Étude de la fonction Γ sur \mathbb{R} :

I Le développement

Le but de ce développement est de donner quelques résultats fondamentaux sur la fonction Γ d'Euler et d'en déduire l'allure de son graphe.

Proposition 1 : [Gourdon, p.315]

- * Γ est bien définie et de classe \mathcal{C}^{∞} sur $]0; +\infty[$.
- * La fonction Γ est log-convexe sur $]0; +\infty[$.
- * Pour tout $x \in \mathbb{R}_+^*$, $\Gamma(x+1) = x\Gamma(x)$.

En particulier pour tout $n \in \mathbb{N}$, $\Gamma(n+1) = n!$.

* On a $\Gamma(x) \sim \frac{1}{x}$ et $\lim_{x \to +\infty} \frac{\Gamma(x)}{x} = +\infty$.

Preuve:

On considère la fonction Γ d'Euler définie par :

$$\Gamma: \left| \begin{array}{ccc} \mathbb{R}_+^* & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \int_0^{+\infty} e^{-t} t^{x-1} \mathrm{d}t \end{array} \right|$$

- * On considère la fonction f définie sur $\mathbb{R}_+^* \times \mathbb{R}_+^*$ par $f(x,t) = e^{-t}t^{x-1}$. La fonction $f(x,\cdot)$ est continue donc localement intégrable sur \mathbb{R}_+^* et de plus, pour x>0 on a :
- Au voisinage de $+\infty$: $\frac{f(x,t)}{\frac{1}{t^2}} = e^{-t}t^{x+1} \xrightarrow[t \to +\infty]{} 0$, donc $f(x,t) = o(\frac{1}{t^2})$.
- Au voisinage de $0^+: f(x,t) \underset{t\to 0^+}{\sim} t^{x-1}$ (avec x-1>-1).

Ainsi, par comparaison de fonctions positives et intégrables, on en déduit que f est intégrable au voisinage de 0^+ et de $+\infty$. Finalement, la fonction Γ est bien définie sur \mathbb{R}_+^* .

Soient 0 < a < b deux réels strictement positifs et $p \in \mathbb{N}$.

- Pour tout x > 0, la fonction $t \mapsto f(x,t)$ est mesurable.
- Pour tout t > 0, la fonction $x \mapsto f(x,t)$ est de classe \mathcal{C}^p sur \mathbb{R}_+^* et on a la relation : $\frac{\partial^p f}{\partial x^p}(x,t) = \ln(t)^p e^{-t} t^{x-1}$.
- Pour tout t > 0 et tout $x \in]a; b[$, on a :

$$\left| \frac{\partial^p f}{\partial x^p}(x,t) \right| \le \underbrace{\left| \ln(t) \right|^p e^{-t} t^{a-1} \mathbb{1}_{]0;1]}(t) + \ln(t)^p e^{-t} t^{b-1} \mathbb{1}_{]1;+\infty[}(t)}_{=\varphi_p(t)}$$

Or, la fonction φ_p est positive et intégrable sur \mathbb{R}_+^* puisque $\varphi_p(t) = o\left(t^{\frac{a}{2}-1}\right)$ et $\varphi_p(t) = o\left(\frac{1}{t^2}\right)$.

Par le théorème de classe \mathcal{C}^p sous le signe intégrale, on en déduit que la fonction Γ est de classe \mathcal{C}^p sur \mathbb{R}_+^* pour tout $p \in \mathbb{N}$, donc elle est même \mathcal{C}^{∞} sur \mathbb{R}_+^* .

