

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Радиоэлектроники и лазерной техники

КАФЕДРА Лазерных и оптико-электронных систем (РЛ-2)

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА *К КУРСОВОЙ РАБОТЕ НА ТЕМУ:*

Зеркальный объектив с линзовым корректором

Студент	<u>РЛ2-62Б</u>	 Иванченко А.М.
Руководите	ль курсовой работы	 Батшев В.И.

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

			y I BEI	УЖДАЮ ў мафактаў
			заведующи	й кафедрой(Индекс)
				(И.О.Фамилия)
			«»_	20 г.
		ЗАДАНИН	${f E}$	
	на выпо	олнение курсово	ой работы	
по дисциплине	Прикладная оп	тика		
Студент группы	РЛ2-62Б	Иванченко Анна	а Михайловна	
Тема курсовой рабо	оты: <i>Зеркальный о</i>	бъектив с линзовым кој	рректором	
Направленность КР	У – учебная. Источ	ник тематики – кафедра	•	
График выполнения	я работы: 25% к	_ нед., 50% к нед., 7	75% к нед., 100	9% к нед.
Задание Рассчитать оптичес	кую систему зерка	льно-линзового объекти	нва, состоящего и	3:
		а, б) двухлинзового афо ля исправления кривизн		
расстояние объекти изображения за гла	${ m Ba}f'=850{ m mm},{ m pac}$ вное зеркало в зерг	етр главного зеркала D_1 стояние между зеркалам кальной части системы Δ оректора $d_k = 6$ мм, моде	ии - $d = 170$ мм, ва $\Delta = 36$ мм, рассто	ынос плоскости яние от вершины
		и оптической системы до оптическое бесцветное		иника излучения не
Оформление курсо	вой работы:			
	тринципиальная (<i>А</i>	листах формата A4 (A2), схема оптическая с х		,
Дата выдачи задани	ия «14 » февраля 20	022 г.		
Руководитель кур	совой работы			В.И. Батшев
Студент				А.М. Иванченко
Примечание: Задан	ие оформляется в	двух экземплярах: один	выдается студен	ту, второй хранится на

кафедре.

Содержание

1.	Габаритный расчёт телескопической системы Кассегрена	4
2.	Расчёт корректора Чуриловского	6
3.	Расчёт линзы Смита	9
4.	Оптимизация полученной системы	12
5.	Список литературы	16

1. Габаритный расчёт телескопической системы Кассегрена

$$D_1 = 150 \text{ MM}$$

$$f' = 850 \text{ MM}$$

$$d = 170 \text{ mm}$$

$$\Delta = 36 \text{ MM}$$

$$d_k = 6 \text{ MM}$$

$$S'_2 = d + \Delta = 206 \text{ MM}$$

$$H = D_1 / 2 = 75 \text{ MM}$$

$$q = S'_2 / f' = 0.242$$

$$\beta = (q - \Delta / f') / (1 - q) = 0.264$$

$$q = S'_2 / f' = 0.242$$

 $\beta = (q - \Delta / f') / (1 - q) = 0.264$ Puc. 6.4

$$\beta = -S_2 / S_2' = -f_1' / f'$$

$$f_1' = -224.379 \text{ MM}$$

$$S_2 = -54.379 \text{ MM}$$

$$r_1 = -2 \beta f' = -448.758 \text{ MM}$$

$$r_2 = (-2 \beta qf') / (1 - \beta) = -147.764 \text{ mm}$$

$$A_{_{^{9KB}}} = D_1 / |f'| = 0.176$$

$$h_0 = qH = 18.176$$

$$D_2 = 2h_0 = 36.353$$

$$S_1' = S_2 + S_2' - \Delta = -224.379 = f_1'$$

Рис. 6.4. Основные размеры двухзеркальной системы

Удлиняющие Кассегрена

Система предфокальная

Гл. зеркало – параболоид вращения (стр.257):

