Active@ UNERASER User Guide

Copyright © 1999-2020 LSOFT TECHNOLOGIES INC. All rights reserved. No part of this documentation may be reproduced in any form or by any means or used to make any derivative work (such as translation, transformation, or adaptation) without written permission from LSOFT TECHNOLOGIES INC.

LSOFT TECHNOLOGIES INC. reserves the right to revise this documentation and to make changes in content from time to time without obligation on the part of LSOFT TECHNOLOGIES INC. to provide notification of such revision or change.

LSOFT TECHNOLOGIES INC. provides this documentation without warranty of any kind, either implied or expressed, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. LSOFT may make improvements or changes in the product(s) and/or the program(s) described in this documentation at any time.

All technical data and computer software is commercial in nature and developed solely at private expense. As the User, or Installer/Administrator of this software, you agree not to remove or deface any portion of any legend provided on any licensed program or documentation contained in, or delivered to you in conjunction with, this User Guide.

Active@ UNERASER, the Active@ UNERASER logo, UNERASER Software are trademarks of LSOFT TECHNOLOGIES INC.

Active Data Recovery Software is a business name of LSOFT TECHNOLOGIES INC.

LSOFT.NET logo is a trademark of LSOFT TECHNOLOGIES INC.

Other brand and product names may be registered trademarks or trademarks of their respective holders.

Contents

1. Overview	4
2. Use Easy Mode to recover files on live volumes	6
3. Using QuickScan to detect just deleted files and partitions	8
4. Use SuperScan to analyze deleted and severely damaged volumes	10
5. Use Last Chance recovery by file signatures	15
6. Unerase Deleted Files and Folders	16
7. Unerase All Volume Data on a Deleted or Damaged Partition	17
8. Search for Deleted Files and Folders	22
9. Search, Organize and Recover files based on Signatures	25
10. Preview File (Check Recovery Status)	33
11. Rollback, Backup and Restore Disk Partitioning Info	34
12. Fix damaged MBR/GPT and use Disk Partitioning Tools	36
13. Fix Damaged Partition/Volume Boot Sector	37
14. Apply Boot Sector Template	38
15. Re-create Deleted or Damaged Disk Array (RAID) Virtually	39
16. Create and Work with a Disk Image	42
17. Inspect disk data with integrated Disk Editor	44
18. Activate Software with a Registration Key	51
19. Concept of File Signatures	52
20. Glossary of Terms	54

1. Overview

What Happened to my Data?

When data (file, partition, volume, etc...) is deleted from a hard drive, two systems are notified:

- 1. The system record in the File Table or Partition Table is removed (or marked as deleted)
- 2. Space where partition or file was located is labeled as 'unoccupied'. The data itself is not removed

In the event of an accidental deletion we strongly recommend that you perform the recovery operation as soon as possible. If any new partition or file is created instead on the same space and some information is written there, there is a chance that the writing process may allocate some data in this 'unoccupied space' thus damaging you data located on the disk and deleted previously.

Welcome to Active@ UNERASER

Active@ UNERASER is a powerful software utility, designed to restore accidentally deleted files, folders and partitions (volumes).

Active@ UNERASER can be installed on and run from USB Flash disk or bootable CD/DVD, so that the risk of overwriting your data is minimized.

Active@ UNERASER will help you to restore files, folders and partitions residing on hard drives formatted in any of the following file systems:

- Microsoft FAT32 / exFAT, NTFS / ReFS
- Apple HFS+ / ApFS
- Linux Ext2 / Ext3 / Ext4, XFS, JFS and BtrFS
- FreeBSD Unix UFS, XFS and JFS

It works under all Windows family operating systems:

- Windows 10, 8, 7, Vista, XP
- Windows Server 2003, 2008, 2012 and 2016
- Windows PE (embedded Windows recovery environment loaded from CD-ROM or USB disk)

Active@ UNERASER supports:

- IDE, SATA, SSD, SCSI hard drives, External USBs, Floppy and USB Flash Media, Memory Cards
- Damaged or deleted RAID virtual reconstruction (RAID-0, RAID-1, RAID-5, Span)
- Large-sized drives (more than 2TB)
- Detection and recovery of deleted and damaged partitions
- Unerase data on a file-by-file basis, and all volume data at once
- Saving scan results to the storage and re-opening them later on
- Correcting BOOT.INI if needed to keep the system bootable
- Fixing damaged MBR/GPT and deleting invalid partitions
- Automatic and Manual correction of Volume Boot Sectors
- Creating and working with Disk Images for data recovery purposes
- Virtual Disks and Virtual Partitions creation and management
- Integration with a Disk Viewer/Editor to be able to inspect raw disk/partition/file data

New in version 16

- Added applying Boot Sector Template (all major file systems supported) to any disk's sector
- Latest Recovery Kernel includes many improvements and bug fixes

New in version 15

· Added recovery of Apple ApFS file system

- Re-implemented recovery of Microsoft ReFS file system
- Latest Recovery Kernel including many improvements and bug fixes
- Added new pre-defined file signatures:
 - Ancestral Quest Database File (*.AQ)
 - LibreOffice Documents
 - WPS Office Documents