* On considère la fonction définie sur \mathbb{R}_+^* par $g(x) = \ln(\Gamma(x))$. La fonction g est alors deux fois dérivable sur \mathbb{R}_+^* et on a :

$$g' = \frac{\Gamma'}{\Gamma}$$
 et $g'' = \frac{\Gamma''\Gamma - (\Gamma')^2}{\Gamma^2}$

Or, pour tout x > 0, on a :

$$\Gamma'(x)^{2} = \left(\int_{0}^{+\infty} \ln(t)e^{-t}t^{x-1}dt\right)^{2} = \left(\int_{0}^{+\infty} \left(e^{-\frac{t}{2}}t^{\frac{x-1}{2}}\right) \left(\ln(t)e^{-\frac{t}{2}}t^{\frac{x-1}{2}}\right)dt\right)^{2}$$

$$\leq \int_{C.S.}^{+\infty} \left(\int_{0}^{+\infty} e^{-t}t^{x-1}dt\right) \left(\int_{0}^{+\infty} |\ln(t)|^{2}e^{-t}t^{x-1}dt\right) = \Gamma(x)\Gamma''(x)$$

On a alors $\Gamma''\Gamma - (\Gamma')^2 \ge 0$ et ainsi $g'' \ge 0$ et donc Γ est log-convexe.

* Soit x > 0.

$$\Gamma(x+1) = \int_0^{+\infty} e^{-t} t^x dt = \left[-e^{-t} t^x \right]_0^{+\infty} + \int_0^{+\infty} e^{-t} x t^{x-1} dt$$

On a donc bien $\Gamma(x+1) = x\Gamma(x)$ et en utilisant le fait que $\Gamma(1) = \int_0^{+\infty} e^{-t} dt = 1$ on obtient alors par récurrence que pour tout $n \in \mathbb{N}$, $\Gamma(n+1) = n!$.

* Par continuité de $\Gamma,$ on a $x\Gamma(x)=\Gamma(x+1)\underset{0+}{\sim}\Gamma(1)=1$ et ainsi $\Gamma(x)\underset{0+}{\sim}\frac{1}{x}.$

De plus, on a $\Gamma(1) = \Gamma(2) = 1$, donc par le théorème de Rolle (car Γ est continue sur [1;2] et dérivable sur [1;2[) il existe $c \in]1;2[$ tel que $\Gamma'(c) = 0$. Or, Γ est convexe (car log-convexe) sur \mathbb{R}_+^* donc Γ' est croissante sur $[c;+\infty[$ et par conséquent positive sur $[c;+\infty[$ et ainsi Γ est croissante sur $[c;+\infty[$.

De plus on a $\Gamma(n+1) = n! \xrightarrow[n \to +\infty]{} +\infty$, donc $\Gamma(x) \xrightarrow[x \to +\infty]{} +\infty$ et ainsi :

$$\frac{\Gamma(x)}{x} = \frac{x-1}{x}\Gamma(x-1) \underset{x \to +\infty}{\longrightarrow} +\infty$$

II Remarques sur le développement

II.1 Allure du graphe de Γ

Avec les informations obtenues à la fin du développement, on obtient le graphique suivant :

II.2 La fonction B

Pour tous x, y > 0, on considère la fonction $B(x, y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$.

Proposition 2: [Gourdon, p.315]

La fonction B vérifie les équations fonctionnelles :

$$\forall x, y > 0, \ B(x, y) = B(y, x) \text{ et } B(x + 1, y) = \frac{x}{x + y} B(x, y)$$

Preuve:

Soient x, y > 0.

- * Le changement de variable u = 1 t nous donne la relation B(x, y) = B(y, x).
- * Par intégration par partie, on a :

$$B(x+1,y) = \int_0^1 \left(\frac{t}{1-t}\right)^x (1-t)^{x+y-1} dt$$

$$= \lim_{I.P.P.} \left[-\frac{(1-t)^{x+y}}{x+y} \left(\frac{t}{1-t}\right)^x \right]_0^1 + \frac{x}{x+y} \int_0^1 \frac{(1-t)^{x+y}}{(1-t)^2} \left(\frac{t}{1-t}\right)^{x-1} dt$$

$$= \frac{x}{x+y} B(x,y)$$

On a donc démontré les deux formules souhaitées.

Lemme 3 : Formule d'Euler-Gauss [Gourdon, p.315] :

Pour tout $x \in \mathbb{R}_+^*$, on a $\Gamma(x) = \lim_{n \to +\infty} \frac{n^x n!}{x(x+1)...(x+n)}$.

