Číselné řady KAPITOLA 12:

Označení:

- $\mathbb{R} \cup \{-\infty, +\infty\} = \overline{\mathbb{R}}$
- $\mathbb{C} \cup \{\infty\} = \overline{\mathbb{C}}$ rozšířená komplexní rovina (∞ nevlastní hodnota, číslo, bod)

$$U_{\varepsilon}(a) = \{x \in \mathbb{C} \mid |x - a| < \varepsilon\} \text{ pro } a \in \mathbb{C}, \ \varepsilon > 0$$

 $U_K(\infty) = \{x \in \mathbb{C} \mid |x| > K\} \text{ pro } K \ge 0$

definujeme pro $a \in \mathbb{C}$:

$$a\pm\infty=\infty,\ a\cdot\infty=\infty$$
 (jen pro $a\neq0$), $\frac{a}{\infty}=0,\ \infty\cdot\infty=\infty$

$$0 \cdot \infty, \ \frac{\infty}{\infty}, \ \infty \pm \infty$$

Posloupnosti komplexních čísel

$$(a_n)_{n=1}^{\infty} = (\alpha_n + j \beta_n)_{n=1}^{\infty} = (\alpha_n)_{n=1}^{\infty} + j (\beta_n)_{n=1}^{\infty}, \quad \alpha_n, \ \beta_n \in \mathbb{R}$$

definice limity jako v reálném případě

Platí:

- $\lim_{n \to \infty} a_n = 0 \Leftrightarrow \lim_{n \to \infty} |a_n| = \lim_{n \to \infty} \sqrt{(\operatorname{Re} a_n)^2 + (\operatorname{Im} a_n)^2} = 0$
- $\lim_{n \to \infty} a_n = a \in \mathbb{C} \iff \left(\lim_{n \to \infty} \operatorname{Re} a_n = \operatorname{Re} a \wedge \lim_{n \to \infty} \operatorname{Im} a_n = \operatorname{Im} a\right)$
- $\lim_{n\to\infty} a_n = \infty \Leftrightarrow \lim_{n\to\infty} |a_n| = +\infty$ k tomu stačí, když platí $\lim_{n\to\infty} |\operatorname{Re} a_n| = +\infty$ nebo $\lim_{n\to\infty} |\operatorname{Im} a_n| = +\infty$ (není to ovšem nutné viz posloupnost $(a_n)_{n=1}^{\infty} = (1, 2j, 3, 4j, \dots)$, pro kterou ani jedna z uvedených dvou limit neexistuje)

Úvod 12.1

 $(a_n)_{n=1}^{\infty}$ – posloupnost reálných nebo komplexních čísel

$$\sum_{n=1}^{\infty}a_n$$
 – (nekonečná) řada reálných nebo komplexních čísel, a_n – n -tý člen řady

obecněji:
$$\sum_{n=N_0}^{\infty} a_n$$
; $\sum_{n=1 \atop P(n)}^{\infty} a_n$, kde $P(n)$ je nějaký výrok (např. "3 nedělí n "); ...

Definice:

Nechť $N \in \mathbb{N}$. Pak N-tý **částečný součet** řady $\sum_{n=1}^{\infty} a_n$ definujeme předpisem:

$$s_N = \sum_{n=1}^N a_n = a_1 + a_2 + \ldots + a_N.$$

Existuje-li $s = \lim_{N \to \infty} s_N$, nazýváme s součtem řady $s = \sum_{n=1}^{\infty} a_n$. Píšeme $s = \sum_{n=1}^{\infty} a_n$.

Řekneme, že řada konverguje (diverguje | osciluje), jestliže posloupnost částečných součtů $(s_N)_{N=1}^{\infty}$ má limitu vlastní (nevlastní | nemá limitu).

Poznámka: Změna konečně mnoha členů řady nemá vliv na to, zda řada konverguje, diverguje či osciluje.

