2004 Specialist Mathematics Examination 1

Suggested Solutions

$$y = \frac{-x^2 + 1}{2x}$$
$$= \frac{-x^2}{2x} + \frac{1}{2x}$$
$$= \frac{-x}{2} + \frac{1}{2x}$$

Vertical asymptote at x = 0

As
$$x \to \pm \infty$$
, $\frac{1}{2x} \to 0$, $\therefore y \to \frac{-x}{2}$

So asymptote at $y = \frac{-x}{2}$

Question 2 [C]

Question 3 [E

$$\frac{(A) \sin \left(\frac{\pi}{5}\right)}{\cos \left(\frac{\pi}{5}\right)} = \tan \left(\frac{\pi}{5}\right)$$

(B)
$$\frac{1}{\cot(\frac{\pi}{5})} = \frac{1}{\cos(\frac{\pi}{5})}$$
$$= \frac{\sin(\frac{\pi}{5})}{\sin(\frac{\pi}{5})}$$
$$= \frac{\sin(\frac{\pi}{5})}{\cos(\frac{\pi}{5})}$$
$$= \tan(\frac{\pi}{5})$$

(C)
$$\cot\left(\frac{3\pi}{10}\right) = \cot\left(\frac{\pi}{2} - \frac{\pi}{5}\right)$$

$$= \frac{\cos\left(\frac{\pi}{2} - \frac{\pi}{5}\right)}{\sin\left(\frac{\pi}{2} - \frac{\pi}{5}\right)}$$

$$= \frac{\cos\frac{\pi}{2}\cos\frac{\pi}{5} + \sin\frac{\pi}{2}\sin\frac{\pi}{5}}{\sin\frac{\pi}{2}\sin\frac{\pi}{5} - \cos\frac{\pi}{2}\sin\frac{\pi}{5}}$$

$$= \frac{\sin\frac{\pi}{5}}{\cos\frac{\pi}{5}}$$

$$= \tan\frac{\pi}{5}$$

(D)
$$\frac{2 \tan \left(\frac{\pi}{10}\right)}{1 - \tan^2 \left(\frac{\pi}{10}\right)} = \tan \left(2 \times \frac{\pi}{10}\right)$$
$$= \tan \frac{\pi}{5}$$
$$= \tan \left(2 \left(\frac{\pi}{5}\right)\right)$$

(E)
$$2 \tan (\frac{2\pi}{5})$$

=
$$\tan \left(\frac{4\pi}{5}\right)$$
 = - $\tan \left(\frac{\pi}{5}\right)$ which is incorrect.

Question 4 [D]

Period of graph = π : a = 2

Horizontal shift of $\frac{\pi}{4}$ parallelto x axis $\therefore b = \frac{\pi}{4}$

Question 5 [E]

(A)
$$\frac{1}{z} = \frac{1}{x - iy}$$

= $\frac{x - iy}{x^2 - y^2}$ which is not real.

(B)
$$\frac{1}{\overline{z}} = \frac{1}{x - iy}$$

= $\frac{x + iy}{x^2 + y^2}$ which is not real.

(C)
$$\frac{1}{z - \overline{z}} = \frac{1}{(x + iy) - (x - iy)}$$

= $\frac{1}{2iy}$
= $\frac{-1}{2v}i$ which is not real.

(D)
$$\frac{1}{z} - \frac{1}{\overline{z}} = \frac{1}{(x+iy)} - \frac{1}{(x-iy)}$$

= $\frac{x-iy}{x^2+y^2} - \frac{x+iy}{x^2+y^2}$
= $\frac{-2yi}{x^2+y^2}$ which is not real.

(E)
$$\frac{1}{z} + \frac{1}{\overline{z}} = \frac{1}{x + iy} + \frac{1}{x - iy}$$

= $\frac{x - iy}{x^2 + y^2} + \frac{x + iy}{x^2 + y^2}$
= $\frac{2x}{x^2 + y^2}$ which is real.