Preuve:

Soit x > 0.

Pour tout $n \in \mathbb{N}^*$, posons :

$$I_n(x) = \int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt = \int_0^{+\infty} \left(1 - \frac{t}{n}\right)^n t^{x-1} \mathbb{1}_{[0;n]}(t) dt$$

et on considère également la fonction $g_n: t \longmapsto \left(1 - \frac{t}{n}\right)^n t^{x-1} \mathbb{1}_{]0;n]}(t)$

On a alors que :

- Pour tout $t \in \mathbb{R}_+^*$, $g_n(t) \underset{n \to +\infty}{\longrightarrow} e^{-t} t^{x-1}$.
- Pour tout $n \in \mathbb{N}^*$ et tout $t \in \mathbb{R}_+^*$, $|g_n(t)| \le e^{-t}t^{x-1}$ (intégrable sur \mathbb{R}_+^*).

Par le théorème de convergence dominée, on a alors que $I_n(x) \xrightarrow[n \to +\infty]{} \Gamma(x)$. Enfin, on a également :

$$I_n(x) = \int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt = \int_0^1 (1 - u)^n n^{x-1} u^{x-1} n du$$

$$= n^x \int_0^1 (1 - u)^n u^{x-1} du = n^x B(x, n+1) = n^x B(n+1, x) = n^x \frac{n}{n+x} B(n, x)$$

$$= \frac{n^x n!}{x(x+1)...(x+n)} B(1, x) = \frac{n^x n!}{(x+1)...(x+n)} \int_0^1 (1 - t)^{x-1} dt = \frac{n^x n!}{x(x+1)...(x+n)}$$

Proposition 4: [Gourdon, p.315]

Pour tous x, y > 0 fixés, on a $B(x + n + 1, y) \underset{n \to +\infty}{\sim} \frac{\Gamma(y)}{n^p}$.

En particulier, on a la formule : $\forall x,y>0,\ B(x,y)=\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$

Preuve:

* On remarque que :

$$B(x+n+1,y) = B(y,x+n+1) = \int_0^1 t^{y-1} (1-t)^{x+n} dt$$

et en effectuant le changement de variable $t = \frac{u}{n}$ on a alors :

$$\forall x, y > 0, \ B(x+n+1, y) = \frac{1}{n^y} \int_0^n u^{y-1} \left(1 - \frac{u}{n}\right)^{x+n} du$$

Fixons x, y > 0 et considérons la suite de fonctions $(h_n)_{n \in \mathbb{N}^*}$ définies sur \mathbb{R}_+^* par $h_n(u) = u^{y-1} \left(1 - \frac{u}{n}\right)^{x+n} \mathbb{1}_{[0;n]}(u)$.

On a alors que $(h_n)_{n\in\mathbb{N}^*}$ converge simplement vers la fonction $u\longmapsto u^{y-1}e^{-u}$ et que pour tout $u\in\mathbb{R}^*_+$ on a $|h_n(u)|\leq u^{y-1}e^{-u}$ (intégrable et indépendante de n).

Par le théorème de convergence dominée, on a donc $B(x+n+1,y) \sim \frac{\Gamma(y)}{n \to +\infty} \frac{\Gamma(y)}{n^y}$

* Soient x, y > 0 On a de plus que :

$$\forall n \in \mathbb{N}^*, \ B(x,y) = \frac{(x+y)(x+y+1)...(x+y+n)}{x(x+1)...(x+n)} B(x+n+1,y)$$

On sait également que $x(x+1)...(x+n) \underset{n\to+\infty}{\sim} n^x n! \Gamma(x)$, donc :

$$B(x,y) \underset{n \to +\infty}{\sim} \frac{\frac{n^{x+y}n!}{\Gamma(x+y)}}{\frac{n^x n!}{\Gamma(x)}} \frac{\Gamma(y)}{n^y} = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$

Remarque 5: [Gourdon, p.315]

Il est alors possible de retrouver le fait que $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$. En effet, on a l'égalité $B\left(\frac{1}{2},\frac{1}{2}\right) = \Gamma\left(\frac{1}{2}\right)^2$ et le changement de variable $t = \sin^2(u)$ donne que $B\left(\frac{1}{2},\frac{1}{2}\right) = \pi$.

