCCACAAGATAGGAGTGGGCGCCATGACCTGGTCCCCTCTGGCCTGTGGCAT TGTTTCTGGCAAGTACGACAGTGGCATCCCACCCTACTCAAGAGCCTCCTTGAAGGGCTACCAGTGGCTGAAGGA CAAGATCCTCAGTGAGGAGGGCCGGCGCCAGCAAGCCAAGCTGAAGGAGCTGCAGGCCATCGCCGAGCGCCTGGG $\tt CTGCACCCTGCCCCAGCTGGCCATAGCCTGGTGCCTGAGGAATGAGGGAGTCAGCTCCGTGCTCCTGGGGGCCTC$ CAATGCGGACCAGCTCATGGAGAACATTGGGGCAATACAGGTCCTTCCGAAACTGTCATCTTCCATTATCCACGA CCCAAGCCTGTCACCTCTGCTCATCCTCCAAGACCACCCAGCTTTCTCCCAGCCACAGCCAAGATTCCCAAAGTC CCAGCCTCTCCTCTGCTGAGAATCCCCACTTGGTGTAGGGGGAGAGGGGAAAGGGGTCTGGCCCATCGAGGGGCC CCTTCTGCCAGGGCCTTGGTTGCTGGGGCAGGGCCTCCCCACTGGGGGTCTTCCTCCACCTCCCACTTTCCAAGG GCTCCAGGAATCTGGGGCCTGACCACAGATTCCTCTCCCATCCTTTTCTGCTCCAACCTGCCCCACTGGGTCCCG GCAGGGGCCATGCCTACCAAGCTCGAGCTGGCCCTTGACCCCCACCCCACCCTTGCTGGCAGGGGCAGGG ACCCCAGGGGGATTGACTCTGCAGTTTGGGAGCCACAAAAAGCGTAGCGGTGTGATTTCTAGCTCAGCCTCCCAC CGTCTTCCTCCTACACACCAATGATGAGCCTCATGCCAGTGAGGCCCGGAGCGCTTGGGAGGGGTCCCAGTGGGG CAGGCCCCTCTGTCTGGCCACCCCTCTGTCCTGGCCCCGGAAGGCCCTGTGGTCATGTGCTCCTAGCTGCACGGT TAGACTTTCTCTAAAGCCGCCCGCCAGCCCAGGCCGCTGCTCTGCACCGAGCTGGTGGGCTTGGGTTTTGTGGAG CAGCACCCCCACAATGTAGGAAAAGACCTCAGGGAACCTCTCCCTGGAAAGACGGGCAGGGCTGGTTAGCCCCTC CCACTGCCTGACACCTGGGACAGGCTGGGCAGAGGGGAGAGAGGGCAGGACAGGCCAGAGTGACGCCCCCGTGCA GCTTGGGCCGGAGGGCAAGGGATGCCAGTAAGTCTGCAGGTGCGGGGTGCCACCTACAGGCCCAGGCCTGTGTCC CAAGCAGTACCCAGGCTTTGCAGACCACGCGGGGCAGGGCTCCACTGAAGCCACCCCCACCCCTCGCCAGCTAGC TCCATAGGGAAGCCTGTGTCTCCTGCCCCCAGGGCGCACCCTCAGTGCAGGCACCTCTGTTCCCGCTTTGCCCCT GGAGGAGCCACTATTCCAGAAGGCTCCACCCTGCCGTCCTGCGGGAGCCTGCTGTCCAGTCCTGGCCGGGCCAAG TCTCCACTCAGTCCTGCTGCCTGCTTCACCAGAAGCAGCCCTGTGAGTGTGGGGTGGGGAAGTCCCTTCCCAACG GAGGTCCCAGCCTATGGCCCTGGGCCCAGGTGGGGGTCGCCTGCTTCCCTTCCCGGACAGGGTCCTGCAG

PCT/US2003/028547

34/6881 FIGURE 34

PCT/US2003/028547

FIGURE 35

 $\label{local} {\tt MAPVKKLVVKGGKKKKQVLKFTLDCTHPVEDGIMDAANFEQFLQERIKVNGKAGNLGGGVVTIERSKSKITVTSE\\ {\tt VPFSKRYLKYLTKKYLKKNNLRDWLRVVANSKESYELRYFQINQDEEEEEDED} \\$

PCT/US2003/028547

36/6881 FIGURE 36A

CGCGCTCGCGGGGGGGGGGGCGCCCGGCACAGAGGGGTTAAGGGGGCGGTGCAGACGTCTCCCCGCCCATCCCG GCCGCGCGTCCTCGACAACCTATCGAAGGCGCCATGGACCGGCGCCCCTGGCCGTGCTTCCCTTCTCGGA CCCCGCGCACGCCCTGAGCCTGCTGCGCGGCCTGAGCCAGCTGCGCGCGAGCGCAAGTTCCTGGACGTGACCCT GTTCGCGGGCZAGTTGCGCGAGAGCCGCGCGAGCGGGTGCGCCTGCACGGAGTGCCTCCCGACATGCTGCAGCT GCTGCTGGACTTCAGCTACACGGGCCGCTGGCGGTAAGCGGCGACAACGCTGAGCCGCTGCTGCGCCGCCCGA CCTGCTGCAGTTCCCGGCCGTGAAGGAGGCGTGCGGGGCCTTCCTGCAGCAGCAGCTCGACCTGGCCAACTGCCT CGTGGGCGAGCTGGGCGCCGAGCAGCTGGAGCGGCTGCCACTGCGCGCCTGCTGCGCTACCTGCGGGACGACGA CGCGCACTGGCGGCAGCTGCTGGAGGCCGTGCGCCTTCGTGCGCCGCTTCTACCTGTTGGCGCACGTCGA GGCCGAGCCGCTGGTGGCGCGCTGCCCACCTGCCTGCGCTGCGCGAGGCGCGACTTCCAGGCGGCGCG CTACGACCGCCACGACCGCGGCCCTGTCCCCGAATGCGTCCTCGCCCGTCCACCGGTCTCGCCGAGATCCTCGT GCTCGTGGGCGGCTGCGACCAGGACTGTGACGAGCTGGTCACTGTCGACTGCTACAACCCGCAGACGGGTCAGTG GCGCTACCTGGCCGAGTTCCCAGACCACCTGGGCGGAGGCTACAGCATCGTGGCGCTGGGCAATGACATCTACGT GACGGGTGGGTCCGATGGCTCCCGGCTCTATGACTGCGTGTGGAGGTACAACTCAAGCGTGAATGAGTGGGCGGA CGACAGCACCGAGCGCTATGACCACCACTGACTCCTGGGAGGCCCTGCAGCCCATGACCTACCCCATGGACAA GTGCTACGACCCGGACACCGACCTGTGGTCGCTGGTGGACTGCGGCCAGCTCCCGCCCTGGTCCTTCGCCCCCAA GACTGCGACTCTAAACGGACTCATGTACTTTGTCAGGGATGACTCCGCTGAGGTGGACGTGTACAACCCGACGAG GAACGAATGGGACAAGATCCCGTCCATGAATCAGGTAAATTTTCAGGCGGGCCAGCATTGGAAGCACAGGCTGGT TTAATAGAAGGCTGCTCTTACCCTTATTTTGCACTTAAGGCTCACTGAGACACAGATGTTAAGTAATACCCTATG GGAGCAAGGCATACAGTCATCTGGGGACACCTGTTCCAGAGAGGGACAGCAGGTACAGAGGCCCTGCAGCAGGGC TTTTTATTTTTGAGACAGGGTCTTGCTCTGTCACCCAGGCTGGAGTGCAGTGGTACAATCATGGCTCACTGCAGC CTCCACCTCCTTGACTCGCAGTCCTCCCACCGCACCTTCCTGAATAGCTGAGACTACAGGCGTGTGCCACCACAC CCAGTAATTTTTTTCTCATATGTAGATACAAAAGGATATTCTTAAAATTTTTATAGAGACAGGGTCTTGCTGTG TTACCCAGGCTGGTCTCACACTCCTGGCCTCAAGTGACCCTCCTGTCTCAGCCTCCCAAAGTGCTAGGATTATAG CGCTCTGTCACCCAGGCTGGAGTGCAGTGGCACGATCTCGGCTCACTGCAAGCTCCATCTCCCAGGTTCACGCCA TTTTTAGTAGAGACGGGATTTCACTGTGTTAGCCAGGATGGTCTGGATCTCCTGACCTTGTGATCTGCCTGGCTC AGCCTCCCAAAGTGCTGGGATTACAGGCATGAGCCACCATGCCCAGCCCACTGTGGGAATACTTGTGTTGAGCAC TTGCTGTGTGTTCTGAATAGGACAACCAGGGTCCACCCCTTCTCTCTGGGCTTGTTGAGAAGAGGGGTGCCCAGC CTGACAGTGATGGGACAGGGAGGCTTCAGTGCCATTTGGCCATGTGAGCAGTGTTAGTCTGAGGTACACATCATA TACATCACAGCTTAATGTCCTGGCATTTAAGAGACCCAGCGTTCTGTTTTCCCCGCAGTAAGCTGCACATAGTCA TAGCGAATTTGGGAAGATGGAAGGAATCATCCAGCCTCGCGGTTCAGAGCCCAGCTCTGCCACTGTCAGCCATG CAAGCCTCAGTTTTCCCATCTGTAACATGGGGAGAACAGCACTGCTCAGCCCAGAGGGCCACTGCAGAGATTCTG AGAGAGAACGTAGGAAGCGCTGCTCGGCACGACCTGCACACGGGGGAGGCCTGCGCGCTGCAGCGGGCACCCTCATC ACCATAGGGAAGGCCCAGCTGCCTCCGGGGAGGCCCGTTCTCCTAGGCAGGGTGTTGGAAAGGGGTTGGCCTCTC TGCTGCTTTCTGGGAGAGCCAAGGCCACCCCTCTGGGGTACTGACAGGGCATGCCTTGTCTCCAGTGGTTCCCCA AGCCTGGCCGTCCTTGGGGGGAAGCTGTACGTCTCTGGGGGATACGACAATACATTTGAACTCTCGGACGTGGTA

PCT/HS2003/028547

37/6881 FIGURE 36B

GAGGCCTATGACCCAGAGACTCGCGCGTGGAGCGTGGTGGGGCGGCTCCCAGAACCCACCTTCTGGCATGGCAGT GTCAGCATCTTCCGCCAGTTCATGCCCCAGACCTTCTCGGGTGGGCGTGGCTTCGAGTTGGACAGTGGCAGCGAT GACATGGACCAGGCCGACCCGGCCGCCGCGGGACCCCGATGAGCTGCACTAGCCCCAGTCTGGCCCGGCACGG GCCTCGGTGCAGGTAACTGGCACCTCTGCGGGGCAGTGCCCCACTCCTTTGTGCACAAGGACACGTTGGGCTCAC AGGAGGAGCACAGGCTCTTGGGTGGCGAAGCCAGCCCAGGATCCATTACCTGGAAGGTTTCTGTACCTTGAGAGC CTGAATCAGAGGCCGTCGGGAACGCCCTCCCTGCAGTTGAGGAAGAGCCACTTTCCTGCCAGCACATGTTTCTGG GTCTTGGAGGTCACCCCCACCCGGGGATCACAGCTCACCCACGCGCGCACACCCCTCCTGCCGTTGTCATCTG AGGCTGAGGATGGCCTGAACCTGGAGCAGCGGACCAGGCAGACGGGCTGAAGTGGGGTCCCAAATTCCATGTCCA GAGGTGTGGGGAGCCTGCCTAGCTCCTGGCCCCTGCCAGGGGCTTACATCAAAACACCTCAGAGGGCTGCC CTCCAGAGGCTGCACCCAGAACAGTGGGACATGAGCAGGGGTGTGGGCTTGGAGGGTGAAGAGGATGTGGTCCTA TCAGATGCTGGGCCTCCTCAGCCATAGCCCCCTGCTCCTACCCCCTGACTGGCTCTTGCGTCCTCACCTCTCACC CTCTCCTTCCCGGGAGGCCCTGGGAGGTGATCATTGACACCCAGCCAAGCAGACAGCTGCGGGTGCCCAAGCCCT TGCTGGGCCTGCGCGTGAGGAGTCCCACTGCTTCTAAAGGAAGTCCTGGGCAGGAGGTGGCTTTGGTGGTT CCAAAGTTGAAAATGCTTGCAGTTTGACCTTAGAAGAAGTGGGAAGAAGAAGAAGGAGCTCTACAGGGTCAGCTTTGT TTGATTTGTCCAGTCTAAGAAGTCCCATTGCCAAAGCTTTCTGCAGGAGGGTGAATGCCGCAGCTTGGCAGCCCC TGGGTTTCTCTTGGAAATGGTCAGTTTCCCCTCAAAGTACCCAAAGTAGCCTTGACTTGTCCTTGCC TCCTTTTTAGAGAAGAGGGCATTTAGACTGCATTTTCCTGGTTAAAGAAGGTTAAAGCAAATGTTTATTGCCTTT TCTAGTGAACTAACTCGTAGAGATGTTCTCAGCAGGAAGACAGTCTTAGCACTGTCACTTAGCAGATTGCACTTA AGTCCCTTGTGCTGGCCAGATGGCGTGGCTGGTTGCCTTAATATGTCCCAGGACCCCTGACAGGGCTGCCTGGCC TCTCCCTCGTGCTCCTCAAGAGCCCAGTCCATACACTGTGGATGTCATTGCTGTCGGGTTAGGAAGTCTTGTCCT AGAACGCCCTGGCTGGTATGACCACAGTTCATGGCGGCTCTTCTCGCTTGGGTCATGGTCATCTTCCAGCACCTG TTTCCTGCCCTTCTCCTTCCTCTGCTCCCTTGGGGCTACCCCTTGGCCCCTCCTGGTCTGTGCAAACTCCCTCAG GCGGGGCAGCTTGTCTCCCTTGTCAGCAGGGGCGTAAGGGCTGGGTTTGGCCATACAAGGTTGGCTACGCCCTCA ATCCCTGACCGTTCCAGGCACTGAGCTGGGCACCCACGGAAGGACATGCTGTCCAGACTGTGATGACTGCCAGCA CAGGGCATCTCGGGCTTGGCTGGCGAGGCCTTGCCCCTGTGGAACTCTGGGTTCCTGTTTTCTCAGTCTTT TTTGCGGCTTTGCTGTGGTTGGCAGCTGCCGTACTCCAGGCTTGTGTCGGCCACTCAGATGAGGGCTGTGGTGCG CATCAGGACCCTGTCTTTGGGTTTAGAAGACCAAGTATGGGGAAAACCAGGCACCAGCCTCTGCAGCAATGGGTC CCTCTAGCCTGTGGACACCAGCTGGGGGATCCAGGGTCAGGCCCCCTCCTCTCCCCAGTTTCCCTCTGCTGTGGG TTCTGGGCTGTCATGTCTCCACCACTTAAGGATGTCTTTACACTGACTTCAGGATAGATGTTGGGATGCCTGGGC ATGGCCACATGTTACATGTACAGAACTTTGTCTACAGCACAAATTAAGTTATAAAACACAGTGACTGGTATTTA ATGTCCAGAATCCTGCTTAAGGTTTTAGGGTACCTTCAGTACTTTTTGCAATAAAAGTATTTCCTATCCATTTGG

PCT/IIS2003/028547

FIGURE 37

MERPAPLAVLPFSDPAHALSLLRGLSQLRAERKFLDVTLEAAGGRDFPAHRAVLAAASPYFRAMFAGQLRESRAE
RVRLHGVPPDMLQLLLDFSYTGRVAVSGDNAEPLLRAADLLQFFAVKEACGAFLQQQLDLANCLDMQDFAABFS
SGLASAAQRFILRHVGELGAEQLERLPLARLRYLRDDGLCVPKEEAAYQLALRWVRADPPRRAAHWPQLLEAVR
LPFVRRFYLLAHVEAEPLVARCPPCLRLLREARDFGAARYDRHDRGPCFRMPRPRSTGLAEILVLVGGCDQDCDE
LVTVDCYNPQTGQWRYLAEFPDHLGGGYSIVALGNDIYVTGGSDGSRLYDCVWRYNSSVNEWAEVAPMLKAREYH
SSSVLDGLLYVVAADSTERYDHTTDSWEALQPMTYPMDNCSTTACRGRLYAIGSLAGKETMVWQCYDPDTDLWSL
VDCGQLPPWSFAPKTATLNGLMYFVRDDSAEVDVYNPTRNEWDKIPSMNQVNFQAGQHWKHRLVLILQFKCHRDE
CLGSTAMMDGSHLN

PCT/HS2003/028547

39/6881 FIGURE 38A

ACACCGGGGCCGCCGCGGGAGCCTCATGGGGGTTGGAGTCCCCAAGGTTTCCTTTGTGCGCAGTATTGGCGGG CCACCCAGACTACATTTCCCGACAGGCCTCCCGGCTCTCCCGCCCTCCCCGAGACACGAGCCGAACTGGGCG TCAGGTCGGGGAGCCGGTCGGGTTCCCGCTCACCGCCGCCGCCGCCCCCTGCAGCCACTCTCCCGCCTCTAC CGCCGCGGGAGCTGCATCGTCCACTCCGGTCGGCGGTGGAACCGCCAGTCCGGGGTCACAGAGCTTGAGAAGCGA CGCGCTGAGCCCCCATCACCTCCAGCCCGGGCGACCCCTCCCGGGTCCGCCCTGCGCCCTGCGCAGCCGCCCGAG ACATGGACTCTGACTCTTGCGCCGCCGCCTTCCACCCGGAGGAATACTCCCCCAGTTGCAAGAGGCGCAGGACCG TGGAAGACTTCAACAAATTCTGCACCTTTGTCTTGGCCTATGCTGGCTACATCCCTTATCCGAAGGAGGAACTCC CTTTAAGGAGCAGCCCCAGCCCTGCTAACAGCACTGCTGGTACCATTGACAGCGACGGCTGGGACGCGGGTTTCT CAGACATCGCGTCCTCAGTGCCCTTGCCAGTCTCTGACCGCTGCTTTAGCCACCTGCAGCCTACTCTTTGCAGC GAGCCAAGCCCAGTAACTTCCTGCTGGACAGAAAGAAAACGGACAAGCTGAAGAAGAAGAAGAAGAAGAAGAAGCGCAA AGACCCCCACGAGTCCCACCTTGCAGGATATCCCCCAGGCTCCCAGCGACCCCTGCTCGGGGCTGGGACTCCGATA CTCCCTCGAGTGGATCTTGTGCCACTGTGTCACCTGATCAGGTCAAAGAAATAAAAACTGAAGGCAAACGGACTA TCGTCCGGCAGGGAAAGCAGGTGGTGTTCCGAGATGAGGACAGCACTGGCAATGATGAGGACATCATGGTGGACT ATGAGTGCCACACCTGGATTCACCTGTCCTGTGCGAAAATCCGGAAATCCAATGTTCCAGAAGTGTTTGTCTGCC AAAAGTGCCGGGACTCCAAGTTTGACATCCGCCGTTCCAACCGCTCGCGGACGGGCTCCCGGAAGCTGTTCCTGG ACTGACTGCTGGCTGGCGAGGGTGCGAGCGTGGAATCGGAAGCGACCGCGGGCTTTTTTGCCCTTCTTAG TTGAGCACAGAACCCTCAGCTCTGGTGCGGGCAGATCCCTGCCATTTAGGTGCCTAAGCAAAAGGACAGGCTGTC CTGCAGTGGAGGTGGACTGGACACCCACGTGCAGCGGGTTTGGCTCATTTGAAAATGAGGGTCCGTGGTAGCTGT GCGTTTTGCTATCATTGCTAAGAGATTCCCGCTGATTGGGCTCAGTGCCAGCTGTTATTCTGCTTCCACTGTGTT GGGGAGAGGTGTTCGGTTTCCCCAGCCTGTTAATGAACAGCCATACGTGTAAGCTTTTTCTTGAGTGTTAAGTCT TTTACCAAAAGTGTCTGTACAGCAGCCATCCAAGTTGCCCCTACTTAGTGGCTTGCCCTCTGCCTCAGCTG CTGGTGGTTCTTAGGTTTCCTTCTGTTTGTTAAAAGGGACAATGTGGCCACTTCTCTGTGGAAAGGGAGTTGGTT GGGGGGTTGAGATGGCCCGTGTTCATAACTCAGTTTCCTGTTTTGCACGATGTAAAAACCCTGTCTTTTTGCACG ATACAGCCAAAAGTATTGGCTGATTTCTTGCTGAGTGCCCTCTTAGTTGGTGTGTGAGGTCTTGGTGGGCTCAGG CCAGCTGTTTGCGAGTGTGGGAACTCATAGGTTCTGTCTTTGTCTCTTCCTTTCACCTCATTCTGGTAGCAGCAT TCTCCGTTGGGTGACTCTTGTGTGCCCTTTAGACAGGCTGGCCTGCCGGTTCCACAGGGTACAGTTAGGACTTGA GTCTTTCTTTTTCTGTTTTGAGTTGGTGAGTGAGTGATAGGGTAACATGGGCCTTCAGGATGACCCCTTGGAACT GTGCCGAGTTCCTTAAATCTCAGCTGGGATCCTGGACCTGGGAGGCCCCTGTGAGGGCCAGCTCTGGAAAAACCT GGGAGTTGATGCCGGAGGCTGTGGAAGAACTCTGCTCGAGGGCAGGGTGCCCTGGAACACTGGTAGTTCTGGGGC TGGGAGGGAGAGGGGCTCCGGCTTTCTCTGAAATGAACACTGCTCTTCAGCAGTTCAAGTACTTGTTCTCAAAAAC TCATGTTTGTTTTCAGTGGGATGGGCCCGCGTTCTCACTGCTGGGGGCTTCCCCTTCATGTGGCACCTTTGTGCC AGGCCACCAGGCAGACTCTTCCCACCTTCTCCCACTGAAGCACCAAGGGGCTTGAACCGTAATTTGGCTAATCAG AGGCATTTTTTTTGTCCTAGTATCTTTCACACTTGTCCAACCGTCTTATTTTTTTAAAAGTTCTGTTGCTTGTAT TAACACGAAACTAGAGAGAAATAGTTTCTGAAGCCAGTTTATTGTGAAGATCCCCAAGGGGGAGGTTCGGTAGAG AAAAATAGTAAGCTGGTTTAGAAACTGACGAGGGCAAACAGCCAGGACGCATTGGAGAGGAATTTGCCAAAGATC TACCCTGAGATAACGCCTGTCCAGTGTCTTCACCACGTGAATAACCAGCGCTCCAAAGTGTTTTTCTGCTTTGAA AAAAAAAAATTCCACAAGCTTTTAAAGGTGCATTTAAGAATCCATGTGACTTTAGAATGGAACTGCCGGCCCTGG CAACTGTCACGTGTGCTAGAAGGTTCGATGCCTCTGGAATGCATGTGATACTCATCTCCATTTTGTTTCCTTGAT

PCT/US2003/028547

40/6881 FIGURE 38B

PCT/US2003/028547

41/6881 FIGURE 39

MDSDSCAAAFHPEEYSPSCKRRRTVEDFNKFCTFVLAYAGYIPYPKEELPLRSSPSPANSTAGTIDSDGWDAGFS
DIASSVPLPVSDRCFSHLQPTLLQDFASSNFLLDRKTDKLKKKKRKRRDSDAFGKEGYRGGLLKLEAADPYVE
PTFSPTLQDIPQAFSDPCSGWDSDTFSSGSCATVSPDQVKEIKTEGKRTIVRQGKQVVFRDEDSTGNDEDIMVDS
DDDSWDLVTCFCMKPFAGRPMIECNECHTWIHLSCAKIRKSNVPEVFVCQKCNDSKFDIRRSNRSFRISSKKLFLD

PCT/US2003/028547

FIGURE 40

GACGGCTCCGGGCCGCCAGGGGCCGCTGTGGCGCAGCCGGGCTGGCCCGCGCTGTCCCTGACGCGGATCACTGGC CCCTCTTGAGCACGGCCTTGCCGGTTTGGCGGGGTGAAAGGTTGCGAAGATGGCGACGCCTTGAGCGAGGAGGA GCTGGACAATGAAGACTATTACTCGTTGCTGAACGTGCGCAGGGAGGCCTCTTCTGAAGAGCTGAAAGCTGCCTA CCGGAGGCTCTGTATGCTCTACCATCCAGACAAGCACAGAGACCCAGAGCTCAAGTCACAGGCGGAACGACTGTTAGGACTGGAAATGGAAGGATGGGAGGTTGTGGAAAGGAGGAGAACCCCTGCTGAAATTCGAGAGGAGTTTGAGCG GCTGCAGAGAGAGAGAGAGAGAGAGAGTTGCAGCAGCGAACCAATCCCAAGGGAACGATCAGCGTTGGAGTAGA TGCCACCGACCTTTTTGATCGCTATGATGAGGAGTATGAAGATGTGTCCGGCAGTAGCTTTCCGCAGATTGAAAT CTCAACCCAGAATGGAAATGGAGGAGGTTCCATTAACTTTGCGCTCAGACGAGTAACTTCGGCAAAGGGATGGGG AGAGTTGGAATTTGGAGCTGGAGACCTACAGGGGCCTTTGTTCGGTCTCAAGCTGTTCCGTAATCTCACACCAAG ATGCTTTGTGACAACAACTGTGCTCTGCAGTTTTCATCCCGTGGAATCCGACCCGGCCTGACCACTGTCCTAGC TCGGAACCTAGACAAGAACACCGTGGGCTACCTGCAGTGGCGATGGGGTATCCAGTCAGCCATGAACACTAGCAT CGTCCGAGACACTAAAACCAGCCACTTCACTGTGGCCCTGCAGCTGGGAATCCCTCACTCCTTTGCACTGATCAG CTATCAGCACAAATTCCAAGATGACGATCAGACTCGTGTGAAAGGATCCCTCAAAGCAGGCTTCTTTGGGACGGT CCTCGACTACGGACCTGAGGGAAGATCTCCAGGCACAGCGTTTTGGGTGCAGCTGTCAGCGTTGGAGTTCCACA GGGTGTTTCTCTCAAAGTCAAGCTCAACAGGGCCAGTCAGACATACTTCTTCCCTATTCACTTGACGGACCAGCT TCTGCCCAGCGCCATGTTCTATGCCACCGTGGGGCCTCTAGTGGTCTACTTTGCCATGCACCGTCTGATCATCAA ACCATACCTCAGGGCTCAGAAAGAGAAGGGAATTGGAGAAGCAGAGGGAAAGCGCCGCCACCGATGTGCTGCAGAA GAAGCAAGAGGCGGAGTCCGCTGTCCGGCTGATGCAGGAATCTGTCCGAAGGATAATTGAGGCAGAAGAGTCCAG AATGGGCCTCATCATCGTCAATGCCTGGTACGGGAAGTTTGTCAATGACAAGAGCAGGAAGAGCGAGAAGGTGAA GGTGATTGACGTGACTGTGCCCCTGCAGTGCCTGGTGAAGGACTCGAAGCTCATCCTCACGGAGGCCTCCAAGGC TGGGCTGCCTGGCTTTTATGACCCGTGTGTGGGGGAAGAAGAACCTGAAAGTGCTCTATCAGTTCCGGGGCGT CCTGCATCAGGTGATGGTGCTGGACAGTGAGGCCCTCCGGATACCAAAGCAGTCCCACAGGATCGATACAGATGG ATAAACTGCCAAGAACCAGATTTTTAAAAGGCCGCAAAAAATCTTTTCCTGGGAGTCTACAAATTTGGAAATGAA AAAACCCAGACATCAGATGTTTTTATTTTATATTATTATTATAGAAGGTGGTACCATTATCAATTATGTGAAGGG ACATGCAGACACCCCAGCTTTTGAGGGTGCTGGGGGTAGGACTGAGGCAGCCCCACTGGGAACCAGACTGCAGCC TGGCCCATGGCTGTTTTCCCAAGGATCAGTTCCTGGAGGGAAGGGCTCTGGCCCTGACTCCGCTGTGTCCCGAGC ACACGTGCTGACCGCAGCCCGCCCCCTGTAGTTCTTGGCTGGGTCTGGAGGTGTCTGTGGAGCACCCTGCCCTC GTCAGGGAGCCTCTGCTGTGCTGGCTTCCCATGACCACCTCCTCTTGCTGAAATATTACTGCTTGAATCTGGAGC AGATTGCGGGTTTATAAAACTGCTTTTTATCTGAGAACAAACGGGTTTGGAAATTAGTCGTCTTTTTTCCCCACT CCCAGAGCTGCTCAAGTCATTCCACCGGCCCCCTCGGCTTGGGACAGGGTAGTGTAACTCCCGATCCCAGGGCCT AGCCCTGACACAGGTGGCTTCCCGTATCCCGGTGGGAAAACGCCCTGCCACCAGCGGGCTTGAGCTGGCCTGTGT CCCTCCACCGCCTGCACCACCCCCCCAGAGTGCAGTGCTGGGCAAGGGCAGCTCAAGAGGACAGGACCAGGCG ACCCTTCCTCCACGTGCCCACTTGGGATGCAGAATGCAGCGGGGCTAGGACCCCCTCCACGGCCTGGACCTCGGC TGCAGTAAAGTTACGTGAGGCCTGTCTCTCGGGGCCTGGAAGTGGCAGCCATCAGTTGCTCTTGCTGACCCCTCG GAGCAAGCGCCGCACAGGTGGTGGCTGAGACAGCTGGCGCGGGGGGGCCCCAAGCTGCGCCGGCCTCCAGCCCACC GTTTTGAAAAGCAGTTCGGGTTGTCCAATTCTGTAACATTCATCTCCATTTTTTAAAAAGGTTTCTCTGACGGCC CCACGGCCCGAGCCGCGGTGAGCGTCGTGTTGCATGAGCCTGGGCCCCGGGCTTCCCGTGCGCCTCTGCCGCAGG TGCTTCTGGGCACCCATCCTCTGCGTTTCATTTGCAGTCGACTGTACAGAAGGCACTCACCACAATAAACCTTTC CTGAAAGC

PCT/HS2003/028547

FIGURE 41

TGCGAGGCAGAGTGCTAGCGGGAGCGCGAGCCAGCAAGAGGCGCCTGCGCGATGTCCGGGCCCCTGAGCCCGCGG CGCTGAGCCAGCCGGGACGGACATGCGCGGGAGGGGCGCCGCGGGGCAGCCGCCGCTCCTCCGGGGGAATGAAAGC TACTGGTTGATTTTAAAGTGCCTGGGCCTCACAGGTTTGGAGATGTCCCAGAATAAGGCACAATGTCAATAGCAG GAGTTGCTGCTCAGGAGATCAGAGTCCCATTAAAAACTGGATTTCTACATAATGGCCGAGCCATGGGGAATATGA GGAAGACCTACTGGAGCAGTCGCAGTGAGTTTAAAAACAACTTTTTAAATATTGACCCGATAACCATGGCCTACA GTCTGAACTCTTCTGCTCAGGAGCGCCTAATACCACTTGGGCATGCTTCCAAATCTGCTCCGATGAATGGCCACT . GCTTTGCAGAAAATGGTCCATCTCAAAAGTCCAGCTTGCCCCCTCTTCTTATTCCCCCAAGTGAAAACTTGGGAC CACATGAAGAGGATCAAGTTGTATGTGGTTTTAAGAAACTCACAGTGAATGGGGTTTGTGCTTCCACCCCTCCAC TGACACCCATAAAAAACTCCCCTTCCCTTTTCCCCTGTGCCCCTCTTTGTGAACGGGGTTCTAGGCCTCTTCCAC CGTTGCCAATCTCTGAAGCCCTCTCTCTGGATGACACAGACTGTGAGGTGGAATTCCTAACTAGCTCAGATACAG ACTTCCTTTTAGAAGACTCTACACTTTCTGATTTCAAATATGATGTTCCTGGCAGGCGAAGCTTCCGTGGGTGTG GACAAATCAACTATGCATATTTTGATACCCCAGCTGTTTCTGCAGCAGATCTCAGCTATGTGTCTGACCAAAATG GAGGTGTCCCAGATCCAAATCCTCCTCCACCTCAGACCCACCGAAGATTAAGAAGGTCTCATTCGGGACCAGCTG GCTCCTTTAACAAGCCAGCCATAAGGATATCCAACTGTTGTATACACAGAGCTTCTCCTAACTCCGATGAAGACA AACCTGAGGTTCCCCCCAGAGTTCCCATACCTCCTAGACCAGTAAAGCCAGATTATAGAAGATGGTCAGCAGAAG TTACTTCGAGCACCTATAGTGATGAAGACAGGCCTCCCAAAGTACCGCCAAGAGAACCTTTGTCACCGAGTAACT CGCGCACACCGAGTCCCAAAAGCCTTCCGTCTTACCTCAATGGGGTCATGCCCCCGACACAGAGCTTTGCCCCTG ATCCCAAGTATGTCAGCAGCAAAGCACTGCAAAGACAGAACAGCGAAGGATCTGCCAGTAAGGTTCCTTGCATTC ACAAATATGAAAAATTTTTTAGGGAAGCAGAAGAAACAAATGGAGGCGCCCAAATCCAGCCATTACCTGCTGACT GCGGTATATCTTCAGCCACAGAAAAGCCAGACTCAAAAAACAAAAATGGATCTGGGTGGCCACGTGAAGCGTAAAC ATTTATCCTATGTGGTTTCTCCTTAGACCTTGGGGTCATGGTTCAGCAGAGGTTACATAGGAGCAAATGGTTCTC ATGTGGAAGGTTTAGAGCAGTTGTGAGATGCTGTTATGCTGAGAAACCCTGACTTTGTTAGTGTTGGAAAAAAGT CATACCTATATATAAACTTGTGGTATAACCATAGACCATAGCTGCAGGTTAACCAATTAGTTACTATCGTAGAGT AATATATATTCAGAATAATAAACTCAAGCTGGAGAAATGAGTCCTGATAGACTGAAAATTGAGCAAATGGAAGAA GATACAGTATTGTTTAGATCAGAATCATTAAAAAATATTTTTGTTTAGTAAGTTTGAAGATTTCTGGCTTTTAGG CCTTTTCTATTTTGTTCCATTTATTTTTGCAGGCAATCTTTTCCATGGAGGGCAGGGTATCCATTCTTTACCATG GGTGTACCTGCTTAGGTTAAAAATCATACCAAGGCCTCATACTTCCAGGTTTCATGTTGCGTCTTGTTGAGGGAG GGAGAGCAGGTTACTTGGCAACCATATTGTCACCTGTACCTGTCACACATCTTGAAAAATAAAACGATAATAGAA TAGAAGCAGTGGGGTACGTTAGACTCAGATGGAAAAGTATTCTAGGTGCCAGTGTTAGGATGTCAGTTTTACAAA AGACTGTATTAATAAACATACAACACAAGCTGGCCTTGTGTTGCTGGTTCCTATTCAGTATTTCCTGGGGATTGT TTGCTTTTTAAGTAAAACACTTCTGACCCATAGCTCAGTATGTCTGAATTCCAGAGGTCACATCAGCATCTTTCT GCTTTGAAAACTCTCACAGCTGTGGCTGCTTCACTTAGATGCAGTGAGACACATAGTTGGTGTTCCGATTTTCAC ATCCTTCCATGTATTTATCTTGAAGAGATAAGCACAGAAGAGAAGGTGCTCACTAACAGAGGTACATTACTGCAA TGTTCTCTTAACAGTTAAACAAGCTGTTTACAGTTTAAACTGCTGAATATTATTTGAGCTATTTAAAGCTTATTA TATTTTAGTATGAACTAAATGAAGGTTAAAACATGCTTAAGAAAAATGCACTGATTTCTGCATTATGTGTACAGT ATTGGACAAAGGATTTTATTCATTTTGTTGCATTATTTTGAATATTGTCTTTTCATTTTAATAAAGTTATAATAC TTAAAAAAAAAAAAAAAAAAAAAA

PCT/IIS2003/028547

FIGURE 42

PCT/US2003/028547

FIGURE 43

MASKRALVILAKGAEEMETVIPVDVMRRAGIKVTVAGLAGKDPVQCSRDVVICPDASLEDAKKEGPYDVVVLPGG NLGAQNLSESAAVKEILKEQENRKGLIAAICAGPTALLAHEIGCGSKVTTHPLAKDKMMNGGHYTYSENRVEKDG LILTSRGPGTSFEFALAIVEALNGKEVAAQVKAPLVLKD

PCT/IIS2003/028547

46/6881 FIGURE 44

PCT/US2003/028547

47/6881 FIGURE 45

MSTGPTAATGSNRRLQQTQNQVDEVVDIMRVNVDKVLERDQKLSELDDRADALQAGASQFETSAAKLKRKYWWKN CKMWAIGITVLVIFIIIIIVWVVSS

PCT/US2003/028547

48/6881 FIGURE 46

GGTCTGTGCTTTTAATAGGACTGTCTCCAAAGTTGATGATTTCTTGGCCAATGAGGCAAAGGGAACCAAAGTGGT GGGTGCCCAGTCCTGAAAGAGATGGTCTCCAAGCTGAAGAGCCCCGGCGGATCATCCTCCTGGTGAAGGCTGG GCAAGCTGTGGATGATTTCATCGAGAAATTGGTACCATTGTTGGATACTGGTGACATCATCATTGACGGAGGAAA TTCTGAATATAGGGACACCACAGACGGTGCCGAGACCTCAAGGCCAAGGGAATTTTATTTGTGGGGAGCGGAGT CAGTGGTGGAGAGGGAGGGGCCCGGTATGGCCCATCGCTCATGCCAGGAGGGAACAAGAAGCGTGGCCCCACAT CARGO CONTINUE DA CICA TTICCTICA A A ACTICICA A CACONTA CONTINUE DA CONTINUE DA CACONTA DA CACONTA DA CACONTA AGCAGGCCACTTCGTGAAGATGGTGCACAACGGGATAGAGTATGGGGACATGCAGCTGATCTGTGAGGCATACCA CCTGATGA A A GACGT GCTGGGCATGGCGCAGGACGAGATGGCCCAGGCCTTTGAGGATTGGAATAAGACAGAGCT AGACTCATTCCTGATTGAAATCACAGCCAATATTCTCAAGTTCCAAGACACCGATGGCAAACACCTGCTGCCAAA GATCAGGGACAGCGCGGGGCAGAAGGGCACAGGGAAGTGGACCGCCATCTCCGCCCTGGAATACGGCGTACCCGT CACCCTCATTGGAGAAGCTGTCTTTGCTCGGTGCTTATCATCTCTGAAGGATGAGAGAATTCAAGCTAGCAAAAA GCTGA AGGGTCCCCA GAAGTTCCAGTTTGATGGTGATAA GAAATCATTCCTGGAGGACATTCGGAAGGCACTCTA CAATTATGGTGGCATCGCCCTGATGTGGAGAGGGGGGCTGCATCATTAGAAGTGTATTCCTAGGAAAGATAAAGGA TGCATTTGATCGAAACCCGGAACTTCAGAACCTCCTACTGGACGACTTCTTTAAGTCAGCTGTTGAAAACTGCCA GGACTCCTGGCGGGGGGCAGTCAGCACTGGGGTCCAGGCTGGCATTCCCATGCCCTGTTTTACCACTGCCCTCTC · CACCTATGAACTCTTGGCCAAACCAGGGCAGTTTATCCACACCAACTGGACAGGCCATGGTGGCACCGTGTCATC CTCGTCATACAATGCCTGATCATGCTGCTCCTGTCACCCTCCACGATTCCACAGACCAGGACATTCCATGTGCCT CATGGCACTGCCACCTGGCCCTTTGCCCTATTTTCTGTTCAGTTTTTTAAAAGTGTTGTAAGAGACTCCTGAGGA AGAC ACACAGTTTATTTGTAAAGTAGCTCTGTGAGAGCCACCATGCCCTCTGCCCTTTGCCTCTTGGGACTGACCA GGAGCTGCTCATGTGCGTGAGAGTGGGAACCATCTCCTTGCGGCAGTGGCTTCCGCGTGCCCCGTGTGCTGGTGC GGTTCCCATCACGCAGACAGGAAGGGTGTTTGCGCACTCTGATCAACTGGAACCTCTGTATCATGCGGCTGAATT CCCTTTTTCCTTTACTCAATAAAAGCTACATCAGACTG

PCT/IIS2003/028547

49/6881 FIGURE 47

MAQADIALIGLAVMGQNLILNMNDHGFVVCAFNRTVSKVDDFLANEAKGTKVVGAQSLKEMVSKLKKPRRIILLV
KAGQAVDDFIEKLVPLDTGDIIIDGONSSYRDTTRRCRDLKARGILFVGSGVSGEBGARYGPSLMPGGNKEAW
PHIKITFGGIAAKVGTGEBEPCDWVGDEGAGHFVKMVHNGIEYGDMQLICEAYHLMKDVLGMAQDEMAQAFEDWNK
TELDSFLIEITANILKFQDTDGKHLLEKIRDSAGQKGTGKWTAISALEYGVFVTLIGEAVFARCLSSKLOBRIQA
SKKLKGPQKFGFDGDKKSFLEDIRKALYASKIISYAQGFMLLRQAATEFGWTLNYGGIALMWRGGCIIRSVFLGK
IKDAFDRNPELQNLLLDDFFKSAVENCQDSWRRAVSTGVQAGIPMPCFTTALSFYDGYRHEMLPASLIQAQRDYF
GAHTYELLAKFGQFIHINWTGHGGTVSSSSYNA

PCT/US2003/028547

50/6881 FIGURE 48

CCGGGGTACCAGAATCTGGCGAGATCCGGACTCTAAAGCCGTGTCTGCTGCGCCGCAACTACAGCCGCGAACAGC ACGCGTGGCCGCCTCCTCCAAGACACCTGAAGACCAAGACCAACACCTCTCACATATCTCCCCATTCATAACTCCCTCA CACCAGTCACCCTTGTCCTGGCAGAGGATGGCACCATAGTGGATGATGACGATTACTTTCTGTGTCTACCTTCCA ATACTAAGTTTGTGGCATTGGCTAGTAATGAGAAATGGGCATACAACAATTCAGATGGAGGTACAGCTTGGATTT CCCAAGAGTCCTTTGATGTAGATGAAACAGACAGCGGGGCAGGGTTGAAGTGGAAGAATGTGGCCAGGCAGCTGA AAGAAGATCTGTCCAGCATCATCCTCCTATCAGAGGAGGACCTCCAGATGCTTGTTGACGCTCCCTGCTCAGACC TGGCTCAGGAACTACGTCAGAGTTGTGCCACCGTCCAGCGGCTGCAGCACACACTCCAACAGGTGCTTGACCAAA GAGAGGAAGTGCGTCAGTCCAAGCAGCTCCTGCAGCTGTACCTCCAGGCTTTGGAGAAAGAGGGCAGCCTCTTGT CAAAGCAGGAAGAGTCCAAAGCTGCCTTTGGTGAGGAGGTGGATGCAGTAGACACGGGTATCAGCAGAGAGACCT CCTCGGACGTTGCGCTGGCGAGCCACATCCTTACTGCACTGAGGGAGAAGCAGGCTCCAGAGCTGAGCTTATCTA GTCAGGATTTGGAGTTGGTTACCAAGGAAGACCCCAAAGCACTGGCTGTTGCCTTGAACTGGGACATAAAGAAGA CGGAGACTGTTCAGGAGGCCTGTGAGCGGGAGCTCGCCCTGCGCCTGCAGCAGACGCAGAGCTTGCATTCTCTCC GGAGCATCTCAGCAAGCCAAGGCCTCACCACCTGGTGACCTGCAGAATGCTAAGCGAGCCAGACAGGATCCCACAT AGCAGCAGCGGGAAGTGTGCCAAGGAAGCTCTGTGGCGTTGTGTTATTGGTAGACACCCTCAGCCTCATCATTTG ACTACCTATGTACTACTCTACCCCTGCCTTAGAGCACCTTCCAGAGAAGCTATTCCAGGTCTCAACATACGCCG TTCCACCA ATTTTTTTTTTAGCCCCACCAGCTTCAGGACTTCTGCCAATTTTGAATCATATAGCTGCACCAACAACAA TATCCCGCCTCCTAATTACATATGATGTTCTCTGTTCAAAAGTAATTGGCAGTGATTGGCCAGGCGCAGTGGC AGCTACTTGGGAGGCTGAGGCAGGAGTTGGCATGAACCTGGGAGGCAGAGCTTGCAGTGAGCTGAGATTGCGCC

PCT/US2003/028547

51/6881 FIGURE 49

MEVTGDAGVPESGEIRTLKPCLLRRNYSREQHGVAASCLEDLRSKACDILAIDKSLTPVTLVLAEDGTIVDDDDY FLCLPSNTKFVALASNEKWAYNNSDGGTAWISGESFDVDETDSGAGLKWKNVARQLKEDLSSIILLSEEDLQMLV DAPCSDLAQELRQSCATVQRLQHTLQQVLDQREEVRQSKQLLQLYLQALEKEGSLLSKQEESKAAFGEEVDAVDT GISRETSSDALASHILTALREKQAPELSLSSQDLELVTKEDPKALAVALNWDIKKTETVQEACERELALRLQQT QSLHSLRSISASKASPPGDLQNPKRARQDPT

PCT/HS2003/028547

FIGURE 50

GACCTGCAGCCTGTGGCCCGGCCAGGCCCTGTCGCTGCAGGTGGAGCAGCTGCTCCACCACCGGCGCTCGCGCTA CCAGGACATCCTCGTCTTCCGCAGTAAGACCTATGGCAACGTGCTGGTGTTGGACGGTGTCATCCAGTGCACGGA GAGAGACGAGTTCTCCTACCAGGAGATGATCGCCAACCTGCCTCTCTGCAGCCACCCCAACCCGCGAAAGGTGCT GATCATCGGGGGCGGAGATGGAGGTGTCCTGCGGGAGGTGGTGAAGCACCCCTCCGTGGAGTCCAGTG TGAGATGGAGGAGGATGTCATCCAAGTCTCCAAGAAGTTCCTGCCAGGCATGGCCATTGGCTACTCTAGCTCGAA GGTGACCCTACATGTGGGTGACGGTTTTGAGTTCATGAAACAGAATCAGGATGCCTTCGACGTGATCATCACTGA CTCCTCAGACCCCATGGGCCCCGCAAAGTCTCTTCAAGGAGTCCTATTACCAGCTCATGAAGACAGCCCTCAA GGAAGATGGTGTCCTCTGCTGCCAGGGCGAGTGCGAGTGGCTGCACCTGGACCTCATCAAGGAGATGCGGCAGTT $\tt CTGCCAGTCCCTGTTCCCCGTGGTGGCCTATGCCTACTGCACCATCCCCACCTACCCCAGCGGCCAGATCGGCTT$ CATGCTGTGCAGCAAGAACCCGAGCACGAACTTCCAGGAGCCGGTGCAGCCGCTGACACAGCAGCAGGTGGCGCA GATGCAGCTGAAGTACTACAACTCCGACGTGCACCGCGCCGCCTTTGTGCTGCCCGAGTTTGCCCGCAAGGCCCT GAATGATGTGAGC<u>TGA</u>GCCCAGGCGCCACCACTGATGCCACCCAGGACCTCGGACCTTGGAGCCTGCGGGGTGCC TGTGTACAGCGCCATCTCTCTGCCTTCTGTTGCCCCCG

PCT/US2003/028547

53/6881 FIGURE 51

MEPGPDGPAASGPAAIREGWFRETCSLWPGQALSLQVEQLLHHRRSRYQDILVFRSKTYGNVLVLDGVIQCTERD EFSYQEMIANLPLCSHPNPRKVLIIGGGDGGVLREVVKHPSVESVVQCEIDEDVIQVSKKFLPGMAIGYSSSKVT LHVGDGFBFMKQNQDAFDVIITDSSDFMGFABSLFKESYYQLKKTALKEDGVLCCQGECEWLHLDLIKEMRQFCQ SLFPVVAYAYCTIPTYPSGQIGFMLCSKNPSTNFQEPVQPLIQQQVAQMQLKYYNSDVHRAAFVLPEFARKALND VS

PCT/HS2003/028547

54/6881 FIGURE 52

PCT/US2003/028547

55/6881 FIGURE 53

MPLTPTVQGFQWILRGPDVETSPLGAPRAASHGVG

PCT/US2003/028547

56/6881 FIGURE 54

AGATGGAAGATGAGGAGGTCGCTGAGAGCTGGGAAGAGGCGGCAGACAGCGGGGAAATCCAAATCTCCTCCCAAA GTGCCCATTGTGATTCAGGACGATAGCCTTCCCGCGGGGCCCCCTCCACAGATCCGCATCCTCAAGAGGCCCACC GCCGAGTACGCCGAGGCCCGGAAGCGGATCCTGGGCAGCGCCAGCCCCGAGGAGGAGCAGGAGAAACCCATCCTC GATGGGTCTCAAGGCTTCAAACAGCGCAGATAAATGCAGGCAAGAAAAGATGCCGCCGTTGCTGCCGTCACCGCC TCCTGGGTCGTCCGCCACGGGTTGCACTGCCGTGGCAGACAGCTGGACTTGAGCAGAGGGAACGACCTGACTTAC TTGCACTGTGATCCCCCTTGCTCCGCCCACTGTGACCCTTGAACCCCATGCACTGTGACCTCCCCCCTTCTCCCCC TTCCCACTGTGATTGGCACATCGACAAGGGCTGTCCCAAGTCAATGGAAAGGGAAAGGGTGGGGGTTAGGGGAAG GTTGGGGGGACCCAGCAAGGACTCAGAGAGTCAGACAGTGCCACTTGGCCACTTGGGGTAAAGCCAGTGCCAGCA AAGGGTAGTTTGGTAGTCTACTTAAAAATGTTTCTGGGAAATTCACTAGAAACATTAACCAATAGGATTTTGGTG AGCTTAGCTTCTGTATTCCTACTGCCGCCCAGAAAAGGGGCAGGGCTCTGCAGCCGCCAGGACAGACGAGCACCC TTCCCATACCCCTCAGGGTGGTTCCCTACCAGCCAGGCTTACTACTTCTAGAAGAAAGCAGAGTGCCAGGGAGTG A GATTGCATCCCTGGGCTTAGAAGTGACGGAGAGAGACTTGTTTAGTATTTTGCCATCAGCACAAGGAAAACCAGGAGAGAGTCTGCCTCCAGGACTCTGAGCCTTCTGCCTCGTATGTTCAGAAGGTGGATAGGTCTTCCCACTCCAG ATTTCCTGTGTGCAATCAGTACCTTGAAGGCAGAACATTCTGAATAAAGTTGGAAAAAGAACA

PCT/IIS2003/028547

57/6881 FIGURE 55

AAGCCCCCGAGCCCAGTGTGTCTGGACCTTTTCCCTGTTGCCCCAGAGGAGCTTCGGGCTCCTGGCAGCCGCTGG TCCCTGGGGACCCCTGCCCCTCTCCAAGGGTTGCTATGGCCATTATCCCCAGGAGGCTCAGATACAGAGATCACC AGCGGGGGGATGCGGCCCAGCAGGGCTGGCAGCTGGCCACACTGTCCTGGTGCCCAGCCCCCAGCTCTGGAGGGA ATGCGGGTGTACCAGCGTGAAGAGGTCCCCGGCTGCCCCGAGGCCCACGCTGTCTTCCTAGAGCCTGGCCAGGTA GTGCAAGAGCAGGCCCTGAGCACAGAGGAGCCCAGGGTGGAGTTGTCTGGGTCCACCCGAGTGAGCCTCGAAGGT CCTGAGCGGAGGCGCTTCTCGGCATCGGAGCTGATGACCCGGCTGCACTCTTCTCTGCGCCTGGGGCGGAATTCA GCAGCCCGGGCACTCATCTCTGGGTCAGGCACCGGAGCAGCCCGGGAAGGGAAAGCATCTGGAATGGAGGCTCGA AGTGTAGAGATGAGCGGGGACCGGGTGTCGCGGCCAGCCCCTGGTGACTCACGAGAGGGCGATTGGTCCGAGCCC AGGCTAGACACACGGAAGAGCCGCCTTTGGGGTCCAGGAGCACCAACGAGCGGCGCCAGTCTCGATTCCTCCTT AACTCCGTCCTCTATCAGGAATACAGCGACGTGGCCAGCGCCCGCGAACTGCGGCGGCAGCAGCGCGAGGAGGAG TTCCGGGCGCAGCGCTCGGCGCAGGCTCCACCTTCTCGCTGTGGCAGGATATCCCCGACGTACGCGGCAGCGC GTCCTGGCCACGCTGAGCCTGCGGGACTGCAAGCTGCAGGAGGCCAAGTTTGAGCTGATCACCTCCGAGGCCTCC TACATCCACAGCCTGTCGGTGGCTGTGGGCCACTTCTTAGGCTCTGCCGAGCTGAGCGAGTGTCTGGGGGCGCAG CACAAGCAGTCGCTCTTTTCCAAACTGCCCGAGGTCAAGAGCACCAGCGAGAGGTTCCTGCAGGACCTGGAGCAG CGGCTGGAGGCAGATGTGCTGCGCTTCAGCGTGTGCGACGTGGTGCTGGACCACTGCCCGGCCTTCCGCAGAGTC TACCTGCCCTATGTCACCAACCAGGCCTACCAGGAGCGCACCTACCAGCGCCTGCTCCTGGAGAACCCCAGGTTC TTCCAGAGGATCACCCGCCTCAAGATGTTGGTGGAGAACATCCTGAAGCGGACAGCACAGGGCTCTGAAGACGAA GACATGGCCACCAAGGCCTTCAATGCGCTCAAGGAGCTGGTGCAGGAGTGCAATGCTAGTGTACAGTCCATGAAG AGGACAGAGGAACTCATCCACCTGAGCAAGAAGATCCACTTTGAGGGCAAGATTTTCCCGCTGATCTCTCAGGCC GCCGTTTTCGTCCATGCCAAGATGGCTGAGCTGCAGGTGCGGGACCTGAGCCTGAAGCTGCAGGGCATCCCCGGC GAGAAGCAGCGATGGATCTCAGCCTTGTGCCCCTCCAGCCCCCAGGAGGACAAGGAGGTCATCAGTGAGGGGGAAA GATTGCCCCCAGGTTCAGTGTGTTAGGACATACAAGGCACTGCACCCAGATGAGCTGACCTTGGAGAAAGACTGAC ATCCTGTCAGTGAGGACCTGGACCAGTGACGGCTGGCAGGGGTCCGCCTGGCAGATGGTGAGAAGGGGTGG ACAAGTGCCACCAGCAAACTGGGGGAGGCTCCTGTGTGATGGGCAGCCATGGCCTAGGACCCCACCTCCATGCCT ${\tt GGCTCCTGGATGGTCCTGGAGGGGCCTGCAGTGTCTCCATTCCCCAAGCTGCTCCTGCTGCACTTCGCTTCTGT}$ GGCCTTGGCATTGAGGGCACAGGCTGGACACAGGAATGGGGGCGCCTCCAGAGGGTCTCTCCGTCCTCATGCTCC CTCC

PCT/HS2003/028547

58/6881 FIGURE 56

MDCGPPATLQPHLTGPPGTAHHPVAVCQQESLSFAELPALKPPSPVCLDLFPVAPEELRAPGSRWSLGTPAPLQG
LLWPLSPGGSDTEITSGGMRPSRAGSWPHCPGAQPPALEGPWSPRHTQPQRRASHGSEKKSAWRKMRVYQREEV
GCPEAHAVFLEPGGVVQEQALSTEEPRVELSGSTRVSLEGPERRFSASELMTRLHSSLRLGRNSAARALISGS
GTGARRGKASGMEARSVEMSGDRVSRPAPGDSREGGWSEPRLDTQEEPPLGSRSTNERRGSRFLLNSVLYQEYSD
VASARELRRQQREEEGPGDEAEGAEGGFGPPRANLSPSSSFRAQRSARGSTFSLWODIPDVRGSGVLATLSLRDC
KLQEAKFELITSEASYHBISVAVGHFLGSAELSECLGAQDKQWLFSKLPEVKSTSERFLQDLEQRLEADVLRFS
KLQEAKFELITSEASYHBISVAVGHFLGSAELSECLGAQDKQWLFSKLPEVKSTSERFLQDLEQRLEADVLRFS
VCDVVLDHCPAFRRVYLPYVTNQAYQERTYQRLLLENPRFFGILARLEESPVCQRLPLTSFLLIFPGIITRLKML
VENILKRTAQGSEDEDMATKAFNALKELVQECNASVQSMKRTEELIHLSKKHFEGKIFFLISQARWLVRHGGEV
ELAPLBAAPPAKLKLSSKAVYLHLENDCLLLSRRKELGKFAVFVHAKMAELQVRDLSKLQGIPGHVFLLQLHG
GMKHGPLLRARTSSEKGRVISALCPSSPQEDKEVISGEEDCPQVQCVRIYKALHPDELTLEKTDILSVRTWTSD
GWLEGVYRLADGEKGWVPQAYVEEISSLSARLRNLRENKRVTSATSKLGEAPV

PCT/IIS2003/028547

59/6881 FIGURE 57A

GAAGTTGCGCGCAGGCCGGCGGGCGGAGCGGACACCGAGGCCGGCGTGCAGGCGTGCGGGTGTGCGGGAGCCGG GCTCGGGGGGATCGGACCGAGAGCGAGAAGCGCGGCATGGAGCTCCAGGCAGCCCGCGCCTGCTTCGCCCTGCTG TGGGGCTGTGCGCTGGCCGCGCCGCGCGCGCGCGCAGGGCAAGGAAGTGGTACTGCTGGACTTTGCTGCAGCTGGA ATCTACATGTACTCCGTGTGCAACGTGATGTCTGGCGACCAGGACAACTGGCTCCGCACCAACTGGGTGTACCGA GGAGAGGCTGAGCGTATCTTCATTGAGCTCAAGTTTACTGTACGTGACTGCAACAGCTTCCCTGGTGGCGCCAGC TCCTGCAAGGAGACTTTCAACCTCTACTATGCCGAGTCGGACCTGGACTACGGCACCAACTTCCAGAAGCGCCTG TTCACCAAGATTGACACCATTGCGCCCGATGAGATCACCGTCAGCAGCGACTTCGAGGCACGCCACGTGAAGCTG AACGTGGAGGAGCGCTCCGTGGGGCCGCTCACCCGCAAAGGCTTCTACCTGGCCTTCCAGGATATCGGTGCCTGT GTGGCGCTGCTCCCGTCCGTGTCTACTACAAGAAGTGCCCCGAGCTGCTGCAGGGCCTGGCCCACTTCCCTGAG ACCATCGCCGGCTCTGATGCACCTTCCCTGGCCACTGTGGCCGGCACCTGTGTGGACCATGCCGTGGTGCCACCG GGGGGTGAAGAGCCCCGTATGCACTGTGCAGTGGATGGCGAGTGGCTGGTGCCCATTGGGCAGTGCCTGTGCCAG GCAGGCTACGAGAAGGTGGAGGATGCCTGCCAGGCCTGCTCGCCTGGATTTTTTAAGTTTGAGGCATCTGAGAGC CCCTGCTTGGAGTGCCCTGAGCACACGCTGCCATCCCCTGAGGGTGCCACCTCCTGCGAGTGTGAGGAAGGCTTC TTCCGGGCACCTCAGGACCCAGCGTCGATGCCTTGCACACGACCCCCCTCCGCCCCACACTACCTCACAGCCGTG GGCATGGGTGCCAAGGTGGAGCTGCGCTGGACGCCCCCTCAGGACAGCGGGGGCCGCGAGGACATTGTCTACAGC GTCACCTGCGAACAGTGCTGGCCCGAGTCTGGGGAATGCGGGCCGTGTGAGGCCAGTGTGCGCTACTCGGAGCCT CCTCACGGACTGACCCGCACCAGTGTGACAGTGAGCGACCTGGAGCCCCACATGAACTACACCTTCACCGTGGAG CCCCCAAGGTGAGGCTGGAGGGCCGCAGCACCACCTCGCTTAGCGTCTCCTGGAGCATCCCCCCGCCGCAGCAG AGCCGAGTGTGGAAGTACGAGGTCACTTACCGCAAGAAGGGAGACTCCAACAGCTACAATGTGCGCCGCACCGAG GGCCAGGGGGCCGCAGCAAGGTGCACGAATTCCAGACGCTGTCCCCGGAGGGATCTGGCAACTTGGCGGTGATT GGCGGCGTGGCTGTCGGTGTCCTGCTTCTGGTGCTGGCAGGAGTTGGCTTCTTTATCCACCGCAGGAGGAAG AACCAGCGTGCCCGCCAGTCCCCGGAGGACGTTTACTTCTCCAAGTCAGAACAACTGAAGCCCCTGAAGACATAC ACTCGGCAGAAGGTGATCGGAGCAGGAGAGTTTGGGGAGGTGTACAAGGGCATGCTGAAGACATCCTCGGGGAAG AAGGAGGTGCCGGTGGCCATCAAGACGCTGAAAGCCGGCTACACAGAGAAGCAGCGAGTGGACTTCCTCGGCGAG GCCGGCATCATGGGCCAGTTCAGCCACCACAACATCATCCGCCTAGAGGGCGTCATCTCCAAATACAAGCCCATG ATGATCATCACTGAGTACATGGAGAATGGGGCCCTGGACAAGTTCCTTCGGGAGAAGGATGGCGAGTTCAGCGTG CTGCAGCTGGTGGGCATGCTGCGGGGCATCGCAGCTGGCATGAAGTACCTGGCCAACATGAACTATGTGCACCGT GACCTGGCTGCCCGCAACATCCTCGTCAACAGCAACCTGGTCTGCAAGGTGTCTGACTTTGGCCTGTCCCGCGTG CTGGAGGACGACCCCGAGGCCACCTACACCACCAGTGGCGGCAAGATCCCCATCCGCTGGACCGCCCGGAGGCC ATTTCCTACCGGAAGTTCACCTCTGCCAGCGACGTGTGGAGCTTTTGGCATTGTCATGTGGGAGGTGATGACCTAT GGCGAGCGGCCCTACTGGGAGTTGTCCAACCACGAGGTGATGAAAGCCATCAATGATGGCTTCCGGCTCCCCACA TTCGCTGACATCGTCAGCATCCTGGACAAGCTCATTCGTGCCCCTGACTCCCTCAAGACCCTGGCTGACTTTGAC CCCCGCGTGTCTATCCGGCTCCCCAGCACGAGCGGCTCGGAGGGGGTGCCCTTCCGCACGGTGTCCGAGTGGCTG ATGACCAACGACGACATCAAGAGGATTGGGGTGCGGCTGCCCGGCCACCAGAAGCGCATCGCCTACAGCCTGCTG GGACTCAAGGACCAGGTGAACACTGTGGGGATCCCCATCTGAGCCTCGACAGGGCCTGGAGCCCCATCGGCCAAG TTCCTCCCCTGCAACTTCCGCTGAGGGGTCTCGGATGACACCCTGGCCTGAACTGAGGAGATGACCAGGGATGC TGGGCTGGGCCCTCTTTCCCTGCGAGACGCACACAGCTGAGCACTTAGCAGGCACCGCCACGTCCCAGCATCCCT GGAGCAGGAGCCCCGCCACAGCCTTCGGACAGACATATGGGATATTCCCAAGCCGACCTTCCCTCCGCCTTCTCC CACATGAGGCCATCTCAGGAGATGGAGGGCTTGGCCCAGCGCCAAGTAAACAGGGTACCTCAAGCCCCATTTCCT CACACTAAGAGGCCAGACTGTGAACTTGACTGGGTGAGACCCAAAGCGGTCCCTGTCCCTCTAGTGCCTTCTTTA GACCCTCGGGCCCCATCCTCATCCCTGACTGGCCAAACCCTTGCTTTCCTGGGCCTTTGCAAGATGCTTGGTTGT

PCT/US2003/028547

60/6881 FIGURE 57B

PCT/US2003/028547

FIGURE 58

PCT/US2003/028547

62/6881 FIGURE 59

PCT/IIS2003/028547

63/6881 FIGURE 60

PCT/US2003/028547

64/6881 FIGURE 61

MIRTLLLSTLYAGALSCGDPTYPPYVTRVVGGEEARPNSWPWQVSLQYSSNGKWYHTCGGSLIANSWVLTAAHCI SSSRTYRVGLGRHNLYVAESGSLAVSVSKIVVHKDWNSNQISKGNDIALLKLANPVSLTDKIQLACLPPAGTILP NNYPCYVTGWGRLQITNGAVPDVLQQGRLLVVDYATCSSSAWWGSSVKISMICAGGDGVISSCNGDSGGPLNCQAS DGRWOYHGIVSFGSRLGGVYYHKPSVTTRVSNYIDWINSVIANN

PCT/IIS2003/028547

65/6881 FIGURE 62

CGGACGCGTGGGCCCAAGGCGAGTGCCGCGCGGGCCACCATGCCCACGGACGAGCTGGCCACCAAGCTGAG CCGGCGGCTGCAGATGGAGGGCGAGGGCGGCGGCGAGACCCCGGAGCAGCCCGGGCTGAACGGGGCAGCGGCGGC GGCGGCGGGGCACCCGACGAGGCGCCGAGGCGCTGGGCAGCGCGACTGCGAGCTGAGCCCCAAGCTGCTGCG GCGCGCAGACCTCAACCAGGGCATCGGCGAGCCCCAGTCGCCCAGCCGCCGCTCTTCAACCCCTACACCGAGTT CATCGACCTGATGGAGCTAAAACTCATGATGGAGAAACTTGGGGCCCCTCAGACCCACCTGGGCCTGAAAAACAT GATCAAGGAGGTGGATGAGGACTTTGACAGCAAGCTGAGCTTCCGGGAGTTCCTCCTGATCTTCCGCAAGGCGGC GGCCGGGGAGCTTCAGGAGGACAGCGGGCTGTGCGTGCTGGCCCGCCTCTCTGAGATCGACGTCTCCAGTGAGGG TGTCAAGGGGGCCAAGAGCTTCTTTGAGGCCAAGGTCCAGGCCATCAACGTGTCCAGCCGCTTCGAGGAGAGAT GGGAGGCCGAGCCTGAATCCTTGCCTGTGTCTGACGGGACCACTACTAAAAAACCTAAAAAATATCTGTGAATGGAG CAAGTTCAGGGGTCTTATGGAGGTGGCCCGGCCCCTCCCCGCTCCCTTCCACTCTGCACGAGGCCGCCACACCGG ACATCCCTGTCCCCCAACCCGGGAACCCCTGCCCTCCTCCAGCAGGCCGCACCGCCCCTGGGGCCCCTGCCAG CCCCTTCCCAGGCTGGGAGACAGCAGAAGAGATAGAATCAGGGCTGCCCCCACAGAGTGGGACCCAAGGGGCTAA TTGGAGGCACGAGGGACCCCTCCCCAGGGCCTTTTCCTCCTCTGCGTCTTCCATCTACTGAAATGGGAGAGGGG $\tt GTGGGGAGCTTCTGTTCTGGTGAAGGGACCCGGGCAGGCCCCCAGGACCCCATGCTGACTTGGAGAACCCCAGAT$ CTCTGGGGCCCAGCCAGGCAGGTGTGGGGGCAGCTGTGCCAATCTACCTCACAGGCCCACCCCTGCCGGGCAT GAGGGTCTCGGGGCTCTGGAGAGAGTGGGGCGGAGGAGAAGAATTGGCACCTTCCTAGGGAAGGAGACGAGCGCTT CGCCTTGATTCTCCGAGAAGCCTCCGAGAAGTGCTTTAAGTGTGTTTTGCATGCGCCAGGCGGTGGGCAGCGGGGG CCACCCCTGAGGAAGCATGGGGACCCTAACACCCTGGTGCCCTGCACCAGACAGGCCGTGGTCAGGCCCAGGCC GTGTCATAACGACGTCACTGCTTTTTAAACTCGATAACTCTTTATTTTAGTAAAATGCCCAGGAGTCCTGGAAGC TACGCGGACTTGCAGAGGTTTTATTTTTTGGCCTTAGAATCTGCAGAAATTAGGAGGCACCGAGCCCAGCGCAGC ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

PCT/IIS2003/028547

66/6881 FIGURE 63

MATDELATKLSRRLQMEGEGGGETPEQPGLNGAAAAAGAPDEAAEALGSADCELSAKLLRRADLNQGIGEPQSP SRRVFNPYTEFKEFSRKQIKDMEKMFKQYDAGRDGFIDLMELKLMMEKLGAPQTHLGLKNMIKEVDEDFDSKLSF REFLLIFRKAAAGELQEDSGLCVLARLSEIDVSSEGVKGAKSFFEAKVQAINVSSRFEEEIKAEQEERKKQAEEM KORKAAFKELQSTFK

PCT/US2003/028547

67/6881 FIGURE 64

GCCTCCCACTTGGTTGCTCGTACGCGGCTAGTGGGTCCTCAGTGGATGTAGGCTGGGCGCCGCGATGTTGGACGG GACACCGGCGGAGAGCGACCTCGGGGTTAAGGGGTGGGGCTGACGTCAGGAGCCAAGATGGCGGCGGTGGTCGCC GCTGCAGCCACAGCTCCCCGTATCAAGAAATTTGCCATCTATCGATGGGACCCAGACAAGGCTGGAGACAAACCT CATATGCAGACTTATGAAGTTGACCTTAATAAATGTGGCCCCATGGTATTGGATGCTTTAATCAAGATTAAGAAT GAAGTTGACTCTACTTTGACCTTCCGAAGATCATGCAGAGAAGGCATCTGTGGCTCTTGTGCAATGAACATCAAT GGAGGCAACACTCTAGCTTGCACCCGAAGGATTGACACCAACCTCAATAAGGTCTCAAAAAATCTACCCTCTTCCA CACATGTATGTGATAAAGGATCTTGTTCCCGATTTGAGCAACTTCTATGCACAGTACAAATCCATTGAGCCTTAT TTGAAGAAGAAGAAGGATGAATCTCAGGAAGGCAAGCAGCAGTATCTGCAGTCCATAGAAGAGCGTGAGAAACTGGAC GGGCTCTACGAGTGCATTCTCTGTGCCTGTAGCACCAGCTGCCCCAGCTACTGGTGGAACGGAGACAAATAT CTGGGGCCTGCAGTTCTTATGCAGGCCTATCGCTGGATGATTGACTCCAGAGATGACTTCACAGAGGAGCGCCTG GCCAAGCTGCAGGACCCATTCTCTCTATACCGCTGCCACACCATCATGAACTGCACAAGGACCTGTCCTAAGGGT CTGAATCCAGGGAAAGCTATTGCAGAGATCAAGAAAATGATGGCAACCTATAAGGAGAAAAGCTTCAGTTTAA CTGTTTCCATGCTAAACATGATTTATAACCAGCTCAGAGCTGAACATAATTTATATCTAATTTGAGTTCCTTTAA AGATCTTGGTTTTCCATGAATACAGCATGTATAAAAAATTTTAAGAAATAAAATGTTATTCTACTTTATTAACA AAAAA

PCT/US2003/028547

68/6881 FIGURE 65

MAAVVALSLRRRLFATTLGGACLQASRGAQTAAATAPRIKKFAIYRWDFDKAGDKPHMQTYEVDLNKCGPMVLDA LIKIKNEVDSTLTFRSCREGIGGSCAMNINGONTLACTRRIDINLNKVSKIYPLPHMYVIKDLVPDLSNFYAQY KSIEPYLKKKDESGEKQQYLQSIEEREKLDGLYECILCACCSTSCFSYWWNGDKYLGPAVLMQAYRWMIDSRDD FTEERLAKLQDFFSLYRCHTIMNCTRTCPKGLMPCKAIAEIKKMMATYKEKKASV

PCT/HS2003/028547

FIGURE 66

GCATCCCACCAGCGGGTGTGTGTGGCTGGCGTGGAGACCCTCGTGGACATTTATGGGTCAGTGCCTGAGGGCAC AGAAATGTTTGAGGTCTATGGGACGCCTGGCGTGGACATCTACATCTCTCCCAACATGGAGAGGGGCCCGGGAGCG TGCAGACACCAGGCGGTGGCGCTTTGACGCGACTTTGGAGATCATCGTGGTCATGAACTCCCCCAGCAATGACCT CAACGACAGCCATGTTCAGATTTCCTACCACTCCAGCCATGAGCCTCTGCCCCTGGCCTATGCGGTGCTCTACCT CACCTGTGTTGACATCTCTCTGGATTGCGACCTGAACTGTGAGGGAAGGCAGGACAGGAACTTTGTAGACAAGCG GCAGTGGGTCTGGGGGCCCAGTGGGTATGGCGGCATCTTGCTGGTGAACTGTGACCGTGATGATCCGAGCTGTGA GCAGGGCCCTGCAGCCCTCTTTGATGACCACAAACTTGTCCTCCATACCTCCAGCTATGATGCCAAACGGGCACA GGTCTTCC&C&TCTGCGGTCCTGAGGATGTGTGTGTGAGGCCTATAGGCATGTGCTGGGCCAAGATAAGGTGTCCTA TGAGGTACCCCGCTTGCATGGGGATGAGGAGCGCTTCTTCGTGGAAGGCCTGTCCTTCCCTGATGCCGGCTTCAC AGGACTCATCTCCTTCCATGTCACTCTGCTGGACGACTCCAACGAGGATTTCTCGGCATCCCCTATCTTCACTGA CACTGTGGTGTTCCGAGTGGCACCCTGGATCATGACGCCCAGCACTCTGCCACCCCTAGAGGTGTATGTGTGCCG TGTGAGGAACAACACGTGTTTTGTGGATGCGGTGGCAGAGCTGGCCAGGAAGGCCGGCTGCAAGCTGACCATCTG CCCACAGGCCGAGAACCGCAACGACCGCTGGATCCAGGATGAGATGGAGCTGGGCTACGTTCAGGCGCCGCACAA GACCCTCCCGGTGGTCTTTGACTCCCCAAGGAATGGGGAACTGCAGGATTTCCCTTACAAAAGAATCCTGGGTCC AGATTTTGGTTACGTGACTCGGGAACCACGCGACAGGTCTGTGAGTGGCCTGGACTCCTTTGGGAACCTGGAGGT AAGTGGCCGCAGGGTCACCCAGGTGGTGCGGGACTTCCTCCATGCCCAGAAGGTGCAGCCCCCCGTGGAGCTCTT TGTGGACTGGTTGGCCGTGGGCCATGTGGATGAGTTTCTGAGCTTTGTCCCTGCCCCCGATGGGAAGGGCTTCCG GA TGCTCCTGGCCAGCCCTGGGGCCTGCTTCAAGCTCTTCCAGGAAAAGCAGAAGTGTGGCCACGGGAGGGCCCT ${\tt CCTGTTCCAGGGGGTTGTTGATGATGAGGCAGGTCAAGACCATCTCCATCAACCAGGTGCTCTCCAATAAAGACCT}$ CATCAACTACAATAAGTTTGTGCAGAGCTGCATCGACTGGAACCGTGAGGTGCTGAAGCGGGAGCTGGGCCTGGC AGAGTGTGACATCATTGACATCCCACAGCTCTTCAAGACCGAGAGAAAAAAAGCAACGGCCTTCTTCCCTGACTT GGTGAACATGCTGGTGCTGGGGAAGCACCTGGGCATCCCCAAGCCCTTTGGGCCCATCATCAATGGCTGCTGCTG CCTGGAGGAGAAGGTGCGGTCCCTGCTGGAGCCGCTGGGCCTCCACTGCACCTTCATTGATGACTTCACTCCATA CCACATGCTGCATGGGGAGGTGCACTGTGGCACCAATGTGTGCAGAAAGCCCTTCTCTTTCAAGTGGTGGAACAT CAGGCCCCTGAACGATAAGCACCAAGAGACCCCAAGGCTCCAGATGGAACACTGAGGGTGACCGTCCCTCTCAGA AGCCTTTTCCCTGGAAGTGTCCATGCCTCACCTGCAACCCATGTGGTTCTCAGACTTGAATCTTCTCGGCCCCCC CA A A TO A TO CA TITUGGG A CA A A TO CA CA TITUGG G TO TAGA A CA TO CACGTA TO TO A TO CACGA CA TO TITUGT CO T TGCATCCTAACAGAGGAAGGATCCATGATTCTGCTTTGGTCCAATTGCTTCCTCTCTGCAGAGGAACAACCCTAA AACCAGACCACTCCACGCAGGACAGGCAGGAGAGATTCTTCCTAAAGCCTCCCCCATAAAAAGGGAGCTGTGGAT CCACTTAGATCAGGGCGGAACCATCTTTCACCCGGCCAAGCTCCTGCCCAGATGTTGACCCTCACCCAGCGTGAG CTGTCACATAGTAGGAGCTTCTAGATGCATGTGGAAGCAATGAGAGTTGTCCCTTAGCCTTATAAACTCCCCATG ATCTGACATGCAGAAATCCAGCCTTGTCCAGAATCCTCCTGGAATTTCTTGGAGACGAAAGTATCTGGGGGATTG TTGGGTACTAGGGAGACTGGGTACAAGGGTGAAAAGTAGTTCCCATAATACACATGGTTGACTATGGTGATCCAC AACGCTGCCTCTCCTGGATTGGTCTCAGGCTCTCTGTTGGCCTTTGGTCAGCGTTTCCACATCCTGCTCTGCT GCAGGAGAGGGGGCTAAGGGGCTGGATCCACCAAGGCAGCTCACAGCGGGAAAACTCTGGGAATGAACCACTGAA TTCAGGGGATGGGGGGGGGGGGGGGTTCTCGAGGTGTGTGCCAGCTACACGTGTGTTCTGTATGGGTCCAGCTG CGTTTCCATCACTCGCTAATAAATCAACAGAAACAC

PCT/IIS2003/028547

70/6881 FIGURE 67

TCAACGCCTCCCCAGGGGTGGTCGTGGATATTGCCCACGGCCCTCCAGCCAAGAAGAAATCCACAGGTTCCTCCA CATGGCCCCTGGACCCTGGGGTAGAGGTGACCCTGACGATGAAAGTGGCCAGTGGTAGCACAGGCGACCAGAAGG TTCAGATTTCATACTACGGACCCAAGACTCCACCAGTCAAAGCTCTACTCTACCTCACCGGGGTGGAAATCTCCC TGTGCGCAGACATCACCCGCACCGGCAAAGTGAAGCCAACCAGAGCTGTGAAAGATCAGAGGACCTGGACCTGGG GCCCTTGTGGACAGGGTGCCATCCTGCTGGTGAACTGTGACAGAGACAATCTCGAATCTTCTGCCATGGACTGCG AGGATGATGAAGTGCTTGACAGCGAAGACCTGCAGGACATGTCGCTGATGACCCTGAGCACGAAGACCCCCAAGG ACTICTICACAAACCATACACTGGTGCTCACGTGGCCAGGTCTGAGATGGACAAAGTGAGGGTGTTTCAGGCCA CACGGGGCAAACTGTCCTCCAAGTGCAGCGTAGTCTTGGGTCCCAAGTGGCCCTCTCACTACCTGATGGTCCCCG GTGGAAAGCACAACATGGACTTCTACGTGGAGGCCCTCGCTTTCCCGGACACCGACTTCCCGGGGCTCATTACCC TCACCATCTCCCTGCTGGACACGTTCAACCTGGAGCTCCCCGAGGCTGTGGTGTTCCAAGACAGCGTGGTCTTCC GCGTGGCGCCCTGGATCATGACCCCCAACACCCAGCCCCCGCAGGAGGTGTACGCGTGCAGTATTTTTGAAAATG AGGACTICCTGAAGTCAGTGACTACTCTGGCCATGAAAGCCAAGTGCAAGCTGACCATCTGCCCTGAGGAGGAGA ACATGGATGACCAGTGGATGCAGGATGAAATGGAGATCGGCTACATCCAAGCCCCACACAAAACGCTGCCCGTGG TCTTCGACTCTCCAAGGAACAGAGGCCTGAAGGAGTTTCCCATCAAACGCGTGATGGGTCCAGATTTTGGCTATG TAACTCGAGGGCCCCAAACAGGGGGTATCAGTGGACTGGACTCCTTTGGGAACCTGGAAGTGAGCCCCCCAGTCA CAGTCAGGGGCAAGGAATACCCGCTGGGCAGGATTCTCTTCGGGGACAGCTGTTATCCCAGCAATGACAGCCGGC AGATGCACCAGGCCCTGCAGGACTTCCTCAGTGCCCAGCAGGTGCAGGCCCCTGTGAAGCTCTATTCTGACTGGC TGTCCGTGGGCCACGTGGACGAGTTCCTGAGCTTTGTGCCAGCACCCGACAGGAAGGGCTTCCGGCTGCTCCTGG CCAGCCCCAGGTCCTGCTACAAACTGTTCCAGGAGCAGCAGAATGAGGGCCACGGGGAGGCCCTGCTGTTCGAAG GGATCAAGAAAAAAAAAACAGCAGAAAATAAAGAACATTCTGTCAAACAAGACATTGAGAGAACATAATTCATTTG TGGAGAGATGCATCGACTGGAACCGCGAGCTGCTGAAGCGGGAGCTGGCCTGGCCGAGAGTGACATCATTGACA TCCCGCAGCTCTTCAAGCTCAAAGAGTTCTCTAAGGCGGAAGCTTTTTTCCCCAACATGGTGAACATGCTGGTGC TAGGGAAGCACCTGGGCATCCCCAAGCCCTTCGGGCCCGTCATCAACGGCCGCTGCTGCCTGGAGGAGAAGGTGT GTTCCCTGCTGGAGCCACTGGGCCTCCAGTGCACCTTCATCAACGACTTCTTCACCTACCACATCAGGCATGGGG AGGTGCACTGCGGCACCAACGTGCGCAGAAAGCCCTTCTCCTTCAAGTGGTGGAACATGGTGCCCTGAGCCCATC ACTCTGAAGATCCCAACATGGTCCTAGCACTGCACACTCAGTTCTGCTCTAAGAAGCTGCAATAAAGTTTTTTTA AGTCACTTTGTAC

PCT/IIS2003/028547

71/6881 FIGURE 68A

CCTCCGATCCGTCTTTTAGTTGCTTCTCTTCTTTTTTCTCTCCGGTTTCTCATCACTCCAACCAGCCGCGACCA TGCCCAGGAAGAAGGCGGCGGCGGCGGCCTGGGAGGAGCCGAGCTCGGGCAACGGCACTGCCCGCGCCCGGGCCCA GGAAACGCGGCGGCCCGGCGGGAAGCGCGAGCGCCCGAGCGCTGCAGTAGCAGCAGCGGCGGCGGCAGCA GCAAGGCGGGCGGCCGTGGTCATCACCGAACCCGAGCACCAAGGAGCGCGTCAAACTTGAAGGGTCAA AGTGCAAAGGGCAGCTTTTGATTTTTTGGGGCAACCAACTGGGACTTGATTGGTCGAAAAGAAGTGCCTAAACAGC AAGCTGCTTACCGCAATCTCGGTCAGAATTTGTGGGGGCCCCACAGATATGGGTGCCTGGCGGGGTCCGGGTGC GGACAGTGGTCTCGGGCTCGTGTGCTCCACACAGCCTCCTCATCACCACGGAAGCGGAAGCTGTGGAGCTGGGGTC GAAATGAGAAGGGCAGCTGGGACATGGTGACACCAAGAGAGTAGAAGCCCCTAGACTCATCGAGGGTCTTAGCC ACGAAGTGATTGTGTCTGCAGCATGTGGGCGGAACCACCTTGGCCTTGACGGAAACGGGCTCCGTGTTTGCGT ACAACGGCCAGCCAATTACCAAAATGGCCTGTGGGGCTGAATTCAGTATGATAATGGACTGCAAAGGAAACCTCT ATTCCTTTGGGTGCCCTGAATATGGTCAGCTGGGACACAACTCAGATGGGAAGTTCATCGCCCGGGCACAGCGGA TAGAGTACGACTGTGAACTAGTTCCCCGGCGAGTGGCCATCTTCATTGAGAAGACGAAAGATGGACAGATTCTGC CTGTACCAAACGTGGTTGTACGAGACGTGGCCTGTGGCGCTAACCACACGCTGGTCCTGGACTCCCAGAAGCGAG TCTTCTCCTGGGGCTTTGGTGGCTATGGCCGGCTGGGCCACGCAGAGCAGAAGGATGAGATGGTCCCCCGCCTGG TGAAGCTGTTTGACTTCCCTGGGCGTGGGGCTTCCCAGATCTATGCTGGTTACACCTGCTCCTTTGCTGTCAGTG AAGTGGGTGGTCTGTTTTTCTGGGGGGCCACCAACACCTCCCGTGAATCTACCATGTACCCAAAAGCAGTGCAGG ACCTCTGCGGCTGGAGAATTCGGAGCCTGGCTTGTGGGAAGAGCAGCATCATTGTGGCCGCCGATGAGAGCACCA TCAGCTGGGGTCCGTCACCGACCTTTGGGGAACTGGGCTACGGGGACCACAAGCCCAAGTCTTCCACTGCAGCCC AGGAGGTAAAGACTCTGGATGGCATTTTCTCAGAGCAGGTCGCCATGGGCTACTCACACTCCTTGGTGATAGCAA GAGATGAAAGTGAGACTGAGAAAGAGAAGATCAAGAAACTGCCAGAATACAACCCCCGAACCCTCTGATGCTCCC GGAGACTCCTCCGACTCCACACCTCTCGCGGCAGCTGTCATTTCCATGTGCACTGGGACGGGAAGTCAAACGAGG AATTTAAAAAAGCAAAAGTTGACCGAAGGTGCATTTTTGTTTAGACTCCCTGAGGTTCCGTTTTACACATGATCC TTCTTTCTTCCTTTCCTGAATACACTCCCCAAAACACCCCTTTCCAGTTACAATTAGCATCGTGATCCAAGCAGA TGCCACATGGAAGAGGAATCGCCATTTACTCAGAAAAAATGTCCCTTACAGGAACCGGCAGCAGCTAGGCAGTCA CCGGCCCGCCTCCATCCAAAATCACGCTCGCGTGCTTCGGAAGCATCCGGGTCACTCCTTCTCCGCTTTTTCTTG CAGATGGGCCTAGGCCGGTGTCGGTTCTGTTTCTCCCCTTGGCTGCCTGTACGCCCACAGCCTTCTGGCTGCGAC ATTATAGAATCGGCCGTGTCCCCCCTGGTGGGGGATTTGGGGATCTGTTTTAGCCATTTATATCTACTTTAGCTG TTAAAGAGGTCCAAATGAAAATCAGGTGATTGTGGAACCATGGGGACTTGGGGGTGGGGCAGAGGTGGGAACATT TGTATCAGTTGAGTCAGCTTGGTGGCTCCCTGTGGAGCCAGGGCTGAGCCTTGTCACGCGCACTCGCCAATTAAG AGATGGACCAGCCAGCAGTCAAGTGCATTCTCCAGTCCTTGCAAGAAGGATCAGCCCTTTCTGTGCCAGCCTCGA TCGCCTTGTGCTTTGGTCTCTTTTTCTCCCCCCCGCCTGGATCCTGCCTCGCGCGGGCCGTCCTGTTGCTGAGAC TCGGGGTACCGTTCTGCTGACCCAGCTCCCTTTAGTCACGTTTGCTTGGCTCTGGTACCAAATAGTTGGGATTAC CGAAGAGTCCCCTTCCTTGCGTGTCAGCACGGATGCTGTGACTGCCACCTGCGTCCTCGTCAAGTGCCCGAGCTC GCCGCCGTGTGTGCTGCGCTGAGTGAGTTATGAGGTGCCTTTCCCGGAACCCTCCTCTCGCCTGGACCCAAGAGA GGCGACAGCTGTGGCTGGGGCTCTTGGTTTCCAGAGGGTCTGGACTGGTTTGGGTGCTTTAAAATAGATATTTAG TTCAGTGGTGCTTATGGGGGAGATGGGACTAGAACTTAAGTGTGAGACTTGGGTGGATGGGAAAGTTAAATATTG GTCTCTTCAAGTTTTTTTTTTTTTTTTGCTTTGCTTACCACTTGTCACTGTCTCCATGTTAAAATGCCAAAAATGAT GTAGTTGTTGTTTGCTTTTTTCCCTATTTTCCACCCCAGTCGCTCCTTACCGTGACTCCTTGCCCTTGGAGGGCATG TAGCAGTGTCTGTCCTGCCAGTCCCAAGGCCCTGTGGGAGGAGACTGGCCTGCATCTCTCTAAGACTTAGTCTGA CGCCACGCGCATCTCTTGTTCTGTTCAATCAGTAGTCCAGGGGAGAAGCTTCTGCTACTTCAGAGCTTTGCTA AACTAACCTAATTTGTCCAAATCACCCCAAAACCACCATCTCTGACGTAAGCTTCCATGCGACAGCCTGATCCGT TTCCCTGGACAGGTCTCTTTCCTGGAATGCAGCCCAGGCACCTGTGCTCCTGGCACCCTTGAGGTCTCTTCTTTG AGCCGTGGTCACCGAGAGGGTTGAGGACGCAGCACCCGAGGTCCCAGCCTTTGCAGGAGCCTCCCTGGGCTTAGC

PCT/US2003/028547

72/6881 FIGURE 68B

PCT/US2003/028547

73/6881 FIGURE 69

PCT/US2003/028547

74/6881 FIGURE 70

MSDQQLDCALDLMRRLPPQQIEKNLSDLIDLVPSLCEDLLSSVDQPLKIARDKVVGKDYLLCDYNRDGDSYRSPW SNKYDPPLEDGAMESARLRKLEVEANNAFDQYRDLYFEGGYSSVYLWDLDHGFAGYILIKKAGDGSKKIKGCWDS IHVVEVQEKSSGRTAHYKLTSTVMLWLQTNKSGSGTMNLGGSLTRQMEKDETVSDCSPHIANIGRLVEDMENKIR STLNEIYFGKTKDIVNGLRSVQTFADKSKQEALKNDLVEALKRQQC

PCT/IIS2003/028547

75/6881 FIGURE 71

ACGGCCAGTCCGAGACCATCCTGGGCGGCCTGGGGCTCGGGCTGGGCGACTGCAGAGTGAAAATTGCCA CCAAGGCCAACCCTTGGGATGGAAAATCACTAAAGCCTGACAGTGTCCCGGTCCCAGCTGGAGACGTCATTGAAGA ATGCCTGCCAGCGGCTGCACCAGGAGGGCAAGTTCGTGGAGCTTGGCCTCTCCAACTATGCTAGCTGGGAAGTGG CCGAGATCTGTACCCTCTGCAAGAGCAATGGCTGGATCCTGCCCACTGTGTACCAGGGCATGTACAACGCCACCA CCCGGCAGGTGGAAACGGAGCTCTTCCCCTGCCTCAGGCACTTTGGACTGAGGTTCTATGCCTACAACCCTCTGG CTGGGGGCCTGCTGACTGGCAAGTACAAGTATGAGGACAAGGACGGGAAACAGCCTGTGGGCCGCTTCTTTGGGA ATAGCTGGGCTGAGACCTACAGGAATCGCTTCTGGAAGGAGCACCACTTCGAGGCCATTGCGTTGGTGGAGAAGG CAACAGAGGAAGGGCCCCTGGAGCCGGCTGTCGTGGATGCCTTTAATCAAGCCTGGCATTTGGTTGCTCACGAAT CACTGACCAGTCTTGGCCTTAAGCTGACTTAGAAGGGTTTTTCTGAATTGTCTAGATCCATGCATTATTTTTCTA GCTTCCTGCCTTGCTCCCTATTCACTTTACACTGTGAAAGGTGGGGGGTGAGTCCCACTTGAGCGCTTCCTGTTG AATAAAGCAGGCACTTGACCTGGCTGTAGCCTAGGTCTTGAGTGAACCCCAAAAAA

PCT/US2003/028547

76/6881 FIGURE 72

MSRPPPPRVASVLGTMEMGRRMDAPASAAAVRAFLERGHTELDTAFMYSDGQSETILGGLGLGLGGGDCRVKIAT KANPWDGKSLKPDSVRSQLETSLKRLQCPQVDLFYLHTPDHGTPVEETLHACQRLHQEGKFVELGLSNYASWEVA EICTLCKSNGWILPTVYGGMYMATTRQVETELFSCHRFGLRFYAYNPLAGGLLTGKYKYEDKDGKQPVGRFFGN SWAETYRNRFWKEHHFEAIALVEKALQAAYGASPSVTSAALRWMYHHSQLQGAHGDAVILGMSSLEQLEQNLAA TEEGGPLEPAVVDAFNQAWHLVAHECPNYFR

PCT/HS2003/028547

FIGURE 73

ACCGTCTTCCGCCGCACGTGGATTCAGCGCGATGCCCAAATCCAAGCGCGACAAGAAAGTCTCCTTAACCAAAAC TGCCAAGAAAGGCTTGGAATTGAAACAAAACCTGATAGAAGAGCTTCGGAAATGTGTGGACACCTACAAGTACCT TTTCATCTTCTCTGTGGCCAACATGAGGAACAGCAAGCTGAAGGACATCCGGAACGCCTGGAAGCACAGCCGGAT GTTCTTTGGCAAAAACAAGGTGATGATGGTGGCCTTGGGTCGGAGCCCATCTGATGAATACAAAGACAACCTGCA CCAGGTCAGCAAAAGGTTGAGGGGTGAGGTGGGTCTCCTGTTCACCAACCGCACAAAGGAAGAGGTGAATGAGTG GTTCACGAAATACACAGAAATGGACTACGCCCGAGCTGGTAACAAAGCAGCTTTCACTGTGAGCCTGGATCCAGG GCCCCTGGAGCAGTTCCCCCACTCCATGGAGCCACAGCTCAGGCAGCTGGGCCTGCCCACCGCCCTCAAGAGAGG TGTGGTGACTCTGCTGTCTGACTACGAGGTGTGCAAGGAGGGCGATGTGCTGACCCCAGAGCAGGCTCGCGTCCT GAAGCTTTTTGGGTATGAGATGGCTGAATTCAAGGTGACCATCAAATACATGTGGGATTCACAGTCGGGAAGGTT CCAGCAGATGGGAGACGACTTGCCAGAGAGCGCATCTGAGTCCACAGAAGAGTCAGACTCAGAAGATGATGACTG AAAGGGACTCGGGACTGAAGGTCTCCTGGAAGCTTCTGGGTCTCACTGGACCATCAGGACTGCTGCCGCCCCTCT GGAGAGCAGCTTTTTATTTGTCTGTAGACAGGGAACATGATGGGCACTGACCTCCTGTAAAGAATAAAACTGT GGGCCGGGCGCGGTGGCTCACGCCTGGAATCCCAGCACTTTGGGAAGCCGAGGTGGGCAGATCATAAGGTCAGGA TGGCATGTGCCTGTAGTCCCAGCTACTCAGGAGGCTGAGGCAGGAGAATCACTTGAACCCGGGAGGTGGAGGTTG CCGTGAGTTGAGATTGGACCACTGCTCTCCAGCCTGGGCAACAGAGTAAAACTCTGTCCC

PCT/US2003/028547

78/6881 FIGURE 74

MPKSKRDKKVSLTKTAKKGLELKQNLIEELRKCVDTYKYLFIFSVANMRNSKLKDIRNAWKHSRMFFGKNKVMMV ALGRSPSDEYKDNLHQVSKRLRGEVGLLFTNRTKEEVNEWFTKYTEMDYARAGNKAAFTVSLDPGPLEQFPHSME ' PQLRQLGLPTALKRGVVTLLSDYEVCKEGDVLTPEQARVLKLFGYEMAEFKVTIKYMWDSQSGRFQQMGDDLPES ASESTEESDSEDDD

PCT/HS2003/028547

79/6881 FIGURE 75

ATCGCTGGGCGACTGATTTCGAGTTTCCGGTCAGGTTAGGCCGGGGGGGTGCGGTCCTGGTCGGAAGGAGGTGGA GAGTCGGGGGTCACCAGGCCTATCCTTGGCGCCACAGTCGGCCACCGGGGCTCGCCGCCGTCATGGAGAGCGGAG GGCGGCCCTCGCTGTGCCAGTTCATCCTCCTGGGCACCACCTCTGTGGTCACCGCCGCCCTGTACTCCGTGTACC GGCAGAAGGCCCGGGTCTCCCAAGAGCTCAAGGGAGCTAAAAAAGTTCATTTGGGTGAAGATTTAAAGAGTATTC TTTCAGAAGCTCCAGGAAAATGCGTGCCTTATGCTGTTATAGAAGGAGCTGTGCGGTCTGTTAAAGAAACGCTTA ACAGCCAGTTTGTGGAAAACTGCAAGGGGGTAATTCAGCGGCTGACACTTCAGGAGCACAAGATGGTGTGGAATC CCCACGAGGATGGCGTGGATGTGGCTGTGCGAGTGCTGAAGCCCCTGGACTCAGTGGATCTGGGTCTAGAGACTG TGTATGAGAAGTTCCACCCCTCGATTCAGTCCTTCACCGATGTCATCGGCCACTACATCAGCGGTGAGCGGCCCA AAGGCATCCAAGAGACCGAGGAGATGCTGAAGGTGGGGGCCACCCTCACAGGGGTTGGCGAACTGGTCCTGGACA ACAACTCTGTCCGCCTGCAGCCGCCCAAACAAGGCATGCAGTACTATCTAAGCAGCCAGGACTTCGACAGCCTGC TCTTCTTCATTCTCCGGAAGCAGTATCTGCAGCGGCAGGAGCGCCTGCGCCTCAAGCAGATGCAGGAGGAGTTCC AGGAGCATGAGGCCCAGCTGCTGAGCCGAGCCAAGCCTGAGGACAGGGAGAGTCTGAAGAGCGCCTGTGTAGTGT GTCTGAGCAGCTTCAAGTCCTGCGTCTTTCTGGAGTGTGGGCACGTTTGTTCCTGCACCGAGTGCTACCGCGCCT TGCCAGAGCCCAAGAAGTGCCCTATCTGCAGACAGGCGATCACCCGGGTGATACCCCTGTACAACAGCTAATAGT TTGGAAGCCGCACAGCTTGACCTGGAAGCACCCCTGCCCCCTTTTCAGGGATTTTTATCTCGAGGCCTTTGGAGG CTCCAATGGCAGGATGCTGCCTTTCCCACCTGAGAGGGGACCCTGTCCATGTGCAGCCTCATCAGAGCCTCACCC TGGGAGGATGCCGTGGCGTCTCCTCCCAGGAGCCAGATCAGTGCGAGTGTGACTGAAAATGCCTCATCACTTAAG GACTTGGTGGAGGACTCAGAGGGGAGGAAAGGCTGGGCCCCGAGTACAACGGATGCCTTGGGTGCTGCCTCCGAA CAGGTCAACTTGTGTTCCTTTCCCCTCACCTGCTTGCCTCCTTAACGCCTGCACGTGTGTAGAGGACAAAAGA AAGTGAAGTCAGCACATCCGCTTCTGCCCAGATGGTCGGGGCCCCGGGCAACAGATTGAAGAGAGATCATGTGAA GGGCAGTTGGTCAGGCAGGCCTCCTGGTTTCGCCACTGGCCCTGATTTGAACTCCTGCCACTTGGGAGAGCTCGG GGTGGTCCCTGGTTTTCCCTCCTGGAGAATGAGGCGCAGAGGCCTCGCCTCCTGAAGGACGCAGTGTGGATGCCA CTGGCCTAGTGTCCTGGCCTCACAGCTTCCTTGCAAGGCTGTCACAAGGAAAAGCAGCCGGCTGGCACCCTGAGC ATATGCCCTCTTGGGGCTCCCTCATCCAGCCCGTCGCAGCTTTGACATCTTGGTGTACTCATGTCGCTTCTCCTT GTGTTACCCCCTCCAGTATTACCATTTGCCCCTCACCTGCCCTTGGTGAGCCTTTTAGTGCAAGACAGATGGGG CTGTTTTCCCCCACCTCTGAGTAGTTGGAGGTCACATACACAGCTCTTTTTTTATTGCCCTTTTCTGCCTCTGAA TGTTCATCTCTCGTCCTCCTTTGTGCAGGCGAGGAAGGGGTGCCCTCAGGGGCCGACACTAGTATGATGCAGTGT CCAGTGTGAACAGCAGAAATTAAACATGTTGCAACC

PCT/IIS2003/028547

80/6881 FIGURE 76A

GCGGCAGAGCTCGGCGGCTGGGACTGGAGGACAGCGGTGGCGGAGGCGACTAGCGGCGGCGGGAGCGGCGCGAG AGGCCGTGCGGGACGCGGGCGCCAGGACCGGCCGAACGCAGAGGTTGATTCTTCACCACACTGAAACCATTAGGA AAAATCCTTGTGGTTAACAGCAGAGGCTTCAGAGTGTAACCTGTACTCGGGCCTAGAAATTATTTAAAATGGCGA CTGATACGTCTCAAGGTGAACTCGTCCATCCTAAGGCACTCCCACTTATAGTAGGAGCTCAGCTGATCCACGCGG ACAAGTTAGGTGAGAAGGTAGAAGATAGCACCATGCCGATTCGTCGAACTGTGAATTCTACCCGGGAAACTCCTC CCAAAAGCAAGCTTGCTGAAGGGGAGGAAGAAAAGCCAGAACCAGACATAAGTTCAGAGGAATCTGTCTCCACTG TAGAAGAACAAGAGAATGAAACTCCACCTGCTACTTCGAGTGAGGCAGAGCAGCCAAAGGGGGAACCTGAGAATG AAGAGAAGGAAGAAATAAGTCTTCTGAGGAAACCAAAAAGGATGAGAAAGATCAGTCTAAAGAAAAGGAGAAAGA TGGCTTCTTCCCCACGTCCCAAGATGGATGCAATCTTAACTGAGGCCATTAAGGCATGCTTCCAGAAGAGTGGTG TTAAACAAGCACTGAAAAGAGAATTAAATAGAGGAGTCATCAAACAGGTTAAAGGAAAAGGTGCTTCTGGAAGTT CAGAACCACAAGTAAAATTGGAGGATGTCCTCCCACTGGCCTTTACTCGCCTTTGTGAACCTAAAGAAGCTTCCT ACAGTCTCATCAGGAAATATGTGTCTCAGTATTATCCTAAGCTTAGAGTGGACATCAGGCCTCAGCTGTTGAAGA ACGCTCTGCAGAGAGCAGTAGAGAGGGGCCAGTTAGAACAGATAACTGGCAAAGGTGCTTCGGGGACATTCCAGC TGAAGAAATCAGGGGAGAAACCCCTGCTTGGTGGAAGCCTGATGGAATATGCAATCTTGTCTGCCATTGCTGCCA TGAATGAGCCGAAGACCTGCTCTACCACTGCTCTGAAGAAGTATGTCCTAGAGAATCACCCAGGAACCAATTCTA CAGATGATTCTAGAGATGAGGATGAAGATGAAGATGAGTCATCAGAAGAAGACTCTGAGGATGAAGAGCCCGCCAC CTAAGAGAAGGTTGCAGAAGAAAACCCCAGCCAAGTCCCCAGGGAAGGCCGCATCTGTGAAGCAGAGAGGGTCCA AACCTGCACCTAAAGTCTCAGCTGCCCAGCGGGGAAAGCTAGGCCCTTGCCTAAGAAAGCACCTCCTAAGGCCA AAACGCCTGCCAAGAAGACCAGACCCTCATCCACAGTCATCAAGAAACCTAGTGGTGGCTCCTCAAAGAAGCCTG CAACCAGTGCAAGAAAGGAAGTAAAATTGCCGGGCAAGGGCAAATCCACCATGAAGAAGTCTTTCAGAGTGAAAA AGTAAATTTTATAGGAAAAAAGGGTATCATGATGAAATTCAAAATCTTATTTTCTAAGGTCAGTGTGCATTTGTT TCCTGGACTTTCCTAAACTATGTAATGTATACTTGTCCTTTTTCTCTGCCTCCCCCAACCCCCTGTTGTTTTTAT GGTCAGCTTTGCCTTTTTTTTTTTCTTCCAATTTTATCTAAACAGTTGCAGAGATTTTTATATTTTGTAGAAAGCAT CTGCCTGGAGACTTCAGTTATAGCTGTAATAATTAATCTTATTATAAAAGCCACTCCACTAACCTTTTCTCTCC AACTGTAAACACAGAGACAGCTTTGGGAATAAGCCAAAAACAGGGTGATCTCATTAGATTTTGAAGATATATGAC TCCTTTGGGCTACATTTCATATTGATCAATTTCTAGGTATTTTTCACTGGCCCAAAGTATTGCATTCCCTTAACA GCAAGCACAAGTTCTCTATATCACTTGTTTTTTGTTGTTGTTGTTGTTGTCGTCGTTGTTTTGAGACGGAGTCTT GCTCAGGTGCCCCGGAGTGCAGTGGTGCAATCTCAGCTCACTGCAACCTCCACCTCCTGGGTTCAAGCAATTCTC CAAAGTGCTGGGATTACAGGAGTGAGCCACTGTGCCTGGCCTATCCCACTTGGTTTTTGACTGAAGGGGAAGTGT AGAAATATATTGATTTGTGATTTCTGGTGTCACCTGTGTTACCAAAAATCAAAACAAATCTTTTTTATTTTTAT TATTATTATTATTTTTGAGACAGAGTCTCGCTCTGTCGCCCAGTGTGGAGTGCAGTGGTGATCTTGGCTCACT GCAAACTCCGCCTCCCAGGTTCAAGCGATTCTCCCACCTCAGCCTCCTGAGTTGGGTCCTACAGGCGCACACGAC ${\tt CACGCCCAGCTAATTTTTTGTATTTTTAGTAGAGTTGGGGTTTCACCATGTTAGCCAGGATGGTCTCGATCTCCT}$ GACCTCGTGATCCACTCACCTCAGCCTCCCAAAATCCTGGGGTTACAGATGTGAGCTACCACTCACGGCCCAAAT $\tt CTTCTTGATCATATGTTTAAATATTTTTTAATATTTGGAGCATGAGTTGTCACTTCTTGTTTGCCTTTTTTAT$ AAGGAAATGTTGGAGAGTTACATCATTGCTAATGTAGAAATGTTAAGTGGAAAAATATACAGTTTGGTAAAATAA CTTCCTTTTTGAGATATTAAAAAAAAAAAAGAAAAGGAAAAAAGTAAATGAAGCCCAACTACCCTAACCCTTTCTTA

PCT/US2003/028547

81/6881 FIGURE 76B

PCT/US2003/028547

FIGURE 77

TGAGCGCGCCAGCAAGTTCGTGCTGGTGGTGGCGGGCCCGGTGTGCTTCATGCTCATCTTGTACCAGTACGCGGG CCCAGGACTGAGCCTGGGCGCCCCGGCGGCGCCGCCGCCGACGACCTGGACCTGTTCCCCACGCCCGACCC CGTGATCGTCTTCCTGCACATCCAGAAGACGGGCGGCACCACCTTCGGCCGCCACCTCGTGCAGAACGTACGCCT CGAGGTGCCGTGCGACTGCCGGCCCGGCCAGAAGAAGTGCACCTGCTACCGGCCCAACCGCCGCGAGACTTGGCT CTTCTCCCGCTTCTCCACCGGCTGGAGCTGCGGGCTGCACCGACTGGACCGACTCACCAACTGCGTGCCCGG CGTGCTGGACCGCCGCGACTCCGCCGCGCTGCGCACGCCCAGGAAGTTCTACTACATCACCCTGCTACGAGACCC CGTGTCCCGCTACCTGAGCGAGTGGCGGCATGTGCAGAGGGGTGCCACGTGGAAGACGTCGTTGCACATGTGTGA TGGGCGCACGCCCACGCCTGAGGGGCTGCCGCCCTGCTACGAGGGCACGGACTGGTCGGGCTGCACGCTACAGGA GTTCATGGACTGCCCGTACAACCTGGCCAACAACCGCCAGGTGCGCATGCTGGCCGACCTGAGCCTGGTGGGCTG CTACAACCTGTCCTTCATCCCCGAGGGCAAGCGGGCCCAGCTGCTGCTCGAGAGCCCCAAGAAGAACCTGCGGGG CATGGCCTTCTTCGGCCTGACCGAGTTCCAGCGCAAGACGCAGTACCTGTTCGAGCGGACGTTCAACCTCAAGTT CGAGGAGCTCAACGACCTGGACATGCAGCTGTATGACTACGCCAAGGACCTCTTCCAGCAGCACTACCAGTACAA GCGGCAGCTGGAGCGCAGGGAGCAGCGCCTGAGGAGCCGCGAGGAGCGTCTGCTGCACCGGGCCAAGGAGGCGCT GCCGCGGGAGGACGCCGACGACCGGGCCGCGTGCCCACCGAGGACTACATGAGCCACATCATTGAGAAGTGGTA GTGGCGGTGGTCGCCACGGGAGGCCTCTTGGGGTGTGTGGGGGATAAAACAGGACAGACGACAGGTCCACCCAA TAGTGGGGCTGGGCAGGGATGGGGCTTGAGAAATCAACAGGTGCAGCCCAGTGGGTCAGAGGAAAGCGTGCTCGA AGGATGCCATGGTCAGGGCAGAGCCTCCAGAGCAGGTGTTGTGCCTGGAGCTGCTCCTCGGCCTCCTTGGATTT ATCGCAAAAACTGAAGGTTTGCGTGAGAGACGAGGACAGCGGAAAGTGGACCTGCCAGGCCGGGAGTGTGTCCCT CACCAACTATGCACACAGCACTCGCTCTTAGCTCCTCTGTCCGGGCTACTAGGAGTGAGACCAGCTTCTGGCAAC TGCCCCAGCTCCAGGCCATCCCATAGCTCCTCCTCTTCTGGCTGCCCCCAATGCCCCGAGGCCTGGGGAGCCCCC AGCTCACCCATCTGTAGCTCCCTCAAAGTCAGGGCCCACCCCATCTGAGGCAGAGAAGACTCGAGTCCAGCCCCC AGGAAGCCTGCTCCCCTCTCTGGCCCATGGTCCTGCTTCATGCTTTGGGTCAGGAGGCCAAAGCTGATGTTCAGG CCCCACCCACTCCCTACAGTCCTCAGACC

PCT/US2003/028547

83/6881 FIGURE 78

AGAAACTCCCGGTGTGGCAGCTGAGATGGCCCAGGAAAGAACTATATTACCTTCAAAAAGAGAGGTACATGCGAT GTTTGAGGTGGCATGAAGCTCAGTGGTGTTATATTGGAATGAGTGACCATCCTGGAGCCTTCCTGAAAGAG CAGGGATAAAGCAGGTCTTGGGGTGCACCATGATTTCACCATTCTTAGTACTGGCCATTGGCACCTGCCTTACTA ACTCCTTAGTGCCAGAGAAGAGAGAGAGACCCCAAGTACTGGCGAGACCAAGCGCAAGAGACACTGAAATATGCCC TGGAGCTTCAGAAGCTCAACACCAACGTGGCTAAGAATGTCATCATGTTCCTGGGAGATGGGATGGGTGTCTCCA CAGTGACGGCTGCCCGCATCCTCAAGGGTCAGCTCCACCACCACCCTGGGGAGAGCCAGGCTGGAGATGGACA AGTTCCCCTTCGTGGCCCTCTCCAAGACGTACAACACCAATGCCCAGGTCCCTGACAGTGCCGGCACCGCCACCG CCTACCTGTGTGGGGTGAAGGCCAATGAGGGCACCGTGGGGGTAAGCGCACCACTGAGCGTTCCCGGTGCAACA CCACCCAGGGGAACGAGGTCACCTCCATCCTGCGCTGGGCCAAGGACGCTGGGAAATCTGTGGGCATTGTGACCA CCACGAGAGTGAACCATGCCACCCCCAGCGCCGCCTACGCCCACTCGGCTGACCGGGACTGGTACTCAGACAACG AGATGCCCCCTGAGGCCTTGAGCCAGGGCTGTAAGGACATCGCCTACCAGCTCATGCATAACATCAGGGACATTG ACGTGATCATGGGGGGTGGCCGGAAATACATGTACCCCAAGAATAAAACTGATGTGGAGTATGAGAGTGACGAGA AAGCCAGGGGCACGAGGCTGGACGGCCTGGACCTCGTTGACACCTGGAAGAGCTTCAAACCGAGATACAAGCACT CCCACTTCATCTGGAACCGCACGGAACTCCTGACCCTTGACCCCCACAATGTGGACTACCTATTGGGTCTCTTCG AGCCAGGGGACATGCAGTACGAGCTGAACAGGAACAACGTGACGGACCCGTCACTCTCCGAGATGGTGGTGGTGG CCATCCAGATCCTGCGGAAGAACCCCAAAGGCTTCTTCTTGCTGGTGGAAGGAGGCAGAATTGACCACGGGCACC CCTCCTCGGAAGACACTCTGACCGTGGTCACTGCGGACCATTCCCACGTCTTCACATTTGGTGGATACACCCCCC GTGGCAACTCTATCTTTGGTCTGGCCCCCATGCTGAGTGACACAGACAAGAAGCCCTTCACTGCCATCCTGTATG GCAATGGGCCTGGCTACAAGGTGGTGGGCGGTGAACGAGAGATGTCTCCATGGTGGACTATGCTCACAACAACT CCATGGCGCACCTGCTGCACGGCGTCCACGAGCAGAACTACGTCCCCCACGTGATGGCGTATGCAGCCTGCATCG GGGCCAACCTCGGCCACTGTGCTCCTGCCAGCTCGGCAGCCTTGCTGCAGGCCCCCTGCTGCTCGCGCTGG CCCTCTACCCCTGAGCGTCCTGTTCTGAGGGCCCAGGGCCCGGGCACCCACAAGCCCGTGACAGATGCCAACTT CCCACACGGCAGCCCCCCCTCAAGGGGCAGGGAGGTGGGGGCCTCCTCAGCCTCTGCAACTGCAAGAAAGGGGA TGCAGACATTCTCAAAGCCTCTTATTTTCTAGCGAACGTATTTCTCCAGACCCAGAGGCCCTGAAGCCTCCGTG GAACATTCTGGATCTGACCCTCCCAGTCTCATCTCCTGACCCTCCCACTCCCATCTCCTTACCTCTGGAACCCCC CAGGCCCTACAATGCTCATGTCCCTGTCCCCAGGCCCAGCCCTCCTTCAGGGGAGTTGAGGTCTTTCTCCTCAGG ACAAGGCCTTGCTCACTCACTCACTCCAAGACCACGGGTCCCAGGAAGCCGGTGCCTGGGTGGCCATCCTACC CACAAAACATTTAAATAAAACTTTCCAAATATTTCCGAGG

PCT/US2003/028547

FIGURE 79

PCT/IIS2003/028547

85/6881 FIGURE 80

DRTQRERGEAPNRMFSRPFRKHGVVPLATYMRIYKKGDIVDIKGMGTVQKGTPHKCYHGKTGRVYNVIQYAASIV VNKQVKGKILAKRINVRIEHIKHSESRDSFLKRVKENDQKKREAKEKGTWVQLKRQPAPPSKAHFVRTNGKEPEL LEPILYEFTA

PCT/IIS2003/028547

86/6881 FIGURE 81

GGCAGCCGAGGAGACCCCGCGCAGTGCTGCCAACGCCCCGGTGGAGAAGCTGAGGTCATCATCAGATTTGAAATA TTTAAAGTGGATACAAAATTATTTCAGCA**ATG**CAGACAATTAAGTGTGTTGTTGTGGGCGATGGTGCTGTTGGTA AAACATGTCTCCTGATATCCTACACAACAAACAAATTTCCATCGGAATATGTACCGACTGTTTTTGACAACTATG CAGTCACAGTTATGATTGGTGGAGAACCATATACTCTTGGACTTTTTGATACTGCAGGGCAAGAGGATTATGACA GATTACGACCGCTGAGTTATCCACAAACAGATGTATTTCTAGTCTGTTTTTCAGTGGTCTCTCCATCTTCATTTG CTGCTGAAAAGCTGGCCCGTGACCTGAAGGCTGTCAAGTATGTGGAGTGTTCTGCACTTACACAGAAAGGCCTAA AGAATGTATTTGACGAAGCAATATTGGCTGCCCTGGAGCCTCCAGAACCGAAGAAGAGCCGCAGGTGTGTGCTGC TATGAACATCTCTCCAGAGCCCTTTCTGCACAGCTGGTGTCGGCATCATACTAAAAGCAATGTTTAAATCAAACT AAAGATTAAAAATTAAAATTCGTTTTTGCAATAATGACAAATGCCCTGCACCTACCCACATGCACTCGTGTGAGA CAAGGCCCATAGGTATGGCCCCCCCCTTCCCCCTCCCAGTACTAGTTAATTTTGAGTAATTGTATTGTCAGAAAA GTTGTTTAAAAGGAAGGCATGCTTGTGGATGACTCTGTAACAGACTAATTGGAATTGTTGAAGCTGCTCCCTGGT GTGTGTGGGGGTTTGTTTTTAGTCTTGTTTTTTAATTCATTAACCAGTGGTTAGCCCTTAAGGGGAGGAGGA TATAGTAAATGCCTCATTTAATAACATACTCCTTTTTGAAAGTTGCCTTTTCTCTCCACCCTTGAGTAGATCCAG TATTTGATGAAACTCATGAAAGTGGGTGGAGCCCATCTTGCCCCTCCTCTTTTCTAGGACGCACTATATGTGACT GTGACTTTCAAGGACATTTGTTTGCCATTTGCTGATTTTTTTGGGAAGTTAATTTCTAACTTCTTTCACTGATAA ATGAAGAAAAGTATTGCACCTTTGAAATGCACCAAATGAATTGAGTTTGTAATTAAAAAAATTTTTTTCCCTTTC AGTCATTGTCTTATATGCTTAGCATAGATTTGCAGCTCAGTAGTATATGGTGTTCCTAGAATGCAGCTGAAGACC GGAGGATGGAGGCCTGCTTCATTAAGAAGCTGGGGGTAGGGTGGGGGTGGGGAGAACACTTAACAACATGGGGAC CAGTCAGGGGAATCCCCTTATTTCTGTTTTGCATATGAGGAACCCTAGAGCAGCCAGGTGAGGCTCTCTAGTTTA ATAAAAATCATGGAAAGACTCTTAATGCAGACTCTTCTTAAGTGTTAATAGGGATTTTTTCAGCTTATTTTGGTT GCAGTTTCCAATTTTTAAAAATGTTGAGGTAATCTTTCCCACCTTCCCAAACCTAATTCTTGTAGATGCATTAGT AAAAAAA

PCT/US2003/028547

87/6881 FIGURE 82

MQTIKCVVVGDGAVGKTCLLISYTINKFPSEYVPTVFDNYAVTVMIGGEPYTLGLFDTAGQEDYDRLRPLSYPQT DVFLVCFSVVSPSSFENVKEKWYPEITHHCPKTPFLLVGTQIDLRDDPSTIEKLAKNKQKPITPETAEKLARDLK AVKYVECSALTQKGLKNVFDEAILAALEPPEPKKSRRCVLL

PCT/IIS2003/028547

FIGURE 83

CGCGCGCGCCATTTCTAGTCGTTTTCAAAGCGCCTCGCGCTGATTCTCACGGGCCCGGCTGCCGGCCCCCCCTCT GCCCTGCATAATAAAATGGCTAATCAGGTGAATGGTAATGCGGTACAGTTAAAAGAAGAAGAAGAACCAATGGAT CTTGATGAAATATTTCAGACAGGATTGGTAGCTTATGTCGATCTTGATGAAAGAGCAATTGATGCTCTCAGGGAA TTTAATGAAGAAGGAGCTCTGTCTGTACTACAGCAGTTCAAGGAAAGTGACTTATCACATGTTCAGAACAAAAGT GGACCTGATGAAGCGAAGATCAAGGCCTTGCTTGAGAGAACTGGTTATACTCTGGATGTAACCACAGGACAGAGG AAGTATGGTGGTCCTCCACCAGACAGTGTGTACTCTGGCGTGCAACCTGGAATTGGAACGGAGGTATTTGTAGGC AAAATACCAAGGGATTTATATGAGGATGAGTTGGTGCCCCTTTTTGAGAAGGCCGGACCCATTTGGGATCTACGT CTTATGATGGATCCACTGTCCGGTCAGAATAGAGGGTATGCATTTATCACCTTCTGTGGAAAGGAAGCTGCACAG GAAGCCGTGAAACTGTGTGACAGCTATGAAATTCGCCCTGGTAAACACCTTGGAGTGTGCATTTCTGTGGCAAAC AACAGACTTTTTGTTGGATCCATTCCGAAGAATAAGACTAAAGAAAACATTTTTGGAAGAATTCAGTAAAGTCACA GAGGGTTTGGTGGACGTTATTCTCTATCATCAACCCGATGACAAAAAGAAGAATCGGGGGTTCTGCTTCCTTGAA TATGAGGATCACAAGTCAGCAGCACAAGCCAGACGCCGGCTGATGAGTGGAAAAGTAAAAGTGTGGGGAAATGTA AGAAACTTGGCTACTACGGTGACAGAAGAAATATTGGAAAAGTCATTTTCTGAATTTGGAAAACTCGAAAGAGTA AAGAAGTTGAAAGATTATGCATTTGTTCATTTTGAAGACAGAGGAGCAGCTGTTAAGGCTATGGATGAAATGAAT GGCAAAGAATAGAAGGGGAAGAATTGAAATAGTCTTAGCCAAGCCACCAGACAAGAAAAAGGAAAGAGCGCCAA GCTGCTAGACAGGCCTCCAGAAGCACTGCGTATGAAGATTATTACTACCACCCTCCTCCTCGCATGCCACCTCCA ATTAGAGGTCGGGGTCGTGGTGGGGGGAGAGTGGATATGGCTACCCTCCAGATTACTACGGCTATGAAGATTAC TATGATGATTACTATGGTTATGATTATCACGACTATCGTGGAGGCTATGAAGATCCCTACTACGGCTATGATGAT CCACCTCCAAGAGGTAGAGCTGGCTATTCACAGAGGGGGGCACCTTTGGGACCACCAAGAGGCTCTAGGGGTGGC AGAGGGGGTCCTGCTCAACAGCAGAGAGGCCGTGGTTCCCGTGGATCTCGGGGCAATCGTGGGGGCAATGTAGGA TCCCAACCCATCGCTCAGCAGCCGCTTCAGCAAGGTGGTGACTATTCTGGTAACTATGGTTACAATAATGACAAC CAGGAATTTTATCAGGATACTTATGGGCAACAGTGGAAGTAGACAAGTAAGGGCTTGAAAATGATACTGGCAAGA TACGATTGGCTCTAGATCTACATTCTTCAAAAAAAAAATTGGCTTAACTGTTTCATCTTTAAGTAGCATTTTGC TGCCATTTGTATTGGGCTGAAGAAATCACTATTGTGTATATACTCAAGTCTTTTTATTTTTTCCTCTTTTCATAAA TGCTCTTGGACATTATTGGGCTTGCAGAGTTCCCTTATTCTGGGGATTACAATGCTTTTATCGTTTCAGGCTTCA TTTTAGCTTCAAAACAAGCTGGGCACACTGTTAAATCATGATTTTTGCAGAACCTTTGGTTTTGGACAGTTTCATT AGTAGTTTTAAGAAATTAAAGCAAACAAATTTAAGTTTTCTTGTATTGAAAATAACCTATGATTGTATGTTTTGC ATTCCTAGAAGTAGGTTAACTGTGTTTTTAAATTGTTATAACTTCACACCTTTTTGAAATCTGCCCTACAAAATT TGTTTGGCTTAAACGTCAAAAGCCGTGACAATTTGTTCTTTGATGTGATTGTATTTCCAATTTCTTGTTCATGTA AGATTTCAATAAAACTAAAAAATCTATTCAAAACATTA

PCT/US2003/028547

89/6881 FIGURE 84

MANQVNGNAVQLKEEEEPMDTSSVTHTEHYKTLIEAGLPQKVAERLDEIFQTGLVAYVDLDERAIDALREFNEEG
ALSVLQOFKESDLSHVQNKSAFLCGVKKTYROREKQGSKVQESTKGPDEAKIKALLERTGYTLDVTTGQRKYGGP
PPDSVYSGVOPGIGTEFVFVGKIFPBLVEEDLIVPLEFKARGPTWDLRIMMPPLSGQNRGVAFITFCGKEAAQEAVKL
CDSYEIRPGKHLGVCISVANNRLFVGSIPKNKTKENILEEFSKVTEGLVDVLLYHQPDDKKKNRGFCFLEYEDHK
SAAQARRRLMSGKVKVGKVVTVEWADPVEEPDPEVMAKVKVLFVRNLATTVTEEILEKSFSEFGKLERVKKLKD
YAFVHFEDRGAAVKANDENNGKEIEGEEIIVLAKFPDFKKKKERQAARQASRSTAYEDYYTHPPFMPPFIRGRG
RGGGGGGYGYPPDYYGYEDYYDDYYGVDYHDYRGGYEDPYYGYDDGYAVRGGGGRGGRGAPPPRGRGAPPRG
RAGYSORGAFLGPPRGSRGGRGGPAQQORGRGSRGSRGRNGGGVKRADGYNQPDSKRRQTNNQQNWGSQPIA
QOPLQQGGDYSGYYGYNNDNQEFYQDTYGGOWK

PCT/IIS2003/028547

90/6881 FIGURE 85

PCT/US2003/028547

91/6881 FIGURE 86

 $\label{thm:mkalspyrgcyeavcclserslaiargrkgpaaeeplsliddmnhcysrlrelvpgvprgtqlsqveilqrvid \\ \verb|Yildlqvvlaepapgppdgphlpiqtaeltpelvisndkrsfch| \\$

PCT/HS2003/028547

92/6881 FIGURE 87

PCT/US2003/028547

93/6881 FIGURE 88

MAQDQGEKENPMRELRIRKLCLNICVGESGDRLIRAAKVLEQLIGGTPVFSKARYTVRSFGIRRMEKLAVHCTVR GAKABEILEKGLKVREYELRKNNFSDIGNFGFGIQEHIDLGIKYDPSIGIYGLDFYVVLGRPGFSIADKKRRTGC IGAKHRISKEEAMBWPQOKYDGIILPGK

PCT/IIS2003/028547

94/6881 FIGURE 89

GCTCACCGATGCTGCCACCGTGTCTGGAGCTGAGCGGGAAACGGCCGCGGTTATTTTTTTACATGGACTTGGAGA CACAGGGCACAGCTGGGCTGACGCCCTCTCCACCATCCGGCTCCCTCACGTCAAGTACATCTGTCCCCATGCGCC TAGGATCCCTGTGACCCTCAACATGAAGATGGTGATGCCCTCCTGGTTTGACCTGATGGGGCTGAGTCCAGATGC GATCCCTGCCAATCGAATCGTCCTGGGAGGCTTTTCACAGGGCGGGGCCCTGTCCCTCTACACGGCCCTCACCTG TGGCAGTGCCAAGGACCTGGCCATACTCCAGTGCCATGGGGAGCTGGACCCCATGGTGCCCGTACGGTTTGGGGC CCTGACGGCTGAGAAGCTCCGGTCTGTTGTCACACCTGCCAGGGTCCAGTTCAAGACATACCCGGGTGTCATGCA CAGCTCCTGTCCTCAGGAGATGGCAGCTGTGAAGGAATTTCTTGAGAAGCTGCTGCCTCCTGTC<u>TAA</u>CTAGTCGC GAGCCCCTGTCCCCACCCTTCCTGACCTGTCCTTTTCCCACAGGCCTCTGGGGGCAGGTGGCAAGGCCTGGCCGG GCCTTCCTTCCTGGCCTTAGCCACCTGGCTCTGTCTGCAGCAGGGGCAGGCTGCTTTCTTATCCATTTCCCTGGA GGCGGGCCCCCTGGCAGCAGTATTGGAGGGGCTACAGGCAGCTGGAGAAAGGGGCCCAGCCGCTGACCCACTCA CTCAGGACCTCACTCACTAGCCCCGCTTTGGGCCCCCTCCTGTGACCTCAGGGTTTGGCCCATGGGGCCCCCCCA GGCCCCTGCCCCAACTGATTCTGCCCAGATAATCGTGTCTCCTGCCTCCACTCAGCTGCTTCTCAGTCATGAATG TGGCCATGGCCCCGGGGTCCCCTTGCTGCTGTGGGCTCCCTGTCCCTGGGCAGGAGTGCTGGTGAGGAGGTGGAG CCTTTTGAGGGGGCCTTCCCTCAGCTGTTTCCCCACACTGGGGGCCTGGGCCCTGCCTCCCGTTACCCTCCTT CCCTGCAGGCCTGGAGCCTGTAGGGCTGGACTGAGGTTCAGGTCTCCCCCCAGCTGTCTCACCCCCACTTTGTCC

PCT/US2003/028547

95/6881 FIGURE 90

MCGNTMSVPLLTDAATVSGAERETAAVIFLHGLGDTGHSWADALSTIRLPHVKYICPHAPRIPVTLNMKMVMPSW FDLMGLSPDAPEDEAGIKKAAENIKALIEHEMKNGIPANRIVLGGFSQGGALSLYTALTCPHPLAGIVALSCMLP LHRAFPQAANGSAKDLAILQCHGELDPMVPVRFGALTAEKLRSVVTPARVQFKTYPGVMHSSCPQEMAAVKEFLE KLLPPV

PCT/HS2003/028547

96/6881 FIGURE 91

CGTGCCTCGTCTCCCCTGGAAAGGGAGGGAGGCTTCGACGTCGAGAGGGAGCCGCTGCCGCGTTAGTTCCGAGC TTGAAGTCACTAGGACTTCTCTCAAACTTGTGTGCTGAGGAGACTCAGATGTTGGCCTCAGCTCCTAGGCTGAAC TGGGCTTGGCAGCAAGGAAGAGGACAGGTAGTGGAGATCCTGCAATCTGAAAAGCAGACTGAAAGGTGACAAAGA AGCTGAAG<u>ATG</u>GGTGGTGGAGAGAGGTATAACATTCCAGCCCCTCAATCTAGAAATGTTAGTAAGAACCAACAAC GTTATAACTCATCAGCAGCTGCCTGGCAGGCCATGCAAAATGGGGGGAAGAACAAAAATTTTCCAAATAATCAAA GTTGGAATTCTAGCTTATCAGGTCCCAGGTTACTTTTTAAATCTCAAGCTAATCAGAACTATGCTGGTGCCAAAT TTAGTGAGCCGCCATCACCAAGTGTTCTTCCCAAACCACCAAGCCACTGGGTCCCTGTTTCCTTTAATCCTTCAG ATAAGGAAATAATGACATTTCAACTTAAAACCTTACTTAAAGTACAGGTA**TAA**AATAAGACAAATGTTTAAATTT AGTTATGTTCACGGATAGTTGTCAATTGGTCTGAAACAAATTCGCTAGGGAATCTATTTGTGTAGAACTAATTAA TGTAAAAAAAAACAGACCATCTCGTGTTGTGTGCACTGTGATATAATGGTAGTATCAGTGCAACTTTAATGATTGT ACTTGATATTAAGTGTTCTCAACTGAGTAACTTTTAAGTGGAAACCAAGTTTAGATTTGGGGAGTGGTAAAGGAA CGGATTATAAGCTTCTAGCTAACACAAGGATTCAGAATTAGGTAAACATCTGAAGGTTTAGTATATTAGAAACAC AATTGTACAGTGGGTGGAAAGGGCATTTGGAGCTCATTAGAATGAGACATAGTACACCCCAATGGCCCTGTTTAT TAAATGTAGTGGATTAAGTGTCTGTCAACAAATACACCAAAACCATTTTTTATAGAAACAGTATTTAATGGTCAC TCAATAGCTTTCAAAATACATTTTTGTATTACAGCACTGCACAAGCTATTCTAATAGTGCTCTCGCCTCATCATT CCTGCAAAGCTTGCTTTGGGGAGTTGGATAATGTGAAAATTTTAAGTACCTAGGGGAGAAAGAGCCATGTAAATA TCTGTAATAAACTTGTAGCATATGTAAAGTTTTCTTGGCCTTTATCTTACAAAAATGGAGTATTTTAGTATGAAT TTGCTGAATGTAAGACCGTGGACTGTTTTTTATAATATGGCCTAATTTTAAAGGTCCAAAATAACTTGTTTTTAA AGTTTGCCCTTGTGCTAAAGTGCCAGTGTATGTATGTTATACTTGATTTGGTTGTAAACTATATTTCAAAGTAAA CCCTAGTGTAATAAGTTTTATAACTAAAAAGGTTTAAGCTGCTAAAACTATTTTTAAGAGATGTGAAATGCAGTA TGGGACTATCTTTTTTCCTCCTCTAAGCCCAAAGATTAACTAGAGTCCCTCCAACCTTATAGATTGTTGGCTTT GTAGGTGCAACCCAATGGACCACTTATGCAAAAGATGTAAACTCTTTGCATAATACATTGATAACATGTTTTGCCA ACTTTAAATGCTTAAACATAAGCGAAACCAGTAGCAAGTATGTGGGTCAGCTTAAAAATTTTGATTGTTAATGCC AAGATGAAGTACTGCCCAAGTTAAATATTGATAGCCTAAAGACAAGTTTATGTAGTACTTAATGTACATGATATG

PCT/US2003/028547

97/6881 FIGURE 92

MGGGERYNIPAPQSRNVSKNQQQLNRQKTKEQNSOMKIVHKKKERGHGYNSSAAAWQAMQNGGKNKNFPNNQSWN SSISGPRLIFKSQANONYAGAKFSEPPSPSVLPKPPSHWVPVSFNPSDKEIMTFQLKTLLKVQV

PCT/US2003/028547

98/6881 FIGURE 93

GTCTGAGGCTCGGCCGCCTGAGCCGGGACGGTTTGCTGAGCCCGTTAGTGCGCCCGGCCGAGACACGCCGCCGC CATGTCCCGCTACCTGCGTCCCCCAACACGTCTCTGTTCGTCAGGAACGTGGCCGACGACACCAGGTCTGAAGA CTTGCGGCGTGAATTTGGTCGTTATGGTCCTATAGTTGATGTTATGTTCCACTTGATTTCTACACTCGCCGTCC AAGAGGATTTGCTTATGTTCAATTTGAGGATGTTCGTGATGCTGAAGACGCTTTACATAATTTGGACAGAAAGTG GATTTGTGGACGGCAGATTGAAATACAGTTTGCCCAGGGGGATCGAAAGACACCAAATCAGATGAAAGCCAAGGA AGGGAGGAATGTGTACAGTTCTTCACGCTATGATGATTATGACAGATACAGACGTTCTAGAAGCCGAAGTTATGA AAGGAGGAGATCAAGAAGTCGGTCTTTTGATTACAACTATAGAAGATCGTATAGTCCTAGAAACAGTAGACCGAC TGGAAGACCACGGCGTAGCAGAAGCCATTCCGACAATGATAGACCAAACTGCAGCTGGAATACCCAGTACAGTTC TGCTTACTACACTTCAAGAAAGATCTGAAAGCGGAAAAAAGAACCAAAGAAGGGCAGTTCAAGCGACCAAAGGGTG GGTGGAAGGTGCTGCAGTATGAATACTGTACGAATATTTTGACTCTGGTCTGAAAAGATAAAAAGAATGTTATCGA AAACTACATGGAATAATTGAAGTCCCTTCAAGTTTGAAAGTAAGCATTTTAGGACAAATAAAAGGAAATTCAACT TTGTACTTGTGGAAACTAATCCCTAAATATGAATAGGTTTATATTGATTCATGGGTAACAGGTCCATAATAAATT ACTGAATTGGGTGGGAAAAGGTATGGTCCAATATAAAAGTTCCATTTTTGCCATTATTGGCAAATCTTGCCTTTG TGCAGTTTACATCTGTCTTAACTACTCCTTCCCAGGTAAATTCCAATTATATTTGACATCCAGCTAAGAGGGCCC A TOTOTTOTO A COTOTTTO OT A GTO A GTO 1 A TTO A GO A A A TA TTT A TTO A GO COTT A CTGTGGGC A A TCA TTGT **ACTGGATAATTGAGAAAAATAGATAATTCCCTTATTCAGTAAATGTCTACTGAGCACAATCTAGTGAATCATTAC** AGTATGGCCTCATTGTTTTGTTTGAGGTGTGTTATTCATAACAATATTTTACACCATTCGTATCAATGTAATTAT AGAACACAA TATACGATCAAGGATAAGTAATTGTGTGGTTATCTGCCATTTAAAAGTATCCAGTATTTGATCACA TTATTATAAATGAAAAAATGATTTAATCTGTAATAAACTGGTTTATTGTGCAGTGACTGTAATATACTAGAG TTATAATAAATTGTTTACTCTGCCTCACCAAACACATGCTAGGATATAACCCCCAAAATAAGTATTTAACTTTGC TAGTATGTTCTGTAATTGAGAAAATGTTCACCAAATTATACCTTTTTAGTGATTTACATGTACATTTTATAGGGGA CATGTTCTGTGTATAGCGAATAAATAACTTTTATAGTATCAC

PCT/US2003/028547

99/6881 FIGURE 94

MSRYLRPPNTSLFVRNVADDTRSEDLRREFGRYGPIVDVYVPLDFYTRRPRGFAYVQFEDVRDAEDALHNLDRKW ICGRQIEIQFAQGDRKTPNOMKAKEGRNVYSSSRYDDYDRYRRSRSSYERRRSRSRSFDYNYRRSYSPRNSRPT GRPRRSRSHSDNDRPNCSWNTQYSSAYYTSRKI

PCT/US2003/028547

FIGURE 95

GTCTGAGGCTCGGCCGCCTGAGCCGCGGACGGTTTGCTGAGCCCGTTAGTGCGCCCGGCCGAGACACGCCGCCGC CATGTCCCGCTACCTGCGTCCCCCAACACGTCTCTGTTCGTCAGGAACGTGGCCGACGACACCAGGTCTGAAGA CTTGCGGCGTGAATTTGGTCGTTATGGTCCTATAGTTGATGTGTATGTTCCACTTGATTTCTACACTCGCCGTCC AAGAGGATTTGCTTATGTTCAATTTGAGGATGTTCGTGATGCTGAAGACGCTTTACATAATTTGGACAGAAAGTG GATTTGTGGACGGCAGATTGAAATACAGTTTGCCCAGGGGGATCGAAAGACACCAAATCAGATGAAAGCCAAAGGA AGGGAGGAATGTGTACAGTTCTTCACGCTATGATGATTATGACAGATACAGACGTTCTAGAAGCCGAAGTTATGA AAGGAGGAGATCAAGAAGTCGGTCTTTTGATTACAACTATAGAAGATCGTATAGTCCTAGAAACAGTAGACCGAC TGGAAGACCACGGCGTAGCAGAAGCCATTCCGACAATGATAGATTCAAACACCGAAATCGATCTTTTTCAAGATC ATCTCACACCAAAACTAGAGGCACCTCTAAAACAGATTCCAAAACACATTATAAGTCTGGCTCAAGATATGAAAA GGAATCAAGGAAAAAAGAACCACCTAGATCCAAATCTCAGTCAAGATCACAGTCTAGGTCTAGGTCAAAATCTAG ATCAAGGTCTTGGACTAGTCCTAAGTCCAGTGGCCACTGATAGTATAAACCATGGTCATTTTTAGGCATGTATCA TTCATTTACTCATAGTTTGGTTTACTTAAATTATCAGGAATACAATGTTGCAATGATGCTTAAAAAACACTTGTT AGTTTTCCCTGTACCAGGCAATGGTTATAATTAAAATGATATGCTGTTGAGAAGCCACTCTTAAGAGTCCAGTTT GTTTAATGTTATGGGCAGCTACCAATTTGTGGTGTCTCTGTATATTTTTGTAAAGATTCTCATTTTTATGCTTG AAGTATTTGGTGAAAAGATGTTGGTTGACCATAATTTGCAACATTGTCTCATTAAAAATAAACTTTCATATTCAT ATTTGGTAGAACTGTTAACCTAGAAATGTAGCTTGCTAATAAGATAGAATGATACAAAAGTGAAGTAGTAGCCAC AGTACAACACTGACTGCTCAGACACATTTAGGTTCAGGGTGGACCTTTATGTCTTGTCAAGATGTCTAGGCCCGG CGAGACCAGCCTGACCAACACGGTGAAACCCCGTCTCTACTAAAAAATTACCAGAAAAATTATCCGGGCATGGTGGCACA TGCCTGTAATCTCAGCTACTCAGGAGGCTGAGGCAAGAGAATCGCTTGAACCTGGGAGGTAGAAGTTGCAGTGAG TCTAGGCCAATGATAATTATTTTTGATGCAGTGTGGATTAGTTCTTTTGTTAACCCCACTGTCTTGGGGAATGAT GCCAGCTGGGAAATTGAGTTTTTGACTGAAACATGGAGCCTTCACTGCTTTTTTTCTGGTTCCTATGAAGATTTG GAACATAGAAAACACAAAAACTCACCTTAAAATTTGAGCAGGTCGTTGATGGCAAAAATAATTTTAAGGAAAAAG GAATATTCTTATGTAGTTATTCTAAAGTTTAAGGAGCGTTGTTGACCATAATATTGCTTAGTTTTCTTACTGCTG TTTATTTAATACGAGGCAAGTTGTAAGACAACACTCATTCTAGGTGATTCTGTGGTGCCATGAAATTTAAGGTAA TTTGGGGAAAAGGATTAGTCAGTTTTAAGCAAGAGTCACATCTTTTGAGCTTTCGATTATCAGTGTAGTACCTGA CTAAAAATGAAGTAATACCCTTAAACCATTTATAATTTCTAGTATTTCTCTGAAAGATCGTTTTGGGGACAAAAG TACAAGTACGAATTATGGACAAACGATTCCTTTTAGAGGATTACTTTTTTCAATTTCGGTTTTAGTAATCTAGGC TTTGTATATTTGATAGTATTTCTAACTTTCATTTCTTTACTGTTTGCAGTTAATGTTCATGTTCTGCTATGCAAT CGTTTATATGCACGTTTCTTTAATTTTTTTAGATTTTCCTGGATGTATAGTTTAAACAACAAAAAGTCTATTTAA GGCTTCTAAAAAGGTATTTTTATATGTTCTTTTTAACAAATATTGTGTACAACCTTTAAAACATCAATGTTTGGA TCAAAACAAGACCCAGCTTATTTTCTGCTTGCTAAATTAAGCAAACATGCTATAATAAAAACAAAATGAAGG

PCT/HS2003/028547

FIGURE 96

MSRYLRPPNTSLFVRNVADDTRSEDLRREFGRYGPIVDVYVPLDFYTRRPRGFAYVQFEDVRDAEDALHNLDRKW ICGROIEIOFAQGDRKTPNQMKAKEGRNVYSSSRYDDVDRYRRSRSRSVERRRSRSSEDYNYRRSYSPRNSRPT GRPRRSRSHSDNDRFKHRNRSFSRSKSNSRSRSKSQPKKEMKAKSRSRSASHTKTRGTSKTDSKTHYKSGSRYEK ESRKKEPPRSKSQSRSQSRSRSKSRSBWTSPKSSGH

PCT/US2003/028547

102/6881 FIGURE 97

PCT/US2003/028547

FIGURE 98

CAGGAACGAGATGGCGGTTCCCTGGAGGCTGAGTGCCGTTTGCGGTGCCCAAGGAGGCCGAGCTCTGTTGCTGCG GCACATACACTTGTCACCGAGCCACCATTCTGGCTCCAAGGCTGCATCTCTCCACTGGACTAGCGAGAGGGTTGT CAGTGTTTTGCTCCCGGGTCTGCTTCCGGCTGCTTATTTGAATCCTTGCTCTGCGACGGACTATTCCCTGGCTGC AGCCCTCACTCTTCATGGTCACTGGGGCCTTGGACAAGTTGTTACTGATTATGTTCATGGGGATGCCTCGCAGAA AGCTGCCAAGGCAGGCTTTTGGCATTTTCAGCTTTAACCTTTGCTGGGCTTTGCTATTTCAACTATCACGATGT GGGCATCTGCAAAGCTGTTGCCATGCTGTGGAAGCTCTGACCTTTTTGACTTCCTACTTTGAAGAATTGATGTAT GCCTCTTTGCCTCTGCTTTGTCATGCCATTAAGCTCACAATAAGGAAGAAATAACAGATAAGCCCATTGGTGGAC AGCCTTCTTCTCTTAATCACAAGATTATTTTCAGAATTTAATCTTTGAGGAAAAGGTTTGAGAGGAATTATATCT AAGTTGTGAGACTGAGTTCTGTATTCTGGTGAGTTAATGGGGTTGCCTCCCAGCTTCTTATAAGACTCACAATAT AACTAARCATGATATATCAGCTTTTGCCTTTTAATTTCTCAATCTCTTAAAGAGAATCCAGCTTTATTATGATTA GTACATGATCAAATTTCCATATTTGCCTTGGGAATAATGGACAAAGGGAAATACTCTTAATTCATGAATAAAAAC TTTGCAGAAAATTAGACAGTGTTTAATTTTCAAAAACTTCCCTCTCTAGTCAGTAGATACCACCTACTGATGGTT ACATATACTAGGGAAATTTTAAAATTAGGAAATGCTGCTATCTCATATTATAAATTTCTAAATCCTAGGAAGAAA CGCTTGGAGTGCTTCTGAAGATACAGAAGTTCCATTTAAGGGCAAGTTTCCCCAGAGACATATCAAAATATTATC CATTGTAAACTGAGATTTAATTCTCAAATGTATTCTACTTGTTCTAAAACAATCTGTCCACAAATATAAAACTAT AAGTAATAAATTGTTATTTCCGCACAATGGGAATCTCTAATGTGAAAATGTATTCTATGAAAATAATTTTTTTAA ATAAAATGTTGTATAAAAAAA

PCT/IIS2003/028547

FIGURE 99

AGAGAGAAAGGTTGTG<u>ATG</u>GCGGCTATAGCTGCATCCGAGGTGCTGGTGGACAGCGCGGAGGAGGGGTCCCTCGC TGCGGCGGCGGAGCTGGCCGCTCAGAAGCGCGAACAGAGACTGCGCAAATTCCGGGAGCTGCACCTGATGCGGAA TGAAGCTCGTAAATTAAATCACCAGGAAGTTGTGGAAGAAGATAAAAAGACTAAAATTACCTGCAAATTGGGAAGC TGAGAAAGTGAAGTTGCTGGAGATCAGTGCAGAAGATGCAGAAAGATGGGAGAGAAAAAGAAGAAGAAGAAAAACCC TGATCTGGGATTTTCAGATTATGCTGCTGCCCAGTTACGCCAGTATCATCGGTTGACCAAGCAGATCAAACCTGA CATGGAAACATATGAGAGACTGAGAGAAAAACATGGAGAAGAGTTTTTCCCAACATCCAATAGTCTTCTTCATGG AACACATGTGCCTTCCACAGAGGAAATTGACAGGATGGTCATAGATCTGGAAAAACAGATTGAAAAACGAGACAA ATATAGCCGGAGACGTCCTTATAATGATGATGCAGATATCGACTACATTAATGAAAGGAATGCCAAATTCAACAA GAAAGCTGAAAGATTCTATGGGAAATACACAGCTGAAATTAAACAGAATTTGGAAAGAGGAACAGCTGTC<u>TAA</u>TC CCTTCAAGAACTGTTTATAGAAGCTTGAGAATGGGGTAAAAATTTCTGCTAGCAAAATCAAGTTCTTTTTGAAAT CGTATATCCTTTCATGTATATTTCCACATTTTTGTGCTTGGATATAAGATGTATTTCTTGTAGTGAAGTTGTTTT GTAATCTACTTTGTATACATTCTAATTATTATTTTTCTATGTATTTTAAATGTATATGGCTGTTTAATCTTTG AAGCATTTTGGGCTTAAGATTGCCAGCAGCACACATCAGATGCAGTCATTGTTGCTATCAGTGTGGAATTTGATA GAGTCTAGACTCGGGCCACTTGGAGTTGTGTACTCCAAAGCTAAGGACAGTGATGAGGAAGATGGCAGTGGCCAC CGGAGGACTGGAGCAGTCCCTCCTCATGGCGGCCTGTGACCAAGGTCGGGGAGGAGTGGAGCTATCCTTCCATGA

PCT/US2003/028547

FIGURE 100

MAAIAAS EVLVDSAEEGSLAAAAELAAQKREQRLRKFRELHLMRNEARKLNHQEVVEEDKRLKLPANWEAKKARL EWELKEEEKKKECAARGEDYEKVKLLEISAEDAERWERKKKRKNPDLGFSDYAAAQLRQYHRLTKQIKPDMETYE RLREKHGEEFFPTSNSLLHGTHVPSTEEIDRMVIDLEKQIEKRDKYSRRRPYNDDADIDYINERNAKFNKKAERF YGKYTAEIKONLERGTAV WO 2004/030615 PCT/US2003/028547

106/6881 FIGURE 101A

GGCGGCCCACTCTGCTCTGTCAGCTTCGGAGCTCCTCCACCCTGGCTGCCGAAAGCCCCTTCCCGCCATCTAATG ATACACTCTGCATACGCTTCTGTTGAGAATTTGTGGCTAGACATTCCTGTGGGACCGGGAATCCAAATTCTTGGT AGCTAGAGGAAAAAAAAAAAAAAACAACAGCCAACCAAGTGAATCCCAACCCCAACCCCTGAAGGGCTGAAAATTC TCGCCTTCTTCAGAGCGGGGCATGGCATCGAACAGCATCTTCGACTCCTTCCCGACCTACTCGCCGACCTTCATC GGCGAGAACAGCGGCGCTGAGCGCGCAGGCGGCCGTGGGGCCCGGAGGGCGCCCGGAGGTGCGCTCG ATGGTGGACGTGCTGGCGGACCACGCAGGCGAGCTCGTGCGCACCGACAGCCCCAACTTCCTCTGCTCCGTGCTG CCCTCGCACTGGCGCTGCAACAAGACGCTGCCCGTCGCCTTCAAGGTGGTGGCATTGGGGGACGTGCCGGATGGT ACGGTGGTGACTGTGATGGCAGGCAATGACGAGAACTACTCCGCTGAGCTGCGCAATGCCTCGGCCGTCATGAAG AACCAGGTGGCCAGGTTCAACGACCTTCGCTTCGTGGGCCGCAGTGGGCGAGGGAAGAGTTTCACCCTGACCATC CCCAGACGGCACCGGCAGAAGCTGGAGGACCAGACCAAGCCGTTCCCTGACCGCTTTGGGGACCTGGAACGGCTG CAGACCCCAATCCAAGGCACCTCGGAACTGAACCCATTCTCCGACCCCGGCAGTTTGACCGCTCCTTCCCCACG TACAGCGCCACGCCCTCGGGCACGAGCATCAGCAGCCTCAGCGTGGCGGGCATGCCGGCCACCAGCCGCTTCCAC CATACCTACCTCCCGCCACCCTACCCGGGGGCCCCGCAGAACCAGAGCGGGCCCTTCCAGGCCAACCCGTCCCCC TACCACCTCTACTACGGGACATCCTCTGGCTCCTACCAGTTCTCCATGGTGGCCGGCAGCAGCAGTGGGGGCGAC CGCTCACCTACCCGCATGCTGGCCTCTTGCACCAGCAGCGCTGCCTCTGTCGCCGCCGGCAACCTCATGAACCCC AGCCTGGGCGGCCAGAGTGATGGCGTGGAGGCCGACGGCACACAGCAACTCACCCACGGCCCTGAGCACGCCA GGCCGCATGGATGAGGCCGTGTGGCGGCCCTACTGACCGCCCTGGTGGACTCCTCCCGCTGGAGGCGGGGACCCT CGGTCCCAGGGTGGTCCCAGCTGGTGGGAGCCTCTGGCTGCATCTGTGCAGCCACATCCTTGTACAGAGGCATAG GTTACCACCCCCACCCCGGCCCGGGATACTGCCCCCGGCCCAGATCCTGGCCGTCTCATCCCATACTTCTGTGGG GAATCAGCCTCCTGCCACCCCCCGGAAGGACCTCACTGTCTCCAGCTATGCCCAGTGCTGCATGGGACCCATGT CTCCTGGGACAGAGGCCATCTCTCTCCAGAGAGAGGCAGCATTGGCCCACAGGATAAGCCTCAGGCCCTGGGAA ACCTCCCGACCCCTGCACCTTCGTTGGAGCCCCTGCATCCCCTGGGTCCAGCCCCCTCTGCATTTACACAGATTT GAGTCAGAACTGGAAAGTGTCCCCCACCCCACCACCCTCGAGCGGGGTTCCCCTCATTGTACAGATGGGGCAGG ACCCAGCACGCTGCTGGCAGAGATGGTTTGAGAACACATCCAAGCCAGTCCCCCAGCCCAGCTTCCCTTCCGTT CCTAACTGTTGGCTTTCCCCCAGCCGCACGGGTCCCAGGCCCCAGAGAAGATGAGTCTATGGCATCAGGTTCTTA AACCCAGGAAAGCACCTACAGACCGGCTCCTCCATGCACTTTACCAGCTCAACGCATCCACTCTCTGTTCTCTTG GCAGGGCGGGGAGGGGGATAGGAGGTCCCCTTTCCCCTAGGTGGTCTCATAATTCCATTTGTGGAGAGAACAG GAGGGCCAGATAGATAGGTCCTAGCAGAAGGCATTGAGGTGAGGGATCATTTTGGGTCAGACATCAATGTCCCTG TCCCCCCTGGGTCCAGCCAAGCTGTGCCCCATCCCCCAAGCCTCCTGGGAGGATCCAGCCAAATCTTGCGACTCC AAAACAAAAAAAAAACAAAACAGTTTTTAAAACTGATTTTAGAAAAAGAAGCTTAATCTAACGTTTTCAAACACA AGGTCTCTTACAGGTATAGTTCCGTGATTATGATAGCTCTGTGATTATAAGCAACATCCCCGCCCCCTCTCCCCC CCGCGGACCCCCAGCTGCCTCCTGAGGGTGTGGGGTTATTAGGGTCTCAATACTTTCTCAAGGGGCTACACTCCC CATCAGGCAGCATCCCACCAGCCTGCACCACAGGCTCCCCTGGGAGGACGAGGGAAACGCTGATGAGACGCTGGG CATCTCTCTCTGTGGCTCTAGGACATCTGTCCAGGAGGCTGGGCGGAGGTGGGCAGGATGTGAGAGGTGGGGAG TACTGGCTGTGCGTGGCAGGACAGAAGCACTGTAAAGGGCTCTCCAGCCGCAGCTCAGCTGCACTGCGTTCCGAG GTGAAGTCTTGCCCCTGAATTTTGCAAAATGGGAAAGTGGGCGCTTGCCCAAGGGCCAGGCTGCATGGATTCTCA CATCAGAGTTCTCTGGCCCTAGAAAGGCTTAGAAAAGGCGTAAGGGAACTCATAAAGGCTAGCAGCATGCGGTAT TTTAACTTTCTGCCTCGGCCTCTGTGGATGCAGAAATCTGCCCTACAAAATGCTCTTCATTGGTTGTCTCTGTGA GAGCACTGTCCCCACCCAACCTGTCACAACGGCCAGAACCATACACCAGAGACACACTGGCAGGTTAGGCAGTCC TTCTGGTGATCCTATTCCATTCCCTCCTGCTGCGGTTTCTCTTGGCCTGTCCTCACTGGAAAAACAGTCTCCATC TCCTCAAAATAGTTGCTGACTCCCTGCACCCAAGGGGCCTCTCCATGCCTTCTTAGGAAGCAGCTATGAATCCAT TGTCCTTGTAGTTTCTTCCCTCCTGTTCTCTGGTTATAGCTGGTCCCAGGTCAGCGTGGGAGGCACCTTTGGGTT

PCT/IIS2003/028547

107/6881 FIGURE 101B

CCCAGTGCCCAGCACTTTGTAGTCTCATCCCAGATTACTAACCCTTCCTGATCCTGGAGAGGCAGGGATAGTAAA
TAAATTGCTGTTCCTACCCCATCCCCATCCCCTGACAAAAAGTGACGCAGCCGATACTGAGTCTGTAAGGCCA
AAGTGGGTACAGACAGCCTGGGCTGGTAAAAGTAGGCTCCTTAATTTACAAGGCTAGGTTAAAGTTGTACTAGGCAA
ACACCTGATGTAGGAAGCACGAGGAAAAGGAACGCTTTTGATATAGTGTTACTGTGAGCCTGCAGTAGATGGGT
ACCAATCTTTTGTGACATATTGTCATGCTGAGGCTGGACCCTGCTGCACTCATCTGATGTAAAACCATCCCAGA
GCTGGCGAGAGGATGGAGCGGGAAACTGCTTTGCACTATCGTTTGCTGTGTTTTTAAACCACAAC
TTGCTTGTACAGTAAACTGCTTCTCTTACTTTAACTGT

PCT/US2003/028547

FIGURE 102

CAGGAACGAGATGGCGGTTCTCTGGAGGCTGAGTGCCGTTTGCGGTGCCCAAGGAGGCCGAGCTCTGTTGCTGCG GCACATACACTTGTCACCGAGCCACCATTCTGGCTCCAAGGCTGCATCTCTCCACTGGACTAGCGAGAGGGTTGT CAGTGTTTTGCTCCCGGGTCTGCTTCCGGCTGCTTATTTGAATCCTTGCTCTGCGACGGACTATTCCCTGGCTGC AGCCCTCACTCTTCATGGTCACTGGGGCCTTGGACAAGTTGTTACTGACTATGTTCATGGGGATGCCTCGCAGAA AGCTGCCAAGGCAGGGCTTTTGGCATTTTCAGCTTTAACCTTTGCTGGGCTTTGCTATTTCAACTATCACGATGT GGGCATCTGCAAAGCTGTTGCCATGCTGTGGAAGCTCTGACCTTTTTGACTTCCTACTTTGAAGAATTGATGTAT GCCTCTTTGCCTCTGCTTTGTCATGCCATTAAGCTCACAATAAGGAAGAAATAACAGATAAGTCCATTGGTGGAC AGCCTTCTTCTCTTATCACAAGATTATTTTCAGAATTTAACTTTGAGGAAAAGGTTTGAGGAGTTATATTTA AGTTGTGAGACTGAGTTCTGTATTCTGGTGAGTTAATGGGGTTGCCTCCCAGCTTCTTATAAGACTCACAGTATA ACTAAACATGATATATCAGCTTTTGCCTTTTAATTTCTCAATCTCTTAAAGAGAATCCAGCTTTAGTATGATTAG CATATGATCAAACTTCCATATTTGCCTTGGGAATAATGGACTAAGGGAAATACTCTTAATTCATGAATAAAAACT TTGCAGAAATTAGACAGTGTTTAATTTTCAAAAACTTCCCTCTCTAGTCGGTAGATACCACCTACCGATGGTTA ${\tt CATATACTAGGGAAATTTTAAAATTTAGGAAATGCTGATATCTCATATTATAAATTTCTAAATCCTAGGAAGAAAC}$ GCTTGGAGTGCTTCTGAAGATACAGAAGTTCCATTTAAGGGCAAGTTTCCCCATAGACGTATCAAAATATTACCC ATTGTAAACTGAGATTTAATTCTCAAATGTATTCTACTTGTTCTAAAACAATCTGTCCACAAATATAAAACTATA AAAATGTTGTATAATAA

PCT/US2003/028547

FIGURE 103

AGGAACGAGATGCCGGTTCTCTGGAGGCTGAGTGCCGTTTGCGGTGCCCAAGGAGGCCGAGCTGGCTCCAAGGCT
GCATCTCCACTGGACTAGCGAGAGGGTTGTCAGTGTTTTGCTCCGGGTCTGCTTCCGGCTGCTTATTTGAGT
CCTTGCTCTGCGACGGACTATCCCTGGCTGCAGCCCTCACTCTTCATGGTCACTGGGGCCTTGGCAAAGTTGTT
ACTGACTATGTTCATGGGGATGCCTCGCAGAAAGCTGCCAAAGCGGGCTTTTGCATTTTCAGCTTTAACCTT
GCTGGGCTTTGCTATTTCAACTATCACCATGTGGGCATCTGCAAAGCTGTTGCCATCATGGAAAGCTCTGACCT
TTTTGACTTCCTACTTTGAAGAATTGATGATTATCCCTTTTTGCCTCTGTTGATCCATTAAGCTCAAATAA
GGAAGAAATAAACGATAAGTCCATTGGTGGACAGCCTTCTTCTCTTAATCACAAGATTATTTTCAGAATTAACT
TTGAGGAAAAAGGTTTGAGAGGAATTATATTTAAGTTGTGAGACTGAGTTCTGTTTTTCTGGTGAGTTAATGGGGT
GCCTCCCAGCTTCTTATAAGACTCACAGTATAACTAAACATGATATATCAGCTTTTTCCCTTTTAATTTCCAAC

PCT/US2003/028547

FIGURE 104

MAVLRRLSALYGAQGGRALLLRTPVIRPAHISAFLQDRPIPEWCGVQHLHLSPSHHPGSKAASLHWTSERVVSVL LLGLLPAAYLNPCSAMDYSLAATLTLPGHWGLRQVVTMFMGMPRRKLPRQGFWHFQL

PCT/HS2003/028547

FIGURE 105

AGTGTGGTCAGGCGGCTCGGACTGAGCAGGACTTTCCTTATCCCAGTTGATTGTGCAGAATACACTGCCTATCGC TTGTCTTCTATTCACCATGGCTTCTTCTGATATCCAGGTGAAAGAACTGGAGAAGCGTGCCTCAGGCCAGGCTTT TGAGCTGATTCTCAGCCCTCGGTCAAAAGAATCTGTTCCAGAATTCCCCCTTTCCCCTCCAAAGAAGAAGGATCT GCAGCTGGCTGAGAAACGAGAGCACGAGAAAGAAGTGCTTCAGAAGGCAATAGAAGAACAACAACTTCAGTAA AATGGCAGAAGAGAAACTGACCCACAAAATGGAAGCTAATAAAGAGAACCGAGAGGCACAAATGGCTGCCAAACT GGAACGTTTGCGAGAGGATAAGCACATTGAAGAAGTGCGGAAGAACAAAGAATCCAAAGACCCTGCTGACGA GACTGAAGCTGAC<u>TAA</u>TTTGTTCTGAGAACTGACTTTCTCCCCATCCCCTTCCTAAATATCCAAAGACTGTACTG GCCAGTGTCATTTTATTTTTTCCCTCCTGACAAATATTTTAGAAGCTAATGTAGGACTGTATAGGTAGATCCAGA TCCAGACTGTAAGATGTTGTTTTAGGGGCTAAAGGGGAGAAACTGAAAGTGTTTTACTCTTTTTCTAAAGTGTTT GTCTTTCTAATGTAGCTATTTTTCTTGTTGCATCTTTTCTACTTCAGTACACTTGGTGTACTGGGTTAATGGCTA GTACTGTATTGGCTCTGTGAAAACATATTTGTGAAAAGAGTATGTAGTGGCTTCTTTTGAACTGTTAGATGCTGA ATATCTGTTCACTTTCAATCCCAATTCTGTCCCAATCTTACCAGATGCTACTGGACTTGAATGGTTAATAAAAC TGCACAGTGCTGTTGGTGGCAGTGACTTCTTTTGAGTTAGGTTAATAAATCAAGCCATAGAGCCCCTCCTGGTTG ATACTTGTTCCAGATGGGGCCTTTGGGGCTGGTAGAAATACCCAACGCACAAATGACCGCACGTTCTCTGCCCCG CTGTTACTTTCTTTCAGATGTTTATTTGCAAACAACCATTTTTTGTTCTGTGTCCCTTTTAAAAGGCAGATTAAA ACAGGT GGGGCATGTCCTCATCCTTTCCTGCCATAAAAGCTATGACACGAGAATCAGAATATTAATAAAACTTTA TGTACTGCTGT

PCT/US2003/028547

FIGURE 106

massdiqvkelekrasgqafelilsprskesvpefplsppkkkdlsleeiqkkleaaeerrksheaevlkqlaek rehekevlqkaieennnfskmaeeklthkmeankenreaqmaaklerlrekdkhieevrknkeskdpadetead

PCT/IIS2003/028547

FIGURE 107

ATATCCAACTGAGGGGATCTCTCACGTCACTTCACCGAGTTCCGATGTGATTCAGAAGGGCAGTTCCCTGGGGAC TGAATGGCAGACCCCAGTTATCTCGGAGCCCTTTCGGAGCCGCTTCAGCCGCTGTTCAAGTGTAGCCGACAGTGG GGACACAGCCATTGGTACATCATGCTCAGATATTGCGGAGGATTTTTGCAGCTCAAGTGGCAGTCCTCCTTTCCA GCCCATCAAAAGCCACGTAACCATTCCAACAGCCCATGTGATGCCTTCTACTTTAGGGACCTCTCCTGCCAAGCC AAATTCTACACCTGTTGGACCCTCTTCCTCTAAACTCCCTTTGTCAGGGTTGGCTGAAAGTGTGGGAATGACAAG AAATGGAGACCTCGGTGCAATGAAACATTCTCCAGGCCTATCTAGAGATCTCATGTATTTCTCTGGTGCTACTGG AGAAAATGGAATTGAGCAGTCCTGGTTTCCAGCAGTGGGCCCATGAAAGACAAGAAGAGGCGAGGAAGTTTGATAT TCCTAGCATGGAATCTACCCTCAATCAGTCGGCAATGATGGAGACACTTTATTCAGATCCTCACCACCGAGTCCG CTTCCACAACCCAAGAACCAGCACAAGTAAGGAGTTGTACAGAGTGTTGCCTGAGGCCAAGAAGGCACCGGGCAG CGGGGCAGTGTTTGAGCGGAATGGACCACATTCTAATAGCAGTGGGGTCCTCCCTTTGGGACTCCAGCCTGCTCC CGGGCACTCCAGCCAGCCTCTGCCCTCTCAGGTGTGGCAGCCGAGTCCTGACACTTGGCATCCCCGAGAGCAATC TTGTGAACTCAGCACTTGTCGGCAGCAGCTGGAATTGATTCGTTTACAGATGGAGCAAATGCAGCTTCAGAATGG AGCCATCTGCCACCATCCTGCTGCTTTTGGTCCTTCACTGCCCATCTTAGAGCCAGCACAGTGGATCAGCATCTT GAACAGTAATGAACACCTTCTGAAGGAAAAAGAGCTTCTCATTGACAAGCAGGAGGAAACACATCTCTCAGCTGGA GCAGAAAGTGCGAGAGAGCGAACTGCAAGTCCACAGTGCCCTCTTGGGCCGCCCTGCCCCCTTTGGTGATGTCTG CTTGCTGAGGCTACAGGAATTGCAGCGAGAAAACACTTTCTTACGTGCACAGTTTGCACAGAAGACAGAAGCCTT GAGCAGAGAAAAGATTGACCTTGAAAAGAAACTCTCTGCTTCTGAAGTTGAAGTCCAGCTCATCAGAGAGTCGCT CAAAGTGGCGTTGCAGAAGCATTCTGAGGAAGTGAAGAAACAGGAAGAAAGGGTCAAAGGTCGTGATAAACATAT CAATAATTTGAAAAAGAAATGCCAGAAGGAATCAGAGCAGAACCGGGAGAAGCAGCAGCGTATTGAGACCTTGGA GCGCTACCTGGCTGACCTGCCCACACTGGAAGACCATCAGAAGCAGAGCCAGCAGCTTAAGGATTCTGAGTTGAA GAGCACAGAGCTGCAGGAGAAAGTGACTGAGCTGGAGAGTTTGCTGGAGGAGACCCAGGCAATCTGCAGAGAGAA GGAGATTCAACTGGAAAGCCTGAGGCAGAGAGAAGCAGAATTCTCCTCCGCTGGACATAGCCTGCAAGATAAACA GTCTGTGGAGGAGCCAGTGGAGAAGGTCCAGAAGTGGAAATGGAGTCCTGGCAGAAGCGATACGATTCGCTCCA AAAGATTGTGGAGAAGCAGCAGCAGAAGATGGATCAGTTGCGCTCACAAGTACAGAGCCTAGAGCAGGAAGTGGC TCAAGAAGAAGGAACAAGCCAGGCCCTGAGAGAGGAGGGCCCAGCGAAGGGATTCAGCCCTGCAGCAGCTGCGCAC GGCCCAACCAGGGTCTCCACCTTCACCAGACACGGCCCAGCTGGCACTTGAGCTGCACCAGGAGTTGGCCAGTTG CCTTCAAGATCTGCAGGCTGTCTGTAGCATTGTGACCCAGAGGGCCCAGGGCCATGACCCCAATCTCTCCCTGCT CCTGGGCATTCACTCACAGCACCCAGAGACTCAGCTAGATTTGCAGAAGCCAGATGTGATCAAGAGGAAACTAGA $AGAAAACTGTGTCACACAG\underline{TGA}$ GGAATTCTGGGGGATTCCCCCAGGGAGGAGCTGGGCTGAGAGCCTAGTCC AGCAGGTTTCTGCCCTGACATTCTCTTGTCTGCTATTCCCAGAGAGGTCTCAGAGGGGAGGGGAGAGCCTGCATC TGGGGGCCAAGGGCTGATTAGGGAACTGTGTCCTACCCACACTGGCATGTTGGATTACGTTTGTCCTGTTAATTC ACTCTCGACGGTGAGTTACTAATTAACTTTTGGCAGGTACAACAGATAAGTCCTCACAAACTGTTCCCAGCCCTA TCACACCTTGGTCCTGCTGATTAGAGAGCTCATCAGAGGGGCCTGGAAAGGCTGAGCAAGTACCAGTGACAATGG CCATTTAAGAATTCTCAGGCCCCATGTGCCAGCCTTCTTGGGAACTGAGCTGGCTTTCTGGGTTTTCTCATGCCT GGTCTTACTGCTTCTTCCTCAGGGCTCTTGTTCTCCCAGAAGCCTCAGGGTAATGTGTTGGTTAGCACGTAACTA CTAGGATTGGGGCCCTAGGGATTATAGCCAGGACTCTAATCTGCCTACCATGCCATTTAACAAGAGATCCCACTC TCCAGCTGCCTTGTGTCCCTAGGGTCCTGGCCATGTGTTTAGTGTGCTAAACTTTCTCCTTTGTTCTCAGGCCTT CCAGGTAGTCCCCTTCCTGGACTTAAGAGTGCAAACTCTTCTCTGTGGTTCTAGCCTTGGGCAGAATTATATCCC AGAGACCACAGAGCAACTGTCAAGCTGCTTACCCCCTCACCCAGGGCTACAGCCTGTGCCCAGCCCTCTAATTTG TGCCTCTCTTGTGTGGGGGTGGTGGGGGGTTATTCCTTTCCCTTTCCTGCTCTGGCCTCCTTGAAAGTTCAGAGT TTTGTTATGTCCATTTGTTTTGTATTGCGTATTTTGATTATAAAATAAAGTATCTTAACAG

PCT/US2003/028547

FIGURE 108

PCT/US2003/028547

FIGURE 109

GTAGCAGCTTCTTCTCCGAACCAACCCTTTGCCTTCGGACTTCTCCGGGGCCAGCAGCCGCCCGACCAGGGGCCC GGGGCCACGGGCTCAGCCGACGACCATGGGCTCCGTGTCCAACCAGCAGTTTGCAGGTGGCTGCGCCAAGGCGGC CCCCCAGTGGATGTCTTTGTGCACCAGAGTAAGCTGCACATGGAAGGGTTCCGGAGCTTGAAGGAGGGTGAGGC TATTGGGAGTGAGAGGCGGCCAAAAGGAAAGAGCATGCAGAAGCGCAGATCAAAAGGAGACAGGTGCTACAACTG TGGAGGTCTAGATCATCATGCCAAGGAATGCAAGCTGCCACCCCAGCCCAAGAAGTGCCACTTCTGCCAGAGCAT CAGCCA TATGGTAGCCTCA TGTCCGCTGA AGGCCCAGCAGGGCCCTAGTGCACAGGGAAAGCCAACCTACTTTCG TTCTTTTGCTATCAGGAAGTTTTGAGGAGCAGGCAGAGTGGAGAAAGTGGGAATAGGGTGCATTGGGGCTAGTTG GCACTGCCATGTATCTCAGGCTTGGGTTCACACCATCACCCTTTCTTCCCTCTAGGTGGGGGAAAGGGTGAGTC AAAGGAACTCCAACCATGCTCTGTCCAAATGCAAGTGAGGGTTCTGGGGGGCAACCAGGAGGGGGGAATCACCCTA CAACCTGCATACTTTGAGTCTCCATCCCCAGAATTTCCAGCTTTTGAAAGTGGCCTGGATAGGGAAGTTGTTTTC CTTTTAAAGAAGGATATATAATAATTCCCATGCCAGAGTGAAATGATTAAGTATAAGACCAGATTCATGGAGCCA CACTTTTGGGATAGGGTGCTGGCAGCTGTCCCAAGCAATGGGTAATGATGATGGCAAAAAGGGTGTTTGGGGGAA GGATACTGCACCTTGGGTCCCACTTTCTCCAGGATGCCAACTGCACTAGCTGTGTGCGAATGACGTATCTTGTGC ATTTTAACTTTTTTCCTTAATATAAATATTCTGGTTTTGTATTTTTGTATATTTTAATCTAAGGCCCTCATTTC CTGCACTGTGTTCTCAGGTACATGAGCAATCTCAGGGATAGCCAGCAGCAGCTCCAGGTCTGCGCAGCAGGAATT ACTTTTTGTTGTTTTTTGCCACCGTGGAGAGCAACTATTTGGAGTGCACAGCCTATTGAACTACCTCATTTTTGCC AATAAGAGCTGGCTTTTCTGCCATAGTGTCCTCTTGAAACCCCCTCTGCCTTGAAAATGTTTTATGGGAGACTAG GTTTTAACTGGGTGGCCCCATGACTTGATTGCCTTCTACTGGAAGATTGGGAATTAGTCTAAACAGGAAATGGTG GTACACAGAGGCTAGGAGAGGCCGGGGCCCGGTGAAAAGGCCAGAGAGCCAAGATTAGGTGAGGGTTGTCTA ATCCTATGGCACAGGACGTGCTTTACATCTCCAGATCTGTTCTTCACCAGATTAGGTTAGGCCTACCATGTGCCA CAGGGTGTGTGTGTGTAAAACTAGAGTTGCTAAGGATAAGTTTAAAGACCAATACCCCTGTACTTAATCCT GTGCTGTCGAGGGATGGATATATGAAGTAAGGTGAGATCCTTAACCTTTCAAAATTTTCGGGTTCCAGGGAGACA CAAATGCAATAGAACGCATTGGGTGGTGTGTCTGATCCTGGGTTCTTGTCTCCCCTAAATGCTGCCCCCAAG TTACTGTATTTGTCTGGGCTTTGTAGGACTTCACTACGTTGATTGCTAGGTGGCCTAGTTTGTGTAAATATAATG TATTGGTCTTTCTCCGTGTTCTTTGGGGGTTTTGTTTACAAACTTCTTTTTGTATTGAGAGAAAAATAGCCAAAG CATCTTTGACAGAAGGTTCTGCACCAGGCAAAAAGATCTGAAACATTAGTTTGGGGGGCCCTCTTCTTAAAGTGG GGATCTTGAACCATCCTTTCTTTTGTATTCCCCTTCCCCTATTACCTATTAGACCAGATCTTCTGTCCTAAAAAC GCTTGGAGTGTCTCCACAACTCTTAAATGATGTATGCAAAAATACTGAAGCTAGGAAAACCCTCCATCCCTTGTT GTCACCCAGGCAGAGGTTGCAGTGAGCTGAGATCGCACCACTGCACTCCAGCCTGGTTACAGAGCAAGACTCTGT AATCCTAAAGTAAAGAGATGCAATTGGGGGCCTTCCATGTAGAAAGTGGGGTCAGGAGGCCAAGAAAGGGAATAT GAATGTATATCCAAGTCACTCAGGAACTTTTATGCAGGTGCTAGAAACTTTATGTCAAAGTGGCCACAAGATTGT TTAATAGGAGACGAACGAATGTAACTCCATGTTTACTGCTAAAAACCAAAGCTTTGTGTAAAATCTTGAATTTAT GGGGCGGAGGGTAGGAAAGCCTGTACCTGTCTTTTTTTCCTGATCCTTTTTCCCTCATTCCTGAACTGCAGGA GACTGAGCCCCTTTGGGCTTTGGTGACCCCATCACTGGGGTGTGTTTATTTGATGGTTGATTTTGCTGTACTGGG TACTTCCTTTCCCATTTTCTAATCATTTTTTAACACAAGCTGACTCTCCCTTCCCTTCCCTTCCCTGGGAAA ATACAATGAATAAATAAAGACTTATTGGTACGC

PCT/US2003/028547

FIGURE 110

ACCTACGTCCCGCTGCCGTCGCCGCCGCCACCATGCCCAAGAGAAAGGCTGAAGGGGATGCTAAGGGAGATAAAG CAAAGCTGAAGGACGAACCACAGAGAAGATCCGCGAGGTTGTCTGCTAAACCTGCTCCTCCAAAGCCAGAGCCAGAGCCCA AGCCTAAAAAGGCCCCTGCAAAGAAGGGAGAGAAGGTACCCAAAGGGAAAAAGGGAAAAGCTGATGCTGGCAAGG AGGGGAATAACCCTGCAGAAAATGGAGATGCCAAAACAGACCAGGCACAGAAAGCTGAAGGTGCTGGAGATGCCA AGTGAAGTGTGTGCATTTTTGATAACTGTGTACTTCTGGTGACTGTACAGTTTGAAATACTATTTTTTATCAAGT ATTGTTGTTTTTTGGGGGAAGGGGCATATGTCACTAATAGAATGTCTCCCAAAGCTGGATTGATGTGGAGAAAACAC CTTTCCCTTCTAGTTTTGAGAGACTTCCTCTTGGCTCCCAGGAGGAGGGATTCCCTGACTTTGACACACATGGCC ACCTTGGCACAAAAGCCTTGTGGTATAGAAAAACAAATTTGTTTTTATGTCCTCTTCTCCCTTTCCATCTTTCAG CATAGACTTAACTCCCTTAAGCCCAGACATCTGTTGAGACCTGACCCCTAGTCATTGGTTACCAGTGTGTCAGGC AATCTGGACTTTCCAGTGATGCCACTGAGATGGCACCTGTCAAAAGAGCAGTGGTTCCATTTCTAGATTGTGGAT CTTCAGATAAATTCTGCCATTTTCATTTCACTTCCTGAAAGTCAGGGTCGGCTTGTGAAAAGTTGTTAAACAACA TGCTAAATGTGAAATGTCAACCCTCACTCTAAACTTTCCCTGTTCAGAGCATCAGATGAAGACTTCATTGGGTTT TATAGTGGCTTTCTGATTTTTGGTAGTCCATTGAAGAGGGAGTTTGAAAGTTGTTGTATACTGTTAACGATTGT CTGCCCATGTCCTGCCTGAAATACCATGATTGTTTATGGAAAGTATCTTTAATAAAGCTGGATACAGTTTGGC

PCT/US2003/028547

FIGURE 111

mpkrkaegdakgdkakvkdepqrrsarlsakpappkpepkpkkapakkgekvpkgkkgkadagkegnnpaengda ktdqaqkaegagdak

PCT/US2003/028547

FIGURE 112A

CTTGGGGGGAATGAGCCGGGAGAGCCGGGTCCCGAGCCTACAGAGCCGGGAGCAGCTGAGCCGCCGCGCCCTCGG GAGCGCAGCAGCAGCAGCAGCCCCAGCGAGCCCCGGGCCGGGCAGGCAGCCAGCCCGGGGGACTGGGCCCCC CCCCAGCCTACGGCTTCGGGCAACCCTACGGCCGGAGCCCGTCTGCCGTCGCCGCCGCCGCCGCCGCCGTCTTCC ACCAACA CATGGCGGACAACA AGCCCTGGCCTGGCAGCCCTGCAGAGCGGCGGCGGCGGGGGCCTGGAGCCCT ACGCGGGGCCCAGCAGAACTCTCACGACCACGGCTTCCCCAACCACCAGTACAACTCCTACTACCCCAACCGCA GCGCCTACCCCCGCCCGCCCGGCCTACGCGCTGAGCTCCCCGAGAGGTGGCACTCCGGGCTCCGGCGCGGCGG GCTTCGGGGCCATGGGGGGAGGCGGCCCTCCGCGGCGGGGGGAACTCCCCAGCCCACCGCCACCCCACCC CCCAGGACGGGGGCGCGGCAAGGGCCCGGCGGACATGGCCTCGCAGTGTTGGGGGGGCTGCGGCGGCGGCAGCTG GGGGGCAGCCGCTCGCCCGGACCCCTCAGCCATCCAGTCCAATGGATCAGATGGGCAAGATGAGACCTCAGCCAT ATGGCGGGACTAACCCATACTCGCAGCAACAGGGACCTCCGTCAGGACCGCAGCAAGGACATGGGTACCCAGGGC AGCCATACGGGTCCCAGACCCCGCAGCGGTACCCGATGACCATGCAGGGCCGGGCGCAGAGTGCCATGGGCGGCC TCTCTTATACACAGCAGATTCCTCCTTATGGACAACAAGGCCCCAGCGGGTATGGTCAACAGGGCCAGACTCCAT ATTACAACCAGCAAAGTCCTCACCCTCAGCAGCAGCAGCCACCCTACTCCCAGCAACCACCGTCCCAGACCCCTC ATGCCCAACCTTCGTATCAGCAGCAGCCACAGTCTCAACCACCAGCTCCAGTCCTCCAGCCTCCATACTCCC AGCAGCCATCCCAGCCTCCACATCAGCAGTCCCCGGCTCCATACCCCTCCCAGCAGTCGACGACACAGCAGCACC agcgcttccctccaccgcaggagctatctcaagattcatttgggtctcaggcatcctcagcccctcaatgacct CAATAGATGACCTCCCCATGGGGACAGAAGGAGCTCTGAGTCCTGGAGTGAGCACATCAGGGATTTCCAGCAGCC CTTCCCCGTCCCCTGTTGGCTCTCCCGCCAGTGTTGCTCAGTCTCGCTCAGGACCACTCTCGCCTGCTGCAGTGC CAGGCAACCAGATGCCACCTCGGCCACCCAGTGGCCAGTCGGACAGCATCATGCATCCATGCACCAATCAA GCATTGCCCAAGATCGAGGTTATATGCAGAGGAACCCCCAGATGCCCCAGTACAGTTCCCCCCAGCCCGGCTCAG CCTTATCTCCGCGTCAGCCTTCCGGAGGACAGATACACACAGGCATGGGCTCCTACCAGCAGAACTCCATGGGGA GCTATGGTCCCCAGGGGGGTCAGTATGGCCCACAAGGTGGCTACCCCAGGCAGCCAAACTATAATGCCTTGCCCA ATGCCAACTACCCCAGTGCAGGCATGGCTGGAGGCATAAACCCCATGGGTGCCGGAGGTCAAATGCATGGACAGC CTGGCATCCCACCTTATGGCACACTCCCTCCAGGGAGGATGAGTCACGCCTCCATGGGCAACCGGCCTTATGGCC CTAACATGGCCAATATGCCACCTCAGGTTGGGTCAGGGATGTGTCCCCCACCAGGGGGCATGAACCGGAAAACCC AAGAAACTGCTGTCGCCATGCATGTTGCTGCCAACTCTATCCAAAACAGGCCGCCAGGCTACCCCAATATGAATC TTGGGGATGTAAAGTTAACTCCAGCCACCAAAATGAACAACAAGGCAGATGGGACACCCAAGACAGAATCCAAAT CCAAGAAATCCAGTTCTTCTACTACAACCAATGAGAAGATCACCAAGTTGTATGAGCTGGGTGGTGAGCCTGAGA GTAGGAAACCTCTGGACCTCTATCGCCTCTATGTGTCTGTGAAGGAGATTGGTCGATTGACTCAGGTCAACAAGA ACAAAAATGGCGGGAACTTGCAACCAACCTCAATGTGGGCACATCAAGCAGTGCTGCCAGCTCCTTGAAAAAGC

PCT/IIS2003/028547

119/6881 FIGURE 112B

AGTATATCCAGTGTCTCTATGCCTTTGAATGCAAGATTGAACGGGGAGAAGACCCTCCCCCAGACATCTTTGCAG ACACTCCCCACTCAACCAGCTCCATGGCAGAAGGAGGAGACTTAAAGCCACCAACTCCAGCATCCACACCAC ACAGTCAGATCCCCCCATTGCCAGGCATGAGCAGGAGCAATTCAGTTGGGATCCAGGATGCCTTTAATGATGGAA GTGACTCCACATTCCAGAAGCGGAATTCCATGACTCCAAACCCTGGGTATCAGCCCAGTATGAATACCTCTGACA TGATGGGGCGCATGTCCTATGAGCCAAATAAGGATCCTTATGGCAGCATGAGGAAAGCTCCAGGGAGTGATCCCT TCATGTCCTCAGGGCAGGGCCCCAACGGCGGGATGGGTGACCCCTACAGTCGTGCTGCCGGCCCTGGGCTAGGAA ATGTGGCGATGGGACCACGACAGCACTATCCCTATGGAGGTCCTTATGACAGAGTGAGGACGGAGCCTGGAATAG GGCCTGAGGGAAACATGAGCACTGGGGCCCCACAGCCGAATCTCATGCCTTCCAACCCAGACTCGGGGATGTATT CTCCTAGCCGCTACCCCCGCAGCAGCAGCAGCAGCAGCAGCACGACATGATTCCTATGGCAATCAGTTCTCCA CCCA AGGCACCCCTTCTGGCAGCCCCTTCCCCAGCCAGCAGACTACAATGTATCAACAGCAACAGCAGAATTACA AGCGGCCAATGGATGGCACATATGGCCCTCCTGCCAAGCGGCACGAAGGGGAGATGTACAGCGTGCCATACAGCA AGCCTTCCCCTCAGCAAGATGTATACAACCAGTATGGCAATGCCTATCCTGCCACTGCCACAGCTGCTACTGAGC GCCGACCAGCAGCGCCCCCAGAACCAATTTCCATTCCAGTTTGGCCGAGACCGTGTCTCTGCACCCCCTGGCA CCAATGCCCAGCAAAACATGCCACCACAAATGATGGGCGGCCCCATACAGGCATCAGCTGAGGTTGCTCAGCAAG GCACCATGTGGCAGGGGCGTAATGACATGACCTATAATTATGCCAACAGGCAGAGCACGGGCTCTGCCCCCAGG GCCCCGCCTATCATGGCGTGAACCGAACAGATGAAATGCTGCACACAGATCAGAGGGCCCAACCACGAAGGCTCGT GCCTTCCCATGCCACACGCCAGCCCCCATATGGTCCCTCTGCCCCTGTGCCCCCATGACAAGGCCCCTCCAT CTAACTACCAGCCCCCACCAAGCATGCAGAATCACATTCCTCAGGTATCCAGCCCTGCTCCCCTGCCCCGGCCAA TGGAGAACCGCACCTCTCCTAGCAAGTCTCCATTCCTGCACTCTGGGATGAAAATGCAGAAGGCAGGTCCCCCAG TACCTGCCTCGCACATAGCACCTGCCCCTGTGCAGCCCCCCATGATTCGGCGGGATATCACCTTCCCACCTGGCT CTGTTGAAGCCACACCCTGTGTTGAAGCAGAGGAGGCGCTCACAATGAAAGACATTGGAACCCCGGAGGCAT GGCGGGTAATGATGTCCCTCAAGTCTGGTCTCCTGGCAGAGAGCACATGGGCATTAGATACCATCAACATCCTGC TGGATCCTGGGAGGTTCAGCAAGGTGTCTAGTCCAGCTCCCATGGAGGGTGGGGAAGAAGAAGAAGAACTTCTAG AGCCAGCTTCAGAGAATAGTGAGGAGAAGCTGATCAGTAAGTTTGACAAGCTTCCAGTAAAGATCGTACAGAAGA ATGATCCATTTGTGGTGGACTGCTCAGATAAGCTTGGGCGTGTGCAGGAGTTTGACAGTGGCCTGCTGCACTGGC GGATTGGTGGGGGGGACACCACTGAGCATATCCAGACCCACTTCGAGAGCAAGACAGAGCTGCCTTCCCGGC CTCACGCACCCTGCCCACCAGCCCCTCGGAAGCATGTGACAACAGCAGAGGGTACACCAGGGACAACAGACCAGG AGGGGCCCCACCTGATGGACCTCCAGAAAAACGGATCACAGCCACTATGGATGACATGTTGTCTACTCGGTCTA GCACCTTGACCGAGGATGGAGCTAAGAGTTCAGAGGCCATCAAGGAGCAGCAAGTTTCCATTTGGCATTAGCC CAGCACAGAGCCACCGGAACATCAAGATCCTAGAGGACGAACCCCACAGTAAGGATGAGACCCCACTGTGTACCC TTCTGGACTGCCAGGATTCTCTTGCCAAGCGCTGCGTCTGTGTCCAATACCATTCGAAGCCTGTCATTTGTGC CAGGCAATGACTTTGAGATGTCCAAACACCCAGGGCTGCTGCTCATCCTGGGCAAGCTGATCCTGCTGCACCACA AGCACCCAG AACGGAAGCAGGCACCACTAACTTATGAAAAGGAGGAGGAACAGGACCAAGGGGTGAGCTGCAACA AAGTGGAGTGGTGGTGGGACTGCTTGGAGATGCTCCGGGAAAACACCTTGGTTACACTCGCCAACATCTCGGGGC CTTCAGCTGAAGCCCAGGACCCCTTTTCCACCCTGGGCCCCAATGCCGTCCTTTCCCCGCAGAGACTGGTCTTGG AAACCCTCAGCAAACTCAGCATCCAGGACAACAATGTGGACCTGATTCTGGCCACACCCCCCTTCAGCCGCCTGG AGAAGTTGT A TAGCACTATGGTGCGCTTCCTCAGTGACCGAAAGAACCCGGTGTGCCGGGAGATGGCTGTGCTAC TGCTGGCCAACCTGGCTCAGGGGGACAGCCTGGCAGCTCGTGCCATTGCAGTGCAGAAGGGCAGTATCGGCAACC TCCTGGGCTTCCTAGAGGACAGCCTTGCCGCCACACAGTTCCAGCAGAGCCAGGCCAGCCTCCTCCACATGCAGA ACCCACCTTTGAGCCAACTAGTGTGGACATGATGCGGCGGGCTGCCCGCGCGCTGCTTGCCTTGGCCAAGGTGG ACGAGAACCACTCAGAGTTTACTCTGTACGAATCACGGCTGTTGGACATCTCGGTATCACCGTTGATGAACTCAT

PCT/US2003/028547

120/6881 FIGURE 112C

PCT/US2003/028547

121/6881 FIGURE 113

CAACAATGTGGACCTGATTCTGGCCACACCCCCCTTCAGCCGCCTGGAGAAGTTGTATAGCACTATGGTGCGCTT CCTCAGTGACCGAAAGAACCCGGTGTGCCGGGAGATGGCTGTGGTACTGCTGGCCAACCTGGCTCAGGGGGACAG CCTGGCAGCTCGTGCCATTGCAGTGCAGAAGGGCAGTATCGGCAACCTCCTGGGCTTCCTAGAGGACAGCCTTGC CATGATGCGGCGGCTGCCCGCGCGCTGCTTGCCTTGGCCAAGGTGGACGAGAACCACTCAGAGTTTACTCTGTA CGAATCACGGCTGTTGGACATCTCGGTATCACCGTTGATGAACTCATTGGTTTCACAAGTCATTTGTGATGTACT GAAACTGACTGTTGCCCTTTATTTATGCAAAACCACCTCAGAATCCAGTTTACCCTGTGCTGTCCAGCTTCTCCC CTTGTCCTCACCTTACTCCCCTCAGGACCCTACCCCACCCTCTTTGAAAAGACAAAGCTCTGCCTACATAGAAGA AGCCAAGAAGTTCGCAGTTGTGAACAGACCCTGTTCACTGGAGAGGCCTGTGCAGTAGAGTGTAGACCCTTTCAT GTACTGTACTGTACACCTGATACTGTAAACATACTGTAATAATAATGTCTCACATGGAAACAGAAAACGCTGGGT AAGTATCATGTGTGAACCTACAACACCCTGACCTCTTTCTCTCCCCTTGATTGTATGAATAACCCTGAGATCAC CACATACCCTTGGATCCCCACAGTTTGGTCCTCCTCCCAGCTACCCCTTTATAGTATGACGAGTTAACAAGTTGG TGACCTGCACAAAGCGAGACACAGCTATTTAATCTCTTGCCAGATATCGCCCCTCTTGGTGCGATGCTGTACAGG TTGTTTTCTTTCTAATCGAGGTGTGAAAAAGTTCTAGGTTCAGTTGAAGTTCTGATGAAGAAACACAATTGAGAT TTTTTCAGTGATAAAATCTGCATATTTGTATTTCAACAATGTAGCTAAAACTTGATGTAAATTCCTCCTTTTTTT CCTTTTTTGGCTTAATGAATATCATTTATTCAGTATGAAATCTTTATACTATATGTTCCACGTGTTAAGAATAAA TGTACATTAAATCTTGGT

PCT/HS2003/028547

122/6881 FIGURE 114

ATTGGTCCCAGGCAGCAGTTAGCCCGCCGCCCGCCTGTGTGTCCCCAGAGCCATGGAGAGAGCCAGTCTGATCCA GAAGGCCAAGCTGGCAGAGCAGGCCGAACGCTATGAGGACATGGCAGCCTTCATGAAAGGCGCCGTGGAGAAGGG CTGGAGGGTGCTGTCCAGTATTGAGCAGAAAAGCAACGAGGAGGGGCCTCGGAGGAGAAGGGGCCCGAGGTGCGTGA GAAGCGCATCATTGACTCAGCCCGGTCAGCCTACCAGGAGGCCATGGACATCAGCAAGAAGGAGATGCCGCCCAC CAACCCCATCCGCCTGGGCCTGGACTTTTCCGTCTTCCACTACGAGATCGCCAACAGCCCCGAGGAGGC CATCTCTCTGGCCAAGACCACTTTCGACGAGGCCATGGCTGATCTGCACACCCTCAGCGAGGACTCCTACAAAGA CAGCACCCTCATCATGCAGCTGCTGCGAGACAACCTGACACTGTGGACGGCCGACAACGCCGGGGAAGAGGGGGG CGAGGCTCCCCAGGAGCCCCAGAGCTGAGTGTTGCCCGCCACCGCCCCGCCCTGCCCCTCCAGTCCCCCACCCT GCCGAGAGGACTAGTATGGGGTGGGAGGCCCCACCCTTCTCCCCTAGGCGCTGTTCTTGCTCCAAAGGGCTCCGT GGAGAGGGACTGGCAGAGCTGAGGCCACCTGGGGCTGGGGATCCCACTCTTCTTGCAGCTGTTGAGCGCACCTAA CCACTGGTCATGCCCCCACCCCTGCTCTCCGCACCCGCTTCCTCCCGACCCCAGGACCAGGCTACTTCTCCCCTC CTCTTGCCTCCCTCCTGCCCCTGCTGCCTCTGATCGTAGGAATTGAGGAGTGTCCCGCCTTGTGGCTGAGAACTG AGACCGAGATTGAGGGAAAGCATGTCTGCTGGGTGTGACCATGTTTCCTCTCAATAAAGTTCCCCTGTGACACTC

PCT/US2003/028547

FIGURE 115

MERASLIQKAKLAEQAERYEDMAAFMKGAVEKGEELSCEERNLLSVAYKNVVGGQRAAWRVLSSIEQKSNEEGSE EKGPEVREYREKVETELQGVCDTVIGILDSHLIKEAGDAESRVFYLKMKGDYYRYLAEVATGDDKKRIIDSARSA YQEAMDISKKEMPPTNPIRLGLALNFSVFHYEIANSPEEAISLAKTTFDEAMADLHTLSEDSYKDSTLIMQLLRD NIILWTADNAGEEGGEAPQEPQS

PCT/IIS2003/028547

124/6881 FIGURE 116

 $\tt CCGGAAGTCGAGTTAGTCTAGTTAGTATCGGCCTGTTATCTCCTTTTGCGCGACACGGTCTCAGCTGTTCCGCCT$ ACCTGCCCCGTTTTCCCTGTGAGTTGACCTGCTCCGGGCCGGGGCCGCCAATGGCAGGGGCCGCTCCGACCACG CGCGCGCTGGGCCGCGCGTGGCGGTGAACCTGGACCCGGCCAACGAGGGGCTGCCGTACGAGTGTGCCGTG GACGTGGGCGAGCTGGTGGGGCTGGGCGACGTGATGGACGCCTGCGCCTGGGGCCCAACGGCGGCCTGCTCTAC TTCGACTGCCCAGGCCAGGTGGAGCTCTGCACGCATCACGGCGCCCTTGCGCAGCATCTTCTCCCAAATGGCGCAG TGGGACCTCAGGCTGACTGCCGTCCACCTCGTGGATTCTCACTACTGCACAGACCCTGCCAAGTTCATTTCAGTA CTGTGTACCTCCCTGGCCACCATGCTGCACGTGGAACTGCCCCACATCAACCTCCTTTCCAAGATGGACCTCATT GAGCATTATGGGAAGCTGGCCTTCAACCTGGACTACTACACAGAGGTTCTGGACCTCTCCTACCTGCTTGACCAC $\tt CTGGCTTCTGACCCTTTCTTCCGCCACTACCGCCAGCTCAATGAGAAGCTAGTGCAGCTCATCGAAGACTATAGC$ CTTGTCTCCTTTATCCCTCTCAACATCCAGGACAAGGAGAGCATCCAGCGAGTCCTGCAGGCTGTGGATAAAGCC AATGGATACTGTTTCAGAGCCCAAGAGCAGCGAAGCTTGGAAGCCATGATGTCTGCCGCAATGGGAGCCGACTTC CAGGCTGCAGACCCAAGAGCAAGTCCTCCCAGCCAGAGCTGGCGGGCTGGCAAGGGGATATTCAGCTCTGCAAAG GACTTCTGGCCAAAAAGCCAGACATGGTGCCAAGCAGAACACCCCCCATACTGTCAGTGGTGTCCGTGAGCTCTG GGCCCTGCCACCAGAAAGTCGAGCACTGGTCCTAGTCAGGCTGTGATGAAATGTGCTACAATACAAGAGTTTATT TTCT

PCT/US2003/028547

125/6881 FIGURE 117

MAGAAPTTAFGQAVTGPPGSGKTTYCLGMSEFLRALGRRVAVVNLDPANEGLPYECAVDVGELVGLGDVMDALRL GPNGGLLYCMEYLEANLDWLRAKLDPLRGHYFLFDCPGQVELCTHHGALRSIFSQMAQWDLRLTAVHLVDSHYCT DPAKFISVLCTSLATMLHVELPHINLLSKMDLIEHYGKLAFNLDYYTEVLDLSYLLDHLASDPFFRHYRQLNEKL VQLIEDYSLVSFIPLNIQDKESIQRVLQAVDKANGYCFRAQEQRSLEAMMSAAMGADFHFSSTLGIQEKYLAPSN QSVEQEAMQL

PCT/US2003/028547

126/6881 FIGURE 118

TAGAGTCGTTGGGCCCGGCGCGCACCGCAGGAGCGTAGAGAGCGCGGGACTAGAGTGCAGAGCTCCGGGACGTGG ATCGGAGCCGGCGCGATGGGCGGAGAGCAGGAGGAGCGGTTCGACGGCATGTTGCTGGCCATGGCTCAGCAG GGAGAAGAAGGGATGGCAGAGAAGCTTATCACACAGACTTTCAGCCACCACAATCAGCTGGCACAGAAGACCCGG CGGGAGAAGAGACCCCGGCAGGAGGCCGAGCGGGGGAGAAGGCGGAGCGGGCGAGCAGACTGGCCAAGGAAGCC AAGTCAGAGACCTCAGGGCCCCAGATCAAGGAGCTAACTGATGAAGAGGCAGAGAGGCTGCAGCTAGAGATTGAC CAGAAAAAGGATGCAGAGAATCATGAGGCCCAGCTCAAGAACGGCAGCCTTGACTCCCCAGGGAAGCAGGATACT GAGGAAGATGAGGAGGAGATGAGAAGGACAAAGGAAAACTGAAGCCCAACCTAGGCAACGGGCAGACCTGCCC AATTACCGCTGGACCCAGACCCTGTCGGAGCTGGACCTGGCGGTCCCTTTCTGTGTGAACTTCCGGCTGAAAGGG GAGCTCTACAATGAAGTGAAGGTGGAGGAGGAGGTCGTGGCTCATTGAGGACGGCAAGGTGGTGACTGTGCATCTG GAGAAGATCAATAAGATGGAGTGGTGGAGCCGCTTGGTGTCCAGTGACCCTGAGATCAACAAGAAGATTAAC CCTGAGAATTCCAAGCTGTCAGACCTGGACAGTGAGACTCGCAGCATGGTGGAAAAGATGATGTATGACCAGCGA CAGAAGTCCATGGGGCTGCCAACTTCAGACGAACAGAAGAACAGGAGATTCTGAAGAAGTTCATGGATCAACAT CCAGGCACACAGGTCCCGGGGCATCAGGAGAAAGGCTGGGTCTTGGGACCTTGTCCTCCCCAGTTGGCCTACTGT

PCT/IIS2003/028547

127/6881 FIGURE 119

MGGEQEEERFDGMLLAMAQQHEGGVQELVNTFFSFLRRKTDFFIGGEEGMAEKLITQTFSHHNQLAQKTRREKRA
RQEAERREKAERAARLAKEAKSETSGPQIKELTDEEAERLQLEIDQKKDAENHEAQLKNGSLDSFGKQDTEEDEE
EDEKDKGKLKPNLGNGADLPHYRMTQTLSELDLAVFFCVNFRLKGKDMYVDIQRRHLRVGLKGQPAIIDGELYNE
VKVEESSWLIEDGKVVTVHLEKINKMEWWSRLVSSDPEINTKKINPENSKLSDLDSETRSMVEKMMYDQRQKSMG
LPTSDEQKKQEILKKYMDQHPEMDFSKAKFN

PCT/US2003/028547

128/6881 FIGURE 120

CCTGGTATGATTCCATCCTGAGCGGCTGTTCTCTTGAGCAGCGTTCATTTATCTCCGTCTGCCTTCTGTCCCACC TAAGTGTGTGCCGCCACCAATAGAAGATTCGATGGACATGAGCCCCCTGAGGCCCCAGAACTATCTTT TCGGTTGTGAACTAAAGGCTGACAAAGATGATCACTTTAAGGTGGATAATGATGAAAATGAGCACCAGTTATCTT TAAGAACGGTCAGTTTAGGGGCTGGTACAAAGGATGAATTGCACATTGTTGAAGCAGAGGCAATGAATTACAAAG GCAGTCCAATTAAAGTAACACTGGCAACTTTGAAAATGTCTGCACAGCCAACAGTTTCCCTTGGGGGCTTTGAAA TAACACCACCAGTGGTCTTAAGATTTAAGTGTGGTTCAGGGCCAGTGCATATTAGTGGACAGCACTTAGTAGCTG TGGAGGAAGATCAGAAGATGAAGAGGAGGAGGATGTGAAACTCTTAAGTATATCTGGAAACGGTCTG CCCCTGGAGGTGGTAGCAAGGTTCCACAGAAAAAGTAAAACTTGCTGTTGATGAAGATGATGATGATGATGATGATGATG ATGATGATGATGATGTTTTGATGATGAGGAAGCTGAAGAAAAGTGCCAGTGAAGAAAGGACAAGAATCCTTCA GTATAGAAAAAGGGGGTTCTCTCCCAAAGTGGAAGCCGAGTTCATCAATTTTGTGAAGAATTGCTTCTGGATGA CTGACCAAGAGGCTATTCAAGATCTCTGGCAGTGGAGGAAGTCTCCTTAAGAAAATAGTTTCAACAATTTGTTAA AAATTTTCCATCATATTTCATTTCTGTAACAGTTGATATCTGGCTGTCCTTTTTATAATGCAGAGTGAGAACTTT CCCTACCGTGTTTGATAAATGTTGTCCAGGTTCCATTGCCAAGATGTGTTGTCCAAGATGCCTGTTTAGTTTTT AAAAAA

PCT/US2003/028547

FIGURE 121

MDMDMSPLRPQNYLFGCELKADKDDHFKVDNDENEHQLSLRTVSLGAGTKDELHIVEAEAMNYKGSPIKVTLATL KMSAQPTVSLGGFEITPPVVLKFKCGSGPVHISGGHLVAVEEDAESEDEEEDVKLLSISGKRSAPGGGSKVPQK KVKLAVDEDDDDDDDDDDDDDDDDEDEAEEKVPVKKGQESFKTQEKTPKTPKGSSSVEDIKAKMQASIEKGGSLPKV EAEFINFVKNCFMMTOQEAIQDLMQMKKSP

PCT/IIS2003/028547

130/6881 FIGURE 122

AGCTGCTGGCTGGGCTGCCTGTTGAGTCAGCCTTCTTCCCTCACGGCTCTTCTCCCCGGTCCCTGAAACTCGGCTG CCAGGGGAGCTGGAGCCACCTGCGAAGGTGTCCTCCCATACTGGACCCCTACAGGAAGCTCCGTGTGCCCAGCTG TGGCGCATGGGCCAAAGCCTGAGACTGAAGGACTGTTGGACCTCAGCTTCCTGACAGAGGAGGAGCAGGAGGCCCA TTGCTGGCGTCCTCCAACGAGATGCCCGCCTGCGCCAGCTGGAGGAGGGCGGGTCAGCAAGCTCCGGGCCTCAG TEGCA GACCCTEGGCA GCTGA AGATCCTGACA GGGGACTGGTTCCAGGAAGCACGCTCCCAGCGGCACCACAATG CCCACTTCGGCTCTGACCTTGTCCGAGCGTCTATGCGCAGGAAGAAGAGACACCAGGGGAGACCAGGCTCCAGGCC GAGACCAACAGGTCTGTGCCGAGGAGGCTGACCCGGAGCTGGAGCCCGCGTCGGGGGGAGAGCAGGAGCCGCGCG CCCAGCAAGCCCAGACCAAGGCCGCGTCCCAGATCCTGGAGAATGGGGAGGAGGCCCCGGGGGCCCGACCCCTCTC TCGACCGCATGCTCAGCAGCAGCTCCTCGGTGTCCAGCCTTAACTCCTCCACGCTGAGCGGCAGCCAGATGAGCC TGTCAGGCGACGCGGAGGCGGTGCAGGTCCGCGGCTCCGTGCACTTCGCGCTGCACTACGAGCCGGGCGCCGCCG AGCTGCGCGTGCACGTGATCCAGTGCCAGGGCCTGGCCGCCGCCGCCGCCGCCGCTCGGACCCCTACGTCAAAA GCTACCTCCTCCCGGATAAGCAGAGCAAGCGCAAGACGGCGTGAAGAAACGGAATCTGAATCCGGTTTTCAACG GCCTGGGTCGCAACATCTTTCTGGGCGAAGTTGAAGTGCCCCTGGACACGTGGGACTGGGGCTCTGAGCCCACCT GGCTCCCCCTGCAGCCCCGGGTCCCACCCTCTCCCGACGACCTTCCGAGCCGCGGGTTACTCGCCCTGTCCCTCA AGTACGTCCCGCCGGCTCCGAGGGCGCAGGACTGCCCCCGAGCGGGAGCTGCACTTCTGGGTGAAGGAGGCTC GGGACCTCCTGCCGCTGCGGGCAGGATCCCTGGACACTTACGTACAATGCTTCGTGCTGCCTGATGACAGCCAGG CCAGCCGCCAGCGTACAAGGGTTGTGCGACGCAGCCTCAGCCCTGTGTTCAATCACACCATGGTGTACGATGGCT TTGGGCCTGCTGACCTGCCCAGGCTTGTGCCGAGCTCTCCCTCTGGGACCATGGGGCCCTGGCCAACCGCCAGC AGGAGAAGCAGCTGTGGCAAGCCCTCCTGGAGCAGCCGTGCGAATGGGTGGATGGCCTTCTACCCCTCAGAACCA $\texttt{ACCTGGCCCCAGGACG} \underline{\textbf{TAGC}} \texttt{CCCCACCAAGCCTCTCTCTTGGACCCCCATCTCAGGGCCTGCCCTTGGCTAAAG}$ TCAATAAAGTCTATTCTAAGAGC

PCT/IIS2003/028547

131/6881 FIGURE 123

MPQRGHPSQEGLWALPSLPMAHGPKPETEGLLDLSFLTEEEQEAIAGVLQRDARLRQLEEGRVSKLRASVADPGQ
LKILTGDWFQEARSQRHHNAHFGSDLVRASMRRKKSTRGDQAPGHDREAEAAVKEKEEGPEPRLITIDEAPQERLE
ETEASDPEEASQAQEDPGGGDQVCAEEADPELEPASGGEQEPRPQQAQTKAASQILENGEEAPGPDPSLDRMLS
SSSVSSLNSSTLSGSOMSLSGDAEAVQVRGSVHFALHYEPGAAELRVHVIQCQGLAAARRRSDFYVKSYLLPD
KQSKRKTAVKKRNLNPVFNETLRYSVPQAELQGRVLSLSVWHRESLGRNIFLGEVEVPLDTWDWGSEPTWLPLQP
RVPFSPDDLPSRGLLALSLKYVPAGSEGAGLPPSGELHFWYKEARDLLPLRAGSLDTYVQCFVLFDDSQASRQRT
RVVRRSLSPVFNHTMVYDGFGPADLRQACAELSLWDHGALANRQLGGTRLSLGTGSSYGLQVFWMDSTPEEKQLW
QALLEQPCEWYDGLFLERNLAPRT

PCT/HS2003/028547

132/6881 FIGURE 124

ATGCCGTTAGTAACGAGGAACATCGAGCCAAGGCACCTGTGCCGTCAGACGTTGCCTAGCGTTAGAAGCGAGCTG GAATGCGTGACCAACATCACCCTGGCAAATGTCATCCGACAGCTGGGCAGCCTGAGTAAATATGCAGAGGACATT CAGGTTAAAGTCACTCAGCTGGATCCCAAGGAAGAAGAAGTGTCACTGCAAGGAATCAACACCCGAAAAGCCTTC AGAAGTTCCACCATTCAAGACCAGAAGCTTTTTGACAGAAACTCTCTCCCAGTGCCTGTCTTAGAAACATACAAT ACCTGTGATACTCCTCCCCCTCTCAACAATCTTACCCCTTACAGGGACGATGGAAAAGAGGCACTCAAATTCTAC ACAGACCCTTCATACTTCTTTGATCTTTGGAAGGAGAAGATGCTGCAGGACACCAAGGATATCATGAAAGAGAAG AGAAAGCACAGGAAAGAAAGAAAGATAATCCAAATCGAGGGAATGTAAACCCACGTAAAATCAAGACACGTAAG GAAGAGTGGGAGAAAATGAAGATGGGGCAAGAATTTGTGGAGTCCAAAGAAAAGCTGGGGACTTCTGGGTATCCA CCCACTTTGGTGTACCAGAATGGCAGCATTGGCTGTTTGAAAACGTGGATGCAAGTAGCTATCCGCCACCACCA CAGTCAGACTCTGCTTCTTCACCTTCTCCTTCCTTCCGAGGACAACTTGCCTCCTCCACCAGCAGAATTCAGT TACCCAGTGGACAACCAAAGAGGATCTGGTTTGGCTGGACCCAAAAGATCCAGTGTGGTCAGCCCAAGCCATCCA CCACCAGCTCCTCTAGGCTCTCCACCAGGCCCTAAACCCGGGTTTGCTCCACCACCTGCCCCTCCGCCACCT CCGCCTCCAATGATAGGCATCCCACCTCCACCACCGCCTGTAGGATTTGGGTCTCCAGGGACGCCTCCACCACCA TCACCCCCATCTTTCCCACCTCACCCTGATTTTGCTGCCCCTCCACCTCCTCCTCCACCACCACCAGCAGCTGACTAC GGGCCCCCTCCTCCCCCTTTCACTGGTGCAGATGGCCAGCCTGCTATACCACCACCGCTTTCTGATACCACCAAG CCCAAGTCCTCCTTGCCTGCCGTGAGCGATGCCCGTAGCGACCTGCTTTCAGCCATCCGTCAAGGTTTTCAGCTG CGCAGGGTTGAGGAGCAGCGGGAACAAGAGAAGCGGGATGTTGTGGGCAATGACGTGGCCACCATCTTGTCTCGT CGCATTGCTGTTGAGTACAGTGACTCAGAAGATGACTCCTCTGAATTTGATGAGGACGACTGGTCCGAT<u>TAA</u>

PCT/HS2003/028547

FIGURE 125

MPLVTRNIEPRHLCRQTLPSVRSELECVINITLANVIRQLGSLSKYAEDIFGELFTQANTFASRVSSLAERVBL
QVKVTQLDPKEEEVSLQGINTRKAFRSSTIQDQKLFDRNSLEVPVLETYNTCOTPPPLINLITY PRDOCKELKFY
-TDPSYFFDLWKEKMLQDTKDIMKEKRHREKKDNPNRGMVNPRRIKTRKEEWEKMMGGEFVESKEKLGTGGVP
PTLVYQNGSIGCVENVDASSYPPPPQSDSASSPSSFSEDNLPPPPAEFSYPVDNQRGSGLAGPKRSSVVSPSHP
PPAPPLGSPPGFAPPPAPPPPPPPMIGIPPPPPVGFGSPGTPPPSSPSFPPHPDFAAPPPPPPPAADY
PTLPPPPLSGPTGGAPPPPPPPPPPPPPFTGADGQPAIPPPLSDTTKPKSSLPAVSDARSDLLSAIRQGFQL
RRVEEQREGEKRDVVGNDVATILSRRIAVEYSDSEDDSSEFDEDDWSD

PCT/HS2003/028547

FIGURE 126

AGAATTGGGCTCCAGGTCTCTGACCCCTCCCAAGGATCATGCCGCAGCCCCACTGACCCAGGAGTAGGGGCCTAA GGGCAGGGAACCTGGAATGGGCTGTGTTCTGCAAGAAATTGGAGCCGGTGGCCACGGCCAAGGAGGATGCTGG CCTGGAAGGGGACTTCAGAAGCTACGGGGCAGCAGACCACTATGGGCCTGACCCCACTAAGGCCCGGCCTGCATC CTCATTTGCCCACATCCCCAACTACAGCAACTTCTCCTCTCAGGCCATCAACCCTGGCTTCCTTGATAGTGGCAC CATCAGGGGTGTGTCAGGGATTGGGGTGACCCTGTTCATTGCCCTGTATGACTATGAGGCTCGAACTGAGGATGA CCTCACCTTCACCAAGGGCGAGAAGTTCCACATCCTGAACAATACTGAAGGTGACTGGTGGGAGGCTCGGTCTCT CAGCTCCGGAAAAACTGGCTGCATTCCCAGCAACTACGTGGCCCCTGTTGACTCAATCCAAGCTGAAGAGTGGTA $\tt CTTTGGAAAGATTGGGAGAAAGGATGCAGAGGGGGCCAGCTGCTTTCACCAGGCAACCCCCAGGGGGCCTTTCTCAT$ TCGGGAAAGCGAGACCACCAAAGGTGCCTACTCCCTGTCCATCCGGGACTGGGATCAGACCAGAGGCGATCATGT GAAGCATTACAAGATCCGCAAACTGGACATGGGCGGCTACTACATCACCACACGGGTTCAGTTCAACTCGGTGCA GGAGCTGGTGCAGCACTACATGGAGGTGAATGACGGGCTGTGCAACCTGCTCATCGCGCCCTGCACCATCATGAA GCCGCAGACGCTGGGCCTGGCCAAGGACGCCTGGGAGATCAGCCGCAGCTCCATCACGCTGGAGCGCCGGCTGGG CACCGGCTGCTTCGGGGATGTGTGGCTGGGCACGTGGAACGCCACCACTAAGGTGGCGGTGAAGACGCTGAAGCC GGGCACCATGTCCCCGAAGGCCTTCCTGGAGGAGGCGCAGGTCATGAAGCTGCTGCGGCACGACAAGCTGGTGCA GCTGTACGCCGTGGTGTCGGAGGAGCCCATCTACATCGTGACCGAGTTCATGTGTCACGGCAGCTTGCTGGATTT TCTCAAGAACCCAGAGGGCCAGGATTTGAGGCTGCCCCAATTGGTGGACATGGCAGCCCAGGTAGCTGAGGGCAT GGCCTACATGGAACGCATGAACTACATTCACCGCGACCTGAGGGCAGCCAACATCCTGGTTGGGAGCGGCTGGC GTGCAAGATCGCAGACTTTGGCTTGGCGCGTCTCATCAAGGACGATGAGTACAACCCCTGCCAAGGTTCCAAGTT CCCCATCAAGTGGACAGCCCCAGAAGCTGCCCTCTTTGGCAGATTCACCATCAAGTCAGACGTGTGGTCCTTTGG GATCCTGCTCACTGAGCTCATCACCAAGGGCCGAATCCCCTACCCAGGCATGAATAAACGGGAAGTGTTGGAACA GGTGGAGCAGGCTACCACATGCCGTGCCCTCCAGGCTGCCCAGCATCCCTGTACGAGGCCATGGAACAGACCTG ${\tt ACCACAGTACCAGCCCGGGGATCAGACATAGCCTGTCCGGGCATCAACCCTCTCTGGCGGTGGCCACCAGTCCTT}$ $\tt CGTGGCTGCTCTGACACCACCTAGGGCAACCTACTTGTTTTACAGATGGGGCAAAAGGAGGCCCAGAGCTGATCT$ TCACTGCTTTCCTACTCTCTTTTATCTCACTCTAGTCCAGGTGCCAAGAATTTCCCTTCTACCCTCTATTCTCT TGTGTCTGTAAGTTACAAAGTCAGGAAAAGTCTTGGCTGGACCCCTTTCCTGCTGGGTGGATGCAGTGGTCCAGG ACTGGGGTCTGGGCCCAGGTTTGAGGGAGAAGGTTGCAGAGCACTTCCCACCTCTCTGAATAGTGTGTATGTGTT GGTTTATTGATTCTGTAAATAAGTAAAATGACAATATGAATCCTC

PCT/US2003/028547

135/6881 FIGURE 127

TGGGCAGAGGAGACAGGAACAAGCGTAGCATCCGTGAGCACCGATTGGCTGAAGCGAGCACCCCGGGAGCTGACT GGCTCCGCCATTCGCGGGAAGGCGTTTGTGGTGCCAGAGAAAAGTAGCCAGAGCGGCGCAGTGGCGGCCGCGTTC TGTGGTTTTCCGCTATTCCCCCAGACCCGCACCTTCTCGGCCTCTTTGCGGAGAATCGTGACCAAGATGTGGAAC AGTGGATTCGAAAGCTATGGCAGCTCCTCATACGGGGGGGCCCGCCGCCTCACACGCAGTCCCCGGGGGGCTTTGGA TCGCCCGCACCTTCTCAAGCCGAAAAGAAATCAAGAGCCCGAGCCCAGCACATTGTGCCCTGTACTATATCTCAG CTGCTTTCTGCCACTTTGGTTGATGAAGTGTTCAGAATTTGGGAATGTTGAGATTTCACAGGTCACTATTGTGGGG ATCATCAGACATGCAGAGAGGCTCCAACCAACATTGTTTACAAAATAGATGACATGACAGCTGCACCCATGGAC GTTCGCCAGTGGGTTGACACAGATGACACCAGCAGTGAAAACACTGTGGTTCCTCCAGAAACATATGTGAAAGTG GCA GGCCACCTGA GATCTTTTCA GAACAAAAAAGAGCCTGGTA GCCTTTTA AGATCATGCCCCTGGA GGATATGAAT GGGAGAGCACCTATCAGCAATCCAGGAATGAGTGAAGCAGGGAACTTTGGTGGGAATAGCTTCATGCCAGCAAAT GGCCTCACTGTGGCCCAAAACCAGGTGTTGAATTTGATTAAGGCTTGTCCAAGACCTGAAGGGTTGAACTTTCAG CACATCTATTCTACTGTGGATGATGACCATTTTAAATCCACAGATGCAGAATAACTGGATCTAACTGGGTACCTG AGATATTTTACAGCTGGACCTAGTTTCACAATCTGTTGTCTCCAGCTCTGCATATGTCTGGCCAGGGGGCTTCTA GGAAGTAGGTTTCATCTATCAAATGTCTCCTCTGACTTCCTTTTGAAACTTACTGCTCTTCTGTTTTATTTTGTT TTGTTTGAAGCTCAGAGGGAGATGGGCAATTGACAGGGATGCAATCCAGGGTGGGATTTCTTGAGGAAGTTACAA ATAAGCTTGTTACAACATCAAGATAGATGGAATTGGAAGGATGCTACCAGGAGAGTACTTACATAGTGCTCAGGA GTTTCTCTTCTTAAAATGTTTACTGCTGAAAGATGAGCAGGGCCGTTATAGGCAGAGCCCTAGCCGAGAA ACCTGCTGGCCTCTGCTGTTTTCATTTCCCACTTTGGTTGTGGCATTACTTTCAGAATTGCACTTTCCTGCT TGTCATGACTTTTTGACACACTTGCCATGACGTGTTTTCTGTGAACATGAAGTTCTGCGGTAGTGCCTCCAGGG **Т**GТААААААААААААААААА

PCT/US2003/028547

FIGURE 128

MWNSGFESYGSSSYGGAGGYTQSPGGFGSPAPSQAEKKSRARAQHIVPCTISQLLSATLVDEVFRIGNVEISQVT IVGIIRHAEKAPTHIVYKIDDMTAAPMDVRQWVDTDDTSSENTVVPPETYVKVAGHLRSFQNKKSLVAFKIMPLE DMNEETTHILEVINAHMVLSKANSQPSAGRAPISNPGMSEAGNFGGNSFMPANGLTVAQNQVLNLIKACPRPEGL NFQDLKNQLKHMSVSSIKQAVDFLSNEGHTYSTVDDDHFKSTDAE

PCT/US2003/028547

137/6881 FIGURE 129

PCT/HS2003/028547

FIGURE 130

PCT/IIS2003/028547

FIGURE 131

TCCAGCACCAAAGCGGCCGTTCTCGGATTCCGGAGCGTTCTGGAGCCCCGAGAGACGCCCCGGGGTTCTAGAAGC TCCCCGGCGGCGCCCAGTCCCGGCTTCATTCGGGCGTCCCTCCGAAACCCACTCGGGTGCACGGGTCGTCGGCGA GCCGCGACCGGGTCCTGGCGCGCACC<u>ATG</u>ATCGTGGCGGACTCCGAGTGCCGCGCAGAGCTCAAGGACTACCTGC GGTTCGCCCCGGGCGGCGTCGGCGACTCGGGCCCCGGAGAGGAGCAGAGGGAGAGCCGGGCTCGGCGAGGCCCTC GAGGGCCCAGCGCCTTCATCCCCGTGGAGGAGGTCCTTCGGGAGGGGGCTGAGAGCCTCGAGCAGCACCTGGGGC TGGAGGCACTGATGTCCTCTGGGCGAGTAGACAACCTGGCAGTGGTGATGGGCCTGCACCCTGACTACTTTACCA GCTTCTGGCGCCTGCACTACCTGCTGCACACGGATGGTCCCTTGGCCAGCTCCTGGCGCCACTACATTGCCA TCATGGCTGCCGCCCATCAGTGTTCTTACCTGGTAGGCTCCCACATGGCCGAGTTTCTGCAGACTGGTGGTG ACCCTGAGTGGCTGCTGGGCCTCCACCGGGCCCCCGAGAAGCTGCGCAAACTCAGCGAGATCAACAAGTTGCTGG CGCATCGGCCATGGCTCATCACCAAGGAACACATCCAGGCCTTGCTGAAGACCGGCGAGCACACTTGGTCCCTGG CCGAGCTCATTCAGGCTCTGGTCCTGCTCACCCACTGCCACTCGCTCTCCTCCTTCGTGTTTGGCTGTGGCATCC TCCCTGAGGGGGATGCAGATGGCAGCCCTGCCCCCCAGGCACCTACACCCCCTAGTGAACAGAGCAGCCCCCCAA GCAGGGACCCGTTGAACAACTCTGGGGGCTTTGAGTCTGCCCGCGACGTGGAGGCGCTGATGGAGCGCATGCAGC AGCTGCAGGAGAGCCTGCTGCGGGATGAGGGGACGTCCCAGGAGGAGATGGAGAGCCGCTTTGAGCTGGAGAAGT CAGAGAGCCTGCTGGTGACCCCCTCAGCTGACATCCTGGAGCCCTCTCCACACCCCAGACATGCTGTGCTTTGTGG AAGACCCTACTTTCGGATATGAGGACTTCACTCGGAGAGGGGCTCAGGCACCCCCTACCTTCCGGGCCCAGGATT ATACCTGGGAAGACCATGGCTACTCGCTGATCCAGCGGCTTTACCCTGAGGGTGGGCAGCTGCTGGATGAGAAGT TCCAGGCAGCCTATAGCCTCACCTACAATACCATCGCCATGCACAGTGGTGTGGACACCTCCGTGCTCCGCAGGG CCATCTGGAACTATATCCACTGCGTCTTTGGCATCAGATATGATGACTATGATTATGGGGAGGTGAACCAGCTCC TGGAGCGGAACCTCAAGGTCTATATCAAGACAGTGGCCTGCTACCCAGAGAAGACCACCCGAAGAATGTACAACC TCTTCTGGAGGCACTTCCGCCACTCAGAGAAGGTCCACGTGAACTTGCTGCTCCTGGAGGCGCGCATGCAAGCCG CTCTGCTGTACGCCCTCCGTGCCATCACCCGCTACATGACCTGACTCCTGAGCAGGACCTGGGCCCGGTTCAGCT CCCCACAAGGACTTCTCTGTCTGGAGACAGCCCCAGACCCTTTTGTGTCCCCATGCCCACCCTCCCCACGCTGCAG GACTCTGGGATCTCAGCCCTGCTCCTGGGAGCTGGAAGAGCACTTGGAGATCCTAAGGGACCACACCCTTCCTCC TTCCCCTGCCCACAGAGGCAGAGGCACAGGAAAGAAGCCGGGCCAAGCTCGGAATTAATGTGCCACAAGTGTTG TGGCCTTCCTGAACTGGGAAGTCCCTGGCTGGCCCCCGGGGGAGAGGGGCAAATGCCTCCGGGACTGACACTCCA GGCAGCTTTGCCTTCTCCCCCTGTCATTTCCAGATTTCATTACCTCCTACTTGCCATTCACCCATCAATGTGAA AGTCAGGGTCACAGCTGGTCTGTGTGTCCAGTTCCCTAAAAGCCTGTTCTGTTGGGCAGCCTGAGGCTGTTGCCC GAATCCTAGTTCAGTTTTTTGACTTCCTTTTGCCCTTTTTCCCTTTTCTCCATGCTTAATGGTGTGAGGCGTCAGG AGAGAGGCCAAGTACATAAAAAAAAAAAAAGCAGATTATCTCTAGAGAGTTTGAGCCTTTGCTGGTCACATTGC CTTCTGAAGAGGAGGAGTATTAGATTATAAATCCTCTTTATTTTGGTCCTTTATGCTTGAGGTTCCAACCTGGA GCCACAGTGTGTGAGAGGAGGAGGAGAGGGAGAATTCTGTTCTCCCAGAGCTGCACCTGCCTCGCAGAGGCCAGC ACCCCACTCTCCTGCCTCCAGTGGCCCTGCCGCAGATGTCTCCCAAAAAGTTGAGCCTTTCTAGATGGCTTAGGT GGCACCATGGCTCAGCAGGAGGGGCGGGAGGCACCAGGGTTCTTGTTTGGACCCTGCCCCTGGGCCATGGCCAGG TCTGAAGCTGCCCCTGGGATTCTCAGGCCAACCTGCCAACAGCAAGCGGATTTTCTTGCAAGATCAGGGACCCCA TTTCTGCAGCCAGTGTCTCCTGGGTGCCTTCTGAGGACTCCCACCCCCATCCCAGTATCTCATCTGTCCCCTCTC CTGGGGCTTAAGTGGGTTGCTTCCAGGCAGAAGCAGCCAAGGACCGATTCCAGGCACTTTCTGTAGCAAATGACT GTGAATTACGACTTCTCTTGCCCTTCTTCTAGCAGTCTGTGCCTCCTCTCTGACCAGTTTGGAGGGCACTGAAGA AAGGCAAGGGCCGTGCTGCTGGTGGGCGGGGCAGGAGAGCCTGGCCAGTGTGCCACATTAAATACCCGTGCA CCAGTGTTCAAGTGCAGAAATCTTTGGCTTTGCTACCAGTTCCATATGATGAGAAATAAACGTTCGCTGAGGTTT TGTTTCATAAAAAAAAAAAAAAAAAAAA

PCT/IIS2003/028547

FIGURE 132

MIVADSECRAELKDYLRFAPGGVGDSGPGEEQRESRARRGPRGPSAFIPVEEVLREGAESLEQHLGLEALMSSGR VDNLAVVMGLHPDYFTSFWRLHYLLLHTDGPLASSWRHYIAIWAARHGCSYLVGSKWAEFLQTGGDPEULLGIR RAPEKLRKLSEINKLLAHRPWLITKEHIQALKTGEHTWSLAELIQALVLLTHCHSLSSFVFGCGILPEGDADGS PAPQAPTFPSEGSSPPSROPLNNSGGFESARDVEALWERWGQLQESLLRDEGTSGEEMESRFELEKSESLLVTPS AD ILEPSPHPDMLCFVEDFTFGYEDFTRKGAQAPPTFRAQDYTWEDHGYSLIQRLYPEGGOLLDEKFQAAYSLTY NTIANHSGVDTSVLTRAINWYIHCVFGIRYLDDYDGEVNQLLERNLKVYIKTVACYPEKTTRRWYNLFWRHFRHS EKVHVNLLLLLERAWQAALLYALRAITRYMT

PCT/US2003/028547

FIGURE 133

GAGACGTCGGCTTCCGACCGGAAGTGAGAAGAGGAGGAAGTTGGCTGGTTGCACCGATCTGGGGGCTTCCCGGGC TCGGGTAACCGGAGTGCTGGTATCTAATCGTCGCTCAAAAGCTCCTAGGTATATCCCGTGCCTTACCTGACTGGG GGCTCTGAGTCCAGTTGTGTTGTCTTCAACTTAGACACCATGGAGGCACCTCCAGTCACCATGATGCCTGTCACT GGGGCACCATTAACATGATGGAGTACCTGTTGCAGGGAAGTGTTTTAGATCACAGTTTGGAAAGCCTCATCCAC CGCCTTCGTGGTTTGTGTGACAACATGGAACCTGAGACTTTCCTTGACCATGAGATGGTATTCCTCCTTAAGGGC CAGCAAGCCAGCCCATTTGTTCTCAGGGCCCGACGCTCTATGGACAGGGCAGGGGCACCCTGGCATCTGCGCTAC CTGGGACAGCCAGAAATGGGAGACAAGAACCGCCATGCCCTGGTGCGAAACTGCGTGGACATTGCCACATCTGAG A ACCTC ACCCACTTCTTGATGGAAATGGGCTTCCGCATGGACCATGAGTTTGTTGCTAAGGGACATTTGTTCCGT TTGTCACTCTCCTATCTCGTGGAATTAAGTGTGGTAGCACCCGCTGGGCAGGACATGGTCTCTGATGACATGAAG AACTTCGCAGAACAGCTAAAACCTCTGGTTCACCTAGAGAAAAATAGACCCCAAGAGGCTCATGTGACTAAGAGGA TCTGTCCACATTTGGGGCCTATCCTTACTTGTTTGAAAAAATATGTTTGCTTTTTTTGGTTTTTGTTTTG TTTTTGAGACAGAGTCTCGCTTTGTTTCCCAGGCTGGAGTGCAGTGCACGATCTCGGCTCACTGCAACCTCTGC CTCCTGGGTTCAAGCAATTCTCCCACCTCAGCCTCCTGAGTAGCTGGGATTACAGGCACATGCCACCATGCTCAG CTAATTTTTGTATTTTTAGTAGAAATGGGGATTCACCATGTTGGTCAGGCTATTCTCGAACTCCTGACCTCGTGA TCCACCCACCTTGGCCTCCCAAAGTGCTGGGATTACAGGCATGAGCCACCACGCCTGGCCAAAAAAATATGTTTT GCACTGTTCTCCTCATGTGGCGATTTCACTTTCATGACAGCCTTTCTATATTAAAGGCTCAGGATGTCACGGAGA ATCTATCTAATCCCACTGTATTAAGAGGGGAAACCGGGCCAAGCGCAGTGGCTCACACCTCTAATCCCAGCACTT TGGGAGGCTGAGGTAGGTGGATCACCCAAGGTCAGGAGTTTGAGACCAGCCTGGCCAAATGGTGAAACCCCATCT CTACGAAAAATACAAAATTTAGCCGGGCATGGTAGCAGGCGCTTGTAATCCCAGCTACTTGGGAGGCTGAGGCTG GAGAATCGCTTGAACCCAGGAGGTGAAGGTTGCAGTGACCAGAGATGACGCCATTGCACTCCAGCCTGGGTGAGA A GA GC GA A A CTCCGTCTCA A A A A A A A A TA A A A TGA A GA GG GA A A CCA GA A TA A A TTA TCTTTTGGA A A GGA CA ATTTCTTGTTTGGCCATTTGTGTATAAGGTTGGTAACATTAGAGGCTGTGAGCTTGTGTTACATGGTAATAAAGC CAATGAAGAG

PCT/IIS2003/028547

FIGURE 134

AGCATAGAGACGGGCATTGAGCTCTTGGGCTAGAGCGTCGCCGAGTCGGAGCCGGAGCCTGAGCCGCGCGCTGTG TCTCCGCTGCGTCCGCCGAGGCCCCCGAGTGTCAGGGACAAAAGCCTCCGCCTGCTCCCGCAGACGGGGCTCATC TGCCGCCGCCGCGCGTGAGGAGAGTTCGCCGCCGTCGCCGCCGTGAGGATCTGAGAGCCATGTCGGCCAGCA ACGATGATGATTTTGAACCTTACTTGAGTCCACAGGCAAGGCCCAATAATGCATATACTGCCATGTCAGATTCCT ACTTACCCAGTTACTACAGTCCCTCCATTGGCTTCTCCTATTCTTTGGGTGAAGCTGCTTGGTCTACGGGGGGTG ACACAGCCATGCCCTACTTAACTTCTTATGGACAGCTGAGCAACGGAGAGCCCCACTTCCTACCAGATGCAATGT ACTTCTCAGCATGGGGAAATAACAGTTCTCAGGGACAGTCTACTCAGAGCTCTGGATATAGTAGCAATTATGCTT ATGCACCTAGCTCCTTAGGTGGAGCCATGATTGATGGACAGTCAGCTTTTGCCAATGAGACCCTCAATAAGGCTC AAGTTGTAGGTTCTGCTGTTGGTAGCGGGTCCATTACTAGTAACATCGTGGCTTCCAATAGTTTGCCTCCAGCCA CCATTGCTCCTCCAAAACCAGCATCTTGGGCTGATATTGCTAGCAAGCCTGCAAAACAGCAACCTAAACTGAAGA CCAAGAATGGCATTGCAGGGTCAAGTCTTCCGCCACCCCGATAAAGCATAACATGGATATTGGAACTTGGGATA ACAAGGGTCCCGTTGCAAAAGCCCCCTCACAGGCTTTGGTTCAGAATATAGGTCAGCCAACCCAGGGGTCTCCTC AGCCTGTAGGTCAGCAGGCTAACAATAGCCCACCAGTGGCTCAGGCATCAGTAGGGCAACAGACACAGCCATTGC CTCCACCTCCACCACAGCCTGCCCAGCTTTCAGTCCAGCAACAGGCAGCTCAGCCAACCCGCTGGGTAGCACCTC GGAACCGTGGCAGTGGGTTCGGTCATAATGGGGTGGATGGTAATGGAGTAGGACAGTCTCAGGCTGGTTCTGGAT CTACTCCTTCAGAACCCCACCCAGTGTTGGAGAAGCTTCGGTCCATTAATAACTATAACCCCAAAGATTTTGACT GGAATCTGAAACATGGCCGGGTTTTCATCATTAAGAGCTACTCTGAGGACGATATTCACCGTTCCATTAAGTATA ATATTTGGTGCAGCACAGAGCATGGTAACAAGAGACTGGATGCTGCTTATCGTTCCATGAACGGGAAAGGCCCCG TTTACTTACTTTCAGTGTCAACGGCAGTGGACACTTCTGTGGCGTGGCAGAAATGAAATCTGCTGTGGACTACA ACACATGTGCAGGTGTGTGGTCCCAGGACAAATGGAAGGGTCGTTTTGATGTCAGGTGGATTTTTGTGAAGGACG TTCCCAATAGCCAACTGCGACACATTCGCCTAGAGAACAACGAGAATAAACCAGTGACCAACTCTAGGGACACTC AGGAAGTGCCTCTGGAAAAGGCTAAGCAGGTGTTGAAAATTATAGCCAGCTACAAGCACACCACTTCCATTTTTG ATGACTTCTCACACTATGAGAAACGCCAAGAGGAAGAAGAAGTGTTAAAAAGGAACGTCAAGGTCGTGGGAAAT AAAAGGCAGTTCTACACAGACTGCAGCAACGGTTGCATCTGCATATCCTAAGAGGAAAAAATGACCTTCAAGAGA ATTAGGACTTTTTCTTAATTTCACTGACTTCAGAGACGATTGCAGACTTGCAGTTTAAGTATTGGAATTTCACA AAAGACATAGGACTTAACTGGAAAATGAAAAAAAAAAGAAAAAGAAAAACTAAACAAAAAATCCCTCTAGGTAG TTTAGGTGAAAAATGTCCCTTTTATTTTGGCTTTGGTTGTGATTTCAGAGCATAATGCTATGTTTTTTTGTCTTT TTACTATGTTTTTCGGATTTTTAAGTCCGTAAGTGCATACAGTTTTCTCTAATTTTTAAACCCTTTCCTCCTCCC ATTTTGACATTTGCACTTGGAGAACACTTGAGTTGTGAAGGTTTTGGGCATCCACCCCAGAAAGTGGGAATTTGA TTTTATCCTTCCGAACTGGAAGAACATTTTTATGAAGAATTTTTGTCTAGGAGAATATAACAGTGTTACCCAAGG TTGTGTCTTTAAGGGTGGTTCATTTTCTCTGACCTTTTGTTACTCAAAGTAAAGTACTAGGAGTCCTAAGAAATG TTCTGTTCTTGTACATTATACTGATTAAGTCAGGATTAATTTGATTTCAAAGCTGAGAACAGTGGTAAAAACTCG TTTACAGAAATGCATTTTGGAAGAGAAAAATACTGTAAAACGTGTCGTGAATGTTTCTTCAGTTTCTTGTTCAGC CAATGAGGAAAGGGCATTGCCTTTCTTTTACCATTAATCACTTCTCAATAAACGTGAGATCCTGTTGAGCATC

PCT/IIS2003/028547

FIGURE 135

GCTTTGCCCGCCGCCCTAAGGGGGGCTGGGGCCCGGGGCCATCACTGCCGTTGCCGGGATGCCGCGGGTG TACATCGGCCGCCTGAGCTACCAGGCCCGGGAGCGCGATGTGGAGCGCTTCTTTAAGGGCTACGGGAAGATCCTG GAGGTGGATCTGAAGAACGGATATGGTTTTGTGGAGTTTGATGATCTGCGTGATGCAGATGATGCTGTTTATGAA CTGAATGGCAAAGACCTTTGTGGTGAGCGAGTAATTGTTGAGCATGCCCGCGGCCCACGGCGAGATGGCAGTTAC GGTTCTGGACGCAGTGGATATGGTTATAGAAGAAGTGGCCGAGATAAATATGGCCCTCCTACTCGCACAGAGTAC GTGACTTATGCAGATGCTCACAAGGGACGCAAAAATGAAGGGGTGATTGAATTTGTATCTTATTCTGATATGAAA AGAGCTTTGGAAAAGTTGGATGGAACTGAAGTCAATGGGAGAAAAATCAGATTAGTTGAAGACAAGCCAGGTTCC AGACGACGCCGGTCCTACTCCAGAAGCCGGAGTCATTCAAGGTCTCGCTCTCGAAGCAGACATTCCCGTAAGAGC AGAAGCCGAAGTGGCAGCAAAAAGCAGTCATTCTAAGAGTAGATCTCGGTCCAGGTCGGGCTCCCGCTCCCGG AGCCGCAGCCGCAGCCATAGCGCTGGCAAGAGCCGCAGCAAGAGCAAAGACCAAGCTGAAGAGAAGATCCAAAAC AATGACAATGTCGGGAAACCCAAGAGCCGGAGTCCTAGCAGGCATAAAAGTAAGAGCAAAAGTCGGAGCAGGAGT CAGGAGAGGAGAGTGGAGGAGGAGAAGCGAGGGGAGTGTGAGCAGGGGCAGGAGCCAGGAGAAGAGCCTCCGCCAG AGTCGGAGCCGGAGCAGGAGCAAAGGGGGCAGCAGGAGCCGGAGCAGGAGCCAGCAAGAGCAAGGACAAGAG GAGAGTGAGAATGCTGGCACCAATCAGGAGACCCGGTCCAGGTCGAGATCCAATTCCAAATCGAAACCAAACCTT CCATCAGAATCACGCTCCAGATCAAAGTCAGCTTCAAAAACCCGATCTCGGTCCAAGTCTAGATCCAGGTCTGCT TCCAGATCGCCCTCCCGATCTAGATCTAGGTCCCACTCAAGGTCCTAACTGGCTATGGCCACAGCTGGAACTACC CGAGAAGTCTTTTGTACATGTTTGGTAGCCGTAGCACAAGTGATTGGAGTAGAACATGTCACTGCTGTACATTTT TAACTCCCCTAATGGTGTGTCTATAATTGTTAAATCTAAGTGCTTCCTCTCAGTAAAGCCTCCTGGCACCAGGCC TTCCTGCTCGACTGAAAAAATTTTCTCTTTGAAAATCCCCTTTTACTCATGGCCCACAGTAGAATATCCAAAAC GCCTTGGCTTTCAGGCCTGGCCTTTCCTACAGGGAGCTCAGTAACCTGGACGGCTCTAAGGCTGGAATGACCACA TAGGTAGGTATGGTGAGTTCAACCATTTTTGCTCTTGAATTGATGCCCTTCGATGTATGCCATTTAGTGAAAGTG CTAAGTCTTAAGTTTCCTACCACTTTGGTTTCATATTTTTGGACTTAACAAAGTTGTGAATAGCACAGTCGAGGA AAATTGATACCTGCAGTAACCCATAGGAAATAAACTGTAGAGTTCCATATTCTGGTATTGTGATTATATTGTTTT ATATT

PCT/IIS2003/028547

FIGURE 136

AGGGTTCTCTCCCCTTGCCACCATGAGCGAGTCATTTGACTGTGCAAAATGCAACGAGTCCCTGTATGGACGCAA GTACATCCAGACAGACAGCGGCCCCTACTGTGTGCCCTGCTATGACAATACCTTTGCCAACACCTGTGCTGAGTG CCAGCAGCTTATCGGGCATGACTCGAGGGAGCTGTTCTATGAAGACCGCCATTTCCACGAGGGCTGCTTCCGCTG CTGCCGCTGCCAGCGCTCACTAGCCGATGAACCCTTCACCTGCCAGGACAGTGAGCTGCTCTGCAATGACTGCTA CTGCAGTGCGTTTTCCTCGCAGTGCTCCGCTTGTGGGGAGACTGTCATGCCTGGGTCCCGGAAGCTGGAATATGG AGGCCAGACATGGCATGAGCACTGCTTCCTGTGCAGTGGCTGTGAACAGCCACTGGGCTCCCGTTCTTTTGTGCC CGACAAGGGTGCTCACTACTGCGTGCCCTGCTATGAGAACAAGTTTGCTCCTCGCTGCGCCCGCTGCAGCAAGAC GCTGACACAGGGTGGAGTGACATACCGTGATCAGCCGTGGCATCGAGAATGTCTGGTCTGTACCGGATGCCAGAC GCCCCTGGCAGGGCAGCAGTTCACCTCCCGGGATGAAGATCCCTACTGTGTGGCCTGTTTTGGAGAACTCTTTGC $\tt CTGGCACCACAACTGCTTCTCCTGCGCCCGCTGCTCTACCTCCCTGGTGGGCCAGGGCTTCGTACCGGATGGAGA$ TCTGGGCTCCAGGATTGTCTCCCCACTCCAGCATCCCCAAACTGGTACTCCCTGACCCAGGGCCCCAAACCTGGG CTCTTACAGAGCCTCCATGAGTCAAGCCCCCTCCCCACACCTGGACTCCAGAATTCACCCTCTCCCCTGCAGTCT GGGTTCCCAGACTGAGTCCTCTCCCCAAATCAGGGCTCTAGACCCGAGCCCTCCAAACCTGGACTCTGGGACTTA GGCCCCCTTAAATCTAGACTTCTCTTTATAGGTTTCAGGTCTCCTATGGGTGCCTGGGAAGTCCTTGAAAGTGGA CTGTTCTCAGGCTTGACCTGCCCCACCCCATCCCCGCGGTTGAGGCTGTGGGGGCAGCAGATCAGGAGCCCACTG ATAAGGGGCCCTAGGGTACAGGGTGCCCAGCAGGTCGCCACCGAGTGTCTTCTCATTTTATTTCAGCTCCAT TTTGCCCATAGATGGGCAGAGGGGTGAGATTGGCTCATCCCCCTTCCAGATTCTGCAATAAAGCGGTGTGAGG

PCT/HS2003/028547

145/6881 FIGURE 137

GGAACGCTCGGAGGAGCTCAACAAGGACCTAAACCCTTTTACGCCTCTTGTAGGCATTCGGATTCCTGATCATGC TTTTATGCAAGACTTGGCTCAGATGTTTGAGGGTCCGCTTGCTCTCACTAGTGCCAACCTCAGCTCCCAGGCCAG TTCTCTGAATGTCGAGGAGTTCCAGGATCTCTGGCCTCAGTTGTCCTTGGTTATTGATGGGGGACAAATTGGGGA TGGCCAGAGCCCCGAGTGTCGCCTTGGCTCAACTGTGGTTGATTTGTCTGTGCCCGGAAAGTTTGGCATCATTCG TCCAGGCTGTGCCCTGGAAAGTACTACAGCCATCCTCCAACAGAAGTACGGACTGCTCCCCTCACATGCGTCCTA AAGGCCTCATTTGCAGAGGCCACCGGAGCTAGGGCACTAGCCTGACTTTTAAGGCAGTGTGTCTTTCTGAGCACT TTTAAGGTTCAAACCAGCCAGAAGTGCTGGTGCTGTTTAAAAAGTCTCAGGTGGCTGCGTGTGGTGGCTCATGCC TGTAATCCCAACATTCTGGGAGGCCCAGGCGGGAGAACTGCTTGAGCCCAGGAGTTCAGAATCAGCCTGGGCAAC ATAGCAATACTCCGTCTCATAAAAATTAATAAAAAAGTCTCAGGTGACCAAAGGCTCCTGAAGCTAGAACCA GGTTTGGATAAAGATTGAAGAGCCACAGGCCACTCTTCCCTCTGAGCCATTGGGCCTAGTGGTGTCATGTATTGT AATTGCTCGCAGGGAGAGCAGTCTTTTTGGTGTAATAGTGGGATGTCTGCTTAGTTGGCAGGGGTTCAGTCCAAA ATTATAGTTAATTATACCCATAACACCTTTATTTAAATCCAGTGTTCTCCGCAGCCTTTTGTCTATTTATATGTG TACCAAGTGTTAAACATAATTATTATTGGGCATTTGAACTTTGTTTTTCTTTAAAGAAATGCTGCTATTAAACAT

PCT/US2003/028547

146/6881 FIGURE 138

MERSEELNKDLNPFTPLVGIRIPDHAFMQDLAQMFEGPLALTSANLSSQAGSLNVEEFQDLWPQLSLVIDGGQIG DGQSPECRLGSTVVDLSVPGKRGIIRPGCALESTTAILQQKYGLLPSHASYL

PCT/IIS2003/028547

FIGURE 139A

AGGCCCAGCGCTGGCGCAGTGAGAACTTCGAGAGACCCGTGGACCTGGAGGGCTCTGGGGATGATGACTCCTTTC TTCACTGCCTGGGTCAGGCAAGTTCTTCTTGCTCTGGATCCCCAGAACAAGAAGGGCAGAACATCCTTCTGGGGA TAGAACAAGACCTGGGAGGACCTCAGGGCCCAGAATGTCCAGGTCTCCAGGGTCCCACGTCTGCATCTTTGTGTG TGCTATGTGGCTTTCTCTGCAGACCTTGCTTGGTTCCGGTGGTCCCGTCAGGTGCAATAAGCTGTGGCCAATGGT GGGGTTAGGGCAGTGATGACACAGGGCAGGTGCTTCAAGTGGTGCCTGGGATGGCCCCGCCCTGGGGAAGGGGAG CCAGGTCAGCTGGGGTCTAGCAGAATCTCGGGAGAGGGGAGGGGCACCGCGAACCCCACTCTGCCATGTAGCAACTGTG TGCCCCTCGGTGCTCCCCCCCCCCTGAATCCCTGTATTTTCACCTGTGGATGGTGAGAAATACGACTTCTTCTCAG TGCCTCTAGGAGGGTTTGGGATAGGAAGCTGGGGTCTGGCACAGAGGAGGAGGTCTCAAAATGGTAGCAAAAAGA AGGCAGCTGAGACTGGGCCCAGTGAGGGCACGGGCTGGCATCTGAGGAGATGGTACGGGGTCTGCACGCCACAGA GCTGGCTCCCCACAGCCCTCGCCTCTGGTCTCCCCTCCTTAGCCAAGTCCTTTGAGCCTCTTTCAAATTAATCTT TGTCCCGGCTTTGCGTCAGCCAGATTGCTCAAGCAGTTCCCCTGCCTCAAGGGCTTCTTTTCCCTTTTACCCTCC GCCTCTGCCTCTGGGGGAAGCCCTTAGTGTACCACCCCTGCCTTGAGCTTGTGGTAGGGGTGCCTTTGGGGTCTG ACTCTTCCCAGAATGCCACTCCTGTGTTCCCCTGCAAGCCCCAGCAAGTTTTGCAGCCAGTAGCGCCTCAGTTGC GCGGCCCCAGAATTTTTGACTTGGCAGAGAGAAGTTGGGGAACATCAGCAACTGACCACCTTTAGCTGGGCTGT GCCTTCCTCCTTTCTCATCTTTTCTGGGAAAATTGGGTAAAGAGAGGGGGTTGGGAGACCTAATCTTGATGGC CATTGCTTACCTGGGATCCTCATGCCCCTCACAACCACCAGCTCCCTAGCTCTCTCCCCTCTCCCCACCCCCTC AGACTTCGAGCAGGAGTCGGGCATTGAGACAGCCATGCGCTTCAGCCCAGATGTAGCCCTGGCGGTGTCCACCAC ACCTGCGGTGCTGCCCACCACGAACATCCAGCCTGTGGGCACACCATTTGAAGAGCTCCCCTCTGAGCGCCCCAC CGCCACCCCAGCACCCCTGCAGCACCCCCTTTTACGGCCACCACTGCTGTTATAAGGACCACTGGCGTACGGAG GCTTCTGCCTCTCCCACTGACCACAGTGGCTACGGCACGGGCCACTACCCCCGAGGCGCCCCTCCCCGCCCACCAC GGCGGCTGTCTTGGACACCGAGGCCCCAACACCCAGGCTGGTCAGCACAGCTACCTCCCGGCCAAGAGCCCTTCC CAGGCCGGCCACCCAGGAGCCTGACATCCCTGAGAGGAGCACCCTGCCCCTGGGGACCACTGCCCCTGGACC CACAGAGGTGGCTCAGACCCCAACTCCAGAGACCTTCCTGACCACAATCCGGGATGAGCCAGAGGTTCCGGTGAG TGGGGGGCCCAGTGGAGACTTCGAGCTGCCAGAAGAAGAGACCACACCAGACACCAGCCAATGAGGTGGTAGC CCTGGACAATGCCATCGACTCGGGCAGCTCAGCTGCTCAGCTGCCTCAGAAGAGTATCCTGGAGCGGAAGGAGGT GCTCGTAGCTGTGATTGTGGGCGGGGTGGTGGGCGCCCCTCTTTGCTGCTCTTTGGTCACACTGCTCATCTATCG TATGAAGAAAAAGGATGAGGGCAGCTACACGCTGGAGGAACCCAAGCAGGCGAGCGTCACATACCAGAAGCCTGA CAAGCAGGAGGAGTTCTATGCCTAGTGGAGCCACAGTGCCTCCCTGCAGCCTCAACACCCCCCTGCTGTCCAGTC CCCAGCCTGGCCCACCAGCCCAAGCCTGGGACTGGGCCTGGAACCTGGCCCCAGTTCTTCTCTCCCCTCTCTCC CAAGGTCTGCCCAGGCTGCCAGCCTCACACAGATCTTCCCCGAGGAAGAGGGGGCTGCTGCCATCTGCCCCAGACT GTGCCCTTACGAGCTCATCTCTTGTTCCCCTCATCCCTGCCACCAGTCTGGGGGCTTCAGGACCTCATGTCAGATG GATGGGAGGAAGAAGCTCCTGATTGGCTGGTGGTAGAAAAGGGTGGGGCTTGAGATGAGCCTGAGCCCTGAC TTGGCACCCACAGTGCTCACTGAGATCTCCTTTTTGGGGCAGAGAGGCACTCAGGCTGGTTTCCAGGACAAACAT GTGAGAGGGTGTCCCTTGTCACCAGCCTGTTTTGTCCTGGTCTCTCTGGGGTTGTTGAATCTCTCCTCTTGCCTG CCAAGTACACATGTACCCAGACTTCATTTCTTTCTGCATCTTCCCCCAAGAAACAGCTTCCTGAGGGTGCTGGGG CAGCCACTGGTGAGGAGGGGCTGCTCTGATGTCCCTCCTATGAGGGGGACTCTGCACAGACACCATTGCCCACACT ATCACCATATTTTCACTCAGTCACACACAGACAAAAGCATGCAATGACAAAACCATACGCAATCCTGACCGCCC CAGACACGTACTGCAATGCAAGTCACTAGTCATGGTCACATGACAGTGACAGTGTGGCCTCCTCCTACCCCAAAT

PCT/US2003/028547

148/6881 FIGURE 139B

ACACCCACACTCTGGCACCACACACATTGTCTCCAGCTTTCAGGCTTACTGGGGAGGGTGGAATCGAGCCAGAAC CAGCCGCCAACCCCAGCCAGTGTCAGACACAATCCCATGTGGATGCACAGTCTCACTCCACATGACCTGCTCTCA ATGCTGGAGGGAAACAGGCCCTTGCCTTTCTCGGAAAAAGTGTGGGGCCACAGCCCTTTTAGGGCATTGCA TGGGTCTCCCAGGACGGAAGGCCCAGGGCAGGGAGGGGGGCATGTGGTTGGGCTCCTTTATCTCCCTGTGTCCCCT ACCTATTTGGCCAAACAATTCTGGCTGCAGCTTCAGGGGCCATGGCTGGAAGCCCCTGCAGATCCCTCAGGC CCCGAGGTCAGGGTTTGAGGGATGAGACCAGGTGATAGTGGGGGAGGGGTTACTTCCTTTGTTACCTAGCAAGTA GGGCTATTTCCATCGGTATTTTAAATGTGGGGTCACAGATCTTTTGGGGAGGGTGTGCTTGGCAGGGGGCCTCTT GGAGCCAAAGGGATGTGGTTGGGTTGCGATTGGCTGCCACTCACACCCCCACCCCTCACCCACATCCCAGATTC AAGTCAGGAAGGCAGGTTTTATTTCAGGGCCCTTTTCAAGATGCCCTGGCAGCAGATTTCTGCAGGATGAGGGGT AGCGGTGTGTAGGCAGTGAGGGGGAGGTTCCAGGGGCTGTCCCACAGCCTGTCTTTTCCAGGCTGGGCTCCATCT TCCAGTCCCAAAACCCTCCTTCACAGGGCCCAGAGGCTTGTGAGGAAGCCAGGTGGACCCAGCCTTAGAAGAGTG GGCATGGGGGGCCCCTGATATCTGGAGGGGGCGGGTTGGCCTCAGTCATCTTTGGAGCAGAAGGGCTGGGTCCTG GGGCCACAGACCACAAGGCTCAGCCTCCCTACCCTGCTCCCTGGGGTGCTGCTGTCTTGGAGAGCACAGCTCTGG TGAGACGGCCTGGGCAGGCCGAGGCTGAGAAACCAGGGAGGATAGAGGAGAAAAGGGCTTGGGCCCCCAGCCCCA GAAGATGCTGGACCCCAGGTGGGAGACCCAACAGTGGGTGCAGTTTCTCAGTAGGGCTGGAGCCAATGGTGGGGG TGGCCCGGCAGGCCTGGCTCCTCACATCCCAGGGGTTGGCTTCTGATTTGGGGCTTGGGCTCCAGGCACTGGCT TCTCTTCTCTGTGTCCTTAGCATTTGAGAGAGAGGGCCAGGGGCCTTGTTCATGGATCCCTGGACCCAAGGCAGA GGCAGTCCAAGAGAGTTCAGTGAGGACCAGCTAGGCTCTCCCAGGTGCAATGTGGGTGCAGGGCCCTCATGTCCC CCTACCCCTGCCTGTGATGGAGTGTTCTGAGGGGGCTTTGGCATTTGCTGGAAGCACAGGGAGTTCCAAATGAGAG GACCCTGTCTCCAGGAGGCCAGGAGGCCAGATGGGGGCCTTGCCTGAAAGACTGGTCCCCTTGATCGCTGGAGGC ATGTGGGTGGCAACCAGGGCTGGGCAGGGCTTAGGGTGTGTGGGCCAAACCCCCTGGGGTTGGCAAAGCCGCCT GTCAGGCCTCCTGGTGGGGGCCCCTGGACACAGGGAGCAGACCCTCTGCCTCATGGGGTAGGAGTGGCTGCCTCC TGTGTTCTCTGGATTTCTCCCCAACAACTACAACCTGGACTTGCCTCCCCAGGCCTCTTGCCTGTAAATAGA AGCCCGCAAACTGTACAGATTTACAGAGGCATCGAGACTGGGCCCTGGGAGTTGCCATCTGAGAGCCGATGGCCC CAGCATCCCCCAGGTGCCTGCCTGGCACCACAGTGACCCTGGCCTCAGCGTGGCAAATGCATGTAAATATTTTTC CCTGCCTGGGGTGGGGTCTGCCATTCCCTCCCCAGGCCTTCCCTGCCCCTTCTCTCCCCTGTAACCTGT TTATTAACCATACCTGTCCTGAGTTCATGGCCAAAACCTTAAATAAGAAAAACAAAAGAAAAAAGACAGTGGAAAA ATAAAATTAAGCTGAAATG

PCT/US2003/028547

149/6881 FIGURE 140

PCT/US2003/028547

150/6881 FIGURE 141

GCTGAGCGGGCTTTGGACACCATGAACTTTGATGTGATTAAGGGAAAGCCAATCCGCATCATGTGGTCTCAGAGG GATCCCTCTTTGAGAAAATCTGGTGTGGGAAACGTCTTCATCAAGAACCTGGACAAATCTATAGATAACAAGGCA TATGCCTTTGTCCACTTCGAGACCCAAGAGGCTGCCGACAAGGCCATCGAGAAGATGAATGGCATGCTCCTCAAT GACCGCAAAGTATTTGTGGGCAGATTCAAGTCTCGCAAAGAGCGGGAAGCTGAGCTTGGAGCCAAAGCCAAGGAA GGTAAGACCCTAAGTGTCAAGGTGATGAGAGATCCCAATGGGAAATCCAAAGGCTTTGGCTTTGTGAGTTACGAA AAACACGAGGATGCCAATAAGGCTGTGGAAGAGATGAATGGAAAAGAAATAAGTGGTAAAATCATATTTGTAGGC CGTGCACAAAAGAAAGTAGAACGGCAGGCAGAGTTAAAACGGAAATTTGAACAGTTGAAACAGGAGAGAATTAGT CGATATCAGGGGGTGAATCTCTACATTAAGAACTTGGATGACACTATTGATGATGAGAAATTAAGGAAAGAATTT TCTCCTTTTGGATCAATTACCAGTGCTAAGGTAATGCTGGAGGATGGAAGAAGCAAAGGGTTTGGCTTCGTCTGC TTCTCATCTCCTGAAGAAGCAACCAAAGCAGTCACTGAGATGAATGGACGCATTGTGGGCTCCAAGCCACTATAT AGAGCACTTCCTGCCAATGCCATCTTAAATCAGTTCCAGCCTGCAGCGGGTGGCTACTTTGTGCCAGCAGTCCCA CAGGCTCAGGGAAGGCCTCCATATTATACACCTAACCAGTTAGCACAGATGAGGCCTAATCCACGCTGGCAGCAA GGTGGGAGACCTCAAGGCTTCCAAGGAATGCCAAGTGCTATACGCCAGTCTGGGCCTCGTCCAACTCTTCGCCAT AAATACGCCTCCAGTGTCCGCAGCCCTCATCCTGCCATACAGCCTCTGCAGGCACCCCAGCCTGCGGTCCATGTG CAGGGGCAGGAGCCACTGACTGCCTCCATGCTGCCTGCAGCACCCCCCAGGAACAGAAGCAGATGCTGGGAGAA AACTCTGAGCTGCACATGTTAGAGTCCCCCGAGTCTCTCCGCTCCAAGGTGGATGAAGCTGTAGCAGTTCTA CAGGCTCATCATGCCAAGAAAGCAGCTGCCCAGAAGGATTCAAAAGCCCAAATAACCCCTTATGGAATTCAACTCA AGGTTTGAAGACTTCCTAGCTTGTCCTATGGACCTCAACACCAAGGATTACAAATTGCAAATTTAATAGGTCATT TTGTATCAAAAGGTCAATTATGAAGCACCTAGAATTTTTCAATTATACGAATATGTTCTTTGGGTTCTGCTGTGG CCCAGACAGTGTTAACTTTTTTTTTTTTGTGGGTTTTGATTTTTTCCCCCAGAAATTGGTTTTATTTGATGTACC CAAGTCTTACGTTTCCCAATAAAGAAAAAAAATCTCCAT

PCT/HS2003/028547

FIGURE 142

 ${\tt ACCAGGCAGCCTGCGTTCGCC} \underline{{\tt ATG}} {\tt AAGCGACCCAAGGAGCCGAGCGGGCTCCGACGGGGAGTCCGACGGACCCATC}$ GACGTGGGCCAAGAGGGCCAGCTGAGCCAGATGGCCAGGCCGCTGTCCACCCCCAGCTCTTCGCAGATGCAAGCC AGGAAGAAACGCAGAGGGATCATAGAGAAACGGCGTCGAGACCGCATCAACAGTAGCCTTTCTGAATTGCGACGCTTGGTCCCCACTGCCTTTGAGAAACAGGGCTCTTCCAAGCTGGAGAAAGCCGAGGTCTTGCAGATGACGGTGGAT ATTGGTTTTCGGGAGTGCCTCACTGAGGTCATCAGGTACCTGGGGGTCCTTGAAGGGCCCAGCAGCCGTGCAGAC $\tt CCCGTCCGGATTCGCCTTCTCTCCCACCTCAACAGCTACGCAGCCGAGATGGAGCCTTCGCCCACGCCCACTGGC$ CCTTTGGCCTTCCCTGCCTGGCCCTGGTCTTTCTTCCATAGCTGTCCAGGGCTGCCAGCCCTGAGCAACCAGCTC GCCATCCTGGGAAGAGTGCCCAGCCCTGTCCTCCCCGGTGTCTCCTCCTGCTTACCCCATCCCAGCCCTCCGA ACCGCTCCCCTTCGCAGAGCCACAGGCATCATCCTGCCAGCCCGGAGGAATGTGCTGCCCAGTCGAGGGGCATCT TCCACCCGGAGGGCCCGCCCCTAGAGAGGCCAGCGACCCCTGTGCCTGTCGCCCCCAGCAGCAGGGCTGCCAGG AGCAGCCACATCGCTCCCTCCTGCAGTCTTCCTCCCCAACACCCCCTGGTCCTACAGGGTCGGCTGCTTACGTG GCTGTTCCCACCCCAACTCATCCTCCCCAGGGCCAGCTGGGAGGCCAGCGGGAGCCATGCTCTACCACTCCTGG $\tt GTCTCTGAAATCACTGAAATCGGGGCTTTC\underline{TGA} \tt GCTGCCCCTTCACCACCCCGCCCCAAGGAATAAGGAAGGTTC$ TTTTACCAGGAGCCCAAAAAAGGGCACTGCCTTTTCTGCTTTGCTTCGTGGACTGGCTCATATGTGAAGGCACGT TCTCCAGCCATCAGAGGCCCCCTCCTCCTCCAACCCATCTCTCCTTCTCACTGTTATCCCAGCTTATCCACCCAG $\tt CTCTCCTGGAGCTGTTCTGGTCTCAGAGGCTTGGTTCCATTTCTCACCTGAACAGATGAGTCCTGGGAGAGACCC$ TCAGAGATCCGCCCAGACCCCTCTCCTGCCCTCTGCACACCAGCAGCAGCATGAACCTTGGGTCTGGGAAAAAG CTTTAACCTGCAGGGCACCAGGACCCAAGGCAGGCTGTTCCTTGGGGCGGTCAGACCCCAGTCAGGAGCAATGAC TGACTGGCTGCAGCCTTCCCACGCCAAGAGGCTGGAACATAGTGTCTGCCTCGCTTCCTGGAGATAGTAACTGAG CAGGGGCTACAAAGAGGTCTCCTGGGAACCCTGTCTGCCCCTTCCCACCTGTCCTTGGGCCACACCATCACACTG AACCACAGGACAGACCCTTTCTCCACCACAGCCAAGGCCTGGAGACTGGGGGGCCCAGCAGAGCCTGCTCCCACCC TCCTCCCAGCAGCAGACACCCACCCTCTCACTGACTAACAGGTCCCTGCACACAGCTGGCCTGGTAAACCCAGCT GGGAGGTTTCTAGGCAGCAGCAAAACTCTGTGACAGGGTGTCCTCACACCAGGCCTTGGACAGCTCTCCCAGACA GGAGCCAGGGTTGAGCAATGGAGAGCCCAGCCCCCACGTCTTACAGTCGCCATCCTCCAGGCGTGTGGTCCCTCC CCATTGGGTGCACAGTGCAGAGGGGCCCGTGGCCCCATGTGATGGTGCGCAGAGAGGGAACCTCTTGGGATTCAGCA TGGACAAAAATAACTGCAAGGAGGGGCAAGAGAAAGGATGATTCGAGGCACCTTGGCCCTTCAAGGTCATGCAGT GGGTCGAGCGCCTGAGATCCTGTTCACCAGGACTCCACAGAGCTGGCTCTGCTCAGAAGCCATTTCATTCCCCGG CTCCACCCTAGGCCACTTTTTCTAACAGAGGAAACAAATGGTCCAGCAGTCGTTCCCAGCAGAACAGCGGAGCCT GGACTGACACCCAGTGGGACCAGTGTTGCCACACCAGTTGATAAAATGCAGAAACCCTTCTGTACTCGTTGGTAA ATATCTACTCCCCCAAGTGACTCCAGGTGCCCCCCACCGCCTGGCACTTCCCCCAGGACTCCTACGATCTGGTTA CTGCCTGGCCGATCCAAGGCTGTGGAGTCCCAGAGCCAGCAGTTCACTGGTGCTCATTCCACACTGGTTAGATAC TTCAGTTGTCACCCCTGGGAAGATTCTCCCACCTCCTCCCTTTGATGGAACCACCCTCCCCAGAGGCTGCATTGA GGAGACTCCACAGACTGAAAAGTGAGTTTGCAGAAACCTTGGGGAAAAGGGCCCTTTCAAAGAAGTGGATAAGAG CCTCTTTCATTTTTTAGTGTGAGCTAATTCCATCAGACTGCTGTCCTCCTGGACCCATCTGAGATGTGCAGTAGC GGTAGAAGGAAGACAGAACTCACACATGCTCCCAGGATTGGGGACAGGGACAGAGGAGGTAACAGAAGGCAAAGG CCAGTTTCCCCGTTATCATGAAGGGGCCCACTCAGGACAGGAACAAGGACAACTCCTCCTCCTCCTCCTCCTCCTC CTGCTGCTCCTGGGATACCAGGTCAGTGATGTAGTCTTGCAGTTTGGCAACTTCCTAGCCTGAGAATCCCTAGTG GGGCTGTGGGAAACACATTTCCACGTTGCAAGCATGCAACTCCAAAGAATCTGTGATGCCACTGAAATGAGATGG CTGTGTGATCTGATTCTGTGGTCAAGGACTTGCATCTTGTGTTTCTATCCCCAAGCCTTCCTGGTGTCTCCAACT

PCT/IIS2003/028547

FIGURE 143

MKRPKEPSGSDGESDGPIDVGQEGQLSQMARPLSTPSSSQMQARKKRRGIIEKRRRDRINSSLSELRRLVPTAFE
KQGSSKLEKAEVLQMTVDHLKMLHATGGTGFFDARALAVDFRSIGFRECLTEVIRYLGVLEGFSSRADPVRIRLL
SHLNSYAAEMEPSFTTGELAFPAMPWSFFHSCPGLPALSNQLAILGRVPSFVLPGVSSPAYPIPALRTAPLRRA
TGIILPARRNVLPSRGASSTRRARPLERPATDVPVAPSSRAARSSHIAPLLQSSSPTPPGPTGSAAYVAVPTPNS
SSFGPAGRPAGAMLYHSWVSETTEIGAF

PCT/US2003/028547

FIGURE 144

GATCCTAAATTGCAGCAAGGCTACAATGCTATGGGATTCTCCCAGGGAGGCCAATTTCTGAGGGCAGTGGCTCAG AGATGCCCTTCACCTCCCATGATCAATCTGATCTCGGTTGGGGGACAACATCAAGGTGTTTTTGGACTCCCTCGA TGCCCAGGAGAGAGCTCTCACATCTGTGACTTCATCCGAAAAACACTGAATGCTGGGGCGTACTCCAAAGTTGTT CAGGAACGCCTCGTGCAAGCCGAATACTGGCATGACCCCATAAAGGAGGATGTGTATCGCAACCACAGCATCTTC TTGGCAGATATAAATCAGGAGCGGGGTATCAATGAGTCCTACAAGAAAAACCTGATGGCCCTGAAGAAGTTTGTG ATGGTGAAATTCCTCAATGATTCCATTGTGGACCCTGTAGATTCGGAGTGGTTTGGATTTTACAGAAGTGGCCAA GCCAAGGAAACCATTCCCTTACAGGAGACCTCCCTGTACACACAGGACCGCCTGGGGCTAAAGGAAATGGACAAT GCAGGACAGCTAGTGTTTCTGGCTACAGAAGGGGACCATCTTCAGTTGTCTGAAGAATGGTTTTATGCCCACATC ATACCATTCCTTGGATGAAACCCGTATAGTTCACAATAGAGCTCAGGGAGCCCCTAACTCTTCCAAACCACATGG GAGACAGTTTCCTTCATGCCCAAGCCTGAGCTCAGATCCAGCTTGCAACTAATCCTTCTATCATCTAACATGCCC TACTTGGAAAGATCTAAGATCTGAATCTTATCCTTTGCCATCTTCTGTTACCATATGGTGTTGAATGCAAGTTTA ATTACCATGGAGATTGTTTTACAAACTTTTGATGTGGTCAAGTTCAGTTTTAGAAAAGGGAGTCTGTTCCAGATC TTCCAAGTCTTGCCATATTTCAAGCAAAGAGGTGCCCAGGCCTGAGGTACTCACATAAATGCTTTGTTTTGCTGG TGATTTAACCAGTGCTTGGAAAAATCTTGCTTGGCTATTTCTGCATCATTTCTTAAGGCTGCCTTCCTCTCAG TACGTTGCCCTCTGTGCTATCATCTTATCATCAATTATTAGACAAATCCCACTGGCCTACAGTCTTGCTTCTGCA GCACCCACTTTGTCTCCTCAGGTAGTGATGAATTAGTTGCTGTCACAAAAGGAGGGAAGTAGCACCCAAATTAAG TTGCTTAAGAGAGGAAATGTACATCTTGTATAACTTAGGGAGCGAAGAAAATGTAGGCGCGAAAGTGAAAAGTGA GGCAGCTAGTTCTTCCTATTCCATTCTCGACCAACCTGCCCTTTCTTAATATGACTAGTGGTCTTGATGCTAGAG TCAACTTACTCTGTTGCTGGCTTTAGCAGAGAATAGGAGGAACCATATGAAAAAGATCAGGCTTTCTGACTTCCA TCCCCAAAACACATTTACCAGCATACTCCAAACTGTTTCTGATGTGTTCCATGAGAAAAGGATTGTTTGCTCAAA AAGCTTGGAAAATACTACACACTCCCTTTCTCCTTCTGGAGATCAACCCACATTAGAGTGTCTAAGGACTCCTGA GAATTCCTGTTACAGTAAACAAAACTAACGTAATCTACCATTTCCTACACTATTTGAGCATGGAAATCATAGTCC CCACTCTGTGAAAACTTAACGCTTTTTGGAAGACATTTCTGTAGCATGTCAGTTTGGAGAAATGATGAGCTACGC CTTCAACTAAAAGATGAGGATTAAGAGCAAGAAGTTGGGGGGGATGTGAAAATAATTTTATGAGGTTGTCTAAAA т

PCT/US2003/028547

154/6881 FIGURE 145

GGGTCGCGCGGAGATTGCTGGGCGGTTCTTGCCGGAAGCGGAGAGCGGCTGATCGCAGTCCGGAGGTGAGGCGGA ACTCTGAGGCAGATATCCTCCCTTTCCTCCTCGGCTGCTCTTACTTTGACAAGCCAGGCTAACATTGAAGGT GGTCCATTATGGCTGACATGCAAAATCTGGTAGAAAGATTGGAGAGGCCAGTGGGCCGCCTGGAGGCAGTATCTC ATACCTCTGACATGCACCGTGGGTATGCAGACAGTCCTTCAAAAGCAGGAGCAGCTCCATATGTGCAGGCATTTG ACTCGCTGCTTGCTGGTCCTGTGGCAGAGTACTTGAAGATCAGTAAAGAGATTGGGGGAGACGTGCAGAAACATG AAAATAAGCTTTCCGATTTGTTGGCACCCATCTCAGAGCAGATCAAAGAAGTGATAACCTTTCGGGAGAAGAACCC CCAAGCCTGGCCCTTATGTGAAAGAATGAATGATGCCGCCATGTTTTATACAAACCGAGTCCTCAAAGAGTACA AAGATGTGGATAAGAAGCATGTAGACTGGGTCAAAGCTTATTTAAGTATATGGACAGAGCTGCAGGCTTACATTA AGGAGTTCCATACCACCGGACTGGCCTGGAGCAAAACGGGGCCTGTGGCAAAAGAACTGAGCGGACTGCCATCTG GACCCTCTGCCGGATCAGGTCCTCCTCCCCCTCCACCATGCCCCCCTCCTCCCCCAGTCTCTACCAGTTCATGCT CATATGAGTCTGCTTCCCGCTCAGCACTGTTCGCGCAGATTAATCAGGGGGGAGAGCATTACACATGCCCTGAAAC ATGTATCTGATGACATGAAGACTCACAAGAACCCTGCCCTGAAGGCTCAGAGTGGTCCAGTACGCAGTGGCCCCA AACCATTCTCTGCACCTAAACCCCAAACCAGCCCATCCCCCAAACGAGCCACAAAGAAGGAGCCAGCTGTACTTG AACTGGAGGCAAGAAGTGGAGAGTGGAAAATCAGGAAAATGTTTCCAACCTGGTGATTGAGGACACAGAGCTGA AACAGGTGGCTTACATATACAAGTGTGTCAACACGACATTGCAAATCAAGGGCAAAATTAACTCCATTACAGTAG ATAACTGTAAGAAACTTGGCCTGGTATTCGATGACGTGGTGGGCATTGTGGAGATAATCAACAGTAAGGATGTCA AAGTTCAGGTAATGGGTAAAGTGCCAACCATATCCATCAACAAAACAGATGGCTGCCATGCTTACCTGAGCAAGA ATTCCCTGGATTGTGAAATGTCAGTGCCAAATCTTCCGAGATGATGTCCTCATTCCTACAGAAGGCGGTGACT TTAATGAATTCCCAGTTCCTGAGCAGTTCAAGACCCTATGGAACGGGCAGAAGTTGGTCACCACAGTGACAGAAA TCTTTCTAGATTTCCTCTACCTTTTTGCTCTTAAAACTGCTTCTCTGCTCTGAGAAGCACAGCTACCTGCCTTC ACTGAAATATACCTCAGGCTGAAATTTGGGGTGGGATAGCAGGTCAGTTGATCTTCTGCAGGAAGGTGCAGCTTT TCCATATCAGCTCAACCACGCCGCCAGTCCATTCTTAAGGAACTGCCGACTAGGACTGATGATGCATTTTAGCTT TGTTCACACTGGTTAATCTTTTTTTAACAATGAGCATGAAGGTAGCAGAAGCTGGTGTTTTCCAGATGGTTCTT CTAACCAAACTAATTTTCACTGTTGACAAGCGAGGCAAGGGTTGCACTGGACCAAAGGCTGAGGCTTGGCCATC TAGCATTCCATACAAAATTGTTTCCTATAAGCATTCCTTTTATTCTATTCTATCCTGGGTCTGCCTCAACCGT GAGATAGGAGAGTCTCTGGTACTAGCTGCTGTAGCAGTGCCCTTCATCCAGGGCAGTTAATGGAGTCTTGGACCC CCACATGATTTCAAGGAGTCTGGCATTCCTGAATCCTTCTTCCCTGCCAGGTGCCTGTCACCTGTCTTCACTGCC TCCTTTTCCCTGTCATGCTCATCAGCTTATGGCTTCTGTCTAAGCACCTGAACAGAGGACTGAAACCTCCACTGC AGGCTGGTTTTAGGTCTTGAATTATGTAAGAATCTTGCACAGCACTGCTAATGTAAATTTCAGTTGTTTTTCCCT CTAGGACAAACACTTACCAAAATATGCAACTTTTTTTTTGGTGGGAAGAGAGTTGTCCTGTGATTTCTACCCATT TCCTGAGGCCTGTGGAAATAAACCTTTATGTACTTAAAGTTATACAGAAAATAGAATAAAGTTAATACCAAACTT G

PCT/US2003/028547

155/6881 FIGURE 146

GGCTTCGGTCGCTACCGCTCCCGCTCTGCCACCCCCGCCAACCGCCGCTCGGGCCTCCGTCGCTGCCGCGTCGCT GGGCCGTAGCGGCTCCATGGACCCCTCCGGTGCCCACCCCTCGGTGCGTCAGACGCCGTCTCGGCAGCCGCCGCT GCCTCACCGGTCCCGGGGAGGCGGAGGGGGATCCCGCGGGGGGCCCCGGGCCTCGCCCACGCAGCCGCCACC TGATGAGGAGAATTACTTGGATTTATTTTCTCATAAGAACATGAAACTGAAAGAGCGAGTGCTGATACCTGTCAA GCAGTATCCCAAGTTCAATTTTGTGGGGAAGATTCTTGGACCACAAGGGAATACAATCAAAAGACTGCAGGAAGA GACTGGTGCAAAGATCTCTGTATTGGGAAAGGGCTCAATGAGAGACAAAGCCAAGGAGGAAGAGCTGCGCAAAGG TGGAGACCCCAAATATGCCCCACTTGAATATGGATCTGCATGTCTTCATTGAAGTCTTTGGACCCCCATGTGAGGC GGAGCAATTTCTAGAGCTGTCCTACTTGAATGGAGTACCTGAACCCTCTCGTGGACGTGGGGTGCCAGTGAGAGG CCGGGGAGCTGCACCTCCTCCACCACCTGTTCCCAGGGGCCGTGGTGTTGGACCACCTCGGGGGGCTTTGGTACG TGGTACACCAGTAAGGGGAGCCATCACCAGAGGTGCCACTGTGACTCGAGGCGTGCCACCCCACCTACTGTGAG GGGTGCTCCAGCACCAAGAGCACGGACAGCGGGCATCCAGAGGATACCTTTGCCTCCACCTCCTGCACCAGAAAC ATATGAAGAATATGGATATGATGATACATACGCAGAACAAAGTTACGAAGGCTACGAAGGCTATTACAGCCAGAG TCAAGGGGACTCAGAATATTATGACTATGGACATGGGGAGGTTCAAGATTCTTATGAAGCTTATGGCCAGGACGA CTGGAATGGGACCAGGCCGTCGCTGAAGGCCCCTCCTGCTAGGCCAGTGAAGGGAGCATACAGAGAGCACCCATA TGGACGTTAT<u>TAA</u>AAACAAACATGAGGGGAAAATATCAGTTATGAGCAAAGTTGTTACTGATTTCTTGTATCTCC CAGGATTCCTGTTGCTTTACCCACAACAGACAAGTAATTGTCTAAGTGTTTTTCTTCGTGGTCCCCTTCTTCTCC GAATATTGAATTAATTTTTTAAGTGTGTAGATGCTTTTTTCTTTGTTGTTTAAATATAAACAGAAGTGTACCTTT TAAAGGTTCTGAAGTAAAGGCTTGTTAAGTTTCTCTTAGTTTTGATTTGAGGCATCCCGTAAAGTTGTAGTTGCA GAATCCCAAACTAGGCTACATTTCAAAATTCAGGGCTGTTTAAGATTTAAAATCACAAACATTAACGGCAGTAGG CACCACCATGTAAAAGTGAGCTCAGACGTCTCTAAAAAATGTTTCCTTTATAAAAGCACATGGCGGTTGAATCTT AAGGTTAAATTTTAATATGAAAGATCCTCATGAATTAAATAGTTGATGCAATTTTTAACGTTAATTGATATAAAA AAAAAAACAACAAAATTAGGCTTGTAAAACTGACTTTTTCATTACGTGGGTTTTGAAATCTAGCCCCAGACATAC ATTGAGTTTGATGCAGAGCTTTTTAGCCATGAAGAATCTTTCAGTCATAGTACTAATAATTAAATTTCAGTATT TAAAAAGACAAAGTATTTTGTCCATTTGAGATTCTGCACTCCATGAAAAGTTCACTTGGACGCTGGGGCCAAAAG CTGTTGATTTCTTAAGTTGACGGTTGTCAATATATCGAACTGTTCCCAAGTTAGTCAAGTATGTCTCAACACTA GCATGATATAAAAAGGGACACTGCAGCTGAATGAAAAAGGAATCAAAATCCACTTTGTACATAAGTTAAAGTCCT AATTGGATTTGTACCGTCCTCCCATTTTGTTCTCGGAAGATTAAATGCTACATGTGTAAGTCTGCCTAAATAGGT AGCTTAAACTTATGTCAAAATGTCTGCAGCAGTTTGTCAATAAAGTTTAGTCCTTTTTTA

PCT/IIS2003/028547

FIGURE 147

MQRRDDPARMSRSSGRSGSMDPSGAHPSVRQTPSRQPPLPHRSRGGGGSRGGARASPATQPPPLLPPSATGPD
ATTGGPATTPLLPPSATASVKMEPENKYLPELMAEKDSLDPSFTHAMQLLTAEIEKIQKGDSKKDDEENYLDLFS
HKNMKLKERVLIPVKQYPKFNFVGKILGPQGNTIKKLQEETGAKISVLGKGSMROKAKEEELKKGGDPKYAHLMM
DLHVFIEVFGEPCEAYALMAHAMEEVKKFLVPDMMDDICQEQFLELSYLNGVPEPSRGRGVPVGRGAAPPPPPV
PFRGRGVGPPRGALVRGTPVRGAITRGATVTRGVPPPPTVRGAPAPRATTAGIQRIPLPLPPPPAPETYEEYGYDDTY
AEGSYEGYVSGVGGDSEYYDYGHGEVQDSYEAYGQDDWNGTRPSLKAPPARPVKGAYREHPYGRY

PCT/HS2003/028547

157/6881 FIGURE 148

CTCGCGTCACAGCCGGGATGAAGCCGATCCTACTGCAGGGCCATGAGCGGTCCATTACGCAGATTAAGTATAACC GCGAAGGAGCCTCCTCTTTACTGTGGCCAAGGACCCTATCGTCAATGTATGGTACTCTTGTGAATGGTGAGAGGC GCTCAGCTGACAACAGCTGTCGTCTCTGGGACTGTGAAACAGGAAAGCAGCTGGCCCTTCTCAAGACCAATTCGG CTGTCCGGACCTGCGGTTTTGACTTTGGGGGCAACATCATCATCTTCTCCACGGACAAGCAGATGGGCTACCAGT GCTTTGTGAGCTTTTTTGACCTGCGGGATCCGAGCCAGATTGACAACAATGAGCCCTACATGAAGATCCCTTGCA ATGACTCTAAAATCACCAGTGCTGTTTGGGGACCCCTGGGGGAGTGCATCATCGCTGGCCATGAGAGTGGAGAGC TCAACCAGTATAGTGCCAAGTCTGGAGAGGCTGTTGGTGAATGTTAAGGAGCACTCCCGGCAGATCAACGACATCA AGTTATCCAGGGACATGACCATGTTTGTGACCGCGTCCAAGGACAACACGCCAAGCTTTTTGACTCCACAACTC TTGAACATCAGAAGACTTTCCGGACAGAACGTCCTGTCAACTCAGCTGCCCTCTCCCCCAACTATGACCATGTGG TCCTGGGCGGTGGTCAGGAAGCCATGGATGTAACCACACCTCCACCAGGATTGGCAAGTTTGAGGCCAGGTTCT TCCATTTGGCCTTTGAAGAGGGTTTGGAAGAGTCAAGGGTCACTTTGGACCTATCAACAGTGTTGCCTTCCATC CTGATGGCAAGAGCTACAGCAGCGGCGGAGATGGTTACGTCCGTATCCATTACTTCGACCCACAGTÁCTTTG AATTTGAGGTTTAAGAAGCTGGATCTCCTGCCGGGCGTGGTTGGCTCATGCCTGTAATCCCACCACTTT TTTTTTAAGGCAGGCGGATCACCTGAGGTCAGGAGTTTAAGACCAGCCTGACCAACATGGAGAAACCTCGTCTCT ACTAAAAATACAAAAATTAGCCAGGCATGGTGGCACACGCCTATAGTCCCAGCTACTCAGGAGGCTGAGGCAGGA GAATCACTTGAACCCAGGAGGCAGAGGTTGCAGTGAGCTGAGATCACGTCATTGCACTCCATCCTGAGCCACAAG AGCAAAACTCCGTCTCAAAAAAAAAAAAAGAAGAAGGTGGATCTCCAACCAGGCCAGAGAAGATTCTCACAGAAGG TTTTGAACTCTAAGAAATAAATTGGTTTGGTAATAAATGGCTTCTGGTCAGA

PCT/US2003/028547

158/6881 FIGURE 149

MKPILLQGHERSITQIKYNREGDLLFTVAKDPIVNVWYSVNGERLGTYMGHTGAVWCVDADWDTKHVLTGSADNS
CRLWDCETGKQLALLKTNSAVRTCGFDFGGNIIMFSTDKQMGYQCFVSFFDLRDPSQIDNNEPYMKIPCNDSKIT
SAVWGPLGECIIAGHESGELNQYSAKSGEVLVNVKEHSRQINDIQLSRDMTMFVTASKDNTAKLFDSTTLEHQKT
FRTERPVNSAALSPNYDHVVLGGGQEAMDVTTTSTRIGKFEARFFHLAFEEEFGRVKGHFGPINSVAFHPDGKSY
SSGGEDGYVRIHYFDPQYFFFFFEA

PCT/IIS2003/028547

FIGURE 150

GAGCGGAGCCGCGGCCGGAGGGCGGACCGACCGACTGACGGTAGGGACGGGAGGCGAGCAAGATGCCGCAGACG CAGGGCACCCGGAGGAAAGTCTGTTACTACTACGACGGGGATGTTGGAAATTACTATTATGGACAAGGCCACCCA ATGAAGCCTCACCGAATCCGCATGACTCATAATTTGCTGCTCAACTATGGTCTCTACCGAAAAATGGAAATCTAT CGCCCTCACAAAGCCAATGCTGAGGAGATGACCAAGTACCACAGCGATGACTACATTAAATTCTTGCGCTCCATC CGTCCAGATAACATGTCGGAGTACAGCAAGCAGATGCAGAGATTCAACGTTGGTGAGGACTGTCCAGTATTCGAT GGCCTGTTTGAGTTCTGCAGTTGTCTACTGGTGGTTCTGTGGCAAGTGCTGTGAAACTTAATAAGCAGCAGACG GACATCGCTGTGAATTGGGCTGGGGGCCTGCACCATGCAAAGAAGTCCGAGGCATCTGGCTTCTGTTACGTCAAT GATATCGTCTTGGCCATCCTGGAACTGCTAAAGTATCACCAGAGGGTGCTGTACATTGACATTGATATTCACCAT GGTGACGGCGTGGAAGAGGCCTTCTACACCACGGACCGGGTCATGACTGTGTCCTTTCATAAGTATGGAGAGTAC TTCCCAGGAACTGGGGACCTACGGGATATCGGGGCTGGCAAAGGCAAGTATTATGCTGTTAACTACCCGCTCCGA GACGGGATTGATGACGAGTCCTATGAGGCCATTTTCAAGCCGGTCATGTCCAAAGTAATGGAGATGTTCCAGCCT AGTGCGGTGGTCTTACAGTGTGGCTCAGACTCCCTATCTGGGGATCGGTTAGGTTGCTTCAATCTAACTATCAAA GGACACGCCAAGTGTGTGGAATTTGTCAAGAGCTTTAACCTGCCTATGCTGATGCTGGGAGGCGGTGGTTACACC ATTCGTAACGTTGCCCGGTGCTGGACATATGAGACAGCTGTGGCCCTGGATACGGAGATCCCTAATGAGCTTCCA TACAATGACTACTTTGAATACTTTGGACCAGATTTCAAGCTCCACATCAGTCCTTCCAATATGACTAACCAGAAC CAAATGCAGGCGATTCCTGAGGACGCCATCCCTGAGGAGATGGCGATGAGGACGAAGACGACCCTGACAAGCGC ATCTCGATCTGCTCCTCTGACAAACGAATTGCCTGTGAGGAAGAGTTCTCCGATTCTGAAGAGGAGGAGAGAGGGG GGCCGCAAGAACTCTTCCAACTTCAAAAAAGCCAAGAGAGTCAAAACAGAGGATGAAAAAGAGAAAAGACCCAGAG GAGAAGAAGAAGTCACCGAAGAGGAGAAAACCAAGGAGGAGAAGCCAGAAGCCAAAGGGGTCAAGGAGGAGGAGGTC AAGTTGGCCTGAATGGACCTCTCCAGCTCTGGCTTCCTGCTGAGTCCCTCACGTTTCTTCCCCAACCCCTCAGAT GCCCGAGCTCAGGGCAGCTGTGCTGGGTGAGCTCTTCCAGGAGCCACCTTGCCACCCATTCTTCCCGTTCTTAA CTTTGAACCATAAAGGGTGCCAGGTCTGGGTGAAAGGGATACTTTTATGCAACCATAAGACAAACTCCTGAAATG CCAAGTGCCTGCTTAGTAGCTTTGGAAAGGTGCCCTTATTGAACATTCTAGAAGGGGTGGCTGGGTCTTCAAGGA TCTCCTGTTTTTTTCAGGCTCCTAAAGTAACATCÁGCCATTTTTAGATTGGTTCTGTTTTCGTACCTTCCCACTG TAGTTTCCTTTTTGAGATACTATTTTCATTTTTGTGAGCCTCTTTGTAATAAAATGGTACATTTCT

PCT/US2003/028547

FIGURE 151

MAQTQGTRRKVCYYYDGDVGNYYYGQGHPMKPHRIRMTHNLLLNYGLYRKMEIYRPHKANAEEMTKYHSDDYIKF LRSIRPDMNSEYSKOMQRPNVGEDCPVFDGLFEFCQLSTGGSVASAVKLNKQQTDIAVNANGGLHHAKKSBASE CYVNDIVLAILELLKYHQRVLYIDIDIHHGGGVEEAFYTTDRWHTVSFHKYGEYPFGTGDLRDIGAGKGKYYAVN YPLRQGIDDESYEAIFKPVMSKVMEMECPSAVVLQCGSDSLSGDRIGCFNLTIKGHAKCVEFVKSFNLPMLMLGG GGYTIRNVARCWTYETAVALDTEIPNELPYNDYFEYFGFDFKLHISPSMMTMQNTNEYLEKIKQRLFFNLRMLPH APGVQMQAIPEDAIPEESGDEDEDDDDKRISICSSDKRIACEEEFSDSEEEGEGGRKNSSNFKKAKRVKTEDEKE KOPEEKKEVTEEEKTKEEKFEAKGVKEEVKLA

PCT/IIS2003/028547

161/6881 FIGURE 152

GGCACGAGGGCGCGGAGCGGAGCGGCGGGCGCAGCTAGCGGTCGGCCGCGGAGCGGAGCTCAGCTCGGCT TGCGGCGCGAGCCCGGGGCGGCTCCAAGCGCCCCCCAGCAGACCCCCATCATGGGCAGCCAGAGCTCCAAGGCTC CCCGGGGGGACGTGACGCCGAGGAGGCAGCAGGGGGCTTCCCCCGCGAAGGCCAACGGCCAGGAGAATGGCCACG TGAAAAGCAATGGAGACTTATCCCCCAAGGGTGAAGGGGAGTCGCCCCCTGTGAACGGAACAGATGAGGCAGCCG GGGCCACTGGCGATGCCATCGAGCCAGCACCCCCTAGCCAGGGTGCTGAGGCCAAGGGGGAGGTCCCCCCAAGG AGACCCCCAAGAAGAAGAAGAAATTCTCTTTCAAGAAGCCTTTCAAATTGAGCGGCCTGTCCTTCAAGAGAAAATC GCA A GGA GGCTGGGGGTGA TTCTTCTGCCTCCTCACCCACAGAGGAAGAGCAGGAGCAGGGGGAGATCGGTGCCT GCAGCGACGAGGCACTGCTCAGGAAGGGAAGGCCGCAGCCACCCTGAGAGCCAGGAACCCCAGGCCAAGGGGG CAGAGGCTAGTGCAGCCTCAGAAGAAGAAGAGGCCAGGCCAGGCTACAGAGCCATCCACTCCCTCGGGGCCGGAGA GCCCTACCTCCTTCCCTGTCCCCACCCCTGCATAAGGCAGTTGTTGGTTTTCTTCCCCAATTCTTTTCCAAGTAG GTTTTGTTTACCCTACTCCCCAAATCCCTGAGCCAGAAGTGGGGTGCTTATACTCCCAAACCTTGAGTGTCCAGC CTTCCCCTGTTGTTTTTAGTCTCTTGTGCTGTGCCTAGTGGCACCTGGGCTGGGGAGGACACTGCCCCGTCTAGG TTTTTATAAATGTCTTACTCAAGTTCAAACCTCCAGCCTGTGAATCAACTGTGTCTCTTTTTTGACTTGGTAAGC AAGTATTAGGCTTTGGGGTGGGGGGGGTCTGTAATGTGAAACAACTTCTTGTCTTTTTTTCTCCCACTGTTGTA

PCT/US2003/028547

162/6881 FIGURE 153

MGSQSSKAPRGDVTAEEAAGASPAKANGQENGHVKSNGOLSPKGEGESPPVNGTDEAAGATGDAIEPAPPSQGAE AKGEVPPKETPKKKKKFSFKKPFKLSGLSFKRNRKEGGGDSSASSSFTEEEQEQGEIGACSDEGTAQEGKAAATPE SQEPQAKGAEASAASEEEAGPQATEPSTPSGPESGPTPASAEQNE

PCT/US2003/028547

163/6881 FIGURE 154

GCTCCCATTGGCTGATGTTGGCGCGAAGGTGCGCGAGTCAGCCCTCGCGCTGGGGGCGCAGGAAACAATAGAGGC CGCGCGCACAGAGCGAGCTCTTGCAGCCTCCCGGCCCCTCCCGCAACGCTCGACCCCAGGATTCCCCCGGCTCGC CTGCCCGCCATGGCCGACAAGGAAGCAGCCTTCGACGACGCAGTGGAAGAACGAGTGATCAACGAGGAATACAAA ATATGGAAAAAGAACACCCTTTTCTTTATGATTTGGTGATGACCCATGCTCTGGAGTGGCCCAGCCTAACTGCC CAGTGGCTTCCAGATGTAACCAGAATTTGGAGGTTTTGGTTCAGTTAGTGGAAAAATTGAAATAGAAATCAAGAT CAACCATGAAGGAGAAGTAAACAGGGCCCGTTATATGCCCCAGAACCCTTGTATCATCGCAACAAAGACTCCTTC CAGTGATGTTCTTGTTTTTGACTATACAAAACATCCTTCTAAACCAGATCCTTCTGGAGAGTGCAACCCAGACTT TTCAGATGACCATACCATCTGCCTGTGGGACATCAGTGCCGTTCCAAAGGAGGGAAAAGTGGTAGATGCGAAGAC CATCTTTACAGGGCATACGGCAGTAGAAGATGTTTCCTGGCATCTACTCCATGAGTCTCTGTTTGGGTCAGT TGCTGATGATCAGAAACTTATGATTTGGGATACTCGTTCAAACAATACTTCCAAACCAAGCCACTCAGTTGATGC TCACACTGCTGAAGTGAACTGCCTTTCTTTCAATCCTTATAGTGAGTTCATTCTTGCCACAGGATCAGCTGACAA GACTGTTGCCTTGTGGGATCTGAGAAATCTGAAACTTAAGTTGCATTCCTTTGAGTCACATAAGGATGAAATATT CCAGGTTCAGTGGTCACCTCACAATGAGACTATTTTAGCTTCCAGTGGTACTGATCGCAGACTGAATGTCTGGGA TTTAAGTAAAATTGGAGAGGAACAATCCCCAGAAGATGCAGAAGACGGGCCACCAGAGTTGTTGTTTATTCATGG TGGTCATACTGCCAAGATATCTGATTTCTCCTGGAATCCCAATGAACCTTGGGTGATTTGTTCTGTATCAGAAGA CAATATCATGCAAGTGTGGCAAATGGAGTTAGTCCTTGACCACTAGTTTGATGCCATCTCCATTTTGGGTGACCT GTTTCACCAGCAGGCCTGTTACTCTCCATGACTAACTGTGTAAGTGCTTAAAATGGAATAAATTGCTTTTCTACA TAA

