Complejidad Algorítmica

Ricardo Eugenio González Valenzuela

Segundo Semestre, 2020

Agradecimentos

El material de este curso está basado en el material del curso de *Análisis de Algorítmos* ministrado por la *Universidad Estatal de Campinas*. Un agradecimiento especial al Prof. Dr. Lehilton Lelis Chaves Pedrosa.

El conjunto de diapositivas de cada unidad será disponibilizada como guía de estudios y debe ser usada únicamente para revisar las aulas. Para estudiar, y practicar, lea el libro-texto Introducción a los Algoritmos - Thomas Cormen et al., y resuelva los ejercícios sugeridos.

Ricardo.

Introducción a la Complejidad Algorítmica

- 1. Demostrar correctitud de un algoritmo
 - como tener certeza de que la salida es correcta
 - como convencer a otras personas de esto
- 2. Analizar la complejidad de un algoritmo
 - como estimar la cantidad de recursos utilizadoss
 - los recursos pueden ser tiempo, memoria, acceso a la red, etc.

- 1. Demostrar correctitud de un algoritmo
 - como tener certeza de que la salida es correcta
 - como convencer a otras personas de esto
- 2. Analizar la complejidad de un algoritmo
 - como estimar la cantidad de recursos utilizadoss
 - los recursos pueden ser tiempo, memoria, acceso a la red, etc.

- 1. Demostrar correctitud de un algoritmo
 - como tener certeza de que la salida es correcta
 - como convencer a otras personas de esto
- 2. Analizar la complejidad de un algoritmo
 - como estimar la cantidad de recursos utilizados
 - los recursos pueden ser tiempo, memoria, acceso a la red, etc.

- 1. Demostrar correctitud de un algoritmo
 - como tener certeza de que la salida es correcta
 - como convencer a otras personas de esto
- 2. Analizar la complejidad de un algoritmo
 - 🕨 como estimar la cantidad de recursos utilizados
 - los recursos pueden ser tiempo, memoria, acceso a la red etc.

- 1. Demostrar correctitud de un algoritmo
 - como tener certeza de que la salida es correcta
 - como convencer a otras personas de esto
- 2. Analizar la complejidad de un algoritmo
 - como estimar la cantidad de recursos utilizados
 - los recursos pueden ser tiempo, memoria, acceso a la red, etc.

- 1. Demostrar correctitud de un algoritmo
 - como tener certeza de que la salida es correcta
 - como convencer a otras personas de esto
- 2. Analizar la complejidad de un algoritmo
 - como estimar la cantidad de recursos utilizados
 - los recursos pueden ser tiempo, memoria, acceso a la red, etc.

- 1. Demostrar correctitud de un algoritmo
 - como tener certeza de que la salida es correcta
 - como convencer a otras personas de esto
- 2. Analizar la complejidad de un algoritmo
 - como estimar la cantidad de recursos utilizados
 - los recursos pueden ser tiempo, memoria, acceso a la red, etc.

3. Utilizar técnicas conocidas de proyectos de algoritmos

- divide y vencerás, programación dinámica, etc.
- utilizar recursividad adecuadamente

4. Entender la dificultad intrínseca de algunos problemas

- inexistencia de algoritmos eficientes
- identificar los problemas intratables

- 3. Utilizar técnicas conocidas de proyectos de algoritmos
 - divide y vencerás, programación dinámica, etc.
 - utilizar recursividad adecuadamente
- 4. Entender la dificultad intrínseca de algunos problemas
 - inexistencia de algoritmos eficientes
 - identificar los problemas intratables

- 3. Utilizar técnicas conocidas de proyectos de algoritmos
 - divide y vencerás, programación dinámica, etc.
 - utilizar recursividad adecuadamente
- 4. Entender la dificultad intrínseca de algunos problemas
 - inexistencia de algoritmos eficientes
 - identificar los problemas intratables

- 3. Utilizar técnicas conocidas de proyectos de algoritmos
 - divide y vencerás, programación dinámica, etc.
 - utilizar recursividad adecuadamente
- 4. Entender la dificultad intrínseca de algunos problemas
 - inexistencia de algoritmos eficientes
 - identificar los problemas intratables

- 3. Utilizar técnicas conocidas de proyectos de algoritmos
 - divide y vencerás, programación dinámica, etc.
 - utilizar recursividad adecuadamente
- 4. Entender la dificultad intrínseca de algunos problemas
 - inexistencia de algoritmos eficientes
 - identificar los problemas intratables

- 3. Utilizar técnicas conocidas de proyectos de algoritmos
 - divide y vencerás, programación dinámica, etc.
 - utilizar recursividad adecuadamente
- 4. Entender la dificultad intrínseca de algunos problemas
 - inexistencia de algoritmos eficientes
 - identificar los problemas intratables

- una instancia es un conjunto de valores conocidos
- una solución es un conjunto de valores a calcular
- cada instancia corresponde a una o mas soluciones

- una instancia es un conjunto de valores conocidos
- una solución es un conjunto de valores a calcular
- cada instancia corresponde a una o mas soluciones

- una instancia es un conjunto de valores conocidos
- una solución es un conjunto de valores a calcular
- cada instancia corresponde a una o mas soluciones

- una instancia es un conjunto de valores conocidos
- una solución es un conjunto de valores a calcular
- cada instancia corresponde a una o mas soluciones

Problema: determinar si un dado número es primo

- instancias: números enteros
- soluciones: sí o no

Ejemplo:

► Instancia: 9411461

► Solución: sí

Ejemplo:

Instancia: 8411461

Problema: determinar si un dado número es primo

- instancias: números enteros
- soluciones: sí o no

Ejemplo

▶ Instancia: 9411461

► Solución: sí

Ejemplo

Instancia: 8411461

Problema: determinar si un dado número es primo

instancias: números enteros

soluciones: sí o no

Ejemplo:

► Instancia: 9411461

► Solución: sí

Ejemplo

Instancia: 8411461

Problema: determinar si un dado número es primo

instancias: números enteros

soluciones: sí o no

Ejemplo:

► Instancia: 9411461

Solución: sí

Ejemplo

Instancia: 8411461

Problema: determinar si un dado número es primo

instancias: números enteros

soluciones: sí o no

Ejemplo:

► Instancia: 9411461

Solución: sí

Ejemplo

Instancia: 8411461

Problema: determinar si un dado número es primo

instancias: números enteros

soluciones: sí o no

Ejemplo:

▶ Instancia: 9411461

Solución: sí

Ejemplo

Instancia: 8411461

Problema: determinar si un dado número es primo

instancias: números enteros

soluciones: sí o no

Ejemplo:

▶ Instancia: 9411461

Solución: sí

Ejemplo:

Instancia: 8411461

Problema: determinar si un dado número es primo

instancias: números enteros

soluciones: sí o no

Ejemplo:

▶ Instancia: 9411461

Solución: sí

Ejemplo:

Instancia: 8411461

Problema: determinar si un dado número es primo

- instancias: números enteros
- soluciones: sí o no

Ejemplo:

► Instancia: 9411461

Solución: sí

Ejemplo:

Instancia: 8411461

Problema: ordenar los elementos de un vector

- instancias: conjunto de vectores de enteros
- soluciones: conjunto de vectores de enteros en orden creciente

Ejemplo

► Instancia

Problema: ordenar los elementos de un vector

- instancias: conjunto de vectores de enteros
- soluciones: conjunto de vectores de enteros en orden creciente

Ejemplo

Instancia

Problema: ordenar los elementos de un vector

- instancias: conjunto de vectores de enteros
- soluciones: conjunto de vectores de enteros en orden creciente

Ejemplo

Instancia:

Problema: ordenar los elementos de un vector

- instancias: conjunto de vectores de enteros
- soluciones: conjunto de vectores de enteros en orden creciente

Ejemplo:

Instancia:

Problema: ordenar los elementos de un vector

- instancias: conjunto de vectores de enteros
- soluciones: conjunto de vectores de enteros en orden creciente

Ejemplo:

Instancia:

Solución:

Problema: ordenar los elementos de un vector

- instancias: conjunto de vectores de enteros
- soluciones: conjunto de vectores de enteros en orden creciente

Ejemplo:

Instancia:

1										n
33	55	33	44	33	22	11	99	22	55	77

Solución:

1										n
11	22	22	33	33	33	44	55	55	77	99

Algoritmos

Un algoritmo es una secuencia de instrucciones que

- recibe una instancia de un problema computacional
- devuelve una solución correspondiente a la instancia recibida

Observaciones:

- la instancia recibida es llamada entrada
- la solución devuelta es llamada de salida
- toda instrucción debe ser bien definida

Algoritmos

Un algoritmo es una secuencia de instrucciones que

- recibe una instancia de un problema computacional
- devuelve una solución correspondiente a la instancia recibida

- la instancia recibida es llamada entrada
- la solución devuelta es llamada de salida
- toda instrucción debe ser bien definida

Algoritmos *'*

Un algoritmo es una secuencia de instrucciones que

- recibe una instancia de un problema computacional
- devuelve una solución correspondiente a la instancia recibida

- la instancia recibida es llamada entrada
- la solución devuelta es llamada de salida
- toda instrucción debe ser bien definida

Algoritmos

Un algoritmo es una secuencia de instrucciones que

- recibe una instancia de un problema computacional
- devuelve una solución correspondiente a la instancia recibida

- la instancia recibida es llamada entrada
- la solución devuelta es llamada de salida
- toda instrucción debe ser bien definida

Algoritmos *'*

Un algoritmo es una secuencia de instrucciones que

- recibe una instancia de un problema computacional
- devuelve una solución correspondiente a la instancia recibida

- la instancia recibida es llamada entrada
- la solución devuelta es llamada de salida
- toda instrucción debe ser bien definida

Algoritmos

Un algoritmo es una secuencia de instrucciones que

- recibe una instancia de un problema computacional
- devuelve una solución correspondiente a la instancia recibida

- la instancia recibida es llamada entrada
- la solución devuelta es llamada de salida
- toda instrucción debe ser bien definida

Algoritmos

Un algoritmo es una secuencia de instrucciones que

- recibe una instancia de un problema computacional
- devuelve una solución correspondiente a la instancia recibida

- la instancia recibida es llamada entrada
- la solución devuelta es llamada de salida
- toda instrucción debe ser bien definida

Podemos escribir un algoritmo de varias maneras:

- en un lenguaje de programación, como C, Pascal, Java, Python...
- en español, o en otra lengua natura
- en pseudocódigo, como en el libro de Introducción a los Algoritmos

Podemos escribir un algoritmo de varias maneras:

- en un lenguaje de programación, como C, Pascal, Java, Python...
- en español, o en otra lengua natura
- en pseudocódigo, como en el libro de Introducción a los Algoritmos

Podemos escribir un algoritmo de varias maneras:

- en un lenguaje de programación, como C, Pascal, Java, Python...
- en español, o en otra lengua natural
- en pseudocódigo, como en el libro de Introducción a los Algoritmos

Podemos escribir un algoritmo de varias maneras:

- en un lenguaje de programación, como C, Pascal, Java, Python...
- en español, o en otra lengua natural
- en pseudocódigo, como en el libro de Introducción a los Algoritmos

Podemos escribir un algoritmo de varias maneras:

- en un lenguaje de programación, como C, Pascal, Java, Python...
- en español, o en otra lengua natural
- en pseudocódigo, como en el libro de Introducción a los Algoritmos

Ejemplo de pseudocódigo

Un algoritmo para el problema de ordenamiento:

```
INSERTION-SORT(A, n)

1 para j \leftarrow 2 hasta n hacer

2 llave \leftarrow A[j]

3 i \leftarrow j - 1

4 mientras i \ge 1 y A[i] > llave hacer

5 A[i+1] \leftarrow A[i]

6 i \leftarrow i-1

7 A[i+1] \leftarrow llave
```

Malas prácticas

No mezcle código con pseudocódigo:

```
for (i = 0; i < n; i++) ... if (A[i] >= llave) break
```

No escriba frases confusas:

```
si A[i] > llave entonces intercambie las posiciones de los elementos
```

llave ← obtiene el próximo elemento $i \leftarrow$ busca la posición de la *llave*

Evite algoritmos complicados o con muchas variables:

```
si j = 1 entonces

A[2] \leftarrow A[1]

A[1] \leftarrow llave

sino

mientras i \ge 1 e A[i] \ge llave hacer

...
```

Sólo podemos escribir instrucciones bien definidas:

- el resultado de cada instrucción no es ambíguo y depende solamente del estado actual de la ejecución
- debe ser posible ejecutar cada instrucción usando la computadora adoptada

Sólo podemos escribir instrucciones bien definidas:

- el resultado de cada instrucción no es ambíguo y depende solamente del estado actual de la ejecución
- debe ser posible ejecutar cada instrucción usando la computadora adoptada

Sólo podemos escribir instrucciones bien definidas:

- el resultado de cada instrucción no es ambíguo y depende solamente del estado actual de la ejecución
- debe ser posible ejecutar cada instrucción usando la computadora adoptada

Sólo podemos escribir instrucciones bien definidas:

- el resultado de cada instrucción no es ambíguo y depende solamente del estado actual de la ejecución
- debe ser posible ejecutar cada instrucción usando la computadora adoptada

Um algoritmo es correcto si:

- sólo utiliza instrucciones del modelo de computación adoptado,
- 2. termina para toda instancia del problema y
- devuelve una solución que correspondente a la instancia recibida.