Proposition 6: Formule de Weierstrass [Gourdon, p.315]:

Pour tout x > 0, on a la formule :

$$\frac{1}{\Gamma(x)} = xe^{\gamma x} \prod_{n=1}^{+\infty} \left(1 + \frac{x}{n}\right) e^{-\frac{x}{n}}, \text{ avec } \gamma \text{ la constante d'Euler}$$

Preuve:

On sait que $\ln(n) = \sum_{k=1}^{n} \frac{1}{k} - \gamma + o(1)$, d'où :

$$\frac{x(x+1)...(x+n)}{n^x n!} = xe^{-x\ln(n)} \prod_{k=1}^n \left(1 + \frac{x}{k}\right) = xe^{\gamma x} e^{o(1)} \prod_{k=1}^n \left(1 + \frac{x}{k}\right) e^{-\frac{k}{n}} \xrightarrow[n \to +\infty]{} \frac{1}{\Gamma(x)}$$

Proposition 7: Formule de duplication [Gourdon, p.315]:

Pour tout x > 0, on a la formule :

$$2^{2x-1}\Gamma(x)\Gamma\left(x+\frac{1}{2}\right) = \sqrt{\pi}\Gamma(2x)$$

Preuve:

Soit x > 0.

$$\begin{split} \Gamma(x)\Gamma\left(x+\frac{1}{2}\right) & \mathop{\sim}\limits_{n\to +\infty} \frac{n^{2x+\frac{1}{2}}(n!)^2}{x\left(x+\frac{1}{2}\right)\dots\left(x+n+\frac{1}{2}\right)} = \frac{2^{2n+2}n^{2x+\frac{1}{2}}(n!)^2}{2x(2x+1)\dots(2x+2n+1)} \\ & \mathop{\sim}\limits_{n\to +\infty} \frac{\Gamma(2x)}{(2n+1)^{2x}(2n+1)!} 2^{2n+2}n^{2x+\frac{1}{2}}(n!)^2 \mathop{\sim}\limits_{n\to +\infty} \frac{\Gamma(2x)2^{2n+2}\sqrt{n}(n!)^2}{2^{2x}(2n)!2n} \\ & = \frac{\Gamma(2x)2^{2n+1-2x}}{\sqrt{n}} \frac{(n!)^2}{(2n)!} \mathop{\sim}\limits_{n\to +\infty} \Gamma(2x)2^{1-2x}\sqrt{\pi} \end{split}$$

Proposition 8: Formule des compléments [Gourdon, p.315] :

Pour tout $x \in]0;1[$, on a la formule :

$$\frac{1}{\Gamma(x)\Gamma(1-x)} = \frac{\sin(\pi x)}{\pi}$$

Preuve:

Pour tout $x \in]0;1[$, on a :

$$\frac{1}{\Gamma(x)\Gamma(1-x)} \underset{n \to +\infty}{\sim} \frac{x(1+x)\left(1+\frac{x}{2}\right)\dots\left(1+\frac{x}{n}\right)}{n^x} \times \frac{x(1-x)\left(1-\frac{x}{2}\right)\dots\left(1-\frac{x}{n}\right)}{n^{1-x}}$$

$$= \frac{x(1-x+n)}{n} \prod_{k=1}^{n} \left(1-\frac{x^2}{k^2}\right) \underset{n \to +\infty}{\sim} x \prod_{k=1}^{n} \left(1-\frac{x^2}{k^2}\right) = \frac{\sin(\pi x)}{\pi}$$

Proposition 9: [Gourdon, p.315]

Pour tout x > 0, on a la formule :

$$\frac{\Gamma'(x)}{\Gamma(x)} = -\gamma - \frac{1}{x} + \sum_{n=1}^{+\infty} \frac{x}{n(x+n)}$$

En particulier, on a $\int_0^{+\infty} \ln(t)e^{-t} dt = -\gamma$.