New in version 14

- Improved Welcome Dialog and Registration
- Improved NTFS recovery on volumes located in WSS and recovery of disks having 4KB (4096 bytes) sector size
- Improved software stability working with failing disks
- Latest Recovery Kernel including many improvements and bug fixes
- Added more pre-defined file signatures recognition:
 - Finale Notation File (MUSX)
 - Canon Raw Image File (CR3)

New in version 13

- New Easy Mode simplifies search for lost files and data recovery on live volumes
- Added more pre-defined file signatures recognition:
 - Microsoft Office Documents (ONE, PUB)
 - MySQL files (IBD,FRM,MYI)
 - Oracle VirtualBox (VDI)
 - Betacase Client Info (BCB)

New in version 12

- More pre-defined file signatures recognition: Virtual Hard Drive Files (VHDX), SQL Server Databases (MDF)
- Support for ReFS versions 3.x file system scan & data recovery, including non-standard sector sizes: 1024, 2048, 4096
- Improved dynamic virtual disk arrays handling: LDM & LVM
- Improved software stability when working with damaged disks
- Improvements in handling of Windows Storage Spaces partitions
- Improved Custom Signatures scripting for user templates creation to search deleted file by signatures

New in version 11

- Added support for Microsoft's new generation **ReFS** file system data recovery
- Added support for Linux/Unix **JFS** file system scan & data recovery
- · Added support for Windows Storage Spaces recovery technology that enables virtualizing storage into storage pools
- More pre-defined file signatures recognition: AI, ACCDB, OST, DB3, VCPROJ, USER, SVG, FBR
- Recovery of **fragmented** files by signatures (MOV/MP4)
- Redesigned User Interface: dockable dialogs, semi-transparent popups
- Full support for HiDPI monitors (large screen resolutions)
- Improvements in XFS/Ext4 filesystems recovery
- Significantly **optimized SuperScan** speed and memory consumption
- The latest Active@ LiveCD & Active@ Boot Disk (64-bit) with updated drivers and utilities

New in version 10

- Added support for Linux/Unix XFS file system scan & data recovery
- Added support for Linux Logical Volume Manager (LVM) partitioning and recovery
- More pre-defined file signatures recognition: AC3, MSG, 3DS, MAX, DXF, CMX, AMV, 4XM, 4XA, EPS, XZ, LZ4, BZ2, JP2, M2V, MTS, FDB
- File system's metadata display: \$FILE & \$INDX file records for NTFS, \$DIR Directory entries for FAT/FAT32
- Improved Windows Logical Disk Manager (LDM) support for nested volumes
- Improved display for HiDPI monitors and large resolution screens
- Improvements in user interface and in data recovery algorithms
- The latest Active@ Boot Disk (64-bit) and improved Boot Disk Creator
- The latest Active@ LiveCD (64-bit) with updated drivers and new utilities

2. Use Easy Mode to recover files on live volumes

Easy Recovery Mode - simplifies search for lost files and data recovery on live volumes.

Search for lost files in Easy Recovery Mode being performed in two stages:

- QuickScan scans (enumerates) all directories on existing (live) volume and populates a Volume Tree with deleted entries. If a folder (plus its subfolders) does not contain any deleted files that can be detected by QuickScan, these folders won't be displayed in a Volume Tree. Displayed only folders containing deleted files.
- Search by File Signatures enumerates each and every sector on a volume, trying to match its content with
 pre-defined signatures of known file types (more than 150 pre-defined signatures available). If sector
 signature matches pre-defined file signature additional logic applied to define file size and some extended
 attributes. In case if target file is not fragmented all its data (data clusters) should be located consequently
 in volume sectors, thus making file recovery possible.

Note

Signature search could be a long process, especially if you selected to many signatures to look for. We recommend you to narrow down the search by selecting the only file types you need (for example to select the only JPEG images) to speed up.

To run Active@ UNERASER in Easy Recovery Mode – click on Easy Unerase widget at program start.

Easy Recovery Mode start dialog appears:

To find and recover lost files:

- 1. Select a volume at the left panel to search lost files on
- 2. Select file types you want to search for at the right panel (more than 150 pre-defined file types supported)
- 3. Click **Scan** button at bottom. Alternatively you can double-click the volume to start scanning
- 4. Observe scanning progress and wait until search finishes. In the mean time you can browse found files in a tree
- 5. To sort found files by any attribute click the related column
- 6. To preview some types of files double-click file or select a file and click **Preview** button at bottom
- To narrow down search results you can specify QuickScan Filter, which let you see Lost Files (deleted ones), Live Files or All Files, as well as type symbols of file name/extension in File Name Filter and click Filter button at bottom:

File Name filtering support for several templates specified after semicolon

To organize and filter files found by signatures more precisely using file Extended Attributes, like **Title** or **Author** (if .present), click **File Organizer** button at bottom. You may filter files by **File Name** as well as by any **Attribute** or several attributes:

- 9. Select a file or group of files(folders) using check boxes at the left of the file name
- 10. Click **Unerase** button at bottom to start recovery process
- 11. Select a Recovery path destination volume or folder where to recover selected files and folders
- 12. Observe recovery progress. When complete, notification pops up how many files being recovered and where to
- 13. After recovery is complete, Windows Explorer is launched to browse destination path and evaluate recovered files.