- 1. Probar el algoritmo
 - con una o mas instancias de ejemplo
 - ejecutando o simulando el algoritmo
- 2. demostrar que el algoritmo está correcto
 - escribir una prueba formal genérica
 - vale para toda instancia del problema

Um algoritmo es correcto si:

- sólo utiliza instrucciones del modelo de computación adoptado,
- 2. termina para toda instancia del problema y
- devuelve una solución que correspondente a la instancia recibida.

- 1. Probar el algoritmo
 - con una o mas instancias de ejemplo
 - ejecutando o simulando el algoritmo
- 2. demostrar que el algoritmo está correcto
 - escribir una prueba formal genérica
 - vale para toda instancia del problema

Um algoritmo es correcto si:

- sólo utiliza instrucciones del modelo de computación adoptado,
- 2. termina para toda instancia del problema y
- devuelve una solución que correspondente a la instancia recibida.

- 1. Probar el algoritmo
 - con una o mas instancias de ejemplo
 - ejecutando o simulando el algoritmo
- demostrar que el algoritmo está correcto
 - escribir una prueba formal genérica
 - vale para toda instancia del problema

Um algoritmo es correcto si:

- sólo utiliza instrucciones del modelo de computación adoptado,
- 2. termina para toda instancia del problema y
- 3. devuelve una solución que correspondente a la instancia recibida.

- 1. Probar el algoritmo
 - con una o mas instancias de ejemplo
 - ejecutando o simulando el algoritmo
- demostrar que el algoritmo está correcto
 - escribir una prueba formal genérica
 - vale para toda instancia del problema

Um algoritmo es correcto si:

- sólo utiliza instrucciones del modelo de computación adoptado,
- 2. termina para toda instancia del problema y
- 3. devuelve una solución que correspondente a la instancia recibida.

- 1. Probar el algoritmo
 - con una o mas instancias de ejemplo
 - ejecutando o simulando el algoritmo
- demostrar que el algoritmo está correcto
 - escribir una prueba formal genérica
 - vale para toda instancia del problema

Um algoritmo es correcto si:

- sólo utiliza instrucciones del modelo de computación adoptado,
- 2. termina para toda instancia del problema y
- 3. devuelve una solución que correspondente a la instancia recibida.

- 1. Probar el algoritmo
 - con una o mas instancias de ejemplo
 - ejecutando o simulando el algoritmo
- demostrar que el algoritmo está correcto
 - escribir una prueba formal genérica
 - vale para toda instancia del problema

Um algoritmo es correcto si:

- sólo utiliza instrucciones del modelo de computación adoptado,
- 2. termina para toda instancia del problema y
- 3. devuelve una solución que correspondente a la instancia recibida.

- 1. Probar el algoritmo
 - con una o mas instancias de ejemplo
 - ejecutando o simulando el algoritmo
- 2. demostrar que el algoritmo está correcto
 - escribir una prueba formal genérica
 - vale para toda instancia del problema

Um algoritmo es correcto si:

- sólo utiliza instrucciones del modelo de computación adoptado,
- 2. termina para toda instancia del problema y
- 3. devuelve una solución que correspondente a la instancia recibida.

- 1. Probar el algoritmo
 - con una o mas instancias de ejemplo
 - ejecutando o simulando el algoritmo
- 2. demostrar que el algoritmo está correcto
 - escribir una prueba formal genérica
 - vale para toda instancia del problema

Um algoritmo es correcto si:

- sólo utiliza instrucciones del modelo de computación adoptado,
- 2. termina para toda instancia del problema y
- 3. devuelve una solución que correspondente a la instancia recibida.

- 1. Probar el algoritmo
 - con una o mas instancias de ejemplo
 - ejecutando o simulando el algoritmo
- 2. demostrar que el algoritmo está correcto
 - escribir una prueba formal genérica
 - vale para toda instancia del problema

Um algoritmo es correcto si:

- sólo utiliza instrucciones del modelo de computación adoptado,
- 2. termina para toda instancia del problema y
- 3. devuelve una solución que correspondente a la instancia recibida.

- 1. Probar el algoritmo
 - con una o mas instancias de ejemplo
 - ejecutando o simulando el algoritmo
- 2. demostrar que el algoritmo está correcto
 - escribir una prueba formal genérica
 - vale para toda instancia del problema

Um algoritmo es correcto si:

- 1. sólo utiliza instrucciones del modelo de computación adoptado,
- 2. termina para toda instancia del problema y
- 3. devuelve una solución que correspondente a la instancia recibida.

- 1. Probar el algoritmo
 - con una o mas instancias de ejemplo
 - ejecutando o simulando el algoritmo
- 2. demostrar que el algoritmo está correcto
 - escribir una prueba formal genérica
 - vale para toda instancia del problema

- No siempre es viable ejecutar un algoritmo
 - puede tardar años o siglos para terminar
 - puede necesitar mas memoria de la disponible
- Queremos
 - proyectar algoritmos eficientes
 - comparar algoritmos diferentes
- Para esto, necesitamos medir a complejidad del algoritmo
 - independentemente de quien lo programo,
 - del lenguaje en fue escrito
 - de la máquina que será usada

- No siempre es viable ejecutar un algoritmo
 - puede tardar años o siglos para terminar
 - puede necesitar mas memoria de la disponible
- Queremos
 - proyectar algoritmos eficientes
 - comparar algoritmos diferentes
- Para esto, necesitamos medir a complejidad del algoritmo
 - independentemente de quien lo programo,
 - del lenguaje en fue escrito
 - de la máquina que será usada

- No siempre es viable ejecutar un algoritmo
 - puede tardar años o siglos para terminar
 - puede necesitar mas memoria de la disponible
- Queremos
 - proyectar algoritmos eficientes
 - comparar algoritmos diferentes
- Para esto, necesitamos medir a complejidad del algoritmo
 - independentemente de quien lo programo,
 - del lenguaje en fue escrito
 - de la máquina que será usada

- No siempre es viable ejecutar un algoritmo
 - puede tardar años o siglos para terminar
 - puede necesitar mas memoria de la disponible

Queremos

- 1. proyectar algoritmos eficientes
- 2. comparar algoritmos diferentes
- Para esto, necesitamos medir a complejidad del algoritmo
 - independentemente de quien lo programo,
 - del lenguaje en fue escrito
 - de la máquina que será usada

- No siempre es viable ejecutar un algoritmo
 - puede tardar años o siglos para terminar
 - puede necesitar mas memoria de la disponible
- Queremos
 - 1. proyectar algoritmos eficientes
 - 2. comparar algoritmos diferentes
- Para esto, necesitamos medir a complejidad del algoritmo
 - independentemente de quien lo programo,
 - del lenguaje en fue escrito
 - de la máquina que será usada

- No siempre es viable ejecutar un algoritmo
 - puede tardar años o siglos para terminar
 - puede necesitar mas memoria de la disponible
- Queremos
 - 1. proyectar algoritmos eficientes
 - comparar algoritmos diferentes
- Para esto, necesitamos medir a complejidad del algoritmo
 - independentemente de quien lo programo,
 - del lenguaje en fue escrito
 - de la máquina que será usada

- No siempre es viable ejecutar un algoritmo
 - puede tardar años o siglos para terminar
 - puede necesitar mas memoria de la disponible
- Queremos
 - 1. proyectar algoritmos eficientes
 - comparar algoritmos diferentes
- Para esto, necesitamos medir a complejidad del algoritmo
 - independentemente de quien lo programo,
 - del lenguaje en fue escrito
 - de la máquina que será usada

- No siempre es viable ejecutar un algoritmo
 - puede tardar años o siglos para terminar
 - puede necesitar mas memoria de la disponible
- Queremos
 - 1. proyectar algoritmos eficientes
 - comparar algoritmos diferentes
- Para esto, necesitamos medir a complejidad del algoritmo
 - independentemente de quien lo programo,
 - del lenguaje en fue escrito
 - de la máquina que será usada

Complejidad Algorítmica

- No siempre es viable ejecutar un algoritmo
 - puede tardar años o siglos para terminar
 - puede necesitar mas memoria de la disponible
- Queremos
 - 1. proyectar algoritmos eficientes
 - comparar algoritmos diferentes
- Para esto, necesitamos medir a complejidad del algoritmo
 - independentemente de quien lo programo,
 - del lenguaje en fue escrito
 - de la máquina que será usada

Complejidad Algorítmica

- No siempre es viable ejecutar un algoritmo
 - puede tardar años o siglos para terminar
 - puede necesitar mas memoria de la disponible
- Queremos
 - 1. proyectar algoritmos eficientes
 - comparar algoritmos diferentes
- Para esto, necesitamos medir a complejidad del algoritmo
 - independentemente de quien lo programo,
 - del lenguaje en fue escrito
 - de la máquina que será usada

Vamos a estimar el tiempo de ejecución de un algoritmo

- contamos el número de instrucciones elementares ejecutadas
- suponemos que cada instrucción elemental consume un tiempo constante

- queremos un modelo computacional realista
- el conjunto de instrucciones elementales debe ser compatible con las computadoras modernas
- pero debe ser suficientemente genérico para las diferentes arquiteturas

Vamos a estimar el tiempo de ejecución de un algoritmo

- contamos el número de instrucciones elementares ejecutadas
- suponemos que cada instrucción elemental consume un tiempo constante

- queremos un modelo computacional realista
- el conjunto de instrucciones elementales debe ser compatible con las computadoras modernas
- pero debe ser suficientemente genérico para las diferentes arquiteturas

Vamos a estimar el tiempo de ejecución de un algoritmo

- contamos el número de instrucciones elementares ejecutadas
- suponemos que cada instrucción elemental consume un tiempo constante

- queremos un modelo computacional realista
- el conjunto de instrucciones elementales debe ser compatible con las computadoras modernas
- pero debe ser suficientemente genérico para las diferentes arquiteturas

Vamos a estimar el tiempo de ejecución de un algoritmo

- contamos el número de instrucciones elementares ejecutadas
- suponemos que cada instrucción elemental consume un tiempo constante

- queremos un modelo computacional realista
- el conjunto de instrucciones elementales debe ser compatible con las computadoras modernas
- pero debe ser suficientemente genérico para las diferentes arquiteturas

Vamos a estimar el tiempo de ejecución de un algoritmo

- contamos el número de instrucciones elementares ejecutadas
- suponemos que cada instrucción elemental consume un tiempo constante

- queremos un modelo computacional realista
- el conjunto de instrucciones elementales debe ser compatible con las computadoras modernas
- pero debe ser suficientemente genérico para las diferentes arquiteturas

Vamos a estimar el tiempo de ejecución de un algoritmo

- contamos el número de instrucciones elementares ejecutadas
- suponemos que cada instrucción elemental consume un tiempo constante

- queremos un modelo computacional realista
- el conjunto de instrucciones elementales debe ser compatible con las computadoras modernas
- pero debe ser suficientemente genérico para las diferentes arquiteturas

Vamos a estimar el tiempo de ejecución de un algoritmo

- contamos el número de instrucciones elementares ejecutadas
- suponemos que cada instrucción elemental consume un tiempo constante

- queremos un modelo computacional realista
- el conjunto de instrucciones elementales debe ser compatible con las computadoras modernas
- pero debe ser suficientemente genérico para las diferentes arquiteturas

Usaremos el Modelo Abstracto RAM (Random Access Machine)

- simula máquinas convencionales
- posee un único processador secuencial
- los tipos básicos son números enteros y puntos flotantes
- cada palabra de memoria tiene tamaño limitado, i.e.: los valores no pueden ser arbitrários

Instrucciones elementales

- operaciones aritméticas como suma, resta, producto...
- accesso directo a las posiciones de la memoria
- estructuras de control selectivas y repetitivas (si, mientras...)

Usaremos el Modelo Abstracto RAM (Random Access Machine)

- simula máquinas convencionales
- posee un único processador secuencial
- los tipos básicos son números enteros y puntos flotantes
- cada palabra de memoria tiene tamaño limitado, i.e.: los valores no pueden ser arbitrários

Instrucciones elementales

- operaciones aritméticas como suma, resta, producto...
- accesso directo a las posiciones de la memoria
- estructuras de control selectivas y repetitivas (si, mientras...)

Usaremos el Modelo Abstracto RAM (Random Access Machine)

- simula máquinas convencionales
- posee un único processador secuencial
- los tipos básicos son números enteros y puntos flotantes
- cada palabra de memoria tiene tamaño limitado, i.e.: los valores no pueden ser arbitrários

Instrucciones elementales

- operaciones aritméticas como suma, resta, producto...
- accesso directo a las posiciones de la memoria
- estructuras de control selectivas y repetitivas (si, mientras...)

Usaremos el Modelo Abstracto RAM (Random Access Machine)

- simula máquinas convencionales
- posee un único processador secuencial
- los tipos básicos son números enteros y puntos flotantes
- cada palabra de memoria tiene tamaño limitado, i.e.: los valores no pueden ser arbitrários

Instrucciones elementales

- operaciones aritméticas como suma, resta, producto...
- accesso directo a las posiciones de la memoria
- estructuras de control selectivas y repetitivas (si, mientras...)

Usaremos el Modelo Abstracto RAM (Random Access Machine)

- simula máquinas convencionales
- posee un único processador secuencial
- los tipos básicos son números enteros y puntos flotantes
- cada palabra de memoria tiene tamaño limitado, i.e.: los valores no pueden ser arbitrários

Instrucciones elementales

- operaciones aritméticas como suma, resta, producto...
- accesso directo a las posiciones de la memoria
- estructuras de control selectivas y repetitivas (si, mientras...)

