NASA TECHNICAL NOTE

NEWTONIAN AERODYNAMIC CHARACTERISTICS OF RIGHT ELLIPTICAL RAKED-OFF CONES FOR CONE THICKNESS RATIOS OF 0.25 TO 3

by Robert H. Lamb, Ralph E. Graham, and Paul O. Romere

Manned Spacecraft Center Houston, Texas

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION - WASHINGTON, D. C. - AUGUST 1965

NEWTONIAN AERODYNAMIC CHARACTERISTICS OF RIGHT ELLIPTICAL RAKED-OFF CONES FOR CONE THICKNESS RATIOS OF 0.25 TO 3

By Robert H. Lamb, Ralph E. Graham, and Paul O. Romere

Manned Spacecraft Center Houston, Texas

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NEWTONIAN AERODYNAMIC CHARACTERISTICS OF RIGHT ELLIPTICAL RAKED-OFF CONES

FOR CONE THICKNESS RATIOS OF 0.25 TO 3

By Robert H. Lamb, Ralph E. Graham, and Paul O. Romere Manned Spacecraft Center

SUMMARY

A parametric study has been made of the Newtonian aerodynamic characteristics of right elliptical raked-off cones, in general, for cone thickness ratios of 0.25 to 3.0 and, in particular, to determine a range of configurations which might be used as heat shields for manned vehicles entering the earth's atmosphere at hyperbolic speeds.

Newtonian longitudinal aerodynamic force and moment coefficients for angles of attack of ±15° are presented. Also presented are the values of base thickness ratios and lateral surface areas which coincide with the configurations considered. It was found that, for low cone thickness ratios, the longitudinal stability limit is the limiting factor from the standpoint of a realistic center-of-gravity location. However, as the cone thickness ratio increases, the center-of-gravity limit becomes a function of the directional stability limit. The lateral stability limit is never the determining factor. The lift-to-drag ratio was found to increase with increasing cone thickness ratio and to be a function of the rake angle and the cone halfangle measured in the vertical plane. After restricting the cone to trim at zero angle of attack, to have a minimum lift-to-drag ratio of 0.6, and to have longitudinal, directional, and lateral stability, it was found that only three cone families met the restrictions. Newtonian longitudinal force and moment coefficients for the resulting three families, for the complete angle-ofattack range of 0° to 360°, are presented.

INTRODUCTION

Entry into the earth's atmosphere at hyperbolic velocities requires that manned spacecraft be capable of experiencing a severe heating environment. The spacecraft must also have some means of trajectory control, for example, aerodynamic lift, to prevent either skip-out or high deceleration loads. A heat shield shape which would minimize the total heat load during entry at hyperbolic speeds was shown in reference 1 to be a right circular cone at zero angle of attack. Such a configuration yields no aerodynamic lift.

In reference 2, a vehicle was designed to provide adequate heat protection as well as a lifting capability while trimming at zero angle of attack. This vehicle, which utilized a raked circular conical forebody with an elliptical conical afterbody, was found to possess undesirable directional stability characteristics. In reference 3 the concept of reference 2 was extended to raked-off elliptical conical forebodies having circular bases. In general, the raked-off elliptical cones studied exhibited better static stability characteristics than raked-off circular cones. Since the results of these restricted studies gave promise to utilizing this type of configuration for earth entry at hyperbolic speeds, it became evident that a more general study of raked-off elliptical cones was needed.

The purpose of the present study is to study parametrically the rakedoff elliptical cone for a large range of cone thickness ratios and to impose the restrictions of the cone trimming at zero angle of attack, to having a minimum lift-to-drag ratio of 0.6, and to having positive longitudinal, lateral, and directional static stability about centers of gravity which are considered to be reasonable.

Newtonian longitudinal aerodynamic force and moment coefficients for an angle-of-attack range of $\pm 15^\circ$ and stability derivatives are presented for 20 elliptical cones for which the cone thickness ratio was varied from 0.25 to 3.0. The cone half-angle in the vertical plane varied from 20° to 60° and the rake angle varied from 30° to 80° . Additional parameters include base thickness ratios and lateral surface areas which coincide with the configurations investigated. Aerodynamic force and moment coefficients for the families of configurations which met the imposed restrictions are presented throughout the complete angle-of-attack range of 0° to 360° . Calculations presented in this paper consider only the aerodynamics for vehicle forebodies, and no considerations are made for afterbodies that would have to exist for realistic reentry configurations.

SYMBOLS

а	base semi-height of the elliptical-cone configuration
Ъ	base semi-width of the elliptical-cone configuration
$^{\mathrm{C}}_{\mathrm{A}}$	axial-force coefficient, $\frac{-F_X}{qS}$
$^{\mathrm{C}}_{\mathrm{D}}$	drag coefficient, $\frac{F_D}{qS}$
c_{L}	lift coefficient, $\frac{F_L}{qS}$
C ₁	rolling-moment coefficient, $\frac{M_{\overline{X}}}{qSd}$

$^{\mathrm{M}}\mathrm{_{X}}$	rolling moment
$^{\mathrm{M}}_{\mathrm{Y}}$	pitching moment
$^{ m M}_{ m Z}$	yawing moment
р	local pressure
p_{∞}	free-stream pressure
q	free-stream dynamic pressure
S	reference area
S'	lateral surface area of cone
X, Y, Z	Cartesian body coordinate axes
х, у, г	distance along X-, Y-, and Z-axis, respectively
α	angle of attack, deg
β	angle of sideslip, deg
δ	rake-off angle, deg
$\theta_{ ext{XY}}$	cone half-angle measured in horizontal plane, deg
$\theta_{ m XZ}$	cone half-angle measured in vertical plane, deg
ø	cylindrical polar coordinate angle measured about the X-axis

CONFIGURATIONS

An example of the elliptical configurations investigated is shown in figure 1 along with the reference axes system. The cone half-angles θ_{XZ} measured in the vertical plane varied from 20° to 60° in 10° increments. The cone half-angles θ_{XY} measured in the horizontal plane were varied to obtain cone thickness ratios of 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, and 3. The rake angle δ varied from $\left(\theta_{XZ}+10^{\circ}\right)$ to 80° for all configurations. Combinations of these variables resulted in 160 configurations.

Since an afterbody must be added to form a complete vehicle, the thickness ratio of the interface, which is always an ellipse, must be known. Table I presents the base thickness ratio, which is used to determine base area, as a function of cone thickness ratio and rake angle.

Inasmuch as a major design variable for vehicles entering at hyperbolic speeds is the heat-shield surface area, lateral surface area as a function of cone thickness ratio and rake angle is presented in table II. The derivation of the equations used for this presentation is included in the appendix.

METHOD OF COMPUTATION

The aerodynamic coefficients were obtained by integrating the Newtonian force and moment equations with a numerical double integration routine on a digital computer. The integral relations and the integration method as presented in reference 3 were derived from the approach described in reference 4. The basic equations are:

$$C_{N} = \frac{1}{S} \int_{d}^{O} \int_{\phi_{T_{i}}}^{\phi_{U}} \frac{C_{p}^{x} \tan \theta_{XZ} \cos \phi}{\left(m^{2} \sin^{2} \phi + \cos^{2} \phi\right)^{3/2}} d\phi dx$$

$$C_{A} = -\frac{1}{S} \int_{d}^{O} \int_{\phi_{L}}^{\phi_{U}} \frac{C_{p} x \tan^{2} \theta_{XZ}}{m^{2} \sin^{2} \phi + \cos^{2} \phi} d\phi dx$$

$$C_{m} = \frac{\sec^{2}\theta_{XZ}}{Sd} \int_{d}^{O} \int_{\phi_{L}}^{\phi_{U}} \frac{C_{p}x^{2}\tan\theta_{XZ}\cos\phi}{\left(m^{2}\sin^{2}\phi + \cos^{2}\phi\right)^{3/2}} d\phi dx$$

$$c_{Y} = -\frac{1}{S} \int_{d}^{O} \int_{\phi_{T}}^{\phi_{U}} \frac{c_{p}xm^{2}\tan \theta_{XZ} \sin \phi}{\left(m^{2}\sin^{2}\phi + \cos^{2}\phi\right)^{3/2}} d\phi dx$$

$$C_{\rm n} = -\frac{{\rm m}^2 + {\rm tan}^2 \theta_{\rm XZ}}{{\rm Sd}} \int_{\rm d}^{\rm O} \int_{\phi_{\rm L}}^{\phi_{\rm U}} \frac{{\rm C_p x^2 tan} \ \theta_{\rm XZ} \ {\rm sin} \ \phi}{\left({\rm m}^2 {\rm sin}^2 \phi + {\rm cos}^2 \phi\right)^{3/2}} \ {\rm d}\phi {\rm d} {\rm x}$$

$$C_{l} = \frac{m^{2} - 1}{Sd} \int_{-d}^{0} \int_{\phi_{L}}^{\phi_{U}} \frac{C_{p}x^{2} tan^{2}\theta_{XZ} \cos \phi \sin \phi}{\left(m^{2} sin^{2}\phi + cos^{2}\phi\right)^{2}} d\phi dx$$

where

$$C_{p} = \frac{2}{m^{2}s^{2}\sin^{2}\phi + \cos^{2}\phi} \left(\lambda \sin \theta_{XZ} \sqrt{m^{2}\sin^{2}\phi + \cos^{2}\phi} + msv \cos \theta_{XY} \sin \phi - w \cos \theta_{XZ} \cos \phi\right)^{2}$$

$$s = \frac{\sin \theta_{XZ}}{\sin \theta_{XY}}$$

$$\lambda = \cos \alpha \cos \beta$$

$$\omega = \sin \alpha \cos \beta$$

$$v = -\sin \beta$$

and

 $\phi_{\rm U}$ and $\phi_{\rm L}$ are the upper and lower integration limits determined by either the flow-see boundary or the configuration geometry. These integration limits are explained in detail in appendix B of reference 3.

It should be noted that the double integration routine which was used has been checked for elliptical integrals and compared with the closed form results presented in reference 4. In all cases, the agreement appears very good, the difference being less than 1 percent.

The reference area S is defined as the base area of the cone which is πab where

$$b = d \frac{\tan \theta_{XY}}{\tan \theta_{XZ}} \left[\left(\frac{-\sin \delta \cot \theta_{XZ}}{2} \right)^2 \tan^2 \theta_{XZ} - \left(\frac{\sin \delta \cot \theta_{XZ}}{2} \right)^2 - \frac{1}{2} \frac{\sin \left(\delta - \theta_{XZ} \right)}{\cos \theta_{XZ}} \right]^2 \right]$$

All coefficients correspond to a maximum stagnation point pressure coefficient $C_{\rm p}$ of 2.0. The aerodynamics of the cone base is not included since afterbody aerodynamics has to be added for a complete reentry vehicle. The directional and lateral stability derivatives were determined by computing the coefficients at an angle of sideslip of 5° and assuming linearity. The longitudinal stability derivative was computed from an angle of attack of 1° , again assuming linearity.

RESULTS AND DISCUSSION

The Newtonian longitudinal force and moment coefficients for all configurations are presented in tables III to VII. It should be noted that the coefficients presented for a cone thickness ratio m of 1.0 (circular cones) differ by about 1 percent from those presented in reference 3. This was found to result from differences in integration routines. The directional and lateral stability derivatives are presented (for the reference center shown in fig. 1) in table VIII.

The lift-to-drag ratios at an angle of attack of 0° are summarized in figure 2 as a function of cone thickness ratio. As can be seen, for a constant δ , L/D increases as m increases; however, for a constant m, L/D decreases as δ increases. For a constant δ and constant m greater than 1, L/D increases with a decrease in θ_{XZ} ; whereas, for an m less than 1, L/D decreases with a decrease in θ_{XZ} . As was shown in reference 3, for circular cones (m of 1.0) the L/D at 0° angle of attack is independent of θ_{XZ} and becomes a function of δ only. It is interesting to note that for an m of 1.0, the L/D is the flat plate value, which is the cotangent of δ . Thus,

for m > 1.0, the cone L/D is greater than the flat plat value, and for $m \le 1.0$, the converse is true.

Figure 3 presents a typical configuration and the locus of all center-of-gravity locations at which the configuration would trim at zero angle of attack. Since no center-of-gravity offset in the Y-direction was considered, the equation of this line to trim at an angle of attack of zero may be written:

$$\frac{x}{d} = \frac{C_{m}}{C_{N}} + \frac{C_{A}}{C_{N}} \frac{z}{d}$$

The longitudinal stability limit was then determined as the center-of-gravity location on the line to trim at which $\begin{array}{c} C \\ \mathfrak{C} \end{array}$ went to zero. The center-of-gravity locations for the lateral and directional aerodynamics can be de-

termined by $\frac{z}{d} = -\frac{c_1}{c_Y}$ and $\frac{x}{d} = \frac{c_n}{c_Y}$. Thus, all stability limits can be expressed

as a function of $\frac{x}{d}$ location along the line to trim. Figures 4 to 8 present the stability limits for all configurations as a function of m. It is seen that for low m values, the longitudinal stability limit is the limiting factor. However, as m increases, the center-of-gravity limit is determined by the directional stability limit. It should be noted that in all cases, this occurs at or before m equals 1.0. The lateral stability limit is never the determining factor.

The first restriction was that, for a configuration to be acceptable, it must have an L/D of at least 0.6 while trimmed at zero angle of attack. The choice of this limit is based on results presented in reference 2 for earth entry missions at hyperbolic speeds. The second restriction was that the vehicle must have positive longitudinal, directional, and lateral static stability. Also presented in figures 4 to 8 are the most forward center-of-gravity limits for all configurations as a function of m. The location of the most forward acceptable center of gravity was chosen as the intersection of the line to trim with the cone base (see fig. 3). This arbitrary limit is determined from both geometric and aerodynamic considerations and seems a logical choice for a parametric study.

Although these configurations met the imposed aerodynamic requirements, the physical characteristics of cone lateral surface area and base thickness ratio should be analyzed. Figure 9 presents lateral surface area as a function of m and δ , and figure 10 presents the base thickness ratio of the final configurations. As can be seen in figure 9, the lateral surface area decreases with increasing m. This indicates that of the selected configurations, the ones with the highest value of m would result in a heat shield which would present the least surface area to be heat protected. From figure 10, it can be seen that a base thickness ratio of 1.0 falls within the acceptable range of the final configurations.

CONCLUSIONS

As a result of a parametric study of the Newtonian aerodynamics of right elliptical raked-off cones, the following conclusions were made:

- 1. Of the configurations studied three cone families of limited cone thickness ratios were selected on the basis of stability and lift-to-drag ratio from a wide range of cone thickness ratio, cone half-angle in the vertical plane, and rake angle.
- 2. For low cone thickness ratio values, the longitudinal stability limit is the limiting factor (from the standpoint of realistic center-of-gravity location). However, as the cone thickness ratio value increases, the center of gravity is dictated by the directional stability limit at or before the cone thickness ratio equals 1.0 for all cases. The lateral stability limit is never the determining factor.
- 3. The lift-to-drag ratio characteristics of all configurations may be summarized as follows:
- (a) For constant cone half-angles in the vertical plane and constant rake angles, the lift-to-drag ratio increases with an increase in cone thickness ratio.
- (b) For constant cone thickness ratios, the lift-to-drag ratio decreases with an increase in rake angle.
- (c) For constant rake angle and constant cone thickness ratios greater than 1.0, lift-to-drag increases with a decrease in cone half-angle in the vertical plane.
- (d) For constant rake angles and constant cone thickness ratios less than 1.0, lift-to-drag ratios decrease with a decrease in cone half-angle in the vertical plane.
- 4. The facts that lateral surface area decreased with an increase in cone thickness ratio, lift-to-drag ratios increased with an increase in cone thickness ratio, and stability became more restrictive with an increase in cone thickness ratio suggest the possibility of further optimization dependent on particular mission requirements.

APPENDIX

The purpose of this appendix is to derive the relations used to calculate the surface area of the configurations presented in this paper. The equation for the surface of a conic right body whose cross section is an ellipse may be expressed as follows:

$$F(x,y,z) = \frac{y^2}{h^2} + \frac{z^2}{g^2} - x^2 = 0$$
 (A1)

where

$$g = \tan \theta_{XZ}$$

and

$$h = \tan \theta_{XY}$$

Taking an incremental $\Delta S'$ (surface area), the surface area may be expressed as follows:

$$S' = \iint \sec Y dA$$
 (A2)

where Y is defined as the acute angle which the normal to the tangent plane makes with the Y-axis (see sketch a) and dA is the incremental area dxdz.

If the surface is represented by an equation F(x,y,z)=0, where F has continuous derivatives and $\frac{\partial F}{\partial x}\neq 0$, sec γ may be defined as follows:

$$\sec \gamma = \frac{\left[\left(\frac{\partial F}{\partial x} \right)^2 + \left(\frac{\partial F}{\partial y} \right)^2 + \left(\frac{\partial F}{\partial z} \right)^2 \right]^{1/2}}{\left| \frac{\partial F}{\partial y} \right|}$$
(A3)

Sketch a

or the surface area may be defined as

$$S' = \int \int \sqrt{\frac{(g_1^{1}h^2 + g_1^{1})x^2 + (h^2 - g^2)z^2}{g^1x^2 - g^2z^2}} dxdz$$
 (A4)

Considering the configurations presented, equation (A4) has been nondimensionalized and the integration limits were determined from sketch b. The equation for the lateral surface area of raked-off elliptical cones now becomes

$$\frac{g'}{d^2} = 2 \int_{\mathbf{z}_{-\mathbf{x}_0}}^{\mathbf{z}_{2}} \sqrt{\frac{\left(g^{\frac{1}{4}}h^2 + g^{\frac{1}{4}}\right)\left(\frac{\mathbf{x}}{d}\right)^2 + \left(h^2 - g^2\right)\left(\frac{\mathbf{z}}{d}\right)^2}} d\left(\frac{\mathbf{x}}{d}\right)d\left(\frac{\mathbf{z}}{d}\right)$$

$$+2\int_{\mathbf{z}_{3}}^{\mathbf{z}_{1}}\int_{\mathbf{x}_{2}}^{\mathbf{x}_{1}}\sqrt{\frac{\left(g^{4}h^{2}+g^{4}\right)\left(\frac{\mathbf{x}}{d}\right)^{2}+\left(h^{2}-g^{2}\right)\left(\frac{\mathbf{z}}{d}\right)^{2}}{g^{4}\left(\frac{\mathbf{x}}{d}\right)^{2}-g^{2}\left(\frac{\mathbf{z}}{d}\right)^{2}}}d\left(\frac{\mathbf{x}}{d}\right)d\left(\frac{\mathbf{z}}{d}\right)}}d\left(\frac{\mathbf{x}}{d}\right)d\left(\frac{\mathbf{z}}{d}\right)$$

where

$$z_{1} = 0$$

$$z_{2} = -\frac{1}{2} \frac{\sin \left[180^{\circ} - \left(\delta + \theta_{XZ}\right)\right] \tan \theta_{XZ}}{\sin \theta_{XZ}}$$

$$X = -\frac{1}{2} \frac{\sin \left[180^{\circ} - \left(\delta + \theta_{XZ}\right)\right] \tan \theta_{XZ}}{\sin \theta_{XZ}}$$

$$\mathbf{z}_{3} = \frac{1}{2} \frac{\sin \left(\delta - \theta_{XZ}\right)}{\cos \theta_{XZ}}$$

$$x_1 = \frac{\frac{z}{d}}{\tan \theta_{XZ}}$$

$$\mathbf{x}_{2} = \frac{-\frac{\mathbf{z}}{\mathbf{d}}}{\tan \delta} + \frac{1}{2} \frac{\sin \left(\delta - \theta_{XZ}\right)}{\cos \theta_{XZ}} + \frac{1}{2} \frac{\sin \left(\delta - \theta_{XZ}\right)}{\sin \theta_{XZ}}$$

Sketch b

REFERENCES

- 1. Allen, H. Julian; Seiff, Alvin; and Winovich, Warren: Aerodynamic Heating of Conical Entry Vehicles at Speeds in Excess of Earth Parabolic Speed. NASA TR R-185, 1963.
- 2. Shapland, D. J.: Preliminary Design of a Mars-Mission Earth Reentry Module. In Proceedings of the Symposium on Manned Planetary Missions 1963/1964 Status. NASA TN X-53049, 1964.
- 3. Mayo, Edward E.; Lamb, Robert H.; and Romere, Paul O.: Newtonian Aerodynamics for Blunted Raked-Off Circular Cones and Raked-Off Elliptical Cones. NASA TN D-2624. 1964.
- 4. Wells, William R.; and Armstrong, William O.: Tables of Aerodynamic Coefficients Obtained From Developed Newtonian Expressions for Complete and Partial Conic and Spheric Bodies at Combined Angles of Attack and Sideslip With Some Comparisons With Hypersonic Experimental Data.

 NASA TR R-127, 1962.

Manned Spacecraft Center
National Aeronautics and Space Administration
Houston, Texas, May 5, 1965

TABLE I. - BASE THICKNESS RATIOS

(a)
$$\theta_{XZ} = 20^{\circ}$$

m 8, deg	30	40	50	60	70	80
0.25	0.6440	0.4316	0.3427	0.2952	0.2684	0.2543
.50	1.2883	.8632	. 6854	•59 0 5	. 5368	•5087
.75	1.9319	1.2950	1.0281	.8857	.8052	. 7631
1.0	2.5759	1.7265	1.3709	1.1811	1.0736	1.0175
1.5	3.8639	2.5906	2.0567	1.7717	1.6108	1.5262
2.0	5.1546	3.4530	2.7412	2.3618	2.1468	2.0350
2.5	6.4432	4.3177	3.4270	2.9533	2.6838	2.5445
3.0	7.7279	5.1813	4.1118	3.5435	3.2216	3.0525

(b)
$$\theta_{XZ} = 30^{\circ}$$
.

δ, deg	40	50	60	70	80
0.25	0.5359	0.3730	0.3061	0.2721	0.2551
.50	1.0720	. 7460	.6123	.5442	.5103
• 75	1.6077	1.1190	.9186	.8163	. 7655
1.0	2.1440	1.4920	1.2248	1.0883	1.0208
1.5	3.2154	2.2391	1.8368	1.6329	1.5309
2.0	4.2881	2.9850	2.4497	2.1767	2.0416
2.5	5.3590	3.7313	3.0618	2.7218	2.5523
3.0	6.4350	4.4762	3 . 6737	3.2658	3.0618

TABLE I. - Concluded

(c)
$$\theta_{XZ} = 40^{\circ}$$
.

&, deg	50	60	70	80
0.25	0.4596	0.3299	0.2793	0.2566
•50	.9191	•6599	.5587	.5133
• 75	1.3785	• 9899	.8382	. 7700
1.0	1.8382	1.3199	1.1175	1.0266
1.5	2.7578	1.9801	1.6761	1.5403
2.0	3.6764	2.6399	2.2351	2.0533
2.5	4.5955	3.3003	2.7932	2.5667
3.0	5.5126	3.9588	3·353 ⁴	3.0807

(a)
$$\theta_{XZ} = 50^{\circ}$$
.

&, deg	60	70	80
0.25	0.3979	0.2952	0.2596
•50	. 7956	•5905	.5193
• 75	1.1933	.8857	• 7789
1.0	1.5913	1.1811	1.0386
1.5	2.3877	1.7717	1.5581
2.0	3.1826	2.3618	2.0267
2.5	3.9777	2.9533	2.7917
3.0	4.7755	3.5435	3.1152

(e)
$$\theta_{XZ} = 60^{\circ}$$
.

ð, deg	70	80
0.25	0.3427	0.2665
.50	. 6854	•5331
• 75	1.0281	• 7997
1.0	1.3709	1.0663
1.5	2.0559	1.5994
2.0	2.7427	2.1331
2.5	3.4270	2.6652
3.0	4.1118	3.1989

TABLE II. - NONDIMENSIONAL LATERAL SURFACE AREA OF

RAKED-OFF ELLIPTICAL CONES

(a)
$$\theta_{XZ} = 20^{\circ}$$
.

å, deg	. 30	40	50	60	70	80
0.25	1.4772	2.6653	3.8916	5.0342	5.9627	6.5679
.50	• 7759	1.4269	2.1021	2.7321	3.2443	3.5783
• 75	.5524	1.0380	1.5441	2.0171	2.4018	2.6527
1.0	. 4456	.8548	1.2829	1.6835	2.0095	2.2221
1.5	• 3454	.6853	1.0430	1.3782	1.6511	1.8292
2.0	. 2994	.6089	• 9357	1.2422	1.4918	1.6547
2.5	. 2739	.5670	.8772	1.1682	1.4053	1.5601
3.0	.2580	.5412	.8413	1.1230	1.3526	1.5024
L		. 1				

(b)
$$\theta_{XZ} = 30^{\circ}$$
.

δ, deg	40	50	60	70	80
0.25	1.6501	2.6781	3.59 0 9	4.3214	4.7946
.50	.8519	1.4032	1.8961	2.2914	2.5478
•75	•5947	. 9983	1.3619	1.6543	1.8441
1.0	.4710	.8063	1.1105	1.3558	1.5152
1.5	• 3539	.6279	.8790	1.0823	1.2147
2.0	.2996	•5469	• 7753	. 9605	1.0811
2.5	. 2693	.5025	.7187	. 8944	1.0088
3.0	.2504	•4751	.6841	.8540	. 9648

TABLE II. - Concluded

(c)
$$\theta_{XZ} = 40^{\circ}$$
.

δ, deg	50	60	70	80
0.25	1.8537	2.8005	3.5136	3.9662
.50	• 9470	1.4455	1.8235	2.0640
. 75	.6522	1.0100	1.2837	1.4585
1.0	.5092	.8016	1.0272	1.1718
1.5	.3728	.6063	. 7892	.9070
2.0	.3091	.5172	.6820	. 7885
2.5	. 2734	.4681	.6234	.7241
3.0	.2 509	.4378	.5876	. 6848

(d)
$$\theta_{XZ} = 50^{\circ}$$
.