Preuve:

Par la formule de Weierstrass, on a :

$$\forall x > 0, \ \ln(\Gamma(x)) = -\ln(x) - \gamma x + \sum_{n=1}^{+\infty} \left(\frac{x}{n} - \ln\left(1 + \frac{x}{n}\right)\right) \quad (*)$$

En posant, pour tout $n \in \mathbb{N}^*$ et tout $x \geq 0$, $f_n(x) = \frac{x}{n} - \ln\left(1 + \frac{x}{n}\right)$, on a :

$$\forall x \ge 0, \ \forall n \in \mathbb{N}^*, \ f'_n(x) = \frac{1}{n} - \frac{1}{n} \frac{1}{1 + \frac{x}{n}} = \frac{x}{n(n+x)}$$

Ainsi, pour tout A > 0, la série de fonctions $\sum f'_n(x)$ converge normalement sur [0; A]. Et puisque la série $\sum f_n$ converge simplement sur \mathbb{R}_+^* (conséquence de la formule (*)), on en déduit que la somme de cette série est dérivable sur [0; A] et que sa dérivée est donnée par la somme de la série $\sum f'_n$.

Ainsi, sur]0;A], la dérivée de $\ln(\Gamma)$ vérifie :

$$\forall x > 0, \ \frac{\Gamma'(x)}{\Gamma(x)} = -\frac{1}{x} - \gamma + \sum_{n=1}^{+\infty} \frac{x}{n(n+x)}$$

Or ceci étant vrai sur]0;A] pour tout A>0, on a le résultat sur \mathbb{R}_+^* et donc en particulier en x=1 :

$$\Gamma'(1) = -1 - \gamma + \sum_{n=1}^{+\infty} \frac{1}{n(n+1)} = -\gamma - 1 + \sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right) = -\gamma - 1 + 1 = -\gamma$$

Mais on a aussi $\Gamma'(1) = \int_0^{+\infty} \ln(t) e^{-t} dt$, d'où l'égalité voulue.

II.3 Le théorème de Bohr-Mollerup

Théorème 10 : Théorème de Bohr-Mollerup [Rombaldi (2), p.366] :

Si une fonction $f: \mathbb{R}_+^* \longrightarrow \mathbb{R}_+^*$ vérifie :

* f est logarithmiquement convexe sur \mathbb{R}_+^* . * $\forall x \in \mathbb{R}_+^*$, f(x+1) = xf(x).

* f(1) = 1

Alors f coïncide sur \mathbb{R}_+^* avec la fonction Γ .

Preuve:

On considère une fonction $f: \mathbb{R}_+^* \longrightarrow \mathbb{R}_+^*$ vérifiant les hypothèses du théorème. La fonction $g = \ln(f)$ est convexe, donc en notant, pour $x \neq y$ dans \mathbb{R}_+^* , $p(x,y) = \frac{g(x) - g(y)}{x - y}$, on a pour tout $x \in]0;1]$:

$$p(n, n+1) \le p(n+1, n+1+x) \le p(n+1, n+2)$$
 (inégalité des 3 pentes)

soit:

$$\ln(f(n+1)) - \ln(f(n)) \le \frac{\ln(f(n+1+x)) - \ln(f(n+1))}{x} \le \ln(f(n+2)) - \ln(f(n+1))$$

Or, puisque l'on a f(n+1) = n f(n), on a :

$$\ln\left(n^{x}\right) \leq \ln\left(\frac{f(n+1+x)}{f(n+1)}\right) \leq \ln\left(f\left(n^{x}\right)\right)$$