Question 6 [C]

Question 7 [B]

If p(z) is of degree 4 and has real coefficients, then the Complex Conjugate Rule applies. So p(z) must either have one pair of complex conjugate roots and two real roots

or two pairs of complex conjugate roots or four real roots.

So p(z) cannot have an *odd* number of non-real roots.

Question 8 [A]
If
$$|W| = 1.5$$
 then $w = 1.5 \text{ cis } \theta$
so $W^{-1} = (1.5)^{-1} \text{ cis } (-\theta)$
 $= \frac{2}{3} \text{ cis } (-\theta)$

So P is best representation.

$$\frac{\pi}{3} \left\{ z: \operatorname{Arg} z > \frac{\pi}{3} \right\} \cap \left\{ z: \operatorname{Arg} z < \frac{\pi}{2} \right\}$$

$$Re(z)$$

Question 10 [D]

$$\int_{-\frac{1}{x^2 + 16}}^{-1} dx = -\frac{1}{4} \int_{-\frac{4}{x^2 + 16}}^{-\frac{4}{x^2 + 16}} dx$$

$$= \frac{1}{4} \operatorname{Tan}^{-1}(\frac{x}{4})$$

Question 11 [B]

$$\int_{0}^{a} (\sin^{2}(\frac{3x}{2}) - \cos^{2}(\frac{3x}{2})) = -\int_{0}^{a} \cos(2(\frac{3x}{2})) dx$$

$$= -\int_{0}^{a} \cos(3x) dx$$

$$= \left[-\frac{1}{3} \sin(3x) \right]_{0}^{a}$$

$$= -\frac{1}{3} \sin(3a)$$

Question 12 [A]

$$\int_{0}^{\frac{\pi}{3}} \cos^{2}(x) - \sin^{3}(x) dx = \int_{0}^{\frac{\pi}{3}} \cos^{2}(x) \cdot \sin^{2}(x) \cdot \sin(x) dx$$

$$= \int_{0}^{\frac{\pi}{3}} \cos^{2}(x) (1 - \cos^{2}(x)) \sin(x) dx$$
Let $u = \cos(x)$

$$\frac{du}{dx} = -\sin(x)$$

$$- du = \sin(x) dx$$
When $x = 0$, $u = \cos(0) = 1$
When $x = \frac{\pi}{3}$, $u = \cos(\frac{\pi}{3}) = \frac{1}{2}$

$$= \int_{1}^{\frac{1}{2}} u^{2} (1 - u^{2}) . -1 du$$
$$= \int_{\frac{1}{2}}^{1} u^{2} (1 - u^{2}) du$$

Question 13 [D]

$$\int_{(3-x)^2}^{2} - \frac{1}{3-x} dx = \int 2 (3-x)^{-2} - \frac{1}{3-x} dx$$

$$= 2 (3-x)^{-1} + \log_e (3-x)$$

$$= \frac{2}{(3-x)} + \log_e (3-x)$$

Question 14 [D]

For
$$x = \frac{\pi}{2}$$
, $f(x) > 0$
 $x = \frac{\pi}{2}$, $f(x) = 0$

$$\frac{\pi}{2} < x$$
, $f(x) < 0$ So local maximum at $x = \frac{\pi}{2}$

For
$$\frac{\pi}{2} < x < \pi$$
, $f(x) < 0$
 $x = \pi$, $f(x) = 0$

$$\pi < x < \frac{3\pi}{2}$$
, $f(x) < 0$ So stationary point of inflection at $x = \pi$

For
$$\pi < x < \frac{3\pi}{2}$$
, $f(x) < 0$
$$x = \frac{3\pi}{2}$$
, $f(x) = 0$
$$x < \frac{3\pi}{2}$$
, $f(x) > 0$ So local minimum at $x = \frac{3\pi}{2}$

Question 15 [C]