Příklad 12.1:
$$\sum_{n=1}^{\infty} n$$
 diverguje $\left[s_N = \frac{N(N+1)}{2} \right]$; $\sum_{n=1}^{\infty} (-1)^n$ osciluje $\left[(s_N)_{N=1}^{\infty} = (-1, 0, -1, 0, -1, 0, \dots) \right]$;

$$\sum_{n=1}^{\infty} (-1)^n n \text{ osciluje v } \mathbb{R}, \text{ ale diverguje v } \mathbb{C} \left[(s_N)_{N=1}^{\infty} = (-1, 1, -2, 2, -3, 3, \ldots) \right]$$

Příklad 12.2: Geometrická řada s kvocientem q: $\sum_{n=0}^{\infty} a_n$, kde $a_0, q \in \mathbb{R}$, $a_{n+1} = q \cdot a_n$, tj. $a_n = a_0 \cdot q^n$

• Speciálně pro $\underline{a_0 = 1}$ je

$$\sum_{n=0}^{N} a_n = \sum_{n=0}^{N} q^n = s_N = 1 + q + q^2 + \dots + q^N.$$

Je-li $\,\underline{q=1},\,\,\mathrm{pak}$ zřejmě platí $s_N=N+1\,.$ Pro $\,\underline{q\neq 1}\,$ máme

$$s_{N+1} = 1 + q + q^2 + \dots + q^N + q^{N+1} = \begin{cases} s_N + q^{N+1} \\ 1 + q \cdot s_N \end{cases}$$

tedy

$$s_N + q^{N+1} = 1 + q \cdot s_N ,$$

 $s_N = \frac{1 - q^{N+1}}{1 - q} .$

To nám dává pro |q| < 1

$$\sum_{n=0}^{\infty} q^n = \frac{1}{1-q}$$

a obecněji

$$\sum_{n=N_0}^{\infty} q^n = \sum_{n=N_0}^{\infty} q^{N_0} \cdot q^{n-N_0} \stackrel{m=n-N_0}{=} \sum_{m=0}^{\infty} q^{N_0} \cdot q^m = q^{N_0} \cdot \frac{1}{1-q} .$$

Pro ostatní kvocienty q z vyjádření s_N dostáváme

$$\diamond \quad \mathbf{v} \ \mathbb{R}: \quad \sum_{n=0}^{\infty} q^n = \left\{ \begin{array}{ll} +\infty & \text{pro } q \ge 1 \\ \text{osciluje} & \text{pro } q \le -1 \end{array} \right.$$

$$\diamond \quad \mathbf{v} \ \mathbb{C} \text{:} \quad \sum_{n=0}^{\infty} q^n = \left\{ \begin{array}{ll} \infty & \text{pro} \ |q| > 1 \ \text{nebo} \ q = 1 \\ \text{osciluje} & \text{pro} \ |q| = 1, \ q \neq 1 \end{array} \right.$$

• Pro <u>obecné $a_0 \neq 0$ </u> všechny součty vynásobíme číslem a_0 .

Speciálně pro |q|<1dostáváme

$$\sum_{n=0}^{\infty} a_0 \, q^n \, = \, a_0 \cdot \frac{1}{1-q} \, ,$$

a obecněji jako výše

$$\sum_{n=N_0}^{\infty} a_n = \sum_{n=N_0}^{\infty} a_0 q^n = a_0 q^{N_0} \cdot \frac{1}{1-q} = a_{N_0} \cdot \frac{1}{1-q} .$$

• Pro $a_0 = 0$ je součet řady nulový (všechny členy řady jsou nulové).

