## **Unsupervised Classification**

#### Allan Aasbjerg Nielsen

alan@dtu.dk

#### **Technical University of Denmark**

DTU Compute – Applied Mathematics and Computer Science

27 Feb 2019



DTU



Classification

- classification is the process of grouping observations (pixels or regions) into classes intended to represent different physical objects or types
- here, the production of a **thematic map** from (image) data with digital numbers representing for example reflected or emitted EM-radiation in different wavelength bands
- very many classification methods ranging from quite simple to highly advanced
- two major groups of methods: supervised and unsupervised
  - supervised: ideally physical classes but not necessarily statistically distinct
  - unsupervised: statistically distinct but not necessarily physical classes

Feature space Scatter Plot Matrix of Iris Data Versicolor Petal.Width p variables C classes Petal.Length *N* observations (or samples) **2**  $x_i$ ,  $i = 1, ..., N, p \times 1$ is a point (or vector) in Sepal.Width p-dimensional feature space figure shows all possible pairwise projections on original variables Sepal.Length

Allan Aasbjerg Nielsen alan@dtu.dk Unsupervised Classification

### K-means

- choose C
- $oldsymbol{2}$  assign C class centres  $oldsymbol{\mu}_c$
- 3 calculate distance, e.g.,  $D_{Fic}^2 = (x_i \mu_c)^T (x_i \mu_c)$  for all observations to all class centres,  $i = 1, \dots, N$ ,  $c = 1, \dots, C$
- $\bigcirc$  assign class c to  $x_i$  if distance smallest for class c
- **5** compute new class centres  $\mu_c$  (include only obs in class c)
- iterate from third step



# Initialization of $\mu_c$

- 1 random observations within range of data
- 2 first C 'different enough' observations
- 3 based on PCA, e.g., uniformly distributed along first PC axis, or in plane spanned by two first PC axes



## Fuzzy c-means

- choose C
- 2 assign C class centres  $\mu_c$
- **3** calculate distance, e.g.,  $D_{Fic}^2 = (\mathbf{x}_i \boldsymbol{\mu}_c)^T (\mathbf{x}_i \boldsymbol{\mu}_c)$  for all observations to all class centres
- **a** assign degree of membership  $u_{ic}$  to  $x_i$  for all classes, e.g.,  $u_{ic} = (1/D_{Eic}^2)/\sum_{i=1}^C 1/D_{Eii}^2$  leading to  $\sum_{c=1}^C u_{ic} = 1$
- $\odot$  compute new class centres (include all obs weighted by  $u_{ic}$ )  $\mu_{c} = \sum_{i=1}^{N} u_{ic} x_{i} / \sum_{i=1}^{N} u_{ic}$
- iterate from third step



- **1** Bayes' rule:  $P(\omega_c|\mathbf{x}_i) = K P(\mathbf{x}_i|\omega_c)P(\omega_c)$  with  $1/K = \sum_{i=1}^C P(\mathbf{x}_i|\omega_i)P(\omega_i)$
- **2 GMM**: Given some  $u_{ic} = P(\omega_c | \mathbf{x}_i)$  with  $\sum_{c=1}^{C} u_{ic} = 1$ , calculate
- $P(\omega_c) = \frac{1}{N} \sum_{i=1}^{N} u_{ic} \text{ (here the mixing proportion of class } c)$   $\mu_c = \frac{1}{NP(\omega_c)} \sum_{i=1}^{N} u_{ic} \mathbf{x}_i$

$$\mathbf{\Sigma}_c = \frac{1}{NP(\omega_c)} \sum_{i=1}^{N} u_{ic} (\mathbf{x}_i - \boldsymbol{\mu}_c) (\mathbf{x}_i - \boldsymbol{\mu}_c)^T$$

- $\mu_c$  and  $\Sigma_c$  define  $P(x_i|\omega_c)$  which with  $P(\omega_c)$  via Bayes' rule give a new  $u_{ic} = P(\omega_c|x_i)$  which in turn gives a new  $P(\omega_c)$ : iterate
- example on Expectation Maximization (EM) algorithm E-step: calculate  $P(\omega_c)$ ,  $\mu_c$ ,  $\Sigma_c$ M-step: calculate  $P(\omega_c|\mathbf{x}_i)$  in Bayes' rule

## Initialization of $\mu_c$ and $oldsymbol{\Sigma}_c$

- select observations at random as initial means mixing proportions are uniform initial covariance matrices are diagonal, elements on the diagonal are the variances
- 2 start with result from k-means or fuzzy c-means
- **3** ...

DTU

# Hierarchical clustering

- 1 hierarchical clustering groups data over a variety of scales by creating a cluster tree or dendrogram
- 2 the tree is not a single set of clusters, but rather a multilevel hierarchy, where clusters at one level are joined as clusters at the next level
- 3 this allows you to decide the level or scale of clustering that is most appropriate for your application
- 1 two extremes: every pixels is its own cluster vs entire image is one cluster



### Matlab

- Statistics and Machine Learning Toolbox
- Cluster Analysis
- k-means: kmeans
- GMM: fitgmdist, cluster, posterior

### Matlab exercise

- Experiment with Matlab's implementations of k-means (kmeans) and Gaussian Mixture Models, GMM (fitgmdist, posterior). Try different numbers of clusters, different initializations (option 'Replicates'), use original variables and first few principal components, etc. Apply to igalmss
- 2 Write a small report or a readable journal (3-4 pages) including figures and Matlab code.