Usaremos el Modelo Abstracto RAM (Random Access Machine)

- simula máquinas convencionales
- posee un único processador secuencial
- los tipos básicos son números enteros y puntos flotantes
- cada palabra de memoria tiene tamaño limitado, i.e.: los valores no pueden ser arbitrários

Instrucciones elementales

- operaciones aritméticas como suma, resta, producto...
- accesso directo a las posiciones de la memoria
- estructuras de control selectivas y repetitivas (si, mientras...)

Usaremos el Modelo Abstracto RAM (Random Access Machine)

- simula máquinas convencionales
- posee un único processador secuencial
- los tipos básicos son números enteros y puntos flotantes
- cada palabra de memoria tiene tamaño limitado, i.e.: los valores no pueden ser arbitrários

Instrucciones elementales

- operaciones aritméticas como suma, resta, producto...
- accesso directo a las posiciones de la memoria
- estructuras de control selectivas y repetitivas (si, mientras...)

Usaremos el Modelo Abstracto RAM (Random Access Machine)

- simula máquinas convencionales
- posee un único processador secuencial
- los tipos básicos son números enteros y puntos flotantes
- cada palabra de memoria tiene tamaño limitado, i.e.: los valores no pueden ser arbitrários

Instrucciones elementales

- operaciones aritméticas como suma, resta, producto...
- accesso directo a las posiciones de la memoria
- estructuras de control selectivas y repetitivas (si, mientras...)

Usaremos el Modelo Abstracto RAM (Random Access Machine)

- simula máquinas convencionales
- posee un único processador secuencial
- los tipos básicos son números enteros y puntos flotantes
- cada palabra de memoria tiene tamaño limitado, i.e.: los valores no pueden ser arbitrários

Instrucciones elementales

- operaciones aritméticas como suma, resta, producto...
- accesso directo a las posiciones de la memoria
- estructuras de control selectivas y repetitivas (si, mientras...)

Usaremos el Modelo Abstracto RAM (Random Access Machine)

- simula máquinas convencionales
- posee un único processador secuencial
- los tipos básicos son números enteros y puntos flotantes
- cada palabra de memoria tiene tamaño limitado, i.e.: los valores no pueden ser arbitrários

Instrucciones elementales

- operaciones aritméticas como suma, resta, producto...
- accesso directo a las posiciones de la memoria
- estructuras de control selectivas y repetitivas (si, mientras...)

Un parámetro importante es el tamaño de la entrada:

- normalmente proporcional al número de bits de la entrada
- también usamos el número de elementos del vecto

Problema: Primalidad

- Entrada: entero n
- ► Tamaño: [log₂ n] bits

- ▶ Entrada: vector A[1...n]
- ► Tamaño: $n\lceil \log_2 M \rceil$ bits, donde M es el máximo en A[1...n]

Un parámetro importante es el tamaño de la entrada:

- normalmente proporcional al número de bits de la entrada
- también usamos el número de elementos del vecto

Problema: Primalidad

- Entrada: entero n
- ► Tamaño: [log₂ n] bits

- ▶ Entrada: vector A[1...n]
- ► Tamaño: $n\lceil \log_2 M \rceil$ bits, donde M es el máximo en A[1...n]

Un parámetro importante es el tamaño de la entrada:

- normalmente proporcional al número de bits de la entrada
- también usamos el número de elementos del vector

Problema: Primalidad

Entrada: entero n

► Tamaño: [log₂ n] bits

- ▶ Entrada: vector A[1...n]
- ► Tamaño: $n\lceil \log_2 M \rceil$ bits, donde M es el máximo en A[1...n]

Un parámetro importante es el tamaño de la entrada:

- normalmente proporcional al número de bits de la entrada
- también usamos el número de elementos del vector

Problema: Primalidad

- Entrada: entero n
- ► Tamaño: [log₂ n] bits

- ▶ Entrada: vector A[1...n]
- ► Tamaño: $n\lceil \log_2 M \rceil$ bits, donde M es el máximo en A[1...n]

Un parámetro importante es el tamaño de la entrada:

- normalmente proporcional al número de bits de la entrada
- también usamos el número de elementos del vector

Problema: Primalidad

Entrada: entero n

► Tamaño: [log₂ n] bits

- ▶ Entrada: vector A[1...n]
- ► Tamaño: $n[\log_2 M]$ bits, donde M es el máximo en A[1...n]

Un parámetro importante es el tamaño de la entrada:

- normalmente proporcional al número de bits de la entrada
- también usamos el número de elementos del vector

Problema: Primalidad

Entrada: entero n

► Tamaño: [log₂ n] bits

- ▶ Entrada: vector A[1...n]
- ▶ Tamaño: $n\lceil \log_2 M \rceil$ bits, donde M es el máximo en A[1...n]

Un parámetro importante es el tamaño de la entrada:

- normalmente proporcional al número de bits de la entrada
- también usamos el número de elementos del vector

Problema: Primalidad

Entrada: entero n

► Tamaño: [log₂ n] bits

- ▶ Entrada: vector A[1...n]
- ► Tamaño: $n\lceil \log_2 M \rceil$ bits, donde M es el máximo en A[1...n]

Un parámetro importante es el tamaño de la entrada:

- normalmente proporcional al número de bits de la entrada
- también usamos el número de elementos del vector

Problema: Primalidad

Entrada: entero n

► Tamaño: [log₂ n] bits

Problema: Ordenamiento

► Entrada: vector A[1...n]

► Tamaño: $n\lceil \log_2 M \rceil$ bits, donde M es el máximo en A[1...n]

Un parámetro importante es el tamaño de la entrada:

- normalmente proporcional al número de bits de la entrada
- también usamos el número de elementos del vector

Problema: Primalidad

Entrada: entero n

► Tamaño: [log₂ n] bits

- ▶ Entrada: vector A[1...n]
- ► Tamaño: $n\lceil \log_2 M \rceil$ bits, donde M es el máximo en A[1...n]

Consideramos apenas instancias grandes

- el número de instrucciones normalmente crece con el tamaño de la entrada n
- instancias con tamaño limitado por constante gastan tiempos constantes

Hacemos apenas el análisis del peor caso

- restringimos la entrada con un dado tamaño n
- consideramos apenas una instancia para la cual el algoritmo ejecuta el mayor número de instrucciones

Consideramos apenas instancias grandes

- el número de instrucciones normalmente crece con el tamaño de la entrada n
- instancias con tamaño limitado por constante gastan tiempos constantes

Hacemos apenas el análisis del peor caso

- restringimos la entrada con un dado tamaño n
- consideramos apenas una instancia para la cual el algoritmo ejecuta el mayor número de instrucciones

Consideramos apenas instancias grandes

- el número de instrucciones normalmente crece con el tamaño de la entrada n
- instancias con tamaño limitado por constante gastan tiempos constantes

Hacemos apenas el análisis del peor casc

- restringimos la entrada con un dado tamaño n
- consideramos apenas una instancia para la cual el algoritmo ejecuta el mayor número de instrucciones

Consideramos apenas instancias grandes

- el número de instrucciones normalmente crece con el tamaño de la entrada n
- instancias con tamaño limitado por constante gastan tiempos constantes

Hacemos apenas el análisis del peor caso

- restringimos la entrada con un dado tamaño n
- consideramos apenas una instancia para la cual el algoritmo ejecuta el mayor número de instrucciones

Consideramos apenas instancias grandes

- el número de instrucciones normalmente crece con el tamaño de la entrada n
- instancias con tamaño limitado por constante gastan tiempos constantes

Hacemos apenas el análisis del peor caso

- restringimos la entrada con un dado tamaño n
- consideramos apenas una instancia para la cual el algoritmo ejecuta el mayor número de instrucciones

Consideramos apenas instancias grandes

- el número de instrucciones normalmente crece con el tamaño de la entrada n
- instancias con tamaño limitado por constante gastan tiempos constantes

Hacemos apenas el análisis del peor caso

- restringimos la entrada con un dado tamaño n
- consideramos apenas una instancia para la cual el algoritmo ejecuta el mayor número de instrucciones

Consideramos apenas instancias grandes

- el número de instrucciones normalmente crece con el tamaño de la entrada n
- instancias con tamaño limitado por constante gastan tiempos constantes

Hacemos apenas el análisis del peor caso

- restringimos la entrada con un dado tamaño n
- consideramos apenas una instancia para la cual el algoritmo ejecuta el mayor número de instrucciones

Características y limitaciones

Ese tipo de análisis de complejidad:

- normalmente estima bien el tiempo de ejecución real
- permite comparar diversos algoritmos para un problema
- continua siendo relevante aún con las evoluciones tecnológicas

Limitaciones:

- es una análisis pesimista del tiempo de execución
- en ciertas aplicaciones, ciertas instancias ocurren mas frecuentemente que el peor caso
- no provee información sobre tiempo de ejecución medic

Ese tipo de análisis de complejidad:

- normalmente estima bien el tiempo de ejecución real
- permite comparar diversos algoritmos para un problema
- continua siendo relevante aún con las evoluciones tecnológicas

- es una análisis pesimista del tiempo de execución
- en ciertas aplicaciones, ciertas instancias ocurren mas frecuentemente que el peor caso
- no provee información sobre tiempo de ejecución medic

Ese tipo de análisis de complejidad:

- normalmente estima bien el tiempo de ejecución real
- permite comparar diversos algoritmos para un problema
- continua siendo relevante aún con las evoluciones tecnológicas

- es una análisis pesimista del tiempo de execución
- en ciertas aplicaciones, ciertas instancias ocurren mas frecuentemente que el peor caso
- no provee información sobre tiempo de ejecución medic

Ese tipo de análisis de complejidad:

- normalmente estima bien el tiempo de ejecución real
- permite comparar diversos algoritmos para un problema
- continua siendo relevante aún con las evoluciones tecnológicas

- es una análisis pesimista del tiempo de execución
- en ciertas aplicaciones, ciertas instancias ocurren mas frecuentemente que el peor caso
- no provee información sobre tiempo de ejecución medio

Ese tipo de análisis de complejidad:

- normalmente estima bien el tiempo de ejecución real
- permite comparar diversos algoritmos para un problema
- continua siendo relevante aún con las evoluciones tecnológicas

- es una análisis pesimista del tiempo de execución
- en ciertas aplicaciones, ciertas instancias ocurren mas frecuentemente que el peor caso
- no provee información sobre tiempo de ejecución medio

Ese tipo de análisis de complejidad:

- normalmente estima bien el tiempo de ejecución real
- permite comparar diversos algoritmos para un problema
- continua siendo relevante aún con las evoluciones tecnológicas

- es una análisis pesimista del tiempo de execución
- en ciertas aplicaciones, ciertas instancias ocurren mas frecuentemente que el peor caso
- no provee información sobre tiempo de ejecución medic

Ese tipo de análisis de complejidad:

- normalmente estima bien el tiempo de ejecución real
- permite comparar diversos algoritmos para un problema
- continua siendo relevante aún con las evoluciones tecnológicas

- es una análisis pesimista del tiempo de execución
- en ciertas aplicaciones, ciertas instancias ocurren mas frecuentemente que el peor caso
- no provee información sobre tiempo de ejecución medic

Ese tipo de análisis de complejidad:

- normalmente estima bien el tiempo de ejecución real
- permite comparar diversos algoritmos para un problema
- continua siendo relevante aún con las evoluciones tecnológicas

- es una análisis pesimista del tiempo de execución
- en ciertas aplicaciones, ciertas instancias ocurren mas frecuentemente que el peor caso
- no provee información sobre tiempo de ejecución medio

Problema: ordenar los elementos de un vector

- ▶ Entrada: vector A[1...n]
- ightharpoonup Salida: redistribución de A[1...n] en orden creciente

Problema: ordenar los elementos de un vector

- ► Entrada: vector A[1...n]
- ▶ Salida: redistribución de A[1...n] en orden creciente

Problema: ordenar los elementos de un vector

- ► Entrada: vector A[1...n]
- ▶ Salida: redistribución de A[1...n] en orden creciente

Problema: ordenar los elementos de un vector

- ▶ Entrada: vector A[1...n]
- ▶ Salida: redistribución de A[1...n] en orden creciente

Idea del algoritmo

- ▶ suponga que el subvector A[1...j-1] ya está ordenado.
- ▶ vamos a insertar A[j] para que A[1...j] quede ordenado
- el valor del elemento a ser insertado se llama llave

Antes de insertar:

Idea del algoritmo

- ▶ suponga que el subvector A[1...j-1] ya está ordenado.
- ▶ vamos a insertar A[j] para que A[1...j] quede ordenado
- el valor del elemento a ser insertado se llama llave

Antes de insertar:

Idea del algoritmo

- ▶ suponga que el subvector A[1...j-1] ya está ordenado.
- ▶ vamos a insertar A[j] para que A[1...j] quede ordenado
- el valor del elemento a ser insertado se llama *llave*

Antes de insertar:

Idea del algoritmo

- ▶ suponga que el subvector A[1...j-1] ya está ordenado.
- ▶ vamos a insertar A[j] para que A[1...j] quede ordenado
- el valor del elemento a ser insertado se llama *llave*

Antes de insertar:

Idea del algoritmo

- ▶ suponga que el subvector A[1...j-1] ya está ordenado.
- ▶ vamos a insertar A[j] para que A[1...j] quede ordenado
- el valor del elemento a ser insertado se llama *llave*

