Imperial College London

Relativity – Lecture 7

Dr Caroline Clewley

Page 1

Key concepts of lecture 5 & 6

- 1. Events show up as points in a spacetime diagram. Moving objects have a worldline in this diagram.
- 2. The 4-position contains the four coordinates of an event in time and space.
- 3. The invariant interval $s^2 = c^2 \Delta t^2 \Delta r^2$ denotes the separation between events.
- 4. $s^2 < 0$, spacelike separation, $s^2 > 0$, timelike separation, $s^2 = 0$, timelike separation.

Page 3

Review of the classical Doppler effect

What is *L*?

Pulse 1 emitted at t = 0. Pulse 2 emitted at $t = \tau_0$.

Source approaching:

 $\underset{\tiny \mathsf{Page 4}}{\mathsf{Source receding:}}$

Light flashes with period τ_0 in its rest frame.

Page 5

Redshift

For Hydrogen λ_0 = 656 nm, but in a distant galaxy this is observed at λ_D = 953 nm.

Other relativistic effects: what about angles?

Summary

The relativistic Doppler effect is caused by:

- 1. The source 'catching up' to the emitted waves (classical Doppler effect).
- 2. Time dilation.

Compare formulae:

$$\nu_D^{Rel} = \frac{\nu_O}{\gamma} \frac{1}{1 - v/c} = \nu_0 \sqrt{\frac{1 + \beta}{1 - \beta}}$$

$$\nu_D^{Cl} = \nu_0 \frac{1}{1 - v/c}$$