CS540 - Chapter 02 - Summary

- CS540 Chapter 02 Summary
 - LAN Switching
 - Ethernet [L2]
 - Definitions
 - Ethernet Frame (802.3 MAC frame) Format
 - Hub, Bridge, Switch
 - Hub
 - Bridge
 - Switch
 - Frame Forwarding Algorithm
 - Misc
 - SPT (Spanning Tree Protocol)
 - Definitions
 - Spanning Tree Algorithm
 - Port States & Timers
 - Misc
 - Virtual LAN
 - Definitions
 - VLAN
 - VLAN Tagging (Trunk) 802.1q

1. LAN Switching

1.1. Ethernet [L2]

1.1.1. Definitions

 Ethernet (802.3) includes bottom 2 layers: Physical, Data Link Layer (something just the MAC) in OSI Model.

Standard Ethernet: 10 MbpsFast Ethernet: 100 Mbps

Gigabit Ethernet: 1Gbps

Ten-Gigabit Ethernet: 10Gbps

- Ethernet provides connectionless service
 - no handshake
 - no sequence or order
 - o frame has no relation to others
- and thus unreliable service to network layer, no ACK/NAK.

1.1.2. Ethernet Frame (802.3 MAC frame) Format

Description

- Frame Structure
 - Preamble: 8 bytes (DIX) or 7 bytes (802.3 frame)
 - SOF/SFD: 1 byte (802.3 frame) of start frame delimiter, 10101011
 - Destination Address / Source Address: 6 bytes (= 48 bits) of MAC address MM:MM:MM:SS:SS:SS

- First 3 bytes specify the vendor, last 3 bytes is unique inside the company.
- Categories:
 - Unicast (1 recipient): 2nd digit is even. Eg: 4A:30:10:21:10:1A
 - Multicast (group of recipients): 2nd digit is odd. Eg: 47:20:1B:2E:08:EE
 - Broadcast (all stations): all 1s or Fs.
- Type or Length (2 bytes)
 - Type: in DIX Ethernet, when its value ≥ 0x600
 - Length: in 802.3 MAC frame,) when its value < 0x600. Indicates number of butes in data field.
- Data: packet content
- Pad: Zeros are added if data length is less than 46 bytes
- FCS: or CRC, check at receiver, if error, discard frame.
- Frame length should be between 64 bytes to 1518 bytes. Otherwise, it will be dropped.
 - Minus off 18 bytes of header and trailer, the data size should be 46 bytes to 1500 bytes.

1.2. Hub, Bridge, Switch

1.2.1. Hub

- L1 device as it just receives packet and floods it out to all ports except the incoming.
 - Notes: L2 device checks MAC address. L3 device checks IP address.
- Same functionality as a multiport repeater.
- Fast, but no brain and thus causing data collision and wasting bandwidth.

1.2.2. Bridge

- L2 device
- Is a hub with an **additional check which side the flooding should go out**. Thus it does records the originator's port (source MAC+port).

• Use broadcast/flood if it does not know where to forward to (usually when it first starts)

1.2.3. Switch

- L2 device.
- A <u>multi-ports bridge</u>, it also records the originator's ports (source MAC+port) into the forwarding table for future broadcasting/forwarding.
- Use broadcast/flood if it does not know where to forward to (usually when it first starts)

1.3. Frame Forwarding Algorithm

When a frame arrives:

- 1. Record the source MAC address + port into forwarding table.
 - Set the expiry timer.
- 2. Search its forwarding table for the dest MAC address
- 3. If dest MAC address is found, forward to the corresponding port (if port not blocked).
- 4. If NOT, broadcat to all ports (except incoming).