When
$$x = 3.5$$
, $y = 1.803$
When $x = 4.5$, $y = 3.354$
Area $\approx 1.803 \times 1 + 3.354 \times 1$
= 5.157

$$y = \sqrt{x^2 - 9}$$

$$\therefore y^2 = x^2 - 9$$

$$\therefore x^2 = y^2 + 9$$

$$V = \pi \int_0^4 25 \ dy - \pi \int_0^4 y^2 + 9 \ dy$$

$$= \pi \int_0^4 (25 - y^2 - 9) \ dy$$

$$= \pi \int_0^4 \sqrt{(16 - y^2)} \ dy$$

Question 17 [A]

$$P = 2 \underbrace{i + x j + 3 k}_{\sim}$$

$$|P| = 4 \quad \therefore \quad 4 + x^2 + 9 = 4$$

$$x^2 + 13 = 16$$

$$x^2 = 3$$

$$x = \pm \sqrt{3}$$

$$\underline{q}$$
 is parallel to \underline{p} so $\underline{q} = -2 \underline{p}$

so
$$y = -2x$$

If
$$x = \sqrt{3}$$
, $y = -2\sqrt{3}$

If
$$x = -\sqrt{3}$$
, $y = 2\sqrt{3}$ (not an alternative)

Question 18 [D]

$$\underbrace{u \cdot (u - 2v)}_{= (3i - 4j + 5k) \cdot ((3i - 4j + 5k) - 2(2i + 3j - k))}_{= (3i - 4j + 5k) \cdot ((-i - 10j + 7k))}_{= (3i - 4j + 5k) \cdot (-i - 10j + 7k)}_{= -3 + 40 + 35}$$

$$= 72$$

Question 19 [C]

(A)
$$|\underline{b}|^2 + |\underline{c}|^2 = |\underline{a}|^2$$
 (Pythagoras Rule) :: True

Now
$$b + c = a$$
 $\therefore a - c = b$

(B) So
$$b \cdot (a - c) = b \cdot b$$

= $|b|^2$ True

$$= |b|^2$$
 True

(C)
$$b \cdot (a - b) = b \cdot c$$

$$= \int b / \int c / \cos (90^{\circ})$$

$$= 0$$

$$\neq |b / |c / \text{ Not true}$$

(D)
$$\underline{a} \cdot \underline{b} = |\underline{a}/|\underline{b}/\cos(\theta)$$
 (Dot Product Rule) True

(E)
$$\underbrace{a \cdot c}_{=} = \underbrace{|a|}_{c} / \underbrace{|c|}_{c} / \cos (90^{\circ} - \theta)$$

= $\underbrace{|a|}_{c} / \underbrace{|c|}_{c} / \sin (\theta)$ True

$$r(t) = 2\sin(t) i + \cos(t) j$$

so
$$x = 2 \sin(t) + \sin(t) = \frac{x}{2}$$

and
$$y = \cos(t)$$

$$\sin^2(t) + \cos^2(t) = 1$$

$$\therefore \qquad (\frac{x}{2})^2 + y^2 = 1$$

$$\frac{x^2}{4} + y^2 = 1$$

 $0 \le t \le \pi$ so when t = 0, x = 0

$$t=\frac{\pi}{2}, \ x=2$$

$$t=\pi$$
, $x=0$

so
$$0 \le x \le 2$$

Question 21 [B]

$$r(t) = \int 3 \sin(2t) i + 4j dt$$

$$= \left(\frac{-3}{2}\cos(2t) + c\right) \underbrace{i}_{\sim} + (4t + d) \underbrace{j}_{\sim}$$

$$r(0) = \frac{3}{2}i$$
 so $\frac{-3}{2}\cos(0) + c = \frac{3}{2}$

$$\therefore c = 3$$

and
$$d = 0$$

so
$$r(t) = \left(\frac{-3}{2}\cos(2t) + 3\right) \tilde{i} + 4t \tilde{j}$$

Question 22 [B]

$$5g\cos 30^\circ = 5a$$

$$5g.\frac{1}{2}=5a$$

$$a = \frac{g}{2}$$

Question 23 [D]

$$2T\cos(30^{\circ}) = 10g$$

$$2T.\frac{\sqrt{3}}{2} = 10g$$

$$T = \frac{10g}{\sqrt{3}}$$

$$=\frac{10\sqrt{3}}{3}g$$

Question 24 [A]