PCT/US2003/028547

FIGURE 155A

GGCTCGCATCCCCATAGTGCTGGGTTACAGTGAAGGTACGCCCCGCGCTCTGCTCTGGAGAGGCAGGGTGGGATA GGGAACGTCTCGAGTGGCGCCGCAGTCATGGTGGTGTTCGTTGGCCGCCGCCTCCCGGCGCTCCTAGGGCTGTT TAAGAAGAAGGGCTCTGCCAAGGCTGAGAATGACAAACATCTAAGTGTAGGGCCTGGCCAGGGCCAGGGTCTGC ACTGGATGACCACCAGGACAACGTCTTCTTTCCCAGTGGGCGACCCCCCACCTGGAAGAGCTGCACACCTCAGGC CCAGGAGGGCTCCCCTACCACACACCAAGAGAAACAGAAACTGAACAAGGGTGGCTGGGACCATGGAGACAC CCAGAGTATCCAGTCCTCCCGGACGGGCCGGATGAAGACAACATCTCCTTCTGCAGTCAGACCACATCCTACGT GGCTGAGAGCTCCACAGCAGAGGACGCGCTCTCCATCCGCTCGGAGATGATCCAGCGCAAAGGCTCCACCTTCCG CCCGCAGCATGTGCAGAAGGAGCTTGGCCTGAGGAATGAGCGTGAGGCACCAGGCACGCCCCGGGCTCCTGGTGC ACGGGATGCCGTACGCATCCCCACAGTGGACGGCCGCCCCCGAGGCACCTCAGGGATGGGGGCCCGGGTGTCCCT GCAGGCGCTGGAGGCGGAGGCTGGCGCTGAGACAGGCCATGCTGCAGCGCCACATTGACCGTGTCTA CCGGGATGACACCTTTGTTGGCCGGTCCACGGGTACCCGGGCCCACCATTGACCCGGCCCATGTCCCTAGCAGT GCCTGGATTGACAGGAGGGCAGGGCCTGCAGAGCCCCTGAGCCCGGCCATGTCCATCTCCCCCCAGGCCACCTA CCTGTCGAAGTTGATTCCACATGCTGTGCTGCCGCCTACAGTGGACGTGGTGGCCCTAGGCCGCTGCAGCCTGCG CAGCCCACAGCCCGCAGCCGCCACCCATCCTCCTCCAGTGACACCTGGAGCCACTCTCAATCCTCCGACACCAT TGTGTCTGACGGTTCCACCCTCTCCTCTAAGGGTGGCTCTGAGGGCCAGCCGGAGAGCTCTACGGCTAGCAATAG CGTGGTACCCCCCCCCGGGGGGGCAGTGGGAGGGGCTCTCCCAGTGGGGGCAGCACTGCTGAGGCCTCAGACAC ACTCAGCATTCGGAGCAGTGGGCAGTTGTCTGGCCGGAGTGTGTCCCTGCGTAAGCTGAAGCGGCCTCCACCCC TCCCCGCCGACCCACTCCCTCCATCAGCGGGCTTAGCAGTGCCTGATGGGCCATTAGGGTTGCCCCCTAAGCC TGAGCGTAAGCAGCAGCCCCAGCTGCCTCGGCCACCCACTGGTGGCTCAGAAGGGGCGGGGGCAGCACCCTG TCCACCCAACCCAGCCAACAGCTGGGTACCTGGCTTGTCTCCGGGTGGTTCCCGGCGCCCCCACGGTCCCCAGA ACGGACACTTTCGCCCTCCAGTGGATACTCGAGCCAAAGTGGTACTCCCACCCTCCCCAAGGGCCTGGCAGG TCCCCTGCTTCCCCAGGCAAGGCCCAGCCCCCTAAACCAGAGCGTGTCACGTCTCTTCGCTCCCTGGGGCCTC CGTCTCCTCTCCCTCACGTCTTTATGTTCCTCCTCCTCTGACCCAGCCCCCTCAGACCGCTCTGGGCCACAGAT CAAGCCCAGGAGCCCTAACCCAGCTGCCCCTGCTCTAGCCGCCCCTGCTGTGGTTCCTGGGCCTGTTTCTACCAC TGACGCCAGTCCTCAGTCCCCTCCCCACTCCCCAGACAACCTTGACTCCACTGCAGGAGTCTCCTGTCATCTCCAA TGCCCCTGAGGAGCAGGACCTGTCCATGGCTGACTTCCCCCCACCAGAGGAGGCTTTTTTCTCTGTGGCCAGCCC TGAGCCTGCAGGCCCTTCAGGCTCCCCAGAGCTTGTCAGCTCCCCGGCTGCTTCGTCCTCCTCAGCTACTGCTTT GCAGATTCAGCCCCGGGTAGCCCAGACCCTCCTCCAGCTCCGCCAGCCCCAGCTCCTGCTAGTTCCGCCCCAGG GCATGTGGCCAAGCTCCCTCAGAAGGAACCGGTGGGCTGTAGCAAGGGTGGTGGGCCTCCCAGGGAGGACGTAGG TGCGCCCTGGTCACGCCCTCGCTCCTGCAGATGGTGCGGCTGCGCTCCGTGGGTGCTCCAGGAGGGGCTCCCAC CCCCTCCTCAGGGCTCCATGCTGCGGTCCGACTCAAGGCCTGCAGCCTGGCCGCCAGTGAAGGCCTCTCAAGTGC TCAGCCCAACGGACCGCCTGAGGCAGAGCCACGGCCTCCCCAGTCCCCTGCCTCAACGGCCAGTTTCATCTTCTC CAAGGGCTCTAGGAAGCTGCAGCTGGAGCGGCCCGTGTCCCCTGAGACCCAGGCTGACCTCCAGCGGAATCTGGT GGCA GAACTCCGGAGCATCTCAGAGCAGCGGCCACCCCAGGCCCCAAAGAAGTCACCTAAGGCTCCCCCACCTGT GGCCGCAAGCCGTCTGTGGGAGTCCCCCCACCCGCCTCCCCAGTTACCCTCGAGCTGAGCCCCTTACTGCTCC TCCCACCAATGGGCTCCCTCACACCCCAGGACAGGACTAAGAGGGAGCTGGCGGAGAATGGAGGTGTCCTGCAGCT GGTGGGCCCAGAGGAGAAGATGGGCCTCCCGGGCTCAGACTCACAGAAAGAGCTGGCC<u>TGA</u>CCACCAGGCACCTC ACTGGCACTGCTGACCCATCCCAGAAACACAATCTCAGGGACCCGAGCAGCTCCAAGGACGAGAGGATACAGCAG CCTGTCCTCAGAGTCATCCTGCGCTCATGCCTTTTCCCGAATGGGTTCACCTCTGGCAGTTGCCGCTTCAGTCTT GGCCTTAGCCTCATCTTGAAGTGGGTAGCTGGCGGGAGAGGGTGGCTGCCCCCTGCTGGCCCTGAGGCTGCAG AGTTGGGAGCAGGACACCTCACCTGAGTTTCATTTTTTTCATGTCCAAACCATGCACATACTATAGTCCAGAAT

PCT/US2003/028547

165/6881 FIGURE 155B

CAAAGCACTTTTGAAAAGTGGCTGCATGGCCATCCTCCAGGGCCCCAGGAAGTTGCATCCAAGGGCCTGTTTACA TGGCAGCAGAATCCATCCCCGGCAGTCAGCCCATAGCTTGGGACCAGTCTGTGCCCTCCTGCCCAGTCCAGTTTA CTCCTCTTGGTTCCTGAAGGTGGCCAAGTCATTGTGTTCCCACAGGCTTCTCTAGGCTGGGGGCAGGTGTGGGGC CTTCCAGTTCTGCCAGGTGCTCCATGCTGGGGACAAGTAGGAGACTGCCAGGGCCCAAAGAAATGGGTGAGCAGT CGGTGCATGTCCTTTCTGCAGCTGCCTTTCAGCACAGGTGGTTCCACTGGGGGCAGCTAACGCTGAGTGACAAGG ATGGGAAGCCACAGGTGCATTTTACTCAAGTCTTCTCTAGTCAATGAGGGGCACCCAGTGCTTCTAGGGCAGGCT GGGTGGTGGTCCCCTAGGTATCAGCCTCTCTTACTGTACTCTCCGGGAATGTTAACCTTTCTATTTTCAGCCTGT GCCACCTGTCTAGGCAAGCTGGCTTCCCCATTGGCCCCTGTGGGTCCACAGCAGCGTGGCTGCCCCCCAGGGCCA CCGCTTCTTCTTGATCCTCTTTCCTTAACAGTGACTTGGGCTTGAGTCTGGCAAGGAACCTTGCTTTTAGCTTC ACCACCAAGGAGAGAGGTTGACATGACCTCCCCGCCCCTCACCAAGGCTGGGAACAGAGGGGGATGTGGTGAGAG ATTCTTCCCTTGCCTGTGGGCAGTGGAGAGTGCTGCTGGGTGTACGCTGCACCTGCCCACTGAGTTGGGGAAAGA GGATAATCAGTGAGCACTGTTCTGCTCAGAGCTCCTGATCTACCCCACCCCTAGGATCCAGGACTGGGTCAAAG CTGCATGAAACCAGGCCCTGGCAGCAACCTGGGAATGGCTGGAGGTGGGAGAAACCTGACTTCTCTTTCCCTCT ACAAAGGAGAAGGGAGGTCTAGAAGAGGCAGCCCTTCTTTGTCCTCTGGGGTAAATGAGCTTGACCTAGAGTAA AACTGTGTTTCATTTAAAGATGTTAATTAAATGATTGAAACTTG

PCT/IIS2003/028547

FIGURE 156

MVVFVGRRLPALLGLFKKKGSAKAENDKHLSVGPGGGPGSAVDEHQDNVFFPSGRPPHLEELHTQAQEGLRSLQH
QEKQKLNKGGWDHGDTQSIQSSRTGPDEDNISFCSQTTSYVAESSTAEDALSIRSEMIQRKGSTFRPHDSFFKAK
KSGRRRERRSTVLGLPQHVQKELGLRNEREAPGTPRAPGARDAVRIPTVDGRPRGTSGMGARVSLQALEAEABEA
GAETEAMLQRHIDRVYRDDIFVGRSTGTRAPPLTRFMSLAVPGLTGGAGPABPLSPAMSISPQATTJCSKLTPHAV
LPPTVDVVALGRCSLRTLSRCSLHSASPASVRSLGRFSSVSSPQPRSRIPSSSSDTMSHSQSSDTIVSDGSTLSS
KGGSEGQPESSTASNSVVPPPQGGSGRGSPSGGSTAEASDTLSIRSSGQLSGRSVSLRKLKRPPPPPPRRTHSLHQ
RGLAVPDGPLGJPPKPERKQQPQLRPPPTTGGSEGAGAPCPPNPANSWYPGLSFGGSRPPRSPERFLSPSSGY
SSGSGTPTLPPKGLAGPPASPGKAQPPKPERVTSLRSPGASVSSLTSLCSSSSDPAPSDRSGPQTLTPLGDRRV
IPPHRVPAPFSPPPSKPRSPMPAAPALAAPAVVEGPVSTTDASPGSPPTTTTTFLQSEVISKOGSPPPSPP
PSYHPPPPPTKKPEVVVEAPSASETAEEPLQDPNWPPPPPAPBEGDLSKADFPPPEEAFFSVASPEPAGPSGSP
ELVSSPÅASSSSATALGIQPGCSPDPPPAFPAPASSAPGHVAKLPQKEPVGCSKGGGPPREDVGAPLVTPSLL
QMYRLBSVGAPGGAPTPALGPSAPGKFLRLSGRASPVPAPSSGLHAAVRLKKACSLAASEGLSSAQPNGFPEAE
PRPPQSPASTASFIFSKGSRKLQLERPVSPETQADLQRNLVALRSISEGRPPPAPKKSPKAPPVARKPSVGVP

PCT/HS2003/028547

FIGURE 157

AAGCTGAAGGAGATACTGAAGGAGCGGGAACTTAAAATTTACTGGGGAACGGCAACCACGGGCAAACCACATGTG GCTTACTTTGTGCCCATGTCAAAGATTGCAGACTTCTTAAAGGCAGGGTGTGAGGTAACAATTCTGTTTGCGGAC CTCCACGCATACCTGGATAACATGAAAGCCCCATGGGAACTTCTAGAACTCCGAGTCAGTTACTATGAGAATGTG ATCAAAGCAATGCTGGAGAGCATTGGTGTCCCCTTGGAGAGCTCAAGTTCATCAAAGGCACTGATTACCAGCTC AGCAAAGAGTACACACTAGATGTGTACAGACTCTCCTCCGTGGTCACACAGCACGATTCCAAGAAGGCTGGAGCT GAGGTGGTAAAGCAGGTGGAGCACCCTTTGCTGAGTGGCCTCTTATACCCCGGACTGCAGGCTTTTGGATGAAGAG TATTTAAAAGTAGATGCCCAATTTGGAGGCATTGATCAGAGAAAGATTTTCACCTTTGCAGAGAAGTACCTCCCT GCACTTGGCTATTCAAAACGGGTCCATCTGATGAATCCTATGGTTCCAGGATTAACAGGCAGCAAAATGAGCTCT TCAGAAGAGGGGTCCAAGATTGATCTCCTTGATCGGAAGGAGGATGTGAAGAAAAAACTGAAGAAGGCCTTCTGT GAGCCAGGAAATGTGGAGAACAATGGGGTTCTGTCCTTCATCAAGCATGTCCTTTTTCCCCTTAAGTCCGAGTTT GTGATCCTACGAGATGAGAAATGGGGTGGAAACAAACCTACACGCTTACGTGGACCTGGAAAAGGACTTTGCT GCTGAGGTTGTACATCCTGGAGACCTGAAGAATTCTGTTGAAGTCGCACTGAACAAGTTGCTGGATCCAATCCGG GAAAAGTTTAATACCCCTGCCCTGAAAAAACTGGCCAGCGCTGCCTACCCAGATCCCTCAAAGCAGAAGCCAATG GCCAAAGGCCCTGCCAAGAATTCAGAACCAGAGGAGGTCATCCCATCCCGCTGGATATCCGTGTGGGGAAAATTC ACTGTGGTGAGCGGCCTGGTACAGTTCGTGCCCAAGGAGGACTGCAGGACAGGCTGGTAGTGCTGCTGCAAC CTGAAACCCCAGAAGATGAGAGGAGTCGAGTCCCAAGGCATGCTTCTGTGTGCTTCTATAGAAGGGATAAACCGC CAGGTTGAACCTCTGGACCCTCCGGCAGGCTCTGCTCCTGGTGAGCACGTGTTTGTGAAGGGCTATGAAAAGGGC CAACCAGATGAGGAGCTCAAGCCCAAGAAGAAAGTCTTCGAGAAGTTGCAGGCTGACTTCAAAATTTCTGAGGAG TGCATCGCACAGTGGAAGCAAACCAACTTCATGACCAAGCTGGGCTCCATTTCCTGTAAATCGCTGAAAGGGGGG AACATTAGCTAGCCAGCCCAGCATCTTCCCCCCTTCTTCCACCACTGAGTCATCTGCTGTTCTTCAGTCTGCTC CATCCATCACCCATTTACCCATCTCTCAGGACA

PCT/IIS2003/028547

168/6881 FIGURE 158

MGDAPSPEEKLHLITRNLQEVLGEEKLKEILKERELKIYWGTATTGKPHVAYFVPMSKIADFLKAGCEVTILFAD
LHAYLDNMKAPWELLELRVSYYENVIKAMLESIGVPLEKLKFIKGTDYQLSKEYTLDVYRLSSVVTQHDSKKAGA
EVVKQVEHPLLSGLIYPGLQALDEEYLKVDAQFGGIDQRKIFTFAEKYLPALGYSKRVHLMNPMVPGITGSKMSS
SEEESKIDLDRKEDVKKKLKKAFCEPGNVENNGVLSFIKHVLFPLKSEFVILRDEKMGGNKTYTAVVDLEKDFA
AEVVHPGDLKNSVEVALNKLLDPIREKFNTFALKKLASAAYPDPSKQKPMAKGPAKNSEPEEVIPSRLDIRVGKI
ITVEKHPDADSLYVEKIDVGEAEPRTVVSGLVQFVPKEELQDRLVVVLCNLKPQKMRGVESQGMLLCASIEGINR
QVEPLDPPAGSAPGEHVFVKGYEKGQPDEELKPKKKVFEKLQADFKISEECIAQWKQTNFMTKLGSISCKSLKGG
NIS

PCT/HS2003/028547

FIGURE 159

TTCATGCTGCGTTCATTCCTTTTGGAGACATCACAGATATTCAGATTCCTCTGGATTATGAAACAGAAAAAGCACC CAGATGATGACTGGTTGAAGAAGTTTTCTGGGAAGACGCTTGAAGAGAATAAAGAGGAAGAAGGGTCAGAGCCTC CCAAAGCAGAGACCCAGGAGGGAGAGCCCATTGCTAAAAAGGCCCGCTCAAATCCTCAGGTGTACATGGACATCA AGATTGGGAACAAGCCGGCTGGCCGCATCCAGATGCTCCTGCGTTCTGATGTCGTGCCCATGACAGCAGAAATT TCCGCTGCCTGTGCACTCATGAAAAGGGCTTTGGCTTTAAGGGAAGCAGCTTCCACCGCATCATCCCCCAGTTCA TGTGCCAGGGCGGTGATTTCACAAACCACAATGGCACTGGGGGCAAGTCCATCTATGGGAAGAAGTTCGATGATG AAAACTTTATCCTCAAGCATACGGGACCAGGTCTACTATCCATGGCCAACTCTGGCCCAAACACCAATGGCTCTC AGTTCTTCCTGACATGTGACAAGACAGACTGGCTGGATGGCAAGCATGTGGTGTTTTGGAGAGGTCACCGAAGGCC TAGATGTCTTGCGGCAAATTGAGGCCCAGGGCAGCAAGGACGGGAAGCCAAAGCAGAAGGTGATCATCGCCGACT GGTCTGCTTGGAGCAGCTCCTCTGCAGGCACAGCTGGACTATTCCCAGGCACAGCTGTGGGCCCAGGAGCCAGC TCAGGTGCTCCCCTCCACCATGGGCAGGCTGTGCAAAAAAGCCACTGGCTTTTCTCAGCATTTGCTGCTGGGCCT AAAAAAAAA

PCT/US2003/028547

FIGURE 160

MATTKRVLYVGGLAEEVDDKVLHAAFIPFGDITDIQIPLDYETEKHRGFAFVEFELAEDAAAAIDNMNESELFGR TIRVNLAKPMRIKEGSSRPVWSDDDWLKKFSGKTLEENKEEEGSEPPKAETQEGEPIAKKARSNPQVYMDIKIGN KPAGRIQMLLRSDVVPMTAENFRCLCTHEKGFGFKGSSFHRIIPQFMCQGGFTNHNGTGGKSIYGKKFDDENFI LKHTGFGLLSMANSGPNTNGSQFFLTCDKTDWLDGKHVVFGEVTEGLDVLRQIEAQGSKDGKPKQKVIIADCGEY V

PCT/IIS2003/028547

FIGURE 161

TCACGGCCTGTGCTCCAAGCTGAGCCCCACCCCCAGCTCGCCTCAGTCTCTCCAAGCGTGGCCCTCCAGCCCAGC TCAGAGGCCCATGCCATGCCACTAGGCCCGGTTACACCCGCCCTGCCACTCCAGTGTCCCACTGCCAACCTGCAC AAGCCTGGCGGCAGTCAGCAGTGTCACCCTCCCACACCTGATACTGGGCCTCAGAATGGACATCCCGAGGGCGTG CCCCACACCCCTCAACGCAGGTTCCAGCACACTTCAGCTGTCATCTTACAACTGCAGCCTGCTTCACCAGTGCCC CAGCAGTGTGTCCCTGATGACTGGAAAGAAGTGGCACCAGGGGAGAAAAGTGTGCCTGAGACGCGGTCTGGCCCA TCCCCAGCTCACGAGACAGGGCAGGGCATTGTTCATGCACTGACCGCCCCAGCAGCCCCGGCATGACCTCAGGG AACGGAAACTCTGCCTCCAGCATCGCCGGCACTGCCCCCCAGAATGGTGAGAATAAACCACCACAGGCCATTGTG CACACCACCACCACTGACTCGGAGATGGAGGAGCCCTATCTGCAAGAATCCAAAGAGGGGGGTGCTCCCCTCAAA CTCAAGTGTGAGCTCTGTGGCCGGGTGGACTTTGCCTATAAGTTCAAGCGTTCCAAGCGCTTCTGTTCCATGGCT TGTGCAAAGAGGTACAACGTGGGATGCACCAAACGGGTGGGACTTTTCCACTCAGACCGGAGCAAGCTGCAGAAG GCAGGAGCTGCGACCCACAACCGCCGTCGGGCCAGCAAAGCCAGTTGCCACCACTTACCAAGGATACCAAGAAG CAGCCAACAGGCACTGTGCCCCTTTCGGTTACTGCTGCTTTGCAGCTAACACACAGCCAGGAAGACTCCAGCCGT GGCCAGCGGGACCTGGAGCTCCCCGACATGCATATGCGGGACCTGGTGGGCATGGGACACCACTTCCTGCCAAGT GAGCCCACCAAGTGGAATGTAGAAGACGTCTACGAATTCATCCGCTCTCTGCCAGGCTGCCAGGAGATAGCAGAG GAATTCCGTGCCCAGGAAATCGACGGGCAAGCCCTGCTGCTGCTCAAGGAGGACCACCTGATGAGCGCCATGAAC ATCAAGCTGGGGCCCGCCCTGAAGATCTACGCCCGCATCAGCATGCTCAAGGACTCC<u>TAC</u>GGCTGGTGGCAGCCA CGGTTGGAGGGCAGGGGCTCTCCCTAGGGGCATAGCTGGTGAGGAGGTCTGGGCACCTCCTCCATGGCTCTAGG GGCCTTCATTTCTGTGGGAGGGGCAGAGAGGTAGGTGGCACAGAAGATGGGGCTTTATGCTTGTAAATATTGAT AGCACTGGCTTCCTCCAAAGTCCCAATACTCTAGCCCCGCTCTCTTCCCCCTCTTTCTGTCCCCCATTTTCCAGGG AAGCCCTTGCCTTCCTTCCTCCCACTTCTTTCTCCAGGCCTGGTTAACTCTTCCGTTGTCAGCTTCTCCCCCTTC GGGCCGTGCCTGGCACAGACGCCTTAACGCTGTGTGTATGACTGTGTGACTGTGTGGGAGCCTGGACTGACA GATAGGCCAAGGGCTACTCTCTGGCATCTCCAGGTGTTTTTGTAGCAAACAGCCACTTAGTGCTTTGTCCTGGACT CCACTCAGCCTCAGGATGGGGAATAGCCAAGAATGGCAGCCTCAGCGCAGAGGCAAGGTCAGAAAGAGACGGCGC TTCAGAGTTTCCTTTCCAGACACCCCTCCCCGCACTGTGAAGTTCCCCTGACCGCCCTCCTGGTTCACAAAGAGC GGGAGTCCCAGTGGTGAGGCTCAGAGAACTGCTAAGGGGAAAGAACAGCTGGAGTTTCTGTTGATGTAAGAAGA CAGCTCTTGGCCTCCCACTCCCACACTTCTTTGCCTATAAATCTTCCTAGCAGCAATTTGAGCTACCTGAGGAGG AGCTTATTCTATTCCCCACCCCACCCCCAGGCAGGCTTGGAAATGAAGGACTTTTTTAACCTTTGTTTTT TTAAAAATAAATCTGTAAAATCTG

PCT/US2003/028547

172/6881 FIGURE 162

MPLGPVTPALPLQCPTANLHKPGGSQQCHPPTPDTGPQNGHPEGVPHTPQRRFQHTSAVILQLQPASPVPQQCVP
DDWKEVAPGEKSVPETRSGPSPHQQAIVTAMPGGLPVPTSPNIQPSPAHETQGGIVHALTDLSSPGMTSGNGNSA
SSIAGTAPQNGENKPPQAIVKPQLITHVIEGFVIQEGAEPFFVGRSSLLVGNLKKKYAQGFLPEKLPQQDHTTTT
DSEMEEPYLQESKEEGAPLKLKCELCGRVDFAYKFKRSKRFCSMACAKRYNVGCTKRVGLFHSDRSKLQKAGAAT
HNRRRASKASLPPLTKDTKKQPTGTVPLSVTAALQLTHSQEDSSRCSDNSSYEEPLSPISASSSTSRRRQGQRDL
ELPDMHMRDLVGMGHHFLPSEPTKWNVEDVYEFIRSLPGCQEIAEEFRAQEIDGQALLLLKEDHLMSAMNIKLGP
ALKIYARTSMIKLDS

PCT/HS2003/028547

FIGURE 163

PCT/US2003/028547

174/6881 FIGURE 164

MAFPVGLESSSPMTVIFSKKYEERGRAWWLTSVILANHSGLQPTPSSLTGQLETSVPPCLPPLTQGPIGMIRGSQ LSVIKHSNCNWLLELSIVE

PCT/IIS2003/028547

175/6881 FIGURE 165

GGCGAGCAGTCTGCGCGCGGATGGCCGCAGCGGCGATGGCGGCAGCGGCAGGTGGAGGGGCTGGCGCGGCCCGCT CCCTCTCGCGCTTCCGAGGCTGCCTGGCTGCTGCTCCTCGGGGACTGCGTGGGCTCCTTCTACGAGGCCCACG ACACCGTCGACCTGACGTCAGTCCTGCGTCATGTCCAGAGTCTGGAGCCGGGACCCCGGCACGCCCGGGAGTGAGC GGACAGAAGCCTTGTACTACACAGATGACACAGCCATGGCCAGGGCCCTGGTGCAGTCCCTGCTAGCCAAGGAGG GAGTAGTCACTGTCTTCAAGAAGCTCCTGAACCCCAAATGTCGCGATGTCTTTGAGCCTGCCCGGGCCCAGTTTA ATGTGCAGAAGTTTGCCCGGCTCTCGGCCCAGCTGACACACGCCTCCTCCCTGGGTTACAATGGCGCCATCCTGC AGGCCCTGGCTGTGCACCTGGCCTTGCAGGGCGAGTCTTCCAGCGAGCACTTTCTCAAGCAACTCCTGGGCCACA TGGAGGATCTGGAGGGTGATGCCCAGTCCGTCTTGGATGCCAGGGAGTTGGGCATGGAGGAGCGTCCATACTCCA GCCGCCTGAAGAAGATTGGAGAGCTTCTAGACCAGGCATCGGTGACCAGGGAGGAAGTGGTGTCTGAGCTAGGGA ATGGCATTGCTGCCTTTGAGTCGGTACCCACCGCCATCTACTGCTTCCTACGCTGCATGGAGCCAGACCCTGAGA TCCCTTCTGCCTTCAATAGCCTCCAAAGGACTCTCATTTATTCCATCTCACTTGGTGGGGACACAGACACCATTG AAGGCTACGAGGAGACAGACATCCTGGCCCAAAGCCTGCACCGTGTCTTCCAGAAGAGTTGATGAGGGCTACAGC TGTTGGGGCTCTGCCAGGTCCCCTGGGACCAACTACAGCTCCAATCAGAAACCCTGCGCTTCCTTGAGTGTGGCT TCCCACTTTTCCTGCATTGTGGAGCTGACTGAGTACACCGGTGAGGCTGGGGTCTCTGCAGGGGAGGTCACTGGA ACAGCGAGCAAGGGACTGGTGCCTCGCTGGTGCTGGGTCTCTGGTTTGCTGCAGAGCCGTAGGACACTCCTGGCT CCTCAGTAGGACAGACAGACGCAGGCGGTTTATTTTGGAGGGGTACTTGTGGCATTTTCCTGTATTGTCTTGGA CATGGGATGTGGGGAGGTGGAAATGATGAGCAGTAGCATCATTTCTCCCTGTTGGGTTTTAGCCAGTTTGCCAGC AAGCGCATCCTAGCAGGGTCCCCGAGCAGCAGGTTGTGTGGATGAAGGGACAGGCACTTGCATCCAGCTGATCTA GGTCACACCTGGCTCTTGGCTGCCATGTGGCTTATTAACAGCTTCCAGTGGAAGTCGCAATAAACAGTTTTTGGT

PCT/US2003/028547

176/6881 FIGURE 166

MAAAAMAAAGGGAGARSLSRFRGCLAGALLGDCVGSFYEAHDTVDLTSVLRHVQSLEPDPGTPGSERTEALYY
TDDTAMARALVQSLLAKEAFDEVONMAHRFAQEYKKDPDRGYGAGVVTVFKKLLNPKCRDVFEPARAQFNGKGSYG
NGGAMRVAGISLAYSSVQDVQKFARLSAQLTHASSLGYNGAILQALAVHLALQGESSEHFLKQLLGHMEDLEGD
AQSVLDARELGMEERPYSSRLKKIGELLDQASVTREEVVSELGNGTAFESVPTAIYCFLRCMEPDPEIPSAFNS
LQRTLIYSISLGGDTDTIATMAGAIAGAYYGMDQVPESWQQSCEGYEETDILAQSLHRVFQKS

PCT/US2003/028547

177/6881 FIGURE 167

 $\tt CCGTGGCTAGGCGAGTGGGGCGGGCGGCCGGCACC\underline{ATG} \tt TCGAGGCAGCGAACCGTGGCACCGAGAGCAAGAAA$ ATGAGCTCTGAGCTCTTCACCCTGACCTATGGTGCCCTGGTCACCCAGCTATGTAAGGACTATGAAAATGATGAA GATGTGAATAAACAGCTGGACAAAATGGGCTTTAACATTGGAGTCCGGCTGATTGAAGATTTCTTGGCTCGGTCA AATGTTGGGAGGTGCCATGACTTTCGGGAAACTGCGGATGTCATTGCCAAGGTGGCGTTCAAGATGTACTTGGGC ATCACTCCAAGCATTACTAATTGGAGCCCAGCTGGTGATGAATTCTCCCTCATTTTGGAAAATAACCCCTTGGTG TTGGAGATGGTCCAGATGGCTGTGGAGGCCAAGTTTGTCCAGGACACCCTGAAAGGAGACGGTGTGACAGAAATC $\tt CGGATGAGATTCATCAGGCGGATTGAGGACAATCTTCCAGCTGGAGAGGAA\underline{TAA}{\tt CCATCCCTACAACTCGAGGAT}$ AGCCATCAGGAGCACTGTTGGAATCAGCAGGCCTCTGTGCTCCCTCTGCCCTCCAGAACTCAGTGACTCTTGAAC ATGGATGTTATATATTCTTATAACCTGTTTCCATTCTCCATTCAAATAAAGAGCAGACTGCGATATAGTCCATTT ACCCCATGTGTGCACATTCAGGAGCGACAGTCTCTGCCCCCATTCCCTTGAGAGGGGCTGGATGTAATCACCTTT GGTTGGACTAGAAAGAGCTCAAACCATTTTACATTCCTGTTTGAATTTTCCAAAGCAAAACTCACTTTGACCCCA TTAAGAGGCAAGCCTGGCACATCTATCCCTGGGCCTTTAGAAAGCCATTTGCCTCAAATGGCTATAGGGTTGTGG GGTGGAGGGAGGGAGGGAGGGAGGGAGGGAGTTGCTAGCTGTAGTGTGACACATTGTAGTGTTTGCCA GGAAAGGAGCCAGTCATGCCGGAAACACTGACTTCTGGGAAGCCACCCAGGTCTCATTCCTCCCTGCTGTTGGAG GCAACATCTCCTCTTTTTACAGAGGGTACATCCTTTTTTCTTACAAATTCTTCAATAAAGACACATTCTTGAGTG AAATCCCTAAAAAAAAA

PCT/US2003/028547

178/6881 FIGURE 168

MSRQANRGTESKKMSSELFTLTYGALVTQLCKDYENDEDVNKQLDKMGFNIGVRLIEDFLARSNVGRCHDFRETA DVIAKVAFKMYLGITFSITNMSPAGDEFSLILENNFLVDFVELPDNHSSLIYSNLLCGVLRGALEMVQMAVEAKF VQDTLKGDGVTEIRMFIRRIEDNLPAGEE

PCT/US2003/028547

179/6881 FIGURE 169A

ACTTACTATTGGAGGCAGTGGGCAGGACAGGCCCAGGGCCGACCCTGGCAATGACTGTCACCAGCTG AGGAAGTGGGATTTCTGGAAATAATGCAAAGAGACTTGGACCATTCATCCTTGGTCCCCGTCTGGGCAACTCACC GCTGCCA & GCATAGTGCAGTGTTTGGCGAGGAAGATGGCCACGGATGACTTCTATCAGCTGAAGATGACTCCTGACCCT ACTGCTGTCTCTCCTGCACACGCAGGATGGCGTGGTGCACCACGACGCCTCTTCCAGGACGGCCCTGTGAAAT CGTTGAGGACACAGAATCCAGCCGGATGGTTAAGAAGATGAAGAAGCGCATCTGCCTCGTCCTGGACTGCCTCTG CGAGAGGGAGACTGTGGTAATCTTCTACGACGTGGTCCGCGTGGTGGAGGCCCTGCACCAGAAAAATATCGTGCA CAGAGACCTGAAGCTGGGGAACATGGTGCTCAACAAGAGGACACATCGGATAACCATCACCAACTTCTGCCTCGG GAAGCATCTGGTGAGCGAGGGGGCCTGCTGAAGGACCAGAGAGGGGAGCCCTGCCTACATCAGTCCCGACGTGCT CAGCGGCCGGCCGTACCGTGGCAAGCCCAGTGACATGTGGGCCCTGGGCGTGCTGCTCTTCACCATGCTGTATGG CCAGTTCCCCTTCTACGACAGCATCCCGCAGGAGCTCTTCCGCAAGATCAAGGCTGCCGAGTATACCATTCCTGA GGATGGACGGGTTTCTGAGAACACGGTGTGTCTCATCCGGAAGCTGCTGGTCCTTGACCCCCAGCAGCGCCTGGC CGCCGCCGACGTCCTGGAGGCCCTCAGTGCCATCATTGCATCATGCAGTCCCTGTCATCTCTGAGTGGGCCTTT GCAAGTGGTTCCTGACATTGATGACCAAATGAGCAATGCGGATAGCTCCCAGGAGGTGAGTTGGGGAGGGCAGAT GCCACAGAGTTTCCTTGGTCTTCTTCCCCAGCCTTGGGGTGGGAAAGGGAGACTTCAGTCCTCAGCCTGAGCTGC CTGGGGCCTGCCTTGGGCTTGGTGTAGCTGGAGATCTTTGGCCAGAGAGCCTGTGAGACAGCCGAGCTGGAGCC AGTGCCCAAGTGGCCCAGGCCAGCCCTCTCAGCTTCCTCCTGCTGCCCAAGTCACATTTCTCTGCCCCCTGACTC AGGGTGCCCCTGGAGGGCAGGGCTTGGCCGAGCAACAGCATTGCTGGGCCCTGGATATTGGAAGGACCTTCCCT CCCTGGCCCACCTTGGAGCTCCACAGTGAGCAGTGTGCAGGTAGGACCAGGAGGGGCCGTGCCTGGGAGAGCCTC CCAGAGCCTCCTGGCCCCGAGGAAAGAGAGTTCCAATCCCTACCCACCTCCAGCTTCCACCCTTTAGCTGTTTG GCTAAAATCATCACTAGCCCGCAGTGAGTGCCTACCCCGAGGGCACCTCATTCAGCCCTCACTGCGGGCCTG CGTGGCCTGTGTTCTTAGCCCCATGTTACAGAAGAGGAAACAGGGTTAGAGAGGACTTTCCCAAAGCCACACAGC TTAGAAGTAGTGGAGCTAAGCCTTGAACCCAAGTCTCATCCGGAAGCCCTGCTGTCTCCTGTGGTGACTGGCACG GGGACACCACTTCAGCTTCTGTTACCATCTGCCTAGACCATCCCAGGGAGCTCAGCATGGGGCCCTGCGTATGTG GCTCCTCCAGGTGCTGCGCCCCAGCCCAGGCCTTGCTCGTACCTCTTGACGTGCATTAGCCGCCTCAGGGCTCA GAGAACCTTTGCGAGGGGCCAGACAGCTAAGGCTTCTGAGGTAAAGTGACCTCTCACGCAGCCAGTGAGTTAGGA AGCATGAGTCTGCGTCAGTCCCGGGTCCGCAGGGCGGCCTGCAAGGGGAGTTGAGGTTGGCTGGAGGGGGTCAGG GACCCACCCTCAGCGCCACTCCCACCCCCGGCCTTGAGGCCTGAGGGTGTGCTGCCTGGAAGGGTGACTGCAGGA GCCAGGCTGCCAGCACTCTTGCCTGCCTCCTGTCTGCTGCGCTGCCTTCATCTGGGTTTATCTTTGTCTCCTTC CCACCCTCCCGCCTCAAAGGCGAAGGTGACGGAGGAGTGCTCCCAGTACGAGTTTGAGAACTACATGCGTCAGC AGCTGCTGCTGGCCGAGGAGAAGAGCTCCATCCATGACGCCCGGAGCTGGGTACCCAAGCGGCAGTTCGGCAGCG CACCACCGGTGCGACGGCTGGGCCACGACGCCCATGACCTCCTTGGACACGCCATCCTGGCGCAGCGCT ACCTGCGGAAATAACAGCCTCAGCCGGGGCCACCAGCACTGCTGCCACTTCTTCCAGCCCCAGCCAAAGGCGTGG CTGTCAGGGCTGGGCCCTGTAGTGCTGGACTCTCCCGGGCCACAATAGGGACAGGGCAGGGACAGGGACAGGCCCA GGTCACACGTGGGGTCAGCAGAGGTACCACGAAGCTACCTTTTGGGATGATTGCTCGATTGTTTTGAAAT CTGAGAAGCCTAGATAACTAATCTGCTTTTAATCACGATGTTTTAATCTACCTCTGTCTCTTTAACCATGCTGTC TCTGGACTGAGCAAGAGGGAGGGAGGCCTGCTCACCCCACTCCAGGGCCTTCCCCAGCGGCCCAACTGACC TCCCTGCTCTCCCAGGCCCCTGCCACAGCCTCTTTCCGTCCCTCTTTTCTGATCCAGGCCCCTCAGTCCAAGCT AGCTCCCTCACCCCAGGCAGGCAAGCCCCTCCTGCCAGTCCCTTTCAGCCCACCAGTCCCTCTC TGCTGCCGGTGATGGGAGGCCTTTCTAGACCTGGCTCTTTCTCTCCCGTCTCAGTGGCTTCTCTGAGGTGCTGTA

PCT/IIS2003/028547

FIGURE 169B

CACGCGCGTTAACCTGTTCCCTTCTCTATCCTTCCCCGTGGTACTGAGCTCACGTGGACTCCCAGTGCGAAGGGG GGGATGGTGGGAACATATCCCAGTGCCCTTGCCTCATAATAGATGTGGTGACTCTCCCGGTAGACCCTAGCAAGG $\tt CTGCTGCCCTTTTGAGCCGAGATTTTGAAGTGGATGCCCGTCTTGCCAGAAATGCTGTTCTCACCAGAATGCCCCC$ CTCCCCTTGCCCTTACTGGACTTGGCCCTGCCTGATGCCAAGCAAAGACCCTTCCCCAGAGGCCTACCCCCCATA CTTGGGCAAGTTCCCAAACCTCCTTGTGCCTCAGTTTCCCCATCTGGAAAAAATGGGGCCACCTCTTGCCAGCAG TAGCAGGGCTGCCCACGCCCCTTTCTCCCCATGCCCCATCCAGCACTTGGGCGACTCATGCCTCTGCCTCAGTGG ATGTGTCTGATGACATTCCTGGTGAAGCAAAGGAGGAGGAGGATGGGTCAGCCCTCACTGGGTGTCACACACTGAG AGAAGTCCTATTGTAAAGAAACGGAAAAAGTCACAAAAAAGTTTGTATAAAGACATATTTTTGTACTACATGGGG ACTCTTCCTGCATGTCAGCAATAAAACTTCCTGATCTGG

PCT/HS2003/028547

FIGURE 170

MKRRASDRGAGETSARAKALGSGISGNNAKRAGPFILGPRLGNSPVPSIVQCLARKDGTDDFYQLKILTLEERGD
QGIESGERQGKMLHTEYSLLSLHTQDGVVHHHGLFQDRTCEIVEDTESSRAVKRMKRRICLVLDCLCAHDFS
DKTADLINLGHVYLKEKRLSERETVYLFTVDVRVVEALHQKNIVHRDLKLGMMVLNKRTHRITINFCLGKHLVS
EGDLLKDQRGSPAYISPDVLSGRPYRGKPSDMWALGVVLFTMLYGQFPFYDSIPQELFRKIKAAEYTIPEDGRVS
ENTVCLIRKLIVLDPQQRLAAADVLEALSAIIASWQSLSSLSGPLQVVPDIDDQMSNADSSQEVSWGGQMGHYPA
PRORLLGAGRARAEVAATRPQSFIGLIDPQPWGGKGRLQSSA

PCT/US2003/028547

182/6881 FIGURE 171

ATTGGGACGCTGCGCCTGCCTTCAGGCCACTGGCTACCGAACCCCGGGGCTCTTCACCAGTCCAGCTCGTTTC CAGCACCATGTCGGTGCGGACGCTACCGCTGCTCTTCTTGAACTTGGGCGGGAGATGCTTTACATCCTCGACCA A CGGCTGCGGGCCCAGA ACATCCCGGGAGACAAGGCCCGCAAAGTTCTGAATGACATCATCTCCACCATGTTCAA TAGAAAGTTTATGGAGGAATTATTCAAGCCTCAAGAGCTCTACTCCAAGAAGGCCCTGAGGACTGTCTATGAGCG CCTGGCTCATGCCTCCATTATGAAACTGAACCAGGCCAGCATGGATAAGCTCTATGACCTGATGACCATGGCTTT CAAATATCAAGTATTGCTGTGTCCCCGACCCAAGGATGTGCTGCTGGTCACTTTCAATCACTTGGATACCATCAA GGGATTCATCCGAGACTCCCCAACCATCCTGCAGCAAGTGGACGAGACTTTGCGGCAGCTGACAGAAATATATGG TGGTCTCTCTGCAGGGGAGTTCCAGCTGATCCGGCAGACACTCCTCATCTTCTTCCAAGACCTGCACATCCGAGT ATCCATGTTTCTAAAGGACAAAGTTCAGAATAATAACGGTCGCTTTGTGTTGCCGGTGTCCGGGCCTGTTCCTTG GGGAACTGAA GTTCCA GGACTCATCA GAATGTTCAACAACAA GGTGAAGAAGTGAAGA GGATA GAATTCAAGCA TGGTGGAAACTATGTCCCTGCACCCAAAGAGGTTCTTTTGAACTTTATGGAGACCGAGTCCTGAAACTGGGAAC TAACATGTACAGCGTGAATCAGCCTGTGGAAACTCATGTGTCTGGATCATCAAAGAACTTAGCCTCATGGACCCA GGD A AGC DITTGCTCCA A ACCCTCTTGCTA A GA AGA GCTGA A TTTCTTGGCCA GGCTGA TGGGAGGGATGGAGGA TAAGAAACCCAGTGGCCCTGAGCCCAGATTCCGGTTGAATCTCTTTACCACCGATGAAGAAGAGGGAACAAGCAGC GCTAACCA GGCCAGAAGAGTTATCCTATGAAGTTATCAACATACAAGCCACCCAGTCTCTTTTCAGCAATCTGGC CACCATTCAGGGGGGCCTGACTGGGTGACAGATGAATGGGAAGGTTCTGACCTGTTTTGAGTCCGGCTCCCACCT TGCTGTCACATATCAGAATGTCACTGCTCTGAGTGTGTCCCAGGGCCTTGGAGGTGGCCGTGAGGTGCCGAGAA GCAGCCGCAGCCTCCTCCACCTATCCCAGAGCGATGCTGGTGATTTCAAACGTATCTGTCCTATCAGTAAA TAAACAAGATGCAGATCTCTGGT

PCT/HS2003/028547

183/6881 FIGURE 172

MSVRTLPLLFLNLGGEMLYILDQRLRAQNIPGDKARKVLNDIISTMFNRKFMEELFKPQELYSKKALRTVYERLA
HASIMKLNQASMDKLYDLMTMAFKYQVLLCPRPKDVLLVTFNHLDTIKGFIRDSPTILQQVDETLRQLTEIYGGL
SAGEFQLIRQTILIFFQDLHIRVSMFLKDKVQNNNGRFVLPVSGPVPWGTEVPGLIRMFNNKGEVKRIEFKHGG
NYVPAPKEGSFELYGDRVLKLGTNMYSVNQPVETHVSGSSKNLASWTQESIAPNPLAKELNFLARLMGGMEIKK
PSGPEFGFRLNLFTTDEEEEQAALTRPEELSYEVINIQATQSLFSNLATIQGGLIG

PCT/US2003/028547

FIGURE 173

GAAGCTGGACTGCAGCTGGTTTCAGGAACTTCTCTTGACGAGAAGAGAGACCAAGGAGGCCAAGCAGGGGCTGGG TGAACATCAAGTTGGTGCTA**TG**GCAAGGCTGGGAAACTGCAGCCTGACTTGGGCTGCCCTGATCATCCTGCTGCT CCCCGGAAGTCTGGAGGAGTGCGGGCACATCAGTGTCTCAGCCCCCATCGTCCACCTGGGGGATCCCATCACAGC CTCCTGCATCATCAAGCAGAACTGCAGCCATCTGGACCCGGAGCCACAGATTCTGTGGAGACTGGGAGCAGAGCT TCAGCCCGGGGGCAGCAGCAGCGTCTGTCTGATGGGACCCAGGAATCTATCATCACCCTGCCCCACCTCAACCA CACTCAGGCCTTTCTCTCCTGCTGCCTGAACTGGGGCAACAGCCTGCAGATCCTGGACCAGGTTGAGCTGCGCGC AGGCTACCCTCCAGCCATACCCCACAACCTCTCCTGCCTCATGAACCTCACAACCAGCAGCCTCATCTGCCAGTG GGAGCCAGGACCTGAGACCCACCTACCCACCAGCTTCACTCTGAAGAGTTTCAAGAGCCGGGGCAACTGTCAGAC GTTGTACCAGAATATGGGCATCTGGGTGCAGGCAGAGAATGCGCTGGGGACCAGCATGTCCCCACAACTGTGTCT TGATCCCATGGATGTTGTGAAACTGGAGCCCCCCATGCTGCGGACCATGGACCCCAGCCCTGAAGCGGCCCCTCC CCAGGCAGGCTGCCTACAGCTGTGCTGGGAGCCATGGCAGCCTGCACATAAATCAGAAGTGTGAGCTGCG CGACTGGAGCCCCAGCCTGGAGCTGAGAACTACCGAACGGGCCCCCACTGTCAGACTGGACACATGGTGGCGGCA AGGTTATGTGGTTTCTTGGAGACCCTCAGGCCAGGCTGGGGCCATCCTGCCCCTCTGCAACACCACAGAGCTCAG CTGCACCTTCCACCTGCCTTCAGAAGCCCAGGAGGTGGCCCTTGTGGCCTATAACTCAGCCGGGACCTCTCGCCC CACCCCGGTGGTCTTCTCAGAAAGCAGAGGCCCAGCTCTGACCAGACTCCATGCCATGGCCCGAGACCCTCACAG CCTCTGGGTAGGCTGGGAGCCCCCCAATCCATGGCCTCAGGGCTATGTGATTGAGTGGGGCCTGGGCCCCCCAG CGCGAGCAATAGCAACAAGACCTGGAGGATGGAACAGAATGGGAGAGCCACGGGGTTTCTGCTGAAGGAGAACAT CAGGCCCTTTCAGCTCTATGAGATCATCGTGACTCCCTTGTACCAGGACACCATGGGACCCTCCCAGCATGTCTA TGCCTACTCTCAAGAAATGGCTCCCTCCCATGCCCCAGAGCTGCATCTAAAGCACATTGGCAAGACCTGGGCACA GCTGGAGTGGGTGCCTGAGCCCCCTGAGCTGGGGAAGAGCCCCCTTACCCACTACACCATCTTCTGGACCAACGC TCAGAACCAGTCCTTCTCCGCCATCCTGAATGCCTCCTCCCGTGGCTTTGTCCTCCATGGCCTGGAGCCCGCCAG TCTGTATCACATCCACCTCATGGCTGCCAGCCAGGCTGGGGCCACCAACAGTACAGTCCTCACCCTGATGACCTT GACCCCAGAGGGGTCGGAGCTACACATCATCCTGGGCCTGTTCGGCCTCCTGCTGTTGCTCACCTGCCTCTGTGG AACTGCCTGGCTCTGTTGCAGCCCCAACAGGAAGAATCCCCTCTGGCCAAGTGTCCCAGACCCAGCTCACAGCAG CCTGGGCTCCTGGGTGCCCACAATCATGGAGGAGGATGCCTTCCAGCTGCCCGGCCTTGGCACGCCACCCATCAC CAAGCTCACAGTGCTGGAGGAGGATGAAAAGAAGCCGGTGCCCTGGGAGTCCCATAACAGCTCAGAGACCTGTGG CCTCCCCACTCTGGTCCAGACCTATGTGCTCCAGGGGGACCCAAGAGCAGTTTCCACCCAGCCCCAATCCCAGTC TGGCACCAGCGATCAGGTCCTTTATGGGCAGCTGCTGGGCAGCCCCACAAGCCCAGGGCCAGGGCACTATCTCCG CTGTGACTCCACTCAGCCCCTCTTGGCGGGCCTCACCCCCAGCCCCAAGTCCTATGAGAACCTCTGGTTCCAGGC CAGCCCCTTGGGGACCCTGGTAACCCCAGCCCCAAGCCAGGAGGACGACTGTGTCTTTGGGCCACTGCTCAACTT $\tt CCCCTCCTGCAGGGGATCCGGGTCCATGGGATGGAGGCGCTGGGGAGCTTC\underline{TAG}{GGCTTCCTGGGGTTCCCTTC}$ TTGGGCCTGCCTCTTAAAGGCCTGAGCTAGCTGGAGAAGAGGGGGAGGGTCCATAAGCCCATGACTAAAAACTACC CCAGCCCAGGCTCTCACCATCTCCAGTCACCAGCATCTCCCTCTCCCCAATCTCCATAGGCTGGGCCTCCCAG AACTTCAGTATTGTAAAC

PCT/IIS2003/028547

185/6881 FIGURE 174

MARLGNCSLTWAALIILLLPGSLEECGHISVSAPIVHLGDPITASCIIKQNCSHLDPEPQILWRLGAELQPGGRQ
QRLSDGTQESIITLPHLNHTQAFLSCCLNWGNSLQILDQVELRRGYPPAIPHNLSCLMNLTITSSLICQWEPGEFB
HLPTSFTLKSFKSRGNCQTGGOSILDCVPKDGGSHCCTPRHHLLLVQNMGIWOQABRALGTSMSPQLCLDPMDVV
KLEPPMLRTMDPSPEAAPPQAGCLQLCWEPWQPGHINQKCELRHKPQRGEASWALVGPLPLEALQYELCGLLPA
TAYTLQIRCIRWPLPGHWSDWSPSLELRTIERAPTVRLDTWWRGRQLDPRTVQLFWRPVPLEEDGGRIQGVVVB
RPSGQAGAIDLPLCNTTELSTTHLPSEAGPVALVAYNSAGTSRTPTVVSESRGPALTRIHAMARDPHSLWVGWE
PPNPWPQGYVIEWGLGPPSASNSNKTWRMEQNGRATGFLKENIRPFQLYEIIVTPLYQDTMGPSQHVYAYSQEM
APSHAPELHLKHIGKTWAQLEWVPEPPELGKSPLTHYTIFWTNAQNGSTSATLWASSRGFVLHGLEPASILYHTH
MAASQAGATNITVUTLMTLTPFGSEHLHIGLEGLLLLTLCLGCTMANLCCSPNKRNFUMPSVPDPABLSGWVP
TIMEEDAPQLPGLGTPPITKLTVLEEDEKKPVPWESHNSSETCGLPTLVQTYVLQGDPRAVSTQPQSQSGTSDQV
LYGQLLGSPTSPGGFGYLRCDSTQPLLAGLTPSPKSYENLWFQASPLGTLVTPAPSQEDDCVFGPLLNFPLLQGI

PCT/US2003/028547

FIGURE 175

GGGTCGCGCGGAGATTGCTGGGCGGTTCTTGCCGGAAGCGGAGAGCGGCTGATCGCAGTCCGGAGGTGAGGCGGA ACTCTGAGGCAGATATCCTCCCTTTCCTCCTCGGCTGCTCTTACTTTGACAAGCCAGGCTAACATTGAAGGT ATACCTCTGACATGCACCGTGGGTATGCAGACAGTCCTTCAAAAGCAGGAGCAGCTCCATATGTGCAGGCATTTG ACTCGCTGCTTGCTGGTCCTGTGGCAGAGTACTTGAAGATCAGTAAAGAGATTGGGGGAGACGTGCAGAAACATG AAAATAAGCTTTCCGATTTGTTGGCACCCATCTCAGAGCAGATCAAAGAAGTGATAACCTTTCGGGAGAAGAACC GAGGCAGCAAGTTGTTTAATCACCTGTCAGCTGTCAGCGAAAGTATCCAGGCCCTGGGCTGGGTGGCTATGGCTC CCAAGCCTGGCCCTTATGTGAAAGAATGAATGATGCCGCCATGTTTTATACAAACCGAGTCCTCAAAGAGTACA AAGATGTGGATAAGAAGCATGTAGACTGGGTCAAAGCTTATTTAAGTATATGGACAGAGCTGCAGGCTTACATTA AGGAGTTCCATACCACCGGACTGGCCTGGAGCAAAACGGGGCCTGTGGCAAAAGAACTGAGCGGACTGCCATCTG GACCCTCTGCCGGATCATGTCCTCCTCCCCCTCCACCATGCCCCCTCCTCCCCCAGTCTCTACCATTTCATGCT CATATGAGTCTGCTTCCCGCTCATCACTGTTCGCGCAGATTAATCAGGGGGAGAGCATTACACATGCCCTGAAAC ATGTATCTGATGACATGAAGACTCACAAGAACCCTGCCCTGAAGGCTCAGAGTGGTCCAGTACGCAGTGGCCCCA AACCATTCTCTGCACCTAAACCCCAAACCAGCCCATCCCCCAAACGAGCCACAAAGAAGGAGCCAGCTGTACTTG AACTGGAGGGCAAGAAGTGGAGAGTGGAAAATCAGGAAAATGTTTCCAACCTGGTGATTGAGGACACAGAGCTGA AACAGGTGGCTTACATATACAAGTGTGTCAACACGACATTGCAAATCAAGGGCAAAATTAACTCCATTACAGTAG ATAACTGTAAGAAACTTGGCCTGGTATTCGATGACGTGGTGGGCATTGTGGAGATAATCAACAGTAAGGATGTCA AAGTTCAGGTAATGGGTAAAGTGCCAACCATATCCATCAACAAAACAGATGGCTGCCATGCTTACCTGAGCAAGA ATTCCCTGGATTGTGAAATAGTCAGTGCCAAATCTTCCGAGATGAATGTCCTCATTCCTACAGAAGGCGGTGACT TTAATGAATTCCCAGTTCCTGAGCAGTTCAAGACCCTATGGAACGGGCAGAAGTTGGTCACCACAGTGACAGAAA ACTGAAATATACCTCAGGCTGAAATTTGGGGTGGGATAGCAGGTCAGTTGATCTTCTGCAGGAAGGTGCAGCTTT TCCATATCAGCTCAACCACGCCGCCAGTCCATTCTTAAGGAACTGCCGACTAGGACTGATGATGCATTTTAGCTT TGTTCACACTGGTTAATCTTTTTTTTAACAATGAGCATGAAGGTAGCAGAAGCTGGTGTTTTCCAGATGGTTCTT CTAACCAAACTAATTTTCACTGTTGACAAGCGAGGCAAGGGTTGCACTGGACCAAAGGCTGAGGCTTGGCCATC TAGCATTCCATACAAAATTGTTTCCTATAAGCATTCCTTTTATTCTCTATTCTATCCTGGGTCTGCCTCAACCGT GAGATAGGAGAGTCTCTGGTACTAGCTGCTGTAGCAGTGCCCTTCATCCAGGGCAGTTAATGGAGTCTTGGACCC CCACATGATTCAAGGAGTCTGGCATTCCTGAATCCTTCTCCCTGCCAGGTGCCTGTCACCTGTCTCACTGCC TCCTTTTCCCTGTCATGCTCATCAGCTTATGGCTTCTGTCTAAGCACCTGAACAGGACTGAAACCTCCACTGC AGGCTGGTTTTAGGTCTTGAATTATGTAAGAATCTTGCACAGCACTGCTAATGTAAATTTCAGTTGTTTTTCCCT CTAGGACAAACACTTACCAAAATATGCAACTTTTTTTTGGTGGGAAGAGAGATTGTCCTGTGATTTCTACCCATT TCCTGAGGCCTGTGGAAATAAACCTTTATGTACTTAAAGTTATACAGAAAATAGAATAAAGTTAATACCAAACTT G

PCT/HS2003/028547

FIGURE 176

CCGGAGTCTCGCGCCCGCGGTCATGTGACACAGCGAAG<u>ATG</u>GCGTCGCCCGGCTGCCTGTGGCTCTTGGCTGTGG CTCTCCTGCCATGGACCTGCGCTTCTCGGGCGCTGCAGCATCTGGACCCGCCGGCGCGCCGCTGCCGTTGGTGATCT CTGGAATTTACGTCTTATCTTTAGAGATTGGGAAGACCCTGATGGAGGACGTGGAGAACAGCTTCTTCTTGAATG TCAATTCCCAAGTAACAACAGTGTGTCAGGCACTTGCTAAGGATCCTAAATTGCAGCAAGGCTACAATGCTATGG GATTCTCCCAGGGAGGCCAATTTCTGAGGGCAGTGGCTCAGAGATGCCCTTCACCTCCCATGATCAATCTGATCT CGGTTGGGGGACAACATCAAGGTGTTTTTGGACTCCCTCGATGCCCAGGAGAGAGCTCTCACATCTGTGACTTCA TCCGARAAACACTGAATGCTGGGGCGTACTCCAAAGTTGTTCAGGAACGCCTCGTGCAAGCCGAATACTGGCATG ACCCCATAAAGGAGGATGTGTATCGCAACCACAGCATCTTCTTGGCAGATATAAATCAGGAGCGGGGTATCAATG AGTCCTACAAGAAAAACCTGATGGCCCTGAAGAAGTTTGTGATGGTGAAATTCCTCAATGATTCCATTGTGGACC CTGTAGATTCGGAGTGGTTTGGATTTTACAGAAGTGGCCAAGCCAAGCAAACCATTCCCTTACAGGAGACCTCCC TGTACACACAGGACCGCCTGGGGCTAAAGGAAATGGACAATGCAGGACAGCTAGTGTTTCTGGCTACAGAAGGGG ACCATCTTCAGTTGTCTGAAGAATGGTTTTATGCCCACATCATACCATTCCTTGGA<u>TGA</u>AACCCGTATAGTTCAC AATAGAGCTCAGGGAGCCCCTAACTCTTCCAAACCACATGGGAGACAGTTTCCTTCATGCCCAAGCCTGAGCTCA GATCCAGCTTGCAACTAATCCTTCTATCATCTAACATGCCCTACTTGGAAAGATCTAAGATCTGAATCTTATCCT TTGCCATCTTCTGTTACCATATGGTGTTGAATGCAAGTTTAATTACCATGGAGATTGTTTTACAAACTTTTGATG TGGTCAAGTTCAGTTTTAGAAAAGGGAGTCTGTTCCAGATCAGTGCCAGAACTGTGCCCAGGCCCAAAGGAGACA ACTAACTAAAGTAGTGAGATAGATTCTAAGGGCAAACATTTTTCCAAGTCTTGCCATATTTCAAGCAAAGAGGTG CTATTTCTGCATCATTTCTTAAGGCTGCCTTCCTCTCTCAGTACGTTGCCCTCTGTGCTATCATCTTATCATCAA TTATTAGACAAATCCCACTGGCCTACAGTCTTGCTTCTGCAGCACCCACTTTGTCTCCTCAGGTAGTGATGAATT AGTTGCTGTCACAAAAGGAGGGAAGTAGCACCCAAATTAAGTTGCTTAAGAGAGGAAATGTACATCTTGTATAAC TTAGGGAGCGAAGAAATGTAGGCGCGAAAGTGAAAAGTGAGGCAGCTAGTTCTTCCTATTCCATTCTCGACCAA CCTGCCCTTTCTTAATATGACTAGTGGTCTTGATGCTAGAGTCAACTTACTCTGTTGCTGGCTTTAGCAGAGAAT AGGAGGAACCATATGAAAAAGATCAGGCTTTCTGACTTCCATCCCCAAAACACATTTACCAGCATACTCCAAAACT GTTTCTGATGTGTTCCATGAGAAAAGGATTGTTTGCTCAAAAAGCTTGGAAAATACTACACACTCCCTTTCTCCT TCTGGAGATCAACCCACATTAGAGTGTCTAAGGACTCCTGAGAATTCCTGTTACAGTAAACAAAACTAACGTAAT CTACCATTTCCTACACTATTTGAGCATGGAAATCATAGTCCCCACTCTGTGAAAACTTAACGCTTTTTGGAAGAC ATTTCTGTAGCATGTCAGTTTGGAGAAATGATGAGCTACGCCTTGATGAAAGAACCGTGTTGGTGCTGCTAAGTT TAGCCATTATGGTTTTTCCTTTCTCTCTTTAAGCCTTATTCTTCAACTAAAAGATGAGGATTAAGAGCAAGAAG TTGGGGGGGATGTGAAAATAATTTTATGAGGTTGTCTAAAAT

PCT/US2003/028547

FIGURE 177

MASPGCLWLLAVALLPWTCASRALQHLDPPAPLPLVIWHGMGDSCCNPLSMGAIKKMVEKKIPGIYVLSLEIGKT LMEDVENSFFLNVNSQVTTVCQALAKDPKLQQGYNAMGFSQGGQFLRAVAQRCPSPPMINLISVGGQHGGVFGLP RCPGESSHICDFIRKTINAGAYSKVVQBRLVQAEYWHDPIKEDVYRNHSIFLADINQERGINESYKKNLMALKKF VMVKPLNDSIVDPVDSEWFGFYRSGQAKETIPLQETSLYTQDRLGLKEMDNAGQLVFLATEGDHLQLSEEWFYAH IIFFLG

PCT/US2003/028547

FIGURE 178

PCT/US2003/028547

190/6881 FIGURE 179

MTNTKGKRRGTRYMFSRPFRKHGVVPLAMYMRIYKKGDIVDIKGMGTVQXGMSHKCYHGKTGRVYNVPQHAVGIV VNXQVKGKILAKRINVCIEHIKHSKSRDSFLKRVKENDPPPREAQCVRTNGKEPELLETIPYEFMA

PCT/US2003/028547

FIGURE 180A

CCCCGTGAGCCTCCCTCGCCGCCCCCCCCCCGCGTGCCTATCCACTCGGAGTCCGCGCCAGCCTGGGGCCG GGCCGCGCTACTGCCGGGTTCGCGGGGCGGGGTCCCGGGGCAGCACCTGCCCCGCCTTGCGGAGCCGCCTCGGC CTGTGGAGGCCCCCTCCCTGTCTGGACCCCGGCCCCACCTCCGGACCCTTTTATCACATCGCCTCCTCTGGGAGC CTGCCTGATTGCCTTCACCTCATTTCTTGAAAATTGGTGTTTTTGGCAGAAGTCAATTGAAGCCTTGTGCAAATG CCCTAGGGGTGTGCTGTTGGGAGGCAGCCCCTGTGATGCGGAACACCAGGCTCAGATTCATCAGTTCGAGCTGC CTGAGGCCCTGCCACCCGGGGACCATGTTTAACGGGGAGCCAGGTCCTGCCTCATCTGGGGCCTCCAGGAATGT CAAGAAGCGGCGGAGCAGCCTGGGTGCCAAGATGGTGGCCATCGTGGGCCTGACTCAGTGGAGCAAGAGCACACT CCAGCTTCCGCAGCCTGAAGGGGCCACCAAGAAGCTGCGCAGCAACATCCGCCGGAGCACGGAGACAGCATCGC GGTGGAGATGCGGAGCCGGGTCACACGCCAGGGCAGCCGGGAGTCCACCGATGGGAGCACCAACAGCAACAGCTC CGACGGCACGTTCATCTTCCCCACTACCCGGCTAGGGGCTGAAAGCCAGTTCAGCGATTTCCTGGATGGGCTGGG ACCAGCTCAGATTGTGGGGCGACAGACACTGGCAACACCCCATGGGAGATGTGCACATTGCCATCATGGACCG CACCTATATCAAGGTTTACCTGCTGGAGAATGGGGCCTGCTTGGCCAAGAAGAAGACAAAGATGACCAAGAAGAA CTGTGATCCCCTGTACCAGCAGGCTCTGCTCTTTGACGAGGGACCCCAGGGCAAGGTGCTGCAGGTGATCGTCTG GGGAGACTATGGCCGCATGGACCACAAGTGCTTCATGGGCATGGCCCAGATCATGCTGGACGAGCTGGACCTCAG CGCCGCGGTCACCGGCTGGTACAAACTCTTCCCCACCTCCTCAGTGGCAGACTCCACACTCGGATCCCTCACCAG GCGCCTGTCCCAGTCTTCCCTGGAGAGTGCCACCAGCCCCTCATGCTCTTAAGGATGTCAGGAAGAGGCCAGGAT GGTGGTGTGGGGAGGGGTGCCTGCTGGCCCCATGTCCTCCCCTGTACATAGTCTTCGTGTCTTTCTGGACCCCTT GTCCTGCTGCATGCCTGTTGGCTACTGGGCTCATCCCAGCTGGCAGTGGAGACTGTAGTGTGTGCGTGTGTGCGT GCGTGTGTGTGTGTGTGTCACCTGCCACGTTCTATCTGTTCATTTGTCTGGGTATAGTCACTCCTGGTGATGATA TGGGCTGAAATGTCTCCACGTCTCTTTGTGTCTTGTTGAAAAGAAACCCAAAGGAGTGTTGTGTGGACATGACTC ACCCTGAGGAGTCTCCAGGGATGGAGGTGGGGCATGCGGCCACTGGTCGTGCTGCCTGGCCTGGCCTGGGCCA GAGCCTGTGTTCTTCACCTGTGCCTGCTCCTGGTGGTCTCTGCTTTGTTTTCTGTCTTTGTTTCTACCT $\tt CTTGACTCTCCCGGCTCTGCCACTGTTTTCTGAGAAATGTAGCATCCGCTGCAGCTGGCCACACTGAGGGCCCTCCAGCTGCAGCTGCACACTGAGGGCCCTCCAGCTGCAGCTGCAGCTGCACACTGAGGGCCCTCCAGCTGCAGCTGCAGCTGCAGCTGAGGGCCCTCCAGCTGCAGCTGCAGCTGCAGCTGAGGGCCCTCCAGCTGCAGCTGCAGCTGAGGGCCCTCCAGCTGAGGGCCCTCCAGCTGCAGCTGAGGGCCCTCAGCTGAGGAAATGTAGCATCCGCTGCAGCTGGCCACACTGAGGGCCCTCCAGCTGAGGAAATGTAGCATCCGCTGCAGCTGAGCACACTGAGGGCCCTCCAGCTGAGGAAATGTAGCATCCGCTGCAGCTGAGCACACTGAGGGCCCTCCAGCTGAGAATGTAGCATCCGCTGCAGCTGAGCACACTGAGGGCCCCTCCAGCTGAGAATGTAGCATCCGCTGCAGCTGAGCAACTGAGGGCCCCTCAGAGAATGTAGCATCCGCTGCAGCTGAGCAACTGAGGGCCCCTCAGAGAATGTAGCATCCGCTGCAGCTGAGCAACTGAGGGCCCCTCAGAGAATGTAGCATCCGCTGAGAATGTAGAATGAATGTAGAATGAATGTAGAATGAATGTAGAATGTAGAATG$ TGGGAACCCCACCCCACTGGAGCCGCTCCGGCAGCTCTTCCTGCCACTGAATGCGTTCTGCAGCATGTAGCATGC CCACCTAGCTCCCTGGCCAGGGCCCTGGGGAGGCAGAGGGTACCCAGGGGACTGAGGGCTTAGAAATGACTTTCT CTATGAGGCTGGAACCTCCTCCTTCTTCCAGTGAAGCACGAGGTCTTGGTTCCAGGGTTCCTGGCCAGGTGCCCC CTTAGCATTTGTTCTTCATCTCCTGTCTCTTCAAGCCTCCCCACTCCACCGTGCCGAAGGAGCTCTGCCAGTGGG CCTGGGCAGGCAGCCACAGAGGGCATGTTATCTGCTAAAGCAAACAGTCCTCCTGAGGCCCTGAGGGTGGCCCTG ACCCCTCAGGGCTCATTCCTGGTGGGCATGACTCGGTAAGGAGGTTCTGTGGGTAGGCCTGTTTGCTGGAATAA GGAGGGCTGAGCTGAGTTGTTCCCCGCCACTGTTGAGGATCCCATCTGACATTTGGGGATTCACTGCATGAAGT TGTTCATTTGGGGCTCCAGTTTTTGTGCATTTCCAGACCAGGGTCCCTGTCTGGGGAGCTCAGACTTAGCTGGGCT CCAGCAGCCTGGCTCCGGACTCTCGTCTGCCACCATCACCAGCTCTGTCTAAGCAATACTTACCCCTCCGGGCTT TCTCACCCATGTCTGGTTGGAGCTTCTCACAGCCACTCAAACCCTGACTTGATTTGACAACTGGGCCCTGTTGGT GGAGACCAGTGCCTGAACTGGACCCTGTGAAATCTGTCCCGTGGGAATCCTGAAGTCTGACTCAGGAATGCCCAG ACCTGTCCCTGTCCCTCAGCTCTAGGGTGAAAGGCGAGAGGTTGCACAGGACATGGACAGAGCAGCCCTTGG GTTTGTATCTGGTAGGGGAAAGCAGCAGGACAGTGGGAGGTGTGTGGAAGGCACTCTTTCCACCTCTCTCCAGG AAGGTCTTGGGGTCTGAATGACTTGGGGCCTCCATTCATAACCAAAGTTGTAGGGGCATGGAGGCAGTGGCGCCT TAACACCTCCCAAGAAAGATAGGGGAAGAAGCCAGAACCCCACCTGGCCTGCCCACAGGACAAGAAGTGGGTAAG GGCAGGAAGGAAATGAACGGAGTTAGCTCCCAGGCTCCTATCTCTGCCTGAGCCTCTATTCTTATATTATCAGAG AAAGGGACCATTGGGTGCATAGAGATGGGGAGGAGGCCACTGGGCTGAATTTTCTCTTTAGGCGGAAATGCTCTC CCCAGGCCCATTGCGTTCGTCAAGTTCTTGGAAATGGACAAAGGGCTCTGTCCTCCTCGACCCTAGTGGGGGATC AAGAAGGAAACTCCGTTGCAAAAGGGTATTTTAATCTCCTGTTTATGATATATTCACCTCTAGAGCAGTCACTGT

PCT/IIS2003/028547

192/6881 FIGURE 180B

CAGGGTGTTCCGAAAATACTCTACACCTTTGGGATGATAGGGTTGTTAGTGACCCACAGGACAGTATAGATGTTT GTGGATGTAGCACTGAGTGGTGATACCCAGACCAGCAGTCACCCCAGGAAGTGGGGGCTACCCATACCCTCATTC CTCTCCTCCCACCTCCCACACACCCTCCCACTCCCACTCCACCCCTGGTGACCCTTGCCTCTGGGGAA CCTGGCTGCCAAAACTGCTCAGCAGTTGGGCCACTCCACTATTCCACCTCTCTAAAAGAAGGTAATTTCCTCCCC A A TTGA CCTTGGGGA ATTA TTCTTTTA ACCCTTTGCACCA AATA AGTTA CTCATCCCACCTGGATTTTA CCCC ATGAGGGTAAAGTTGTGTGAGGCTGACACGTCTGTGTGATGCAGTGTGGCTGCACTTAAGGGTCTGTTTCTCAGC ATCATGGATGCAGGGGCTTGTCTGAAAAGCCACTCTGGACCTAGCCTGTCCCAGAAGAAGAGAATGCACAAAGTGT A A CTCCTGGTTGTTTGCTGGGGTGGGGGGGCATCTGCTGTTTGA GGACGGGGGGTGGGGAAGGAAGGAACATGAT CCCTCCAGAAGTCTCCCACCCTGGGGCCAACTCACTGCCATGTTCAGTGTCCCGGCTCCAAATGCCCCCTTGCCC AGATGAAACCCTGCAGTGGTTACAGGAATGGAGCTCTTTGTCATTCCACCTCCTCTGGTCAGGCGAGGTTCACTG TGCATATGGCAGAGACAGGAGTGGCCCTGCAGTGATGTTGGGTTGTGGGCAGGGACAGTGATGATGACTCAGAG CGTCTGTCTTTGTATTTCTGCTCTGTTCATTCTGTCCCACTTTCTTCATAGACTCCTTTTCCCTGCAATGGGTTT TTGGTATGAAAAAGGCTCCAGTAAATGGAGCCAAGTCTTGGTTTGACAAGGGGAACTTGATCCTTCAGGGAAGAA TCATCTCCAAAATGACTCCCCATCTGGTTTCTTCTACCACCCAATTCTACTAGGAAAGGAGCACTTAGGAGGCTC TTGGGATGCAGCAAGTCCCAGGCAATGCCAGCATTTCATGGGGGGCTGAGGCAGAACCCAGGAGCTCCAAGAAAGG CCACCCATAGAGCTCATCCTCTGTGGAATCACTGCCGGTTAGAACACTGAGGTCAAGCCAGTCCTCCCATGGTCA TGCCACCCACCAGGGAAGCATGCCTGATCTCTTTTTTACTGCCAGCCTTGAGGAGAGCAGAAGCCTCCATTTTTA AAGACAATAAAGACCTCCAAGGGTACTTCTTTGGAAATGAAATGTAGCACAATCTTAGCCTACGTTACCAGGAGC CCTGACATGCAACCAGGGTCCCTCTTCCATGCCCTGCTGCCCAGGAGTTGCTGAGCTCCTCTTCCCTGGGGTTC CAGCCCTCCTAATACCTCATATTCCCCATCTTCCTCAGCCCAGAAAGCAATGGGGCTTTAGTGATGCTCCTCTTT TGTGTCTCTCTGGTTGCCTCTAGCACTGTGCAAACTCTGCAAGAAATTGCTGCCTTTGCTTGATGTTGTAGATGA GTTGCCCTCCACCTGGCTGGAGAGATGGCACATCATTCAGGGCCAGAAGGTTGTCCAGCAGTGTTTCTGCAGTGG CTGCAGGGAGATGGAAAGAGCCCTGCTTCCCTGCCTCCTACCTTTCTCTCCACTCCTCAGAGTTTTC TTCTCCAGTATCCTGACATGTAAAGAGATTCTTTAAAATGCTGCTTCTTCTACTGGACTGCTTTCACTGAGTAG GGGCCAAAACAAACAAGCATGATTGAAGAGCAGGGGAAGCCCACACAATCAGGTGAGCCCTGATGGGGGCTGGA AGAGAGCAACTTGGCCTCCTTGGGCACCAACTCTGATGGCTGAGTTGCACAAACGTGGCTCAGATGTTGGCATGC CCCCCGAACCCTGAGCTTGGGCTTGTGTGGGCCCAGCATGGCTGTGCCTGTGAGGGAAGCCACATCAGTGAGAG ANACTTCCATTCTCAGGGGCCTAGATTGGCTTGGGGCAGGTGCTTGTTGAAAAGCATGAGTGTTTCTGCTTTG ${\tt GGAAACCCTTCCAGGGCTCTGGTTGGAAACTTGGCCAGTAAGGACAGGGCCTTGGGCCTCCCAAGGAGTTCACAA}$ TENTECCNECANGEGTCCCTGNGCCTGGGTTCCNGTCNGCTTGGCTACAGANTGGGGCTTGGGAATTCCAGGGG CAACTGAGCATCCACCCCATTAGCCAGTGATCTGGACAGGGACAGCTGGCTACAGGGAATCAAAGGCTGTTCTGT ACAGTTTTACCAGAAACTGTGACCTTGGGTAAGGCTCCTCACTTTTCTGGGCCTCAACTTCCTCATCTGCAAAAAT TGCGAGCCTGGTGCACCTGGTTCCTGTCTCCGTGGGCTGGTTTCCTTCAGCCCCTGATGCCCAGGCTGGGTGCAG GCTCTCATCTGGTCCATGCCCAGATGCTGCCTCAGACAAGAACTCTGGGAATCCTAACAGACTCTGCTTTCCTCT CTTCGTGGTTTGTCCTCCTCTTTTATTCTTGTGTAATGATGAGACATAATTAAGGGTCATCTACAATGGACAAT TTTCAAGGTGCTGATGTGATGTCACAACCTCCGCTACATCCTGAGTAAGTCAGTGTCCCCAACAGCAGATGAGGC TGGGTCTTTCCTCATTTCTGCTTCTGGGATGACATCAGTGGGAGAGTTGAAGATCTGAGAATTCTAAAGGAAATG TTCTCTGATGGGAGGGGAGGGGAACTTATTTCCCTTCAAAGTAGTTTGCTTCTTAAGACCACTCCTCCCAG AATGTCTTTAACCAGACATCATTTCAGAAGGTGGGGCAGCTGCTTCCTTAGGAAGAGTGGGCCTGATAGCTCAAC CAACTCCTTTAGCATGTAAACTCACAGAAGGCAAGAACCCCTTTTTTTAGACTTTCCAAATGCATCCTGCAAAGA GAGAGATAGCTGATAGGGACTGACAAGCACACTGTTTAGATAAGAAGCAATTACCCTTTTATATCTGTGCTCTAT $\tt CGGCTGTTTCGTACAACATTCTTGCCAATTCCCTTGAGGAGAAAATTCTTCACATGGCTTCTGCATGTACAGTAT$

PCT/US2003/028547

FIGURE 180C

TTGGGCAGCAAAACATGATTAAAGTCAGTTTGAAAATGG

PCT/US2003/028547

FIGURE 181

MFNGEPGPASSGASRNVVRSSSIGGEICGSQQAGGGAGTTTAKKRRSSLGAKMVAIVGLTQWSKSTLQLPQPEGA
TKKLRSNIRRSTETGIAVEMRSRVTRQGSRESTDGSTNSNSSDGTFIFPTTRLGAESQFSDFLDGLGPAQIVGRQ
TLATPPMGDVHIAIMDRSGQLEVEVIEARGLTFKPGSKSLPATYIKVYLLENGACLAKKKIKMTKKTCDPLYQQA
LLFDEGPQGKVLQVIVWGDYGRMDHKCFMGMAQIMLDELDLSAAVTGWYKLPPTSSVADSTLGSLTRRLSQSSLE
SATSPSCS

PCT/US2003/028547

FIGURE 182

AAGCTGCTGACATCCTGGATCTAGGGTTGTAAAGAAGATTACATGAGCTAATGGATGTGAAAACATCTTAAAAAC TCTCAAATACTTTTCAACTTTGGAGGATTATTATGATTTTCATTCTGTTCAGCGGCTATACTCAGACTTTACTCT TAATGCAGCATCTAGTGCTTTTTTGCATGGCCCAAAGGGGCTCTGTGCTGCTCCACTACAGAGGAAACTTCAAGAA ATGCTGGTTTGCTACAGTGTTTTAGCTTGTGAGATTCTCTGGGACCTTCCCTGCTCCATCATGGGGTCACCTCTA GGTCATTTTACCTGGGACAAATACCTAAAAGAAACATGTTCAGTCCCAGCGCCTGTCCATTGCTTCAAGCAGTCC TACACACCTCCAAGCAACGAGTTCAAGATCAGTATGAAATTGGAAGCACAGGACCCCAGGAACACCACATCCACC TGTATTGCCACAGTAGTTGGACTGACAGGTGCCCGCCTTCGCCTGCGCCTTGATGGGAGCGACAACAAAAATGAC TTCTGGCGGCTGGTTGACTCAGCTGAAATCCAGCCTATTGGGAACTGTGAAAAGAATGGGGGGTATGCTACAGCCA CCTCTTGGATTTCGGCTGAATGCGTCTTCTTGGCCCATGTTCCTTTTGAAGACGCTAAATGGAGCAGAGATGGCT CCCATCAGGATTTTCCACAAGGAGCCACCATCGCCTTCCCACAACTTCTTCAAAATGGGAATGAAGCTAGAAGCT GTGGACAGGAAGAACCCTCATTTCATTTGCCCAGCCACTATTGGGGAGGTTCGGGGCTCAGAGGTGCTTGTCACT TTTGATGGGTGGCGAGGGGCCTTTGACTACTGGTGCCGCTTCGACTCCCGAGACATCTTCCCTGTGGGCTGGTGT TCCTTGACTGGAGACAACCTGCAGCCTCCTGGCACCAAAGTTGTGATTCCAAAGAATCCCTATCCTGCCTCCGAT GTGAATACTGAGAAGCCCAGCATCCACAGCAGCACCAAAACTGTCTTGGAACATCAACCAGGGCAGAGGGGGGGCGT AAACCAGGAAAGAAGCGGGGCCGGACACCCAAGACCCTAATTTCCCATCCCATCTGCCCCATCCAAGACAGCT GAACCTTTGAAATTCCCAAAGAAGAGAGGTCCCAAACCTGGCAGCAAGAGGAAACCTCGGACTTTGCTGAACCCA CCACCTGCCTCACCAACAACCAGCACTCCTGAACCGGATACCAGCACTGTACCCCAGGATGCTGCCACCATCCCC AGCTCAGCCATGCAGGCCCCAACAGTTTGTATCTACTTGAACAAGAATGGCAGCACAGGCCCCCACTTAGATAAG AAGAAGGTCCAGCAACTCCCTGACCATTTTGGACCAGCCCGTGCCTCTGTGGTGTTGCAGCAGGCTGTCCAGGCC GCCGTGTTTGACCGGGAACAGCATACCCTCAACCTCCCAGCAGTCAACAGCATCACCTACGTCCTCCGCTTCCTG GAGAAACTCTGCCACAACCTTCGTAGTGACAATCTGTTTGGCAACCAGCCCTTTACACAGACTCACTTGTCACTC CGCTCCTTGGAACCACACTCAGACTCAATGGACTCTGCCTCAAATCCCACCAACCTTGTCAGCACCTCCCAAAGG CACCGGCCCTTGCTTTCATCCTGTGGCCTCCCACCAAGCACTGCCTCAGCTGTGCGCAGGCTATGCTCCAGGGGA GTGTTAAAAGGATCAAATGAAAGAAGGGATATGGAATCATTTTGGAAACTAAATCGTTCCCCAGGGTCGGACCGA TACCTGGAGAGCCGCGATGCCTCTCGACTGAGTGGCCGGGACCCCTCCTCATGGACAGTCGAGGATGTGATGCAG TTTGTCCGGGAAGCTGATCCTCAGCTTGGACCCCACGCTGACCTGTTTCGCAAACACGAGATCGATGGCAAGGCC CTGCTGCTGCTGCGCAGTGACATGATGATGAAGTACATGGGCCTGAAGCTGGGGCCTGCACTCAAGCTCTCCTAC CACATTGACCGGCTGAAGCAGGGCAAGTTCTGAACCAGGAGAGGCAGCCTAGACAACCAAGTGGCAGCAGGTGGG GGCATTCTTCTAGGAATGAGGGGCATCAGCCCACCCCAGGCACCTCAGTGGGGTTCCGGGCCACCTCAGGACTCC AAGAGGCTGTGTGGAGCCACCACTCCTAGCCACAGCTGCCATGATAAGTCCTTCCATGAAGGACTGAGGAGGAG CCCTGGCTGGCCTCTCACCAGGAGTTTAGGCTGAATGCCTTCCACGTGATGGAGGAAAAGGCCAACTCTGTCCTG GTCTTGCTGTGGCACCCCATCGCCCCACAGCTCGTACCTTCTCACCAGATTCCCCTGAATCCAAACTCGTGGTGC AAACCTCTACCTTTTTTACAAAAAGATCTTATTGTTAATTTATTGTTTCTGGCACTTGGGCAAACCCTGTAGTTA CAGATAGGCGTGGCCCCTCTTCAGAGGACACTACCCTAGGGCACTTTCTCTTTGAGGTGGAGAGCCCATAAAGC CTTGACCACATCACTCCATATGGGGAGGAGAAGGATCCCTGTCACCTTCTCCTCTTCACGGGGCCCTTTTGCA GCCCTAGGCCTCATCTGTGGGAAGGGAGTCCCTGGCTTATACTGCCCCCACCACAGGCTCCTTGCCCTGGCCAGAA CTGCTGTCGAAGAAAATCAGGCCGGAAGGCCAAGAAGGCGCTAAGGGGGGATGGGAGGGCAGGTTTTCCAGGCTGG AGTCGGTTCCACCCACTCGCCTGTCCACAGGCTTCCTTGTAAGCAAGTCAGCAGCACAGCTACTCACGCTGCCAT CTGGACTTATTTTATGTCAATCTGTTTATAAATAAAAACCAATATAGAT

PCT/IIS2003/028547

FIGURE 183

 ${\tt GCTGCAG} \underline{{\tt ATG}} {\tt GCGGAAATGGATCCGGTAGCCGAGTTCCCCCAGCCTCCGGTGCTGCGCGCTGGGCTGAGGTTAT}$ GGCTCGCTTCGCGGCCAGGCTGGGCGCGCAGGGCCGGCGGGTGGTGTTACGTCAGGCGGCACCAAGGTCCC ACTGGAAGCGCGGCCGGTGCGCTTCCTGGACAACTTCAGCAGCGGCGGCGGCGGTGCAACCTCGGCCGAGGCCTT CCTAGCCGCCGGCTACGGGGTCCTGTTCTTGTATCGCGCTCGCCTCTGCCTTCCCCTATGCCCACCGCTTCCCACC TGCACTTCCGGGTTTTGCTGAGGCTCTGAGGAGCTACCAGGAGGCTGCGGCTGCAGGCACCTTCCTGGCAGTAGA GTTCACCACTTTGGCGGACTATTTGCATCTGTTGCAGGCTGCGGCCCAGGCACTCAATCCGCTAGGCCCTTCTGC GATGTTTTACCTGGCTGCGGCTGTGTCAGATTTCTATGTTCCTGTCTCTGAAATGCCTGAACACAAGATCCAGTC ATCTGGGGGCCCACTGCAGATAACAATGAAGATGGTGCCAAAACTGCTTTCTCCTTTGGTTAAAGATTGGGCTCC AATTTATCAGCATCAAGTGGTGGTGGCTAATATCCTTGAGTCACGACAGTCCTTTGTGTTTATTGTAACCAAAGA CTCGGAAACCAAGTTATTGCTATCAAGGAAGAAATAGAAAAAGGCGTAGAGATAGAAGAAGATAGTGGATAAT CTTCAGTCTCGACACACACCTTTTATAGGTGACAGAAACTGAAGTAAAAAGCCCTTATAGGATTAAAAATTGTTC AAAGGCAGTGGTGTGTAGGCAAATATGGTTTGGCATTCGTCTTTTAATGACACCTGATATGATGTCATTTTGATT TTGAAATTGAACACTAGAACTGTTAATCACCTTTAAAAAGAAGAGCTTATTGGGAATTATATATTCCTTAAAATA TACATGGGGGCCTGAATGTCAGCCATCTTTATACTATAGAAAAAGGATTATGGATGCATGAATGGTCATGCTTTG GAGATCAAATATTGGTTGAATGCCTATGTATGTCAGGCCCTGTGCTGAGCCATGAGGATTAAAAAAGATGAATAAA AAAGG

PCT/US2003/028547

197/6881 FIGURE 184

MAEMDPVAEFFQPPGAARWAEVMARFAARLGAQGRRVVLVTSGGTKVPLEARPVRFLDNFSSGRRGATSAEAFLA
AGYGVLFLYRARSAFPYAHRFPPGTWLSALRPSGPALSGLLSLEAEENALPGFAEALRSYQEAAAAGTFLAVEFT
TLADYTHHLLQAAAQALNPLGPSAMFYLAAAVSDFYVPVSEMPEHKIQSSGGPLQITMKMVPKLLSPLVKDWAPKA
FIISFKLETDPAIVINRARKALEIYQHQVVVANILESRQSFVFIVTKDSETKLLLSRKK

PCT/US2003/028547

198/6881 FIGURE 185

CGGGAGCGGAGAGCGGACCCCAGAGAGCCCTGAGCAGCCCCACCGCCGCCGCCGCCTAGTTACCATCACACCCC GGGAGGAGCCGCAGCTGCCGCAGCCGGCCCCAGTCACCATCACCGCAACCATGAGCAGCCAGGGCCGAGACCCAGC CAGGGAGCGGTGGCCCGGGCGGCCTCACATCGGCGGCGCCCTGCCGGCGGGACAAGAAGGTCATCGCAACGAAGG TTTTGGGAACAGTAAAATGGTTCAATGTAAGGAACGGATATGGTTTCATCAACAGGAATGACACCAAGGAAGATG TATTTGTACACCAGACTGCCATAAAGAAGAATAACCCCAGGAAGTACCTTCGCAGTGTAGGAGATGGAGAGACTG TGGAGTTTGATGTTGTTGAAGGAGAAAAGGGTGCGGAGGCAACATGTTACAGGTCCTGGTGGTGTTCCAGTTC AAGGCAGTAAATATGCAGCAGACCGTAACCATTATAGACGCTATCCACGTCGTAGGGGTCCTCCACGCAATTACC AGCAAAATTACCAGAATAGTGAGAGTGGGGAAAAGAACGAGGGATCGGAGAGTGCTCCCGAAGGCCCAGGCCCAAC AACGCCGGCCCTACCGCAGGCGAAGGTTCCCACCTTACTACATGCGGAGACCCTATGGGCGTCGACCACAGTATT CCAACCCTCCTGTGCAGGGAGAAGTGATGGAGGGGTGCTGACAACCAGGGTGCAGGAGAACAAGGTAGACCAGTGA GCAATGAAGAAGATAAAGAAAATCAAGGAGATGAGACCCAAGGTCAGCCACCTCAACGTCGGTACCGCCGCA ACTTCAATTACCGACGCAGACGCCCAGAAAACCCTAAACCACAAGATGGCAAAGAGACAAAAAGCAGCCGATCCAC ATCCGGTTTAGTCATCCAACAAGAAGAATATGAAATTCCAGCAATAAGAAATGAACAAAAGATTGGAGCTGAAG ACCTAAAGTGCTTGCTTTTTGCCCGTTGACCAGATAAATAGAACTATCTGCATTATCTATGCAGCATGGGGTTTT TATTATTTTTACCTAAAGACGTCTCTTTTTGGTAATAACAAACGTGTTTTTTAAAAAAAGCCTGGTTTTTCTCAAT ACGCCTTTAAAGG

PCT/US2003/028547

199/6881 FIGURE 186

MSSEAETQQPPAAPPAAPALSAADTKPGTTGSGAGSGGPGGLTSAAPAGGDKKVIATKVLGTVKWFNVRNGYGFI NRNDTKEDVFVHQTAIKKNNPRKYLRSVGDGETVEFDVVEGEKGAEAANVTGPGGVPVQGSXYAADRNHYRRYPR RRGPPRNYQQNYONSESGEKNEGSESAPEGQAQQRRPYRRRRFPPYYMRRPYGRRPQYSNPPVQGEVMEGADNQG AGEQGRPVRQNMYRGYRPRFRRGPPRQRQPREDGNEEDKENQGDETQGQQPPQRRYRRNFNYRRRRPENPKPQDG KETKAADPPAENSSAPEAEQGGAE

PCT/HS2003/028547

200/6881 FIGURE 187

GGCGGGTGGCTGCCGTTAGGTCTGAGGGAGCGATGGCGGTACGCGCGTTGAAGCTGCTGACCACACTGC TGGCTGTCGTGGCCGCTGCCTCCCAAGCCGAGGTCGAGTCCGAGGCAGGATGGGGCATGGTGACGCCTGATCTGC TCTTCGCCGAGGGGACCGCAGCCTACGCGGGGGGACTGGCCCGGGGTGGTCCTGAGCATGGAACGGGCGCTGC GCTCCCGGGCAGCCCTCCGCGCCCTTCGCCTGCGCTGCCGCACCCAGTGTGCCGCCGACTTCCCGTGGGAGCTGG ACCCGACTGGTCCCCCAGCCCGGCCCAGGCCTCGGGCGCCCCGCCCTGCGCGACCTGAGCTTCTTCGGGGGCC TGGAGTTCCGCAAGCGGAGCCCCTACAACTACCTGCAGGTCGCCTACTTCAAGATCAACAAGTTGGAGAAAGCTG TTGCTGCAGCACACCCTTCTTCGTGGGCAATCCTGAGCACATGGAAATGCAGCAGAACCTAGACTATTACCAAA CCATGTCTGGAGTGAAGGAGGCCGACTTCAAGGATCTTGAGACTCAACCCCATATGCAAGAATTTCGACTGGGAG TGCGACTCTACTCAGAGGAACAGCCACAGGAAGCTGTGCCCCACCTAGAGGCGGCGCTGCAAGAATACTTTGTGG CCTATGAGGAGTGCCGTGCCCTCTGCGAAGGGCCCTATGACTACGATGGCTACAACTACCTTGAGTACAACGCTG CCCACCCAAGTCGAGAGAGCCCTTTGAAGACTTCCTCCCATCGCATTATAATTATCTGCAGTTTGCCTACTATA ACATTGGGAATTATACACAGGCTGTTGAATGTGCCAAGACCTATCTTCTTCTTCCCCAATGACGAGGTGATGA ACCANANTITICCCCTATTATICCACCTATICCTTCGAGAAGAACACACCAGATCCATCGGCCCCCGTGAGAGTGCCA AGGAGTACCGACAGCGAAGCCTACTGGAAAAAGAACTGCTTTTCTTCGCTTATGATGTTTTTTGGAATTCCCTTTG TGGATCCGGATTCATGGACTCCAGAAGAAGTGATTCCCAAGAGATTGCAAGAGAAACAGAAGTCAGAACGGGAAA CAGCCGTACGCATCTCCCAGGAGATTGGGAACCTTATGAAGGAAATCGAGACCCTTGTGGAAGAGAGACCAAGG AGTCACTGGATGTGAGCAGACTGACCCGGGAAGGTGGCCCCCTGCTGTATGAAGGCATCAGTCTCACCATGAACT CCAAACTCCTGAATGGTTCCCAGCGGGTGGTGATGGACGGCGTAATCTCTGACCACGAGTGTCAGGAGCTGCAGA GACTGACCAATGTGGCAGCAACCTCAGGAGATGGCTACCGGGGTCAGACCTCCCCACATACTCCCAATGAAAAGT TCTATGGTGTCACTGTCTTCAAAGCCCTCAAGCTGGGGCAAGAAGGCAAAGTTCCTCTGCAGAGTGCCCACCTGT ACTACAACGTGACGGAGAAGGTGCGGCGCATCATGGAGTCCTACTTCCGCCTGGATACGCCCCTCTACTTTCCT GCGCCATCCTTTACCTAAATGGGGACTTCGATGGCGGAAACTTTTATTTCACTGAACTGGATGCCAAGACCGTGA CAGCTCGAGCGGGTGAGAGCAGCTGGTGCTGTGGTGACCCGTTCCCAGAGCGCCCTTGGTTTGCCTTTCTCTTCC CCAAATCCCATTGCCAGTGGCTGAGACACGAAAGGAGCACTTGGGACACCAGCTCCAACGCCCTGTCATTATGGT CACATTGCCTTGTCCTCCTGGGCCTGCTGTGAACGGGATCCAGGTGGGGAAAGAGGTCAAGACAGGGAGCGATG CTGAGTTCTTGGTTCCCTCCTTGGGCCCCACTTCAGCTGTCCTTTTCCAGAGAGTAGGACCTGCTGGGAAGGAGA TGAGCCTGGGGCCATTAAGGAACCTTCCTTGTCCCCTGGGAAGTAGCAGCTGAGAGATAGCGAGTGTCTGGAGCG CAGCCCAGAAGAGATGGACCTCTCCCAGGAGCAGCCCCTGGATGCCCAGCAGGGTCCCCCGAACCTGCACAAGA GTCTCTCTCAGGCAGTGAATCGAAGCCCAAGGATGAGCTATGACAGCGTCCAGGTCAGACGGATGGGTGACTAGA CCCATGGAGAGGAACTCTTCTGCACTCTGAGCTGGCCAGCCCCTCGGGGCTGCAGAGCAGTGAGCCTACATCTGC CACTCAGCCGAGGGGACCCTGCTCACAGCCTTCTACATGGTGCTACTGCTCTTGGAGTGGACATGACCAGACACC GCACCCCTGGATCTGGCTGAGGGCTCAGGACACAGGCCCAGCCCCCAGGGGCCTCCACAGGCCGCTGCATG

PCT/IIS2003/028547

201/6881 FIGURE 188

TAGTCGCGGGTCCCCGAGTGAGCACGCCAGGGAGCCAGGAGACCAAACGACGGGGGTCGGAGTCAGAGTCGCAGTG GGAGTCCCCGGACCGGAGCACGAGCCTGAGCGGGAGAGCGCCGCTCGCACCCCGTCGCCACCCGCGTACCCGGC TGGGAGGAGCAGTGCTTGGCTCCCTGCAGTTTGGCTACAACACTGGAGTCATCAATGCCCCCCAGAAGGTGATCG AGGAGTTCTACAACCAGACATGGGTCCACCGCTATGGGGAGAGCATCCTGCCCACCACGCTCACCACGCTCTGGT CCCTCTCAGTGGCCATCTTTTCTGTTGGGGGCATGATTGGCTCCTTCTCTGTGGGCCTTTTCGTTAACCGCTTTG GCCGGCGGAATTCAATGCTGATGATGAACCTGCTGGCCTTCGTGTCCGCCGTGCTCATGGGCTTCTCGAAACTGG GCAAGTCCTTTGAGATGCTGATCCTGGGCCGCTTCATCATCGTGTGTACTGCGGCCTGACCACAGGCTTCGTGC CCATGTATGTGGGTGAAGTGTCACCCACAGCCTTTCGTGGGGCCCCTGGGCACCACCAGCTGGGCATCGTCG TCGGCATCCTCATCGCCCAGGTGTTCGGCCTGGACTCCATCATGGGCCAACAAGGACCTGTGGCCCCTGCTGCTGA GCATCATCTCATCCCGGCCCTGCTGCAGTGCATCGTGCTGCCCCTTCTGCCCCGAGAGTCCCCGCTTCCTGCTCA TCAACCGCAACGAGGAGAACCGGGCCAAGAGTGTGCTAAAGAAGCTGCGCGGGACAGCTGACGTGACCCATGACC TGCAGGAGATGAAGGAAGAGTCGGCAGATGATGCGGGAGAAGAAGGTCACCATCCTGGAGCTGTTCCGCTCCC CCGCCTACCGCCAGCCCATCCTCATCGCTGTGGTGCTGCAGCAGCTGTCCCAGCAGCTGTCTGGCATCAACGCTGTCT TCTATTACTCCACGAGCATCTTCGAGAAGGCGGGGGTGCAGCAGCCTGTGTATGCCACCATTGGCTCCGGTATCG TCAACACGGCCTTCACTGTCGTGTCGCTGTTTGTGGTGGAGCGGAGCAGGCCGGCGGACCCTGCACCTCATAGGCC TCGCTGGCATGGCGGGTTGTGCCATACTCATGACCATCGCGCTAGCACTGCTGGAGCAGCTACCCTGGATGTCCT ATCTGAGCATCGTGGCCATCTTTGGCTTTGTGGCCTTCTTTGAAGTGGGTCCTGGCCCCATCCCATGGTTCATCG TGGCTGAACTCTTCAGCCAGGGTCCACGTCCAGCTGCCATTGCCGTTGCAGGCTTCTCCAACTGGACCTCAAATT TCATTGTGGGCATGTGCTCCAGTATGTGGAGCAACTGTGTGGTCCCTACGTCTTCATCATCTTCACTGTGCTCC TGGTTCTGTTCTTCATCTTCACCTACTTCAAAGTTCCTGAGACTAAAGGCCGGACCTTCGATGAGATCGCTTCCG GCTTCCGGCAGGGGGGAGCCAGCCAAAGTGATAAGACACCCGAGGAGCTGTTCCATCCCCTGGGGGCTGATTCCC CCAGAAGAATATTCAGGACTTAACGGCTCCAGGATTTTAACAAAAGCAAGACTGTTGCTCAAATCTATTCAGACA AGCAACAGGTTTTATAATTTTTTTATTACTGATTTTGTTATTTTTATATCAGCCTGAGTCTCCTGTGCCCACATC CCAGGCTTCACCCTGAATGGTTCCATGCCTGAGGGTGGAGACTAAGCCCTGTCGAGACACTTGCCTTCTTCACCC AGCTAATCTGTAGGGCTGGACCTATGTCCTAAGGACACACTAATCGAACTATGAACTACAAAGCTTCTATCCCAG GAGGTGGCTATGGCCACCCGTTCTGCTGGCCTGGATCTCCCCACTCTAGGGGTCAGGCTCCATTAGGATTTGCCC CTTCCCATCTCCTACCCAACCACTCAAATTAATCTTTCTTTACCTGAGACCAGTTGGGAGCACTGGAGTGCA GGGAGGAGGGGAAGGGCCAGTCTGGGCTGCCGGGTTCTAGTCTCCTTTGCACTGAGGGCCACACTATTACCAT GAGAAGAGGGCCTGTGGGAGCCTGCAAACTCACTGCTCAAGAAGACATGGAGACTCCTGCCCTGTTGTGTATAGA TGCAAGATATTTATATATTTTTGGTTGTCAATATTAAATACAGACACTAAGTTATAGTATATCTGGACAAGCC AACTTGTAAATACACCACCTCACTCCTGTTACCTAACCAGATATAAATGGCTGGTTTTTAGAAACATGGTT AACGGCTTAGACTTCGACTCAGGATCCAGTCCCTTACACGTACCTCTCATCAGTGTCCTCTTGCTCAAAAATCTG TTTGATCCCTGTTACCCAGAGAATATATACATTCTTTATCTTGACATTCAAGGCATTTCTATCACATATTTGATA GTTGGTGTTCAAAAAAACACTAGTTTTGTGCCAGCCGTGATGCTCAGGCTTGAAATCGCATTATTTTGAATGTGA AGGGAA

PCT/US2003/028547

202/6881 FIGURE 189

MEPSSKKLTGRLMLAVGGAVLGSLQFGYNTGVINAPQKVIEEFYNQTWVHRYGESILPTTLTTLWSLSVAIFSVG
GMIGSFSVGLEVNRFGRRNSMLMMMLLAFVSAVLMGFSKLGKSFEMLILGRFIIGVYCGLTTGFYPMYVGEVSFT
AFRGALGTHQLGIVVGILIAQVFGLDSIMGNKDLWPLLLSIIFIPALLQCIVLPFCPESPRFLLINRNEENRAK
SVLKKLRGTADVTHDLQEMKEESRGMMREKKVTILELFRSPAYRQFILIAVVLQLSQQLSGINAVFYSTSIFEK
AGVQQPVYATIGSGIVNTAFTVVSLFVVERAGRRTHHLIGLAGMAGCAILMTIALALLEQLPMMSYLSIVAIFGF
VAFFEVGPGPIPWFIVAELFSQGPRPAAIAVAGFSNWTSNFIVGMCFQYVEQLCGPYVFIIFTVLLVLFFIFTYF
KVPETKGRTFDEIASGFRQGGASOSDKTPEELFHPLGADSOV

PCT/IIS2003/028547

FIGURE 190

CACGTCGTTCACGGCCTTCTTCGCCCCCTCTAGCACGACATTGAGGCCTGGCTTCAGAAGCCCTCGGGAAAACGC ATCCTGCAACTCTCTGTCTGTGACAAGGGATTCATCGGATTCCGACTCCGAATCCGAGAGCGGGGGAGTGTCCAT CTCGCCGCACGCACGTCCCACACACGCTACTGCTCAACTTTTGATTGGGACTTCCGCTTCCGGCGGCAAACCATAC TTCCGGTTTGTCGTTGCTATAGGAACCGCTACGGCGTTTGAAAGTGTCCGGGTTGCTTAGGATCCCTACAGGTAG CGCCTCTGGATACATGCGTGGTCTGCTGACCCAGAGAAGGAAACGAAAGCAGAACTGTTTGGCGGGAGATCATGTCA GCCGTGGTAGCTCAGACGCTGCATGTTTTTGGTCTTCGATCCCACGTGGCCAACAATATCTTCTACTTCGATGAA GGCTCAGAGAGAGTCAGGGCATGTTGGCCTTGTCCATCAGTCCCAATCGGCGGTACCTCGCTATCTCTGAGACT TTTGACTTCCAAGTTCAGAAATTTATTAGCATGGCTTTTTCTCCAGACTCCAAATACCTATTGGCTCAGACGTCA CCTCCAGAGTCAAATCTTGTCTACTGGCTGTGGGAAAAACAGAAAGTAATGGCCATTGTTAGAATCGACACTCAG A A CA A CCCTGTCTACCA GGTGAGCTTCAGTCCACAGGATAACACTCAGGTGTGTGTCACTGGAAATGGGATGTTT AAGCTTCTCCGTTTTGCTGAGGGAACCCTGAAGCAAACCAGCTTTCAGAGGGGAGAACCCAAAACTATCTAGCC CACACCTGGGTGGCTGATGACAAGATTGTCGTTGGCACTGACACGGCAAACTCTTCCTCTTTGAATCTGGAGAT CAGCGTTGGGAGACCAGCATAATGGTCAAGGAACCTACCGATGGCTCAAAGAGCCTGGATGTCATTCAGGAATCA GAGAGCCTGATTGAATTTCCACCAGTCAGTTCTCCACTCCCTTCCTATGAACAGATGGTGGCGGCCAGTAGCCAT AGCCAGA TGTCCA TGCCCCAGGTGTTTGCCATTGCAGCCTATTCAAAGGGATTTGCCTGTTCTGCTGGGCCAGGG AGAGTTCTGCTGTTTGAGAAGATGGAAGAAAAGGATTTTTACCGTGAGAGCAGAGAAATCAGGATTCCTGTGGAC CCGCAGAGCAATGATCCAAGTCAGTCTGACAAACAGGACGTTCTCTGCCTGTGCTTCAGCCCCTCAGAGGAAACT CTGGTTGCCAGCACCAGTAAGAACCAACTCTACAGCATCACCATGTCCCTGACAGAGATCAGCAAGGGAGCCTGC TCACTTTGAGTATTTGATGTATCCATTGCACTCAGCACCCATCACCGGTCTAGCTACCTGCATCCGCAAACCCCT TATAGCCACCTGTTCTCTGGATCGATCCATCCGCCTTTGGAATTATGAAACAACACCCTGGAACTATTTAAGGA ATACCAAGAAGAGGCATATTCCATCAGCCTTCATCCATCTGGACACTTCATTGTAGTAGGGTTTGCTGACAAACT ACCCCTCATGAATCTACTCATTGATGATATACGTTCTTTCAAAGAATACTCTGTTAGAGGATGCGGAGAGTGTTC CTTTAGCAATGGAGGTCACCTGTTTGCTGCAGTCAATGGAAATGTGATTCACGTTTACACCACCACGAGCCTAGA GAACATCTCAAGCCTGAAAGGACACACAGGGAAGATTCGCTCAATTGTGTGGAATGCAGATGATAGCAAACTGAT GTCTTGCAGCTACAACTGTGTTACTGTCTCCCCCGATGCCAAAATTATCTTTGCTGTTGGATCAGACCACACCCT CAAGGAGATTGCAGATTCCTTGCCTTCGAGAGATATCGGCGTTTGATGTCACCTACACCGCCATTGTCATCTCGC ATTCTGGACGCATGATGTTTGTGGGCACCTCGGTGGGAACCATTCGTGCCATGAAGTACCCTCTGCCTCTGCAGA AGGAATTCAATGAGTACCAGGCCCATGCCGGTCCTATCACCAAGGTGAGCAGGGCCCTCTCCCCAGGAACCCAGT ATTTATTCATCCATCATTCATTCATCACCATCTATTGACTATGACTATGACTATTGTTTAAACTACTTCCAGGA AAGGGGCCGTTTGGTGGATGCCGTAGCTGCCGTGAGTGTGGGCTGCACTTGACCACAGCTGCCTCCTCCTCCAGA GAATGCCCCAGACTGAAAGGAGCCATAGCCCTGAAGATTGGCCCCTACCTCTCCCTGAGGGTACAAAAGGCCACC CCAGGGGCAATACCATGAGTACACATTTGTAAATTGTCCTTCCATTCACCCTTCTCATAAAGTAGTATCTATGTT CAACAGTCAAAATGTGGAAGCAACCAAGCATCCATCGACAGACGAATGCATAAGCAAAAGATGGTATATCTATAC AATGGAACAATACCCTGCCTAAAAAGGAAGGGAATTCTGCAATGTGCTACCACATGGATGAACCTTGAGGATGTT ATGCTAAATTAAATAAGGCCAACCACAAAAAGATAAGTACAGTGTGATTCCACTTTTAGGAGATACTTGGAGCAG TCAGAATCACAAAGACAGAGTGGTGGTTGGCAGGGGCTGCAGGAAGGGGGAATGAGTGATTGTTTCATAGGT ATAGAGTTTTGGTTTTACAAGACAAAAGGATTATGGGGGTAGTTGGTGGCAATGGCTGCACAACATTACAAATGT ATTTAATAACATGAACTGTACACTTGAAAATGGTTAAGATAGCAAATTTTACAGAATATGTATTTTACGACAATT TTAAAAATGAAATAAAAAAGAATTATCTTGC

PCT/HS2003/028547

FIGURE 191

MSAVVAQTLHVFGLRSHVANNIFYFDEQIIIFPSGNHCVKYNVDQKWQKFIPGSEKSQGMLALSISPNRRYLAIS
ETVQEKPAITIYELSSIPCRKRKVLNNFDPQVQKFISMAFSPDSKYLLAQTSPPESHLVYWLMEKQKVMALVARI
TQNNPVYQVSFSPQDNTQVCVTGNGMFKLLRFAEGTLKQTSFQRGEPQNYLAHTWVADDKIVVGTDTGKLFLFES
GDQRWETSIMVKEPTNGSKSLDVIQESESLIEFPPVSSPLBSYEQMVAASSHSQMSMPQVFAIAMYSKGFACSAG
PGRVLLFEKMEEKDFYRESREITIPVDPQSNDPSQSDKQDVLCLCFSPSEETLVASTSKNQLYSITMSLTEISKG
EPAHFEYLMYPLHSAPITGLATCIRKPLIATCSLDRSIRLWNYETNTLELFKEYQEEAYSISLHPSGHTUVGFA
DKLRILMNLLIDDIRSFKEYSVRGCGECSFSNGGHLFAAVNGNVIHVYTTTSLENISSLKGHTGKSLDCVECR

PCT/HS2003/028547

205/6881 FIGURE 192

GCGATTCGGTGGCACGTGGAGCCACGGCGTGGGAGTAGGGGGCTGAAGGCAGCAGCAGCAGCAGGGCCAGGGCCGCCCT GAAGCAATGTTTGGCAGAATTCAAGCGGGATCTGGAATGGGTTGAAAGGCTCGATGTGACACTGGGTCCGGTACC GGAGA TCGG TGGATC TGAGGCGCCAGCACCTCAGAACAAGGACCAGAAAGCTGTTGATCCAGAAGACGACTTCCA GCGAGAGATGAGTTTCTATCGCCAAGCCCAGGCCGCAGTGCTTGCAGTCTTACCCCGCCTCCATCAGCTCAAAGT CCCTACGAAGCGACCCACTGATTATTTTGCGGAAATGGCCAAATCTGATCTGCAGGTGCAGAAGATTCGACAGAA GCTGCAGACTAAACAGGCTGCCATGGAGAGGTCTGAAAAAGCTAAGCAACTGCGAGCACTTAGGAAATACGGGAA GAAAGGCTTCTCTGATAAACTGGATTTCCTTGAGGGAGATCAGAAACCTCTGGCACAGCGCAAGAAGGCAGGAGG CAAAGGCCAGCAGATGAGGAAGGGGCCCAGTGCTAAACGACGGTATAAAAACCAGAAGTTTGGTTTTTGGTGGAAA GAAGAAAGGCTCAAAGTGGAACACTCGGGAGAGCTATGATGATGTATCTAGCTTCCGGGCCAAGACAGCTCATGG CAGAGGCCTCAAGAGGCCTGGCAAGAAAGGGTCAAATAAGAGACCTGGAAAACGAACAAGAGAAGATGAAGAA CAGAACACACTAAATAGCATCTTTGAATACAAAGAACCAAGAAAAAGGAATGAAGACTCGCAATTTCACGACACA TTGAGTTCAAATTGCCTTCATTTTATGATAAATAATGATTTAACTGAAAA

PCT/US2003/028547

FIGURE 193

MDTPPLSDSESESDESLVTDRELQDAFSRGLLKPGLNVVLEGPKKAVNDVNGLKQCLAEFKRDLEWVERLDVTLG
PVPEIGGSEAPAPQNKDQKAVDPEDDFQREMSFYRQAQAAVLAVLPRLHQLKVPTKRPTDYFAEMAKSDLQVQKI
RQKLQTKQAAMERSEKAKQLRALRKYGKKVQTEVLQKRQQEKAHMMNAIKKYQKGFSDKLDFLEGDQKPLAQRKK
AGAKGQQMRKGPSAKRRYKNQKFGFGGKKKGSKWNTRESYDDVSSFRAKTAHGRGLKRPGKKGSNKRPGKRTREK
MKNRTH

PCT/IIS2003/028547

207/6881 FIGURE 194

CCACGCGTCCGGGCGTAAGCCAGGCGTGTTAAAGCCGGTCGGAACTGCTCCGGAGGGCACGGGCTCCGTAGGCAC CAACTGCAAGGACCCCTCCCCTGCGGGCGCTCCCATGCACAGTTCGCGTTCGAGAGTGACCTGCACTCGCTGC GTTCCAAGGTTCAGACCACTCCTAGCAAACCTGGCGGTGACCGCTATATCCCCCATCGCAGTGCTGCCCAGATGG AGGTGGCCAGCTTCCTCCTGAGCAAGGAGAACCAGTCTGAAAACAGCCAGACGCCCACCAAGAAGGAACATCAGA AAGCCTGGGCTTTGAACCTGAACGGTTTTGATGTAGAGGAAGCCAAGATCCTTCGGCTCAGTGGAAAACCACAAA ATGCGCCAGAGGGTTATCAGAACAGACTGAAAGTACTCTACAGCCAAAAGGCCACTCCTGGCTCCAGCCGGAAGA CCTGCCGTTACATTCCTTCCCTGCCAGACCGTATCCTGGATGCGCCTGAAATCCGAAATGACTATTACCTGAACC TTGTGGATTGGAGTTCTGGGAATGTACTGGCCGTGGCACTGGACAACAGTGTGTACCTGTGGAGTGCAAGCTCTG ACTACTTGGCTGTGGGCACCAGCAGTGCTGAGGTGCAGCTATGGGATGTGCAGCAGCAGAAACGGCTTCGAAATA TGACCAGTCACTCTGCCCGAGTGGGCTCCCTAAGCTGGAACAGCTATATCCTGTCCAGTGGTTCACGTTCTGGCC ACATCCACCACCATGATGTTCGGGTAGCAGAACACCATGTGGCCACACTGAGTGGCCACACGAGGAAGTGTGTG GGCTGCGCTGGGCCCCAGATGGACGACATTTGGCCAGTGGTGGTAATGATAACTTGGTCAATGTGTGGCCTAGTG CTCCTGGAGAGGGTGGCTGGGTTCCTCTGCAGACATTCACCCAGCATCAAGGGGCTGTCAAGGCCGTAGCATGGT CTGGGGCCTGTCTGAGTGCCGTGGATGCCCATTCCCAGGTGTGCTCCATCCTCTGGTCTCCCCATTACAAGGAGC ATGAGACCCTGAGGCTATGGCGCTGTTTTGAGTTGGACCCTGCGCGGCGGCGGGAGCGGGAGAAGGCCAGTGCAG AAAGTCATGTCTCCCTTCATGTTTTTTTTTTTAAAA

PCT/US2003/028547

FIGURE 195

MAQFAFESDLHSLLQLDAPIPNAPPARWQRKAKEAAGPAPSPMRAANRSHSAGRTPGRTFGKSSSKVQTTPSKFG
GDRYIPHRSAAQMEVASFLLSKENGSENSGTPTKKEHQKAMALNLNGFDVEEAKILELSGKPQNAPEGYQMRLU
LYSQKATPGSSRKTCRYIPSLPDRILDAPEIRNDYYLNLDWSSGNYLLAVALDMSVYLWSASSGDILQLLQMEQP
GEYISSVAWIKEGNYLAVGTSSAEVQLMDVQQOKRLRMMTSHSARVGSLSWNSYILSSGSRSGHIHHDVRVAEH
HVATLSGHSOEVCGLRWAPDGRHLASGGNDNLVNVWPSAPCEGGWVPLQTFTQHQGAVKAVAWCPWQSNVLATGG
GTSDRHIRIWNVCSGACLSAVDAHSQVCSILWSPHYKELISGHGFAQNQLVIWKYPTMAKVAELKGHTSRVLSLT
MSPDGATVASAAADETLRLWRCFELDPARRREREKASAAKSSLIHGGIR

PCT/HS2003/028547

FIGURE 196

GGCACGAGGGAACCGTCCGCAGCCGCGGAGCCGGGAGCCCTGCCCAAGTCGGAGCGGCGTCCCCTGCTGAGCCC TCTACTTTGACGTCTACGCCCAGCACCTGGCCTTCTTCAGCCGCTTCAGTGCCCGAGGCCCTGCCCATGCCCTCC ACCCAGCTGCTAGCAGCAGCAGCAGCAGCAGCACTGCTCCCGGCCCAACGCCACCGCCTCTAGCTCCGGGCTCC CTGAGGTCCCCAGTGCCCTGCCCGGTCCCACGGCTCCCACGCTGCCACCCTGTCCTGACTCGCCACCTGGTCTTG CGGGTGCACAGGGAGAACCCAGGCGTGCTCATGGGCGGCCGATACACACCGCCCGACTGCACCCCAGCCCAGACG GTGGCGGTCATCATCCCCTT<u>TAC</u>ACACCGGGAACACCACCTGCGCTACTGGCTCCACTATCTACACCCCATCTTG AGGCGGCAGCGGCTGCGCTACGGCGTCTATGTCATCAACCAGCATGGTGAGGACACCTTCAACCGGGCCAAGCTG CTTAACGTGGGCTTCCTAGAGGCGCTGAAGGAGGATGCCGCCTATGACTGCTTCATCTTCAGCGATGTGGACCTG GTCCCCATGGATGACCGCAACCTATACCGCTGCGGCGACCAACCCCGCCACTTTGCCATTGCCATGGACAAGTTT GGCTTCCGGCTTCCCTATGCTGGCTACTTTGGAGGTGTGTCAGGCCTGAGTAAGGCTCAGTTTCTGAGAATCAAT GGCTTCCCCAATGAGTACTGGGGCTGGGGTGGCGAGGATGATGACATCTTCAACCGGATCTCCCTGACTGGGATG AAGATCTCACGCCCAGACATCCGAATTGGCCGCTACCGCATGATCAAGCACGACCGCGACAAGCATAACGAACCT AACCCTCAGAGGTTTACCAAGATTCAAAACACGAAGCTGACCATGAAGCGGGACGGCATTGGGTCAGTGCGGTAC CAGGTCTTGGAGGTGTCTCGGCAACCACTCTTCACCAATATCACAGTGGACATTGGGCGGCCTCCGTCGTGGCCC TGGCAGCTGCTCTGTGGAGGACCTCCAGGACTGAGACTGGGCTCTGTTTTCCAAGGGTCTTCACTAGGCCCCCTA GGAGTCAACCCTCCTTCCCGACCCCCTCCCCCTAGCCCAGCCCCAGTCACTGTCAGGGTCGGGCCAGCCCCTGCA CTGCCTCGCAGAGTGGCCTGGGCTAGGTCACTCCACCTCTCTGTGCCTCAGTTTCCCCCCCTTGAGTCCCCTAGG GCCTGGAAGGGTGGGAGGTATGTCTAGGGGGCAGTGTCTCTTCCAGGGGGAATTCTCAGCTCTTGGGAACCCCCT TGCTCCCAGGGGAGGGGAAACCTTTTTCATTCAACATTGTAGGGGGCAAGCTTTGGTGCGCCCCTGCTGAGGAG CAGCCCCAGGAGGGGACCAGAGGGGATGCTGTGTCGCTGCCTGGGATCTTGGGGTTGGCCTTTGCATGGGAGGCA GGTGGGGCTTGGATCAGTAAGTCTGGTTCCCGCCTCCCTGTCTGAGAGAGGAGGCAGGAGCCCCAGGGCCGGCTT

PCT/US2003/028547

FIGURE 197

MSRLLGGTLERVCKAVLLLCLLHFLVAVILYFDVYAQHLAFFSRFSARGPAHALHPAASSSSSSSNCSRPNATAS SSGLPEVPSALPGPTAPTLPPCPDSPPGLAGAQGEPRRAHGRPIHTARLHPSPDGGGHHPL

PCT/IIS2003/028547

FIGURE 198

PCT/HS2003/028547

FIGURE 199

OGTODAGO ACACOTGO CATORO CONTRA DE C TAGCAGCAGCAGCAGCAGCAACTGCTCCCGGCCCAACGCCACCGCCTCTAGCTCCGGGCTCCCTGAGGTCCC CAGTGCCCTGCCCGGTCCCACGGCTCCCACGCTGCCACCCTGTCCTGACTCGCCACCTGGTCTTGTGGGCAGACT GCGCTACTGGCTCCACTATCTACACCCCATCTTGAGGCGGCAGCGGCTGCGCTACGGCGTCTATGTCATCAACCA GCATGGTGAGGACACCTTCAACCGGGCCAAGCTGCTTAACGTGGGCTTCCTAGAGGCGCTGAAGGAGGATGCCGC CTATGACTGCTTCATCTTCAGCGATGTGGACCTGGTCCCCATGGATGACCGCAACCTATACCGCTGCGGGGGGACCA ACCCCCCACTTTCCCATTGCCATGGACAAGTTTGGCTTCCGGCTTCCCTATGCTGGCTACTTTTGGAGGTGTGTC AGGCCTGAGTAAGGCTCAGTTTCTGAGAATCAATGGCTTCCCCAATGAGTACTGGGGCTGGGGTGGCGAGGATGA GATCAAGCACGACCGCGACAAGCATAACGAACCTAACCCTCAGAGGTTTACCAAGATTCAAAAACACGAAGCTGAC CATGAAGCGGGACGGCATTGGGTCAGTGCGGTACCAGGTCTTGGAGGTGTCTCGGCAACCACTCTTCACCAATAT CACAGTGGACATTGGGCGGCCTCCGTGGCCCCCTCGGGGCTGACACTAATGGACAGAGGCTCTCGGTGCCGA CTCTGTTTTCCAAGGGTCTTCACTAGGCCCCCTAGCTACACCTGGAAGTTTCAGAACCCACTTTGGGGGGCCTCC TGCCTGGGCAGCCTCTTCAAGTGTGGCCCTCTTTGGAGTCAACCCTCCTTCCCGACCCCCTCCCCTAGCCCAGC $\tt CCCAGTCACTGTCAGGGTCGGGCCAGCCCCTGCACTGCCTCGCAGAGTGGCCTGGGCTAGGTCACTCCACCTCTC$ TGTGCCTCAGTTTCCCCCCCTTGAGTCCCCTAGGGCCTGGAAGGGTGGGAGGTATGTCTAGGGGGCAGTGTCTCT GGGGCAAGCTTTGGTGCGCCCCTGCTGAGGAGCAGCCCCAGGAGGGGACCAGAGGGGATGCTGTCTCGCTGCC $\tt TGGGATCTTGGGGTTGGCCTTTGCATGGGAGGCAGGTGGGGCTTGGATCAGTAAGTCTGGTTCCCGCCTCCCTGT$ CTGAGAGAGGAGCAGGAGCCCCAGGGCCGGCTTGTGTTTGTACATTGCACAGAAACTTGTGTGGGTGCTTTAGT AAAAAACGTGAATGG

PCT/US2003/028547

FIGURE 200

MSRLLGGTLERVCKAVLLLCLLHFLVAVILYFDVYAQHLAFFSRFSARGPAHALHPAASSSSSSSNCSRPNATAS
SSGLBEVPSALPGGTAPTLPPCPDSPPGLVGRLLIEFTSPMPLBERVQRENPGVLMGGRYTPPFDCTPAQTVAVIIF
RRHREHHLRYWLHYLHPILRRQRLRYGVYVINQHGEDTFNRAKLLMVGFLEALKEDAAYDFIFSDVDLVPMDDR
RUYRGGDQPRHFAIAMDKFGFRLPYAGYFGGVSGLSKAQFLRINGFPNEYMGWGGEDDDIFNRISLTGMKISRPD
IRIGRYRMIKHDRDKHNEPNPQRFTKLQNTKLTMKRDGIGSVRYQVLEVSRQPLFTNITVDIGRFPSWPPRG

PCT/US2003/028547

FIGURE 201

GCGGAGAAACAGTAGTTAGGATGGCTGAAGGGGGATACTCACCGGCTGAAGGCCGACTGTGATTCCCCCTACCCCC ACAAGGCGATTTTGACCCCCTGAGGGCTGCTCTAGAGGACTCAGGCCCCGAAGCTGTCCCAGGGAGGTCCCCGCT GCATCCCACCACCCAAGCTGTGCCTCATGGAGTCGATGTTTAGCAGCCCTGCCGAGGCGGCGCTGCAGCGAGAGA CCGGGGTGCCAGGACTGCTTACTCCTCTTCCGGACCTGGACGGGGTGTACGAGCTGGAGCGAGTCGCTGGATTTG TCCGCGACCTGGGGTGTGAACGAGTTGCCTTGCAGTTCCCTGACCAGCTATTGGGAGATGCTGTGGCTGTGCCTG CACGACTGGAGGAGACGACAGGGTCAAAGATGTTCATTCTGGGTGACACAGCCTACGGCAGCTGCTGCGTGGATG CACTGCCGTTGCCTTCGTGCTTCGTCAACGTTCTGTGGCCTTTGGAGCTCTGTGTCAACGCCTTTGAGGCCCACA ACCCAGACCCCAAAGCGCCTGTGGTGCTGAGTGAGCCGGCCTGTGCCCATGCCCTGGAGGCTTTGGCTACTC TCCTGCGCCCACGGTACCTGGACCTGCTAGTCTCCAGCCCAGCTTTTCCCCAACCAGTGGGTTCCCTGAGTCCAG AGCCTATGCCCCTAGAGCGTTTTGGGCGCCGCTTCCCCCTTGCCCCAGGGAGGCGTCTAGAAGAGTATGGTGCCT TCTATGTAGGGGGCTCTAAGGCCAGCCCTGACCCAGACCTTGACCCAGACCTGAGTCGGCTGCTCTTGGGGTGGG CACCAGGTCAACCCTTCTCCTCCTGCTGTCCAGATACAGGGAAGACTCAGGATGAGGGTGCCCGGGCTGGACGGC GTGTAGCCCAACACCGTGAGGCACTGGCCCACTTGCGGAACCTGACTCAGGCTGCCAAGCGTAGCTATGTGT TGGCCCTGGGGCGGCCCACCCCTGCCAAGCTTGCCAACTTCCCTGAGGTGGATGTCTTTTGTGCTATTAGCCTGTC CTCTGGGTGCTCTAGCCCCCAGCTTTCTGGTAGCTTCTTCCAGCCTATACTGGCACCATGTGAGCTGGAAGCTG CCTGCAACCCTGCCTGCCCACCTCCAGGCCTGGCTCCCCACCTCACACATTATGCGGACTTATTGCCTGGCTCTC CCTTCCACGTGGCTCTCCCACCACCTGAGTCAGAGCTGTGGGAAACCCCAGACGTGTCACTCATTACTGGAGATC TCCGACCCCACCTGCCTGGAAGTCATCAAATGATCATGGAAGCTTGGCTCTGACCCCACGGCCCCAGCTGGAGC TGGCTGAGAGCAGTCCTGCAGCCTCATTCCTTAGTTCCCGGAGCTGGCAAGGGCTGGAGCCCCGCCTGGGTCAGA CGCCAGTGACAGA AGCTGTGAGTGGAAGACGAGGGATTGCCATCCCTATGAGGATGAGGGAAGCGGCTGATACC ATGTGGGGCTGGAGACATAGATGGACTTATGAATGGCTGCTAGGACCTTTAGTGCTCCCTGCACCAACCTCCCAT GTCCTGTCCTGGCACTGGCACAAGCTCAGCCCATGCCCAGTAATGCGTGTTGTTTGGCTGATGGAATAAAGGGCT TAGGGACTTCCCTGAGGCCTCTGGACCCATCTGTCTTCCTGAGGGCAGCCCAGGACCTTTGGCCAATCCCAGTTC CCAGGCTGCAGTTGAGGGTCTGTCCTTGTCAAAAGGCAGGTGCTAGACAGTCTAGACCAGGGTTTCTCAAACTCG TACTTGACATTTGGGGCCAGATAATTCTTTGTTGTGGGGCTGTCTGGTGTATGGTAGGGTGCTCAGCAGCATCCC TGGCCTCTGCCCACTAGACATCAGAAGCACTCCCCCAGTTGTGACAACCAAAAATATCTCCAGACCTTGGCAAAT TTCAAGTGTTCAGACAGCCACATGAGGGGACAGTGCAGCTACAGGATATGCCATCATGGCAGAAAGTTCTGTTGG С

PCT/HS2003/028547

FIGURE 202A

CCCTTCCCCTGCAAAACCACTAGGATCGCCCACTGCGACAGCAGGAGCTGAGCCTAAGCCCTGGCGGGGCT TTGGGCTGTAGATTCCTGTCTGACTAAAGGGACCTCAAAAAGGAGGGAAAATGGCTTCTGAGTCTGAAACTCTGA ATCCCAGTGCTAGGATAATGACCTTTTATCCAACTATGGAAGAGTTCCGAAACTTCAGTAGATACATTGCCTACA TTGAATCCCAAGGAGCTCATCGGGCAGGGCTAGCCAAGGTTGTTCCTCCAAAAGAGTGGAAGCCACGAGCATCCT ATGATGACATTGATGATTTGGTCATTCCTGCCCCCATTCAACAGCTGGTGACGGGGCAGTCTGGCCTCTTTACTC AGTACAACATACAGAAGAAAGCCATGACTGTTCGAGAGTTCCGCAAGATAGCCAATAGCGATAAGTACTGTACCC CACGCTATAGTGAGTTTGAAGAGCTCGAGCGGAAATACTGGAAAAATCTTACATTCAATCCTCCAATCTATGGTG CAGATGTGAATGGTACCCTCTATGAAAAGCATGTTGATGAGTGGAATATTGGCCGGCTGAGAACAATCCTGGACT TGGTGGAAAAGGAGTGGGATCACCATTGAGGGTGTGAACACCCCATACCTGTACTTTGGCATGTGGAAGACAT CCTTTGCTTGGCACACTGAAGACATGGACCTCTACAGCATCAACTACCTGCACTTTGGAGAACCAAAGTCCTGGT ACTCTGTTCCACCTGAGCATGGAAAGCGGTTGGAACGCCTCGCCAAAGGCTTTTTCCCAGGAAGTGCTCAAAGCT GTGAGGCATTTCTCCGCCACAAGATGACCCTGATTTCCCCGTTAATGCTGAAGAAATATGGAATTCCCTTTGACA AGGTGACTCAAGAGGCTGGAGAGTTTATGATCACTTTCCCTTATGGTTACCATGCCGGCTTTAACCATGGTTTTA CTGGGAAGGACACACAGTTATTGACCATACTCTGCCCACGCCAGAAGCAGCTGAGTTTCTTAAGGAGAGTGAAC ACCTGAAGACAAGCCTGGCCAAGCACCGAATAGGGACAAAGAGGCACCGAGTTTGTCTTGAAATACCACAGGAGG TGAGTCAGAGTGAGCTCTTCCCCAAGGAGGATCTGAGTTCTGAGCAGTATGAGATGACGGAGTGCCCGGCAGCCC TCGCCCCTGTGAGGCCCACCCATAGCTCTGTGCGGCAAGTTGAGGATGGTCTTACCTTCCCAGATTATTCTGACT CCACTGAAGTCAAATTTGAAGAGCTTAAAAATGTCAAACTAGAAGAGGAGGATGAGGAGGAAGAACAAGAAGCAG CTGCCTTGGATCTTCTGTGAATCCTGCGTCTGTAGGGGGACGCCTTGTCTTCTCAGGCTCCAAAAAAGAAATCAT CTTCTAGCCTGGGCTCTGGCTCTTCACGGGATTCTATCTCTTCTGATTCAGAAACTAGTGAGCCTCTCTCCTGCC GAGCCCAAGGGCAAACGGGAGTTCTCACTGTGCACAGTTATGCCAAAGGGGATGGCAGGGTCACTGTGGGAGAGC CATGCACGAGGAAGAAGGAAGCGCCGCTAGAAGTTTCAGTGAGCGGGAGCTGGCAGAGGTTGCAGATGAATACA TTGTGCTGCAGGAGTGTGTCAGTGATGAGGACATCTGAACAGCTGACCCCTGAGGAAGAGGCTGAGGAGACAG AGGCCTGGGCCAAGCCTCTGAGCCAACTGTGGCAGAACCGACCTCCAAACTTTGAGGCTGAGAAGGAATTCAATG AGACCATGGCCCAACAGGCCCCTCACTGCGCTGTCTGTATGATCTTCCAGACTTATCATCAGGTTGAATTTTGGAG GCTTTAATCAGAACTGTGGAAATGCTTCAGATTTAGCCCCCCAGAAGCAGAGCAGACCAAGCCATTGATTCCAGAAA TGTGCTTCACTTCGACTGCCTGCACCACGGACATCAACCTTTCTACTCCTTATCTTGAGGAGGATGGCACCAGCA TACTCGTTTCCTGCAAGAAGTGCAGCGTCCGGGTCCATGCCAGTTGCTATGGGGTCCCCCCTGCAAAGGCTTCTG AAGACTGGATGTTCTCGGTGTTCAGCCAATGCCCTAGAGGAGGACTGCTGTTTATGCTCATTACGAGGAGGGG CCCTGCAGAGAGCAAATGATGACAGGTGGGTCCACGTTTCATGTGCTGTGGCAATTCTGGAAGCAAGGTTTGTCA ACATTGCAGAAAGAAGTCCGGTGGATGTGAGCAAAATCCCCCTGCCCCGCTTCAAACTGAAATGTATCTTCTGTA AGA AGCGGA GGA A A GA A CTGCTGCTGCTGTGTGCAGTGTTCTCACGGCCGCTGCCCAACTGCCTTCCATGTGA GCTGCGCCCAGGCTGCCGGTGTGATGATGCAGCCTGACGACTGGCCTTTTGTGGTCTTCATTACCTGCTTTCGGC ACAAGATTCCTAATTTGGAGCGTGCCAAGGGGGCCTTGCAAAGCATCACTGCAGGCCAGAAAGTCATTAGCAAGC ATAAGAACGGGCGCTTCTACCAGTGTGAAGTGGTCAGGCTCACCACCGAGACCTTCTATGAAGTCAACTTTGATG ATGGCTCCTTCAGCGACAATCTTTATCCTGAGGACATAGTGAGCCAGGACTGTCTCCAGTTTGGTCCTCCTGCTG AAGGGGAAGTGGTCCAAGTGAGATGGACAGACGGCCAAGTCTATGGAGCCAAGTTTGTGGCCTCCCACCCTATCC AAATGTACCAGGTGGAGTTTGAGGATGGCTCACAACTTGTGGTTAAGAGAGATGATGTATACACACTGGATGAAG AGCTTCCCAAGAGAGTCAAATCTAGACTGTCAGTAGCCTCAGACATGCGCTTCAATGAGATTTTCACAGAGAAAG AGGTTA AGCAAGAAAGAAACGGCAACGAGTTATCAACTCAAGATACCGGGAAGATTATATTGAGCCTGCACTAT CACAGCACAGCAGACATGGAACGCTGAAGTCTCTGAAAGTGAAGTTGTAAAAAAGAAAAGGAATGAAATAACCGAC CCATCATCTTCTCACCCACCCTCATTGCATTCCGCTGTAGTGAAAGGACGAGCCATTTCTGGGCACGTGGCAGCA GTCGCTGATCTCCCAGCTGAGGGGCTGAGCACTGGAATGCTGTGGCTGCACTGGCCCCAGTCCATAGAGGGGTCA

PCT/US2003/028547

FIGURE 202B

PCT/HS2003/028547

FIGURE 203

MASESETLNP SARIMTFYPTMEEPRNFSRYIAYIESQGAHRAGLAKVVPPKEWKPRASYDDIDDLVIPAPIQQLV
TGQSGLFTQYNIQKKAMTVREFRKIANSDKYCTPRYSEFEELERKYWKNLTFNPFIYGADVWGTLYEKHUDEWN
GRLRTILDLVEKESGITIEGVNTPYLYFGMWKTSFAWHTEDMDLYSINYLHFEGBYSKWYSVPPEHGKREBRLAKG
FFPGSAQSCEAFLAHKMTLISPLMLKKYGIPPDKVTQEAGEFMITFPYGYHAGFNHGFNCAESTNFATRRWIEYG
KQAVLCSCRKDMWKISMDVFVRKFQFERYKLWKAGKDNTVIDHTLETTFEAAEFLKESELPPRAGKEEECCEEDME
GVEDGEEGDLKTSLAKHRIGTKRHRVCLEIPQEVSOSSLFPKEDLSSEQYEMTECFAALAPVPRTHASYRQVEDG
SVEDGSEGDLKTSLAKHRIGTKRHRVCLEIPQEVSOSSLFPKEDLSSEQYEMTECFAALAPVPRTHASYRQVEDG
STEPDYSDSTEVKFELKMVKLEEEDEEEQEAAALDLSVNPASVGGRLVFSGSKKKSSSSLGSGSSRDSISSD
ETSSPLSC RAGGGTGVLTVHSYAKGDGRVTVGEPCTRKKGSAARSFSERELAEVAD FYMFSLEENKKSKGRRQPL
SKLPRHHPLVLQECVSDDETSOLTPEEEAETEAAMAKPLSQLWWNPPNFFAEKFENETMAQQAPHCAVCMTFQ
TYHQVEFGGFNQNGGNASDLAPQKQRTKPLIPEMCFTSTGCSTDINLSTPYLEEDGTSILVSCKKCSVRVHASCY
GVEPAKASEDWMCSRCSANALEEDCCLCSLRGGAALQRANDDRWHVSCAVAILEARFVNIAERSPVDVSKKFPLFR
FKLKCTFCKKRKKHTAGCCVQCSHGGFTFAFHVSCAQAAGVFMQPDWFPVVFTICFRHKIPNLERAKGALQSIT
AGQKVISKHKNGRFYQCEVVRLTTETFYEVNFDDGSFSDNLYPEDIVSQDCLQFGPPAEGEVVQVWTDGQVYGA
KFVASRFIGMYQVEFEDGSGLVVKRDDVYTLDEELPKVKSRLSVASDMRFNEIFTEKEVKQEKKRQRVINSRYR

PCT/IIS2003/028547

218/6881 FIGURE 204

AGTTACAGACAGCTGACCATGGAAGCGAATGGGTTGGGACCTCAGGGTTTTCCGGAGCTGAAGAATGACACATTC GAGTTTAGGGAAACCCGGGCTGCCCAGGACTTTTTCAGCACGTGTCGCTCTCCTGAGGCCTGCTGTGAACTGACT CTGCAGCCACTGCGTCGCTTCCCTCTGGATGCTGCCATCATTTTCTCCGACATCCTTGTTGTACCCCAGGCACTG GGCATGGAGGTGACCATGGTACCTGGCAAAGGACCCAGCTTCCCAGAGCCATTAAGAGAAGAGCAGGACCTAGAA CGCCTACGGGATCCAGAAGTGGTAGCCTCTGAGCTAGGCTATGTGTTCCAAGCCATCACCCTTACCCGACAACGA GGCTCAAGCACCATGGCTCAGGCCAAGCGCTGGCTCTATCAGAGACCTCAGGCTAGTCACCAGCTGCTTCGCATC CTCACTGATGCTCTGGTCCCATATCTGGTAGGACAAGTGGTGGCTGGTGCCCAGGCATTGCAGCTGTTTGAGTCC AAGGCCAGGTTGCGGGAGGCAGGCCTGGCACCAGTGCCCATGATCATCTTTGCTAAGGATGGGCATTTTGCCCTG GTGGGGAAGACGGTGACATTGCAGGGCAACCTGGACCCCTGTGCCTTGTATGCATCTGAGGAGGAGATCGGGCAG TTGGTGAAGCAGATGCTGGATGACTTTGGACCACATCGCTACATTGCCAACCTGGGCCATGGGCTTTATCCTGAC ATGGACCCAGAACATGTGGGCGCCCTTTGTGGATGCTGTGCATAAACACTCACGTCTGCTTCGACAGAACTGAGTG TATTGTGTAGTTTTGTTGTGAAAGATTGTGCCCATATCCTCAGTTCTTCTTAGCCTCTGCTCCTTCCCTGGGAA CCCTCTCTATATCCTCTT

PCT/US2003/028547

219/6881 FIGURE 205

MEANGLGPQGFPELKNDTFLRAAWGEETDYTPVWCMRQAGRYLPEFRETRAAQDFFSTCRSPEACCELTLQPLRR
FPLDAAIIFSDILVYPQALGMEVTMVPGKGPSFPEPLREEQDLBRLRDPEVVASELGYVPQAITLTRQRLAGRVP
LIGFAGAPWTLMTYMVEGGGSSTMAQAKRWLYQRPQASHQLLRILIDALVPYLVGQVVAGAQALQLFESHAGHLG
PQLFNKFALPYIRDVAKQVKARLREAGLAPVPMIIFAKDGHFALEELAQAGYEVVGLDWTVAPKKARECVGKTŲT
LQGNLDPCALYASEEEIGGLVKQMLDDFGPHRYIANLGHGLYPDMPEHVGAFYDAVHKHSRLLRQN

PCT/US2003/028547

FIGURE 206

AGCTTTGCCCAGTGGCAGTATCGTAGCCAATGAGGTTTATTCCAGGGGGGATTATTGCTAATTGAAAACTTTTTCC CANTACCCCGCCATGACGACTTGAAATATAGTCGGCATTGGCAATTTTTGACAGTCTCTACGGAGACTGCATGTG TTCACCACTGTACTGAGTGACCAACAGGTGGTGGAGCTGATCCCTGGGGGTGCAGGCATCGTCGTGGGATATGGG GACCGTTCTCGTTTCATCCAACTGGTCCAGAAGGCACGGCTAGAGGAGCAAGGAGCAAGGTGGCAGCTATGCAG GCAGGTCTGCTGAAGGTGGTACCACAGGCTGTGCTGGACTTGCTGACCTGGCAAGAGTTGGAGAAGAAAGTGTGT GGGGATCCAGAGGTCACTGTGGATGCTCTGCGCAAGCTCACCCGGTTTGAGGACTTCGAGCCATCTGACTCGCGG GTGCAGTATTTCTGGGAGGCACTGAACAACTTCACCAACGAGGACCGGAGCCGCTTCCTGCGCTTTGTCACGGGC CGCAGTCGCCTGCCAGCACGGATCTACATCTACCCAGACAAGCTGGGCTACGAGACCACAGACGCGCTGCCCGAG TCTTCCACTTGCTCCAGCACCCTCTTCCTGCCACACTATGCCAGTGCCAAGGTATGCGAGGAGAAGCTCCGCTAT GCGGCCTACAACTGCGTGGCCATCGACACTGACATGAGCCCTTGGGAGGAGTGAGGCGTGCCGCCGGCTGTGGGA CCAGCAAGACTGCACGTGTCCCTCTTGGCCTTGCCCAGGGCGAAGACACCTTCCCTGCCCTGGTTTGGCTGACGT GCTCAGCAAAACCCCATGTGCCCTGCTCCTGTGTGCAGTTGGGGTAGGGGCAGCTGGCATGGTCAGGTAACACTA GGAATCTTCCACAAGCCCAGCACAAGCTGCCAGGCCTGAGCTACTTGAAGGGGGCCATCTAGGTCCCCAACCCAT GGACTTTGCCTCCATTTTCAGCTCCGCCTTTTTTCTCCTATTTTCTCTCTGGCTTTCTTCAGCCATGACTCACAA CTAAAAACATAAAACACTGGAGGTTAGTGGAGGCCCCTCCCCAAGCAGGGAGCCTGGGATGGGCAGGGAGTGATA GCCAAACTCCTTGGTCACCTGCTCCAAGAAGGAAGCAGTAGCTGAGCACCTGCCCTCACATACTGCTCTTTTCCC CTTCCCTGACTCAGAACCCACATCCACTCAATGTGAACTCTACTACCACGACCTCCCCATATTCCTCACTTCTCC ATCACCTCCAGCCTGACTCCCTGTCTGCCCTTTCACCCCCAAGATTTTGCACAGGTTAAGGCCAGTTATGGCCTT TTTGAAATCTGTAATAGCTCCCCTTTCCCCAACTCTAAAGCCTTAAACCTGTTCCTAGAGCTATGCACA

PCT/US2003/028547

FIGURE 207

MEGMDKETFEFKFGKELTFTTVLSDQQVVELIPGGAGIVVGYGDRSRFIQLVQKARLEESKEQVAAMQAGLLKVV PQAVLDLLTWQELEKKVCGDPEVTVDALRKLTRFEDFEPSDSRVQYFWEALNNFTNEDRSRFLRFVTGRSRLPAR IYIYPDKLGYETTDALPESSTCSSTLFLPHYASAKVCEEKLRYAAYNCVAIDTDMSPWEE

PCT/US2003/028547

222/6881 FIGURE 208

CACANTGETGCGCATGANTGCCCTGGCAGATGCTCTCAAGAGCATCAACAATGCCGAAAAGAGGGCAAAAGCCCA
GETGCTTCTTAGGCCATGCTCCAAAGTCATCCTCCAGTTTCTCACTGTGATGATGAAAGAATGGTTACATTGGCGA
ATTTGAAATACACGAGGTATACACAAGGTGGGAAAATTGTTTGATACTCCACAGCAGGCTAAACAAAGTGTGGAGC
GATCAGCCCCAGATTTGATGTGCAACTCAAAGATCTGGAAAAATGGCAGAAAAATCCCTTCCATCCCACCAGTT
TGATTTCATTGTACTGACAACCTCAGCTGCGCATCATGCAGCCATGAAGCAAAAACCAAAACACACAGGAGGGAAAAA
CCAGGGATTCTTTTTCTAGGGATGTAATACATATATTTACAAATAAAATACCCTCAAAGGC

PCT/US2003/028547

FIGURE 209

 $\label{thm:mark} {\tt MVRMNALADALKSINNAEKRGKRQVLLRPCSKVIVQFLTVMMKHGYIGEFEITDDHRAGKIVVNLTGRLNKCGAI\\ {\tt SPRFDVQLKDLEKWQNNLLPSRQFDFIVLTTSAGIMDHEARRKHTGGKIQGFFF}$

PCT/HS2003/028547

224/6881 FIGURE 210

PCT/US2003/028547

225/6881 FIGURE 211

MGI SRONWHKRRKTGGKRKPYHKKRKYELGRPAANTKIGPRRIHTVRVRGGKKYYRALRLDVGNFSWGSECCTRK TRIIDVVYNASNNELVRTKTLVKNCIVLIDSTPYRQWYESHYALPLGRKKGAKLTPEEEEILNKKRSKKIQKKYD ERKKNAKISSLLEEQFQQGKLLACIASRPGQCGRADGYVLEGKELEFYLRKIKARKGK

PCT/US2003/028547

FIGURE 212

ACGCTTGCGCGCGGATTTAAACTGCGGCGGTTTACGCGCGTTAAGACTTCGTAGGGTTAGCGAAATTGAGGTT TCTTGGTATTGCGCGTTTCTCTTCCTTGCTGACTCTCCGAATGGCCATGGACTCGTCGCTTCAGGCCCGCCTGTT TCCCGGTCTCGCTATCAAGATCCAACGCAGTAATGGTTTAATTCACAGTGCCAATGTAAGGACTGTGAACTTGAACTTGAACTTTAACTTGAACTTGAACTTGAACTTTAACTTGAACTTGAACTTTAACTTGAACTTGAACTTTAACTTGAACTTTAACTAACTAACTTAACTTAACTAACTTAACTAACTAACTTAACTTGCAATAAACCCAGAACTCTTACAGCTTCTTCCCTTACATCCGAAGGACAATCTGCCCTTGCAGGAAAATGTAAC AAACTCCCGCAAGCAGTTTTCAGTTCCTCCTGCCCCACTAGGCCTTCCTGCCCTGCAGTGGCTGAAATACCATT GAGGATGGTCAGCGAGGAGATGGAAGACCAAGTCCATTCCATCCGAGGCAGCTCTTCTCCAAACCCTGTGAACTC CTCTGAAATGAGAATGAAGAGAGCTCAGGAGTATGACAGTAGTTTTCCAAACTGGGAATTTGCCCGAATGATTAA AGAATTTCGGGCTACTTTGGAATGTCATCCACTTACTATGACTGATCCTATCGAAGAGCACAGAATATGTGTCTG TCTCCTCTTGGTACATGAACCCAAGTTGAAAGTGGACTTAACAAAGTATCTGGAGAACCAAGCATTCTGCTTTGA CTTTGCATTTGATGAAACAGCTTCGAATGAAGTTGTCTACAGGCTTCACAGCAAGGCCACTGGTACAGACAATCTT TGAAGGTGGAAAAGCAACTTGTTTTGCATATGGCCAGACAGGAAGTGGCAAGACACATACTATGGGCGGAGACCT CTCTGGGAAAGCCCAGAATGCATCCAAAGGGATCTATGCCATGGCCTCCCGGGACGTCTTCCTCCTGAAGAATCA ACCCTGCTACCGGAAGTTGGGCCTGGAAGTCTATGTGACATTCTTCGAGATCTACAATGGGAAGCTGTTTGACCT TCTGGTTAACTCTGCTGATGATGTCATCAAGATGATCGACATGGGCAGCGCCTGCAGAACCTCTGGGCAGACATT TGCCAACTCCAATTCCTCCCGCTCCCACGCGTGCTTCCAAATTATTCTTCGAGCTAAAGGGAGAATGCATGGCAA GTTCTCTTTGGTAGATCTGGCAGGGAATGAGCGAGGCGCGGACACTTCCAGTGCTGACCGGCAGACCCGCATGGA GGGCGCAGAAATCAACAAGAGTCTCTTAGCCCTGAAGGAGTGCATCAGGGCCCTGGGACAGAACAAGGCTCACAC CCCGTTCCGTGAGAGCAAGCTGACACAGGTGCTGAGGGACTCCTTCATTGGGGAGAACTCTAGGACTTGCAGATT GCCACGATCTCACCAGGCATAAGCTCCTGTGAATATACTTTAAACACCCTGAGATATGCAGACAGGGTCAAGGAG CTGAGCCCCCACAGTGGGCCCAGTGGAGAGCAGTTGATTCAAATGGAAACAGAAGAGATGGAAGCCTGCTCTAAC GGGGCGCTGATTCCAGCCAATTTATCCAAGGAAGAGGAGGAACTGTCTTCCCAGATGTCCAGCTTTAACGAAGCC ATGACTCAGATCAGGGAGCTGGAGGAGAAGGCTATGGAAGAGCTCAAGGAGATCATACAGCAAGGACCAGACTGG GCCCAGCAAGCCAAGCATTTCTCAGCCCTGCGAGATGTCATCAAGGCCTTGCGCCTGGCCATGCAGCTGGAAGAG CAGGCTAGCAGACAAATAAGCAGCAAGAAACGGCCCCAGTGACGACTGCAAATAAAAATCTGTTTTGGTTTGACAC CCAGCCTCTTCCCTGGCCCTCCCCAGAGAACTTTGGGTACCTGGTGGGTCTAGGCAGGGTCTGAGCTGGGACAGG TTCTGGTAAATGCCAAGTATGGGGGCATCTGGGCCCAGGGCAGCTGGGGAGGGGGTCAGAGTGACATGGGACACT CTCCCTGGGGTTGTCCTGGCTCTGGGGAGAGAGACGGAGCCTTTAGTACAGCTATCTGCTGGCTCTAAACCTTCT ACGCCTTTGGGCCGAGCACTGAATGTCTTGTACTTTAAAAAAATGTTTCTGAGACCTCTTTCTACTTTACTGTCT AAATAAA

PCT/IIS2003/028547

227/6881. FIGURE 213A

GCTGTCTCTTCCGTGAGGAGCGCAGAGGAGGTCGCGGCGCCGGAGGCCCCAGAAGGCTCGAAGGCCCCGGGGCT GGGGTCGGTGGCTTAGGGAGCCCGTCCGGCCATGGTGGCCGCGGGTGGTGGTTGGCGCGGCTGCGCTGCGCCCG GGGCAGTGCGGAGCCGGGACAGTCGCGGCGCTGACGCCCGGGGCCCCAGCTGCAGATATGAAGCGGAGCCGCTG TTTGCCGCCGCGCGAGCGCCCCCCGGGAGCAGCGCTGGAGGAGCGGACGGCCCCGCGGGCCCCGAGGG CAAGGAGCAGGATGTAGTAACTGGAGTTAGTCCCCTGCTCTTCAGGAAACTCAGTAATCCTGACATATTTTCATC CACTGGAAAAGTTAAACTTCAGCGACAACTGAGTCAGGATGATTGTAAGTTATGGAGAGGAAACCTGGCCAGCTC TCTATCGGGTAAGCAGCTGCTCCCTTTGTCCAGCAGTGTACATAGCAGTGTGGGACAGGTGACTTGGCAGTCGTC AGGAGAAGCATCAAACCTGGTTCGAATGAGAAACCAGTCCCTTGGACAGTCTGCACCTTCTCTTACTGCTGGCCT GAAGGAGTTGAGCCTTCCAAGAAGAGGCAGCTTTTGTCGGACAAGTAACCGCAAGAGCTTGATTGTGACCTCTAG CACATCACCTACACTACCACGGCCACACTCCACGCCACACGGCTAACAGTCCTTTGGACAGCCCCCG GAATTTCTCCAAATGCACCTGCTCACTTTTCTTTTGTTCCTGCCCGTAGGACTGATGGGCGGCGCTGGTCTTT GGCCTCTTTGCCCTCTTCAGGATATGGAACTAACACTCCTAGCTCCACTGTCTCATCATCATCATCTCCTCACAGGA AAAGCTGCATCAGTTGCCTTTCCAGCCTACAGCTGATGAGCTGCACTTTTTGACGAAGCATTTCAGCACAGAGAG CGTACCAGATGAGGAAGGACGCAGTCCCCAGCCATGCGGCCTCGCTCCCGGAGCCTCAGTCCCGGACGATCCCC AGTA TCCTTTGACAGTGA AATA ATA ATGATGA ATCATGTTTACA AAGA AGATTCCCAAAGGCCACCGCACAAAT GGAAGAGCGACTAGCAGAGTTTATTTCCTCCAACACTCCAGACAGCGTGCTGCCCTTGGCAGATGGAGCCCTGAG CTTTATCATCATCAGGTGATTGAGATGGCCCGAGACTGCCTGGATAAATCTCGGAGTGGCCTCATTACATCACA ATACTTCTACGAACTTCAAGATAATTTGGAGAAACTTTTACAAGATGCTCATGAGCGCTCAGAGAGCTCAGAAGT GTTTGACCCTGAAGAGTTCTACCACCTTTTAGAAGCAGCTGAGGGCCACGCCAAAGAGGGGACAAGGGGATTAAATG TGACATTCCCCGCTACATCGTTAGCCAGCTGGGCCTCACCCGGGATCCCCTAGAAGAAATGGCCCAGTTGAGCAG CTGTGACAGTCCTGACACTCCAGAGACAGATGATTCTATTGAGGGCCATGGGGCATCTCTGCCATCTAAAAAGAC ACCCTCTGAAGAGGACTTCGAGACCATTAAGCTCATCAGCAATGGCGCCTATGGGGGCTGTATTTCTGGTGCGCCA CAAGTCCACCGGCAGCGCTTTGCCATGAAGAAGATCAACAAGCAGAACCTGATCCTACGGAACCAGATCCAGCA GGCCTTCGTGGAGCGTGACATACTGACTTTCGCTGAGAACCCCTTTGTGGTCAGCATGTTCTGCTCCTTTGATAC CAAGCGCCACTTGTGCATGGTGATGGAGTACGTTGAAGGGGGAGACTGTGCCACTCTGCTGAAGAATATTGGGGC CCTGCCTGTGGACATGGTGCGTCTATACTTTGCGGAAACTGTGCTGGCCCTGGAGTACTTACACAACTATGGCAT CGTGCACCGTGACCTCAAGCCTGACAACCTCCTAATTACATCCATGGGGCACATCAAGCTCACGGACTTTGGACT GTCCAAAATTGGCCTCATGAGTCTGACAACGAACTTGTATGAGGGTCATATTGAAAAGGATGCCCGGGAATTCCT GGACAAGCAGGTATGCGGGACCCCAGAATACATTGCGCCTGAGGTGATCCTGCGCCAGGGCTATGGGAAGCCAGT GGACTGGTGGGCCATGGGCATTATCCTGTATGAGTTCCTGGTGGGCTGCGTCCCTTTTTTTGGAGATACTCCGGA GGAGCTCTTTGGGCAGGTGATCAGTGATGAGATTGTGTGGCCTGAGGGTGATGAGGCACTGCCCCCAGACGCCCA GGACCTCACCTCCAAACTGCTCCACCAGAACCCTCTGGAGAGACTTGGCACAGGCAGTGCCTATGAGGTGAAGCA GCACCCATTCTTTACTGGTCTGGACTGGACAGGACTTCTCCGCCAGAAGGCTGAATTTATTCCTCAGTTGGAGTC AGAGGATGA TACTAGCTATTTTGACACCCGCTCAGAGCGATACCACCACATGGACTCGGAGGATGAGGAAGAAGT GAGTGAGGATGGCTGCCTTGAGATCCGCCAGTTCTCTTCCTGCTCTCCAAGGTTCAACAAGGTGTACAGCAGCAT CCATTCAGATGGCCTGGCAGGGCTCAAAGGCCGAGACCGGAGCTGGGTGATTGGCTCCCCTGAGATATTACGGAA GCGGCTGTCGGTGTCTGAGTCATCCCACACAGAGAGTGACTCAAGCCCTCCAATGACAGTGCGACGCCGCTGCTC AGGCCTCCTGGATGCGCCTCGGTTCCCGGAGGGCCCTGAGGAGGCCAGCAGCACCCTCAGGAGGCAACCACAGGA GGGTATATGGGTCCTGACACCCCCATCTGGAGAGGGGGTATCTGGGCCTGTCACTGAACACTCAGGGGAGCAGCG GCCAAAGCTGGATGAGGAAGCTGTTGGCCGGAGCAGTGGTTCCAGTCCAGCTATGGAGACCCGAGGCCGTGGGAC CTCACAGCTGGCTGAGGGAGCCACAGCCAAGGCCATCAGTGACCTGGCTGTGCGTAGGGCCCGCCACCGGCTGCT CTCTGGGGACTCAACAGAGAAGCGCACTGCTCGCCCTGTCAACAAGTGATCAAGTCCGCCTCAGCCACAGCCCT CTCACTCCTCATTCCTTCGGAACACCACACCTGCTCCCCGTTGGCCAGCCCCATGTCCCCACATTCTCAGTCGTC CAACCCATCATCCCGGGACTCTTCTCCAAGCAGGGACTTCTTGCCAGCCCTTGGCAGCATGAGGCCTCCCATCAT

PCT/US2003/028547

228/6881 FIGURE 213B

CATCCACCGAGCTGGCAAGAAGTATGGCTTCACCCTGCGGGCCATTCGCGTCTACATGGGTGACTCCGATGTCTA CACCGTGCACCATATGGTGTGGCACGTGGAGGATGGAGGTCCGGCCAGTGAGGCAGGGCTTCGTCAAGGTGACCT CATCACCCATGTCAATGGGGAACCTGTGCATGGCCTGGTGCACACGGAGGTGGTAGAGCTGATCCTGAAGAGTGG A A A C A A GGT GGC CATTTCA A CAACTCCCTTGGAGAA CACATCCATTAAAGTGGGGCCAGCTCGGAAGGGCAGCTA CAAGGCCAAGATGGCCCGAAGGAGCAAGAGGAGCCGCGCAAGGATGGGCAAGAAAAGCAGAAAAAGGAGCTCCCT GTTCCGCAAGATCACCAAGCAAGCATCCCTGCTCCACACCAGCCGCAGCCTTTCTTCCCTTAACCGCTCCTTGTC ATCAGGGGAGAGTGGGCCAGGCTCTCCCACACACACCCCTTTCCCCCCGATCTCCCACTCAAGGCTACCG GGTGACCCCGATGCTGTGCATTCAGTGGGAGGGAATTCATCACAGAGCAGCTCCCCCAGCTCCAGCGTGCCCAG TTCCCCAGCCGGCTCTGGGCACACGCCCAGCTCCCTCCACGGTCTGGCACCCAAGCTCCAACGCCAGTACCG CTCTCCACGGCGCAAGTCAGCAGGCAGCATCCCACTGTCACCACTGGCCCACACCCCTTCTCCCCCACCCCCAAC AGCTTCACCTCAGCGGTCCCCATCGCCCCTGTCTGGCCATGTAGCCCAGGCCTTTCCCACAAAGCTTCACTTGTC ACCTCCCTGGGCAGCAACTCTCACGGCCCAAGAGTGCGGAGCCACCCCGTTCACCACTACTCAAGAGGGTGCA GTCGGCTGAGAAACTGGCAGCAGCACTTGCCGCCTCTGAGAAGAAGCTAGCCACTTCTCGCAAGCACAGCCTTGA CCTGCCCCACTCTGAACTAAAGAAGGAACTGCCGCCCAGGGAAGTGAGCCCTCTGGAGGTAGTTGGAGCCAGGAG TGTGCTGTCTGGCAAGGGGCCCTGCCAGGGAAGGGGGTGCTGCAGCCTGCTCCCTCACGGGCCCTAGGCACCCT CCGGCAGGACCGAGCCGAACGACGGGAGTCGCTGCAGAAGCAAGAAGCCATTCGTGAGGTGGACTCCTCAGAGGA. CGACACCGAGGAAGGCCTGAGAACAGCCAGGGTGCACAGGAGCTGAGCTTGGCACCTCACCCAGAAGTGAGCCA GAGTGTGCCCCTAAAGGAGCAGGAGAGAGTGGGGAAGAGGATCCTTTCCCGTCCAGAGACCCTAGGAGCCTGGG CCCAATGGTCCCAAGCCTATTGACAGGGATCACACTGGGGCCTCCCAGAATGGAAAGTCCCAGTGGTCCCCACAG GAGGCTCGGGAGCCCACAAGCCATTGAGGAGGCTGCCAGCTCCTCCTCAGCAGGCCCCAACCTAGGTCAGTCTGG AGCCACAGACCCCATCCTCCTGAAGGTTGCTGGAAGGCCCAGCACCTCCACACCCAGGCACTAACAGCACTTTC TCCCAGCACTTCGGGACTCACCCCCACCAGCAGTTGCTCTCCTCCCAGCTCCACCTCTGGGAAGCTGAGCATGTG GTCCTGGAAATCCCTTATTGAGGGCCCAGACAGGGCATCCCCAAGCAGAAAGGCAACCATGGCAGGTGGGCTAGC TGCACAAGCAGTGAAAGAGGATCCAGCCCTGAGCATCACCCAAGTGCCTGATGCCTCAGGTGACAGAAGGCAGGA CGTTCCATGCCGAGGCTGCCCCCTCACCCAGAAGTCTGAGCCCAGCCTCAGGAGGGGCCAAGAACCAGGGGGCCCA TCAAAAGCATCGGGATTTGGCATTGGTTCCAGATGAGCTTTTAAAGCAAACATAGCAGTTGTTTGCCATTTCTTG CACTCAGACCTGTGTAATATATGCTCCTGGAAACC

PCT/IIS2003/028547

229/6881 FIGURE 214

PCT/US2003/028547

230/6881 FIGURE 215

MVGEKVEKPDAKEKKPKAKKADVGGKVKKGNLKAKKPKKGKPHCSRNPVLVRGIGRYCRSAMYSRKAMYKRKYSA AKSKVEKKKKEKVLATVTKPVGCDKNGGARVVKLRKMPRYYPTEDVPRKLLSHGKKSFSQHVRP

PCT/IIS2003/028547

231/6881 FIGURE 216

AATCTGCCATTTTCTGTCCCTGAGTGAGTCTCTGGCGTCCCAAATTGCCTGTTTTTCTCGCAGGCTCTATTCCGT TCGCTGGTTCGCCACCTCAGGGGAACGATGGCCATGGAGTCCACAGCCACTGCCGCCGTCGCCGCGGAGCTGGTT TCTGCCGACAAAATTGAAGATGTTCCTGCTCCTTCTACATCTGCAGATAAAGTGGAGAGTCTGGATGTGGATAGT GAAGCTAAGAAACTATTGGGTTTAGGACAGAACATCTGGTGATGGGGGATATTCCAGCAGCTGTCAATGCATTC CAGGAAGCAGCTAGTCTTTTAGGTAAGAAGTATGGAGAGACAGCTAATGAGTGTGGAGAAGCCTTCTTTTTCTAT GGGAAATCACTTCTGGAGTTGGCAAGAATGGAGAATGGTGTTGTGGGAAACGCCTTGGAAGGTGTGCATGTGGAA GAGGAAGGAGGAAAAAACAGAAGATGAATCTCTGGTAGAAAATAATGATAACATAGATGAGGAAGCAAGGGAA A AGCCTGA A CTGA TAAAGA ACA GGACAGTGAAATGGAGAAGGGTGGAAGAGAGATATGGATATAAGTAAATCT GCAGAGGAGCCACAGGAAAAAGTTGACTTGACTCTAGATTGGTTAACTGAAACCTCTGAAGAGGCAAAAGGAGGA GCAGCACCAGAAGGACCGAATGAAGCTGAGGTCACTTCTGGGAAGCCAGAACAGGAAGTACCAGATGCTGAGGAA GAAAAATCAGTTTCTGGAACTGATGTCCAAGAAGAGTGCAGAAAAAAGGAGGTCAGGAGAAGCAGGGACAGGTA ATTGTGAGCATAGAGGAGAAGCCAAAAGAAGTTTCAGAAGAGCAGCCTGTGGTGACTCTAGAAAAAGCAGGGCACT AAGGTAGTTACCTCTGAAAACGAGGCAGGAAAGGCGGTTCTTGAACAACTGGTAGGTCAAGAAGTACCACCTGCT GAAGAGTCACCAGAGGTGACAACAGAGGCTGCAGAGGCCTCAGCTGTAGAGGCTGGATCAGAAGTCTCTGAAAAG CCTGGGCAGGAGGCTCCAGTTCTCCCTAAGGATGGTGCAGTCAATGGACCGTCAGTTGTAGGAGATCAGACTCCT ATTGAACCACAGACTTCTATAGAAAGACTGACAGAAACAAAAGATGGCTCAGGACTAGAGGAGAAGGTCAGGGCA AAGCTGGTTCCTAGTCAGGAGGAGACTAACCTGTCTGTAGAAGAGTCTGAGGCAGCTGGAGATGGGGTTGATACC AAGGTAGCCCAGGGAGCTACTGAGAAATCACCTGAAGACAAAGTTCAGATAGCTGCTAATGAAGAGACACAAGAG AGAGAAGAACAGATGAAAGAGGGTGAAGAAACTGAAGGCTCAGAAGAGGGTGATAAAGAAAATGATAAGACCGAA GAAATGCCAAATGATTCAGTCCTTGAAAACAAGTCTCTTCAAGAAAATGAGGAGGAGGAGATTGGGAACCTAGAG GCCCAGGCACATCTTAAACTCGGAGAAGTTAGTGTTGAATCTGAAAACTATGTGCAAGCTGTGGAGGAGTTCCAG TCCTGCCTTAACCTGCAGGAACAGTACCTGGAAGCCCACGACCGTCTCCTTGCAGAGACCCACTACCAGCTGGGC TTGGCTTATGGGTACACTCTCAGTATGATGAGGCAGTGGCACAGTTCAGCAAATCTATTGAAGTCATTGAGAAC CTA A AGGA ACTGCTACCCGA A ATTA GA GA GA GA AGA TAGA AGA TGCA AAGGAGTCTC AGCGTAGTGGGAATGTA GCT GAACTGGCTCTGAAAGCTACTCTGGTGGAGAGTTCTACTTCAGGTTTCACTCCTGGTGGAGGAGGCTCTTCAGTC TCCATGATTGCCAGTAGAAAGCCAACAGACGGTGCTTCCTCATCAAATTGTGTGACTGATATTTCCCACCTTGTC AACGGAGGCAGTGGGGATGCTGTCCCCAGTGGAAATGAAGTTTCGGAAAACATGGAGGAGGAGGATGAAATCAG GCTGAAAGCCGGGCAGCAGTGGAGGGGACAGTGGAGGCTGGAGCTACAGTTGAAAGCACTGCATGTTAAGAGGGG GCACAGCCCTCCTCCCAAGGGAAAGTGTTTTTGTATATAATGTATTTTTTCACTTTTTGGAGGATTCTTTTTGTAT AACTTCAATAAAGATTGTAAGCAAAGGTTGAGGCTTTGATGGTTTTTTTCTTAATTATTGGCTGAATCTGCCTTG GAGCACTGCTGGTTTTATATATTAGCCAAAGGTTTTGTTCTGGCCTTCTGTACTGATCTGTTCCTGATCCTAA TTCCTATCTGTCTAACGTGGAGGTGATCAAGTGTGGCTGTAGGCCTTTGTTTTCCAATGGTGCTATATTCTGTTT TCAAACACTTCACTGAACCCAGCTGTCTTGCAAACTTTCAGTGGTGCTGTCCCTGGATGGGGGCTACAAAAACAA GAATTGGTGAAGATCTTGCTCTTCAGTGCTGAAAATGGATGATGGACTTTGGCTGTGAGCCAGGCCTAGGATGGT TCTTGTCCTATATCCACCTAGTCTTCACCTGGGGCTATAATTCTGTCCTGGAAAAAGAACTCTGAAAACCTGGGT CAGGGGAATGATTCCTAAGGAAAACGGTCTGCATTTGAGCTCTGGTTTGAAAGTAGCCAAGGGGACTGATGGTGG ACACTCC AGATGTGGTTGGAAGCATATGTGGGGAGGCTGGCTGGTTGAGTTTTGTTATTTTCTGTATAGAAAGGT TGAGATATATCAACACTTGGAATTGTTACCCATCTGCAGAATTGACTTCTCAAATAAAGATGCTAAAAAATCT

PCT/IIS2003/028547

232/6881 FIGURE 217

MAMESTATAAVAAELVSADKIEDVPAPSTSADKVESLDVDSEAKKLLGLGQKHLVMGDIPAAVNAFQEAASLLGK
KYGETANECGEAFFFYGKSLLELARMENGVLGMALEGVHVEEEEGEKTEDESLVENNDNIDEEAREELREGVYDA
MGEKEEAKKTEDKSLLAKPETDKEQDSEMEKGGREDMDISKSAEEPQEKVDLTLDWLTETSEEAKGGAPPEGPNEA
EVTSGKPEGEVPDAEEEKSVSCTDVGECREKGGGEKGGEVIVSIEEKPKEVSEEQPVVTLEKQGTAVEVEAESL
DPTVKPVDVGGDEPEEKVVISENEAGKAVLEQLVGQEVPPAEESPEVTTEAALASAVEAGSEVSEKPGGEAPVLP
KDGAVNGPSVVGDOTFIEPGTSIERLTETKDGSGLEEKVRAKLVPSQEETKLSVEESEAAGDGVDTKVAQGATEK
SPEDKVQIAANEETGEREEQMKEGEETEGSEEDKENDKTEEMPNDSVLENKSLGENEEEZIGNLELAMDMLDLA
KIIFKRGETKEAQLYAAQAHLKLGEVSVESENYVQAVEEFQSCLNLQEQYLEAHDRLLAETHYQLGLAYGYNSQY
DEAVAQFSKSIEVIENNMAVLNEGVKEAEGSSAEVKKEIEELKELDETREKIEDAKESGRSGNVAELALKATLV
ESSTISGFTPGGGGSSVSMIASKRYTDGASSSNCVTDISHLVRKKKKPEEESPRKDDAKKAKQEPEVNGGSGDAVP
SGNEVSEMMEEEAENQAESRAAVEGTVEAGATVESTAC

PCT/IIS2003/028547

233/6881 FIGURE: 218

AGCCAGAAATGTGAAGTGCTAGCTGAAGGATGAGCAGCAGCTAGCCAGGCAAAGGGGGCAATGGCGGCTTCCTGT GTTCTACTGCACACTGGGCAGAAGATGCCTCTGATTGGTCTGGGTACCTGGAAGAGTGAGCCTGGTCAGGTAAAA ATTGGGGAGGCCCTGAAGGAGGACGTGGGACCAGGCAAGGCGGTGCCTCGGGAGGAGCTGTTTGTGACATCCAAG CTGTGGAACACCAAGCACCACCCGAGGATGTGGAGCCTGCCCTCCGGAAGACTCTGGCTGACCTCCAGCTGGAG TATCTGGACCTGTACCTGATGCACTGGCCTTATGCCTTTGAGCGGGGAGACAACCCCTTCCCCAAGAATGCTGAT GGGACTATATGCTACGACTCCACCCACTACAAGGAGACTTTGGAAGGCTCTGGAGGCACTGGTGGCTAAGGGGCTG GTGCAGGCGCTGGGCCTGTCCAACTTCAACAGTCGGCAGATTGATGACATACTCAGTGTGGCCTCCGTGCGTCCA GCTGTCTTGCAGGTGGAATGCCACCCATACTTGGCTCAAAATGAGCTAATTGCCCACTGCCAAGCACGTGGCTTG GAGGTAACTGCTTATAGCCCTTTGGGCTCCTCTGATCGTGCATGGCGTGATCCTGATGAGCCTGTCCTGCTGGAG GAACCAGTAGTCCTGGCATTGGCTGAAAAGTATGGCCGATCTCCAGCTCAGATCTTGCTCAGGTGGCAGGTCCAG CGGAAAGTGATCTGCATCCCCAAAAGTATCACTCCTTCTCGAATCCTTCAGAACATCAAGGTGTTTGACTTCACC TTTAGCCCAGAAGAGATGAAGCAGCTAAATGCCCTGAACAAAAATTGGAGATATATTGTGCCTATGCTTACGGTG GATGGGAAGAGAGTCCCAAGGGATGCAGGGCATCCTCTGTACCCCTTTAATGACCCGTAC<u>TGA</u>GACCACAGCTTC TTGGCCTCCCTTCCAGCTCTGCAGCTAATGAGGTCCTGCCACAACGGAAAGAGGGAGTTAATAAAGCCATTGGAG CATCCAT

PCT/US2003/028547

FIGURE 219

MAASCVLLHTGQKMPLIGLGTWKSEPGQVKAAVKYALSVGYRHIDCAAIYGNEPEIGEALKEDVGPGKAVPREEL FVTSKLWNTKHHPEDVEPALRKTLADLQLEYLDLYLMHWPYAFERGDNFFPKNADGTICYDSTHYKETWKALEAL VAKGLVQALGLSNFNSRQIDDILSVASVRPAVLQVECHPYLAQNELIAHCQARGLEVTAYSPLGSSDRAWNDPDE FVLLEEPVVLALAEKYGRSPAQILLRWQVQRKVICIPKSITPSRILQNIKVFDFTFSPEEMKQLNALNKNWRYIV PMLTVDGKRYPRDAGHPLYPFNDPY

PCT/HS2003/028547

235/6881 FIGURE 220

PCT/US2003/028547

236/6881 FIGURE 221

MSSGNAKIGHPAPNFKATAVMPDGQFKDISLSDYKGKYVVFFFYPLDFTFVCPTEIIAFSDRAEEFKKLNCQVIG ASVDSHFCHLAWVNTPKKQGGLGPMNIFLVSDPKRTIAQDYGVLKADEGISFRGLFIIDDKGILRQITVNDLPVG RSVDETLRLVQAFQFTDKHGEVCPAGWKPGSDTIKPDVQKSKEYFSKQK

PCT/HS2003/028547

FIGURE 222

TCAGGGGTCGGCGGTGACTTCTTTCCGGAAGAAAGCGAGGAACGCGCTCTGCGGGGTGAGCCGGACTCCCCAAC TCCGGACGATCAGCCCAGGACTGAGAGCCCCGAAGTCCCCAACCACAGTAAGCGGCCCCAGAAGGACAAGTCTA GGTCGCCGTCCAGAGCGCC<u>ATG</u>GCCGCGCCCCTTCGTTTGTGCCACATCGCCTTCCACGTGCCCGGCGGCA GCCCCTAGCCCGGAACCTGCAGCGCCTCTTCGGCTTCCAGCCCCTGGCTTCGCGGGAGGTGGACGGCTGGCGGCA GCTAGCCCTGCGCAGCGGCGACGCGGTCTTTTTGGTGAACGAGGGCGCAGGGTCTGGAGAGCCGCTGTACGGCCT GGATCCGCGTCACGCCGTGCCCAGCGCCACAAACCTGTGCTTCGACGTGGCGGACGCCGGCGCTGCAACCCGGGA GCTGGCAGCGCTGGGCTGCAGCGTGCCTGTCCCTCCCGTTCGCGTGCGGGACGCGCAGGGTGCCGCCACTTACGC CGTGGTCAGCTCGCCTGCCGGCATCCTCAGCCTGACCTTGCTGGAGCGCGCTGGCTACCGCGGACCCTTCCTACC CCCCGGCAGCTCCCCACACTTTTGCGCTGGTTCCACGACTGCCTGGGCTTTTGCCACTTGCCGCTGAGCCCAGG TGAGGATCCCGAGCTGGGCCTCGAAATGACAGCAGGGTTTGGGCTTGGGGGACTGAGGCTTACAGCCCTGCAGGC CCAGCCGGGCAGCATTGTCCCCACTCTTGTTCTGGCTGAGTCCCTTCCGGGGGGCGACGACACGACAGGACCAGGT GGAGCAGTTCCTGGCCCGGCACAAGGGGCCCAGGCCTGCAGCACGTGGGGCTGTATACGCCTAACATTGTGGAGGC CACTGAGGGGGTGGCAACTGCTGGAGGCCAGTTCCTGGCTCCCCCTGGGGCATACTACCAGCAGCCAGGAAAGGA CAAGTTTCTGCTTCAGGTCTTCACCAAGTCCCTTTTTACTGAGGACACTTTCTTCCTGGAGCTGATTCAGAGGCA ${\tt GGGGGCCACTGGCTTTGGTCAGGGCAACATCAGAGCTCTGTGGCAGTCCGTACAGGAGCAATCTGCCAGGAGCCA}$ AACATCTGCAGGAGGCCCAACTAGTGAAAGGCTTTGCCTCCGGGGGGCAGGTGTGACTTCCATTTCATCAGTGCC TGCCAGAAGCTGTGTCTCTCATTGGGCTCCAAAGAGGTGGGATTTTTTAAAACTAAAACATTTCTTATATACAGT

PCT/US2003/028547

238/6881 FIGURE 223

MAAPALRICHIAFHVPAGQPLARNIQRIFGFQPLASREVDGWRQLALRSGDAVFLVNEGAGSGEPLYGLDPRHAV PSATNICFDVADAGAATRELAALGCSVPVPPVRVRDAQGAATVAVVSSPAGIISITILIERAGYRGFFIPGFREVS SAFGFGWYSRVDHITLACTPGSSSTILRWFHDCLGFCRLPLSSGEDPELGLEMTAGFGLGGIRLTALQAQPGSIV PTLVLAESLPGATTRQDQVEQFLARHKGPGLQHVGLYTPNIVEATEGVATAGGQFLAPFGAYYQQPGKERQIRAA GHBPHLIARQGILLDGDKGKFILQVFTKSIFTEDTFFLELIQRQGATGFGQGNIRALWQSVQEQSARSQEA

PCT/US2003/028547

239/6881 FIGURE 224

PCT/US2003/028547

FIGURE 225

 ${\tt MGLEDEQKMLTESGDPEEEEEEEELVDPLTTVREQCEQLEKCVKARERLELCDERVSSRSHTEEDCTEELFDFL}\\ {\tt HARDHCVARKLFNNLK}$

PCT/IIS2003/028547

FIGURE 226

CGCGCCTGAGGAGGAGGAGGAGGCGGGGGGGGCCATGCCTGCTGTGGTGGTGGCGGCTGCGGGTGGCGCGGGACC GGCGGTCCTGCAGGTGGCCGGTCTCTACCGGGGCCTGTGCGCGGTGCGCAGCCGCGCCCTGGGCCTGGGGCTCGT GGTCGGGGCCGAGGCCCAGGCCAACCCTTTCTACGACCGCTACCGCGACAAGATCCAGCTGCTGCGCAG GTCAGACCCAGCTGCTTTTGAGTCCCGCCTGGAGAAACGCAGTGAATTTCGGAAGCAGCCAGTGGGGCATTCCAG GCAAGGTGATTTTATCAAATGTGTGGAACAGAAGACAGATGCCTTGGGGAAACAGTCTGTGAACAGAGGATTCAC TAAGGACAAGACTCTCAGTTCAATCTTTAACATTGAGATGGTAAAAGAAAAACTGCAGAAGAAATAAAACAGAT TTGGCAGCAATATTTTGCAGCAAAAGATACAGTCTACGCAGTTATTCCTGCAGAAAAGTTTGATTTGATCTGGAA CCGGGCTCAGTCCTGTCCAACATTTCTATGTGCTCTGCCAAGAAGGGAAGGTTATGAGTTTTTTGTAGGACAATG TTTATATCACTATCCTGAACTTAAGGAAGAAAAGGGCATAGTGCTGATGACTGCAGAAATGGATTCCACATTTCT GAATGTTGCTGAGGCACAGTGCATCGCCAACCAAGTTCAGCTCTTCTACGCTACTGATCGGAAAGAGACCTACGG ACTTGGAGCAGAACTGAAATGTGCCCAGAACCAAAATAAGACT**TAG**AACTGTACAGGTTGGCCCTTCACCTAGTT GACTCAGCCCTCGATAGTCTAGAGCCCACCCCCTCCTCAGGAACTCAAGAGCTCAGCATTTATAATGAGCAGTTG GTAATGAGTTGCCCTATGTGCTTGTCGCAAGCAGTCACAGAGATGAGCCCTATTACTTGATATTCAGGAACAAAG GTACCTGAACATTCTGATAATTATCTCAGCATACTTGAGGTTTCCTTTTTTAAGTGTTCGAGGTTATAACAAGAG ACAGCCAAGGACCTACAAGACAGTTGACTTGATTTTGCACAGTGTAACAGCGCAGTTGCATTCTGGCCACTTTGA CCTTATAGCTCCCAAATGATGAGTTTGTCATCTTTATGAACTCATGACAGGATAATAAGCTTGAAGACCTGCTGT AGTTAGATATGGGCTTTAATCCTTCCCAGGCACCAGTCAGCTGAACAAAAGCATAAGCCAAACATCCTGTTTAAA $\tt CTGTAGAATAACCAGATATTCCCATCAGGTTAAAGACTTCATCTAGATGATGCCCCCCAGAGATGCCTTTAGTGT$ AAGTAGCTGGCTTGGGGTATCAGCAAATTTCAGGTATAGTTAGATAAACAGGTACAGGGCCTGCATACTATTAAA ATAAATAAAATTCTTTTGTAAGGAG

PCT/US2003/028547

FIGURE 227

MAAVVVAAAGGAGPAVLQVAGLYRGLCAVRSRALGLGLVSPAQLRVFPVRPGSGRPEGGADSSGVGAEAELQANP FYDRYRDKIQLLRRSDPAAFESRLEKRSEFRKQPVGHSRQGDFIKCVEQKTDALGKQSVARGFTKDKTLSSIFNI EMVKEKTAEEIKQIWQQYFAAKDTVYAVIPAEKFDLIWNRAQSCPTFLCALPRREGYEFFVGQWTGTELHFTALI NIQTRGEAAASQLILYHYPELKEEKGIVLMTAEMDSTFLNVAEAQCIANQVQLFYATDRKETYGLVETFNLRPNE FKYMSVIAELEQSGLGAELKCAQNQNKT

PCT/US2003/028547

FIGURE 228

ACCTGCCCTCATCCTGGCCCGCGACTGTAAGACCGGACCCACATCCAGACCAATCTTCCTGTCCGGCTGCTGCGA CGCGGTCCGCAGGTTGCAGGCGGCCGGCGGCGCCCTGAAGGTTACCGAGTGCATGACGGCCTCAGTTCCCGCG GTGGCGGCGACGGTCGCAGGAGGTGCCGTCTGCCTCCCAGGTGCGCGCTTCGCTCCCGGAGCCGCGGAACTCGGT $\tt CGCGCCATGGCGTCCAACATGGACCGGCAGATGATCCTGGCGGATTTTCAGGCATGTACTGGCATTGAAAACATT$ GACGAAGCTATTACATTGCTTGAACAAAATAATTGGGACTTAGTGGCAGCTATCAATGGTGTAATACCACAGGAA AATGGCATTCTACAAAGTGAATATGGAGGTGAGACCATACCAGGACCTGCATTTAATCCAGCAAGTCATCCAGCT TCAGCTCCTACTTCCTCTTCTTCAGCGTTTCGACCTGTAATGCCATCCAGGCAGATTGTAGAAAGGCAACCT GAGATTAAACAGATTCTAGAAAATGAACTTCAGATACCTGTGTCCAAAATGCTGTTAAAAAGGCTGGAAGACGGGA GATGTGGAAGACAGTACGGTCCTAAAATCTCTACACTTGCCAAAAAAACAACAGTCTTTATGTCCTTACACCAGAT TTGCCACCACCTTCATCATCTAGTCATGCTGGTGCCCTGCAGGAGTCATTAAATCAAAACTTCATGCTGATCATC ${\tt ACCCACCGAGAAGTCCAGCGGGAGTACAACCTGAACTTCTCAGGAAGCAGTACTATTCAAGAGGTAAAGAGAAAT}$ GTGTATGACCTTACAAGTATCCCCGTTCGCCACCAATTATGGGAGGGCTGGCCAACTTCTGCTACAGACGACTCA ATGTGTCTTGCTGAATCAGGGCTCTCTTATCCCTGCCATCGACTTACAGTGGGAAGAAGATCTTCACCTGCACAG ACCCGGGAACAGTCGGAAGAACAAATCACCGATGTTCATATGGTTAGTGATAGCGATGGAGATGACTTTGAAGAT GCTACAGAATTTGGGGTGGATGATGGAGAAGTATTTGGCATGGCGTCATCTGCCTTGAGAAAATCTCCAATGATG CCAGAAAACGCAGAAAATGAAGGAGATGCCTTATTACAATTTACAGCAGAGTTTTCTTCAAGATATGGTGATTGC CATCCTGTATTTTTTATTGGCTCATTAGAAGCTGCTTTTCAAGAGGCCTTCTATGTGAAAGCCCGAGATAGAAAG TCCATTGTTTCTTATCTGAGTCAAAATTTTATAACCTGGGCTTGGGATCTGACAAAGGACTCCAACAGAGCAAGA TTTCTCACTATGTGCAATAGACACTTTGGCAGTGTTGTGGCACAAACCATTCGGACTCAAAAAACGGATCAGTTT CCGCTTTTCCTGATTATTATGGGAAAGCGATCATCTAATGAAGTGTTGAATGTGATACAAGGGAACACAACAGTA GATGAGTTAATGATGAGACTCATGGCTGCAATGGAGATCTTCACAGCCCAACAACAGGAAGATATAAAGGACGAG GCAAAGAGGGAAGCTCACGAGAGAGAGATGGCAGAACAGTTTCGTTTGGAGCAGATTCGCAAAGAACAAGAAGA GAACGTGAGGCCATCCGGCTGTCCTTAGAGCAAGCCCTGCCTCCTGAGCCAAAGGAAGAAAATGCTGAGCCTGTG AGCAAACTGCGGATCCGGACCCCCAGTGGCGAGTTCTTGGAGCGGCGTTTCCTGGCCAGCAACAAGCTCCAGATT GTCTTTGATTTTGTAGCTTCCAAAGGATTTCCATGGGATGAGTACAAGTTACTGAGCACCTTTCCTAGGAGAGAC GTAACTCAACTGGACCCAAATAAATCATTATTGGAGGTAAAGTTGTTCCCTCAAGAAACCCTTTTCCTTGAAGCA AAAGAGTAAACACGGCCCAGCGGTGGAACCAGCCATTCCTTGACAAGCCAGCAGCCTGCGTCAGGAGAAGGGCTC CTCGCCAACCCACCCACACGCTCGTCTCACTCAATTCAATGTCACACTTCTGCCTCTTGCAAAATTGCTGGAAAA AGTAATAATAAATATAGCTACTTAAAAAAAAAAAAA

PCT/IIS2003/028547

FIGURE 229

 $\tt CTCTGCCGAGCCTCCTTAAAACTCTGCCGTTAAAATGGGGGCGGGTTTTTCAACTCAAAAAGCGCTCAATTTTTT$ TCTTTTCAAAAAAGCTGATGAGGTCGGAAAAAAGGGAGAAGAAACCGGCACCCTCTCTGAGAGGCAACAGAAGC AGCAATTGTTTCAGCGAAAAAAGCAGCAAGGGAGGGAGTGAAGGAAAAAAAGCAAAAAAAGGGGGCGACACGCAAGT GCCTGTAGGGGTGAAAGGAGCAGGGACCGGCGATCTAGGGGGGGATCAGCTACAAAAGAAACTGTCACTGGGAGC GCAAAGGGGCACAGGCCGGGGACCGCGAGAGGTGGCAAAGTGGCACCGGGCCGCGAGGCTGCTGAGCGCTCGCCG AGACGGCGACCGGACTGCCCCGGAACTGCGGCGACTCTCCCTACTCAGAACTTGGCCTACGTTTCCCAGGA GCCTACAGCAGAAAGCCTGAACGAGCTCGGTCGTAGGCGGGAAGTTCCCGGGGGGGCTGCCCAGTGCAGCCGCAA GAGTCCCGGGACCTGGCGGGGCCGGCATGACGGGCTTCTCGGGGGGCCCGCCACGCCCGGCAGCCTCCGGAGAC GCGCGCCGAGCCCGGCTCCCACGGCCTCTGAGGCTCGGCGGGGCTGCCGGCCTGCCGGGCCTCCGGAGCT TTCCTGAGCGGCATTAGCCCACGGCTTGGCCCGGACGCGACCAAAGGCTCTTCTGGAGAAGCCCAGAGCACTGGG CAATCGTTACGACCTGTAACTTGAGGGCCACCGAACTGCTACTCCCGTTCGCCTTTGGCGATCATCTTTTAACCC TCCGGAGCACGTCAGCATCCAGCCACCGCGGCGCTCTCCCAGCAGCGAGGACCCAGGACTATCCCTTCGGCGAG ACGGATGGAAACCGAGCCCCCTGGAGGACCTGCCCCTGCAGTTCTGCCTCACACGGCTCAAGTCACCACCGTGAA ACTTACTAGTTTGTTGCAAAATAATGTAAACGTCAATGCACAAAATGGATTTGGAAGGACTGCGCTGCAGGTTAT GAAACTTGGAAATCCCGAGATTGCCAGGAGACTGCTACTTAGAGGTGCTAATCCCGATTTGAAAGACCGAACTGG TGTTAACATCGAGGATAATGAAGGGAACCTGCCCTTGCACTTGGCTGCCAAAGAAGGCCACCTCCGGGTGGTGGA GTTCCTGGTGAAGCACACGGCCAGCAATGTGGGGGCATCGGAACCATAAGGGGGACACCGCCTGTGATTTGGCCAG GCTCTATGGGAGGAATGAGGTTGTTAGCCTGATGCAGGCAAACGGGGCTGGGGGAGCCACAAATCTTCAA<u>TAA</u>AC GTGGGGAGGCTCCCCCACGTTGCCTCTACTTTATCAATTAACTGAGTAGCTCCTCCTGACTTTTAATGTCATTTG TTAAAATACAGTTCTGTCATATGTTAAGCAGCTAAATTTTCTGAAACTGCATAAGTGAAAATCTTACAACAGGCT TATGAATATATTTAAGCAACATCTTTTTAACCTGCAAAATCTGTTCTAACATGTAATTGCAGATAACTTTGACTT TCTTCTGAATATTTTATCTTTCCTTGGCTTTTCCCTTGCTTCCCCTTTTGCCAATCTCAACACCCAAGTTGAAGA AAAA

PCT/US2003/028547

245/6881 FIGURE 230

MAEPWGNELASAAARGDLEQLTSLLQNNVNVNAQNGFGRTALQVMKLGNPEIARRLLLRGANPDLKDRIGFAVIH
DAARAGFLDTILGTLLEFQADVNIEDNEGNLPLHLAAKEGHLRVVEFLVKHTASNVGHRNHKGDTACDLARLYGRN
EVVSLMQANGAGGATNLO

PCT/HS2003/028547

FIGURE 231

PCT/IIS2003/028547

FIGURE 232

MGNCGGFRGGFGSGIRGRGRSRRRGRGRGRGRGRAGGKAEDKEWMPVIKLGCLVKDMKIKSLEEIYLFSLPIKESEI IDFFLGASLKDEVLKIMPVQTQTRAGQRTRFKAFVAIGDYNGHVGLGVKCSKEVATAIHGAIILAKLSIVPVRRG YMGNKIGKPHTVPCKVTGRCGSALVHLIPVPRGTGIVSAPVPKKLLMMAGIDDCCTSAWGCTATLGNFAKATFDA ISKTYSYLTPDLWKETVFKSPDQEFTDHLIKAHARVSVQRTQAPAVATT

PCT/US2003/028547

FIGURE 233

PCT/US2003/028547

249/6881 FIGURE 234

MSKSESLKEPEQLQKLLTGGLSIEATNESLRSHFEQWGTLTDCVVLRDPNTKCSRGFGFVTYATVEEVDAATNAR PHKVDGRVVETKRAVSREDSQRPGAHLTVKKFGKWEVIEIMTDHGSGKKRDFAFVTFDDHDSVDKTVIQKYHIVN GHNCEVRKALSKQEMASASSSQRGRTGSLMPKAQCLAFEPSMTGSQLSCKAMLLTAYDCLLFCACQVFHLTPLLS LSKPIQSSGEL

PCT/IIS2003/028547

250/6881 FIGURE 235

CGGTCCCGCACTGGTGCAGCCATGTCCTCTTCCCCGTGGGAGCCTGCGACCCTGCGCCGGGTGTTCGTGGTGGG GTTGGCATGACCAAGTTTGTGAAGCCTGGAGCTGAGAATTCAAGAGACTACCCTGACTTGGCAGAAGAAGCAGGC AAGAAGGCTTTAGCTGATGCACAGATCCCTTATTCAGCAGTGGACCAGGCATGTGTTGGCTATGTTTTTGGTGAC TCTACCTGTGGGCAGAGGGCTATCTATCACAGTTTGGGAATGACTGGAATTCCTATAATCAATGTCAACAATAAC TGTGCTACTGGTTCTACTGCTTTGTTTATGGCCCGCCAGCTGATTCAGGGTGGTGTGGCAGAATGTGTCTTGGCT CTTGGGTTTGAGAAGATGAGTAAGGGAAGCCTTGGAATAAAATTTTCAGATAGAACCATTCCCACTGATAAGCAT GTTGACCTCCTGATCAATAAGTATGGATTGTCTGCTCACCCAGTTGCTCCTCAGATGTTTGGGTATGCTGGAAAA AATAACCCGTATTCCCAGTTCCAAGATGAATACAGTTTAGATGAAGTGATGGCATCTAAAGAAGTTTTTGATTTT TTGACTATCTTACAATGTTGTCCCACTTCAGATGGTGCTGCAGCAGCAATTTTGGCCAGTGAAGCATTTGTACAG AAGTATGGCCTGCAATCCAAAGCTGTGGAAATTTTGGCACAAGAAATGATGACTGATTTGCCAAGCTCGTTTGAA GAAAAAAGCATTATTAAAATGGTTGGCTTTGATATGAGTAAAGAAGCTGCAAGAAAATGCTATGAGAAATCTGGC CTGACACCAAATGATATTGACGTAATAGAACTTCACGATTGCTTTTCTACCAACGAACTCCTGACTTATGAAGCA CTCGGACTCTGTCCAGAAGGACAAGGTGCAACGCTGGTTGATAGAGGAGATAATACATATGGAGGAAAGTGGGTC ATAAATCCTAGTGGTGGACTGATTTCAAAGGGACACCCACTAGGCGCTACAGGTCTTGCTCAGTGTGCAGAACTC TGCTGGCAGCTGAGAGGGGAAGCCGGAAAGAGGCCAAGTTCCTGGTGCAAAGGTGGCTCTGCAGCATAATTTAGGC ATTGGAGGAGCTGTGGTTGTAACACTCTACAAGATGGGTTTTCCGGAAGCCGCCAGTTCTTTTAGAACTCATCAA ATTGAAGCTGTTCCAACCAGCTCTGCAAGTGATGGATTTAAGGCAAATCTTGTTTTTAAGGAGATTGAGAAGAAA CTTGAAGAGGAAGGGGAACAGTTTGTGAAGAAAATCGGTGGTATTTTTGCCTTCAAGGTGAAAGATGGCCCTGGG GGTAAAGAGGCCACCTGGGTGGTGGATGTGAAGAATGGCAAAGGATCAGTGCTTCCTAACTCAGATAAGAAGGCT GACTGCACAATCACAATGGCTGACTCAGACTTCCTGGCTTTAATGACTGGTAAAATGAATCCTCAGTCGGCCTTC TTTCAAGGCAAATTGAAAATCACTGGCAACATGGGTCTCGCTATGAAGTTACAAAATCTTCAGCTTCAGCCAGGC TTTTATTGTCAGAATTTAGACTGAAACTACACATTGGCAAATAGCGTGGATAGGATTTGTTTCTTAATGGGTGTG ACCAATCCTGTTTTTCCTATGCTCTGGGTGAATAGAGCCTGATGGTATACTACTGCTTTGCGGAATTGCATACAA CTGTGCATTACAAAGTTAATATGGTAATTATGGTCTGGGGTAAAATTGAGTTTCAGAATAAAATTAGGAACAGTA AAATCCAAAGAACTATGTAAACAAAAAAGCTTTTGTTTTGCTTACAAAGTATATTTAAGGATTATTCTGCTGAAG ATTCAGTTTAAGAGTTTTCCTTGGGAGAACTAAGTAAGAAACACAATGCCAACAGCTGGCCAGTAATTAGTGTTG TGCACTTCATGTCATTAATCAATTTCTCAATAGTTCTTAAAATTAGTGAGATTAAAAAATCTAAAAATTTTGCATT TCATGCTATCAGAAACAGTATTTTCTTCCCAAATCAAAATAAAAGAAATATGATCAGAGCTTGAACACAGGCTTA TTTTTAAAATAAAAATATTTTTAACATGGGTTTCCTTATTGAAAAATCAGTGTATTAGTCATAAAACACCATCAT TAAGAATAATTGAACAATAAAGTTTGCTTTCAGATGCAGTTTTCAAATTATAATCTCATTTCAATTTATAACGTT CTCAGTCCTTTGTTATAATTTTCCTTTTTCATGTAAGTTTAATTATCTGCATTTATCTTTTTCCTAGTTTTTCT AATACTAATGTTATTTCTTAAAATTCAGTGAGATATAGGATAAAATAATGCTTTGAGAAGAATGTTTAATAGAAA ATTAAAATAACTTTTTCTGGCA

PCT/HS2003/028547

FIGURE 236

MSSSPWEPATLRRVFVVGVGMTKFVKPGAENSRDYPDLAEEAGKKALADAQIPYSAVDQACVGYVFGDSTCGQRA
IYHSLGMTGIPINVNNNCATGSTALFMARQLIQGGVAECVLALGFEKMSKGSLGIKFSDRTIPTDKHVDLINK
YGLSAHPVAPQMFGYAGKEHMEKYGTKIEHFAKIGWKNHKHSVNNPYSQFQDEYSLDEVMASKEVFDFLTILQCC
PTSDGAAAAILASEAFVQKYGLQSKAVBILAQEMMTDLPSSFEEKSIIKMVGFDMSKEAARKCYEKSGLFNDID
VIELHDCFSTNELLTYEALGLCPEGQGATLVDRGDNTYGGKWVINPSGGLISKGHPLGATGLAQCAELCWQLRGE
AGKRQVPGAKVALQHNIGIGGAVVVTLYKMGFPEAASSFRTHQIEAVPTSSASDGFKANLVFKEIEKKLEEEGEQ
FVKKIGGIFAFKVKDGPGGKEATWVVDVKNGKGSVLPNSDKKADCTITMADSDFLALMTGKMNPQSAFFQGKLKI
TGMMGLAWKLQNLQLOFGNAKL

PCT/US2003/028547

252/6881 FIGURE 237

GGCCCTGCGCGCGAACATGGCGGGGTCCAGGTGGAGGTCTTGAGGCTATCAGATCGGTATGGCATTGGCGTCC GGGCCCGCAAGGCGGCGCTAGCTGGCTCCGGGCAGCTCGGCCTTGGGGGCCTTCGGGGCCCCGAGACGCGGGGCCG TATGAGTGGGGCGTGCGCTCCACGCGGAAGTCGGAGCCTCCTCCCCTGGATAGGGTGTACGAGATCCCTGGACTG GGCTACAAGGACCCAAGGTTCTACCGCTCGCCCCCTCTTCACGAGCATCCGCTGTACAAAGACCAGGCCTGCTAT ATCTTTCACCACCGTTGCCGCCTTCTCGAGGGTGTAAAGCAGGCCCTCTGGCTCACCAAGACCAAGTTAATAGAA GGCCTTCCCGAGAAAGTGCTTAGCCTTGTTGATGATCCAAGGAACCACATAGAGAACCAAGACGAGTGCGTTCTG GTGGACAACCTAATACAGCTGTGTAAATCTCAGATTCTCAAGCATCCTTCTCTGGCCAGGAGGATCTGTGTCCAA AACTCCACGTTTTCTGCTACCTGGAACCGAGAGTCTCTTCTCCTTCAAGTCCGTGGTTCTGGTGGAGCCCGACTG AGCACTAAGGATCCTCTGCCCACCATCGCCTCCAGAGAGGAGATTGAAGCTACTAAGAATCATGTTCTAGAGACC $\tt TTCTACCCCATATCACCCATCATCGATCTTCATGAATGCAATATTTATGATGTGAAAAATGACACAGGATTCCAGATTCA$ AATGATGCCAAGGTCTTGGAGCAGCCCGTGGTGGTGCAGAGCGTGGGCACGGATGGACGTGTCTTCCATTTCCTA $\tt GTGTTTCAACTGAATACCACAGACCTGGACTGTAACGAGGGTGTCAAGAATTTGGCCTGGGTGGACTCAGACCAG$ $\tt CTCCTCTATCAGCATTTTTGGTGTCTCCCAGTGATCAAAAAGAGAGTGGTTGTGGAACCTGTTGGGCCAGTTGGT$ TTCAAGCCAGAGACATTCAGAAAGTTTTTAGCTCTATATTTGCATGGTGCTGCGTGAGCGGAGGACCCCTCTGAA CTGCTCTCGCTGACAATAAAGAGCCCTTGCGTTGC

PCT/US2003/028547

FIGURE 238

MALASGPARRALAGSGQLGLGGFGAPRRGAYEWGVRSTRKSEPPPLDRVYEIPGLEPITFAGKMHFVFWLARPIF PPWDRGYKDPRFYRSPPLHEHPLYKDQACVIFHHRCRLLEGVKQALWLIKTKLLEGLPEKVISLVDDPRNHIENQ DECVLNNV1SHARLWGTIEBEIPRETYCFGVIVONLIQLGKSGILKHPSLARRICVQNSTFSATWNRESILLQVRGS GGARLSTKDPLPTIASREEIEATKNHVLETFYPISPIIDLHECNIYDVKNDTGFQEGYPYPYPHTLYLLDKANLR PHRLQPDQLRAKMILFAFGSALAGARLLYGNDAKVLEQPVVVQSVGTDGRVFHFLVFQLNTTDLDCNEGVKNLAW VDSDOLLXOHFWCLPPUKKRVVVYEPVGFWFETFRFKFLALYLHGGA

PCT/US2003/028547

254/6881 FIGURE 239

GCGAGGAGAGCGCCAGCGAGCGAGAGAGCGAGCGAGCGCCGGGGAGGGGCCGGGAGCGAGCGCAGCTCGGGAG AGCCGGAGCGGTAGCGGCGGCGGCGGCGGCGGCGAGGCTCGGCGCCCTCTTCCCTGCAAACCATGTTTGCCA AAGGCAAAGGCTCGGCGGTGCCCTCGGATGGGCAGGCTCGGGAAAAGTTAGCTTTATACGTCTACGAATATTTAC AACCGCCTGGGTTTTTGCACTCGTGGTGGTGTTTTTTTGGGACCTTTACTGTGCAGCTCCTGAAAGGAGAGACA CTTGTGAACATTCAAGTGAAGCAAAAGCCTTTCATGATTATAGTGCAGCAGCTGCCCCGAGCCCCGTGCTTGGCA CCTCGCCGCACGCACACCCCCCCCCCCCCCACAATCCTAGCAGCATGATGGGACCCCACAGTCAGCCTCCGGGAGGAG TTCCTGGGACACGCCATTGCTGCCCAATTCTATGGATCCCACACGACAACAAGGCCACCCCAACATGGGAGGAT GACCACCACCCAACTCCCTCGGCCCGCCATGCCCGGGATTAACATGGGCCCGGGAGCTGGCAGACCCTGGCCCA ATCCTAACAGTGCTAACTCAATTCCATACTCCTCATCACCTGGTACCTATGTGGGACCCCCTGGTGGTGGCG GTCCTCCAGGAACACCCATTATGCCCAGTCCCGCAGATTCAACAAATTCCAGTGACAACATCTACACAATGATTA ATCCAGTGCCGCCTGGAGGCAGCCGGTCCAACTTCCCGATGGGTCCCGGCTCGGACGGTCCGATGGGCGGCATGG GTGGCATGGAGCCACCACATGAATGGATCATTAGGGTCAGGCGACATAGACGGACTTCCAAAAAATTCTCCTA ACAACATAAGTGGCATTAGCAATCCTCCAGGCACCCCTCGAGATGACGGCGAGCTAGGAGGGAACTTCCTCCACT CAGGCATTGCAGGCGGGAAGATGCCAGAAATTATGCAAGAAGTGAGGTGTCATTATCCAGGAGCTGGTGGGGAGG GCATCTCCCTGCTCCCCTCAACCCCCTCCCACCCCATCCACGCCCCTACCTTTCCCAATTTTAGTTTCATGCAA

PCT/US2003/028547

255/6881 FIGURE 240

MFAKGKGSAVPSDGQAREKLALYVYEYLLHVGAQKSAQTFLSEIRWEKNITLGEPPGFLHSWWCVFWDLYCAAPE
RRDTCEHSSEAKAFHDYSAAAAPSPVLGN1PPNDGMPGGP1PPGFFCGPPGSDPSPHAQPPPHNPSSMMGPHSQP
PGGVPGTQPLLPHNMDPTRQQGHPNMGGSMQRMMPPRGMGPGPQNYGSGMRPPPNSLGPAMPGINMGPGAGR
PWPNPNSANSIPYSSSSPGTYVGPPGGGGPPGTPIMPSPADSTMSSDNIYTMINPVPPGGSRSNFPPMGPGSDGPM
GGMGGMEPHHNGSLGSGDIDGLPKNSPNNISGISNPFGTPRDDGELGGNFLHSFQNDNYSPSMTMSV

PCT/US2003/028547

256/6881 FIGURE 241

CCCCGCTCGCGGCTGGATTTTGACAACCAGAAGGTGTACGCCGTGTACCGGGGCCCGGAGGAATTGGGCGCCGGG CCCGAGAGCCCCCGCGCGCCCCCCGCGACTGGGGGGGGCTGTTGCTCCACAAGGCCCAGATCCTGCCCTGCCACA GAAGACAAATCTGACCTTGAAAACAGTGTGATGCAGAAGAAAATAAAAAATCCCCAAGCTTTCTCTTAATCATGTA GAAGAAGATGGAGAGGTTAAAGATTATGGGGAAGAAGATTTACAGCTTAGACACATCAAGGATTGTCTGGGGAAA TATTGATCTGCAGTCCAAGAAAATCCCAGCTGCCCTTGCCTGAACTGATTCTCGTTGTCCTACACAGAGACCTGA GGGGCGGAAGCCGAGCGAAGTGGCGCACAAGAGCATCGAGGCAGTGGTGGCTCGGCTAGAGAAGCAGAACGGCCT GAGCCTGGGCCATAGCACGTGTCCGGAAGAGGTCTTCGTGGAGGCCTCGCCAGGCACAGAGGACATGGACAGTCT AGAAGATGCTGTGGTGCCCCGGGCTCTGTATGAGGAGCTGCTGCGCAACTACCAGCAGCAACAGGAAGAGAGTGCG CCACCTCCAGCAGGAGCTGGAGCGGACTCGGAGGCAGCTGGTACAACAGGCCCAAGAAGCTCAAGGAGTACGGGGC ACTTGTGTCTGAAATGAAGGAGCTCCGTGACCTTAACCGGAGGCTCCAGGACGTGCTGCTCCTGAGGCTTGCCAG CGGTCCCGCCATTGATCTGGAAAAAGTAAAGTCAGAATGTCTCGAGCCCGAGCCGGAGTTACGGAGCACTTTCAG TGAGGAAGCAAATACGTCGTCCTATTACCCCGCTCCTGCGCCTGTCATGGACAAGTATATCCTAGACAATGGCAA GGTCCATCTGGGAAGCGGGATTTGGGTTGATGAGGAGAAATGGCACCAGCTACAAGTAACCCAAGGAGATTCCAA GTACACGAAGAACTTGGCAGTTATGATTTGGGGAACAGATGTTCTGAAAAACAGAAGCGTCACAGGCGTCGCCAC AAAAAAAAAGAAAGATGCAGTCCCTAAACCACCCCTCTCGCCTCGCAAACTAAGCATCGTCAGAGAGTGTTTGTA TGACAGAATAGCACAAGAAACTGTGGATGAAACTGAAATTGCACAGAGACTCTCCAAAGTCAACAAGTACATCTG TGAAAAAATCATGGATATCAATAAATCCTGTAAAAATGAAGAACGAAGGGAAGCAAAATACAATTTGCAA<u>TAA</u>AC TTTGGATTTTTCAT

PCT/IIS2003/028547

257/6881 FIGURE 242

MDSLEDAVUPRALYEELLRNYQQQQEEMRHLQQELERTRRQLVQQAKKLKEYGALVSEMKELRDLNRRLQDVLLL RLGSGPAIDLEKWKSECLEPEPELRSTFSEEANTSSYYPAPAPVMDKYILDMGKVHLGSGIWVDEEKWHQLQVTQ GDSKYTKNLAVMIWGIDVLKNRSVTGVATKKKKDAVPKPPLSPRKLSIVRECLYDRIAQETVDETEIAQRLSKVN KYICEKIMDINKSCKNEERREAKYNLQ

PCT/US2003/028547

258/6881 FIGURE 243

CCTTTCGTTGCCTGATCGCCGCCATCATGGGTCGTATGCGTGCTCCTGAGAAGGGCCTGTCCCAGTCGGCTTTAC
CCTATCGACGCAGCTTCCCCACTTGGTTGAAGTTGACATCTGACGACGTGAAGGAGCAGATTTACAAACTGGCCA
AGAAGGGCCTTACTCCTTCACAGATCGGTGTAATCGTGAGAGAAATCACATGGTGTTGCACAAGTACGTTTTGTGA
CAGGCAAATCTCTACCATTTAATTAAGAAAGCAGTTGCTGTTCAAAGCATCTTGAGAGGAAACGGAAAGGATAAGGA
TGCTAAAATTCCATCTGATTGAGAGCCCAGATTCACCGTTTG

PCT/US2003/028547

259/6881 FIGURE 244

PCT/IIS2003/028547

260/6881 FIGURE 245

AGAAGATGCTTCAAATTCAACCCGAGAAGGATATCATTGTAGAGTTTATCAAAAATGGAGATTTCAAGTATGTCC ATGACTATCGAAAAATCAAGAGCCAGAACCGAAATGGGGAGTTTGAATTGATGCATGTTGATGAGTTTATTGATG AACTATTGCACAGTGAGAGAGTCTGTGATATCATTCTGCCCCGACTACAGAAACGCTATGTATTAGAGGAAGCTG AGCAACTGGAGCCTCGAGTTAGTGCTCTGGAAGAGGACATGGATGATGTGGAGTCCAGTGAAGAGGAAGAAGAAGA AGGATGAGAAGTTGGAAAGAGTGCCATCACCTGATCACCGCGGAGAAGCTACCGAGACTTGGACAAGCCCCGTC GCTCTCCCACACTGCGCTACAGGAGGAGTAGGAGCCGGTCTCCCAGAAGGCGGAGTCGATCTCCCAAAAGGAGAAA GCCCCTCCCCTCGCCGAGAAAGGCATCGGAGCAAGAGTCCAAGACGTCACCGCAGCAGGTCCCGAGATCGGCGGC ACAGATCCCGTTCCAAGTCCCCAGGTCATCACCGTAGTCACAGACACAGGAGCCACTCAAAGTCTCCCGAAAGGT CTAAGAAGAGCCACAAGAAGAGCCGGAGAGGGAATGAGTAATGGACTCAGTTTGGTTTTAGTCCACATGGCCTCC TGTGGATATAAGGATATCTGTATGTGGAAGGATTAAGATCTCCCCCAGGCAGCTATAAGAATATTTTAGTTTTTT TCTTATCAAGTTTCTCAACCTTTATTTTTAATGAAGGAGGTGCTGAGTTTTGTATCTTTTTAATCATAATCAACA TCAGTTTTTGACCCAACTAACCTTGACTGTATTCAAACTTATGAGAGTATAAAGGATCTGGAGGTTGGGGATATG ACTGACAAGGAAAGGCTGTGGCCACCTGATGACCCTTTCCCTTTTTATTAAACCGGACACACCTGTTTCCCATTT CGCTGTAGTTTAGTTTTTGGTTTGTGGTTGGAACTGCTTTGAGAATCCTGGGATTTGTGCTGCTGCTGTTAT TCAAAGATCAAAGGAGTAAAACATAGTTGCTCCTAACTTTTTTCCAGCAGCAGCAAGTGGTAATAAACATGAAAA CTGGTTTGTAGCAGTTTTGAAAGAATAGAATGCATTCAAATGTAAGGCTGCTTCTGGATCATTAAAGCCAGTTTC ATCAAACAGTTCAACAGAGAGCAGCACTTAATACCCTTTATACAGCCCATTTTTTCATAGTTTCATTTGTTCTTG CCCACAAGCTTGAAATCCAGGTTAAGGTATCCAGCCTTTATCATATAAGCATTGACATTATCCAGGCCTAGTCAG TAGCAGTAGGGTAACGGGATTGAAAAAGATTTGATGGAGAGGAAAGTATCTAATATTAGTCATGGTTTTGACCTA AATTGCTAGACAGTCGTGCCATTCACAAAGTCAGAAAATACAGCAGGAAGAGACAGCTTTTAGAGGGGCAGAGAA TTAGAGGATGGTGGTAGTAATGAAAAAGATGCATTCAGTTTAACAAGTTTAATTTGAGACAGCTATGGTATAGCT AAAAACAAAAGCCCATAAAGTTGGAGATAGGGACCAGAGTTTAACATAGCGATCTAGGCCAGAATTGACAATGTT AGGCAACACCAACACAGGAAGAAATAGAAGTCACCTATTGAAAACTGGAATGGCCCATTCAGAAAGACAGGAGAA CATCGATAATCAAGAGATTATTAAGATCTTTGCTAGAAGAGTTCCTTTACCTGTACTTAACTCCCTTAAAAAAGAG AAAAGTGATGGAATGACTTCTGCAACTGTAGTCCCAGCAGGAACTGTGAAGACCAGCTGCCCTGCAGGATCCAGT TTTTCTTGGGAGGTTGTATCTGGTCATAAGGTAAACATTCTATATATTCTATGCCTGCTCTAGAATTGAAAGACT TCAGCAGTATTAAAGCATTTTTTAATCTT

PCT/US2003/028547

261/6881 FIGURE 246

MLQIQPEKDIIVEFIKNGDFKYVRMLGALYMRLTGTAIDCYKYLEPLYNDYRKIKSQNRNGEFELMHVDEFIDEL LHSERVCDIILPRLQKRYVLEEAEQLEPRVSALEEDMDDVESSEEEEEDEKLERVPSPDHRRRSYRDLDKPRRS PTLRYRRSRSRSPRRRSRSPKRRSPSPRRERHRSKSPRRHRSRSRDRRHRSRSKSPGHHRSHRHRSHSKSPERSK KSHKKSRRGNE

PCT/US2003/028547

262/6881 FIGURE 247

GTTCGGGCCAGATGGCGTCCATCATGGAAGGGCCCGCTGAGCAAATGGACTAACGTGATGAAGGGCTGGCAGTACC GTTGGTTCGTGCTGGACTACAATGCAGGACTGCTCCTACTACACGTCCAAGGACAAAATGATGAGAGGCTCTC GCAGAGGATGTGTTAGACTCAGAGGAGCTGTGATTGGTATAGACGATGAGGACGACAGCACCTTCACAATAACTG TTGATCAGAAAACCTTCCATTTCCAGGCCCGTGATGCTGATGAGCGAGAAGTGGATCCATGCCTTAGAAGAAA CAATTCTTCGACATACTCTCCAGCTTCAAGGTTTGGATTCAGGATTTGTTCCTAGTGTCCAAGATTTTGATAAGA GCAAAGAAGATGAACAGAGAAAGAAAATTGAAACTCTCAAAGAGACAACAAATAGCATGGTAGAATCAATTAAAC ACTGCATTGTGTTGCTGCAGATTGCCAAAGACCAGAGTAATGCGGAGAAGCACGCAGATGGAATGATAAGTACTA TTAATCCCGTAGATGCAATATATCAACCTAGTCCTTTGGAACCTGTGATCAGCACAATGCCTTCCCAGACTGTGT TACCTCCAGAACCTGTTCAGTTGTGTAAGTCAGAGCAGCGTCCATCTTCCCTACCAGTTGGACCTGTTTGGCTA CCTTGGGACATCATCAGACTCCTACACCAAATAGTACAGGCAGTGGCCATTCACCACCGAGTAGCAGTCTCACTT CTCCAAGCCACGTGAACTTGTCTCCAAATACAGTCCCAGAGTTCTCTTACTCCAGCAGTGAAGATGAATTTTATG ATGCTGATGAATTCCATCAAAGTGGCTCATCCCCAAAGCGCTTAATAGATTCTTCTGGATCTGCCTCAGTCCTGA CACACAGCAGCTCGGGAAATAGTCTAAAACGCCCAGATACCACAGAATCACTTAATTCTTCCTTGTCCAATGGAA CAAGTGATGCTGACCTGTTTGATTCACATGATGACAGAGATGATGATGCGGAGGCAGGGTCTGTGGAGGAGCACA AGAGCGTTATCATGCATCTCTTGTCGCAGGTTAGACTTGGAATGGATCTTACTAAGGTAGTTCTTCCAACGTTTA TTCTTGAAAGAAGATCTCTTTTAGAAATGTATGCAGACTTTTTTGCACATCCGGACCTGTTTGTGAGCATTAGTG GATCAGTTGCCAAAAAGCCATACAATCCCATTTTGGGCGAGATTTTTCAGTGTCATTGGACATTACCAAATGATA CTGAAGAGAACACAGAACTAGTTTCAGAAGGACCAGTTCCCTGGGTTTCCAAAAACAGTGTAACATTTGTGGCTG AGCAGGTTTCCCATCATCCACCCATTTCAGCCTTTTATGCTGAGTGTTTTAACAAGAAGATACAATTCAATGCTC ATATCTGGACCAAATCAAAATTCCTTGGGATGTCAATTGGGGTGCACAACATAGGGCAGGGCTGTGTCTCATGTC TAGACTATGATGAACATTACATTCTCACATTCCCCAATGGCTATGGAAGGTCTATCCTCACAGTGCCCTGGGTGG AATTAGGAGGAGAATGCAATATTAATTGTTCCAAAACAGGCTATAGTGCAAATATCATCTTCCACACTAAACCCT TCTATGGGGGCAAGAAGCACAGAATTACTGCCGAGATTTTTTCTCCAAATGACAAGAAGTCTTTTTGCTCAAATG AAGGGGAATGGAATGGTGTGATGTATGCAAAATATGCAACAGGGGAAAATACAGTCTTTGTAGATACCAAGAAGT TGCCTATAATCAAGAAGAAGTGAGGAAGTTGGAAGATCAGAACGAGTATGAATCCCGCAGCCTTTGGAAGGATG CAGAAGCCCGAGAAAGGAAGGAGAAGGAAATTCAGTGGGAGACAAGGTTATTTCATGAAGATGGAGAATGCTGGG TTTATGATGAACCATTACTGAAACGTCTTGGTGCTGCCAAGCAT<u>TAG</u>GTTGGAAGATGCAAAGTTTATACCTGAT GATCAGGGCAGTAGGCATAATTCAGCAACAAACAATCTTCCTTTGGGAGAAACCTGTTCATTCCAATCTTCTAAT TACAGTGGTTCCTATCTCAGGGATACTGGACTTTCTGACGCAGATGAACAATTAAGGGGAAAAGCTTCCCTTTTC CCTCTGTGGCAGTTACGATTTTGACTTCAGTCCTGAGAAAAACTTCAGGTTTTGAAAATCAGATGATGTCTTCTC CTTTTCCAAACACCACACGTTGAAAGCATTTATAAATCCAAGTCTGAAACTCTGCGCTCTAGTACTGCTGTTAAG TATACACACACATACATATATATAAATATACCTGATGCCAGATTTTTTTCATAAATATTCTGCCTACTGTAAATA TGGGTTCCTCTGAGTTGTTTTAGAAAATTAGCGCAATGTATTAAAATCAAGTGTTAGGAAATTTCATGGTCTTAC

PCT/HS2003/028547

263/6881 FIGURE 248

MASIMEGPLSKWINVMKGWQYRWFVLDYNAGLLSYYISKDKMMRGSRRGCVRLRGAVIGIDDEDDSTFTITVDQK
TFHFQARDADEREKWIHALEETILRHTLGLQGLDSGFVPSVQDFDKKLTEADAYLQILIEQLKLFDDKLQNKED
EQRKKIETLKETINSWVESIKHCIVLLQIAKDQSNAEKHADGMISTINPUDAIYQPSPLEPVISTWBSGTVLPPE
PVQLCKSEQRFSSLPVCPVLATLGHHQTPTPNSTGSGHSPPSSSLTSPSHVNLSPNTVPEFSYSSSEDEFYDADE
FHQSGSSPKRLIDSSGSASVITHSSSGNSLKRPDTTESLNSSLSNGTSDADLFDSHDDRDDDAEAGSVEEHKSVI
MHLLSQVRLGMDLTKVVLPTFILERSLLEMYADFFAHPDLFVSISDQKDFKDRMVQVVWMVLSAFRARGSVA
KREYNPIGLEFTQCHWTLPNDTEENTELVSEGFVEWVSKNSVTFVAEQVSHHPPISAFYAECFNKKIQFNAHIWT
KSKFLGMSIGVHNICQGCVSCLDYDEHYILTPPNGYGRSILTVFWVELGGECNINGSKTGYSANIIFHTKEFYGG
KKKRITAEIFSPNDKKSFCSIEGEWNGVMYAKYATGENTVFVDTKKLPIIKKKVRKLEDQNEYESRSLWKDVTFN
LKIRDIDAATEAKHRLEERQRAEARERKEKEEIQWETRLFHEDGEKWVDEFLKRLGAAKH

PCT/IIS2003/028547

FIGURE 249A

GTGCGCCTGAAGGGGCTGGAGTTCGTGCTCATCCACCAGCGCTGGGTGTTCGTGTGCCTCTTCCTCCTGCCGCTC TCGCTTATCTTCGATATCTACTACTACGTGCGCGCCTGGGTGTTCAAGCTCAGCAGCGCTCCGCGCCTGCAC GAGCAGCGCGTGCGGGACATCCAGAAGCAGGTGCGGGAATGGAAGGAGCAGGGTAGCAAGACCTTCATGTGCACG GGGCGCCCTGGCTGGCTCACTGTCTCACTACGTGTCGGGAAGTACAAGAAGACACACAAAAAACATCATGATCAAC CTGATGGACATTCTGGAAGTGGACACCAAGAAACAGATTGTCCGTGTGGAGCCCTTGGTGACCATGGGCCAGGTG ACTGCCCTGCTGACCTCCATTGGCTGGACTCTCCCCGTGTTGCCTGAGCTTGATGACCTCACAGTGGGGGGCTTG ATCATGGGCACAGGCATCGAGTCATCATCCCACAAGTACGGCCTGTTCCAACACATCTGCACTGCTTACGAGCTG TGTGGGACGCTGGGTTTCCTGGTGGCCGCTGAGATCCGCATCATCCCTGCCAAGAAGTACGTCAAGCTGCGTTTC GAGCCAGTGCGGGGCCTGGAGGCTATCTGTGCCAAGTTCACCCACGAGTCCCAGCGGCAGGAGAACCACTTCGTG GAAGGGCTGCTCTACTCCCTGGATGAGGCTGTCATTATGACAGGGGTCATGACAGATGAGGCAGAGCCCAGCAAG CTGAATAGCATTGGCAATTACTACAAGCCGTGGTTCTTTAAGCATGTGGAGAACTATCTGAAGACAAACCGAGAG GGCCTGGAGTACATTCCCTTGAGACACTACTACCACCGCCACACGCGCAGCATCTTCTGGGAGCTCCAGGACATT CTGACCCAGGGTGAGACCCTGCGCAAGCTGTACGAGCAGCACCACGTGGTGCAGGACATGCTGGTGCCCATGAAG TGCCTGCAGGAGGCCCTGCACACCTTCCAAAACGACATCCACGTCTACCCCATCTGGCTGTGTCCGTTCATCCTG CCCAGCCAGCCAGGCCTAGTGCACCCCAAAGGAAATGAGGCAGAGCTCTACATCGACATTGGAGCATATGGGGAG CCGCGTGTGAAACACTTTGAAGCCAGGTCCTGCATGAGGCAGCTGGAGAAGTTTGTCCGCAGCGTGCATGGCTTC CAGATGCTGTATGCCGACTGCTACATGAACCGGGAGGAGTTCTGGGAGATGTTTGATGGCTCCTTGTACCACAAG CTGCGAGAGAGCTGGGTTGCCAGGACGCCTTCCCCGAGGTGTACGACAAGATCTGCAAGGCCGCCAGGCACTGA GCTGGAGCCCGCCTGGAGAGACAGACACGTGTGAGTGGTCAGGCATCTTCCCTTCACTCAAGCTTGGCTGCTTTC CTAGATCCACACTTTCAAAGAGAAACCCCTCCAGAACTCCCACCCTGACAGCCCAACACCACCTTCCTCCTGGCT TCCAGGGGGCAGCCCAGTGGAATGGAAAGAATGTGGGATTTGGAGTCAGACAAGCCTGAGTCCAGTTCCCCGTTT AGAACTCATTAGCTGTGTGACTCTGGGTGAGTCCCTTAACCCCTCTGAGCCCGGGTCTCTTCATTAGTTGAAAGG GATAGTAATACCTACTTGCAGGTTGTTGTCATCTGAGTTGAGCACTGGTCACATTGAAGGTGCTGGGTAAGTGGT AGCTCTTGTTGCTTCCCGTTCAGCGTCACATCTGCAGTGGAGCCTGAAAAGGCTCCACATTAGGTCACCTGTGCA CAGCCATGGCTGGAATGATGAAGGGGATACGCTGGAGTTGCCCTGCCATCGCCTCCATCAGCCAGACGAGGTCCT CACAGGAGAAGGACAGCTCTTCCCCACCCTGGGATCTCAGGAGGGCAGCCACGGAGTGGGGAGGCCCCAGATGCG CTGTGCCAAAGCCAGGTCCGAGGCCAAAGTTCTCCCTGCCATCCTTGGTGCCGTCCTGCCCCTTCCTCCTTCATG CCTGGGCCTGCAGGCCCACCCAGCCACCACTGAGTCCACTCGGAGTGCCCTGTGTTCCTGGAGAAGGCATTCCA GGGTTGAATCTTGTCCCAGCCTCAGCCTGGGACACCTAGGTGGAGAGAGTGGTCTCCGCTCTGAATTGGATCCAG GGGACCTGGGCTCATTCTTCTTGGCTCACCAACCCTGCAGGCCTCATCTTTCCCAAAACCCACTTTGTCTTGGTG GGAGTGGGTCCGCGCTGCTCTGCAGCAGGGGCTGGGGAGTGGACAGCATCAGGTGGGAAAGTGGAGTCCACCCTC TTTTTCTTTCTTCCACCACTCCCCACCCCAGCTGTAGTTAATTTCAGTGCCTTACAAATCCTAAGCTCAGAGAAA GTTCCATTTCCGTTCCAGAGGGAAGGGAACCTCCCTAGGTCCTTCCCTGGCTTGTTATAACGCAAAGCTTGGTTG TTTATGCAACTCTATCTTAAGAACTGCCCAGCCTCAGCTGAAAACCCGAATCTGAGAAGGAATTGCGTCATGTAA GGGAAGCTGGAATTAAGGGAGCTGAGCCAGTCATGGTTGTGGCGTGTGAGTCAGGAGACCTAGGTTTCAGCCCCT CTCTACTGTCAGCGAGCTGTGCAACGTGGGCAAGTCATTGTCCTCTGAGCTGCAGTTTCCTCATCTGTCACATCG CTACAGACAAGACCTCCCTGGAACCCTTCTGATTGTCTTAGACACTGTGGTTGCAAAACCCACGGAAAGCCTCAT CCCCAAGGTCAGCTCCCATCTCATTTCCAGAAAGGCTCATACCTGGCTTGCAGGGAAGCATCTGTCTTGTCATTC CTTAGCAGGGTCTTGTGAGGGCTGGGGGCATCCAGGCACTCAGAAGGCAAAGGAACCACCCTACCCATTTGGCCT CTGGAGGGGCAGAAGAAAGAATAAACCTCATCCTATATTTTACAAAGCATGTGAATTCTGGCATTAGCTCTCA TAGGAGACCCATGTGCTTCCTTGCTCAGTGCAAAACTGATGATTCTACTTGCTGTAGATGAATGGTTAACACGAG

PCT/US2003/028547

265/6881 FIGURE 249B

PCT/HS2003/028547

FIGURE 250

GACATCATGGGCTATTTTTAGGGGTTGACTGGTAGCAGATAAGTGTTGAGCTCGGGCTGGATAAGGGCTCAGAGT CCAGCCAGGTCGGCAGTATAGTCCGAACTGCAAATCTTATTTTCTTTTTCACCTTCTCTAACTGCCCAGAGCTA CCCCTGTGGCTCCCGGGCTGGTGTTTCGGGAGTGTCCAGAGAGCCTGGTCTCCAGCCGCCCCCGGGAGGAGAGAGC CCTGCTGCCCAGGCGCTGTTGACAGCGGCGGAAAGCAGCGGTACCCACGCGCCCGCGGGGGAAGTCGGCGAGCG CCTGCAGCAGCAAAGAACTTTCCCGGCTGGGAGGACCGGAGACAAGTGGCAGAGTCCCGGAGCCAACTTTTGCAA ACGTGCGCTCAGCTTCGCTCGCACCGGTTGTTGAACTTGGGCGAGCGCGAGCCGCGGCTGCCGGGCGCCCCCTCC TCCCCACTGATCCGCTCCGCGGGAGAGCCGCTCCTCTGGGAAGTGAGTTCGCCTGCGGACTCCGAGGAACCGCT CGGGTGCGTGCGCTCTTAGAGAAACTTTCCCTGTCAAAGGCTCCGGGGGGGCGCGGGTGTCCCCCGCTTGCCACAG CCCTGTTGCGGCCCCGAAACTTGTGCGCGCAGCCCAAACTAACCTCACGTGAAGTGACGGACTGTTCTATGACTG CAAAGATGGAAACGACCTTCTATGACGATGCCCTCAACGCCTCGTTCCTCCCGTCCGAGAGCGGACCTTATGGCT ACAGTAACCCCAAGATCCTGAAACAGAGCATGACCCTGAACCTGGCCGACCCAGTGGGGAGCCTGAAGCCGCACC TCCGCGCCAAGAACTCGGACCTCCTCACCTCGCCCGACGTGGGGCTGCTCAAGCTGGCGTCGCCCGAGCTGGAGC TGACAGATGAGCAGGAGGGCTTCGCCGAGGGCTTCGTGCGCGCCCTGGCCGAACTGCACAGCCAGAACACGCTGC GCAGCGGCAGCGGCGGCTTCAGCGCCAGCCTGCACAGCGAGCCGCCGGTCTACGCAAACCTCAGCAACTTCAACC AGCAGCAGCAGCCGCCCCACCACCAGCCAGCAGATGCCCGTGCAGCACCCCGCGGCTGCAGGCCCTGAAGGAGG AGCCTCAGACAGTGCCCGAGATGCCCGGCGAGACACCGCCCTGTCCCCCATCGACATGGAGTCCCAGGAGCGGA TCAAGGCGGAGAGGAAGCGCATGAGGAACCGCATCGCTCCCAAGTGCCGAAAAAAGGAAGCTGGAGAGAATCG AACAGGTGGCACAGCTTAAACAGAAAGTCATGAACCACGTTAACAGTGGGTGCCAACTCATGCTAACGCAGCAGT GAGAACTTGACAAGTTGCGACGGAGAAAAAAAAAAGAGTGTCCGAGAACTAAAGCCAAGGGTATCCAAGTTGGACT GGGACCGCCCCCCCCCCCCTTTCCGGACGGCTGTCCCCCGCGAACGGAACGTTGGACTTTTCGT TAACATTGACCAAGAACTGCATGGACCTAACATTCGATCTCATTCAGTATTAAAGGGGGGAGGGGGAGGGGGGTTA CAAACTGCAATAGAGACTGTAGATTGCTTCTGTAGTACTCCTTAAGAACACAAAGCGGGGGGAGGGTTGGGGAGG TGTATGTACATATATATTTTTTAATTTGATGAAAGCTGATTACTGTCAATAAACAGCTTCATGCCTTTGTAAG AATAAACTATTGGAAAGTACTCCCCTAACCTCTTTTCTGCATCATCTGTAGATACTAGCTATCTAGGTGGAGTTG AAAGAGTTAAGAATGTCGATTAAAATCACTCTCAGTGCTTCTTACTATTAAGCAGTAAAAACTGTTCTCTATTAG GGAATTGCTTACCAAAGGATAGTGCGATGTTTCAGGAGGCTGGAGGAAGGGGGGTTGCAGTGGAGAGGGACAGCC CACTGAGAAGTCAAACATTTCAAAGTTTGGATTGTATCAAGTGGCATGTGCTGTGACCATTTATAATGTTAGTAG AAATTTTACAATAGGTGCTTATTCTCAAAGCAGGAATTGGTGGCAGATTTTACAAAAGATGTATCCTTCCAATTT GGAATCTTCTCTTTGACAATTCCTAGATAAAAAGATGGCCTTTGCTTATGAATATTTATAACAGCATTCTTGTCA CAATAAATGTATTCAAATACC

PCT/US2003/028547

267/6881 FIGURE 251A

CTTA ACAAA CCATTA ATCCCTTCATA ATTAGTGAGCTTCATCAGTTTTATTTTTAATTCCTTGAGATAATGA ATTTTAAAAGCAATAAATACAATGCTGTAGTTTTTGACTTCTTTTCTAAATATTTACATGGATTTACATGAAAAGA ACTA A GAGATA GTATTTGTGGAACCAATTTAAACTCTTACATGCCTTTCAGGATTTGGGAATGTATTAACACCT CCCTC & CTC & & CCC & & GGA TTA TGTCTTTTGGGGCTCCCA TCA TCCTGA GCTA GAGACACGTGA CA GGGGTACA CTCTCCTACAAACCAGCCAGTTACTCAGTAAAGTGGACGATAGAAGAAAAAGAGCTGTTTGAACAAGGGCTGGC TANATTTGGCCGAAGATGGACCAAAATTTCAAAGCTAATTGGAAGCCGCACTGTTTTACAAGTGAAGAGTTATGC AAGACAGTATTTTAAAAATAAGGTCAAATGCGGTCTGGATAAAGAAACACCAAATCAGAAGACCGGCCATAATCT TCAAGTTAAAAATGAAGATAAAGGGACAAAGGCATGGACACCATCATGTTTAAGGGGACGTGCTGATCCCAACTT CANTICCTICTA A A ATTICA A A ACTTA TOTGA TICATICA A GA AGTAGA CATCA CA GATGAGGTGGACGAGTTGTCTTC AGGAGAATTCATTACTTCTGACAGCCAGGAAGCTCTCTTTTCTAAGTCTTCCAGGGGCTGTCTTCAAAATGAAAA GCAAGATGAAACACTTTCAAGCTCAGAAATTACACTGTGGACTGAGAAACAGAGCAATGGTGACAAAAAATCAAT TGAATTAAATGACCAGAAATTTAATGAATTGATTAAAAACTGCAACAAGCATGATGGAAGGGGAATAATAGTTGA TGCCAGGCAGTTGCCTTCTCCAGAGCCTTGTGAAATTCAGAAAATTTGAATGATAATGAAATGCTTTTTCATTC TATCATTCAAGAAGAAGAAAACAAGCAATTCCTGAGTTTTTTTGAGGGGCCCCAAGCTAAAACACCAGAACGCTA TTTGAAAATTAGAAATTATATTTTTGGATCAATGGGAGATATGCAAACCAAAATACTTAAATAAGACCTCAGTACG CAATTTTGGATGTGAACAGGCTGTGTATAATAGGCCACAAACAGTTGACAAAGTACGAATCAGAGAAGAAAAGA TGCAGTAGAAGCATACCAACTTGCCCAGCGTCTGCAGTCTATGCGTACAAGGAGACGTAGGGTCCGAGACCCATG GGGAAACTGGTGTGATGCAAAGGACTTAGAAGGACAAACGTTTGAGCATCTCTCTGCTGAGGAGTTGGCAAAAAG AAGAGAAGAGGAAAAAGCCAGACCTGTTAAATCTTTAAAAGTGCCAAGACCAACAAAAAGCTCGTTTGATCCCTT TTTAATAATGGATTTGCATGCTCATGTTTCTATGGCAGAAGTGATTGGTCTGTTAGGAGGAAGATACTCAGAAGT TGATAAAGTAGTTGAAGTCTGTGCAGCAGAACCATGTAACAGTCTGAGTACAGGACTACAGTGTGAGATGGATCC TGTATCACAAACACAGGCCTCAGAAACCTTGGCTGTTAGAGGCTTCAGTGTTATTGGATGGTATCATTCTCATCC TGCTTTTGATCCTAATCCTTCCTTACGAGATATTGACACACAAGCTAAATACCAGAGTTACTTCTCCAGAGGAGG TGCAAAGTTCATTGGGATGATTGTTAGTCCCTATAATCGAAATAATCCCTTACCATATTCTCAGATTACCTGCCT GGTTATAAGTGAGGAAATTAGCCCAGATGGCTCTTATCGCTTACCTTACAAATTTGAAGTACAGCAGATGTTAGA AGAACCTCAGTGGGGATTAGTATTTGAAAAGACAAGATGGATAATAGAAAAATACAGGCTCTCCCATAGCAGCGT TCTGAGCAAAGTGACCAATTGCTTTATGGCTGAAGAATTCTTGACTGAAATAGAAAATTTGTTCCTTTCCAATTA TAAAAGCAACCAAGAGAATGGAGTAACCGAAGAGAACTGTACAAAGGAATTGTTAATGTGATTATTTTAAAGTTA AGACATTTTAATCTTGACACAGTAGATCTTACTTTCAAAGTTATAAACTTGAAGTGATTGTAGTTAACATTGGCA CAGCTTTGGTATTTTTCTCTATTTCACAAAATCCAAACTTTGCCACATAAATCATGTGAAAAGGAAGAGATACA AATTTGTTTTCATATAGTGATTATCAGAGTGTTCTGCAAACCAGGGTCCACCACGGTGTTCTAGTCCTTTACTGA GCAATGCTGTAGGCTGTGAAACTAAGCAACCTGGTCGGCTTTACTGTTGTGTTCAGCTTGGGATTTGGACTATGT CTCTAAGTCATTTCTTCCCTGAACTAGTCATTTATGTTCCATTGTGGTATCTCCTATTTCATTTAAAAGCACTTC TAATATGGTTTAGAACTACTGATTAATAAATCTAACAGGAGACCAGGAGAGGCATGACAAGAAAATCTTAAAAAC CTTCAATTGTGAGTCCACTTACATTAGTAGGTGTGATAAAACCTCATTTAACTGGAACATAGGTAATCATAACTC AAACTTTTTTCTACTGCCTACTACTAGGAGAAAGAGGCAAATGATAATAAAGCTGGAATAAATCAGAGATTTAA TTTTTAAAACAAGCCTTTCAGGACATGTTACATATTCAGCCCCAGTTTCATATGCTTTCTGAATCTATAATGGAGG TCAGTGAACTTTTTTAATGTAAAGGGCCAGTTTGTAAATAATTTTTGGCTTTTCAGGCCACATATGATGTCTATGA

PCT/US2003/028547

268/6881 FIGURE 251B

CCATTGTTAACTCACAGGCCTCATAAAACATAGGCTGTTGGCTATTATTCTCCAACCCTTGATCTAGAGAATTTT AAACATTAGAATTTTGTTTTACATTTGTTAAGCTTTACGTCATCTTCAAATGACACCAAAACTCAGAATTATGAT CTGCATTTAAGCCAATTTTAAAATAAAATAAGCAGTCAATGCTGCCTCATTTATTGAAATTCAGTAGATTTTAGT TTATTTCTTAGTAGTCAGAGAATTGATTTATAGCTATTCACCAAACATTCTTACTAACGTTTCCTTATATCTAAA TCAGATTGATTCTATATTTTGCTTTGTTATCAATAGCCAATGAAGAATAAGGAGTATTGGAAGAAGCAGTG AGTCAGCTTT AGGTGACCTGGTTCTTGTCTCAACTTTGTGATTTGGGGAGATACAGTTTACTTTCCCTGAGCCTT AATTCTTGTGTAACTGAAGTCTAACTTAACTTCTTAATGTCCTTCCAGAACTAAAATTTTATTGTTCATTCTAAT GGTAGTATTTTTCCATTTCTCTGTGTGCACTTAGGATAAACAGTGAAGTATAGCTTATAAAACAATTAGTTTGAG GGCTGAGAGTGTAAGAGGAACTATACCAAAAGTCAGGAAACCTGAGCTCTTACCCTAACTCTGTTACCAACTTTG CTGTGTGACCTTAATCAAAACACATAACCTGGACCCCATGCTCCTCACCAGTAAATCAAGGGCCTGAATTTTATG TCCTTTTGACCTGTTTCCTCATGATATATTGGGGAACAAATACTAAAAAGTGTTTTATACTAGCTTTCTTGATTG ACATTTCCCTATAATACTGATGAATTTGGGTGATGGAAAGTAATGGAAATTGTTAAAAGTTCTGCTCTCAAATCT GAGTCTCCTTGCCCTGTGTGCCAATGTTTAACCATATTTGCTAATCTAAGCCATATTGCGAGGATCTCAAGGATG ATACTTGTCAAGAGTTTGGGGCCTTGAGAGCACAGTTTTCAAAATAATACTTAGTATTTTCTGACTATAGAGTAC ATTTGTCTTGTAAAGTATATTTTAAAATACAGAGAAGTGTGAAGTACAAATATCTCAGTGCTACTATTTAAAAAA ACACAATTAGTATATAAATCCTTCCCCATTTTTTTGACAGTATAATTTTAGTATGTTAAACTTGGTTACTTCTTT CTCTCTTCCTCCATCATTTTCCCTGCTTCCTTTTTCTTTTGTCATATTCTTAAAACAATTTTGCAACCACAGGTA $\tt CCCACATTGCTGGCACTACCAGCCTTGGGCTACTACCGAGGATAATGGAGCCAGGGCCTTGTAGAAGCACAGAGG$ AAGTCTAGAACTGAGGGGGCCTATGATACAGGAAGTTCAGGAGGCAGAGTCTCAAAGGAACACCTGCCTTTAATA ATCTTTACAGAAGTGGAGAAAGGACTAAAGGACTTAAAGACATGCAGGTGTCTTCATCCTGATTCTGTCTTTGTT CTTCCCCAGTATTAGACTTAATCTAATTCCAAAGTAACATTCAAGAAAAGAAAAACCAGTGGAACAGGATCAGTA AGCTCAGACTCTCCATCTCCATTATTTTAGCCTTGACCATTCTTCTCTAATCCTTTAAATTATCTTCAGTTTCC AGTTCAAGTTACATTGCTTCAGTTTACAGTTTGTTTGACCCTGTATTCAGAGCTGCATTATGATTCTTGTGGGCCC TAGATAGTTTTGCCATCTTAGACCCCTTCTTCCATACAAAATTAAAAGTGATATTTTACAATTGTATCTGTATGA TAAAACATTTTTGTGGGCTTCTAAAAAACTGTGGGCCTTAGGTACTGTGCCTAATGGATAAGTTGGCATTGCCTG TATTCTGAAGGGCATCATTGGAAAAATAGCAGTCATTATTCTGTCCCCTTCTCCCACCACCACAGTCCTTGGAGA AGTCTTCAGATATTTTTGTTTTGGTCAGTCCCTAATCTGTAGTTTTGAAACTCGTGCCACACTTGAAAGGGAAAC CAGCATATAAATACAAGACCCTTCTTTCTATTATTTGTTGAAAGCTAGGCCTGTAAAATAGAGATGGACAGACCA GGGGTTGAGGTCTGTGACATGCAGACTGTAAGCACAGTCAGAACCTCTGCAGCTCTCAACCCAACAGAGGAGACCT GTGGCTTCAACATGCCAACCTGAGCAGGTCTCCTCTGCATTACCTTCCTCCCATTTCTCTTCCTGGGTCCTGATG AGGTGAGCTGGAGGAACCAATAGTCAGGATGCCCTGGAATTGATGTTGCTCTGTTTTGTGCTCACAAAACAGCCA TGTAACACATGAGCACCTGAGTTGAAGCCATCCAGTCGCAAGTCAGCAGCAGCAGTTGATGGAATTCTCAGTAG AAATTCAGTAAGGGTGCCCAAATTTTATTTTTTTTTTCACCTATACTCTACCAATATATGGTATTTAGGAAAACT ACAAATTTGATCAGCATCTCTAGTTTACCAGTACTTTAATATTAGTTTTTCTTACAAATTAATGTATTTTGCAATA TTTCCAGAAAATCACTGTGGGAGAATAATGTAATATACTTTAGGATATATTTCCTGACCTTTTCTTAAATGGCTT CAGGAAAAAATAAAAATATCCCAGGGGAGCTGTGATTATGCCAAGAGCTCTAAACAGAAGTTTGAGAAGGTAAAA ATTAAGTTGTAGTATCTGAGTTGTTTTTATTTTCTTCCTTTGGTGTTTTATGAAGGTATTCATAAGAACTTTAATT

PCT/US2003/028547

269/6881 FIGURE 251C

PCT/US2003/028547

270/6881 FIGURE 252

MHETNQGEFITSDSQEALFSKSSRGCLQNEKQDETLSSSEITLWTEKQSNGDKKSIELNDQKFNELIKNCNKHDG
RGIIVDARQLPSPEPCEIQKNLNDMEMLFHSCQMVEESHEEEELKPPEQEIEIDRNIIQEEEKQAIPEFFERSGR
KTPERYLKIRNYILDQWEICKBKYLMKTSVRPGLKNCGDVNCIGRIHTYLELIGAINFGCEQAVYNRPQTVDKVR
IRDRKDAVEAYQLAQRLQSMFTRRRRVDDWGMWCDAKDLEGOTFEHLSAEELAKREEEEKGEPVKSLKVPRFTK
SSFDPFQLIPCNFFSEEKQEPFQVKVASEALLIMDLHAHVSMAEVIGLLGGRYSEVDKVVEVCAAEPCNSLSTGL
QCEMDPVSGTQASETLAVRGFSVIGWYHSHPAFDPNPSLRDIDTQAKYQSYFSRGGAKFIGMIVSPYNRNNPLPY
SQITCLVISEEISPDGSYRLPYKFEVQQMLEEPQWGLVPEKTRMILEKYKLSHSSVPMDKIFRRDSDLTCLQKLL
ECNRKTLSKYTNCFMAEEFITEIENLFLSNYKSNQENGVTEENCTKELLM

PCT/US2003/028547

271/6881 FIGURE 253

PCT/HS2003/028547

272/6881 FIGURE 254A

ATGCC ACAACCGCCCAAATGCTCTGAAAAACGCATAAATAAAATGCTGGTCACAGATGAGAACATCAGTCTAGCA GAGCTTGCGAAGGCAGCAGGGAGGAAAACCTCTGAGCTGTTTTTGCCCAGTGTCCACAGAGGGTTAGGAGGA CCCAATGAAGGAATGACCCTGAAATGTGAACAGGGCGAAGAACTAGGCCCCAGCTCCCTGCAGAGAAGATACATC AAAGCCCCACATGAGGATTTTTATAGCTCCACATTGGACAAGCTTCCTCTTCCTGAGATAGAGCCTACAGGGAAG GGACAGA TTTGGGGCAAGGAGAGGAGTCTGAAAGAGATGGGGTACGCCGTAGTGAAAGCTGGAGTGAGAGCCTTC GTATTCGAAGGCGGGGACTCGGGGGCTGTTGGCAGCTGGCGACGCGGGCGCAAGCCGCGGCTGGCGGCGCCTGGC CCCGTGCACCGCGGCCCCCCCGCGCAGGACTTCCGCAGCCTCGCCAAGCCTGGGGTCTGCGACAGAAAAGGAGCG GGGCTGCTCCGGCTGCCCAAAGGGTCATGGTTATTAAGGAAGAAAACACAGAATGGGCCCTTGTATGGACTCTAT TACCAAGTGCCATTGGACACGCAGGCAGTGTACTGGGAGACAGTCGTGGTGTGCTCAGAGGTATTGCCACGGCCT GAAGTTCCTCTCTCGCCGCAGCTGCCCCCACTCTGCTGCAATCTTCTGGGGAGGGCTTCACCTGCCACTGCCTC CTGCATGCCAGCATCGCCTGCTGCAGACTGCAGAGCTGGGGTGCCAAAGACCAGTCCTCTCAGGGGGATGAAGAG A A GACCCTCCGA A GAGCCACCCTTATTCTGTGGAGACCCCATATGGCTTTCATTTAGACCTGGACTTCCTCAAG TATGTGGATGACATCGAGAAGGGAAACACTATCAAAAGAATTCCTATCCACAGAAGGGCCAAGCAGGCCAAATTT AGCACTCTGCCCCGAAACTTCAGCCTTCCTGACAGTGGGGCTCGCCCCCTGCAGCCCCGCCCCTCCAAAACTGG TCTCCCGTGGTGCCAAGGGAGCATCACTTGGGACACAGGAGCAAAACCAGTCACCACCGCTTGGTAA1GCCCCC CAGGCCTCAACAAGCAGGAGTGAGGTGAGCTACCACAGGAAGGCTCTGTTGGCAGAGGCCACCAGACAGTTGGAA GCTGCTGAGCCAGAGGATGCCGAGCTCACTTTTGGGAGTGGACGGCCCCAGCTCTTGAGAGCATCCAGCATGCCT CCCCTTCAGGGTGAAGGCAGTGTCTGTGATGGCACCTTTGAACCTGCAGAAGGATTGGCAGGTTTCCACAGCTCC GAACACAATGCCAGAGAAGCAGAGGTGTTGTTCACCCCTGGCTCCCCTACGCCAAGCCCGCCACCTCTGCCATCA CCCATCCTGAGAATGAGCTCCTCCTGGAAGAAATCGAGCTCAACATCAGCGAGATTCCACCCCCGCCACCTGTA GAGGTGGACATGAGAAGCATTGGCATCAGGGTAACTGAGGAAAGCCTGGGCCTTGCCAGGGTGGATCCAGGCAGC ATCTCCAGCCTGAAACAGCAGGTCTCGGCCCTGGAGGAGAGTTGTCTGGAAGAACCGAGGAACTGGCACAGGTC AGAACTGCTCTCCAGCAGCAGGAAGAGGGAAATCAAAGCTAGGGAGCAAAGAATTCGAGAGCTGGAGTTCACTGTA GACCCTGTCCATGGACTCTTGACCAGGGAGTCGTGTGATAAGGGCATTGAAGTCAACCTTCTAGGCAGCATGGAG TCTGAAAGCTGGGGGCACCGAGGAGAGGAGAATGGCCTCCTATGGGGGCCAGATGGTCATAAACAAGGGAATCAG AGCCCAGCAGAACGTGTGCTTCTGCCCCAGCTGTCACTGCCACAGGGACCCGAGCAGGTCCTTACCTCCTCTGTA AGGGGAGCAGGAGGCTTTCTGTGGGGCAGCGACAGAAAGACTCCCCCAGCAGGGAGGAGGAGACCAGTTCCAAT CTCCCAGGGAAGGAGCACCCGGGAAGGCCACCAAGCTCGCCAACGGATGCCACTATTGGGCAGTATGTGAAGAAG ATCCAGGAGCTCCTGCAGGAGCAGTGGAACTGCCTGGAGCATGGGTACCCGGAGCTGGCCAGCGCCATCAAGCAG CCAGCCTCCAAGCTCAGCAGCATCCAGAGCCAGCTGCTGAGCTCCCTCAACCTGCTGCTGTCGGCCTACTCGGCC CAGGCTCACCCACCCAAGGAGCCACCGGCCTCCTCCTCCTCCCCGCCAGTGGAGATCTCCCCATCGACCAGCCTT AAATCCATAATGAAAAAGAAAGACTATGGCTTCCGTGCAGGAGGTAATGGGACCAAAAAGAACCTTCAGTTTGTT GGGGTTAACGGTGGGTATGAGACCACCTCAAGTGAGGAGACCAGCGGTGAGGACAGCACCCCAGAGGACTTGTCT GACAGCGAGGCAGAGAAGAAGTGTGACGGCCCAGATCACAAGCATGTCAAAGATGCCCATCTCACCTGCGAGGCT GGGCAGGGCATCCCTGAGGGCACCTGCCATGCTGCCCAGGAAAGTGGGCCTGGGGAAGAAGTCCCCCACTCCAAG GCCGAGAGCCGGAAGTCGTCTAGCCCCGCCGTGGTGGCCTCCTACCTCCACGAGGTCCAGCCTCACTCCCACAC TTCCTGAAACTGCTTGTCAACTTGGCCGATCACAACGGGAACACGGCCCTTCACTACAGCGTGTCCCACTCCAAC TTCTCCATCGTGAAGCTGCTGCTGGAGACAGGCGTCTGCAATGTGGACCATCAGAACAAAGCTGGCTACACTGCC GTAATGATCACTCCCTTGGCTTCCGCAGAGACCAATGAAGACATGGCTGTTGTCTGGAAGCTCTTAAGAGAAGGA AATGTGAACATTCAAGCTACTCAGGGAGGCCAGACTGCGCTGATGCTGGGAGTCAGCCACGACAGGGAGGACATG GTTCAAGCGCTGCTTAGCTGCCAGGCAGATGTCAATCTGCAGGACCACGATGGATCCTCGGCCCTCATGGTGGCC

PCT/US2003/028547

FIGURE 254B

PCT/US2003/028547

274/6881 FIGURE 255

 ${\tt MASVQEVMGPKRTFSLLGL} \\ {\tt TVGMRPPQVRRPAVRTAPQRTCLTARQRRSVTAQITSMSKMPISPARLGRASLRAP} \\ {\tt AMLPRRVGLGKKSPTPRPRDIMPQKNFLMHAGH} \\$

PCT/US2003/028547

275/6881 FIGURE 256A

GCGGCGGCCGCGGAGTATCCTGGAGCTGCAGACAGTGCGGGCCTGCGCCCAGTCCCGGCTGTCCTCGCCGCGACC CCTCCTCACCCTGGGCGCGCGCACGCTGGGGCCCCGCGGGGCTGGCCGCCTAGCGAGCCTGCCGGTCGACCCCA GCCAGCGCAGCGACGGGGCGCTGCCTGGCCCAGGCGCACACGGAAGTGCGCTTCTCTGAAGTAGCTTTGGAAAGT AGAGAAGAAATCCAGTTTGCTTCTTGGAGAACACTGGACAGCTGAATAAATGCAGTATCTAAATATAAAAGAGG ACTICA A TICCA TIGGCTTTCTGTGCTA A ATGAGGA GCTCCA AGA AGA CTGA GGTGA ACCTGGA GGCCCCTGA GC CAGGGGTGGAAGTGATCTTCTATCTGTCGGACAGGGAGCCCCTCCGGCTGGGCAGTGGAGAGTACACAGCAGAGAG ACACCAAGCTCTGGTATGCTCCAAATCGCACCATCACCGTTGATGACAAGATGTCCCTCCGGCTCCACTACCGGA AGAAAAATGGCTACGAGAAAAAAAAGATTCCAGATGCAACCCCTCTCCTTGATGCCAGCTCACTGGAGTATCTGT TTGCTCAGGGACAGTATGATTTGGTGAAATGCCTGGCTCCTATTCGAGACCCCAAGACCGAGCAGGATGGACATG ATATTGAGAACGAGTGTCTAGGGATGGCTGTCCTGGCCATCTCACACTATGCCATGATGAAGAAGATGCAGTTGC TTCTCACCAGGATGCGGATAAATAATGTTTTCAAGGATTTCCTAAAGGAATTTAACAACAAGACCATTTGTGACA GCAGCGTGTCCACGCATGACCTGAAGGTGAAATACTTGGCTACCTTGGAAAACTTTGACAAAACATTACGGTGCTG AAATATTTGAGACTTCCATGTTACTGATTTCATCAGAAAATGAGATGAATTGGTTTCATTCGAATGACGGTGGAA ACGTTCTCTACTACGAAGTGATGGTGACTGGGAATCTTGGAATCCAGTGGAGGCATAAACCAAATGTTGTTTCTG TTGAAAAGGAAAAAAATAAACTGAAGCGGAAAAAACTGGAAAATAAACACAAGAAGGATGAGGAGAAAAACAAGA TTAACAAGCAGGACAACAAGAAAATGGAACTGAAGCTCTCTTCCCACGAGGAGGCCTTGTCCTTTGTGTCCCTGG TAGATGGCTACTTCCGGCTCACAGCAGATGCCCATCATTACCTCTGCACCGACGTGGCCCCCCGTTGATCGTCC AGGAGGGGATGTACGTGCTGAGGTGGAGCTGCACCGACTTTGACACATCCTCATGACCGTCACCTGCTTTGAGA AGTCTGAGCAGGTGCAGGGTGCCCAGAAGCAGTTCAAGAACTTTCAGATCGAGGTGCAGAAGGGCCGCTACAGTC TGCACGGTTCGGACCGCAGCTTCCCCAGCTTGGGAGACCTCATGAGCCACCTCAAGAAGCAGATCCTGCGCACGG ATAACATCAGCTTCATGCTAAAACGCTGCCGCCCCCCCAGCCCCGAGAAATCTCCAACCTGCTGGTGGCTACTA AGA AGCCCAGGA GTGGCA GCCCGTCTA CCCCATGAGCCA GCTGA GTTT CGA TCGGA TCCTCA AGA AGGA TCTGG TGCAGGGCGAGCACCTTGGGAGAGGCACGAGAACACATCTATTCTGGGACCCTGATGGATTACAAGGATGACG AAGGAACTTCTGAAGAAGAAGAAGATAAAAGTGATCCTCAAAGTCTTAGACCCCAGCCACAGGGATATTTCCCTGG CCTTCTTCGAGGCAGCAGCATGATGAGACAGGTCTCCCACAAACACTCGTGTACCTCTATGGCGTCTGTGTCC GCGACGTGGAGAATATCATGGTGGAAGAGTTTGTGGAAGGGGGTCCTCTGGATCTCTTCATGCACCGGAAAAGCG ATGTCCTTACCACACCATGGAAATTCAAAGTTGCCAAACAGCTGGCCAGTGCCCTGAGCTACTTGGAGGATAAAG TCATCAAGCTCAGTGACCCCGGCATCCCCATTACGGTGCTGTCTAGGCAAGAATGCATTGAACGAATCCCATGGA TTGCTCCTGAGTGTGTTGAGGACTCCAAGAACCTGAGTGTGGCTGCTGACAAGTGGAGCTTTGGAACCACGCTCT GGGAAATCTGCTACAATGGCGAGATCCCCTTGAAAGACAAGACGCTGATTGAGAAAGAGAGATTCTATGAAAGCC GGTGCAGGCCAGTGACACCATCATGTAAGGAGCTGGCTGACCTCATGACCCGCTGCATGAACTATGACCCCAATC AGAGGCCTTTCTTCCGAGCCATCATGAGAGACATTAATAAGCTTGAAGAGCAGAATCCAGATATTGTTTCAGAAA AAAAACCAGCAACTGAAGTGGACCCCACACATTTTGAAAAGCGCTTCCTAAAGAGGATCCGTGACTTGGGAGAGG GCCACTTTGGGAAGGTTGAGCTCTGCAGGTATGACCCCGAAGGGGACAATACAGGGGAGCAGGTGGCTGTTAAAT CTCTGAAGCCTGAGAGTGGAGGTAACCACATAGCTGATCTGAAAAAGGAAATCGAGATCTTAAGGAACCTCTATC ATGAGAACATTGTGAAGTACAAAGGAATCTGCACAGAAGACGGAGGAAATGGTATTAAGCTCATCATGGAATTTC TGCCTTCGGGAAGCCTTAAGGAATATCTTCCAAAGAATAAGAACAAAATAAACCTCAAACAGCAGCTAAAATATG CCGTTCAGATTTGTAAGGGGATGGACTATTTGGGTTCTCGGCAATACGTTCACCGGGACTTGGCAGCAAGAAATG TCCTTGTTGAGAGTGAACACCAAGTGAAAATTGGAGACTTCGGTTTAACCAAAGCAATTGAAACCGATAAGGAGT ATTACACCGTCAAGGATGACCGGGACAGCCCTGTGTTTTGGTATGCTCCAGAATGTTTAATGCAATCTAAATTTT ATATTGCCTCTGACGTCTGGTCTTTTGGAGTCACTCTGCATGAGCTGCTGACTTACTGTGATTCAGATTCTAGTC CCATGGCTTTGTTCCTGAAAATGATAGGCCCAACCCATGGCCAGATGACAGTCACAAGACTTGTGAATACGTTAA

PCT/US2003/028547

276/6881 FIGURE 256B

AAGAAGGAAAACGCCTGCCGTGCCCACCTAACTGTCCAGATGAGGTTTATCAACTTATGAGGAAATGCTGGGAAT TCCAACCATCCAATCGGACAAGCTTTCAGAACCTTATTGAAGGATTTGAAGCACTTTTAAAATAAGAAGCATGAA TAACATTTAAATTCCACAGATTATCAAGTCCTTCTCCTGCAACAAATGCCCAAGTCATTTTTTAAAAATTTCTAA TGAAAGAAGTTTGTGTTCTGTCCAAAAAGTCACTGAACTCATACTTCAGTACATATACATGTATAAGGCACACTG TAGTGCTTAATATGTGTAAGGACTTCCTCTTTAAATTTGGTACCAGTAACTTAGTGACACATAATGACAACCAAA ATATTTGAAAGCACTTAAGCACTCCTCCTTGTGGAAAGAATATACCACCATTTCATCTGGCTAGTTCACCATCAC AACTGCATTACCAAAAGGGGATTTTTGAAAACGAGGAGTTGACCAAAATAATATCTGAAGATGATTGCTTTTCCC AATTTCAGTATCTATACAGTACTAGACCATGCATTCTTAAAATATTAGATACCAGGTAGTATATATTGTTTCTGT ACAAAAATGACTGTATTCTCTCACCAGTAGGACTTAAACTTTGTTTCTCCAGTGGCTTAGCTCCTGTTCCTTTGG GTGATCACTAGCACCCATTTTTGAGAAAGCTGGTTCTACATGGGGGGATAGCTGTGGAATAGATAATTTGCTGCA TGTTAATTCTCAAGAACTAAGCCTGTGCCAGTGCTTTCCTAAGCAGTATACCTTTAATCAGAACTCATTCCCAGA ACCTGGATGCTATTACACATGCTTTTAAGAAACGTCAATGTATATCCTTTTATAACTCTACCACTTTGGGGCAAG CTATTCCAGCACTGGTTTTGAATGCTGTATGCAACCAGTCTGAATACCACATACGCTGCACTGTTCTTAGAGGGT GAAAGACCCGGCTAGAGGCACTATGGACTTCAGGATCCACTAGACAGTTTTCAGTTTGCTTGGAGGTAGCTGGGT AATCAAAAATGTTTAGTCATTGATTCAATGTGAACGATTACGGTCTTTATGACCAAGAGTCTGAAAATCTTTTTG TTATGCTGTTTAGTATTCGTTTGATATTGTTACTTTTCACCTGTTGAGCCCAAATTCAGGATTGGTTCAGTGGCA GCAATGAAGTTGCCATTTAAATTTGTTCATAGCCTACATCACCAAGGTCTCTGTGTCAAACCTGTGGCCACTCTA TATGCACTTTGTTTACTCTTTATACAAATAAATATACTAAAGACTTT

PCT/US2003/028547

277/6881 FIGURE 257

PCT/US2003/028547

278/6881 FIGURE 258

MFSSSAKIVKPNGEKPEEFESGISQALLELEMNSELKAQLRELNITAAKEIEVGGGRKAIIILVPVTQLKSFQKI QIRLVSELEKKFSGKHVVFTAQRRILPKPTRKSCTKNKQKRPRSSTVTAVHDAILEDLVFPSEIVGKKIRVKLDG SRLIKVHLDKAQQNNVEHKVETFSGVYKKLMGKDVNCEFPEFQS

PCT/US2003/028547

279/6881 FIGURE 259

PCT/US2003/028547

FIGURE 260

GGGGTGGGAAGAGCTGAAGCAGCGCTCTTGGCTCGGCGCGCCCCCTGCAATCCGTGGAGGAACGCGCCGCCG AGCCACCATCATGCCTGGGCACTTACAGGAAGGCTTCGGCTGCGTGGTCACCAACCGATTCGACCAGTTATTTGA GCCCGTGGCGCTTAAGAAGAAGGAATAAGACGAGTTGGAAGAAGACCTGATCAACAACTTCAGGGTGAAGGGAA AATAATTGATAGAAGACCAGAAAGGCGACCACCTCGTGAACGAAGATTCGAAAAGCCACTTGAAGAAAAGGGTGA AGGGGGCCGTGGACGTGGAATGGGCCGAGGAGATGGATTTGATTCTCGTGGCAAACGTGAATTTGATAGGCATAG TGGAAGTGATAGATCTGGCCTGAAGCACGAGGACAAACGTGGAGGTAGCGGATCTCACAACTGGGGAACTGTCAA AGACGAATTAACTGACTTGGATCAATCAAATGTGACTGAGGAAACACCTGAAGGTGAAGAACATCATCCAGTGGC GAAGGCTATTCAAAATAAGGACCGGGCAAAAGTAGAATTTAATATCCGAAAACCAAATGAAGGTGCTGATGGGCA GTGGAAGAAGGGATTTGTTCTTCATAAATCAAAGAGTGAAGAGGCTCATGCTGAAGATTCGGTTATGGACCATCA TTTCCGGAAGCCAGCAAATGATATAACGTCTCAGCTGGAGATCAATTTTGGAGACCTTGGCCGCCCAGGACGTGG CGGCAGGGGAGGACGAGGTGGACGTGGGCGTGGTGGGCGCCCAAACCGTGGCAGCAGGACCGACAAGTCAAGTGC TTCTGCTCCTGATGTGGATGACCCAGAGGCATTCCCAGCTCTGGCTTAACTGGATGCCATAAGACAACCCTGGTT ACTGTCATTCATACCATTCACACCTAAAGACTGAATTTTATCTGTTTTAAAAATGAACTTCTCCCGCTACACAGA AGTAACAAATATGGTAGTCAGTTTTGTATTTAGAAATGTATTGGTAGCAGGGATGTTTTCATAATTTTCAGAGAT TATGCATTCTTCATGAATACTTTTGTATTGCTGCTTGCAAATATGCATTTCCAAACTTGAAATATAGGTGTGAAC CTGGTTTTAAATATTGGACATACTGGTTTTAATACCTGCTTTGCATATTCACACATGGTCAACTGGGACATGTTA TCAGTACTTGAACAAATTCAAAGCACATTTGGTTTATTAACCCTTGCTCCTTGCATGGCTCATTAGGTTCAAATT ATAACTAATTTACATTTTCAGCTATATTTACTTTTTAAATGCTTGAGTTTCCCATTTTAAAATCTAAACTAGACA TCTTAATTGGTGAAAGTTGTTTAAACTACTTATTGTTGGTAGGCACATCGTGTCAAGTGAAGTAGTTTTATAGGT ATGGGTTTTTTCTCCCCCTTCACCAGGGTGGGTGGAATAAGTTGATTTGGCCAATGTGTAATATTTAAACTGTTC TGTAAAATAAAAAAAAAAAAAAAAAA

PCT/US2003/028547

281/6881 FIGURE 261

MPGHLQEGFGCVVTNRFDQLFDDESDPFEVLKAAENKKKEAGGGVGGPGAKSAAQAAQTTNSNAAGKQLEKESQ KDRKMPLPPSVGVVDKKEETQPPVALKKEGIRKVGRRPDQQLQEGKIIDRRPERRPPERRFEKPLEEKGEGGE FSVDRPIIDRPIRGRGGLGGRGGRGGMGGDGFDSRGKEFDRNISGSDRSGLKHEDRKGGGSGFNMGTVKDEL IDLDQSNVTEETPEGEEHHPVADTENKENEVEEVKEEGPKEMTLDEWKAIQNKDRAKVEFNIRKPNEGADGQWKK GFVLHKSKSEEAHAEDSVWDHHFRKPANDITSQLEINFGDLGRPGRGGRGGRGGRGRRGRPNRGSRTDKSSASAP DVDDPEAFPALA

PCT/US2003/028547

282/6881 FIGURE 262

ACCTTTA AGCGTCACGGGTGGGGCTGCAGCTTCTGGACCTAGGACTTTGAACATGTCGCGCCTGAAGCGGATAGC GGGGCAGGATCTCCGCGCTGGTTTCAAAGCAGGTGGAAGAGTGCGGTACCTCGGTACCCCAAGGGCTGTTGAA GGCAGCGAGGAAGAGCGGCCAGTTAAACCTGTCGGGTAGAAACCTCAGTGAAGTGCCGCAGTGTGTCTGGAGAAT TTTGACCAAACTAATAATATCAAACAATAAACTTCAGTCACTTACAGATGACCTGCGACTCTTGCCTGCACTGAC TGTTCTTGAT ATACATG ATAATCAGTTGACATCCCTTCCTTCTGCTATAAGAGAGACTAGAAAATCTTCAGAAAACT TAATGTCAGCCATAATAAACTGAAAATACTCCCTGAAGAAATTACAAACCTAAGAAACCTGAAGTGCCTGTATCT CCA GCATA ATGA ATTA ACCTGCATA TCA GAGGGATTTGA ACCACTTTCCA ATTA GA AGATTTA GATCTTTCA AA CAATCATCTTACAACTGTTCCTGCTAGTTTTTCTTCTCTGTCCAGTCTGGTGCGACTCAATCTTTCTAGTAATGA ACTGA AGAGTTTGCCA GCAGA A TA A ATAGA A TGA A AGGTTGA AGCATTTGGA TTGTA ATTCA A ATCTCTTGGA AACTATACCTCCTGAATTGGCTGGCATGGAATCACTAGAATTGCTTTATTTGCGGAGGAATAAATTACGTTTTCT ACCAGAATTTCCTTCTTGTAGTCTATTGAAGGAATTGCACGTAGGTGAAAACCAGATTGAAATGTTAGAGGCAGA ACA TOTTA A A CATOTGA ATTOCA ATTOTTGTGCTA GACOTGA GGGA TA ACA AG TTA AAA TOTGTTCCA GATGA AAT TATACTACTACGGTCCTTGGAAAGGCTTGACCTAAGCAACAATGATATTAGTAGTCTTCCCTATTCATTGGGGAA CCTTCATTTGAAATTTTTGGCATTAGAAGGAAATCCTTTGAGAACAATTCGAAGAGAAATTATAAGTAAAGGAAC ACAAGAAGTCCTAAAATATCTACGAAGCAAGATCAAAGATGATGGACCTAGCCAAAGTGAGTCTGCTACTGAGAC TGCCATGACACTACCAAGTGAATCCAGAGTCAATATACATGCCATCATTACATTAAAAATATTAGACTATAGTGA TAAACAAGCAACTTTGATTCCTGATGAGGTGTTTGATGCAGTAAAAAGCAACATCGTCACTTCTATTAACTTCAG TAAGAATCAACTATGTGAAATTCCAAAAAGGATGGTAGAACTGAAGGAAATGGTTTCTGATGTCGATCTCAGTTT TAATAAACTTTCCTTTATATCCTTGGAGTTATGTGTGCTTCAGAAATTGACTTTTTTAGATCTCAGGAACAATTT TTTAAATTCTTTGCCAGAAGAAATGGAATCACTGGTAAGACTGCAAACGATCAATCTTTCCTTTAATAGGTTTAA AATGCTACCTGAAGTTCTATATCGTATCTTCACACTTGAAACAATTCTGATTAGTAATAATCAGGTTGGATCTGT GGACCCTCAGAAAATGAAGATGATGGAAAATCTGACCACGTTGGACCTTCAAAATAATGACCTCTTACAAATTCC CATATTAATGAAAGGAACAGCTGCTATACTTGAATATTTTGAGAGACCGAATTCCTACTTAACATGGAGTTGCTTT ATAACCCTTGTCATGTATTATTAACCCTGGTTAATTCTAAGGAGGATGTAACATTTGTTTTAGTATCATCTTAAA AGGTGATTATTGTAATTGATCTTGTAGTTTCCCAGTATCACCTACCCGTTGGTATAATTAGCCTGGGCCATATTC ACTGCCAGTAAATATTTTTACATTTTTTATTTAAGATTTTTGTAAGGTGTTGTGTACATTTGTAATGGTGATAACC ACAATGTGTTCATACATTTGTTCTAAATGTTTTGCTTATGATTTATCCTGCTAACTTTCATTTCTTATAGCAAG CAGTTTTTCAAAAATGAATTTTTATTTAATGTGGTTCAGTATTATAACAAAGCATTTTTGTAGAACTGGTT TTTTTTCTCATTTATTTTTGTATTCCATACAATGTGACCAATTGACTTGAATATGACTAGCCAGTTTCTATGTTT TTGTTAGATATAAATTAAATCGAATTTTGTTGAATACTGTTCTTTGGCATTTAAAAAATAAGACCTTCTTATCT TGGGCCACATGTCAAAAGAAAAAGGAAACAAAAATATATTAAAAATAAGACTTTTCATTACCCATGATAGGACTT TTGTGATATGGCTAATCTCAGTACACATTTCAACTTAAAACCTTTTTATTTTACAGCACCATAATTTTAAAAATTTA CTTGCAATCTTGGTAAGACTAAACTTGCAGTGTTTTTCTAAAAGGGAATTTGATAGGTAAACTTGATTAATAAA **AATTAAATATCATTTTTGTTTACACCAAAATTATCAGAAGTAGGTTGATTAGTCATTATAACACTTACCATATGA** CATGCTTATATTATGAAAAAATTGCTAATAAAGATAAATACTACATGTTCAGAATAAAAGTTACATTTTTC

PCT/HS2003/028547

283/6881 FIGURE 263

MSRLKRIAGQDLRAGFKAGGRDCGTSVPQGLLKAARKSQQLNLSGRNLSEVPQCVWRINVDIPEEANQNLSFGAT ERWWEGTDLTKLIISNNKLQSLTDDLRLLPALTVLDIHDNQLTSLPSAIRELENLQKLNVSHNKLKLLPEEITINL RNIKCLYLQCHWEITCHSEGFEQLSNLEDLDLSNNHHITVPASFSSLSSLVRLNLSSSNELKSLPAEINPKRKLKHL DCNSNLLETIPPELAGMESLELLYLRRNKLRFLPEFPSCSLLKELHVGENQIEMLEAEHLKHLNSILVLDLRDNK LKSVPDEIILLRSLERLDLSNNNISSLEYSLGNHLKFLAELGGPLRTIRREIISKGTQEVLXYLRSKIKDDGPS QESSATETMATLFSESRVNHAHITIKLIVDSVOKATLIPDEVFPAVKSNIVTSINFSKNQLCSIPKRWYELKEM VSDVDLSFNKLSFISLELCVLQKLTFLDLRNNFLNSLPEEMESLVRLQTINLSFNRFKMLPEVLYRIFTLETILI SNNQVGSVDPQKWRMMENLTTLDLQNNDLLQIPPELGNCVNLRTLLLDGNPFRVPRAAILMKGTAAILEYLRDRI PT

PCT/IIS2003/028547

284/6881 FIGURE 264

PCT/US2003/028547

285/6881 FIGURE 265

GCTCTTTCCCTAAGCAGCCTGAGGTAATCTGTGAAAATGGTTCGCTACTTCACTTGACCCGGAGAACCCCACGAAA
TCATGCAAATCAAGAGGTTCCAATCTTCGTGTTCACTTTAAGGAACACTCGTGAAACCTGCTCAGGCCATCAAGGT
ATGCATATACAAAAAGCACACGAGATATCTTCGAAGATGTTCACTTTCACAAAACAGTGTTACACTTCCGACGTTAC
AATGGTGGAGTTGCCAGGGTGTCCCAGCCAAGCAGTGGGCCTGACACAAGGTCGGTGCCCCAAAAAGAGTCGT
GAATTTTTGCTGCCACATGCTTAAAAACACAGAGAGTAATGCTGAACTTAAGGGTTTAAGATGTAGATTCTCTGGTC
ATTGAGCATATCCAAGTGAACAAACACACCTAAGATGCCGCCGGGACCTACAAGGCTCATGGTCGGATTAACCCA
TACATGAGCTCTCCCTGCCACATTGAGATGATCCTTACGGAAAAAGAACAGATTGTTCCTAAACCAGAAGAGGAG
GTTGCCCAGAAGAAAAACATATCCCAGAAGAAACTGAAGAAAAACTTATGGCACGGGGATAAATTCAGCAT
TAAAAATAAATAATTAAATAAAAGG

PCT/US2003/028547

286/6881 FIGURE 266

MVRYSLDPENPTKSCKSRGSNLRVHFKNTRETAQAIKGMYIQKGTKYLKDVTLQKQCIPFRHYNGGVGRCAQAKQ WGWTQGRWPKKSAEFLLHVLKNTESNAELKGRFSGH

PCT/IIS2003/028547

287/6881 FIGURE 267

AATACCCAGCTTGGTTTATTTTTCTTAGAATCTGTTGCTAAGACTGGGGACGCTGTTTTCTTTTACAAAGGGAAA TCTAAGTTAATTTCAAGGCATTCGAAA<u>TC</u>GGGAAAGACTATTATTGCATTTTGGGAATTGAGAAAGGAGCTTCAG ATGAAGATATTAAAAAGGCTTACCGAAAACAAGCCCTCAAATTTCATCCGGACAAGAACAAATCTCCTCAGGCAG AGGAAAAATTTAAAGAGGTCGCAGAAGCTTATGAAGTATTGAGTGATCCTAAAAAGAGAGAAATATATGATCAGT TTGGGGAGGAGGGTTGAAAGGAGGAGCAGGAGGTACTGATGGACAAGGAGGTACCTTCCGGTACACCTTTCATG GCGATCCTCATGCTACATTTGCTGCATTTTTCGGAGGGTCCAACCCCTTTGAAATTTTCTTTGGAAGACGAATGG GTGGTGGTAGAGATTCTGAAGAAATGGAAATAGATGGTGATCCTTTTAGTGCCTTTGGTTTCAGCATGAATGGAT ATCCAAGAGACAGGAATTCTGTGGGGCCATCCCGCCTCAAACAAGATCCTCCAGTTATTCATGAACTTAGAGTAT CACTTGAAGAGATATATAGTGGTTGTACCAAACGGATGAAGATTTCTCGAAAAAGGCTAAACGCTGATGGAAGGA GTTACAGATCTGAGGACAAAATTCTTACCATTGAGATTAAAAAAGGGTGGAAAGAAGGCACCAAAATTACTTTTC CAAGAGAAGGAGATGAAACACCAAATAGTATTCCAGCAGACATTGTTTTTATCATTAAAGACAAAGATCATCCAA AATTTAAAAGGGATGGATCAAATATAATTTATACTGCTAAAATTAGTTTACGAGAGGCATTGTGTGGCTGCTCAA TTAATGTACCAACACTGGATGGAAGAACATACCTATGTCAGTAAATGATATTGTGAAACCCGGAATGAGGAGAA GAATTATTGGATATGGGCTGCCATTTCCAAAAAATCCTGACCAACGTGGTGACCTTCTAATAGAATTTGAGGTGT TTTGTTACACATATTTTGATAAGGCACTGAAAATATAAAAGGACTGGTAGTTTACTGATGTAGATGTGAATTCTG TATAAAGATGTGTAAATTGTTTTGAGGGTTCATTAAATTGCAT

PCT/IIS2003/028547

288/6881 FIGURE 268

MGKDYYCILGIEKGASDEDIKKAYRKQALKFHPDKNKSPQAEEKFKEVAEAYEVLSDPKKREIYDQFGEEGLKGG
AGGTDGQGGFRYTFHGDPHATFAAFFGGSNPFEIFFGRRWGGRDSEEMELDGDPFSAFGFSMMGYPRDENSVG
PSRLKQDPPVIHELRVSLEEIYSGCTKRMKISRKRLNADGRSYRSEDKILTIEIKKGWKEGTKITFPREGDETPN
SIPADIVFIIKDKDHPKFKRDGSNIIYTAKISLREALCGCSINVPTLDGRNIPMSVNDIVKPGMRRRIIGYGLPF
PKNPDDRGDLLIEFEVSFPDTISSSSKEVLRKHLPAS

PCT/US2003/028547

289/6881 FIGURE 269

GCGCACGGCCTGTCCGCTGCACACCAGCTTGTTGGCGTCTTCGTCGCCGCGCCTCGCCCCGGGCTACTCCTGCGCG CCACAATGAGCTCCCGCATCGCCAGGGCGCTCGCCTTAGTCGTCACCCTTCTCCACTTGACCAGGCTGGCGCTCT CCACCTGCCCGCTGCCACTGCCCCCTGGAGGCGCCCAAGTGCGCGCGGGAGTCGGGCTGGTCCGGGACG GCTGCGGCTGCTGTAAGGTCTGCGCCAAGCAGCTCAACGAGGACTGCAGCAAAACGCAGCCCTGCGACCACACA CCTGTGAATATAACTCCAGAATCTACCAAAACGGGGAAAGTTTCCAGCCCAACTGTAAACATCAGTGCACATGTA TTGATGGCGCCGTGGGCTGCATTCCTCTGTGTCCCCAAGAACTATCTCTCCCCAACTTGGGCTGTCCCAACCCTC GGCTGGTCAAAGTTACCGGGCAGTGCTGCGAGGAGTGGGTCTGTGACGAGGATAGTATCAAGGACCCCATGGAGG ACCAGGACGGCCTCCTTGGTAAGGAGCTGGGATTCGATGCCTCCGAGGTGGAGTTGACGAGAAACAATGAATTGA TTGCAGTTGGAAAAGGCAGCTCACTGAAGCGGATCCCTGTTTTTGGAATGGAGCCTCGCATCCGATACAACCCTT TACAAGGCCAGAAATGTATTGTTCAAACAACTTCATGGTCCCAGTGCTCAAAGACCTGTGGAACTGGTATCTCCA AGCCAGTGTACAGCAGCCTGAAAAAGGGCAAGAAATGCAGCAAGACCAAGAAATCCCCCGAACCAGTCAGGTTTA CTTACGCTGGATGTTTGAGTGTGAAGAAATACCGGCCCAAGTACTGCGGTTCCTGCGTGGACGGCCGATGCTGCA CGCCCCAGCTGACCAGGACTGTGAAGATGCGGTTCCGCTGCGAAGATGGGGGAGACATTTTCCAAGAACGTCATGA TGATCCAGTCCTGCAAATGCAACTACAACTGCCCGCATGCCAATGAAGCAGCGTTTCCCTTCTACAGGCTGTTCA GTCAGAATCAGAATCATGGAGAAAATGGGCGGGGGTGGTGTGGGTGATGGGACTCATTGTAGAAAGGAAGCCTTG CTCATTCTTGAGGAGCATTAAGGTATTTCGAAACTGCCAAGGGTGCTGGTGCGGATGGACACTAATGCAGCCACG ATTGGAGAATACTTTGCTTCATAGTATTGGAGCACATGTTACTGCTTCATTTTGGAGCTTGTGGAGTTGATGACT TTCTGTTTTCTGTTTGTAAATTATTTGCTAAGCATATTTTCTCTAGGCTTTTTTCCTTTTGGGGTTCTACAGTCG TAAAAGAGATAATAAGATTAGTTGGACAGTTTAAAGCTTTTATTCGTCCTTTGACAAAAGTAAATGGGAGGGCAT TC:ATCCTTCCTGAAGGGGGACACTCCATGAGTGTCTGTGAGAGGCAGCTATCTGCACTCTAAACTGCAAACAG AAATATTTACCT

PCT/US2003/028547

290/6881 FIGURE 270

MSSRIARALALVVTLLHLTRLALSTCPAACHCPLEAPKCAPGVGLVRDGCGCCKVCAKQLNEDCSKTQPCDHTKG
LECNFGASSTALKGICRAQSEGRPCEYNSRIYQNGESFQPNCKHQCTCIDGAVGCIPLCPQELSLPNLGCPNRL
VKVTGQCCEEWVCDEDSIKDPMEDQDGLLGKELGFPASEVELTRINELIAVGKGSSLKRIPVFGMEPRIRYNPLQ
GQKCIVQTTSMSQCSKTCGTGISTRVTNDMPECRLVKETRICEVRPCGQPVYSSLKKGKKCSKTKKSPEPVRFTY
AGCLSVKKYRPKYCGSCVDGRCCTPQLTRTVKMRFRCEDGETFSKNVMMIQSCKCNYNCPHANEAAFPFYRLFND
IHKFRD

PCT/IIS2003/028547

291/6881 FIGURE 271

GGGGGAATATACAAAGTGAAGCCACATTGCCAAACTTGCAGCAGCGATTGCAGCAGTTGCTGCCGCTGCGCCGCG ${\tt TGAGACTGACACTTCTGCTCCGGCCGCCGGCACTTACGCGGGGGCCCCCCAACCCGCCCCAGAGCAACGCGAT}$ CAATATTGCAATATAGGGGAAAAGCAGACCATGGTGAATCCGGGCAGCAGCTCGCAGCCGCCCCCGGTGACGGCC GGCTCCCTCTCCTGGAAGCGGTGCGCAGGCTGCGGGGGCCAAGATTGCCGGACCGCTTTCTGCTCTATGCCATGGAC AGCTATTGGCACAGCCGGTGCCTCAAGTGCTCCTGCTGCCAGGCGCAGCTGGGCGACATCGGCACGTCCTGTTAC ACCANAGTGGCATGATCCTTTGCAGAAATGACTACATTAGGTTATTTTGGAAATAGCGGTGCTTGCAGCGCTTGC CCACACTCCATTCCTCCCACTCAACTCCTCATCAGGGGGGCGCAAGGCAATGTGTATCATCTTAAGTGTTTTACATGC ${\tt TCTACCTGCCGGAATCGCCTGGTCCCGGGAGATCGGTTTCACTACATCAATGGCAGTTTATTTTGTGAACATGAT}$ AGACCTACAGCTCTCATCAATGGCCATTTGAATTCACTTCAGAGCAATCCACTACTGCCAGACCAGAAGGTCTGC TAAAAGGTCAGAGTAATGCAGAATGCGTGCCTTCATCTCAGATTTGTTCATCACAGGTGGATCCCATGTGTCTTC AGTAGACAAGTCACCTTTGTAGCTAGCACCAGTGCCAGCTCCATGCCATTGCACCTTCTTTAGTCTTGATTGCCC TTCCCGCATTTATTGGTGTATTAAAATGACTGAATATGAACATTAAGGACTCCATGAACCTGGGCTAATGGGAGA CTAATGAAGCTAATTAAAAGAAGCATTCAAATCTGCTTTCTACCCTCATTAACAATTAGCAGGGCACTGGCCAGA GTTTGTACCCTGTGTTTTACCTTAACAACATTCTATTTGCTCTTTGTATATTTAAGTGTTGTAAGGAAACGTGTT TCAATCAAAACTGACCATGAGATAAAGGAAAGAGATGTGGCTTTTGTGATATTCTATCACAAACACTTATTGTAT CTCTGTAAAATACAATGTATGTATGCATGTAAGTGTTTTTGTCCTAATGTTGCTACTCCCATGGCAAAGAAAAAAA AAAAGAATGAAAAAAAGAAAAAAATTTGGAAAAAAATCAGGCTCATAGCAGCTACTGTGTAGAAAATTCCCC CTACTTCTAATTTGCTGAATGAAGAAAAAAAAAATCTTTTATTTGTGATATTTTCAGAGACATTTGCTCTAGTA **AAAAAAAAAAAAAAAAAAAAAAAAA**

PCT/US2003/028547

292/6881 FIGURE 272

MVNPGSSSQPPPTTAGSLSWKRCAGCGGKIADRFLLYAMDSYWHSRCLKCSCCQAQLGDIGTSCYTKSGMILCRN DYIRLFGNSGACSACGGSIPASELVMRAQGNVYHLKCFTCSTCRNRLVPGDRFHYINGSLFCEHDRPTALINGHL NSLQSNPLLPPQKVC

PCT/IIS2003/028547

FIGURE 273

AGCG<u>ATG</u>CCGGCTGGGCCGAGTGGGTGTCTGGTGCCGGCGTTTGGGCTACGGTTGTTGTTGGCGACTGTGCTTCA AGCGGTGTCTGCTTTTGGGGCAGAGTTTTCATCGGAGGCATGCAGAGAGTTAGGCTTTTCTAGCAACTTGCTTTG CAGCTCTTGTGATCTTCTCGGACAGTTCAACCTGCTTCAGCTGGATCCTGATTGCAGAGGATGCTGTCAGGAGGA AGCACAATTTGAAACCAAAAAGCTGTATGCAGGAGCTATTCTTGAAGTTTGTGGATGAAAAATTGGGAAGGTTCCC TCAAGTCCAAGCTTTTGTTAGGAGTGATAAACCCAAACTGTTCAGAGGACTGCAAATCAAGTATGTCCGTGGTTC AGACCCTGTATTAAAGCTTTTGGACGACAATGGGAACATTGCTGAAGAACTGAGCATTCTCAAATGGAACACAGA CAGTGTAGAAGAATTCCTGAGTGAAAAGTTGGAACGCATATAAATCTTGCTTAAATTTTGTCCTATCCTTTTGTT TGAGGCATTAAATATCTAATTAAATCGTGAAATGGCAGTATAGTCCATGATATCTAAGGAGTTGGCAAGCTTAAC AAAACCCATTTTTTATAAATGTCCATCCTCCTGCATTTGTTGATACCACTAACAAAATGCTTTGTAACAGACTTG CGGTTAATTATGCAAATGATAGTTTGTGATAATTGGTCCAGTTTTACGAACAACAGATTTCTAAATTAGAGAGGT TAACAAGACAGATGATTACTATGCCTCATGTGCTGTGTGCTCTTTGAAAGGAATGACAGCAGACTACAAAGCAAA TAATACAAATGTTATTTATAGTTTACAATGAATGCACTGCATAAAAACTTTGTAGCTTCATTATTGTAAAACATA TTCAAGATCCTACAGTAAGAGTGAAACATTCACAAAGATTTGCGTTAATGAAGACTACACAGAAAACCTTTCTAG GCATTTGTGTGGATCAGATACATACTTGGCAAATTTTTGAGTTTTACATTCTTACAGAAAAAGTCCATTTAAAAGT TTTCATGTTTAAAAATGATGTTTTTCAATGCATTTTTTTCATGTAAGCCCTTTTTTTAGCCAAAATGTAAAAATG GCTGTAATATTTAAAACTTATAACATCTTATTGTTGGTAATAGTGCTTTATATTTGTCTGATTTTATTTTTCAAA GTTTTTCATTTATGAACACATTTTCATTGGTATATTATTTAAGGAATATCTCTTGATATAGAATTTTTATATTA AAAATGATTTTTCTTTGGC

PCT/US2003/028547

294/6881 FIGURE 274

MAAGPSGCLVPAFGLRLLLATVLQAVSAFGAEFSSEACRELGFSSNLLCSSCDLLGQFNLLQLDPDCRGCCQEEA QFETKKLYAGAILEVCGENWEGSLKSKLLLGVINPNCSEDCKSSMSVVQTLYLKLLDDNGNIAEELSILKWNTDS VEEFLSEKLERI

PCT/IIS2003/028547

FIGURE 275

PCT/US2003/028547

296/6881 FIGURE 276

PCT/US2003/028547

297/6881 FIGURE 277

AAGACTCATATCAACATTGTCGTCATTGGACACGTAGATTCGGGCAAGTCCACCACTTCTGGCCATCTGATCTAC AAATGCGGTGGCATCGACAAAAGAACAATTGAAAAATTGCAGAAAGAGGCTGCTGAGATGGGAAAGGGCTCCTTC A AGT A TGCCTG AGTCTTGGAT A A CTGA A AGCTGAGCGTGA ACGTGGTATCACCATTGATATCTCCTTGTGGAAA TTTGAGACCAGCAAGTACTATGTGACTATCATTGATGCCCCAGGACACAGAGACTTCATCAAAAAACATGATTACA GGGACATCTCAGGCTGGTTGTGCTGTCCTAATTGTTGCTGCTGGTGTTTGGTGAATTTGAAGCTGGTATCTCCAAG AATGGGCAGACCCGAGAGCATGCCCTTCTGGCATATACACTGGGTGTGAAACAACTAATTGTTGATGTTAACAAA ATGGATTCCACTGAGCCACCCTACAGCCAGAAGAGATATGAGGAAATTGTTAAGGAAATCAGCACTTACATTAAG AAAATTGGCTACAACCCCAACACAGTAGCATTTGTGCCAATTTCTGGTTAGAATGGTGACAACATGCTGGAGCCA AGTGCTAACATGCCTTGGTTCAAGGGATGGAAAGTCACCCATAAGGATGGCAATGCCAGTGGAACCATGCTGCTT AAAATTGGTGGTATTGGTACTGTTCTTGTTGGCCGAGTGGAGACTGGTATTCTCAAACCTGGTATGGTGGTCACC GGGGACAATATGGGCTTCAATGTCAAGAATGTCTCTGTCAAGGATGTTCATCGTGGCAACGTTGCTGGTGACAGC AAAAATGACCCACCAATGGAAGCAGCTGGCAAGCCCATGTGTGTTGAGAGCTTCTCAGACTATCCACCTTTGGGT GCTGGCAAGGTCACCAAGTCTGCCCAGAAAGCTCAGAAGGCTAAATGAATATTATCCCTAATACCTGCCACCCCA TGGTTAATGATAATAATGCAACATAAAACCTTCAGAAGGAAAGGAGAATGTTTTGTGGACCACTTTGGTTTTCTT TTTCGCATGCAGCAGTTTTAAGTTATTAGTTTTTAAAATCAGTACTTTTTAAAATGGAAACAACTTGACCAAAAAT TTGTCACAGAATTTTGAGACCCATTAAAAAAGTTTAATGAG