Antes de insertar:

1						j				n
20	25	35	40	44	55	38	99	10	65	50

Idea del algoritmo

- ▶ suponga que el subvector A[1...j-1] ya está ordenado.
- ▶ vamos a insertar A[j] para que A[1...j] quede ordenado
- el valor del elemento a ser insertado se llama *llave*

Antes de insertar:

1						j				n
20	25	35	38	40	44	55	99	10	65	50

llave	1							j			n
99	20	25	35	38	40	44	55	99	10	65	50
llave	1								j		n
10	20	25	35	38	40	44	55	99	10	65	50

llave	1							j			n
99	20	25	35	38	40	44	55	99	10	65	50
llave	1								j		n
10	10	20	25	35	38	40	44	55	99	65	50

llave	1							j			n
99	20	25	35	38	40	44	55	99	10	65	50
llave	1								j		n
10	10	20	25	35	38	40	44	55	99	65	50
	_										
llave	1									j	n
65	10	20	25	35	38	40	44	55	99	65	50

llave	1							j			n
99	20	25	35	38	40	44	55	99	10	65	50
llave	1								j		n
10	10	20	25	35	38	40	44	55	99	65	50
llave	1									j	n
65	10	20	25	35	38	40	44	55	65	99	50

llave	1							j			n
99	20	25	35	38	40	44	55	99	10	65	50
llave	1								j		n
10	10	20	25	35	38	40	44	55	99	65	50
llave	1									j	n
65	10	20	25	35	38	40	44	55	65	99	50
llave	1										j
50	10	20	25	35	38	40	44	55	65	99	50

llave	1							j			n
99	20	25	35	38	40	44	55	99	10	65	50
llave	1								j		n
10	10	20	25	35	38	40	44	55	99	65	50
llave	1									j	n
CE											
65	10	20	25	35	38	40	44	55	65	99	50
llave	10	20	25	35	38	40	44	55	65	99	50 j

Pseudocódigo de Insertion-Sort

```
INSERTION-SORT(A, n)
1 para j \leftarrow 2 hasta n hacer
2 llave \leftarrow A[j]
3 i \leftarrow j - 1
4 mientras i \ge 1 y A[i] > llave hacer
5 A[i+1] \leftarrow A[i]
6 i \leftarrow i - 1
7 A[i+1] \leftarrow llave
```

- Correctitud
 - ya probamos el algoritmo con un ejemplo
 - mientras tanto, suponga que el algoritmo es correcto
 - después mostraremos que el algoritmo es correcto
- Complejidad de tiempo
 - considere vectores con n elementos
 - ¿cuántas instrucciones son ejecutadas ?

- Correctitud
 - ya probamos el algoritmo con un ejemplo
 - mientras tanto, suponga que el algoritmo es correcto
 - después mostraremos que el algoritmo es correcto
- Complejidad de tiempo
 - considere vectores con *n* elementoss
 - ¿cuántas instrucciones son ejecutadas

- Correctitud
 - ya probamos el algoritmo con un ejemplo
 - mientras tanto, suponga que el algoritmo es correcto
 - después mostraremos que el algoritmo es correcto
- Complejidad de tiempo
 - considere vectores con *n* elementosson
 - ¿cuántas instrucciones son ejecutadas?

- Correctitud
 - ya probamos el algoritmo con un ejemplo
 - mientras tanto, suponga que el algoritmo es correcto
 - después mostraremos que el algoritmo es correcto
- Complejidad de tiempo
 - considere vectores con n elementos
 - ¿cuántas instrucciones son ejecutadas

- Correctitud
 - ya probamos el algoritmo con un ejemplo
 - mientras tanto, suponga que el algoritmo es correcto
 - después mostraremos que el algoritmo es correcto
- Complejidad de tiempo
 - considere vectores con n elementos
 - ¿cuántas instrucciones son ejecutadas?

- Correctitud
 - ya probamos el algoritmo con un ejemplo
 - mientras tanto, suponga que el algoritmo es correcto
 - después mostraremos que el algoritmo es correcto
- Complejidad de tiempo
 - considere vectores con *n* elementos
 - ¿cuántas instrucciones son ejecutadas?

- Correctitud
 - ya probamos el algoritmo con un ejemplo
 - mientras tanto, suponga que el algoritmo es correcto
 - después mostraremos que el algoritmo es correcto
- Complejidad de tiempo
 - considere vectores con *n* elementos
 - ¿cuántas instrucciones son ejecutadas?

- Correctitud
 - ya probamos el algoritmo con un ejemplo
 - mientras tanto, suponga que el algoritmo es correcto
 - después mostraremos que el algoritmo es correcto
- Complejidad de tiempo
 - considere vectores con *n* elementos
 - ¿cuántas instrucciones son ejecutadas?

Ins	$\mathbf{SERTION-SORT}(A, n)$	Costo	¿Cuántas vece	s?
1 p	oara j ← 2 hasta n hacer	?	?	
2	llave ← $A[j]$?	?	
3	$i \leftarrow j - 1$?	?	
4	mientras $i \ge 1$ y $A[i] > $ <i>llave</i> hacer	?	?	
5	$A[i+1] \leftarrow A[i]$?	?	
6	$i \leftarrow i - 1$?	?	
7	$A[i+1] \leftarrow llave$?	?	

- la línea k ejecuta un número constante de instrucciones
- cada línea se ejecuta una o mas veces

Ins	SERTION-SORT(A, n)	Costo	¿Cuántas veces?
1 p	oara j ← 2 hasta n hacer	c_1	?
2	llave ← $A[j]$	<i>c</i> ₂	?
3	$i \leftarrow j - 1$	<i>c</i> ₃	?
4	mientras $i \ge 1$ y $A[i] > llave$ hacer	<i>c</i> ₄	?
5	$A[i+1] \leftarrow A[i]$	C ₅	?
6	$i \leftarrow i - 1$	c ₆	?
7	$A[i+1] \leftarrow llave$	C ₇	?

- la línea k ejecuta un número constante de instrucciones C_k
- cada línea se ejecuta una o mas veces

1 para $j \leftarrow 2$ hasta n hacer c_1 ? 2 $llave \leftarrow A[j]$ c_2 ?	veces?
2 $ \mathbf{Jave} \leftarrow A[i] $ co. 2	
L mayo Mpj	
$3 i \leftarrow j-1$ c_3 ?	
4 mientras $i \ge 1$ y $A[i] > $ llave hacer c_4 ?	
$5 A[i+1] \leftarrow A[i] c_5 ?$	
6 $i \leftarrow i-1$ c_6 ?	
7 $A[i+1] \leftarrow llave$ c_7 ?	

- la línea k ejecuta un número constante de instrucciones C_k
- cada línea se ejecuta una o mas veces

	NSERTION-SORT(A,n)	Costo	¿Cuántas veces?
	1 para j ← 2 hasta n hacer	c_1	n
	2 $llave \leftarrow A[j]$	c ₂	?
	$3 i \leftarrow j-1$	<i>c</i> ₃	?
	4 mientras $i \ge 1$ y $A[i] > llave$ hacer	<i>c</i> ₄	?
	$A[i+1] \leftarrow A[i]$	C ₅	?
($i \leftarrow i - 1$	c ₆	?
	$A[i+1] \leftarrow llave$	c ₇	?

- la línea *k* ejecuta un número constante de instrucciones C_k
- cada línea se ejecuta una o mas veces

_1	NSERTION-SORT(A, n)	Costo	¿Cuántas veces?
1	. para j ← 2 hasta n hacer	c_1	n
2	2 $llave \leftarrow A[j]$	<i>c</i> ₂	n-1
3	$3 i \leftarrow j-1$	<i>c</i> ₃	?
4	mientras $i \ge 1$ y $A[i] > llave$ hacer	<i>c</i> ₄	?
5	$A[i+1] \leftarrow A[i]$	C ₅	?
6	$i \leftarrow i - 1$	c ₆	?
7	$A[i+1] \leftarrow llave$	c ₇	?

- la línea k ejecuta un número constante de instrucciones C_k
- cada línea se ejecuta una o mas veces

Ins	SERTION-SORT(A, n)	Costo	¿Cuántas veces?
1 p	oara j ← 2 hasta n hacer	c_1	n
2	llave ← $A[j]$	<i>c</i> ₂	n-1
3	$i \leftarrow j - 1$	<i>c</i> ₃	n-1
4	mientras $i \ge 1$ y $A[i] > llave$ hacer	<i>c</i> ₄	?
5	$A[i+1] \leftarrow A[i]$	C ₅	?
6	$i \leftarrow i - 1$	c ₆	?
7	$A[i+1] \leftarrow llave$	<i>c</i> ₇	?

- la línea k ejecuta un número constante de instrucciones C_k
- cada línea se ejecuta una o mas veces

1143	$\mathbf{SERTION}\mathbf{-SORT}(A,n)$	Costo	¿Cuántas veces?
1 p	ara j ← 2 hasta n hacer	c_1	n
2	llave ← $A[j]$	<i>c</i> ₂	n-1
3	$i \leftarrow j - 1$	<i>c</i> ₃	n-1
4	mientras $i \ge 1$ y $A[i] > llave$ hacer	<i>c</i> ₄	?
5	$A[i+1] \leftarrow A[i]$	<i>c</i> ₅	?
6	$i \leftarrow i - 1$	c ₆	?
7	$A[i+1] \leftarrow llave$	c ₇	?

- ▶ la línea k ejecuta un número constante de instrucciones c_k
- cada línea se ejecuta una o mas veces
- cuantas veces la línea 4 ejecuta es algo que depende de la entrada

 $[\]triangleright$ sea t_i cuantas veces mientras se ejecuta para un cierto

Ins	SERTION-SORT (A, n)	Costo	¿Cuántas veces?
1 1	para j ← 2 hasta n hacer	c_1	n
2	$llave \leftarrow A[j]$	<i>c</i> ₂	n – 1
3	$i \leftarrow j - 1$	<i>c</i> ₃	n – 1
4	mientras $i \ge 1$ y $A[i] > llave$ hacer	<i>c</i> ₄	$\sum_{j=2}^{n} t_j$
5	$A[i+1] \leftarrow A[i]$	<i>c</i> ₅	?
6	$i \leftarrow i - 1$	c ₆	?
7	$A[i+1] \leftarrow llave$	C ₇	?

- ▶ la línea k ejecuta un número constante de instrucciones
 c_k
- cada línea se ejecuta una o mas veces
- cuantas veces la línea 4 ejecuta es algo que depende de la entrada
 - sea t_j cuantas veces mientras se ejecuta para un cierto j

Ins	SERTION-SORT(A, n)	Costo	¿Cuántas veces?
1 1	para j ← 2 hasta n hacer	c_1	n
2	llave ← $A[j]$	<i>c</i> ₂	n-1
3	$i \leftarrow j - 1$	<i>c</i> ₃	n-1
4	mientras $i \ge 1$ y $A[i] > llave$ hacer	<i>c</i> ₄	$\sum_{j=2}^{n} t_j$
5	$A[i+1] \leftarrow A[i]$	<i>c</i> ₅	$\sum_{j=2}^{n} (t_j - 1)$
6	$i \leftarrow i - 1$	c ₆	?
7	$A[i+1] \leftarrow llave$	<i>c</i> ₇	?

- la línea k ejecuta un número constante de instrucciones c_k
- cada línea se ejecuta una o mas veces
- cuantas veces la línea 4 ejecuta es algo que depende de la entrada
 - sea t_j cuantas veces mientras se ejecuta para un cierto j

Ins	SERTION-SORT (A, n)	Costo	¿Cuántas veces?
1 p	oara j ← 2 hasta n hacer	c_1	n
2	$llave \leftarrow A[j]$	<i>c</i> ₂	n – 1
3	$i \leftarrow j - 1$	<i>c</i> ₃	n – 1
4	mientras $i \ge 1$ y $A[i] > llave$ hacer	<i>c</i> ₄	$\sum_{j=2}^{n} t_j$
5	$A[i+1] \leftarrow A[i]$	c ₅	$\sum_{j=2}^{n} (t_j - 1)$
6	$i \leftarrow i - 1$	c ₆	$\sum_{j=2}^{n} (t_j - 1)$
7	$A[i+1] \leftarrow llave$	<i>c</i> ₇	?