$$e_1^2 = \hat{1}$$

$$e_2^2 = [(1 + \beta) / (1 - \beta)]^2 = 2.949$$

Вторичное зеркало – выпуклый гиперболоид

Коэффициент астигматизма в двухзеркальной системе

$$\Sigma IIIa = (1 - \beta + q\beta) / q = 3.301$$

Приемник излучения e2v EV76C560

Sensor Active area: 6.9 x 5.5 mm diagonal 8.7 mm

Real Image height y' = 4.35 mm

Диаметр выходного зрачка зеркал

D' = 45,44124 мм = Dл – совпадает с диаметром входного зрачка линзового корректора

Расстояние от выходного зрачка

 $S^p = -257,5001 + 206 = -51.5 \text{ мм} = Sp$ линз – совпадает с расстоянием до входного зрачка корректора Расстояние до корректора:

 $S_{\pi} = \Delta - dk = 30 \text{ mm}$

Меридиональная кома:

 $\Delta y' \kappa = (42.676981 + 8.450562)/2 = 25.564 \text{ MM}$

Также мы можем получить информацию о положении и размере выходного зрачка двузеркального объектива:

45,44124

-257,5001

Exit Pupil Diameter Exit Pupil Position

 $D'_{3} = 45,44 \text{ MM}$

$$S'_{P} = -257.5 \text{ MM}$$

$$S_{P\pi} = S'_{P'} + s'_2 = -51,5 \text{ MM}$$

$$S_{\pi} = \Delta - d_k = 30$$

Surf:Type		Comment	Comment Radius		Glass	Semi-Diameter	Conic	
OBJ	Standard		Infinity	Infinity		Infinity	0.000	
*	Standard		-448.758	-170.000	MIRROR	75.000	-1.000	
2	Standard		-147.764	206.000	MIRROR	19.215	-2.949	
IMA	Standard		Infinity	-		4.393	0.000	

21.06.2022 Total Axial Length: 206.00000 mm

KP Ivanchenko good spot_diagram.zmx
Configuration 1 of 1

0.4800

0.5461

0.6438

IMA: 0.000 mm IMA: 4.350 mm

Surface: IMA

Spot Diagram

2. Расчёт корректора Чуриловского

Корректор такой конфигурации был предложен профессором В.Н. Чуриловским в 1934 году. Компенсатор состоит из двух бесконечно тонких линз, работающих в сходящихся пучках лучей. Данная вариация корректора не будет вносить в систему хроматических аберраций (т.е. являться апохроматом) в том случае, если обе линзы будут изготовлены из стекла одной марки, а их оптические силы будут равны по модулю и противоположны по знаку.

Условия нормировки при расчёте:

условия нормировки при расчете:
$$\alpha_1=0;\ \alpha_3=\alpha_7=1;\ n_1=1;\ h_1=1;\ h_1=1;\ H_1=0;$$

$$h_2=1;\ \beta_2=-1;\ I=-1;\ n_2=-1.$$
 Для параболического зеркала: $S_I=P=0$
$$S_{II}=-\Delta y'_{\ k}=-25,564$$

$$I=-n_3\alpha_3(S_{\pi}-S_{P_{\pi}})\beta_3=-81,5$$

$$r_k=\frac{h_k(n_{k+1}-n_k)}{\alpha_{k+1}n_{k+1}-\alpha_kn_k}\qquad d_k=\frac{h_k-h_{k+1}}{\alpha_{k+1}}$$

$$h_3=S_{\pi}=30\ \text{ MM}$$

$$r_3=\frac{h_3(n_4-n_3)}{\alpha_4n_4-\alpha_3n_3}=241,471\ \text{ MM}\qquad \qquad r_4=\frac{h_3(n_5-n_4)}{\alpha_5n_5-\alpha_4n_4}=r_5=\frac{h_3(n_6-n_5)}{\alpha_6n_6-\alpha_5n_5}=11,436\ \text{ MM}\qquad \qquad r_6=\frac{h_3(n_7-n_6)}{\alpha_7n_7-\alpha_6n_6}=11,436\ \text{ MM}$$

При задании системы в Zemax добавим линзам толщину, выбранную из соображений сочетания ликвидации комы и минимального внесения новых аберраций.