PCT/IIS2003/028547

298/6881 FIGURE 278

MLEPSANMPWFKGWKVTHKDGNASGTMLLEALDCILPPTRPTDKPLRLPLQDVYKIGGIGTVLVGRVETGILKPG MVVTFAPVSVTTEVKSVEMHHEALNEALPGDNWGFNVKNVSVKDVHRGNVAGDSKNDPPMEAAGKPMCVESFSDY PPLGRPTVHDMRQTLAVGVIKAVDKKAAGGKVTKSAOKAGKAK

PCT/US2003/028547

FIGURE 279

PCT/IIS2003/028547

300/6881 FIGURE 280

PCT/IIS2003/028547

301/6881 FIGURE 281

PCT/IIS2003/028547

302/6881 FIGURE 282

GTTACTCAAAGACTACCTACTGCGTGGTGCTCCAAGTGAAATTCGTGAAGAATTAGAAAAGCAGCTTTATTCTTG TATTGCTCTCAAAGTCACAGCAAATCAAATGGAAATGGAACATTCTTTGATACTAAATAACCTAAAAAACATTATT GTGGAAGAAAATTTCCTACACTAATGACTCTTAGTTCATTTGGACATAATTACCATTTTAAGAAACCTGCCACTT TTAAAGAACAATTTTGAGCATTAAAAAAAATGGCTTCAAATTCCGGCCAGTTACACAAAACTCCTTCCCCCCAG GCCTGAGAAGCCATCAGTATGTGATCACTGAAGTAATGGCAGGTGTAGGATCAACAGGTCCCCAAGATGTCATTC CTGGAAGCATTGTGTTTGCATTGAAGCTGCTGTTCAACAAGAAAATTTATAAATTTACTAATGTCTTAGCATGGT AAAGTTTGCACATTAACAGAAATTAAGACTGCAAAGCAGGTTAAACTTGCTTCTTTATAAAACAGATGTTGGGTT AATAGCATGGTTTACTGTATTAAAGACTTATACACCCATTTTTAACCTCATTCAGACATCAAGTTATGTGTAGCT TCACAATGGTTCAAGTGGCTTACTTCAAGAAATCTTATACTTGACAGTACACCAATTTTATTGACTAAAAATGGA AGGCCCAATCAAGATCCACATATCCTGATTTTGAACTATGTGAAAGTGGGACTGTAAGTGCAAGACTAAAATAAA TTATAGCAGACTTTTTAGTAATAACTTTCCATTTTCAAACAGTATATCCTGTGGGCCAAAGGGCTATTTCTTAAA GAGGCATGTAAATGTATTTATCTAATGTTTTTTTCCCCATGTAAACTTGATATACAAGGTTTAGTATTTGC TCCTCTTTCATATTATTTTCACACGTATACTCAGATTTGGCATGTACCTTTCAACATCTCCATAAAATTAAACAC TGACCATCACTGGACAGCTTTCTCTCAAAACTTTCCTTCAACGCCATGGATTAGCACCAGTTTTGTTTACTTTAA CTTGCCAAATTTTTAGGGAGAGCTGTTCATCATACAACATAAGGGATAATGACTCCTGTCAGGTAAAACAGAAGC CCAAGAAATAACAACTTTTTTTCTTAAAAAGTTAGTTACACTTGTTTTCTTGGAGAAAAAAACCTGTCAACTCCT TTGCTTTTCCAAAATATTTCAGGGTATTTCCTATAAGGTTCATAAGAATAAGAGCTTAACACAGAAATAGTTGCT GTTCATAAGTTTATTATCTATATCTGAAAAAATCATAGAAAAATTGCTGGGTTTAGCTCTCAGCAGCCCGCTCCTG AGCTCTGAGGAAGCTTGCCTTCTTTTGAGCTACCCGATCCTTCTTCTGAGCAAGGGACATTTTGGGACGGTTCCA CCTACAAAAGATAGGAATATATTTTTTTAAACTATAACTGAAGAGAATAGAATATTTAATTTAAAATTTTAATA AAATTTAATTTTGATAGAGAATATTTAAGACTTTGCAATCAGAAGGTTAAATAATCCAAGTTCAAATACATTTAC TTATGTATGATCTTAAGCTAACTTTCCCAAACCCCAACTTCTGTGATGTCCTACTACCATAGGGCCAAAAGTCAA ATAGAAGACATGTTAGATTCAGTAATACCACTTCTAGGTATTTGCCCCAAATGTTTTGAAATCAGTTTGTCCAAGA GAGTGGCACTCCCATGTTCATTGCAGCACTATATATTAATAGCAACAGATAAATGGATAAAGGAAATGTGGTATA GAATATTGTGCTCAGTGAAATAAGCCAGGCACAAAAAGACAAATACTTCATATTCATATAGAATCTAAAACAATG GTATAAAATCTCCAACAGGAGGAGTATGATTTTGTTTTTAGTTCTATTGCACAGCATGATGAATATAGAATATCG TACATTTCACAATTAAGAGAATAAATTTCAAATGTTGTTGCCACAAAGTGTTAAGTATTTGAGGTGAATATGTTA ANTACATTGATTTAATTACTATACATTGTATTTGTGGGCCATCACATCACTTTATGCTTACATGTTCATTAAGTA TTACTTTCTATTCCATTTAAAGATCAAAACATGAAAGATCAACAAAAAGCAACTTGTCAGCCAATAAAAAATGC AGTAACCAGTACTTAGACTGTACTAGGATAGAAAGAACCACCTCAGTAGTGTCTGAGGCTAACACATTTCCATCA CCACAGTTACTTTTGCAAACCTGGTTCCCTTCGCTTCTGCCACATCACGCAGAGCTAGTGATCGAGTTTGCACAA ACCTCTTCTTTTAACTTCTTTCTTGGGCTTCTTTTCATAGACTGGATTCTCTCGTATAGCAGCATGAGCTTTCT TATACATCTCCTCCATCTGAAACAAAGGAAAGCAAACAGTACTTGGTTTCATTTCATGTGCCCTACTATATTAAT GCAACCATAACTTATCTTGTCCTTCTAAGCCAGATTCTCAAAAGGAACTAAACTAAATCAATGTTGGTAAACAC TTAACTTCTAAATGTAACTCACCTTTTCCTAACAAATTCCCAATTTTCACCTTATGCAATGTGAATTATCACTAC AGAACTCCATCTTACTCAAGAAAAAATCAGGCCAGGTGTGGTGGTTCATGCCTGTAATCTCAAGCACTTTGGGA GTCTGAAGTGGGAGGATCACTTCAGCCCAGGAGTTTGAGACCAGCTAAGGCAACACAGTGAGACCTGTCTCCATA AAAAAACTAATTAGCCAGGTGGCAATTATTAATGGTGGCATGCACCTGTAGTCCCAGCTACAGGACTACACGTGA GTCCAGGAGGTCAAGGCTGCAGTGGCACAATCACAGCTCACTGGACCCCAGCCTAGATGACAGAATGAGACCTCA TCTCTACCAAAATTAAAAAAAAAAAAAAAAAATTAGCAGGG

PCT/US2003/028547

303/6881 FIGURE 283

 ${\tt MFFSPCKLDIQGLVFAPLSYYFHTYTQIWHVPFNISIKLNTFWRKEPLFSAQRFRLPKVEHVKNLCDHHWTAFSQ} \\ {\tt NFPSTPWISTSFVYFKVLFPFIIWL}$

PCT/HS2003/028547

304/6881 FIGURE 284

PCT/US2003/028547

305/6881 FIGURE 285

MGFVKVVKNKAYFKRYQVKFRRREGKTDYYARKRLVIQDKNKYNTPKYRMIVRVTNRDIICQIAYARIEGDMIV CAAYAHELPKYGVKVGLTHYAAAYCTGLLLARRLLNRFGMDKIYEGQVEVTGDEYNVESIDGQFGAFTCYLDAG ARTTTGNKVFGALKGAVDGGLSIPHSTKRFPGYDSESKEFNAEVHRKHIMGQNVADYMRYLMEEDEDAYKKQFSQ YIKNSVTPDMMEEMYKKAHAAIRENPVYEKKPKEVKKKRMNRPKHSLAQKKDRVAQKKASFLRAQERAAES

PCT/HS2003/028547

306/6881 FIGURE 286

PCT/US2003/028547

307/6881 FIGURE 287

MVNVKTNLGRNIYQFQYLSPPQYCMLLEEDEDAYKKQFSQYIKNSVTPDMMEEMYKKAHAAVPENPVYEKKPKKE VKKKRWNRSKMSLAQKKDWVAQKKASFLRA

PCT/HS2003/028547

308/6881 FIGURE 288

GCTGACTCCAGTGTCCCGAGAGGCGCCGCTTCTTCCGCTTTCTCGTCAGGCTCCTGCAACCCCAGGCATGAACCA AGGTTTCTGAACTACTGGGCGGGAGCCAACGTCTCTTCTTCTCCCGCTCTGGCGGAGGCTTTGTCGCTGCGGGC TGGGCCCCAGGGGTGTCCCCCATGGGGGGCCGGGGTGGAGGTCGATGGCAGCATCATGGAAGGGGGCGGCCAGA GCACGCCAGGCCTGAGGCCTCAACATTTATCTGGACTGGAAATGATTCGAGATTTGTGTGATGGGCAACTGGAGG GGGCAGAAATTGGCTCAACAGAAATAACCTTTACACCAGAGAAGATCAAAGGTGGAATCCACACAGCAGATACCA AGACAGCAGGGAGTGTGTGCCTCTTGATGCAGGTCTCAATGCCGTGTGTTCTCTTTGCTGCTTCTCCATCAGAAC TTCATTTGAAAGGTGGAACTAATGCTGAAATGGCACCACAGATCGATTATACAGTGATGGTCTTCAAGCCAATTG TTGAAAAATTTGGTTTCATATTTAATTGTGACATTAAAACAAGGGGATATTACCCAAAAGGGGGTGAAGTGA TTGTTCGAATGTCACCAGTTAAACAATTGAACCCTATAAATTTAACTGAGCGTGGCTGTGTGACTAAGATATATG GAAGAGCTTTCGTTGCTGGTGTTTTTGCCATTTAAAGTAGCAAAAGATATGGCAGCGGCAGCAGTTAGATGCATCA GAAAGGAGATCCGGGATTTGTATGTTAACATCCAGCCTGTTCAAGAACCTAAAGACCAAGCATTTGGCAATGGAA ATGCAGACAAAGTTGGAATTGAAGCTGCCGAAATGCTATTAGCAAATCTTAGACATGGTGGTACTGTGGATGAGT ATCTGCAAGACCAGCTGATTGTTTTCATGGCATTAGCCAATGGAGTTTCCAGAATAAAAACAGGACCAGTTACAC TCCATACGCAAACCGCGATACATTTTGCTGAACAAATAGCAAAGGCTAAATTTATTGTGAAGAAATCAGAAGATG AAGAAGACGCCGCTAAAGATACTTATATTATTGAATGCCAAGGAATTGGGATGACAAATCCAAATCTA<u>TAG</u>AGTA TTTGCCTCTTAAATGATACCTCATTGATATATTGCACTATTTCATAAATACTATAAAATAATAATGACTAGGAAGTAA CTTATTAAAGGCTATGACTTAAATTTGAAGATGAAGTACAGTGTTCTAGGTTTGCTGAGAAGGCTTCATTAAATT AATCTCACTTTGAATATCTCCTGAGAGATGGACAATGAAATATCAGTTGGTGGATATGTGTGATAGCTGATTTCA ATATTGAAGTATTGAAATAAAATATTCTTTACACCTGAG

PCT/IIS2003/028547

309/6881 FIGURE 289

MAGPRVEVDGSIMEGGGQILRVSTALSCLLGIPLRVQKIRAGRSTPGLRPQHLSGLEMIRDLCDGQLEGAEIGST EITFTPEKIKGGIHTADTKTAGSVCLLMQVSMPCVLFAASPSELHLKGGTNAEMAPQIDTTVMVFKPIVEKFGFI FNCDIKTRGYYPKGGGEVIVRMSPVKQLNPINLTERGCVTKIYGRAFVAGVLPFKVAKDMAAAAVRCIRKEIRDL YVNIQPVQEPKDQAFGNGNGIIIIAETSTGCLFAGSSLGKRGVVADKVGIEAAEMLLANLRHGGTVDEYLQDQLI VFMALANGVSKIKTGPVTLHTGTAIHFAEGIAKAKFIVKKSEDEEDAAKDTYIIECQGIGMTNPNL

PCT/IIS2003/028547

310/6881 FIGURE 290

PCT/US2003/028547

FIGURE 291

MSGALDVLQMKEDVLKFLAAGTHLGGTNLDFQMEQYIYKRKSDGIYIINLKRTWEKLLLAGRAIVAIENPADVSV ISSRNIGQRAVLKFAAATGATFIAGRFTFGTFTNRIQAAFREFRLVVVTDFRADHQPLTEASYVNLPTIALCNTD SPLCYVDIAIPCNNKGTHSVGLMWWMLAREVLRMCGTISREHPWEVMPDLYFDRDPEEIEKEEQAAARKAVTKEE FQGENTAFAPEFTATOPEVADWSEGVQYFSVFIQQFPTEDWSAQPATEDWSAAPTAQATEWGATTDWS

PCT/IIS2003/028547

312/6881 FIGURE 292

GGCACGAGGAAGAA TCAGGAGCTTAGGATGTATTAACACCAACTCATTAA TATACTAACCGGACAATGTTCTACA CGATGGAGGAAAATTTGATAAGCATGAGAGAGACCATTCTTTTCATGTTCGTTACAGAATGGAAGCTTCTTGCC TAGAGCTGGCCTTGGAAGGGGAACGTCTATGTAAATCAGGAGACTGCCGCGCTGGCGTGTCATTCTTTGAAGCTG CAGTTCAAGTTGGAACTGAAGACCTAAAAACACTTAGCGCTATTTACAGCCAGTTGGGCAATGCTTATTTCTATT TGCATGATTATGCCAAAGCATTAGAATATCACCATCATGATTTAACCCTTGCAAGGACTATTGGAGACCAGCTGG GGGAAGCGAAAGCTAGTGGTAATCTGGGAAACACCTTAAAAGTTCTTGGGAATTTTGACGAAGCCATAGTTTGTT GTCAGCGACACCTAGATATTTCCAGAGAGCTTAATGACAAGGTGGGAGAAGCAAGAGCACTTTACAATCTTGGGA ATGTGTATCATGCCAAAGGGAAAAGTTTTGGTTGCCCTGGTCCCCAGGATGTAGGAGAATTTCCAGAAGAAGTGA GAGATGCTCTGCAGGCAGCCGTGGATTTTTATGAGGAAAACCTATCATTAGTGACTGCTTTGGGTGACCGAGCGG CACAAGGACGTGCCTTTGGAAATCTTGGAAACACACATTACCTCCTTGGCAACTTCAGGGATGCAGTTATAGCTC ATGAGCAGCGTCTCCTTATTGCAAAAGAATTTGGAGATAAAGCAGCTGAAAGAAGAGCATATAGCAACCTTGGAA ATGCATATATATTTCTTGGTGAATTTGAAACTGCCTCGGAATACTACAAGAAGACACTACTGTTGGCCCGACAGC TTAAAGACCGAGCTGTAGAAGCACAGTCTTGTTACAGTCTTGGAAATACATATACTTTACTTCAAGACTATGAAA GTTGGAGCTTAGGAAATGCATACACAGCACTAGGAAATCATGATCAAGCAATGCATTTTGCTGAAAAGCACTTGG AAATTTCAAGAGAGGTTGGGGATAAAAGTGGTGAACTAACAGCACGACTTAATCTCTCAGACCTTCAAATGGTTC TTGGTCTGAGCTACAGCACAAATAACTCCATAATGTCTGAAAATACTGAAATTGATAGCAGTTTGAATGGTGTAC TCCCCAAGTTGGGACGCCGGCATAGTATGGAAAATATGGAACTTATGAAGTTAACACCAGAAAAGGTACAGAACT GGAACAGTGAAATTCTTGCTAAGCAAAAACCTCTTATTGCCAAACCTTCTGCAAAGCTACTCTTTGTCAACAGAC TGAAGGGGAAAAAATACAAAACGAATTCCTCCACTAAAGTTCTCCAAGATGCCAGTAATTCTATTGACCACCGAA TTCCAAATTCTCAGAGGAAAATCAGTGCAGATACTATTGGAGATGAAGGGTTCTTTGACTTATTAAGCCGATTTC AAAGCAATAGGATGGATGATCAGAGATGTTGCTTACAAGAAAAGAACTGCCATACAGCTTCAACAACAACTTCTT CCACTCCCCCTAAAATGATGCTAAAAACATCATCTGTTCCTGTGGTATCCCCCCAACACGGATGAGTTTTTAGATC TTCTTGCCAGCTCACAGAGTCGCCGTCTGGATGACCAGAGGGCTAGTTTCAGTAATTTGCCAGGGCTTCGTCTAA CACAAAACAGCCAGTCGGTACTTAGCCACCTGATGACTAATGACAAAAAAGAGGCTGATGAAAAATTTCTTTGACA TCCTTGTAAAATGTCAAGGATCCAGATTAGATGATCAAAGATGTGCTCCACCACCTGCTACCACAAAGGGTCCGA CAGTACCAGATGAAGACTTTTTCAGCCTTATTTTACGGTCCCAGGGAAAGAGAATGGATGAACAGAGAGTTCTTT TACAAAGAGATCAAAACAGAGACACTGACTTTGGGCTAAAGGACTTTTTGCAAAATAATGCTTTGTTGGAGTTTA AAAATTCAGGGAAAAATCGGCAGACCAT<u>TAG</u>TTACTATGGATTTATTTTTTTTCCTTTCAAACACGGTAAGGAA ACAATCTATTACTTTTTCCTTAAAAGGAGAATTTATAGCACTGTAATACAGCTTAAAATATTTTTAGAATGATG TABATACTTAA

PCT/IIS2003/028547

313/6881 FIGURE 293

MREDHSFHVRYRMEASCLELALEGERLCKSGDCRAGVSFFEAAVQVGTEDLKTLSAIYSQLGNAYFYLHDYAKAL EYHHHDLTLARTIGDQLGEAKASGNLGNTLKVLGNFDBAIVCCQRHLDISRELNDKVGEARALYNLGHVTHAKGSFCEGPQDVGEFFEEVRDALQAAVDFYEENLSLVTALGDRAQGRAFGNLGNTHYLLGHFRDAVIAHEQRLLIA KEFGDKAAERRAYSNLGNAYTILGFFETASEYYKKTLLLARQLKDRAVEAGSCYSLGNTYTLLQDYEKAIDYHLK HLAIAQELNDRIGBGRACWSLGNAYTALGNHDDAM#FAEKHLEISREVGDKSGEITARLMLSDLGMVLGLSYSTN NSIMSENTEIDSSLNGVLPKLGRRHSMENMELMKLTPEKVQNWNSEILAKQKPLTAKLPKSAKLFVRUKKKYKT NSITKVLQDASNSIDHRIPNSQRKISADTIGDEGFFDLLSRFGSNRMDDQRCCLQEKNCHTASTTISSTPPKMML KTSSVPVVSPNTDEFLDLLASSGSRRLDDQRASFSNLPGLRLTONSGSVLSHLMTNDNKEADEDFFDILVKCGGS RLDDQRCAPPPATTKGPTVPDEDFFSLILRSQGKRMDEQRVLLQRDQNRDTDFGLKDFLONALLEFKNSGKKSA

PCT/IIS2003/028547

314/6881 FIGURE 294

AAGCAGCCTGAGGTAATCTGTGAAAATGGTTCGCTATTCACTTGACCCGGAGAACCCCACGAAATCATGCAAATC
AAGAGGTTCCAATCTTCGTGTTCACTTTAAGAACACTCGTGAAACTGCTCAGGCCATCAAGGGTATGCATATACG
AAAAGCCACGAAGTATCTGAAAGATGTCACTTTACAGAAACAGTGTGTACCATTCCGACGTTACAATGGTGGAGT
TGGCAGGTGTGCGCAGCCCTGCACATGCTTAAAAACACAGAGGATAATGCTGAACTTAAGGGTTTAGATGTAGA
TTCTCTGGTCATTGAGCATATCCAAGTGAACAAAGCACCTAAGATGCGCCGCGGACCTACAGAGCTCATGGTCG
GATTAACCCATACATGAGCTCTCCCTGCCACATTGAGATGATCCTTACGGAAAAGGAACAGATTGTCCTAAACC
AGAAGAGGAGGTTGCCCAGAAGAAAAGGAATCCCAGAAGAAACTGAAGAAAACTTATGGCACGGGAGTA
AATTCAGCAT

PCT/IIS2003/028547

FIGURE 295

GCAGGCTCTGCCTGTGGCCACTAGCAGAGAAGCTGCTGTCCTTCCACCACCAGCACCGGACCACCTGCTCCAAGA CCAGCCTCCTGGGGGGACCAGGCACCCGGCCTTCACTGGCACCCAGGGAGCCGTCCTCAGCAGCGTCAACATGTC AAGGCCCAGCAGCAGAGCCATTTACTTGCACCGGAAGGAGTACTCCCAGAACCTCACCTCAGAGCCCACCCTCCT GCAGCACAGGGTGGAGCACTTGATGACATGCAAGCAGGGGAGTCAGAGAGTCCAGGGGCCCGAGGATGCCTTGCA GCAGCTGCTGGACATTGAGACCAAGGAGGAGCTGGACTCTTACCGCCTAGACAGCATCCAGGCCATGAATGTGGC GCTCAACACATGTTCCTACAACTCCATCCTGTCCATCACCGTGCAGGAGCCGGGCCTGCCAGGCACTAGCACTCT GCTCTTCCAGTGCCAGGAAGTGGGGGCAGAGCGACTGAAGACCAGCCTGCAGAAGGCTCTGGAGGAAGAGCTGGA GCAAAGACCTCGACTTGGAGGCCTTCAGCCAGGCCAGGACAGATGGAGGGGGCCTGCTATGGAAAGGCCGCTCCC TATGGAGCAGGCACGCTATCTGGAGCCGGGGATCCCTCCAGAACAGCCCCACAGAGGACCCTAGAGCACAGCCT CCCACCATCCCCAAGGCCCCTGCCACGCCACACCAGTGCCCGAGAACCAAGTGCCTTTACTCTGCCTCCTAAG GCGGTCCTCTTCCCCCGAGGACCCAGAGAGGGACGAGGAAGTGCTGAACCATGTCCTAAGGGACATTGAGCTGTT AGGTCTCACCCAGGCACAGTACATTGACTGCTTCCAGAAGATCAAGCACAGCTTCAACCTCCTGGGAAGGCTGGC CACCTGGCTGAAGGGGAGACAAGTGCCCCTGAGCTCGTACACATCCTCTTCAAGTCCCTGAACTTCATCCTGGCCAG GTGCCCTGAGGCTGGCCTAGCAGCCCAAGTGATCTCACCCCTCCTCACCCCTAAAGCTATCAACCTGCTACAGTC CTGTCTAAGCCCACCTGAGAGTAACCTTTGGATGGGGTTGGGCCCAGCCTGGACCACTAGCCGGGCCGACTGGAC AGGCGATGAGCCCCTGCCCTACCAACCCACATTCTCAGATGACTGGCAACTTCCAGAGCCCTCCAGCCAAGCACCC CTTAGGATACCAGGACCCTGTTTCCCTTCGGCGGGGAAGTCATAGGTTAGGGAGCACCTCACACTTTCCTCAGGA GGAGGTTCTGGACCACAGCAAGCGGTGGTGGCTGGTGAAGAATGAGGCGGGACGGAGCGGCTACATTCCAAGCAA CATCCTGGAGCCCCTACAGCCGGGGACCCCTGGGACCCAGGGCCAGTCACCCTCTCGGGTTCCAATGCTTCGACT GTCCCTGACGGGGAGCCAGCTACTTCGCATAAGACCTGGGGAGCTACAGATGCTATGTCCACAGGAGGCCCCACG AATCCTGTCCCGGCTGGAGGCTGTCAGAAGGATGCTGGGGGATAAGCCCTTAGGCACCAGCTTAGACACCTCCAAG A ACCAGGCCCCGCTGATGC A AGATGGCAGATCTGATACCCATTAGAGCCCCGAGAATTCCTCTTCTGGATCCCAG TTTGCAGCAAACCCCACACCCCAGCTCACACAGCAAAAACAATGGACAGGCCCAGAGGCTGAAGCAAACAGTGTC CCTAGGCTTGTCAAGAATCTGTTCAGTCCCTCTCCTTCTCAATAAAAGCATCTTCAAGCTTGT

PCT/HS2003/028547

316/6881 FIGURE 296

GGGAGAAAGCCTGTTGCGTGGAAGATAAGGCGGCGCGGGAAGTGGACACAGGGTGGGCTGGAGCTCAGATCTAAC TGGACTCTCGCTCCTGCTGGCTGGACATGGAGGATTTGGAGGAAGATGTAAGGTTTATTGTGGATGAGACCTTGG ACTTTGGGGGGCTGTCACCATCTGACAGCCGTGAGGAGGAGACATAACAGTGTTGGTGACTCCAGAGAAACCAC TTCGACGGGGCCTCTCCCACCGAAGTGACCCAAATGCAGTGGCACCTGCCCCCAGGGTGTGAGGCTCAGCCTAG GCCCCTCAGTCCAGAGAAGCTGGAGGAGATCCTCGATGAGGCCAACCGGCTGGCCGCTCAGCTGGAGCAGTGTG CCCTGCAGGATCGGGAGAGCGCAGGCGAGGGCCTGGGGCCTCGCCGAGTGAAGCCCAGTCCTCGGCGGGAGACCT TTGTGCTGAAGGATAGTCCTGTCCGAGACCTGCTGCCCACTGTGAACTCTTTGACGCGGAGCACCCCCTCCCCAA GGCCCTCCAACATGAAGAGGGAGTCACCCACTTGCAATCTGTTCCCTGCATCCAAAAGCCCAGCATCTTCTCCTC TCAGATCCGTCCTGGCCCCACAGCCTTCTACCAGCAACTCTCAACGCCTGCCCCGGCCGCAGGAGCAGCTGCTA AATCTTCCAGTCAACTGCCCATTCCCTCGGCCATCCCCAGGCCTGCCAGCCGAATGCCACTCACCAGCCGGAGTG TGCCACCTGGCAGAGGTGCCCTACCTCCGGATTCTCTGTCAACTCGAAAAGGGCTTCCAAGACCAAGCACTGCAG GACACAGAGTGCGGGAAAGTGGACACAAGGTTCCTGTTTCCCAGCGACTAAATCTTCCTGTCATGGGTGCCACTC ACTTCAGTAGCAAACCACTACAGTCAGTACCTGGACTCGCCTCTACCCAGCAGACCCTGACTCCAGCAGATTCTG GCCCAGGGACAGGAGGAGAGAGTGCCACCAGGGCTGGTCTCCCAGGAGTAGAGACCATGGGAAATGGGGTGGATT AGGATTGAGCTGGAGAAGACTTAAACTCTCTGGGTTGAAAGAAGATTAGGGGAAAAGAGGTCACCTTCCAGCAGT GAAATGAACAAATAGAAGATGAGAAGTACAGGCAAGTGGTTTGTCTTTATCCACCCCCACTGTTGTGGTCAGCCC CAGAGAATTTTATCTTCTTCCTTGGCATTGGTTCACTGGACATTTCCACGTGAGCGGCCTCCGTAGCTAACCTCC CTGCCCTCTGAGGAGCCATCTICCTGAATCGCATTCTCTACTGGACTCTGGCCTGCTTGGAGAGGTGGCAGCAGG CACCTGGTCTTCAGAAATTGTTTCCTGTGAATTCTGTGACTCCTAATAGGCCAGTTTGTGATAAGCTTACTCTAT

PCT/US2003/028547

317/6881 FIGURE 297

MEDLEEDVRFIVDETLDFGGLSPSDSREEEDITVLVTPEKPLRRGLSHRSDPNAVAPAPQGVRLSLGPLSPEKLE EILDEANKLAAQLEQCALQDRESAGEGLGPRRVKPSPRRETFVLKDSPVRDLLPTVNSLTRSTPSPSSLTFRLRS NDRKGSVRALRATSGKPSIMKRESPTCNLFPASKSPASSPLTRSTPVRGRAGPSGRAAASPPTPIRSVLAPQP STSNSQRLPRPQGAAAKSSQLPIPSAIPRPASRMPLTSRSVPPGRGALPPDSLSTRKGLPRPSTAGHRVRESGH KVPVSQRLNLPVMGATRSNLQPPRKVAVPGPTR

PCT/IIS2003/028547

FIGURE 298

GCAGTGCGGCGGTCACAGGCTGAGTGCTGCGGCGCGATCCTTGCTTCCCTGAGCGTTGGCCCGGGAGGAAAGAAG ATCGTGCTGGATCTGGATTTGTTTCGGGTGGATAAAGGAGGGGACCCAGCCCTCATCCGAGAGACGCAGGAGAAG CGCTTCAAGGACCCGGGACTAGTGGACCAGCTGGTGAAGGCAGACAGCGAGTGGCGACGATGTAGATTTCGGGCA GACAACTTGAACAAGCTGAAGAACCTATGCAGCAAGACAATCGGAGAGAAAATGAAGAAAAAAAGAGCCAGTGGGA GATGATGAGTCTGTCCCAGAGAATGTGCTGAGTTTCGATGACCTTACTGCAGACGCTTTAGCTAACCTGAAAGTC TCACAAATCAAAAAAGTCCGACTCCTCATTGATGAAGCCATCCTGAAGTGTGACGCGGAGCGGATAAAGTTGGAA GCAGAGCGGTTTGAGAACCTCCGAGAGATTGGGAACCTTCTGCACCCTTCTGTACCCATCAGTAACGATGAGGAT GTGGACAACAAGTAGAGAGGATTTGGGGTGATTGTACAGTCAGGAAGAAGTACTCTCATGTGGACCTGGTGGTG ATGGTAGATGGCTTTGAAGGCGAAAAGGGGGCCGTGGTGGCTGGGAGTCGAGGGTACTTCTTGAAGGGGGTCCTG GTGTTCCTGGAACAGGCTCTCATCCAGTATGCCCTTCGCACCTTGGGAAGTCGGGGCTACATTCCCATTTATACC CCCTTTTCATGAGGAAGGAGGTCATGCAGGAGGTGGCACAGCTCAGCCAGTTTGATGAAGAACTTTATAAGGTG ATTGGCAAAGGCAGTGAAAAGTCTGATGACAACTCCTATGATGAGAAGTACCTGATTGCCACCTCAGAGCAGCCC ATTGCTGCCCTGCACCGGGATGAGTGGCTCCGGCCGGAGGACCTGCCCATCAAGTATGCTGGCCTGTCTACCTGC TTCCGTCAGGAGGTGGCCTCCCATGGCCGTGACACCCGTGGCATCTTCCGAGTCCATCAGTTTGAGAAGATTGAA CAGTTTGTGTACTCATCACCCCATGACAACAAGTCATGGGAGATGTTTGAAGAGATGATTACCACCGCAGAGGAG TTCTACCAGTCCCTGGGGATTCCTTACCACATTGTGAATATTGTCTCAGGTTCTTTGAATCATGCTGCCAGTAAG AAGCTTGACCTGGAGGCCTGGTTTCCGGGCTCAGGAGCCTTCCGTGAGTTGGTCTCCTGTTCTAATTGCACGGAT TACCAGGCTCGCCGGCTTCGAATCCGATATGGGCAAACCAAGAAGATGATGGACAAGGTGGAGTTTGTCCATATG ACTGTGCCTGAGAAATTGAAGGAGTTCATGCCGCCAGGACTGCAAGAACTGATCCCCTTTGTGAAGCCTGCGCCC ACCCTAGAAAACAGGCTGCAGAACATGGAGGTCACCGATGCTTGAACATTCCTGCCTCCCTATTTGCCAGGCTTT CATTTCTGTCTGCTGAGATCTCAGAGCCTGCCCAACAGCAGGGAAGCCAAGCACCCATTCATCCCCCTGCCCCCA TCTGACTGCGTAGCTGAGAGGGGAACAGTGCCATGTACCACACAGATGTTCCTGTCTCCTCGCATGGGCATAGGG ACCCATCATTGATGACTGATGAAACCATGTAATAAAGCATCTCTGGGGAGGGCTTAGGACTCTTCCTCAGTCTTC

PCT/IIS2003/028547

319/6881 FIGURE 299

MVLDLDLFRVDKGGDPALIRETQEKRFKDPGLVDQLVKADSEWRRCRFRADNLNKLKNLCSKTIGEKMKKKEPVG
DDESVPENVLSFDDLTADALANLKVSQIKKVRLLIDEAILKCDAERIKLEAERFENLREIGNLHFSVPISNDS
DDNKVERIWGDCTVRKKYSHVDLVVMVDGPEGEKGAVVAGSRGYFLKGULVFLEALIQVALREIGSRGYIPTYT
PFFMRKEVMOEVAQLSQFDEELYKVIGKGSEKSDDNSYDEKYLIATSEQPIAALHRDEWLRPEDLPIKYAGLSTC
FRQEVCSIGRDTRGIFRVNGPFKLEQFVYSSPHDNKSWEMFEEMITTAEEFYQSLGIPYHIVNIVSGSLNHAASK
KLDLEAMFPGSGAFRELVSCSNCTDYQARRLRIRYGQTKKMMDKVEFVHMLNAIMCATTRICAILENYQTEKGI
TVPEKLKRFMPPGLQELIFFVRPAPIEQBFSKKQKKQHEGSKKKAAAROVTLENRLQNMEVTDA

PCT/IIS2003/028547

FIGURE 300

CAGAGTGCCCTTTCTCCCCGCCTCTTCCCCCTCCCGGGAGCTGCCAGTACTTGACGTGGCGTCACCGCCCTCTAC CCTCGCTTTGCGTGCGTGTTTGCGTACAGCGGAGGTGGCGGCGCGGGCAGGTCGGAGCTCGGAGCTGCTTCT GGTTCTCTTGTGGCCACCGTCGCTGTCCGGCTGCCTTGGGCTGCCGAACAGACAAGGCGTGGGCCACAGCACCTC TGCCTGACGCGATGCCGCTGCCCGGGGTCGGGGAGGAGCTGAAGCAGGCCAAGGAGATCGAGGACGCCGAGAAGT ACTCCTTCATGGCCACCGTCACCAAGGCGCCCAAGAAGCAAATCCAGTTTGCTGATGACATGCAGGAGTTCACCA CTGCATCCTACACAGATAGCTCTGATGATGAGGTTTCTCCCCGAGAGAAGCAGCAAACCAACTCCAAGGGCAGCA GCAATTTCTGTGTGAAGAACATCAAGCAGGCAGAATTTGGACGCCGGGAGATTGAGATTGCAGAGCAAGACATGT CTGCTCTGATTTCACTCAGGAAACGTGCTCAGGGGGAGAAGCCCTTGGCTGGTGCTAAAATAGTGGGCTGTACAC ACATCACAGCCCAGACAGCGGTGTTGATTGAGACACTCTGTGCCCTGGGGGCTCAGTGCCGCTGGTCTGCTTGTA ACATCTACTCAACTCAGAATGAAGTAGCTGCAGCACTGGCTGAGGCTGGAGTTGCAGTGTTCGCTTGGAAGGGCG ATGATGGGGGAGACTTAACCCACTGGGTTTATAAGAAGTATCCAAACGTGTTTAAGAAGATCCGAGGCATTGTGG AAGAGAGCGTGACTGGTGTTCACAGGCTGTATCAGCTCTCCAAAGCTGGGAAGCTCTGTGTTCCGGCCATGAACG TCAATGATTCTGTTACCAAACAGAAGTTTGATAACTTGTACTGCTGCCGAGAATCCATTTTGGATGGCCTGAAGA GGACCACAGATGTGATGTTTGGTGGGAAACAAGTGGTGGTGTGTGGCTATGGTGAGGTAGGCAAGGGCTGCTGTG CTGCTCTCAAAGCTCTTGGAGCAATTGTCTACATTACCGAAATCGACCCCATCTGTGCTCTGCAGGCCTGCATGG ATGGGTTCAGGGTGGTAAAGCTAAATGAAGTCATCCGGCAAGTCGATGTCGTAATAACTTGCACAGGAAATAAGA ATGTAGTGACACGGGAGCACTTGGATCGCATGAAAAACAGTTGTATCGTATGCAATATGGGCCACTCCAACACAG AAATCGATGTGACCAGCCTCCGCACTCCGGAGCTGACGTGGGAGCGAGTACGTTCTCAGGTGGACCATGTCATCT GGCCAGATGGCAAACGAGTTGTCCTCCTGGCAGAGGGTCGTCTACTCAATTTGAGCTGCTCCACAGTTCCCACCT TTGTTCTGTCCATCACAGCCACAACACAGGCTTTGGCACTGATAGAACTCTATAATGCACCCGAGGGGCGATACA AGCAGGATGTGTACTTGCTTCCTAAGAAAATGGATGAATACGTTGCCAGCTTGCATCTGCCATCATTTGATGCCC ACCTTACAGAGCTGACAGATGACCAAGCAAAATATCTGGGACTCAACAAAAATGGGCCATTCAAACCTAATTATT ACAGATACTAATGGACCATACTACCAAGGACCAGTCCACCTGAACCACACTCTAAAGAAATATTTTTTAAGAT AACTTTTATTTTCTTCTTACTCCTTTCCTCTTGATTTTTTCCTATAATTTCATTCTTGTTTTTTCATCTCATTA TCCAAGTTCTGCAGACCACACAGGAACTTGCTTCATGGCTCTTTAGATGAAATAGAAGTTCAGGGTCCCTCACTC TAGTCACTAAAGAAGGATTTTACTCCCCCAGCCCAGAAAGGTGATTCTTCTCTTTACCATTTCTGGGGACTTTAG TCTTAATTAGGTACCTTATTAACAGGAAATGCTAAGGTACCTTCTCTGTGGAACAATCTGCAATGTCTAAATCGC CTTAAAAGAGCCCATTTCTTAGCTGCTGAAATCAGTGCTCTTTCACTTCTTCAGAGAAGCAGGGATGGTACCTAC CCGGCAGGTAGGTTAGATGTGGGTGGTGCATGTTAATTTCCCTTAGAAGTTCCAAGCCCTGTTTCCTGCGTAAAG GTGGTATGTCCAGTTCAGAGATGTGTATAATGAGCATGGCTTGTTAAGATCAGGAGGCCCACTTGGATTTATAGT ATAGCCCTTCCTCCACTCCCACCAGACTTGCTCATTTTTCGAGTTTTTAACTAGACTACACTCTATTTGAGTTTA

PCT/IIS2003/028547

321/6881 FIGURE 301

MSMPDAMPLPGVGEELKQAKEIEDAEKYSFMATVTKAPKKQIQFADDMQEFTKFPTKIGRRSLSRSISQSSTDSY SSAASYTDSSDDEVSPREKQQTNSKGSSNFCVKNIKQAEFGRRIEIAEQDMSALISLRKRAQGEKPLAGAKIVG CTHITAQTAVLIETLCALGAQCRWSACNIYSTQNEVAAALAEAGVAVFAWKGESEDDFWWCIDRCVMNDGWQANM ILDDGGDLTHWYYKKYBOLYFKKIRGIVESSYTGVHRLYQLSKAGKLCVPAMMVNDSVTKQKFDNLYCCRESILDG LKKTIDVMFGGKQVVVCGYGEVGKGCCAALKALGAIVYITEIDPICALQACMDGFRVVKLNEVIRQVDVVITCTĞ NKMVVTREHLDRMKNSCIVCNMGHSNTEIDVTSLRTPELTWERVRSQVDHVIWPDGKRVVLLAEGRLLNLSCSTV PTFVLSITATTQALALIELYNAPEGRYKQDVYLLPKKMDEYVASLHLPSFDAHLTELTDDQAKYLGLNKNGPFKP NYYRY

PCT/HS2003/028547

322/6881 FIGURE 302A

GCTTATGGCGGCGCTGGAGGGGGGGCGCTGAGCTGTTGGGTATGAAGTGTAACAGAACAGACTTTACCACCTGAA ACTGCTGCTTCAAGTTCAGATCAGGCAAGGAACAACCTCGTAACAACTAACAAGACCAAAGAAGAAGAACAACTTA A GTTGAAGACACAACACTTGATCTGAAACAAGAAGTTTGTGCCTACTCAACAGCTTTGAAAGAGCACTTCCCAAC GCTGCTAGTAGTCTTTGTTTTCTTCAGTGCTGTACTGTGAGATTGCCCGGTACAGCAGCAGTTGTATTCTTTATT AGCTTGGTAGATCATTTTCTCTCGCTCTTTTTTTTAATACTAGCAACTTTCATCCTTTGAAAACGTGTGCTGAAAA AGAAGAATCAGCAAATACTACTGAAAGTGCAATATTTGAGTATCACTGCGAGATGAGCTTTGATCCAAACCTTCT CCACAACAATGGACATAATGGGTACCCTAATGGTACTTCAGCAGCACTGCGTGAAACTGGGGTTATTGAAAAACT GTTAACCTCTTACGGATTTATTCAGTGTTCAGAACGTCAAGCTAGACTTTTCTTCCACTGTTCACAGTATAATGG CAACCTGCAAGACTTAAAAGTAGGAGATGATGTTGAATTTTGAAGTATCATCGGACCGACGGACTGGGAAACCCAT TCCTCACAACTTAGAGAGTAAATCTCCAGCTGCCCGGGTCAGAGTCCAACAGGGAGTGTATGCTACGAACGTAA TGGGGAAGTGTTTTATCTGACTTACACCCCTGAAGATGTCGAAGGGAACGTTCAGCTGGAAACTGGAGATAAAAT AAACTTTGTAATTGATAACAATAAACATACTGGTGCTGTAAGTGCTCGCAACATTATGCTGTTGAAAAAGAAACA AGCCCGCTGTCAGGGAGTAGTTTGTGCCATGAAGGAGGCATTTGGCTTTATTGAAAGAGGTGATGTTGTAAAAAGA GATATTCTTTCACTATAGTGAATTTAAGGGTGACTTAGAAACCTTACAGCCTGGCGATGATGTGGAATTCACAAT CAAGGACAGAAATGGTAAAGAAGTTGCAACAGATGTCAGACTATTGCCTCAAGGAACAGTCATTTTTGAAGATAT CAGCATTGAACATTTTGAAGGAACTGTAACCAAAGTTATCCCAAAAGTACCCAGTAAAAACCAGAATGACCCATT GCCAGGACGCATCAAAGTTGACTTTGTGATCCCTAAAGAACTTCCCTTTGGAGACAAAGATACGAAATCCAAGGT TATAGAAGTTCTGTCAAATACATTTCAGTTCACTAATGAAGCCCGAGAAATGGGTGTGATTGCTGCCATGAGAGA TGGTTTTGGTTTCATCAAGTGTGTGGATCGTGATGTTCGTATGTTCTTCCACTTCAGTGAAATTCTGGATGGGAA CCAGCTCCATATTGCAGATGAAGTAGAGTTTACTGTGGTTCCTGATATGCTCTCTGCTCAAAGAAATCATGCTAT AAAAGAAGCCACTTTTTCCAATCCTAAAACCACTAGCCCAAATAAAGGCAAAGAAGAAGGAGGCTGAGGATGGCAT TATTGCTTATGATGACTGTGGGGTGAAACTGACTATTGCTTTTCAAGCCAAGGATGTGGAAGGATCTACTTCTCC TCAAATAGGAGATAAGGTTGAATTTAGTATTAGTGACAAACAGAGGCCTGGACAGCAGGTTGCAACTTGTGTGCG ACTITTAGGTCGTAATTCTAACTCCAAGAGGCTCTTGGGTTATGTGGCAACTCTGAAGGATAATTTTGGATTTAT TGADACAGCCADTCATGATAAGGAAATCTTTTTCCATTACAGTGAGTTCTCTGGTGATGTTGATAGCCTGGAACT GGGGGACATGGTCGAGTATAGCTTGTCCAAAGGCAAAGGCAACAAAGTCAGTGCAGAAAAAGTGAACAAAACACA CTCAGTGAATGGCATTACTGAGGAAGCTGATCCCACCATTTACTCTGGCAAAGTAATTCGCCCCCTGAGGAGTGT TGATCCAACACAGACTGAGTACCAAGGAATGATTGAGATTGTGGAGGAGGGCGATATGAAAGGTGAGGTCTATCC ATTTGGCATCGTTGGGATGGCCAACAAAGGGGATTGCCTGCAGAAAGGGGAGAGCGTCAAGTTCCAATTGTGTGT CCTGGGCCAAAATGCACAAACTATGGCTTACAACATCACACCCCTGCGCAGGGCCACAGTGGAATGTGTGAAAGA TCAGTTTGGCTTCATTAACTATGAAGTAGGAGATAGCAAGAAGCTCTTTTTCCATGTGAAAGAAGTTCAGGATGG CATTGAGCTACAGGCAGGAGATGAGGTGGAGTTCTCAGTGATTCTTAATCAGCGCACTGGCAAGTGCAGCGCCTG TAATGTTTGGCGAGTCTGTGAGGGCCCCAAGGCTGTTGCAGCTCCTCGACCTGATCGGTTGGTCAATCGCTTGAA GABT ATCACTCTGGATGATGCCAGTGCTCCTCGCCTAATGGTTCTTCGTCAGCCAAGGGGACCAGATAACTCAAT $\tt GGGGTTTGGTGCAGAAAGAAGATCCGTCAAGCTGGTGTCATTGAC\underline{TAA}CCACATCCACAAAGCACACCATTAAT$ A GA A A A CCA TTTTA A A TA A TGCA CAGTTGCAGCCTGGAAAAACTTAAGGTGGCGCCTTATAGTATCAATTTTAGG AGCTTTATTTGGTGCATTTAACGCAACTGGTAATTGCAGAATCCACTTTGCCTGTGTAAGTGAAAAATATAGACT GTTCTGCCTTAGCACTCAGTTGCATTCTTTTCCTTTTTCTTCTTCATTATGCTTTAATTCTGAGGACCATAT GAGGGTAGAATATATTATCTTTTAAAAATTACAAAAATTTGTATAGGCAAACCATTTCTTAAAGTTGATGGCCAA ATTTTAAAATGTTATTTTTCATATCATTTATAATCTTGTCACAATCCACTTAAAGAAGTTTGGTTATATTTCAGT

PCT/IIS2003/028547

323/6881 FIGURE 302B

PCT/US2003/028547

324/6881 FIGURE 303

MSFDPNLLHNNGHNGYPNGTSAALRETGVIEKLLTSYGFIQCSERQARLFFHCSQYNGNLQDLKVGDDVEFEVSS
DRRTGKPIAVKLVKIKQEILPERRNNGQVCAVPHNLESKSPAAPGQSFTGSVCYERNGEVEYLTYTEEDVEGNU
QLETGGKINFVIDNNKHTGAVSARNIMLLKKQARCQGVVCAMKEAFGFIERGDVVKEIFFHYSEFKGDLETLQP
GDDVEFTIKDRNGKEVATDVRLLPGGTVIFEDISIEHFEGTVTKVIFKVPSKNQNDPLEGRIKVDFVIPKELPFG
DKDTKSKVTLLEGDHVRFNISTDRRDKLERATNIEVLSNTFQFTNEAREMGVIAAMRDGFGFTKCVDRDVRMFFH
FSSILDGNQLHIADEVEFTVVPDMLSAQRNHAIRIKKLEKGTVSFHSHSDHRFLGTVEKEATFSNPKTTSPNKGK
EKEAEDGIIAYDDGGVKLTIAFQAKDVEGSTSPGIGDKVEFSISDKQRFGQQVATCVRLLGRNNSKRLLGYVAT
LKDNFGFIETANHDKEIFFHYSEFSGDVDSLELGDMVEYSLSKGKGNKVSAEKVNKTHSVNGITEEADPTIYSGK
VIRPLRSVDPTQTEYQGMTEIVEGDNKGEVYFFGIVGMANKGDCLQKGESVKFQLCVLCQNAQTMAYNITPLRR
ATVECVKDQFGINYEVGDSKKLFFHVKEVQDGIELQAGDEVEFSVILNQRTGKCSACNVWRVCEGPKAVAAPRP
DRLVNRLKNITLDDASAPRLMVLRQPRGPDNSMGFGAERKLRQAGVID

PCT/US2003/028547

325/6881 FIGURE 304

PCT/US2003/028547

FIGURE 305

MGATLKIMLDNTYMKKCDENILWLDYKNICKVMEVGSKIYVDDGLISLQVKQKGADFLVTEVETGGSSGSKKGVN LPGAAVDLPAVSEDIQDLNFGVEQDVDMVPASFIRKASDVHEVREALGEKGKKTLHPPPSIFPHYCSTSGPVATE PTCISING

PCT/IIS2003/028547

327/6881 FIGURE 306

AGAAGAAGCTGGCCAAGGATATGGGAGCAACCACCATGGACCAGAAGTCTCTCTGGGCAGGTGTAGTGGTCTTGC TGCTTCTCCAGGGAGGATCTGCCTACAAACTGGTTTGCTACTTTACCAACTGGTCCCAGGACCGGCAGGAACCAG ACAAGGTTATCATCAAGGACAAGAGTGAAGTGATGCTCTACCAGACCATCAACAGTCTCAAAACCAAGAATCCCA AACTGAAAATTCTCTTGTCCATTGGAGGGTACCTGTTTGGTTCCAAAGGGTTCCACCCTATGGTGGATTCTTCTA CATCACGCTTGGAATTCATTAACTCCATAATCCTGTTTCTGAGGAACCATAACTTTGATGGACTGGATGTAAGCT GGATCTACCCAGATCAGAAAGAAAACACTCATTTCACTGTGCTGATTCATGAGTTAGCAGAAGCCTTTCAGAAGG GCTATCAAGTTGAGAAACTGGCAAAAGATCTGGATTTCATCAACCTCCTGTCCTTTGACTTCCATGGGTCTTGGG AAAAGCCCCTTATCACTGGCCACAACAGCCCTCTGAGCAAGGGGGTGGCAGGACAGAGGGCCCAAGCTCCTACTACA ATGTGGAATATGCTGTGGGGTACTGGATACATAAGGGAATGCCATCAGAGAAGGTGGTCATGGGCATCCCCACAT ATGGGCACTCCTTCACACTGGCCTCTGCAGAAACCACCGTGGGGGCCCCTGCCTCTGGCCCTGGAGCTGCTGGAC CCATCACAGAGTCTTCAGGCTTCCTGGCCTATTATGAGATCTGCCAGTTCCTGAAAGGAGCCAAGATCACGCGCCC CCAAGGTTCAGTTCTTAAAGAATTTAAACCTGGGAGGAGCCATGATCTGGTCTATTGACATGGATGACTTCACTG GCAAATCCTGCAACCAGGGCCCTTACCCTCTTGTCCAAGCAGTCAAGAGAAGCCTTGGCTCCTTGTGAAGGATTA ACTTACAGAGAAGCAGGCAAGATGACCTTGCTGCCTGGGGCCTGCTCTCTCCCAGGAATTCTCATGTGGGATTCC CCTTGCCAGGCTGGCCTTTGGATCTCTCTCCAAGCCTTTCCTGACTTCCTCTTAGATCATAGATTGGACCTGGT TTTGTTTTCCTGCAGCTGTTGACTTGTTGCCCCTGAAGTACAATAAAAAAATTCATTTTGCTCCAGTA

PCT/HS2003/028547

328/6881 FIGURE 307

MDQKSLWAGVVVLLLLQGGSAYKLVCYFTNWSQDRQEPGKFTPENIDPFLCSHLIYSFASIENNKVIIKDKSEVM LYQTINSLKTKNPKLKILLSIGGYLFGSKGFHEMVDSSTSRLBFINSIILFLRNHNFDGLDVSWYYPDQKENTHT TVLIHELAEAFQKDFTKSTKERLLLTAGVSAGRQMIDBNSYQVEKLAKDLDFINLLSEDFHGSWERFLITGHNSFL SKGWQDRGPSSYYNVEYAVGYWIHKGMPSEKVVMGIPTYGHSFTLASAETTVGAPASGPGAAGPITESSGFLAYY EICQFLKGAKITRLQDQQVPYAVKGNQWVGYDDVKSMETKVQFLKNLNLGGAMIWSIDMDDFTGKSCNQGPYPLV OAVKRSLGSL

PCT/HS2003/028547

FIGURE 308

GGGGAGACTTGTGAGCGGCCATCTTGGTCCTGCCCTGACAGATTCTCCTATCGGGGTCACAGGGACGCTAAGATT GCTACCTGGACTTTCGTTGACCATGCTGTCCCGGGTGGTACTTTCCGCCGCCGCCACAGCGGCCCCCTCTCTGAA GAATGCAGCCTTCCTAGGTCCAGGGGTATTGCAGGCAACAAGGACCTTTCATACAGGGCAGCCACACCTTGTCCC TGTACCACCTCTTCCTGAATACGGAGGAAAAGTTCGTTATGGACTGATCCCTGAGGAATTCTTCCAGTTTCTTTA TCCTAAAACTGGTGTAACAGGACCCTATGTACTCGGAACTGGGCTTATCTTGTACGCTTTATCCAAAGAAATATA TGTGATTAGCGCAGAGACCTTCACTGCCCTATCAGTACTAGGTGTAATGGTCTATGGAATTAAAAAATATGGTCC CTTTGTTGCAGACTTTGCTGATAAACTCAATGAGCAAAAACTTGCCCAACTAGAAGAGGCGAAGCAGGCTTCCAT CCAACACATCCAGAATGCAATTGATACGGAGAAGTCACAACAGGCACTGGTTCAGAAGCGCCATTACCTTTTTGA AAAGAATCGCCTGGACTATCATATATCTGTGCAGAACATGATGCGTCGAAAGGAACAAGAACACATGATAAATTG GGTGGAGAAGCACGTGGTGCAAAGCATCTCCACACAGCAGGAAAAAGGAGACAATTGCCAAGTGCATTGCGGACCT AGTTGACTGACTAAATGGAAACTAGTCTATTTGACAAAGTCTTTCTGTGTTGGTGTCTACTGAAGTTATAGTTTA CCCTTCCTAAAAATGAAAAGTTTGTTTCATATAGTGAGAGAACGAAATCTCTATCGGCCAGTCAGATGTTTCTCA TCCTTCTTGCTCTGCCTTTGAGTTGTTCCGTGATCACTTCTGAATAAGCAGTTTGCCTTTATAAAAAACTTGCTGC

PCT/HS2003/028547

330/6881 FIGURE 309

MLSRVVLSAAATAAPSLKNAAFLGPGVLQATRTFHTGQPHLVPVPPLPEYGGKVRYGLIPEEFFQFLYPKTGVTG
PYYLGTGLILYALSKEIYVISAETTTALSVLGWMYYGIKKYGPFVADFADKLNEQKLAQLEEAKQASIQHIQNAI
DTEKSQQALVQKRHYLFDVQRNNIAMALEVTYRERLYRVYKEVKNRLDYHISVQNMMRRKEQEHMINWVEKHVVQ
SISTQQEKETIAKCIADLKLLAKKAQAQPVM

PCT/IIS2003/028547

331/6881 FIGURE 310

CGACAAATGGGCGCATGACGATGGAGAGCAGGGAAATGGACTGCTATCTCCGTCGCCTCAAACAGGAGCTGATGT CCATGAAGGAGGTGGGTGATGGCTTACAGGATCAGATGAACTGCATGATGGGTGCACTGCAAGAACTGAAGCTCC TCCAGGTGCAGACAGCACTGGAACAGCTGGAGATCTCTGGAGGGGGTCCTGTGCCAGGCAGCCCTGAAGGTCCCA GGACCCAGTGCGAGCACCCTTGTTGGGAGGGTGGCAGAGGTCCTGCCAGGCCCACAGTCTGTTCCCCCTCCAGTC AACCTTCTCTTGGCAGCAGCACCAAGTTTCCATCCCATAGGAGTGTCTGTGGAAGGGATTTAGCCCCCTTGCCCA GGACACAGCCACATCAAAGCTGTGCTCAGCAGGGGCCAGAGCGAGTGGAACCGGATGACTGGACCTCCACGTTGA TGTCCCGGGGCCGGAATCGACAGCCTCTGGTGTTAGGGGACAACGTTTTTGCAGACCTGGTGGCAATTGGCTAG ACTTGCCAGAACTGGAGAAGGGTGGGGAGAAGGGTGAGACTGGGGGGGCACGTGAACCCAAAGGAGAAAAGGCC AGCCCCAGGAGCTGGGCCGCAGGTTCGCCCTGACAGCAAACATCTTTAAGAAGTTCTTGCGTAGTGTGCGGCCTG ACCGTGACCGGCTGCTGAAGGAGAAGCCAGGCTGGGTGACACCCATGGTCCCTGAGTCCCGAACCGGCCGCTCAC AGAAGGTCAAGAAGCGGAGCCTTTCCAAGGGCTCTGGACATTTCCCCTTCCCAGGCACCGGGGAGCACAGGCGAG GGGAGAATCCCCCCACAAGCTGCCCCAAGGCCCTGGAGCACTCACCTTCAGGATTTGATATTAACACAGCTGTTT GGGTCTGAATCCTAGAGACAGAAAGTTGACTGAGCCTGAAAGGGCCAGGTCCCAGTGCTGGGCCCCTGGGGAGGA GGGAGGTGGGCGGTATGGCTCTCGAAGCCCAACTCCAAGTTCCTTTCCCCCAGAAAGCGGGGAGAAGCCAGAG TTCTTGGCTCAGGACTGAAGGGAAGGTGGTTGGGAGAGGCTGTCTTGGGGGGCTAGCTGGTGGAGGAGGTAAGAGT TGGGGCTGGAGGTGACAGTAGGTGAGGGCAGAGGAGGAGATCAGAAAATCCCTCTGACATCTCCACTGCCCCCAA AGACCTCCGTTGAACATTCTGTATGGAAAAGAGCCCTGGAGCATCAGGTTCCCCAGATAGGCCCCCAAATAAAAGA CCTGTCTATGGCTCTCCCAA

PCT/HS2003/028547

332/6881 FIGURE 311

MTMESREMDCYLRRLKQELMSMKEVGDGLQDQMNCMMGALQELKLLQVQTALEQLEISGGGPVPGSPEGPRTQCE HPCWEGGRGPARPTVCSPSSQPSLGSSTKFPSHRSVCGRDLAPIPRTQPHQSCAQQGPERVBPDDWTSTLMSRGR NRQPLVLGDNVFADLVGNWLDLPELEKGGEKGETGGAREPKGEKGQPQELGRRFALTANIFKKFLRSVRPDRDL LKEKPGWYTPMYPBSRTGRSQKVKKRSIJSKGSGHFPFBTGEHRRGENPPTSCPKALEHSPSGFDINTAVWV

PCT/US2003/028547

333/6881 FIGURE 312A

GGCACGAGGCTGGGGCGCAGAGCAGCGGCGGGAGGAGGCGGACACGTGGCAACAGCGGTAGCAGCCCGGGCGGCG TCCCTCCACTIGGCTCCCCTGGTCCCGCTCGCTCGGCCGGAGCTGCTCTGTGCTTTTCTCTCTGATTCTCCAGC GACAGGACCCGGCGCGCGCACTGAGCACCGCCACCATGGGGAAGGGGGTTGGACGTGATAAGTATGAGCCTGCA GTTTCTATGGATGATCATAAACTTAGCCTTGATGAACTTCATCGTAAATATGGAACAGACTTGAGCCGGGGATTA ACATCTGCTCGTGCAGCTGAGATCCTGGCGCGAGATGGTCCCAACGCCCTCACTCCCCCTCCCACTACTCCTGAA TGGATCAAGTTTTGTCGGCAGCTCTTTGGGGGGTTCTCAATGTTACTGTGGATTGGAGCGATTCTTTGTTTCTTG GCTTATAGCATCCAAGCTGCTACAGAAGAGGAACCTCAAAACGATAATCTGTACCTGGGTGTGGTGCTATCAGCC GTTGTAATCATAACTGGTTGCTTCTCCTACTATCAAGAAGCTAAAAGTTCAAAGATCATGGAATCCTTCAAAAAAC ATGGTCCCTCAGCAAGCCCTTGTGATTCGAAATGGTGAGAAAATGAGCATAAATGCGGAGGAAGTTGTGGTTGGG GATCTGGTGGAAGTAAAAGGAGGAGACCGAATTCCTGCTGACCTCAGAATCATATCTGCAAATGGCTGCAAGGTG GATAACTCCTCGCTCACTGGTGAATCAGAACCCCAGACTAGGTCTCCAGATTTCACAAATGAAAACCCCCTGGAG ACGAGGAACATIGCCTTCTTTTCAACCAATTGTGTTGAAGGCACCGCACGTGGTATTGTTGTCTACACTGGGGAT CGCACTGTGATGGGAAGAATTGCCACACTTGCTTCTGGGCTGGAAGGAGGCCAGACCCCCATTGCTGCAGAAATT GAGTACACCTGGCTTGAGGCTGTCATCTTCCTCATCGGTATCATCGTAGCCAATGTGCCGGAAGGTTTGCTGGCC ACTGTCACGGTCTGTCTGACACTTACTGCCAAACGCATGGCAAGGAAAAACTGCTTAGTGAAGAACTTAGAAGCT GTGGAGACCTTGGGGTCCACATCCACCATCTGCTCTGATAAAACTGGAACTCTGACTCAGAACCGGATGACAGTG GCCCACATGTGGTTTGACAATCAAATCCATGAAGCTGATACGACAGAGAATCAGAGTGGTGTCTCTTTTGACAAG ACTICAGCTACCIGGCTIGCTCTGTCCAGAATIGCAGGTCTTTGTAACAGGGCAGTGTTTCAGGCTAACCAGGAA AACCTACCTATTCTTAAGCGGGCAGTTGCAGGAGATGCCTCTGAGTCAGCACTCTTAAAGTGCATAGAGCTGTGC TGTGGTTCCGTGAAGGAGATGAGAGAAAGATACGCCAAAATCGTCGAGATACCCTTCAACTCCACCAACAAGTAC ATCCTAGACCGTTGCAGCTCTATCCTCCTCCACGGCAAGGAGCAGCCCCTGGATGAGGAGCTGAAAGACGCCTTT CAGTTTCCTGAAGGGTTCCAGTTTGACACTGACGATGTGAATTTCCCTATCGATAATCTGTGCTTTGTTGGGCTC ATCTCCATGATTGACCCTCCACGGGCGGCCGTTCCTGATGCCGTGGGCAAATGTCGAAGTGCTGGAATTAAGGTC ATCATGGTCACAGGAGACCATCCAATCACAGCTAAAGCTATTGCCAAAGGTGTGGGCCATCATCTCAGAAGGCAAT GAGACCGTGGAAGACATTGCTGCCCGCCTCAACATCCCAGTCAGCCAGGTGAACCCCAGGGATGCCAAGGCCTGC GTAGTACACGGCAGTGATCTAAAGGACATGACCTCCGAGCAGCTGGATGACATTTTGAAGTACCACACTGAGATA GTGTTTGCCAGGACCTCCCCTCAGCAGAAGCTCATCATTGTGGAAGGCTGCCAAAGACAGGGTGCTATCGTGGCT GTGACTGGTGACGGTGTGAATGACTCTCCAGCTTTGAAGAAAGCAGACATTGGGGTTGCTATGGGGATTGCTGGC TCAGATGTGTCCAAGCAAGCTGCTGACATGATTCTTCTGGATGACAACTTTGCCTCAATTGTGACTGGAGTAGAG GAAGGICGICIGATCTITGATAACTIGAAGAAATCCATTGCTTATACCTTAACCAGTAACATTCCCGAGATCACC ${\tt CCGTTCCTGATATTTATTATTGCAAACATTCCACTACCACTGGGGACTGTCACCATCCTCTGCATTGACTTGGGC}$ ACTGACATGGTTCCTGCCATCTCCCTGGCTTATGAGCAGGCTGAGAGTGACATCATGAAGAGACAGCCCAGAAAT CCCAAAACAGACAAACTTGTGAATGAGCGGCTGATCAGCATGGCCTATGGGCAGATTGGAATGATCCAGGCCCTG GGAGGCTTCTTTACTTTGTGATTCTGGCTGAGAACGGCTTCCTCCCAATTCACCTGTTGGGCCTCCGAGTG GACTGGGATGACCGCTGGATCAACGATGTGGAAGACAGCTACGGGCAGCAGTGGACCTATGAGCAGAGGAAAAATC GTGGAGTTCACCTGCCACACAGCCTTCTTCGTCAGTATCGTGGTGCAGTGGGCCGACTTGGTCATCTGTAAG ACCAGGAGGAATTCGGTCTTCCAGCAGGGGATGAAGAACAAGATCTTGATATTTGGCCTCTTTGAAGAGACAGCC TTCTGTGCCTTCCCCTACTCTCTCTCATCTTCGTATATGACGAAGTCAGAAAACTCATCATCAGGCGACGCCCT $\tt GGCGGCTGGAGAAGGAAACCTACTAT \underline{\textbf{TAG}} \tt CCCCCGTCCTGCACGCCGTGGAGCATCAGGCCACACACTCT$ GCATCCGACACCCACCCCCTCTTTGTGTACTTCAGTCTTGGAGTTTGGAACTCTACCCTGGTAGGAAAGCACCGC AGCAT GTGGGGAAGCAAGACGTCCTGGAATGAAGCATGTAGCTCTATGGGGGGGAGGGGGAGGGCTGCCTGAAAA CCATCCATCTGTGGAAATGACAGCGGGAAGGTTTTTATGTGCCTTTTTGTTTTTGTAAAAAAGGAACACCCGGA

PCT/US2003/028547

334/6881 FIGURE 312B

PCT/HS2003/028547

335/6881 FIGURE 313

MCKGVGRDKYEPAAVSEQGDKKGKKGKKDRDMDELKKEVSMDDHKLSLDELHRKYGTDLSRGLTSARAAEILARD
GPNALTPPTTPEWIKFCRQLFGGFSMLLWIGAILCFLAYSIQAATEEEPQNDNLYLGVVLSAVVIITGCFSYYQ
EAKSSKIMESFKNWYPQQALVIRNGEKMSINAEEVVVGDLVEVKGGDRIPADLRIISANGCKVDNSSLIGESEPQ
TARSPPDTHENPLETRRIAFFSINCVEGTARGIVVYTGDRTVMGRIATLASGLEGGGTPIAAEIEHFHIITGVAV
FLGVSFFILSLILEYTWLEAVIFLIGIIVANVPEGLLATVTVCLTLTAKRMARKNCLVKNLEAVETLGSTSTICS
DKTGTLTQNRMTVAHMMPDNQIHEADTTENQSGVSFDKTSATWALASRIAGLCNRAVFQANQENLPLIKRAVAGD
ASESALLKCIELCGSVKEMRERYAKIVEIPFNSTMKVQLSIHKNPNTSEPQHLLVMKGAPERILDRCSSILLHG
KEQPLDEELKDAFQNAYLELGGLGERVLGFCHLFLPDEQFPEGFFDTDDVNFPIDNLCFVGLISMIDPPRAAVP
DAVGKCRSAGIKVIMVTGDHFITAKAIAKGVGIISEGNETVEDIAARLNIFVSQVNERDAKACVVHGSDLKDMTS
EQLDDILKYHTEIVFARTSPQQKLIIVEGCQRGGAIVAVTGGDVINDSPALKKADIGVMGIAGSDVSKQAADMIL
LDDNFASIVIGVEEGKLIFDNLKKSIAYTLTSNIPEITFFLIFIIANIPLPLGTVTILCIDLGTDMVPAISLAYE
QABSDIMKRQPRNPKTDKLVNERLISMAYGQIGMIQALGGFFTYFVILAENGFLPIHLLGLRVDMDDRWINDVED
SYGQQWTYEQRKIVEFICHTAFFVSIVVVQMADLVICKTRNSVFQQGMKNKILIFGLFEETALAAFLSYCPGMG
VALRMYPLKFFWMFCAFFYSLLIFVYPDEVKKLIIRRREGGWVEKETIY

PCT/HS2003/028547

336/6881 FIGURE 314A

TTCCAAAACTGTTCTCTGGAGCTATAAGTGGATTGCCAGAAATGAGAGATTAGGAGCTGGGAGAAGAGGAAGCGC CTTGTGTTGTCTCCTGGAGGCTGCCGACATGAAGTGCTTTTTCCCGGTGCTGAGCTGTCTGGCTGTGCTGGGT GTGGTGTCAGCACAGCGGCAGGTCACCGTTCAGGAAGGACCCTTGTACCGCACGGAGGGCTCCCACATCACTATC TGGTGCAATGTGAGTGGCTACCAGGGACCTTCTGAGCAGAATTTCCAGTGGTCCATTTACCTGCCTTCGTCGCCA GGGAAGATCTTCATAGAAAGAGTCCAGGGGAACTCAACCCTATTGCACATCACAGATCTTCAGGCCCGGGATGCC GGGGAGTATGAATGCCACACACCCAGCACTGATAAGCAATACTTTGGGAGTTACAGTGCAAAGATGAACCTAGTG GTGATCCCAGACTCCCTGCAGACCACTGCCATGCCCCAGACTCTGCACAGAGTGGAGCAGGACCCGCTGGAGCTC AAGCCCGTGGAGGTCATCTCCCTGAGCCGAGATTTCATGCTTCACTCCAGCAGCGAATATGCCCAGAGGCAGAGC CTGGGGGAGGTGCGGCTGGACAAGCTGGGGAGGACCACCTTCCGCCTCACCATCTTCCACCTGCAGCCTTCTGAC CAGGGCGAATTCTACTGCGAGGCCGCCGAGTGGATCCAGGATCCGGATGGGTCGTGGTATGCTATGACCCGAAAG CGTTCCGAGGGAGCCGTGGTCAACGTCCAGCCAACTGACAAAGAATTCACTGTTCGGCTGGAGACAGAGAAGCGG CTGCACACGGTGGGCGAGCCGGTGGAGTTCAGATGCATCCTGGAGGCTCAGAATGTTCCCGACCGTTACTTTGCT GTCTCCTGGGCCTTCAACAGCTCGCTCATCGCCACCATGGGTCCTAACGCTGTGCCTGTCCTCAACAGCGAATTT GCTCACCGGGAAGCCAGGGACAGCTTAAGGTGGCCAAAGAGAGCGACAGTGTCTTTGTGCTGAAGATCTACCAC CTCCGCCAGGAAGATAGCGGGAAATACAACTGCCGGGTGACTGAGCGAGAAAAACCGTGACCGGGGAATTCATT GATAAGGAGAGCAAGCGTCCCAAGAACATCCCCATCATAGTCCTCCCCTCAAGAGCAGCATCTCCGTGGAGGTG CAGGGTCGCTTCTCTGTCATCTGGCAGCTTGTGGACAGGCAGAACCGCCGCAGCAATATCATGTGGCTAGACCGG GATGGCACCGTGCAGCCAGGCTCGTCCTACTGGGAGCGCAGCAGCTTTGGGGGCGTCCAGATGGAGCAGGTGCAG CCCAACTCGTTCAGCCTGGGCATCTTCAACAGCAGGAGGAGGACGAGGGCCAGTATGAATGCCATGTGACTGAA TGGGTGCGGGCAGTGGCAGTGGCAGATTGTTGGGGAGCGCCGGGCCAGCACTCCCATCTCCATCACAGCT CTTGAAATGGGCTTCGCAGTCACAGCCATCTCCCGGACACCGGGGGTGACCTACAGCGACTCCTTTGACTTGCAG TGTATCATCAAACCCCACTACCCTGCCTGGGTCCCGTGTCGGTGACATGGCGGTTCCAGCCGGTGGGCACGGTG GAGTTCCATGACTTGGTGACCTTCACCCGGGACGGACGGTCCAGTGGGGGGACAGGTCCTCCAGCTTCCGAACC CGAACTGCCATCGAGAAGGCTGAGTCCAGCAACAACGTCCGCCTAAGCATCAGCCGAGCCAGTGACACGGAAGCA GGCAAGTACCAGTGTGTGGCAGAGCTGTGGCGGAAGAACTACAACAACACCTGGACGCGACTGGCGGAGAGGACC TCCAACCTGCTGGAGATCAGGGTGCTGCAGCCAGTGACAAAGCTGCAGGTGAGCAAATCGAAGAGGACCCTCACC CTGGTGGAAAACAAGCCCATTCAGTTGAACTGCTCAGTCAAGTCTCAGACTAGCCAGAACTCCCACTTTGCGGTG TACGGTACTTACGCCGAGGAGGAGGGCCTGAGAGCCAGGCTCCAGTTTGAGAGGCATGTGTCGGGGGGCCTGTTC AGCCTCACCGTCCAGAGAGCCGAGGTCAGCGACAGCGGCAGCTACTACTGCCACGTGGAGGAGTGGCTGCTGAGC CTCAACCGCACCAGCATAACCTCCCAGCTCATGGTGGAATGGTTTGTATGGAAGCCCAACCACCCTGAGCGGAG CTGCATTTGGAGAGTCCTTCCCCCGGCGTGTACCGTCTCTTCATCCAGAACGTGGCTGTGCAGGACAGCGGGACC TACAGCTGCCATGTGGAGGAGTGGCTGCCCAGCCCCAGTGGCATGTGGTATAAGCGGGCAGAGGACACCGCTGGG CAGACAGCTCTGACAGTCATGCGACCAGATGCTTCCCTGCAGGTGGACACAGTGGTCCCCAATGCCACGGTCTCT GAGGAGGAGGACGACGACGACGACGACCACAGAGGGGGCGGACGGCCTGCTGAGCGTGGGCCCAGATGCT GTCTTTGGCCCAGAGGGCAGTCCTTGGGAGGGCAGGCTTCGCTTCCAGAGGCTCTCCCCGGTGCTCTACCGGCTC ACAGTGCTGCAGGCAAGCCCCCAAGATACAGGCAATTACTCCTGCCATGTGGAGGAGTGGCTGCCCAGCCCTCAG AAGGAATGGTACCGGCTGACGGAGGAGGAGTCAGCCCCCATCGGCATCCGTGTTCTAGATACAAGTCCCACCCTC CAGTCCATCATCTGCTCCAACGACGCACTCTTCTACTTCGTCTTCTTCTACCCTTTCCCCATCTTTGGCATTCTT ATCATCACCATCCTTCTGGTGCGTTTCAAGAGCCGGAACTCCAGCAAGAACTCTGATGGGAAGAATGGGGTGCCT

PCT/US2003/028547

337/6881 FIGURE 314B

GGGGCCATAGACTAAGCGGGTGATGCCCCAGCGGATGTTGGCCACGGAGGAGCTGAGGCTCTCCCTTTCTCTGTG TGATCCTGCCATTATAGATTTCTTGTTTCTGTTTTTAGTAATGTAGTGAGTAGCTCCAGGTGCCACATCTACTCA CAGATTTATCTAGTATTCTCAGATAGATGTTACAGGGCTTCTTATTCTTTGTAATGTACTCTTTTTAAATCCCTT CTTTCTAGTGACAAGGAATCTCTTCCAAGACTTTGTTTTTTGCACATTTGAAAATGCCACCCATGGATCAAAATAT TCCCTCAGCTGGAGTTATTGGAACCACTTTGTAGTCAAGACGAAAGCACTGAATTTTGCTTCAAAGAACTGTGTA TGTACAAGAGAAATCCTGCATAACCCCATTAGGAGTAGATGGTGCCCGGCCTATCTGTCAGGGAGGCAAAAAAGG CTTCATCCCATCCTTGCCAAAAAAATAAGAAAACTGTCTTGGAGAATGGGTCAGAAGCCCCAAACGGCACACACTT TCCAAATTAAAGTGGGCAGGGGCTGCTTTTAGCAGCTGCCTGACCTGCAGATTTGTCAAAGCCAGTGACTAGAGAA GGAAGGGAGAAAGGCTGGCTGTTGGCTTGCTCTGAGCTGCAAGGATGGTCTCTAACTGATTAACTGTGAGCAGGT ACAGTGAGGGTGGGAGGGGTTTCCAGGGCCTGGTGTTGGAGAGTGCAGAGAATATCTACCTCCCTGGAGGT $\tt GTGAAGACTAGGTTTTCTTCTTCCTTCCAATTAGATTTTCCTTAATTATAGTGATGTCTTCCTTATTCATTTTT$ CTCTCCCTGCCTCTCACTGCCATAAGAATATCAGCCTGGGGGCAGTCCAGACGCAGCCCTTTGTCATCCTTTCTG TTTGCCTAGTCTCAGCAGACTGTGATCACAAGGCATTGTCTGTGGGGATTTTTCCTTTCCCTTTCTTGATCTCTCT TGTGGTTCTAGGTTGTTGGTTGTTCATTGTTATGGTGGCTTTTTATTTTAACGCCCCTTGAGCCCCATGATGGC TGGTGTCACCCTGTTCTTTTACACTGTTGGGCCAGGTGCTGCTTGTCCTTCTTAGGGCATCATCAATTGCAAATA CCTTTACTCTGGGAACTTACATCCTGAATCCCAAGAGGGGGTCACAGTTTGGAAAAAGTCATCAGGGATTCTGGA ACTAAGTCTGATAAAAGATTCCAGTGAAGCCCTGTTCTGAGAACGAGCAGACTGCAGGGGAGGCCATGGGATTCC CCAGGCCAGTGTCTGTGCTGATCCTTCAAGGGTCTGCAGGTATGCAGGTGGCCTGGGCTGCTCGGCAGATACTTT TCCCCCAAGTATACCGTACCCTCCTGTGAGACAGTGTGTGCAGGCACCACCACCTTAATCCTGCTGTTGCCTGAC ATGCTGATTCTCATTTATTATGCTGCATCAACACATTAGAGGTACAGGAGCGGCTCAGTCATGAAAAAAAGAAGGT CTTTTGCCCCATTTCTTTATTTCAGAGATGTGGGCTTTCAGTGGGAATTTGCTGACTCCTACTTTATAGGCTGAG GTAACTAAGATTTCAGTTTGAAATCTTAGATTTCAGTTCACGCCGATAAAGAAGTAGGTGCTGCACACAAATATG TAAAGCAATTGTAGGAAATTTGAAAGGAAAAAAAGGAAACCGAAGCCAGTATTTTAATAATTGCTTTTTCTGTGTA TTTTGTATTGGGCTGGGGGATAGCATCAAAGGTTGAACTTTTTGAGCTTTCTATGAAAAACCCCAGGACCTTCTT GCGCATTGTCTACTGGAGCTTTAGTCTTCTGAGACGGAGGAAAACTGCTGAATACTCTGGATTCATCTATGTCTA CAATGTTGCATTTATGAAAAACTACACTGTGCTAGGCGCATTCTAGGACATGAATATGACCACACCCTCTTTCAC AGATGGGGTAAGAAAACTACCCATGCATGATGTAGAGAGCTGTTGATTTGTTTCTGTTTTTTAAAGGAAAACTA TTTGTAAGATGTTGCACTAAAACATTTTATATACACTTCAGAGACCTGTAGTAAATTATGTTGAAAAT

PCT/US2003/028547

338/6881 FIGURE 315A

GCTCTTTGCCGAGGGCGTGTGGTGAGAGTCCCCACAGCGACCCTGGTTCGAGTGGTGGGCACTGAGCTGGTCATC CCCTGCAACGTCAGTGACTATGATGGCCCCAGCGAGCAAAACTTTGACTGGAGCTTCTCATCTTTGGGGAGCAGC TTTGTGGAGCTTGCAAGCACCTGGGAGGTGGGGTTCCCAGCCCAGCTGTACCAGGAGCGGCTGCAGAGGGGCGAG ATCCTGTTAAGGCGGACTGCCAACGACGCCGTGGAGCTCCACATAAAGAACGTCCAGCCTTCAGACCAAGGCCAC TACAAATGTTCAACCCCCAGCACAGATGCCACTGTCCAGGGAAACTATGAGGACACAGTGCAGGTTAAAGTGCTG GCCGACTCCCTGCACGTGGGCCCCAGCGCGCGGGCCCCCGCCGAGCCTGAGCCTGCGGGAGGGGGAGCCCTTCGAG CTGCGCTGCACCGCCGCCTCGCCTCGCCGCTGCACACGCACCTGCGCGCTGCTGGGGAGGTGCACCGCGGCCCG GCCAGGCGGAGCGTCCTCGCCCTGACCCACGAGGGCAGGTTCCACCCGGGCCTGGGGTACGAGCAGCAGCACCAC CAGGGCTCCTACAGGTGTATCGTCAGCGAGTGGATCGCCGAGCAGGGCAACTGGCAGGAAATCCAAGAAAAGGCC GTGGAAGTTGCCACCGTGGTGATCCAGCCATCAGTTCTGCGAGCAGCTGTGCCCAAGAATGTGTCTGTGGCTGAA GGAAAGGAACTGGACCTGACCTGTAACATCACAACAGACCGAGCCGATGACGTCCGGCCCGAGGTGACGTGGTCC TTCAGCAGGATGCCTGACAGCACCCTACCTGGCTCCCGCGTGTTGGCGCGGCTTGACCGTGATTCCCTGGTGCAC AGCTCGCCTCATGTTGCTTTGAGTCATGTGGATGCACGCTCCTACCATTTACTGGTTCGGGATGTTAGCAAAGAA AACTCTGGCTACTATTACTGCCACGTGTCCCTGTGGGCACCCCGGACACAACAGGAGCTGGCACAAAGTGGCAGAG GCCGTGTCTTCCCCAGCTGGTGTGGGTGTGACCTGGCTAGAACCAGACTACCAGGTGTACCTGAATGCTTCCAAG GTCCCCGGGTTTGCGGATGACCCCACAGAGCTGGCATGCCGGGTGGTGGACACGAAGAGTGGGGAGGCGAATGTC CGATTCACGGTTTCGTGGTACTACAGGATGAACCGGCGCAGCGACAATGTGGTGACCAGCGAGCTGCTTGCAGTC AAGGAACATACAGACACGTTCAATTTCCGGATCCAAAGGACTACAGAGGAAGACAGAGGCAATTATTACTGTGTT GTGTCTGCCTGGACCAAACAGCGGAACAACAGCTGGGTGAAAAGCAAGGATGTCTTCTCCAAGCCTGTTAACATA TTTGAGATGACTTGCAAAGTATCTTCCAAGAATATTAAGTCGCCACGCTACTCTGTTCTCATCATGGCTGAGAAG CCTGTCGGCGACCTCTCCAGTCCCAATGAAACGAAGTACATCATCTCTCTGGACCAGGATTCTGTGGTGAAGCTG GAGAATTGGACAGATGCATCACGGGTGGATGGCGTTGTTTTAGAAAAAGTGCAGGAGGATGAGTTCCGCTATCGA ATGTACCAGACTCAGGTCTCAGACGCAGGGCTGTACCGCTGCATGGTGACAGCCTGGTCTCCTGTCAGGGGCAGC CTTTGGCGAGAAGCAGCAACCAGTCTCCCAATCCTATTGAGATAGACTTCCAAACCTCAGGTCCTATATTTAAT GCTTCTGTGCATTCAGACACCATCAGTAATTCGGGGAGATCTGATCAAATTGTTCTGTATCATCACTGTCGAG GGAGCAGCACTGGATCCAGATGACATGGCCTTTGATGTGTCCTGGTTTGCGGTGCACTCTTTTGGCCTGGACAAG GCTCCTGTGCTCCTGTCTTCCCTGGATCGGAAGGGCATCGTGACCACCTCCCGGAGGGACTGGAAGAGCGACCTC AGCCTGGAGCGCGTGAGTGTGCTGGAATTCTTGCTGCAAGTGCATGGCTCCGAGGACCAGGACTTTGGCAACTAC TACTGTTCCGTGACTCCATGGGTGAAGTCACCAACAGGTTCCTGGCAGAAGGAGGCAGAGATCCACTCCAAGCCC GTTTTTATAACTGTGAAGATGGATGTGCTGAACGCCTTCAAGTATCCCTTGCTGATCGGCGTCGGTCTGTCCACG GTCATCGGGCTCCTGTCCTGTCTCATCGGGTACTGCAGCTCCCACTGGTGTTGTAAGAAGGAGGTTCAGGAGACA $\tt CGGCGCGAGCGCCGCAGGCTCATGTCGATGGAGATGGAC\underline{TAG}GCTGGCCCGGGAGGGGAGTGACAGAGGGACGTT$ CTAGGAGCAATTGGGGCAAGAAGAGGACAGTGATATTTTAAAACAAAGTGTGTTACACTAAAAACCAGTCCTCTC TAATCTCAGGTGGGACTTGGCGCTCTCTCTTTTCTGCATGTCAAGTTCTGAGCGCGGACATGTTTACCAGCACAC GACCTGTGCCGAAGGCTAATTTGTGGCTTTTACGACCCTACCCCACCCCTGTTTTCAGGGGTTTAGACTACATT CCCTTTTCCATTTCTTTTGTATTTGTTTTCTGTGAGAGCACTGAAATGGCAGCCCTGGAATCTACAATTTGGCTC GGGCAGTAAGAAGGGCTGCAAGGAAGGGGAGGATGGGGACAAGGAAAGGATCAGATACCTGCTCCAGTAGTTGTG AGGCCACTGTGTCTCAGGGGACTCCAGGAGGAGCAGAAGAGGGGATCCCACGAAGTTATTCTTACGCAGCTGGGGC

PCT/HS2003/028547

339/6881 FIGURE 315B

GGGGGCAAAGGCATTGGTCACCAAGAGTCTTGCAGGGGGACCCACAGATATGCCATGTCCTTCACACGTGCTTGG CATGTTTTTCTATGACCTTTTCAGTCCTTCAGGTCATTTTAAGGTCCACTGCAGGGGGTTAGTGAGAAAGGGTA TACTTTGTGGTATGTTTTGCTTTCCTAATAGGGACATGAAGGAAACCCAGCAATTTGCTGTTATGTGAATGGCCT GTAGAGCAGAGTCAAGAGCGGTGTGCTTTGCCCGACTGCTCCCATCAGGAATAGGAGAGTAGACAGAGATCTTCC ACATCCCAGGCTTCTGCTGCTGCTTTAAAAGCTCTGTCCTTGGAGCCTCCCGCTCCCTGAAGTGTCTCGCCCCCT GCACAGCACTGGCCTTTCGGAAGCATCCCAGTAGGGTTTTCTGAGGCTCGCTGGTGACTCATGCCCTAATTGCAA TTTGAGCAATAAACTAATACAAAATGATGGCCATTCATGTGCAGCTCTTTGTCACCATGGGCCGGATGAGTTGTG CTCCTCCTGGCTCACCATTTCCCCCTGCTCCCCCACAGCCGGTTCTGCACTTATCACCGAGTCGCCCCTGGAAGC AGATTCCCATTGAGTTTTCCCCACCAAGGGGACCATGCACATGGTAGAAACATTAGATTCTGCATTGACAGTAGC CTTTCCTTGGCCCGGGCCTGTGGTGGGAAGACGGGCAACAAGTATACCCCACCAGGGCCTGAGTGACTAGAGGAA GAGGACGAGGCCTTGTTGGCACTAGATTTGGGTATTTTCTGCATGTCATAACATATCCTAACTGCTATTTCAGAA GAGGCAGCTTGTAGGTGATTGTACAAGTGAGAATTAAAGAGAGAACAGATATTTAAACAGGTGCTGTATTAGTAA CAGCCAGTGCCCTTTCAGCCCTTGCATCTATTAAAAGGAGATTCAGGATTTTATTGGCACAGGCCCTTCTTAGTA TGGTGGTAAATGTGATGGGTGCTTACACACTGTACCTTTTCCTTTCATACTGATGCTGCAGTTCAGGGCTGGAGT TGTTAAGGCATTGACCTCCACCCACCTGCCCCATGTCCACTGGGCTGCCCAAGCTGCATGTCACCTGAGGGCTGG CAGGAAGGGGCGAGAAATCCCAGGGCATTGTACCAAGGACCTAGTTCCTTCTAGGGATATAAATTTCCAGGAATG TGTATTTTTAATGTGGTGAGATGCACTCTTTTGTTGTACCAAATAGGGCTCCCCACCCCACCCCTGCGACAAGTG TTTCACTTTGAAAAAAAATGCAAATCGACTTTTTAACAACTGTTGAGATGTTTCATGGGACAGTAGAACTCTGAC TCTTGCTTTGCAGACTGCCTGCAGCCATGATTTTGTCACTGACATCTGTGAGCCAAAGACTGAGCCTTTTTGGCA AGAAGGGAACTGGGATTTGGGTAAGTTCTCCTCCACTGTTTGACCAAATTCTCAGTGATAAATATGTGTGCAGAT CCCTAGAAGAGAAAACGCTGACTTTCTTTTTAAGTGTGGCACATAAGGATCTGCAGAATTTTCCGTAGACAAAGA AAGGATCTTGTGTATTTTTGTCCATATCCAATGTTATATGAACTAATTGTATTGTTTTATACTGTGACCACAAAT ATTATGCAATGCACCATTTGTTTTTTTTTTCATTAAAGGAAGTTTAATTT

PCT/HS2003/028547

340/6881 FIGURE 316

MPDSTLPGSRVLARLDRDSLVHSSPHVALSHVDARSYHLLVRDVSKENSGYYYCHVSLWAPGHNRSWHKVAEAVS
SPAGVOVTWLEPDYQYYLNASKYPGFADDFTELACRVVDTKSGEANVRFTUSWYYRWARRSDNVVTSELLAVMOG
DWILKYGERSKQRAQDGDFIFSKEHTDTFNFRIQRTTEEDRGNYYCVVSAWITKQRNNSWVKSKDVFSKPVNIFWA
LEDSVLVVKARQPKPFFAGANTFEMTCKVSSKNIKSPRYSVLIMAEKPYGDLSSPNETKYIISLDQDSVVKLENW
TDASRVDGVVLEKVQEDEFRYRMYQTQVSDAGLYRCMVTAWSPVRGSLWREAATSLSNPIEIDFQTSGPIFNASV
HSDTEFVIRGDLIKLFCIITVEGAALDPDDMAFDVSWFAVHSFGLDKAFVLLSSLDRKGIVTTSRRDWKSDLSLE
RVSVLEFLLQVHGSEDQDFGNYYCSVTFWVKSPTGSWQKEAEIHSKPVFITVKMDVLNAFKYPLLIGVGLSTVIG
LLSCLIGYCSSHWCCKKEVQETRRERRRIMSMEMD

PCT/US2003/028547

341/6881 FIGURE 317

GCTGCCGCGTTAGTTCCGAGCTTGAAGTCACTAGGACTTCTCTCAAAACTTGAGTGCTGAGGAGACTCAGATGTTG A GAAA GCAACACTTGTTATCTTGGGCTTGGCAGCAAGGAAGAGACAGGTAGTGGAGATCCTGCAATCTGAAAAG CAGACTGAAAGGTGACAAAGAAGCTGAAGATGGGTGGTAGAGAGGGTATAACATTCCAGCCCCTCAATCTAGAA ATGTTAGTAA GAACCAA CAACAGCTTAACA GACAGAA GACCA AGGAACA GAATTCCCAGATGAAGATTGTTCATA AGAAAAAAGAAGAAGACATGGTTATAACTCATCAGCAGGTGCCTGGCAGGCCATGAAAAATGGGGGGAAGAACA AAAATTTTCCAAATAATCAAAGTTGGAATTCTAGCTTATCAGGTCCCAGCTTACTTTTTAAATCTCAAGCTAAAC AGAACTATGCTGGTGCCAAATTTAGTGAGCCGCCATCACCAAGTGTTCTTCCCAAACCACCAAGCCACTGGGTCC ATAAGACAAATGTTTAAGTTTAGTTATGTTCACAGATAGTTGTCAATTGGTCTGAAACAAATTTGCTAGGGAATC TATTTGTGTAGAACTAATTAATGTAAAAAAAATAGACTTCATCTCGTGTTGTGCACTGTGATATAATGGTAGT ATCAGTGCAACTTAAACTAATGATTGTAATTGATATTAAGTGTTCTCAACTGAGTAACTTTTAAGTGGAAACCAA CCAGTAGATTGTTGAAAGTTGGTGAATCGGATTATAAGCTTCTGGCTAACACAAGGATTCAGAATTAGGTAAACA TTTATAGAAACAGTATTTAATGGTCACTCAATAGCTTTCAAAATACATTTTTGTATTACAGCACTGCACAAGCTA CCTAGGGGAGAAGAGCCATGTAAATATCTGTAATAACTTGTAGCATATGTAAAGTTTTCTTGGCCTTTATCTT ACAAAA ATGGAATATTTTAGTATGAATTTGCTGAATGTAAGACCGTGGACTGTTTTTTATAATATGGCCTAATTT TGGTTGTAAACTATATTTCAAAGTAAACCCTAGTGTAATAAGTTTTATAACTAAAAAGGTTTAAGCTGCTAAAAAC TATTTTTAAGAGATGTGAAATGCAGTATGGGACTATCTTTTTTTCCTCCTCTAAGCCCAAAGATTAACTAGAGTC CCTCCAACCTTATAGATTTTTGGCTTTCACAATCTTATAACCTAGGATACAGGTAGTTTCGAGTATGGTGCCAGT GATGTTTTGTTTTGTTTGGTCAAGGGGTAGGTGCAACCCAATGGACCACTTATGCAAAAGATGTAAACTCTTGC ATAATACATCGATAACATGTTTTGCCAACTTTAAATGCTTAAACATAAGCGAAACCAGTAGCAAGTATGTGGGTC AGTTTAAAAATTTTGATTGTTAATGCCCTATTTTCTAATTTGGCACCTCTTTTGATGCCTAAGCAGGTAAGCAGA TGCCTAAGCTGTATTTCTCCAAATAAATCAAGAGGAAGTACTGCCCAAGTTAAATATTGATAGCCTAAAGACAAA TTCATGTAGTACTTAATGTACATGATATGAATTTGAAGCATAAAATTTAAATTTTTCCCCCATTG

PCT/IIS2003/028547

342/6881 FIGURE 318A

TTTCAGCCAAACTTCGGGCGGCGGCTGAGGCGGCGGCCGAGGAGCGGCGGACTCGGGGGCGCGGGAGTCGAGGCA TCCTCTATCGGGACCCCCTCCCCATGTGGATCTGCCCAGGCGGCGGCGGCGGCGGCGGAGGAGGAGGCGACCGAG TACTGCAAATGTCCAGAAGGCTTCTTGGGGGAATATTGTCAACATCGAGACCCCTGTGAGAAGAACCGCTGCCAG AATGGTGGGACTTGTGTGGCCCAGGCCATGCTGGGGAAAGCCACGTGCCGATGTGCCTCAGGGTTTACAGGAGAG TCTCATCCCTGTGCAAATGGAAGTACCTGTACCACTGTGGCCAACCAGTTCTCCTGCAAATGCCTCACAGGCTTC ACAGGGCAGAAATGTGAGACTGATGTCAATGAGTGTGACATTCCAGGACACTGCCAGCATGGTGGCACCTGCCTC AACCTGCCTGGTTCCTACCAGTGCCAGTGCCCTCAGGGCTTCACAGGCCAGTACTGTGACAGCCTGTATGTGCCC TGTGCACCCTCACCTTGTGTCAATGGAGGCACCTGTCGGCAGACTGGTGACTTCACTTTTGAGTGCAACTGCCTT CCAGGTTTTGAAGGGAGCACCTGTGAGAGGAATATTGATGACTGCCCTAACCACAGGTGTCAGAATGGAGGGGTT TGTGTGGATGGGGTCAACACTTACAACTGCCGCTGTCCCCCACAATGGACAGGACAGTTCTGCACAGAGGATGTG GATGAATGCCTGCTGCAGCCCAATGCCTGTCAAAATGGGGGCACCTGTGCCAACCGCAATGGAGGCTATGGCTGT GTATGTGTCAACGGCTGGAGTGGAGATGACTGCAGTGAGAACATTGATGATTGTGCCTTCGCCTCCTGTACTCCA GGCTCCACCTGCATCGACCGTGTGGCCTCCTTCTCTTGCATGTGCCCAGAGGGGAAGGCAGGTCTCCTGTGTCAT CTGGATGATGCATGCATCAGCAATCCTTGCCACAAGGGGGCACTGTGTGACACCAACCCCCTAAATGGGCAATAT ATTTGCACCTGCCCACAAGGCTACAAAGGGGCTGACTGCACAGAAGATGTGGATGAATGTGCCATGGCCAATAGC AATCCTTGTGAGCATGCAGGAAAATGTGTGAACACGGATGGCGCCTTCCACTGTGAGTGTCTGAAGGGTTATGCA GGACCTCGTTGTGAGATGGACATCAATGAGTGCCATTCAGACCCCTGCCAGAATGATGCTACC1GTCTGGATAAG AGCAACCCTTGTGTGAACAATGGGCAGTGTGTGGATAAAGTCAATCGTTTCCAGTGCCTGTGTCCTCCTGGTTTC ACTGGGCCAGTTTGCCAGATTGATATTGATGACTGTTCCAGTACTCCGTGTCTGAATGGGGCAAAGTGTATCGAT CACCCGAATGGCTATGAATGCCAGTGTGCCACAGGTTTCACTGGTGTTGTTGTGAGGAGAACATTGACAACTGT GACCCCGATCCTTGCCACCATGGTCAGTGTCAGGATGGTATTGATTCCTACACCTGCATCTGCAATCCCGGGTAC ATGGGCGCCATCTGCAGTGACCAGATTGATGAATGTTACAGCAGCCCTTGCCTGAACGATGGTCGCTGCATTGAC GCAAGTAACCCTTGTATCCATGGAATCTGTATGGATGGCATTAATCGCTACAGTTGTGTCTGCTCACCAGGATTC ACAGGGCAGAGATGTAACATTGACATTGATGAGTGTGCCTCCAATCCCTGTCGCAAGGGTGCAACATGTATCAAC GGTGTGAATGGTTTCCGCTGTATATGCCCCGAGGGACCCCATCACCCCAGCTGCTACTCACAGGTGAACGAATGC CTGAGCAATCCCTGCATCCATGGAAACTGTACTGGAGGTCTCAGTGGATATAAGTGTCTCTGTGATGCAGGCTGG GTTGGCATCAACTGTGAAGTGGACAAAAATGAATGCCTTTCGAATCCATGCCAGAATGGAGGAACTTGTGACAAT CTGGTGAATGGATACAGGTGTACTTGCAAGAAGGGCTTTAAAGGCTATAACTGCCAGGTGAATATTGATGAATGT GCCTCAAATCCATGCCTGAACCAAGGAACCTGCTTTGATGACATAAGTGGCTACACTTGCCACTGTGTGCTGCCA TACACAGGCAAGAATTGTCAGACAGTATTGGCTCCCTGTTCCCCAAACCCTTGTGAGAATGCTGCTGTTTGCAAA GACGAGTGTATCTCCAAGCCCTGCATGAACCATGGTCTCTGCCATAACACCCAGGGCAGCTACATGTGTGAATGT CCACCAGGCTTCAGTGGTATGGACTGTGAGGAGGACATTGATGACTGCCTTGCCAATCCTTGCCAGAATGGAGGT ATGAATGAGTGTCTGAGTGAACCCTGTAAGAATGGAGGGACCTGCTCTGACTACGTCAACAGTTACACTTGCAAG TGCCAGGCAGGATTTGATGGAGTCCATTGTGAGAACAACATCAATGAGTGCACTGAGAGCTCCTGTTTCAATGGT GGCACATGTGTTGATGGGATTAACTCCTTCTCTTGCTTGTGCCCTGTGGGTTTCACTGGATCCTTCTGCCTCCAT AGCTGCCCCTGGGCTACACTGGGAAAAACTGTCAGACCCTGGTGAATCTCTGCAGTCGGTCTCCATGTAAAAAC AAAGGTACTTGCGTTCAGAAAAAAGCAGAGTCCCAGTGCCTATGTCCATCTGGATGGGCTGGTGCCTATTGTGAC GTGCCCAATGTCTCTTGTGACATAGCAGCCTCCAGGAGAGGTGTGCTTGTTGAACACTTGTGCCAGCACTCAGGT

PCT/US2003/028547

343/6881 FIGURE 318B

GTCTGCATCAATGCTGGCAACACGCATTACTGTCAGTGCCCCCTGGGCTATACTGGGAGCTACTGTGAGGAGCAA CTCGATGAGTGTGCGTCCAACCCCTGCCAGCACGGGGCAACATGCAGTGACTTCATTGGTGGATACAGATGCGAG TGTGTCCCAGGCTATCAGGGTGTCAACTGTGAGTATGAAGTGGATGAGTGCCAGAATCAGCCCTGCCAGAATGGA GGCACCTGTATTGACCTTGTGAACCATTTCAAGTGCTCTTGCCCACCAGGCACTCGGGGCCTACTCTGTGAAGAG AACATTGATGACTGTGCCCGGGGTCCCCATTGCCTTAATGGTGGTCAGTGCATGGATAGGATTGGAGGCTACAGT TGTCGCTGCTTGCCTGGCTTTGCTGGGGAGCGTTGTGAGGGAGACATCAACGAGTGCCTCTCCAACCCCTGCAGC TCTGAGGGCAGCCTGGACTGTATACAGCTCACCAATGACTACCTGTGTTTTGCCGTAGTGCCTTTACTGGCCGG ATGCCTGATGGTTTCATTTGCCGTTGTCCCCCGGGATTTTCCGGGGCAAGGTGCCAGAGCAGCTGTGGACAAGTG AAATGTAGGAAGGGGGAGCAGTGTGTGCACACCGCCTCTGGACCCCGCTGCTTCTGCCCCAGTCCCCGGGACTGC GAGTCAGGCTGTGCCAGTAGCCCCTGCCAGCACGGGGGCAGCTGCCACCCTCAGCGCCAGCCTCCTTATTACTCC TGCCAGTGTGCCCCACCATTCTCGGGTAGCCGCTGTGAACTCTACACGGCACCCCCCAGCACCCCTCCTGCCACC TGGGATGGGGGTGACTGTTCTCTCACCATGGAGAACCCCTGGGCCAACTGCTCCCCCACTTCCCTGCTGGGAT TATATCAACAACCAGTGTGATGAGCTGTGCAACACGGTCGAGTGCCTGTTTGACAACTTTGAATGCCAGGGGAAC AGCAAGACATGCAAGTATGACAAATACTGTGCAGACCACTTCAAAGACAACCACTGTGACCAGGGGTGCAACAGT GAGGAGTGTGGTTGGGATGGGCTGGACTGTGCTGACCAACCTGAGAACCTGGCAGAAGGTACCCTGGTTATT GTGGTATTGATGCCACCTGAACAACTGCTCCAGGATGCTCGCAGCTTCTTGCGGGCACTGGGTACCCTGCTCCAC ACCAACCTGCGCATTAAGCGGGACTCCCAGGGGGAACTCATGGTGTACCCCTATTATGGTGAGAAGTCAGCTGCT CTGGAAATTGACAACCGCCAGTGTGTTCAAGACTCAGACCACTGCTTCAAGAACACGGATGCAGCAGCAGCTCTC CTGGCCTCTCACGCCATACAGGGGACCCTGTCATACCCTCTTGTGTCTCGTCAGTGAATCCCTGACTCCAGAA CGCACTCAGCTCCTCTATCTCCTTGCTGTTGCTGTTGTCATCATTCTGTTTATTATTCTGCTGGGGGTAATCATG AAGCGTCGTGAGCCAGTGGGACAGGATGCTGTGGGGCTGAAAAATCTCTCAGTGCAAGTCTCAGAAGCTAACCTA GCCTTACTCTCAGAAGAAGATGACCCCATTGATCGACGGCCATGGACACAGCAGCACCTTGAAGCTGCAGACATC CGTAGGACACCATCGCTGGCTCTCACCCCTCCTCAGGCAGAGCAGGAGGTGGATGTGTTAGATGTGAATGTCCGT GGCCCAGATGGCTGCACCCCATTGATGTTGGCTTCTCCCGAGGAGGCAGCTCAGATTTGAGTGATGAAGATGAA CGGACTGGTGAGATGGCCCTGCACCTTGCAGCCCGCTACTCACGGGCTGATGCTGCCAAGCGTCTCCTGGATGCA GGTGCAGATGCCAATGCCCAGGACAACATGGGCCGCTGTCCACTCCATGCTGCAGTGGCAGCTGATGCCCAAGGT CTGGCTGCCCGCCTGGCTGTGGAGGGAATGGTGGCAGAACTGATCAACTGCCAAGCGGATGTGAATGCAGTGGAT GACCATGGAAAATCTGCTCTTCACTGGGCAGCTGCTGTCAATAATGTGGAGGCAACTCTTTTGTTGAAAAAAT GGGGCCAACCGAGACATGCAGGACAACAAGGAAGAGACACCTCTGTTTCTTGCTGCCCGGGAGGGGAGCTATGAA GCAGCCAAGATCCTGTTAGACCATTTTGCCAATCGAGACATCACAGACCATATGGATCGTCTTCCCCGGGATGTG GCTCGGGATCGCATGCACCATGACATTGTGCGCCTTCTGGATGAATACAATGTGACCCCAAGCCCTCCAGGCACC GTGTTGACTTCTGCTCTCTCACCTGTCATCTGTGGGCCCAACAGATCTTTCCTCAGCCTGAAGCACACCCCAATG GGCAAGAAGTCTAGACGGCCCAGTGCCAAGAGTACCATGCCTACTAGCCTCCCTAACCTTGCCAAGGAGGCAAAG GATGCCAAGGGTAGTAGGAGGAAGAAGTCTCTGAGTGAGAAGGTCCAACTGTCTGAGAGTTCAGTAACTTTATCC CCTGTTGATTCCCTAGAATCTCCTCACACGTATGTTTCCGACACCACATCCTCTCCAATGATTACATCCCCTGGG ATCTTACAGGCCTCACCCAACCCTATGTTGGCCACTGCCGCCCCTCCTGCCCCAGTCCATGCCCAGCATGCACTA TCTTTTCTAACCTTCATGAAATGCAGCCTTTGGCACATGGGGCCAGCACTGTGCTTCCCTCAGTGAGCCAGTTG CCAGCAGATTGGATGAACCGCATGGAGGTGAATGAGACCCAGTACAATGAGATGTTTGGTATGGTCCTGGCTCCA GCTGAGGGCACCCATCCTGGCATAGCTCCCCAGAGCAGGCCACCTGAAGGGAAGCACATAACCACCCCTCGGGAG CCCTTGCCCCCATTGTGACTTTCCAGCTCATCCCTAAAGGCAGTATTGCCCAACCAGCGGGGGCTCCCCAGCCT

PCT/IIS2003/028547

344/6881 FIGURE 318C

CAGTCCACCTGCCCTCCAGCTGTTGCGGGCCCCTGCCCACCATGTACCAGATTCCAGAAATGGCCCGTTTGCCC AGTGTGGCTTTCCCCACTGCCATGATGCCCCAGCAGGACGGCCAGGTAGCTCAGACCATTCTCCCAGCCTATCAT CCTTTCCCAGCCTCTGTGGGCAAGTACCCCACACCCCTTCACAGCACAGTTATGCTTCCTCAAATGCTGCTGAG CGAACACCCAGTCACAGTGGTCACCTCCAGGGTGAGCATCCCTACCTGACACCATCCCCAGAGTCTCCTGACCAG TGGTCAAGTTCATCACCCCACTCTGCTTCTGACTGGTCAGATGTGACCACCAGCCCTACCCCTGGGGGTGCTGGA GGAGGTCAGCGGGGACCTGGGACACACATGTCTGAGCCACCACACAACAACATGCAGGTTTATGCGTGAGAGAGT CCACCTCCAGTGTAGAGACATAACTGACTTTTGTAAATGCTGCTGAGGAACAAATGAAGGTCATCCGGGAGAGAA ATGAAGAATCTCTGGAGCCAGCTTCTAGAGGTAGGAAGAGAAGATGTTCTTATTCAGATAATGCAAGAGAAGC AATTCGTCAGTTTCACTGGGTATCTGCAAGGCTTATTGATTATTCTAATCTAATAAGACAAGTTTGTGGAAATGC GACATTCTTGCAGCTTGGACTGCATTTTAAGCCCTGCAGGCTTCTGCCATATCCATGAGAAGATTCTACACTAGC GTCCTGTTGGGAATTATGCCCTGGAATTCTGCCTGAATTGACCTACGCATCTCCTCCTCCTTGGACATTCTTTTG TCTTCATTTGGTGCTTTTGGTTTTGCACCTCTCCGTGATTGTAGCCCTACCAGCATGTTATAGGGCAAGACCTTT GTGCTTTTGATCATTCTGGCCCATGAAAGCAACTTTGGTCTCCTTTCCCCTCTGTCTTCCCGGTATCCCTTGGA GTCTCACAAGGTTTACTTTGGTATGGTTCTCAGCACAAACCTTTCAAGTATGTTGTTTCTTTGGAAAATGGACAT GGGGGCAGGAGATCCCTTCAAGAGGCTGCACCTTAATTTTTCTTGTCTGTGCAGGTCTTCATATAAACTTTAC CAGGAAGAAGGGTGTGAGTTTGTTGTTTTTCTGTGTATGGGCCTGGTCAGTGTAAAGTTTTATCCTTGATAGTCT AGTTACTATGACCCTCCCCACTTTTTTAAAACCAGAAAAAGGTTTGGAATGTTGGAATGACCAAGAGACAAGTTA ACTCGTGCAAGAGCCAGTTACCCACCCACAGGTCCCCCTACTTCCTGCCAAGCATTCCATTGACTGCCTGTATGG GTTGAGCCTTTCCTTCATATCCACAGAAGACACTGTCTCAAATGTTGTACCCTTGCCATTTAGGACTGAACTTT CCTTAGCCCAAGGGACCCAGTGACAGTTGTCTTCCGTTTGTCAGATGATCAGTCTCTACTGATTATCTTGCTGCT TAAAGGCCTGCTCACCAATCTTTCTTTCACACCGTGTGGTCCGTGTTACTGGTATACCCAGTATGTTCTCACTGA AGACATGGACTTTATATGTTCAAGTGCAGGAATTGGAAAGTTGGACTTGTTTTCTATGATCCAAAACAGCCCTAT AAGAAGGTTGGAAAAGGAGGAACTATATAGCAGCCTTTGCTATTTTCTGCTACCATTTCTTTTCCTCTGAAGCGG CCATGACATTCCCTTTGGCAACTAACGTAGAAACTCAACAGAACATTTTCCTTTCCTAGAGTCACCTTTTAGATG ATAATGGACAACTATAGACTTGCTCATTGTTCAGACTGATTGCCCCTCACCTGAATCCACTCTCTGTATTCATGC TCTTGGCAATTTCTTTGACTTTCTTTTAAGGGCAGAAGCATTTTAGTTAATTGTAGATAAAGAATAGTTTTCTTC CTCTTCTCCTTGGGCCAGTTAATAATTGGTCCATGGCTACACTGCAACTTCCGTCCAGTGCTGTATGCCCATGA CACCTGCAAAATAAGTTCTGCCTGGGCATTTTGTAGATATTAACAGGTGAATTCCCGACTCTTTTGGTTTGAATG CATATGGAAACCCTGCGTGTCTGTTGGCATAATAGTTTACAAATGGTTTTTTCAGTCCTATCCAAATTTATTGAA CCAACAAAAATAATTACTTCTGCCTGAGATAAGCAGATTAAGTTTGTTCATTCTCTGCTTTATTCTCTCCATGT GGCAACATTCTGTCAGCCTCTTTCATAGTGTGCAAACATTTTATCATTCTAAATGGTGACTCTCTGCCCTTGGAC CCATTTATTATTCACAGATGGGGAGAACCTATCTGCATGGACCTCTGTGGACCACAGCGTACCTGCCCCTTTCTG CCCTCCTGCTCCAGCCCCACTTCTGAAAGTATCAGCTACTGATCCAGCCACTGGATATTTTATATCCTCCCTTTT CCTTAAGCACAATGTCAGACCAAATTGCTTGTTTCTTTTCTTGGACTACTTTAATTTGGATCCTTTGGGTTTGG AGAAAGGGAATGTGAAAGCTGTCATTACAGACAACAGGTTTCAGTGATGAGGAGGACAACACTGCCTTTCAAACT TTTTACTGATCTCTTAGATTTTAAGAACTCTTGAATTGTGTGGTATCTAATAAAAGGGAAGGTAAGATGGATAAT CACTTTCTCATTTGGGTTCTGAATTGGAGACCCAGTTTTTATGAGACACCTCTTTTATGCCATGTATAGATCCTC ATAGGTTTTTTTTTTTTTTTTTCTTCTCTCTTTTTTTTAGCATCATTTTCTTATGTGAGGTGGGGAAGG GAAAGGTATGAGGGAAAGAGAGTCTGAGAATTAAAATATTTTAGTATAAGCAATTGGCTGTGATGCTCAAATCCA TTGCATCCTCTTATTGAATTTGCCAATTTGTAATTTTTGCATAATAAAGAACCAAAGGTGTAATGTTTTGTTGAG AGGTGGTTTAGGGATTTTGGCCCTAACCAATACATTGAATGTATGACTATTTGGGAGGACACATTTATGTAC CCAGAGGCCCCCACTAATAAGTGGTACTATGGTTACTTCCTTGTGTACATTTCTCTTAAAAGTGATATTATATCT GTTTGTATGAGAAACCCAGTAACCAATAAAATGACCGCATATTCCTGACTAAACGTAGTAAGGAAAATGCACACT

PCT/US2003/028547

345/6881 FIGURE 318D

PCT/IIS2003/028547

346/6881 FIGURE 319

CAGCAGGAGGAGGAGATGACTGGGGGAGCGGGAGCTGGAGAATACTGCCCAGTTACTCTAGCGCCCAGGCCGAAC CGCAGCTTCTTGGCTTAGGTACTTCTACTCACAGCGGCCGATTCCGAGGCCAACTCCAGCAATGGCTTTTGCAAA TCTGCGGAAAGTGCTCATCAGTGACAGCCTGGACCCTTGCTGCCGGAAGATCTTGCAAGATGGAGGGCTGCAGGT GGTGGAAAAGCAGAACCTTAGCAAAGAGGAGCTGATAGCGGAGCTGCAGGACTGTGAAGGCCTTATTGTTCGCTC TGCCACCAAGGTGACCGCTGATGTCATCAACGCAGCTGAGAAAACTCCAGGTGGTGGGCAGGGCTGGCACAGGTGT GGACAATGTGGATCTGGAGGCCGCAACAAGGAAGGGCATCTTGGTTATGAACACCCCCAATGGGAACAGCCTCAG TGCCGCAGAACTCACTTGTGGAATGATCATGTGCCTGGCCAGGCAGATTCCCCAGGCGACGGCTTCGATGAAGGA CGGCAAATGGGAGCGGAAGAAGTTCATGGGAACAGAGCTGAATGGAAAGACCCTGGGAATTCTTGGCCTGGGCAG GATTGGGAGAGAGGTAGCTACCCGGATGCAGTCCTTTGGGATGAAGACTATAGGGTATGACCCCATCATTTCCCC AGAGGTCTCGGCCTCCTTTGGTGTTCAGCAGCTGCCCCTGGAGGAGATCTGGCCTCTCTGTGATTTCATCACTGT GCACACTCCTCTCCTGCCCTCCACGACAGGCTTGCTGAATGACAACACCTTTGCCCAGTGCAAGAAGGGGGTGCG TGTGGTGAACTGTGCCCGTGGAGGGATCGTGGACGAAGGCGCCCTGCTCCGGGCCCTGCAGTCTGGCCAGTGTGC CGGGGCTGCACTGGACGTGTTTACGGAAGAGCCGCCACGGGACCGGCCTTGGTGGACCATGAGAATGTCATCAG CTGTCCCCACCTGGGTGCCAGCACCAAGGAGGCTCAGAGCCGCTGTGGGGAAGAATTGCTGTTCAGTTCGTGGA GCCTTGGATTGGTCTGGCAGAAGCTCTGGGGACACTGATGCGAGCCTGGGCTGGGTCCCCCAAAGGGACCATCCA GGTGATAACACAGGGAACATCCCTGAAGAATGCTGGGAACTGCCTAAGCCCCGCAGTCATTGTCGGCCTCCTGAA AGAGGCTTCCAAGCAGGCGGATGTGAACTTGGTGAACGCTAAGCTGCTGGTGAAAGAGGCTGGCCTCAATGTCAC CACCTCCCACAGCCCTGCTGCACCAGGGGAGCAAGGCTTCGGGGAATGCCTCCTGGCCGTGGCCCTGGCAGGCGC CCCTTACCAGGCTGTGGGCTTGGTCCAAGGCACTACGCCTGTACTGCAGGGGCTCAATGGAGCTGTCTTCAGGCC AGAAGTGCCTCTCCGCAGGGACCTGCCCCTGCTCCTATTCCGGACTCAGACCTCTGACCCTGCAATGCTGCCTAC CATGATTGGCCTCCTGGCAGAGGCAGGCGTGCGGCTGCTGTCCTACCAGACTTCACTGGTGTCAGATGGGGAGAC CTGGCACGTCATGGGCATCTCCTCCTTGCTGCCCAGCCTGGAAGCGTGGAAGCATGTGACTGAAGCCTTCCA ATAGGGAGAAAATCCACATTCTTGGGCTGAACGCGGGCCTCTGACACTGCTTACACTGCACTCTGACCCTGTA GTACAGCAATAACCGTCTAATAAAGAGCCTACCCCC

PCT/IIS2003/028547

347/6881 FIGURE 320

MAFANLRKVLISDSLDPCCRKILQDGGLQVVEKQNLSKEELIAELQDCEGLIVRSATKVTADVINAAEKLQVVGR
AGTGVDNVDLEAATRKGILVMNTPNGNSLSAAELTCGMIMCLARQIPQATASMKDGKWERKKFMGTELNGKTLGI
LGLGRIGREVATRNQSFGMKTIGYDFIISPEVSASFGVQQLPLEEIWPLCDFITVHTPLLPSTTGLLNDNTFAQC
KKGVRVVNCARGGIVDEGALLRALQSGCAGAALDVFTEEPPRDRALVDHENVISCPHLGASTKEAGSRCGEEIA
VQFVDMVKGKSLTGVVNAQALTSAFSPHTKPWIGLAEALGTLMRAWAGSPKGTIQVITQGTSLKNAGNCLSPAVI.
VGLLKEASKQADVNLVNAKLLVKEAGLNVTTSHSPAAFGEQGFGECLLAVALAGAPYQAVGLVQGTTPVLQGLNG
AVFRPEVPLRRDLPLLLFRTQTSDPAMLPTMIGLLAEAGVRLLSYQTSLVSDGETWHVMGISSLLPSLEAWKQHV
TEAFGPHF

PCT/US2003/028547

348/6881 FIGURE 321

GGGCGCGGGCCGGGGTGGGCTTCCCACGGCACGACATGGAGACCTGTGGTTGCGAGGCTCCCTGGGGCTCGGCTT CTCCCTGCCCGGCCGCATCGCTGCCAAGCTCGCCTTCCTGCCGCCGGAGGCCACCTACTCCCTGGTGCCTGAGC CCGAGCTGGGGCCTGGTGGGGCCGGGGCCCCCCTTGGGGACCCTGAGAGCCTCCTCGGGCGCACCCGGGCGCT CCAAGAGCGCCCGCGCAACCGTGTCTCCTGCATGTATGTTCGCTGCGTGCCTGGTGCCAGGTACACGGTCCTCT TCTCGCACGGCAATGCCGTGGACCTGGGCCAGATGAGCAGCTTCTACATTGGCCTGGGCTCCCGCCTCCACTGCA ACATCTTCACCTACGACTCCTCCGGCTACGGTGCCAGCTCGGGCAGGCCTTCCGAGAGGAACCTCTATGCCGACA TCGACGCCACCTGGCAGGCCCTGCGCACCAGGTACGGCATCAGCCCGGACAGCATCATCCTGTACGGGCAGAGCA TCGGCACGGTGCCCACCATGGACCTGGCCTCGCGCTACGAGTGTGCCGCGGTGGTGCTGCACTCGCCGCTCACCT CGGGCATGCGCGTCGCCTTCCGCGACACCAAGAAGACCTACTGCTTCGACGCCTTCCCTAACATCGAGAAGGTGT CCAAGATCACGTCTCCCGTGCTCATCATCCACGGCAGGGAGGACGAGGTGATCGACTTCTCGCACGGGCTGGCGC CCTTTCCTTTTGGAAGCAAGAAGAAAATACGTGAAAACGGAAATTAAAGATTTAAAATT

PCT/HS2003/028547

349/6881 FIGURE 322

MNGLSLSELCCLFCCPPCPGRIAAKLAFLPPEATYSLVPEPELGPGGAGAAPLGTLRASSGAPGRWKLHLTERAD FQYSQRELDTIEVFPTKSARGNRVSCMYVRCVPGARYTVLFSHGNAVDLGQMSSFYIGLGSRLHCNIFTYDSSGY GASSGRPSERNLYADIDATWQALRTRYGISPDSIILYGQSIGTVPTMDLASRYECAAVVLHSPLTSGMRVAFRDT KKTYCFDAFPNIEKVSKITSPVLIIHGREDEVIDFSHGLALYERCPKAVEPLWVEGAGHNDIELYSQYLERLRRFISGELPSQRA

PCT/US2003/028547

350/6881 FIGURE 323A

AGCGTGAACCTGGGAGGCAGAGCTTGCAGTGAGCCTAGATCGCGTCACTGCACTCCAGCCTGGGAGACAGAGTGA AACAGTGAGGAATGTGCTTAGATGTATTGGGAAAGACACGGGTCTGTGGCATTGTCACAAGGGTACACGAATACT GAGAGTGAATGCTGAAGGAATGATCCCCATTGGTGGTGACCCTCAGGTGAGACTAGGGTGCCTGTGTTTCAGCAA AGCCTGGGCAATTGGAATGCAGGGCTCCTAAGATTCCATGACACCCCCACCTTCTAATTCTGTTATTGCAACTGC AGACCGTTACCTGGCACGCTGGCCACAATCTACCTCACTCTTATCAGAGTCTGAGCTACTGGCAGTGCTTTCAGC TCTGAGTTGAGGCACCTCGAACCTTGTTTTTGTGGTGAAGGATCCTAAAGTGCTGTGGGAGTGATCACATTTTTC ACAACAGTAAGTCCCTGACTCCACCTCTTCTGCCACAAACGTCAGCATGGTGGTATCAGCCGGCCCTTGGTCCAG CGAGAAGGCAGAGATGAACATTCTAGAAATCAACGAGAAATTGCGCCCCCAGTTGGCAGAGAACAACAACAGCAGTT CGTAAACCTCAAAGAGATGTTTTCTAACTCAACTGGCCGGCTTCCTGGCCAACCGACAGAAGAAATACAGCAATA TAAAGTCCTGGTTCACTCTCAGGAACGAGAGCTGACGCAGTTAAAGGAGAAGTTACAGGAAGGGAGAGATGCCTC CCGCTCATTGAATGAGCATCTCCAGGCCCTCCTCACTCTGGATGAGCCGGACAAGTCCCAGGGGCAGGACCTCCA AGAACAGCTGGCTGAGGGGTGTAGACTGGCACAGCACCTTGTCCAAAAGCTCAGCCCAGAAAATGACGAAGATGA GGATGAAGATGTTCAAGTTGAGGAGGATGAGAAAGTGCAGAAATCATCTGCCCCCAGGGAGGTGCAGAAGGCTGA AGTGAGCAAAGTCCCTGAGGACTCACTGGAGGAATGTGCCATCACTTGTTCAAATAGCCACGGCCCTTGTGACTC CAACCAGCCTCACAAGAACATCAAAATCACATTTGAGGAAGACGAAGTCAACTCAACTCTGGTTGTAGACAGAGA ATCCTCTCATGATGAATGTCAGGATGCTCTAAACATTCTCCCAGTCCCTGGCCCCACCTCTTCTGCCACAAACGT CAGCATGGTGGTATCAGCCGGCCCTTTGTCCAGCGAGAAGGCAGAGATGAACATTCTAGAAATCAATGAGAAATT GCACCCCAGCTGGCAGAGAAGAACAGCAGTTCAGAAACCTCAAAGAGAAATGTTTTCTAACTCAACTGGCCGG CTTCCTGGCCAACCAGCAGAACAAATACAAGTATGAAGAGTGTAAAGACCTCATAAAATTTATGCTGAGGAATGA TCACGCTCAGGAACGAGAGCTGACCCAGTTAAGGGAGAAGTTGCGGGAAGGGAGAGATGCCTCCCGCTCATTGAA TGAGCATCTCCAGGCCCTCCTCACTCCGGATGAGCCGGACAAGTCCCAGGGGCAGGACCTCCAAGAACAGCTGGC TGAGGGGTGTAGACTGGCACAGCACCTTGTCCAAAAGCTCAGCCCAGAAAATGACAACGATGACAATGAAGATGT TCAAGTTGAGGTGGCTGAGAAAGTGCAGAAATCGTCTGCCCCCAGGGAGATGCAGAAGGCTGAAGAAAAGGAAGT CCCTGAGGACTCACTGGAGGAATGTGCCATCACTTATTCAAATAGCCATGGCCCTTATGACTCCAACCAGCCACA TAGGAAAACCAAAATCACATTTGAGGAAGACAAAGTCGACTCAACTCTCATTGGCTCATCCTCTCATGTTGAACG GGAAGATGCTGTACACATTATTCCAGAAAATGAAAGTGATGATGAGGAAGAAGAAGAAAAAAGGGCCAGTGTCTCC CAGGAATCTGCAGGAGTCTGAAGAGGAGGAAGTCCCCCAGGAGTCCTGGGATGAAGGTTATTCGACTCCCTCAAT TCCTCCTGAAATGTTGGCCTCGTACAAGTCTTACAGCAGCACATTTCACTCATTAGAGGAACAGCAAGTCTGCAT GGCTGTTGACATAGGCAGACATCGGTGGGATCAAGTGAAAAAGGAGGACCAAGAGGCAACAGGTCCCAGGCTCAG CAGGGAGCTGCTGGATGAGAAAGGGCCTGAAGTCTTGCAGGACTCACTGTATAGATGTTATTCAACTCCTTCAGG TTGTCTTGAACTGACTGACTCATGCCAGCCCTACAGAAGTGCCTTTTACGTATTGGAGCAACAGCGTGTTGGCTT GGCTGTTGACATGGATGAAATTGAAAAGTACCAAGAAGTGGAAGAAGACCAAGACCCATCATGCCCCAGGCTCAG CAGGGAGCTGCTGGATGAGAAAGAGCCTGAAGTCTTGCAGGACTCACTGGGTAGATGGTATTCGACTCCTTCAGG GGCTCTTGACTTGGACAGAATTAAAAAGGACCAAGAAGAGGAAGAAGACCAAGGCCCACCATGCCCCAGGCTCAG CAGGGAGCTGCTGGAGGTAGTAGAGCCTGAAGTCTTGCAGGACTCACTGGATAGATGTTATTCAACTCCTTCCAG TTGTCTTGAACAGCCTGACTCCTGCCAGCCCTATGGAAGTTCCTTTTATGCATTGGAGGAAAAACATGTTGGCTT AAGAAGGGGAAGAAAAGAAGGGGAAGAAGATCAAAACCCACCATGCCCCAGGCTCAACGGCGTGCTGATGGAAGT GGAAGAGCCTGAAGTCTTGCAGGACTCACTGGATGGATGTTATTCTACTCCGTCAATGTACTTTGAACTACCTGA CTCATTCCAGCACTACAGAAGTGTGTTTTACTCATTTGAGGAACAGCACATCAGCTTCGCCCTTTACGTGGACAA TAGGTTTTTTACTTTGACGGTGACAAGTCTCCACCTGGTGTTCCAGATGGAAGTCATATTCCCACAATAAGCAGC CCATTTGGAAGCCCAGACATAGGATGGGTCAGTGGGCATGGCTCTATTCCTATTCTCAAACCATGCCAGTGGCAA ${\tt CCTGTGCTCAGTCTGAAGACAATGGACCCACGTTAGGTGTGACACGTTCACATAACTGTGCAGCACATGCCGGGA}$

PCT/IIS2003/028547

351/6881 FIGURE 323B

GTGATCAGTCAGACATTTTAATTTGAACCACGTATCTCTGGGTAGCTACAAAATTCCTCAGGGATTTCATTTTGC AGACATGTCTCTGAGCTTCTATACCTGCTCAAGGTCATTGTCATCTTTGTGTTTAGCTCATCCAAAGGTGTTACC CTGGTTTCAATGAACCTAACCTCATTCTTCGTGTCTTCAGTGTTGTCTTTAGCTGATCCATCTGTAACACA GGAGGGATCCTTGGCTGAGGATTGTATTTCAGAACCACCACTGCTCTTGACAATTGTTAACCCGCTAGGCTCCT TTGGTTAGAGAAGCCACAGTCCTTCAGCCTCCAATTGGTGTCAGTACTTAGGAAGACCACAGCTAGATGGACAAA CAGCATTGGGAGGCCTTAGCCCTGCTCCTCTAATTCCATCCTGTAGAGAACAGGAGTCAGGAGCCGCTGGCAGG AGACAGCATGTCACCCAGGACTCTGCCGGTGCAGAATATGAACAATGCCATGTTCTTGCAGAAAACGCTTAGCCT GAGTTTCATAGGAGGTAATCACCAGACAACTGCAGAATGTAGAACACTGAGCAGGACAACTGACCTGTCTCCTTC TGACATGGACTTGTTTATAGAGGACAGGTCAGCTGTCTGGCTCAATGATCTACATTCTGAAGTTGTCTGAAAATG TCTTCATGATTAAATTCAGCCTAAACGTTTTGCCGGGAACACTGCAGAGACAATGCTGTGAGTTTCCAACCTCAG CCCATCTGCGGGCAGAAGGTCTAGTTTGTCCATCACCATTATGATATCAGGACTGGTTACTTGGTTAAGGAGG GGTCTAGGAGATCTGTCCCTTTTAGAGACACCTTACTTATAATGAAGTACTTGGGAAAGCGGTTTTCAAGAGTAT ATATTCATATCTCTACGCTGCAAATTTTGGGTCTCAATTTTTACTGTGCCTTTGTTTTTACTAGTGTCTGCTGTT GCAAAAAGAAGAAAACATTCTCTGCCTGAGTTTTAATTTTTTGTCCAAAGTTAATTTTAATCTATACAATTAAAAC CTTTTGCCTATCACTCTGGACTTTTGGATTGTTTTTTTACATTCAGTGTTATAATATTTGATTATGCTGATTGGTT TTGGTGGGTACTGATGCGAATTAATAAAAACATTTCATTTCC

PCT/US2003/028547

352/6881 FIGURE 324A

GTTTTGTAACTCAACTGGCCGGCTTCCTGGCCAAGCAGCAGAACAAATACAAATATGAAGAGTGCAAAGACCTCA TCAGGTGAGGGGACCCCATGGGGGCAGGCAGGGGGGGCAGGTGTGTAAATCTCTGAAGTACAACAGCTCGGTGGGG AGACTTAAGAGCTAAGCTGGGCCAGGGGAAGGGCAGGAATTGCCATGGCAGGCTCGCTACACAAAATATTTATC AAACAGAGAAGAAGGATAATAAAAATTTATGGGTTGCAGTGTTTCTCAGAGCCTGTTTTCTTTTTTCAAACAAGT AATGTTGATGTGAAATTTACATAACACAAAATTAACCAAAGGAGTGTGAACCACACAGCAGCATTCAGTATACTC TGGCCTCATTTCTGTACATGGCTTTGTATCTAATGGCCGCAAGATGCACTATGTGTATTTTCACATGGAAATGTC CATGGCCAGAGTGAGGAACTGAAAGGATGTCTTTTTGAAACGGAATTAGGAAGACACCTACTTTTGTTTACAGAG GGGAAAGATGAATGGAACATCATCGAGGATCTTGCAGGAGCCCTCTCTGATACAGAGGAAGCCTGTAAACCATTT TCTATTCTTTCTCTTGGCCACAGACATTCCTTTCAACATGTGCTGACCTTCTGCTTGGAGGTCTCCTTGAGGACA TTGTCTCAGAAATCTCTGTTGCAATATTTGAACGGATCACTCAACCCTTTCCACTCTTAAATTTTCTCTACCGTC TCACCTTAGGCAATATAAAGTCCTGGTTCACTCTCAGGAACGAGAGCTGACCCAGTTAAGGGAGAAGTTACGGGA AGGGAGAGATGCCTCCCGCTCATTGAATGAGCATCTCCAGGCCCTCCTCACTCCGGATGAGCCGGACAAGTCCCA GGGGCAGGACCTCCAAGAACAGCTGGCTGAGGGGTGTAGACTGGCACAACACCTTGTCCAAAAGCTCAGCCCAGA AAATGATAACGATGACGATGAAGATGTTCAAGTTGAGGTGGCTGAGAAAGTGCAGAAATCGTCTTCCCCCAGGGA GATGCAGAAGGCTGAAGAAAAGGAAGTCCCTGAGGACTCACTGGAGGAGTGTGCCATCACTTGTTCAAATAGCCA TGGCCCTTATGACTCCAACCAGCCACATAGGAAAACCAAAATCACATTTGAGGAAGACAAAGTCGACTCAACTCT CATTGGCTCATCCTCTCATGTTGAATGGGAGGATGCTGTACACATTATCCCAGAAAATGAAAGTGATGATGAGGA AGAGGAAGAAAAAGGGCCAGTGTCTCCCAGGAATCTGCAGGAGTCTGAAGAGGAGGAAGTCCCCCAGGAGTCCTG GGATGAAGGTTATTCGACTCTCTCAATTCCTCCTGAAAGGTTGGCCTCATACCAGTCTTACAGCAGCACATTTCA CTCATTAGAGGAACAGCAAGTCTGCATGGCTGTTGACATAGGCAGACATCGGTGGGATCAAGTGAAAAAAGGAGGA CGTATTGGAGCAACAGCGTGTTGGCTTGGCTGTTGACATGGATGAAATTGAAAAGTACCAAGAAGTGGAAGAAGA GGATAGATGTTATTCGACTCCTTCAGGTTATCTTGAACTGCCTGACTTAGGCCAGCCCTACAGAAGTGCTGTTTA CTCATTGGAGGAACAGTACCTTGGCTTGGCTCTTGACGTGGACAGAATTAAAAAGGACCAAGAAGAAGAAGAAGAAGA CCAAGGCCCACCATGCCCCAGGCTCAGCAGGGAGCTGCTGGAGGTAGTAGAGCCTGAAGTCTTGCAGGACTCACT GGATAGATGTTATTCAACTCCTTCCAGTTGTCTTGAACAGCCTGACTCCTGCCAGCCCTACAGAAGTTCCTTTTA CAGGCTCAACAGCGTGCTGATGGAAGTGGAAGAGCCTGAAGTCTTGCAGGACTCACTGGATAGATGTTATTCGAC TCCATCAATGTACTTTGAACTACCTGACTCATTCCAGCACTACAGAAGTGTGTTTTACTCATTTGAGGAACAGCA CATCACCTTTGCCCTTGACATGGACAATAGCTTTTTTACTTTGACGGTGACAAGTCTCCACCTGGTCTTCCAGAT CCTGAAGATTTGAATGAAACTATAGTTCCATTTGGAAGCCCAGACATAGGATGGGTCAGTGGGCATGGCTCTATT CCTATTCTCAGAGCATGCCAGTGGCAACCTGTGCTCAGTCTGAAGACAATGGACCCACGTTAGGTGTGACACGTT CACATAACTGTGCAGCACATGCCGGGAGTGATCAGCCGGACATTTTAATTTGAACCATGTATCTCTGGGTAGCTA CAAAATTCCTCAGGGATTTCATTTTGCAGGCATGTCTCTGAGCTTCTATACCTACTCAAGGTCAGTGTCATCTTT GTGTTTAGTTCATCCAAAGGTGTTACCCTGGTTTCAATGAACCTAACCTCATTATTTGTGTCTTCAGTGTTGGCT TGTTTTAGCTGATCCATCTGTAACACAGGAGGGATCCTTGGCTGAGGATTGTATTTCAGAACCACCAACTGCTCT TGACAATTGTTAACCCGCTAGGCTCCTTTGGTTAGAGAAGCCACAGTCCTTCAGCCTCCAATTGGTGTCAGTACT TAGGAAGACCACAGCTAGATGGACAAACAGCATTGGGAGGCCTTAGCCCTGCTCCTCTAATTCCATCCTGTAGA GAACAGGAGTCAGGAGCCGCTGGCAGGAGACAGCATGTCACCCAGGACTCTGCCGGTGCAGAATATGAGCAATGC CATGTTCTTGCAGAAAACGCTTAGCCTGAGTTTCATAGGAGGTAATCACCAGACAACTGCAGAATGTAGAACACT

PCT/US2003/028547

353/6881 FIGURE 324B

PCT/US2003/028547

354/6881 FIGURE 325

MLRNELQFKEEKLAEQLKQAEELRQYKVLVHSQERELTQLREKLREGRDASRSLNEHLQALLTPDEPDKSQGQDL QEQLAEGCRLAQHLVQKLSPENDNDDDEDVQVEVAEKVQKSSSPREMQKAEEKEVPEDSLEECATICSNSHGFYD SNQPHRKTKITFEEDKVDSTLIGSSSHVEWEDAVHIIPENESDDEEEEEKGPVSPRNLQESEEEEVPQESWDEGY STLSIPPERTSVGSSEKGGPRONRSQAQQGAAG

PCT/HS2003/028547

355/6881 FIGURE 326

CTCCCCGCTCTTCTCAGCCGTCACGTGAACGCTTCCTGCAGGCTGGCCATGGCGCTTCAAGTTCCCAAGGCTCC GGGCTTCGCCCAGATGCTCAAGGAGGGAGCGAAACACTTTTCAGAATTAGAAGAGGCTGTGTATAGAAACATACA AGCTTGCA AGGAGCTTGCCCA AACCACTCGTACAGCATATGGACGAAATGGAATGAAAAAATGGTTATCAACTA CTTGGAGAAGTTGTTTGTGACAAATGATGCAGCGACTATTTTAAGAGAACTAGAAGTACAGCATCCTGCTGCAAA AATGACTGTAATGGCTTCTCATATGCAAGAGCAAGAAGTTGGAGATGGCACAAACATTGTTCTGGTATTTGCTGG AGCTCTCCTGGAATTAGCTGAAGAACTTCTGAGGATTGGCCTGTCAGTTTCAGAAGGTCATAGAAGGTTATGAAAT AGCTTGCAGAAAAGCTCATGAGATTCTTCCTAATTTGGTACGTTGTTCTGCAAAAAACCTTCGAGATGTTGATGA AGTCTCATCTCTACTTCGTACCTCTGTAATGTGTAAACAATATGGTAATGAAGTATTTCTGGCCAAGCTTATTGT TCAGGCATGCGTATCTATTTTTCCTGATTCTGGCCATTTCAAAGTTGATAACATCAGAGTTTGTAAAATTCTGGG CTGTGGTATCACTTCCTCTTCAGTATTGCATGGCATGGTTTTTAAGAAGGAAACAGAAGGTGATGTACATCTGTC AAAGATGCAAAAATAGCAGTGTACTCTTGTCCTTTTGATGGCATGATAACAGAAACTAAGGGAACAGTGTTGATA AAGACTGATGAAGAATTGATGAATTTAAGTAAGGGAGAAGAAAATCTCATGGATGCATAAGTCAAAGCTATTGCT ATGATGTT AGTGAAGCTAAACTCAAAATGGGATGTCTGAAGACTCTGTAAAACAGTTGGTGCTACAGCTCTTCCT AGATTGACACCTCCTGTCCTTGAAGAAATGGGACACTGAGACAGTGTTTACCTCTCAGAAGTTGGAGATACTCAG GTGGTGGTTTTTAAGCATGAAAAGGAAGATGGCATCATTTCTACCATAGTACTTCAGGGCTCTACAGACAATCTG ATGGATGACATAGAAAGGGCAGTAGATGATGGTGTTAATACTTTCAAAGTTCTTACAAGGGATAAACGTCTTGTA CCCGGAGGTGGAGCAACAGAAATTGAATTAGCCAAACAGATCACATCATATGGAGAGACATGTCCTGGACTTGAA CAGTACGCTATTAAGAAGTTTGCTGAGGCGTTTGAAGCTATTCCCCGTGCACTGGCAGAAATACTCTGGAGAAAA CTCTGGAGTTAAGGCCAATGAAGTAATCTCTAAACTTTATGCAGTACCTCAAGAAGGAAATAAAAATGTTGGATT AGATACTGAGGCTGTAGTCCCTGCTGTAACGGACATGTTGGAAGCTGGTGTTCTAGATACTTACCTGGGAAAACA CTGGTCTATCANACTCGCTGCTAATGCTGCAGTCACTGTACTTAGAGTGGGTCAGGTAATCATGGCAAAACCAGA TGGTGGGCCCAAGCCTCCAAGTGGGAAGAAGACTGGGATGATGACCAAAATGATTGAAATTGGCTTAATTTTTA CTGTAGGTGAAGGCTGTATTTGTAGTAGTATTCTAAGAATCGCGTGATGTTTTCTTATTCTCCTTACATTAAGAG GTATTTTGTGTTTGTATTCTTGGCTGGATGTTATAATAAACATATTGTTACTGTC

PCT/HS2003/028547

356/6881 FIGURE 327

PCT/HS2003/028547

357/6881 FIGURE 328

GTGGGTAGGAGCTTGCTTATAGAAAAGTGGAATCGAGTAGTCCTTGCTGGTGGAGCCGCTGCCGCCAGGGAACTC AGGGCCGGCTCCTGTTCCTTCAAGAGTGCTGGAGGCCAAACTTGAAATACAAGTTTAATGTTCCTCGTCGGGCAA A AGA TA AGGA TOGATOTOCOCOGGOCOGGTGTGCAGCAGGAGCGACCCAACCCCGACCCGGGTTAAAACTCCCAG GGACTCTTCGCTGCTGCCACCTCTTGTTCTCTCCCCCGTTCCCACTCGGGGTCTCCCTCAGGGCCGGGAGGCACA GCGGTCCCTGCTTGCTGAGGGGCTGGATGTACGCATCCGCAGGTTCCCGCGGACTTGGGGGCCCCGCTGAGCCC CGGCGCCGCAGAAGACTTGTGTTTGCCTCCTGCAGCCTCAACCCGGAGGGCAGCGAGGGCCTACCACCATGATC CGGGTGGCCCTGGCCGAGCTGCAGGAGGCCGATGCCAGTGTCCGGTCGACCGCAGCCTGCTGAAGTTGAAAATG GTGCAGGTCGTGTTTCGACACGGGGCTCGGAGTCCTCTCAAGCCGCTCCCGCTGGAGGAGCAGGTAGAGTGGAAC CCCCAGCTATTAGAGGTCCCACCCCAAACTCAGTTTGATTACACAGTCACCAATCTAGCTGGTGGTCCGAAACCA TATTCTCCTTACGACTCTCAATACCATGAGACCACCCTGAAGGGGGGCATGTTTGCTGGGCAGCTGACCAAGGTG ACCTTCAACCACAGGAGGTCTTTATTCGTTCCACTAACATTTTTCGGAATCTGGAGTCCACCCGTTGTTTGCTG GCTGGGCTTTTCCAGTGTCAGAAAGAAGGACCCATCATCATCACACTGATGAAGCAGATTCAGAAGTCTTGTAT CCCAACTACCAAAGCTGCTGGAGCCTGAGGCAGAGAACCAGAGGCCGGAGGCAGACTGCCTCTTTACAGCCAGGA ATCTCAGAGGATTTGAAAAAGGTGAAGGACAGGATGGGCATTGACAGTAGTGATAAAGTGGACTTCTTCATCCTC CTGGACAACGTGGCTGCCGAGCAGGCACAACCTCCCAAGCTGCCCCATGCTGAAGAGATTTGCACGGATGATC GAACAGAGAGCTGTGGACACATCCTTGTACATACTGCCCAAGGAAGACAGGGAAAGTCTTCAGATGGCAGTAGGC CCATTCCTCCACATCCTAGAGAGCAACCTGCTGAAAGCCATGGACTCTGCCACTGCCCCGACAAGATCAGAAAG CTGTATCTCTATGCGGCTCATGATGTGACCTTCATACCGCTCTTAATGACCCTGGGGATTTTTGACCACAAATGG CCACCGTTTGCTGTTGACCTGACCATGGAACTTTACCAGCACCTGGAATCTAAGGAGTGGTTTGTGCAGCTCTAT TACCACGGGAAGGACCAGGTGCCGAGAGGTTGCCCTGATGGGCTCTGCCCGCTGGACATGTTCTTGAATGCCATG TCAGTTTATACCTTAAGCCCAGAAAAATACCATGCACTCTGCTCTCAAACTCAGGTGATGGAAGTTGGAAATGAA AAAAAAAAAAA

PCT/US2003/028547

358/6881 FIGURE 329

MITGVFSMRLWIPVGVLTSLAYCLHQRRVALAELQEADGQCPVDRSLLKLKMVQVVFRHGARSPLKPLPLEEQVE WHPQLLEVPPGTOFDYITVINLAGGF KPYSFYDSQYHEITLKGGMFAGGLTKVGMQQMFALGERLKRYVVEDIPFL SPFFHRGEVFTRSTNIFRNLESTRCLLAGLFYQCKASEGFIIHTDEADSEVLYPHYQSCWSLRQRTRGRQTASLQ PGISEDLKKVKDRWGIDSSDKVDFFILDDWAAEQAHNLPSCPMLKRFARMIEQRAVDTSLYILFKEDRESLQMA VGFFLHILESNLLKAMDSATAPDKIRKLYLYAAHDVTFIFLUHTLGIFDHKWPFFAVDLTMELYQHLESKEWFVQ LYYHGKEGVYBCCFGCFGGLEJDMFLAMSWYTLSPEKYHALCSGTQVMEVGNEE

PCT/US2003/028547

359/6881 FIGURE 330

PCT/US2003/028547

360/6881 FIGURE 331

PCT/HS2003/028547

361/6881 FIGURE 332

GTCCCAACTCTTGGACTCCATTTGCTATTCTCTTCTTCTCCCCCACACCTATCTGGTGGTGGTAGTGGGCGTTT ATATTTGCGTTCCTTTTCATTCATTTCTAAATCTCTTAAAAATTTTGGGTTGGGGGTATTGGGGAAGGCAGGAAA $\tt GGGAAAAGGAGGAGTAGTAGCTGAAGAGCAAGAGGAGGAC\underline{ATG}GAGATGAAGAAGAATAACCTGGAGTTAAGG$ AACAGATCCCCGGAGGAGGTGACAGAGTTAGTCCTTGATAATTGCCTGTGTGTCAATGGGGAAATTGAAGGCCTG AATGATACTTTCAAAGAACTAGAATTTCTGAGTATGGCTAATGTGGAACTAAGTTCGCTGGCCCGGCTTCCCAGC ${\tt TTAAATAAACTTCGAAAATTGGAGCTTAGTGATAATATATTTCTGGAGGCTTGGAAGTCCTGGCAGAGAAATGT}$ CCAAATCTTACCTACCTCAATCTGAGTGGAAACAAAATAAAAGATCTCAGTACAGTAGAAGCTCTGCAAAATCTT AAAAAŢTTGAAAAGTCTTGACCTGTTTAACTGTGAGATCACAAACCTGGAAGATTATAGAGAAAGTATTTTTGAA CTACTGCAGCAAATCACATACTTAGATGGATTTGATCAGGAGGATAATGAAGCGCCGGACTCTGAAGAGGAGGAT GATGAGGATGGAGATGAAGATGAAGAGGAAGAGGAAAATGAAGCTGGTCCACCGGAAGGATATGAGGAAGAG GAGGAGGAAGAGGAAGAGGAGGATGAGGATGAGGATGAAGATGAAGCAGGTTCAGAGTTGGGAGAGGGA GAAGAGGAAGTGGGCCTCTCATACTTAATGAAAGAAGAAATTCAGGATGAAGAAGATGATGATGACTATGTTGAA ATCTTTGTTTCTTCATGTACGATAGCTATCCCTACAGAAGATAATGTGTAACTTTTTATAGGAAAAGTGTGGTTT TTGACTCCCATTGTGGAATTCCCTAGCAATTTATTTAGACTTAATTTTTAAATTCAAGCTTACTGTATTAGTCA

PCT/IIS2003/028547

362/6881 FIGURE 333

MEMKKKINLELRNRSPEEVTELVLDNCLCVNGEIEGLNDTFKELEFLSMANVELSSLARLPSLNKLRKLELSDNI ISGGLEVLAEKCPNLTYLNLSGNKTKDLSTVEALQNLKNLKSLDLFNCEITNLEDYRESIFELLQQITYLDGFDQ EDNEAPDSEEEDDEDGDEDEEEENEAGPPEGYEEEEEEEEEDDEDEDEDEDEDEAGSELGEGEEEVGLSYLMKEE IQDEEDDDDYVEEGEEEEEEEEGGLRGEKRKRDAEDDGEEEDD

PCT/US2003/028547

363/6881 FIGURE 334

GTGGGGTCGCGTTGCCACCCCACGCGGACTCCCCAGCTGGCGCGCCCCCCCATTTGCCTGTCCTGGTCAGGCCC CCACCCCCTTCCCACCTGACCAGCCATGGGGGCTGCGGTGTTTTTCGGCTGCACTTTCGTCGCCTTCGGCCCGG $\tt CCTTCGCGCTTTTCTTGATCACTGTGGCTGGGGACCCGCTTCGCGTTATCATCCTGGTCGCAGGGGCATTTTTCT$ TCCAGTACGGCCTCCTGATTTTTGGTGCTGCTGTCTCTGTCCTTCTACAGGAGGTGTTCCGCTTTGCCTACTACA TGGCCTATGTTTCTGGTCTCTCCTTCGGTATCATCAGTGGTGTCTTCTCTGTTATCAATATTTTGGCTGATGCAC TTGGGCCAGGTGTGGTTGGGATCCATGGAGACTCACCCTATTACTTCCTGACTTCAGCCTTTCTGACAGCAGCCA TTATCCTGCTCCATACCTTTTGGGGAGTTGTGTTCTTTGATGCCTGTGAGAGGAGACGGTACTGGGCTTTGGGCC TGGTGGTTGGGAGTCACCTACTGACATCGGGACTGACATTCCTGAACCCCTGGTATGAGGCCAGCCTGCTGCCCA TCTATGCAGTCACTGTTTCCATGGGGCTCTGGGCCTTCATCACAGCTGGAGGGTCCCTCCGAAGTATTCAGCGCA GCCCAGCCCAGCCCGGGGTCCATTGCCCACATTCTCTGTCTCTCTTCTCGTCGGTCTACCCCACTACCTCCAGGG GGTGGGTTTGAATCTGCACTTATCCCCACCACCTGGGGACCCCCTTGTTGTGTCCAGGACTCCCCCTGTGTCAGT GCTCTGCTCTCACCCTGCCCAAGACTCACCTCCCTTCCCCTCTGCAGGCCGACGGCAGGAGGACAGTCGGGTGAT GGTGTATTCTGCCCTGCGCATCCCACCCGAGGACTGAGGGAACCTAGGGGGGACCCCTGGGCCTGGGGTGCCCTC CTGATGTCCTCGCCCTGTATTTCTCCATCTCCAGTTCTGGACAGTGCAGGTTGCCAAGAAAAGGGACCTAGTTTA GCCATTGCCCTGGAGATGAAATTAATGGAGGCTCAAGGATAGATGAGCTCTGAGTTTCTCAGTACTCCCTCAAGA CTGGACATCTTGGTCTTTTTCTCAGGCCTGAGGGGGAACCATTTTTGGTGTGATAAATACCCTAAACTGCCTTTT TTTCTTTTTTGAGGTGGGGGGGGGGGGGGGGGTATATTGGAACTCTTCTAACCTCCTTGGGCTATATTTTCTCTCC GTGCATGTTTGGGAACTGGCATTACTGGAACTAATGGTTTTTAACCTCCTTAACCACCAGCATCCCTCCTCCCCC AAGGTGAAGTGGAGGGTGCTGTGGTGAGCTGGCCACTCCAGAGCTGCAGTGCCACTGGAGGAGTCAGACTACCAT GACATCGTAGGGAAGGAGGGGAGATTTTTTTGTAGTTTTTAATTGGGGTGTGGGAGGGCCGGGGAGGTTTTCTAT AAACTGTATCATTTTCTGCTGAGGGTGGAGTGTCCCATCCTTTTAATCAAGGTGATTGTGATTTTGACTAATAAA AAAGAATTTGTAAAAA

PCT/US2003/028547

364/6881 FIGURE 335

MGAAVFFGCTFVAFGPAFALFLITVAGDPLRVIILVAGAFFWLVSLLLASVVWFILVHVTDRSDARLQYGLLIFG AAVSVLLQEVFRFAYYKLLKKADEGLASLSEDGRSFISIRGMAYVSGLSFGIISGVFSVINILADALGPGVVGIH GDSPYYFLTSAFLTAAIILLHTFWGVVFFDACERRRYWALGLVVGSHLLTSGLTFLNFWYEASLLPIYAVTVSMG LWAFITAGSSLBSIGNSSCVTTDYLD

PCT/US2003/028547

365/6881 FIGURE 336

PCT/US2003/028547

366/6881 FIGURE 337

 ${\tt MAKHLKFIARTVMVQEGNVESAYRTLNRILITMDGLIEDIKHRRYYEKPCRRRQRESYERCRRIYNMEMARKINFLMRNRADEWQGC}$

PCT/US2003/028547

367/6881 FIGURE 338A

<u>ATG</u>TCTCCACTTCTGAGAAGCATCTGTGACATCACTGAAATTTTCAATCAGTATGTCTCTCATGATTGTGATGGA GCAGCATTAACTAAGAAAGACCTGAAGAACCTCCTTGAAAGGGAATTTGGAGCTGTGCTTCGGAGACCACATGAC CCTAAGACGGTAGATCTGATCCTGGAACTTCTGGATCTTGACAGTAATGGGCGTGTCGATTTCAACGAATTCCTC CTATTTATTTCAAAGTGGCTCAAGCTTGTTACTATGCTCTCGGCCAGGCCACGGGACTGGATGAGGAGAAGCGA GCCCGGTGTGACGGAAAGGAGACCTGTTACAAGATCGCAGGCAAGAAGAAGACCAAAGGAGATTCGAGCCCCGG GGAGAGGAGCAAAGTGAGAAACAAGAGCGACTTGAACAGCGCGACAGGCAGCGCCGCGACGAGGAGCTGTGGCGG CAAAGGCAAGAATGGCAAGAACGGGAAGAGCGCCGTGCAGAGGAAGAGCAGCTGCAGAGTTGCAAAGGTCACGAA ACTGAGGAGTTTCCAGACGAAGAGCAACTGCGAAGGCGGGGGGGCTGCTGGAGCTGAGGAGGAAGGGCCGCGAGGAG AAACAGCAGCAAAGGCGAGAGCGGCAAGACAGAGTGTTCCAGGAGGAAGAAGAGAAAAGAGTGGAGGAAGCGCGAG ACAGTGCTCCGGAAGGAAGAAGAAGAGCGCGAACGTTGGCTGAAGCTCGAGGAGGAGGAGAGGCGCGAGCAGCAG GAGAGGCGCGAGCAACTAAGGCGGGAGCAAGAGGGAGAGGCGCGAGCAGCGGCTGAAGCGCCAGGAGGAGGAAA GAGAGGCTCCAGCAGCGGTTGAGGAGCGAGCAACAACTAAGACGCGAGCAGGAGGAGAGAGGCGCGAGCAGCTGCTG AAGCGCGAGGAGGAGAAGAGGCTCGAGCAGGAGAGGCGAGAGCAGCGCGTGAAGCGCGAGCAGGAGGAGAGGCGC CGACTGAAGCGCGAGGAGGTGGAGAGACTCGAGCAGGAGGAGGAGGGGCGCGAGCAGCGGCTGAAGCGCGAGGAGCCG GAGGAAGAGAGGCGCCAGCAGCTGCTGAAGAGCGAGGAGCAGGAGGAGGAGGCGCCAGCAGCAACTAAGGCGCGAG CAGCAGGAAAGGCGCGAGCAGCGGCTGAAGCGCGAGGAGGAGGAAGAGAGGCTCGAGCAGCGGCTGAAGCGCGAA CATGAGGAAGAGAGGCGCGAGCAGGAGCTAGCTGAGGAGGAGCAGGAACAGGCCCGGGAGCGGATTAAGAGCCGC GAGGAACGGGCTCACCGGCAGCAGCAGGAAGAGGAGCAGCGCCGGGACTTCACATGGCAGTGGCAGGCGGAGGAA AAGAGCGAGAGGGGCCGTCAGAGGCTGTCGGCCAGGCCCCCATTGCGGGAGCAGCGGGAGAGGCAGCTGAGGGCC GAGGAGCGCCAGCAGCGGGAACAACGGTTTCTCCCGGAGGAGGAGGAGGAGGAGCAGCGGCGCCGCCAGCGACGC GAGAGGGAGAAAGAGCTGCAGTTCCTGGAGGAAGAGGAGCAGCTCCAGCGGGGGAGCGTGCCCAACAGCTCCAG GAGGAGGAGGACGCCTCCAGGAGGATCAGGAGAGGAGGAGCCAAGGAGCAGCGCCGCGACCAAAAATGGAGG CAGGAGAGACAATACCGCGAGGAAGAGCAGCTGCAGCAGGAGGAAGAGCAGCTGCTGAGAGAGGAACGGGAGAAA GAGCAGCTGCTGAGAGAGGAACGGGAGAAGAGAGAGGCGCCAGGAGTGGGAGAGGCAGTACCGCAAAAAAGACGAG CTGCAGCAGGAAGAAGAGCAGCTGCTGAGAGAGGGAACGGGAGAAAAGAAGACTCCAGGAGCGGGAGAGGCAATAT CGGGAGGAAGAGGAGCTGCAGCAGGAGGAAGAGCAGCTGCTGGGAGAGGGAACGGGAGACGAGAAGGCGCCAGGAG AGAAGGCGCCAGGAGCGGGAGAGGCAATGCAGAGAGAATGAACAGTTCCGGCAGTTGGAAGATTCCCAGCTGCGC CGCTGGCAGCAGCGCGACAGGCATTTCCCAGAGGAAGAACAGCTGGAGCGAGAAGAGCAAAAAGGAAGCCAAAAGG GACAGAAAATTCCGCGAGGAGGAACAGCTGCTCCAGGAAAGGGAGGAACAGCCGCTGCGCCGCCAAGAGCGTGAC AGAAAATTCCGCGAAGAGGAACTGCGCCATCAGGAACAAGGGAGAAAATTCCTCGAGGAGGAACAGCGGCTGCGC CGCCAGGAACGGGAGAAAAATTCCTTAAGGAGGAACAGCAGCTGCGCTGCCAGGAGCGCGAGCAACAGCTGCGT CAGGACCGCGACAGAAAATTCCGCGAGGAGGAACAGCAGCTGAGCCGCCAAGAGCGTGACAGAAAATTCCGTGAA GAGGAACAGCAGGTGCGCCGCCAGGAACGAGAGAGAAAATTCCTGGAGGAGGAACAGCAGCTGCGCCAGGAGCGT CACAGAAAATTCCGCGAAGAGGGAACAGCTGCTCCAGGAAAGGGAAGAACAGCAGCTGCACCGCCAAGAGCGTGAC AGAAAATTCCTGGAGGAGGAACAACAGCTGCGCCGCCAAGAGCGTGACAGAAAATTCCGCGAACAGGAACTGCGC AGTCAGGAACCAGAGAGAAAATTCCTCGAGGAGGAACAGCAGCTGCACCGCCAGCAACGGCAGAAAAATTCCTC CAGGAGGAACAGCAGCTGCCCCCCCAGGAGCGCGGCGAACAGCGGCGTCAGGACCGTGACAGAAAATTCCGCGAG

PCT/IIS2003/028547

368/6881 FIGURE 338B

GAGGAACAGCTGCGCCAGGAGAGGGGAGGAACAGCAGCTGAGCCGCCAAGAGACGCGACAGAAAATTCCGTTTAGAG GAACAGAAAGTGCGCCGCCAGGAACAAGAGAGAAAATTCATGGAGGACGAACAGCAGCTGCGCCGCCAGGAGGGCGC CAACAACAGCTGCGCCAGGAGCGCGACAGAAAATTCCGCGAAGACAGCTGCTCCAGGAAAGGGAAGAACAG ${\tt CAGCTGCACCGCCAAGAGCGTGACAGAAAATTCCTCGAGGAGGAACCGCAGCTGCGCCGCCAGGAGCGCGAACAA}$ CAGCTGCGTCACGACCGCGACAGAAAATTCCGTGAAGAGGAACAGCTGCTCCAGGAAGGGGAGGAACAGCAGCTG CGCCGCCAAGAGCGTGACAGAAAATTCCGCGAAGAGGAACAGCAGCTCCGCCGTCAGGAACGAGAGAAAATTC CTCCAGGAGGAACAGCAGCTGCGCCGCCAGGAACTGGAGAGAAAATTCCGTGAGGAGGAACAGCTGCGCCAAGAA GAAGAACAGCAGCTGCGCCGCCAGGAGCGCGACAGAAAATTCCGCGAGGAGGAACAGCTCCGCCAGGAGAGGGAG GAACAGCAGCTGCGCAGCCAAGAGTCTGACAGAAAATTCCGCGAGGAGGAACAGCTACGCCAGGAGAGGGAAGAA CAGCAGCTGCGCCCCAACAGCGTGACGGAAAGTATCGCTGGGAAGAAGAGCAGCTCCAACTTGAGGAACAAGAG CAGAGGCTGCGGCAGGAGCGGCAGTACCGGGCGGAGGAGCAGTTTGCCACGCAGGAGAGAGTCGTCGT GAGGAACAAGAACTATGGCAAGAAGAAGAGGAGCAGAAACGTCGCCAGGAACGGGAAAGGAAATTACGGGAAGAACAC ATCCGCCGCCAGCAGAAGGAGGAACAGAGGCACCGCCAAGTCGGGGAGATAAAATCCCAAGAAGGGAAGGCCAT GGGCGCTTCTGGAGCCCGGCACTCATCAGTTTGCCAGTGTCCCAGTGCGCTCCAGCCCTCTCTATGAGTACATC CAAGAGCAGAGATCTCAATACCGCCCTTAA

PCT/HS2003/028547

369/6881 FIGURE 339

MSPLLRSICDITEIFNQYVSHDCDGAALTKKDLKNLLEREFGAVLRRPHDPKTVDLILELLDLDSNGRVDFNEFL LFIFKVAQACYYALGQATGLDEEKRARCDGKESLLQDRRQEEDQRRFEPRDROLEEEPGQRRROKROEQERELAE GEEQSEKQERLEQRDRQRRDEELWRQRQEWQEREERRAEEEQLQSCKGHETEEFPDEEQLRRRELLELRRKGREE KOOORRERODRYFOEEEEKEWRKRETYLRKEEEKRERWLKLEEEERREOOERREQQLRREQEERREQRLKROEEE ERLOORLRSEOOLRREQEERREOLLKREEEKRLEOERREQRLKREOEERRDOLLKREEERROORLKREOEERLEO RLKREEVERLEQEERREQRLKREEPEEERRQOLLKSEEQEERRQOOLRREQQERREORLKREEEEERLEORLKRE HEEERREQELAEEEQEQARERIKSRIPKWQWQLESEADARQSKVYSRPRKQEGQRRRQEQEEKRRRRESELQWQE EERAHRQQQEEEQRRDFTWQWQAEEKSERGRQRLSARPPLREQRERQLRAEERQQREQRFLPEEEEKEQRRRQRR EREKELOFLEEEEOLORRERAOOLQEEEDGLOEDQERRRSQEQRRDQKWRWQLEEERKRRRHTLYAKPALQEQLR KEQQLLQEEEEELQREEREKRRQEQERQYREEEQLQQEEEQLLREEREKRRQERERQYRKDKKLQQKEEOLLG EEPEKRRROEREKKYREEEELOQEEEOLLREEREKRRROEWEROYRKKDELOOEEEOLLREEREKRRLOEREROY REEEELQQEEEQLLGEERETRRQELERQYRKEEELQQEEEQLLREEPEKRRQERERQCRENEQFRQLEDSQLR $\tt DRQSQQDLQHLLGEQQERDREQERRRWQQRDRHFPEEEQLEREEOKEAKRRDRKSQEEKQLLREEREEKRRROET$ DRKFREEEOLLOEREEQPLRROERDRKFREEELRHOEOGRKFLEEEORLRROERERKFLKEEOOLRCQEREOOLR QDRDRKFREEEQQLSRQERDRKFREEEQQVRRQERERKFLEEEQQLRQERHRKFREEEQLLQEREEQQLHRQERD RKFLEEEQQLRRQERDRKFREQELRSQEPERKFLEEEQQLHRQQRQRKFLQEEQQLRRQERGQQRRQDRDRKFREEEQLRQEREEQQLSRQERDRKFRLEEQKVRRQEQERKFMEDEQQLRRQEGQQQLRQERDRKFREDEQLLQEREEQ OLHROERDRKFLEEEPQLRROEREQQLRHDRDRKFREEEQLLQEGEEQQLRRQERDRKFREEEQQLRRQERERKF LQEEQQLRRQELERKFREEEQLRQETEQEQLRRQERYRKILEEEQLRPEREEQQLRRQERDRKFREEEQLRQERE EOOLRSOESDRKFREEEOLROEREEQOLRPOORDGKYRWEEEQLQLEEQEQRLRQERDRQYRAEEQFATQEKSRR EEQELWQEEEQKRRQERERKLREEHIRRQQKEEQRHRQVGEIKSQEGKGHGRLLEPGTHQFASVPVRSSPLYEYI QEORSQYRP

PCT/US2003/028547

370/6881 FIGURE 340

PCT/US2003/028547

371/6881 FIGURE 341

MAKISSPTETERCIESLIAVFQKYAGKDGYNYTLSKTEFLSFMNTELAAFTKNQKDPGVLDRMMKKLDTNSDGQL DFSEFLNLIGGLAMACHDSFLKAVPSQKRT

PCT/HS2003/028547

372/6881 FIGURE 342

GACCTCCTAGGGCTAATCTGATAGTGCCTCTGAGGTCGATAGGACTCCACGTGCCACTCCCTGCAGGGTCATCCA GCAAGTAATTCCTAGACCCGTAGGTGGCCGCAGAGCCGGTTACCTCTGGTTCTGCGCCAGCGTGCCCCACCCGCA GGACGGCCGGGTTCTTTGATTTGTACACTTTCTAAAACCAAACCCGAGAGGAAGGGCAGGCTCAGGGTGGGGATG GCCTCTGCGAGGCGGGTCCGGGAGCGAGGGCAGGGCCTGGGCCGCGCCCCGGGGTCGGGGGAGTCGGGGGCAGG AAGAGGGGAGGAGACAGGGCTGGGGGAGCGCCCTGCCGAGCCCCGCCAGGCTCCTCCCGCTCCCGCCCCCCC TCGCCCAGCTCGCCCAGCGTCCGCCGCGCCCTCGGCCAAGGCTTCAACGGACCACACCAAAAATGCCATCTCAAATG GAACACGCCATGGAAACCATGATGTTTACATTTCACAAATTCGCTGGGGATAAAGGCTACTTAACAAAGGAGGAC CTGAGAGTACTCATGGAAAAGGAGTTCCCTGGATTTTTGGAAAAATCAAAAAGACCCTCTGGCTGTGGACAAAATA ATGAAGGACCTGGACCAGTGTAGAGATGGCAAAGTGGGCTTCCAGAGCTTCTTTTCCCTAATTGCGGGCCTCACC ATTGCATGCAATGACTATTTTGTAGTACACATGAAGCAGAAGGGGAAAGAAG<u>TAG</u>GCAGAAATGAGCAGTTCGCTC CTCCCTGATAAGAGTTGTCCCAAAGGGTCGCTTAAGGAATCTGCCCCACAGCTTCCCCCATAGAAGGATTTCATG

PCT/US2003/028547

373/6881 FIGURE 343

MPSQMEHAMETMMFTFHKFAGDKGYLTKEDLRVLMEKEFPGFLENQKDFLAVDKIMKDLDQCRDGKVGFQSFFSL IAGLTIACNDYFVVHMKQKGKK

PCT/US2003/028547

374/6881 FIGURE 344

CGGCTGAAGCGCCGCCGGCGGGGCTCACTGTGGTGGTGTGAGTGGGAGGCGGCGGCGGCTGGTGGCTGCAGCTGGG GTGAGGCGCGAGGCGCGCACTCGACGGCTGACTGGAGCAGCGGTAAAGGCGAGGATGGAGACCGAAGGATATAA GTCAAAGAGTACAGCAGAAAATGICTACTGAACGGACTTCTTGGACAAGCCTGTCCACCATTCAGAAAATAGCCC TGGGCCTTGGGATCCCAGCCAGTGCAACAGTTGCCTATATCCTATACCGCAGGTATAGGGAAAGCAGAGAAGAGC GGCTGACATTTGTTGGGGAAGATGACATTGAGATAGAGATGCGGGTTCCCCAGGAGGCTGTGAAACTCATCATTG GCGATGAGCGAGTGCTGCTTATCAGTGGTTTTCCTGTTCAGGTGTGCAAGGCCAAAGCAGCAATCCATCAGATCC TGACAGAGAATACCCCAGTGTCTGAGCAGCTTTCAGTTCCCCAGAGATCTGTGGGCAGAATCATAGGGAGAGGCG GCGAGACAATTCGTTCTATCTGTAAGGCATCTGGAGCCAAAATTACCTGTGACAAAGAATCAGAAGGGACATTAC TTTCAGAAGATGAAGAACTTCGGAAGAGAATTGCTCATTCTGCAGAAACCAGGGTCCCACGCAAACAGCCAATCA GTGTGAGAAGAGAAGACATGACAGAGCCAGGTGGAGCTGGAGAGCCAGCATTATGGAAAAACACCAGTTCTAGCA TGGAGCCGACTGCACCCCTGGTGACTCCTCCACCCAAAGGAGGAGGCGACATGGCTGTGGTAGTGTCAAAAGGAAG GTTCCTGGGAGAAACCTAGTGATGACAGCTTTCAGAAGTCTGAAGCCCAGGCCATCCCAGAGATGCCCATGTTTG AAATCCCCAGTCCTGACTTCAGTTTTCATGCTGATGAGTACCTAGAAGTCTACGTTTCTGCTTCTGAGCACCCTA ACCACTTCTGGATCCAGATCGTTGGCTCCCGCAGCCTGCAATTGGATAAGCTTGTCAATGAGATGACCCAGCACT ATGAGAATAGTGTGCCTGAAGACTTGACTGTGCATGTAGGAGACATTGTAGCAGCACCTTTACCTACAAATGGTT CCTGGTATCGAGCCCGGGTCCTCGGCACCTTGGAGAATGGGAACTTGGACCTCTATTTTGTTGACTTTGGAGATA ATGGAGATTGCCCACTGAAGGACCTCAGGGCTCTCAGGAGTGACTTCCTAAGCCTTCCATTTCAAGCAATAGAAT ATTGTGCTGACTGGAAGCCTCTGGTAGCCAAGATCTCTAGCTATGTCCAGACTGGGATCTCAACTTGGCCAAAGA TCTACTTATATGATACTAGCAATGGGAAGAAACTTGATATTGGGCTAGAATTAGTACACAAAGGATACGCAATTG AGCTTCCTGAAGACATAGAAGAAAACAGAGCTGTCCCAGACATGTTGAAGGACATGGCCACAGAAACAGATGCCT CTCTCAGCACGTTGCTCACTGAGACCAAAAAGAGCTCTGGAGAGATAACACATACCCTGTCCTGCCTCAGCTTAT TCAGCCATCTGCTTTGCTGTATGTTGCCTGCAATGAACTCGCTGAAGCATGCTCAGCCCTGGAACTGGTGCTACC AGAGTTCCGTAGGGAACCTTTACTCTTTAGAGGTTCCC<u>TGA</u>TATAAATCATTCATAAGACTTCCTACCCTGGAAA ATGAGTAATGTCTCATTCTTACCTGCAGTTTGTTACTATGTATAAAAGTCTTTTTCTTTAATATGCCTTTAAGTC TTACCTGTTTACAGCCCATTCTGATGGGTTCTTTGTCATTCTGTTAGTATAACCCAGTACTTTTCCTGCTGCCTG GAATGCCCTCTTCTATGTTACCTATTCTGTCCGTTGAGATGCCCCAACTTGGGCCAAAGCCAAGAGATCTATGTG AAAAAA

PCT/US2003/028547

375/6881 FIGURE 345

MSTERTSWTSLSTIQKIALGLGIPASATVAYILYRRYRESREERLTFVGEDDIEIEMRVPQEAVKLIIGRQGANI KOLRKQTGARIDVDTEDVGDERVLLISGFPVQUCKAKAAIHGILTENTFVSEQLSVPQRSVGRIIGRGGETIRSI CKAASGAKITCDKESEGTLLLSRLIKISGTOXEVAARAHLILEKVSEDBELRKRIAHSAETRVPRKQFISVRREDM TEPGGAGEPALWKNTSSSMEPTAPLVTPPPKGGGDMAVVVSKEGSWEKPSDDSFQKSEAQAIPEMPMFEIPSPDFSFHADBYLEVYVSASEHPNHFWIQIVGSRSLQLDKLVNEMTGHYSNSVPEDLTVHVGDIVAAPLFTMGSWYRARV LGTLERMGNDLYFVDFGONGCDCLKDLFARLRSDFLSLFPÇAIFCSLARIAPSGGQWEEFALDEFPRLTHCADWKPLVAKISSYVQTGISTWPKIYLYDTSNGKKLDIGLELVHKGYAIELPEDIEENRAVPDMLKDMATETDASLSTLLTETKKSSGEITHTLSCLSLSEAASMSGDDNLEDDYLLGSLGFSLLSHLLCCMLPAMNSLKHAQPWNWCYQSSVGNLYSLEVP

PCT/US2003/028547

376/6881 FIGURE 346

TITITICTGCTACCGTGACTAAGATGGAAGCGTTTTTGGGGTCGGGTCCGGACTTTGGGCGGGGGTCCGGCCC
CAGGACAGTTTTACCGCATTCCGTCACTCCCGATTCCTTCATGGATCCGGGGTCTGCACTTTACAGAGGTCCACA
TCACGCGGACCCAGAACCCCATGGCTGCACCCCGGATCCTCGGCGTTAAGTTCGAGGGCCGAGTGGTGATTG
CCCCAGACATGCTGGGGTCCTTCGGCGGCTCTTCCGCCACACATCTCTCGCATTATGCGAGTCAACAACA
GTACCATGCTGGGTGCTCTGGCGACTACGCTGATTTCCAGTATTTGAAGCAAGTTCTCGGCCAGATGGTGATTT
ATGAGGAGCTTCTGGGGAATGGAACAACGTTATGCTCTAGAGCTATTCATCATGGCTGAACATGGGCCATTATAC
GCCGGCGCTCGAAGATGAACCCTTTGTGGAACACCATGGTCATTCGAGGCCACTTGGTTATGAGAAGCTTCCTCG
GTTATGTGGACATGCTTGGTGTAGCCCATTCCATGACCACGCCCCGCACTTGGTTATGATCACCCCTCTCCTGCCCGAAAAAGTTCTCGAGAAACCCCTTTCTACAACCCGCTTCTAAACCCCCCCGCACTTGATACACCGCTTCTACAACCGCTTCTAAACCCATGTACAACCGCACTTGTTACACCGGATTATCACCAAAAAAGTTGTTGAAACACACTTGTTAAACCACAACACGCATTGCTTAAACACAACACACTTGCTTCAAACACAAAAAAATAATCTTCAAAACTAAATTAAAATAAAATAAATTCTCAAAAATAA

PCT/US2003/028547

377/6881 FIGURE 347

MEAFLGSRSGLWAGGPAPGQFYRIPSTPDSFMDPASALYRGPITRTQNPMVTGTSVLGVKFEGGVVIAADMLGSY GSLAKFRNISRIHKVNNSTMLGASGDYADFQYLKQVLGQMVIDEELLGDGHSYSPRAIHSWLTRAMYSRRSKMNP LWNTMVIGGYADGESFLGYVDMLGVAYEAPSLATGYGAYLAQPLLREVLEKQPVLSQTEARDLVERCMRVLYYRD ARSYNRFQTATVTEKGVEIEGPLSTEINMDIAHMISGFE

PCT/IIS2003/028547

378/6881 FIGURE 348

GCACTATGGTGTGTGTGGACAACAGTGAGTATATGCGGAATGGAGACTTCTTACCCACCAGGCTGCAGGCCCAGC AGGATGCTGTCAACATAGTTTGTCATTCAAAGACCCGCAGCAACCCTGAGAACAACGTGGGCCTTATCACACTGG CTAATGACTGTGAAGTGCTGACCACACTCACCCCAGACACTGGCCGTATCCTGTCCAAGCTACATACTGTCCAAC CCAAGGGCAAGATCACCTTCTGCACGGGCATCCGCGTGGCCCATCTGGCTCTGAAGCACCGACAAGGCAAGAATC ACAAGATGCGCATCATTGCCTTTGTGGGAAGCCCAGTGGAGGACAATGAGAAGGATCTGGTGAAACTGGCTAAAC GCCTCAAGAAGGAGAAAGTAAATGTTGACATTATCAATTTTGGGGAAGAGGGGGGGAACACAGAAAAGCTGACAG CCTTTGTAAACACGTTGAATGGCAAAGATGGAACCGGTTCTCATCTGGTGACAGTGCCTCCTGGGCCCAGTTTGG CTGATGCTCTCATCAGTTCTCCGATTTTGGCTGGTGAAGGTGGTGCCATGCTGGGTCTTGGTGCCAGTGACTTTG AATTTGGAGTAGATCCCAGTGCTGATCCTGAGCTGGCCTTGGCCCTTCGTGTATCTATGGAAGAGCAGCGGCAGC GGCAGGAGGAGGAGGCCCGGCGGGCAGCTGCAGCTTCTGCTGCTGAGGCCGGGATTGCTACGACTGGGACTGAAG ACTCAGACGATGCCCTGCTGAAGATGACCATCAGCCAGCAAGAGTTTGGCCGCACTGGGCTTCCTGACCTAAGCA GTATGACTGAGGAAGAGCAGATTGCTTATGCCATGCAGATGTCCCTGCAGGGAGCAGAGTTTGGCCAGGCGAAT CAGCAGACATTGATGCCAGCTCAGCTATGGACACATCTGAGCCCAAGGAGGAGGATGATTACGACGTGATGC AGGACCCCGAGTTCCTTCAGAGTGTCCTAGAGAACCTCCCAGGTGTGGATCCCAACAATGAAGCCATTCGAAATG GGAGGGAAAGGGTAGCTGAGTCTGCTTAGGGGACTGCATGGGAAGCACGGAATATAGGGTTAGATGTGTTTATC TGTAACCATTACAGCCTAAATAAAGCTTGGCAACTTTT

PCT/US2003/028547

379/6881 FIGURE 349

MVLESTMVCVDNSEYMRNGDFLPTRLQAQQDAVNIVCHSKTRSNPENNVGLITLANDCEVLTTLIPDTGRILSKL
HTVQPKGKITFCTGIRVÄHLALKHRQGKNIKMRIIAFVGSFVEDNEKDLVKLAKRLKKEKVNVDIINFGEEEVNT
EKLTAFVNILNGKDGTGSHLVTVPG PESLADALISSPILAGEGGAMLGLGASDFEFGVDFSADPELALALKVSME
EQRQVEEEARRAAASAAEAGIATTGTEDSDDALLKMTISQQEFGRTGLPDLSSMTEEEQIAYAMQMSLQGAFF
GQAESADIDASSAMDTSEPAKEEDDYDVMQDPEFLQSVLENLPGVDPNNEAIRNAMGSLASQATKDGKKDKKEED
KK

PCT/US2003/028547

380/6881 FIGURE 350

CTGGTGAGGGGCTGCAGGTGGCGGCGCAGTCTCGGTAGGCGGTATGAGTTTGGCTGGGGGCCGGGCACCCCGGAA CAAGGCCTATAAGGAACCTCTCAAGAGCTTAAGGCCTCGAAAGGTCAACACCCCGGCTGGTAGCTCTCAGAAGGC GCGA GA GA GA GGCA CTACTGCCATTA GA ACTA CAA GA TGA CGCTCTGACAGTCGGAAGTCTATGCGTCAGTC CCACTGTGAGCGGCCACTAACCCAGGAGGAACTGCTCCGGGAGGCCAAGATCACAGAAGAGCTTAATTTACGGTC ACTGGAGACATATGAGCGGCTCGAGGCTGATAAAAAGAAGCAGGTTCATAAGAAGCGGAAGTGCCCCGGGCCCAT A A TCA CCTA TCA TTCA GTGA CA GTGCCA CTTGTTGGGGA GCCA GGCCCCA AGGA AGAGA ACGTTGA CA TAGA AGG ACTTGATCCTGCTCCCTCGGTGTCTGCATTGACTCCTCATGCTGGGACTGGACCCGTCAACCCCCTGCTCGCTG CTCACGTACCTTCATCACTTTTAGTGATGCAACTTTCGAGGAATGGTTCCCCCAAGGGCGCCCCCAAAAGT CCCTGTTCGTGAGGTCTGTCCAGTGACCCATCGTCCAGCCCTATACCGGGACCCTGTTACAGACATACCCTATGC CACTGCTCGAGCCTTCAAGATCATTCGTGAGGCTTACAAGAAGTACATTACTGCCCATGGACTGCCCCCCACTGC TGTCATTAAATGAAGAGATGTCTAGTCCTCAGAAACTTCTTTCCTGCCCTGATTGGGGCTCTTGCTGTTCCGTTT CTTCTCCCTGCTTCTCCCCCTTTGTCATCTCTGATCTTTGCCTAATCTGTTTCCTTTTTCCTTTTTCCCCTAGTTCTT ACAGGTTTCGTTGTGTTTTTTAATCTAATAAAATAGAAAGATCCCTTTT

PCT/IIS2003/028547

381/6881 FIGURE 351

MSLAGGRAPRKTAGNRLSGLLEAEEEDEFYQTTYGGFTEESGDDEYQGDQSDTEDEVDSDFDIDEGDEPSSDGEA
EEPRRKRRVVTKAYKEPLKSLEPRKVNTPAGSSQKAREEKALLPLELQDDGSDSRKSMRQSTAEHTRQTFLRVQE
RQGQGRRKKGHCERPLTQEELLREAKITEELNLRSLETYERLEADKKKQVHKKRKCPGFIITYHSVTVPLVGEP
GPKEENVDIEGLDPAPSVSALTPHAGTGPVNPPARCSRTFITFSDDATFEEWFPQGRPPKVPVREVCPVTHRPAL
YRDPYTDIPYATARAFKIIREAYKKYITAHGLPPTASALGFGPPPPEPLPGSGFRALRQKIVIK

PCT/US2003/028547

382/6881 FIGURE 352

CCTGGCTTTGTGCATTGGGTTCTGGTGCCTGATGGACACATTTTTCCAGTTACAGGCCGAATGGTCTCAATGTAG $\tt CTGAAGAACTGTGCCCACTGATCAGTATTACGTATTGCAAATGCAGAGGTGGCTGTATCTGACAGACCCAGGCC$ GTCCCTCATAGCTTCCTAGAAAGAAACCACTTGTCAGTCTTCATGCTACAGCAACTTCTTTGTGGCCCATGGCCT TTCCTTGCTTAGATACTCCACATACTGTTCTCCCCGCAGGGGCGGCGCCCTTGAGGGGCTGCAGAGGCACCCTCC CACGTCCCGCGCAGTGCAGTGCCTCCGCAGTCCAGAGGGGAGCAGTGCGCCGGGCTCCGAGCCGGACGGGTTTCG TAATCGCGTCGCCGCCGCTTCCGCCCTCAGCCGGCCCCACCTCTGCCGGCTCGTACTCGGCTCCCCCACCTCGCC GCAGAGCTAGCCCGGGAAGCCCACACTGGCGGCCACGGAGCAGAGTCCCTCACCCCCACCAGCTGTAGCTGAACG CGGAGACACACCGGATGCGGGTGTGGGGGAGGCGGGTGTCCTGGGCTGCAGAGATGCTGGGGTGGTGGGAAAGG GGTGCGCCCCGGGGTGGCCGTAGTCATCCACGCTCCTGGGGTGCGCAGGCTGAGGCCGCTGAAGAGTAGAAGGA AAAGAAGGAACTGGAATGTTGGGGGAGGTGGGAGGGAGAGGGTCCGAAAGATTCCCAGAGAGGTCCCAGTCCGGT TAAGGGTTGAGAACAGCAGAGAACTTCTAGGTAGAGTTGTGTAGTGGGGGGAGACAGATACGGAATCTGTGTGAT TGAATATATTTGGGGAGGGGAGGCTTAGGGCCTAGCCCTCTTTCCTCTTAAGCCCCCAGAAGACCTTTCCTGGGG AAGGGAAGGTTGGTGTTGGGCCTGTCACTTGGCTGAAATATGGAGTCCACACCGCTTCTCCAGAGTCCCTCAGCA GCCCTCCATGTCTCGGGGTCTCCACACAGGGACCAGCTGCTGCCCCGGGCTTCTAGCCAGAATTGCCCATGCCAT TCTCTCGATTCTTTCTTCTCCCAGCTGCTTCATGTGAGGGCTTGTCAGGCCGCGGGTTGGAGGCCTTAGGGCC TGGCACCTCTTTCCCATCCCTTCTGCTCACCTCCCAACAGCTCTGAGACCCTCAAGTCCTAGTATGATCTTGGTG GGGGCGGGGGTGGCTTTCCCGGTTCCATATTTCACTCTTGCCATTTGGAACTCAGAGAGGTCGAGTTCTGAGCA CCACTTGGCTCTCAGGACGTGGCCTTATGAGGTCTAATCCTCATCCCTCCTGTTGTTTTCTCAGCCCCTTCCCTA TTCACTGTGGGGTTGGATTCGGGTGGCTCTTCCGCCTGGGCTGACCAGCTCAGGACTTCATTTTTCCTCAACCCA CTCTCTTCTGGCTGCTTTAAAGAAGAGTGGCCGCCAGTGGCTCTTACTTCCTTTTCTGGCTTTGTTCCCATCCCC CACTGCCCTGCGCTACCATCACATTCACCCTGACCTGTCTTCTTCACACTCTGACCCCACCCTCAAGTTTCAGAG ACCCTAATGTCCTAGGGAATGGAATTTCCTGGTCACTTCTCGTCATCATTGGTCATTTCATGCCAAGTCCCACAC ACACGCTTTCCCTCCACCCAGCTCTGGTCAGGTCCCTGGAAAAGAAACAGAAATGGCCTTGTTCTCTCCACTGCC CCCACTGACCACAGCTCCCCTCTCTGGACAGCGTGTTTTAGCTTCCGCTCCTTCTGGTTACTCCTCCCTTCCAGT GGTGAGAAGAGAAGAGAAAGCCCAGCCTCCTGGGTTCTCCCCTCCCCTAGAAGCTACATTTGAGTGTTTGTGTGA TCTCATCTCAAGGCTGTT

PCT/IIS2003/028547

383/6881 FIGURE 353

AGTCAGCAGGGGGTGCTGGAAGAGATCGGGAATAATAGCGCAGACCAATGAGCCTAGGGAGATGCTTTCATCGT CCGCCCTTCTTAGGAGGGGCTGCATTGCAGGGGGAGAGTGAACTGACAGACTCACTGAAGAGGGAAAAAGGA GTGAGAAGACAAAGCCGTCAAAGCCCCAACAGCTTTGTATTTCTCCAGCCCGGCGCAGACCCCGGAGCTCCCGAG GTACAGTTCCTTTCTTGCAGGATGCCCATCCCAGAACTGGATCTGTCGGAGCTGGAAGGCCTGGGTCTGTC GAAAAACCCTGAAGGTGATGGCCTCCTTGAGTACAGCACCTTCAACTTCTGGAGAGCTCCCATTGCCAGCATCCA AGCCCCTTCCTTTCCACTCCTTTCCCATTTTAATCTTGTTCTCCCCTACTGTTGTTGGTGGTGCTGATGAATCTG CCAGAGTTGAGTTCTATGTATTTATTTATCTATCTGTCTACTCCATTTCTCTCAAAAGCCCTCAAGTCACAAAGT AAATGGTTCAAGCAATGGAGTACTGGGTCACAGGGATTCCTCCTTTCCCCCCCAAATATTAACTCCAGAAACTAG GCCTGACTGGGGACACCTGAGAGTAGTAGTAGTGCAAAATGGAAGACTGATTTTTGACTCTATTATAATCAGC TTCAGAGATTCCTTAAACCTTCCTAATTTCCTGCTCCAGGGCAGTAAACACAAATATTTCTTCAAGGGGTGATGA AAACCTCGGAAGTTTTAATTTGAGGTTATCTGCTACGAAACAGTATTTCTAAAAAGGCTAAAGTGATAAGTCTCTT GCTTTTTTTGATCCTGCTCTTATATTCTTTTTTTCCTCAGAGAAATCAGGAGGGTAGTTAGAGGTATAAAACA GGAGGAAATATTATGGAAAATGAAAATAGGGAAAATAATTGAATCATTTTAGAAGTAGCTAATTTCTTTTCTCAA AAGAGTGTCCCTTCTCACACCTACTCACTTTACAACTTTGCTCCTAACTGTGGGTTGAAAACTCTAGCTAAAGA AAGTTATCAAATCTTAACATGCATTCCTACTATTATGATAGTTTTTAAGGTTTCAATTCAATCTTCTGAACGGCA TAAGTCCTATTTTAGCCTTACCTCCTGCATTTGCAATACGTAATACTGATCAGTGGGCACAGTTCTTCAGCTACA TTGAGACCCTGAAATGAACAATTATATTCTGACTCGACATCTTGTCCCCAATCCTTCCAAAAAATATTGATGGTGA TTTGTGCTACCATTTACTCGTTTATTTAATAAAGACATTCAATCCC

PCT/IIS2003/028547

384/6881 FIGURE 354

GGGGGGGGGCGACGCCGGACTCCGGAGCGCCCGCTTACGCAGTTCCTCCCGGGGTCGGAGGCCGATTCGCCGTG TGGCGGGTTCGAGTCCCGCCTCCTGACTCTGGCCTCTAGTCCCTGAGTCCCGGGCGGCTGCATTCGTCGGGGAA ACCTCTCCTCGACCAGGGGCACCTCTACTCGACCAGGGGCGACGGCGTACTTTGGGCTTCATCATGGAGGACTAC CTGCAGGGTTGTCGAGCTGCTCTGCAGGAGTCCCGACCTCTACATGTTGTGCTGGGAAATGAAGCCTGTGATTTG GACTCCACAGTGTCTGCTCTTGCCCTGGCTTTTTACCTAGCAAAGACAACTGAGGCTGAGGAAGTCTTTGTGCCA GTTTTAAATATAAAACGTTCTGAACTACCTCTGCGAGGTGACATTGTCTTCTTCTTCAGAAGGTTCATATTCCA GAGAGTATCTTGATTTTTCGGGATGAGATTGACCTCCATGCATTATACCAGGCTGGCCAACTCACCCTCATCCTT ATCGAGCCGAAACACTGCCCTCCCTGCCATGTTTCAGTTGAGCTGGTGGGGTCCTGTGCTACCCTGGTGACCGAG AGAATCCTGCAGGGGGCACCAGAGATCTTGGACAGGCAAACTGCAGCCCTTCTGCATGGAACCATCATCCTGGAC TGTGTCAACATGGACCTTAAAATTGGAAAGGCAACCCCAAAGGACAGCAAATATGTGGAGAAACTAGAGGCCCTT TTCCCAGACCTACCCAAGAGAAATGATATATTTGATTCCCTACAAAAGGCAAAGTTTGATGTATCAGGACTGACC ACTGAGCAGATGCTGAGAAAAGACCAGAAGACTATCTATAGACAAGGCGTCAAGGTGGCCATTAGTGCAATATAT ATGGATTTGGAGGCCTTTCTGCAGAGGTCTAACCTCCTTGCAGATCTCCATGCTTTCTGCCAGGCTCACAGCTAT GATGTCCTGGTTGCCATGACTATCTTTTCAACACTCACAATGAGCCAGTGCGGCAGTTGGCTATTTTCTGTCCC CATGTGGCACTCCAAACAACGATCTGTGAAGTCCTGGAACGCTCCCACTCTCCACCCCTGAAGCTGACCCCTGCC TCAAGTACCCACCCTAACCTCCATGCCTATCTTCAAGGCAACACCCAGGTCTCTCGAAAGAACTTCTGCCCCTG CTCCAGGAAGCCCTGTCAGCATATTTTGACTCCATGAAGATCCCTTCAGGACAGCCTGAGACAGCAGATGTGTCC AGGGAGCAAGTGGACAAGGAATTGGACAGGGCAAGTAACTCCCTGATTTCTGGCCTGAGTCAAGATGAGGAGGAC CCTCCGCTGCCCCCGACGCCCATGAACAGCTTGGTGGATGAGTGCCCTCTAGATCAGGGGCTGCCTAAACTCTCT GCTGAGGCCGTCTTCGAGAAGTGCAGTCAGATCTCACTGTCACAGTCTACCACAGCCTCCCTGTCCAAGAAGTGA

CTGTTGAGAGGCGAGGAGGTAGTGGGTGAGGCTACCTGACTCACTTCAAATGCATGTTTTGAGATGTTTTGGAGAT GAAAGCAGCTGCTTTAAGAATGGTTTTCCACCTTTTCCCCCTAATCTCTACCAATCAGACACATTTTATTATTA AATCTGCACCTCTCTATTTTATTTGCCAGGGGCACGATGTGACATATCTGCAGTCCCAGCACAGTGGGACAAA AAGAATTTAGACCCCAAAAGTGTCCTCGGCATGGATCTTGAACAGAACCAGTATCTGTCATGGAACTGAACATTC GAAAAGAGAGTGCGCTTTGGAAATTTATTCCAGTTTTCAGCCTACAGCAGATTATCAGCTCGGTGACTTTTCTTT CTGCCACCATTTAGGTGATGGTGTTTGATTCAGAGATGGCTGAATTTCTATTCTTAGCTTATTGTGACTGTTTCA GATCTAGTTTGGGAACAGATTAGAGGCCATTGTCTTCTGTCCTGATCAGGTGGCCTGGCTGTTTCTTTGGATCCC TCTGTCCCAGAGCCACCCAGAACCCTGACTCTTGAGAATCAAGAAAACACCCAGAAAGGCCTTAATGACCTCATA TTCTTGTCAATCTCTTTTTTTCCTTGCTCACATTAAAAGGAAGCATGGAGTTCTAATGCTCCCATAAACTATGTA TTTTGGCAAGACACTTCACTACTCCAGGTCTCACTTTCCCCATCTGTAAAACAGGGTTTGGACTAGGTGTTCCCT GGGGTGCTCAGGTTCACTTGATTGTCTGTATTTCTGTGTGGTTGTAGCAAGGACTCAGCCTCATGTAGCACGAAT CCCATTTTTTTTAACGCAACCCTTTCCCCTTTTTCCTACCCCACAGCTCTGTTCCATGTAAGTTGCCAACAGTTT CACTGAACAGTGGGGTATGTGATGGTTTTGGCATGACATCTTCAGTATGAGGGGGGACAGTTTGACTTCACTTTGA GGGTGTGATGTCTGTAGCTATGTGGAAGGTAAAAATAGTGGTGTGATCATGAACCAAAGGAATTTATGTTTTGTA ACTTGGGTACTTTATTTTGCATTTTGTTATACTATTAAATAATTTTTTCCTGTT

٦

PCT/US2003/028547

385/6881 FIGURE 355

MEDYLQGCRAALQESRPLHVVLGNEACDLDSTVSALALAFYLAKTTEAEEVFVPVLNIKRSELPLRGDIVFFLQK
VHIPESILIFROEIDLHALYQAGQLTLILVDHHILSKSDTALEEAVAEVLDHRFIEPKHCPPCHVSVELVGSCAT
LVTERILQGAPEILDRQTAALLHGTIILDCVNMDLKIGKATPKDSKYVEKLEALFPDLPKRNDIFDSLQKAKFDV
SGLTTEQMLRKDQKTIYRQGVKVAISAIYMDLEAFLQRSNLLADLHAPCQAHSYDVLVAMTIFFNTHMEPVRQLA
IFCPHVALQTTICEVLERSHSPPLKLTPASSTHPNLHAYLQGNTQVSRKKLLPLLQEALSAYFDSMKIPSGQPET
ADVSREQVDKELDRASNSLISGLSQDEEDPPLPPTPMNSLVDECPLDQGLPKLSAEAVFEKCSQISLSQSTTASL

PCT/IIS2003/028547

386/6881 FIGURE 356

GAAACAAGCACTGGATTCCATATCCCACTGCCAAAACCGCATGGTTCAGATTATCGCTATTGCAGCTTTCATCAT AATACACACCTTTGCTGCCGAAACGAAGCCAGACAACAGATTTCCATCAGCAGGATGTGGGGGGCTCAAGGTTCTG CACAGGAAGCAATATAACAACAAGGTGGATGAAATCTCTCGGCGTTTAATTTGGGAAAAAAACCTGAAGTATATT AGTGAAGAGGTGGTTCAGAAGATGACTGGACTCAAAGTACCCCTGTCTCATTCCCGCAGTAATGACACCCTTTAT ${\tt CAGGGTCAGTGTGGTTCCTGTTGGGCTTTTAGCTCTGTGGGTGCCCTGGAGGGCCAACTCAAGAAGAAAACTGGC}$ ACCANTGCCTTCCAATATGTGCAGAAGAACCGGGGTATTGACTCTGAAGATGCCTACCCATATGTGGGACAGGAA GAGAGTTGTATGTACAACCCAACAGGCAAGGCAGCTAAATGCAGAGGGTACAGAGAGATCCCCGAGGGGAATGAG AAAGCCCTGAAGAGGGCAGTGGCCCGAGTGGGACCTGTCTCTGTGGCCATTGATGCAAGCCTGACCTCCTTCCAG TTTTACAGCAAAGGTGTGTATTATGATGAAAGCTGCAATAGCGATAATCTGAACCATGCGGTTTTGGCAGTGGGA TATGGAATCCAGAAGGGAAACAAGCACTGGATAATTAAAAACAGCTGGGGAGAAAACTGGGGAAACAAAGGATAT ATCCTCATGGCTCGAAATAAGAACAACGCCTGTGGCATTGCCAACCTGGCCAGCTTCCCCAAGATGTGACTCCAG CCAGCCAAATCCATCCTGCTCTTCCATTTCTTCCACGATGGTGCAGTGTAACGATGCACTTTGGAAGGGAGTTGG TGTGCTATTTTTGAAGCAGATGTGGTGATACTGAGATTGTCTGTTCAGTTTCCCCATTTGTTTTGTGCTTCAAATG ATCCTTCCTACTTTGCTTCTCCCACCCATGACCTTTTTCACTGTGGCCATCAGGACTTTCCCTGACAGCTGTGT ACTCTTAGGCTAAGAGATGTGACTACAGCCTGCCCCTGACTGTTGTTCCCAGGGCTGATGCTGTACAGGTACAG GCTGGAGATTTTCACATAGGTTAGATTCTCATTCACGGGACTAGTTAGCTTTAAGCACCCTAGAGGACTAGGGTA ATCTGACTTCTCACTTCCTAAGTTCCCTTCTATATCCTCAAGGTAGAAATGTCTATGTTTTCTACTCCAATTCAT AAATCTATTCATAAGTCTTTGGTACAAGTTTACATGATAAAAAGAAATGTGATTTGTCTTCCCTTCTTTGCACTT TTGAAATAAAGTATTTATC

PCT/IIS2003/028547

387/6881 FIGURE 357

MWGLKYLLLPVVSFALYPEEILDTHWELWKKTHRKQYNNKVDEISRRLIWEKNLKYISIHNLEASLGVHTYELAM NHLGDMTSEEVVQKMTGLKVPLSHSRSNDTLYIPEWEGRAPDSVDYRKKGYVTPVKNQGQCGSCWAFFSVGALEG QLKKKTGKLLNLSPQNLVDCVSENDGCGGGYMTNAFQVVQKNRGIDSEDAYPYVGQEESCMYNPTGKAAKCRGYR EIPEGNEKALKRAVARVGPVSVAIDASLTSFQFYSKGVYYDESCNSDNLNHAVLAVGYGIQKGNKHWIIKNSWGE NWGNKGYIIMARNKNNACGIANLASFFKM

PCT/US2003/028547

388/6881 FIGURE 358

GGCACGAGGAAGGAACATGGCCCTGTATCAGAGGTGGCGGTGTCTCCGGCTCCAAGGTTTACAGGCTTGCAGGCT TCAGGTAAAGAGATTAGCAAGCATGGCACAGAAGGAACCCCGGACTATTAAGATATCACTTCCTGGAGGCCAGAA AATTGATGCTGTGGCATGGAACACACCCCCTACCAACTAGCCCGGCAGATCAGTTCAACACTGGCAGATACTGC AGTGGCTGCTCAAGTGAATGGAGAACCTTATGATCTGGAGCGGCCCTTGGAGACAGATTCTGACCTCAGATTTCT GACATTCGATTCCCCAGAGGGGAAAGCAGTGTTCTGGCACTCCAGCACCCATGTCCTGGGGGCAGCAGCTGAACA ATTCCTAGGTGCTGTTCTCTGCAGAGGTCCAAGTACAGAATATGGCTTTTACCATGATTTCTTCCTGGGAAAGGA GAGGACAATCCGGGGCTCAGAGCTGCCTGTTTTGGAGCGGATTTGCCAGGAACTTACAGCTGCTGCTCCACCCTT GGAGAAAGTGACAGGTCCAACAGCAACAGTATATGGGTGTGGCACATTGGTTGACCTTTGCCAGGGCCCCCACCT TCGGCATACTGGACAGATTGGAGGACTGAAGCTGCTATCGAACTCATCCTTATGGAGGTCTTCAGGGGCCCC AGAGACACTGCAGAGAGTGTCAGGGATTTCCTTCCCCACAACAGAATTGCTGAGGGTCTGGGAAGCATGGAGGGA GAGCTGCTTCTTCCTGCCACGAGGGACAAGGGTGTATAATGCACTAGTGGCGTTTATCAGGGCTGAGTATGCCCA TCGTGGTTTCTCCGAGGTGAAAACTCCCACACTGTTTTCTACGAAGCTCTGGGAACAGTCAGGGCACTGGGAGCA TTATCAGGAAGACATGTTTGCCGTGCAGCCCCCAGGCTCTGACAGGCCTCCCAGCTCCCAGAGTGACGATTCTAC CAGATCCTGGCGGAACTGCCCCTGCGACTAGCTGACTTTGGGGCTCTACACCGGGCCGAAGCCTCTGGTGGTCT ${\tt GGGGGGACTGACCCGACTGCGGTGCTTCCAGCAGGATGACGCTCACATCTTCTGTACAACAGATCAGCTGGAAGC}$ AGAGATCCAAAGCTGTCTTGATTTCCTCCGTTCCGTCTATGCCGTTCTTGGCTTCTCCTTCCGCCTGGCACTGTC GGAATTTGGAGAACCCTGGGACCTCAACTCTGGAGATGGTGCCTTCTATGGACCTAAGATTGACGTGCACCTCCA GTATAAGGGGCAGGCGGGTGCCCTGGAGCGTCCAGTCCTCATTCACCGAGCAGTGCTCGGTTCTGTGGAAAGACT GTTGGGAGTGCTGGCAGAAAGCTGCGGGGGGAAATGGCCACTGTGGCTGTCCCCGTTCCAGGTGGTGGTCATCCC TGTGGGGAGTGAGCAAGAGGAATACGCCAAAGAGGCACAGCAGAGCCTGCGGGCTGCAGGACTGGTCAGTGACCT GGATGCAGACTCTGGACTGACCCTCAGCCGGAGAATCCGCCGGGCCCAGCTTGCCCACTACAATTTTCAGTTTGT GGTTGGCCAGAAAGAGCAAAGTAAGAGAACAGTGAACATTCGGACTCGAGATAATCGTCGCCTTGGGGAGTGGGA CTTGCCTGAGGCTGTGCAGCGACTGGTGGAGCTACAGAACACGAGGGTCCCAAATGCCGAAGAAATTTTC<u>TGA</u>GC AATGTGGAGCCCCCAGAACTTCAGAACTGTGTGGAGGCACATGTCTGCTCTCCTGAAAAGAGACTTGGTTTGGGG

PCT/IIS2003/028547

389/6881 FIGURE 359

MALYQRWRCLRLQGLQACRLHTAVVSTPPRWLAERLGLFEELWAAQVKRLASMAQKEPRTIKISLFGGQKIDAVA
WNTTFYQLARQISSTLADTAVAAQVNGEPYDLERPLETDSDLRFLIFDSPEKAVFWHSSTHVLGAAAEGFLGAV
LCRGPSTEYGFYHDFFLGERFIRGSSLEPVLERICQELTAARPFFRAKEASRQDLQACLFKDNFFKLHLIEEKVTG
PTATVYGCGILVDLCQGPHLRHTGQIGGLKLLSNSSSLWRSSGAPETLQRVSGISFPTTELLRVWEAWREEAELR
DHRRIGKEQELFFFHELSPGSCFFLPRGTRVYMALVAFIRAEVAHRGFSEVKTFTLFSTKLWEQSGKWEHYQEG
FAVQPPGSDRPPSSQSDDSTRHITDTLALKPMNCPAHCLMFAHRPGSEVKTFTLFSTKLWEQSGKWEHYQEG
LRCFQQDDAHTFCTTDQLEAEIQSCLDFLRSVYAVLGFSFRLALSTRPSGFLGDPCLWDQAEQVLKQALKEFGEP
WDLNSGDGAFYGPKIDVHLHDALGRPHQCGTIQLDFQLPLFFDLQYKGQAGALERPVLIHRAVLGSVERLLGVLA
ESCGGKWPLWLSPFQVVVIPYGSEQEEYAKEAQQSLRAAGLVSDLDADSGLTLSRRIRRAQLAHYNFQFVVGGKE
QSKRTVNIRTRDNRRLGEWDLEEAVQRLVELQNTRVPWAEEIF

PCT/IIS2003/028547

390/6881 FIGURE 360

PCT/IIS2003/028547

391/6881 FIGURE 361

PCT/US2003/028547

392/6881 FIGURE 362

 $\verb|msiqqokopctpppolqqqovkopcopppoepcipktkepchpkvpepchpkvpepcqpkvpepchpkvpepcps| \\ \verb|ivipapaqoktkopk| \\ |vipapaqoktkopk| \\ |vip$

PCT/IIS2003/028547

393/6881 FIGURE 363

ATGGTTCCCAGGGAGAGAGCTGCTGCTCTTTCTTCCGAAGCTCTGGGAGCTGGCACAGCTGAGGACTTCCTTTTC TTAGCTCCACCTGGACAGTGGCAGTATGGCAGCCTCAGAAAGGGAATCTTTTGCTGTCACAGATCATCACAGGCA GGCCACAGGTTAAGGAGAAAGAAGCTCCCTGTGCATCCATGGAAGGCTTTGGTGAGAAGATGCAAGTGGAGCTGT GGA ACGA GGGA GGA GCT GCT GCT CTT TCT CCGA AGCT CTGGGA GCT GCCA GCCCA GGC CTT CCT TT GCT CA GTCTCCACCTGGACAGTGGCAGTATGGCAGCCTCAGAAAAGAAACTTTTTGCTGTCAGGGATCATCATGGGCAGA TTACTGGCTAAGGAGAAGAAGCTCCCTGTGTATCCATGGTAGGCTTTGATGAGAAGATGAAGGTGGAGCTGTGG AACGAGATACTTTATTCAGGGAGTGAAAGAAAGTGACAATTGCACAGGTGGTAGAAGCTCATGCCCAGGTGAAA GACAGACACAGAACACACAGAATCTCTGATGGTTCCCAGGCACACAGCTGCAGCTCTTTCTGCTGAAGCT $\tt CTGGGAACTGACAAAGCCAAGGTTCCTTTGCTCAGTCTCCACCTGGACAGTGGCATCTCCACCTGGACAGTGGCA$ ATATGGCAGCCTCAGAAAGGAAACCTTTTGCTATCAGGGATCATCATGGCCAGATCACTGGCTAAGAGGAAAGAA GCTAACTGTGTATCCATGGTAGGCTTTGATGAGAAGATGCAGGTGAAGCTGTGGAACAAGTGCAGGCACCAGAGC AGCAGCAGCCCTAGTGCCCCCAGCATCTCAGACAGGCTCACTTTACAAGTTGAGGTGATGAACTTGAAGCTAAGA GTTCCTCACAGTCCAGGGAGTGAAAGGAAAGTGACAACTGCACAGGTGGTGGAAGCTCATGCCCAGGGGACAGAC GCTGGCACAGCCCAGGACTTCCTTTGCTCAGTCTCCACCTGGACAGTGGCAGTATGGCAGCCTCAAAAAAGAAAAC CTTTTGCTATCAGAGATCATCACAGGCCGATCACAGGCTAAGAGGAAAGAAGCTCCCTGTGTATCCCTGGATGGC TTTGATGAGAAGATGCAGGTGGAGCTGTGGAACGAGCATCAAATCAACATTCATAGGATTGGATCAACCAAACTT GCTGTATTCAGATTAAATTCAACATTTCAGGGCACAAAGAACAGAGGAACTCCAGGAAGCCGACTCACCAGGTTC TCCAAGGCAGATCGGTGCTTAGGAGACTATAATCCGTGTGGACAGCCACCTAGAAGCAAACTTCTGGCCATGGTA GCACAGACTGTGTCATCATTCCAGGTTCTGTGGCCAAGCCCCCCAAACAGGAATCACGTAGTGAAGTTCAAAGAA ACTTCCAAAAGGTGCAGCAAAAGAAAGAAAAGAAAAACATAA

PCT/IIS2003/028547

394/6881 FIGURE 364

AAACACTCTGTGTGGCTCCTCGGCTTTGGGACAGAGTGCAAGACGATGACTTGCAAAATGTCGCAGCTGGAACGC
AACATAGAGACCATCATCAACACCTCCCACAATACTCTGTGAAGCTGGGGCACCCAGACACCCCTGAACCAGGG
GAATTCAAAGACTGGTGCGAAAAGATCTGCAAAATTTCTCAAGAAGAGAATAAGAATAAGAATGAAAAAGGTCATAGAA
ACATCATTGGAGGACCTGGACACAAATGCAGACAAGCAGCTGAGCTTCGAGGAGTTCATCATCATGTGGCGAGG
CTAACCTGGGCCTCCCACGAGAAGATGCACGAGGGTGACGTGAGCCACGCACACCACTAAGCCAGGCCCTGGG
GAGGGCACCCCCTAAGACCACAGGCCACCCTGCCCAACCAGGCCATGGCCACGCCCAGGCCACGCCCCGGC
GACAGGCCACTAATCAGGAGGCCAGCCACCCTGCCCTCTACCCAACCAGGGCCCCGGGGCCTTTATGTCAAACT
GTCTTGGCTGTGGGGCTAGGGGCCACAATAAATCTCTTCCTCCAA

PCT/US2003/028547

395/6881 FIGURE 365

MTCKMSQLERNIETIINTFHQYSVKLGHPDTLNQGEFKELVRKDLQNFLKKENKNEKVIEHIMEDLDTNADKQLS FEEFIMLMARLTWASHEKMHEGDEGPGHHKPGLGEGTP

PCT/US2003/028547

396/6881 FIGURE 366

PCT/HS2003/028547

397/6881 FIGURE 367

 ${\tt AAATAAATAGGGAAGATGGAGACACCTCTGGGGGTCCTCTCTGAGTCAAATCCAGTGGTGGGTAATTGTACAATA} \\ {\tt AATTTTTTTGGTCAAATTT}$

PCT/US2003/028547

398/6881 FIGURE 368

 ${\tt MACPLDQAIGLLVAIFHKYSGREGDKHTLSKKELKELIQKELTIGSKLQDAEIARLMEDLDRNKDQEVNFQEYVT}\\ {\tt FLGALALIYNEALKG}$

PCT/US2003/028547

399/6881 FIGURE 369

PCT/US2003/028547

400/6881 FIGURE 370

Macplekaldvmvstfhkysgregdkfklnkselkelltrelpsflgkrtdeaafqklmsnldsnrdnevdfqey Cvplsciammcneffegfbkgprkk

PCT/IIS2003/028547

FIGURE 371

PCT/US2003/028547

FIGURE 372

 ${\tt MACPLEKALDVMVSTFHKYSGKEGDKFKLNKSELKELLTRELPSFLGKRTDEAAFQKLMSNLDSNRDNEVDFQEYCVFLSCIAMMCNEFFEGFPDKQPRKK}$

PCT/US2003/028547

403/6881 FIGURE 373

ACACATTCCCCACCCTCTGGGAGCTCCTAGTCTGAGAGAGGAAACACTCCTGCCCAAGGGAGCTTCCAGTTAGAT GGCAGAGAGAGATGCCTCTGGCTTCAGGAGTCCCGAGTCTAAGGAGGGAAACGACTCCTTCAGGGAGCTTCCTGC TCCTAGGCTGTAGCCATGGCTCCTGCCAGACTGCACAGGAGCCCCCATCTGCCAGCCGGTGCATGTGGCCCTGCT CCCCAGAGCCTGCGCAGATGCCATCAAAATGGGACTCTGGTCACCCTGTCATTTCCCTTCTGGCAGACACTAAAA TGGGGAGCCCTGCCCTCAGGGGGGTGTCCCAAGTGCCATCAGAGGAGGCTTGGTGACTCCCAGACACAAGGGAAG CTTTAGCGTCTGCCCTCAGGGTGAGATGGAGGTATCGCCTCCGGCCTCAGGGAACCACAGTCTGAGGGGGAGATG CAGCCCTGCCTTCCCATTCAGAGAGGGGTTTTGTGAGGTGGCTTGGGGGCATAGGGCAGAAGTGGATCCTACAG GCTGAGCTAAGGCCCCAAGAGCCTCAGCAGTGTACCCATCACCTGGCACCTCTGCAGCCACAGATCCATGATGTG CAGTTCTCTGGAGCAGGCGCTGGCTGGTCACTACCTTCCACAAGTACTCCTGCCAAGAGGGCGACAAGTT CAAGCTGAGTAAGGGGAAATGAAGGAACTTCTGCACAAGGAGCTGCCCAGCTTTGTGGGGGGAGAAAGTGGATGA GGAGGGGCTGAAGAAGCTGATGGGCAGCCTGGATGAGAACAGTGACCAGCAGGTGGACTTCCAGGAGTATGCTGT TGACTTCCTGCCATGGATCTCTTGGGCCCAGGACTGTTGATGCCTTTGAGTTTTGTATTCAATAAACTTTTTTTG GCCTCCTGGATCCTGCTCCCTTCTGGGCTCTGACTCTCCTGGAAATCTCTCCAAGGCCAGAGCTATGCTTTAGGT CTCAATTTTGGAATTTCAAACACCAGCAAAAAATTGGAAATCGAGATAGGTTGCTGACTTTTATTTTGTCAAATA AAGATATTAAAAAAAGGC

PCT/IIS2003/028547

404/6881 FIGURE 374

WO 2004/030615 ·

PCT/US2003/028547

FIGURE 375

 ${\tt MGSELETAMETLINVFHAHSGKEGDKYKLSKKELKELLQTELSGFLDAQKDVDAVDKVMKELDENGDGEVDFQEY} \\ {\tt VULVAALTVACNNFFMENS}$

PCT/US2003/028547

406/6881 FIGURE 376

TCAGACAAGCACTGGACGTGGCGGCCATTTTGTTTTGGACACCGAGCAGGAGCTGGCGGCCGCTGCAGACGAAAG CCCGGTCCCCGGCCCGCCGGAGCCGTGGTGGCAGCCCCGGGAGGAGCACTGGCGTCTGTTTCCTTCGATTCT CGGGATTCGAAGATGGCTGCACAGTCAGCGCCGAAAAGTTGTGCTAAAAAAGCACCACCAAGATGTCTCTAAAATGAG CGCTTTACTAATATGCTGAAGAACAACAACAGCCGACGCCAGTGAATATTCGGGCTTCGATGCAGCAACAACAGCAG CTAGCCAGTGCCAGAAACAGAAGACTGGCCCAGCAGATGGAGAATAGACCCTCTGTCCAGGCAGCATTAAAACTT AAGCAGAGCTTAAAGCAGCGCCTGGGTAAGAGTAACATCCAGGCACGGTTAGGCCGACCCATAGGGGCCCTGGCC AGGGGAGCAATCGGAGGACGAGGCCTACCCATAATCCAGAGAGGCTTGCCCAGAGGAGGACTACGTGGGGGGACGT GCCACCAGAACCCTACTTAGGGGCGGGATGTCACTCCGAGGTCAAAACCTGCTCCGAGGTGGACGAGCCGTAGCT CCCCAATGGGCTTAAGAAGAAGGTGTGTTGTAGAGGTCCTGGAGATGACGAGACACCCTAGGGCTGAGACA ATGGGTCGTGGCGGAATCGGTGGTAGAGGTCGGGGTATGATAGGTCGGGGAAGAGGGGGCTTTGGAGGCCGAGGC CGAGGCCGTGGACGAGGGGGAGAGGTGCCCTTGCTCCCCCCTGTATTGACCAGGGAGCAGCTGGACAACCAATTGGAT AATGATTGAAGCCTGCCCATCCTCCCATGAGAGACTCTTGTTAGTCAACACATCTGTAAATAACCTTGAGATAAC CATTTAGTGTGTTCCTTTTACTTTTTGATACTGTGTTGTTATGAAACCCTTTTGTCCTTTGATTTGGTTTTTTTGTT TTTGTTTTTTTAGGGGGGGGGGGTTTCCCCTCCTTTGCCCAGACTTCTCTTTGAACACAAATGCATTAGCCT TGTGGCTAGAACACCCTCTTCCTACCTCTGTCTCCCCTCACTTGTCATATGCTCTGACATGCTAACATTTCTTTT CTGAAATAGGGTTCTGTTACATCCTCTTCGATAGCCTGTTTAAAATGTTTAGAAGGTCTGGAGCTCAAAAATGCG TTCTTCC

PCT/HS2003/028547

407/6881 FIGURE 377

AGGGGTGACAGAGGCCGTGGTCGTGGTGGGCCCTTTGGTTCCAGAGGAGGCCCAGGAGGAGGGTTCAGCCCTTT GTACCACATATCCCATTTGACTTCTATTTGTTGTTTACTTCTGGTTTAGTGTGAAATGGCCTTTCCCCGGGTCAA GCCAGCACCTGATGAAACTTCCTTCAGTGAGGCCCTTGCTGAAGAGGAATCAGGACCTGGCTCCCAATTCTGCTGA TGA AGTGCA AATTGA AGA AGTTCGA CAGGTGGGA TCCTATA A A AGGGGA CA ATGA CTACAGGA CACA ATGTGGC TGACCTGGTGGTGATACTCAAGATTCTGCCAACGTTGGAAGCTGTTGCTGCCCTGGGGAACAAAGTCGTGGAAAG CCTAAGAGCACAGGATCCTTCTGAAGTTTTTAACCATGCTGACCAACGAAACTGGCTTTGAAATCAGTTCTTCTGA TGCTACAGTGAAGATTCTCATTACAACAGTGCCACCCAATCTTCGAAAACTGGATCCAGAACTCCATTTGGATAT CAAAGTATTGCAGAGTGCCTTAGCAGCCATCCGACATGCCCGCTGGTTCGAGGAAAATGCTTCTCAGTCCACAGT TAAAGTTCTCATCAGACTACTGAAGGACTTGAGGATTCGTTTTCCTGGCTTTGAGCCCCTCACACCCTGGATCCT TGACCTACTAGGCCATTATGCTGTGATGAACACCCCACCAGACAGCCTTTGGCCCTAAACGTTGCATACAGGCG CTGCTTGCAGATTCTGGCTGCAGGACTGTTCCTGCCAGGTTCAGTGGGTATCACTGACCCCTGTGAGAGTGGCAA CTTTAGAGTACACACTCATGACCCTAGAACAGCAGGACATGGTCTGCTATACAGCTCAGACTCTCGTCCGAAT CCTCTCACATGGTGGCTTTAGGAAGATCCTTGGCCAGGAGGGTGATGCCAGCTATCTTGCTTCTGAAATATCTAC AGAGGAGAATACAGAAGAACCACCTCAAGGAGAGGAAGAAGAAGCATGGAAACTCAGGAGTGACATTCCCTTCA CCGTGGGATAGGGAAGATAGCAGGAAGAAAAGTAAACTCCATAGAAGTGTCATTCCACTGGGTTTTGATATTGGC CTATAATCTCCAACTCCTGAAAACCCCTCTCTCAACTAATACTTTGCTGTTGAAATGTTGTGAAATGTTAAGTGT CTGGAAATTTTTTTTTCTAAGAAAAACTATTAAAGTACTT

PCT/US2003/028547

FIGURE 378

MRGDRGRGRGRFGSRGGPGGFRPFVPHIPFDFYLCEMAFPRVKPAPDETSFSEALLKRNQDLAPNSAEQASIL SLUTKINNVIDNLIVAPGTFEVQIEEVRQVGSYKKGTHTTGHNVADLVVILKILPILEAVAALGKKVVESLAD PSEVITMLINNETGFEISSDATVKLIITTVPPNIKRKUPELHLDIRVLQSALAAIRARRFEENASQSTVKVLIR LLKDLRIRFPGFPEPLTPWILDLLGHYAVMNNPTRQPLALNVAYRRCLQILAAGLFLPGSVGITDFCESGNFRVHT VMTLEQQDMVCYTAQTIVRILSHGGFRKILGQEGDASYLASEISTWDGVIVTPSEKAYEKYPPEKKEGEEEEENTE EPPPGGEEEESMETG

PCT/US2003/028547

409/6881 FIGURE 379

GCCAGCGCACGCGCGCCCCCGGAAGGAGACTCTCAGCTAGAACGAGCGGCCCTAGGTTTTCGGAAGGGAGGAT CAGGGATGTTTGCGAGCGGCTGGAACCAGACGGTGCCGATAGAGGAAGCGGGCTCCATGGCTGCCCTCCTGCTGC TECCCCTECTECTECTECTECTECTECTECTECTECACCTCTGGCCGCAGTTGCGCTGGCTTCCGGCGG ACTTGGCCTTTGCGGTGCGAGCTCTGTGCTGCAAAAGGGCTCTTCGAGCTCGCGCCCTGGCCGGGCTGCCGCCG CCTTTCTCATTCACGGCTCGCGGCGCTTTAGCTACTCAGAGGCGGAGCGCGAGAGTAACAGGGCTGCACGCGCT TCCTACGTGCGCTAGGCTGGGACTGGGGACCCGACGGCGGCGACAGCGGCGAGGGGAGCGCTGGAGAAGGCGAGC GGGCAGCGCCGGAGCCGGAGATGCAGCGGCCGGAAGCGGCGCGGAGTTTGCCGGAGGGGACGGTGCCGCCAGAG GTGGAGGAGCCGCCGCCCCTCTGTCACCTGGAGCAACTGTGGCGCTGCTCCTCCCCGCTGGCCCAGAGTTTCTGT GGCTCTGGTTCGGGCTGGCCAAGGCCGGCCTGCGCACTGCCTTTGTGCCCACCGCCCTGCGCCCGGGGCCCCCTGC TECACTECCTCCCCAGCTGCGCGCGCGCGCGCGCGTGCTGCCCCAGAGTTTCTGGAGTCCCTGGAGCCCGGACC TGCTGGCTGA AGTGTCGGCTGA AGTGGATGGGCCAGTGCCAGGATACCTCTCTCCCCCCAGAGCATAACAGACA CGTGCCTGTACATCTTCACCTCTGGCACCACGGGCCTCCCCAAGGCTGCTCGGATCAGTCATCTGAAGATCCTGC AATGCCAGGGCTTCTATCAGCTGTGTGTGTCCACCAGGAAGATGTGATCTACCTCGCCCTCCACTCTACCACA TGTCCGGTTCCCTGCTGGGCATCGTGGGCTGCATGGGCCATGGGGCCACAGTGGTGCTGAAATCCAAGTTCTCGG CTGGTCAGTTCTGGGAAGATTGCCAGCAGCACAGGGTGACGGTGTTCCAGTACATTGGGGAGCTGTGCCGATACC TTGTCAACCAGCCCCGAGCAAGGCAGAACGTGGCCATAAGGTCCGGCTGGCAGTGGGCAGCGGGCTGCGCCCAG ATACCTGGGAGCGTTTTGTGCGGCGCTTCGGGCCCCTGCAGGTGCTGGAGACATATGGACTGACAGAGGGCAACG TGGCCACCATCAACTACACAGGACAGCGGGGGGGGGTGTGGGGGGGTGCTTCCTGGCTTTACAAGCATATCTTCCCCT TCTCCTTGATTCGCTATGATGTCACCACAGGAGAGCCAATTCGGGACCCCCAGGGGCACTGTATGGCCACATCTC CAGGTGAGCCAGGGCTGCTGGTGGCCCCGGTAAGCCAGCAGTCCCCATTCCTGGGCTATGCTGGCGGGCCAGAGC TGGCCCAGGGGAAGTTGCTAAAGGATGTCTTCCGGCCTGGGGATGTTTTCTTCAACACTGGGGACCTGCTGGTCT GCGATGACCAAGGTTTTCTCCGCTTCCATGATCGTACTGGAGACACCTTCAGGTGGAAGGGGGAGAATGTGGCCA CAACCGAGGTGGCAGAGGTCTTCGAGGCCCTAGATTTTCTTCAGGAGGTGAACGTCTATGGAGTCACTGTGCCAG GGCATGAAGGCAGGCTGGAATGGCAGCCTAGTTCTGCGTCCCCCCACGCTTTGGACCTTATGCAGCTCTACA CCCACGTGTCTGAGAACTTGCCACCTTATGCCCGGCCCCGATTCCTCAGGCTCCAGGAGTCTTTGGCCACCACAG AGACCTTCA A CAGCAGA AGTTCGGATGGCAAATGAGGGCTTCGACCCCAGCACCCTGTCTGACCCACTGTACG TTCTGGACCAGGCTGTAGGTGCCTACCTGCCCCTCACAACTGCCCGGTACAGCGCCCTCCTGGCAGGAAACCTTC GAATCTGAGAACTTCCACACCTGAGGCACCTGAGAGAGGAACTCTGTGGGGTGGGGGCCGTTGCAGGTGTACTGG GCTGTCAGGGATCTTTTCTATACCAGAACTGCGGTCACTATTTTGTAATAAATGTGGCTGGAGCTGATCCAGCTG TCTCTGACCTACAAAAAAAAAAAAAAAAAAAAAA

PCT/HS2003/028547

410/6881 FIGURE 380

MGVCQRTRAPWKEKSQLERAALGFRKGGSGMFASGWNQTVPIEEAGSMAALLLPLLLLPLLLLKLHLWPQLRW LPADLAFAVRALCCKRALRARALAAAAADPEGFEGGGSLAWRALBLAQQRAAHTFLIHGSRRFSYSEAERSSNYARAFCKRALRARALAAAAADPEGFEGGGSLAWRAGAGGAARAGGBARAGGAAADLSFGATVALLLPAGPETUWLWFGLAKAGLRTAFVFTALRGGEGLEHCLRSCGARALVLAPEFLESLEPDLPALRAMGLHLWAAGPGTHPAG ISDLLAEVSABVDGPVFGYLSSPGSITDTCLYIFTSGTTGLPKAARISHLKILQCQGFYQLCGVRQEDVIYLALPSHYMMGSLLGIVGCMGIGATVVLKSKFSAGGFWEDCQQHRVTVFQYIGELCRYLVNQPPSKAERGHKVRLAVGSGLRFDTWERFVRRFGPLQVLETYGLIEGNVATINYTGQRGAVGRASMLYKHIFPFSLIRYDVTTGFIRDPGGHCM ATSPGEPGLLVAPVSQQSPFLGYAGGPELAQGKLKDVFRFGDVFRYTGDLLVCDDQGFLRFHDRTGDTFRWKGE NVATTEVAEVFEALDFLQEVNVYGVVFPGEGRGAMAALVLRPPHALDLMQLYTHVSENLPPYARPRFLRLQESL ATTETFKQQKVRMANGGPDFSTLSDPLYVLDQAVGAYLPLTTARYSALLAGNLRI

PCT/IIS2003/028547

411/6881 FIGURE 381

PCT/US2003/028547

FIGURE 382

MAGAGSAAVSGAGTPVAGPTGRDLFAEGLLEFLRPAVQQLDSHVHAVRESQVELREQIDNLATELCRINEDQKVA LOLDFYVKKLLNARRRVVLVNNILQNAQERLRRLNHSVAKETARRAMLDSGIYPPGSPGK

PCT/IIS2003/028547

FIGURE 383

CTATGATAAGCTAATTATTTATGTTTGCATAATATTTATGTTTGCATGTTAGTGACATATATTTTAAAATGTGAT CTTAGAATGCACCTCGGATCCCCCAAGGTTTAGGCTTTCTTCATTTGTCTTTGAAACTATATCTTCTGTCTCTTG TCATATCTGCTTATTGCGTGTTTTTCATACCTTCCACCTCTCTAAAAGCCGTTACCTGAGCCCTCGTTATCACTT TTGGTTGAATGTGCTGCACTTAGCTGCATTTCTAAGTTTCTGATTCTTGCAAGTTTGTGGAAACAGAGGGAGTCTT TAACCCACATCAGCCTTGATCTAAGTGTACCACTTTACTTAAAAGTTCGTGGGATCTGGAGCTCCTGGTCTAGCA ACTAATATGCTGAAGAACAAACAGCCGACGCCAGTGAATATTCGGGCTTCGATGCAGCAACAACAGCAGCTAGCC AGTGCCAGAAACAGAAGACTGGCCCAGCAGATGGAGAATAGACCCTCTGTCCAGGCAGCATTAAAACTTAAGCAG AGCTTAAAGCAGCGCCTGGGTAAGAGTAACATCCAGGCACGGTTAGGCCGACCCATAGGGGCCCTGGCCAGGGGA GCAATCGGAGGACGAGGCCTACCCATAATCCAGAGGAGGCTTGCCCAGAGGAGGACTACGTGGGGACGTGCCACC AGAACCCTACTTAGGGGCGGGATGTCACTCCGAGGTCAAAACCTGCTCCGAGGTGGACGAGCCGTAGCTCCCCGA CGTGGACGAGGGAGAGGTGCCCTTGCTCGCCCTGTATTGACCAAGGAGCAGCTGGACAACCAATTGGATGCATAT TGAAGCCTGCCCATCCTCCCATGAGAGACTCTTGTTAGTCAACACATCTGTAAATAACCTTGAGATAACAGATGA TTTTTAGGGGGGGGGGGGTTTCCCCTCCTTTGCCCAGACTTCTCTTTGAACACAAATGCATTAGCCTTGTGGC TAGAACACCCTCTTCCTACCTCTGTCTCCCCTCACTTGTCATATGCTCTGACATGCTAACATTTCTTTTGTTCAT TAGGGTTCTGTTACATCCTCTTCGATAGCCTGTTTAAAATGTTTAGAAGGTCTGGAGCTCAAAAATGCGTTCTTC c

PCT/US2003/028547

FIGURE 384

PCT/US2003/028547

FIGURE 385

MMCSSLEQALAVLVTTFHKYSCQEGDKFKLSKGEMKELLHKELPSFVGEKVDEEGLKKLMGSLDENSDQQVDFQE YAVFLALITYWCNDFFOGCPDRP

PCT/HS2003/028547

#16/6881 FIGURE 386

GGGCCAGACTTGCTGCCGGGCTGGACGTTCCGCACGGTGCTGGGCAGCAGCGAAAACGCGCTGGGCGTGTGCTC CGACACCGCAGCGCCCCTGGCCGCGGTGGACCTCAAGTGGGAGCACAACCCCGCTGTGTTCCTGGGCCCCGGGTG CGTGTACGCCGCCCCCAGTGGGGCGCTTCACCGCGCACTGGCGGGTCCCGCTGCTGACCGCCGGCGCCCCCGGC GCTGGGCTTCGGTGTCAAGGACGAGTATGCGCTGACCACCCGCGGGGGCCCAGCTACGCCAAGCTGGGGGACTT AGAGCACTGCTTCTTCCTCGTGGAGGGGCTGTTCATGCGGGTCCGCGACCGCCTCAATATTACGGTGGACCACCT GGAGTTCGCCGAGGACGACCTCAGCCACTACACCAGGCTGCTGCGGACCATGCCGCGCAAAGGCCGAGTTATCTA CATCTGCAGCTCCCCTGATGCCTTCAGAACCCTCATGCTCCTGGCCCTGGAAGCTGGCTTGTGTGGGGAGGACTA CGTTTCTTCCACCTGGATATCTTTGGGCAAAGCCTGCAAGGTGGACAGGGCCCTGCTCCCCGCAGGCCCTGGGA GAGAGGGGATGGGCAGGATGTCAGTGCCCGCCAGGCCTTTCAGGCTGCCAAAATCATTACATATAAAGACCCAGA TAATCCCGAGTACTTGGAATTCCTGAAGCAGTTAAAACACCTGGCCTATGAGCAGTTCAACTTCACCATGGAGGA TGGCCTGGTGAACACCATCCCAGCATCCTTCCACGACGGGCTCCTGCTCTATATCCAGGCAGTGACGGAGACTCT GGCACATGGGGGAACTGTTACTGATGGGGAGAACATCACTCAGCGGATGTGGAACCGAAGCTTTCAAGGTGTGAC AGGATACCTGAAAATTGATAGCAGTGGCGATCGGGAAACAGACTTCTCCCTCTGGGATATGGATCCCGAGAATGG TGCCTTCAGGGTTGTACTGAACTACAATGGGACTTCCCAAGAGCTGGTGGCTGTGTCGGGGGCGCAAACTGAACTG GCCCCTGGGGTACCCTCCTGACATCCCCAAATGTGGCTTTGACAACGAAGACCCAGCATGCAACCAAGATCA CCTTTCCACCCTGGAGGTGCTGGCTTTGGTGGGCAGCCTCTCCTTGCTCGGCATTCTGATTGTCTCCTTCTTCAT ATACAGGAAGATGCAGCTGGAGAAGGAACTGGCCTCGGAGCTGTGGCGGTGCGCTGGGAGGACGTTGAGCCCAG TAGCCTTGAGAGGCACCTGCGGAGTGCAGGCAGCCGGCTGACCCTGAGCGGGAGAGGCTCCAATTACGGCTCCCT GCTAACCACAGAGGGCCAGTTCCAAGTCTTTGCCAAGACAGCATATTATAAGGGCAACCTCGTGGCTGTAAACG TGTGAACCGTAAACGCATTGAGCTGACACGAAAAGTCCTGTTTGAACTGAAGCATATGCGGGATGTGCAGAATGA ACACCTGACCAGGTTTGTGGGAGCCTGCACCGACCCCCCAATATCTGCATCCTCACAGAGTACTGTCCCCGTGG GAGCCTGCAGGACATTCTGGAGAATGAGAGCATCACCCTGGACTGGATGTTCCGGTACTCACCAATGACAT CGTCAAGGGCATGCTGTTTCTACACAATGGGGCTATCTGTTCCCATGGGAACCTCAAGTCATCCAACTGCGTGGT AGATGGGCGCTTTGTGCTCAAGATCACCGACTATGGGCTGGAGGCTTCAGGGACCTGGACCCAGAGCAAGGACA CACCGTTTATGCCAAAAAGCTGTGGACGGCCCCTGAGCTCCTGCGAATGGCTTCACCCCCTGTGCGGGGCTCCCA GGCTGGTGACGTATACAGCTTTGGGATCATCCTTCAGGAGATTGCCCTGAGGAGTGGGGTCTTCCACGTGGAAGG CCTGCAGAGTCACCTGGAGGAGTTGGGGCTGCTCATGCAGCGGTGCTGGGCTGAGGACCCACAGGAGAGGCCACC ATTCCAGCAGATCCGCCTGACGTTGCGCAAATTTAACAGGGAGAACAGCAGCAACATCCTGGACAACCTGCTGTC CCGCATGGAGCAGTACGCGAACAATCTGGAGGAACTGGTGGAGGAGCGGACCCAGGCATACCTGGAGGAGAAGCG GGCCGAAGCCTTTGACAGTGTTACCATCTACTTCAGTGACATTGTGGGTTTCACAGCGCTGTCGGCGGAGAGCAC ACCCATGCAGGTGGTGACCCTGCTCAATGACCTGTACACTTGCTTTGATGCTGTCATAGACAACTTTGATGTGTA CAAGGTGGAGACAATTGGCGATGCCTACATGGTGGTGTCAGGGCTCCCTGTGCGGAACGGGCGGCTACACGCCTG CGAGGTAGCCCGCATGGCCCTGGCACTGCTGGATGCTGTGCGCTCCTTCCGAATCCGCCACCGGCCCCAGGAGCA TCTCTTTGGGGATACAGTCAACACAGCCTCAAGAATGGAGTCTAATGGGGAAGCCCTGAAGATCCACTTGTCTTC TGAGACCAAGGCTGTCCTGGAGGAGTTTGGTGGTTTCGAGCTGGAGCTTCGAGGGGATGTAGAAATGAAGGGCAA AGGCAAGGTTCGGACCTACTGGCTCCTTGGGGAGAGGGGGGAGTAGCACCCGAGGCTGACCTGCCTCCTCTCTAT CCCTCCACACCTCCCTACCCTGTGCCAGAAGCAACAGAGGTGCCAGGCCTCAGCCTCACCCACAGCAGCCCCATC GCCAAAGGATGGAAGTAATTTGAATAGCTCAGGTGTGCTGACCCCAGTGAAGACACCAGATAGGACCTCTGAGAG GGGACTGGCATGGGGGGATCTCAGAGCTTACAGGCTGAGCCCAAGCCCACGGCCATGCACAGGGACACTCACACAG GCACACGCACCTGCTCTCCACCTGGACTCAGGCCGGGCTGGGGCTGTGGATTCCTGATCCCCTCCCCTCCCCATGC TCTCCTCCCTCAGCCTTGCTACCCTGTGACTTACTGGGAGGAGAAAGAGTCACCTGAAGGGGAACATGAAAAGAG ACTAGGTGAAGAGGGCAGGGGAGCCCACATCTGGGGCTGGCCCACAATACCTGCTCCCCCGACCCCTCCACC CAGCAGTAGACACAGTGCACAGGGGAGAAGAGGGGTGGCGCAGAAGGGTTGGGGGGCCTGTATGCCTTGCTTCTAC CATGAGCAGAGACAATTAAAATCTTTATTCCAGTG

PCT/HS2003/028547

417/6881 FIGURE 387

MPGPRRPAGSRLRLLLLLLLPPLLLLRGSHAGNLTVAVVLPLANTSYPWSWARVGPAVELALAQVKARPDLLPG
WTVRTVLGSSENALGVCSDTAAPLAAVDLWEENNEAVELGFGCVYAAADVGRFTAHWRVPLLTAGAPALGFGKU
EYALTTRAGPSYAKLGDFVAALHRRLGWERQALMLYAVREDGEBLGFFLVEGLEMRYMDELINTUDHLEFAEDDL
SHYTELLETMRRKGRVIYICSSPDAFRILMLLALEAGLCGEDYVFFHLDIFGQSLQGGQGPARRPWERGGGQDV
SARQAFQAAKIITYKDPDNFEYLEFLKQLKHLAYEQFNFTHEDGLVNITJFASFHDGLLLVIQAVTETLAHGGTVT
DGENITQRWWNRSFCGVTGYLKIDSSGORETDFSLWDMDEPNGAFRVVLNYNGTSGELVAVSGRKLNWPLCYPPP
DIFKCGFDNEDPACNQDHLSTLEVLALVGSLSLLGILIVSFFIYRKWQLEKELASELWRVRWEDVEPSSLERHLR
SAGSRLTLSGRGSNYGSLLTTEGGPQVFAKTAYYKGNLVAVKRVNRKRIELTRKVLFELKHMRDVQNEHLTRFVG
ACTDPPNICITLTEVCPRGSLQDILENESTILDWRFRYSLSTINDIVKGWLFLHNGALCSHGKLKSSNCVVDGRFVLK
ITDYGLESFRDLDPEQGHTVYAKKLWTAPELLRMASPPVRGSQAGDVYSFGIILQEILALRSGVFHVEGLDLSFK
IIERVTRGEQPFRPSIALQSHLEELGLLWQRCWAEDPQERPFFQQIRLTLRKFNRENSSNILDNLLSRMEQYAN
NLEELVEERTGANYLEEKRKREALLVQILPHSVAEGLUKRGETVQAEAFDSVTIYFSDIVGFTALSAESTFMQVVIL
LNDLYTCPDAVIDNFDVYKVETIGDAYMVVSGLPVRNGRLHAGEVARMALALDAVRSFRIRHRPQEQLRLRIGI
HTGPVCAGVVGLKMPRYCLFGDTVNTASRMESNGEALKHLSSETKAVLEEFGGFELELRGDVEMKKGKKVRTYW

PCT/HS2003/028547

418/6881 FIGURE 388

PCT/US2003/028547

419/6881 FIGURE 389

TTGCCCGGGACTAGGAGCTTAAGTGAAGAGGTACGCCTTGTTCGGTGGAAATCAGCCGTAGCCATGAGTTTCTGC CGGGGCTAGCCCTAGAGTACGGAGCAGGCGGACTTTTCGGTTCCCCGCCCCGCCAGGTGGCGGGGCCTACTAGGC $\tt CTCCGGGCATCCCCGGTCTCAAGTAGGCCTCATCTGCCGGCAAGGGCGCCCGAAACGCGGGAGGCGCCATGTCGC$ TGGTTGCTTACGCCAGCAGCGATGAGAGCGAGCCGGATGAGGCTGAGCCCGAGCCGGAGGAAGAGGAGGCGGTGG CTCCTACATCTGGGCCCGCTTTAGGGGGCTTGTTCGCTTCTCTCCCTGCGCCCAAGGGTCCGGCCTTGCTGCCTC AGCCTCCTCCCCCTTGCCCTTCGGCCTGGGAGGCTTCCCCCCACCTCCAGGCGTGAGCCCGGCTGAAGCGGCGG GAGTTGGGGAGGGACTGGGATTGGGGTTGCCCTCGCCCCGAGGCCCTGGCCTCAATCTGCCCCCTCCAATTGGCG GTGCCGGTCCCCGGTGGGGCTTCCCAAGCCAAAGAAGAGAAAAGAGCCCGTGAAGATCGCGGCGCGGAGTTGC ATAAGGGAGATTCAGATTCTGAGGAAGATGAACCCACAAAGAAGAAAACTATCCTTCAGGGATCCAGTGAGGGGA CTGGTTTGTCTGCCTTGCTTCCCCAACCTAAAAACCTGACTGTGAAAGAGACTAACAGGTTGCTCCTGCCCCATG CCTTCTCCCGCAAACCCTCGGATGGCTCCCCTGATACTAAGCCCTCCAGACTGGCTTCTAAGACCAAGACTTCCT CTCTTGCCCCTGTTGTGGGCACCACACCACCACTCCGTCGCCCTCTGCTATCAAGGCTGCTGCCAAGAGTGCTG CCCTGCAGGTGACAAAGCAGATCACGCAGGAAGAAGACGACAGTGATGAGGAAGTAGCCCCCGAAAACTTTTTCT CCCTCCCTGAAAAGGCTGAGCCACCTGGAGTTGAGCCATACCCTTACCCCACTCCCCACTGTCCCTGAAGAGCTGC CTCCAGGCACGGAACCAGAGCCGGCTTTCCAGGACGATGCAGCCAATGCCCCCCTTGAATTCAAGATGGCAGCAG GTTCAAGTGGGGCCCCTTGGATGCCTAAGCCTGGGGACGACTACAGCTACAATCAGTTTTCCACATATGGCGATG CCAATGCCGCTGGTGCTTATTATCAGGATTATTACAGTGGTGGCTACTATCCTGCACAGGACCCGGCCCTGGTCC CCACCCAGGAAATTGCCCCAGATGCCTCCTTCATCGATGACGAAGCATTTAAGCGGCTGCAGGGCAAGAGGAACC GAGGGAGAGAAGAATCAACTTTGTGGAGATCAAAGGTGATGACCAGCTCAGTGGGGCCCCAGCAATGGATGACTA GGAAACACCAGATCACATATCTTATTCATCAGGCCAAGGAGCGGGAGCTGGAACTGAAGAACACCTGGTCAGAGA $A CAAGCTCAGCCGCCGTCAGACCCAAGCCAAATATGGATTC\underline{TAG} \\ GGCTCTGGAACTGATTGCTCCCAGGATCTCC$ TGCCAGCCCAGCTGGCCTGGCCCCCAGCTTCACCTCTGGGACCCCAGCTGCTCTAAGCCCAGGATCTCTTTCCCC AAGGACCCAGCCCTCGCCTCTGCGAGAATGAACATATTTGATAGATTTTCTTAACAAGTTAGAAAATTCAGCTC

PCT/US2003/028547

420/6881 FIGURE 390

MSLVAYASSDESEPDEAEPEPEEEEAVAPTSGPALGGLFASLPAPKGPALLPPPPQMLAPAFPPPLLLPPPTGDP
RLQPPPLFGLGGFPPPPGVSPAEAAGVGEGLGLEPSPRGFGCINLPPPTGGAGPPLGLPKKKKERPVKIAB
ELHKGDSDSEEDEPTKKKTILQGSSEGTGLSALLPQPKNLTVKETNRLLIPHAFSRKPSGSSPTKKFSRLASKTK
TSSLAPVGTTTTTPSSAIKAAAKSALQVTKQITQEEDDSDEEVAPENFFSLPEKAEPPGVEPYPYPIPTVPE
ELPPGTEPPPAFQDDANAPLEFKMAAGSSGAPWMPKPGDDYSYNQFSTYGDANAAGAYYQDYYSGGYYPAQDPA
LVPTGEIAPDASFIDDEAFKRLQGKNNRGREEINFVEIKGDDQLSGAQQWMTKSLTEEKTMKSFSKKKGEQPTGQ
GRRKHQITVLIHQAKERELELKNTWSENKLSRRQTQAKYGF

PCT/IIS2003/028547

FIGURE 391

CAGGAGGAGTGGGGACCGGGGGGGGGGGGGGGGAGGAGGAGGCCTCGCGCAGAGGAGGAGCAATTGAATTTCAAACA CAAACAACTGCACGAGCGCGCACCCACCGCGCCGGAGCCTTGCCCCGATCCGCGCCCCGGTCCGTGCGGGCC GCGGGCGAGACGCCGTGGCCGCGCGGAGCTCGGGCCGGGGCCCACCATCGAGGCGGGGGCCGCGAGGGCCG GAGCGGAGCGCCGCCACCGCCACGCGCAAACTTGGGCTCGCGCTTCCCGGCCCGGCGCGGAGCCCGGGGC GCCCGGAGCCCCGCCATGTCGCGATCCAACCGGCAGAAGGAGTACAAATGCGGGGACCTGGTGTTCGCCAAGATG AAGGGCTACCCACACTGGCCGGCCCGGATTGACGAGATGCCTGAGGCTGCCGTGAAATCAACAGCCAACAAATAC CAAGTCTTTTTTTCGGGACCCACGAGACGGCATTCCTGGGCCCCAAAGACCTCTTCCCTTACGAGGAATCCAAG GAGAAGTTTGGCAAGCCCAACAAGAGGAAAGGGTTCAGCGAGGGGCTGTGGGAGATCGAGAACAACCCTACTGTC AAGGCTTCCGGCTATCAGTCCTCCCAGAAAAAGAGCTGTGTGGAAGAGCCTGAACCAGAGCCCGAAGCTGCAGAG AAGGAGAAGAACGAGAAAGGAGCGTTGAAGAGGAGAGCAGGGGACTTGCTGGAGGACTCTCCTAAACGTCCCAAG GAGGCAGAAAACCCTGAAGGAGAGAGAAGGAGGAGGCCACCTTGGAGGTTGAGAGGCCCCTTCCTATGGAGGTG GAAAAGAATAGCACCCCCTCTGAGCCCGGCTCTGGCCGGGGGCCTCCCCAAGAGGAAGAAGAAGAGGAGGATGAA GAGGAAGAGGCTACCAAGGAAGATGCTGAGGCCCCAGGCATCAGAGATCATGAGAGCCTGTAGCCACCAATGTTT CAAGAGGAGCCCCCACCCTGTTCCTGCTGCTGTCTGGGTGCTACTGGGGAAACTGGCCATGGCCTGCAAACTGGG AACCCCTTTCCCACCCCAACCTGCTCTCCTCTTCTACTCACTTTTCCCACTCCAAGCCCAGCCCATGGAGATTGA CCTGGATGGGGCAGCCACCTGGCTCTCACCTCTAGGTCCCCATACTCCTATGATCTGAGTCAGAGCCATGTCTT CTCCCTGGAATGAGTTGAGGCCACTGTGTTCCTTCCGCTTGGGAGGGGCAATCCTCAAATGCGGGGTGGGGGCAG CACAGGAGGCGGCCTCCTTCTGAGCTCCTGTCCCCTGCTACACCTATTATCCCAGCTGCCTAGATTCAGGGAAA GTGGGACAGCTTGTAGGGGAGGGGCTCCTTTCCATAAATCCTTGATGATTGACAACACCCATTTTTCCTTTTGCC GACCCCAAGAGTTTTGGGAGTTGTAGTTAATCATCAAGAGAATTTGGGGCTTCCAAGTTGTTCGGGCCAAGGACC TGAGACCTGAAGGGTTGACTTTACCCATTTGGGTGGGAGTGTTGAGCATCTGTCCCCCTTTAGATCTCTGAAGCC ACAAATAGGATGCTTGGGAAGACTCCTAGCTGTCCTTTTTCCTCTCCACACAGTGCTCAAGGCCAGCTTATAGTC ATATATATCACCCAGACATAAAGGAAAAGACACATTTTTTAGGAAATGTTTTTAATAAAAGAAAATTACAAAAAA AAATTTTAAAGACCCCTAACCCTTTGTGTGCTCTCCATTCTGCTCCTTCCCCATCGTTGCCCCCATTTCTGAGGT TGTCATTTCTCATCCACATACCCTGACCTGGCCCCCTCAGTGTTGTCACCAGATCTGATTTGTAACCCACTGAGA GGACAGAGAGAAATAAGTGCCCTCTCCCACCCTCTTCCTACTGGTCTCTCTATGCCTCTCTACAGTCTCGTCTCT TTTACCCTGGCCCCTCTCCCTTGGGCTCTGATGAAAAATTGCTGACTGTAGCTTTGGAAGTTTAGCTCTGAGAAC CGTAGATGATTTCAGTTCTAGGAAAATAAAACCCGTTGATTACT

PCT/IIS2003/028547

FIGURE 392

PCT/US2003/028547

FIGURE 393

MPNFSGNWKIIRSENFEELLKVLGVNVMLRKIAVAAASKPAVEIKQEGDTFYIKTSTTVRTTEINFKVGEEFEEQ
TVDGRPCKSLVKWESENKMVCEQKLLKGEGPKTSWTRELTNDGELILTMTADDVVCTRVYVRE

PCT/IIS2003/028547

FIGURE 394

GCAGTCTCCGCCGCAGTCTCAGCTGCAGCTGCAGGACTGAGCCGTGCACCCGGAGGAGACCCCCGGAGGAGGAGGCGA CAAACTTCGCAGTGCCGCGACCCAACCCCAGCCCTGGGTAGCCTGCAGCATGCCCCAGCTGTTCCTGCCCCTGCT GGCAGCCCTGGTCCTGGCCCAGGCTCCTGCAGCTTTAGCAGATGTTCTGGAAGGAGACAGCTCAGAGGACCGCGC TTTTCGCGTGCGCATCGCGGGCGACGCGCCACTGCAGGGCGTGCTCGGCGGCGCCCTCACCATCCCTTGCCACGT CCACTACCTGCGGCCACCGCCGAGCCGGCCGGGCTGTGCTGGGCTCTCCGCGGGTCAAGTGGACTTTCCTGTCCCG GGGCCGGGAGGCAGAGGTGCTGGTGGCGCGGGGAGTGCGCGTCAAGGTGAACGAGGCCTACCGGTTCCGCGTGGC CTATCGCTGTGAGGTCCAGCACGGCATCGATGACAGCAGCGACGCTGTGGAGGTCAAAGGGTCAAAGGGGTCGTCTT TCTCTACCGAGAGGGCTCTGCCCGCTATGCTTTCTCCTTTTCTGGGGCCCAGGAGGCCTGTGCCCGCATTGGAGC CCGGAACTATGGTGTGGTGGACCCGGATGACCTCTATGATGTGTACTGTTATGCTGAAGACCTAAATGGAGACT GTTCCTGGGTGACCCTCCAGAGAAGCTGACATTGGAGGAAGCACGGGCGTACTGCCAGGAGCGGGGTGCAGAGAT TGCCACCACGGGCCAACTGTATGCAGCCTGGGATGGTGGCCTGGACCACTGCAGCCCAGGGTGGCTAGCTGATGG CAGTGTGCGCTACCCCATCGTCACACCCAGCCAGCGCTGTGGTGGGGGGCTTGCCTGGTGTCAAGACTCTCTTCCT CTTCCCCAACCAGACTGGCTTCCCCAATAAGCACAGCCGCTTCAACGTCTACTGCTTCCGAGACTCGGCCCAGCC TTCTGCCATCCCTGAGGCCTCCAACCCAGCCTCCAACCCAGCCTCTGATGGACTAGAGGCTATCGTCACAGTGAC AGAGACCCTGGAGGAACTGCAGCTGCCTCAGGAAGCCACAGAGAGTGAATCCCGTGGGGCCATCTACTCCATCCC CATCATGGAGGACGGAGGAGGTGGAAGCTCCACTCCAGAAGACCCAGCAGAGGCCCCTAGGACGCTCCTAGAATT TGAAACACAATCCATGGTACCGCCCACGGGGTTCTCAGAAGAGGAAGGTAAGGCATTGGAGGAAGAAAATA CGAGCTCAGCAGCCCGGGCCCTGAGGCCTCTCTCCCCACTGAGCCAGCAGCAGCAGAGAAGTCACTCTCCCAGGC GCCAGCAAGGGCAGTCCTGCAGCCTGGTGCATCACCACTTCCTGATGGAGAGTCAGAAGCTTCCAGGCCTCCAAG GGTCCATGGACCACCTACTGAGACTCTGCCCACTCCCAGGGAGAGGAACCTAGCATCCCCATCACCTTCCACTCT GACAGGAAGCTCCGAGGGTGCCCCTTCCCTGCTTCCAGCCACACGGGCCCCTGAGGGTACCAGGGAGCTGGAGGC CAGCGCCAGCCGAGGTGGAGTGGCCGTGGTCCCCGCATCAGGTGACTGTGTCCCCAGCCCCTGCCACAATGGTGG CCTCCGCTTCTGCAACCCCGGCTGGGACGCCTTCCAGGGCGCCTGCTACAAGCACTTTTCCACACGAAGGAGCTG GGAGGAGGCAGAGACCCAGTGCCGGATGTACGGCGCGCATCTGGCCAGCATCAGCACACCCGAGGAACAGGACTT CATCAACAACCGGTACCGGGAGTACCAGTGGATCGGACTCAACGACAGGACCATCGAAGGCGACTTCTTGTGGTC GGATGGCGTCCCCTGCTCTATGAGAACTGGAACCCTGGGCAGCCTGACAGCTACTTCCTGTCTGGAGAGAACTG CGTGGTCATGGTGTGGCATGATCAGGGACAATGGAGTGACGTGCCCTGCAACTACCACCTGTCCTACACCTGCAA GATGGGGCTGGTGTCCTGTGGGCCGCCACCGGAGCTGCCCCTGGCTCAAGTGTTCGGCCGCCCACGGCTGCGCTA TGAGGTGGACACTGTGCTTCGCTACCGGTGCCGGGAAGGACTGGCCCAGCGCAATCTGCCGCTGATCCGATGCCA AGAGAACGGTCGTTGGGAGGCCCCCCAGATCTCCTGTGTGCCCAGAAGACCTGCCCGAGCTCTGCACCCAGAGGA GGACCCAGAAGGACGTCAGGGGAGGCTACTGGGACGCTGGAAGGCGCTGTTGATCCCCCCTTCCAGCCCCATGCC AGGTCCC<u>TAG</u>GGGCAAGGCCTTGAACACTGCCGGCCACAGCACTGCCCTGTCACCCCAAATTTTCCCTCACACCC TGCGCTCCCGCCACCACAGGAAGTGACAACATGACGAGGGGTGGTGCTGGAGTCCAGGTGACAGTTCCTGAAGGG CAGGGCCGGAGTAAATCCCTAAGTGCCTCAACTGCCCTCTCCCTGGCAGCCATCTTGTCCCCTCTATTCCTCTAG GGAGCACTGTGCCCACTCTTTCTGGGTTTTCCAAGGGAATGGGCTTGCAGGATGGAGTGTCTGTAAAATCAACAG

PCT/US2003/028547

425/6881 FIGURE 395

MAQLFIPLLAALVLAQAPAALADVLEGDSSEDRAFRVRIAGDAPLQGVLGGALTIPCHVHYLRPPPSRRAVLGSP
RVKWTFLSRGREAEVLVARGVRVKVNEAYFFRVALPAYPASLTIDVSLALSELRPNDSGIYRCEVQHGIDDSSDAV
EVKVKGOVFLYREGSARYAFSFSGAQEACARIGAHIATPEQLYAAYLGGYEQCODGWLSDOTVRYPJTOIPREACY
GDMDGFPGVRYNGVVDPDDLYDVYCYAEDLNGELFLGDPPEKLTLEEARAYCQERGAEIATTGQLYAAWDGGLDH
CSPGWLADGSVRYPIVTPSQRCGGGLPGVKTLELFPNGTGFPKHSRFWYYGFRDSAQPSATFEASNPASNPASG
GLEATVITTETLEELLQLPGEATESESRGAIYSIPIMEDGGGGSSTPEDPAEAPRILLEFTGSMVPPTGFSEEG
KALEEEREYVEDEEKEEEEEEEVEVEDEALMAWPSELSSPGPEASLFTEPAAQEKSLSQAPARAVLQPGASPLPDG
ESEASRPPRVHGPPTETLPTPRERNLASPSFSTLVEAREVGEATGGPELSGYPRGESEETGSSEGAPSLLBATRA
PEGTRELEAPSEDNSGRTAPAGTSVQAQPVLPTDSASRGGVAVVPASGDCVPSPCHNGGTCLEEEGFCCLCLPG
YGGDLCDVGLHFCNGGWADAFGGACYKHFSTRRSWEEAETGCRMYGAHLASISTPEEQDFINNRYREYQWIGLNDR
TIEGDFLWSDGVPLLYENWNPGQPDSYFLSGENCVVMWHDQGWSDVPCNYHLSYTCKMGLVSGCPPPELPLAQ
VFGRRRLRYEVDTVLRYRCREGLAQRNLPLIRCQENGRWEAPQISCVPRPARALHPEEDPEGRGRELLGRWKAL

PCT/IIS2003/028547

426/6881 FIGURE 396

PCT/US2003/028547

427/6881 FIGURE 397

MFLTEDLITFNLRNFLLFQLWESSFSPGAGGFCTTLPPSFLRVDDRATSSTTDSSRAPSSPRPPGSTSHCGISTR CTERCLCVLPLRTSQVPDVMAPQHDQEKFHDLAYSCLGKSFSMSNQDLYGYSTSSLALGLAWLSWETKKKNVLHL VGLDSL

PCT/US2003/028547

428/6881 FIGURE 398

TTGCGTAGGGGGCGGGACTAAGGCTGTCAATTGGTCTGTTTTTGTGCCGATCAATGAGATGGGTGCGGTGATTGG TCTCTCCAGAAGGTTCTGCCGGTTCCCCCAGCTCTGGGTACCCGGCTCTGCATCGCGTCGCCATGATGGGCCATC GTCCAGTGCTCGTGCTCAGCCAGAACACAAAGCGTGAATCCGGAAGAAAAGTTCAATCTGGAAACATCAATGCTG CCAAGACTATTGCAGATATCATCCGAACATGTTTGGGACCCAAGTCCATGATGAAGATGCTTTTGGACCCAATGG GAGGCATTGTGATGACCAATGATGGCAATGCCATTCTTCGAGAGATTCAAGTCCAGCATCCAGCGGCCAAGTCCA TGATCGAAATTAGCCGGACCCAGGATGAAGAGGTTGGAGATGGGACCACATCAGTAATTATTCTTGCAGGGGAAA TGCTGTCTGTAGCTGAGCACTTCCTGGAGCAGCAGCAGATGCACCCAACAGTGGTGATCAGTGCTTACCGCAAGGCAT TGGATGATATGATCAGCACCCTAAAGAAAATAAGTATCCCAGTCGACATCAGTGACAGTGATATGATGCTGAACA TCATCAACAGCTCTATTACTACCAAAGCCATCAGTCGGTGGTCATCTTTGGCTTGCAACATTGCCCTGGATGCTG TCAAGATGGTACAGTTTGAGGAGAATGGTCGGAAAGAGATTGACATAAAAAATATGCAAGAGTGGAAAAGATAC CTGGAGGCATCATTGAAGACTCCTGTGTCTTGCGTGGAGTCATGATTAACAAGGATGTGACCCATCCACGTATGC GGCGCTATATCAAGAACCCTCGCATTGTGCTGCTGGATTCTTCTCTGGAATACAAGAAAGGAGAAAGCCAGACTG ACATTGAGATTACACGAGAGGAGGACTTCACCCGAATTCTCCAGATGGAGGAAGAGTACATCCAGCAGCTCTGTG AGGACATTATCCAACTGAAGCCCGATGTGGTCATCACTGAAAAGGGCATCTCAGATTTAGCTCAGCACTACCTTA GGATAGTCAGCCGACCAGAGGAACTGAGAGAAGATGATGTTGGAACAGGAGCAGGCCTGTTGGAAATCAAGAAAA TTGGAGATGAATACTTTACTTTCATCACTGACTGCAAAGACCCCAAGGCCTGCACCATTCTCCTCCGGGGGGCTA GCAAAGAGATTCTCTCGGAAGTAGAACGCAACCTCCAGGATGCCATGCAAGTGTGTCGCAATGTTCTCCTGGACC CTCAGCTGGTGCCAGGGGGTGGGGCCTCCGAGATGGCTGTGGCCCATGCCTTGACAGAAAAATCCAAGGCCATGA CTGGTGTGGAACAATGGCCATACAGGGCTGTTGCCCAGGCCCTAGAGGTCATTCCTCGTACCCTGATCCAGAACT GTGGGGCCAGCACCATCCGTCTACTTACCTCCCTTCGGGCCAAGCACACCCAGGAGAACTGTGAGACCTGGGGTG TAAATGGTGAGACGGGTACTTTGGTGGACATGAAGGAACTGGGCATATGGGAGCCATTGGCTGTGAAGCTGCAGA ACAGAACCAGCAGAGTCTCCCCTTTTCCTGAGCCAGAGTGCCAGGAACACTGTGGACGTCTTTGTTCAGAAGGGA TCAGGTTGGGGGGCAGCCCCCAGTCCCTTTCTGTCCCAGCTCAGTTTTCCAAAAGACACTGACATGTAATTCTTC TCTATTGTAAGGTTTCCATTTAGTTTGCTTCCGATGATTAAATCTAAGTCATTTG

PCT/IIS2003/028547

429/6881 FIGURE 399

MGHRPVLVLSQNTKRESGRKVQSGNINAAKTIADIIRTCLGPKSMMKMLLDPMGGIVMTNDGNAILREIQVQHPA
AKSMIEISRTQDEEVGDGTTSVIILAGEMLSVAEHFLEQQMHPTVVISAYRKALDDMISTLKKISIPVDISDSDM
MINI INSSITTKAISRWSSLACNIALDAVKMVQFEENGRKEIDIKKYARVEKIPGGIIEDSCVLRGVMINKDVTH
PRMRRYIKNPRIVLLDSSLEYKKGESQTDIEITREEDFTRILQMEEPYIQQLCEDIIQLKPDVVITERGISDLAQ
HYLMRANITAIRRVRKTDNNRIARACGARIVSRPEELREDDVGTGAGLLEIKKIGDEYFTFIIDCKDPKACTILL
RGASKEILSEVERNLQDAMQVCRNVLLDPQLVPGGGASEMAVAHALTEKSKAMTGVEQWPYRAVAQALEVIPRTL
IQNCGASTIRLITSLRAKHTQENCETWGVNGETGILVDMKELGIWEPLAVKLQTYKTAVETAVLLLRIDDIVSGH
KKKGDDQSRQGGAPDAGQE

PCT/HS2003/028547

FIGURE 400

GAATTGCGGCCGT<u>ATG</u>CGCGGCTCTGTGGAGTGCACCTGGGGTTGGGGGCACTGTGCCCCCAGCCCCCTGCTCCT TTGGACTCTACTTCTGTTTGCAGCCCCATTTGGCCTGCTGGGGGAGAAGACCCGCCAGGTGTCTCTGGAGGTCAT CCCTAACTGGCTGGGCCCCCTGCAGAACCTGCTTCATATACGGGCAGTGGGCACCAATTCCACACTGCACTATGT GTGGAGCAGCCTGGGGCCTCTGGCAGTGGTAATGGTGGCCACCAACACCCCCCACAGCACCCTGAGCGTCAACTG GAGCCTCCTGCTATCCCCTGAGCCCGATGGGGGCCTGATGGTGCTCCCTAAGGACAGCATTCAGTTTTCTTCTGC CCTTGTTTTTACCAGGCTGCTTGAGTTTGACAGCACCAACGTGTCCGATACGGCAGCAAAGCCTTTGGGAAGACC ATATCCTCCATACTCCTTGGCCGATTTCTCTTGGAACAACATCACTGATTCATTGGATCCTGCCACCCTGAGTGC CACATTCAAGGCCACCCCATGAACGACCCTACCAGGACTTTTGCCAATGGCAGCCTGGCCTTCAGGGTCCAGGC CTTTTCCAGGTCCAGCCGACCAGCCCAACCCCCTCGCCTCCTGCACACAGCAGACACCTGTCAGCTAGAGGTGGC CCTGATTGGAGCCTCTCCCCGGGGAAACCGTTCCCTGTTTGGGCTGGAGGTAGCCACATTGGGCCAGGGCCCTGA CTGCCCCTCAATGCAGGAGCAGCACTCCATCGACGATGAATATGCACCGGCCGTCTTCCAGTTGGACCAGCTACT GTGGGGCTCCCTCCCATCAGGCTTTGCACAGTGGCGACCAGTGGCTTACTCCCAGAAGCCGGGGGGCCGAGAATC AGCCCTGCCCTGCCAAGCTTCCCCTCTTCATCCTGCCTTAGCATACTCTCTTCCCCAGTCACCCATTGTCCGAGC CTTCTTTGGGTCCCAGAATAACTTCTGTGCCTTCAATCTGACGTTCGGGGCCTTCCACAGGCCCTGGCTATTGGGA CCAACACTACCTCAGCTGGTCGATGCTCCTGGGTGTGGGCTTCCCTCCAGTGGACGGCTTGTCCCCACTAGTCCT ${\tt CAAGAAGTACTCAGAGTACCAGTCCATAAAT} \underline{{\tt TAA}} {\tt GGCCCGCTCTCTGGAGGGAAGGACATTACTGAACCTGTCTT}$ GCTGTGCCTCGAAACTCTGGAGGTTGGAGCATCAAGTTCCAGCCGGCCCCTTCACTCCCCCATCTTGCTTTTCTG TGGAGGCGGGCAGGGGCTATTGATAAGGTCCCCTTGGTGTTGCCTTCTTGCATCTCCACACATTTCCCT TGGATGGGACTTGCAGGCCTAAATGAGAGGCATTCTGACTGGTTGGCTGCCCTGGAAGGCAAGAAAATAGATTTA TTTTTTTC

PCT/US2003/028547

431/6881 FIGURE 401

MRGSVECTWGWGHCAPSPLLLWTLLLFAAPFGLLGEKTRQVSLEVIPNWLGPLQNLLHIRAVGTNSTLHYVWSSL
GPLAVVMVATNTPHSTLSVNWSLLLSPEPDGGLMVLPKDSIQFSSALVETRLLEFDSTNVSDTAAKPLGRYPPG
SLADFSWNITIDSLDPATLSAFFGGHPMDPTRTFANGSLAFRVQAFSSSRAPGPFRLHHTADTCOLEVALIGA
SPRGNRSLFGLEVATLGQGPDCPSWQEQHSIDDEYAPAVFQLDQLLWGSLPSGFAQWRPVAYSQKPGGRESALPC
QASPLHPALAYSLPQSFIVRAFFGSQNNFCAFRLIFGASTGPGYWDQHYLSWSMLLGVGFPFVDGLSFLVLGIMA
VALGAFGLMLLGGGLVLLHHFKKYSETYGSIN

PCT/US2003/028547

FIGURE 402

GGCAGCATGGCGTCTTTCCGGCTTCTCCAAACCCTTGCGAAAAACTTTATTGGCAAAGCTATCAGAGAACGGACA $\tt GTGTACCCACTGAGGCGGCCAAAGCTTAACTGGATCAGGGCAGGATGACATGACCTTGTGGTAGATCCCAGAACTGACCTTGTGGTAGATCCCAGAACTGACCTTGTGGTAGATCCCAGAACTGACCTTGTGGTAGATCCCAGAACTGACCTTGTGGTAGATCCCAGAACTGACCTTGTGGTAGATCCCAGAACTGACCTTGTGGTAGATCCCAGAACTGACCTTGTGGTAGATCCCAGAACTGACCTTGTGGTAGATCCCAGAACTGACCTTGTGGTAGATCCCAGAACTGACCTTGTGGTAGATCCCAGAACTGACCTTGTGGTAGATCCCAGAACTGACCTTGTGGTAGATCCCAGAACTGACCTTGTGGTAGATCCCAGAACTGACCTTGTGGTAGATCCCAGAACTGACCTTGTGGTAGATCCCAGAACTGACCTTGTGGTAGACTGACCTTGTGGTAGAACTGACCTTGTGGTAGAACTGACCTTGTGGTAGAACTGACCTTGTGGTAGAACTGACCTTGTGGTAGAACTGACCTTGTGGTAGAACTGACCTTGTGGTAGAACTGACCTTGTGGTAGAACTGACCTTGTGGTAGAACTGACATGACCTTGTGGTAGAACTGACATGACCTTGTGGTAGAACTGACATGACCTTGTGGTAGAACTGACATGATGACA$ GAGGCCCCAGGATGACAGAACAGGAGACCCTGGCCCTACTGGAAGTGAAGAGGTCTGATTCCCCAGAGAAGAGCT CACCCCAGGCCTTGGTTCCCAATGGCCGGCAGCCAGAAGGGGAAGGTGGGGCCGAATCCCCGGGAGCTGAGTCCC TCAGAGTGGGTCTTCAGCTGGATCTCCCACAGCCATAGAGGGGGCTGAGGATGGTCTAGACAGCACAGTAAGTG TTGAACCAGAGCCCCCTGAGTCAGAACCACTTACCAAGCTAGAGGAGCTGCCCGAAGACGATGCCAACCTGCTGC CTGAGAAAGCGGCCCGTGCCTTCGTGCCTATTGACCTACAGTGCATTGAGCGGCAGCCCCAAGAAGACCTTATCG TGCGCTGTGAGGCAGGCGAGGGCGAGTGCCGAACCTTCATGCCCCCCGGGTCACCCCACCCCGACCCCACTGAGC GCAAGTGGGCTGAGGCAGTGGTGAGGCCGCCTGGCTGTTCCTGTGGGGGCTGCGGGAGCTGTGGAGACCGTGAGT TGCCGTTTGATGTCCCACGGCTGCCCACCATGAGTTCCCGCCTGATCTACACACTGCGCTGCGGGGTCTTTGCCA CCTTCCCCATTGTGCTGGGGATCCTGGTGTACGGGCTGAGCCTGTTATGCTTTTCTGCCCTTCGGCCCTTTGGGG AGCCACGGCGGGAGGTGGAGATCCACCGGCGATATGTGGCCCAGTCGGTCCAGCTCTTTATTCTCTACTTCTTCA ACCTGGCCGTGCTTTCCACTTACCTGCCCCAGGATACCCTCAAACTGCTCCCTCTGCTCACTGGTCTCTTTGCCG TCTCCCGGCTGATCTACTGGCTGACCTTTGCCGTGGGCCGCTCCTTCCGAGGCTTCGGCTACGGCCTGACGTTTC TGCCACTGCTGTCGATGCTGATGTGGAACCTCTACTACATGTTCGTGGTGGAGCCGGAGCGCATGCTCACTGCCA $\tt CCGAGAGCCGCCTGGACTACCCGGACCACGCCCGCTCGGCCTCCGACTACAGGCCCCGCCCCTGGGGC\underline{TGA}_{GCCT}$ TCTCCCCTTGCCGGAGCTGCCCTTCACCTTTGGGGCCCGAGACAGTCATAAGGGATGGACTTAGTTTTCTTGCAG GGAAAAAGGTGGACAGCCGTGTTTCTTAAGGATGCTGAGGGCATGGGGCCAGGACCAGGGGAGAGGCACAGCTCC TTCCTGAGCAGCCTCTCACCACTGCCACAAGGCTCCCTAATGCTGGTCTCTGCTCCACTCCCCGGCTTCCCGTGA GGCAGGAGGCAGAGCCACAGCCAAGGCCCTGACCACTTCTGTGCCAGTTGTCTAAGCAGAGCGCCTCAGGGACGC TGGAAATGCCTTAAGGATAGAGGCTGGGCATCACATCAAATGGGACTGTGGTGTTTGGTGAAAACCTTCCTGAGG ATCTGGATTCAGGACCCTCCATGACTGGCCTATTTACTGTTTACAGCTGGCCAGTGCAGAGCTGCTCTTTTA GACAGGGAAATCTGCCTACCAAGAGGGGTGTGTGTGTCTTTTGTGCCCACACGTGGTGGCTGGGAGTGCCTGGAT

PCT/US2003/028547

433/6881 FIGURE 403

MTEQETLALLEVKRSDSPEKSSPQALVPNGRQPEGEGGAESPGAESLRVGSSAGSPTAIEGAEDGLDSTVSEAAT LPWGTGPQPSAPFPDPPGWRDIEPEPPESEPLTKLEELPEDDANLLPEKAARAFVPIDLQCIERQFQEDLIVRCE AGEGECRTEMPPRVTHPDPTERKWAEAVVRPPGCSCGGCGSCGDREWLRAVASVGAALILFPCLLYGAYAFLPFD VPRLPFMSSRLIYTLRCGVFATFPIVLGILVYGLSLLCFSALRPFGEPRREVEIHRRYVAQSVQLFILYFFNLAV LSTYLPQDTLKLLPFLLIGLFAVSRLIYWLTFAVGRSFRGFGYGLTFLPLLSMLMWNLYYMFVVEPERMLTATESR LDYPDHARSASDYRPRWG

PCT/US2003/028547

434/6881 FIGURE 404

ACTCAGTGTTCGCGGGAGCCGCACCTACACCAGCCAACCCAGATCCCGAGGTCCGACAGCGCCCGGCCCAGATCC CCACGCCTGCCAGGAGCAAGCCGAGAGCCAGCCGGCCGCCGCACTCCGACTCCGAGCAGTCTCTGTCCTTCGACC CGAGCCCGCGCCCTTTCCGGGACCCCTGCCCCGGGGCAGCGCTGCCAACCTGCCGGCCATGGAGACCCCGTCC CAGCGGCGCCACCCGCAGCGGGCCCAGCCCAGCTCCACTCCGCTGTCGCCCACCCGCATCACCCGGCTGCAG AACGCAGGGCTGCGCCTTCGCATCACCGAGTCTGAAGAGGTGGTCAGCCGCGAGGTGTCCGGCATCAAGGCCGCC CTGAGCAAAGTGCGTGAGGAGTTTAAGGAGCTGAAAGCGCGCAATACCAAGAAGGAGGGTGACCTGATAGCTGCT CAGGCTCGGCTGAAGGACCTGGAGGCTCTGCTGAACTCCAAGGAGGCCGCACTGAGCACTGCTCTCAGTGAGAAG CGCACGCTGGAGGGCGAGCTGCATGATCTGCGGGGCCAGGTGGCCAAGCTTGAGGCAGCCCTAGGTGAGGCCAAG AAGCAACTTCAGGATGAGATGCTGCGGCGGGTGGATGCTGAGAACAGGCTGCAGACCATGAAGGAGGAACTGGAC TTCCAGAAGAACATCTACAGTGAGGAGCTGCGTGAGACCAAGCGCCGTCATGAGACCCGACTGGTGGAGATTGAC AATGGGAAGCAGCGTGAGTTTGAGAGCCGGCTGGCGGATGCGCTGCAGGAACTGCGGGCCCAGCATGAGGACCAG GTGGAGCAGTATAAGAAGGAGCTGGAGAAGACTTATTCTGCCAAGCTGGACAATGCCAGGCAGTCTGCTGAGAGG AACAGCAACCTGGTGGGGGCTGCCCACGAGGAGCTGCAGCAGTCGCGCATCCGCATCGACAGCCTCTCTGCCCAG CTCAGCCAGCTCCAGAAGCAGCTGGCAGCCAAGGAGGCGAAGCTTCGAGACCTGGAGGACTCACTGGCCCGTGAG CGGGACACCAGCCGGCGGCTGCTGGCGGAAAAGGAGCGGGAGATGGCCGAGATGCGGGCAAGGATGCAGCAGCAG CTGGACGAGTACCAGGAGCTTCTGGACATCAAGCTGGCCCTGGACATGGAGATCCACGCCTACCGCAAGCTCTTG GAGGGCGAGGAGGAGAGGCTACGCCTGTCCCCCAGCCCTACCTCGCAGCCGAGCCGTGGCCGTGCTTCCTCAC TCATCCCAGACACAGGGTGGGGGCAGCGTCACCAAAAAGCGCAAACTGGAGTCCACTGAGAGCCGCAGCAGCTTC TCACAGCACGCACGCACTAGCGGGCGCGTGGCCGTGGAGGAGGTGGATGAGGAGGGCAAGTTTGTCCGGCTGCGC AACAAGTCCAATGAGGACCAGTCCATGGGCAATTGGCAGATCAAGCGCCAGAATGGAGATGATCCCTTGCTGACT TACCGGTTCCCACCAAAGTTCACCCTGAAGGCTGGGCAGGTGGTGACGATCTGGGCTGCAGGAGCTGGGGCCACC ATCAACTCCACTGGGGAAGAAGTGGCCATGCGCAAGCTGGTGCGCTCAGTGACTGTGGTTGAGGACGACGAGGAT ${\tt GAGGATGGAGATGACCTGCTCCATCACCACCATGTGAGTGGTAGCCGCCGC\underline{TGA}_{\tt GGCCGAGCCTGCACTGGGGCCCGC}}$ ACCCAGCCAGGCCTGGGGGCAGCCTCTCCCCAGCCTCCCCGTGCCAAAAATCTTTTCATTAAAGAATGTTTGGAA CTTT

PCT/IIS2003/028547

435/6881 FIGURE 405

METPSQRRATRSGAQASSTPLSPTRITRLQEKEDLQELNDRLAVYIDRVRSLETENAGLRLRITESEEVVSREVS
GIKAAYEAELGDARKTLDSVAKERARLQLELSKVREFFKELKARNTKKEGDLITAAQARLKDLEALLNSKEALAST
ALSERRTLEGELHBLRGQVAKLEAALGEAKKQLQDEMLBRVDAENRLQTMKEELDFQKNIYSEELRETKRALST
LVEIDNGKQREFESRLADALQELRAQHEDQVEQYKKELEKTYSAKLDNARGSAERNSNLVGAAHEELQQSRIRID
SUSAQLSQLQKQLAAKEAKLRDLEDSLARENDTSRRLLAEKEREMAEMRARMQQQLDEYQELLDIKLALDMETHA
YRKLLEGEEERLBLSPSPTSQRSGRASSHSSGTOGGGSVTKKRKLESTESRSSFSQHARTSGRVAVEEVDEEGK
FVRLRNKSNEDQSMGNWQIKRQNGDDPLLTYRFPPFFTLKAGQVVTIWAAGAGATHSPPTDLVWKAQNTWGCGNS
LKTALINSTGEEVAMKKLVRSVTVVEDDEDEDGDDLLHHHHVSGSRR

PCT/US2003/028547

436/6881 FIGURE 406

GCGCAGACGCCCCAGCCCCCCACCGCCCCCAAAGGGGCGAGCGACGCCAAGCTCTGCGCTCTCTACAAAGAGGCC GAGCTGCGCCTGAAGGGCAGCAGCACACCACGGAGTGTTCCCCGTGCCCACCTCCGAGCACGTGGCCGAGATC GTGGGCAGGCAAGGCTGCAAGATTAAGGCCTTGAGGGCCAAGACCAACACCTACATCAAGACACCGGTGAGGGGC GAGGAACCAGTGTTCATGGTGACAGGGCGACGGGAGGACGTGGCCACAGCCCGGCGGGAAATCATCTCAGCAGCG GAGCACTTCTCCATGATCCGTGCCTCCCGCAACAAGTCAGGCGCCGCCTTTGGTGTGGCTCCTGCTCTGCCCGGC CAGGTGACCATCCGTGTGCGGGTGCCCTACCGCGTGGTGGGGCTGGTGGTGGGCCCCAAAGGGGCAACCATCAAG CGCATCCAGCAGCAAACCAACACATACATTATCACACCAAGCCGTGACCGCGACCCCGTGTTCGAGATCACGGGT GCCCCAGGCAACGTGGAGCGTGCGCGCGAGGAGATCGAGACGCACATCGCGGTGCGCACTGGCAAGATCCTCGAG TACAACAATGAAAACGACTTCCTGGCGGGGAGCCCCGACGCAATCGATAGCCGCTACTCCGACGCCTGGCGG GTGCACCAGCCCGGCTGCAAGCCCCTCTCCACCTTCCGGCAGAACAGCCTGGGCTGCATCGGCGAGTGCGGAGTG GACTCTGGCTTTGAGGCCCCACGCCTGGGTGAGCAGGCCGGGACTTTGGCTACGGCGGGTACCTCTTTCCGGGC GCCACGCCCACCTCCGTGCTCTTCTCCTCTGCCTCCTCCTCCTCCTCTTCCGCCAAGGCCCGCGCTGGGCCC CCGGGCGCACACCGCTCCCCTGCCACTTCCGCGGGACCCGAGCTGGCCGGACTCCCGAGGCGCCCCCCGGGAGAG CCGCTCCAGGGCTTCTCTAAACTTGGTGGGGGCGGCCTGCGGAGCCCCGGCGGCGGGGGGGATTGCATGGTCTGC TTTGAGAGCGAAGTGACTGCCGCCCTTGTGCCCTGCGGACACACCTGTTCTGCATGGAGTGTGCAGTACGCATC TGCGAGAGGACGGACCCAGAGTGTCCCGTCTGCCACATCACAGCCACGCAAGCCATCCGAATATTCTCCTAAGCC GGGTGCGCCACTTTCAGAGCCTCTGGTCACCCTGTCCTGGAAAGATTGGGAGGGGGCCCAGACTGAAAATTTTACT AGAGTTACAACTCTGATACCTCAACACCCCTTAAATCTGGAAGCAGCTAAGAGAAACTTTTGTTTTGCCAGAGG TGGCCACTAAGGCATTCTGACGCCCTCTGCCCACCTCCCCCGCTGTGTGTCACTCCACCCCTTCTTCCGAGGAGG GGGTGGGTAAAAGGGAGAGGGAGAATTACCACCTGTATCTAGAGGTGCTCTTTGCAATCCCTAAGCCCTCTGGTC CAGCCCAGCTTTGGGGACACCATCCTTCTGGGGAGAAGTAGGGGGGAGGAATATTTGGATGGTCCCTCCATTCCTC TTCAGGCATCTGGAGGCCCTCTCCCCACTCCTCCAAAGAAACATCTCAAATTATTGATGGAATGTATCCCCATT CTCAGTGAAAATGTGAGGAGGGGACTAATACTGGGGTAAAGGGTCAAACCCCCACCTTCATCACTATGGGCATTA TATTTAGGGAGTAGTTCTTGGGCTGGATTTTCTGGTTGTGGAAGTGGGGGCGCCAGAGTAGTGTGTCTGCTATTT AAAGGAGCAGGAAAGGGCGTGAGGCAGGAGGAGAGACTGGTGGAGGGAAGAGCTGCTCCTCCCATGCAGTGCCCG ACTCCCTGCACCCCTCTCAACCTGACCTGAACCTTTATTGAATCCTTATTAGCTTGAATCCTTATTAGCTTGAAT CCTCCATGCAAATCATGGAGTCTGTGTCCCACCTGATGTGGTTGAGGAGAAGCCAGGTCTTCAAAGAGGGGTCAG CCTGGGGCAAAGCAGGACTGGGGGGAGGTGGGCAGCAGGGCCTATTCTGAGAATCACATATTGTTACAGGCCTTG CACCCCTTTGCTGCTTCCCTCCTGCTCATTTGGGGCTGCCACCAGCTCTCCACCCTCCTGGTTCCGCTGGCCGG GCCAAGAGAGGATGGAGGGATGGGAGTCCCAGGAGATCCTTGTAAATAGTGGGGTGGGACTGTTCTGAGTGATCA GGAGGTCACAGCCAAGAAAACTGCCCTGTGACGACTTCCCTCCTTCCCGCCTATGTGAGCCATCCTGAGATGTCT TGTCTGTCTGTCGTCCCCCTCCCCCTCTCCACTCTTTACCCACAAAGGCAGAAGACTGTTACACTAGGGGGCTCA GCAAATTCAATCCCACCCTTACCAATTGAGCCAAACCTAGAAACAAAACACAAAAACACGAATAGTGAGAGACAAAA

PCT/US2003/028547

437/6881 FIGURE 407

LRIKGSSNTTECVPVPTSEHVAEIVGRQGCKIKALRAKTNTYIKTPVRGEEPVFMVTGRREDVATARREIISAAE
HFSMIRASRNKSGAAFGVAPALPGQVTIRVRVPYRVVGLVVGPKGATIKRIQQOTNTYIITPSRDRDPVFEITGA
PGNVERAREEIETHIAVRTGKILEVNNENDFLAGSPDAAIDSRYSDAWRVHQPGCKPLSTFRQNSLGCIGECGVD
SGFEAPRLGEQGGDFGYGGYLFPGYGVGKQDVYYGVAETSPPLWAGQENATPTSVLFSSASSSSSSSSAKARAGPP
GAHRSPATSAGPELAGLPRRPPG

PCT/US2003/028547

FIGURE 408

GGAGGAGCCGGGCGGGCTGGCGGCCGGCTGGCGGCGCGCATGGCGGAGCCGAGCGGGGCCGAGACGAGA CCCCCATTCGGGTCACCGTCAAGACCCCCAAGGACAAGGAGGAAATTGTGATCTGCGATCGAGCCTCGGTCAAG GAGTTCAAAGAGGAAATCTCCCGGAGGTTTAAGGCTCAGCAGGATCAGCTGGTCCTGATCTTCGCAGGCAAGATC CTCAAGGATGGGGACACACTGAACCAGCACGGAATCAAGGACGGGCTCACTGTCCATCTGGTCATCAAGACCCCT CAGAAGGCTCAAGATCCAGCTGCTGCCACTGCTTCTTCCCCCTCCACACCTGACCCTGCCTCAGCACCCTCCACC ACGCCTGCTTCACCCGCCACCCCTGCCCAGCCCTCCACCTCTGGCAGTGCCTCTTCAGATGCTGGCAGTGGAAGC GGCTTTGGGGGCATCCTGGGGCTGGGCAGCCTAGGCCTGGGCTCTGCCAACTTCATGGAGCTGCAGCAGCAGATG CAGCGGCAGCTGATGTCCAATCCTGAGATGCTGTCACAGATCATGGAGAACCCCCTGGTCCAGGATATGATGTCT AACCCTGATCTGATGCGTCACATGATTATGGCCAACCCCCAGATGCAGCAGTTGATGGAGCGGAACCCTGAGATC AGCCACATGCTCAATAACCCTGAACTCATGAGGCAGACAATGGAGCTTGCTCGGAATCCAGCCATGATGCAAGAG ATGATGCGGAACCAGGACCGGGCCCTGAGCAACCTTGAGAGCATCCCTGGAGGGTATAATGCCCTCCGCCGCATG TACACGGACATCCAGGAGCCCATGTTCAGTGCTGCCCGGGAACAGTTTGGCAACAATCCCTTCTCTTCCCTGGCC ACAGTCTCGAACCCCTTTGGGATCAATGCGGCTAGCCTGGGGTCAGGGATGTTCAATAGCCCAGAAATGCAAGCC CTCCTCCAGCAGATCTCTGAGAACCCCCAGCTGATGCAGAATGTGATCTCAGCACCCTACATGCGCAGCATGATG CAGACGCTTGCCCAGAACCCCGACTTTGCTGCTCAGATGATGGTGAATGTGCCGCTCTTCGCGGGGAACCCCCAA CTGCAGGAGCAGCTCCGCCTGCAGCTCCCAGTCTTCCTGCAGCAGATGCAGAACCCAGAGTCACTCTCCATCCTT ACCANTCCCCGAGCCATGCAGGCATTGCTGCAGATCCAGCAGGGACTACAGACCTTGCAGACCGAGGCCCCTGGG CTGGTACCCAGCCTTGGCTCCTTTGGGATATCCCGGACCCCAGCACCCTCAGCAGCAGCAACGCAGGGTCTACG CCCGAGGCCCCCACTTCCTCACCAGCCACGCCAGCCACATCTTCTCCAACAGGGGCTTCCAGCGCCCCAGCAGCAA CTCATGCAGCAGATGATCCAGCTTTTGGCTGGAAGTGGAAACTCACAGGTGCAGACGCCAGAAGTGAGATTTCAG CAGCAGCTGGAGCAGCTCAACTCCATGGGCTTCATCAATCGTGAGGCTAACCTGCAGGCCCTGATTGCCACAGGA GGGGACATCAACGCAGCTATCGAGAGACTGCTGGGCTCCCAGCTCTCCTAATCCCTCGGCCCATGCCTCCTGCCT CTCCCCTCCCTCGATGTCAGCATTCGGTTCTTCTGTCAATCCTTACCCTCTGCAGCTTGTCCTCCCTTCCGTCTT TGGTTTTACTGCTACGTCTCTAACAGACTCTTCTCTCTGGTCTCCTTGAGCAGTGCTACTTAAACAGTTTTCAC AGTTTCATTGATTGACTCTACCTCCTTGCCCCACACCACTTTTGCAATCTTTAAACTTTCAGTGGCTGTGCAGAG TCGAGGGAGGAACCAGCTCTCTGGTTTACTGGAACATAGTCTTCCATCTATACCACTAGGGTTTTGTCTTATGTT GGTGGGAACTGTTGGAAATTCCAGGGTAAGGAGGAAGATGCCTGTTCTCCCTGTCTGAAGAGGGAGATGAGACAG CTCTCTGGACAGGAATTAACAAACGCTGGAGCAGCCCAGAGGAAATTCGTGTGAAAGAGGAGGGAATGAGATTAT TCGGAGGAAGGGAATGGGGGAGACAGCCTGAGTAAAAGGCTTGGAAGTTGGAATTAACAGTGGGGAGCAGAAGCA CTCATAGCTCTTTTAGGCAGAAGAATCCAGGCCCGAGCTGGCAGAAGAGACTTAGAGATGCTAATGGAATTTAAA CTGAAAAAAGGAGCCCAATGAAGCTAAGCGCCACGCCCCACAAGGGGTCATATTGGCTTTAGTTCCTCAAGCATA GCCCCCTCAAAAGACATGAAGGGGGTTGGGGTCTGTGTGAGTAGTGGGGAGGTGCATGTGTATCCACATGTGTG CATACACTCTTAAGTTGGGTGGGAAGTGGATTCCTTGTTGGTTCTGGTTCAGAGTGCTCTCCCACCACCAGAGA GGGTAACCCAGAGGTAATGTGGGTACCCTTTCTGAAGCTGTCAGGGCTGTGACTAGCACCCTTATCACCCCTCAC TGCCTTGTGGGAATAGTAGAGGGTTTTTTTCCTCCAGAGCCCCTGGCCTTTCAGTTCTTAACTATTTCCCTCCAG GCCAGAAAGTTTTCTTTGAGGAAGGAGAGGAGGGGGGGGCAATGATGCCTTTGATCTGGAATTGGACATTTCTCT GGCTGAGAATATGACGGCAAGAGGAACAGAGTTTGCTCCAAGTGGGAAAGGGTCCCAAGCAGTCCAGAGAAGATG

PCT/US2003/028547

439/6881 FIGURE 409

PCT/US2003/028547

440/6881 FIGURE 410

MRLLSFVVLALFAVTQAEEGARLLASKSLLNRYAVEGRDLTLQYNIYNVGSSAALDVELSDDSFPPEDFGIVSGM LNVKWDRIAPASNVSHTVVLRELKAGYFNFTSATITYLAQEDGFVVIGSTSAPGQGGILAQREFDRRFSPHFLDW AAFGYMTLPSIGIFLLKWSSKRKYDTEKTKKN

PCT/IIS2003/028547

FIGURE 411A

GAGACCAACGCGTGCGGGCCGAACCCCTCCCCCCGCCTTCCCCCAACAATACAGGACGCCGGGGTCCGCGCCGCG TCCTCCCTGGTCCCCCGTCCGATTATGTCTCGGATCGAATCCCTCACGCGGGCGCGGATCGACCGGAGCAGAGA GCTGGCGAGCAAGACCCGGGAAAAGGAGAAAATGAAGAAAGCCAAGGATGCCCGCTATACAAATGGGCACCTCTT CACCACCATTTCAGTTTCAGGCATGACCATGTGCTATGCCTGTAACAAGAGCATCACAGCCAAGGAAGCCCTCAT CTGCCCAACCTGCAATGTGACTATCCACAACCGCTGTAAAGACACCCTCGCCAACTGTACCAAGGTCAAGCAGAA GCAACAGAAAGCGGCCCTGCTGAAGAACAACACCGCCTTGCAGTCCGTTTCTCTTCGAAGTAAGACAACCATCCG GGAGCGGCCAAGCTCGGCCATCTACCCCTCCGACAGCTTCCGGCAGTCCCTCCTGGGCTCCCGCCGTGGCCGCTC CTCCTTGTCTTTAGCCAAGAGTGTTTCTACCACCAACATTGCTGGACATTTCAATGATGAGTCTCCCCTGGGGCT GCGCCGGATCCTCTCACAGTCCACAGACTCCCTCAACATGCGGAACCGAACCCTATCCGTGGAATCCCTCATTGA TCTTGCTGTGGACAGCAGCTTCCTGCAGCAGCATAAAAAGGAGGTGATGAAGCAGCAAGATGTCATCTATGAGCT AATCCAGACAGAGCTGCACCATGTGAGGACACTGAAGATCATGACCCGCCTCTTCCGCACGGGGATGCTGGAAGA GCTACACTTGGAGCCAGGAGTGGTCCAGGGCCTGTTCCCCTGCGTGGACGAGCTCAGTGACATCCATACACGCTT GGGTGATCTGCTCATCAGCCAGTTCTCAGGTCCTAGTGCGGAGCAGATGTGTAAGACCTACTCGGAGTTCTGCAG CCGCCACAGCAAGGCCTTAAAGCTCTATAAGGAGCTGTACGCCCGAGACAAACGCTTCCAGCAATTCATCCGGAA AGTGACCCGCCCGCCGTGCTCAAGCGGCACGGGGTACAGGAGTGCATCCTGCTGGTGACTCAGCGCATCACCAA GTACCCGTTACTCATCAGCCGCATCCTGCAGCATTCCCACGGGATCGAGGAGGAGCGCCAGGACCTGACCACAGC ACTGGGGCTAGTGAAGGAGCTGCTGTCCAATGTGGACGAGGGTATTTATCAGCTGGAGAAAGGGGCCCGTCTGCA GGAGATCTACAACCGCATGGACCCTCGGGCCCAAACCCCAGTGCCTGGCAAGGGCCCCTTTGGCCGAGAGGAACT TCTGAGGCGCAAACTCATCCACGATGGCTGCCTCTCTGGAAGACAGCGACGGGGCGCTTCAAAGATGTGCTAGT GCTGCTGATGACAGATGTACTGGTGTTTCTCCAGGAAAAGGACCAGAAGTACATCTTTCCTACCCTGGACAAGCC TTCAGTGGTATCGCTGCAGAATCTAATCGTACGAGACATTGCCAACCAGGAGAAAGGGATGTTTCTGATCAGCGC AGCCCCACCTGAGATGTACGAGGTGCACACAGCATCCCGGGATGACCGGAGCACCTGGATCCGGGTCATTCAGCA GAGCGTGCGCACATGCCCATCCAGGGAGGACTTCCCCCTGATTGAGACAGAGGATGAGGCTTACCTGCGGCGAAT TAAGATGGAGTTGCAGCAGAAGGACCGGGCACTGGTGGAGCTGCTGCGAGAAAGGTCGGGCTGTTTGCTGAGAT GACCCATTTCCAGGCCGAAGAGGATGGTGGCAGTGGGATGGCCCTGCCCACCCTGCCCAGGGGCCTTTTCCGCTC TGAGTCCCTTGAGTCCCCTCGTGGCGAGCGGCTGCTGCAGGATGCCATCCGTGAGGTGGAGGGTCTGAAAGACCT TAACACGAGTCCTGGGGTCACTGCCAATGGTGAGGCCAGAACCTTCAATGGCTCCATTGAACTCTGCAGAGCTGA CTCAGACTCTAGCCAGAGGGATCGAAATGGAAATCAGCTGAGATCACCGCAAGAGGAGGCGTTACAGCGATTGGT CAATCTCTATGGACTTCTACATGGCCTACAGGCAGCTGTGGCCCAGCAGGACACTCTGATGGAAGCCCGGTTCCC TGAGGGCCCTGAGCGGCGGGAGAAGCTGTGCCGAGCCAACTCTCGGGATGGGGAGGCTGGCAGGGCTGGGGCTGC CCCTGTGGCCCCTGAAAAGCAGGCCACGGAACTGGCATTACTGCAGCGGCAACATGCGCTGCTGCAGGAGGAGCT ACGGCGCTGCCGGCGGCTAGGTGAAGAACGGGCAACCGAAGCTGGCAGCCTGGAGGCCCGGCTCCGGGAGAGTGA GCAGGCCCGGGCACTGCTGGAGCGTGAGGCCGAAGAGGCTCGAAGGCAGCTGGCCGCCCTGGGCCAGACCGAGCC ACTCCCAGCTGAGGCCCCCTGGGCCCGCAGACCTGTGGATCCTCGGCGGCGCAGCCTCCCCGCAGGCGATGCCCT GTACTTGAGTTTCAACCCCCCACAGCCCAGCCGAGGCACTGACCGCCTGGATCTACCTGTCACTACTCGCTCTGT CCATCGAAACTTTGAGGACCGAGAGAGGCAGCAACTGGGGAGCCCCGAAGAGCGGCTGCAAGACAGCAGTGACCC GGACATCCCGGAGGAGACGGAGAGCCGCGACGGGGAGGCTGTAGCCTCCGAGAGCTAAGGGGGCCCCTCCCCCT GCCCCGTGCCCCACTGAAGAACATTACTGAGGGGGCTAACCTTGGGGACTCCAATTTGCCAATGATGAGGGAACA TTTGAAAGAACTGCAAATTGTCCTTGCCAGCTCTTGGGATCCTTGGATACCTGGGGCCCATTTAAGAAGCTAGGGG AATTAGGCCACAACACCCCCTGGGACATCCGAAAGCTACACCACAGATGCCAGTGGTTCATGCCTTCTTCCCGCA GGAACCAAGCCATAGGGATCAGAGGGCCTTGTCCTTGAACACTACTGGGGTATATTCAGGCTCATCCACGCAGCT GCTGGGTTCTTGCCCTAACGGCCCTCCCCTGCAACATCCGTCTTGGAGGAGAGGCTGCAGCCACAGCACCCTACT GCCCTTTAAATAAAGGAGGGCTGTGGGCAAGGCCATGTCCCTTTCTCCTCTCCCCTCAACCTCTTACTGCTGTTC