- la línea k ejecuta un número constante de instrucciones c_k
- cada línea se ejecuta una o mas veces
- cuantas veces la línea 4 ejecuta es algo que depende de la entrada
 - sea t_j cuantas veces mientras se ejecuta para un cierto j

Ins	SERTION-SORT(A, n)	Costo	¿Cuántas veces?
1 p	oara j ← 2 hasta n hacer	c_1	n
2	$llave \leftarrow A[j]$	<i>c</i> ₂	n – 1
3	$i \leftarrow j - 1$	<i>c</i> ₃	n – 1
4	mientras $i \ge 1$ y $A[i] > $ <i>llave</i> hacer	<i>c</i> ₄	$\sum_{j=2}^{n} t_j$
5	$A[i+1] \leftarrow A[i]$	<i>c</i> ₅	$\sum_{j=2}^{n}(t_j-1)$
6	$i \leftarrow i - 1$	c ₆	$\sum_{j=2}^{n} (t_j - 1)$
7	$A[i+1] \leftarrow llave$	<i>c</i> ₇	n-1

- la línea k ejecuta un número constante de instrucciones c_k
- cada línea se ejecuta una o mas veces
- cuantas veces la línea 4 ejecuta es algo que depende de la entrada
 - sea t_j cuantas veces mientras se ejecuta para un cierto j

- Considere una instancia de tamaño n
- Sea T(n) el número de instrucciones ejecutadas para ella
- Basta sumar para todas las líneas

$$T(n) = c_1 \cdot n + c_2 \cdot (n-1) + c_3 \cdot (n-1) + c_4 \cdot \sum_{j=2}^{n} t_j + c_5 \cdot \sum_{j=2}^{n} (t_j - 1) + c_6 \cdot \sum_{j=2}^{n} (t_j - 1) + c_7 \cdot (n-1)$$

- las entradas del mismo tamaño tienen tiempos diferentes
- vamos a considerar diferentes instancias
 - $hildsymbol{ iny}$ mejor caso: cuando T(n) es el menor posible
 - ightharpoonup peor caso: cuando T(n) es el mayor posible

- Considere una instancia de tamaño n
- ▶ Sea T(n) el número de instrucciones ejecutadas para ella
- Basta sumar para todas las líneas

$$T(n) = c_1 \cdot n + c_2 \cdot (n-1) + c_3 \cdot (n-1) + c_4 \cdot \sum_{j=2}^{n} t_j + c_5 \cdot \sum_{j=2}^{n} (t_j - 1) + c_6 \cdot \sum_{j=2}^{n} (t_j - 1) + c_7 \cdot (n-1)$$

- las entradas del mismo tamaño tienen tiempos diferentes
- vamos a considerar diferentes instancias
 - $hildsymbol{ iny}$ mejor caso: cuando T(n) es el menor posible
 - ightharpoonup peor caso: cuando T(n) es el mayor posible

- Considere una instancia de tamaño n
- ▶ Sea T(n) el número de instrucciones ejecutadas para ella
- Basta sumar para todas las líneas

$$T(n) = c_1 \cdot n + c_2 \cdot (n-1) + c_3 \cdot (n-1) + c_4 \cdot \sum_{j=2}^{n} t_j + c_5 \cdot \sum_{j=2}^{n} (t_j - 1) + c_6 \cdot \sum_{j=2}^{n} (t_j - 1) + c_7 \cdot (n-1)$$

- las entradas del mismo tamaño tienen tiempos diferentes
- vamos a considerar diferentes instancias
 - ightharpoonup mejor caso: cuando T(n) es el menor posible
 - ightharpoonup peor caso: cuando T(n) es el mayor posible

- Considere una instancia de tamaño n
- ▶ Sea T(n) el número de instrucciones ejecutadas para ella
- Basta sumar para todas las líneas

$$T(n) = c_1 \cdot n + c_2 \cdot (n-1) + c_3 \cdot (n-1) + c_4 \cdot \sum_{j=2}^{n} t_j + c_5 \cdot \sum_{j=2}^{n} (t_j - 1) + c_6 \cdot \sum_{j=2}^{n} (t_j - 1) + c_7 \cdot (n-1)$$

- las entradas del mismo tamaño tienen tiempos diferentes
- vamos a considerar diferentes instancias
 - ightharpoonup mejor caso: cuando T(n) es el menor posible
 - peor caso: cuando T(n) es el mayor posible

- Considere una instancia de tamaño n
- Sea T(n) el número de instrucciones ejecutadas para ella
- Basta sumar para todas las líneas

$$T(n) = c_1 \cdot n + c_2 \cdot (n-1) + c_3 \cdot (n-1) + c_4 \cdot \sum_{j=2}^{n} t_j + c_5 \cdot \sum_{j=2}^{n} (t_j - 1) + c_6 \cdot \sum_{j=2}^{n} (t_j - 1) + c_7 \cdot (n-1)$$

- las entradas del mismo tamaño tienen tiempos diferentes
- vamos a considerar diferentes instancias
 - mejor caso: cuando T(n) es el menor posible
 - peor caso: cuando I (n) es el mayor posible

- Considere una instancia de tamaño n
- Sea T(n) el número de instrucciones ejecutadas para ella
- Basta sumar para todas las líneas

$$T(n) = c_1 \cdot n + c_2 \cdot (n-1) + c_3 \cdot (n-1) + c_4 \cdot \sum_{j=2}^{n} t_j + c_5 \cdot \sum_{j=2}^{n} (t_j - 1) + c_6 \cdot \sum_{j=2}^{n} (t_j - 1) + c_7 \cdot (n-1)$$

- las entradas del mismo tamaño tienen tiempos diferentes
- vamos a considerar diferentes instancias
 - ightharpoonup mejor caso: cuando T(n) es el menor posible
 - **peor caso:** cuando T(n) es el mayor posible

- Considere una instancia de tamaño n
- ▶ Sea T(n) el número de instrucciones ejecutadas para ella
- Basta sumar para todas las líneas

$$T(n) = c_1 \cdot n + c_2 \cdot (n-1) + c_3 \cdot (n-1) + c_4 \cdot \sum_{j=2}^{n} t_j + c_5 \cdot \sum_{j=2}^{n} (t_j - 1) + c_6 \cdot \sum_{j=2}^{n} (t_j - 1) + c_7 \cdot (n-1)$$

- las entradas del mismo tamaño tienen tiempos diferentes
- vamos a considerar diferentes instancias
 - **mejor caso:** cuando T(n) es el menor posible
 - **peor caso:** cuando T(n) es el mayor posible

- Considere una instancia de tamaño n
- ▶ Sea T(n) el número de instrucciones ejecutadas para ella
- Basta sumar para todas las líneas

$$T(n) = c_1 \cdot n + c_2 \cdot (n-1) + c_3 \cdot (n-1) + c_4 \cdot \sum_{j=2}^{n} t_j + c_5 \cdot \sum_{j=2}^{n} (t_j - 1) + c_6 \cdot \sum_{j=2}^{n} (t_j - 1) + c_7 \cdot (n-1)$$

- las entradas del mismo tamaño tienen tiempos diferentes
- vamos a considerar diferentes instancias
 - **mejor caso:** cuando T(n) es el menor posible
 - **peor caso:** cuando T(n) es el mayor posible

Un mejor caso ocurre cuando $t_j = 1$ para cada j

- basta que la condición del mientras siempre falle
- ocurre si la entrada A ya está ordenada

$$T(n) = c_1 \cdot n + c_2 \cdot (n-1) + c_3 \cdot (n-1) + c_4 \cdot (n-1) + c_7 \cdot (n-1)$$

= $(c_1 + c_2 + c_3 + c_4 + c_7) \cdot n - (c_2 + c_3 + c_4 + c_7)$
= $a \cdot n + b$

- los valores de a y b son constantes
- el tiempo de ejecución en el mejor caso es lineal en n

Un mejor caso ocurre cuando $t_j=1$ para cada j

- basta que la condición del mientras siempre falle
- ocurre si la entrada A ya está ordenada

$$T(n) = c_1 \cdot n + c_2 \cdot (n-1) + c_3 \cdot (n-1) + c_4 \cdot (n-1) + c_7 \cdot (n-1)$$

$$= (c_1 + c_2 + c_3 + c_4 + c_7) \cdot n - (c_2 + c_3 + c_4 + c_7)$$

$$= a \cdot n + b$$

- los valores de a y b son constantes
- el tiempo de ejecución en el mejor caso es lineal en n

Un mejor caso ocurre cuando $t_j=1$ para cada j

- basta que la condición del mientras siempre falle
- ocurre si la entrada A ya está ordenada

$$T(n) = c_1 \cdot n + c_2 \cdot (n-1) + c_3 \cdot (n-1) + c_4 \cdot (n-1) + c_7 \cdot (n-1)$$

$$= (c_1 + c_2 + c_3 + c_4 + c_7) \cdot n - (c_2 + c_3 + c_4 + c_7)$$

$$= a \cdot n + b$$

- los valores de a y b son constantes
- la el tiempo de ejecución en el mejor caso es lineal en n

Un mejor caso ocurre cuando $t_j=1$ para cada j

- basta que la condición del mientras siempre falle
- ocurre si la entrada A ya está ordenada

$$T(n) = c_1 \cdot n + c_2 \cdot (n-1) + c_3 \cdot (n-1) + c_4 \cdot (n-1) + c_7 \cdot (n-1)$$

= $(c_1 + c_2 + c_3 + c_4 + c_7) \cdot n - (c_2 + c_3 + c_4 + c_7)$
= $a \cdot n + b$

- los valores de a y b son constantes
- la el tiempo de ejecución en el mejor caso es lineal en n

Un mejor caso ocurre cuando $t_j=1$ para cada j

- basta que la condición del mientras siempre falle
- ocurre si la entrada A ya está ordenada

$$T(n) = c_1 \cdot n + c_2 \cdot (n-1) + c_3 \cdot (n-1) + c_4 \cdot (n-1) + c_7 \cdot (n-1)$$

= $(c_1 + c_2 + c_3 + c_4 + c_7) \cdot n - (c_2 + c_3 + c_4 + c_7)$
= $a \cdot n + b$

- los valores de a y b son constantes
- la el tiempo de ejecución en el mejor caso es lineal en n

Un mejor caso ocurre cuando $t_j=1$ para cada j

- basta que la condición del mientras siempre falle
- ocurre si la entrada A ya está ordenada

$$T(n) = c_1 \cdot n + c_2 \cdot (n-1) + c_3 \cdot (n-1) + c_4 \cdot (n-1) + c_7 \cdot (n-1)$$

= $(c_1 + c_2 + c_3 + c_4 + c_7) \cdot n - (c_2 + c_3 + c_4 + c_7)$
= $a \cdot n + b$

- los valores de *a* y *b* son constantes
- la el tiempo de ejecución en el mejor caso es lineal en n

Un mejor caso ocurre cuando $t_j=1$ para cada j

- basta que la condición del mientras siempre falle
- ocurre si la entrada A ya está ordenada

$$T(n) = c_1 \cdot n + c_2 \cdot (n-1) + c_3 \cdot (n-1) + c_4 \cdot (n-1) + c_7 \cdot (n-1)$$

= $(c_1 + c_2 + c_3 + c_4 + c_7) \cdot n - (c_2 + c_3 + c_4 + c_7)$
= $a \cdot n + b$

- los valores de a y b son constantes
- le l tiempo de ejecución en el mejor caso es lineal en n

Un peor caso ocurre cuando t_j es máximo para cada j

- basta que la condición del mientras falle cuando i = 0
- en esa situación, tendremos que $t_i = j$
- ocurre si la entrada A está ordenada decrecientemente

$$\sum_{j=2}^{n} j = n(n+1)/2 - 1$$
 e $\sum_{j=2}^{n} (j-1) = n(n-1)/2$

Un peor caso ocurre cuando t_j es máximo para cada j

- ▶ basta que la condición del mientras falle cuando *i* = 0
- en esa situación, tendremos que $t_j = j$
- ocurre si la entrada A está ordenada decrecientemente

$$ightharpoonup \sum_{j=2}^{n} j = n(n+1)/2 - 1$$
 e $\sum_{j=2}^{n} (j-1) = n(n-1)/2$

Un peor caso ocurre cuando t_j es máximo para cada j

- ▶ basta que la condición del mientras falle cuando *i* = 0
- en esa situación, tendremos que $t_j = j$
- ocurre si la entrada A está ordenada decrecientemente

$$ightharpoonup \sum_{j=2}^{n} j = n(n+1)/2 - 1$$
 e $\sum_{j=2}^{n} (j-1) = n(n-1)/2$

Un peor caso ocurre cuando t_j es máximo para cada j

- basta que la condición del mientras falle cuando i = 0
- en esa situación, tendremos que $t_j = j$
- ocurre si la entrada A está ordenada decrecientemente

$$ightharpoonup \sum_{j=2}^{n} j = n(n+1)/2 - 1$$
 e $\sum_{j=2}^{n} (j-1) = n(n-1)/2$

Un peor caso ocurre cuando t_j es máximo para cada j

- ▶ basta que la condición del mientras falle cuando i = 0
- en esa situación, tendremos que $t_j = j$
- ocurre si la entrada A está ordenada decrecientemente

$$ightharpoonup \sum_{j=2}^{n} j = n(n+1)/2 - 1$$
 e $\sum_{j=2}^{n} (j-1) = n(n-1)/2$

Un peor caso ocurre cuando t_j es máximo para cada j

- ▶ basta que la condición del mientras falle cuando i = 0
- en esa situación, tendremos que $t_j = j$
- ocurre si la entrada A está ordenada decrecientemente

$$\sum_{j=2}^{n} j = n(n+1)/2 - 1$$
 e $\sum_{j=2}^{n} (j-1) = n(n-1)/2$

Peor caso (cont)

Sustituyendo, tenemos

$$T(n) = c_1 \cdot n + c_2 \cdot (n-1) + c_3 \cdot (n-1) + c_4 \cdot (n(n+1)/2 - 1) + c_5 \cdot n(n-1)/2 + c_6 \cdot n(n-1)/2 + c_7 \cdot (n-1)$$

$$= (c_4/2 + c_5/2 + c_6/2) \cdot n^2 + (c_1 + c_2 + c_3 + c_4/2 - c_5/2 - c_6/2 + c_7) \cdot n - (c_2 + c_3 + c_4 + c_7)$$

$$= a \cdot n^2 + b \cdot n + c$$

- los valores de *a*, *b*, *c* son constantes
- le l tiempo de ejecución en el peor caso es cuadrático en n

Estamos interesados principalmente

- en el análisis del peor caso
- en el tiempo de ejecución para instancias grandes