(e)
$$\theta_{XZ} = 60^{\circ}$$
.

δ, deg	60	70	80
0.25	2.0910	2.9705	3.4926
.50	1.0605	1.5165	1.7888
. 75	.7230	1.0441	1.2374
1.0	.5580	.8156	. 9720
1.5	•3993	.5991	.7224
2.0	. 3245	.4993	.6086
2.5	. 2822	.4439	.5461
3.0	. 2 555	.4097	.5076

õ, deg	70	80
0.25	2.3836	3.1587
.50	1.2025	1.5992
.75	.8132	1.0876
1.0	.6216	. 8374
1.5	. 4354	.5967
2.0	. 3465	.4838
2.5	. 2958	.4205
3.0	. 2636	. 3809

TABLE III. - LONGITUDINAL AERODYNAMICS OF RAKED-OFF ELLIPTICAL CONES θ_{XZ} = 20°

			į	(a) &= 30°				
				C _m		_		
α, deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000 -10.0000 -5.0000 -4.0000 -2.0000 -1.0000 0. 1.0000 2.0000 3.0000 4.0000 5.0000 10.0000	-0.0122 -0.0543 -0.1152 -0.1295 -0.1444 -0.1600 -0.1762 -0.1930 -0.2104 -0.2284 -0.2469 -0.2855 -0.3897 -0.5025	-0.0116 -0.0512 -0.1089 -0.1225 -0.1367 -0.1516 -0.1670 -0.1831 -0.1997 -0.2168 -0.2345 -0.2527 -0.2714 -0.3712 -0.4794	-0.0106 -0.0474 -0.1015 -0.1142 -0.1276 -0.1416 -0.1562 -0.1713 -0.1870 -0.2032 -0.2199 -0.2371 -0.2547 -0.3492 -0.4519	-0.0095 -0.0436 -0.0941 -0.1061 -0.1187 -0.1318 -0.1455 -0.1597 -0.1744 -0.1897 -0.2054 -0.2054 -0.2382 -0.3273 -0.4244	-0.0076 -0.0371 -0.0815 -0.0921 -0.1032 -0.1148 -0.1269 -0.1394 -0.1525 -0.1660 -0.1800 -0.1944 -0.2091 -0.2885 -0.3751	-0.0063 -0.0322 -0.0717 -0.0811 -0.0909 -0.1013 -0.1121 -0.1233 -0.1350 -0.1471 -0.1596 -0.1725 -0.1857 -0.2569 -0.3347	-0.0054 -0.0285 -0.0639 -0.0723 -0.0812 -0.0906 -0.1003 -0.1104 -0.1210 -0.1319 -0.1432 -0.1668 -0.2312 -0.3017	-0.0046 -0.0255 -0.0257 -0.0653 -0.0734 -0.0917 -0.0907 -0.1095 -0.1195 -0.1297 -0.1493 -0.1513 -0.2100 -0.2743
				C _N				
a, deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000 -10.0000 -5.0000 -4.0000 -2.0000 -1.0000 0. 1.0000 3.0000 4.0000 5.0000 15.0000	0.0219 0.0481 0.1645 0.1645 0.1870 0.2145 0.2594 0.2594 0.3384 0.3661 0.3943 0.5435 0.7023	-0.0189 0.0454 0.1334 0.1536 0.1746 0.1746 0.2190 0.2664 0.2911 0.3165 0.3424 0.3690 0.6596	-0.3168 0.0416 0.1225 0.1411 0.1606 0.1807 0.2017 0.2233 0.2456 0.2685 0.2685 0.3409 0.3409 0.34719	-0.0154 0.0378 0.1122 0.1294 0.1473 0.1659 0.2053 0.2259 0.22472 0.2691 0.2915 0.3144 0.4363 0.5671	0.0133 0.0315 0.0950 0.1098 0.1252 0.1413 0.1580 0.1753 0.2116 0.2305 0.2500 0.2699 0.3759 0.4902	-0.0117 0.0269 0.0821 0.0951 0.1086 0.1226 0.1373 0.1524 0.1681 0.2010 0.2181 0.2356 0.3291	-0.0105 0.0234 0.0723 0.0837 0.0957 0.1082 0.1213 0.1347 0.1487 0.1631 0.1780 0.1932 0.2089 0.2924	-0.0094 0.0207 0.0645 0.0748 0.0856 0.0968 0.1087 0.1207 0.1333 0.1462 0.1596 0.1734 0.1875 0.1875 0.3446
_				C _A				
a, deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000 -10.0000 -5.0000 -4.0000 -3.0000 -2.0000 -1.0000 0. 1.0000 3.0000 4.0000 5.0000 15.0000	0.1229 0.1453 0.1776 0.1851 0.2013 0.2019 0.2218 0.2280 0.2375 0.2473 0.2573 0.2573 0.2573 0.3823	0.0833 0.1029 0.1392 0.1392 0.1465 0.1541 0.1621 0.1790 0.1879 0.1879 0.2066 0.2164 0.2686 0.3256	0.0596 0.0768 0.1033 0.1097 0.1163 0.1234 0.1307 0.1383 0.1463 0.1545 0.1630 0.1630 0.1295 0.2295	0.0456 0.0609 0.0850 0.0908 0.1033 0.1101 0.1171 0.1244 0.1320 0.1398 0.1479 0.1563 0.2509	0.0307 0.0431 0.0633 0.0683 0.0785 0.0785 0.08847 0.0906 0.0906 0.1034 0.1101 0.1171 0.1242 0.1631	0.0230 0.0335 0.0509 0.0552 0.0557 0.0644 0.0840 0.0857 0.0915 0.0915 0.1038 0.1378	0.0183 0.0275 0.0427 0.0465 0.0504 0.0546 0.0684 0.0734 0.0786 0.0840 0.0895 0.1197	0.0153 0.0233 0.0339 0.0403 0.04438 0.0475 0.0515 0.0556 0.0599 0.0644 0.0690 0.0788 0.1059
				L/D				
α, deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000 -10.0000 -5.0000 -4.0000 -3.0000 -2.0000 -1.0000 0.0000 3.0000 4.0000 5.0000 10.0000 15.0000	0.0857 0.5388 0.9590 1.0222 1.0760 1.1210 1.1572 1.1856 1.2064 1.2279 1.2305 1.2273 1.1626 1.0515	0.0387 0.6696 1.2027 1.2715 1.3271 1.3704 1.4015 1.4219 1.4336 1.4328 1.4225 1.4077 1.2893 1.1394	-0.0130 0.7938 1.4208 1.4902 1.5451 1.5801 1.6039 1.6146 1.6140 1.6055 1.5903 1.5687 1.5434 1.3797	-0.0640 0.8950 1.5913 1.6605 1.7087 1.7384 1.7519 1.7532 1.7432 1.7250 1.7009 1.6707 1.6361 1.4405	-0.1481 1.0414 1.8283 1.8900 1.9279 1.9476 1.9462 1.9349 1.9099 1.8773 1.8393 1.7968 1.7524 1.5134	-0.2119 1.1408 1.9798 2.0383 2.0687 2.0767 2.0672 2.0429 2.0101 1.9678 1.9229 1.8722 1.8207 1.5565	-0.2651 1.2086 2.0904 2.1392 2.1668 2.1665 2.1506 2.1179 2.0777 2.0297 1.9775 1.9211 1.8656 1.5841 1.3368	-0.2975 1.2625 2.1668 2.2133 2.2357 2.2316 2.2054 2.1709 2.1254 2.0711 2.0162 1.9556 1.8970 1.6041

TABLE III. - CONTINUED

(b) 8= 40°

C_m

a, deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000	0.0322	0.0263	0.0222	0.0195	0.0161	0.0138	0.0121	0.0108
-10.0000	-0.0358	-0.0351	-0.0327	-0.0298	-0.0247	-0.0210	-0.0181	-0.0159
-5.0000	-0.1259	-0.1174	-0.1072	-0.0975	-0.0817	-0.0701	-0.0613	-0.0544
-4.0000	-0.1463	-0.1362	-0.1243	-0.1131	-0.0949	-0.0815	-0.0714	~0.0634
-3.0000	-0.1675	-0.1557	-0.1421	-0.1293	-0.1087	-0.0935	-0.0819	-0.0728
-2.0000	-0.1894	-0.1759	-0.1605	-0.1462	-0.1230	-0.1059	-0.0928	-0.0826
~1.0000	-0.2120	-0.1967	-0.1795	-0.1636	-0.1379	-0.1188	-0.1042	-0.0928
0.	-0.2353	-0.2182	-0.1992	-0.1816	-0.1532	-0.1322	-0.1160	-0.1033
1.0000	-0.2592	-0.2404	-0.2194	-0.2002	-0.1691	-0.1459	-0.1282	-0.1143
2.0000	-0.2837	-0.2630	-0.2402	-0.2192	-0.1854	-0.1602	-0.1408	-0.1255
3.0000	-0.3088	-0.2863	-0.2615	-0.2388	-0.2022	-0.1748	-0.1538	-0.1371
4.0000	-0.3344	-0.3101	-0.2834	-0.2589	-0.2194	-0.1898	-0.1671	-0.1491
5.0000	-0.3606	-0.3344	-0.3057	-0.2795	-0.2370	-0.2052	-0.1807	-0.1613
10.0000	-0.4981	-0.4624	~0.4236	-0.3882	-0.3305	-0.2870	-0.2533	-0.2265
15.0000	-0.6436	-0.5983	-0.5493	-0.5044	-0.4309	-0.3752	-0.3317	-0.2970

C_N

				,•				
a, a, deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000	-0.1266	-0.1093	-0.0948	-0.0837	-0.0681	-0.0575	-0.0498	-0.0440
-10.0000	-0.0273	-0.0206	-0.0163	-0.0138	-0.0110	-0.0094	-0.0082	-0.0073
-5.0000	0.0958	0.0906	0.0831	0.0755	0.0629	0.0536	0.0466	0.0412
-4.0000	0.1230	0.1152	0.1052	0.0955	0.0796	0.0678	0.0590	0.0522
-3.0000	0.1509	0.1406	0.1280	0.1161	0.0967	0.0825	0.0719	0.0636
-2.0000	0.1796	0.1667	0.1515	0.1374	0.1145	0.0977	0.0852	0.0754
-1.0000	0.2090	0.1934	0.1757	0.1592	0.1327	0.1134	0.0989	0.0876
ō.	0.2391	0.2209	0.2004	0.1816	0.1515	0.1295	0.1130	0.1001
1.0000	0.2698	0.2489	0.2257	0.2045	0.1708	0.1461	0.1275	0.1130
2.0000	0.3011	0.2775	0.2516	0.2280	0.1905	0.1630	0.1423	0.1262
3.0000	0.3330	0.3066	0.2779	0.2519	0.2106	0.1804	0.1575	0.1397
4.0000	0.3654	0.3362	0.3048	0.2764	0.2311	0.1981	0.1731	0.1536
5.0000	0.3983	0.3663	0.3321	0.3012	0.2521	0.2161	0.1889	0.1677
10.0000	0.5684	0.5225	0.4741	0.4306	0.3615	0.3107	0.2721	0.2418
15.0000	0.7443	0.6848	0.6222	0.5660	0.4765	0.4104	0.3599	0.3203

CA

a, m deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000	0.2364	0.1659	0.1208	0.0931	0.0627	0.0470	0.0375	0.0312
-10.0000	0.2539	0.1803	0.1328	0.1034	0.0707	0.0534	0.0429	0.0358
-5.0000	0.2817	0.2050	0.1546	0.1227	0.0863	0.0666	0.0543	0.0458
-4-0000	0.2884	0.2111	0.1600	0.1276	0.0904	0.0700	0.0573	0.0485
-3.0000	0.2955	0.2176	0.1658	0.1328	0.0947	0.0737	0.0605	0.0513
-2.0000	0.3030	0.2244	0.1720	0.1384	0.0993	0.0776	0.0639	0.0543
-1.0000	0.3108	0.2316	0.1785	0.1442	0.1042	0.0818	0.0675	0.0575
0.	0.3190	0.2391	0.1853	0.1504	0.1093	0.0862	0.0713	0.0609
1.0000	0.3275	0.2470	0.1925	0.1569	0.1148	0.0909	0.0754	0.0645
2.0000	0.3364	0.2552	0.2000	0.1637	0.1204	0.0957	0.0796	0.0683
3.0000	0.3455	0.2637	0.2077	0.1708	0.1264	0.1008	0.0841	0.0722
4.0000	0.3550	0.2726	0.2158	0.1781	0.1326	0.1061	0.0887	0.0763
5.0000	0.3647	0.2817	0.2242	0.1858	0.1390	0.1116	0.0935	0.0806
10.0000	0.4174	0.3314	0.2699	0.2276	0.1743	0.1420	0.1202	0.1043
15.0000	0.4755	0.3867	0.3211	0.2747	0.2143	0.1766	0.1505	0.1313

a , deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000	-0.2340	-0.3322	-0.4270	-0.5086	-0.6337	-0.7196	-0.7818	-0.8290
-10.0000	0.0675	0.0608	0.0525	0.0419	0.0202	0.0003	-0.0143	-0.0266
-5.0000	0.4407	0.5507	0.6558	0.7428	0.8719	0.9599	1.0225	1.0714
-4.0000	0.5117	0.6401	0.7625	0.8636	1.0128	1.1139	1.1849	1.2395
-3.0000	0.5786	0.7230	0.8592	0.9712	1.1342	1.2448	1.3233	1.3820
-2.0000	0.6409	0.7985	0.9448	1.0646	1.2378	1.3534	1.4351	1.4960
-1.0000	0.6981	0.8651	1.0193	1.1435	1.3203	1.4386	1.5216	1.5830
0.	0.7495	0.9239	1.0815	1.2074	1.3861	1.5023	1.5849	1.6437
1.0000	0.7949	0.9731	1.1318	1.2573	1.4331	1.5464	1.6255	1.6830
2.0000	0.8341	1.0140	1.1716	1.2949	1.4663	1.5747	1.6498	1.7029
3.0000	0.8676	1.0465	1.2013	1.3204	1.4841	1.5883	1.6577	1.7092
4.0000	0.8950	1.0710	1.2218	1.3369	1.4912	1.5896	1.6557	1.7034
5.0000	0.9170	1.0889	1.2339	1.3431	1.4898	1.5810	1.6425	1.6862
10.0000	0.9559	1.0957	1.2065	1.2864	1.3895	1.4516	1.4919	1.5205
15.0000	0.9140	1.0193	1.0991	1.1549	1.2255	1.2670	1.2942	1.3132

TABLE III. - CONTINUED

(c) **&=** 50°

C_m

				111				
a, m	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000	0.1177	0.1030	0.0899	0.0794	0.0643	0.0541	0.0467	0.0411
-10.0000	0.0188	0.0151	0.0125	0.0107	0.0085	0.0071	0.0062	0.0056
-5.0000	-0.1037	-0.0949	-0.0855	-0.0772	-0.0640	-0.0545	-0.0473	-0.0417
-4.0000	-0.1307	-0.1193	-0.1074	-0.0968	-0.0803	-0.0684	-0.0594	-0.0524
-3.0000	-0.1585	-0.1445	-0.1299	-0.1171	-0.0972	-0.0828	-0.0720	-0.0636
-2.0000	-0.1870	-0.1703	-0.1531	-0.1380	-0.1146	-0.0977	-0.0850	-0.075
-1.0000	-0.2162	-0.1968	-0.1769	-0.1595	-0.1326	-0.1131	-0.0984	-0.0870
0.	-0.2461	-0.2239	-0.2013	-0.1816	-0.1510	-0.1289	-0.1122	-0.099
1.0000	-0.2766	-0.2516	-0.2262	-0.2042	-0.1699	-0.1451	-0.1264	-0.111
2.0000	-0.3077	-0.2799	-0.2518	-0.2273	-0.1893	-0.1617	-0.1410	-0.124
3.0000	-0.3393	-0.3087	-0.2778	-0.2509	-0.2091	-0.1787	-0-1559	-0.138
4.0000	-0.3714	-0.3380	-0.3043	-0.2749	-0.2293	-0.1961	-0.1711	-0.151
5.0000	-0.4040	-0.3678	-0.3312	-0.2994	-0.2498	-0.2138	-0.1866	-0.165
10.0000	-0.5727	-0.5223	-0.4714	-0.4270	-0.3575	-0.3067	-0.2682	-0.238
15.0000	-0.7470	-0.6826	-0.6175	-0.5605	-0.4708	-0.4048	-0.3544	-0.314

CN

a, m deg	.25	.50	.75	1,0	1.5	2.0	2.5	3.0
-15.0000	-0.2353	-0.2074	-0.1817	-0.1608	-0.1302	-0.1093	-0.0943	-0.0828
-10.0000	-0.1087	-0.0950	-0.0829	-0.0733	-0.0594	-0.0499	-0.0431	-0.0380
-5.0000	0.0406	0.0384	0.0353	0.0322	0.0269	0.0229	0.0199	0.0175
-4.0000	0.0728	0.0673	0.0610	0.0551	0.0458	0.0389	0.0337	0.0297
-3.0000	0.1057	0.0968	0.0872	0.0787	0.0652	0.0554	0.0480	0.0423
~2.0000	0.1392	0.1269	0.1141	0.1028	0.0850	0.0722	0.0626	0.0552
-1.0000	0.1733	0.1576	0.1415	0.1273	0.1053	0.0894	0.0776	0.0684
0.	0.2080	0.1889	0.1694	0.1524	0.1260	0.1070	0.0929	0.0819
1.0000	0.2432	0.2206	0.1978	0.1779	0.1471	0.1250	0.1085	0.0957
2.0000	0.2788	0.2528	0.2266	0.2038	0.1686	0.1433	0.1244	0.1098
3.0000	0.3150	0.2855	0.2558	0.2301	0.1904	0.1619	0.1406	0.1241
4.0000	0.3515	0.3185	0.2854	0.2567	0.2125	0.1807	0.1570	0.1387
5.0000	0.3883	0.3518	0.3153	0.2837	0.2349	0.1998	0.1737	0.1534
10.0000	0.5762	0.5223	0.4686	0.4221	0.3502	0.2985	0.2598	0.2297
15.0000	0.7658	0.6951	0.6245	0.5634	0.4686	0.4001	0.3486	0.3086

CA

a, m	.25	.50	.75	1.0	1,5	2.0	2.5	3.0
deg	.23	.50	.,,	1.0	1.5		2.5	
-15.0000	0.3394	0.2425	0.1791	0.1396	0.0954	0.0721	0.0579	0.0484
-10.0000	0.3503	0.2500	0.1844	0.1436	0.0979	0.0739	0.0592	0.0494
-5.0000	0.3718	0.2681	0.1999	0.1569	0.1085	0.0926	0.0667	0.0559
-4.0000	0.3773	0.2729	0.2041	0.1607	0.1116	0.0852	0.0689	0.0578
-3.0000	0.3833	0.2782	0.2087	0.1648	0.1149	0.0880	0.0713	0.0600
-2.0000	0.3896	0.2838	0.2137	0.1693	0.1186	0.0911	0.0740	0.0623
-1.0000	0.3963	0.2899	0.2191	0.1741	0.1226	0.0945	0.0769	0.0649
0. 1	0.4034	0.2963	0.2248	0.1792	0.1268	0.0981	0.0801	0.0676
1.0000	0.4108	0.3031	0.2309	0.1847	0.1314	0.1020	0.0834	0.0706
2.0000	0.4186	0.3102	0.2374	0.1905	0.1362	0.1061	0.0870	0.0738
3.0000	0.4268	0.3177	0.2441	0.1967	0.1413	0.1104	0.0908	0.0771
4.0000	0.4352	0.3255	0.2512	0.2031	0.1466	0.1150	0.0947	0.0806
5.0000	0.4440	0.3337	0.2587	0.2098	0.1523	0.1198	0.0989	0.0843
10.0000	0.4925	0.3792	0.3003	0.2478	0.1840	0.1471	0.1228	0.1054
15.0000	0.5474	0.4313	0.3485	0.2919	0.2214	0.1792	0.1508	0.1303

.25 .50 -0.3587 -0.4777 -0.1270 -0.1906 0.1986 0.2330 0.2665 0.322	9 -(.2532 6 0.2682 1 0.3767	1.0 -0.6754 -0.3065 0.2981 0.4229	-0.8031 -0.3888 0.3429	2.0 ~0.8875 ~0.4458	2.5 -0.9473 -0.4889	3.0 -0.9893 -0.5221
-0.1270 -0.1909 0.1986 0.2330 0.2665 0.322	9 -(.2532 6 0.2682 1 0.3767	-0.3065 0.2981	-0.3888	-0.4458		
-0.1270 -0.1909 0.1986 0.2330 0.2665 0.322	9 -(.2532 6 0.2682 1 0.3767	-0.3065 0.2981	-0.3888	-0.4458		
0.1986 0.233 0.2665 0.322	6 0.2682 1 0.3767	0.2981				
0.2665 0.322	1 0.3767			0.3738	0.3962	0.4118
			0.4945	0.5439	0.5788	0.6055
0.3330 0.407	8 0.4808	0.5436	0.6389	0.7052	0.7522	0.7865
0.3972 0.489		0.6560	0.7709	0.8510	0.9077	0.9504
0.4582 0.566		0.7583	0.8897	0.0310	1.0450	1.0915
0.5156 0.637		0.8504	0.9937	1.0907	1.1598	1.2115
0.5687 0.701		0.9301	1.0809	1.1827	1.2550	1.3071
0.6168 0.758		0.9976	1.1531	1.2564	1.3286	1.3811
0.6601 0.808		1.0528	1.2097	1.3132	1.3838	1.4361
						1.4736
						1.4943
						1.4470
						1.2850
0.698	1 0.885 7 0.966	1 0.8851 1.0223	1 0.8851 1.0223 1.1310 7 0.9664 1.0855 1.1743	1 0.8851 1.0223 1.1310 1.2819 7 0.9664 1.0855 1.1743 1.2930	1 0.8851 1.0223 1.1310 1.2819 1.3791 7 0.9664 1.0855 1.1743 1.2930 1.3646	1 0.8851 1.0223 1.1310 1.2819 1.3791 1.4466 7 0.9664 1.0855 1.1743 1.2930 1.3646 1.4124

TABLE III. - CONTINUED

(d) **&=** 60°

 $\boldsymbol{c}^{\mathbf{m}}$

a, deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000	0.2365	0.2102	0.1849	J.1637	3.1324	2.1110	0.0956	0.0839
-10.0010	0.1.52	0.0943	0.3829	0.0735	0.0595	0.0499	0.3431	0.3379
-5.0600	-0.0495	-0.3441	-0.7393	-0.0354	-0.0295	-0.0251	-0.0218	-0.0192
-4.1000	-0.0828	-0.3743	-0.7659	-0.3592	-0.0490	-0.3416	-0.0361	-0.0317
-3.0000	-0.1167	-0.1045	-0.1930	-0.0835	-0.0690	-0.0586	-0.0508	-0.3447
-2.0000	-6.1516	-0.1357	-0.1208	-0.1094	-0.0895	-0.0760	-0.2658	-0.0580
-1.3600	-3.1369	-0.1675	-0.1491	-0.1338	-0.1104	-0.0937	-0.0813	-0.9716
o.	-0.2228	-5.1998	-0.1790	-0.1597	-0.1318	-0.1119	-0.0970	-0.3855
1.5000	-3.2593	-C.2327	-0.2073	-0.1861	-0.1536	-0.1304	-0.1131	-0.3998
2.0000	-0.2963	-0.2660	-0.2372	-3.2129	-0.1758	-0.1493	-0.1295	-0.1143
3.0000	-0.3337	-0.2998	-0.2674	-3.2471	-0.1983	-C.1685	-0.1462	-3.1290
4.7000	-6.3715	-0.3339	-0.2980	-7.2676	-3.2212	-0.1880	-0.1632	-0.1440
5.0100	-3.4396	-0.3685	-0.3289	-0.2955	-0.2444	-0.2078	-3.1834	-0.1592
10.0000	6142	-0.5449	-0.4876	-2.4388	-3.3637	-0.3097	-3.2693	-0.2380
15.0000	-0.8.15	-C.7238	-0.6491	-0.5851	-0.4862	-0.4148	-0.3611	-0.3194

C_N

a, m	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000	-0.3437	-0.3057	-0.2623	-0.2388	-0.1936	-0.1624	-0.1398	-0.1228
-10.3000	-0.1929 -0.0213	-0.1720 -0.0190	-0.1518 -0.0165	-).1347 -J.J144	-0.1094 -0.0113	-0.0919 -0.0093	-0.0792 -0.0080	-0.3696 -0.0371
-5.0000 -4.0000	2.0151	0.0135	0.7123	0.0113	0.0097	0.0384	0.0073	0.0064
-3.0000	0.0520	0.0466	0.0416	2.(375	0.0311	0.0265	0.0229	0.0202
-2.0000	0.0875	0.0802	0.5714	0.0641	0.0529	0.3449	0.0389	0.0342
-1.0000	0.1275	0.1142	0.1016	7.2911	0.0751	0.0636	0.0551	0.3485
٥.	C-1659	0.1487	0.1323	0.1185	0.0976	0.0827	0.0715	0.0630
1.0000	0.2047	U.1835	0.1633	0.1463	0.1204	C.1320	0.0883	0.0777
2.0000	2.2439	C.2187	0.1946	0.1743	0.1435	0.1215	0.1052	0.0926
3.0000	0.2834	J.2542	0.2262	2.2027	0.1668	0.1413 C.1612	0.1223 0.1396	0.1077 0.1230
4.0000	0.3231	6.2899 6.3259	0.2581	0.2312 0.2600	0.1903	0.1812	0.1571	0.1230
5.0000 10.0000	C.3631 C.5642	0.5259	C+4524	0.4357	0.3344	2.2837	0.2459	0.2169
15.0000	0.7632	0.5874	0.6139	0.5512	0.4552	2.3866	0.3355	0.2961