PCT/HS2003/028547

442/6881 FIGURE 411B

PCT/IIS2003/028547

443/6881 FIGURE 412

ATGCAGCAGCACGTTCAGCTCTTGACCCAAATCCACCTTCTTGCCACCTGCAACCCCAACCTCAATCCGGAGGCC ACTACCACCAGGATATTTCTTAAAGAGCTGGGAACCTTTGCTCAAAGCTCCATCGCCCTTCACCATCAGTACAAC CCCAAGTTTCAGACCCTGTTCCAACCCTGTAACTTGATGGGAGCTATGCAGCTGATTGAAGACTTCAGCACACAT GCTTGGATTCTGGCCACAAGCAAGGTTTTCATGTATCCAGAGTTACTTCCAGTGTGTCCCTGAAGGCAAAGAAT $\tt CCCCAGGATAAGATCGTCTTCACCAAGGCTGAGGACAATTTGTTAGCTTTAGGACTGAAGCATTTTGAAGGAACT$ GAGTTTCCTAATCCTCTAATCAGCAAGTACCTTCTAACCTGCAAAACTGCCCACCAACTGACAGTGAGAATCAAG AACCTCAACATGAACAGAGCTCCTGACAACATCATTAAATTTTATAAGAAGACCAAACAGCTGCCAGTCCTAGGA AAATGCTGTGAAGAGATCCAGCCACATCAGTGGAAGCCACCTATAGAGAGAAGAAGAACACCGGCTCCCATTCTGG TTAAAGGCCAGTCTGCCATCCATCCAGGAAGAACTGCGGCACATGGCTGATGGTGCTAGAGAGGTAGGAAATATG ACTGGAACCACTGAGATCAACTCAGATCGAAGCCTAGAAAAAGACAATTTGGAGTTGGGGAGTGAATCTCGGTAC ${\tt CCACTGCTATTGCCTAAGGGTGTAGTCCTGAAACTGAAGCCAGTTGCCACCCGTTTCCCCAGGAAGGCTTGGAGA}$ CAGAAGCGTTCATCAGTCCTGAAGCCCCTCCTTATCCAACCCAGCCCCTCTCTCCAGCCCAGCTTCAACCCTGGG AAAACACCAGCCCGATCAACTCATTCAGAAGCCCCTCCGAGCAAAATGGTGCTCCGGATTCCTCACCCAATACAG $\tt CCAGCCACTGTTTTACAGACAGTTCCAGGTGTCCCTCCACTGGGGGTCAGTGGAGGTGAGAGTTTTGAGTCTCCT$ GCCCCTGTGCCCAAGGTAATGCTGCCCTCCCTTGCCCCTTCTAAGTTTCGAAAGCCATATGTGAGACGGAGACCC TCAAAGAGAAGAGGGTCAAGGCCTCTCCCTGTATGAAACCTGCCCCTGTTATCCACCACCCTGCATCTGTTATC TTCACTGTTCCTGCTACCACTGTGAAGATTGTGAGCCTTGGCGGTGGCTGTAACATGATCCAGCCTGTCAATGCG AACCAGTCCCTTGTGGCCTCCTCTGTCTCACCCTTAATTGTTTCTGGCAATTCTGTGAATCTTCCTATACCATCC ACCCCTGAAGATAAGGCCCACGTGAATGTGGACATTGCTTGTGCTGTGGCTGATGGGGAAAATGCCTTTCAGGGC GGGCCTCCACTAGCAGATGCAGAGTGCCAAGAAGGATTGTCAGAGAATAGTGCCTGTCGCTGGACCGTTGTGAAA ACAGAGGAGGGAAGCTACTGGAGCCGCTCCCTCAGGGCATCCAGGAGTCTCTAAACAACCCTACCCCTGGG GATTTAGAGGAAATTGTCAAGATGGAACCTGAAGAAGCTAGAGGAGGAAATCAGTGGATCCCCTGAGCGTGATATT TGTGATGACATCAAAGTGGAACATGCTGTGGAATTGGACACTGGTGCCCCAAGCGAGGAGTTGAGCAGTGCTGGA GAAGTAACGAAACAGACAGTCTTACAGAAGGAAGAGGAGGAGGAGTCAGCCAACTAAAACCCCTTCATCTTCTCAA GAGCCCCCTGATGAAGGAACCTCAGGGACAGATGTGAACAAAGGATCATCAAAGAATGCTTTGTCCTCAATGGAT CCAGTTGGGCCAGAAACTGGAGGAGAAGAATGGGCCAGAAGAAGAGGAAGAAGAGAAGACTTTGATGACCTCACC CAAGATGAGGAAGATGAAATGTCATCAGCTTCTGAGGAATCTGTGCTTTCTGTCCCAGAACTCCAGGTGAGAGCT ACTATGGATAGTCCTAAAATCATTTGTATTTGA

PCT/US2003/028547

444/6881 FIGURE 413

MOQHVQLLTQIHLLATCNPNLNPEATTTRIFLKELGTFAQSSIALHHQYNPKFQTLFQPCNLMGAMQLIEDFSTH VSIDCSPHKTVKKTANEFPCLFKQVAWILATSKVFMYPELLPVCSLKAKNPQDKIVFTKAEDNILALDCKHFEST EFFNPLISKYLLTCKTANECHTVRIKNLNMRAPDNIISKYLKTYKKTKOLDGHPQWKPPTEREEHRLPFW LKASLPSIQEELRHMADGAREVGNNTGTTEINSDRSLEKDNLELGSESRYPLLLPKGVVLKLKPVATRFPRKAWR CKRSSVLKPLLIOPSPSLQPSFNPGKTFARSTHSEAPPSKWVLRIPHPIQPATVLQTVPGVVPLGVSGESFESP AALPAVPPEATSFPLSESQTLLSSAPPVKMLPSLASFKRFKPVYRRPSKRRGVKASPCKMPAPVIHPASVI PTYPATTVKIVSLGGGCNMIQPVRMLPSLASFKRFKPVYRRPSKRRGVKASPCKMPAPVIHPASVI FTYPATTVKIVSLGGGCNMIQPVNAVAQSPQTIPITTLLVNPTSFPCPLNQSLVASSVSPLIVSGNSVNLPIFS TEDEDKAHVNVDIACAVADGENAFQGLEFKLEPGGELSPLSATVFFKVEHSPGPPLADAECQEGLSENSACRWTVVK TEEGRQALEPLPQGGIPSINNPTFGDLEFLYKHEPEREREISGSPEDICDDIKVEHAVELDTGAFSELISSAG EVTKQTVLQKEEERSQPTKTPSSSQEPPDEGTSGTDVNKGSSKNALSSMDPEVRLSSPFCKPEDSSSVDGGSVGT PVGPETGGEKNGPEEEEEDFDDLTQDEEDEMSSASEESVLSVPELQVRAGEYSQVFRGLSNMYHLLICHLLACC

PCT/IIS2003/028547

445/6881 FIGURE 414

ACTAGTCCTCGACTCACGTGCAAGGATGATGCTGAAAGGAATAACAAGGCTTATCTCTAGGATCCATAAGTTGGA CCCTGGCGTTTTTTACACATGGGGACCCAGGCTCGCCAAAGCATTGCTGCTCACCTAGATAACCAGGTTCCAGT TGAGAGTCCGAGAGCTATTTCCCGCACCAATGAGAATGACCCGGCCAAGCATGGGGATCAGCACGAGGGTCAGCA CTACAACATCTCCCCCAGGATTTGGAGACTGTATTTCCCCATGGCCTTCCTCCTCTTTGTGATGCAGGTGAA GACATTCAGTGAAGCTTGCCTGATGGTAAGGAAACCAGCCCTAGAACTTCTGCATTACCTGAAAAAACACCAGTTT TGCTTATCCAGCTATACGATATCTTCTGTATGGAGAGAGGGAACAGGAAAAACCCTAAGTCTTTGCCATGTTAT TCATTTCTGTGCAAACAGGACTGGCTGATACTACATATTCCAGATGCTCATCTTTGGGTGAAAAATTGTCGGGA TCTTCTGCAGTCCAGCTACAACAACAACAGCGCTTTGATCAACCTTTAGAGGCTTCAACCTGGCTGAAGAATTTCAA AACTACAAATGAGCGCTTCCTGAACCAGATAAAAGTTCAAGAGAAGTATGTCTGGAATAAGAGAAAAGCACTGA GAAAGGGAGTCCTCTGGGAGAAGTGGTTGAACAGGGCATAACACGGGTGAGGAACGCCACAGATGCAGTTGGAAT TCTTTGGGGAAGAACCACTCTGAAAAGAGAAGATAAAAGCCCGATTGCCCCCGAGGAATTAGCACTTGTTCACAA CTTGAGGAAAATGATGAAAAATGATTGGCATGGAGGCGCCATTGTGTCGGCTTTGAGCCAGACTGGGTCTCTCTT CATCCTGGTTTCCAACTATAACCCAAAGGAATTTGAAAGTTGTATTCAGTATTATTTGGAAAACAATTGGCTTCA ACATGAGAAAGCTCCTACAGAAGAAGGGAAAAAAGAGCTGCTGTTCCTAAGTAACGCGAACCCCTCGCTGCTGGA GCGGCACTGTGCCTACCTCTAAGCCAAGATCACAGCATGTGAGGAAGACAGTGGACATCTGCTTTATGCTGGACC CAGTAAGATGAGGAAGTCGGCCAGTACACAGGAAGAGGAGCCAGGCCCTTGTACCTATGGGATTGGACAGGACTG CAGTTGGCTCTGGACCTGCATTAAAATGGGTTTCACTGTGAATGCGTGACAATAAGATATTCCCTTGTTCCTAAA

PCT/US2003/028547

446/6881 FIGURE 415

MMLKGITRLISRIHKLDPGRFLHMGIQARQSIAAHLDNQVPVESPRAISRTNENDPAKHGDQHEGQHYNISPQDL ETVFPHGLPPRFVMQVKTFSEACLMVRKPALELLHYLKNTSFAYPAIRYLLYGEKGTGKTLSLGHVIHFCAKQDW LILHIPDAHLMVKNCRDLLQSSYNKQRFDQPLEASTWIKNFKTINERFFLNQIKVQEKYVMNRESTEGSPLGEV VEGGITRVNNATDAVGIVLKELKRQSSLGMFHLLVAVDGINALWGRITLKREDKSPIAPEELALVHNLRKMMKND WHGGAIVSALSQTGSLFKPRKAYLDQELLGKEGFDALDPFIPILVSNYNPKEFESCIQYYLENNWLQHEKAPTEE GKKELLFJENNNPSLLERFHGAYL

PCT/IIS2003/028547

FIGURE 416

TCTTCACCACTGCTCTCCCAGAGGTCCAGGTCCGGGAGATGACAGTGGCTCCCAGAAAGCCCAGGATTCAATCGC TGAGAGAGTGCTTAGGCCCGAATGCCGGCCCAAATCGTTCTACTCACCGTGTCGGAGGCCGAGAGCGATGAGAGT GTCAGGAGGCGGCCAGCGGGTAAGCCGACTGGCGGAAATGCGAGAGAGGAAAGGGGAAAGGTGGAGGGCTAAAGG GGCAAACTGAGAGGAGGCGGATCCCGCAACCGACACTGGGATCGTTTCCCCTCGCAAAGCGAACCCAAAATGGCG CAACCTCCCACTCCTCCCTCCCCGCGTTCTTCCCCACGGTCCCCCGCTTCGCCCGACTCCGGCCATGTAGCGCGC $\tt CTGCGAGCCAGCCATCCCGTACGCGCTCACCCACGGGAACCTCCTCGCCCAGTTCTCCACTCCCCCTCAGACCCT$ GTCAAGCCGGCTCCAGCGCAGGCCCTCACGCGTACCTTCAGCGGCGCGAGCCCAAGCCTTCTCCACCTCCTCTC CACTCCTCGCGCGTGCGCCTCCCACAGTCCCCACCGCGGGACTGTTCCATTCCTGGCGGCTGCAGGGGCAGGAGA GGGCGGCCTAGCGCCCCTCTGCCGGCCGGTGGTTGGAGGCCGCGCGGCGGCTGCGCGTTGAGTCGTTTCCTGCCGGATCTGGAGAACTAGTCCTCGACTCACGGTGAGGGAATGGACCGACACGGGTATTGTACCGCTGAGGGAAAGGAGCG $\tt TTCTCGAATTTCACACCACTGTCCATATGCGA\underline{TGA}\underline{TGA}\underline{TGTTTGCTCTGACGCACTTACTCATGGATGGTACT$ TCAGCCTCGTTAGACAGCCTGGTGATGGAGGATGAAGAAACCATGTGCTTCTCATTCAGTTCTGGACTCAGTTTC CCTTGTCTTCAGCAAGTTATTTTTGTTAGTTCCTTATCAAAAAGTGTACATAAAAATTAAGGCAACTCCAAACATG ${\tt CCTCCAGGGTTGGTGTGAAATAATAAGATAGGGCTGGGCGGGGGGGCTCACGCCTGTAATCCCAGCACTTTGG}$ GAGGCCGAGGCAGGTGGATGACAAGGTGAAGAGATCGAGACAATCCTGGCCAACATGGTGAAACCCCGTCTCTAC TAAAAATACAAATATTAGCCGGCCGTGGTGGCGGCGCCCTGTAGCCCCAGCTACTCGGGAGGCTGAGGCAGGAGA ATTGCTTGAACCCGGGCGGCGGAAGTTGCAGTGAGCCGAGATCGCGCCACTGCACTCCAGCCTGGCGACAAAGCG AGACTCCGTCACACACACACACACACACACGAAATAATAATATATGTAAAGTGGAATTAGCTCCAAGTCGTTAAT AAAACAAAGCAGGCCGGGCGTCTTGTTAAATAGTTGTATCAATGACTTGATTTAGATTAATGAGGATATATTTTT GAAACCCCATCTCTACAAAAAGACACAAAAATTAGACAGGTGTGGCACACGCTTGTAGTCTGAGCTACTTGGGAG GCTGAAGCAGGAGGATTGAGGAAGAGGTTGCAAAGTTAGCCGAGATCACGCCATCACACTGCAGCCTAGGTGACA GAGCGAGACCCTGTCTCAAAAAAAGAAAGAAGAAGACATTAGCAGAAAAGCTGAGGAAATGCAAATAAAGTCTGCAAT TTTTAAAT

PCT/US2003/028547

FIGURE 417

 $\label{thm:main} {\tt MTRPFFAVSGRALWSRPQAACVGRLVWRTSPRLTVREWIDIGIVPLRERSGIPDLQEVGSEAGRPARLRGGFLPGVELDETTURMR}$

PCT/HS2003/028547

FIGURE 418

GAGAGAAGAGGGGGGGGGAGAAGGCTTGGGCTCGCGCCGCTGAAGTCGGCTTACCCGCTGGCCGCCTCCTGACAAG CGGGAGGGATCCGCGGTGGACCCAGGGAAGCGGAGGAGCCTGGCGGCCACCCCCTCTTCCTCACTTCCCTGTACT CTCATCGCTCTCGGCCTCCGACACGAAAAGGAAGCAAATGAGCTGATGGAAGATCTGTTTGAAACTAGACAGGGT CTTGCCATGTTCTGGAACTCATAGGCTCAAGTAATCTTCCTGCCTCAACCTCCCAAAGTGCTGGAATTACAGTTC AACTTTAACACCCCTCAAGCTCTACGGTTTGAGGAACTACTGGCCAACCTACTAAATGAACAACATCAGATAGCG AAGGAACTATTTGAACAGCTGAAGATGAAGAAACCTTCAGCCAAACAGCAGAAGGAGGTAGAGAAGGTTAAACCC CAGTGTAAGGAAGTTCATCAGACCCTGATTCTGGACCCAGCACAAAGGAAGAAGACTCCAGCAGCAGATGCAGCAG CATGTTCAGCTCTTGACACAAATCCACCTTCTTGCCACCTGCAACCCCAATCTCAATCCGGAGGCCAGTAGCACC AGGATATGTCTTAAAGAGCTGGGAACCTTTGCTCAAAGCTCCATCGCCCTTCACCATCAGTACAACCCCAAGTTT CAGACCCTGTTCCAACCCTGTAACTTGATGGGAGCTATGCAGCTGATTGAAGACTTCAGCACACATGTCAGCATT GACTGCAGCCCTCATAAAACTGTCAAGAAGACTGCCAATGAATTTCCCTGTTTGCCAAAGCAAGTGGCTTGGATC AAGATCCTCTTCACCAAGGCTGAGGACAATTTGTTAGCTTTAGGACTGAAGCATTTTGAAGGGACTGAGTTTCTT AACCCTCTAATCAGCAAGTACCTTCTAACCTGCAAGACTGCCCGCCAACTGACAGTGAGAATCAAGAACCTCAAC ATGAACAGAGCTCCTGACAACATCATTAAATTTTATAAGAAGACCAAACAGCTGCCAGTCCTAGGAAAATGCTGT GAAGAGATCCAGCCACATCAGTGGAAGCCACCTATAGAGAGAAGAACACCGGCTCCCATTCTGGTTAAAGGCC AGTCTGCCATCCATGCAGGAAGAACTGCGGCACATGGCTGATGGTGCTAGAGAGGTAGGAAATATGACTGGAACC ACTGAGATCAACTCAGATCAAGGCCTAGAAAAAGACAACTCAGAGTTGGGGAGTGAAACTCGGTACCCACTGCTA TTGCCTAAGGGTGTAGTCCTGAAACTGAAGCCAGTTGCCGACCGTTTCCCCAAGAAGGCTTGGAGACAGAAGCGT TCATCAGTCCTGAAACCCCTCCTTATCCAACCCAGCCCCTCTCTCCAGCCCAGCTTCAACCCTGGGAAAACACCA GTTTTACAGACAGTTCCAGGTGTCCCTCCACTGGGGGTCAGTGGAGGTGAGAGTTTTGAGTCTCCTGCAGCACTG CCCAAGGTAATGATGCCCTCCCCTGCCTCTTCCATGTTTCGAAAGCCATATGTGAGACGGAGACCCTCAAAAAGA AGGGGAGCCAGGGCCTTTCGCTGTATCAAACCTGCCCCTGTTATCCACCCTGCATCTGTTATCTTCACTGTTCCT GCTACCACTGTGAAGATTGTGAGCCTTGGCGGTGGCTGTAACATGATCCAGCCTGTCAATGCGGCTGTGGCCCAG GTGGCCTCCTCTGTCTCACCCTTAATTGTTTCTGGCAATTCTGTGAATCTTCCTATACCATCCACCCCTGAAGAT AAGGCCCACATGAATGTGGACATTGCTTGTGCTGTGGCTGATGGGGAAAATGCCTTTCAGGGCCTAGAACCCAAA TTAGAGCCCCAGGAACTATCTCCTCTCTCTGCTACTGTTTTCCCCAAAGTGGAACATAGCCCAGGGCCTCCACCA GTCGATAAACAGTGCCAAGAAGGATTGTCAGAGAACAGTGCCTATCGCTGGACCGTTGTGAAAACAGAGGAGGA AGGCAAGCTCTGGAGCCGCTCCCTCAGGGCATCCAGGAGTCTCTAAACAACTCTTCCCCTGGGGATTTAGAGGAA GTTGTCAAGATGGAACCTGAAGATGCTACAGAGGAAATCAGTGGATTTCTTTGAGCTAGGAGAATAAGAGTCTGG AGACTGGGAGCCTTCACTTCGGCCTCCGATTGGTGGCGCATAGGGTGTAACCAATAGGAAACCCCTAAAGGGTAC ААААААААААААА

PCT/IIS2003/028547

450/6881 FIGURE 419

MGFSNMEDDGPEEERVAEPQANFNTPQALRFEELLANLLNEQHQIAKELFEQLKMKKPSAKQQKEVEKVKPQCK
EVHQTLILDPAQRKRLQQQMQQHVQLLIQIHLLATCNPNLNPEASSTRICLKELGTFAQSSIALHHQYNPKGTJ
FQPCNLMGAMQLIEDPSTHVSIDCSPHKTVKKTANEFPCLPKQVAWILATSKVFMYPELLPVCSLKAKNPQDKIL
FTKAEDNLLALGLKHFEGTEFLNPLISKYLLICKTARQLTVRIKNLNMNRAPDNIIKFYKKTKQLPVLGKCCEEI
QPHQWKPPIEREEHRLPFHLKASLPSIQESIGELRHMADGAREVGMNTGTTEINSDGLEKONSELGSETRYPLLLFV
GVVLKLKEVADRFPKKAWRQKRSSVLKPLLIQFSPSLQPSFNPGKTPAQSTHSEAPPSKMVLRIPHPIQPATVLQ
TVPGVPPLGVSGGESFESPAALPAMPPEARTSFPLSESQTILLSSAPVPKVMMPSPASSMFRKPYVRRPSKRGA
RAFRCIKPAPVIHPASVIFTVPATTVKIVSLGGGCMMTQPVNAAVAQSPQTIPIATLLVAPTSFPCELNQPLVAS
SVSPLIVSGNSVNLPIPSTPEDKAHMNVDIACAVADGENAFQCLEPKLEPPCLEPSLASTYFFKVEHSPGPPPVDK
QCQEGLSENSAYRMTVVKTEEGRQALEPLEQGIQESLNNSSPGDLEEVVKMEPEDATEEISGFL

PCT/US2003/028547

451/6881 FIGURE 420

AGCGCAGTATGGCGGGGGGCCCGGGAGGTGCTCACACTGCAGTTGGGACATTTTGCCGGTTTCGTGGGCGCGC ACTGGTGGAACCAGCAGGATGCTGCGCCGAGCCGACCGATTCCAAGGAGCCCCCGGGAGAGCTGTGCCCCG ACGTCCTGTATCGTACGGGCCGGACGCTGCACGGCCAGGAGACCTACACGCCGCGACTCATCCTCATGGATCTGA AGGGTAGTTTGAGCTCCCTAAAAGAGGAAGGTGGACTCTACAGGGACAAACAGTTGGATGCTGCAATAGCATGGC AGGGGAAGCTCACCACACACAAGAGGAACTCTATCCCAAGAACCCTTATCTCCAAGACTTTCTGAGTGCAGAGG GAGTGCTGAGTGATGGTGTCTGGAGGGTCAAATCCATTCCCAATGGCAAAGGTTCCTCACCACTCCCCACCG $\tt CTACAACTCCAAAACCACTTATCCCTACAGAGGCCAGCATCAGGGTCTGGTCAGACTTCCTCAGAGTCCATCTCC$ ATCCCCGGAGCATCTGTATGATTCAGAAGTACAACCACGATGGGGAAGCAGGTCGGCTGGAGGCTTTTGGCCAAG GGGAAAGTGTCCTAAAGGAACCCAAGTACCAGGAAGAGCTGGAGGACAGGCTGCATTTCTACGTGGAGGAATGTG ACTACTTGCAGGGCTTCCAGATCCTGTGTGACCTGCACGATGGCTTCTCTGGGGTAGGCGCGAAGGCGGCAGAGC TGCTACAAGATGAATATTCAGGGCGGGGAATAATAACCTGGGGCCTGCTACCTGGTCCCTACCATCGTGGGGAGG CCCAGAGAAACATCTATCGTCTATTAAACACAGCTTTTGGTCTCGTGCACCTGACTGCTCACAGCTCTCTTGTCT GCCCCTTGTCCTTGGGTGGGAGCCTGGGCCTGCGACCCGAGCCACCTGTCAGCTTCCCTTACCTGCATTATGATG CCACTCTGCCCTTCCACTGCAGTGCCATCCTGGCTACAGCCCTGGACACAGTCACTGTTCCTTATCGCCTGTGTT CCTCTCCAGTTTCCATGGTTCATCTGGCTGACATGCTGAGCTTCTGTGGGAAAAAGGTGGTGACAGCAGGAGCAA TCATCCCTTTCCCCTTGGCTCCAGGCCAGTCCCTTCCTGATTCCCTGGTGCAGTTTGGAGGAGCCACCCCATGGA AAATCTTGGCTCAGTATTTACAACAGCAGCAGCCTGGAGTCATGAGTTCTTCCCATCTGCTGCTGACTCCCTGCA GGGTGGCTCCTTACCCCCACCTCTCTCAAGCTGCAGTCCACCGGGTATGGTTCTGGATGGTTCCCCCCAAGG GAGCAGCAGTGGAGAGCATCCCAGTGTTTGGGGCACTGTGTTCCTCTTCGTCCCTGCACCAGACCCTGGAAGCCT TGGCCAGAGACCTCACCAAACTCGACTTGCGGCGCTGGGCCAGCTTCATGGATGCTGGAGTGGAGCACGATGACG TAGCAGAGCTGCTGCAGGAGCTACAAAGCCTGGCCCAGTGCTACCAGGGTGGTGACAGCCTCGTGGACTAAAGTT CCCAGTGTGGGAGAAAGGAGCTAGTTTGCAATAAAAACAGCTGGATGCAGGAGCCCAGTGTCTTCATGCAGAGGA GCTCAATGTCGCGGGACTAGCTACACCAACATATGCACTTTTTACATTTAGAAACACTGTGATTAGACCACAGAA CAATAAATATGTGCCATCAGACC

PCT/US2003/028547

452/6881 FIGURE 421

MAGGAREVLTLQLGHFAGFVGAHWMNQQDAALGRATDSKEPPGELCPDVLYRTGRTLHGQETYTPRLILMDLKGS
LSSLKEEGGLYRDKQLDAAIAWQKLTTHKEELYPKNPYLQDFLSAEGVLSSDGVWRVKSIPNGKGSSPLETATT
PKFLIFITEASIRVWSDFLRVHHPRSICMIQKYNHDGEAGRLEAFGQGESVLKEPKYQEELEDRLHFYVEECOYL
QFGOILCDLHDGFSGVGAKAAELLQDEYSGRGIITWGLLPGPYHRGEAQRNIYRLLMTAFGLVHLTAHSSLVCPL
SLGGSLGLRPEPPVSFPYLHYDATLPFHCSAILATALDTVTVPYRLCSSPVSMYHLADMLSFCGKKVVTAGAIIP
FPLAPGQSLPDSLVQFGGATPMTPLSACGEPSGTRCFAQSVVLRGIDRACHTSQLTPGTPPPSALHACTTGEEIL
AQYLQQQQPGWMSSHLLITPCRVAPPYPHLFSSCSPFGMVDLGSSPKGAAVESIPVFGALCSSSSLHQTLEALAR
DLTKLDLRRWASFMDAGVEHDDVAELLQELQSLAQCYQGGDSLVD

PCT/US2003/028547

453/6881 FIGURE 422

AGGTGAGAGAGGATGTGTGCTGGGCCTTGGAGGAAGGGGGCCGAGACCGGGCCTTACTTCTGTAACGATACTGTG AGGCATCGGAAGGCCAGCCTGTTGTGTCCGTTTTGAAGG<u>ATG</u>CCCCTGTCCCGCTGGTTGAGATCTGTGGGGGTC GGGTACCCAGTCCTGGCCTGGCACAGTGCCCGCTGCTGGTGCCAAGCGTGGACAGAGGAACCTCGAGCCCTTTGC TCCTCCCTCAGAATGAACGGAGACCAGAATTCAGATGTTTATGCCCAAGAAAAGCAGGATTTCGTTCAGCACTTC TCCCAGATCGTTAGGGTGCTGACTGAGGATGAGATGGGGCACCCAGAGATAGGAGATGCTATTGCCCGGCTCAAG GAGGTCCTGGAGTACAATGCCATTGGAGGCAAGTATAACCGGGGGTTTGACGGTGGTAGTAGCATTCCGGGAGCTG GTGGAGCCAAGGAAACAGGATGCTGATAGTCTCCAGCGGGCCTGGACTGTGGGCTGGTGTGTGGAACTGCTGCAA GCTTTCTTCCTGGTGGCAGATGACATCATGGATTCATCCCTTACCCGGCGGGACAGATCTGCTGGTATCAGAAG $\tt CCGGGCGTGGGTTTGGATGCCATCAATGATGCTAACCTCCTGGAAGCATGTATCTACCGCCTGCTGAAGCTCTAT$ TGCCGGGAGCAGCCCTATTACCTGAACCTGATCGAGCTCTTCCTGCAGAGTTCCTATCAGACTGAGATTGGGCAG ACCCTGGACCTCCTCACAGCCCCCCAGGGCAATGTGGATCTTGTCAGATTCACTGAAAAGAGGTACAAATCTATT GTCAAGTACAAGACAGCTTTCTACTCCTTCTACCTTCCTATAGCTGCAGCCATGTACATGGCAGGAATTGATGGC GAGAAGGAGCACGCCAATGCCAAGAAGATCCTGCTGGAGATGGGGGGAGTTCTTTCAGATTCAGGATGATTACCTT GTTCAGTGTCTGCAACGGGCCACTCCAGAACAGTACCAGATCCTGAAGGAAAATTACGGGCAGAAGGAGGCTGAG AAAGTGGCCCGGGTGAAGGCGCTATATGAGGAGCTGGATCTGCCAGCAGTGTTCTTGCAATATGAGGAAGACAGT TACAGCCACATTATGGCTCTCATTGAACAGTACGCAGCACCCCTGCCCCCAGCCGTCTTTCTGGGGCTTGCGCGC ACCTT-

PCT/US2003/028547

454/6881 FIGURE 423

MPLSRWLRSVGUFLLPAPYWAPRERWLGSLRRPSLVHGYPVLAWHSARCWCQAWTEEPRALCSSLRMNGDQNSDV YAQEKQDFVQHFSQIVRVLTEDEMGHPEIGDAIARLKEVLEYNAIGGKYNRGLTVVVAFRELVEPRKQDADSLQR AWTVGWCVELLQAFFLVADDIMDSSLTRRGQICWYQKPGVGLDAINDAWLEAGCIYRLLKLYCRRQPYYLNLIEL FLQSSYQTEIGGTLDLLTAPQGNVDLVRFTEKRYKSIVKYKTAFYSFYLPIAAAMYMAGIDGEKEHANAKKILLE MGGFFQIQDDYLDLFGDPSVTGKIGTDIQDNKCSWLVVQCLQRATPEQYQILKENYGQKEAEKVARVKALYEELD LPAVFLQYEEDSYSHIMALIEQYAAPLPPAVFLGLARKIYKRK

PCT/IIS2003/028547

455/6881 FIGURE 424

GGCGAACTGAGGCGAGTGAAGTGGACTCTGAGGGCTACCGCTACCGCCACTGCTGCGGCAGGGGCGTGGAGGGCA ${\tt GAGGGCCGCGGAGGCCGCAGTTGCAAAC} \underline{{\tt ATG}}{\tt GCTCAGAGCAGACACGGCGGAAACCCGTTCGCCGAGCCCAGCGA}$ GCTTGACAACCCCTTTCAGGACCCAGCTGTGATCCAGCACCCAGCCGGCAGTATGCCACGCTTGACGTCTA CAACCCTTTTGAGACCCGGGAGCCACCACCAGCCTATGAGCCTCCAGCCCCTGCCCCATTGCCTCCACCCTCAGC TCCCTCCTTGCAGCCCTCGAGAAAGCTCAGCCCCACAGAACCTAAGAACTATGGCTCATACAGCACTCAGGCCTC AGCTGCAGCAGCCACAGCTGAGCTGCTGAAGAAACAGGAGGAGCTCAACCGGAAGGCAGAGGAGTTGGACCGAAG GGAGCGAGAGCTGCAGCATGCTGCCCTGGGGGGCACAGCTACTCGACAGAACAATTGGCCCCCTCTACCTTCTTT TTGTCCAGTTCAGCCCTGCTTTTTCCAGGACATCTCCATGGAGATCCCCCAAGAATTTCAGAAGACTGTATCCAC GGAAACCAACAATGGCGCAGGCTTTGGGCTTTCTATCCTCTGGGTCCTCCTTTTCACTCCCTGCTCCTTTGTCTG CGTCCAGGATGTGCTCTTTGTCCTCCAGGCCATTGGTATCCCAGGTTGGGGATTCAGTGGCTGGATCTCTGCTCT GGTGGTGCCGAAGGGCAACACAGCAGTATCCGTGCTCATGCTGGTCGCCCTGCTCTTCACTGGCATTGCTGT GCTAGGAATTGTCATGCTGAAACGGATCCACTCCTTATACCGCCGCACAGGTGCCAGCTTTCAGAAGGCCCAGCA AGAATTTGCTGCTGGTGTCTTCTCCAACCCTGCGGTGCGAACCGCAGCTGCCAATGCAGCCGCTGGGGCTGCTGA AAATGCCTTCCGGGCCCCG<u>TGA</u>CCCCTGACTGGGATGCCCTGGCCCTGCTACTTGAGGGAGCTGACTTAGCTCCC GTCCCTAAGGTCTCTGGGGACTTGGAGAGACATCACTAACTGATGGCTCCCGTAGTGCTCCCAATCCTATGGCC ATGACTGCTGAACCTGACAGGCGTGTGGGGAGTTCACTGTGACCTAGTCCCCCCATCAGGCCACACTGCTGCCAC

PCT/US2003/028547

FIGURE 425

MAQSRDGGNPFAEPSELDNPFQDPAVIQHRPSRQYATLDVYNPFETREPPPAYEPPAPAPLPPPSAPSLQPSRKL SPTEPKNYGSYSTQASAAAATAELLKKQEELNRKAEELDRRERELQHAALGGTATRQNNWPPLPSFCPVQPCFFQ DISMBIPQGFGKTVSTMYYLWMCSTLALLLNFLACLASFCVETNNGAGFGLSILWVLLFTPCSFVCWYRPWYKAF RSDSSFNFFVFFFIFFVQDVLFVLQAIGIPGWGFSGWISALVVPKGHTAVVVLMLLVALLFTGIAVLGIVMLKRI HSLYRRTGASFQKAQQEFAAGVFSNPAVRTAAANAAAGAAENAFRAP

PCT/US2003/028547

457/6881 FIGURE 426

GGTAGTTGGTTGTGGGCACTGGGTTAGAGGTATCACGTGGGGGCACTTTCGTCTTAGCTTTTGGACAAGACGCAG GGCGAACTGAGGCGAGTGAAGTGGACTCTGAGGGCTACCGCTACCGCCACTGCTGCGGCAGGGGCGTGGAGGGCA GAGGGCCGCGGAGGCCGCAGTTGCAAACATGGCTCAGAGCAGAGACGGCGGAAACCCGTTCGCCGAGCCCAGCGA GCTTGACAACCCCTTTCAGCCACCACCACCAGCCTATGAGCCTCCAGCCCCTGCCCCATTGCCTCCACCCTCAGCTCC CTCCTTGCAGCCCTCGAGAAAGCTCAGCCCCACAGAACCTAAGAACTATGGCTCATACAGCACTCAGGCCTCAGC TGCAGCAGCCACAGCTGAGCTGCTGAAGAAACAGGAGGAGCTCAACCGGAAGGCAGAGGAGTTGGACCGAAGGGA GCGAGAGCTGCAGCATGCTGCCCTGGGGGGCACAGCTACTCGACAGAACAATTGGCCCCCTCTACCTTCTTTTTG TCCAGTTCAGCCCTGCTTTTTCCAGGACATCTCCATGGAGATCCCCCAAGAATTTCAGAAGACTGTATCCACCAT AACCAACAATGGCGCAGGCTTTGGGCTTTCTATCCTCTGGGTCCTCCTTTTCACTCCCTGCTCCTTTGTCTGCTG ${\tt CCAGGATGTGCTCTTTGTCCTCCAGGCCATTGGTATCCCAGGTTGGGGATTCAGTGGCTGGATCTCTGCTCTGGT}$ GGTGCCGAAGGGCAACACAGCAGTATCCGTGCTCATGCTGCTGGTCGCCCTGCTCTTCACTGGCATTGCTGTGCT AGGAATTGTCATGCTGAAACGGATCCACTCCTTATACCGCCGCACAGGTGCCAGCTTTCAGAAGGCCCAGCAAGA ATTTGCTGCTGGTGTCTTCTCCAACCCTGCGGTGCGAACCGCAGCTGCCAATGCAGCCGCTGGGGCTGCTGAAAA TGCCTTCCGGGCCCCGTGACCCGTGACTGGGATGCCCTGGCCCTGCTACTTGAGGGAGCTGACTTAGCTCCCGTC CCTAAGGTCTCTGGGGACTTGGAGAGACATCACTAACTGATGGCTCCTCCGTAGTGCTCCCAATCCTATGGCCATG ACTGCTGAACCTGACAGGCGTGTGGGGAGTTCACTGTGACCTAGTCCCCCCATCAGGCCACACTGCTGCCACCTC **АСТGGAACTGAAAAAAAAAAAAAA**

PCT/US2003/028547

FIGURE 427

MAQSRDGGNPFAEPSELDNPFQPPPAYEPPAPAPLPPPSAPSLQPSRKLSPTEPKNYGSYSTQASAAAATAELLK KQEELNRKAEELDRRERELQHAALGGTATRQNNWPPLPSFCPVQPCFFQDISMEIPQEFQKTVSIMYYLWMCSTL ALLLINFLACLASFCVETNNGAGFGLSILWVLLFTECSFVCWYRPMYKAFRSDSSFNFFVFFFFFFFVQDVLFVLQA IGIPGWGFSGWISALVVPKGNTAVSVLMLLVALLFTGIAVLGIVMLKRIHSLYRRTGASFQKAQQEFAAGVFSNP AVKTAAAMAAAGAAENAFRAP

PCT/IIS2003/028547

459/6881 FIGURE 428

CCTGCGGCAGCCGGAGCTCGGGGAGCGGAGCGTGGTGGGGAGGGGAGCGGGACAGGCGACACAGGAGACAGCGGC TCACCCCACGCCGACCCCTCCCCTCTTCTCTAGACTTATTTCCATCCTTCCCGCTTTTACCCTCCCCACCCGTCC CCAGCCGCTCGCTGACCAGCCGGCCCAGCACCAGGGGCCTTACCCACCTCCGCCTCCACCGACCCTGGCTGCAGG $\tt CCCTGCTTACGCTGGGGCTGGTCCAAGTGCTCCTGGGCATCCTGGTGGTCACCTTCAGCATGGTGGCCTCTTCCG$ GCATTGTGTCCTGGAAGCGGCCATTCACTCTAGTGATCTCCTTCTTCTTCCTTGCTTTCGGTGCTCTGTGTCATGC TTAGCATGGCTGGCTCTGTTCTCTCTGTAAGAATGCTCAACTGGCCCGAGACTTCCAACAGTGCTCTCTGGAAG GAAAGGTCTGTGTGTGCCCTCTCTGTTCCCCTCCCGGCCCTGTCCAGAGTCGGGGCAGGAACTGAAAGTTG $\tt CCCCTAACTCCACCTGTGATGAAGCCCGAGGGGCCCTCAAGAACCTGCTCTTCAGCGTCTGTGGGCTCACCATTT$ GTGCCGCTATAATCTGTACACTCTCTGCTATTGTCTGCTGCATCCAAATCTTCTCCCTGGACCTCGTGCATACGC AGCTGGCCCCTGAGCGGTCAGTCTCAGGCCCACTGGGACCTCTGGGCTGCACGTCCCCGCCCCCAGCCCCTCTCC TACACACCATGCTGGACCTGGAGGAATTTGTCCCGCCTGTGCCCCCACCGCCCTACTATCCCCCAGAGTATACCT ${\tt GCAGCTCAGAAACAGATGCACAGAGCATCACGTACAATGGCTCCATGGACAGCCCAGTGCCCTTGTACCCTACCG}$ ATTGCCCCCCTTCTTATGAGGCAGTCATGGGACTACGAGGAGACAGCCAGGCCACTCTCTTTGACCCTCAGCTTC ACGATGGCTCGTGCATCTGTGAACGAGTGGCCTCCATTGTAGACGTGTCCATGGACAGCGGGTCTCTGGTGCTGT ${\tt CAGCCATTGGTGACCTCCCTGGGGGCTCTAGCCCGTCGGAGGACTCGTGCCTGGAGCTGCAGGGCTCCGTGC}$ TGCGGGGCCCCTTCGAGGAAAGCCCCCTGCCACGGCCCCCCACGGGCTGCCCGCTCCTATTCCTGCTCTGCCC $\tt CTGAAGCTCCACCCCACTGGGTGCCCCCACAGCTGCCCGCAGCTGCCACCGGTTGGAGGGCTGGCCGCCCTGGG$ TGGGACCCTGCTTCCCCGAGCTGAGGCGGCGGGTCCCCCGGGGAGGGGGGCCCCCAGCCGCAGCCCCACCC GAGCCCCGACTCGTCGCTTCAGCGATAGCTCAGGTTCCCTCACCCCACCGGGGCACCGGCCTCCTCATCCGGCAT CCTGCCTCTTCCGCCTAGCCCGCTGCCCTTCCCCCAAGTTGCTACGTGCCCGGTCAGCCGAGAAACGGCGCCCTG TGCCCACCTTCCAAAAAGTTCCCCTGCCCTCGGGCCCTGCACCTGCCCACTCCCTGGGGGACCTAAAGGGCAGCT GGCCAGGTCGGGGCCTGGTCACTCGTTTCCTCCAGATATCCAGGAAAGCCCCAGACCCCAGTGGGACTGGAGCTC ATCTGAGCTCTAGCTCTTCCCTGCGGCGTCTCCTGTCTGGCCGCAGGCTGGAGCGTGGTACCCGCCCCCACAGCC $\tt CTTCTGTCCTGTGCTGCATGGGGTATTTAGACTGTGGGGGAGATGCCCCTTCTTATAGCACTGGAGGAGGAAAACA$ AATTCTTGTCCCCCTCAGAATGAGAGTGGCTCTTTCTGATTTGCAAGGGCACTATGGTCAGGGCAAAGGCATGGC TAGGTGGCCTCTCAGCTCTGCCACCTCTAGCTGCATGACCTTGGGCAAGCTATGTAACCCCAATTGCCTGCTCCA TTAAAGACTGTGAAGGTAGAATGTTTGTAAAGCTCTTAACAGTATGTAAGCCTTCAATAAATTTCAGTTTTCCCC

PCT/HS2003/028547

460/6881 FIGURE 429

MMFSPSDSSRSLTSRPSTRGLTHLRLHRPWLQALLTLGLVQVLLGILVVTFSMVASSVTTTESIKRSCPSWAGFS
LAFSGVVGIVSWKRPFTLVISFFSLLSVLCVMLSMAGSVLSCKNAQLARDFQQCSLEGKVCVCCESVPLLRFCPE
SGQELKVAPNSTCDEARGALKNLLFSVCGLTICAAIICTLSAIVCCIQIFSLDLVHTQLAPERSVSGPLGPLGCT
SPPPAPLLHTMLDLEEFVPPVPPPPYYPPEYTCSSETDAQSITYNGSMDSPVPLYPTDCPSYEAVMGLRGDSQA
TLEPDQLHGGSCICERVASIVDVSMDGGSLVLSAIGDLPGGSSPSEDSCLLELQGSVRSVDYVLFRSIQRSRAGY
CLSLDCGLRGPFEESPLPRRPPRAARSYSCSAPEAPPPLGAPTAARSCHRLEGWPPWGFCFFELRRVPRGGGR
PAAAPPTRAPTRRSDSSGSLTPPGHRPPHPASPPPLLLPRSHSDPGITTSSDTADFRDLYTKVLEEEAASVSSA
DTGLCSEACLFRLARCPSPKLLRARSAEKRRPVPTFOKVPLPSGPAPAHSLGDLKGSWFGRGLVTRFLGISRKAP
DPSGTGAHGHRQVPRSLWGRPGRESLHLRSCGDLSSSSSLRRLLSGRRLERGTRPHSLSLNGGSRETGL

PCT/US2003/028547

FIGURE 430

GCTCTGGCCCCACGCACAGCCCCACTGTCACCAGGGCCAGTATCTGTCTCAGGGACCTCCTATCCAGAGCCTGAG CCAGCCCCAGCCCCAGCCCCAGCTCCAGCTCCATCTGAACCTGTATCTTCTTCCAAGCCACCCATTACCCTC TTGGAGTCAGACTCACGCATCTCCAAAGAAGAACTTTTGAGAGCCCAGGCGCTGAGAGAGCAGGGTCAGACACTC CCGAGCCTCTCGGTACAGCTGTAGGGGCGACACAGGTAGGCTTGCAGCTGCGGGAACAGTGCCACCTCCGCACCT AAGCACTCCCATTCCTGGCCAGCATCCTTGGGGCTCATCTCATACAATAGCCCCCGGTCTCAGAGCTACCTCCTT GCGGCCAGGCAGGAAGAAGTTGAGGGGAAAGGGCATAGCCTCTGCATACCACTTCCGGGTCACTTCTACGTAGTT TGTCTGATTCAAGGTGGGCTTCTGACCTCCATGCTCTCCTGAGTCTCTGTGTGGGTCTGTGTGTTCCCGTCCCCT CCCCGGCTGGCCATGGATGCTGGGAGGTCTGGGCACACTCACCAGCACCGGGATCAACTTCTCCTCCAGGAGAGA CATGAAGGCCAGGGTGTCTGCCCCTTGCTGAGCTGACAGATCATAATCAGCATTGTACTTCTGTGGAGGAAATAT CCTGTTGCTGTTGGCAAAAAGCCTGGGCCTTGGAGCCCGCTGGCCGTCAAGGTCCTGGGCCCATTGAGAAGAAGA AAGAAAGGTTGGGCCGCAAACTAGGAGCAGCTCCCAGAATTTCCATGGAAAGCTGGAACAATGCCTGC<u>TGA</u>CAGC AACTTTCTAACAGTAACTTTCCCGACCCAGACACCACAAAGCTAGCACAACGGAGCTCAGATGCAGGCTAGGACT CGGTCCATGCCTCAGGAACCAGGGAAAGCCATCCTCACACTCCCTGGATCCAGGGAACCCACGCCCAGGGCCCCC ACACATTCCATCCATACCCCCAGGTCTCAGCCTGCCCTACCTTCCCAGGCTCCAGTCCCTGTTCCTCAGCATCCC CCACCACATCCTGAGTAAGCTTTGTCCCCAGATAACCTCTTCAGCATGATCCTTAAATCTCCCTAAGCCTCAGTT TCTCCCCTGTGGAATGGGGGTAAGAATCTCTTTCTCTGAATGCCCCTGTGTTAGGAAATAATTTAGAATACTTCG GAAACAAAAAGCTCTGTTCACACCTAAGCAATCAGGGCAGTGGCCCTGGCCTTGCCAGGAACTTAGGCTTTTATC TGGATCCTCTTTCCAGGCCTCTCAATTAATTCCCCAGGTCCTTAACCTTTGGGAAATTAGAAATTAGGAAGAGTG TCCCACTTCTGACACTGTGTTCCCTCTTGGAACCTGACCGTCAATGCTAGAAGAACCCTTGGAAAACATGCTGGC AATGGCAGAGTAAAGAGCATAGCCTAGGCCTCCCCACTCCTCTAGTAATGCTCTTTCATCTTCTCCAACCTGGCT CTAAGCCTTGTCCATCCTGAGCCCCATATCTAGCCCAACCTAGTCCCTGAAAACAAGAAGTGGCCCTTAGAAATC $\tt CTGACAGGCAGAAGGTACCGTGCCTCTGGATATCCCCACAGTGCCCTGAGCTGCATCTCTTGCCGACTGCTTTAA$ CATGGCATATATCTAGTGCTCAATAAATGTGTATTGTACGG

PCT/US2003/028547

FIGURE 431

MAWTLGSCKGTSPGRKESCLVPPSLASECSGGTARNFSCQGPLAWAQPVACCCWQKAWALEPAGRQGPGPIEKKE ERLGRKLGAPRISMESWNNAC

PCT/IIS2003/028547

463/6881 FIGURE 432

AAGCCCCAGCCCGGCCTCCGGCCGCCGCCACCGCCCTGTTTTGTTTCCATGGCGACAGGCGGCGCAGGG CCCGCTCCAAACATAACGCGCTGTGGAAAACATGCTGCTCGGGGGACCCCCCCGCAGTCCCCGCTCGGGGACGAG ACCCCGCTCTCCAGAGCCTGCCGCGCCTTCAAGGGTTCGGGGCTCCACTTGGACGAGGCGCCGTGACTCTCCGAG GCGCGCCGGGCCGACAGCGCTGTCCCGCTACGTGGGCCACCTCTGGATGGGCCGGCGGCGGCCCCTCCCCCGAGGC CCGCGGCCCAGTCCCCGCAGTTCAGCTGCCAGTCGGGCCAGAAGAAGCCTCGCCTCCCCGGGGATCTCCCCAGG AGTGTTTCCGGGACAGAGGGTGGGCAAGATGGCGGCGCCCATGGAGCTGTTCTGCTGGTCAGGGGGCTGGGGGCT GCCGTCAGTGGACCTGGACAGCCTGGCCGTGCTGACCTATGCCAGATTTACTGGTGCTCCACTGAAGGTACACAA TCCACACAAGATCATCACCCACCTTCGAAAAGAGGTACATACTTTTTGGATAGACACCAAGAACTACGTGGAAGT ${\tt CATGGAACGGCTACAGCTGACTGAGGGAGCACAGGCCTGAGGACGAGGAAGAGCTGGAGAAGGAGCTGTACCG}$ AGAGGCTCGGGAGTGTCTGACCCTGCTCTCAGCGCCTGGGCTCTCAAAAGTTCTTCTTTGGAGATGCCCCTGC $\tt CTCCTTGGACGCCTTCGTCTTCAGCTACTTGGCCCTGCTGCTGCAGGCAAAGCTGCCCAGTGGGAAGCTGCAGGT$ CCACCTGCGTGGGCTGCACAACCTCTGTGCCTATTGTACCCACATTCTCAGTCTCTACTTCCCCTGGGATGGAGC GGCAACGCCTGCTCGTGGCCCCAGGCACCCGGACCCTGGGCATGGCTGAGGAGGATGAAGAGGAATGATTTGTCC TCACGCTCCCAAGACTGGTTTTTCTACTCTCATGCATTCCAGAGGCCCCCGTGCCTCCTCGTTGTTGGTACAGCC GGACACGGGGTGTGCCACCCAGAATAAAGCCACTCACACTG

PCT/IIS2003/028547

464/6881 FIGURE 433

GCCGGAAGCGCGCGGAGACCATGTAGTGAGACCCTCGCGAGGTCTGAGAGTCACTGGAGCTACCAGAAGCATCAT GGGCCCTGGGGAGAGCCAGAGCTCCTGGTGTGCGCCCCCGAGGCGGTAGCTTCAGAGCCTCCAGTGCCTGTGGG GCTGGAGGTGAAGTTGGGGGCCCTGGTGCTGCTGCTGGTGCTCACCCTCTCTGCAGCCTGGTGCCCATCTGTGT GCTGCGCCGGCCAGGAGCTAACCATGAAGGCTCAGCTTCCCGCCAGAAAGCCCTGAGCCTAGTAAGCTGTTTCGC AGCCTTGCACGTGACGCTCCAGTTCCCACTGCAAGAGTTCATCCTGGCCATGGGCTTCTTCCTGGTCCTGGTGAT GGAGCAGATCACACTGGCTTACAAGGAGCAGTCAGGGCCGTCACCTCTGGAGGAAACAAGGGCTCTGCTAGGAAC AGTGAATGGTGGGCGCAGCATTGGCATGATGGGCCAGGGGTCCCACAGGCGAGTGGAGCCCCAGCAACCCCCTC AGCCTTGCGTGCCTGTGTACTGGTGTTCTCCCTGGCCCTCCACTCCGTGTTCGAGGGGCTGGCGGTAGGGCTGCA TCTAGGCATCGGGCTGGGTGCAGCTCTGGCAGAGTCGGCAGGACCTCTGCACCAGCTGGCCCAGTCTGTGCTAGA GGGCATGGCAGCTGGCACCTTTCTCTATATCACCTTTCTGGAAATCCTGCCCCAGGAGCTGGCCAGTTCTGAGCA AAGGATCCTCAAGGTCATTCTGCTCCTAGCAGGCTTTGCCCTGCTCACTGGCCTGCTCTTCATCCAAATCTAGGG TAGGAAGGAAAGGGGAAGGGAAATACTGAGGACCAAAAAGTTCTCTGGGAGCTAAAGATAGAGCCTTTGGGGCTA TCTGACTAATGAGAGGGAAGTGGGCAGACAAGAGGCTGGCCCCAGTCCCAAGGAACAAGAGATGGTCAAGTCGCT AGAGACATATCAGGGGACATTAGGATTGGGGAAGACACTTGACTGCTAGAATCAGAGGTTGGACACTATACATAA GGACAGGCTCACATGGGAGGCTGGAGGTGGGTACCCAGCTGCTGTGGAACGGGTATGGACAGGTCATAAACCTAG CCTACCCTCATACCTATCTCCCTCCCCATCTCCTAGGGGACTGGCGCCAAATGGTCTCTCCCTGCCAATTTTG TGTACCCTAGGAATATGGGGACATGGACATGGTGTCCCATGCCCAGATGATAAACACTGAGCTGCCAAAACATTT GTGCATAGGGACATATTCTTTAGAATCTATTTTATTAACTGACCTGTTTTGGGACCTGTTACCCAAATAAAAGAT GTTTCTAG

PCT/US2003/028547

465/6881 FIGURE 434

AGAAAGAAAAGGTGTAGTGTTTGGGGAGGTCAACGGGCTATGCTGGCTTGACAGGGCTGGGCTCTTCAGAACAGA \mathtt{AGC} ATCGGATCTCGGAATCCCTGACCTGGTGGACGCGTGGCTGGAGCCCCCAGAGGATATCTTCTCGACAGGATCC GTCCTGGAGCTGGGACTCCACTGCCCCCCTCCAGAGGTTCCGGTAACTAGGCTACAGGAACAGGGACTGCAAGGC TGGAAGTCCGGTGGGACCGTGGCCTGTGGCCTTCAAGAGAGTGAGCCTGAAGATTTCTTGAAGCTTTTCATTGAT AGTCCCCCTGCCCCCAGGGCAACCAGTTCTCCTATGCTCTATGAGGTTGTCTATGAGGCAGGGGCCCTGGAGAGG CCAGTGCCCTGTACAACCCTGCTGCCCTGTCAAACCCTGTTCCTGACCGATGAGGAGAAGCGTCTGCTGGGGCAG GAAGGGGTTTCCCTGCCCTCTCACCTGCCCCTCACCAAGGCAGAGGAGGGTCCTCAAGAAGGTCAGGAGGAAAA ATCCGTAACAAGCAGTCAGCTCAGGACAGTCGGCGGCGGAAGAAGGAGTACATTGATGGGCTGGAGAGCAGGGTG GCAGCCTGTTCTGCACAGAACCAAGAATTACAGAAAAAAGTCCAGGAGCTGGAGAGGCACAACATCTCCTTGGTA GCTCAGCTCCGCCAGCTGCAGACGCTAATTGCTCAAACTTCCAACAAAGCTGCCCAGACCAGCACTTGTGTTTTG ATTCTTCTTTTTTCCCTGGCTCTCATCATCCTGCCCAGCTTCAGTCCATTCCAGAGTCGACCAGAAGCTGGGTCT GAGGATTACCAGCCTCACGGAGTGACTTCCAGAAATATCCTGACCCACAAGGACGTAACAGAAAATCTGGAGACC CAAGTGGTAGAGTCCAGACTGAGGGAGCCACCTGGAGCCAAGGATGCAAATGGCTCAACAAGGACACTGCTTGAG GACCTTCCTGGCCCACTTCCTGATCACAAGGAATCCTGGGCTTCCTTATGGCTTTGCTTCCCACTGGGATTCCTA $\tt CTTAGGTGTCTGCCCTCAGGGGTCCAAATCACTTCAGGACACCCCAAGAGATGTCCTTTAGTCTCTGCCTGAGGC$ $\tt CTAGTCTGCATTTGTTTGCATATATGAGAGGGTACCTCAAATACTTCTGTTATGTATCTGTGATTTTATTTCTTC$

PCT/HS2003/028547

466/6881 FIGURE 435

MDLGIPDLLDAWLEPPEDIFSTGSVLELGLHCPPPEVPVTRLQEQGLQGWKSGGDRGCGLQESEPEDFLKLFIDP
NEVYGEASPGSDSGISEDPCHPDSPPAPRATSSPMLYEVYYEAGALERMQGETCPNVGLISIQLDQWSPAFWN
DSCMYSELFPADHAHILPRAGTYAP VEGTTLBECOTLETLIDEEKRLLGGGGVSUS PHLPITKAEERVLKKVRKI
RNKQSAQDSRRRKKEYIDGLESRVAACSAQNQELQKKVQELERHNISLVAQLRQLQTLIAQTSNKAAQTSTCULI
LLFSLALIILBSFSPFGSRPEAGSEDYQPHGVTSRNILTHKDVTENLETQVVESRLREPPGAKDANGSTRTLLEK
MGGKPRPSGRTRSVLHADEM

PCT/US2003/028547

467/6881 FIGURE 436

PCT/US2003/028547

FIGURE 437

MLAGAGRPGLPQGRHLCWLLCAFTLKLCQAEAFVQEEKLSASTSNLPCWLVEEFVVAEECSPCSNFRAKTTPECG PTGYVEKITCSSSKRWEFKSCRSALMEQRLFWKFEGAVVCVALIFACLVIIRQRQLDRKALEKVRKQIESI

PCT/IIS2003/028547

469/6881 FIGURE 438

GAATTCGAGGATCCGGGTACCATGGGAGGAAAACTTCTTCCTGGCCTGGGCTCCGTGCCGCTCTGTTTGCCAACC GTCCAGTCCGGCTACCAGTGCCGGGCGCTCCCCACCCTCCCCGGCTCCCCGGTGTCCGCCATGGCCAAAGC CTACGACCACCTCTTCAAGTTGCTGCTGATCGGGGACTCGGGGGTGGGCAAGACTTGTCTGATCATTCGCTTTGC AGAGGACAACTTCAACAACACTTACATCTCCACCATCGGAATTGATTTCAAGATCCGCACTGTGGATATAGAGGG GAAGAGATCAAACTACAAGTCTGGGACACGGCTGGCCAAGAGCGGTTCAAGACAATAACTACTGCCTACTACCG TGGAGCCATGGGCATTATCCTAGTATACGACATCACGGATGAGAAATCTTTCGAGAATATTCAGAACTGGATGAA AAGCATCAAGGAGAATGCCTCGGCTGGGGTGGAGCGCCTCTTGCTGGGGAACAAATGTGACATGGAGGCCAAGAG GAAGGTGCAGAAGGAGCAGGCCGATAAGTTGGCTCGAGAGCATGGAATCCGATTTTTCGAAAACTAGTGCTAAATC CAGTATGA A TGTGGATGA GGCTTTTA GTTCCCTGGCCCGGGACATCTTGCTCA AGTCA GGA GGCCGGA GATCAGG A A C G G C A C A A G C C T C C C A G T A C T G A C C T G A A A C T T G T G A C A G A G A A C A C C A A C A A G T G C T C C C T G G G C T G AGGACCCTTTCTTGCCTCCCCACCCGGAAGCTGAACCTGAGGGAGACAACGGCAGAGGGAGTGAGCAGGGGAGA AATAGCAGAGGGCCTTGGAGGGTCACATAGGTAGATGGTAAAGAGAATGAGGAGAAAAAGGAGAAAAAGGGAAAAAG GGTAGGAAGAGGGAGGAAAGGAAGGAGAGAGAGACCTTCAGACCTTACCTGGGTTTTCAGGGCA AACATA AATGTA AATACACTGATTTATTCTGTTACTAGATCAGGTTTTAGGGTCCTGCAAAAGGCTAGCTCGGCA AAAAAAAAAAAACCATGGTACCCGGATCCTCGAATTC

PCT/US2003/028547

470/6881 FIGURE 439

MAKAYDHLFKLLLIGDSGVGKTCLIIRFAEDNFNNTYISTIGIDFKIRTVDIEGKKIKLQVWDTAGQERFKTITT AYYRGAMGIILVYDITDEKSFENIQNMMKSIKENASAGVERLLLGNKCDMEAKRKVQKEQADKLAREHGIRFFET SAKSSMNVDEAFSSLARDILLKSGGRRSGNGNKPPSTDLKTCDKKNTNKCSLG

PCT/HS2003/028547

471/6881 FIGURE 440

CCTTTCCGGCGGTGACGACCTACGCACACGAGAACATECCTCGCAAAGGATCTCCTTCATCCCTCTCCAGAAGAGGAGAAGAGGAAACACAAGAAGAACACCAGGTGTGCAGAGCCCCAATTCCTACTTCATGGATGTGAAATGCCCAGGATCTATAAAATCACCACGGTCTTTAGCCATGCACAAACGGTAGTTTTTGTGTGTTGGCTGCTCCACTGTCCTCTGCCCTGCCTCAGGAGGAAAAGCAAGGAAAACAGAAGATGTTCCTTCAGGAGGAAACACACTATAAAACAACATTTTGGAT

PCT/US2003/028547

472/6881 FIGURE 441

 ${\tt MPLAKDLLHPSPEEEKRKHKKKRLVQSPNSYFMDVKCPGCYKITTVFSHAQTVVLCVGCSTVLCQPTGGKARLTEGCSFRRKOH}$

PCT/HS2003/028547

473/6881 FIGURE 442

ACTCAGGCAGCAGCCCCTTCTTTCTTGCCCCAGTCTCCAGTTCTCCAGTGTTCACAGGTGAGCCTACCAACAGCC ACTGCTCATGATGGAGGCCATCAAGAAAAAGATGCAGATGCTGAAGTTAGACAAGGAGAATGCTCTGGATCGGGC GAAGAAGCTGAAAGGGACAGAGGATGAGCTGGACAAGTATTCTGAAGCTTTGAAGGATGCCCAGGAGAAGCTGGA ACTGGCAGAGAAGAAGGCTGCTGATGCTGAGGCTGAGGTGGCCTCCTTGAACCGTAGGATCCAGCTGGTTGAAGA AGAGCTGGACCGTGCTCAGGAGCGCCTGGCCACTGCCCTGCAAAAGCTGGAAGAAGCTGAAAAAGCTGCTGATGA GAGTGAGAGAGGTATGAAGGTTATTGAAAACCGGGCCTTAAAAGATGAAGAAAAGATGGAACTCCAGGAAATCCA ${\tt ACTCARAGAGCTAAGCACATTGCAGAAGAGGCAGATAGGAAGTATGAAGAGGTGGCTCGTAAGTTGGTGATCAT}$ GAAGAATGTCACCAACAACCTCAAGTCTCTTGAGGCTCAGGCGGAGAAGTACTCTCAAAAAAGAAGATAAATATGA GGAAGAAATCAAGATTCTTACTGATAAACTCAAGGAGGCAGAGACCCGTGCTGAGTTTGCTGAGAGATCGGTAGC CATTAGGATGGGGGAGCAAAAAGCAACTTATGTATTTTCTTCCACCCCCACCCCAAATTAAAATGTTAAGCTGCT GGA

PCT/US2003/028547

FIGURE 443

MMEAIKKKMOMIKLDKENALDRAEQAEAEQKQAEERSKQLEDELAAMQKKLKGTEDELDKYSEALKDAQEKLELA EKKAADAEAEVASLNRRIQLVEEELDRAQERLATALQKLEEAEKAADESERGMKVIENRALKDEEKMELQEIQLK EAKHIAEEADEKYEEVARKLVIIEGDLERTEERAELAESKCSELEEELKNVITNIKSLEAQAEKYSQKEDKYEEE IKILIDKLKAEAETRAEFEREVAKLEKTIDDLEDELYAQKLKYKAISEELDHALNDMTSI

PCT/US2003/028547

475/6881 FIGURE 444

GGGCTGACCAGCCAGGACAGCGGGGTAAACCCGAACAATTCTGCGCGAGGTAGGGAGGCC**ATG**GCGTCCGGCAGT AACTGGCTCTCCGGGGTGAATGTCGTGCTGGTGATGGCCTACGGGAGCCTGGACTTGAAAGAGGAGATTGATATT CGACTCTCCAGGGTTCAGGATATCAAGTATGAGCCCCAGCTCCTTGCAGATGATGATGCTAGACTACTACAACTG GAAACCCAGGGAAATCAAAGTTGCTACAACTATCTGTATAGGATGAAAGCTCTGGATGCCATTCGTACCTCTGAG ATCCCATTTCATTCTGAAGGCCGGCATCCCCGTTCCTTAATGGGCAAGAATTTCCGCTCCTACCTGCTGGATCTG GTTAAAGCACGAATTGGGAGCTCTCAGCGACATCACCAGTCAGCAGCCAAAGACCTAACTCAGTCCCCTGAGGTC ${\tt TCCCCAACAACCATCCAGGTGACATACCTCCCCTCCAGTCAGAAGAGTAAACGTGCCAAGCACTTCCTTGAATTG}$ GCCAGTCAGTTGCAATGTGCAAGACAGGCTGCTTGCCGGGCCGCCCTCGGAACATCTGGCCCAGCAGGCCCAGAC TGTATCCATCCAAGTTCCCGTTGTATCCAGAGTTCTTAGAGCTTGTGTCTAAAGGGTAATTCCCCAACCCTTCCT TATGAGCATTTTTAGAACATTGGCTAAGACTATTTTCCCCCAGTAGCGCTTTTTTCTGGATTTGCATTCGGGTGT TATTCTTAATGTTTCTGTCAAAGCTTCTTAAAAATCTTCACTTGGTTTCAGCCATAGTTCACCTTCCCTGTTCCA GGTTTATTTAATTCCAAAGGTGAGAGTTGGAGTGAGATGTCTTCCATATCTATACCTTTGTGCACAGTTGAATGG GAACTGTTTGGGTTTAGGGCATCTTAGAGTTGATTGATGGAAAAAGCAGACAGGAACTGGTGGGAGGTCAAGTGG GGAAGTTGGTGAATGTGGAATAACTTACCTTTGTGCTCCACTTAAACCAGATGTGTTGCAGCTTTCCTGACATGC AAGGATCTACTTTAATTCCACACTCTCATTAATAAATTGAATAAAAGGGAATGTTTTGGCACCTGATATAATCTG CCAGGCTATGTGACAGTAGGAAGGAATGGTTTCCCCTAACAAGCCCAATGCACTGGTCTGACTTTATAAATTATT

PCT/US2003/028547

476/6881 FIGURE 445

MASGSNWLSGVNVVLVMAYGSLDLKEEIDIRLSRVQDIKYEPQLLADDDARLLQLETQGNQSCYNYLYRMKALDA IRTSEIPFHSEGRHPRSLMGKNFRSYLLDLRNTSTPFKGVRKALIDTLLDGYETARYGTGVFGQNEYLRYQEALS ELATAVKARIGSSQRHHQSAAKDLTQSPEVSPTTIQVTYLPSSQKSKRAKHFLELKSFKDNYNTLESTL

PCT/JIS2003/028547

477/6881 FIGURE 446

CCCGACTAAGTGACTTAAACTCCCACCTACTCCTGGAATAAGGAGTCAAAGCCCGGATAGGCGCAGTATTCTACC ACAACCTCAAAACCAAAACCAGACACAGCACAAGCAGCGGCCACAGGCCACTGCAGAACAAATTAGACTTGCACA CCCAGACACGCATTCCTGGGAGATGGTCGGGAAGAAGAAGGGAGTCTCAGGCCAGAAGGATGGTGGCCAGACGGA ATCCAATGAGGAAGGCAAAGAAAATCGAGACCGGGACAGAGACTATAGTCGGCGACGTGGTGGGCCACCAAGACG GGGGAGAGGTGCCAGCCGTGGACGAGAGTTTCGAGGTCAGGAAAATGGATTGGATGGCACCAAGAGTGGAGGGCC TTCTGGAAGAGGAACAGAAAGAGGCAGAAGGGGCCGTGGCCGAGGCAGAGGTGGCTCTGGTAGGCGAGGAAGAAG CAATAGCAGCGGCAATACGTGGAACAACACTGGCCACTTTGAACCAGATGATGGGACGAGTGCATGGAGGACTGC AACAGAGGAGTGGGGGACTGAAGATTGGAATGAAGATCTTTCTGAGACCAAGATCTTCACTGCCTCTAATGTGTC TTCAGTGCCTCTGCCTGCGGAGAATGTGACAATCACTGCTGGTCAGAGAATTGACCTTGCTGTTCTGCTGGGGAA GACACCATCTACAATGGAGAATGATTCATCTAATCTGGATCCGTCTCAGGCTCCTTCTCTGGCCCAGCCTCTGGT GTTCAGTAATTCGAAGCAGACTGCCATATCACAGCCTGCTTCAGGGAACACATTTTCTCATCACAGTATGGTGAG CATGTTAGGGAAAGGATTTGGTGATGTCGGTGAAGCTAAAGGCGGCAGTACTACAGGCTCCCAGTTCTTGGAGCA ATTCAAGACTGCCCAAGCCCTGGCTCAGTTGGCAGCTCAGCATTCTCAGTCTGGAAGCACCACCACCTCCTCTTG GGACATGGGCTCGACGACACAATCCCCATCACTGGTGCAGTATGATTTGAAGAACCCAAGTGATTCAGCAGTGCA CAGCCCCTTTACAAAGCGCCAGGCTTTTACCCCATCTTCAACCATGATGGAGGTGTTCCTTCAGGAGAAGTCACC TGCAGTGGCTACCTCCACAGCTGCACCTCCACCTCCGTCTTCTCCTCTGCCAAGCAAATCCACATCGGCTCCACA GATGTCGCCTGGATCTTCAGACAACCAGTCCTCTAGCCCTCAGCCGGCTCAGCAGAAACTGAAACAGCAGAAGAA AAAAGCCTCCTTGACTTCTAAGATTCCTGCTCTGGCTGTGGAGATGCCTGGCTCAGCAGATATCTCAGGGCTAAA $\tt CCTGCAGTTTGGGGCATTGCAGTTTGGGTCAGAGCCTGTCCTTTCTGATTATGAGTCCACCCCCACCACGAGCGC$ CTCTTCAAGCCAGGCTCCAAGTAGCCTGTATACCAGCACGGCCAGTGAATCATCCTCTACAATTTCATCTAACCA GAGTCAGGAGTCTGGTTATCAGAGCGGCCCAATTCAGTCGACAACCTATACCTCCCAAAATAATGCTCAGGGCCC TCTTTATGAACAGAGATCCACACAGACTCGGCGGTACCCCAGCTCCATCTCTTCATCACCCCAAAAGGACCTGAC TCAGGCAAAGAATGGCTTCAGTTCTGTGCAGGCCACGCAGTTACAGACCACAATCTGTTGAAGGTGCTACAGG CTCTGCAGTGAAATCTGATTCACCTTCCACTTCTAGCATCCCCCCTCTCAATGAAACGGTATCTGCAGCTTCCTT ACTGACGACAACCAATCAGCATTCATCCTCCTTGGGTGGCTTGAGCCACAGTGAGGAGATTCCAAATACTACCAC CACACAACACAGCAGCACGTTATCTACGCAGCAGAATACCCTTTCATCATCAACATCTTCTGGGCGCACTTCGAC ATCCACTCTTTTGCACACAAGTGTGGAGAGTGAGGCGAATCTCCATTCTTCCTCCAGCACTTTTTCCACCACATC CAGCACAGTCTCTGCACCTCCCCAGTGGTCAGTGTCTCCTCCAGTCTCAATAGTGGCAGTAGCCTGGGCCTCAG CCTAGGCAGCAACTCCACTGTCACAGCCTCGACTCGAAGCTCAGTTGCTACGACTTCAGGAAAAGCTCCTCCCAA CCTCCCTCCTGGGGTCCCGCCGTTGTTGCCTAATCCGTATATTATGGCTCCAGGGCTGTTACATGCCTACCCGCC ACAAGTATATGGTTATGATGACTTGCAGATGCTTCAGACAAGATTTCCATTGGATTACTACAGCATCCCATTTCC CACACCCACTACTCCGCTGACTGGGAGGGATGGTAGCCTGGCCAGCAACCCTTATTCTGGTGACCTCACAAAGTT CGGCCGTGGGGATGCCTCCTCCCCAGCCCCGGCCACAACCTTGGCCCAACCCCAACAGAACCAGACGCAGACTCA CCATACCACGCAGCAGACATTCCTGAACCCGGCGCTGCCTCCTGGCTACAGTTACACCAGCCTGCCATACTATAC AGGGGTCCCGGGCCTCCCCAGCACCTTCCAGTATGGGCCTGCTGTGTTCCCTGTGGCTCCTACCTCTTCCAAGCA GCATGGTGTGAATGTCAGTGTGAATGCATCGGCCACCCCTTTCCAACAGCCGAGTGGATATGGGTCTCATGGATA CAACACTGGAAGAAAATATCCACCCCTTACAAGCATTTCTGGACGGCTGAGAGC<u>TAA</u>TTTGGCCCAAGGCTGGG GGCTGTGTTTTGTGTGTGTGTATAAATTTGCACTGAAGTCTTGTTTCAGAAACCAGACCACTGAGGAGAGCCTGC TGAGCTGAGGCCATGGCCTGCGTGGCTTGGGGAAATGAGTTGGTGGATACCTTCTGGGCTTTTGAACTTGCCCCT CCCCCATTTCCCTCTCCCCCATGTGTCTGACCCTGTCTTACCCATTTCAAGTTCAAGCGGTGCAGCACCTTCGAA GCATCAATGCACACCCTGCTGTTGCTTTTGATTTCTGGAAGGCATGTAGTTTCAACTTGTAACAAAAATATTTG TAGTCTTCAATAAACTGTGGTATTTCTTTAGCTAAC

PCT/US2003/028547

478/6881 FIGURE 447

MMTSVGTNRARGNWEQPQNQNQTQHKQRPQATAEQIRLAQMISDHNDADFEEKVKQLIDITGKNQDECVIALHDC
NGDVNRAINVLLEGNPDTHSWEMVGKKKGVSGQKDGGGTESNEGKENRDRRDYSRRAGGPRRGGASRGER
RGQENGLDGTKSGGPSGGTEGRRGRGGRGGGGGRGGFSAGGMGTFNPADVAEPANTDDNYGNSSGNTWNNT
GHFPPDDGTSAWRTATEEWGTEDWNEDLSETKIFTASNVSSVPLPAENVTITAGQRIDLAVLLGKTPSTMENDS
NLDPSQAPSLAQPLVFSNSKQTAISQPASGNTFSHSWVSHLGKGFGDVGBAKGGSTTSGQFLEQFKTAQALAQL
AAQHSQGSSTTISSWDMGSTTGSPSLVQYDLKNPSDSAVHSPFTKRQAFTPSSTMMEVFLQEKSPAVATSTAAPP
PPSSPLPSKSTSAPQMSPGSSDNQSSSFQPAQQKLKQQKKKASLTSKIPALAVEMPGSADISGLNLQFGALQFGS
EPVLSDYESTTSASSQAPSSLYTSTASSSSTISSNQSQESGYQSGPIQSTTYTSQNNAQGPLYEQRSTQTR
RYPSSISSSPQKDLTQAKNGFSSVQATQLGTTQSVEGATGSAVKBDSPSTSSIPPLKETVSAASLLTITNGHSS
LGGLSHSEEIPNTTTOHSSTLSTQQNTLSSSTSSGRTSTSTLHTSVESEANLHSSSSTFSTTSSTVSAPPVV
SVSSLNSGSSLGLSLGSNSTVTASTRSSVATTSGKAPPLPPGVPPLLPMPYTMAPGLHAYPPGYDDLQM
LQTRFPLDYYSIPFPTTPLTGRDGSLASNPYSGDLTKFGRGDASSPAPATTLAQPQQNQTQTHHTTQTFLNP
ALPPGYSYTSLPYYTGVPGLPSTFQYGPAVFPVAPTSSKQHGVNVSVNASATPFQQPSGYGSHGYNTGRKYPPPY

PCT/US2003/028547

479/6881 FIGURE 448

PCT/US2003/028547

480/6881 FIGURE 449

MSRALDVLQMKEEDVLKFLAAGTHLGGTNLDFQMEQYIYKRKSDGIYIINLKRIWEKLLLAARAIVAIENPADVS VISSRNIGGRAMLKFAAATGATPIAGHFIFGTFINRIQAAFREFQLPVVIDPRADHQPLIEVSYVNLETIALCNI DSPLRYVDIAIPCNNKGAHSVGWMWMLAQEVLRWRGTISREHFWEVMFDLCFYRDPEIIEKEEQAABEAVIKE EFGGEMIAPAPEFITATOPEVADWSEGLQVFSVSIGSSLLKTGALSLFRKTGLQLPLLRPLNGVGATTEWS

PCT/HS2003/028547

481/6881 FIGURE 450A

CGAAATTGAACCGGAGCCATCTTGGGCCCGGCGCGCAGACCCGCGGAGTTTCCCGTGCCGACGCCCCGGGGCCAC TTCCAGTGCGGAGTAGCGGAGGCGTGGGGGCCTCGAGGGGCTGGCGCGCCCAGCGGTCGGGCCAGGGTCGTGCC GCCGGCGGGTCGGGCCGGGCATGCCTCGCGGGCGCAATGAATCCGCGGCAGGGGTATTCCCTCAGCGGATACTA CACCCATCCATTCAAGGCTATGAGCACAGACAGCTCAGGTACCAGCAGCCTGGGCCAGGATCTTCCCCCAGTAG TTTCCTGCTTAAGCAAATAGAATTTCTCAAGGGGCAGCTCCCAGAAGCACCGGTGATTGGAAAGCAGACACCGTC GGACATCAGGGGTGTCCCCAGGGGCGTGCATCTCAGAAGTCAGGGGCTCCAGAGAGGGTTCCAGCATCCTTCACC ACGTGGCAGGAGTCTGCCACAGAGAGGTGTTGATTGCCTTTCCTCACATTTCCAGGAACTGAGTATCTACCAAGA GAAACTTGGGACTCCGAAGAAAGAAATCAATCGAGTTTTATACTCCCTGGCAAAGAAGGGCCAAGCTACAGAAAGA GGCAGGAACACCCCCTTTGTGGAAAATCGCGGTCTCCACTCAGGCTTGGAACCAGCACAGCGGAGTGGTAAGACC AGACGGTCATAGCCAAGGAGCCCCAAACTCAGACCCGAGTTTGGAACCGGAAGACAGAAACTCCACATCTGTCTC AGAAGATCTTCTTGAGCCTTTTATTGCAGTCTCAGCTCAGGCTTGGAACCAGCACAGCGGAGTGGTAAGACCAGA CAGTCATAGCCAAGGATCCCCAAACTCAGACCCAGGTTTGGAACCTGAAGACAGCAACTCCACATCTGCCTTGGA AGATCCTCTTGAGTTTTTAGACATGGCCGAGATCAAGGAGAAAATCTGCGACTATCTCTTCAATGTGTCTGACTC CTCTGCCCTGAATTTGGCTAAAAATATTGGCCTTACCAAGGCCCGAGATATAAATGCTGTGCTAATTGACATGGA GCAAATCAAGAGAAATACGAACAGTGTTCCTGAAACCGCTCCAGCTGCAATCCCTGAGACCAAAAGAAACGCAGA GTTCCTCACCTGTAATATACCCCACATCAAATGCCTCAAATAACATGGTAACCACAGAAAAAGTGGAGAATGGGCA GGAACCTGTCATAAAGTTAGAAAACAGGCAAGAGGCCAGACCAGAACCAGCAAGACTGAAACCACCTGTTCATTA CAATGGCCCCTCAAAAGCAGGGTATGTTGACTTTGAAAATGGCCAGTGGGCCACAGATGACATCCCAGATGACTT GAATAGTATCCGCGCAGCACCAGGTGAGTTTCGAGCCATCATGGAGATGCCCTCCTTCTACAGTCATGGCTTGCC ACGGTGTTCACCCTACAAGAAACTGACAGAGTGCCAGCTGAAGAACCCCATCAGCGGGCTGTTAGAATATGCCCA GTTCGCTAGTCAAACCTGTGAGTTCAACATGATAGAGCAGAGTGGACCACCCCATGAACCTCGATTTAAATTCCA GGTTGTCATCAATGGCCGAGAGTTTCCCCCAGCTGAAGCTGGAAGCAAGAAAGTGGCCAAGCAGGATGCAGCTAT GAAAGCCATGACAATTCTGCTAGAGGAAGCCAAAGCCAAGGACAGTGGAAAATCAGAAGAATCATCCCACTATTC CACAGAGAAAGAATCAGAGAAGACTGCAGAGTCCCAGACCCCCACCCCTTCAGCCACATCCTTCTTTTCTGGGAA GAGCCCCGTCACCACACTGCTTGAGTGTATGCACAAATTGGGGAACTCCTGCGAATTCCGTCTCCTGTCCAAAGA AGGCCCTGCCCATGAACCCAAGTTCCAATACTGTGTTGCAGTGGGAGCCCAAACTTTCCCCAGTGTGAGTGCTCC CAGCAAGAAAGTGGCAAAGCAGATGGCCGCAGAGGAAGCCATGAAGGCCCTGCATGGGGAGGCGACCAACTCCAT GGCTTCTGATAACCAGCCTGAAGGTATGATCTCAGAGTCACTTGATAACTTGGAATCCATGATGCCCAACAAGGT TGGCTTTGCTGCTGAATTCAAGTTGGTCGACCAGTCCGGACCTCCTCACGAGCCCAAGTTCGTTTACCAAGCAAA TCTCCGTGTCTTGATTGGGGAGAACGAGAAGGCAGAACGCATGGGTTTCACAGAGGTAACCCCAGTGACAGGGGC CAGTCTCAGAAGAACTATGCTCCTCCTCTCAAGGTCCCCAGAAGCACAGCCAAAGACACTCCCTCTCACTGGCAG CACCTTCCATGACCAGATAGCCATGCTGAGCCACCGGTGCTTCAACACTCTGACTAACAGCTTCCAGCCCTCCTT GCTCGGCCGCAAGATTCTGGCCGCCATCATTATGAAAAAAGACTCTGAGGACATGGGTGTCGTCAGCTTGGG AACAGGGAATCGCTGTGTGAAAGGAGATTCTCTCAGCCTAAAAGGAGAAACTGTCAATGACTGCCATGCAGAAAT AATCTCCCGGAGAGGCTTCATCAGGTTTCTCTACAGTGAGTTAATGAAATACAACTCCCAGACTGCGAAGGATAG TATATTTGAACCTGCTAAGGGAGGAAAAGCTCCAAATAAAAAGACTGTGTCATTCCATCTGTATATCAGCAC TGCTCCGTGTGGAGATGGCGCCCTCTTTGACAAGTCCTGCAGCGACCGTGCTATGGAAAGCACAGAATCCCGCCA CTACCCTGTCTTCGAGAATCCCAAACAAGGAAAGCTCCGCACCAAGGTGGAGAACGGAGAAGGCACAATCCCTGT GGAATCCAGTGACATTGTGCCTACGTGGGATGGCATTCGGCTCGGGGAGAGACTCCGTACCATGTCCTGTAGTGA CAAAATCCTACGCTGGAACGTGCTGGGCCTGCAAGGGGCACTGTTGACCCACTTCCTGCAGCCCATTTATCTCAA ATCTGTCACATTGGGTTACCTTTTCAGCCAAGGGCATCTGACCCGTGCTATTTGCTGTCGTGTGACAAGAGATGG GAGTGCATTTGAGGATGGACTACGACATCCCTTTATTGTCAACCACCCCAAGGTTGGCAGAGTCAGCATATATGA TTCCAAAAGGCAATCCGGGAAGACTAAGGAGACAAGCGTCAACTGGTGTCTGGCTGATGGCTATGACCTGGAGAT

PCT/IIS2003/028547

482/6881 FIGURE 450B

TCTATTTAAGAAGCTCTGCTCCTTCCGTTACCGCAGGGATCTACTGAGACTCTCCTATGGTGAGGCCAAGAAAGC TGCCCGTGACTACGAGACGGCCAAGAACTACTTCAAAAAAGGCCTGAAGGATATGGGCTATGGGAACTGGATTAG CANACCCCAGGAGGAAAAGAACTTTTATCTCTGCCCAGTATAGTATGCTCCAGTGACAGATGGATTAGGGTGTGT GCAAGGTCTGGCCAGGCCCCCCTTTTTTCCCCCAAGTGAAGAGGCAGAAACCTAAGAAGTTATCTTTTCTTA CCCAAAGCATACATAGTCACTGAGCACCTGCGGTCCATTTCCTCTTAAAAGTTTTGTTTTGATTTGTTTTCCATTT CCTTTCCCTTTGTGTTTGCTACACTGACCTCTTGCGGTCTTGATTAGGTTTCAGTCAACTCTGGATCATGTCAGG GACTGATAATTTCATTTGTGGATTACGCAGACCCCTCTACTTCCCCTCTTTCCCTTCTGAGATTCTTTCCTTGTG ATCTGAATGTCTCCTTTTCCCCCTCAGAGGGCAAAGAGGTGAACATAAAGGATTTGGTGAAACATTTGTAAGGGT AGGAGTTGAAAACTGCAGTTCCCAGTGCCACGGAAGTGTGATTGGAGCCTGCAGATAATGCCCAGCCATCCTCCC GCAGCTGGGAAGTCTAGAACCAGCCAGACTGGGTTAAGGGAGCTGCTCAAGCAATAGCAGAGGTTTCACCCGGCA GGATGACACAGACCACTTCCCAGGGAGCACGGGCATGCCTTGGAATATTGCCAAGCTTCCAGCTGCCTCTTCTCC TAAAGCATTCCTAGGAATATTTTCCCCGCCAATGCTGGGCGTACACCCTAGCCAACGGGACAAATCCTAGAGGGT ATAAAATCATCTCTCCTCAGATAATCATGACTTAGCAAGAATAAGGGCAAAAAATCCTGTTGGCTTAACGTCACT GTTCCACCCGGTGTAATATCTCTCATGACAGTGACACCAAGGGAAGTTGACTAAGTCACATGTAAATTAGGAGTG TTTTAAAGAATGCCATAGATGTTGATTCTTAACTGCTACAGATAACCTGTAATTGAGCAGATTTAAAATTCAGGC ATACTTTTCCATTTATCCAAGTGCTTTCATTTTTCCAGATGGCTTCAGAAGTAGGCTCGTGGGCAGGCCCAGAC CTGATCTTTATAGGGTTGACATAGAAAGCAGTAGTTGTGGGTGAAAGGGCAGGTTGTCTTCAAACTCTGTGAGGT A GAATCCTTTGTCTATACCTCCATGAACATTGACTCGTGTGTTCAGAGCCTTTGGCCTCTCTGTGGAGTCTGGCT CTCTGGCTCCTGTGCATTCTTTGAATAGTCACTCGTAAAAACTGTCAGTGCTTGAAAACTGTTTCCTTTACTCATG TTGAAGGGACTTTGTTGGCTTTTAGAGTGTTGGTCATGACTCCAAGAGCAGGGGAAGAGCCCAAGCATAGA CTTGGTGCCGTGGTGATGGCTGCAGTCCAGTTTTGTGATGCTGCTTTTACGTGTCCCTCGATAACAGTCAGCTAG TTCATCTGGGAACGTGCTGAGCCAGCACCCTCAGATGATTTCCCTCCAAACTGCTGACTAGGTCATCCTCTGTCT GGTAGAGACATTCACATCTTTGCTTTTATTCTATGCTCTCTGTACTTTTGACCAAAAATTGACCAAAGTAAGAAA ATGCAAGTTCTAAAAATAGACTAAGGATGCCTTTGCAGAACACCAAAGCATCCCAAGGAACTGGTAGGGAAGTGG CGCCTGTCTCCTGGAGTGGAAGAGGCCTGCTCCCTGGCTCTGGGTCTGCTGGGGGCACAGTAAATCAGTCTTGGC ACCCACATCCAGGGCAGAGGTCTGTGGTTCTCAGCATCAGAAGGCAGCGCAGCCCCTCTCCTCTTCAGGCTAC AGGGTTGTCACCTGCTGAGTCCTCAGGTTGTTTTGGCCTCTCTGGTCCATCTTGGGCATTAGGTTCTCCAGCAGAG CTCTGGCCAGCTGCCTCTTCTTTAACTGGGAACACAGGCTCTCACAAGATCAGAACCCCCACTCACCCCCAAGAT CTTATCTAGCAAGCCTGTAGTATTCAGTTTCTGTTGTAGGAAGAGGCGAGGCATCCCTGAATTCCACGCATCTG CTGGAAACGAGCCGTGTCAGATCGCACATCCCTGCGCCCCCATGCCCCTCTGAGTCACACAGGACAGAGGAGGCCA TTCTTTTTAATGATTTTTGTAGTTGATTTGTCTGAACTGTGGCTACTGTGCATTCCTTGAATAATCACTTGTAAA AÁTTGTCAGTGCTTGAAGCTGTTTCCTTTACTCACATTGAAGGGACTTCGTTGGTTTTTTGGAGTCTTGGTTGTG ACTCCAAGAGCAGAGTGAGGAAGACCCCCAAGCATAGACTCGGGTACTGTGATGATGGCTGCAGTCCAGTTTTAT ATCTGAATTCTT

PCT/US2003/028547

483/6881 FIGURE 451

GAGCCAGCGAGGAGTGAAGCTGAGCCTGGCCTCACACGCTCCTAGAGGACCACCTCCTGAGAGAGTTCTTTCACC GGACTCCAGGCAGCCCCAGAGAACCGAAGCAAGCCAAAGAGAGGACTGGAGCCAAGATACTGGTGGGGGAGATTG GATGCCTGGCTTTCTTTGAGGACATCTTTGGAGCGAGGGTGGCTTTTGGGGGTGGGGGCTTGTGCTGCAGGGAATAC AGCCAGGCCCCAAGATGGACACTTCTGGGCACTTCCATGACTCGGGGGTGGGGGACTTGGATGAAGACCCCAAGT TCCACCCTGGCCTGCTGCACTCCTCTCCCACCGCTTTCAGGGCCCCCCTTCGTCCAACTCCACCGCCATCCTCC CAAGTGGGCCTGGCGGAGGCAGCCGGCACCGACAGCCCCCTGGTGCACCGGCGGACAGCAACCCCTTCA CGGAGATCGCCATGAGCTCCTGCAAGTATAGCGGTGGGGTCATGAAGCCCCTCAGCCGCCTCAGCGCCTCCCGGA GGAACCTCATCGAGGCCGAGACTGAGGGCCAACCCCTCCAGCTTTTCAGCCCTAGCAACCCCCCGGAGATCGTCA $\tt CCGGCACCACCGCCAGCACCACCTTCCCCAAAGCCAACAAGCGGAAAAACCAAAACATTGGCTATAAGCTGG$ GACACAGGAGGCCCTGTTTGAAAAGAGAAAGCGACTGAGTGACTATGCTCTGATTTTTGGGATGTTTGGAATTG TTGTTATGGTGATAGAGACCGAGCTCTCTTGGGGTTTGTACTCAAAGGACTCCATGTTTTCGTTGGCCCTGAAAT GCCTTATCAGTCTGTCCACCATCATCCTTTTGGGCTTGATCATCGCCTACCACACACGTGAAGTCCAGCTCTTCG TGATCGACAATGGCGCGGATGACTGGCGGATAGCCATGACCTACGAGCGCATCCTGTACATCAGCCTGGAGATGC TGGTGTGCGCCATCCACCCCATTCCTGGCGAGTACAAGTTCTTCTGGACGGCACGCCTGGCCTTCTCCTACACAC CCTCCCGGGCGGAGGCCGATGTGGACATCATCCTGTCTATCCCCATGTTCCTGCGCCTGTACCTGATCGCCCGAG TCATGCTGCTGCACAGCAAGCTCTTCACCGATGCCTCGTCCCGCAGCATCGGGGCCCTCAACAAGATCAACTTCA ACACCCGCTTTGTCATGAAGACGCTCATGACCATCTGCCCTGGCACTGTGCTCGTGTTCAGCATCTCTCTGT GGATCATTGCTGCCTGGACCGTCCGTGTCTGTGAAAGGTACCATGACCAGGACGTAACTAGTAACTTTCTGG GTGCCATGTGGCTCATCTCCATCACATTCCTTTCCATTGGTTATGGGGACATGGTGCCCCACACATACTGTGGGA AAGGTGTCTGTCTCCTCACTGGCATCATGGGTGCAGGCTGCACTGCCCTTGTGGTGGCCGTGGTGGCCCGAAAGC TGGAACTCACCAAAGCGGAGAAGCACGTTCATAACTTCATGATGGACACTCAGCTCACCAAGCGGATCAAGAATG CTGCAGCCAATGTCCTTCGGGAAACATGGTTAATCTATAAACACACAAAGCTGCTAAAGAAGATTGACCATGCCA AAGTGAGGAAACACCAGAGGAAGTTCCTCCAAGCTATCCACCAGTTGAGGAGCGTCAAGATGGAACAGAGGAAGC TGAGTGACCAAGCCAACACTCTGGTGGACCTTTCCAAGATGCAGAATGTCATGTATGACTTAATCACAGAACTCA ATGACCGGAGCGAAGACCTGGAGAAGCAGATTGGCAGCCTGGAGTCGAAGCTGGAGCATCTCACCGCCAGCTTCA ACTCCCTGCCGCTGCTCATCGCCGACACCCTGCGCCAGCAGCAGCAGCAGCTCCTGTCTGCCATCATCGAGGCCC GGGGTGTCAGCGTGGCAGTGGGCACCACCCCACACCCCAATCTCCGATAGCCCCATTGGGGTCAGCTCCACCTCCT CGAGCTAATTAACTAACTCATGTTCATTCAGCGTGCTTGGTCCGACATGCCTTGAAACCAGAAATCTAATCTCTG TTTAGGTGCCTCTACTTGGGAGCGGGAAGAGGAGATGACAGGAAGCGACGCCTCTGGCAGGGCCCTTGCTGCAGA GTTGGTGGAGAACAGAAATCCACGCTCAATCTCAGGTCTTCACGCGGGGGTGGGGGTCAGATGCACTGAAGTAG

PCT/IIS2003/028547

484/6881 FIGURE 452

CAAGGTTCTGGGCGGGGCTGGACTGTTCTAAGTGAGTTCGGGTGGGGGAGCTTCACGAGGGGAGGCTGCTCTGTG AAGGAACCGCCTTTCTCTCCGCGTGTCTCACCCTTTTCTCCCCATATCTGTTTGGACATGAGCTGAGGGCACGGT CGCGGGCGGTCAGCCCTGTTCGCAGCTACGGCGAGGAGGGGCGCGATTGTTCCTTGTTGCCGCTCCGCTTAGTGG CCGCGTCCATTCCGCGCGGTGTCCCGATTTTAGGGGTAGGGAGAAGTGTCAGCTTCAGGCATCGCGAGGCGTGGC GGCCCATGGCCCCGCTGGGAGGCGCCCCGCGGCTGGTACTGCTGTTCAGCGGCAAGAGGAAAATCCGGGAAGGAC TTCGTGACCGAGGCGCTGCAGAGCAGACTTGGAGCTGATGTCTGTGCTGTCCTCCGGCTCTCTGGTCCACTCAAG GAACAGTATGCTCAGGAGCATGGCTTGAACTTCCAGAGACTCCTGGACACCAGCACCTACAAGGAGGCCTTTCGG AAGGACATGATCCGCTGGGGAGAGGAGAAACGCCAGGCTGACCCAGGCTTCTTTTGCAGGAAGATTGTGGAGGGC ATCTCCCAGCCCATCTGGCTGGTGAGTGACACACGGAGAGTGTCTGACATCCAGTGGTTTCGGGAGGCCTATGGG GCCGTGACGCAGACGGTCCGCGTTGTAGCGTTGGAGCAGAGCCGACAGCAGCGGGGCTGGGTGTTCACGCCAGGG GTGGACGATGCTGAGTCAGAATGTGGCCTGGACAACTTCGGGGACTTTGACTGGGTCATCGAGAACCATGGAGTT GAACAGCGCCTGGAGGAGCAGTTGGAGAACCTGATAGAATTTATCCGCTCCAGACTT<u>TAG</u>TCACTAGGTTCTAGG AGTGAGCTGGGGCCTGCTGAGGTGGGGGTGGGGCTGACTCTGCAAAATGGGGGTGTCCCCCGATCCTGGCCGAGG TGAGGAACAGACAGGGGGGTCTAGATTCTGAGGGGGTTGGTGGATATTGGGCAAGGCAGGAAACCTCTGGAGAC CTCATTTCTCCATGGGGAAGACAGCCATGCTCTTCAGGAGGAGACTCCAAGGGCAAAGGAGGGTGTCTTGGCTG TGCTTGAAGGCGAAACCCTGCCATATCCCCAGTGCCAGTCCCCTCAGCCTGTGGTGGCCTTGCATCCTGACTGGA TGTTCTCAGCCCCTTGTTCTGGGCAAGAACCCAGAGCTCCCCAGTGTGGATACTAATAAACCTCTTGGAGCACAC

PCT/US2003/028547

485/6881 FIGURE 453

MAPLIGAPRIVLIFSGKRKSGKDFVTEALQSRLGADVCAVLRLSGPLKEQYAQEHGINFQRLLDTSTYKEAFRKD MIRWGEEKRQADPGFFCRKIVEGISQPIWLVSDTRRVSDIQWFREAYGAVTQTVRVVALEQSRQQRGWVFTPGVD DAESECGLDNFGDFDWVIENHGVEQRLEEQLENLIEFIRSRL

PCT/US2003/028547

FIGURE 454

ATGGGGCCTGAAACTGTCTGGGTCTGAGCTGGGGAGCGGAAGCCACTTGTCCCTCTCCCCCAGGACTTCTGT GCAGGGGGCCAGGCTGGGCAGCCCCCTCTTTCACCTCAACTATGGATCTCCTGCCCCCCAAGCCCAAGTACA ATCCACTCCGGAATGAGTCTCTGTCATCGCTGGAGGAAGGGGCTTCTGGGTCCACCCCCCGGAGGAGCTGCCTT CCCCATCAGCTTCATCCCTGGGGCCCATCCTGCCTCTGCCTGGGGACGATAGTCCCACTACCCTGTGCTCCT TCTTCCCCCGGATGAGCAACCTGAGGCTGGCCAACCCGGCTGGGGGGCGCCCAGGGTCTAAGGGGGAGCCAGGAA GGGCAGCTGATGATGGGGAGGGGATCGTAGGGGCAGCCATGCCAGACTCAGGCCCCCTACCCCTCCTCCAGGACA TGAACAAGCTGAGTGGAGGCGGCGGGCGCAGGACTCGGGTGGAAGGGGGCCAGCTTGGGGGCGAGGAGTGGACCC CCTACTTGGTTCGGTACATGGGTTGTGTGGAGGTCCTCCAGTCAATGCGTGCCCTGGACTTCAACACCCGGACTC AGGTCACCAGGGAGGCCATCAGTCTGGTGTGTGAGGCTGTGCCGGGTGCTAAGGGGGGCGACAAGGAGGAGAAAGC CCTGTAGCCGCCCGCTCAGCTCTATCCTGGGGAGGAGTAACCTGAAATTTGCTGGAATGCCAATCACTCTCACCG CATTTGCATCCGGCGGGGATCCGGACACAGCCGAGTATGTCGCCTATGTTGCCAAAGACCCTGTGAATCAGAGAG CCTGCCACATTCTGGAGTGTCCCGAAGGGCTTGCCCAGGATGTCATCAGCACCATTGGCCAGGCCTTCGAGTTGC GGGGGTGGTAGACATGAGGCTTCGGGAAGGAGCCGCTCCAGGGGCTGCTCGACCCACTGCACCCAATGCCCAGA CCCCCAGCCACTTGGGAGCTACATTGCCTGTAGGACAGCCTGTTGGGGGAGATCCAGAAGTCCGCAAACAGATGC CACCTCCACCACCCTGTCCAGGCAGAGAGCTTTTTGATGATCCCTCCTATGTCAACGTCCAGAACCTAGACAAGG CCCGGCAAGCAGTGGGTGCTGGGCCCCCCAATCCTGCTATCAATGGCAGTGCACCCCGGGACCTGTTTGACA TGAAGCCCTTCGAAGATGCTCTTCGCGTGCCTCCACCTCCCCAGTCGGTGTCCATGGCTGAGCAGCTCCGAGGGG AGCCCTGGTTCCATGGGAAGCTGAGCCGGCGGGAGGCTGAGGCACTGCTGCAGCTCAATGGGGACTTCCTGGTAC GGGAGAGCACGACCACACCTGGCCAGTATGTGCTCACTGGCTTGCAGAGTGGGCAGCCTAAGCATTTGCTACTGG ACAATCACTTGCCCATCATCTCTGCGGGCAGCGAACTGTGTCTACAGCAACCTGTGGAGCGGAAACTGTGATCTG CCCTAGCGCTCTCTCCAGAAGATGCCCTCCAATCCTTTCCACCCTATTCCCTAACTCTCGGGACCTCGTTTGGG AGGGTTTGAGTCAAAAGCCTGGGTGAGAATCCTGCCTCTCCCCAAACATTAATCACCAAAGTATTAATGTACAGA GTGGCCCCTCACCTGGGCCTTTCCTGTGCCAACCTGATGCCCCTTCCCCAAGAAGGTGAGTGCTTGTCATGGAAA ATGTCCTGTGGTGACAGGCCCAGTGGAACAGTCACCCTTCTGGGCAAGGGGGAACAAATCACACCTCTGGGCTTC AGGGTATCCCAGACCCCTCTCAACACCCCGCCCCCCCATGTTTAAACTTTGTGCCTTTGACCATCTCTTAGGTCT AATGATATTTTATGCAAACAGTTCTTGGACCCCTGAATTCAATGACAGGGATGCCAACACCTTCTTGGCTTCTGG GACCTGTGTTCTTGCTGAGCACCCTCTCCGGTTTGGGTTGGGATAACAGAGGCAGGAGTGGCAGCTGTCCCCTCT GCTCAGTGCCTCCTGGCCGGGGCCCCTCACCCCAAGGGGTCTGTATATACATTTCATAAGGCCTGCCCTCCCATG TTGCATGCCTATGTACTCTACGCCAAAGTGCAGCCCTTCCTCCTGAAGCCTCTGCCCTGCCTCCCTTTCTGGGAG GGCGGGGTGGGGTGACTGAATTTGGGCCTCTTGTACAGTTAACTCTCCCAGGTGGATTTTGTGGAGGTGAGAAA AGGGGCATTGAGACTATAAAGCAGTAGACAATCCCCACATACCATCTGTAGAGTTGGAACTGCATTCTTTAAAG TTTTATATGCATATATTTTAGGGCTGTAGACTTACTTTCCTATTTTCTTTTCCATTGCTTATTCTTGAGCACAAA ATGATAATCAATTATTACATTTATACATCACCTTTTTGACTTTTCCAAGCCCTTTTACAGCTCTTGGCATTTTCC CTAGGACTAGAAAAACTTGGGTCTCTTACCGCGAGACTGAGAGGCAGAAGTCAGCCCGAATGCCTGTCAGTTTCA TGGAGGGGAAACGCAAAACCTGCAGTTCCTGAGTACCTTCTACAGGCCCGGCCCAGCCTAGGCCCGGGGTGGCCA CACCACAGCAAGCCGGCCCCCCCCTCTTTTGGCCTTGTGGATAAGGGAGAGTTGACCGTTTTCATCCTGGCCTCCT TTTGCTGTTTGGATGTTTCCACGGGTCTCACTTATACCAAAGGGAAAACTCTTCATTAAAGTCCGTATTTCTTCT

PCT/IIS2003/028547

487/6881 FIGURE 455

GTGCCCTGTAGACCTGGCAGGCCCCCGTGCTTGCGACCCCTATTTGGGGGTCTGGGTGGCTACTGGAGGGCCTT GCAGAGGGGCAGAAGGCAGGACCATGACATCTAGGGCCTCTGAACTTTCTCCGGGGCGCAGCGTGACGGCTGG CATCATCATTGTTGGAGATGAGATCCTTAAGTTGGAAACAACAAATGGCTTTTGAGTCCAAGAGTGATGCAATCA CAGTGACGCATTAAAACGGTTACTCCGGAGACATCAGAGCACTGTGGCTGGAGGCTGGGAGCCTGGCCAGGAAGC GGCGTGGTGGCTCACACCTATAATTCCAGCACTTTGGGAGGCTGAGGCAGGAGGATCACTTGAGACCAGGAATTC CGCCTGTAGTCCCAGCTACTCGGAAGGCTGGGGTGGCCCTTGAAGCCAGGAGGTTGAGGCTGCAGTGAACTGTGA GTCCAGTCCAGGCCCCTCAGCAGCCTGAGGTGTGTCCTTCAAAGAGCAGAGCACTGCATCATCAGGTGGATGCA GCCATCATCTTCAACCCCTCCCTTCATCCCTACAGTACTGATGGCCTCATCTTCCCCTTCAACCCCCAGGGACA CACTCAGGACACCAACACCTTCTTTCTGTGCCGGACACTGCGCTCCCTAGGGGTCCAGGTTTGCCGAGTCTCAGT TGTACCTGATGAGGTAGCCACCATTGCAGCTGAGGTCACTTCTTCTCCAACCGCTTCACCCATGTCCTCACAGC AGGGGGCATCGGCCCCACTCATGATGATGTGACCTTTGAGGCAGTGGCACAGGCCTTTGGAGATGAGCTGAAGCC ACACCCCAAGTTGGAAGCAGCCACCAAAGCCCTAGGAGGGGGAAGGCTGGGAGAAGCTATCATTGGTGCCCTCCTC CTACCTCTTCCCAGGCATTCCAGAGCTGCTGCGGGGGGGTGCTGGAGGGGATGAAGGGACTATTCCAAAACCCAGC TGTTCAGTTCCACTCAAAGGAGCTATATGTGGCTGCTGATGAAGCCTCCATCGCCCCCATTCTGGCTGAGGCCCA GGCCCACTTTGGACGTAGGCTTGGCCTGGGTTCCTACCCTGACTGGGGCAGCAACTACTATCAGGTGAAGCTGAC TCTAGACTCAGAGGAAGAAGGACCCCTGGAGGAATGCTTGGCCTACCTGACTGCCCGTTTGCCCCAGGGATCGCT GGTCCCCTACATGCCCAACGCTGTGGAGCAGGCCAGTGAGGCTGTATACAAACTCGCTGAATCAGGTAGGGACCT TATGGAGGAGGGCATTATGCCCAAAGCCATTGGTGGCACCCCAGATCTCAGTAATGCAGGGGCTGTTGGGTGCT

PCT/US2003/028547

488/6881 FIGURE 456

MOPSSSTPPLHPYSTDGLIFPFNPQGHTQDTNTFFLCRTLRSLGVQVCRVSVVPDEVATIAÆVTSFSNRFTHVL TAGGIGPTHDDVTFEAVAQAFGDELKPHPKLEAATKALGGEØMEKLSLVPSSARLHYGTDPCTGQPFRFPLVSVR NVYLFFGIFELLRRVLEGMKGLFQNPAVQFHSKELYVAADEASIAPILAÆAQAHFRRLGLGSYPDWGSNYYQVK LTLDSSEEGPLEECLAYLTHARLPQGSLVPYMPMAVEQASEAVYKLÆSGRDLMEEGHYAQSHWWHPRSQ

PCT/IIS2003/028547

FIGURE 457

CGCTGCCATGCGGCTGGCGCTCTGGGCCCTGGGGCTCCTGGGCGGCAGCCCTCTGCCTTCCTGGCCGCT CCCAAATATAGGTGGCACTGAGGAGCAGCAGGCAGAGTCAGAGAAGGCCCCGAGGGAGCCCTTGGAGCCCCAGGT CCTTCAGGACGATCTCCCAATTAGCCTCAAAAAGGTGCTTCAGACCAGTCTGCCTGAGCCCCTGAGGATCAAGTT GGAGCTGGACGGTGACAGTCATATCCTGGAGCTGCTACAGAATAGGGAGTTGGTCCCAGGCCGCCCAACCCTGGT GTGGTACCAGCCCGATGGCACTCGGGTGGTCAGTGAGGGACACACTTTGGAGAACTGCTGCTACCAGGGAAGAGT GCGGGGATATGCAGGCTCCTGGGTGTCCATCTGCACCTGCTCTGGGCTCAGAGGCTTGGTGGTCCTGACCCCAGA GAGAAGCTATACCCTGGAGCAGGGGCCTGGGGACCTTCAGGGTCCTCCCATTATTTCGCGAATCCAAGATCTCCA CCTGCCAGGCCACACCTGTGCCCTGAGCTGGCGGGAATCTGTACACACTCAGACGCCACCAGAGCACCCCTGGG ACAGCGCCACATTCGCCGGAGGCGGGATGTGGTAACAGAGACCAAGACTGTGGAGTTGGTGATTGTGGCTGATCA CTCGGAGGCCCAGAAATACCGGGACTTCCAGCACCTGCTAAACCGCACACTGGAAGTGGCCCTCTTGCTGGACAC ATTCTTCCGGCCCCTGAATGTACGAGTGGCACTAGTGGGCCCTGGAGGCCTGGACCCAGCGTGACCTGGTGGAGAT CAGCCCAAACCCAGCTGTCACCCTCGAAAACTTCCTCCACTGGCGCAGGGCACATTTGCTGCCTCGATTGCCCCA TGACAGTGCCCAGCTGGTGACTGGTACTTCATTCTCTGGGCCTACGGTGGGCATGGCCATTCAGAACTCCATCTG TTCTCCTGACTTCTCAGGAGGTGTGAACATGGACCACTCCACCAGCATCCTGGGAGTCGCCTCCTCCATAGCCCA TGAGTTGGGCCACAGCCTGGGCCTGGACCATGATTTGCCTGGGAATAGCTGCCCCTGTCCAGGTCCAGCCCCAGC CAAGACCTGCATCATGGAGGCCTCCACAGACTTCCTACCAGGCCTGAACTTCAGCAACTGCAGCCGACGGGCCCT GGAGAAAGCCCTCCTGGATGGAATGGGCAGCTGCCTCTTCGAACGGCTGCCTAGCCTACCCCCTATGGCTGCTTT CTGCGGAAATATGTTTGTGGAGCCGGGCGAGCAGTGTGACTGTGGCTTCCTGGATGACTGCGTCGATCCCTGCTG TGATTCTTTGACCTGCCAGCTGAGGCCAGGTGCACAGTGTGCATCTGACGGACCCTGTTGTCAAAATTGCCAGCT GCGCCCGTCTGGCTGGCAGTGTCGTCCTACCAGAGGGGATTGTGACTTGCCTGAATTCTGCCCAGGAGACAGCTC TTGTGCCTCCTATGCCCAGCAGTGCCAGTCACTTTGGGGACCTGGAGCCCAGCCCGCTGCGCCACTTTGCCTCCA GACAGCTAATACTCGGGGAAATGCTTTTGGGAGCTGTGGGCGCAACCCCAGTGGCAGTTATGTGTCCTGCACCCC TAGAGATGCCATTTGTGGGCAGCTCCAGTGCCAGACAGGTAGGACCCAGCCTCTGCTGGGCTCCATCCGGGATCT ACTCTGGGAGACAATAGATGTGAATGGGACTGAGCTGAACTGCAGCTGGGTGCACCTGGACCTGGGCAGTGATGT GGCCCAGCCCTCCTGACTCTGCCTGGCACAGCCTGTGGCCCTGGCCTGGTGTATAGACCATCGATGCCAGCG TGTGGATCTCCTGGGGGCACAGGAATGTCGAAGCAAATGCCATGGACATGGGGTCTGTGACAGCAACAGGCACTG $\tt CTACTGTGAGGAGGGCTGGGCACCCCTGACTGCACCACTCAGGTCAAAGCAACCAGCTCCCTGACCACAGGGGCT$ GCTCCTCAGCCTCCTGGTCTTATTGGTCCTGGTGATGCTTGGTGCCGGCTACTGGTACCGTGCCCGCCTGCACCA GCGACTCTGCCAGCTCAAGGGACCCACCTGCCAGTACAGGGCAGCCCAATCTGGTCCCTCTGAACGGCCAGGACC TCCGCAGAGGGCCCTGCTGGCACGAGGCACTAAGTCTCAGGGGCCAGCCCAAGCCCCCAAGGAAGCCACT GCCTGCCGACCCCCAGGGCCGGTGCCCATCGGGTGACCTGCCCGGCCCAGGGGCTGGAATCCCGCCCCTAGTGGT $\texttt{ACCCTCCAGACCAGCGCCACCGCCTCCGACAGTGTCCTCGCTCTACCTC} \underline{\textbf{TGA}} \\ \texttt{CCTCTCCGGAGGTTCCGCTGCCT}$ TGGCGGTGTCTTAAGACTCCGGGCACCGCCACGCGCTGTCAAGCAACACTCTGCGGACCTGCCGGCGTAGTTGCA GCGGGGGCTTGGGGGGGCTGGGGGTTGGACGGGATTGAGGAAGGTCCGCACAGCCTGTCTCTGCTCAGTTGCA

PCT/US2003/028547

FIGURE 458

MRLALLWALGLIGAGSPLPSWPLPNIGGTEEQQAESEKAPREPLEPQVLQDDLPISLKKVLQTSLPEPLRIKLEL
DGDSHILELLQNRELVEGRPTLWWQPDGTRVVSEGHTLENCCYQGRVRGYAGSWYSICTCSGLRGLVVLTPERS
YTLEGGPGDLQGPPIISRIQDLHLPGHTCALSWRESVHTQTPPEHPLGQRHIRRRDVVTETKTVELVIVADHSE
AQKYRDFQHLINRTLEVALLLDTFFRFLNVWALVGLEAWTQRDLVEISPNPAVTLENTLHWRRAHLLPRLPHBS
AQLVTGTSFSGPTVGMAIQNSICSPDFSGGVNMDHSTSILGVASSIAHELGHSLGLDHDLPGNSCPCFBPAPAKT
CIMEASTDFLEGLNFSNCSRRALEKALLDGMGSCLFERLPSLEPMAAFCGNMFVEPEGGCOLGFLDDCVDDFCCDS
LTCQLRPGAQCASDGPCCQNCQLRFSGWGCPFTRGDCDLPFFCPGDSSQCPPDVSLGGGEPCAGGQAVCHHGRCA
SYAQCCGSLWGPGAQPAAPLCLQTANTRGNAFGSCGRNPSGSYVSCTPRDAICGQLQCQTGRTQPLLGSIRDLLW
ETIDVMGTELNCSWYHLDLGSDVAQPLLTLFGTACGPGLVCIDHRCQRVDLLGAQECRSKCHGHGVCDSNRHCYC
EEGWAPPDCTTQLKATSSLTTGLLLSLLVLLVLWLGAGYWYRARLHQRLCQLKGPTCQYRAAQSGPSERPGPPQ
RALLARGTKSGGPAKPPPRKFLPADPGGRCPSGCLPCFGAGIPPLVVPSRRAPPPPTVSSLYL

PCT/IIS2003/028547

491/6881 FIGURE 459

PCT/US2003/028547

FIGURE 460

 ${\tt MSGRGKQGGKARAKAKSRSSRAGLQFPVGRVHRLLRKGNYAERVGAGAPVYMAAVLEYLTAEILELAGNAARDNKKTRIIPRHLQLAIRNDEELNKLLGKVTIAQGGVLPNIQAVLLPKKTESHHKAKGK$

PCT/HS2003/028547

493/6881 FIGURE 461

CTTTCGCCATGCTGCCGGGCCGATCTCCGAGCGGAATCAGGATGCCACTGTGTACGTGGGGGGCCTGGATGAGA AGGTTAGTGAACCGCTGCTGTGGGAACTGTTTCTCCAGGCTGGACCAGTAGTCAACACCCACATGCCAAAGGATA TCATGAACATGATCAAACTCTATGGGAAGCCAATACGGGTGAACAAAGCATCAGCTCACAACAAAAACCTGGATG TAGGGGCCAACATTTTCATTGGGAACCTGGACCCTGAGATTGATGAGAAGTTGCTTTATGATACTTTCAGCGCCT TTGGGGTCATCTTACAAACCCCCAAAATTATGCGGGACCCTGACACGGCAACTCCAAAGGTTATGCCTTTATTA ATTTTGCTTCATTTGATGCTTCGGATGCAGCAATTGAAGCCATGAATGGGCAGTACCTCTGTAACCGTCCTATCA CCGTATCTTATGCCTTCAAGAAGGACTCCAAGGGTGAGCGCCATGGCTCAGCAGCCGAACGACTTCTGGCAGCTC AGAACCCGCTCTCCCAGGCTGATCGCCCTCATCAGCTGTTTGCAGATGCACCTCCTCCACCCTCTGCTCCCAATC CTGTGGT&TC&TC&TTGGGGTCTGGGCTTCCTCC&CCAGGCATGCCTCCTCCTGGCTCCTTCCCACCCCAGTGC CACCTCCTGGAGCCCTCCCACCTGGGATACCCCCAGCCATGCCCCCACCACCTATGCCTCCTGGGGCTGCAGGAC ATGGCCCCCATCGGCAGGAACCCCAGGGGCAGGACATCCTGGTCATGGACACTCACATCCTCACCCATTCCCAC CGGGTGGGATGCCCCATCCAGGGATGTCTCAGATGCAGCTTGCACACCATGGCCCTCATGGCTTAGGACATCCCC ACGCTGGACCCCAGGCTCTGGGGGCCAGCCACCGCCCGACCACCTGGAATGCCTCATCCTGGACCTCCTC CANTGGGCATGCCCCCGAGGGCCTCCATTCGGATCTCCCATGGGTCACCCAGGTCCTATGCCTCCGCATGGTA TGCGTGGACCTCCTCCACTGATGCCCCCCCATGGATACACTGGCCCTCCACGACCCCCACCCTATGGCTACCAGC GGGGGCCTCTCCCTCCACCCAGACCCACTCCCCGGCCACCAGTTCCCCCTCGAGGCCCACTTCGAGGCCCTCTCC CTCAGTAAATTCACATTTTCCTTCCTCCTGTTACATTTTCCCAATATCTTTTCTATTCCTTGGACCAATCAGAGA TGCTGTAGCTCCTTGGGGCAAAGGTACTAATCCCTTTCAGCACCCCCACTCCATTCCCCTTTTTAATGTAACTTT TTCCACAGGAGGTATTTCTTTTTTATGTTGGTCCTGAGTATTTTGCAAATGCACAGAGAAAATAAAACTAAACTC CTTGTTAAAAAAAAAAAAAAAAAAAA

PCT/US2003/028547

494/6881 FIGURE 462

MAAGPISERNQDATVYVGGLDEKVSEPLLWELFLQAGPVVNTHMPKDRVTGQHQGYGFVEFLSEEDADYAIKIMN MIKLYGKPIRVNKASAHNKNLDVGANIFIGNLDPEIDEKLLYDTFSAFGVILQTEKIMRDPDIGNSKGYAFINFA SFDA SDAAILEAMNGQYLCHRPITVSYAFKUDSKGERHGSABERLLAANQNELGADAPHOLFADAPPSAPHVV SSLGSGLPPPGMPPGSFPPPVPPPGALPFGIPPAMPPPMPFGAAGHGPPSAGTPGAGHPGHGHSHPHPFPPGG MEHPGMSQMQLAHHGPHGLGHPHAGPFGSGGGPPRPPFGMPHFGPPPMGMPPRGPFFGSPMGHPGPMPPHGMRG PPPLMPPHGYTGPPRPPFYGYGRGLPPPRTFRPPVPPRGPLKGFLPQ

PCT/US2003/028547

495/6881 FIGURE 463A

GCCGGGAGCAGTCGCCGCTGCCGCCCCCGCGGCCGGGACCCCCGTCCTCGCCCGGGACTCCTTACCCGGGG AACCTAGACCAGGTCTCCAGAGGCTTGTGGAAGAGAAGCAGGCGACCCTTCCTGAGTTATCCTGGCTTAGCCTCC CAATCTGGCTCCCCTTCCCCATTCCCCTGCTCCCCTGTCCCTTCCCCATCCACCCAACTGAACTGGGTA CCCAGAGATACTGGAACACGCTTCATCTAAGTAACTGTGGGGAGGGGTCTTTTTGACTCTACAAGTCCTTGAGCA AAAAGCTGAAAAAGGAAGCAGGAGGTGGAGAAGACCCAGTGAAGTGCCCCAAGCCCCATC<u>ATG</u>GAAGAGGGCTTCC GAGACCGGGCAGCTTTCATCCGTGGGGCCAAAGACATTGCTAAGGAAGTCAAAAAGCATGCGGCCAAGAAGGTGG TGAAGGGCCTGGACAGAGTCCAGGACGAATATTCCCGAAGATCGTACTCCCGCTTTGAGGAGGAGGATGATGATG ATGACTTCCCTGCTCCCAGTGATGGTTATTACCGAGGAGAAGGGACCCAGGATGAGGAGGAAGGTGGTGCATCCA GTGATGCTACTGAGGGCCATGACGAGGATGATGAGATCTATGAAGGGGAATATCAGGGCATTCCCCGGGCAGAGT TACGGGAGTGTGGCCACGGCCGCTTCCAGTGGACACTGTATTTTGTGCTTGGTCTGGCGCTGATGGCTGACGGTG TGGAGGTCTTTGTGGTGGGCTTCGTGCTGCCCAGCGCTGAGAAAGACATGTGCCTGTCCGACTCCAACAAAGGCA TGCTAGGCCTCATCGTCTACCTGGGCATGATGGTGGGAGCCTTCCTCTGGGGAGGTCTGGCTGACCGGCTGGGTC GGAGGCAGTGTCTGCTCATCTCGCTCTCAGTCAACAGCGTCTTCGCCTTCTTCTCATCTTTTGTCCAGGGTTACG GCACTTTCCTCTTCTGCCGCCTACTTTCTGGGGTTGGGATTGGAGGGTCCATCCCCATTGTCTTCTCTATTTCT CCGAGTTTCTGGCCCAGGAGAAACGAGGGGAGCATTTGAGCTGGCTCTGCATGTTTTGGATGATTGGTGGCGTGT ACGCAGCTGCTATGGCCTGGGCCATCATCCCCCCACTATGGGTGGAGTTTTCAGATGGGTTCTGCCTACCAGTTCC ACAGCTGGAGGGTCTTCGTCCTCGTCTGCGCCTTTCCTTCTGTGTTTGCCATTGGGGCTCTGACCACGCAGCCTG AGAGCCCCCGTTTCTTCCTAGAGAATGGAAAGCATGATGAGGCCTGGATGGTGCTGAAGCAGGTCCATGATACCA ACATGCGAGCCAAAGGACATCCTGAGCGAGTGTTCTCAGTAACCCACATTAAGACGATTCATCAGGAGGATGAAT TGATTGAGATCCAGTCGGACACAGGGACCTGGTACCAGCGCTGGGGGGTCCGGGCCTTGAGCCTAGGGGGGCAGG TTTGGGGGAATTTTCTCTCCTGTTTTGGTCCCGAATATCGGCGCATCACTCTGATGATGATGGGTGTGTGGTTCA CCATGTCATTCAGCTACTATGGCCTGACCGTCTGGTTTCCTGACATGATCCGCCATCTCCAGGCAGTGGACTACG CATCCCGCACCAAAGTGTTCCCCGGGGAGCGCGTAGAGCATGTAACTTTTAACTTCACGTTGGAGAATCAGATCC ACCGAGGCGGGCAGTACTTCAATGACAAGTTCATTGGGCTGCGGCTCAAGTCAGTGTCCTTTGAGGATTCCCTGT TTGAAGAGTGTTATTTTGAGGATGTCACATCCAGCAACACGTTTTTCCGCAACTGCACATTCATCAACACTGTGT TCTATAACACTGACCTGTTCGAGTACAAGTTTGTGAACAGCCGTCTGATAAACAGTACATTCCTGCACAACAAGG AGGGCTGCCCGCTAGACGTGACAGGGACGGGCGAAGGTGCCTACATGGTATACTTTGTGAGCTTCCTGGGGACAC CCAGCGTGATGTCCTGTGTCTCCTGCTTCTTCTTTTTGGGAACAGTGAGTCGGCCATGATCGCTCTGCTCT GCCTTTTTGGCGGGGTCAGCATTGCATCCTGGAATGCGCTGGACGTGTTGACTGTTGAACTCTACCCCTCAGACA AGAGGACCACAGCTTTTGGCTTCCTGAATGCCCTGTGTAAGCTGGCAGCTGTGCTGGGGATCAGCATCTTCACAT CCTTCGTGGGAATCACCAAGGCTGCACCCATCCTCTTTGCCTCAGCTGCCCTTGCCCTTGGCAGCTCTCTGGCCC TGAAGCTGCCTGAGACCCGGGGGCAGGTGCTGCAG<u>TGA</u>AGGGGTCTCTAGGGCTTTGGGATTGGCAGGCACACTG TGTTTGGTGTCTTAGCTGTGTGTGCGTGTGCGTGTGCATGTGTAAACCCCGTGGGCAGGGACTACAGGGAAGG CTCCTTCATCCCAGTTTTGAGATGAAGCTGTACTCCCCATTTCCCACTGCCCTTGACTTTGCACAAGAGAAAGGCT GAGCCCCATCCTTCTCCCCCTGTTAGAGAGGGGCCCTTGCTTCCCTGTTCCAGGGGTTCCAGAATAGGCTTCCTG CCTTCCCCATCATTCCCTCTGCCTAGGCCCTGGTGAAACCACAGGTATGCAATTATGCTAGGGGCTGGGGCTCTG GTGTAGACCATGGACCAAAAGAACTTCTTAGAGTCTGAAGAGTGGGCCTCGGGTGCCCTCTCACATCTCCTGTTG GATGCTGGGGGAGAAGCAATAAACCTCAGCCCTCTGGCCTCCACTTTCCTCTAATTTGGGCTGCAAATATGAAG CTGTGTTGAGCCTGGGATGGAGGAGCCCTAGGCCAGCCTGGGATAAGAGTCCCACAGTCTAGGGAGATCTGAGGG

PCT/US2003/028547

496/6881 FIGURE 463B

PCT/US2003/028547

497/6881 FIGURE 464

MEEGFRDRAAFIRGAKDIAKEVKKHAAKKVVKGLDRVQDEYSRRSYSRFEEEDDDDDFPAPSDGYYRGEGTQDEE
EGGASSDATEGHDEDDEIYEGEYQGIPRAESGGKGERMADGAPLAGVRGGLSDGEGPPGGRGEAQRREERELAG
QYEAILRECHGRFQWTLYFVIGLALMADGVEVFVVGFVLPSAEKDMCLSDNRGMLGLIVYLGMVGAFLMGGL
ADRLGRRGCLLISLSVNSVFAFFSSFVGGYGTFLECRLLSGVGIGGSIPIVFSYFSEFLAQEKRGEHLSWLCMFW
MIGGYYAAAMAWAIIPHYGMSFOMGSAYQFHSWRVFVLVCAFFSVFAIGALITQPESPRFFLENGKHDEAMMVLK
QVHDTNMRAKGHPERVFSVTHIKTIHQEDELIEIQSDTGTWYQRWGVRALSLGGQVWGNFLSCFGFRRTILMM
MGWWTTMSFSYYGLTVWFPDMTRHLQAVDYASRIKVFFGERVENVTFNFTLENQIHRGGQYFNDKFIGLRLKSVS
FEDSLFEECYFEDVTSSNTFFRNCTFINTVFYNTDLFEYKFVNSRLINSTFLHNKEGCPLDVTGTGEGAYMVYFV
SFLGTLAVLPGNIVSALLMDKIGRLRMLAGSSVMSCVSCFFLSFGNSESAMIALLCLFGGVSTASWALDVLTVE
LYPSDKRTTAFGFNALCKLAAVLGISFTSFYGITKAAPTLFRAALALGSSLALKLPETRGQVLQ

PCT/US2003/028547

498/6881 FIGURE 465

GGCAGGAAAAGCGGAAGAGGGAGCGAAAACCAACGTGTTCGGTGACAGACCCCAGCGCCGACTGAGCCTCTAAAG CGACTTCAGCTCTGCCCCACCAACACCCACCGCGCGCCCGGGAACAGCCGCTCCGGGAAGAAACCTGAGGGGACTG CGGGGGGCACGAGGGACAGCTGAGGGAAGGGAGGACGCCGAGAGAAACAGCGCGAGCACGCTGAGGGCCGGGGGTT GCCAGGAGAGGGGCCCGCGGACCCGCAGAGCGGAGGAAGGTCCGGGAGAAAAGGGGCGGGACGGAGGAGAATCCG GAGATCCGACAGCAGGGAACCGGAGCGCTCCGGGGGAGGGGCTTAATGCTGGGGAAGGGATGTCTTAAAAGAGGA GAAGCTTTAAATTAGACGATCGGAGAAGGCTGAGGGAATTGCTATGAAGGGGCGGGAGCTGAAGTGTAGAGGACT CCTTTAGACAGCAGAAAGGGAAAGCCGTTGAGAAGTTCCCTTCAAACTCCACCTGCCTCCTCCCAATTCAAACT CCCGCAATTTGAATTTTAGCCTAGGGGAATCAAAATAGTAGGAGCATTACTCTTGTTTCCTTTTTCAAAATCCCA CACCTCATCCTTCCTGCGACGCCATGTCCACCAACATTTGTAGTTTCAAGGACAGGTGCGTGTCCATCCTGTGTT TCTCTACAGACATCCCTCCTACCAACGCAGTGGACTTCACTGGAAGATGCTATTTCACCAAAATCTGCAAATGTA AACTGAAGGACATCGCATGTTTAAAATGTGGGAACATTGTAGGTTATCATGTGATTGTTCCATGTAGTTCCTGTC TTCTTTCCTGCAACAACAGACACTTCTGGATGTTTCACAGCCAGGCAGTTTATGATATTAACAGACTAGACTCCA TAATGGATCAACTTTAAAATTGTTAGTTGCCAGTGATCTTTTTTGGAAAACAAAAATGGGGCATTTGTTGATTTA TCCTCTCCCCCACCTTTTTCTGCCCAGTGTAGGTGTATTCTTAAATTCAGACGGGAAGATTCTTTCACATATCAC TCAGTTACCTCCCAATCTGGGGGAGTTTTTCTTACAACTTGATACCAGATACCATTAATTTTACATTCCTGAATA AAGGCCTAGTACCCACGCATATTTCAACCATGCATATATCAAGTTCAACCGAGTTTTAATAGGGGATTAAAAAAA CAAGCTGTTAGGTTTCCATGGGCACTGGTTCTCATAGGTTCTATTGGTGATAACTGCTTTAACATGGAGCAAGAG TTTGTGAATCAGGAAATAGAATAAATTAAAATTTAAAATATATAGAGGAATCCTCTTGATTGCTCAGCATGATGT ATTATGGATATTGTATTATGAGAGCTAAACCTAAATAAGTTATCCTGTTCCCTAGGACCTTCTCTGTAAATAGTG

PCT/US2003/028547

499/6881 FIGURE 466

Cacacacacatata AGAAGAGGAAGAAGACCAAGGCCCACCATGCCCCAGGCTCAGCAGGGAGCTGCTGGAGGTAGTAGAGCCTGAAGT CTTGCAGGACTCACTGGATAGATGTTATTCAACTCCTTCCAGTTGTCTTGAACAGCCTGACTCCTGCCAGCCCTA TGGAAGTTCCTTTTATGCATTGGAGGAAAAGCATGTTGGCTTTTCTCTTGACGTGGGAGAAATTGAAAAGAAGGG AAACCCACCATGCCCCAGGCTCAGCAGGGAGCTGCTGGATGAGAAAGGGCCTGAAGTCTTGCAGGACTCACTGGA ATTGGAGCAACAGCGTGTTGGCTTGGCTGTTGACATGGATGAAATTGAAAAGTACCAAGAAGTGGAAGAAGACCA AGACCCATCATGCCCCAGGCTCAGCGGGGAGCTGTTGGATGAGAAAGAGCCTGAAGTCTTGCAGGAGTCACTGGA ATTGGAGCAACAGCGTGTTGGCTTGGCTGTTGACATGGATGAAATTGAAAAGTACCAAGAAGTGGAAGAAGACCA AGACCCATCATGCCCCAGGCTCAGCAGGGAGCTGCTGGATGAGAAAGAGCCTGAAGTCTTGCAGGACTCACTGGG TAGATGTTATTCGACTCCTTCAGGTTATCTTGAACTGCCTGACTTAGGCCAGCCCTACAGCAGTGCTGTTTACTC ATTGGAGGAACAGTACCTTGGCTTGGCTCTTGACGTGGACAGAATTAAAAAGGACCAAGAAGAAGAAGAAGACACCA AGGCCCACCATGCCCCAGGCTCAGCAGGGAGCTGCTGGAGGTAGTAGAGCCTGAAGTCTTGCAGGACTCACTGGA TAGATGTTATTCAACTCCTTCCAGTTGTCTTGAACAGCCTGACTCCTGCCAGCCCTATGGAAGTTCCTTTTATGC GGGAAGAAGATCAAAGAAGGAAAGAAGAAGGAGGAAGAAAAGAAGGGGAAGAAGATCAAAACCCACCATGCCCCAG GCTCAACAGCATGCTGATGGAAGTGGAAGAGCCTGAAGTCTTGCAGGACTCACTGGATATATGTTATTCGACTCC GTCAATGTACTTTGAACTACCTGACTCATTCCAGCACTACAGAAGTGTGTTTTACTCATTTGAGGAAGAGCATAT CAGCTTCGCCCTTTACGTGGACAATAGGTTTTTTACTTTGACGGTGACAAGTCTCCACCTGGTGTTCCAGATGGG GAAGATTTGAATGAAAGTACAGTTCCATTTGGAAGCCCAGACATAGGATGGGTCAGTGGGCATGGCTCTATTCCT ATTCTCAAACCATGCCAGTGGCAACCTGTGCTCAGTCTGAAGACAATGGACCCACGTTAGGTGTGACACGTTCAC ATAACTGTGCAGCACATGCCGGGAGTGATCAGTCAGACATTTTAATTTGAACCACGTATCTCTGGGTAGCTACAA AATTCCTCAGGGATGTCATTTTGCAGGCATGTCTCTGAGCTTCTATACCTGCTCAAGGTCATTGTCATCTTTGTG TTTAGCTCATCCAAAGGTGTTACCCTGGTTTCAATGAACCTAACCTCATTCTTTGTGTCTTCAGTGTTGGCTTGT TTTAGCTGATCCATCTGTAACACAGGAGGGATCCTTGGCTGAGGATTGTATTTCAGAACCACCAACTGCTCTTGA CAATTGTTAACCCGCTAGGCTCCTTTGGTTAGAGAAGCCACAGTCCTTCAGCCTCCAATTGGTGTCAGTACTTAG GAAGACCACAGCTAGATGGACAAACAGCATTGGGAGGCCTTAGCCCTGCTCCTCCAATTCCATCCTGTAGAGAAA CAGGAGTCAGGAGCCGCTGGCAGGAGACAGCATGTCACCCAGGACTCTGCCGGTGCAGAATATGAGCAATGCCAT GTTCTTGCAGAAAACGCTTAACCTGAGTTTCATAGGAGGTAATCACCAGACAACTGCAGAATGTAGAACACTGAG CAGGACAACTGACCTGTCTCCTTCACATAGTCCATATCACCACAAAATCACACAACAAAAAAGGAGAAGAGATATTT TCGGTTGAAAAAAGTAAAAAGATA

PCT/US2003/028547

500/6881 FIGURE 467

MDEIEKYQEVEEDQDPSCPRLSRELLDEKEPEVLQDSLGRCYSTPSGYLELPDLGQPYSSAVYSLEEQYLGLALD VDRIKKDQEEEDQGPPCPRLSRELLEVAEPEVLQDSLDRCYSTPSSCLEQPDSCQPYGSSFYALEEKHVGFSLD VGEIEKKGKGKKRRGRRSKKERRRGKKEGEEDQNPPCPRLNGVLMEVEEPEVLQDSLDICYSTPSMYFELPDSFQ HYRSVFYSFEEEHISFALYVDNRFFTLTVTSLHLVFQMGVIFTQ

PCT/HS2003/028547

501/6881 FIGURE 468

CTCTGTGACATTTCCAATTTTAGATAATGCCTCACATCTCTGTCCCCCGGGACCCCCTGGAGCCCCCATGATCC CTAAGAAGACAGCTTGAACCTAGATCTCACCCCCAGGATGTTGCGGAGGCTGCTGGAGCGGCCTTGCACGCTGGC CCTGCTTGTGGGCTCCCAGCTGGCTGTCATGATGTACCTGTCACTGGGGGGGCTTCCGAAGTCTCAGTGCCCTATT GGCCCCAGGGGGTCCTCCAGCTCCTCAAGGTCTGCCCTACTGTCCAGAACGATCTCCTCTTTAGTGGGTCCTGT GTCGGTGTCCTTTAGCCCAGTGCCATCACTGGCAGAGATTGTGGAGCGGAATCCCCGGGTAGAACCAGGGGGCCG GTACCGCCTGCAGGTTGTGAGCCCCGCTCCCGAACAGCCATCATTGTGCCTCATCGTGCCCGGGAGCACCACCT GGCTGGAAATGGAACATTTAACAGGGCAAAACTGTTGAACGTTGGGGTGCGAGAGGCCCTGCGTGATGAAGAGTG ACCCCGCCATGTTGCCGTTGCTATGAACAAGTTTGGATACAGCCTCCCGTACCCCCAGTACTTCGGAGGAGTCTC AGCACTTACTCCTGACCAGTACCTGAAGATGAATGGCTTCCCCAATGAATACTGGGGCTGGGGTGGTGAGGATGA CGACATTGCTACCAGGGTGCGCCTGGCTGGGATGAAGATCTCTCGGCCCCCCACATCTGTAGGACACTATAAGAT GGTGAAGCACCGAGGAGATAAGGGCAATGAGGAAAATCCCCACAGATTTGACCTCCTGGTCCGTACCCAGAATTC CTGGAUGCAAGATGGGATGAACTCACTGACATACCAGTTGCTGGCTCGAGAGCTGGGGCCTCTTTATACCAACAT CACAGCAGACATTGGGACTGACCCTCGGGGTCCTCGGGCTCCTTCTGGGCCACGTTACCCACCTGGTTCCTCCCA CCTCCGAGGTTCACACTGACTCCTCCTGTCTACCTTAATCATGAAACCGAATTCATGGGGTTGTATTCTCC CCACCCTCAGCTCCTCACTGTTCTCAGAGGGATGTGAGGGAACTGAACTCTGGTGCCGTGCTAGGGGGTAGGGGC CTTATGACTGTGAATCCTTGATGTCATGATTTTATGTGACGATTCCTAGGGAGTCCCTTGCCCCTAGAGTAGGAGCA ATAGCTCCCTCTTCTGGTCCTGGCTCAGGGGGCTGGGATTTTGATATATTTTCTAATAAAGGACTTTGTCTCGC

PCT/US2003/028547

502/6881 FIGURE 469

MLRRLLERPCTLALLVGSQLAVMMYLSLGGFRSLSALFGRDQGPTFDYSHPRDVYSNLSHLPGAPGGPPAPQGLP
YCPERSPLLVGPVSV5FSVPSLAEIVERNPRVEPGGRYRPAGCEPRSRTAIIVPHRAREHHHRLLLYHLHFELQ
RQQLAYGIYVHQAGNGTFNRAKLLNVGVREALRDEENDCLFLHDVDLLPENDHNLYVCDPROPRHVANNKFG
YSLPYPQXFGGVSALTPDQYLKMNGFPNEYWGWGGEDDDIATRVRLAGMKISRPFTSVGHYKMVKHRGDKGNEEN
PHRFDLLVRTQNSWTQDGWNSLTYQLLARELGPLYTNITADIGTDPRGPRAPSGPRYPPGSSQAFRQEMLQRRPP
ARPGGLSTANNTALRGSH

PCT/US2003/028547

503/6881 FIGURE 470

GGCACGAGGGCCCCAGGAGAGGCAGAGAGTGAGGGAAAGGGCCTGGCCGGCATGCACAGATAGGATCACGGTCCT GGGAGAATTCCTGCTCTTATAGTCTAACCTACCATGGCTTCTCTTTTCTCAAGGCTCCCTCATGCTGCCCTTTGG AGCCAGGAGCTGTGGGAGGAAACGCCCTCAGTAAAGATGACCGCGGTCACTGTTATCTAAACGCAAGTGAAGCCG AGTCACAGGACCCGGATGTTGTCAGTTCGACGGTAAACGACCCTGCCAGCTTCCAAGAGGGCGGCTTCACTGTGC GAATAGGTGAGAAGCCAAGAAGGAGGCGCGCTGGAGTTACTTCCGCCCGGTTCTCCTTCCCGCAGTCTGCAGCCG GAGTAAGATGGCGGCGCTGAGGGCTTTGTGCGGCCTTCCGGGGCGTCGCGGCCCAGGTGCTGCGGCCTGGGGCTGG AGTCCGATTGCCGATTCAGCCCAGCAGAGGTGTTCGGCAGTGGCAGCCAGATGTGGAATGGGCACAGCAGTTTGG GGGAGCTGTTATGTACCCAAGCAAAGAAACAGCCCACTGGAAGCCTCCACCTTGGAATGATGTGGACCCTCCAAA GGACACAATTGTGAAGAACATTACCCTGAACTTTGGGCCCCAACACCCCAGCAGCGCATGGTGTCCTGCGACTAGT GATGGAATTGAGTGGGGAGATGGTGCGGAAGTGTGATCCTCACATCGGGCTCCTGCACCGAGGCACTGAGAAGCT CATTGAATACAAGACCTATCTTCAGGCCCTTCCATACTTTGACCGGCTAGACTATGTGTCCATGATGTGTAACGA ACAGGCCTATTCTCTAGCTGTGGAGAAGTTGCTAAACATCCGGCCTCCTCCTCGGGCACAGTGGATCCGAGTGCT GTTTGGAGAAATCACACGTTTGTTGAACCACATCATGGCTGTGACCACACATGCCCTGGACCTTGGGGCCATGAC TGCTGCTTATATCCGGCCAGGAGGAGTGCACCAGGACCTACCCCTTGGGCTTATGGATGACATTTATCAGTTTTC TAAGAACTTCTCTCTCGGCTTGATGAGTTGGAGGAGTTGCTGACCAACAATAGGATCTGGCGAAATCGGACAAT TGACATTGGGGTTGTAACAGCAGAAGAAGCACTTAACTATGGTTTTAGTGGAGTGATGCTTCGGGGCTCAGGCAT CCAGTGGGACCTGCGGAAGACCCAGCCCTATGATGTTTACGACCAGGTTGAGTTTGATGTTCCTGTTGGTTCTCG AGGGGACTGCTATGATAGGTACCTGTGCCGGGTGGAGGAGATGCGCCAGTCCCTGAGAATTATCGCACAGTGTCT AAACAAGATGCCTCCTGGGGAGATCAAGGTTGATGATGCCAAAGTGTCTCCACCTAAGCGAGCAGAGATGAAGAC TTCCATGGAGTCACTGATTCATCACTTTAAGTTGTATACTGAGGGCTACCAAGTTCCTCCAGGAGCCACATATAC TGCCATTGAGGCTCCCAAGGGAGAGTTTGGGGTGTACCTGGTGTCTGATGGCAGCAGCCGCCCTTATCGATGCAA GATCAAGGCTCCTGGTTTTGCCCATCTGGCTGGTTTGGACAAGATGTCTAAGGGACACATGTTGGCAGATGTCGT TGCCATCATAGGTACCCAAGATATTGTATTTGGAGAAGTAGATCGG<u>TGA</u>GCAGGGGAGCAGCGTTTGATCCCCCC GTGTGTGTATGTTCGTGTACACTTGGCTGTCAGGCTTTCTGTGCATGTACTAAAAAAGGAGAAATTATAATAAAT

PCT/US2003/028547

504/6881 FIGURE 471

MAALRALCGFRGVAAQVLRPGAGVRLPIQPSRGVRQWQPDVEWAQQFGGAVMYPSKETAHWKPPPWNDVDPPKDT
IVKNITINFGEQHPAARGVLRIJWELSGEWVRKCDPHIGLHRGTEKLIEYKTYIQALPYFDRLDYVSMMCNEQA
SSLAVEKLLNIRPPPRAQWIRVLFGEITRLINHIMAVTTHALDLGAMTPFFWLFEEREKMFEFYERVSGARMHAA
YIRPGGVWQDLPIGLWDDIYQPSKNFSLRIDELEELLINNRIWRNRTIDIGVVTAEEALMYGFSGVWLMGGSGIQW
DLRKTQPYDVYDQWEFDVPVGSRGDCYDRYLCRVEEMRQSLRIIAQCLNKMPPGEIKVDDAKVSPPKRAEMKTSM
ESLIHHFKLYTEGYQVPPGATYTAIEAPKGEFGVYLVSDGSSRPYRCKIKAPGFAHLAGLDKMSKGHMLADVVAI
IGTQDIVFGEVDR

PCT/US2003/028547

505/6881 FIGURE 472

PCT/US2003/028547

506/6881 FIGURE 473

PCT/US2003/028547

507/6881 FIGURE 474

GCCCTTGCCTTGAGTCAGTGCGCTGCTCTCCAGCCCGCTTGAACGCTCCCCGCAGCCACCGCCACCCATTGGAAT GGCCAACAGGGGACCTGCATATGGCCTGAGCCGGGAGGTGCAGCAGAAGATTGAGAAACAATATGATGCAGATCT CTTCCAGAACTGGCTCAAGGATGGCACGGTGCTATGTGAGCTCATTAATGCACTGTACCCCGAGGGGCAGGCCCC AGTAAAGAAGATCCAGGCCTCCACCATGGCCTTCAAGCAGATGGAGCAGATCTCTCAGTTCCTGCAAGCAGCTGA GCGGACGCTGATGAATCTGGGTGGGCTGGCAGTAGCCCGAGATGATGGGCTCTTCTCTGGGGATCCCAACTGGTT CCCTAAGAAATCCAAGGAGAATCCTCGGAACTTCTCAGATAACCAGCTGCAAGAGGGCAAGAACGTGATCGGGTT ACAGATGGGCACCAACCGCGGGGCGTCTCAGGCAGGCATGACTGGCTACGGGATGCCACGCCAGATCCTCTGATC CCAGAGAGCCCCAGAGCTCTCAAGCTCCTTTCTGTCAGGGTGGGGGGTTCAGCCTGTCCTGTCACCTCTGAGGTG CCTGCTGGCATCCTCTCCCCCATGCTTACTAATACATTCCCTTCCCCATAGCCATCAAAACTGGACCAACTGGCC TCTTCCTTTCCCCTGGGACCAAAATTTAGGGGCCTCAGTCCCTCACCGCCATGCCCTGGCCTATTCTGTCTCTCC TTCTTCCCCCTGGCCTGTTCTGTCTCTGAGCTCTGTGTCCTCCGTTCATTCCATGGCTGGGAGTCACTGATGCTG CCTCTGCCTTCTGATGCTGGACTGGCCTTGCTTCTACAAGTATGCTTCTCCCACAGCTGTGGCTGCAGGAACTTA CAGCCTTCCCTGGCAGGGGCCCTCGTGGCTTCTCATTTTCCATTCCCTTCACTGTGGCTAAGGGGTGGGGTGAGG GTCATTTTTG

PCT/US2003/028547

508/6881 FIGURE 475

MANRGPAYGLSREVQQKIEKQYDADLEQILIQWITTQCRKDVGRPQPGRENFQNWLKDGTVLCELINALYPEGQA
PVKKIQASTMAFKQMEQISQFLQAAERYGINTTDIFQTVDLWEGKNMACVQRTLMNLGGLAVARDDGLFSGDPNW
FPKKSKENPRNFSDNQLQEGKNVIGLQMGTNRGASQAGMTGYGMPRQIL

PCT/US2003/028547

509/6881 FIGURE 476A

GTGGAGCCGAGCGGTGCGGAGCAGATCTGGTGGTTCTCCGGAGAGCAGCTTCCTCGGGTGTTACATGAGCCAAGC CCTCACTGTACAGAAGAGTGAGAGCTGAAACCTGTTCCCTGAGCTGATCAGAAGGACATCCCTTGGCCCCTCCAT $\tt CTGGGCTCCTGTGGATAGGAGGGGCTGGGTGAGCAGGCCAGCTGGGCTATGGTGTGGTGCCTCGGCCTGGCCGTC$ TTTGGATTCCTGCTTCCCATCTTCATCCAGTTCGGCCTCTACTCTCCCCGAATTGACCCTGATTACGTGGGACGA GTCCGGCTGCAGAAGGGGGCCTCTCTCCAGATTGAGGGTCTCCGGGTGGAAGACCAGGGCTGGTACGAGTGCCGC GTGTTCTTCCTGGACCAGCACATCCCTGAAGACGATTTTGCTAACGGCTCCTGGGTGCATCTGACAGTCAATTCA CCCCCTCAATTCCAGGAGACACCTCCTGCTGTTGTGGAAGTGCAGGAACTGGAGCCTGTGACCCTGCGTTGTGTG GCCCGTGGCAGCCCCTGCCTCATGTGACGTGGAAGCTCCGAGGAAAGGACCTTGGCCAGGGCCAGGGCCAGGTG CAAGTGCAGAACGGGACGCTGCGGATCCGCCGGGTAGAGCGAGGCAGCTCTGGGGTCTACACCTGCCAAGCCTCC AGCACTGAGGGCAGCGCCACCCACCCAGCCGAGCTGCTAGTGCTAGGACCCCCAGTCATCGTGGTGCCCCCCAAG AACAGCACAGTCAATGCCTCCCAGGATGTTTCATTGGCCTGCCATGCTGAGGCATACCCTGCTAACCTCACCTAC AGCTGGTTCCAGGACAACATCAATGTCTTCCACATTAGCCGCCTGCAGCCCCGGGTGCGGATCCTGGTGGACGGG AGCCTGCGGCTGCTGGCCACCCAGCCTGATGATGCCGGCTGCTACACCTGTGTGCCCAGCAATGGCCTCCTGCAT CCACCCTCAGCCTCTGCCTACCTCACTGTGCTCTACCCAGCCCAGGTGACAGCTATGCCTCCTGAGACACCCCTG CCCATAGGCATGCCGGGGGTGATCCGCTGCCCGGTTCGTGCCAACCCCCCACTGCTCTTTGTCAGCTGGACCAAG GATGGAAAGGCCCTGCAGCTGGACAAGTTCCCTGGCTGGTCCCAGGGCACAGAAGGCTCACTGATCATCGCCCTG GGGAACGAGGATGCCCTGGGAGAATACTCCTGCACCCCCTACAACAGTCTTGGTACCGCCGGGCCCTCTCCTGTG ACCCGCGTGCTGCTCAAGGCTCCCCCAGCTTTTATAGAGCGGCCCAAGGAAGAATATTTCCAAGAAGTAGGGCGG GAGCTGCTCATCCCCTGCTCCGCCCAAGGGGACCCTCCTCCTGTTGTCTCTTTGGACCAAGGTGGGCCGGGGGCTG CAAGGCCAGGCCCAGGTGGACAGCAACAGCAGCCTCATCCTGCGACCATTGACCAAGGAGGCCCACGGGCACTGG GAATGCAGTGCCAGCAATGCTGTGGCCCGAGTGGCCACCTCCACGAACGTCTACGTGCTGGGCACTAGCCCTCAT GTTGTCACCAATGTGTCCGTGGTGGCTTTGCCCAAGGGTGCCAATGTCTCCTGGGAGCCTGGCTTTGATGGTGGT TATCTGCAGAGATTCAGTGTCTGGTACACCCCACTGGCCAAGCGTCCTGACCGAATGCACCATGACTGGGTGTCC TTGGCAGTGCCTGTGGGGGCTGCTCACCTCCTAGTGCCAGGGCTGCAGCCCCACACCCAGTACCAGTTCAGCGTG CTAGCTCAGAACAAGCTGGGGAGTGGTCCCTTCAGCGAAATCGTCTTGTCTGCTCCGGAAGGGCTTCCTACCACG CCAGCTGCACCCGGGCTTCCCCCAACAGAGATACCGCCTCCCCTGTCCCCTCCGCGGGGTCTGGTGGCAGTGAGG ACACCCCGGGGGGTACTCCTGCATTGGGATCCCCCAGAGCTGGTCCCTAAGAGACTGGATGGCTACGTCTTGGAA GGCCTCATCAAGGTATGTTCTCTACGAGTTCCGCCTCGTGGCCTTCGCGGGCAGCTTCGTCAGCGACCCCAGCAA CGTGCTGGCCGGCGTGGTGGGCGGAGTCTGCTTTCTGGGAGTGGCCGTCCTTGTGAGCATCCTGGCCGGCTGCCT CCTGAACCGGCGCAGGGCTGCCCGCCGCCGCCAAGCCCCTCCGCCAAGATCCACCTCTTATCTTCTCCCGAC CGGGAAGTCAGCTGCACCCTCTGCTCTGGGCTCAGGCAGTCCTGACAGCGTGGCGAAGCTGAAGCTCCAGGGATC CCCAGTCCCCAGCCTGCGCCAGAGTCTGCTCTGGGGGGATCCTGCCGGAACTCCCAGCCCCACCCGGATCCTCC ATCTAGCCGGGGACCCTTACCTCTGGAGCCCATTTGCCGGGGCCCAGACGGGCGCTTTGTGATGGGGCCCACTGT GGCGGCCCCCAGGAAAGGTCAGGCCGGGAGCAGGCAGAACCTCGGACTCCAGCCCAGCGTCTGGCCCGGTCCTT TGACTGTAGCAGCAGCAGCCCCAGTGGGGCACCCCAGCCCCTCTGCATTGAAGACATCAGCCCTGTGGCACCCCC TCCAGCAGCCCCACCCAGTCCCTTGCCAGGTCCTGGACCCCTGCTCCAGTACCTGAGCCTGCCCTTCTTCCGAGA GATGAATGTGGATGGGGACTGGCCCCGCTTGAGGAGCCCAGCCCTGCTGCACCCCCAGATTACATGGATACCCG GCGCTGTCCCACCTCATCTTTCCTTCGTTCTCCAGAAACCCCTCCTGTATCCCCCAGGGAATCACTTCCTGGGGC TGTGGTAGGGGCTGGGGCCACTGCAGAGCCCCCTTACACAGCCCTGGCTGACTGGACACTGAGGGAGCGGCTGCT GCGGCCCCCTCCACAGCCCCCTCTGCAGGAGGCAGCTACCTCAGCCCTGCTCCAGGAGACACCAGCAGCTGGGC CAGTGGCCCTGAGAGATGGCCCCGAAGGGAGCATGTGGTGACAGTCAGCAAGAGGAGGAACACATCTGTGGACGA GAACTATGAGTGGGACTCAGAATTCCCTGGGGACATGGAATTGCTGGAGACTTTGCACCTGGGCTTGGCCAGCTC CCGGCTCAGACCTGAAGCTGAGCCAGAGCTAGGTGTGAAGACTCCAGAGGAGGGCTGCCTCCTGAACACTGCCCA

PCT/US2003/028547

510/6881 FIGURE 476B

PCT/US2003/028547

511/6881 FIGURE 477

PCT/US2003/028547

FIGURE 478

MSGALDVLQMKEEDVLKFLAAGTHLGGTNLDLQMEQYIYKRKSDGIYIINLKGTWEKLLLAARAIVAIENPADVS VISSRNTGGRAVLKFAAATGATPIAGHFTPGTFTNQIQAAFWEPWLLMVTDPRG

PCT/US2003/028547

513/6881 FIGURE 479

PCT/US2003/028547

514/6881 FIGURE 480

 ${\tt MSGALDVLQMKEEDVLKFLTAGTHLGGTNLDFQMEQYIYKRRSDGIYIINLKRTWEKLLLAARAIVAIENPAVVS} \\ {\tt VISSRNTGQRAVLKFAAVTGATPIAGRFTPGNFTNQIQEASYVNLPTIALCNTDSPLHFVDIAIPCNNKGAH} \\$

PCT/US2003/028547

515/6881 FIGURE 481A

AGGTAGCAAGATGGCCGCCGCTGAGGAAGGCTGTAGTGTCGGGGCCGAAGCGGACAGGGAATTGGAGGAGCTTCT GGAAAGTGCTCTTGATGATTTCGATAAAGCCAAACCCTCCCCAGCACCCCTTCTACCACCACGGCCCCTGATGC TTCGGGGCCCCAGAAGAGATCGCCAGGAGACACTGCCAAAGATGCCCTCTTCGCTTCCCAAGAGAAGTTTTTCCA GGAACTATTCGACAGTGAACTGGCTTCCCAAGCCACTGCGGAGTTCGAGAAGGCAATGAAGGAGTTGGCTGAGGA AGAACCCCACCTGGTGGAGCAGTTCCAAAAGCTCTCAGAGGCTGCAGGGAGAGTGGGCAGTGATATGACCTCCCA ACAAGAATTCACTTCTTGCCTAAAGGAAACACTAAGTGGATTAGCCAAAAATGCCACTGACCTTCAGAACTCCAG CATGTCGGAAGAAGAGCTGACCAAGGCCATGGAGGGGCTAGGCATGGACGAAGGGGATGGGGAAGGGAACATCCT CCCCATCATGCAGAGTATTATGCAGAACCTACTCTCCAAGGATGTGCTGTACCCATCACTGAAGGAGATCACAGA AAAGTATCCAGAATGGTTGCAGAGTCATCGGGAATCTCTACCTCCAGAGCAGTTTGAAAAATATCAGGAGCAGCA GCCTCCTGGCCTCAACTTTGACCTGGATGCCCTCAATCTTTCGGGCCCACCAGGTGCCAGTGGTGAACAGTGTCT GATCATGTGAAACACACACGTTTTCCTCTCTGAGTCCCAGCTATGGGGAACATCTGGAGTCAGCAGAACCATTG GGACCTGAGGCAGGAGTGTCACCTGCGGGAGAAGTCTGCCCGCTGCCCTCTGTCATCCCATTCAAGATTGTGCCA TACCAGCTGAGGTTTTTCCTCTGTCTCTCTAGGAATAGGGTCTGTTTCACAGGCCATTTCTGTGAACCCTACTCC TTCTTTCCTTTCTCAAAATAATGTTATATGTGGCCACACTGATGTTCACCTTTACGTCCAGGGTCTTTGTGCCTT GTCTCTACTCCCTCTCTGGATCTGGGGAGGGGGGGGGAGAGACCTGGGACTCTGTATTTCTATAGTTCTCCTGGC AGAGCCTTTGAGAATGGGGAGAAACAGCCTGGGCTGGGGCTACAGGTCTGTCACTATGCTCTCTTGCCTTCAGAC AGACCATTCTGAATTCTCTAAAGGGAAAGGGCTTTTGCATCTAATCACAATAGAGTTGAAAGAGAGGCCTTAGGA TTCTCCTCTCTAGGTGCTGAGCCCTCACCTCCCTGTTCCAGGCTGAGAACTCAAATGGTTACCCTGCTTCTTC CTACAATGCTGTGTGATATGGGTGAACCCAGCCCCTGACCTTCCTCTATCCCCTGCCCATCCTCCCTTTTACCTC CTCTCTTTTTTAAACACCTGTTTATCCCAACCTTTTTGAGCTCAAGCTGTGATAAAGAAGGGCCCATCCTATTTC CCCTCATCTAGTCCATTTACGATTCTCACTGACTCCCCGTCTTCCTGGCAGACACAAATAAACCCAGTGTCAGGT CTAGGAAATTAATGGCTATTCTTCCCCAGATACATTCTGGCTTATTTGAGATACATGATTCTCTTAGAATCCTGT CCCTTGGTTCAGGAAAGTAGCTTGGAAAAGGAGTAGGGGTATAGCTTGGGTCCCTTTTCCTGCAAGGCCCCATGG GGCAGAATATAATAAATATCTGAGTGAGGAGTGTGGTCTTTTTCTGATCTTCCTCAGCTTCCGTAAGTTGCAGA AGTCTGCACCTCAGTTGGCAAAGGAGACTGGATGGCCATCTTTCCTCATGTTCCCTTGAGTATTTCAATGTAGAA AGCCCTTCAAGTGGTATTATATTTTAACCTTTTACATTATTGTTATTAATGTTAGTAATATATTGTTATGTTTTC TAAATTATTTTCTTTAAGCTGACGTGGCTTTTTTTCTGTGGCTCCCAGTGGGTCTACGGACCTTGGCTGACATA TGTTGGTAGGTACTCTGGTCAGCTCAGCTGGCTGTCCTGGTTCACTCAGAAGATAAGTCTCTCCAAAGCAAATTC ACATGCATTATGAGTCGCTTTGAGCTTCTGACATGTCACTTGCCCCGAGGTTAAAACTTTTCACCCCTTGAAGAC CTTACATGTTTTATGGTATTGGTGAGGAAGGAAATGTTCTCAAGGTCTCAGGCTATTTGGGAAATTCCAACTCCT ATACCTTACCAGAGCATGGAAGAGCCCAGATCTGAATGTAAAACGTCTCTGTTCTGCCAGAGATGGAAAAAATAC AGGTATACTTGTGATATAGTCATGGGGCTTCAGTGTCACTATTTTCTCCTTAAAGCTCCAGCCAAAAACTGGACA AGGATAGAGAGGAGGAGGAAGAACAAAAGAGCCCTTCTCTATGAACCTTGTGCCTTCTGTCCTACCAGTTTTCT TTTACAGATTCTCACTTCTGCTAGCCTAGCCAGGGCTTACTCCAGGAATCTAAATAGATGCCCTAGTCCACTTTA TCTTTGTTCCCAAGGCACTCATTTTTATTTTGATTTTGATTTGAATGTGAGCAGGTTGACCTCAGGTCACACTTTG TTCCAAAAACTTTTGGAATTATTCCAGGACTTGTGGTGGAGTTATGGTACTCTAGGGCAGTCTTTCTCAAACTAT GTATGGTAAAGGACCAGGTTTTTTGTTTTCCAGTCCTTCACTTATCAATATGCATTCCTATTGCCGATGACAGGT ATGGAGTTCACACTGTGTGCTGCCGACCCGGCAAGTTTGACAGCACCCAAACTGGCCAGACTGTTCTGTAGGTTA AGTCCATTGATCATGTACTTGGATATCACAGCAACATTGAAATGCTAAAAAGTTTTTAAACACTCTCAATTTCTA ATTCACCATGTCACAGACTGGTGAAAAAAAAAAAAAGGTGTTCACTGACCAGCACAAGTCTGCAGATCATCTTTG CTCCTATTTGAGTTTCACTTCCAGAGAACTTGTTCTTCAGCAAGAATGTGTCACTAGTAAGGACATCTCTAGCAT TTCTCTAGCCTTCCTTTTCTGCTGCTCAAAAATAATCGTTACAAAGCTTAGGTTTAAGCTGTATATGAAATATTT ATGCGACTCTCAAACTTTAAAGGAGTTGCTCCTTTGTTCCAAAATTAAATGTGTTAGATAAATTTGTGATTGTAT

PCT/US2003/028547

516/6881 FIGURE 481B

PCT/US2003/028547

517/6881 FIGURE 482

MAAAEEGCSVGAEADRELEELLESALDDFDKAKPSPAPPSTTTAPDASGPQKRSFGDTAKDALFASQEKFFQELF DSELASQATAEFEKAMKELAEEEPHLVEQFQKLSEAAGRVGSDMTSQQEFTSCLKETLSGLAKNATDLQNSSMSE EELTKAMEGLGMDEGDGEGNILPIMQSIMONLLSKDVLYPSLKEITEKYPEWLQSHRESLPPEQFEKYQEQHSVM CKICEQFEAETPTDSETTQKARFEMVLDLMQQLQDLGHPPKELAGEMPPGLNFDLDALNLSGPPGASGEQCLIM

PCT/IIS2003/028547

518/6881 FIGURE 483A

GAGAAGGGACCTTCAGGTCCAGGCAAAGGGGGAACTTCTGTCGTGGGAACGAAAAAGAAGAGAGGATTTACAGGGT GGGGGACAGAGGGGCAGCAGGAACCAGAAGGGAGACAGTGGCGGTCGCGGGGGGCCGATCCGAGAGTTCCCCT TAGAGAACGGAGCTCACGGGCGGGGAGGCCTCACCTGCTAGTAGGACGCAGAAAGACAGAAGGCGAAGGAGACCC CGACTTCCCGGGTCAGCCCCAGAGCCACCCCCTGCCGTAGCCATCTTGCCTCTCTGCTGAGCGGAAGCCCCCGTT CGGCTCCTGTCTGTTAGCGGCCTCTCTAGGCTACCACTGACACCGTCTCTGTGGCCCGGAGCCTAAGAGACCGGA AGTTCGTGTTTCCAGGCGCTTCCGGAAACCGCGGGAGAGGGTCGCTGACGTGGAGGCGTCCGAAGGGCAGCAGGG TGTGTCGGGGCTCGGATTAAGACATCGGAGTCGGAGACCTGAGAGATGTTAACCAAATTCGAGACCAAGAGCGCG CGGGTCAAAGGGCTCAGCTTTCACCCCAAAAGACCTTGGATCCTGACTAGTTTACATAATGGGGTCATCCAGTTA TGGGACTATCGGATGTGCACTCTCATTGACAAGTTTGATGAACATGATGGTCCAGTGCGAGGCATTGACTTCCAT AAGCAGCAGCCACTGTTCGTCTCTGGAGGAGATGACTATAAGATTAAGGTTTGGAATTACAAGCTTCGGCGCTGT CTTTTCACATTGCTTGGGCACTTAGATTATATTCGCACCACGTTTTTTCATCATGAATATCCCTGGATTCTGAGT GCCTCCGATGATCAGACCATCCGAGTGTGGAACTGGCAATCTAGAACCTGTGTTTGTGTGTTAACAGGGCACAAC GTTTGGGATATTTCTGGTCTGAGGAAAAAAACCTGTCCCCTGGTGCGGTGGAATCGGATGTGAGAGGAATAACT GGGGTTGATCTATTTGGAACTACAGATGCAGTGGTGAAGCATGTACTAGAGGGTCACGATCGTGGAGTAAACTGG GCTGCCTTCCACCCCACTATGCCCCTTATTGTATCTGGGGCAGATGATCGTCAAGTGAAGATCTGGCGCATGAAT GAATCAAAGGCATGGGAGGTTGATACCTGCCGGGGCCATTACAACAATGTATCTTGTGCCGTCTTCCACCCTCGC CAAGAGTTGATCCTCAGCAATTCTGAGGACAAGAGTATTCGAGTCTGGGATATGTCTAAGCGGACTGGGGTTCAG ACTITCCGCAGAGACCATGATCGTTTCTGGGTCCTAGCTGCTCACCCTAACCTTAACCTCTTTGCAGCAGGCCAT GATGGTGGTATGATTGTGTTTAAGCTGGAACGGGAACGGCCAGCCTATGCTGTTCATGGCAATATGCTACACTAT GTCAAGGACCGATTCTTACGACAGCTGGATTTCAACAGCTCCAAAGATGTAGCTGTGATGCAGTTGCGGAGTGGT TCCAAGTTTCCAGTATTCAATATGTCATACAATCCAGCAGAAAATGCAGTCCTGCTTTGTACAAGAGCTAGCAAT CTAGAGAATAGTACCTATGACCTGTACACCATCCCTAAAGATGCTGACTCCCAGAATCCTGATGCGCCTGAAGGG AAACGATCCTCAGGCCTGACAGCCGTTTGGGTCGCTCGAAATCGGTTTGCTGTCCTAGATCGGATGCATTCGCTT CTGATCAAGAATCTGAAGAATGAGATCACCAAAAAGGTACAGGTGCCCAACTGTGATGAGATCTTCTATGCTGGC ACAGGCAATCTCCTGCTTCGAGATGCGGACTCTATCACACTCTTTGACGTACAGCAGAAGCGGACTCTGGCATCT GTGAAGATTTCTAAAGTGAAATACGTTATCTGGTCAGCAGACATGTCACATGTAGCACTACTAGCCAAACACGCC ATTGTGATCTGTAACCGCAAACTGGATGCTTTATGTAACATTCATGAGAACATTCGTGTCAAGAGTGGGGCCTGG GATGAGAGTGGGGTATTTATCTATACCACAAGCAACCACATCAAATATGCTGTCACCACTGGGGACCACGGGATC ATTCGAACTCTGGATTTACCCATCTATGTCACACGGGTGAAGGGCAACAATGTATACTGCCTAGACAGGGAGTGT CGTCCCCGGGTACTCACCATTGATCCCACTGAGTTCAAATTCAAGCTGGCCCTGATCAACAGAAAATATGATGAG GTACTGCACATGGTGAGGAATGCCAAACTAGTTGGCCAGTCTATTATTGCTTATCTCCAGAAGAAGGGGCTATCCT GAAGTGGCACTGCATTTTGTCAAGGATGAGAAAACTCGCTTTAGTCTGGCACTGGAGTGTGGAAAACATTGAGATT GCTCTGGAAGCAGCCAAAGCACTGGATGACAAGAACTGCTGGGAAAAGCTGGGAGAAGTGGCCCTGCTGCAGGGG GGCAACTTAGAAAAACTTCGCAAGATGATGAAGATTGCTGAGATCAGAAAGGACATGAGTGGCCACTATCAGAAT GCCCTATACCTGGGTGATGTGTCAGAGCGTGTGCGGATCCTGAAGAACTGTGGACAGAAGTCCCTGGCCTATCTC ACAGCTGCTACCCATGGCTTAGATGAAGAAGCTGAGAGCCTAAAGGAGACATTTGACCCAGAGAAGGAGACAATC CCAGACATTGACCCTAATGCCAAGCTGCTCCAGCCACCTGCACCTATCATGCCATTGGATACCAATTGGCCTTTA TTGACTGTATCCAAAGGATTTTTTGAAGGCACCATTGCCAGCAAAGGGAAGGGAGGAGCACTGGCTGCTGACATT GACATTGACACTGTTGGTACAGAGGGCTGGGGAGAGGATGCAGAGCTGCAGTTGGATGAAGATGGGTTTGTGGAG GCTACAGAAGGTTTGGGGGATGATGCTCTTGGCAAGGGACAGGAAGAAGGAGGTGGCTGGGATGTAGAAGAAGAT CTGGAGCTCCCTCCTGAGCTGGATATATCCCCTGGGGCAGCTGGTGGGGCTGAAGATGGTTTCTTTGTGCCCCCA ACCAAGGGAACAAGTCCAACTCAGATCTGGTGTAATAACTCTCAGCTTCCAGTTGATCACATCCTGGCAGGCTCT TTCGAAACAGCCATGCGGCTCCTTCATGACCAAGTAGGGGTAATCCAGTTTGGCCCCTACAAGCAACTGTTCCTA AACTGGAAGGATGCAGGGCTGAAGAATGGTGTACCAGCTGTGGGCCTGAAGCTTAATGACCTCATCCAACGGTTG CAGCTGTGCTACCAGCTCACCACAGTTGGCAAATTTGAGGAGGCTGTGGAAAAATTCCGTTCCATCCTTCTCAGT

PCT/HS2003/028547

519/6881 FIGURE 483B

 $\tt GTGCCACTTCTTGTTGTGGACAATAAACAAGAGATTGCAGAGGCCCAGCAGCTCATCACCATTTGCCGTGAGTAC$ ATTGTGGGTTTGTCCGTGGAGACAGAAAGGAAGAAGCTGCCCAAAGAGACTCTAGAACAGCAGAAGCGCATCTGT GAGATGGCAGCCTATTTCACCCACTCAAACCTGCAGCCTGTGCACATGATCCTGGTGCTGCGTACAGCCCTCAAT CTGTTCTTCAAGCTCAAGAACTTCAAGACAGCTGCCACCTTTGCTCGGCGCCTACTAGAACTCGGGCCCAAGCCT GAGGTGGCCCAACAGACCCGAAAAATCCTGTCTGCCTGTGAGAAGAATCCCACAGATGCCTACCAGCTCAATTAT GACATGCACAACCCCTTTGACATTTGTGCTGCATCATATCGGCCCATCTACCGTGGAAAGCCAGTAGAAAAGTGT CCACTCAGTGGGGCCTGCTATTCCCCTGAGTTCAAAGGTCAAATCTGCAGGGTCACCACAGTGACAGAGATTGGC ATATGTTCCCCCCAGAGAATGTGTCTATATCCTCCTTCTAACAGCACCTTCCCCCTGCAGCTACTCTTCAGATCT GGCTCTCTGTACCCTAAAACCTAGTATCTTTTTCTCTTCTATGGAAAATCCGAAGGTCTAAACTTGACTTTTTTG AGGTCTTCTCAACTTGACTACAGTTGTGCTCATAATTGTCCTTGCCTTTCCAGCTTAATTATTTTAAGGAACAAA TGAAAACTCTGGGCTGGGTGGAGTGGCTCATACCTGTAATCCCAGCACTTTGGGAGGCTACGGTGGGCAGATCAT CTGAGGCCAGGAGTTCGAGACCTGCCTGGCCAACATGGCAACACCCCGTCTCTAATAAAAATATAAAAATTAGCC TGGCATGGTAGCATGCGCCTATAGTCCCAGCTGCTCAGGAGGCTGAGGCATGAGAATCGCTTGAACCTAGGAGGT GGAGGTTGCATTCAACTGAGATCATACCACTTCATTCCAGCCTGGGTGACAGAGCAAGACTCTGTCTCAAAAAAA AAAAAAAGGAAAACTCTGTGATGGACATTTGTTTAGTAAATCCCTTCAGTATTTATCCCTCCTTTCCCCACAGCA TAATCATCTCCCATTTTCCTTAGACATTTAAATTTCAAGGCAGGTACCCTCTGTGTACTCAGAAATTTGAAGAAG TTATTTGGTTTTCCAAAATGCACACTGCGGGTTATTGATTTGTTCTTTACAACTATTGTTCTCATATTTCTCACA CTAAATAAATCTCTATGAGAGCTTCTTG

PCT/US2003/028547

520/6881 FIGURE 484

AGCTGCGGTGTTGTGCTGTGGGGAAGGGAGAAGGATTTGTAAACCCCGGAGTGAGGTTCTGCTTACCCGAGGCCG CTGCTGTGCGGAGACCCCCGGGTGAAGCCACTGCATCATCTCTGACCAGGAGGCAAAACCTTCAACTGAGGACT TGGGGGATAAGAAGGAAGGTGAATATATTAAACTCAAAGTCAATGGACAGGATAGCAGTGAAGATTCACTTCAAAG TGGTTCCAATGAATTCATTCAGGTTTCTCTTTGAGGGTCAGAGAATTGCTGATAAATCATACTC

PCT/HS2003/028547

521/6881 FIGURE 485

PCT/HS2003/028547

522/6881 FIGURE 486

GTTTGCCAAAATCCCAGGCAGCATGGACCTCAGTCTTCTCTGGGTACTTCTGCCCCTAGTCACCATGGCCTGGGG TTCTGACAGACAATGGAACTACGCCTGCATGCCCACGCCACAGAGCCTCGGGGAACCCACGGAGTGCTGGTGGGA GGAGATCAACAGGGCTGGCATGGAATGGTACCAGACGTGCTCCAACAATGGGCTGGTGGCAGGATTCCAGAGCCG CTACTTCGAGTCAGTGCTGGATCGGGAGTGGCAGTTTTACTGTTGTCGCTACAGCAAGAGGTGCCCATATTCCTG CTGGCTAACAACAGAATATCCAGGTCACTATGGTGAGGAAATGGACATGATTTCCTACAATTATGATTACTATAT CCGAGGAGCAACAACCACTTTCTCTGCAGTGGAAAGGGATCGCCAGTGGAAGTTCATAATGTGCCGGATGACTGA ATACGACTGTGAATTTGCAAATGTTTAGATTTGCCACATACCAAATCTGGGTGAAAGGAAAGGGGCCGGGGACAG GAGGGTGTCCACATATGTTAACATCAGTTGGATCTCCTATAGAAGTTTCTGCTGCTCTCTTTCCTTCTCCTGAG CTGGTAACTGCAATGCCAACTTCCTGGGCCTTTCTGACTAGTATCACACTTCTAATAAAATCCACAATTAAAACCA TGTTTCTCACTTTTCACATGTTTCATAGCAACTGCTTTATATGACTGATGATGGCTTCCTTGCACACCACATATA CAGTGCGCATGCTTACAGCCGGGCTTCTGGAGCACCAGCTGCAGCCTGGCTACTGCTTTTTACTGCAGAATGAAC TGCAAGTTCAGCATAGTGGAGGGAGAGGCAGAACTGGAGGAGAGGTGCAGTGAAGGTTCTCTACAGCTAAGCCT GTTTGAATGATACGTAGGTTCCCCACCAAAAGCAGGCTTTCTGCCCTGAGGGACATCTTCCCACTCCCCTGCTCC ACATGAGCCATGCATGCTTAGCAATCCAAGTGCAGAGCTCTTTGCTCCAGGAGTGAGGAGACTGGGAGGTGAAAT GGGGAAATGGAAGGGTTTGGAGGCAGAGCTGAAAACAGGGTTGGAAGGATTTCCTGAATTAGAAGACAAACGTTA GCATACCCAGTAAGGAAAATGAGTGCAGGGGCCAGGGGAACCCGTGAGGATCACTCTCAAATGAGATTAAAAACA AGGAAGCAGAAATGGTCAGAGAATGGGATTCAGATTGGGAACTTGTGGGGATGAGAGTGACCAGGTTGAACTGG GAAGTGGAAAAAGGAGTTTGAGTCACTGGCACCTAGAAGCCTGCCCACGATTCCTAGGAAGGCTGGCAGACACCC TGGAACCCTGGGGAGCTACTGGCAAACTCTCCTGGATTGGGCCTGATTTTTTTGGTGGGAAAGGCTGCCCTGGGG ATCAACTTTCCTTCTGTGTGTGGCTCAGGAGTTCTTCTGCAGAGATGGCGCTATCTTTCCTCCTCTGTGATGTC CTGCTCCCAACCATTTGTACTCTTCATTACAAAAGAAATAAAAATATTAACGTTC

PCT/US2003/028547

523/6881 FIGURE 487

MDLSLLWVLLPLVTMAWGQYGDYGYPYQQYHDYSDDGWVNLNRQGFSYQCPQGQVIVAVRSIFSKKEGSDRQWNY ACMPTPQSLGEPTECWWEEINRAGMEWYQTCSNNGLVAGFQSRYFESVLDREWQFYCCRYSKRCPYSCWLTTEYP GHYGEEMDMISYNYDYYIRGATTTFSAVERDRQWKFIMCRWTEYDCEFANV

PCT/US2003/028547

524/6881 FIGURE 488

GGTCCCGGAATCGCCCCAGACCTCTGGCCCAGAGGCAGAAAATAGGTGTGGGAGCCCCAGGGAGGAAAAGCCAGC TGGAGAGGAAGCAGAGATGGAAAAGGCTACAGAGGTGAAGGGGGAGAGGGTGCAAAATGAAGAGGTGGGACCTGA ACATGACAGCCAAGAAACAAAGAAGCTGGAGGAGGAGCTGCAGTGAAGGAGACCCCCCACAGTCCCCTGGAGG AGTGAAGGGCGGAGATGTCCCCAAGCAGGAAAAAGGCAAGGAAAAAACAACAGGAGGGGGCAGTGCTCGAGCCAGG GGAGGATGACACTCCTGTCCAGGACACTAAAATGTGAAGAACAGCTCATTGTGCCCCAGTGATGAAGTTGCTGGA CACATCTCTTTGCAGGTAGCAGCAACAGTTGTAGCAGCAGCAGCGAAGCCATTGCAGAGGCAGAATATGCTGAG TGTCTGGAGTCAGCCTGAAGACACAGGGTGGATTATTTCCTGGCCTCCACACCAAACGTTCCCTTGCAGATGGAG ACTGAATCTGAGGGCAGCAGACTTTTATCAGCTTGAGTTTATGTCATTTGATGGACTTGGTTCAACAACAAGAAC TTACTTAAAACAATGTACTGTGGTGATGAGTCCCAGGGGCACTGGTCAGCCTGTGGAGCCCTGGATGCTATCCAC ACCCACCTATCCCTGCAGCTAATTTAGCTGATCTCTAATTTAACTGAGCTCTAATTTAGCTGATCAGATTTTGCT TGGGTAAAGTTCCTTTTTAATGTTCTAAAGTGTTTACGGTTCTCAAATATCAGTTAAAAACTAATTTTAGGTGGC CATAAACATAAAATAGAAACCCTGTAAGTTACAGAAGACCCTAAATTGTATCAAAACCCTAGAGACAACTTTTCA ATTTGATCCAAATTTGAACTGGCCAACCAGTCTTTAAAACACTGGACTAGAAGAGATAATGATTGAAACATTTAA AAAAAAAAAGTGCTCCATTCGCAGGAGCTTTTCCTGTCCTGTGGTTTTCCAGTTGGTGACCACCATGGGAGGTCG CTGGCTCGCTCACTCCCTTCTCCCACCCTTGAGAATGTGGAGAACTCCCATGGAGAGGCAGAATGGCAGGAGGT TTCATGTCCCGCGTTGCATCTCCTCCTGAAAGAAAGCAGTGATACCTGAATAATGCTGGCTCTCCGATTGATCC TGTGAGGATGAATTTGCATTTCCAGAATCCTTGAGCATGGATTAGATGTTTCCTGGGAGGTGCCTTGAGTACCAT TATGTGCAAGCTACATAATTAAAACATTTTTCTTAGTTTCCCTGGGAAGCTTTTCTTGACTCACAGCCCAGGTTC TTCTGCCCAACACAAAAGGAGTGAGTTGGGGTCTTTAGTCTCTTCTTATTGGGTAGCTCTTGCTTTAATATTCTG TTTGGTGAGTGTAAGGGATTCTGCAAGGGACAGGGGGCCTGACTACCCAGTCTTTGACTTGTATCCTCTCCCCTC TATTTTAATGTCTCAGTGTGCTGATTTGGTAGTTGGAAGAATTATTCTTCTGGAGGTCTGTTAGACTACATCCTA CACTGACTTCAGAAAACAGTCTGTCAGACAAAAAGGCCTTATGTCACCACTGGTACCTCAGTTTCCTCATCCCAT GTAGTTTGTAATTTGTAACAAACTTGTAACCTGGTTGGGACTGATATTGTCATAGCTATGATAAACTTTGGATAT TAGCAGAATTTGGGAAAAAAAAAAAAAAAAAAAAAAAA

PCT/US2003/028547

FIGURE 489

 ${\tt MEKATEVKGERVQNEEVGPEHDSQETKKLEEGAAVKETPHSPPGGVKGGDVPKQEKGKEKQQEGAVLEPGCSPQTGPAQLETSSEVQSEPAVPKPEDDTPVQDTKM$

PCT/US2003/028547

526/6881 FIGURE 490

GGACGTTGAGAGAACGAGGAGGAAGGAGAAAATGGCATCCATGGATTACAGTACCTATAGCCAAGCTGCAGCG CAGCAGGGCTACAGTGCTTACAACACCCCAGCCCACTCAAGGATATGCACAGACCACCCAGGCATATGGGCAACAA AGCTATGGAACCTATGGACAGCCCATTGATGTCAGCTATACCCAGGCTCAGACCACTGCAATCTATGGGCAGACC GTCCAGGGGTATGGCACTGGTGCTTATGATACCACCACTGCTACAGTCACCACCCAGGCCTCCTATGCAGCT CAATCTGCATATGGCACTCAGCCTGCTTATCCAGCTTATGGGCAGCCAGTAGCCACTGCACCTACAAGACTG CAGAATGGAAACAAGCCCACTGAGACTAGTCAACCTCAATCTAGCACAGGGGGTTACAACCAGCCCAGCCTAGGA TATGGACAGAGTAACTGCAGTTATCCCCAGGTACCTGGGAGCTACTCCATGCAGCCAGTCACCGCACCTCCATCC TACCCTCCTACCAGCTATTCCTCTACACAGCCAACTAGTTATGATCAGAGCAGTTACTCTCAGCAGAACACCTAT GGGAAACCGAGCAGCTATGGACAGCAGAGTAGCTATGGTCAACAAAGCAGCTATGGGCAGCTGCCTCCCACTAGT TACCCACCCCAAACTTGATCCTACAGCCAAGCTCCAAGTCAGTATAGCTAACAGAGCAGCAGCTACGGGCAGCAG AGTTCATTCTGACAGGACCACCCCAGTAGCATGGGTGTTTATGGGCAGGAGTCTGGAGGATTTTCCGGACTAGGA GAGAACCGGAGCATGAGTGGCCCTGATAACTGGGGCAGGGGAAGAGGGGGGATTTGATCGTGGAGGCATGAGCAGA GGTGGGCGGGGAGGAGGATGCGGTGGAATGGGCAGCGCTGGAGAGCAAGTTGGCTTCAATAAGCCTGGTGGACCC ATGGATGAAGGACCAGATCTTGATCTAGGCCCACCTGTAGATCCAGATGAAGACTCTGACAACAGTGCAATTTAT GTACAAGGATTAAATGACAATGTGACTCTAGATGATCTGGTAGACTTCTTTAAGCAGTGTGGGGTTGTTAAGATG AACAAGAGAACTGAGCAACCCATGATCCACACCTACCTGGACAAGGAAACAAGAAAGCCCAAAGGTGATGCCACA GTGTCCTGTGAAGACTCACCTACTGCCAAAGCTGCCGTGGAATGGTTTGATGGGAAAGATTTTCAAGGGAGCAAA CTTAAAGTCTCTCTTGCTCGGAAGAGGCCTCCAGTGAACAGTATGCAGGGTGGTATGCCACCCCATGAGGGCAGA GGGATGCCACCACCACTCTGCGGAGGTCCAGGAGGCCCAGGAAGTCCTGGGGGACCCATGGGTCACATGGGAGGC CGTGGAGGAGATAGAGGAGGCCTCCCTCCAAGAGGACCCCAGGGTTCCCGAGGGAACACCTCTGGAGGAGGAAAAC GTCCAGCACCAAGCTGGAGACAGGCAGTGTCCCAATCCGGGTTGTGGAAACCAGAACTTCGCCTGGAGAACAGAG AGCAACAAGTGTAAGGCTCCAAAGCCTGAAGGCTTCCTCCCGCCACCCTTCCCACCCCCGGGTGGTGATCATGGC AGAGGTGGCCCTGGTGGCATGTGGGGAGGAAGAGGTGGCCTCATGGATCATGGTGGTCCCGGTGGAATGTTCAGA GGTGGCTGTGGTAGAGACAGAAGTGGCTTCTGTGGTGGCTGGGCATGGACCGAGGTGGCTTTGGTGGAGGAAGAC AAGGTGGCCCTGGGGGGCCCCCGGACCTTTGATGTAACCAATGGGAGGAAGAAGAAGAGGACG<u>TGA</u>AGGACCTGG AAAAACGGATAAAGGCGAGCACTGTCAGGAGCGCAGAGATCAGCCCTACTAGATGCAGAGAACCCGCAGAGCTGC ATTGACTACCAGATTTATTTTTTAAACCAGAAAATGTTTTAAATTTATAATTCCATATTTATAATGTTGGCCACA ACATTATGATTATTCTTCTCTGTACTTTAGTATTTTTCACCATTTGTGAAGAAACATTAAAACAAGTTAAATGG TA

PCT/US2003/028547

527/6881 FIGURE 491

MGYYGQESGGFSGLGENRSMSGPDNWGRGRGGFDRGGMSRGGGGGGGGGGAGAGEQVGFNKPGGPMDEGPDLDLG PPVDPDEDSDNSAIYVQGLNDNVTLDDLVDFFKQCGVVKMNKRTEQPMIHTYLDKETREPKGDATVSCEDSFTAK AAVEWFDCKDPQGSKLKVSLARKRPPVNSNQGGMPPHEGRGMPPPLCGGPGGPGSPGGPMGHMGGRGGDRGGLPP RGPQGSRGNTSGGGNVQHQAGDRQCPNPGCGNQNFAWRTESNKCKAPKPEGFLPPPPPPPGGDHGRGGPGGMWGG RGGLMDHGGPGGMFRGCGRDRSGFCGGMAWTEVALVEEDKVALGGPRTFDVTNGKKKRRT

PCT/US2003/028547

528/6881 FIGURE 492

PCT/US2003/028547

529/6881 FIGURE 493

PCT/HS2003/028547

530/6881 FIGURE 494

PCT/US2003/028547

531/6881 FIGURE 495

TTTCCGGTGCTATGCCCCGGAAGCGGAAGTGCGATCTTCGGGCTGTCAGAGTTGGTCTGTTACTCGGTGGTGGCG GAGTCTACGGAAGCCGTTTTCGCTTCACTTTTCCTGGCTGTAGAGCGCTTTCCCCCTGGCGGGTGAGAGTGCAGA GACGAAGGTGCGAGATGAGCACTATGTTCGCGGACACTCTCCTCATCGTTTTTATCTCTGTGTGCACGGCTCTGC AGAGTAAAAAATTGGAAAAGAAGAAGGAAACAATAACAGAGTCAGCTGGTCGTCTATCAATGGTTCGAATGAAAT CCATGTTTGCTATTGGCTTTTGTTTTACTGCCCTAATGGGAATGTTCAATTCCATATTTGATGGTAGAGTGGTGG CAAAGCTTCCTTTTACCCCTCTTTCTTACATCCAAGGACTGTCTCATCGAAATCTGCTGGGAGATGACACCACAG ACTGTTCCTTCATTTTCCTGTATATTCTCTGTACTATGTCGATTCGACAGAACATTCAGAAGATTCTCGGCCTTG CCCCTTCACGAGCCGCCACCAAGCAGGCAGGTGGATTTCTTGGCCCACCTCCTTCTGGGAAGTTCTCTTGAA CCATAGGTAGCCTTACTACTTGGGCCTCTTTCTAGTTTTGAATTATTTCTAAGCCTTTTGGGTATGATTAGAGTG AGTTCAGGTAATGTTTATGTAATGAAAAACAAATAGCATCCTTCTTGTTTCATTTACATAAGTATTTTCTGTGGG ACCGACTCTCAAGGCACTGTGTATGCCCTGCAAGTTGGCTGTCTATGAGCATTTAGAGATTTAGAAGAAAAATTT ACAAGCCAAATACATGACATAAGATCAATAAAGAGGCCAAATTTTTAGCTGTTTTATGTACAAGGAGAGATCTGT GTACTG

PCT/US2003/028547

532/6881 FIGURE 496

MSTMFADTILIVFISVCTALLAEGITWVLVYRTDKYKRLKAEVEKQSKKLEKKKETITESAGRQQKKKIERQEEK LKNNNRDLSMVRWKSMFAIGFCFTALMGMFNSIFDGRVVAKLPFTPLSYIQGLSHRNLLGDDTTDCSFIFLYILC TMSIRQNIQKILGLAPSRAATKQAGGFLGPPPPSGKFS

PCT/HS2003/028547

533/6881 FIGURE 497

AGACAGTTTTGAAGTTTTCAAAGACTGGCTCTGCTGTTAAGAAGTTGTACTTAAAGCGGAGGAGCTAAGCCACCT GCCAAA<u>ATG</u>TGCAAAGGACTTGCAGCTTTGCCCCACTCATGCCTGGAAAGGGCCCAAGGAGATTAAGATCAAGTTG GGAATTCTCCTCCAGAAGCCAGACTCAGTTGGTGACCTTGTCATTCCGTACAATGAGAAGCCAGAGAAACCAGCC AAGACCCAGAAAACCTCGCTGGACGAGGCCCTGCAGTGGCGTGATTCCCTGGACAAACTCCTGCAGAACAACTAT GGACTTGCCAGTTTCAAAAGTTTCCTGAAGTCTGAATTCAGTGAGGAAAACCTTGAGTTCTGGATTGCCTGTGAG GAGGCTCCTAAAGAGGTGAATATTGACCACTTCACTAAGGACATCACAATGAAGAACCTGGTGGAACCTTCCCTG AGCAGCTTTGACATGGCCCAGAAAAGAATCCATGCCCTGATGGAAAAGGATTCTCTGCCTCGCTTTGTGCGCTCT GAGTTTTATCAGGAGTTAATCAAG<u>TAG</u>TAATTTAGCCAGGCTATGAAATCATCCTGTGAGTTATTTCCTCCATAA TAACCCTGCATTTCCCATTAATCTACATATCTTCCCACAGCAGCTTTGCTCAGTGATACCCACATGGGAAAAATC CCAGGGGATGTTGCTTACTCTTTTTGCCCACACTGCTTTGGATACTTATCTACTGTCCGAAGGCCTTCTTTCCCC ACTCARTTCTTCCTGCCCTGTTATTAATTAAGATATCTTCAGCTTGTAGTCAGACCCAATCAGAATCACAGAAAA TAAATTGGTCTAAAAAAGAATATTAAGTGTGGACAGACCTATTTCAAAGGAGCTTAATTGATCTCACTTGTTTTA GTTCTGATCCAGGGAGATCACCCCTCTAATTATTCTGAACTTGGTTAATAAAAGTTTATAAGATTTTTATGAAG CAGCCACTGTATGATATTTTAAGCAAATATGTTATTTAAAATATTGATCCTTCCCTTGGACCACCTTCATGTTAG AGATTTCTCTTTTATACCTTCCTCACTGGCCCCCTCCACCTGCCCATAGTCACCAAATTCTGTTTTAAATCAATG ACCTAAGATCAACAATGAAGTATTTTATAAATGTATTTATGCTGCTAGACTGTGGGTCAAATGTTTCCATTTTCA AATTATTTAGAATTCTTATGAGTTTAAAATTTGTAAATTTCTAAATCCAATCATGTAAAATGAAACTGTTGCTCC ATTGGAGTAGTCTCCCACCTAAATATCAAGATGGCTATATGCTAAAAAGAGAAAATATGGTCAAGTCTAAAATGG CTAATTGTCCTATGATGCTATTATCATAGACTAATGACATTTATCTTCAAAACACCAAATTGTCTTTAGAAAAAT AAAGTGCAGATTTATACTCCTGACGTGTCTCATTCACAGCTAAATAATAGGCCATAGGACTTTTGGTAGGTTTAA ACTTTTAATTCTGTATTTCATGATTATAAGTCTTGCTAGAATTTTTTCTAATCTTTAGTAGATTTGATTAAATAA TGATTCACAGAATTTAGTAACAGAATCAAACTAAGCCATGTATGAGGGTAATCGAGATGAGGATATTAACTCAAA AGAAATAGGGTGATTTTTAAAGGATTAATAAAATTCTGAAATGTTAAGTAG

PCT/US2003/028547

534/6881 FIGURE 498

MCKGLAALPHSCLERAKEIKIKLGILLQKPDSVGDLVIPYNEKPEKPAKTQKTSLDEALQWRDSLDKLLQNNYGL ASFKSFLKSEFSEENLEFWIACEDYKKIKSPAKMAEKAKQIYEEFIQTEAPKEVNIDHFTKDITMKNLVEPSLSS FDMAOKRIHALMEKDSLPRFVRSEFYQELIK

PCT/US2003/028547

535/6881 FIGURE 499

GACACCTTTTAAAATGCAGAACTAACTGAGGCATTTCAGTAACTTTGCTTTCAAATCAATAAAGTCAA<u>ATG</u>TATG GAAACATTTTGTGCCCTACTCTCCATACCCTGTGTACTCAAATTCTCTACTGTATGAATTATGCTTTAAGTAGAA ACATGCAAAAGTTTCAA<u>TAA</u>AAACTGGGCCATTAACAAATAAATTAATAAACTAATAAGCATTCCCTTCTAGGTT TTTGCCAAACTGCCTATCCAATAACAAATTTGAGAATCGTTGAAAAAGCTAGTTATATTTCAGAGAAATGATTTT CATTATTGAAACTGTTCTCCCTAGCAGGCCATTTTCCCTTTTTCCTGGGAGTTTAGCAAGTTTAGGAGAGAATAG TCATGAAAAGAAAGGGAAGAAAGGGGAAAGGGGAAGAGGTTAAAAAGTAAGTGCTCAGACCTATGAACGTAATCC CTTTGCTAGAAATATTTAAGAGCAGCTCAGCTTGGTTGAAACTGAGTTTTGTCATCTTCCATATTTGCAGGAAGG TATTTTCTGACTTGCAATGCAGCTAGATGTAAAATTTTATTTTATCATCCTAGAAAGCCTTGACTAGAAAAATGA ATAAATATTGAGGGTTTCCTGTCCATATCTGGCTTGCATGTGCCAGAAAGCAGAGAATAGAAAATGTAATCTCCA ACATCCAAGCATCGAAACCCAAGGGGTAGGCAATTCTATGTAGGTTTTGGACATGAAGTTTGGTGCATCTTGGTT TATGCTGGCTCAACTGCTATTAAACCTCTCTGGCTTATAGTCTCTTCATTCTATTAGACAAGCACGTATCGAACA CTTGCTTCGCACAAGGCTCTTTAGTTAACAATTTAGCAGCTACTGTTTGTGTTAAACACACTTTTCACCAAATAG GTTCTGAGGCAAACGAGAGCAATGACTATTTAAAGAAAGGCTTTCCCAGCATCACTTACACATCCCAAAACTAAA CAACAACAACGACAACAACAACATTTGGAATATTATTCTCAACTCACGTTTTAATAATACATCTTAATTATTTT TCTAGTAGAGAAACTACAAATCAGCCTCTTCAACATTTATATACAGTTTAATAAGCCTCTTGCAAGTTACTTGTT CTCTCACCTGAGGTATTTTTTTCCTCCCCACCTTGCCCCTGTTCCTCCTTTCCTCCTTTTCCAAGAGGAA AAAATGCACAGGCTAAGGCATAGACAAAACAAAGAGAAATGCTGAGAAATTTGCCACTGGAGACAAGCAATCTGA ACTAGCAACTCATCTTCGGAAGACACAGCCAGGAGAATGAAGTAGAAGTGAAAGGTTTATAAATCCATTTGTAAG CATTTATCCCATATATTTTAAATTCAAGAAAAATTGTGTTTATCTTTAGAATTTTGTATTCAATACTTTATGTAC TATGTGACTCATGCTTCTGGATAAATAAAGCACCAAATATGTATCTGTAACCACAATCACACATATTATATTAAA ТАТАТАТСТАТАТААСААААААААААААААА

PCT/US2003/028547

536/6881 FIGURE 500

MYGNILCPTLHTLCTQILYCMNYALSRIQCQGELGEINYFNFFFILYKAMDFIWLMCALYTSHFNRMELLIIFQR VIDMQKFQ

PCT/HS2003/028547

537/6881 FIGURE 501

ACTATAAAGCCAAGGTCTCTGAAGAAGAATGACATTGAAGAGCAGCAAGATGAGTTTTTCAGCGGTGACAATG GAGTGGATTTGCTGATTGAAGATCAGCTCCTGAGACAACGGCCTGATGACCAGTGTCACCCGGAGGCCTGCAG CCACCCGTCAGGGACACAGCACTGCTGTGACAAGCGACCTGAACGCTCGGACCGCACCCTGGTCCTCAGCACTGC CCCAGCAACCAGCAGCCCCAGCTCCTCCGGCAGTGTCTCCCCAGGGAGGCATTGATGGAAGCTATGCACACAGTCC GCCCCACGCTGAGCCCCGAAGAAGAAGATGACATCCGGAATGTCATAGGAAGGTGCAAGGACACTCTCTCCACAA TCACGGGGCCGACCACCCAGAACACATATGGGCGGAATGAAGGGCCCTGGATGAAGGACCCCCTGGCCAAGGATG AGCGGATTTACGTAACCAACTATTACTACGGCAACACCCTGGTAGAGTTCCGGGAACCTGGAGAACTTCAAACAAG GTCGCTGGAGCAATTCCTACAAGCTCCCGTACAGCTGGATCGGCACAGGCCACGTGGTATACAATGGCGCCTTCT ACTACAA TCGCGCCTTCA CCCGCAACATCA TCA AGTA CGACCTGA A GCA GCGCTA CGTGGCTGCCTGGGCCA TGC TGCATGACGTGGCCTACGAGGAGGCCACCCCTGGCGATGGCAGGCCCACTCAGACGTGGACTTTGCTGTGGACG AGAATGGCCTATGGCTCATCTACCCGGCCCTGGACGATGAGGGCTTCAGCCAGGAGGTCATTGTCCTGAGCAAGC TCAATGCCGCGGACCTGAGCACACAGAAGGAGACCACATGGCGCACGGGGCTCCGGAGGAATTTCTACGGCAACT GCTTCGTCATCTGTGGGGTGCTGTATGCCGTGGATAGCTACAACCAGCGGAATGCCAACATCTCCTACGCTTTCG ACACCCACACCACACACAGATCGTCCCCAGGCTGCTGTTCGAGAATGAGTATTCCTATACGACCCAGATAGACT ACAACCCCAAGGACCGCCTGCTCTATGCCTGGGACAATGGCCACCAGGTCACTTACCATGTCATCTTTGCCTACT TCTATTTTTTATATGGATTGTAGATCAATCCATACGTGTATGTGCTGGTCTCATCCTCCCCAGTTTATATTTTT CTTTTTTTTTTAATAAAGAAGAAATTTAAAATC

PCT/US2003/028547

538/6881 FIGURE 502

MTSVTRRPAATRQGHSTAVTSDLNARTAPWSSALPQPSTSDPSIANHASVGPTLQTTSVSPDPTRESVLQPSPQV
PATTVAHTATQQPAAPAPPAVSPREALMEAMHTVPVPPTTVRTDSLGKDAPAGWGTTPASPTLSPEEEDDIRNVI
GRCKDTLSTITGPTTQNTYGRNEGAWMKDPLAKDERIYVTNYYYGNTLVEFFRNLENFKQGRWSNSYKLPYSWIGT
GHVVYNGAFYYNRAFTRNIIKYDLKQRYVAAWAMLHDVAYEEATPWRWQGHSDVDFAVDENGLWLIYPALDDEGF
SQEVIVLSKLNAADLSTQKETTWRTGLRRNFYGNCFVICGVLYAVDSYNQRNANISYAFDTHTNTQIVPRLLFEN
EYSYTTQIDYNFKDRLLYAWDNGHQVTYHVIFAY

PCT/US2003/028547

539/6881 FIGURE 503

GGCACGAGGGATGCAAGGAGATGAGACAGTTAGATTTACTTCCTCTTTTCTAATCTGAGAGGTTTCATGTTGAAG AAAATCAGTGTTGGGGTTGCAGGAGACCTAAACACAGTCACCATGAAGCTGGGCTGTGTCCTCATGGCCTGGGCC CTCTACCTTTCCCTTGGTGTGCTCTGGGTGGCCCAGATGCTACTGGCTGCCAGTTTTGAGACGCTGCAGTGTGAG GGACCTGTCTGCACTGAGGAGAGCAGCTGCCACACGGAGGATGACTTGACTGATGCAAGGGAAGCTGGCTTCCAG GTCAAGGCCTACACTTTCAGTGAACCCTTCCACCTGATTGTGTCCTATGACTGGCTGATCCTCCAAGGTCCAGCC AAGCCAGTTTTTGAAGGGGACCTGCTGGTTCTGCGCTGCCAGGCCTGGCAAGACTGGCCACTGACTCAGGTGACC TTCTACCGAGATGGCTCAGCTCTGGGTCCCCCGGGCCTAACAGGGAATTCTCCATCACCGTGGTACAAAAGGCA GACAGCGGCACTACCACTGCAGTGGCATCTTCCAGAGCCCTGGTCCTGGGATCCCAGAAACAGCATCTGTTGTG GCTATCACAGTCCAAGAACTGTTTCCAGCGCCAATTCTCAGAGCTGTACCCTCAGCTGAACCCCAAGCAGGAAGC CCCATGACCCTGAGTTGTCAGACAAAGTTGCCCCTGCAGAGGTCAGCTGCCCGCCTCCTCTTCTCCTTCTACAAG GATGGAAGGATAGTGCAAAGCAGGGGGCTCTCCTCAGAATTCCAGATCCCCACAGCTTCAGAAGATCACTCCGGG TCATACTGGTGTGAGGCAGCCACTGAGGACAACCAAGTTTGGAAACAGCCCCCCAGCTAGAGATCAGAGTGCAG GGTGCTTCCAGCTCTGCTGCACCTCCCACATTGAATCCAGCTCCTCAGAAATCAGCTGCTCCAGGAACTGCTCCT GAGGAGGCCCCTGGGCCTCTGCCTCCGCCGCCAACCCCATCTTCTGAGGATCCAGGCTTTTCTTCTCCTCTGGGG ATGCCAGATCCTCATCTGTATCACCAGATGGGCCTTCTTCTCAAACACATGCAGGATGTGAGAGTCCTCCTCGGT CACCTGCTCATGGAGTTGAGGGAATTATCTGGCCACCAGAAGCCTGGGACCACAAAGGCTACTGCTGAATAGAAG TAAACAGTTCATCCATGATCTCACTTAACCACCCCAATAAATCTGATTCTTTATTTTCTCTTCTCTGTCCTGCACA TATAAAGTGAGAATTAGAGTTTAGCTATAATTGTGTATTCTCTCTTTAACACAGAATTCTGCTGTCTAGATCA GGAATTTCTATCTGTTATATCGACCAGAATGTTGTGATTTAAAGAGAACTAATGGAAGTGGATTGAATACAGCAG TCTCAACTGGGGGCAATTTTGCCCCCCAGAGGACATTGGGGCAATGTTTGGAGACATTTTGGTCATTATACTTGGG GGGTTGGGGGATGTGTGTGTGTGCTACTGGCATCCAGTAAATAGAAGCCAGGGGTGCCGCTAAACATCCTA TAATGCACAGGGCAGTACCCCACAACGAAAATAATCTGGCCCAAAATGTCAGTTGTACTGAGTTTGAGAAACCC CAGCCTAATGAAACCCTAGGTGTTGGGCTCTGGAATGGGACTTTGTCCCTTCTAATTATTATCTCTTTCCAGCCT CATTCAGCTATTCTTACTGACATACCAGTCTTTAGCTGGTGCTATGGTCTGTTCTTTAGTTCTAGTTTGTATCCC CTCAAAAGCCATTATGTTGAAATCCTAATCCCCAAGGTGATGGCATTAAGAAGTGGGCCTTTGGGAAGTGATTAG ATCAGGAGTGCAGAGCCCTCATGATTAGGATTAGTGCCCTTATTTAAAAAGGCCCCAGAGAGCTAACTCACCCTT CCACCATATGAGGACGTGGCAAGAAGATGACATGTATGAGAACCAAAAAAACAGCTGTCGCCAAACACCCGACTCTG AAAAA

PCT/US2003/028547

540/6881 FIGURE 504

MKLGCVLMAWALYLSLGVLWVAQMLLAASFETLQCEGPVCTEESSCHTEDDLTDAREAGFQVKAYTFSEPFHLIV SYDWLILGGPAKPVFEGDLLVLRCQAWQDWPLTQVTFYRDGSALGPPGPNREFSITVVQKADSGHYHCSGIFQSP GPGIPETASVVAITVQELFPAPILRAVPSAEPQAGSPMTLSCQTKLPLQRSAARLLFSFYLGGRIVQSRGLSSEF Q1PTASEDHSGSYWCEAATEDNQVWKQSPQLEIRVQGASSSAAPPTLNPAPQKSAAPGTAPEEAPGPLPPPPTPS SEDPGFSSPLGWPDPHLYHQWGLLLKHMQDVRVLLGHLLWELRELSGHQKPGTTKATAE

PCT/JIS2003/028547

FIGURE 505

PCT/US2003/028547

542/6881 FIGURE 506

MWQLLLPTALLLLVSAGMRTEDLPKAVVFLEPQWYRVLEKDSVTLKCQGAYSPEDNSTQWFHNESLISSQASSYF IDAATVDDSGEYRCQYNLSTLSDEPVQLEVHIGWLLIQAPRWVFKEEDPTHLBCHSWKNTALHKVTYLQNGKGRKY FHHNSDFYIPKATLKDSGYFCRGLVGSKNVSSETVNITITQGLAVSTISSFFPPGYQVSFCLVMVLLFAVDTGL YFSVKTNIRSSTRDWKDHKFKWRKDPQDK

PCT/US2003/028547

543/6881 FIGURE 507

PCT/US2003/028547

544/6881 FIGURE 508

 ${\tt MADGTCQDVAIVGYKDSPSIWAAVPGKTFANIAPAEVGVLAGKDRSRWGILHGSSYTKSTGGAPTFNVTVTKTDK} \\ {\tt TLVLLMGKEGVHGGLINKKCYEMASHLRRSQY}$

PCT/US2003/028547

545/6881 FIGURE 509

PCT/IIS2003/028547

546/6881 FIGURE 510

MVVGFTEFESFHPGLAAAASARASSWNTHVEMGPPDPILGVTEAFKRDINSKKMNLGVGMIMGSRFASGDGDKDA WALHHFIEQGINVCLCQSYAKNMGLYGEHVGAFTVVCKDADEAKRVESQLKILISPNYSNSPLNGAQIASTIPNT PVGLKVWVMGGLHDHPQVMSDEKETTLRAVAVKYWIRVRLCHFLETFMSPDLTGWKKLQQEDGLTSLLASKSHKR AOADEPKPHEPGGLRTSGTWSL

PCT/US2003/028547

547/6881 FIGURE 511

TCCCAACTTTGAGGCCAATACCACCGTCGGCCGCATCCGTTTCCACGACTTTCTGGGAGACTCATGGGGCATTCT $\tt CTTCTCCCACCCTCGGGACTTTACCCCAGTGTGCACCACAGAGCTTGGCAGAGCTGCAAAGCTGGCACCAGAATT$ TGCCAAGAGGAATGTTAAGTTGATTGCCCTTTCAATAGACAGTGTTGAGGACCATCTTGCCTGGAGCAAGGATAT CAATGCTTACAATTGTGAAGAGCCCACAGAAAAGTTACCTTTTCCCATCATCGATGATAGGAATCGGGAGCTTGC CATCCTGTTGGGCATGCTGGATCCAGCAGAGAAGGATGAAAAGGGCATGCCTGTGACAGCTCGTGTGGTGTTTGT TTTTGGTCCTGATAAGAAGCTGAAGCTGTCTATCCTCTACCCAGCTACCACTGGCAGGAACTTTGATGAGATTCT CAGGGTAGTCATCTCTCCCAGCTGACAGCAGAAAAAAGGGTTGCCACCCCAGTTGATTGGAAGGATGGGGATAG TGTGATGGTCCTTCCAACCATCCCTGAAGAAGAAGCCAAAAAACTTTTCCCGAAAGGAGTCTTCACCAAAGAGCT $\tt CCCATCTGGCAAGAAATACCTCCGCTACACCCCCAGCCT{\color{red}{TAAG}} TCTCTTGGAGAAGTTGGTGCTGTGAGCCAGA$ GGATGTCAGCTGCCAATTGTGTTTTCCTGCAGCAATTCCATAAACACATCCTGGTGTCATCACAGCCAAGGTTTT TAGGTTGCTATACCAATGGCTTATTAAATGAAAATGGCACTAAAAGTTTCTTGAGATTCTTTATACTCTCTGCCT · TCAGCAATCAATTCCATTCATACATCAGCACTCTGCTGGTTCTGTTTGAAATATGTTCTGTATTTAAAACTCAAA ATCAGAGAATGACTATCAATTTTTTTTTAACTGTCCTATCACGTCCTCTCCTGTCACCCATTTTGAAGAGTGGCA GAACTTGAAGTTCAACTTCCTCTGTAAATATCCAAGTATAAAGCCCAGGAACTTCTAGAATAACCCAGATGCGCT TTAATTTTTTTTAATATGTTTTGATCACAGAACTTCTAGAATAACCCAGATGCTCTTTCATATTCTTTTAATACA TCTTGATCACAGCTGGGGGAAAAAAAGCTTTTTAATTCTGTACCTTCCTAGTAGATAAGTGAAGAGCAGGGAAAG AGACCTTTAAATATTTTGCTATAAAAAATTTGTGATAAGTTTCTATCAAAATGGGGAGATTGCAGAAAAGGCTT CCCTTGGCTCCCAAGGAGGTGTAGCAGGTGTGAGCAATATTAGTGCCATGTGCCTTTCACACAGGGTTTGCATTT ATCAGTCTGTTTTCCGATGATGTGTACATGAAAGAGTACACCATGTGAAGAGAAGAGAGAATGATTGAAAATGTT TTAGTATAGAACTCTTCTTGCAGTGGGTTGCTATTTTCTAGATTTTACTTTTTAGGGAACAAAATAAAATCCTTT GTT

PCT/US2003/028547

548/6881 FIGURE 512

MPGGLLLGDVAPNFEANTTVGRIRFHDFLGDSWGILFSHPRDFTPVCTTELGRAAKLAPEFAKRNVKLIALSIDS VEDHLAWSKDINAYNCEEPTEKLPFPIIDDRNRELAILLGMLDPAEKDEKGMPVTARVVFVFGPDKKLKLSILYP ATTGRNFDEILRVVISLQLTAEKRVATPVDWKDGDSVMVLPTIPEEEAKKLFPKGVFTKELPSGKKYLRYTPQP

PCT/US2003/028547

549/6881 FIGURE 513

AGAGA CCGTCCGAGGTAATTGTCTGCCACGAGTGCACATTCTGAAAAACAGGAGATTTTAGTTCCTAAAAATGGGA AGAACCTACATTGTAGAAGAGACTGTTGGCCAGTATCTTTCAAACATAAATCTCCAAGGAAAGGCTTTTGTCTCT GGCCTTTTAATAGGACAGTGTTCGTCACAAAAGGATTATGTGATTCTTGCCACTAGAACGCCACCCAAAGAGGAG CAAAGTGAGAACCTCAAACATCCCAAAGCTAAGTTGGATAACTTGGATGAAGAATGGGCCACAGAACATGCCTGC CAGGTATCCAGA<u>NTG</u>CTACCAGGGGGACTTTTAGTTCTTGGAGTATTTATTACTACTTTAGAACTGGCAAAT GATTTTCAAAATGCCCTGCGTAGACTAATGTTTGCTGTGGAAAAGTCTATAAATAGAAAGAGATTGTGGAATTTC GATATCCATGATCCAAAGAGTTCAGCAAGACCAGCAGATTGGAAGTATCAAAGTGGATTATCATCCTCATGGCTT TCTTTAGAGTGTACAGTTCACATTAATATTCACATCCCACTTTCTGCTACTTCTGTCAGCTATACTCTGGAGAAA AATACAAAGAATGGACTTACACGCTGGGCCAAGGAAATAGAAAATGGTGTTTATTTGATTAATGGACAAGTTAAA GATGAAGATTGTGACCTATTAGAAGGACAGAAAAAATCTTCTAGAGGAAATACTCAAGCAACTAGTCATTCTTT GATGTCAGAGTGCTAACGCAGTTGCTCCTGAATTCAGACCACAGATCCACAGCCACAGTCCAGATATGTAGCGGT TCTGTAAACCTTAAGGGTGCTGTGAAATGCAGAGCTTATATCCACAGCAGTAAACCCAAAGTTAAAGATGCTGTG CAGGCAGTAAAGAGGGATATATTGAACACAGTTGCTGATCGTTGTGAAATGCTATTTGAGGATCTGCTTTTGAAT GAAATTCCAGAAAAAAAAAGATTCTGAAAAAGAGTTCCACGTCCTCCTTATCGAGTCTTTGTTCCCCTTCCTGGA TCCACTGTAATGTTGTGTGATTATAAATTTGACGATGAGTCAGCTGAAGAAATCAGGGACCATTTTATGGAGATG AATAGTCAAGCTTCATTGGACAACACAGATGATGAACAACCAAAAACAACCAATTAAAACTACAATGTTATTGAAA ATTCAGCAAAACATAGGTGTGATTGCAGCATTTACAGTTGCAGTCCTTGCTGCGGGTATCTCCTTTCATTACTTC GTTAACAATCCATCTGTATTTAAAACACTAGCAGCCAGATCTGCTGCCATGATGCCTATTTGGTGTGTTTCTGAT TAAAATGAAATCACAAGCTGCCTTGTTTAGCCTGCTTTACATTGTAGGTGGCCCGCATTTCCAGAAATAACGTTA TGCATCTAGATGGAAGCTGCATGTAACAAATCATTATTATCTATTTTTAAAAGCTTCAAAATGATGGGATATGAT CATAGATTTTAGTCTTACTAATCTGAATCACATATTAATCAGGACATTAAAAACTTTAACAGAGGCATGATGGCT

PCT/US2003/028547

550/6881 FIGURE 514

MLPGGLLVLGVFIITTLELANDFONALRRLMFAVEKSINRKRLWNFTEEEVSERVTLHICASTKKIFCRTYDIHD PKSSARPADWKYQSGLSSSWLSLECTVHINIHIPLSATSVSYTLEKNTKNGLTRWAKEIENGYYLINGQVKDEDC DLLEGGKKSSRGNTQATSHSFDVRVLTQLLLNSDHRSTATVQLCSGSVUKKGAVKCRAYIHSSKPKVKDAVQAVK RDILNTVADRCEMLFEDLLLNEIPEKKDSEKEFHVLPYRVFVPLPGSTVMLCDYKFDDESAEEIROHFMEMLDHT IQIEDLEIAEETNTACMSSSMMSQASLDNTDDEQPKQPIKTTMLLKIQQNIGVIAAFTVAVLAAGISFHYFSD

PCT/US2003/028547

551/6881 FIGURE 515A

CGAGACGGAAGCGGGCTGGGAGGCGTCGGCGGCGCACCGTGGTGACGTGCGAGGGGGTGCGGCGCGAGCG GTCGGCGGCGGAGGCAGTGTCTCCCGGTCGCGCGTGGAGGTCGCTCACAGCTGCTGGGCGCAGTTTCT TTTCAGTCTCCACGGACTGGCCCCTCGTCCTTCTACTTGACCGCTCCCGTCTTCCGCCGCCTTCTGGCGCTTTCC ATGAACCAGATTATGATGCATCATTATCACAGAAGAAATTCGTGTCTATAGCTTTTAAGGACTTGATTACATCAT TTTCAAGCCTGATAGTTTTGGAATCACCATTAGAGCTTAAGACACCTGCCTTCATTTCAACCACCTGTCTTCA TACCCTGACGAAGTGCACCTTTTAACACTCCTTTGTCCTTGGATTACTTAAGAGTTCCCAGAAATACATTTGCCA CCAACAGAGTAGCCAAATTTATAAGGAAAA<u>ATG</u>ATTCCCAATGGATATTTGATGTTTGAGGATGAAAATTTTATT GAGTCTTCTGTTGCCAAATTAAATGCCCTGAGGAAAAGTGGCCAGTTCTGTGATGTTCGACTTCAGGTCTGTGGC GATCCTCATGGAATTTCTCACGTTAAATTTGATGATCTCAATCCAGAAGCTGTTGAAGTCTTGTTGAATTATGCC TACACTGCTCAGTTGAAAGCAGATAAGGAATTGGTAAAAGATGTTTATTCTGCAGCAAAAAAGCTGAAGATGGAT CGAGTAAAGCAGGTTTGTGGTGATTATTTACTGTCTAGAATGGATGTTACCAGCTGCATCTCTTACCGAAATTTT GCAAGTTGTATGGGAGACTCCCGTTTGTTGAATAAGGTTGATGCTTATATTCAGGAGCATTTGTTACAAATTTCT AATGGCAAATTATATACAAAGGTAATCAACTGGGTGCAGCGTAGCATCTGGGAGAATGGAGACAGTCTGGAAGAG CTGATGGAAGAGGTTCAAACCTTGTACTACTCAGCTGATCACAAGCTGCTTGATGGGAACCTACTAGATGGACAG GCTGAGGTGTTTGGCAGTGATGATGACCACATTCAGTTTGTGCAGAAAAAGCCACCACGTGAGAATGGCCATAAG CAGATAAGTAGCAGTTCAACTGGATGTCTCTCTCTCCAAATGCTACAGTACAAAGCCCTAAGCATGAGTGGAAA ATCGTTGCTTCAGAAAAGACTTCAAATAACACTTACTTGTGCCTGGCTGTGCTGGATGGTATATTCTGTGTCATT ATGCAACAAGATGAGCTAATCGAAAAGCCCATGTCTCCTATGCAGTACGCACGATCTGGTCTGGGAACAGCAGAG ATGAATGGCAAACTCATAGCTGCAGGTGGCTATAACAGAGAGGAATGTCTTCGAACAGTCGAATGCTATAATCCA CATACAGATCACTGGTCCTTTCTTGCTCCCATGAGAACACCAAGAGCCCGATTTCAAATGGCTGTACTCATGGGC CAGCTCTATGTGGTAGGTGGATCAAATGGCCACTCAGATGACCTGAGTTGTGGAGAGATGTATGATTCAAACATA GATGACTGGATTCCTGTTCCAGAATTGAGAACTAACCGTTGTAATGCAGGAGTGTGTGCTCTGAATGGAAAGTTA TACATCGTTGGTGGCTCTGATCCATATGGTCAAAAAGGACTGAAAAATTGTGATGTATTTGATCCTGTAACAAAG TTGTGGACAAGCTGTGCCCCTCTTAACATTCGGAGACACCAGTCTGCAGTCTGTGAGCTTGGTGGTTATTTGTAC ATAATCGGAGGTGCAGAATCTTGGAATTGTCTGAACACAGTAGAACGATACAATCCTGAAAATAATACCTGGACT TTAATTGCACCCATGAATGTGGCTAGGCGAGGAGCTGGAGTGGCTGTTCTTAATGGAAAACTGTTTGTATGTGGT AATATGACTTCACCAAGGAGCAATGCTGGGATTGCAACTGTAGGGAACACCATTTATGCAGTGGGAGGATTCGAT CAGTTTTAACAAATTTAAGACCCTCTCAAACTAACAGGCTTAGTGATGTAATTATGGTTAGTAGAGGTACACTTG TGAATAAAGAGGGTGGGTGTGTATAGATGTTGCTAACAGCAACACAAAGCTTTTGCATATTGCATACTATTAAAC ATGCTGTACATACTTTTTGGGTTTATTTGGAAAGGAATGCAAAGATGAAGGTCTGTTTTGTGTACTTTTAAGACT CCACATTTGTTTTGCCAATTTGCACATTAAATGACTCTTCCCTCAAATGTGTACTATGGGGTAAAAGGGGTAGGG TTTAAAGATGTAGACAGTTGGGTTTTTTAAGGGCCCTTTTTCAATAACTGGAACACTCTATAACAAAGGATACTT ATTTAAATAGATGACATTGACTATTTTTGTTTTTATTAAAAGGAAGCTTACATGCCTACCAATATTTAATCTTTT ATGATTGCCTTTTTATAACTTTTTATATTCTCAGCAGAGTGCTTTACCAATTGAAGTAAAATGTGGCAGGCTGGA GTAACATAGCTGTGATTTTTGGTATTTGAAACACTGGTTTTAAATATTTTGACTTGTTGAGGGTATGTTTATAT AGCAAGACATTATATAGCAGTAAAAAATGGTGTTTTATCTTCTATATAATTCCTGTTTTTATTATTAACAAAACA GTCCTAAATAGCAGCCCTCAATTGTGAAAAAATTTACTTTAAACTACATTAGGTTGTGAATGCAGGTTTTATCAG

PCT/US2003/028547

552/6881 FIGURE 515B

PCT/HS2003/028547

553/6881 FIGURE 516

MIPNGYLMFEDENFIESSVAKLNALRKSGQFCDVRLQVCGHEMLAHRAVLACCSPYLFEIFNSDSDPHGISHVKF
DDLNPEAVEVLLNYAYTAQLKADKELVKDVYSAAKKLKMDRVKQVCGDYLLSRMDVTSCISYRNFASCMGDSRLL
NKVDAYIQEHLLQISEEEFFIKLIPRLKLEVMLEDNVCLPSNGKLYTKVINWVQRSIWENGDSLEELMEEVQTLYY
SADHKLLDGNLLDGQAEVFGSDDDHIQFVQKKPPRENGHKQISSSTGCLSSPNATVQSPKHEWKIVASEKTSNN
TYLCLAVULDGIFCVIFIHGRNSPQSSFTSTPKLSKSLSFEWQQDELIEKPMSPMQYARSGLGTAEMNGKLIAAGG
YNREECLRTVECYNPHTDHWSFLAPMRTPRARFQMAVLMGQLYVVGGSNGHSDDLSCGEMYDSNIDDMIPVPELR
TNRCNAGVCALNGKLYIVGGSDPYGQKGLKNCDVFDPVTKLWTSCAPLNIRRHQSAVCELGGYLYIIGGAESWNC
LNTVERYNPENNTWILIAPMNVARRGAGVAVLNGKLFVCGGFDGSHAISCVEMYDPTRNEWKMMGNMTSPRSNAG
IATVGNTIYAVGGSDGMEFLNTVEVYNLESNEWSPYTKIFQF

PCT/US2003/028547

554/6881 FIGURE 517

CCTTTGCCGCTGGTCGGGATTGGGATGTCGAAGAACACAGTGTCGTCGGCCCGCTTCCGGAAGGTGGACGTGGAT GAATATGACGAGAACAAGTTCGTGGACGAAGAAGATGGGGGCCGACGGCCAGGCCCGGGCCCGACGAGGGCGAGGTG GACTCCTGCCTGCGGCAAGGAAACATGACAGCTGCCCTACAGGCAGCTCTGAAGAACCCCCCTATCAACACCAAG AGTCAGGCAGTGAAGGACCGGGCAGGCAGCATTGTCTTGAAGGTGCTCATCTCTTTTAAAGCTAATGATATAGAA AAGGCAGTTCAATCTCTGGACAAGAATGGTGTGGATCTCCTAATGAAGTATATTTATAAAGGATTTGAGAGCCCG TCTGACAATAGCAGTGCTATGTTACTGCAATGGCATGAAAAGGCACTTGCTGCTGGAGGAGTAGGGTCCATTGTT CGTGTCTTGACTGCAAGAAAAACTGTGTAGTCTGGCAGGAAGTGGATTATCTGCCTCGGGAGTGGGAATTGCTGG TACAAAGACCAAAACAACCAAATGCCACCGCTGCCCTGTGGGTAGCATCTGTTTCTCTCAGCTTTGCCTTCTTGC TTTTCATATCTGTAAAGAAAAAATTACATATCAGTTGTCCTTTAATGAAAATTGGGATAATATAGAAGAAATT GTGTTAAAATAGAAGTGTTTCATCCTTTCAAAACCATTTCAGTGATGTTTATACCAATCTGTATATAGTATAATT TACATTCAAGTTTAATTGTGCAACTTTTAACCCCTGTTGGCTGGTTTTTTGTTCTGTTTTTGTATTATTTT TAACTAATACTGAGAGATTTGGTCAGAATTTGAGGCCAGTTTCCTAGCTCATTGCTAGTCAGGAAATGATATTTA TAAAAAATATGAGAGACTGGCAGCTATTAACATTGCAAAACTGGACCATATTTCCCTTATTTAATAAGCAAAATA GGGTTCAGAGCAAGAAGTCTTGCTTTATACAAATGTATCCATAAAATATCAGAGCTTGTTGGGCATGAACATCAA AGACATTATGAGGTATACAACTAGTATTTAAGATACCATTTAATATGCCCCGTAAATGTCTTCAGTGTTCTTCAG AAAAAAGAAACTGCCACACAGCAAAAAATTGTTTACTTTGTTGGACAAACCAAATCAGTTCTCAAAAAATGACCG TAGTATTTACATTGGATGCCAGTTTTGTAATCACTGACTTATGTGCAAACTGGTGCAGAAATTCTATAAACTCTT TGCTGTTTTTGATACCTGCTTTTTGTTTCATTTTGTTTTGTTTTGTAAAAATGATAAAACTTCAGAAAATAAAAT GTCAGTGTTGAATAAAAAAAAAAAAAAAAAAAAAAAA

PCT/US2003/028547

555/6881 FIGURE 518

MSKNTVSSARFRKVDVDEYDENKFVDEEDGGDQQAGPDEGEVDSCLRQGNMTAALQAALKNPPINTKSQAVKDRA GSIVLKVLISFKANDIEKAVQSLDKNGVDLLMKYIYKGFESPSDNSSAMLLQWHEKALAAGGVGSIVRVLTARKT V

PCT/HS2003/028547

556/6881 FIGURE 519A

GCCAGGCAGAGTCCTACTATAGGCATGCAGCTCAGCTTGTCCCCTCCAATGAAGCATTGCTGTGAAGTTCCCTTT CCCAGCTGCCTCCACTAATCTGCAAAAAGCACTTTCTAAAGCACTGGAAAGCCGAGATGAGGTGAAAACCAAGTG GGGTGTTTCTGACTCAAGGCCTTTATTAAATTCCACGGTCATGTGTACCTGAGTAAGAGCTTGGAAAAGTT GAGCCCTCTTCGAGAGAAATTGGAAGAACAGTTTAAGAGGCTGCTATTCCAAAAAGCTTTCAACTCTCAGCAGTT AGTTCATGTCACTGTCATTAACCTGTTTCAACTTCATCACCTTCGTGACTTTAGCAATGAAACCGAGCAGCACAC GTGTCCTCTACAGAATGAGTCTCAGGAGGAGTCCTACAATGCCTATCCTCTTCCAGCAGTCAAGGTCTCCATGGA CTGGCTAAGACTCAGACCCAGGGTCTTTCAGGAGGCAGTGGTGGATGAAAGACAGTACATTTGGCCCTGGTTGAT TTCTCTTCTGAATAGTTTCCATCCCCATGAAGAGGGCCTCTCAAGTATTAGTGCGACACCACTTCCAGAGGAGTT TGAATTACAAGGATTTTTGGCATTGAGACCTTCTTTCAGGAACTTGGATTTTTCCAAAGGTCACCAGGGTATTAC AGGGGACAAAGAAGGCCAGCAACGACGAATACGACAGCAACGCTTGATCTCTATAGGCAAATGGATTGCTGATAA TCAGCCAAGGCTGATTCAGTGTGAAAATGAGGTAGGGAAATTGTTGTTTATCACAGAAATCCCAGAATTAATACT GGTTACCTTCAAAGAAAACATTAAGACACGAGAAGTGAACAGAGACCAAGGAAGAAGTTTTCCTCCCAAAGAGGT GAGAAGGGACTATAGCAAAGGAATAACTGTAACTAAGAATGATGGAAAGAAGGACAACAACAAGAGGGAAAACTGA AACCAAGAATGCACCTTAGAAAAGTTACAGGAAACAGGAAAGCAGAATGTGGCAGTGCAGGTAAAATCCCAGAC TGTTATCCCCCGCCTGTGGCATTTTCTATGGGCTCAGGTTACACCTTCCCAGCTGGTGTTTCTGTCCCAGGAAC CTTTCTTCAGCCTACAGCTCACTCTCCAGCAGGAAACCAGGTGCAAGCTGGGAAACAGTCCCACATTCCTTACAG ${\tt CCAGCAACGGCCCTCTGGACCAGGGCCAATGAACCAGGGACCTCAACAATCACAGCCACCTTCCCAGCAACCCCT}$ TACATCTTTACCAGCTCAGCCAACAGCACAGTCTACAAGCCAGCTGCAGGTTCAAGCTCTAACTCAGCAACAACAACA ATCCCCTACAAAAGCTGTGCCGGCTTTGGGGAAAAGCCCGCCTCACCACTCTGGATTCCAGCAGTATCAACAGGC AGATGCCTCCAAACAGCTGTGGAATCCCCCTCAGGTTCAAGGCCCATTAGGGAAAATTATGCCTGTGAAACAGCC TCTAGAAAAAAAATGAAGCCTTTTCCCATGGAGCCATATAACCATAATCCCTCAGAAGTCAAGGTCCCAGAATT CTACTGGGATTCTTCCTACAGCATGGCTGATAACAGATCTGTAATGGCACAGCAAACATAGACCGCAGGGG CAAACGGTCACCAGGAATCTTCCGTCCAGAGCAGGATCCTGTACCCAGAATGCCGTTTGAGAAATCCTTATTGGA CCCAAATAATAGTATGTTCAATGAGGTATATGGGAAAAACCTGACATCCAGCTCCAAAGCAGAACTCAGTCCCTC AATGGCCCCCAGGAAACATCTCTGTATTCCCTTTTTGAAGGGACTCCGTGGTCTCCATCACTTCCTGCCAGTTC CAACCATAATTCTGTTCCATTCTCCAATTTTGGACCCATTGGGACTCCAGATAACAGGGATAGAAGGACTGCAGA TCGGTGGAAAACTGATAAGCCAGCCATGGGTGGGTTTGGCATTGATTATCTCTCAGCAACGTCATCCTCTGAGAG CAGTTGGCATCAGGCCAGCACTCCGAGTGGCACCTGGACAGGCCATGGCCCTTCCATGGAGGATTCCTCTGCTGT CCTCATGGAAAGCCTAAAGTCTATCTGGTCCAGTTCCATGATGCATCCTGGACCTTCTGCTCTGGAGCAGCTGTT AATGCAGCAGAAGCAGAAACAGCAACGGGGACAAGGCACCATGAACCCTCCACAC<u>T</u>GAGGCCAAAGTGGCAACCT GGGAATGAAGGCTCCATAAACCATGGCATGTTGGGTTTGCAGGACTGGCCCACACAGTCCCCTGCAGGTGGCAGC CCTCTTTTCTGTTTCTCGCTGTCAAGAGGGTGTAAGTATTCCACCAGCCCGCTGAGTGTGCACGAAATGTTCGCA CTGTTTATCTCACTCAGTTACTTGGTATCACCGCCTCTCACCTTCTCCATCGTGCATGTCCCCAGCCACATGGGA AGTGAAAGCTGAGAAGGGAAGGCAGATGGGAGAAGCCAATGGGAACTTCTCAGTCCTTTTTTCCTCTTTGGGGAA TAAAATAGGAATCCATTAATGATTGCTTTGCTGACTGAGAATGTAGTTGAAATTAAACATCTTTTATTATTATTATTA CTCTCAGTAGTAAAATATCACACTGAATTCTTCCATACACAGGTGTGCTTCTAGTCAGTGTGTAGCAAGGAAAGC CCCGTTCACTCCTCTGTGAGAGGTTGGTGGTGACAGGATGGGGAACCGACCTCTTCAGCCAGTGGAAATGTTCC ATAAGGGAGAGTTCAAGGCCTGTCAGAAGGCTCTGGTAGGCCTTCCTCTGGCCAGGAGACTCCAGCAGGGAATGC

PCT/US2003/028547

557/6881 FIGURE 519B

GGTTTTTGTGCCCCCATTCTACTTCCCACCCTCCTGCCCCATCTCCATCCCTTCTTTTACCCAATGCTGTATGCT GGCCCAAAAGACAGTCTGAAGAGGAAGGAAGCAGCAGTATCTGCGTAGCCCACAGAGGGCCCCAGGCCCCTGCCCA GCTGCAGTCTCCCAGCCTCCACTTTCAGAGTGAAATTCAAGGCAGCACGGACATGTGCCCCATCAGGCACAGAAGA AAGAGGACTGAAAATGTTCTTGTGTAGAAACAGAAGGACAGCATTTCTGTTAGTCATTTCCTGGAAAAGTAATAT TTTAAGGGGAAATTATGGAAACAATCTAATTGTTCAATTGCTGTGCTAGTGGTAGGGTTTATTTTCTGGGAGGTC CGAGTGTATGGAGTTAGTGTGGAACTTAAGAGCTGGAAGACAGCTGTAGAGCAAAGCACATCCAGGAGCCCCAGT GGAGCCCCCCCCCCCCTATGCTTACATTATTGCTCTTTTAGTTTGACATGGTGTTTGGGTTTTGTTTTTTGA AAGGTCTGAAAAGGTGAAGCCCCCTACCCAATGGCAATATGAAACCTTTTGTGCTTCTCTTCAGCCCCTTCCCTG TGTCCACCTTTCTCCTCTTCCCAAGCCTTTTTCCTACTACCTTTACCCAGTTTGTGTGTTTGAGCTCTGCATT CAGGCAGCTGCAACATTCCAGTGTTTGAACTGTCACTGATTCTTGCGCCCTAGACAAGCTAACCAGGTTTACCAT CTCACTCCCAGTAATACCCAGCTCCTATCTAAAGCCCCATTCTGCATGAGAATTTTGGTGTTTTGGAATGTTTTCTG ACTOTTGGGGGGGGATTCCTCGCCTTATCATCCTCACTGTGGAGTAATGAGGGGGAGGAGAATCTTTATCAGAAA

PCT/US2003/028547

558/6881 FIGURE 520

MSFLGILCKCPLQNESQESYNAYPLPAVKVSMDWLRLRPRVFQEAVVDERQYIWPWLISLLNSFHPHEEDLSSI
SATPLPEEFELQGFLALRFSFRNLDFSKGHQGITGKEGQQRRIRQQRIISIGKWIADNQPRLIQCEMEVGKLLF
ITEIPELILEDPSEAKENLILQETSVIESLAADGSPGLKSVLSTSRNLSNNCDTGEKPVVTFKENIKTREVNRDQ
GRSFPPKEVRRDYSKGITVTKNDGKKDNNRRKTETKKCTLEKLQETGKONVAVQVKSQTELRRTEVYSEARKTPVT
QTPTQASNSQFIPIHHPGAFPPLPSRPGFPPPTYVIPPPVAFSMGSGYTFPAQVSVPGTFLQPTAHSPAGNGVQA
GKQSHIPYSQQRESGFGPMNQGPQQSQPFSQQPLTSLFAQFTAQSTSQLQVQALTQQQQSPTKAVPALGKSPPHH
SGFQQYQQADASKQLWNPPQVQGPLGKIMPVKQPYYLQTODPIKLFPBIQPPVWQQQPLEKKMKPFFMEPYNHN
PSEVKVPEFYWDSSYSMADNRSVMAQQANIDRRGKRSPGIFFPEQDPVPRMPFEKSLLEKPSELMSHSSSFLSLT
GFSLNGEKYPNNSMYEVYGKMLTSSSKAELSPSMAPGETSLYSLFEGTPWSPSLPASSDHSTPASQSPHSSNPS
SLPSSPPTHNHNSVPFSNFGPIGTPDNRDRRTADRWKTDKPAMGGFGIDYLSATSSSESSWHQASTPSGTWTGHG
PSMEDSSAVLMESLKSIWSSSMMHEGESALEQLLMQQKQKQQRGQGTMMPPH

PCT/IIS2003/028547

559/6881 FIGURE 521A

ACCÁCCTGATCAAGGAAAAGGAAGGCACAGCGGAGCGCAGAGTGAGAACCACCAACCGAGGCGCCGGGCAGCGAC CTCGCTCCTCCTGCCCGCAGCCCGGGCCACCTCCAGGAGGGAAGTCTGTGATTGCAATGGGAAGTCCAGGCAGTG TATCTTTGATCGGGAACTTCACAGACAAACTGGTAATGGATTCCGCTGCCTCAACTGCAATGACAACACTGATGG CATTCACTGCGAGAAGTGCAAGAATGGCTTTTACCGGCACAGAGAAAGGGACCGCTGTTTGCCCTGCAATTGTAA CTCCAAAGGTTCTCTTAGTGCTCGATGTGACAACTCCGGACGGTGCAGCTGTAAACCAGGTGTGACAGGAGCCAG ATGCGACCGATGTCTGCCAGGCTTCCACATGCTCACGGATGCGGGGTGCACCCAAGACCAGAGACTGCTAGACTC CAAGTGTGACTGTGACCCAGCTGGCATCGCAGGGCCCTGTGACGCGGGCCCGCTGTGTCTGCAAGCCAGCTGTCAC TGGAGAACGCTGTGATAGGTGTCGATCAGGTTACTATAATCTGGATGGGGGGAACCCTGAGGGCTGTACCCAGTG TTTCTGCTATGGGCATTCAGCCAGCTGCCGCAGCTCTGCAGAATACAGTGTCCATAAGATCACCTCTACCTTTCA TCAAGATGTTGATGGCTGGAAGGCTGTCCAACGAAATGGGTCTCCTGCAAAGCTCCAATGGTCACAGCGCCATCA AGATGTGTTTAGCTCAGCCCAACGACTAGACCCTGTCTATTTTGTGGCTCCTGCCAAATTTCTTGGGAATCAACA GATTCTGGAAGGTGCTGGTCTACGGATCACAGCTCCCTTGATGCCACTTGGCAAGACACTGCCTTGTGGGCTCAC CAAGACTTACACATTCAGGTTAAATGAGCATCCAAGCAATAATTGGAGCCCCCAGCTGAGTTACTTTGAGTATCG AAGGTTACTGCGGAATCTCACAGCCCTCCGCATCCGAGCTACATATGGAGAATACAGTACTGGGTACATTGACAA TGTGACCCTGATTTCAGCCCGCCCTGTCTCTGGAGCCCCAGCACCCTGGGTTGAACAGTGTATATGTCCTGTTGG GTACAAGGGGCAATTCTGCCAGGATTGTGCTTCTGGCTACAAGAGAGATTCAGCGAGACTGGGGCCTTTTGGCAC CTGTATTCCTTGTAACTGTCAAGGGGGAGGGGCCTGTGATCCAGACACAGGAGATTGTTATTCAGGGGATGAGAA TCCTGACATTGAGTGTGCTGACTGCCCAATTGGTTTCTACAACGATCCGCACGACCCCCGCAGCTGCAAGCCATG TCCCTGTCATAACGGGTTCAGCTGCTCAGTGATGCCGGAGACGGAGGAGGTGGTGCAATAACTGCCCTCCCGG GGTCACCGGTGCCCGCTGTGAGCTCTGTGCTGATGGCTACTTTGGGGACCCCTTTGGTGAACATGGCCCAGTGAG GCCTTGTCAGCCCTGTCAATGCAACAACAATGTGGACCCCAGTGCCTCTGGGAATTGTGACCGGCTGACAGGCAG GTGTTTGAAGTGTATCCACAACACAGCCGGCATCTACTGCGACCAGTGCAAAGCAGGCTACTTCGGGGACCCATT GGCTCCCAACCCAGCAGACAAGTGTCGAGCTTGCAACTGTAACCCCATGGGCTCAGAGCCTGTAGGATGTCGAAG TGATGGCACCTGTGTTTGCAAGCCAGGATTTGGTGGCCCCAACTGTGAGCATGGAGCATTCAGCTGTCCAGCTTG CTATAATCAAGTGAAGATTCAGATGGATCAGTTTATGCAGCAGCTTCAGAGAATGGAGGCCCTGATTTCAAAGGC TCAGGGTGGTGATGGAGTAGTACCTGATACAGAGCTGGAAGGCAGGATGCAGCAGGCTGAGCAGGCCCTTCAGGA CATTCTGAGAGATGCCCAGATTTCAGAAGGTGCTAGCAGATCCCTTGGTCTCCAGTTGGCCAAGGTGAGGAGCCA AGAGAACAGCTACCAGAGCCGCCTGGATGACCTCAAGATGACTGTGGAAAAGAGTTCGGGCTCTGGGAAGTCAGTA CCAGAACCGAGTTCGGGATACTCACAGGCTCATCACTCAGATGCAGCTGAGCCTGGCAGAAAGTGAAGCTTCCTT GGGAAACACTAACATTCCTGCCTCAGACCACTACGTGGGGCCAAATGGCTTTAAAAGTCTGGCTCAGGAGGCCAC AAGATTAGCAGAAAGCCACGTTGAGTCAGCCAGTAACATGGAGCAACTGACAAGGGAAACTGAGGACTATTCCAA ACAAGCCCTCTCACTGGTGCGCAAGGCCCTGCATGAAGGAGTCGGAAGCGGAAGCGGTAGCCCGGACGGTGCTGT GGTGCAAGGGCTTGTGGAAAAATTGGAGAAAACCAAGTCCCTGGCCCAGCAGTTGACAAGGGAGGCCACTCAAGC GGAAATTGAAGCAGATAGGTCTTATCAGCACAGTCTCCGCCTCCTGGATTCAGTGTCTCGGCTTCAGGGAGTCAG GCATATGGATGAGTTCAAGCGTACACAGAAGAATCTGGGAAACTGGAAAGAAGAAGCACAGCAGCTCTTACAGAA TGGAAAAAGTGGGAGAGAAATCAGATCAGCTGCTTTCCCGTGCCAATCTTGCTAAAAGCAGAGCACAAGAAGC ACTGAGTATGGGCAATGCCACTTTTTATGAAGTTGAGAGCATCCTTAAAAACCTCAGAGAGTTTGACCTGCAGGT GGACAACAGAAAAGCAGAAGCTGAAGAAGCCATGAAGAGACTCTCCTACATCAGCCAGAAGGTTTCAGATGCCAG TGACAAGACCCAGCAAGCAGAAAGAGCCCTGGGGAGCGCTGCTGCTGATGCACAGAGGGCAAAGAATGGGGCCGG GGAGGCCCTGGAAATCTCCAGTGAGATTGAACAGGAGATTGGGAGTCTGAACTTGGAAGCCAATGTGACAGCAGA TGGAGCCTTGGCCATGGAAAAGGGACTGGCCTCTCTGAAGAGTGAGATGAGGGAAGTGGAAGGAGAGCTGGAAAG GAAGGAGCTGGAGTTTGACACGAATATGGATGCAGTACAGATGGTGATTACAGAAGCCCAGAAGGTTGATACCAG AGCCAAGAACGCTGGGGTTACAATCCAAGACACACTCAACACATTAGACGGCCTCCTGCATCTGATGGACCAGCC TCTCAGTGTAGATGAAGAGGGGCTGGTCTTACTGGAGCAGAAGCTTTCCCGAGCCAAGACCCAGATCAACAGCCA ACTGCGGCCCATGATGTCAGAGCTGGAAGAGAGGGGCACGTCAGCAGAGGGGCCACCTCCATTTGCTGGAGACAAG

PCT/IIS2003/028547

560/6881 FIGURE 521B

CATAGATGGGATTCTGGCTGATGTGAAGAACTTGGAGAACATTAGGGACAACCTGCCCCCAGGCTGCTACAATAC CCAGGCTCTTGAGCAACAGTGAAGCTGCCATAAATATTTCTCAACTGAGGTTCTTGGGATACAGATCTCAGGGCT CGGGAGCCATGTCATGTGAGTGGGTGGGATGGGGACATTTGAACATGTTTAATGGGTATGCTCAGGTCAACTGAC CTGACCCCATTCCTGATCCCATGGCCAGGTGGTTGTCTTATTGCACCATACTCCTTGCTTCCTGATGCTGGGCAA TGCACAGGCAGATGTTTGCCTCATAATAGTCGTAAGTGGAGTCCTGGAATTTGGACAAGTGCTGTTGGGATATAG TCAACTTATTCTTTGAGTAATGTGACTAAAGGAAAAAACTTTGACTTTGCCCAGGCATGAAATTCTTCCTAATGT CAGAACAGAGTGCAACCCAGTCACACTGTGGCCAGTAAAATACTATTGCCTCATATTGTCCTCTGCAAGCTTCTT GCTGATCAGAGTTCCTCCTACTTACAACCCAGGGTGTGAACATGTTCTCCATTTTCAAGCTGGAAGAAGTGAGCA TGGACCTGGGCATGACATCCTTTCTTTTAATGATGCCATGGCAACTTAGAGATTGCATTTTTATTAAAGCATTTC CTACCAGCAAAGCAAATGTTGGGAAAGTATTTACTTTTTCGGTTTCAAAGTGATAGAAAAGTGTGGCTTGGGCAT TGAARGAGGTAAAATTCTCTAGATTTATTAGTCCTAATTCAATCCTACTTTTCGAACACCAAAAATGATGCGCAT CAACATATATTTATTGAGTACCTACTGTGTGCCAGGGGCTGGTGGGACAGTGGTGACATAGTCTCTGCCCTCATA TGGTGTTTATTGCAATAACCGCTTGGTTTGCAACCTCTTTGCTCAACAGAACATATGTTGCAAGACCCTCCCATG GGGGCACTTGAGTTTTGGCAAGGCTGACAGAGCTCTGGGTTGTGCACATTTCTTTGCATTCCAGCTGTCACTCTG TGCCTTTCTACAACTGATTGCAACAGACTGTTGAGTTATGATAACACCAGTGGGAATTGCTGGAGGAACCAGAGG CACTTCCACCTTGGCTGGGAAGACTATGGTGCTGCCTTGCTTCTGTATTTCCTTGGATTTTCCTGAAAGTGTTTT TAAATAAAGAACAATTGTTAGA

PCT/US2003/028547

FIGURE 522

CCCAACCGCAGTTGACTAGCACCTGCTACCGCGCCTTTGCTTCCTGGCGCACGCGGAGCCTCCTGGAGCCTGCCA GTACTGGCAAGTTCGAGTGGGGCAGTAAACACAGCAAAGAGAATAGAAACTTCTCAGAAGATGTGCTGGGGTGGA GAGAGTCGTTCGACCTGCTGAGCAGTAAAAATGGAGTGGCTGCCTTCCACGCTTTCCTGAAGACAGAGTTCA GTGAGGAGAACCTGGAGTTCTGGCTGGCCTGTGAGGAGTTCAAGAAGATCCGATCAGCTACCAAGCTGGCCTCCA GGGCACACCAGATCTTTGAGGAGTTCATTTGCAGTGAGGCCCCTAAAGAGGTCAACATTGACCATGAGACCCACG AGCTGACGAGGATGAACCTGCAGACTGCCACAGCCACATGCTTTGATGCGGCTCAGGGGAAGACACGTACCCTGA TGGAGAAGGACTCCTACCCACGCTTCCTGAAGTCGCCTGCTTACCGGGACCTGGCTGCCCAAGCCTCAGCCGCCT GGAAGAGAGGTTGAGTCACCCATCCCCGAGGTGGCTGCCCCTGTGTGGGAGGCAGGTTCTGCAAAGCAAGTGCAA GAGGACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATGCGCTCCAGCAGCCTGTTTGGGAAGCAGCAGTCTCTCCTTCA GATACTGTGGGACTCATGCTGGAGAGGAGCCGCCCACTTCCAGGACCTGTGAATAAGGGCTAATGATGAGGGTTG TCTAGTGTGGTTTAGGAAACATGTGGATAAAGGGAACCATGAAAATGAGAGGAGGAAAGACATCCAGATCAGCTG TTTTGCCTGTTGCTCAGTTGACTCTGATTGCATCCTGTTTTCCTAATTCCCAGACTGTTCTGGGCACGGAAGGGA CCCTGGATGTGGAGTCTTCCCCTTTGGCCCTCCTCACTGGCCTCTGGGCTAGCCCAGAGTCCCTTAGCTTGTACC TCGTAACACTCCTGTGTGTCTGTCCAGCCTTGCAGTCATGTCAAGGCCAGCAAGCTGATGTGACTCTTGCCCCAT GCGAGATATTTATACCTCAAACACTGGCCTGTGAGCCCTTTCCAAGTCAGTGGAGAGCCCTGAAAGGAGGCTCAC TTGAATCCAGCTCAGTGCTCTGGGTGGCCCCCTGCAGGTGGCCCCTGACCCTGCGTTGCAGCAGGGTCCACCTGT GAGCAGGCCCGCCCTGGGGCCTCTTCCTGGATGTGCCCTCTCTGAGTTCTGTGCTGTCTCTTGGAGGCAGGGCCC AGGAGAACAAAGTGTGGAGGCCTCGGGGAGTGGCTTTTCCAGCTCTCATGCCCCGCAGTGTGGAACAAGGCAGAA CTGGAGTGGGCAGAGGTGGCCCAGGACCATGGCACCCTTAGAGTGCAGAAGCTGGGGGGAGAGGCTGCTTCGAAG CTGCGGCAGAGCCCAGGCTGGGGAAGTGAACTACCCAGGGCAGCCCCTTTGTGGCCCAGGATAATCAACACTGTT CTCTCTGTACCATGAGCTCCTCCAGGAGATTATTTAAGTGTATTGTATCATTGGTTTTCTGTGATTGTCATAACA TTGTTTTTGTTATTGTTGGTGCTGTTGTTATTTATTGTAATTTCAGTTTGCCTCTACTGGAGAATCTCAGCA GGGGTTTCAGCCTGACTGTCTCCCTTTCTCTACCAGACTCTACCTCTGAATGTGCTGGGAACCTCTTGGAGCCTG GCAATCCCCATTTTCCTGTTTCAGCATGTTATATTCTTATAAAATAAAAGCAAAAGTCAAATATG

PCT/US2003/028547

562/6881 FIGURE 523

GGGTGCGGGGCTGCTGGCGGCTCTGCAGAGTCGAGAGTGGGAGAAGAGCGGAGCGTGTGAGCAGTACTGCGGCCT CCCAGCCGCAAGTCCACGAAGAAAGCAACGAATGAAAATTATGAAGACAACGAGAAGTCAGACTCCTCCGGGTCG CGCTCCAGCTGCTTCGGCTTCGTCGCCTACTCTGTGAACTCCGGGGAGAGATCTCGAGTCAAGATTAAGACCTTA AAAGAGGGCAACCCTAACGATACGCTTGACTTTCTGTGGCTGGGAACACCTTCCACCATGACCACCTCAGCAAGT TCCCACTTAAATAAAGGCATCAAGCAGGTGTACATGTCCCTGCCTCAGGGTGAGAAAGTCCAGGCCATGTATATC TGGATCGATGGTACTGGAGAAGGACTGCGCTGCAAGACCCCGGACCCTGGACAGTGAGCCCCAAGTGTGTGGAAGAG TTGCCTGAGTGGAATTTCGATGGCTCTAGTACTTTACAGTCTGAGGGTTCCAACAGTGACATGTATCTCGTGCCT GCTGCCATGTTTCGGGACCCCTTCCGTAAGGACCCTAACAAGCTGGTGTTATGTGAAGTTTTCAAGTACAATCGA AGGCCTGCAGAGACCAATTTGAGGCACACCTGTAAACGGATAATGGACATGGTGAGCAACCAGCACCCCTGGTTT CCCCAGGGTCCATATTACTGTGGTGTGGGAGCAGACAGAGCCTATGGCAGGGACATCGTGGAGGCCCATTACCGG TTTGGAGTGATAGCAACCTTTGATCCTAAGCCCATTCCTGGGAACTGGAATGGTGCAGGCTGCCATACCAACTTC CAGTACCACATCCGTGCCTATGATCCCAAGGGAGGCCTGGACAATGCCCGACGTCTAACTGGATTCCATGAAACC TCCAACATCAACGACTTTTCTGCTGGTGTAGCCAATCGTAGCGCCAGCATACGCATTCCCCGGACTGTTGGCCAG GAGAAGAAGGGTTACTTTGAAGATCGTCGCCCCTCTGCCAACTGCGACCCCTTTTCGGTGACAGAAGCCCTCATC CGCACGTGTCTTCTCAATGAAACCGGCGATGAGCCCTTCCAGTACAAAAATTAAGTGGACTAGACCTCCAGCTGT TGAGCCCCTCCTAGTTCTTCATCCCACTCCAACTCTTCCCCCTCTCCCAGTTGTCCCGATTGTAACTCAAAGGGT TCAAGTTATTAATTTCTTCACACCTACCCTCCTTTTTTTCCCTATCACTGAAGCTTTTTAGTGCATTAGTGGGGA GGAGGGTGGGGAGACATAACCACTGCTTCCATTTAATGGGGTGCACCTGTCCAATAGGCGTAGCTATCCGGACAG AGCACGTTTGCAGAAGGGGGTCTCTTCTTCCAGGTAGCTGAAAGGGGAAGACCTGACGTACTCTGGTTAGGTTAG GACTTGCCCTCGTGGTGGAAACTTTTCTTAAAAAGTTATAACCAACTTTTCTATTAAAAGTGGGAATTAGGAGAG TTTTGTGGATTATGTGTGTTTTGCTAAAGGAAAAAACCATCCAGGTCACGGGGCACCAAATTTGAGACAAATAGT CGGATTAGAAATAAAGCATCTCATTTTGAGTAGAGAGCAAGGGAAGTGGTTCTTAGATGGTGATCTGGGATTAGG CCCTCAAGACCCTTTTGGGTTTCTGCCCTGCCCACCCTCTGGAGAAGGTGGGCACTGGATTAGTTAACAGACAAC ACGTTACTAGCAGTCACTTGATCTCCGTGGCTTTGGTTTAAAAGACACACTTGTCCACATAGGTTTAGAGATAAG AGTTGGCTGGTCAACTTGAGCATGTTACTGACAGAGGGGGTATTGGGGTTATTTTCTGGTAGGAATAGCATGTCA CTAAAGCAGGCCTTTTGATATTAAATTTTTTAAAAAGCAAAATTATAGAAGTTTAGATTTTAATCAAATTTGTAG GGTTTCTAGGTAATTTTTACAGAATTGCTTGTTTGCTTCAACTGTCTCCTACCTCTGCTCTTGGAGGAGATGGGG ACAGGGCTGGAGTCAAAACACTTGTAATTTTGTATCTTGATGTCTTTGTTAAGACTGCTGAAGAATTATTTTTTT TCTTTTATAATAAGGAATAAACCCCACCTTTATTCCTTCATTTCATCTACCATTTTCTGGTTCTTGTGTTGGCTG TGGCAGGCCAGCTGTGGTTTTCTTTTGCCATGACAACTTCTAATTGCCATGTACAGTATGTTCAAAGTCAAATAA CTCCTCATTGTAAACAAACTGTGTAACTGCCCAAAGCAGCACTTATAAATCAGCCTAACAT

PCT/US2003/028547

563/6881 FIGURE 524A

GGAGGAGGAGAGAGAGCGCAGCGCCGCCGCCGCCGGGGCCCATGTGGGGAGGAGTCGGAGTCGCTGTTGCCGCCG CACATCACTCCCGAGTGGAGGAAGCAATACATCCAGTATGAGGCTTTCAAGGATATGCTGTATTCAGCTCAGGAC CAAACCTGTGAAAAAGAACTTGCCAAAATCAACACATTTTATTCAGAGAAGCTCGCAGAGGCTCAGCGCAGGTTT CGCAGAAAGCCAGTCTTCCACTTGTCCCATGAGGAACGTGTCCAACATAGAAATATTAAAGACCTTAAACTGGCC TTCAGTGAGTTCTACCTCAGTCTAATCCTGCTGCAGAACTATCAGAATCTGAATTTTACAGGGTTTCGAAAAATC CTGAAAAAGCATGACAAGATCCTGGAAACATCTCGTGGAGCAGATTGGCGAGTGGCTCACGTAGAGGTGGCCCCA TTTTATACATGCAAGAAAATCAACCAGCTTATCTCTGAAACTGAGGCTGTAGTGACCAATGAACTTGAAGATGGT GACAGACAAAAGGCTATGAAGCGTTTACGTGTCCCCCCTTTGGGAGCTGCTCAGCCTGCACCAGCATGGACTACT TTTAGAGTTGGCCTATTTTGTGGAATATTCATTGTACTGAATATTACCCTTGTGCTTGCCGCTGTATTTAAACTT GAAACAGATAGAAGTATATGGCCCTTGATAAGAATCTATCGGGGTGGCTTTCTTCTGATTGAATTCCTTTTTCTA CTGGGCATCAACACGTATGGTTGGAGACAGGCTGGAGTAAACCATGTACTCATCTTTGAACTTAATCCGAGAAGC AATTTGTCTCATCAACATCTCTTTGAGATTGCTGGATTCCTCGGGATATTGTGGTGCCTGAGCCTTCTGGCATGC TTCTTTGCTCCAATTAGTGTCATCCCCACATATGTGTATCCACTTGCCCTTTATGGATTTATGGTTTTCTTCCTT ATCAACCCCACCAAAACTTTCTACTATAAATCCCGGTTTTGGCTGCTTAAACTGCTGTTTCGAGTATTTACAGCC CCCTTCCATAAGGTAGGCTTTGCTGATTTCTGGCTGGCGGATCAGCTGAACAGCCTGTCAGTGATACTGATGGAC CTGGAATATATGATCTGCTTCTACAGTTTGGAGCTCAAATGGGATGAAAGTAAGGGCCTGTTGCCAAATAATTCA GAAGAATCAGGAATTTGCCACAAATATACATATGGTGTGCGGGCCATTGTTCAGTGCATTCCTGCTTGGCTTCGC TTCATCCAGTGCCTGCGCCGATATCGAGACACAAAAAGGGCCTTTCCTCATTTAGTTAATGCTGGCAAATACTCC ACAACTTTCTTCATGGTGACGTTTGCAGCCCTTTACAGCACTCACAAAGAACGAGGTCACTCGGACACTATGGTG TTCTTTTACCTGTGGATTGTCTTTTATATCATCAGTTCCTGCTATACCCTCATCTGGGATCTCAAGATGGACTGG GGTCTCTTCGATAAGAATGCTGGAGAGAACACTTTCCTCCGGGAAGAGATTGTATACCCCCAAAAAGCCTACTAC TACTGTGCCATAATAGAGGATGTGATTCTGCGCTTTGCTTGGACTATCCAAATCTCGATTACCTCTACAACTTTG TTGCCTCATTCTGGGGACATCATTGCTACTGTCTTTGCCCCACTTGAGGTTTTCCGGCGATTTGTGTGGAACTTC TTCCGCCTGGAGAATGAACATCTGAATAACTGTGGTGAATTCCGTGCTGTGCGGGACATCTCTGTGGCCCCCCTG AACGCAGATGATCAGACTCTCCTAGAACAGATGATGGACCAGGATGATGGGGTACGAAACCGCCAGAAGAATCGG TCATGGAAGTACAACCAGAGCATATCCCTGCGCCGGCCTCGCCTCCTCTCAATCCAAGGCTCGTGACACTAAG GTATTGATAGAAGACACAGATGATGAAGCTAACACTTGAATTTTCTGAAGTCTAGCTTAACATCTTTGGTTTTCC TACTCTACAATCCTTTCCTCGACCAACGCAACCTCTAGTACCTTTCCAGCCGAAAACAGGAGAAAACACATAACA TTTAATTTTAATTTTCTATTTTCAAAACAAATATTTACTTCATTTGCCAATCAGAGGATGTTTTAAGAAACAAAA CATAGTATCTTATGGATTGTTTACAATCACAAGGACATAGATACCTATCAGGATGAAGAACAGGCATTGCAAGGA CCCTCTGATGGGACGGTACTGAGATATCTCGGCTTCCGCTCAGCCCGGTTTTGACTGGTTGAAACCGGACATTGG TTAACCATACAGAATGATATAACTCCTGTGCAATGAAGGTGATAACAGTAAAAGAAGGCAGGGGAAACTTACGTT GGATGACATTTATGAGGGTCAGTCCCACATACCTCTTTCAGGAGACAACTTGCACCAGTTTGACCTTTTCTTTTC TTTGTTTTTATTTTAAGCCAAAGTTTCATTGCTAACTTCTTAAGTTGCTGCTGCTTTAGAGTCCTGAGCATATCT CTCATAACAAGGAATCCCACACTTCACACCACCGGCTGAATTTCATGGAAGAGGTTCTGATAATTTTTTAACTT TTTAAGGAACAGATGTGGAATACACTGGCCCATATTTCAACCTTAACAGCTGAAGCTATGCCTTATTATGCATCC ACATGTATGGTCCCTGTAGCGTGACCTTTACTAGCTCTGAATCAGAAGACAGAGCTATTTCAGAGGCTCTGTGTG CCCTCACTAGATAGTTTTTCTTCTGGGTTCAACCACTTTAGCCAGAATTTGATCAAATTAAAAGTCTGTCATGGG GCCATTTCTCCCAGCAGTTTTAAAGGATGAACATTGGATTTCATGCCATCCCATAGAAAACCTGTTTTAAAATTT

PCT/IIS2003/028547

564/6881 FIGURE 524B

PCT/US2003/028547

FIGURE 525

AATAAATTATTTTTGTTAAGGCAAGCATTGGTGTGTTCTTTAACTTGCTACTTGGAGACCTAGTGTCCAGTCTGG ACAGACTGCCCATAGAACTGTCTGCACCCAAACCCCATGGCCTTTTCATGCACGGAGACAGGCCTCTGGATGTGC AGCCTTGCCACCCCTGCCCCAATCCTCCCTGAGAGCTCCTGCCTCAGTGCCCTGGGCTGGTGAGGGAGAAGCCT TGGGGAGGAGTCAGCCAGGATTAGAGAGCCTGCCCCTAATCCGGCCTGCTGGGTTTTACAAGGATCAGAGCTGCT **GATAATGAACCTCATTAAGGGGGAGCAGGAGCCTCAATCCGATTTGGTTTTCTCTTTGACATCTTCACTCTGCTC** AGATGGCCTGGGTGCTATGTGGAGCAGGTGGGATGCCAAGGCCACTCCTGCTATGGGGCAGCTGGGGCTGGGGAG GGATGGCAGTCTCCCTGCATGTTTCCCTCGACCTCTTTAGCTGCAGCGCCTTGCTGGGCTCCTGGGTTGGACTCC CTCTCTGTGCCCCTGCTCCAGGCACCCATTGGCTCCATCCTCCTGGTTGTGCTCTGCACCCCTGCTCCCTTGGG CTGGCCCTGGCTGGGGGCCTGAGAGACAGACAGGAACCCACAATCAGGAGGCAACCCTGGCCTGCAAGAGGAAGA CAGAGGCTCCCAGGGCCGGTGCCCTGTGTGCCCACTGCACCAAGGCCGCTGAATAAGCCTGCCCTTCACCCCCTA AGGGCTCCTTGCCCAATGCCAAGTGCTGGGGATTTCTGTCAGCAAGCCCTGTGGCTCCAGTGACGGTATTTCTAA AGCCAAACTTAGTTACCTAGAATTAGCGCCATGTTGGAAACACTGTCGCAGCAGCCCGGGCTGCACAGTGTGTAG CCCAGCCTCCAGGTCCACGGAGTGGTGTGGACCTCCCACCTCACAGCTGCCTCTGGCAGCCAAGCCTCTTTTCGC CCGGCCCCAGCCCCTCTGGTTGATAAACGGGTGGGCCTCCTCAGCAGCGTGGCTGCCTTTCACCTTGATTTCCCC AGCTGGAGCTTGCTGAGTCTTGAATGCCCTTCTAGATGGCTTCTCTAGAGGCTCTCCTGGCAAGAGAGGGTCCCA ACTGGGGGCACAGGAACAATTTCCTCAAGGAGACAGTGGCATGGAGCTTTGAAAGACGAGTAGGTGTTAGCAAGG AAATAAGGAGGAACGGGGGTTACGGGCAGAGGAGAAAGCACATGCCAAGTCAGCAAAGAAAAGTAGAATTCGAAA ACTITITAAAAATATTACTAAGGATTTTCACAATGCTGCACTGGGCTAGAAACTGAAGCTAAAACAGATACGTGG TCCCTGCTGCTATGGGGCTTCCGTTCTAGAGGCAAGGACAGGTTGTGATGAGGGTTCTGAAGGATAGAGACCAAG CAGGGAGGGTGTTGAGGAGGCTTCTGCGAGACCTGAAGGATGGGAAGCCAGGAAGTGGGAGGGGTGGGGGTCCAG GCTGGAGGGCCCAATGTAGGTGTAGAGGGACTACAGCCCTGAGGGGCTGCTCCATGCGGCATTCTTGGAGGTCC AAGAGGGCAGCGCCACCTTGGGCCAGGCTCCTCTCCAGCAGCCTTGGTATGGGGTGGGGGTGGGAAGACCCCTG AGTCAGGTGGGCTCAGAGAGAGCCCTCAAATCTGGGCCCTGGGTCAGGGTGGGGTCAAGTCCAGCCTTGAAGAGA AACTTATCCCCTTGTCCCCATGTGTCATTGGAGATAAACTACCCACCTACCAGATTGTTGTACCATGCTGGGCAA ACACTAAGTGCTTAATAATGGTAGCCCACTGCTC

PCT/US2003/028547

566/6881 FIGURE 526

 $\label{thm:margor} {\tt MHRDQPHLECSQTRCPSAHTAPGHRLPIELSAPKPHGLFMHGDRPLDVQPCHPLPQSSLRAPASVPWAGEGEACL\ HLPNSSSSRKGGLVCQSCRVGHSVGRSQPGLESLPLIRPAGFYKDQSC$

PCT/HS2003/028547

567/6881 FIGURE 527

 $\mathtt{AGCCGGATGGTCCCGCAGCTCGGGGCCGGCC}$ GGCCTGGCCGGGCTTCCAGCGCCTGCAGGAGCAGCTCAGGGCGGCGGGTGCCCTCTCCAAGCGGTACTGGACGCT CTTCAGCTGCCAGGTGTGGCCCGACGACTGTGACGAGGAGGAGGAGGCAGCCACGGGGCCCCTGGGCTGGCGCCT TCCTCTGTTGGGCCAGCGGTACCTGGACCTCCTGACCACGTGGTACTGCAGCTTCAAAGACTGCTGCCCTAGAGG GGATTGCAGAATCTCCAACAACTTTACAGGCTTAGAGTGGGACCTGAATGTGCGGCTGCATGGCCAGCATTTGGT CCACGGCTGGTCTGGCACAGGCAAGAACTTCGTGGCACGGATGCTGGTGGAGAACCTGTATCGGGACGGGCTGAT GAGTGACTGTGTCAGGATGTTCATCGCCACGTTCCACTTTCCTCACCCCAAATATGTGGACCTGTACAAGGAGCA GCTGATGAGCCAGATCCGGGAGACGCAGCAGCTCTGCCACCAGACCCTGTTCATCTTCGATGAAGCGGAGAAGCT GCACCCAGGGCTGCTGGAGGTCCTTGGGCCACACTTAGAACGCCGGGCCCCTGAGGGCCACAGGGCTGAGTCTCC ATGGACTATCTTTCTGTTTCTCAGTAATCTCAGGGGCGATATAATCAATGAGGTGGTCCTAAAGTTGCTCAAGGC TGGATGGTCCCGGGAAGAAATTACGATGGAACACCTGGAGCCCCACCTCCAGGCGGAGATTGTGGAGACCATAGA CAATGGCTTTGGCCACAGCCGTCTTGTGAAGGAAAACCTGATTGACTACTTCATCCCCTTCCTGCCTTTGGAGTA CCGTCACGTGAGGCTGTGTGCACGGGATGCCTTCCTGAGCCAGGAGCTCCTGTATAAAGAAGAAGACACTGGATGA AATAGCCCAGATGATGGTGTATGTCCCCAAGGAGGAACAACTCTTTTCTTCCCAGGGCTGCAAGTCTATTTCCCA GAGGATTAACTACTTCCTGTCATGAAGGCTAGAGGAAGACTTCCTGGAACTGCCTTTCTTCCACTAACAGGACCC TGGGACCTGTAGGAGCACCCCGTTTGGGACTGTGAGGTGTTTGAGGGTGTGGACTGGCATCCAGCAGCCACTAAC AAACACACAACTGGTGTGTAAAAGGCAGGCCTTACATTAGAAGCCAAGCCAATCCTTTTTCTTTTTTTGGAGGT CCCACCGAGATAGATAGGAACTTGGATTGCTGAATTCAAAAACAGAGCCCATTCTTAAGATCACTTGGTGCCTTA AAGACACGCATTCCAAAGTGGAATGTGGTTGAAGAAAGTGGGCCAGGTGGTTGAAGAAAGCCATGTGGGAGCTCA GCAAATCCCAAGGGCTTATTATGACACTCCAGATGGTCTCCTTAGCATCTCAGCTCTTCTGCAAGGAAGAGCTTG GGTGTTAGGCCTCAGAGGCTGTAGGGTCCTTGGGTTACAGAGCCGGGGAGAACGAAGTTCTGTGACCCAGGGGTG GAGAATACACTCTAGGTTTGCGGGCTGGTGGGCTTTCAAATTGGTACTTCCAGAGGAAAGCCAAGCTGCTTCTGT TGTGAGCGAATCAGCCAAGAGCCTGAGGCTGAAGGGAAAAGTACACAGAGGAAGATATTTTACAAACCAGGTCAG

PCT/US2003/028547

568/6881 FIGURE 528

MLRGPWRQLWLFLLLLLPGAPEPRGASRPWEGIDEPGSAWAWPGFQRLQEQLRAAGALSKRYWTLFSCQVWPDDC
DEDEBAATGPLGWRLPLLGGRYLDLLTTWYCSFKDCCPRGDCGRISNNFTGLEWDLNVRLHGORLVQQLVLRTWG
YLETPOPEKALALSFHGWGGTGKNFVARMLVENLYRDGLMSDCVRWFI LATFHFPHRYVDLYKEQLMSQIRETQQ
LCHQTLFTFDEAEKLHPGLLEVLGPHLERRAPEGHRAESPWTIFLFLSNLRGDINEVVLKLLKAGWSREEITME
HLEPHLQAEIVETIDMGFGHSRLVKENLIDYFIPFLPLEYRHVRLCARDAFLSQELLYKEETLDEIAQMMVYVPK
EEQLFSGGGKSIGGRINVFLS

PCT/US2003/028547

569/6881 FIGURE 529

ATTTCTCCATGTGGCAGACAGAGCCACAAGCCTTTCTCTGCTGGATTAAAGACGGCCCACAGACCAGAAC TTCCACTATACTACTTAAAATTACATAGGTGGCTTGTCAAATTCAATTGATTAGTATTGTAAAAAGGAAAAAAGAAG CTACACTGATTTTTAAAATCAAGAATAAGGGCAGCAAGTTTCTGGATTCACTGAATCAACAGACACAAAAAAGCTG AAAAACAACTAAGTAAAGACTTAAATTTAAACACATCATTTTACAACCTCATTTCAAAATGAAGACTTTTACCTG AAACCAGAGAAGATACCCTCGTGCCACAGATGGTAAAGAGGGAAGCAAAGAAATGTGCATACACATTCCTGGTACC TGAACAAGGATAACAGGGCCAATCTGTGTCAACACCAAGGGGCAAGATGCAAGTACCATTAAAGACATGATCAC GGATGTAGATGGAACATTGTGAATGAGGTAAAGCTGCTGAGAAAGGAAAGCCGTAACATGAACTCTCGTGTTAC TCAACTCTATATGCAATTATTACATGAGATTATCCGTAAGAGGGATAATTCACTTGAACTTTCCCAACTGGAAAA CARACTCCTCAATGTCACCACAGAATGTTGAAGATGGCAACAAGATACAGGGAACTAGAGGTGAAATACGCTTC CTTGACTGATCTTGTCAATAACCAATCTGTGATGATCACTTTGTTGGAAGAACAGTGCTTGAGGATATTTTCCCG ACAAGACACCCATGTGTCTCCCCCACTTGTCCAGGTGGTGCCACAACATATTCCTAACAGCCAACAGTATACTCC TGGTCTGCTGGGAGGTAACGAGGATTCAGAGGGATCCAGGTTATCCCAGAGATTTAATGCCACCACCTGATCTGGC AACTTCTCCCACCAAAAGCCCTTTCAAGATACCACCGGTAACTTTCATCAATGAAGGACCATTCAAAGACTGTCA GCAAGCAAAAGAAGCTGGGCATTCGGTCAGTGGGATTTATATGATTAAACCTGAAAACAGCAATGGACCAATGCA GTTATGGTGTGAAAACAGTTTGGACCCTGGGGGTTGGACTGTTATTCAGAAAAGAACAGACGGCTCTGTCAACTT CTTCAGAAATTGGGAAAATTATAAGAAAGGGTTTGGAAACATTGACGGAGAATACTGGCTTGGACTGGAAAAATAT AGA ATACAGCAGCTTTCGTCTGGA ACCTGA AGTGA ATTCTATAGACTGCGCCTGGGA ACTTACCAGGGA ATTC CTGCGCCCACTTTCATAAAGGAGGCTGGTGGTACAATGCCTGTGCACATTCTAACCTAAATGGAGTATGGTACAG AGGAGGCCATTACAGAAGCAAGCACCAAGATGGAATTTTCTGGGCCGAATACAGAGGCGGGTCATACTCCTTAAG AGCAGTTCAGATGATGATCAAGCCTATTGACTGAAGAGAGACACTCGCCAATTTAAATGACACAGAACTTTGTAC AATGAATTTTACCGTAACTATAAAAGGGAACCTATAAATGT

PCT/US2003/028547

570/6881 FIGURE 530

MKTFTWILGVLFFLLVDTGHCRGGQFKIKKINQRRYPRATDGKEEAKKCAYTFLVPEQRITGPICVNTKGQDAST IKDMITRMDLENLKDVLSRQKREIDVLQLVDVDGNIVNEVKLLRKESRNNNSRVTQLYMQLHBIIRKRDASLE SQLENKILNVTTEMLKMATRYRELEVKYASLTDLVNNQSVMITLLEEQCLRIFSRQDTHVSPELVQVVPQHIPN SQQYTFGLLGGNEIQRDPGYPRDLMPPDLATSPTKSFFKIPEVTFINEGPFKDCQQAKEAGHSVSGIYMIKPEN SNGFMQLWCENSLDPGGWTVIQKRTDGSVNFFRNMENYKKGFGNIDGEVWLGLENIYMLSNQDNYKLLIELEDWS DKKVYAEYSSFRLEPESEFYRLRLGTYQGNAGDSMWHNHKGFGNIDGEVWLGLENIYMLSNQDNYKLLIELEDWS GWYNGGHYRSKHQDGIFWAEYRGGSYSLRAVQMWIKFID

PCT/HS2003/028547

571/6881 FIGURE 531

ATGGGGCTGCTCACTGGCACTGGAGGCCGAAAGAAGGTGAGGGCAAGTGAGATGCAGGGACCTCTTCTCACAGCT GTGCTGACAAGCACAAAAAGGAGCCCCCCACGTCCACCAGGAAAGGGGGGATGGTGCACAAGATCCAGAGGCG TCAACAGACACGTCCAGCGAACAAGCACAGGGTGGGCCGTCCGGGAGCCTTGTGCCCCCAGGAGGAAAGCCGCAC CGAGGGCAGCAGGGAGGCTCTGATGGCTGCCAAGAGGGTTCTGATCCAGAAATATGGCCTCAATATGTGCCCCCAG TGTTTCCGTCAGTACGCGAAGGATATCGGTTCATTAAATTGGACTTA

PCT/US2003/028547

572/6881 FIGURE 532

TAGGTTTCATTTGGAAGCTTGAGTTTTATCATTGGCAACAAATGCCATCAGTTTTTTCCAAGCTGACTTGTTCTT TTTTGAGCAAATCTCTGCCAAAATTACCCCTAAAATATGAATAATCAATTTGTCAGGTTTTTTCAAACTAAAAT CTAGACATCCATACTTTATGGCAGATGTGCTTCATGCATACTTCCCATTTTGTCACACAGAATATCAAAATAACG TGTACTCAAGGTCAAGATTTACTAACAACTAAAATTCCAAAAACTGCTAAACAACAGAATGCTGAATAAGGTGATC ACTGCATCCTCAACCTCCTGGGCTCAAGCGATCGTCCCACCTCAGTCTCATGAGTGGTTGGGACTACAGGCATGC ACCATCATGCCCGGCTCACTTTTTTTTTTTTTTTTTTTAATTGTAGACACAGGGTCTCACTATGTTGCCCAGG CCGGTCTTGAACTCCTGGACTCAAGCAATCCCCCACCTTGGTTTCCCAAAGTGTTGGGATTACAGGCATGAGCT AGAGAGAACAAGAAGCTGGATGCGGTGGCTCACGCCTGTAATCCCAGCACCTTTGGGAGGCTAGGTGGGCAGATCA CGAGGTCAGGAGTTCGAGACCAGCCTGGCCAACGTGGTGAAAACCCCCTCTCTACTAAAAATACAAAAATAGCCAG GCATGGTGGCCCACGCCTGTAATCCCAGCTACTTGGAAGGCTGAGGCAGGAGAATCGCTTGAACCTGGGAGGTGG AAAAAAAAAGAATAGAACTTGGCTGGATGCAGTGGCTCACACCTGTAATCCCAGCACTTTGGGAGGGCAGGGCAG TTGGATCACTTGAGGCCAGGAGTTCAAGACTAGCCTGGCTGACATGGTGAAACTCCATCTCTACTAAAAATACAG AAAAAAAATTAGCTGGGAGTGGTGGCACACCTGTCATCCCAGCTACTCAGGTAGTTGAGGCACAACAATCAC TTGAGCCTAGGAGGCCCAGGCTGGAGTGAGGTGGCACGATCTTGGTTCACTGCAACCTCCACCTCCAGGGTTCAG AGTAGCTGGGACTACAGGCCCACACTACCACACCCGGCTAATTTTCGCTTTTTTTCAGTAGAGACCGGGTTTTTGC CATGTTGGCCAGGCTGGTCTCGAAGCCTGAGCCATAACCTGGCGAAAAGATACTTTGAAATGTAACATCGTTTTT CACTTCAAAATCAAGGTATTTTACCAACTTGTCTTTGGTACCTCCCCAAAAACTGATCTACTACATTTGCAGTTT CATTCATTTTCCAACATTAAGGAATAAACTTGAAGCGCTTACATTCTTGTGGGGGAAGTAAGAACAAAACACAT TTTTTTTGAGACCAAGTCTCGCCGTTGCCCAGGCTGGAGTGCGGTGGCATGATCTCAGTTCACTCCAACCTCCAC TTCCTAGGTTCAAGCAATTCTCCTGCCTCAGCTACTCAAGAGGCTGAGGCAGAGAATTCCTTGAACCTGGGAGG AAAAAATACTTGGAACTGCTATACCTTTGCTTCTTTAAAACTTGCTCCACACAGTGTAGTCAAGCCGACTCTCCA TACCTGTAGAAATTTAATCTCCTTTACCAATAGGTAGTAATAGGTGGATTTCTAAAAGATTTCCCAACTACTGTT TCAGTTTAAGATTAATCTCCATTTTCTTCTCAGAGAGATTCCCATCTGCTTTAATTTTAAAATCATCACTAACA GTAGCTCAATCAATTAACGTTAACATCAATAAAACATGTACCTTTAAAAGGTATGACAGGAACTGTCTTCATGTC CTTACCCAAGCAAGTCATCCATGGATAAAAACGTTACCAGGAGCTGGAATACAAATGAGGACTTCCATTAAAATG CTAAACATCATTAAACTCTTTTCAAAGTTGTCTGTC

PCT/US2003/028547

573/6881 FIGURE 533

 $\verb|MCFMHTSHFVTQNIKITCTQGQDLLTTKIPKLLNNRMLNKVIQFLIFYLRQHLTLSPRLESSGVTQLTASSTSWAQAIVPPQSHEWLGLQACTIMPGSLFFSFFF|$

PCT/US2003/028547

574/6881 FIGURE 534

PCT/HS2003/028547

575/6881 FIGURE 535

GGCTCTTCGGTTGCAGTATCGCTACTTAGACTTGCGTAGTTTCCAAATGCAGTATAACCTGCGACTGAGGTCCCA GATGGTCATGAAAATGCGGGAATATCTCTGTAATCTGCATGGGTTTGTGGATATAGAAACCCCCACATTGTTTAA GAGGACCCCAGGGGGTGCCAAAGAGTTTTTAGTACCATCCAGGGAACCTGGAAAGTTTTGTTCTCTCCCTCAGAG TCCTCAACAGTTTAAGCAACTTCTGATGGTTGGCGGTTTTAGACAGATATTTTCAGGTTGCCCGATGTTATCGAGA TGAAGGTTCAAGACCAGACAGCCAGACTGAGTTTACTCAGATTGACATAGAGATGTCATTTGTAGACCAGACTGG GATCCAGAGTTTAATTGAGGGTTTGCTCCAGTATTCCTGGCCCAATGACAAAGATCCTGTGGTTGTTCCTTTTCC TACTATGACTTTTGCTGAGGTGCTGGCCACCTATGGAACTGATAAACCTGACACTCGCTTTGGAATGAAAATTAT AGATATCAGTGATGTGTTTAGAAACACAGAGATTGGATTTCTTCAAGATGCACTTAGTAAGCCCCATGGAACTGT GAAAGCCATATGTATCCCTGAAGGAGCAAAATACTTAAAAAGGAAAGACATTGAATCCATTAGAAACTTTGCAGC TGACCATTTTAATCAGGAAATCTTACCTGTATTCCTTAACGCCAATAGAAACTGGAATTCTCCAGTTGCTAATTT CATAATGGAGTCACAAAGACTGGAATTAATCAGACTAATGGAGACCCAAGAGGAAGATGTGGTCCTACTAACTGC TGGAGAGCACAATAAAGCATGCTCTTTGTTAGGAAAATTACGACTGGAATGTGCTGACCTTCTAGAAACAAGAG TGAGCCCAAAAAGGCCCGTAGCCAACACTATGACTTGGTTTTAAATGGCAATGAAATAGGAGGTGGTTCAATTCG AATTCACAATGCAGAGCTGCAGCGTTATATCCTGGCAACCTTACTAAAGGAGGATGTGAAAATGCTCTCCCATCT CACTGGATCTCCAAGCATCAGAGATGTCATAGCCTTCCCAAAGTCCTTCCGGGGACATGACCTCATGAGCAATAC CCCAGATTCTGTCCCTCCTGAGGAACTGAAGCCCTATCATATCCGAGTCTCCAAGCCAACAGACTCCAAAGCAGA AAGAGCTCATTGAATCATGCATACCATGCAGAAAGTTGAGCTTTTAGGTTTTGTCCTCTTTGCTTCCCCAAGGCT GGACTTTTTTGAAGTTCCTTTTTACTTAGGTGTGAAAGATGGTTCTTTGTTGAAATAATATAGTGGTTTAGTGT TTTCAAATCATGTTTCTCATACCCAGATAGTAGATTATTCACTTAGGACAGAGGTAATCAAATTATGTGTGAAAT GTAGGAAAATGCTTGCCCCTGTAAACTAGTGAGTTGATGGAGCATTTGCTTCATCATCCTCATCAAGAGAATCAT ATAAATTAAGCTTTATAATGACATTTCAACCATCAACATAATATAGTGAGGAGTAGCATAATATTTTTTAATAAT GCAGAAAACATCACTGAAATGAGAGTCACAAATTTTTCTTCAGTGTTTCAGCCTGAGTAAGTTACATAAACCTCG $\tt CTTAGCCTCCCTTCCTGCTAATGTGTAAAATACATACTTGCCCTGGCTACCTCACCGGGCTGTTATTGCTGGAAT$ CAGAGGAGATAACATATATGGAAGATAAAGTGAATAAAAGTACTTTGAAAAACT

PCT/HS2003/028547

576/6881 FIGURE 536

MQYNLRLRSQMVMKMREYLCNLHGFVDIETPTLFKRTPGGAKEFLVPSREPGKFCSLPQSPQQFKQLLMVGGLDR
YFQVARCYRDEGSRPDRQPEFTQIDIEMSFVDQTGIQSLIEGLLQYSWPNDKDEVVVPFFTMTFAEVLATITGTDF
PDTRFGMKIIDISDVFRNTEIGFLQDALSKPHGTVKAICIPEGAKYLKRKDIESIRNFAADHFNQEILPVFLNAN
RNMNSPVANFIMESQRLELIRLMETQEEDVVLLTAGEHNKACSLLGKLRLECADLLETRGVVLRDPTLFSFLWVV
DFPLFLPKEESPRELESAHHPFTAFHPSDIHLLYTEPKKARSQHYDLVLNGMEIGGGSIRIHNAELQRYILATLL
KEDVKMLSHLLQALDYGAPPHGGIALGLDRLICLVTGSPSIRDVIAFPKSFRGHDLMSNTPDSVPPEELKPYHIR
VSKPTDSKAERAH

PCT/US2003/028547

577/6881 FIGURE 537

GCCTGTCTGCATTCTACTATATAAAGCAGCAGAGACGTTGACTAGCGCATATTTGCTAAGAGCACCATGCGCGCA GCAGCCATCTCCACTCCAAAGTTAGACAAAATGCCAGGAATGTTCTTCTCTGCTAACCCAAAGGAATTGAAAGGA ACCACTCATTCACTTCTAGACGACAAAATGCAAAAAAGGAGGCCAAAGACTTTTGGAATGGATATGAAAGCATAC CTGAGATCTATGATCCCACATCTGGAATCTGGAATGAAATCTTCCAAGTCCAAGGATGTACTTTCTGCTGCTGAA TTGCCCTGTAAAGCAGAAGAGATATATAAAGCATTTGTGCATTCAGATGCTGCTAAACAAATCAATATTGACTTC CGCACTCGAGAATCTACAGCCAAGAAGATTAAAGCACCAACCCCCACGTGTTTTGATGAAGCACAAAAAGTCATA TATACTCTTATGGAAAAGGACTCTTATCCCAGGTTCCTCAAATCAGATATTTACTTAAATCTTCTAAATGACCTG CAGGCTAATAGCCTAAAGTGACTGGTCCCTGGCTGAAGGGAATTAACAGATAGTATCAAGCGCAGAAGGAATGTG CARTATEGCTCCCTGGGTGAACAGCTTGGCCTTTTTTGGGTGTCTTGACAGGCCAAGAAGAACAAATGACTCAG AATGGATTAACATGAAAGTTATCCAGGCGCAGAGTTGAAGAAGCATAAGCAAGACAAAAACAGAGAGACCGCAGA AGGAGGAAGATACTGTGGTACTGTCATAAAAAACAGTGGAGCTCTGTATTAGAAAGCCCCTCAGAACTGGGAAGG CCAGGTAACTCTAGTTACACAGAAACTGTGACTAAAGTCTATGAAACTGATTACAACAGACTGTAAGAATCAAAG TCAACTGACATCTATGCTACATATTATTATATAGTTTGTACTGAGCTATTGAAGTCCCATTAACTTAAAGTATAT ACTGTGTATTTAACTTAAGCTATTGCTCTTAAAACCAGGGAGTCAGAATATATTTGTAAGTTAAATCATTGGTGC TAATAATAAATGTGGATTTTGTATTAAAATATATAGAAGCAATTTCTGTTTACATGTCCTTGCTACTTTTAAAAA CTTGCATTTATTCCTCAGATTTTAAAAATAAATAAATAATTCATTT

PCT/US2003/028547

578/6881 FIGURE 538

PCT/US2003/028547

579/6881 FIGURE 539

MQIFVKTLMGKTITLEVELSDTIDNVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRG GAKKRKKSYTTPRKNKHKRKKVKLALLKYYKVDENGFMASHFDRHYCGKCCLTYCFNKPEDK

PCT/US2003/028547

580/6881 FIGURE 540

AAAACAGCCGGGGCTCCAGCGGGAGAACGATAATGCAAAGTGCTATGTTCTTGGCTGTTCAACACGACTGCAGAC CCATGGACAAGAGCGCAGGCAGTGGCCACAAGAGCGAGGAGAAAGGAGAAAAGATGAAACGGACCCTTTTAAAAG AACAGCAAGCTTTCATCAAGCCTTCTCCTGAGGAAGCACAGCTGTGGTCAGAAGCATTTGACGAGCTGCTAGCCA CCTGTGAAGACTTCAAAAAAACCAAATCACCCCAAAAGCTGTCCTCAAAAGCAAGGAAAATATATACTGACTTCA TAGAAAAGGAAGCTCCAAAAGAGATAAACATAGATTTTCAAACCAAAACTCTGATTGCCCAGAATATACAAGAAG CTACAAGTGGCTGCTTTACAACTGCCCAGAAAAGGGTATACAGCTTGATGGAGAACAACTCTTATCCTCGTTTCT TGGAGTCAGAATTCTACCAGGACTTGTGTAAAAAGCCACAAATCACCACAGAGCCTCATGCTACATGAAATGTAA AAGGGAGCCCAGAAATGGAGGACATTTCATTCTTTTTCCTGAGGGGAAGGACTGTGACCTGCCATAAAGACTGAC CTTGAATTCAGCCTGGGTGTTCAGGAAACATCACTCAGAACTATTGATTCAAAGTTGGGTAGTGAATCAGGAAGC CAGTAACTGACTAGGAGAAGCTGGTATCAGAACAGCTTCCCTCACTGTGTACAGAACGCAAGAAGGGAATAGGTG GTCTGAACGTGGTGTCTCACTCTGAAAAGCAGGAATGTAAGATGATGAAAGAGACAATGTAATACTGTTGGTCCA AAAGCATTTAAAATCAATAGATCTGGGATTATGTGGCCTTAGGTAGCTGGTTGTACATCTTTCCCTAAATCGATC CATGTTACCACATAGTAGTTTTAGGTTTAGGATTCAGTAACAGTGAAGTGTTTACTATGTGCAAGGGTATTGAAGT TCTTATGACCACAGATCATCAGTACTGTTGTCTCATGTAATGCTAAAACTGAAATGGTCCGTGTTTGCATTGTTA AAAATGATGTGTGAAATAGAATGAGTGCTATGGTGTTGAAAAACTGCAGTGTCCGTTATGAGTGCCAAAAATCTGT

PCT/US2003/028547

581/6881 FIGURE 541

MQSAMFLAVQHDCRPMDKSAGSGHKSEEKREKMKRTLLKDWKTRLSYFLQNSSTEGKPKTGKKSKQQAFIKPSPE EAQLWSEAFDELLAKYGLAAFRAFLKSEFCEENIEFWLACEDFKKTKSPQKLSSKARKIYTDFIEKEAPKEINI DFQTKTLIAQWIQEATSGCFTTAQKRVYSLMENNSYPRILSSEFYQDLCKKPQITTEPHAT

PCT/IIS2003/028547

582/6881 FIGURE 542

PCT/US2003/028547

583/6881 FIGURE 543

AGCCTGAGGAGCTATTTTGAGCAATGGGGAATGCTCACGGACTGTGTGGTAATGAGAGACCCAAACACCAAGTGC TCCAGGGGCTTTGGGTTTGTCACATATGCCATTGTGGAGGAGGTGGATGCAGCCATGAATGCAAGGCCACACAAG GTGGATGGAAGAGTTGGAGAACCAAAGAGAGCTGTTTCAAGGGAAGATTCTCAAAGACCAGGTGCTCACTTAACT GTGAAAAAGATATTTGTTGGCAGCATTAAAGAAGACACTGAAGAACATCACCTAAGAGATAATTTGAACAGTTTG GAAAAACGGAAGTGATTGAAATCATGACTGACTGAGGCAGTGGCAAGAAAAGGGGGCTTTGCCTTTGTAACCTTTG ATGACCATGACTCTGTGAATAAGACTGCCATTCAGAAATACCATCCTACGAATGGCCATAACTGTGAAGTTAGGA AAGCCCTGTCAAAGTAAGAGATGGCTAGTGCTTCATCCAGCCAAAGAAGTCGAAGTGGTTCTGGAAACTTTGGTT TGGTCGTGGAGGTGGTTTCGGTTGGCATGACAGCCGTGGTGGTGGTGGTGGTGGTGGTGGCAGTGAGGATGGCGA TAATGGATTTGGTAATGATGGAAGCAATTTTGGAGGTGGTGGAAGCTACAGTGATTTTGGCAACTACAATAATCA GTCTTCAAATTTTGGACCCATGAAGGGAGGAAACTTTGGAGGCAGAAGCTCTGGGCCCCTATGGCGGTGGAGGCC AATACTCTGCCAAACCACGAAACCAAGGTGGCTATGGTGGTTTCAGTAGCAGCAGTAGCTATGGCAGTGGCAGAA ATTTGTGAACTCAGCCAAGCACAGTGGTGGCAGGGCCTAACTGCTACAAAGGAGACATGTTTTAGACAAATACTC ATGTGTATGGGCAAAAAACTCGAGGACTGTATTTGTGACTAATTGTGTAACAGGTTATTTTAGTTTCTGTTCTGT AAATGTAATAGTCTGATGGTGATGCTGAATAAATGTCTT