En écrivant que $\frac{f(n+1+x)}{f(n+1)} = \frac{(x+n)(x+n-1)...xf(x)}{n!f(1)}$, on a :

$$\ln(n^x) \le \ln\left(\frac{(x+n)(x+n-1)...xf(x)}{n!f(1)}\right) \le \ln(f(n^x))$$

Ce qui s'écrit aussi, en notant $\Gamma_n(x) = \frac{n^x n!}{x(x+1)...(x+n)}$, on a :

$$0 \le \ln\left(\frac{1}{\Gamma_n(x)}\frac{f(x)}{f(1)}\right) \le \ln\left(\frac{(n+1)^x}{n^x}\right)$$

Par croissance de la fonction exponentielle, on a :

$$\forall x \in]0;1], \ \forall n \in \mathbb{N}^*, \ 1 \le \frac{1}{\Gamma_n(x)} \frac{f(x)}{f(1)} \le \left(1 + \frac{1}{n}\right)^x$$

En faisant tendre n vers $+\infty,$ on en déduit par la formule d'Euler-Gauss que :

$$\forall x \in]0;1], \ f(x) = f(1)\Gamma(x) = \Gamma(x)$$

Enfin, en utilisant l'équation fonctionnelle f(x+1) = xf(x) vérifiée par les deux fonctions, on obtient que $f = \Gamma$ sur \mathbb{R}_+^* .

II.4 Prolongement de la fonction Γ

Par le théorème d'holomorphie sous le signe intégral, il est possible d'étendre la fonction Γ sur le demi-plan complexe $\Omega=\{z\in\mathbb{C}\ \mathrm{tq}\ \mathrm{Re}(z)>0\}$ et d'étendre le formule d'Euler-Gauss sur ce même demi-plan via le théorème de convergence dominée.

Pour tout $N\in\mathbb{N}^*$ et tout $z\in\mathbb{C},$ on pose $F_N(z)=N^{-z}\frac{z(z+1)...(z+N)}{N!}$ ainsi que :

$$f_1(z) = z(z+1) - 1$$
 et $\forall n \ge 2$, $f_n(z) = \left(1 - \frac{1}{n}\right)^z \left(1 + \frac{z}{n}\right) - 1$

On a donc $F_n(z) = \prod_{n=1}^{N} (1 + f_n(z)).$

On montre alors que la série $\sum |f_n(z)|$ converge et donc on peut définir la fonction $F: \mathbb{C} \longrightarrow \mathbb{C}$ dont l'expression est donnée par $F(z) = \prod_{n=1}^{+\infty} (1 + f_n(z))$.

De plus, la série $\sum f_n$ converge normalement sur tout compact de \mathbb{C} , donc la fonction F est holomorphe sur \mathbb{C} et que F(z)=0 si, et seulement si, il existe $n\in\mathbb{N}^*$ tel que $f_n(z)=-1$. Or, pour tout $n\geq 2$, on a :

$$f_n(z) = -1 \iff \left(1 - \frac{1}{n}\right)^z \left(1 + \frac{z}{n}\right) = 0 \iff 1 + \frac{z}{n} = 0 \iff z = -n$$

Ainsi, pour tout $z \in \Omega$, on a $\Gamma(z) = \lim_{N \to +\infty} \frac{1}{\Gamma_N(z)}$. Par conséquent, Γ ne s'annule pas sur Ω et on a la relation $\Gamma = \frac{1}{F}$. De plus, $\frac{1}{\Gamma} : \Omega \longrightarrow \mathbb{C}$ admet un prolongement holomorphe sur $\mathbb{C} \setminus \mathbb{Z}^-$ donné par :

$$\forall z \in \mathbb{C} \setminus \mathbb{Z}^-, \ \Gamma(z) = \lim_{n \to +\infty} \frac{n! n^z}{z(z+1)...(z+n)}$$

II.5 Recasages

Recasages: 228 - 229 - 236 - 239 - 244 - 253.

III Bibliographie

- Xavier Gourdon, Les maths en tête, Analyse.
- Jean-Étienne Rombaldi, Éléments d'analyse réelle.