CA

a, m	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000	0.4315	0.3113	0.2324	0.1827	0.1266	C.0965	0.0779	0.0654
-10.0000	0.4343	0.3109	0.2302	0.1798	0.1233	0.0733	0.750	0.0626
-5.0000	3.4473	J.3211	0.2383	0.1865	0.1283	0.0973	J.C783	0.0654
-4.0000	0,4519	0.3245	0.2412	0.1870	0.1303	0.0790	0.0797	0.3666
-3.7000	3.4563	0.3282	0.2444	0.1918	0.1326	0.1009	0.0813	0.3681
-2.0000	0.4611	0.3324	0.7481	J.1951	0.1352	0.1031	0.0832	0.0698
-1.7000	0.4663	C.3370	0.2521	J.1987	0.1381	0.1356	0.0854	0.0716
0.	0.4719	0.3420	0.2565	0.2026	0.1414	0.1083	0.0877	0.0737
1.0000	0.4779	0.3474	0.2613	0.2069	0.1450	C.1113	0.0904	0.0760
2.0000	I.4842	0.3531	C.2665	0.2116	0.1488	0.1146	0.0932	0.0785
3.0000	3.4713	C • 3593	0.2721	3.2166	0.1530	5.1182	0.0963	0.0813
4.3030	0.4981	0.365B	0.2780	0.2220	0.1575	0.1220	0.0996	0.0842
5.0000	0.5055	0.3727	0.2843	0.2277	C.1622	0.1760	0.1031	0.0873
10.5000	3.5478	0.4125	0.3207	0.2609	0.1901	0.1499	0.1239	0.1057
15.0000	0.5974	0.4599	0.3646	2.3012	0.2242	C.1792	0.1495	0.1283

a, deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0300	-0.4356	-0.5653	-0.6799	-0.7696	-0.8947	-C.9752	-1.0303	-1.0709
-10.0000	-0.2484	-0.3436	-0.4328	-3.5060	-9.6148	-0.6890	-3.7416	-0.7822
-5.2000	0.0378	0.3282	2.2181	0.0102	-0.0006	-0.0080	-0.C146	-0.0209
-4.0010	C.1036	0.1119	0.1214	0.1303	0.1451	0.1557	0.1676	0.1671
-3.0000	0.1674	0.1959	0.2246	0.2505	0.2905	0.3194	0.3391	0.3545
-2.0000	2.2316	0.2785	0.3260	7.3677	0.4321	2.4777	3.5108	0.5340
-1.0000	0.2923	0.3584	0.4234	0.4798	0.5666	0.6263	0.6702	0.7031
o.	0.3516	0.4348	0.5158	0.5849	0.6902	0.7636	0.8153	0.8548
1.0000	C.4078	0.5061	0.6009	0.6812	0.8013	0.8848	0.9432	0.9873
2.3633	3.4637	U.5721	0.6780	0.7667	0.8992	C.9987	1.0524	1.0994
3.0000	0.5004	0.6317	0.7464	0.8421	0.9817	1.0756	1.1416	1.1897
4.0000	0.5536	0.6846	0.8062	0.9056	1.0496	1.1455	1.2128	1.2620
5.0000	0.5935	0.7313	0.8568	0.9586	1.1044	1.2703	1.2673	1.3154
10.0000	0.7224	0.8658	0.9885	1.0820	1.2080	1.2868	1.3396	1.3773
15.0000	0.7521	0.8759	0.9756	1.0481	1.1414	1.1973	1.2341	1.2605

TABLE III. - CONTINUED

				(e) &= 70°				
_				Ċ _m				
a, deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.5000 -10.0000 -10.0000 -1.0000 -4.2000 -2.3000 -1.0000 2.5000 3.0000 4.0000 5.0000 11.0000 5.0000 11.0000	C.3755 J.2138 J.C336 -0.0681 -0.07474 -0.1276 -0.1276 -0.2512 -0.2930 -0.3351 -0.3374 -0.5898 -0.7992	0.3354 0.1920 0.2287 -0.0060 -0.3411 -0.7768 -0.1130 -0.1496 -0.1865 -0.2238 -0.2614 -0.2993 -0.3373 -0.5288 -0.7183	0.2961 0.1700 0.2256 -0.3050 -0.3362 -0.1607 -0.1000 -0.1325 -0.1654 -0.1986 -0.2321 -0.2568 -0.2997 -0.4709 -0.6407	0.2628 0.1511 0.0227 -0.0047 -0.0325 -0.0895 -0.1479 -0.1476 -0.2076 -0.2378 -0.2682 -0.4219 -0.5749	0.2130 0.1226 0.0181 -0.0042 -0.0270 -0.0531 -0.0736 -0.1216 -0.1216 -0.1707 -0.1955 -0.2205 -0.3474	0.1786 0.1030 0.0150 -0.0038 -0.0038 -0.0425 -0.0624 -0.0825 -0.1029 -0.1236 -0.1444 -0.1655 -0.1867 -0.1867 -0.1867	0.1537 0.0887 0.0129 -0.0033 -0.0199 -0.0540 -0.0714 -0.1890 -0.1250 -0.1250 -0.1432 -0.1616 -0.2550 -0.3487	0.1348 0.2779 0.2114 -0.0029 -0.3175 -0.324 -0.0475 -0.0628 -0.0763 -0.1100 -0.1261 -0.1423 -0.2247 -0.3075
_				. c _N		,		
a, deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000 -10.0000 -5.0000 -4.000 -3.0000 -2.0000 -1.0000 2.0000 3.0000 4.0000 5.0000 10.0000 15.0000	-5.4472 -0.2774 -0.3873 -0.0473 -0.0473 -0.0272 -0.3333 -0.742 -0.1569 -0.1569 -0.1569 -0.2824 -0.2824 -0.3244 -0.5339 -0.7373	-0.3994 -0.2475 -0.7786 -0.3432 -0.3073 -0.3289 -0.3655 -0.1024 -0.1396 -0.1769 -0.2145 -0.2521 -0.2879 -0.4781 -0.6615	-C. 3529 -3.2191 -0.3697 -0.3884 -0.7366 -0.7255 -0.5880 -0.7937 -0.1237 -0.1569 -0.1902 -0.2237 -0.2573 -0.2573 -0.2597	-0.3136 -0.1949 -0.0620 -0.0341 -0.057 -0.0229 -0.519 -0.1105 -0.1105 -0.1702 -0.1702 -0.1702 -0.1999 -0.2300 -0.5270	-0.2547 -0.1585 -0.0573 -0.0275 -0.0199 -0.0199 -0.0467 -0.0907 -0.1159 -0.1394 -0.139	-0.2138 -0.1331 -0.2422 -0.0230 -0.0162 -0.162 -0.162 -0.162 -0.162 -0.167 -0.172 -0.172 -0.172 -0.1385 -0.1594 -0.26438 -0.3665	-0.1841 -0.1147 -0.1263 -0.0198 -0.030 -0.2140 -0.2487 -0.2663 -0.1018 -0.1018 -0.1197 -0.1378 -0.2282 -0.3172	-0.1616 -0.1008 -0.319 -0.0174 -0.0026 0.2124 0.0275 0.0428 0.0563 0.7739 0.3896 0.1054 0.1054 0.1212 0.2009
_				c _A	_			
a, m	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.2000 -10.6006 -5.1616 -4.2000 -2.2000 -1.2000 -2.2	3.5531 9.5029 9.5074 0.5026 1.5122 1.5152 1.5192 1.5274 1.5281 1.5281 1.5281 1.5313 1.53417 1.5415 1.541	C.3721 C.3612 C.3645 C.3645 C.3665 C.3665 C.3772 C.3772 C.3772 C.3783 C.3792 C.3834 C.3792 C.3930 C.3930 C.3930	0.2787 0.2687 0.2690 0.2703 0.2721 0.2742 0.2768 0.2797 0.2869 0.2956 0.3005 0.3005 0.3694	0.2209 0.2108 0.2105 0.2116 0.2131 0.2150 0.2172 0.7179 0.2229 0.2263 0.2342 0.2386 0.2663 0.3620	0.1549 0.1456 0.1456 0.1468 0.1468 0.1468 0.1501 0.1523 0.1548 0.1576 0.1607 0.1642 0.1679 0.1912	9.1190 9.1168 9.1098 9.1105 0.1114 9.1162 9.1162 0.1162 0.1232 0.1232 0.1262 0.1293 0.1273 0.1273	0.0966 0.3893 0.3883 0.8886 0.8897 0.3907 0.0936 0.3955 0.3975 0.3975 0.1975 0.1972 0.1024 0.1052	0.0813 0.0747 0.0737 0.0742 0.0759 0.0759 0.0770 0.0784 0.0809 0.0819 0.0839 0.0862 0.0886 0.1040
` .								
	1			L/D				
α, deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000 -10.0000 -5.0000 -4.0000 -3.0000 -1.0000 0.0000 1.0000 2.0000 3.0000 4.0000	-0.4942 -1.3413 -0.5827 -0.0227 -0.0283 0.0798 -0.1679 -0.2279 -0.2708 -0.3343 0.3368	-0.6293 -0.4543 -0.1268 -0.0482 0.0325 0.1135 0.1941 0.2728 0.3484 0.4197	-0.7454 -0.5587 -0.1678 -0.2714 0.1281 0.1283 0.2278 0.3243 0.4163 0.5024 0.5813	-0.8343 -0.6434 -0.2018 -0.0902 0.6256 0.1420 0.2575 0.3688 0.4742 0.5722	-0.9554 -0.7648 -0.2522 -0.1174 0.0224 0.1638 0.3034 0.4373 0.5627 0.6775 0.7796	-1.0319 -0.8458 -0.2972 -0.1362 -0.2210 -0.1796 -0.3363 -0.4845 -0.6244 -0.7506 -0.8606 -0.9563	-1.0842 -0.9035 -0.3124 -0.1507 0.0189 0.1903 0.3594 0.5203 0.6687 0.8025	-1.1221 -0.9476 -0.3327 -0.1619 0.3177 0.1994 0.3769 0.5459 0.7024 0.8409 0.9617

TABLE III. - CONCLUDED

(f) **ð=** 80°

a, deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000	2.5184	0.4636	0.4102	0.3649	0.2967	0.2492	0.2146	0.1884
-10.0000	0.3314	C.2971	0.2632	0.2343	0.1907	0.1602	0.1381	0.1213
-5.2030	0.1263	0.1140	0.1013	0.0902	0.0733	0.0616	0.0531	0.0466
-4.0050	0.0837	0.0759	C.9675	0.0691	0.0488	0.0410	0.0353	0.0310
-3.0000	0.0476	0.0374	0.0334	0.0297	0.0240	0.0231	0.0173	0.0152
-2.0000	-0.0228	-0.3014	-0.0010	-0.0009	-0.0010	-0.0010	-0.0009	-0.0008
-1.0000	-0.0465	-0.0406	-0.0357	-0.0319	-0.0263	-0.0223	-0.0193	-0.0170
0.	-0.0905	-0.0799	-0.0706	-0.0631	-0.0518	-0.0438	-0.0378	-0.0332
1.0000	-0.1347	-c.1195	-0.1058	-0.0944	-0.0774	-0.0654	-0.0564	-0.0496
2.0000	-0.1721	-0.1593	-0.1410	-0.1259	-0.1931	-0.0871	-0.0752	-0.0661
3.0000	-0.2236	-0.1991	-0.1764	-0.1575	-0.1290	-0.1089	-0.0943	-0.0827
4.0000	-0.2681	-C.2390	-0.2119	-0.1892	-0.1549	-0.1307	-0.1129	-0.0993
5.(330	3126	-C.2789	-0.2473	-3.2239	-0.1808	-0.1526	-0.1318	-0.1159
10.0000	-0.5331	-0.4769	-0.4234	-0.3784	-0.3100	-0.2617	-0.2761	-0.1989
15.0000	-3.7454	-0.6679	-0.5936	-0.5308	-0.4352	-0.3677	-0.3178	-0.2797

CN

a, m deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000	-0.5420	-0.4847	-2.4291	-0.3820	-0.3109	-0.2614	-0.2252	-0.1978
-10.3350	-3.3556	-C.3185	-0.2822	-0.2513	-0.2047	-C.1721	-0.1484	-0.1303
-5.0000	-0.1532	-C.1377	-C.1222	-0.1088	-0.0886	-0.0745	-0.0642	-0.0564
-4.2000	-5.1113	-0.1002	-0.3890	-0.0793	-0.9645	-C.9542	-0.0467	-0.0411
-3200	-0.0691	-0.3625	-C.7556	-0.0495	-0.0402	-0.0338	-0.5291	-0.0256
-2.0000	-0.0266	-C.0245	-0.7219	-0.0194	-0.3157	-0.0131	-0.0113	-0.7699
-1.0000	J-0162	0.0138	0.120	0.0108	0.0090	0.0076	0.0066	0.0058
c.	0.3591	C.3522	0.7461	0.0412	0.0338	0.0285	0.9247	0.3217
1.0000	3.1-22	0.0907	0.0803	0.0717	0.0587	0.0495	0.0428	0.3376
2.0000	0.1453	0.1294	0.1146	0.1022	0.0837	0.0706	0.0609	0.2536
3.0000	3.1845	6.1681	0.1489	0.1329	0.1087	C.0917	0.6791	0.0696
4.0000	5.2317	0.2067	0.1832	0.1635	0.1337	0.1128	0.3974	0.0856
5.5000	3.2748	C.2453	C • 2175	0.1941	0.1588	0.1337	0.1156	0.1016
10.0000	3.4873	0.4359	0.3868	0.3453	0.2826	0.2383	0.2058	0.1810
15.0000	1־69•0	0.6189	0.5488	0.4903	0.4314	0.3387	3.2926	0.2573

$c_{\mathbf{A}}$

				, ,				
α, deg	.25	.50	.75	1.0	1,5	2.0	2.5	3.0
-15.00°C	2.5693	0.4170	C.3167	2.2528	0.1792	0.1387	0.1131	0.3956
-10.5000	0.5537	0.3972	0.2987	0.2357	0.1641	0.1255	0.1015	0.7852
-5.0000	G.5483	0.3920	0.2911	0.2281	0.1574	0.1195	0.0962	0.3805
-4.0000	0.5485	C.3919	0.2908	0.2278	0.1570	0.1192	0.0959	0.7802
-3.0000	2.5491	0.3922	0.2907	^.2279	0.1570	U-1192	0.0959	0.0801
-2.0000	0.5501	0.3930	0.2915	0.2283	0.1573	0.1194	0.0961	0.0803
-1.0000	C.5516	ú.3941	0.2925	0.2292	0.1580	0.1200	0.0966	0.0807
5.	0.5534	0.3957	0.2939	0.2304	0.1590	0.1208	0.0973	0.3814
1.0000	5557	0.3979	0.2957	0.2320	0.1604	C.1223	0.0983	0.3822
2.0000	0.5594	0.4002	0.2979	2.2341	J.1620	U.1234	0.2995	0.0833
3.0000	2.5615	0.4031	0.3006	0.2365	0.1641	0.1251	0.1013	0.9847
4.0000	2.5649	0.4054	5.3036	7.2393	0.1664	0.1272	J.1028	0.0862
5.0000	7.5638	5.4132	0.3071	0.2424	0.1691	C-1294	0.1048	0.3880
10.0000	0.5941	0.4349	0.3333	2.2638	0.1873	0.1451	0.1184	0.1001
15.0000	0.6284	0.4692	0.3628	0.2940	0.2130	C.1672	0.1378	0.1172

a, deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000	-0.5451	-u.6820	-0.7974	-0.8849	-1.0014	-1.0742	-1.1237	-1.1587
-13.0320	-3.4135	-0.5449	-0.6587	-3.7490	-0.8780	-0.9623	-1.0222	-1.3656
-5.0000	-3.1873	-6.2559	-0.3205	-2.3739	-0.4531	-0.5082	-0.5479	-0.5777
-4.0000	-2.1311	-3.1825	-0.2312	-0.2716	-0.3314	-0.3729	-0.4033	-0.4272
-3.0000	-0.0730	-0.1061	-2.1373	-0.1679	-0.2009	-0.2278	-3.2471	-0.2628
-2.1000	-3.3134	-0.3274	-0.0401	-0.5499	-0.0647	-0.0745	-0.3823	-0.0880
-1.7600	468	0.2525	0.2585	0.2646	0.7745	0.0809	0.0859	0.3894
3.	2.1768	0.1319	0.1567	7.1788	0.2126	₹.2359	0.2539	0.2666
1.0600	1653	0.2037	0.2529	5.2910	0.3463	0.3856	0.4148	0.4365
2.6100	J. 2233	0.2852	C.3451	0.3956	0.4732	0.5267	0.5651	0.5952
3.3000	0.2734	0.3569	0.4317	0.4950	0.5895	0.6554	0.7017	0.7376
4.0000	2.3307	0.4236	2.5119	0.5853	0.6945	C.7692	0.823)	0.8632
5.3000	3776	C.4851	2.5845).6666	0.7867	0.8686	0.9262	0.7692
10.0000	3.5625	C.7013	0.8245	0.9202	1.0525	1.1368	1.1955	1.2374
15.0100	2.6415	C.7755	0.8857	3.9674	1.0742	1.1393	1.1826	1.2136

TABLE IV. - LONGITUDINAL AERODYNAMICS OF RAKED-OFF ELLIPTICAL CONES $-\theta_{XZ}$ = 30°

(a)	გ.	40°
-----	----	-----

_				C m				
a, deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000	-0.0987	-0.3945	-0.0893	-2.3838	-0.0739	-0.0657	-0.5590	-0.0536
-10.0000	-0.1637	-0.1575	-0.1496	-7.1413	-0.1257	-0.1126	-0.1017	-0.3927
-5.3000	-0.2411	-0.2326	-0.2216	-2.2122	-3.1880	-3.1691	-0.1534	-0.1401
-4.0000	-0.2579	-0.2489	-0.2373	-7.2253	-0.2015	-0.1814	-0.1646	-0.1505
-3.0000	-3.2753	-0.2656	-0.7533	-7.2432	-0.2154	-0.1941	-0.1762	-0.1611
-2.0010	-C.2925	-0.2826	-0.2696	-0.2559	-0.2296	-0.2070	-0.1880	-0.1720
-1.0000	-0.3134	-0.2999	-0.2863	-J.2718	-0.2441	-0.2202	-0.2000	-0.1831
0.	-C.3285	-0.3176	-0.3033	-^.2881	-0.2589	-0.2336	-0.2124	-0.1944
1.0000	-3.3470	-0.3355	-0.3296	-7.3046	-0.2739	-0.2473	-0.2249	-0.2060
2.0000	-0.3657	-0.3537	-0.3381	-0.3213	-0.2891	-0.2612	-3.2376	-0.2177
3.7000	-0.3847	-0.3722	-0.3559	-0.3384	-0.3246	-0.2753	-0.2505	-0.2296
4.0000	-2.4039	-0.3929	-0.3739	-0.3556	-3.3203	-0.2896	-0.2637	-0.2417
5.0000	-0.4233	-0.4098	-3.3921	-0.3730	-3.3362	-0.3241	-0.2769	-0.2539
10.0000	-0.5276	-0.5065	-0.4852	-3.4622	-0.4176	-0.3784	-0.3451	-0.3168
15.0000	-0.6233	-0.6047	-0.5800	-0.5531	-0.5006	-3.4544	-0.4148	-0.3811

_	_			c _N				
a, m	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000	0.1138	6.1072	0.0095	0.0919	0.0789	0.0688	0.3638	0.0545
-10.0000	3.2138	C.2029	0.1877	0.1766	0.1534	0.1348	2.1233	0.1081
-5.0000	0.3307	0.3149	0.2957	0.2763	0.2416	0.2133	0.1907	0.1722
-4.0000	0.3558	0.3390	0.3185	7.2978	0.2606	2.2303	0.2063	0.1861
-3.0000	J.3813	¢.3635	0.3418	0.3197	0.2801	0.2477	0.2216	0.2004
-2.3030	0.4074	0.3886	0.3655	0.3421	0.3000	0.2655	9.2376	0.2149
~1.0000	0.4339	0.4149	0.3897	0.3649	3.3202	0.2836	0.2540	0.2298
3.	2.4608	4399	0.4142	0.3881	0.3408	J.3720	3.2736	0.2449
1303	0.4893	0.4661	0.4391	0.4116	0.3617	C.3207	0.2875	0.2602
2.0000	0.5156	C.4927	0.4643	0.4355	0.3830	0.3397	0.3046	0.2758
3.0000	2.5436	C.5175	0.4879	7.4596	7.4044	7.3590	0.3220	0.2917
4.0000	3.5717	0.5467	0.5157	0.4840	0.4262	0.3784	0.3396	0.3077
5.0000	0.6002	0.5741	0.5417	0.5086	0.4481	2.3981	0.3574	0.3239
10.0000	7.7446	0.7133	0.6743	0.6341	7.5603	0.4787	0.4484	0.4068
[15.0010	0.8897	0.8534	0.8079	0.7609	0.6738	0.6008	0.5438	0.4912

				CA				
a, deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.,000	1.2614	3.2179	0.1796	7.1510	0.1139	0.0916	0.0767	0.0661
-10-10-0	3.3233	0.2753	0.2324	0.1095	0.1555	0.1279	0.1087	0.0950
-5.0000	0.3937	0.3419	0.2943	0.2571	0.2054	C • 1717	0.1485	0.1302
-4.1000	2.4298	5.3561	0.3777	0.2675	3.2162	0.1813	0.1565	0.1380
-3.1,10	3.4241	0.3707	0.3213	0.2822	7.2273	0.1911	0.1653	0.1459
-2.0010	5.4396	(.3855	0.3352	0.2952	0.2387	0.2011	0.1742	0.1540
-1.7000	. 4554	0.4075	0.3403	0.3094	0.2502	0.2113	0.1834	0.1623
0.	.4714	0.4158	^.3636	7.3218	7.2620	0.2218	0.1928	0.1707
1.7500	0.4876	1.4312	0.3782	7.3355	0.2740	C.2324	0.2023	0.1794
2.1370	J. 5.39	C.4469	0.3931	3.3493	0.2862	2.2432	0.2123	0.1882
3.2000	5274	0.4626	4079	0.3633	0.2986	7.2542	0.2218	0.1971
4.0010	2.5374	C.4786	0.4231	٦.3775	0.3111	7.2653	0.2318	0.2061
5.J000	3.5537	C.4347	0.4382	7.3918	3.3238	3.2766	0.2419	0.2153
10.0110	0.6392	0.5762	0.5157	0.4650	0.3886	0.3344	0.2940	0.2625
15.0000	7222	C.6578	7.5938	7.5371	0.4547	0.3936	0.3473	0.3110

				L/D				
α, deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000	3.7962	L.8753	0.7652	1.2474	1.1796	1.2758	1.3467	1.4023
-10.0000	0.9490	1.3478	1.1595	1.2579	1.4377	1.5111	1.5865	1.6441
-5.0000	1.0010	1.3969	1.1975	1.2828	1.4087	1.4919	1.5508	1.5946
-4.1000	1.0012	1.7948	1.1913	1.2733	1.3927	1.4708	1.5267	1.5662
-3.0000	2.9985	1.3899	1.1821	1.2601	1.3734	1.4469	1.4983	1.5366
-2.1000	2.7938	1.7817	1.1699	1.2441	1.3510	1.4207	1.4688	1.5036
-1.3000	3.3867	1.0705	1.1556	1.2260	1.3269	1.3922	1-4371	1.4697
o.	3.3775	1.3583	1.1392	1.2050	1.3008	1.3616	1.4035	1.4347
1.3000	7.9665	1.743B	1.1209	1.1840	1.2733	1.3304	1.3697	1.3976
2.0000	0.7542	1.0282	1.1011	1.1613	1.2451	1.2785	1.3349	1.3609
3.0000	2.9457	1.2111	1.7836	1.1373	1.2156	1.2662	1.3004	1.3248
4.2000	3.9258	6.2932	1.2589	1.1125	1.1864	1.2334	1.2655	1.2885
5.0000	^.7172	0.9741	1.2366	1.0872	1.1564	1.2706	1.2329	1.2521
10.0000	0.8214	C.8714	C.2193	3.9572	1.0090	1.0412	1.1630	1.3786
15.0000	3.7247	C.7632	2.9007).3297	0.8689	2.8732	0.2027	0.9215

TABLE IV. - CONTINUED

(b) **δ=** 50°

 c_m

a, m	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.3390	-0.0777	-0.0746	-0.0699	-3.0647	-0.0552	-0.0477	-0.0418	-0.0372
-10.0000	-0.1561	-0.1488	-0.1391	-0.1289	-0.1108	-0.0764	-0.0852	-0.076
-5.0000	-0.2469	-0.2351	-0.2198	-0.2041	-0.1763	-0.1541	-3.1367	-0.122
-4.0000	-0.2664	-0.2535	-0.2371	-0.2233	-0.1904	-2.1666	-0.1478	-0.132
-3.3010	-0.2862	-G.2724	-0.2548	-0.2368	-0.2048	-0.1794	-0.1592	-0.142
-2.0030	-6.3063	-0.2916	-0.2728	-0.2536	-0.2195	-0.1924	-0.1708	-0.153
-1.0000	-0.3268	-0.3111	-0.2911	-0.2707	-0.2345	-0.2356	-0.1827	-0.164
J.	-1.3475	-0.3308	-0.3097	-0.2881	-0.2497	-0.2191	-0.1948	-0.175
1.0500	-0.3696	-0.3509	-C.3285	-0.3057	-0.2652	-0.2328	-0.2070	-0.186
2.0000	-0.3878	-0.3712	-0.3475	-0.3235	-0.2838	-0.2467	-0.2195	-0.1974
3.1000	-0.4113	-6.3917	-0.3668	-0.3416	-0.2967	-0.2607	-0.2321	-0.2388
4	-3.4333	-5.4124	-0.3863	-0.3598	-0.3127	-C.2750	-3.2448	-0.2203
5.0000	-0.4549	-0.4332	-0.4059	-0.3782	-0.3289	-C.2893	-0.2577	-0.2320
10.1000	-0.5656	-0.5391	-0.5057	-0.4718	-3.4114	-0.3627	-0.3236	-0.2916
15.0000	-0.6765	-C.6452	-0.4359	-0.5660	-0.4947	-C.4369	-0.3903	-0.3522