Příklad 12.3:
$$\sum_{n=0}^{\infty} \frac{3}{(-4)^n} = \sum_{n=0}^{\infty} 3\left(-\frac{1}{4}\right)^n = 3 \cdot \frac{1}{1 - \left(-\frac{1}{4}\right)} = \frac{12}{5}$$

Příklad 12.4:
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$$
. Máme totiž $a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$, takže

$$s_N = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{N-1} - \frac{1}{N}\right) + \left(\frac{1}{N} - \frac{1}{N+1}\right) = \frac{1}{1} - \frac{1}{N+1} \xrightarrow{N \to \infty} 1.$$

Věta 12.1:

Je-li
$$\sum_{n=1}^{\infty} a_n = A \in \overline{\mathbb{R}} (\overline{\mathbb{C}}), \quad \sum_{n=1}^{\infty} b_n = B \in \overline{\mathbb{R}} (\overline{\mathbb{C}}) \text{ a } c \in \mathbb{R} (\mathbb{C}), \text{ pak platí}$$

$$\sum_{n=1}^{\infty} (a_n + b_n) = A + B, \quad \sum_{n=1}^{\infty} c \cdot a_n = c \cdot A,$$

pokud je výraz vpravo definován.

Věta 12.2:

Nechť $(a_n)_{n=1}^{\infty} \subset \mathbb{C}$. Pak řada $\sum_{n=1}^{\infty} a_n$ konverguje právě tehdy, když konvergují obě řady $\sum_{n=1}^{\infty} \operatorname{Re} a_n$, $\sum_{n=1}^{\infty} \operatorname{Im} a_n$. Pokud řady konvergují, pak

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \operatorname{Re} a_n + \mathrm{j} \sum_{n=1}^{\infty} \operatorname{Im} a_n.$$

Věta 12.3 (nutná podmínka konvergence):

Jestliže $\sum_{n=1}^{\infty} a_n$ konverguje, pak $\lim_{n \to \infty} a_n = 0$.

Příklad 12.5: Řady $\sum_{n=1}^{\infty} \operatorname{arctg} n$, $\sum_{n=1}^{\infty} \sin\left(n\frac{\pi}{2}\right)$ nekonvergují. Je totiž $\lim_{n\to\infty} \operatorname{arctg} n = \frac{\pi}{2} \neq 0$ a $\left(\sin\left(n\frac{\pi}{2}\right)\right)_{n=1}^{\infty} = (1,0,-1,0,1,0,-1,\ldots)$, tedy limita $\lim_{n\to\infty} \sin\left(n\frac{\pi}{2}\right)$ neexistuje.

12.2 Řady s nezápornými členy

Věta 12.4:

Je-li $a_n \ge 0$ pro každé $n \in \mathbb{N}$, pak existuje součet $\sum_{n=1}^{\infty} a_n$ (a je nezáporný).

Poznámka: Protože je zde $(s_N)_{N=1}^{\infty}$ neklesající (a tedy $\lim_{N\to\infty} s_N$ existuje), stačí k určení hodnoty součtu řady najít limitu jakékoliv podposloupnosti posloupnosti $(s_N)_{N=1}^{\infty}$.

Příklad 12.6: Harmonická řada $\sum_{n=1}^{\infty} \frac{1}{n}$ diverguje.

Věta 12.5 (srovnávací kritérium):

Nechť $0 \le a_n \le b_n$ pro každé $n \ge n_1$. Potom platí:

- a) Jestliže konverguje řada $\sum_{n=1}^{\infty} b_n$, pak konverguje i řada $\sum_{n=1}^{\infty} a_n$ (a je-li $n_1=1$, pak $0 \leq \sum_{n=1}^{\infty} a_n \leq \sum_{n=1}^{\infty} b_n$).
- **b)** Jestliže diverguje řada $\sum_{n=1}^{\infty} a_n$, pak diverguje i řada $\sum_{n=1}^{\infty} b_n$.

Příklad 12.7: Pro $\alpha \le 1$ řada $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ diverguje, protože pro tato α je $\frac{1}{n^{\alpha}} \ge \frac{1}{n}$ a harmonická řada diverguje.

Příklad 12.8: Řada $\sum_{n=1}^{\infty} \frac{1}{n^2}$ konverguje. Podle příkladu 12.4 totiž konverguje řada $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$ a $\frac{1}{n(n+1)} \geq \frac{1}{n(n+n)} = \frac{1}{2} \cdot \frac{1}{n^2}$.