$$\sum F_{\sim} = 5a$$

$$(2i + j) + (i + 10j) + (3i - 3j) = 5a$$

$$6i + 8j = 5a$$

$$|a| = \frac{\sqrt{6^2 + 8^2}}{5}$$

$$=\frac{10}{5}$$

Question 25 [B]

$$u = -21$$
, $t = 10$

$$a = 9.8$$

$$s = ut + \frac{1}{2}at^2$$

∴
$$h = -21 \times 10 + \frac{1}{2} \times 9.8 \times 10^2$$

= 280 m

Question 26 [A]

Body is on a point of sliding down, so Frictionl Force (F) must be *up* the plane

Question 27 [B]

$$v = \frac{dx}{dt} = 2.5 - \frac{9}{2}\sin\left(\frac{t}{2}\right)$$

minimum when $\frac{dv}{dt} = 0$

$$\frac{dv}{dt} = -\frac{9}{4} \cos\left(\frac{t}{2}\right) = 0$$

$$\therefore \cos\left(\frac{t}{2}\right) = 0$$

$$t=\pi$$

so
$$v = 2.5 - \frac{9}{2} \sin{(\frac{\pi}{2})}$$

= 2.5 - 4.5
= -2

Question 28 [C]

$$y = \sin(2x)$$

$$\frac{dy}{dx} = 2 \cos(2x)$$

$$\frac{d^2y}{dx^2} = -4\sin(2x)$$

(A)
$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + y = 4\cos(2x)$$

$$-4 \sin(2x) + 8 \cos(2x) + \sin(2x) \neq 4 \cos 2x$$

(B)
$$\frac{d^2y}{dx} + 2\frac{dy}{dx} - 4y = 4\cos(2x)$$

$$-4 \sin{(2x)} + 4 \cos{(2x)} - \sin{(2x)} \neq 4 \cos{(2x)}$$

(C)
$$\frac{d^2y}{dx^2} + 2 \frac{dy}{dx} + 4y = 4 \cos(2x)$$

$$-4\sin(2x) + 4\cos(2x) + 4\sin(2x) = 4\cos 2x$$

(D)
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 4y = 4\cos(2x)$$

$$-4 \sin(2x) - 4 \cos(2x) - \sin(2x) \neq 4 \cos(2x)$$

(E)
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 4y = 4\cos(2x)$$

$$-4 \sin(2x) - 4 \cos(2x) + 4 \sin(2x) \neq 4 \cos(2x)$$

$$\frac{dy}{dt} \propto y - T_s$$
 $T_s = 4$

so
$$\frac{dy}{dt} = -k(y-4)$$
 $t = 0, y = 20$

Question 30 [C]

$$a = 16x$$

$$\frac{d}{dx}\left(\frac{1}{2}v^2\right) = 16x$$

$$\frac{1}{2} v^2 = \int 16x \ dx$$

$$\frac{1}{2}v^2 = 8x^2 + c$$

$$v = -5, x = 0 :: \frac{25}{2} = c$$

$$so \frac{1}{2}v^2 = 8x^2 + \frac{25}{2}$$
$$v^2 = 16x^2 + 25$$

$$v^2 = 16x^2 + 25$$

$$v^2 = \pm \sqrt{16x^2 + 25}$$

But
$$v = -5$$
 at $x = 0$ so $v = -\sqrt{16x^2 + 25}$

2004 Mathematical Methods, Specialist Examination 1, Part II

Question 1

(a)
$$\frac{d}{dt} \left(\sin^{-1}(\sqrt{2}x) \right) = \frac{1}{\sqrt{1 - (\sqrt{2}x)^2}} \times \frac{1}{2} (2n)^{-0.5}. 2$$

$$= \sqrt{\frac{1}{1 - 2x}} \times \sqrt{\frac{1}{2x}}$$

$$= \sqrt{\frac{1}{2x(1 - 2x)}}$$
(b)
$$\int_{.125}^{.25} \sqrt{\frac{1}{2x(1 - 2x)}} dx = \left[\sin^{-1}(\sqrt{2}x) \right]_{0.125}^{0.25}$$

$$= \sin^{-1}(\sqrt{0.5}) - \sin^{-1}(\sqrt{0.25})$$

$$= \sin^{-1}(\frac{1}{\sqrt{2}}) - \sin^{-1}(\frac{1}{2})$$

$$= \frac{\pi}{4} - \frac{\pi}{6}$$

$$= \frac{\pi}{12}$$

Question 2

(a)