C N

a, deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000	0.0137	C.3156	0.0163	0.0158	0.0137	0.0117	0.3101	0.0088
-10.0000	7.1291	C.1229	0.1153	0.106B	0.0911	0.3787	0.0690	0.3614
-5.0000	0.2580	0.2452	0.2284	0.2111	0.1804	0.1563	0.1376	0.1227
-4.0000	3.2855	0.2711	0.2525	0.2333	0.1995	0.1729	0.1522	0.1358
-3.0000	0.3134	0.2974	0.7767	0.2559	0.2185	0.1898	0.1672	0.1492
-2.0000	0.3418	6.3242	0.3017	3.2788	0.2386	0.2070	0.1824	0.1628
-1.0000	L.3735	C.3513	0.3269	0.3021	0.2586	2.2245	0.1979	0.1767
c.	C.3996	C.3787	0.3523	0.3257	0.2789	3.2422	0.2136	0.1908
1.0000	0.4287	C.4064	C.3781	0.3495	0.2394	2.2602	2.2295	0.2050
2.0000	0.4595	0.4343	0.4041	0.3736	0.3202	0.2783	0.2456	0.2195
3.00ne	0.4893	C.4625	G.4303	2.3979	9.3411	0.2967	0.2618	0.2341
4.0000	0.5183	0.4909	0.4567	2.4223	0.3623	0.3152	0.2783	0.2488
5.0000	2.5485	0.5194	0.4833	2.4470	0.3836	0.3338	0.2948	0.2636
10.0000	3.7002	0.6631	0.6172	0.5713	0.4712	2.4283	0.3787	0.3391
15.0000	0.8502	C.8053	0.7501	0.6950	3.5987	3.5227	0.4629	0.4148

 c_{A}

α, m deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000	3.4444	0.3657	0.2936	0.2412	0.1723	2.1331	0.1082	0.0911
-10.0000	2.4399	0.4155	0.3387	2.2807	0.2056	0.1513	0.1326	0.1126
-5.0000	0.5625	0.4736	C.3918	3.3289	0.2459	C.1757	0.1628	0.1394
-4.0000	(.5757	€.4859	0.4032	7.3393	0.2547	3.2735	0.1675	0.1453
-3.0000	2.5871	C.4985	0.4149	3.3499	2.2638	1.2113	0.1763	0.1514
-2.3000	5.6027	0.5113	0.4266	1.3618	0.2730	0.2123	0.1834	0.1577
-1.0000	.6164	C.5243	0.4386	3.3719	0.2825	0.2275	0.1906	0.1641
; ·	C-63-3	C.5374	0.4579	0.3832	0.2921	0.2358	0.1980	0.1707
1.0000	2.6443	0.5507	C.4632	7.3946	0.3319	(.2444	0.2055	0.1775
2.0000	₹.6585	0.5641	0.4758	0.4053	0.3119	0.2531	0.2132	0.1843
3€00	r.6727	C.5777	C.4885	0.4180	0.3221	0.2612	0.221:	0.1913
4.1000	2.6863	3.5914	0.5013	7.4279	0.3324	0.2709	0.2289	J.1984
5.2000	0.7613	J.5051	0.5142	7.4420	0.3428	0.2800	0.2370	0.2056
10.0000	0.7732	0.6745	0.5800	2.5375	0.3963	0.3270	0.2787	0.2431
15.0000	0.8439	0.7437	0.6460	2.5658	0.4512	.3754	0.3218	0.2819

_	1							
a, deg	.25	50	.75	1.0	1,5	2.0	2.5	3.0
-15.0000	0.3013	0.3143	0.3284	0.3397	0.3550	0.3644	0.3706	0.3742
-13.0000	0.4532	6.4981	0.5495	7.5968	0.6719	C.7268	0.7671	0.7984
-5.0000	0.5690	6339	0.7065	7.7727	J.8774	7.7518	1.0072	1.2484
-4.0000	.5862	(.6534	9-7280	0.7958	0.9026	₹.9776	1.0327	1.7748
-3.3000	0.6012	2.6693	C.7461	0.8150	0.9223	3.9976	1. `531	1.2944
-2.0000	0.6142	0.6841	C.7609	0.8300	0.9375	1.3122	1.3665	1.1072
-1.1000	1.6751	C.6956	C.7728	5.8417	J.9480	1.0219	1.752	1.1152
ο.	3.6345	0.7047	0.7813	0.8499	a.9548	1.0271	1.0788	1.1178
1.0000	0.6478	C.7114	0.7876	1.8550	0.9577	1.5281	1.0783	1.1150
2.0000	2.6457	0.7157	0.7939	0.8571	0.9574	1.0253	1.(739	1.1099
3.0000	0.6488	0.7191	J.7919	0.8568	0.9537	1.7197	1.3663	1.1007
4.3011	3.6533	C.7184	0.7907	0.8538	0.9478	1.0113	1.0561	1.2886
5.0000	J.6571	6.7173	2.7876	0.8497	0.9395	1.0003	1.0429	1.0741
10.0000	2.6288	C.6876	C.7475	0.7569	0.8725	0.9208	0.9539	0.9780
15.0000	0.5823	U.6316	C.6812	7.7226	J.7812	C.8189	0.8449	0.8632

TABLE IV. - CONTINUED

(c) **&=** 60°

•	
·	m

a, deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000	-0.0104	-0.3108	-0.0108	-0.0103	-0.0090	-0.0077	-0.0067	-0.3358
-10.0000	-0.1015	~0.0959	-0.0889	-0.0818	-0.0695	-0.0599	-0.0524	-0.0465
-5.0000	-0.2047	-0.1926	-0.1780	-0.1636	-0.1391	-0.1202	-0.1055	-0.0939
-4.0000	-0.2265	-0.2131	-0.1969	-0.1810	-0.1540	-0.1331	-0.1169	-0.1040
-3.0000	-0.2487	-0.2339	-0.2161	-0.1987	-0.1691	-0.1463	-0.1285	-0.1144
-2.0000	-0.2711	-0.2549	-0.2356	-0.2167	-0.1845	-0.1596	-0.1403	-0.1249
-1.0000	-0.2938	-0.2763	-0.2553	-0.2349	-0.2001	-0.1732	-0.1523	-0.1356
9.	-0.3168	-0.2979	-0.2753	-0.2533	-0.2159	-0.1870	-0.1644	-0.1465
1.0000	-0.3400	-0.3197	-0.2955	-0.2720	-0.2319	-0.2309	-0.1767	-0.1575
2.0000	-0.3634	-0.3417	-0.3159	-0.2908	-0.2480	-0.2150	-0.1892	-0.1686
3.0000	-0.3870	-0.3639	-0.3365	-0.3078	-3.2644	-0.2292	-0.2018	-0.1799
4.0000	-3.4136	-0.3862	-0.3572	-0.3289	-0.2808	-0.2435	-0.2145	-0.1913
5.0000	-0.4344	-0.4087	-0.3780	-0.3481	-0.2974	-0.2580	-0.2273	-0.2027
10.0000	-0.5540	-0.5215	-0.4828	-0.4452	-0.3811	-0.3312	-0.2921	-0.2609
15.0000	-0.6719	-0.6330	-0.5867	-3.5416	-0.4645	-0.4044	-0.3571	-0.3192

CN

			.,				
.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-0.1038	-0.0947	-0.0851	-0.0766	-0.0635	-C.0541	-0.0472	-0.0418
J.0242	C.0243	0.7237	0.0224	0.0196	0.0170	0.0149	0.0132
0.1666	0.1571	0.1453	0.1335	0.1133	0.0975	0.0854	0.0757
7.1964	0.1849	0.1708	0.1569	0.1330	6.1145	0.1003	0.0890
3.2766	0.2131	0.1967	0.1806	0.1530	0.1318	0.1154	0.1024
3.2572	0.2417	0.2229	0.2046	0.1733	0.1493	0.1307	0.1161
0.2880	ú.2735	0.2494	0.2288	0.1939	0.1670	0.1463	0.1299
0.3191	0.2995	0.2761	0.2533	0.2146	0.1849	0.1620	0.1439
0.3574	0.3288	0.3030	0.2780	0.2355	0.2030	0.1778	0.1580
0.3918	0.3582	0.3331	0.3028	0.2566	3.2212	0.1938	0.1722
3.4134	0.3878	C.3574	0.3278	J.2779	7.2396	0.2100	0.1866
0.4452	C.4175	0.3847	0.3530	0.2992	0.2580	0.2262	0.2010
0.4769	0.4473	0.4122	0.3781	0.3206	0.2765	0.2425	0.2156
0.6355	0.5960	0.5493	2.5042	0.4289	0.3696	0.3244	0.2886
9.7878	0.7410	0.6834	2.6277	0.5336	0.4613	0.4052	0.3608
	-3.1038 3.0242 9.1666 9.1964 5.2766 6.2572 7.2883 6.3191 6.3594 6.4918 6.492 0.4769	-2.1238 -0.3947 3.0242 0.3243 2.1666 0.1571 3.1964 0.1849 3.2572 0.2417 3.2883 0.2735 0.3594 0.3288 0.3918 0.3582 3.4134 0.3678 0.4475 0.4473 0.4759 0.4473 0.4355 0.5960	-2.1238 -0.0947 -0.3851 3.0242 C.0243 0.7237 2.1666 0.1571 0.1653 2.1964 0.1849 0.1708 2.2766 0.2131 0.1967 2.2572 C.2417 0.2229 2.2880 0.2705 0.2764 0.3191 0.2995 0.7761 0.3554 0.3288 0.3300 0.3918 0.3582 0.3301 0.44134 0.3878 0.3574 0.4452 0.4175 0.3847 0.4769 0.4473 0.4122 0.6355 0.5960 0.5493	.25 .50 .75 I.0 -C.1738 -0.0947 -0.03851 -0.0766 3.0242	.25 .50 .75 I.0 I.5 -0.1038 -0.0947 -0.3851 -0.0766 -0.0635 3.0242 0.3243 0.7237 0.0224 0.0196 2.1666 0.1571 0.1453 0.1335 0.1133 3.1964 0.1849 0.1708 0.1569 0.1330 5.2766 0.2131 0.1967 0.1806 0.1530 5.2766 0.2131 0.1967 0.1806 0.1530 5.2572 0.7417 0.2229 0.2046 0.1733 5.2880 0.2755 0.2494 0.2288 0.1939 5.3191 0.2995 0.7761 0.2533 0.2166 6.3504 0.3288 0.3030 0.2780 0.2355 6.3418 0.3582 0.3301 0.2780 0.2355 6.3418 0.3682 0.3301 0.2780 0.2355 6.4452 0.4475 0.3847 0.3278 0.2779 6.4769 0.4473 0.4122 0.3781 0.3206 0.4635 0.4673 0.4122 0.3781 0.3206	.25 .50 .75 I.0 I.5 2.0 -c.1738 -0.0947 -0.0361 -0.0766 -0.0635 -c.0541 3.0242	.25 .50 .75 I.0 I.5 2.0 2.5

CA

α, deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000	0.6032	6.4957	0.3981	0.3246	0.2311	0.1774	0.1433	0.1201
-10.0000	C-6484	0.5355	0.4326	7.3546	0.2548	0.1769	0.1599	0.1345
-5.3010	0.6990	0.5813	0.4734	0.3912	2.2847	0.2221	0.1817	0.1536
-4.0000	0.7396	0.5911	0.4823	0.3991	0.2913	0.2277	0.1866	0.1580
-3.0000	7.7234	0.6010	0.4913	0.4073	0.2982	0.2336	0.1917	0.1625
-2.0000	0.7313	0.6111	0.5005	0.4157	0.3052	0.2396	0.1973	0.1671
-1.3000	0.7422	0.6214	0.5099	J.4243	0.3124	0.2458	0.2024	0.1719
o.	0.7533	0.6318	0.5195	0.4331	0.3198	0.2522	0.2080	0.1769
1.3030	3.7645	0.6423	0.5292	0.4420	0.3274	0.2587	0.2137	0.1820
2.0000	C.775B	0.6529	0.5391	0.4511	0.3351	3.2654	0.2196	0.1872
3.0000	7.7871	0.6636	0.5490	0.4603	0.3430	0.2722	0.2256	0.1926
4.0000	0.7984	0.6744	0.5591	2.4697	0.3510	0.2792	0.2317	0.1980
5.0000	0.8098	0.6853	0.5693	0.4791	0.3592	0.2863	0.2383	0.2036
10.0000	0.8667	0.7404	0.6214	0.5279	0.4016	0.3234	0.2737	0.2329
15.0000	0.9223	0.7952	0.6742	0.5779	0.4457	0.3623	0.3053	0.2640

L/Đ

a, deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000	0.0916	0.0732	0.3512	0.0301	-0.0064	-0.0342	-0.0564	-0.0733
-10.0000	0.2151	0.2235	0.2334	0.2422	0.2567	0.2667	0.2740	0.2793
-5.0000	0.3328	0.3664	0.4053	0.4419	0.5030	0.5475	0.5814	0.6065
-4.0000	0.3535	0.3913	0.4348	0.4762	0.5439	0.5937	0.6312	0.6592
-3.0000	0.3731	0.4147	0.4625	0.5076	0.5811	0.6354	0.6757	0.7059
-2.0000	0.3914	0.4365	0.4879	0.5363	0.6149	0.6727	0.7149	0.7479
-1.0000	0.4083	C.4562	0.5139	0.5620	0.6451	0.7052	0.7497	0.7835
1 0.	0.4236	3.4740	0.5315	0.5849	0.6710	0.7331	0.7788	0.8135
1.0000	0.4374	0.4901	0.5496).6049	0.6931	0.7569	0.8029	0.8380
2.0000	0.4495	0.5041	0.5653	0.6218	0.7118	0.7760	0.8223	0.8574
3.0000	3.4601	0.5162	0.5788	0.6360	0.7269	0.7913	0.8376	0.8722
4.0000	0.4674	0.5264	0.5898	0.6476	0.7385	0.8023	0.8484	0.8826
5.0000	0.4769	0.5347	0.5986	0.6564	0.7467	0.8099	0.8552	0.8891
10.0000	0.4932	0.5505	0.6122	0.6665	0.7487	0.8344	0.8438	0.8722
15.0000	0.4786	0.5312	0.5864	0.6338	0.7036	0.7496	0.7814	0.8042

TABLE IV. - CONTINUED

(d) **&=** 70°

C m

a, m	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000	0.0965	0.2895	0.7813	0.0736	0.0611	0.0519	0.0451	0.0399
-10.0000	-0.0.60	-0.3056	-0.3054	-0.0052	-0.0049	-0.0044	-0.0039	-0.0035
-5.0000	-3.1175	-0.1113	-0.1923	-0.0933	-0.0789	-0.0679	-0.0594	-0.3526
-4.0000	-2.1433	-C.1334	-0.1223	-0.1118	-0.0945	-C.0813	-0.0711	-0.0630
-3.0000	-0.1673	-C.1558	-0.1428	-0.1306	-0.1103	-0.0949	-3.3829	-0.0735
-2.0000	-0.1915	-6.1784	-0.1635	-0.1495	-0.1263	-0.1086	-0.0950	-0.3842
-1.0000	-0.2160	-0.2012	-0.1845	-0.1687	-0.1425	-0.1225	-0.1072	-0.0950
ə.	-0.2406	-0.2242	-0.2056	-0.1880	-0.1588	-0.1366	-0.1195	-0.1059
1.0000	-2.2654	-0.2474	-0.2269	-0.2075	-0.1753	-0.1508	-0.1319	-0.1170
2.0000	-3.2904	-0.2707	-0.2483	-0.2271	-0.1919	-0.1651	-0.1444	-0.1281
3. 2000	-C.3154	-0.2941	-0.2698	-0.2468	-0.2085	-C.1794	-0.1570	-0.1393
4.0000	~5.3435	-0.3176	-0.2913	-0.2666	-0.2253	-0.1939	-0.1697	-0.1506
5.0000	-7.3656	-0.3411	-0.3130	-3.2864	-0.2421	-0.2984	-0.1824	-0.1619
10.0000	-2.4937	-0.4582	-0.4239	-0.3854	-0.3263	-0.2811	-0.2465	-0.2187
15.0000	-0.6121	-c.572?	-0.5261	-0.4822	-0.4087	-0.3525	-0.3091	-3.2747

 c_{N}

a, m	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000	-0.2300	-0.2133	-0.1940	-0.1759	-C.1463	-0.1246	-0.1083	-0.0957
-10.0000	-5.0918	-0.0841	-3.7764	-0.0691	-0.0572	-0.0485	-0.3422	-0.0373
-5.0000	6.3616	0.0574	0.7528	3.3485	0.0413	C.C356	0.9312	0.0276
-4.0000	0.0932	0.0869	0.7797	0.0730	0.0618	0.0532	0.0465	0.0412
-3.0000	3.1251	0.1166	0.1069	0.3978	0.0826	0.0710	0.0623	0.0549
-2.0000	.1573	i.1465	0.1343	J.1278	0.1036	0.0890	0.2777	0.0688
-1.0000	0.1597	0.1767	3.1619	0.1479	0.1247	C.1071	0.0935	0.0828
0.	22223 - ١	0.2071	0.1897	0.1733	0.1460	0.1253	0.1094	0.0969
1.0000	2551ء د	C.2376	0.2176	0.1988	0.1674	0.1437	0.1255	0.1111
2.0000	5.2879	€.2692	0.2456	0.2243	0.1890	C.1622	0.1416	0.1254
3.0000	0.3208	0.2989	0.2737	0.2500	0.2106	0.1807	0.1578	0.1398
4.0000	3538	ũ.3276	0.3019	0.2757	0.2322	C.1993	0.1740	0.1542
5.0000	J. 3867	0.3603	0.3300	0.3014	0.2539	C.2179	J.1903	0.1686
10.0000	3.5426	0.5124	9.4696	2.4290	0.3616	0.3155	0.2713	0.2405
15.0000	0.7062	0.5588	0.5041	0.5522	0.4658	C.4203	0.3499	0.3104

CA

a, deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.3000	0.7347	Ç.6282	0.4899	0.4005	0.2864	C.2234	0.1784	0.1496
-10.0000	0.7734	U.6346	0.5114	0.4184	0.2995	1.2306	0.1868	0.1567
-5.2020	C . 8057	0.6556	0.5382	0.4417	0.3180	3.2459	0.1998	0.1680
-4.0000	0.8131	0.6723	0.5441	2.4470	0.3222	3.2495	0.2029	0.1708
-3.0010	(.8276	C.6791	0.5507	0.4525	0.3267	2.2533	0.2062	0.1736
-2.0000	0.9292	L.6860	0.5565	0.4581	0.3314	2.2573	0.2036	0.1767
-1.0000	1.8357	0.6931	0.5629	0.4639	0.3362	^.2614	0.2132	0.1798
ē. [2.8436	0.7033	0.5694	7.4699	0.3413	0.2663	0.2173	0.1832
1.0000	0.8514	C.7275	0.5761	0.4760	0.3464	0.2701	0.2299	0.1866
2.0000	.8523	0.7149	0.5827	0.4823	0.3518	0.2747	J.2249	0.1902
3.000	0.8671	0.7224	0.5897	0.4887	0.3573	0.2795	0.2291	0.1939
4.0000	3.8750	0.7299	0.5969	0.4952	0.3629	C.2844	0.2334	0.1977
5.0000	0.8829	0.7375	0.6341	2.5019	0.3687	0.2394	0.2378	0.2017
10.5006	0.9225	J.2763	0.5412	0.5369	0.3994	0.3164	0.2617	0.2230
15.0010	€.9610	0.8153	0.6796	0.5738	0.4324	0.3457	0.2878	0.2466

1								
a, deg	.25	.50	.75	1.0	1,5	2.0	2.5	3.0
-15.3630	-0.9491	-C.0756	-0.1158	-0.1532	-0.2136	-0.2583	-0.2917	-0.3174
-10.2000	0.0573	C.3428	0.1262	0.0109	-0.0142	-0.3328	-0.3477	-0.0592
-5.2020	0.1650	0.1750	0.1872	0.1992	0.2199	C.2352	0.2470	0.2554
-4.0030	1860	0.2012	0.2186	0.2359	0.2653	C.2874	0.3040	0.3165
-3.0000	(. 2 2 6 5	C.2261	C.2492	0.2716	0.3093	C.3377	0.3587	0.3749
-2,3000	2.2264	C.2503	0.2786	1.3058	0.3514	0.3855	0.413;	9.4391
-1.0000	0.2454	0.2736	0.3066	0.3382	0.3929	0.4302	0.4595	0.4818
0.	0.2635	0.2957	0.3332	0.3688	0.4278	2.4711	0.5041	0.5289
1.0000	5.2827	0.3165	0.3579	0.3973	0.4619	3.5798	0.5453	0.5720
2.0000	0.2966	0.3358	0.3808	0.4233	0.4931	2.5443	0.5819	0.6103
3.0000	0.3115	û.3537	0.4018	3.4472	0.5209	0.5746	0.6142	3.6442
4.0010	C.3252	0.3700	0.4210	0.4686	0.5455	0.6714	0.6421	0.6733
5.0000	C.3376	0.3846	0.4379	2.4874	0.5670	i.6243	0.6661	0.6974
15.0000	2.3796	1.2646	0.4925	0.5458	0.6287	5.6963	0.7274	0.7580
15.0000	0.3901	0.4440	0.5015	0.5521	0.6280	0.6792	0.7149	0.7409

TABLE IV. - CONCLUDED

(e) &= 80°

C_m

a, deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.3000	2.2302	0.2141	0.1953	0.1773	0.1477	C.1257	0.1092	0.3964
-10.0000	2.1186	0.1126	0.1010	3.3917	0.0763	0.3649	0.0564	0.0498
-5.0000	-0.0026	-0.3020	-0.2017	-0.0017	-0.0618	-0.0317	-0.0016	-0.3014
1-4.0000	-3.0277	-0.0253	-9.7230	-0.3211	-0.0180	-0.0156	-0.0136	-0.3121
-3.000	-0.3529	-0.2488	-0.3445	-0.0406	-0.0343	-r.0296	-0.3258	-0.0228
-2.0000	-0.0784	-0.3725	-0.2661	-0.0603	-0.0508	-0.0436	-0.0381	-0.0337
-1.0000	-0.1040	-0.3963	-0.7879	-0.0801	-0.0674	-0.0578	-0.0505	-0.3446
0.	-0.1297	-0.1212	-0.1097	-3.1000	-0.0841	-0.3721	-0.0629	-0.0556
1.0000	-3.1555	-0.1442	-0.1317	-0.1270	-0.1009	-0.0865	-0.0754	-0.2667
2.0000	-0.1813	-0.1683	-0.1537	-0.1401	-0.1177	-0.1008	-0.0879	-3.3778
3.0000	-0.2072	-0.1923	-0.1757	-0.1602	-9.1346	-0.1153	-0.1005	-0.0889
4.3000	-0.2330	-0.2164	-0.1977	-0.1802	-0.1514	-0.1297	-0.1131	-0.1001
5.0500	-0.258B	-0.2434	-0.2197	-3.2003	-0.1683	-0.1441	-0.1257	-0.1112
10.0000	-0.3960	-0.3570	-0.3283	-7.2994	-0.2516	-0.2156	-0.1880	~3.1665
15.0000	-3.5374	-6.4724	-0.4323	-0.3945	-0.3317	-0.2843	-0.2480	-0.2197

 $c_{\,\text{N}}$

a, deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000	-C.3572	-0.3339	-0.3046	-3.2767	-0.2307	-0.1966	-0.1738	-0.1509
-10.0000	-3.2115	-0.1968	-0.1796	-0.1632	-7.1361	-0.1159	-0.1007	-0.0890
-5.000C	-0.0521	-C.2488	-0.2446	-0.0404	-0.0335	-0.3284	-0.0246	-0.3217
-4.0000	-1.3172	-0.0192	-0.7167	-3.0151	-0.0123	-(.0103	-0.0089	-0.007B
-3.0000	7.0139	C.3125	0.7114	0.0105	0.0091	0.3380	0.0074	0.2062
-2.0000	3471	U. 2435	C.3396	0.5362	0.0306	r.0263	0.0230	0.3204
-1.0000	€.0876	C.3746	0.7680	0.0620	0.0522	0.0448	0.0391	0.3346
0.	0.1141	0.1058	0.7965	0.885	0.0739	0.3634	0.0552	0.3489
1.0000	1.1477	6.1370	0.1251	0.1140	0.0957	0.1820	0.0714	0.0632
2.0000	0.1814	0.1683	0.1537	0.1400	0.1175	0.1036	0.0877	0.0775
3.0000	0.2150	0.1796	0.1823	2.1661	0.1394	C.1193	0.1039	0.3919
4.0000	0.2486	0.2309	0.2109	0.1921	0.1612	C.1379	0.1202	0.1063
5.000	2671	5.2621	0.2394	2.2181	3.1829	0.1565	0.1364	0.1206
10.0000	3.4467	0.4154	0.3796	0.3459	0.2902	0.2483	0.2163	0.1914
15010	(.6(30	0.5611	3.5133	3.4676	0.3924	0.3358	0.2927	0.2590