Note

To switch between Easy Recovery Mode and Advanced Mode at any time, click Switch Mode menu item form View menu.

3. Using QuickScan to detect just deleted files and partitions

QuickScan searches for files, folders and partitions being just deleted. If you are looking for deleted files and folders, you must scan the existing drive (logical disk or volume) to detect files and folders being deleted. If you are looking for deleted partitions and volumes, you must scan unallocated space to detect the drive being deleted.

There are two methods for scanning: QuickScan and SuperScan.

QuickScan is a fast and basic scan. Partitions and files that have just been deleted most likely will be detected using this method (if no other partition has been created in unallocated space).

SuperScan is a much slower and thorough scan. It processes the whole hard drive surface detecting all possible deleted data. After running **QuickScan**, if you haven't found proper partition or files, try **SuperScan**. For more information on **SuperScan**, click the link at the bottom of this topic.

To run QuickScan:

 Open Active@ UNERASER and in the Local System Devices list under the particular Hard Disk Drive or USB Disk, select the Volume (Logical Disk) to be scanned for deleted files, or Unallocated Space to be scanned for deleted partitions

- Click QuickScan toolbar button
- You can also right-click the **Unallocated Space** or Volume and select **QuickScan** from the context menu, or click **QuickScan** from **Action** menu

Disk scanning starts. To stop the scanning process for any reason, click **Cancel** button. After QuickScan is completed, you can inspect detected files and volumes, and recover your data.

QuickScan Plus

QuickScan Plus is an advanced version of QuickScan. It processes more unallocated space where deleted data assumed to be located, so it is a bit slower than QuickScan, however it detects more deleted files and folders. **QuickScan Plus** is still faster comparing to SuperScan (which processed all available disk space: unallocated and currently allocated).

After the regular **QuickScan** for the particular volume completed, toolbar button label and related menu items change to **QuickScan Plus**. This means that if you scan the same object one more time, some advanced features of QuickScan will be activated. It will take a bit more time, however it could detect more deleted files and folders. Advanced features include looking for files beyond the "live" system areas (current MFT area on NTFS, or directories tree on FAT). Moreover, for transactional file systems, like NTFS, Log File (\$LogFile) and User Journal (\$UsnJrnl\$) are processed to get more information about recent transactions (deleting, renaming,...). This could be very useful when you quick-formatted your hard drive or USB flash disk.

To change default action for QuickScan button and menu item to use **QuickScan Plus** always, open Settings, and on the General tab mark **Use QuickScan Plus by default** option:

Analyzing detected by QuickScan objects

You can tell the state of your files by the color of the icons:

Blue icon shows an existing file

Grey icon shows a deleted file

You can tell the state of your folders by the color of the icons:

Yellow icon shows an existing folder

Grey icon shows a deleted folder

You can tell the state of your partitions by the color of the icons:

Grey or Green icon shows an existing partition

Grey icon with Green box shows a deleted partition has a good integrity status and that can be safely recovered

Grey icon with Brown or Red box shows a deleted partition that can be recovered, however this partition might has been formatted before deletion or has some other damage

After you complete the drive scan, to locate your deleted partitions, just look under **Unallocated Space** nodes. If new partitions appear there - inspect them (click on icon) and verify their content browsing the files and folders.

You can inspect the content of the file by selecting the file and clicking **Preview** toolbar button, or executing **Preview** command from the context menu, or by pressing **Alt+P** key combination.

If you are looking for deleted files and folders, to locate them, you may search either manually, by opening folders in the tree, or automatically, using the search mode.

If you satisfied with results, select an object (file, folder or partition) proceed with a recovery (click **Unerase** toolbar button).

4. Use SuperScan to analyze deleted and severely damaged volumes

Use **SuperScan** when trying to recover a <u>partition</u> or <u>volume</u> that you know has been deleted or damaged. In other words, if you do not see a <u>logical drive</u> listed under a <u>device node</u> in the *Local System Devices* list, it is time to use SuperScan.

Another reason to use SuperScan is when the volume has been quick-formatted, or disk's surface has been heavily overwritten by other data, so you are not able to find your deleted data using QuickScan and Search procedures. SuperScan gives a chance to detect damaged file records as well as to reconstruct some known file types by signatures.

SuperScan processes the whole surface of the physical device searching for all possible logical drives (volumes) and partitions, whether they are existing, damaged or deleted. If a partition cannot be found, SuperScan keeps searching. SuperScan reads each disk sector and looks for not only the boot sector, but also tries to reconstruct the drive structure, based on residual clues to the drive's system structures that remain on the disk surface. This is a slow process, however it usually gives much better results than QuickScan.

When SuperScan finds file data and the deleted or damaged file is not fragmented, the SuperScan can detect files by matching template patterns to the found data. These files collected to Signature Files folder and can be recovered from there. Usually such files do not have name, date stamp and other file record information.