Surf:Type		Comment	Radius	Thickness		Glass		Semi-Diameter		Conic	
OBJ	Standard		Infinity	Infinity				Infinity	Т	0.000	
*	Standard		-448.758	-170.000		MIRROR		75.000	T	-1.000	
2	Standard		-147.764	176.000		MIRROR		19.288	T	-2.949	
3	Standard		241.471	2.000		LZ_K8		6.815	T	0.000	
4	Standard		107.154	0.000				6.697		0.000	
5	Standard		11.436	1.000		LZ_K8		6.598	T	0.000	
6	Standard		12.158	25.469	M			6.407	T	0.000	
IMA	Standard		Infinity	-				4.451	T	0.000	

Layout

21.06.2022 Total Axial Length: 204.46850 mm

KP_Ivanchenko_corrector.zmx
Configuration 1 of 1

Transverse Ray Fan Plot

21.06.2022 Maximum Scale: \pm 200.000 μ m. 0.480 0.546 0.644

Surface: Image

KP_Ivanchenko_corrector.zmx
Configuration 1 of 1

Optical Path Difference

21.06.2022

Maximum Scale: ± 20.000 Waves. 0.480 0.546 0.644

Surface: Image

KP_Ivanchenko_corrector.zmx
Configuration 1 of 1

0.4800 × 0.5461

0.6438

Surface: IMA

Spot Diagram

21.06.2022 Units are μ m. Field : 1

0.828 1.385

RMS radius : GEO radius : Scale bar : 400

59.645 114.953

Reference : Chief Ray

KP_Ivanchenko_corrector.zmx
Configuration 1 of 1

$$y'_{\mathrm{верx}} = 78,14878$$
 $y'_{\mathrm{ниж}} = -78,099176$ $\Delta y'_{k2} = \frac{y'_{\mathrm{верx}} + y'_{\mathrm{ниж}}}{2} = 0,025 \,\mathrm{мкм}$

Мы избавились от комы, но в системе появились кривизна поля, выраженная эллипсоидной формой рассеяния пятна, а также небольшой хроматизм (Field Curv). Для нахождения величины кривизны воспользуемся Analysis→Miscellaneous→Field Curvature & Distortion.

$$\Delta z'_{\text{KII}1} = -0.7635 \text{ MKM}$$

3. Расчёт линзы Смита

Линза Пиацци-Смита была изобретена в 1874 году Ч. Пиацци-Смитом. Устанавливается перед задней фокальной плоскостью системы, чтобы исправить кривизну поля в ней. Сама линза не вносит значительных аберраций, а при округлении ее поверхности, обращенной к изображению, можно ликвидировать не только кривизну поля, но и дисторсию.

$$\Delta z'_{\kappa\Pi 1} = \frac{(n-1)d_w}{n} \rightarrow d_w = \frac{\Delta z'_{\kappa\Pi}n}{n-1}$$

Пусть линза изготовлена из стекла СТК19; n=1,744126. Тогда $d_w=-1,789$ Полная диагональ матрицы: $D=2d_{\scriptscriptstyle \rm M}=2*4,35=8,7$ мм

$$r = \frac{D^2}{8\Delta z'_{\text{KII}}} = -12,392 \text{ MM}$$
 $R = \frac{(n-1)r}{n} = -5,287 \text{ MM}$