 $c_{\mathbf{A}}$

a, deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000	A462	C.6973	0.5661	J.4653	0.3357	J.2600	0.2114	0.1779
-10.7070	1.9617	0.7124	0.5733	2.4679	0.3375	3.2605	0.2113	0.1775
-5.0000	87 17	0.7247	0.5847	2.4790	0.3439	2.2653	0.2152	0.1807
-4.0000	J.8834	6.7260	0.5874	J.4814	0.3457	C.2668	0.2164	0.1817
-3.0000	0.8872	0.7313	0.5903	7.4839	0.3477	. 2685	0.2178	0.1830
-2.1000	5.9911	6.7347	0.5933	0.4866	0.3498	0.2703	0.2194	0.1843
-1.0000	8950	0.7383	C.5965	3.4894	0.3522	0.2722	0.2211	0.1858
J.	3.8993	J. 7419	0.5998	0.4924	0.3547	5.2744	0.2229	0.1875
1.0000	2.7:30	C.7457	0.5032	0.4956	J.3573	7.2767	0.2249	0.1892
2.1000	3.9.73	G.7495	0.6068	J.4989	0.3601	2791	0.2271	0.1911
3. 1000	2.9111	0.7534	0.5135	2.5023	0.3631	2.2817	0.2294	0.1932
4.0000	2.9152	0.7574	0.5143	0.5059	0.3663	(.2844	0.2318	0.1953
5.3011	0.7173	C.7615	0.5182	7.5096	0.3695	2873	0.2344	0.1976
10.0000	9.9377	0.7827	0.6394	0.5301	0.3880	0.3038	0.2491	0.2109
15.0000	2.9633	0.8051	0.5626	0.5533	0.4096	0.3233	0.2667	0.2268

a, deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000	-C.1406	-0.1858	-0.2361	-0.2818	-0.3541	-0.4060	-0.4439	-0.4728
-10.3000	-3.3662	-0.0960	-0.1298	-0.1611	-0.2119	-0.2490	-0.2770	-0.2987
-5.0000	0.0281	0.0200	0.3111	0.0031	-0.0098	-0.0194	-0.0266	-0.0323
-4.0000	2.0491	0.3448	0.7414	0.0385	0.0343	0.0312	0.3287	0.3269
-3.5000	0.0681	0.3676	718د.0	0.0742	0.0787	0.1923	0.0847	0.0864
-2.0000	0.0879	0.3943	0.1019	0.1096	0.1228	3.1327	0.1403	0.1462
-1.3630	9.1077	0.1187	0.1317	0.1445	0.1661	0.1826	0.1949	0.2043
٥.	0.1269	0.1426	0.1639	3.1787	0.2083	J.2310	0.2476	0.2608
1.0500	3.1457	0.1657	0.1893	0.2117	0.2492	C-2775	3.2984	D.3147
2.0399	0.1639	0.1882	0.2165	0.2433	0.2881	3.3215	0.3466	0.3655
3.0000	0.1913	0.2096	0.2424	0.2735	0.3250	0.3630	0.3912	0.4130
4.0000	3.1779	0.2300	0.2670	1.3018	0.3591	0.4713	0.4329	0.4570
5.0000	J. 2136	0.2472	0.2899	0.3282	0.3906	2.4364	0.4705	0.4963
10.5000	2.2758	C.3241	0.3778	0.4271	0.5050	0.5602	0.6001	0.6303
15.0000	0.3081	0.3615	0.4193	0.4706	0.5491	C.6329	0.6413	0.6692

TABLE V. - LONGITUDINAL AERODYNAMICS OF RAKED-OFF ELLIPTICAL CONES θ_{XZ} = 40°

(a) ठ= 50°

C_m

a, m	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000	-0.2111	-0.2059	-0.1987	-0.1904	-0.1736	-0.1582	-0.1448	-0.1333
-10.0000	-0.2879	-C.2812	-0.2718	-0.261C	-0.2389	-0.2183	-0.2004	-0.1848
-5.0C00	-0.3713	-0.3630	-0.3513	-0.3379	-0.3100	-0.2840	-0.2611	-0.2412
-4.0000	-0.3885	-0.3799	-0.3678	-0.3538	-0.3248	-0.2977	-0.2738	-0.2530
~3.0000	-0.4059	-C.3970	-0.3844	-0.3699	-0.3396	-0.3114	-0.2865	-0.2648
-2.0000	-0.4234	-0.4142	-0.4011	-0.3860	-0.3546	-0.3253	-0.2993	-0.2767
-1.0000	-0.4410	-C.4314	-0.4179	-0.4023	-0.3697	-0.3393	-0.3123	+0.2887
0.	-0.4586	-0.4488	-0.4348	-0.4187	-0.3849	-0.3533	-0.3253	-0.3008
1.0000	-0.4764	-0.4662	-0.4518	-0.4351	-0.4001	-0.3674	-0.3384	-0.3130
2.0000	-0.4941	-C.4836	-0.4687	-0.4515	-0.4154	-0.3815	-0.3515	-0.3252
3.0000	-0.5119	-0.5011	-0.4857	-0.4680	-0.4307	-0.3957	-0.3646	-0.3374
4.0000	-0.5297	-0.5186	-0.5027	-0.4844	-0.4460	-0.4099	-0.3777	-0.3496
5.0000	-0.5474	-0.5360	-0.5197	-0.5009	-0.4613	-0.4240	-0.3909	-0.3618
10.0000	-0.6348	-0.6219	-0.6034	-0.5820	-0.5368	-0.4940	-0.4559	-0.4223
15.0000	-0.7182	-0.7039	-0.6835	-0.6596	-0.6092	-0.5612	-0.5183	-0.4805

CN

a, m deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000	0.2639	G.2523	0.2437	0.2280	0.2035	0.1822	0.1643	0.1495
-10.0000	0.3688	0.3573	0.3417	0.3246	0.2909	0.2613	0.2364	0.2154
-5.0000	0.4852	0.4727	0.4509	0.4290	0.3857	0.3474	0.3149	0.2874
-4.0000	0.5092	0.4941	0.4734	0.4506	0.4053	0.3652	0.3311	0.3024
-3.0000	0.5333	0.5176	0.4961	0.4723	0.4251	0.3832	0.3475	0.3174
-2.0000	0.5576	0.5413	0.5189	0.4942	0.4450	C.4013	0.3641	0.3326
-1.0000	0.5820	0.5651	0.5419	0.5161	0.4650	0.4195	0.3807	0.3479
0.	0.6064	0.5889	0.5649	0.5382	0.4851	0.4378	0.3974	0.3632
1.0000	0.6309	0.6128	0.5880	0.5693	0.5053	0.4561	0.4142	0.3787
2.0000	0.6555	0.6368	0.6111	0.5825	0.5255	0.4745	0.4310	0.3941
3.0000	0.6800	C.6607	0.6342	0.6046	0.5457	0.4929	0.4479	0.4096
4.0000	0.7045	0.6846	0.6573	0.6268	0.5659	0.5113	0.4647	0.4251
5.0000	0.7289	0.7084	0.6803	0.6489	0.5860	0.5297	0.4815	0.4406
10.0000	G.8488	0.8526	0.7935	0.7576	0.6854	C.6204	0.5646	0.5171
15.0000	0.9625	0.9368	0.9012	0.8611	0.7803	0.7072	0.6442	0.5904

CA

a, deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000	0.4949	C.4543	0.4077	0.3648	0.2976	C.2505	0.2163	0.1906
-10.0000	0.5945	0.5499	0.4981	0.4498	0.3728	0.3174	0.2766	0.2452
-5.0000	0.6970	0.6506	0.5939	0.5405	0.4536	C.3898	0.3419	0.3047
-4.0C00	0.7202	0.6711	0.6135	0.5590	0.4702	0.4947	0.3554	0.3171
-3.0000	0.7414	0.6916	0.6331	0.5777	0.4869	0.4198	0.3690	0.3295
-2.0000	0.7626	0.7122	0.6528	0.5964	0.5037	0.4349	0.3828	0.3420
-1.0000	0.7839	0.7328	0.6725	0.6151	0.5206	0.4501	0.3966	0.3546
o.	0.8051	0.7534	0.6923	0.6339	0.5375	0.4654	0.4104	0.3673
1.0000	0.8262	0.7739	0.7120	0.6527	0.5545	6.4807	0.4243	0.3800
2.0000	0.8473	c.7944	0.7316	0.6715	0.5714	0.4960	0.4382	0.3927
3.0000	0.8682	0.8148	0.7512	0.6902	0.5883	0.5113	0.4521	0.4054
4.0000	0.8890	0.8350	0.7707	€.7088	0.6052	0.5266	0.4661	0.4182
5.0000	0.9096	0.8551	0.7901	0.7274	0.6221	0.5419	0.4799	0.4309
10.0000	1.0094	0.9527	0.9845	0.8180	0.7046	0.6169	0.5484	0.4937
15.0000	1.1014	1.0432	0.9726	0.9030	0.7827	C.6883	0.6138	0.5538

a , deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000	0.9259	0.9672	1.0196	1.0726	1.1653	1.2362	1.2901	1.3323
-10.0000	C.8945	0.933C	0.9810	1.0289	1.1093	1.1693	1.2139	1.2481
-5.0000	0.8322	0.8658	0.2069	0.9470	1.0132	1.0615	1.0969	1.1234
-4.0000	0.8174	0.8499	0.8896	0.9283	0.9917	1.0378	1.0713	1.0967
-3.0000	0.8020	0.8335	0.8718	0.9099	0.9699	1.6137	1.0458	1.0697
-2.0000	0.7862	6.8166	0.8535	0.8893	0.9476	C.9895	1.0199	1.3429
-1.0000	0.7699	0.7994	0.8350	0.8692	0.9251	0.9652	0.9940	1.0160
0.	0.7532	0.7817	0.8160	0.8490	0.9025	0.9407	0.9683	0.9888
1.0000	0.7363	0.7638	0.7969	0.8286	0.8798	0.9162	0.9427	0.9624
2.0000	0.7193	0.7458	0.7777	0.8081	0.8572	0.8919	0.9171	0.7358
3.0000	0.7020	0.7275	0.7583	0.7874	0.8346	(.8678	0.8923	0.9098
4.0000	0.6846	0.7093	0.7389	0.7670	0.8120	0.8437	0.8666	0.8838
5.0000	0.6671	0.6909	0.7194	0.7463	0.7894	0.8199	0.8419	0.8582
10.0000	0.5788	0.6207	0.6223	0.6446	0.6798	0.7044	0.7221	0.7353
15.CC00	0.4910	C.5079	0.5276	0.5461	0.5753	0.5956	0.6100	0.6208

TABLE V. - CONTINUED

				(b) &= 60°				
_				C _m				
a, m	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000 -10.0000 -5.0000 -4.0000 -3.0000 -1.0000 -1.0000 2.0000 3.0000 4.0000 5.0000 10.0000	-0.1739 -0.2514 -C.3347 -0.3518 -J.3690 -J.3864 -C.4C38 -J.4212 -C.4386 -C.4735 -C.4735 -J.4910 -0.5C83 -0.5738	-C.1683 -C.2432 -C.3237 -C.3404 -C.3739 -C.3938 -C.4077 -C.4246 -O.4415 -O.4585 -C.4753 -C.4922 -C.57547 -C.6529	-0.1603 -0.2318 -0.3088 -0.3246 -0.3466 -0.3567 -0.3728 -0.4052 -0.4052 -0.4052 -0.4537 -0.4699 -0.6241	-0.1513 -0.2190 -0.3071 -0.3071 -0.3222 -0.3375 -0.3528 -0.3836 -0.3990 -0.4144 -0.4298 -0.4551 -0.5921	-0.1336 -0.1939 -0.2592 -0.2727 -0.2863 -0.3600 -0.3137 -0.3275 -0.3414 -0.3552 -0.3691 -0.3869 -0.3967 -0.3967 -0.3967 -0.3967	-0.1183 -0.1724 -0.2309 -0.2231 -0.2253 -0.2676 -0.2799 -0.3048 -0.3173 -0.3298 -0.3547 -0.3547 -0.4746	-0.1058 -0.1545 -0.2074 -0.2184 -0.2294 -0.2406 -0.2517 -0.2630 -0.2743 -0.2856 -0.2969 -0.3082 -0.3195 -0.4285	-0.0954 -0.1397 -0.1879 -0.1978 -0.2079 -0.2181 -0.2283 -0.2885 -0.2498 -0.2591 -0.2694 -0.2798 -0.2901 -0.3898
_				C _N				
a, deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000 -10.0000 -5.0000 -4.0000 -2.0000 -1.0000 0.0000 1.0000 3.0000 4.0000 5.0000 15.0000	0.1393 0.2479 0.3643 0.3881 0.4122 0.4363 0.4625 0.4848 0.5030 0.5575 0.5817 0.6058 0.7236 0.8347	C.1351 C.2396 C.3517 C.3747 C.3978 C.4211 C.4444 C.6678 C.5146 G.538C C.5146 G.5865 C.6993 C.8056	0.1289 0.2279 0.3342 0.3560 0.4001 0.4222 0.4445 0.4667 0.5112 0.5554 0.6637 0.7659	0.1216 0.2147 0.3147 0.3353 0.3560 0.3768 0.3777 0.4396 0.4696 0.4696 0.5025 0.5234 0.6256	0.1069 0.1887 0.2769 0.2950 0.3133 0.3317 0.3873 0.4059 0.4245 0.4245 0.4430 0.4615 0.5523 0.6384	0.0941 0.1664 0.2446 0.2607 0.2769 0.3933 0.3937 0.3427 0.3592 0.3757 0.3922 0.4087 0.5666	0.1481 0.2181 0.2181 0.2255 0.2470 0.2617 0.2716 0.3208 0.3504 0.35504 0.3650 0.5073	0.0749 0.1332 0.1963 0.2094 0.2225 0.2357 0.2490 0.2624 0.2758 0.2692 0.3027 0.3027 0.3295 0.3995 0.4583
~	,			C _A				
a, deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000 -10.0000 -5.0000 -4.0000 -3.0000 -2.0000 -1.0000 0. 1.0000 3.0000 4.0000 4.0000 10.0000	0.7304 C.8179 C.9C63 0.9238 0.9412 0.9585 0.9757 1.0035 1.0262 1.0262 1.0264 1.0587 1.0746 1.1496	0.6579 0.7455 C.8246 C.8414 C.8581 C.8912 C.9076 G.9239 G.9403 G.9559 G.9716 C.9871 1.0655	0.5746 0.6511 0.7298 0.7456 0.7614 0.7771 0.7027 0.8043 0.8391 0.8543 0.8693 0.8693 0.8693 0.8693	0.4989 0.5693 0.6624 0.6571 0.6866 0.7013 0.7159 0.7305 0.7450 0.7594 0.7736 0.7878 0.8557	0.3843 0.4440 0.5070 0.5198 0.5127 0.5456 0.5585 0.5713 0.5842 0.5970 0.6098 0.6225 0.6351 0.6963 0.7530	0.3085 0.3600 0.4149 0.4261 0.4374 0.4488 0.4601 0.4715 0.4929 0.4923 0.5956 0.5169 0.5282 0.5831	0.2567 0.3018 0.3503 0.3603 0.3703 0.3804 0.3905 0.4007 0.4109 0.4210 0.4312 0.4413 0.4514 0.5010	0.2194 0.2595 0.3029 0.3119 0.3209 0.3300 0.3391 0.3482 0.3574 0.3666 0.3758 0.3849 0.1941 0.4390 0.4818
				Ľρ				
a, deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000 -10.0000 -10.0000 -4.0000 -4.0000 -2.0000 -1.0000 0 1.0000 2.0000 4.0000 5.0000 10.0000	0.4834 0.5065 0.5065 0.5079 0.5019 0.4985 0.4995 0.4884 0.4825 9.4761 0.4692 0.4618 0.4539 0.4078	C.5009 C.5311 C.5339 C.5318 C.5282 O.5206 C.5154 C.5095 C.4098 C.4881 C.4478 C.4370 C.3757	0.5238 0.5610 0.5682 0.5663 0.5635 0.5552 0.5437 0.5389 0.5294 0.5212 0.5412 0.4025	0.5474 0.5929 0.6017 0.5989 0.5991 0.5904 0.5849 0.5710 0.5631 0.5544 0.5452 0.4914 0.4289	0.5901 0.6504 0.6658 0.6658 0.6508 0.6516 0.6306 0.6301 0.6310 0.6211 0.6113 0.6010 0.5412	C.6240 0.6952 0.7138 0.71122 0.7090 0.7095 0.6988 0.6916 3.6837 C.6746 C.6648 C.6648 C.6642 0.5778	0.6479 0.7302 0.7510 0.7490 0.7495 0.7467 0.7343 0.7267 0.7179 0.7082 0.6964 0.6739 0.6047 0.5273	0.6707 0.7582 0.7798 0.7778 0.7739 0.7683 0.7615 0.7442 0.7337 0.7226 0.7105 0.6251 0.6251

TABLE V. - CONTINUED

(c) **&=** 70°

 c_{m}

a, deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000	-0.0774	-0.0745	-0.0706	-0.0663	-0.0580	-0.0510	-0.0452	-0.0404
-10.0000	-0.1541	-0.1481	-0.1400	-0.1312	-0.1147	-0.1308	-0.C895	-0.0802
-5.0000	-0.2362	-0.2268	-0.2143	-0.2009	-0.1757	-0.1546	-0.1374	-0.1233
-4.0000	-0.253C	-0.2430	-0.2296	-0.2153	-0.1883	-C.1657	-0.1472	-0.1322
-3.0000	-0.2699	-0.2592	-0.2450	-0.2297	-0.2009	-0.1768	-0.1572	-0.1411
-2.0000	-0.2869	-0.2755	-0.2604	-0.2442	-0.2136	-0.1881	-0.1672	-0.1501
1.0000	-0.3039	-0.2919	-0.2759	-0.2587	-0.2264	-0.1993	-0.1773	-0.1592
0.	-0.3210	-0.3083	-0.2914	-0.2733	-0.2392	-0.2106	-0.1874	-0.1683
1.0000	-0.3380	-0.3247	-0.3069	-0.2878	-0.2520	-0.2220	-0.1975	-0.1774
2.0000	-0.3551	-0.3411	-0.3224	-0.3024	-0.2648	-0.2333	-0.2076	-0.1865
3.0000	-0.3721	-0.3574	-0.3379	-0.3170	-0.2776	-0.2447	-0.2177	-0.1957
4.0000	-0.3890	-0.3737	-0.3534	-0.3315	-0.2904	-0.2560	-0.2279	-0.2û48
5.0000	-0.4059	-0.3900	-0.3688	-0.3460	-0.3032	-0.2673	-0.2379	-0.2139
10.0000	-0.4885	-C.4695	-0.4441	-0.4169	-0.3658	-0.3228	-0.2B76	-0.2587
15.0000	-0.5661	-0.5443	-0.5152	-0.4839	-0.4250	-0.3754	-0.3348	-0.3014

CN

a , m	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000	-0.0109	-0.0097	-0.0083	-0.0071	-0.0053	-0.0043	-0.0037	-0.0033
-10.0000	0.0991	0.0956	0.0907	0.0852	0.0747	0.0657	0.0582	0.0521
-5.0000	0.2166	C.2080	0.1965	0.1841	0.1606	0.1409	0.1249	0.1118
-4.0000	0.2406	0.2311	0.2182	0.2043	0.1782	0.1563	0.1386	0.1241
-3.0000	0.2648	0.2542	0.2400	0.2247	0.1960	0.1719	0.1524	0.1365
-2.0000	0.2891	0.2775	0.2619	0.2452	0.2138	0.1876	0.1663	0.1489
-1.0000	0.3134	0.3008	0.2839	0.2658	0.2317	0.2033	0.1802	0.1614
0.	0.3378	0.3242	0.3059	C.2864	0.2497	0.2190	0.1942	0.1740
1.0000	0.3622	0.3475	0.3280	0.3070	0.2676	0.2348	0.2082	0.1865
2.0000	0.3866	0.3709	0.3500	0.3276	0.2856	0.2506	0.2222	0.1991
3.0000	0.4109	0.3942	0.3720	0.3482	0.3035	0.2664	0.2362	0.2117
4.0000	J.4351	U-4174	0.3939	0.3687	0.3214	0.2821	0.2502	0.2242
5.0000	0.4592	0.4496	0.4157	0.3891	0.3393	J.2978	0.2641	0.2367
10.0000	0.5771	C.5536	0.5224	0.4891	0.4267	0.3747	0.3325	0.2982
15.0000	0.6878	G.6599	0.6229	0.5833	0.5092	0.4474	0.3973	0.3565

CA

m		-						•
a, deg	.25	.50	75	1.0	1,5	2.0	2.5	3.0
-15.0000	0.9273	C.831Z	0.7210	0.6210	0.4706	0.3725	0.3062	0.2592
-10.0000	0.9964	0.8952	0.7789	0.6731	0.5133	0.4083	0.3370	0.2861
-5.0000	1.0629	0.9576	0.8363	0.7255	0.5573	0.4459	0.3697	0.3151
-4.0000	1.0757	0.9697	C.8475	0.7359	0.5661	C.4535	0.3764	0.3210
-3.0000	1.0883	0.9817	0.8587	0.7462	0.5749	0.4612	0.3832	0.3270
-2.0000	1.1007	C.9935	0.8697	0.7564	0.5838	0.4689	0.3899	0.3331
-1.0000	1.1128	1.3051	0.8806	0.7666	0.5925	0.4765	0.3967	0.3391
0.	1.1248	1.3165	0.8914	0.7766	0.6013	C.4842	0.4035	0.3452
1.0000	1.1364	1.0277	0.7020	0.7866	0.6100	C.4918	0.4102	0.3513
2.0000	1.1478	1.0387	0.9124	0.7964	0.6186	0.4994	0.4170	0.3573
3.0000	1.1589	1.0494	0.9226	0.8060	0.6271	C.5070	0.4238	0.3634
4.0000	1.1697	1.0599	0.9327	0.8156	0.6356	^.5145	0.4305	0.3695
5.0000	1.1802	1.0702	0.9425	0.8249	0.6440	0.5220	0.4372	0.3755
10.0000	1.2275	1.1169	0.9882	0.8689	0.6841	0.5581	0.4698	0.4051
15.0000	1.2652	1.1554	1.3269	9.9373	9.7203	0.5915	0.5004	0.4331

.25	.50	.75	1.0	1.5	2.0	2.5	3.0
0.2554	0.2555	0.2556	0.2557	0.2559	0.2556	0.2550	0.2544
0.2807	0.2860	0.2989	0.3098	0.3303	0.3471	0.3600	0.3703
0.2966	0.3106	0.3292	0.3490	0.3854	0.4150	0.4383	0.4565
0.2983	0.3135	C.3334	0.3544	0.3934	C.4248	0.4497	0.4692
0.2995	0.3156	0.3368	0.3592	0.4005	0.4336	0.4597	0.4803
0.3003	0.3173	0.3396	0.3632	0.4063	0.4412	0.4684	0.4896
0.3006	0.3184	0.3418	0.3664	0.4113	G.4474	0.4755	0.4976
0.3003	0.3199	0.3432	0.3688	0.4153	0.4523	0.4813	0.5041
0.2996	0.3188	0.3440	0.3703	0.4180	0.4562	J.4858	0.5087
0.2984	0.3182	0.3441	0.3711	0.4200	0.4588	0.4888	0.5123
0.2966	0.3170	C.3435	0.3712	0.4209	0.4604	0.4936	0.5144
0.2944	0.3152	0.3423	0.3704	0.4209	0.4607	0.4913	0.5150
0.2917	0.3129	0.3404	0.3690	0.4200	0.4600	0.4907	0.5145
0.2713	C+2937	0.3223	0.3517	0.4031	0.4427	0.4725	0.4955
0.2406	0.2630	0.2913	0.3198	0.3691	0.4061	0.4337	0.4549
	0.2554 0.2807 0.2966 0.2983 0.2995 0.3003 0.3003 0.2996 0.2984 0.2944 0.2917 0.2713	0.2554	0.2554	0.2554	0.2554	0.2554	0.2554