PCT/HS2003/028547

584/6881 FIGURE 544

AGGCAGAGCCCGCGAGGAGGTGACGCGGCTGCGGAGGTGACGCGGGAGGTCGCCGCGCCCCTTCCGGCGCGCGAG GGCGCTGAAGATCGGGGCCGCTCGGCCGCAGGCCGCCTCCAGCGCGGGATGTAGCGCGGGGACCGCGGCCCC TCCATTGACCTCCATTTGTCTACCATCAGAGGGAGATCTCTGCCCCCTGGGGCTGAGAGACCCCAACCTTTCCCC AAGCTGAAGCTGCAGGGTATTGAGGTACCAGCCAGATGTCTTCCCACAAAGGATCTGTGGTGGCACAGGGGAATG GGGCTCCTGCCAGTAACAGGGAAGCTGACACGGTGGAACTGGCTGAACTGGGACCCCTGCTAGAAGAGAAGGGCCA AACGGGTAATCGCCAACCCACCCAAAGCTGAAGAAGAGCAAACATGCCCAGTGCCCCAGGAAGAAGAGAGGAGGAGG TGCGGGTACTGACACTTCCCCTGCAAGCCCACCACGCCATGGAGAAGATGGAAGAGTTTGTGTACAAGGTCTGGG AGGGACGTTGGAGGGTCATCCCATATGATGTGCTCCCTGACTGGCTAAAGGACAACGACTATCTGCTACATGGTC ATAGACCTCCCATGCCCTCCTTTCGGGCTTGCTTCAAGAGCATCTTCCGCATTCATACAGAAACTGGCAACATCT GGACCCATCTGCTTGGTTTCGTGTTTTCTCTTTTTCGGAATCTTGACCATGCTCAGACCAAATATGTACTTCA TGGCCCCTCTACAGGAGAAGGTGGTTTTTTGGGATGTTCTTTTTTGGGTGCAGTGCTCTGCCTCAGCTTCTCCTGGC TCTTTCACACCGTCTATTGTCATTCAGAGAAAGTCTCTCGGACTTTTTCCAAACTGGACTATTCAGGGATTGCTC TTCTAATTATGGGGAGCTTTGTCCCCTGGCTCTATTATTCCTTCTACTGCTCCCCACAGCCACGGCTCATCTACC TCTCCATCGTCTGTGTCCTGGGCATTTCTGCCATCATTGTGGCGCAGTGGGACCGGTTTGCCACTCCTAAGCACC GGCAGACAAGAGCAGGCGTGTTCCTGGGACTTGGCTTGAGTGGCGTCGTGCCCACCATGCACTTTACTATCGCTG AGGGCTTTGTCAAGGCCACCACAGTGGGCCAGATGGGCTGGTTCTTCCTCATGGCTGTGATGTACATCACTGGAG CTGGCCTTTATGCTGCTCGAATTCCTGAGCGCTTCTTTCCTGGAAAATTTGACATATGGTTCCAGTCTCATCAGA TTTTCCATGTCCTGGTGGTGGCAGCAGCCTTTGTCCACTTCTATGGAGTCTCCAACCTTCAGGAATTCCGTTACG GCCTAGAAGGCGGCTGTACTGATGACACCCTTCTCTGAGCCTTCCCACCTGCGGGGTGGAGGAGGAACTTCCCAA GTGCTTTTAAAAATAACTTCTTTGCTGAAGTGAGGGAAGAGTCTGAGTTGTCTGTTTCTAGAAGAAACCTCTTA GAGAATTCAGTACCAACCAAGCTTCAGCCCACTTCACACCCACTGGGCAATAAACTTTCCATTTCCATTCTCCT AGCTGGGGATGGGCATGGTCAAACTTAGCCATCCCCTCCTCAGCAAGGCATCTACCGGCCCCTCACAGAGACAG TACTTTGAAACTCATGTTGAGATTTTACCCTCTCCTCCAACCATTTTGGGAAAATTATGGACTGGGACTCTTCAG AAATTCTGTCTTTTCTTCTGGAAGAAAATGTCCCTCCCTTACCCCCATCCTTAACTTTGTATCCTGGCTTATAAC AGGCCATCCATTTTTGTAGCACACTTTTCAAAAACAATTATATACCCTGGTCCCATCTTTCTAGGGCCTGGATCT GCTTATAGAGCAGGAAGAATAAAGCCACCAACTTTTACCTAGCCCGGCTAATCATGGAAGTGTGCCAGGCTTCA AGTAACTTGAGTTTTAATTTTTTTTTTTTTTCTTGGCAGAGTAATGTAAAATTTAAATGGGGAAAGATATTTAATAT TTAATACTAAGCTTTAAAAAGAAACCTGCTATCATTGCTATGTATCTTGATGCAAAGACTATGATGTTAATAAAA GAAAGTACAGAAGACACTTGGCATTCAAAGATTTC

PCT/US2003/028547

585/6881 FIGURE 545

GACGCCTGCTCCGGCCGAGTGACCGTGGCGGATTACGCCAACTCGGATCCGGCGGTCGTGAGGTCTGGACGAGTC AGCATCCATGAGAGAACTGTCTCCAGAAAAAAGAAAAGCAAGAGACACAAAGAAGAACTGGACGGGCTGGAGGA GAAGAGTATCCCATGGATATTTGGCTATTGCTGGCCTCCTATATCCGTCCTGAGGACATTGTGAATTTTTCCCTG ATTTGTAAGAATGCCTGGACTGCACTTGCACTGCTGCCTTTTGGACCAGGTTGTACCGAAGGCACTACACGCTG GATGCTTCCCTGCCTTTGCGTCTGCGACCAGAGTCAATGGAGAAGCTGCGCTGTCTCCGGGCTTGTGTGATCCGA TCTCTGTACCATATGTATGAGCCATTTGCTGCTCGAATCTCCAAGAATCCAGCCATTCCAGAAAGCACCCCCAGC TTCAACTTCAAGTTCAAAAAACAGTCCCCTAGGTTAAAGAGCAAGTGTACAGGAGGATTGCAGCCTCCCGTTCAG TACGAAGATGTTCATACCAATCCAGACCAGGACTGCTGCCTACTGCAGGTCACCACCCTCAATTTCATCTTTATT ${\tt CCGATTGTCATGGGGAATGATATTTACTCTGTTTACTATCAATGTGAGCACGGACATGCGGCATCATCGAGTGAGA}$ CTGGTGTTCCAAGATTCCCCTGTCCATGGTGGTGGTGGAACTGCGCAGTGAACAGGGTGTGCAAGTCATCCTGGAC $\tt CCAGTGCACAGCGTTCGGCTCTTTGACTGGTGGCATCCTCAGTACCCATTCTCCCTGAGAGCG{\color{red}{TAG}}{TACTGCTT}$ CCCATCCCTTGGGGGCAGCCTCGAGTGTAGTCCATTAGTAATCAGATTCCAGTTTGGACAGGGTGGCTGGATTGT ATATCTCGTTAGTAATGTACATGCTCTTCAGGTTCTAGGGCTCCTGTTAGGGGAGGAGAAATGTTGAATCAAGA GGGAAAACAACTACTATGATTTATAAACATATTTTAATGTAAAAATTTGCATTTAAAAGGAGTGGCCCTGTTTTC TGTGTTAAAACCCCATTTGGTGCTATTGAGTTTGTTCTTTATTCTTTTATCCCAGTGAAAATTGTTGATCTTGCT GTAGGGAAAATTAAACTCTTTGAATCTCCAAACAAGGAAGTTTCAGCATTCCCTTATGGATCAGAGGAACCTTA GAGGCCTGAAATTGTTGCTTCCAGTTTAGCTGCCCCTCAAATTCAAGTGAATATTTTCCCTTTCCCTTTACCCT

PCT/US2003/028547

586/6881 FIGURE 546

MARGPGPLGRPRPDIVAMPKRGKRLKFRAHDACSGRVTVADYANSDPAVVRSGRVKKAVANAVQOEVKSLCGLEA SQVPAEEALSGAGEPCDIIDSSDEMDAGEESIHERTVSRKKKSKRHKEELDGAGGEEYPMDIWLLLASYIRPEDI VUPSILICKNAMTVYCTAAPWTHLYRRHYTLDASLPLRLPPESMEKLRCLRACVIRSLYHHYEEFAARISKWPAIP ESTPSTLKNSKCLLFWCRKIVGNRGEPMWEPNFKFKKGSPRLKSKCTGGLQPPVQYEDVHTNPDQDCCLLQVTTL NFIFIPIVMGMIFTLFTINVSTDMRHHRVRLVFQDSPVHGGRKLRSEQGVQVILDPVHSVRLFDWWHPQYPFSLR A

PCT/US2003/028547

587/6881 FIGURE 547

AGTGGAGTGGGACAGGTATATAAAGGAAGTACAGGGCCTGGGGAAGAGGCCCTGTCTAGGTAGCTGGCACCAGGA GCCGTGGGCAAGGGAAGAGGCCACACCCTGCCCTGCTCTGCTGCAGCCAGAATGGGTGTGAAGGCGTCTCAAACA GGCTTTGTGGTCCTGGTGCTCCAGTGCTGCTCTGCATACAAACTGGTCTGCTACTACACCAGCTGGTCCCAG TACCGGGAAGGCGATGGGAGCTGCTTCCCAGATGCCCTTGACCGCTTCCTCTGTACCCACATCATCTACAGCTTT GCCAATATAAGCAACGATCACATCGACACCTGGGAGTGGAATGATGTGACGCTCTACGGCATGCTCAACACACTC AAGAACAGGAACCCCAACCTGAAGACTCTCTTGTCTGTCGGAGGATGGAACTTTGGGTCTCAAAGATTTTCCAAG ATAGCCTCCAACACCCAGAGTCGCCGGACTTTCATCAAGTCAGTACCGCCATTTCTGCGCACCCATGGCTTTGAT GGGCTGGACCTTGCCTGGCTCTACCCTGGACGGAGAGACAAACAGCATTTTACCACCCTAATCAAGGAAATGAAG GCCGAATTTATAAAGGAAGCCCAGCCAGGGAAAAAGCAGCTCCTGCTCAGCGCAGCACTGTCTGCGGGGAAGGTC ACCATTGACAGCAGCTATGACATTGCCAAGATATCCCAACACCTGGATTTCATTAGCATCATGACCTACGATTTT CATGGAGCCTGGCGTGGGACCACAGGCCATCACAGTCCCCTGTTCCGAGGTCAGGAGGATGCAAGTCCTGACAGA TTCAGCAACACTGACTATGCTGTGGGGTACATGTTGAGGCTGGGGGCTCCTGCCAGTAAGCTGGTGATGGGCATC CCCACCTTCGGGAGGAGCTTCACTCTGGCTTCTTCTGAGACTGGTGTTGGAGCCCCAATCTCAGGACCGGGAATT CCAGGCCGGTTCACCAAGGAGGCAGGGACCCTTGCCTACTATGAGATCTGTGACTTCCTCCGCGGAGCCACAGTC CATAGAATCCTCGGCCAGCAGGTCCCCTATGCCACCAAGGGCAACCAGTGGGTAGGATACGACGACCAGGAAAGC TTCCAGGGCTCCTTCTGTGGCCAGGATCTGCGCTTCCCTCTCACCAATGCCATCAAGGATGCACTCGCTGCAACG TAGCCCTCTGTTCTGCACACAGCACGGGGGCCAAGGATGCCCCGTCCCCCTCTGGCTCCAGCTGGCCGGGAGCCT ACAGATTTGAGCTCAGCCCTGGTGGGCAGAGAGGTAGGGATGGGGCTGTGGGGATAGTGAGGCATCGCAATGTAA GACTCGGGATTAGTACACACTTGTTGATTAATGGAAATGTTTACAGATCCCCAAGCCTGGCAAGGGAATTTCTTC AACTCCCTGCCCCCAGCCCTCCTTATCAAAGGACACCATTTTGGCAAGCTCTATCACCAAGGAGCCAAACATCC TACAAGACACAGTGACCATACTAATTATACCCCCTGCAAAGCCCAGCTTGAAACCTTCACTTAGGAACGTAATCG TGTCCCCTATCCTACTTCCCCTTCCTAATTCCACAGCTGCTCAATAAAGTACAAGAGCTTAACAGTGTGTTGGCG TCTGAGCCTTGGGACCCCTGAGCTTGCAGAGATGAGGCCGCCATGT

PCT/IIS2003/028547

588/6881 FIGURE 548

GCCACGGGAAGGGAACCGACATGCTCCCGGAGATCGCCGCCGCCGTGGGCTTCCTCTCCAGCCTCCTGAGGACCC GGGGCTGCGTGAGCGAGCAGAGGCTTAAGGTCTTCAGCGGGGCGCTCCAGGAGGCACTCACAGAGCACTACAAAC ACCACTGGTTTCCCGAAAAGCCGTCCAAGGGCTCCGGCTACCGCTGCATTCGCATCAACCACAAGATGGACCCCA TGTGGGTGGACCCCTATGAGGTGTCCTACCGCATTGGGGAGGACGGCTCCATCTGCGTCTTGTACGAGGAGGCCC CACTGGCCGCCTCCTGTGGGCTCCTCACCTGCAAGAACCAAGTGCTGCTGGGCCGGAGCAGCCCCTCCAAGAACT ACGTGATGGCAGTCTCCAGCTAGGCCCTTCCGCCCCCGCCCTGGGCGCCGCGTGCTCATGCTGCCGTGACAACA AAAGGAGGAAAAGAAACCAAAAGTTTTTTTTAAGAAAAAAATCCTTCAAGGGAGCTGCTTGGAAGTGGCCTCCC CAGGTGCCTTTGGAGAGAACTGTTGCGTGCTTGAGTCTGTGAGCCAGTGTCTGCCTATAGGAGGGGGAGCTGTTA GGTTAGCAACTGTGAACAGAGAGGTCGGGATTTGCCCTGGGGGAGGAAGAGAGGCCCAAGTTCAGAGCTCTCTGTC TCCCCCAGCCAGACACCTGCATCCCTGGCTCCTCTATTACTCAGGGGCATTCATGCCTGGACTTAAACAATACTA TGTTATCTTTTCTTTTATTTTTCTAATGAGGTCCTGGGCAGAGAGTGAAAAGGCCTCTCCTGATTCCTACTGTCC TAAGCTGCTTTTCTTGAAATCATGACTTGTTTCTAATTCTACCCTCAGGGGCCTGTAGATGTTGCTTTCCAGCCA GAAATTTTGGGACCCAAAGAGTATCCACTGGGGATGTTTTTTGGCCAAAACTCTTCCTTTTGGAACCACATGAAA GTCTTGATGCTGCCGTGATCCCTTTGAGAGGTGGCTCAAAAGCTACAGGGAACTCCAGGTCCTTTATTACTG CCTTCTTTTCAAAAGCACAACTCTCCTCTAACCCTCCCCTCCCCTTCCCTTCTGGTCGGGTCATAGAGCTACCG TATTTCTAGGACAAGAGTTCTCAGTCACTGTGCAATATGCCCCCTGGGTCCCAGGAGGGTCTGGAGGAAAACTG AGTCAGCCTTGCATGTATTCCTTGGCTGAATGGGAGAGTGCCCCATGTTCTGCAAGACTACTTGGTATTCTTGTA GGGCCGACACTAAATAAAAGCCAAACCTTGGGCACTGTTTTTTCTCCCTGGTGCTCAGAGCACCTGTGGGAAAGG TTGCTGTCTGTCTCAGTACAATCCAAATTTGTCGTAGACTTGTGCAATATATACTGTTGTGGGTTGGAGAAAAGT GGAAAGCTACACTGGGAAGAAACTCCCTTCCTTCAATTTCTCAGTGACATTGATGAGGGGTCCTCAAAAGACCTC GAGTTTCCCAAACCGAATCACCTTAAGAAGGACAGGGCTAGGGCATTTGGCCAGGATGGCCACCCTCCTGCTGTT GCCCCTTAGTGAGGAATCTTCACCCCACTTCCTCTACCCCCAGGTTCTCCTCCCCACAGCCAGTCCCCTTTCCTG GATTTCTAAACTGCTCAATTTTGACTCAAAGGTGCTATTTACCAAACACTCTCCCTACCCATTCCTGCCAGCTCT GCCTCCTTTCAACTCTCCACATTTTGTATTGCCTTCCCAGACCTGCTTCCAGTCTTTATTGCTTTAAAGTTCAC TTTGGGCCCACAGACCCAAGAGCTAATTTTCTGGTTTGTGGGTTGAAACAAAGCTGTGAATCACTGCAGGCTGTG TTCTTGCATCTTGTCTGCAAACAGGTCCCTGCCTTTTTAGAAGCAGCCTCATGGTCTCATGCTTAATCTTGTCTC TCTTCTCTTCTTTATGATGTTCACTTTAAAAACAACAAAACCCCTGAGCTGGACTGTTGAGCAGGCCTGTCTCTC CTATTAAGTAAAAATAAATAGTAGTAGTATGTTTGTAAGCTATTCTGACAGAAAAGACAAAGGTTACTAATTGTA TGATAGTGTTTTTATATGGAAGAATGTACAGCTTATGGACAAATGTACACCTTTTTGTTACTTTAATAAAAATGT AGTAGGATAAAAAAAAA

PCT/US2003/028547

589/6881 FIGURE 549

MSHGKGTDMLPEIAAAVGFLSSLLRTRGCVSEQRLKVFSGALQEALTEHYKHHWFPEKPSKGSGYRCIRINHKMD PIISRVASQIGLSQPQLHQLLPSELTLWVDPYEVSYRIGEDGSICVLYEEAPLAASCGLLTCKNQVLLGRSSPSK NYYMAVSS

PCT/US2003/028547

590/6881 FIGURE 550

ATGTCCATGAGGAGCCCCATCTCTGCCCAGCTGGCCCTGGATGGCGTTGGCACCATGGTGAACTGCACCATCAAG TCAGAGGAGAAGAAGAGCCTTGCCACGAGGCCCCCCAGGGCTCAGCCACTGCCGCTGAACCTCAGCCTGGAGAC CCAGCCCGGGCCTCCCAGGATAGTGCTGACCCCCAAGCTCCAGCCCAGGGGAATTTCAGGGGCTCCTGGGACTGT AGCTCTCCAGAGGGTAATGGGTCCCCAGAACCCAAGAGACCAGGAGCGTCGGAGGCTGCCTCTGGAAGCCAGGAG AGGTTTCTAGGAAGGAACTCTATGGAAGCCAAAGATGTCAAAGGGACCCAAGAGAGCCTAGCAGAGAAGGAGCTC CAGCTTCTGGTCATGATTCACCAGCTGTCCACCCTGCGGGACCAGCTCCTGACAGCCCACTCGGAGCAGAAGAAC CAGCAGCAGCAGCTGATTCAGCAGCAGCATAAGATCAACCTCCTTCAGCAGCAGATCCAGCAGGTTAACATGCCT TATGTCATGATCCCAGCCTTCCCCCCAAGCCACCCAACCTCTGCCTGTCACCCCTGACTCCCAGCTGGCCTTACCC ATTCAGCCCATTCCCTGCAAACCAGTGGAGTATCCGCTGCAGCTGCTGCACAGCCCCCCTGCCCCAGTGGTGAAG AGGCCTGGGGCCATGGCCACCCACCACCCCTGCAGGAGCCCTCCCAGCCCCTGAACCTCACAGCCCAAGCCCAAG GCCCCGAGCTGCCCAACACCTCCAGCTCCCAAGCCTGAAGATGAGCAGCTGTGTGCCCCGCCCCCCAGCCAT ACCAAAGCCATCCAGGATGCTCGGCAGCTGCTGCACAGCCACAGTGGGGCCTTGGATGGCTCCCCCAACACCCCC TTCCGTAAGGACCTCATCAGCCTGGACTCATCCCCAGCCAAGGAGGGCTGGAGGACGGCTGTGTGCACCCACTG GAGGAAGCCATGCTGAGCTGCGACATGGATGGCTCCCGCCACTTCCCCGAGTCCCGAAACAGCAGCCACATCAAG AGGCCCATGAACGCCTTCATGGTGTGGGCCAAGGATGAGCGGAGGAAGATCCTGCAAGCCTTCCCAGACATGCAC GAACAGGCGCGGCTGAGCCGGCAGCACCTGGAGAAGTATCCTGACTACAAGTACAAGCCGCGGCCCAAGCCCACC TGCATCGTGGAGGGCAAGCGGCTGCGCGTGGGAGAGTACAAGGCCCTGATGAGGACCCGGCGTCAGGATGCCCGC CAGAGCTACGTGATCCCCCCGCAGGCTGGCCAGGTGCAGATGAGCTCCTCAGATGTCCTGTACCCTCGGGCAGCA GGCATGCCGCTGGCACAGCCACTGGTGGAGCACTATGTCCCTCGTAGCCTGGACCCCAACATGCCTGTGATCGTC AACACCTGCAGCCTCAGAGAGGAGGGTGAGGGCACAGATGACAGGCACTCGGTGGCTGATGGCGAGATGTACCGG TACAGCGAGGACGAGGACTCGGAGGGTGAAGAGAGAGCGATGGGGAGTTGGTGGTGCTCACAGACTGATCCCGG CTGGGTGGGCCTGGCCCCTTCTCCTCTGGGGAAGACCTTGTCCCAACTCGATGGGCACAGCCAACCTAAGA CTATGTTGGTACTTGGACTTGTTCGTGCCCCAGAGATGGGCAAAGCTGTGCACTTGCAGATACATTCATGAGGGG CTGAGCACCTCAGCCTTTAGGGCTTATGGCCAGGGGACACTGTATGACTCTCCTCTCCTGCAGGTGTCTATCCAC CCACTGTGGGACCAACACCCCTCCCACACTCCCCAGACTGCTCGTCTATCACCAGGATCGCTTTGTACTTTGTG CAAAAGGGTCTGGCTGTCCTTGCTGTTTTCATCTCTGCCAAGCCTATTGTGCCTCTGGCTGCTGTATGTGTGCG TGTTGCTGAGTTCCTGTGGGTGTCTCTCGATGCCACTCCTGCTTCTCTGGGGGCCCTCTTTCTGTGCTTCTCTT CTCTGTCCTCGTCTCTCCAAGGCCCTCTATTTCTCTCTTTTCTTGGTGTCTTTTCCTTTGCCCCCTGTGCCCTCT GGATTCTCTGGGTCTATGTAGGCCCCTGGTCTGCCCTGGGCTCATCAGCCTTCCTGACCTCCTCCCTGCCCTCCCC TTCACTCCCTCCCTGCCTCTCCCAGTCGGTTCCCACGGAGCCATTTTTAGCTCTGATCAGCATGGGAATGTGCCT CGGCCTCCAAGGGGCTTTGTCCTGGTGCCCCGCCCCTGGTCCCAACCTGATCCCACGAGGAGTTGGGACAGGA GGATTGATGGTGCTCCCCTTCCTGCCAGCGTCAGAGGCCCTGGAGAGGGGCTGTCCATGGCAGCTGGTCTTTATT CCTCCTCATGAGCACAGGGTCGGGGGGGTCCCCATTCTTGGAAGAGGTTGAGAAGACTCCTGGGCTTCAGCCTC GATCAGTTTCACAAAGTTTGTTCCCTAAGGAAATCAAATCCCATTGTCACCTAACTCTGAAGATCTAAATAGCCC TTGGATCAGTATGGGAACCCCAAATCCCACAGGGCCAGATGTGGAGTCTGTGTCTGCCCCCGTCTTCTCTCCATC TAATAAGATAATGATGAGTAACTTAACCAGCACATTTCTCCTGTTTACACTCGGGGGATTTTTTTGTTTTCTGAT

PCT/US2003/028547

591/6881 FIGURE 551

MSMRSPISAQLALDGVGTMVNCTIKSEEKKEPCHEAPQGSATAAEPQPGDPARASQDSADPQAPAQGNFRGSWDC
SSPEGNGSPEPKRFGASEAASGSQEKLDFNRNLKEVVPAIEKLLSSDWKERFLGRNSMEAKDVKGTQESLAEKEL
QLLVMIHQLSTLRDQLLTAHSQCNMAMAMLFEKQQQQGWELARQQOGQIAKQQOQLIQQQGVIAQQQQIQVNMP
YVWIPAFPSHQPLPYTPDSQLALPIQPIPCKPVEYPLQLLHSPPAPVVKRPGAMATHHPLQEPSQPLNLTAFKK
APELPNTSSSPSLMSSCVPRPPSHGGFTRDLQSSPPSLPLGFLGEGDAVTKAIQDARQLLHSHSGALDGSPNTP
FRKDLISLDSSPAKERLEDGCVPHPLESHMLSCDMDGSSRFIPESRNSSHIKRFBWANFWAKDERRKILQAFPDMH
NSSISKILGSRWKSMTNQEKQPYYEEQARLSRQHLEKYPDYKYKPRPKRTCIVEGKRLRVGEYKALMRTRRQDAR
QSYVIFPQAGQVQMSSSDVLYPRAAGMPLAQPLVEHYVPRSLDPNMPVIVNTCSLREEGEGTDDRHSVADGEMYR
YSDDEDSEGEEKSDGELVVLTD

PCT/US2003/028547

592/6881 FIGURE 552

PCT/IIS2003/028547

593/6881 FIGURE 553A

 $\tt CTGAAG\underline{ATG} AGACCATTCTTCCTCTTGTGTTTTGCCCTGCCTGCCTCCTGCATGCCCAACAAGCCTGCTCCCGT$ GGGGCCTGCTATCCACCTGTTGGGGACCTGCTTGTTGGGAGGACCCGGTTTCTCCGAGCTTCATCTACCTGTGGA CTGACCAAGCCTGAGACCTACTGCACCCAGTATGGCGAGTGGCAGATGAAATGCTGCAAGTGTGACTCCAGGCAG CCTCACAACTACTACAGTCACCGAGTAGAGAATGTGGCTTCATCCTCCGGCCCCATGCGCTGGTGGCAGTCCCAG AATGATGTGAACCCTGTCTCTCTGCAGCTGGACCTGGACAGGAGATTCCAGCTTCAAGAAGTCATGATGGAGTTC CAGGGGCCCATGCCCGCCGGCATGCTGATTGAGCGCTCCTCAGACTTCGGTAAGACCTGGCGAGTGTACCAGTAC CAGTCCCTGCCTCAGAGGCCTAATGCACGCCTAAATGGGGGGGAAGGTCCAACTTAACCTTATGGATTTAGTGTCT GGGATTCCAGCAACTCAAAGTCAAAAAATTCAAGAGGTGGGGGAGATCACAAACTTGAGAGTCAATTTCACCAGG CTGGCCCCTGTGCCCCAAAGGGGCTACCACCCTCCCAGCGCCTACTATGCTGTGTCCCAGCTCCGTCTGCAGGGG AGCTGCTTCTGTCACGGCCATGCTGATCGCTGCGCACCCAAGCCTGGGGCCCTCTGCAGGCCCCTCCACCGCTGTG CAGGTCCACGATGTCTGTGTCTGCCAGCACAACACTGCCGGCCCAAATTGTGAGCGCTGTGCACCCTTCTACAAC AACCGGCCCTGGAGACCGGCGGAGGGCCAGGACGCCCATGAATGCCAAAGGTGCGACTGCAATGGGCACTCAGAG CACACCGAAGGCAAGAACTGTGAGCGGTGTCAGCTGCACTATTTCCGGAACCGGCGCCCGGGAGCTTCCATTCAG GAGACCTGCATCTCCTGCGAGTGTGATCCGGATGGGGCAGTGCCAGGGGCTCCCTGTGACCCAGTGACCGGGCAG TGTGTGTGCAAGGAGCATGTGCAGGGAGAGCGCTGTGACCTATGCAAGCCGGGCTTCACTGGACTCACCTACGCC AACCCGCAGGGCTGCCACCGCTGTGACTGCAACATCCTGGGGTCCCGGAGGGACATGCCGTGTGACGAGGAGAGT GGGCGCTGCCTTTGTCTGCCCAACGTGGTGGGTCCCAAATGTGACCAGTGTGCTCCCTACCACTGGAAGCTGGCC AGTGGCCAGGGCTGTGAACCGTGTGCCTGCGACCCGCACAACTCCCCTCAGCCCACAGTGCAACCAGTTCACAGG GCAGTGCCCTGTCGGGAAGGCTTTGGTGGCCTGATGTGCAGCGTGCAGCCATCCGCCAGTGTCCAGACCGGACC TATGGAGACGTGGCCACAGGATGCCGAGCCTGTGACTGTGATTTCCGGGGAACAGAGGGCCCGGGCTGCGACAAG GCATCAGGCCGCTGCCTCTGCCGCCCTGGCTTGACCGGGCCCCGCTGTGACCAGTGCCAGCGAGGCTACTGCAAT CGCTACCCGGTGTGCGTGGCCTGCCACCCTTGCTTCCAGACCTATGATGCGGACCTCCGGGAGCAGGCCCTGCGC TTTGGTAGACTCCGCAATGCCACCGCCAGCCTGTGGTCAGGGCCTGGGCTGGAGGACCGTGGCCTCCCGG ATCCTAGATGCAAAGAGTAAGATTGAGCAGATCCGAGCAGTTCTCAGCAGCCCCGCAGTCACAGAGCAGGAGGTG GCTCAGGTGGCCAGTGCCATCCTCTCCCTCAGGCGAACTCTCCAGGGCCTGCAGCTGGATCTGCCCCTGGAGGAG GAGACGTTGTCCCTTCCGAGAGACCTGGAGAGTCTTGACAGAAGCTTCAATGGTCTCCTTACTATGTATCAGAGG AAGAGGGAGCAGTTTGAAAAAATAAGCAGTGCTGATCCTTCAGGAGCCTTCCGGATGCTGAGCACAGCCTACGAG CAGTCAGCCCAGGCTGCTCAGCAGGTCTCCGACAGCTCGCGCCTTTTGGACCAGCTCAGGGACAGCCGGAGAGAG GCAGAGAGGCTGGTGCGGCAGGCGGGAGGAGGAGGAGGAGGCACCGGCAGCCCCAAGCTTGTGGCCCTGAGGCTGGAG ATGTCTTCGTTGCCTGACCTGACACCCACCTTCAACAAGCTCTGTGGCAACTCCAGGCAGATGGCTTGCACCCCA ATATCATGCCCTGGTGAGCTATGTCCCCAAGACAATGGCACAGCCTGTGGCTCCCGCTGCAGGGGTGTCCTTCCC AGGGCCGGTGGGGCCTTCTTGATGGCGGGGCAGGTGGCTGAGCAGCTGCGGGGCTTCAATGCCCAGCTCCAGCGG ACCAGGCAGATGATTAGGGCAGCCGAGGAATCTGCCTCACAGATTCAATCCAGTGCCCAGCGCTTGGAGACCCAG GTGAGCGCCAGCCGCTCCCAGATGGAGGAAGATGTCAGACGCACACGGCTCCTAATCCAGCAGGTCCGGGACTTC CTAACAGACCCCGACACTGATGCAGCCACTATCCAGGAGGTCAGCGAGGCCGTGCTGGCCCTGTGGCTGCCCACA GACTCAGCTACTGTTCTGCAGAAGATGAATGAGATCCAGGCCATTGCAGCCAGGCTCCCCAACGTGGACTTGGTG CTGTCCCAGACCAAGCAGGACATTGCGCGTGCCCGCCGGTTGCAGGCTGAGGCTGAGGAAGCCAGGAGCCGAGCC CATGCAGTGGAGGGCCAGGTGGAAGATGTGGTTGGGAACCTGCGGCAGGGGACAGTGGCACTGCAGGAAGCTCAG GACACCATGCAAGGCACCAGCCGCTCCCTTCGGCTTATCCAGGACAGGGTTGCTGAGGTTCAGCAGGTACTGCGG CCAGCAGAAAAGCTGGTGACAAGCATGACCAAGCAGCTGGGTGACTTCTGGACACGGATGGAGGAGCTCCGCCAC CAAGCCCGGCAGCAGGGGGCAGAGGCAGTCCAGGCCCAGCAGCTTGCGGAAGGTGCCAGCGAGCAGGCATTGAGT GCCCAAGAGGGATTTGAGAGAATAAAACAAAAGTATGCTGAGTTGAAGGACCGGTTGGGTCAGAGTTCCATGCTG GGTGAGCAGGGTGCCCGGATCCAGAGTGTGAAGACAGAGGCAGAGGAGCTGTTTGGGGAGACCATGGAGATGATG GACAGGATGAAAGACATGGAGTTGGAGCTGCTGCGGGGCAGCCAGGCCATCATGCTGCGCTCGGCGGACCTGACA GGACTGGAGAAGCGTGTGGAGCAGATCCGTGACCACATCAATGGGCGCGTGCTCTACTATGCCACCTGCAAG<u>TGA</u>

PCT/US2003/028547

594/6881 FIGURE 553B

PCT/IIS2003/028547

595/6881 FIGURE 554

MRPFFLLCFALPGLLHAOOACSRGACYPPVGDLLVGRTRFLRASSTCGLTKPETYCTQYGEWOMKCCKCDSROPH NYYSHRVENVASSSGPMRWWOSQNDVNPVSLQLDLDRRFQLQEVMMEFQGPMPAGMLIERSSDFGKTWRVYOYLA ADCTSTFPRVRQGRPQSWQDVRCQSLPQRPNARLNGGKVQLNLMDLVSGIPATOSQKIQEVGEITNLRVNFTRLA ${\tt PVPQRGYHPPSAYYAVSQLRLQGSCFCHGHADRCAPKPGASAGPSTAVQVHDVCVCQHNTAGPNCERCAPFYNNR}$ PWRPAEGQDAHECQRCDCNGHSETCHFDPAVFAASQGAYGGVCDNCRDHTEGKNCERCQLHYFRNRRPGASIQET ${\tt CISCECDPDGAVPGAPCDPVTGQCVCKEHVQGERCDLCKPGFTGLTYANPQGCHRCDCNILGSRRDMPCDEESGR}$ CLCLPNVVGPKCDQCAPYHWKLASGOGCEPCACDPHNSPQPTVOPVHRAVPCREGFGGLMCSAAAIRQCPDRTYG ${\tt DVATGCRACDCDFRGTEGPGCDKASGRCLCRPGLTGPRCDQCORGYCNRYPVCVACHPCFQTYDADLREQALRFG}$ RLRNATASLWSGPGLEDRGLASRILDAKSKIEQIRAVLSSPAVTEQEVAQVASAILSLRRTLQGLQLDLPLEEET ${\tt LSLPRDLESLDRSFNGLLTMYQRKREQFEKISSADPSGAFRMLSTAYEQSAQAAQQVSDSSRLLDQLRDSRREAE}$ ${\tt RLVROAGGGGGTGSPKLVALRLEMSSLPDLTPTFNKLCGNSRQMACTPISCPGELCPQDNGTACGSRCRGVLPRACTION CONTROL OF STREET AND ADMINISTRATION CONTROL OF STREET AND ADMINISTRATION$ ${\tt GGAFLMAGQVAEQLRGFNAQLQRTRQMIRAAEESASQIQSSAQRLETQVSASRSQMEEDVRRTRLLIQQVRDFLT}$ DPDTDAATIQEVSEAVLALWLPTDSATVLQKMNEIQAIAARLPNVDLVLSQTKQDIARARRLQAEAEEARSRAHA VEGQVEDVVGNLRQGTVALQEAQDTMQGTSRSLRLIQDRVAEVQQVLRPAEKLVTSMTKQLGDFWTRMEELRHQA ROQGAEAVQAQQLAEGASEQALSAQEGFERIKQKYAELKDRLGQSSMLGEQGARIQSVKTEAEELFGETMEMMDR MKDMELELLRGSQAIMLRSADLTGLEKRVEQIRDHINGRVLYYATCK

PCT/US2003/028547

596/6881 FIGURE 555

PCT/US2003/028547

597/6881 FIGURE 556

 ${\tt METVQELIPLAKEMMAQKRKGKMVKLYVLGSVLALFGVVLGLMETVCSPFTAARRLRDQEAAVAELQAALERQALQKQALQEKGKQQDTVLGGRALSNRQHAS}$

PCT/US2003/028547

598/6881 FIGURE 557

CCCGCCTCCGAGAGCCCAGAGCCGAGATGGAAACGGTCCAGGAGCTGATCCCCCTGGCCAAGGAGATGATGGCCC
AGAAGCGCAAGGGGAAGATGGTGAAGCTGTACGTGCTGGGCAGCGTGCTGGCCCTCTTCGGCGTGGTGCTCGGCC
TGATGGAGACTGTTGCAGCGGAGTGGGAGGGAGCGCAGTAGACAGAACAGACCGAGAGAGGAATGGAAGAC
AGAGGGGGCCGCGCACACAGGAGCCTGACTCCGCTGGGAGAGTGCAGGAGACGTGCTGTTTTTTATTTGGACTTA
ACTTCAGAGA

PCT/US2003/028547

599/6881 FIGURE 558

CCGCTGGGCGTAGCTGCGACTCGGCGGAGTCCCGGCGGCGCGCCCTTGTTCTAACCCGGCGCGCCATGACCGTCG CGCGGCCGAGCGTGCCCGCGGCGCTGCCCCTCCTCGGGGAGCTGCCCCGGCTGCTGCTGCTGCTGTTGTGCC GTTTTCCCGAGGATACTGTAATAACGTACAAATGTGAAGAAAGCTTTGTGAAAATTCCTGGCGAGAAGGACTCAG TGATCTGCCTTAAGGGCAGTCAATGGTCAGATATTGAAGAGTTCTGCAATCGTAGCTGCGAGGTGCCAACAAGGC TAAATTCTGCATCCCTCAAACAGCCTTATATCACTCAGAATTATTTTCCAGTCGGTACTGTTGTGGAATATGAGT CAGTCGAATTTTGTAAAAAGAAATCATGCCCTAATCCGGGAGAAATACGAAATGGTCAGATTGATGTACCAGGTG GCATATTATTTGGTGCAACCATCTCCTTCTCATGTAACACAGGGTACAAATTATTTGGCTCGACTTCTAGTTTTT GTCTTATTTCAGGCAGCTCTGTCCAGTGGAGTGACCCGTTGCCAGAGTGCAGAGAAATTTATTGTCCAGCACCAC CACAAATTGACAATGGAATAATTCAAGGGGAACGTGACCATTATGGATATAGACAGTCTGTAACGTATGCATGTA ATAAAGGATTCACCATGATTGGAGAGCACTCTATTTATTGTACTGTGAATAATGATGAAGGAGAGTGGAGTGGCC CACCACCTGAATGCAGAGGAAAATCTCTAACTTCCAAGGTCCCACCAACAGTTCAGAAACCTACCACAGTAAATG GGAGTACACCTGTTTCCAGGACAACCAAGCATTTTCATGAAACAACCCCAAATAAAGGAAGTGGAACCACTTCAG GTACTACCCGTCTTCTATCTGGGCACACGTGTTTCACGTTGACAGGTTTGCTTGGGACGCTAGTAACCATGGGCT TGCTGACTTAGCCAAAGAAGAGTTAAGAAGAAAATACACACAAGTATACAGACTGTTCCTAGTTTCTTAGACTTA TCTGCATATTGGATAAAATAAATGCAATTGTGCTCTTCATTTAGGATGCTTTCATTGTCTTTAAGATGTGTTAGG AATGTCAACAGAGCAAGGAGAAAAAAGGCAGTCCTGGAATCACATTCTTAGCACACCTACACCTCTTGAAAATAG AACAACTTGCAGAATTGAGAGTGATTCCTTTCCTAAAAGTGTAAGAAAGCATAGAGATTTGTTCGTATTTAGAAT GGGATCACGAGGAAAAGAGAAGGAAAGTGATTTTTTTCCACAAGATCTGTAATGTTATTTCCACTTATAAAGGAA ATAAAAAATGAAAAACATTATTTGGATATCAAAAGCAAATAAAAACCCAATTCAGTCTCTTCTAAGCAAAATTGC TAAAGAGAGATGAACCACATTATAAAGTAATCTTTGGCTGTAAGGCATTTTCATCTTTCCTTCGGGTTGGCAAAA TATTTAAAGGTAAAACATGCTGGTGAACCAGGGGTGTTGATGGTGATAAGGGAGAATATAGAATGAAAGACTG AATCTTCCTTTGTTGCACAAATAGAGTTTGGAAAAAGCCTGTGAAAGGTGTCTTCTTTGACTTAATGTCTTTAAA AGTATCCAGAGATACTACAATATTAACATAAGAAAAGATTATATATTATTTCTGAATCGAGATGTCCATAGTCAA GТ

PCT/US2003/028547

600/6881 FIGURE 559

MTVARPSVPAALPLIGELPRLLLLVLLCLPAVMGDCGLPPDVPNAQPALEGRTSFPEDTVITYKCEESFVKIPGE
KDSVICLKGSQWSDIEEFCNRSCEVPTRLNSASLKQPYITQNYFPVGTVVEYECRPGYRREPSLSPKLTCLQNLK
WSTAVEFCKKKSCPNPGEIRNGQIDVPGGILFGATISFSCNTGYKLFGSTSSFCLISGSSVQMSDPLEECREIYC
PAPPGIDMGIIQGERDHYGYRGSVTYACNKGFTMIGEHSIYCTVNNDEGEWSGPPPECRGKSLTSKVPPTVQKPT
TVNVPTTEVSPTSQKTTTKTTTPNAQATRSTPVSRTTKHFHETTPNKGSGTTSGTTRLLSGHTCFTLTGLLGTLV
TMGLLT

PCT/US2003/028547

FIGURE 560A

GTGGATTTGGTCGTCTCCCTGATTCCGAGCTGCGGGCAGGGAGAGGGGCCTCGCGCCCCCTCAGCAGCCGGCGG CGGCCGAGGTAGACCGAGCGGGGACGGAAGGACAGACCGACGTCGCCGAGCTGGAATCATGTGAGGGCCAACCGG GGAAGGTGGAGCAGATGAGCACACACAGGAGCCGTCTCCTCACCGCCGCCCCTCTCAGCATGGAACAGAGGCGGC CCTGGCCCCGGGCCCTGGAGGTGGACAGCCGCTCTGTGGTCCTGCTCTCAGTGGTCTGGGTGCTGCTGGCCCCCC CAGCAGCCGGCATGCCTCAGTTCAGCACCTTCCACTCTGAGAATCGTGACTGGACCTTCAACCACTTGACCGTCC ACCAAGGGACGGGGCCGTCTATGTGGGGGCCATCAACCGGGTCTATAAGCTGACAGGCAACCTGACCATCCAGG TGGCTCATAAGACAGGGCCAGAAGAGGACAACAAGTCTTGTTACCCGCCCCTCATCGTGCAGCCCTGCAGCGAAG TGCTCACCCTCACCAACAATGTCAACAAGCTGCTCATCATTGACTACTCTGAGAACCGCCTGCTGGCCTGTGGGA GCCTCTACCAGGGGGTCTGCAAGCTGCTGCGGCTGGATGACCTCTTCATCCTGGTGGAGCCATCCCACAAGAAGG AGCACTACCTGTCCAGTGTCAACAAGACGGGCACCATGTACGGGGTGATTGTGCGCTCTGAGGGTGAGGATGGCA AGCTCTTCATCGGCACGGCTGTGGATGGGAAGCAGGATTACTTCCCGACCCTGTCCAGCCGGAAGCTGCCCCGAG ACCCTGAGTCCTCAGCCATGCTCGACTATGAGCTACACAGCGATTTTGTCTCCTCTCTCATCAAGATCCCTTCAG ACACCCTGGCCCTGGTCTCCCACTTTGACATCTTCTACATCTACGGCTTTGCTAGTGGGGGCTTTGTCTACTTTC TCACTGTCCAGCCCGAGACCCCTGAGGGTGTGGCCATCAACTCCGCTGGAGACCTCTTCTACACCTCACGCATCG TGCGGCTCTGCAAGGATGACCCCAAGTTCCACTCATACGTGTCCCTGCCCTTCGGCTGCACCCGGGCCGGGGTGG AATACCGCCTCCTGCAGGCTGCTTACCTGGCCAAGCCTGGGGACTCACTGGCCCAGGCCTTCAATATCACCAGCC GTGCCTTCCCTATCCGGGCCATCAACTTGCAGATCAAGGAGCGCCTGCAGTCCTGCTACCAGGGCGAGGGCAACC TGGAGCTCAACTGGCTGCTGGGGAAGGACGTCCAGTGCACCAAGGCGCCTGTCCCCATCGATGATAACTTCTGTG GACTGGACATCAACCAGCCCCTGGGAGGCTCAACTCCAGTGGAGGGCCTGACCCTGTACACCACCAGCAGGGACC GCATGACCTCTGTGGCCTCCTACGTTTACAACGGCTACAGCGTGGTTTTTGTGGGGACTAAGAGTGGCAAGCTGA AAAAGATTCGGGCCGACGGTCCCCCCCATGGTGGGGTCCAGTACGAGATGGTCTCTGTGCTCAAGGACGGAAGCC CCATCCTCCGGGACATGGCCTTCTCCATTGATCAGCGCTACCTGTACGTCATGTCTGAGAGACAGGTCACCAGGG TCCCCGTGGAGTCATGTGAGCAGTATACGACTTGTGGGGAGTGCCTGAGCTCTGGGGACCCTCACTGTGGCTGGT GTGCCCTGCACAACATGTGCTCCCGCAGGGACAAATGCCAACAGGCCTGGGAACCTAATCGATTTGCTGCCAGCA TCAGCCAGTGTGTGAGCCTTGCAGTGCATCCCAGCAGCATCTCAGTATCTGAGCACAGCCGGTTGCTTAGCCTGG TAGTGAGTGATGCTCCTGATCTATCTGCGGGTATCGCCTGTGCCTTTGGGAACCTGACAGAGGTGGAGGGGCAGG TGTCCGGGAGCCAGGTCATCTGCATCTCACCTGGGCCCAAGGATGTCCCTGTCATCCCGCTGGATCAAGACTGGT TTGGGCTGGAGCTACAGCTGAGGTCCAAGGAGACAGGGAAGATATTTGTCAGCACCGAGTTCAAGTTTTACAACT GCAGTGCCCACCAACTGTGCCTGTCCTGTGTCAACAGCGCCTTCCGCTGCCATTGGTGCAAGTACCGCAACCTCT GCACTCATGACCCCACCACCTGCTCCTTCCAGGAGGGCCGGATCAATATTTCAGAGGACTGTCCCCAGCTGGTGC CCACAGAGGAGATCTTGATTCCAGTCGGGGAGGTAAAGCCAATCACCCTTAAGGCGCGAAATCTGCCCCAGCCGC AGTCCGGCCAGCGAGGCTATGAGTGTGTCCTCAACATACAAGGAGCCATCCACCGGGTCCCCGCTCTGCGCTTCA ACAGCTCCAGCGTTCAGTGTCAGAACAGCTCGTACCAGTATGATGGCATGGACATCAGCAATCTGGCCGTGGATT TCGCTGTGGTGTGGAACGGCAATTTCATCATTGACAACCCTCAGGACCTGAAAGTCCATCTCTACAAGTGTGCAG GGTGCACCCTCCACCAGCACTGTACCAGCCCTTCCAGCCCCTGGCTCGACTGGTCCAGCCACAATGTCAAGTGCT TGAACCTGGGTCTGGACTTCTCCGAGATCGCCCACCATGTGCAGGTGGCTGGGGTGCCCTGCACGCCCCTCCCAG GGGAATACATCGCTGAGCAGATTGTCTGTGAGATGGGCCATGCCCTCGTGGGAACCACCTCCGGGCCAGTAC GCCTGTGTATTGGCGAGTGTAAGCCAGAGTTCATGACGAAGTCCCATCAGCAGTACACCTTCGTGAACCCTTCTG TGCTGTCACTCAACCCAATCCGAGGTCCCGAGTCAGGAGGCACTATGGTGACCATTACCGGCCATTACCTTGGGG GTGTCTCACCCCATCATCCAATGGCCTTGGCCCGGTCCCTGTTTCTGTGAGTGTCGACCGAGCCCATGTGGATA GCAACCTGCAGTTTGAGTACATAGATGACCCTCGGGTCCAGCGCATCGAGCCAGAGTGGAGCATTGCCAGTGGCC ACACACCCCTGACCATCACAGGCTTCAACCTGGATGTCATTCAGGAGCCAAGGATCCGAGTCAAATTCAATGGCA ACCGCCCTGGCCTGGACACTGTGGAACGCCCAGATGAGTTTGGATTTGTCTTTAACAATGTCCAATCCTTGCTAA

PCT/US2003/028547

602/6881 FIGURE 560B

TTTACAACGACACCAAGTTTATCTACCTACCCCAACCCGACCTTTGAACTGCTTAGCCCTACTGGAGTCTTGGATC AAAAGCCAGGATCGCCCATCATTCTGAAGGGCAAAAACCTCTGCCCTCCTGCCTCTGGAGGGGCCAAACTCAACT ACACTGTGCTCATCGGAGAGACCCCTTGTGCTGTCACCGTATCTGAGACCCAGCTTCTCTGCGAGCCTCCCAACC ACAGCTTGCTGACCCTGCCAGCCATCGTCAGCATCGCGGCGGCGGCAGCCTCCTCCTCATCATCGTCATCATCG TCCTCATTGCCTACAAGCGCAAGTCTCGAGAAAATGACCTCACTCTCAAGCGGCTGCAAATGCAGATGGACAATC TGGAGTCCCGTGTGGCCTTGGAGTGCAAGGAAGCTTTTGCTGAGCTCCAGACGGATATCAATGAGTTGACCAGTG ACCTGGACCGCTCAGGAATCCCTTACCTGGACTATCGTACCTACGCTATGCGAGTCCTGTTCCCGGGCATCGAGG ACCACCCCGTCCTGCGGGAGCTGGAGGTACAAGGAAACGGGCAGCAGCACGTGGAGAAGGCCCTGAAGCTCTTTG CCCAGCTCATCAACAACAAGGTGTTCCTGCTGACCTTCATCCGCACCCTGGAGCTGCAGCGCAGGTTTCTCCATGC GCGACCGGGGCAACGTGGCTTCGCTCATCATGACCGGCCTGCAGGGCCGCCTGGAATATGCCACTGATGTCCTCA AGCAGCTGCTCTCTGACCTCATCGATAAGAACCTGGAGAACAAGAACCACCCCAAGCTGCTACTCCGGAGGACAG AGTCTGTGGCTGAAAAGATGCTGACCAATTGGTTCGCCTTCCTCCTGCACAAGTTCCTAAAGGAGTGCGCAGGGG AGCCACTCTTCATGCTATACTGTGCCATCAAGCAGCAGATGGAGAAGGGCCCCATTGATGCCATCACGGGCGAGG ACCCTGACAACGAGAACAGTCCAGAGATCCCAGTGAAGGTGTTAAACTGTGACACCATCACACAGGTCAAGGAGA AGATTCTTGATGCCGTGTATAAGAATGTGCCCTATTCCCAGCGGCCGAGGGCAGTGGACATGGACTTGGAGTGGC GCCAAGGCCGGATCGCCCGGGTCGTGCTGCAAGATGAGGACATCACCAACAATTGAGGGTGACTGGAAGCGGC TCAACACACTGATGCATTATCAGGTGTCAGACAGGTCGGTGGTGGCTCTGGTCCCCAAACAGACCTCCTCCTACA ACATCCCTGCCTCTGCCAGCATCTCCCGGACGTCCATCAGCAGATACGGTGACTCCTCCTTCAGGTATACGGGCA GCCCCGACAGCCTGCGGTCCCGGGCCCCGATGATCACCCCAGACCTGGAAAGTGGGGTCAAGGTGTGGCATCTGG TGAAGAACCATGACCACGGTGACCAGAAGGAGGGTGACCGGGGCAGCAAGATGGTGTCCGAGATCTACCTGACCC GGCTACTGGCCACCAAGGGCACCCTGCAGAAGTTTGTGGACGACTTGTTTGAGACCTTGTTCAGCACTGTGCACC ACTCTTGTTCAACGTCAGAGCACCGGCTGGGCAAGGACTCCCCCTCCAACAAGCTGCTCTATGCCAAGGACATCC CCAGCTACAAGAGCTGGGTGGAGAGATACTACGCAGACATCGCCAAGCTCCCAGCCATCAGTGACCAGGACATGA ATGCCTACCTCGCCGAGCAGTCCCGCCTGCACGCCGTGGAGTTCAACATGCTGAGTGCCCTCAATGAGATCTACT CCTATGTCAGCAAGTATAGTGAGGAGCTCATCGGGGCCCTAGAGCAGGATGAGCAGGCACGGCGGCAGCGGCTGG CTTATAAGGTGGAGCAGCTCATTAATGCCATGTCCATTGAGAGCTGAGAGGAGGAGCCTCGCATTCCTGGGAAGA GGGACCTGTCCAAGCTGTCACACTGGGAGTCTCAGATGGAAGGACAAGTGATGGGGGATCAGGCCCCAGAGCTTGC TGTCCCCTGAGACCCCATCCTGGGGAGAGGGGAGGACTCCTCTCCCTACGCCAAGCTATCGTCATAGCCAGT TCCAGCTGGGAGAGACAGTGGGCGTCGTCCATCCTCAGTGAGAACACCAGAGAACCCGGGGCCGGGAGAAGGTGG TTCTTCAAGCCGAGAGGCACGAGCTGGGGACAGTTCTGCCTCTGTGACTGCTGTGCTTTGCATGAAAACTCATTTGA TGTATATTGGGGAAATAATGAGAACTTTATTTAATTTTTTAAGAAAAAGGGAAAAAAACAGAAATAAAACAAAA

PCT/IIS2003/028547

603/6881 FIGURE 561

PCT/US2003/028547

604/6881 FIGURE 562

PCT/US2003/028547

605/6881 FIGURE 563

MTNTKGKRRGTQYMFSRPFRKHGVVALATYMQIYKKGDIVDIKGMGTVQKGMPHKCYHGKTGRVYNVPQHAVGIV VNTQVKGKILAKRINVRIEHIKHSKS

PCT/HS2003/028547

606/6881 FIGURE 564

ATGAAGCTCTTATCTTTGGTGGCTGTGGTCGGGTGTTTGCTGGTGCCCCAGCTGAAGCCAACAAGAGTTCTGAA
GATATCCGGTGCAAATGCATCTGTCACCTTATAGAAACATCAGTGGGCACATTTACAACCAGAATGTATCCAG
AAGGACTGCAACTGCCTGCACGTGGTGGAGCCCATGCCAGTGCCAGTGCCATGACGTGGAGGCCTATGCTGCTGGTG
TGCGAGTGCAGGTACGAGGAGCGCAGCACCACCACCATCAAGGTCATCATTGTCATCTTCCTGTCTCTGGTGGGT
GCCCTGTTGCTCTACATGGCCTTCCTGATGCTGGTGGACCTCTGATCCGGAAGACCGGATGCATATACTGAGCAA
CTGCACAATGAGGAGGAAATGAGGATGCTCGCTCTTATGGCAGCAGCTGCTGCTCCCTCGGGGGACCCCGACA
AACACAGTCCTGGAAGGTGCCAGCAGCGGTGGAAGCTGCAGGAGCAGCAGCAGACACCTCTCGATCCTGGAGGTGCAGGAGCAGCGGAAGACAGTC
TTCGATCGGCACAAGATGCTCAGCTAG

PCT/US2003/028547

607/6881 FIGURE 565

MKLLSLVAVVGCLLVPPAEANKSSEDIRCKCICPPYRNISGHIYNQNVSQKDCNCLHVVEPMPVPGHDVEAYCLL CECRYEERSTTIIKVIIVIYLSVVGALLIYMFLMLVDPLIRXPDAYTEQLHNEEENEDARSMAAAAASLGGPRA NTVLERVEGAQQRNKLQVGQCRKTVFDRHKMLS

PCT/US2003/028547

608/6881 FIGURE 566

PCT/HS2003/028547

609/6881 FIGURE 567

CCAGCCTTGCCCGGCAGAGGACTCTGGAGGATGAGGAGGAACAGGAGCGCGCGAXGGCGGCGCCACCGCAACCTG AGCTCCACCACGGACGATGAGGCTCCCAGGCTCAGCAGAATGGAGACCGGCAGCCTCTGCTTCTGAGAGACTACC CAGCGTGGAAGAAGCAAGGCGAGCCCAAGCCACTGCCCCAGCCTCCAAAGATGAGGACGAGGACATCCAGAGCAT CCTCAGAACACGGCAGGAGCGGAGGCAGAGGCGGCAGGTGGTGGAGGCTGCACAGGCCCCCATCCAGGAGAGGCT GGAGGCAGAGGAGGGAGGAACAGCTTGAGCCCTGTGCAGGCCACACAGAAACCCCTAGTCTCCAAGAAGGAACT GGAAATCCCACCTCGCCGGAGACTGAGTCGGGAACAGCGGGGCCCCTGCGCTGGAGGAGGAGAGCTTGGTGGGCA GGGAGCCAGAAGAGAGGAAGAAGGGGTTCCAGAAAAGTCCCCAGTCTTGGAGAAATCCTCCATGCCAAAGAAGA CGGCACCTGAAAAGAGCCTGGTCTCCGATAAAACCTCCATCTCTGAGAAGGTGCTGGCCTCAGAGAAGACATCTC TATCAGAGAAGATAGCAGTGTCAGAGAAAAGAAACAGCTCAGAGAAGAAGTCTGTTCTAGAAAAAACCAGTGTCT AGAAGGCACTGGCCTCAGAGAAGAGCCCAACTGCAGATGCTAAGCCGGCCCCAAAGAGGCCACAGCCTCAGAGCA GCCCTGGCGCAGGAGCCGCCAGCCTCTGGGGGAAGCCCAGCCACCAAGGAGCAGAGAGGAGGAAGGGCCCTCCC TGGGAAGAACCTGCCCTCTTTGGCAGAGCAGGGGGCTTCAGACCCTCCGACTGTGGCCTCCCGCCTCCCACCCGT CACACTCCAGGTGAAAATCCCCAGCAAGGAGGAAGAGAGATATGTCCTCACCCACACAGGGAACCTACAGCAG AACTCGCAGTGCCAGCATGAAGCTCCCAGACAACACAGTGAAGTTGGGAGAGAAGCTGGAGAGATACCACACGGC CATACGGAGATCAGAATCTGTCAAGTCTCGGGGTCTGCCTTGCACTGAGTTATTCGTGGCTCCTGTGGGTGTAGC CAGCAAGCGCCACCTCTTTGAGAAGGAACTGGCGGGCCAGAGCCGAGCAGAACCAGCCTCCAGCCGGAAGGAGAA CCCCCAGGAGGCACAGAAAGCATCATCTGCAACCGAGAGGACTCAGTGGGGACAGAAATCTGACTCCTCGCTGGA CTGCCTCTCACAGCAGCACCCTTTCCTCTCATTGTCCCTGTTCCCTTTTTGCCTGTGGATCTGTTTGGCCAGGGT CCCTGGGGTCAGGAATATTTGCAAGACTCAGCCAGCTCCTTCCCAGCCCAGCCTCTTGGGGCTGGGACTTTCTCA CCCTGCGGCAGGCACAACAGATGCTGGGACCCAGTCTCTGCCCAGGTCACAGCACAAGTGCACATCAGCACTATG GGGCCTATGTCCTGCCCAGAGACCTCTGCTCCTTCCTGCTCACATCCACAGTCAGGGCACGGCGCCCCTCAAGAA CTCCAGAGTCACCTGTCTCATCGGCTCCCAGCAAGTGCCTCTTTGTCTATGATGTCCCCCTTCTCTGAGGCCTGG ACCCACCCATCTTTGTCCCTGGGGCCTGCTCCCAGCCACTGAGGCCCGCTCTGGCCAGGGGAAAGGAGCTGCCG TGCGTCTTCCCTGTGCCCCGTCTCCCTGCTTGGTTCTCCCCTCCCTTCCCTGGCCGGCTGCCATGGCCAGGAGCT TACTCTCAGGTGTAAGAGACTGATGAGACCTTAGAAGCGAATTCCTCTCTGGAGGCCTTGCTTTCTAGCAGAGTC ACCTGAAGTGTGAGGAGGATCATCATTTTCCTCATCCCCCCTCTTCTCACATTAAGGTGGTGGCTTGCCACTC AGCAGTCCTAGCTTGGTGACTGGGAACTGCCACATACAGGGCCAGGCCTACCCTCCTTCCCCACAAGCCCCCTCC AACCCCCACCCCATGCTCTGGACCTCATGGCTCCTATGAGCTTGGAGCATGGTGAACCATCAGAGAATCTAGAA CCAACCAAGCTAGGAACATCAGCCTGGTGCCTGTTAACCCCTTAAAGCTGTGGTTTACAACTTTTCAAAAATTTA AATCATTAG

PCT/US2003/028547

610/6881 FIGURE 568

ATTCAAGGCCTGGGGGAGCTGCGGTTCCGAGAAGCGGCAGACGGCAGAAGGCTTGGGCTGTTGAGTAAGCA CCAGGGGAGCAAGAGAACGGGCGGGGGGGGGGCTCACGGCCTAGGGAGGCGCGGAGGCATCTGGCAGAGGCGGG GGGGCACCGACACCACCTCACCGGCAGCCGGGTGCTGAGGGCCGCGGTGTGGGTGCGCGGAGCAGTCAGGGCGCA GGTGGGCAGCGCCACGGCCTGCCAGCCCGGGGCGCCAGAATCCTGCGCTGCGGGGCCGAGAGGGGGCGCCGCGCCC CGCCGCAGCCTGGAGCTTTCCGCGAACCTCGGGGCGCCCATGACGGCGGCGGCGACGGCTACCGTGCTCAAGGAG GGCGTGCTGGAGAAGCGCAGCGGCGGGCTGCTGCAGCTGTGGAAGCGGAAGCGCTGCGTCCTCACCGAACGCGGG CTGCAGCTCTTCGAGGCCAAGGGCACGGCCGGCCCCAAGGAGCTCAGCTTCGCCCGCATCAAGGCCGTGGAG TGCGTGGAGAGCACCGGGCGCCACATCTACTTCACGCTGGTGACCGAAGGGGGCGGCGAGATCGACTTCCGCTGC CCCCTGGAAGATCCCGGCTGGAACGCCCAGATCACCCTAGGCCTGGTCAAGTTCAAGAACCAGCAGGCCATCCAG ACAGTGCGGGCCCGGCAGAGCCTCGGGACCGGGACCCTCGTGTCCTAAACCACCGGGCGCACCATCTTTCCTTCA TGCTACCCACCACCTCAGTGCTGAGGTCAAGGCAGCTTCGTTGTTCCCTCTGGCTTGTGGGGGCACGGCTGTGCT CCATGTGGCAAGGTGGAAGGAATGGACGAGCCCTGGGAGGAGGGCAGAAGGCTACGCAGGGCTGAGGATGAAGAT GCAGCCCCTGGATGGTCCCAGACTCTCAGGACATGCCCAGCTCAGGGGCTTCGAGCCACAGGCCTGGCCTCATAT GGCATGAGGGGGAGCTGGCATAGGAGCCCCCTCCCTGCTGTGGTCCTGCCCTCTGTCCTGCAGACTGCTCTTAGC GCCAGCCTGGTACCAAAAGGAGTACCCAGGGCCTGGTACCCAGGCCCACTCCAGAATGGCCTCTGGACTCACCTT GAGAAGGGGGAGCTGCTGGGCCTAAAGCCCACTCCTGGGGGTCTCCTGCTTAGGTCCTTTTGGGACCCCCAC CCATCCAGGCCCTTTCTTTGCACACTTCTTCCCCCACCTCTACGCATCTTCCCCCCACTGCGGTGTTCGGCCTGA AGGTGGTGGGGGTGAGGGGGGGTTTGGCCATTAGCATTTCATGTCTTTCCCCAA

PCT/US2003/028547

611/6881 FIGURE 569

ATGCCGCCGCCGCCACCTGCTGCGCCCTCCGGCTGCCGGTCCAGTGCCACAAGGATTAAAGGAAGCGTTA CTGGCATCAGTCATCTTGAAACAATATGTGGAGACTCACTGGTGTGCCCAATCAGAGAAATTTAGGCCTCCTGAA ACTACAGAAAGGGCAAAAATTGTTATCCGGGAGCTATTGCCTAATGGGTTGAGAGAATCGATAAGCAAAGTGCGC TCCAGTGTGGCCTATGCAGTGTCAGCCATTGCCCACTGGGACTGGCCTGAAGCTTGGCCCCAACTCTTCAACCTG CTCATGGAGATGTTGGTGAGCGGAGACTTAAATGCCGTCCATGGAGCCATGCGTGTGCTGACAGAATTCACTCGT GAAGTTACAGACACACAGATGCCACTTGTTGCTCCTGTCATTCTCCCAGAGATGTATAAGATCTTCACCATGGCT CAGGTGTATTGGTATTCGAACCCGTTCCCGAGCCGTGGAGATTTTTACCACTTGTGCCCATATGATCTGTAACATG GAGGAGCTGGAAAAGGGTGCAGCCAAAGTCCTGATCTTTCCCGTGGTACAGCAGTTCACAGAGGCCTTTGTTCAG GCCCTCCAGATACCAGATGGCCCCACATCTGACAGTGGGTTTAAGATGGAGGTCCTAAAGGCAGTGACAGCCCTA GTGAAAACTTCCCAAAGCACATGGTGTCCTCCATGCAGCAGATTCTGCCTATTGTTTGGAACACCCTAACCGAG AGTGCAGCTTTTTATGTGAGGACAGAAGTAAATTACACAGAAGAAGTAGAAGATCCTGTGGATTCTGATGGTGAA GTCCTGGGCTTTGAAAATCTCGTCTTTAGCATTTTTGAATTTGTCCATGCTCTACTAGAAAATAGCAAATTCAAA AGCACTGTTAAGAAAGCCTTGCCTGAATTGATTTATTATTATCCTGTACATGCAAATCACTGAGGAGCAGATT AAAGTATGGACAGCCAACCCCAACAATTTGTAGAAGATGAAGATGATGATACATTCTCCTATACTGTTAGAATA GCAGCTCAA GACTTGTTGCTGGCTGTGGCCACAGATTTCCAGAATGAAAGTGCAGCCCTGGCTGCTGCAGCC ACTCGACATTTACAAGAAGCTGAGCAAACCAAAAACAGTGGCACTGAGCACTGGTGGAAGATCCATGAGGCATGC ATGCTTGCCCTAGGCTCAGTGAAGGCCATCATCACTGACAGTGTGAAAAATGGCAGGATTCATTTTGACATGCAT GGGTTCCTGACCAATGTCATCCTTGCAGACCTCAACCTCTCAGTGTCTCCTTTCCTCTTGGGCCGGGCACTTTGG GCTGCCAGTCGGTTCACTGTTGCTATGTCCCCTGAACTGATCCAGCAGTTCCTACAGGCAACAGTTAGTGGTCTT CACGAGACACAGCCCCCATCAGTTCGAATTTCTGCAGTGAGAGCCATCTGGGGTTATTGTGACCAACTGAAAGTC TCAGAGAGTACCCACGTGCTCCAGCCCTTCCTCCCCAGCATCCTTGATGGCTTAATTCACCTAGCAGCCCAGTTC AGCTCAGAGGTCCTCAACCTGGTGATGGAGACCCTGTGCATCGTTTGTACAGTAGACCCCGAATTCACAGCAAGC ATGGAAAGCAAAATCTGCCCCTTCACCATCGCCATTTTCCTAAAGTACAGTAATGATCCCGTCGTCGCCTCACTG GCTCAGGACATCTTCAAGGAGCTGTCCCAGATTGAAGCCTGTCAGGGCCCAATGCAAATGAGGCTGATTCCCACT CTGGTCAGCATAATGCAGGCCCCAGCAGACAAGATTCCTGCAGGGCTTTGTGCGACAGCCATTGATATCCTGACA ACAGTAGTACGAAATACAAAGCCTCCCCTTTCCCAGCTTCTCATCTGCCAAGCTTTCCCTGCTGTGGCACAGTGT ACCCTTCACACAGATGACAATGCCACCATGCAGAATGGCGGAGAGTGCTTGCGGGCCTATGTGTCAGTGACCCTG GAACAAGTAGCCCAGTGGCATGATGAGCAGGGCCACAATGGACTGTGGTATGTGATGCAAGTGGTGAGCCAGCTC CTGGACCCCGCACCTCAGAGTTCACTGCGGCCTTTGTGGGCCGCCTTGTTTCCACCCTCATCTCCAAGGCAGGG GTCATGCAGTCCCTGATCATGGTGTTCGCTCATCTGGTGCACACTCAGCTAGAACCTCTCTTGGAGTTCCTGTGT AGCCTCCARGACCTACTGCCAAACCTGCTCTAGAGTTTGTGATGGCTGAGTGGACAAGCCGACAGCACCTGTTC TATGGACAGTATGAAGGCAAAGTCAGCTCTGTGGCACTCTGTAAGCTGCTCCAGCATGGCATCAATGCAGATGAC AAACGGCTACAGGATATCCGTGTGAAGGGAGAGAGATCTACAGCATGGATGAGGGCATCCGCACCCGCTCTAAG TCAGCCAAAAACCCAGAACGCTGGACAAACATTCCTTTGCTGGTCAAGATCCTAAAGCTGATCATCAACGAGCTC TCCAACGTCATGGAGGCTAATGCCGCTCGCCAGGCCACTCCTGCAGAGTGGAGTCAAGATGACTCCAATGATATG ACAAGTAAATATGAGGAGGATTACTACGAGGATGATGAGGAAGATGACCCTGATGCCCTGAAGGATCCTCTCTAT CAGATTGATCTGCAGGCATATCTCACAGATTTCCTCTGCCAGTTTGCTCAGCAGCCCTGCTACATAATGTTTTCA GGCCACCTTAATGACAATGAGAGGCGAGTTCTACAGACCATCGGCATCTAA

PCT/IIS2003/028547

612/6881 FIGURE 570

MARARARGASGLEGPVAQGLKEALVDTLTGILSPVQEVRARAEEQIKVLEVTEEFGVHLAELTVDPQGALAIRQ
LASVILKQYVETHWCAQSEKFRPPETTERAKIVIRELLPNGLRESISKVRSSVAYAVSITAHMDMPEAMPQLFM:
LMEMLUSGDLMAVHGAMRVLTEFTREVTDTQMPLVAPVILDEMYKIFTMAEVYGIRTRSRAVEIFTTCAHHICNM
EELEKGAAKVLIFPVVQQFTEAFVQALQIPDQFTSDSGFKMEVLKAVTALVKNPFKHMVSSMQQILPIVMNTLTE
SAAFYVRTEVMYTEEVEDPVDSDGEVLGFENLVFSIFEFVHALLENSKRKSTVKKALPELIYYIILYMQITERQI
KVWTANPQQFVEDEDDTFSYTVRIRAQDLLLAVATDPQNESAAALAAAATRHLQEAEQTKNSGTEHWMKIHEAC
KVWTANPQQFVEDEDDTFSYTVRIRAQDLLLAVATDPQNESAAALAAAATRHLQEAEQTKNSGTEHWMKIHEAC
HALIGSVKAIITDSVKNGRIHFDMHGGITNVILADINLSVSPFLLGRALWAASSFTVAMSPELIQQFLQATVSGL
HETQPPSVRISAVRATMGYCDQLKVSESTHVLQPFLPSILDGLIHLAQFSSEVLNLVMETLCIVCTVDEPFTA
MESKICPFTIAIFLKYSNDPVVASLAQDIFKELSQIEACQGPMGMRLIFTLVSIMQAFADKIPAGLCATAITDILT
TVVRNTKPPLSQLLICQAFPAVAQCTLHTDDNATMMGGECLRAYVSVILEQVAQWHDEQGINGLWYMYMQVVSQL
LDPRTSEFTAAFVGRLUSTLISKAGRELGENLDQILRAILSKMQQAETLSVMQSLIMFAHLVHTQLEPLLEFIC
SLEGPTGKPALEFVMAEWTSRGHLEFVGQYEGKVSSVALCKLLGHGINADDKRLQDIRVKGEEIYSMDEGIRTSK
SAKNPERWTNIPLLVKILKLIINELSNVÆRANARGATPAEWSQDSDSNOMMEDQEEEEEEEDLGAGQLLSDIKA
SKYBEDYYEDDEEDDPDALKDPLVQIDLQAYLIDFLCQFAQQFCYIMFSGHLNDNERRVLQTIGI

PCT/HS2003/028547

613/6881 FIGURE 571

AGTCAAGATGGAGGAGTACGCGCGAGAGCCTTGCCCCATGGCGAATTGTGGATGACTGTGGTGGGGCCCTTTACGAT GGGTACCATTGGTGGTGGTATCTTTCAAGCAATCAAAGGTTTTCGCAATTCTCCAGTGGGAGTAAACCACAGACT ACGAGGGAGTTTGACAGCTATTAAAACCAGGGCTCCACAGTTAGGAGGTAGCTTTGCAGTTTGGGGAGGGCTGTT TTCCATGATTGACTGTAGTATGGTTCAAGTCAGAGGAAAGGAAGATCCCTGGAACTCCATCACAAGTGGTGCCTT AACGGGAGCCATACTGGCAGCAAGAAATGGACCAGTGGCCATGGTTGGGTCAGCCGCAATGGGTGGCATTCTCCT AGCTTTAATTGAAGGAGCTGGTATCTTGTTGACAAGATTTGCCTCTGCACAGTTTCCCAATGGTCCTCAGTTTGC AGAAGACCCCTCCCAGTTGCCTTCAACTCAGTTACCTTCCTCACCTTTTGGAGACTATCGACAATATCAGTAGGA CTTCTTTCCTAGGATTTCTTTAACAGAACGAGTTGTGGTTCGAGAAGGATTTCAGAAGATCAAGTTACAGTCTGT TTTTAAAACCATAGGTGGGACAGCTATGGCCAATAGGCTATAAAGAGACATTTAGCACTTTTTTCTATTTAAAGG TGTTTAAATCGCTAAAGGAAAATACAGTAAGTGCTTGAAAGATGAAGGACCAAAAGGCCAAAAAACAGTGAAATA TGATCATCATCTCTTGCGGACTTCTCTGCCTGGTTTTGTGTGTTCTGTTATTCAAACAATAAAAAGCTGGTGGAA ${\tt CTTACTCTTTCTTTTAAGATAAGTTGTAGACTTCGATGTTTCATGCTCATGTACTTCAAATAATGCATGTTTTAT}$ AGTTAGTCCCTCATCACTTGAAGTGACTTCTGAGAATTATGCAGAGTCAACATGGATCATTTCACAGTGAGATGC TTTATGGATTGAAGGATATGGTAAAATGTTTATAGTTTACTTTGAAAGTAAAATATACTATGTCTTGGTTTTGAG GATATTGGATACAAAACTCTCTTTCCTTTAGGGCTACTGAGTCTTGATTCCTGATCATCAGAAATTTCACCAGAAA CAACTTGCTTCCAATATACCCAATTCTATATGAAGAATTCATGGAGAGTGTACTGGCACTGGAAGAGTTTAGTGT TTCTTGTATGCTTGAAAATAAAGTATGTACTGTTTTGAATGTGTTCCAAGTCCTCTGCATAAACGATGTATTTTG GGGTCTGGTTGGGCCTGGAAAATGGATGAGCACTTCAGAACAGGTCATTTTCCTGATATTGGAAGTGACATGTGG ${\tt GTACTGTAAACACGTTTATCTTTTGGCCCAATGCCATACGTAGGCATTTAATTACTGATTGTGTTTTGG}$

PCT/US2003/028547

614/6881 FIGURE 572

 $\label{thm:local} MEEYAREPCPWRIVDDCGGAFTMGTIGGGIFQAIKGFRNSPVGVNHRLRGSLTAIKTRAPQLGGSFAVWGGLFSM\\ IDCSMVQVRGKEDPWNSITSGALTGAILAARNGPVAMVGSAAMGGILLALIEGAGILLTRFASAQFPNGPQFAED\\ PSQLPSTQLPSSPFGDYRQYQ\\$

PCT/US2003/028547

615/6881 FIGURE 573

CGTGGCCTCGGCCTCCAACTTCCGGGCCTTTGAGCTGCTGCACCTGCACCTGGACCTGCGGCTGAGTTCGGGCC TCCAGGGCCCGGCGCAGGGAGCCGGGGCTGAGCGGCACCGCGGTCCTGGACCTGCGCTGCCTGGAGCCCGAGGG CTCGGAGGAGCCGCCTGCGGAGCCCGTGAGCTTCTACACGCAGCCCTTCTCGCACTATGGCCAGGCCCTGTGCGT GGTTTGCTGGTTGGCTCCCGAGCAGACAGCAGGAAAGAAGAAGCCCTTCGTGTACACCCAGGGCCAGGCTGTCCT AAACCGGGCCTTCTTCCCTTGCTTCGACACGCCTGCTGTTAAATACAAGTATTCAGCTCTTATTGAGGTCCCAGA GCCCATCCCCTCCTATCTGATAGCTTTGGCCATCGGAGATCTGGTTTCGGCTGAAGTTGGACCCAGGAGCCGGGT GTGGGCTGAGCCCTGCCTGATTGATGCTGCCAAGGAGGAGTACAACGGGGTGATAGAAGAATTTTTGGCAACAGG AGAGAAGCTTTTTGGACCTTATGTTTGGGGAAGGTATGACTTGCTCTTCATGCCACCGTCCTTTCCATTTGGAGG CCATGAGATCTCCCACAGTTGGTTTGGGAACCTGGTCACCAACGCCAACTGGGGTGAATTCTGGCTCAATGAAGG TTTCACCATGTACGCCCAGAGGAGGATCTCCACCATCCTCTTTGGCGCTGCGTACACCTGCTTGGAGGCTGCAAC GGGGCGGGCTCTGCTGCGTCAGCACATGGACATCACTGGAGAGGAAAACCCACTCAACAAGCTCCGCGTGAAGAT TGAACCAGGCGTTGACCCGGACGACACCTATAATGAGACCCCCTACGAGAAAGGTTTCTGCTTTGTTTCATACCT GGCCCACTTGGTGGGTGATCAGGATCAGTTTGACAGTTTTCTCAAGGCCTATGTGCATGAATTCAAATTCCGAAG CATCTTAGCCGATGACTTTCTGGACTTCTACTTGGAATATTTCCCTGAGCTTAAGAAAAAGAGAGTGGATATCAT TCCAGGTTTTGAGTTTGATCGATGGCTGAATACCCCCGGCTGGCCCCCGTACCTCCCTGATCTCCCCTGGGGA $\tt CTCACTCATGAAGCCTGCTGAAGAGCTAGCCCAACTGTGGGCAGCCGAGGAGCTGGACATGAAGGCCATTGAAGC$ CGTGGCCATCTCTCCCTGGAAGACCTACCAGCTGGTCTACTTCCTGGATAAGATCCTCCAGAAATCCCCTCTCCC TCCTGGGAATGTGAAAAAACTTGGAGACACATACCCAAGTATCTCAAATGCCCGGAATGCAGAGCTCCGGCTGCG ATGGGGCCAAATCGTCCTTAAGAACGACCACCAGGAAGATTTCTGGAAAGTGAAGGAGTTCCTGCATAACCAGGG GAAGCAGAAGTATACACTTCCGCTGTACCACGCAATGATGGGTGGCAGTGAGGTGGCCCAGACCCTCGCCAAGGA GACTTTTGCATCCACCGCCTCCCAGCTCCACAGCAATGTTGTCAACTATGTCCAGCAGATCGTGGCACCCAAGGG TTCCTGTTCCCTGATCAACTTCCTGGAGTTTATATCCCCTCAGGATAATCTATTCTCTAGCTTAGGTATCTGTGA GCTCTCCCCGCTACAGGCTGCAGGCACTGCAGGGCAGCGGGTATTCTCCTCCCCACCTAAGTCTCTGGGAAGAAG TGGAGAGGACTGATGCTCTTTTTTTCTCTTTCTGTCCTTTTTCTTGCTGATTTTATGCAAAGGGCTGGCATTC TGATTGTTCTTTTTCAGGTTTAATCCTTATTTTAATAAAGTTTTCAAGCAAAAATT

PCT/US2003/028547

616/6881 FIGURE 574

MASGEHSPGSGAARRPLHSAQAVDVASASNFRAFELLHLHLDLRAEFGPPGPGAGSRGLSGTAVLDLRCLEPEGA
AELRLDSHPCLEVTAAALRRERPGSEEPPAEPVSFYTQPFSHYGQALCVSFPGPCRAAERLQVLLTYRVGEGEV
CWLAPBQTTAGKKREPTYTGGOAVLNRAFFFCFDTPAVKYKYSALIEVPDGFTAVMSASTWEKRGPNKFFGPMCQP
IPSYLIALAIGDLVSAEVGPRSRVWAEPCLIDAAKEEYNGVIEEFLATGEKLFGPYWGRYDLLFMPPSFPFGGM
ENPCLFFVTPCLLAGDRSLADVITHEISHSWFGNLVTNANWGEFWLNEGFTMYAQRRISTILFGAAYTCLEAATG
RALLRQHMDITGEENPLNKLRVKIEPGVDPDDTYNETPYEKGFCFVSYLAHLVGDQDQFDSFLKAYVHEFKFRSI
LADDFLDFYLEYFPELKKRRVDITFGFEFDRWLNTPGWPPYLPDLSPGDSLMKPAEELAQLWAAEELDMKAIEAV
AISPWKTYGLVYFLDKILGKSELPFGNWKKLGDTYPSISNARNAERLRKWGGIVLKNDHQEDFWKVKEFLHNQGK
QKXTIBLYHAMMGGSEVAQTLAKETFASTASQLHSNVVNYVQQIVAPKGS

PCT/HS2003/028547

617/6881 FIGURE 575

AGGCTCTATTTAGAGCCGGGTAGGGGAGCGCAGCGGCCAGATACCTCAGCGCTACCTGGCGGAACTGGATTTCTC TCCCGCCTGCCGGCCTGCCACAGCCGGACTCCGCCACTCCGGTAGGATTCCCCGCCTGTCATTCCCTAGCC CAGCTCTTGGGAAACTGCAGAGGGGTCCAGAGGATTTGCAGTTCTGAACCTGCACACTCCAGTCTAGGATCTCCG AGCAAGAGCGTAGCCTCATGGCTGCAACCTGTGAGATTAGCAACATTTTTAGCAACTACTTCAGTGCGATGTACA GCTCGGAGGACTCCACCCTGGCCTCTGTTCCCCCTGCTGCCACCTTTGGGGCCGATGACTTGGTACTGACCCTGA GCAACCCCCAGATGTCATTGGAGGGTACAGAGAAGGCCAGCTGGTTGGGGGAACAGCCCCAGTTCTGGTCGAAGA CGCAGGTTCTGGACTGGATCAGCTACCAAGTGGAGAAGAACAAGTACGACGCAAGCGCCATTGACTTCTCACGAT GTGACATGGATGGCGCCACCCTCTGCAATTGTGCCCTTGAGGAGCTGCGTCTTGGTCTTTTGGGCCTCTGGGGGACC AACTCCATGCCCAGCTGCGAGACCTCACTTCCAGCTCTTCTGATGAGCTCAGTTGGATCATTGAGCTGCTGGAGA AGGATGGCATGGCCTTCCAGGAGGCCCTAGACCCAGGGCCCTTTGACCAGGGCAGCCCCTTTGCCCAGGAGCTGC TGGACGACGGTCAGCAAGCCAGCCCCTACCACCCCGGCAGCTGTGGCGCAGGAGCCCCCTCCCCCGGCAGCTCTG ACGTCTCCACCGCAGGGACTGGTGCTTCTCGGAGCTCCCACTCCTCAGACTCCGGTGGAAGTGACGTGGACCTGG ATCCCACTGATGGCAAGCTCTTCCCCAGCGATGGTTTTCGTGACTGCAAGAAGGGGGATCCCAAGCACGGGAAGC CCAGAGGCACCCACCTGTGGGAGTTCATCCGGGACATCCTCATCCACCCGGAGCTCAACGAGGGCCTCATGAAGT GGGAGAATCGGCATGAAGGCGTCTTCAAGTTCCTGCGCTCCGAGGCTGTGGCCCAACTATGGGGCCAAAAGAAAA AGAACAGCAACATGACCTACGAGAAGCTGAGCCGGGCCATGAGGTACTACTACAAACGGGAGATCCTGGAACGG TGGATGGCCGGCGACTCGTCTACAAGTTTGGCAAAAACTCAAGCGGCTGGAAGGAGGAAGAGGTTCTCCAGAGTC GGAACTGAGGGTTGGAACTATACCCGGGACCAAACTCACGGACCACTCGAGGCCTGCAAACCTTCCTGGGAGGAC AGGCAGGCCAGATGGCCCCTCCACTGGGGAATGCTCCCAGCTGTGCTGTGGAGAGAGCTGATGTTTTGGTGTAT TGTCAGCCATCGTCCTGGGACTCGGAGACTATGGCCTCGCCTCCCCACCCTCCTCTTGGAATTACAAGCCCTGGG GTTTGAAGCTGACTTTATAGCTGCAAGTGTATCTCCTTTTATCTGGTGCCTCCTCAAACCCAGTCTCAGACACTA AATGCAGACAACACCTTCCTCCTGCAGACACCTGGACTGAGCCAAGGAGGCCTGGGGAGGCCCTAGGGGAGCACC GCTCCACGGGCAGGGGTCAGAGCACTCCCTAATTTATGTGCTATATAAATATGTCAGATGTACATAGAGATCTAT TTTTTCTAAAACATTCCCCTCCCCACTCCTCTCCCACAGAGTGCTGGACTGTTCCAGGCCCTCCAGTGGGCTGAT GCTGGGACCCTTAGGATGGGGCTCCCAGCTCCTTTCTCCTGTGAATGGAGGCAGAGACCTCCAATAAAGTGCCTT $\tt CTGGGCTTTTCTAACCTTTGTCTTAGCTACCTGTGTACTGAAATTTGGGCCTTTGGATCGAATATGGTCAAGAG$ GTTGGAGGGGAGAAAATGAAGGTCTACCAGGCTGAGGGTGAGGGCAAAGGCTGACGAAGAGGGGAGTTACAGAT TTCCTGTAGCAGGTGTGGGCTTACAGACACATGGACTGGGCTGGGAGGCGAGCAAAGGAAGCAGCTGAGACTGTT GGAGAACGCTTACAAGACTTCATGCAAGCAAGGACATGAACTCAGAACACTGAGGTCAGAAGCATCCTGCTGTCA AGTGTGCTGTAAACTGTATATCTGTAATATGAATCCCAGCTTTTGAGTCTGACAAAATCAGAGTTAGGATCTTGT AAAGGA

PCT/IIS2003/028547

618/6881 FIGURE 576

 $\tt CGGGTACAGGGGGCCCAAGAGCTGGGCTGGCTGTCTCCTGCTCATCCAGCCATGCGGTGGCTGTGGCCCCTGGCT$ AGAGCCGAGACCCAGGAGCAGCAGAGCCGATCCAAGAGGGGCACCGAGGATGAGGAGGCCAAGGGCGTGCAGCAG GCCACCAGCCCTAACCCCGACAAGGATGGGGGCACCCCAGACAGTGGGCAGGAACTGAGGGGCAATCTGACAGGG GCACCAGGGCAGAGGCTACAGATCCAGAACCCCCTGTATCCGGTGACCGAGAGCTCCTACAGTGCCTATGCCATC ATGCTTCTGGCGCTGGTGGTGTTTGCGGTGGGCATTGTGGGCAACCTGTCGGTCATGTGCATCGTGTGCACAGC TACTACCTGAAGAGCGCCTGGAACTCCATCCTTGCCAGCCTGGCCCTCTGGGATTTTCTGGTCCTCTTTTTCTGC TCCATGACGCTGGCTGTGCCTGAGCTCCTGCTGTGGCAGCTGGCACAGGAGCCTGCCCCACCATGGGCACCCTG GACTCATGCATCATGAAACCCTCAGCCAGCCTGCCCGAGTCCCTGTATTCACTGGTGATGACCTACCAGAACGCC AGCACCGTGGTGGGCCTGACCGTGGTCTACGCCTTCTGCACCCTCCCAGAGAACGTCTGCAACATCGTGGTGGCC TACCTCTCCACCGAGCTGACCCGCCAGACCCTGGACCTCCTGGGCCTCATCAACCAGTTCTCCACCTTCTTCAAG GGCGCCATCACCCCAGTGCTGCTCCTTTGCATCTGCAGGCCGCTGGGCCAGGCCTTCCTGGACTGCTGCTGCTGC TGCTGCTGTGAGGAGTGCGGCGGGGCTTCGGAGGCCTCTGCTGCCAATGGGTCGGACAACAAGCTCAAGACCGAG GTGTCCTCTTCCATCTACTTCCACAAGCCCAGGGAGTCACCCCCACTCCTGCCCCTGGGCACACCTTGCTGAGGC CCCAGTAGGGGTGGGGAGGGAGAGAGGCCGCCACCCCGCCGGTGTCTGCTGTTCTTTCCCCATAGGTCTTGC TTTGTTGCCTGTCTTGCTGTCTAGGGATGGACTTGGTTCCTCTTGTCAAGGTTTGGGAATCCG

PCT/US2003/028547

FIGURE 577

MRWLWPLAVSLAVILAVGLSRVSGAPLHLGRHRAETQEQQSRSKRGTEDEEAKGVQQYVPEEWAEYPRPIHPAG LQFTKPLVATSPNPDKDGGTPDSGGELRGNLTGAPGQRLQTQNPLYPVTESSYSAYAIMLLALVVFAVGTVGNLSV WCIVWHSYYLKSAWNSILASLALWDFLVLFFCLPIVIFNEITKQRLLGDVSCRAVPFMEVSSLGVTTFSLCALG IDRFHVATSTLPKVRPIERCQSILAKLAVIWVGSMTLAVPELLLWQLAQEPAPTMGTLDSCIMKPSASLPESLYS LVMTYQNARMWWYFGCYFCLPILFTVTCQLVTMRVRGPPGRKSECRASKHEQCESQLNSTVVGLTVVYAFCTLPE NVCNTVVAYLSTELIRQTLDLLGLINQFSTFFKGAITPVLLLCICRPLGQAFLDCCCCCCEECGGASEASANG SDMKLKTEVSSSTYFKKPRESPPLLPLGTFC

PCT/IIS2003/028547

620/6881 FIGURE 578

PCT/US2003/028547

621/6881 FIGURE 579

MQRASRLKRELHMLATEPPPGITCWQDKDQMDDLRAQILGGANTPYEKGVFKLEVIIPERYPFEPPQIRFLTPIY HPNIDSAGRICLDVLKLPPKGAWRPSLNIATVLTSIQLLMSEPNPDDPLMADISSEFKYNKPAFLKNARQWTEKH ARQKQKADEEEMLDNLPEAGDSRVHNSTQKRKASQLVGIEKKFHPDV

PCT/US2003/028547

FIGURE 580A

CTCTGTGCCCTCTCCTTCCAGAAATCCACCATGGAGAGTAAGGATGAGGTCAGCGACACCGACAGTGGCATCATC CTGCAGTCTGGCCCCGACAGCCCGGTCTCCCCAATGAAGGAGCTGACCCATGCAGTGCACAAGCAGCAGAGGGCC CTGGAAGCGAGGCTGGAGGCCTGCCTGGAGGAGCTGAGGAGCTCTGCCTTCGGGAAGCGGAGCTGACGGGCACC TTGCCAGCGGAGTATCCCCTCAAACCAGGGGAAAAGGCCCCCAAGGTTCGCCGCAGGATCGGAGCGGCTTACAAA CTGGATGACTGGGCCTTGCACAGAGAGGACCCCCTAAGCAGCCTGGAGCGCCAGCTGGCCCTGCAGCTGCAGATC CTGCAGGAGGAGAAGAAGCTGCAGGAGCTCCAGCGCTGCCTGGTCGAGCGGCGCGCAATAGCGAGCCACCTCCG GCTGCTGCTCCCCCTGGGCCGAGAGCTCAGTGCCTCTGATGACAGCTCCCTGTCAGATGGGCTCCTCCTGGAG GAAGAGGAATCCCAAGTGCCAAAACCTCCTCCAGAGTCTCCAGCCCCACCTTCTCGGCCTCTCCCACCCCAAACC GAAACCAGCCTGGACCACCCCTATGAGAAGCCCAGGAAGTCTTCTGAGCCCTGGAGCGAGTCCAGCAGCCCAGCC CACTCCTGCTCAGAAGACAGTGGCTCTGACGTCTCCAGCATCTCCCACCCCACTTCGCCGGGCAGCAGCAGCCCCC GACATCTCCTTTCTGCAGCCTCTCTCCCCTCCCAAGACCCATCGTCACCGCGGGGCCTGGGTCCCAGCCGGCAGC AGAGAGCTGGTCGCCCACCCCCAAGCTACTGCTGCCGCCTGGCTATTTCCCGGCGGGGGGGTACGTGGTGGTG GCTGAGAGCCCCCTGCCGCCTGGCGAGTGGGAGCTGCCCCGCGCAGCCCCGGGCCCTGCTTACGAGGAGGAGGA GCAGGCCGGGGGCTCAGCAAGGCCGCCGTGTCCGAGGAGCTCAAGTGGTGGCACGAGCGTGCACGCCTCCGGAGC ACCCGCCCCACTCACTGGACCGCCAAGGAGCTTTCCGGGTCAGGAGCCTGCCCCTTGGGAGAGAGGGCTTCGGA GTCTTTGTACCTGAAAAAGGAGAGATCATCAGCCAGGTGTAACTCTGCGCCCCACGCTGGAAAAAACTGTTTCAT AGAGGGGCTGGGCTGAGACCCCCCCACCCCTGAGTGCCTCTTTCAGCTCCCCCATCCCCATCGCAGGCCGATGAC TGGATTGTCCTCAATACCCCTGTGATATGATTATGTTTTATCCCCCAGAGTTTGGCCTACTGGACTTAAGGCCTT ${\tt GCCTGTCTGACTGACAGCCTCTATCTCCTTATATAAGACAAGTGGCAGGGGACGAGTGAAGCAGAGTGAGCCACC}$ AGCCTGGGCTGGGGGAGAATCTCTTCCCCCTTTTCTAATGTGCTCTGTGATGCACACACCAAGTGGTAGGTCAAA GGTCAGTATATCCCGGTGGTGTATTGTCTTGCTAGACCCTGCTATTTTCCTGACCCCCTAAATCCTCTTTAGGGA CCCAGTCACTATACCCTGTCTATGCCCTGTGGGCTCCCAGACCCCTGAGCTTTGAGTCAGTGGCATCACAGTTTG TAGCCTCAGGGGGTCTGGCTGGGGGGCTCGTCCATGCTTGTGGTTAGTGGACAGCCACCCTTTGACAGCTACC TGTCGCCCAGGCTGGAATGCTGTAGCAAGATTTCGGCTCACTGCAACCCCCGTCTCCCGGGTTCAAGCGAATCTC ATGGGGTTTCATCATGTTGGCCAGGCTGGTCTCGAACTCCTGACCTCAAGTGATCCACCTGCCTTGGCCTTTCAA AGTGCTGGGATTACAGGCATGAGCCACCGCACCTGGCCCTTCTAACGTTTTTTCATCATAGTCCCAAAAACCAAT ACTTTACAAGTGGTTTTGGAAAGGCACCACTTTTGTGGCATGTTCTGGTTGGGAGAGGGAGTCACAGTTCCTACT GATGAGATGCTGAATTTTCTTTGGGGGCATTCATTAATTGTCCCAGCTGCAGCGACTGGAGCAAGTCTGGAAGCT GCCTGTGCTAAGACCACCCAGCTGTCCCTGGGTTCTCATCCTAGGGCCTTCTTTGCTTCCAGGTCAGGGGACCTG CTTCAATGAGAAAGCAACTGAATTGAGGCTAGGAGAGGTAGGGAGAGCTGAGTTCTGACTTCACCTGTGCAGAAC TCTCTGCCCCCATGTTACCTGGACTGGAACAGACTGTGAATATAGCAGAAGGTTCCAAGAACTCTGGTGTCTGAC

PCT/US2003/028547

623/6881 FIGURE 580B

CTAGANGAGGCACAGTTCTCTACTGGAAAGAAAACGATGTAGCCGATTGCACAAGGGTGCCCAAGGGAAGACCC
AGGATGGCCCATCAAAGGAACCTGGGGGAGGATGCAGAGGGTTAAAGGATCACCTGGCATTTCTCACTGTG
CTCTTACCGCATCAGCAACCCCAACTTTTGGGCCTACTCTGCACCCAATGCGTGAATACCCTGCTTGGATGCTG
TGCTTTTCCGGTTTGTCTCTAAGCCCCTTTCTCCAGGGCATGTTGGTTTCCTTGGCTCTCAACTGG
AGCCCAGAGTGCCTTGTTCTGAGCCCAGAGACGGCTGAGCACTGGCCCTCCACACCTAAGCGTCCTTTACATTAA
CTTATTGGTCTTGTATAAACCTGGTGCCATTGCCAAGTGGCTGTCCTCAGCACACGAAATTGTGTGG
GGTTTAGTGCTAAATACTTCAATAAAGCTCTTTTTTTGTATTGGCTG

PCT/US2003/028547

624/6881 FIGURE 581

ATCATCGCTCGCAGCGGCGCCCCCAGTGGCCGCAGCAGCGCCCCGGGCCCTGGCCGCGCCCCAGCCGAGCGC AGCGCGGAGTCGCCCCGACCTTTCTCTGCGCAGTACGGCCGCCGGGACCGCAGCATGGCGGGCATCGCGGCCAAG GAGGCGCTGCGGAACGAGTGCCTGGAGGCCGGGACGCTCTTCCAGGACCCGTCCTTCCCGGCCATCCCCTCGGCC CTGGGCTTCAAGGAGTTGGGGCCCTACTCCAGCAAAACCCGGGGCATCGAGTGGAAGCGCCCCACGGAGATCTGC CTGGCAGCCATTGCCTCCCTCACCTTGAATGAAGAAATCCTGGCTCGAGTCGTCCCCCTAAACCAGAGCTTCCAG AAGGCATACGCCAAGATCAACGGATGCTATGAAGCGCTATCAGGGGGTGCCACCACTGAGGGCTTCGAAGACTTC ACCGGAGGCATTGCTGAGTGGTATGAGTTGAAGAAGCCCCCTCCCAACCTGTTCAAGATCATCCAGAAAGCTCTG CAAAAAGGCTCTCTCCTTGGCTGCTCCATCGACATCACCAGCGCCGCGGACTCGGAGGCCATCACGTTTCAGAAG CTGGTGAAGGGGCACGCGTACTCGGTCACCGGAGCCGAGGAGGTTGAAAGTAACGGAAGCCTACAGAAACTGATC GACCCAGAGGAGAGGGAAAGGCTGACCAGACGGCATGAAGATGGAGAATTCTGGATGTCTTTCAGTGACTTCCTG CTCACCAAAATGGATGGGAACTGGAGGCGGGGCTCCACCGCGGGAGGTTGCAGGAACTACCCGAACACATTCTGG CTGGTGGGGCTCATTCAGAAGCACCGACGGCGGCAGAGGAAGATGGGCGAGGACATGCACCCATCGGCTTTGGC GCCAGGGAGCGCTCAGACACCTTCATCAACCTCCGGGAGGTGCTCAACCGCTTCAAGCTGCCGCCAGGAGAGTAC GACTACCAAGCTGTCGATGATGAAATCGAGGCCAATCTTGAAGAGTTCGACATCAGCGAGGATGACATTGATGAT GGATTCAGGAGACTGTTTGCCCAGTTGGCAGGAGAGGATGCGGAGATCTCTGCCTTTGAGCTGCAGACCATCCTG AGAAGGGTTCTAGCAAAGCGCCAAGATATCAAGTCAGATGGCTTCAGCATCGAGACATGCAAAATTATGGTTGAC ATGCTAGATTCGGACGGGAGTGGCAAGCTGGGGCTGAAGGAGTTCTACATTCTCTGGACGAAGATTCAAAAATAC CAAAAATTTACCGAGAAATCGACGTTGACAGGTCTGGTACCATGAATTCCTATGAAATGCGGAAGGCATTAGAA GAAGCAGGTTTCAAGATGCCCTGTCAACTCCACCAAGTCATCGTTGCTCGGTTTGCAGATGACCAGCTCATCATC GATTTTGATAATTTTGTTCGGTGTTTGGTTCGGCTGGAAACGCTATTCAAGATATTTAAGCAGCTGGATCCCGAG AATACTGGAACAATAGAGCTCGACCTTATCTCTTGGCTCTGTTTCTCAGTACTTTGAAGTTATAACTAATCTGCC TGAAGACTTCTCATGATGGAAAATCAGCCAAGGACTAAGCTTCCATAGAAATACACTTTGTATCTGGACCTCAAA ATTATGGGAACATTTACTTAAACGGATGATCATAGCTGAAAATAATGATACTGTCAATTTGAGATAGCAGAAGTT TCACACATCAAAGTAAAAGATTTGCATATCATTATACTAAATGCAAATGAGTCGCTTAACCCTTGACAAGGTCAA AGAAAGCTTTAAATCTGTAAATAGTATACACTTTTTACTTTTACACACTTTCCTGTTCATAGCAATATTAAATCA GGAAAAAAAATGCAGGGAGGTATTTAACAGCTGAGCAAAAACATTGAGTCACTCTCAAAGGACACGAGGCCCTT GGCAGGGAATATTTAAAGCAACTTCAAGTTTAAAATGCAGCTGTTGATTCTACCAAACAACAACAGTCCAAGATTACC ATTTCCCATGAGCCAACTGGGAAACATGGTATATCATGAAGTAATCTTGTCAAGGCATCTGGAGAGTCCAGGAGA CTCCTTACAATCAAGTTCTTGACCCTATTCGGCCTTATACATCTGGTCTTACAAAGACCAAAGGGATCCTGCGCT TGATCAACTGAACCAGTATGCCAAAACCAGGCATCCAATTTGTAAACCAATTATGATAAAGGACAAAATAAGCTG AGTTCTTATAGAAAGGACACAAGTTTGTTTCCTGGCTTTACCTTGGGAAAATGCTAGCAACATTATAGAAATTTT CATGTTTTCCTTCCTGGAGGGCAGCCCCACAGGACGGTTTATGAGCACACAATTATAGCTTGTTTCTACTTAAC AAGGTATGCTGCCTCTGTAAATTCATGTATTCAAAGGAAAAGACACCTTGCCTATAATTAAAATGTGGAACTATA AAATTTTTTAAAATCC

PCT/HS2003/028547

625/6881 FIGURE 582

PCT/HS2003/028547

626/6881 FIGURE 583

GGTATTTCAGGACAGCCAGGAGGGGGCGCACATCCGCCGAGAAACTGTGAGCAAGAGCGTCTGTGCTGAACCATG GCGCCACCAGAGGGCGCGCGATCCCGCCCAACCAACTTCCCGCTGAGGTGCCAGAAGCAGCGAGGAGCTTCAGC TTCCTCAGGGCAGCACGAGGTCGTGTTAACTTGGTGTTCTTCATTGATGATGATTATTCCCCACCTTCTAAGAG ACAAAGACCAACGAGCCACCACAGCCACCAGTCCCAGAACCTGCCAATGCTGGGGAACGGAAAATGAGGGAGTTC AACTCTGGCCCTCACAATCCAGTGGAGGAGACGAAACTCATCTGCCTCTGTCCCTCTGGGCACGCCTCATGCCAG GTGCATCTGTGGACAGGGGCCATGCCCCTGGGCTTCCAAAGTTGGAGAGAGCTGCCAGGCTCAGGTCTGAAGGCC AGAATTCTACAGTAAGTCCTACTGAGTCAAGGTGGGAGCAGGGTCGGTAGCTTCCGAGGCTCTGCGGGAGAATCC GTTTCCTGGCCGTAGAGGTGGCCTGCACTCCGCAGCTTGTGCTGCCCGTCTCGAATGACTGGAGTTTCCTGCTTC TGTCACTACACCTCCCACCCTCTCCATCACCTGCTCTGCTCTTACAAGGATCCGAAGAAATGGAATCATCGTATC ATTTACAACTTGATAAATCAACTTTGTCAGCTCGAGCTGTAAAAGCCAAAGGTCCGGTGATGATCCCATACCCTT GATGGAGTTTTCACTCTTATCGCCCAGGCTGGGGTGCAATGGCGCAACCTTGCTGGTCACTGCAACCTCTGCCTC CTGGGTTCAAGAAATTCTCCTGCCTTAGCCTCCCAAGTCACTGGGATTACAGGTGCCCACCACCATACCAGGCTA ATTTTGTATTTTAGTGGAGATGCGGTTTCACCATGTTGGCCGGGCCAGTCTCGAACTCCTGACGTCAAGTGAT CTTCCCGCCTCGACTCCTGATATCAAGTGATCTTCCCGCCTCGGCCTCCCAGAGTGCTGAGATTACAGACGTGAA CCCATGCCTGGCCAGGAATTTTGTTTTTTAGGAAGGCTTTCTACTAATGGAATTCCTGGCCTTGAGAGGATGTTA CTTTAGAAGGAAAGGATTTTTTTGTTATTAAAAGCTGGACCTACCATGAAAGACTTCTGAATCCAGGAAGAGAAA CTGACTGGGCAACATGTTATTCAGAAACAGGACCTTGCCCTGTCACTCAGGATGGAGTTCAGTGGTCCTATCATG GCTCATTATAGCCTCAAACTCCCAGGCTCAAGCAATCCTACCATGTCAGCCTTCCCAGTAGCTGGGACTACAGAT ACCGGGTCTCACACTGTCACCCAGGCTGGAGTACAGTGGCACAACCTCTGCTCACTGCAGCCTCCACCTGCCAGG CTCAAGCAATTCTCCTGCCTCAGCCTCCCGAGTAGCTGGTGATTTCCAGGATGTGAGCTCACAATGACTCAAGCT GCCACATACTGTTGATTGTGAAATGCCAGTTGAAGCATATGTCCTGCGAGCTTAGGGGTGCTACAAGTTGACCAC ATGTTATTCAGAATCTTCCTGTGCCATCCAGGCTGGAGTGCAGTGATGTGATCATAGCTCACTATAGCTTTGGCC TTCTGAGATCAAGCAATCCTCCCATCTCAACCTCCCAAGTAGCTAGGACTACACACGCATGTCACCCCATGCCCAG ATCATTTTGTAGAGTCAGAGTTTCACCGTGGTGGCCAGGTTGGCCATGTTGGCCAGATGGGGTCTTCTTTTGTT GCCCAGGCTGGCCACAAATTCCTGGGCTCAAGTGATCCTCCCACCTCGTCCTTGTAGAGATGAGATTTAGTTATG TCGTCCAGGCTGATCTCAAACTCCTGGGCTAAATCGATTGTCTCACCTCAGCCTCTCAAGTATGTTATGAAGGTT ATATGTTAGGAAGGGTCCCAGGAGGTAAACCCACACAGATGGGATTTGGGCATAGGTTTGGTTTCCCAGGGGGCA GTGCTGAGCTCTTTGCCAGTGGGAAATGGGATGCTGGTGATTTCCAGTAGGTGACCTCACAGTGACTCAAGCTAC CACTTACTGTTGATTGTGACGAAATGCCAGCTGAGGCACATGCCTTGGGAGCTAAGTGGTTGCTGCCCTTGACCA CTGTGAAGACTGGTGTGGGAAGGGTCGTTTTGGATGCACTTGAGCAGGGGTCCCCAACCCCTGAGCCATGGAGCC GCAAGGAGCCACACAGCAGGAGGTGGGAACATCCAGTTGCAGGAAAACAAGCTTAACACGCCCACTGATTCTACA TTATGCTCCTACCTCCCGGCAGCCTCTCCAGGCCCAGAACTTTCTCCAGTCAGCCTCTACAGACCAAGCTCATGA CTCTCAATGGCCTATTTAGGCCCATACCCTACGTCACGGCAGCCTCCGCAGATGAGGCTACTGCCTCACAACAGC CTCCACAGGCACAGCTCCATCGTTACAATGGCCTCTTTAGACCCAGCTCCTGCCTCCCAGCCTTCTCCAGGCC CTGAACTTTCTCAAGTTGACCTCACCAGGCCCAGCTCATGCTTCTTTGCAGCCTCTCCAGGCCCAGCTCCTGCAT CTTGGTGGCCCTCCAGGCCCAGCCTCTGCCTCCGTCAGCCTCTACAGTCCCAACGTCTGCCTCACAGCAGATT CTTCACGCCCAGCTTCTACCTCACTGTGGACCCCCCAAGCCAAGCTCCCAACCTTTCAGCAGCTTCTACACACCC AGCTCCTGCCACCCAGTGGCCTCTTTAGGCCAAGCTCATGCTTCACAAGGGCCTTTCCAGGCCCAACTTTTGTCT CATGGCAACCTTCCCTGGCCAGATTCCTGCCTGTCTCCCAGCAGCCTAGACAGGCCCAGGTCTTGCCTCACACTG GCCTCTCTACATCCAGCTTATGCCTCACGGTGGCCTCTCCA

PCT/US2003/028547

627/6881 FIGURE 584

MMIIPHLLRDKDQRATTATSPRTRQCWGTENEGVQLWPSQSSGGDETHLPLSLWARLMPGASVDRGHAPGLPKLE KAARLRSEGONSTVSPTESRWEQGR

PCT/IIS2003/028547

628/6881 FIGURE 585

PCT/US2003/028547

629/6881 FIGURE 586

MEAVVFVFSLLDCCALIFLSVYFIITLSDLECDYINARSCCSKLNKWVIPELIGHTIVTVLLLMSLHWFIFLLNL PVATMNIYRYIMVPSGMMGVFDPTEIHNRGQLKSHMKEAMIKLGFHLLCFFMYLYSMILALIND

PCT/HS2003/028547

630/6881 FIGURE 587

CATGTCAGAAGACAATCGCCCTTTAACTGGACTTGCAGCTGCAATTGCCGGAGCAAAACTTAGGAAAGTGTCACG GATGGAGGATACCTCTTTCCCAAGTGGAGGGAATGCTATTGGTGTGAACTCCGCCTCATCTAAAACAGATACAGG CCGTGGAAATGGACCCCTTCCTTTAGGGGGTAGTGGTTTAATGGAAGAAATGAGTGCCCTGCTGGCCAGGAGGAG AAGAATTGCTGAAAAGGGATCAACAATAGAAACAGAACAAAAAGAGGACAAAGGTGAAGATTCAGAGCCTGTAAC CAAGTCACCTGTTATCTCCAGACCAAAATCCACACCCTTATCACAGCCCAGTGCCAATGGAGTCCAGACGGAAAGG ACTTGACTATGACAGGCTGAAGCAGGACATTTTAGATGAAAATGAGAAAAGAATTAACAAAGCTAAAAGAAGAGCT CATTGATGCAATCAGGCAGGAACTGAGCAAGTCAAATACTGCA<u>TAG</u>AGGAACAGACTAAGGAGAGATAGGACTTT AATCTGGAGGAAAATATCCTACAAACAACAACTGTTCACAAACAGCAAACCCCTACATTTATGAGCTGTAAGAAG AAAATGGAGACAAACAGAAGGAGGGAAAAACCAACCTACTCTGAAAGCCTTCAGACATTATGACTCTGGTGATAA GCTCTTTCCCTCTCCGTTTGCTGCTTTTTTCTGGCCTTTACAACAGAATGGAAGAATCATTTAAGAGTTCCTG TAACAGTTATGCAGAAAATACTAAAACCCATCAGGCAAGATCACCACGCATTGAAATATTTTCATATCAAGATAA AGTCGCACATTTTCCACAATACATTGCTAAAATAAAGAGGAGAAAGGCTTAGGAAGTTTTTCTGCAGAGAGTGCT GGTAAAGAATTGAGCAAGTTTGCTATTGTATTGTAATGTTTCTCTCAGGTTTGTTCTTCCTATCATGTTTGATAT TCCATGAATAATTGAGATCAGCCCTATGTAAGTTAAGATCATAATATGTGGAACAAATGGAATTGTAAGTGCTTT CAAAGGGTAATATTTATAAGAAAGTGTCCGAAAAATGTTTCTTCAGCTTGAGAAATTTTAGAATGATAGGAAGTT TCTCGAGTTAGCCTTCATGCAATTTTGTAGATTAAAACATAAAATTTTGTCCAGAACTTAAAGATTTAGATGCCTT CCTAAATTGTTACAATGCTTTACCAAATCTATGACTTCTACATAACACAAACCAGTGGTCAAATGTAAACACTAT ATTGTAGATTTACTGTAGGTTTTCAACCTTTTTTAGATTTATGCATGTGGACATTTTTATAATGTAATTACAATC ACCACAAGGTTAGCTTTTTTAATTGCAGACAGTAATGCATGTCACACTAATATGTAGTGGCCTTTTCAAGGCCTA TGTTACAAAACCAAGTACTTAATCTTTTACATCATGTCTTCAGCTATTTGTATTTTAACCAGTAATTTCAATGGT CTGAAACATGATTCTGAGCTTCACATAATATCTTAACTGTGGAACTCAAAAGTTTGATCACTGAATTTGGCAGTT GTTATGTTGAAATGCAAGAAATAACAATGATGGCAGCAATTAAGGTCACAGAAATCATTAGGTAAAGGAAAACCA GAATTAGACACTCTGCCTGCCACTCTGCGTGTGTGTGTCTCTCGCGCACGTGCTGTTATATGGAAGCCACTCCCT TTTCTTTCCTTTGAAACTGGTAAGGTTAAAATAGGGGAGAAATCCTACATGTTGGAATGATAGCTTTTTGGAAAA TTTAAGAAACTCTCCAGGCTCTCCATCTTGATTTATGCTTGAGTTGTTATGTGCCATATTTGCTTTGAACTCTGA TTATCAGAAGTTTTACTAAAACTTTGAAATAATTCACTTTCATCTGCTTTCTAGATTTTGTACATCTCAGTCCAT AAAGCAAAGCTTGTTGATAGTGTAGTTTTCTAAACGCTGCAAATTTGCAGCCTTTACCACTACAAAGAAGTTTGG ATGAGGGATTTTTTTTTTTTTTGTCAAAATAGTTCCTGTTTCTGTAGAAATTTCATTTTTAGATTAAACTGTGAT GGATGGGCTATCATAATTCAAGTATACATTTCTTTTTTCTATCAGATATTCATTGTCATGCAGTAGTAGTAAAAAA CATCAAAGATGCAGCAAGCTTATTAAGTATTATTTTCTAAAAGAAATAGGAGGCATTTTCATCTTTATTATTGTA CTTTTGGTTATGCAAACACTTTGATAATATAAACAGTTATGTCCCCTATAAATCTGGTCAGCAACCTCTTTTGAT TTTGTTGGGTAAGTTAAATAGTCTGTAGTAGGTAGAGTACTGGGTACAAGTCCAAACTAAGATAAGACACTA AAATAAAATGCTAAATCTTAAAAGAAACTGGGTTTATGCACTAAACGTTTTGTGCCTTGGTCTAATATTAACATG ATGTATGTGTAAACTGAC

PCT/US2003/028547

FIGURE 588

MSEDNRPLTGLAAAIAGAKLRKVSRMEDTSFPSGGNAIGVNSASSKTDTGRGNGPLPLGGSGLMEEMSALLARRR RIAEKGSTIETEQKEDKGEDSEPVTSKASSTSTPEFTRKPWERTNTMNGSKSPVISRPKSTPLSQPSANGVQTEG LDYDRLKODILDEMRKELTKLKEELIDAIRQELSKSNTA

PCT/IIS2003/028547

632/6881 FIGURE 589

TTCTCTTTACTTTTCCACTCTAGGCCACGATGCCGCAGTACCAGACCTGGGAGGAGTTCAGCCGCGCTGCCGAGA AGCTTTACCTCGCTGACCCTATGAAGGCACGTGTGGTTCTCAAATATAGGCATTCTGATGGGAACTTGTGTGTTA AAGTAACAGATGATTTAGTTTGGTGTATAAAACAGACCAAGCTCAAGATGTAAAGAAGATTGAGAAATTCC A CAGTCAACTAATGCGACTTATGGTAGCCAAGGAAGCCCGCAATGTTACCATGGAAACTGAGTGAATGGTTTGAAATGAAGACTTTGTCGTGTACTTAGGAAGTAAATATCTTTTGAATTAGAGAAAGTGTTGGGACAGAAAGTACTTTA TGTAACTAAGTGGGCTGTTCAGAAGCTTAGAGGTCATTTTTTGTAATTTCTTTTTAATTACTTTAGAGAGCTAG GGATGCAAATGTTTTCAGTTAGAAAGCCTTTATTTACTTTTGGAAATTGAACAAGAAATGCATCTGTCTTAGAAA CTGGAGATTATTTGATGTTAGGTAAAACATGTAATTGTTTCTCTGGCAAATTTGTATCAGTAATTTGAAAATTGAG TCCACACCATAGTATGCATTGTTATACATACTGTGTACCTAATTATGTATAGCAGTGTAGTCTCAATTATATCTG AAAGTAATTGTGACTAACAAGTATGCTTTGCCTTATTTCCACATTTAAACTACCTGTTAATATAAGGGATTTGTA ${\tt GTATCAGCTTGTTGAGCAATGACTTTGAATCTAGTTTTCAGTGATCAGAAGCAGCAGTTATTTGAGTGTATGAATCTAGTTTTCAGTGATCAGAAGCAGCAGCAGTTATTTGAGTGTATGAATCTAGTTTTCAGTGATCAGAAGCAGCAGCAGTTATTTGAGTGTATGAATCTAGTTTTCAGTGATCAGAAGCAGCAGCAGTTATTTGAGTGTATGAATCTAGATTTTCAGTGATCAGAAGCAGCAGCAGTTATTTGAGTGTATGAATCTAGATTTTCAGTTGATCAGAAGCAGCAGCAGTTATTTGAGTGTATGAATCTAGATTTTCAGTTGATCAGAAGCAGCAGCAGTTATTTGAGTGTATGAATCTAGATTTTCAGTTGATCAGAAGCAGCAGCAGTTATTTGAGTGTATGAATCTAGAATCAGAATCTAGAATCTAGAATCTAGAATCAGAAATCAG$ GGAATGATGATCACTGTGCTATAATGTACTGAAACCACCATATTACAGAAATATTTACTACATATTTTCCATCTG ${\tt TAGTTTCTCAGAAGGGCTATGGATTAGTTTGAACTGTCAAATCCTTGCATACTTCTGTGACACCCCTGCCCATTT}$ TCTGTCTTTAATTAACCAAGGTGTTAGGTGTGACTGTCACAACTGTTATGTTTTCCAGTAAACTAGAAGTACGAT ATTTGATAATTATATTTGTATTTCACCACCTAAATGTAATGTTGATTCCTCAAGAATGAAATGAAGGCACTACAT TGAAATATGTTTTGTATAAATTTGTCATGTTGAACAGCATTTTAGCATGGTAAGTTCCCTTAGCTATATGAATTT TGGCATGTTTCAGAGAGATCAGTAAATAAAATATTAGAT

PCT/US2003/028547

633/6881 FIGURE 590

MPQYQTWEEFSRAAEKLYLADPMKARVVLKYRHSDGNLCVKVTDDLVCLVYKTDQAQDVKKIEKFHSQLMRLMVA KEARNVTMETE

PCT/US2003/028547

634/6881 FIGURE 591

PCT/IIS2003/028547

635/6881 FIGURE 592

AACAATTTTCTAGTACTCTAGTTTGTTTCAAGAAGAGATTTTGGGTAGACGTAATCTTCACCCTTTCAAATTATA TAACAATACGAACATTATTTTTTATACTGATCATAATTTCCAGATTTGGGGAGGGGGTGATCGTGGCAGGAAAAG ATGGCTCGTACAAAGCAGACTGCCCCAAATCGACCGGTGGTAAAGCACCCAGGAAGCAACTGGCTACAAAAAGC GCTCGCAAGAGTGCGCCCTCTACTGGAGGGGTGAAGAAACCTCATCGTTACAGGCCTGGTACTGTGGCGCTCCGT CARACTERICA CONTRACTOR ACTOR ACTOR ACTOR ACTOR ACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CARGA ACTOR CA GCTCAGGACTTTAAAACAGATCTGCGCTTCCAGAGCGCAGCTATCGGTGCTTTGCAGGAGGCAAGTGAGGCCTAT CTGGTTGGCCTTTTTTGAAGACACCAACCTGTGTGTGTTGTCCATGCCAAACGTGTAACAATTATGCCAAAAGACATC TACCTAAGTATATGATTGCGAGTGGAAAAATAGGGGGACAGAAATCAGGTATTGGCAGTTTTTCCATTTTCATTTG TGTGTGAATTTTTAATATAAATGCGGAGACGTAAAGCATTAATGCAAGTTAAAATGTTTCAGTGAACAAGTTTCA GCGGTTCAACTTTATAATAATTATAAATAAACCTGTTAAATTTTTCTGGACAATGCCAGCATTTGGATTTTTTTA CTGTAAGTTTGCTATTAAAATACATTAAACTAT

PCT/US2003/028547

636/6881 FIGURE 593A

AATCTATCAGGGAACGGCGGTGGCCGGTGCGGCGTTTCGGTGGCGGCTCTGGCCGCTCAGGCGCCTGCGGCTGG GTGAGCGCACGCGAGGCGGCGAGGCGGCAGCGTGTTTCTAGGTCGTGGCGTCGGGCTTCCGGAGCTTTGGCGGCA GCTAGGGGAGGATGGCGGAGTCTTCGGATAAGCTCTATCGAGTCGAGTACGCCAAGAGCGGGCGCGCCTCTTGCA AGAAATGCAGCGAGAGCATCCCCAAGGACTCGCTCCGGATGGCCATCATGGTGCAGTCGCCCATGTTTGATGGAA AAGTCCCACACTGGTACCACTTCTCCTGCTTCTGGAAGGTGGGCCACTCCATCCGGCACCCTGACGTTGAGGTGG ATGGGTTCTCTGAGCTTCGGTGGGATGACCAGCAGAAAGTCAAGAAGACAGCGGAAGCTGGAGGAGTGACAGGCA AAGGCCAGGATGGAATTGGTAGCAAGGCAGAGAAGACTCTGGGTGACTTTGCAGCAGAGTATGCCAAGTCCAACA GAAGTACGTGCAAGGGGTGTATGGAGAAGATAGAAAAGGGCCAGGTGCGCCTGTCCAAGAAGATGGTGGACCCGG AGAAGCCACAGCT AGGCATGATTGACCGCTGGTACCATCCAGGCTGCTTTGTCAAGAACAGGGAGGAGCTGGGTT TCCGGCCCGAGTACAGTGCGAGTCAGCTCAAGGGCTTCAGCCTCCTTGCTACAGAGGATAAAGAAGCCCTGAAGA AGAAATCTAAAAAAGAAAAGACAAGGATAGTAAGCTTGAAAAAGCCCTAAAGGCTCAGAACGACCTGATCTGGA ACATCAAGGACGAGCTAAAGAAAGTGTGTTCAACTAATGACCTGAAGGAGCTACTCATCTTCAACAAGCAGCAAG TGCCTTCTGGGGAGTCGGCGATCTTGGACCGAGTAGCTGATGGCATGGTGTTCGGTGCCCTCCTTCCCTGCGAGG AATGCTCGGGTCAGCTGGTCTTCAAGAGCGATGCCTATTACTGCACTGGGGACGTCACTGCCTGGACCAAGTGTA TGGTCAAGACACAGACACCCAACCGGAAGGAGTGGGTAACCCCAAAGGAATTCCGAGAAATCTCTTACCTCAAGA AATTGAAGGTTAAAAAACAGGACCGTATATTCCCCCCAGAAACCAGCGCCTCCGTGGCGGCCACGCCTCCGCCCT CCACAGCCTCGGCTCCTGCTGTGAACTCCTCTGCTTCAGCAGATAAGCCATTATCCAACATGAAGATCCTGA CTCTCGGGAAGCTGTCCCGGAACAAGGATGAAGTGAAGGCCATGATTGAGAAACTCGGGGGGAAGTTGACGGGGA CGGCCAACAAGGCTTCCCTGTGCATCAGCACCAAAAAGGAGGTGGAAAAGATGAATAAGAAGATGGAGGAAGTAA AGGAAGCCAACATCCGAGTTGTGTCTGAGGACTTCCTCCAGGACGTCTCCGCCTCCACCAAGAGCCTTCAGGAGT TGTTCTTAGCGCACATCTTGTCCCCTTGGGGGGCAGAGGTGAAGGCAGAGCCTGTTGAAGTTGTGGCCCCAAGAG GGAAGTCAGGGGCTGCGCTCTCCAAAAAAAGCAAGGGCCAGGTCAAGGAGGAAGGTATCAACAAATCTGAAAAGA GAATGAAATTAACTCTTAAAGGAGGAGCAGCTGTGGATCCTGATTCTGGACTGGAACACTCTGCGCATGTCCTGG AGAAAGGTGGGAAGGTCTTCAGTGCCACCCTTGGCCTGGTGGACATCGTTAAAGGAACCAACTCCTACTACAAGC TGCAGCTTCTGGAGGACGACAAGGAAAACAGGTATTGGATATTCAGGTCCTGGGGCCGTGTGGGTACGGTGATCG GTAGCAACAAACTGGAACAGATGCCGTCCAAGGAGGATGCCATTGAGCACTTCATGAAATTATATGAAGAAAAAA CCGGGAACGCTTGGCACTCCAAAAATTTCACGAAGTATCCCAAAAAGTTCTACCCCCTGGAGATTGACTATGGCC AGGATGAAGAGCAGTGAAGAAGCTGACAGTAAATCCTGGCACCAAGTCCAAGCTCCCAAGCCAGTTCAGGACC TCATCAAGATGATCTTTGATGTGGAAAGTATGAAGAAAGCCATGGTGGAGTATGAGATCGACCTTCAGAAGATGC CCTTGGGGAAGCTGAGCAAAAGGCAGATCCAGGCCGCATACTCCATCCTCAGTGAGGTCCAGCAGGCGGTGTCTC AGGGCAGCAGCGACTCTCAGATCCTGGATCTCTCAAATCGCTTTTACACCCTGATCCCCCACGACTTTGGGATGA AGAAGCCTCCGCTCCTGAACAATGCAGACAGTGTGCAGGCCAAGGTGGAAATGCTTGACAACCTGCTGGACATCG AGGTGGCCTACAGTCTGCTCAGGGGAGGGTCTGATGATAGCAGCAAGGATCCCATCGATGTCAACTATGAGAAGC TCAAAACTGACATTAAGGTGGTTGACAGAGATTCTGAAGAAGCCGAGATCATCAGGAAGTATGTTAAGAACACTC ATGCAACCACACAATGCGTATGACTTGGAAGTCATCGATATCTTTAAGATAGAGCGTGAAGGCGAATGCCAGC GTTACAAGCCCTTTAAGCAGCTTCATAACCGAAGATTGCTGTGGCACGGGTCCAGGACCAACCTTTGCTGGGA TCCTGTCCCAGGGTCTTCGGATAGCCCCGCCTGAAGCGCCCGTGACAGGCTACATGTTTGGTAAAGGGATCTATT TCGCTGACATGGTCTCCAAGAGTGCCAACTACTGCCATACGTCTCAGGGAGACCCAATAGGCTTAATCCTGTTGG GAGAAGTTGCCCTTGGAAACATGTATGAACTGAAGCACGCTTCACATATCAGCAAGTTACCCAAGGGCAAGCACA GTGTCAAAGGTTTGGGCAAAACTACCCCTGATCCTTCAGCTAACATTAGTCTGGATGGTGTAGACGTTCCTCTTG GGACCGGGATTTCATCTGGTGTGAATGACACCTCTCTACTATATAACGAGTACATTGTCTATGATATTGCTCAGG TAAATCTGAAGTATCTGCTGAAACTGAAATTCAATTTTAAGACCTCCCTGTGGTAATTGGGAGAGGTAGCCGAGT CACACCGGTGGCTCTGGTATGAATTCACCCGAAGCGCTTCTGCACCAACTCACCTGGCCGCTAAGTTGCTGATG GGTAGTACCTGTACTAAACCACCTCAGAAAGGATTTTACAGAAACGTGTTAAAGGTTTTCTCTAACTTCTCAAGT ACTGACATAGAGAAAAGGCTGGAGAGAGATTCTGTTGCATAGACTAGTCCTATGGAAAAAACCAAGCTTCGTTAG AATGTCTGCCTTACTGGTTTCCCCAGGGAAGGAAAAATACACTTCCACCCTTTTTTCTAAGTGTTCGTCTTTAGT

PCT/US2003/028547

637/6881 FIGURE 593B

PCT/IIS2003/028547

638/6881 FIGURE 594

AGACAGAAGCTAGTCCCCCCTCTGAATTTTACTGATGAAGAAACTGAGGCCACAGAGCTAAAGTGACTTTTCCCA AGGTCGCCCAGCGAGGACGTGGGACTTCTCAGACGTCAGGAGAGTGATGTGAGGGAGCTGTGTGACCATAGAAAG ACCAAGTGTCCGGGATTCAGACCTCTCTGCGGCCCCAAGTGTTCGTGGTGCTTCCAGAGGCAGGGCTATGCTCAC ATTCATGGCCTCTGACAGCGAGGAAGAAGTGTGTGATGAGCGGACGTCCCTAATGTCGGCCGAGAGCCCCACGCC GCGCTCCTGCCAGGAGGGCAGGCCAGGGCCCCAGAGGATGGAGAACACTGCCCAGTGGAGAAGCCAGGAGAACGA GGAGGACGGTGAGGAGGACCCTGACCGCTATGTCTGTAGTGGGGTTCCCGGGCCGCCGCCAGGCCTGGAGGAAGA GCTGACCCTCAAATACGGAGCGAAGCACGTGATCATGCTGTTTGTGCCTGTCACTCTGTGCATGATCGTGGTGGT AGCCACCATCAAGTCTGTGCGCTTCTACACAGAGAAGAATGGACAGCTCATCTACACGACATTCACTGAGGACAC ACCCTCGGTGGGCCAGCGCCTCCTCAACTCCGTGCTGAACACCCTCATCATGATCAGCGTCATCGTGGTTATGAC CATCTTCTTGGTGGTGCTCTACAAGTACCGCTGCTACAAGTTCATCCATGGCTGGTTGATCATGTCTTCACTGAT GCTGCTGTTCCTCTTCACCTATATCTACCTTGGGGAAGTGCTCAAGACCTACAATGTGGCCATGGACTACCCCAC CCTCTTGCTGACTGTCTGGAACTTCGGGGCAGTGGGCATGGTGCATCCACTGGAAGGGCCCTCTGGTGCTGCA GCAGGCCTACCTCATCATGATCAGTGCGCTCATGGCCCTAGTGTTCATCAAGTACCTCCCAGAGTGGTCCGCGTG GGTCATCCTGGGCGCCATCTCTGTGTATGATCTCGTGGCTGTGTCTCCCAAAGGGCCTCTGAGAATGCTGGT AGAAACTGCCCAGGAGAGAAATGAGCCCATATTCCCTGCCCTGATATACTCATCTGCCATGGTGTGGACGGTTGG CATGGCGAAGCTGGACCCCTCTCTCAGGGTGCCCTCCAGCTCCCCTACGACCCGGAGATGGAAGAAGACTCCTA TGACAGTTTTGGGGAGCCTTCATACCCCGAAGTCTTTGAGCCTCCCTTGACTGGCTACCCAGGGGAGGAGCTGGA GGAAGAGGAGGAAAGGGGGGTGAAGCTTGGCCTCGGGGACTTCATCTTCTACAGTGTGCTGGTGGGCAAGGCGGC TGCCACGGGCAGCGGGACTGGAATACCACGCTGGCCTGCTTCGTGGCCATCCTCATTGGCTTGTGTCTGACCCT CCTGCTGCTTGCTGTGTTCAAGAAGGCGCTGCCCGCCCTCCCCATCTCCATCACGTTCGGGCTCATCTTTACTT CTCCACGGACAACCTGGTGCGGCCGTTCATGGACACCCTGGCCTCCCATCAGCTCTACATCTGAGGGACATGGTG TGCCACAGGCTGCAAGCTGCAGGGAATTTTCATTGGATGCAGTTGTATAGTTTTACACTCTAGTGCCATATATTT TTAAGACTTTTCTTTCCTTAAAAAATAAAGTACGTGTTTACTTGGTGAGGAGGAGGCAGAACCAGCTCTTTGGTG CCAGCTGTTTCATCACCAGACTTTGGCTCCCGCTTTGGGGAGCGCCTCGCTTCACGGACAGGAAGCACAGCAGGT TTATCCAGATGAACTGAGAAGGTCAGATTAGGGCGGGGAGAAGAGCATCCGGCATGAGGGCTGAGATGCGCAAAG TCCCAATGCTTTGTCCATGATGTCCTTGTTATTTTATTGCCTTTAGAAACTGAGTCCTGTTCTTGTTACGGCAGT

PCT/HS2003/028547

639/6881 FIGURE 595

MLTFMASDSEEEVCDERTSLMSAESPTPRSCQEGRQGPEDGENTAQWRSQENEEDGEEDDRYVCSGVPGRPPGL
EEELTLKYGAKHVIMLFVPVTLCMIVVVATIKSVRFYTEKNGQLIYTTFTEDTPSVGQRLLNSVLNTLIMISVIV
VMTIFLVVLXXXRCYKFIHGWLIMSSLMLLFLETYIYLGEVLKTYNVAMDYPTILLTVWNFGAVGMVCIHWKGPL
VLQQAYLIMISALMALVFIKYLPEWSAWVILGAISVYDLVAVLCPKGPLRMLVETAQERNEPIFPALIYSSAMVW
TVGMAKLDPSSQGALQLPYDPEMEEDSYDSFGEPSYPEVFEPFLTGYPGEELEEEEERGVKLGLGOFIFYSVLVG
KAAATGSGDWNTTLACFVAILIGLCLTLLLLAVFKKALPALPISITFGLIFYFSTDNLVRPFMDTLASHQLYI

PCT/US2003/028547

640/6881 FIGURE 596

AGACAGAAGCTAGTCCCCCCTCTGAATTTTACTGATGAAGAAACTGAGGCCACAGAGCTAAAGTGACTTTTCCCA AGGTCGCCCAGCGAGGACGTGGGACTTCTCAGACGTCAGGAGAGTGATGTGAGGGAGCTGTGTGACCATAGAAAG ACCAAGTGTCCGGGATTCAGACCTCTCTGCGGCCCCAAGTGTTCGTGGTGCTTCCAGAGGCAGGGCTATGCTCAC ATTCATGGCCTCTGACAGCGAGGAAGAAGTGTGTGATGAGCGGACGTCCCTAATGTCGGCCGAGAGCCCCACGCC CCCTTCTGCCAGGAGGCAGGCAGGCCCAGAGGATGGAGAACACTGCCCAGTGGAGAAGCCAGGAGAACGA GGAGGACGGTGAGGAGGACCCTGACCGCTATGTCTGTAGTGGGGTTCCCGGGCGGCCGCCAGGCCTGGAGGAAGA GCTGACCCTCAAATACGGAGCGAAGCACGTGATCATGCTGTTTGTGCCTGTCACTCTGTGCATGATCGTGGTGGT AGCCACCATCAAGTCTGTGCGCTTCTACACAGAGAAGAATGGACAGCTCATCTACACGACATTCACTGAGGACAC ACCCTCGCTGGCCAGCGCCTCCTCAACTCCGTGCTGAACACCCTCATCATGATCAGCGTCATCGTGGTTATGAC CATCTTCTTGGTGGTGCTCTACAAGTACCGCTGCTACAAGTTCATCCATGGCTGGTTGATCATGTCTTCACTGAT GCTGCTGTTCCTCTCACCTATATCTACCTTGGGGAAGTGCTCAAGACCTACAATGTGGCCATGGACTACCCCAC CCTCTTGCTGACTGTCTGGAACTTCGGGGCAGTGGGCATGGTGTGCATCCACTGGAAGGGCCCTCTGGTGCTGCA GCAGGCCTACCTCATCATGATCAGTGCGCTCATGGCCCTAGTGTTCATCAAGTACCTCCCAGAGTGGTCCGCGTG GGTCATCCTGGGCGCCATCTCTGTGTATGATCTCGTGGCTGTGCTGTGTCCCAAAGGGCCTCTGAGAATGCTGGT AGAAACTGCCCAGGAGAGAAATGAGCCCATATTCCCTGCCCTGATATACTCATCTGCCATGGTGTGGACGGTTGG CATGGCGAAGCTGGACCCCTCCTCTCAGGGTGCCCTCCAGCTCCCCTACGACCCCGAGATGGAAGACTCCTATGA CAGTTTTGGGGAGCCTTCATACCCCGAAGTCTTTGAGCCTCCCTTGACTGGCTACCCAGGGGAGGAGCTGGAGGA AGAGGAGGAAAGGGGCGTGAAGCTTGGCCTCGGGGACTTCATCTTCTACAGTGTGCTGGTGGGCAAGGCGGCTGC GCTGCTTGCTGTGTTCAAGAAGGCGCTGCCCGCCCTCCCCATCTCATCACGTTCGGGCTCATCTTTTACTTCTC CACGGACAACCTGGTGCGGCCGTTCATGGACACCCTGGCCTCCCATCAGCTCTACATCTGAGGGACATGGTGTGC CACAGGCTGCAAGCTGCAGGGAATTTTCATTGGATGCAGTTGTATAGTTTTACACTCTAGTGCCATATATTTTTA AGACTTTTCTTTCCTTAAAAAATAAAGTACGTGTTTACTTGGTGAGGAGGCAGAACCAGCTCTTTGGTGCCA GCTGTTTCATCACCAGACTTTGGCTCCCGCTTTGGGGAGCGCCTCGCTTCACGGACAGGAAGCACAGCAGGTTTA TCCAGATGAACTGAGAAGGTCAGATTAGGGCGGGGAGAAGAGCATCCGGCATGAGGGCTGAGATGCGCAAAGAGT CAATGCTTTGTCCATGATGTCCTTGTTATTTTATTGCCTTTAGAAACTGAGTCCTGTTCTTGTTACGGCAGTCAC ACTGCTGGGAAGTGGCTTAATAGTAATATCAATAAATAGATGAGTCCTGTTAGAAAAA

PCT/IIS2003/028547

641/6881 FIGURE 597

MLTFMASDSEEEVCDERTSLMSAESPTPRSCQEGRQGPEDGENTAQWRSQENEEDGEEDDRYVCSGVPGRPPGL
EEELTIKYGAKHVIMLFVEVTICMIVVVATIKSVRFYTEKNGQLIYTTFTEDTPSVGQRLLNSVLNTLIMISSIV
VMTIFLVVLYKYRCYKFIHGWLIMSSLMLLFLETYIYLGEVLKRYNVAMDYBTILLIVWNFGAVGMVCIHWKGFL
VLQQAVLIMISALMALVFIKYLPEMSAWVILGISVYDLVAVLCPKGPLRMLVETAQERNEPIFPALIYSSAMVW
TVGMAKLDPSSQGALQLPYDPEMEDSYDSFGEPSYEEVFEPPLTGYPGEELEEEEERGVKLGLGDFIFYSVLVGK
AAATGSGOWNTILACFVAILIGLCITLILLAVFKKALPALPISITFGLIFYFSTDNLVRFFMDTLASHQLYI

PCT/HS2003/028547

642/6881 FIGURE 598A

TATACTTCGCTACTTGGCTAGAGTTGCAACTACAGCTGGGTTATATGGCTCTAATCTGATGGAACATACTGAGAT TGATCACTGGTTGGAGTTCAGTGCTACAAAATTATCTTCATGTGATTCCTTTACTTCTACAATTAATGAACTCAA TCATTGCCTGTCTCTGAGAACATACTTAGTTGGAAACTCCTTGAGTTTAGCAGATTTATGTGTTTTGGGCCACCCT AAAAGGAAATGCTGCCTGGCAAGAACAGTTGAAACAGAAGAAAGCTCCAGTTCATGTAAAACGTTGGTTTGGCTT TCTTGAAGCCCAGCAGGCCTTCCAGTCAGTAGGTACCAAGTGGGATGTTTCAACAACCAAAGCTCGAGTGGCACC TGAGAAAAAGCAAGATGTTGGGAAATTTGTTGAGCTTCCAGGTGCGGAGATGGGAAAGGTTACCGTCAGATTTCC TCCAGAGGCCAGTGGTTACTTACACATTGGGCATGCAAAAGCTGCTCTTCTGAACCAGCACTACCAGGTTAACTT TAAAGGGAAACTGATCATGAGATTTGATGACACAAATCCTGAAAAAGAAAAGGAAGATTTTGAGAAGGTTATCTT GGAAGATGTTGCAATGTTGCATATCAAACCAGATCAATTTACTTATACTTCGGATCATTTTGAAACTATAATGAA GTATGCAGAGAAGCTAATTCAAGAAGGGAAGGCTTATGTGGATGATACTCCTGCTGAACAGATGAAAGCAGAACG TGAGCAGAGGATAGAATCTAAACATAGAAAAAACCCTATTGAGAAGAATCTACAAATGTGGGAAGAAATGAAAAA AGGGAGCCAGTTTGGTCAGTCCTGTTGTTTGCGAGCAAAAATTGACATGAGTAGTAACAATGGATGCATGAGAGA TTTTGCCTGCCCCATAGTTGACAGCATCGAAGGTGTTACACATGCCCTGAGAACAACAGAATACCATGACAGAGA TGAGCAGTTTTACTGGATTATTGAAGCTTTAGGCATAAGAAAACCATATATTTTGGGAATATAGTCGGCTAAATCT AAGATTTCCTACGGTTCGTGGTGTACTGAGAAGAGGGGATGACAGTTGAAGGACTGAAACAGTTTATTGCTGCTCA GGGCTCCTCACGTTCAGTCGTGAACATGGAGTGGGACAAAATCTGGGCGTTTAACAAAAAGGTTATTGACCCAGT GGCTCCACGATATGTTGCATTACTGAAGAAGAAGTGATCCCAGTGAATGTACCTGAAGCTCAGGAGGAGATGAA AGAAGTAGCCAAACACCCAAAGAATCCTGAGGTTGGCTTGAAGCCTGTGTGGTATAGTCCCAAAGTTTTCATTGA AGGTGCTGATGCAGAGACTTTTTCGGAGGGTGAGATGGTTACATTTATAAATTGGGGCAACCTCAACATTACAAA AATACACAAAAATGCAGATGGAAAAATCATATCTCTTGATGCAAAGTTGAATTTGGAAAACAAAGACTACAAGAA AACCACTAAGGTCACTTGGCTTGCAGAGACTACACATGCTCTTCCTATTCCAGTAATCTGTGTCACTTATGAGCA CTTGATCACAAAGCCAGTGCTAGGAAAAGACGAGGACTTTAAGCAGTATGTCAACAAGAACAGTAAGCATGAAGA GCTAATGCTAGGGGATCCCTGCCTTAAGGATTTGAAAAAAAGGAGATATTATACAACTCCAGAGAAGAGGATTCTT CATATGTGATCAACCTTATGAACCTGTTAGCCCATATAGTTGCAAGGAAGCCCCGTGTGTTTTGATATACATTCC TGATGGGCACACAAAGGAAATGCCAACATCAGGGTCAAAGGAAAAGACCAAAGTAGAAGCCACAAAAAATGAGAC CTCTGCTCCTTTTAAGGAAAGACCAACACCTTCTCTGAATAATAATTGTACTACATCTGAGGATTCCTTGGTCCT TTACAATAGAGTGGCTGTTCAAGGAGATGTGGTTCGTGAATTAAAAGCCAAGAAAGCACCAAAGGAAGATGTAGA TGCAGCTGTAAAACAGCTTTTGTCTTTGAAAGCTGAATATAAGGAGAAAACTGGCCAGGAATATAAACCTGGAAA CCCTCCTGCTGAAATAGGACAGAATATTTCTTCTAATTCCTCAGCAAGTATTCTGGAAAGTAAATCTCTGTATGA XXXXXXXXXXXXXXXXXCTTCTCAAGGGGAAGTAGTTCGGAAACTTAAAACTGAAAAAGCCCCTAAGGATCAAGT AGATATAGCTGTTCAAGAACTCCTTCAGCTAAAGGCACAGTACAAGTCTTTGATAGGAGTAGAGTATAAGCCTGT TCAGAAACAAAATGATGGCCAAAGGAAAGACCCTTCTAAAAACCAAGGAGGTGGGCTCTCATCAAGTGGAGCAGG AGAAGGCCAGGGGCCTAAGAAACAGACCAGGTTGGGTCTTGAGGCAAAAAAAGAAGAAGAAATCTTGCTGATTGGTA TTCTCAGGTCATCACAAAGTCAGAAATGATTGAATACCATGACATAAGTGGCTGTTATATTCTTCGTCCCTGGGC CTATGCCATTTGGGAAGCCATCAAGGACTTTTTTGATGCTGAGATCAAGAAACTTGGTGTTGAAAACTGCTACTT CCCCATGTTTGTGTCTCAAAGTGCATTAGAGAAAGAGAAGACTCATGTTGCTGACTTTGCCCCAGAGGTTGCTTG GGTTACAAGATCTGGCAAAACCGAGCTGGCAGAACCAATTGCCATTCGTCCTACTAGTGAAACAGTAATGTATCC TGCATATGCAAAATGGGTACAATCACACAGAGACCTGCCCATCAAGCTCAATCAGTGGTGCAATGTGGTGCGTTG GGAATTCAAGCATCCTCAGCCTTTCCTACGTACTCGTGAATTTCTTTGGCAGGAAGGGCACAGTGCTTTTGCTAC CATGGAAGAGGCAGCGGAAGAGGTCTTGCAGATACTTGACTTATATGCTCAGGTATATGAAGAACTCCTGGCAAT TCCTGTTGTTAAAGGAAGAAGACGGAAAAGGAAAAATTTGCAGGAGGAGACTATACAACTACAATAGAAGCATT TATATCTGCTAGTGGAAGAGCTATCCAGGGAGGAACATCACATCATTTAGGGCAGAATTTTTCCAAAATGTTTGA

PCT/IIS2003/028547

643/6881 FIGURE 598B

PCT/IIS2003/028547

FIGURE 599A

AGTAGCTGCGGCGCAGGGGCGAGCGAAGGCTGCGGCGCGCTCGGGTACGCGCACACGTTGCATCTTCTTCTTT GCTCTCTGACCGTGAATTCAGGAGACCCTCCGCTAGGAGCTTTGCTGGCAGTAGAACACGTGAAAGACGATGT CAGCATTTCCGTTGAAGAAGGGAAAGAGAATATTCTTCATGTTTCTGAAAATGTGATATTCACAGATGTGAATTC TATACTTCGCTACTTGGCTAGAGTTGCAACTACAGCTGGGTTATATGGCTCTAATCTGATGGAACATACTGAGAT TGATCACTGGTTGGAGTTCAGTGCTACAAAATTATCTTCATGTGATTCCTTTACTTCTACAATTAATGAACTCAA TCATTGCCTGTCTCTGAGAACATACTTAGTTGGAAACTCCTTGAGTTTAGCAGATTTATGTGTTTTGGGCCACCCT AAAAGGAAATGCTGCCTGGCAAGAACAGTTGAAACAGAAGAAAGCTCCAGTTCATGTAAAACGTTGGTTTGGCTT TCTTGAAGCCCAGCAGGCCTTCCAGTCAGTAGGTACCAAGTGGGATGTTTCAACAACCAAAGCTCGAGTGGCACC TGAGAAAAAGCAAGATGTTGGGAAATTTGTTGAGCTTCCAGGTGCGGAGATGGGAAAGGTTACCGTCAGATTTCC ${\tt TCCAGAGGCCAGTGGTTACTTACACATTGGGCATGCAAAAGCTGCTCTTCTGAACCAGCACTACCAGGTTAACTT}$ TARAGGGARACTGATCATGAGATTTGATGACACAAATCCTGAAAAAGAAAAGGAAGATTTTGAGAAGGTTATCTT GGAAGATGTTGCAATGTTGCATATCAAACCAGATCAATTTACTTATACTTCGGATCATTTTGAAACTATAATGAA GTATGCAGAGAAGCTAATTCAAGAAGGGAAGGCTTATGTGGATGATACTCCTGCTGAACAGATGAAAGCAGAACG TGAGCAGAGGATAGACTCTAAACATAGAAAAAACCCTATTGAGAAGAATCTACAAATGTGGGAAGAAATGAAAAAA AGGGAGCCAGTTTGGTCAGTCCTGTTGTTTGCGAGCAAAAATTGACATGAGTAACAATGGATGCATGAGAGA TTTTGCCTGCCCCATAGTTGACAGCATCGAAGGTGTTACACATGCCCTGAGAACAACAGAATACCATGACAGAGA TGAGCAGTTTTACTGGATTATTGAAGCTTTAGGCATAAGAAAACCATATATTTTGGGAATATAGTCGGCTAAATCT AAGATTTCCTACGGTTCGTGGTGTACTGAGAAGAGGGATGACAGTTGAAGGACTGAAACAGTTTATTGCTGCTCA GGGCTCCTCACGTTCAGTCGTGAACATGGAGTGGGACAAAATCTGGGCCGTTTAACAAAAAGGTTATTGACCCAGT GGCTCCACGATATGTTGCATTACTGAAGAAAGAAGTGATCCCAGTGAATGTACCTGAAGCTCAGGAGGAGATGAA AGAAGTAGCCAAACACCCAAAGAATCCTGAGGTTGGCTTGAAGCCTGTGTGGTATAGTCCCAAAGTTTTCATTGA AGGTGCTGATGCAGAGACTTTTTCGGAGGGTGAGATGGTTACATTTATAAATTGGGGCAACCTCAACATTACAAA AATACACAAAAATGCAGATGGAAAAATCATATCTCTTGATGCAAAGTTGAATTTGGAAAACAAAGACTACAAGAA AACCACTAAGGTCACTTGGCTTGCAGAGACTACACATGCTCTTCCTATTCCAGTAATCTGTGTCACTTATGAGCA CTTGATCACAAAGCCAGTGCTAGGAAAAGACGAGGACTTTAAGCAGTATGTCAACAAGAACAGTAAGCATGAAGA GCTAATGCTAGGGGATCCCTGCCTTAAGGATTTGAAAAAAGGAGATATTATACAACTCCAGAGAAGAGAGATTCTT CATATGTGATCAACCTTATGAACCTGTTAGCCCATATAGTTGCAAGGAAGCCCCGTGTGTTTTGATATACATTCC TGATGGGCACACAAAGGAAATGCCAACATCAGGGTCAAAGGAAAAGACCAAAGTAGAAGCCACAAAAAAATGAGAC CTCTGCTCCTTTTAAGGAAAGACCAACACCTTCTCTGAATAATAATTGTACTACATCTGAGGATTCCTTGGTCCT TTACAATAGAGTGGCTGTTCAAGGAGATGTGGTTCGTGAATTAAAAGCCCAAGAAAGCACCAAAGGAAGATGTAGA TGCAGCTGTAAAACAGCTTTTGTCTTTGAAAGCTGAATATAAGGAGAAAACTGGCCAGGAATATAAACCTGGAAA CCCTCCTGCTGAAATAGGACAGAATATTTCTTCTAATTCCTCAGCAAGTATTCTGGAAAGTAAATCTCTGTATGA TGTAGAATGCTTACTGTCCCTGAAGGCTCAGTATAAAGAAAAAACTGGGAAGGAGTACATACCTGGTCAGCCCCC ATTATCTCAAAGTTCGGATTCAAGCCCAACCAGAAATTCTGAACCTGCTGGTTTAGAAACACCAGAAGCGAAAGT ACTTTTGACAAAGTAGCTTCTCAAGGGGAAGTAGTTCGGAAACTTAAAACTGAAAAAAGCCCCTAAGGATCAAGT AGATATAGCTGTTCAAGAACTCCTTCAGCTAAAGGCACAGTACAAGTCTTTGATAGGAGTAGAGTATAAGCCTGT TCAGAAACAAAATGATGGCCAAAGGAAAGACCCTTCTAAAAACCAAGGAGGTGGGCTCTCATCAAGTGGAGCAGG AGAAGGCAGGGCCTAAGAAACAGACCAGGTTGGGTCTTGAGGCAAAAAAGAAGAAAATCTTGCTGATTGGTA TTCTCAGGTCATCACAAAGTCAGAAATGATTGAATACCATGACATAAGTGGCTGTTATATTCTTCGTCCCTGGGC CTATGCCATTTGGGAAGCCATCAAGGACTTTTTTGATGCTGAGATCAAGAAACTTGGTGTTGAAAACTGCTACTT CCCCATGTTTGTGTCTCAAAGTGCATTAGAGAAAGAGAAGACTCATGTTGCTGACTTTGCCCCAGAGGTTGCTTG GGTTACAAGATCTGGCAAAACCGAGCTGGCAGAACCAATTGCCATTCGTCCTACTAGTGAAACAGTAATGTATCC TGCATATGCAAAATGGGTACAGTCACACAGAGACCTGCCCATCAAGCTCAATCAGTGGTGCAATGTGGTGCGTTG

PCT/IIS2003/028547

645/6881 FIGURE 599B

GGAATTCAAGCATCCTCAGCCTTTCCTACGTACTCGTGAATTTCTTTGGCAGGAAGGGCACAGTGCTTTTGCTAC TCCTGTTGTTAAAGGAAGAAGACGGAAAAGGAAAAATTTGCAGGAGGAGACTATACAACTACAATAGAAGCATT TATATCTGCTAGTGGAAGAGCTATCCAGGGAGGAACATCACATCATTTAGGGCAGAATTTTTCCAAAATGTTTGA AATCGTTTTTGAAGATCCAAAGATACCAGGAGAGAGCAATTTGCCTATCAAAACTCCTGGGGCCTGACAACTCG AACTATTGGTGTTATGACCATGGTTCATGGGGACAACATGGGTTTAGTATTACCACCCCGTGTAGCATGTGTTCA GGTGGTGATTATTCCTTGTGGCATTACCAATGCACTTTCTGAAGAAGAAGAAGAAGCGCTGATTGCAAAATGCAA TGATTATCGAAGGCGATTACTCAGTGTTAACATCCGCGTTAGAGCTGATTTACGAGATAATTATTCTCCAGGTTG GAAATTCAATCACTGGGAGCTCAAGGGAGTTCCCATTAGACTTGAAGTTGGGCCACGTGATATGAAGAGCTGTCA GTTTGTAGCCGTCAGACGAGATACTGGAGAAAAGCTGACAGTTGCTGAAAATGAGGCAGAGACTAAACTTCAAGC TATTTTGGAAGACATCCAGGTCACCCTTTTCACAAGGGCTTCTGAAGACCTTAAGACTCATATGGTTGTGGCTAA TACAATGGAAGACTTTCAGAAGATACTAGATTCTGGAAAGATTGTTCAGATTCCATTCTGTGGGGAAATTGACTG GTACTACACCTTATTTGGTCGCAGCTACTGAGGGATGAACGAAAGCCCCCTCTTCAACTCCTCTCACTTTTTAAA GCATTGATATTAGTATCTTCTCAGATACAGACCGTTTTATGATTTTTTAAAAAGTAAAAGTTCTAAAATGAAGTC ACACAGGACAATTATTCTTATGCCTAAGTTAACAGTGGATAAAAGACTTTTCTGTAAACAACTCCAGTAATAAAT

PCT/US2003/028547

646/6881 FIGURE 600

AGTCGGGGTGGTGGGAGAGGAGGAGGAGCCGCAAATCACTTATAAATGGCGCGGAAGCAGGACCCGAAGCCTAAA TTCCAGGAGGGTGAGCGAGTGCTGTGCTTTCATGGGCCTCTTCTTTATGAGCAAAGTGTGTAAAGGTTGCCATA AAGGACAAACAAGTGAAATACTTCATACATTACAGTGGTTGGAATAAAAATTGGGATGAGTGGGTTCCGGAGAGC AGAGTACTCAAATACGTGGACACCAATTTGCAGAAACAGCGAGAACTTCAAAAAGCCAATCAGGAGCAGTATGCA GAGGGGAAGATGAGAGGGGCTGCCCCAGGAAGAAGACATCTGGTCTGCAACAGAAAAATGTTGAAGTGAAAACG AAAAAGAACAAACAGAAAACACCTGGAAATGGAGATGGTGGCAGTACCAGTGAGACCCCTCAGCCTCCTTGGAAG AAAAGGGCCCGGGTAGATCCTACTGTTGAAAATGAGGAAACATTCATGAACAGAGTTGAAGTTAAAGTAAAGATT CCTGAATAGCTAAAACCGTGGCTTGTTGATGACTGGGACTTAATTACCAGGCAAAAACAGCTCTTTTATCTTCCT GCCAAGAAGAATGTGGATTCCATTCTTGAGGATTATGCAAATTACAAGAAATCTCGTGGAAACACAGATAATAAG GAGTATGCGGTTAATGAAGTTGTGGCAGGGATAAAAGAATACTTCAACGTAATGTTGGGTACCCAGCTACTCTAT AAATTTGAGAGACCACAGTATGCCGAAATTCTTGCAGATCATCCCGATGCACCCATGTCCCAGGTGTATGGAGCG CCACATCTCCTGAGATTATTTGTACGAATTGGAGCAATGTTGGCCTATACACCTCTGGATGAGAAGAGCCTTGCT TTATTACTCAATTATCTTCACGATTTCCTAAAGTACCTGGCAAAGAATTCTGCAACTTTGTTTAGTGCCAGCGAT TCATTTCAAAGTTGCTGCCAGTGTTTTCAATGATGGACAACAGAGGGATATGCTGTAGAGTGTTTTATTGCCTAG TTGACAAAGCTGCTTTTGAATGCTGGTGGTTCTATTCCTTTGACACTATGCACTTTTATAATACATGTTAATGCT ATATGACAA AATGCTCTGATTCCTAGTGCCAAAGGTTCAATTCAGTGTATATAACTGAACACACTCATCCATTTG CATTTATCTTGGCTCAAATTGTTGAAGAATGGTGGCTTGTTTCATGGTTTTTGTATTTGTGTCTAATGCACGTT TTAACATGATAGATGCAATGCACTGTGTAGCTAGTTTTCTGGAAAAGTCAATCTTTTAGGAATTGTTTTTCAGAT CTTCAATAAATTTTTTCTTTAAATTTC

PCT/US2003/028547

647/6881 FIGURE 601

PCT/IIS2003/028547

648/6881 FIGURE 602

PCT/HS2003/028547

FIGURE 603

TTTTGCGCTCGGACCTTCGCCAGAGGGGCCGGGACATC<u>ATG</u>ACGGTGGGAGCCAGGCTCCGAAGCAAGGCGGAGA ACCTGGAGTACGCGGACGAGGCGGAGGCGGCCGGCCGAGAGCGGGACGAGCGGGCGGACGAGCGGGGCCCGGGGA CCCGGGGCGCGCGGAGGGTGCACTTCGCCCTCCTGCCCGAGCGCTACGAGCCACTGGAGGAGCCGGCGCCGAGCG AGCAGCCCAGGAAGAGGTACCGGAGGAAGCTGAAGAAGTACGGCAAĠAATGTCGGGAAGGTCATCATCAAAGGAT GCCGCTACGTGGTCATCGGCCTGCAAGGCTTCGCTGCAGCCTACTCCGCCCCGTTTGCGGTAGCCACCAGCGTGG TATCCTTCGTGCGC<u>TAA</u>TGGGAGCTGCTGTGGCAGGTGCCCCCAGAGTGAACGGGAGCCCCTGCTGTGGGAACTT ACATTAGTATGATGAGTGAGTCATCCCTGCCCATCTGCTGAGCTTCTCACATCTCTCAGTCACACGTGGACCCAG TGGTCAATCCTGCAGAGAATTCGGCGGAGGTTAGGTTTGGGAGTGGAGCTAGCGTGCTAAAGCCAGAGCCTTCAC GTGAAGGTGGCAGGCACTGGGGCGGAAGCCAACACTCAACAGATGCAAGCAGTGTGGGTGTGCAGCAGAACAGTG ATCTTGGGGGAGGAAGAGGATGTTACTAGAGTCAGATGATTTGCTGTATTCTCCTGAAAGGTCGTAGGCTGACAG GCGCTCACATTCCTTGGCTGCCTCGGTTCTGAGGGCAGCTAAGGAGCTGTTTATTCCTCAAGTCATGCTCCCCGA GATGCTTTGAAAACTGTGTTGGCAGTGTGGCATGACTGTTTAAAGTAGATAAAACCTTGTCATTTTACCCCATCC CTGCATGACTGTGAAGCTGGCGAGGAAGGAGGAAGAAGGGCAAGTTCAGATGCAGGCTGGGTGGCTGGGACAGGT TGGCTAAGGGACTACTCTGGAGGGCTCTTCTGCCTGGCATTGCCCACTTCGGCCCAGCCACGTGTTTGCAGCGAC CAGAGTCCCTGCAAAGGTGTGGCTGGCTGTGGTCAGGGTGCTACTAGCACCATCAGCGCACTCCCGCCATTGGCT AATGAGGCAAGAGGACATTGGAAGAGAGAGTTTGCTGTCCAGGAGCCAGGTCTGGAGCATCAGTGTGAGGGAGT TCAGGTAGGCTGGGCCTGTGCCTCTAGGTAGGGACAAGGGAGGCTGGGTAGCCAGGGCTGGTGCTTAAAACCCCT GAGGCCATGAGCTCATTGGCTGCCTTTGTAGCATCCTGTCTTCTTCTGTGCTGCTGGTTTGATCTCATCTCACC TGCTGAACAGGGAGATGAAAGGAGGTCCTCTTACCATACCCCTCTGCCAACCCCCCAGTAGGCCACTGTTCTGAC ACAGACAGAAAAAAGGAAGGGGTAGAGGAGAAGGTTGAAGCTGTGGAGCTAGACTCTGCTTCACTTCCTGAAGCT TCAACTTCATGTCGAAGATTCACTGGGACCCAATTCCTGCATTGTTAATATTTGTGAGGAAAAGTGAAACAAGTG ATCTGGTTTTAGCCCAGATGATGAAAGTGGATATGGCACATTTTCACACACGTGAGATAATTACAGCTTGCCCCA AGTGAGAGCCTGTGCAGGCTGCTGACGAGCCCCAGGCAGCCCACAAGTTTCTCGTGGGGAGATGGAGGCAGAGCC CAGGGTAGGGGACAGAGCTGCTGGGGCCTTTCCTTGCCTGGGAATCTGTCCCAGGAAGAGCTTCCCCACTCCCAT CCCCAAATTGGAAAAACCGTACATTCAAGCCTGTTTGGCCCTGAAATTCTTAAGAATCTGGTTAAGAATTAACT CACTARTGTCAAAAGTCAAAACCTCCTAGGGGTTGTCCTGGGAGTCAGGTTCACGGGTACAGAAGATGAATCTCA GATGTCACTCAACCTGAGCCGTCATTCTCTGTGGCAGGGCTGCCCTGGGTTTCTCTTACTCAATCCCTGGAGTGT CACACCTTACTGAGTATTGAGTTTTAGAGCTTTCGCTTGATGTGCTTGACCAAGAGACTTCTTTTGTATCCTTTT CTTGTCCTATGATGTAAATAAAAGCCTCGATTTATGT

PCT/US2003/028547

650/6881 FIGURE 604

MTVGARLRSKAESSLLRRGPRGRGRTEGDEBAAAILEHLEYADEAEAAAESGTSAADERGPGTRGARRVHFALLP ERYEPLEEPAPSEQPRKRYRRKLKKYGKNVGKVIIKGCRYVVIGLQGFAAAYSAPFAVATSVVSFVR

PCT/US2003/028547

651/6881 FIGURE 605

PCT/IIS2003/028547

652/6881 FIGURE 606

GCTGTTGCTACTGCAATCATTTGCACCAAACTGAGCCAGAGAAGTTCCCTCTTTTAACATAAAGAGTCAAGAAAT TGGAGCATGGCTATGAGCAATGGAAACAATGATTTTTGTGGTTCTGAGCAACAGCAGCATCGCAACCAGTGCTGCT AACCCGAGTCCCCTCACCCCCTGTGATGGAGACCATGCAGCCCAGCAGCTCACACCCAAAGAAGAACAAGAACA AAAGTGAGTCCAAATGGATGCCTGCAACTTAATGGCACGGTCAAATCATCCTTTCTGCCTTTAGACAACCAAAGA ATGCCTCAGATGTTACCCCAATGCTGCCATCCTTGCCCATACCATCACCCTTTGACTAGCCATAGCAGTCACCAA ${\tt TCTGCATCTCTTTGTCCAAATCATTCACCTGTGTATCAGACTACGTGCTGTCTTCAGCCCTCTCCATCCTTCTGC}$ $\tt CCTTTCAAGTTGCCAAAAAGTTATGCAGCCCTGATAGCCGACTGGCCGGTGGTGGTCTTGGGCATGTGCACCATG$ TTCATCGTAGTCTGTGCCTTGGTTGGAGTATTAGTGCCAGAGCTCCCTGACTTCTCTGATCCATTGCTGGGTTTT GAACCAAGAGGAACAGCAATAGGCCAGAGATTGGTCACATGGAATAATATGGTGAAAAAATACAGGATACAAAGCA ACATTAGCAAATTATCCCTTTAAATATGCAGATGAACAAGCCAAAAGCCATCGGGATGATAGATGGTCAGATGAT CATTATGAAAGAGAGAAAAGAGAAGTTGACTGGAACTTCCACAAGGACAGCTTTTTCTGCGACGTTCCAAGTGAC CGATATTCCAGAGTGGTATTTACTTCATCTGGAGGGGAGACATTATGGAATTTACCTGCAATTAAATCAATGTGC AATGTAGATAATTCCAGGATCAGATCTCATCCCCAGTTTGGTGATCTCTGCCAGAGGACCACTGCTGCCTCCTGC TGCCCCAGCTGGACACTGGGAAACTACATCGCCATTCTGAACAATAGATCGTCCTGTCAGAAAATAGTTGAGCGA GACGTTTCTCATACCTTGAAGCTGCTTCGGACTTGTGCCAAACACTACCAAAATGGCACTCTGGGGCCAGACTGC TGGGACATGGCAGCCAGAAGAAAGGACCAGCTCAAGTGCACCAATGTGCCACGCAAATGTACCAAGTACAATGCT GTGTACCAGATCCTCCATTACTTGGTGGACAAAGACTTTATGACCCCAAAGACGGCTGACTATGCCACGCCAGCT TTAAAATACAGCATGCTCTTCTCCCCACAGAGAAAGGGGAGAGCATGATGAACATTTACTTGGACAACTTTGAA TATCTTCTAATGGATACTGTGTATCCTGCCATAGCCATTGTGATTGTCCTTTTAGTTATGTGTGTCTACACCAAG

PCT/IIS2003/028547

653/6881 FIGURE 607

MAMSNGNNDFVVLSNSSIATSAANPSPLTPCDGDHAAQQLTPKEATRTKVSPNGCLQLNGTVKSSFLPLDNQRMP
QMLPQCCHPCPYHHPLTSHSSHQECHPBAGPAAPSALASCCMQPHSEYSASLCPNHSPVYQTTCCLQPSPSFCLH
HPWPDHFQHQPVQQHIANIRPSRPFKLPKSYAALIADWPVVVLGMCTMFIVVCALVGVLVPELPDFSDPLLGFEP
RGTAIQQRLVTWNNMVKNTGYKATLANYPFKYADEQAKSHRDDRWSDDHYEREKREVDMWFHKDSFFFCUVPSDRY
SRVVFTSSGGETLWNLPAIKSMCNVDNSRIRSHPQFGDLCQRTTAASCCPSWTLGNYIAILNNRSSCQKIVERDV
SHTLKLLBTCAKHYQNGTLGPDCWDMAARRKDQLKCTNVPRKCTKYNAVYQILHYLVDKDFMTPKTADYATPALK
YSMLFSPTEKGESMMNIYLDNFENWNSSDGVTTITGIEFGIKHSLFQDYLLMDTVYPAIAIVIVLLVMCVYTKSM
FITLMTWFAIISSLIVS

PCT/IIS2003/028547

654/6881 FIGURE 608

GCTTCGGCTCGGCTCCTCCTGCCGGCATCCGGGATCCCTACGTCCCGCGTCCCCCGAGCGCTCGGAGCCTA CGCGCCCAGCGCTACCGAAACCCAGAGTCCTGCGCCCTGGAGTCCCCGCGCCCCGGAGCCCGAGCACCCCGGGAGT CCCGAGCCTCGCGCCCCGGAGTGCCCGAGCCTGCGCCGCACCCGGATACCCCGGGTCCCCGCGAGCTGCCGA GGCCGCCGCCGCCGCGGGGACAGTACCGCCTTCCTCCCCTCTGTCCGCGCCATGGCCGCCCCCGACCTGTC CACCAACCTCCAGGAGGAGGCCACCTGCGCCATCTGCCTCGACTACTTCACGGATCCGGTGATGACCGACTGCGG CCACAACTTCTGCCGCGAGTGCATCCGGCGCTGCTGGGGCCCAGCCCGAGGCCCGTACGCGTGCCCCGAGTGCCGC CCTCCTGTGTGCGGCCTGCGAGCGCTCTGGGGAGCACTGGGCGCACCGCGTTGGCCGCTGCAGGACGCGGCCGAA GACCTCAAGGCGAAGCTGGAGAAGTCACTGGAGCATCTCCGGAAGCAGATGCAGGATGCGTTGCTGTTCCAAGCC CAGGCGGATGAGACCTGCGTCTTGTGGCAGAAGATGGTGGAGAGCAGCAGCAGAACGTGCTGCGTGAGTTCGAGC GTCTTCGCCGTTTGCTGGCAGAGGGAGGGACAGCAGCTGCTGCAGAGGCTGGAGAGGAGGAGCTGAAGGTGCTGC CCCGGCTGCGGGAGGCGCAGCCCACCTAGGCCAGCAGAGCGCCCACCTAGCTGAGCTCATCGCCGAGCTCGAGAG GCCCCTCCCAGCTGCCTGCGCTGCGGCTGCTGCAGGACATCAAGGACGCCCTGCGCAGGGTCCAGGATGTGAAGC TGCAGCCCCAGAAGTTGTGCCTATGGAGCTGAGGACCGTGTGCAGGGTCCCGGGACTGGTAGAGACACTGCGGA GGTTTCGAGGGGACGTGACCTTGGACCCGGACACCCTGAGCTGATCCTGTCTGAAGACAGGCGGAGCG TGCAGCGGGGGACCTACGGCAGGCCCTGCCGGACAGCCCAGAGCGCTTTGACCCCGGCCCCTGCGTGCTGGGCC AGGAGCGCTTCACCTCAGGCCGCCACTACTGGGAGGTGGAGGTTGGGGACCGCACCAGCTGGGCCCTGGGGGTGT GCAGGGAGAACGTGAACAGGAAGGAGAAGGGCGAGCTGTCCGCGGGCAACGGCTTCTGGATCCTGGTCTTCCTGG ${\tt ACTACGAGGCTGGACATCTCTTTCTACAGTGCCACCGATGGGTCACTGCTATTCATCTTTCCCGAGATCCCCT}$ $\tt GTGGGTCCGGGGACACCCTGGCTCCCCAGTGACTCGGGCCCTCCTGGAGGAGTCCTGTTGCCTCTCCTGCCCCTC$ CTGGTGCCTTTCTGAGCCTGCGTGGGAGAACCCCAATTCTAGCACTCCAGGAAACTGTGGGAGAGTGTGGGGCAG GCTCCGTCCTCCTGGGAGACCCCTCCAGCCACCGGGTGCCACTTAATGCCAACAGCCCTTACCAAAGCTGGGAG CCCCATTGCCCCGGCAGCTCTGGCCTGTGGTTCCAGAAGCTGAGAAAACTCCACTGGGGCTTGCAGAATCCAGGG TTCACCTAAGCTGCACAGTTCCTGCAGCTTTGTCAGCCCCCTGAAAGTCTTGTGTACCCCACCTCTGAAGATGCT $\tt CTGGGTGTGGCTGCTCTGGAAGAATTAGGAGGCAGCCATAATAAGAGTCTTCAGAGAGATGATGGGGAGGGGCCAG$ TGAGGACAGGAACAGAGATGTCCTATAATAAAGGGGCTTCTGGGAGGTGCCTGGGCACAGATGTCTGTTC AGCAGGTGTGTGGGCCTAGAGGAGAGAGCAGAGCCCAGAAATGTCTTTTGCAGGCCCACGTTCTGACTTGAAGCT TTCGTGGGCATGTTGCCATTGGGTTTTGCCCTTGCAAAGGCTTCCTAGGTCTCCAGTGGCCCCTCAGGACCCAGG GTCCCAGCTGCTGCTTGGGGATGTGCACTGCTGCGCCGGCCTTGCAGTCTCTCTACCCTGGGGAGGAACAGTGGC TTCTCAGAGCCTGGGGCATACAGAAGAAGGCAGGAGTTGATTTTTGTGTTGGGGTTTGGGGTTTCTTTGTCCTCAA TGTCTAC

PCT/US2003/028547

655/6881 FIGURE 609

MELRTVCRVPGLVETLRRFRGDVTLDPDTANPELILSEDRRSVQRGDLRQALPDSPERFDPGPCVLGQERFTSGR HYMEVEVGDAPAGFWGCAGRT

PCT/IIS2003/028547

656/6881 FIGURE 610

CCCCAGGCAGTAGAGTGAAGCGCGCAGCTGCCAGGACTTGCGCGGTGACGTGCGCCGCTGCCAGGACCTTGCAGG TGGAGAGCATAGTTGCCAAAATCAAGGCGGAGGAGCGCACCGCCGCTAGGATCCAGGCGGAGAAGCCCACCGCGG CCAGGACCTAAGGATGCAGTACACTGCTGCCAGGATCTTGTCTGTGGAGCGCAGCGCCGCCAGGACCTCCGGCTG CAGCACACCGCTGCCAGGATCTTATCGGCAGAGCGCTCCGCGGTCCGGACCCCGCCCCGTGCGCGTCCCCGACCC CGCCCGTGCGCGTCCCCGGCGTTGGCGTCTTCGTCCTGTTGCTGGTCTCCGTCCGGTCGCCGGCCGTCTAGGTC CCGA GGCCGCCTGCGCCCTGTGCCAGCGCGCGCGCGCGGGAACCGGTGCGGCCGACTGCGGCCACCGCTTCTGTC GGGCGTGCGTGCGCCTTCTGGGCCGAGGAGGACGGCCCTTCCCGTGCCCCGAGTGCGCCGACGACTGCTGGC AGCGCGCCGTGGAGCCCGGCAGGCCCCCGCTCAGCCGCCTTCTGGCGCTCGAGGAGGCGGCCGCGCGCCCCG GCCGTATGGCTGCGGGCCCCGAGCCGCCCGAGTGGGAACCGCCTGGAGGAAGGCGCTGCGCGCAAGGAGAACA AGGGGTCTGTGGAAATCATGAGAAAGGACTTGAA<u>TGA</u>CGCCCGGGACCTGCATGGCCAGGCAGAGTCAGCAGCTG CAGTGTGGAAGGGACACGTGATGGACCGTAGGAAGAAGGCACTGACCGACTACAAGAAGCTGCGGGCCTTCTTTG CTGAGCGGTTCAGGTCACTGCTGCAGGCGGTCTCGGAGCTGGAGAAGAAGCATCGCAACCTGGGCCTCAGCATGC GTGTCAGCGTGTGGCTGCCAGGGAAGCGTGGCAGGCGCCTGGCCTTGGGTCCATCTACATAGTTGCGTGTTTCAA CAATGTCCATTTATCCTTCACCCCGAGGCGTGTTTTGGGGGCTGCAAACACCTCCCTGTGCTCCACCTGCCTCCG CAGAAGGAAGCCTCTTTCTCTGTTTCCCTGGGTGAGGGGGCTGGCAGGTGGCTAACCCCATTTAGCATCTCCAGG GCAAAGCTTGTAGCAGTAGCTCAGTTGCCTGCAGCATCCTTGTGTGTAGATAAATTAGTCGACAGAAACTCAGCA CTGGGGACAGGATTGCAAAGTCGGGGACATAGATGCAGACAGTTGTTGAGATTTGGGGATAGCCGGGCTTGTGAG CGGTGCCCATTTCCAGATGAAGCCTTTCAGCCCTTCTGAGTCCCCGGCCCTTGGTGCGATGTCTGTGAGTTTGAC CTGCCCAGCGTGTGGGCTGGCTCAATGCTGAATAAAGTGGGTTTGTTCAGCTCGTTTGCTTCGTCTCCGTGTGT CCACCTGGCCTCTTCCCCCTGCCCTGGCCACCCTCCAGTGTCAAAGGAAACTTCCTCGTGACACGTGCTAAAGCA TGGTGAGGAGGACTTTGATTGGGACCATTGAGATGGGTGTGGGACCCTTTCCTTGGGGCCTGGGGGAGATGGGG AGA

PCT/US2003/028547

657/6881 FIGURE 611

MQYTAARILSVERSAARTSGCSTPLPGSYRQSAPRSGPRPVRVPDPAPCASPALASSSCCWSPSGRRPSRSPALP SRSCALAGPAARSPGAPCGPRRGRLRPVPARAPGTGARRLRPPLLSGVRGALLGRGGRALPVPRVRRLLLAARRG ARQAPAQPPPSGARGGGRGARARRPGQRGRAAAAVPRRRRPALRRLPYGCGPRAARVGTALEEGAARQGEQGVCG NHEKGLE

PCT/IIS2003/028547

658/6881 FIGURE 612

PCT/US2003/028547

659/6881 FIGURE 613

MSGPRPVVLSGPSGAGKSTLLKRLLQEHSGIFGFSVSHTTRNPRPGEENGKDYYFVTREVMQRDIAAGDFIEHAE FSGNLYGTSKVAVQAVQAMNRICVLDVDLGGVRNIKATDLAPIYISVQPFSLHVLEQRLRQRNTETEESLVKRLA AAQADMESKERFGLFDVVIINDSLDGAYAELKEALSEEIKKADRTGA

PCT/IIS2003/028547

660/6881 FIGURE 614

GCCACGAGGTCGGGCCTGGGTCCGACGGTAGTGGGTAGCGGGTCTCGGGTTGCCAGGTTGCAGGCCGCA GGCCCAGGCAACTGCCTTCCCGGCGCCATGTTCGGCTCCAGTCGTGGAGGCGTGCGCGGGGGGGCAGGACCAGTT CAACTGGGAGGACGTGAAGACTGACAAGCAGCGGGAGAACTACCTGGGCAACTCGCTGATGGCGCCGGTAGGCCG CTGGCAGAAGGGCCGCGACCTCACCTGCTACGCCAAGGGCCGGGCCCATGCGGGGCCCGAGCCGCAGGAGGAGA ACTGGCAGCCGTGCGGGAGGCGGAGGCGCGCTGCTGGCCGCCCTTGGCTACAAGAACGTGAAGAAGCAGCC CACGGGCCTGAGCAAGGAGGACTTCGCGGAGGTCTGCAAGCGGGAAGGAGGAGCCCCGAGGAGAAGGGCGTGGA CCGGCTGCTGGGGCTGGGGAGCGCAAGTGGCTCCGTGGGCCGCTGGCGATGTCCCGAGAGGACAAGGAGGCCGC CAAACTGGGGCTGTCTGTGTTCACGCATCACCGCGTAGAGAGCGGCGGGCCCGGGACCTCGGCAGCCTCGGCCAG AAAGAAAAGAGGAAACACAAGAAAGAGAAGAAGAAGAAAGACAAAGACACAGGCGCCAGCTGAGGCCACCTC CTCTCCCACATCTCCTGAGAGGCCCAGGCACCACCACGACTCCGACTCCAACTCCCCCTGCTGTAAGAGGAG GAAGCGGGGACACAGTGGGGACAGGAGGCCCGTCTCGCAGGTGGCATGACAGAGGCTCTGAGGCCTGATGGCT GGGTGTGGGTGAAGCCCGAGGCTGCTCCTGTGGAAGTGGCTCTGGGCACCAGCCTGTGGGGCTAAAGACTTGACA GCTAGCTCTGGAGCAGCCGGCTTCCTGGAAAACCTCCAGGTTTCGCATACCAGGGATGGCCCCTGGCTTGGCCTG CGAAGGTGAACCTGCCCAGATTTATCAGTAGAGGCTGGACTCCCTCTGTGTCCTGCCCATGGTTGCAGCAGCCAT GGGCCTATGAGCGGTCTAACTGTGGCCAAGTATGGTGACCTCTATTTTTCTTTATATTGACTCTTTGTATTTCAA

PCT/US2003/028547

661/6881 FIGURE 615

MPGSSRGGVRGGQDQFNWEDVKTDKQRENYLGNSLMAPVGRWQKGRDLTWYAKGRAPCAGPSREEELAAVREAER EALLAALGYKNVKKQPTGLSKEDFAEVCKREGGDFEKGVDRLLGLGSASGSVGRVAMSREDKEAAKLGLSVFTH HRVESGGPGTSAASARKPRAEDQTESSCESHRKSKKEKKKKKKKKKKKKKKKKKKKKKKKERPAEATSSPTSPERPR HHHHDSDSNSFCCKRRKRGHSGDRRSPSRWHDRGSEA

PCT/HS2003/028547

FIGURE 616

AGGAAGCCCTGCTTGATGAGCATGAGGCTCCACGGGGGCAGTGGCTGTGACGGTGAGTGCCACACAGAGCTGCCC A CACTGGTGGAGGGAAGGCAGGGAGATACCAGGACCATCCGGAAGGGGCTGAGTGTCATTTGACAGGTGCCATGT ${\tt GAGCAGAGATGTGAAGGAGTGGCCCGGGACAATCAGGGCAGAATCCCTGAGGTGTCCCTGGCCAGTGTCCTTCCA}$ CATGGTGGGCCTGGATGCTGCAGGGAAGACCACGATCCTCTACAAGCTTAAGCTGGGTGAGATCGTGACCACCAT ${\tt GGACAAGATCCGGCCCCTGTGGCGCCACTACTTCCAGAACACAAGGCCTGATCTTCGTGGTGGACAGCAATGA}$ CAGAGAGCGTGTGAACGAGGCCCGTGAGGAGCTCATGAGGATGCTGGCCGAGGACGAGCTCCGGGATGCTGTCCT CCTGGTGTTCGCCAACAAGCAGGACCTCCCCAACGCCATGAATGCGGCCGAGATCACAGACAAGCTGGGGCTGCA ACTCTCATGTGGCAAACGTGCGGCTCGTGGTGTGAGTGCCAGAAGCTGCCTCCGTGGTTTGGTCACCGTGTGCAT ATGAGGCAGTTTCTGGTACTCCTATGCAATATTACTCAGCTTTTTTTATTGTAAAAAGAAAAATCAACTCACTGT TCAGTGCTGAGAGGGGATGTAGGCCCATGGGCACCTGGCCTCCAGGAGTCGCTGTGTTGGGAGAGCCGGCCACGC AGTTAAGAATCCAAGTCGAGAACACTTGAACACACAGAAGGGAGACCCCGCCTAGCATAGATTTGCAGTTACGGC CTGGATGCCAGTCGCCAGCCCAGCTGTTCCCCTCGGGAACATGAGGTGGTGGTGGCGCAGCAGACTGCGATCAAT TCTGCATGGTCACAGTAGAGATCCCCGCAACTCGCTTGTCCTTGGGTCACCCTGCATTCCATAGCCATGTGCTTG TCCCTGTGCTCCCACGGTTCCCAGGGGCCAGGCTGGGAGCCCACAGCCACCCCACTATGCCGCAGGCCGCCCTAC CCACCTTCAGGCAGCCTATGGGACGCAGGGCCCCATCTGTCCCTCGGTCGCCGTGTGGCCAGAGTGGGTCCGTCG TCCCCAACACTCGTGCTCGGCTCAGACACTTTGGCAGGATGTCTGGGGGCCTCACCAGCAGGAGCGCGTGCAAGCCG GCTGGAGCTGTTAAATTTATCTTGGGGAAACCTCAGAACTGGTCTATTTGGTGTCGTGGAACCTCTTACTGCTTT TAGCTATTAGAATAAAATCTCTTAACTATT

PCT/IIS2003/028547

FIGURE 617

MGNIFANLFKGLFGKKEMRILMVGLDAAGKTTILYKLKLGEIVTTIPTIGFNVETVEYKNISFTVWDVGGQDKIR PLWRHYFQNTQGLIFVVDSNDRERVNEAREELMRMLAEDELRDAVLLVFANKQDLPNAMNAAEITDKLGLHSLRH RNWYIOATCATSGDGLYEGLDWLSNQLRNQK

PCT/US2003/028547

664/6881 FIGURE 618A

GTGGGACCATCCAGTTGCAGGAAAACAAGCTTAACACGCCCACTGATTCTACATTATGCTCCTACCTCCCAGCAG CCTCTCCAGGCCCAGAACTTTCTCCAGTCAGCCTCTACAGACCAAGCTCATGACTCACAATGGCCTATTTAGGCC CATACCCTACCTCACGGCAGTCTCCGCAGATGAGCCTACTGCCTCACAACAGCCTCCACAGGCACAGCTCCATCG TTACAATGGCCTCTTTAGACCCAGCTCCTGCCTCCCAGCCTTCTCTCCAGGCCCTGAACTTTCTCAAGTCGACCT CACCAGGCCCAGCTCATGCTTCTTTGCAGCCTCTCCAGGCCCAGCTCCTGCATCTTGGTGGCACCTCCAGGCCCA GCCTCTGCCTCCGGTCGGCCTCTACAATCCCAACATCTGCCTCACAGCAGATTCTTCAGGCCCAGCATCTGCCTC ACTGTGGACCCCCAAGCCAAGCTCCCAACCTTTCAGCAGCTTCTACACACCCAACTCCTGCCACCCAGTGGCCT CTTTAGGCCAAGCTCATGCTTCACAAGGGCCTTTCCAGGCTCAACTTTTGTCTCATGGCAACCTTTCCTGGCCAG ATTCCTGCCTGTCTCCCAGCAGCCTAGACAGGCCCAGGTCTTGCCTCACACTGGCCTCTACATCCAGCTCATG CCTCACGGTGGCCTCTCCAGGCCCAACTCCTGTCCCAGGACGTCATCTCCGGGCCCCAAAACTTACTCAAGTCAGA AGCTCCTGCCTCCTGTCAGCGTCTACAGGCCCAACCTCTGCCTCATGGGGGGCTTCTCCAGGCCCACCTCTTCCTC TTGGCTGGGTCTACAGGCACAACTGCTGCCTCACAACAGCCTTTTTTGGCCCAGTTCCTGTCCAGCTCATGGCGG CCAATGTAGGCCCAAAACTTCCTCAAGTCAAACTCTCCAGGCCCACCTTCTGCTTCCCGGTGGCATGAACAGGCC GCCCAAAACTTCCTCAAATCAGCCTTTTGCCCAACTTCTGTCTACTGTCGGACTCTACAGGCCAGCCTCTGCCTC TACAGGCCCAGCTCCTGCCTTGCAGTGGCCTCTTTAGGCCAAGCTCATGCCCCATGGCGACTTTTCCAGGCACAG CTTTTGCCTTTTGCAGCCTGTCGAGGCCCAGAATGTCCTTAACTCGGCATCTCCAGGATGAGCTCATCCTCCCAG TGCGTCTACAGGCCCGTCTCCTGCCTCACAACAACCTCCTTTGGCCCAACTCCTGCTGAGCTGCTGGCAGCCTCT GTAGGCCACAGAATTCTTAAGGTAAAGCTTTCCAGGCCCACCTTTGGCCTCCCGGCAGGCTCAGCAATCAAACTA TTCCCTCACTGCGGCCACCGAAAGCCAAGTTTCTCCCTGCCTCACGGCATCCTCCGAAAACTGAGCATTTGCCTC ACGGTGGCCTCCCCAGGCCATGAATCTGCCTGCCTCCCAGGCAGCTGCTCCCACAATGGTCTCTTTAGGCCCA GCTCATGCTAAAAGATGGACTCTCCAGGCACAGCTCTTGCCTCCTGGCAGCCTCTGCAGGCCCAAATTCTCCAAA AGTTGGCCTCTCCTAACTCAGCTCCTGCCTCATGTCTGCCTACACAGGCCCAGACTCTTACCACACAGTAGACCC TCCAGGCCCACCACTTGCCTGATCATAGCCTCCTAAGGCCAAGCTCCTGCCTTTCGGCAGCCTCTACAGGCCAAG $\tt CTCCTGCCTCGCAATTGCCTCTGTAGGCCAAGATCATGCCGTGAAGTGGCCTTCCCTAGCCTAACTTTTGCTTTT$ TGACGCATACTCCAGTCCCAAAACTTCCTCCAGTCAGCCGGTCCAGGCCAAGCTCTTCCTCCCAAAGGCTTCTGC AGGCCAAAATCATCCTGAAGTCACCCTCTGCAGGCGCAGCTCCTGCCTCCAAGTGCTGTAGGCCAAGCTAATG $\tt CCTCACAGCACACTTTCCAGGCTGAGCATTTCCTTTTGTGCATCCTCTCCAAGCCCTGAACTTACTCCAGTTGGC$ ACTCCTAGCTACCGGTGGCTTCTGCAGGCCAAAATCGACCTCAAGTCAGCCTCTTCACACCCAGCTCTTGCCTCT GAGTGGCCTCTCCAGGAGCAAAACTTTCTCAAGTCGGCCTCTCCAGGCCCAGCCTCCTGCTTCCCGAGGGCATGT ACAGGCCCAGCCTCTGCCTCACAGCAGACTCTTCACACCCAGCTCTTCCCTGTCTGCGGCCTCTCCAGTCCAAAG ${\tt TCTTGCAACGTGCCCAAGTGTCAGCTCCTGCCTCACACTGGCCTGTTGAGGCCCAGCTCATGCCTCTCGTGGCCT}$ CAACGGGCCCATCCCCTGCCTGTCGGCGGCCTCTACAGGCCCGGCCTCTACCTCACAGTGGGCTCTCCAGGCCCA ${\tt CAGTGGCCTCTGCTGGCCAAGCCCGTGCCTCAGGGCAGCCTTTCCAGGCCTAGCGTTTGCTGCTTTGCATCCTCT}$ $\tt CCAGGCCCTGGACTTCCTCCAGTCGGCCTCTCCAGGCCCAGCTCTTCCTCTCGGCGGCCTCTGCAGGCCCAGACT$ GTCGTCAAGTCGGCCTGTCCAGGGCCAGCTCCTGCCTCCCGGCGGCCTCTGCAGGCCCAAGTCGTCCTCAAGTTG GCCTCCCCAGGCCCAGCAACGGCCTCTCGGCGGCCTTTCCGGGTGCAAAAGTTCCTCGAGTCAGCCTCTCCAGGC $\tt CCAGCTCCTCCTGCCTCCCAGTGGCCTCTTTCGGCCCAGCCCAGCTCATGCCTCCCGGCGGCCTTCCCAGGCCCT$ $A {\tt GCCTCTGCCTCACAGCAGACTCTCCACGCCCAGCTAGCTCTCGCCTCACTGCGGCTTCCCGAGTCCAAAGCTCCCAGCTCCAGCTCCAGCTCCAGCTCCAGCTCCAGCTCCAGCTCCAGAGCTCCAAAGCTCCCAGCTCAGCTCCAGCTCAGCTCCAGGCTCCAGAGCTCCAAAGCTCCCAGCTCAGCTCGCCTCACTGCGGCTTCCCGAGTCCAAAGCTCCCAGCTCAGCTCAGCTCAGCTCAGCTCAGCTCAGCTCAGCTCAGCTCCAGCTCAGCTCAGCTCAGCTCAGCTCAGCTCAGCTCAGCTCAGCTCCAGGCTCAGC$ TGCCTCTCAGCCGCTTCGGCAGGCCCAGCTCCCGCCTGCCAGTGGCCCTCTTCAGGCCCATGGGGCTCATTCCTCA

PCT/US2003/028547

665/6881 FIGURE 618B

 ${\tt CAACGGCCTTTCCAGGCCCAGTTTTTCCCTTCCGGCGGCCTCTTGGCCTCTAATTTGTTTATCTTTTGGGTATAAAATCCCAAAAATATTTGAATTTTTGGAATATTTCCACCATT}$

PCT/IIS2003/028547

666/6881 FIGURE 619

PCT/US2003/028547

667/6881 FIGURE 620

PCT/US2003/028547

668/6881 FIGURE 621

 ${\tt MKLQNQRGGRIFLQDIKKPDCDDWESGLNAMECALHLEKSVNQSLLELHKLATDKNDPHLCDFIETHYLNKQVKAIKELGEHVTNLCKMGAPESGSAEYLLDKHTLGDSDNES}$

PCT/US2003/028547

669/6881 FIGURE 622

PCT/US2003/028547

670/6881 FIGURE 623

MAGTKMGREDSVLDTAWGGSAARETHAGAALSLVSLPSTGLRCGGTTERTSLRVSSALDGVEEPWKLYLQKLTAA
ALSLAAGKWERESKRKGGKGGSPCGQQERVHDSTRIKTKALWSEFRKAEGDTKGGDKAQVKDEPQNRSARLSAKP
APPKPEPKPKKAPAETVPKGKKGKAVAGKEGNNPAENGDAKTDQAQKAEGAGDAKANLLPRCGSKEMKGSVWQRR
GEIVFPPSPKVHLFYFTFIIHKKVKGCQEQGGSTGLLKRNVLTFGCKNCVMRTESPERRRQPFMGSMAHSVLGQN
ARRELPVESALAGNHTPEPDPAMLCASGSRTPPLTESQVRH

PCT/HS2003/028547

671/6881 FIGURE 624

AAGAAGCTGCCGTTGTTCTGGGTACTACAGCAGAAGGGTATCCGGAAGCGAGCACCCCAGTCTGAGATGGCTCCT ATACACCCCTTCCACCTCGTCATCCACAATGAGAGTACCTGTGAGCAGCTGGCAAAGGCCAATGCCGGGAAGCCC A A GACCCC A CCTT CATACCT GCT CCA ATT CAGGCCAAGACAT CCCCTGT GGAT GAAAAGGCCCTACAGGACCAG $\tt CTGGTGCTAGTCGCTGCAAAACTTGACACCGAAGACAAGTTGAGGGCCGCAATGGTCGGGATGCTGGCCAACTTC$ TTGGGCTTCCGTATATATGGCATGCACAGTGAGCTATGGGGCCTGGTCCATGGGGCCACCGTCCTCTCCCCAACG GCTGTCTTTGGCACCCTGGCCTCTCTTATCTGGGAGCCTTGGACCACAGCTGACAGGCTACAGGCAATCCTG GGTGTTCCTTGGAAGGACAAGAACTGCACCTCCCGGCTGGATGCGCACAAGGTCCTGTCTGCCCTGCAGGCTGTA ACAGCCCCAGGCCTGCACCTGAAGCAGCCGTTTGTGCAGGGCCTGGCTCTCTATACCCCTGTGGTCCTCCACGC TCTCTGGACTTCACAGAACTGGATGTTGCTGCTGAGAAGATTGACAGGTTCATGCAGGCTGTGACAGGATGGAAG ACTGGCTGCTCCCTGATGGGAGCCAGTGTGGACAGCACCCTGGCTTTCAACACCTACGTCCACTTCCAAGGGAAG ATGAAGGGCTTCTCCCTGCTGGCCGAGCCCCAGGAGTTCTGGGTGGACAACAGCACCTCAGTGTCTGTTCCCATG CTCTCTGGCATGGGCACCTTCCAGCACTGGAGTGACATCCAGGACAACTTCTCGGTGACTCAAGTGCCCTTCACT GAGAGCGCCTGCCTGCTGATCCAGCCTCACTATGCCTCTGACCTGGACAAGGTGGAGGGTCTCACTTTCCAG CANACTCCCTCAACTGGATGAAGAAACTGTCTCCCCGGACCATCCACCTGACCATGCCCCAACTGGTGCTGCAA GGATCTTATGACCTGCAGGACCTGCTCGCCCAGGCTGAGCTGCCCGCCATTCTGCACACCGAGCTGAACCTGCAA GAGCCCACAGAGTCTACCCAACAGCTTAACAAGCCTGAGGTCTTGGAGGTGACCCTGAACCGCCCATTCCTGTTT GCTGTGTATGATCAAAGCGCCACTGCCCTGCACTTCCTGGGCCGCGTGGCCAACCCGCTGAGCACAGCATGAGGC CAGGGCCCCAGAACACAGTGCCTGGCAAGGCCTCTGCCCCTGGCCTTTGAGGCAAAGGCCAGCAGCAGATAACAA CCCCGGACAATCAGCGATGTGTCACCCCCAGTCTCCCACCTTTTCTTATGAGTCGACTTTGAGCTGGAAAG CAGCCGTTTCTCCTTGGTCTAAGTGTGCTGCATGGAGTGAGCAGTAGAAGCCTGCAGCGGCACAAATGCACCTCC CAGTTTGCTGGGTTTATTTTAGAGAATGGGGGTGGGGAGGCAAGAACCAGTGTTTAGCGCGGGACTACTGTTCCA AAAAGAATTCCAACCGACCAGCTTGTTTGTGAAACAAAAAGTGTTCCCTTTTCAAGTTGAGAACAAAAATTGGG TTTTAAAATTAAAGTATACATTTTTGCATTGCCTTCGGTTTGTATTTAGTGTCTTGAATGTAAGAACATGACCTC CGTGTAGTGTCTGTAATACCTTAGTTTTTTCCACAGATGCTTGTGATTTTTTGAACAATACGTGAAAGATGCAAGC ACCTGAATTTCTGTTTGAATGCGGAACAATAGCTGGTTATTTCTCCCTTGTGTTAGTAATAAACGTCTTGCCAC

PCT/IIS2003/028547

672/6881 FIGURE 625

MRKRAPQSEMAPAGVSLRATILCLLAWAGLAAGDRVYIHPFHLVIHNESTCEQLAKANAGKPKDPTFIPAPIQAK
TSPVDEKALQDQLVLVAAKLDTEDKLRAAWYGMLANFLGFRIYGMHSELWGVVHGATVLSPTAVFGTLASIJIGA
LDHTADRLQAILGYPWKDKNCTSRLDAHKVLSALQAVQGLLVAQGRADSQAQLLLSTVVGVFTAPGLHLKQPFVO
GLALYTPVVLPRSLDFTELDVAAEKIDRFWQAYTGWKTGCSLMGASVDSTLAFNTYVHFQGKMKGFSLLAEPQEF
WVDNSTSVSVPMLSGMGTFQHWSDIQDNFSVTQVPFTESACLLLIQPHYASDLDKVEGLTFQQNSLNWMKKLSPR
TIHLTMPQLVLQGSYDLQOLLAQAELPAILHTELNLQKLSNDRIRVGEVLNSIFFELEADEREPTESTQQLNKPE
VLEVTLNRFPLFAYYDQSATALHFLGRVANPLSTA

PCT/US2003/028547

673/6881 FIGURE 626

GAATTCGGCACGAGCCGGGATCCTGTGTAGCGGCTGCAGAGGGTGCCGCCCCTAGGCGAAGTAGGGCCGTCCT $\texttt{CCGCACC} \underline{\textbf{ATG}} \texttt{GAGTCTTCCAGTTCATCTAACTCTTATTTCTCCGTTGGCCCAACCAGTCCCAGCGCTGTCGTGCT}$ GAAATTTGCAATGAAATGCTACACACCTCTTGTCTATAAGGGAATTACTCCATGTAAACCAATTGATATTAAATG TAGTGTTCTCAATTCTGAGGAGATTCATTATGTCATTAAACAGCTTTCCAAGGAATCCCTTCAATCTGTGGATGT CCTCCGAGAGGAAGTGAGTGAGATCTTAGATGAAATGAGTCACAAACTGCGTCTTGGAGCCATTCGGTTTTGTGC AAGAGCCATCCAGGAGCATCCTGTTGTTCTGCTGCCTAGTCATCGAAGTTACATTGACTTCCTCATGTTGTCTTT TCTTCTATACAATTATGATTTGCCTGTGCCAGTTATAGCAGCAGGAATGGACTTCCTGGGAATGAAAATGGTTGG TGAGCTGCTACGAATGTCGGGTGCCTTTTTCATGCGGCGTACCTTTGGTGGCAATAAACTCTACTGGGCTGTATT CTCTGAATATGTAAAAACTATGTTACGGAATGGTTATGCTCCTGTTGAATTTTTCCTCGAAGGGACAAGAAGCCG CTCTGCCAAGACATTGACTCCTAAATTTGGTCTTCTGAATATTGTGATGGAGCCATTTTTTAAAAGAGAAGTTTT TGATACCTACCTTGTCCCAATTAGTATCAGTTATGATAAGATCTTGGAAGAAACTCTTTATGTGTATGAGCTTCT AGGGGTTCCTAAACCAAAAGAGTCTACAACTGGGTTGCTGAAAGCCAGAAAGATTCTCTCTGAAAATTTTGGAAG CATCCATGTGTACTTTGGAGATCCTGTGTCACTTCGATCTTTGGCAGCTGGGAGGATGAGTCGGAGCTCATATAA GGAGCTTCTGCAAATTGAAAACATGGTTTTGAGCCCCTGGACCCTAATAGTTGCTGTTCTGCTTCAGAACCGGCC ATCCATGGACTTTGATGCTCTGGTGGAAAAGACTTTATGGCTAAAAGGCTTAACCCAGGCATTTGGAGGGTTTCT CATTTGGCCTGATAATAAACCTGCTGAAGAAGTTGTCCCGGCCAGCATTCTTCTGCATTCCAACATTGCCAGCCT TGTCAAAGACCAGGTGATTCTGAAAGTGGACTCCGGAGACTCGGAAGTGGTCGATGGGCTTATGCTCCAGCACAT CACTCTCCTCATGTGCTCAGCTTATAGGAACCAGCTGCTCAACATTTTTGTGCGCCCATCCTTAGTAGCAGTAGC ATTGCAGATGACACCAGGGTTCAGGAAAGAGGATGTCTACAGTTGCTTTCGCTTCCTACGTGATGTTTTTGCAGA TGAGTTCATCTTCCTTCCAGGAAACACACTAAAGGACTTTGAAGAAGGCTGTTACCTGCTTTGTAAAAGTGAAGC CATACAAGTGACTACGAAAGACATCCTAGTTACAGAGAAAGGAAATACTGTGTTAGAATTTTTAGTAGGACTCTT TAAACCTTTTGTGGAAAGCTATCAGATAATTTGCAAGTACCTTTTGAGTGAAGAAGAGAGGACCACTTCAGTGAGGA ACAGTACTTGGCTGCAGTCAGAAAATTCACAAGTCAGCTTCTCGATCAAGGTACCTCTCAATGTTATGATGTATT TAACTGTATATTTAATGTGAATGAACCTGCCACAACCAAATTAGAAGAAATGCTTGGTTGTAAGACACCAATAGG AAAACCAGCCACTGCAAAACTT<u>TAA</u>TAATCAACAAATAGTTATGGAAAATTCGGTCACGTAATTACTCTCATCGA AGGACTCATTACAACAAACAGGGAAGTAAAGGAAGAGACACATCCTCTCATACTCCCTGAGACTCTGAGAACAGT GGACGCAGAGGGAAGAGATGATCATTGGAAGCAATCAGTTTACTCTTCCCCACCACAGTGGTTAAAAAGGCGTTTG

PCT/IIS2003/028547

674/6881 FIGURE 627

MESSSSSNSYFSVGPTSPSAVVLLYSKELKKWDEFEDILEERRHVSDLKFAMKCYTPLVYKGITPCKPIDIKCSV
LNSEETHYVIKQLSKESLQSVDVLREEVSEILDEMSHKLRLGAIRFCAFTLSKVFKQIFSKVCVMEEGICKLORIQEHPVVLLPSHRSYIDFLMLSFLLYNYDLPVPVIAAGMDPLGMKMVGELLRMSGAFPMRRTIFGGNKLYMAVFSE
YVKTMLRNGYAPVEFFELGTRSRSAKTLTFKFGLLNIVMEPFFKREVFDTYLVPISISYDKILEETLYVYELLGV
PKFKESTTGLLKARKILSENFGSIHVYFGDPVSLRSLAAGEMSRSSYNLVPRYIPOKQSEDMHAFVTEVAYKWEL
LQIENMVLSPWTLIVAVLLQNRPSMDFDALVEKTLWLKGLTQAFGGFLIWPDNKPAEPUVPASILHSHIASIJVK
DQVILKVDSGDSEVVDGLMLQMITLLMCSAYRNQLLNIFVEPSLVAVALQMTPGFRKEDVYSCFRFLRDVFADEF
IFLPGNTLKDFEEGCYLLCKSEAIQVTTKDILVTEKGNTVLEFLVGLFKPVESYQIICKYLLSEEEDHFSEEQY
LAAVRKFTSQLLDQGTSQCYDVLSSDVQKNALAACVRLGVVEKKKINNNCIFNVNEPATTKLEEMLGCKTPIGKP

PCT/US2003/028547

675/6881 FIGURE 628

PCT/US2003/028547

676/6881 FIGURE 629

MFSTSAKIVKPNGEKPDEFESRISQALLELEMNLDLKAQLRELNIMAAKEIEVGGGQKAIIIFVPVPQLKSFQKI QVRLVCELEKKFSGKHVVFIAKRRILPKPTWKSCTKYKQKHPRSHTLTAVHDAILEDLVFTSKIVGKRIRVKLDG SRLMKVHLDKAQQNNVEHKVETFSGVYKKLMGKDVNFEFPEFQL

PCT/IIS2003/028547

677/6881 FIGURE 630

PCT/US2003/028547

678/6881 FIGURE 631

MARHVFLTGPPGVGKTTLIHKASEVLKSSGVPVDGFYTEEVRQGGRRIGFDVVTLSGTRGPLSRVGLEPPPGKRE CRVGQYVVDLTSFFQLALFVLKNADCSSGFGQRVCVIDEIGKMELFSQLFIQAVRQTLSTPGTIILGTIPVPKGK PLALVEEIRNRKDVKVFNVTKENRNHLLPDIVTCVQSSRK

PCT/US2003/028547

679/6881 FIGURE 632

PCT/US2003/028547

680/6881 FIGURE 633

MAEVEQKKKRTFRKFTYRGVDLDQLLDMSYEQLMQLYSARQRRRLNRGLRRKRHYLLKRLRKAKKEAPPMEKPEV VKTHLRDVIILPEVVGSMYGVHNGKTFTYKPVKQCRSGIGATHSFCFIPLK

PCT/HS2003/028547

681/6881 FIGURE 634

ACCATGTCTATTCTCAAGATCCATGCCAGGGAGCTCTTTGACTCTCGTGGGAATCCCACTGTTGAGGTTGATCTC
TTCACCTCAGAAGGTTCTTCAGAGCTGCTGTGCCCAGTGGTGCTCTAACTGGTATCTATGAGGTCCTAGAGCTC
CAGGACAATGATAAGACTCGCTATATGGGGAAGGGTGTCTCAAAGCCTGTTGAGCCCATCAATAAAACATATTGCA
CCTGTCCTGGTTAGCAAGAAACTGAACGTCAACAGAACTTCTTCAACAGAAGCTCCCTGGAGCCCTGTTGGCAG
CTCTAGCCTTGCAGTCATGTAATTGGCCCAAATCACCGGAGCCACGTGACCCTCAGTGCATCTCCCGGGGTGGC
CACAGGCAAGATCCCCAGTGATTTTGTGCTCAAAATAAAAAAGCCTCATTGACCCATGAG

PCT/US2003/028547

682/6881 FIGURE 635

MSILKIHARELFDSRGNPTVEVDLFTSEGLFRAAVPSGASTGIYEVLELQDNDKTRYMGKGVSKPVEPINKTIAP VLVSKKLNVTELLQKPSSLEPCWQL

PCT/IIS2003/028547

683/6881 FIGURE 636

CCCAGAAATTCTACCCAAGCTCCCTCAGCACCATGTACCGAGCACTTCGGCTCCTCGCGCGCTCGCGTCCCCTCG TGCGGGCTCCAGCCGCAGCCTTAGCTTCGGCTCCCGGCTTGGGTGGCGCGGCCGTGCCCTCGTTTTGGCCTCCGA ACGCGGCTCGAATGGCAAGCCAAAATTCCTTCCGGATAGAATATGATACCTTTGGTGAACTAAAGGTGCCAAATG ATAAGTATTATGGCGCCCAGACCGTGAGATCTACGATGAACTTTAAGATTGGAGGTGTGACAGAACGCATGCCAA AGATTGCTAATGCAATAATGAAGGCAGCAGATGAGGTAGCTGAAGGTAAATTAAATGATCATTTTCCTCTCGTGG TATGGCAGACTGGATCAGGAACTCAGACAAATATGAATGTAAATGAAGTCATTAGCAATAGAGCAATTGAAATGT TAGGAGGTGAACTTGGCAGCAAGATACCTGTGCATCCCAACGATCATGTTAATAAAAGCCAGAGCTCAAATGATA CTTTTCCCACAGCAATGCACATTGCTGCTACAATAGAAGTTCATGAAGTACTGTTACCAGGACTACAGAAGTTAC ATGATGCTCTTGATGCAAAATCCAAAGAGTTTGCACAGATCATCAAGATTGGACGTACTCATACTCAGGATGCTG TTCCACTTACTCTTGGGCAGGAATTTAGTGGTTATGTTCAACAAGTAAAATATGCAATGACAAGAATAAAAGCTG CCATGCCAAGAATCTATGAGCTCGCAGCTGGAGGCACTGCTGTTGGTACAGGTTTAAATACTAGAATTGGCTTTG CAGAAAAGGTTGCTGCAAAAGTGGCTGCACTTACAGGCTTGCCTTTTGTCACTGCTCCGAATAAATTTGAAGCTC ATGATATTCGATTTTTGGGTTCTGGTCCTCGGTCAGGTCTGGGAGAATTGATCTTGCCTGAAAATGAACCAGGAA GCAGTATCATGCCAGGCAAGGTGAACCCTACTCAGTGTGAAGCAATGACCATGGTTGCAGCCCAAGTCATGGGGA ACCATGTTGCTGTCACTGTCGGAGGCAGCAATGGACATTTTGAGTTGAATGTTTTCAAGCCAATGATGATTAAAA ATGTGTTACACTCAGCCAGGCTGCTGGGGGATGCTTCAGTTTCCTTTACAGAAAACTGCGTGGTGGGAATCCAGG CCAATACAGAAAGGATCAACAAGCTGATGAATGAGTCTCTAATGTTGGTGACAGCTCTCAATCCTCATATAGGGT ATGACAAGGCAGCAAAGATTGCTAAGACAGCACACAAAAATGGATCAACCTTAAAGGAAACTGCTATCGAACTTG $\tt GCTATCTCACAGCAGAGCAGTTTGACGAATGGGTAAAACCTAAGGACATGCTGGGTCCAAAG\underline{TGA}{T}TTACATAAA$ TTTATAATGAAAATAAACATGTATAAAATTTAAAAAACAGACTCCCATTTCTTAAAAAACGGATAAGTTTGAAAG GAAACTGCTAT1GAACTTAAGCATCTCTAGCAGAGCAATTTGATCAGTATATAAAACCCTAGGATGTGCTAGGTC TAAGATGGATTAAACAAGTATAAAATAAAATACATTTATAAAATAAAAAGGAAAACAGACTTAAAA

PCT/IIS2003/028547

684/6881 FIGURE 637

MYRALRILARSRPLVRAPAAALASAPGLGGAAVPSFWPPNARMASQNSFRIEYDTFGELKVPNDKYYGAQTVRS
TMMFKIGGVTERMFTPVIKAFGILKRAAAEVNQDYGLDPKIANAIMKAADEVAEGKLINHIFPLVWWQTGSGTGTO
NNVNEVISNRAIEMLGGELGSKIPVHPNDHVNKSQSSNDTFPTAMHIAAAIEVHEVLLPGLQKLHDALDAKSKEF
AQIIKIGRHTQDAVPLTLGQEFSGYVQOVKYAMTRIKAAMPRIYELAAGGTAVGTGLNTRIGFAEKVAKVAAL
TGLPFVTAPNKFEALAAHDALVELSGAMNTTAGSLMKIANDIRFLGSGPRSGLGELILPENBFGSSIMPGKVMFT
QCEAMTMYAAQVMGNHVAVTVGGSNGHFELNVFKPMMIKNVLHSARLLGDASVSFTENCVVGIQANTERINKLMN
ESIMLVTALNFHIGYDKAAKIAKTAHKNGSTLKETAIELGVLTAEQFDEMVKPKDMKGFK

PCT/HS2003/028547

FIGURE 638

GGGXTCGGCCCCTCCTCTTCTGCGCTCTCTTCGGGATACACGTGGGCTTCGGGCCTGGGCCGCAGTTTTT AATTCGTAGTTGATTGTTCTTTGAATTCACATTTGAGTCCTCGGTTAAAAACCTCAGTTAAAAAGCAGGATAAAGT CGAGCTGCTTTGGTTCTCGGAACGGAAAAGCGTTTTTTTGTTGTTTAGAGGCTTGGCCTTTATGGGGCTCGTGTG TGTTTTAGGGGACGCAAAACAGAACAGAAAGGCGGAGATAAAAAGAGGGGGTGTTAAAAGACCACGAGAAGATCA TGGCCGTGGATATTTTGAGTACATTGAAGAGAACAAGTATAGCAGAGCCAAATCTCCTCAGCCACCTGTTGAAGA AGAAGATGAACACTTCGATGACACAGTGGTTTGTCTTGATACTTATAATTGTGATCTACATTTTAAAATATCAAG AGATCGTCTCAGTGCTTCTTCCCTTACAATGGAGAGTTTTGCTTTTCTTTGGGCTGGAGGAAGAGCATCCTATGG TGTGTCAAAAGGCAAAGTGTGTTTTGAGATGAAGGTTACAGAGAAGATCCCAGTAAGGCATTTATATACAAAAGA TTATGGGTATTCTCTAAAAGGAATAAAAACATGCAACTGTGAGACTGAAGATTATGGAGAAAAGTTTGATGAAAA TGATGTGATTACATGTTTTGCTAACTTTGAAAGTGATGAAGTAGAACTCTCGTATGCTAAGAATGGACAAGATCT TGGCGTTGCCTTCAAAATCAGTAAGGAAGTTCTTGCTGGACGGCCACTGTTCCCGCATGTTCTCTGCCACAACTG TGCAGTTGAATTTAATTTTGGTCAGAAGGAAAAGCCATATTTTCCAATACCTGAAGAGTATACTTTCATCCAGAA CGTCCCCTTAGAGGATCGAGTTAGAGGACCAAAGGGGCCTGAAGAGAAGAAGATTGTGAAGTTGTGATGATGAT TGGCTTGCCAGGAGCTGGAAAAACTACCTGGGTTACTAAACATGCAGCAGAAAATCCAGGGAAATATAACATTCT TGGCACAAATACTATTATGGATAAGATGATGGTGGCAGGTTTTAAGAAGCAAATGGCAGATACTGGAAAACTGAA ${\tt TCTGGATCAGACAAATGTGTCTGCTGCTGCCCAGAGGAGAAAAATGTGCCTGTTTGCAGGCTTCCAGCGAAAAGC}$ TGTTGTAGTTTGCCCAAAAGATGAAGACTATAAGCAAAGAACACAGAAGAAGCAGAAGTAGAGGGGAAAGACCT CTATGTTGAACTTCAGAAGGAAGAAGCCCAAAAACTCTTGGAGCAATATAAGGAAGAAAGCAAAAAGGCTCTTCC ACCAGAAAAGAAACAGAACACTGGCTCAAAGAAAAGCAATAAAAATAAGAGTGGCAAGAACCAGTTTAACAGAGG TGGTGGCCATAGAGGACGTGGAGGATTCAATATGCGTGGTGGAAATTTCAGAGGAGGAGCCCCTGGGAATCGTGG CCCTCGTGCCCCTGTTTTTCCTGGCCGTGGTAGTTACTCAAACAGAGGGAACTACAACAGAGGTGGAATGCCCAA CCAGTGGCAGCAGGGTCAATTCTGGGGTCAGAAGCCATGGAGTCAGCATTATCACCAAGGATATTATTGAATACC ${\tt CAAATAAAACGAACTGATACATATTTCTCCAAAACCTTCACAAGAAGTCGACTGTTTTCTTTAGTAGGCTAACTT}$ TTTTTTGTACATTTTTAATTGCAGTTTAAAAGTGAATCGTAAGAGAACCTCAGCATTGTGCACGATAAGAGAATG TGTTGCTTTGTACCTGGTGTCTTTTATTAAGAATTTACTCCCCCCATTTCTCACAGAGAATAACAGTCGGGAGTC ATTGTCACAATATAATAGAAATGTTAGCAACCAGATTCATGTAAGGACTAAGTGGTCCTCATGAATTGCATTAAG ACTCTGTACTGCTCATATTACACTCCATCCTCTCTGTAGTTTGCTGGGTAGTGGAGGGGGTAAGCTAAATCATAG TTTCTGACAATAACTGGGAAGGTTTTTTCTTAAAATAACAATGGAATTGGTATAATTGGGATTGAAAACTAAAAC TTGGAACTAAGATAGAGAAGATGGAGTGTATGTAGAAGGGCTGTTAAAAATGTAAAACTTGGTTGCATTATTTGT GCTTTGCCCATTTCTTATTAAAAAAACTTGTTGTAAATCCAGTTGTCTAATGGGATCTATATGAAGTTAGCCATG TCTGTATGCCCTTCTCCCACAAAATACTGTATAACTAGTGTGCTTGTAGTAGTTAACTCCACCATCTTTGTAAGC TAATGAAATTGTGAGTCACCCATTTATATCTTAATTTTTAATCATGTCAGTTCTTGAATGGGTATCTCCTTAGCC CATTTT

PCT/US2003/028547

FIGURE 639

GGCGTTGCCGGCCGTGGGTGCTCTGGCCACAGTGAGTTAGGGGCGTCGGAGCGGGTTTCTCCAACCGCAATCGGC TCCGCTCAAGGGGAGGAGGAGTCCCTTCTCGGAAGGCCTAAGGAAACGTGTCGTCTGGAATGGGCTTGGGGGC CACGCCTGCACATCTCCGCGAGACAGAGGGATAAAGTGAAGATGGTGCTGTTATTGTTACCTCGAGTGCCACATG CGACCTCTGAGATATGTACACAGTCATTCTTACTATCGCACTCAGCCATTCTTACTACGCTAAAGAAGAAATAAT TATTCGAGGATATTTGCCTGGCCCAGAAGAAACTTATGTAAATTTCATGAACTATTATATCCGTTTTCCTCGGAG TGAGAGAAAACTCTTTTTAGATATCATCTGAGAGAACTAGTGAATCCCAGTCACTGAGTGGAGTTGAGAGTCTAA GAACCTCTGAAATTTGAGAACTGCTGGACCAGAGCCTTTAGAGCTCTGATAAGGTGTCAACAGGGTAGTTAATTT GGGCAGGTAGTAGCTGTGGATACATATTGCTGGCTTCACAAAGGAGCTATTGCTTGTGCTGAAAAACTAGCCAAA GGTGAACCTACTGATAGGTATGTAGGATTTTGTATGAAATTTGTAAATATGTTACTATCTCATGGGATCAAGCCT ATTCTCGTATTTGATGGATGTACTTTACCTTCTAAAAAGGAAGTAGAGAGATCTAGAAGAGAAAAGACGACAAGCC AATCTTCTTAAGGGAAAGCAACTTCTTCGTGAGGGGAAAGTCTCGGAAGCTCGAGAGTGTTTCACCCGGTCTATC AATATCACACATGCCATGGCCCACAAAGTAATTAAAGCTGCCCGGTCTCAGGGGGTAGATTGCCTCGTGGCTCCC TATGAAGCTGATGCGCAGTTGGCCTATCTTAACAAAGCGGGAATTGTGCAAGCCATAATTACAGAGGACTCGGAT CTCCTAGCTTTTGGCTGTAAAAAGGTAATTTTAAAGATGGACCAGTTTGGAAATGGACTTGAAATTGATCAAGCT CGGCTAGGAATGTGCAGACAGCTTGGGGATGTATTCACGGAAGAAGTTTCGTTACATGTGTATTCTTTCAGGT TGTGACTACCTGTCATCACTGCGTGGGATTGGATTAGCAAAGGCATGCAAAGTCCTAAGACTAGCCAATAATCCA GATATAGTAAAGGTTATCAAGAAAATTGGACATTATCTCAAGATGAATATCACGGTACCAGAGGATTACATCAAC GGGTTTATTCGGGCCAACAATACCTTCCTCTATCAGCTAGTTTTTGATCCCATCAAAAGGAAACTTATTCCTCTG AACGCCTATGAAGATGATGTTGATCCTGAAACACTAAGCTACGCTGGGCAATATGTTGATGATTCCATAGCTCTT CAAATAGCACTTGGAAATAAAGATATAAATACTTTTGAACAGATCGATGACTACAATCCAGACACTGCTATGCCT GCCCATTCAAGAAGTCATAGTTGGGATGACAAAACATGTCAAAAGTCAGCTAATGTTAGCAGCATTTGGCATAGG AATTACTCTCCCAGACCAGAGTCGGGTACTGTTTCAGATGCCCCACAATTGAAGGAAAATCCAAGTACTGTGGGA GTGGAACGAGTGATTAGTACTAAAGGGTTAAATCTCCCAAGGAAATCATCCATTGTGAAAAGACCAAGAAGTGCA GAGCTGTCAGAAGATGACCTGTTGAGTCAGTATTCTCTTTCATTTACGAAGAAGACCAAGAAAAATAGCTCTGAA GGCAATAAATCATTGAGCTTTTCTGAAGTGTTTGTGCCTGACCTGGTAAATGGACCTACTAACAAAAAGAGTGTA AGCACTCCACCTAGGACGAGAAATAAATTTGCAACATTTTTACAAAGGAAAAATGAAGAAAGTGGTGCAGTTGTG CCTCTGGATGAAACTGCTGTCACAGATAAAGAGAACAATCTGCATGAATCAGAGTATGGAGACCAAGAAGGCAAG AGACTGGTTGACACAGATGTAGCACGTAATTCAAGTGATGACATTCCGAATAATCATATTCCAGGTGATCATATT TCTGATGTGTCGCAGTTAAAGAGCGAGGAGTCCAGTGACGATGAGTCTCATCCCTTACGAGAAGGGGCATGTTCT TCACAGTCCCAGGAAAGTGGAGAATTCTCACTGCAGAGTTCAAATGCATCAAAGCTTTCTCAGTGCTCTAGTAAG GACTCTGATTCAGAGGAATCTGATTGCAATATTAAGTTACTTGACAGTCAAAGTGACCAGACCTCCAAGCTATGT $\verb|TTATCTCATTTCTCAAAAAAAAGACACCTCTAAGGAACAAGGTTCCTGGGCTATATAAGTCCAGTTCTGCAGAC| \\$ CAGAAGAGAAAGCATCATAATGCCGAGAACAAGCCGGGGTTACAGATCAAACTCAATGAGCTCTGGAAAAACTTT GGATTTAAAAAAGATTCTGAAAAGCTTCCTCCTTGTAAGAAACCCCTGTCCCCAGTCAGAGATAACATCCAACTA ACTCCAGAAGCGGAAGAGGATATATTTAACAAACCTGAATGTGGCCGTGTTCAAAGAGCAATATTCCAG<u>TA</u>AATG ${\tt CAGACTGCTGCAAAGCTTTTGCCTGCAAGAGAATCTGATCAATTTGAAGTCCCTGTTTGGGAATGAGGCACTTAT}$ ΑΑΑΑΑΑΑΑΑΑΑ

PCT/HS2003/028547

687/6881 FIGURE 640

MGIQGLLQFIKEASEPIHVRKYKGQVVAVDTYCWLHKGAIACAEKLAKGEPIDRYVGFCMKFVNMLLSHGIKPIL
VFDGCTLPSKKEVERSRRERQANLLKGKQLLREGKVSEARECFTRSINITHAMAHKVIKAARSQGVDCLVAPYE
ADAQLAYLNKAGIVQAIITEDSDLLAFGCKKVILKMDGFGNGLEIDQARLGMCRQLGDVFIEEKFRYMCILSGCD
YLSSLRGIGLAKACKVLRLANNPDIVKVIKIGHYLKMMITVPEDYINGFIRANNTFLYQLVFDFIKRKLIFUNA
YEDDVDPETLEYAGQYVDDSIALQIALGNKDINTFEQIDDYNPDTAMPAHSRSHSWDDKTCQKSANVSSIWHRNY
SPRPESGTVSDAPQLKENPSTVGVERVISTKGLNLFRKSSIVKRPRSAELSEDDLLSQYSLSFTKKTKKNSSEGN
KSLSFSEVFVPDLVNGPINKKSVSTPPRTRNKFATFLQRKNEESGAVVVPGTRSRFFCSDSTDCVSNKVSIQFL
DETAVTDKENNLHESEYGDQECKRLVDTDVARNSSDIFNHFIGDHIPDKATVFTDEESYSFESKFTRTISPP
TLGTLRSCFSWSGGLGDFSRTPSPSPSTALQQFRRKSDSPTSLPENNMSDVSQLKSEESSDDESHPLREGACSSQ
SQESGFFSLQSSNASKLSQCSSKDSDSEESDCNIKLLDSQSDQTSKLCLSHFSKKDTPLRNKVPGLYKSSSADSL
STTKIRPLGPARAGGLSKKPASIGKRKHNAENKPGLQIKLNELWKNFGFKKDSEKLPPCKKPLSPVRDNIQLTP
EAEEDIFNKPECGRVQRAIFQ

PCT/US2003/028547

688/6881 FIGURE 641

PCT/HS2003/028547

689/6881 FIGURE 642

GTCCACATGCAGAGGCTCGCTACAGAAGCTACAGAAGAAGATGGTTACATTTCAAGTGGGCAGGTGCCGTTTGCT ${\tt TATGAGCACCATCAGCCACGCTACTTGAATTTTACCTAATTGTCTCAATTCTTAACAATTCTTT}$ GAGGTGATCTGCAACTCTTTCACCATCTGTAATGCGGAGATGCAGGAAGTTGGTGTTGGCCTATATCCCAGTATC TCTTTGCTCAATCACAGCTGTGACCCCAACTGTTCGATTGTGTTCAATGGGCCCCACCTCTTACTGCGAGCAGTC CGAGACATCGAGGTGGGAGAGGAGCTCACCATCTGCTACCTGGATATGCTGATGACCAGTGAGGAGGGCCCGGAAG CAGCTGAGGGACCAGTACTGCTTTGAATGTGACTGTTTCCGTTGCCAAACCCAGGACAAGGATGCTGATATGCTA ACTGGTGATGAGCAAGTATGGAAGGAAGTTCAAGAATCCCTGAAAAAAATTGAAGAACTGAAGGCACACTGGAAG TGGGAGCAGGTTCTGGCCATGTGCCAGGCAATCATAAGCAGCAATTCTGAACGGCTTCCCGATATCAACATCTAC CAGCTGAAGGTGCTCGACTGCGCCATGGATGCCTGCATCAACCTCGGCCTGTTGGAGGAAGCCTTGTTCTATGGT ACTCGGACCATGGAGCCATACAGGATTTTTTTCCCAGGAAGCCATCCCGTCAGAGGGGTTCAAGTGATGAAAGTT GGCAAACTGCAGCTACATCAAGGCATGTTTCCCCAAGCAATGAAGAATCTGAGACTGGCTTTTGATATTATGAGA GTGACACATGGCAGAGAACACAGCCTGATTGAAGATTTGATTCTACTTTTAGAAGAATGCGACGCCAACATCAGA GCATCCTAAGGGAACGCAGTCAGAGGGAAATACGGCGTGTGTCTTTGTTGAATGCCTTATTGAGGTCACACACTC ATGGTTTGCAAACCACAAGAATCATTAGTTGTAGAGAAGCACGATTATAATAAATTCAAAACATTTGGTTGAGGA TGCC

PCT/HS2003/028547

690/6881 FIGURE 643

CTTGCTTCGGACGCCGGATTTTGACGTGCTCTCGCGAGATTTGGGTCTCTCCTAAGCCCGCGCTCGGCAAGTTC
TCCCAGGAGAAAGCCATGTTCAGGTCCAAGGCGCCAAGATCGTGAAGCCCAATGGCGACAAGCCCGGACCGGACGATTCGT
TCCGGCATCTCCCAGGGCTCTTCTGGAGCTGGAGTGAACCTCGAAGCCTCAAGGCTCAGGCTCAGGCTCAATATAT
TCTTTCCAGAAAATCAAGTAATTGAAGTTGGTGGTGGGAAGACTAAATCTTTGTTCCGGTTCCTCAACTGAAA
TCTTTCCAGAAAATCAAGTCCGGCTAGTACGCGAATTCGAGAAAAAATAACAAAACCATCCCAAGGACCGT
GCTCAGAGGAAATTCTGCCTAAGCCAACTCGAAAAAAGCCTACCAAAAAATAAACAAAACGCTCCCAGGAGCCGT
GCTCAAACTAGATGGCACCCGGCTCATAAAGGTTCATTTGAGCAAAGCCACCAAGAACTAATGTGGAAACCAAGGGT
GCAAACTTATTCTGGTGTCATTAAGAGGTCTCATGTGAAGCAAGAACAATCCCAGAGTTCAATTTGAACAAGCTTCATTTTGAACTTTTTCAATTTCAATTGTAA

PCT/US2003/028547

691/6881 FIGURE 644

MFSSSAKIVKPNGEKPDEFESGISQALLELEMNSDLKAQLRELNITAAKEIEVGGGRKAIIIFVPVPQLKSFQKI QVRLVRELEKKFSGKHVVFIAQRRILPKPTRKSRTKNKQKRPRSRTLTAVHDAILEDLVFPSEIVGKRIRVKLDG SRLIKVHLDKAQQNNVEHKVETFSGVYKKLTGKDVNFEFPEFQL

PCT/US2003/028547

692/6881 FIGURE 645

 ${\tt GCTCAGGATGAGGGGGAATCTGGCCCTGGTGGGCGTTCTAATCAGCCTGGCCTTCCTGTCACTGCTGCCATCTGG}$ ACATCCTCAGCCGGCTGGCGATGACGCCTGCTCTGTGCAGATCCTCGTCCCTGGCCTCAAAGGGGATGCGGGAGA GAAGGGAGACAAAGGCGCCCCGGACGGCCTGGAAGAGTCGGCCCCACGGGAGAAAAAGGAGACATGGGGGACAA AGGACAGAAAGGCAGTGTGGGTCGTCATGGAAAAATTGGTCCCATTGGCTCTAAAGGTGAGAAAGGAGATTCCGG GGAGATGGACAACCAGGTCTCTCAGCTGACCAGCGAGCTCAAGTTCATCAAGAATGCTGTCGCCGGTGTGCGCGA GACGGAGAGCAAGATCTACCTGCTGGTGAAGGAGGAGAAGCGCTACGCGGACGCCCAGCTGTCCTGCCAGGGCCG CGGGGGCACGCTGAGCATGCCCAAGGACGAGGCTGCCAATGGCCTGATGGCCGCATACCTGGCGCAAGCCGGCCT GGCCCGTGTCTTCATCGGCATCAACGACCTGGAGAAGGAGGGCGCCTTCGTGTACTCTGACCACTCCCCCATGCG GACCTTCAACAAGTGGCGCAGCGGTGAGCCCAACAATGCCTACGACGAGGAGGACTGCGTGGAGATGGTGGCCTC CTCAGGCTGGGGCTGCCCATTGGGGGCCCCACATGTCCCTGCAGGGTTGGCAGGGACAGAGCCCAGACCATGGTG GCCTATGCTTAAGAGGAAAATGAAAGTGTTCCTGGGGTGCTGTCTCTGAAGAAGCAGAGTTTCATTACCTGTATT GTAGCCCCAATGTCATTATGTAATTATTACCCAGAATTGCTCTTCCATAAAGCTTGTGCCTTTGTCCAAGCTATA

PCT/HS2003/028547

693/6881 FIGURE 646

MRGNLALVGVLISLAFLSLLPSGHPQPAGDDACSVQILVPGLKGDAGEKGDKGAPGRPGRVGPTGEKGDMGDKGQ KGSVGRHGKIGPIGSKGEKGDSGDIGPPGPNGBPGLPCECSQLRKAIGEMDNQVSQLTSELKFIKNAVAGVRETE SKIYLLVKEEKRYADAQLSCQGRGGTLSMFKDEAANGLMAAYLAQAGLARVFIGINDLEKEGAFVYSDHSPMRTF NKWRSGEPNNAYDBEDCVEMVASGGWNDVACHTTMYFMCEFDKENM

PCT/US2003/028547

694/6881 FIGURE 647

GGCACGAGGGGCTTCTGTCACCTTCCTCACGGACCTTGGTCACGGCCGCAGGTGACCCCTTAGCCCAGCTCCAGT GGGCGGGTGGCAGGGTCATGGAGGACGCTGGCGGCGGCGAGGAGACCCCGGCCCCGGAGGCCCCGCACCCCCTC A GCTCGCGCCTCCGGA GGA GCA GGGGTTGCTCTTCCA GGA GGA A A CCATCGA TCTTGGCGGA GA TGA GTTTGGA T TCCTCATCTCTGACTCCCCCAACAGCGAGGGCGACGGGGGGGCCTGGGCCGAGTGCGGGACGAAGCTGAGCCCG GAGGGGAAGGCGACCCAGGCCGGGAGCCCGCGGGCACCCCGAGTCCCAGCGGCGACGGCCGACGGCGACTGTGCCC CCGAGGACGCGCCACCCAGTAGCGGAGGGCCCCGAGGCAGGACGCCGCGCGGAGGTCCCAGGCAGCGAAGCCG CCTCCGGGGACGGCTTCGAGCCGCAGATGGTGAAGTCGCCCAGCTTCGGTGGCGCCAGCGAGGCCTCGGCCAGGA CCGCCAGCCCGCCTCCCCTCGCTGTGCCCGGGACCGAGGGCCCCCGAACCCGTGGCCATGCGAGGGCCCCAGG CARCTGCGCCCCGGCGTCGCCAGAGCCTTTCGCGCACATCCAGGCAGTGTTTGCAGGGAGTGACGACCCCTTTG CCACCGCCTGAGCATGAGCGAGATGGACCGGAGGAACGACGCCTGGCTTCCCGGCGAGGCTACGCGTGGAGTCC TGCGGGCCGTGGCCACCCAGCAGCGCGCGCGCGTGTTCGTGGACAAGGAGAACCTCACCATGCCGGGCCTCAGGT TCGACAACATCCAGGGAGATGCAGTTAAAGACTTGATGCTTCGCTTTCTGGGTGAAAAAGCTGCAGCAAAGAGAC AAGTCCTAAATGCCGACTCAGTGGAACAATCTTTTGTTGGATTGAAACAGCTAATCAGCTGCAGAAACTGGAGGG CAGCAGTGGACCTGTGCGGACGTCTCCTCACAGCCCACGGCCAGGGCTACGGCAAGAGCGGGCTGCTCACCAGCC ACACGACAGATTCACTGCAGCTCTGGTTTGTCAGGCTGGCACTACTAGTGAAGTTGGGCCTTTTCCAGAATGCTG AGATGGAATTTGAACCCTTCGGAAATCTTGATCAGCCAGATCTTTATTACGAGTACTACCCGCACGTGTACCCTG GGCGCAGGGGCTCCATGGTCCCCTTCTCGATGCGCATCTTGCACGCGGAGCTTCAGCAGTACCTGGGGAACCCAC AGGA GTCGCTGGATA GACTGCA CAAGGTGAAGACTGTCTGCAGCAAGATCCTGGCCAATTTGGAGCAAGGCTTAG CAGAAGACGCGGCATGAGCAGCGTGACTCAGGAGGGCAGACAAGCCTCTATCCGGCTGTGGAGGTCACGTCTGG GCCGGGTGATGTACTCCATGGCAAACTGTCTGCTCCTGATGAAGGATTATGTGCTGGCCGTGGATGCGTATCATT CGGTTATCAAGTATTACCCAGAGCAAGAGCCCCAGCTGCTCAGCGGCATCGGCCGGATTTCCCTCCAGATTGGAG ACATAAAAACAGCTGAAAAGTATTTTCAAGACGTTGAGAAAGTAACACAGAAATTAGACGGACTACAGGGTAAAA TCATGGTTTTGATGAACAGCGCGTTCCTTCACCTCGGGCAGAATAACTTTGCAGAAGCCCACAGGTTCTTCACAG AGA TCTTA AGGA TGGA TCCA AGA AA CGCA GTGGCCA ACA CCACCGCTGTGTGTCTGCTCTACCTGGGCA AGC TCAAGGACTCCCTGCGGCAGCTGGAGGCCATGGTCCAGCAGGACCCCAGGCACTACCTGCACGAGAGCGTGCTCT TCAACCTGACCACCATGTACGAGCTGGAGTCCTCACGGAGCATGCAGAAGAAACAGGCCCTGCTGGAGGCTGTCG GGACCCGGGTCTTTGAAACTGTGTCTTGAAGCTAATGTATTAATGTGACATGGAGGAACTCAATAAAACTCCTGC ТТСАААААААААААААААААААА

PCT/HS2003/028547

695/6881 FIGURE 648

MLRFLGEKAAAKRQVLNADSVEQSFVGLKQLISCRNWRAAVDLCGRLLTAHGQGYGKSGLLTSHTTDSLQLWFVR LALLVKLGLFQNAEMBFEFFGMLDQPDLYYEYYPHYYFGRGSGWVFFSNRILHAELQQYLGNPQESIDRIHKVKT VCSKILANLEGGLAEDGGWSSVTQERGAGSIRLWRSRIGKVMYSMANCLLIHKDYVLAVDAYHSVLYPEQDFD LLSGIGRISLQIGDIKTAEKYFQDVEKVTQKLDGLQGKIMVLMNSAFLHLGQNNFAEAHRFFTEILRMDPRNAVA NNNAAVCLLYLGKLKDSLRQLEAMVQQDPRHYLHESVLFNLTIMYELESSRSMQKKQALLEAVAGKEGDSFNTQC LKLA

PCT/IIS2003/028547

696/6881 FIGURE 649

ANTICGCACGAGAAGACTICCAGTTTGGAGTCGTTTGCTGCGGGGAGGGAATGAATGGGCGCTGGGAACACGCC CGCGAGGTGGGGACGCCGGCCGTAGCGAGGTCCTTAGCGTGTGAGTGGCCGGGGTCGGGTCGCTTCCCCGCAG CATGGAGGACGATGCACCAGTGATCTACGGGCTGGAGTTCCAGGCACGTGCCTTAACACCTCAAACTGCAGAAAC AGATGCCATTCGGTTTTTGGTTGGGACGCAGTCTCTTAAATATGATAATCAGATCCATATCATAGATTTTGACGA TGAAAACAACATTATAAATAAAAATGTCCTCCTCCATCAAGCGGGTGAAATCTGGCATATTAGCGCTAGCCCTGC AGACAGAGGTGTGCTGACGACCTGCTACAACAGAACTTCAGACAGGCAAAGTCCTGACATGTGCAGCCGTGTGGAG GATGCCGAAGGAATTGGAATCAGGCAGCCACGAGTCCCCTGATGATTCATCCAGCACTGCACAGACCCTGGAGCT CCTCTCTCACCTTGACACACACCCCATCGCAACATCGCCCTGTGTCGTGGGAGCCAATGGGAGATGGGAAGAA AATCATTTCCTTGGCTGATAACCATATCCTGCTGTGGGATTTACAGGAAAGCTCGAGCCAGGCTGTGCTGGCCAG CTCAGCGTCCCTGGAAGGGAAGGGACAACTGAAGTTCACCTCAGGACGGTGGAGCCCACATCATAACTGCACCCA GGTGCCCACAGCGAACGACCACCCTCCGTGGCTGGGACACCCGGAGCATGAGCCAGATCTACTGCATAGAGAA TGCCCACGGACAGCTGGTGCGGGACCTTGACTTTAATCCCAATAAGCAGTACTACTTGGCCAGCTGCGGAGACGA CTGTAAGGTGAAGTTCTGGGACACCCGAAATGTCACCGAACCCGTGAAGACCCTGGAGGAGCACTCCCACTGGGT GTGGAACGTCCGCTACAACCACTCTCATGACCAGCTGGTCCTCACGGGCAGCAGTGACAGCAGAGTCATCCTTTC CAACATGGTGTCCATCTCGTCGGAGCCCTTCGGCCACTTGGTAGACGACGATGACATCAGTGACCAGGAGGACCA CCGTTCTGAAGAAGAGCACGAGGCCCCTGCAGGACAACGTGATCGCCACCTACGAGGAGCACGAGGACAGCGT CTATGCCGTGGACTGGTCCTCGGCTGACCCGTGGCTGTTTGCCTCCCTGAGCTATGACGGGAGGCTCGTGATCAA CAGGGTGCCCAGGGCCCTGAAGTACCACATCCTGCTATGACTCCCGGGCCTGGGTTATCCAGGTCCCATTGAGTG GTTTTCCTCTTGGCAGATTCTCAAACAGTCGCAGCTCTTTGGAGGTGACTCGTGTTCCAGGTGGATCCCTCTCTG GGAGAGCCGCTGTTCCCTTCCTGTAGCAGCAGCATTTATGAATGGGGTGAATGGGGCTATTGTCGACGGCACAGC TAATGCCCGAACCCAGCCCCTGTCGGCAGAGACAGAGCCCCACATTATTATGTGAATAACAATGTTTTCTGTTTT

PCT/US2003/028547

697/6881 FIGURE 650

MEDDAPVIYGLEFQARALIPQTAETDAIRFLVGTQSLKYDNQIHIIDFDDENNIINKNVLLHQAGEIWHISASPA DRCVLTTCYNRTSDSKVLTCAAVWRMPKELESGSHESPDDSSSTAQTLELLCHLDNTAHCNWACVVWEPMGDGKK ITSLADNHILUMDLQESSQAVLASSASJEGKGQLKFTSGGWSPHNOTQVATANDTILGWDTRSMSGIVCIEN AHGQLVRDLDFNPNKQYYLASCGDDCKVKFWDTRNVTEPVKTLEEHSHWVWNVRYNHSHDQLVLTGSSDSRVILS NWYSISSEPFGHLVDDDDISDQEDHRSEEKSKEPLQDNVIATYEEHEDSVYAVDWSSADPWLFASLSYDGRLVIN RVPRALKYHILL

PCT/HS2003/028547

698/6881 FIGURE 651

CCCAGGCGCAGCCAATGGGAAGGGTCGGAGGCATGGCACAGCCAATGGGAAGGGCCGGGGCACCAAAGCCAATGG GAAGGGCCGGGAGCGCGCGCGCGGAGATTTAAAGGCTGCTGGAGTGAGGGGTCGCCCGTGCACCCTGTCCCAG TCACGGACCGCAGCAGCTGCAGCTCTCGCCGCTGAAGGGGCTCAGCTTGGTCGACAAGGAGAACACGCCGCCGG CCCTGA GCGGGACCCGCGTCCTGGCCAGCAAGACCGGGAGGAGGATCTTCCAGGAGCCCACGGAGCCGAAAACTA A BC AGCTGCCCCGGCGTGGAGGATGAGCCGCTGCTGAGAGAAAACCCCCGCCGCTTTGTCATCTTCCCCATCG AGTACCATGATATCTGGCAGATGTATAAGAAGGCAGAGGCTTCCTTTTGGACCGCCGAGGAGGTTGACCTCTCCA CAAGCGATGGCATAGTAAATGAAAACTTGGTGGAGCGATTTAGCCAAGAAGTTCAGATTACAGAAGCCCGCTGTT TCTATGCCTTCCAAATTGCCATGGAAACATACATTCTGAAATGTATAGTCTTTTTTGACACTTACATAAAAG ATCCCAAAGAAAGGGAATTTCTCTTCAATGCCATTGAAACGATGCCTTGTGTCAAGAAGAAGGCAGACTGGGCCT TGCGCTGGATTGGGGACAAAGAGGCTACCTATGGTGAACGTGTTGTAGCCTTTGCTGCAGTGGAAGGCATTTTCT TTTCCGGTTCTTTTGCGTCGATATTCTGGCTCAAGAAACGAGGACTGATGCCTGGCCTCACATTTTCTAATGAAC AGGAGAGAGTAAGAGAAATAATTATCAATGCTGTTCGGATAGAACAGGAGTTCCTCACTGAGGCCTTGCCTGTGA GCTGAAGTGTTACCAACTAGCCACACCATGAATTGTCCGTAATGTTCATTAACAGCATCTTTAAAACTGTGTAGC TTA CCA TAGCA GTGACAA TGGCAGTCTTGGCTTTAAAGTGAGGGGTGACCCTTTAGTGAGCTTAGCACAGCGGGA TTAAACAGTCCTTTAACCAGCACAGCCAGTTAAAAGATGCAGCCTCACTGCTTCAACGCAGATTTTAATGTTTAC TTANATATANACCTGGCACTTTACANACAAATANACATTGTTTTGTACTCACGGCGGCGATANTAGCTTGATTTA . TTTGGTTTCTACACCAAATACATTCTCCTGACCACTAATGGGAGCCAATTCACAATTCACTAAGTGACTAAAGTA AGTTAAACTTGTGTAGACTAAGCATGTAATTTTTAAGTTTTAATGAATTAAAATATTTGTTAACCAACTT TAAAGTCAGTCCTGTGTATACCTAGATATTAGTCAGTTGGTGCCAGATAGAAGACAGGTTGTGTTTTTATCCTGT GGCTTGTGTAGTGTCCTGGGATTCTCTGCCCCCTCTGAGTAGAGTGTTGTGGGATAAAGGAATCTCTCAGGGCAA GGAGCTTCTTAAGTTAAATCACTAGAAATTTAGGGGTGATCTGGGCCTTCATATGTGTGAGAAACCCGTTTCATTT TATTTCTCACTGTATTTTCCTCAACGTCTGGTTGATGAGAAAAAATTCTTGAAGAGTTTTCATATGTGGGAGCTA AGGTAGTATTGTAAAATTTCAAGTCATCCTTAAACAAAATGATCCACCTAAGATCTTGCCCCTGTTAAGTGGTGA ATTTATATTTACTATGTCTGTTAAATCAGAAATTTTTTATTATCTATGTTCTTCTAGATTTTACCTGTAGTTCAT ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

PCT/US2003/028547

699/6881 FIGURE 652

MLSLRVPLAPITDPQQQLSPLKGLSLVDKENTPPALSGTRVLASKTARRIFQEPTEPKTKAAAPGVEDEPLLRE
NPRREVIFPIEYHDIMOMYKKAEASFWTAEEVDLSKDIQHWESLKPEERYFISHULAFFAASIGIKKETUNENLVERKF
DEVQITERACFYGFQIAMENIHSEMYSLLDTYIKOPKERFFLFNAIETMYCVKKAUDWALRRIGERV
VAFAAVEGIFFSGSFASIFWLKKRGLMPGLTFSNELISRDEGLHCDFACLMFKHLVHKPSEERVREIIINAVRIE
QEFLITEALPVKLIGMNCTLMKQYIEFVADRLMLELGFSKVFRVENFFDFMENISLEGKTNFFEKRVGEYQRMGVM
SSPTENSFTLDADF

PCT/IIS2003/028547

700/6881 FIGURE 653

GTCGCTGAGGCGCCC<u>ATG</u>GCCTTCGCCCGCCGGCTCCTGCGCGGGCCACTGTCGGGGCCGCTGCTCGGGCCGCCGC GGGGTCTGCGCTGGGGCCATGGCTCCGCCGCCGCCTTCGTCCTGGAGCTTCCCGACTGCACCCTGGCTCACTTC GCCCTAGGCGCCGACGCCCCCGGCGACGCAGACGCCCCCGACCCCCGCCTGGCGGCGCTGCTGGGGCCCCCGGAG CGCAGCTACTCGCTGTGCCTGTGCCCGTGACCCCGGACGCCGGCTGCGGGGCCCGGGTCCGGGCGGCGGCGCGCTGCAC CAGCGCCTGCTGCACCAGCTGCGCCGCGGCCCCTTCCAGCGGTGCCAGCTGCTCAGGCTGCTCTGCTACTGCCCG GGCGGCCAGGCCGGCGCGCACAGCAAGGCTTCCTGCTGCGCGACCCCCTGGATGACCCCTGACACCCGGCAAGCG CAGCTGTGGCAGCGCCTCTGGGAGGTGCAAGACGGCAGGCGGCTGCAGGTGGGCTGCGCACAGGTCGTGCCCGTC $\tt CCGGAGCCCCGCTGCACCCGGTGGTGCCAGACTTGCCCAGTTCCGTGGTCTTCCCGGACCGGGAAGCCGCCCGG$ ${\tt GCCGTTTTGGAGGAGTGTACCTCCTTTATTCCTGAAGCCCGGGCAGTGCTTGACCTGGTCGACCAGTGCCCAAAA}$ CAGATCCAGAAAGGAAAGTTCCAGGTTGTTGCCATCGAAGGACTGGATGCCACGGGTAAAACCACGGTGACCCAG TCAGTGGCAGATTCACTTAAGGCTGTCCTCTTAAAGTCACCACCCTCTTGCATTGGCCAGTGGAGGAAGATCTTT GATGATGAACCAACTATCATTAGAAGAGCTTTTTACTCTTTGGGCCAATTATATTGTGGCCTCCGAAATAGCTAAA GAATCTGCCAAATCTCCTGTGATTGTAGACAGGTACTGGCACAGCACGGCCACCTATGCCATAGCCACTGAGGTG AGTGGGGGTCTCCAGCACCTGCCCCCAGCCCATCACCCTGTGTACCAGTGGCCAGAGGACCTGCTCAAACCTGAC $\tt CTTATCCTGCTGCTCACTGTGAGTCCTGAGGAGGAGGGTTGCAGGGCCTGCAGGGCCGGGGCATGGAGAAGACCAGG$ GAAGAAGCAGAACTTGAGGCCAACAGTGTGTTTCGTCAAAAGGTAGAAATGTCCTACCAGCGGATGGAGAATCCT GGCTGCCATGTGGTTGATGCCAGCCCCTCCAGAGAAAAGGTCCTGCAGACGGTATTAAGCCTAATCCAGAATAGT CCATTIGTTATGCAGTGTTCCCAAATTTCTGTTCTACAAGCATGTTGTGTGGCAGAAAACTGGAGACCAGGCATC TTAATTTTACTTCAGGCATCGTACCCTCTTCTGACTGATGGACCCGTCATCACAAAGGTCCCTCTCATCATGTTC CAGTGAGAGGCCAGCGATTGCTTCCTTCCTGGCATAGTAAACATTTTCTTGGAACATATGTTTCACTTAATCACT ACCAAATATCTGGAAGACCTGTCTTACTCAGACAGCACCAGGTGTACAGAAGCAGCAGACAAGATCTTCCAGATC AGCAGGGAGACCCCGGAGCCTCTGCTTCTCCTACACTGGCATGCTGATGAGATCGTGACATGCCCACATTGGCTT CTTCCACATCTGGTTGCACTCGTCATGATGGGCTCGCTGCATCTCCCTCAGTCCCAAATTCTAGAGCCAAGTGTT CCTGCAGAGGCTGTCTATGTGTCCTGGCTGCCCAAGGACACTCCTGCAGAGCCATTTTTGGGTAAGGAACACTTA CAAAGAAGGCATTGATCTTGTGTCTGAGGCTCAGAGCCCTTTTGATAGGCTTCTGAGTCATATAAAAGACATTC TTTTCTAAAGTATGGCTCTGAATAGAATGCACATTTTCCATTGAACTGGATGCATTTCATTTAGCCAATCCAGTA AAAACGCTAAATGCAATGTTTGTTGTGTATTTTCATTACACAAACTTAATTTGTCTTGTTAAATAAGTACAGTGG ATCTTGGAGTGGGATTTCTTGGTAAATTATCTTGCACTTGAATGTCTCATGATTACATATGAAATCGCTTTGACA TATCTTTAGACAGAAAAAGTAGCTGAGTGAGGGGGAAATTATAGAGCTGTGACTTTAGGGAAGTAGGTTGAAC CAGGTGATTACCTAAAATTCCTTCCAGTTCAAAGGCAGATAAATCTGTAAATTATTTTATCCTATCTACCATTTC TTAAGAAGACATTACTCCAAAATAATTAAATTTAAGGCTTTATCAGGTCTGCATATAGAATCTTAAATTCTAATA AAGTTTCATGTTAATGTCATAGGATTTTTAAAAGAGCTATAGGTAATTTCTATATAATATGTGTATATTAAAATG TAATTGATTTCAGTTGAAAGTATTTTAAAGCTGATAAATAGCATTAGGGTTCTTTGCAATGTGGTATCTAGCTGT CTTTATGTCCCTGGCACATGAATAAACTTTGCTGTGGTTTACT

PCT/US2003/028547

701/6881 FIGURE 654

MAFARRLIRGPLSGPLIGRRGVCAGAMAPPRRFVLELPDCTLAHFALGADAFGDADAPDPRLMALLGPPERSYSL CVFVTFDAGCGARVRAARLHORLHQLRRGPFORCQLIRLLCYCPGGQAGGAQQGFLIRDPLDDPDTRQALLELL GACQEAPRPHLGEFEADPRGQLWGRLWEVQDGRRLOVGCAQVVFVPEPPLHEVVPDLDSSVVFPDREAARAVLEE CTSFIFEARAVLDLVOQCFKQIQKGKFQVVAIEGLDATGKTTVTQSVADSLKAVLLKSPPSCIGQWRKIFDDEFT IIRRAFYSLGNYIVASEIIAKESAKSPVIVDRYWHSTATYAIATEVSGGLQHLPPAHHEVYQWEDLLKFDLILLL TVSPEERLQRLQGRGMEKTREBAELEANSVFRQKVEMSYQRMENPGCHVVDASPSREKVLQTVLSLIQNSFSEP

PCT/US2003/028547

702/6881 FIGURE 655

GTGGTGGGACTCGCGGCGGGCGGGAGACGTGAAGCTCTCGAGGCTCCTCCCGCTGCGGGTCGGCGCTCGCCC AGCTGGCCGAGCAGGCCGAGCGCTACGACGACATGGCCACCTGCATGAAGGCAGTGACCGAGCAGGGGCGCCGAGC TGTCCAACGAGGAGCGCAACCTGCTCTCCGTGGCCTACAAGAACGTGGTCGGGGGCCGCAGGTCCGCCTGGAGGG TCATCTCTAGCATCGAGCAGAAGACCGACACCTCCGACAAGAAGTTGCAGCTGATTAAGGACTATCGGGAGAAAG TGGAGTCCGAGCTGAGATCCATCTGCACCACGGTGCTGGAATTGTTGGATAAATATTTAATAGCCAATGCAACTA ATCCAGAGAGTAAGGTCTTCTATCTGAAAATGAAGGGTGATTACTTCCGGTACCTTGCTGAAGTTGCGTGTGGTG AACCCACACACCCAATCCGCCTGGGGCTTGCTCTTAACTTTTCTGTATTTTACTATGAGATTCTTAATAACCCAG ACAAAGACAGCACCCTCATCATGCAGTTGCTTAGAGACAACCTAACACTTTGGACATCAGACAGTGCAGGAGAAG AATGTGATGCGGCAGAAGGGGCTGAAAACTAAATCCATACAGGGTGTCATCCTTCTTTCCTTCAAGAAACCTTTT TACACATCTCCATTCCTTATTCCACTTGGATTTCCTATAGCAAAGAAACCCATTCATGTGTATGGAATCAACTGT TTATAGTCTTTTCACACTGCAGCTTTGGGAAAACTTCATTCCTTGATTTGTGTTTTGTCTTGGCCTTCCTGGTGTG ACTARAAATGTATCTGGTATTTAAGTAATCTGAACCAGTTCTGCAAGTGACTGTGTTTTGTATTACTGTGAAAAT AAGAAAATGTAGTTAATTACAATTTAAAGAGTATTCCACATAACTTCTTAATTTCTACATTCCCCCCTTACTCT TCGGGGGTTTCCTTTCAGTAAGCAACTTTTCCATGCTCTTAATGTATTCCTTTTTAGTAGGAATCCGGAAGTATT AGATTGAATGGAAAAGCACTTGCCATCTCTGTCTAGGGGTCACAAATTGAAATGGCTCCTGTATCACATACGGAG GTCTTGTGTATCTGTGGCAACAGGGAGTTTCCTTATTCACTCTTTATTTGCTGCTGTTTAAGTTGCCAACCTCCC CTCCCAATAAAAATTCACTTACACCTCCTGCCTTTGTAGTTCTGGTATTCACTTTACTATGTGATAGAAGTAGCA TGTTGCTGCCAGAATACAAGCATTGCTTTTGGCAAATTAAAGTGCATGTCATTTCTTAATACACTAGAAAGGGGA AATAAATTAAAGTACACAAGTCCAAGTCTAAAACTTTAGTACTTTTCCATGCAGATTTGTGCACATGTGAGAGGG TGTCCAGTTTGTCTAGTGATTGTTATTTAGAGAGTTGGACCACTATTGTGTGTTGCTAATCATTGACTGTAGTCC CAAAAAAGCCTTGTGAAAATGTTATGCCCTATGTAACAGCAGAGTAACATAAAATAAAAGTACATTTATAAACC ATTTACTATGGCTTTGTAACAATTGCATACCCATATTTTAAGGGACAGGTGAATTTACTACTTTCTAAAGTTTAT TGATACTTCCCTTTTATGTAAAATGTAGTAGTGATACCTATATTTCCACATTGTGCATTGTGACACACTTGTCTA GGGATGCCTGGAAGTGTATAAAATTGGACTGCATTTCTTAGAGTGTTTTACTATAGATCAGTCTCATGGGCCATC TCTTCCTCAGATGTAAATGATATCTGGTTAAGTGTTATATGGAATAAAGTGGACATTTTAAAACTA

PCT/US2003/028547

703/6881 FIGURE 656

MEKTELIQKAKLAEQAERYDDMATCMKAVTEQGAELSNEERNLLSVAYKNVVGGRRSAWRVISSIEQKTDTSDKK LQLIKDYREKVESELRSICTTVLELLDKYLIANATNPESKVFYLKWKGDYFRYLAEVACGDDRKQTIDNSGGAYQ EAPDISKKEMOPTHPIRLGLALNFSVFYYBILNNPELACTLAKTAFDEAIAELDTLNEDSYKDSTLIMQLLRDNL TLWTSDSAGECDAAECAEN

PCT/HS2003/028547

704/6881 FIGURE 657

ATGCCGAGCTGCTCCACGTCCACCATGCCGGGCATGATCTGCAAGAACCCAGACCTCGAGTTTGACTCGCTACAG CCCTGCTTCTACCCGGACGAAGATGACTTCTACTTCGGCGGCCCCGACTCGACCCCCCGGGGGAGACATCTGG AAGAAGTTTGAGCTGCTGCCCACGCCCCCGCTGTCGCCCAGCCGTGGCTTCGCGGAGCACAGCTCCGAGCCCCCG AGCTGGGTCACGGAGATGCTGCTTGAGAACGAGCTGTGGGGCAGCCCGGCCGAGGAGGACGCGTTCGGCCTGGGG CTGGAGCGCCCGTGAGCGAGAAGCTGCAGCACGGCCGCCGGGCCGCCAACCGCCGGTTCCACCGCCCAGTCCCCG CCCGCCGAGCTCGCCCACCCGGCCGAGTGCGTGGATCCCGCCGTGGTCTTCCCCTTTCCCGTGAACAAGCGC GCCGCCCAGCCGGGGCCCCGGGGGTCGCCCCTCCGCGCCCAGGCGGCCACAGACCAGCGGCGGCGACCACAAG GCCCTCAGTACCTCCGGAGAGGACACCCTGAGCGATTCAGATGATGAAGATGATGAAGAGGAAGATGAAGAGAAGATGAAGAGAA GAAATCGACGTGGTCACTGTGGAGAAGCGGCGTTCCTCCTCCAACACCAAGGCTGTCACCACATTCACCATCACT GTGCGTCCCAAGAACGCAGCCCTGGGTCCCGGGAGGGCTCAGTCCAGCGAGCTGATCCTCAAACGATGCCTTCCC ATCCACCAGCAGCACAACTATGCCGCCCCCTCTCCCTACGTGGAGAGTGAGGATGCACCCCCACAGAAGAAGATA AAGAGCGAGGCGTCCCCACGTCCGCTCAAGAGTGTCATCCCCCCAAAGGCTAAGAGCTTGAGCCCCCGAAACTCT GACTCGGAGGACAGTGAGCGTCGCAGAAACCACAACATCCTGGAGCGCCAGCGCCGCAACGACCTTCGGTCCAGC TTTCTCACGCTCAGGGACCACGTGCCGGAGTTGGTAAAGAATGAGAAGGCCGCCAAGGTGGTCATTTTGAAAAAG GCCACTGAGTATGTCCACTCCCTCCAGGCCGAGGAGCACCAGCTTTTGCTGGAAAAGGAAAAATTGCAGGCAAGA $\tt CTTTGCACATTTTGATTTTTTTTTAAACAAACATTGTGTTGACATTAAGAATGTTGGTTTACTTTCAAATCGGT$ $\verb|CCCCTGTCGAGTTCGGCTCTGGGTGGGCAGTAGGACCACCAGTGTGGGGTTCTGCTGGGACCTTGGAGAGCCTGC|\\$ ATCCCAGGATGCTGGGTGGCCCTGCAGCCTCCTCCACCTCCATGACAGCGCTAAACGTTGGTGACGGTTG GGAGCCTCTGGGGCTGTTGAAGTCACCTTGTGTGTTCCAAGTTTCCAAACAACAGAAAGTCATTCCTTCTTTTA AAATGGTGCTTAAGTTCCAGCAGATGCCACATAAGGGGTTTGCCATTTGATACCCCTGGGGAACATTTCTGTAAA TACCATTGACACATCCGCCTTTTGTATACATCCTGGGTAATGAGAGGTGGCTTTTGCGGCCAGTATTAGACTGGA AGTTCATACCTAAGTACTGTAATAATACCTCAATGTTTGAGGAGCATGTTTTGTATACAAATATATTGTTAATCT CTGTTATGTACTGTACTAATTCTTACACTGCCTGTATACTTTAGTATGACGCTGATACATAACTAAATTTGATAC TTATATTTTCGTATGAAAATGAGTTGTGAAAGTTTTGAGTAGATATTACTTTATCACTTTTTGAACTAAGAAACT TTTGTAAAGAAATTTACTATATATATATGCCTTTTTCCTAGCCTGTTTCTTCCTGTTAATGTATTTGTTCATGTT TGGTGCATAGAACTGGGTAAATGCAAAGTTCTGTGTTTAATTTCTTCAAAATGTATATATTTAGTGCTGCATCTT

PCT/US2003/028547

705/6881 FIGURE 658

MPSCSTSTMPGMICKNPDLEFDSLQPCFYPDEDDFYFGGPDSTPPGEDIWKKFELLPTPPLSPSRGFAEHSSEPP
SWVTEMLLENBLWGSPAEBDAFGLGGLGGLTPHPVILQDCWSGFSAREKLERAVSEKLQHGRGPPTAGSTAGS
AGAASPAGRGHGGAAGAGRAGAALPAELAHPAAECVDPAVVFPFPVNKREPAPPVPAAPASAPAAGAPAVASGAGI
AAPAGAPGVAPPRFGGRQTSGGDHKALSTSGEDTLSDSDDBDDEEBDEEEDELDVVTVEKRRSSSNTKAVTTFTIT
VRPKNAALGPGRAQSSELILKRCLPIHQQHNYAAPSPYVESEDAPPQKKIKSEASPRPLKSVIPPKAKSLSPRNS
DSEDSERRRNHNILERQRRNDLRSSFLTLRDHVPELVKNEKAAKVVILKKATEYVHSLQAEEHQLLLEKEKLQAR
OQOLLKKIEHARTC

PCT/HS2003/028547

706/6881 FIGURE 659

GTCAGTCCCTCCTGTAGCCGCCGCCGCCGCCGCCCGCCCCCTCTGCCAGCAGCTCCGGCGCCACCTCGGGCCG GCCTCCGGCGTCTGCGCTTCCCCATGGGGCTGGCCTGCGGCGCCTGGGCGCTCTGAGATTGTCACTGTTCCA ATCTCTTAGTTTTCCATAGGAACATCAAGAAATCATGAACAACTTTGGTAATGAAGAGTTTGACTGCCACTTCCT CGATGAAGGTTTTACTGCCAAGGACATTCTGGACCAGAAAATTAATGAAGTTTCTTCTTCTGATGATAAGGATGC CTTCTATGTGGCAGACCTGGGAGACATTCTAAAGAAACATCTGAGGTGGTTAAAAGCTCTCCCTCGTGTCACCCC CTTTTATGCAGTCAAATGTAATGATAGCAAAGCCATCGTGAAGACCCTTGCTGCTACCGGGACAGGATTTGACTG TGCTAGCAAGACTGAAATACAGTTGGTGCAGAGTCTGGGGGTGCCTCCAGAGAGGATTATCTATGCAAATCCTTG TABACABGTATCTCABATTAAGTATGCTGCTAATAATGGAGTCCAGATGATGACTTTTGATAGTGAAGTTGAGTT GATGAAAGTTGCCAGAGCACATCCCAAAGCAAAGTTGGTTTTGCGGATTGCCACTGATGATTCCAAAGCAGTCTG TCGTCTCAGTGTGAAATTCGGTGCCACGCTCAGAACCAGCAGGCTCCTTTTGGAACGGGCGAAAGAGCTAAATAT TGCCCGCTGTGTTTTTTGACATGGGGGCTGAGGTTGGTTTCAGCATGTATCTGCTTGATATTGGCGGTGGCTTTCC TGGATCTGAGGATGTGAAACTTAAATTTGAAGAGATCACCGGCGTAATCAACCCAGCGTTGGACAAATACTTTCC GTCAGACTCTGGAGTGAGAATCATAGCTGAGCCCGGCAGATACTATGTTGCATCAGCTTTCACGCTTGCAGTTAA TATCATTGCCAAGAAAATTGTATTAAAGGAACAGACGGCCTCTGATGACGAAGATGAGTCGAGTGAGCAGACCTT TATGTATTATGTGAATGATGGCGTCTATGGATCATTTAATTGCATACTCTATGACCACGCACATGTAAAGCCCCT TCTGCAAAAGAGACCTAAACCAGATGAGAAGTATTATTCATCCAGCATATGGGGACCAACATGTGATGGCCTCGA TCGGATTGTTGAGCGCTGTGACCTGCCTGAAATGCATGTGGGTGATTGGATGCTCTTTGAAAACATGGGCGCTTA CACTGTTGCTGCTGCCTCTACGTTCAATGGCTTCCAGAGGCCGACGATCTACTATGTGATGTCAGGGCCTGCGTG GTCTTGTGCCTGGGAGAGTGGGATGAAACGCCACAGAGCAGCCTGTGCTTCGGCTAGTATTAATGTGTAGATAGC ACTCTGGTAGCTGTTAACTGCAAGTTTAGCTTGAATTAAGGGATTTGGGGGGACCATGTAACTTAATTACTGCTA GTTTTGAAATGTCTTTGTAAGAGTAGGGTCGCCATGATGCAGCCATATGGAAGACTAGGATATGGGTCACACTTA TCTGTGTTCCTATGGAAACTATTTGAATATTTGTTTTATATGGATTTTTATTCACTCTTCAGACACGCTACTCAA GAGTGCCCCTCAGCTGCTGAACAAGCATTTGTAGCTTGTACAATGGCAGAATGGGCCAAAAGCTTAGTGTTGTGA CCTGTTTTTAAAATAAAGTATCTTGAAATAATTAGGC

PCT/US2003/028547

707/6881 FIGURE 660

MNNFGNEEFDCHFLDEGFTAKDILDQKINEVSSSDDKDAFYVADLGDILKKHLRWLKALPRVTPFYAVKCNDSKA
IVKTLAATGTGFDCASKTEIQLVQSLGVPPERIIYANPCKQVSQIKYAANNGVQMMTFDSEVELHKVARAAHPKAK
LVLRIATDDSKAVCRLSVKGATLHSTSBLLLERAKELNIDVVGGSFHVGSGCTDPETVQAISDACKPOHGABV
GFSMYLLDIGGGFPGSEDVKLKFEEITGVINPALDKYFFSDSGVRIIAEPGRYYVASAFTLAVNIIAKKIVLKEQ
TGSDDEDESSEQTFMYYVNDGVYGSFNCILYDHAHVKPLLQKRPKPDEKYYSSSIWGFTCDGLDRIVERCDLFEM
HVGDMMLFENMGAYTVAAASTFNGFQRPTIYYVMSGPAWQLMQQFQNPDFPPEVEEQDASTLPVSCAWESGMKRH
RAACASASINV

PCT/HS2003/028547

708/6881 FIGURE 661

ATGAGTCAGCAGCGGCCGGCGAGGAAGTTACCCAGTCTCCTCCTGGACCCGACGGAGGAGACGGTTCGCCGTCGG TGCCGAGACCCCATCAACGTGGAGGGCCTGCTGCCATCAAAAATAAGGATTAATTTAGAAGATAATGTACAATAT ATGGATCTTGTCAGATCTGCTCCCGGGGGTATTCTTGACTTAAACAAGGTTGCAACGAAACTGGGAGTCCGAAAG CGGAGAGTGTATGACATCACCAATGTCTTAGATGGAATCGACCTCGTTGAAAAAGAAATCCAAGAACCATATTAGA TGGATAGGATCTGATCTTAGCAATTTTGGAGCAGTTCCCCAACAAAAGAAGCTACAGGAGGAACTTTCTGACTTA TCAGCAATGGAAGATGCTTTGGATGAGTTAATTAAGGATTGTCCTCAGCAGCTGTTTGAGTTAACAGATGACAAA GAAAATGAAAGACTAGCATATGTGACCTATCAAGACATTCATAGCATTCAGGCCTTCCATGAACAGATCGTCATT GCAGTTAAAGCTCCAGCAGAAACCAGATTGGATGTTCCAGCTCCCAGAGAAGACTCTATCACAGTGCACATAAGG AGCACCAACGGACCTATCGATGTCTATTTGTGTGAAGTGGAGCAGGGTCAGACCAGTAACAAAAGGTCTGAAGGT GTCGGGACCTCTTCATCTGAGAGCACTCATCCAGAAGGCCCTGAGGAAGAAGAAAATCCTCAGCAAAGTGAAGAA TTGCTTGAAGTAAGCAACTGATGGCATTTGAGAATTTATGTATCACTGAGTTTTTTGGGAATATCTTCGTGGAGA ATTACGCATCAAATTTGATTCTCAGAGCAATAAATTATCCATGAAGTGCTCTCGTTCTCAGTAGCGGCATCATGG CCAGTAGTGTCTTTGAGGAGTTCACCACTTAGATTACTGAGTAATTGTGGTTTCCACATTTGAAAACAACTCCTT TTATAATTATTCACTGCTTTTTGTCAGTGAAATAGACATCTTGCCTCCTGAAGTAGCTTCATCACAGAGTGTCAT GAAGACAGACAGTCAGGCTGAAATGGACAGTTCTTTGTGGACTCTACCCTTCCCTTCAAGGAGTATGTCATATAT CACAAAAGAAATTGCCTTACACTGGTTCATGTTTGCAGTTACTGTTGTACATTGCATAGATGTACACACGAATTT TAGAATCCTCTGGATGAGGGTTAGAAGAGACTTTTTCCAAACTTCTACATGTAGAAGTATCATAAATGTGCTACA CATTTATGTTTGTGGATTTAATTAAAGTATTTTAATATGGTTTTCAGTGCTAAAATTGGAGTCAGATACTTCTTG GTTTTAAGCTGTCTACCTAATTGCTGTCTCCCAGCAGACTGGTGGCATGCCCAGTGGCTTTGGGGGCAAGGATAG AAATGCCATCAGGAAATAGCTGAATTCATTGTGAAACATGAATTCAGTCATGGTGATAATTGGAAACTCCTTTCA GGTTTTTGCAAGTAGATTTTGTAATGTTTGTGTATGCAGCCTTGCTGTTGAGTCAAGTCCAAGGGGTTTTACTTAG GACAAGTTGTACCTTGCCCTCTCCCAGCTCTGCTCCCACATTTTCACATACCTAGCTGTTTCTACCTCATTGGG TAAGTCATTTACCACTCTGTGCCTCAGTTTACTCTGTAGTTTACCATTAGACTGTGAGCTCCTTGAGGGACTTTG TCATAATCACTGTTACATCCCAGTGCCTCACACCATGCCTGGCCCTTAAGAAGTGCTCAATAAATGTCTGAACAA ATAA

PCT/HS2003/028547

709/6881 FIGURE 662

GCCACGCCGTGTCAGTCGGGAGGGAGGGAGCGAGCAGCCGAGCCGAGGACGGGGTGAAGATGGCGGCCTTC TCCGAGATGGGTGTAATGCCTGAGATTGCACAAGCTGTGGAAGAGATGGATTGGCTCCTCCCAACTGATATCCAG GCTGAATCTATCCCATTGATCTTAGGAGGAGGTGATGTACTTATGGCTGCAGAAACAGGAAGTGGCAAAACTGGT GCTTTTAGTATTCCAGTTATCCAGATAGTTTATGAAACTCTGAAAGACCAACAGGAAGGCAAAAAAAGGAAAAACA ACAATTAAAACTGGTGCTTCAGTGCTGAACAAATGGCAGATGAACCCATATGACAGAGGATCTGCTTTTGCAATT GGGTCAGATGGTCTTTGTTGTCAAAGCAGAGAAGTAAAGGAATGGCATGGGTGTAGAGCTACTAAAGGATTAATG AAAGGGAAACACTACTATGAAGTATCCTGTCATGACCAAGGGTTATGCAGGGTCGGGTGGTCTACCATGCAGGCC GATAATTATGGAGAGGAATTCACTATGCATGATACCATTGGATGTTACCTGGATATAGATAAGGGACATGTCAAG TTCTCCAAAAATGGAAAAGATCTTGGTCTGGCATTTGAAATACCACCACATATGAAAAACCAAGCCCTCTTTCCT GCCTGTGTTTTGAAGAATGCTGAACTGAAATTTAACTTCGGTGAAGAGGAATTTAAGTTTCCACCAAAAGATGGC TTTGTTGCTCTTTCCAAGGCACCGGATGGTTACATTGTCAAATCACAGCACTCAGGTAATGCACAGGTGACACAA ACAAAGTTTCTCCCCAATGCTCCGAAAGCTCTCATTGTTGAACCTTCCCGGGAGTTAGCTGAACAAACTTTGAAC AACATCAAGCAGTTTAAGAAATACATTGATAATCCTAAATTAAGGGAGCTTCTGATAATTGGAGGTGTTGCAGCC CGGGATCAGCTCTCTGTTTTGGAAAATGGAGTAGATATAGTTGTAGGTACTCCGGGAAGACTAGATGACTTGGTG TATTCTGATTTTATAAATAGGATGCACAATCAGATTCCTCAGGTTACCTCTGATGGAAAAAGACTTCAGGTGATT GTTTGCTCTGCCACTTTGCATTCTTTCGATGTAAAGAAACTGTCCGAGAAGATAATGCATTTTCCTACATGGGTT GACTTAAAAGGAGAAGACTCTGTTCCAGATACTGTACACCATGTTGTTGTCCCAGTAAATCCCAAAACTGACAGA CTCTGGGAAAGGCTTGGAAAGAGCCACATTAGAACTGATGATGTACATGCAAAAGATAACACAAGACCTGGTGCT AATAGTCCAGAGATGTGGTCTGAAGCTATTAAAATCCTGAAAGGGGAGTATGCTGTCCGGGCAATCAAGGAACAT AAGATGGATCAAGCAATTATCTTCTGTAGAACCAAAATTGACTGTGATAACTTGGAGCAGTACTTTATACAACAA GGAGGAGGACCTGATAAAAAAGGACACCAGTTCTCATGTGTTTTGTCTTCATGGTGACAGAAAGCCTCATGAGAGA AAGCAAAACTTGGAAAGATTTAAGAAAGGAGATGTAAGATTCTTGATTTGCACAGATGTAGCTGCTAGAGGAATT GATATCCACGGTGTTCCTTATGTTATAAATGTCACTCTGCCCGATGAAAAGCAAAACTACGTACATCGAATTGGC AGAGTAGGAAGAGCTGAAAGGATGGGTCTGGCAATTTCCCTGGTGGCAACAGAAAAAGAAAAGGTTTGGTACCAT GTATGTAGCAGCCGTGGAAAAGGGTGTTATAACACAAGACTCAAGGAAGATGGAGGCTGTACCATATGGTACAAC GAGATGCAGTTACTATCTGAGATAGAAGAACACCTGAACTGTACCATTTCTCAGGTTGAGCCGGATATAAAGGTA CCAGTGGATGAATTTGATGGGAAAGTTACCTACGGTCAGAAAAGGGCTGCTGGTGGTAGAAGCTATAAAGGCCAT GTGGATATTTTGGCACCTACTGTTCAAGAGTTGGCTGCCCTTGAAAAGGAGGCGCAGACATCTTTCCTGCATCTT GGCTACCTTCCTAACCAGCTGTTCAGAACCTTC<u>TGA</u>TTTTTACATTTACTGAATAAGATTTGAGTAATGAAAGTC TGTAGTCTTAAAACTCTAAAACAGTTGTACTGCTTCCAAGCAGCAGTATTTATAGTAACGTAAGCTATTAATGCT AACTCTTGCATGTCAAGAAACATTAGTCTTAGGAATTCTTCAAAAAATGGCATCCCAATGAAAAATTTGATG ACTATA

PCT/US2003/028547

710/6881 FIGURE 663

MAAFSEMGVMPEIAQAVEEMDWLLPTDIQAESIPLILGGGDVLMAAETGSGKTGAFSIPVIQIVYETLKDQQEGK
KGKTTIKTGASVLNKMQMMPYDRGSAFAIGSDGLCCQSREVKEMHGCRATKGLMKGKHYYEVSCHDQGLGKVGK
TMQASLDLGTDKFGFGFGGTGKKSHNKQFDNYGEBFTHHDTIGGYLDIDKGHVKF SKNGKDLGLAFEIPPHMKNQ
ALFPACVLKNAELKFNFGEEFKFPPKDGFVALSKAPDGYIVKSQHSGNAQVTQTKFLPNAPKALIVEPSRELAE
QTINNIKGFKKYIDNFKLEELLIIGGVAARDQLSVLEMOVDIVVGTPGRLDDLVSTGKLMLSQVRFLVLDEADG
LSQGYSDFINRMHNQTPQVTSOGKRLQVJVCSATLHSFDVKKLSEKIMHFPTWVDLKGEDSVPDTVHHVVVPVNP
KTDRLWERLGKSHIRTDDVHAKDNTRPGÅNSPEMWSEAIKILKGEYAVRAIKEHKMDQAIIFCRTKIDCDNLEQY
FIQQGGBPKKGHGFSCVCLHGDRKPHERKQNLERFKKGDVRFLICTDVAARGIDIHGVPYVINVTLPDEKQNYV
HRIGRVGRAERMGLAISLVATEKEKVMYHVCSSGKKGGVTNTRLKEDGGCTIMYNEMDLLSEIEEHLNCTISQVEP
DIKVPVDEFDGKVTYGQKRAAGGGSYKGHVDILAPTVQELAALEKEAQTSFLHLGYLPNQLFRFF

PCT/HS2003/028547

711/6881 FIGURE 664A

GAACATGGCGGCCCCGAGTCAGGGCCGGCTTTGAGTCCAGGCACTGCAGAGGCCTAGAGGCAACCAAAAACATG GTGCATCCTTTATCATCACGAAAGCAATTCGAGATCGTTTATTATTTTTACGCCAATACATCTGGTACAGCCCGG CACCTTTTTTGCTCCCTGATGGACTGGTTCGCTTGGTTAATAAACAGATAAACTGGCATTTGGTACTTGCAAGCA ATAGCACTAGAGTGCATCTATACCTGTGAACGAAATGATCAACTCTGTCTTTGCTATGACCTACTAGAATGTCTG CCAGAAAGAGGATATGGTGATAAGACAGAGGCAACCACAAAGCTTCATGACATGGTAGACCAACTGGAACAAATT CTCAGTGTGTCAGAGCTTTTGGAAAAACATGGACTCGAGAAACCAATTTCATTTGTTAAAAAACACTCAATCTAGC TCAGAAGAGGCACGCAAGCTGATGGTTAGATTGACGAGGCACACTGGCCGGAAGCAGCCTCCTGTCAGTGAGTCT CATTGGAGAACGTTGCTGCAAGACATGTTAACTATGCAGCAGAATGTATACACATGTCTAGATTCTGATGCCTGC TGCAGTGCTTGTTCAGAAAATCCTCCAGCTGGTATAGCCCATAAAGGGAAACCCCACTACAGGGTCAGCTACGAA AAGAGTATTGACTTGGTTTTGGCTGCCAGCAGAGAGTACTTCAATTCTTCTACCAACCTCACTGATAGCTGCATG GCCGTTGGATGTCTTGAAGAATTTGGGGTAAAGATCCTGCCTTTGCAAGTGCGATTGTGCCCTGATCGGATCAGT CTCATCAAGGAGTGTATTTCCCAGTCCCCCACATGCTATAAACAATCCACCAAGCTTCTGGGCCTTGCTGAGCTG CTGAGGGTTGCAGGTGAGAACCCAGAAGAAAGGCGGGGACAGGTTCTAATCCTTTTAGTGGAGCAGGCACTTCGC TTCCATGACTACAAAGCAGCCAGTATGCATTGTCAGGAGCTGATGGCCACAGGTTATCCTAAAAGTTGGGATGTT TGTAGCCAGTTAGGACAATCAGAAGGTTACCAGGACTTGGCCACTCGTCAAGAGCTCATGGCTTTTGCTTTGACA GTGAATTTCCAGATCCATCATGAAGGAGGGGAAAATATCAGTGCTTCACCATTAACTAGTAAAGCAGTACAAGAG GATGAAGTAGGTGTTCCAGGTAGCAATTCAGCTGACCTATTGCGCTGGACCACTGCTACCACCATGAAAGTCCTT TCCAACACCACCACCACCAAAGCGGTGCTGCAGGCCGTCAGTGATGGGCAGTGGTGGAAGAAGTCTTTAACT TACCTTCGACCCCTTCAGGGGCAAAAATGTGGTGGTGCATATCAAATCGGAACTACAGCCAATGAAGATCTAGAG AAACAAGGGTGTCATCCTTTTTATGAATCTGTCATCTCAAATCCTTTTGTCGCTGAGTCTGAAGGGACCTATGAC ACCTATCAGCATGTTCCAGTGGAAAGCTTTGCAGAAGTATTGCTGAGAACTGGAAAATTGGCAGAGGCTAAAAAT AAAGGAGAAGTATTTCCAACAACTGAAGTTCTCTTGCAACTAGCAAGTGAAGCCTTGCCAAATGACATGACCTTG GCTCTTGCTTACCTTCTTGCCTTACCACAAGTGTTAGATGCTAACCGGTGCTTTGAAAAGCAGTCCCCCTCTGCA TTATCTCTCCAGCTGGCAGCGTATTACTATAGCCTCCAGATCTATGCCCGATTGGCCCCATGTTTCAGGGACAAG TGCCATCCTCTTTACAGGGCTGATCCCAAAGAACTAATCAAGATGGTCACCAGGCATGTGACTCGACATGAGCAC GAAGCCTGGCCTGAAGACCTTATTTCACTGACCAAGCAGTTACACTGCTACAATGAACGTCTCCTGGATTTCACT CAGGCGCAGATCCTTCAGGGCCTTCGGAAGGGTGTGGACGTGCAGCGGTTTACTGCAGATGACCAGTATAAAAGG GAAACTATCCTTGGTCTGGCAGAAACTCTAGAGGAAAGCGTCTACAGCATTGCTATTTCTCTGGCACAACGTTAC AGTGTCTCCCGCTGGGAAGTTTTTATGACCCATTTGGAGTTCCTCTTCACGGACAGTGGTTTGTCCACACTAGAA ATTGAAAATAGAGCCCAAGACCTTCATCTCTTTGAGACTTTGAAGACTGATCCAGAAGCCTTTCACCAGCACATG GTCAAGTATATTTACCCTACTATTGGTGGCTTTGATCACGAAAGGCTGCAGTATTATTTCACTCTTCTGGAAAAC TGTGGCTGTGCAGATTTGGGGAACTGTGCCATTAAACCAGAAACCCACATTCGACTGCTGAAGAAGTTTAAGGTT GTTGCATCAGGTCTTAATTACAAAAAGCTGACAGATGAAAACATGAGTCCTCTTGAAGCATTGGAGCCAGTTCTT TCAAGTCAAAATATCTTGTCTATTTCCAAACTTGTTCCCAAAATCCCTGAAAAGGATGGACAGATGCTTTCCCCA AGCTCTCTGTACACCATCTGGTTACAGAAGTTGTTCTGGACTGGAGACCCTCATCTCATTAAACAAGTCCCAGGC TCTTCACCGGAGTGGCTTCATGCCTATGATGTCTGCATGAAGTACTTTGATCGTCTCCACCCAGGTGACCTCATC AGAAAGGCTATTAAGACAGTCAAACATTTTATTGAGAAGCCAAGGAAAAGAAACTCAGAAGACGAAGCTCAAGAA GCTAAGGATTCTAAAGTTACCTATGCAGATACTTTGAATCATCTGGAGAAATCACTTGCCCACCTGGAAACCCTG AGCCACAGCTTCATCCTTTCTCTGAAGAATAGTGAGCAGGAAACACTGCAAAAAATACAGTCACCTCTATGATCTG TCCCGATCAGAAAAAGAGAAACTTCATGATGAAGCTGTGGCTATTTGTTTAGATGGTCAGCCTCTAGCAATGATT CAGCAGCTGCTAGAGGTGGCAGTTGGCCCTCTTGACATCTCACCCAAGGATATAGTGCAGAGTGCAATCATGAAA ATAATTTCTGCATTGAGTGGTGGCAGTGCTGACCTTGGTGGGCCAAGGGACCCACTGAAGGTCCTGGAAGGTGTT GTTGCAGCAGTCCACGCCAGTGTGGACAAGGGTGAGGAGCTGGTTTCACCTGAGGACCTGCTGGAGTGGCTGCGG CCTTTCTGTGCTGATGACGCCTGGCCGGTGCGGCCCCGCATTCACGTGCTGCAGATTTTTGGGGCAATCATTTCAC

PCT/HS2003/028547

712/6881 FIGURE 664B

PCT/IIS2003/028547

713/6881 FIGURE 665

PCT/IIS2003/028547

714/6881 FIGURE 666

MRSRLRSVSSASGFLGYDVVRDVSSGPFWRRKNGDPCLDLCGRDSSTVWKRGDSPRKREEERSLGISQYLCPNLF SPTEAVKSKAICUVSISELQAASSGLSSWNLEQGKCGLIEMGSGFRMFHVSVSFSHIVRNRTVPLMRWYLAAMQI MRGEKQAASGNPAIEAGWBRIGAQM

PCT/HS2003/028547

715/6881 FIGURE 667

CGCGAAGAGCTGGCAGGGGCACGAGCCGGGGGCGGGTTTGAAGACGCGTCGTTGGGTTTTGGAGGCCGTGAAAC AGCCGTTTGAGTTTGGCTGCGGGTGGAGAACGTTTGTCAGGGGCCCGGCCAAGAAGGAGGCCCGCCTGTTACGAT GGTGTCCATGAGTTTCAAGCGGAACCGCAGTGACCGGTTCTACAGCACCCGGTGCTGCGGCTGTTGCCATGTCCG TACCGGGACGATCATCCTGGGGACCTGGTACATGGTAGTAGACCTATTGATGGCAATTTTGCTGACTGTGGAAGT GACTCATCCAAACTCCATGCCAGCTGTCAACATTCAGTATGAAGTCATCGGTAATTACTATTCGTCTGAGAGAAT GGCTGATAATGCCTGTGTTCTTTTTGCCGTCTCTGTTCTTATGTTTATAATCAGTTCAATGCTGGTTTATGGAGC AATTTCTTATCAAGTGGGTTGGCTGATTCCATTCTTCTGTTACCGACTTTTTGACTTCGTCCTCAGTTGCCTGGT TGCTATTAGTTCTCTCACCTATTTGCCAAGAATCAAAGAATATCTGGATCAACTACCTGATTTTCCCTACAAAGA TGACCTCCTGGCCTTGGACTCCAGCTGCCTCCTGTTCATTGTTCTTGTGTTCTTTGCCTTATTCATCATTTTTAA GGCTTA TCTAATTAACTGTGTTTTGGAACTGCTATAAATACATCAACAACCGAAACGTGCCGGAGATTGCTGTGTA CCCTGCCTTTGAAGCACCTCCTCAGTACGTTTTGCCAACCTATGAAATGGCCGTGAAAAATGCCTGAAAAAGAACC ACCACCTCCTTACTTACCTGCCTGAAGAAATTCTGCCTTTGACAATAAATCCTATACCAGCTTTTTGTTTAT TGTTACAGAATGCTGCAATTCAGGGCTCTTCAAACTTGTTTGATATAAAATATGTTGTCTTTTGTTTAAGCATTT ATAGTTTTTGAAGACAATCTAGGTTAAGCAAGAGCAAAGTGCCATTGTTTGCCTTTAATTGGGGGGTGGGAAGGG TCATCTGCAGAGGCAAGAAAATATTTGACATTGTGACTTGACTGTGGAAGATGATGGTTGCATGTTTCTAGTTT GTATATGTTTCCATCTTTGTGATAAGATGATTTAATAAATCTCTTTAAATACTT

PCT/HS2003/028547

716/6881 FIGURE 668

MVSMSFKRNRSDRFYSTRCCGCCHVRTGTIILGTWYMVVNLLMAILLTVEVTHPNSMPAVNIQYEVIGNYYSSER MADNACVLFAVSVLMFIISSMLVYGAISYQVGMLIFFFCYRLFDFVLSCLVAISSLTYLFRIKEYLDQLPDFPYK DDLLALDSSCLLFIVLVFFALFIIFKAYLINCVWNCYKYINNRNVPEIAVYPAFEAPPQYVLPTYEMAVKMPEKE PPPPYLPA

PCT/IIS2003/028547

717/6881 FIGURE 669

GCGGCTTGCGGGGACCACAGCTCCCGAAAGCGACGTTCGGCCACCGGAGGAGCCGGAGCCAAGCAGGCGGAGCTC GGCGGAGAGGTGCGGGCCGAATCCGAGCCGAGCGGAGAGGAATCCGGCAGTAGAGAGCGGACTCCAGCCGGCGG ACCCTGCAGCCCTCGCCTGGGACAGCGGCGCGCTGGGCAGGCGCCCCAAGAGAGCATCGAGCAGCGGAACCCGCGA CTCTGGCTCTGGCTGTGCGCGCTGGCGCTGAGCCTGCAGCCGGCCCTGCCGCAAATTGTGGCTACTAATTTGCCC CCTGAAGATCAAGATGGCTCTGGGGATGACTCTGACAACTTCTCCGGCTCAGGTGCAGGTGCTTTGCAAGATATC ACCTTGTCACAGCAGACCCCCTCCACTTGGAAGGACACGCAGCTCCTGACGGCTATTCCCACGTCTCCAGAACCC GTCCTGCCAGAAGTGGAGCCTGGCCTCACCGCCCGGGAGCAGGAGGCCACCCCCGACCCAGGGAGACAGCATCA GGGTTAAGAAGACTTTTTTTTTTTTTTTTTAAACTAGGAGAACCAAATCTGGAAGCCAAAATGTAGGCTTAGTTT GCCCAGGGCTCCTGCACTTACTTGCTTATTTGACAACGTTTCAGCGACTCCGTTGGCCACTCCGAGAGGTGGGCC AGTCTGTGGATCAGAGATGCACCACCAAGCCAAGGGAACCTGTGTCCGGTATTCGATACTGCGACTTTCTGCCTG GGTGCCCAAGCCAGAGGCTGGGTTCATTTGTGTAACGACAATAAACGGTACTTGTCATTTCGGGC

PCT/HS2003/028547

718/6881 FIGURE 670

ACTGCGCGCCCGGAGTCCCCGCCGCCGTCATGCAGTCCCCGGCGGTGCTCACCTCCAGGCGACTTCA GAATGCCCACACTGGCCTCGACCTGACTGTGCCCCAGCACCAGGAGGTACGGGGCAAGATGATGTCTGGACACGT GGAGTACCAGATCCTGGTGGTGACCCGTCTGGCTGCGTTCAAGTCGGCCAAGCACAGGCCCGAGGATGTCGTCCA GTTCTTGGTCTCCAAAAAGTACAGCGAGATTGAGGAGTTTTACCAGAAACTGAGCAGTCGTTATGCAGCAGCCAG AGAGGCTTTCGACTTTTTTGAGGAGCAAGACCAAGTGGCAGAAGAGGGTCCGCCCGTCCAGAGCCTGAAGGGCCA GGATGCTGAGGAATCCTTGGAGGAGGAGGAGGCGCTGGACCCTCTGGGCATTATGCGCTCCAAGAAGCCCAAGAA ACATCGGTGTGAAGGGAAGGGACTGGGCCCTGCAGGGTCAGAACCTCCCCACCCCCAGGGGAGGCCAGGCAGAAG CCTGGGTCACAGCACCCAGAACTGCATGGTTCCATTTTCTCCGGGGCTGTGGGGCCCAAAGTAGAAGCCTGCGGGC TGTGGGGATGCCTTGCCAACCAGAAGCCCAAGCCCCAAGGATGAAGCAAGACATGTGGGGCCGTAGCGAGGTGTCA CATGGGGCAGGGAAGCTTCATGCCCACGGGTTCTGCCAGCCCCAGACCCAAAACTGGGGCCTGGGCCTCTAT CCCTCCTCTGCCTCTGTTCGCATAGTAAGAAGGAGTGACCGGTATCCTCCCCTTCCCCTACCCTAAGCTGTAGCC TGGGTGACTGACTGGCCTGGGCTGGGGTGGGGACGTCCCCAAGCCAAATTACTCCAGGGCCTCTGCTCCTCGTG GCTGCCAGGGGCCTGCAGGGTCTGGGTGGGTCTCCCAGGAGAGGAATACTGAGTGGGAGATCGGCTGTCTGGAGT GTTCTGATGCAAGTCTCTCTCTCTGAGCCTCCTCTTGATGCAAGCTCTAAAGGGAGAAGTCAGGCCCTGCCTCT TGGCCTTCTTGGGCCTCTGGGCACAGAGCCAATGTTCGTCATTGCAGCTCTCAGCAAACTGGGTCATAGCTTTCC CCACAGCTCAGCCTGGGGCCTGGGCAGGGCTCCCAGCCTGCCACTGCCAGTGGGGCATGATTCTCT CAGGCTTCTGCCCCGAGGCCTTCGTCGTCCTCAGGGTCTGGACTTGGTCAGTGGCCTTTCACCAGTGGAGCTGCC TTCCCAGGGAGAAGGAGCCGTGCGCCAGGGCAGGGCCCGTGCCTTAGACTTCTCCCGACCCCCAGAGCGCTGGTA CACAGGTCTAGGCACCACAGTGCTTTGGAAATTCTCAGTGAATGATGTTTAATAAAGCAAAAAATGTC

PCT/US2003/028547

719/6881 FIGURE 671

MQSPAVLVTSRRLQNAHTGLDLTVPQHQEVRGKMMSGHVEYQILVVTRLAAFKSAKHRPEDVVQFLVSKKYSEIE EFYQKLSSRYAAASLPPLPRKVLFVGESDIRERRAVFNEILRCVSKDAELAGSPELLEFLGTRSPGAAGLTSRDS SVLDGTDSQTGNDEEAFDFFEEQDQVAEEGPPVQSLKGEDAEESLEEEEALDPLGIMRSKKPKKHRCEGKGLGPA GSEPPHPQGRPGRSLGHSTQNCMVPFSPGLWGQSRSLRAAGAALTLGARAQCVLFPVDMKGREGVGMPCQPEAQP QG

PCT/HS2003/028547

720/6881 FIGURE 672

GAACCTTCTGTACCAACTAGAGTGAGGAAAAAGAAGAAGAAAACAAAGGGACCAGATGCAGTCAGCAAACTGCCA GAAGAATTCATTAGAAATCAGGAACAGATGAAACCATTAGAAGAAAAGCAAAAGGAGGAAAGATCAAAAGTGGAT GATCTGAGGGGGACCCCGATACAAGGATCTTCTGGAAACTGGCTGCTCGGTCCTGCTCAACCACAAGGTGCATGC CGTGATGGGGTGCTGATGGATGACACGGATCCCCTGGTCACAGTGATGAAGATGGAAAAGACCCCCCAGGAGACC TATGCCAATATTGGGGGGCTGGACAACCAAATTCAGGAAATAAAGGAAGCTGTGGAGTTTCCTCTCACCCATCCT GAATATTATGAAGAGATGGGTAAAAAGCCTCCTAAGGGGGTCATTCTCTATGGTCCACCTGGCACAGGCAAAACC TTGTTATCCAAAGCAGTAGCAAACCAAACCTCAGCCACTTTCTTGAGAGTGGTTGGCTCTGAACTTATTCAGAAG TACCTAGTTGCTGAAGAGCATGAACTATCCATCATGTTTACTGATGAAATTGGAGCCATTGGGACAAAAAGATAT TTTCAGAATCACACAAGCAGGATGACACTGGCCGATGAAGTAACCCTGGACGACTTGATCATGGTTAAAGATGAC CTCTCTGGTGCTGACATCAAGGCAATCTGTACAGAAGCTGGTCTGATGGCCTCAAGAGAACGTAGAATGAAAGTA ACGAATGAATTCTTCAAAAAATATAAAGAAATGTTCTTTATAAGAAACAGGAAGGCACCCCTGAGGGGCTCTATC TCTAGTGAACCACAGCTGCCATCAGGAAAATGGTTGGGCGATTCCTCGACCCCTGAAAAGGATGAGCAACTTGTT $\tt CCCAAAGCTGGAGAAGACACTCCTGAGGGCTATTTAGGACAACTTATGACTCAGCTCTTTGAGCAGAAAGAGGCC$ AAAAAGTTCAGCAGAAAAAGCCCTGAACTCTTGGAAGAGCTGGCTTCAAGCCTGGCT<u>TAG</u>

