2

1 2

CLAIMS

What is claimed is:

1	1. A direct conversion receiver (DCR) comprising:			
2	a pair of quadrature conversion paths, each of said quadrature conversion			
3	paths receiving an RF input signal and converting said RF input signal to a digital			
4	baseband signal, said each quadrature conversion path comprising:			
5	a mixer mixing said RF input signal with a carrier phase signal,			
6	an analog filter receiving a quadrature baseband signal from said multiplier			
7	and providing a filtered baseband signal,			
8	an analog-to-digital converter (ADC) converting a quadrature baseband			
9	component to a digital baseband signal,			
10	a 5th order elliptical filter filtering said quadrature baseband component, and			
1	a phase equalizer compensating for phase distortion arising in said analog			
12	filter; and			
13	a baseband processor receiving quadrature digital baseband outputs from said			
14	pair of quadrature conversion paths and providing digital information therefrom.			
1	2. A DCR as in claim 1 wherein each phase equalizer is a second order all pass			

- 2. A DCR as in claim 1 wherein each phase equalizer is a second order all pass digital phase equalizer.
- 3. A DCR as in claim 2 wherein the phase equalizer has a transfer function defined by

$$H_{eq}(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{a_0 + a_1 z^{-1} + a_2 z^{-2}}$$

- 4 where a0=b2, a1=b1, a2=b0.
- 4. A DCR as in claim 3 wherein each 5th order elliptical filter receives the digital output of the ADC and provides said digital baseband component to the phase equalizer.

1	5.	A DCR as in claim 3 wherein each 5th order elliptical filter receives the		
2	filtered baseband signal from the analog filter and provides the quadrature baseband			
3	component to the ADC, the ADC output being provided to the phase equalizer.			
1	6.	A direct conversion receiver (DCR) comprising:		
2		a pair of quadrature conversion paths, each of said quadrature conversion		
3	paths receiving an RF input signal and converting said RF input signal to a digital			
4	baseband signal, said each quadrature conversion path comprising:			
5		a mixer mixing said RF input signal with a carrier phase signal,		
6		an analog filter receiving a quadrature baseband signal from said multiplier		
7	and providing a filtered baseband signal,			
8		an analog-to-digital converter (ADC) converting a quadrature baseband		
9	component to a digital baseband signal,			
.0		a 5th order elliptical digital filter receiving said quadrature baseband		
.1	component and providing a filtered digital baseband component, and			
12		a phase equalizer compensating said filtered digital baseband component for		
13	phase	distortion arising in said analog filter; and		
14		a baseband processor receiving quadrature digital baseband outputs from said		
15	pair c	of quadrature conversion paths and providing digital information therefrom.		
1	7.	A DCR as in claim 6 wherein each phase equalizer is a second order all pass		
2	digita	al phase equalizer.		

1 2

3

- defined by $H_{eq}(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{a_0 + a_1 z^{-1} + a_2 z^{-2}}$
- 4 where a0=b2, a1=b1, a2=b0.

8.

A DCR as in claim 7 wherein the phase equalizer has a transfer function

1	9. A direct conversion receiver (DCR) comprising.		
2	a pair of quadrature conversion paths, each of said quadrature conversion		
3	paths receiving an RF input signal and converting said RF input signal to a digital		
4	baseband signal, said each quadrature conversion path comprising:		
5	a mixer mixing said RF input signal with a carrier phase signal,		
6	an analog filter receiving a quadrature baseband signal from said multiplier		
7	and providing a filtered baseband signal,		
8	a 5th order elliptical filter filtering said filtered baseband signal and providing		
9	a quadrature baseband component,		
10	an analog-to-digital converter (ADC) converting said quadrature baseband		
11	component to a digital baseband signal, and		
12	a phase equalizer compensating said digital baseband signal for phase		
13	distortion arising in said analog filter; and		
14	a baseband processor receiving quadrature digital baseband outputs from said		
15	pair of quadrature conversion paths and providing digital information therefrom.		
1	10. A DCR as in claim 9 wherein each phase equalizer is a second order all pass		
2	digital phase equalizer.		
1	11. A DCR as in claim 10 wherein the phase equalizer has a transfer function		
_			
2	defined by		
3	$H_{eq}(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{a_0 + a_1 z^{-1} + a_2 z^{-2}}$		

4 where a0=b2, a1=b1, a2=b0.