Maths for Signals and Systems Problem Sheet 2

Problem 1

Find the inverse, the eigenvalues and the determinant of A

$$A = \begin{bmatrix} 4 & -1 & -1 & -1 \\ -1 & 4 & -1 & -1 \\ -1 & -1 & 4 & -1 \\ -1 & -1 & -1 & 4 \end{bmatrix}$$

Problem 2

- (i) Carry out the eigenvalue decomposition of the matrices $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$ and $\mathbf{B} = \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix}$.
- (ii) Carry out the eigenvalue decomposition of A^3 , B^3 and A^{-1} .

Problem 3

- (i) Assume that $A = S\Lambda S^{-1}$. What is the eigenvalue matrix of A + 2I?
- (ii) What is the eigenvector matrix of A + 2I?
- (iii) Carry out the eigenvector decomposition of A + 2I.

Problem 4

Let A be a real skew-symmetric matrix, i.e. $A = -A^{T}$. Show that all eigenvalues of A are purely imaginary or zero.

Problem 5

Find the general formula for $\begin{bmatrix} 1 & -6 \\ 2 & -6 \end{bmatrix}^k$ by diagonalizing the matrix.

Problem 6

Let A and B be $n \times n$ real matrices. If the matrix C = BA is invertible, prove that both A and B are invertible.

Problem 7

Let A be an invertible matrix with eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_K$ and the corresponding eigenvectors v_1, v_2, \dots, v_K . What can we say about the eigenvalues and eigenvectors of A^{-1} ?

Problem 8

Let A be a real symmetric matrix. Assume that v_1 and v_2 are eigenvectors corresponding to distinct eigenvalues $\lambda_1 \neq \lambda_2$. Show that v_1 and v_2 are orthogonal.

Problem 9

Find the dimension and construct a basis for the four subspaces associated with:

$$A = \begin{bmatrix} 1 & 3 & 1 & 2 \\ 1 & 3 & 0 & 1 \\ 2 & 6 & -1 & 1 \end{bmatrix}$$

Problem 10

Consider the finite difference equations

$$x_{n+1} = -7x_n + 10y_n$$

and

$$y_{n+1} = -5x_n + 8y_n$$

Given that $x_0 = 1$ and $y_0 = 0.5$, find x_4 and y_4 .