Finančni praktikum

k-total rainbow domination numer vs. domination number

Tim Resnik Lana Herman Univerza v Ljubljani

Fakulteta za matematiko in fiziko

November, 2019

1 Problem naloge

V projektni nalogi se bova ukvarjala z domeno, ki se ukvarja s povezavo med "k-rainbow total domination number" (označimo z $\gamma_{krt}(G)$) in "domination number" (označimo z $\gamma(G)$). Definiciji za $\gamma_{krt}(G)$ in $\gamma(G)$ sta v razdelku **Razlaga pojmov**.

Domneva pravi, da za graf G in $k \geq 4$ obstaja tesna povezava $\gamma_{krt}(G) \geq 2\gamma(G)$. Cilj najine projetkne naloge je najti tak graf, za katerega ta neenkost ne drži. To sva na majhnih grafih preverila na konkretnih primerih, kjer sva število vozlišč in število k vnesla ročno. Za večje grafe sva uporabila metodo Simulated Annealing.

Poiskala sva tudi primere, za katere velja enakost $\gamma_{krt}(G) = 2\gamma(G)$.

2 Razlaga pojmov

Graf G ima množico vozlišč V(G) in množico povezav E(G). Za množico $N_G(v)$ velja, da vsebuje vsa sosednja vozlišča v, v grafu G. Za grafa G in H, je kartezični produkt $G \square H$ graf z množico vozlišč $V(G) \times V(H)$.

Dominirana množica grafa G je $D\subseteq V(G)$, taka da za vsako vozlišče $v\in V(G)$ in $v\notin D$ velja, da je sosed nekemu vozlišču iz D. Dominirano število, $\gamma(G)$, je velikost najmanjše dominirane množice. Če za $\forall v\in V(G)$ velja, da je sosed vozlišču iz D, za D rečemo, da je totalno dominirana množica grafa G. Totalno dominirano število, $\gamma_t(G)$, je velikost najmanjše totalno dominirane množice. Za pozitivno celo število k, je "k-rainbow domination function" (kRDF) grafa G funkcija f, ki slika iz V(G) v množico $\{1,\cdots,k\}$. Zanjo velja, da za katerikoli $v\in V(G)$ in $f(v)=\emptyset$ velja $\cup_{u\in N_G(v)}f(u)=[k]$. Definiramo $\|f\|=\sum_{v\in V(G)}|f(v)|$. $\|f\|$ rečemo teža f-a. "k-rainbow domination number", $\gamma_{kr}(G)$, grafa G je minimalna vrednost $\|f\|$ za vse "k-rainbow domination functions". Po definiciji vemo, da za vse $k\geq 1$ velja

$$\gamma_{kr}(G) = \gamma(G \square K_k).$$

Graf K_k predstavlja polni graf na k vozliščih. Nazadnje definirajmo še "k-rainbow total domination function" (kRTDF), katera se od "k-rainbow domination function"razlikuje v dodatnem pogoju, ki zagotavlja, da če za $\forall v \in V(G)$ velja $f(v) = \{i\}$, potem obstaja tak $u \in N_G(v)$, da je $i \in f(u)$. "k-rainbow total domination number", $\gamma_{krt}(G)$, grafa G je minimalna vrednost ||f|| za vse "k-rainbow total domination functions". Tudi tu za vse $k \geq 1$ velja

$$\gamma_{krt}(G) = \gamma_t(G \square K_k).$$

3 Reševanje problema

3.1 Majhni grafi

dvaresult[0].plot() #primer grafa, ko je koeficient enak 2


```
#trivialen primer, kjer je koeficient enk 2
for G in graphs(7, size=0):
    G.show()
(G. cartesian\_product(graphs.CompleteGraph(7))). dominating\_set(value\_only=True, \ total=True)/G. dominating\_set(value\_only=True) \\
```


def krit(G):
 return (G.cartesian_product(graphs.CompleteGraph(k))).dominating_set(value_only=True, total=True)/G.do
minating_set(value_only=True)

```
while True:
    G_1 = graphs.RandomGNP(7, 0.5)
    if G_1.is_connected():
        G = G_1
        break
    else:
        True
G.show()
```