PCT/US2003/028547

FIGURE 673

MGQSQSGGHGPGSGKKDDKDKKKKYEPSVPTRVRKKKKKTKGPDAVSKLPLVTPHTQCRLKLLTLERIKDYLLME EEFIRNQEQMKPLEEKQKEERSKVDDLRGTPIQGSSGNWLLGPAQPQGACRBGVLMDDTDPLVTVMKMEKTPQET YANIGGLONQIQETKEAVEPPLTHE PYYEEMGKKPPKGVILYGPPGTGKILLSKAVANQTSAFTKJUSSELIOK YLVAEEHELSIMFTDEIGAIGTKRYDSNSGGRIDRKIKFSLPDERIKKRIFQNHTSRMTLADEVTLDDLIMVKDD LSGADIKAICTEAGLMASKERMKVTNEFFKKYKEMFFIRNKAPLRGSISSEPQLPSGKWLGDSSTPEKDEQLV PKAGBOTPEGVLGQLMTOLPEQKEAKKFSKYSFELLEELBASSLA

PCT/IIS2003/028547

722/6881 FIGURE 674

GACGGCGCCTTCGCGAAACACTATGCTAATGGCATGGTGCCGCGGTCCTGTCTTGCTGTGCCTGCGGCAGGGGCT $\tt CGGAACCAATTCATTCCTGCACGGCCTGGGGCAGGAGCCCTTCGAGGGAGCTCGGTCACTGTGTTGCAGGTCCTC$ GCCTAGAGACCTGCGAGATGGAGAAAGAGAGCACGAGGCGCACAAAGGAAAGCCCCAGGAGCAGAGTCTTGCCC ATCTCTCCCTCTGAGCATCTCGGACATTGGGACTGGATGTCTTTCGTCACTGGAAAACCTCAGACTGCCGACGCT GCGGGAAGAGTCATCACCTCGAGAGCTCGAGGACTCGAGCGGAGACCAGGGCCGGTGCGGTCCCACACACCAGGG ATCCGAGGATCCTTCGATGCTCTCGCAGGCCCAGTCCGCTATCGAGGTCGAAGAGCGTCACGTCTCCCCTTCTTG TAAGAAATTATTTAGGTTGAACAACTTCGGACTCTTAAATAGTAACTGGGGGGCAGTCCCGTTCGGCAAGATCGT GGGGAAGTTCCCCGGCCAGATACTGAGGAGTTCCTTCGGTAAGCAGTACATGCTGAGGAGGCCAGCCTTGGAAGA CTATGTAGTATTGATGAAAAGAGGGACTGCCATAACATTCCCAAAGGATATTAATATGATTCTCTCAATGATGGA TATCAACCCAGGTGATACTGTTTTGGAAGCTGGCTCAGGCTCTGGTGGAATGAGCTTATTTTTATCCAAAGCAGT TGGATCACAAGGACGAGTCATAAGTTTTGAGGTACGAAAAGACCACCATGATCTGGCTAAGAAGAATTACAAACA CTGGCGTGATTCATGGAAATTAAGTCATGTAGAAGAGTGGCCAGACAATGTGGATTTTATTCATAAGGACATTTC AGGAGCAACCGAAGACATAAAATCTTTAACATTTGACGCAGTAGCTTTGGATATGTTAAATCCTCATGTTACTTT GCCTGTTTTTTACCCACATCTTAAGCATGGTGGTGTATGTGCTGTATATGTAGTAAACATCACACAGGTTATTGA ACTITIAGATGGAATTCGCACCTGTGAACTTGCTCTTTCATGTGAAAAGATAAGCGAGGTCATTGTCAGAGATTG GTTGGTTTGCCTTGCAAAACAGAAAAATGGAATTTTAGCTCAAAAAGTAGAATCTAAAATCAACACAGATGTACA ACTAGATTCTCAAGAGAAAATTGGAGTTAAAGGTGAGCTGTTTCAAGAGGATGACCATGAAGAATCGCATTCTGA TTTTCCATATGGATCATTTCCCTATGTTGCTAGACCAGTACACTGGCAACCTGGTCATACAGCTTTTCTTGTCAA ${\tt GTTGAGGAAGGTCAAACCACAACTTAAC}{\tt TGA}{\tt GTACTCCAGATGACAGTAACTGACTTGAAGATGGAAAAATATCA}$ AAATAGAACTTTATATTGAAAATCACTGCTTCCATAGATTGGCATTTTTAGCTATTACTATGACTTATATAACTT ATACATATAATTTTGAAAATAACAACTAAAAGATGTATAACATAGCAAAACTGCTTAAACATCCCATTTTGACAC TTGTCTTGCAGTTAGTTTGACATTTTGTAGTTAATGATTCCAAATTGGTTTAGTTGGGCCCATCTCATTCTTCACT

PCT/US2003/028547

723/6881 FIGURE 675

MLMAWCRGPVLLCLRQGLGTNSFLHGLGQEPFEGARSLCCRSSPRDLRDGEREHEAAQRKAPGAESCPSLPLSIS
DIGTGCLSSLENLRLPTLREESSPRELEDSSGDOGRCGPTHQGSEDPSMLSQAQSATEVEERRVSPSCSTSRESF
FQAGGLILAETGEGETKFKKLFRLNNFGLLNSNWGAVPFGKIVGKPFQGILRSSFGKQYMLRRPALGVVLNKR
GTAITFFKDINMILSMWDINFGDTVLEAGSGSGGWSLFLSKAVCSGGRVISFEVRKDHHDLAKKNYKHWRDSWKL
SHVEEWPDNVDFIHKDISGATEDIKSLTFDAVALDMLNFHVTLEVFYPHLKRGGVCAVYVVNITQVIELLDGIRT
CELALSCEKISEVIVRDWLVCLAKQKNGILAQKVESKINTDVQLDSQEKIGVKGELFQEDDHEESHSDFPYGSFP
YVARPVHMÖDGHTAFLVKLRKVKPQLN

PCT/US2003/028547

724/6881 FIGURE 676

ATGCAACAAGCTTCCTACCCCCAACCGGCCAGACAAAGCCCCGGCAGCAGGGCCGGCACTTCCGAGCCTCCGGA CTCGGGACGCCGCGCTCTTACCCTGGCCTCATCCAGAGTGACGCCGGCCCACCGCTTCCCCCGGCTTTGGCGGC GGGCAGCTGGCGGCGCGGGTCTTGGAGGAGCGGGTCCGAGAGGAGATGAAATGGCTGCCTCCCGTCGCCCC AGGCTCTGCTCCGGCCCCAGGCCCAGGCCCGGGACCAGGAGACTTGGACCCGAGAAGGCGGAGAGAGCTCTTCCG GCCGCTGCCCCCCCCCGCCCGGCGTCAGCGCTCGGCGCCGGGGAGCGACGCTCTAGGCTGTCAGCTCGGTGG TTTCCAGCTCTCCCCGACCGCAGGGCTGGGGCGACCAGAAAAGCCAGACTAATCAGGACGAGTTCGGGCGTGGAA GCAGGGACGGCCGGCGAAGGCGCGGGTGGAAGGGGGAGCGCGACGAAGGCGCGAGGAGCTGACTGGGAATCCC CAAGCTACCCGAGGCAAGACACTGAACTTGAGTCGCACTTTTCATGCCTGTAGAAATGAGAATGACAGCTGTGAT AAAAAAAAAATTCATCTGGGCGGTATCTGGAACTTGGGCGTTCCGAAACTTACAGTTATGCGCAACACAATGTTT CTATTTCAAAGGCGAACGCTGCACGATCGCAGTCCAGTGATACAAATAATAAAAGAGTTTATTACTTGTCAGCA ATGATGAATGTTCGTGTGGCATCCAGCGTTGAGTTCCTATTCTTACTTGGAACTCATTGGTCCCTGTGTCTGGGG CCAGCACTGATGGACACAACTAAGTTTGCACTCGTCTTCCCTCTCATGTATCATACCTGGAATGGGATCCAACAC $\tt TTGATGTGGGACCTAGGAAAAGGCCTGAAGATTCCCCAGCTATACCAGTCTGGAGTGGTTGTCCTGGTTCTTACT$ GTGTTATTTGTAGGGCTGGCAGCTGTGTGA

PCT/US2003/028547

725/6881 FIGURE 677

MQQASYPQPGQTKPRQQGRHFRASGLGTPRSYPGLIQSDAGATASPGFGGGAAGGAGLGGAGPRODEMAAASGRP
RLCSGPRPRPGTRRLGPEKAERALPGVHHGPARGTESTPRPGEPSKAGPPAAAPPPARRQRSAAGERRSRLSARW
FPALPDRRAGATKRARLI RITSSGVELGLKPSCPARPECPRPHRHPRGLDGAGDGRRRRGVEGERRRREELTGNP
QATRGKTLNLSRTPHACRNENDSCDKKKIHLGGIWNLGVPKLTVMRNTWFLFSKANAARSQSSDTNNKRVYYLSA
MMNVRVASSVEFLFLLGTHWSLCLGPALMDTTKFALVFPLMYHTWNGIQHLMWDLGKGLKIPQLYQSGVVVLVLT
VLEVGLAAV

PCT/HS2003/028547

726/6881 FIGURE 678A

ACAGAGAGATTGGTGTTTTTTGTGAGGCAGTGAGACCTAAGGTAACCTTTATCAAAAGGATTGGAGTTGGGAAAAGG AAAACTACTCAGGACTGGACTGAATGCGTTGCATCAAGCAGTGCATCCGATCCATGGCCTTGCCTGGACCGATGG GAATCAAGTTGTCCTAACTGATTTGCGGCTTCACAGTGGAGAGGTCAAGTTTGGGGACTCCAAAGTCATTGGACA GTTTGAATGTGTCTGTGGGTTGTCCTGGGCCCCCACCTGTTGCAGATGATACACCTGTTCTACTCGCTGTCCAGCA TGA GA ACCA TGTCA CTGTGTGGCAGCTGTGTCCCAGCCCTA TGGAGTCA AGCA A A TGGCTGACGTCTCAGACTTG GACTGCTCAGGATGTCTCCATTTTCCCTAATGTTCACTCTGATGATTCCCCAGGTAAAGGCAGACATCAACACCCA GGGCCGCATTCACTGTGCATGTTGGACCCAGGATGGCCTGAGGCTGGTGGTGGCAGTAGGCAGCAGCCTGCATTC CTGCTCCATCACAGCAACTGTGGACTCACAGGTTGCTATAGCTACTGAGCTTCCATTGGATAAGATCTGTGGCTT AAATGCATCTGAAACCTTTAATATCCCACCTAACAGTAAAGACATGACTCCGTATGCTTTACCAGTTATTGGTGA AGTACGCTCTATGGATAAAGAGGCAACTGATTCTGAAACAAATTCTGAAGTATCAGTTTCTTCTTCCTATTTAGA ACCTCTGGATCTAACTCACATACATTTCAATCAACATAAGTCTGAGGGTAATTCTCTTATTTGTCTAAGAAAAAA GGACTACTTGACAGGAACTGGCCAAGATTCTTCACATTTGGTCCTTGTGACCTTTAAGAAGGCAGTTACCATGAC GAGAAAAGTCACTATTCCAGGCATTCTGGTTCCTGATCTGATAGCATTTAATCTTAAAGCCCACGTAGTGGCAGT GGCTTCCAACACTTGTAATATAATTTTGATCTACTCTGTCATTCCATCTTCAGTCCCAAACATCCAGCAAATTCG ATTAGAGAACACTGAAAGACCAAAAGGGATATGTTTCTTGACAGACCAACTATTACTAATTTTGGTAGGAAAACA A A A CTC A CTG A TA CA A CA TTTCTTCCTTCTTC A A GTCTG A TC A GT A TGC C A TT A GCTTG A TTGTTA GA GA A A T TAAAGCAAATAGAAAAAGTTAATTGAAAGTCTTTCCCCAGATTTTTGTCACCAAAACAAAGGGCTGTTGCTGAC AGTTAATACCAGTAGTCAGAATGGAAGGCCTGGAAGAACCCTTATTAAAGAAATCCAGAGTCCTCTGTCTAGTAT AGACCACACCAGCACÁCTGGAGCCTCCTCGTTTGCCTCAAAGAAAGAACTTACAAAGTGAAAAGGAAACTTATCA GCTGTCTAAGGAGGTGGAAATTTTATCTAGGAACCTGGTTGAAATGCAACGGTGTCTTTCTGAACTTACAAACCG TCTGCATAATGGGAAGAATCCTCTTCAGTGTATCCACTCTCTCAAGATCTTCCTTATGTTCACATCATTTACCA GAAACCTTATTATCTAGGTCCTGTTGTTGAAAAAAGAGCGGTGCTTCTCTGTGATGGTAAACTAAGGCTCAGTAC AGTTCAGCAGACTTTTGGCCTTTCTCTCATTGAAATGCTACATGATTCCCACTGGATTCTTCTCTCTGCTGACAG TGAGGGCTTTATCCCGTTAACCTTCACAGCCACACAGGAAATAATCATAAGAGATGGCAGCCTGTCCAGGTCAGA TGTCTTCAGAGACTCTTTTTCTCACAGTCCAGGTGCTGTTTCTTCTCTTAAAGTCTTTACAGGCCTTGCTGCCCC TCTTCAGATGAGACCATTACAAACAAGGCCTGCTTGACACTGGACACTCGCCAÄTGAGACTCCCACTGCACTCAG GCGAAGCGCTTGCCATGGTCGGCTCTCCTGGTTTCCCCCTGTTTCCCCTGAGCTGÄGGCTCGCTGTGTAGCA GAGCTCAGTCTTTATTAGATGGCTCCGAAAGTGGTGTTTATGTATTCATGACTGTGTGTTTTTGACTAAGGGCAG AATTCTCAGAACAAACAATATTATGGTGCCATATGGATGTGTTTTATGGTTTCTCTGAGGCTTTGTGTCCCTT GTCCAAAGCTGCATTGAAGCTGTCTTAGGAGCACTTAAAAGATACCTTGGCATTGTTATAGGTCTTTTCTTGGC TTCAAGAGGAGGTTGAGGAGTCTGCTGGGGGGCATGTGCTCTAGCATATTAACCTCAAACCAGCAAGAATTAGCA GAGCTCCAAGGAGGACCAGAGACCCACTGGCTTCTGCTCTCAGGAACAGGAAGTGGCTCTGATGTTGCCTGGACC TCCCAGAATTTAAACCAAACCTCTTGCTTCCTTAACAAATTCTGGCTGACGAAGGTCCAGGTACTCTTAAAAAC TGGCCCTGGGAAAATTTTGAATGAAATTTCAAGGGAATTTGTCCCCTCTGGGTTCCACTTGAGGTTGTGCCGATG CTGCTACCACACTGTCGAGCCCAGGTAAGTCCTACTGCAGGATTTTGTGCTGTGGCCACTCATGAGTGTCCCTGA AATAACTTTTTTTTTTTTAAATCCAGTTTTGGGATCACGCAACTTTCCTATTTTTCTCCCAGTAGTCAGCTCCC TTAGTTAACTTGTCACTTTAATTTGATATTTTTATTTTCTCTCTTTTAAGTCTTAGAGACCAGCAGAGAATCTG TGAGAGAAAGTATTTCAGGAAGTTAGAAATTCAACCGAATCTGAGGTAGTCCTAAAAAGTGCCATTTTGTTTCAC TTATGGGCTAAAGTACCAGCTTAGTCAGGTAAGAGCCCTGACCCACTTCAGATGGTAACACCACTTCTCACTGCC ACTATTTTGTGCCCTTGGGGACTCCTGTCTGTCTGTTACAGTTTACCAAGATGGAGCTGGGTTAGGAAAGAAGTG AGGGCCCATTTTGTGGTTCAAGTGCACTAGACAGCTGCTGGGGTAGGAAGCACAGGCAATGTCTGCAATCAGCTG

PCT/US2003/028547

727/6881 FIGURE 678B

PCT/HS2003/028547

728/6881 FIGURE 679

MELGKGKLLRTGLNALHQAVHPIHGLAWTDGNQVVLTDLRLHSGEVKFGDSKVIGQFECVCGLSWAPPVADDTPV
LLAVQHEKHVTVWQLCPSPMESSKWLTSQTCEIRGSLPILPQGCVMHPKCAILTVLTAQDVSIFPNVHSDDSQVJ
ADINTOGRIHCACWTOGGLELVVAVGSSLHSYIWDSAQKTLHRCSSCLVFDVDSHVCSITATVDSQVAIATELPL
DKICGLNASETFNIPPNSKDMTPYALPVIGEVRSMDKEATDSETNSEVSVSSSYLEPLDLTHIHFNQHKSEGNSL
ICLRKKDYLTGTGQDSSHLVLVTFKKAVTHTRKVTIPGILVPDLIAFNLKAHVVAVASNTCNIILIYSVIPSSVP
NIQQIRLENTERPKGICFLTDQLLLLLVKKQKLTDTTFLPSSKSDQYAISLIVREIMLEEEPSITSGESQTTYST
FSAPLNKANRKKLIESLSPDFCHQNKGLLLTVNTSSQNGRPGRTLIKEIQSPLSSICDGSIALDAEPVTQPASLP
RHSSTPDHTSTLEPPRLPQRKNLQSEKETYQLSKEVEILSRNLVEMQRCLSELTNRLHNGKKSSSVYPLSQDLPY
VHIIYQKPYYLGPVVEKRAVLLCDGKLRLSTVQQTFGLSLIEMLHDSHWILLSADSEGFIPLTFTATQEIIIRDG
SLSRSDVPRDSFSHSPGAVSLKVFTGLAAPSLDTTGCCNNVDGMA

PCT/HS2003/028547

729/6881 FIGURE 680

TTCTCTTAGCAGCACCCAGCTTGCCCACCCATGCTCAAGATGGGCGGGATGCCAGCCTGTTACATAAATGTGCCA CTTTCCTCTCTCAAGTGAGAGCTAGAATCGCACTTTCTGTCAAGCTGAGAGAAAGACTCTTTTCCAGAGGCTA AGGGTGGTTCTGCTTAGCCCCACCCCTCCGGCTACCCCAGGTCCAGCCGTCCATTCCGGTGGAGGCAGAGGCAGT CCTGGGGCTCTGGGGCTTTGTCACCGGGACCCGCAGGAGCCACTCGGCGCCCCTGGTGCATG GGAGGGGAGCCGGGCCAGGAACAATATGTTAGCCGTGCACTTTGACAAGCCGGGAGGACCGGAAAACCTCTACGT GAAGGAGGTGGCCAAGCCGAGCCCGGGGGAGGGTGAAGTCCTCCTGAAGGTGGCGGCCAGCGCCCTGAACCGGGC GGACTTA ATGCA GAGACA AGGCCAGTATGACCCACCTCCAGGAGCCAGCAACATTTTGGGACTTGAGGCATCTGG ACATGTGGCAGAGCTGGGGCCTGGCTGCCAGGGACACTGGAAGATCGGGGACACAGCCATGGCTCTGCTCCCCGG TGGGGGCCAGGCTCAGTACGTCACTGTCCCCGAAGGGCTCCTCATGCCTATCCCAGAGGGATTGACCCTGACCCA GGCTGCAGCCATCCCAGAGGCCTGGCTCACCGCCTTCCAGCTGTTACATCTTGTGGGAAATGTTCAGGCTGGAGA CTATGTGCTAATCCATGCAGGACTGAGTGGTGTGGGCACAGCTGCTATCCAACTCACCCGGATGGCTGGAGCTAT TCCTCTGGTCACAGCTGGCTCCCAGAAGAAGCTTCAAATGGCAGAAAAGCTTGGAGCAGCTGCTGGATTCAATTA CAAAAAAGAGGATTTCTCTGAAGCAACGCTGAAATTCACCAAAGGTGCTGGAGTTAATCTTATTCTAGACTGCAT AGGCGGATCCTACTGGGAGAAGAACGTCAACTGCCTGGCTCTTGATGGTCGATGGGTTCTCTATGGTCTGATGGG AGGAGGTGACATCAATGGGCCCCTGTTTTCAAAGCTACTTTTTAAGCGAGGAAGTCTGATCACCAGTTTGCTGAG GTCTAGGGACAATAAGTACAAGCAAATGCTGGTGAATGCTTTCACGGAGCAAATTCTGCCTCACTTCTCCACGGA GGGCCCCCAACGTCTGCCGGTTCTGGACAGAATCTACCCAGTGACCGAAATCCAGGAGGCCCATAAGTACAT GGAGGCCAACAAGAACATAGGCAAGATCGTCCTGGAACTGCCCCAGTGAAGGAGGATGGGGCAGGACAGGACGGC GCCACCCCAGGCCTTTCCAGAGCAAACCTGGAGAAGATTCACAATAGACAGGCCAAGAAACCCGGTGCTTCCTCC AGAGCCGTTTAAAGCTGATATGAGGAAATAAAGAGTGAACTGG

PCT/US2003/028547

730/6881 FIGURE 681

GGCACGAGGGTCCCGTTACCGCCTCCTGCTCCTGCCGCGCACCCCCGGGGCTTCGGCTCCGGCACGGGTCGCG CCCAGCTTTCCTGCACCTGAGGCCGCCGGCCAGCCGCCATGGGTGCCTACCTCTCCCAGCCCAACACGGTGA AGTGCTCCGGGGACGGGGTCGGCGCCCCGGGCTGCCGCTGCCCTACGGCTTCTCCGCCATGCAAGGCTGGCGCG TCTCCATGGAGGATGCTCACAACTGTATTCCTGAGCTGGACAGTGAGACAGCCATGTTTTCTGTCTACGATGGAC ATGGAGGGAGGAGTTGCCTTGTACTGTGCCAAATATCTTCCTGATATCATCAAAGATCAGAAGGCCTACAAGG AAGGCAAGCTACAGAAGGCTTTAGAAGATGCCTTCTTGGCTATTGACGCCAAATTGACCACTGAAGAAGTCATTA AAGAGCTGGCACAGATTGCAGGGCGACCCACTGAGGATGAAGATGAAAAAGAAAAAGTAGCTGATGAAGATGATG TGGACAATGAGGAGGCTGCACTGCATGAAGAGGCTACCATGACTATTGAAGAGCTGCTGACACGCTACGGGC AGAACTGTCACAAGGGCCCTCCCCACAGCAAATCTGGAGGTGGGACAGGCGAGGAACCAGGGTCCCAGGGCCTCA ATGGGGAGGCAGGACCTGAGGACTCAACTAGGGAAAACTCCTTCACAAGAAAATGGCCCCACAGCCCAAGGCCTACA CTGGGCCTTCCTGCTCTTCAGCCTCTGACAAGCTGCCTCGAGTTGCTAAGTCCAAGTTCTTTGAGGACAGTGAGG ATGAGTCAGATGAGGCGGAGGAAGAGAGAGAGAGACAGTGAGGAATGCAGCGAGGAAGAGGATGGCTACAGCAGTG AGGAGGCAGAGAATGAGGAAGATGAGGATGACACCGAGGAGGCTGAAGAGGACGATGAAGAAGAAGAAGAAGAAGAAGAAGAA TGATGGTGCCAGGGATGGAAGGCAAAGAGGGGGCCTGGCTCTGACAGTGGTACAACAGCGGTGGTGGCCCTGATAC GAGGGAAGCAGTTGATTGTAGCCAACGCAGGAGACTCTCGCTGTGTGTATCTGAGGCTGGCAAAGCTTTAGACA TGTCCTATGATCACAAACCAGAGGATGAAGTAGAACTAGCACGCATCAAGAATGCTGGTGGCAAGGTCACCATGG ATGGGCGAGTCAACGGGGGCCTCAACCTCTCCAGAGCCATTGGGGACCACTTCTATAAGAGAAACAAGAACCTGC CACCTGAGGAACAGATGATTTCAGCCCTTCCTGACATCAAGGTGCTGACTCTCACTGACGACCATGAATTCATGG AGCGTGATGAAAATGGGGAGCTTCGGTTATTGTCATCCATTGTGGAAGAGCTGCTGGATCAGTGCCTGGCACCAG ACACTTCTGGGGATGGTACAGGGTGTGACAACATGACCTGCATCATCATTTGCTTCAAGCCCCGAAACACACAGCAG AGCTCCAGCCAGAGAGTGGCAAGCGAAAACTAGAGGAGGTGCTCTTACTGAGGGGGCTGAAGAAAATGGCAACA GCGACAAGAAGAAGAAGGCCAAGCGAGACTAGCAGTCATCCAGACCCCTGCCCACCTAGACTGTTTTCTGAGCCC TCCGGACCTGAGACTGAGTTTTGTCTTTTTCCTTTAGCCTTAGCAGTGGGTATGAGGTGTGCAGGGGGAGCTGGG TGGCTTCACTCCGCCCATTCCAAAGAGGGCTCTCCCTCCACACTGCAGCCGGGAGCCTCTGCTGTCCTTCCCAGC CGCCTCTGCTCCTCGGGCTCATCACCGGTTCTGTGCCTGTGCTCTGTTGTAGGGGAAGGACTGGCGGTTCT GGTTTTTACTCTGTGAACTTTATTTAAGGACATTCTTTTTTATTGGCGGCTCCATGGCCCTCGGCCGCTTGCACC

PCT/US2003/028547

731/6881 FIGURE 682

MGAYLSQPNTVKCSGDCVGAPRLPLPYGFSAMQGWRVSMEDAHNCIPELDSETAMFSVYDGHGGEEVALYCAKYL
PDIIKDQKAYKECKLQKALEDAFLAIDAKLTTEEVIKELAQIAGRPTEDEDEKEKVADEDDUVDNEEAALHEEAT
MTIEELLTRYQQNCHKEPPHSKSGGGTGEDEFGSQGLNGEAGPEDSTRETPSQENCPTAKAYTGFSSNSERGTEAG
QVCEPGIPTGEAGPSCSSASDKLPRVAKSKFFEDSEDESDEAEEEEEDSEECSEEEDGYSSEEAENEEDEDDTEE
AEEDDEEEEEEMMVPGMEGKEEPGSDSGTTAVVALIRGKQLIVANAGDSRCVVSEAGKALDMSYDHKPEDEVELA
RIKNAGGKVTMDGRVNGGLNLSRAIGDHFYKRNKKLPPEEQMISALPDIKVLITLTDDHEFMYIACDGINNVMSQ
EVVDPIQSKISQRDENGELRLLSSIVEELLDQCLAPDTSGDGTGCDNMTCIIICFKPRNTAELQPESGKRKLEEV
LSTEGAEENGNSDKKKKARND

PCT/US2003/028547

732/6881 FIGURE 683

PCT/US2003/028547

733/6881 FIGURE 684

CCCTATCCGGACAGGTGGCTCTTGCCCTTTAGACTACAGTTCCCAGCATGCCCAGGGATTGGGTCCCAGAACCG
ACGTCCCACCCCTTCCCACATCGGATCGCAGGGCTCCCAAAATGGCGAGTGAGGCTGCGGGGACTGGCTGAGCA
GCGGAGGGGGAGCGTGCGAGCCCGTGCGGCCCTCACAGTCCGGCCCTGCCGTGCCGTGCCAGCAAAAAA

CACTTTCCATTCCCGAAACCGAGTCCCGCAGCGGGGACAGCGGCGGCTCCGCCTACGTGGCCTATAACATTCAC GGGGCCAATGTGCTTCCTGCATTCCCCCCAAAGAAGCTTTTCTCTCTGACTCCTGCTGAGGTAGAACAGAGGAGA GAGCAGTTAGAGAAGTACATGCAAGCTGTTCGGCAAGACCCATTGCTTGGGAGCAGCGAGACTTTCAACAGTTTC CTGCGTCGGGCACAACAGGAGACACAGCAGGTCCCCACAGAGGAAGTGTCCTTGGAAGTGCTGCTCAGCAACGGG CAGAAAGTTCTGGTCAACGTGCTAACTTCAGATCAGACTGAGGATGTCCTGGAGGCTGTAGCTGCAAAGCTGGAT CTTCCAGATGACTTGATTGGATACTTTAGTCTATTCTTAGTTCGAGAAAAAGAGGATGGAGCCTTTTCTTTTGTA CGGAAGTTGCAAGAGTTTGAGCTGCCTTATGTGTCTGTCACCAGCCTTCGGAGTCAAGAGTATAAGATTGTGCTA AGGAAGAGTTATTGGGACTCTGCCTATGATGACGATGTCATGGAGAACCGGGTTGGCCTGAACCTGCTTTATGCT CAGACGGTATCAGATATTGAGCGTGGGTGGATCTTGGTCACCAAGGAACAGCACCGGCAACTCAAATCTCTGCAA GAGAAAGTCTCCAAGAAGGAGTTCCTGAGACTGGCCCAGACGCTGCGGCACTATGGCTACTTGCGCTTTGATGCC TGTGTGGCTGACTTCCCAGAAAAGGACTGTCCTGTGGTGGTGAGCGCGGGCAACAGTGAGCTCAGCCTGCAGCTC CGCCTGCCTGGCCAGCAACTCCGAGAAGGCTCCTTCCGGGTCACCCGCATGCGATGCTGGCGGGTCACCTCCTCT GTACCATTGCCCAGTGGAAGCACGAGCAGCCCAGGCCGGGGCCGGGGTGAGGTGCGCCTGGAACTGGCTTTTGAA TACCTCATGAGCAAGGACCGGCTACAGTGGGTCACCATCACTAGCCCCCAGGCTATCATGATGAGCATCTGCTTG GGTACTCTGAGACGCTCAGACAGCCAGCAAGCAGTGAAGTCCCCACCACTGCTTGAGTCACCTGATGCCACCCGG GAGTCTATGGTCAAACTCTCAAGTAAGCTGAGTGCCGTGAGCTTGCGGGGAATTGGCAGTCCCAGCACAGATGCC AGTGCCAGTGATGTCCACGGCAATTTCGCCTTCGAGGGCATTGGAGATGAGGATCTGTAATCTCCACTGCTTGGA TGTCTGCCCTCTACCCCAGAGGAATTTACAGAAACTTGCCCTGTGCCTGTGCCCCATGCTAGGGGCGGAGGGG TCTTTCCTTCTTCCTTCCTTCCTTCCCTTTCTCTTGGCCAGGGGCCTCGTATCCTACCTTTCCTTGTCCCCT GGGCTGGCTGCACAGAGGATTGCCCCTTCTCTTTTCAGAGCTGGCCCTCGATGCCAAATTAGCATTTAGTATTTT GCACAAAGTCTAAGGGACCATGGCTGCCTGCCTTGGGGAGGAACCATAGCTCCCTCTGGGCCGCTTCTGGCCTCT TGGAGCCATGGGCCAAAGGCCAAGGGGATGGGCAGAGGTCTGTGTTTTGGTCTGGCCCAGTTCCCCATCATTAAAC TCAGCCTGACTGCTGCCT

PCT/IIS2003/028547

734/6881 FIGURE 685

MHFSIPETESRSGDSGGSAYVAYNIHVNGVLHCRVRYSQLLGLHEQLRKEYGANVLPAFPPKKLFSLTPÄEVEQR
REQLEKYMQAVRQDPLLGSSETFNSFLRRAQDETQQVETEEVSLEVILSNGGKVLVAVLTSDQTEDVLEAVARAL
DLEDDLIGYFSLFLVREKEDGAFSFVRKLQEFELPYVSVTSLRSQEYKIVLRKSYMDSAYDDDVHENRVGLNLLY
AQTVSDIERGHILVTKEGMRQLKSIQEKVSKKEFIRLAQTLRHYGYLRFDACVADFPEKDCPVVVSAGNSELSLQ
LRLPGQQLREGSFRVTMRCWRVTSSVPLPSGSTSSPGRGRGEVRLELAFEYLMSKDRLQWVTITSPQAIMMSIC
LQSMVDELMVKKSGGSIRKMLRRRVGGTLRRSDSQQAVKSPPLLESPDATRESMVKLSSKLSAVSLRGIGSPSTD
ASASDVHGNFAFEGIGDEDL

PCT/US2003/028547

735/6881 FIGURE 686

GATGCCTGCTGTGCCCGTGGCTGTTCGCGAGGACTCGGGATCAAGGCGGAGCTTCCCCCTGGGCCTGG GAAGGAAGAAAAGGGGGCAGAACCAGAGACTGGCTCTGCTGTATCTGCAGCCCAATGTCAAGTAGGCCCAACCAG AGAACTGCCAGAATCGGGCATTCAGTTGGGCACTCCTCGGGAGAAAGTTCCAGCTGGTCGGAGTAAGGCCGAACT TCGGGCTGAGCGTCGAGCCAAGCAGGAGGCCGAGCGGGCCCTGAAACAGGCAAGAAAAAGGGGAACAAGGAGGACC ACCTCCTAAGGCCAGCCCCAGCACAGCTGGAGAAACCCCCTCAGGAGTGAAGCGTCTCCCTGAGTACCCTCAGGT TGATGACCTACTTCTGAGAAGGCTTGTTAAAAAACCAGAGCGTCAACAGGTTCCTACACGAAAGGATTATGGATC CAAAGTCAGTCTCTCTCTCACCTACCCCAGTACAGCAGACAAAACTCTCTGACCCAGTTTATGAGCATCCCATC CTCTGTGATCCACCCAGCCATGGTGCGACTCGGCCTGCAGTACTCCCAGGGCCTGGTCAGTGGCTCCAATGCCCG GTGTATTGCCCTGCTTCGTGCCTTGCAGCAGGTGATTCAGGATTACACAACACCGCCTAATGAAGAACTCTCCAG GGATCTAGTGAATAAACTAAAACCCTACATGAGCTTCCTGACTCAGTGCCGTCCCCTGTCAGCGAGCATGCACAA CGCCATCAAGTTCCTTAACAAGGAAATCACCAGTGTGGGCAGTTCCAAGCGGGAAGAGGGGCCAAGTCAGAACT TCGAGCAGCCATTGATCGGTATGTGCAAGAGAAGATTGTGCTAGCAGCTCAGGCAATTTCACGCTTTGCTTACCA GAAGATCAGTAATGGAGATGTGATCCTGGTATATGGATGCTCATCTCTGGTATCACGAATTCTTCAGGAGGCTTG TCTAGTCCATGCTGGTGTCCCAGCCTCCTACCTGCTGATTCCTGCAGCCTCCTATGTGCTCCCAGAGGTTTCCAA GGTGCTATTGGGAGCTCATGCACTCTTGGCCAACGGGTCTGTGATGTCACGGGTAGGGACAGCACAGTTAGCCCT GGTGGCTCGAGCCCATAATGTACCAGTGCTGGTTTGCTGTGAAACATACAAGTTCTGTGAGCGTGTGCAGACTGA TGCCTTTGTCTCTAATGAGCTAGATGACCCTGATGATCTGCAATGTAAGCGGGGAGAACATGTTGCGCTGGCTAA CTGGCAGAACCACGCATCCCTACGGTTGTTGAATCTAGTCTATGATGTGACTCCCCCAGAGCTTGTGGATCTGGT ${\tt GATCACGGAGCTGGGGATGATCCCTTGCAGTTCTGTACCTGTTCTTACGAGTCAAGAGCAGTGACCAG\underline{{\tt T}GACG}$ AAAAAAAAAAC

PCT/HS2003/028547

736/6881 FIGURE 687

MAAVAVAVREDSGSGMKAELPPGPGAVGREMTKEEKLQLRKEKKQQKKKRKEEKGAEPETGSAVSAAQCQVGPTR
ELPESGIQLGTPREKVPAGRSKAELRAERRAKQEAERALKQARKGEQGGPPFKASPSTAGETPSGVKRLPEYPG
DDLLLRRLVKKPERQQOYTRKDVGSKVSLFSHLPQVSKQNSLTQFMSIFSSVIPHAWVRLGLQYSQGLVSGSNAR
CIALLRALQQVIQDYTTPPNEELSRDLVNKLKPYMSFLTQCRPLSASMHNAIKFLNKEITSVGSSKREEEAKSEL
RAAIDRYVQEKIVLAAQAISRFAYQKISNGDVILVYGCSSLVSRILQEAWTEGRFRVVVVVDSREWLEGRRITLRS
LVHAGVPASYLLIPAASYVLPEVSKVLLGAHALLANGSWISNGVGTAGLALVARAHNYPVLVCCETYCERVQTD
AFVSNELDDPDDLQCKRGEHVALANWQNHASLRLLNLVYDVTPPELVDLVITELGMIPCSSVPVVLRVKSSDQ

PCT/US2003/028547

737/6881 FIGURE 688

AGGACTTTGGCGAGGGGCAGCCATTTTGGGGGGTGCTGATGGATACCTGCGGGGTCGGCTATGTTGCCCTGGGG GAGGCCGGCCCCGTGGGGAACATGACTGTGGTAGACTCTCCTGGACAAGAGGTGCTAAATCAGCTTGATGTCAAG ATGTCAAAGGTCTCAAAGCCTAGGGCCTCAAAGCCTGGCCGGAAGAGGGTGGTAGGACACGAAAAGGCCCCCAAA AGGCCCCAACAGCCTAATCCTCCATCAGCCCCACTGGTTCCTGGTCTCTTAGATCAATCCAACCCTCTGTCCACC CCCATGCCTAAGAAACGAGGTCGAAAGTCCAAGGCAGAGCTGCTGCTGCTGAAGTTGTCAAAAGACCTAGATCGG CCAGAATCTCAATCTCCAAAGAGGCCCCCTGAGGACTTTGAGACCCCCTTCTGGGGAACGACCCCGCCGAAGGGCT GCCCAAGTGGCACTTCTGTATCTTCAGGAACTGGCTGAAGAGCTCTCAACAGCCCTGCCCTGTCCCTGTCCTGT GAGGTGGATGGTGCTCCACGGGATGAAGACTTTTTTCTCCAGGTTGAGGCTGAAGATGTGGAAGAAAGTGAGGGC CCAAGTGAGAGCTCATCTGAACCTGAGCCTGTAGTGCCCCGAAGCACCCCACGAGGATCTACTTCAGGGAAACAG AAACCACACTGCCGAGGAATGGCTCCCAATGGCTTACCAAATCATATCATGGCTCCTGTTTGGAAGTGCCTCCAT CTCACCAAGGACTTCCGAGAGCAGAAACATTCATACTGGGAGTTTGCTGAGTGGATTCCTTTAGCCTGGAAGTGG CACTTGTTATCTGAGCTTGAGGCCGCTCCCTACCTGCCCCAGGAGGAGAAGTCTCCATTGTTTTCTGTACAACGT GAAGGGCTACCTGAAGATGGCACCCTCTACCGAATAAACAGATTTAGCTCGATCACAGCACATCCAGAGCGCTGG GATGTGTCCTTCTTCACGGGGGGACCGCTCTGGGCTCTGGACTGCTCCAGTGCCAGAGGGGGGCAGGAGCCTCG CAATATGTGGCTCTTTTCTCCAGCCCTGACATGAATGAGACACCCACTGAGCCAGCTTCATTCGGGTCCTGGG $\tt CTGCTCCAGCTCTGGGGCCTTGGGACCTTGCAGCAAGAAAGCTGTCCTGGCAACAGGGCCCACTTTGTCTATGGG$ ATTGCTTGTGACAACGGCTGCATCTGGGACCTCAAGTTCTGCCCCAGTGGAGCATGGGAACTTCCAGGCACCCCT $\tt CGGAAGGCTCUTCTCCTGCCCCGGTTGGGTCTCTTGGCTCTGGCCTGCTCAGACGGGAAAGTACTGCTATTCAGT$ CTACCCCATCCGGAGGCCCTGCTGGCTCAGCAACCCCCAGATGCAGTGAAGCCTGCCATATATAAGGTACAATGT GTGGCAACTCTGCAGGTGGGGTCTATGCAAGCTACAGACCCCTCTGAGTGTGGTCAGTGCCTTAGCCTGGCCTGG $\tt ATGCCTACCAGGCCCCACCAACACCCTAGCTGCTGGATATTATAATGGCATGGTGGTTTTCTGGAACCTTCCCACT$ AACTCACCCCTGCAGCGGATACGGCTCTCTGATGGCTCCTTAAAGCTCTACCCCTTCCAGTGTTTCCTAGCCCAT GACCAGGCTGTGCGTACCCTTCAATGGTGCAAAGCTAACAGCCATTTCCTTGTCTCTGCGGGGAGTGACCGGAAA ATCARATTCTGGGACCTTCGACGTCCTTACGAACCCATAAACTCTATCAAGCGCTTCTTGAGTACAGAACTGGCC TGGCTGCTTCCCTACAATGGTGTCACTGTGGCTCAGGACAACTGCTATGCCTCTTATGGACTCTGTGGGATTCAT TATATTGACGCTGGTTACCTTGGTTTCAAGGCCTACTTCACTGCTCCTCGAAAAGGCACCGTTTGGAGTCTTTCA GGATCCGACTGGCTTGGGACAATAGCTGCAGGAGATATATCCGGGGAGCTCATTGCTGCTATATTACCAGATATG CAGGACAGTCCTGAAGGTCCAGACCATTCTTCTGCTTCATCTGGGGTGCCCCAACCCTCCCAAGGCTCGAACTTAC ACTGAAACTGTCAACCATCACTACTTGCTCTTTCAAGACACAGATTTGGGTTCATTCCATGATCTGCTCCGTAGA GAACCAATGCTGCGCATGCAGGAGGGGGAGAGGGGCATTCTCAACTCTGCCTGGACAGGCTGCAGCTGGAGGCTATT ATCCATTTTGTCCGTGGACTCGCCTCCCCACTGGGCCACCGTATGCAGCTTGAAAGCCGAGCCCACTTCAATGCT ATGTTCCAACCATCCTCCCCCACTAGACGGCCTGGCTTCTCTCCAACCAGCCATCGCCTTCTGCCCACTCCCTAG

CCTTGGCCCACAGATCCTTGGAGTGAAGTCGGTCAAGAACAAATGGCCCTATGCACAGAGCCATAGGAACT
GGGGGCCTTCCCTGGACAGTGATCATGCCAGGCCTGGACCTTTAGGCCTCCCCCAGGACTCCTTAGGACCT
CCTTTCTACAGACTTCTGGATCACACCCCCCTGCGGCAGGGGGCCTCCCCACCAACCTCTCAAGGCCC
ACACTAGAGCAAAGCCTACTAGAAACACTCAGCCTGACTAGGCTCGACTTGGAGTCAAACTGCTCATATTGAC
ATATTGTTAAGTGGGTAAAGCCAAGTAAAGGTACTGGGTTTTTTGTGACCAAATTTCTGAATTGGCTACATAGGCTCTCTTAGAGTACTTCCT
CTTTAGGGTAACCATCATGAAGCCCTCTCTCTGACTATTCCAGGATCCAATATTACTGCCTTTGAATTCTT
TGACCAAGGAATACCACAGACACCCTACCGATAGAACAGCTCTCTAAGTTTTTTAAAATTCTCCTTTAGAGTATTCCCAAACTACTTCTTACTGCCCTTACGAAGTATTCCCCCTGAACTACTTCTTAAATATACAACTACTTCTACAAGTAATTCCCCCTTAAGAACTACTTCTTAAATATACAACTACTTCCAAGAACTACTTCTTAAAATATCTCCCTTAAAATATCCCCTGAACTACTTCCCCTGAATCTCCCCTGAATCCCCTGAATCTTCCCCTTCAATCTCCCTTCAATCTCCCTTCAATCTCCCTTCAATCTCCCCTTCAATCTCCCTTCAATCTCCCTTCAATCTCCCTTCAATCTCCCTTCAATCAATCTCCCTTCAATCAATCTCCCTTAATCAATCTCCCTTCAATCAATCTCCCCTTCAATCAATCTCCCTTCAATCAATCTCCCTTAATCAATCTCCCTTTCAATCTCCCTTAATCAATCTCCCTTAAATCTTCCCTTAATCAATCTCCCTTAATCAATCTCCCTTAATCAATCTCCCTTAATCAATCTCCCTTAATCAATCTCCCTTAATCAATCTCCCTTAATCAATCTCCCTTAATCAATCTCCCTTAATCAATCTCCCTTAATCAATCTCCCTTAATCAATCTCCCTTAATCAATCTCCCTTA

PCT/IIS2003/028547

738/6881 FIGURE 689

MDTCGVGYVALGEAGPVGNMTVVDSPGQEVLNQLDVKTSSEMTSAEASVEMSLPTPLPGFEDSPDQRRLPPEQES
LSRLEQPDLSSEMSKVSKPRASKPGRKRGGRTRKGPKRPQQPNPPSAPLVPGLLDQSNPLSTPMFKKRGRKSKE
LLLLKLSDLDRPESQSPKRPPEDPETFSGERPRRRAJQVALLVLQDLAELISTALPAPVSCPEGFEKVSSFTKPK
KTRQPAACPGGEEVDGAPRDEDFFLQVEAEDVEESEGPSESSSEPEPVVPRSTPRGSTSGKQKPHCRGMAPNGLP
NHTMAPVWKCLHLTKDPREQKHSYWEFAENIPLAWKWHLLSELEAAPYLPQEEKSPLFSVQRRGLPEDGTTYRTN
NHTMAPVWKCLHLTKDPREQKHSYWEFAENIPLAWKWHLLSELEAAPYLPQEEKSPLFSVQRRGLPEDGTTYRTN
NFSSITAHPERWDVSFFTGGPLWALDWCPVPEGAGASQYVALFSSPDMNETHPLSQLHSGPGLLQLWGLGTLQQE
SCPGNRAHFVYGIACDNGCIWDLKFCE'SGAWELPGTPRKAPLLPRIGLLALACSDGKVLLFSLPHFEALLAQQPP
DAVKPAIYKVQCVATLQVGSMQATDPSECGQCLSLAWWFTRPHOHLAAGYYNGMVVFWNLPTMSPLQRIRLSDGS
LKLYPFQCFLAHDQAVRTLQWCKANSHFLVSAGSDRKIKFWDLRRPYEPINSIKRFLSTELAWLLPYNGVTVAQD
NCYASYGLGGIHYIDAGYLGFKAYFTAPRKGTWSLSGSDWLGTIAAGDISGELIAAILEDMALMPINVKRPVER
RFPIYKADLIPYQDSPEGPDHSSASSGVPNPPKARTYTETVNHHYLLFQDTDLGSFHDLLRREPMLRMQEGGGHS
QLCLDRLQLEAIHKVRFSPNLDSYGWLVSGGQSGLVRIHFVRGLASPLGHRMQLESRAHPNAMFQPSSPTRRPGF

PCT/US2003/028547

739/6881 FIGURE 690

PCT/US2003/028547

740/6881 FIGURE 691

MALWRAYQRALAAHPWKVQVLTAGSLMGLGDIISQQLVERRGLQEHQRGRTLTMVSLGCGFVGPVVGGWYKVLDR FIFGTTKVDALKKHLLDQGGFAPCFLGCFLPLVGALNGLSAQDNWAKLQRDYPDALITNYYLWPAVQLANFYLVP LHYRLAVVQCVAYIWNSYLSWKAHLI

PCT/US2003/028547

741/6881 FIGURE 692A

 $\tt CGCCCCGCCTCTGAGCTCCCTTCCC{\color{red} ATC} GCGGCCCTAGTGTTGGAGGACGGGTCGGTCCTGCGGGGCCAGCCCT$ TTGGGGCCGCGTGTCGACTGCCGGGGAAGTGGTGTTTCAAACCGGCATGGTCGGCTACCCCGAGGCCCTCACTG ATCCCTCCTACAAGGCACAGATCTTAGTGCTCACCTATCCTCTGATCGGCAACTATGGCATCCCCCCAGATGAAA TGGATGAGTTCGGTCTCTGCAAGTGGTTTGAATCCTCGGGCATCCACGTAGCAGCACTGGTAGTGGGAGAGTGCT GTCCTACTCCCAGCCACTGGAGTGCCACCCGCACCCTGCATGAGTGGCTGCAGCAGCATGGCATCCCTGGCTTGC AAGGAGTAGACACTCGGGAGCTGACCAAGAAGTTGCGGGAACAGGGGTCTCTGCTGGGGAAGCTGGTCCAGAATG CACGGGTATTCANTACAGGGGGTGCCCCTCGGATCCTTGCTTTGGACTGTGGCCTCAAGTATAATCAGATCCGAT GCCTCTGCCAGCGTGGGGCTGAGGTCACTGTGGTACCCTGGGACCATGCACTAGACAGCCAAGAGTATGAGGGTC TCTTCTTAAGTAATGGGCCTGGTGACCCTGCCTCCTATCCCAGTGTCGTATCCACACTGAGCCGTGTTTTATCTG AGCCTAATCCCCGACCTGTCTTTGGGATCTGCCTGGGACACCAGCTATTGGCCTTAGCCATTGGGCCAAGACTT ACAAGATGAGATATGGGAACCGAGGCCATAACCAGCCCTGCTTGTTGGTGGGCTCTGGGCGCTGCTTTCTGACAT CCCAGAACCATGGGTTTGCTGTGGAGACAGACTCACTGCCAGCAGACTGGGCTCCTCTCTCACCAACGCCAATG ATGGTTCCAATGAAGGCATTGTGCACAACAGCTTGCCTTTCTTCAGTGTCCAGTTTCACCCAGAGCACCAAGCTG GCCCTTCAGATATGGAACTGCTTTTCGATATCTTTCTGGAAACTGTGAAAGAGGCCACAGCTGGGAACCCTGGGG GCCAGACAGTTAGAGAGCGGCTGACTGAGCGCCTCTGTCCCCCTGGGATTCCCACTCCCGGCTCTGGACTTCCAC CACCACGAAAGGTTCTGATCCTGGGCTCAGGGGGCCTCTCCATTGGCCAAGCTGGAGAATTTGACTACTCGGGCT CTCAGGCAATTAAGGCCCTGAAGGAGGAAAACATCCAGACGTTGCTGATCAACCCCAATATTGCCACAGTGCAGA CCTCCCAGGGGCTGGCCGACAAGGTCTATTTTCTTCCCATAACACCTCATTATGTAACCCAGGTGATACGTAATG AACGCCCCGATGGTGTTTACTGACTTTTGGGGGCCAGACTGCTCTGAACTGTGGTGTGGAGCTGACCAAGGCCG GGGTGCTGGCTCGGTATGGGGTCCGGGTCCTGGGCACACCAGTGGAGACCATTGAGCTGACCGAGGATCGACGGG TTGCCTCTAACAGGGAGGAGCTCTCTGCTCTCGTGGCCCCAGCTTTTGCCCATACCAGCCAAGTGCTAGTAGACA AGTCTCTGAAGGGATGGAAGGAGATTGAGTACGAGGTGGTGAGAGACGCCTATGGCAACTGTGTCACGGTGTGTA ACATGGAGAACTTGGACCCACTGGGCATCCACACTGGTGAGTCCATAGTGGTGGCCCCTAGCCAGACACTGAATG ACAGGGAGTATCAGCTCCTGAGGCAGACAGCTATCAAGGTGACCCAGCACCTGGGAATTGTTGGGGAGTGCAATG TGCAGTATGCCTTGAACCCTGAGTCTGAGCAGTATTACATCATTGAAGTGAATGCCAGGCTCTCTCGCAGCTCTG CCCTGGCCAGTAAGGCCACAGGTTATCCACTGGCTTATGTGGCAGCCAAGCTAGCATTGGGCATCCCTTTGCCTG AGCTCAGGAACTCTGTGACAGGGGGTACAGCAGCCTTTGAACCCAGCGTGGATTATTGTGTGGTGAAGATTCCTC GATGGGACCTTAGCAAGTTCCTGCGAGTCAGCACAAAGATTGGGAGCTGCATGAAGAGCGTTGGTGAAGTCATGG GCATTGGGCGTTCATTTGAGGAGGCCTTCCAGAAGGCCCTGCGCATGGTGGATGAGAACTGTGTGGGCTTTGATC ACACAGTGAAACCAGTCAGCGATATGGAGTTGGAGACTCCAACAGATAAGCGGATTTTTGTGGTGGCAGCTGCTT TGTGGGCTGGTTATTCAGTGGACCGCCTGTATGAGCTCACACGCATCGACCGCTGGTTCCTGCACCGAATGAAGC GTATCATCGCACATGCCCAGCTGCTAGAACAACACCGTGGACAGCCTTTGCCGCCAGACCTGCTGCAACAGGCCA AGGAACTGGGGATCTGTCCAGCAGTGAAACAGATTGACACAGTTGCAGCTGAGTGGCCAGCCCAGACAAATTACC TATACCTAACGTATTGGGGCACCACCCATGACCTCACCTTTCGAACACCTCATGTCCTAGTCCTTGGCTCTGGCG TCTACCGTATTGGCTCTAGCGTTGAATTTGACTGGTGTGCTGTAGGCTGCATCCAGCAGCTCCGAAAGATGGGAT ATAAGACCATCATGGTGAACTATAACCCAGAGACAGTCAGCACCGACTATGACATGTGTGATCGACTCTACTTTG ATGAGATCTCTTTTGAGGTGGTGATGGACATCTATGAGCTCGAGAACCCTGAAGGTGTGATCCTATCCATGGGTG GACAGCTGCCCAACAACATGGCCATGGCGTTGCATCGGCAGCAGTGCCGGGTGCTGGGCACCTCCCCTGAAGCCA TGCTGAGCGGTGCTGCTATGAATGTGGCCTACACGGATGGAGACCTGGAGCGCTTCCTGAGCAGCAGCAGCCG TCTCCAAAGAGCATCCCGTGGTCATCTCCAAGTTCATCCAGGAGGCTAAGGAGATTGACGTGGATGCCGTGGCCT CTGATGGTGGTGGCAGCCATCGCCATCTCTGAGCATGTGGAGAATGCAGGTGTGCATTCAGGTGATGCGACGC TGGTGACCCCCCACAAGATATCACTGCCAAAACCCTGGAGCGGATCAAAGCCATTGTGCATGCTGTGGGCCAGG

PCT/IIS2003/028547

742/6881 FIGURE 692B

AGCTACAGGTCACAGGACCCTTCAATCTGCAGCTCATTGCCAAGGATGACCAGCTGAAAGTTATTGAATGCAACG TACGTGTCTCTCGCTCCTTCGTTTCCAAGACACTGGGTGTGGACCTAGTAGCCTTGGCCACGCGGGTCA TCATGGGGGAAGAAGTGGAACCTGTGGGGCTAATGACTGGTTCTGGAGTCGTGGGAGTAAAGGTGCCTCAGTTCT CCTTCTCCCGCTTGGCGGGTGCTGACGTGGTGTTGGGTGTGGAAATGACCAGTACTGGGGAGGTGGCCGGCTTTG GGGAGAGCCGCTGTGAGGCATACCTCAAGGCCATGCTAAGCACTGGCTTTAAGATCCCCAAGAAGAATATCCTGC TGACCATTGGCAGCTATAAGAACAAAAGCGAGCTGCTCCCAACTGTGCGGCTACTGGAGAGCCTGGGCTACAGCC TCTATGCCAGTCTCGGCACAGCTGACTTCTACACTGAGCATGGCGTCAAGGTAACAGCTGTGGACTGGCACTTTG TGATTAACCTGTCAATGCGTGGAGCTGGGGGCCGGCGTCTCTCTTCTTTGTCACCAAGGGCTACCGCACCCGAC GCTTGGCCGCTGACTTCTCCGTGCCCCTAATCATCGATATCAAGTGCACCAAACTCTTTGTGGAGGCCCTAGGCC AGATCGGGCCAGCCCCTCCTTTGAAGGTGCATGTTGACTGTATGACCTCCCAAAAGCTTGTGCGACTGCCGGGAT TGATTGATGTCCATGTGCACCTGCGGGAACCAGGTGGGACACATAAGGAGGACTTTGCTTCAGGCACAGCCGCTG CCCTGGCTGGGGGTATCACCATGGTGTGTGCCATGCCTAATACCCGGCCCCCATCATTGACGCCCCTGCTCTGG CCCTGGCCCAGAAGCTGGCAGAGGCTGGCGCCCGGTGCGACTTTGCGCTATTCCTTGGGGCCTCGTCTGAAAATG CAGGAACCTTGGGCACCGTGGCCGGGTCTGCAGCCGGGCTGAAGCTTTACCTCAATGAGACCTTCTCTGAGCTGC GGCTGGACAGCGTGGTCCAGTGGATGGAGCATTTCGAGACATGGCCCTCCCACCTCCCCATTGTGGCTCACGCAG GGAAGGAGGAGATCCTGCTAATTAAAGCTGCAAAGGCACGGGGCTTGCCAGTGACCTGCGAGGTGGCTCCCCACC ACCTGTTCCTAAGCCATGATGACCTGGAGCGCCTGGGGCCTGGGAAGGGGGAGGTCCGGCCTGAGCTTGGCTCCC GCCAGGATGTGGAAGCCCTGTGGGAGAACATGGCTGTCATCGACTGCTTTGCCTCAGACCATGCTCCCCATACCT TGGAGGAGAAGTGTGGGTCCAGGCCCCCACCTGGGTTCCCAGGGTTAGAGACCATGCTGCCACTACTCCTGACGG CTGTAAGCGAGGGCCGGCTCAGCCTGGACGACCTGCTGCAGCGATTGCACCACAATCCTCGGCGCATCTTTCACC TGCCCCCGCAGGAGGACACCTATGTGGAGGTGGATCTGGAGCATGAGTGGACAATTCCCAGCCACATGCCCTTCT CCAAGGCCCACTGGACACCTTTTGAAGGGCAGAAAGTGAAGGGCACCGTCCGCCGTGTGGTCCTGCGAGGGGAGG TTGCCTATATCGATGGGCAGGTTCTGGTACCCCCGGGCTATGGACAGGATGTACGGAAGTGGCCACAGGGGGCTG TTCCTCAGCTCCCACCCTCAGCCCCTGCCACTAGTGAGATGACCACGACACCTGAAAGACCCCGCCGTGGCATCC CAGGGCTTCCTGATGGCCGCTTCCATCTGCCGCCCCGAATCCATCGAGCCTCCGACCCAGGTTTGCCAGCTGAGG AGCCAAAGGAGAAGTCCTCTCGGAAGGTAGCCGAGCCAGAGCTGATGGGAACCCCTGATGGCACCTGCTACCCTC CACCACCAGTACCGAGACAGGCATCTCCCCAGAACCTGGGGACCCCTGGCTTGCTGCACCCCCAGACCTCACCCC TGCTGCACTCATTAGTGGGCCAACATATCCTGTCCGTCCAGCAGTTCACCAAGGATCAGATGTCTCACCTGTTCA ATGTGGCACACACACTGCGTATGATGGTGCAGAAGGAGCGGAGCCTCGACATCCTGAAGGGGAAGGTCATGGCCT TCAGCTTCTCGGAAGCCACATCGTCCGTCCAGAAGGGCGAATCCCTGGCTGACTCCGTGCAGACCATGAGCTGCT ATGCCGACGTCGTCGTGCTCCGGCACCCCCAGCCTGGAGCAGTGGAGCTGGCCGCCAAGCACTGCCGGAGGCCAG TGGGAACTGTCAATGGCATGACGATCACGATGGTGGGTGACCTGAAGCACGGACGCACAGTACATTCCCTGGCCT CCTTCGTGGCCTCCCGCGCACCAAGCAGGAGGAATTCGAGAGCATTGAGGAGGCGCTGCCTGACACTGATGTGC TCACTCCCCACATCATGACCCGGGCCAAGAAGAAGATGGTGGTGATGCACCCGATGCCCCGTGTCAACGAGATAA GCGTGGAAGTGGACTCGGATCCCCGCGCAGCCTACTTCCGCCAGGCTGAGAACGGCATGTACATCCGCATGGCTC AAGGAATTCCAGTGCCTCCTACGGGGGCAGCACTTAGATATTCCTGGACATCCAGATTGCTCACATGTGCTGA TCTTCATTCCTGCACCTTAAACCTGTACAGTCATTTTTCTACTGACTTAATAAACAGCCGAGCTGTCCCTTG

PCT/US2003/028547

743/6881 FIGURE 693

 ${\tt MAALVLEDGSVLRGQPFGAAVSTAGEVVFQTGMVGYPEALTDPSYKAQILVLTYPLIGNYGIPPDEMDEFGLCKW}$ FESSGIHVAALVVGECCPTPSHWSATRTLHEWLQQHGIPGLQGVDTRELTKKLREQGSLLGKLVQNGTEPSSLPF LDPNARPLVPEVSIKTPRVFNTGGAPRILALDCGLKYNQIRCLCQRGAEVTVVPWDHALDSQEYEGLFLSNGPGD PASYPSVVSTLSRVLSEPNPRPVFGICLGHOLLALAIGAKTYKMRYGNRGHNOPCLLVGSGRCFLTSONHGFAVE TDSLPADWAPLFTNANDGSNEGIVHNSLPFFSVOFHPEHOAGPSDMELLFDIFLETVKEATAGNPGGOTVRFRLT ERLCPPGIPTPGSGLPPPRKVLILGSGGLSIGQAGEFDYSGSQAIKALKEENIQTLLINPNIATVQTSQGLADKV YFLP ITPHYVTQVIRNERPDGVLLTFGGQTALNCGVELTKAGVLARYGVRVLGTPVETIELTEDRRAFAARMAEI GEHVAPSEAANSLEOAOAAAERLGYPVLVRAAFALGGLGSGFASNREELSALVAPAFAHTSQVLVDKSLKGWKEI EYEVVRDAYGNCVTVCNMENLDPLGIHTGESIVVAPSQTLNDREYQLLRQTAIKVTQHLGIVGECNVQYALNPES EOYYIIEVNARLSRSSALASKATGYPLAYVAAKLALGIPLPELRNSVTGGTAAFEPSVDYCVVKIPRWDLSKFLR VSTKIGSCMKSVGEVMGIGRSFEEAFOKALRMVDENCVGFDHTVKPVSDMELETPTDKRIFVVAAALWAGYSVDR LYELTRIDRWFLHRMKRIIAHAQLLEQHRGQPLPPDLLQQAKCLGFSDKQIALAVLSTELAVRKLRQELGICPAV KQIDTVAAEWPAQTNYLYLTYWGTTHDLTFRTPHVLVLGSGVYRIGSSVEFDWCAVGCIQQLRKMGYKTIMVNYN PETVSTDYDMCDRLYFDEISFEVVMDIYELENPEGVILSMGGOLPNNMAMALHRQOCRVLGTSPEAIDSAENRFK FSRLLDTIGISOPQWRELSDLESARQFCQTVGYPCVVRPSYVLSGAAMNVAYTDGDLERFLSSAAAVSKEHPVVI SKFIQEAKEIDVDAVASDGVVAAIAISEHVENAGVHSGDATLVTPPQDITAKTLERIKAIVHAVGQELQVTGPFN ${\tt LQLIAKDDQLKVIECNVRVSRSFPFVSKTLGVDLVALATRVIMGEEVEPVGLMTGSGVVGVKVPQFSFSRLAGAD}$ VVLGVEMTSTGEVAGFGESRCEAYLKAMLSTGFKIPKKNILLTIGSYKNKSELLPTVRLLESLGYSLYASLGTAD FYTEHGVKVTAVDWHFEEAVDGECPPORSILEQLAEKNFELVINLSMRGAGGRRLSSFVTKGYRTRRLAADFSVP LIIDIKCTKLFVEALGQIGPAPPLKVHVDCMTSQKLVRLPGLIDVHVHLREPGGTHKEDFASGTAAALAGGITMV ${\tt CAMPNTRPFIIDAPALALAQKLAEAGARCDFALFLGASSENAGTLGTVAGSAAGLKLYLNETFSELRLDSVVQWM}$ EHFETWPSHLPIVAHAEQQTVAAVLMVAQLTQRSVHICHVARKEEILLIKAAKARGLPVTCEVAPHHLFLSHDDL ERLGPGKGEVRPELGSRQDVEALWENMAVIDCFASDHAPHTLEEKCGSRPPPGFPGLETMLPLLLTAVSEGRLSL DDLLQRLHHNPRRIFHLPPQEDTYVEVDLEHEWTIPSHMPFSKAHWTPFEGQKVKGTVRRVVLRGEVAYIDGQVL VPPGYGODVRKWPQGAVPQLPPSAPATSEMTTTPERPRRGIPGLPDGRFHLPPRIHRASDPGLPAEEPKEKSSRK VAEPELMGTPDGTCYPPPPVPRQASPQNLGTPGLLHPQTSPLLHSLVGQHILSVQQFTKDQMSHLFNVAHTLRMM VQKERSLDILKGKVMASMFYEVSTRTSSSFAAAMARLGGAVLSFSEATSSVQKGESLADSVQTMSCYADVVVLRH PQPGAVELAAKHCRRPVINAGDGVGEHPTQALLDIFTIREELGTVNGMTITMVGDLKHGRTVHSLACLLTQYRVS LRYVAPPSLRMPPTVRAFVASRGTKQEEFESIEEALPDTDVLYMTRIQKERFGSTQEYEACFGQF1LTPHIMTRA KKKMVVMHPMPRVNEISVEVDSDPRAAYFRQAENGMYIRMALLATVLGRF

PCT/US2003/028547

744/6881 FIGURE 694

PCT/US2003/028547

745/6881 FIGURE 695

MLHARCCLNQKGTILGLDLQNCSLEDPGPNFHQAHTTVIIDLQANPLKGDLANTFRGFTQLQTLLLPQHVNCPGG INAWNTITSYIDNQICQGQKNLCNNTGDPEMCPENGSCVPDGPGLLQCVCADGFHGYKCMRQGSFSLLMFFGILG ATTLSVSILLWATQRRKAKTS

PCT/IIS2003/028547

746/6881 FIGURE 696

PCT/US2003/028547

747/6881 FIGURE 697

MLHARCCLNQKGTILGLDLQNCSLEDPGPNFHQAHTTVIIDLQANPLKGDLANTFRGFTQLQTLILPQHVNCPGG
INAWNTITSYIDNQICQGQKNLCNNTGDPEMCPENGSCVPDGPGLLQCVCADGFHGYKCMRQGSFSLLMFFGILG
ATTLSVSILLWATQRRKAKTS

PCT/US2003/028547

748/6881 FIGURE 698

GCGCCCTAGCCCTCTTTCGGGGATACTGGCCGACCCCCTCTTCCTTTTCCCCTTTAGTGAAGGCCTCCCCGGTCG CCGCGCGGCTTCCCGGAGCCGACTGCAGACTCCCTCAGCCCGGTGTTCCCCGGGTCCGGACGCCGAGGTCGCGGC TTCGCAGAAACTCGGGCCCCTCCATCCGCCCTCAGAAAAGGGAGCGATGTTGATCTCAGGAAGCACAAAGGGACC TTCCTAGCTCTGACTGAACCACGGAGCTCACCCTGGACAGTATCACTCCGTGGAGGAAGACTGTGAGACTGTGGC TGGAAGCCAGATTGTAGCCACACATCCGCCCCTGCCCTACCCCAGAGCCCTGGAGCAGCAACTGGCTGCAGATCA CCATGCTTGTCGTGGGCTGGGGCCGGCATACTGTTGGTGAGCTGCTGATGGCGGACCGCAAAATGGGCTGCCTTCC GGTGGCACTGTCCCTGCTGGCCACCTTCCAGTCAGCCGTGGCCATCCTGGGTGTGCCGTCAGAGATCTACCGATT TGGGACCCAATATTGGTTCCTGGGCTGCTGCTACTTCTGGGGCTGCTGATACCTGCACACATCTTCATCCCCGT TTTCTACCGCCTGCATCTCACCAGTGCCTATGAGTACCTGGAGCTTCGATTCAATAAAACTGTGCGAGTGTGTGG AACTGTGACCTTCATCTTTCAGATGGTGATCTACATGGGAGTTGTGCTCTATGCTCCGTCATTGGCTCTCAATGC AGTGACTGGCTTTGATCTGTGGCTGTCCGTGCCCTGGCCATTGTCTGTACCGTCTATACAGCTCTGGGTGG GCTGAAGGCCGTCATCTGGACAGATGTGTTCCAGACACTGGTCATGTTCCTCGGGCAGCTGGCAGTTATCATCGT GGGGTCAGCCAAGGTGGGCGGCTTGGGGCGTGTGTGGGCCGTGGCTTCCCAGCACGGCCGCATCTCTGGGTTTGA ${\tt GCTGGATCCAGACCCTTTGTGCGGCACACCTTCTGGACCTTGGCCTTCGGGGGTGTCTTCATGATGCTCTCTT}$ ATACGGGGTGAACCAGGCTCAGGTGCAGCGGTACCTCAGTTCCCGCACGGAGAAGGCTGCTGTGCTCTCTGTTA TGCAGTGTTCCCCTTCCAGCAGGTGTCCCTCTGCGTGGGCTGCCTCATTGGCCTGGTCATGTTCGCGTATTACCA GGAGTATCCCATGAGCATTCAGCAGGCTCAGGCAGCCCCAGACCAGTTCGTCCTGTACTTTGTGATGGATCTCCT TTTTAATTCATTGGCAACTGTTACGATGGAAGACCTGATTCGACCTTGGTTCCCTGAGTTCTCTGAAGCCCGGGC CATCATGCTTTCCAGAGGCCTTGCCTTTGGCTATGGGCTGCTTTGTCTAGGAATGGCCTATATTTCCTCCCAGAT GGGACCTGTGCTGCAGGCAGCAATCAGCATCTTTGGCATGGTTGGGGGACCGCTGCTGGGACTCTTCTGCCTTGG AATGTTCTTTCCATGTGCTAACCCTCCTGGTGCTGTTGTGGGCCTGTTGGCTGGGCTCGTCATGGCCTTCTGGAT TGGCATCGGGAGCATCGTGACCAGCATGGGCTTCAGCATGCCACCCTCTCCCTCTAATGGGTCCAGCTTCTCCCT GCCCACCAATCTAACCGTTGCCACTGTGACCACACTGATGCCCTTGACTACCTTCTCCAAGCCCACAGGGCTGCA ${\tt GCGGTTCTATTCCTTGTCTTACTTATGGTACAGTGCTCACAACTCCACCACAGTGATTGTGGGGGCCTGATTGT}$ ${\tt CAGTCTACTCACTGGGAGAATGCGAGGCCGGTCCCTGAACCCTGCAACCATTTACCCAGTGTTGCCAAAGCTCCT}$ GTCCCTCCTTCCGTTGTCCTGTCAGAAGCGGCTCCACTGCAGGAGCTACGGCCAGGACCACCTCGACACTGGCCT GTTTCCTGAGAAGCCGAGGAATGGTGTGCTGGGGGACAGCAGAGACAAGGAGGCCATGGCCCTGGATGGCACAGC $\tt CTATCAGGGGAGCAGCTCCACCTGCATCCTCCAGGAGACCTCCCTGTGATGTTGACTCAGGACCCCGGCCTCTGTC$ CTCACTGTGCCAGGCCATAGCCAGAGGCCACCCTGTAGTACAGGGATGAGTCTTGGTGTGTTCTGCAGGGACAGG CCTGGATGATCTAGCTCATACCAAAGGACCTTGTTCTGAGAGGTTCTTGCCTGCAGGAGAAGCTGTCACATCTCA AGCATGTGAGGCACCGTTTTTCTCGTCGCTTGCCAATCTGTTTTTTAAAGGATCAGGCTCGTAGGGAGCAGGATC ATGCCAGAAATAGGGATGGAAGTGCATCCTCTGGGAAAAAGATAATGGCTTCTGATTCAACATAGCCATAGTCCT CCATCCTCCACCTCTGAGATGGACACTTAAGAGACGGGGCAAATGTGGATCCAAGAAACCAGGGCCATGACCAGG TCCACTGTGGAGCAGCCATCTATCTACCTGACTCCTGAGCCAGGCTGCCGTGGTGTCATTTCTGTCATCCGTGCT CTGTTTCCTTTTGGAGTTTCTTCTCCACATTATCTTTGTTCCTGGGGAATAAAAACTACCATTGGACCTAAAAAA AAAAAAAAAA

PCT/US2003/028547

749/6881 FIGURE 699

MSVGVSTSAPLSPTSGTSVGMSTFSIMDYVVFVLLLVLSLAIGLYHACRGWGRHTVGELLMADRKMGCLPVALSL
LATFQSAVALIGVPSETYRFGTQYWFLGCCYFLGLLIPAHTFIPVFYRLHLISAYEYLELRENKTVRVCGTVTFI
FQMVIYMGVVLYAPSLALNAVTGFDLWLSVLALGIVCTVYTALGGLKAVIWTDVFGTUVHFLGGLNIVGSAKV
GGLGRWAVASQHGRISGFELDPDFFYRHTFWTLAFGGVFMMLSLYGVNQAQVQRYLSSRTEKAAVLSCYAVPF
QOVSLCVGCLIGLWMFAYYGEYPMSIQQAQAPDQFVLYFVMDLLKGLEGLEGLFIACLFSGSLSTISSAFNSLA
TVTMEDLIRPWFPFSFSARAIMLSRGLAFGYGLLCLGMAYISSOMGGVLQAAISIFGMVGGPLLGLFCLGMFFFC
ANPFGAVVGLLAGLWAFWIGIGSIVTSMGFSMPPSPSNGSSFSLPTNLTVATVTTLMPLTTFSKPTGLQRFYSL
SYLWYSAHNSTTVLVVGLIVSLLTGRWRGRSLMPATIYPVLPKLLSLLPLSCQKRLHCRSYGQDHLDTGLFPEKP
RNGVLGDSRDKEAMALDFATYQGSSTGTLQETSL

PCT/IIS2003/028547

750/6881 FIGURE 700

GCCTGCGCGGAGGGAGCCGCGAGACAGGTGCGCATGCGCAGTGCGCGTCTGCGAGACCGACTTGGACGGAGCCGA GCGGCGACGGGGCCGAGTTCACCAGCCGCCGGGGCAGTAGTCGAAGGCCCGGCGCGCATGTCCTGGGTGCCGCG GTGCGGGCAGTGAACGCGCGCGGGGGGATGGGCCGGCGCGCGGGCGCCAGAGCTGTACCGGGCTCCGTTCCCGT TAAAGAATGGCGTGCACTTTCTGCAGCTAGAGCTGATTAATGGGCGCTTGAGTGCCTCCTTGCTGCACTCCCATG AGCTCCTGCGCTTCCAGGCACATCAACAGCAGGGCAACAAGGCAGAAAGGCCGGTTCCAAGGAGCAGGGGCCTC GACAAAGGAAGGGAGCAGCCCCAGCAGAGAAGAAATGTGGAGCGGAAACCCAGCACGAGGGGCTAGAACTCAGGG TAGAGAATTTGCAGGCGGTGCAGACAGACTTTAGCTCCGATCCACTGCAGAAAGTTGTGTGTTCAACCACGATA ATACCCTGCTTGCCACTGGAGGAACAGATGGCTACGTCCGTGTCTGGAAGGTGCCCAGCCTGGAGAAGGTTCTGG ACCTTAAGGCCTCTGTGTGGCAGAAGGATCAGCTGGTGACACAGCTGCACTGGCAAGAAAATGGACCCACCTTTT TGCCCCTTCGGACCAAGTCCTGTGGCCATGAAGTCGTCTCCTGCCTCGATGTCAGTGAATCCGGCACCTTCCTAG CCCATGGCATTGTGGTGACGGATGTGGCCTTTCTACCTGAGAAGGGTCGTGGTCCAGAGCTCCTTGGGTCCCATG AAACTGCCCTGTTCTCTGTGGCTGTGGACAGTCGTTGCCAGCTGCATCTGTTGCCCTCACGGCGGAGTGTTCCTG TGTGGCTCCTGCTCCTGCTGTGTGTCGGGCTTATTATTGTGACCATCCTGCTGCTCCAGAGTGCCTTTCCAGGTT TCCTTTAGCTTCCCTGCTTCCTGGGAATCAGGAGCCTGGACACTGCCATCTCTAGAGCAGAGTGGAGGCCTGGAC AGTGAAAAGGCTTGGCTATGGCCCTGTGTGACTCCAGGTCCCAGGAACCTTGCCTTCGTCATCTGTGGATCCATC TCTCCTCCTCCCCCTCAGCCTTGTGGCCAGTTCCTCTTCACATGAAGCCCCTGGCATTTGCTGGGGAAGGGACTGG ACTAAGCCAGCTGGCCTAAAGATGCAATAAGTTCCTAGGTAGTCTACCCTTACCTTGAGGAATGGGAAAATGAAC CTCAGCCCATTAGGCAGGAAAAGTTGATATTTAATAAACAAGGAAAGAGTGAACTGAGACCCC

PCT/US2003/028547

751/6881 FIGURE 701

GTAGCCTCATGGAAGAGAAGCAGATCCTGTGCGTGGGGCTAGTGGTGCTGGACGTCATCAGCCTGGTGGACAAGT ACCCTAAGGAGGACTCGGAGATAAGGTGTTTGTCCCAGAGATGGCAGCGCGGAGGCAACGCGTCCAACTCCTGCA CCGTTCTCCCTGCTCGGAGCCCCCTGTGCCTTCATGGGCTCATGGCCTCTGGCCATGTTGCTGATTTTGTCC TGGATGACCTCCGCCGCTATTCTGTGGACCTACGCTACACAGTCTTTCAGACCACAGGCTCCGTCCCCATCGCCA CGGTCATCATCAACGAGGCCAGTGGTAGCCGCACCATCCTATACTATGACAGGAGCCTGCCAGATGTGTCTGCTA CAGACTTTGAGAAGGTTGATCTGACCCAGTTCAAGTGGATCCACATTGAGGGCCGGAACGCATCGGAGCAGGTGA AGATGCTGCAGCGGATAGACGCACACACACCAGGCAGCCTCCAGAGCAGAAGATCCGGGTGTCCGTGGAGGTGG AGA AGCCACGAGAGGAGCTCTTCCAGCTGTTTGGCTACGGAGACGTGGTGTTTGTCAGCAAAAGATGTGGCCAAGC ACTTGGGGTTCCAGTCAGCAGAGGAAGCCTTGAGGGGCTTGTATGGTCGTGTGAGGAAAGGGGCTGTGCTTGTCT GTGCCTGGGCTGAGGAGGGCGGCCGACGCCCTGGGCCCTGATGGCAAATTGCTCCACTCGGATGCTTTCCCGCCAC CCCGCGTGGTGGATACACTGGGAGCTGGAGACACCTTCAATGCCTCCGTCATCTTCAGCCTCTCCCAGGGGAGGA GCGTGCAGGAAGCACTGAGATTCGGGTGCCAGGTGGCCGGCAAGAAGTGTGGCCTGCAGGGCTTTGATGGCATCG TGTGAGAGCAGGTGCCGGCTCCTCACACCATGGAGACTACCATTGCGGCTGCATCGCCTTCTCCCCTCCATCC AGCCTGGCGTCCAGGTTGCCCTGTTCAGGGGACAGATGCAAGCTGTGGGGAGGACTCTGCCTGTGTCCTGTGTTC CTTCTCCTCTCAATGTCTGAACTGCTCTGGCTGGGCATTCCTGAGGCTCTGACTCTTCGATCCTCCTCTTTGTG TCCATTCCCCAAATTAACCTCTCCGCCCAGGCCCAGAGGAGGGGCTGCCTGGGCTAGAGCAGCGAGAAGTGCCCT GGGCTTGCCACCAGCTCTGCCCTGGCTGGGGAGGACACTCGGTGCCCCACACCCAGTGAACCTGCCAAAGAAACC GTGAGAGCTCTTCGGGGCCCTGCGTTGTGCAGACTCTATTCCCACAGCTCAGAAGCTGGGAGTCCACACCGCTGA GCTGAACTGACAGGCCAGTGGGGGGCAGGGGTGCGCCTCCTCTGCCCTGCCCAGCCTGTGATTTGATGGGGT CTTCATTGTCCAGAAATACCTCCTCCCGCTGACTGCCCCAGAGCCTGAAAGTCTCACCCTTGGAGCCCACCTTGG A A TTA AGGGCGTGCCTCAGCCACA A ATGTGACCCAGGATACAGAGTGTTGCTGTCCTCAGGGAGGTCCGATCTGG AGGGCTTTAGAGTGAGACAGACCTGGATTCAAATCTGCCATTTAATTAGCTGCATATCACCTTAGGGTACAGCAC TTAACGCAATCTGCCTCAATTTCTTCATCTGTCAAATGGAACCAATTCTGCTTGGCTACAGAATTATTGTGAGGA ТАЛАЛАТСАТАТАТАЛАЛАЛАЛАЛА

PCT/IIS2003/028547

752/6881 FIGURE 702

MEEKQILCVGLVVLDVISLVDKYPKEDSEIRCLSQRWQRGGNASNSCTVLSLLGAPCAFMGSMAPGHVADFVLDD LRRYSVDLRYTVPGTTGSVPIATVIINEASGSRTILYYDRSLEPUSATDFEXVDLTGFKWIHIEGRNASSQVKML QRIDAHNTRQPPEQKIRVSVEVEKPREELFQLFGYGDVVFVSKDVAKHLGFQSAEEALRGLYGRVKGAVLVCAW AEEGADALGPDGKLLHSDAFPPPRVVDTLGAGDTFNASVIFSLSQGRSVQEALRFGCQVAGKKCGLQGFDGIV

PCT/HS2003/028547

753/6881 FIGURE 703

GTAGCCTCATGGAAGAAGCAGATCCTGTGCGTGGGGCTAGTGGTGCTGGACGTCATCAGCCTGGTGGACAAGT ACCCT A AGGAGGACT CGGAGGAT A AGGTGTTTGTCCC AGAGATGGCAGCGCGGGGGCAACGCGTCCAACTCCTGCA CCGTTCTCCCCTGCCCCGGAGCCCCCTGTGCCTTCATGGGCTCAATGGCTCCTGGCCATGTTGCTGACTTCCTGG TGGCCGACTTCAGGCGGCGGGGCGTGGACGTGTCTCAGGTGGCCTGGCAGAGCAAGGGGGACACCCCCAGCTCCT CCTCCATCATCAACACTCCAATGGCAACCGTACCATTGTGCTCCATGACACGAGCCTGCCAGATGTGTCTGCTA CAGACTTTGAGAAGGTTGATCTGACCCAGTTCAAGTGGATCCACATTGAGGGCCGGAACGCATCGGAGCAGGTGA AGATGCTGCAGCGGATAGACGCACACACACAGGCAGCCTCCAGAGCAGAAGATCCGGGTGTCCGTGGAGGTGG AGAAGCCACGAGAGGAGCTCTTCCAGCTGTTTGGCTACGGAGACGTGGTGTTTGTCAGCAAAAGATGTGGCCAAGC ACTTGGGGTTCCAGTCAGCAGGAAGCCTTGAGGGGCTTGTATGGTCGTGTGAGGAAAGGGGCTGTGCTTGTCT GCGTGCAGGAAGCACTGAGATTCGGGTGCCAGGTGGCCGGCAAGAAGTGTGGCCTGCAGGGCTTTGATGGCATCG TGTGAGAGCAGGTGCCGGCTCCTCACACACCATGGAGACTACCATTGCGGCTGCATCGCCTTCTCCCCTCCATCC AGCCTGGCGTCCAGGTTGCCCTGTTCAGGGGACAGATGCAAGCTGTGGGGAGGACTCTGCCTGTGTCCTGTGTTC CTTCTCCTCTCAATGTCTGAACTGCTCTGGCTGGGCATTCCTGAGGCTCTGACTCTTCGATCCTCCTCTTTGTG THE ATTRICT AND THE ACCURACY CONCERNS AGAING GOOG CONTROL OF A THE ACCURACY CONCERNS AGAING GOOG CONTROL OF A THE ACCURACY CONCERNS AGAING GOOG CONTROL OF A THE ACCURACY CONTR GGGCTTGCCACCAGCTCTGCCCTGGCTGGGGAGGACACTCGGTGCCCCACACCCAGTGAACCTGCCAAAGAAACC GTGAGAGCTCTTCGGGGCCCTGCGTTGTGCAGACTCTATTCCCACAGCTCAGAAGCTGGGAGTCCACACCCGCTGA GCTGAACTGACAGGCCAGTGGGGGGCAGGGGTGCGCCTCCTCTGCCCTGCCCACCAGCCTGTGATTTGATGGGGT CTTCATTGTCCAGAAATACCTCCTCCCGCTGACTGCCCCAGAGCCTGAAAGTCTCACCCTTGGAGCCCACCTTGG AATTAAGGGCGTGCCTCAGCCACAAATGTGACCCAGGATACAGAGTGTTGCTGTCCTCAGGGAGGTCCGATCTGG AGGGCTTTAGAGTGAGACAGACCTGGATTCAAATCTGCCATTTAATTAGCTGCATATCACCTTAGGGTACAGCAC TTAACGCAATCTGCCTCAATTTCTTCATCTGTCAAATGGAACCAATTCTGCTTGGCTACAGAATTATTGTGAGGA ТАЛЛАЛТСАТАТАТАЛАЛАЛАЛАЛА

PCT/US2003/028547

754/6881 FIGURE 704

MEEKQILCVGLVVLDVISLVDKYPKEDSEIRCLSQRWQRGGNASNSCTVLSLLGAPCAFMGSMAPGHVADFLVAD FRRRGVDVSQVAWQSKGDTPSSCCIINNSNGNRTIVLHDTSLPDVSATDFEKVDLTQFKWIHIEGRNASEQVKML QRIDAHNTRQPPEQKITKYSVEVEKPREELFQLFGYGDVVFVSKDVAKHLGFQSAEEALRGLYGRVRKGAVLVCAW AEEGADALGPDGKLLHSDAFPPPRVVDTLGAGDTFNASVIFSLSQGRSVQEALRFGCQVAGKKCGLQGFDGIV

PCT/HS2003/028547

755/6881 FIGURE 705

CCTCGAGGTTTCAGCCTCTACACAGGTTCCAGTGGGGCCCTCAGCCCCGGGGGGCCCCAGGCCCAGATTGCCCCC CGGCCAGCCAGCCGCCACAGGAACTGGTGTGCCTACGTGGTGACCCGGACAGTGAGCTGTGTCCTTGAGGATGGA GTGGAGACATATGTCAAGTACCAGCCTTGTGCCTGGGGCCAGCCCCAGTGTCCCCAAAGCATCATGTACCGCCGC TTCCTCCGCCCTCGCTACCGTGTGGCCTACAAGACAGTGACCGACATGGAGTGGAGGTGCTGTCAGGGTTATGGG GGCGATGACTGTGCTGAGAGTCCCGCTCCAGCGCTGGGGCCTGCGTCTTCCACACCACGGCCCCTGGCCCGGCCT GCCCGCCCAACCTCTCTGGCTCCAGTGCAGGCAGCCCCCTCAGTGGACTGGGGGGGAGAAGGTCCTGGGGAGTCA GAGAAGGTGCAGCAGCTGGAGGAACAGGTGCAGAGCCTGACCAAGGAGCTGCAAGGCCTGCGGGGGCGTCCTGCAA GACGCGGCTGCCCGCCCTGGGGTGCATGAAACCCTCAATGAGATCCAGCACCAGCTGCAGCTCCTGGACACCCGC GTCTCCACCCACGACCAGGAGCTGGGTCACCTCAACAACCATCATGGCGGCAGCAGCAGCAGTGGGGGCAGCAGC GCCCCAGCCCCAGCCTCAGCCCCTCCGGGCCCCAGTGAGGAGCTGCTGCGGCAGCTGGAGCAGCGGTTGCAGGAG TCCTGCTCCGTGTGCCTGGCCGGGCTAGATGGCTTCCGCCGGCAGCAGCAGGAGGACAGGGAGCGGCTGCGAGCG ATGGAGAAGCTGCTGGCCTCGGTGGAGGAGCGGCAACGGCACCTCGCAGGGCTGGCCGGTGGGCCGCAGGCCCCCT CAGGAATGCTGCTCTCCAGAGCTGGGCCGGCGACTGGCAGAGCTGGAGCGCAGGCTGGATGTCGTGGCCGGCTCA GTGACAGTGCTGAGTGGGCGGCGAGGCACAGAGCTGGGAGGAGCCGCGGGGCAGGGAGGCCACCCCCAGGCTAC ACCAGCTTGGCCTCCCGCCTGTCTCGCCTGGAGGACCGCTTCAACTCCACCCTGGGCCCTTCGGAGGAGCAGGAG CAGGCATGCGGGCAGCTCTGCTCTGGGGCCCCTGGGGAGCAGGACTCTCAAGTCAGCGAGATCCTCAGTGCCTTG GAGCGCAGGGTGCTGGACAGTGAGGGGCAGCTGCGGCTGGTGGGCCTCCGGCCTGCACACGGTGGAAGCAGCGGGG GAGGCCCGGCAGGCCACGCTGGAGGGATTACAAGAGGTTGTGGGCCGGCTCCAGGATCGTGTGGATGCCCAGGAT GAGACAGCTGCAGAGTTCACACTACGGCTGAATCTCACTGCGGCCCGGCTAGGCCAACTGGAGGGGCTGCTGCAG GCCCATGGGGATGAGGGCTGTGGGGCCTGTGGCGGAGTCCAAGAGGAACTAGGCCGCCTTCGGGATGGTGTGGAG CGCTGCTCCTGCCCCCTGTTGCCTCCTCGGGGTCCTGGGGCTCCAGGTGTTGGGGGCCCAAGCCGTGGGCCC CTGGACGGCTTCAGCGTGTTTGGGGGCAGCTCAGGCTCAGCCCTGCAGGCCCTGCAAGGAGAGCTCTCTGAGGTT ATTCTCAGCTTCAGCTCCCTCAATGACTCACTGAATGAGCTCCAGACCACTGTGGAGGGCCAGGGCGCTGATCTG GCTGACCTGGGGGCAACCAAGGACCGTATCATTTCTGAGATTAACAGGCTGCAGCAGGAGGCCACAGAGCATGCT CGATTGGGCCGTCTTGAGGGTGTCTGTGAACGGTTGGACACTGTGGCTGGGGGACTGCAGGGCCTGCGCGAGGGC CTGGAGAAGCTGGTCGGGGGACAGGCGGGCCTGGGCAGGCGGCTGGGTGCCCTTAACAGCTCCCTGCAGCTCCTG GAGGACCGTCTGCACCAGCTCAGCCTGAAGGACCTCACTGGGCCTGCAGGAGAGGGCTGGGCCCCCAGGGCCTCCT GGGCTGCAGGGACCCCCAGGCCCTGCTGGACCTCCAGGATCACCAGGCAAGGACGGCCAAGAGGGCCCCATCGGG CCACCAGGTCCTCAAGGGGAACAGGGAGTGGAGGGGGCACCAGCAGCCCCTGTGCCCCAAGTGGCATTTTCAGCT GCTCTGAGTTTGCCCCGGTCTGAACCAGGCACGGTCCCCTTCGACAGAGTCCTGCTCAATGATGGAGGCTATTAT GATCCAGAGACAGGCGTGTTCACAGCGCCACTGGCTGGACGCTACTTGCTGAGCGCGGTGCTGACTGGGCACCGG CACGAGAAAGTGGAGGCCGTGCTGCCCGCTCCAACCAGGGCGTGGCCCGCGTAGACTCCGGTGGCTACGAGCCT GAGGGCCTGGAGAATAAGCCGGTGGCCGAGAGCCAGCCCAGCCCGGGCACCCTGGGCGTCTTCAGCCTCATCCTG CCGCTGCAGGCCGGGGACACGGTCTGCGTCGACCTGGTCATGGGGCAGCTGGCGCACTCGGAGGAGCCGCTCACC ATCTTCAGCGGGGCCCTGCTCTATGGGGACCCAGAGCTTGAACACGCG<u>TAG</u>ACTGGGGTCCCGCCCGACGTGTCT ACGTCGGCTGAAGAGACAGCGGGGGGGGGGGCTCCTGGGGTCTCGCCTGAGACGGGGCACCTAGCCCTGGGCGA GCGCCGCACCCGGGCCCGCAGCGGCACCGCCCAGAGCGGCCTCTCCCCACGCCCGGGGCGCCGGCTCAGGG GAGCCGATCCTCGCACCCTCCGCTCCCTCCACTGGCCCTCCAGGTCGATTCCCTGGGCTCCAGGCTCCCCCGCGC GGGCGCCGCCCACCGCCATACTAAACGATCGAGGAATAAAGACACTTGGTTTTTCT

PCT/IIS2003/028547

756/6881 FIGURE 706

PCT/US2003/028547

757/6881 FIGURE 707

GGCACGAGGGGCACCGCGCGCTCGGGTGTTTTTTGGGGGCCCGGGTGGAGGGCCCGGGTGCCGGGGCCCAAGGTG CGGCCTCGCTAGCGGGAGAGGGAGCGGGATCACCGGCCCGGAGAGAGCTCTCAGGGCCAGAGCGGGGCAGGAGGA TGCTTTCCCAGCCCCACCATGGAGCTGCGCTGTGGGGGATTGCTGTTCAGTTCTCGCTTTGATTCAGGGAATCTA GCCCACGTGGAGAAGGTGGAATCTTTGTCCAGTGATGGGGAAGGGGTAGGAGGTGGGGCGTCAGCCCTGACCAGT GGCATTGCCTCTTCCCCTGACTATGAATTCAACGTGTGGACCCGACCAGACTGTGCTGAAACGGAATTTGAGAAT GGGAACAGGTCATGGTTCTACTTCAGCGTCCGGGGAGGAATGCCAGGAAAACTCATCAAGATCAACATT<u>ATG</u>AAC ATGAACAAGCAGAGCAAGCTGTATTCCCAGGGCATGGCCCCCTTTGTGCGCACACTGCCCACCCGGCCACGCTGG GAACGCATTCGAGACCGGCCCACCTTTGAGATGACAGAGACGCAGTTTGTGTTATCCTTTGTTCATCGTTTCGTG GAGGGCCGTGGGGCCACCACCTTCTTCGCCTTCTGCTACCCCTTCTCCTACAGTGACTGCCAGGAACTGCTAAAC CTCCTTTGCTATTCTCTGGATGGACTTCGTGTAGATCTGCTGACGATCACTTCCTGCCATGGGCTTCGAGAAGAT CGAGAGCCCCGTCTAGAGCAGCTATTTCCTGATACCAGCACCCCTCGACCATTCCGTTTCGCAGGCAAGAGGATA TTCTTCTTAAGCAGTAGAGTACACCCAGGGGAGACTCCATCTAGCTTTGTCTTCAATGGCTTTCTGGACTTCATC CTCCGACCTGATGATCCCCGGGCCCAAACCCTCCGTCGCCTCTTCGTCTTTAAGCTGATTCCCATGTTGAACCCC GATGGTGTGGTCCGGGGACACTACCGCACAGACTCACGTGGAGTGAATCTGAACCGTCAGTACCTGAAGCCTGAT GCCGTCCTGCACCCGGCCATCTATGGGGCCAAAGCTGTGCTTCTCTACCACCATGTGCACTCTCGTCTGAACTCC GCAGAACAGAAGCTCAACAGTGTGTGGATTATGCCACAACAGTCTGCGGGGCTTGAAGAGTCAGCCCCTGATACC ATCCCCCCCAAAGAGAGTGGCGTTGCTTACTATGTGGACCTGCATGGACATGCTTCCAAAAGGGGCTGCTTCATG TACGGAAACAGCTTTAGTGATGAGAGCACCCAGGTGGAAAACATGCTATATCCAAAGCTCATCTCCTTGAATTCA AAAGAGGGAAGCGGCCGTGTTGCAATCTACAAAGCCTCAGGGATAATCCACAGCTACACACTTGAATGCAACTAC GCTTTCCCCTCCAGATACACTGTGGAACTATTTGAGCAGGTGGGACGAGCTATGGCCATTGCAGCCCTGGACATG GCGGAATGTAATCCGTGGCCCCGAATTGTACTGTCAGAGCACAGCAGCCTTACTAATCTACGGGCCTGGATGCTG AAACATGTACGCAACAGCCGAGGCCTAAGCAGCACTCTGAATGTGGGTGTCAACAAGAAGAGGGGCCTTCGAACT $\tt CCACCCAAAAGTCACAATGGGTTGCCTGTCTCCTGCTCCGAAAACACCTTGAGTCGGGCACGAAGTTTTAGCACC$ GGCACAAGTGCCGGTGGTAGCAGCAGCAGCCAACAAAATTCTCCACAGATGAAGAATTCCCCCAGCTTTCCTTTT AACATACCAGGGAGCAGTTGCTCACTCTTGTCCTCTGGAGACAAACCAGAGGCTGTCATGGTAATCGGGAAAGGT CTGCTAGGGACTGGAGCTCGGATGCCCTGCATCAAGACTCGATTGCAGACCTGTCCGAGGAGAGTTTCCGCCAGG AGGGGTCCCGGATTCCCCAGGCTAGGCCCAGGTTGGGCCGGGGCTCACCGCCGACTCGCAGAGGGA<u>TGA</u>AAGGCT CTTCAGGCCCCACATCCCCTACCCCCGGACCAGGGAGAGCAGTGAGCTGGAGCTGGGATCCTGCTACAC CAGGGCTGCCTCAGGCCAGGCCCCCACGGCCCCGCTCTGCCCTTTTCTCCTATATCCTGTAGTCTATCTG CACTGACTGTTTCTCCCCGGGTCTGATAATGCCTTTATGTTCAATCCCAGGATATAGCCCCAAGATGGGGTAACA ATACTGGGCCCTATTCAGTGGCAGCTTCTTGTTCCATAGGATTAAGGAAGACTCTGAGGAAAATAAAAGTTGTTTG GAAAAATCCAAAAAAAAAAAAAAAAAAAAA

PCT/HS2003/028547

758/6881 FIGURE 708

MNMNKQSKLYSQGMAPFVRTLPTRPRWERIRDRPTFEMTETQFVLSFVHRFVEGRGATTFFAFCYPFSYSDCQEL
LNQLDQRFPENHPTHSSPLDTIYYHRELLCYSLDGLRVDLLTITSCHGGREDREPRLEQLFFDTSTPRFFFRAG
RIFFLSSRVHBGETPSSFVFNGFLDFILRPDDPRAQTLRRLFVFKLIPMLNPDGVVRGHYRTDSRGSVMLNRQYLK
PDAVLHPATYGAKAVLLYHIVHSIRLNSQSSSEHQPSSCLPPDAPVSDLEKANNLQNEAQCGHSADRHNAEAWKQT
EPAEQKLNSVWIMPQQSAGLEESAPDTIPPKESGVAYYVDLHGHASKRGCFWYGNSFSDESTQVENMLYPKLIS
NSAHFDFGGCNFSSKNMYARDRRDGQSKEGSGRVAIYKASGIHSYTLECNYNTGRSVNSIPAACHDMGRASPP
PPAFPSRYTVELFFQVGRAMAIAALDMAECNFWPRIVLSEHSSLTNLRAWHLKHYNSRGLSSTLNVGVNKKRGL
RTPPKSHNGLPVSCSENTLSRARSFSTGTSAGGSSSSQQNSPQMKNSESFFPHGSRPAGLPGLGSSTQKVTHRVL
GPVREPRSQDRRQQQFLNHRPAGSLAPSPAPTSSGPASSHKLGSCLLFDSFNIPGSSCSLLSSGDKPEAVMVIG
KGLLGTGARMPCIKTRLQTCPRRVSARRGFGFFRLGPGWAGAHRRLAEG

PCT/IIS2003/028547

759/6881 FIGURE 709

TGCACCCACGAGGCTGACGTCTACATCGAGAATGGCATCATCCAGCAGGTGGGCCGCGAGCTCATGATCCCTGGC GGGGCCAAGGTGATTGATGCCACAGGAAAACTGGTGATCCCTGGTGGCATCGACACCAGCACCCACTTCCACCAG ACCTTCATGAATGCCACGTGCGTGGACGACTTCTACCATGGGACCAAGGCAGCACTCGTCGGAGGCACCACCATG ATCATCGGCCACGTCCTGCCCGACAAGGAGACCTCCCTTGTGGACGCTTATGAGAAGTGCCGAGGTCTGGCCGAC CCCAAGGTCTGCTGTATTACGCCCTCCACGTGGGGATCACCTGGTGGGCACCCAAGGTGAAAGCAGAAATGGAG ACACTGGTGAGGGAGAAGGGTGTCAACTCGTTCCAGATGTTCATGACCTACAAGGACCTGTACATGCTTCGAGAC AGTGAGCTGTACCAAGTGTTGCACGCTTGCAAGGACATTGGGGCAATCGCCCGCGTCCATGCTGAAAATGGGGAG GAGGAGCTGGAAGCTGAAGCCACTCATCGTGTTATCACCATTGCAAACAGGACTCACTGTCCAATCTACCTGGTC AACGTGTCCAGTATCTCGGCTGGTGACGTTATCGCAGCTGCTAAGATGCAAGGGAAGGTTGTGCTGGCGGAGACC GTGCCTCCCCTGAGACTGGACACCAACACCTCAACCTCATGAGCCTGCTGGCCAATGACACTCTGAACATC GGAGACTTCAACCTGTATGAGAACATGCGCTGCCACGGCGTGCCACTGGTCACCATCAGCCGGGGGCGCGTCGTG TATGAGAACGGCGTCTTCATGTGCGCCGAGGGCACCGGCAAGTTCTGTCCCCTGAGGTCCTTCCCAGACACTGTC TACAAGAAGCTGGTCCAGAGAGAGAGACTTTAAAGGTTAGAGGAGTGGACCGCACTCCCTACCTGGGGGATGTC GCTGTTGTCGTGCACCCTGGGAAAAAAGAGATGGGAACCCCACTCGCAGACACTCCTACCCGGCCCGTCACCCGG CATGGGGGCATGAGGGACCTTCACGAATCCAGCTTCAGCCTCTCTGGCTCTCAGATCGATGACCATGTTCCAAAG CGAGCTTCAGCTCGGATCCTCGCTCCTCCCGGAGGCAGGTCGAGTGGCATTTGGTAAAGGCATTGCCAAGCCCCC CGAGTGAGGACGCACCGCCACCAGCCCGCAACTCTCCAGCCGAAGCTGCAGGGGCAGGAGAGGCTGGGCTGG GAGCCAACTCTAACAGGCACTTTGAGATGTGTTCCTCCTGCTGTAGTCCTTTCTGCCTTGGCCTCGGCGGGGCTTT TCTGGGGCCCAGGAAGCCCACACTATGCACAGAGCCCAATGCATAGAGCCCTGGCCAGCCCTTCCTCTCACTCCT GCCTCCGCTGGCTTTGGGAAAGCCCAGACTTTAGTGCCCTGCCCCTGGCTGACTGGCCAGTTGCCCAGAGCACT TTAGCAGATGTGGTTTCAAAGTAAAGGCCTCCTCCCCCACCCCTTAGGCCCCGTGGTGACATTTCCCAAGTCAGA CAGATGTCAGCTTCCCAGCCATGCCCAGGACGTCCTATCTCCCCCAACCCACCTCTGGCCCTGTGTAGGGGCAGG GATGGGGGTGGCTGGGACTCCTGGTGCCCCTCGCCAGCTTCTCCTGCGCCCCACACCCTCGGGGGGGTCAC AGGCCCAGAAGGGTAGCTGGGCGGGGCTCGAGGCTGGTGCCAGGCGCGTGTAAATGGTTTTGTTTTGCACGTTTG GGAGGGGGCTGGCCTCACAGGCCTCTCTTTTCCCCGCCTGCAGTCTTCTGGGCTGCGGGAGGCCCTGGCCCTTTC $\tt CCCTTCAGGAAGCAGGTGTCCTTTCCCCTCTCTGCCCCTGATCACTCCCAGCACTCCCCTTGCCTTCCCCTGTCT$

PCT/IIS2003/028547

760/6881 FIGURE 710

MLANSASVRILIKGGKUVNDDCTHEADVYIENGIIQQVGRELMIPGGAKVIDATGKLVIPGGIDTSTHFHQTFMN
ATCVDDFYHGTKAALVGGTTMIIGHVLPDKETSLVDAVEKCRGLADPKVCCDYALHVGITWMAPKVKAEMETLVR
EKGVNSFQMFMTYKDLYMLRDSELYQVLHACKDIGAIARVHAENGELVAEGAKEALDLGITGPEGIEISRPEELE
AEATHRVITIANRTHCPIYLVAVSSISAGDVIAAXHMGGKVVLAETITAHATLTGLHYYHQDWSHAAAYVTVPFL
RLDTNTSTYLMSLLANDTINIVASDHRPFTTKQKAMGKEDFTKIPHGVSGVQDRMSVIWERGVVGGKMDENFVA
VTSSNAAKLLMLYPRKGRIIFGADADVVVWDPEATKTISASTQVQGGDFNLYEMMRCHGVPLVTISRGRVVYENG
VFMCAEGTGKFCPLRSFPDTVYKKLVQREKTLKVRGVDRTFYLGDVAVVVHPGKKEMGTPLADTPTRPVTRHGGM
RDLHESSFSLGSGIDDHVPKRASARTLAPPGGRSGIW

PCT/IIS2003/028547

761/6881 FIGURE 711

CTTGCTCCGAGAGGGAGTCCTCGCGGACGTCAGCCAAGATTCCAGAATGACTATCTTGACTTACCCCTTTAAAAA TCTTCCCACTGCATCAAAATGGGCCCTCAGATTTTCCATAAGACCTCTGAGCTGTTCCTCCCAGCTACGAGCTGC CCCAGCTGTCCAGACCAAAACGAAGAAGAAGACGTTAGCCAAACCCAATATAAGGAATGTTGTGGTGGTGGATGGTGT TCGCACTCCATTTTTGCTGTCTGGCACTTCATATAAAGACCTGATGCCACATGATTTGGCTAGAGCAGCGCTTAC GGGTTTGTTGCATCGGACCAGTGTCCCTAAGGAAGTAGTTGATTATATCATCTTTGGTACAGTTATTCAGGAAGT GAAAACAAGCAATGTGGCTAGAGAGGCTGCCCTTGGAGCTGGCTTCTCTGACAAGACTCCTGCTCACACTGTCAC CATGGCTTGTATCTCTGCCAACCAAGCCATGACCACGGTGTTGTTTGGCTTGATTGCTTCTGGCCAGTGTGATGTGAT CGTGGCAGGTGGTGTTGAGTTGATGTCCGATGTCCCTATTCGTCACTCAAGGAAAATGAGAAAACTGATGCTTGA TCTCAATAAGGCCAAATCTATGGGCCAGCGACTGTCTTTAATCTCTAAATTCCGATTTAATTTCCTAGCACCTGA GCTCCCTGCGGTTTCTGAGTTCTCCACCAGTGAGACCATGGGCCACTCTGCAGACCGACTGGCCGCTGCCTTTGC TGTTTCTCGGCTGGAACAGGATGAATATGCACTGCGCTCTCACAGTCTAGCCAAGAAGGCACAGGATGAAGGACT ACTGGAGCAGATGGCCAAACTAAAACCTGCATTCATCAAGCCCTACGGCACAGTGACAGCTGCAAATTCTTCTTT CTTGACTGATGGTGCATCTGCAATGTTAATCATGGCGGAGGAAAAGGCTCTGGCCATGGGTTATAAGCCGAAGGC ATATTTGAGGGATTTTATGTATGTGTCTCAGGATCCAAAAGATCAACTATTACTTGGACCAACATATGCTACTCC AAAAGTTCTAGAAAAGGCAGGATTGACCATGAATGATATTGATGCTTTTGAATTTCATGAAGCTTTCTCGGGTCA GATTTTGGCAAATTTTAAAGCCATGGATTCTGATTGGTTTGCAGAAAACTACATGGGTAGAAAAACCAAGGTTGG ATTGCCTCCTTTGGAGAAGTTTAATAACTGGGGTGGATCTCTGTCCCTGGGACACCCATTTGGAGCCACTGGCTG CAGGTTGGTCATGGCTGCCGACAGATTACGGAAAGAAGGAGGCCAGTATGGCTTAGTGGCTGCGTGTGCAGC TGGAGGGCAGGCCATGCTATGATAGTGGAAGCTTATCCAAAATAATAGATCCAGAAGAAGTGACCTGAAGTTTC TGTGCAACACTCACACTAGGCAATGCCATTTCAATGCATTACTAAATGACATTTGTAGTTCCTAGCTCCTCTTAG GAAAACAGTTCTTGTGGCCTTCTATTAAATAGTTTGCACTTAAGCCTTGCCAGTGTTCTGAGCTTTTCAATAATC TGTTGTCACTAAAGACTAAATGAGGGTTTGCAGTTGGGAAAGAGGTCAACTGAGATTTGGAAATCATCTTTGTAA TATTTGCAAATTATACTTGTTCTTATCTGTGTCCTAAAGATGTGTTCTCTATAAAATACAAACCAACGTGCCTAA TTAATTATGGAAAAATAATTCAGAATCTAAACACCACTGAAAACTTATAAAAAATGTTTAGATACATAAATATGG

PCT/IIS2003/028547

762/6881 FIGURE 712

MTILTYPFKNLPTASKWALRFSIRPLSCSSQLRAAPAVQTKIKKTLAKPNIRNVVVVDGVRTPFLLSGTSYKDLM PHDLARAALTGLLBRTSYPKEVUDYIIFGTVIQEVKTSNVARBAALGAGFSKTPAHTVTMAGISANQAMTIGVG LIASGCOVIVAGGVELMSDVPIRHSRKMKLMLDLNKAKSMGQRLSLISKFRFNFLAPELPAVSFISSIMGH SADRLAARFAVSRLEQDEYALBSHSLAKKAQDEGLLSDVVPFKVPGKDTVTKDNGIRPSSLEQMAKLKPAFIKPY GTVTAANSSFLTDGASAMLIMAEEKALAMGYKPKAYLROFMYVSQDPKDQLLLGFTYATPKVLEKAGLTMMDIDA FEFHEAFSGQILANFKAMDSDWFAENYMGRKTKVGLPPLEKFNNWGGSLSLGHPFGATGCRLVMAAANRLRKEGG GYGLUAACAAGGQGHAMIVEAYPK

PCT/HS2003/028547

763/6881 FIGURE 713

GGCACGAGGCCACTGCTGTCCTCTTCAGCTCAAGATGGTGGCCTGCCGGGCGATTGGCATCCTCAGCCGCTTTTC TGCCTTCAGGATCCTCCGCTCCCGAGGTTATATATGCCGCAATTTTACAGGGTCTTCTGCTTTGCTGACCAGAAC CCATATTAACTATGGAGTCAAAGGGGATGTGGCAGTTGTTCGAATTAACTCTCCCAATTCAAAGGTAAATACACT CCTTATCTCATCAAAGCCAGGCTGCTTTATTGCAGGTGCTGATATCAACATGTTAGCCGCTTGCAAGACCCTTCA AGAAGTAACACAGCTATCACAAGAAGCACAGAGAATAGTTGAGAAACTTGAAAAAGTCCACAAAGCCTATTGTGGC TGCCATCAATGGATCCTGCCTGGGAGGAGGACTTGAGGTTGCCATTTCATGCCAATACAGAATAGCAACAAAAAGA CAGAAAAACAGTATTAGGTACCCCTGAAGTTTTGCTGGGGGCCTTACCAGGAGCAGGAGGACACAAAGGCTGCC CAAAATGGTGGGTGTGCCTGCTTGGACATGATGCTGACTGGTAGAAGCATTCGTGCAGACAGGGGCAAAGAA AATGGGACTGGTTGACCAACTGGTGGAACCCCTGGGACCAGGACTAAAACCTCCAGAGGAACGGACAATAGAATA CCTAGAAGAAGTTGCAATTACTTTTGCCAAAGGACTAGCTGATAAGAAGATCTCTCCAAAGAGAGACAAAGGATT GGTGGAAAATTGACAGCGTATGCCATGACTATTCCATTTTGTCAGGCAACAGGTTTACAAAAAAAGTGGAAGAAAA AGTGCGAAAGCAGACTAAAGGCCTTTATCCTGCACCTCTGAAAATAATTGATGTGGTAAAGACTGGAATTGAGCA AGGGAGTGATGCCGGTTATCTCTGTGAATCTCAGAAATTTGGAGAGCTTGTAATGACCAAAGAATCAAAGGCCTT GATGGGACTCTACCATGGTCAGGTCCTGTGCAAGAAGAATAAATTTGGAGCTCCACAGAAGGATGTTAAGCATCT GGCTATTCTTGGTGCAGGGCTGATGGGAGCAGGCATCGCCCAAGTCTCCGTGGATAAGGGGCTAAAGACTATACT TANAGATGCCACCCTCACTGCGCTAGACCGAGGACAGCAACTAGTGTTCAAAGGATTGAATGACAAAGTGAAGAA GAAAGCTCTAACATCATTTGAAAGGGATTCCATCTTCAGCAACTTGACTGGGCAGCTTGATTACCAAGGTTTTGA AAAGGCCGACATGGTGATTGAAGCTGTGTTTGAGGACCTTAGTCTTAAGCACAGAGTGCTAAAGGAAGTAGAAGC GGTGATTCCAGATCACTGTATCTTTGCCAGTAACACATCTGCTCTCCCAATCAGTGAAATCGCTGCTGTCAGCAA AAGACCTGAGAAGGTGATTGGCATGCACTACTTCTCTCCCGTGGACAAGATGCAGCTGCTGGAGATTATCACGAC CGAGAAAACTTCCAAAGACACCAGTGCTTCAGCTGTAGCAGTTGGTCTCAAGCAGGGGAAGGTCATCATTGTGGT TAAGGATGGACCTGGCTTCTATACTACCAGGTGTCTTGCGCCCATGATGTCTGAAGTCATCCGAATCCTCCAGGA AGGAGTTGACCCGAAGAAGCTGGATTCCCTGACCACAAGCTTTGGCTTTCCTGTGGGTGCCGCCACACTGGTGGA TGAAGTTGGTGTGGATGTAGCGAAACATGTGGCGGAAGATCTGGGCAAAGTCTTTGGGGAGCGGTTTGGAGGTGG AAACCCAGAACTGCTGACACAGATGGTGTCCAAGGGCTTCCTAGGTCGTAAATCTGGGAAGGGCTTTTACATCTA TCAGGAGGGTGTGAAGAGGAAGGATTTGAATTCTGACATGGATAGTATTTTAGCGAGTCTGAAGCTGCCTCCTAA GTCTGAAGTCTCATCAGACGAAGACATCCAGTTCCGCCTGGTGACAAGATTTGTGAATGAGGCAGTCATGTGCCT GCAAGAGGGGATCTTGGCCACACCTGCAGAGGGAGACATCGGAGCCGTCTTTGGGCTTGGCTTCCCGCCTTGTCT GGGAGGCCTTTCCGCTTTGTGGATCTGTATGGCGCCCAGAAGATAGTGGACCGGCTCAAGAAATATGAAGCTGC CTATGGAAAACAGTTCACCCCATGCCAGCTGCTAGCTGACCATGCTAACAGCCCTAACAGAAGATTCTACCAG<u>TG</u> AGCAGGCCTCATGCCTCGCTCAGTCAGTGCACTAACCCCAGCTGCCGGCAGTGCTGGTTCTCCAACAGAGTGGTG TCTAGATTTATCAGAGTAACGAGAAGACAAACTCCGGCACTGGGTTTGCTCCCTGATTAAAGTGCCTTCAGCCAA GACCATCTCTCCCTCCTGGTGAAGTGTGACTTCGAATTAGTTTGCACTTCCTATTGGAAGGTAGAGCCCACTGCT CATTGTATAAGCCCCGAGGCCTAGAGTGGCAGCCAAGAGCCATCTGAAGCCACCTCTCTGCCTGTTCCTCCCAAG AGGCCAGGGTGGCCAGGGGTGGTGAGGGCAGTTCTGCACCCAGCCAAACACATAACAATAAAAAACCAAACTCTGT GTCAGCATCTTTGCCCTTCTGGTTTAAACGCCTCCTTCAAAAAGCAATCTGGAAGAAAGCCCTGTGCTTTGGGGG GCTCAACCACACACCTGTCTGTGCAGATGCTTTGCCCAGGCTTCTCACCACGGTGTACCGGGATATTAAACCT

PCT/HS2003/028547

764/6881 FIGURE 714

MVACRAIGILSRFSAFRILRSRGYICRNFTGSSALLTRTHINYGVKGDVAVVRINSPNSKVNTLSKELHSEFSEV MNEIWASDQIRSAVLISSKPGCFIAGADIMMLAACKTLQEVTOLSQBAQRIVEKLEKSTKPIVAAINGSCLGGGE EVAISGQYRIATKORKTVLGTEFULLGALPGAGGTGRLPKMVGVPAALDMMLTGRSIRADRAKKMGLUVDQLVEFL GPGLKPPEBERTIE VLEBVAITFAKGLADKKISPKRDKGLVEKLTAYAMTIPFVRQOYYKKVEKVYRKQTKGLYPA PLKIIDVVKTGIEQGSDAGYLCESQKFGELVMTKESKALMGLYHGQVLCKKNKFGAPQKDVKHLATLGAGLMGAG IAQVSVDKGLKTILKDATLTALDRGQQVFKGLNDKVKKKALTSFERDSIFSNLTGQLDYQGFEKADMVIEAVFE DLSLKHRVLKEVEAVIP BHOFIFSANSALFISEIAAVSKRPEKVIGHHYSS VDKMQLLBITTEKTSKDTSASA VAVGLKQGKVIIVVKDGPGFYTTRCLAPMMSEVIRILQEGVDPKKLDSLTTSFGFPVGAATLVDEVGVDVAKHVA EDLGKVFGERFGGGNPELLIQMVSKGFLGRKSGKGFYIYQEGVKRKDLNSDMDSILASLKLPPKSEVSSDEDIQF RLVTRFVWEAVMCLQEGILATPAEGDIGAVFGLGFPPCLGGPFRFVDLYGAQKIVDRLKKYEAAYGKOFTPCQLL ADHANSPNKKFYQ

PCT/US2003/028547

765/6881 FIGURE 715

WO 2004/030615 PCT/US2003/028547

766/6881 FIGURE **716A**

GCTGGAGGTGGCCTCCCCTCCGCCCCAGACAAGAAGAGGCCCTCAGCCCTCCCCCGGTCTCAGAGAGCCCTGAGA TTCATGCGGCTGACTTTCGTGCCGGAGTCCTTGGAGAACCTCTACCAGACCTACTTCAAAAGGCAGCGCCACGAG ${\tt ACCCTGCTGGTGGTGGTCTTTGCAGCCCTCTTTGACTGCTACGTGGTGGTCATGTGTGCTGTGGTCTTCTCCC}$ AGCGACAAGCTGGCTTCCCTCGCCGTGGCTGGAATTGGACTGGTGTTGGACATCATCCTCTTCGTGCTCTGCAAAAAGGGGCTGCTCCCGGACCGGGTCACCCGCAGAGTGCTGCCCTACGTGCTGTGGCTGCTCATAACCGCCCAGATC TTCTCCTACCTGGGCCTGAACTTCGCGCGTGCCCACGCGGCTAGTGACACGGTGGGCTGGCAGGTCTTCTTTGTC TTCTCCTTCTTCATCACGCTGCCCCTCAGCCTCAGCCCCATCGTGATCATCTCCGTGGTCTCCTGTGTGGTGCAC ACGTTGGTCCTGGGGGTCACCGTGGCCCAGCAGCAGCAGGAGGAGCTCAAGGGGGATGCAGCTGCTGCGGGAGATC $\tt CTGGCCAACGTCTTCCTGTGCGCCATCGCTGTGGGCATCATGTCCTACTACATGGCTGACCGCAAGCAC$ AAGGACCAGCAGCAGTTCAACACCATGTACATGTACCGTCACGAGAACGTCAGCATCCTCTTTGCCGACATCGTG GGCTTTACCCAGCTGTCTTCTGCCTGCAGTGCCCAGGAGCTTGTGAAGCTGCTCAACGAGCTCTTTGCCCGCTTT GACAAGCTGGCAGCTAAATACCACCAGCTGCGGATTAAGATCCTGGGCGACTGCTACTACTGCATCTGCGGCTTG $\tt CCCGACTACCGGGAGGACCACGCCGTCTGCTCCATCCTCATGGGGCCTGGCCATGGTGGAGGCCATCTCGTATGTG$ ${\tt CAGAAGCGCTGGCAGTACGACGTGTGGTCGACTGATGTCACTGTAGCCAACAAGATGGAGGCCGGCGGCATCCCT}$ ${\tt ACAGCCACCCAGATGGCCTCAATGGCTCGGCCCTGCCCAATGGAGCACCAGCTTCCTCAAAGTCCAGCTCCCCT}$ GCCCTCATTGAGACCAAGGAGCCCAACGGGAGTGCCCACAGCAGTGGGTCCACGTCGGAGAAGCCCGAGGAGCAG GATGCCCAGGCCGACAACCCCTCATTCCCCAACCCACGCCGGAGGCTGCGCCTGCAGGACCTGGCTGACCGAGTG GTGTAAAGAAGAAACACCTTCCTCTTGTCCATGCGGTTCATGGACCCCGAGATGGAAACCCGCTACTCGGTGG AGAAGGAGAAGCAGAGTGGGGCTGCCTTCAGCTGCTCCTGCGTCGTCCTGCACGGCCCTGGTCGAGATAC TCATCGACCCCTGGCTAATGACAAACTATGTGACCTTCATGGTGGGGGAGATTCTGCTCCTCATCCTGACCATCT GCTCCCTGGCTGCCATCTTTCCCCGGGCCTTTCCTAAGAAGCTTGTGGCCTTCTCAACTTGGATTGACCGGACCC GCTGGGCCAGGAACACCTGGGCCATGCTCGCCATCTTCATCCTGGTGATGGCAAATGTCGTGGACATGCTCAGCT GTCTCCAGTACTACACGGGACCCAGCAATGCAACGGCAGGGATGGAAACGGAGGGCAGCTGCCTGGAGAACCCCA AGTATTACAACTATGTGGCCGTGCTGTCCCTCATCGCCACCATCATGCTGGTGCAGGTCAGCCACATGGTGAAGC TCACGCTCATGCTGCTCGTCGCAGGCGCCGTGGCCACCATCAACCTCTATGCCTGGCGTCCCGTCTTTGATGAAT ACGACCACAAGCGTTTTCGGGAGCACGACTTACCTATGGTGGCCTTAGAGCAGATGCAAGGATTCAACCCTGGGC TCAATGGCACTGACAGGCTGCCCCTGGTGCCTTCCAAGTACTCTATGACGGTGATGGTGTTCCTCATGATGCTCA GCTTCTACTACTTCTCCCGCCACGTAGAAAAACTGGCACGGACACTTTTCTTGTGGAAGATTGAGGTCCACGACC AGAAGGAACGTGTCTATGAGATGCGACGCTGGAACGAGGCCTTGGTCACCAACATGTTGCCTGAGCACGTGGCAC GCCATTTCCTGGGGTCCAAGAAGAGAGATGAGGAGCTGTATAGCCAGACGTATGATGAGATTGGAGTCATGTTTG TCAATGAAATCATCTCAGATTTTGACTCTCCTGGACAATCCCAAGTTCCGGGTGATCACCAAGATCAAAACCA TTGGCAGCACGTATATGGCGGCTTCAGGAGTCACCCCCGATGTCAACACCAATGGCTTTGCCAGCTCCAACAAGG AAGACAAGTCCGAGAGAGAGCGCTGGCAGCACCTGGCTGACCTGGCCGACTTCGCGCTGGCCATGAAGGATACGC TCACCAACATCAACAACCAGTCCTTCAATAACTTCATGCTGCGCATAGGCATGAACAAAGGCGGGGTTCTGGCTG GGGTCATCGGAGCCCGGAAACCACACTACGACATCTGGGGCAATACAGTCAATGTAGCCAGCAGGATGGAGTCCA CGGGGGTCATGGGCAACATTCAGGTATGTCCAGTGGCACAGCTGGCACGTGCTCAGACTCGGCATGAGAACAAAA CCGGAACAGTGCTTTCCCACGTGCCCCTGCCTCCCACCCTGGCCCTGAACAGTAAGTCCAGAGGCAGAGACGTGG GGCAAGTGGAAAAGAATCTCTGCAATAGCTAGCCTCAGCACAGGAAGAAACACTTCCACCCATCCACAAAATCTG

PCT/US2003/028547

767/6881 FIGURE 716B

PCT/HS2003/028547

768/6881 FIGURE 717

GCCGCGGCACCAGGGCGCAGCCGGGCCCGACCCCACCGGCCATACGGTGGAGCCATCGAAGCCCCCACC GGACGGAGAGGAGCAGGAGGAGCCGCGTGGCAAGGAGGAGCGCCAAGAGCCCCAGCACCACGGCACGGAAGGTGGG GCGGCCTGGGAGGAAGCGCAAGCACCCCCCGGTGGAAAGCGGTGACACGCCAAAGGACCCTGCGGTGATCTCCAA GTCCCCATCCATGGCCCAGGACTCAGGCGCCTCAGAGCTATTACCCAATGGGGACTTGGAGAAGCGGAGTGAGCC CCTGCCTGAAGCCTCAAGAGCAGTGGAAAATGGCTGCTGCACCCCCAAGGAGGGCCCGAGGAGCCCCTGCAGAAGC GGGCAAAGAACAGAAGGAGACCAACATCGAATCCATGAAAATGGAGGGCTCCCGGGGCCGGCTGCGGGGTGGCTT GGGCTGGGAGTCCAGCCTCCGTCAGCGGCCCATGCCGAGGCTCACCTTCCAGGCGGGGGACCCCTACTACATCAG CAAGCGCAAGCGGGACGAGTGGCTGGCACGCTGGAAAAGGGAGGCTGAGAAAAGCCAAGGTCATTGCAGGAAT GAATGCTGTGGAAGAAAACCAGGGGCCCGGGGAGTCTCAGAAGGTGGAGGAGGCCAGCCCTCCTGCTGTGCAGCA GCCCACTGACCCCGCATCCCCCACTGTGGCTACCACGCCTGAGCCCGTGGGGTCCGATGCTGGGGACAAGAATGC CACCAAAGCAGGCGATGACGAGCCAGAGTACGAGGACGGCCGGGGCTTTGGCATTGGGGAGCTGGTGTGGGGGAA ACTGCGGGGCTTCTCCTGGTGGCCAGGCCGCATTGTGTCTTGGTGGATGACGGGCCGGAGCCGAGCAGCTGAAGG CACCCGCTGGGTCATGTGGTTCGGAGACGGCAAATTCTCAGTGGTGTGTTGAGAAGCTGATGCCGCTGAGCTC GTTTTGCAGTGCGTTCCACCAGGCCACGTACAACAAGCAGCCCATGTACCGCAAAGCCATCTACGAGGTCCTGCA GGTGGCCAGCAGCCGCGGGGAAGCTGTTCCCGGTGTGCCACGACAGCGATGAGAGTGACACTGCCAAGGCCGT GGAGGTGCAGAACAAGCCCATGATTGAATGGGCCCTGGGGGGCTTCCAGCCTTCTGGCCCTAAGGGCCTGGAGCC ACCACCTCCACCAGCCAAAAAGCCCCGGAAGAGCACAGCGGAGAAGCCCCAAGGTCAAGGAGATTATTGATGAGCG $\tt CCTCAATGTTACCCTGGAACACCCCCTCTTCGTTGGAGGAATGTGCCAAAACTGCAAGAACTGCTTTCTGGAGTG$ TGCGTACCAGTACGACGACGACGGCTACCAGTCCTACTGCACCATCTGCTGGGGGGCCGTGAGGTGCTCATGTG GGACTGGCCCTCCCGGCTCCAGATGTTCTTCGCTAATAACCACGACCAGGAATTTGACCCTCCAAAGGTTTACCC ${\tt ACCTGTCCCAGCTGAGAAGAGGGAAGCCCATCCGGGTGCTGTCTCTTTGATGGAATCGCTACAGGGCTCCTGGT}$ GCTGAAGGACTTGGGCATTCAGGTGGACCGCTACATTGCCTCGGAGGTGTGTGAGGACTCCATCACGGTGGGCAT GGTGCGGCACCAGGGGAAGATCATGTACGTCGGGGACGTCCGCAGCGTCACACAGAAGCATATCCAGGAGTGGGG GTCCAACCCTGTGATGATTGATGCCAAAGAAGTGTCAGCTGCACACAGGGCCCGCTACTTCTGGGGTAACCTTCC AGCCAAGTTCAGCAAAGTGAGGACCATTACTACGAGGTCAAACTCCATAAAGCAGGGCAAAGACCAGCATTTTCC TGTCTTCATGAATGAGAAAGAGGACATCTTATGGTGCACTGAAATGGAAAGGGTATTTGGTTTCCCAGTCCACTA TACTGACGTCTCCAACATGAGCCGCTTGGCGAGGCAGAGACTGCTGGGCCGGTCATGGAGCGTGCCAGTCATCCG AAGTT

PCT/IIS2003/028547

769/6881 FIGURE 718

MPAMPSSGPGDTSSSAAEREEDRKDGEEQEEPRGKEERQEPSTTARKVGRPGRKRKHPPVESGDTF KDPAVISKS
PSMAQDSGASELLPHGGLEKRSEPOPEGSPAGGKGGAPAEGGÄÄETLPEASRAVENGCCTPKEGRGAPÄAEAG
KEQKETNIESMKMEGSGRGKLRGGLGWESSLAGPMPERLTFQÄGDPYYISKRRDEWLARKKERJEKKKAVIAGMN
AVEENQGPGESQKVEEASPPAVQQPTDPASPTVATTPEPVGSDAGDKNATKAGDDEPEYEDGRGFGIGELVWGKL
RGFSWWPGRIVSWWMTGRSRAAEGTRWVMMFGDGKFSVVCVEKLMPLSSFCSAFHQATYNKOPMTRKAIYEVLVA
ASSRAGKLFPVCHBODSDTAKAVEVONKPMIEWALGGFOPSGFKGLEPPEEKNPYKEVTDMWVEPEAAAYAP
PPPAKKPRKSTAEKPKVKBIIDERTRERLVYEVRQKCRNIEDICISCGSLNVTLEHPLFVGGMCQNCKNCFLECA
YQYDDDGYQSYCTICCGGREVLMCGNNNCCRCFCVECVDLLVGPGAAQAAIKEDPWNCYMCGHKGTYGLLARRED
WPSRLQMFFANNHDQEFDPPKVYPPPVPAEKRKPIRVLSLFGGIAGLLVLKDLGIQVDKYNIASEVGISTVGMV
RHGGKIMYVGDVRSVTQKHIGBWGPFDLVIGSSPCNDLSIVNPARKGLYEGTGRLFFEFYRLLHDARPKEGDDRP
FFWLFENVVAMGVSDKRDISRFLESNPVMIDAKEVSAAHRARYFWGNLEGMNRPLASTVNDKLELQECLEHGRIA
KFSKVRTITTRSNSIKQGKDQHFPVFMNEKEDILWCTEMERVFGFPVHYTDVSNMSRLARQRLLGRSWSVPVIRH
LFAPLKEFFACV

PCT/US2003/028547

770/6881 FIGURE 719

GTTGGAGGTGCCGACGGGACCTGAAGTGCAGACCCCTAAGGTTTGGTCCTTGTTTTTCAAGGTGGCTGGGATGAG CCCTTGGGCGCCTCAGGTGCCTGTATCACCCACTCCTCCCTACCAAAGAGGGCATCTTCCTACAGGAGGACACCT ATGCACACTGCTGGTGTATTGCACGGACCTTCCACCCACTAGCATCATCATCACCTTCCACAACGAGGCCCGCTC CACGCTGCTCAGGACCATCCGCAGTGTATTAAACCGCACCCTACGCATCTGATCCGGGAAATCATATTAGTGGA TGACTTCAGCAATGACCCTGATGACTGTAAACAGCTCATCAAATTGCCCCAAGGTGAAATGCTTGCGCAATAATGA ACGGCAAGGTCTGGTCCGGTCCCGGATTCGGGGCGCTGACATCGCCCAGGGCACCACTCTGACTTTCCTCGACAG CCACTGTGAGGTGAACAGGGACTGGCTCCAGCCTCTGTTGCACAGGGTCAAAGAGGACTACACGCGGGTGGTGTG CCCTGTGATCGATATCATTAACCTGGACACCTTCACCTACATCGAGTCTGCCTCGGAGCTCAGAGGGGGGTTTGA CTGGAGCCTCCACTTCCAGTGGGAGCAGCTCTCCCCAGAGCAGAAGGCTCGGCGCCTGGACCCCACGGAGCCCAT CAGGACTCCTATCATAGCTGGAGGGCTCTTCGTGATCGACAAAGCTTGGTTTGATTACCTGGGGAAATATGATAT GGACATGGACATCTGGGGTGGGGAGAACTTTGAAATCTCCTTCCGAGTGTGGATGTGCGGGGGCAGCCTAGAGAT CGTCCCTGCAGCCGAGTGGGGCACGTCTTCCGGAAGAAGCACCCCTACGTTTTCCCTGATGGAAATGCCAACAC ATTCGCCCTGGAGAGGCCCTTCGGGAATGTTGAGAGCAGATTGGACCTGAGGAAGAATCTGCGCTGCCAGAGCTT ACAGAGACAGAAGTGCCTGGAATCTCAAAGGCAGAACAACCAAGAAACCCAAACCTAAAGTTGAGCCCCTGTGC CAAGGTCAAAGGCGAAGATGCAAAGTCCCAGGTATGGGCCTTCACATACACCCAGCAGATCCTCCAGGAGGAGCT GTGCCTGTCAGTCATCACCTTGTTCCCTGGCGCCCCAGTGGTTCTTGTCCTTTGCAAGAATGGAGATGACCGACA GCAATGGACCAAAACTGGTTCCCACATCGAGCACATAGCATCCCACCTCTGCCTCGATACAGATATGTTCGGTGA GAGCTCTTGAGGACCCCTGCCAGAAGCAGCAAGGGCCATGGGGTGGTGCTTCCCTGGACCAGAACAGACTGGAAA CTGGGCAGCAAGCAGCCTGCAACCACCTCAGACATCCTGGACTGGGAGGTGGAGGCAGAGCCCCCAGGACAGGA GCAACTGTCTCAGGGAGGACAGAGGAAAACATCACAAGCCAATGGGGCTCAAAGACAAATCCCACATGTTCTCAA GGCCGTTAAGTTCCAGTCCTGGCCAGTCATTCCCTGATTGGTATCTGGAGACAGAAACCTAATGGGAAGTGTTTA ACATTGAGAGATGAAGAATGGAGGTTGTTTCCAAAAGAAATAAAGAGAAACTTAGAAGTTGTCTCTGG

PCT/US2003/028547

771/6881 FIGURE 720

MRRLTRRLVLPVFGVLWITVLLFFWVTKRKLEVPTGPEVQTPKVWSLFFKVAGMSPWAPQVPVSPTPPYQRGHLP
TGGHLAVCHFFCLLGEAQFHLQTQVFLQVRCTLLIVYCTDLPPTSIIITHHDSARSTLLRTIRSVLNRTPTHLIRE
IILVDDFSNDPDDCKQLIKLPKVKCLRNNERQGLVRSRIRGADIAQGTTLTFLDSHCEVNRDWLQPLLHRVKEDY
TRVVCPVIDIINLDTFTYIESASELRGGFDWSLHFQWEQLSPEQKARRLDFTEPIRTPIIAGGLEVIDKAWFDYL
GKYDMDMDIWGGENFEISFRVWMCGGSLEIVPCSRVGHVFRKKHPYVFPDGNANTYIKNTKRTAEVWMDEYKQYY
YAARFPALERFFGNVESRLDLRKNLRCQSFKWYLENIYPELSIPKESSIQKGNIRQRQKCLESQRQNNQGTPNLK
LSPCAKVKGEDAKSQVWAFTYTQQILQEELCLSVITLFPGAPVVLVLCKNGDDRQQWTKTGSHIEHIASHLCLDT
DMFGDGTENGKEIVVNPCESSLMSQHMDMVSS

PCT/HS2003/028547

772/6881 FIGURE **721**

 ${\tt GGTGTTCACTCAACTTGGATCTGTGCTGAAAAATTGTGACATTTCAGTACATCTGGTAGAGGGTACAGCTTTTAT}$ CTTGCACATGAATTTTTTGATGTTCTTCCTGTGCATAAATTTCAGAAAACACCACAGGGATGGCGAGAAGTATTT ATACAACATGACGAAACAAGGGATCATGTTGAAGTGTGTCCTGATGCTGGTGTTATCATCGAGGAACTTTCTCAA CGCATTGCATTAACTGGAGGTGCTGCACTGGTTGCTGATTATGGTCATGATGGAACAAAGACAGATACCTTCAGA GGGTTTTGCGACCACAAGCTTCATGATGTCTTAATTGCCCCAGGAACAGCAGATCTAACAGCTGATGTGGACTTC ${\tt AGTTATTTGCGAAGA} \underline{{\tt ATG}} {\tt GCACAGGGAAAAGTAGCCTCTCTGGGCCCAATAAAACAACACACATTTTTAAAAAAT$ ATGGGTATTGATGTCCGGCTGAAGGTTCTTTTAGATAAATCAAATGAGCCATCAGTGAGGCAGCAGTTACTTCAA CTTCAAGGTGGAAGATATCAGAGGAATGCACGTCAGTCAAAACCCTTTGCATCCGTTGTAGCTGGGTTTAGTGAA $\tt CTTGCTTGGCAG\underline{TGA}{TATTTCAGCTTGGACATTTTACCCTTCAGTCGGCCCAAGAAATCAAAATAAAGGAAACAC$ ATTTCATATACTGCAGGTAACAAAAGTCAAAGTATTTTATCTTTTCACAGCAAGAACAGTCCATGTTGTATATAA ${\tt TACAACCAACATTATAGAACTTTTAGGGTTGTGACTGGCTTTGGTGCAAATGTGTGCTCAAGCTAATAAGTTATT}$ $\tt GTGAAACTGAGTTTCCTTTAACTTACAAAGCTAGTTGCCATATTTCTATTTTATATAAAAGTAAACATGCGGC$ TGGGCGTGGTGGCTCATGCCTGTAATCCCAGCACTTTGGGAGGCTGAGGTGGGCATATCACCTGAGGTCAGCAGT TAAAGACCAGCCTGACCAAAATGGAGAAACCCCCATCTCTACTAAAAAATACAAAACTAGCCGGGTATGGTGGTACA TGCCTGTAATCCCAGC

PCT/US2003/028547

773/6881 FIGURE 722

 ${\tt MAQGKVASLGPIKQHTFLKNMGIDVRLKVLLDKSNEPSVRQQLLQGYDMLMNPKKMGERFNFFALLPHQRLQGGRYQRNARQSKPFASVVAGFSSLARQ$

PCT/US2003/028547

774/6881 FIGURE 723

PCT/US2003/028547

775/6881 FIGURE **724**

MPREDRATWKSNYFLKIIQLLDDYFKCFIVGADNVGSKQMQQIRMSLRGKVVVLMGKNTMMRKAIRGHLENNPAL EKLLPHIMGNVGFVFTKEDLTEIRDMLLANKVPAAARAGAIAPCEVTVPAQNTGLGPEKTSFFQALGITTKISRG TIEILSDVQLIKTGDKVGASEATLLNMLNISPFSFGLVIQQVFDNGSIYNPEVLDKTEETLHSRFLEGVRNVASV CLQTGYPTVASVPHSIINGYKRVLALSVETDYTFPLAENVKAFLADPSAFVAAAPVAADTTAAPAAAAPAKVEA KEBSEESDEDMGFGLFD

PCT/IIS2003/028547

776/6881 FIGURE 725

PCT/US2003/028547

777/6881 FIGURE 726

CTGCGTGGCAATCCCTGACGCACCGCCGTGATGCCCAGGGAAGACAGGGCGAACTCCGAAGTCCAATACTTCCTT
AAGATCATCCAACTAATTGGATGATTATTCCAAAATGTTTCATCGTGGGAGCAGACAATGTGGGCTCCAAGGAGAT
CACCAGATCCCCATGTCCCCTTGCGGGGAAGGTCGTGGTGTGTGGGCAAAAACACCATGATGCGCAAGGCCTC
CGAGGGCACCTGGAAAACAACCCAGCTCTGGAGAAACTGCTGCCTCATATCTGGGGGAATGTGGGCTTTGTGTTT
ACCAAGGAGGACCTCACTGAGATCAGGGACATGTTGCTGGCCAATAAAGGTGCCAGCTGCCGGCTGGTGGCC
ATTGCCCCATGTGAAGTCACTGCCAGCCCAGAACACTGCTGCCGGCCCGAGAAGACCTCCTTTTTCCAGGGT
TTAGGTATCACCACTAAAAATCTCCAGGGGCACCATGAAATCCTGACAGGTATTCGACAATGGCAGCATTTAGCA
CCCTGAAGTGCTTGATAAAACAGAGGAAACTCTGCATTCTCGCTTCCTGAGGGTGTCCCCAATGTTGCCAGTGT
CTGCTGCAGACTGGCTACCCAACTGTTGCATCTCGCTTCCTGAGGGTGTCCCGAATTTGCCAGTCT
CTGCTGCAGACTGGCTACCCAACTGTTGCATCTCACTTCTATCAACAGGTACAAAACAGGGTACAACGG

PCT/IIS2003/028547

778/6881 FIGURE 727

CCTCTAGCTTAGCGAGCGCTGGAGTTTGAAGAGCGGGCAGTGGCTGCACACCCCAAACTTTCCCTATGGCTTCGG TGACCAGGGCCGTGTTTGGAGAGCTGCCCTCGGGAGGAGGACAGTGGAGAAGTTCCAGCTGCAGTCAGACCTCT ACGTGGTGCTTGGCTTCGCCGAGTTGGAAGGATACCTCCAAAAGCAGCCATACTTTGGAGCAGTTATTGGGAGGG TGGCCAACCGAATCGCCAAAGGAACCTTCAAGGTGGATGGGAAGGAGTATCACCTGGCCATTAACAAGGAACCCA ACAGTCTGCATGGAGGAGTCAGAGGGTTTGATAAAGTGCTCTGGACCCCTCGGGTGCTGTCAAATGGCGTCCAGT TCTCGCGCATCAGTCCAGATGGTGAAGAAGGCTACCCCGGAGAGTTAAAAGTCTGGGTGACATACACCCTGGATG TCAACCTGGCAGGCCAGGCTTCCCCAAATATAAATGACCATGAAGTCACCATAGAAGCGGATACTTATTTGCCTG TGGATGAAACCCTGATTCCTACAGGAGAAGTTGCCCCAGTGCAAGGCACTGCATTCGACCTGAGAAAGCCAGTGG AGCATTTTTGTGCAAGGGTGCATCATGCTGCAAGCGGGGGGGTACTAGAAGTATACACCACCCAGCCCGGGGTCC AGTTTTACACGGGCAACTTCCTGGATGGCACATTAAAGGGCAAGAATGGAGCTGTCTATCCCAAGCACTCCGGTT TCTGCCTGGAGACTCAGAACTGGCCTGATGCAGTCAATCAGCCCCGCTTCCCTCCTGTGCTGAGGCCTGGTG AGGAGTATGACCACACCACCTGGTTCAAGTTTTCTGTGGCT<u>TAA</u>GGAAGTGTGAAGATATGATCCAGTCCAGGGC TAGGCTCAGCCACCTGTCTCCTGTCCAGAAAAAAGGTGAAGATTAAGAAGCTTTCAGAATGATTCTATGGATTAA AATCATACAAATGGTGGCTGTTCTGAGAATCAGTCTGGGTATTGATTTCCTTTTCCAGTGACTGGCTCCAGGCCA GCCCTTCCTTTCTTTAAAGCTATTCTCACATTGCTTTTATTTCCTCCTCCTTCACCTCCAACCACTGTCAGCAGC ACTCTGGAGTTTTCAAATGTCACATTAGCCTCACCCTGCATGCTAGGAGATGGACCTGTCTCTATACAGCAGTAG TTCCAGCTACTTGGGAGGCTGAAGCAGGAGAATCGCTTGAACCTGGGAGGTGGAGGTTGCAGTGAGCCGAGATCA

PCT/US2003/028547

779/6881 FIGURE 728

MASVTRAVFGELPSGGTVEKFQLQSDLLRVDIISWGCTITALEVKDRQGRASDVVLGFAELEGYLQKQPYFGAV
IGRVANRIAKGTFKVDGKEYHLAINKEPHSLHGGVRGFDKVLWTPRVLSNGVQFSRISPDGEEGYPGELKVWVTY
TLDGGELIVNYRAQASQATPVNLTNHSYFNLAGQASPNINDHEVTIEADTYLPVDETLIPTGEVAPVQGTAFDLR
KEYPELGKHLQDFHLNGFDHNFCLKGSKEKHFCARVHHAASGRVLEVYTTQPGVQFYTGNFLDGTLKGKNGAVYFK
HSGFCLETQNWPDAVNQPRFPPVLLRPGEEYDHTWFKFSVA

PCT/HS2003/028547

780/6881 FIGURE 729

GCCGCCACCTTGCTAAACCTATAAGCTTTTTAAAATCCAATATATTCTGCCAAGAATATGCCTTGATAGTTAGCC $\tt CTCAGCCCATAGGTGTTTTTTGTTTTTTAACAGAATTATATATGTCTGGGGGTGAAAAAACCCTTGCATTCCAAA$ GGTCCATACTGGTTACTTGGTTTCATTGCCACCACTTAGTGGATGTTCAGTTTAGAACCATTTTGTCTGCTCCCT $\mathtt{CTGGAAGCCTTGCGCAGAGCTTACTTTGTAATTGTTGGAGAATAACTGCTGAATTTTTAGCTGTTTTGAGT<math>\underline{\mathtt{TGA}}\mathtt{T}$ TTGCCATTATTAATCGGCAAAATGTGGAGTGTATGTTCTTTTCACAGTAATATATGCCTTTTGTAACTTCACTTG CCTTGTTTACGTAAATTTTGAAAGATTGCATGATTTCTTGACAGAAATCGATCTTGATGCTGTGGAAGTAGTTTG AGGAACATCCTATGAGTTTTCTTAGAATGTATAAAGGTTGTAGCCCATCCAACTTCAAAGAAAAAAATGACCACA TACTTTGCAATCAGGCTGAAATGTGGCATGCTTTTCTAATTCCAACTTTATAAACTAGCAAAAAAGTGTTTGCTT ATCTGAATGTAGGATGGGTTCAACTGCACAAAAGGAAAAGATTTTTACCACTTTTTTTATATAGATATAAAGTGA GCAGATGAATGAGCGGTAGCTTTAGTTTGTACGTAGGTACAGTTGGAGCACTATATGTACTCTCTGGACTACTTT GGACAGAAGTAGGTTTTTGAATGTAACAAGATAAGTCAACTTGAGTTGTAATATATTTTTGGGGAATCAGCTCACT ACAAATTGTGACTGTAAACATTGTACTGTAAATGTTTTGTAGTT

PCT/US2003/028547

781/6881 FIGURE 730

 ${\tt MWEPFSWKKFLIVSQTGVNKPASRHLAKPISFLKSNIFCQEYALIVSPQPIGVFCFLTELYMSGGEKTLAFQRSILVTWFHCHHLVDVQFRTILSAPSGSLAQSLLCNCWRITAEFLAVLS$

PCT/US2003/028547

782/6881 FIGURE 731

 $\tt CCTGATTCTAGGCTGGTCACTACTCCGAGCCTGTGACGTTTGCGGCAGCCAGGCCGTCGACGATGCCCAGTGAAA$ CTCTCTGGGAAATTGCAAAAGCTGAAGTGGAAAAAAGGGGGAATTAATGGAAGTGAAGGTGATGGAGCTGAAATTG ATGAACCACCAAAACCAACCTTAGCTTTGGAATATACATATGGAAGAAGAGCAAAAAGGGCACAACACCAAAAAG ATATCGCTCACTTTTGGGAACTCGGTGGAGGAACCTCTTTATTGGACTTAATCAGCATACCCATCACAGGTGACA TCTTGCAAGCCACAAAAAGCCATGTAGACAAAGTGATAATGAAACTGGGAAAGACAAATGCTAAAGCAGTTTCTG $\tt CTCTGGTCATAATTGGAAGTAAATATGATGTTTTTCAGGATTTTGAGTCTGAGAAGAAAGGTAATATGCAAGA$ CACTTCGATTTGTTGCACATTATTATGGAGCATCATTAATGTTTACCAGTAAATCAGAAGCTCTATTACTAAAAA TACGTGGAGTTATCAACCAGTTGGCATTTGGCATTGACAAAAGCAAATCAATATGTGTGGATCAGAATAAACCGC TGTTTATCACAGCAGGATTGGATTCTTTCGGTCAAATAGGATCTCCTGCTGCTGAAAATGACATTGGAAAGC TTCATGCCCACTCACCTATGGAGTTGTGGAAAAAAGTGTATGAAAAGCTCTTTCCACCAAAGAGTATTAACACGC TGAAAGATATCAAGGACCCTGCGAGAGATCCTCAGTATGCTGAAAATGAAGTCGATGAGATGAGAATTCAGAAGG ATCTGGAACTGGAACAGTACAAAAGAAGTTCTTCCAAGTCTTGGAAACAAATCGAGCTTGATTCTTGAACCTATT TCAATTATTGTATATTTATTTCTTCTTTTCCAAATACAAATAAGATTATACTGTGAATTAACTATTGTGGCAATA TGTGAAGAAAGTTAAACTGTATAATTTGTTAAAGGACAAGCTGGATTTCTTGGACTAGTGCATCTCCCTGTATAT CCTACCTCT

PCT/US2003/028547

783/6881 FIGURE 732

MPSETLWEIAKAEVEKRGINGSEGDGAEIAEKFVFFIGSKNGGKTTIILRCLDRDEPPKPTLALEYTYGRRAKGH NTPKDIAHFWELGGGTSLLDLISIPITGDTLRTFSLVLVLDLSKPNDLWPTMENLLQATKSHVDKVINKLGKTNA KAVSEMRQKINNNMPKDHPDHELIDPFPVPLVIIGSKYDVFQDFESEKKKVICKTLRFVAHYYGASLMFTSKSEA LLLKIRGVINQLAFGIDKSKSICVDQNKPLFITAGLDSFGQIGSPPVPENDIGKLHAHSPMELWKKVYEKLFPPK SINTLKDLKDPARDPQYAENEVDEMRIGKDLELEGYKRSSSKSWKQIELDS

PCT/HS2003/028547

784/6881 FIGURE 733A

ACATGCTCCTCCTGTCCTTCTGGCGGAGCGTGCTTCCCGCTGCGGGGACGTTCGAGCAATGGCAGCCCTGCTGAG GGGCCGGCTGCATGCCGCCTCCTATCTGCCCGCCGCCGCCGGGCCCGTGGCCGGAGGACTACTGAGCCCAGC CAGGCTGTATGCCATTGCTGCCAAAGAAAAAGATATTCAAGAGGAGTCCACTTTTTCTTCTAGGAAGATTTCCAA TCAGTTTGATTGGGCTCTAATGAGACTAGATCTTTCTGTTCGAAGAACTGGCCGCATTCCAAAGAAGCTTCTACA AAAAGTTTTTAATGATACCTGCCGCTCAGGTGGCCTAGGTGGTAGTCATGCCTTGCTTCTACTACGTAGTTGTGG TTCTCTCTTGCCTGAACTAAAGCTTGAAGAGAGAACAGAATTTGCTCATAGGATATGGGACACACTTCAGAAATT AGGTGCTGTGTATGATGTGAGTCACTATAATGCTTTACTTAAAGTCTATCTTCAAAATGAATATAAATTCTCACC TTATTGTAATGTAGGAGATATTGAAGGTGCCAGCAAGATTCTTGGATTTATGAAAACTAAGGATCTCCCAGTTAC AGAGGCAGTATTCAGTGCCCTTGTGACAGGGCATGCCAGAGCTGGTGATATGGAGAATGCAGAAAACATTCTCAC AGTGATGAGAGATGCCGGAATTGAGCCTGGTCCAGACACATACCTCGCATTATTGAATGCATATGCTGAGAAGGG CGACATTGACCATGTTAAGCAGACTCTGGAGAAGGTGGAGAAGTCCGAGCTTCACCTTATGGACCGTGATTTACT GCAAATTATTTTTAGCTTCAGTAAAGCTGGGTATCCTCAGTATGTCTCAGAAATTTTTGGAAAAAGTTACATGTGA AAGAAGATATATTCCAGATGCAATGAACCTCATTTTACTTTTAGTCACTGAAAAATTGGAAGATGTAGCGTTGCA AATTTTACTAGCATGCCCCGTATCAAAGGAAGATGGCCCAAGTGTCTTTTGGCAGTTTCTTTTTACAACACTGTGT GACTATGAATACGCCTGTGGAGAAGCTAACAGACTACTGTAAGAAGTTAAAGGAAGTCCAGATGCACTCCTTTCC TCTGCAGTTCACCCTCCATTGTGCTTTACTCGCCAATAAAACTGATTTGGCAAAAGCCTTAATGAAGGCTGTGAA AGGTATAATTGAAATCCTCAAAGGAATGCAAGAATTGGGAGTACATCCTGATCAGGAAACATATACAGATTATGT GTTTTCTCAAGCTGGATTGAGAAGTGAAGCAGCAAATGGGAACTTAGACTTTGTATTATCATTTTTGAAATCAAA TACATTGCCCATCTCGCTGCAGTCTATAAGAAGTAGCCTACTGCTAGGCTTCAGGAGGTCTATGAATATAAATCT TTGGAGCGAGATAACAGAATTGTTGTACAAGGATGGACGTTATTGCCAGGAGCCTCGAGGACCGACGGAAGCTGT TGGCTATTTTCTTTATAACTTGATTGACAGCATGAGTGACTCAGAGGTACAGGCCAAGGAGGAGCATTTGAGACA ATACTTCCATCAGCTGGAGAAGATGAATGTAAAAATTCCTGAAAATATCTACAGAGGCATTCGTAATCTCCTGGA TGTGCAACTTACATCTGAATTGGAGTCCACACTTGAAACACTAAAAGCTGAAAATCAACCTATAAGAGATGT CCTAAAGCAACTCATATTAGTGCTTTGTTCAGAAGAGAATATGCAAAAAGCCCTTGAATTGAAAGCAAAATATGA $\tt ATCCGACATGGTTACTGGTGGCTATGCAGCTTTAATAAATTTATGCTGTCGACATGATAAAGTAGAAGATGCCTT$ GAACTTGAAAGAAGAATTTGACCGCTTAGATTCATCTGCTGTCCTTGACACCGGCAAGTATGTAGGCCTTGTAAG AGTATTGGCAAAGCATGGCAAGCTCCAAGATGCTATTAACATTCTGAAGGAGGATGAAAGAAGGATGTTCTTAT CAAAGATACAACAGCCTTGTCCTTTTTCCACATGCTAAATGGCGCAGCTTTAAGAGGTGAAATTGAAACAGTAAA ACAGTTGCATGAAGCCATCGTGACTCTAGGGTTAGCAGAACCATCCACCAACATAAGTTTCCCATTGGTCACTGT ACACTTGGAAAAGGGCGACCTATCTACTGCTCTTGAGGTCGCCATTGACTGCTATGAAAAGTATAAAGTATTACC AAGGATTCATGATGTCTTGTGTAAACTGGTAGAGAAAGGCGAGACTGATCTAATTCAGAAAGCAATGGACTTTGT GAGCCAAGAACAAGGTGAAATGGTGATGCTCTATGATCTCTTCTTTGCCTTCCTACAAACAGGAAATTACAAAGA GGCCAAGAAGATCATTGAGACTCCAGGGATTAGAGCTCGATCTGCAAGGCTTCAGTGGTTTTGTGACAGATGTGT TGCAAATAATCAGGTTGAAACTCTGGAAAAATTAGTGGAGCTGACACAGAAGCTATTTGAATGTGATAGAGACCA GATGTACTACAATCTGCTAAAACTGTATAAAATAAACGGTGACTGGCAAAGAGCTGATGCAGTCTGGAATAAAAT CCAAGAAGAAAATGTTATTCCTCGTGAAAAGACATTAAGATTATTAGCAGAAATCCTTAGAGAGGGTAACCAGGA AGTTCCGTTTGACGTACCTGAGTTGTGGTATGAAGATGAAAAACATTCCCTGAATTCTTCGTCAGCCTCAACCAC GAATGCAAAAGAGCAAAACATTGTGTTTAATGCTGAAACCTACAGCAATCTCATTAAATTACTGATGTCAGAAGA TTATTTTACACAAGCAATGGAAGTGAAAGCATTCGCGGAGACCCACATCAAGGGCTTCACACTGAACGATGCTGC CAACAGCCGCCTCATCATAACGCAAGTTAGGCGGGATTATTTGAAAGAGGCTGTGACAACACTGAAAACAGTATT GGATCAGCAGCAGACCCCTTCTAGGTTAGCAGTGACCCGTGTCATCCAGGCATTGGCCATGAAGGGTGATGTTGA AAACATAGAAGTAGTTCAGAAGATGTTAAATGGACTCGAAGACTCCATTGGACTTTCAAAAATGGTTTTCATCAA

PCT/IIS2003/028547

785/6881 FIGURE **733B**

TAACATTGCTTTGGCTCAAATAAAGAATAATAACATAGATGCCGCAATAGAAAACATTGAAAATATGCTTACTTC AGAGAATAAAGTCATTGAACCCCAATACTTCGGCTTGGCATACTTATTCAGAAAAGTAATAGAGGAGCAGTTGGA ACCAGCAGTTGAAAAGAGTAACATCATGGCGGAGAGATTGGCCAATCAGTTTGCAATTTATAAACCTGTCACTGA TTTTTTCCTTCAACTTGTGGATGCAGGCAAGGTGGATGATGCCAGAGCTCTCCTACAGAGATGTGGTGCAATTGC TGAACAAACCCCGATTTTGTTGTTGTTCCTCCTTAGGAATTCTAGGAAACAAGGAAAGGCATCAACTGTGAAATC TGTGTTAGAATTGATTCCTGAATTAAATGAAAAGGAAGAAGCATACAATTCCCTCATGAAAAGCTATGTCTCAGA GAAAGATGTCACATCTGCTAAAGCACTGTATGAACATTTGACTGCAAAGAATACAAAATTGGATGATCTGTTTCT AAAGCGTTACGCATCTTTGCTGAAGTATGCTGGAGAGCCTGTCCCTTTCATTGAACCCCCTGAAAGCTTTGAATT TTATGCACAGCAGCTAAGAAAATTGAGGGAAAACTCTTCTTGAAATAACCAGGCGATACTTTGTTTTGTATATAT ATGTATGTGTGATGCATGTTCAAAGTCTTATTGACCATAACTCTGTGCACTTGGTTATTGGACATTTTTGGAGTT TTTTTCTCTGGGAAAAATCGATAGTGTTTTCTTCAATGCTGCTGCTGTGTGAAGCCATACTTTTTCAGGATTCTT ACTTATTAGTCTGCTGTTTCTCTGAAAAATTTTAGAGCTAGGTATAGTGACCGTGAACTTTCTAACGCATAATAT TCTGTGATACAGCCATTCCGTACATGTGTGAAGTCCTGCATAACTTTCGAACTTTGTTAAATGTTGGCACTAGGA GTCATCAGATCTAGGCTTCATCATTTTCCAGTGAGAAGCAGAGACCCAAAGGGCCTGTTACTTGTGCTTGGTCAG GGGACTGTCTGTCATGCCTGGAGGCTCTTCGGCACACTTCCCCATCTTTCCCTTCTGCCACTGTGGCTTCAAGCA CCTCTGTTCATAGAGCGTCTCTGAAATTGAGTCTCGGTCATGACTTATCCCGAAGTAGAGCAATGTGTTTCCTCT CATTGTAGTTTCAGGACTTTGTCAGTACAAGCTCTGCCCTAGGCTTGTTACTTTATACTCATATCCTGAAAAGAT GTGATTTCATCTATGAAGGGGTAAAATATTGGTTTGTATTTAATTGTTTGAAATAAAAGTGATCCCTATATTG

PCT/US2003/028547

786/6881 FIGURE **734**

PCT/US2003/028547

787/6881 FIGURE 735

MGSGYTKAVYRVRLPGGAAVALKAVDFSGHDLGSCVREFGVRRGCYRLAAHKLLKEMVLLERLRHPNVLQLYGYC
YQDSEDIPDTLTTITELGAPVEMIQLLQTSWEDRFRICLSLGRILHHLAHSPLGSVTLLDFRPRGFVLVDGELUX
TDLDDARVEETPCAGSTDCILEFPARNFTLPCSAQGWCEGMNEKRNLYNAYRFFFTYLLPHSAPPSLRPLLDSIV
NATGELAWGVDETLAQLEKVLHLYRSGQYLQNSTASSSTEYQCIPDSTIPQEDYRCWPSYHHGSCLLSVFNLAEA
VDVCSSHAQCRAFVVTNQTTWTGRGLVFFKTGWSQVVPDPNKTTYVKASG

PCT/US2003/028547

788/6881 FIGURE **736**

PCT/US2003/028547

789/6881 FIGURE 737

MWVILYLGRLSLTSRQGTLPGQPRGQGQRCTPQHEPRLGSGSRCGLSQDLGRGWGRGLSASFAFNESLKAAKTRL SPPLEFEYPESFVLLVG

PCT/IIS2003/028547

790/6881 FIGURE 738A

AGATGACTTTGGGAAATTGCTGCTGGCTGAGGCCCTCCTGGAGCAGTGTTTGAAGGAGAACCATGCCAAAATAAA AGACTCCATGCCTTTGCTGGAGAAGAATGAGCCGAAGATGAGCCAAAAATTATCTAAGCAGTATCCTTAA CCATGGGAGGCTCTCGCCACAGTACATGTGTGAGGCCATGCTGATCCTGGGCAAACTGCATTACGTGGAGGGCTC ATACCGAGATGCCATCAGCATGTACGCACGGGCCGGGATTGATGACATGTCCATGGAGAACAAGCCCCTGTATCA $\tt CTTCCGCCTGACAGAGAGGGAGGAGGAAGTGATCACCTGTTTTGAGAGGGCCTCCTGGATCGCTCAGGTGTTCCT$ GCAGGAATTGGAGAAGACCACAAATAACAGCACGTCGAGGCATCTGAAAGGCTGTCACCCGCTTGACTATGAGCT CACCTACTTCCTGGAAGCTGCCCTCCAGAGCGCCTATGTGAAAAACCTGAAGAAGGGGAACATCGTGAAGGGCAT GAGAGAGCTCCGGGAGGTGCTGCGGACTGTGGAGACCAAAGCAACTCAGAACTTCAAAGTGATGGCGGCCAAGCA CCTGGCGGGGGTCCTGCTGCACTCCCTGAGTGAGGAGTGCTACTGGAGCCCCCTGTCCCACCCTCTGCCTGAGTT CATGGGCAAGGAGGAGAGTTCTTTCGCCACTCAGGCCCTGCGGAAACCTCACCTCTATGAAGGAGACAACCTCTA $\tt CTGCCCCAAGGACAACATCGAGGAAGCCCTCCTGCTCCTCATCAGCGAATCCATGGCAACTCGAGATGTGGT$ GCTGAGCCGGGTGCCGGAGCAGGAGGAGGACCGGACAGTGAGCTTGCAGAATGCCGCAGCCATCTATGACCTCCT TGGAGAATTTCACCTTTGGTACCAGGTGGCCCTCTCCATGGTGGCTTGTGGGAAGTCAGCCTACGCTGTGTCCCT GCTGCGGGAGTGTGTGAAGTTGCGGCCCTCGGACCCCACCGTGCCCCTGATGGCCGCGAAGGTCTGCATCGGGTC CCTTCGCTGGCTAGAGGAAGCAGAGCACTTTGCCATGATGGTGATCAGCCTCGGAGAGGAAGCCGGGGAGTTCCT TGAATTGCACCGGAAGGCACTGCAGACGCTGGAGAGGGCTCAGCAGCTGGCGCCCCAGTGACCCCCAGGTCATCCT CTATGTCTCGCTGCAGCTGGCCCTCGTCCGACAGATCTCCAGTGCCATGGAGCAGCTGCAGGAGGCCCTGAAGGT ACGCAAGGATGATGCCCACGCCCTCCACCTGCTGGCACTGCTCTTCTCTGCCCAGAAGCACCACCAGCATGCCCT GGATGTTGTCAACATGGCCATCACCGAGCACCCTGAGAACTTCAACCTGATGTTCACCAAGGTGAAGCTGGAGCA GGTGCTGAAAGGCCCAGAGGAAGCCCTCGTGACCTGCAGACAAGTGCTGAGGCTGTGGCAGACCCTGTACAGCTT GGAGGCCATGTCAGAGCTGACTATGCCCTCTTCGGTCCTGAAGCAGGGCCCCATGCAGCTGTGGACCACGCTGGA ACAGATCTGGCTGCAGGCTGCTGAGCTGTTCATGGAGCAGCAGCACCTCAAGGAAGCAGGTTTCTGCATCCAGGA GGAGGAGGCCAAGCAGCTGTACAAGGAGGCGCTCACGGTGAACCCAGATGGCGTGCGCATCATGCATAGCCTGGG GTGCCACGAGGCGTGGCAGGCCTGGGCGAGGTGCTGCAGGCCCAGGGCCAGAACGAGGCTGCCGTTGACTGCTT GCATCAGGTGCGGGGCCTCAGGGAAATACATCTTTAGTGAACGCCTCTGCAGCTGCAGCCCTCGTTCTCTTGGCT GGGCCAAGAGGGCCTTCCTGGATTTCTTTGTTGGTGCCTTGGGAAACAGTCTGACCTTAAGCCCTAAGTGCCTTTG GAGAGTTTTGTGGTGACCAGACTTGCTCCCCAAGAGCTGGGCAGCGGGGAGCCTCACAGCTGTCCTTCACCCTCA $\tt CCCATGCCTCTGGCTTGGAGTCTGGGTGGGGGGTTCTCACTCCCCACTCTCAGCACAGTACAGACTTCTGGATCT$ $\tt CTCTCAGGTCTTGCCCAGGGCGGTCACAATGTGAAGAAACTGCGGGCAAGTGGGAAGACTATGAGATTTCTGGGT$ TCCCTTCTCAGACTTGGAGTTAGTAGATGATTCCTGCATTGCCCCTGCTTGCCCTCTGAGACCAGCTGGGCCCCA $\verb|CCTTGCTCTTTCCCCCTGCTACCAAGTGCCTTTGGGGTCTGACCAGGGGTACTGAGCACCGGCCCTAACACTTCC| \\$ ATCTCCACCCACCCCATCTCCCTGGCGATGTGCTCCAGCCCAAGCAGCCTCCGTAGGCTTTAGATCCTGTGGTTG $\tt CTAGATCCAGTCCTTTCTAATACCCTGAGTCAACACATTACTCCTGCAGGTCTTAGGCTACAATGCAGGTCCCTT$ $\tt CCCCTCTCCTGTGGCTGAGCAGGCCTCTGTGTCCATGACACCTGTCTTCCGGGCCTGGGGGCTGTGGGTGTATGT$ GATGTGTGGAAAGCTCGGGTGAGGGCTGCCCTGGTTCATCATAGCTCCACCTTCCTCGGAAGGAGTGGGCTGTTG

PCT/US2003/028547

791/6881 FIGURE **738B**

PCT/IIS2003/028547

792/6881 FIGURE **739**

MAAKGAHGSYLKVESELERCRAEGHWDRMPELVRQLQTLSMPGGGGNRRGSPSAAFTFPDTDDFGKLLLAEALLE
QCLKENHAKIKDSMPLLEKNEPKMSEAKNYLSSILNHGRLSPQYMCEAMLILGKLHYVEGSYRDAISMYARGJD
MSMENKPLYQMRLLSEAFVIKGLSLERLPISIASRFRLITEREEVITCFERASWIAQVFLQELEKTINNSTGRH
LKGCHPLDYELTYFLEAALQSAYVKNLKKGNIVKGMRELREVLRTVETKATQNFKVMAAKHLAGVLLHSLSEEVY
WSPLSHPLPEFMGKEESSFATQALKKPHLYEGDNIYCFKDNIEEALLLLISESMATRDVVLSRVPEQEDTTVS
LQMAAAIYDLISITLGRRGQYVMLSECLERAMKFAFGEFHLWYQVALLSWYAGGKSAYAVSLLRECVLRPSDETTV
PLMAAKVCIGSLRWLEEAEHFAMMVISLGEEAGEFLPKGYLALGLTYSLQATDATLKSKQDELHRKALQTLERAQ
QLAPSDPQVILYVSLQLALVRQISSAMEQLQEALKVRKDDAHALHLALLFSAQKHHQHALDVVMMAITEHPENF
NLMFTKYKLEQVIKGPEEALVYCRQVLAHQTLYSFSQLGCLEKDGSFGEGLTMKKQSGMHLTLPDAHDADSGSR
RASSIAASRLEEAMSLITMPSSVLKQGPMQLWTTLEOIWLQAASLFMEQQHLKEAGFCIQEAAGLFPTSHSVLYM
RGRLAEVKGNLEEAKQLYKEALTVNPDGVRIMHSLGLMLSRLGHKSLQKVLRDAVERQSTCHEAWQGLGEVLQA

PCT/US2003/028547

793/6881 FIGURE 740

PCT/IIS2003/028547

794/6881 FIGURE **741**

GGCGGGAAACAGCTTAGTGGGTGTGGGGTCGCGCATTTTCTTCAACCAGGAGGTGAGGAGGTTTCGAC<u>AT</u>GCCGG TGCAGCCGAAGGAGACGCTGCAGTTGGAGAGCGCGGCCGAGGTCGGCTTCGTGCGCTTCTTTCAGGGCATGCCGG AGAAGCCGACCACCACAGTGCGCCTTTTCGACCGGGGCGACTTCTATACGGCGCACGGCGAGGACGCGCTGCTGG CCGCCCGGGAGGTGTTCAAGACCCAGGGGGTGATCAAGTACATGGGGCCGGCAGGAGCAAAGAATCTGCAGAGTG TTGTGCTTAGTAAAATGAATTTTGAATCTTTTGTAAAAGATCTTCTTCTGGTTCGTCAGTATAGAGTTGAAGTTT ATAAGAATAGAGCTGGAAATAAGGCATCCAAGGAGAATGATTGGTATTTGGCATATAAGGCTTCTCCTGGCAATC TCTCTCAGTTTGAAGACATTCTCTTTGGTAACAATGATATGTCAGCTTCCATTGGTGTTGTGGGTGTTAAAATGT TCCCTGATAATGATCAGTTCTCCAATCTTGAGGCTCTCCTCATCCAGATTGGACCAAAGGAATGTGTTTTACCCG AAAAAGCTGACTTTTCCACAAAAGACATTTATCAGGACCTCAACCGGTTGTTGAAAGGCAAAAAGGGAGAGCAGA TGAATAGTGCTGTATTGCCAGAAATGGAGAATCAGGTTGCAGTTTCATCACTGTCTGCGGTAATCAAGTTTTTAG AACTCTTATCAGATGATTCCAACTTTGGACAGTTTGAACTGACTACTTTTGACTTCAGCCAGTATATGAAATTGG ATATTGCAGCAGTCAGAGCCCTTAACCTTTTTCAGGGTTCTGTTGAAGATACCACTGGCTCTCAGTCTCTGGCTG CCTTGCTGAATAAGTGTAAAACCCCTCAAGGACAAAGACTTGTTAACCAGTGGATTAAGCAGCCTCTCATGGATA AGAACAGAATAGAGGAGAGATTGAATTTAGTGGAAGCTTTTGTAGAAGATGCAGAATTGAGGCAGACTTTACAAG AAGATTTACTTCGTCGATTCCCAGATCTTAACCGACTTGCCAAGAAGTTTCAAAGACAAGCAGCAAACTTACAAG ATTGTTACCGACTCTATCAGGGTATAAATCAACTACCTAATGTTATACAGGCTCTGGAAAAACATGAAGGAAAAC ACCAGAAATTATTGTTGGCAGTTTTTGTGACTCCTCTTACTGATCTTCGTTCTGACTTCTCCAAGTTTCAGGAAA TGATAGAAACAACTTTAGATATGGATCAGGTGGAAAACCATGAATTCCTTGTAAAACCTTCATTTGATCCTAATC TCAGTGAATTAAGAGAAATAATGAATGACTTGGAAAAGAAGATGCAGTCAACATTAATAAGTGCAGCCAGAGATC TTGGCTTGGACCCTGGCAAACAGATTAAACTGGATTCCAGTGCACAGTTTGGATATTACTTTCGTGTAACCTGTA AGGAAGAAAAGTCCTTCGTAACAATAAAAACTTTAGTACTGTAGATATCCAGAAGAATGGTGTTAAATTTACCA ACAGCAAATTGACTTCTTTAAATGAAGAGTATACCAAAAATAAAACAGAATATGAAGAAGCCCAGGATGCCATTG TTAAAGAAATTGTCAATATTTCTTCAGGCTATGTAGAACCAATGCAGACACTCAATGATGTTTAGCTCAGCTAG ATGCTGTTGTCAGCTTTGCTCACGTGTCAAATGGAGCACCTGTTCCATATGTACGACCAGCCATTTTGGAGAAAG GACAAGGAAGAATTATATAAAAGCATCCAGGCATGCTTGTGTTGAAGTTCAAGATGAAATTGCATTTATTCCTA ATGACGTATACTTTGAAAAAGATAAACAGATGTTCCACATCATTACTGGCCCCAATATGGGAGGTAAATCAACAT ATATTCGACAAACTGGGGTGATAGTACTCATGGCCCAAATTGGGTGTTTTGTGCCATGTGAGTCAGCAGAAGTGT CCATTGTGGACTGCATCTTAGCCCGAGTAGGGGCTGGTGACAGTCAATTGAAAGGAGTCTCCACGTTCATGGCTG AAATGTTGGAAACTGCTTCTATCCTCAGGTCTGCAACCAAAGATTCATTAATAATCATAGATGAATTGGGAAGAG GAACTTCTACCTACGATGGATTTGGGTTAGCATGGGCTATATCAGAATACATTGCAACAAAGATTGGTGCTTTTT GCATGTTTGCAACCCATTTTCATGAACTTACTGCCTTGGCCAATCAGATACCAACTGTTAATAATCTACATGTCA CAGCACTCACCACTGAAGAGACCTTAACTATGCTTTATCAGGTGAAGAAAGGTGTCTGTGATCAAAGTTTTGGGA TTCATGTTGCAGAGCTTGCTAATTTCCCTAAGCATGTAATAGAGTGTGCTAAACAGAAAGCCCTGGAACTTGAGG AGTTTCAGTATATTGGAGAATCGCAAGGATATGATATCATGGAACCAGCAGCAAAGAAGTGCTATCTGGAAAGAG AGCAAGGTGAAAAAATTATTCAGGAGTTCCTGTCCAAGGTGAAACAAATGCCCTTTACTGAAATGTCAGAAGAAA ACATCACAATAAAGTTAAAACAGCTAAAAGCTGAAGTAATAGCAAAGAATAATAGCTTTGTAAATGAAATCATTT CACGAATAAAAGTTACTACG<u>TGA</u>AAAATCCCAGTAATGGAATGAAGGTAATATTGATAAGCTATTGTCTGTAATA GTTTTATATTGTTTTATATTAACCCTTTTTCCATAGTGTTAACTGTCAGTGCCCATGGGCTATCAACTTAATAAG ATATTTAGTAATATTTTACTTTGAGGACATTTTCAAAGATTTTTATTTTGAAAAATGAGAGCTGTAACTGAGGAC

PCT/IIS2003/028547

795/6881 FIGURE 742

MAVQPKETLQLESAAEVGFVRFFQGMPEKPTTTVRLFDRGDFYTAHGEDALLAAREVFKTQGVIKYMGPAGAKNL
QSVVLSKMNFESFVKDLLLVRQYRVEYYKNRAGNKASKENDWYLAYKASPGHLSOFEDILF GNNDMSASIGVVGV
KMSAVDGQRQVGVGYVDSIQRKLGLCEFPDNDQFSNLEALLIQIGPKECVLPGGETAGDMGKLRQIIQRGILIT
ERKKADFSTKDIYQDLMRLKGKKGEQMNSAVLPEMENQVAVSSLSAVIKFLELLSDDSNFGGFELTTFDFSQYM
KLDIAAVRALNLFQGSVEDTTGSQSLAALLNKCKTPCGGRLVNQWIKQPLMDKNRIEERLNLVEAFVEDABLRQT
LQEDLLRRFPDLNRLAKKFGRQAANLQDCYRLYGINQLPNVIQALEKHEGKHQKLLLAVFVTPLTDLRSDFSKF
GEMIETTLDHDQVENHEFLYBFSFDPNLSELRFINNDLEKKMQSTLISAARDLGLDPGKGIKLDSSAGFGYYFRV
TCKEEKVLRNNKNFSTVDIQKNGVKFTNSKLTSLNEEYTKNKTEYEEAQDAIVKEIVNISSGVEPMQTLNDVLA
CLDAVVSFAHVSNGAFVFYVRFALEKGGGRILKASRHACVEVQDEIAFIPNDVYFEKDKQMFHIITGPNMGGK
STYIRQTGYULMAQIGCFVPGESAGVSVUDCILARVGAGDSQLKGVSTFMAEMLETASILRSATKDSLIIDEL
GRGTSTYDGFGLAWAISEYIATKIGAFCMFATHFHELTALANQIPTVNNLHVTALTTEETLTHLYQVKKGVCDQS
FGIHVAELANFPKRIVIECAKQKALBLEEFGYIGESGGYDIMEFAAKKCYLEREQGEKIIQEFLSKVKQMPFTEMS

PCT/HS2003/028547

796/6881 FIGURE 743

PCT/HS2003/028547

797/6881 FIGURE **744A**

AAGGCCTCGGCCAGGGCCTCACGCGAAGGCGGCCGTGCCGCCGCTGCCCCCGGGGCCTCTCCTTCCCCAGGCGGG GATGCGGCCTGGAGCGAGGCTGGGCCCAGGCCCTTGGCGCGATCCGCGTCACCGCCCAAGGCGAAGAAC CTCAACGGAGGGCTGCGGAGATCGGTAGCGCCTGCTGCCCCACCAGTTGTGACTTCTCACCAGGAGATTTGGTT TGGGCCAAGATGGAGGGTTACCCCTGGTGGCCTTGTCTGGTTTACAACCACCCCTTTGATGGAACATTCATCCGC GAGAAAGGGAAATCAGTCCGTGTTCATGTACAGTTTTTTGATGACAGCCCAACAAGGGGCTGGGTTAGCAAAAGG CTTTTAAAGCCATATACAGGTTCAAAATCAAAGGAAGCCCAGAAGGGAGGTCATTTTTACAGTGCAAAGCCTGAA GATGAGCCCTCAGAGCCAGAAGAGGAAGAAGAGAGAGGTGGAGGTAGGCACAACTTACGTAACAGATAAGAGTGAAGAA GATAATGAAATTGAGAGTGAAGAGGAAGTACAGCCTAAGACACAAGGATCTAGGCGAAGTAGCCGCCAAATAAAA AAACGAAGGGTCATATCAGATTCTGAGAGTGACATTGGTGGCTCTGATGTGGAATTTAAGCCAGACACTAAGGAG GAAGGAAGCAGTGATGAAATAAGCAGTGGAGTGGGGGATAGTGAGAGTGAAGGCCTGAACAGCCCTGTCAAAGTT GCCACCAAACAAGCAACTAGCATTTCATCAGAAACCAAGAATACTTTGAGAGCTTTCTCTGCCCCTCAAAATTCT GAATCCCAAGCCCACGTTAGTGGAGGTGGTGATGACAGTAGTCGCCCTACTGTTTGGTATCATGAAACTTTAGAA TGGCTTAAGGAGGAAAAGAGAGAGAGGAGCACAGGAGGAGGCCTGATCACCCCGATTTTGATGCATCTACACTC TATGTGCCTGAGGATTTCCTCAATTCTTGTACTCCTGGGATGAGGAAGTGGTGGCAGATTAAGTCTCAGAACTTT GATCTTGTCATCTGTTACAAGGTGGGGAAATTTTATGAGCTGTACCACATGGATGCTCTTATTGGAGTCAGTGAA $\tt CTGGGGCTGGTATTCATGAAAGGCAACTGGGCCCATTCTGGCTTTCCTGAAATTGCATTTGGCCGTTATTCAGAT$ TCCCTGGTGCAGAAGGGCTATAAAGTAGCACGAGTGGAACAGACTGAGACTCCAGAAATGATGGAGGCACGATGT GAAGATTCTTCTGGCCATACTCGTGCATATGGTGTGTGTTGTTGATACTTCACTGGGAAAGTTTTTCATAGGT CAGTTTTCAGATGATCGCCATTGTTCGAGATTTAGGACTCTAGTGGCACACTATCCCCCAGTACAAGTTTTATTT GAAAAAGGAAATCTCTCAAAGGAAACTAAAACAATTCTAAAGAGTTCATTGTCCTGTTCTCTTCAGGAAGGTCTG ATACCCGGCTCCCAGTTTTGGGATGCATCCAAAACTTTGAGAACTCTCCTTGAGGAAGAATATTTTAGGGAAAAAG CTAAGTGATGGCATTGGGGTGATGTTACCCCAGGTGCTTAAAGGTATGACTTCAGAGTCTGATTCCATTGGGTTG ACACCAGGAGAAAAGTGAATTGGCCCTCTCTGCTCTAGGTGGTTGTGTCTTCTACCTCAAAAAAATGCCTTATT GATCAGGAGCTTTTATCAATGGCTAATTTTGAAGAATATATTCCCTTGGATTCTGACACAGTCAGCACTACAAGA TCTGGTGCTATCTTCACCAAAGCCTATCAACGAATGGTGCTAGATGCAGTGACATTAAACAACTTGGAGATTTTT CTGAATGGAACAAATGGTTCTACTGAAGGAACCCTACTAGAGAGGGTTGATACTTGCCATACTCCTTTTGGTAAG CGGCTCCTAAAGCAATGGCTTTGTGCCCCACTCTGTAACCATTATGCTATTAATGATCGTCTAGATGCCATAGAA GACCTCATGGTTGTGCCTGACAAAATCTCCGAAGTTGTAGAGCTTCTAAAGAAGCTTCCAGATCTTGAGAGGCTA CTCAGTAAAATTCATAATGTTGGGTCTCCCCTGAAGAGTCAGAACCACCCAGACAGCAGGGGCTATAATGTATGAA ATAGGGATCATGGAAGAAGTTGCTGATGGTTTTAAGTCTAAAATCCTTAAGCAGGTCATCTCTCTGCAGACAAAA AATCCTGAAGGTCGTTTTCCTGATTTGACTGTAGAATTGAACCGATGGGATACAGCCTTTGACCATGAAAAGGCT CGAAAGACTGGACTTATTACTCCCAAAGCAGGCTTTGACTCTGATTATGACCAAGCTCTTGCTGACATAAGAGAA AATGAACAGAGCCTCCTGGAATACCTAGAGAAACAGCGCAACAGAATTGGCTGTAGGACCATAGTCTATTGGGGG ATTGGTAGGAACCGTTACCAGCTGGAAATTCCTGAGAATTTCACCACTCGCAATTTGCCAGAAGAATACGAGTTG AAATCTACCAAGAAGGGCTGTAAACGATACTGGACCAAAACTATTGAAAAGAAGTTGGCTAATCTCATAAATGCT GAAGAACGGAGGGATGTATCATTGAAGGACTGCATGCGGCGACTGTTCTATAACTTTGATAAAAATTACAAGGAC TGGCAGTCTGCTGTAGAGTGTATCGCAGTGTTGGATGTTTTACTGTGCCTGGCTAACTATAGTCGAGGGGGTGAT GGTCCTATGTGTCGCCCAGTAATTCTGTTGCCGGAAGATACCCCCCCTTCTTAGAGCTTAAAGGATCACGCCAT CCTTGCATTACGAAGACTTTTTTTGGAGATGATTTTATTCCTAATGACATTCTAATAGGCTGTGAGGAAGAGGAG CAGGAAAATGGCAAAGCCTATTGTGTGCTTGTTACTGGACCAAATATGGGGGGCAAGTCTACGCTTATGAGACAG GCTGGCTTATTAGCTGTAATGGCCCAGATGGGTTGTTACGTCCCTGCTGAAGTGTGCAGGCTCACACCAATTGAT

PCT/US2003/028547

798/6881 FIGURE 744B

PCT/US2003/028547

799/6881 FIGURE 745

MSROSTLYSFFPKSPALSDANKASARASREGGRAAAAPGASPSPGGDAAWSEAGPGPRPLARSASPPKAKNLNGG LRRSVAPAAPTSCDFSPGDLVWAKMEGYPWWPCLVYNHPFDGTFIREKGKSVRVHVOFFDDSPTRGWVSKRLLKP YTGSKSKEAQKGGHFYSAKPEILRAMQRADEALNKDKIKRLELAVCDEPSEPEEEEEMEVGTTYVTDKSEEDNEI ESEEEVOPKTOGSRRSSROIKKRRVISDSESDIGGSDVEFKPDTKEEGSSDEISSGVGDSESEGLNSPVKVARKR KRMVTGNGSLKRKSSRKETPSATKQATSISSETKNTLRAFSAPQNSESQAHVSGGGDDSSRPTVWYHETLEWLKE EKRRDEHRRRPDHPDFDASTLYVPEDFLNSCTPGMRKWWQIKSQNFDLVICYKVGKFYELYHMDALIGVSELGLV FMKGNWAHSGFPEIAFGRYSDSLVQKGYKVARVEQTETPEMMEARCRKMAHISKYDRVVRREICRIITKGTOTYS VLEGDPSENYSKYLLSLKEKEEDSSGHTRAYGVCFVDTSLGKFFIGQFSDDRHCSRFRTLVAHYPPVQVLFEKGN LSKETKTILKSSLSCSLQEGLIPGSOFWDASKTLRTLLEEEYFREKLSDGIGVMLPOVLKGMTSESDSIGLTPGE KSELALSALGGCVFYLKKCLIDQELLSMANFEEYIPLDSDTVSTTRSGAIFTKAYQRMVLDAVTLNNLEIFLNGT NGSTEGTLLERVDTCHTPFGKRLLKQWLCAPLCNHYAINDRLDAIEDLMVVPDKISEVVELLKKLPDLERLLSKI HNVGSPLKSONHPDSRAIMYEETTYSKKKIIDFLSALEGFKVMCKIIGIMEEVADGFKSKILKQVISLQTKNPEG RFPDLTVELNRWDTAFDHEKARKTGLITPKAGFDSDYDQALADIRENEQSLLEYLEKQRNRIGCRTIVYWGIGRN RYQLEIPENFTTRNLPEEYELKSTKKGCKRYWTKTIEKKLANLINAEERRDVSLKDCMRRLFYNFDKNYKDWOSA VECIAVLDVLLCLANYSRGGDGPMCRPVILLPEDTPPFLELKGSRHPCITKTFFGDDFIPNDILIGCEEEEQENG KAYCVLVTGPNMGGKSTLMRQAGLLAVMAOMGCYVPAEVCRLTPIDRVFTRLGASDRIMSGESTFFVELSETASI LMHATAHSLVLVDELGRGTATFDGTAIANAVVKELAETIKCRTLFSTHYHSLVEDYSONVAVRLGHMACMVENEC EDPSOETITFLYKFIKGACPKSYGFNAARLANLPEEVIQKGHRKAREFEKMNQSLRLFREVCLASERSTVDAEAV HKLLTLIKEL

PCT/US2003/028547

800/6881 FIGURE 746A

GTGAGCTGAAGCAGGGCAGGGCATCAACTCACCCAGGAAGTGCAAGGGGTTTGGGGGATTTTCCTTTCCTAGCCAA GGGAAGGCATGACAGACTGTACCTGGAAAAACAGGACACTCTTGCCCAAATACTGCACTTTTTGCACAGTCTTAG CAACTGGCAGACCAGGAGATTCTCTCCTGTGCCTGATTCATTGGGTCCCACACCCATAGGGCCTTGCTTACTGCC AGTGCAGCAGTCTGAGATTAACACCCCATCCCCGGGAGAACTCTAAGAAGGAGCTGATGTGGAGGAGCAGCTGAG ACAGTTCAAGATGACGACCACAGTAGCCACAGACTATGACAACATTGAGATCCAGCAGCAGTACAGTGATGTCAA CAACCGCTGGGATGTCGACGACTGGGACAATGAGAACAGCTCTGCGCGGCTTTTTGAGCGGTCCCGCATCAAGGC TCTGGCAGATGAGCGTGAAGCCGTGCAGAAGAAGACCTTCACCAAGTGGGTCAATTCCCACCTTGCCCGTGTGTC CTGCCGGATCACAGACCTGTACACTGACCTTCGAGATGGACGGATGCTCATCAAGCTGCTGGAGGTCCTCTCTGG AGAGAGGCTGCCTAAACCCACCAAGGGACGAATGCGCATCCACTGCTTAGAGAATGTGGACAAGGCCCTTCAGTT TGGCCTCATCTGGACCATCATCCTGCGCTTCCAGATCCAGGATATCAGTGTGGAAACTGAAGACAACAAAGAGAA GAAATCTGCCAAGGATGCATTGCTGTTGTGGTGCCAGATGAAGACAGCTGGGTACCCCAATGTCAACATTCACAA TTTCACCACTAGCTGGAGGGACGGCATGGCCTTCAATGCACTGATACACAAACACCGGCCTGACCTGATAGATTT TGACAAACTAAAGAAATCTAACGCACACTACAACCTGCAGAATGCATTTAATCTGGCAGAACAGCACCTCGGCCT CACTAAACTGTTGGACCCCGAAGACATCAGCGTGGACCATCCTGATGAGAAGTCCATAATCACTTATGTGGTGAC TTATTACCACTACTTCTCTAAGATGAAGGCCTTAGCTGTTGAAGGAAAACGAATTGGAAAGGTGCTTGACAATGC TATTGAAACAGAAAAAATGATTGAAAAGTATGAATCACTTGCCTCTGACCTTCTGGAATGGATTGAACAAACCAT CATCATTCTGAACAATCGCAAATTTGCCAATTCACTGGTCGGGGTTCAACAGCAGCTTCAGGCATTCAACACTTA CCGCACTGTGGAGAAACCACCCAAATTTACTGAGAAGGGGAACTTGGAAGTGCTGCTCTTCACCATTCAGAGCAA GATGAGGGCCAACAACCAGAAGGTCTACATGCCCCGGGAGGGGAAGCTCATCTCTGACATCAACAAGGCCTGGGA AAGACTGGAAAAAGCGGAACACGAAAGAGAACTGGCTTTGCGGAATGAGCTCATAAGACAGGAGAAACTGGAACA GCTCGCCCGCAGATTTGATCGCAAGGCAGCTATGAGGGAGACTTGGCTGAGCGAAAACCAGCGTCTGGTGTCTCA CGCATACGAGGAGCGTGTGCAGGCTGTGGTAGCCGTGGCCAGGGAGCTCGAGGCCGAGAATTACCACGACATCAA GCGCATCACAGCGAGGAAGGACAATGTCATCCGGCTCTGGGAATACCTACTGGAACTGCTCAGGGCCCGGAGACA GGTTGAAGCAGACATTGGCATCCAGGCAGAGCGGGTGAGAGGTGTCAATGCCTCCGCCCAGAAGTTCGCAACAGA CGGGGAAGGTTACAAGCCCTGTGACCCCCAGGTGATCCGAGACCGCGTGGCCCACATGGAGTTCTGTTATCAAGA GCTTTGCCAGCTGGCGGCTGAGCGCAGGGCCCGTCTGGAAGATCCCGCCGCCTCTGGAAGTTCTTCTGGGAGAT GGCAGAAGAGGAAGGCTGGATACGGGAGAAGGAGAAGATCCTGTCCTCGGACGATTACGGGAAAGACCTGACCAG CGTCATGCGCCTGCTCAGCAAGCACCGGGCGTTCGAGGACGAGATGAGCGGCCGCAGTGGCCACTTTGAGCAGGC CATCAAGGAAGGCGAAGACATGATCGCGGAGGAGCACTTCGGGTCGGAGAAGATCCGTGAGAGGATCATTTACAT CCGGGAGCAGTGGGCCAACCTAGAGCAGCTCTCGGCCATTCGGAAGAAGCGCCTGGAGGAGGACCTCCCTGCTGCA CCAGTTCCAGGCAGATGCTGATGACATTGATGCCTGGATGCTGGACATCCTCAAGATTGTCTCCAGCAGCGACGT GGGCCACGATGAGTATTCCACACAGTCTCTGGTCAAGAAACACAAGGACGTGGCGGAAGAGATCGCCAATTACAG GCCCACCCTTGACACGCTGCACGAACAAGCCAGCGCCCTCCCCCAGGAGCATGCCGAGTCTCCAGACGTGAGGGG CAGGCTGTCGGGCATCGAGGAGCGGTATAAGGAGGTGGCAGAGCTGACGCGGCTGCGGAAGCAGGCACTCCAGGA CACTCTGGCCCTGTACAAGATGTTCAGCGAGGCTGATGCCTGTGAGCTCTGGATCGACGAGAAGGAGCAGTGGCT CAACAACATGCAGATCCCAGAGAAGCTGGAGGATCTGGAGGTCATCCAGCACAGATTTGAGAGCCTAGAACCAGA AATGAACAACCAGGCTTCCCGGGTTGCAGTGGTGAACCAGATTGCACGCCAGCTGATGCACAGCGGCCACCCAAG TGAGAAGGAAATCAAAGCCCAGCAGGACAAACTCAACACAAGGTGGAGCCAGTTCAGAGAACTGGTTGACAGGAA GAAGGATGCCCTCCTGTCTGCCCTGAGCATCCAGAACTACCACCTCGAGTGCAATGAAACCAAATCCTGGATTCG GCTGACCGGCATGGAGCGGGACTTGGTGGCCATTGAGGCAAAGCTGAGTGACCTGCAGAAGGAGGCGGAGAAGCT GGAGTCCGAGCACCCCGACCAGGCCCAGGCCATCCTGTCTCGGCTGGCCGAGATCAGCGACGTGTGGGAGGAGAT GAAGACCACCCTGAAAAACCGAGAGGCCTCCCTGGGAGAGGCCAGCAAGCTGCAGCAGTTCCTACGGGACTTGGA CGACTTCCAGTCCTGGCTCTCTAGGACCCAGACAGCGATCGCCTCGGAGGACATGCCAAACACCCTGACCGAGGC

PCT/US2003/028547

801/6881 FIGURE 746B

TGAGAAGCTGCTCACGCAGCACGAGAACATCAAGAATGAGATCGACAACTACGAGGAGGACTACCAGAAGATGAG GGACATGGGCGAGATGGTCACCCAGGGGCAGACCGATGCCCAGTACATGTTTCTGCGGCAGCGGCTGCAGGCCCT GGACACTGGATGGAACGAGCTCCACAAGATGTGGGAGAACAGACAAAATCTCCTATCCCAGTCACATGCCTACCA GCAGTTCCTCAGAGACACGAAGCAAGCCGAAGCCTTTCTTAACAACCAGGAGTATGTTCTGGCTCACACTGAAAT GCCTACCACCTTGGAAGGAGCTGAAGCAGCAATTAAAAAGCAAGAGGACTTCATGACCACCATGGACGCCAATGA GGAGAAGATCAATGCTGTGGTGGAGACTGGCCGGAGGCTGGTGAGCGATGGGAACATCAACTCAGATCGCATCCA GGAGAAGGTGGACTCTATTGATGACAGACATAGGAAGAATCGTGAGACAGCCAGTGAACTTTTGATGAGGTTGAA GGACAACAGGGATCTACAGAAATTCCTGCAAGATTGTCAAGAGCTGTCTCTCTGGATCAATGAGAAGATGCTCAC AGCCCAGGACATGTCTTACGATGAAGCCAGAAATCTGCACAGTAAATGGTTGAAGCATCAAGCATTTATGGCAGA ACTTGCATCCAACAARGAATGGCTTGACAAAATCGAGAAGGAAGGAATGCAGCTCATTTCAGAAAAGCCTGAGAC GGAAGCTGTGGTGAAGGAGAAACTCACTGGTTTACATAAAATGTGGGAAGTCCTTGAATCCACTACCCAGACAAA GGCCCAGCGGCTCTTTGATGCAAACAAGGCCGAACTTTTCACCCAGAGCTGTGCAGATCTAGACAAATGGCTGCA CGGCCTGGAGAGTCAGATTCAGTCTGATGACTATGGCAAACACCTGACCAGTGTCAATATCCTGCTGAAAAAGCA ACAGATGCTGGAGAATCAGATGGAAGTGCGGAAGAAGAGGAGATCGAAGAGCTCCAAAGCCAAGCCCAGGCCCTGAG TCAGGAAGGGAAGACCACCGACGACGAGGTAGACAGCAAGCGCCTCACCGTGCAGACCAAGTTCATGGAGTTGCTGGA GCCCTTGAACGAGGAAGCATAACCTGCTGGCCTCCAAAGAGATCCATCAGTTCAACAGGGATGTGGAGGACGA GATC1TGTGGGTTGGAGAGAGGGTGCCTTTGGCAACTTCCACGGATCATGGCCACAACCTCCAGACTGTGCAGCT GTTAATAAAGAAAATCAGACCCTCCAGAAAGAAATCCAGGGGCACCAGCCTCGCATTGACGACATCTTTGAGAG GCTGTGGGGTCTCCTCATTGAGGAGACAGAGAAACGCCACAGGCGGCTGGAGGAGGCGCACAGGGCCCAGCAGTA GGATGAGCAGAGTGCTGTCTCCATGTTGAAGAAGCACCAGATCTTAGAACAAGCTGTGGAGGACTATGCAGAGAC CGTGCATCAGCTCTCCAAGACCAGCCGGGCCCTGGTGGCCGACAGCCATCCTGAAAGTGAGCGCATTAGCATGCG GCAGTCCAAAGTGGATAAACTGTACGCTGGTCTGAAAGACCTTGCTGAAGAGAGAAGAAGAGCAAGCTGGATGAGAG GTCCCATGAACTGGGACAGGACTATGAGCATGTCACGATGTTACAAGAACGATTCCGGGAGTTTGCCCGAGACAC CGGGAACATTGGGCAGGAGCGCGTGGACACGGTCAATCACCTGGCAGATGAGCTCATCAACTCTGGACATTCAGA TGCCGCCACCATCGCTGAATGGAAGGATGGCCTCAATGAAGCCTGGGCCGACCTCCTGGAGCTCATTGACACAAG AACACAGATTCTTGCCGCTTCCTATGAACTGCACAAGTTTTACCACGATGCCAAGGAGATCTTTGGGCGTATACA GGACAAACACAAGAAACTCCCTGAGGAGCTTGGGAGAGATCAGAACACAGTGGAGACCTTACAGAGAATGCACAC TACATTTGAGCATGACATCCAGGCTCTGGGCACACAGGTGAGGCAGCTGCAGGAGGATGCAGCCCGCCTCCAGGC GGCCTATGCGGGTGACAAGGCCGACGATATCCAGAAGCGCGAGAACGAGGTCCTGGAAGCCTGGAAGTCCCTCCT GGACGCCTGTGAGAGCCGCAGGGTGCGGCTGGTGGACACAGGGGACAAGTTCCGCTTCTTCAGCATGGTGCGCGA CCTCATGCTCTGGATGGAGGATGTCATCCGGCAGATCGAGGCCCAGGAGAAGCCAAGGGATGTATCATCTGTTGA ACTCTTAATGAATAATCATCAAGGCATCAAAGCTGAAATTGATGCACGTAATGACAGTTTCACAACCTGCATTGA ACTTGGGAAATCCCTGTTGGCGAGAAAACACTATGCATCTGAGGAGATCAAGGAAAAATTACTGCAGTTGACGGA AAAGAGGAAAGAAATGATCGACAAGTGGGAAGACCGATGGGAATGGTTAAGACTGATTCTGGAGGTCCATCAGTT CTCAAGAGACGCCAGTGTGGCCGAGGCCTGGCTGCTTGGACAGGAGCCGTACCTATCCAGCCGAGAGATAGGCCA GAGCGTGGACGAGGTGGAGAAGCTCATCAAGCGCCACGAGGCATTTGAAAAGTCTGCAGCAACCTGGGATGAGAG GTTCTCTGCCCTGGAAAGGCTGACTACATTGGAGTTACTGGAAGTGCGCAGACAGCAAGAGGAAGAGGAGAGAAGA GAGGCGGCCGCCTTCTCCCGAGCCGAGCACGAAGGTTTCAGAGGAAGCCGAGTCCCAGCAGCAGTGGGATACTTC AAAAGGAGAACAAGTTTCCCAAAACGGTTTGCCAGCTGAACAGGGATCTCCACGGATGGCAGAAACGGTGGACAC AAGCGAAATGGTCAACGGCGCTACAGAACAAAGGACGAGCTCTAAAGAGTCCAGCCCCATCCCCTCCCCGACCTC GGCCCAGATGGAAGGCTTCCTCAATCGGAAACACGAGTGGGAGGCCCACAATAAGAAAGCCTCAAGCAGGTCCTG GCACAATGTTTATTGTGTCATAAATAACCAAGAAATGGGTTTCTACAAAGATGCAAAGACTGCTGCTTCTGGAAT TCCCTACCACAGCGAGGTCCCTGTGAGTTTGAAAGAAGCTGTCTGCGAAGTGGCCCTTGATTACAAAAAGAAGAA ACACGTATTCAAGCTAAGACTAAATGATGGCAATGAGTACCTCTTCCAAGCCAAAGACGATGAGGAAATGAACAC

PCT/IIS2003/028547

802/6881 FIGURE 746C

PCT/HS2003/028547

FIGURE 747

MTTTVATDYDNIE1QQQYSDVNNRWDVDDWDNENSSARLFERSRIKALADEREAVQKKTFTKWVNSHLARVSCRI TDLYTDLRDGRMLIKLLEVLSGERLPKPTKGRMRIHCLENVDKALQFLKEQRVHLENMGSHDIVDGNHRLTLGLI WTIILRFOIQDISVETEDNKEKKSAKDALLLWCQMKTAGYPNVNIHNFTTSWRDGMAFNALIHKHRPDLIDFDKL KKSNAHYNLQNAFNLAEOHLGLTKLLDPEDISVDHPDEKSIITYVVTYYHYFSKMKALAVEGKRIGKVLDNAIET EKMIEKYESLASDLLEWIEQTIIILNNRKFANSLVGVQQQLQAFNTYRTVEKPPKFTEKGNLEVLLFTIQSKMRA NNQKVYMPREGKLISDINKAWERLEKAEHERELALRNELIRQEKLEQLARRFDRKAAMRETWLSENQRLVSODNF GFDLPAVEAATKKHEAIETDIAAYEERVOAVVAVARELEAENYHDIKRITARKDNVIRLWEYLLELLRARRORLE MNLGLQKIFQEMLYIMDWMDEMKVLVLSQDYGKHLLGVEDLLQKHTLVEADIGIQAERVRGVNASAQKFATDGEG YKPCDPQVIRDRVAHMEFCYQELCQLAAERRARLEESRRLWKFFWEMAEEEGWIREKEKILSSDDYGKDLTSVMR LLSKHRAFEDEMSGRSGHFEQAIKEGEDMIAEEHFGSEKIRERIIYIREQWANLEOLSAIRKKRLEEASLLHOFO ADADDIDAWMLDILKIVSSSDVGHDEYSTOSLVKKHKDVAEEIANYRPTLDTLHEQASALPQEHAESPDVRGRLS GIEERYKEVAELTRLRKQALQDTLALYKMFSEADACELWIDEKEQWLNNMQIPEKLEDLEVIOHRFESLEPEMNN OASRVAVVNQIARQLMHSGHPSEKEIKAQQDKLNTRWSQFRELVDRKKDALLSALSIQNYHLECNETKSWIREKT KVIESTQDLGNDLAGVMALQRKLTGMERDLVAIEAKLSDLQKEAEKLESEHPDOAOAILSRLAEISDVWEEMKTT LKNREASLGEASKLQQFLRDLDDFQSWLSRTQTAIASEDMPNTLTEAEKLLTQHENIKNEIDNYEEDYQKMRDMG EMVTOGOTDAQYMFLRQRLOALDTGWNELHKMWENRQNLLSQSHAYOOFLRDTKQAEAFLNNQEYVLAHTEMPTT LEGAEAAIKKQEDFMTTMDANEEKINAVVETGRRLVSDGNINSDRIQEKVDSIDDRHRKNRETASELLMRLKDNR DLQKFLQDCQELSLWINEKMLTAQDMSYDEARNLHSKWLKHQAFMAELASNKEWLDKIEKEGMQLISEKPETEAV VKEKLTGLHKMWEVLESTTQTKAQRLFDANKAELFTQSCADLDKWLHGLESQIQSDDYGKHLTSVNILLKKQQML ENQMEVRKKEIEELQSQAQALSQEGKSTDEVDSKRLTVQTKFMELLEPLNERKHNLLASKEIHQFNRDVEDEILW VGERMPLATSTDHGHNLQTVOLLIKKNQTLQKEIQGHQPRIDDIFERSQNIVTDSSSLSAEAIRQRLADLKQLWG LLIEETEKRHRRLEEAHRAQQYYFDAAEAEAWMSEQELYMMSEEKAKDEQSAVSMLKKHQILEQAVEDYAETVHQ LSKTSRALVADSHPESERISMRQSKVDKLYAGLKDLAEERRGKLDERHRLFQLNREVDDLEQWIAEREVVAGSHE LGODYEHVTMLQERFREFARDTGNIGQERVDTVNHLADELINSGHSDAATIAEWKDGLNEAWADLLELIDTRTQI LAASYELHKFYHDAKEIFGRIQDKHKKLPEELGRDQNTVETLQRMHTTFEHDIQALGTQVRQLQEDAARLQAAYA GDKADDIOKRENEVLEAWKSLLDACESRRVRLVDTGDKFRFFSMVRDLMLWMEDVIRQIEAQEKPRDVSSVELLM NNHQGIKAEIDARNDSFTTCIELGKSLLARKHYASEEIKEKLLQLTEKRKEMIDKWEDRWEWLRLILEVHQFSRD ASVAEAWLLGQEPYLSSREIGQSVDEVEKLIKRHEAFEKSAATWDERFSALERLTTLELLEVRRQQEEEERKRRP PSPEPSTKVSEEAESQQQWDTSKGEQVSQNGLPAEQGSPRMAETVDTSEMVNGATEQRTSSKESSPIPSPTSDRK AKTALPAQSAATLPARTQETPSAQMEGFLNRKHEWEAHNKKASSRSWHNVYCVINNQEMGFYKDAKTAASGIPYH SEVPVSLKEAVCEVALDYKKKKHVFKLRLNDGNEYLFQAKDDEEMNTWIQAISSAISSDKHEVSASTQSTPASSR AOTLPTSVVTITSESSPGKREKDKEKDKEKRFSLFGKKK

PCT/US2003/028547

804/6881 FIGURE 748

PCT/US2003/028547

805/6881 FIGURE 749

PCT/US2003/028547

806/6881 FIGURE 750

MQIFVKTLIGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRG GAKKRKKSYTTPKKNKHKRKKVKLAVLKYYKVDENGKISRLRRECPSDECGAGVFMASHFDRHYCGKCCLTYCF NKPEDK

PCT/HS2003/028547

807/6881 FIGURE 751

GGCACGAGCAGAATCCAGGGGCCCGGGGCTGTAGATTCCTTGACAAGGATATCCTAGCGGCGAAACAACACCGTA CTGGGAGTCAGAACGTCTGGGTTCTAGTCTTGACTGCCATTAACTAGCGGTATGACATTGGAGAAGCTTTTTTGA CCCTTCTGGATTTCCGTTTCCTTTTCTGTAAAATGAGGAGCTTGGAAGATCCGGAAAATGAGGCCCATAGGAAAAC AAGTGACTTGCTGAGTCCAGATAACACTGACTGTCAGAGAGAAACATGAACCAGAAGCTACTGAAGTTGGAGAAC TTGCTACGATTTCACACTATTTATAGGCAACTGCACAGTCTGTGTCAAAGAAGAAGAACATTAAGACAGTGGAGGCAT GGGTTTTCATCTGCTTACCCTGTGTGGACAGCTCAACTGTGTGCCTGGCCCTGGCCCAACAGATGTGCTCAATGGG GCTGCTTTATCTCAGTATAGGCTTCTAGTAACAAAAAGGAAGAAGGACCATGGAAATCTCAGTTATCTTCAACA AAATCTAAAAAGGTGGTAGAAGTATGGATTGGAATGACTATTGAGGAACTGGCCAGGGCAATGGAAAAAAACACA GATTATGTATATGAAGCTTTATTGAACACTGATATTGACATAGATTCACTGGAAGCAGACTCACATTTAGATGAA GTCTGGATCAAAGAAGTGATAACGAAGGCAGGGATGAAGTTAAAGTGGAGTAAATTAAAACAGGACAAAGTCAGA AAAAATAAAGATGCTGTAAGAAGGCCCCAGGCAGATCCAGCTTTATTAACCCCAAGGTCCCCAGTTGTTACTATA ATGGGCCATGTTGATCACGGGAAAACGACATTACTTGACAAATTTCGAAAAACTCAAGTGGCAGCAGTGGAAAACT GGAGGCATCACTCAGCACATTGGTGCCTTTCTTGTCTCTCTGCCTTCTGGGGAAAAGATAACTTTTCTTGATACT CCAGGACATGCTGCTTTCTCAGCAATGAGAGCCAGAGGTGCTCAGGTCACTGACATTGTCGTATTGGTTGTAGCT GCAGATGATGAGGATGAAACAAACTGTAGAATCTATTCAGCATGCCAAAGATGCACAGGTTCCTATTATCCTT GCCGTAAATAAATGTGACAAAGCTGAGGCTGATCCTGAGAAAGTGAAAAAAAGAGCTGCTGGCTTACGATGTGGTA TGTGAAGATTATGGAGGTGATGTTCAAGCAGTGCCTGTCTCCGCACTTACGGGCGATAATCTGATGGCTTTGGCA GAGTCTTTCACAGACAAAGGAAGAGGTCTTGTTACTACAGCTATAATTCAAAGAGAACTTTAAGAAAAGGCTCT GTTCTGGTTGCTGGAAAATGTTGGGCAAAAGTACGCTTAATGTTTGATGAAAAATGGAAAAAACAATTGATGAGGCC TCTGAGCCAAGGGCACGTGAAGTTGTTGACTGGAGGAAATATGAACAAGAACAGGAGAAAAGGTCAGGAGGATCTG AAAATAATAGAAGAAAAGCGAAAGGAACACAAAGAAGCACATCAGAAAAGCCCGTGAGAAGTATGGCCATCTACTG TGGAAGAAGAGATCAATTCTACGGTTTTTAGAAAGAAAAGAACAAATACCCTTAAAGCCAAAAGAGAAAAAGGGAA AGAGATTCAAATGTACTTCTGTGATTATTAAAGGTGATGTTGATGGTTCTGTTGAGGCCATTTTGAACATTATA GATACCTATGATGCTTCACACGAGTGTGAACTAGAATTAGTACATTTTGGAGTGGGTGATATAAGTGCAAATGAT GTTAACCTTGCTGAAACATTTGATGGTGTTATATATGGCTTTAATGTGAATGCAGGCAATGTTATCCAACAGTCA GCTGCAAAAAAGGAGTAAAAATTAAACTTCACAAAATAATTTACCGTCTTGTTGAAGATTTGCAAGAGGAACTG AGCAGCAGATTACCCTGTGCTGTGGAAGAGCACCCAGTAGGTGAGGCATCTATACTAGCTACCTTCTCTGTAACA CTAACCCGTAATGGACATGTAATTTGGAAGGGCTCATTAACCTCATTGAAACACCATAAAGATGACATTTCAATT GTCAAAACGGGAATGGATTGTGGTCTCAGTTTAGATGAAGACAATATGGAATTTCAAGTGGGAGACAGAATTGTT TGTTATGAAGAAAAGCAAATTCAAGCCAAGACTTCTTGGGATCCAGGATTT<u>TAA</u>AATTACATTAAAAATGTAAAT AACTCA

PCT/IIS2003/028547

808/6881 FIGURE 752

MNQKLLKLENLLRFHTIYRQLHSLCQRRALRQWRHGFSSAYPVWTAQLCAWPWPTDVLNGAALSQYRLLVTKKEE
GPWKSQLSSTKSKKVVEVWIGMTIEELARAMEKNTDVYVEALLNTDIDIDSLEADSHLDEVWIKEVITKAGMKLK
WSKLKQDKVRKNKDAVRRPQADPALLTPRSPVVTIMGHVDHGKTTLLDKFRKTJOVAAVETGGITIGAFLVSLP)
SGEKITFLDTEGHAAFSAMRARGAQVTDIVVLVVAADDGVMKQTVESIQHAKDAQVPIILAVNKCDKAEADPEKV
KKELLAYDVVCEDYGGDVQAVPVSALTGDNIMALAEATVALAEMLELKADPNGPVSGTVIESFTDKGRGLVTTAI
IQRGTLRKGSVLVAGKCWAKVRLMFDENGKTIDEAYPSMPVGITGWROLPSAGEEILEVESEPRREVVDWRKYE
QEQEKGQEDLKIIEEKRKEHKEAHQKAREKYGHLLWKKRSILRFLERREQIPLKPKEKREDSNVLSVIIKGDVD
GSVEATLNIIDTYDASHECELELVHFGVGDISANDVNLABTFDGVIYGFNVNAGNVIQQSAKKGVKIKLHKIIY
RLVEDLQEELSSRLPCAVEEHPVGEASILATFSVTEGKKKVPVAGCRVQKGQLEKQKKFKLTRNGHVIWKGSLTS
LKHHKDDISIVKTGMDCGLSLDEDDMMEFQVGDRIVCYEEKQIQAKTSWDFGF

PCT/US2003/028547

809/6881 FIGURE 753

CCTTCCCGGTTCTCATGCCGGCCTGCAGGTACTGCTGCTCGTGCCTCCGGCCTCCGGCCCCTGAGCGATGGTCCTT TCCTTCTGCCACGGCGGGATCGGGCACTCACCCAGTTGCAAGTGCGAGCACTATGGAGTAGCGCAGGGTCTCGAG CTGTGGCCGTGGACTTAGGCAACAGGAAATTAGAAATATCTTCTGGAAAGCTGGCCAGATTTGCAGATGGCTCTG CTGTAGTACAGTCAGGTGACACTGCAGTAATGGTCACAGCGGTCAGTAAAACAAAACCTTCCCCTTCCCAGTTTA TGCCTTTGGTGGTTGACTACAGACAAAAAGCTGCTGCAGCAGGTAGAATTCCCACAAACTATCTGAGAAGAGAGA TTGGTACTTCTGATAAAGAAATTCTAACAAGTCGAATAATAGATCGTTCAATTAGACCGCTCTTTCCAGCTGGCT ACTICTATGATACACAGGTTCTGTGTAATCTGTTAGCAGTAGATGGTGTAAATGAGCCTGATGTCCTAGCAATTA ATGGCGCTTCCGTAGCCCTCTCATTATCAGATATTCCTTGGAATGGACCTGTTGGGGCAGTACGAATAGGAATAA CACCTAAAAGTCAGATTGTCATGTTGGAAGCCTCTGCAGAGAACATTTTACAGCAGGACTTTTGCCATGCTATCA A A CT GGGAGT GA A TATACCCAACAAA TAATTCAGGGCATTCAGCAGTTGGTAAAAGAAACTGGTGTTACCAAGA GGACACCTCAGAAGTTATTTACCCCTTCGCCAGAGATTGTGAAATATACTCATAAACTTGCTATGGAGAGACTCT ATGCAGTTTTTACAGATTACGAGCATGACAAAGTTTCCAGAGATGAAGCTGTTAACAAAATAAGATTAGATACGG AGGAACAACTAAAAGAAAAATTTCCAGAAGCCGATCCATATGAAATAATAGAATCCTTCAATGTTGTTGCAAAGG AAGTTTTTAGAAGTATTGTTTTGAATGAATACAAAAGGTGCGATGGTCGGGATTTGACTTCACTTAGGAATGTAA GTTGTGAGGTAGATATGTTTAAAACCCTTCATGGATCAGCATTATTTCAAAGAGGACAAACACAGGTGCTTTGTA CCGTTACATTTGATTCATTAGAATCTGGTATTAAGTCAGATCAAGTTATAACAGCTATAAATGGGATAAAAGATA AAAATTTCATGCTGCACTACGAGTTTCCTCCTTATGCAACTAATGAAATTGGCAAAGTCACTGGTTTAAATAGAA GAGAACTTGGGCATGGTGCTCTTGCTGAGAAAGCTTTGTATCCTGTTATTCCCCGAGATTTTCCTTTCACCATAA GAGTTACATCTGAAGTCCTAGAGTCAAATGGGTCATCTTCTATGGCATCTGCATGTGGCGGAAGTTTAGCATTAA TGGATTCAGGGGTTCCAATTTCATCTGCTGTTGCAGGCGTAGCAATAGGATTGGTCACCAAAACCGATCCTGAGA AGGGTGAAATAGAAGATTATCGTTTGCTGACAGATATTTTGGGAATTGAAGATTACAATGGTGACATGGACTTCA AAATAGCTGGCACTAATAAAGGAATAACTGCATTACAGGCTGATATTAAATTACCTGGAATACCAATAAAAATTG TGATGGAGGCTATTCAACAAGCTTCAGTGGCAAAAAAGGAGATATTACAGATCATGAACAAAAACTATTTCAAAAC CTCGAGCATCTAGAAAAGAAAATGGACCTGTTGTAGAAACTGTTCAGGTTCCATTATCAAAACGAGCAAAATTTG TTGGACCTGGTGGCTATAACTTAAAAAAACTTCAGGCTGAAACAGGTGTAACTATTAGTCAGGTGGATGAAGAAA CGTTTTCTGTATTTGCACCAACACCCAGTGCTATGCATGAGGCAAGAGACTTCATTACTGAAATCTGCAAGGATG ATCAGGAGCAGCAATTAGAATTTGGAGCAGTATATACCGCCACAATAACTGAAATCAGAGATACTGGTGTAATGG CTGCCCTAGGATTAGAAGTTGGCCAAGAAATTCAGGTGAAATACTTTGGACGTGACCCAGCCGATGGAAGAATGA GGCTTTCTCGAAAAGTGCTTCAGTCGCCAGCTACAACCGTGGTCAGAACTTTGAATGACAGAAGTAGTATTGTAA TTGTCTAGGGTGATGTGCTGTAGAGCAACATTTTAGTAGTATCTTCCATTGTGTAGATTTCTATATAATATAAAT ACATTTTAATTATTTGTACTAAAATGCTCATTTACATGTGCCATTTTTTTAATTCGAGTAACCCATATTTGTTTA TAGTTTTGTTTTTACAATTCTGAAATATATGGAAAAACTTAGATATGTCATATGTTATTATAAACAGATCTC TTCCTACATCTTATTTTTCTTCTTTGTATACAGTAGTGACAGTTTACCTTCAGTCATCCTACAGGTCACCTCTGT GCCCAACAACTTTACTTGCCTACAACGGTTCACAAACTGGAACAGGCCATATTCAAAGCCAGTGCCTATTTCTTC AGAACTGTTAACAGATATAGTGAGTTGAGGGAGCTAATCTGATACACTTTTGATAATATAATGCCTTTCAAATTA GTTACCAAATCATAAACAGAGTGGAATAAATATAAATGAGATTCTAACTAGGATGAATGTGGTAGTAATGATGTA TCCTGGCTAACACGGTGAAACCCCGTCTCTACTAAAAGTGCAAAAATTAGCCGGGCGTGGTGGCGCATGCCTGTA ATCCTAGCTACTCAGGAGGCTGAGGCAGAAGAATCACTTCAACCCAGGAGGTGGAGGTTGTAGTGAGCCGAGATT GCGCCATTGCACTCCAGCTCAGGCAACAAGAGCAAAACTCCGTCTC

PCT/US2003/028547

810/6881 FIGURE 754

MAACRYCCSCLRLRPLSDGPFLLPRRDRALTQLQVRALWSSAGSRAVAVDLGNRKLEISSGKLARFADGSAVVQS
GDTAVMVTAVSKTKPSFSQFMFLVVDYRQKAAAAGRIFTNYLRREIGTSDKEILTSRIIDRSIRFLFPAGFYVQ
QVLCNLLAVDGVNEPDVLAINGASVALSLSDIPWNGPVGAVRIGIIDGEYVVNPTRKEMSSSTLNLVVAGAPKSQ
IVMLEASAENTLQQDFCHAIKVGVKYTQQIIQGIQQLVKETGVTKRTPQKLFTFSPEIVKYTHKLAMBRLYAVFT
DYEHDKVSRDEAVNKIRLDTEEQLKEKFPEADPYEIIESFRVVAKEVFRSIVLNEYKRCDGROLTSLRNVSCEVD
MFKTLHGSALFQRGQTQVLCTVTFDSLESGIKSDQVITAINGIKDKNFMLHYEFPPYATNEIGKVTGLNRRELGH
GALAEKALFYPTIRVTSFVLESNGSSSNASACGGSLALMDSGVPISSAVAGVAIGLVTKTDPEKGEIE
DYRLLTDILGIEDYNGDMDFKIAGTNKGITALQADIKLPGIPIKIVMEAIQQASVAKKEILQIMNKTISKPRASR
KEMGPVVETVQVPLSKRAKFVGPGGYNLKKLQAETGVTISQVDEETFSVFAFTFSAMHEARDFITEICKDDQEQQ
LEFGAVYTATITEIRDTGVMVKLYPNMTAVLLHNTQLDQRKIKHPTALGLEVGQEIQVKYFGRDPADGRMRLSKK
VLQSPATTVVNTLMDRSSIVMGEPISQSSSNSQ

PCT/HS2003/028547

811/6881 FIGURE 755

GACAAGATGCCACACCGGCGGTACCAGCAAGTGCTCCTCCGGCCAGCCCAGTCCCGGCGGCGGTCCCA GCCTCTGCCCAGCCTCAGTTCCAGCGCCAACGCCAGCACCGGCTGCGGCTCCCGCTTCCCGCTGCGGCTCCAGCC GCGCAGACCCCAGCGCCCGCTCTGCCTGGTCCTGCTCTTCCAGGGCCCTTCCCCGGCGGCCGCCGTGGTCAGGCTG CTGTTGGGAACTGTCGACAAACACTCAGTGGAGGTCACCAATTGCTTTTCAGTGCCGCACAATGAGTCAGAAGAT CTGGGCTGGTACGCTACAGGCCATGACATCACAGAGCACTCTGTGCTGATCCATGAGTACTACAGCCGAGAGGCC CCCAACCCCATCCACCTCACTGTGGACACAGTCTCCAGAACGCCGCATGAGCATCAAAGCCTATGTCAGCACT TTAATGGGTGTCCCTGGGAGGACCATGGGAGTGATGTTCACACCTCTGACAGTGAAATACGCATACTATGACACT GAACGCATCGGAGTTGAGCTGATCATGAAGACCTGCTTTAGCCCCAACAGAGTGATTGGACTCTTAAGTGACTTG CAGCAAGTAGGAGGGGCATCAGCTCGCATCCAGGATGCCCTGAGTACAGTGTTGCAATATGCAGAGATGTACTG TCTGGAAAGGTGTCAGCTGACAATACTGTGGGCCGCTTCCTGATGAGCCTGGTTAACCGAGTACCGAAAATAGTT CAGTCACAGATTGCCCTCAATGAAAAACTTGTAAACCTG<u>TGA</u>ATGGACCCCAAGCAGTACACTTGCTGGTCTAGG TATTAACCCCAGGACTCAGAAGTGAAGGAGAAATGGGTTTTTTTGTGGTCTTGAGTCACACTGAGATAGTCAGTTG TGTGTGACTCTAATAAACGGAGCCTACCTTTTGT

PCT/US2003/028547

812/6881 FIGURE 756

MATPAVPASAPPATPAPVPAAVPASAPASVPAPTPAPAAAPVPAAAPASSSDPAAASATTAAPGQTPASAQAPAQ
TPAPALPGPALPGPFPGGRVVRLHPVILASIVDSYERRNEGARAVIGTLLGTVDKHSVEVTNCFSVPHNESEDEV
AVDMBFAKNMYELHKKVSPNELILGWYATGHDITEHSVLIHEYYSREAPNPIHLTVDTSLQNGRMSIKAYVSTLM
GVPGRTMGVMFTPLTVKYAYYDTERIGVELIMKTCFSPNRVIGLLSDLQQVGGASARIQDALSTVLQYAEDVLSG
KVSADNTVGRFLMSLVNRVPKIVPDDFETMLNSNINDLLMVTYLANLTGSQIALNEKUVML

PCT/IIS2003/028547

813/6881 FIGURE 757

GTTGGAGACTCGATTGTTGATGACAGCGGAAGAATGATAACAAAATGCCGGAGCGAGATAGTGAGCCGTTCTCCA ACCCTTTGGCCCCTGATGGCCACGATGTGGATGATCCTCACTCCTTCCACCAATCAAAACTCACCAATGAAGACT TCAGGAAACTTCTCATGACCCCCAGGGCTGCACCTACCTCTGCACCACCTTCTAAGTCACGTCACCATGAGATGC AACAAGAATTGAGAGAGAGAGAGAGCTAGCAGAGAAGTACCGGGGTCGTGCCAAGGAACGGAGAGATGGAGTGA ACAAAGATTATGAAGAAACCGAGCTTATCAACACCACAGCTAACTACAGGGCTGTTGGCCCCACTACTAAGGCGG ACAAATCAGCTGCAGAGAAGAGAGAGACAGTTGATCCAGGAGTCCAAATTCTTGGGTGGTGACATGGAACACACCC ATTTGGTGAAAGGCTTGGATTTTGCTCTGCTTCAAAAGGTACGAGCTGAGATTGCCAGCAAAGAGAAAGAGGAAA GTCTGGGCCGCAATGTTTACCGAGTGCTTTTTAAGAACAAGCATATAAGCGGAATGAGTTGTTCCTGCCGGGCCG ${\tt CATGGCCTATGTGG} \underline{{\tt TAG}} {\tt GCCTGGATGATGAGTAAGCTGACACAGATATCCCCACCACTCTTATCCGCAGCAAGGT}$ TGACTGCCCCACCATGGAGGCCCAGACCATACTGACCACAAATGATATTGTCATTAGCAAGCTTACCCAGTTGCT TTCATACCTGAGGCAGGGAACCCGTAACAAGAAGCTTAAGAAGAAGGATAAAGGGAAGCTGGAAGAAGAAAACC TGCTGAGGCTGACAGGAGTATTTTCGAAGACATTGGGGATTATACACCCTCCACAATCAAGACACCTTGGGACAA GGAGCGGGAGAGATATCGGGAACGGGAGCGTGATCAGGAGACAGAGACCGTGACCGAGAGCGAGAGCGAGAACGA GATCAGGAGCGAGAACGAGATCGGGAACGAGAGAGAGAAGAGGAAAAGAAGAAGACACAGCTACTTTGAGAAGCCA AAAGTACATGATGAGTCCGTGGACGTTGACAAAGGACCTGGGTCGGCCAAGGAGTTGATCAAGTCCATCAATGAA AAGTTTGCTGGGTCTGCTGGCTGGGAAGGCACAGAATCGCTGAAAATTGCAGAAGACAAAAAGCAGCTGAGAGAT GAGGTGGATTATAGCAAAATGGACCAGGGTAACAAGAAGAGAACCTTAAGCCGTTGGGACTTTGATACCCAGGAA GACTACAGCGAGTATATGAACAACAAGAGGCTTTGCCCAAGGCTGCATTCCAGTATGGTATCAAAATGTCTGAA GGGCGGAAAACCAGACGCTTCAAGGAAACCAATGACAAAGCAGCGCTCGATTGCCAGTGGAAGATTAGTGCAATC ATTGAGAAGAGGAAGAAGATGGAAGCTGATGGGGTTGAAGTCAAAAGACCAAAATACTAA

PCT/US2003/028547

FIGURE 758

MPERDSEPFSNPLAPDGHDVDDPHSFHQSKLTNEDFRKLLMTPRAAPTSAPPSKSRHHEMPREYNEDEDPAARRR KKKSYYAKLRQQEI ERERELAEKYRGRAKERROGUNKDYEETELINTTANYRAVGPTTKADKSAAEKRROGLI OES KFLGGDMEHTHLVKGLDFALLQKVRAEIASKEKEEEELMEKPQKETKKDEDPENKI EFKTRLGRNVYRVLFKNKH ISGMSCSCRAAWPHW

PCT/IIS2003/028547

815/6881 FIGURE 759

ATGCCCGAGAATGTGGCACCCGGAGCGGGGCGACTGCCGGGGCTGCCGGCGGCCGCGGGAAAGGCGCCTATCAG GACCGCGACAAGCCAGCCCAGATCCGCTTCAGCAACATTTCCGCCGCCAAAGCGGTTGCTGATGCTATTAGAACA AGCCTTGGACCAAAAGGATGGATAAAATGATTCAAGATGGAAAAGGTGATGTAACCATTACAAATGATGGTGCT ACCATTCTGAAACAAATGCAAGTATTACATCCAGCAGCCAGAATGCTGGTGGAGCTGTCTAAGGCTCAAGATATA GAAGCAGGAGATGGCACCACATCAGTAGTCATCATTGCTGGCTCCCTCTTAGATTCTTGTACCAAGCTTCTTCAG ATGTCTCGACCTGTGGAACTGAGTGACAGAGAAACTTTGTTAAATAGTGCAACCACTTCACTGAACTCAAAGGTG GTTTCTCAGTATTCAAGTCTGCTTTCTCCAATGAGTGTAAATGCAGTGATGAAAGTGATTGACCCAGCCACAGCC ACCAGTGTAGATCTTAGAGATATTAAAATAGTTAAGAAGCTTGGTGGGACAATTGATGACTGTGAGTTGGTGGAA GGGCTGGTTCTCACCCAAAAAGTGTCAAATTCTGGCATAACCAGAGTTGAAAAAGGCCAAGATTGGGCTTATTCAG TTTTGCTTATCTGCTCCCAAAACAGACATGGATAATCAAATAGTGGTTTCTGACTATGCCCAGATGGACCGAGTG CAGAAATCTATTCTAAGAGATGCTCTTAGTGATCTTGCATTACACTTTCTGAATAAAATGAAGATCATGGTGATT AAGGATATTGAAAGAGAAGACATTGAATTCATTTGTAAGACAATTGGAACCAAGCCAGTTGCTCATATTGACCAA TTTACTGCTGACATGCTGGGTTCTGCTGAGTTAGCTGAGGAGGTCAATTTAAATGGTTCTGGCAAACTGCTCAAG ATTACAGGCTGTGCCAGCCCTGGAAAAACAGTTACAATTGTTGTTCGTGGTTCTAACAAACTGGTGATTGAAGAA GCTGAGCGCTCCATTCATGATGCCCTATGTGTTATTCGTTGTTTAGTGAAGAAGAGGGCTCTTATTGCAGGAGGT GGTGCTCCAGAAATAGAGTTGGCCCTAGCATTAACTGAATATTCACGAACACTGAGTGGTATGGAATCCTACTGC GTTCGTGCTTTTGCAGATGCTATGGAGGTCATTCCATCTACACTAGCTGAAAATGCCGGCCTGAATCCCATTTCT ACAGTAACAGAACTAAGAAACCGGCATGCCCAGGGAGAAAAAACTGCAGGCATTAATGTCCGAAAGGGTGGTATT GTTCGGAGCATTCTGAAAATAGATGATGTGGTAAACACTCGATAATCTGGATAACTGACTAGCACCATTATGATC ACCAGTATTGTGGCTGGAATGGAAGAAGATCACCTTGGTGTTCCTTGTTTGGAAGATTATTTCCTCTGAATTTCT GGGCTTGGTCTTCCAGTTGGCATTTGCCTGAAGTTGTATTGAAACAATTTAATGAAAATATTTAATTTTGGTTT CAAAAGGCAGATTTATCTTCTCCCAACATTCTGTTATTTCTGATACTTTTGAAAAAACTAATAAAAACTAATAAAAA GAAGCGTA

PCT/IIS2003/028547

816/6881 FIGURE 760

MPENVAPRSGATAGAAGGRGKGAYQDRDKPAQIRFSNISAAKAVADAIRTSLGPKGMDKMIQDGKGDVTITNDGA
TILKQMQVLHPAARMLVELSKAQDIEAGDGTTSVVIIAGSLLDSCTKLLQKGIHPTIISESFQKALEKGIEILTD
MSRPVELSDRETLLINSATTSLNSKVVSQYSSLLSPMSVNAVMKVIDPATATSVDLRDIKIVKKLGGTIDDCELVE
GLVLTQKVSNAGITRVEKAKIGLIQFCLSAPKTDMDNQIVVSDYAQMDRVLREERAYILMLVKQIKKTGCNVLLI
QKSILRDALSDLALHFLNKMKIMVIKDIEREDIEFICKTIGTKPVAHIDQFTADMLGSAELAEEVNLNGSGKLLK
ITGCASPGKTVTIVVRGSNKLVIEEAERSIHDALCVIRCLVKKRALIAGGGAPEIELALALTEYSRTLSGMESYC
VRAFADAMEVIPSTLAENAGLNPISTVTELRNRHAQGEKTAGINVRKGGISNILEELVVQPLLVSVSALTLATET
VRSILKIDDVVNTR

PCT/US2003/028547

817/6881 FIGURE 761A

AGGAAGGAAGGAGCAGTTGGTTCAATCTCTGGTAATCT**ATG**CCAGCAATTATGACAATGTTAGCAGACCATGCAG CTCGTCAGCTGCTTGATTTCAGCCAAAAACTGGATATCAACTTATTAGATAATGTGGTGAATTGCTTATACCATG GAGAAGGAGCCCAGCAAAGAATGGCTCAAGAAGTACTGACACATTTAAAGGAGCATCCTGATGCTTGGACAAGAG TCGACACAATTTTGGAATTTTCTCAGAATATGAATACGAAATACTATGGACTACAAATTTTTGGAAAATGTGATAA AAACAAGGTGGAAGATTCTTCCAAGGAACCAGTGCGAAGGAATAAAAAAATACGTTGTTGGCCTCATTATCAAGA CGTCATCTGACCCAACTTGTGTAGAGAAAGAAAAGGTGTATATCGGAAAATTAAATATGATCCTTGTTCAGATAC TGAAACAAGAATGGCCCAAACATTGGCCAACTTTTATCAGTGATATTGTTGGAGCAAGTAGGACCAGCGAAAGTC TCTGTCAAAATAATATGGTGATTCTTAAACTCTTGAGTGAAGAAGTATTTGATTTCTCTAGTGGACAGATAACCC AAGTCAAATCTAAGCATTTAAAAGACAGCATGTGCAATGAATTCTCACAGATATTTCAACTGTGTCAGTTTTGTAA TGGAAAATTCTCAAAATGCTCCACTTGTACATGCAACCTTGGAAACATTGCTCAGATTTCTGAACTGGATTCCCC TGGGATATATTTTTGAGACCAAATTAATCAGCACATTGATTTATAAGTTCCTGAATGTTCCAATGTTTCGAAATG TCTCTCTGAAGTGCCTCACTGAGATTGCTGGTGTGAGTGTAAGCCAATATGAAGAACAATTTGTAACACTATTTA CTCTGACAATGATGCAACTAAAGCAGATGCTTCCTTTAAATACCAATATTCGACTTGCGTACTCAAATGGAAAAG ATGATGAACAGAACTTCATTCAAAATCTCAGTTTGTTTCTCTGCACCTTTCTTAAGGAACATGATCAACTTATAG AAAAAAGATTAAATCTCAGGGAAACTCTTATGGAGGCCCTTCATTATATGTTGTTGGTATCTGAAGTAGAAGAAAA CTGAAATCTTTAAAATTTGTCTTGAATACTGGAATCATTTGGCTGCTGAACTCTATAGAGAGTCCATTCTCTA CATCTGCCTCTCCGTTGCTTTCTGGAAGTCAACATTTTGATGTTCCTCCCAGGAGACAGCTATATTTGCCCATGT TATTCAAGGTCCGTTTATTAATGGTTAGTCGAATGGCTAAACCAGAGGAAGTATTGGTTGTAGAGAATGATCAAG GAGAAGTTGTGAGAGAATTCATGAAGGATACAGATTCCATAAATTTGTATAAGAATATGAGGGAAACATTGGTTT ATCTTACTCATCTGGATTATGTAGATACAGAAAGAATAATGACAGAGAAGCTTCACAATCAAGTGAATGGTACAG AGTGGTCATGGAAAAA'TTTGAATACATTGTGTTGGGCAATAGGCTCCATTAGTGGAGCAATGCATGAAGAGGACG AAAAACGATTTCTTGTTACTGTTATAAAGGATCTATTAGGATTATGTGAACAGAAAAGAGGCAAAGATAATAAAG CTATTATTGCATCAAATATCATGTACATAGTAGGTCAATACCCACGTTTTTTGAGAGCTCACTGGAAATTTCTGA AGACTGTAGTTAACAAGCTGTTCGAATTCATGCATGAGACCCATGATGGAGTCCAGGATATGGCTTGTGATACTT TCATTAAAATAGCCCAAAAATGCCGCAGGCATTTCGTTCAGGTTCAGGTTGGAGAAGTGATGCCATTTATTGATG AAATTTTGAACAACATTAACACTATTATTTGTGATCTTCAGCCTCAACAGGTTCATACGTTTTATGAAGCTGTGG GGTACATGATTGGTGCACAAACAGATCAAACAGTACAAGAGCACTTGATAGAAAAGTACATGTTACTCCCTAATC AAGTGTGGGATAGTATAATCCAGCAGGCAACCAAAAATGTGGATATACTGAAAGATCCTGAAACAGTCAAGCAGC TTGGTAGCATTTTGAAAACAAATGTGAGAGCCTGCAAAGCTGTTGGACACCCCTTTGTAATTCAGCTTGGAAGAA TTTATTTAGATATGCTTAATGTATACAAGTGCCTCAGTGAAAATATTTCTGCAGCTATCCAAGCTAATGGTGAAA TGGTTACAAAGCAACCATTGATTAGAAGTATGCGAACTGTAAAAAGGGAAACTTTAAAGTTAATATCTGGTTGGG TGAGCCGATCCAATGATCCACAGATGGTCGCTGAAAATTTTGTTCCCCCTCTGTTGGATGCAGTTCTCATTGATT ATCAGAGAAATGTCCCAGCTGCTAGAGAACCAGAAGTGCTTAGTACTATGGCCATAATTGTCAACAAGTTAGGGG TTGAAGAATATCCTGAACATAGAACGAACTTTTTCTTACTACTTCAGGCTGTCAATTCTCATTGTTTCCCAGCAT TCCTTGCTATTCCACCTACACAGTTTAAACTTGTTTTGGATTCCATCATTTGGGCTTTCAAACATACTATGAGGA ATGTCGCAGATACGGGCTTACAGATACTTTTTACACTCTTACAAAATGTTGCACAAGAAGAAGATGCTGCAGCTCAGA GTTTAACAATGCATGCATCAATTCTTGCATATATGTTTAATTTGGTTGAAGAAGGAAAAATAAGTACATCATTAA ATCCTGGAAATCCAGTTAACAACCAAATCTTTCTTCAGGAATATGTGGCTAATCTCCTTAAGTCGGCCTTCCCTC ACCTACAAGATGCTCAAGTAAAGCTCTTTGTGACAGGGCTTTTCAGCTTAAATCAAGATATTCCTGCTTTCAAGG AACATTTAAGAGATTTCCTAGTTCAAATAAAGGAATTTGCAGGTGAAGACACTTCTGATTTGTTTTTTGGAAGAGA GGAAAACAGCATGTGGGTATTTGTCGACCAAAATGATGCCAATTTGTAAATTAAAATGTCACCTAGTGGCCCTTT TTTATTTAGTTTGCATGAAGTTGAAAATTAAGGCATTTTTAAAAATTTTACTTCATGCCCATTTTTGTGGCTGGG CTGGGGGGAGGCAAATTCAATTTGAACATATACTTGTAATTCTAATGCAAAATTATACAATTTTTCCTGTAA

PCT/US2003/028547

818/6881 FIGURE 761B

PCT/IIS2003/028547

819/6881 FIGURE 762

MPAIMTMLADHAARQLLDFSQKLDINLLDNVVNCLYHGEGAQQRMAQEVLTHLKEHPDAWTRVDTILEFSQNMNT
KYYGLQILENVIKTRWKILPRNQCEGIKKYVVGLIIKTSSDPTCVEKEKVYIGKLNMILVQILKGEWEKHWPTFI
SDIVGASRISSELCONNWILKLLSEEVEPDFSSGQITOVEKEKUSMONEFSGIFOLGCFVWENSGNAPLVHAT
LETLLRFLNWIPLGYIFETKLISTLIYKFLNVPMFRNVSLKCLTEIAGVSVSQYEEQFVTLFTLIMMQLKQMLPL
NTNIRLAYSNGKDDEGNFIQNLSIFLCTFLKEHDQLIEKRLNLRETLMEALHYMLLVSEVEETEIFKICLEYWNH
LAAELYRESPFSTASGPLISGSQHFDVP PRRQLYLPMFLFKVRLLMWSPKAMKFEEVLVVENDGGEVVSRFFMKDTDS
INLYKNMRETLVYLTHLDYVDTERIMTEKLHNQVNGTEWSWKNLNTLCWAIGSISGAMHEEDEKRFLVTVIKDLL
GLCEQKRGKDNKAIIASNIMYIVGGYPRFLRAHWKFLKTVVNKLFFFMHETHDGVQDMACDTFIKIAQKCRRHFV
OVQVGEVWPFTDEILNNINTIICLOLGOQVHTFYEBACWFMTGAGTDTVQEHLIEKKMLLPNQVWBDSIIQQATKN
VDILKDPETVKQLGSILKTNVRACKAVGHFPVJCLGRIYLDMLNVYKCLSENISAAIQANGEMVTKOPLIRSMRT
VKRETIKLISGWVSRSNDPGMYABRFVPPLLDAVLIDYGRNVPAAREPEVLSTMAIIVNKLGGHITAEIPQIFDA
VFECTINNINNFSFEYPERTFFFLLLGAVNSHCPFAFLAIPPTOFKLVLDSIIMAPKHTMRNVADTLGQILFTL
LQNVAQEEAAAQSFYQTYFCDILGHIFSVVTDTSHTAGLTHHASILAYMFNLVEEGKISTSLNPGNPVNNOIFLQ
EYVANLLKSAFPHLQDAQVKLFVTGLFSLNQDIPAFKEHLRDFLVQIKEFAGEDTSDLFLEEREIALRQADEEKH

PCT/US2003/028547

820/6881 FIGURE 763

PCT/HS2003/028547

821/6881 FIGURE 764

CTGACTCTCTGAGGCTCATTTTGCAGTTGTTGAAATTGTCCCCGCAGTTTTCAATCATGTCTGAACCAATCAGAG TCCTTGTGACTGGAGCAGCTGGTCAAATTGCATATTCACTGCTGTACAGTATTGGAAATGGATCTGTCTTTGGTA AAGATCAGCCTATAATTCTTGTGCTGTTGGATATCACCCCCATGATGGGTGTCCTGGACGGTGTCCTAATGGAAC TGCAAGACTGTGCCCTTCCCCTCCTGAAAGATGTCATCGCAACAGATAAAGAAGACGTTGCCTTCAAAGACCTGG ATGTGGCCATTCTTGTGGGCTCCATGCCAAGAAGGGAAGGCATGGAGAGAAAAGATTTACTGAAAGCAAATGTGA AAATCTTCAAATCCCAGGGTGCAGCCTTAGATAAATACGCCAAGAAGTCAGTTAAGGTTATTGTTGTGGGTAATC CAGCCAATACCAACTGCCTGACTGCTTCCAAGTCAGCTCCATCCCCAAGGAGAACTTCAGTTGCTTGACTC GTTTGGATCACAACCGAGCTAAAGCTCAAATTGCTCTTAAACTTGGTGTGACTGCTAATGATGTAAAGAATGTCA TTATCTGGGGAAACCATTCCTCGACTCAGTATCCAGATGTCAACCATGCCAAGGTGAAATTGCAAGGAAAGGAAG TTGGTGTTTATGAAGCTCTGAAAGATGACAGCTGGCTCAAGGGAGAATTTGTCACGACTGTGCAGCAGCGTGGCG CTGCTGTCATCAAGGCTCGAAAACTATCCAGTGCCATGTCTGCTGCAAAAGCCATCTGTGACCACGTCAGGGACA TCTGGTTTGGAACCCCAGAGGGAGAGTTTGTGTCCATGGGTGTTATCTCTGATGGCAACTCCTATGGTGTTCCTG ATGATCTGCTCTACTCATTCCCTGTTGTAATCAAGAATAAGACCTGGAAGTTTGTTGAAGGTCTCCCTATTAATG $\texttt{CCTCTGCC} \underline{\textbf{TGA}} \\ \texttt{CTAGACAATGATGTTACTAAATGCTTCAAAGCTGAAGAATCTAAATGTCGTCTTTGACTCAAGT} \\$ ACCAAATAATAATAATAATGCTATACTTAAATTACTTGTGAAAAACAACACATTTTAAAGATTACGTGCTTCTTGGTA

PCT/US2003/028547

822/6881 FIGURE 765

MSEPIRVLVTGAAGQIAYSLLYSIGNGSVFGKDQPIILVLLDITPMMGVLDGVLMELQDCALPLLKDVIATDKED VAFKDLDVAILVGSMPRREGMERKOLLKANVKLFKSQGAALDKYAKKSVKVIVVGNPANTNCLTASKSAPSIPKE NFSCLTRLDHNRAKAQIALKLGVTANDVKNVIIWGNHSSTQYPDVNHAKVKLQGKEVGVYEALKDDSWLKGEFVT TVQQRGAAVIKARKLSSAMSAAKAICDHVRDIWFGTPEGEFVSMGVISDGNSYGVPDDLLYSFPVVIKNKTWKFV EGLPINDFSREKMDLTAKELTEEKESAFEFLSSA

PCT/HS2003/028547

823/6881 FIGURE 766

PCT/US2003/028547

824/6881 FIGURE 767

MSGALDVLQMKEEDVLKFLAAGTHLGGTNLDFQMEQYIYKRKSDGIYIINLKRTWEKLLLAARAIVAIENPADVS VISSRNTGQRAVLKFAAATGATPIAGRFTFGTFANGIQAAFREFRLLVVTDFRADHQPLMEASYVNLFTIALCHT DSPLHYVDIAIFCNNKGAHSVGLMWMHLAREVLRMRGTISCEHPWEVMPDLYFYRDPEEIEREEQAAAEKAVTKE EFGGEMTAPAFFTYTOFEVDWMSEGQVPSVFIFY

PCT/US2003/028547

FIGURE 768

PCT/US2003/028547

FIGURE 769

 ${\tt MSGALDVLQMKEEDVLKFLAAGTHLGSTNLDFQMEQYIYKRKSDGIYIINLKRTWEKLLASLLEPSLTRSRQPSGSHGFLWLLIPGLTTSLSQRHLKLTYLPLLCVTQILLCAMWTLPSHATARELTQWV}$

PCT/IIS2003/028547

827/6881 FIGURE 770

ATCAGAGAGGGCTACCTTGTGAAGAAGGGGAGCGTGTTCAATACGTGGAAACCCATGTGGGTTGTATTGTTAGAA GATGGAATTGAATTCTATAAGAAGAAAAGTGACAACAGCCCCAAAGGAATGATCCCGCTGAAAGGGAGCACTCTG ACTAGCCCTTGTCAAGACTTTGGCAAAAGGATGTTTGTGTTTAAGATCACTACGACCAAACAGCAGGACCACTTC TTCCAGGCAGCCTTCCTGGAGGAGAGAGATGCCTGGGTTCGGGATATCAAGAAGGCCATTAAATGCATTGAAGGA GGCCAGAAATTTGCCAGGAAATCTACCAGGAGGTCCATTCGACTGCCAGAAACCATTGACTTAGGTGCCTTATAT TTGTCCATGAAAGACACTGAAAAAGGAATAAAAGAACTGAATCTAGAGAAGGACAAGAAGATTTTTAATCACTGC TTCACAGGTAACTGCGTCATTGATTGGCTGGTATCCAACCAGTCTGTTAGGAATCGCCAGGAAGGCCTCATGATT GAAAACCCTTTCCTGGACAACCCTGATGCCTTCTACTACTTTCCAGACAGTGGGTTCTTCTGTGAAGAGAATTCC AGTGATGATGATGTGATCTGAAAGAAGAATTCAGAGGGGTCATTATCAAGCAGGGATGTTTACTGAAGCAGGGG CATAGAAGGAAAAACTGGAAAGTGAGGAAGTTCATCTTGAGAGAAGACCCTGCCTACCTGCACTACTATGACCCT GCTGGGGCAGAAGATCCCCTGGGAGCAATTCACTTGAGAGGCTGTGTGGTGACTTCAGTGGAGAGCAACTCAAAT GGCAGGAAGAGTGAGGAAGAACCTTTTTGAGATCATCACAGCAGATGAAGTGCACTATTTCTTGCAAGCAGCC ACCCCCAAGGAGCGCACAGAGTGGATCAGAGCCATCCAGATGGCCTCCCGAACTGGGAAGTAAAGAGACTCCTGC ATTCCTCCTCCCCCCCGAGGGAAGCCCATGGACAAGCTCAGTCCAGGACCTGTCCACTTCTGTGACAAATCAAC GGGAAACAGCCCAGGGGTGGGAAGTTTTCATTTGCAGGGGGGTCTGAATGTAACTCACCATGTGGTGTGCAAGGT TCCCCTGCATTGTATTGCTCACTGCAGCCCCTCTGCCCCTATCCATGACCCCCAAGCAGATATAACAAGCTGTGC AGCCTCAGTAGGCTGCTTGCCCTCTCCAGGCCTCAGGGCCTCTTCTGGAAAATGAAGAAATTCAACTAGTAGATT CCTGAGGTCCCCCTAGCTTAAAAAAAAAAAAAATCTGCCCCATGATTCTAACACTCGCAGTAGTGATAGTGTATC TAGTTGTTCTGCTGGTGTCCTTCCTTGGCTAAGTCTTGGCCTTCAGTTATCTTCAAATGTACCAGAACCTGAGCC AACGCCTCCCTGTGAAACTGTTGCTGATCTGTAGTACAGTACCAGGAAGAAACCTCTTTTGTTCTCTTTAGACAT AAAAACTTCCCGAGAGCAGTGGTGGTTTTGAGGGTTTTGACTTCTATTACTTTTGGCAGCCTGGAAAGTTGTGTC TTCTGGGAAAGAGACCTGGGGAGGCCAGGAGTAGCTGAGGGTCCTTTCTGTGCCCTTAAACCGCCCAGAGGAGCC CTATTCCACTCTGGTTTTAGGCTGATCTGAGAGGGTCTCCCTTTGTTCCTTTCTGGAGCATTTCTCTAACGTTTA GATGTGTTCCCCCCATGGGTGAGAGGCCTGGGCAACTGCCTGGTGAATGTGTCTTGCGGCAGCTGCAGCAAGTGG AGGGGCTGAACTACTGGCCAGCTCACTGGATGATGGGTTAATACAACAACTGCACTGTAAGGACTCAGAGCCACA CAGAACTTCTGAGAGGGGCTGTTAGCATTGCGCAGCATCTTCAGTTCTCCAGTAAATGATATTGCGTTCGTGCCT CAGCTTTAAGCACAAGTAGCAGCAGCTCCTGCTTGAGTTCTGAGGGCATCATGGCCCTATGATTAACCAGAGTGA TTGAGAAAGACAGCACCCATTGAAGCAGATATGTGTGTGAAAGTATATTTTTCAATTCCAGATTTTTAATTTTAA CTGTAACATTCCTGAAGCTGTTCCCACTCCCAGATGGTTTTATCAATAGCCTAGAGGTAAAGAACTGTCTTTTTC GGGAAGTCAACTTAATGTTTTGAAATAAATATATGACTCTGTTTAAT

PCT/US2003/028547

828/6881 FIGURE 771

XXXXXXXXAACCCCGGAGGAGGGTGAGGAGCAGAGCTGGCCATAATGGCAGGTGAAGAATTAATGAAGACTAT CCAGTAGAAATTCACGAGTATTTGTCAGCGTTTGAGAATTCCATTGGTGCTGTGGATGAGATGCTGAAGACCATG ATGTCTGTTTCTAGAAATGAGTTGTTGCAGAAGTTGGATCCACTTGAACAAGCAAAAGTGGATTTGGTTTCTGCA TACACATTAAATTCAATGTTTTGGGTTTATTTGGCAACCCAAGGAGTTAATCCTAAGGAACATCCAGTAAAACAG GAATTGGAAAGAATCAGAGTATATATGAACAGAGTCAAGGAAATAACAGACAAGAAAAAAGGCTGGCAAGCTGGAC AGAGGTGCAGCTTCAAGATTTGTAAAAAATGCCCTCTGGGAACCAAAATCGAAAAATGCATCAAAAGTTGCCAAT AAAGGAAAAAGTAAAAGTTAACTTTTTGGTTTTGATGTACACATATTCAAAAAGTACATTAATATGTAAATTCAC AGTAAATATGTAAAGCTAAATACTTTCCTCTCCAAAGATCATTATCTTTATTGATTAGCACTGAGGATTTTAACA TTGTGATATATATATATATATATATATATACCATCTCTTGATGAGACTCTTATTTCTTTATATAGGTCAGTCTTGCA AGTACCATTTATAAGCAGCTGTGAAATTTAAGTGAAATGTTCTTTGTAAACATTTGTACTATTTTAAATGAATA ATGACCTTATGAAGTATGCTATCTGTAGGCTGAAATTATAGGTACATCTGTTTTCACTATATGATATTAAGAAAG CGTGAAATGACTTAAATGTTCATTTTTTCTGTATAGATACTTTATCATGTTTTCATGATTTTAGGAATTACTGC TTTGTTGATATTCAAAGTGTGAAACTAAAACTTTATGGTTGTACTTTAATTCTTGGCATGTTGCCTCTATGTCCC ATGACTGTACTCTCAATAAAGGCTGAAAATGTTGT

PCT/US2003/028547

829/6881 FIGURE 772

PCT/US2003/028547

830/6881 FIGURE 773

AGCTGCTGCAGCTGCAGCCCGACCGCGAGCGTGCCAAGCGGCTTCAGCAGCTAGCGGAGCGGTGGCGGCGCCCC GCTCAGGAGACCACCAGATTCCCCTCTTCCCGCGGCCTCGCCATGGCGACCCACGGACAGACTTGCGCGCGTCCA ATGTGTATTCCTCCATCATATGCTGACCTTGGCAAAGCTGCCAGAGATATTTTCAACAAAGGATTTGGTTTTGGG TTGGTGAAACTGGATGTGAAAACAAAGTCTTGCAGTGGCGTGGAATTTTCAACGTCCGGTTCATCTAATACAGAC ACTGGTAAAGTTACTGGGACCCTGGAGACCAAATACAAGTGGTGTGAGTATGGTCTGACTTTCACAGAAAAGTGG AACACTGATAACACTCTGGGAACAGAAATCGCAATTGAAGACCAGATTTGTCAAGGTTTGAAACTGACATTTGAT ACTACCTTCTCACCAAACACAGGAAAGAAAAGTGGTAAAATCAAGTCTTACAAGAGGGAGTGTATAAACCTTGGT GGCTACCAGATGACCTTTGACAGTGCCAAATCAAAGCTGACAAGGAATAACTTTGCAGTGGGCTACAGGACTGGG GACTTCCAGCTACACACTAATGTCAATGATGGGACAGAATTTGGAGGATCAATTTATCAGAAAGTTTGTGAAGAT CTTGACACTTCAGTAAACCTTGCTTGGACATCAGGTACCAACTGCACTCGTTTTGGCATTGCAGCTAAATATCAG TTGGATCCCACTGCTTCCATTTCTGCAAAAGTCAACAACTCTAGCTTAATTGGAGTAGGCTATACTCAGACTCTG AGGCCTGGTGTAAGCTTACACTCTCTGCTCTGGTAGACGGGAAGAGCATTAATGCTGGAGGCCACAAGGTTGGG CTCGCCCTGGAGTTGGAGGCTTAATCCAGCTGAAAGAAACCTTTGGGAATGGATATCAGAAGATTTGGCCTTAAT ATATTTCCATTGTGACCAGCAGCAGGCTTTTTTCCCCCAAGAAGATGATCAAAACAAAGGATGATCTCAACAAGA GCTGTATTTTAAGTATTTAGACAGTTCTTTGTTAGCTGGTTTCTAGTTGAATTGGTTATCTAGTTACCAATGCTG CAGTCCTGCAGTCACCTATACATTATTTAAATGTATTTAACTGTTAAATGCGCTACCCACCAATAATGAAATAGA CCTTTATGAAAA

PCT/US2003/028547

831/6881 FIGURE 774

MATHGQTCARPMCIPPSYADLGKAARDIFNKGFGFGLVKLDVKTKSCSGVEFSTSGSSNTDTGKVTGTLETKYKW
CEYGLIFFEKWNTDNTLGTEIAIEDQICQGLKLIFFDTFFSPNTGKKSGKIKSYKRECINLGCDVDFDFAGPAIHG
SAVFGYEGWLAGYQMTFDSAKSKLTRNNFAVGYRTGDFQLHTNVNDGTEFGGSIYQKVCEDLDTSVLLAWTSGTN
CTRFGTAAKYQLDPTASISAKVNNSSLIGVGYTQTLRFGVKLTLSALVDGKSINAGGHKVGLALELEA

PCT/US2003/028547

832/6881 FIGURE 775

PCT/IIS2003/028547

833/6881 FIGURE 776

GAGAAAACGGCCGGGCGGCGGTGGCTGTAGGTTGTGCGGCTGCAGCGGCTCTTCCCTGGGCGGACGATGGACAGC CAGGGCAGGAAGGTGGTGGTGCGACAACGGCACCGGGTTTGTGAAGTGTGGATATGCAGGCTCTAACTTTCCA GAACACATCTTCCCAGCTTTGGTTGGAAGACCTATTATCAGATCAACCACCAAAGTGGGAAACATTGAAATCAAG GATCTTATGGTTGGTGATGAGGCAAGTGAATTACGATCAATGTTAGAAGTTAACTACCCTATGGAAAATGGCATA GTACGAAATTGGGATGACATGAAACACCTGTGGGACTACACATTTGGACCAGAGAAACTTAATATAGATACCAGA GAAACTTACCAGTTTTCCGGTGTATATGTAGCCATCCAGGCAGTTCTGACTTTGTACGCTCAAGGTTTATTGACT GGTGTAGTGGTAGACTCTGGAGATGGTGTGACTCACATTTGCCCAGTATATGAAGGCTTTTCTCTCCCTCATCTT ACCAGGAGACTGGATATTGCTGGGAGGGATATAACTAGATATCTTATCAAGCTACTTCTGTTGCGAGGATACGCC TTCAACCACTCTGCTGATTTTGAAACGGTTCGCATGATTAAAGAAAAACTGTGTTACGTGGGATATAATATTGAG CAAGAGCAGAAACTGGCCTTAGAAACCACAGTATTAGTTGAATCTTATACACTCCCAGATGGACGTATCATCAAA GTTGGGGGAGAGAGATTTGAAGCACCAGAAGCTTTATTTCAGCCTCACTTGATCAATGTTGAAGGAGTTGGTGTT GCTGAATTGCTTTTTAACACAATTCAGGCAGCTGACATTGATACCAGATCTGAATTCTACAAACACATTGTGCTT TCTGGAGGGTCTACTATGTATCCTGGCCTGCCATCACGGTTGGAACGAGAACTTAAACAGCTTTACTTAGAACGA GTATTCCTGGGTGCAGTTCTAGCGGATATCATGAAAGACAAAGACAACTTTTGGATGACCCGACAAGAGTAC CAAGAAAAGGGTGTCCGTGTGCTAGAGAAACTTGGTGTGACTGTTCGATAAACTCCAAAGCTTGTTCCCGTCATA CCCGTAATGCTTTCTTTTTCCTTTATTGCCAATCTTTGAACTCATTCAACTCCAGGACATGGAAGAGGCCTCTC TCTGCCCTTTGACTGGAAAGGTCAAGTTTTATTCTGGTGTCTTGGGGAAGCTTTGTTAAATTTTTGTTAATGTGG TCTAAGTAGGCATTTAGATCATTCCTATAGGCTTCCTATTTTCACTTTACTGCTCTAATGCTGCTAGTCGTAGTC TTTAGCACACTAGGTGGTATGCCTTTATTAGCATAAAACAAAAAAACTTTAACAGGAGCTTTTACATATTACTG GGATGGGGGTGGTTCGGGATGGGTGGGCAGCTGCTGAACCCTTTAGGGCATTTCCTCTGTAATGTGGCGCTTTC AACTGTACTGCTGCAGCTTTAAGTACCTTAAAGCTTCTCCTGTGAACTTCTTAGGGAAATGTTAGGTTCAGAACT AAAGTGTTTTGGGTGGGTTTTGTTGCGGGGGGGGGGGTAACAATGGGTGGTCTTCTGATTTTTATTTTTGAGGTT TTGTCAACTGGAGTACGTAGAGGAACTTTATTTACAGTACTTTGATTTGGCAGGTTTTCTTCTACTTGTGCTCTG TTTTAAAATCAACCATGTTAGCTGGGATTAGACTCCCTACAGTCCTTCAATGGAAAAGTAACATTTAAAAATCCT TTGGGTAATTCGAATTACAGATTTAAAAGAGCTTAAGATCTGGTGTTTTGTTAATGCTTCTGTTTATTCCAGAAG CATTAAGGTAACCCATTGCCAAGTATCATTCTTGCAAATTATTCTTTTATATAACTGACCAGTGCTTAATAAAAC AAGCAGGTACTTACAAATAATTACTGGCAGTAGGTTATAATTGGTGGTTTAAAAAATAACATTGGAATACAGGACT CTGTTTAAAATGTTGGCCAAAAAAATCAAGATTTAATTTTTTTATTTGTACTGAAAAACTAATCATAACTGTTAA TTCTCAGCCATCTTTGAAGCTTGAAAGAAGAGTCTTTGGTATTTTGTAAACGTTAGCAGACTTTCCTGCCAGTGT CAGAAAATCCTATTTATGAATCCTGTCGGTATTCCTTGGTATCTGAAAAAAATACCAAATAGTACCATACATGAG TTATTTCTAAGTTTGAAAAATAAAAAGAAATTGCATCACACTAATTACAAAATA

PCT/IIS2003/028547

834/6881 FIGURE 777

ATGGAGACACTTGTACAAGTGAATCTCTTTAGAAAGAGAGATTTACGCCAGGTACGTGGAACACAGTCTGAGCAG CACTGCACACCGTATCAAATCAGGTATCCTGTAGGAAGAGTACCTGGGGATGAAATCAACAAGTTCTTAGTGGAA TCTTCTCATTTCTTAGAATGTAATGTGGTTGGATGTTTGGAAATTGGTACGAAAGGGGAGAATCCTTTCCCCCAA TTAGGAAAATGGGGAGTGGGGGCAGAGGAAATGAAGCCCAGGTTCTTCATCGGATGGAAGTTCTCTGGTCAGTGT ACACAGTTTGCTCTTGAGAGGACTGATGGCCTGGGATATGTTATTGATGGTCCTGAAAGGGATCTGCGTTTGAAT CTGGCAGTACCCTCTGGTACCGCACAGACTTCAGGGGACCTTGAACAAGCTCCATTTTGTCTCCTGGAAGCTCAT TCCACCAGGTTTGAGTATGAGCTTCACCACTGGCTCCACCTTCTCCACCAACTACCAGTCCCTGGGCTCTGTCCA GGTGCCCAGCTAAGACGCTCGGCCAGTCAGCAGCATGACCAGTATCTCTGCAGGGGCTGGGGGCTCTGGTTCCCA GATCTCCATGTCCCCCTCCACCAGCTTCTGGGGTGGCATGGGGTCTGGGGCCCTGGCCGTGGGGATGGCCAGGGT TCTGGCAGGATGGAAGACATCCAGAACAAGAAGGAGACCATGCAAAGCCTGAATGACTGCCTGGCCTCCTACCTG GACAGAGTGAGGAGACTGGATACCAAGAATCGGAAGCTGGAGAGCAAAATCCGGGAGCACCTGGAGAAGAAGGGA CCCCAAGTCAGAGACTGGAGCCATTACTTCAAGACCGTGGAGGACCTGAGGGCTCAGATCTTCGCAAATACTGTG GACAATGCCCGCATCGTTCTGCAAGTCGACAATGCCCATCTTGCTGATGACTTTAGAGTCAAGTATGTGACAGAG CTGGCCATGCGCCAGTCTATGGAGAGCGACATCCATGGGCTCCGCAAGGTCATTGATGACACCAATGTCACTCGG CTGCAGCTGGAAACAGAGATCGAGGCTCTCAAGGAGGAGCTGCTCTTCATGAAGAAGAACGAAGAAGGAGGAAATA AAAGGCCTACAAGCCCAGATTGCCAGCTCTGGGTTGACTGTGGAGGTAGATATCCCCAAATCTCAGGACCTTGCC TCTCAGCAGATTGAGGAGAGTATCACAGTAGTCACCATGCAGTCCACCGAGATGGAGCAGTTCAACAGGATCCTG CTGCACCTGGAGTCAGAGCTGGCACAGACCTGGGCAGAGGGACAGTGCCAGGCCCAGGAGTACGAGGCCCTGCTG GTGGATGGCAAAGTGGGGTCTGAGACCAACAACACCAAAGTTCTGAGACAT<u>TAA</u>

PCT/HS2003/028547

835/6881 FIGURE 778

METLVQVNLFRKRDLRQVRGTQSEQHCTPYQIRYPVGRVPGDEINKFLVESSHFLECNVVGCLEIGTKGENPFPQ
LGKWGVGAEEMKPRFFIGWKFSGQCTQFALERTDGLGYVIGGPERDLRLNRSEKMFWKSGDWDTLPSLQAHSSSV
LAVPSGTAQTSGDLEGAPFCLLEAHSTRFEYELHHSLHLLHQLPVPGLCPGAQLRRSASQQHDQYLCRGWGLWFP
DLHVPLHGLUGWHGVWGPGGBGGGSGMEDIONKKETMGSLNDCLASYLDRVRRLDTKNRKLESKIREHLEKKG
PQVRDWSHYFKTVEDLRAQIFANTVDNARIVLQVDNAHLADDFRVKYVTELAMRQSMESDIHGLRKVIDDINVTR
LOLETEIEALKEELLFWKKNEEGEIKGLQAQIASSGLTVEVDIFKSQDLAKLMADIWAQVDELARKSQEELGKYW
SQQIEESITVVTMQSTEMEGPRRILLHLESELAQTWAEGGCQAQEYEALLSIRVKLEAEIATYHHLLEDTTTGRI
VDGKVGSSTNNIKVLRH

PCT/IIS2003/028547

FIGURE 779A

ATGTCGCGGGGCTGGTAGCAGGGCGCCGGCCGCCGAGCCGTCTCAAGTTTAAACTTACACGAATCGCTTTCTGGA TGGCTACATCGGAAGAGTCTTCGGCATCGGGCGACAGCAGGTCACAGTGGACGAGGTGTTGGCGGAAGGTGGATT TGCTATTGTATTTCTGGTGAGGACAAGCAATGGGATGAAATGTGCCTTGAAACGCATGTTTGTCAACAATGAGCA TGATCTCCAGGTGTGCAAGAGAGAAATCCAGATAATGAGGGATCTTTCAGGGCACAAGAATATTGTGGGTTACAT TGATTCTAGTATCAACAACGTGAGTAGCGGTGATGTATGGGAAGTGCTCATTCTGATGGACTTTTGTAGAGGTGG CCAGGTGGTAAACCTGATGAACCAGCGCCTGCAAACAGGCTTTACAGAGAATGAAGTGCTCCAGATATTTTGTGA TACCTGTGAAGCTGTTGCCCGCCTGCATCAGTGCAAAACTCCTATTATCCACCGGGACCTGAAGGTTGAAAACAT CCTCTTGCATGACCGAGGCCACTATGTCCTGTGTGACTTTGGAAGCGCCACCAACAAATTCCAGAATCCACAAAC TGAGGGAGTCAATGCAGTAGAAGATGAGATTAAGAAATACACAACGCTGTCCTATCGAGCACCAGAAATGGTCAA CTTCACTTTGCCATTTGGGGAAAGTCAGGTGGCAATTTGTGATGGAAACTTCACAATTCCTGATAATTCTCGATA TTCTCAAGACATGCACTGCCTAATTAGGTATATGTTGGAACCAGACCCTGACAAAAGGCCGGATATTTACCAGGT GTCCTACTTCTCATTTAAGCTACTCAAGAAAGAGTGCCCAATTCCAAATGTACAGAACTCTCCCATTCCTGCAAA GCTTCCTGAACCAGTGAAAGCCAGTGAGGCAGCTGCAAAAAAGACCCAGCCAAAGGCCAGACTGACAGATCCCAT TCCCACCACAGAGACTTCAATTGCACCCCGCCAGAGGCCTAAAGCTGGGCAGACTCAGCCGAACCCAGGAATCCT TCCCATCCAGCCAGCGCTGACACCCCGGAAGAGGGCCACTGTTCAGCCCCCACCTCAGGCTGCAGGATCCAGCAA GGCCAAGCAGCCACAGGCTCCTCCCACTCCACAGCAGACGCCTTCTACTCAGGCCCAGGGTCTGCCCGCTCAGGC CCAGGCCACACCCCAGCACCAGCAGCAACTCTTCCTCAAGCAGCAACAGCAGCAGCAACAGCCACCGCCAGCACA GCAGCAGCCGGCAGGCACGTTTTACCAGCAGCAGCAGCCCAGACTCAGCAGTTTCAGGCAGTACATCCAGCAAC ${\tt CCAGAAACCAGCAATTGCTCAGTTCCCTGTGGTGTCCCAAGGAGGCTCTCAACAGCAGCTAATGCAGAATTTCTA}$ ACCTCCTGCCGTCCAGGGGCAGAAAGTTGGATCTCTCACTCCACCCTCATCCCCCAAAACCCAACGTGCTGGGCA CAGGCGTATTCTCAGTGACGTAACCCACAGTGCAGTCTTTGGGGTCCCTGCCAGCAAATCAACCCAGCTGCTCCA GGCAGCTGCAGCTGAGGCCAGTCTCAATAAGTCCAAGTCTGCAACCACCACTCCATCAGGCTCTCCTCGGACCTC TCAACAAAACGTTTATAATCCTTCAGAAGGGTCTACGTGGAATCCCTTTGATGACGATAATTTCTCCAAACTCAC AGCTGAAGAACTGCTAAACAAGGACTTTGCCAAGCTTGGGGAAGGCAAACATCCCGAGAAGCTTGGAGGCTCAGC TGAGAGTTTGATCCCAGGCTTTCAATCAACCCAAGGTGATGCTTTTGCTACGACCTCATTTTCTGCTGGAACTGC TGAAAAAAGGAAGGGTGGGCAGACTGTGGACTCTGGCCTCCCGCTTCTAAGCGTGTCTGATCCTTTCATTCCTCT TCAAGTACCTGATGCACCAGAAAAACTAATTGAGGGACTCAAATCTCCTGACACTTCTCTTCTGCTCCCTGACCT ${\tt CTTGCCTATGACAGATCCTTTTGGTAGCACTTCTGATGCTGTAATTGGTAAAGTCATCATCTCTGTTTCTTCAGT}$ CCCAGAAGCCAAGGCTATTTAATCTCACTTGTATCACTCCAAATGAAGTGTTTTCCTTGCTTTTCGGGGGTACAA GTTTCACATTTAGTTAGAAGAACTTTAAAAAATTGGTTTCTAACTAGACTACCTTTACTGAACTTAATGAAATTT AGCAGATICTTCTTTTTTTTTTTTTTTGAGACAGAGTTTCACTCTTGTTGCCTAGGCTGGAGTGCAATGGCA AGATCTCAGCTCACTGCAACCTCCATCTCCCGGGTTCAAGCAATTCTCCTGCCTCAGCCTCCCGAGTAGCTGAGA TTACAGGCATGCACCACCATGCCTGGCTAATTTTTATATTTTTAGTAGAGATAGGGTTTCTCCATGTTGGTCAGG CTGGTCTCGAACTCCTGACCTCAGGTGATCCACCTGCCTTGGCCTCCCAAAGTGCTGGGATTACAGGGGTGAGCC

PCT/US2003/028547

837/6881 FIGURE 779B

PCT/US2003/028547

838/6881 FIGURE 780

GCCCAGGTGCGCTTCCCCTAGAGAGGGATTTTCCGGTCTCGTGGGCAGAGGAACAACCAGGAACTTGGGCTCAG TCTCCACCCCACAGTGGGGCGGATCCGTCCCGGATAAGACCCGCTGTCTGGCCCTGAGTAGGGTGTGACCTCCGC AGCCGCAGAGGAGGAGCGCAGCCCGGCCTCGAAGAACTTCTGCTTGGGTGGCTGAACTCTGATCTTGACCTAGAG TCATGGCCATGGCAACCAAAGGAGGTACTGTCAAAGCTGCTTCAGGATTCAATGCCATGGAAGATGCCCAGACCC TGAGGAAGGCCATGAAAGGGCTCGGCACCGATGAAGACGCCATTATTAGCGTCCTTGCCTACCGCAACACCGCCC AGCGCCAGGAGATCAGGACAGCCTACAAGAGCACCATCGGCAGGGACTTGATAGACGACCTGAAGTCAGAACTGA GTGGCAACTTCGAGCAGGTGATTGTGGGGATGATGACGCCCACGGTGCTGTATGACGTGCAAGAGCTGCGAAGGG CCATGAAGGGAGCCGGCACTGATGAGGGCTGCCTAATTGAGATCCTGGCCTCCCGGACCCCTGAGGAGATCCGGC GCATAAGCCAAACCTACCAGCAGCAATATGGACGGAGCCTTGAAGATGACATTCGCTCTGACACATCGTTCATGT AGGATGCCCAGGACCTGTATGAGGCTGGAGAGAAAATTGGGGGACAGATGAGGTGAAATTTCTAACTGTTCTCT GTTCCCGGAACCGAAATCACCTGTTGCATGTGTTTGATGAATACAAAAGGATATCACAGAAGGATATTGAACAGA GTATTAAATCTGAAACATCTGGTAGCTTTGAAGATGCTCTGCTGGCTATAGTAAAGTGCATGAGGAACAAATCTG CATATTTTGCTGAAAAGCTCTATAAATCGATGAAGGGCTTGGGCACCGATGATAACACCCTCATCAGAGTGATGG TTTCTCGAGCAGAAATTGACATGTTGGATATCCGGGCACACTTCAAGAGACTCTATGGAAAGTCTCTGTACTCGT TCATCAAGGGTGACACATCTGGAGACTACAGGAAAGTACTGCTTGTTCTCTGTGGAGAGATGATTAAAATAAAA ATCCCAGAAGGACAGGAGGATTCTCAACACTTTGAATTTTTTTAACTTCATTTTTCTACACTGCTATTATCATTA CTATAATTAGTCATTATGATGCTTTAAAGCTGTACTTGCATTTCAAAGCTTATAAGATATAAATGGAGATTTTAA AGTAGAAATAAATATGTATTCCATGTTTTTAAAAGATTACTTTCTACTTTGTGTTTCACAGACATTGAATATATT AAATTATTCCATATTTTCTTTTCAGTGAAAAATTTTTTAAATGGAAGACTGTTCTAAAATCACTTTTTTCCCTAA TCCAATTTTTAGAGTGGCTAGTAGTTTCTTCATTTGAAATTGTAAGCATCCGGTCAGTAAGAATGCCCATCCAGT TTTCTATATTTCATAGTCAAAGCCTTGAAAGCATCTACAAATCTCTTTTTTTAGGTTTTGTCCATAGCATCAGTT GATCCTTACTAAGTTTTTCATGGGAGACTTCCTTCATCACATCTTATGTTGAAATCACTTTCTGTAGTCAAAGTA TACCAAAACCAATTTATCTGAACTAAATTCTAAAGTATGGTTATACAAACCATATACATCTGGTTACCAAACATA CAAACTAGGTATTCTGGGAATGATGTAATGCTCTGAATTTAGTATGATATAAAGAAAACTTTTTTGTGCTAAAAA TACTTTTAAAATCAATTTTGTTGATTGTAGTAATTTCTATTTGCACTGTGCCTTTCAACTCCAGAAACATTCTG AAGATGTACTTGGATTTAATTAAAAAGTTCACTTTGT

PCT/IIS2003/028547

839/6881 FIGURE 781

MAMATKGGTVKAASGFNAMEDAQTLRKAMKGLGTDEDAIISVLAYRNTAQRQEIRTAYKSTIGRDLIDDLKSELS GNFEQVIVGMMTPTVLYDVQELRRAMKGAGTDEGCLIEILASRTPEEIRRISQTYQQQYGRSLEDDIRSDTSFMF QRVLVSLSAGGRDEGNYLDDALVRQDAQDLYEAGEKKWGTDEVKFLTVLCSRNRNHLLHVFDEYKRISQKDIEQS IKSETSGSFEDALLAIVKCWRNKSAYFAEKLYKSMKGLGTDDNTLIRVMVSRAEIDMLDIRAHFKRLYGKSLYSF IKGDTSGDYRKVLLVLCGGDD

PCT/US2003/028547

840/6881 FIGURE 782

TTTTGGGCCTACACCTCCCCTCCCCCGGCCAGCCGCCAAAGACTTGACCACGTAACGAGCCCAACTCCCCCGAAC GCCGCCCGCCGCTCGCCATGGATGCCGGTGTGACTGAAAGTGGACTAAATGTGACTCTCACCATTCGGCTTCTTA TGCACGGAAAGGAAGTAGGAAGCATCATTGGGAAGAAAGGGGAGTCGGTTAAGAGGATCCGCGAGGAGAGTGGCG CGCGGATCAACATCTCGGAGGGGAATTGTCCGGAGAGAATCATCACTCTGACCGGCCCCACCAATGCCATCTTTA AGGCTTTCGCTATGATCATCGACAAGCTGGAGGAAGATATCAACAGCTCCATGACCAACAGTACCGCGGCCAGCA GGCCCCGGTCACCCTGAGGCTGGTGGTGCCGGCCACCCAGTGCGGCTCCCTGATTGGGAAAGGCGGGTGTAAGA TCAAAGAGATCCGCGAGAGTACGGGGGCGCAGGTCCAGGTGGCGGGGATATGCTGCCCAACTCCACCGAGCGGG CCATCACCATCGCTGGCGTGCCGCAGTCTGTCACCGAGTGTGTCAAGCAGATTTGCCTGGTCATGCTGGAGACGC TCTCCCAGTCTCCGCAAGGGAGAGTCATGACCATTCCGTACCAGCCCATGCCGGCCAGCTCCCCAGTCATCTGCG CGGGCGGCCAAGATCGGTGCAGCGACGCTGCGGGCTACCCCCATGCCACCCATGACCTGGAGGGACCACCTCTAG ATGCCTACTCGATTCAAGGACAACACACCATTTCTCCGCTCGATCTGGCCAAGCTGAACCAGGTGGCAAGACAAC AGTCTCACTTTGCCATGATGCACGGCGGGACCGGATTCGCCGGAATTGACTCCAGCTCTCCAGAGGTGAAAGGCT ATTGGGCAAGTTTGGATGCATCTACTCAAACCACCCATGAACTCACCATTCCAAATAACTTAATTGGCTGCATAA TCGGGCGCCAAGGCGCCAACATTAATGAGATCCGCCAGATGTCCGGGGCCCAGATCAAAATTGCCAACCCAGTGG AAGGCTCCTCTGGTAGGCAGGTTACTATCACTGGCTCTGCTGCCAGTATTAGTCTGGCCCAGTATCTAATCAATG CCAGGCTTTCCTCTGAGAAGGGCATGGGGTGCAGCTAGAACAGTGTAGGTTCCCTCAATAACCCCTTTCTGCTGT TCTCCCATGATCCAACTGTGTAATTTCTGGTCAGTGATTCCAGGTTTTAAATAATTTGTAAGTGTTCAGTTTCTA CACAACTTTATCATCCGCTAAGAATTTAAAAATCACATTCTCTGTTCAGCTGTTAATGCTGGGATCCATATTTAG TTTTATAAGCTTTTCCCTGTTTTTAGTTTTGTTTTGGGTTTTTTGGCTCATGAATTTTATTTCTGTTTGTCGATA AGAAATGTAAGAGTGGAATGTTAATAAATTTCAGTTTAGTTCTGTAATGTCAAGAATTTAAGAATTAAAAAAACGG ATTGGTTAAAAAATGCTTCATATTTGAAAAAGCTGGGAATTGCTGTCTT

PCT/IIS2003/028547

841/6881 FIGURE 783

CCAAGCTGAACCAGGTGGCAAGACAACAGTCTCACTTTGCCATGATGCACGGCGGGACCGGATTCGCCGGAATTG
ACTCCAGCTCTCCAGAGGTGAAAGGCTATTGGGCAAGTTTGGATGCACCACCATCCAAACAACCACCCATGAACTACCACC
TTCCAAATAACTTAATTGGCTGCATAATCGGGCGCCAAGGCGCCAACATTAATGAGATCCGCCAGATGTCCGGGG
CCCAGAACAAATTGCCAACCCATGGAGGGCTCCTCGTAGGCAGGTTACTATCACTGGCCTGCTGCCAGTA
TTAGTCTGGCCCAGTATCTAATCAATGCCAGGCTTTCTCCTCTGAGAAGGGCATGGGGTGCAGCTAGAACAGTGTAG
GTTCCCTCAATAACCCCTTTCTGCTGTTCTCCCATGATCCAACTGTGTAATTTCTGGTCAGTGATTCCAGGTTTT
AAATAATTTGTAAGTGTTCACACAACTTTATCATCCGCTAAGAATTTAAGCTTTTCCCTGTTŤTTAGT
TTTGTTTTTGGCTCATCAATTTTA

PCT/US2003/028547

842/6881 FIGURE 784

PCT/US2003/028547

843/6881 FIGURE 785

GTACGCCGATTCCATATGGGCGCCGGCGCGGGAGCGCCGCGGGGCAGCGCGGGGTCGCCATGGCTGAGCTGCAGCA GCTCCGGGTGCAGGAGGCGATGGAGTCCATGGTGAAGAGTCTGGAAAGAGAACATCCGGAAGATGCAGGGTCT CATGTTCCGGTGCAGCGCCAGCTGTTGTGAGGACAGCCAGGCCTCCATGAAGCAGGTGCACCAGTGCATCGAGCG CTGCCATGTGCCTCTGGCTCAAGCCCAGGCTTTGGTCACCAGTGAGCTGGAGAAGTTCCAGGACCGCCTGGCCCG GTGCACCATGCATTGCAATGACAAAGCCAAAGATTCAATAGATGCTGGGAGTAAGGAGCTTCAGGTGAAGCAGCA GCTGGACAGTTGTGTGACCAAGTGTGTGGATGACCACATGCACCTCATCCCAACTATGACCAAGAAGATGAAGGA GGCTCTCTTATCAATTGGAAAA<u>TAA</u>AAGTATTTGCCAGTGGCCATCAGGCTGAGGGCAAGAATATATTTTTATA AGGAATTGGGAATTTTAGTCTTTTAAGCAAAGTTTACGAATGAAGAAATGAAGGATGGCCACAAGCGTAAGGCAT ATGTCACTTGCCTCTGGACACTGGTTATTTTATGTTTCAGTCCCTAAAAAATGAAATGGAAAAAAGTGGTGCTAA ATCGAGTCAGAGATATTACAGGAGAGTTTTAGAGCTTATTATTTCCTGTGGCCAGTGCTTGTCCTGGCAGTAAGG CTCTCCCTGTAACAAGCCAGAGCCCTCCAAGGTACCAGACTCTTCTTACTACACAGGTACTAACAGGCTGGCAG GTTAGAGTTGGTGGAGTCTGAGGAGAGATATTTTCTCTTTGTTGCCAACATCCTGTTTACCAAAAGTGTCACCCC TGTTTTCTTGATTTGGGGTAATTTATACAAGGGCATACAAGTTGATTTTAAGATGTGGAACTGGGAGGTAGACTA GTTTGGATAAGAACTTTGAAATGTTCCTTGTGGATCCCCATTTCTGGTCATCAAGATGTGGATGTACATTTCTTA AAATTATTACATGCTGCATCTTTCAGCCTGGAGACTGTGCAGAAACATGAGAGGTGATGACACACTAATTATGGG AAGCAGAATTACTGGCTGATGGCCCCTGAGGCTGTGTGTAACAAATGACAGGACAATCTTGCAGTAACACTTTC CCCTTGAAGAGAAGGGGGTTTTGATTGTGATATATACTAGTATCTAGGAATGAACAGTAAAAGAGGAGCAGTTGG CTACTTGATTACAACAGAGTAAATGAAGTACTGGATTTGGGAAAACCTGGTTTTATTAGAACATATGGAATGAAA GCCTACACCTAGCATTGCCTACTTAGCCCCCTGAATTAACAGAGCCCAATTGAGACAAACCCCTGGCAACAGGAA ATTCAAGGGAGAAAAAGTAAGCAACTTGGGCTAGGATGAGCTGACTCCCTTAGAGCAAAAGGAGAGACAGCCCCCA TTACCAAATACCATTTTTGCCTGGGGCTTGTGCAGCTGGCAGTGTTCCTGCCCCAGCATGGCACCTTATTGTTTT GATAGCAACTTCGTTGAATTTTCACCAACTTATTACTTGAAATTATAATATAGCCTGTCCGTTTGCTGTTTCCAG

PCT/US2003/028547

844/6881 FIGURE 786

MABLQQLRVQEAMESMVKSLERENIRKMQGLMFRCSASCCEDSQASMKQVHQCIERCHVPLAQAQALVTSELEKF QDRLARCTHHCNDKAKDSIDAGSKELQVKQQLDSCVTKCVDDHMHLIPTMTKKMKEALLSIGK

PCT/US2003/028547

845/6881 FIGURE 787A

CAGACCCGCCCGTGGCTGCAGCAGTGGTGTCCCATTTTAATGACTGCCCAGATTCCCACACTCAGTTCTGCTTCC ATGGAACCTGCAGGTTTTTGGTGCAGGAGGACAAGCCAGCATGTGTCTGCCATTCTGGGTACGTTGGTGCACGCT CCATCGTGGCCCTGGCTGTCCTTATCATCACATGTGTGCTGATACACTGCTGCCAGGTCCGAAAACACTGTGAGT GGTGCCGGGCCCTCATCTGCCGGCACGAGAAGCCCAGCGCCCTCCTGAAGGGAAGAACCGCTTGCTGCCACTCAG CAGGACAGCACTGCCAGAGATGCCTGGGTGTGCCACAGACCTTCCTACTTGGCCTGTAATCACCTGTGCAGCCTT TTGTGGGCCTTCAAAACTCTGTCAAGAACTCCGTCTGCTTGGGGTTATTCAGTGTGACCTAGAGAAAATCAGC GGACCACGATTTCAAGACTTGTTAAAAAAGAACTGCAAAGAGCGGACTCCTGTTCACCTAGGTGAGGTGTGTGC TAATGGGCCACCTCCCCACACAGAATTCTGCCCAACACAGGAGATTTCTATAGTTATTGTTTTCTGTCATTTGC CTACTGGGGAAGAAGTGAAGGAGGGGAAACTGTTTAATATCACATGAAGACCCTAGCTTTAAGAGAAGCTGTAT CCTCTAACCACGAGACCCTCAACCAGCCCAACATCTTCCATGGACACATGACATTGAAGACCATCCCAAGCTATC GCCACCCTTGGAGATGATGTCTTATTTATTAGATGGATAATGGTTTTATTTTTAATCTCTTAAGTCAATGTAAAA TCTGGCCTCTTCAAGACAGCTAAGGCTTGGGAAAAGTCTTCCAGGGTGCGGAGATGGAACCAGAGGCTGGGTTAC TGGTAGGAATAAAGGTAGGGGTTCAGAAATGGTGCCATTGAAGCCACAAAGCCGGTAAATGCCTCAATACGTTCT CACAGGATAAACCCAATACATATTGTACTGCTCAGTGATTAAATGGGTTCACTTCCTCGTGAGCCCTCGGTAAGT ATGTTTAGAAATAGAACATTAGCCACGAGCCATAGGCATTTCAGGCCAAATCCATGAAAGGGGGACCAGTCATTT GAGCACTAGGAAAACTATTCCAGTAATTTTTTTTCCTCATTTCCATTCAGGATGCCGGCTTTATTAACAAAAAC TCTAACAAGTCACCTCCACTATGTGGGTCTTCCTTTCCCCTCAAGAGAAGGAGCAATTGTTCCCCTGAGCATCTG GGTCCATCTGACCCATGGGGCCTGCCTGTGAGAAACAGTGGGTCCCTTCAAATACATAGTGGATAGCTCATCCCT AGGAATTTTCATTAAAATTTGGAAACAGAGTAATGAAGAAATAATATATAAACTCCTTATGTGAGGAAATGCTAC TAATATCTGAAAAGTGAAAGATTTCTATGTATTAACTCTTAAGTGCACCTAGCTTATTACATCGTGAAAGGTACA TTTAAAATATGTTAAATTGGCTTGAAATTTTCAGAGAATTTTGTCTTCCCCTAATTCTTCCTTGGTCTGGAA GAACAATTTCTATGAATTTCTCTTTATTTTTTTTTTTATAATTCAGACAATTCTATGACCCGTGTCTTCATTTTTG GCACTCTTATTTAACAATGCCACACCTGAAGCACTTGGATCTGTTCAGAGCTGACCCCCTAGCAACGTAGTTGAC ACAGCTCCAGGTTTTTAAATTACTAAAATAAGTTCAAGTTTACATCCCTTGGGCCAGATATGTGGGTTGAGGCTT AAGAGACTTTGCAGAGGCGTAGGAATGAGGCTGGACAGATGGCGGAAGCAGAGGTTCCCTGCGAAGACTTGAGAT TTAGTGTCTGTGAATGTTCTAGTTCCTAGGTCCAGCAAGTCACACCTGCCAGTGCCCTCATCCTTATGCCTGTAA GGTCTGAAAAAGGGCTGCATCAATGCAAGCCTGGTTGGACCATTGTCCATGCCTCAGGATAGAACAGCCTGGCT TATTTGGGGATTTTTCTTCTAGAAATCAAATGACTGATAAGCATTGGATCCCTCTGCCATTTAATGGCAATGGTA GTCTTTGGTTAGCTGCAAAAATACTCCATTTCAAGTTAAAAATGCATCTTCTAATCCATCTCTGCAAGCTCCCTG TGTTTCCTTGCCCTTTAGAAAATGAATTGTTCACTACAATTAGAGAATCATTTAACATCCTGACCTGGTAAGCTG CCACACACCTGGCAGTGGGGAGCATCGCTGTTTCCAATGGCTCAGGAGACAATGAAAAGCCCCCATTTAAAAAAA TAACAAACATTTTTTAAAAGGCCTCCAATACTCTTATGGAGCCTGGATTTTTCCCACTGCTCTACAGGCTGTGAC TTTTTTTAAGCATCCTGACAGGAAATGTTTTCTTCTACATGGAAAGATAGACAGCAGCCAACCCTGATCTGGAAG ACAGGGCCCCGGCTGGACACGTGGAACCAAGCCAGGGATGGGCTGGCCATTGTGTCCCCGCAGGAGAGATGGG AGGGAGGAGAATTTGTGCTTCTGGAGCTTCTCAAGGGATTGTGTTTTTGCAGGTACAGAAAACTGCCTGTTATCTT CAAGCCAGGTTTTCGAGGGCACATGGGTCACCAGTTGCTTTTTCAGTCAATTTGGCCGGGATGGACTAATGAGGC TCTAACACTGCTCAGGAGACCCCTGCCCTCTAGTTGGTTCTGGGCTTTGATCTCTTCCAACCTGCCCAGTCACAG AAGGAGGAATGACTCAAATGCCCAAAACCAAGAACACATTGCAGAAGTAAGACAAACATGTATATTTTAAATGT TCTAACATAAGACCTGTTCTCTCTAGCCATTGATTTACCAGGCTTTCTGAAAGATCTAGTGGTTCACACAGAGAG

PCT/US2003/028547

FIGURE 787B

PCT/US2003/028547

B47/6881 FIGURE 788A

ATTTCCTCCCAGCCTCGTGCGGGAAATGGCTTTAATTCTGACGGCAGGGCTGTGAGGGACTAGCGGGAACCCGAG CCTTTTGTCAAGGAACTGCGGCGTCGGTGGCCAGTCATCCCCGCCGCCGCGGAGCCGCTGCACTGCTGGGGGATC TCCCAGCAGCTCTGACGAGCGCGGGCTGCAGCATGGGCAGAAAACGCTGCCCTGCAGATTAGCTGGGTGGATTTT GCCGCGCAGGAGTTTCCACCTGGATGTTTGAGGTTGTGTAGATGTGGCCGGCACCCTTGAGAGTGGAGCTAGGGG GTGCAGACTGAGCAGTGAACAGAAGGAGCCTTGGACAGGGCTGGGCCAGCCTCCCGAGTTCCAGGAGCGAATTGC AAACCCACCGGGAAAATGAGCGAAGAGACGGTCCCCGAGGCTGCCTCGCCGCCGCCCCCCGCAGGGGCAGCCTTAC TTTGACCGCTTCTCAGAGGACGACCCCGAGTACATGCGCCTTCGCAACCGGGCGGCGGACCTGCGGCAGGACTTC AACCTGATGGAGCAGAAGAAGCGCGTCACCATGATCCTGCAGAGTCCCTCTTTCAGGGAGGAGCTGGAAGGCCTC ATCCAGGAGCAGATGAAGAAGGGGAACAACTCCTCCAACATCTGGGCCCTGCGACAGATCGCGGACTTCATGGCC AGCACCTCCCACGCAGTCTTCCCGACATCTTCCATGAATGTCTCCATGATGACGCCTATCAATGACCTCCACACA GCTGACTCCCTGAACCTGGCCAAAGGGGAGCGGCTCATGCGGTGCAAGATCAGCAGTGTCTACCGACTCCTGGAC CTCTATGGCTGGGCCCAGCTGAGTGACACCTATGTCACGTTGAGAGTCAGCAAGGAGCAGGACCACTTCCTGATC AGCCCTAAGGGAGTTTCTTGCAGTGAAGTCACAGCGTCCAGCCTGATCAAGGTGAACATTCTGGGAGAGGTGGTG GACGTGCGCTGCATCATCCACCTGCACACACCGGCCACAGCAGCGGTGTCGGCCATGAAGTGGGGCCTCCTGCCT GTCTCCCACAATGCCCTGCTGGTGGGGGACATGGCCTATTATGACTTCAATGGGGAAATGGAGCAGGAAGCCGAT CGGATCAACCTGCAGAAGTGCCTTGGACCCACCTGCAAGATCCTGGTGCTAAGAAACCATGGAGTGGTTGCTCTG GGTGACACGGTAGAGGGGGCATTTTACAAGATCTTCCACCTGCAGGCTGCATGTGAGATACAGGTGTCGGCTCTG TCCAGTGCCGGGGGAGTGGAGAACCTCATCCTCCTGGAGCAGGAGAAGCACCGGCCCCATGAGGTGGGCTCCGTG CAGTGGGCCGGGAGCACCTTTGGGCCTATGCAGAAGAGTCGGCTGGGGGAGCATGAGTTTGAGGCCCTCATGAGG ATGCTGGACAACCTGGGCTACAGAACAGGTTACACGTATCGCCACCCCTTTGTTCAAGAGAAAACCAAACACAAA AGTGAGGTGGAGATTCCAGCCACGGTCACAGCCTTCGTGTTTGAGGAGGACGGTGCCCCGGTGCCCCGCCCTGCGA GCCGATGAGGTCCAGAGGAGCATGGGCAGCCCCGACCCAAGACCACGTGGATGAAGGCTGACGAGGTGGAGAAA TCCAGCAGTGGCATGCCGATTCGCATCGAAAACCCAAACCAATTTGTGCCTCTCTATACTGACCCCCAGGAAGTA CTGGAGATGAGGAACAAGATTCGAGAACAAAACCGACAAGATGTGAAGTCAGCGGGGCCTCAGTCCCAGCTCCTG GCGAGCGTCATTGCCGAGAAGAGCCGAAGCCCGTCTACAGAGAGCCAGCTGATGTCCAAGGGAGACGAGGATACC AAAGACGATTCAGAGGAGACGGTGCCCAACCCCTTCAGCCAACTCACTGACCAGGAGTTGGAGGAGTACAAGAAA TCTGCACCTGCTTCTCCAGTGCAGAGCCCAGCGAAGGAGGCAGAGACAAAGAGCCCTTTAGTCTCCTTCCAAG GGGGTGGTGAACGGGAGGAGGAGGAGCAGACGGCAGAGGAAATCCTCAGCAAAGGCCTGAGCCAGATGACC ACCAGTGCTGACACGGATGTTGATACCTCTAAGGACAAAACCGAGTCGGTCACCAGCGGCCCCATGTCCCCAGAG TCCCATCTCTGTCCCTGCAAGCACAGGGCTAAGGAGGGATAGAGTAGGACCCTGGACCACATTCGGAAGGGGAAC TTAGAGATCACCCGACCAACCCTTCGTTTTACAGTTGCCCAAGAGAAATCAGGTGACTTGCCCAAGGTCACACAG CTAGTTAGCGGCAGAGCCTGCACTCGAATTCAGGTCTCCTGACTTCCAGTCCAGTGCTCCTTCTACTACACAACA CTGCCTAGTTGTGGGCTGCCTTTGTTTGGATGCTGTCCACCAATCTGAGCCTAGGGCAAGAAGGCCAGAAATGGG CCGTGAGCTCTCACAGGCTCAGACTAAATCAGAGGTCAAGGCTTCCCCTGAGTAAGGTCCATTTCTTCCCAGGAA TCCAATCTCCTGTGGATGGAGCTATCTCTACATTTAAAAATCTCTTCTCTTTTCCACTTTGGGTCCCTGCCCTGC TGCTCAAAGTGACTAGCCAAATTGACCCCTCCAACAGAAAGTAATCTTTGTTCCCAAGGGCTGATGGCTTAGCTT GGTAGGCATAGGGGCAAGCCATGTAAGCTGAGGATTGGGGATGGTTTCATCAACATAAGAGGCCAGGAACTTGAC CCCTTTGAATTGTGCATCTCAGGCACTTCAAAACTAAAACCAAATTTAGCATAGGAAAAAAGTTGTTTAATGCTCA GGGCAGAAATTTGGGGAAGTTGAAATCCTCTGTTGGCTTTGGGTTGTATAAGGAGGATCAAAACAACAGAGGAAA TGCTGACTTTCTAGCTTTGCATGACACCTGGAGCAATGCACTGTACCTGCCTCACTCCTGTCCAGTGGTCAGGTT