TABLE V. - CONCLUDED

(d) &=	80°
--------	-----

				10/00				
				c _m				
a, deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000 -10.0000 -5.0000 -4.0000 -3.0000 -2.0000 -1.0000 0.000 3.0000 4.7000 5.0000 10.0000 15.0000	0.0663 -0.0094 -0.0901 -0.1066 -0.1232 -0.1399 -0.1566 -0.1733 -0.1900 -0.2067 -0.2234 -0.2400 -0.2565 -0.3372 -0.4130	0.0633 -0.0090 -0.0861 -C.1019 -C.1178 -0.1337 -0.1497 -0.1657 -0.1977 -0.2136 -0.2295 -0.2295 -0.2295 -0.3227	0.0594 -0.0085 -0.0085 -0.0958 -0.1107 -0.1257 -0.1407 -0.1558 -0.1708 -0.1859 -0.2009 -0.2159 -0.20307 -0.3036 -0.3720	0.0551 -0.0081 -0.0756 -0.0894 -0.1034 -0.1173 -0.1314 -0.1594 -0.1735 -0.1875 -0.2015 -0.2015 -0.2834 -0.3474	0.0472 -0.0074 -0.0658 -0.0778 -0.0898 -0.1019 -0.1141 -0.1263 -0.1506 -0.1628 -0.1749 -0.1870 -0.2462 -0.3019	0.0408 -0.0067 -0.0577 -0.0581 -0.0786 -0.0892 -0.1998 -0.1105 -0.1211 -0.1318 -0.1424 -0.1530 -0.1636 -0.2154	0.0359 -0.0060 -0.0510 -0.0696 -0.0789 -0.0893 -0.0977 -0.1071 -0.1166 -0.1260 -0.1354 -0.1447 -0.1906 -0.2339	0.0320 -0.0054 -0.2456 -0.2539 -0.0622 -0.2706 -0.0874 -0.0958 -0.1042 -0.1210 -0.1210 -0.1214 -0.1294 -0.1704 -0.2093
				C _N				
m	Ì				<u>-</u>			
a, deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000 -10.0000 -5.0000 -4.0000 -3.0000 -2.0000 0. 1.0000 2.0000 3.0000 4.0000 5.0000 15.0000	-0.1773 -0.0664 0.0517 G.C758 0.1C01 0.1245 0.1490 C.1735 G.1979 0.2224 0.2468 0.2711 0.2953 0.4134	-0.1693 -0.0635 0.0494 G.0725 0.0957 0.1190 G.1424 C.1658 G.1892 0.2126 G.2359 0.2592 0.2823 0.3953	-0.1588 -0.0595 0.7465 0.7682 0.0900 0.1119 0.1558 0.1778 0.1998 0.2217 0.2436 0.7653 0.7716	-0.1475 -0.0552 0.0435 0.0637 0.0840 0.1249 0.1259 0.1659 0.1864 0.2068 0.2272 0.2475 0.3466	-0.1269 -0.0472 0.0380 0.0555 0.0731 0.0907 0.1084 0.1262 0.1439 0.1616 0.1793 0.1970 0.2145 0.3004 0.3813	-C.1101 -C.0408 0.0334 C.0487 0.0640 C.0794 C.0948 C.1103 C.1258 C.1412 C.1567 C.1721 O.1721 O.2624 O.3331	-0.0969 -0.0358 0.0297 0.0431 0.0566 0.0702 0.0838 0.0975 0.1111 0.1248 0.1384 0.1520 0.1656 0.2319 0.2944	-0.9864 -0.9319 0.7265 0.7365 0.7506 0.7627 0.7749 0.0871 0.0971 0.115 0.1237 0.1358 0.1479 0.2072 0.2072
2	ı			c _a				
a, deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000 -10.0000 -5.0000 -4.0000 -3.0000 -2.0000 -1.0000 0. 1.0000 2.0000 4.0000 5.0000 15.0000	1.0846 1.1305 1.1711 1.1795 1.1855 1.1923 1.1998 1.2051 1.2100 1.2165 1.2218 1.2267 1.2313 1.2492	0.9718 1.0132 1.0504 1.0572 1.0639 1.0764 1.0880 1.0985 1.1034 1.1080 1.1266	C.8429 O.8790 O.9122 O.9185 O.9245 C.9304 O.7361 O.9417 O.9522 O.9571 O.9618 O.9664 O.9856 O.9987	0.7260 0.7573 0.7989 0.7989 0.7980 0.0034 5.8097 0.8138 0.8237 0.8330 0.8373 0.8567	0.5502 0.5743 0.5981 0.6027 0.6019 0.6164 0.6229 0.6252 0.6257 0.6379 0.6419 0.6606 0.6764	0.4353 0.4546 0.4743 0.4783 0.4822 0.4961 0.4938 0.4977 0.5015 0.5952 0.5089 0.5126 0.5300 0.5456	0.3576 0.3736 0.3904 0.3938 0.4972 0.4006 0.4074 0.4108 0.4142 0.4176 0.4209 0.4242 0.4403 0.4551	0.3025 0.3161 0.3307 0.3337 0.3357 0.3367 0.3427 0.3458 0.3488 0.3518 0.3519 0.3579 0.3579 0.3869
	ī			L/D	_			
a , deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000 -10.6000 -5.0000 -4.0000 -2.0000 -1.0000 0.0000 2.0000 4.0000 5.0000 10.0000	0.1001 0.1164 0.1321 0.1349 0.1375 0.1379 0.1491 0.1440 0.1450 0.1470 0.1480 0.1492 0.1461 0.1338	0.0896 0.1124 0.1351 0.1430 0.1467 0.1501 0.1560 0.1584 0.1605 0.1623 0.1636 0.1644	0.0757 0.1074 0.1391 0.1449 0.1505 0.1558 0.1659 0.1654 0.1697 0.1736 0.1771 0.1736 0.1802 0.1802	G.0614 0.1021 0.1435 0.1512 0.1585 0.1656 0.1784 0.1784 0.1845 0.1845 0.1947 0.1947 0.2029	0.0351 0.0928 0.1519 0.1631 0.1739 0.1841 0.1939 0.2033 0.2119 0.2172 0.2338 0.2397 0.2577	0.0141 0.0852 0.1589 0.1730 0.1864 0.1994 0.2116 5.2234 0.2243 0.2442 0.2536 0.2621 0.2695 0.2932	-0.0028 0.0792 0.1647 0.1808 0.1964 0.2115 0.2257 0.2393 0.2518 0.2636 0.2742 0.2840 0.2929 0.3206	-0.3164 0.3741 0.1688 0.1868 0.2043 0.2209 0.2369 0.2519 0.2659 0.2789 0.2789 0.3015 0.3112 0.3419

TABLE VI. - LONGITUDINAL AERODYNAMICS OF RAKED-OFF ELLIPTICAL CONES θ_{XZ} = 50°

(a) **&=** 60°

Ç m

a, deg	.25	.50	.75	1.0	1,5	2.0	2.5	3.0
-15.CC00	-0.3236	-0.3188	-0.3116	-0.3027	-3.2828	2627	-2.244	-3.2273
-10.0000	-0.4007	-0.3950	-0.3862	-0.3755	-3.3513	-0.3269	-0.3541	-1.283
-5.0000	-0.4791	-0.4724	-0.4622	-0.4497	-0.4213	3724	-3.3655	-C.341
-4.0000	-0.4948	-0.4878	-0.4774	-0.4644	-0.4352	- `.4 ¹ 55	-J.3778	-0.352
-3.0000	-0.5103	-0.5032	-0.4924	-0.4792	-0.4491	4136	-3.393,	-2.364
-2.0000	-0.5258	-0.5185	-0.5075	-0.4938	-0.4637	-7.4316	-3.4022	-0.375
-1.0000	-0.5412	-0.5337	-0.5224	-0.5084	-3.4767	- 4445	-0.4143	-0.386
0.	-0.5565	-0.5488	-0.5372	-0.5229	-3.4934	4574	-3.4263	-7.398
1.0000	-0.5716	-0.5638	-0.5519	-0.5372	-0.5040	47'1	-0.4383	-:.449
2.0000	-0.5866	-0.5786	-0.5664	-0.5514	-3.5174	-2.4927	-0.4501	-0.440
3.0000	-0.6014	-0.5932	-0.5808	-0.5655	-0.5357	-1.4752	-0.4618	-0.431
4.0000	-0.6160	-0.6076	-0.5950	-0.5793	-0.5438	-1.5275	-7.4734	-0.442
5.0000	-7.6304	-0.6219	-0.6089	-0.5930	-7.5567	5196	4844	- 2.453
10.0000	-3.6986	-0.6893	-0.6752	-0.6578	-3.6181	-".5774	-3.5331	-0.5.4
15.0000	-C.7591	-0.7492	-0.7341	-0.7154	-0.6727	-0.6282	-2.5875	-2.549

CN

α, m deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000	0.3586	0.3518	0.3417	0.3296	0.3134	.2779	0.2551	0.2349
-10.0000	0.4530	0.4446	0.4322	0.4173	0.3847	.3537	3.3243	3.2392
-5.0000	J.5489	0.5390	0.5242	0.5065	0.4676	~.4297	0.3953	0.3650
-4.0000	0.5680	0.5578	0.5426	0.5243	3.4842	1.4450	3.4735	0.3781
-3.0000	0.5870	0.5765	0.5603	0.5420	0.5007	.46°3	0.4236	3.3912
-2.0000	0.6059	0.5951	0.5790	0.5597	0.5171	.4755	0.4377	7.4043
-1.0000	0.6247	0.6136	0.5971	0.5772	0.5335	47.6	2.4517	0.417
o.	0.6434	0.6320	0.6151	0.5946	0.5437	1.5156	J.4656	3.4301
1.0000	0.6619	0.6502	0.6328	0.6119	J.5658	52.5	3.4794	7.4431
2.0000	0.6832	0.6682	0.6534	0.6289	0.5817	5353	0.4931	0.4558
3.0000	0.6983	0.6860	0.6678	0.6458	0.5774	J.5479	0.5067	2.4684
4.0000	0.7161	0.7036	0.6850	0.6625	0.6130	.5643	0.520.	€.4808
5.0000	0.7337	0.7209	0.7019	0.6789	0.6283	.5736	2.5332	0.4931
10.0000	0.8170	0.8931	0.7821	0.7569	0.7012	.6462	0.5961	3.5516
15.0000	3.8908	0.8758	0.8533	0.8261	0.7660	1.7266	3.6522	0.6039

¢,

.25	.50	.75	1.0	1.5	2.0	2.5	3.0
0.8180	0.7832	0.7362	0.6855	0.5711	.5143	0.4537	3.4055
0.9436	0.9058	0.8544	0.7986	2.6737	.6776	J.5397	0.4834
1.0666	1.0261	0.2738	0.9105	0.7762	1.7333	0.6241	0.5619
1.0906	1.3496	0.3936	0.9324	0.8163	.7173	0.641.	0.5775
1.1142	1.3728	1.3161	0.9541	0.8363	.7376	J. 5573	^.5930
1.1376	1.0957	1.3384	0.9756	0.8560	°.7557	0.6744	0.6083
1.1606	1.1183	1.3603	0.9968	7.8756	. 7737	0.6920	0.6236
1.1833	1.1406	1.0820	1.0177	2.8949	.7714	3.7373	0.6387
1.2056	1.1624	1.1033	1.0383	0.914)	• 47)	2.7234	6536
1.2274	1.1839	1.1242	1.0586	0.9327	.8763	0.7394	0.6684
1.2488	1.2049	1.1447	1.3785	0.9512	1433	0.7551	C.6829
1.2697	1.2255	1.1648	1.0979	0.9693	45.2	3.7736	0.5773
1.2901	1.2456	1.1845	1.1170	U.9871	.3765	3.7850	7.7114
1.3837	1.3381	1.2751	1.2054	1.0699	.7534	0.9572	2.7777
1.4614	1.4153	1.3513	1.2891	1.1408	1.0200	0.7173	2.9358
	0.8180 0.9466 1.0936 1.1142 1.1376 1.1636 1.1833 1.2056 1.2274 1.2488 1.2697 1.2901 1.3837	0.8180 0.7832 0.9436 0.9058 1.0666 1.9261 1.0956 1.0496 1.1142 1.7728 1.1376 1.9957 1.606 1.1183 1.1833 1.1406 1.2056 1.1624 1.2274 1.1839 1.2488 1.2049 1.2697 1.2255 1.2901 1.2456 1.3837 1.3381	0.8180	.25 .50 .75 I.0 0.8180	.25 .50 .75 l.0 l.5 0.8180 0.7832 0.7362 0.6855 0.5911 0.9436 0.9058 0.8544 0.7986 0.6337 1.0666 1.0261 0.9738 0.9125 0.7962 1.0936 1.0496 0.7936 0.9324 0.8163 1.1142 1.0728 1.0161 0.9754 0.8560 1.1376 1.0957 1.0384 0.9756 0.8560 1.1606 1.1183 1.7603 0.9968 0.4756 1.1833 1.406 1.0820 1.0177 0.8949 1.2056 1.1624 1.1033 1.383 0.9149 1.2274 1.1839 1.1262 1.0586 0.9327 1.2488 1.2049 1.1447 1.0785 0.9512 1.2697 1.2255 1.1648 1.0979 0.9671 1.2901 1.2456 1.1845 1.1170 0.9871 1.2901 1.2456 1.1845 1.1170 0.9871 1.2837 1.3381 1.2751 1.2054	.25 .50 .75 I.0 I.5 2.0 0.8180	0.8180 0.7832 0.7362 0.6855 0.5711 .5143 0.4537 0.9436 0.9058 0.8544 0.7986 7.6737 .6776 J.5397 1.0666 1.0261 0.7738 0.9105 0.7062 .77.0 0.6241 1.09956 1.0496 0.9364 0.8163 .7173 0.461 1.1142 1.0728 1.0161 0.9541 0.8363 .7376 0.5741 1.1376 1.0957 1.3384 0.9756 0.8560 0.7557 0.6744 1.1606 1.1833 1.4033 0.9968 0.4756 .7757 0.6379 1.2056 1.624 1.1333 1.3839 0.9149 .7014 0.773 1.2274 1.1839 1.1242 1.0586 0.9327 .8763 0.7394 1.2488 1.2049 1.447 1.2785 0.9512 .433 0.7551 1.2897 1.2255 1.1648 1.6799 0.9633 .4517 0.7775 1.28

a , deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000	0.8003	0.8153	0.8361	0.8595	0.9058	:.9451	2.2772	1.0029
-10.0000	0.7171	0.7334	0.7490	0.7698	0.8079	.9437	3.8739	2.8327
-5.000c	0.6305	0.6423	0.6586	0.6767	0.7113	*.74.3	0.7632	0.7815
-4.0000	0.6131	0.6246	0.6405	0.6581	0.6918	7197	0.741,	0.7594
-3.0000	0.5957	0.6069	0.5224	0.6395	0.6722	.6773	0.7237	°.7376
-2.0000	0.5783	0.5892	0.6043	0.6211	0.6528	.6771	3.5778	^.7162
-1.0000	0.5610	0.5716	2.5864	0.6026	0.6335	.5588	3.677	0.6347
o.	0.5437	0.5541	0.5685	0.5843	0.6143	1.6387	3.659;	6737
1.0000	0.5265	0.5367	0.5536	3.5661	0.5952	617	3.6379	7.6528
2.0000	0.5024	0.5193	0.5329	0.5478	0.5762	1.5993	0.6176	0.6320
3.0000	0.4923	0.5020	0.5152	0.5298	0.5573	5799	0.5976	^.6115
4.0000	0.4753	0.4847	0.4977	0.5119	0.5387	1.5405	0.5776	0.5911
5.0000	0.4584	0.4676	0.4802	3.4943	7.5231	-5414	3.5577	0.5710
10.0000	0.3751	0.3833	0.3944	3.4366	7.4294	.4479	0.4624	3.4737
15.0000	0.2936	0.3010	0.3139	2.3218	0.3420	.3583	0.371)	1.3809

TABLE VI. - CONTINUED

(b) **&=** 70°

				C _m			- 10	
a, deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.200 -10.500 -5.200 -4.200 -4.200 -2.200 -1.200 -2.200 -1.200 -2.200 4.200 4.200 15.200	2262 2723 3575 35729 3862 33976 4256 46397 4642 4768 4642 4768 4647 45475	-C. 2214 -C. 2861 -C. 3521 -C. 3521 -C. 3731 -C. 4167 -C. 4167 -C. 4467 -C. 4667 -C. 4667 -C. 4667 -C. 5363 -C. 5363	-0.2142 -0.2777 -0.3438 -0.4535 -0.3652 -0.3798 -0.3913 -0.4038 -0.4161 -0.4283 -1.4434 -0.4523 -0.4523 -0.4523 -0.5197	-). 2357 -). 7669 -). 3274 -). 3377 -). 3519 -). 3761 -). 3861 -). 4019 -). 4117 -). 4234 -). 4349 -). 4979 -). 5476	-^.1872 -0.2424 -0.2787 -0.3799 -0.3211 -0.3323 -0.3454 -0.3654 -0.3764 -0.4078 -0.4078 -0.4078 -0.4573 -0.5513	-1.1697 -0.2203 -0.2714 -0.2917 -0.3921 -0.3122 -0.3123 -0.3323 -0.3422 -0.3617 -0.3617 -0.4166 -0.44572	-0.1542 -0.2002 -0.2472 -0.2566 -0.2660 -0.2763 -0.2846 -0.2237 -0.303 -0.3121 -0.3121 -0.3307 -0.3805 -0.4178	-0.1408 -0.1830 -0.2262 -0.2349 -0.2435 -0.2521 -0.2607 -0.2692 -0.2776 -0.2942 -0.3105 -0.3105 -0.3490 -0.3490
				C _N				
a, deg	.25	.50	.75	1.0	1.5	2.0	2,5	3.0
-15.1007 -10.100 -5.100 -4.200 -3.100 -2.100 -1.100 -3.	1896 1.2749 .3072 .3777 .3777 .4145 .4431 .466. .467 .4697 .5162 .5326 .6174 .6877	C.1856 C.2699 C.3542 C.3713 C.3893 C.4053 C.4053 C.4397 C.4727 C.4727 C.4727 C.5948 C.5978 C.59769 C.6652	0.1796 0.2597 0.3588 0.3588 0.3753 0.3917 0.4087 0.4243 0.4564 0.4722 0.4978 0.5033 0.5769 0.6437	1.172 1.2492 1.3240 1.3598 1.3755 1.3912 1.4067 1.4272 1.4375 1.4677 1.4677 1.4825 1.5532 1.6167	C.1563 2.2261 2.2778 2.3121 3.3265 C.3408 2.3550 2.3672 2.31932 2.4110 2.4246 2.4381 3.5026 2.5605	0.1411 1.2041 1.2690 1.2892 1.2951 1.3337 1.3465 1.3591 1.3716 1.3716 1.3760 1.4548 1.5076	3.1276 2.1849 3.2437 3.2556 2.2674 3.7256 3.1141 3.1257 3.1371 3.3483 3.4575 3.4607	2.1161 2.1683 2.2220 2.2328 2.2544 3.2654 3.2758 3.2758 3.373 3.3177 3.3279 3.3767 0.4208
				c _A				
a, deg	.25	.50	.75	1,0	1.5	2.0	2.5	3.0
-15.22 -5.20 -4.12 -3.00 -1.12 -1.12 -1.13 -	1.774 1.1874 1.2756 1.2735 1.3171 1.3278 1.362 1.3756 1.3756 1.4756 1.4756 1.4756 1.4756	1. J144 1.1191 1.217 1.2277 1.2446 1.2011 1.272 1.2020 1.3078 1.3144 1.3437 1.3628 1.4197 1.4578	1.339 1.347 1.1221 1.139 1.155 1.177 1.1864 1.214 1.2167 1.2321 1.2437 1.2569 1.2695 1.3641	.8557 1.3442 1.276 1.434 1.583 1.742 1.1032 1.1177 1.1329 1.1439 1.1648 1.1648 1.16225	0.7/37 7.7411 7.8550 9.8691 .8936 7.9130 7.9358 7.9462 0.7952 1.9710 7.9832 1.0337 1.0729	. \$9861 . 6541 . 7126 . 71323 . 7447 . 7569 . 7547 . 7792 . 8335 . 8145 . 8252 . 8355 . 8355 . 9722 . 8355	1.4732 2.5584 0.617 3.6294 3.6376 0.6576 0.6615 3.6721 3.6826 0.7225 0.7126 0.7225 0.7654 0.8907	9.4316 0.4856 7.5384 2.5487 0.5689 0.5689 0.5885 0.5890 0.6074 0.6165 0.6255 0.6255 0.6342 0.6743 0.7074
				L/D				
m m	.25	.50	.75	1.0	1,5	2.0	2.5	3.0
deg	.465)	5.4737	7.4838	٠.4759	7.5211	.5439	2.5627	0.5797
-15. 100 -10. 200 -5. 200 -4. 200 -3. 100 -2. 30 -1. 30 -1	1.4/57 -3871 -3611 -3611 -35 7 -3341 -3114 -3136 -2766 -2756 -2142 -1547	2.4353 38.4 2.37.5 2.36.4 2.35.0 2.35.0 2.32.0 2.32.0 2.27.3 2.27.7 2.16.79	1.4475 2.4033 1.3737 3.3837 3.3635 2.3635 2.3426 2.3318 2.3729 1.3738 2.7286 3.408 1.1876	7.4617 7.4196 7.4077 7.3973 7.3873 7.3697 7.35581 7.3364 7.2253 7.3163 7.2558 7.1757	.4938 9.4495 9.4491 1.4305 9.4236 9.4134 9.3674 9.3674 9.3674 9.3647 9.2854 9.2232	2.5169 2.4769 2.4676 4530 2.4882 4370 4274 2.4168 2.4357 3.3744 3.3714 2.311.8 2.2473	0.4997 0.4997 0.4976 0.481 0.4710 0.4507 0.4502 0.4607 0.4607 0.4607 0.475 0.3932 0.3315 0.2666	2.5569 2.5185 2.5093 2.4997 3.4897 2.4793 3.4686 3.4576 3.4463 3.4347 3.4230 3.4347 3.4347 3.43480 3.4480

TABLE VI. - CONCLUDED

(c) &= 80°

~	
·	m

a , deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000	-0.0581	-0.3566	-0.3546	-0.0522	-0.0473	-5.0427	-0.0386	-0.3350
-10.300	-1.1142	-0.1114	-0.1073	-0.1025	-0.0925	-0.5932	-0.2751	-0.7682
-5.3000	-0.1722	-0.1679	-0.1617	- 1544	-2.1393	1253	-0.1131	-0.1026
-4.1010	1838	-1.1793	-0.1726	-1.1647	-^.1487	-:-1337	-0.1237	-0.1396
-3.0000	-1.1955	-6.1936	-0.1836	-7.1753	-0.1581	-0.1422	-0.1284	-0.1165
-2.3630	-0.2771	-0.2020	-(.1945	-).1858	-0.1675	-0.1507	-0.1360	-0.1234
-1.3000	-1.2187	-0.2133	-0.2054	-7.1952	-3.1769	-3.1591	-J.1436	-0.1304
J.	23 2	-0.2245	-2.2162	-0.2065	-n.1863	-~.1675	-0.1512	-0.1373
1.0070	-1.2417	-C.2357	-0.2270	-0.2168	-0.1955	-3.1757	-1.1537	-0.1441
2.0000	-1.2531	-3.2463	-0.2377	-0.2270	-0.2048	-0.1842	-0.1662	-0.1509
3.00nc	2644	-6.2578	-0.2483	-^.2372	-0.2139	-2.1924	-J.1737	-0.1577
4.00	2756	2687	-7.2588	-3.2472	-0.2230	-0.2006	-0.1811	-3.1644
5.0000	-0.2866	-0.2795	-C.7692	-3.2571	-0.2320	2387	-0.1894	-0.1711
10.7000	-3.3376	-3.3312	-0.3195	-0.3048	-0.2750	-2.2475	-3.2235	-0.2030
15.0000	-2.3875	-6.3786	-0.3642	-3.3480	-0.3141	2927	-2.2554	-C.2321

,	N	

						-		
a, m	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15	- /• 1120)115	-0.2122	-0.0101	-0.7086	7773	-0.0064	-0.3056
-10.0000	2.2654	1.0649	0.1625	0.0508	0.0542	0.0489	0.1442	0.3401
-5.1100	7.14 ₹1	0.1444	0.1390	· 1328	0.1197	.1376	6.1971	0.3485
-4.500	.1646	3.1675	1.1545	0.1475	0.1330	11.75	0.1077	0.0977
-3/^^	.1811	3.1766	0.1700	1.1623	3.1462	0.1314	5.1184	0.1074
-7. ' ``	1.1776	C.1927	0.1955	0.1771	0.1595	^.1433	0.1272	C.1171
-1.300	.2141	L.2187	0.2007	7.1918	5.1728	C.1552	0.1379	0.1268
	23 6	2247	0.2163	0.2265	0.1860	2.1672	0.1535	0.1365
1	J. 2453	0.2477	2.2317	2.2211	0.1992	1.1785	0.1612	2.1462
2. 11	. 25 12	6.2566	0.2469	0.2357	0.2123	0.1906	0.1718	0.1558
3	2774	U.2723	0.2621	0.2502	0.2253	2.2023	5.1823	0.1653
4. * * * *	2354	L.2893	£.2772	.2645	3.2382	2139	0.1927	2.1748
5	/-3113	0.3035	C.2921	3.2788	3.2513	2253	0.2331	0.1842
10	1.3890	3.3782	7.3647	2.3474	0.3128	3.2808	0.2531	0.2295
15. 10	J. 4591	1.4466	0.4299	7.4133	3.3694	2.3317	3.299:	0.2712

c_{A}

a, m	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.170	1.2427	1.2084	1.1387	1.2334	7.8141	. • 6575	0.5625	0.4825
-10 -110	1.3557	1.2750	1.1738	1.3631	. 8644	7122	3.5774	0.5149
-5.60.	1.4175	1.3367	1.3293	1.1144	0.9185	.7503	0.6324	0.5445
-4.0312	1.4276	1.3473	1.7387	1.1236	0.7164	.7573	0.6397	0.5500
-3.17.30	1.4377	1.3567	1.7467	1.1323	2.9241	1.7540	3.6443	0.555
-2.1631	1.4473	1.365	1.2557	1.1476	2.9314	7.7705	3.6527	0.560
-1.0000	1.4552	1.3745	1.265	1.1485	7.7384	.7767	0.6563	0.565
3.	1.4646	1.3828	1.2727	1.1552	2.2451	3.7927	3.5616	0.570
1.0000	1.4723	1.3923	1.2831	1.1629	0.7514	7.7984	0.6669	0.575
2.5 ***	1.4774	1.3973	1.2857	1.1634	0.9574	7.7738	0.6717	2.579
3.0000	1.485	1.4737	1.2932	1.1755	0.9639	7787	0.6764	0.583
4.0000	1.4719	1.4005	1.2989	1.1810	0.9682	2.8738	0.6807	2.588
5.0000	1.4771	1.4148	1.3241	1.1852	3.9731	8283	G.6851	0.591
10.0000	1.5134	1.4318	1.3217	1.2043	0.9916	0.8264	0.7524	0.6083
15. 370	1.5132	1.4332	1.3253	1.2399	1.0001	∴.8365	0.7130	0.6193

a, deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000	2579	0.2578	2.2574	0.2572	J.2567	2563	0.2555	0.2555
-10.0000	0.2273	0.2271	5.2317	7.2349	3.2417	C.2480	0.2534	9.2577
-5.0000	2.1938	C.1374	2.2326	0.2088	0.2218	2339	3.744.	0.2527
-4.0000	1867	J.1937	0.1764	7.2331	`.2173	.2313	3.2413	0.2507
-3.0000	1736	1.1838	0.1900	.1972	7.2124	. 2264	3.2383	0.2483
-2.5300	3.1723	0.1757	0.1435	0.1712	3.7374	. 7273	0.2351	0.2456
-1.0000	1.1649	€.1637	€.1768	1850	0.2022	1.2141	0.2315	0.2426
3.	1.1574	1.1625	C.1697	.1786	1.1968	2134	0.2275	0.2393
1000	/-1478	0.1552	€.1430	2.1721	0.1912	. 1785	0.2234	0.2357
2.0000	5.1421	C.147R	0.1550	1655	0.1354	2.2735	0.2187	0.2317
1 3.00ng	1343	0.1402	0.1487	3.1597	0.1793	1.1982	2.2141	0.2273
4.3077	J.1263	0.1325	0.1414	1.1517	0.1731	.1726	0.2389	0.2227
5,0000	5.1183	0.1247	C.1337	0.1446	0.1567	1367	3.2037	0.2178
10.0000	0.2766	2.2839	0.2245	0.1967	0.1318	1542	0.173.	0.1885
15.0000	0.0322	0.0403	C.0519	3.0652	0.1923	1.1167	3.1361	^.1523

