Q1: S2 = 2S, Neglecting Re effects on a flying wing on drag then $D_p = \frac{1}{2}\rho V^2 \cdot S \cdot C_{D_p}$ (1) if you negled Re effects from the charge in size, $C_{DP_1} \approx C_{DP_2}$ (as $C_f = f(Re)$ won't charge) However, DP2 = 2 Dp, by equation (1)

Q2.	Givens:	W= 17,854 lbs
		V = 146 KIAS
		f = 6,2 ft ²
		b = 62 ft
		e = 0.8
		alt = 25,000 ft (standard day)
		Warted: total drag (Neglesticompressions)
then	$a = \frac{1}{20}$	ν2 ς sea level ρ indicated). 00 2 38 slug (146 k IAS · 1.69 ft/s)
1,000	= /2 (0	0.00238 slug V146 KIAS-1.69 fts
	= 72.1	lb/c12
	(2.1	
then	Dn = Fa	= 9.5 G42. 72.1 LL = 590.9
	D' = TT00	$= 9.5 \text{ ft}^{2} \cdot 72.1 = 590.9$ $= \frac{1}{\pi(72.14 \text{ ft}^{2})(0.8)(17.854 \text{ ft})^{2}} (0.8)(17.854 \text{ ft})^{2}$
	1(9,0	(72.11/6+2) (0.8) (62 ft)
		= 457.8 lb
	then Death	e = 590.9 ll + 457.8 lb
		e = 590.9 ll + 457.8 lb = 1048.8 lb

Q3:	Cq.'(ven 1	JACA	2420	
Q,			<u> </u>	= 5 PH	
			Jhat is	max +	hackness?
	NACA	2420 L	, last	2 dig	,4s
			are	t/c	in 10ths of Chord
	ther			· c · 5 f+	
		=	= 1 f	4 = 12	inches

Q4:	Givens: b= 1754
	S = 3420 H ²
	t/c = 0.13
	1 = 29°
	5 = 0.24
	Cr = 29.43 ff
	Cf = 0.0030
	Mo = 0.5
	Wanted: Fwing
then	f = K.Cf. Swet assume to be Spefexposed Since fuselege
	= Kwing · Cf wing · 2.1.02. S in to Not
	= Kwing · Cf wing · 2.1.02.5 in to Not given
	However, if you used dinerstons above correctly
	to determine the SREF exposed using Cre, you will also get full credit for this
	Need Kwing, you can use Fig 11.3 Part
	Need Kwing, you can use Fig 11.3 Part since this aircraft is travelling
	@ Mo=0.5, or can use
	the equations provided
7 =	$\frac{(2 - M_0^2)\cos \Delta}{(2 - 0.5^2)\cos (29^\circ)} = 1.702$
	$\sqrt{1-M_0^2\cos^2 \Delta}$ $\sqrt{1-0.5^2\cos^2(29^\circ)}$

then K = [1+7(t/c)+100(t/c)4] = [1+ 1.702.0.13 + 100(0.13)] = 1.25 then F = 1.25.0.003.2.1.02.3420ft $= 26.48 \text{ ft}^2$