PCT/IIS2003/028547

848/6881 FIGURE 788B

TCCCCTGACCTTCCCTCACCCCCAGAAACACTTGCTTACAGACCGAAACTGGCATCTTACTCTTGGCACCTTGAC
TTGCACCCTCTGAGGTTCCAACTCAGTCATTCTTTGTCCAGCAGAGAGAAATCAGAAATGAGCCCTTCAGGATTA
ATCCTCTTGCACCAGCTCTCAGAGAAATGCTGGGTATCCCTTGTCCTTGTCCCTATCTTGTCCATCCTGGGCCTG
TAATGGCCACAGTTATTGTTTAAATGCCAACACTGTCTTCTCATGTTCTTCCGTGGGGCATTGATTAATGAGCA
TTTGTTTGGCTCCTAAAAATTAGACAAATCCATTCTCTTG

PCT/HS2003/028547

849/6881 FIGURE 789

GCTTCGGCCGGACGCTGGCCCCGCTCCTGGCCTCGCTGCTGCCCCGGCTCCGTGCTTGTCCTTAGCGCCCCGCA ACGACGAGGCACTGCGCCAGCTGGAGGCCGAGCTGGGCGCCGAGCGGTCTGGCCTGCGCGTGGTGCGGGTGCCCG CCGACCTGGGCGCCGAGGCCGGCTTGCAGCAGCTGCTCGGCGCCCTGCGCGAGCTCCCCCGGCCCAAGGGGCTGC AGCGACTGCTTATCAACAACGCGGGCTCTCTTGGGGATGTGTCCAAAGGCTTCGTGGACCTGAGTGACTCCA CTCAAGTGAACAACTACTGGGCACTGAACTTGACCTCCATGCTCTGCCTGACTTCCAGCGTCCTGAAGGCCTTCC CGGACAGTCCTGGCCTCAACAGAACCGTGGTTAACATCTCGTCCCTCTGTGCCCTGCAACCTTTCAAAGGCTGGG CGCTGTACTGTGCAGGAAAGGCTGCTCGTGATATGCTGTTCCAGGTCCTGGCGCTGGAGGAACCTAATGTGAGGG TGCTGAACTATGCCCCAGGTCCTCTGGACACAGACATGCAGCAGTTGGCCCGGGAGACCTCCGTGGACCCAGACA TGCGAAAAGGGCTGCAGGAGCTGAAGGCAAAGGGGAAGCTGGTGGATTGCAAGGTGTCAGCCCAGAAACTGCTGA GCTTACTGGAAAAGGACGAGTTCAAGTCTGGAGCCCACGTGGACTTCTATGACAAATAAGCCCATGTTTTTGGCT TCCTGAACCTTTTTGCCCCCACTTTTAGACATACCCCAGAGCCCTGTGGCTCCCCACACCCTGCCATAGGGGCAG ATTGGTGTCTCTATCCCCAGGAATAGAACTTAAGGGGTGGGAAGAACAGGAAAAGAAGCTGGAACACAGAAGAGA GGAGGTTGTGTCTCTTGCTCATAGCAAGCCTGTGGGTAGAGGAAAGAGTGATCTGGTGTCGAATAGGAGGACCCA TGTAGATTCGCAGATGGCCTGGATGGGAAGGGCAGACGGTACATGTCCCAGCCCACATAGATGCCCCTTGCT CCCCAGGCTGGGAGAAGGGGCTCCTGGGTGTCTGTATACACGCCAAAGGCAGATACAAATAAAATACAGATTGTC СТТТАААААААААААААААААА

PCT/US2003/028547

850/6881 FIGURE 790

MEGGLGRAVCLLTGASRGFGRTLAPLLASLLSPGSVLVLSARNDEALRQLEAELGAERSGLRVVRVPADLGAEAG LQQLLGALRELFRRKGLQRLLLINNAGSLGDVSKGFVDLSDSTQVNNYWALNLTSMLCLTSSVLKAFPDSPGLNR TVVNI SSLCALQPFKGWALYCAGKAARDMLFQVLALEEPNVRVLNYAPGPLDTDMQQLARETSVDPDMRKGLQEL KAKGKLVDCKVSAQKLLSLLEKDEFKSGAVDFYDK

PCT/IIS2003/028547

851/6881 FIGURE 791

PCT/HS2003/028547

852/6881 FIGURE **792**

GTTCCAAGGTTTGCGGCCCGGTCTCGGAGAAGAGGGGAGAGTGGAGGGCCGCTGAATAAGCTTCCAAAATGATGC CCACACCAGTTATCCTATTGAAAGAGGGGACTGATAGCTCCCAAGGCATCCCCCAGCTTGTGAGTAACATCAGTG CCTGCCAGGTGATTGCTGAGGCTGTAAGAACTACCCTGGGTCCCCGTGGCATGGACAAGCTTATTGTAGATGGCA GAGGCAAAGCAACAATTTCTAATGATGGGGCCACAATTCTGAAACTTCTTGATGTTGTCCATCCTGCAGCAAAGA AGTTTCTGAAGCAGGTGAAACCCTATGTGGAGGAAGGTTTACACCCCCAGATCATCATTCGAGCTTTCCGCACAG CCACCAGCTGGCAGTTAACAAGATCAAAGAGATTGCTGTGACCGTGAAGAAGGCAGATAAAGTGGAGCAGAGGGA TGGTGGTGGATGCAGTGATGCTCGATGATTTGCTGCAGCTTAAAATGATTGGAATCAAGAAGGTACAGGGTG GAGCCCTCGAGGATTCTCAGCTGGTAGCTGGTGTTGCATTCAAGAAGACTTTCTCTTACGCTGGGTTTGAAATGC AACCCAAAAAGTACCACAATCCCAAGATTGCCCTTTTGAATGTCGAGCTCGAGTTGAAAGCTGAGAAAGACAATG CTGAGATAAGAGTCCACACAGTTGAGGATTATCAGGCAATTGTTGATGCTGAGTGGAACATTCTCTATGACAAGT TAGAGAAGATCCATCATTCTGGAGCCAAAGTTGTCTTGTCCAAACTCCCCATTGGGGATGTGGCCACCCAGTACT TTGCTGACAGGGACATGTTCTGTGCTGGCCGAGTACCTGAGGAGGATCTGAAGAGGACAATGATGGCCTGTGGAG GCTCAATCCAGACCAGTGTGAATGCTCTGTCAGCAGATGTGCTGGGTCGATGCCAGGTGTTTGAAGAGACCCAGA TTGGAGGCGAGAGGTACAATTTTTTTACTGGCTGCCCCAAGGCCAAGACATGCACCTTCATTCTCCGTGGCGGCG CCGAGCAGTTTATGGAGGAGCAGAGCGGTCCCTGCATGATGCCATCATGATCGTCAGGAGGGCCATCAAGAATG ATTCAGTGGTGGCTGGTGGCGGGGCCATTGAGATGGAACTCTCCAAGTACCTGCGGGATTACTCAAGGACTATTC CAGGAAAACAGCAGCTGTTGATTGGGGCTTATGCCAAGGCCTTGGAGATTATCCCACGCCAGCTGTGTGACAATG CTGGCTTTGATGCCACAAACATTCTCAACAAGCTGCGGGCTCGGCATGCCCAGGGGGGTACATGGTATGGAGTAG ACATCAACAACGAGGACATTGCTGACAACTTTGAAGCTTTCGTGTGGGAGCCAGCTATGGTGCGGATCAATGCGC TGACAGCAGCCTCTGAGGCTGCGTGCCTGATCGTGTCTGTAGATGAAACCATCAAGAACCCCCGCTCGACTGTGG

PCT/IIS2003/028547

853/6881 FIGURE 793

MMPTPVILLKEGTDSSQGIPQLVSNISACQVIAEAVRTTLGPRGMDKLIVDGRGKATISNDGATILKLLDVVHPA
AKTLVDIAKSQDAEVGDGTTSVTLLAAEFLKQVKPYVEEGLHPQIIIRAFRTATQLAVNKIKEIAVTVKKADKVE
QRKLLEKCAMTALSSKLISQQKAFFAKMVVDAVMLDDLLQLKMIGIKKVQGGALEDSQLVAGVAFKKTFSYAGF
EMQPKKYNHPKIALLNVELELKAEKDNAEIRVHTVEDYQAIVDAEMNILYDKLEKIHHSGAKVUSKLPIGDVAT
QYFADRDMFCAGRVPEEDLKRTMMACGGSIQTSVNALSADVLGRCQVFEETQIGGERYNFFTGCPKAKTCTFILR
GGAEQPMEETERSLHDAINIVRRAIKNDSVVAGGGAIEMELSKYLRDYSRTIPCKQQLLIGAYAKALEIIPRQLC
DNAGFDATNILNKLRARHAQGGTWYGVDINNEDIADNFEAFVWEPAMVRINALTAASEAACLIVSVDETIKNPRS
TVDAFTAAGRGRGRGRPH

PCT/US2003/028547

854/6881 FIGURE 794

ATATAACCGCGTGGCCCGCGCGCGCGCTTCCCTCCCGGCGCAGTCACCGGCGCGCTCTATGGCTGCGACTTCTCT AATGTCTGCTTTGGCTGCCCGGCTGCTGCAGCCCGCGCACAGCTGCTCCCTTCGCCCTTCGCCCTTTCCACCTCGC GGCAGTTCGAAATGAAGCTGTTGTCATTTCTGGAAGGAAACTGGCCCAGCAGATCAAGCAGGAAGTGCGGCAGGA GGTAGAAGAGTGGGTGGCCTCAGGCAACAAACGGCCACACCTGAGTGTGATCCTGGTTGGCGAGAATCCTGCAAG TCACTCCTATGTCCTCAACAAAACCAGGGCAGCTGCAGTTGTGGGAATCAACAGTGAGACAATTATGAAACCAGC TTCAATTTCAGAGGAAGAATTGTTGAATTTAATCAATAAACTGAATAATGATGATAATGTAGATGGCCTCCTTGT TCAGTTGCCTCTTCCAGAGCATATTGATGAGAGAAGGATCTGCAATGCTGTTTCTCCAGACAAGGATGTTGATGG CTTTCATGTAATTAATGTAGGACGAATGTGTTTGGATCAGTATTCCATGTTACCGGCTACTCCATGGGGTGTGTG GGAAATAATCAAGCGAACTGGCATTCCAACCCTAGGGAAGAATGTGGTTGTGGCTGGAAGGTCAAAAAACGTTGG AATGCCCATTGCAATGTTACTGCACACAGATGGGGCGCATGAACGTCCCGGAGGTGATGCCACTGTTACAATATC TCATCGATATACTCCCAAAGAGCAGTTGAAGAAACATACAATTCTTGCAGATATTGTAATATCTGCTGCAGGTAT TCCTGTAACTGCCAAACCCAAGTTGGTTGGAGATGTGGATTTTGAAGGAGTCAGACAAAAAGCTGGGTATATCAC TCCAGTTCCTGGAGGTGTTGGCCCCATGACAGTGGCAATGCTAATGAAGAATACCATTATTGCTGCAAAAAAGGT GCTGAGGCTTGAAGAGCGAGAAGTGCTGAAGTCTAAAGAGCTTGGGGTAGCCACTAAT<u>TAA</u>CTACTGTGTCTTCT GTGTCACAAACAGCACTCCAGGCCAGCTCAAGAAGCAAAGCAGGCCAATAGAAATGCAATATTTTTAATTTATTC CAGTACCTCACCAGGGAGCATTCCAGTATCATGCAGGGTCCTGTGATCTAGCCAGGAGCAGCCATTAACCTAGTG ATTAATATGGGAGACATTACCATATGGAGGATGGATGCTTCACTTTGTCAAGCACCTCAGTTACACATTCGCCTT TTCTAGGATTGCATTTCCCAAGTGCTATTGCAATAACAGTTGATACTCATTTTAGGTACCAGACCTTTTGAGTTC GAGCAGAAAAAATTAATTTATATATGTATTGATTGGCAACCAGATTTATCTAAGTAGAACTGAATTGGCTAGGA AAAAAGAAAAACTGCATGTTAATCATTTTCCTAAGCTGTCCTTTTGAGGCTTAGTCAGTTTATTGGGAAAATGTT AGGACTGAAAGGATTCTTTTCTACATTATACATGTGTGTTGTCATATTTGGCTTTTGCTATATACTTTAACTTCA GTGATGTATGTATCCTGTTGACTTTTCCAGAAATTTTTTAAGAGTTTGAGTTACTATTGAATTTAATCAGACTTT

PCT/HS2003/028547

FIGURE 795

MSALAARLLQPAHSCSLRLRPFHLAAVRNEAVVISGRKLAQQIKQEVRQEVEEWVASGNKRPHLSVILVGENPAS
HSYVLNKTRAAAVVGINSETIMKPASISEEELLNLINKLNNDDNVDGLLVQLPLPEHIDERRICKAVSPDKDVDG
FHVINVGRMCLDQYSMLPATPMGVWEIIKRTGIPTLGKNVVVAGRSKNVGMPIAMLLHTDGAHERPGGDATVTIS
HRYTPKEQLKKHTILADIVISAAGIPNLITADMIKEGAAVIDVGINRVHDPVTAKPKLVGDVDFEGVRQKAGYIT
PVPGGVGPMTVAMLMKKNTIIAAKKVLRLEEREVLKSKELGVATN

PCT/HS2003/028547

856/6881 FIGURE 796

GGAAAATTTGTCACAGCAGCCAGAGGGGTTTAACAGGAGTGCAGAGGGATAAGGGCAGCTTCTGCCCTCTGCCCA AGAGCTGGCCACCTCTTTAAAGACTGAGGGAACAGTGGGAGGAGGAACTGTGGGACAGTGTGGTACCTATCTGTC CCCCTCTGGAGGGGTTGACAAGGGAAAGGGCACCGGGGGGCACAGAGATCCAGGACAGATTGCACATCCTGGAG GACCTGAATATGCTCTACATTCGGCAGATGGCACTCAGCCTGGAGGACACGGAGTTGCAGAGGAAGCTAGACCAT GAGATCCGGATGAGGGAAGGGGCCTGTAAGCTGCTGGCAGCCTGCTCCCAGCGAGAGCAGGCTCTGGAGGCCACC AAGAGCCTGCTAGTGTGCAACAGCCGCATCCTCAGCTACATGGGCGAGCTGCAGCGGCGCAAGGAGGCGCAGGTG CTGGGGAAGACAAGCCGGCGGCCTTCTGACAGTGGCCCGCCGCTGAGCGCTCCCCCTGCCGCGGGCCGGGTCTGC ATCTCTGACCTCCGGATTCCACTCATGTGGAAGGACACAGAATATTTCAAGAACAAAGGTGACTTGCACCGCTGG GCTGTGTTCCTGCTGCTGCAGCTGGGGGAACACATCCAGGACACAGAGATGATCCTAGTGGACAGGACCCTCACA GACATCTCCTTTCAGAGCAATGTGCTCTTCGCTGAGGCGGGGCCAGACTTTGAACTGCGGTTAGAGCTGTATGGG GCCTGTGTGGAAGAGAGGGGGCCCTGACTGGCGGCCCCAAGAGGCTTGCCACCAAACTCAGCAGCTCCCTGGGC CGCTCCTCAGGGAGGCGTGTCCGGGCATCGCTGGACAGTGCTGGGGGGTTCAGGGAGCAGTCCCATCTTGCTCCCC ACCCCAGTTGTTGGTGGTCCTCGTTACCACCTCTTGGCTCACACCACACTCACCCTGGCAGCAGTGCAAGATGGA TGCCGTCTGGCAGCTCAGCCTCTCTGCATGACTCAGCCCACTGCAAGTGGTACCCTCAGGGTGCAGCAAGCTGGG GAGATGCAGAACTGGGCACAAGTGCATGGAGTTCTGAAAGGCACAAACCTCTTCTGTTACCGGCAACCTGAGGAT GCAGACACTGGGGAAGAGCCGCTGCTTACTATTGCTGTCAACAAGGAGACTCGAGTCCGGGCAGGGGAGCTGGAC ACAGAAAGTCGGGAAGCACTGCAGAGCTGGATGGAGGCTCTGTGGCAGCTTTTCTTTGACATGAGCCAATGGAAG CAGTGCTGTGATGAAATCATGAAAATTGAAACTCCTGCTCCCCGGAAACCACCCCAAGCACTGGCAAAGCAGGGG CCTGCCTCAGTGGCCCCAGCCCCAGACTGGACCCACCCCCTGCCCTGGGGGAGACCCCGAACCTTTTCCCTGGAT GCTGTCCCCCAGACCACTCCCCTAGGGCTCGCTCGGTTGCCCCCCTCCCACCTCAGCGATCCCCACGGACCAGA GGCCTCTGCAGCAAAGGCCAACCTCGCACTTGGCTCCAGTCACCAGTGTGAGAGAAAAGGTGCTGGCATAGGAT CTGCCCAGAAGAGAAATGACCCATGCGCAGTTGGGCTCTGGATACGGCGCTGTCTATAGCAAGTTGGCCAGTCT GGCCTCCTGTTCCTCTGCTGGACCTGGGGTAGGCTGCAGGGGTGGGCAGAAGCCCCTCTTAAATTGTGGTTGCCA TGGTACCGAGGGACTCATTCCTGGGGCTCGCTGGGACCTCCCTAAACCCTTCCTGGAAGAAAAACTGGAACCAACT CTGCCCTACCTCCCTGCACTAACCAGCTTTGAGGATGGCACTGAAGAACCCTTGGAGCAAACATACCTCCCTTGT

PCT/US2003/028547

857/6881 FIGURE 797

MQDRLHILEDLNMLYIRQMALSLEDTELQRKLDHEIRMREGACKLLAACSQREQALEATKSLLVCNSRILSYMGE LQRRKEAQVLGKTSRRPSDSGPPAERSPCRGRVCISDLRIPLMWKDTEYFRNKGDLHRWAVFILLQLGEHIDTE MILVDRTITDISTGSVNUTREAEGDFELRLELYGACVEEEGALTGGPKRLATKLSSSLGRSGRSVRASLDSAGG SGSSPILLDFPVVGGPPYHLLAHTTLTIAAVQDGFRTHDLTLASHEENPAWLPLYGSVCCRLAAQPLCMTQPTAS GTLRVQQAGEMQNWAQVHGVLKGTNLFCYRQPEDADTGEEPLLTIAVNKETRVRAGELDQALGRPFTLSISNQYG DDEVYHTLQTESREALQSWMEALWQLFFDMSQWKQCCDEIMKIETPAPRKPPQALAKQGSLYHEMAIEPLDDIAA VTDILTQREGARLETPPPWLAMFTDQPALPNPCSPASVAPAPDWTHPLPWGRPRTFSLDAVPPDHSPRARSVAPL PPQRSPRTRGLCSKGQPRTWLQSEV

PCT/IIS2003/028547

FIGURE 798

GACTACGTGGGTCTGGAGCTGACTGCCGTCCTGACACGTCCTAGAGCTGCAAGTCCTGCCAGAGAGCCACCATGA CCTCTCAGCCTCTCAGGCTAGCAGAAGAGTATGGCCCAAGTCCTGGGGAGTCTGAACTGGCTGTGAACCCCTTTG ATGGGCTTCCCTTCTCTCCCGCTACTATGAGCTGCTGAAGCAGCGCCAAGCCTTGCCCATCTGGGCTGCTCGCT TTACCTTCTTGGAGCAGTTGGAGAGTAACCCCACTGGAGTGGTGCTGGTGTCTGGGGAGCCTGGTTCTGGCAAGA GCACCAGATCCCTCAGTGGTGTGCAGAGTTTGCGCTGGCCAGAGGGTTCCAGAAAGGACAGGTTACTGTTACTC AGCCCTACCCTCTTGCAGCCCGGGAGCCTGGCTCTGCGGGTTGCTGATGAGATGGACCTGACCCTGGGTCATGAG GTTGGATCCAGCATCCCCAGGAGGACTGCACGGGGCCCAACACCCTGCTCAGGTTCTGCTGGGACAGGCTGCTT CTGCAGGAGGTGGCCTCGACCCGAGGCACTGGAGCCTGGGGCGTGCTGGTACTAGATGAGGCTCAGGAGCGGTCG GTGGCATCAGATTCACTCCAGGGGCTACTGCAAGATGCCAGGCTGGAAAAACTTCCGGGGGACCTCAGAGTGGTT GTGGTTACTGACCCAGCCCTTGAACCTAAGCTCCGAGCTTTCTGGGGCAATCCTCCTATTGTGCATATACCCAGA GTGCTTGAATTGTGTCGGAAGGAGCTTCCAGGAGATGTGCTAGTGTTCCTGCCCAGTGAGGAGGAAATTTCCCTG TGCTGTGAATCCTTGTCCAGGGAGGTAGAGTCCTTGCTTCTCCAAGGGCTTCCACCACGAGTACTGCCCCTTCAC GCTGACTTCTCCTTCCCTCCCTTCCATCCAACATGTCATCGACTCAGGACTGGAGCTCCGAAGTGTTTACAAT CCTAGGATCCGAGCAGAATTCCAAGTGTTGAGGCCAATCAGCAAGTGTCAGGCAGAGGCAAGACGATTGCGAGCA AGAGGGTTCCCACCAGGATCCTGCCTCTGCCTGTATCCTAAGTCCTTCTTAGAACTAGAAGCTCCACCATTGCCA CAACCCAGGGTGTGTGAGGAGAATCTGAGCTCCCTGGTGTTACTACTAAAAAGGAGACAGATTGCAGAGCCAGGG GAGTGTCACTTCCTGGACCAGCCTGCTCCAGAAGCACTGATGCAAGCCCTGGAAGATTTAGACTATCTGGCAGCC CTGGATGATGATGGGGACCTGTCAGATCTGGGTGTCATACTATCAGAATTCCCTCTGGCCCCTGAGCTGGCCAAA GCCCTGCTGGCCTCATGCGAGTTTGACTGTGTGGACGAGATGCTCACCCTGGCTGCCATGCTCACAGCTGCCCCT GGGTTTACCCGTCCTCCACTCAGTGCAGAAGAAGCTGCCCTGCGTCGGGCCCTGGAACACACGGATGGTGACCAC AGTTCTCTGATCCAGGTGTATGAAGCCTTTATACAAAGTGGAGCAGATGAGGCTTGGTGCCAGGCTCGAGGTCTG AATTGGGCAGCATTGTGCCAAGCCCATAAACTTCGGGGAGAACTCCTAGAACTCATGCAACGAATTGAACTTCCC TTGTCCCTACCAGCCTTTGGCTCTGAGCAGAATCGCAGAGACCTTCAGAAAGCACTGGTGTCAGAATACTTTCTC AAGGTGGCCAGAGACACAGACGGGACTGGAAATTACCTTCTCCTAACCCATAAGCATGTGGCCCAGCTCTCCTCA TACTGCTGCTACCGAAGCCGCAGAGCTCCTGCCAGACCCCCACCATGGGTGCTCTACCACAATTTCACCATATCC AAAGACAACTGCCTCTCCATTGTTTCTGAGATTCAACCACAGATGCTGGTGGAATTGGCCCCTCCATACTTCCTG TAGGGTCAAATGTAAACCCTGGAACCTGAGTCCCAAGAAATGGTAGACTGGGAATGGAAAGAATGGGTAAACCA AAAAAAAA

PCT/US2003/028547

859/6881 FIGURE **799**

MDLTLGHEVGSSIPQEDCTGPNTLLRFCWDRLLLQEVASTRGTGAWGVLVLDEAQERSVASDSLQGLLQDARLEK LPGDLRVVVVTDPALEPKLRAEWGNPFIVHIPREPGERPSFIYMDTIPPDRVEBACQAVLELCRKELPGDVLVVD PSEEBISLCCESLSREVESLLLQGLPRVLPLHPLGRGRAVQAVYEDMDARKVVVTHWLADFSFSLPSIQHVIDSG LELRSVYMPRTRAEFGVLRPISKCQAEARRLRARGFPFGSCLCLYPKSFLELEAPPLPQPRVCEENLSSLVLLLK RRQIAEPGECHFLDQPAPEALMQALEDLDYLAALDDDGDLSDLGVILSEFPLAPPLAKALLASCEFDCVDEMLTL AAMLITAAPGFTRPPLSAEBAALRRALEHTDGDHSSLIQVYBAFTQSGADEAWCQARGLWMAALCQAHKLRGELLE LMQRIELPLSLPAFGSEQNRRDLQKALVSYFLKVARDTDGTGNYLLITHKHVAQLSSYCCYRSRRAPARPPPWLYHNTTISKDKCLSIVSEIQPMLVPELAPPYFLSNLPPSESRDLLAQLREGMADSTAGSKSSSAQEFRDPCVLQ

PCT/HS2003/028547

FIGURE 800

CGAAAATGGCGGCGGCGGCGACGGCCGGCGCCTCCTGAAGCAGCAGTTATGGAGCTTCCCTCAGGGCCGGGGCCG GAGCGGCTCTTTGACTCGCACCGGCTTCCGGGTGACTGCTTCCTACTGCTCGTGCTGCTGCTCTACGCGCCAGTC GGGTTCTGCCTCCTCGTCCTGCGCCTCTTTCTCGGGATCCACGTCTTCCTGGTCAGCTGCCGCGCTGCCAGACAGC CTCCTTCGCAGATTCGTAGTGCGGACCATGTGTGCGGTGCTAGGGCTCGTGGCCCGGCAGGAGGACTCCGGACTC CGGGATCACAGTGTCAGGGTCCTCATTTCCAACCATGTGACACCTTTCGACCACAACATAGTCAATTTGCTTACC ACCTGTAGCACCCCTCTACTCAATAGTCCCCCCAGCTTTGTGTGCTGGTCTCGGGGGCTTCATGGAGATGAATGGG CGGGGGGAGTTGGTGGAGTCACTCAAGAGATTCTGTGCTTCCACGAGGCTTCCCCCCACTCCTCTGCTGCTATTC CCTGAGGAAGAGGCCACCAATGGCCGGGAGGGGCTCCTGCGCTTCAGTTCCTGGCCATTTTCTATCCAAGATGTG GTACAACCTCTTACCCTGCAAGTTCAGAGACCCCTGGTCTCTGTGACGGTGTCAGATGCCTCCTGGGTCTCAGAA CTGCTGTGGTCACTTTCGTCCCTTTCACGGTGTATCAAGTAAGGTGGCTTCGTCCTGTTCATCGCCAACTAGGG GAAGCGAATGAGGAGTTTGCACTCCGTGTACAACAGCTGGTGGCCAAGGAATTGGGCCAGACAGGGACACGGCTC ACTCCAGCTGACAAAGCAGAGCACATGAAGCGACAAAGACACCCCAGATTGCGCCCCCAGTCAGCCCAGTCTTCT TTCCCTCCCTCCCTGGTCCTTCTCCTGATGTGCAACTGGCAACTCTGGCTCAGAGAGTCAAGGAAGTTTTGCCC CATGTGCCATTGGGTGTCATCCAGAGAGCCTGGCCAAGACTGGCTGTGTAGACTTGACTATCACTAATCTGCTT GAGGGGCCGTAGCTTTCATGCCTGAAGACATCACCAAGGGAACTCAGTCCCTACCCACAGCCTCTGCCTCCAAG TTTCCCAGCTCTGGCCCGGTGACCCCTCAGCCAACAGCCCTAACATTTGCCAAGTCTTCCTGGGCCCGGCAGGAG AGCCTGCAGGAGCGCAAGCAAGCACTATATGAATACGCAAGAAGGAGATTCACAGAGAGACGAGCCCAGGAGGCT GACTGAGCTCAAAGGAACAGGATGGCACCCAGAGCCGCAGGACGGAGACTGGGGGCAGCCCTCACCCAACTCACA ACAGGCTGGATGGGTGGGTAAAAAAGGGAAGGATGAGGCTCCCCCAATGTCACATTAAATTCATGGTTTTCAT TC

PCT/IIS2003/028547

861/6881 FIGURE 801

CGTGGATCCCGAGAAAGAGGCGCAGGACGAGGAGGCAGAACCCGACTGGCGCGTAGAGCAGCAGCAGCAGCAGTA GGAAGCAGTCACCCGGAAGCCTGGGGGGGAGAGGCGAAGTGGTCAGGCGCGAAGGCCGAAGAGCACGCGGGGATC GGTCTCTTCCCGCCGGGTCTCTTACCGGTGCGAGTCAAAGAGCCGCTCCGGCCCCGGCCCTGAGGGAAGCTCCAT AACTGCTGCTTCAGGAGCGCCCGGCCGTCGCCGCCGCCGCCATTTTCGCGCCCGGCCGCAGGGGCTCTTGGGAAG GCGGAGTCTTTGGGCATCCGCCCGGGGTGAGGGGACCCGAAGTCCTGAGGCGCCCGGAAGGGCTAGCGGTCCCA GCATACCCCGCGGCCCCTTGGGCCGTCTCACAACTCGCGTCCGGCGGAGACCACAATTCCCGGCATTCGTGGGGC AGGGAGGAGTCGGCCTCCCGGAATCCTGGTCCCGGCGTGCACTTCTGAAGGACTTCAGGTACCGGCGTGCCCCGC GTCCTACTGTCCGCCTGCTCCGGGTGCCGCCTCTGAGTAGGGCGGCGAGGAGGAGCCAAGGCGGAGC TGATGCCTGCGCCGAGGGCGGGGCGGGGTGCAGGCTGGAGCCTTCGGGCATGGCGGGCTTTGGGGGGCATTCGCT GGGGGAGGAGCCCCGTTTGACCCCTGACCTCCGGGCCCTGCTGACGTCAGGAACTTCTGACCCCCGGGCCCGAG TGACTTATGGGACCCCCAGTCTCTGGGCCCGGTTGTCTGTTGGGGTCACTGAACCCCGAGCATGCCTGACGTCTG GGACCCCGGGTCCCCGGGCACAACTGACTGCGGTGACCCCAGATACCAGGACCCGGGAGGCCTCAGAGAACTCTG TCGCAGATGTGGTGGAGAAGACAGCACCTGCCGTGGTCTATATCGAGATCCTGGACCGGCACCCTTTCTTGGGCC GCGAGGTCCCTATCTCGAACGGCTCAGGATTCGTGGTGGCTGCCGATGGGCTCATTGTCACCAACGCCCATGTGG TGGCTGATCGGCGCAGAGTCCGTGTGAGACTGCTAAGCGGCGACACGTATGAGGCCGTGGTCACAGCTGTGGATC CCGTGGCAGACATCGCAACGCTGAGGATTCAGACTAAGGAGCCTCTCCCCACGCTGCCTCTGGGACGCTCAGCTG ATGTCCGGCAAGGGGAGTTTGTTGCTCATGGGAAGTCCCTTTGCACTGCAGAACACGATCACATCCGGCATTG TTAGCTCTGCTCAGCGTCCAGCCAGAGACCTGGGACTCCCCCAAACCAATGTGGAATACATTCAAACTGATGCAG CTATTGATTTTGGAAACTCTGGAGGTCCCCTGGTTAACCTGGATGGGGAGGTGATTGGAGTGAACACCATGAAGG TCACAGCTGGAATCTCCTTTGCCATCCCTTCTGATCGTCTTCGAGAGTTTCTGCATCGTGGGGAAAAGAAGAATT CCTCCTCCGGAATCAGTGGGTCCCAGCGGCGCTACATTGGGGTGATGATGCTGACCCTGAGTCCCAGCATCCTTG CTGAACTACAGCTTCGAGAACCAAGCTTTCCCGATGTTCAGCATGGTGTACTCATCCATAAAGTCATCCTGGGCT CCCCTGCACACCGGGCTGGTCTGCGGCCTGGTGATGTGATTTTGGCCATTGGGGAGCAGATGGTACAAAATGCTG AAGATGTTTATGAAGCTGTTCGAACCCAATCCCAGTTGGCAGTGCAGATCCGGCGGGGACGAGAAACACTGACCT TATATGTGACCCCTGAGGTCACAGAA<u>TGA</u>ATAGATCACCAAGAGTATGAGGCTCCTGCTCTGATTTCCTCCTTGC CTTTCTGGCTGAGGTTCTGAGGGCACCGAGACAGAGGGTTAAATGAACCAGTGGGGGCAGGTCCCTCCAACCACC AGCACTGACTCCTGGGCTCTGAAGAATCACAGAAACACTTTTTATATAAAATAAAATTATACCTAGCAACATATT ATAGTAAAAAATGAGGTGGGAGGGCTGGATCTTTTCCCCCACCAAAAGGCTAGAGGTAAAGCTGTATCCCCCTAA

PCT/US2003/028547

862/6881 FIGURE 802

MAAPRAGRGAGWSLRAWRALGGIRWGRRPRLITPDLRALLTSGTSDPRARVTYGTPSLWARLSVGVTEPRACLTSG
TPGPRAQLTAVTPDTRTREASENSGTRSRAWLAVALGAGGAVLLLLWGGGRGPPAVLAAVPSPPFASPRSGYNTI
ADVVEKTAPAVVYIEILDRRPFLGREVPISNGSGFVVAAMGSLVINNAHVVADRRRVRVRLLSGTJYEAVVTAVPD
VADIATLRIGTVKEPLPTLPFLGRSADVRGGEPVVAWGSFFALQNTITSGTVSSAQRPARDLGLPGTNVEYIGTDAA
IDFGNSGGPLVNLDGEVIGVNTMKVTAGISFAIPSDRLREFLHRGEKKNSSSGISGSQRRYIGVMMLTLSFSILA
ELQLREPSFPDVQHGVLIHKVILGSPAHRAGLRPGDVILAIGEQMVQNAEDVYEAVRTQSQLAVQIRRGRETLTL
YVTPEVTE

PCT/US2003/028547

863/6881 FIGURE 803

PCT/US2003/028547

864/6881 FIGURE 804

MADKPDMGEIASFDKAKLKKTETQEKNTLPTKETIEQEKRSEIS

PCT/US2003/028547

865/6881 FIGURE 805

PCT/HS2003/028547

866/6881 FIGURE 806

CTCTCCATTCCCAGGCTCAGTGCAGGATCCAGGCCTGCATGTGTGGCGGGTGGAGAAGCTGAAGCCGGTGCCTGT ${\tt CAACACGCTGCTGGGAGAGCGGCCTGTGCAGCACCGCGAGGTGCAGGGCAATGAGTCTGACCTCTTCATGAGCTA}$ CTTCCCACGGGGCCTCAAGTACCAGGAAGGTGGTGTGGAGTCAGCATTTCACAAGACCTCCACAGGAGCCCCAGC TGCCATCAAGAAACTCTACCAGGTGAAGGGGAAGAAGAACATCCGTGCCACCGAGCGGGCACTGAACTGGGACAG CTTCAACACTGGGGACTGCTTCATCCTGGACCTGGGCCAGAACATCTTCGCCTGGTGTGGGAAAGTCCAACAT CCTGGAACGCAACAAGGCGAGGGACCTGGCCCTGGCCATCCGGGACAGTGAGCGACAGGGCAAGGCCCAGGTGGA GATTGTCACTGATGGGGAGGAGCCTGCTGAGATGATCCAGGTCCTGGGCCCCAAGCCTGCTCTGAAGGAGGGCAA CCCTGAGGAAGACCTCACAGCTGACAAGGCAAATGCCCAGGCCGCAGCTCTGTATAAGGTCTCTGATGCCACTGG ACAGATGAACCTGACCAAGGTGGCTGACTCCAGCCCCTTTGCCCTTGAACTGCTGATATCTGATGACTGCTTTGT CTGCCCCCACCACCTGCTTGCTTCTCTGGCTGCCTGGTCAGTGCAGAGGTGCCCCCTGCAGATGTTCAAT AAAGGAGACAAGTGCTTTCCC

PCT/US2003/028547

867/6881 FIGURE 807

MYTAIPQSGSPPPGSVQDPGLHVWRVEKLKPVPVAQENQGVFFSGDSYLVLHNGPEEVSHLHLWIGQQSSRDEQG ACAVLAVHLNTLLGERPVQHREVQGNESDLFMSYFPRGLKYQEGGVESAFHKTSTGAPAAIKKLYQVKGKKNIRA TERALNWDSFNIGDCFILDLGQNIFAWGGKSNILERNKARDLALAIRDSERQGKAQVEIVTDGEEPAEMIQVLG PKPALKEGNPEEDLTADKANQAAALYKVSDATGQMNLTKVADSSPFALELLISDDCFVLDNGLCGKIYIWKGRK ANEKERQAALQVASGTISKNQYAPNIQVEILPQGRESPIFKQFFKDWK

PCT/US2003/028547

868/6881 FIGURE 808

GGCACGAGGCGCCCGCCTGCTACGAGTAGAACGCTGTCCGCAGCTTGCGCATTTCGCAGCCGCTGCCGCCTCGCC GCTGCTCCTTCGTAAGGCCACTTCCGCACACCGACACCAACATGAACGGACAGCTCAACGGCTTCCACGAGGCGT TCAGTGATGCTGTCCTTGATGCCCACCTTCAGCAGGATCCTGATGCCAAAGTAGCTTGTGAAACTGTTGCTAAAA CTGGAATGATCCTTCTTGCTGGGGAAATTACATCCAGAGCTGCTGTTGACTACCAGAAAGTGGTTCGTGAAGCTG TTAAACACATTGGATATGATGATTCTTCCAAAGGTTTTGACTACAAGACTTGTAACGTGCTGGTAGCCTTGGAGC AACAGTCACCAGATATTGCTCAAGGTGTTCATCTTGACAGAAATGAAGAAGACATTGGTGCTGGAGACCAGGGCT TAATGTTTGGCTATGCCACTGATGAAACTGAGGAGTGTATGCCTTTAACCATTGTCTTGGCACACAAGCTAAATG CCAAACTGGCAGAACTACGCCGTAATGGCACTTTGCCTTGGTTACGCCCTGATTCTAAAACTCAAGTTACTGTGC AGTATATGCAGGATCGAGGTGCTGTGCTTCCCATCAGAGTCCACACAATTGTTATATCTGTTCAGCATGATGAAG AGGTTTGTCTTGATGAAATGAGGGATGCCCTAAAGGAGAAAGTCATCAAAGCAGTTGTGCCTGCGAAATACCTTG ATGAGGATACAATCTACCACCTACAGCCAAGTGGCAGATTTGTTATTGGTGGGCCTCAGGGTGATGCTGGTTTGA CTGGACGCAAAATCATTGTGGACACTTATGGCGGTTGGGGTGCTCATGGAGGAGGTGCCTTTTCAGGAAAGGATT ATACCAAGGTCGACCGTTCAGCTGCTTATGCTGCTCGTTGGGTGGCAAAATCCCTTGTTAAAGGAGGTCTGTGCC CCTCTCAGAAGAGTGAGAGAGAGCTATTAGAGATTGTGAAGAAGAATTTCGATCTCCGCCCTGGGGTCATTGTCA GGGATCTGGATCTGAAGAAGCCAATTTATCAGAGGACTGCAGCCTATGGCCACTTTGGTAGGGACAGCTTCCCAT AAGCCTTCAAGCTCTGAGGGAAAGGGCCCTCCTTCCTAAATTTTCCTGTCCTCTTTCAGCTCCTGACCAGTTGCA GTCACTCTAGTCAATGACATGAATTTTAGCTTTTGTGGGGGGACTGTAAGTTGGGCTTGCTATTCTGTCCCTAGGT GTTTTGTTCACCATTATAATGAATTTAGTGAGCATAGGTGATCCATGTAACTGCCTAGAAACAACACTGTAGTAA ATAATGCTTTGAAATTGAACCTTTGTGCCCTATCACCCCAACGCTCCAAAGTCATAATTGCATTGACTTTCCCCAC CACAGCCCTGTCAGCATGAATTTGTAATGTCTTGAGCTCTATTATGAATGTGAAGCCTTCCCCTTATCCTCCCTG AAGTTCCCAGTTGGAGCTCCAGCCTGACATCAAAAAAGGCAGTTACCATTAAACCATCTCCCTGGTGCTTATGCT AGGTTTTAATTTAGTAAACCAATCCTATGCATGGTTTCAGCACTAGCCAAACCTCACCAACTCCTAGTTCTAGAA ACTTTGGTACCAGATAACTTTTTTTTTTTTTTATAAGAAAGCCTGAGTACTCCACACTGCACAATAACTCCTCCC TATTTATTGTATTCTGGGGTATGGCGTAAGTACAGAGAAGCCATCACCTCAGATGGCAGCTTTTAAAAGATTTTT TTTTTTTCTCTCAACACCATGATTCCTTTAACAACATGTTTCCAGCATTCCCAGGTAGGCCAAGGTGTCCTACAG ATGGAGAAAGCTGACTTGGCTGGTGCGGTACAGAGAAGCCAGCTTGTTTACATGCTTATTCCATGACTGCTTGCC CTAAGCAGAAAGTGCCTTTCAGGATCTATTTTTGGAGGTTTATTACGTATGTCTGGTTCTCAATTCCAACAGTTT

PCT/US2003/028547

869/6881 FIGURE 809

MNGQLNGPHEAFIEEGTFLFTSESVGEGHPDKICDQISDAVLDAHLQQDPDAKVACETVAKTGMILLAGEITSRA
AVDYQKVVREAVKHIGYDDSSKGFDYKTCNVLVALEQQSPDIAQGVHLDRNEEDIGAGDQGLMFGYATDETEECM
PLTIVLAHKLNAKLAELRRNGTLFMLRPDSKTQVTVQYMQDRGAVLPIRVHTIVISVQHDEEVCLDEMRDALKEK
VIKAVVPAKYLDEDITYHLQPSGFPVIGGPQGDAGLTGRKIIVDTYGGWGAHGGGAFSGKDYTKVDRSAAYAARW
VAKSLVKGGLCRRVLVQVSYAIGVSHPLSISIFHYGTSQKSERELLEIVKKNFDLRPGVIVRDLDLKKPIYQRTA
AYGHFGRDSFFWEVPKKLKY

PCT/IIS2003/028547

870/6881 FIGURE 810

ATGACACTCTGAGCGCTCCGGGAACGGACAGCCCGGCGGCTTCCCGAAGCCGGCGGCGCAGCTGCCCGGGGGCGAG GGCGGCCCGGGCAGCCCCACGCCCTGCCTCGCGCGCCGCCCCGCGCCCA<u>TG</u>AAGCACATCCCGGTCCTCGAGGACG GGCCGTGGAAGACCGTGTGCGTGAAGGAGCTGAACGGCCTTAAGAAGCTCAAGCGGAAAGGCAAGGAGCCGGCGC CCCCAAGAGGGGCACGGACACAGCCGGGGAGCGCGGGGGCTCTCGGGCGCCCGAGGTCTCCGACGCGCGGAAAC GCTGCTTCGCCCTAGGCGCAGTGGGGCCAGGACTCCCCACGCCGCCGCCGCCGCCGCCGCCTCCTGCGCCCCAGAGCC AGGCACCTGGGGGCCCAGAGGCACAGCCTTTCCGGGAGCCGGGTCCGCGTCCTCGCATCTTGCTGTGCGCACCGC CCGCGCGCCCCGCGCCGTCAGCACCCCCAGCACCGCCAGCGCCCCGGAGTCCACTGTGCGCCCTGCGCCCCGA CGCGCCCCGGGGAAAGTTCCTACTCGTCAATTTCACACGTAATTTACAATAACCACCAGGATTCCTCCGCGTCGC CTAGGAAACGACCGGGCGAAGCGACTGCCGCCTCCTCCGAGATCAAAGCCCTGCAGCAGACCCGGAGGCTCCTGG CGAACGCCAGGGAGCGGACGCGGTGCACACCATCAGCGCAGCCTTCGAGGCGCTCAGGAAGCAGGTGCCGTGCT TGGCTGACCTTGACTACAGTGCCGACCACAGCAACCTCAGCTTCTCCGAGTGTGTGCAGCGCTGCACCCGCACCC AAGGCCCACTGTCCAGCTGCAGAAATTCGTTGCCAAAGATTGGACAGAGACACCGAAGGAAATGGGGTGGTGAAA CCCCACAGCGAAAAGCCACACCGTTGCTCTGTGACTTTTGCTCCTCCTGTTGCCTGAGCCCCATCTCAAGCCAAA GGCTGGGGTGCCTGGGCGGGGCTGGGAGTGGCACCTGAGATCCCTGCCCACTCTCTCCCCTTCATTGGCTGCCCA GGCCACTGGCCCCAGTTCTCAGTGTCCCTTGGGTCCAGGCTCCTTGGGCCCCTAAGCATCACCAGAAGGGAGTAAG CAGGGAGAGAAGCAATATTACTCCCTCCCCTACACCAGGGACTTGCCCCAGGGCAGCTACCTATGGGTCTTTGCT GGCTGGAGCCGTCCTACTGGGCAAGATGGCGCCCCCACTTGGAGGGCGGTGGTCTGTTACAGGGTGTGCAGGGGCA TTCCTTGTGCTCAAATGGCCAAAGCTGTTCACGTCTGTGCTCAACCATCTGCTTCAAATTGAAGTAAAAGCCCCA AAAAG

PCT/US2003/028547

871/6881 FIGURE 811

MKHIPVLEDGPWKTVCVKELNGLKKLKRKGKEPARRANGYKTFRLDLEAPEPRAVATNGLRDRTHRLQPVPVPVP VPVPVAPAVPPRGGTDTAGERGGSRAPEVSDARKRCFALGAVGPGLPTPPPPPPPAPOSQAPGGPEAQPFREPGP RPRILLCAPPARPAPSAPPAPPESTVRPAPPTRPGESSYSSISHVIYNNHQDSSASPRKRPGEATAASSEIK ALQQTRRLLANARERTRVHTISAAFEALRKQVPCYSYGQKLSKLAILRIACNYILSLARLADLDYSADHSNLSFS ECVQRCTRTLQAEGRAKKRKE

PCT/US2003/028547

872/6881 FIGURE 812

TCGGCGGGCGGGTTTGTGTGAACAGGCACGCAGCTGCAGATTTTATTCTGGTAGTGCAACCCTCTCAAAGGTTGA AGGAACTGATGTAACAGGGATTGAAGAAGTAGTAATTCCAAAAAAGAAAACTTGGGATAAAGTAGCCGTTCTTCA GGCACTTGCATCCACAGTAAACAGGGATACCACAGCTGTGCCTTATGTGTTTCAAGATGATCCTTACCTTATGCC AGCATCATCTTTGGAATCTCGTTCATTTTTACTGGCAAAGAAATCCGGGGAGAATGTGGCCAAGTTTATTATTAA TTCATACCCCAAATATTTTCAGAAGGACATAGCTGAACCTCATATACCGTGTTTAATGCCTGAGTACTTTGAACC TCAGATCAAAGACATAAGTGAAGCCGCCCTGAAGGAACGAATTGAGCTCAGAAAAGTCAAAGCCTCTGTGGACAT GTTTGATCAGCTTTTGCAAGCAGGAACCACTGTGTCTCTTGAAACAACAAATAGTCTCTTGGATTTATTGTGTTA CTATGGTGACCAGGAGCCCTCAACTGATTACCATTTTCAACAAACTGGACAGTCAGAAGCATTGGAAGAGGAAAA TGATGAGACATCTAGGAGGAAAGCTGGTCATCAGTTTGGAGTTACATGGCGAGCAAAAAAACAACGCTGAGAGAAT CTTTTCTCTAATGCCAGAGAAAAATGAACATTCCTATTGCACAATGATCCGAGGAATGGTGAAGCACCGAGCTTA TGAGCAGGCATTAAACTTGTACACTGAGTTACTAAACAACAGACTCCATGCTGATGTATACACATTTAATGCATT GATTGAAGCAACAGTATGTGCGATAAATGAGAAATTTGAGGAAAAATGGAGTAAAATACTGGAGCTGCTAAGACA CATGGTTGCACAGAAGGTGAAACCAAATCTTCAGACTTTTAATACCATTCTGAAATGTCTCCGAAGATTTCATGT GTTTGCAAGATCGCCAGCCTTACAGGTTTTACGTGAAATGAAAGCCATTGGAATAGAACCCTCGCTTGCAACATA TCACCATATTATTCGCCTGTTTGATCAACCTGGAGACCCTTTAAAGAGATCATCCTTCATCATTTATGATATAAT ATGCTCATCTCTCAGAGATCTAGAACTTGCCTACCAAGTACATGGCCTTTTAAAAACCGGAGACAACTGGAAAATT CATTGGACCTGATCAACATCGTAATTTCTATTATTCCAAGTTCTTCGATTTGATTTGTCTAATGGAACAAATTGA TGTTACCTTGAAGTGGTATGAGGACCTGATACCTTCAGCCTACTTTCCCCCACTCCCAAACAATGATACATCTTCT CCAAGCATTGGATGTGGCCAATCGGCTAGAAGTGATTCCTAAAATTTGGAAAGATAGTAAAGAATATGGTCATAC AGCCACCTCTCTCAACTGTATAGCTATCCTCTTTTTAAGGGCTGGGAGAACTCAGGAAGCCTGGAAAATGTTGGG GCTTTTCAGGAAGCATAATAAGATTCCTAGAAGTGAGTTGCTGAATGAGCTTATGGACAGTGCAAAAGTGTCTAA CAGCCCTTCCCAGGCCATTGAAGTAGTAGAGCTGGCAAGTGCCTTCAGCTTACCTATTTGTGAGGGCCTCACCCA GAGAGTAATGAGTGATTTTGCAATCAACCAGGAACAAAAGGAAGCCCTAAGTAATCTAACTGCATTGACCAGTGA CAGTGATACTGACAGCAGCAGTGACAGCGACAGTGACACCAGTGAAGGCAAATGAAAGTGGAGATTCAGGAGCAG CAATGGTCTCACCATAGCTGCTGGAATCACACCTGAGAACTGAGATATACCAATATTTAACATTGTTACAAAGAA GCTAATATGCTACTTAACCATCTATTAATGCACCATTAAAGGCTTAGCATTTAAGTAGCAACATTGCGGTTTTCA GACACATGGTGAGGTCCATGGCTCTTGTCATCAGGATAAGCCTGCACACCTAGAGTGTCGGTGAGCTGACCTCAC GATGCTGTCCTCGTGCGATTGCCCTCTCCTGCTGCACTTCTGCCTTTGTTGGCCTGATGTGCTGCTGTGATG CTGGTCCTTCATCTTAGGTGTTCATGCAGTTCTAACACAGTTGGGGTTGGGTCAATAGTTTCCCAATTTCAGGAT ATTTCGATGTCAGAAATAACGCATCTTAGGAATGACTAAACAAGATAATGGCAGTTTAGGCTGCACAACTGGTAA AATGACTGTAGATAAATGTTGTAATTAGTGTACACGTTTGTATTTTTGTTAATATAGCCGCTGCCATAGTTTTCT

PCT/US2003/028547

873/6881 FIGURE 813

MVAQKVKPNLQTFNTILKCLRRFHVFARSPALQVLREMKAIGIEPSLATYHHIIRLFDQPGDPLKRSSFIIYDIM
NELMGKRFSPKDPDDDKFFQSAMSICSSLRDLELAYQVHGLLKTGDNWKFIGPDQHRNFYYSKFFDLICLMEQID
VTLKWEDLIPSAYFPHSQTMTHLLQALDVANRLEVIPKIWKDSKEYGHTFRSDLREEILMLMARDKHPPELQVA
FADCAADIKSAYESQPIRQTAQDWPATSLNCIAILFLRAGRTQEAWKMLGLFRKHNKIPRSELLWELMDSAKVSN
SPSQAIEVVELASAFSLPICECLTGRWSDFAINGEQKEALSNLTALTSDSDTDSSDSDSDTSEGK

PCT/IIS2003/028547

874/6881 FIGURE 814

ACGCGGGCACGCACACGGAAGCACGCCTCCACTTAACTCGCGCCGCGGGGGGGCAGCTCGAGTCCACCAGCAGCG $\tt CCGTCCGCTTGACCGAGATCCTGCGGGCCTGTCAGTTATCGGGTGTGACCGCCGCCCGGGCCCAGAGTTGTCTCTGTG$ GGAAGTTTGTCCTCCGTCCATTGCGACCATGCCGCAGATACTCTACTTCAGGCAGCTCTGGGTTGACTACTGGCA AAATTGCTGGAGCTGGCCTTTTGTTTGTTGGTGGAGGTATTGGTGGCACTATCCTATATGCCAAATGGGATTCCC ATTTCCGGGAAAGTGTAGAGAAAACCATACCTTACTCAGACAAACTCTTCGAGATGGTTCTTGGTCCTGCAGCTT ATAATGTTCCATTGCCAAAGAAATCGATTCAGTCGGGTCCACTAAAAATCTCTAGTGTATCAGAAGTAATGAAAG AA TCTAAACAGTCTGCCTCACAACTCCAAAAACAAAAGGGAGATACTCCAGCTTCAGCAACAGCACCTACAGAAG CGGCTCAAATTATTTCTGCAGCAGGTGATACCCTGTCGGTCCCAGCCCCTGCAGTTCAGCCTGAGGAATCTTTAA AAACTGATCACCCTGAAATTGGTGAAGGAAAACCCACACCTGCACTTTCAGAAGAAGCATCCTCATCTTCTATAA GGGAGCGACCACCTGAAGAAGTTGCAGCTCGCCTTGCACAACAGGAAAAACAAGAACAAGTTAAAATTGAGTCTC TAGCCAAGAGCTTAGAAGATGCTCTGAGGCAAACTGCAAGTGTCACTCTGCAGGCTATTGCAGCTCAGAATGCTG CGGTCCAGGCTGTCAATGCACACTCCAACATATTGAAAGCCGCCATGGACAATTCTGAGATTGCAGGCGAGAAGA AATCTGCTCAGTGGCGCACAGTGGAGGGTGCATTGAAGGAACGCAGAAAGGCAGTAGATGAAGCTGCCGATGCCC TTCTCAAAGCCAAAGAAGAAGATTAGAGAAGATGAAAAGTGTGATTGAAAATGCAAAGAAAAAAAGAGGTTGCTGGGG CCAAGCCTCATATAACTGCTGCAGAGGGTAAACTTCACAACATGATAGTTGATCTGGATAATGTGGTCAAAAAGG TCCAAGCAGCTCAGTCTGAGGCTAAGGTTGTATCTCAGTATCATGAGCTGGTGGTCCAAGCTCGGGATGACTTTA AGCTCTCTACTGATGATCTGAACTCCCTCATTGCTCATGCACATCGTCGTATTGATCAGCTGAACAGAGAGCTGG CAGAACAGAAGGCCACCGAAAAGCAGCACATCACGTTAGCCTTGGAGAAACAAAAGCTGGAAGAAAAGCGGGCAT TTGACTCTGCAGTAGCAAAAGCATTAGAACATCACAGAAGTGAAATACAGGCTGAACAGGACAGAAAGATAGAAG AAGTCAGAGATGCCATGGAAAATGAAATGAGAACCCAGCTTCGCCGACAGGCAGCTGCCCACACTGATCACTTGC GAGATGTCCTTAGGGTACAAGAACAGGAATTGAAGTCTGAATTTGAGCAGAACCTGTCTGAGAAACTCTCTGAAC AAGAATTACAATTTCGTCGTCTCAGTCAAGAGCAAGTTGACAACTTTACTCTGGATATAAATACTGCCTATGCCA GACTCAGAGGAATCGAACAGGCTGTTCAGAGCCATGCAGTTGCTGAAGAGGGAAGCCAGAAAAGCCCACCAACTCT GGCTTTCAGTGGAGGCATTAAAGTACAGCATGAAGACCTCATCTGCAGAAACACCTACTATCCCGCTGGGTAGTG CAGTTGAGGCCATCAAAGCCAACTGTTCTGATAATGAATTCACCCAAGCTTTAACCGCAGCTATCCCTCCAGAGT CCCTGACCCGTGGGGTGTACAGTGAAGAGACCCTTAGAGCCCGTTTCTATGCTGTTCAAAAACTGGCCCGAAGGG CACCTCAGCAACTGAAGCCGCCCCCAGAGCTCTGCCCTGAGGATATAAACACATTTAAATTACTGTCATATGCTT CCTATTGCATTGAGCATGGTGATCTGGAGCTAGCAGCAAAGTTTGTCAATCAGCTGAAGGGGGAATCCAGACGAG TGGCACAGGACTGGCTGAAGGAAGCCCGAATGACCCTAGAAACGAAACAGATAGTGGAAATCCTGACAGCATATG CCAGCGCCGTAGGAATAGGAACCACTCAGGTGCAGCCAGAG<u>TGA</u>GGTTTAGGAAGATTTTCATAAAGTCATATTT CATGTCAAAGGAAATCAGCAGTGATAGATGAAGGGTTCGCAGCGAGTCCCGGACTTGTCTAGAAATGAGCAGG TTTACAAGTACTGTTCTAAATGTTAACACCTGTTGCATTTATATTCTTTCCATTTGCTATCATGTCAGTGAACGC CAGGAGTGCTTTCTTTGCAACTTGTGTAACATTTTCTGTTTTTTCAGGTTTTACTGATGAGGCTTGTGAGGCCAA TCAAAATAATGTTTGTGATCTCTACTACTGTTGATTTTGCCCTCGGAGCAAACTGAATAAAGCAACAAGATG

PCT/US2003/028547

875/6881 FIGURE 815

MLRACQLSGVTAAAQSCLCGKFVLRPLRPCRRYSTSGSSGLTTGKIAGAGLLFVGGGIGGTILYAKWDSHFRESV EKTIPYSDKLFEMVLGPAAYNVPLPKKSIQSGPLKISSVSEVMKESKQSASQLQKQKGDTPASATAPTEAAQIIS AAGDTLSVPAPAVQPEESLKTDHEPIGEGKPTPALSEEASSSSIRERPPEEVAARLAQQEKQEQVKIESLAKSLE DALRQTASVTLQAIAAQNAAVQAVMAHSNILKAAMDNSEIAGEKKSAQWRTVEGGLKERRKAVDEAADALLKAKE ELEKMKSVIENAKKEVAGAKPHITAAEGKLHNMIVDLDNVVKKVQAAQSEAKVVSQYHELVVQARDDFKRELDS ITPEVLPGWKGMSVSDLADKLSTDDLNSLIAHAHRRIDQLNRELAEQKATEKQHITLALEKOKLEEKRAFDSAVA KALEHHRSEIQAEQDRKIEEVRDAMENEMRTQLRRQAAAHTDHLRDVLRVGEGLKSEFEGNISSKLSEGELQFR RLSQEQVNNFTLDINTAYARLBGIEQAVQSHAVAEEEARKAHQLWLSVEALKYSMKTSSAETPTIPLGSAVEAIK ANCSDMETTQALTAAIPPESLTRGVYSEETILRARFYAVQKLARRVAMIDETRNSLYQYFLSYLQSLLLFPPQQLK PPPELCPEDINTFKLLSYASYCIEHGDLELAAKFVNQLKGEGRRAMTLETKQIVEILTAYASAVGIGTTQVOPE

PCT/IIS2003/028547

876/6881 FIGURE 816

TAGTGCCGCCGCTCCTACTCTGGGGGTTGGGACTACCTCCTTTTCCGCGGGCCCCGCCCAGGCGGCTGCCCGTG ACCTGCCTGGGCGCGGGAACTGAAAGCCGGAAGGGGCAAGACGGGTTCAGTTCGTCATGGGGCTGTTTGGAAAG ACCCAGGAGAAGCCGCCCAAAGAACTGGTCAATGAGTGGTCATTGAAGATAAGAAAAGGAAATGAGAGTTGTTGAC AGGCAAATAAGGGATATCCAAAGAGAAGAAGAAAAAGTGAAACGATCTGTGAAAGATGCTGCCAAGAAGGGCCAG GCACACATGAACTCAGTGCTCATGGGGATGAAGAACCAGCTCGCGGTCTTGCGAGTGGCTGGTTCCCTGCAGAAG AGCACAGAAGTGATGAAGGCCATGCAAAGTCTTGTGAAGATTCCAGAGATTCAGGCCACCATGAGGGAGTTGTCC AAAGAAATGATGAAGGCTGGGATCATAGAGGAGATGTTAGAGGACACTTTTGAAAGCATGGACGATCAGGAAGAA ATGGAGGAAGAAGCAGAAATGGAAATTGACAGAATTCTCTTTGAAATTACAGCAGGGGCCTTGGGCAAAGCACCC AGTAAAGTGACTGATGCCCTTCCAGAGCCAGAACCTCCAGGAGCGATGGCTGCCTCAGAGGATGAGGAGGAGGAG GAAGAGGCTCTGGAGGCCATGCAGTCCCGGCTGGCCACACTCCGCAGCTAGGGGCTGCCTACCCCGCTGGGTGTG CACACACTCCTCTCAAGAGCTGCCATTTTATGTGTCTCTTGCACTACACCTCTGTTGTGAGGACTACCATTTTGG AGAAGGTTCTGTTTGTCTCTTTTCATTCTCTGCCCAGGTTTTGGGATCGCAAAGGGATTGTTCTTATAAAAGTGG TCATGAAGCACTTCTGAAAATATAGGTGATTGCCTGAATGTCGAAGACTCTACTTTTGTCTATAAAACACTATAT AAATGAATTTTAATAAATTTTTGCTTTAGCACTTGGCCCCATTGTAGATTGCCCTGTGCAGTAAACTTTCAAGGT GTCGGCTGCCCCAGATTGCTTCATTTGCTGGGTGTGGAAAGAGTTGCTATGGCCAGGCATATGGGATTTGGAAGC TCAGCAGAAGTGACTTCTGCTCTGTGGTTGCTGCTCCCCGGCTTTCACAGACATGGTATGGCAGCCATTCTTTTA TCTATTTAACCAAGAGGATGCTGGGGAATTGTGCTGCTTGTCCTGTTGGCTGGTGGCTGCATTATGTCCTGGGGT ACTAGGTCTCTTTCACCTCTCATTGCCTGTCCCTGCTTCGAGCTGGTTGTCTTGTGCGTGGGACATGGGCCTTCC TATCTGTGTTTTCTCAAAGTCAGGAGCTGACCAGGAGCACACTAAGGTGTGGTCATGCATCATAACCAACATTCA CTCATCTGGGACATTCTTAAGATACATTTATAAATCATTTCAGCAGTAGTACTTTGTATGTGTTGAGAGTTTACA GAGCTCTTTGACATACGCGATCTTAGTCTTTACAAATAAGGAAAACAGCTCAGTTTGGGAAGTATCAGAGATGGG CTCACAGATTGTTTTTTGTATATTGTAGCAAAATCCTGAAACAATGGGGTCCTTCCAGTCTCATCATACAAAATG GCAATCTTGGCTGGGTGCGGTGGTTCATGCCTATAATCCCAGTGCTTTACAAGGCTGAGGCAGGAGGCTCTCTTG AAAATTTCATTTTTGAGTCCAGAGGACCCTCCTATTACTCTTGATTTCATCTTCAGAGTGTAGTTAAAAAATTAT TTTAAATAATTATTTTTTTAAATCAGTTGTAGGTTCACAGCAAAAGTGGACAAAAAGAAATTTCTCATATATCCC AACCTCCATTGACACATCATTATCACCCAAAGTCCATAGTTTACATGAAGATTCACTCTGGTGTTGTACATTGTA TGGGCTTAGACAAATGTATGATGATATCTACAATTATAGAATCATACAGAATAGTTTCACTGCCCTAAAACTTCT GTACATGTGCAGGTAAACTCGTGACAAGGGGGTTTGTTATACAGATTATTTAGTGACCCAGGTACTAAGCCTAGT ACCCAATAGTTACTTTTCTGGTCCTGTCCCTTTTCCCACCCTCCACCCTCAGGTAGGCCCCAGTATGTTATTCCT TTGTGTCCATGTTATTTCACTCCCACTTGTGAGAACATGGAATATTTGGTTTCCTGTTCCTATGTTAGTTTGTTA GCCATAGTTCTTCCTTTTCTAGAATGTCATATTGGAATCATATAGTATGTAGCCTTTTCAGACTGGCTTCTTTCA TACTCCATTGTCTAGATGAATAGTTTATCCATTCACCTATTGAAAGACTTCTTGGTGGTTTCCAAGTTTTGGCAA CCAAGAGCTTCAGTGCTGGATCATA

PCT/US2003/028547

877/6881 FIGURE 817

CAGGACACAGCATGACATGAGGTCCCCGCTCAGCTCCTGGGCTCCTGGTGCTCTGGCTCCCAGGTGCCAAAT
GTGACATCCAGATGACCCAGTCTCCTCCACCTCTCTGCACTCTGGTGCTCTGGCTCCCAGGTGCCAAAT
GTGACATCCAGATGACCCAGTCTCCTCCACCCTGTCTGCATCTTGGAGACACAGTCACCATCACTTGCCGGC
CCAGTCAGAGTATTAGTAGCTGGTTGGCCTGATTATCAGCAGAAACCAGGGAAAGCCCCTAAAGCTCCTGATCTATA
AGCCGTCTAGTTTAGAAAGTGGGGTCCCACTCAACAGGTCAGAGTATAATAGTTATTCTCCACAA
TCAGCAGCCTCAGCCTGATGATTTTGCAACTTATTACTGCCAACAGTATAATAGTTATTCTCCCACATGGACT
TCGGCCAAGGGACCAAGGTGGAAATCAAACGAACTGTGGCTGCACCATCTGTTCTTCATCTCCCGCCATCTGGTT
GGAAGTTGAAATCTGGAACTGCCTTTTGTTGCTGCTGCTGAATAATTCTTCACCAGAGGCCCAAAGTACAG
GCAAGTTGAAATCTGGAACTGCCTCTGTTGTGTCCTGCTGAATTCATCTTCCAGCAGGAGCAAAGGAACACCA
ACAGCCTCAGCACCCTCACACGCTGACACAAAGACCACATCAGGAAAAACACAAAGTCTACCCCTGCCAACACCC
ATCAGGCCTGAGCTCCCCCTCCACAAAGAGCTTCAACAGGGGAAGGTTTAGAGGAGAAAGTCACCCC
ATCAGGCCTGAGCTCCCCCTCCACCCTTCACCCCTTCCACCCCTTTTTCCACAGGGGAAGATCTCCC
TCCTCAGTTCCAGCCTGACCCCTCCCATCCTTTTGCCCTCTGACCCTTTTTCCACAGGGGACATCCCC
TCCTCAGTTCCAGCCTGACCCCTCCCATCCTTTTGCCCTCTGACCCCTTTTTCCACAGGGGACATCCCC
TCCTCAGTTCCAGCCTCACCCCTCCCATCCTTTTGCCCTCTGACCCCTTTTTCCACAGGGGACATCCCC

PCT/IIS2003/028547

878/6881 FIGURE 818

GCGGCCGTTACGGCGCTCAGGCGTCTCGACGCGCGCGATTTAAAACCAGCTCAGGAGACGCCAAGGAAAGATGGG ACCTCCCGGCCCAGCACTGCCAGCCACAATGAATAACTCTTCTTCAGAGACGCGAGGACACCCCCACAGTGCCTC CTCTCCTTCAGAGCGTGTGTTCCCGATGCCCCTGCCCAGGAAGGCGCCTCTCAATATTCCTGGCACCCCAGTCCT CGAAGACTTTCCTCAGAATGACGATGAGAAGGAGCGGCTGCAGCGGAGGCGCTCGAGGGTCTTTGATCTGCAGTT CAGCACTGACTCACCTCGCTTATTGGCCTCCCCCTCCAGCAGGAGTATTGACATTTCAGCTACTATCCCCAAGTT TACAAACACGCAGATTACGGAACATTACTCCACCTGTATCAAACTGTCCACTGAAAATAAAATCACTACCAAGAA AGTGGCTGCGGGTACTCTGGATGCCAGCACCAAGATCTATGCTGTGCGCGTGGATGCCGTCCATGCCGATGTATA CAGAGTCCTTGGGGGGCTGGGCAAAGATGCACCGTCTTTGGAAGAAGTAGAAGGCCATGTTGCTGATGGAAGTGC TACTGAAATGGGAACAACCAAAAAGGCTGTAAAGCCAAAGAAGAAGCACTTACACAGAACTATTGAGCAGAACAT AAACAACCTCAATGTCTCCGAAGCAGATCGGAAGTGTGAGATTGATCCCATGTTTCAGAAGACAGCAGCCTCATT TGATGAGTGCAGCACAGCAGGGGTGTTTCTGTCCACTCTCCACTGCCAGGACTACAGAAGTGAACTGCTGTTTCC CTCTGATGTCCAGACTCTCTCCACGGGAGAACCTCTCGAGTTGCCAGAGTTAGGTTGTGTAGAAATGACAGATTT AAAAGCGCCCTTGCAGCAGTGTGCAGAAGATCGCCAGATCTGCCCTTCCCTGGCCGGGTTCCAGTTTACACAGTG GGACAGTGAAACACATAATGAGTCTGTGTCGGCCCTGGTAGACAAGTTTAAGAAGAATGACCAGGTATTTGACAT CAATGCTGAAGTTGACGAGAGTGACTGTGGAGACTTCCCCGATGGGTCCCTGGGGGATGACTTTGATGCCAACGA TGAACCTGACCACACCGCAGTTGGGGATCATGAAGAGTTCAGGAGCTGGAAGGAGCCCTGCCAGGTTCAGAGCTG CCAGGAAGAAATGATTTCCCTTGGGGATGGAGACATCAGGACCATGTGCCCCCTTCTGTCTATGAAACCTGGAGA ATATTCTTATTTCAGTCCTCGGACCATGTCGATGTGGGCTGGCCCGGATCACTGGCGCTTTAGGCCTCGACGCAA TATTGACTTTGATGTATATTTTAGAAAAACAAAGGCTGCTACTATTCTGACCAAGTCCACTTTGGAGAACCAGAA TTGGAGAGCTACCACCCTTCCTACAGATTTCAACTACAATGTTGACACTCTGGTCCAGCTTCACCTCAAACCAGG CACCAGGTTACTTAAGATGGCCCAGGGCCATAGGGTAGAGACTGAGCATTATGAAGAAATTGAAGACTATGATTA CAACAACCCTAACGACACCTCCAACTTTTGCCCTGGATTACAGGCTGCTGACAGTGATGATGAAGATTTGGATGA CTTATTTGTGGGACCTGTTGGGAACTCTGACCTCTCACCTTATCCTTGCCATCCACCTAAGACAGCACAACAGAA TGGTGACACTCCAGAAGCCCAAGGATTAGACATCACAACATATGGGGAGTCAAACTTGGTAGCTGAGCCTCAGAA GGTAAATAAAATTGAAATTCACTATGCCAAGACTGCCAAAAAGATGGACATGAAGAAACTGAAGCAGCATGTG GAGTCTGCTGACAGCGCTCTCCGGAAAGGAGGCAGATGCAGAGGCAAACCACAGGGAAGCTGGAAAAGAAGCGGC CCTGGCAGAAGTGGCTGACGAGAAGATGCTTAGCGGGCTCACGAAGGACCTGCAGAGGAGCCTGCCCCTGTCAT GGCTCAGAACCTCTCCATACCTCTGGCTTTTGCCTGTCTCCTACATTTAGCCAATGAAAAGAATCTAAAACTGGA AGGAACAGAGGACCTCTCTGATGTTCTTGTGAGGCAAGGAGAT<u>TGA</u>GTTCACTATGGAGAAGTCAGCAGCAGGAG GCCCATCCCTTACTCAGTTGCCGGGACATCCCCAGTCTCGGGGGAAGAAGATGCCATGGGCTTATACCCAGGCTG TAGCCAACTACCAACGTGCCTGTTTGTTTGTTGCTCTTTCCTTCTCCATCATAGTCTGGGTGCCAGCGCCCTG AAGCTCCGTGCTCAACTGATTAAACTTTACTGCCCTATGGTGACCATCTAGGAGAGGGGAGGGCAGAGGGGGTGA GGGTACTATTCTGGATTGAGAAAACCTATATCCATTCTTTATATCAATGTATAGTTTTAGTCTCCTAAATTGATC TGTTATTTTCCAAACTATTCTCTTGTAGAAAATTTTCCAGTGGGCACTTAATGGTGCCCTTGAAGAACTTCCTAA TCCATGTACATAAAATACATCATATGTACACTTATAAATGTATATAGAATGCTCAAAAAATAAAATTCTTAATAAT AGAACTGGCAAAATA

PCT/US2003/028547

879/6881 FIGURE 819

MGPPGPALPATMINISSETRGHPHSASSPSERVFPMPLPRKAPLNIPGTPVLEDFPQNDDEKERLQRRRSRVFDL
QFSTDSPRLLASPSSRSIDISATIFKFTNTQITEHYSTCIKLSTENKITTKNAPGLHLIDFMSEILKQKOTEFT
FKVAAGTLDASTKIYAVRVDAVHADVYRVLGGLGKDAPSLEEVEGHVADGSATEMGTKKAVKPKKKKHRRTTEQ
NINNLINVSEADRKCEIDPMFQKTAASFDECSTAGVFLSTHHCQDYRSELLFPSDVOTLSTGEPLELPELGCVEMT
DLKAPLQQCAEDRQICFSLAGFQFTQMDSETHIBSVSALVDKFKKNDQVFDINAEVDESDCGDFFDGSLGDFDF
NDEPDHTAVGDHEEFRSWKEPCQVQSCQEEMISLGGDIRTMCPLLSWMFQEFYSFFSFRMSWMSQFDHMFFRPR
RKQDAPSQSEMKKSIKKDFEIDFEDDIDFDYYFRKTKAATILTKSTLENQNWRATTLPTDFNYNVDTLVQLHLK
PGTRLLKMAQCHRVETEHYEEIEDVDYNNPNDTSNFCPGLQAADSDDEDLDDLFVGFVGNSDLSFYPCHPFKTAQ
QNGDTPEAQGLDITTYGESNLVAEPQKVNKIEIHYAKTAKKMDMKKKLKGSM%SLLTALSGKEADAEANHREAGKE
AALAEVADEKMLSGLTKDLQRSLPFVMAQWLSIPLAFACLLHLANEKNLKLEGTEDLSDVLVRQGD

PCT/US2003/028547

880/6881 FIGURE 820A

TTCCAAGAAGAAGGATTTGCACCCTCGGGATATTGATGCATTTTTGGCTGCAGCGGCAGCTCAGTCGTTTCTATGA TGATGCCATCGTGTCGCAGAAGAAGGAGGCAGATGAAGTATTGGAGATTTTGAAGACGGCCAGTGATGATCGGGAATG TGAAAATCAGCTGGTTCTGCTGGTTTCAACACCTTTGATTTCATTAAAGTGTTGCGGCAGCACAGGATGAT GATTTTATACTGTACCTTGCTGGCCAGTGCACAAAGTGAAGCTGAAAAGGAAAGGATTATGGGAAAGATGGAAGC TGACCCAGAGCTATCCAAGTTCCTCTACCAGCTTCATGAAACCGAGAAGGAGGATCTGATCCGAGAGGAAAGGTC CCGGAGAGAGCGAGTGCGTCAGTCTCGAATGGACACAGATCTGGAAACCATGGATCTCGACCAGGGTGGAGAGGC ACTGGCTCCACGGCAGGTTCTGGACTTGGAGGACCTGGTTTTTACCCAAGGGAGCCACTTTATGGCCAATAAACG CTGTCAGCTTCCTGATGGATCCTTCCGTCGCCAGCGTAAGGGCTATGAAGAGGTGCATGTGCCTGCTCTGAAGCC CAAGCCCTTTGGCTCAGAAGAACAACTGCTTCCAGTGGAAAAGCTGCCAAAGTATGCCCAGGCTGGGTTTGAGGG CTTCAAAACACTGAATCGGATCCAGAGTAAGCTCTACCGTGCTGCCCTTGAGACGGATGAGAATCTGCTGCTGTG TGCTCCTACTGGTGCTGGGAAGACCAACGTGGCCCTGATGTGCATGCTCCGAGAGATTGGGAAACACATAAACAT GGACGGCACCATCAATGTGGATGACTTCAAGATTATCTACATTGCCCCCATGCGCTCCTTGGTGCAGGAGATGGT AGAAGAGATCAGTGCCACTCAGATCATCGTCTGCACCCCGAGAAGTGGGACATCATCACCCGCAAGGGTGGTGA GCGCACCTACACCCAGCTGGTGCGGCTCATCATTCTGGATGAGATTCATCTTCTCCACGATGACAGAGGTCCTGT CTTAGAAGCTTTAGTGGCCAGGGCCATCCGAAACATTGAGATGACCCAAGAGGATGTCCGACTCATTGGTCTCAG TGCCACCCTACCCAACTATGAAGATGTAGCCACCTTTCTACGTGTTGACCCTGCCAAGGGTCTCTTTTACTTTGA CAACAGCTTCCGTCCAGTGCCTCTGGAACAGACATATGTGGGTATCACAGAGAAAAAAAGCTATCAAGCGTTTCCA CATCATGAATGAAATCGTCTATGAAAAAATCATGGAACATGCTGGAAAAAATCAGGTGCTGGTGTTTGTCCACTC CCGGAAGGAGACTGGAAAGACAGCCAGGGCCATCCGGGACATGTGCCTAGAAAAGGACACTCTGGGTCTGTTTCT GAGGGAGGCTCAGCCTCCACAGAAGTCCTGCGAACAGAAGCTGAGCAGTGCAAGAACCTAGAGCTGAAGGATCT TCTGCCTTATGGCTTTGCTATTCATCACGCAGGCATGACCAGGGTTGACCGAACACTCGTGGAGGATCTTTTTGC TGATAAACATATTCAGGTTTTAGTTTCCACAGCAACTCTAGCTTGGGGTGTGAATCTCCCTGCACATACAGTCAT CATCAAAGGCACCCAGGTGTACAGTCCAGAGAAGGGGGCGTTGGACAGAACTGGGAGCACTGGACATTCTGCAGAT GCTGGGACGTGCCGGAAGACCCCAGTATGACACCAAGGGTGAAGGCATACTCATCACATCTCATGGGGAGCTACA GTACTACCTGTCCCTCATCAACAACTTCCTATTGAAAGCCAGATGGTTTCAAAGCTTCCTGACATGCTCAA CCGAATGCTGCGATCCCCAACCCTCTATGGCATCTCTCATGATGACCTCAAGGGAGATCCCCTGCTGGACCAGCG CCGACTAGATCTGGTTCATACAGCTGCCCTGATGCTGGACAAGAACAATCTGGTCAAGTACGACAAGAAGAAGACGGG CAACTTCCAGGTGACAGAACTGGGCCGTATAGCCAGCCACTACTACATCACCAATGATACAGTGCAGACTTACAA CCAGCTGCTGAAGCCCACCCTGAGTGAGATTGAGCTTTTCAGGGTCTTCTCATTGTCCTCTGAGTTCAAGAACAT CACAGTGAGAGAGGAGGAGAACCTGGAGCTGCAGAAGTTGCTGGAGAGGGTGCCTATCCCTGTAAAGGAGAGCAT TGAGGAACCCAGTGCTAAGATCAACGTTCTTCTGCAAGCCTTCATCTCACAGCTGAAATTGGAGGGCTTTGCACT AGGTTGGGCACAGCTTACAGACAAGACCCTGAACCTCTGCAAGATGATCGACAAACGCATGTGGCAGTCCATGTG TCCTCTGCGCCAGTTCCGGAAACTCCCTGAGGAAGTAGTGAAGAAGATTGAGAAGAATTTCCCCTTTGAGCG TCTGTACGACCTGAATCATAATGAGATTGGGGAGCTTATCCGCATGCCAAAGATGGGGAAGACCATCCACAAATA TGTCCATCTGTTTCCCAAGTTGGAGTTGTCAGTGCACCTGCAGCCTATCACACGCTCCACCCTGAAGGTGGAGCT GACCATCACGCCAGACTTCCAGTGGGATGAAAAGGTGCATGGTTCATCCGAGGCTTTTTGGATTCTGGTGGAGGA TGTGGACAGCGAGGTGATTCTGCACCATGAGTATTTTCTCCTCAAGGCCAAGTACGCCCAGGACGAGCACCTCAT TACATTCTTCGTGCCTGTCTTTGAACCGCTGCCCCCTCAGTACTTCATCCGAGTGGTGTCTGACCGCTGGCTCTC TTGTGAGACCCAGCTGCCTGTCTCCCTCCGGCACCTGATCTTGCCGGAGAAGTACCCCCCTCCAACCGAACTTTT GGACCTGCAGCCCTTGCCCGTGTCTGCTCTGAGAAACAGTGCCTTTGAGAGTCTTTACCAAGATAAATTTCCTTT CTTCAATCCCATCCA GACCCAGGTGTTTAACACTGTATACAACAGTGACGACAACGTGTTTGTGGGGGCCCCCAC GGGCAGCGGGAAGACTATTTGTGCAGAGTTTGCCATCCTGCGAATGCTGCTGCAGAGCTCGGAGGGGCGCTGTGT GTACATCACCCCCATGGAGGCCCTGGCAGAGCAGGTATACATGGACTGGTACGAGAAGTTCCAGGACAGGCTCAA CAAGAAGGTGGTACTCCTGACAGGCGAGACCAGCACAGACCTGAAGCTGCTGGGCAAAGGGAACATTATCATCAG CACCCCTGAGAAGTGGGACATACTTTCCCGGCGATGGAAGCAGCGCGAAGAACGTGCAGAACATCAACCTCTTCGT

PCT/HS2003/028547

881/6881 FIGURE 820B

GGTGGATGAGGTCCACCTTATCGGGGGCGAGAATGGGCCTGTCTTAGAAGTGATCTGCTCCCGAATGCGCTACAT $\tt CTCCTCCCAGATTGAGCGGCCCATTCGCATTGTGGCACTCAGCTCTTCGCTCTCCAATGCCAAGGATGTGGCCCA$ $\tt CTGGCTGGGCTGCAGTGCCACCTCCACCTTCAACTTCCATCCCAATGTGCGTCCCGTCCCCTTGGAGCTGCACAT$ CCAGGGCTTCAACATCAGCCATACACAAACCCGCCTGCTCTCCATGGCCAAGCCTGTGTACCATGCTATCACCAA GCACTCGCCCAAGAAGCCTGTCATTGTCTTTTGTGCCGTCTCGCAAGCAGACCCGCCTCACTGCCATTGACATCCT CACCACCTGTGCAGCAGACATCCAACGGCAGAGGTTCTTGCACTGCACCGAGAAGGATCTGATTCCGTACCTGGA GAAGCT AAGTGACAGCACGCTCAAGGAAACGCTGCTAAATGGGGTGGGCTACCTGCATGAGGGGCTCAGCCCCAT GGAGCGACGCCTGGTGGAGCAGCTCTTCAGCTCAGGGGCTATCCAGGTGGTGGTGGCTTCTCGGAGTCTCTGCTG GGGCATGAACGTGGCTGCCCACCTGGTAATCATCATGGATACCCAGTACTACAATGGCAAGATCCACGCCTATGT GGATTACCCCATCTATGACGTGCTTCAGATGGTGGGCCACGCCAACCGCCCTTTGCAGGACGATGAGGGGCGCTG TGTCATCATGTGTCAGGGCTCCAAGAAGGATTTCTTCAAGAAGTTCTTATATGAGCCATTGCCAGTAGAATCTCA CCTGGACCACTGTATGCATGACCACTTCAATGCTGAGATCGTCACCAAGACCATTGAGAACAAGCAGGATGCTGT GGACTACCTCACCTGGACCTTTCTGTACCGCCGCATGACACAGAACCCCAATTACTACAACCTGCAGGGCATCTC CCATCGTCACTTGTCGGACCACTTGTCAGAGCTGGTGGAGCAGACCCTGAGTGACCTGGAGCAGTCCAAGTGCAT CAGCATCGAGGACGAGATGGACGTGGCGCCTCTGAACCTAGGCATGATCGCCGCCTACTATTACATCAACTACAC CACCATTGAGCTCTTCAGCATGTCCCTCAATGCCAAGACCAAGGTGCGAGGGCTTATCGAGATCATCTCCAATGC AGCAGAGTATGAGAACATTCCCATCCGGCACCATGAAGACAATCTCCTGAGGCAGTTGGCTCAGAAGGTCCCCCA CAAGCTGAATAACCCTAAGTTCAATGATCCGCACGTCAAGACCAACCTGCTCCTGCAGGCTCACTTGTCTCGCAT GCAGCTGAGTGCTGAGTTGCAGTCAGATACGGAGGAAATCCTTAGTAAGGCAATCCGGCTCATCCAGGCCTGCGT GGATGTCCTTTCCAGCAATGGGTGGCTCAGCCCTGCTCTGGCAGCTATGGAACTGGCCCAGATGGTCACCCAAGC CATGTGGTCCAAGGACTCATACCTGAAGCAGCTGCCACACTTCACCTCTGAGCATATCAAACGTTGCACAGACAA CCAGATTGCAGATGTGGCTCGCTTTTGTAACCGCTACCCTAATATCGAACTATCTTATGAGGTGGTAGATAAGGA CAGCATCCGCAGTGGCGGGCCAGTTGTGGTGCTGGTGCAGCTGGAGCGAGAGGAGGAAGTCACAGGCCCTGTCAT TGCGCCTCTCTCCCGCAGAAACGTGAAGAGGGCTGGTGGTGGTGATTGGAGATGCCAAGTCCAATAGCCTCAT AGAAGCTGAGACAGACAGTGATTCAGATTGAGTCCTGAGGCATTTACTTTTGGGTAAAGGAGAGTTGAGCCTGAA $\tt TGGTGCTGTCCCCGCCTACCTCCACTTCCTTTCCCTTGCTCACTCTGGATCCAGTGACAGCAGGTGTCATGGGTC$ AAGCATRAATCATATATAGCATTTTCAGGCATGTTCCTGGTAGTTCTTTTGAGTCTGACATTCTAATAAAATAAT TTGTAGAAACC

PCT/HS2003/028547

882/6881 FIGURE 821

 ${ t MADVTARSLQYEYKANSNLVLQADRSLIDRTRRDEPTGEVLSLVGKLEGTRMGDKAQRTKPQMQEERRAKRRKRD}$ EDRHDINKMKGYTLLSEGIDEMVGIIYKPKTKETRETYEVLLSFIQAALGDQPRDILCGAADEVLAVLKNEKLRD KERRKET DI.I.I.GOTDDTRYHUI.VNI.GKKTTDYGGDKETONMDDNIDETYGVNVOFESDEEEGDEDVYGEVREEAS DDDMEGDEAVVRCTLSANLVASGELMSSKKKDLHPRDIDAFWLQRQLSRFYDDAIVSQKKADEVLEILKTASDDR ECENOLVLLIGFNTFDFIKVLROHRMMILYCTLLASAQSEAEKERIMGKMEADPELSKFLYQLHETEKEDLIREE RSRRERVRQSRMDTDLETMDLDQGGEALAPRQVLDLEDLVFTQGSHFMANKRCQLPDGSFRRQRKGYEEVHVPALKPKPFGSEEOILPVEKLPKYAOAGFEGFKTLNRIOSKLYRAALETDENLLLCAPTGAGKTNVALMCMLREIGKHI NMDGTINVDDFKIIYIAPMRSLVOEMVGSFGKRLATYGITVAELTGDHQLCKEEISATQIIVCTPEKWDIITRKG GERTYTOLVRLIILDEIHLLHDDRGPVLEALVARAIRNIEMTQEDVRLIGLSATLPNYEDVATFLRVDPAKGLFY FDNSFRPVPLEQTYVGITEKKAIKRFQIMNEIVYEKIMEHAGKNQVLVFVHSRKETGKTARAIRDMCLEKDTLGL ${ t FLREGSASTEVLRTEAEQCKNLELKDLLPYGFAIHHAGMTRVDRTLVEDLFADKHIQVLVSTATLAWGVNLPAHT$ VIIKGTQVYSPEKGRWTELGALDILQMLGRAGRPQYDTKGEGILITSHGELQYYLSLLNQQLPIESOMVSKLPDM LNAEIVLGNVONAKDAVNWLGYAYLYIRMLRSPTLYGISHDDLKGDPLLDQRRLDLVHTAALMLDKNNLVKYDKK TGNFQVTELGRIASHYYITNDTVQTYNQLLKPTLSEIELFRVFSLSSEFKNITVREEEKLELQKLLERVPIPVKE SIEEPSAKINVLLQAFISQLKLEGFALMADMVYVTQSAGRLMRAIFEIVLNRGWAQLTDKTLNLCKMIDKRMWQS MCPLRQFRKLPEEVVKKIEKKNFPFERLYDLNHNEIGELIRMPKMGKTIHKYVHLFPKLELSVHLQPITRSTLKV ELTITPDFOWDEKVHGSSEAFWILVEDVDSEVILHHEYFILKAKYAODEHLITFFVPVFEPLPPOYFIRVVSDRW ${\tt LSCETQLPVSFRHLILPEKYPPPTELLDLQPLPVSALRNSAFESLYQDKFPFFNPIOTOVFNTVYNSDDNVFVGA}$ PTGSGKTICAEFAILRMLLOSSEGRCVYITPMEALAEOVYMDWYEKFODRLNKKVVLLTGETSTDLKLLGKGNII ISTPEKWDILSRRWKORKNVONINLFVVDEVHLIGGENGPVLEVICSRMRYISSQIERPIRIVALSSSLSNAKDV AHWLGCSATSTFNFHPNVRPVPLELHIQGFNISHTQIRLLSMAKPVYHAITKHSPKKPVIVFVPSRKQTRLTAID ILTTCAADIQRQRFLHCTEKDLIPYLEKLSDSTLKETLLNGVGYLHEGLSPMERRLVEQLFSSGAIQVVVASRSL ${\tt CWGMNVAAHLVIIMDTQYYNGKIHAYVDYPIYDVLQMVGHANRPLQDDEGRCVIMCQGSKKDFFKKFLYEPLPVE}$ SHLDHCMHDHFNAEIVTKTIENKODAVDYLTWTFLYRRMTQNPNYYNLQGISHRHLSDHLSELVEQTLSDLEQSK CISIEDEMDVAPLNLGMIAAYYYINYTTIELFSMSLNAKTKVRGLIEIISNAAEYENIPIRHHEDNLLRQLAQKV PHKLNNPKFNDPHVKTNLLIQAHLSRMQLSAELOSDTEEILSKAIRLIQACVDVLSSNGWLSPALAAMELAQMVT QAMWSKDSYLKQLPHFTSEHIKRCTDKGVESVFDIMEMEDEERNALLQLTDSQIADVARFCNRYPNIELSYEVVD KDSIRSGGPVVVLVOLEREEEVTGPVIAPLFPOKREEGWWVVIGDAKSNSLISIKRLTLQQKAKVKLDFVAPATG AHNYTLYFMSDAYMGCDOEYKFSVDVKEAETDSDSD

PCT/HS2003/028547

883/6881 FIGURE 822

GTGCTCAGGCACTTGGGAGGTCTGGGAGCTCCTCAGTGTGACCGCTGGGACCCACCAGGACTTTTTCCTTTGTCA GAAGCCTTTGGTTGCTTTGCTGCTCTGCATGTGTCACTGTGGAGGGGCAATAGAGCAAGGCCTTACATGGCATGG TCATTTCTCGGGCCCAGGAGGCTTAGAGGCCTGCCCCTGGCGCTCAAGTATTGAACCAGAACCATGGGGTGGCAC TGAAGCCTCCTCACCACATCATGATAAATAACGGGGACATTCACAGAGCAGGCACTGTTTCCTCAGTCCATGGCT GAGTACATCACCGGTGTTTTCTCTCTTATTCCTCCCATCAAGCCTAAAAGGAATCTCTATTGGAGATACTGCCAT TAGTGTTCCTTTTATAGGTGAGGAACTGAGGCATAGAGGGTTCCCCAGTTGAACCAACTGATAAATAGTAGAACT TGGATTTTAATTCAGTCTTGATGCCAGGGATAAGGCTCTTACTTTCTACCTTAGGCTATTTCTAGGAAACGCAGG AGAGTGTTGAAGGGGCAGAAAAGGGATCCAGTTCCTTTCTGTCCCGCATCCTAGTCCCTGAGAAGCAAAGAAGA ATGTGTGGCTTCTTTTGCTTTGCTTTTGTTCATCCCACACATCTCCAGGGGACCTGGGCTCTTGATCTTGGCC TCTTCCCCTTTAACTGTTAAGTGGGAGCAGGTAAGGGGGTACAGTAGGGCTTGGAGTTAGAGGCTTGGATG $\tt CCTTAGCTCCTCTGTCTGCACTCCAGAACTGCCTGACTTCATTTCGTATGTTGTCCTTTGTTTTGACAATTGATC$ GTATACAACAGTGACGACAACGTGTTTGTGGGGGCCCCCACGGGCAGCGGGAAGACTATTTGTGCAGAGTTTGCC ATCCTGCGAATGCTGCTGCAGAGCTCGGAGGGGCGCTGTGTGTACATCACCCCCATGGAGGCCCTGGCAGAGCAG GTATGACGTGGCGCTGTGTCATGTGAATTTCCCAAGAAGCATTTCATCTGTGATTCCGTATGAAGGCTTTCTAAG CCCTGAAATTTGCAGGGTCATTTCCTCAGTTTGTGTATTAAAGAAAAGCTGCCCCAGCCAAGCGTGGTGGCTCAC GCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGGCAGATCTCCGGAGATCAGGAGTTCGAGACCAGCCTGGCC AACATGGTGAAACCCTGTCTCTACTAAAAATACAGAAATTAGCTGGGCGTGGTGGTGTGCGCCTGTAATCCCAGC TACTTGGAAGGCTGAGGCAGGAGAATCGCTTGAACCCGGGAGGCGGAGGTTGCAGTGAGCCAAGTTCGCACCACT GCACTCCAGCCTGGGCAACAAGAGCGAGACTTCATCTCA

PCT/HS2003/028547

884/6881 FIGURE 823

GGCCCCGGGCCCCGCTGGAGGTCGCCGAGGAGCCACAGGGCTGACTGGTCTGCTGCCCGGGCCCAGGAGTGCCT GGTGTAGCAGTCGCGGAGCCATCCCGGCGTCTGCCGCCATGACCGACTCTCCCCTCAGAGGAGACTCTTCCTCAG GGGGACGCTGCGACCACCGCCTGCGCCCCTCCGGACTGGTTCCTTGGGCCCCGGAAGCTCGCGGGGGCCCTGCG CTCTACTCCGAGAGCTCACGCCGCGTTCTCCTCGGCCGCCTCTGGCGCCGGCTGCACGGCCGTCCTGGCCATGCC TCTGCCTTGATGGCGGCGTTAGCCGGCGTCTTCGTTTGGGACGAGGAGGAGCATCCAGGAGGAGGAGTTGCAGAGA TCTATTAATGAGATGAAGCGGTTGGAAGAAATGTCAAATATGTTTCAGAGCTCTGGAGTCCAGCACCACCCTCCA GAACCAAAAGCCCAAACAGAAGGGAATGAAGATTCAGAGGGCAAAGAGCCAACGTTGGGAAATGGTGATGGATAAG GATGTGACACCTCGGCAGTTCTTCAATGTTCAGCTGGACACAGAGTATAGAAAAAAATGGGATGCCCTGGTAATC AAGCTGGAGGTGATTGAGAGGGATGTGGTTAGTGGTTCCGAGGTTCTTCACTGGGTAACCCATTTTCCTTATCCA ATGTACTCACGGGATTATGTTTATGTTCGGCGGTATAGTGTGGATCAGGAAAACAACATGATGGTGTTGGTGTCG CGTGCTGTGGAGCATCCGAGTGTGCCAGAGTCTCCAGAATTCGTCAGGGTCAGATCATATGAATCCCAAATGGTT TTTCCTCGCTACTGTTAGTTGGATGGTTTCCAGTGGCATGCCAGATTTCCTGGAGAAGCTGCACATGGCCACT CTGAAAGCCAAGAATATGGAGATTAAAGTAAAGGACTACATCTCAGCTAAGCCTCTGGAAATGAGTAGTGAAGCC AAGGCCACCAGCCAGTCCTCTGAGCGAAAGAACGAGGGCAGCTGTGGCCCTGCTCGGATTGAGTATGCTTGACAG GCTTTGGGATAAGAAGGGACAAGGTGCTTCTAGCCCTGTCTCAGTCCGTTATCACTCTGCTGTAGAAGGGGGACA TGCCACATGTATTAGAAGGCATCTGCTGTAACTTCCAGTGCAAGATAATTCAATAACTGATGTCCCATTTCATTC AGAGCCCTTATTGCTCTTATCAAAACAGAAGAAGGCTACATTTGTGGGAGTGTTGTCATATTCTCAGGCCAACTG TTTTGAAATTCGGTATCTCACTGAGCTAATCTGGAACAAACCTCTCACCTCAGGCCAGAAGGGGATGACCTCCAT TTGCTTCTCTGAGTAGTTTCCTCTGCTGACATTCCAAATCCCACCATCGATTGTGCAGCGCTTTGGATTTCCTTC AGTTCTCCAGGTCCACCTGGAAAGTATAGTTGGCCAGTTGAGTCTCTCAAATGAGGGGCTACTGGGAGTGCTCTT GGTAACAATCATGATGTGAATGGGTGTGAACGATACTTGGCTATGTTAAGTGCCTTGTCCGCACCTTGCTTTTAT TATCACCCATTGACTCACCTTATCCAAAGCAAGTTTCCTGTGAATCGGCCAGTTCTTCTATATTCATTGGATCAT TGCCTCCTTCCTAACCTTCCCCATTTACCAAGAACACTGGGAGACTAATCCTTTTAGATAGTAGCTTTTTGATGC TCAAAACATCACATTTAAATTTAGTTTAAAAATTTTTTAACTTTTGTGTCAAATAGGAGTTGAGGAATTGAGCAG GATTCTACCCTAGTCCGATTGTATAGAAAACACCATTTTGATTCAGGTATTATTTTTCATATTTCAGGTTTGACT TGTTCTTTTCAGAAGGCTAAAGTCAGAGGAATGGGGGCTGGGCCACTCCCTTGGAGCTCTCAGATCTACAGACAA GCTGTGTGAATGCATAGATGTAATCTTGTCTCAAATACTAATACAGTGGAGATTTGGTTTATGTTACCATTAAGT TCCTCTAAAAAGTTTTTCTTCCTCTCTCAGAGCCAAAATAAAAGTGAACTACACTGTTCAGATAAGGTCACAAT CTGATGCTGTCAGTTTGACCGAGCTGGTTTTGCTTATGGTCATGCTGCAATTTGTTAGAATAATAGGGATCAAGT CCTGCTTGCTACTGTTTTGTGGTGTTGAAAAGTGGTTTAAACCTGAGACTAACTTAAACACTTCCTTGACCTTCT TGTTGCCTGTTCATTTTTGTGCCAAGGAAGTAGCTGCCCCAGTGTATGTCTTGCCTTCTCCGCGTCATTGTTGGA AGAGGAGAGATGCATCGAGCAGTCCCAGCTGCTTTTCATTTATTACTTCTTTTTCCAGGACCTGACAGAAGTCA GGGAAGAGTCCCTGGGTTATGTCCAAACTTAGCACCTGCAATTGTTGGGATGTGGATGTGTGCATAAGAGA

PCT/US2003/028547

885/6881 FIGURE 824A

CGCGCTTAGGGATCCGGCCGTGGCCGAGCGCGCGGCCGTAAGACCGCGGGTGACTAGCATGCAGATACCCATGCT CTGACTTTCTGCCCCTCCACTGACATGGCCCACCGGGGTGGGGAGAGGGACTTCCAGACTTCAGCTCGACGCATG GGCACCTCGCTGCTCTTCCAGCTTTCAGTGCATGAACGGGAGCTGGACCTGGTTTTTCTGGATCATAGCTATGCC CACGAAAGTACCATTGAATCAGACGTCCCAATAGATGTGGAGACGGTCACATCAACGCCTATGCCACTCTATGAC AATCAGAAGGCACGCAGCGTGATGAATGAGTGTGAACGGCATGTCATCTTTGCCAGGACTGATGCAGATGCCCCT ATCCTCAAAGCCCTGCAGTCTGACCGGCTTGCCCGCTTGGCCAACGAAGGGGCTTGTAATGAGCCAGTGCTGCGC CGTGTTGCTGTGGACAAGTGTGCAAGGAGAGTGCGGCAGGCTCTGGCAAGTGTGAGCTGGGATACCAAGCTGATC CTGAAGGGGAAGATCCCAACCTTGATTGACCGGATGCTTGTGTCATCCAACACAAAGACTGGGGCTGCAGGAGCT GAGGCCTTGTCTCCCTACTGAAGAGGCCCTGGGACCCTGCTGTGGGTGTGCTTTCTCATAACAAACCAAGCAAA CGCTTCTGGCAATCTCAGCTGTCCTGCTTGGGCAAGGTCATCCCTGTAGCCACCCATCTGCTGAACAATGGCAGT GGGGTAGGAGTTCTACAGTGTCTCGAGCATATCATTGGGGCCAGTGAGAAGCCAAAGTGCTGGAGATTCACAGCCAT TTCCCACACAAACCCATTATCTTGATTGGCTGGAACACAGGAGCTTTGGTGGCCTGTCATGTCAGTAATGGAG TATGTCACTGCAGTTGTCTGCCTTGGGTTTCCTCTGCTTACTGTGGATGGCCCCAGAGGGGATGTAGATGATCCC CTCTTGGATATGAAGACTCCAGTCCTCTTTGTCATTGGTCAGAATTCCCTTCAATGTCACCCTGAAGCCATGGAG GACTTCCGGGAGAAGATTCGAGCTGAGAACAGCTTGGTGGTGGTTGGGGGAGCTGATGACAATCTCAGAATAAGC AAAGCAAAGAAAATCAGAAGGGTTGACTCAGAGCATGGTGGACAGATGTATTCAGGATGAGATTGTGGACTTT CTGACTGGAGTGCTCACTCGTGCTGAGGGTCACATGGGCTCTGAACCTCGGGATCAGGATGCTGAGAAGAAGAAG AAGCCCCGCGATGTGGCCCGCAGAGACTTGGCCTTTGAAGTCCCTGAGCGGGGCAGTCGACCTGCCTCCCCAGCT GCCAAGCTGCCCGCCTCACCCTCAGGCTCAGAGGATCTCTCCAGTGTGTCCAGCAGCCCCACCTCCAGTCCCAAG ACCAAAGTGACCACAGTGACCTCTGCCCAGAAGTCCAGTCAGATTGGAAGTTCTCAGCTGCTGAAGAGACATGTG CAGCGGACAGAAGCTGTGCTGACCCACAAACAAGCTCAAGCACAGTTTGCTGCTTTTCTGAAACAAAATATGCTG GAGAAAGAGGATCTTAGGGTTCAGCTGAAGCGACACCATCCCTCGAGTCCCCTTCCTGGCAGTAAGACCTCCAAA $\tt CGACCGAAGATCAAGGTGTCCCTTATCTCCCAAGGGGACACAGCTGGAGGGCCTTGTGCTCCTTCCCAAGGAAGT$ GCTCCAGAAGCTGCAGGTGGGAAGCCCATCACCATGACACTGGGGCAGGCTTCAGCAGGGGCCAAGGAGCTCACA GGGGCCACATCAGCCAGCAGCCTCCTCCAAGGCCTCAGCTTCAGCTTGCAGGATATCAGCAGCAAGACCTCTGGC CTTCCAGCAAATCCCTCCCCAGGACCAGCCCCACAGGCTTGAAGGTCCCCACCACCATTACTCTGACACTTCGTG GCCAGCCGAGCAGGATCACTACACTGAGCCCTATGGGCTCAGGAGCAGCCCCATCCGAGGAGTCCTCTTCCCAGG TGCTGCCCTCCAGCTCACAGCGCCTGCCTCCAGCACCCTGAAGATGCTGTGATATGTCCTCCTTACCAAGTTG GTGATGGCTGCCTCATGGTGGGCCCTGGACAGGTGTGTGGTCCTGCTGAGCTGTCCACGTGTCGGAAGACCTGTT TAAGACAGTCATTTTTGCCTCTCCGCCAACTGTCTTCAGAGAAACCATTAGGTTAGGTGATACGGTGCCAGCAAG GGAAGCACCATCGTCCAGGATCTGCAAATCTGGTTCCTGGGAACCCCAGACTCCTCAGCAGATCTGGCTGTACAT GGATTTCGGGAGTTAGAATGGAAAGCTCTTTGCTAAAGACTGGAGTCATCCTGGCCTGCCAACTGGTGGTTCAGA GCCGGACGGGCTTGTTTTGGACATCACTGTTGCCTTCACTCAGCAGCCACGGGAGAGTGCTCCCCATGCAACTCC ACCTTAGAAACCACGTCAGATACTGAGTAGCTTGCTGACTCCTGGAAACTTCTGGTTTTTGTTAGTATCATAATG AAGGCAAAGAGAACTAGGCTGTCATCTTTCAGCCTCTTTGACTTACTCTAGATGTTGGGAGCAGTGGTTGCCAGG TGAAACCTGGGCCCTTTGTCTTTTTCACCATGCTTTGGGCAGTTTCTGTATCCAGAGAGTCCGCAGGTTCAGATA AGCTGAAGAAGAGTAATAGAACAGCAAAGGAAGTGGCTTGAAGGATGTGCTAGTAAGCCCTGTGGTTTGTGCTTA GGTCTCTGCTCTGCTACCCAAGGAACTGGTGGTTCAGCTGGAGATAAAAAGAAGAATTTGCCAAGTCAGAGAAGA AACCCCAACCCCGGAAAATCCTCTGTCTCCAGTCTCTGGAGGTGAAGCAGGGACAATAAGCTAAGGTAGTATCTT

PCT/HS2003/028547

886/6881 FIGURE 824B

GGCCATCCCAGGAAACTTGTGGCATTAGGACGATGAAGGCCATGCTTCAGTGTTTTCGTTTCTATTTCATGAGAC TTTTTGTCTTCCTGCTTACAAGTGGGAAGATGATTGACAGTGACTCTACTATGCAGGGCTGTTGGTACCAACCTG AGCCCTATAGGTGGCAGTCCCTGGAGAAGTGGTCACAGAAGATGGAGCTCTGATCCCCTGCTTACCTCTTCACAA CACTTGTGTGCAAAGATAGTTTTAGATTTGGTTTAGAAGCTATCCTCCAGAACAGGCTCCCATACTTAGAATGTT TCTAGTTAAGGTAATAAATTAGGCAACCCAAGTGTGACTCCACTCAAGTGTCCTTTTCTGTAGGCAGGAAGGGCC CACAACATGGCTTAAAATGTAGTCCATGGTTCTGGCCCACAGTACAGTGTGTATCTATACCAGGTCACCTGTGTT CAATCTGGGAGCCTTCCTGGCCAGTCTGAGTGGCAGCCAGAAGGGAGCTCATAGTGTCTAGGAGTCTCAGGCAAG TGACCTGAAAAGCTGATCTCAACAGGGATTCACACAGAATTAGGCTGTTTTTTGCATTAGCTGGTAGGTGACTT TCTCAAAATTCTTAAATTCAGAAAGTATTTAGTAAACTTGAGGAAGGTATGAAATCTGGAGGAGGCATCCAGGAC CCAGGGGTTTGATAGCTTTACAGGTAGGATCATACCACCCAAAAGAGCAGTGGACAATAAGACTATATGAGCTA TATGAAGCTTTTAGGAATCATTTAGGACAGACAGACCCTAAACAACCCATTCATGACTTAAGTTGTTGGCTCAG TGTATGCTGGGGACAAAGAAAACTAACAAGCCGACCTGCCTTTATGATAAATTCTAGTGTGCTTACAAGGGATG ACTTCCTGAGGTGTGATCTGTCCACCTTGAAGAACTCCACAACTGAAGAAGGGGAGCTGTGAGAACGTGGATTGT TCTACAACTTGCACAGGGTAACAGAGGAAGTGGCTGAGGCCTAGAGTCACGTTTTCCAGTTCCCTTCGCAAACTA TATTTCTTGGAACGCGAAAGGAAGCTTTACCTATTTCATAGAAGACCTGGAATCCATAACCTCAGAAGGCAATAT TATTGATAGAAAATGTGGAAGGATCAGGAAGTTCTTAGATTCTTGGATGACAGATGCATGTTGATGCCCTATGGA . M GATGTCCTTGTGTTTTGAGGTCACTGAGGTAGGAAGACCTGTCTACTCTTGGTTTCACCACTAGAACAGTCTTGG GCTGGATGGGTTATAGAGCTGAGCGGCTGTGATGGTTCTGTTTTTACATTAACAAAAACAATTAAAAACACCAAA AAC

PCT/US2003/028547

887/6881 FIGURE 825

CACACCCTGCAGGACACCTCCTGGCACAACACCACCTTCTTTGGGGTTTTTCAAGCACAGTGGGGTGACATGTAC CTGTCGGCCATCTGTGAGTACCAGTTGGAAGAGTCCAGCGGGTGTTTGAGGGCCCCTATAAGGAGTACCATGAG GAAGCCCAGAAGTGGGACCGCTACACTGACCCTGTACCCAGCCCTCGGCCTGGCTCGTGCATTAACAACTGGCAT CGGCGCCACGGCTACACCAGCTCCCTGGAGCTACCCGACAACATCCTCAACTTCGTCAAGAAGCACCCGCTGATG GCTGTGAGCCTGGGGCCCTGGGTTCACCTGATTGAGGAGCTGCAGCTGTTTGACCAGGAGCCCATGAGAAGCCTG GTGCTATCTCAGAGCAAGAAGCTGCTCTTTGCCGGCTCCCGCTCTCAGCTGGTGCAGCTGCCCGTGGCCGACTGC ATGAAGTATCGCTCCTGTGCAGACTGTGTCCTCGCCCGGGACCCCTATTGCGCCTGGAGCGTCAACACCAGCCGC TGTGTGGCCGTGGGTGGCCACTCTGGATCTCTACTGATCCAGCATGTGATGACCTCGGACACTTCAGGCATCTGC AACCTCCGTGGCAGTAAGAAAGTCAGGCCCACTCCCAAAAACATCACGGTGGTGGCGGGCACAGACCTGGTGCTG GGGTCCTTCCTCTACGATGCCCGGCTCCAGGCCCTGGTTGTGATGGCTGCCCAGCCCCGCCATGCCGGGGCCTAC CACTGCTTTTCAGAGGAGCAGGGGGGCGCGGCTGCTGAAGGCTACCTTGTGGCTGTCGTGGCAGGCCCGTCG TGCCTGGTGCTGCTGCTGGTGCTGTCATTGCGCCGGCGGCTGCGGGAAGAGCTGGAGAAAGGGGCCAAGGCT ACTGAGAGGACCTTGGTGTACCCCCTGGAGCTGCCCAAGGAGCCCACCAGTCCCCCCTTCCGGCCCTGTCCTGAA CCAGATGAGAAACTTTGGGATCCTGTCGGTTACTACTATTCAGATGGCTCCCTTAAGATAGTACCTGGGCATGCC CGGTGCCAGCCCGGTGGGGGGCCCCCTTCGCCACCTCCAGGCATCCCAGGCCAGCCTCTGCCTTCTCCAACTCGG CTTCACCTGGGGGGTGGGCGGAACTCAAATGCCAATGGTTACGTGCGCTTACAACTAGGAGGGGAGGACCGGGGA TCCAACCCCGAGGAGTCATCAGTATGAGGGGAACCCCCACCGCGTCGGCGGGAAGCGTGGGAGGTGTAGCTCCTA CCCACCGGCCATGAGGACCTGCTCTGCTCAGCACGGGCACTGCCACTTGGTGTGGCTCACCAGGGCACCAGCCT CGCAGAAGGCATCTTCCTCCTCTCTGTGAATCACAGACACGCGGGACCCCAGCCGCCAAAACTTTTCAAGGCAGA ${\tt GCGCTTGTGGCATAGCCTTCCTGTTTCTGTCAAGTCTTCCCTTGGCCTGGGTCCTCCTGGTGAGTCATTGGAGCT}$ ATGAAGGGGAAGGGGTCGTATCACTTTGTCTCTCCTACCCCACTGCCCCGAGTGTCGGGCAGCGATGTACATAT GGAGGTGGGGTGGACAGGGTGCTGTGCCCCTTCAGAGGGAGTGCAGGGCTTGGGGTGGGCCTAGTCCTGCTCCTA AGGGGAGAGAAGGGAGAGGGTGGGCCTGCTGTGGACAATGGCATACTCTCTTCCAGCCCTAGGAGGAGGGCTCCT AACAGTGTAACTTATTGTGTCCCCGCGTATTTATTTGTTGTAAATATTTGAGTATTTTTATATTGACAATAAAAT GGAGAAATGAAAAAAAAAAAAAAAAAAAAAAA

PCT/HS2003/028547

888/6881 FIGURE 826

MYLSAIGEYQLEEIQRVFEGPYKEYHEEAQKWDRYTDPVPSPRPGSCINNWHRRHGYTSSLELPDNILNFVKKHP LMEEQOGPRWSRPLLVKKGTNFTHLVADRVTGLDGATTTVLFIDTGDGALLKAVSLGPWYHLIEELQLFDQEPMS SLVLSQSKKLLFAGSRSQLVQLPVADCMKYRSCADCVLARDPYCAWSVNTSRCVAVGHSGSLLIQHWYTSDTSG ICNLRGSKKVRPTFKNITVVAGTDLVJPCHLSSNLAHARWTFGGRDLPAEQPGSFLYDARLQALVVMAAQPRHAG AYHCFSEEQGARLAAEGYLVAVVAGPSVTLEARAPLENLGLVWLAVVALGAVCLVLLLLVLSIRRRLREELEKGA KATERTLVYPLELPKEPTSPPFRPCPEPDEKLWDPVGYYYSDGSLKIVPGHARCQPGGFPSPPFGIFQQPLPSPTRIHLGGGRNSNANGYVRLQLGGEDRGGLGHPLPELADELRRKLQORQPLPDSNPEESSV

PCT/US2003/028547

889/6881 FIGURE 827

PCT/US2003/028547

890/6881 FIGURE 828

MASRLLRGAGTLAAQALRARGPSGAAAMRSMASGGGVPTDEEQATGLEREIMLAAKKGLDPYNVLAPKGASGTRE DPNLVPSISNKRIVGCICEEDNTSVVWFWLHKGEAQRCPRCGAHYKLVPQQLAH

PCT/US2003/028547

891/6881 FIGURE 829

TTGCAGCCGCCGGCAGCTACTGCAAGGCAAAAGCCGGAGTGGACGTGTCTTTTGAAACTGCTGCTCTTTCACTTC GACATGTTTTCCAAAGTCCTGGAGCATCAGCTGCTTCAGACTACCAAACTGGTGGAAGAACATTTGGATTCTGAA ATTCAAAAACTGGATCAGATGGATGAGGATGAATTGGAACGCCTTAAAGAAAAGAGACTCCAGGCACTAAGGAAA GCTCAACAGCAGAAACAAGAATGGCTTTCTAAAGGACATGGGGAATACAGAGAAATCCCTAGTGAAAGAGACTTT TTTCAAGAAGTCAAGGAGAGTGAAAATGTGGTTTGCCATTTCTACAGAGACTCCACATTCAGGTGTAAAATACTA GACAGACATCTGGCAATATTGTCCAAGAAACACCTCGAGACCAAATTTTTGAAGCTGAATGTGGAAAAAGCACCT TTCCTTTGTGAGAGACTGCATATCAAAGTCATTCCCACACTAGCACTGCTAAAAGATGGGAAAACACAAGATTAT GTTGTTGGGTTTACTGACCTAGGAAATACAGATGACTTCACCACAGAAACTTTAGAATGGAGGCTCGGTTCTTCT GACATTCTTAATTACAGTGGAAATTTAATGGAGCCACCATTTCAGAACCAAAAGAAATTTGGAACAAACTTCACA AAGCTGGAAAAGAAAACTATCCGAGGAAAGAAATATGATTCAGACTCTGATGATGAT<u>TAG</u>AGCTCAATAATTCTT TGTAAATTGTCITTTTTTTTCTGCTTCAGATTTAAATGTGTTTTTAAAATTCTATTAATGTCTATACATTGGTCA ${\tt CCTARATACTCATATTCTCGAGTTTTATACAGTTGTATCACATCGAAAAGTGTCTTTACTGTTTTCTGTGTGGCC}$ ATCATGTTTAAGTTGAGGAAAACTCAGTTCTTAAATTATCTGGGAAGGGTCTGGATTCTCTATTTTTGAGATTGA CTTTATCACAATATGATTCTTACATCTTTATACCATTTACAATTGTGTTTTAGATCTACAGAGTTAGAAATTCGA AAACTATTCCAGGACTAATTCTTAATCGGCATTATTTATACAAGAGGTCAAGTAACATTTACTAGCGCAATACTG ACACTGCATGTTGATGTTGAATCAACTGATGCCAGCAGAAAGCTATTTTGATTTGTGAACATACTGCCTTATTTA AAGGGTCCTGATTGCTTGTATTTTAAGACATTCATTAAAAAGAAACCAGGAAACACTTTTGAAATAACAGCATAA

PCT/US2003/028547

892/6881 FIGURE 830

MEADASVDMFSKVLEHQLLQTTKLVEEHLDSEIQKLDQMDEDELERLKEKRLQALRKAQQQKQEWLSKGHGEYRE
IPSERDFFQEVKESENVVCHFYRDSTFRCKILDRHLAILSKKHLETKFLKLMVEKAPFLCERLHIKVIPTLALLK
DGKTQDYVVGFTDLGNIDDFTTETLEWRLGSSDILNYSGNLMEPPFQNQKKFGINFTKLEKKTIRGKKYDSDSDD
D

PCT/US2003/028547

893/6881 FIGURE 831A

CGCGGGTCTGTGGAGAGCCGGGTGCGAGCGGCGGCAGCACGAGGGGAAAAGAGCTGAGCGGAGACCAAAGTCAGC $\tt CGGGAGACAGTGGGTCTGTGAGAGACCGAATAGAGGGGCTGGGGCCACGAGCGCCATTGACAAGCAATGGGGAAG$ AAACAGAAAACAAGAGCGAAGACAGCACCAAGGATGACATTGATCTTGATGCCTTGGCTGCAGAAATAGAAGGA GATGAAGATGATATCCTGAAAGAACTGGAAGAATTGTCTTTGGAAGCTCAAGGCATCAAAGCTGACAGAGAAACT AAAAACAGAGTTTTGATGATAATGATAGCGAAGAATTGGAAGATAAAGATTCAAAATCAAAAAAAGACTGCAAAA CCGAAAGTGGAAATGTACTCTGGGAGTGATGATGATGATGTTTTAACAAACTTCCTAAAAAAAGCTAAAGGGAAA GCTCAAAAATCAAATAAGAAGTGGGATGGGTCAGAGGAGGATGAGGATAACAGTAAAAAAATTAAAGAGCGTTCA CAGAAAAACAAGCCAGGTCCTAACATAGAAAGTGGGAATGAAGATGATGACGCCTCCTTCAAAATTAAGACAGTG AAAGAAAAGAGAGTTAGAAACAGGTAAAAAGGATCAGAGTAAACAAAAGGAATCTCAAAGGAAATTTGAAGAA GAAACTGTAAAATCCAAAGTGACTGTTGATACTGGAGTAATTCCTGCCTCTGAAGAGAAAGCAGAGAGACTCCCACA GAGAAAGAGAAAAAAAGGACCTAGCAAAGCCACTGTTAAAGCTATGCAAGAAGCTCTGGCTAAGCTTAAAGAG GA A GA A GA CA GA CAGA A GA GA GA GA GA GA GA GA CGTA TAAAA CGGCTTGA A GAATTA GA A GCCA A GCGTA A A GA GAAGGGAAACTTTTAACTAAATCCCAGAGAGAAGCCAGAGCCAGAGCCGAAGCTACTCTTAAACTGCTACAAGCT CAGGGTGTTGAAGTGCCATCAAAAGACTCTTTGCCAAAGAAGAGGCCCAATTTATGAAGATAAAAAGAGGAAAAAAA ATACCACAGCAGCTAGAAAGTAAAGAAGTGTCTGAATCAATGGAATTATGTGCTGCTGCTAGAAGTTATGGAACAA GGAGTACCAGAAAAGGAAGAGACACCACCTCCTGTTGAACCAGAAGAAGAAGAAGATACTGAGGATGCTGGATTG GATGATTGGGAAGCTATGGCCAGTGATGAGGAGACAGAAAAAGTAGAAGGAAACAAAGTTCATATAGAAGTAAAA GAGGGAGAAAGTGAAGGCAGTGAAGGTGATGAGAAGATGAAAAGGTGTCAGATGAGAAGGATTCAGGGAAGACA TTAGATAAAAAGCCAAGTAAAGAAATGAGCTCAGATTCTGAATATGACTCTGATGATGATCGGACTAAAGAAGAA AGGGCTTATGACAAAGCAAAACGGAGGATTGAGAAACGGCGACTTGAACATAGTAAAAATGTAAACACGGAAAAG CTAAGAGCCCCTATTATCTGCGTACTTGGGCATGTGGACACAGGGAAGACAAAAATTCTAGATAAGCTCCGTCAC ACACATGTACAAGATGGTGAAGCAGGTGGTATCACACAACAAATTGGGGCCACCAATGTTCCTCTTGAAGCTATT AATGAACAGACTAAGATGATTAAAAATTTTGATAGAGAGAATGTACGGATTCCAGGAATGCTAATTATTGATACT CCTGGGCATGAATCTTCAGTAATCTGAGAAATAGAGGAAGCTCTCTTTGTGACATTGCCATTTTAGTTGTTGAT ATTATGCATGGTTTGGAGCCCCAGACAATTGAGTCTATCAACCTTCTCAAATCTAAAAAAATGTCCCTTCATTGTT GCACTCAATAAGATTGATAGGTTATATGATTGGAAAAAGAGTCCTGACTCTGATGTGGCTGCTACTTTAAAGAAG CAGAAAAAGAATACAAAAGATGAATTTGAGGAGCGAGCAAAGGCTATTATTGTAGAATTTGCACAGCAGGGTTTG GATGGCATGGGAAGTCTGATCTACCTTCTTGTAGAGTTAACTCAGACCATGTTGAGCAAGAGACTTGCACACTGT GAAGAGCTGAGAGCACAGGTGATGGAGGTTAAAGCTCTCCCGGGGATGGGCACCACTATAGATGTCATCTTGATC AATGGGCGTTTGAAGGAAGGAGATACAATCATTGTTCCTGGAGTAGAAGGGCCCATTGTAACTCAGATTCGAGGC CTCCTGTTACCTCCTCCTATGAAGGAATTACGAGTGAAGAACCAGTATGAAAAGCATAAAGAAGTAGAAGCAGCT CAGGGGGTAAAGATTCTTGGAAAAGACCTGGAGAAAACATTGGCTGGTTTACCCCTCCTTGTGGCTTATAAAGAA GATGAAATCCCTGTTCTTAAAGATGAATTGATCCATGAGTTAAAGCAGACACTAAATGCTATCAAATTAGAAGAA AAAGGAGTCTATGTCCAGGCATCTACACTGGGTTCTTTGGAAGCTCTACTGGAATTTCTGAAAACATCAGAAGTG CCCTATGCAGGAATTAACATTGGCCCAGTGCATAAAAAAGATGTTATGAAGGCTTCAGTGATGTTGGAACATGAC CCTCAGTATGCAGTAATTTTGGCCTTCGATGTGAGAATTGAACGAGATGCACAAGAAATGGCTGATAGTTTAGGA GTTAGAATTTTTAGTGCAGAAATTATTTATCATTTATTTGATGCCTTTACAAAATATAGACAAGACTACAAGAAA TCTCGAGATCCGATAGTGATGGGGGTGACGGTGGAAGCAGGTCAGGTGAAACAGGGGACACCCATGTGTGTCCCA AGCAAAAATTTTGTTGACATCGGAATAGTAACAAGTATTGAAATAAACCATAAACAAGTGGATGTTGCAAAAAAA

PCT/US2003/028547

894/6881 FIGURE 831B

PCT/IIS2003/028547

895/6881 FIGURE 832

CTTCCTTTCCAACTTGGACGCTGCAGAATGCCCCCCGCAAAGAAGGGTGGCGAGAAGAAAAAGGGCCGTTCTGCC
ATCAACGAAGTGGTAACCCGAGAATACACCATCAACATTCACAAGCGCATCCATGGAGTGGGCTTCAAGAAGCGT
GCACCTCGGGCACTCAAAGAGAATTTGGGAAATTTGCCATCAAGAGGAGATGGGAACTCCAGATGTGCGCATTGACACC
AGGCTCAACAAGCTGTCTGGGCCAAAGGAATAAGGAATGTGCCCATACCGAATCCGTGTCCGGCTGTCCAGAAAA
CGTAATGAGGATGAAGATTCACCAAATAAGCTATATACTTTGGTTACCTATTACCTGTTACCACTTTCAAAAA
CTACAGACAGTCAATGTGGATGAGAACTAA

PCT/US2003/028547

896/6881 FIGURE 833

MAPAKKGGEKKKGRSAINEVVTREYTINIHKRIHGVGFKKRAPRALKEIRKFAMKEMGTPDVRIDTRLNKAVWAK GIRNVPYRIRVRLSRKRNEDBDSPNKLYTLVTYVPVTTFKNLQTVNVDEN

PCT/IIS2003/028547

897/6881 FIGURE 834

ATCCCCGGCGGAGGGGCGAGCGCGGCGTCTGGCCGGCTTCTCACCGCCGGGAGCAAAGAGGGTCCCGGGAAGCG GCAGGGTCGGCGTCCAGGAGCGGCTTCGGGGGCTCCGGCGCGCAGAGGCGAGCAAGCGGCCCCGGGTCCGGG AGCGGAGGCCCTGGGGGCCCCGCGGGCAGGATGAGCTTGACCCCGAAGGAGCTCTCGAGCCTGCTGAGCATCATA TCGGAGGAGGCGGCGGCGCACCTTCGAGGGCCTGTCCACCGCCTTCCACCACTACTTCAGCAAGGCCGAC CACTTCCGCCTGGGCTCGGTGCTCATGCTGCTCCAGCAGCCCGACCTGCTGCCTAGCGCGGCGCAGCGCCTC ACGGCGCTCTACCTGCTCTGGGAGATGTACCGCACCGAGCCGCTGGCCGCCAACCCCTTCGCCGCCAGCTTCGCG CACCTGCTCAACCCCGCGCCGCCCGCCGCGGGGGCCAGGAACCCGACCGCCCTCCGCTCTCAGGATTTTTACCT CCTATAACTCCACCAGAAAAGTTTTTTCTTTCCCAGCTGATGCTGGCACCCCCACGGGAACTCTTCAAAAAGACG CCTCGCCAGATTGCACTGATGGACGTTGGAAACATGGGCCAGTCTGTGGACATTAGTGGGCTTCAGTTAGCCTTG GCCGAACGCCAATCTGAATTGCCAACGCAAAGCAAAGCGAGCTTCCCCAGTATTCTCAGTGACCCAGACCCGGAT TCTTCTAATTCTGGATTTGACAGCTCAGTTGCCTCTCAGATCACAGAAGCTTTAGTCAGCGGACCAAAGCCACCT CTAAACCCCACGGAGCCTGACCACGCGATCCAGTGGGATAAATCGATGTGTTTAAGAATAGCACTGGTGTGGAG GAAAAAGACCCCAAACTTGTCTACCATATTGGCCTCACCCCAGCCAAACTTCCTGACCTTGTGGAAAACAACCCT TTAGTCGCTATAGAAATGTTGCTGAAATTAATGCAGTCAAGCCAGATCACTGAGTATTTCTCTGTCCTGGTCAAT CACCTTTATATATCAAATTGCATCTCTACTTGTGAACAGATTAAGGATAAATATATGCAGAATCGGTTGGTGCGT CTTGTGTGTGTGTTTCTCCAATCCTTGATCCGTAACAAAATTATTAATGTACAGGATTTGTTTATAGAAGTGCAG · GCATTCTGTATTGAATTCAGTAGGATACGAGAAGCTGCTGGTCTTTTCCGGTTGTTGAAGACATTGGATACTGGG GAAACACCTTCTGAGACCAAAATGTCAAAATAA

PCT/US2003/028547

898/6881 FIGURE 835

MPGGGASAASGRILTAAEQRGSREAAGSASRSGFGGSGGGGGASGPGSGSGGPGGPAGRMSLTPKELSSLLSII
SEEAGGGSTFGGLSTAPHHYFSKADHFRLGSVLVMLLQQPDLLPSAAQRLTALVILMEMYRTEEDLAANPFAASGA
HLLNPAPPARGGQEPDRPPLSGFLPPITPPEKFFLSQLMLAPPRELFKKTPRQTALMDVGNMGQSVDISGLQLAL
AERQSELPTQSKASFPSILSDDEDDSSNSGFDSSVASQITEALVSGPKPPIESHFRPEFIRPPPPLHICEDELAW
LNPTEPDHAIQMDKSMCVKNSTGVBIKRIMAKAFKSPLSSPGQTQLLGELEEKDPKLVYHTGLTPAKLPDLVENNP
LVAIEMLLKLMQSSQITEYFSVLVNMDMSLHSMEVVNRLTTAVDLPPEFIHLYISNCISTCEQIKDKYMQNRLVR
LVCVFLQSLIRNKIINVQDLFIEVQAFCIEFSRIREAAGLFRLLKTLDTGETPSETKMSK

PCT/HS2003/028547

899/6881 FIGURE 836

GGGCGGGAGCTGCGCAGCGCTCCACTCGGCCGGCAGCGGAGCCGCAGCCACCAGCCGCCGCGCCCTCCAGCCCC TTAGCCACCAGGGCTCGGAAGTGGGGGCCGAATCCGGTGCGAGACCCAAGGAGAGGGGAGCAGAGCCGGAGTTGG GGAGACTGTGGCTGAAAACTGTGTCTTCCTGGAGACTAGGCTGGCATTTTGACTTTGGGACGGAGTCTCGCTTTG TCGCCCAGGCTGGAGTGCAGTGGCACGATCTCAGCTCACTGCAAGCTCTACCTCTTGGTTCACGCCATTCTCCTG CACCATTGCAACGAATCTCTCTTTGGCAAGAAGTACATCCTGCGGGAGGAGAGCCCCTACTGCGTGGTGTGCTTT GAGACCCTGTTCGCCAACACCTGCGAGGAGTGTGGGAAGCCCATCGGCTGTGACTGCAAGGACTTGTCTTACAAG GACCGGCACTGGCATGAAGCCTGTTTCCACTGCTCGCAGTGCAGAAACTCACTGGTGGACAAGCCCTTTGCTGCC AAGGAGGACCAGCTGCTCTGTACAGACTGCTATTCCAACGAGTACTCATCCAAGTGCCAGGAATGCAAGAAGACC ATCATGCCAGGTACCCGCAAGATGGAGTACAAGGGCAGCAGCTGGCATGAGACCTGCTTCATCTGCCACCGCTGC ${\tt CAGCAGCCAATTGGAACCAAGAGTTTCATCCCCAAAGACAATCAGAATTTCTGTGTGCCCTGCTATGAGAAACAA}$ AAGGAGTGCTTCGTGTGCACCGCCTGCAGGAAGCAGCTGTCTGGGCAGCGCTTCACAGCTCGCGATGACTTTGCC TACTGCCTGAACTGCTTCTGTGACTTGTATGCCAAGAGTGTGCTGGGTGCACCAACCCCATCAGCGGACTTGGT GGCACAAAATACATCTCCTTTGAGGAACGGCAGTGGCATAACGACTGCTTTAACTGTAAGAAGTGCTCCCTCTCA CTGGTGGGGCGTGGCTTCCTCACAGAGAGGGACGACATCCTGTGCCCCGACTGTGGGAAAGACATCTGAATTCAA CACAGAGAAGTTGCTGCTTGTGATCTCACACACAGATTTTTATGTTTTCTTCTCACCCAGGCAATCTTGCCTTC TGGTTTCTTCCAGCCACATTGAGACTTTCTTCTAGTGCTTTTCAGTGATACTCACGTTTGCTTAAACCCTTTAGT GCTTTGTGATAGTTCAGTCCCAGGGAAAGAGAAAACTCGCCCTAGGCCCTAGGTGGGAAGATGGTTTGAAATTTT TGTAATCGAGTAAGGCACACCCAAATGTAAAAATCCTTTTGAATGATGCCTTTATAAATCTTTCTCTCACTGTCT ATTTAAGTGCAATTAACATATGTCACGAACTTGAAAGTTTTCTAAACTCAATAAGGTAATGACCAGTTGTTATTT ${\tt ACAGCTCTGTAACCTCCCGTTGCGTCAAGTCTAAACCAAGATTATGTGACTTGCAATAAAGTTATTCAGAACAGA}$ AAAAAAAAAAAAAAAA

PCT/US2003/028547

900/6881 FIGURE 837

MTERFDCHHCNESLFGKKYLLREESPYCVVCFETLFANTCEECGKPIGCDCKDLSYKDRHWHEACFHCSQCRNSL VDKPFAAKEDQLLCTDCYSNEYSSKCQBCKKTIMPGTRKMEYKGSSWHETCFICHRCQQPIGTKSFIPKDNQWFC VPCYEKQHAMQCVQCKKPITTGGVTYREQPWHKECFVCTACRKQLSGQRFTARDDFAYCLNCFCDLYAKKCAGCT NPISGLGGTKYISFEERQWHNDCFNCKKCSLSLVGRGFLTERDDILCPDCGKDI

PCT/HS2003/028547

901/6881 FIGURE 838

PCT/US2003/028547

902/6881 FIGURE 839

AAGGACTCCATGAAAGATGACAGAAGAAGTTATTGTGATAGCCAAGTGGGACTACACCGCCCAGCAGGACCAGGA GCTGGACATCAAGAAGAACGACGCGCTGTGGTTGCTGGACGACTCCAAGACGTGGTGGCGGGTGAGGAACGCGGC CAACAGGACGGGCTATGTACCGTCCAACTACGTGGAGCGGAAGAACAGCCTGAAGAAGGGCTCCCTCGTGAAGAA CCTGAAGGACACACTAGGCCTCGGCAAGACGCGCAGGAAGACCAGCGCGCGGGATGCGTCCCCCACGCCCAGCAC GGACGCCGAGTACCCCGCCAATGGCAGCGGCGCCGACCGCATCTACGACCTCAACATCCCGGCCTTCGTCAAGTT CGCCTATGTGGCCGAGCGGGAGGATGAGTTGTCCCTGGTGAAGGGGTCGCGCGTCACCGTCATGGAGAAGTGCAG CGACGGTTGGTGGCGGGGCAGCTACAACGGGCAGATCGGCTGGTTCCCCTCCAACTACGTCTTGGAGGAGGTGGA CGAGGCGGCTGCGGAGTCCCCAAGCTTCCTGAGCCTGCGCAAGGGCGCCTCGCTGAGCAATGGCCAGGGCTCCCG CGTGCTGCATGTGGTCCAGACGCTGTACCCCTTCAGCTCAGTCACCGAGGAGGAGCTCAACTTCGAGAAGGGGGA GACCATGGAGGTGATTGAGAAGCCGGAGAACGACCCCGAGTGGTGGAAATGCAAAAATGCCCGGGGCCAGGTGGG CCTCGTCCCCAAAAACTACGTGGTGGTCCTCAGTGACGGGCCTGCCCTGCACCCTGCGCACGCCCCACAGATAAG CTACACCGGGCCCTCGTCCAGCGGGCGCTTCGCGGGCAGAGAGTGGTACTACGGGAACGTGACGCGCACCAGGC CGAGTGCGCCCTCAACGAGCGGGGCGTGGAGGGCGACTTCCTCATTAGGGACAGCGAGTCCTCGCCCAGCGACTT CTCCGTGTCCCTTAAAGCGTCAGGGAAGAACAAACACTTCAAGGTGCAGCTCGTGGACAATGTCTACTGCATTGG GCAGCGGCGCTTCCACACCATGGACGAGCTGGTGGAACACTACAAAAAAGGCGCCCATCTTCACCAGCGAGCACGG GGAGAAGCTCTACCTCGTCAGGGCCCTGCAGTGACGGCGCCCCGGCCCCACACTCGCCTCCCGGGCCCCACGGTG GAGCTGCCCGCCCGGCCTTGTGGCAGAGGCTCCTCCCGCGGGGACGGCCCCGACGGCTTCTCTG

PCT/US2003/028547

903/6881 FIGURE 840

MTEEVIVIAKWDYTAQQDQELDIKKNERIWILIDDSKTWRVRNAANRTGYVPSNYVERKNSLKKGSLVKNIKDTL
GLGKTRRTSARDASPTPSTDAEYPANGSGADRIYDLNIPAFVKFAYVAEREDELSLVKGSRVTVMEKCSDGWWR
GSYNGQIGWFPSNYVLEEVDEAAAESPSFLSLRKGASLSNGQGSRVLHVVQTLYPFSSVTEEELWFEKGETMEVI
EKPENDPEWWKCKNARGQVGLVPKNYVVVLSDCPALHPAHAPQISYTGPSSSGRFAGREWYYGNVTRHQAECALN
ERGVEGDFLIRDSESSPSDFSVSLKASGKNKHFKVQLVDNVYCIGQRRFHTMDELVEHYKKAPIFTSEHGEKLYL
VRALO

PCT/US2003/028547

904/6881 FIGURE 841

TGGAACCATGCTGCTTGAGGCTCTGGACTGCATCCTACCACCAACTCGTCCAACTGACAAGCCCTTGCACCTGCC
TCTCCAGGATGCTACAAAATTGGTGGTATTGGTAGTGTTCCTGTTGGCCGAGTGGAGACTGGTGTTCTCAAACC.
TGGTATGGTGGTCACCTTTGCTCCAGTCAACGTTACAACAGAAGTAAAATCTGTCGAAATGCACCATGAAAGCTTT
GAGTGAAGCTCTTCCTGGGGACAATGTGGGGTTCAATGTCAACGAATGTGTCTCAAGGATGTTCGTCATGGCAA
CGTTGCTGGTGACAGCAAAAAATGACCCACCAATGGAAGCAGCTGGTTTCACTGCTCAAGGTGTTTCCTGAACCA
TCCAGGCCAAATAAGCACTGGCTATGCCCCTGTATTGGATTGCCACACGGCCCAAATTTGCAAGCTTTGCTGA
GCTGAAAGGAATAATGATCACCGTTCTGGTAAAAAAGCGGAAGATGGCCCCAAATTCTTCTTTGGGTTGCTTTG
CTGTTCGTGATATGACACAAGATAGTT

PCT/US2003/028547

905/6881 FIGURE 842

ANANGCCANANTGGGANAGGANAGACTCATACCARCATTGTCGTCATTGGACACATAGATTCGGCCAGTCCAC
CACTACTGCCCATCTGATCTCACAAAGGCGCTGGCACACAAAGAACCATTGAAAAATTTGAGAAGGGCTAC
CAGTGGAAAGGGCTCCTTCAAGTATGCCTGGGCTTTGGATAAACCATTGAAAAATTTGAGAAGGGCTCC
CATTGATACCTCCTTGTGGAAATTTGAGACCAGCAAGTACTATTGTGACTACTGTGATGCCCCAGGACACAGGA
CTTCATCAAAAACATGATTACAGACACTCCAGGCCTGACTGTGCTGTCCTGATTGTGCCCCAGGACACAGGA
ATTTGAAGCTGGTATCTCCAAGAATGGGCAAACCCAAGAGCATGCCCTTCTGGCTACACACCTGGTGTTGATACA
ACTAATTGTTGTGTTTAACAAAATGGATTCACTAGGCCACCCTCAGCCCAGAAGAGATATGAGGAAACTACAAA
ATTGGTGGTATTGGTACTACAAAATGGATTCTACTGAGCCACCCTCAGCCCAGAAGAGATATGAGGAAACTACAAA
ATTGGTGGTATTGGTACTACACAGAAGTAAAATCGTCGAAATGGACACTGGTTTCTAACCATGGTTATGGTGCCCTTT
GCTCCAGTCAACCTTACAACAGAAGTAAAATCTGTCGAAATGCACCATTGAGTCAACCTTGGTGTATGGTGCACCTTCCTGGG
GACAATGTGG

PCT/IIS2003/028547

906/6881 FIGURE 843

CACACAGCCTGCTGAGTGTGATTGCCAACTTCATCCCTTTCTCTGATCTCAACCAGAGTCCACGGAACATGTACC AATGCCAGATGGGTAAGCAAACTATGGGCTTTCCACTTCTCACTTATCAAGACCGATCGGATAACAAACTGTATC GTCTTCAGACTCCTCAGAGTCCCTTGGTGAGACCCTCCATGTATGATTATTATGACATGGATAACTATCCAATTG GGACCAATGCCATCGTTGCTGTGATTTCTTACACTGGCTATGATATGGAAGATGCCATGATTGTGAATAAGGCCT CTTGGGAACGAGGCTTTGCCCATGGAAGTGTCTACAAGTCTGAGTTCATAGACCTCTCTGAAAAAATTAAACAAG GAGATAGTAGCCTGGTGTTTTGGCATCAAACCTGGTGACCCACGCGTTCTGCAGAAGTTAGATGACGATGGATTGC CGTTTATAGGAGCAAAACTGCAGTACGGAGATCCGTATTACAGCTACCTCAACCTCAACACCGGGGAAAGTTTTG TGATGTACTATAAGAGTAAAGAAAATTGTGTTGTGGATAACATCAAAGTGTGCAGTAATGACACTGGGAGTGGAA AATTCAAGTGTGTTTGCATCACTATGAGAGTGCCTCGGAACCCAACTATCGGAGATAAATTTGCCAGTCGCCATG GGCAGAAGGGCATTTTAAGCAGATTGTGGCCGGCTGAGGACATGCCTTTTACTGAGAGTGGGATGGTCCCAGACA TTCTGTTCAATCCCCATGGTTTTCCATCCCGCATGACCATTGGGATGTTAATTGAGAGTATGGCCGGGAAGTCTG CAGCTTTGCATGGTCTCTGCCATGATGCTACACCCTTCATCTTCTCAGAGGAGAACTCGGCCTTAGAATACTTTG GTGAGATGTTAAAGGCTGCTGCTACAATTTCTATGGCACCGAGAGGTTATATAGTGGCATCAGTGGGCTAGAAC TGGAAGCAGACATCTTCATAGGAGTGGTTTATTATCAGCGCTTACGCCATATGGTCTCAGACAAATTTCAAGTAA GGACAACTGGAGCCCGAGACAGAGTCACCAACCAGCCTATTGGGGGAAGAAATGTCCAGGGTGGAATCCGTTTTG GGGAGATGGAACGGGATGCGCTTTTAGCTCATGGTACATCTTTTCTCCTTCATGACCGCCTCTTCAACTGCTCAG ATCGGTCGGTAGCCCATGTGTGTGAAGTGTGGCAGTTTACTCTCTCCACTGTTGGAGAAGCCACCCCCTTCTTGG TCTGCCATGCGCAACAGAAAATACAACTGTACTCTGTGTAGTCGCAGTGACACTATCGATACTGTTTCTGTGCCT TATGTTTTTCGGTATTTTGTAGCTGAACTGGCAGCTATGAACATCAAAGTGAAACTGGATGTTGTTTAACTTGAT GTTGACCTTTTGGATTAAGGGGACTATCAGATTAAAGCAAAATGTAATTTTAATTCAATGAAGATATCATTACCA GGTTACTCTTGAGATTTTTCAACGGTGTTAGAACTCTCAACCAAGACCTGAAAACCAAGTATGCAAGGTTTCTGA ATCTCTCTGGTAGATTAACTATTGACAATGATTTTCTGTTATCTTTGTTCAAAAAGTTCATGTCTTCTCAAAATA TGAAATATTGATAAATGGAAGAGCATACGGTGACAAGTCTCCTTTCCAACCCCAGGTTCCCTACACCCTGCTCTC AGCAGGCAGTGAGTGTCACACACCTGTTAATCCATCTTGAGCAGGACAGTACTATACAAATAGAATGCAAGCTGT GAAGTACAGTTGTTACATATTTAATGAATACAATTTGATGGGTCTGACTATATGCACACACCTTTGATACCATCA CCACAATCAGGGTAATAAACATACCTGTCATCTCCACAAGTTTCCTCCTGCCCCTTTGTTTTTTGCTTTTTTGGTT GCTGTTGAGTTTTTGTTTTTGTCTTCTGTGGTAAGAACACTTAACTCAAGACCTACCCTCTTAACAAATCTTTAAG TGCACGATATAGTATTGTTAATTCCAGGCACCATGTTGTACAACAGATCTTTAGACCTTACTTGTCTTGCATAAC TGAAGCTTTATACCTGTTGAACAACTCTCCATTTCCCTGGCCCCTAGCAACCACCCTTCTACCCTGTTTCTATGA GTTTGACTATTACAGATATCTCATATAGTGGGATCATGCAATATTTGTCCTGTGACTGGCTTATTTCACTTAGCA TAGTGAAATAAGATTCATCCATTTTGGAAGCCAGGCATGGTGCTGTGCATCTATAGTCCCTGCTATTTGAGAGGC TGAGGTGGGAGGATCATTTGAGTGCAGGAGTTCAAGGACAGCCTGGGTAATATAGGAAGACCCTGTCTTGAAGAC CCTGACCTCAAGTGATCCACCCACCTCGGCCTCCGAAAGTGCTAGGATTACAGGTGTGAGCCACTGTGCCTGGCC TCCGGTGAGTATTTTATATTTAGTCTACACTTCCATACTTGGCTTTTTTCTGCTTTTATGTTGATCTGCTTTCAT AGCAGTGTGT AGAGTGCCACTTATGTTTTCTTTGTGTACAGTATTTTATTGTATGGATTTACCATCCCTGT GTATTTAAGTTGTTCCATTCTTTGGCCATTATAACTTTTTTCTGCAAATATTCTGGTGACTTATCTTTGGCCATT ATAAACTGTTGATAATAAAAAAAAAAAAAAAAAAAA

PCT/HS2003/028547

907/6881 FIGURE 844

MNVAIFEDEVFAGVTTHQELFPHSLLSVIANFIPFSDLNQSPRNMYQCQMGKQTMGFPLLTYQDRSDNKLYRLQT
PQSPLVRFSMYDYYDMDNYPIGTNAIVAVISYTGYDMEDANIVNKASWERGFAHGSVYKSEFIDLSEKIKGGDSS
LVFGIKPGDPRVLQKLDDDGLPFIGAKLQYGDPYYSYLNLNTGESFVMYYSKSENCVODNIKVCSDNGSGKFKC
VCITMRVPRNPTIGDKFASRHGQKGLISRLWFAEDMPFTESGMYPDILFNPHGFPSRMTIGMLIESMAGKSAALH
GLGHDATPFIFSEENSALEYFGEMLKAAGYNFYGTERLYSGISGLELEADIFIGVYYYQRLRHMYSDKFQVRTTG
ARDRVTNQPIGGRNVQGGIRFGEMERDALLAHGTSFLLHDRLFNCSDRSVAHVCEVWQFTLSTVGEATPFLVCHA
QQKIQLYSV

PCT/US2003/028547

908/6881 FIGURE 845

GAGCTGTCCCCGGTGCCGCCGACCCGGGCCGTGTGCCCGTGGCTCCAGCCGCTGTCGCCTCGATCTCCTCGTCTC TTAGCCCTCCTGAGCCAAAGAAACCCCAGACAACAGATGCCCATACGCAGCGTATAGCAGTAACTCCCCAGCTCG ATTCTGTTTACACATCTTGAAAGGCGCTCAGTAGTTCTCTTACTAAACAACCACTACTCCAGAGA**ATC**GCAACGC TGATTACCAGTACTACAGCTGCTACCGCCGCTTCTGGTCCTTTGGTGGACTACCTATGGATGCTCATCCTGGGCT TCATTATTGCATTTGTCTTGGCATTCTCCGTGGGAGCCAATGATGTAGCAAATTCTTTTGGTACAGCTGTGGGCT CCAAAGTGAGCGAAACCATCCGGAAGGGCTTGATTGACGTGGAGATGTACAACTCGACTCAAGGGCTGCTGATGG CCGGCTCAGTCAGTGCTATGTTTGGTTCTGCTGTGTGGCAACTCGTGGCTTCGTTTTTGAAGCTCCCTATTTCTG GAACCCATTGTATTGTTGGTGCAACTATTGGTTTCTCCCTCGTGGCAAAGGGGCAGGAGGGTGTCAAGTGGTCTG AACTGATAAAAATTGTGATGTCTTGGTTCGTGTCCCCACTGCTTTCTGGAATTATGTCTGGAATTTTATTCTTCC TGGTTCGTGCATTCATCCTCCATAAGGCAGATCCAGTTCCTAATGGTTTGCGAGCTTTGCCAGTTTTCTATGCCT GCACAGTTGGAATAAACCTCTTTTCCATCATGTATACTGGAGCACCGTTGCTGGGCTTTGACAAACCTCCTCTGT GGGGTACCATCCTCATCTCGGTGGGATGTGCAGTTTTCTGTGCCCTTATCGTCTGGTTCTTTGTATGTCCCAGGA AAGAAGACCATGAAGAAACAAAGTTGTCTGTTGGTGATATTGAAAACAAGCATCCTGTTTCTGAGGTAGGGCCTG CCACTGTGCCCCTCCAGGCTGTGGTGGAGGAGAGACAGTCTCATTCAAACTTGGAGATTTGGAGGAAGCTCCAG TGCCTAATGGGAACCTTGTCCAGTTCAGTCAAGCCGTCAGCAACCAAATAAACTCCAGTGGCCACTACCAGTATC ACACCGTGCATAAGGATTCCGGCCTGTACAAAGAGCTACTCCATAAATTACATCTTGCCAAGGTGGGAGATTGCA TGGGAGACTCCGGTGACAAACCCTTAAGGCGCAATAATAGCTATACTTCCTATACCATGGCAATATGTGGCATGC CTCTGGATTCATTCCGTGCCAAAGAAGGTGAACAGAAGGGCGAAGAAATGGAGAAGCTGACATGGCCTAATGCAG ACTCCAAGAAGCGAATTCGAATGGACAGTTACACCAGTTACTGCAATGCTGTGTCTGACCTTCACTCAGCATCTG AGATAGACATGAGTGTCAAGGCAGAGATGGGTCTAGGTGACAGAAAAGGAAGTAATGGCTCTCTAGAAGAATGGT ATGACCAGGATAAGCCTGAAGTCTCTCCTCTTCCAGTTCCTGCAGATCCTTACAGCCTGCTTTGGGTCATTCG TTTCTTCAAAAGTGGCAACACCAATATGGCTTCTACTCTATGGTGGTGTTTGGTATCTGTTTGGTCTGTGGGTTT GGGGAAGAGAGAGTTATCCAGACCATGGGGAAGGATCTGACACCCGATCACACCCTCTAGTGGCTTCAGTATTGAAC TGGCATCTGCCCTCACTGTGGTGATTGCATCAAATATTGGCCTTCCCATCAGTACAACACATTGTAAAGTGGGCT $\tt CTGTTGTGTCTGGCTGGCTCCGGTCCAAGAAGGCTGTTGACTGGCGTCTCTTTCGTAACATTTTTATGGCCT$ GGTTTGTCACAGTCCCCATTTCTGGAGTTATCAGTGCTGCCATCATGGCAATCTTCAGATATGTCATCCTCAGAA TGTGAAGCTGTTTGAGATTAAAATTTGTGTCAATGTTTGGGACCATCTTAGGTATTCCTGCTCCCCTGAAGAATG ATTACAGTGTTAACAGAAGACTGACAAGAGTCTTTTTATTTGGGAGCCAGAGGGGGGAAGTGTTACTTGTGCTAT AACTGCTTTTGTGCTAAATATGAATTGTCTCAAAATTAGCTGTGTAAAATAGCCCGGGTTCCACTGGCTCCTGCT GAGGTCCCCTTTCCTTCTGGGCTGTGAATTCCTGTACATATTTCTCTACTTTTTTGTATCAGGCTTCAATTCCATT GAGCATGCTCTGCGTTGTTGGTTTCACCAGCTTCTGCCCTCACATGCACAGGGATTTAACAACAAAAAATATAAACT ACAACTTCCCTTGTAGTCTCTTATATAAGTAGAGTCCTTGGTACTCTGCCCTCCTGTCAGTAGTGGCAGGATCTA TTGGCATATTCGGGAGCTTCTTAGAGGGATGAGGTTCTTTGAACACAGTGAAAAATTTAAATTAGTAACTTTTTTG TAAGATTTCTGGCAGTGTGGGATGGAATGAAGTGGAATGTGAACTTTGGGCAAGTTAAGTGGGACAGCCTTC CATGTTCATTTGTCTACCTCTTAACTGAATAAAAAAGCCTACAGTTTTTAG

PCT/US2003/028547

909/6881 FIGURE 846

MATLITSTTAATAASGPLVDYLWMLILGFIIAFVLAFSVGANDVANSFGTAVGSGVVTLKQACILASIFETVGSV
LLGAKVSETIRKGLIDVEMYNSTOGLLMAGSVSAMFGSAVMGLVASFLKLPISGTHCIVGATIGFSLVAKKQBEV
KWSELIKIVMSWFVSPLLSGIMSGILFFLVRAFILHKADPVPNGLRALPVFYACTVGINLFSLMYJBPLUGFDK
LPLWGGILISVGCAVFCALIVWFFVCPPMKRKIERSIKCSPSESPLMEKKNSLKEDHEETKLSVGDIENKHPVSE
VGPATVPLQAVVEERTVSFKLGDLEEAPERERLPSVDLKEETSIDSTVNCAVOLPNGNLVGFSQAVSNQINSSGH
YQYHTHKDSGLYKELLHKLHLAKVGDCMGDSGDKPLRRNNSYTSYTMAICGMPLDSFRAKEGEQKGEBMEKLTW
PNADSKKRIRMDSTTSTCNAVSDLHSASEIDMSVKAEMGLGDRKGSNGSLEEWYDQDKPEVSLLFQFLQILTACF
GSFAHGGNDVSNAIGPLVALYLVYDTGDVSSKVATPIWLLLYGGVGICVGLWWGGRVIGTMGKDLTPITFSSGF
SIELASALTVVIASNIGLPISTTHCKVGSVVSVGWLRSKKAVDWRLFRNIFMAWFVTVPISGVISAAIMAIFRYV
ILKM

PCT/IIS2003/028547

910/6881 FIGURE 847

ACCAACCTCTTCGAGGCACAAGGCACAACAGGCTGCTCTGGGATTCTCTTCAGCCAATCTTCATTGCTCAAGTGT $\tt CTGAAGCAGCCATGGCAGAAGTACCTGAGCTCGCCAGTGAAATGATGGCTTATTACAGTGGCAATGAGGATGACT$ TGTTCTTTGAAGCTGATGGCCCTAAACAGATGAAGTGCTCCTTCCAGGACCTGGACCTCTGCCCTCTGGATGGCG ACAAGCTGAGGAAGATGCTGGTTCCCTGCCCACAGACCTTCCAGGAGAATGACCTGAGCACCTTCTTTCCCTTCA TCTTTGAAGAAGAACCTATCTTCTTCGACACATGGGATAACGAGGCTTATGTGCACGATGCACCTGTACGATCAC TGAACTGCACGCTCCGGGACTCACAGCAAAAAAGCTTGGTGATGTCTGGTCCATATGAACTGAAAGCTCTCCACC TCCAGGGACAGGATATGGAGCAACAAGTGGTGTTCTCCATGTCCTTTGTACAAGGAGAAAAAAATAATGACAAAA TACCTGTGGCCTTGGGCCTCAAGGAAAAGAATCTGTACCTGTCCTGCGTGTTGAAAGATGATAAGCCCACTCTAC AGCTGGAGAGTGTAGATCCCAAAAATTACCCAAAGAAGATGGAAAAAGCGATTTGTCTTCAACAAGATAGAAA TCAATAACAAGCTGGAATTTGAGTCTGCCCAGTTCCCCAACTGGTACATCAGCACCTCTCAAGCAGAAAACATGC CCGTCTTCCTGGGAGGGACCAAAGGCGGCCAGGATATAACTGACTTCACCATGCAATTTGTGTCTTCC<u>TAA</u>AGAG AGCTGTACCCAGAGAGTCCTGTGCTGAATGTGGACTCAATCCCTAGGGCTGGCAGAAAGGGAACAGAAAGGTTTT GGATCTCCTGTCCATCAGCCAGGACAGTCAGCTCTCTCTTTCAGGGCCAATCCCCAGCCCTTTTGTTGAGCCAG GCCTCTCTCACCTCTCCTACTCACTTAAAGCCCGCCTGACAGAAACCACGGCCACATTTGGTTCTAAGAAACCCT TTGGTCTAATTTATTCAAAGGGGGCAAGAAGTAGCAGTGTCTGTAAAAGAGCCCTAGTTTTTAATAGCTATGGAAT ATTTAAATGGGAATATTTATAAATGAGCAAATATCATACTGTTCAATGGTTCTGAAATAAACTTCTCTGAAG

PCT/US2003/028547

911/6881 FIGURE 848

MAEVPELASEMMAYYSGNEDDLFFEADGPKQMKCSFQDLDLCPLDGGIQLRISDHHYSKGFRQAASVVVAMDKLR KMLVPCPQTFQENDLSTFFPFIFEBEFIFPDTMDNEAYYHDAFVRSLNCTLRDSQQKSLVMSGPYELKALHLQGQ DMEQQVVPSMSFVQGEESNDKIPVALGLKEKNLYLSCVLKDDKFTLQLESVDPKNYPKKKMEKRFVFNKIEINNK LBFESAQPFNMYISTSQAENMFVFLGGTKGGQDITDFTMQFVSS

PCT/US2003/028547

912/6881 FIGURE 849

PCT/US2003/028547

913/6881 FIGURE 850

PCT/IIS2003/028547

914/6881 FIGURE 851A

GATGGGCTGTGCAAAGGGCGCGGCTGCTGAGGACAGGGCTGTGGCTGGAGAACCTGCTGCTTCCTGAAGCCGAGC CCCACCCTAAAGGACCGAGAGCACAGGCCATGGGAGAGGAATCGAGTAGGGATGCAGAGCCTGGTGGCACTGTCC TGAGAGAGGAGGAGGCTGGGCAGGGCCCCGGCGCTGGAGAGGTGCCCTGCATATGGGACCTCTCAGAGGTGCACA AGAGCTGTGTGCCCAGGTACCCCTGTCTCCTCCTCCTCCAGCCCCAGCCTACTCTCCTAATGGTCTGTGTCT TTCAGGGATGAGATTTACTGCCAGATCTGCAAGCAGCTCTCGGAGAACTTCAAAACAAGCAGCCTGGCCCGGGGC TGG&TCCTGCTCAGCCTCTGGCTGGCTGCTTCCCACCCTCAGAGAGGTTCATGAAGTATCTACTGAACTTCATC GAGCCCCCACCTGGCTGGAGCTGCAGGCTGTCAAGTCCAAGAAGCACATCCCCATCCAAGTCATCTTGGCCACT GGCCTCAGCGACCACCTGGGCTTCTCCCTCCAGGTCGCCGTGTACGACAAGTTCTGGTCCCTGGGCAGCGGGCGC GACCACATGATGGATGCCATCGCCCGGTGTGAGCAGATGGCCCAGGAGAGGGGCGAGAGCCAGCGCCAGTCACCC TGGCGCATCTACTTCCGGAAGGAATTCTTCACCCCCTGGCACGACTCCCGGGAGGACCCTGTCAGCACCGAGCTT ATTTACCGCCAAGTCCTCCGAGGAGTCTGGTCTGGCGAGTACAGCTTCGAGAAGGAGGAGGAGGAGCTGGTTGAGCTG CTGGCCCGGCACTGCTACGTGCAGCTCGGCGCCTCAGCAGAGAGCAAGGCTGTCCAGGAGCTGCTGCCCAGCTGC ATCCCCCACAAGCTGTACAGGACCAAGCCCCCAGACAGGTGGGCGAGCCTCGTCACTGCCGCCTGCGCCAAGGCC CTGCTCTTCTCCCGGCTCTTCGAAGTCATCACACTCTCAGGCCCCGCCTGCCCAAGACGCAGCTGATCTTGGCT GTTAACTGGAAGGGGCTTTGCTTCCTGGACCAGCAGGAGAGATGCTGCTGGAACTCTCTTTCCCAGAGGTCATG GGTCTGGCCACCAACAGGGAGGCCCAGGGCGGGCAGAGGCTGCTGCTCTCCACGATGCATGAGGAGTACGAGTTT GTGTCACCCAGCAGTGTGGCCATCGCTGAGCTGGTGGCCCTGTTCCTGGAGGGCCTGAAGGAGAGGTCCATTTTC GCCATGGCCCTGCAGGACAGGAAGGCCACAGATGACACCACCCTCCTGGCCTTCAAGAAGGGGGACCTGTTGGTC CTCACAAAGAAGCAGGGCTGCTGGCCTCTGAGAACTGGACCCTCGGCCAGAACGACAGGCCAGGCAAGACGGCA ATGTCACCAGAGAGAGAGGAGCTGGCGGCTCAGGAGGGCAGTTCACAGAGCCACGTCCTGAGGAGCCACCCAAG GAAAAGCTGCACACCCTGGAGGAGTTCTCCTATGAGTTCTTCAGGGCTCCAGAGAAGGACATGGTGAGCATGGCC GTGCTGCCCTGGCCCGTGCCCGTGGCCACCTGTGGGCCTATTCCTGCGAGCCGCTGCGACAGCCGCTGCTCAAG CGAGTCCACGCCAACGTCGACCTCTGGGACATCGCCCTGCCCAGATCTTTGTCGCCATCCTCCGGTACATGGGGGAC TACCCTTCTCGGCAGGCCTGGCCCACCCTGGAGCTCACCGACCAGATCTTCACACTGGCCCTGCAGCACCCGGCC CTCCAGGACGAGGTCTACTGCCAGATCCTGAAGCAGCTGACGCACAACTCCAACAGGCACAGCGAAGAGCGGGGGC TGGCAGCTGCTGTGGCTGTGCACGGGCCTCTTCCCGCCCAGCAAGGGGCTGCTGCCCCATGCCCAGAAGTTTATA GACACTCGGAGGGGAAGCTGCTGGCCCCCGACTGCAGCCGCCGAATCCAGAAGGTCCTGAGGACGGGGCCCCGG AGGCTGCAGCTGGCCTCCTGGGAGGGCTGCAGCCTCTTCATCAAGATTTCAGACAAGGTGGGCCGGGCTGGGGCT GGGCAGACGGTGGGCGGCAGGGCAGTGAGCCAGGCCCTAGGTGCTGCCTGTGGGGGCCTCAGCCTACCAGGGGCA ACACGCCAATAGCCCACGCACAGCCGACTCCAGCGCAGCACCCAGGCCGTAGGCGGCCACTGGACCAGAACCCAG CAGGTTCTCAGGAGGACAGTCCCCGGAAGCCACCCAACTTCCCTGTACCTTCCCCTTCCCCAGGTCATCAGCCAG GGGGCCCCGTGACGCTCCCCTACCAGGTGTACTTCATGCGGAAATTGTGGCTCAACATATCTCCAGGGAAGGAT GTGAATGCAGACACCATACTCCATTACCACCAGGAGCTGCCCAAGTACCTGCGCGGATTCCACAAGTGTTCGCGG GAGGATGCCATCCACCTGGCGGGCCTCATCTACAAGGCCCAGTTCAACAACGACCGGTCCCAGCTGGCTAGTGTC CCCAAGATCCTGAGGGAACTGGTGCCTGAGAACCTCACACGCCTGATGTCCTCGGAGGAGTGGAAAAAGAGCATC CTTCTAGCCTATGACAAGCATAAGGACAAGACAGTGGAGGAGGCCAAGGTGGCCTTCCTGAAGTGGATCTGCCGG TGGCCCACCTTCGGATCCGCCTTCTTCGAGGTGAAGCAAACCTCGGAGCCTTCCTACCCGGACGTCATCCTCATC GCCATCAACCGACATGGGGTTCTGCTCATCCACCCCAAGACCAAGGACCTGCTCACCACCTATCCCTTCACCAAG ATCTCCAGCTGGAGCAGCAGCACCTACTTCCACATGGCGCTGGGGAGCCTGGGCAGCCGTGCCAGCCGCCTGCTG TGCGAGACCTCCCTGGGCTATAAGATGGATGACCTGCTGACCTCATATGTGCAGCAGCTCCTGAGTGCCATGAAC

PCT/US2003/028547

915/6881 FIGURE 851B

PCT/IIS2003/028547

916/6881 FIGURE 852

MKYLLNFIGQGPATYGPFCAERLRRTYANGVRAEPPTWLELQAVKSKKHIPIQVILATGESLTVPVDSASTSREM CMHIAHKQGLSDHLGFSLQVAVYDKFWSLGSGRDHMMDAIARCEQMAQBRGESGRQSPWRIITRREFFTFWHDSA EDPUSTELIYRQVLRGWWSGEYSFKSEEBLVELLARHCYVQLGASABSKAVQELIPSCIPHLIYRIKFRPDRWASL VTAACAKAPTYQKQVTPLAVREQVVDAARLQWPLLFSRLFEVITLSGPRLPKTQLILAVNWKGLCFLDQQEKMLL ELSFPEVWGLATNREAQGGQRILLISTHHEEYSFVSPSSVAIABLVALFLEGLKERSIFAMALQDRKATDDITLLKFKKGDLLVLTKKQGLLASENWTLGQNDRIGKTGLVPMACLYTIPTVTKSSQLLSLLMAMSPEKRKLAAQGGQFTE PRPEEPPREKLHTLEEFSYEFFRAPEKDMYSMAVLFLARAGHLWAYSCEPLRQPLLKRVHANVDLWDIACQIFV ALLRYWGDYPSRQAWFTLELTDQIFTLALQHPALQDEVYCQILKQITHNSNRHSEERGWQLLWLCTGLFPPSKGDLFDLFULGTFTPSKGPPLQVLKRUTHNSNRHSEERGWQLLWLCTGLFPPSKGDLDAGARGGLEVARAFGHLWAYSCEPLRQFLKKIYFPNDTSEMLEVVANTRVR DVCDSIATRLQLASWEGCSLFIKISDKVGRAGAGGTVGGRAVSBALGAACGGLSLFGAPMLDQARPGLLGQR

PCT/US2003/028547

917/6881 FIGURE 853

AAGTGCATGACTCAGGACTGGGTGGGAGGGGGCTGTCCCTGAGGCCCTGGTCTCCCCCAGCCAAGTCCTGGCAGG GGGATGCTGTTCTTCAGGATCCCATGACCTGGGGCTCTTGGGGAGCCCCAGCCCGGAGAGTGACCTGTGGCTTTG CTGGGGAAAGGGGCTTGGAGGGTACAGGGCAGTGTCCAGGATTGCAGTCTCAAATCCGAGGCCCACAGGGGAGCT GCCTCTGTGATCGCCATTAAGGCTGTGGCCTGGGGTCTCAGGGCAGCCCAGGAACCAAAAATAGCCTGTAACTTG TCACTTTGTAAGTCCTGCCCTCCAGACACACTTCCCTTTCTTCTCCCCAAGCCTCTCTTCCCAGTTAGCTCCCCT GACTTGGAGTCACCTCTAAGCCTTGGCCCAGGCCCCTCTGCAGTGAGATGGAGGGACTCATCCCCCGGAGAGTGG CATCTGCAGGCCCACTGGCTGCCTGTGGTCACCCCCTAGGGTTCTAGCGGGGCTGCCTCCCATTTTCCTCAGAGC GGAGCAGCCCCAGCAGCAGCATTGAGGTGGAGCAATATGTCGGACGCCTTGGCCAACGCCGTGTGCCAGCGCTGC CAGGCCCGCTTCTCCCCCGCCGAGCGCATTGTCAACAGCAATGGGGAGCTGTACCATGAGCACTGCTTCGTGTGT GCCCAGTGCTTCCGGCCCTTCCCCGAGGGGCTCTTCTATGAGTTTGAAGGCCGGAAGTACTGCGAACACGACTTC CAAATGCTGTTTGCTCCGTGCTGTGGATCCTGCGGTGAGTTCATCATTGGCCGCGTCATCAAGGCCATGAACAAC GGCAGGCATCTCTGCCGGCCTTGCCACAACCGTGAGAAAGGCCAAGGGCCTGGGCAAGTACATCTGCCAGCGGTGC CACCTGGTCATCGACGAGCAGCCCCTCATGTTCAGGAGCGACGCCTACCACCCTGACCACTTCAACTGCACCCAC GGCGTCCCCATCTGCGGGGCCTGCCGCCGGCCCATCGAGGGCCGAGTGGTCAACGCGCTGGGCAAGCAGTGGCAC GTGGAGCACTTTGTCTGTGCCAAGTGTGAGAAGCCATTCCTGGGGCACCGGCACTATGAGAAGAAGGGCCTGGCC TACTGCGAGACTCACTACAACCAGCTCTTCGGGGACGTCTGCTACAACTGCAGCCATGTGATTGAAGGCGATGTG GTGTCGGCCCTCAACAAGGCCTGGTGTGAGCTGCTTCTCCTGCTCCACCTGCAACAGCAAGCTCACCTGAAG AACAAGTTTGTGGAGTTCGACATGAAGCCCGTGTGTAAGAGGTGCTACGAGAAGTTCCCGCTGGAGCTGAAGAAG CGGCTGAAGAAGCTGTCGGAGCTGACCTCCCGCAAGCCCAAGGCCCAAGGCCACAGACCTCAACTCTGCCTGAAGGC CCTCTTGCGCAGTGCCTCTCGGCCCTCCGCCTTCTCCCCTCTGCTGCCATGCTTGGCCCCCTCGTCCCCATC TGACCCCACGTCTGACAGCCATGTCCACCTGTGCCCACAGCTTCCGCCCACAGACCTCCAGGGACAGGACAAAT TGCACCACAGCTCCCCGCCTGGCCTGGCCCTCCCCAGGCGGCTCAGTGGCTCATGCTGTCCTGTGAGAGCCCCTG CCCCAGAGCGGCCCCACTAAGCGCATGTGGCTCCTGGGCTACCCACAGCCAGGGCAGCCTGCTGGAGCCACAGGG CCTTGTGCCCACACTGAGCCAGCAGTCCTGCTGTCCACACCCACAAGCTACCTGGAGGGACAGGACCCACCTCC TTGGGGCTTGTGTCGAGCCCTTGGGTGGGGCCAGGAGGAGGTGATGGCGTCAGAGGAGGTGTGGTCAGAGGTGAC GCACAATGAAGGCTTGTTCACAC

PCT/US2003/028547

918/6881 FIGURE 854

CCGACACCCACGGGCGGAGATCACCTGCTGCCCCGCAGACCCCTGTCCCTTCCTCCCGGACCAGCAGCTAGAGGATGTCCAAACGGAGTTGGTGGGCTGGATCCAGAAAGCCCCCAAGAGAGATGCTGAAACTCTCAGGCTCTGACTCCA GCCAAAGCATGAATGGCCTTGAAGTGGCTCCCCCAGGTCTGATCACCAACTTCTCCCTGGCCACGGCAGAGCAAT GTGGCCAGGAGACGCCACTGGAGAACATGCTGTTCGCCTCCTTCTACCTTCTGGATTTTATCCTGGCTTTAGTTG GCAATACCCTGGCTCTGTGGCTTTTCATCCGAGACCACAAGTCCGGGACCCCGGCCAACGTGTTCCTGATGCATC TGGCCGTGGCCGACTTGTCGTGCTGCTGGTCCTGCCCACCCGCCTGGTCTACCACTTCTCTGGGAACCACTGGC CATTTGGGGAAATCGCATGCCGTCTCACCGGCTTCCTCTTCTACCTCAACATGTACGCCAGCATCTACTTCCTCA CCTGCATCAGCGCCGACCGTTTCCTGGCCATTGTGCACCCGGTCAAGTCCCTCAAGCTCCGCAGGCCCCTCTACG TGCAGACCAACCACACGGTGGTCTGCCTGCAGCTGTACCGGGAGAAGGCCTCCCACCATGCCCTGGTGTCCCTGG CAGTGGCCTTCACCTTCCCGTTCATCACCACGGTCACCTGCTACCTGCTGATCATCCGCAGCCTGCGGCAGGGCC TGCGTGTGGAGAAGCGCCTCAAGACCAAGGCAGTGCGCATGATCGCCATAGTGCTGGCCATCTTCCTGGTCTGCT TCGTGCCCTACCACGTCAACCGCTCCGTCTACGTGCTGCACTACCGCAGCCATGGGGCCTCCTGCGCCACCCAGC GCATCCTGGCCCTGGCAAACCGCATCACCTCCTGCCTCACCAGCCTCAACGGGGCACTCGACCCCATCATGTATT GCTTCGAAGGGAAAACCAACGAGAGCTCGCTGAGTGCCAAGTCAGAGCTG<u>TGA</u>GCGGGGGGGCGCCGTCCAGGCCG ACCTGAAATCTCAGCAGATGCCCACCATTTCTCTAGATCGCCTAGTCTCAACCCATAAAAAGGAAGAACTGACAA AGGGGATCCATCGGCCACCCCTCTGCAGGGGCTTGTGATGGCTACAATGGCTCCTAGACACTCAACGACTTCATC AAGAGGGACCTGGGAGTCCTGGTGGGGACGGGGAGGGAGTCTCAATACTCCTTTGCAGCGCAAGGTACTCTGAGT CCCCTCTGTAGTGCCTCTGCCAGACACACTGCCTGAGTTGAAGAGACACAGGCCACACATTTCAGGCTGGTTG CCAGCGGACGTCAGCACTCACGGCCTGCGGGGACTCAGCACAGCTCTGGATTCTGGATCTCTCCTGCTGTAACCC CACGCACAAGCCTGCAACCCCCAGAGCTCTTTGACAGGCTCCCAGGCCTCCCAGTCCTGGACAAGCATGTGCAGT CACGGGAGCTCAGCCCAGGCCAGGCCTGGGCTGTGCACCTGCCCCACTGACCCAGACCCACTTCCTCCAGAGA GGCCTCTCTCCGCCTGAGCTATTTCCCTTGCTAGTGTGCAGATATTTCCCTAACATGTCCTTTTTTGTATTTGTT

PCT/US2003/028547

919/6881 FIGURE 855

MSKRSWWAGSRKPPREMLKLSGSDSSQSMNGLEVAPPGLITNFSLATAEQCGQETPLENMLFASFYLLDFILALV
GNTLALWLFIRDHKSGTPANVFLMHLAVADLSCVLVLPTRLVYHFSGNHWPFGEIACRLIGFLFYLNMYASIYFL
TCISADRFLAIVHEVKSLKLRRPLYAHLACAFLWVVVAVAMAPLLVSPQTVQTNHTVVCLQLYREKASHHALVSL
AVAFTFFFITTVTCYLLIIRSLRQGLRVEKRLKTKAVRMIAIVLAIFLVCFVPYHVNRSVYVLHYRSHGSCATQ
RILALANRITSCLTSLNGALDPIMYFFVABKFRHALCNLLCGKRLKGPPPSFEGKTNESSLSAKSEL

PCT/US2003/028547

920/6881 FIGURE 856A

GGGGAAGATGGCGGCTGCTCCTTTGGAGGAGCGGGATTGAGAGGATCGGGGTGGGGAGACCAAACAAGAGAGACA TTTCTGGCTCTGAAGGCGAACGCTTCGCTGGCCATTTAGGAGCTCTGCTCAAAGCCAGACGTATCCTAGAAGGAA AACATCACCATGGCTACAGAAATTGGTTCTCCTCCTCGTTTTTTCCATATGCCAAGGTTCCAGCACCAGGCACCT ATGAGAAAAGCTGTGAACCGAAAAACCATAGACTACAATCCATCTGTAATTAAGTATTTGGAGAACAGAATATGG CANAGAGACCAGAGAGATATGCGGGCAATTCAGCCTGATGCAGGTTATTACAATGATCTGGTCCCACCTATAGGA ATGTTGAATAATCCTATGAATGCAGTAACAACAAAATTTGTTCGGACATCAACAAATAAAGTAAAGTGTCCTGTA TTTGTTGTTAGGTGGACTCCAGAAGGAAGACGCTTGGTCACTGGAGCTTCTAGTGGGGAGTTTACCCTGTGGAAT GGACTCACTTTCAATTTTGAAACAATATTACAGGCTCACGACAGCCCAGTGAGGGCCATGACGTGGTCACATAAT GACATGTGGATGTTGACAGCAGGACCACGGAGGATATGTGAAATATTGGCAGTCGAACATGAACAACGTCAAGATG TTCCAGGCACATAAGGAGGCGATTAGAGAGGCCAGTTTCTCACCCACGGATAATAAATTTGCTACATGCTCTGAT GACGGCACTGTTAGAÁTCTGGGACTTTCTTCGTTGCCATGAGGAAAGAATTCTCCGAGGGCATGGTGCTGATGTG AAATGTGTAGACTGGCATCCAACCAAAGGGTTAGTTGTTTCAGGAAGTAAAGATAGTCAACAGCCAATCAAGTTC TGGGATCCCAAGACTGGGCAGAGTCTTGCAACACTTCATGCCCATAAAAACACAGTAATGGAAGTGAAATTAAAC CTCAATGGCAATTGGCTACTCACAGCATCACGTGATCATCTCTGTAAACTTTTTGATATCAGAAACCTAAAAAGAA GAGCTTCAAGTCTTCCGAGGTCATAAGAAAGAAGCCACAGCTGTGGCCTGGCATCCTGTTCATGAAGGACTTTTT GCTCACGAAGGGATGATCTGGAGTCTGGCTTGGCATCCTCTTGGGCATATTCTCTGCTCAGGCTCAAATGACCAT ACTAGCAAATTCTGGACTCGAAACCGACCAGGTGATAAAATGCGAGATCGATATAATCTAAACCTTTTACCTGGA ATGTCTGAAGATGGAGTAGAATATGATGACCTCGAACCTAATAGCCTGGCAGTAATTCCAGGAATGGGAATACCA GAACAACTAAAATTAGCTATGGAACAAGAACAGATGGGGAAAGATGAATCAAATGAAATTGAAATGACAATTCCA GGTTTAGA'TTGGGGAATGGAGGAAGTGATGCAAAAGGATCAGAAAAAAAGTACCTCAGAAGAAAAGTTCCTTATGCA AAACCCATTCCTGCTCAGTTCCAGCAGGCTTGGATGCAAAATAAAGTTCCAATTCCTGCTCCAAATGAGGTGCTG TTACAATATACTAACCCACAACTTCTGGAGCAACTTAAAATTGAAAGACTTGCACAGAAACAAGTTGAGCAAATT CAGCCTCCTCCTCATCTGGCACCCCTCTCCTCGGACCCCAGCCTTTTCCAGGACAAGGTCCAATGTCTCAGATT CCTCAAGGTTTTCAACAGCCCCATCCATCTCAGCAGATGCCAATGAACATGGCTCAAATGGGGCCTCCAGGTCCA CAGGGACAGTTTAGGCCTCCTGGACCCCAGGGACAAATGGGACCACAAGGTCCTCCACTGCATCAGGGAGGTGGG GGGCCACAGGGTTCATGGGACCACAGGGGCCCCAGGGCCCCCAGGGGTTGCCACGGCCTCAGGACATGCAT GGGCCCCAAGGAATGCAGAGGCATCCTGGACCTCATGGCCCTTTTGGGACCTCAAGGGCCACCTGGACCACAAGGT AGTTCTGGTCCTCAAGGTCATATGGGTCCTCAGGGTCCACCTGGCCCACAGGGTCACATAGGCCCCCAAGGCCCG CCTGGCCCTCAGGGTCACTTGGGCCCACAGGGGCCTCCGGGTACTCAAGGTATGCAGGGACCACCTGGTCCCAGA GGAATGCAAGGGCCTCCTCATCCTCATGGGATCCAAGGCGGACCAGGGTCTCAAGGGATCCAAGGTCCTGTGTCT CAGGGACCTCTGATGGGATTGAATCCAAGAGGAATGCAGGGGCCTCCAGGCCCCCGGGAGAACCAGGGTCCTGCT CCCCAAGGGATGATTATGGGCCACCCGCCTCAAGAGATGAGAGGACCTCACCCTCCAGGTGGACTACTGGGACAC GGCCCTCAGGAAATGAGAGGTCCTCAGGAGATCCGAGGCATGCAGGGGCCTCCACCCCAAGGATCAATGCTGGGA CCTCCCCAGGAATTGCGAGGGCCTCCAGGCTCACAAAGTCAGCAGGGGCCGCCCCAGGGCTCTTTAGGACCTCCA CAGAGCACAGGCCCCCACCCCTGATACCAGGCCTAGGGCAGCAGGGAGCACAAGGTCGCATTCCCCCTCTGAAC GAGGAAGGGATGGTTTTCCTGGTCCTGAAGACTTTGGTCCAGAGGAGAATTTTGATGCTTCTGAGGAAGCGGCCC AGTTCCCTCGCTTTGAAGGAGGGCGGAAGCCAGATTCCTGGGATGGAAACAGAGAGCCTGGGCCAGGTCATGAAC CTCTCCAAGGCATGGACATGGCATCCCTACCTCCCGAAAGCGCCCCTGGCATGATGGCCCAGGCACTTCTGAGC ACAGAGAGATGGAGGCCCCAGGAGGCCCTTCTGAAGACCGAGGGGGCCAAAGGCCGAGGGGGCCCAGGACCTGCTC AGAGAGTGCCCAAATCTGGGCGTTCCAGCTCCTTAGACGGAGAGCACCACGATGGATACCACAGAGATGAACCTT

PCT/IIS2003/028547

921/6881 FIGURE 856B

TTGGGGGCCCTCCAGGCAGTGGCACCCCTTCTCGAGGGGGCCGGAGTGGCAGTAACTGGGGTAGAGGGAGTAACA TGAACTCTGGCCCGCCGAGGCGAGGAGCTTCACGGGGTGGTGGAAGGGGGTCGGTAGAAGCTGGAACTGAGTACCC TGAGGCCTCTCTGGACAGTATGTAAGAACTTCTTGTGGACTCACCAAGAGAAACAAAAGGAAGCCTGCACCATTG TAGCCCTGAACTCTTTTCTGGGCACCTGAATCCCAGGAACCCTCAATGAGGTCTTCAAGATGAAGAGACTGCTGC CAGCTACCAGCCTGGCCGGCCCTGTCCTGTCCACCCTCATTGCCCCAACTCCCATGTTGTTTTTGTGAAGATAAAA GCTGGGATCTTTTTCTTTTTTTTTAAGTCTCACAAGACATGGGGCATCTCCACAAATTTAAGTTCCTGTCCATTTG GAAATTTGTTTCTATGTGTACAGTTTGTCAGAGAAAAACAAAGTTTTTGTATGAATACAGAATGTGATTTACGCA AGAATTGACAGAAAACTAGTTGTGAAGTGCTTGCCTTAAGGAAACCTTTGGTTTCCATCGCATCCCATCTGCCAA GGAATGCACGGTTGTTGCTGATGTTCATGAGCATATTAACCACTAGGTTATCTAAATTAATCTCAGCTGTGAACT TTGTGTTTTTCAACACATTCTGTCACACCATTTTTGTGACAGAAAAATACTTGAAAATTATTCTAATGTAGTTTG TAGTAGGTTCAAATTTTTATTCAGACATGCTCTGACAGATGGAAAATTGTACTCTGAAGAGAAAATGCAATCTTC TGGATGTCCAACGAGGGAGCTTCCCCTTGGAAGCATCTCCTAAGAATCACAGTTTAGGTTTGAATCGCCTTGTTA TGATGAGGAGAGGAACTTGATGTTAGTCAGAAATAAAGTCACATGCCCTTTAGATAACTTGAAATCACACATGGA TGGCAAATTCCTTGTTTAAAATAAACATACCATTTAGCCCAGTTTGGATTGGAAGCCAAAAATTCAGTTTGTTAT ATACCCCATGATACTTTCTATACTGACCTTTATTTTGGTTTTACATGGAAGCTTTTATTAAAAAGGACTGTCCTAT AATCACGGCTCACTTCAGCTTTGACCCTGCCTCAGCCTCCTAGTAGCTAGGACTACAGGCATATGCCACCATGC CCAGCTAATTTTTTGTGTGTGTTTTTTTGTAGAGATGGAGTTTCACCACTTTGTCTATGCTGGTTTCAAACTCC TGGGCTCAAGCGGTCCACCTGCTGTGGCCTCCCAAAGTGCTGGGATTGCAGATCTGAGCCACAGTACCTGGCCGC TGGTGCTGGAAGTTTCAATGGTTGCTTAGAAAAGGCATACTGATATAGTTTAACAGGATATGAAAATTTAACTGG TTCTCTATGAATGTAAAAAACAGCAAAAGCTAATTGATTTCTGTGGAGTGAGAAAATGTCAGCCATATACACTGC TTTTCAGTGTTAGAATCTAGAGACTATTTTTTTTTTAACTTTGAAATTACAGCTTATTTAATCAGCGCTCCACCA TANAGAGAGAGACTGTANTCANATTTCATGAAGCTAAAACCGGATCCAGAGACCAAACCCATATCAAGATTAG ACTTTTTTTCCCTGAGATTCTAGTGGAAAAATTTTCATTATTTTGGGCTTTAACTTTAGAAACATAGTATCTCAG TAAGCAGATAACCAGATCACATTTAAAAATTTTCATTTTACCTTGAAGCTCTACTGGACTTGACAGATCACATTT TGAGAGTGAATTCATTTAAACAATAAACCTCTACATTATACTTAT

PCT/US2003/028547

922/6881 FIGURE 857

AGAACATCCAGTCACGGATAAAAATGAGCTGGTTCAGAAGGCCAAACTGGCCGAGCAGGCTGAGCAATATGATGA CATGGCAGCCTGCATGAAGTCTGTAACTAAGCAAGGAGCTGAATTATCCAATGAGGAGGAGGAATCTTCTCTCAGT TGCTTATAAAAATGTTGTAGGAGCCCGTAAGTCATCTTGGAGGGTCGTCTCAAGTATTGAACAAAAAACGGAAGG TGCTGAGAAAAAACAGCAGATGGCTCGAGAACACAGAGAGAAAATTGAGACGGAGCTAAGAGATATCTGTAATGA TGTATTGTCTCTTTTGGAAAAGTTCTTGATCCCCAATGCTTCACAAGCAGAGCAAAGTCTTCTATTTGAAAAT GAAAGGAGATTACTACCGTTACTTGACTGAGGTTACTGCTGGTGATGACAAGATAGGGATTGTGGATCAGTCACA CCTTAACTTCTGTGTTCTATTATGAGATTCTGAACTCCCCAGAGAAAGCCTGCTGTCTTGCAAAGACCGCTTTTG ATGAAGCCATTGCTGAACTTGATACATTAAGTGAAGAGTCATACAAAGACAGCATGCTAATAATGCAATTACTGA GAGACAACTTGACATTGTGGACATCGGATACCCAAGGAGACGAAGCTGAAGCAGGAGAAAGGAGGGGGAAAATTAAC CGGCCTTCCAACTTTTGTCTGCCTCATTCTAAAATTTACACAGTAGACCATTTGTCATCCATGCTGTCCCACAAA TAGTTTTTTGTTTATGATTTATGACAGGTTTATGTTACTTCTATTTTGGATTTCTATATTTCCCATGTGGTTTTTA TGTTTAATATTAAGGGAGTAGAGCCAGTCAACATTTAGGGAGGTATCTGTTTTCATCTTGAGGTGGCCAATATTG GGATGTGGAATTTTTATACAAGTTATAAATGTTTGGCATAGTACTTTTGGTACATTGTGGCTTCACAAGGGCCCAG TGTAAAACTGCTTCCATGTCTAAGCAAAGAAAACTGCCTACATATTGGTTTGTCCTGGTGGAGAATAAAAGGGAT CATTGATTCCAGTCAGAGGTGTAGTAATTGTGGGTACTTTTAAGGTTTGGAGCACTTTACAAGGCTGTGGTAGAA ACATACCCCATGGATACCACATGTTAAACCATGTATATCTGTGGAATACTCAGTCTCATTGTGCACACCTTTGAC TACAGCTGCAGAAGTTTTCCTTTAGATAAAGTTGTGACCCATTTTACTCTGGATAAGGGCAGAAACAGTTCACAT TCCATTATTTGTAAAGTTACCTGCTGTTAGCTTTCATTATTTTTGCTACACTCATTTTATTTGTATTTAAATGTT TTAGGCAACCTAAGAACAAATGTAAAAGTAAAAGATGCAGTAAAAATGAATTGCTTGGTATTCATTGCTTCATGTA TGATACTTGCCTAACATGCATGTGCTGTAAAAATAGTTAACAAGGAAATAACTTGAGATGATGGCTAGCTTTGTT TAATGTCTTATGAAATGTTCGTGGATAATCCAAGCATAATTGTTAAGAACACGTGTATTAAATTCATGTAAGTGG AATAAAAGTTTTATGAATGGACTTTTCAACTACTTCTCTACAGCTTTTCGTGTAAATTAGTCTTTTGGTTCTGA AATTTCTCTAAAGGAAATTGTACATTTTTGAAATTTATTCCTTATTCCCTCTTGGCAGCTAATGGGCTTTTAGTA GTCTCTTCCTCCCCACCCTGAAAAAAATGAGTTCCTATTTTTTCTGGGAGAGGGGAGATTAATTGGAAAAAAATG TTAATATGTTCCATTTAAAATTTTGGTATATGGCATTTTCTAACTTAAGAAGCCACAATGTTCTTGGCCCATCAT GACAATGGGTAGCATTAACTATAAGTTTTGTGCTTCCAAATCACTTTTCGGTTTTTAAGAATTTCTTGATACTCC GTCTTGTCACCAACCATTCCTACTTGGTGGCCATGTACTTGGAAAAAGGCCGCATGATCTTTCTGGCTCCACTCA ATGTCTAAGGCACCCTGCTTCCTTTGCTTGCATCCCACAGACTATTTCCCTCATCCTATTTACTGCAGCAATTGT TAGAATGTTAGAATGTAAGCTCCTCAAAAGCAGGGACAATGTTTTCCGTATGTTCTACTGTGCCTAGTATACTGT AAATGCTCAATAAATACTGATGATGGGAGGCAGTGAGTCTTGATGATAAGGGTGAGAAACCGAAATCCC

PCT/IIS2003/028547

923/6881 FIGURE 858

WO 2004/030615 PCT/US2003/028547

924/6881 FIGURE 859A

 $AGAAGGCCATTTTCAACTCTCCACTGGAGGCTGCT\\ \underline{ATG}\\ \underline{GCGTTCCCTCACCTGCAGCAGCCCAGCTTTCTACTGG}\\$ CTAGCCTGAAAGCTGACTCTATAAATAAGCCCTTTGCACAGCAGTGCCAAGACTTGGTTAAAGTCATTGAGGACT TTCCAGCAAAGGAGCTGCACACCATCTTCCCATGGCTGGTAGAAAGCATTTTTGGCAGCCTAGATGGTGTCCTCG TTGGCTGGAACCTCCGCTGCTTACAGGGGCCGCGTGAATCCTGTGGAGTACAGCATCGTGATGGAATTTCTCGACC CTGGTGGCCCAATGATGAAGTTGGTTTATAAGCTTCAAGCTGAAGACTATAAGTTCGACTTTCCTGTCTCCTACT TGCCTGGTCCTGTGAAGGCGTCCATCCAGGAGTGCATCCTCCCTGACAGTCCTCTGTACCACAACAACAAGGTCCAGT TCACCCCTACTGGGGGCCTTGGTCTGAACTTGGCCCTGAATCCGTTCGAGTATTACATATTCTTCTTTGCCTTGA GCCTCATCACTCAGAAGCCACTTCCTGTGTCCCTCCACGTCCGTACTTCAGACTGTGCCTATTTCATCCTGGTGG ACAGGTACCTGTCATGGTTCCTGCCCACCGAAGGCAGTGTGCCCCCACCACTCTCCTCCAGCCCAGGGGGGGACCA GCCCTCACCACCTCCCAGGACACCAGCCATACCCTTTGCTTCCTATGGCCTCCACCACCACCTAGCCTCCTAAAGC GACACATCTCTCATCAGACGTCTGTGAATGCAGACCCCGCCTCCCACGAGATCTGGAGGTCAGAAACTCTGCTCC AGGTTTTTGTTGAAATGTGGCTTCATCACTATTCCTTGGAGATGTATCAAAAAATGCAGTCCCCTCATGCCAAGG AGTCGTTCACGCCTACTGAGGAGCATGTGTTGGTGGTGCGCCTGCTGCTGAAGCACCTGCACGCCTTTGCCAACA GCCTGAAGCCAGAGCAGGCCTCACCCTCCGCCCACTCCCACCACCACCCCCTGGAGGAGTTCAAACGGGCTG CTGTCCCGAGGTTCGTCCAGCAGAAACTCTACCTCTTCTTGCAGCATTGCTTTGGCCACTGGCCCCTGGACGCAT CCTTCAGAGCTGTCCTGGAGATGTGGCTGAGCTACCTGCAGCCGTGGCGGTACGCGCCTGACAAGCAGGCTCCGG GCAGCGACTCCCAGCCCCGGTGTGTCTCGGAGAAATGGGCACCCTTTGTCCAGGAGAACCTGCTGATGTACACCA AGTTGTTTGTGGGCTTTCTGAACCGCGCGCTCCGCACAGACCTGGTCAGCCCCCAAGCACCGCGCTCATGGTGTTCC GAGTGGCCAAAGTCTTTGCCCAGCCCAACCTGGCTGAGATGATTCAGAAAGGTGAGCAGCTATTCCTGGAGCCAG AGCTGGTCATCCCCCACCGCCAGCACCGACTCTTCACGGCCCCCACATTCACTGGGAGCTTCCTGTCACCCTGGC CACCAGCGGTCACTGATGCCTCCTTCAAGGTGAAGAGCCACGTCTACAGCCTGGAGGGCCAGGACTGCAAGTACA TGGACACCAATGGCTCCTACACAGCCAACGACCTGGACGAGATGGGGCAAGACAGTGTCCGGAAGACAGATGAAT ACCTGGAGAAGGCCCTGGAGTACCTGCGCCAGATATTCCGGCTCAGCGAAGCGCAGCTCAGGCAGTTCACACTCG TTACGCCCTGGGGCGGTACCAGATCATCAATGGGCTGCGAAGGTTTGAAATTGAGTACCAGGGGGACCCGGAGC TGCAGCCCATCCGGAGCTATGAGATCGCCAGCTTGGTCCGCACACTCTTTAGGCTGTCGTCTGCCATCAACCACA GATTTGCAGGACAGATGGCGGCTCTGTGTTCCCGGGATGACTTCCTCGGCAGCTTCTGTCGCTACCACCTCACAG GGCTCAGCCTGCGCTTCCTGGGCAGTTACCGGACGCTGGTCTCGCTGCTGCTGCCTTCTTCGTGGCCTCTCTGT TCTGCGTCGGGCCCCTCCCATGCACGCTGCTCACCCTGGGCTATGTCCTCTACGCCTCTGCCATGACACTGC TGACCGAGCGGGGAAGCTGCACCAGCCC<u>TGA</u>AGGTGTCAGCTGCCTTCAGAGCAGGCTGGAGGGATTTGCCACA CAGCCCACCCTTGGGCTGAGAGGACCTGGGAAGCCCCTCCAGGAGGGAACACGGTCATCCTCGGGCTTCTGGAG AGGACTCACGGCCAAGCCAGCTCTCGGGGCCTTTTTTCCACTGCCCATTTGGCTACTCTGCTGCACCAAGCTTGG GAGCCAGCCTGCCAACAGCCACCTGGGCCTGGCCTCCCCACTGGCTTGAGGTTGGCAGAGTGGGTTGTGG CGCTTCCTCTCTCTGTGTGGGACCAGGACAGTGGCTTAAGTCTCCACTCCAGGAAAGAATCAAAGTTTCTAGAGT TGTGAGAAAACCAGAGAGTGGCTGTCCTGATTCTTCACTGTGAGGGGCGTTCTTCATGTTCTCCCAGCTGTTCCA AGACTGGGCCGTAGAATTCCATGTTTCAGGAGCCTAAGACCCTCCCAGAGCCCAGGGGCTTCACCGCAGACCCCA AGCCATTGAGCACATCACCCAAAGCAGTGGCCAACATCGCGGACCCCTGTGCCTTGTCACAGATGGGTGCTGGTC CTCAGGCGTTGGGGACACTGCTGGGTCGATGGGGTCGGATTCTGCCAGTTTCTGCTCTGCAGCCAAAGATGGTCA GAAGCATTGTCACTTCAGTAACATCAAGTGCTCAAAGACATGGCAACCGTTCAGTGGTACTTAAGTATTCAAAAT ATACAACTACAGATTCTCTGACAGAAACCAGGACCCCTTCACTTCACCCCACAGGCGACATGCGAGG GAGAACAGCATCTCAGTGGTGATTTCCAAACCAAGCCTTTGTTTTCGGTGTGGGGTTTTGGGGGTTTGCTTTAAT GTTTTGAAATTGTAAATGTTGGGCTTTGTATTTTGATGTAAACTGAGCATAATGGCATTTTAGGGCCTGTGACC

PCT/US2003/028547

925/6881 FIGURE 859B

PCT/HS2003/028547

926/6881 FIGURE 860

MAFPHLQOPSFLLASLKADSINKPFAQQCQDLVKVIEDFPAKELHTIPPMLVESIFGSLDGVLVGWNLRCLQGRV
NPVEYSIVMEFLDPGGPMMKLVYKLQAEDYKFPFVSXLPGPVKASIGECILPDSPLYHNKVQFTPTGGLGLNLA
LNFFFYYIFFFALSLITQKPLPVSLHVRTSDCAYFILVDRYLSWFLPFEGSVPPPLSSSPGGTSPSPPFRTPAIP
FASYGLHHTSLLKRHISHGTSVNADPASHEIWRSETLLQVVEXMWLHKYSLEMYQKMQSPHAKESFTFTEEHVLV
VRLLKKHLHAFANSLKPEQASPSAHSHATSPLEEFKRAAVPRFVQQKLYLFLQHCFCHWPLDASFRAVLEMMLSY
LQPWRYAPDKQAPGSDSQPRCVSEKMPFVQGNLLMYTKLFVGFLNRALRTDLVSFKHALWFRVAKVFAQPNLA
EMIQKGEQLFLEPELVIPHRQRKLFTAPTFTGSFLSPWPPAVTDASFKVKSHVYSLEGQDCKYTFMFGPËARTLV
LKLAQLITQAKHTAKSISDQCAESPAGHSFLSWLGFSSMDTNGSYTANDLDEMGQDSVRKTDEYLEKALEYLRQI
FRLSSAOLRQFTLALGTTQDEMGKKQLPDGIVGEDGLILTFLGRYQIINGLRRFEIEYQGDEELQPIRSYEIASL
VRTLFRLSSAINHRFAGQMAALCSRDDFLGSFCRYHLTEPGLASRHLLSPVGRRQVAGHTRGPRLSLRFLGSYRT
LVSLLLAFFVASLFCVGQLPCTLLLTLGGYVLYASAMTLLTERGKLHQP

PCT/HS2003/028547

927/6881 FIGURE 861

TGAGCGCGCCAGCAAGTTCGTGCTGGTGGTGGCGGGCTCGGTGTGCTTCATGCTCATCTTGTACCAGTACGCGGG CCCAGGACTGAGCCTGGGCGCGCCGGCGGCGCCGCCCGACGACCTGGACCTGTTCCCCACGCCCGACCC CGTGATCGTCTTCCTGCACATCCAGAAGACGGCGGCCACCACCTTCGGCCGCCACCTCGTGCAGAACGTACGCCT ${\tt CGAGGTGCCGTGCGACTGCCGGCCCAGAAGAAGAAGTGCACCTGCTACCGGCCCAACCGCCGAGACTTGGCT}$ CTTCTCCCGCTTCTCCACCGGCTGGAGCTGCGGGCTGCACGCCGACTGGACCGAGCTCACCAACTGCGTGCCCGG CGTGCTGGACCGCCGCGACTCCGCCGCGCGCGCACGCCCAGGAAGTTCTACTACATCACCCTGCTACGAGACCC CGTGTCCCGCTACCTGAGCGAGTGGCGGCATGTGCAGAGGGGTGCCACGTGGAAGACGTCGTTGCATATGTGTGA TGGGCGCACGCCCACGCCTGAGGAGCTGCCGCCCTGCTACGAGGGCACGGACTGGTCGGGCTGCACGCTACAGGA GTTCATGGACTGCCCGTACAACCTGGCCAACAACCGCCAGGTGCGCATGCTGGCCCGACCTGAGCCTGGTGGGCTG CTACAACCTGTCCTTCATCCCCGAGGGCAAGCGGGCCCAGCTGCTGCTCGAGAGCGCCCAAGAAGAACCTGCGGGG CATGGCCTTCTTCGGCCTGACCGAGTTCCAGCGCAAGACGCAGTACCTGTTCGAGCGGACGTTCAACCTCAAGTT CGAGGAGCTCAACGACCTGGACATGCAGCTGTACGACTACGCCAAGGACCTCTTCCAGCAGCGCTACCAGTACAA GCGGCAGCTGGAGCGCAGGGAGCAGCGCCTGAGGAGCCGCGAGGAGCGTCTGCTGCACCGGGCCAAGGAGGCACT GCCGCGGGAGGATGCCGACCGAGCCGGGCCGCGTGCCCACCGAGGACTACATGAGCCACATCATTGAGAAGTGGTA GTGGCGGTGGTGGCCACGGGGAGGCCTCTTGGGGGGTGTGGGGGGATAAAACAGGACAGACGACAGGTCCACCCAA TAGTGGGGCTGGGCAGGGATGGGGGCTTGAGAAATCAACAGGTGCAGCCCAGTGGGTCAGAGGAAAGCGTGCTCG AAGGATGCCATGGTCAGGGCAGGGCCTCCAGAGCAGGTGTTGTGCCTGGAGCTGCTCCTGGCCTCCTTGGATT TATCGCAAAAACTGAAGGTTTGCGCAAGAGACGAGGACAGCGGAAAGTGGACCTGCCAGGCCGGGAGTGTGTCCC TCACCAACTATGCACACAGCACTCGCTCTTAGCTCCTCTGTCCGGGCTACTAGGAGTGAGACCAGCTTCTGGCAA CTGCCCCAGCTCCAGGCCATCCCATAGCCCCTCTTCTGGCTGCCCCCAATGCCCCGAGGCCTGGGGAGCCCC CAGCTCACCCATCTGTAGCTCCCTCAAAGTCAGGGCCCACCCCATCTGAGGCAGAGAAGACTCGAGTCCAGCCCC CAGGAAGCCTGCTCCCCTCTCTGGCCCATGGTCCTGCTTCATGCTTTGGGTCAGGAGGCCAAAGCTGATGTTCAG GCCCCACCCACTCCCTACAGTCCTCAGACC

PCT/US2003/028547

928/6881 FIGURE 862

GACTGCCCGTACAACCTGGCCAACAACCGCCAGGTGCGCATCCTGGCCGACCTGAGCCTGGTGGGCTGCTACAAC CTGTCCTTCATCCCCGAGGGCAAGCGGGCCCAGCTGCTCGAGAGCGCCCAAGAAGAACCTGCGGGGCATGGCC TTCTTCGGCCTGACCGAGTTCCAGCGCAAGACGCAGTACCTGTTCGAGCGGACGTTCAACCTCAAGTTCATCCGG CCCTTCATGCAGTACAATAGCACGCGGGCGGGCGGCGTGGAGGTGGATGAAGACACCATCCGGCGCATCGAGGAG CTC2ACC2CCTGGACATGCAGCTGTACGACTACGCCAAGGACCTCTTCCAGCAGCGCTACCAGTACAAGCGGCAG CTGGAGCGCAGGGAGCAGCCCTGAGGAGCCGCGAGGAGCGTCTGCTGCACCGGGCCAAGGAGGCACTGCCGCGG GAGGATGCCGACGAGCCGGGCCGCGTGCCCACCGAGGACTACATGAGCCACATCATTGAGAAGTGGTAGTGGCGG TGGTGGCCACGGGAGGCCTCTTGGGGGGTGTGGGGGATAAAACAGGACAGACGACAGGTCCACCCAAGACTGTC GCTGGGCAGGGATGGGGGCTTGAGAAATCAACAGGTGCAGCCCAGTGGGTCAGAGGAAAGCGTGCTCGAAGGATG CCATGGTCAGGGCAGGGCCTCCAGAGCAGGTGTTGTGCCTGGAGCTGCTCCTCGGCCTCCTTGGATTTATCGCA AAAACTGAAGGTTTGCGCAAGAGACGAGGACAGCGGAAAGTGGACCTGCCAGGCCGGGAGTGTGTCCCTCACCAA CTATGCACACAGCACTCGCTCTTAGCTCCTCTGTCCGGGCTACTAGGAGTGAGACCAGCTTCTGGCAACTGCCCC AGCTCCAGGCCATCCCATAGCCCCTCCTCTTCTGGCTGCCCCCAATGCCCCGAGGCCTGGGGAGCCCCCAGCTCA CCCATCTGTAGCTCCCTCAAAGTCAGGGCCCACCCCATCTGAGGCAGAAGACTCGAGTCCAGCCCCCAGGAAG CCACTCCCTACAGTCCTCAGACCAAGGAGGGGTTTGGGTAGTAGGCCCGAGCTGCATTGCCGGCCTTCCTCGGGC CAACTGGCAGCCCAGGAGTGGGGAGGCTTTGGCCAGGGATGCTGCCACTTGTGCGTGAGTCCGCGGCTGGCCCTT GGAGGTGACCATCCAGGCAGGCCTGGCTCAGACTGGAAGGGCTGGGGACCGAGGGCTCCCCTGCCTCTGTTCTCC TTTCTGACCCACTGGGATTTGCTAGCAGGCTGCCCCAGCCCCATCACCGAAACACATACTCAAGAGCTCAAATAC CACTGCTC:CCACCAGCGTACGGATTAAGTTCATCAGGCTTCCATCGGCTGGAGCATGGGACCATAGCCCCTGCCC AGGAGCCGTACCCTCGGACCACAGGAGGCTCTGTATGGCCAGGAACTGGGACTCGAGCTTTCAGATTCTCAACTAG CCTTGGCAAAACAGCTGTAGGTGGCCTCCCTGACAACAGACACTCAGCCCTCCCCACCCTGGCTCTCCTTGCATT TCCCCATGCTCCCCACCCCTGGCAAAAGGCTGGCCATGCTCTGTTCCCAGCAGCCGCGCAGGTTTCCCCACTGG CTGCAATGCCCTACCAAAAGCCATGTTGCATATCCGTTGTAAGCACGTGCCCTGTGCCCTGTCCCCATTCCTTA TGCCCTAGGAGGCCAAGCTGGTGTCTCTAGGAGGGCCCACACAGGCACCCTGGATCCCCCAGAGAGTAGATTGGT CTCTCTCCTGCCCCAGCTTCCACTCAGCCACCACGTTGCCACACCATGGGGTGGAGACGTGGGTCACCACGGGC TTGGGAGCAAGCGCCTTCTGCAGCACAGGAAGCCGAAGCTGGGGTCAGGTGAGGTCGCTACCCCTGGAGGTCTGG CATAAGGGCCCCACCCTCAGGTCTCCTACACTGGCCCCATTTTACTTTGGGGTCCAAGGACAGGATGGTCAACAG CCAAGGGGATTTAGTGGTGTGCTCTTTCAAAGGGAGGTCAGGGTCAATGGGAATCTGCTCGGACACTCAACATG GGGGTGGGTGCACTCCTTGGAGGAGGAGGACACGTTCAGGGGATTGTGAGGTCTTGCACAAGCCACGTGGGGCA CCTGGGTGCGCGGGCCTGAGCGCAGGTTGTTTTGTACATATTGGAATATGTGTTAACTTATGCCCCGCATCCCAA CTCACACGGAAGCACGGGTCTTGTCTCAGTCTCTTCGCTGCATTTGGAAAGCAGTCTCCTCTCGGGCCAGCGCCG GGCTGAGGTGTCCAGAGGCGGCGCAGCTGCCAGTGCCCTCAGCCCCCAAGTGTCCAGCCTGGCACTTCCCATTC AGGCCACCTGCTTTGGGTCAACAGTTCCTTTGCCAGCAGCATCTCCTAAATTGTAAGGACTCTGTCCACCGGGGC CCTCCCAGGGCTGTGAGGACGGAAACAGGCAGGGAGTGGAGCTAACAGCTTAGTCACCAGGACCCCCAGACCTGC AAACGTCCCTCCTGGAAGGGGAAGCCAGGAACAGCAGAACTGCCCACAAAACAAGGCTGTGAACTTTTCGGGAA GAAGAAATTTTTTGGTTATTCATACAAAAAATGAGTTGATGATGGAAAAGCAAGTCATAATCATCTAATTGTTT TTGTCTAGGTCGAGAATGAATGTTAGCTGATGAAATAAACCCTGACAAGG

PCT/US2003/028547

929/6881 FIGURE 863

MLADLSLVGCYNLSFIPEGKRAQLLLESAKKNLRGMAFFGLTEFQRKTQYLFERTFNLKFIRPFMQYNSTRAGGV EVDEDTIRRIEELNDLDMQLYDYAKDLFQQRYQYKRQLERREQRLRSREERLLHRAKEALPREDADEPGRVPTED YMSHIIEKE

PCT/US2003/028547

930/6881 FIGURE 864

GGAAAAAGCGACTTGTGGCGGTCGAGCGTGGCGCAGGCGAATCCTCGGCACTAAGCAAATATGGACCTCGCGGC GGCAGCGGAGCCGGCCCGGCAGCCAGCACCTGGAGGTCCGCGACGAGGTGGCCGAGAAGTGCCAGAAACTGTT CCTGGACTTCTTGGAGGAGTTTCAGAGCAGCGATGGAGAAATTAAATACTTGCAATTAGCAGAGGAACTGATTCG TCCTGAGAGAAACACATTGGTTGTGAGTTTTGTGGACCTGGAACAATTTAACCAGCAACTTTCCACCACCATTCA AGAGGAGTTCTATAGAGTTTACCCTTACCTGTGTCGGGCCTTGAAAAACATTCGTCAAAGACCGTAAAGAGATCCC TCTTGCCAAGGATTTTTATGTTGCATTCCAAGACCTGCCTACCAGACACAAGATTCGAGAGCTCACCTCATCCAG AATTGGTTTGCTCACTCGCATCAGTGGGCAGGTGGTGCGGACTCACCCAGTTCACCCAGAGCTTGTGAGCGGAAC TTTTCTGTCCTTGGACTGTCAGACAGTGATCAGGGATGTAGAACAGCAGTTCAAATACACACAGCCAAACATCTG GGTTCGTD TTCDAGAGACCCAAGCTGAGCTTCCTCGAGGGAGTATCCCCCGCAGTTTAGAAGTAATTTTAAGGGC TGA A GCTGTGGAATCAGCTCAAGCTGGTGACAAGTGTGACTTTACAGGGACACTGATTGTTGTGCCTGACGTCTC CAAGCTTAGCACACCAGGAGCACGTGCAGAAACTAATTCCCGTGTCAGTGGTGTTGATGGATATGAGACAGAAAGG TGTGAAAGAATGGGAGAAAGTGTTTGAGATGAGTCAAGATAAAAATCTATACCACAATCTTTGTACCAGCCTGTT CCCTACTATACATGGCAATGATGAAGTAAAACGGGGTGTCCTGCTGATGCTCTTTGGTGGCGTTCCAAAGACAAC AGGAGAAGGGACCTCTCTTCGAGGGGACATAAATGTTTGCATTGTTGGTGACCCAAGTACAGCTAAGAGCCAAATT TCTCAAGCACGTGGAGGAGTTCAGCCCCAGAGCTGTCTACACCCAGTGGTAAAGCGTCCAGTGCTGCTTGACC AGCAGCTGTTGTGAGAGATGAAGAATCTCATGAGTTTGTCATTGAGGCTGGAGCTTTGATGTTGGCTGATAATGG TGTGTGTTGTTTGTTGATGAATTTGATAAGATGGACGTGCGGGATCAAGTTGCTATTCATGAAGCTATGGAACAGCA GACCATATCCATCACTAAAGCAGGAGTGAAGGCTACTCTGAACGCCCGGACGTCCATTTTGGCAGCAGCAAACCC AATCAGTGGACACTATGACAGATCAAAATCATTGAAACAGAATATAAATTTGTCAGCTCCCATCATGTCCCGATT CGATCTCTTCTTTATCCTTGTGGATGAATGTAATGAGGTTACAGATTATGCCATTGCCAGGCGCATAGTAGATTT GCATTCAAGAATTGAGGAATCAATTGATCGTGTCTATTCCCTCGATGATATCAGAAGATATCTTCTCTTTGCAAG ACAGTTTAAACCCAAGATTTCCAAAGAGTCAGAGGACTTCATTGTGGAGCAATATAAACATCTCCGCCAGAGAGA TGGTTCTGGAGTGACCAAGTCTTCATGGAGGATTACAGTGCGACAGCTTGAGAGCATGATTCGTCTCTCTGAAGC AATCATCCGTGTGGAAACACCTGATGTCAATCTAGATCAAGAGGAAGAGTCCAGATGGAGGTAGATGAGGGTGC TGGTGGCATCAATGGTCATGCTGACAGCCCTGCTCCTGTGAACGGGATCAATGGCTACAATGAAGACATAAATCA AGAGTCTGCTCCCAAAGCCTCCTTAAGGCTGGGCTTCTCTGAGTACTGCCGAATCTCTAACCTTATTGTGCTTCA CACACACTATGATCATGTTCTAATTGAGCTCACCCAGGCTGGATTGAAAGGCTCCACAGAGGGAAGTGAGAGCTA TGAAGAAGATCCCTACTTGGTAGTTAACCCTAACTACTTGCTCGAAGATTGAGATAGTGAAAGTAACTGACCAGA GCTGAGGAACTGTGGCACACCTCGTGGCCTGGAGCCTGGAGCTCTGCTAGGGACAGAAGTGTTTCTGG AAGTGATGCTTCCAGGATTTGTTTTCAGAAACAAGAATTGAGTTGATGGTCCTATGTGTCACATTCATCACAGGT TTCATACCAACACAGGCTTCAGCACTTCCTTTGGTGTGTTTCCTGTCCCAGTGAAGTTGGAACCAAATAATGTGT AGTCTCTATAACCAATACCTTTGTTTTCATGTGTAAGAAAAGGCCCATTACTTTTAAGGTATGTGCTGTCCTATT GAGCAAATAACTTTTTTCAATTGCCAGCTACTGCTTTTATTCATCAAAATAAAATAACTTGTTCTG

PCT/US2003/028547

931/6881 FIGURE 865

MDLAAAAEPGAGSQHLEVRDEVAEKCQKLFLDFLEEFQSSDGEIKYLQLAEELIRPERNTLUVSFVDLEGPNQDL
STTIGEEFYRVYEYLCRALKTEVKDRKEIFLAKDEYVAFQDLETRIKKIRELISSRIGLLTRISGQVVRTHPVHPE
LVSGTFLCLDCQTVIRDVEQQFKYTQDNICRBVCANRREPLLDTKKSFVDFGKVKIQETQAELPFGSIFRSIE
VIIRAEAVESAQAGDKCDFTGTLIVVPDVSKLSTPGARAETNSRVSGVDGYETEGIRGLRALGVRDLSYRLVFLA
CCVAPTNPRFGGKELRDEEQTAESIKNOMTVKEWEKVPEMSQDKNLYHNLCTSLFPTIHGNDEVKRGVLLMLFGG
VPKTTGEGTSLRGDINVCIVGDPSTAKSQFLKHVEEFSPRAVYTSGKASSAAGLTAAVVRDEESHEFVIEAGALM
LADNGVCIDEFDRMDVRDQVAIHEAMEQQTISITKAGVKATLNARTSILAAANPISGHYDRSKSLKONINLSAP
IMSRFDLFFILVDECNEVTDYAIARRIVDLHSRIEESIDRVYSLDDIRRYLLFARQFKPKISKESEDFIVEOYKH
LAQROGSGVTKSSWRITVRQLESWIRLSEAMARMHCCDEVQPKHVKEAFRLLNKSIIRVETDVNLDQEEEIQME
VDEGAGGINGHADSPAPVAGNINGYNEDINDSSAPKASLRLGFSEYCRISNLIVLHLKKVEEEEDESALKRSELVN
WYLKEIESEIDSEEELINKKRIIEKVIHRLTHYDHVLIELTQAGLKGSTEGSESYEEDPYLVVNPNYLLED

PCT/IIS2003/028547

932/6881 FIGURE 866

CCGGGATCTCGAGATAGCCGCAGCTCTCGCGATCTTTCTGGAGCCGCACCTCCACGCGGAGTCCGAGCGCTGTG CGAGGGAGGGTGGTGCCCACTGCCCAGTTCCGTGTCCCGATGCCCAGCGCCAGCGCCAGCCGCAAGAGTCAGGAG AAGCCGCGGGAGATCATGGACGCGGCGGAAGATTATGCTAAAGAGAGATATGGAATATCTTCAATGATACAATCA case a base case transfer for the contraction of the contraction ofCGTGCAAGAGTTCATACAAGCAGAGCTAAAGGGAAACAGTGCTTCTTAGTCCTACGTCAGCAGCAGTTTAATGTC CAGGCTCTTGTGGCGGTGGGAGACCATGCAAGCAAGCAGGTGGTTAAATTTGCTGCCAACATCAACAAAGAGAGC ATTGTGGATGTAGAAGGTGTTGTGAGAAAAGTGAATCAGAAAATTGGAAGCTGTACACAGCAAGACGTTGAGTTA CATGTTCAGAAGATTTATGTGATCAGTTTGGCTGAACCCCGTCTGCCCCTGCAGCTGGATGATGCTGTTCGGCCT GAGGCAGAAGGAGAAGAGGAAGGAAGAGCTACTGTTAACCAGGATACAAGATTAGACAACAGAGTCATTGATCTT AAAGGTTTTGTGGAAATCCAAACTCCTAAAATTATTTCAGCTGCCAGTGAAGGAGGAGCCAATGTTTTTACTGTG TCATATTTTAAAAATAATGCATACCTGGCTCAGTCCCCACAGCTATATAAGCAAATGTGCATTTGTGCTGATTTT GAGAAGGTTTTCTCTATTGGACCAGTATTCAGAGCGGAAGACTCTAATACCCATAGACATCTAACTGAGTTTGTT GGTTTGGACATTGAAATGGCTTTTAATTACCATTACCACGAAGTTATGGAAGAAATTGCTGACACCATGGTACAA ATATTCAAAGGACTTCAAGAAAGGTTTCAGACTGAAATTCAAACAGTGAATAAACAGTTCCCATGTGAGCCATTC A A TITTITICA COCA A CITOTA AGACTAGA ATA TIGIGA A GCATIGGOTA I GCOTA AGGA A GCIGGA GTOGA A TI GGAGATGAAGACGATCTGAGCACACCAAATGAAAAGCTGTTGGGTCATTTGGTAAAGGAAAAGTATGATACAGAT TTTTATATTCTTGATAAATATCCATTGGCTGTAAGACCTTTCTATACCATGCCTGACCCAAGAAATCCCAAACAG TCCAACTCTTACGATATGTTCATGAGAGGAGAAAATATTGTCAGGAGCTCAAAGAATACATGATCCTCAACTG ${\tt GCCCCTCCTCATGCTGGTGGAGGCATTGGATTGGAACGAGTTACTATGCTGTTTCTGGGATTGCATAATGTTCGT}$ TAGTGCACAGGCTGTACTTTAGGTACTTAAAATATGCACTAGAATAAATTTGCAAGGCCCTAAAATATCACTGTT ATTTTTGGAGTAATTCAGTATAGGTTCGTTTAAAAGAGATTTTTATAACTTCAGACATGCATCAGTAGGAAATAA CTTGAGAAATTCATATGGTTATGTTACAAATTCATATTCTGTTACTACAGTAAACGTTAAGAGTTTTAAACAGTT AAGATTGTACAATTTTTCTTCTTTTTCTATATTACAAGGGCCCCAGTGTTAATGTCTTAGATTTTCAGTATTTGAA GCATATCATGGAAAATTAACCAGAAAGTATCAGTTCTTAAAAGTTATGCCTAGAAATTATGTAAAGCTAAACTAC TGGTTAGAAAGTATTCAGTGTAATATTGTATTAATTTGTTAAATTCTAAACTTGAATTTCAATAAAATTTTAAAG СТ

PCT/HS2003/028547

933/6881 FIGURE 867

ATAGCACCTTGCACCGATAGAGCCCGGCAAGGCTTTGCGGGCCTTAATTATTTCCCCAAGATCGATGAGACCCCT GGATGCAGACAAGGTCCAGCACGCCCAGCAGAGCCTGCGGCCTGCGGGTTCCTCGGGCGGATGGCACTGCAAAAAT TCAGCCCTTAATTCAATCAATATGTGCCTTCGAGGAGTTTATAGTCATGGTTTGGTATGGTATGTGATGCA CTTCAGGCAGCAGGACATGGGTCTGGATCTGTAGTCAGAGGGGAGGTCAGGAAAGAGCTTGTACACCAGCAAAAG ATTGGATCCTGTGGTTCTCAAACCCTTATTAGTCCTGGAGCTGTGTTTCAAGGAAATTCTGCAGAAGAACAGCAG TTCCCTTGCAAGGATGACCCCAGGGCCCCTGGTTCCCAGCAGCTCCAAGATGAGATGGCAGAAAGGGAGAGGGGG AACCAAGGAGGGAAGGAAGGAAATATATTCAGTGCAGCTGCCCCAACGTCCCTCAAGGACAAGCACAAAGGGGT GGTGTGGACAAGCATAATGCAATTGGCCCAGGGACAGGCCATAGACCCCACTTCCAAACCCCATTTCTCCTCACA AGTCTGGTGGGGGAGACAAGCATGGAGAGAGACAGAGATGGCAGAGGCCAGGACAGGAAGCCTCTGGGCATCCTG GCTGAGGACAGGGTGGCACACCCAGAGGAGAGTGAATCGTGGAÁATGCCGAAAGCTAAAGAGAAGATTCCCACCA TCTTCCCCTCCACCCCATAGAAGTTTGGCTGACAACCACGGGTTCATACCACATTTCCACATATGGGAAGAATCT GTGGCCCAGAGTGGTTACATTAGAGCACCTCCTCCCCTGAGAGCCCACACAAGGGCCCATACCACCTTCCAGTTCA TGGCTCCACCTTTGTCCTGCTCTCACAACCTTCCCAGACCTGGCCTATACCCACATGTTATTAAATAATCTTCTA GCTAAGGAATATGTCCTGTTCTGTGGAGAGCAGAIGATCAATAGGTGGTTCCCAGCTAATGGAGTGACTGGAGCA AGGCTCATAGGCCTTTCAGTTCCATCAAAGGAAGATAAGTCCCCACTCATTGTCCCTGGAGGAAACTGTGAGGTC TTCTTATATTTGCATGTATGTGCCAAAGAGAGACATGTAAAAACCAGAGCCCGGAGACATAGAGAAGATCATTCA ACTCAGCAAACAGCCTTTGGATTCCACTTGGGAAATATGGAAACTGAACAGCCAGAAGAAACCTTCCCTAACACT GAAACCAGTGGTGAATTTGGTAAACGCCCTGCAGAAGATATGGAAGAGGAACAAGCATTTAAAAGATCTAGAAAC ACTGATGAGATGGTTGAATTACCCATTCTGCTTCAGAGCAAGAATGCTGGAGCAGTGACTGGAAAAGGAGGCAAG AATATTAAGGCTCTCCATACAGACTACAACGCCAGCATTTCAGTTCTAGACAGCAGTGGCCCCCAGCATATATTG CATATCAGTGCTGATATCGAAACAATTGGAGAAATTCTGAAGAAAATCATCACTACCTTGGAAGAGGGCCCGCAG TTGCCATCACCCACTGCAACCAGCCAGCTCCCGCTCGAATCTGATGCTGTGGAATACTTAAATTACCAACAATAT AAAGGAAGGGACTTTGACTGCGAGTTGAGGCTGTTGATTCATCAGAGTCTAGCAGGAGGAATTATTGGGGAATGT TGTCCTCATTTCACTGATAGAGTTGTTCTTATTGGAGGAAAACCCAATAGGGTTGTAGAGTGCATAAAGATCATC CTTGATCTTATTTCTGAGTCTCCCATCAAAGGACATGCACAGCCTTATGATCCCAATTTTTACGATGAAACCTAT GATTATGGTGGTTTTACAATGGTGTTTGCTGACGACCGTGGACGCCCAGGGGGAGACCTCATGACCTATAACAGA AAAGGGAGACCTGGAAACCGTTACGACGCGTGGTTGATTTCAGTGCTGATGAAACTTGGGGCTCTGCAATAGAT ACATGGAACGCATCAGAATGGCAGATGGCTTATGAACCACAGGGTGGCTCCAGATATGATTATTCCTATGCAGGG TGTCATGGCTCATATGGTGATCTTGGTGGACCTATTATTACTACACAAGGAGCTTTGATCAAAATTGATGAGCCT TTAGAAGGATCCGAAGATCGGATCATTACCATTACAGGAACACAGGACCAGATACAGAATGCACAGTATTTGCCG CAGAATAGTGTGAAGCAGTATTCTGGAAAGTTTTTCTAA

PCT/US2003/028547

934/6881 FIGURE 868

MTKKNACMGLVFQIQSRLKAFILFLIAPCTDRARQGFAGLNYFPKIDETPQPPGQQHPTAVFQMDELRRKLQSRQ
GCRQGPARPABPAACGFLGRMALQNSALNSIMMCLRGYYSHGLVWLVCDAKKABTAACRRAGEHGGPSTARRPLE
LQAAGHGSGSVVAGEVRKELVMQOKIGSCGSOTLISPGAVFQGNSAEBQOFPCKDDPRAPGSQQLQDDEMAERSRG
NQGGRRKYIQCSCPNVPQGQAQRGGVDKHNAIGPGTGHRPHFQTFFLLTAQGLKGTRWMQSRGHPEMEVDRQC
MALHETPRHYLALSVSNFTHTGERSAVQAGHQRWVSRDWPSHRPQGCRSLVGETSMERDRDGRGQDRKPLGIL
ABDRVAHPESESSWKCHKKRFPPEITETBQNMCKYKIAQPPSLTDFVVPFSSPPPHRSLADNHGFIPHFHIWEES
VADSGYIRAPPPLRATQGFIPPSSWLHLCPALTTFPDLAYTHMLLNNLDMPLGFFAAKTLEIKYLSEPTWOVSK
KAKEYVLFCGEQMINRWFPANGVTGARLIGLSVPSKEDKSPLIVVEGGNCEVFLYLHVCAKERHVKTARRHREDHS
KAHAKLKTIPGTGPHLLTLGFVLPFTQOTAFGFHLGNMETEQPEETFPNTETSGEFGKRPAEDMEEEQAFKRSN
TDEMWELPILLQSKNAGAVTGKGGRNIKALHTDYNASISVLDSSGPQHTLHISADIETIGEILKKIITITEEGG
LEPPTATSGLPLESDAVEVLINYQQYKGRP DCELRLIHGSLAGGIECCPHFTDRVVLIGGKRPHVTRUVECIKII
LDLISESPIKGHAQPYDPNFYDETYDYGGFTMVFADDRGRPGGDLMTYNRKGRPGNRYDGVVDFSADETWGSAID
TNNASEWQMAYEPGGGSRYDYSYAGCHGSYGDLGGFIITTQGALIKIDEPLESSEDRIITITGTQDQIQNAQYLP
ONSVKQYSKFF

PCT/US2003/028547

935/6881 FIGURE 869

PCT/US2003/028547

936/6881 FIGURE 870

MKQLITPAKQQEAFEQKLCSPSSIRGHFCSSVKQADHRTLRQRLRGRLMRRRLSVSTKALRLATEGSWNEYVVRD WNYSGVSLGLLQIAQAMDDEGSMLIAVDPQCRFSGDLLPYDSLIGVPLAPHVTLLDKNQNGSRLVCFSCLPPVRA GTEWGLSALHRAPRSTQPDKACRLGYKAKQGYIIYRICVRREQAGHHCGALRVLNSYWVGEDSTYKFFEVILID PFKKATRRNPDTQWITKPVHKHREWRGLTSAG

PCT/US2003/028547

937/6881 FIGURE 871

ATGIGGGCGACCTCTGGCTCCTCCCCCCTCTGCCTATCCGGGCACTGGGACAGAGGCTGAGTTTGAGAAA
CCTCCAGAGGAGGTTAGGCACCTTAAGACCAACCCATCGGATCAGAGGACTGTCATCTATGGCCACTACAAA
CAACCTGTGGGCGCACATAAATACAGAACGGCCCCGGGATGTTGGACTTCACGGGCCAAGGCCAAGTGGGATGCC
TGGAATGACTGAAAGGGACTTCCAAGGAAGATCCCATGAAAGCTTACATCAAACATAGAAGACCTAAAGAAA
AAATACGGGATA<u>TGA</u>GAGACTGGATTTGGTTACTGTGCCATGTTTATCCTAAACCTGAGACAATGCCTTGTTT
TTTCTTAATACCGTGGATGGTGGGAAATTACGGAAAATAACCAGCTAAACCAGCTACTCAAGCTGCTCACCATACG
GCTCTAACAGATTAGGGGCTAAAACGATTACTGACTTTCCTTGAGATGTTTTTTCTTGAAATCAATTAAAAGTT

PCT/US2003/028547

938/6881 FIGURE 872

 ${\tt MWGDLWILPPASANPGTGTEAEFEKAAEEVRHLKTKPSDEEMLFIYGHYKQATVGDINTERPGMLDFTGKAKWDAWNELKGTSKEDAMKAYINKVEELKKKYGI}$

PCT/US2003/028547

939/6881 FIGURE 873

PCT/US2003/028547

940/6881 FIGURE 874

MNYKGSPIKVTLATLKMSVQPKDSLGGFEITPPVVLRLKCGSGPVHISGQHLVAVEEDABSEDEEEEDVKLLSVS GKRSARGGGSKIPQKKVKVAADEDEDDDDEDFDDGEAEEKAPVKKSIRDTPAKNAQKSNQNGKDSKPSTPRSKGQ DSFKKTGKNF

PCT/US2003/028547

941/6881 FIGURE 875

AGCGGGTTTGCGGGAGCGCCGCGTGGTTAGCGTCGGCGGCTTTTTGGCATCGCGACTTTTTCTGGCCCGGCTGGGC CAATCCTGTCGCTTAATCCGCAGGAAGATGTCGAGTTTCAAAAGGAGGTGGCGCAGGTTCGCAAGCGCATAACCC AGATCTTTTCATATTTCTCCCAGTTTGGCACTGTGACACGGTTCAGGCTGTCCAGAAGTAAAAGGACTGGAAATA GCAAAGGCTATGCATTTGTGGAGTTTGAGTCTGAGGATGTTGCCAAAATAGTTGCTGAAACAATGAACAACTACC TGTTTGGTGAAAGACTCTTGGAGTGTCATTTTATGCCACCTGAAAAAGTACATAAAGAACTCTTTAAAGACTGGA ATATTCCATTTAAGCAGCCATCATATCAATCAGTGAAACGGTATAATCGGAATCGGACACTAACACAAAAGCTAC GGATGGAGGAGCGATTTAAAAAGAAAGAAAGATTACTCAGGAAGAAATTAGCTAAAAAAGGAATTGACTATGATT TTCCTTCTTTGATTTTACAGAAAACGGAAAGTATTTCAAAAACTAATCGTCAGACGTCTACAAAAAGGCCAGGTTT TACGTAAGAAGAAAAAAGTTTCAGGTACTCTTGACACTCCTGAGAAGACTGTGGATAGCCAGGGCCCCACAC CAGTTTGTACACCAACATTTTTGGAGAGGCGAAAATCTCAAGTGGCTGAACTGAATGATGATGATAAAGATGATG AAATAGTTTTCAAACAGCCCATATCCTGTGTAAAAGAAGAAATACAAGAGACTCAAACACCTACACATTCACGGA GAGTGGACTTTGTATTTCACTAGGTACAATGGAATACAACCTTTGACAAGATTTTCAGAGGAAAAATACACTGTT TGCAGTGGCTTGGCTGACATTGCCTCTTTGTCCTGGCCTCTAGTTTTCTTTTGATATTTCATAGCTCTCCTTAGT TTACTCTGCCTGGATAGAAAGTTGACCACTAACTGCAGGTTTAAGTACTAAACTGCAGCCTTTTCTGTCGCCAGC AATTAAAGACCACCAATCTTGTTTGTCCATCTACATGGTTTGTCGGGGACATTTAACTCATGGAGGTGCTTTAGA TTTCAACATCAGATGGTTGAAGCTGGAAGTTTAATTATATGTAGAGTGAGAAGGCAGTTCCAGTTTTAGCACAGA TTTGTTTATGTGTTCAGATTTTAATAGAGATTCAAAAATGACTCATTTTTACCAATAATGTTAAATTAGTTTTGG TTGTGCTAGCATGAATTAATAACCACCATTTTATACCAGTATCATCAGGAAGAATTGTATTTCAAGATTCAAAC

PCT/HS2003/028547

942/6881 FIGURE 876

MATTSGPAGPILSLNPQEDVEFQKEVAQVRKRITQRKKQEQLTPGVVYVRHLPNLLDETQIFSYFSQFGTVTRFR LSRSKRTGNSKGYAFVEFESEDVAKIVAETMNNYLFGERLLECHFMPEKVHKELFKDMNIFFKQPSYQSVKRYN RNRTLTQKLRMEERFKKKERLLRKKLAKKGIDYDFPSLILQKTESISKTNRQTSTKGQVLRKKKKVSGTLDTPE KTVDSQGFTPVCTFTFLERRKSQVAELNDDDKDDEIVFKQPISCVKEEIQETQTPTHISKKRRRSSNQ

PCT/US2003/028547

943/6881 FIGURE 877

CCGCGGCGTCCACACTCGCCGCGCGCGCGGCGGGCCGGGCTGGACCTTGCTGGCCCGCGGCGCCATGAGCCGCAGC TTCAGCGACATCCAGGCCTGCTCGGCCGCCTGGAAGGCTGACGGCGTGTGCTCCACCGTGGCCGGCAGTCGGCCA GAGAACGTGAGGAAGAACCGCTACAAAGACGTGCTGCCTTATGATCAGACGCGAGTAATCCTCTCCCTGCTCCAG CAAGGACCCTTGCCTCACACCCTGCTAGACTTCTGGAGACTGGTCTGGGAGTTTGGGGTCAAGGTGATCCTGATG GCCTGTCGAGAGATAGAGAATGGGCGGAAAAGGTGTGAGCGGTACTGGGCCCAGGAGCAGGAGCACTGCAGACT GGGCTTTTCTGCATCACTCTGATAAAGGAGAAGTGGCTGAATGAGGACATCATGCTCAGGACCCTCAAGGTCACA TTCCAGAAGGAGTCCCGTTCTGTGTACCAGCTACAGTATATGTCCTGGCCAGACCGTGGGGTCCCCAGCAGTCCT GACCACATGCTCGCCATGGTGGAGGAAGCCCGTCGCCTCCAGGGATCTGGCCCTGAACCCCTCTGTGTCCACTGC AGTGCGGGTTGTGGCCGAACAGGCGTCCTGTGCACCGTGGATTATGTGAGGCAGCTGCTCCTGACCCAGATGATC CAGTACAGGTTCCTGTACCACACGGTGGCTCAGATGTTCTGCTCCACACTCCAGAATGCCAGCCCCCACTACCAG AACATCAAAGAGAATTGTGCCCCACTCTACGACGATGCCCTCTTCCTCCGGACTCCCCAGGCACTTCTCGCCATA CCCGGCCACCAGGAGGGGTCCTCAGGAGCATCTCTGTGCCCGGGTCCCCGGGCCACGCCATGGCTGACACCTAC GCGCGCAGCGCGGAGGAGGCGCCGCTCTACAGCAAGGTGACGCCGCGCCCCAGCGACCCGGGGCGCACGCGGAG GACGCGAGGGGACGCTGCCTGGCCGCGTTCCTGCTGACCAAAGTCCTGCCGGATCTGGCGCCTACGAGGACGTG GCGGGTGGACCTCAGACCGGTGGGCTAGGTTTCAACCTGCGCATTGGGAGGCCCGAAGGGTCCCCGGGACCCGCCT CGGTGCTGCTGAGCGCCGTGCGCAGAATGGAAACAGTGGGCCTGGATCAAAGTTAAAGTTTCTCAGGGTGGGAAA TGTGGGGGCTTTGCCCCAATGACTGTAGCATTCAAGGCTTGAGGCTGGAGGAGGTAGCTAGGGTATAGTGGCTGG TGAGGCTGCACAGAGCAGATTCAAGAAAGAAGATCAGGAAGGGGCATGACCCCTGAGTTATGAAGGGGAAAGGG TGGACACTCAGGGGACCACACAGAGAAGTGGATGGACACTTCGCCATCCAGGCAGAACTAAGCCAGGCATAACCA CAGCCAACAGCTTGATAGACCAGTGCAGCCAGAGAGACCACCAAACAGAGCCCCCAAAAGACAGACATCTCTGCT AGCTGGACAGCCAGGTGGACCCCCTAAGTTAGATTACTAGACAGATATAAACAGATCCCCTGCTGAACAGATACA ATGAGTACACATCTCCAGCTATTCAGACAGATGGACCCCCAGCAAATCAGGACCTATCTAGGCAGACCCCAGCCA GACCCCGCCAGACAGACTCCCAACCAGACTGACCCCTTACTATTCACACAGCCTGCCGAGTAGCTGGGACTACA GGTCTAATTTTTTTTTTTTTTTAAGAAATGAGTTTTTGCCATGTTGCCCAGACTGGTCTTGAACTCCCAACCTCAA GCAATCCTCCTGCCTCAGCCTCCCAAAGTGCTGAGATTACAGGTGTGAGCCACCAGGCTCAGCCCCCTAAGATTT GAAACACTTTAAATGGCCCATGGTAGGGTTCCTGCTAGGATAAAACATTAAGCGGCTGTTAAAAGAAATAAAAGG AGGACACGTCTCTGTGC

PCT/HS2003/028547

944/6881 FIGURE 878

PCT/US2003/028547

945/6881 FIGURE 879

MLRREARLRREYLYRKAREEAQRSAQERKERLRRALEENRLIPTELRREALALQGSLEFDDAGGEGVTSHVDDEY RWAGVEDEKVMITISRDESSRLKWFAKELKLVFPGAQRWNRGRHEVGALVRACKANGVIDLLVVHEHRGTEVGLI VSHLPFGPTAYFTLCNVVWRHDIPDLGTMSEAKPHLITHGFSSRLGKRVSDILRYLFFVFKDDSHRVITFANQDD YISFRHHYYKKTDHRNVELTEVGPRFELKLYMIRLGTLEGDATADVEWRWHBYTNTARKRVFLSTE

PCT/HS2003/028547

946/6881 FIGURE 880

PCT/HS2003/028547

947/6881 FIGURE 881

AAGAACTGGCCTGTACATTTTCAAGGAATTCTTGAGAGGTTCTTGGAGAGATTCTGGGAGCCAAACACTCCATTG GGATCCTAGCTGTTTTAGAGAACAACTTGTAATGGAGCCTTCATCTCTTGAGCTGCCGGCTGACACAGTGCAGCG CATTGCGGCTGAACTCAAATGCCACCCAACGGATGAGAGGGGGGGCTCTCCACCTAGATGAGGAAGATAAGCTGAG GCACTTCAGGGAGTGCTTTTATATTCCCAAAATACAGGATCTGCCTCCAGTTGATTTATCATTAGTGAATAAAGA TGAAAATGCCATCTATTTCTTGGGAAATTCTCTTGGCCTTCAACCAAAAATGGTTAAAACATATCTTGAAGAAGA ACTAGATAAGTGGGCCAAAATAGCAGCCTATGGTCATGAAGTGGGGAAGCGTCCTTGGATTACAGGAGATGAGAG TTTACATCTTCTAATGTTATCATTTTTTAAGCCTACGCCAAAACGATATAAAATTCTTCTAGAAGCCAAAGCCTT CCCTTCTGATCATTATGCTATTGAGTCACAACTACAACTTCACGGACTTAACATTGAAGAAAGTATGCGGATGAT TGCAGTGATCCTGTTCAGTGGGGTGCATTTTTACACTGGACAGCACTTTAATATTCCTGCCATCACAAAAGCTGG ACAAGCGAAGGGTTGTTATGTTGGCTTTGATCTAGCACATGCAGTTGGAAATGTTGAACTCTACTTACATGACTG GGGAGTTGATTTTGCCTGCTGGTGTTCCTACAAGTATTTAAATGCAGGAGCAGGAGGAATTGCTGGTGCCTTCAT TCATGAAAAGCATGCCCATACGATTAAACCTGCATTAGTGGGATGGTTTGGCCATGAACTCAGCACCAGATTTAA GATGGATAACAAACTGCAGTTAATCCCTGGGGTCTGTGGATTCCGAATTTCAAATCCTCCCATTTTGTTGGTCTG TTCCTTGCATGCTAGTTTAGAGATCTTTAAGCAAGCGACAATGAAGGCATTGCGGAAAAAATCTGTTTTGCTAAC TGGCTATCTGGAATACCTGATCAAGCATAACTATGGCAAAGATAAAGCAGCAACCAAGAAACCAGTTGTGAACAT CCAAGAACTAGAAAAAAGAGGAGTGGTTTGTGACAAGCGGAATCCAAATGGCATTCGAGTGGCTCCAGTTCCTCT CTATAATTCTTTCCATGATGTTTATAAATTTACCAATCTGCTCACTTCTATACTTGACTCTGCAGAAACAAAAAA $ext{T} \underline{ ext{AG}} ext{CAGT} ext{GTTTTCTAGAACAACTTAAGCAAATTATACTGAAAGCTGCTGTTGTTATTTCAGTATTATTCGATTT$

PCT/US2003/028547

^{'948/6881} FIGURE 882

MEPSSLELPADTVQRIAAELKCHPTDERVALHLDEEDKLRHFRECFYIPKIQDLPPVDLSLVNKDENAIYFLGNS LGLQPKMYKTYLEEBIDKWAKTAAYGHEVGKRFWHTGDESIVGLMKDIVGANEKEIALMNALTVALHLHLMISFF BTFKRYKILLEAKAFPSDHYAIESQLQLHGLNIEESMEMIKPREGEETLRIEDILEUTEKEGDSIAVILFSGYHF YTGGHFNIPAITKAGGAKGCYVGFDLAHAVGNVELYHDWGVDFACWCSYKYLNAGAGGIAGAFIHEKHAHTIKP ALVGWFGHELSTRFKMDNKLQLIPGVCGFRISNPPILLVCSLHASLEIFKQATMKALRKKSVLLTGYLEYLIKHN YGKDKAATKKPVVNIITPSHVEERGCQLTITFSVPNKDVFQELEKRGVVCDKRNPNGIRVAPVPLYNSFHDVYKFTNLLTSILDSAETKN

PCT/US2003/028547

949/6881 FIGURE 883

GTGTACGGTCCGCAGCGGCAGGTGAAGTCTAGCAGAGGACGCGGCCAGGCGATTCGGTGAAGCGATTCCTGCAGG CGTTGGTTCCCCTCTTTGACCTGGTAAATGCAGGCTTTTATGCGAGAGGATTTGAATTTGTTGAAATGAGCAGTC GTAAATCAAAGAGTAACAGCTTAATTCACACAGAGTGCCTTTCACAGGTACAAAGAATTTTACGTGAAAGATTTT GTCGTCAGAGTCCACATAGTAACCTATTTGGAGTGCAAGTACAATACAAACACTTAAGTGAGCTGCTGAAAAGAA CTGCTCTCCATGGAGAGAGTAACTCTGTCCTTATTATCGGACCCCGAGGATCAGGAAAAACTATGTTAATAAATC AGATCAATGACAAAATCGCCCTAAAGGAAATCACAAGGCAGTTAAATCTGGAAAATGTAGTTGGAGATAAAGTTT TTGGAAGCTTTGCTGAAAACCTTTCATTTCTTCTGGAAGCTTTAAAAAAAGGTGACCGAACTAGCAGTTGCCCAG TGATCTTCATATTAGATGAATTTGATCTTTTTGCTCATCATAAAAACCAAACACTTCTCTATAATCTTTTTGACA TTTCTCAGTCTGCACAGACCCCAATAGCAGTTATTGGTCTTACATGTAGATTGGATATTTTGGAACTCTTAGAAA AAAGAGTGAAGTCAAGATTTTCTCACCGGCAGATACACTTAATGAATTCATTTGGTTTTCCACAGTATGTTAAAA TATTTAAAGAACAGTTATCTCTACCTGCAGAGTTTCCAGACAAGGTTTTTGCTGAGAAGTGGAATGAAAATGTTC AGTATCTCTCAGAAGATAGAAGTGTGCAAGAAGTACTACAGAAGCATTTCAATATCAGCAAAAACCTGCGGTCAT TACACATGCTATTGATGCTTGCTTTAAATCGAGTAACAGCATCGCACCCATTTATGACTGCCGTAGATCTAATGG AAGCAAGCCAACTGTGTAGCATGGACTCGAAAGCAAATATTGTACATGGTCTATCAGTCTTGGAAATCTGTCTTA TAATAGCAATGAAACATTTAAATGACATCTATGAGGAAGAGCCATTTAATTTTCAAATGGTCTATAATGAGTTTC AGAAGTTTGTTCAAAGGAAAGCACATTCCGTTTATAATTTTGAAAAACCTGTTGTCATGAAGGCTTTTGAACACT TGCTTTTGGATAATACTCAAATTATGAATGCTCTGCAGAAATATCCCAACTGTCCTACAGATGTGAGGCAGTGGG AACGGAAAACTATTGTCCATTAACATGATATGCTAAACATTCTATAAACATTCTTGTATTTATGTGAGACTTGCC CATCTACTGTCTTGGCTGTCTTGCCTTTTAATCATGAACAGTTACATGATTTATAATTTCACTGATTGAGATT ACTTTGTAAGTAGCTGTTCAGAAGAATAAAATATGACTGTTTTTAGGGACTAGACCATGTGCTTTTTTAACACTTA TATATATAATGGTCTATTTGAAGAGCTCACTTCAACCTAACAGCTAGATGTCTTTACAAACCTTAAACCAAAGGA GTAAAAAAAACAATGGTAAGCACTGAAGTATAATAAGTAACCTTTGGTACAGCAGGTTTGCTGCAGTGTTTTTTT CTGTCCACATGCAAATTTTGGATTCTATCCCAGACCCAGGTTTTCTAGTTCAGAAGACTAACCAGCTTAGTCAGA AGATGGTTCCATGGAAGAAAAAGGCCAAGGAGTTTGAAGATTTTTCTTCTAGACATCTCAAAATGTGGTACTCAT . ACCATCCACATCAGAATCCCTTGTAGGATTTTCTAAAATTACAGATTGTTGAGCCTACCATAGGTCAAAAGGACT GGAATTTTCCTTCTTAACAAGTATAGTCATGGCACCACGTAACATTTTGGTCAATGACATTGTATAAAGGGTGGT CTCATAAGATTATACCATATTTTTACTGTACCTTTTCTATGTCTAAATATACAAATGTTTTACCATTG

PCT/HS2003/028547

950/6881 FIGURE 884

MSSRKSKSNSLIHTECLSQVQRILRERFCRQSPHSNLFGVQVQYKHLSELLKRTALHGESNSVLIIGPRGSGKTM
LINHALKELMBIEEVSENVLQVLINGLLQINDKIALKEITRQLINLENVVGDKVFGSFÄENLSFLLEALKKGDRTS
SCPVIFILIDETDLFÄHHKNQTLIYNLFDISQSAQTPIAVIGLTCRLDILELLERKVSKRFSHRQIHLHNISFGFQ
YVXIFKEQLSLPABFPDKVFARKWNENVQYLSEDRSVQEVLQKHFNISKNLESLHMLLMLALNRVTASHPFMTAV
DLMEASQLCSNDSKANIVHGLSVLEICLIIAMKHLNDIYEEPFNFQMVYNEFQKFVQRKAHSVYNFEKPVVMKA
FEHLQQLELIKPMERTSGNSQREYQLMKLLUDNTQIMMALQKYPNCPTDVRQWATSSLSML

PCT/HS2003/028547

FIGURE 885

ATTCGGCACCGCAGCGTAGGTGCTACCACCGCTGCCGTCGCCGCCGCCATTTTGATGGCAGGAAGAGTCCGGTTC TGGGACAGCTGGAGACAGTGGTGATGACTGAAATAACTTTACCAAAGGAAAGCTATTTTGCGAACTATCTTCTCC AGCGGAGATGGCCAATGTGCTTTGTAACAGAGCCAGACTGGTTTCCTATCTCCCAGGATTTTGCTCTTTAGTTAA AAGGGTTGTCAATCCCAAAGCCTTTTCGACTGCAGGATCATCAGGTTCGGATGAGTCTCATGTGGCTGCTGCACC TCCAGATATATGCTCTCGAACAGTGTGGCCTGATGAAACTATGGGACCCTTTGGACCTCAAGATCAGAGGTTCCA GCTTCCTGGGAACATAGGTTTTGATTGTCACCTCAATGGGACTGCTTCACAGAAGAAAAGCCTGGTTCATAAAAC TGCAATACAAACATGTCCAGAATTGCTGCGAAAAGATTTTGAATCACTGTTTCCAGAAGTAGCTAATGGCAAACT AATGATTCTGACTGTAACACAAAAAACTAAGAATGATATGACTGTTTGGAGTGAAGAAGTAGAAATTGAAAGAGA AGTGCTCTTAGAAAAGTTCATCAATGGTGCTAAGGAAATTTGCTATGCTCTTCGAGCTGAGGGTTATTGGGCTGA CTACCGACATTTAGGATTCTCTGTTGATGACCTTGGATGCTGTAAAGTGATTCGTCATAGTCTCTGGGGTACCCA TGTAGTTGTAGGGAGTATCTTCACTAATGCAACACCAGACAGCCATATTATGAAGAAATTAAGTGGAAAT<u>TAG</u>CA GAAATATCCATTCATTTGCTGTACTATTTGTATGTAATATTTTGGGTTGATCTATAAACACTGTCAGACTAAAGTT TTTAAAATATACTTATTTCTAAGTATTTATTTCAGCATTTATGAATTTGCAACATTGGCAAGTGATTTGGGATTT TAAAATTGCAAATGTTCATTTATTCATATCATTGAATACACGTTGAACACCTCCACATTGTATAGGATGTGGTAA TTAGCTTGTAACCAGGGTATGATCTGCTATTGTTATTTCTCCTCTTTATTGGAAAAAGGCCTCAGTTTTAATTAT

PCT/US2003/028547

952/6881 FIGURE 886

MANVLCNRARLVSYLPGFCSLVKRVVNPKAFSTAGSSGSDESHVAAAPPDICSRTVMPDETMGPFGPQDQRFQLP GNIGGPCHLNGTASQKKSLVHKTLEDVLAEPLSSERHEFVMAQYVNEFGGNDAPVEGEINSAETYFESARVECAI QTCPELLRKDFESLFPEVANGKLMILTVTQKTKNDMTVWSEEVEIEREVLLEKFINGAKEICYALRAEGYWADFI DESGLAFFGPYTNNTLFETDERYRHLGFSVDDLGCCKVIKHSLWGTHVVVGSIFTMATPDSHIMKKLGN

PCT/HS2003/028547

953/6881 FIGURE 887

TATCGCAAGCAGCAGTCTCTGGTCCCAGCCCACCCCATGGCCCCTCCCAGTCCCAGCACCACCAGCAGTAATAAC AACAGTAGCAGCAGTAGCAACTCAGGATGGGATCAGCTCAGCAAAACGAACCTCTATATCCGAGGACTGCCTCCC CACACCACCGACCAGGACCTGGTGAAGCTCTGTCAACCATATGGGAAAATAGTCTCCACAAAGGCAATTTTGGAT AAGACAACGAACAAATGCAAAGGTTATGGTTTTGTCGACTTTGACAGCCCTGCAGCAGCTCAAAAAGCTGTGTCT GCCCTGAAGGCCAGTGGGGTTCAAGCTCAAATGGCAAAGCAACAGGAACAAGATCCTACCAACCTCTACATTTCT AATTTGCCACTCTCCATGGATGAGCAAGAACTAGAAAATATGCTCAAACCATTTGGACAAGTTATTTCTACAAGG ATACTACGTGATTCCAGTGGTACAAGTCGTGGTGTTGGCTTTGCTAGGATGGAATCAACAGAAAAATGTGAAGCT GTTATTGGTCATTTTAATGGAAAATTTATTAAGACACCACCAGGAGTTTCTGCCCCCACAGAACCTTTATTGTGT GAAGGAGAGTGAGACTTGCTGGAATGACACTTACTTACGACCCAACTACAGCTGCTATACAGAACGGATTTTAT CCTTCACCATACAGTATTGCTACAAACCGAATGATCACTCAAACTTCTATTACACCCTATATTGCATCTCCTGTA TCTGCCTACCAGGTGCAAAGTCCTTCGTGGATGCAACCTCAACCATATATTCTACAGCACCCTGGTGCCGTGTTA ACTCCCTCAATGGAGCACCACCATGTCACTACAGCCCGCATCAATGATCAGCCCTCTGGCCCAGCAGATGAGTCAT CTGTCACTAGGCAGCACCGGAACATACATGCCTGCAACGTCAGCTATGCAAGGAGCCTACTTGCCACAGTATGCA CATATGCAGACGACAGCGGTTCCTGTTGAGGAGGCAAGTGGTCAACAGCAGGTGGCTGTCGAGACGTCTAATGAC CATTCTCCATATACCTTTCAACCTAATAAGTAACTGTGAGATGTACAGAAAGGTGTTCTTACATGAAGAAGGGTG TGAAGGCTGAACAATCATGGATTTTTCTGATCAATTGTGCTTTAGGAAATTATTGACAGTTTTGCACAGGTTCTT GAAAACGTTATTTATAATGAAATCAACTAAAACTATTTTTGCTATAAGTTCTATAAGGTGCATAAAACCCTTAAA

PCT/HS2003/028547

954/6881 FIGURE 888

MAPPSPSTTSSNNNSSSSSNSGWDQLSKTNLYIRGLPPHTTDQDLVKLCQPYGKIVSTKAILDKTTNKCKGYGFV
DFDSPAAAQKAVSALKASGVQAQMAKQQEQPPTNLYISNLELSMDEGELENNLKFFGGVISTRILBDSSGTSRGV
GFARMESTEKCEAVIGHFNGKFIKTPFGVSAPTEPLLCKFADGGQKKRQNPNKYIPNGRPWHREGEVRLAGMTLT
YDPTTAAIQNGFYPSPYSIATNRMITQTSITPYIASPVSAYQVQSPSWMQPQPYILQHPGAVLTPSMEHTMSLQP
ASMISPLAQQMSHLSLGSTGTYMPATSAMGGAYLPQYAHMQTTAVPVEEASGQQQVAVETSNDHSPYTFQPNK

PCT/IIS2003/028547

955/6881 FIGURE 889

AGACTTGGAAACCCCAAAGTGTCCGCGACCCTGCACGGCAGCTCCCTTCCAGCTTCATGGGCAAAGTGTGGAAAC AGCAGATGTACCCTCAGTACGCCACCTACTATTACCCCCAGTATCTGCAAGCCAAGTTTGGAAGGCATTCGGGAA TACCAAGTGAAAAGGAAGAGAACAGAAAAATGTTAGTGGGATGGCAAACACTGTGAACATTGCTGTTTCT AGTGGGCCAGAAAAATCAGTCTCTGGTCCCAGCCCACCCCATGCCCCAGTCCCAGCCACCACCAGCAGTAA TAACAACAGTAGCAGCAGTAGCAACTCAGGATGGGATCAGCTCAGCAAAACGAACCTCTATATCCGAGGACTGCC TCCCCACACCACCGACCAGGACCTGGTGAAGCTCTGTCAACCATATGGGAAAATAGTCTCCACAAAGGCAATTTT GGATAAGACGAACAAATGCAAAGGTTATGGTTTTGTCGACTTTGACAGCCCTGCAGCAGCTCAAAAAGCTGT GTCTGCCCTGAAGGCCAGTGGGGTTCAAGCTCAAATGGCAAAGCAACAGGAACAAGATCCTACCAACCTCTACAT TTCTAATTTGCCACTCTCCATGGATGAGCAAGAACTAGAAAATATGCTCAAACCATTTGGACAAGTTATTTCTAC AAGGATACTACGTGATTCCAGTGGTACAAGTCGTGGTGTTGGCTTTGCTAGGATGGAATCAACAGAAAAATGTGA AGCTGTTATTGGTCATTTTAATGGAAAATTTATTAAGACACCACCAGGAGTTTCTGCCCCCACAGAACCTTTATT TTATCCTTCACCATACAGTATTGCTACAAACCGAATGATCACTCAAACTTCTATTACACCCTATATTGCATCTCC TGTATCTGCCTACCAGGTGGCAAAGGAAACCAGAGAAACAAGTATCGGGGCTCTGCTATCAAGGTGCAAAGTCC TTCGTGGATGCAACCTCAACCATATATTCTACAGCACCCTGGTGCCGTGTTAACTCCCTCAATGGAGCACACCAT GTCACTACAGCCCGCATCAATGATCAGCCCTCTGGCCCAGCAGATGAGTCATCTGTCACTAGGCAGCACCGGAAC ATACATGCCTGCAACGTCAGCTATGCAAGGAGCCTACTTGCCACAGTATGCACATATGCAGACGACAGCGGTTCC TGTTGAGGAGGCAAGTGGTCAACAGCAGGTGGCTGTCGAGACGTCTAATGACCATTCTCCATATACCTTTCAACC TAATAAGTAACTGTGAGATGTACAGAAAGGTGTTCTTACATGAAGAAGGGTGTGAAGGCTGAACAATCATGGATT CAACTAAAACTATTTTTGCTATAAGTTCTATAAGGTGCATAAAACCCTTAAATTCATCTAGTAGCTGTTCCCCCG AACAGGTTTATTTTAGTAAAAAAAAAAAAAA

PCT/IIS2003/028547

956/6881 FIGURE 890

MAPPSPSTISSNNNSSSSSNSGWDQLSKTNLYIRGLPPHTTDQDLVKLCQPYGKIVSTKALLDKTTNKCKGYGFV
DFDSPAAAQKAVSALKASGVQAQWAKQQEQDPTNLYISNLPLSWDEQELENNLKPFGQVISTRILRDSSGTSRGV
GFARMESTEKCEAVIGHFNGKFIKTPPGVSAPTEPLLCKFADGGQKKRQNPNKYIPNGRPWHREGEVRLAGMTLT
YDPTTAAIQNGFYPSPYSIATNRMITQTSITPYIASPVSAYQVAKETRENKYRGSAIKVQSPSWMDPQPYILQHP
GAVLIPSNEHTMSLQPASNISPLAQQWSHLSLGSTGTYMPATSAMQGAYLPQYAHMQTTAVPVEEASGQQQVAVE
TSNDHSPYTFOPNK

PCT/IIS2003/028547

957/6881 FIGURE 891

GGCTAATGTAACATACTCTACCACTTGGTCTGAAGCCCAGCAGTATCTGATGGATAATCCAACTTTTGCAGAAGA TGAGGAGTTACAAAATATGGACAAAGAAGAAGATGCATTAATTTGCTTTGAAGAACACATTCGGGCTTTAGAAAAAGGA GGAAGAAGAAGAAAAACAGAAGAGTTTGCTGAGAGAAAAGGAGACGACAGCGAAAAAAATAGGGAATCTTTCCAGAT TTCTGATATTAGATTCACTAATATGCTTGGTCAGCCTGGATCAACTGCACTTGATCTTTTCAAGTTTTATGTTGA GGATCTTAAAGCACGTTATCATGACGAGAAGAAGATAATAAAAGGCATTCTAAAGGATAAAAGGATTTGTAGTTGA AGTAAACACTACTTTTGAAGATTTTGTGGCGATAATCAGTTCAACTAAAAGATCAACTACATTAGATGCTGGAAA TATCAAATTGGCTTTCAATATTACTAGAAAAGGCAGAAGCCCGTGAACGTGAAAGAGAAAAAAGAGAAAAGAGGCTCGGA AGATGAAACGAAAAGAATCTGCATTTAAGAGTATGTTAAAACAAGCTGCTCCTCCGATAGAATTGGATGCTGTCT TATTTAAAGATTTTATGCATGTGCTTGAGCATGAATGTCAGCATCATCATTCAAAGAACAAGAAACATTCTAAGA AATCTAAAAAACATCATAGGAAACGTTCCCGCTCTCGATCGGGGTCAGATTCAGATGATGATGATAGCCATTCAA AGAAAAAAAGACAGCGATCAGAGTCTCGTTCTGCTTCAGAACATTCTTCTAGTGCAGAGTCTGAGAGAAGTTATA AATCGCCTAAGAAAAAGACTGGAAAGGATTCTGGTAATTGGGATACTTCTGGCAGCGAACTGAGTGAAGGGGAAT TGGAAAAGCGCAGAAGAACCCTTTTGGAGCAACTGGATGATGATCAATAAATTATACCAAATATATTTTACAGT ATGATTTAAAGTCTGATTCAGACCAGGGACTCTATTTTAAGTTCAACTGAAATAACACTGGGTTTTAATTATATC ACAGGAAAAAAAAGTGCATTTAAGTATTGTTATCGTGGACTTTATAAAAGCAAAGGAAATTGAAAGTAACTTTT GATTCTGTATCAAGAATCATATTTTCATACAGTCATAACTGTCTTTCTGTGACCCTTTCACAGGGCACTGTAGGA TGGATTAAAGGTGGCAATTTACTGATAACTGCAGATGTCTCTACTTTGTTCTAAAATCTAAGTCATGAGGTGATT TGATTTACTTTATAGAAGCTGGATTTTGAAGATCTAATGAAAAATTTTTTTGATAATATAGTAGTACAAAAAAAGC ACCAGCAACTGATAAAAATTGCTTTTTTGTGCGCTACCCAACTGGTTAAAGCCAATGTGATCTTTTATGGTGAAA CTCCTAAGAAACAGGTGGTTTTGCTGGAAACTTGGTAGACCCTTAATTATAGTGGTGCTAATGAGCACTACTGTA ATATAAAGCCACCATTATTTTTATCAAACATCTGAATACATTTTACAAAGGCTATTGTGAGGGCATTATTTTGA GCATCTATTTTGAGGTGATGTTTAAAAAAACTTTAACATCAAATCAAATTGTAAATTAAATTAAATATATTGCCT TATTGAGGAAGTATTTTGCCTTCCCTACTCACTGAGAAGTATTGACTTCGTGGTACACATTCTAAAGCATTTCTG ATTTGAATATTTTTGTACATTTTTATCAATTATTAAACCTTCTCTTCTAGTG

PCT/US2003/028547

958/6881 FIGURE 892

MLEISNWLSILLEKAEAREREREKEEARKMKRKESAFKSMLKQAAPPIELDAVWEDIRERFVKEPAFEDITLESE RKRIF KDFWHVLEHECQHHHSKNKKHSKKSKKHHRKRSRSRSGSDSDDDSHSKKKRQRSESRSASEHSSSAESE RSYKKSKKHKKKSKKRRHKSDSPESDAEREKDKKEKDRESEKDRTRQRSESKHKSPKKKTGKDSGNWDTSGSELS EGELEKRRRTLLEQLDDDQ

PCT/HS2003/028547

959/6881 FIGURE 893

CCGCTCGCCCTCTGCTCCTGCGGCTGCCCACTGCCCTCCTACGGTCCACCATGGCCCTGCTGCACTCCGGC TGGACCCATGTGGAAATGGGACCTCCAGATCCCATTCTGGGAGTCACTGAAGCCTTTAAGAGGGACACCAATAGC A A A A GA TGA A TCTGGGAGTTGGTGCCTACCGGGATGATAACGGAAAGCCTTACGTGCTGCCTAGCGTCCGCAAG GCAGAGGCCCAGATTGCCGCAAAAAATTTGGACAAGGAATACCTGCCCATTGGGGGGACTGGCTGAATTTTGCAAG GCATCTGCAGAACTAGCCCTGGGTGAGAACAGCGAAGTCTTGAAGAGTGGCCGGTTTGTCACTGTGCAGACCATT CCCAAACCAACCTGGGGAAACCACACCCATCTTCAGGGATGCTGGCATGCAGCTACAAGGTTATCGGTATTAT GACCCCAAGACTTGCGGTTTTGACTTCACAGGCGCTGTGGAGGATATTTCAAAAATACCAGAGCAGAGTGTTCTT GCCTGGGCTGTGCGCCACTTCATCGAACAGGGCATTAATGTTTGTCTCTGCCAATCATATGCCAAGAACATGGGC TTATATGGTGAGCGTGTAGGAGCCTTCACTATGGTCTGCAAAGATGCGGATGAAGCCAAAAGGGTAGAGTCACAG ACCCAGATTTGCGAAAACAATGGCTGCAAGAAGTGAAAGGCATGGCTGACCGCATCATTGGCATGCGGACTCAA CTGGTCTCCAACCTCAAGAAGGAGGGTTCCACCCACAATTGGCAACACATCACCGACCAAATTGGCATGTTCTGT TTCACAGGGCTAAAGCCTGAACAGGTGGAGCGGCTGATCAAGGAGTTCTCCATCTACATGACAAAAGATGGCCGC ATCTCTGTGGCAGGGGTCACCTCCAGCAACGTGGGCTACCTTGCCCATGCCATTCACCAGGTCACCAAGTAATGT CCCTGGTGCGAGGAAACAGAGACAACCTTTCTGTCTTCAGCCTCTGCTATTGAGAGCTTCACACAGACAATGAGA GAGGTGGATGGTGAGTGGATCATTTCTTTCAGCCACAGTGTGAACACTCAGCATTTGAATGTTTCTCAGA CTTTTTCTCCAACTTTTCTCAAAGAGTTTACATGTGCAAGAAAAGTCATCGCACCAAAAAAACCTGTCAATTATGC CATTGCAATATTTCAGAAGCTTTAACTGAAGTGTCAGGTTCCTCGTGAGAAACAGCACACGTTAGAGGCTTTGAG GCACTGCAGAAATGATGTTTTATGAAAACCAATGAGGCTGCTGCCACTCCAGCAAGGGAAATAATGCAGTTTCCT GTCTTATTTAAGAAAAAGAGAAGGCTCTCTTTTCTCCCTTGTCATTGCCGTTCTTTTCCTTACACGCAAAGATTT GAATGAAGAACATAATTTTCTGCTGATGCCGTACCCTCACCCTTTTCAGCAAAGAATAGTGGAGAGTAGGAAACT GTACTTTATCTCGGCATCCTCTTGAATGATAGTGCAAGTTTCTCCAGTTGGGATGTTGTCTCTCGCCCGGTTGGAC CTCCTCCTTTGTTGAATGTGGTGTGCAGCCTCTCATCTCACACTGTGAGTCCAGCGGCGCAGGGTGGTACCAGG AAAGAGGATATTCTAGGCTTTGCGTGCTGCTAGCTGGGTTCAGGCTTCACCCACTGGAAAGAACCACCATCTGCT CTAACCATGTAGACTTATTGCGGCCTGGTTTCTCTGTTACAATAAAATTACTGTAGACCC

PCT/US2003/028547

960/6881 FIGURE 894

TTCTCTGAACGCTCACTTCCGAGGAGACGCCGACGATGAAGACACCGTGGAAGGTTCTTCTGGGACTGCTGGGTG CTGCTGCGCTTGTCACCATCATCACCGTGCCCGTGGTTCTGCTGAACAAAGGCACAGATGATGCTACAGCTGACA GTCGCAAAACTTACACTCTAACTGATTACTTAAAAAATACTTATAGACTGAAGTTATACTCCTTAAGATGGATTT CAGATCATGAATATCTCTACAAACAAGAAATAATATCTTGGTATTCAATGCTGAATATGGAAACAGCTCAGTTT TCTTGGAGAACAGTACATTTGATGAGTTTGGACATTCTATCAATGATTATTCAATATCTCCTGATGGGCAGTTTA TTCTCTTAGAATACAACTACGTGAAGCAATGGAGGCATTCCTACACAGCTTCATATGACATTTATGATTTAAATA AAAGGCAGCTGATTACAGAAGAGAGGATTCCAAACAACACACAGTGGGTCACATGGTCACCAGTGGGTCATAAAT TGGCATATGTTTGGAACAATGACATTTATGTTAAAATTGAACCAAATTTACCAAGTTACAGAATCACATGGACGG GGAAAGAAGATATAATATATAATGGAATAACTGACTGGGTTTTATGAAGAGGAAGTCTTCAGTGCCTACTCTGCTC TGTGGTGGTCTCCAAACGGCACTTTTTTAGCATATGCCCAATTTAACGACACAGAAGTCCCACTTATTGAATACT CCTTCTACTCTGATGAGTCACTGCAGTACCCAAAGACTGTACGGGTTCCATATCCAAAGGCAGGAGCTGTGAATC CAACTGTAAAGTTCTTTGTTGTAAATACAGACTCTCTCAGCTCAGTCACCAATGCAACTTCCATACAAATCACTG AGTGGCTCAGGAGGATTCAGAACTATTCGGTCATGGATATTTGTGACTATGATGAATCCAGTGGAAGATGGAACT TTACCCTTGATGGTAATAGCTTCTACAAGATCATCAGCAATGAAGAAGGTTACAGACACATTTGCTATTTCCAAA TAGATAAAAAAGACTGCACATTTATTACAAAAGGCACCTGGGAAGTCATCGGGATAGAAGCTCTAACCAGTGATT ATACAAAAGTGACATGCCTCAGTTGTGAGCTGAATCCGGAAAGGTGTCAGTACTATTCTGTGTCATTCAGTAAAG AGGCGAAGTATTATCAGCTGAGATGTTCCGGTCCTGGTCTGCCCCTCTATACTCTACACAGCAGCGTGAATGATA AAGGGCTGAGAGTCCTGGAAGACAATTCAGCTTTGGATAAAATGCTGCAGAATGTCCAGATGCCCTCCAAAAAAC TGGACTTCATTATTTTGAATGAAACAAAATTTTGGTATCAGATGATCTTGCCTCCTCATTTTGATAAATCCAAGA AAT ATCCTCTACTATTAGATGTGTATGCAGGCCCATGTAGTCAAAAAGCAGACACTGTCTTCAGACTGAACTGGG AGATCATGCATGCAATCAACAGAAGACTGGGAACATTTGAAGTTGAAGATCAAATTGAAGCAGCCAGACAATTTT CAAAAATGGGATTTGTGGACAACAAACGAATTGCAATTTGGGGCTGGTCATATGGAGGGTACGTAACCTCAATGG TCCTGGGATCGGGAAGTGGCGTGTTCAAGTGTGGAATAGCCGTGGCGCCTGTATCCCGGTGGGAGTACTATGACT CAGTGTACACAGAACGTTACATGGGTCTCCCAACTCCAGAAGACAACCTTGACCATTACAGAAATTCAACAGTCA TGAGCAGAGCTGAAAATTTTAAACAAGTTGAGTACCTCCTTATTCATGGAACAGCAGATGATAACGTTCACTTTC AGCAGTCAGCTCAGATCTCCAAAGCCCTGGTCGATGTTGGAGTGGATTTCCAGGCAATGTGGTATACTGATGAAG ACCAT GGAATAGCTAGCAGCACAGCACACCAACATATATATACCCACATGAGCCACTTCATAAAACAATGTTTCT CTTTACCT<u>TAG</u>CACCTCAAAATACCATGCCATTTAAAGCTTATTAAAACTCATTTTTGTTTTCATTATCTCAAAA CTGCACTGTCAAGATGATGATGATCTTTAAAATACACACTCAAATCAAGAAACTTAAGGTTACCTTTGTTCCCAA ATTICATACCTATCATCTTAAGTAGGGACTTCTGTCTTCACAACAGATTATTACCTTACAGAAGTTTGAATTATC CGGTCGGGTTTTATTGTTTAAAATCATTTCTGCATCAGCTGCTGAAACAACAAATAGGAATTGTTTTTATGGAGG CTTTGCATAGATTCCCTGAGCAGGATTTTAATCTTTTTCTAACTGGACTGGTTCAAATGTTGTTCTCTTCTTTAA AGGGATGGCAAGATGTGGGCAGTGATGTCACTAGGGCAGGGACAGGATAAGAGGGATTAGGGAGAGAAGATAGCA GGGCATGGCTGGGAACCCAAGTCCAAGCATACCAACACGAGCAGGCTACTGTCAGCTCCCCTCGGAGAAGAGCTG TTCACAGCCAGACTGGCACAGTTTTCTGAGAAAGACTATTCAAACAGTCTCAGGAAATCAAATATGCAAAGCACT GACTTCTAAGTAAAACCACAGCAGTTGAAAAGACTCCAAAGAAATGTAAGGGAAACTGCCAGCAACGCAGGCCCC CAGGTGCCAGTTATGGCTATAGGTGCTACAAAAACACAGCAAGGGTGATGGGAAAGCATTGTAAATGTGCTTTTA AAAA AAAA TACTGATGTTCCTAGTGAAAGAGGCAGCTTGAAACTGAGATGTGAACACATCAGCTTGCCCTGTTAA AAGAT GAAAATATTTGTATCACAAATCTTAACTTGAAGGAGTCCTTGCATCAATTTTTCTTATTTCATTTCTTTG AGTGTCTTAATTAAAAGAATATTTTAACTTCCTTGGACTCATTTTAAAAAATGGAACATAAAATACAATGTTATG TATTATTATTCCCATTCTACATACTATGGAATTTCTCCCAGTCATTTAATAAATGTGCCTTCATTTTTTC

PCT/US2003/028547

961/6881 FIGURE 895

MKTPWKVLLGLLGAAALVTIITVPVVLLNKGTDDATADSRKTYTLTDYLKNTYRLKLYSLRWISDHEYLYKQENN ILVPWAEYGNSSVPLENSTFDEFGHSINDYSISPOGQFILLEYNYVKQWRHSYTASYDIYDLNKRQLITERITHD NTQWYTWSPVGHKLAYVWNNDIYVKIEPNLPSYRITWTGKEDIIYNGITDWYYEEEVFSAYSALWWSPNGTFLAY AQFNDTEVPLIEYSFYSDESLQYPKTVRVPYPKAGAVNFTVKFFVVNTDSLSSVTNATSIQITAPASMLIGDHYL CDVTWATQERISLQWLRRIQNYSVMDICDVDESSGRWNCLVARQHIEMSTTGWVGRFR9EEPHFTLDGNSFYKII SNEEGYRHICYFQIDKKDCTFITKGTWEVIGIEALTSDYLYYISNEYKGMPGGRNLYKIQLSDYTKVTCLSCELN PERCQYYSVSFSKEAKYYQLRCSGFGLPLYTLHSSVNDKGLRVLEDNSALDKMLQNVQMSKKLDFIILNETKFW YQMILPPHFDKSKKYPLLDVYAGPCSQKADTVFRLNWATYLASTENIIVASFDGRGSGYGGDKIMHAINRRLGTFEVEDQIEAARQFSKWGFVDNKRIAIWGSYGGYVTSNVLGSGSGVFKCGIAVAPVSRWEYYDSVYTERYMGLFT PEDNIDLHYNNSTYWSRAENFKQVEYLLHHGTADDNVHFQQSAQISKALVDVGVDFQAMWYTDEDHGIASSTAHQHIYHMSHFIKQCFSLP

PCT/US2003/028547

962/6881 FIGURE 896

GTTTGAAATCGGAAAGTTGGCGGGGCTGCGGGAGCTGAGCCTAGAGTCCGGCTGTTGGCTAGAGTGGGCGCGCAT CTGGTGTGGGGAAGGCGGGGGACTCAGGCCTGCCTGCGAAGCATTGTCCTACATAATGGTAGAGGACGAACTGG TGGTTGAGATGTTTCTGGAATATCAAAATCAGATCAGCAGCAAAATAAGCTCATTCAAGAAAAAAAGGATAACT AGGAAGAATATTCTAGGAAGAAGGAAACTATTTCTACTGCTAATAAAGCGAATGCAGAGAGGTTGAAAAGGCTGC AGAAATCTGCAGACTTGTATAAAGATCGACTTGGACTAGAAATTCGAAAAATTTATGGTGAGAAATTGCAGTTTA TTTTCACTAATATTGACCCTAAGAATCCTGAGAGCCCATTTATGTTTTCCTTACATCTCAATGAAGCAAGGGACT ATGAAGTGTCAGATAGTGCCCCTCATCTTGAGGGCCTAGCAGAATTTCAAGAGAATGTAAGGAAGACCAACAATT $\tt TTTCAGCTTTTCTTGCCAATGTTCGGAAAGCTTTTACTGCCACGGTTTATAAT \underline{TAA} CATACAAATAGTGTATATAA$ AGGGTACATGTGCACAATGTGCAGGTTTGTTACATATGTATACATGTGCCATATTGGTGTGCTGCACCCATTAAC ATGTTCCCCTTCCTGTGTCCATGTTCTCATTGTTCAATTCCCACCTAGGAGTGAGAATATGTGGTGTTTGGTT TTTTGTCCTTTCGATAGTTTGCTGAGAATGATGGTTTCCAGCTTCATCCATGTTCCTACAAAGGACATGAACTCA ${\tt CATTTGGGTTGGTTCCAAGTCTTTGCTATTGTGAATAGTGCCGAAATAAACATACGTGTGCATGTGTCTCCAAAA}$ ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

PCT/US2003/028547

963/6881 FIGURE 897

MVEDELALFDKSINEFWNKFKSTDTSCQMAGLRDTYKDSIKAFAEKLSVKLKEEERMVEMFLEYQNQISRQNKLI QEKKDNLLKLIAEVKGKKQELEVITANIQDLKEEYSRKKETISTANKANAERLKRLQKSADLYKDRLGLEIRKIY GEKLQFIFTNIDPKNPESPFMFSLHLNEARDYEVSDSAPHLEGLAEFQENVRKTNNFSAFLANVRKAFTATVYN

PCT/HS2003/028547

964/6881 FIGURE 898

AAGCACAGGCCACCACTCTGCCCTGGTCCACACAAGCTCCGGTAGCCCATGGAGCCCTGGCCTCTCCTCCTGCTC TTTAGCCTTTGCTCAGCTGGCCTCGTCCTGGGCTCCGAACATGAGACCCGTCTGGTGGCAAAGCTATTTAAAGAC TACAGCAGCGTGGTGCGGCCAGTGGAAGACCACCGCCAGGTCGTGGAGGTCACCGTGGGCCTGCAGCTGATACAG CTCATCAATGTGGATGAAGTAAATCAGATCGTGACAACCAATGTGCGTCTGAAACAGCAATGGGTGGATTACAAC CTAAAATGGAATCCAGATGACTATGGCGGTGTGAAAAAAATTCACATTCCTTCAGAAAAAGATCTGGCGCCCAGAC CTTGTTCTCTATAACAATGCAGATGGTGACTTTGCTATTGTCAAGTTCACCAAAGTGCTCCTGCAGTACACTGGC CACATCACGTGGACACCTCCAGCCATCTTTAAAAGCTACTGTGAGATCATCGTCACCCACTTTCCCTTTGATGAA CAGAACTGCAGCATGAAGCTGGGCACCTGGACCTACGACGGCTCTGTCGTGGCCATCAACCCGGAAAGCGACCAG TATTCCTGCTGCCCGGACACCCCCTACCTGGACATCACCTACCACTTCGTCATGCAGCGCCTGCCCCTCTACTTC ATCGTCAACGTCATCCCCTGCCTGCTCTTCTCCTTCTTAACTGGCCTGGTATTCTACCTGCCCACAGACTCA GGGGAGAAGATGACTCTGAGCATCTCTGTCTTACTGTCTTTGACTGTGTTCCTTCTTGGTCATCGTGGAGCTGATC CCCTCCACGTCCAGTGCTGTGCCCTTGATTGGAAAATACATGCTGTTCACCATGGTGTTCGTCATTGCCTCCATC ATCATCACTGTCATCGTCATCAACACACCACCGCTCACCCAGCACCCATGTCATGCCCAACTGGGTGCGGAAG GTTTTTATCGACACTATCCCAAATATCATGTTTTTCTCCACAATGAAAAGACCATCCAGAGAAAAGCAAGACAAGA AAGATTTTTACAGAAGACATTGATATCTCTGACATTTCTGGAAAGCCAGGGCCTCCACCCATGGGCTTCCACTCT CCCCTGATCAAACACCCCGAGGTGAAAAGTGCCATCGAGGGCATCAAGTACATCGCAGAGACCATGAAGTCAGAC CAGGAGTCTAACAATGCGGCGGCAGAGTGGAAGTACGTTGCAATGGTGATGGACCACATACTCCTCGGAGTCTTC ATGCTTGTTTGCATCATCGGAACCCTAGCCGTGTTTGCAGGTCGACTCATTGAATTAAATCAGCAAGGA**TGA**GCA GAAAATGAGCTGAGCTTAGCTCTGCCCTGGAACCTACCAGAGCAGAGAAGGGCAGGAGAGGAGAGATTTGTCTACT TGCTCCACTCGCACTTATCAAACGTGTTATATTCCATACTTATTATTGATGATAAGATTTACCTTTATGTAAGTT TATGGCCTTGAAGTGTTTTCATATTGCTTCTCCCTTTAGTTCTGCTGTCTCCCTGAAGAGTGAACCCTCTTTAGT AAATGAAACTAATCACT

PCT/US2003/028547

965/6881 FIGURE 899

MEPWPLLLLFSLCSAGLVLGSEHETRLVAKLFKDYSSVVRPVEDHRQVVEVTVGLQLIQLINVDEVNQIVTTNVR
LKQQWVDYNLKWNDDDYGGVKKIHLF9EKKWRPDLVLYNNADGDFAIVKFTKVLLQYTGHITWTFPAIFKSYCEI
IVTHFPFDEQNCSMKLGTWTYDGSVVAINPESDQPDLSNFMESGEWVIKESRGWKHSVTYSCCDFYLDITVHF
VMQRLPLFYIVNVIIPCLLFSFLTGLVFYLPTDSGEKMTLSISVLUSLTVFLLVIVELIPSTSSAVPLIGKYMLF
TMYFVIASIIITVLVINTHHRSFSTHVMPNWVRKVFIDTIPNIMFFSTMKRPSREKQDKKIFTEDIDISDISGKP
GPPPMGFHSPLIKHPEVKSAIEGIKYIAETMKSDQESNNAAAEWKYVAMVMDHILLGVFMLVCIIGTLAVFAGRL
IELNQQG

PCT/IIS2003/028547

966/6881 FIGURE 900

PCT/US2003/028547

967/6881 FIGURE 901

PCT/US2003/028547

968/6881 FIGURE 902

martkqtarkstiggkaprkqlatkaarksapstigykkphryrpgtvalreirryqkstellirklppqrlvrei aqdfktdlrfqsaaigalqeaseaylvglfedtnlcaihakrvtimpkdiqlarrirgera

PCT/US2003/028547

969/6881 FIGURE 903

CAGCCGTTGAGGGGACGGGCCTGCGTTCTCCTCCTTCCTCCCGCCTCCAGCTGCCGGCAGGACCTTTCTCTC GCTGCCGCTGGGACCCCGTGTCATCGCCCAGGCCGAGCACG<u>ATG</u>CCCCCTAAAAAAGGGAGGTGATGGAATTAAAC CACCCCC ATTCATTGGA AGATTTGGA ACCTCACTGA A ATTTGGTATTGTTGGATTGCCAAATGTTGGGAAATCTA CTTTCTTCAATGTGTTAACCAATAGTCAGGCTTCAGCAGAAAACTTCCCGTTCTGCACTATTGATCCTAATGAGA GCAGAGTACCTGTGCCAGATGAAAGGTTTGACTTTCTTTGTCAATACCACAAACCAGCAAAGCAAAATTCCTGCCT TTCTAAATGTGGTGGATATTGCTGGCCTTGTGAAAGGAGCTCACAATGGGCAGGCCTGGGGAATGCTTTTTTAT GAAGTGTAGATCCTATTCGAGATATAGAAATAATACATGAAGAGCTTCAGCTTAAAGATGAGGAAATGATTGGGC GCAAAGTAAAATCCTGGGTTATAGATCAAAAGAAACCTGTTCGCTTCTATCATGATTGGAATGACAAAGAGATTG AAGTGTTGAATAAACACTTATTTTTGACTTCAAAACCAATGGTCTACTTGGTTAATCTTTCTGAAAAAAGACTACA CTTTTAGTGGGGCCTTGGAACTCAAGTTGCAAGAATTGAGTGCTGAGGAGAGACAGAAGTATCTGGAAGCGAACA TGACACAAAGTGCTTTGCCAAAGATCATTAAGGCTGGGTTTGCAGCACTCCAACTAGAATACTTTTTCACTGCAG GCCCAGATGAAGTGCGTGCATGGACCATCAGGAAAGGGACTAAGGCTCCTCAGGCTGCAGGAAAGATTCACACAG ATTTTGAAAAGGGATTCATTATGGCTGAAGTAATGAAATACGAAGATTTTAAAGAGGAAGGTTCTGAAAATGCAG TCAAGGCTGCTGGAAAGTACAGACAACAAGGCAGAAATTATATTGTTGAAGATGGAGATATTATCTTCTTCAAAT TCTGATTTTTAAAAATTTAAAATTTCTGAAAACCAATGCGACAAATAAAGTTGGGGAGATGGGAATCTTTGACAA TGTGAACAGCTTTGCTTTTCACGTGATTAAGACCCTACTCCAAATTGTAGAAGCTTTTCAGGAACCATATTACTC TCATGATACTTCATTAATCTCCATCATGTATGCCAAGCCTGACACATTTGACAGTGAGGACAATGTGGCTTGCTC CTTTTTGAATCTACAGATAATGCATGTTTTACAGTACTCCAGATGTCTACACTCAATAAAACATTTGACAAAACC **AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA**

PCT/US2003/028547

970/6881 FIGURE 904

MPPKKGGDGIKPPFIIGRFGTSLKIGIVGLPNVGKSTFFNVLTNSQASAENFPFCTIDPMESRVPVPDERFDFLC
QYHKPASKIPAFLNVVDIAGLVKGAHNGQGLGNAFLSHISACDGIFHLTRAFEDDDITHVEGSVDPIRDIEIIHE
ELQLKDEEMIGPTIDKLEKVAVRGGDKKLKPEYDIMCKVKSWVIDQKKEVRFYHDMXDKEIEVLNKHLFLTSKPM
VYLVNLSEKDYIRKKNKWLIKIKEWVDKYDPGALVIPFSGALELKLQELSAEERQKYLEANMTOSALPKIIKAGF
AALQLEYFFTAGEDEVRAWTIRKGTKAPQAAGKIHTDFEKGFIMAEVMKYEDFKEEGSENAVKAAGKYRQQGRNY
IUVEDGDIIFFKFNTPQQPKKK

PCT/HS2003/028547

971/6881 FIGURE 905

CTGCCAGCCGCGCTGCTGCTCCTCCTGCTGTGGGACCGCTGACCGCGCGGCTGCTCCCCCGCTCCA AGCGCCGATCTGGGCACCCGCCACCAGCATGGACGCTCGCCGCGTGCCGCAGAAAGATCTCAGAGTAAAGAAGAA CTTAAAGAAATTCAGATATGTGAAGTTGATTTCCATGGAGACCTCGTCATCCTCTGATGACAGTTGTGACAGCTT TGCTTCTGATAATTTTGCAAACACGAAACCTAAATTCAGGTCAGATATCAGTGAAGAACTGGCAAGTGTTTTTTA TGAGGACTCTGATAATGAATCTTTCTGCGGCTTTTCAGAAAGTGAGGTGCAAGATGTATTAGACCATTGTGGATT TTTACAGAAACCAAGGCCAGATGTCACTAACGAACTGGCCGGTATTTTTCATGCCGACTCTGACGATGAATCATT AAAAGCAGAGTCCCGCCAGCCCTCAGAGAATTCTGTGACTGATTCCAACTCCGATTCAGAAGATGAAAGTGGAAT GAATTTTTTGGAGAAAAGGGCTTTAAATATAAAGCAAAACAAAGCAATGCTTGCAAAACTCATGTCTGAATTAGA AAGCTTCCCTGGCTCGTTCCGTGGAAGACATCCCCTCCCAGGCTCCGACTCACAATCAAGGAGACCGCGAAGGCG TACATTCCCGGGTGTTGCTTCCAGGAGAAACCCTGAACGGAGAGCTCGTCCTCTTACCAGGTCAAGGTCCCGGAT CCTCGGGTCCCTTGACGCTCTACCCATGGAGGAGGAGGAGGAGGAGGATAAGTACATGTTGGTGAGAAAGAGGAA GACCGTGGATGGCTACATGAATGAAGATGACCTGCCCAGAAGCCGTCGCTCCAGATCATCCGTGACCCTTCCGCA TATAATTCGCCCAGTGGAAGAATTACAGAGGAGGAGTTGGAGAACGTCTGCAGCAATTCTCGAGAGAAGATATA AGACTGCTGGGGCGTTCGAGGCCAGTTCTGTGGCCCCTGCCTTCGAAACCGTTATGGTGAAGAGGTCAGGGATGC TCTGCTGGATCCGAACTGGCATTGCCCGCCTTGTCGAGGAATCTGCAACTGCAGTTTCTGCCGGCAGCGAGATGG ACGGTGTGCGACTGGGGTCCTTGTGTATTTAGCCAAATATCATGGCTTTGGGAATGTGCATGCCTACTTGAAAAG TTGTAAAAGTTTCCAA1TTTTTCACTGAAACCTGAGTTAAAAATCTTGATGATCAGCCTGTTTCATAAGAAACTC CAATCAAGTTAATCTTAGCAGACATGTGTTTCTGGAGCATCACAGAAGGTATATTGCTAGTTACACTTTGCCCTC CTGCAGTTTCTTCTCTGCTCCCAACCCCCATCTCATAGCATCCCCCTCTATTTCCAATGCTCCTCTCCAACCGCT ACTTGTTTACACAAAAACGAGTATGATTTAGCATTCATACTAGTTGAAATTTTTAATAGAATCAAGGCACAAAAG TCTTAAAACCATGTGGAAAAATTAGGTAATTATTGCAGATTGATGTCTCTCAATCCCATGTATTGCGCTTATGTT ACAAGTTGTTGTCACAGTTGAGACTTAATTTCTCCTAATTTCTTCTGCCCGAAGGGTAAGTGGTGCGTCCAGCTT TATGAGTAAGCTGATTTGAATTTTCAGTATAAAACTTTAGTATAATTGTAGTTTGCAAAGTTTATTTCAGTTCAC ATGTAAGGTATTGCAAATAAATTCTTGGACAATTTTGTATGGAAACTTGATATTAAAAACTAGTCTGTGGTTCTT TGCAGTTTCTTGTAAATTTATAAACCAGGCACAAGGTTCAAGTTTAGATTTTAAGCACTTTTATAACAATGATAA GTGCCTTTTTGGAGATGTAACTTTTAGCAGTTTGTTAACCTGACATCTCTGCCAGTCTAGTTTCTGGGCAGGTTT CCTGTGTCAGTATTCCCCCTCCTCTTTGCATTAATCAAGGTATTTGGTAGAGGTGGAATCTAAGTGTTTGTATGT CCAATTTACTTGCATATGTAAACCATTGCTGTGCTATTCAATGTTTGATGCATAATTGGACCTTGAATCGATAAG

PCT/US2003/028547

972/6881 FIGURE 906

MDARRVPQKDLRVKKNLKKFRYVKLISMETSSSSDDSCDSFASDNFANTKPKFRSDISELASVFYEDSDNESFC
GFSESEVQDVLDHGGFLQKPRDVTNELAGIFHADSDDESFCGFSESEIQOMRLQSVREGCRTRSQCRHSGPLR
VANKFPARSTRGATNKKABSRQPSENSVTDSNBSSEDESGNNFLEKRALNIKQNKAMLAKLMSELESFFGSFRGR
HPLPGSDSQSRRPRRTFPGVASRRNPERRARPLTRSRSRILGSLDALPMEBEBEEDKYMLVRKRKTVDGYMNED
DLPRSRRSRSSVTLPHIIRPVEEITEEELENVCSNSRËKIYNRSLGSTCHQCRQKTIDTKTNCRNPDCWGVRGQF
CGPCLRNRYGEEVRDALLDPNWHCPPCRGICNCSFCRQRDGRCATGVLVYLAKYHGFGNVHAYLKSLKQFEEMQA

PCT/US2003/028547

973/6881 FIGURE 907

PCT/US2003/028547

974/6881 FIGURE 908

MAEVEQKKKRTFRKFTYRGVDLDQLLDMSYEQLEQPMQLYSARQRRRLNRGLRRKQHSLLKRLRKAKKEAPPMEK QEVVKTHLRDMIILPEMVGSMYGYYNGKTFTYKPVKHGRPGIGATHSSRFIPLK

PCT/HS2003/028547

975/6881 FIGURE 909

PCT/IIS2003/028547

976/6881 FIGURE 910

CTTTTATGTTAGATGAGGAAGGGGATACCCAAACAGAGGAAACCCGGCCTTCAGAAACAAAAAGAAGTGGAGCCAG AGCCAACTGAGGACAAAGATTTGGAAGCTGATGAAGAGGGACACTAGGAAAAAAGATGCTTCTGATGATCTAGATG ACTTGAACTTCTTTAATCAAAAGAAAAAGAAGAAAAAAACTAAAAAGATATTTGATATTGATGAAGCTGAAGAAG GTGTAAAGGATCTTAAGATTGAAAGTGATGTTCAAGAACCAACTGAACCAGAGGATGACCTTGACATTATGCTTG GCAATAAAAAGAAGAAAAAGAAGAATGTTAAGTTCCCAGATGAGGATGAAGCTCTAGAAGATGAAGACAACAAAA AAGATGATGGTATCTCATTCAGTAATCAGACAGGCCCTGCTTGGGCAGGCTCAGAAAGAGACTACACATACGAGG AGCTGCTGAATCGAGTGTTCAACATCATGAGGGAAAAGAATCCAGATATGGTTGCTGGGGAGAAAAGGAAATTTG TCATGAAACCTCCACAAGTCGTCCGAGTAGGAACCAAGAAAACTTCTTTTGTCAACTTTACAGATATCTGTAAAC TTGGTTCTATAGATGGTAATAACCAACTTGTAATCAAAGGAAGATTCCAACAGAAACAGATAGAAAATGTCTTGA GAAGATATATCAAGGAGTATGTCACTTGTCACACATGCCGATCACCGGACACAATCCTGCAGAAGGACATGCGAC TCTATTTCCTACAGTGCGAAACTTGTCATTCTAGATGTTCTGTTGCCATTATCAAAATTGGCTTCCAGGCTGTCA TGGGCAAGCGAGCACAGCTCCGTGCCAAAGCTAACTAATTTGCTAATCACTGATTTTGCAAAGCTTGTTGTGGAG ATGTGGCTGGACAGGTTTGCCATCAGAGTGGATATACCATTGTATTAAAAACAAGATAAAAAAGCTGCCAAGATT $\tt TTTAACACCTGTCAGAGAAACGTGATATGGGGTAAGGAGGTGCTTTTTTAAAATAGTTCATAGACTTCTGTAAAA$ TGCAAGATAAATTAAAGTTATTATAACAGTGA

PCT/IIS2003/028547

977/6881 FIGURE 911

GAGCCCACTCGAGCCGCAGCCATGTCTGGGGACGAGATGATTTTTGATCCTACTATGAGCAAGAAGAAAAAAGAAG AAGAAGAAGCCTTTTATGTTAGATGAGGAAGGGGATACCCAAACAGAGGAAACCCGGCCTTCAGAAACAAAAGAA GTGGAGCCAGAGCCAACTGAGGACAAAGATTTGGAAGCTGATGAAGAGGACACTAGGAAAAAAAGATGCTTCTGAT GATCTAGATGACTTGAACTTCTTTAATCAAAAGAAAAAGAAGAAAAAACTAAAAAGATATTTGATATTGATGAA GCTGAAGAAGGTGTAAAGGATCTTAAGATTGAAAGTGATGTTCAAGAACCAACTGAACCAGAGGATGACCTTGAC ATTATGCTTGGCAATAAAAAGAAGAAAAAGAAGAATGTTAAGTTCCCAGATGAGGATGAAGCTCTAGAAGATGAA GACAACAAAAAAGATGATGGTATCTCATTCAGTAATCAGACAGGCCCTGCTTGGGCAGGCTCAGAAAGAGACTAC ACATACGAGGAGCTGCTGAATCGAGTGTTCAACATCATGAGGGAAAAGAATCCAGATATGGTTGCTGGGGAGAAA AGGAAATTTGTCATGAAACCTCCACAAGTCGTCCGAGTAGGAACCAAGAAAACTTCTTTTGTCAACTTTACAGAT ATCTGTAAACTATTACATCGTCAACCCAAACATCTCCTTGCATTTTTATTGGCTGAATTGGGTACAAGTGGTTCT ATAGATGGTAATAACCAACTTGTAATCAAAGGAAGATTCCAACAGAAACAGATAGAAAATGTCTTGAGAAGATAT ATCAAGGAGTATGTCACTTGTCACACATGCCGATCACCGGACACAATCCTGCAGAAGGACATGCGACTCTATTTC CTACAGTGCGAAACTTGTCATTCTAGATGTTCTGTTGCCATTATCAAAATTGGCTTCCAGGCTGTCATGGGCAAG CGAGCACAGCTCCGTGCCAAAGCTAACTAATTTGCTAATCACTGATTTTGCAAAGCTTGTTGTGGAGATGTGGCT GGACAGGTTTGCCATCAGAGTGGATATACCATTGTATTAAAAACAAGATAAAAAAGCTGCCAAGATTTTTGGCGA GTGGTTGGTTGGTCTGAAGTCCTTGCAAGACGCTGATGCTCAAGCTGTTGACATACTCATTGCCTACTTTAACAC CTGTCAGAGAAACGTGATATGGGGTAAGGAGGTGCTTTTTTAAAATAGTTCATAGACTTCTGTAAAATGCAAGAT AAATTAAAGTTATTATAACAGTGA