Comportamiento asintótico

- en el peor caso tenemos $T(n) = an^2 + bn + c$
 - la el término dominante es el que contiene n^2
 - el tiempo de ejecución es una función cuadrática
 - las constantes a, b, c sólo dependen de la implementación
- no nos preocupamos con los valores de a, b, c

Estamos interesados principalmente

- en el análisis del peor caso
- en el tiempo de ejecución para instancias grandes

Comportamiento asintótico

- en el peor caso tenemos $T(n) = an^2 + bn + c$
 - el término dominante es el que contiene n²
 - el tiempo de ejecución es una función cuadrática
 - las constantes a, b, c sólo dependen de la implementación
- no nos preocupamos con los valores de a, b, c

Estamos interesados principalmente

- en el análisis del peor caso
- en el tiempo de ejecución para instancias grandes

Comportamiento asintótico

- en el peor caso tenemos $T(n) = an^2 + bn + c$
 - le l'érmino dominante es el que contiene n²
 - la el tiempo de ejecución es una función cuadrática
 - las constantes a, b, c sólo dependen de la implementación
- no nos preocupamos con los valores de a, b, c

Estamos interesados principalmente

- en el análisis del peor caso
- en el tiempo de ejecución para instancias grandes

Comportamiento asintótico

- en el peor caso tenemos $T(n) = an^2 + bn + c$
 - le l'érmino dominante es el que contiene n²
 - la el tiempo de ejecución es una función cuadrática
 - las constantes a, b, c sólo dependen de la implementación
- no nos preocupamos con los valores de a, b, c

Estamos interesados principalmente

- en el análisis del peor caso
- en el tiempo de ejecución para instancias grandes

Comportamiento asintótico

- en el peor caso tenemos $T(n) = an^2 + bn + c$
 - la el término dominante es el que contiene n^2
 - el tiempo de ejecución es una función cuadrática
 - las constantes a, b, c sólo dependen de la implementación
- no nos preocupamos con los valores de a, b, c

Estamos interesados principalmente

- en el análisis del peor caso
- en el tiempo de ejecución para instancias grandes

Comportamiento asintótico

- en el peor caso tenemos $T(n) = an^2 + bn + c$
 - ightharpoonup el término dominante es el que contiene n^2
 - el tiempo de ejecución es una función cuadrática
 - las constantes a, b, c sólo dependen de la implementación
- no nos preocupamos con los valores de a, b, c

Estamos interesados principalmente

- en el análisis del peor caso
- en el tiempo de ejecución para instancias grandes

Comportamiento asintótico

- en el peor caso tenemos $T(n) = an^2 + bn + c$
 - la el término dominante es el que contiene n^2
 - le l tiempo de ejecución es una función cuadrática
 - las constantes a, b, c sólo dependen de la implementación
- no nos preocupamos con los valores de a,b,c

Estamos interesados principalmente

- en el análisis del peor caso
- en el tiempo de ejecución para instancias grandes

Comportamiento asintótico

- en el peor caso tenemos $T(n) = an^2 + bn + c$
 - la el término dominante es el que contiene n^2
 - la el tiempo de ejecución es una función cuadrática
 - las constantes *a,b,c* sólo dependen de la implementación
- no nos preocupamos con los valores de a, b, c

Estamos interesados principalmente

- en el análisis del peor caso
- en el tiempo de ejecución para instancias grandes

Comportamiento asintótico

- en el peor caso tenemos $T(n) = an^2 + bn + c$
 - la el término dominante es el que contiene n^2
 - le l tiempo de ejecución es una función cuadrática
 - las constantes *a,b,c* sólo dependen de la implementación
- no nos preocupamos con los valores de a,b,c

Estamos interesados principalmente

- en el análisis del peor caso
- en el tiempo de ejecución para instancias grandes

Comportamiento asintótico

- en el peor caso tenemos $T(n) = an^2 + bn + c$
 - la el término dominante es el que contiene n^2
 - le l tiempo de ejecución es una función cuadrática
 - las constantes *a,b,c* sólo dependen de la implementación
- no nos preocupamos con los valores de a,b,c

64	12978	12288
128	50482	49152
512	791602	786432
1024	3156018	3145728
2048	12603442	12582912
4096	50372658	50331648
8192	201408562	201326592
16384	805470258	
	3221553202	3221225472

- cuando *n* es grande, el término $3n^2$ es una buena estimativa
- podemos concentrarnos en los términos dominantes

n	$3n^2 + 10n + 50$	3n ²
64	12978	12288
128	50482	49152
512	791602	786432
1024	3156018	3145728
2048	12603442	12582912
4096	50372658	50331648
8192	201408562	201326592
16384	805470258	805306368
32768	3221553202	3221225472

- cuando n es grande, el término 3n² es una buena estimativa
- podemos concentrarnos en los términos dominantes

n	$3n^2 + 10n + 50$	3n ²
64	12978	12288
128	50482	49152
512	791602	786432
1024	3156018	3145728
2048	12603442	12582912
4096	50372658	50331648
8192	201408562	201326592
16384	805470258	805306368
32768	3221553202	3221225472

- cuando *n* es grande, el término $3n^2$ es una buena estimativa
- podemos concentrarnos en los términos dominantes

n	$3n^2 + 10n + 50$	3n ²
64	12978	12288
128	50482	49152
512	791602	786432
1024	3156018	3145728
2048	12603442	12582912
4096	50372658	50331648
8192	201408562	201326592
16384	805470258	805306368
32768	3221553202	3221225472

- cuando *n* es grande, el término $3n^2$ es una buena estimativa
- podemos concentrarnos en los términos dominantes

¿Cómo simplificar el tiempo del peor caso de Insertion-Sort?

- en lugar de escribir $T(n) = an^2 + bn + c$,
- escribimos solamente $T(n) = \Theta(n^2)$

Esa notación significa que, para n suficientemente grande,

- 1. T(n) es limitada superiormente por $c \cdot n^2$, para algún c > 0
- 2. T(n) es limitada inferiormente por $d \cdot n^2$, para algún d > 0

¿Cómo simplificar el tiempo del peor caso de Insertion-Sort?

- en lugar de escribir $T(n) = an^2 + bn + c$,
- escribimos solamente $T(n) = \Theta(n^2)$

Esa notación significa que, para n suficientemente grande,

- 1. T(n) es limitada superiormente por $c \cdot n^2$, para algún c > 0
- 2. T(n) es limitada inferiormente por $d \cdot n^2$, para algún d > 0

¿Cómo simplificar el tiempo del peor caso de Insertion-Sort?

- en lugar de escribir $T(n) = an^2 + bn + c$,
- escribimos solamente $T(n) = \Theta(n^2)$

Esa notación significa que, para n suficientemente grande,

- 1. T(n) es limitada superiormente por $c \cdot n^2$, para algún c > 0
- 2. T(n) es limitada inferiormente por $d \cdot n^2$, para algún d > 0

¿Cómo simplificar el tiempo del peor caso de Insertion-Sort?

- en lugar de escribir $T(n) = an^2 + bn + c$,
- escribimos solamente $T(n) = \Theta(n^2)$

Esa notación significa que, para n suficientemente grande,

- 1. T(n) es limitada superiormente por $c \cdot n^2$, para algún c > 0
- 2. T(n) es limitada inferiormente por $d \cdot n^2$, para algún d > 0

¿Cómo simplificar el tiempo del peor caso de Insertion-Sort?

- en lugar de escribir $T(n) = an^2 + bn + c$,
- escribimos solamente $T(n) = \Theta(n^2)$

Esa notación significa que, para n suficientemente grande,

- 1. T(n) es limitada superiormente por $c \cdot n^2$, para algún c > 0
- 2. T(n) es limitada inferiormente por $d \cdot n^2$, para algún d > 0

¿Cómo simplificar el tiempo del peor caso de Insertion-Sort?

- en lugar de escribir $T(n) = an^2 + bn + c$,
- escribimos solamente $T(n) = \Theta(n^2)$

Esa notación significa que, para n suficientemente grande,

- 1. T(n) es limitada superiormente por $c \cdot n^2$, para algún c > 0
- 2. T(n) es limitada inferiormente por $d \cdot n^2$, para algún d > 0

¿Cómo simplificar el tiempo del peor caso de Insertion-Sort?

- en lugar de escribir $T(n) = an^2 + bn + c$,
- escribimos solamente $T(n) = \Theta(n^2)$

Esa notación significa que, para n suficientemente grande,

- 1. T(n) es limitada superiormente por $c \cdot n^2$, para algún c > 0
- 2. T(n) es limitada inferiormente por $d \cdot n^2$, para algún d > 0

Proyectando Algoritmos

▶ Divide y Venceras

Hasta ahora:

- ordenamos incrementalmente con Insertion-Sort
- ▶ vimos que su complejidad para el peor caso es $\Theta(n^2)$

- vamos a utilizar una técnica recursiva llamada divide y vencerás
- muchas veces, obtenemos algoritmos mas rápidos que los incrementales

Hasta ahora:

- ordenamos incrementalmente con Insertion-Sort
- ▶ vimos que su complejidad para el peor caso es $\Theta(n^2)$

- vamos a utilizar una técnica recursiva llamada divide y vencerás
- muchas veces, obtenemos algoritmos mas rápidos que los incrementales

Hasta ahora:

- ordenamos incrementalmente con Insertion-Sort
- ▶ vimos que su complejidad para el peor caso es $\Theta(n^2)$

- vamos a utilizar una técnica recursiva llamada divide y vencerás
- muchas veces, obtenemos algoritmos mas rápidos que los incrementales

Hasta ahora:

- ordenamos incrementalmente con Insertion-Sort
- ▶ vimos que su complejidad para el peor caso es $\Theta(n^2)$

- vamos a utilizar una técnica recursiva llamada divide y vencerás
- muchas veces, obtenemos algoritmos mas rápidos que los incrementales

Hasta ahora:

- ordenamos incrementalmente con Insertion-Sort
- ▶ vimos que su complejidad para el peor caso es $\Theta(n^2)$

- vamos a utilizar una técnica recursiva llamada divide y vencerás
- muchas veces, obtenemos algoritmos mas rápidos que los incrementales

Hasta ahora:

- ordenamos incrementalmente con Insertion-Sort
- ▶ vimos que su complejidad para el peor caso es $\Theta(n^2)$

- vamos a utilizar una técnica recursiva llamada divide y vencerás
- muchas veces, obtenemos algoritmos mas rápidos que los incrementales

- Un algoritmo recursivo resuelve un problema
 - directamente, si la instancia fuese pequeña
 - ejecutandose a sí mesmo, si la instancia no fuese pequeña
- La llamada recursiva debe reciber una instancia menor

- Un algoritmo recursivo resuelve un problema
 - directamente, si la instancia fuese pequeña
 - ejecutandose a sí mesmo, si la instancia no fuese pequeña
- La llamada recursiva debe reciber una instancia menor

- Un algoritmo recursivo resuelve un problema
 - directamente, si la instancia fuese pequeña
 - ejecutandose a sí mesmo, si la instancia no fuese pequeña
- La llamada recursiva debe reciber una instancia menor

- Un algoritmo recursivo resuelve un problema
 - directamente, si la instancia fuese pequeña
 - ejecutandose a sí mesmo, si la instancia no fuese pequeña
- La llamada recursiva debe reciber una instancia menor

- Un algoritmo recursivo resuelve un problema
 - directamente, si la instancia fuese pequeña
 - ejecutandose a sí mesmo, si la instancia no fuese pequeña
- La llamada recursiva debe reciber una instancia menor

Divide y Vencerás

Un algoritmo de divisão e conquista tiene tres etapas:

- 1. División: dividir el problema en subproblemas semejantes, pero con instancias menores
- Conquista: cada subproblema es resuelto recursivamente, o directamente si los subproblemas fuesen pequeños
- Combinación: las soluciones de los subproblemas son combinadas para obtener uma solución de la instancia original

Divide y Vencerás

Un algoritmo de divisão e conquista tiene tres etapas:

- 1. División: dividir el problema en subproblemas semejantes, pero con instancias menores
- Conquista: cada subproblema es resuelto recursivamente, o directamente si los subproblemas fuesen pequeños
- Combinación: las soluciones de los subproblemas son combinadas para obtener uma solución de la instancia original

Divide y Vencerás

Un algoritmo de divisão e conquista tiene tres etapas:

- 1. División: dividir el problema en subproblemas semejantes, pero con instancias menores
- 2. Conquista: cada subproblema es resuelto recursivamente, o directamente si los subproblemas fuesen pequeños
- Combinación: las soluciones de los subproblemas son combinadas para obtener uma solución de la instancia original

Divide y Vencerás

Un algoritmo de divisão e conquista tiene tres etapas:

- 1. División: dividir el problema en subproblemas semejantes, pero con instancias menores
- 2. Conquista: cada subproblema es resuelto recursivamente, o directamente si los subproblemas fuesen pequeños
- Combinación: las soluciones de los subproblemas son combinadas para obtener uma solución de la instancia original

Merge-Sort es um ejemplo clásico de divide y vencerás.

Idea

- División: divide un vector de tamaño n en dos subvectores de tamaños [n/2] y [n/2]
- 2. Conquista: ordene los dos subvectores recursivamente
- Combinación: intercala los dos subvectores obteniendo un vector ordenado

Merge-Sort es um ejemplo clásico de divide y vencerás.