To run SuperScan:

- In the Local System Devices list, select a physical device, or a volume that contains your data. It may be a Fixed Disk, USB external or Removable Disk, Memory Card, and even Floppy and CD/DVD-ROM
- 2. To open the **SuperScan Options** dialog, do one of the following:

- Click SuperScan toolbar button:
- Right-click the disk and choose SuperScan... from the context menu
- Press Ctrl+Enter key combination

 Fields From and Size contain currently selected object's geometry in sectors. You can switch geometry display to other units (Bytes, MB and GB) using drop down combo box. If you now click Start button - this area will be scanned by default

- 4. To select disk's area manually, type the starting sector number in the **From** field and the number of sectors in the **Size** field. If you need several areas to be scanned, define area parameters and click **Add** button, then type other area parameters and click **Add** again
- 5. In the **Analyze and detect deleted or damaged partitions** area, select the check boxes next to the partition types that you want to look for. Clear the check boxes next to the partitions that you do not want to look for. If you select all partition types, the scanning takes a longer time, however you may find more recoverable partitions
- 6. If a disk has been severely damaged and partitions and files are not found, you may turn on the File types to be recognized based on signatures option. Provided that the files are not fragmented, Active@ Scan technology would detect the file signatures and would try to reconstruct files of certain types. The detected files, when this option is turned on, will be placed into the Signature Files virtual folder and will have abstract filenames (because no file header could be detected, only file data), however their content can be valid. You may try to recover your documents or images from the Signature Files virtual folder later on. The None option means that no signatures recognition will be applied, it will speed up the SuperScan process, and less memory (RAM) will be consumed. The All option instructs SuperScan to recognize all possible supported signatures. The Documents & Photos only option lets you choose the file types you want to recognize based on signatures (including user-defined signatures being loaded from template file) and recover them later on:

- 7. Click **Start** button or press **Enter** to start SuperScan process
- 8. The statistics and progress bar appear underneath the scanning area. To stop the SuperScan at any time, click Pause red button at bottom, or choose Pause SuperScan from the context menu. If SuperScan has been paused, you may resume it by clicking Resume button at bottom or by choosing Resume SuperScan from the context menu. If you have saved paused SuperScan results, its state being saved as well, so you can resume SuperScan later on, after loading SuperScan results even after re-boot, or on another machine having the same HDD/USB disk attached
- 9. For each SuperScan process a new virtual folder named SuperScan [YYYY-MM-DD HH:MM:SS] has been added under particular disk being scanned. The contents of this folder displayed in the tree view as well as in the Data View (right panel). You may treat SuperScan virtual folder and its contents the same way that you treat other device nodes in the list. You may follow the same steps to scan found volumes, then search for files and folders to be recovered.

Inspecting SuperScan results

SuperScan can be a long process. You can check the estimated run time displayed on the status panel at bottom of the Scanning Area. You can wait until SuperScan finishes, or you can inspect and manage found partitions (volumes) "on-the-fly":

- Click the volume in the tree (left panel) to highlight the volume position in the Scanning Area (right panel)
- Right-click the volume and choose Properties from the context menu to check volume integrity and attributes being
 detected
- Double-click the volume, or choose QuickScan from the context menu to scan the volume, browse its folders, view files
 and so on
- You can preview and recover your files from the found volume while SuperScan is still in progress
- After you have inspected the volume, if results are not satisfactory, you can hide the volume, by choosing **Remove** from the context menu
- To unhide all volumes being removed previously from the list, choose Show All Volumes from SuperScan node context menu

Note

After you run a SuperScan, you may notice a tab named **Signature Files**. This virtual folder contains file data that was detected based on templates of commonly used file types (*.JPG, *.DOC, etc...). Files in this folder have been renamed because no file header was detected. If the file data is un-fragmented, there is a good chance that SuperScan recovers the data in these files. If you haven't found your files during volumes inspection, try to recover similar file types from *Signature Files* folder. There could be a chance you find your data even if file record containing file name has been overwritten.

Important

After you complete a SuperScan, you may find hundreds of partitions. Volumes having different locations and sizes, may have been created and then deleted at different times on the device being scanned. If you have virtual VMware workstation profiles (from VMware, Inc.) or VirtualPC profiles (from Microsoft Corp.), these files also contain partition information. Moreover, if remains of damaged disk structures not enough to define all necessary partition parameters, SuperScan uses complex algorithms to project the most probable parameters and instead of one partition could create 10-20 partitions having different sizes, offsets, cluster size and so on. This does not mean that SuperScan creates a lot of garbage. This means that among these projected partitions most likely will be the one you've lost, and most likely you'll be able to find and recover your data. So, if you cannot find your data on the volumes having *Excellent* or *Good* recovery status, it is still recommended that you wait until SuperScan finishes and then inspect all found volumes once again.

Filtering SuperScan results

To reduce the amount of work, you may use a filter so that you are working with a smaller set of data. After the SuperScan, all detected volumes are displayed. When you change the settings in the filter dialog box, you can display only selected types of volumes.