TABLE VII. - LONGITUDINAL AERODYNAMICS OF RAKED-OFF ELLIPTICAL CONES $\theta_{XZ} = 60^{\circ}$

	TABLE VII.	- LONGITUE	INAL AEROI	DYNAMICS O	f RAKED-OF	FELLIPTICA	L CONES 0	xz = 60°
				(a) &= 70°				
				C _m				
a, m	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.000 -10.000 -5.000 -4.000 -4.000 -2.000 -1.000 -1.000 2.000 3.000 4.000 5.000 10.000 10.000	-0.3972 -0.4653 -0.5295 -3.5457 -3.5576 -3.5644 -0.5757 -3.599 -0.629 -0.6295 -0.6373	-0.3957 -0.4612 -0.5249 -0.5369 -0.5567 -0.5679 -0.5931 -0.5931 -0.6141 -0.6342 -0.6343 -0.6343 -0.6778 -0.7723	-0.3921 -0.4548 -C.5169 -C.5287 -C.58404 -C.5519 -0.6632 -0.5743 -C.5956 -0.6058 -0.6058 -0.6058 -0.6058	-0.3829 -2.4465 -0.5675 -0.5192 -7.5307 -3.5421 -0.5532 -0.5641 -0.5747 -0.8850 -2.5951 -0.049 -0.0144 -0.6571 -0.6998	-0.3652 -0.4262 -0.4857 -0.4959 -0.5970 -0.5179 -0.5285 -0.5390 -0.5591 -0.5688 -0.5782 -0.55782 -0.56874 -0.66810	-0.3456 -0.4636 -0.46393 -0.4700 -0.4805 -0.4909 -0.5011 -0.5010 -0.5020 -0.5302 -0.5305 -0.6572 -0.6576	-0.3260 -0.3815 -0.4938 -0.4440 -0.4638 -0.4638 -0.4638 -0.4735 -0.4922 -0.5012 -0.5105 -0.5268 -0.5268 -0.5939	-0.3074 -0.3594 -0.4095 -0.4191 -0.4286 -0.4379 -0.4471 -0.4647 -0.4734 -0.4818 -0.4899 -0.4738 -0.5616
				C _N				
a, deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000 -10.0000 -5.0000 -4.000 -3.0000 -1.000 -1.000 0.0000 0.00	(.3546 7.4225 7.4462 1.4983 1.5134 5.5222 1.5453 2.5654 1.5674 1.5894 7.5945 1.6644 1.6874	C.3529 G.4181 G.4813 G.4932 C.5651 L.5169 L.5284 C.5337 C.5616 J.5722 C.5825 C.5825 C.6737	0.3470 0.4112 2.4732 3.4852 0.4960 0.5995 0.5197 0.5317 0.5417 2.5526 0.5632 0.5731 0.5830 0.6274 0.5633	0.3395 0.4024 0.4631 0.4631 0.4864 0.5077 0.5198 0.5305 0.5410 0.5512 0.5611 0.5708 0.6494	0.3213 0.3810 1.4388 0.4499 0.4609 0.4717 0.5029 0.5129 0.5129 0.526 0.5321 0.5412 0.5412 0.58129 0.6163	0.3014 0.3578 1.4122 0.4227 0.4331 0.4433 0.4631 0.4728 0.4922 4913 0.5703 0.5900	0.2817 0.3348 0.386 0.3957 0.4057 0.4153 0.4247 0.4339 0.4517 0.4637 0.4637 0.4637 0.4771 0.5443	0.2637 0.3134 0.3615 0.3708 0.3709 0.3799 0.3870 0.4978 0.4151 1.4234 0.4315 0.4395 0.4472 0.4622 0.5105
				C _A				
a, deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.000 -13.000 -5.000 -4.000 -3.000 -2.000 -1.000 2.000 3.000 4.000 5.000 10.000 15.000	1.1999 1.3279 1.4414 1.4635 1.4959 1.5154 1.5640 1.5819 1.5910 1.6153 1.6153 1.6050 1.7342	1.1645 1.2938 1.4116 1.4334 1.4547 1.4752 1.5144 1.5329 1.5576 1.5837 1.9970 1.6630 1.7043	1.1250 1.2513 1.3667 1.3882 1.4070 1.4272 1.4488 1.4677 1.6959 1.5033 1.5220 1.5367 1.5517 1.6146	1.772 1.1999 1.3122 1.3331 1.3535 1.3732 1.3724 1.4199 1.4297 1.4458 1.4602 1.4778 1.4928 1.5555 1.5970	0.9730 1.9873 1.926 1.2123 1.2315 1.2501 1.2682 1.2857 1.3126 1.3189 1.3345 1.3637 1.4243 1.4657	.8736 0.7794 1.7773 1.7757 1.1136 1.1131 1.1645 1.1957 1.2145 1.2746 1.2782 1.2762	0.7866 0.8844 0.7754 0.7752 1.7256 1.414 1.5567 1.717 1.861 1.1000 1.1133 1.1261 1.1913	0.7127 0.8033 0.3880 0.3039 0.3195 0.3348 0.7496 0.7780 0.9915 1.0046 1.171 1.3292 1.3814 1.1192
` •	• –							
, m	Ī			L/D			-	
a , deg	,25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.3000 -12.7000 -5.2000 -5.2000 -3.2000 -2.6000 0.10000 2.8000 3.3000 4.2000 5.0000 10.0000	C.6169 0.5255 1.4376 0.4274 0.3864 0.3696 0.3579 0.3198 0.3198 0.2798 0.1908	C.6215 0.5297 0.4414 0.4270 0.3901 0.3732 0.3564 0.3338 0.232 0.2741 0.1939 0.1151	0.4283 0.5360 0.4473 0.4320 0.4127 0.3956 0.3787 0.3618 0.3450 0.3285 0.3119 0.2792 0.1986 0.1196	3.6369 3.4544 3.4571 3.4177 3.4275 3.3654 3.3654 3.3694 3.3193 3.3017 3.2653 3.2044 3.1251	2.6562 0.5614 0.4706 0.4528 0.4352 0.4178 0.3662 0.3662 0.3492 0.3492 0.3324 0.3157 0.2990 0.2172 0.1371	9.6754 0.5789 1.4964 0.4505 0.4505 0.4505 0.4151 0.3977 0.3804 0.3461 0.3292 0.3124 0.2296 0.1487	C. 6929 0.5946 0.5006 0.4823 0.4641 0.4662 0.4283 0.4106 0.3931 0.3757 0.3584 0.3412 0.3242 0.2406 0.1553	0.7082 0.6083 0.5128 0.4943 0.4759 0.4577 0.4940 0.3663 0.3688 0.3516 0.3343 0.2499 0.1677

TABLE VII. - CONCLUDED

(b) **5 =** 80°

 ϵ_{m}

				""				
a, m	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.3000	-3.1846	-0.1823	-0.1787	-9.1741	-0.1633	-0.1518	-0.1408	-0.1306
-10.0000	-0.2305	-0.2276	-0.2231	-0.2174	-0.2039	-0.1897	-0.1759	-0.1632
-5.0000	-0.2754	-0.2720	-0.2666	-0.2598	-0.2438	-0.2268	-0.2134	-0.1953
-4.2020	-3.2842	-0.2826	-0.2751	-3.268L	-0.2516	-0.2340	-0.2171	-0.2016
-3.0000	-3.2928	-C.2892	-0.2835	-0.2763	-0.2592	-3.2412	-0.2238	-0.2078
-2.3000	-0.3014	-0.2976	-0.2918	-9.2844	-0.2668	-0.2482	-0.2304	-0.2139
-1.3000	-6.3078	-0.3059	-0.2999	-0.2923	-0.2743	-0.2552	-0.2368	-0.2199
э.	-0.3181	-0.3141	-0.3079	-0.3001	-C.2817	-0.2621	-0.2432	-0.2258
1.0000	-0.3262	-0.3221	-0.3158	-0.307B	-0.2889	-0.2688	-0.2495	-0.2317
2.7000	-3.3342	-0.3300	-0.3236	-0.3154	-0.2960	-C.2754	-0.2556	-0.2374
3.0000	-3.3423	-6.3377	-0.3311	-0.3227	-0.3029	-0.2819	-0.2617	-0.2430
4.3010	-0.3476	-0.3453	-0.3385	-3.3320	-0.3097	-C.2883	-0.2676	-0.2485
5.0000	-0.3571	-0.3526	-0.3458	-0.3370	-0.3164	-0.2944	-0.2733	-0.2539
10.0000	-1.3913	-6.3865	-0.3790	-1.3694	-3.3469	-3.3229	-0.2999	-0.2786
15.0000	-0.4197	-0.4145	-3.4065	-0.3963	-0.3722	-0.3466	-0.3220	-0.2993

				C _N		_		
a, m deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000	3.1261	0.1245	0.1221	0.1190	0.1116	0.1037	0.0960	0.3890
-10.0000	1.1791	0.1758	0.1723	0.1679	0.1573	0.1461	0.1353	0.1253
-5.0010	3.231J	0.2270	0.2725	9.2167	0.2030	0.1884	0.1745	0.1617
-4.0000	0.2402	C.2371	0.2323	0.2263	0.2120	0.1968	0.1822	0.1688
-3.0000	0.2573	C.2471	0.2421	0.2358	0.2209	0.2351	0.1893	0.1760
-2.nche	0.26.4	0.2570	0.2519	0.2453	0.2298	C.2133	0.1975	0.1830
-1.0000	7.27 ³	0.2669	0.2615	3.2547	0.2385	0.2215	0.2051	0.1900
) . l	5.2802	0.2766	0.2710	0.2639	0.2472	0.2295	0.2125	0.1969
1.0000	5.2899	C.2862	0.2804	0.2731	0.2558	C.2375	3.2179	0.2037
2.0000	0.2994	0.2956	0.2896	2.2821	J.2642	0.2453	0.2271	0.2105
3.6000	3.3189	0.3049	0.2987	0.2909	0.2725	0.2530	0.2343	0.2171
4.0000	2.3181	0.3140	0.3077	0.2997	0.2807	2.2606	0.2413	0.2236
5.0000	2.3272	6.3230	0.3165	0.3082	0.2887	0.2680	0.2482	0.2300
10.0000	J.3676	0.3649	0.3575	J.3492	0.3261	0.3328	0.2804	3.2599
15.2670	0.4061	0.4009	0.3928	0.3826	0.3584	0.3328	0.3083	0.2858

				LA.				
α, m deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000	1.4372	1.3983	1.3373	1.2641	1.1377	0.9632	0.8413	0.7414
-10.0000	1.5347	1.4917	1.4276	1.3575	1.1856	1.0329	0.9333	0.7979
-5.0000	1.6133	1.5687	1.5023	1.4274	1.2510	1.2921	0.9574	0.9466
-4.0000	1.6258	1.5820	1.5151	1.4348	1.2624	1.1025	0.9669	0.8553
-3.0000	1.6374	1.5944	1.5272	1.4465	1.2732	1.1124	0.9759	0.8636
-2.0000	1.6513	1.6061	1.5386	1.4575	1.2834	1.1217	0.9845	0.8715
-1.0000	1.6623	1.6172	1.5493	1.4678	1.2930	1.1306	0.9926	0.8790
5.	1.6725	1.6277	1.5591	1.4774	1.3019	1.1389	1.0003	0.8861
1.5000	1.6819	1.5363	1.5682	1.4862	1.3102	1.1466	1.0075	0.8927
2.1000	1.6974	1.6447	1.5764	1.4943	1.3179	1.1538	1.0142	0.8990
3.0110	1.6983	1.6522	1.5839	1.5017	1.3249	1.1604	1.0204	0.9048
4.0000	1.7:48	1.6589	1.5906	1.5082	1.3312	1.1664	1.0260	0.9101
5.0000	1.7106	1.6648	1.5964	1.5140	1.3369	1.1718	1.0312	0.9150
10.0000	1.7764	1.6839	1.6129	1.5311	1.3547	1.1899	1.0492	0.9326
15.0000	1.7173	1.6748	1.6083	1.5281	1.3549	1.1927	1.0538	0.7384

				L/D				
α, deg	.25	.50	.75	1.0	1.5	2.0	2.5	3.0
-15.0000	2.3641	0.3657	0.3683	0.3715	0.3789	0.3868	0.3941	0.4009
-10.0000	0.2985	0.3004	0.3035	3.3074	0.3164	0.3259	0.3348	0.3429
-5.0000	0.2333	0.2352	0,2387	0.2431	0.2534	0.2640	0.2741	0.2832
-4.0015	3.2198	0.2221	0.2257	0.2302	0.2407	0.2516	0.2618	0.2710
-3.0011	0.2067	C.2091	0,2127	0.2173	0.2280	0.2391	3.2495	0.2590
-2.0000	2.1937	5.1960	0,1998	2.2044	2.2153	2.2266	3.2372	3.2467
-1.0000	0.1806	0.1830	0.1868	0.1916	2.2026	6.2141	0.2743	0.2345
o.	3.1675	0.1700	0.1738	3.1786	0.1899	C.2315	0.2124	0.2222
1.0000	C.1544	0.1579	C.1608	0.1658	0.1772	0.1890	J.200_	0.2099
2.0010	0.1413	0.1439	0.1478	0.1529	3.1644	0.1764	J.1875	0.1976
3.0000	C • 1283	0.1309	0.1348	0.1399	0.1516	0.1637	0.1751	0.1852
4.0000	0.1152	0.1178	0.1219	0.1270	3.1389	0.1511	9.1626	0.1728
5.0000	0.1021	C.1048	0.1089	0.1140	0.1261	0.1384	0.1500	0.1604
10.0000	C.0364	0.0393	0.0436	0.0491	0.0618	0.0748	0.0868	0.3976
15.0000	-0.0209	-0.3269	-0.7223	-0.0165	-0.0032	0.0103	0.0228	0.0338

Table VIII.- directional and lateral stability derivatives $(a) \quad \theta_{\chi\chi} = 20^{\circ}.$

ľ

δ, deg		30	40	50	60	70	80
	с _ұ	-0.0020	-0.0033	-0.0044	-0.0053	-0.0060	-0.0064
0.25	с _п	. 0022	. 0054	.0091	.0128	.0195	.0179
	c,	0012	0019	0022	0022	0017	0010
	с Ү _в	-0.0053	-0.0088	-0.0116	-0.0138	-0.0154	-0.0164
0.50	c _n β	.0030	.0072	.0119	. 0164	.0201	.0225
	c,	0008	0013	0015	0014	0011	0006
	С Ч _р	-0.0081	-0.0133	-0.0174	-0.0206	-0.0229	-0.0242
0.75	c _n β	.0039	.0090	.0146	.0198	. 0242	.0270
	c,	0004	0006	0007	 0006	0005	0003
<u>. </u>	c _{Yβ}	-0.0105	-0.0169	-0.0218	-0.0257	-0.0284	-0.0301
1.0	c _n β	. 0048	.0107	.0169	. 0228	.0276	.0307
	c,	0	0	0	0	0	0
	c _{Yg}	-0.0152	-0.0220	-0.0280	-0.0327	-0.0361	-0.0381
1.5	с _п в	. 0064	.0133	. 0206	.0273	. 0328	. 0364
	c,	.0007	.0010	.0011	.0010	.0007	. 0004
	°Y _β	-0.0168	-0.0254	-0.0321	-0.0373	-0.0411	-0.0434
2.0	c _n β	. 0078	. 0154	. 0232	. 0306	. 0365	. 0404
	c,	.0013	.0017	.0018	.0017	.0013	. 0007
	c _{yβ}	-0.0189	-0.0280	-0.0351	-0.0406	-0.0446	-0.0470
2.5	c _{nβ}	.0089	. 0169	. 0252	. 0330	. 0392	. 0433
	c,	.0017	.0023	. 0024	. 0020	.0016	.0009
	C Y _β	-0.0205	-0.0299	-0.0373	-0.0431	-0.0472	-0.0498
3.0	c _n β	. 0098	.0182	.0268	. 0348	.0413	.0456
	c,	.0021	.0027	. 0029	.0026	.0019	.0010

TABLE VIII. - Continued (b) $\theta_{XZ} = 30^{\circ}$.

δ, deg		40	50	60	70	80
	C Y _β	-0.0014	-0.0023	-0.0030	-0,0035	-0.0038
0.25	c _n β	. 0025	. 0056	. 0089	.0116	.0135
	c,	0014	0021	0022	0018	0010
	C Y _β	-0.0048	-0.0071	-0.0092	-0.0107	-0.0116
0.50	c _n β	.0030	.0066	.0102	.0133	.0153
	c,	0010	0015	0015	0013	0007
	c _Y _β	-0.0075	-0.0121	-0.0154	-0.0178	-0.0192
0.75	c _{n_β}	.0036	.0078	.0118	.0151	.0173
	c,	0005	0008	-,0008	0006	0003
	c Υβ	-0.0103	-0.0163	-0.0207	-0.0237	-0.0255
1.0	с _п в	.0044	.0090	.0134	.0169	.0192
	c _{lβ}	О	0	0	0	0
	$^{\mathtt{C}}_{\mathtt{Y}_{\beta}}$	-0.0149	-0.0228	-0.0283	-0.0322	-0.0344
1.5	c _n	. 0059	.0112	.0160	.0199	. 0225
	c,	.0010	.0013	.0013	.0010	.0006
	c _{YB}	-0.0185	-0.0273	-0.0335	-0.0378	-0.0404
2.0	c _n β	.0072	.0129	.0181	. 0222	. 0249
	c,	.0019	. 0024	.0023	.0018	.0010
	С Ү _β	-0.0213	-0.0306	-0.0372	-0.0418	-0.0447
2.5	$^{\mathtt{c}}_{\mathtt{n}_{\beta}}$. 0083	.0143	.0197	.0239	. 0267
	c,	.0026	.0032	.0031	. 0024	.0013
	c _{Yβ}	-0.0236	- 0.0332	-0.0400	- 0.0448	-0.0477
3.0	c _n β	. 0093	.0155	. 0209	.0253	.0281
	c _l β	. 0033	. 0039	. 0037	.0029	.0018

TABLE VIII. - Continued (c) $\theta_{XZ} = 40^{\circ}$.

		•	XZ		
δ, deg		50	60	70	80
	c _y	-0.0010	-0.0016	-0.0020	-0.0022
0.25	с _п	.0028	.0059	. 0086	.0104
	c,	0014	0018	0017	0010
	с _{Үβ}	-0.0033	-0.0054	-0.0067	-0.0075
0.50	с _п	.0031	. 0064	. 0092	.0111
	$\mathbf{c}^{1^{\mathbf{B}}}$	0010	0014	0012	0007
	с Y _β	-0.0063	-0.0100	-0,0124	-0.0138
0.75	с _{пв}	. 0036	.0071	.0101	.0121
	c,	0006	0007	0006	0004
	c Y _β	-0.0093	-0.0145	-0.0178	-0.0197
1.0	c _n β	.0041	.0079	.0111	.0131
	$c_{i_{\beta}}$	0	0	0	0
	$^{\mathtt{c}}_{\mathtt{Y}_{oldsymbol{eta}}}$	-0.0146	-0.0219	-0.0265	-0.0292
1.5	c _{n_β}	. 0053	. 0095	.0128	.0149
	c _{lβ}	.0012	.0014	,0012	. 0007
	c Υ _β	-0.0189	-0.0274	-0,0328	-0.0359
2.0	c _{nβ}	. 0064	.0109	.0143	.0165
	c,	. 0023	. 0026	. 0022	.0012
	$^{\mathtt{C}}_{\mathtt{Y}_{oldsymbol{eta}}}$	-0.0224	-0.0315	-0.0373	-0.0407
2.5	c _{nβ}	. 0074	.0102	.0155	.0177
	$c_{i_{\beta}}$. 0032	.0037	.0030	.0017
	c Υβ	-0.0252	-0.0348	-0.0408	-0.0443
3.0	c _n β	. 0083	.0130	.0165	.0187
	c, B	.0041	. 0045	. 0036	.0020

TABLE VIII. - Concluded

(e) $\theta_{XZ} = 60^{\circ}$.

δ, deg		60	70	80		δ, deg		70	80
	с Y _β	-0.0007	-0.0010	-0.0012			c Y _β	-0.0004	-0.0006
0.25	c _n β	.0031	.0059	. 0078		0.25	c _{nβ}	.0032	. 0054
	c, β	0012	0013	0008			c, _β	0008	0006
	C _{Yβ}	-0.0024	-0.0037	-0.0045			с Ү _в	-0.0016	-0.0023
0.50	с _п	. 0032	.0061	.0081		0.50	с _{пв}	.0033	. 0055
	c,	0009	0010	 0006			$c_{i_{\beta}}$	0006	0005
	c _y	-0.0049	-0.0075	- 0.0089			c _y	-0.0034	-0.0049
0.75	c _n β	.0035	. 0065	. 0085	İ	0.75	$c_{n_{\beta}}$.0034	.0057
	c,	0005	 0005	0003			$c_{i_{\beta}}$	0004	0003
	c Y _β	-0.0076	-0,0115	-0.0137			$^{\mathrm{C}}_{\mathrm{Y}_{\beta}}$	-0.0056	-0.0079
1.0	c _{nβ}	. 0038	. 0070	.0090		1.0	c _n β	.0036	. 0059
	c,	0	0	0			c,	0	0
	c _{Yβ}	-0.0131	-0.0192	-0.0225			с Ү _в	-0.0104	-0.0146
1.5	с _п в	. 0046	.0079	.0100		1.5	° _{nβ}	. 0040	. 0063
	c,	.0011	.0012	.0007			с _{ів}	.0009	. 0006
	С Ү _в	-0.0179	-0.0254	-0.0295			C _{Yβ}	-0.0152	-0.0209
2.0	c _{n_β}	. 0055	.0089	.01.09		2.0	с _п	. 0045	. 0068
	c, B	. 0023	.0023	.0014			c, B	.0018	.0013
	c Y _β	-0.0219	-0.0304	-0.0348			C Y _B	-0.0195	-0.0263
2.5	c _{n_β}	.0063	.0097	.0117		2.5	с _{пв}	.0050	.0073
	$c_{i_{\beta}}$. 0034	. 0033	.0019			c,	.0028	.0020
	с Y _β	-0.0252	-0.0343	-0.0390			c Y _β	-0.0233	-0.0308
3.0	c _n β	. 0070	.0104	.0124		3.0	c _n β	. 0054	.0077
	c,	. 0043	.0041	. 0024			c, a	.0038	.0026