(b)
$$\sum F = ma$$

$$(100 \cos(40^\circ) - F_R)_{\sim}^{i} + (N + 100 \sin(40^\circ) - 20g)_{j} = 20 (a_i + 0_j)_{\sim}^{i}$$

$$F_R = \mu N = 0.34 (20g - 100 \sin(40^\circ))$$

So
$$100 \cos (40^\circ) - 44.7852 = 20a$$

=44.7852

$$a = 1.59 \ m/s^2$$

Question 3

$$f(x) = \int 15x \sqrt{2 - x} \, dx$$

$$let u = 2 - x$$

$$\frac{du}{dx} = -1$$

So
$$-du = dx$$

and
$$x = 2 - u$$

$$f(x) = \int -15 (2 - u) \sqrt{u} du$$

$$= \int 15u^{1.5} - 30u^{0.5} du$$

$$= 0.4 \times 15u^{2.5} - \frac{60}{3}u^{0.5} + c$$

$$= 6u^{2.5} - 20u^{1.5} + c$$

$$= u^{1.5} (6u - 20) + c$$

$$= (2 - x)^{1.5} (6(2 - x) - 20) + c$$

$$= (2 - x)^{1.5} (-6x - 8) + c$$

$$f(2) = 0$$
 so $c = 0$

$$f(x) = (2-x)^{1.5}(-6x-8) = (ax+b)(2-x)^{1.5}$$

so $a = -6$ and $b = -8$

Question 4

(a)
$$\underbrace{a}_{\sim} \cdot \underbrace{b}_{\sim} = (6i + 2j)_{\sim} \cdot \frac{(4i - 3j)_{\sim}}{\sqrt{16 + 9}}$$

= $\frac{1}{5} (24 - 6)$
= $\frac{18}{5}$

(b)
$$a \cdot \hat{b} = |\overrightarrow{OP}|$$

 $|\overrightarrow{PA}|^2 = |\overrightarrow{OP}|^2 - |\overrightarrow{OP}|^2$
 $= 6^2 + 2^2 - (\frac{18}{5})^2$
 $= 27.04$

$$\therefore |\vec{PA}| = 5.2$$

Question 5

$$W = \frac{-\sqrt{3}}{2} - \frac{1}{2}i$$

(a)
$$r = \sqrt{\frac{3}{4} + \frac{1}{4}} = 1$$

$$tan \theta = \frac{\frac{-1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}}$$
 (third quadrant)
so $\theta = -\frac{5\pi}{6}$

$$W = \operatorname{cis}\left(\frac{-5\pi}{6}\right)$$

(b)
$$W^{k} = \operatorname{cis}(k \times \frac{-5\pi}{6}) = 1$$

 $\operatorname{cis}(\frac{-5k\pi}{6}) = 1 = \operatorname{cos}(\frac{-5k\pi}{6}) + i\operatorname{sin}(\frac{-5k\pi}{6})$
 $= 1 + 0i$

so cos
$$\left(\frac{-5k\pi}{6}\right) = 1$$

$$\therefore \frac{-5 \, k \pi}{6} = \dots, -10 \, \pi, -8 \pi, -6 \pi, -4 \pi, -2 \pi, 0, 2 \pi, 4 \pi, \dots$$

$$k = \dots \frac{-60\pi}{-5\pi}, \frac{-48\pi}{-5\pi}, \frac{-24\pi}{-5\pi}, \dots$$

But k is a positive integer, so k = 12 is the least positive integer.