Poznámka ("limitní verze" srovnávacího kritéria): Uvažujme řady $\sum_{n=1}^{\infty}a_n$, $\sum_{n=1}^{\infty}b_n$ s kladnými členy. Předpokládejme, že existuje vlastní limita $\lim_{n\to\infty}\frac{a_n}{b_n}=c$ (zřejmě $c\geq 0$). Pokud je $c\neq 0$, pak řada $\sum_{n=1}^{\infty}a_n$ konverguje právě tehdy, když konverguje řada $\sum_{n=1}^{\infty}b_n$. Z definice limity totiž existuje k $\varepsilon=\frac{c}{2}>0$ index $n_1\in\mathbb{N}$ takový, že pro každé $n\geq n_1$ je $\frac{1}{2}$ $c=c-\varepsilon<\frac{a_n}{b_n}< c+\varepsilon=\frac{3}{2}$ c, a tedy $\frac{1}{2}$ c $b_n< a_n<\frac{3}{2}$ c b_n . Použijeme-li nyní srovnávací kritérium na řady s členy $c_n\stackrel{\text{ozn.}}{=}\frac{1}{2}$ c b_n , a_n a $d_n\stackrel{\text{ozn.}}{=}\frac{3}{2}$ c b_n , zjistíme, že jestliže konverguje řada $\sum_{n=1}^{\infty}a_n$, konverguje i řada $\sum_{n=1}^{\infty}a_n$. Řady $\sum_{n=1}^{\infty}a_n$, konverguje i řada $\sum_{n=1}^{\infty}a_n$. Řady $\sum_{n=1}^{\infty}a_n$ a $\sum_{n=1}^{\infty}d_n$ přitom zřejmě konvergují právě tehdy, když konverguje řada $\sum_{n=1}^{\infty}b_n$. Pokud je c=0, pak nám konvergence řady $\sum_{n=1}^{\infty}b_n$ dává konvergenci řady $\sum_{n=1}^{\infty}a_n$. Z definice limit totiž k $\varepsilon=1$ existuje index $n_1\in\mathbb{N}$ takový, že pro každé $n\geq n_1$ je $\frac{a_n}{b_n}<0+\varepsilon=1$, tedy $a_n<bn/>b_n$. Konvergence řady $\sum_{n=1}^{\infty}a_n$ nám na základě limity $\lim_{n\to\infty}\frac{a_n}{b_n}=0$ o konvergenci řady $\sum_{n=1}^{\infty}b_n$ nic neříká.

Příklad 12.8 – **dodatek:** K důkazu konvergence řady $\sum_{n=1}^{\infty} \frac{1}{n^2}$ můžeme použít také výše uvedenou limitní verzi srovnávacího kritéria: Máme $\lim_{n\to\infty} \left(\frac{1}{n^2}\right)/\left(\frac{1}{n(n+1)}\right) = \lim_{n\to\infty} \frac{n(n+1)}{n^2} = 1$ a řada $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$ konverguje.

Věta 12.6 (podílové kritérium – D'Alembertovo):

Nechť $a_n > 0$ pro všechna $n \ge n_1$. Potom platí:

- a) Jestliže existuje 0 < q < 1 tak, že $\frac{a_{n+1}}{a_n} \le q$ pro všechna $n \ge n_1$, pak $\sum_{n=1}^{\infty} a_n$ konverguje.
- b) Jestliže $\frac{a_{n+1}}{a_n} \ge 1$ pro všechna $n \ge n_1$, pak $\sum_{n=1}^{\infty} a_n$ diverguje.

Věta 12.7 (limitní podílové kritérium):

Nechť $a_n > 0$ pro všechna $n \in \mathbb{N}$. Potom platí:

- a) Jestliže existuje $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} < 1$, pak $\sum_{n=1}^{\infty} a_n$ konverguje.
- b) Jestliže existuje $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} > 1$, pak $\sum_{n=1}^{\infty} a_n$ diverguje.