To filter SuperScan results:

- 1. After running **SuperScan**, select the virtual folder with the name **SuperScan [date time stamp]**
- 2. Right-click the node. From the context menu choose Filter... The Filter Found Volumes dialog box appears

- 3. To select the types of file systems to display, in the **File Systems** area, clear the check box beside the types that you do not want to display. Only the selected types of file systems data will be displayed
- 4. To display only those partitions within a specified size limit, in the **Volume Size** area, indicate the minimum and maximum sized partitions in MegaBytes. Only those partitions within the specified range will be displayed
- 5. To use basic filtering parameters, click Basic Filtering. To select displayed partitions based on <u>partition status</u>, in the Basic Filtering [Volume Status] area, clear the check box next to each partition status number that you do not want to display. Only the selected status ratings will be displayed
- 6. To use advanced filtering parameters, click **Advanced Filtering** and use the bottom section:
 - To restrict displayed results for found <u>boot sector's</u> attributes (file system-independent), in the **Basic** Attributes area, select the check box beside all the types of data that you want to display
 - To restrict displayed results for NTFS-specific parameters, in the Specific to NTFS attributes area, select
 the check box beside all the types of data that you want to display
 - To restrict displayed results for FAT-specific parameters, in the Specific to FAT attributes area, select the check box beside all the types of data that you want to display
- 7. Click **Filter** to set up a filter for all volumes found by SuperScan

To remove a Filter and show all found volumes, execute **Remove Filtering** context menu command on the particular SuperScan node.

Searching SuperScan results to find files and folders

If, as a result of your **SuperScan** you find a large number of partitions, you may want to use a <u>Search</u> to help you locate specific files or folders. You may apply Search for the particular volume, or for all volumes found. There are options in the search dialog box that allow you to make the search go faster. For example, you may want to restrict the search so that only deleted files and folders appear in the results, or restrict files by size. By choosing strict conditions, you may be able to locate a specific file or folder faster.

Storing and loading SuperScan results

Depending on the size of the drive that you are scanning, it can take a long time to scan partitions. On large or damaged drives, it can take hours. If you have to exit Active@ UNERASER for any reason, it would take a long time to scan the partition again. So that you don't lose the information that you have scanned, you may save the SuperScan results to a file. When you open Active@ UNERASER, opening the saved results file takes much less time.

If you decide to stop the SuperScan process, it is easy to continue scanning from the point that you stopped. After SuperScan has stopped, you may save the SuperScan virtual folder results, exit and re-start the application, open SuperScan results and resume SuperScan from the last point. To continue scanning, select the SuperScan virtual folder and click **Resume** button on the right of the progress bar.

To save SuperScan results

- 1. In the Local System Devices list, select the SuperScan virtual folder and do one of the following:
 - Right-click the device node. From the context menu click Save Scan Results...
 - From the File menu, choose Save Scan Results...
- 2. In the Save Scan Results dialog box, type a path or browse to a folder where the scan results file is to be stored
- 3. Click Save

To open SuperScan results

- 1. From the File menu click Open Scan Results...
- 2. In the Open Scan Results dialog box, browse to the file where you saved the scan results file
- 3. Click Open
- 4. In the **Matched Devices** dialog box confirm the device name (HDD/USB name) to apply SuperScan results for.

Note

Several devices might have the same name, for example, similar disks usually used in RAID arrays. In this case the order they appear in *Matched Devices* dialog matches the order devices appear in *Local System Devices* list. You may inspect your disks in *Local System Devices* list to know for sure which device to choose.

Important

SuperScan results can be saved automatically. You can configure this option and storage path in **General** tab of product **Settings**.

5. Use Last Chance recovery by file signatures

This recovery method is helpful when primary recovery methods (QuickScan and SuperScan) either haven't detected your files and folders, or hundreds of volumes are being detected and you cannot locate or recover your files from them.

This recovery method tries to detect all un-fragmented files based on their standard signatures. In most cases we will be able to detect and properly recover the contents of lost files. However we won't be able to detect the file system attributes (eg. original filename, creation date, modification date etc). Detected and recovered files will be grouped by file extension only, and will have abstract file names. The File Organizing feature will help you to group your files into folders based on extended file attributes (available for some file types). For example, songs may be grouped by artist and or album, and photo images may be grouped by camera and the date the photo was taken.

To use Last Chance recovery method:

- 1. Launch Active@ UNERASER and click LastChance toolbar button, or click LastChance from Action menu
- 2. Select the drives you wish to analyze, or de-select disks you are not interested in, and click **Next**
- 3. Confirm file signatures to be analyzed and de-select file types you are not interested in recovering (this will speed up the process significantly)

- 4. Click **Start** button and wait until the scan process completes
- 5. Review found by signatures files, Preview file content to make sure files are recoverable and it's what you need
- 6. If needed, re-organize found files in folders by specific attributes using file **Organizer**
- 7. Select file groups or particular files to be recovered and click **Recover** toolbar button to recover them all at once

6. Unerase Deleted Files and Folders

You can distinguish deleted files and folders from existing ones by the icons:

- Blue and yellow icons show existing files and folders
- Grey icons show deleted files and folders

To restore a deleted file or folder:

- In Active@ UNERASER, search for deleted files or search for file signatures and select the file or folder (or group of files and folders) to be recovered
- 2. Launch Unerase Options dialog using one of the following methods:

- Click Unerase button on the toolbar:
- Right-click the file or folder, and then choose Recover from the context menu
- Press **Ctrl+R** key combination

- 3. To give a name, you may use the name that appears in the **Name** field or you may type a different name. This option is only available if selected the only one file or folder
- 4. To recover the to a specified location, in the **Unerase to** field, you may type a different path or click the ellipsis button (...) and browse to a recovery folder location
- 5. If you selected several files or folders, you have an option of filtering them for the recovery process: to recover **All** selected files and folders, **Deleted only** or **Existing only** files and folders
- 6. You have an option of recovering <u>named streams</u> attached to a file on NTFS volume. This includes, for example, Music ratings and album info, Document Author and properties, and so on... These streams will only be recovered and attached to a file when recovering target is an NTFS volume (FAT/exFAT do not support named streams)
- Option Browse output folder after recovery will open Windows Explorer and display the recovered items after recovery process is complete

8. Extended recovery configuration options are available when clicking more options... link at bottom:

- Naming options: whether to use original file names, or to generate unique file names for each file being recovered
- **Conflict resolution**: what to do when file being recovered already exists in the target folder (name duplicate detected)

Click Unerase

After the recovery process is complete, make sure that the results are correct by verifying the contents of files. In some cases, a file cannot be reliably restored because its contents or a part of it has been overwritten.

Important

For the safety reasons, Active@ UNERASER warns you if you are trying to write the restored file back onto the same drive. When you write a file to the same drive that contains deleted or damaged data, you may overwrite data that belongs to other deleted files or folders, or you may overwrite part of the same file that you are trying to recover. Always restore files to another physical HDD, external USB, removable or network drive.

7. Unerase All Volume Data on a Deleted or Damaged Partition

There are two basic approaches for restoring volume data all at once:

- 1. Copy all data to a new safe location (to another attached or external physical disk)
- 2. Physical recovery of the boot sector and partition table (in-place recovery)

In-place recovery works best when the partition/volume was just deleted, or the data and the file system on deleted/re-created/re-formatted partition have not been severely damaged (overwritten). In this case the recovery process is very fast, and you'll be able to access your files using Windows Explorer (or any other program) immediately after recovery. However, if some data overwriting occurred, or damage to the file system took place, Windows might not recognize the recovered volume (a drive with an assigned letter does not appear), or you may get messages like "Drive is not accessible". In this case you should try the second option: copy all existing data from the corrupted volume to a new physical disk.

There are other scenarios when you do not want to recover your data in-place. You just want to restore all live (non-deleted) volume data (files and folders) to another media in a single operation. Possible scenarios when this is applicable:

- USB Flash or Camera Memory Card is damaged or formatted
- Hard Disk has some physical damage (unreadable or bad sectors)
- Volume boot sector is damaged by virus or power surge and volume becomes unreadable
- Partition or volume has been formatted accidentally
- RAID Disk Array crashed and needs to be re-built

Copying Volume Data to Another Location

This approach is the **safest** way to get all your data backed up to a new safe place, however this is a **slowest** way. You keep your original damaged disk (all data on it not touched), and just copy all your valuable information to a dedicated attached HDD/SDD, external USB HDD or Flash Disk. Copy process itself could take a long time, especially in case if you have terabytes of data (videos or photo archives).

To Copy All Volume Data to a New Disk:

- In Active@ UNERASER, use <u>QuickScan</u> or <u>SuperScan</u> to detect deleted or damaged partition, verify its content and select the partition node.
- 2. To open the **Unerase Options** dialog box, use one of the following methods:

- Click **Unerase** on the toolbar
- Right-click the volume, and then choose Unerase from the context menu
- Execute **Unerase** command from **Action** menu
- Press Ctrl+R key combination

- 3. Make sure Copy All Data to a New Disk tab is active
- 4. Select a recovery method:
 - Recover Files & Folders only copies all safe files and folders from the partition being recovered to a new
 target disk. Original data structure (location of files and directories in folder's tree) and file's attributes
 (creation date, read-only flag, etc..) have been duplicated as well. Advantage of this method is that copied

files are guaranteed to be readable (accessible) on a new target. Disadvantage is that system areas, metadata and deleted data are not copied, so future data recovery of damaged file system is not possible on a new target.

- Copy All Volume Data (sector by sector copy) copies all occupied sectors on the volume as it is specified in file system's allocation bitmap. This means than all system areas (like MFT records, or FAT tables) have been duplicated as well, and along with safe files and folders you can recover files being marked as deleted as well, so future data recovery is possible even from the new disk (target). This can be considered as a significant advantage. Disadvantage is that if some system areas (for example MFT, or boot sector) on the found partition are damaged, target disk will have exactly the same damaged data, and when accessing the new volume, or files on it, you can get error messages, like "access denied".
- 5. Select a designated disk (having enough storage space) to copy all you data to. List box displays all available disks in the system, excluding physical disks where operating system is installed. You can plug-in more disks (or remove some them) and the software should detect and display them here immediately. Make sure you select a proper target disk, as long as before copying occurs it will be formatted (all existing data, if any, will be lost).
- 6. Click **Unerase** and wait while all volume data being copied.