TABLE IX. - LONGITUDINAL AERODYNAMICS OF RAKED-OFF ELLIPTICAL CONES

		m	- 0. 25			
α	c _m	c _N	c _A	c_L	cD	L/D
0	-0.328	0.461	0.471	0.461	0.471	0.978
10	-0.523	0.745	C-638	0.622	0.758	0.821
50	-C.722	1.031	0.803	0.694	1.107	0.627
30	-0.9C4 -1.045	1.286 1.479	0.947 1.050	0.640	1.463	0.438
50	-1.130	1.590	1.100	0.458 0.180	1.755	0.261 0.093
60	-1.148	1.607	1.089	-0.139	1.936	-0.072
70	-1.058	1.528	1.017	-0.434	1.783	-0.243
eŏ	-G.984	1.362	0.854	-0.644	1.497	-0.430
50	-0.822	1.130	0.723	-0.733	1.130	-0.649
100	-0.630	0.860	0.552	-0.693	0.752	-0.922
110	-0.432	0.585	C.371	-0.549	0.423	-1.297
120	-C.252	0.337	0.211	-0.351	0.186	-1.886
130	-C.110	0.145	0.089	-0.162	0.054	-3.015
140	-0.024	0.031	0.019	-0.036	0.006	-6.288
150	0.	0.	0.	0.	0.	_
160	C.	0.	C.	0.	0.	
170	Ç.	0.	0.	0.	0.	
160	ç.	0.	0.	0.	0.	_
190	0.	0.	c.	0.	٥.	
200	0.	0.	C.	0.	0.	
210	0.000	0. -0.001	0. 0.0Cl	0. 0.001	0.000	9.043
230	0.000	-0.001	0.001	0.001	0.002	3.155
240	0.002	-0.015	C.010	0.007	0.002	1.992
250	0.004	-0.028	0.019	0.027	0.020	1.380
260	0.007	-0.043	0.030	0.037	0.037	1.003
270	0.009	-0.058	C.043	0.043	0.058	0.740
280	C.011	-0.072	C.057	0.044	0.081	0.543
290	C.013	-0.083	0.073	0.040	0.103	0.390
300	0.014	-0.090	0.090	0.033	0.122	0.269
310	C.014	-0.090	0.107	0.024	0.137	0.176
320	C.012	-0.082	C.125	0.018	0.148	0.119
330	C.OC5	-0.058	0.148	0.024	0.158	0.151
340	-0.048	0.033	0.211	0.104	0.187	0.555
350	-0.164	0.214	0.323	0.267	0.281	0.949
360	-C.328	0.461	0.471	0.461	0.471	0.978

	m = 0.50										
α	c_{m}	c _N	CA	cL	CD	L/D					
0	-0.318	0.440	0.416	0.440	0.416	1.058					
10	-0.506	0.713	0.576	0.602	0.691	0.871					
20	-0.701	0.990	0.737	0.678	1.031	0.658					
30	-0.879	1.237	0.879	0.632	1.380	0.458					
40	-1.018	1.425	0.985	0.459	1.671	0.275					
50	-1.101	1.535	1.039	0.191	1.844	0.103					
60	-1.120	1.554	1.035	-0.119	1.863	-0.064					
70	-1.071	1.479	0.972	-0.408	1.723	-0.237					
80	-0.962	1.321	0.858	-0.616	1.450	-0.425					
90	-0.604	1.098	0.707	-0.707	1.098	-0.643					
100	-0.617	0.838	0.534	-0.671	0.732	-0.916					
110	-0.424	0.571	0.360	-0.534	0.413	-1.292					
120	-0.247	0.330	0.206	-0.343	0.183	-1.879					
130	-0.108	0.143	0.088	-0.159	0.053	-3.005					
140	-0.024	0.031	0.018	-0.035	0.006	-6.327					
150	o.	0.	0.	0.	0.	_					
160	0.	o.	0.	0.	0.						
170	0.	0.	0.	0.	o.						
180	0.	0.	0.	0.	0.						
190	0.	0.	0.	0.	0.						
200	0.	0.	0.	0.	0.	_					
210	0.	0.	0.	0.	0.						
220	0.000	-0.001	0.001	0.001	0.000	5.824					
230	0.001	-0.006	0.004	0.007	0.002	3.109					
240	0.002	-0.015	0.010	0.016	0.008	1.976					
250 260	0.004	-0.027 -0.041	0.018	0.026	0.019	1.368					
270	0.008	-0.055	0.028	0.035	0.035	0.988					
280	0.008	-0.068	0.052	0.040	0.055	0.720					
290	0.011	-0.078	0.052	0.039	0.076	0.518					
300	0.012	-0.083	0.004	0.034	0.111	0.337					
310	0.013	-0.083	0.089	0.014	0.111	0.119					
320	0.011	-0.076	0.101	0.006	0.126	0.050					
330	0.005	-0.055	0.117	0.011	0.129	0.082					
340	-0.045	0.031	0.172	0.088	0.151	0.581					
350	-0.157	0.203	0.275	0.248	0.236	1.050					
360	-0.318	0.440	0.416	0.440	0.416	1.058					
1 - 55				22.70		11070					

_	_	^	^	^	_	
α	c_{m}	c_N	CA	c_L	c_{D}	L/D
0	-0.309	0.425	C.383	0.425	0.383	1.108
10	-0.454	0.690	0.539	0.586	0.650	0.901
20	-0.685	0.960	0.696	0.664	0.982	0.676
30	-0.859	1.201	C.836	0.622	1.325	0.469
40	-0.996	1.385	C.942	0.456	1.612	0.283
50	-1.078	1.493	0.998	0.196	1.785	0.110
60	-1.097	1.513	C.957	-0.107	1.809	-0.059
70	-1.05C	1.442	0.940	-0.390	1.677	-0.232
60	-0.943	1.290	0.832	-0.596	1.415	-0.421
90	-0.789	1.073	0.687	-0.687	1.073	-0.640
100	-0.666	0.820	C.520	-0.655	0.717	-0.913
110	-C.417	0.560	0.352	-0.522	0.406	-1.287
120	-0.243	0.324	0.202	-0.337	0.180	-1.873
130	-0.1C7	0.140	0.086	-0.156	0.052	-2.999
140	-0.024	0.030	0.018	-0.035	0.006	-6.249
150	С.	0.	C.	0.	0.	_
160	C.	0.	0.	0.	0.	
170	С.	0.	C.	0.	0.	_
160	0.	0.	С.	0.	0.	_
190	0.	0.	0.	0.	0.	
200	0.	0.	0.	0.	0.	
210	C.	0.	0.	0.	0.	
220	0.000	-0.001	0.001	0.001	0.000	5.824
230	0.001	-0.006	0.004	0.007	0.002	3.142
240	0.002	-0.015	C-0C9	0.016	0.008	1.967
250	0.004	-0.026	C.017	0.025	0.019	1.361
260	0.006	-0.039	0.027	0.033	0.034	0.979
270	0.008	-0.053	0.037	0.037	0.053	0.708
280	0.010	-0.065	0.048	0.036	0.072	0.503
250	0.012	-0.074	0.059	0.030	0.090	0.337
3CO	C.012	-0.079	C.069	0.020	0.103	0.197
310	0.012	-0.079	0.079	0.009	0.111	0.084
320	0.011	-0.072	0.088	0.001	0.114	0.007
330	0.005	-0.053	0.101	0.004	0.114	0.036
340	-0.044	0.029	0.150	0.079	0.131	0.599
350	-0.153	0.195	0.248	0.235	0.211	1.116
360	-0.309	0.425	0.383	0.425	0.383	1.108

TABLE X. - LONGITUDINAL AERODYNAMICS OF RAKED-OFF ELLIPTICAL CONES

θ_{XZ} = 30° δ = 50°

m = 0.25

α	c^{m}	c _N	CA	c_L	c_{D}	L/D
-	-0.347	0.400	0.630	0.400	0.630	0.634
10	-0.566	0.700	0.773	0.555	0.883	0.629
20	-0.784	0.994	0.911	0.622	1.196	0.520
30	-0.976	1.245	1.028	0.564	1.513	0.373
40	-1.120	1.427	1.107	0.381	1.765	0.216
50	-1.201	1.524	1-134	0.111	1.897	0.059
60	-1.210	1.529	1.103	~0.191	1.876	-0.102
70	-1.146	1.441	1.016	~0.462	1.702	-0.271
80	-1.017	1.274	0.880	~0.646	1.407	-0.459
90	-0.840	1.047	0.710	~0.710	1.047	-0.679
100	-0.636	0.788	0.525	-0.654	0.685	-0.955
110	-0.430	0.528	0.346	~0.506	0.378	-1.337
120	-0.245	0.298	0.191	~0.315	0.163	-1.932
130	-0.104	0.125	0.078	-0.140	0.046	-3.065
140	-0.022	0.026	0.016	~0.030	0.005	-6.405
150	0.	0.	0.	0.	0.	_
160	0.	0.	0.	0.	0.	
170	0.	0.	0.	0.	0.	_
180	0.	0.	0.	0.	0.	_
190	0.	0.	0.	0.	0.	
200	0.	0.	0.	0.	0.	_
210	0.	0.	0.	0.	0.	
220	0.001	-0.003	0.002	0.004	0.001	5.954
230	0.005	-0.017	0.011	0.019	0.006	3.158
240	0.013	-0.042	0.028	0.045	0.023	1.997
250	0.024	-0.077	0.053	0.076	0.054	1.410
260	0.037	-0.119	0.087	0.106	0.102	1.039
270	0.052	-0.164	0.126	0.126	0.164	0.771
280	0.066	-0.205	0.168	0.130	0.231	0.561
290	0.077	-0.239	0.210	0.115	0.296	0.389
300	0.085	-0.260	0.248	0.084	0.349	0.242
310	0.087	-0.265	0.280	0.044	0.383	0.114
320	0.082	-0.250	0.306	0.005	0.396	0.013
330	0.061	-0.204	0.336	~0.009	0.393	-0.022
340	-0.014	-0.081	0.398	0.059	0.401	0.148
350	-0.156	0.128	0.500	0.213	0.470	0.453
360	-0.347	0.400	0.630	0.400	0.630	0.034

m = 0.50

α	$c^{\mathbf{m}}$	cN	CA	c_{L}	c^{D}	L/D
0	-0.331	0.379	0.537	0.379	0.537	0.705
10	-0.539	0.663	C.674	0.536	0.779	0.688
20	-C.748	0.942	0.810	0.608	1.084	0.561
30	-0.933	1.181	C.928	0.559	1.395	0.401
40	-1.073	1.356	1.013	0.388	1.647	0.235
50	-1.152	1.451	1.048	0.130	1.785	0.073
60	-1.162	1.459	1.028	-0.161	1.778	-0.090
70	-1.103	1.379	0.953	-0.424	1.622	-0.261
80	-0.981	1.222	C.831	-0.606	1.348	-0.450
90	-0.813	1.007	0.675	-0.675	1.007	-0.670
100	-0.617	0.760	0.502	-0.626	0.662	-0.946
110	-0.418	0.512	C.332	-0.487	0.367	-1.327
120	-C.239	0.290	0.185	-0.305	0.159	-1.921
130	-C.1C2	0.122	C.076	-0.137	0.045	-3.050
140	-0.022	0.026	C.015	-0.030	0.005	-6.382
150	c.	0.	C.	0.	0.	
160	c.	0.	C.	0.	0.	
170	C.	0-	C.	0.	0.	
160	0.	0.	0.	0.	0.	_
190	c.	0.	c.	٥.	0.	
200	c.	0.	с.	0.	0.	
210	C.	0.	0.	0.	0.	
220	0.001	-0.003	C.OC2	0.004	0.001	6.473
230 240	C.OC5 C.O12	-0.017 -0.041	C.010	0.019 0.043	0.022	3.136 1.974
250	0.012	-0.041	0.050	0.043	0.022	1.390
260	C.035	-0.113	0.050	0.073	0.097	1.016
270	C.048	-0.154	0.115	0.115	0.154	0.747
280	G.061	-0.192	0.115	0.115	0.154	0.535
250	C.071	-0.222	0.184	0.097	0.271	0.359
300	0.077	-0.240	0.104	0.065	0.314	0.207
310	0.079	-0.243	C.236	0.025	0.338	0.074
320	C.074	-0.229	0.253	-0.012	0.341	-0.036
330	0.055	-0.186	0.272	-0.025	0.329	-0.077
340	-0.015	-0.073	0.323	0.042	0.329	0.127
350	-C.149	0.123	C.415	0.193	0.388	0.498
360	-0.331	0.379	C.537	0.379	0.537	0.705

m = 0.75

_						
α	cm	c _N	CA	cL	CD	L/D
0	-0.310	0.352	0.451	0.352	0.451	0.781
10	-0.506	0.617	0.580	0.507	0.678	0.748
20	-0.703	0.878	0.710	0.582	0.968	0.601
30	-0.879	1.103	0.827	0.542	1.267	0.428
40	-1.013	1.269	0.913	0.385	1.515	0.254
50	-1.090	1.361	0.954	0.144	1.656	0.087
60	-1.102	1.372	0.943	-0.131	1.660	-0.079
70	-1.048	1.300	0.880	-0.383	1.523	-0.251
80	-0.935	1.156	0.772	-0.560	1.272	-0.440
90	-0.776	0.955	0.631	-0.631	0.955	-0.660
100	-0.591	0.724	0.472	-0.591	0.631	-0.936
110	-0.401	0.489	0.315	-0.463	0.352	-1.315
120	-0.231	0.279	0.177	-0.293	0.154	-1.907
130	-0.099	0.119	0.074	-0.133	0.044	-3.034
140	-0.021	0.025	0.015	-0.029	0.005	-6.384
150	0.	0.	0.	0.	0.	!
160	0.	0.	0.	0.	0.	- 1
170	0.	0.	0.	0.	0.	
180	0.	0 -	0.	0.	0.	
190	0.	0.	0.	0.	0.	_
200	0.	0.	0.	0.	0.	
210	0.	0.	0.	0.	0.	_
220	0.001	-0.003	0.002	0.004	0.001	7.120
230	0.005	-0.016	0.010	0.018	0.006	3.126
240	0.012	-0.039	0.025	0.041	0.021	1.960
250	0.021	-0.070	0.047	0.068	0.049	1.369
260	0.033	-0.105	0.073	0.091	0.091	0.994
270	0.044	-0.142	0.103	0.103	0.143	0.723
280	0.055	-0.176	0.133	0.100	0.196	0.509
290	0.064	-0.202	0.159	0.081	0.244	0.330
300	0.069	-0.217	0.181	0.048	0.279	0.174
310	0.070	-0.219	0-196	0.010	0.294	0.033
320	0.065	-0.205	0.206	-0.025	0.289	-0.087
330	0.049	-0.168	0.216	-0.037	0.271	-0.137
340	-0.014	-0.065	0.257	0.027	0.264	0.100
350	-0.139	0.115	0.339	0.172	0.314	0.550
360	-0.310	0.352	0.451	0.352	0.451	0.781
					-	:

TABLE XI. - LONGITUDINAL AERODYNAMICS OF RAKED-OFF ELLIPTICAL CONES

θ_{XZ} = 40° δ = 50°

m = 0. 25							
α	c _m	CN	CA	cL	c _D	L/D	
0	-0.459	0-606	0.805	0.606	0.805	0.753	
10	-0.635	0.849	1.009	0.661	1.141	0.579	
20	-0.795	1.067	1.183	0.598	1.476	0.405	
30	-0.920	1.234	1.304	0.416	1.746	0.238	
40	-0.995	1.330	1.359	0.145	1.896	0.076	
50	-1.011	1.344	1.341	-0.163	1.892	-0.086	
60	-0.966	1-278	1.248	-0.442	1.731	-0.256	
70	-0.865	1.138	1.092	-0.637	1.443	-0.441	
80	-0.722	0.944	0.891	-0.714	1.084	-0.658	
90	-0.553	0.717	0.668	-0.668	0.717	-0.931	
100	-0.379	0.487	0.447	-0.525	0.402	-1.307	
110	-0.220	0.280	0.253	-0.334	0-176	-1.896	
120	-0.096	0.120	0.107	-0.153	0.050	-3.032	
130	-0.021	0.025	0.022	-0.033	0.005	-6.332	
140	C.	0.	0.	0.	0.	_	
150	Ç.	0.	٥.	0.	0.		
160	o.	0.	0.	0.	0.		
170	0.	0.	٥.	0.	0.		
160	ō.	0.	0.	0.	0.	=	
190	0.	0-	0.	0.	0.	_	
200	o.	0.	0.	0.	0.	_	
210	0.	0.	0.	0.	0.		
220	C.	0.	0.	0.	0.		
230	0.000	-0.001	0.001	0.001	0.000	6.799	
240	0.001	-0.005	0.004	0.006	0.002	3.152	
250	0.002	-0.011	0.011	0.014	0.007	2.026	
260	0.003	-0.021	0.021	0.024	0.017	1-414	
270	0.005	-0.032	0.034	0.034	0.032	1.040	
280	0.007	-0.044	0.050	0.042	0.052	0.798	
290	0.008	-0.055	0.070	0.047	0.075	0.629	
300	0.009	-0.062	0.095	0.051	0.101 0.129	0.508	
310	0.009	-0.064	0.125	0.055	0.129	0.42	
320	0.004	-0.052	0.165	0.066	0.100	0.41	
330	-0.042	0.018	0.254		0.322		
340	-0.143	0.165 0.369	0.403	0.293 0.466	0.522	0.908	
350	-0.288 -0.459	0.506	0.805	0.400	0.805	0.753	
360	-0.439	0.006	0.000	0.000	0.000	0.15	

	m = 0.50								
α	cm	C _N	CA	cL	C _D	L/D			
0	-0.449	0.589	0.753	0.589	0.753	0.782			
10	-0-622	0.826	0.953	0.648	1.082	0.599			
20	-0.780	1.039	1.124	0.592	1.411	0.419			
30	-0.903	1.203	1.246	0.418	1.681	0.249			
40	-0.977	1.298	1.305	0.155	1.834	0.085			
50	-0.993	1.313	1.292	-0.146	1.837	-0.079			
60	-0.949	1.249	1.208	-0:421	1.686	-0.250			
70	-0.851	1-114	1.060	-0.615	1.410	-0.437			
80	-0.711	0.925	0.868	-0.694	1.061	~0.654			
90	-0.545	0.704	0.652	-0.653	0.704	-0.927			
100	-0.374	0.478	0.438	-0.515	0.395	-1.303			
110	-0.217	0.275	0.249	-0.328	0.173	~1.892			
120	-0.095	0.118	0.105	-0.151	0.050	-3-024			
130	-0-021	0.025	0.022	-0.033	0.005	-6.308			
140	0.	0.	0.	0.	0.				
150	0.	0.	0.	0.	0.				
160	0.	0. 0.	0.	0. 0.	0. 0.				
170	0. 0.	0.	0. 0.	0.	0.				
180	0.	0.	0.	0.	0.				
200	0.	0.	0.	0.	0.				
210	0.	0.	0.	0.	0.	_			
220	0.	0.	0.	0.	0.				
230	0.000	-0.001	0.001	0.001	0.000	6.799			
240	0.001	-0.004	0.004	0.006	0.002	3.276			
250	0.002	-0.011	0.011	0.014	0.007	2.023			
260	0.003	-0.020	0.020	0.023	0.017	1.406			
270	0.005	-0.031	0.032	0.032	0.031	1.026			
280	0.006	-0.042	0.047	0.039	0.050	0.780			
290	0.008	-0.052	0.065	0.043	0.071	0.604			
300	0.009	-0.059	0.086	0.045	0.095	0.475			
310	0.009	-0.061	0.111	0.046	0.118	0.388			
320	0.004	-0.050	0.145	0.054	0.143	0.380			
330	-0.040	0.017	0.226	0.128	0.187	0.683			
340	-0.139	0-159	0.367	0.275	0.290	0.946			
350	-0.281	0.357	0.550	0.447	0.480	0.933			
360	-0.449	0.589	0.753	0.589	0.753	0.782			

	α	c_{m}	c_N	C_{A}	c_L	c_{D}	L/D
	0	-0.435	0.565	0.692	0.565	0.692	0.816
	10	-0.603	0.793	0.884	0.628	1.009	0.622
	20	-0.757	1.000	1.052	0.580	1.330	0.436
	30	-0.878	1-159	1.173	0.417	1.596	0.261
	40	-0.951	1.252	1.235	0.165	1.751	0.094
	50	-0.967	1.269	1.229	-0.126	1.762	-0.071
	60	-0.925	1.209	1.154	-0.395	1.623	-0.243
	70	-0.831	1.079	1.017	-0.587	1.362	-0.431
	80	-0.694	0.897	0.836	-0.667	1.029	-0.648
	90	-0.533	0.684	0.630	-0.631	0.684	-0.921
	100	~0.366	0.466	0.425	-0.499	0.385	-1.297
	110	-0.213	0.269	0.243	-0.320	0.170	-1.884
	120	-0.093	0.116	0.103	-0.148	0.049	-3.017
	130	-0.021	0.025	0.022	-0.033	0.005	-6.272
	140	0-	0.	0.	0.	0-	
	150	0.	0.	ն.	0.	0.	-
	160	0.	0.	0.	0.	0.	
	170	0.	0.	0.	0.	0.	
	180	0.	0.	0.	0.	0.	—
	190	٥.	0.	0.	0.	0.	— J
	200	C.	0.	G.	0.	0.	-
	210	0.	0.	0.	0.	0.	_
	220	0.	.0.	0.	0.	0.	_
	230	0.000	-0.001	0.001	0.001	0.000	6.799
	240	0.001	-0.004	0.004	0.006	0.002	3.128
	250	0.002	-0.011	0.010	0.013	0.007	1.994
	260	0.003	~0.020	0.019	0.022	0.016	1.382
	270	0.005	⊸0.030	0.030	0.030	0.030	1.010
	280	0.006	-0.040	0.043	0.036	0.047	0.757
	290	0.008	-0.049	0.058	0.038	0.066	0.573
	3C0	0.009	-0.056	0.076	0.038	0.086	0.437
	310	0.008	-0.058	0.096	0.036	0.106	0.343
	320	0.004	-0.048	0.123	0.042	0.125	0.334
	330	-0.038	0.015	0.195	0.111	0.161	0.688
	340	-0.134	0.151	0.325	0.253	0.254	0.996
	350	-0.272	0.342	0.498	0.423	0.431	0.981
	360	-0.435	0.565	0.692	0.565	0.692	0.816
	•						

m = 1.00							
α	c_{m}	c_N	c_A	c_L	c_{D}	L/D	
0	-0.419	0.538	0.634	0.538	0.634	0.849	
10	-0.582	0.758	0.818	0.604	0.937	0.645	
20	-0.731	0.956	0.980	0.563	1.248	0.452	
30	-0.849	1.110	1.100	0.411	1.508	0.273	
40	-0.920	1.201	1.164	0.172	1.663	0.103	
50	-0.937	1.218	1.163	-0.108	1.680	-0.064	
60	-0.897	1.162	1.095	-0.368	1.554	-0.237	
70	-0.806	1.039	0.969	-0.556	1.308	-0.425	
80	-0.674	0.865	0.799	-0.637	0.991	-0.643	
90	-0.518	0.661	0.605	-0.605	0.661	-0.915	
100	-0.356	0.451	0.409	-0.482	0.373	-1.290	
110	-0.208	0.261	0.235	-0.310	0.165	-1.876	
120	-0.092	0.113	0.100	-0.144	0.048	-3.002	
130	-0.020	0.024	0.021	-0.032	0.005	-6.316	
140	0.	0.	0.	0.	0.		
150	0.	0.	0.	0.	0.		
160	0.	0.	0.	0.	0.		
170	0.	0.	0.	0.	o.		
180	0.	0.	0.	0.	0.	_	
190	0.	0.	0.	0.	0.		
200	0.	0.	0.	0.	0.	_	
210	o.	0.	0.	0.	٥.		
220	0.	0.	0.	0.	0.		
230	0.000	-0.001	0.001	0.001	0.000	6.799	
240	0.001	-0.004	0.004	0.006	0.002	3.116	
250	0.002	-0.010	0.010	0.013	0.006	1.963	
260	0.003	-0.019	0.018	0.021	0.015		
270	0.004	-0.028	0.028	0.028	0.028	0.993 0.736	
280	0.006	-0.038	0.039 0.052	0.032	0.061	0.736	
290	0.007	-0.046	0.052	0.034	0.079	0.403	
300		-0.052 -0.054	0.087	0.032	0.019	0.403	
310		-0.054	0.103	0.028	0.109	0.298	
320 330		0.014	0.168	0.031	0.109	0.692	
		0.142	0.288	0.232	0.138	1.047	
340 350		0.142	0.200	0.232	0.387	1.029	
360		0.538	0-634	0.538	0.634	0.849	
300	-0.419	V. 330	0.034	0.000	0.034	0.049	

θ_{XY} , (deg
-------------------	-----

m XZ	20°	30°	40°	50°	60°
0.25	55.516	66.587	73.409	78.153	81.787
0.50	36.052	49.107	59.210	67.240	73.898
0.75	25.887	37.589	48.210	57.819	66.587
1.00	20.000	30.000	40.000	50,000	60.000
1.50	13.638	21.052	29.222	38.468	49.107
2.00	10.314	16.102	22.760	30.791	40.894
2.50	8.283	13.004	18.554	25.488	34.716
3.00	6.917	10.893	15.626	21.666	30.001

Note: δ varies from (θ_{XZ} +10°) to 80° in 10° increments

Figure 1. - Raked-off elliptical cone.

Figure 2. - Summary of lift-to-drag ratios at zero angle of attack of raked-off elliptical cones against cone thickness ratio.

Figure 3. - Line to trim at $\alpha=0\,^{\circ}$ for typical raked-off cone.

Figure 4. - Stability and foremost center-of-gravity limits plotted against cone thickness ratio. $\theta_{XZ} = 20^{\circ}$.

Figure 4. - Continued.

Figure 4.-Continued.

Figure 4. - Continued.

Figure 4. - Continued.

Figure 4. - Concluded.

Figure 5. - Stability and foremost center-of-gravity limits plotted against cone thickness ratio, $\theta_{XZ} = 30^\circ$.

Figure 5.-Continued.

Figure 5. - Continued.

Figure 5. - Continued.

Figure 5. - Concluded.

Figure 6. - Stability and foremost center-of-gravity limits plotted against cone thickness ratio. $\theta_{xz} = 40$?

Figure 6. - Continued.

Figure 6. - Continued.

Figure 6. - Concluded.

Figure 7. - Stability and foremost center-of-gravity limits plotted against cone thickness ratio. $\theta_{XZ} = 50^{\circ}$.

Figure 7. - Continued.

(c) $\delta = 80^{\circ}$.

Figure 7. - Concluded.

Figure 8. - Stability and foremost center-of-gravity limits plotted against cone thickness ratio. $\theta_{xz} = 60$?

Figure 8. - Concluded.

Figure 9. - Non-dimensional lateral surface area of raked-off elliptical cones plotted against cone thickness ratio.

Figure 10. - Base thickness ratio plotted against cone thickness ratio.

2/2/05/

"The aeronautical and space activities of the United States shall be conducted so as to contribute... to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-National Aeronautics and Space Act of 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Technical information generated in connection with a NASA contract or grant and released under NASA auspices.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

TECHNICAL REPRINTS: Information derived from NASA activities and initially published in the form of journal articles.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities but not necessarily reporting the results of individual NASA-programmed scientific efforts. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546