Věta 12.8 (odmocninové kritérium – Cauchyovo):

Nechť $a_n \geq 0$ pro všechna $n \in \mathbb{N}$. Potom platí:

- a) Jestliže existuje 0 < q < 1 tak, že $\sqrt[n]{a_n} \le q$ pro všechna $n \ge n_1$, pak $\sum_{n=1}^{\infty} a_n$ konverguje.
- b) Jestliže $\sqrt[n]{a_n} \ge 1$ pro nekonečně mnoho n, pak $\sum_{n=1}^{\infty} a_n$ diverguje.

Věta 12.9 (limitní odmocninové kritérium):

Nechť $a_n \geq 0$ pro všechna $n \in \mathbb{N}$. Potom platí:

- a) Jestliže existuje $\lim_{n\to\infty} \sqrt[n]{a_n} < 1$, pak $\sum_{n=1}^{\infty} a_n$ konverguje.
- b) Jestliže existuje $\lim_{n\to\infty} \sqrt[n]{a_n} > 1$, pak $\sum_{n=1}^{\infty} a_n$ diverguje.

Poznámky:

- a) V nelimitních kritériích pro konvergenci nestačí $\frac{a_{n+1}}{a_n} < 1$ resp. $\sqrt[n]{a_n} < 1$ pro všechna n (viz např. harmonická řada: $\frac{a_{n+1}}{a_n} = \frac{n}{n+1} < 1$, $\sqrt[n]{a_n} = \sqrt[n]{\frac{1}{n}} < 1$, ale řada diverguje).
- b) Limitní kritéria nepomohou, je-li $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 1$ nebo $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$ (viz např. řady: $\sum_{n=1}^{\infty} \frac{1}{n}$ diverguje, $\sum_{n=1}^{\infty} \frac{1}{n^2}$ konverguje).
- c) U podílového kritéria pro divergenci nestačí: "pro nekonečně mnoho $\,n^*$ (viz příklad 12.10).
- d) Lze-li ukázat, že řada konverguje pomocí podílového kritéria, lze to i pomocí odmocninového. Pro divergenci to ale neplatí (viz např. řadu $\sum_{n=1}^{\infty} \frac{n-1}{n}$, jejíž divergenci lze ukázat pomocí podílového kritéria, ne však pomocí odmocninového).

Připomenutí – užitečné limity (viz [P11.6]):

•
$$\lim_{n \to \infty} \sqrt[n]{a} = 1$$
 pro $a > 0$ • $\lim_{n \to \infty} \sqrt[n]{n} = 1$ • $\lim_{n \to \infty} \sqrt[n]{n!} = +\infty$

Příklad 12.9: $\sum_{n=1}^{\infty} \frac{1}{n!}$ konverguje podle kritéria podílového ($\frac{a_{n+1}}{a_n} = \frac{1}{n+1} \le \frac{1}{2} < 1$), podílového limitního ($\frac{a_{n+1}}{a_n} = \frac{1}{n+1} \to 0 < 1$), odmocninového limitního ($\sqrt[n]{a_n} \to \left(\sqrt[n]{\frac{1}{\infty}}\right) = 0 < 1$), srovnávacího (pro $n \ge 2$ je $n! \ge (n-1)n \ge \frac{n}{2}n$, tedy $a_n \le \frac{2}{n^2}$, a přitom řada $\sum_{n=1}^{\infty} \frac{2}{n^2}$ konverguje).

Příklad 12.10: $\sum_{n=1}^{\infty} a_n$, kde $a_n = \frac{1}{2^n}$ pro n-sudé a $a_n = \frac{1}{5^n}$ pro n-liché, konverguje podle odmocninnového kritéria (podílové ale nepomůže, protože $\frac{a_{n+1}}{a_n} > 1$ pro všechna lichá n; nelze použít ani limitní odmocninové kritérium, protože $\lim_{n \to \infty} \sqrt[n]{a_n}$ neexistuje; vhodné je ale použití srovnávacího kritéria, protože pro každé n platí $a_n \le \left(\frac{1}{2}\right)^n$).

Příklad 12.11: U řad $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$, $\alpha > 0$, podílové ani odmocninové kritérium nepomůže.