After completion Windows Explorer should be launched and you can access and inspect your data at the new location.

Important

Copy All Data to a New Disk command re-formats the target disk, destroying all data on it, before all data being copied to. Be careful and select a proper target disk, which doesn't contain anything important!

Restoring a deleted/damaged volume in-place

This approach is the **fastest** way to return your volume "back to life" in place where it was resided originally, however this could be dangerous and **non-guaranteed** way. Recovery of partition information, volume boot sector and partition table usually takes couple seconds, however you need to be absolutely sure that you recover a proper volume, and recovery is successful only when file system itself has not been damaged previously.

This way works best when you just deleted a volume, realized the problem and immediately started recovery process. In this case not many data overwrite operations occurred within Windows environment, so most of your data structures are not being damaged.

In case if you formatted the disk and installed a new OS, or copied some files to a newly formatted partition - you may still try this approach, however chances that some critical file system data structures has not been damaged are low, so most likely after recovery occurs Windows would not be able to access a logical disk and you will see something like: "Volume is not accessible or damaged" and "Do you want to format the volume?", and you'll need to delete this invalid partition and try another approach.

To evaluate your chances for successful physical recovery (in-place recovery), take a look at the icon besides the found volume. You can distinguish deleted partitions from existing ones by the icons:

- Grey icon shows an existing partition or drive visible in Windows Explorer
- Green icon shows live drive in SuperScan results (having drive letter)
- Grey icon with Green mark shows a deleted partition with Excellent integrity status, which means the chances for successful recovery in-place are good
- Grey icon with Brown mark shows a deleted partition with Acceptable integrity status, which means that there are chances for successful recovery in-place
- Grey icon with Red mark shows a deleted partition with Poor integrity status, however this partition might has been formatted before deletion or has some other damage, so there are minimal chances of successful volume recovery in-place

To restore a deleted volume in-place:

- In Active@ UNERASER, use <u>QuickScan</u> or <u>SuperScan</u> to detect deleted partition, verify its content and select the deleted partition node.
- 2. To open the **Unerase Options** dialog box, use one of the following methods:

- Click Unerase on the toolbar
- Right-click the volume, and then choose Unerase from the context menu
- Execute **Unerase** command from **Action** menu
- Press Ctrl+R key combination
- 3. Go to Unerase Volume In-Place tab and check recovery options

- 4. To assign a partition to be recovered non-default disk letter, you may choose one of available letters from the drop-down box
- 5. To mark a partition to be recovered as an **Active**, you may check the related check box. Be careful! If you mark as an Active a partition that does not have system files on it for the booting process your computer might not boot properly. So mark it as an Active only when you sure 100% percent that partition being recovered had an Active status before deletion
- 6. In some cases partition being recovered seems to be not a *Primary* type, but the *Logical Disk* in the *Extended* partition. In this case **Create Extended Partition First** options will be available, if no *Extended* partition exists on the disk. Keep it turned on if you want to create *Extended* partition container first, then to place your recovered partition inside. If option **use ALL Unallocated area** is turned off Extended partition (container) will have the same size as partition being recovered, otherwise Extended partition (container) would occupy all unallocated space on the disk
- 7. You have an option to perform either **Automatic** or **Manual** check and fix of the Volume Boot Sector. If you are not familiar with disk low-level structures, use **Automatic** mode. If you know a lot about sectors, clusters, FAT, MFT, etc.. you can choose **Manual** mode to check the parameters manually and to select the most appropriate action
- 8. Click Unerase

After the recovery process is complete, a confirmation message pops up. Make sure that the results are correct by verifying the contents of the recovered partition in the Windows Explorer. Recovered partition should appear there after you refresh its content.

Manual mode for Volume Boot Sector Recovery

If you've chosen **Manual** mode for the **Boot Sector Check & Fix**, dialog like above appears.

You can:

- Verify the parameters of the *Primary* and *Copy of Boot Sector* located on the disk. Parameters that look like invalid are
 marked with a red mark. *Boot Sector Template* column is formed programmatically and contains the most appropriate
 parameters for the partition found
- **Save** to the file raw *Primary Boot Sector* or *Copy of Boot Sector* to be able to analyze these raw values in Hex Editor or third party software, or restore them back if recovery is unsuccessful
- Load from the file raw Primary Boot Sector or Copy of Boot Sector to restore them back after unsuccessful recovery
- See the Overall Status of Partition Boot Sectors (their validity and match)
- Choose an **Action** to execute for the *Boot Sectors* while partition recovery:
 - Duplicate Primary Boot Sector into a Copy of Boot Sector if you are sure that Primary Boot Sector is valid, but Copy is not
 - 2. **Duplicate Copy of Boot Sector into a Primary Boot Sector** if you are sure that *Copy of Boot Sector* is valid, but *Primary* is not
 - 3. Copy Boot Sector Template into both Boot Sectors if both Primary and Copy of Boot Sector look invalid
 - Do NOT fix Boot Sectors if both Boot Sectors look valid and match each other and the Boot Sector Template
 values.