- 1. División: divide un vector de tamaño n en dos subvectores de tamaños $\lfloor n/2 \rfloor$ y $\lceil n/2 \rceil$
- 2. Conquista: ordene los dos subvectores recursivamente
- Combinación: intercala los dos subvectores obteniendo un vector ordenado

Merge-Sort es um ejemplo clásico de divide y vencerás.

- 1. División: divide un vector de tamaño n en dos subvectores de tamaños $\lfloor n/2 \rfloor$ y $\lceil n/2 \rceil$
- 2. Conquista: ordene los dos subvectores recursivamente
- Combinación: intercala los dos subvectores obteniendo un vector ordenado

Merge-Sort es um ejemplo clásico de divide y vencerás.

- 1. División: divide un vector de tamaño n en dos subvectores de tamaños $\lfloor n/2 \rfloor$ y $\lceil n/2 \rceil$
- 2. Conquista: ordene los dos subvectores recursivamente
- Combinación: intercala los dos subvectores obteniendo un vector ordenado

Merge-Sort es um ejemplo clásico de divide y vencerás.

- 1. División: divide un vector de tamaño n en dos subvectores de tamaños $\lfloor n/2 \rfloor$ y $\lceil n/2 \rceil$
- 2. Conquista: ordene los dos subvectores recursivamente
- 3. Combinación: intercala los dos subvectores obteniendo un vector ordenado

```
MERGE-SORT(A, p, r)

1 si p < r

2 entonces q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 INTERCAMBIA(A, p, q, r)
```

	p				q				r
Α	66	33	55	44	99	11	77	22	88

Merge-Sort(A, p, r)						
1	si p < r					
2	entonces $q \leftarrow \lfloor (p+r)/2 \rfloor$					
3	Merge-Sort(A,p,q)					
4	Merge-Sort $(A, q + 1, r)$					
5	Intercambia (A, p, q, r)					


```
\begin{array}{ll} \textbf{Merge-Sort}(A,p,r) \\ 1 & \text{si } p < r \\ 2 & \text{entonces } q \leftarrow \lfloor (p+r)/2 \rfloor \\ 3 & \text{Merge-Sort}(A,p,q) \\ 4 & \text{Merge-Sort}(A,q+1,r) \\ \hline 5 & \text{Intercambia}(A,p,q,r) \end{array}
```



```
MERGE-SORT(A, p, r)

1 si p < r

2 entonces q \leftarrow \lfloor (p+r)/2 \rfloor

3 Merge-Sort(A, p, q)

4 Merge-Sort(A, q+1, r)

5 Intercambia(A, p, q, r)
```

	p				q				r
Α	11	22	33	44	55	66	77	88	99

Problema: Intercalar dos subvectores

Entrada: vector A[p...r] tal que

- 1. subvector A[p...q] está ordenado
- 2. subvector A[q+1...r] está ordenado

Salida: vector A[p...r] ordenado

Entrada:

Problema: Intercalar dos subvectores

Entrada: vector A[p...r] tal que

- 1. subvector A[p...q] está ordenado
- 2. subvector A[q+1...r] está ordenado

Salida: vector A[p...r] ordenado

Entrada:

Problema: Intercalar dos subvectores

Entrada: vector A[p...r] tal que

1. subvector A[p...q] está ordenado

2. subvector A[q+1...r] está ordenado

Salida: vector A[p...r] ordenado

Entrada:

Problema: Intercalar dos subvectores

Entrada: vector A[p...r] tal que

- 1. subvector A[p...q] está ordenado
- 2. subvector A[q+1...r] está ordenado

Salida: vector A[p...r] ordenado

Entrada:

Problema: Intercalar dos subvectores

Entrada: vector A[p...r] tal que

- 1. subvector A[p...q] está ordenado
- 2. subvector A[q+1...r] está ordenado

Salida: vector A[p...r] ordenado

Entrada:

Problema: Intercalar dos subvectores

Entrada: vector A[p...r] tal que

- 1. subvector A[p...q] está ordenado
- 2. subvector A[q+1...r] está ordenado

Salida: vector A[p...r] ordenado

Entrada:

Problema: Intercalar dos subvectores

Entrada: vector A[p...r] tal que

- 1. subvector A[p...q] está ordenado
- 2. subvector A[q+1...r] está ordenado

Salida: vector A[p...r] ordenado

Entrada:

Problema: Intercalar dos subvectores

Entrada: vector A[p...r] tal que

- 1. subvector A[p...q] está ordenado
- 2. subvector A[q+1...r] está ordenado

Salida: vector A[p...r] ordenado

Entrada:

Problema: Intercalar dos subvectores

Entrada: vector A[p...r] tal que

- 1. subvector A[p...q] está ordenado
- 2. subvector A[q+1...r] está ordenado

Salida: vector A[p...r] ordenado

Entrada:

Pseudocódigo de Intercambia

```
INTERCAMBIA(A, p, q, r)
      para i \leftarrow p hasta q hacer
          B[i] \leftarrow A[i]
 3 para j \leftarrow q + 1 hasta r hacer
 4 B[r+q+1-j] \leftarrow A[j]
 5 \quad i \leftarrow p
 6 i \leftarrow r
 7 para k \leftarrow p hasta r hacer
 8
           si B[i] \leq B[j]
 9
               entonces A[k] \leftarrow B[i]
10
                             i \leftarrow i + 1
               sino A[k] \leftarrow B[i]
11
12
                      i \leftarrow i - 1
```


В

Complejidad de Intercambia

Entrada:

Salida:

Tamaño da entrada: n = r - p + 1

Consumo de tiempo: $\Theta(n)$

Ordenando por intercalación

	Р				q				r	
Α	66	33	55	44	99	11	77	22	88	

Ordenando por intercalación

	р				q				r	
Α	11	22	33	44	55	66	77	88	99	

Ordenando por intercalación

	Р				q				r	
Α	11	22	33	44	55	66	77	88	99	

- ► Tamaño de la entrada: n = r p + 1
- ▶ Sea T(n) el número de instrucciones ejecutadas en el peor caso

```
\begin{array}{ll} \textbf{MERGE-SORT}(A,p,r) \\ 1 & \text{si } p < r \\ 2 & \text{entonces } q \leftarrow \lfloor (p+r)/2 \rfloor \\ 3 & \text{MERGE-SORT}(A,p,q) \\ 4 & \text{MERGE-SORT}(A,q+1,r) \\ 5 & \text{INTERCAMBIA}(A,p,q,r) \end{array}
```

- ► Tamaño de la entrada: n = r p + 1
- Sea T(n) el número de instrucciones ejecutadas en el peor caso

```
\begin{array}{ll} \textbf{MERGE-SORT}(A,p,r) \\ 1 & \text{si } p < r \\ 2 & \text{entonces } q \leftarrow \lfloor (p+r)/2 \rfloor \\ 3 & \text{MERGE-SORT}(A,p,q) \\ 4 & \text{MERGE-SORT}(A,q+1,r) \\ 5 & \text{INTERCAMBIA}(A,p,q,r) \end{array}
```

- ▶ Tamaño de la entrada: n = r p + 1
- Sea I (n) el número de instrucciones ejecutadas en el peor caso

```
MERGE-SORT(A, p, r)

1 si p < r

2 entonces q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 INTERCAMBIA(A, p, q, r)
```

- ▶ Tamaño de la entrada: n = r p + 1
- ▶ Sea T(n) el número de instrucciones ejecutadas en el peor caso

```
\begin{array}{ll} \textbf{Merge-Sort}(A,p,r) \\ 1 & \text{si } p < r \\ 2 & \text{entonces } q \leftarrow \lfloor (p+r)/2 \rfloor \\ 3 & \text{Merge-Sort}(A,p,q) \\ 4 & \text{Merge-Sort}(A,q+1,r) \\ 5 & \text{Intercambia}(A,p,q,r) \end{array}
```

Línea	Tiempo			
1	?			
2	?			
3	?			
4	?			
5	?			
T(n) = ?				

```
MERGE-SORT(A, p, r)

1 si p < r

2 entonces q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 INTERCAMBIA(A, p, q, r)
```

Línea	Tiempo
1	$\Theta(1)$
2	$\Theta(1)$
3	$T(\lceil n/2 \rceil)$
4	$T(\lfloor n/2 \rfloor)$
5	$\Theta(n)$
	T(n) = ?

```
MERGE-SORT(A, p, r)

1 si p < r

2 entonces q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 INTERCAMBIA(A, p, q, r)
```

Línea	Tiempo
1	$\Theta(1)$
2	$\Theta(1)$
3	$T(\lceil n/2 \rceil)$
4	$T(\lfloor n/2 \rfloor)$
5	$\Theta(n)$

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n) + \Theta(2)$$

El tiempo de Merge-Sort está dado por la fórmula

$$T(n) = \begin{cases} \Theta(1) & \text{se } n = 1 \\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n) & \text{se } n = 2, 3, 4, \dots \end{cases}$$

Obtenemos una fórmula de recurrencia

- es la descripción de una función en términos de sí misma.
- el tiempo de un algoritmo recursivo acostumbra ser descrito por una recurrencia

- ▶ En ese caso, $T(n) = \Theta(n \log n)$
- Aprenderemos a resolver después las recurrencias

El tiempo de Merge-Sort está dado por la fórmula

$$T(n) = \begin{cases} \Theta(1) & \text{se } n = 1 \\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n) & \text{se } n = 2, 3, 4, \dots \end{cases}$$

Obtenemos una fórmula de recurrencia

- es la descripción de una función en términos de sí misma.
- el tiempo de un algoritmo recursivo acostumbra ser descrito por una recurrencia

- ▶ En ese caso, $T(n) = \Theta(n \log n)$
- Aprenderemos a resolver después las recurrencias

El tiempo de Merge-Sort está dado por la fórmula

$$T(n) = \begin{cases} \Theta(1) & \text{se } n = 1 \\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n) & \text{se } n = 2, 3, 4, \dots \end{cases}$$

Obtenemos una fórmula de recurrencia

- es la descripción de una función en términos de sí misma.
- el tiempo de un algoritmo recursivo acostumbra ser descrito por una recurrencia

- ▶ En ese caso, $T(n) = \Theta(n \log n)$
- Aprenderemos a resolver después las recurrencias

El tiempo de Merge-Sort está dado por la fórmula

$$T(n) = \begin{cases} \Theta(1) & \text{se } n = 1 \\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n) & \text{se } n = 2, 3, 4, \dots \end{cases}$$

Obtenemos una fórmula de recurrencia

- es la descripción de una función en términos de sí misma.
- el tiempo de un algoritmo recursivo acostumbra ser descrito por una recurrencia

- ▶ En ese caso, $T(n) = \Theta(n \log n)$
- Aprenderemos a resolver después las recurrencias

El tiempo de Merge-Sort está dado por la fórmula

$$T(n) = \begin{cases} \Theta(1) & \text{se } n = 1 \\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n) & \text{se } n = 2, 3, 4, \dots \end{cases}$$

Obtenemos una fórmula de recurrencia

- es la descripción de una función en términos de sí misma.
- el tiempo de un algoritmo recursivo acostumbra ser descrito por una recurrencia

- ▶ En ese caso, $T(n) = \Theta(n \log n)$
- Aprenderemos a resolver después las recurrencias

El tiempo de Merge-Sort está dado por la fórmula

$$T(n) = \begin{cases} \Theta(1) & \text{se } n = 1 \\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n) & \text{se } n = 2, 3, 4, \dots \end{cases}$$

Obtenemos una fórmula de recurrencia

- es la descripción de una función en términos de sí misma.
- el tiempo de un algoritmo recursivo acostumbra ser descrito por una recurrencia

- ▶ En ese caso, $T(n) = \Theta(n \log n)$
- Aprenderemos a resolver después las recurrencias

El tiempo de Merge-Sort está dado por la fórmula

$$T(n) = \begin{cases} \Theta(1) & \text{se } n = 1 \\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n) & \text{se } n = 2, 3, 4, \dots \end{cases}$$

Obtenemos una fórmula de recurrencia

- es la descripción de una función en términos de sí misma.
- el tiempo de un algoritmo recursivo acostumbra ser descrito por una recurrencia

- ▶ En ese caso, $T(n) = \Theta(n \log n)$
- Aprenderemos a resolver después las recurrencias

El tiempo de Merge-Sort está dado por la fórmula

$$T(n) = \begin{cases} \Theta(1) & \text{se } n = 1 \\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n) & \text{se } n = 2, 3, 4, \dots \end{cases}$$

Obtenemos una fórmula de recurrencia

- es la descripción de una función en términos de sí misma.
- el tiempo de un algoritmo recursivo acostumbra ser descrito por una recurrencia

- ▶ En ese caso, $T(n) = \Theta(n \log n)$
- Aprenderemos a resolver después las recurrencias

Proyectando Algoritmos

► Entendiendo la importancia de algoritmos eficientes

Que diferencia hace tener un algoritmo $\Theta(n^2)$ o $\Theta(n \log n)$?

Suponga que queremos ordenar un vector de n elementos

- 1. Usando una computadora A con velocidad de 1 GHz y cor un algoritmo que ejecuta $2n^2$ instrucciones.
- 2. Usando una computadora B con velocidad de 10MHz y con un algoritmo que ejecuta $50n \log n$ instrucciones.

- La computadora A es 100 veces mas rápida que la computadora B.
- La constante multiplicativa de la segunda es mucho mayor:
 - puede ser debido a un lenguaje de mas alto nível
 - o debido a un programador con menos experiencia

Que diferencia hace tener un algoritmo $\Theta(n^2)$ o $\Theta(n \log n)$?