Věta 12.10 (integrální kritérium):

Nechť f je nezáporná a nerostoucí funkce na intervalu $\langle N, \infty \rangle$, kde $N \in \mathbb{N}$. Pak řada $\sum_{n=N}^{\infty} f(n)$ konverguje právě tehdy, když konverguje integrál $\int_{N}^{\infty} f(x) \, \mathrm{d}x$.

Příklad 12.12: Podle integrálního kritéria řada $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ konverguje právě tehdy, když $\alpha > 1$ (využití ve srovnávacím kritériu).

Příklad 12.13: Vyšetřete konvergenci řady $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$.

Řešení: Máme $\frac{1}{n \ln n} = f(n)$ pro funkci $f(x) = \frac{1}{x \ln x}$, která je na intervalu $(2, \infty)$ nezáporná a nerostoucí. Můžeme tedy zkusit použít integrální kritérium. Protože

$$\int_{2}^{\infty} \frac{1}{x \ln x} dx = \left[\ln |\ln x| \right]_{2}^{\infty} = \infty - \ln(\ln 2) = \infty,$$

zkoumaná řada podle integrálního kritéria diverguje.

Poznámka: Pokud ve Větě 12.10 s N=1 řada konverguje a její součet je roven A, pak pro chybu $r_k=A-\sum_{n=1}^k f(n)$ $\left(=\sum_{n=k+1}^{\infty} f(n)\right)$, které se dopustíme, když místo celé řady sečteme jen jejích prvních k členů, platí

$$\int_{k+1}^{\infty} f(x) \, \mathrm{d}x \ \le \ r_k \ \le \ \int_{k}^{\infty} f(x) \, \mathrm{d}x \, .$$

Příklad 12.14: Odhadněte chybu součtu $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$, jestliže sečteme jen prvních 100 členů. (Součet uvedené řady lze získat pomocí Fourierových řad, které budete mít později.)

Řešení: Máme $\frac{1}{n^2}=f(n)$ pro funkci $f(x)=\frac{1}{x^2}$, která je na intervalu $(1,\infty)$ nezáporná a nerostoucí. K odhadu chyby $r_{100}=\sum_{n=1}^{\infty}\frac{1}{n^2}-\sum_{n=1}^{100}\frac{1}{n^2}$, tedy můžeme použít předchozí poznámku. Ta nám dává odhady

$$r_{100} \ge \int_{101}^{\infty} \frac{1}{x^2} dx = \left[-\frac{1}{x} \right]_{101}^{\infty} = \frac{1}{101} = 0, \overline{0099}$$

 $r_{100} \le \int_{100}^{\infty} \frac{1}{x^2} dx = \left[-\frac{1}{x} \right]_{100}^{\infty} = \frac{1}{100} = 0, 01.$

Pro hledanou chybu r_{100} tak máme odhad $0,\overline{0099} \leq r_{100} \leq 0,01$.

12.3 Řady s obecnými členy

Věta 12.11:

Jestliže pro řadu $\sum_{n=1}^{\infty} a_n$ platí $\lim_{n\to\infty} a_n = a \neq 0$, pak tato řada diverguje.

$$\sum_{n=1}^{\infty} |a_n| < +\infty \quad \dots \quad \sum_{n=1}^{\infty} a_n \;\; \mbox{konverguje absolutn} \mbox{\'e}$$

$$\sum_{n=1}^{\infty} |a_n| = +\infty, \ \sum_{n=1}^{\infty} a_n \ \text{konverguje} \ \dots \ \sum_{n=1}^{\infty} a_n \ \text{konverguje neabsolutně} \ (\text{relativně})$$

Poznámka: Konverguje-li reálná řada neabsolutně, pak "součet" jejích kladných členů je $+\infty$, záporných $-\infty$. Tj. označíme-li $a_n^+ = \max\{a_n, 0\}, \ a_n^- = \max\{-a_n, 0\}$ (všimněte si, že $a_n = a_n^+ - a_n^-, \ |a_n| = a_n^+ + a_n^-$), pak $\sum_{n=1}^{\infty} a_n^+ = \sum_{n=1}^{\infty} a_n^- = +\infty$.