1.4. Misc

- Wireless is 802.11
- · Switch modes

- Store and forward: entire frame is received before sent out.
- Cut through: as soon as the dest MAC addr is received, the frame is sent without waiting for entire frame. -> no CRC check (as CRC is in the MAC trailer)

2. SPT (Spanning Tree Protocol)

2.1. Definitions

- Redundancy design in LAN is good for failover, however it creates loops.
 - Loops cause broadcast storm, multiple frame transmission and inconsistent switch tables.
- So people invtented STP (Spanning Tree Protocol) (IEEE 802.1d), to eliminate loops but still keep redundancy.
- SPT: a tree topology with
 - NO loops
 - NO device left out

· All switches run STP by default.

2.2. Spanning Tree Algorithm

- Select & nominate "Root Bridge/Switch". Priority given to lower bridge ID by exchanging BPDUs (Bridge Protocol Data Unit) or by manual configuration.
 - Bridge ID contains priority, VLAN ID, and MAC address
 - Priority ranges [1-65536], default to 32768, change in multiple of 4096.
 - Process
 - BPDU frames (switch BID and root ID) are sent out every 2 seconds when a switch starts. A switch identifies itself as root at first.

- By comparing the BID and Root ID, all bridges come to agreement of the root BID.
- Default MAC address for BPDU is 01:80:C2:00:00:00 (or 01:80:C2::)
- 2. On each bridge/switch (except the root one), select 1 "root port", which has the lowest cost path to the root bridge.
 - Cost is inversely proportional to link speed, i.e. lower cost for faster link speed.
 - If same cost, use port (higher) priority and (lower) port number.
- 3. On each segment (link), select 1 "designated port", which has the lowest cost path to the root bridge.
 - If same cost, use the one with (lower) bridge ID.
- 4. Close down other ports.

2.3. Port States & Timers

- Port states in STP: Blocking (closed port), Listening (listen for BPDUs), Learning (learning MAC addresses), Forwarding (in operation), Disabled.
- **Timers**: up to <u>50 secs</u> for a broken link to become alive. Blocking 20 sec, Listening 15 sec, Learning 15 secs.
- Cisco use PortFast to quickly revive a port from blocking to forwarding.

2.4. Misc

- Notation F0/0, F0/1 meaning
 - F: media type. F (Fa) is Fast Ethernet, G (Gi) is Gigabit Ethernet, T (Ten) is Ten Gigabit Ethernet.
 - Slot #: the slot number
 - Port #: the port number of the specified slot.

- Initial enhancement of SPT: PVST+: is to separate STP for each VLAN.
- Ultimate enhancement of STP: **RSTP**: faster SPT, same BPDU structure but different port states and timers. Faster to heal (6 seconds).

3. Virtual LAN

3.1. Definitions

- Broadcast Domain: is a network segment in which any device can transmit data directly to each other without going through a router.
- A router (L3 device) breaks up a broadcast domain.
- A VLAN is a group of hosts with a common set of requirements that communicate as if they were attached to the same broadcast domain regardless of their physical location.
- VLAN = Subnet

3.2. **VLAN**

VLAN are assigned on the switch port (port number + VLAN number)

- VLAN assignment:
 - Connect the host to a correct port on the switch.

- Assign the host the correct IP of the VLAN.
- Main benefits of VLAN: Security, Ease of Management. In detail:
 - Security
 - Cost Reduction
 - Higher Performance
 - Broadcast Storm Mitigation
 - Improved IT Staff Efficiency
 - Simpler project or application management
- VLAN number ranges 1-4094 (12 bits)

3.2.1. VLAN Tagging (Trunk) 802.1q

Tagging is a technique to allow a single connection between 2 switches to serve multiple VLANs.

No VLAN Tagging

• (802.1g beader (TAG) is added for the recipient to detect this is a tagging VLAN packet. FCS is also recalculated.

Original Ethernet Frame

- The recipient switch strips off the header and forwards the packet to the corresponding VLAN.
- The 802.1g header is 4 bytes long:

- Trunk link does not belong to a specific VLAN.
- Native VLAN: is the untagged VLAN on an 802.1q trunked switchport. For any switch, native VLAN is default to VLAN 1.