Suponga que queremos ordenar un vector de *n* elementos

- 1. Usando una computadora A con velocidad de 1 GHz y con un algoritmo que ejecuta $2n^2$ instrucciones.
- 2. Usando una computadora B con velocidad de 10MHz y con un algoritmo que ejecuta $50n \log n$ instrucciones.

- La computadora A es 100 veces mas rápida que la computadora B.
- La constante multiplicativa de la segunda es mucho mayor:
 - puede ser debido a un lenguaje de mas alto nível
 - o debido a un programador con menos experiencia

Que diferencia hace tener un algoritmo $\Theta(n^2)$ o $\Theta(n \log n)$?

Suponga que queremos ordenar un vector de n elementos

- 1. Usando una computadora A con velocidad de 1 GHz y con un algoritmo que ejecuta $2n^2$ instrucciones.
- 2. Usando una computadora B con velocidad de 10MHz y con un algoritmo que ejecuta $50n \log n$ instrucciones.

- La computadora A es 100 veces mas rápida que la computadora B.
- La constante multiplicativa de la segunda es mucho mayor:
 - puede ser debido a un lenguaje de mas alto nível
 - o debido a un programador con menos experiencia

Que diferencia hace tener un algoritmo $\Theta(n^2)$ o $\Theta(n \log n)$?

Suponga que queremos ordenar un vector de n elementos

- 1. Usando una computadora A con velocidad de 1 GHz y con un algoritmo que ejecuta $2n^2$ instrucciones.
- 2. Usando una computadora B con velocidad de 10MHz y con un algoritmo que ejecuta $50n \log n$ instrucciones.

- La computadora A es 100 veces mas rápida que la computadora B.
- La constante multiplicativa de la segunda es mucho mayor:
 - puede ser debido a un lenguaje de mas alto nível
 o debido a un programados con monos experiences

Que diferencia hace tener un algoritmo $\Theta(n^2)$ o $\Theta(n \log n)$?

Suponga que queremos ordenar un vector de n elementos

- 1. Usando una computadora A con velocidad de 1 GHz y con un algoritmo que ejecuta $2n^2$ instrucciones.
- 2. Usando una computadora B con velocidad de 10MHz y con un algoritmo que ejecuta $50n \log n$ instrucciones.

- La computadora A es 100 veces mas rápida que la computadora B.
- La constante multiplicativa de la segunda es mucho mayor:
 - puede ser debido a un lenguaje de mas alto nível
 - o debido a un programador con menos experiencia

Que diferencia hace tener un algoritmo $\Theta(n^2)$ o $\Theta(n \log n)$?

Suponga que queremos ordenar un vector de n elementos

- 1. Usando una computadora A con velocidad de 1 GHz y con un algoritmo que ejecuta $2n^2$ instrucciones.
- 2. Usando una computadora B con velocidad de 10MHz y con un algoritmo que ejecuta $50n \log n$ instrucciones.

- La computadora A es 100 veces mas rápida que la computadora B.
- La constante multiplicativa de la segunda es mucho mayor:
 - puede ser debido a un lenguaje de mas alto nível
 o debido a un programador con menos experiencies

Que diferencia hace tener un algoritmo $\Theta(n^2)$ o $\Theta(n \log n)$?

Suponga que queremos ordenar un vector de *n* elementos

- 1. Usando una computadora A con velocidad de 1 GHz y con un algoritmo que ejecuta $2n^2$ instrucciones.
- 2. Usando una computadora B con velocidad de 10MHz y con un algoritmo que ejecuta $50n \log n$ instrucciones.

- La computadora A es 100 veces mas rápida que la computadora B.
- La constante multiplicativa de la segunda es mucho mayor:
 - puede ser debido a un lenguaje de mas alto níve
 - o debido a un programador con menos experiencia

Que diferencia hace tener un algoritmo $\Theta(n^2)$ o $\Theta(n \log n)$?

Suponga que queremos ordenar un vector de *n* elementos

- 1. Usando una computadora A con velocidad de 1 GHz y con un algoritmo que ejecuta $2n^2$ instrucciones.
- 2. Usando una computadora B con velocidad de 10MHz y con un algoritmo que ejecuta $50n \log n$ instrucciones.

- La computadora A es 100 veces mas rápida que la computadora B.
- La constante multiplicativa de la segunda es mucho mayor:
 - puede ser debido a un lenguaje de mas alto nível
 - o debido a un programador con menos experiencia

Que diferencia hace tener un algoritmo $\Theta(n^2)$ o $\Theta(n \log n)$?

Suponga que queremos ordenar un vector de *n* elementos

- 1. Usando una computadora A con velocidad de 1 GHz y con un algoritmo que ejecuta $2n^2$ instrucciones.
- 2. Usando una computadora B con velocidad de 10MHz y con un algoritmo que ejecuta $50n \log n$ instrucciones.

- La computadora A es 100 veces mas rápida que la computadora B.
- La constante multiplicativa de la segunda es mucho mayor:
 - puede ser debido a un lenguaje de mas alto nível
 - o debido a un programador con menos experiencia

Que implementación ordena un millón de elementos primero?

1. La máquina A demora

$$2\cdot (10^6)^2$$
instrucciones $= 2000$ segundos $= 2000$ segundos

$$rac{50\cdot \left(10^6\log 10^6
ight)$$
instrucciones $}{10^7$ instrucciones /segundo

- La máquina B fue veinte veces mas rápida que la máquina A
- Si fuesen 10 milloness de elementos, la proporción sería de 2,3 días contra 20 minutos

Que implementación ordena un millón de elementos primero?

1. La máquina A demora

$$\frac{2 \cdot (10^6)^2 instrucciones}{10^9 instrucciones / segundo} \approx 2000 segundos$$

$$rac{50\cdot \left(10^6\log 10^6
ight)$$
instrucciones 10^7 instrucciones /segundo

- La máquina B fue veinte veces mas rápida que la máquina A
- Si fuesen 10 milloness de elementos, la proporción sería de 2,3 días contra 20 minutos

Que implementación ordena un millón de elementos primero?

1. La máquina A demora

$$\frac{2 \cdot (10^6)^2 instrucciones}{10^9 instrucciones / segundo} \approx 2000 segundos$$

$$\frac{50 \cdot \left(10^6 \log 10^6\right) instrucciones}{10^7 instrucciones \ / segundo} \approx 100 segundos$$

- La máquina B fue veinte veces mas rápida que la máquina A
- Si fuesen 10 milloness de elementos, la proporción sería de 2,3 días contra 20 minutos

Que implementación ordena un millón de elementos primero?

1. La máquina A demora

$$\frac{2 \cdot (10^6)^2 instrucciones}{10^9 instrucciones / segundo} \approx 2000 segundos$$

$$\frac{50 \cdot \left(10^6 \log 10^6\right) instrucciones}{10^7 instrucciones \ / segundo} \approx 100 segundos$$

- La máquina *B* fue veinte veces mas rápida que la máquina *A*
- Si fuesen 10 milloness de elementos, la proporción sería de 2,3 días contra 20 minutos

Que implementación ordena un millón de elementos primero?

1. La máquina A demora

$$\frac{2 \cdot (10^6)^2 instrucciones}{10^9 instrucciones / segundo} \approx 2000 segundos$$

$$\frac{50 \cdot \left(10^6 \log 10^6\right) instrucciones}{10^7 instrucciones \ / segundo} \approx 100 segundos$$

- La máquina *B* fue veinte veces mas rápida que la máquina *A*
- Si fuesen 10 milloness de elementos, la proporción sería de 2,3 días contra 20 minutos

Y ¿si usaramos una supercomputadora?

Computador atual	100×mas rápido	1000×mas rápido

Y ¿si usaramos una supercomputadora?

f(n)	Computador atual	100×mas rápido	1000×mas rápido
n	N_1	100 <i>N</i> ₁	1000 <i>N</i> ₁

Y ¿si usaramos una supercomputadora?

f(n)	Computador atual	100×mas rápido	1000×mas rápido
n	N_1	100 <i>N</i> ₁	1000 <i>N</i> ₁
n^2	N ₂	10N ₂	31,6N ₂

Y ¿si usaramos una supercomputadora?

f(n)	Computador atual	100×mas rápido	1000×mas rápido
n	N_1	100 <i>N</i> ₁	1000 <i>N</i> ₁
n^2	N ₂	10N ₂	31,6N ₂
n^3	N ₃	4,64N ₃	10 <i>N</i> ₃

Y ¿si usaramos una supercomputadora?

f(n)	Computador atual	100×mas rápido	1000×mas rápido
n	N_1	100 <i>N</i> ₁	1000 <i>N</i> ₁
n^2	N ₂	10 <i>N</i> ₂	31,6N ₂
n ³	N ₃	4,64N ₃	10 <i>N</i> ₃
n^5	N_4	2,5N ₄	3,98N ₄

Y ¿si usaramos una supercomputadora?

f(n)	Computador atual	100×mas rápido	1000×mas rápido
n	N_1	100 <i>N</i> ₁	1000 <i>N</i> ₁
n^2	N ₂	10 <i>N</i> ₂	31,6N ₂
n^3	N ₃	4,64N ₃	10 <i>N</i> ₃
n ⁵	N_4	2,5N ₄	3,98N ₄
2 ⁿ	N_5	$N_5 + 6,64$	$N_5 + 9,97$

Y ¿si usaramos una supercomputadora?

f(n)	Computador atual	100×mas rápido	1000×mas rápido
n	N_1	100 <i>N</i> ₁	1000 <i>N</i> ₁
n^2	N ₂	10N ₂	31,6N ₂
n^3	N ₃	4,64N ₃	10 <i>N</i> ₃
n ⁵	N_4	2,5N ₄	3,98N ₄
2 ⁿ	N_5	$N_5 + 6,64$	$N_5 + 9,97$

Y ¿si usaramos una supercomputadora?

f(n)	Computador atual	100×mas rápido	1000×mas rápido
n	N_1	100 <i>N</i> ₁	1000 <i>N</i> ₁
n^2	N ₂	10N ₂	31,6N ₂
n ³	N ₃	4,64N ₃	10 <i>N</i> ₃
n ⁵	N_4	2,5N ₄	3,98N ₄
2 ⁿ	N ₅	$N_5 + 6,64$	$N_5 + 9,97$
3 ⁿ	N ₆	$N_6 + 4,19$	$N_6 + 6,29$

Y ¿si usaramos una supercomputadora?

f(n)	Computador atual	100×mas rápido	1000×mas rápido
n	N_1	100 <i>N</i> ₁	1000 <i>N</i> ₁
n^2	N ₂	10N ₂	31,6N ₂
n ³	N ₃	4,64N ₃	10 <i>N</i> ₃
n ⁵	N_4	2,5N ₄	3,98N ₄
2 ⁿ	N ₅	N ₅ + 6,64	$N_5 + 9,97$
3 ⁿ	N ₆	$N_6 + 4,19$	$N_6 + 6,29$

- Hacer proyectos mejores algoritmos puede llevar a ganancias extraordinárias de desempeño.
- Un buen proyecto de algoritmos es tan importante cuanto el proyecto de hardware.
- La ganancia obtenida al mejorar la complejidad de ur algoritmo no podría ser obtenida simplemente con el avance de la tecnología.
- Queremos estudiar principalmente algoritmos fundamentales, que producen avances en otros componentes básicos de las aplicaciones (piense en los compiladores, buscadores en la internet, clasificadores, etc).

- ► Hacer proyectos mejores algoritmos puede llevar a ganancias extraordinárias de desempeño.
- Un buen proyecto de algoritmos es tan importante cuanto el proyecto de hardware.
- La ganancia obtenida al mejorar la complejidad de un algoritmo no podría ser obtenida simplemente con el avance de la tecnología.
- Queremos estudiar principalmente algoritmos fundamentales, que producen avances en otros componentes básicos de las aplicaciones (piense en los compiladores, buscadores en la internet, clasificadores, etc).

- ► Hacer proyectos mejores algoritmos puede llevar a ganancias extraordinárias de desempeño.
- Un buen proyecto de algoritmos es tan importante cuanto el proyecto de hardware.
- La ganancia obtenida al mejorar la complejidad de un algoritmo no podría ser obtenida simplemente con el avance de la tecnología.
- Queremos estudiar principalmente algoritmos fundamentales, que producen avances en otros componentes básicos de las aplicaciones (piense en los compiladores, buscadores en la internet, clasificadores, etc).

- ► Hacer proyectos mejores algoritmos puede llevar a ganancias extraordinárias de desempeño.
- Un buen proyecto de algoritmos es tan importante cuanto el proyecto de hardware.
- La ganancia obtenida al mejorar la complejidad de un algoritmo no podría ser obtenida simplemente con el avance de la tecnología.
- Queremos estudiar principalmente algoritmos fundamentales, que producen avances en otros componentes básicos de las aplicaciones (piense en los compiladores, buscadores en la internet, clasificadores, etc).

- ► Hacer proyectos mejores algoritmos puede llevar a ganancias extraordinárias de desempeño.
- Un buen proyecto de algoritmos es tan importante cuanto el proyecto de hardware.
- La ganancia obtenida al mejorar la complejidad de un algoritmo no podría ser obtenida simplemente con el avance de la tecnología.
- Queremos estudiar principalmente algoritmos fundamentales, que producen avances en otros componentes básicos de las aplicaciones (piense en los compiladores, buscadores en la internet, clasificadores, etc).