Příklad 12.14: Řada $\sum_{n=1}^{\infty} \left(-\frac{1}{2}\right)^n$ konverguje absolutně.

Poznámka: Absolutní konvergenci řad lze zkoumat pomocí kritérií z odstavce 12.2.

Věta 12.12:

Konverguje-li řada absolutně, pak konverguje.

(Obrácené tvrzení neplatí.)

Věta 12.13 (Leibnizovo kritérium):

Nechť $(b_n)_{n=1}^{\infty}$ je nerostoucí posloupnost nezáporných čísel. Pak řada $\sum_{n=1}^{\infty} (-1)^{n+1} b_n = b_1 - b_2 + b_3 - b_4 + \dots$ (tzv. alternující řada) konverguje právě tehdy, když $\lim_{n \to \infty} b_n = 0$.

Příklad 12.15: Řada $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$ konverguje neabsolutně.

Poznámky:

- a) Je-li $f: \mathbb{N} \xrightarrow{\text{na}} \mathbb{N}$ prosté zobrazení, pak řadu $\sum_{n=1}^{\infty} a_{f(n)}$ nazýváme **přerovnáním řady** $\sum_{n=1}^{\infty} a_n$. Platí:
 - 1) Jestliže řada konverguje absolutně, pak konverguje absolutně i každé její přerovnání a má stejný součet.
 - 2) Jestliže reálná řada konverguje neabsolutně, pak každé reálné číslo je součtem některého přerovnání této řady. Totéž platí pro $\pm \infty$. Řadu lze přerovnat v tomto případě i tak, že nová řada bude oscilovat.
- b) Cauchyovým součinem řad $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$ nazýváme řadu $\sum_{n=0}^{\infty} c_n$, kde $c_0 = a_0b_0$, $c_1 = a_0b_1 + a_1b_0$, ..., $c_n = a_0b_n + a_1b_{n-1} + \ldots + a_nb_0 = \sum_{k=0}^{n} a_kb_{n-k}$ (srovnejte s výpočtem koeficientů při násobení dvou polynomů). Platí: Jestliže řady $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$ konvergují a alespoň jedna z nich konverguje absolutně, pak konverguje i jejich Cauchyův součin $\sum_{n=0}^{\infty} c_n$ a platí $(\sum_{n=0}^{\infty} a_n)(\sum_{n=0}^{\infty} b_n) = \sum_{n=0}^{\infty} c_n$. Konvergují-li absolutně obě řady, pak konverguje absolutně i jejich Cauchyův součin.

12.4 Příklady

Příklad 12.16: Zjistěte, pro jaká $x \in \mathbb{R}$ konverguje řada $\sum_{n=1}^{\infty} \left(\frac{5}{x+2}\right)^n$.

Řešení: Jde o geometrickou řadu s kvocientem $q = \frac{5}{x+2}$, která podle Příkladu 12.2 konverguje právě tehdy, když $\left|\frac{5}{x+2}\right| < 1$. Toto nastává, právě když 5 < |x+2|, tj. pro x > -2 + 5 = 3 a pro x < -2 - 5 = -7. Uvedená řada tak konverguje pro $x \in (-\infty, -7) \cup (3, \infty)$.

Příklad 12.17: Vyšetřete konvergenci řady $\sum_{n=1}^{\infty} \frac{3^{2n}(n-1)^n}{(4n+7)^n}.$

Řešení: Máme $a_n = \frac{9^n (n-1)^n}{(4n+7)^n} \ge 0$ a

$$\sqrt[n]{a_n} = \frac{9(n-1)}{(4n+7)} \stackrel{n \to \infty}{\longrightarrow} \frac{9}{4} > 1.$$

Tedy podle limitního odmocninového kritéria řada diverguje. Divergenci můžeme dostat také pomocí prostého odmocninového kritéria, protože pro $n \ge 4$ je $\sqrt[n]{a_n} \ge 1$.