Surf:Type		Comment	Radius		Thickness		Glass		Semi-Diameter		Conic	
OBJ	Standard		Infinity	П	Infinity				Infinity		0.000	
*	Standard		-448.758		-170.000		MIRROR		75.000		-1.000	
2	Standard		-147.764		176.000		MIRROR		19.208		-2.949	
3	Standard		241.471	П	2.000		LZ_K8		6.475		0.000	
4	Standard		107.154		1.000				6.356		0.000	
5	Standard		11.436		1.800		LZ_K8		6.211		0.000	
6	Standard		12.158		20.913				5.851		0.000	
7	Standard		-12.615		1.500		LZ_CTK19		3.980		0.000	
8	Standard		Infinity		1.000	M			4.161		0.000	
IMA	Standard		Infinity		-				4.418		0.000	

Layout

21.06.2022 Total Axial Length: 204.21266 mm

Transverse Ray Fan Plot

21.06.2022

Maximum Scale: ± 100.000 μm. 0.480 0.546 0.644

Surface: Image

KP_Ivanchenko_lens_Smith.zmx
Configuration 1 of 1

На данный момент в системе:

- присутствует небольшой хроматизм
- значение комы уменьшилось по сравнении с значением до коррекции, но незначительно увеличилось из-за линзы Смита
- кривизна поля была уменьшена в два раза

4. Оптимизация полученной системы

Воспользуемся функцией Optimize для улучшения качества изображения. Оптимизируем по Spot Radius, Centroid.

Аргументы функции оптимизации:

- EFFL = 850 - для сохранения <math>f = 850 мм

- CVVA = 0 – для уменьшения кривизны поля

Oper #			Target	Weight
1: EFFL			850.000	1.000
2: CVVA			0.000	1.000
3: ABSO			0.000	1.000
4: OPLT			0.100	1.000
5: DMFS				

- Поставим ограничения на толщины

8: MXCA				-2.000	1.000
9: MNCA				-30.000	1.000
10: MXEA	0.000			-0.500	1.000
11: MNCA				2.000	1.000
12: MXCA				30.000	1.000
13: MNEA	0.000			0.500	1.000

- Радиусы поверхностей линз переменны

Система после оптимизации Наттег:

Surf:Type		Comment	Radius		Thickness		Glass		Semi-Diameter		Conic	
OBJ	Standard		Infinity		Infinity				Infinity		0.000	
*	Standard		-448.758		-170.000		MIRROR		75.000		-1.000	
2	Standard		-147.764		176.000		MIRROR		19.187		-2.949	
3	Standard		-18.263	V	2.000		LZ_K8		6.475		0.000	
4	Standard		-18.161	V	21.492	V			6.634		0.000	
5	Standard		1.925E+004	V	1.800		LZ_K8		4.831		0.000	
6	Standard		-13.811	V	2.000	V			4.782		0.000	
7	Standard		-8.956	V	1.500		KF6	S	4.257		0.000	
8	Standard		Infinity		3.624	M			4.286		0.000	
IMA	Standard		Infinity		_				4.355		0.000	

Layout

21.06.2022 Total Axial Length: 208.41539 mm

KP Ivanchenko lens Smith hammer.zmx Configuration 1 of 1

Optical Path Difference

21.06.2022 Maximum Scale: \pm 0.500 Waves. 0.480 0.546 0.644

Surface: Image

KP Ivanchenko lens Smith hammer.zmx Configuration 1 of 1

0.4800 0.5461

0.6438

Surface: IMA

Spot Diagram

21.06.2022 Units are µm. Field : 1
RMS radius : 0.647
GEO radius : 1.327
Scale bar : 20 2 2.254 5.465 0.647 1.327

Reference : Chief Ray

KP Ivanchenko lens Smith hammer.zmx Configuration 1 of 1

KP Ivanchenko lens Smith hammer.zmx Configuration 1 of 1

5. Список литературы:

- 1. Н.П. Заказнов и др., Теория оптических система
- 2. Н.Н. Михельсон, Оптика астрономических телескопов и методика её расчета
- 3. Ю.Ю. Качурин, А.В. Крюков, А.А. Каратеева Оформление оптического выпуска на основании расчетов в программе ZEMAX