PCT/IIS2003/028547

978/6881 FIGURE 912

CGAGTTGGAAGAGGCGAGTCCGGTCTCAAAATGGAGGTAAAACCGCCGCCCGGTCGCCCCAGCCCGACTCCGGC CGTCGCCGTCGCCGCGGGGGGGGGGGGCCATGATCCAAAGGAACCAGAGCAGTTGAGAAAACTGTTTATTGGT GGTCTGAGCTTTGAAACTACAGATGATAGTTTACGAGAACATTTTGAGAAATGGGGCACACTCACAGATTGTGTG GTAATGAGAGACCCCCAAACAAACGTTCCAGGGGCTTTGGTTTTTGTGACTTATTCTTGTGTTTGAAGAGGTGGAT TCTGTAAAGCCTGGTGCCCATCTAACAGTGAAGAAAATTTTTGTTGGTGGTATTAAAGAAGATACAGAAGAATAT AATTTGAGAGACTACTTTGAAAAGTATGGCAAGATTGAAACCATAGAAGTTATGGAAGACAGGCAGAGTGGAAAA ATTAATGGGCATAATTGTGAAGTGAAAAAGGCCCTTTCTAAACAAGAGATGCAGTCTGCTGGATCACAGAGAGGT CGTGGAGGTGGATCTGGCAATTTTATGGGTCGCGGAGGGAACTTTGGAGGTGGTGGAGGTAATTTTGGCCGTGGT GGAAACTTTGGTGGAAGAGGTAGGCTATGGTGGTGGAGGTGGTGGCAGCAGAGGTAGTTATGGAGGAGGTGATGG TGGATATAATGGATTTGGAGGTGATGGTGGCAACTATGGCGGTGGTCCTGGTTATAGTAGTAGAGGGGGCTATGG TGGTGGTGGACCAGGATATGGAAACCAAGGTGGTGGATATGGTGGAGGTGGAGGATATGATGGTTACAATGAAGG AGGAAATTTTGGCGGTGGTAACTATGGTGGTGGTGGGAACTATAATGATTTTTGGAAATTATAGTGGACAACAGCA ATCAAATTATGGACCCATGAAAGGGGGCAGTTTTGGTGGAAGAAGCTCGGGCAGTCCCTATGGTGGTGGTTATGG ATCTGGTGGTGGAAGTGGTAGGTAGCAGAAGGTTCTAAAAACAGCAGAAAAGGGCTACAGTTCTTAGCAG GAGAGAGAGCGAGGAGTTGTCAGGAAAGCTGCAGGTTACTTTGAGACAGTCGTCCCAAATGCATTAGAGGAACTG TAAAAATCTGCCACAGAAGGAACGATGATCCATAGTCAGAAAAGTTACTGCAGCTTAAACAGGAAACCCTTCTTG TTCAGGACTGTCATAGCCACAGTTTGCAAAAAGTGCAGCTATTGATTAATGCAATGTAGTGTCAATTAGATGTAC ATTCCTGAGGTCTTTTATCTGTTGTAGCTTTGTCTTTTCTTTTCTTTTCATTACATCAGGTATATTGCCCTGT AAATTGTGGTAGTGGTACCAGGAATAAAAAATTAAGGAATTTTTAACTTTTCAATATTTGTGTAGTTCAGTTTTT CTACATTTTAGTACAGAAACTTTAACAAAATGCAGTTTCGAAGGTGTTTCCTTGTGAGTTAACAAGTAAAGAAGA TCATTGTTAATTACTATTTTGTATGAATTTTGCTAAAGTTAACTGTAAAGAAACACCTGCTGACTTGCAGTTTAA GGGGAATCTATTCTCCCCATTTCCAAACCATGATATGAATGGGCGCTGACATGTGGAGAGAATAGATAATTTGTG TGTTTGCAATGTGTGTTTTAGATAAATAGGATTGGGTATTTAAATTAGCATTTGTGAATTTAATAGCATTAAGAT TACCTTCAAATGAAAAAAATCTCAAAATTTCTATTTGGTTTTTTGTGCATTTTCTTTTAAAATGTAATCATATGA TTTTAGTGTGTTAGACTTGCTGAGTCCTAGCTGTGTTTAGAACATCTCTATTCTACATTTACCTTGGTCAAATTT GAACTGCTGCCATAGG

PCT/US2003/028547

979/6881 FIGURE 913

MEGHDPKEREQLRKPFIGGLSFETTDDGLREHFEKWVTLTDCVVMRDPQTKCSRGFGFVTYSYIEEVDAAMCAPPHKVDGCVVEPKRAVSREDFVKPGAHLTVKKIFVGGIKIQKNII

PCT/US2003/028547

980/6881 FIGURE 914

PCT/US2003/028547

981/6881 FIGURE 915

 ${\tt MASVSKLACIYSALILHDDEVTVTEDKINALIKAAGVNVEPFWPGLFAKALANVNIGSLICNVGAGGPAPAEEKKVEAKKEESKESDDDMGLGLFD}$

PCT/HS2003/028547

982/6881 FIGURE 916

ACGGGGCCTGGGCGGSAGGGGCGGTGGCTGGAGCTCGGTAAAGCTCGTGGGACCCCATTGGGGGAATTTGATCCA AGGAAGCGGTGATTGCCGGGGGAGGAGAAGCTCCCAGATCCTTGTGTCCACTTGCAGCGGGGAGGCGGAGACGC GGAGCGGGCCTTTTGGCGTCCACTGCGCGGCTGCACCCTGCCCCATCCTGCCGGGATCATCGTCTGCGGCAGCCC GCCTCCAGCCTGTGAGCCCGTCCGCATCCCCCTGTGCAAGTCCCTGCCCTGGAACATGACTAAGATGCCCAACCA CCTGCACCACAGCACTCAGGCCAACGCCATCCTGGCCATCGAGGCAGTTCGAAGGTCTGCTGGGCACCCACTGCAG CCCCGATCTGCTCTTCTTCCTCTGTGCCATGTACGCGCCCATCTGCACCATTGACTTCCAGCACGAGCCCATCAA CCCCTGTAAGTCTGTGTGCGAGCGGGCCCGGCAGGGCTGTGAGCCCATACTCATCAAGTACCGCCACTCGTGGCC GGAGAACCTGCCTGCGAGGAGCTGCCAGTGTACGACAGGGGCGTGTGCATCTCTCCCGAGGCCATCGTTACTGC GGA CGGA CCTGA TTTTCCTA TGGA TTCTA GTA A CGGA A A CTGTA GA GGGGCA A GCA GTGA A CGCTGTA A A TGTA A GCCTATTAGAGCTACAGAAGACCTATTTCCGGAACAATTACAACTATGTCATTCGGGCTAAAGTTAAAGAGAT AAAGACTAAGTGCCATGATGTGACTGCAGTAGTGGAGGTGAAGGAGATTCTAAAGTCCTCTCTGGTAAACATTCC ACGGGACACTGTCAACCTCTATACCAGCTCTGGCTGCCTCTGCCCTCCACTTAATGTTAATGAGGAATATATCAT CATGGGCTATGAGGATGAGGAACGTTCCAGATTACTCTTGGTGGAAGGCTCTATAGCTGAGAAGTGGAAGGATCG ACTCGGTAAAAAGTTAAGCGCTGGGATATGAAGCTTCGTCATCTTGGACTCAGTAAAAGTGATTCTAGCAATAG TGATTCCACTCAGAGTCAGAAGTCTGGCAGGAACTCGAACCCCCGGCAAGCACGCAACTAAATCCCGAAATACAA AAAGTAACACAGTGGACTTCCTATTAAGACTTACTTGCATTGCTGGACTAGCAAAGGAAAATTGCACTATTGCAC ATCATATTCTATTGTTTACTATAAAAATCATGTGATAACTGATTATTACTTCTGTTTCTCTTTTGGTTTCTGCTT CTCTCTTCTCAACCCCTTTGTAATGGTTTGGGGGCAGACTCTTAAGTATATTGTGAGTTTTCTATTTCACTAA TCATGAGAAAACTGTTCTTTTGCAATAATAATAAATTAAACATGCTGTTA

PCT/US2003/028547

983/6881 FIGURE 917

MVCGSPGGMLLLRAGLLALAALCLLRVPGARAAACEPVRIPLCKSLPWNMTKMPNHLHHSTQANAILAIEQFEGL LGTHCSPDLLFFLCAMYAPICTIDFQHEPINPCKSVCERARQGCEPILIKYRHSWPENLACEELPVYDRGVCISP EAIVTADGADFPMDSSNGNCRGASSERCKCKPIRATQKTYFRNNYMYVIRAKVKEIKIKCHDVTAVVEVKEILKS SLVNIPRDTVNLYTSSGCLCPPLNVNEEYIIMGYEDEERSRLLLVEGSIAEKWKDRLGKKVKRWDMKLRHLGLSK SDSSNSDSTQSQKSGRNSNPRQARN

PCT/US2003/028547

984/6881 FIGURE 918

ATGTCCATCAGGACGACCCAGAAGTCCTACAGGGTGTCCACTTCTGGCCCCCGGGCCTTCAGCAGCCATTTCTAC ACAAGTGGGCCTGGTGCCTCCATCAGCTCCTCGAGCTTCTCCCAAGTGGGCAGCAGCAGCTTCCGGGGTGGCCTG GGAGGAGGCTACGGTGGGCCAGTGGCATGGGAGGCATCACCACCGTCACTGTCAACCAGAGCCTGCTGAGCCCC CTT AACCTGGAGGTGGACCCACACATCCAGGCAGTGCACACTCAGAAGAAGGAGCAGATCAAGACCCTCAACACT CTGAAGCTGGAGGCGGAGCTTGGCAACATGCAGGGGCTGGTGGAGGACTTCAAGAACAAGTATGAGGATGAGATC AATAAGCGTACAGAGATGGAGAATGAATTTGTCCTCATCAAGAAGGATGTGGATGAAGCTTACCTGAACAAGGTA GAGCTGGAGTCTCGCCTGGAAGGGCTGACTGACGAAATCAACTTCCTCAGGCAGCTGTATGAAGAGGATATCCCG GAGCTGCAGTCCCAGATCTCAGACACGTCTGTGGTGCTGCCCATGGACAACAGCCACTCCCTGGACATGGACAGC AAAGGCCAGAGGGCTTCCCTGGAGGCCGCCATCGCAGATGCGGAGCAGCGCGGGGAGTTGGCCGTTAAGGATGCC AGCGCCAAGCTGTCTGAGCTGGAGGCCGCCCTGCAGCAAACCAAGCAGGACGTGGAGCTGATGAACGACAAGCTG AGCATGAGTATCCATACAAAGACCATCAGCAGCTATGCAGGTGGTCTGAGCTCGGCCTATGGGGGCCTCACAAGC CCCGGCCTCAGCTGTGGACTGGGCTCCAGCTTTGGCTCTGGCGCGGGCTCCAGTTCCTTCAGCTGCATCAGCTAC ACCAGGGCCGTGGTTGTGAAGAAGATTGAGACCCGTGATGGGACGCTGGTGTCAGAGTTCTCTGACGTCCTGCCC AAGTGA

PCT/HS2003/028547

985/6881 FIGURE 919

MSIRTTQKSYRVSTSGPRAFSSHFYTSGPGASISSSSFSQVGSSSFRGGLGGGYGGASGMGGITTVTVNQSLLSP LNLEVDPHIQAVHTQKKEQIKTLHTKPATFIYKSYINNLRQQLETLGQEKLKLEAELGMNQGLVEDFKNKYEDBI NKRTEMENEFVLIKKDVDEAVLNKVELESRLEGLIDEITDFINGLYEBEDIFELGSGISDTSVVLPMDNSHSLDMDS IINEVKRSTRSPTAASWLQAEIEGLKGQRASLEAAIADAEQRGELAVKDASAKLSELEAALQQTKQDVELMNDKL ALDIEIATTRQLLEGEESWLESGWQSMSIHTKTISSYAGGLSSAYGGLTSPGLSCGLGSSFGSGAGSSSFSCISY TRAVVVKKIETRDGTLVSEFSDVLPK

PCT/US2003/028547

986/6881 FIGURE 920

ACTGGTTTTAAGTGTAGTTGCCGACGCAATGGCAGCCTTTGCAGTGGAACCTCAGGGGCCCGCGTTAGGATCTGA ACCAATGATGCTGGGTTCACCCACATCTCCAAAGCCAGGAGTTAATGCCCAGTTCTTACCTGGATTTTTAATGGG GGATTTGCCAGCTCCGGTGACTCCACAACCTCGATCAATTAGTGGCCCTTCAGTAGGAGTAATGGAAATGAGATC ACCTTACTTGCAGGTGGGTCACCACCACAACCAGTTGTACCAGCTCATAAAGATAAAAGTGGCGCTCCACCAGT TAGAAGTATATATGATGACATTTCTAGCCCAGGACTTGGATCAACACCTTTAACTTCAAGAAGACAGCCAAACAT TTCAGTAATGCAGAGTCCTCTTGTTGGAGTTACATCTACTCCTGGAACAGGGCAAAGTATGTTTAGTCCAGCAAG TATCGGTCAGCCACGAAAGACGACATTATCTCCTGCCCAGTTGGATCCTTTTTATACTCAAGGAGATTCTTTGAC TTCAGAAGATCACCTCGATGACTCTTGGGTGACTGTATTTGGGTTTCCTCAAGCATCTGCTTCCTACATATTACT ACAATTTGCACAGTATGGGAATATCTTAAAACATGTGATGTCTAATACAGGAAATTGGATGCATATTCGTTATCA ATCTAAACTGCAGGCTCGGAAAGCCTTAAGCAAAGATGGGAGGATTTTTGGAGAATCCATCATGATTGGTGTAAA ACCATGTATTGACAAAAGTGTTATGGAAAGCAGTGACAGATGTGCTTTATCATCTCCATCTTTAGCCTTTACACC ACCAATCAAAACTCTAGGTACACCAACACACCTGGAAGTACTCCTAGGATTTCTACCATGAGACCTCTTGCTAC ATCCAAAGCAATGGAGTACATGTTTGGCTGGTAGTAGAACACCAAGAAGGAGGTTGCTACACTAAAACAGAGTTA GCAGAGTGCTGCTGGTTCCTTCGGTTAGTTATATAACTGTTCCTGCAGTATTGGATAGCTATCTCATACTTCTTT TAGAAAGAAGCCTTTTTCATTAAGGATACAACCTATTTGTAGCTCGCACTTTAAAAGATGCTTGAGATACATTTT AAAGAAAACTAAAAATCCCTGTAAATAGGATTTTGTGCTTTCTGTAACAGTGCATGCTTCAGCACAGAAAACTCA GCATTGATTATTGTAAATTAAATAACTGAAATTGTGGTGAGACGTCATAGTCTTCATGAGAACGTGGGGGTGAAT TTCATGAAGGGGAACTATAGTTATTTCTACCGACACAATATTATAATTAGCAATTTGAATTATGGTCTTTTAAT TTAGATAGTATTTAATATTTTAATTATCCTTGTTTGTATATGTCCTGTCACAGAGTGTCCTCTTGGTGTATTCTA AAACGAGCATTCTTTTAAAAAACCTAAAGTTTCTTGATAATAAACATTGTCAATGAT

PCT/US2003/028547

987/6881 FIGURE 921A

GGCTGAGTTTTATGACGGGCCCGGTGCTGAAGGGCAGGGAACAACTTGATGGTGCTACTTTGAACTGCTTTTCTT TTCTCCTTTTTGCACAAGAGTCTCATGTCTGATATTTAGACATGATGAGCTTTGTGCAAAAAGGGGAGCTGGCTA CTTCTCGCTCTGCTTCATCCCACTATTATTTTGGCACAACAGGAAGCTGTTGAAGGAGGATGTTCCCATCTTGGT CAGTCCTATGCGGATAGAGATGTCTGGAAGCCAGAACCATGCCAAATATGTGTCTGTGACTCAGGATCCGTTCTC TGCGATGACATAATATGTGACGATCAAGAATTAGACTGCCCCAACCCAGAAATTCCATTTGGAGAATGTTGTGCA GTTTGCCCACAGCCTCCAACTGCTCCTACTCGCCCTCCTAATGGTCAAGGACCTCAAGGCCCCAAGGGAGATCCA GGCCCTCCTGGTATTCCTGGGAGAAATGGTGACCCTGGTATTCCAGGACAACCAGGGTCCCCTGGTTCTCCTGGC CCCCCTGGAATCTGTGAATCATGCCCTACTGGTCCTCAGAACTATTCTCCCCAGTATGATTCATATGATGTCAAG TCTGGAGTAGCAGTAGGAGGACTCGCAGGCTATCCTGGACCAGCTCGCCCCCAGGCCCTCCCGGTCCCCCTGGT ACATCTGGTCATCCTGGTTCCCCTGGATCTCCAGGATACCAAGGACCCCCTGGTGAACCTGGGCAAGCTGGTCCT TCAGGCCCTCCAGGACCTCCTGGTGCTATAGGTCCATCTGGTCCTGCTGGAAAAGATGGAGAATCAGGTAGACCC GGACGACCTGGAGAGCGAGGATTGCCTGGACCTCCAGGTATCAAAGGTCCAGCTGGGATACCTGGATTCCCTGGT ATGAAAGGACACAGAGGCTTCGATGGACGAAATGGAGAAAAGGGTGAAACAGGTGCTCCTGGATTAAAGGGTGAA AATGGTCTTCCAGGCGAAAATGGAGCTCCTGGACCCATGGGTCCAAGAGGGGCTCCTGGTGAGCGAGGACGCCA GGACTTCCTGGGGCTGCAGGTGCTCGGGGTAATGACGGTGCTCGAGGCAGTGATGGTCAACCAGGCCCTCCTGGT CCTCCTGGAACTGCCGGATTCCCTGGATCCCCTGGTGCTAAGGGTGAAGTTGGACCTGCAGGGTCTCCTGGTTCA AATGGTGCCCCTGGACAAAGAGGAGAACCTGGACCTCAGGGACACGCTGGTGCTCAAGGTCCTCCTGGCCCTCCT GGGATTAATGGTAGTCCTGGTGGTAAAGGCGAAATGGGTCCCGCTGGCATTCCTGGAGCTCCTGGACTGATGGGA GCCCGGGGTCCTCCAGGACCAGCCGGTGCTAATGGTGCTCCTGGACTGCGAGGTGGTGCAGGTGAGCCTGGTAAG AATGGTGCCAAAGGAGAGCCCGGACCACGTGGTGAACGCGGTGAGGCTGGTATTCCAGGTGTTCCAGGAGCTAAA GGCGAAGATGGCAAGGATGGATCACCTGGAGAACCTGGTGCAAATGGGCTTCCAGGAGCTGCAGGAGAAAGGGGT GCCCCTGGGTTCCGAGGACCTGCTGGACCAAATGGCATCCCAGGAGAAAAGGGTCCTGCTGGAGAGCGTGGTGCT CCAGGCCCTGCAGGGCCCCAGAGGAGCTGCTGGAGAACCTGGCAGAGATGGCGTCCCTGGAGGTCCAGGAATGAGG GGCATGCCCGGAAGTCCAGGAGGACCAGGAAGTGATGGGAAACCAGGGCCTCCCGGAAGTCAAGGAGAAAGTGGT CGACCAGGTCCTCCTGGGCCATCTGGTCCCCGAGGTCAGCCTGGTGTCATGGGCTTCCCCGGTCCTAAAGGAAAT GATGGTGCTCCTGGTAAGAATGGAGAACGAGGTGGCCCTGGAGGACCTGGCCCTCAGGGTCCTCCTGGAAAGAAT GGTGAAACTGGACCTCAAGGACCCCCAGGGCCTACTGGGCCTGGTGGTGACAAAGGAGACACAGGACCCCCTGGT CCACAAGGATTACAAGGCTTGCCTGGTACAGGTGGTCCTCCAGGAGAAAATGGAAAACCTGGGGAACCAGGTCCA AAGGGTGATGCCGGTGCACCTGGAGCTCCAGGAGGCAAGGGTGATGCTGGTGCCCCTGGTGAACGTGGACCTCCT GGATTGGCAGGGGCCCCAGGACTTAGAGGTGGAGCTGGTCCCCCTGGTCCCGAAGGAGGAAAGGGTGCTGCTGGT CCTCCTGGGCCACCTGGTGCTGCTACTCCTGGTCTGCAAGGAATGCCTGGAGAAAGAGGAGGTCTTGGAAGT CCTGGTCCAAAGGGTGACAAGGGTGAACCAGGCGGCCCAGGTGCTGATGGTGTCCCAGGGAAAGATGGCCCAAGG GGTCCTACTGGTCCTATTGGTCCTCCTGGCCCAGCTGGCCAGCCTGGAGATAAGGGTGAAGGTGGCCCCCGGA CTTCCAGGTATAGCTGGACCTCGTGGTAGCCCTGGTGAGAGAGGTGAAACTGGCCCTCCAGGACCTGCTGGTTTC CCTGGTGCTCCTGGACAGAATGGTGAACCTGGTGGTAAAGGAGAAAGAGGGGGCTCCGGGTGAGAAAGGTGAAGGA GGCCCTCCTGGAGTTGCAGGACCCCCTGGAGGTTCTGGACCTGCTGGTCCTCCTGGTCCCCAAGGTGTCAAAGGT AATGGTAACCCAGGACCCCCAGGTCCCAGCGGTTCTCCAGGCAAGGATGGGCCCCCAGGTCCTGCGGGTAACACT GGTGCTCCTGGCAGCCCTGGAGTGTCTGGACCAAAAGGTGATGCTGGCCAACCAGGAGAGAAGGGATCGCCTGGT GCCCAGGGCCCACCAGGAGCTCCAGGCCCACTTGGGATTGCTGGGATCACTGGAGCACGGGGTCTTGCAGGACCA CCAGGCATGCCAGGTCCTAGGGGAAGCCCTGGCCCTCAGGGTGTCAAGGGTGAAAGTGGGAAACCAGGAGCTAAC AGAGATGGAAACCCTGGATCAGATGGTCTTCCAGGCCGAGATGGATCTCCTGGTGGCAAGGGTGATCGTGGTGAA AATGGCTCTCCTGGTGCCCCTGGCGCTCCTGGTCATCCAGGCCCACCTGGTCCTGTCCGGTCCAGCTGGAAAGAGT GGTGACAGAGGAGAAAGTGGCCCTGCTGGCCCTGCTGGTGCTCCCGGTCCTGCTGGTTCCCGAGGTGCTCCTGGT CCTCAAGGCCCACGTGGTGACAAAGGTGAAACAGGTGAACGTGGAGCTGCTGGCATCAAAGGACATCGAGGATTC CCTGGTAATCCAGGTGCCCCAGGTTCTCCAGGCCCTGCTGGTCAGCAGGGTGCAATCGGCAGTCCAGGACCTGCA GGCCCCAGAGGACCTGTTGGACCCAGTGGACCTCCTGGCAAAGATGGAACCAGTGGACATCCAGGTCCCATTGGA

PCT/HS2003/028547

988/6881 FIGURE 921B

CCACCAGGGCCTCGAGGTAACAGAGGTGAAAGAGGATCTGAGGGCTCCCCAGGCCACCCAGGGCAACCAGGCCCT CCTGGACCTCCTGGTGCCCCTGGTCCTTGCTGTGGTGGTGTTGGAGCCGCTGCCATTGCTGGGATTGGAGGTGAA AAAGCTGGCGGTTTTGCCCCGTATTATGGAGATGAACCAATGGATTTCAAAATCAACACCGATGAGATTATGACT TCACTCAAGTCTGTTAATGGACAAATAGAAAGCCTCATTAGTCCTGATGGTTCTCGTAAAAACCCCGGCTAGAAAC TGCAGAGACCTGAAATTCTGCCATCCTGAACTCAAGAGTGGAGAATACTGGGTTGACCCTAACCAAGGATGCAAA TTGGATGCTATCAAGGTATTCTGTAATATGGAAACTGGGGAAACATGCATAAGTGCCAATCCTTTGAATGTTCCA CAGTTTAGCTACGGCAATCCTGAACTTCCTGAAGATGTCCTTGATGTGCAGCTGGCATTCCTTCGACTTCTCTCC AGCCGAGCTTCCCAGAACATCACATATCACTGCAAAAATAGCATTGCATACATGGATCAGGCCAGTGGAAATGTA AAGAAGGCCCTGAAGCTGATGGGGTCAAATGAAGGTGAATTCAAGGCTGAAGGAAATAGCAAATTCACCTACACA GTTCTGGAGGATGGTTGCACGAAACACACTGGGGAATGGAGCAAAACAGTCTTTGAATATCGAACACGCAAGGCT GTGAGACTACCTATTGTAGATATTGCACCCTATGACATTGGTGGTCCTGATCAAGAATTTGGTGTGGACGTTGGC CCTGTTTGCTTTTATAAACCAAACTCTATCTGAAATCCCAACAAAAAAATTTAACTCCATATGTGTTCCTCTT TAATTTGACAAAGAAAATGATACTTCTCTTTTTTTGCTGTTCCACCAAATACAATTCAAATGCTTTTTGTTTTA AACACTGTGTTATATTCTTTGAATCCTAGCCCATCTGCAGAGCAATGACTGTGCTCACCAGTAAAAGATAACCTT ATTGTATTCTATGAGTCCCAGAAGATGAAAAAAATTTTATACGTTGATAAAACTTATAAATTTCATTGATTAATC TCCTGGAAGATTGGTTTAAAAAGAAAAGTGTAATGCAAGAATTTAAAGAAATATTTTAAAGCCACAATTATTTT AATATTGGATATCAACTGCTTGTAAAGGTGCTCCTCTTTTTTCTTGTCATTGCTGGTCAAGATTACTAATATTTG GGAAGGCTTTAAAGACGCATGTTATGGTGCTAATGTACTTTCACTTTTAAACTCTAGATCAGAATTGTTGACTTG CATTCAGAACATAAATGCACAAAATCTGTACATGTCTCCCATCAGAAAGATTCATTGGCATGCCACAGGGATTCT CCTCCTTCATCCTGTAAAGGTCAACAATAAAAACCAAATTATGGGGCTGCTTTTGTCACACTAGCATAGAGAATG TCATATTAAAATTC

PCT/US2003/028547

989/6881 FIGURE 922

MMSFVQKGSWLLLALLHPTIILAOOEAVEGGCSHLGQSYADRDVWKPEPCOICVCDSGSVLCDDIICDDQELDCP NPEIPFGECCAVCPOPPTAPTRPPNGOGPOGPKGDPGPPGIPGRNGDPGIPGOPGSPGSPGPPGICESCPTGPON YSPQYDSYDVKSGVAVGGLAGYPGPAGPPGPPGPPGTSGHPGSPGSPGYQGPPGEPGQAGPSGPPGPPGAIGPSG PAGKDGESGRPGRPGERGLPGPPGIKGPAGIPGFPGMKGHRGFDGRNGEKGETGAPGLKGENGLPGENGAPGPMG HAGAOGPPGPPGINGSPGGKGEMGPAGIPGAPGLMGARGPPGPAGANGAPGLRGGAGEPGKNGAKGEPGPRGERG EAGIPGVPGAKGEDGKDGSPGEPGANGLPGAAGERGAPGFRGPAGPNGIPGEKGPAGERGAPGPAGPRGAAGEPG RDGVPGGPGMRGMPGSPGGPGSDGKPGPPGSQGESGRPGPPGPSGPRGQPGVMGFPGPKGNDGAPGKNGERGGPG GPGPQGPPGKNGETGPQGPPGPTGPGGDKGDTGPPGPQGLQGLPGTGGPPGENGKPGEPGPKGDAGAPGAPGKG DAGAPGERGPPGLAGAPGLRGGAGPPGPEGGKGAAGPPGPPGAAGTPGLQGMPGERGGLGSPGPKGDKGEPGGPG ADGVPGKDGPRGPTGP1GPPGPAGOPGDKGEGGAPGLPG1AGPRGSPGERGETGPPGPAGFPGAPGQNGEPGGKG ERGAPGEKGEGGPPGVAGPPGGSGPAGPPGPQGVKGERGSPGGPGAAGFPGARGLPGPPGSNGNPGPPGPSGSPG KDGPPGPAGNTGAPGSPGVSGPKGDAGQPGEKGSPGAQGPPGAPGPLGIAGITGARGLAGPPGMPGPRGSPGPQG VKGESGKPGANGLSGERGPPGPQGLPGLAGTAGEPGRDGNPGSDGLPGRDGSPGKGDRGENGSPGAPGAPGHPG PPGPVGPAGKSGDRGESGPAGPAGAPGPAGSRGAPGPQGPRGDKGETGERGAAGIKGHRGFPGNPGAPGSPGPAG QQGAIGSPGPAGPRGPVGPSGPPGKDGTSGHPGPIGPPGPRGNRGERGSEGSPGHPGQPGPPGPPGAPGPCCGGV GAAAIAGIGGEKAGGFAPYYGDEPMDFKINTDEIMTSLKSVNGOIESLISPDGSRKNPARNCRDLKFCHPELKSG EYWYDPNOGCKLDAIKVFCNMETGETCISANPLNVPRKHWWTDSSAEKKHVWFGESMDGGFOFSYGNPELPEDVL DVQLAFLRLLSSRASQNITYHCKNSIAYMDQASGNVKKALKLMGSNEGEFKAEGNSKFTYTVLEDGCTKHTGEWS KTVFEYRTRKAVRLPIVDIAPYDIGGPDQEFGVDVGPVCFL

PCT/IIS2003/028547

990/6881 FIGURE 923

ACGCGTCCGAGCTGGCTCAGGCGTCCGCTAGGCTCGGACGACCTGCTGAGCCTCCCAAACCGCTTCCATAAGGC TTTGCCTTTCCAACTTCAGCTACAGTGTTAGCTAAGTTTGGAAAGAAGGAAAAAAGAAAATCCCTGGGCCCCTTT TCTTTTGTTCTTTGCCAAAGTCGTCGTTGTAGTCTTTTTGCCCAAGGCTGTTGTGTTTTTAGAGGTGCTATCTCC AGTTCCTTGCACTCCTGTTAACAAGCACCTCAGCGAGAGCAGCAGCAGCGGTAGCAGCCGCAGAAGAGCCAGCGG GGTCGCCTAGTGTCATGACCAGGGCGGGAGATCACAACCGCCAGAGAGGATGCTGTGGATCCTTGGCCGACTACC TGTCTGTGTTTCTGGTAGAGCTCTATGGAAACAGCCTCCTTTTGACAGCAGTCTACGGGCTGGTGGTGGCAGGGT CTGTTCTGGTCCTGGGAGCCATCATCGGTGACTGGGTGGACAAGAATGCTAGACTTAAAGTGGCCCAGACCTCGC TGGTGGTACAGAATGTTTCAGTCATCCTGTGTGGAATCATCCTGATGATGGTTTTCTTACATAAACATGAGCTTC TGACCATGTACCATGGATGGGTTCTCACTTCCTGCTATATCCTGATCATCACTATTGCAAATATTGCAAATTTTGG CCAGTACTGCTACTGCAATCACAATCCAAAGGGATTGGATTGTTGTTGCTGCAGGAGAAGACAGAAGCAAACTAG CAAATATGAATGCCACAATACGAAGGATTGACCAGTTAACCAACATCTTAGCCCCCATGGCTGTTGGCCAGATTA TGACATTTGGCTCCCCAGTCATCGGCTGTGGCTTTATTTCGGGATGGAACTTGGTATCCATGTGCGTGGAGTACG TCCTGCTCTGGAAGGTTTACCAGAAAACCCCAGCTCTAGCTGTGAAAGCTGGTCTTAAAGAAGAGGAAACTGAAT TGAAACAGCTGAATTTACACAAAGATACTGAGCCAAAACCCCTGGAGGGAACTCATCTAATGGGTGTGAAAGACT CTAACATCCATGAGCTTGAACATGAGCAAGAGCCTACTTGTGCCTCCCAGATGGCTGAGCCCTTCCGTACCTTCC TCCTGGGCTTTGACTGCATCACCACAGGGTACGCCTACACTCAGGGACTGAGTGGTTCCATCCTCAGTATTTTGA TGGGAGCATCAGCTATAACTGGAATAATGGGAACTGTAGCTTTTACTTGGCTACGTCGAAAATGTGGTTTGGTTC CCAAGATACCTGAAATTACAACTGAAATATACATGTCTAATGGGTCTAATTCTGCTAATATTGTCCCGGAGACAA GTCCTGAATCTGTGCCCATAATCTCTGTCAGTCTGCTGTTTGCAGGCGTCATTGCTGCTAGAATCGGTCTTTGGT CCTTTGATTTAACTGTGACACAGTTGCTGCAAGAAAATGTAATTGAATCTGAAAGAGGCATTATAAATGGTGTAC AGAACTCCATGAACTATCTTCTTGATCTTCTGCATTTCATCATGGTCATCCTGGCTCCAAATCCTGAAGCTTTTG GCTTGCTCGTATTGATTTCAGTCTCCTTTGTGGCAATGGGCCACATTATGTATTTCCGATTTGCCCAAAATACTC TTTGAGACAGTTTAACTGTTGCTATCCTGTTACTAGATTATATAGAGCACATGTGCTTATTTTGTACTGCAGAAT TCCAATAAATGGCTGGGTGTTTTGCTCTGTTTTTACCACAGCTGTGCCTTGAGAACTAAAAGCTGTTTAGGAAAC GTTTAAATACGGAGACTATAATGATAACACTGAATTCCCCTATTTCTCATGAGTAGATACAATCTTACGTAAAAG AGTGGTTAGTCACGTGAATTCAGTTATCATTTGACAGATTCTTATCTGTACTAGAATTCAGATATGTCAGTTTTC AAGTATGAAGACTAAATTTTGATAACTAATATTATCCTTATTGATCCTATTGATCTTAAGGTATTTACATGTATG TGGAAAAACAAAACACTTAACTAGAATTCTCTAATAAGGTTTATGGTTTAGCTTAAAGAGCACCTTTGTATTTT ATTATCAGATGGGGCAACATATTGTATGAAGCATATGTAGCACTTCACAGCATGGTTATCATGTAAGCTGCAGGT AGAAGCAAAGCTGTAAAGTAGATTTATCACACAATGACTGCATACAGACTTCAAATATGTCAATAGTTTTGGTCAT AGAACCTAGAAGCCAAAAGCCACAGAAGGGCAAGAATCCCAATTTAACTCATGTTATCATCATTAGTGATCTG TGTTGTAGAACATGAGGGTGTAAGCCTTCAGCCTGGCAAGTTACATGTAGAAAGCCCACACTTGTGAAGGTTTTG TTTTACAAATCACTTGATTTAACACACTCAGGTAGAATATTTTTATTTTTACTGTTTTATACCCAGAAGTTATTT CTACATTGTTCTACAGCAAGAATATTCATAAAAGTATCCCTTTCAAATGCCTTTGAGAAGAATAGAAGAAAAAAA GTTTGTATATATTTTAAAAAATTGTTTTAAAAGTCAGTTTGCAACATGTCTGTACCAAGATGGTACTTTGCCTTA TTGCTTCATCTTTCTACAGTATGACATAATGATTTGCTATGTTGTAAAAATCTTTGTAAAAAATTTCTATATAAAA ATATTTTGAAAATCTTAAAAAAAAAAAAAAAAAA

PCT/US2003/028547

991/6881 FIGURE 924

MTRAGDHNRQRGCCGSLADYLTSAKFLLYLGHSLSTWGDRMWHFAVSVFLVELYGNSLLLTAVYGLVVAGSVLVL
GAIIGDWVDKNARLKVAQTSLVVQNVSVILCGIILMMVFLHKHELLIMYHGWVLTSCYILITIANIANIASTAT
AITIGRDWTVVVAGEDRSKLAMMNATIRRIDQLTNILAPMAVGQIMTFGSPVIGCGFISGWNLVSMCCVYLLWK
VYQKTPALAVKAGLKEEETELKQLNLHKDTEPKPLEGTHLMGVKDSNIHELEHRQGETCASQMAEFFRIFRDGWV
SYYNQPVFLAGMGLAFLYMTVLGFDCITTGYAYTQGLSGSILSILMGASAITGIMGTVAFTWLRRKCGLVRTGLI
SGLAQLSCLILCVISVFMFGSPLDLSVSPFEDIRSRFIQGESTIPTKIPEITTEIYMSNGSNSANIVPETSPESV
PIISVSLFAGVIAARIGLWSFDLTVTQLLQENVIESRRGIINGVONSMYLLDLLHFIMVILAPNPEAFGLLVL
ISVSFYAMGHIMYFRFAQNTLGNKLFACGFDAKEVKENQANTSVV

PCT/US2003/028547

992/6881 FIGURE 925

TTTTGTGAAGAGACGAAGACTGAGCGGTTGCGGCCGCGTTGCCGACCTCCAGCAGCAGTCGGCTTCTCTACGCAG AACCCGGGAGTAGGAGACTCAGAATCGAATCTCTTCTCCCCCCCTTCTTGTTTTCGGCTTTGTGAGAAACCTTA CCATCANACACAATGGCCAGCAACGTTACCAACAAGACAGATCCTCGTTCCATGAACTCCCGTGTATTCATTGGG AATCTCAACACTCTTGTGGTCAAGAAATCTGATGTGGAGGCAATCTTTTCGAAGTATGGCAAAATTGTGGGCTGC TCTGTTCATAAGGGCTTTGCCTTCTTTCAGTATGTTAATGAGAGAAATGCCCGGGCTGCTGTAGCAGGAGAGGAT GGCAGAATGATTGCTGGCCAGGTTTTAGATATTAACCTGGCTGCAGAGCCAAAAGTGAACCGAGGAAAAGCAGGT GTGAAACGATCTGCAGCGGAGATGTACGGCTCCTCTTTTGACTTGGATTGTGACTTCAACGGGACTATTATGAT AGGATGTACAGTTACCCAGCACGTGTACCTCCTCCTCCTCTATTGCTCGGGCTGTAGTGCCCTCGAAACGTCAG CGTGTATCAGGAAACACTTCACAAAGGGGCATAAGTGGCTTCAATTCTAAGAGTGGACAGCGGGGATCTTCCAAG TCTGGAAAGTTGAAAGGAGATGACCTTCAGGCCATTAAGAGGGAGCTGACCCAGATAAAACAAAAAAGTGGATTCT TTCCTGGAAAACCTGGAAAAATTGAAAAGGAACAGAGCAAACAAGCAGTAGAGATGAACAATGTTAAGTCAGAA GAGGAGCAGAGCAGCAGCTCCGTGAAGAAAGATGAGACTAATGTGAAGATGGAGTCTGAGGGGGGGTGCAGATGAC TCTGCTGAGGAGGGGACCTACTGGATGATGATGATAATGAAGATGGGGGGGATGACCAGCTGGAGTTGATCAAGG ATGATGAAAAAGAGGCTGAGGAAGGAGAGGATGACAGAGACAGCGCCCAATGGCGAGGATGACTCTTAAGCACATA GTGGGGTTTAGAAATCTTATCCCATTATTTCTTTACCTAGGCGCTTGTCTAAGATCAAATTTTTCACCAGATCCT TTGCCCCGCGCCTAGTCCCATTTTCACTTCCTTTGACGCTCCTAGTAGTTTTGTTAAGTCTTACCCTGTAATTTT TGCTTTTAATTTTGATACCTCTTTATGACTTAACAATAAAAATGATGTATGGTTTTTATCAACTGTCTCCAAAAT GCAATCTCATTTAGTTGAGTAGCTCTTGAAAGCAGCTTTGAGTTAGAAGTATGTGTTTACACCCCCACATTAGT GTGCTGTGTGGGGCAGTTCAACACAAATGTAACAATGTATTTTTTGTGAATGAGAGTTGGCATGTCAAATGCATCC TCTAGAAAATAATTAGTGTTATAGTCTTAAGATTTGTTTTCTAAAGTTGATACTGTGGGTTATTTTTGTGAACA GCCTGATGTTTGGGACCTTTTTTCCTCAAAATAAACAAGTCCTTATTAAACCAGG

PCT/US2003/028547

993/6881 FIGURE 926

PCT/US2003/028547

994/6881 FIGURE 927

PCT/US2003/028547

995/6881 FIGURE 928

CTGGTGCCTCTGAAGAGCTCCTCAATAAACTTAAGCTTGAGAGGGATTTCAGCAGGTATAACTACCTGAGTCTGG ATTCGCCCAAAGTGAATGGAGTGGATGATGCAGCAAATTTTAGAACCGTGCGGAATGCCATGCAGATTGTGGGCT TTATGGATCATGAAGCTGAGTCTGTCTTGGCGGTGGTGGCAGCAGTGTTGAAACTGGGGAACATTGAGTTCAAGC CCGAATCTCGAGTGAATGGTCTAGATGAAAGCAAAATCAAAGATAAAAATGAGTTAAAAGAAATTTGTGAATTGA CCGGCATTGATCAATCAGTTCTAGAACGAGCATTCAGTTTCCGAACAGTTGAGGCCAAACAGGAGAAAGTTTCAA CTACACTGAATGTGGCTCAGGCTTATTATGCCCGTGATGCTCTGGCTAAAAACCTCTACAGCAGGTTGTTTTCAT AAATCTTCATTGAACTTACTCTTAAAGAAGAGCAGGAGGAGTATATACGGGAGGATATAGAATGGACTCACATTG ACTACTTCAATAATGCTATCATTTGTGACCTAATAGAAAATAACACAAATGGAATCCTGGCCATGCTGGATGAAG ATTTTGAGAGCAGGATGAGCAAGTGCTCTCGGTTCCTCAATGACACGTCTCTGCCTCACAGCTGCTTCAGGATCC AGCATTATGCTGGAAAGGTGCTGTACCAGGTGGAAGGATTCGTTGACAAAAACAATGACCTTCTCTATCGAGACC TGTCCCAAGCCATGTGGAAGGCCAGCCATGCCCTCATCAAGTCTTTGTTCCCCGAAGGGAATCCCGCCAAGATCA ACCTGA A A GGCCTCCTA CAGCA GGCTCACAGTTCA A GGCATCCGTGGCCACTCTGATGAAAAACCTACAGACCA AGAACCCAAACTATATTAGGTGTATCAAACCGAATGATAAAAAAAGCAGCACACCTCTCAACGAGGCTCTAGTGT GTGTGGAGGTCCTATTTAATGAATTAGAATTCCCGTGGAAGAATACTCCTTTGGTAGATCAAAGATATTCATCC GAAACCCAAGAACATTATTCAAATTAGAAGACCTGAGGAAGCAACGCCTGGAGGACTTGGCCACTCTCATTCAGA AGATATATCGGGGGTGGAAATGCCGCACACACTTCCTGCTAATGAAAAAAGCCAAATTGTGATTGCCGCCTGGT ACAGGAGATATGCGCAACAAAAGAGGTACCAGCAGACAAAGAGTTCCGCCTTAGTAATTCAGTCTTATATCCGGG GTTGGAAGGCTCGAAAAATTCTGCGGGAACTGAAGCATCAAAAGCGCTGTAAGGAAGCAGTCACGACCATTGCTG CTGTCATTTGGGCTTACTGGCTTGGACTGAAGGTACGTAGAGAATACAGGAAATTCTTCAGAGCCAATGCTGGAA AGAAAATCTATGAGTTTACGCTTCAGAGAATTGTGCAAAAATACTTCTTGGAAATGAAAAATAAGATGCCTTCCT TAGAAGCCAGTGAACTCTTCAAAGACAAGAAGGCTTTATACCCATCTAGTGTTGGGCAACCATTCCAAGGGGCTT ACCTGGAAATCAACAAGAACCCCAAGTATAAGAAACTCAAAGATGCCATTGAAGAAAAGATCATCATTGCTGAAG A A A T G A T G G C T T C T C G C C T C C A C C G G G G G C T C A G A G C G C T A G A A G C A G C T A G A G G G G C T C T C T C T C T C A G C G C T C A G A G C T C T C A G C G C T C A G A G C T C A G A G C T C T C A G C G C T C A G A G C T C T C A G A G C A G C T C A G A G C A G C T C A G A G C A G C T C A G A G C A G C A G C A G C A G C A G C A G C A G C A G C A G C A G C A G GTGATCACCTGATTGAAATGGCCACCAAGCTCTATCGCACAACTCTCAGCCAAACCAAACCAAACAGAAGCTCAATATTG AGATTTCCGATGAGTTCCTGGTACAGTTCAGACAGGACAAAGTATGTGTGAAGTTTATTAGGAACCCTGTAGTAT CTACATGTGGTTTCTGTTTG

PCT/IIS2003/028547

996/6881 FIGURE 929

AGGTCAGAAATGTGAATTCCAGGATGCCTATGTTCTGTTGAGTGAAAAGAAAATTTCTAGTATCCAGTCCATTGT ACCTGCTCTTGA AATTGCCAATGCTCACCGTAAGCCTTTGGTCATAATCGCTGAAGATGTTGATGGAGAAGCTCT AAGTACACTCGTCTTGAATAGGCTAAAGGTTGGTCTTCAGGTTGTGGCAGTCAAGGCTCCAGGGTTTGGTGACAA TAGAAAGAACCAGCTTAAAGATATGGCTATTGCTACTGGTGGTGCAGTGTTTGGAAGAAGAGGGATTGACCCTGAA TCTTGAAGACGTTCAGCCTCATGACTTAGGAAAAGTTGGAGAGGTCATTGTGACCAAAGACGATGCCATGCTCTT AAAAGGAAAAGGTGACAAGGCTCAAATTGAAAAACGTATTCAAGAAATCATTGAGCAGTTAGATGTCACAACTAG TGAATATGAAAAGGAAAAACTGAATGAACGCCTTGCAAAACTTTCAGATGGAGTGGCTGTGCTGAAGGTTGGTGG GACAAGTGATGTTGAAGTGAATGAAAAGAAAGACAGAGTTACAGATGCCCTTAATGCTACAAGAGCTGCTGTTGA AGAAGGCATTGTTTTGGGAGGGGGTTGTGCCCTCCTTCGATGCATTCCAGCCTTGGACTCATTGACTCCAGCTAA TGAAGATCAAAAATTGGTATAGAAATTATTAAAAGAACACTCAAAATTCCAGCAATGACCATTGCTAAGAATGC AGGTGTTGAAGGATCTTTGATAGTTGAGAAAATTATGCAAAGTTCCTCAGAAGTTGGTTATGATGCTATGGCTGG AGATTTTGTGAATATGGTGGAAAAAGGAATCATTGACCCAACAAAGGTTGTGAGAACTGCTTTATTGGATGCTGC TGGTGTGGCCTCTCTGTTAACTACAGCAGAAGTTGTAGTCACAGAAATTCCTAAAGAAGAGAAGAGCCCTGGAAT GGGTGCAATGGGTGGAATGGGAGGTGGTATGGGAGGTGGCATGTTCTAACTCCTAGACTAGTGCTTTACCTTTAT TAATGAACTGTGACAGGAAGCCCAAGGCAGTGTTCCTCACCAATAACTTCAGAGAAGTCAGTTGGAGAAAATGAA GAAAAAGGCTGGCTGAAAATCACTATAACCATCAGTTACTGGTTTCAGTTGACAAAATATATAATGGTTTACTGC TGTCATTGTCCATGCCTACAGATAATTTATTTTGTATTTTTGAATAAAAAACATTTGTACATTCCTGATACTGGG TACAAGAGCCATGTACCAGTGTACTGCTTTCAACTTAAATCACTGAGGCATTTTTACTACTATTCTGTTAAAATC AGGATTTTAGTGCTTGCCACCACCAGATGAGAAGTTAAGCAGCCTTTCTGTGGAGAGTGAGAATAATTGTGTACA

PCT/US2003/028547

997/6881 FIGURE 930

PCT/US2003/028547

998/6881 FIGURE 931

 ${\tt MAGQAFRKFLPLFDRVLVERSAAETVIKGGIMLPEKSQGKVLQATVVAVGSGSKGKGGEIQPVSVKVGDKVLLPEYGGTKVVLDDKDYFLFRDGDILGKYVD}$

PCT/US2003/028547

999/6881 FIGURE 932

PCT/HS2003/028547

1000/6881 FIGURE 933

TGGAAAGAGTGGAACGAGAAAACCTTTCAGACTATTGTGTTCTGGGCCAGCGTCCAATGCATTTACCAAATATGA ACCAGCTGGCATCCCTGGGGAAAACCAACGAACAGTCTCCTCACAGCCAAATTCACCACAGTACTCCAAATCCGAA ACCAAGTGCCCGCATTACAGCCCATCATGAGCCCTGGTCTTCTTCTCCCCAGCTTAGTCCACAACTTGTAAGGC AACAAATAGCCATGGCCCATCTGATAAACCAACAGATTGCCGTTAGCCGGCTCCTGGCTCACCAGCATCCTCAAG AAGTCTCTCCAGATATCTACCAGCAAGTCAGAGATGAGCTGAAGAGGGGCCAGTGTGTCCCAAGCTGTCTTTGCAA GAGTGGCATTCAACCGCACACAGGTACAATTAGCATTAAACACTGTAATTAACAGTAATACTGGGGACAGAATTG GAGGTAATGGACATCTTTGAACCCAACATGCAACTCAGGACCCCAAATGTTACTAATGACTTGGGTATGTACTCT CTCATCCTCTCCATTTACTGTTTGCAGATGTAACCCTGATCTTGAATTTTGTGATTATCAGTCTCTTGCCATTT TTAAAACAAATTATAAAACTATGCATGCCCAGACAATCTATTTTTTTCCCTTGGTTTTGAACGTTATAAAAGAAA TATAACACTAAATGTTGAAAATGTAAACAGTTAATTCACACGTCTTATTTTTATTGAGGGTGCTTATATGTAAGA CATTCTTTTCTGCTAGTAGTTCTTAAACTGGAGTGTGCATCAGAATCACCTGGAGGGCTGTGAAACACAGACTGC TGGGCCTCATCCCATAGTTTCTGATTGAGTAAGTCTGAGGTTGGACTCAGAAATGGACATTTCTAACAAGATCCC AGGTGATTATGATGGTACTGATCCGGGGCCGCATGTTGAGAAAAACTTACCTAGCCCTTATATGAGTAAGAACAA AGCAGATGTGCATAATCTCGGGGAGCTAACGATCTAGTGGTGAAAACCAGGTAACCAGATAATTAGAGTAAAATG TGAAGTGTTATGAGTAATGTTGGAGAGTGTAAGCAATAGTTGTGGTGGAGGTTCATGGTGAGCTGGAGGTGAGGA ATACTTCCAGGAGAATGAATATGGTAAGCCTTCAAGAAAACAGTAGATTAAAATTTCAGCACCCTCGTAAATGCA AGGCAGGAAGCTAAGCTCTATGTGGGTGCAAAGAGGAAAAAGATAATGGGCAAGCACATATGTAAACAACACTCT AGAGTATTAGGTTGTCAATGGGTTAGACCTTGAAGGATTAATAAAGTACAGCAGGCAAAGATGATGAAGAAGAA ATTATTATTTTAAGGTAAAGACATTCATAGGAAAGATGTTGAGTTAAAAAATGCAGGAATAATTTGAAGACATAA AACAACTGATTTCTGAGAAAAACCCTGTGAACGTACAGAATGTAGGAATGCTTTCATTTATCTGATACCTGTTCA TTGGAAAATACAGGAATGTTTCCAAATTTAATGATTACTTCAGAAGTTAAGGGGCTGGGCACAGTGGCTCATGTC TGTAGTCCTAGCACTTTGGGAGGCCAAGGTGGGCGGATCACTTGAGGTCAGGAGTTCAAGACCAGCCTGGGCAAG

PCT/US2003/028547

1001/6881 FIGURE 934

GAGAGGAGACACCGCCGCAGTTGCCGGTACATCGGGGATTTCTGGCTCTTTCCTCTTCGCCTTAAATTCGGGTGT ${\tt CAGTAGCTAAGTTTCTTGATGCTTCTGGAGCAAAACTTGATTACCGTCGATATGCAGAAACACTCTTTGACATTC}$ TGGTGGCTGGTGGAATGCTGGCCCCAGGTGGTACACTGGCAGATGACATGATGCGTACAGATGTCTGCGTGTTTG CAGCCCAAGAAGATCTAGAGACCATGCAAGCATTTGCTCAGGTTTTTAACAAGTTAATCAGGCGCTACAAATACC TGGAGAAAGGTTTTGAAGATGAAGTAAAAAAGCTGCTGCTGTTCTTGAAGGGTTTTTCAGAGTCGGAGAGGAACA AGCTAGCTATGTTGACTGGTGTTCTTCTGGCTAATGGAACACTTAATGCATCCATTCTTAATAGCCTTTATAATG AAAATTTGGTTAAAGAAGGAGTTTCAGCAGCTTTTGCTGTGAAGCTCTTTAAATCATGGATAAATGAAAAAGATA TCAATGCAGTAGCTGCAAGTCTTCGGAAAGTCAGCATGGATAACAGACTGATGGAACTCTTTCCTGCCAATAAGC AAACCATCGGAGCTCGTAAGGAGCTCCAGAAAGAACTTCAAGAACAGATGTCCCGTGGTGATCCATTTAAGGATA TAATTTTATATGTCAAGGAGGAGATGAAAAAAAAACAACATCCCAGAGCCAGTTGTCATCGGAATAGTCTGGTCAA GTGTAATGAGCACTGTGGAATGGAACAAAAAAGAGGAGCTTGTAGCAGAGCAAGCCATCAAGCACTTGAAGCAAT ACAGCCCTCTACTTGCTGCCTTTACTACTCAAGGTCAGTCTGAGCTGACTCTGTTACTGAAGATTCAGGAGTATT GCTATGACAACATTCATTTCATGAAAGCCTTCCAGAAAATAGTGGTGCTTTTTTATAAAGCTGAAGTCCTGAGCG AGGAGCCCATTTTGAAGTGGTATAAAGATGCACATGTTGUAAAGGGGAAGAGTGTTTTCCTTGAGCAAATGAAAA agtttgtagaatggctcaaaaatgctgaagaagaatctgaatctgaagctgaagaaggtgac<u>t</u>gaa[†]tttgaaac TACACCCTCAGTAAAGCAAACAGGAGTTGTAGATAAAATGTCATGTCTCATGTGTCCTGGTTCTTACATCTTCCT ACCTCCCTGTATCAAGCATGATATAAGGGCTTTCATGGCAAATTTTATTTTAACTGTTTCTATGGTTGCTGGAAA TGTTGGGTTTAGTTTCTAAAACCATGTTTTAAGTAGCTACAGGAGCTATAGATTTGAATCTAATGTTGCATTAGT $\tt CTTTTCAGTTATCTTCTACCTCCTGTATTTTCTACTGTAATAATGTAATTTAAGGCCTTCCACAATGAACAGTTC$ ACTITATICCCTGGGTTTCTATAAACAGTTTTAAGGATATGATTTGGTTAAAAAAATAATTTGTTATAAAAATTC TGTTTGCAAATTAAACTGGAAAAGTATCCAGAGTCTCAAAAGGCAATGATTTGTGAGATAATATGGCATGCCCGG AGCCCTGCTCATCAATGAAAAACCCATATGTAATAATCGAATTCATTTAACATGAATCTTGAGTACGTGGACCAT AATTGTTTGGTCTCTGGTTTTCATCCTTAGAGAAGCCATGGAGAACAGACTTGAAAAGTTTAGGAAATCATAATG TGGCAGAGGTGGTGGGAAGAAGAAAGTTGAGCTTTTTCCCCTTGAGAAACTTCTGCATTTAGTTTCTATCTTTCC AGGCAAAACAAATGGGTATTCTTTTCATACAACCATTTTCAAATGAACCTTAGAAAAGTCTTAACATTTAAGGTA TTTTATGCACAGAATACACTTAGATTGATAGGAAAGAACTCGTAATGGAGTTTGAGTAAAGAAAATGACTGATGT ACTARACCCAGTAAAAATTGTTGARAATGTTAAAGGTCAGCATGTTCTAATTGGGAATCTAGATATAGCTTAGAT TTCCTATTGGCTTAGAGTATTTGCTATAACAAATGAAGTGCAATGACAATTATATATTCCTACTCGGTCATACTG GACTGGCTTCGTTCTCTTAATATACTCAGTAATGACTCAAGCCTCTGGCTATTAACATACCCTAGTTGCCGTTTT CTTTTCTTGCTGCTACCCATCTATGTATGTAGTCATTGGGGGGGAAAATGTAGCCACATTTTTTATGGGAAGACTT TGTGTTAAAAGTGAACATTTTGAAGGTTTTTAACTGGTGAAACTAGCCTGGAATAATGCCACCAGAGACTGAGTG GAAATCGCCCCTTTTGAAGGTGCCATTCTTATGAGCCAAAAGTTTGTCATTTAAAAGTTCATTTTGAGGGAATAA CATGTAATATAATTTGAAATAAAGGTATAGTAACCTTAAAAAGAACATTATAACTGATTGTTGTGAATGGGGTGA ATTTGTTAAAATGAGTAACTTTGATAAAGTTTTTCATGCACAGGCAAAATGTATTCACTAGATTTCTACGTAGTG

PCT/US2003/028547

1002/6881 FIGURE 935

MNNQKQQKPTLSQQRFKTRKRDEKERFDPTQFQDCIIQGLTETGTDLEAVAKFLDASGAKLDYRRYAETLFDILV
AGGMLAPGGTLADDMRTDVCVFAAQEDLETMQAFAQVFNKLIRRYKYLEKGFEDEVKKLLLFLKGFSESERNKL
AMLTGVLLANGTLNASILNSLYNENLVKEGVSAAFAVKLFKSWINEKDINAVAASLEKVSMONRLMELFPANKQS
VEHFTKYFTEAGLKELSEYVRNQQTIGARKELQKELQEQMSRGDPFKDIILYVKEEMKKNNIPEPVVIGIVWSSV
WSTVEWNKKELVAEQAIKHLKQYSPLLAAFTTQGSELTLLLKIQEYCYDNIHFMKAFQKIVVLFYKAEVLSEE
PILKWYKOAHVAKGKSVFLEQMKKFVEMLKNAEESESEAEEGD

PCT/IIS2003/028547

1003/6881 FIGURE 936

ACGCAGAGAAGTTTCCGGGACTGAAACTTGAACTTTACCTGATTTCTGTATGTTGTCATCTTGCGTACGCCCAGT $\hbox{\tt CCCCACGACAGTCCGGTTTGTAGATTCCCTGATCTGCAATTCTTCCCGTTCCTTCATGGATTTGAAGGCTCTCCT}$ $\tt CCCACCACATACTGTAAATACACTCTTCCTGACCAATGACCTGACGAAGTGATGGAGGAGGTGCTGCAAAA$ GAAGGCAGACCTCATTCTCTCCTACCATCCGCCTATCTTCCGACCCATGAAGCGCATAACCTGGAACACATGGAA GGAGCGCCTGGTGATCCGGGCTCTGGAGAACAGAGTCGGTATCTACTCTCCTCATACAGCCTATGATGCTGCGCC $\tt CCAGGGCGTCAACAACTGGTTGGCTAAAGGGCTTGGAGCTTGTACCTCCAGGCCCATACATCCTTCCAAAGCTCC$ CAACTACCCTACAGAGGGAAACCACCGAGTAGAATTCAACGTTAACTACACCCAAGACCTGGACAAAGTCATGTC GACGGAAATTCTGTCACTGGAGAAGCCTTTGCTTCTACATACTGGAATGGGACGGTTATGCACACTGGATGAATC $\tt TGTCTCCCTGGCAACCATGATTGATCGAATAAAAAGACACCTAAAACTATCTCATATTCGCTTAGCCCTTGGGGT$ GGGGAGAACCTTAGAGTCTCAAGTCAAAGTCGTGGCCCTGTGTGCTGGTTCTGGGAGCAGCGTTCTGCAGGGTGT TGAGGCTGACCTTTACCTCACAGGTGAGATGTCCCATCATGATACTTTGGATGCTGCTTCCCAAGGAATAAATGT GAATAAGATAAATATTATCCTATCAGAGACTGACAGGGACCCTCTTCAGGTGGTATAATTGCAGAAACATCAGGA TAACACATTCTACAAATCAGCTGGATGCCAACTTAAATTTGTAACATGAGTCAGTGGGACTGGTGTGCTTCCAGA GAGTGTCTTCGAGGGTATCATCATTTCCGGTTTGTTAATCTTATTCACCAAATGTTCTATCGCTCGTAAGGTAAA ACTGTAATATAACTACCATATTAAATAACAAATGTTCATTATAAACTCTAGGAAAGATTGAATAAAATCTGTTTA CTTAACATTC

PCT/US2003/028547

1004/6881 FIGURE 937

MLSSCVRPVPTTVRFVDSLICNSSRSFMDLKALLSSLNDFASLSFAESWDNVGLLVEPSPPHTVNTLFLTNDLTE
EVMEEVLQKKADLILSYHPPIFRPMKRITWNTWKERLVIRALENRVGIYSPHTAYDAAPQGVNNWLAKGLGACTS
RPIHPSKAPNYPTEGNHRVEFNVNYTQDLDKVMSAVKGIDGVSVTSFSARTGNEEQTRINLNCTQKALMQVVDFL
SRNKQLYQKTEILSLEKPLLLHTGMGRLCTLDESVSLATMIDRIKRHLKLSHIRLALGVGRTLESQVKVVALCAG
SGSSVLQGVEADLYLTGEMSHHDTLDAASQGINVILCEHSNTERGFLSDLRDMLDSHLENKINIILSETDRDPLQ
VV

PCT/IIS2003/028547

1005/6881 FIGURE 938

CTCCTTTCTGCCCGTGGACGCCGCCGAAGAAGCATCGTTAAAGTCTCTCTTCACCCTGCCGTCATGTCTAAGTCA GAGTCTCCTAAAGAGCCCGAACAGCTGAGGAAGCTCTTCATTGGAGGGTTGAGCTTTGAAACAACCGATGAGAGC CTGAGGAGCCATTTTGAGCAACGGGGAACGCTCACAGACTGTGTGGTAATGAGAGATCCAAACACCAAGTGCTCC ACGGGCTTTGGGTTTGTCACATATGCCACTGTGAAGGAGGTGGAGGCAGCTATGAATGCAAGGCCACAGAAGGTG GATGGAAGAGTCGTGGAACCAAAGAGAGCTGTCTCGAGAGAAGATTCTCAAAGACCAGGTGCCCACTTAACTGTG AAAAAGATATTTGTTGGTGGCATTAAAGAAGACACTGAAGAACATCACCTAAGAGATTATTTTGAACAGTATGGA AAAATTGAAGTGATTGAAATCATGACTGACCGAGGCAGTGGGAAGAAAAGGGGGCTTTGCCTTTGTAACCTTTGAT GACCATGACTCCGTGGATAAGATTGTCATTCAGAAATACCACACTGTGAATGGCCACAACTGTGAAGTTAGAAAA GCCCTGTCAAAGCAAGAGATGACTAGTGCTTCATCTAGCCAAAGAGGTCGAAGTGGTTCTGGAAACTTTGGTGGT GGTCGTGGAGGTGGTTTCAGTGGGAATGACAACTTTGGTCATGGAAGAAACTTCAGTGGTCATGGTGGCTTTGGT GGCAGCCGTGGTGGTGGATATGATGGCAGTGGGGATGGCTATAATGGATTTGGTAATGATGGAAGCCATTTT GGAGGTGGTGGAAGCTACAATGATTTTGGCAATTACAAAAATCAGTCTTCAAATTTTGGACCCGTGAAGGGAGGA AATTTTGGAGGCAGAAGCTCTGGCCCCTATGGCGGTGGAGGCCAATACTTTGCAAAACCACGAAACTAAGGTGGC TATGGCGGTTCCAGCAGTAGCAGTAGCTATGGCAGTGGCAGAAGATTT<u>TAA</u>TTAGGAAACAAAGCTTAGCAGGAG AGGAGAGCCAGAGAAGTGACAGGGAAGCTACAGGTTACAACAGATTTGTGAACTCAGCCAAGCACAGTGGTGGCA GGGCCTAGCTGCTACAAAGAAGACATGTTTTAGACAAATACTCATGTGTATGGGCAAAAAACTCGAGGACTGTAT TTGTGACTAATTGTATAACAGGTTATTTTAGTTTCTGTTCTGTGGAAAGTGTAAAGCATTCCAACAAAGGGTTTT AATGTAGATTTTTTTTTTTGCACCCATGCTGTTGATTGCTAAATGTAATAGTCTGATCGTGACGCTGAATAAATG TCTTTTTTTTTAATGTGCTGTGTAAAGTTAGTCTACTCTGAAGCCATCTTGGTAAATTTCCCCAACAGTGTGAAG TTAGAATTCCTTCAGGGTGATGCCAGGTTCTATTTGGAATTTATATACAACCTGCTTGGGTGGAGAAGCTATTGT CTTCGGAAACCTTGGTGTAGTTGAACTGATAGTTACTGTTGTGACCTGAAGTTCACCATTAAAAGGGATTACCCA AGCAAAATCATGGAATTATTGGTTATAAAAGTGATTGTTGGCACATCCTATGCAATATATCTAAATTGAATAATG GTACCAGATAAAATTATAGATGGGAATGAAGCTTGTGTATCATCCATTATCATGTGTAATCAATAAACGATTTAA TTCTCTGGAA

PCT/US2003/028547

1006/6881 FIGURE 939

MSKSESPKEPEQLRKLFIGGLSFETTDESLRSHFEQRGTLTDCVVMRDPNTKCSTGFGFVTYATVKEVEAAMNAR PQKVDCRVVEPKRAVSREDSQRFGAHLTVKKIFVGGIKEDTEEHHLRDYFEQYGKIEVIEIMTDRGSGKKRGFFF VTFDDHDSVDKIVIQKYHTVNGHNCEVRKALSKQEMTSASSSQRGRSGSGNFGGGRGGFSGNDNFGHGRNFSGH GGFGGSRGGGGYDGSGDGYNGFGNDGSHFGGGGSYNDFGNYKNQSNFGPVKGGNFGGRSSGPYGGGGQYFAKPR NRWLWFFQQVAVAMAVAEDF

PCT/US2003/028547

1007/6881 FIGURE 940

PCT/US2003/028547

1008/6881 FIGURE 941

ATGTTGGTGCTGTTTGAAACGTCTGTGGGTTACGCCATCTTTAAGGTTCTAAATGAGAAGAAACTTCAAGAGGTT CAGGATACAGCAGAAGCATTAGCAGCATTCACAGCTCTGATGGAGGGCAAAATCAATAAGCAGCTGAAAAAAGTT CTGAAGAAAATAGTAAAAGAAGCCCATGAACCGCTGGCAGTAGCTGATGCTAAACTAGGAGGGGTCATAAAGGAA TTAATCCCTGGGGTAGAACCACGTGAAATGGCAGCTATGTGTCTTGGATTGGCTCACAGCCTGTCTCGATATAGA TTGAAGTTTAGCGCTGATAAAGTAGACACAATGATTGTTCAGGCAATTTCCTTGTTAGATGACTTGGATAAAGAA AATTTAACATACTGCAAGTGTTTACAGAAAGTTGGCGATAGGAAGAACTATGCCTCTGCCAAGCTTTCTGAGTTG CTGCCAGAAGAAGTTGAAGCAGAAGTGAAAGCAGCTGCAGAGATATCAATGGGAACAGAGGTTTCAGAAGAAGAT ATTTGCAATATTCTGCATCTTTGCACCCAGGTGATTGAAATCTCTGAATATCGAACCCAGCTCTATGAATATCTA ${\tt CAAAATCGAATGATGGCCATTGCACCCAATGTTACAGTCATGGTTGGGGAATTAGTTGGAGCACGGCTTATTGCT}$ ${\tt CATGCAGGTTCTCTTTTAAATTTGGCCAAGCATGCAGCTTCTACCGTTCAGATTCTTGGAGCTGAAAAGGCACTT}$ TTCAGAGCCCTCAAATCTAGACGGGATACCCCTAAGTATGGTCTCATTTATCATGCTTCACTCGTGGGCCAGACA AGTCCCAAACACAAAGGAAAGATTTCTCGAATGCTGGCAGCCAAAACCGTTTTGGCTATCCGTTATGATGCTTTT GGTGAGGATTCAAGTTCTGCAATGGGAGTTGAGAACAGAGCCAAATTAGAGGCCAGGTTGAGAACTTTGGAAGAC AGAGGGATAAGAAAAATAAGTGGAACAGGAAAAGCATTAGCAAAAACAGAAAAATATGAACACAAAAGTGAAGTG AAGACTTACGATCCTTCTGGTGACTCCACACTTCCAACCTGCTCTAAAAAACGCAAAATAGAACAGGTAGATAAA GTGGCAGAAGAAGAAGAACATCTGTGAAGAAGAAGAAGAAAGGGGGTAAAAAGAAACACATTAAGGAAGAACCA GAGAACGAGGATTAA

PCT/US2003/028547

1009/6881 FIGURE 942

PCT/US2003/028547

1010/6881 FIGURE 943

MPPKFDGATSALAPKIGPLGLSPKKVGDDIAKATGDWKGLRITVKLTIQNRQAQIEVVPSASALIIKALKEPPRD RKKQKNIKHSGNITFDEIVNIVRQMRHRSLARELSGTIKEILGTAQSVGCNVDGRHPHDIIDDINSGAVECPAS

PCT/IIS2003/028547

FIGURE 944

ATGGAAGATTTGATGGACATGGACATGAGCCTCCTGAGGCCCCAGAACTATCTTTTCGGTTGTGAACTAAAGGCC GACAAAGATGATCACTTTAAGGTGGATAATGATGAAAATGAGACCATCAGTTTAGGGGCTGGTGCAAGGGATGAA TTGCACATTGTTGX AGCAGACGCCATGA A TGATGA AGGCAGTCCAATTAAAGTCACACTGGCAACTTTGAAAATG TCTGTACAGCCAACTGCTTCCCTTGGGGGCTTTGAAATCACACCACCAGTGGTCTTACAGTTGAAGTGTGTTCA GGCCAGTGCATATTAGTAGACAGTGCTTAGTAGCTGTGGAGGAAGATGCAGAGTCAGAAGATGAAGAGGAGGAG GATGTGAACCTCTTAAGCATATCTGGAAAGCGGTCTGCCTCTGGAGGTGGTAGCAAGGCGCCCAGCTACCGCGCC CACTGGTCAGAAGTGTGGCCAGCGTCTATGCAGGCCCTGGGAGCTCAGGGTGGCTTGGGGTCCAGGAGCATGGCC GCA GGTA TGGCCGGGGGTCTGGCAGGAA TGGGAGGCATCCAGAACGAGAAGGAGACCATGCAAAGCCTGAATGAC CGCCTGGCCTCCTACCTGGACAGAGTGAGGAGCCTGGAGATGGGAAACTGGAAGCTGGAGGCAAAATCTGGGAG CACCTGGAGAAGAAGGGACCCCAGGTCAGAGACTGGGGCCACTACTTCAAGACCATCGAGGAGGACCTGACTCAG ATCTTCACAAGTACTGTGGACAATACCTGCATCATTCTGCAGATCGACAATGCCCATCTTGCTGCTGATGACTTT AGAGTCAAGTATGAGAGAGCCGGCCACGTGCCAGTCTGTGGAGAACGACATCCATGGGCTCCACAAGGTCATT GATGACACCAGTGTCACTCAGCTGCAGCTAGAGACAGAGATCGAGGCTCTCAAGGAGGAGCTGCTCTTCCTGAAG AAGAACCACGAAGAGGAAGTAAAAGGCCTACAAGCCCAGATTGCCAGCTCTGTTGACCATGGAGGCCTTGGAGAT CTGCAGATGGAACAACTCAATGGGATCCTGCTGCACCTGGAGTCAGAGCTGGCACAGACCTGGGCAGAGGGACAG GGCCAGGCCCAGGAGTACCAGGCCCTGCCAAACATCAAGCAGCAACTCCACGCAAACCATCCAAAAAGACTCCCAC CTGCCAACAGTGGATGGCAAAGTGGTGTCTGAGACCAATGACACCAAAGTTCTGAGACAT<u>TAA</u>

PCT/US2003/028547

1012/6881 FIGURE 945

MEDLMDMDMSLLRPQNYLFGCELKADKDDHFKVDNDENETISLGAGARDELHIVEAEAMNDEGSPIKVTLATLKM SVQPTASLGGFEITPPVVLQLKCGSGPVHISRQCLVAVEEDAESEDEEEEDVNLLSISGKRSASGGSKAPSYRA HWSEVWPASMQALGAQGGLGSRSMAAGMAGGLACMGGIQNEKETMQSLMDRILASYLDRVRSLEMGNWKLESKIWE HLEKKGPQVRDWGHYFKTIEEDLTQIFTSTVDNTCIILQIDNAHLAADDFRVKYETEPATCQSVENDIHGLHKVI DDTSVTQLQLETEIEALKEELLFLKKNHEEEVKGLQAQIASSVDHGGLGDRFGLDEKSGQQLEGQPGGVEACYT LQMEQLNGILHLESELAQTWAEGGGQAQEYQALPNIKQQLHANHPKDSHLPTVDGKVVSETNDTKVLRH

PCT/US2003/028547

FIGURE 946

GACAGTTTAGCAGAACAGCCTCCGCGGCTCCGGGGAGAAGCAATATGTTAAGGATACCTGTAAGAAAGGCCTTAG $\tt TTGATGGTCAGTCTGTCATGGTGGAACCGGGAACGACCGTCCTCCAAGCTTGTGAGAAGGTTGGCATGCAGATCC$ CTCGATTCTGTTATCATGAAAGGTTGTCTGTTGCTGGAAACTGCAGGATGTGCCTTGTTGAAATTGAGAAAGCCC CTAAGGTTGTAGCTGCTTGTGCCATGCCAGTAATGAAGGGTTGGAATATCCTAACAAACTCAGAAAAATCCAAAA AAGCCAGGGAAGGTGTGATGGAGTTCTTATTAGCAAATCACCCATTGGACTGTCCTATTTGTGACCAGGGAGGTG AATGTGATCTGCAGGACCAGTCCATGATGTTTGGAAATGATAGGAGCCGATTTTTAGAGGGGAAGCGTGCTGTGG AAGACAAGAACATTGGGCCATTGGTAAAGACCATCATGACAAGATGTATACAGTGTACTCGCTGCATCAGGTTTG AAAAGATGTTCATGTCTGAACTGTCTGGGAATATCATTGATATCTGCCCTGTAGGTGCCCTAACCTCTAAGCCCT ATGCCTTTACTGCCCGGCCTTGGGAAACAAGAAAGACAGAATCCATTGATGTAATGGATGCGGTTGGAAGTAATA TTGTGGTTAGCACAAGAACTGGAGAAGTGATGAGGATTTTGCCACGTATGCATGAGGACATCAATGAAGAGTGGA TCTCTGATAAAACCAGATTTGCCTATGATGGGCTAAAACGTCAAAGACTTACCGAGCCAATGGTCAGAAATGAAA AAGGGCTTTTAACCTATACTTCTTGGGAGGATGCGCTCTCTCGCGTAGCTGGAATGTTGCAGAGTTTTCAAGGCA AAGATGTGGCAGCAATTGCAGGTGGCTTGGTGGATGCTGAAGCCCTGGTAGCTCTCAAAGATTTGCTTAATAGAG TGGACTCTGACACCTTATGCACTGAAGAGGTCTTCCCCACTGCAGGAGCTGGCACAGATTTGCGTTCCAATTATC CACCACTGTTTAATGCTAGAATTCGAAAGAGCTGGCTGCATAATGACTTAAAAGTGGCCCTTATAGGCAGTCCAG TGGACCTCACTTACACATATGACCACCTGGGAGACTCCCCCAAAATTCTTCAAGACATTGCTTCGGGAAGCCATC CATTTAGCCAGGTCCTAAAGGAAGCTAAAAAACCAATGGTGGTTTTTAGGCAGTTCTGCACTCCAAAGAAATGATG GAGCAGCAATTCTTGCAGCTGTTTCTAGCATTGCACAAAAGATTCGGATGACTAGTGGTGTTACTGGTGATTGGA AAGTTATGAATATCCTTCATAGGATTGCAAGTCAAGTAGCTGCTTTGGACCTTGGCTATAAGCCTGGGGTGGAAG CAATTCGGAAGAACCCTCCCAAGGTGCTGTTTCTCCTGGGAGCAGATGGAGGTTGTATCACACGACAGGATTTGC GAGCTGCTTACACAGAGAAGTCTGCTACATATGTCAACACTGAGGGTAGAGCTCAGCAGACTAAGGTAGCAGTGA CACCTCCTGGCTTGGCAAGAGAAGACTGGAAAATTATAAGAGCACTCTCTGAGATTGCTGGAATGACTCTTCCAT ATGATACTCTGGATCAAGTAAGGAACAGATTGGAAGAAGTCTCTCCTAATCTTGTTCGATATGATGATATTGAAG GGGCTAATTACTTCCAGCAAGCAAATGAGCTCTCAAAGCTAGTGAACCAGCAGCTTCTTGCTGACCCACTTGTTC CACCTCAGCTAACTATAAAAGACTTCTACATGACAGATTCAATTAGCAGAGCCTCACAGACAATGGCCAAATGTG AATAATTTGAATCATGTAATATTTAAGGTTATACTATGCCTATTTGAAAATGATATTAGTTATCAACTTTGCAGT TTGAAAAACATGTATTGTGTGTAAAGGTTAAATAACAAAACTATGCAGATGCTCTTAAAAGCATTGATAACCTTT GTGACGAACATAAAGAGATCCTTAAATT

PCT/US2003/028547

FIGURE 947

MLRIPYRKALVGLSKSPKGCVRTTATAASNLIEVFVDGQSVMVEPGTTVLQACEKVGMQIPRFCYHERLSVAGNC RMCLVEIEKAPKVVAACAMPVMKGWNILINSEKSKKAREGVMEFLIANIPLDCFICOGGGEOLODOSMMFGNDR SRFLEGKRAVEDKNIGFLVKTIMTRCIQCTRCIRFASEIAGVDDLGTTGRGNDMQVGTYIEKMPMSEGNIIDI GPVGALTSKY VAFTARRWETRKTESIDVMDAVGSNIVVSTRTGEVBRILIPMHEDINEEWISDKTRFAYDGLKRQ RLTEPMVRNEKGLITYTSWEDALSRVAGMLQSFOGKDVAAIAGGLVDAEALVALKDLLNRVDSDTLCTEEVFFFI GAGTDLRSNYLLNTITIAGVEEADVVLLVGTNPRFERPLFNARIRKSWLHNDLKVALIGSFVDLTTYDHLGDSPK ILQDIASGSHPFSQVLKEAKKPMVVLGSSALQRNGGAAILAAVSSIAQKIRMTSGVTGDWKVMNILHRIASOVAA LDLGYKPGVBATRRWPKVLFLLGADGGCTTRQDLFKDCFIIYQGHHGDVGAPIADVILEGAAYTEKSATYVNTE GRAQOTKVAVTFPGLAREDWKIIRALSEIAGMTLFYDTDLOVRNRLEBEVSPNLVRYDDIEGANYFQQANELSKLV NQQLLADGLVRYPQUITGDFFTASRASTAVNTE GRAQOTKVAVTFPGLAREDWKIRALSEIAGMTLFYDTDLOVRNRLEBEVSPNLVRYDDIEGANYFQQANELSKLV NQQLLADGLVRYPQUITGDFFTARSATYNTE

PCT/HS2003/028547

FIGURE 948

PCT/US2003/028547

1016/6881 FIGURE 949

MGFGDLKSPAGLQVLNDYLADKSYIEGYVPSQADVAVFEAVSSPPPADLCHALRWYNHIKSYEKEKASLPGVKKA LGKYGPADVEDTTGSGATDSKDDDDIDLFGSDDEEESEEAKRLREERLAQYESKKAKKPALVAKSSILLDVKPWD DETDMAKLEECVRSIQADGLVWGSSKLVPVGYGIKKLQIQCVVEDDKVGTDMLEEQITAFEDYVQSMDVAAFNKI

PCT/US2003/028547

FIGURE 950

PCT/US2003/028547

1018/6881 FIGURE 951

MGFGDLKSPAGLQVLNDYLADKSY1EGYVPSQADVAVFEAVSSPPPADLCHALRWYNHIKSYEKEKASLPGVKKA LGKYGFADVEDTTGSGATDSKODDDIDLFGSDDEESEEAKRIREERLAQYESKKAKKPALVAKSSILLDVKPWD DETDMAKLEECVRSIQADGLVWGSSKLVPVGYGIKKLQIQCVVEDDKVSTDMLEEGITAFEDYVGSMBVAAFNKI

PCT/HS2003/028547

1019/6881 FIGURE 952

GAAGGGGCGGGCCAAAACTGCGCGCCCAATCGGGGTGACGCTCTAGCCTTGCCGGGGACTCGTGGGTAACTTGC TTTTGGGAGCCAGCGGTATGGCGTCGGGCTGCAAGATTGGCCCGTCCATCCTCAACAGCGACCTGGCCAATTTAG GGGGTTTGGAGGGCAGAAATTCATGGAAGATATGATGCCAAAGGTTCACTGGTTGAGGACCCAGTTCCCATCTTT GGATATAGAGGTCGATGGTGGAGTAGGTCCTGACACTGTCCATAAATGTGCAGAGGCAGGAGCTAACATGATTGT GTCTGGCAGTGCTATTATGAGGAGTGAAGACCCCAGATCTGTGATCAATCTATTAAGAAATGTTTGCTCAGAAGC ${\tt TGCTCAGAAACGTTCTCTTGATCGG\underline{TGAAACCATAAGGAGCCCAGTGTTCCTGTTCATGAAATCTCCCTTTTACT}$ AGTGATTAAAACTGATTGTGCAGAATATTCTAAGAGGTCAGAAATTGGTGTGTATAACTACATTTTTAGTGATGC AATTTATTGATTAGTGAGTAAGATACTGTTTTTATTGAGAGATTTGATTTTTATAAAGTAAAAATACGGCTGCAT TAGGGTTACAAACAGAAAAGTGTCTTAATGTCTAAGGAGGGCATATTAGCTACACTACAAAAACAAATTTTGTCT GTACTTCTGAAAAGAATTTTGTTGTTTCTCAGCTGTTTTCCAAAAGCAAAGGAAGTCTTTATGGTTTTTTCTAT ${\tt TTCATGTTATTGTGATTTGTTTATAAGTTTGGGTGGGGTGCATACCATATTCTTGGTTCTTAAAATCTATCACTT}$ TTCACCTTACACTTGATGTGTGAAAACTATAAAAAACAATGTGTGAAACCCAGGGGTTCTAAAATACAAGCATAGA TTTTATCAGGGTGTTTTGTCAAAGCAGGTTATTCAGTGATTCCTCCCCACCATTCTTAAGAACGTTAAATAATGC TGTTGTGTTAGCTCTGAGTAGAAAGGAAAAAGTAAAACCTCTGTTTGGAGGTAATATTGGGTTGAATTCTGACTG $\tt CCCCTTTCTAGCTGGACCTTTAACAAATCACCCAATCTTTTTTGTGTTTTCTCTAAAGTCATTTATACATTAAATG$ TAATTATAGCAACTGTGGGGTTCTGTTGAGAATTAAGAGCTAACACTATATATGTAAAGTTTCCAGTACTAGTCC TTTAAAAAATGAAGAAATTAATGCTTAATAGGGTGGTACCCTGGAAAGGATCTGGGAAGTGGTAGAATTTCTGGT CTGTACTTTTACAAATGGAGCCCTTGGGAGGTGGGTTAGGTAAAAGAAGCTTTTTACTTAACGTTGTCTTATTTC CAGTCTAATTTTACGCTGTAGCAGAACCAGATGGCTGAGAAAATTCTGGAACTATGGATCTTGACCCCAAGGATA TATTATTTATTCCAAGAAAGATCAGGTAGGCGAAAAGATGACAGGATACAGAGTCAATCCATAAACTAAATATT TATAACTGTTCTGAATTATACAGAGTCTAAAAATATGTGTCAGCTACTTCATTCCTGTAAATACTCTTGCTGTGT TATAAATATGGCAAGAAATAAACATGACCAATATCAATAGACTTCTTGAGGCTACTATAAGTTTTGAGAAATAAG AAATTTGTTAATGTTTGTTTTTATTCAGCTTGGGAAAGCTTTGTGCCATGAATACGTCGCATTTAATAACAAGCA ACACACGGCATATAGAAATAACTTTAATTAAAAAACTTACATAGAAGATTATAATATCAGACGTGACAAAGATTT ACTAC

PCT/US2003/028547

1020/6881 FIGURE 953

MLDSGADYLHLDVMDGHFVPNITFGHPVVESLRKQLGQDFFFDMHMVSKPEQWVKPMAVAGANQYTFHLEATEN PGALIKDIRENGMKVGLAIKPGTSVEYLAPWANQIDMALVMTVEPGFGGQKFMEDMMPKVHWLRTQFPSLDIEVD GGVGPDTVHKCAEAGANMIVSGSAIMRSEDPRSVINLLRNVCSEAAQKRSLDR

PCT/IIS2003/028547

1021/6881 FIGURE 954A

TTGTTATGGAGGAAGCCGAGGTTTTAACTGCGAGAGTAAACCTGAAGCTGAAGAGACTTGCTTTGACAAGTACAC TGGGAACACTTACCGAGTGGGTGACACTTATGAGCGTCCTAAAGACTCCATGATCTGGGACTGTACCTGCATCGG GGCTGGGCGAGGGAGAATAAGCTGTACCATCGCAAACCGCTGCCATGAAGGGGGGTCAGTCCTACAAGATTGGTGA GACCTGCAAGCCCATAGCTGAGAAGTGTTTTGATCATGCTGCTGGGACTTCCTATGTGGTCGGAGAAACGTGGGA GAAGCCCTACCAAGGCTGGATGATGGTAGATTGTACTTGCCTGGGAGAAGGCAGCGGACGCATCACTTGCACTTC TAGAAATAGATGCAACGATCAGGACACAAGGACATCCTATAGAATTGGAGACACCTGGAGCAAGAAGGATAATCG AGGAAACCTGCTCCAGTGCATCTGCACAGGCAACGGCCGAGGAGAGTGGAAGTGTGAGAGGCACACCTCTGTGCA GACCACATCGAGCGGATCTGGCCCCTTCACCGATGTTCGTGCAGCTGTTTACCAACCGCAGCCTCACCCCCAGCC AAATAAGCAAATGCTTTGCACGTGCCTGGGCAACGGAGTCAGCTGCCAAGAGACAGCTGTAACCCAGACTTACGG TGGCAACTCAAATGGAGAGCCATGTGTCTTACCATTCACCTACAATGGCAGGACGTTCTACTCCTGCACCACAGA AGGGCGACAGGACGGACATCTTTGGTGCAGCACAACTTCGAATTATGAGCAGGACCAGAAATACTCTTTCTGCAC AGACCACACTGTTTTGGTTCAGACTCGAGGAGGAAATTCCAATGGTGCCTTGTGCCACTTCCCCTTCCTATACAA CAACCACAATTACACTGATTGCACTTCTGAGGGCAGAAGAGACAACATGAAGTGGTGTGGGACCACACAGAACTA TGATGCCGACCAGAAGTTTGGGTTCTGCCCCATGGCTGCCCACGAGGAAATCTGCACAACCAATGAAGGGGTCAT GTACCGCATTGGAGATCAGTGGGATAAGCAGCATGACATGGGTCACATGATGAGGTGCACGTGTTTTGGGAATGG TCGTGGGGAATGGACATGCATTGCCTACTCGCAGCTTCGAGATCAGTGCATTGTTGATGACATCACTTACAATGT GAACGACACATTCCACAAGCGTCATGAAGAGGGGCACATGCTGAACTGTACATGCTTCGGTCAGGGTCGGGGCAG GTGGAAGTGTGATCCCGTCGACCAATGCCAGGATTCAGAGACTGGGACGTTTTATCAAATTGGAGATTCATGGAG GAAGTATGTGCATGGTGTCAGATACCAGTGCTACTGCTATGGCCGTGGCATTGGGGAGTGGCATTGCCAACCTTT ACAGACCTATCCAAGCTCAAGTGGTCCTGTCGAAGTATTTATCACTGAGACTCCGAGTCAGCCCAACTCCCACCC CATCCAGTGGAATGCACCACAGCCATCTCACATTTCCAAGTACATTCTCAGGTGGAGACCTAAAAATTCTGTAGG CAGCACACCTGTGACCAGCAACACCGTGACAGGAGAGACGACTCCCTTTTCTCCTCTTGTGGCCACTTCTGAATC TGTGACCGAAATCACAGCCAGTAGCTTTGTGGTCTCCTGGGTCTCAGCTTCCGACACCGTGTCGGGATTCCGGGT GGAATATGAGCTGAGTGAGGAGGGAGATGAGCCACAGTACCTGGATCTTCCAAGCACAGCCACTTCTGTGAACAT CCCTGACCTGCCTCCTGGCCGAAAATACATTGTAAATGTCTATCAGATATCTGAGGATGGGGAGCAGAGTTTGAT CCTGTCTACTTCACAAACAACAGCGCCTGATGCCCCTCCTGACACGACTGTGGACCAAGTTGATGACACCTCAAT TGTTGTTCGCTGGAGCAGACCCCAGGCTCCCATCACAGGGTACAGAATAGTCTATTCGCCATCAGTAGAAGGTAG CAGCACAGAACTCAACCTTCCTGAAACTGCAAACTCCGTCACCCTCAGTGACTTGCAACCTGGTGTTCAGTATAA CATCACTATCTATGCTGTGGAAGAAATCAAGAAAGTACACCTGTTGTCATTCAACAAGAAACCACTGGCACCCC ACGCTCAGATACAGTGCCCTCTCCCAGGGACCTGCAGTTTGTGGAAGTGACAGACGTGAAGGTCACCATCATGTG GAGGCTGCCCATCAGCAGGAACACCTTTGCAGAAGTCACCGGGCTGTCCCCTGGGGTCACCTATTACTTCAAAGT CTTTGCAGTGAGCCATGGGAGGGAGGAGCAAGCCTCTGACTGCTCAACAGACAACCAAACTGGATGCTCCCACTAA CCTCCAGTTTGTCAATGAAACTGATTCTACTGTCCTGGTGAGATGGACTCCACCTCGGGCCCAGATAACAGGATA $\tt CCGACTGACCGTGGGCCTTACCCGAAGAGGGCCCCAGGCAGTACAATGTGGGTCCCTCTGTCTCCAAGTACCC$ ACTGAGGAATCTGCAGCCTGCATCTGAGTACACCGTATCCCTCGTGGCCATAAAGGGCAACCAAGAGAGCCCCAA AGCCACTGGAGTCTTTACCACACTGCAGCCTGGGAGCTCTATTCCACCTTACAACACCGAGGTGACTGAGACCAC CATTGTGATCACATGGACGCCTGCTCCAAGAATTGGTTTTAAGCTGGGTGTACGACCAAGCCAGGGAGGAGAGGC ACCACGAGAAGTGACTTCAGACTCAGGAAGCATCGTTGTGTCCGGCTTGACTCCAGGAGTAGAATACGTCTACAC CATCCAAGTCCTGAGAGATGGACAGGAAAGAGATGCGCCAATTGTAAACAAAGTGGTGACACCATTGTCTCCACC AACAAACTTGCATCTGGAGGCAAACCCTGACACTGGAGTGCTCACAGTCTCCTGGGAGAGGAGCACCACCCCAGA CATTACTGGTTATAGAATTACCACAACCCCTACAAACGGCCAGCAGGGAAATTCTTTGGAAGAAGTGGTCCATGC

PCT/HS2003/028547

1022/6881 FIGURE 954B

TGATCAGAGCTCCTGCACTTTTGATAACCTGAGTCCCGGCCTGGAGTACAATGTCAGTGTTTACACTGTCAAGGA TGACAAGGAAAGTGTCCCTATCTCTGATACCATCATCCCAGCTGTTCCTCCCACTGACCTGCGATTCACCAA CTCACCTGTGAAAAATGAGGAAGATGTTGCAGAGTTGTCAATTTCTCCTTCAGACAATGCAGTGGTCTTAACAAA TCTCCTGCCTGGTACAGAATATGTAGTGAGTGTCTCCAGTGTCTACGAACAACATGAGAGCACACCTCTTAGAGG AAGACAGAAAACAGGTCTTGATTCCCCAACTGGCATTGACTTTTCTGATATTACTGCCAACTCTTTTACTGTGCA $\tt CTGGATTGCTCCTCGAGCCACCATCACTGGCTACAGGATCCGCCATCATCCCGAGCACTTCAGTGGGAGACCTCG$ AGAAGATCGGGTGCCCCACTCTCGGAATTCCATCACCCTCACCAACCTCACTCCAGGCACAGAGTATGTGGTCAG GGACCTGGAAGTTGTTGCTGCGACCCCCACCAGCCTACTGATCAGCTGGGATGCTCCTGCTGTCACAGTGAGATA TTACAGGATCACTTACGGAGAGACAGGAGGAAATAGCCCTGTCCAGGAGTTCACTGTGCCTGGGAGCAAGTCTAC AGCTACCATCAGCGGCCTTAAACCTGGAGTTGATTATACCATCACTGTGTATGCTGTCACTGGCCGTGGAGACAG CCCCGCAAGCAGCAAGCCAATTTCCATTAATTACCGAACAGAAATTGACAAACCATCCCAGATGCAAGTGACCGA TGTTCAGGACAACAGCATTAGTGTCAAGTGGCTGCCTTCAAGTTCCCCTGTTACTGGTTACAGAGTAACCACCAC TCCCAAAAATGGACCAGGACCAACAAAAACTAAAACTGCAGGTCCAGATCAAACAGAAATGACTATTGAAGGCTT GCAGCCCACAGTGGAGTATGTGGTTAGTGTCTATGCTCAGAATCCAAGCGGAGAGAGTCAGCCTCTGGTTCAGAC TGCAGTAACCAACATTGATCGCCCTAAAGGACTGGCATTCACTGATGTGGATGTCGATTCCATCAAAATTGCTTG GGAAAGCCCACAGGGGCAAGTTTCCAGGTACAGGGTGACCTACTCGAGCCCTGAGGATGGAATCCATGAGCTATT GGTTGCCTTGCACGATGATATGGAGAGCCAGCCCCTGATTGGAACCCAGTCCACAGCTATTCCTGCACCAACTGA CCTGAAGTTCACTCAGGTCACACCCACAAGCCTGAGCGCCCAGTGGACACCACCCAATGTTCAGCTCACTGGATA ACCAGCTCAGGGAGTTGTCACCACTCTGGAGAATGTCAGCCCACCAAGAAGGGCTCGTGTGACAGATGCTACTGA GACCACCATCACCATTAGCTGGAGAACCAAGACTGAGACGATCACTGGCTTCCAAGTTGATGCCGTTCCAGCCAA TGGCCAGACTCCAATCCAGAGAACCATCAAGCCAGATGTCAGAAGCTACACCATCACAGGTTTACAACCAGGCAC TGACTACAAGATCTACCTGTACACCTTGAATGACAATGCTCGGAGCTCCCCTGTGGTCATCGACGCCTCCACTGC CATTGATGCACCATCCAACCTGCGTTTCCTGGCCACCACACCCAATTCCTTGCTGGTATCATGGCAGCCGCCACG TGCCAGGATTACCGGCTACATCATCAAGTATGAGAAGCCTGGGTCTCCTCCCAGAGAAGTGGTCCCTCGGCCCCG CCCTGGTGTCACAGAGGCTACTATTACTGGCCTGGAACCGGGAACCGAATATACAATTTATGTCATTGCCCTGAA GTATGACACTGGAAATGGTATTCAGCTTCCTGGCACTTCTGGTCAGCAACCCAGTGTTGGGCAACAAATGATCTT TGAGGAACATGGTTTTAGGCGGACCACACCGCCCACAACGGCCACCCCCATAAGGCATAGGCCAAGACCATACCC GCCGAATGTAGGACAAGAAGCTCTCTCAGACAACCATCTCATGGGCCCCCATTCCAGGACACTTCTGAGTACAT CATTCATGTCATCCTGTTGGCACTGATGAAGAACCCTTACAGTTCAGGGTTCCTGGAACTTCTACCAGTGCCAC TCTGACAGGCCTCACCAGAGGTGCCACCTACAACGTCATAGTGGAGGCACTGAAAGACCAGCAGAGGCATAAGGT CCCCTACACAGTTTCCCATTATGCCGTTGGAGATGAGTGGGGAACGAATGTCTGAATCAGGCTTTAAACTGTTGTG CCAGTGCTTAGGCTTTGGAAGTGGTCATTTCAGATGTGATTCATCTAGATGGTGCCATGACAATGGTGTGAACTA CAAGATTGGAGAAAGTGGGACCGTCAGGGAGAAAATGGCCAGATGATGAGCTGCACATGTCTTGGGAACGGAAA AGGAGAATTCAAGTGTGACCCTCATGAGGCAACGTGTTATGATGATGGGAAGACATACCACGTAGGAGAACAGTG GCAGAAGGAATATCTCGGTGCCATTTGCTCCTGCACATGCTTTGGAGGCCAGCGGGGCTGGCGCTGTGACAACTG CCGCAGACCTGGGGGTGAACCCAGTCCCGAAGGCACTACTGGCCAGTCCTACAACCAGTATTCTCAGAGATACCA TCAGAGAACAAACACTAATGTTAATTGCCCAATTGAGTGCTTCATGCCTTTAGATGTACAGGCTGACAGAGAAGA TTCCCGAGAGTAAATCATCTTTCCAATCCAGAGGAACAAGCATGTCTCTCTGCCAAGATCCATCTAAACTGGAGT GATGTTAGCAGACCCAGCTTAGAGTTCTTCTTTCTTTAAGCCCTTTGCTCTGGAGGAAGTTCTCCAGCTTCA GCTCAACTCACAGCTTCTCCAAGCATCACCCTGGGAGTTTCCTGAGGGTTTTCTCATAAATGAGGGCTGCACATT

PCT/US2003/028547

1023/6881 FIGURE 954C

PCT/IIS2003/028547

FIGURE 955

CGGCAGCCCTCCTACCTGCGCACGTGGTGCCGCTGCTGCTGCTCCCGCTCGCCCTGAACCCAGTGCCTGCAGCC ATGCTCCCGGCCAGCTCGCCTTATTTAGTGTCTCTGACAAAACCGGCCTTGTGGAATTTGCAAGAAACCTGACC GCTCTTGGTTTGAATCTGGTCGCTTCCGGAGGGACTGCAAAAGCTCTCAGGGATGCTGGTCTGGCAGTCAGAGAT GTCTCTGAGTTGACGGGATTTCCTGAAATGTTGGGGGGACGTGTGAAAACTTTGCATCCTGCAGTCCATGCTGGA ATCCTAGCTCGTAATATTCCAGAAGATAATGCTGACATGGCCAGACTTGATTTCAATCTTATAAGAGTTGTTGCC TGCAATCTCTATCCCTTTGTAAAGACAGTGGCTTCTCCAGGTGTAACTGTTGAGGAGGCTGTGGAGCAAATTGAC ATTGGTGGAGTAACCTTACTGAGAGCTGCAGCCAAAAACCACGCTCGAGTGACAGTGGTGTGTGAACCAGAGGAC TATGTGGTGGTGTCCACGGAGATGCAGAGCTCCGAGAGTAAGGACACCTCCTTGGAGACTAGACGCCAGTTAGCC TTGAAGGCATTCACTCATACGGCACAATATGATGAAGCAATTTCAGATTATTTCAGGAAACAGTACAGCAAAGGC GTATCTCAGATGCCCTTGAGATATGGAATGAACCCACATCAGACCCCTGCCCAGCTGTACACACTGCAGCCCAAG CTTCCCATCACAGTTCTAAATGGAGCCCCTGGATTTATAAACTTGTGCGATGCTTTGAACGCCTGGCAGCTGGTG AAGGAACTCAAGGAGGCTTTAGGTATTCCAGCCGCTGCCTCTTTCAAACATGTCAGCCCAGCAGGTGCTGCTGTT GGAATTCCACTCAGTGAAGATGAGGCCAAAGTCTGCATGGTTTATGATCTCTATAAAACCCTCACACCCATCTCA GCGGCATATGCAAGAGCAAGAGGGGCTGATAGGATGTCTTCATTTGGTGATTTTGTTGCATTGTCCGATGTTTGT GATGTACCAACTGCAAAAATTATTTCCAGAGAAGTATCTGATGGTATAATTGCCCCAGGATATGAAGAAGAAGCC TTGACAATACTTTCCAAAAAGAAAAATGGAAACTATTGTGTCCTTCAGATGGACCAATCTTACAAACCAGATGAA ${\tt AATGAAGTTCGAACTCTTTTGGTCTTCATTTAAGCCAGAAGAGAAATAATGGTGTCGTCGACAAGTCATTATTT}$ AGCAATGTTGTTACCAAAAATAAAGATTTGCCAGAGTCTGCCCTCCGAGACCTCATCGTAGCCACCATTGCTGTC AAGTACACTCAGTCTAACTCTGTGTGCTACGCCAAGAACGGGCAGGTTATCGGCATTGGAGCAGGACAGCAGTCT CGTATACACTGCACTCGCCTTGCAGGAGATAAGGCAAACTATTGGTGGCTTAGACACCATCCACAAGTGCTTTCG ATGAAGTTTAAAACAGGAGTGAAGAGAGCAGAAATCTCCAATGCCATCGATCAATATGTGACTGGAACCATTGGC GAGGATGAAGATTTGATAAAGTGGAAGGCACTGTTTGAGGAAGTCCCTGAGTTACTCACTGAGGCAGAGAAGAAG GAATGGGTTGAGAAACTGACTGAAGTTTCTATCAGCTCTGATGCCTTCCTCCCTTTCCGAGATAACGTAGACAGA GCTAAAAGGAGTGGTGGCGTACATTGCGGCTCCCTCCGGTTCTGCTGCTGACAAAGTTGTGATTGAGGCCTGC GACGAACTGGGAATCATCCTCGCTCATACGAACCTTCGGCTCTTCCACCACTGATTTTACCACACACTGTTTTTT $\tt CTTAAAACAATGTTTTGATCTACATAAACATTGTAAAAATTTTCAATCACGCTTTTTAACTTTCTTACCACAAAA$ AAATGATAAGTGGGTGAAGTGATGGTTATGTTAATTAGCGTGC

PCT/IIS2003/028547

1025/6881 FIGURE 956

MAPGQLALFSVSDKTGLVEFARNLTALGLNLVASGGTAKALRDAGLAVRDVSELTGFPEMLGGRVKTLHPAVHAG ILARNIP EDNADMARLDFNLIRVYACNLYPFVKTVASPGVTVEEAVEQID IGGVTLLRAAKNHARVTVVCEED VVVVSTEMQSSESKDTSLETRQLALKAFTHTAQVDEAISDYFRKQYSKGVSQMPLRYGMNPHQTPAQLYTLQFK LFITVINGAPGFINLCDAINAMQLVKELKEALGIP BAASFKHVSPAGAAVGIPLSEDEAKVCMVVDLYKTLTFIS AAYARARGADRMSSFGDFVALSDVCDVPTAKIISREVSDGIIAPGYEEEALTILSKKKNGNYCVLQMDQSYKPDE NEVRTLFGLHLSQKRNNGVVDKSLFSNVVTKNKDLPESALMDLIVATIAVKYTQSNSVCYAKNGQVIGIGAGQQS RIHCTRLAGDKANYWWLRHHPQVLSMKFKTGVKRAEISNAIDQVYTGTIGEDEDLIKWKALFEEVPELLTEAEKK EWVEKLTEVSISSDAFFPFRDNVDRAKRSGVAYIAAPSGSAADKVVIEACDELGIILAHTNLREFH

PCT/HS2003/028547

1026/6881 FIGURE 957

PCT/HS2003/028547

1027/6881 FIGURE 958

GGCGGGCGACCAAAGCGCCTGAGGACCGGCAACATGGTGCGGTCGGGGAATAAGGCAGCTGTTGTGCTGTATG GACGTGGGCTTTACCATGAGTAACTCCATTCCTGGTATAGAATCCCCATTTGAACAAGCAAAGAAGGTGATAACC ATGTTTGTACAGCGACAGGTGTTTGCTGAGAACAAGGATGAGATTGCTTTAGTCCTGTTTGGTACAGATGGCACT GACAATCCCCTTTCTGGTGGGGATCAGTATCAGAACATCACAGTGCACAGACATCTGATGCTACCAGATTTTGAT TTGCTGGAGGACATTGAAAGCAAAATCCAACCAGGTTCTCAACAGGCTGACTTCCTGGATGCACTAATCGTGAGC ATGGATGTGATTCAACATGAAACAATAGGAAAGAAGTTTGAGAAGAGGCATATTGAAATATTCACTGACCTCAGC AGCCGATTCAGCAAAAGTCAGCTGGATATTATAATTCATAGCTTGAAGAAATGTGACATCTCCCTGCAATTCTTC TTGCCTTTCTCACTTGGCAAGGAAGATGGAAGTGGGGACAGAGAGATGGCCCCTTTCGCTTAGGTGGCCATGGG CCTTCCTTTCCACTAAAAGGAATTACCGAACAGCAAAAAGAAGGTCTTGAGATAGTGAAAATGGTGATATCT ATTGAGAGGCATTCCATTCACTGGCCCTGCCGACTGACCATTTGGCTCCAATTTGTCTATAAGGATTGCAGCCTAT AAATCGATTCTACAGGAGAGAGTTAAAAAGACTTGGACAGTTGTGGATGCAAAAACCCTAAAAAAAGAAGATATA CAAAAAGAAACAGTTTATTGCTTAAATGATGATGATGAAACTGAAGTTTTAAAAAGAGGATATTATTCAAGGGTTC CGCTATGGAAGTGATATAGTTCCTTTCTCTAAAGTGGATGAGGAACAAATGAAATATAAATCGGAGGGAAGTGC TTCTCTGTTTTGGGATTTTGTAAATCTTCTCAGGTTCAGAGAAGATTCTTCATGGGAAATCAAGTTCTAAAGGTC TTTGCAGCAAGAGATGATGAGGCAGCTGCAGTTGCACTTTCCTCCCTGATTCATGCTTTGGATGACTTAGACATG GTGGCCATAGTTCGATATGCTTATGACAAAAGAGCTAATCCTCAAGTCGGCGTGGCTTTTCCTCATATCAAGCAT AACTATGAGTGTTTAGTGTATGTGCAGCTGCCTTTCATGGAAGACTTGCGGCAATACATGTTTTCATCCTTGAAA AAGAAAGATGAGAAGACAGACACCCTTGAAGACTTGTTTCCAACCACCAAAATCCCAAAATCCTCGATTTCAGAGA TTATTTCAGTGTCTGCTGCACAGAGCTTTACATCCCCGGGAGCCTCTACCCCCAATTCAGCAGCATATTTGGAAT ATGCTGAATCCTCCCGCTGAGGTGACAACAAAAAGTCAGATTCCTCTCTAAAATAAAGACCCTTTTTCCTCTG ATTGAAGCCAAGAAAAAGGATCAAGTGACTGCTCAGGAAATTTTCCAAGACAACCATGAAGATGGACCTACAGCT AAAAATTAAAGACTGAGCAAGGGGAGCCCACTTCAGCGTCTCCAGTCTGGCTGAAGGCAGTGTCACCTCTGTT GGAAGTGTGAATCCTGCTGAAAACTTCCGTGTTCTAGTGAAACAGAAGAAGGCCAGCTTTGAGGAAGCGAGTAAC CAGCTCATAAATCACATCGAACAGTTTTTGGATACTAATGAAACACCGTATTTTATGAAGAGCATAGACTGCATC $\tt CGAGCCTTCCGGGAAGAGCCATTAAGTTTTCAGAAGAGCAGCGCTTTAACAACTTCCTGAAAGCCCTTCAAGAG$ AAAGTGGAAATTAAACAATTAAATCATTTCTGGGAAATTGTTGTCCAGGATGGAATTACTCTGATCACCAAAGAG GAAGCCTCTGGAAGTTCTGTCACAGCTGAGGAAGCCAAAAAGTTTCTGGCCCCCAAAGACAAACCAAGTGGAGAC $A CAGCAGCTGTATTTGAAGAAGGTGGTGATGTGGACGATTTATTGGACATGATA \underline{TAG} GTCGTGGATGTATGGGGA$ ATCTAAGAGAGCTGCCATCGCTGTGATGCTGGGAGTTCTAACAAAACAAGTTGGATGCGGCCATTCAAGGGGAGC TTTTCTGTGGTCTTACTGATCTTTGTATATTACATACATGCTTTGAAGTTTCTGGAAAGTAGATCTTTTCTTGAC GTTGAGGCCTTCTAGTTACCACATTACTCTGCCTCTGTATATAGGTGGTTTTCTTTAAGTGGGGTGGGAAGGGGA GCACAATTTCCCTTCATACTCCTTTTAAGCAGTGAGTTATGGTGGTGGTCTCATGAAGAAAAAGACCTTTTGGCCC AATCTCTGCCATATCAGTGAACCTTTAGAAACTCAAAAACTGAGAAATTTACTTCAGTAGTTAGAATTATATCAC TTCACTGTTCTCTACTTGCAAGCCTCAAAGAGAGAAAGTTTCGTTATATTAAAACACTTAGGTAACTTTTCGGTC TTTCCCATTTCTACCTAAGTCAGCTTTCATCTTTGTGGATGGTGTCTCCTTTACTAAATAAGAAAATAACAAAGC CCTTATTCTCTTTTTTCTTGTCCTCATTCTTGCCTTGAGTTCCAGTTCCTCTTTGGTGTACAGACTTCTTGGTA CCCAGTCACCTCTGTCTTCAGCACCCTCATAAGTCGTCACTAATACACAGTTTTGTACATGTAACATTAAAGGCA TAAATGACTC

PCT/US2003/028547

FIGURE 959

MVRSGNKAAVVLCMDVGFTMSNSIPGIESPFEQAKKVITMFVQRQVFAENKDEIALVLFGTDGTDNPLSGGDQYQ
NITVHRHLMLEDFEDLEDIESKIQPGSQQADFLDALIVSMDVIQHETIGKKFEKRHIEIFTDLSSRFSKSQLDII
HSLKKCDISLQFFLFPSLGKEDGSGDFGGDFFRLGGHGPSFPLKGITEQQKEGLEIVKWMYISLEGEDGLDEIY
SFSESLRKLCVFKKIERHSIHWPCRLTIGSNLSIRIAAYKSILQERVKKTWTVVDAKTLKKEDIQKETVYCLNDD
DETEVLKEDIIQGFRYGSDIVFSKYDEEQMKYKSEGKCFSVLGFCKSSQVQRRFFMGNQVLKVFAARDDEAAAV
ALSSLIHALDDLDMVAIVRYAYDKRANPGVGVAFPHIKHNECLVYQLVDFMEDLRGYMFSSLKNSKKYAFTEAQ
LNAVDALIDSMSLAKKDEKTDTLEDLFFTTKIPNPFRQRLFQCLLHRALHPREPLPPIQQHIWNMLNPPAEVTTK
SQIPLSKIKTLFFLIEAKKKDQVTAQEIFQDNJEBGPTAKKLKTEGGGAHFSVSSLAEGSVTSVGSVMPAENFRV
LVKQKKASFEEASNQLINHIEGFLDTHETYFMKSIDCIRAFREBAIKFSEEQRFNNFLKALQEKVEIKQLNHFW
EIVVQDGITLITKEEASSGSVTAEEAKKFLAPKDKPSGDTAAVFEEGGDVDDLLDMI

PCT/IIS2003/028547

1029/6881 FIGURE 960A

GACCAGGCAGGGGCCCAACTTTCACGTCCAGCCCTGGCCTGGGGTCGGGAGAGGTGGGCGCTAGAAGATGCAGCC CACTCCAGGACCTCTCCCGGATCTGTCTCCTCCTCTAGCCAGCAGTATGGACAGCTGGACCCCTGAACTTCCTCT CCTCTTACCTGGGCAGAGTGTTGTCTCTCCCCAAATTTATAAAAACTAAAATGCATTCCATTCCTCTGAAAGCAA AACAAATTCATAATTGAGTGATATTAAATAGAGAGGTTTTCGGAAGCAGATCTGTGAATATGAAATACATGTGCA TATTTCATTCCCCAGGCAGACATTTTTTAGAAATCAATACATGCCCCAATATTGGAAAGACTTGTTCTTCCACGG TGACTACAGTACATGCTGAAGCGTGCCGTTTCAGCCCTCATTTAATTCAATTTGTAAGTAGCGCAGCAGCCTCTG TGGGGGAGGATAGGCTGAAAAAAAAAAGTGGGCTCGTATTTATCTACAGGACTCCATATAGTCATATATAGGCAT TCCTATAGGGGCATTGAGGAGCTTCCTCATTCTGGGAAAACTGAGAAAACCCATATTCTCCTAATACAACCCGTA ATAGCATTTTTGCCTGCCTCGAGGCAGAGTTTCCCGTGAGCAATAAACTCAGCTTTTTTGTGGGGCACAGTACTG ACAGCACGCGCCTCAGTCCATCCCATTTTAGTCTTTAAACCCTCAGGAAGTCACAGTCTCCGGACACCACCAC GGGCTGAAGGGAGAGGGGGCTGACTGTTCCATTCTAGCTTTGGCACAAAGCAGCAGAAAGGGGGGAAAAGCCAATA TGCAAAATAGAAATGAGCTTAATCCAGGCCGCAGAGCCAGGGAAGGTGAGTAACTTTAGGAGGGTGCTAGACTTT AGAAGCCAGATAGGAAGAATCAGTCTAAACTGGCCATGCTTTGGAAGGGACAAGACTATGTGCTCCGCTGCCCAC CTTCAGCCTGCAATGAGGGACTGAGGCCCACGAGTCTTTCCAGCTCTTCCTCCATTCTGGCCAGTCCCTGCATCC TCCCTGGGGTGGAGGATGGAAGGAAAGCTGGGACAAGCAGGGAACGCATGATTCAGGGATGCTGTCACTCGGCAG CCAGATTCCGAAACTCCCATTCTCCAATGACTTCCTCAACCAATGGGTGGCCTTGTGACTGTTCTTTAAGGCTGA AGATATCCAGGAAAGGGGGCTTGGACACTGGCCAAGGAGACCCCTTCGTGCTGTGGACACAGCTCTCTTCACTCT TTGCTCATGGCATGACACAGCGGAGACCGCCTCCAACAACGAATTTGGGGCTACGAAGAGAGAATAGCGAAAAAGC AAATCTGTTTCAACTGATGGGAACCCTATAGCTATAGAACTTGGGGGCTATCTCCTATGCCCCTGGACAGGACAG TTGGCTGGGGACAGGAGAAGTGCTCAATCTTCATGAGACAAAGGGGCCCGATAGGGCCCAGCAGCCACAAGGCCTT GACCTGCCGAGTCAGCATGCCCCATCTCTCTGCACAGCTGTCCCCTAAACCCAACTCACGTTTCTGTATGTCTTA GGCCAGTATCCCAAACCTCTTCCACGTCACTGTTCTTTCCACCCATTCTCCCTTTGCATCTTGAGCAGTTATCCA ACTAGGATCTGCCAAGTGGATACTGGGGTGCCACTCCCCTGAGAAAAGACTGAGCCAGGAACTACAAGCTCCCCC CTTCTGCCCCTTGCGTTGGCTCTTTGCTGCCAGCCATCAGGTGGGGGATTAGAGCCTGGTGTAAGTGCGCCAGAC CAGCTGGTCACTCCCCAGAGAAGCTGGGCCTTCATGGACACATGGAACTAAGCCTCCCAAATGGGAGTTCTGGCT GAGCCCAGGGTGGGGAGATCCTGGGAAGGGAGGCACTGGAGGAAGACGGCACCTCTTCCCCCATGGCAGGGTGTG AGGGAGGCAGGTTTGGAATGGTGCGAGTATGGCAATCTAAGCAGGGGTCTGGTCTCTTTGACTCCAGGCTGGCCT TTGGCCGACTGTCTGCTCACCCAGAGACCTTGGACTCCGGACTATCCATGGCTCCGAATCTAAGTGCTGCCCACT CCCATGCTCACACCCACAGAAGGTCTTCCCATCCCCTTTAGATTCGTGCCTCACTCCACCAGTGAGGAAGATGCC GCCTGGGGACACTGGCCCCATGAGGGGAGGAAGGCAGGCGCACGAGGTCCAGGGAGGCCCTTTTCTGATCATGCC CCTTCTCTCCCACCCCATCTCCCCACCACCACCTCTGTGGCCTCCATGGTACCCCCACAGGGCTGGCCTCCCCTA GAGGGTGGGCCTCAACCACCTGCTCCCGCCACGCACCGGTTAGTGAGACAGGGCTGCCACGGCAACCGCCAAGCC GAGAAGAGCTCTAAGGAGAAGAAACCCCATAGCGTCAGAGAGGATATGTCTGGCTTCCAAGAGAAAGGAGGCTCC

PCT/US2003/028547

1030/6881 FIGURE 960B

PCT/US2003/028547

1031/6881 FIGURE 961

MLWKGQDYVLRCPPSACNEGLRPTSLSSSSILASFCILPGVEDGRKAGTSRERMIQGCCHSAARFRNSHSPMTS STNGWPCDCSLRLKISRKGGLDTGQGDFFVLWTQLSSLFAHGMIQRRPPPTTNLGLRRGIAKKQICFN

PCT/HS2003/028547

1032/6881 FIGURE 962

PCT/US2003/028547

1033/6881 FIGURE 963

MVFPQGWPPLEGGFQPFAPATHRLVRQGCHGNRQAFLKVGQYFGFIHSLLRGLRFRMGTSEKSSKEKKPHSVRED MSGFQEKGGSVLQSGGGTRDRGFTSQQFGPCTVCVFKTTKVQELHCTVSPLFIFS

PCT/IIS2003/028547

1034/6881 FIGURE 964

GTGCTGTTCCGCTGCCCGCCCTGCACACCCCGAGCGCCTGCCGCCCTGCGGGCCCCCGCCGGTTGCGCCGCCCGCC TCGGTGTGCGCCCGGCTGGAGGGCGAGGCGTGCGGCGTCTACACCCCGCGCTGCGGCCAGGGGCTGCGCTGCTAT GAGTATGGCGCCAGCCCGGAGCAGGTTGCAGACAATGGCGATGACCACTCAGAAGGAGGCCTGGTGGAGAACCAC GTGGACAGCACCATGAACATGTTGGGCGGGGGGGGGCAGTGCTGGCCGGAAGCCCCTCAAGTCGGGTATGAAGGAG $\tt CTGGCCGTGTTCCGGGAGAAGGTCACTGAGCAGCACCGGCAGATGGGCAAGGGTGGCAAGCATCACCTTGGCCTG$ GAGGAGCCCAAGAAGCTGCGACCACCCCTGCCAGGACTCCCTGCCAACAGGAACTGGACCAGGTCCTGGAGCGG ATCTCCACCATGCGCCTTCCGGATGAGCGGGCCCTCTGGAGCACCTCTACTCCCTGCACATCCCCAACTGTGAC AAGCATGGCCTGTACAACCTCAAACAGTGCAAGATGTCTCTGAACGGGCAGCGTGGGGAGTGCTGGTGTGAAC CCCAACACCGGGAAGCTGATCCAGGGAGCCCCCACCATCCGGGGGGACCCCGAGTGTCATCTCTACAATGAG CCCGCCCTCTCCAAACACCGGCAGAAAACGGAGAGTGCTTGGGTGGTGGTGGTGGAGGATTTTCCAGTTCTGA TGCCACACCTGCTCCTTCTTGCTTTCCCCGGGGGAGGAAGGGGGTTGTGGTCGGGGAGCTGGGGTACAGGTTTGG

PCT/IIS2003/028547

1035/6881 FIGURE 965

AGCGGATCTCCACCATGCGCCTTCCGGATGAGCGGGGCCCTCTGGAGCACCTCTACTCCCTGCACATCCCCAACT
GTGACAAGCATGCGCTGTACAACCTCAAACAGTGTGGTGTGTGACCCCAACACCGGGAAGCTGATCCAGGGAA
CCCCCACCATCCGGGGGGGACCCCGAGTGTCATCTCTTCTACAATGAGCAGCAGGAGGCTCGGGGGGTGCACACCC
AGCGGATGCAGTAGACCGCAGCCAGCCGGTGCTGCTGGGGCCCCCTGCCCCTCTCCAAACACCGGCAGAAA
ACGGAGAGTGCTTGGGTGGTGGGTGCTGGAGGATTTTCCAGTTCTGACACACGTATTTATATTTGGAAAGAGCC
AGCACCGAGCTCGGCACCTCCCCGGCCTCTCTCTCCCAGCTGCAGATGCCACACCTGCTCCTTCTTTCCT
CGGGGGAGGAGGGGTGGTGGTGGGGGGTCTGGGGTACAGGTTTGGGGAGGGGAAAATTTTTATTTTTG
AACCCCTGTTCCCTTTTCCATAGATTAAAGGAAGG

PCT/HS2003/028547

1036/6881 FIGURE 966

PCT/US2003/028547

1037/6881 FIGURE 967

MAKRTKKVGIVGKYGTRYGASLRKMVKKIEISQHAKYTCSFCGKTKMKRRAVGIWHCGSCMKTVAGGAWTYNTTS AVTVKSAIRRLKELKDQ

PCT/IIS2003/028547

FIGURE 968

GCAGGCGGAGAGGGGGCGTCCTGGAGGCCGGGCGCGGGACGCTGCGGCCCGCGCCACAAAAGGAGGCGGCGG GAAGGCGGGCAAGGCGGGCCGGGGGGGGGGGGCAGGAAGGGGCGGGGCCCGCGCGCGCGCGCGATAAAGC CORTOGORIO DE CARROS DE CONTRE DE CON TCTTTCCGGCTGTGACCCTCCTCGCCGCCGCTTGGCTGCTCCTCCGACTCCCCGCCGCCGCCGAGACCAGGC GAAGGAACCATGAACTGGCATCTCCCCCTCTTCCTCTTGGCCTCTGTGACGCTGCCTTCCATCTGCTCCCACTTC A T CCTCTCTCTCTCGAGGAACTAGGCTCCAACACGGGGATCCAGGTTTTCAATCAGATTGTGAAGTCGAGGCCT CATGACAACATCGTGATCTCTCCCCATGGGATTGCGTCGTCCTGGGGATGCTTCAGCTGGGGGCGGACGGCAGG ACCAAGAAGCAGCTCGCCATGGTGATGAGATACGGCGTAAATGGAGTTGGTAAAATATTAAAGAAGATCAACAAG GAAGTGCCTTTTGTTACAAGGAACAAGATGTGTTTCCAGTGTGAGGTCCGGAATGTGAACTTTGAGGATCCAGCC TCTGCCTGTGATTCCATCAATGCATGGGTTAAAAATGAAACCAGGGATATGATTGACAATCTGCTGTCCCCAGAT CTTATTGATGGTGTGCTCACCAGACTGGTCCTCGTCAACGCAGTGTATTTCAAGGGTCTGTGGAAATCACGGTTC CAACCGAGAACACAAAGAAACGCACTTTCGTGGCAGCCGACGGGAAATCCTATCAAGTGCCAATGCTGGCCCAG CTCTCCGTGTTCCGGTGTGGGTCGACAAGTGCCCCCAATGATTTATGGTACAACTTCATTGAACTGCCCTACCAC GGGGAAAGCATCAGCATGCTGATTGCACTGCCGACTGAGAGCTCCACTCCGCTGTCTGCCATCATCCCACACATC AGCACCAAGACCATAGACAGCTGGATGAGCATCATGGTGCCCAAGAGGGTGCAGGTGATCCTGCCCAAGTTCACA GCTGTAGCACAAACAGATTTGAAGGAGCCGCTGAAAGTTCTTGGCATTACTGACATGTTTGATTCATCAAAAGGCA AATTTTGCAAAAATAACAAGGTCAGAAAACCTCCATGTTTCTCATATCTTGCAAAAAGCAAAAATTGAAGTCAGT GAAGATGGAACCAAAGCTTCAGCAGCAACAACTGCAATTCTCATTGCAAGATCATCGCCTCCCTGGTTTATAGTA GACAGACCTTTTCTGTTTTTCATCCGACATAATCCTACAGGTGCTGTTTATTCATGGGGCAGATAAACCAAACCC CATAGTTCTGTTAAATATTTTTGTACATCGCTTCTTTTTCAAAAACTAGTTCTTAGGAACAGACTCGATGCAAGTG GGCTTCCAGATGTCTAAAAGATTCTTTAAACTACTGAACTGTTACCTAGGTTAACAACCCTGTTGAGTATTTGCT GTTTGTCCAGTTCAGGAATTTTTGTTTTGTTTTGTCTATATGTGCGGCTTTTCAGAAGAAATTTAATCAGTGTGA CCATCCCCTCCAAAGTCTTGATAGCAAGCGTTATTTTGGTGGTAGAAACGGTGAAATCTCTAGCCTCTTTGTGT TTTTGTTGTTGTTGTTGTTGTTTTTTATATAATGCATGTATTCACTAAAATAAAATTTAAAAAACTCCTGTCTT GCTAGACAAGGTTGCTGTTGTGCAGTGTGCCTGTCACTACTGGTCTGTACTCCTTGGATTTGCATTTTTGTATTT TGTACAAAGTAAAAATAAACTGTTATGAGTAGT

PCT/US2003/028547

1039/6881 FIGURE 969

MNWHLPLFLLASVILPSICSHTPHISLEELGSHTGIQVENQIVKSRPHDNIVISPHGIASVLGMLQLGADGRTKK QLAMWRYGVRGVGKILKKINKAIVSKKNKDIVTVANAVFVKNASEIEVFFVTRNKDVFQCEVRNVNFEDPASAC DSINAWYKNETROMIONLISPDLIGGVITKLVLVNAVYFKGLMKSRFQPENTKRTFVAADGKSYQVYMLAQLSV FRCGSTSAPNDLWYNFIELPYHGESISMLTALPTESSTPLSAIIPHISTKTIDSWMSIMVPKRVQVILPKFTAVA QTDLKEPLKVLGITDMFDSSKANFAKITRSENLHVSHILQKAKIEVSEDGTKASAATTAILIARSSPPWFIVDRP FLFFTRHWFTGAVLFMGQINKP

PCT/US2003/028547

1040/6881 FIGURE 970

ATGCGTGCTGAAAAGAGAAAAAAGAATGCCCCAGAGGAGGTCAGCAGGCTTAAAAGTATTCTCAAACTAGACGAT GACGTTTTAATGAAAGATGTTCAAGAGATAGCAACTGTGGTGGTACCCAAACCATACATTGCCAAGAGAAAATG CAATGTGAGGTAAAAGATGAAAAAGATGACATGAAAATGGAGACTGATATTAAGAGAAACAAAAAGACTCTTCTA GACCAGCATGGACAGTACCCAATATGGATGAACCAAAGGCAAAGAAAAAAGGCTAAAGGCAAAGCGAGAGAAAAAAGA AAGGAGAAAAACAAAGCAAAAGCAGTGAAAGTGGCAAAGGGTTTGGCCTGTAGTATTGTTTCCATAATAGTCCAT TTCGCAGAAATAAGAAGGAGAATAAAACTTAGAGAAAAAGGGGGCCAAAAGGGGCCAAGGTAGTGGCTACTTGC AGAAACCTGAAAAATATGTGTGACAAAGCCGCCATAATAAGTGCCAGCCGAGCTGCAGCAGCCCGTCTCAGGGGC ACCGCAGCCTCCCCGGGCCCTACGGCCGCCCGCCAGCAGGATGGCTGGAATGGCCTTAGTCATGAGGCTTTTAGA ATTGTTTCAAGGCAGGATTATGCGTCAGAAGCAATCAATGGAGCAGCTGGTGGTGTTTATTTGGGTACTACCAAC TCCTGTGTGGCAGTTATGGAAGGTAAACAAGCAAAGGTGCTGGAGAATGCCGAAGGTGCCAGAACTACCCCTTCA GTTGTGGCCTTTACAGCAGATGTACAGAAAGACATTAAAAATATTCCCTTTAAAATTGTCTGTGCCTCCAATGGT GATGCCTGGGTTGAGGCTCATGGGAAACTGTATTCTCCAAGTCAGATCGGAGCATTTGTGTCGATGAAGATGAAA GAGACTGCAGAAAATTACTTGGGGCACACAGCAAAAAATGCTGTGATCGCAGTCCCAGCTTATTTCAATGACTTG CAGAGGCAGGCCACTAAAGATGCTGGCCAGATATCTGGACTGAATGTGCTTCGGGTGATTAATGAACCCACAGCT GCTGCTCTTGCCTATGGTCTAGACAAATCAAAAGACAAAGTCATTGCTGTATATGATTTAGGTGGTGGAACTTTT GATATTTCTATCCTGGAATTTCAGAAAGGAGTATTCGAGGTGAAATCCACAAATGGGGACACTTTCTTAGGTGGG GACAACGTGGCATTTCAGAGGGTGTGGGAAGCTGCTGAAAAGGCTAAATGTGAACTCTCCTCATCTGTGCAGACT GACATCAATTTGCCCTATCTTACAATGGATTCTTCTGGACCCAAGCATTTGAATACAAAGTTGACCCATGCTCAA TTTGAAGGGATTGTCACTGATCTAATCAGGAGGACTATCGCTCCATGCCAAAAAGCTATGCAAGATGCAGAAGTC AGCAAGAGTGATATAGGAGAAGTGATTCTTGTGGAGCCCCCAAGTAAAGCTGTCAATCCTGATGAGGCTGTGGCC ATTGGAGCTGCCATTCAGGGAGATGTTGTTGGCCGGCGATGTCACAGATGTGCTGCTCCTTGATGTCATTCCCCTG GCTGGAGACAACAACTCCTTGGACAGTTTACTTTGATTGGAATTCCACCAGCCCCTCGTGGAGTTCCTCAGATC AAAGTTACATTTGACATTGATGCCAATGGGATCATACATGTTTCAGCTAAAGATAAAGGCACAGGACATGAGCAG CAGATTGTAATCCAGTCTTCTGGTGGGTTAAGCAAAGATGATGTTGAAAATATGGTTAAAAATGCAGAGAAATAT GCTAAGGAAGACCAGCGAAGGAAGGAATGA

PCT/HS2003/028547

1041/6881 FIGURE 971

CGGAGCTGTCCATCAGCACCAAAGGCCGCGGGCGGGCTCAGGGCATGGGGCCGCGGTTCTGGGGCGGCCCGAGCC $\tt CCGGCTCCTGCGCCTTCCCCTCAGGCCCAGCCCGAGTTCCCGGACGCCGGGACTGGAGTGCCAGCCGGT$ GTTGGACGTGGAGCGGCCGCCACCGCGCCGACACCATTCTCTCCGGCCCAGCAGCCCCCTTCCTCGCACGACG GACTTTCCCTGGACCCCAGTCAGTTGGAGCCTCTGGCGCCCCGGCAACCCCGGCCCCTCGGGCCTCTGCACAGCCT $\tt CTTTCACTCAGAAGCTCAGGTCGCCTCCAGCCCAGCACTATGCCGGGGACTGTGGCAACACTGCGGTTCCAGCTG$ $\tt CTGCCCCTGAGCCAGATGATGCCTTCTGGGGTGCACCTTGTGAACAGCCCCTGGAGCGCAGGTACCAGGCACTG$ $\tt CCGGCCCTCGTCTGCATCATGTGCTGTTTGTTTGGAGTCGTCTACTGCTTCTTCGGTTACCGCTGCTTCAAGGCA$ GTGCTCTTTCTCACTGGGTTGCTGTTTGGCTCGGTGGTCATCTTCCTCCTCTGCTACCGAGAGCGGGTGCTAGAG ACACAGCTGAGTGCTGGGGCGAGCGCGGGCATCGCTCTGGGGCATCGGGCTGCTCTGCGGGCTGGTGGCCATGCTA CTCACTCTGCGCTGGCCCCGCCCACTCACCACCCTGGCCACCGCCGTGACTGGTGCTGCGCTGATCGCCACTGCC GCTGACTACTTCGCCGAGCTGCTACTGCTGGGGCGCTACGTGGTGGAGCGACTCCGGGCTGCTCCTGTGCCCCCA CTCTGCTGGCGAAGCTGGGCCCTGCTGGCACTCTGGCCCCTGCTCAGCCTGATGGGCGTTCTGGTGCAGTGGAGG GTGACAGCTGAGGGGGACTCCCACACGGAAGTGGTCATCAGCCGGCAGCGCCGACGCGTGCAACTGATGCGGATT CGGCAGCAGGAAGATCGCAAGGAGAAAAGGCGGAAAAAGAGACCTCCTCGGGCTCCCCTCAGAGGTCCCCGGGCT CCTCCCAGGCCTGGGCCACCAGACCCTGCTTATCGGCGCAGGCCAGTGCCCATCAAACGCTTCAATGGAGACGTC CTCTCCCCGAGCTATATCCAGAGCTTCCGAGACCGGCAGACCGGGAGCTCCCTGAGCTCCTTCATGGCCTCACCC ACAGATGCGGACTATGAGTATGGGTCCCGGGGACCTCTGACAGCCTGCTCAGGCCCCCCAGTGCGGGTATAGCCA TATCTGTCTGTCTAGACTCTGCAGTCACCAGCTCTGCCAGCTCGAGGAGGCCTGCTAGGCTGCCACTCAGCCTCC TGGCTTTGGCTGTCCCTCTCCCCAGCCTGGAGAGGGCTGGCCTGGTCACTAGAAGGGAGGATTGTCTCAGGCGAG TCTTGGCCTGAGAGGAAAGCCCCCTCCCAAGCTCCCAAGAGGCTCCTGAGGAACTCGGGGTGTGAACCCCATTGG ACGCTGGGACCCTTGCCTTAGATTTCTGACTGGTAGGGTTTCTCCAGGCTCAGCCCCACCTCTTCACTCCCTGCC GACTCATCTAAGGGTTCTTGTCCTTGTCTATGGGGCAAACTGTAGCATCCCTCACCCTGGTCCCTGGCCTCTGT CCCCACCCCACTCTGTTTTACATCTTTTATAAATGTGCCAAACTGTGTGGCCTCTGCCA

PCT/US2003/028547

1042/6881 FIGURE 972

MPGTVATLRFQLLPPEPDDAFWGAPCEQPLERRYQALPALVCIMCCLFGVVYCFFGYRCFKAVLFLTGLLFGSVV
IFILCYRERVLETQLSAGASAGIALGIGLLCGLVAMLVRSVGLFLVGLLLGLLLAAAALLGSAPYYQPGSVWGPL
GLLLGGGLLCALLTLRWRRPLTTLATAVIGAALIATAADYFAELLLLGRYVVERLRAAPVPLCWRSWALLALWP
LLSLMGVLVQWRVTAEGDSHTEVVISRQRRVQLMRIRQQEDRKEKRKKRPPRAPLGGPRAPPRFGPPDPAYRR
REVPIKRRNGDVLSPSYIQSFRDRQIGSSLSSFMASPTDADYEYGSRGPLTACSGPPVRV

PCT/US2003/028547

FIGURE 973

CGCTCGCAGGGACACACGCAGGGGCTGACAGCTGTGCTGGTGCTGATAAGGGAAGCCACAAGGAGACGATCGAGG ACTCCCCACCTCGGGCCCCCACCCTGTCCCTGTCCTCTTCCCGCTTGCCCTGAGTTTAGAAGAGCAGCCGCTGC ${\tt GCAGCCGGGGACAGATGCCGATCGAGATTGTGTGCAAAATCAAATTTGCTGAGGAGGATGCGAAACCCAAGGAGA}$ AGGAGGCAGGGGATGAGCAGAGCCTCCTCGGGGCTGTTGCCCCTGGAGCAGCCCCCCGAGACCTGGCCACCTTTG CACTGGCCCTACTCACCTGGCTGGCTGCCTTCCTGTACCAGGCGGCTGGCCTGGCCCGGGGCTACCTGACCCGGC CTCACCTGGTGGCAATGGACCCCGCTGCCCCAGCCCCAGTGGCGGGCTTCCCGGCTGTCACCCTCTGCAATATCA ACCGCTTCCGGCATTCGGCACTCAGCGATGCCGACATCTTCCACCTGGCCAATCTGACAGGGCTGCCCCCAAAG ACCGGGATGGCACCGTGCGCTGCCTGCCTACCCAGAGCCTGACATGGTAGACATCCTCAACCGCACTGGCC ACCAGCTCGCCGACATGCTTAAGAGCTGCAACTTCAGTGGGCATCACTGCTCCGCCAGCAACTTCTCTGTGGTCT ATACTCGCTATGGGAAGTGTTACACCTTCAACGCGGACCCGCGGAGCTCGCCCAGCCGGGCAGGGGGCATGG CGTTTGAGGCAGGTATTCGGGTGCAGATCCACAGCCAGGAGGAGCCGCCCTACATCCACCAGCTGGGGTTCGGGG GCTGTGAAAAGGAGGCCGTGCTTCAGCGCTGCCACTGCCGGATGGTGCACATGCCAGGCAATGAGACCATCTGCC GCCCCACCCCTGCAACCTGACACGCTATGGGAAAGAGATCTCCATGGTCAGGATCCCCAACAGGGGCTCAGCCC GGTACCTGGCGAGGAGTACAACCGCAACGAGACCTACATACGGGAGAACTTCCTGGTCCTAGATGTCTTCTTTG AGGCCCTGACCTCTGAAGCCATGGAGCAGCGAGCCAGCCTATGGCCTGTCAGCCCTGCTGGGAGACCTCGGGGGAC AGATGGGCCTGTTCATTGGGGCCAGCATCCTCACGTTGCTGGAGATCCTCGACTACATCTATGAGGTGTCCTGGG ATCGACTGAAGCGGGTATGGAGGCGTCCCAAGACCCCCCTGCGGACCTCCACTGGGGGCATCTCCACTTTGGGGC TTCAGGAGCTGAAGGAACAGAGTCCCTGCCCGAGCCTGGGCCGAGCGGAGGGTGGGGGGGTCAGCAGTCTGCTCC AAAGGACCCAGGAGTCTGGGACCCCTCCTGGGATCCCCAGCACATTCTCCTGCTCCTGGGAGAGGCCTGGGGGGCG GTGCTCACTGGGAGGGCCAGGACTCAGTTCCTGCTCTCATCCTCCCTGCCCTGATGTCAGCTGCTTTGCACAAA GGTCCTTCTTGTCCACACCCCTTATCCCCAGGCTGGTGCCCCGGGAGGGCTGGAGACCAGGCCATGGGCCCTCAC GGAGGGAAGGGAAGGAAGGAGGGGGGGGGGGGGGATAGAGCCCATCCCAGCCGGGAGGGGGAGCCCTCTGTAC ATTTGTAAATATTTAGGGAAAGCCGGGTGGGGGGAGGGGATACAGATGTAGAAGGTGGGTAGGGCTACAGGGGTG GGTGATTTAGGGACAGCCAGGGTCCCAGCCCCAATGTCAGCAGGATAGGGAGAGCCCCAGGACTCAGGAGTGCTG GGCTGGTCCTACTTCCTGCCCCTCTCCAGGCCCAGCTCCCCTCTTGGCAGGGGGAGAGGATGGCCCAGCAGGCCT TGCTGACGAG

PCT/IIS2003/028547

1044/6881 FIGURE 974

MPIEIVCKIKFAEEDAKPKEKEAGDEQSLLGAVAPGAAPROLATFASTSTLHGLGRACGPGPHGLRRTLWALALL
TSLAAFLYQAAGLARGYLTRPHLVAMDPAAPAPVAGFPAVTLCNINRFHSALSDADIFHLANLTGLPFKDRDGH
RAAGLRYPEPDMYDLINRTGHQLADMLKSCNFSGHCSASNFSVYYTRYGKCYTFNADPRSSLPSRAGGMGSGLE
IMLDIQQEEYLPIWRETNETISFEAGIRVQIHSQEEPPYIHOLGFGVSPGFQTFVSCQEQRLTTLPGPWGNCRAES
ELREPELQGYSAYSVSACRLRCEKEAVLQRCHCRMVHMPGNETICPPNIYIECADHTLDSLGGGPEGPCFCPTPC
NLTRYGKEISMYRIPNGSARYLARKYNRNETYIRENFLVLDVFFEALTSEAMEQRAAYGLSALLGDLGGQMGLF
IGASILTLLEILDYIYEVSWDRLKRVWRRPKTPLRTSTGGISTLGLQELKEQSPCPSLGRAEGGGVSSLLPNHHH
PHGPFGGIFEDFAC

PCT/IJS2003/028547

FIGURE 975

TCACCATGAGCCAGGCCTACTCGTCCAGCCAGCGCGTGTCCTCCTACCGCCGCACCTTCGGCGGGGCCCCGGGCT TGACGTCCCGCGTGTACCAGGTGTCGCGCACGTCGGGCCGGGGCCCGGGGGCCTGGGGTCGCTGCGGCCCAGCCGGC TGGGGACCACCCGCACGCCTCCTCCTACGGCGCAGGCGAGCTGCTGGACTTCTCACTGGCCGACGCGGTGAACC AGGAGTTTCTGACCACGCGCACCAACGAGAAGGTGGAGCTGCAGGAGCTCAATGACCGCTTCGCCAACTACATCG AGAAGGTGCGCTTCCTGGAGCAGCAGAACGCGGCGCTCGCCGCCGAAGTGAACCGGCTCAAGGGCCGCGAGCCGA CGCGAGTGGCCGAGCTCTACGAGGAGGAGCTGCGGGAGCTGCGGCGCCAGGTGGAGGTGCTCACTAACCAGCGCG CGCGCGTCGACGTCGAGCGCGACAACCTGCTCGACGACCTGCAGCGGCTCAAGGCCAAGCTGCAGGAGGAGATTC AGTTGAAGGAAGAAGCAGAGAACAATTTGGCTGCCTTCCGAGCGGACGTGGATGCAGCTACTCTAGCTCGCATTG AGTTGCAGGCTCAGCTTCAGGAACAGCAGGTCCAGGTGGAGATGGACATGTCTAAGCCAGACCTCACTGCCGCCC TCAGGGACATCCGGGCTCAGTATGAGACCATCGCGGCTAAGAACATTTCTGAAGCTGAGGAGTGGTACAAGTCGA AGGTGTCAGACCTGACCCAGGCAGCCAACAAGAACAACGACGCCCTGCGCCAGGCCAAGCAGGAGATGATGGAAT ACCGACACCAGATCCAGTCCTACACCTGCGAGATTGACGCCCTGAAGGGCACTAACGATTCCCTGATGAGGCAGA TGCGGGAATTGGAGGACCGATTTGCCAGTGAGGCCAGTGGCTACCAGGACAACATTGCGCGCCTGGAGGAGAAA TCCGGCACCTCAAGGATGAGATGGCCCGCCATCTGCGCGAGTACCAGGACCTGCTCAACGTGAAGATGGCCCTGG ATGTGGAGATTGCCACCTACCGGAAGCTGCTGGAGGGAGAGGAGGAGCCGGATCAATCTCCCCATCCAGACCTACT CTGCCCTCAACTTCCGAGAAACCAGCCCTGAGCAAAGGGGTTCTGAGGTCCATACCAAGAAGACGGTGATGATCA AGACCATCGAGACACGGGATGGGGAGGTCGTCAGTGAGGCCACACAGCAGCAGCATGAAGTGCTC<u>TAA</u>AGACAGA CACCACACCCAGCCTCAGTCCTCCCCTCACAGCCTCTGACCCCTCCTCACTGGCCATCCCTCGTGGTCCCCAACA GCGACATAGCCCATCCCTGCCTGGTCACAGGGCATGCCCCGGCCACCTCTGCGGACCCCAGCTGTGAGCCTTGGC CTGTGACCTCAGGCACTAGCCTTTGGCTCTGGAGACAGCCCCAGAGCAGGGTGTTGGGATACTGCAGGGCCAGGA TGTGGAGACTGGGGGGCTTGAAATTGTCCCCGTGGTCTCTTACTTTCCTTTCCCCAGCCCAGGGTGGACTTAGAA AGCAGGGCTACAAGAGGGAATCCCCGAAGGTGCTGGAGGTGGGAGCAGGAGATTGAGAAGGAGAAAAGTGGGT

PCT/HS2003/028547

1046/6881 FIGURE 976

MSQAYSSSQRVSSYRRTFGGAPGFPLGSPLSSPVFPRAGFGSKGSSSSVTSRVYQVSRTSGGAGGLGSLRASRLG
TTRTPSSYGAGELLDFSLADAVNOEFLITETIBEKVELGELNDRFANYIEKVRFLEQONAALAAEVNRLKGREPTR
VAELVEEELRRQVEVLTNQRARVDVERDNLLDDLQRLKAKLJGEEIQLKEEAERNILAAFRADVATLARIDL
ERRIESLHEEI AFLKKVHEEEI RELQAQLGEQQVOVENDMSKPDLTAALRDIRAQYETIAAKNISEAEEWYKSKV
SDLTQAANKNNDALRQAKGEMMEYRHQIQSYTCEIDALKGTNDSLMRQMRELEDRFASEASGYQDNIARLEEEIR
HLKDEMARHLREYQDLLNVKMALDVEIATYRKLLEGEESRINLPIQTYSALNFRETSPEORGSEVHTKKTVMIKT
IETROEEVVSSATQOOHEVL

PCT/HS2003/028547

1047/6881 FIGURE 977

GCACGAGGGTGATGAAGGCCTACGAGTGCGGCGCGGGCCTGAAGGGGCACGCGGGGGACCTGCAAAGCTAGTGAGG GGCGGGGCAGGCGGCGGGGGGGGGGGCCGAGCCCGGAGGCCAGATGAGCGGACACAGCCCCACGCGGGGGC ${\tt CATGCAGGTGGCCATGAACGGTAAGGCCCGCAAAGAGGCCGGTGCAGACTGCGGCTAAGGAACTCCTCAAGTTCGT}$ CAAGGAGACTGAGAAATGGAATATTAAGCCCGAGAGCAAGTACTTCATGACCAGGAACTCCTCCACCATCATAGC TTTTGCTGTAGGGGGCCAGTACGTTCCTGGCAATGGCTTCAGCCTCATCGGGGCCCACACGGACAGCCCCTGCCT ${\tt CCGGGTGAAACGTCGGTCTCGCCGCAGCCAGGTGGGCTTCCAGCAAGTCGGTGTGGAGACCTATGGTGGTGGGAT}$ CAACGAGAACTTTGGGCCCAACACAGAGATGCATCTAGTCCCCATTCTTGCCACAGCCATCCAGGAGGAGCTGGA GAAGGGGACTCCTGAGCCAGGGCCTCTCAATGCTGTGGATGAGCGGCACCATTCGGTCCTCATGTCCCTGCTCTG TGCCCATCTGGGGCTGAGCCCCAAGGACATAGTGGAGATGGAGCTCTGCCTTGCAGACACCCAGCCTGCGGTCTT GGGTGGTGCCTATGATGAGTTCATCTTTGCTCCTCGGCTGGACAATCTGCACAGCTGCTTCTGTGCCCTGCAGGC CTTGATAGATTCCTGTGCAGGCCCTGGCTCCCTGGCCACAGAGCCTCACGTGCGCATGGTCACACTCTATGACAA CGAAGAGGTGGGGTCTGAGAGTGCACAGGGAGCACAGTCACTGCTGACAGAGCTGGTGCTGCGGGGGATCTCAGC CTCGTGCCAGCACCCGACAGCCTTCGAGGAAGCCATACCCAAGTCCTTCATGATCAGCGCAGACATGGCCCATGC TGTGCATCCCAACTACCTGGACAAGCATGAGGAGAACCACCGGCCTTTATTCCACAAGGGCCCCGTGATCAAGGT GAACAGCAAGCAACGCTATGCTTCAAACGCGGTGTCAGAGGCCCTGATCCGAGAGGTGGCCAACAAAGTCAAGGT CCCCCTGCAGGATCTCATGGTCCGGAATGACACCCCCTGTGGAACCACCATTGGACCTATCTTGGCTTCTCGGCT GGGGCTGCGGGTGCTGGATTTAGGCAGCCCCCAACTGGCCATGCACTCTATCCGGGAGATGGCCTGCACCACAGG AGTCCTCCAGACCCTCACCCTCTTCAAGGGCTTCTTTGAGCTGTTCCCTTCTCTAAGCCATAATCTCTTAGTGGA

PCT/US2003/028547

1048/6881 FIGURE 978

MQVAMNGKARKEAVQTAAKELLKFVNRSPSPFHAVAECRNRLLQAGFSELKETEKWNIKPESKYFMTRNSSTITA
FAVGGGYVPGNGFSLIGAHTDSPCLRVKRRSRRSOVGFQOYGVETYGGGIWSTWFDRDLTLAGRVIVKCPTSGRL
EQQLVHVERPLIRIPHLAIHLQRNINENFGPNTEMHLUVFLIATAIQGELEKGTPEPGPLNAVDERRHHSVLMSLLC
AHLGLSPKDIVEMELCLADTOFAVLGGAYDEFIFAPRLDNLHSCFCALQALIDSCAGPGSLATEPHVRMVTLYDN
EEVGSESAQGAQSLITELVLRRISASCQHFTAFEBAIPKSFMTSADMAHAVHPHYLDKHEENHRPLFHKGFVIKV
NSKQRYASNAVSEALIREVANKVKVPLQDLMVRNDTPCGTTIGPILASRLGLRVLDLGSPQLAMHSIREMACTTG
VLQTITIEKGFFELFFSLSHNLLVD

PCT/US2003/028547

1049/6881 FIGURE 979

CTTTGCATTGTTCCTCATCCGCCTCCTTGCTCGCCGCAGCCGCCTCCGCCGCGCCCTCCTCCGCCGCGGAC CCACCATGTCAGACGCAGCCGTAGACACCAGCTCCGAAATCACCACCAAGGACTTAAAGGAGAAGAAGAAGTTG TGG AAGAGGCAGAAAATGGAAGAGACGCCCCTGCTAACGGGAATGCTAATGAGGAAAATGGGGAGCAGGAGGCTG AGGATGGAGATGAAGATGAGGAAGCTGAGTCAGCTACGGGCAAGCGGGCAGCTGAAGATGATGAGGATGACGATG GCCGCCGTGACCTATTCACCCTCCACTTCCCGTCTCAGAATCTAAACGTGGTCACCTTCGAGTAGAGAGGCCCGC $\tt CCGCCCACCGTGGGCAGTGCCACCCGCAGATGACACGCGCTCTCCACCACCCAACCCAACCCAACCATGAGAATTTGCA$ ACAGGGGAGGAAAAAGAACCAAAACTTCCAAGGCCCTGCTTTTTTTCTTAAAAGTACTTTAAAAAGGAAATTTG TTTGTATTTTATTTTACATTTTATATTTTTGTACATATTGTTAGGGTCAGCCATTTTTAATGATCTCGGATGAC CADA CCA CCCTTCGGACGTCTCTCTGTCCTACTTCTGACTTTACTTGTGGTGTGACCATGTTCATTATAATCTCA AAGGAGAAAAAACCTTGTAAAAAAAGCAAAAATGACAACAGAAAAACAATCTTATTCCGAGCATTCCAGTAAC TTTTTTGTGTATGTACTTAGCTGTACTATAAGTAGTTGGTTTGTATGAGATGGTTAAAAAAGGCCAAAGATAAAAG AATGTTGTCCAACAATAAACAGG

PCT/IIS2003/028547

1050/6881 FIGURE 980A

CGGAGCTCGGAAAGATCCGGCGCCCGCGGCGGCCTGGGGGTCTCGGGGGATCCGGGGGTCTCCGCTCCTCT GCCTCCTGCTGCTGAGCAGCCGCCCGGGGGGGCTGCAGCGCCGTTAGTGCCCACGGCTGTCTATTTGACCGCAGGC TCTGCTCTCACCTGGAAGTCTGTATTCAGGATGGCTTGTTTGGGCAGTGCCAGGTGGGAGTGGGCAGGCCCGGC CCCTTTTGCAAGTCACCTCCCCAGTTCTCCAACGCTTACAAGGTGTGCTCCGACAACTCATGTCCCAAGGATTGT CCTGGCACGATGACCTCACCCAGTATGTGATCTCTCAGGAGATGGAGCGCATCCCCAGGCTTCGCCCCCAGAGC CCCGTCCAAGGGACAGGTCTGGCTTGGCACCCAAGAGACCTGGTCCTGCTGGAGAGCTGCTTTTACAGGACATCC CC1CTGGCTCCGCCCTGCTGCCCAGCATCGGCTTCCACAACCACCAGTGGGCAAAGGTGGAGCTGGGGCCAGCT CCTCTCTGTCCCCTCTGCAGGCTGAGCTGCTCCCGCCTCTCTTGGAGCACCTGCTGCTGCCCCACAGCCTCCCC ACCUTTCACTGAGTTACGAACCTGCCTTGCTGCAGCCCTACCTGTTCCACCAGTTTTGGCTCCCGTGATGGCTCCA GGGTCTCAGAGGGCTCCCCAGGGATGGTCAGTGTCGGCCCCCTGCCCAAGGCTGAAGCCCCTGCCCTCTTCAGCA CABCTGCCTCCABGGGCATATTTGGGGACCACCCTGGCCACTCCTACGGGGACCTTCCAGGGCCTTCACCTGCCC AGCTTTTTCAAGACTCTGGGCTGCTCTATCTGGCCCAGGAGTTGCCAGCACCCAGCAGGGCCAGGGTGCCAAGGC GAGAGAAGCCTGCTTCCCCAGCTGTGCAGCCAGATGCGGCTCTGCAGAGGCTGGCCGCTGTGCTGGCGGGCTATG GGGTAGAGCTGCGTCAGCTGACCCCTGAGCAGCTCTCCACACTCCTGACCCTGCTGCAGCTACTGCCCAAGGGTG CAGGAAGAAATCCGGGAGGGTTGTAAATGTTGGAGCTGATATCAAGAAAACAATGGAGGGCCCGGTGGAGGGCA GAGACACAGCAGAGCTTCCAGCCCGCACATCCCCCATGCCTGGACACCCCACTGCCAGCCCTACCTCCAGTGAAG TCCAGCAGGTGCCAAGCCCTGTCTCCTCTGAGCCTCCCAAAGCTGCCAGACCCCCTGTGACACCTGTCCTGCTAG ATGTGCACATGTCCTCAGGCAGCTTCATCAACATCAGTGTGGTGGGACCAGCCCTCACCTTCCGCATCCGGCACA GGCTCCAAATCTTGCAGACAGGAGTGGGACAGAGGGAGGAGGCAGCTGCAGTCCTTCCCCAAACTGCGCACAGCA TGGCTCTGTGTGCGGCAGCATGCGCGGCAGCAAGACAAGGAGCGCCTGGCAGCCCTGGGGGCCTGAGGGGGCCCC ATGGTGACACTACCTTTGAGTACCAGGACCTGTGCCGCCAGCACATGGCCACGAAGTCCTTGTTCAACCGGGCAG AGGGTCCACCGGAGCCTTCACGGGTGAGCAGTGTGTCCTCCCAGTTCAGCGACGCAGCCCAGGCCAGCCCCAGCT $\tt CCCACAGCACCCCGTCCTGGTGCGAGGAGCCGGCCCAAGCCAACATGGACATCTCCACGGGACACATGATTC$ TGGCATACATGGAGGATCACCTGCGGAACCGGGACCGCCTTGCCAAGGAGTGGCAGGCCCTCTGTGCCTACCAAG ${\tt CAGAGCCAAACACCTGTGCCACCGCGCAGGGGGAGGGCAACATCAAAAAGAACCGGCATCCTGACTTCCTGCCCT}$ ATGACCATGCCCGCATAAAACTGAAGGTGGAGAGCAGCCCTTCTCGGAGCGATTACATCAACGCCAGCCCCATTA AGATGGTGTGGGAGAGCGGCTGCACCGTCATCGTCATGCTGACCCCGCTGGTGGAGGATGGTGTCAAGCAGTGTG ACCGCTACTGGCCAGATGAGGGTGCCTCCCTCTACCACGTATATGAGGTGAACCTGGTGTCGGAGCACATCTGGT GCGAGGACTTTCTGGTGCGGAGCTTCTACCTGAAGAACGTGCAGACCCAGGAGACGCGCACGCTCACGCAGTTCC ACTTCCTCAGCTGGCCGGCAGAGGGCACACCGGCCTCCACGCGGCCCCTGCTGGACTTCCGCAGGAAGGTGAACA AGTGCTACCGGGGCCGCTCCTGCCCCATCATCGTGCACTGCAGTGATGGTGCGGGGAGGACCGGCACCTACATCC TCATCGACATGGTCCTGAACCGCATGGCAAAAGGAGTGAAGGAGATTGACATCGCTGCCACCCTGGAGCATGTCC GTGACCAGCGGCCTGGCCTTGTCCGCTCTAAGGACCAGTTTGAATTTGCCCTGACAGCCGTGGCGGAGGAAGTGA $\tt ATGCCATCCTCAAGGCCCTGCCCCAG\underline{TGA}GACCCTGGGGGCCCCTTGGCGGGCAGCCCAGCCTCTGTCCCTCTTTG$ CCTGTGTGAGCATCTCTGTGTACCCACTCCTCACTGCCCCACCAGCCACCTCTTGGGCATGCTCAGCCCTTCCTA GAAGAGTCAGGAAGGGAAAGCCAGAAGGGGCACGCCTGCCCAGCCTCGCATGCCAGAGCCTGGGGCATCCCAGAG $\tt CCCAGGGCATCCCATGGGGGTGCTGCAGCCAGGAGGAGGAGGACATGGGTAGCAATTCTACCCAGAGCCTT$ CTCCTGCCTACATTCCCTGGCCTGGCTCTCCTGTAGCTCTCCTGGGGTTCTGGGAGTTCCCTGAACATCTGTGTG TGTCCCCCTATGCTCCAGTATGGAAGAATGGGGTGGAGGGTCGCCACACCCGGCTCCCCCTGCTTCTCAGCCCCG CCATGCGCTCAACCTCTCTCTCTGGCGCAAGAGAACATTTCTAGAAAAAACTACTTTTGTACCAGTGTGA

PCT/US2003/028547

FIGURE 980B

PCT/HS2003/028547

1052/6881 FIGURE 981

MRRPRRPGGLGSGGLRLLCLLLLSSRPGGCSAVSAHGCLFDRRLCSHLEVCIQDGLFGQCQVGVGQARPLLQV
TSFVLQRLQGVLRQLMSQGLSWHDDLTGYVISQEMERIFRLRPFERPRDRSGLAPKRPGPAGELLLGDDIFTGSA
PAAQHRLPQPFVGKGGGAGASSSLSPLQAELLPPLLEHLLLPPQPFHFBLSYEPALLQPYIFHGPGSRVSEG
SFGMVSVGPLFKAEAPALFSRTASKGIFGDHFGHSYGDLFGPSPAQLFQDSGLLYLLQELPAFSRARVPRLPEQG
SSSRAEDSFEGYEKEGLGDRGEKPASPAVQPDAALQRLAAVLAGYGVELRQLTFEQLSTLLITLLQLLFKGAGRNP
GGVVNVGADIKKTMEGPVERGTAELPARTSPMPGHPTASPTSSEVQQVPSPVSSEPPKAARPPVTPVLLEKKSP
LGGSQFTVAGQPSARPAAEEYGYIVTDQKPLSLAAGVKLLEILAEHVHMSSGSFINISVVGFALTFRIRHEQML
SLADVTQQAGLVKSELEAQTGLQTLQTGVGGREEAAAVLPQTAHSTSPMRSVLLTLVALAGVAGLLVALAVALCV
RQHARQQDKERLAALGFEGAHGDTTFEYQDLCRQHMAIKSLFNRAEGPPEPSRVSVSSQFSDAAQASPSSHSST
PSKCEPFAQAMMDISTGHMILAYMEDHLRRNDRLAKEMQALCAYQAEPMTCATAGGEGNIKKNRHPDFLPYDHAR
IKLKVESSPSRSDYINASPIIEHDPRMPAYIATQGPLSHTIADFWQMVWESGCTVIVMLTPLVEDGVKQCDRYWP
DEGASLYHVYEVNLVSEHIWCEDFLVRSFYLKNVQTQETRTLTQFHFLSWPAEGTPASTRPLLDFRRKVNKCYRG
RSCPIIVHCSDGAGRTGTYILIDMVLNRMAKGVKEIDIAATLEHVRDQRPGLVRSKDQFEFALTAVAEEVNALLK
ALPQ

PCT/US2003/028547

1053/6881 FIGURE 982

AGTTCTCACTGAGACCTGTCACCCCGACTCAACGTGAGACGCACCGCCCGGACTCACCATGCGTGAATGCATCTC AGTCCACGTGGGGCAGGCAGGTGTCCAGATGGGCAATGCCTGCTGGGAGCTCTATTGCTTGGAACATGGGATTCA GCCTGATGGGCAGATGCCCAGTGACAAGACCATTGGTGGAGGGGACGACTCCTTCACCACCTTCTTCTGTGAAAC TGGTGCTGGAAAACACGTACCCCGGGCAGTTTTTGTGGATCTGGAGCCTACGGTCATTGATGAGATCCGAAATGG $\tt CCCATACCGACAGCTCTTCCACCCAGAGCAGCTCATCACTGGGAAAGAGGATGCTGCCAACAACTATGCCCGTGG$ TCACTATACCATTGGCAAGGAGATCATTGACCCAGTGCTGGATCGGATCCGCAAGCTGTCTGACCAGTGCACAGG ACTTCAGGGCTTCCTGGTGTTCCACAGCTTTGGTGGGGGCACTGGCTCTGGCTTCACCTCACTCCTGATGGAGCG GCTCTCTGTTGACTATGGCAAGAAATCCAAGCTGGAATTCTCCATCTACCCAGCCCCCAGGTGTCTACAGCCGT GGTCGAGCCCTACAACTCTATCCTGACCACCCACACCACCCTGGAGCACTCAGACTGTGCCTTCATGGTGGACAA CGAAGCAATCTATGACATCTGCCGCCGCAACCTAGACATCGAGCGCCCAACCTACACCAACCTCAATCGCCTCAT TAGCCAAATTGTCTCCTCCATCACAGCTTCTCTGCGCTTTGACGGGGCCCTCAATGTGGACCTGACAGAGTTCCA GACCAACCTGGTGCCCTACCCTCGCATCCACTTCCCCCTGGCCACCTATGCACCAGTCATCTCTGCAGAAAAGGC ATACCACGAGCAGCTGTCGGTGGCAGAGATCACCAATGCCTGCTTTGAGCCTGCCAACCAGATGGTAAAGTGTGA TCCCCGGCACGCAAGTACATGGCCTGCTGCCTGCTGTACCGTGGAGATGTGGTGCCCAAGGATGTCAACGCTGC CATTGCCGCCATCAAGACCAAGCGCAGCATTCAGTTTGTGGACTGGTGCCCCACAGGCTTCAAGGTTGGTATCAA GACCGCCATCGCCGAGGCCTGGGCCCGCCTGGACCACAAGTTCGACCTGATGTATGCCAAGAGGGCGTTTGTGCA TTATGAGGAGGIGGGCATCGACTCCTATGAGGACGAGGATGAGGGAGAAGAATAAAGCAGCTGCCTGGAGCCTAT ААААААААААА

PCT/US2003/028547

1054/6881 FIGURE 983

MRECISVHVGQAGVQMGNACWELYCLEHGIQFDGQMPSDKTIGGGDDSFTTFFCETGAGKHVFRAVFVDLEPTVI
DEIRNGPYRQLFHPEQLITGKEDAANNYARGHYTIGKEIIDPVLDRIRKLSDQCTGLQGFLVFHSFGGGTSGFT
SLLMERLSVDYGKKSKLEFSIYPAPQVSTAVVEPYNSILTTHTTLEHSDCAFMYDNEATYDICRRNLDIERPTYT
NLNRLISQIVSSITASLEFDGALNVDLTEFQTNLVPYPRIHFPLATYAPVISAEKAYHEQLSVAEITNACFEPAN
QMVKCDPRHGKYMACCLLYRGDVVPKDVNAAIAAIKKRSIQPVDWCTTGFKVGINYQPFTVVPGGDLAKVQRAV
CMLSNTTAIAEAWARLDHKFDLMYAKRAFVHWYVGEGMEEGEFSEAREDMAALEKDYEEVGIDSYEDEDEGEE

PCT/US2003/028547

1055/6881 FIGURE 984

GGGCCTGCAGTTGGCAGGAGGGTCCCGGGCCCAGAGCCAGCGGGGCCGTGCTGAGACGGCGTACGTGCCCTGCGT GAGTGCGTGGCGGCGCGCGTGCGCTAGGGGAGTGGGCGGTGAGGCCTGGTCCACGTGCGTCCCTTCCCGGGACC $\tt CGGCCTCCGGTCCCGCAGTGCCCGCAGCCTCGGCCGGCGTCCACGCATTGCCATGGTGACTGTGGGCAACTACTG$ $\tt CTCGACGCGGATGGCTCTGGGGACTCTGGCCTTGGTGCTCTTCCCTGCAGACGCCGGGAGCGGCCCGCTGG$ TGCTGATTCGCTGTCTTGGGGGGCCGGCCCTCGCATCTCTCCCTACGTGCTGCAGCTGCTTCTGGCCACACTTCA ${\tt GGCGGCGCTGCCCCTGGCCGGCCTGGCCTGGCCGGGTGGGCACTGCCCGGGGGGGCCCCACTGCCAAGCTATCTACT}$ TCTGGCCTCCGTGCTGGAGAGTCTGGCCGGCGCCTGTGGCCTGTGGCTTGTCGTGGAGCGGAGCCAGGCACG TGCAGCTGAGAACTTGGCCCTGGTGTCTTGGAACAGCCCACAGTGGTGGTGGGCAAGGGCAGACTTGGGCCAGCA GGTTCAGTTTAGCCTGTGGGTGCTGCGGTATGTGGTCTCTGGAGGGCTGTTTGTCCTGGGTCTCTGGGCCCCTGG ACTTCGTCCCCAGTCCTATACATTGCAGGTTCATGAAGAGGACCAAGATGTGGAAAGGAGCCAGGTTCGGTCAGC AGCCCAACAGTCTACCTGGCGAGATTTTGGCAGGAAGCTCCGCCTCCTGAGTGGCTACCTGTGGCCTCGAGGGAG TCCAGCTCTGCAGCTGGTGGTGCTCATCTGCCTGGGGCTCATGGGTTTGGAACGGGCACTCAATGTGTTGGTGCC TATATTCTATAGGAACATTGTGAACTTGCTGACTGAGAAGGCACCTTGGAACTCTCTGGCCTGGACTGTTACCAG TTACGTCTTCCTCAAGTTCCTCCAGGGGGGTGGCACTGGCAGTACAGGCTTCGTGAGCAACCTGCGCACCTTCCT GTGGATCCGGGTGCAGCAGTTCACGTCTCGGCGGGTGGAGCTGCTCATCTTCTCCCACCTGCACGAGCTCTCACT GCGCTGGCACCTGGGGCGCCGCACAGGGGAGGTGCTGCGGATCGCGGATCGGGGCACATCCAGTGTCACAGGGCT GCTCAGCTACCTGGTGTTCAATGTCATCCCCACGCTGGCCGACATCATCATTGGCATCATCTACTTCAGCATGTT $\tt GTGGAGAACCAAGTTTCGTCGTGCTATGAACACACAGGAGAACGCTACCCGGGCACGAGCAGTGGACTCTCTGCT$ AAACTTCGAGACGG1GAAGTATTACAACGCCGAGAGTTACGAAGTGGAACGCTATCGAGAGGCCATCATCAAATA TCAGGGTTTGGAGTGGAAGTCGAGCGCTTCACTGGTTTTACTAAATCAGACCCAGAACCTGGTGATTGGGCTCGG ${\tt GCTCCTCGCCGGCTCCCTGCTTTGCGCATACTTTGTCACTGAGCAGAAGCTACAGGTTGGGGGACTATGTGCTCTT}$ TGGCACCTACATTATCCAGCTGTACATGCCCCTCAATTGGTTTGGCACCTACTACAGGATGATCCAGACCAACTT CATTGACATGGAGAACATGTTTGACTTGCTGAAAGAGGAGACAGAAGTGAAGGACCTTCCTGGAGCAGGGCCCCT TCGCTTTCAGAAGGGCCGTATTGAGTTTGAGAACGTGCACTTCAGCTATGCCGATGGGCGGGAGACTCTGCAGGA GCGCCTGCTGTTTCGCTTCTACGACATCAGCTCTGGCTGCATCCGAATAGATGGGCAGGACATTTCACAGGTGAC TATCCGTTACGGCCGTGTCACAGCTGGGAATGATGAGGTGGAGGCTGCTGCTCAGGCTGCAGGCATCCATGATGC ${\tt GCGCGTCGCCATTGCCCGCACCATCCTCAAGGCTCCGGGCATCATTCTGCTGGATGAGGCAACGTCAGCGCTGGA}$ CAGGCTCTCAACTGTGGTCAATGCTGACCAGATCCTCGTCATCAAGGATGGCTGCATCGTGGAGAGGGGACGACA CGAGGCTCTGTTGTCCCGAGGTGGGGTGTATGCTGACATGTGGCAGCTGCAGCAGGACAGGAAGAAACCTCTGA AGACACTAAGCCTCAGACCATGGAACGGTGACAAAAGTTTGGCCACTTCCCTCTCAAAGACTAACCCAGAAGGGA GACCTTTCCGAAAAACATCTTTTGGGGAAATAAAAATGTGGACTGTG

PCT/US2003/028547

1056/6881 FIGURE 985

PCT/HS2003/028547

1057/6881 FIGURE 986

GCTGCCCGGTATCCCCGTGTGGGGCAGGAAGTGGGCTTCCAGATTCCCAGTATCCCCGGTAGGGTCTGCTTCTG TCAGTGGGTAAACAAACACACACCAGCGCTTGACTCGACAGACTCGAAAACAACATCTACTCAGAAAAGTTGTTT CTTTCCTATCTCCTTAAACTTTCCCACTTCCACATATCGGAGCTTCTTCCCACCTCGGCCTACTCAAGCATGAGA TCGGAGGCGGAGGGCGGCGACTGGCGGCGCGATGGACCTGACCGGGCTCCTGCTGGACGAAGAAGGCACCTTCT CCCTCGCCGGCTTCCAGGACTTCACGTTCCTCCCAGGACACCAGAAGCTGAGTGCCCGGATCCGAAGGAGGCTCT ACTATGGCTGGGACTGGGAAGCCGACTGTAGCCTGGAGGAGCTCTCCAGCCCGGTGGCAGACATTGCTGTCGAAC TGCTCCAGAAGGCAGCCCCCAGCCCTATTCGCCGACTCCAGAAGAATATGTAGCTCATGTGTCCCGGGAGGCAT GCATCTCCCCATGTGCTATGATGCTGGCTCTGGTGTACATTGAACGGCTCCGGCACCGAAACCCAGACTACTTGC AGGAGGAGGTCTTCAACGACGAATGGGGAGCTGCTGGGGGGTGTGGCCGTGCCCACTCTCAATGCCTTGGAGAGGG GCTTCCTGAGTGCCATGGATTGGCATCTCTACACTGACCCTCGGGAGATCTTTGAGGTGCTGAGCTGGTTGGAGA CGACCTGGCAGTTGGCCCTGGGCTCCCTCTGCCAGCGGCTGGTAAAGCTGTCTTGCCTGTTAGCTGTGGCATATG TGAGCAGTGTGGCCCTGGCTGTGGCATCGGTGGCCGTAATACATCAGTCTTTGGGGCTGTCCTGCATCCCTACAC CTGGGCCGCCTGACCTTGGACTGACCTCCCGTTGCCTCCTGGAGCCCTGCATACCTTCTGTGCCACAATGCCTGC CGTCTCTCGCTAATGTCTCCAGCTGCCTGGAAGGCAGCATGGGGCTGCGGTCACTCTGGGGCAGTCTTCTGGCCT CACTGACTCCTCCACCATTGCCTCCCCCAGACCCCCCTGCCCCTCCCACTCTTCTTCATAACTGCCACCTTTGCC GCCCCTGGTACCATACCTATGGCCTGGCTCCCCCCTGGCCTTGGAGCCCGGTGCTCCTTTCACTTCCTCAGCCTC GAGGARIGCATIARGAGGGITITGGGAGTITCTGAGAACCTGGAGGAGCAAAGCTTGATTCAGATCCTGTCTGCCT CGCTGGGTCCTTGGCAGGTCCCCTGTCCTCCTGGGTGGGAGCTTATGGGGTGGTGGGGCAGAAGGACTGAAGGTA ATTCACTCCTAGATCGCAGTGGCTGGCTGCTTGGCCAGGACAGTGATGCCGCCAGGGAGAGCTTCCGCTTGGTGA CCAGGGACATGTCCCAGATGGACATAGAAGCCCCTCTCTGCCTCCCTGGGATTTTTTAGACTTTTACTTTTGATT TCCCTAGGATGGAAGAGTATAGGTGGGAGATAAGGGAAGTGGGGTGAGAGAAAAGGAAATGTTGGCATGGGCC TGTGTGATGTCCCTGAGGCAGAAGAGC

PCT/US2003/028547

1058/6881 FIGURE 987

MDLTGLLLDEEGTFSLAGFQDFTFLPGHQKLSARIRRRLYYGWDWEADCSLEELSSPVADIAVELLQKAAPSPIR
RLQKKYVAHVSREACISPCAMMLALVYIERLRHRNPDYLQHVSSSDLFLISMMVASKYLYDEGEEEEVFNDEWGA
AGGVAVPTLNALERGFLSAMDWHLYTDPREIFEVLSWLESCVAEQQGRWRGWYYTTDLCVLLEQFTWQLALGSLC
QRLVKLSCLLAVAYVSSVALAVASVAVIHQSLGLSCIPTPGPPDLGLTSRCLLEPCIPSVPQCLPSLANVSSCLE
GSMGLRSLWGSLLASLTPPPLPPPDPPAPPTLHNCHLCQKLQRDSPTCHACLHPNRTVPTALSSPWYHTYGLAP
PWWWSPULLSLPQPQQCSLFSVMELARLKSFVFPG

PCT/IIS2003/028547

1059/6881 FIGURE 988

GAAGAT<u>ATG</u>GCGGCGTCTGCGTCTGCAGCTGCAGGGGAGGAGGACTGGGTCCTTCCCTCTGAAGTTGAAGTATTG GAGTCCATCTATCTAGATGAACTACAGGTGATTAAAGGAAATGGCAGAACTTCACCATGGGAGATCTACATCACT TTGCATCCTGCCACTGCAGAGGACCAGGATTCACAGTATGTCTGCTTCACTCTGGTGCTTCAGGTCCCAGCAGAG TATCCCCATGAGGTGCCACAGATCTCTATCCGAAATCCCCGAGGACTTTCAGATGAACAGATCCACACGATCTTA CAGGTGCTGGCCACGTGGCCAAGGCTGGGCTGGGCACTGCCATGCTGTATGAACTCATTGAGAAAGGGAAAGGAA ATTCTCACAGATAACAACATCCCTCATGGCCAGTGTGTCATCTGCCTCTATGGTTTCCAGGAGAAGGAGGCCTTT ACCAAAACACCCTGTTACCACTACTTCCACTGCCACTGCCTTGCTCGGTACATCCAGCACATGGAGCAAGAGCTG AAGGCACAAGGACAGGAGCAGGAACAGGAACGGCAGCATGCTACAACCAAACAGAAGGCAGTCGGTGTGCAGTGT CCAGTGTGCAGAGAGCCCCTCGTGTATGATCTTGCCTCACTGAAAGCAGCCCCTGAACCCCAACAGCCCATGGAG CTGTACCAGCCCAGTGCAGAGAGCTTGCGCCAGCAAGAAGAACGCAAGCGGCTCTACCAGAGGCAGCAGGAGCGG GGGGGAATCATTGACCTTGAGGCTGAGCGAAACCGATACTTCATCAGCCTTCAGCAGCCTCCTGCCCCTGCGGAA CCTGAGTCAGCTGTAGATGTCTCCAAAGGATCCCAACCACCAGCACCCTTGCAGCAGCAGCACTATCCACCTCACCA GCCGTCCAATCCACTTTGCCACCTCCTCTGCCTGTGGCGACCCAGCACATATGTGAGAAGATTCCAGGGACCAGG TCAAATCAGCAAAGGTTGGGCGAAACCCAGAAGCTATGCTAGATCCCCCCAAGCCCAGTCGAGGTCCCTGGCGA CAGCCCGAACGGAGGCACCCAAAGGGAGGGGAGTGCCACGCCCCTAAAGGTACCCGTGACACCCAGGAACTGCCA CCTCCTGAGGGGCCCCTCAAGGAGCCCATGGACCTAAAGCCAGAACCCCATAGCCAAGGAGTTGAAGGTCCTCCA CAAGAGAGGGCCTGGCAGCTGGCAGGGCCCCCACCCCGCAGGACTCGGGACTGTGTTCGCTGGGAGCGCTCT AAAGGCCGGACACCCGGTTCTTCCTACCCTCGCCTGGCCTCGGGGCCAGTAGCATACCGGCCTGGTACTCGGAGGG AGTCCCTGGGCCTGGAATCTAAGGATGGTTCCTAGCAGGACTTGGTGGGGGGAACAGGGAATTGGGGATGGGAAG GAGGCAATAAAGATATTTGGCCTTC

PCT/HS2003/028547

1060/6881 FIGURE 989

MAASASAAAGEEDWVLPSEVEVLESIYLDELQVIKGNGRTSPWEIYITLHPATAEDQDSQYVCFTLVLQVPAEYP
HEVPQISIRNPRGLSDEQIHTILQVLGHVAKAGLGTAMLYELIEKGKEILTDNNIPHGQCVICLYGFQEKEAFTK
FCYHYFHCHCLARYIGHMEGELKAQGGDEGDERGHATTKQKAYGYGCFVCREPLYVDLASLKAAPEPGQPMELY
QPSABSLRQQEERKRLYQRQGRGGIIDLEAERNRYFISLQQPPAPAEPESAVDVSKGSQPFSTLAAELSTSPAV
QSTLPPPLPVATQHICEKIPGTRSNQQRLGETQKAMLDPPKPSRGPWRQPERRHPKGGCCHAPKGTRDTQELPPP
EGPLKEPMDLKPEPHSQGVEGPPQEKGPGSWQGPPPRRTRDCVRWERSKGRTPGSSYPRLPRGQ

PCT/TIS2003/028547

1061/6881 FIGURE 990

CCCACGA CGCCCAGCTGCTGTAGAAGAGGGGAGGAAACAAGCCAGTGCAAGGGGAGCAAAAGAGAAAAAGGGGCCA GGCTGGGCTTCCTGATCCCACAGCATCGCAGAGCTCGGGAGGCACAGCTCACAGACACAGGAAACACAGGACTGC TATTCTGCTCTCCTGCCACGGTGATCTGGTGCCAGCTGGTGGAACAGTGGGTGATGGCGTCCCTGCTGCAAGAC CAGCTGACCACTGATCAGGACTTGCTGCTGATGCAGGAAGGCATGCCGATGCGCAAGGTGAGGTCCAAAAGCTGG AAGAAGCTAAGATACTTCAGACTTCAGAATGACGGCATGACAGTCTGGCATGCACGGCAGGCCAGGGCAGTGCC AAGCCCAGCTTCTCAATCTCTGATGTGGAGACAATACGTAATGGCCATGATTCCGAGTTGCTGCGTAGCCTGGCA GAGGAGCTCCCCCTGGAGCAGGGCTTCACCATTGTCTTCCATGGCCGCCGCTCCAACCTGGACCTGATGGCCAAC AGTGTTGAGGAGGCCCAGATATGGATGCGAGGGCTCCAGCTGTTGGTGGATCTTGTCACCAGCATGGACCATCAG GAGCGCCTGGACCAATGGCTGAGCGATTGGTTTCAACGTGGAGACAAAAATCAGGATGGTAAGATGAGTTTCCAA GAAGTTCAGCGGTTATTGCACCTAATGAATGTGGAAATGCACCAAGAATATGCCTTCAGTCTTTTTCAGGCAGCA GACACGTCCCAGTCTGGAACCCTGGAAGGAGAAGAATTCGTACAGTTCTATAAGGCATTGACTAAACGTGCTGAG GTGCAGGAACTGTTTGAAAGTTTTTCAGCTGATGGGCAGAAGCTGACTCTGCTGGAATTTTTGGATTTCCTCCAA GAGGAGCAGAAGGAGAGAGACTGCACCTCTGAGCTTGCTCTGGAACTCATTGACCGCTATGAACCTTCAGACAGT GGCAAACTGCGGCATGTGCTGAGTATGGATGGCTTCCTCAGCTACCTCTGCTCTAAGGATGGAGACATCTTCAAC CCAGCCTGCCTCCCCATCTATCAGGATATGACTCAACCCCTGAACCACTACTTCATCTGCTCTTCTCATAACACC TACCTAGTGGGGGACCAGCTTTGCGGCCAGAGCAGCGTCGAGGGATATATACGGGCCCTGAAGCGGGGGTGCCGC TGCGTGGAGGTGGATGTATGGGATGGACCTAGCGGGGAACCTGTCGTTTACCACGGACACACCCTGACCTCCCGC ATCCTGTTCAAAGATGTCGTGGCCACAGTAGCACAGTATGCCTTCCAGACATCAGACTACCCAGTCATCTTGTCC CTGAGCACCACCTTGGATGGGGTGCTGCCCACTCAGCTGCCCTCGCCTGAGGAGCTTCGGAGGAAGATCCTGGTG AAGGGGAAGAAGTTAACACTTGAGGAAGACCTGGAATATGAGGAAGAGGAAGCAGAACCTGAGTTGGAAGAGTCA GAATTGGCGCTGGAGTCCCAGTTTGAGACTGAGCCTGAGCCCCAGGAGCAGAACCTTCAGAATAAGGACAAAAAA TTCACACATTCAAAGGAGCACTACCACTTCTACGAGATATCATCTTTCTCTGAAACCAAGGCCAAGCGCCTCATC AAGGAGGCTGGCAATGAGTTTGTGCAGCACAATACTTGGCAGTTAAGCCGTGTGTATCCCAGCGGCCTGAGGACA GACTETTCCAACTACAACCCCCAGGAACTCTGGAATGCAGGCTGCCAGATGGTGGCCATGAATATGCAGACTGCA GGGCTTGAAATGGACATCTGTGATGGGCATTTCCGCCAGAATGGCGGCTGTGGCTATGTGCTGAAGCCAGACTTC CTGCGTGATATCCAGAGTTCTTTCCACCCTGAGAAGCCCATCAGCCCTTTCAAAGCCCAGACTCTCTTAATCCAG GTGATCAGCGGTCAGCAACTCCCCAAAGTGGACAAGACCAAAGAGGGGTCCATTGTGGATCCACTGGTGAAAGTG CAGATCTTTGGCGTTCGTCTAGACACAGCACGGCAGGAGACCAACTATGTGGAGAACAATGGTTTTAATCCATAC TGGGGGCAGACACTATGTTTCCGGGTGCTGGTGCCTGAACTTGCCATGCTGCGTTTTGTGGTAATGGATTATGAC CACCTGCTGTCCAAAGATGGCATCAGCCTCCGCCCAGCTTCCATCTTTGTGTATATCTGCATCCAGGAAGGCCTG GAGGGGGATGAGTCC<u>TGA</u>GGTGGGCATTTCACGGGAAGGGTTGGTATGCTGGCTTTAGACGGGGAGAAACATCTG GAAGGATGCTCGAGAGAACAAATGGAGGTGGTGAAAATCAAGCTTTGGATTGTGCATTCCTAGGCACAAAATTAC TAAGCCTTTGGTATCTTTCCTGCCCTTTTCCTTTGTGTACTCTATACTGGAGTTCCCTTCTTCCTCTTGCTGTAG GCTCAATCCCATACCGACATCTACAACTAATCTTTCCCATCAACTCTGTGTGAAGGCAGGTTGCAACTAGAAATT CAGAGGGGCTTGGAATAGAGAAACCTAAAGAAGCATCATCCCCTCCATCCCCAACTTCCTCAAAGCCCAAAGCCA AGGGAAGGATAAATCAAGGCTCAAGGCTTCCCCAGCAAAGATTAGGGAAAGAGACTTGACCCCAGGACTGTACTA CGACTCTTAAGAGAACACTGCACAGCACTCAAAGTCCCCCACTGGACTGCTTCCTCCTTAGCCCCACTGGTATAA

PCT/US2003/028547

1062/6881 FIGURE 991

MASILQDQLITDQDLILMQEGMPMRKVRSKSWKKLRYFRLQNDGMTVWHARQARGSAKPSFSISDVETIRNGHDS ELLRSIAEELPLEQGFTIVFHGRRSNLDLMANSVEEAQIMMRGLQLLVDLVTSMDHGERLDGMLSDWEQRGDKNLDGKMSFQEVQRLHLMNVEMDQEYAFSLFQAADTSQGTLEGEEFVQFYKALTKRAEVQELFESFSADGQKLTLL EFLDFLQEEQKERDCTSELALBLIDRYEPSDSGKLEHVLSMDGFLSYLCSKDGDIFNFACLPIYQDMTQPLNHYFICSSHNTYLVGDQLCGQSSVEGYIRALKRGCRCVEVDVMDGPSGEPVYHGHTLTSRLEKDVATVAQYAFOTS DYPVILSLETHCSWEQQQTMARHLTEILGEQLLSTTLDGVLPTDLPSPEELARKLLVKGKKLTLEEDLEYEEEAA EPPLESESLALDESOFETFPEPGEQNLONKDKKKKSKPILCPALSSLVIYLKSVSFRSFTHSKEHTHYEISSFSETKAKRLIKEAGNEFVQHNTWQLSRVYPSGLRTDSSNYNPQELWNAGCQMVAMNMQTAGLEMDICDGHFRQNGGGGYVLKFDFLTGSTSPEFFFTSTERFFTSFFFTSKEHTHYEISSFSETKAKRLIKEAGNEFVQHNTWQLSRVYPSGLRTDSSNYNPQELWNAGCQMVAMNMQTAGLEMDICDGHFRQNGGGGWYUKFDFLTGVGTLCFRVLVPELAMLFFVVMDYDWKSRNDFIGQYTLPWTCMQQGYRHIHLLSKDGISLRPASIFVY ICIQEGLEGDES

PCT/HS2003/028547

FIGURE 992

TTCTCCCCAGGCTCACTCACCATGACCAAGCTGAGCGCCCAAGTCAAAGGCTCTCTCAACATCACCACCCCGGG GAAAGGGGGCGTGGCTTCTGGCATGAAGCACGTGGAGACCAACTCCTATGACGTCCAGAGGCTGCTGCATGTCAA GGGCAAGAGGAACGTGGTAGCTGGAGAGGTAGAGATGTCCTGGAAGAGTTTCAACCGAGGGGATGTTTTCCTCCT GGACCTTGGGAAGCTTATCATCCAGTGGAATGGACCGGAAAGCACCCGTATGGAGAGACTCAGGGGCATGACTCT ATCCCCGAAGCTGATGGAGGTGATGAACCACGTGCTGGGCAAGCGCAGGGAGCTGAAGGCGGCCGTGCCCGACAC GGTGGTGGAGCCGGCACTCAAGGCTGCACTCAAACTGTACCATGTGTCTGACTCCGAGGGGAATCTGGTGGTGAG GGAAGTCGCCACACGGCCACTGACACAGGACCTGCTCAGTCACGAGGACTGTTACATCCTGGACCAGGGGGGCCT GAAGATCTACGTGTGGAAAGGGAAGAAAGCCAATGAGCAGGAGAAGAAGGGAGCCATGAGCCATGCGCTGAACTT CATCAAAGCCAAGCAGTACCCACCAAGCACACAGGTGGAGGTGCAGAATGATGGGGCTGAGTCGGCCGTCTTTCA GCAGCTCTTCCAGAAGTGGACAGCGTCCAACCGGACCTCAGGCCTAGGCAAAACCCACACTGTGGGCTCCGTGGC AGATGATGGGAGTGGGGAAGTGCAGGTGTGGCGCATTGAGAACCTAGAGCTGGTACCTGTGGATTCCAAGTGGCT CTACGTTTGGCAGGCCAGCCAGGCCAGCCAAGATGAAATTACAGCATCAGCTTATCAAGCCGTCATCCTGGACCA GAAGTACAATGGTGAACCAGTCCAGATCCGGGTCCCAATGGGCAAGGAGCCACCTCATCTTATGTCCATCTTCAA GGGACGCATGGTGGTCTACCAGGGAGGCACCTCCCGAACTAACAACTTGGAGACCGGGCCCTCCACACGGCTGTT CCAGGTCCAGGGAACTGGCGCCAACAACACCAAGGCCTTTGAGGTCCCAGCGCGGGCCAATTTCCTCAATTCCAA CTTCTGGATGGCCCTGGGTGGGAAGGCCCCCTATGCCAACACCAAGAGACTACAGGAAGAAAACCTGGTCATCAC CCCCCGGCTCTTTGAGTGTTCCAACAAGACTGGGCGCTTCCTGGCCACAGAGATCCCTGACTTCAATCAGGATGA CTTGGAAGAGGATGATGTGTTCCTACTAGATGTCTGGGACCAGGTCTTCTTCTGGATTGGGAAACATGCCAACGA GGAGGAGAAGAAGGCCGCAGCAACCACTGCACAGGAATACCTCAAGACCCATCCCAGCGGGCGTGACCCTGAGAC CCCCATCATTGTGGTGAAGCAGGGACACGAGCCCCCCACCTTCACAGGCTGGTTCCTGGCTTGGGATCCCTTCAA GTGGAGTAACACCAAATCCTATGAGGACCTGAAGGCGGAGCTTGGCAACTCTAGGGACTGGAGCCAGATCACTGC TGAGGTCACAAGCCCCAAAGTGGACGTGTTCAATGCTAACAGCAACCTCAGTTCTGGGCCTCTGCCCATCTTCCC GTCCATTGAAGATTTCACTCAGGCCTTTGGGATGACTCCAGCTGCCTTCTCTGCTCTGCTCGATGGAAGCAACA AAACCTCAAGAAAGAAAAAGGACTATTTTGAGAAGAGTAGCTGTGGTTGTAAAGCAGTACCCTACCCTGATTGTA GGGTCTCATTTTCTCACCGATATTAGTCCTACACCAATTGAAGTGAAATTTTGCAGATGTGCCTATGAGCACAAA CTTCTGTGGCAAATGCCAGTTTTGTTTAATAATGTACCTATTCCTTCAGAAAGATGATACCCC

PCT/IIS2003/028547

1064/6881 FIGURE 993

PCT/IIS2003/028547

1065/6881 FIGURE 994

ATGGACTCTGGGAGGCGTTTGGGCCCAGAGAGTGGATCCGCCGCTTGCGCCGCATGGAGTCCGAATCGGAAAGC GGGGCTGCTGCTGACACCCCCCACTGGAGACCCTAAGCTTCCATGGTGATGAAGAGATTATCGAGGTGGTAGAA CTTGATCCCGGTCCGCCGGACCCAGATGACCTGGCCCAGGAGATGGAAGATGTGGACTTTGAGGAAGAAGAAGAGAG GAAGAGGCAACGAAGAGGCTGGGTTCTAGAACCCCAGGAAGGGGTGGTCGGCAGCATGGAGGGCCCCGACGAT AGCGAGGTCACCTTTGCATTGCACTCAGCATCTGTGTTTTTGTGTGAGCCTGGACCCCAAGACCAATACCTTGGCA GTGACCGGGGGTGAAGATGACAAAGCCTTCGTATGGCGGCTCAGCGATGGGGAGCTGCTCTTTGAGTGTGCAGGC CATAAAGACTCTGTGACTTGTGCTGGTTTCAGCCATGACTCCACTCTAGTGGCCACAGGGGACATGAGTGGCCTC CATCCTCGGGCACCTGTCCTGTTGGCGGGCACAGCTGACGGCAACACCTGGATGTGGAAAGTCCCGAATGGTGAC TGCAAGACCTTCCAGGGTCCCAACTGCCCAGCCACCTGTGGCCGAGTCCTCCCTGATGGGAAGAGAGCTGTGGTA GCTATGAAGATGGGACCATCAGGATTTGGGACCTGAAGCAGGGAAGCCCTATCCATGTACTGAAAGGGACTGAG GGTCACCAGGGCCCACTCACCTGTGTTGCTGCCAACCAGGATGGCAGCTTGATCCTAACTGGCTCTGTGGACTGC CAGGCCAAGCTGGTCAGTGCCACCACCGGCAAGGTGGTGGTGTTTTTTAGACCTGAGACTGTGGCCTCCCAGCCC AGCCTGGGAGAAGGGGAGGAGAGTGAGTCCAACTCGGTGGAGTCCTTGGGCTTCTGCAGTGTGATGCCCCTGGCA GCTGTTGGCTACCTGGATGGGACCTTGGCCATCTATGACCTGGCTACGCAGACTCTTAGGCATCAGTGTCAGCAC CAGTCGGGCATCGTGCAGCTGCTGTGGGAGGCACGCACTGCCGTGGTATATACCTGCAGCCTGGATGGCATCGTG CGCCTCTGGGACGCCCGGACCGGCCGCCTGCTTACTGACTACCGGGGCCACACGGCTGAGATCCTGGACTTTGCC CTCAGCAAAGATGCCTCCCTGGTGGTGACCACGTCAGGAGACCACAAAGCGAAAGTATTTTGTGTCCAAAGGCCT ${\tt GACCGT}$ ${\tt TAA}$ ${\tt TGGCTGCAGCCCCTGCCTGTGTGTCTGGTGTTGAGGGGACGAAGGGACCCCTGCCCCTGTCTGCCA}$ GCAGAGGCAGTAGGGCACAGAGGGAAGAGGGGGGGGCCCTGGATGACTTTCCAGCCTCTTCAACTGACTTGC TCCCCTCTCCTTTTCTCTTTTAGAGACCCAGCCCAGGCCCTCCCACCCTTGCCCAGACCTGGTGGGCCCTTC AGAGGGAGGGTGGACCTGTTTCTCTTTCACTTTCATTTGCTGTGTGAGCCATGGGGTGTGTATTTGTATGTGG GGAGTAGGTGTTTGAGGTTCCCGTTCTTTCCCTTCCCAAGTCTCTGGGGGTGGAAAGGAGGAAGAGATACTAGTT AAAGATTTTAAAAATGTAAATAAAATATACTTCCCAG

PCT/IIS2003/028547

FIGURE 995

MDSGRRLGPEKWIRRLRRMESESESGAAADTPPLETLSFHGDEEIIEVVELDPGPPDPDDLAQEMEDVDFEEEEE
EEGNEEGWVLEPQEGVVGSMEGPDDSEVTFALHISASVFCVSLDPKTNTLAVTGGEDDKAFVWRLSDGELLFEGE
HKDSVTCAGFSHDSTLVATGDMSGLLKVWQVDTKEEVWSFEAGDLEWMEWHPRAPVLLAGTAGGHTWWMKVPNGD
CKTFQGPPGPATGGRUPDGKRAVVGYEDGTIRIWDLKQGSPIHVLKGTEGHQGPLTCVAANQDGSLILTGSVDC
QAKLVSATTGKVVGVFRPETVASQPSLEEGESSESNSVESLGFCSVMPLAAVGYLDGTLAIYDLATQTLRRQCQH
QSGIVQLLWEAGTAVVYTCSLDGIVRLWDARTGRLLTDYRGHTAEILDFALSKDASLVVTTSGDHKAKVFCVQRP
DR

PCT/HS2003/028547

1067/6881 FIGURE 996

GCCGCCGCCATGATCCTGCTGGAGGTGAACAACCGCATCATCGAGGAGACGCTCGCGCTCAAGTTCGAGAACGCG GCCGCCGGAAACAACCGGAAGCAGTAGAAGTAACATTTGCAGATTTCGATGGGGTCCTCTATCATATTTCAAAT CCTAATGGAGACAAAACAAAAGTGATGGTCAGTATTTCTTTGAAATTCTACAAGGAACTTCAGGCACATGGTGCT GATGAGTTATTAAAGAGGGTGTACGGGAGTTTCTTGGTAAATCCAGAATCAGGATACAATGTCTCTTTGCTATAT GACCTTGAAAATCTTCCGGCATCCAAGGATTCCATTGTGCATCAAGCTGGCATGTTGAAGCGAAATTGTTTTGCC GATGATGAGACCATGTATGTTGAGTCTAAAAAGGACAGAGTCACAGTAGTCTTCAGCACAGTGTTTAAGGATGAC GTCCTCTTTAGCCACAGGGAACCTCCTCTGGAGCTGAAAGACACAGACGCCGCTGTGGGTGACAACATTGGCTAC ATTACCTTTGTGCTGTTCCCTCGTCACACCAATGCCAGTGCTCGAGACAACACCATCAACCTGATCCACACGTTC CGGGACTACCTGCACTACCACATCAAGTGCTCTAAGGCCTATATTCACACACGTATGCGGGCGAAAACGTCTGAC $\tt TTCCTCAAGGTGCTGAACCGCGCACGCCCAGATGCCGAGAAAAAAAGAAATGAAAACAATCACGGGGAAGACGTTT$ TCATCCCGCTAATCTTGGGAATAAGAGGAGGAGCGGCTGGCAACTGAAGGCTGGAACACTTGCTACTGGATAAT $\tt CGTAGCTTTTAATGTTGCGCCTCTTCAGGTTCTTAAGGGATTCTCCGTTTTGGTTCCATTTTGTACACGTTTGGA$

PCT/US2003/028547

1068/6881 FIGURE 997

MILLEVNNRIIEETLALKFENAAGNKPEAVEVTFADFDGVLYHISNPNGDKIKVMVSISLKFYKELQAHGADEL LKRVYGSFLVNPESGYNVSLLYDLENLPASKDSIVHQAGMLKRNCFASVFEKYFGFGEGKEGENRAVIHYRDG TMYVESKKDRVTVVFSTVFKDDDDVVIGKVFMQEFKEGRRASHTAPQVLFSHREPPLELKDTDAAVGDNIGYIFF VLEPRHTNASARDNITUNLHTFRDYLHYHIKCSKAYIHTRKRAKTSDFLKVLNRARPDAEKKEMKTITGKTFSSR

PCT/US2003/028547

1069/6881 FIGURE 998

PCT/US2003/028547

1070/6881 FIGURE 999

MNNKFDALKDDDSGDHDQNEENSTQKDGEKEKTERDKNQSSSKRKAVVPGPAEHPLQYNYTFWYSRRTPGRPTSS QSYEQNIKQIGTFASVEQFWRFYSHMVRPGDLTGHSDFHLFKEGIKPMMEDDANKNGGKWITRLEKGLASRCWEN LILAMLGEQFWVGEEIGGAVVSVRFQEDIISIWNKTASDQATTARIRDTLRRVLNLPPNTIMEYKTHTDSIKMPG RLOPGRLEFQNLWKPELNVP

PCT/HS2003/028547

FIGURE 1000

GGCACGAGGAGAGCCTCGAGCCTGCGAGGAGCGCCGCCGCCCAGCTCCCTGCGTCCCGTCCCGCGTCCCCGCC TTCCCGCGTCCTGCGATCCGCCGCCATGCCCAGTGAGGAGCTGGCGTGCAAGCTGGAGCGCCGGCTGCGGCGCGA GGAGGCCGAGGAGAGTGGCCCCCAGCTGGCTCCCCTCGGCGCCCCAGCCCCGAGCCCAAGCCCGAGCCCGAGCC TCCCGCCCGTGCGCCCACGGCCAGCGCGACGCGGAGCTGAGCGCCCAGCTGAGCCGGCGGCTGGACATCAACGA GGGCGCTGCGGCGCCCCGGCGCTGCAGGGTCTTCAACCCCTACACGGAGTTCCCGGAGTTCAGCCGCCGCCTCAT GATGATGGAGAAGCTGGGGGCCCCCAGACCCACCTGGGCCTGAAGAGCATGATCAAGGAGGTGGATGAGGACTT TGGGCTGATGGCGCTGGCAAAGCTTTCTGAGATCGATGTGGCCCTGGAGGGTGTCAAAGGTGCCAAGAACTTCTT TGAAGCCAAGGTCCAAGCCTTGTCATCGGCCAGTAAGTTTGAAGCAGAGTTGAAAGCTGAGCAAGATGAGCGGAA GCGGGAGGAGGAGGAGGAGGCGGCTCCGCCAGGCAGCCTTCCAGAAACTCAAGGCCAACTTCAATACATAGTCCTG $\tt CTGACCTTGCCCTCTGCCCACAGCTGTGCCTCACAGATGCCCCGAGAAGAGATGACTAGGCATCTTCATCACTGC$ TGTCGGTCCCCTCGTGAGCCAGCATCTCCATCCACCCCCGTGCCAGCTCCCGTGCCAGCCTTCATTCCTCCC $\tt CTGCCCTTCTTATAGCCAGAACTTGTATCTTCTCAGCAACCTTCACTTTGTCCTTTGTCCTTTACCATTCCCCAT$ ${\tt TCGGAGAATTCTCTGCACTCCTCTCTCTCTCACATTCAACTTCCCTGTTCTCATCTTTGGTAGGATTCTGCCAGT}$ TGCTTTTGCATCTTCTTGTTCCTGGGTAATGGTGGGTCTTAATGGAGGCTGGGTGGACCACTGCCCGTCCACTCTT TTCTCCTGGCCCCTTAGCATTCCCCCAGTCCCTCCTCTTCACCTTGCTCCGTCTATGTCTTCCCAGCTCAGCCT TTTCCCCACTCTTAAATACTGTACTACTTCACTGTAAGAACGAAAGAATAGTTAGGATACCAATGAGTAAAAGGG TTCCTGTTCACTCTGACTCTGTGCAAATTGTATTACAGTAGACCGCTGACGTTCCCAAGTGACAGATCCAGGGCC TTTCAAACATCCCCAAAGTCATGGCCATACTCACCATTAGCCAGTTTCTAACATCTGTTTCAGGGTATCCAGCTG TAGATGTTCTTATCCCCCATACTTGTGAGTTATTGGGGTTGCTCACAAATACTAGGGGTTTTTGTTGTATTTTTA ACAAATATATCCTAATGTCATATTTATTCTCTTTTGTAACTGCTGTCTTTACAATAAAGAAATCATCTGCCTTTC ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

PCT/US2003/028547

FIGURE 1001

MASEELACKLERRLRREEAEESGPQLAPLGAPAPEPKPEPEPPARAPTASADAELSAQLSRRLDINEGAARPRRC RVPNPYTEFPEFSRRLIKDLESMFKLYDAGRDGFIDLMELKLMMEKLGAPQTHLGLKSMIKEVDEDFDGKLSFRE FLLIFHKAAAGELQEDSGLMALAKLSEIDVALEGVKGAKNFFEAKVQALSSASKFEAELKAEQDERKREEEERRL RQAAPÇKLKANFNT

PCT/US2003/028547

1073/6881 FIGURE 1002

PCT/US2003/028547

1074/6881 FIGURE 1003

MVPCWNHGNITRSKAEELLSRTGKDGSFLVRASESISRAYALCVLYRNCVYTYRILPNEDDKFTVQKSEPDFSRY WQRKGVNDEEGSARAGCSSRQGAGLKVWGDHRQVPGGKNPPEVVKRESVVSRTPLRKTAYEDGRNCFEERCD

PCT/IIS2003/028547

1075/6881 FIGURE 1004

CTTCGGGTGTACGTGCTCCGGGATCTTCAGCACCCGCGGCCGCCATCGCCGTCGCTTGGCTTCTTCTGGACTCAT CTGCGCCACTTGTCCGCTTCACACTCCGCCGCCATCATGGTGAAGCTCGCGAAGGCAGGTAAAAATCAAGGTGAC CCCAAGAAAATGGCTCCTCCAAAGGAGGTAGAAGAAGATAGTGAAGATGAGGAAATGTCAGAAGATGAAGAA GATGATAGCAGTGGAGAAGAGGTCGTCATACCTCAGAAGAAAGGCAAGAAGGCTGCTGCAACCTCAGCAAAGAAG GTGGTCGTTTCCCCAACAAAAAAGGTTGCAGTTGCCACCACCAGCCAAGAAAGCAGCTGTCACTCCAGGCAAAAAAG GCAGCAGCACACCTGCCAAGAAGACAGTTACACCAGCCAAAGCAGTTACCACACCTGGCAAGAAGGGAGCCACA CCAGGCAAAGCATTGGTAGCAACTCCTGGTAAGAAGGGTGCTGCCATCCCAGCCAAGGGGGGCAAAGAATGGCAAG AATGCCAAGAAGGAAGACAGTGATGAAGAGGAGGATGATGACAGTGAGGAGGATGAGGAGGATGACGAGGACGAC GATGAGGATGAAGATGAAATTGAACCAGCAGCGATGAAAGCAGCAGCTGCTGCCCCTGCCTCAGAGGATGAGGAC GATGAGGATGACGAAGATGATGAGGATGACGATGACGATGAGGAAGATGACTCTGAAGAAGAAGCTATGGAGACT ACACCAGCCAAAGGAAAGAAAGCTGCAAAAGTTGTTCCTGTGAAAGCCAAGAACGTGGCTGAGGATGAAGATGAA GAGGAAGAAGAGGAGGAGGAAGAGCCTGTCAAAGAAGCACCTGGAAAACGAAAGAAGGAAATGGCCAAACAGAAA GCAGCTCCTGAAGCCAAGAAACAGAAAGTGGAAGGCACAGAACCGACTACGGCTTTCAATCTCTTTGTTGGAAAC CTAAACTTTAACAAATCTGCTCCTGAATTAAAAACTGGTATCAGCGATGTTTTTGCTAAAAATGATCTTGCTGTT GTGGATGTCAGAATTGGTATGACTAGGAAATTTGGTTATGTGGATTTTGAATCTGCTGAAGACCTGGAGAAAGCG TTGGAACTCACTGGTTTGAAAGTCTTTGGCAATGAAATTAAACTAGAGAAACCAAAAGGAAAAGACAGTAAGAAA GAGCGAGATGCGAGAACACTTTTGGCTAAAAATCTCCCTTACAAAGTCACTCAGGATGAATTGAAAGAAGTGTTT GAAGATGCTGCGGAGATCAGATTAGTCAGCAAGGATGGGAAAAGTAAAGGGATTGCTTATATTGAATTTAAGACA GAAGCTGATGCAGAGAAAACCTTTGAAGAAAAGCAGGGAACAGAGATCGATGGGCGATCTATTTCCCTGTACTAT ACTGGAGAGAAAGGTCAAAATCAAGACTATAGAGGTGGAAAGAATAGCACTTGGAGTGGTGAATCAAAAACTCTG GTTTTAAGCAACCTCTCCTACAGTGCAACAGAAGAAACTCTTCAGGAAGTATTTGAGAAAGCAACTTTTATCAAA GTACCCCAGAACCAAAATGGCAAATCTAAAGGGTATGCATTTATAGAGTTTGCTTCATTCGAAGACGCTAAAGAA GCTTTAAATTCCTGTAATAAAAGGGAAATTGAGGGCAGAGCAATCAGGCTGGAGTTGCAAGGACCCAGGGGATCA CCTAATGCCAGAAGCCAGCCATCCAAAACTCTGTTTGTCAAAGGCCTGTCTGAGGATACCACTGAAGAGACATTA AAGGAGTCATTTGACGGCTCCGTTCGGGCAAGGATAGTTACTGACCGGGAAACTGGGTCCTCCAAAGGGTTTGGT TTTGTAGACTTCAACAGTGAGGAGGATGCCAAAGCTGCCAAGGAGGCCATGGAAGACGGTGAAATTGATGGAAAT AAAGTTACCTTGGACTGGGCCAAACCTAAGGGTGAAGGTGGCTTCGGGGGTCGTGGTGGAGGCAGAGGCGGCTTT GGAGGACGAGGTGGTAGAGGAGGCCGAGGAGGATTTGGTGGCAGAGGCCGGGGAGGCTTTGGAGGGCGAGGA GGCTTCCGAGGAGGCAGAGGAGGAGGAGGTGACCACAAGCCACAAGGAAAGAAGACGAAGTTTGAA<u>TAG</u>CTTCTG TCCCTCTGCTTTCCCTTTTCCATTTGAAAGAAAGGACTCTGGGGTTTTTACTGTTACCTGATCAATGACAGAGCC TTCTGAGGACATTCCAAGACAGTATACAGTCCTGTGGTCTCCTTGGAAATCCGTCTAGTTAACATTTCAAGGGCA ATACCGTGTTGGTTTTGACTGGATATTCATATAAACTTTTTAAAGAGTTGAGTGATAGAGCTAACCCTTATCTGT AAGTTTTGAATTTATATTGTTTCATCCCATGTACAAAACCATTTTTTCCTAC

PCT/US2003/028547

1076/6881 FIGURE 1005

PCT/US2003/028547

FIGURE 1006

GCGCAGCCATGATCACCTCGGCCGCTGGAATTATTTCTCTTCTGGATGAAGATGAACCACAGCTTAAGGAATTTG CACTACACAAATTGAATGCAGTTGTTAATGACTTCTGGGCAGAAATTTCCGAGTCCGTAGACAAAATAGAGGTTT TATACGAAGATGAAGGTTTCCGGAGTCGGCAGTTTGCAGCCTTAGTGGCATCTAAAGTATTTTATCACCTGGGGG CTTTTGAGGAGTCTCTGAATTATGCTCTTGGAGCAGGGGACCTCTTCAATGTCAATGATAACTCTGAATATGTGG A A CTA TTA TAGCA A A A TGCATTGATCACTA CACCA A A CATGTGTGGA A A A TGCAGATTTGCCTGA A GGAGA A A AACAGGCTATTGGCATTGCTCTGGAGACACGAAGACTGGACGTCTTTGAAAAGACCATACTGGAGTCGAATGATG TCCCAGGAATGTTAGCTTATAGCCTTAAGCTCTGCATGTCTTTAATGCAGAATAAACAGTTTCGGAATAAAGTAC TAAGAGTTCTAGTTAAAATCTACATGAACTTGGAGAAACCTGATTTCATCAATGTTTGTCAGTGCTTAATTTTCT TAGATGATCCTCAGGCTGTGAGTGATATCTTAGAGAAACTGGTAAAGGAAGACAACCTCCTGATGGCATATCAGA TTTGTTTTGATTTGTATGAAAGTGCTAGCCAGCAGTTTTTGTCATCTGTAATCCAGAATCTTCGAACTGTTGGCA CCCCTATTGCTTCTGTGCCTGGATCCACTAATACGGGTACTGTTCCGGGATCAGAGAAAGACAGTGACTCGATGG AAACAGAAGAAAAGACAAGCAGTGCATTTGTAGGAAAGACACCAGAAGCCAGTCCAGAGCCTAAGGACCAGACTT TGAAAATGATTAAAATTTTAAGTGGTGAAATGGCTATTGAGTTACATCTGCAGTTCTTAATACGAAACAATAATA CAGACCTCATGATTCTAAAAAACACAAAGGATGCAGTACGGAATTCTGTATGTCATACTGCAACCGTTATAGCAA ACTCTTTTATGCACTGTGGGACAACCAGTGACCAGTTTCTTAGAGATAATTTGGAATGGTTAGCCAGAGCCACTA ACTGGGCAAAATTTACTGCTACAGCCAGTTTGGGTGTAATTCATAAGGGTCATGAAAAAGAAGCATTACAGTTAA TGGCAACATACCTTCCCAAGGATACTTCTCCAGGATCAGCCTATCAGGAAGGTGGAGGTCTCTATGCACTAGGTC TTATTCATGCCAATCATGGTGGTGATATAATTGACTATCTGCTTAATCAGCTTAAGAACGCCAGCAATGATATCG TTAGACACGGTGGCAGTCTGGGCCTTGGTTTGGCAGCCATGGGAACTGCACGTCAAGATGTTTATGATTTGCIAA AAACAAACCTTTATCAGGATGATGCAGTAACAGGGGAAGCAGCTGGCCTGGCCCTAGGTTTGGTTATGTTGGGCT TTGCAGTTGGCATAGCTTTAGTAATGTATGGGAGGATGGAAGAGGCTGATGCTCTCATTGAATCTCTCTGTCGTG ACAAGGACCCAATTCTTCGAAGGTCTGGAATGTATACTGTAGCCATGGCTTATTGTGGCTCTGGTAACAACAAAG CAATTCGACGCCTGCTACATGTTGCTGTAAGTGATGTTAATGATGATGTCAGGAGGGCAGCAGTAGAATCACTTG GGTTCATTCTATTCAGAACCCCTGAACAGTGCCCAAGTGTTGTCTCTTTGTTGTCAGAGAGTTACAACCCTCATG TGCGCTACGGAGCTGCAATGGCCTTGGGGATATGCTGTGCTGGTACAGGAAACAAGGAAGCCATTAATTTGCTAG AACCAATGACAAACGACCCCGTGAACTACGTGAGGCAAGGGGCACTCATAGCTTCAGCTCTCATCATGATCCAGC AGACTGAAATCACTTGTCCAAAGGTGAATCAGTTCAGACAGCTGTATTCCAAAGTCATCAATGATAAGCATGATG ATGTCATGGCCAAGTTTGGCGCTATTCTGGCCCAGGGCATACTGGATGCAGGTGGTCATAATGTCACAATCTCCT TGCAGTCCAGGACTGGGCATACTCATATGCCTTCTGTGGTTGGCGTCCTTGTATTTACCCAGTTTTGGTTCTGGT TTCCTCTTTCACACTTCCTGTCATTGGCTTATACCCCTACCTGTGTCATTGGCCTTAACAAGGACTTAAAGATGC CGAAAGTTCAGTATAAATCGAACTGTAAACCATCCACATTTGCATATCCTGCCCCTCTGGAAGTACCAAAAGAAA AA AA GCAGGA GGAGA AA A TGGA AGTGGATGAGGCAGAGAAAAAGGGAGGAAAAAAGAGAAGAAAAAAGACCTGAGC GTAGATACCAGCCTTTCAAACCACTCTCTATTGGAGGCATCATCATTCTGAAGGATACCAGTGAAGACATTGAGG AGCTGGTGGAACCTGTGGCAGCACATGGCCCAAAAATCGAGGAGGAGGAACAAGAGCCAGAACCCCCAGAACCAT TTGAGTATATTGATGATTAAGGGCCAGAGGATCTCACTTGCTTATCTGAAGAAGATTGTCCAGGCTCATATTGGG AATGCTTATGAGGAAATTCATGCCGAGACCTGCTATTCAATGCATGTATCGTTGCCTCTGCACTGACCTGAAGAA CCCTGTCTCCAAGTCTTTGGTTGAAGAGAAGATATATGACTGTTGAGTGTGCTCTTTCACAGAACTTGGTTTTCA AATAAATATAAGATCTCCAGATGGACAAG

PCT/HS2003/028547

1078/6881 FIGURE 1007

CAGGAACCTGAGGAGGAGCTGCCACTAACAGCCATATTTCCCAATGGAGACTGTGATGACCTTGGAAGGGGGTCA AAAGCCTGTGATGGAGTCGTACACACTCCTGCTGAGCCCACCGGAGACTCAAGATGAAGGCTGGACCCTTGCGCT GTCCCTGGCTCTAACCTACAGACTGGGGCCTGGCTCCGTCTTACTGGCCCCCAGGTCTCCATGGAGACTGCAGAA ACCCCGCCTGCTGGAGGCCTGCCACACTCACAGTTACCAGCTAGACAGTGGGGCTTACTAAGACAAGCAGGACC TAAAACAGTGTCTCCCCTGGGAACCTACTCCCCACCCAGCATTTGCTAAGTCTGATCACAGGGAGGTTATTTTGT CTCTCTCTCTCGGTTTCTCTGAGCCACTGAGACAGATGGCTGTCCGCTTTGAGGCTCTGCAGAGCTGTGGCACCC CATGGTGTGTCTGCAGTGTTCTGGGCACATGCATGGGCACCCATCGTTGAGAGTGCAGCTGGGAAGAACTCTGAA CCAGAAGTCATCAGAGCTGAGGCATGGCCTTGAACATGTCACTCAGTCTCTGGGGCTTCTGTTTCACAAATGCAT TTGAGGGGGTCACAGTGACTGTGGGGGCACCCCTGGCATCTAGTGGGCATCCCACAATGTGCAGAACAGTCTCTG ACAGCAAAGAATTGGTCCATTCAATGCCAATTGTAGTACCTTTGAGACATTCTGGCTGAGCCAATGCCTTCTCCC TGTCAGAGTCCCCCAGAGCAGAGGGGTCAGGCTTCCCTGGACCTTGGCTCCCAGAGCAAGCCAAAATAAAGACT ACACTGTTGCCTTGGGGGCTTGTCGGGCCAGGGCCAAGACGGTCTGCGTGCTGCAGGGCCAGGACAGAAATAGCC ACACATGCCGGTGAGAACAAAGAGCCTCTTTCTTTCTCATGTTGACATCGACTTTCTGTGCCAAGTCCTTTGGGT ATAAGGATGCTAGGGAATTCCTATAGGCACCAAACAGAAGGAAAGCTAGGGGCTTGGACTACTGGGTATAGGACT TGCTCTAGCTCTCAGGTCCTAGCCCAAGCTCAATGCAAACACAGCCCCTCCGGGCTCTCTGTTTCTGTGAGGTTC TGGAATCCCTTCCTCTGTGTCCGTGAGTCTGACAGAATCGATGATGTTCCCTTAGAGCTGGGAAATCCATGTGTT CAGTTTACGCAGCAGACACACACTGCGCCTACTATTTGCTCGGTGCCCTGCAAGGTGCTGCCTAACTTTGATTT GTTATTTCAGCTCTCTCCAGGATAGTGCCAAATGGTGCAATGGGAAACCTGTTTTGCTGGGGGGCTCTAGATCAC TGGCTCCAGAACTCCCGGCTGCCAGGGTAGCCCCTACCCCCAGCCCCTTGCTCCTGGACAGCAGTGGGTCTCACC TTTAGCCTCTGCCCCAGTTCTGGTCTGACCCAACAGAGGGGCTCTATGATATTAAGAAGGGGCCCTTCCTGCTC ATCTATCCAGCTGCTTCCTTGTAGCCAAGAATGAGTTCAATGAATTGTGATTCACTGATTTTATTGATTTTGTTT TAAAACAGGGAGACTGGTATTTTTGAAGCTGCTATCATTTCTATTTCTTTATTAATTTCTTTGTAATCATCTTA TTAAAGTTTTCTTATTTAGTGGG

PCT/US2003/028547

FIGURE 1008

METVMTLEGGQKPVMESYTLLLSPPETQDEGWTLALSLALTYRLGPGSVLLAPRSPWRLQKPPPAGGLPHSQLPA ROMGLIRQAGPKTVSPLGTYSPPSIC

PCT/HS2003/028547

FIGURE 1009

GGGACGCGAGCGGGATCCAAACTTCCGGTGCCTGCAGAGCTCGGAGCGGGGGGGAGGCAGAGACCGAGGCTGCACCG TCAAGGGCGACAAGGCTGACAAGGCGTCGGCCTCGGCCCTCGGCCTCGGCCACCGAGATCCTGCTGACGC TGGGCATGGTCGTGCTCATGGGCCTCGTGTTCGCCTCTGTCTACATCTACAGATACTTCTTCCTTGCGCAGC TGGCCCGAGATAACTTCTTCCGCTGTGGTGTGCTGTATGAGGACTCCCTGTCCTCCCAGGTCCGGACTCAGATGG AGCTGGAAGAGGGTGTGAAAATCTACCTCGACGAGAACTACGAGCGCATCAACGTGCCTGTGCCCCAGTTTGGCG GCGGTGACCCTGCAGACATCATCCATGACTTCCAGCGGGGTCTGACTGCGTACCATGATATCTCCCTGGACAAGT GCTATGTCATCGAACTCAACACCACCATTGTGCTGCCCCCTCGCAACTTCTGGGAGCTCCTCATGAACGTGAAGA GGGGGACCTACCTGCCGCAGACGTACATCATCCAGGAGGAGATGGTGGTCACGGAGCATGTCAGTGACAAGGAGG $\tt CCCTGGGGTCCTTCATCTACCACCTGTGCAACGGGAAAGACACCTACCGGCTCCGGCGCCGGGCAACGCGGAGGC$ GGATCAACAAGCGTGGGGCCAAGAACTGCAATGCCATCCGCCACTTCGAGAACACCTTCGTGGTGGAGACGCTCA TCTGCGGGGTGTGTGAGGCCCTCCTCCCCCAGAACCCCCTGCCGTGTTCCTCTTTTCTTCTTCTCCGGCTGCTCT CTGGCCCTCCTCCCTCCCTGCTTAGCTTGTACTTTGGACGCGTTTCTATAGAGGTGACATGTCTCCCATTCC TCTCCAACCCTGCCCACCTCCCTGTACCAGAGCTGTGATCTCTCGGTGGGGGGCCCATCTCTGCTGACCTGGGTG TGGCGGAGGGAGAGGCGATGCTGCAAAGTGTTTTCTGTGTCCCACTGTCTTGAAGCTGGGCCTGCCAAAGCCTGG GCCCACAGCTGCACCGGCAGCCCAAGGGGAAGGACCGGTTGGGGGAGCCGGGCATGTGAGGCCCTGGGCAAGGGG ? ATGGGGCTGTGGGGGGGGGGGGCATGGGCTTCAGAAGTATCTGCACAATTAGAAAAGTCCTCAGAAGCTTTTTC TTGGAGGGTACACTTTCTTCACTGTCCCTATTCCTAGACCTGGGGCTTGAGCTGAGGATGGGACGATGTGCCCAG GGAGGGACCCACCAGAGCACAAGAGAAGGTGGCTACCTGGGGGTGTCCCAGGGACTCTGTCAGTGCCTTCAGCCC ACCAGCAGGAGCTTGGAGTTTGGGGAGTGGGGATGAGTCCGTCAAGCACAACTGTTCTCTGAGTGGAACCAAAGA AGCAAGGAGCTAGGACCCCCAGTCCTGCCCCCAGGAGCACAAGCAGGGTCCCCTCAGTCAAGGCAGTGGGATGG GCGGCTGAGGAACGGGGCAGGCAAGGTCACTGCTCAGTCACGTCCACGGGGGACGAGCCGTGGGTTCTGCTGAGT ${\tt AGGTGGAGCTCATTGCTTTCTCCAAGCTTGGAACTGTTTTGAAAGATAACACAGAGGGAAAGGGAGAGCCACCTG}$ GTACTTGTCCACCCTGCCTCCTCTGTTCTGAAATTCCATCCCCCTCAGCTTAGGGGAATGCACCTTTTTCCCTTT CCTTCTCACTTTTGCATGTTTTTACTGATCATTCGATATGCTAACCGTTCTCAGCCCTGAGCCTTGGAGAGGAGG GCTGTAACGCCTTCAGTCAGTCTCTGGGGATGAAACTCTTAAATGCTTTGTATATTTTCTCAATTAGATCTCTTT TCAGAAGTGTCTATAGAACAATAAAAATCTTTTACTTCTG

PCT/US2003/028547

FIGURE 1010

MVKISFQPAVAGIKGDKADKASASAPAPASATEILLTPAREEQPPQHRSKRGGSVGGVCYLSMGMVVLLMGLVFA SVYIYRYFFLAQLARDNFFRCGVLYEDSLSSQVRTQMELEEDVKIYLDENYERINVPVPQFGGGPPADIIHDFQR GLTAYHDISLDKCYVIELNTITUPPRNFWELLMNVKRGTYLPQTYIIQEEMVVTEHVSDKEALGSFIYHLCNGK DIYRLARRATRRRINKRGAKNCNAIRHFENTFVVETLICGVV

PCT/IIS2003/028547

1082/6881 FIGURE 1011

PCT/IIS2003/028547

FIGURE 1012

GTTTTGCCTGCTAGCATCTCCCTGTAACTCTCCCAATCTTGAGGAGTGATCCCTGTCCCCAGCCCCTGGAAAGGGG TGCACCAGAAGCTGGGGATCGCCTATGCCATACACAAGCCATTTCCCTTCTTTGAAGGCCTCCTAGACAACTCCA TCATCACTAAGAGAATGTACATGGAATCTCTGGAAGCCTGTAGAAATTTGATCCCTGTATCCAGAGTGGTGCACA ACATTCTCACCCAACTGGAGAGGACTTTTAACCTGTCTCTTCTGGTGACATTGTTCAGTCAAATTAACCTGCGTG AATATCCCAATCTGGTGACGATTTACAGAAGCTTCAAACGTGTTGGTGCTTCCTATGAACGGCAGAGACACA CACAACCCCTCAACCAAGCTGTTCACCCTGTGCGCCAAGAGTCAGTGAGCCTGGAACATCCTCCCAGCAAAGCG TCACTAGCACTGTGCAAGTGGCCAGTGACAACCTGATCCCCCAAATAAGAGATAAAGAAGACCCTCAAGAGATGC CCCACTCTCCCTTGGGCTCTATGCCAGAGATAAGAGATAATTCTCCAGAACCAAATGACCCAGAAGAGCCCCAGG AGGTGTCCAGCACACCTTCAGACAAGAAAGGAAAGAAAAGAAAAGATGTATCTGGTCAACTCCAAAAAAGGAGAC ATAAGAAAAAAGCCTCCCAAGAGGGACAGCCTCATCTAGACACGGAATCCAAAAGAAGCTCAAAAGGGTGGATC AGGTTCCTCAAAAGAAGATGACTCAACTTGTAACTCCACGGTAGAGACAAGGGCCCAAAAGGCGAGAACTGAAT TGGATAAGGTGACTCAAAGGAAAGACGACTCAACCTGGAACTCAGAGGTCATGATGAGGGTCCAAAAAGGCAAGAA TTCAGAAAAATATTCACCGAAGAGGAAAACCCAAAAGTGACACTGTGGATTTTCACTGTTCTAAGCTCCCCGTGA CCTGTGGTGAGGCGAAAGGGATTTTATATAAGAAGAAAATGAAACACGGATCCTCAGTGAAGTGCATTCGGAATG ATATACGTTGTGAAGGAATGACCCTAGGAGAGCTGCTGAAGCGGAAAAACTCGGATGAATGCGAGGTGTGCTGTC AAGGGGGACAACTTCTCTGCTGCGGTACTTGTCCACGAGTCTTCCATGAGGACTGTCACATCCCCCCTGTGGAAG CCAAGAGGATGCTGTGGAGTTGCACCTTCTGCAGGATGAAGAGGTCTTCAGGAAGCCAACAGTGCCATCATGTAT CTAAGACCCTGGAGAGGCAGATGCAGCCTCAGGACCAGCTGATTCGAGATTACGGTGAGCCCTTTCAGGAAGCAA TGTGGTTGGACCTGGTTAAGGAAAGGCTGATTACGGAAATGTACACGGTGGCATGGTTTGTGCGAGACATGCGCC TGATGTTTCGCAACCATAAAACATTTTACAAGGCTTCTGACTTTGGCCAGGTAGGACTTGACTTAGAGGCAGAAT ${ t TTGAAAAAGATCTCAAAGACGTGCTCGGTTTTCATGAAGCCAATGACGGCGGTTTCTGGACTCTTCCT{ t TGACCCT}$ GTTCTGTAAAGACTGAAGCATCCCCACCTCAGGATTCAGCTGATGGGACCCTGGCTTGGACTGTTGATTGCCAGT GAGTCTGGGATGTAATTGGCTGCCCTCAGGACCCAAACCCAGACACTTCATAGGATTATCACACCCTCCATCTT ATTCTTTCTTTTTACCTTTAAAAGTCTATATCTA

PCT/US2003/028547

FIGURE 1013

MFTMTRAMEBALFQHFMHQKLGIAYAIHKPFPFFEGLLDNSIITKRMYMESLEACRNLIPVSRVVHNILTQLERT FNLSLLVTLFSQINLKEYPNLVTIYRSFKRVGASYERQSRDTBILLEAFTGLAEGSSLHTPLALPFPQPPQPSSC PCAPRVSEPGTSSQQSDEILSSSPSSDPVLPLPALIQEGRSTSVINDKLTSKMABEDSEEMPSLLISTVOVAS DNLIPQIROKEDPQEMPHSPLGSMPEIRDNSFEPNDPSEPGEVSSTPSDKKGKKRKRCIWSTPKRRHKKKSLPRG TASSRIGIQKKLKRVDQVPQKKDDSTCNSTVETRAQKARTECARKSRSEEIIDGTSEMNEGKRSQKTBSTRRNY QGAASPGIGIQEKQVDKVTQRKDDSTWNSEVMMRVQKARTKCARKSRSKEKKKEKDICSSSKRFQKNIHRRG KRSDTVDFHCSKLPVTCGEAKGILYKKKMKHGSSVKCIRNEDGTWLTPNFFEVEGKGRNAKNWKRNIRCEGMTL GELLKRKNSDECEVCQGGQLLCCGTCPRVFHEDCHIPPVEAKRMLWSCTFCRWKRSSGQCHHVSKTLERQMQ PQDQLIRDYGEPFQEAMWLDLVKERLITEMYTVAWFVRDMRLMFRNHKTFYKASDFGQVGLDLEAEFEKDLKDVL

PCT/US2003/028547

FIGURE 1014

GTTTTGCCTGCTAGCATCTCCCTGTAACTCTCCCAATCTTGAGGAGTGATCCCTGTCCCAGCCCCTGGAAAGGGG CAGGAACGACAAACTCAAAGTCCAGGATGTTCACCATGACAAGAGCCATGGAAGAGGCTCTTTTTCAGCACTTCA TGCACCAGAAGCTGGGGATCGCCTATGCCATACACAAGCCATTTCCCTTCTTTGAAGGCCTCCTAGACAACTCCA TCATCACTAAGAGAATGTACATGGAATCTCTGGAAGCCTGTAGAAATTTGATCCCTGTATCCAGAGTGGTGCACA ACATTCTCACCCAACTGGAGAGGACTTTTAACCTGTCTCTTCTGGTGACATTGTTCAGTCAAATTAACCTGCGTG AATATCCCAATCTGGTGACGATTTACAGAAGCTTCAAACGTGTTGGTGCTTCCTATGAACGGCAGAGCAGAGACA CACAACCCCTCAACCAAGCTGTTCACCCTGTGCGCCAAGAGTCAGTGAGCCTGGAACATCCTCCCAGCAAAGCG TCACTAGCACTGTGCAAGTGGCCAGTGACAACCTGATCCCCCAAATAAGAGATAAAGAAGACCCTCAAGAGATGC CCCACTCTCCCTTGGGCTCTATGCCAGAGATAAGAGATAATTCTCCAGAACCAAATGACCCAGAAGAGCCCCAGG ATAAGAAAAAAAGCCTCCCAAGAGGGACAGCCTCATCTAGACACGGAATCCAAAAGAAGCTCAAAAGGGTGGATC AGGTTCCTCAAAAGAAGATGACTCAACTTGTAACTCCACGGTAGAGACAAGGGCCCAAAAAGGCGAGAACTGAAT CGCCTAGTACACCACGAAGGGTCACACAAGGGGCAGCCTCACCTGGGCATGGCATCCAAGAGAAGCTCCAAGTGG TGGATAAGGTGACTCAAAGGAAAGACGACTCAACCTGGAACTCAGAGGTCATGATGAGGGTCCAAAAAGGCAAGAA TTCAGAAAAATATTCACCGAAGAGGAAAACCCAAAAGTGACACTGTGGATTTTCACTGTTCTAAGCTCCCCGTGA CCTGTGGTGAGGCGAAAGGGATTTTATATAAGAAGAAAATGAAACACGGATCCTCAGTGAAGTGCATTCGGAATG ${\tt ATATACGTTGTGAAGGAATGACCCTAGGAGAGCTGCTGAAGAGTGGACTTTTGCTCTGTCCTCCAAGAATAAATC}$ ${\tt TCAAGAGAGAGTTAAATAGCAAG\underline{{\tt TGA}}{\tt ATTTCTACTACCCTCTCAGTCACCATGTTGCAGACTTTCCCTGTCTGGA}$ GGCTCACCTTAGAGCTTCTGAGTTTCCAAGCTCTGAGTCACCTCCACATTTGGGCATGGCATCTTCAAAACAATT AAAAAAAAAAA

PCT/US2003/028547

1086/6881 FIGURE 1015

MFTMTRAMEBALFOHFMHQKLGIAYAIHKPFPFFEGLLDNSIITKRMYMESLEACRNLIPVSRVVHNILTQLERT FNLSLLVTLFSQINLREYFNLVTIYRSFKRVGASYERQSRDTPILLEAPTGLAEGSSLHTPLALPPPQPPOPSC PCRYSSPGTSSQQSDETLSSSSPSDDVLPLPALIQEGRSTSVTNDKLTSKMNAEEDSEMPSLLTSTVQVAS DNLIPQIRDKEDPQEMPHSPLGSMPEIRDNSPEPNDPEEPQEVSSTPSDKKGKKRKRKCIMSTFKRRKKKSLPRG TASSRHGIQKKLKRVDQVPQKKDDSTCNSTVETRAQKARTECARKSRSEEIDGTSEMNEGKRSQKTPSTPRRVT QGAASPGHGIQEKLQVVDKVTQRKDDSTWNSEVMMRVQKARTKCARKSRSKEKKKEKDICSSSKRRFQKNIHRRG KEKSDTVDFHCSKLPVTCGEAKGILYKKKMKHGSSVKCIRNEDGTWLTPNEFEVEGKGRNAKNWKRNIRCEGMTL GELLKSGLLLCPPRINLKRELNSK

PCT/HS2003/028547

1087/6881 FIGURE 1016

GTTTTGCCTGCTAGCATCTCCCTGTAACTCTCCCAATCTTGAGGAGTGATCCCTGTCCCAGCCCCTGGAAAGGGG CAGGAACGACAAACTCAAAGTCCAGG<u>ATG</u>TTCACCATGACAAGAGCCATGGAAGAGGCTCTTTTTCAGCACTTCA TGCACCAGAAGCTGGGGATCGCCTATGCCATACACAAGCCATTTCCCTTCTTTGAAGGCCTCCTAGACAACTCCA TCATCACTAAGAGAATGTACATGGAATCTCTGGAAGCCTGTAGAAATTTGATCCCTGTATCCAGAGTGGTGCACA ACATTCTCACCCAACTGGAGAGGACTTTTAACCTGTCTCTTCTGGTGACATTGTTCAGTCAAATTAACCTGCGTG AATATCCCAATCTGGTGACGATTTACAGAAGCTTCAAACGTGTTGGTGCTTCCTATGAACGGCAGAGCAGAGACA CACAACCCCCTCAACCAAGCTGTTCACCCTGTGCGCCAAGAGTCAGTGAGCCTGGAACATCCTCCCAGCAAAGCG TCACTAGCACTGTGCAAGTGGCCAGTGACAACCTGATCCCCCAAATAAGAGATAAAGAAGACCCTCAAGAGATGC CCCACTCTCCCTTGGGCTCTATGCCAGAGATAAGAGATAATTCTCCAGAACCAAATGACCCAGAAGAGCCCCAGG AGGTGTCCAGCACACCTTCAGACAAGAAAGGAAAGAAAAGAAAAAGATGTATCTGGTCAACTCCAAAAAGGAGAC ATAAGAAAAAAGCCTCCCAAGAGGGACAGCCTCATCTAGACACGGAATCCAAAAGAAGCTCAAAAGGGTGGATC AGGTTCCTCAAAAGAAAGATGACTCAACTTGTAACTCCACGGTAGAGACAAGGGCCCAAAAAGGCGAGAACTGAAT CGCCTAGTACACCACGAAGGGTCACACAAGGGGCAGCCTCACCTGGGCATGGCATCCAAGAGAAGCTCCAAGTGG TGGATAAGGTGACTCAAAGGAAAGACGACTCAACCTGGAACTCAGAGGTCATGATGAGGGGTCCAAAAAGGCAAGAA TTCAGAAAAATATTCACCGAAGAGGGAAAACCCAAAAGTGACACTGTGGATTTTCACTGTTCTAAGCTCCCCGTGA CCTGTGGTGAGGCGAAAGGGATTTTATATAAGAAGAAAATGAAACACGGATCCTCAGTGAAGTGCATTCGGAATG ATATACGTTGTGAAGGAATGACCCTAGGAGAGCTGCTGAAGCGGAAAAACTCGGATGAATGCGAGGTGTGCTGTC AAGGGGGACAACTTCTCTGCTGCGGTACTTGTCCACGAGTCTTCCATGAGGACTGTCACATCCCCCCTGTGGAAG CCAAGAGGATGCTGTGGAGTTGCACCTTCTGCAGGATGAAGAGGTCTTCAGGAAGCCAACAGTGCCATCATGTAT CTAAGACCCTGGAGAGGCAGATGCAGCCTCAGGACCAGCTGAAATGTGAGTTCCTCCTCTTGAAGGCCTACTGTC ATCCACAAAGCTCCTTTTTTACGGGCATCCCATTTAATATTCGAGATTACGGTGAGCCCTTTCAGGAAGCAATGT GGTTGGACCTGGTTAAGGAAAGGCTGATTACGGAAATGTACACGGTGGCATGGTTTGTGCGAGACATGCGCCTGA TGTTTCGCAACCATAAAACATTTTACAAGGCTTCTGACTTTGGCCAGGTAGGACTTGACTTAGAGGCAGAATTTG AAAAAGATCTCAAAGACGTGCTCGGTTTTCATGAAGCCAATGACGGCGGTTTCTGGACTCTTCCT<u>TGA</u>CCCTGTT CTGTAAAGACTGAAGCATCCCCACCTCAGGATTCAGCTGATGGGACCCTGGCTTGGACTGTTGATTGCCAGTGAG TCTGGGATGTAATTGGCTGCCCTCAGGACCCAAACCCAGACACTTCATAGGATTATCACACCCTCCATCTTATT CTTTCTTTTTACCTTTAAAAGTCTATATCTA

PCT/HS2003/028547

1088/6881 FIGURE 1017

MFTMTRAMEEALFQHFMHQKLGIAYAIHKPFPFFEGLLDNSIITKRMYMESLEACRNLIPVSRVVHNILTQLERT FNLSLLVTLFSQINLREYPNLVTIYRSFKRVGASYERQSRDTFILLEAFTGLAEGSSLHTPLALPPPQPFQPSC PCAPRVSEPGTSSQQSDEILSSESPSPSDPVLPLPALIQEGRSTSVTNDKLTSKMABEDBEEMPSLLISTVOVAS DNLIPQIROKEDPGEMPHSPLGSMPEIRDNSPEPNDPEEPQEVSSTPSDKKGKKRKRCIWSTPKRRHKKKSLPRG TASSRHGIQKKLKRVDQVPQKKDDSTCNSTVETRAQKARTECARKSRSEEIIDGTSEMNEGKRSQKTPSTPRSK GQAASPGHGIQEKLQVVDKVTQRKDDSTVNTSVEWMRVQKARTKCARKSRSEKKKEKDICSSSKRFFQKNIHRRG KPKSDTVDFHCSKLPVTCGEAKGLIYKKKWKHGSSVKCIRNEDGTWLTPNEFEVEGKGRNAKNWKRNIRCEGMTL GELLKRKNSDECEVCCQGGQLLCGTCPRVFHEDCHIPPVEAKRMLWSCTFCRWKRSSGSQCHHVSKTLERQMQ PQDQLKCEFLLLKAYCHPQSFFTGIPFNIRDYGEPFQEAMWLDLVKERLITEMYTVAWFVRDMRLMFRNHKTFY KASDFQQVGLDLEAEFEKDLKDVJCGFHEANDGGFWTLP

PCT/HS2003/028547

1089/6881 FIGURE 1018

ATGCTGGGTACGCTGCGCGCCATGGAGGGCGAGGACGTGGAAGACCACCAGCTGCTGCAGAAGCTCAGGGCCAGT CGCCGCCGCTTCCAGAGGCGCATGCAGCGGCTGATAGAGAAGTACAACCAGCCCTTCGAGGACACCCCGGTGGTG AAAGGAGAGTCCAGGACTCCTCCATGAAGCCCGCGGACAGGACAGATGGCTCCGTGCAAGCTGCAGCCTGGGGT CCTGAGCTTCCCTCGCACCGCACAGTCCTGGGAGCCGATTCAAAAAGCGGTGAGGTCGATGCCACGTCAGACCAG GAAGAGTCAGTTGCTTGGGCCTTAGCACCTGCAGTGCCTCAAAGCCCTTTGAAAAATGAATTAAGAAGGAAATAC TTGACCCAAGTGGATATACTGCTACAAGGTGCAGAGTATTTTGAGTGTGCAGGTAACAGAGCTGGAAGGGATGTA GAAGATGATGACATTTGCAATGTGACCATCAGTGACCTGTACGCAGGGATGCTGCACTCCATGAGCCGGCTGTTG AGCACAAAGCCATCAAGCATCATCTCCACCAAAACGTTCATCATGCAAAACTGGAACTGCAGGAGGAGGAGGACAGA TATAAGAGCAGGATGAACAAAACATATTGCAAAGGAGCCAGACGTTCTCAGAGGAGCTCCAAAGGAGAACTTCATA ACAGGTTTAAAATTGGAAAAAGCTTTTCTTGAAGTCAACAGACCCCAAATCCATAAGTTAGATCCAAGTTGGAAG GAGCGCAAAGTGACACCCTCGAAGTATTCTTCCTTGATTTACTTCGACTCCAGTGCAACATATAATCTTGATGAG GAAAATAGATTTAGGACATTAAAATGGTTAATTTCTCCTGTAAAAATAGTTTCCAGACCAACAATACGACAGGGC CATGGAGAGAACCGTCAGAGGGAGATTGAAATCCGATTTGATCAGCTTCATCGGGAATATTGCCTGAGTCCCAGG AACCAGCCTCGCCGGATGTGCCTCCCGGACTCCTGGGCCATGAACATGTACAGAGGGGGTCCTGCGAGTCCTGGT GGCCTTCAGGGCTTAGAAACCCGCAGGCTGAGTTTACCTTCCAGCAAAGCAAAAGCAAAAGTTTAAGTGAGGCT AAGACCAACCCCACACACAGGGGCAACTCGCCCGCAGCAGACATCTGACCTTCACGTTCAGGGAAATAGTTCTGGA CGTTACGATGAAATTAAAGAAGAATTTGACAAGCTTCATCAAAAGTATTGCCTCAAATCTCCTGGGCAGATGACA GTGCCTTTATGTATTGGAGTGTCTACAGATAAAGCAAGTATGGAAGTTCGATATCAAACAGAAGGCTTCTTAGGA AAATTAAATCCAGACCCTCACTTCCAGGGTTTCCAGAAGTTGCCATCATCACCCCTGGGGTGCAGAAAAAGTCTA CTGGGCTCAACTGCAATTGAGGCTCCTTCATCTACATGTGTTGCTCGTGCCATCACGAGGGATGGCACGAGGGAC CATCAGTTCCCTGCAAAAAGACCCAGGCTATCAGAACCCCAGGGCTCCGGACGCCAGGGCAATTCCCTGGGTGCC GAGAACACGTCTTACAGGATGGAAGAGAAAAGTGATTTCATGCTAGAAAAATTGGAAACTAAAAGTGTG<u>TAG</u>CTA GGTTATTTCGGAGTGTTATTTATCTTCCCACTTGCTCTCTGTTTGTATTTTTGTTTTTGTTTTTGATTCTTGAGAC TGTGAGGACTTGGTTGACTTCTCTGCCCTTAAAGTAAATATTAGTGAAATTGGTTCCATCAGAGATAACCTCGAG

PCT/IIS2003/028547

1090/6881 FIGURE 1019

MLHSMSRLLSTKPSSIISTKTFIMQNWNCRRRHRYKSRMNKTYCKGARRSQRSSKENFIPCSEPVKGTGALRDCK NVLDVSCRKTGLKLEKAFLEVNRFQIHKLDPSWKERKVTPSKYSSLIYEDSSATYNLDEENRFRTLKKLLISPVK VSRPTIRQGHGENRQREIEIRFDQLHREYCLSPRNQPRRMCLPDSWAMMWNRGGPASPGGLGGLETRISLIPSK AKAKSLSEAFFNLGKRSLEAGRCLPKSDSSSSLPKTNPTHSATRPQQTSDLHVQGNSSGIFRKSVSPSKTLSVPD KEVPGHGRNRYDEIKEEFDKLHQKYCLKSPGQMTVPLCIGVSTDKASMEVRYQTEGFLGKLNPDFHFQGFQKLPS SPLGCRKSLLGSTAIEAPSSTCVARAITRDGTRDHQFPAKRPRLSEPQGSGRQGNSLGASDGVDNTVRPGDQGSS SQPNSEERGENTSYRMEEKSDFMLEKKETKSV

PCT/HS2003/028547

1091/6881 FIGURE 1020

A RANCETCCEGATEGCCTCEGGG ACTGCCAGTGTGTGGGGGTGAGCTCCGGGATTGCCGGCATTCCCGCTTCT AGTGACATGTCGTCGGGCCTCCGCCCCCTGACTTCCCCCGCTGGAAGCGCCACATCTCGGAGCAACTGAGGCGC CGGGACCGGCTGCAGAGACAGGCGTTCGAGGAGATCATCCTGCAGTATAACAAATTGCTGGAAAAGTCAGATCTT CATTCAGTGTTGGCCCAGAAACTACAGGCTGAAAAGCATGACGTACCAAACAGGCACGAGATAAGTCCCGGACAT TTACACAAGAACGTGGGGAGTTAGCTCAACTGGTGATTGACCTGAATAACCAAATGCAGCGGAAGGACAGGGAG ATGCAGAAAGAGCTTGCAGAAGCAACGCAAAGGAACCTCTACCAGTCGAACAGGATGATGACATTGAGGTCATTGTG GATGAAACTTCTGATCACACAGAAGAGACCTCTCCTGTGCGAGCCATCAGCAGAGCAGCCACTAAGCGACTCTCG CAGCCTGCTGGAGGCCTTCTGGATTCTGTCACTAATATCTTTGGGAGACGCTCTGTCTCTTCCCAGTCCCC CAGGACAATGTGGATACTCATCCTGGTTCTGGTAAAGAAGTGAGGGTACCAGCTACTGCCTTGTGTCTTCGAT GCACATGATGGGGAAGTCAACGCTGTGCAGTTCAGTCCAGGTTCCCGGTTACTGGCCACTGGAGGCATGGACCGC AGGGTTAAGCTTTGGGAAGTATTTGGAGAAAAATGTGAGTTCAAGGGTTCCCTATCTGGCAGTAATGCAGGAATT ACAAGCATTGAATTTGATAGTGCTGGATCTTACCTCTTAGCAGCTTCAAATGATTTTGCAAGCCGAATCTGGACT AAGGCACAAACTGGCAGGTGCTTAATTAGGGGACTTTGTTTTCCCCAAAAATCATGCTTGATTCACCCTGCCCTTC CTTTCCTCCTTGGGGAAATCTGTGTTTTCCACTTTATACTCTTTGTCCAAAACTCAGTTTCAAAATATTTGCAATG GGACCCTCACATTTGCATGAAAACCTTGGAATACTCTTCATAAGGACTAAATACTTTGGTAGATAGCAATTTTGG CTTAATGGCACAGAACTTAGCAACAGCATGTGAATTGTGATTCCTGTGGGCTCTAAAACCTAATTACCTAAAGTG GGATATAGAAGTACAAATGGATGTATCATAGGGATAAGACAATTCTGAAACAAAAACTCCAAGCTGAGAAAAAGGG GGACAGGTGTCAGAGCAGGGAGAAATGATTGGATGTTGAGGAAAGCTGCATTTGAACCAAAACTTGCCAAGAATT TGTAACTTAATTTGCAGACATTTTTTTTCCCCATAAGCCTGAAGGAATCATCACATAAGCTTATTAAATACAAGC TATTGAAAGATATAATGGAGGATGAATTTGGCATTAGTAGGCATTTTACT

PCT/US2003/028547

1092/6881 FIGURE 1021

MSSGLRAADFPRWKRHISEQLRRRDRLQRQAFEEIILQYNKLLEKSDLHSVLAQKLQAEKHDVPNRHEISPGHDG TWNDNQLQEMAQLRIKHQEELTELHKKRGELAQLVIDLNNQMQRKDREMQKELAEAAKEPLEVEQDDDIEVIVDE TSBHTEETSPVRAISRAATKRLSQPAGGLLDSVTNIFGRRSVSSFEVPQDNVDTHPGSGKEVRVFATALCVFDAH DGEVNAVQFSPGSRLLATGGMDRRVKLWEVFGEKCEFKGSLSGSNAGITSIEFDSAGSYLLAASNDFASRIWTVD DYKLRVRFS WO 2004/030615 PCT/US2003/028547

1093/6881 FIGURE 1022A

AAGAGAGAAGGCTTCTGCCAGCTCCTGCAGCAGATGAAGAACAAGCACTCAGAGCAGCCGGAGCCCGACATGATC GGGCAGGGAAAGACGCGGGACGACTCTGCGGACTACATCCCCCATGACATTTACGTGATCGGCACCCAAGAGGAC CCCCTGAGTGAGAAGGAGTGGCTGGAGATCCTCAAACACTCCCTGCAAGAAATCACCAGTGTGACTTTTAAAACA GTCGCCATCCACACGCTCTGGAACATCCGCATCGTGGTGCTGGCCAAGCCTGAGCACGAGAACCGGATCAGCCAC ATCTGTACTGACAACGTGAAGACAGGCATTGCAAACACTGGGGAACAAGGGAGCCGTGGGGGTGTCGTTCATG TTCAATGGAACCTCCTTAGGGTTCGTCAACAGCCACTTGACTTCAGGAAGTGAAAAGAAACTCAGGCGAAACCAA ACGCACCTCTTCTGGTTTGGGGATCTTAACTACCGTGTGGATCTGCCTACCTGGGAGGCAGAAACCATCATCCAG AAAATCAAGCAGCAGCAGTACGCAGACCTCCTGTCCCACGACCAGCTGCTCACAGAGAGGAGGAGGAGCAGAAGGTC GCCTACACCAAGCAGAAAGCGACAGGGATGAAGTACAACTTGCCTTCCTGGTGTGACCGAGTCCTCTGGAAGTCT TATCCCCTGGTGCACGTGGTGTCAGTCTTATGGCAGTACCAGCGACATCATGACGAGTGACCACAGCCCTGTC TTTGCCACATTTGAGGCAGGAGTCACTTCCCAGTTTGTCTCCAAGAACGGTCCCGGGACTGTTGACAGCCAAGGA CAGATTGAGTTTCTCAGGTGCTATGCCACATTGAAGACCAAGTCCCAGACCAAATTCTACCTGGAGTTCCACTCG TTTGGTGAGACTCTTCCAAAGCTGAAGCCCATTATCTCTGACCCTGAGTACCTGCTAGACCAGCACATCCTCATC AGCATCAAGTCCTCTGACAGCGACGAATCCTATGGCGAGGGCTGCATTGCCCTTCGGTTAGAGGCCACAGAAACG CAGCTGCCCATCTACACGCCTCTCACCCACCATGGGGAGTTGACAGGCCACTTCCAGGGGGAGATCAAGCTGCAG ACCTCTCAGGGCAAGACGAGGGAGAAGCTCTATGACTTTGTGAAGACGGAGCGTGATGAATCCAGTGGGCCAAAG ACCCTGAAGAGCCTCACCAGCCACGACCCCATGAAGCAGTGGGAAGTCACTAGCAGGGCCCCTCCGTGCAGTGGC TCCAGCATCACTGAAATCATCAACCCCAACTACATGGGAGTGGGGCCCTTTGGGCCACCAATGCCCCTGCACGTG AAGCAGACCTTGTCCCCTGACCAGCCCACAGCCTGGAGCTACGACCAGCCGCCCAAGGACTCCCCGCTGGGG CCCTGCAGGGGAGAAAGTCCTCCGACACCTCCCGGCCAGCCGCCCATATCACCCCAAGAAGTTTTTACCCTCAACA GCAAACCGGGGTCTCCCTCCCAGGACACAGGAGTCAAGGCCCAGTGACCTGGGGAAGAACGCAGGGGACACGCTG ATCTTGTCGCCCAGCATCGTGCTCACCAAAGCCCAGGAGGCTGATCGCGGCGAGGGGCCCGGCAAGCAGGTGCCC GCGCCCCGGCTGCGCTCCTTCACGTGCTCATCCTCTGCCGAGGGCAGGGCGGCGGCGGGGGACAAGAGCCAAGGG AAGCCCAAGACCCCGGTCAGCTCCCAGGCCCCGGTGCCGGCCAAGAGGCCCATCAAGCCTTCCAGATCGGAAATC GGCGTGAAGCCACTGGACCCTCTCCCGGGACCTCCTGCTGGCTCCTGCCCAGCTTCCTATGCAAGGCTTTGT GTTTTCAGGAAAGGGCCTAGCTTCTGTGGGCCCACAGAGTTCACTGCCTGTGAGACTTAGCACCAAGTGCTGAG AGTGCCTCGTTGAGGGCGCCATTCTGAAGAAAGGAACTGCAGCGCCGATTTGAGGGTGGAGATATAGATAATAAT AATATTAATAATAATAATGGCCACATGGATCGAACACTCATGATGTGCCAAGTGCTGTGCTAAGTGCTTTACGAA CATTCGTCATATCAGGATGACCTCGAGAGCTGAGGCTCTAGCCACCTAAAACCACGTGCCCAAACCCACCAGTTT AAAACGGTGTGTGTCGGAGGGGTGAAAGCATTAAGAAGCCCAGTGCCCTCCTGGAGTGAGACAAGGGCTCGGCC TTAAGGAGCTGAAGAGTCTGGGTAGCTTGTTTAGGGTACAAGAAGCCTGTTCTGTCCAGCTTCAGTGACACAAGC TGCTTTAGCTAAAGTCCCGCGGGTTCCGGCATGGCTAGGCTGAGAGCAGGGATCTACCTGGCTTCTCAGTTCTTT GGTTGGAAGGAGCAGGAAATCAGCTCCTATTCTCCAGTGGAGAGATCTGGCCTCAGCTTGGGCTAGAGATGCCAA GGCCTGTGCCAGGTTCCCTGTGCCCTCCTCGAGGTGGGCAGCCATCACCAGCCACAGTTAAGCCAAGCCCCCCAA CATGTATTCCATCGTGCTGGTAGAAGAGTCTTTGCTGTTGCTCCCGAAAGCCGTGCTCTCCAGCCTGGCTGCCAG GGAGGGTGGGCCTCTTGGTTCCAGGCTCTTGAAATAGTGCAGCCTTTTCTTCCTATCTCTGTGGCTTTCAGCTCT GCTTCCTTGGTTATTAGGAGAATAGATGGGTGATGTCTTTCCTTATGTTGCTTTTTCAACATAGCAGAATTAATG ${\tt TAGGGAGCTAAATCCAGTGGTGTGTGTAATGCAGAAGGGAATGCACCCCACATTCCCATGATGGAAGTCTGCGT}$

PCT/US2003/028547

1094/6881 FIGURE 1022B

AACCAATAAATTGTGCCTTTCTCACTCA

PCT/IIS2003/028547

1095/6881 FIGURE 1023

MKNKHSEQPEPDMITIFIGTWNMGNAPPEKKITSWFLSKGQGKTRDDSADYIPHDIYVIGTQEDPLSEKEWLEIL KHSLQEITSVTFKTVAIHTLWNIRIVVLAKPEHENRISHICTDNVKTGIANTLGNKGAVGVSFMFNGTSLGFVNS HITSGSEKKLRRNGNYMNILRFLALGDKKLSFFNTHRFTHLFWFGDLNYRVDLPTWEAETIIQKIKQQYADLL SHDQLLTERREDKYPLHEBEEITFAFTYRFELITHDKYAYTKQKATGMKYNLBSWCDRVLMKSYPLYHVVCQSY GSTSDIMTSDHSPVFATFEAGVTSQFVSKNGPGTVDSQGQIEPLRCYATLKTKSGTKFYLEFHSSCLESFVKSGG EENEBGSBGELVVKFGETLPLKKFIISDPSYLLDGHILISIKSSDSDESYGBGGIALRLEATETQLPIYTPLTHH GELTGHFQGEIKLQTSQGKTREKLYDFVKTREDESSGFSKTLKSLTSHDPMKQWEVTSRAPPCSGSSITEIINPNY MGVGPFGPPMPLHVKGTLSPDQOPTAMSYDQPPKDSPLGPCRGSPPTPPGQPPISPKKFLPSTANRGLPPRTQE SRR SDLGKNAGDTLPQEDLPIKFEMPLYSGLSSFPKPAPRKDQESPKMPRKEPPPCPEFGILSFSIVLTKA QEADRGGGFGKQVPAPRLRFTCSSSAEGRAAGGDKSQGKPKTPVSSQAPVPAKRPIKPSRSEINQQTPPTPTPR PLPLPVKSPAVLHLQHSKGRDYRDNTELPHGKKRPEEGFPGPLGTAMM

PCT/US2003/028547

1096/6881 FIGURE 1024

PCT/US2003/028547

1097/6881 FIGURE 1025

MARALCRLPRRGLWLLLAHHLFMTTACQEANYGALLRELCLTQFQVDMEAVGETLWCDWGRTIRSYRELADCTWH MAEKLGCFWPNAEVDRFFLAVHGRYFRSCPISGRAVRDPPGSILYPFIVVPITVTLLVTALVVWQSKRTEGIV

PCT/IIS2003/028547

1098/6881 FIGURE 1026A

GGCACGAGGCCGCTCCCCGGCGGGCTGGCTCCTGGCCCCGGAAGCGCGAGCGTTCACTTAGCGGCGAGTGGCTCC GTCTCCGCGGACAGAGCGCGCCCCTGGCCCGGCCCGCGAGGGCTCCCGGCGCGTCCCCGAGCATTTCCCG CCGGGTGGAGCGGGCCGAGCCCGGCAGGATGACCAGCCCCGCGGCCGCTCAAAGCCGGGAGATCGACTGTTTGAG CCCGGAAGCGCAGAAGCTGGCGGAAGCCCGGCTCGCTGCAAAACGGGCGGCCCGCGGAGGCTCGCGAGATCCG CATGAAGGAGCTGGAGCGGCAGCAGAAGAGAGAAGACAGTGAGCGCTACTCTCGTAGATCCAGAAGAAACACATC GGCTTCTGATGAAGACGAGCGCATGTCAGTGGGTAGTCGTGGAAGCCTGAGGGTAGAAGAGAGACCAGAAAAAGA AGAAGTTGAAGAGAAATATAAGAAGGCTATGGTTTCCAATGCTCAGCTAGACAATGAAAAGACAAACTTCATGTA GAAAAACAAAGAATTTGAAAGGGAAAAACACGCCCACAGTATACTGCAATTTCAGTTTGCTGAAGTCAAGGAGGC CCTGAAGCAAAGAGAGAAATGCTCGAGAAACATGGAATAATCCTAAATTCAGAAATAGCTACCAATGGAGAGAC TTCCGACACCTCAATAATGTTGGATACCAAGGTCCTACCAAGATGACAAAAGAAGAGTTAAATGCCCTCAAGTC TACAGGGGATGGGACCCTAGGAAGAGCCAGTGAAGTGGAGGTGAAAAATGAAATCGTGGCGAATGTGGGGAAAAA A GAAATCTTGCACAATACTGAGAAAGAACAACACACAGAGGACACAGTGAAGGACTGTGTGGACATAGAGGTATT CCCTGCTGGTGAGAATACCGAGGACCAGAAATCCTCTGAAGACACTGCCCCATTCCTAGGAACCTTAGCAGGTGC TACCTATGAAGAACAGGTTCAAAGCCAAATTCTTGAGAGCAGTTCTCTCCCTGAAAACACAGTTACAGGTTGAGTC AAATGAGGTCATGGGTGCACCAGATGACAGGACCAGAACTCCCCTTGAGCCATCCAACTGTTGGAGTGACTTAGA GTGTCCTTTAGGGCATAGTGATGACACAGTTTATCATGATGACAAATGTATGGTAGAGGTCCCCCAAGAGTTAGA CAGTACAGAAGTAGGGATCACAACGAAGAAGAGGGTGAAGAACAGGATTAAGGGACGAGAAACCAATCAA GACAGAAGTTCCTGGTTCTCCAGCAGGAACTGAGGGCAACTGTCAGGAAGCGACAGGTCCAAGTACAGTAGACAC TCAAAATGAACCCTTAGATATGAAAGAGCCCGATGAAGAAAAGAGTGACCAACAGGGAGAGGCATTGGACTCATC TGTTAAAAAAAGGTTAACGTATCAGAACACAGATTTAAGTGAAATTAAGGAAGAAGAAGAAGCAGGTAAAGTCTACTGA CAGADA GTCAGCAGTGGA A GCCCAADA CGAGGTGACTGADAA TCCADAACAGAAAATTGCAGCAGAAAAGCAGTGA AGCAGCTGAGGAGGTACTAGCTGATGGAGACACATTAGATTTTGAGGATGACACCGTTCAATCATCAGGCCCGAG GGCTGGTGGTGAAGAATTAGATGAAGGTGTTGCAAAAGATAATGCTAAAATAGATGGTGCCACTCAAAGCAGTCC TGCAGAACCAAAGAGCGAAGACGCAGATCGCTGCACCCTGCCCGAACATGAAAGTCCCTCACAGGACATTAGTGA TGCCTGTGAAGCAGAAAGTACAGAGAGGTGTGAGATGTCAGAACATCCAAGTCAGACCGTCAGGAAAGCTTTAGA CAGCAATAGCCTAGAGAACGATGACTTGTCGGCACCAGGAAGAGAGCCAGGGCACTTCAATCCAGAAAGCAGAGA GCGCGGTGCACAGGAAGTCTCAGTGTGAAGGGGTCTTTTCTCTCCACTGCCAATGTAAGTAGAATGTTCTAAATT CATAGAGAGGCACTGTATGACAATTACCAGGTGCTCTACTGCTTTAAGTTATAGACTGTTACTTGTAGATTTCCA TGTAATCATTGAGGTTATCACCCAGATTAGAAAGACATATTTGTTATCAGTGTACGTTCTAATTGAGAGCATTCC AGTAGTATCAAACAATAATGTCTACTGTTTATAGTCCACTTAATAAAAATAGAGGCATTTACTATTTGCCTTAGG $\tt CTGATAGGAATGTGGGTTTTCTTGACCAAATATATCAGCATCTAATTGAAATGACCAAATAGCATTCTTAGACTT$ CTGTATTATGAATATAATTGATATTTAAATTAATGTCTTGTTCACATATGTGTACTTTCATATTTGATTTTAAAA TGTACATTATAACCTGTATGGTATTTTATTTAAAGGAGATAAACAGCCAAATAGCAAATAGGTCACTGAATGATA A GATTTGC ACCTTAGAACAATAATCATTTTAAGGATAACAAGTAAATGTCTGAAAGCATGAGGGGCTTTATTTGC CTTTACCTCATATGAGTCTTTGATCTTGAACCGATACTTTTTGGATCTCATTGTTGATATACCTGAATTTACTTTG TAAGAGATTTTAACTTCACTTCATGCTGATGATGTATCAAATTCATTTTATAGAAAGATTTAAAGTTTTTTTCTG GAAGTGATATATGTCAAATTACATTTCCTACTGCAGTATTTGAGCAGGGACAGTCATTTTTTAAATGTTTTTGGC CGGGCGTGGTGGCTCATGCCTGTAATCTCAGTACATTGGGAGGCCAAGGCAGGTGGATCACCTGAGGTCAAGAGT TCGAGGCCAGCCTGGCCAACATGGTGAAACCCTGTCTCTACTAAAAATACAAAAAATTGGCCGGGCGTGATGGTG GGCGCCTGTAATCCCAGCCACTCCAGAGGCTGAGGCAGGAGAATCGCTTGAACCTGCGAGGCAGAGATTGCAGTG

PCT/US2003/028547

1099/6881 FIGURE 1026B

AGCCAAGATCAAGCCATTGTACTCCAGCCTGGACAACAAGAGCGAAACTCTGTCTA

PCT/US2003/028547

1100/6881 FIGURE 1027

MTSPAAAQSREIDCLSPEAQKLAEARLAAKRAARAEAREIRMKELERQQKEEDSERYSRSSRNTTSASDEDERMS
VGSRGSLRVEERPEKDFIEKGSRNMFGLSAATLASLGGTSSRRGSGDTSFSIDTEASIREIKDSLAEVEEKYKKA
MVSNAQLDNEKTNEMYQVDTIKDMLLELEREQLAESBRGYGEKNKEFERKHAHSILOFOFAEVKEALKQREEMLE
KHGILINSEIATNGGTSDTLNNVGYQGPTKMTKEELNALKSTGGGTLGRASEVEVKNEIVANVGKREILHNTEKE
QHIEDTVKDCVDIEVFPAGENTEDQKSSEDTAPFLGTLAGATYEEQVQSQILESSSLPENTVQUESWGAPDD
RTRIPLEPSNCWSDLDGGNHTENVGEAAVTQVEEQAGTVASCPLGHSDDTVYHDDKCMVEVPQELETSTGHSLEK
EFTNOBAAEPKEVPAHSTEVGRDHNEEGGETGLGREKPIKTEVPGSPAGTEGNCQEATGPSTVDTQNEPLDMK
EPDEKSDQQGEALDSSQKKIKNKKKKNKKKSPVPVETLKDVKKELTYQNTDLSEIKEEREVKSTDRSAVEAON
EVTENPKQKIAAESSENVDCPENPKIKLDGKLDQEGDDVQTAAEEVLADGDTLDFEDDTVQSSGPRAGGEELDEG
VAKDNAKIGATOSSPAPKSSDADRCTLEHERSPSQDISDACEAESTERCEMSEHPSQTVRKALDSNSLENDDL
SAPGREPGHFNPESREDTRGGMEKGKSKECTMS

PCT/IIS2003/028547

FIGURE 1028A

CAGTTTGGAGCTCAGTCTTCCACCAAAGGCCGTTCAGTTCTCCTGGGCTCCAGCCTCCTGCAAGGACTGCAAGAG GGAAAAGTATGCATCCTATTCAAACCTAATTGAATCGAGGAGCCCAGGGACACACGCCTTCAGGTTTGCTCAGGG GTTCATATTTGGTGCTTAGACAAATTCAAAATGAGGAAACATCGGCACTTGCCCTTAGTGGCCGTCTTTTGCCTC TTTCTCTCAGGCTTTCCTACAACTCATGCCCAGCAGCAGCAGCAGATGTCAAAAATGGTGCGGCTGCTGATATA ATATTTCTAGTGGATTCCTCTTGGACCATTGGAGAGGAACATTTCCAACTTGTTCGAGAGTTTCTATATGATGTT GTAAAATCCTTAGCTGTGGGAGAAAATGATTTCCATTTTGCTCTGGTCCAGTTCAACGGAAACCCACATACCGAG TTCCTGTTAAATACGTATCGTACTAAACAAGAAGTCCTTTCTCATATTTCCAACATGTCTTATATTGGGGGAACC AATCAGACTGGAAAAGGATTAGAATACATAATGCAAAGCCACCTCACCAAGGCTGCTGGAAGCCGGGCCGGTGAC GGAGTCCCTCAGGTTATCGTAGTGTTAACTGATGGACACTCGAAGGATGGCCTTGCTCTGCCCTCAGCGGAACTT AAGTCTGCTGATGTTAACGTGTTTGCAATTGGAGTTGAGGATGCAGATGAAGGAGCGTTAAAAGAAATAGCAAGT GAACCGCTCAATATGCATATGTTCAACCTAGAGAATTTTACCTCACTTCATGACATAGTAGGAAACTTAGTGTCC TGTGTGCATTCATCCGTGAGTCCAGAAAGGGCTGGGGACACGGAAACCCTTAAAGACATCACAGCACAAGACTCT GCTGACATTATTTTCCTTATTGATGGATCAAACAACACCGGAAGTGTCAATTTCGCAGTCATTCTCGACTTCCTT GTAAATCTCCTTGAGAAACTCCCAATTGGAACTCAGCAGATCCGAGTGGGGGTGGTCCAGTTTAGCGATGAGCCC AGAACCATGTTCTCCTTGGACACCTACTCCACCAAGGCCCAGGTTCTGGGTGCAGTGAAAGCCCTCGGGTTTGCT GGTGGGGAGTTGGCCAATATCGGCCTCGCCCTTGATTTCGTGGTGGAGAACCACTTCACCCGGGCAGGGGGCAGC CGCGTGGAGGAAGGGGTTCCCCAGGTGCTGGTCCTCATAAGTGCCGGGCCTTCTAGTGACGAGATTCGCTACGGG GTGGTAGCACTGAAGCAGGCTAGCGTGTTCTCATTCGGCCTTGGAGCCCAGGCCGCCTCCAGGGCAGAGCTTCAG CACATAGCTACCGATGACAACTTGGTGTTTACTGTCCCGGAATTCCGTAGCTTTGGGGACCTCCAGGAGAAATTA CTGCCGTACATTGTTGGCGTGGCCCAAAGGCACATTGTCTTGAAACCGCCAACCATTGTCACACAAGTCATTGAA GTCAACAAGAGAGACATAGTCTTCCTGGTGGATGGCTCATCTGCACTGGGACTGGCCAACTTCAATGCCATCCGA GACTTCATTGCTAAAGTCATCCAGAGGCTGGAAATCGGACAGGATCTTATCCAGGTGGCAGTGGCCCAGTATGCA GACACTGTGAGGCCTGAATTTTATTTCAATACCCATCCAACAAAAAGGGAAGTCATAACCGCTGTGCGGAAAATG AAGCCCCTGGACGGCTCGGCCCTGTACACGGGCTCTGCTCTAGACTTTGTTCGTAACAACCTATTCACGAGTTCA GCCGGCTACCGGGCTGCCGAGGGGATTCCTAAGCTTTTGGTGCTGATCACAGGTGGTAAGTCCCTAGATGAAATC AGCCAGCCTGCCCAGGAGCTGAAGAGCAGCATAATGGCCTTTGCCATTGGGAACAAGGGTGCCGATCAGGCT GAGCTGGAAGAGATCGCTTTCGACTCCTCCCTGGTGTTCATCCCAGCTGAGTTCCGAGCCGCCCCATTGCAAGGC ATCTTTCTTTTGGATGGATCAGCCAACGTTGGAAAAACCAATTTCCCTTATGTGCGCGACTTTGTAATGAACCTA GTTAACAGCCTTGATATTGGAAATGACAATATTCGTGTTTGGTTTAGTGCAATTTAGTGACACTCCTGTAACGGAG TTCTCTTTAAACACATACCAGACCAAGTCAGATATCCTTGGTCATCTGAGGCAGCTGCAGCTCCAGGGAGGTTCG GGCCTGAACACAGGCTCAGCCCTAAGCTATGTCTATGCCAACCACTTCACGGAAGCTGGCGGCAGCAGGATCCGT GAACACGTGCCGCAGCTCCTGCTTCTGCTCACAGCTGGGCAGTCTGAGGACTCCTATTTGCAAGCTGCCAACGCC TTGACACGCGCGGGCATCCTGACTTTTTGTGTGGGAGCTAGCCAGGCGAATAAGGCAGAGCTTGAGCAGATTGCT TTTAACCCAAGCCTGGTGTATCTCATGGATGATTTCAGCTCCCTGCCAGCTTTGCCTCAGCAGCTGATTCAGCCC CTAACCACATATGTTAGTGGAGGTGTGGAGGAAGTACCACTCGCTCAGCCAGAGAGCAAGCGAGACATTCTGTTC CTCTTTGACGGCTCAGCCAATCTTGTGGGCCAGTTCCCTGTTGTCCGTGACTTTCTCTACAAGATTATCGATGAG CTCAATGTGAAGCCAGAGGGGACCCGAATTGCGGTGGCTCAGTACAGCGATGATGTCAAGGTGGAGTCCCGTTTT GATGAGCACCAGAGTAAGCCTGAGATCCTGAATCTTGTGAAGAATGAAGATCAAGACCGGGCAAAGCCCTCAAC CTGGGCTACGCGCTGGACTATGCACAGAGGTACATTTTTGTGAAGTCTGCTGGCAGCCGGATCGAGGATGGAGTG CTTCAGTTCCTGGTGCTGGTCGCAGGAAGGTCATCTGACCGTGTGGATGGGCCAGCAAGTAACCTGAAGCAG AGTGGGGTTGTGCCTTTCATCTTCCAAGCCAAGAACGCAGACCCTGCTGAGTTAGAGCAGATCGTGCTGTCTCCA GCGTTTATCCTGGCTGCAGAGTCGCTTCCCAAGATTGGAGATCTTCATCCACAGATAGTGAATCTCTTAAAATCA GTGCACAACGGAGCACCAGCACCAGTTTCAGGTGAAAAGGACGTGGTGTTTCTGCTTGATGGCTCTGAGGGCGTC AGGAGCGGTTTCCCTCTGTTGAAAGAGTTTGTCCAGAGAGTGGTGGAAAGCCTGGATGTGGGCCAGGACCGGGTC CGCGTGGCCGTGGTGCAGTACAGCGACCGGACCAGGCCCGAGTTCTACCTGAATTCATACATGAACAAGCAGGAC GTCGTCAACGCTGTCCGCCAGCTGACCCTGCTGGGAGGGCCGACCCCCAACACCGGGGCCGCCCTGGAGTTTGTC

PCT/IIS2003/028547

FIGURE 1028B

CTGAGGAACATCCTGGTCAGCTCTGCGGGAAGCAGGATAACAGAAGGTGTGCCCCAGCTGCTGATCGTCCTCACG GCCGACAGGTCTGGGGATGATGTGCGGAACCCCTCCGTGGTCGTGAAGAGGGGTGGGGCTGTGCCCATTGGCATT GGCATCGGGAACGCTGACATCACAGAGATGCAGACCATCTCCTTCATCCCGGACTTTGCCGTGGCCATTCCCACC TTTCGCCAGCTGGGGACCGTCCAACAGGTCATCTCTGAGAGGGTGACCCAGCTCACCCGCGAGGAGCTGAGCAGG CTGCAGCCGGTGTTGCAGCCTCTACCGAGCCCAGGTGTTGGTGGCAAGAGGGACGTGGTCTTTCTCATCGATGGG TCCCAAAGTGCCGGGCCTGAGTTCCAGTACGTTCGCACCCTCATAGAGAGGCTGGTTGACTACCTGGACGTGGGC TTTGACACCACCGGGTGGCTGTCATCCAGTTCAGCGATGACCCCAAGGTGGAGTTCCTGCTGAACGCCCATTCC CTGGAGTACGTGTCCAGGAACATCTTCAAGAGGCCCCTGGGGAGCCGCATTGAAGAGGGCGTCCCGCAGTTCCTG GTCCTCATCTCGTCTGGAAAGTCTGACGATGAGGTGGACCACCCGGCGGTGGAGCTCAAGCAGTTTGGCGTGGCC CCTTTCACGATCGCCAGGAACGCAGACCAGGAGGAGCTGGTGAAGATCTCGCTGAGCCCCGAATATGTGTTCTCG GTGAGCACCTTCCGGGAGCTGCCCAGCCTGGAGCAGAAACTGCTGACGCCCATCACGACCCTGACCTCAGAGCAG ATCCAGAAGCTCTTAGCCAGCACTCGCTATCCACCTCCAGCAGTTGAGAGTGATGCTGCAGACATCGTCTTTCTG ATCGACAGCTCTGAGGGAGTTAGGCCAGATGGCTTTGCACATATTCGAGATTTTGTTAGCAGGATTGTTCGAAGA CTCAACATCGGCCCCAGTAAAGTGAGAGTTGGGGTCGTGCAGTTCAGCAATGATGTCTTCCCAGAATTCTATCTG AAAACCTACAGATCCCAGGCCCCGGTGCTGGACGCCATACGGCGCCTGAGGCTCAGAGGGGGTTCCCCACTGAAC ACTGGCAAGGCTCTCGAATTTGTGGCAAGAAACCTCTTTGTTAAGTCTGCGGGGAGTCGCATAGAAGACGGGGTG CCCCAACACCTGGTCCTGGTCCTGGGTGGAAAATCCCAGGACGATGTGTCCAGGTTCGCCCAGGTGATCCGTTCC TCGGGCATTGTGAGTTTAGGGGTAGGAGACCGGAACATCGACAGAACAGAGCTGCAGACCATCACCAATGACCCC TCCGCAGCCACTCCTGCACCTCCAGGGGTGGACACCCCTCCTCCTTCACGGCCAGAGAAGAAGAAAGCAGACATT GTGTTCCTGTTGGATGGTTCCATCAACTTCAGGAGGGACAGTTTCCAGGAAGTGCTTCGTTTTGTGTCTGAAATA GTGGACACAGTTTATGAAGATGGCGACTCCATCCAAGTGGGGCTTGTCCAGTACAACTCTGACCCCACTGACGAA TTCTTCCTGAAGGACTTCTCTACCAAGAGGCAGATTATTGACGCCATCAACAAAGTGGTCTACAAAGGGGGAAGA CAGCGGGTCCCTCAGATTGCCTTTGTGATCACGGGAGGAAAGTCGGTGGAAGATGCACAGGATGTGAGCCTGGCC CTCACCCAGAGGGGGGTCAAAGTGTTTGCTGTTGGAGTGAGGAATATCGACTCGGAGGAGGTTGGAAAGATAGCG TTGCATGATGCGATGCATGAAACCCTTTGCCCTGGTGTAACTGATGCTGCCAAAGCTTGTAATCTGGATGTGATT $\tt CTGGGGTTTGATGGTTCTAGAGACCAGAATGTTTTTGTGGCCCAGAAGGGCTTCGAGTCCAAGGTGGACGCCATC$ AACATGCGCAGCCAGCACCCCTACGTCCTCACGGAGGACACCCTGAAGGTCTACCTGAACAAGTTCAGACAGTCC TCGCCGGACAGCGTGAAGGTGGTCATTCATTTTACTGATGGAGCAGCAGCGGAGATCTGGCTGATTTACACAGAGCA TCTGAGAACCTCCGCCAAGAAGGAGTCCGTGCCTTGATCCTGGTGGGCCTTGAACGAGTGGTCAACTTGGAGCGG CTAATGCATCTGGAGTTTGGGCGAGGGTTTATGTATGACAGGCCCCTGAGGCTTAACTTGCTGGACTTGGATTAT GAACTAGCGGAGCAGCTTGACAACATTGCCGAGAAAGCTTGCTGTGGGGTTCCCTGCAAGTGCTCTGGGCAGAGG GGAGACCGCGGGCCCATCGGCAGCATCGGGCCAAAGGGTATTCCTGGAGAAGACGGCTACCGAGGCTATCCTGGT GATGAGGGTGGACCCGGTGAGCGTGGTCCGCCTGGTGTGAACGGCACTCAAGGTTTCCAGGGCTGCCCGGGCCAG GGTGAAGATGGAGACAAAGGATTACCTGGTTCTTCTGGAGAGAAAGGGAATCCTGGAAGAAGGGGTGATAAAGGA CCTCGAGGAGAAAGGAGAAAGAGGAGATGTTGGGATTCGAGGGGACCCGGGTAACCCAGGACAAGACAGCCAG GAGAGAGGACCCAAAGGAGAAACCGGTGACCTCGGCCCCATGGGTGTCCCAGGGAGAGATGGAGTACCTGGAGGA CCTGGAGAAACTGGGAAGAATGGTGGCTTTGGCCGAAGGGGACCCCCCGGAGCTAAGGGCAACAAGGGCGGTCCT GGCCAGCCGGGCTTTGAGGGAGAGCAGGGGACCAGAGGTGCACAGGGCCCAGCTGGTCCTGCTGCTCCTCCAGGG CTGATAGGAGAACAAGGCATTTCTGGACCTCGGGGAAGCGGAGGTGCCGCTGGTGCTCCTGGAGAACGAGGCAGA ACCGGTCCACTGGGAAGAAAGGGTGAGCCCGGAGAGCCAGACCAAAAGGAGGAATCGGGAACCGGGGCCCTCGT GGGGAGACGGGAGATGACGGGAGAGACGGAGTTGGCAGTGAAGGACGCAGAGGCAAAAAAAGGAGAAAAGAGGATTT

PCT/US2003/028547

FIGURE 1028C

CCTGGATACCCAGGACCAAAGGGTAACCCAGGTGAACCTGGGCTAAATGGAACAACAGGACCCAAAGGCATCAGA GGCCGAAGGGGAAATTCGGGACCTCCAGGGATAGTTGGACAGAAGGGAGACCCTGGCTACCCAGGACCAGCTXXX XXXXXXGGCAACAGGGGCGACTCCATCGATCAATGTGCCCTCATCCAAAGCATCAAAGATAAATGCCCTTGCTGT TACGGGCCCCTGGAGTGCCCCGTCTTCCCAACAGAACTAGCCTTTGCTTTAGACACCTCTGAGGGAGTCAACCAA GACACTTTCGGCCGGATGCGAGATGTGGTCTTGAGTATTGTGAATGACCTGACCATTGCTGAGAGCAACTGCCCA CGGGGGGCCCGGGTGGCTGTGGTCACCTACAACAACGAGGTGACCACGGAGATCCGGTTTGCTGACTCCAAGAGG AAGTCGGTCCTCCTGGACAAGATTAAGAACCTTCAGGTGGCTCTGACATCCAAACAGCAGAGTCTGGAGACTGCC ATGTCGTTTGTGGCCAGGAACACATTTAAGCGTGTGAGGAATGGATTCCTAATGAGGAAAGTGGCTGTTTTCTTC AGCAACACCCCACAAGAGCATCCCCACAGCTCAGAGAGGCTGTGCTCAAGCTCTCAGATGCGGGGATCACCCCC TTGTTCCTTACAAGGCAGGAAGACCGGCAGCTCATCAACGCTTTGCAGATCAATAACACAGCAGTGGGGCATGCG CTTGTCCTGCCTGCAGGGAGAGACCTCACAGACTTCCTGGAGAATGTCCTCACGTGTCATGTTTGCTTGGACATC GTGGACATCGACATGGCTTTCATCTTAGACAGCGCTGAGACCACCCTGTTCCAGTTCAATGAGATGAAGAAG TACATAGCGTACCTGGTCAGACAACTGGACATGAGCCCAGATCCCAAGGCCTCCCAGCACTTCGCCAGAGTGGCA GTTGTGCAGCACGCGCCCTCTGAGTCCGTGGACAATGCCAGCATGCCACCTGTGAAGGTGGAATTCTCCCTGACT GACTATGGCTCCAAGGAGAAGCTGGTGGACTTCCTCAGCAGGGGAATGACACAGTTGCAGGGGAACCAGGGCCTTA GGCAGTGCCATTGAATACACCATAGAGAATGTCTTTGAAAGTGCCCCAAACCCACGGGACCTGAAAATTGTGGTC CTGATGCTGACGGGCGAGGTGCCGGAGCAGCAGCTGGAGGAGGCCCAGAGAGTCATCCTGCAGGCCAAATGCAAG GGCTACTTCTTCGTGGTCCTGGGCATTGGCAGGAAGGTGAACATCAAGGAGGTATACACCTTCGCCAGTGAGCCA AACGACGTCTTCTTCAAATTAGTGGACAAGTCCACCGAGCTCAACGAGGAGCCTTTGATGCGCTTCGGGAGGCTG TTGCCATCCTTCGTCAGCAGTGAAAATGCTTTTTACTTGTCCCCAGATATCAGGAAACAGTGTGATTGGTTCCAA CCTACATCCAACCCAGTGACGACAACGAAGCCGGTGACTACGACGAAGCCGGTGACCACCACAACAAAGCCTGTA AAACCTGTGGCTGCCAAGCCTGTGGCCACAAAGACGGCCACTGTTAGACCCCCAGTGGCGGTGAAGCCAGCAACG GCAGCGAAGCCTGTAGCAGCAAAGCCAGCAGCTGTAAGACCCCCCGCTGCTGCAGAAAACCAGTGGCGACCAAG TCCCGTGAAGTCCAGGTGTTTGAGATAACAGAGAACAGCGCCAAACTCCACTGGGAGAGGCCTGAGCCCCCCGGT CCTTATTTTTATGACCTCACCGTCACCTCAGCCCATGATCAGTCCCTGGTTCTGAAGCAGAACCTCACGGTCACG GACCGCGTCATTGGAGGCCTGCTCGCTGGGCAGACATACCATGTGGCTGTGGTCTGCTACCTGAGGTCTCAGGTC AGTTCAACCATCAATCTAATGGTGAGCACAGAACCATTGGCTCTCACTGAAACAGATATATGCAAGTTGCCGAAA GACGAAGGAACTTGCAGGGATTTCATATTAAAATGGTACTATGATCCAAACACCAAAAGCTGTGCAAGATTCTGG GAGTCAGCCATCGCCAACTTGTCTCTGTAGAAGCTCCGGGTGTAGATTCCCTTGCACTGTATCATTTCATGCTTT GATTTACACTCGAACTCGGGAGGGAACATCCTGCTGCATGACCTATCAGTATGGTGCTAATGTTCTGTGGACCC TCGCTCTCTGTCTCCAGGCAGTTCTCTCGAATACTTTGAATGTTGTGTAACAGTTAGCCACTGCTGGTGTTTATG TGAACATTCCTATCAATCCAAATTCCCTCTGGAGTTTCATGTTATGCCTGTTGCAGGCAAATGTAAAGTCTAGAA TTAGATGGGAAGCCTGTGTATCGTGGAGAAACAAGAGACCAACTTTTTCATTCCCTGCCCCCAATTTCCCAGACT CTATGTGCACCGTTGGGACCAATGCCTTAATTAAAGAATTTAAAAAAGTTGTAATAGAGAATATTTTTGGCATTC ATTTATACAAAGAAACTTTTTAATAAAGTATATTGAAAGTTT

PCT/US2003/028547

1104/6881 FIGURE 1029

GTGTGCACTCACGGAGCCCTCCTGGCAGGGCCGCGTCTCTGGAGCAGCAGACCCGTGTCCCTCTGGGAGGTCAAC TGCGGCCTCACAGCTGGGCCTGTCCCAGCACAGCCCTTGTTGGAGGGCGCACCCCGTGTCCTCAGCACCCCAGT GTTGAGTGCCTTGACCTGCAGAGGGGAGCCTGTGCTGGTCCCGGGCGTCTGTGTGGCTCCCTGGGTGCCCATCTGC ACCCTGGCCTGCTCTGGGCTTCAGTGGAGCCGTGCCACCGTGGGAGTGTCCAGGGTCCTGACGTAGCCCTGAG ACGTGGCCAGCTCCCTGGCCTGCCCGCACAGTGGGCCCTTGTCTCTGCTCTGGGTCAGGCGAGGCAGCCACC CATGATGAGCTCTGCAGCCTTCCCAAGGTGGCTGAGCATGGGGGTCCCTCGTACCCCTTCACGGACAGTGCTCTT CGAGCGGGAGAGGACGGCCTGACCTACCGCGTGCCCTCGTTGCTCCCCGTGCCCCCGGGCCCACCCTGCTGGC CTTTGTGGAGCAGCGGCTCAGCCCTGACGACTCCCACGCCCACCGCCTGGTGCTGAGGAGGGGCACGCTGGCCGG GGGCTCCGTGCGGTGGGGTGCCCTGCACGTGCTGGGGACAGCCCCTGGCGGAGCACCCGTCCATGAACCCCTG CCCTGTGCACGATGCTGGCACGGGCACCGTCTTCCTCTTCTTCATCGCGGTGCTGGGCCACACGCCTGAGGCCGT GCAGATCGCCACGGGAAGGAACGCCGCGCGCCTCTGCTGTGGGCCAGCCGTGACGCCGGCCTCTCGTGGGGCAG CGCCCGGGACCTCACCGAGGAGGCCATCGGTGCTGCTGCAGGACTGGGCCACATTCGCTGTGGGTCCCGGCCA CGGCGTGCAGCTGCCCTCAGGCCGCCTGCTGGTACCCGCCTACACCTACCGCGTGGACCGCCGAGAGTGTTTTGG CAAGATCTGCCGGACCAGCCCTCACTCCTTCGCCTTCTACAGCGATGACCACGGCCGCACCTGGCGCTGTGGAGG CCTCGTGCCCAACCTGCGCTCAGGCGAGTGCCAGCTGGCGGCGGTGGACGGTGGGCAGGCCGGCAGCTTCCTCTA AGAGCGCGTGGCTTCCCTGCCCGAGACTGCCTGGGGCTGCCAGGGCAGCATCGTGGGCTTCCCAGCCCCCGCCCC

PCT/IIS2003/028547

FIGURE 1030

GAATTGGCAGCCAACATCGCGGCGGAACGCGGCGCGCGGGGCAGCAACAGTCGCAGGAGATGATGGAGGTTGACAGG CGGGTCGAGTCTGAAGAATCCGGCGATGAAGAAGGGAAGAAACACAGCAGTGGCATCGTGGCCGACCTCAGTGAA ACCATCAACCTGGACAGAGATGCAGAGGATGTTGATTTGAATCACTATCGCATAGGGAAGATTGAAGGATTTGAG AGTCTTCGAGAGCTGGATCTTTACGACAACCAGATCAAGAAGATTGAGAATCTGGAGGCGCTAACAGAGCTGGAG ATTCTAGATATTTCTTTTAATCTGCTGAGAAACATCGAAGGGGTTGACAAGTTGACACGACTGAAAAAACTCTTC TTGGTCAACAATAAATCAGTAAAATTGAGAACTTAAGCAACTTACATCAACTACAGATGCTAGAGCTGGGATCT ACTAAACTTCAGAACCTGGATGCGCTCACCAACCTGACAGTCCTCAGTATGCAGAGCAACCGGCTGACCAAGATC GAGGGTCTGCAGAACCTGGTGAACCTGCGGGAGCTGTACCTTAGCCACAATGGCATCGAGGTCATCGAGGGCCTG GAGAACAATAACAAACTCACGATGTTGGACATTGCATCAAATAGAATCAAAAAGATTGAAAAATATCAGCCATCTA ACAGAGCTGCAAGAGTTCTGGATGAACGACAATCTCCTTGAGAGCTGGAGCGACCTCGACGAGCTGAAGGGAGCC AGGAGCCTGGAGACAGTGTACCTGGAGCGGAACCCCTTGCAGÁAGGACCCCCAGTACCGGCGGAAGGTCATGCTC GCCCTCCCTCCGTGCGGCAGATCGATGCCACGTTCGTCAGGTTCTGAGTCCTTCTTGGCTCCTCATGTGGTCCC TCTCCTCGGAAGAACTGCCCAGCCACGGGTTTTTAACCCACCTGTTGCTCCTGAGGTCGTCACTATATCAACAGT GCAATTAAATCTTGCCACACTGTC

PCT/US2003/028547

FIGURE 1031

MAAERGAGQQQSQEMMEVDRRVESEESGDEEGKKHSSGIVADLSEQSLKDGEERGEEDPEEEHELPVDMETINLD RDAEDVDLNHYRIGKIEGFEVLKKVKTLCLRQNLIKCIENLEELQSLRELDLYDNQIKKIENLEALITELEILDIS FNLLRNIEGVDKLTRLKKLFLVNNKISKIENLSNLHQLQMLELGSNRIRAIENIDTLITNLESLFLGKNKITKLQN LDALTNLTVLSMQSNRITKIEGLQNLVNLRELYLSHNGIEVIEGLENNKKITMLDIASNRIKKIENISHLTELQE FWWNDNLLESWSDLDELKGARSLETVYLERNPLQKOPQYRRKVMLALPSVRQIDATFVRF

PCT/IIS2003/028547

FIGURE 1032A

GGATTGTGTGTAGGTGTGAGATCAACCATGAGTTCCGTTGCAGTTTTGACCCAAGAGAGTTTTGCTGAACACCGA AGTGGGCTGGTTCCGCAACAAATCAAAGTTGCCACTCTAAATTCAGAAGAGGAGAGCGACCCTCCAACCTACAAG GATGCCTTCCCTCCACTTCCTGAGAAAGCTGCTTGCCTGGAAAGTGCCCAGGAACCCTCTGGAGCCTGGGGGAAC AAGATCCGACCCATCAAGGCTTCTGTCATCACTCAGGTGTTCCATGTACCCCTGGAGGAGAAAAATACAAGGAT ATGAACCAGTTTGGAGAAGGTGAACAAGCAAAAATCTGCCTTTGAGATCATGCAGAGAACTGGTGCTCACTTGGAG CTGTCTTTGGCCAAAGACCAAGGCCTCTCCATCATGGTGTCAGGAAAGCTGGATGCTGTCATGAAAGCTCGGAAG GACATTGTTGCTAGACTGCAGACTCAGGCCTCAGCAACTGTTGCCCATTCCCAAAGAACACCATCGCTTTGTTATT GGCAAAAATGGAGAGAAACTGCAAGACTTGGAGCTAAAAACTGCAACCAAAATCCAGATCCCACGCCCAGATGAC CCCAGCAATCAGATCAAGATCACTGGCACCAAAGAGGGGCATCGAGAAAGCTCGCCATGAAGTCTTACTCATCTCT GCCGAGCAGGACAAACGTGCTGTGGAGAGGCTAGAAGTAGAAAAGGCATTCCACCCCTTCATCGCTGGGCCGTAT GAGATTGTCTTCACTGGAGAGAAGGAACAGTTGGCTCAGGCTGTGGCTCGCATCAAGAAGATTTATGAGGAGAAG AAAAAGAAGACTACAACCATTGCAGTGGAAGTGAAGAAATCCCAACACAAGTATGTCATTGGGCCCAAGGGCAAT TCATTGCAGGAGATCCTTGAGAGAACTGGAGTTTCCGTTGAGATCCCACCCTCAGACAGCATCTCTGAGACTGTA ATACTTCGAGGCGAACCTGAAAAGTTAGGTCAGGCGTTGACTGAAGTCTATGCCAAGGCCAATAGCTTCACCGTC TCCTCTGTCGCCGCCCCTTCCTGGCTTCACCGTTTCATCATTGGCAAGAAAGGGCAGAACCTGGCCAAAATCACT CAGCAGATGCCAAAGGTTCACATCGAGTTCACAGAGGGCGAAGACAAGATCACCCTGGAGGGCCCTACAGAGGAT GTCAATGTGGCCCAGGAACAGATAGAAGGCATGGTCAAAGATTTGATTAACCGGATGGACTATGTGGAGATCAAC ATCGACCACAAGTTCCACAGGCACCTCATTGGGAAGAGCGGTGCCAACATAAACAGAATCAAAGACCAGTACAAG GTGTCCGTGCGCATCCCTCCTGACAGTGAGAAGAGCAATTTGATCCGCATCGAGGGGGACCCACAGGGCGTGCAG CAGGCCAAGCGAGAGCTGCTGGAGCTTGCATCTCGCATGGAAAATGAGCGTACCAAGGATCTAATCATTGAGCAA AGATTTCATCGCACAATCATTGGGCAGAAGGGTGAACGGATCCGTGAAATTCGTGACAAATTCCCAGAGGTCATC ATTAACTTTCCAGACCCAGCACAAAAAAGTGACATTGTCCAGCTCAGAGGACCTAAGAATGAGGTGGAAAAATGC ACAAAATACATGCAGAAGATGGTGGCAGATCTGGTGGAAAATAGCTATTCAATTTCTGTTCCGATCTTCAAACAG TTTCACAAGAATATCATTGGGAAAGGAGGCGCAAACATTAAAAAGATTCGTGAAGAAAGCAACACCAAAATCGAC CTTCCAGCAGAGAATAGCAATTCAGAGACCATTATCATCACAGGCAAGCGAGCCAACTGCGAAGCTGCCCGGAGC AGGATTCTGTCTATTCAGAAAGACCTGGCCAACATAGCCGAGGTAGAGGTCTCCATCCCTGCCAAGCTGCACAAC TCCCTCATTGGCACCAAGGGCCGTCTGATCCGCTCCATCATGGAGGAGTGCGGCGGGGTCCACATTCACTTTCCC GTGGAAGGTTCAGGAAGCGACACCGTTGTTATCAGGGGCCCTTCCTCGGATGTGGAGAAGGCCAAGAAGCAGCTC CTGCATCTGGCGGAGGAGAAGCAAACCAAGAGTTTCACTGTTGACATCCGCGCCAAGCCAGAATACCACAAATTC CTCATCGGCAAGGGGGGGGGCAAAATTCGCAAGGTGCGCGACAGCACTGGAGCACGTGTCATCTTCCCTGCGGCT GAGGACAAGGACCAGGACCTGATCACCATCATTGGAAAGGAGGACGCCGTCCGAGAGGGCACAGAAGGAGCTGGAG GCCTTGATCCAAAACCTGGATAATGTGGTGGAAGACTCCATGCTGGTGGACCCCAAGCACCACCGCCACTTCGTC ATCCGCAGAGGCCAGGTCTTGCGGGAGATTGCTGAAGAGTATGGCGGGGTGATGGTCAGCTTCCCACGCTCTGGC ACACAGAGCGACAAAGTCACCCTCAAGGGCGCCAAGGACTGTGTGGAGGCAGCCAAGAAACGCATTCAGGAGATC ATTGAGGACCTGGAAGCTCAGGTGACATTAGAATGTGCTATACCCCAGAAATTCCATCGATCTGTCATGGGCCCC CTGGAGGCATTGGTTCCTGTCACCATTGAAGTAGAGGTGCCCTTTGACCTTCACCGTTACGTTATTGGGCAGAAA ATCATCGCCATCACGGGCCTCGCTGCAAATTTGGACCGGGCCAAGGCTGGACTGCTGGAGCGTGTGAAGGAGCTA CAGGCCGAGCAGGAGGACCGGGCTTTAAGGAGTTTTAAGCTGAGTGTCACTGTAGACCCCAAATACCATCCCAAG ATTATCGGGAGAAAGGGGGCAGTAATTACCCAAATCCGGTTGGAGCATGACGTGAACATCCAGTTTCCTGATAAG GACGATGGGAACCAGCCCCAGGACCAAATTACCATCACAGGGTACGAAAAGAACACAGAAGCTGCCAGGGATGCT ATACTGAGAATTGTGGGTGAACTTGAGCAGATGGTTTCTGAGGACGTCCCGCTGGACCACCGCGTTCACGCCCGC ATCATTGGTGCCCGCGCAAAGCCATTCGCAAAATCATGGACGAATTCAAGGTGGACATTCGCTTCCCACAGAGC

PCT/IIS2003/028547

FIGURE 1032B