Příklad 12.18: Vyšetřete konvergenci řady
$$\sum_{n=1}^{\infty} \frac{(\arcsin 1)^n}{n^2}$$
.

Řešení: Máme
$$a_n = \frac{\left(\frac{\pi}{2}\right)^n}{n^2} \ge 0$$
 a
$$\sqrt[n]{a_n} = \frac{\frac{\pi}{2}}{\sqrt[n]{n^2}} = \frac{\frac{\pi}{2}}{\left(\sqrt[n]{n}\right)^2} \stackrel{n \to \infty}{\longrightarrow} \frac{\frac{\pi}{2}}{1^2} = \frac{\pi}{2} > 1.$$

Tedy podle limitního odmocninového kritéria řada diverguje. Divergenci můžeme dostat také pomocí limitního podílového kritéria, protože

$$\frac{a_{n+1}}{a_n} = \frac{\left(\frac{\pi}{2}\right)^{n+1}}{(n+1)^2} \cdot \frac{n^2}{\left(\frac{\pi}{2}\right)^n} = \frac{\pi}{2} \frac{n^2}{(n+1)^2} \stackrel{n \to \infty}{\longrightarrow} \frac{\pi}{2} \cdot 1 = \frac{\pi}{2} > 1.$$

Příklad 12.19: Vyšetřete konvergenci řady $\sum_{n=1}^{\infty} \frac{n^n}{(2n)!}$.

Řešení: Máme
$$a_n = \frac{n^n}{(2n)!} > 0$$
 a $a_{n+1} = (n+1)^{n+1} = (2n)^n$

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)^{n+1}}{(2n+2)!} \cdot \frac{(2n)!}{n^n} = \frac{(n+1)(n+1)^n}{(2n+2)(2n+1)n^n} = \frac{1}{2(2n+1)} \cdot \left(\frac{n+1}{n}\right)^n = \frac{1}{2(2n+1)} \cdot \left(1 + \frac{1}{n}\right)^n \xrightarrow{n \to \infty} 0 \cdot e = 0 < 1.$$

Tedy podle limitního podílového kritéria řada konverguje

Příklad 12.20: Vyšetřete konvergenci řady
$$\sum_{n=3}^{\infty} \frac{2n^2 - 6n + 5}{(n^2 - 3n + 2)^2}$$

Příklad 12.21: Vyšetřete konvergenci a absolutní konvergenci řady
$$\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{(3n+2)\mathrm{arctg}\,n}.$$

Příklad 12.22: Vyšetřete konvergenci a absolutní konvergenci řady
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{(3n-1)(n+2)}{n^2+3}.$$

Řešení: Protože $\lim_{n\to\infty} a_n = \langle neex. \cdot 3 \rangle$ neexistuje, není splněna nutná podmínka konvergence, a daná řada proto nekonverguje. Nekonverguje tedy ani absolutně.

Příklad 12.23: Vyšetřete konvergenci a absolutní konvergenci řady
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\sqrt[3]{2n+5}}{n!}.$$

Řešení: Protože $\lim_{n\to\infty}\frac{|a_{n+1}|}{|a_n|}=\lim_{n\to\infty}\frac{\sqrt[3]{2n+7}}{(n+1)!}\cdot\frac{n!}{\sqrt[3]{2n+5}}=\lim_{n\to\infty}\sqrt[3]{\frac{2n+7}{2n+5}}\cdot\frac{1}{n+1}=1\cdot 0=0$, daná řada konverguje absolutně, a tedy i konverguje. Mohli jsme také nejdřív pomocí Leibnizova kritéria dokázat prostou konvergenci, a pak až zkoumat konvergenci absolutní. Pro použití Leibnizova kritéria bychom ale nejdřív museli ověřit, že posloupnost $\left(\frac{\sqrt[3]{2n+5}}{n!}\right)_{n=1}^{\infty}$ je nerostoucí. To je možné, ale nepříjemné.