In the example above, even you are not a specialist - you can notice that **Primary Boot Sector** contains missed information (i.e. damaged), the red marks appear next to the fields, so the most appropriate action is to **Duplicate Copy of a Boot Sector into a Primary Boot Sector.**

Important

Unerase command for a deleted volume has been automatically logged to the partitioning backup file, and you can always rollback you changes later on.

Note

Unerase in place for a deleted partition function is available in commercial (purchased) version only.

8. Search for Deleted Files and Folders

Search procedure can be helpful when you've completed <u>QuickScan</u> for the particular volumes and you are not able to locate your files, or you cannot assume the location.

Advice

Before using any recovery software, including Active@ UNERASER, check the **Recycle Bin** to see if the deleted file or folder is there. If it is, use the standard Windows **Restore** command to recover your data from there. If you cannot find the file or folder you are looking for in the Recycle Bin, continue with search and recovery procedures.

To locate specific files and folders:

- 1. Launch an Active@ UNERASER and select a volume that supposedly contains deleted files
- 2. Try direct listing: If you know exactly where the deleted files or folders are located, you can use the volume scan procedure. After the drive has been scanned, manually navigate to the folder path the same way as you would in Windows Explorer. If you cannot find the file or folder, open a tree node named !Lost & Found! If the parent folder of the deleted file has been deleted as well, it is very likely the deleted item will be placed in this virtual folder. If you are still unable to locate your data, proceed to the next step
- 3. **Try filtering**: For the particular volume (or even folder) you can setup a filter to display deleted only or existing only files and folders:
 - To display only deleted files, right-click the view and choose **Deleted only** from the context menu. You can
 also click **Deleted** toolbar button in **Filter** section
 - To display only existing files, right-click the view and choose Existing only from the context menu. You can
 also click Existing toolbar button in Filter section
 - To clear the filter, right-click the view and choose All Files/Folders from the context menu. You can also click All Files toolbar button in Filter section

4. Try Search mode: If you are not certain where the deleted file or folder was located before it was deleted, select a

drive or folder and click **Search** on the toolbar, or right-click the drive or folder and choose **Search** in the context menu, or select a volume and press **Ctrl+F**. Do the following in the *Search* dialog box:

- a. To find a file by name, enter the file name in the **Find what** field. Search will look for files that match the name. You may enter part of the file name and use an asterisk (*) to represent the rest of the name. Regular expressions are supported (**RegExp**)
- b. To search by file type, choose a file type from the **File type** drop-down list
- c. To exclude existing files and folders from the search results, mark the **Deleted** option
- d. To exclude deleted files and folders from the search results, mark **Non-deleted** option
- e. To use case sensitive search, clear the **Case insensitive search** check box
- f. To search for a file based on a date, select the Created, Modified or Accessed [Deleted] check boxes and enter a From and To date range
- g. To search for a file based on the size of the file, select the **Size** check box and enter a **From** and **To** size range
- h. To search for a file identifier, select the **ID** check box and enter a **From** and **To** identifier range
- i. Click Find to start Search process

- j. After the Search is complete, examine the **Search Results** virtual folder. This is a flat list of all items satisfying your criteria. You can sort Search results on any column (name, size, date, ID...), check properties of items, preview and recover files and folders.
- 5. **Try SuperScan:** If no files were found, use the <u>SuperScan</u> to thoroughly scan the HDD/SSD/USB surface to reconstruct all possible data entries. This is relatively slow process, however it brings maximum results:
 - SuperScan detects and reconstructs many volumes presumably existed on scanned disk area. It can detect FAT/FAT32/exFAT, NTFS, Apple HFS+, Linux Ext2/Ext3/Ext4fs, Unix UFS file systems. Inspect

these volumes to evaluate a full data set being recovered. SuperScan Options Intel Raid 0 Volume 🖺 General SuperScan Signatures Recognition Scan Areas From 1.00 MB (2048 sector) 8.80 GB (18456576 sectors) 57.9 GB (121444944 sector) 20.0 GB (41939280 sectors) 121444944 Sectors 🕶 41939280 Add Remove Analyze and detect deleted or damaged partitions **NTFS** ✓ UFS # HFS+ Ext2/Ext3/Ext4 File types to be recognized based on signatures ■ None (Fast) All (Slow) Some (Select) Start
 Start Cancel

SuperScan inspects existing volumes more deeply, for example, if you formatted the volume, QuickScan displays no files on it, however SuperScan most likely will detect formatted data structures and will reconstruct previous data tree.

3. SuperScan has an option of detecting deleted files by their signatures. More than 60 predefined file signatures have been implemented internally (MP3, JPG, DOC, ZIP, etc..) and there is an option to create

If you have completed of all the steps listed above and your files and folders still cannot be found, it is likely that the drive space formerly occupied by your files has been completely overwritten with other data. If this is the case, there are no recovery tools that can help you. This can happen when a lot of writing operations occur on the drive, for example during a software installation. As well, Windows operating system will sometimes create temporary files for different processes. If the process involves a lot of data and many temporary files are written, your deleted files may have been destroyed.

Important

When you are using a search pattern in **Search**, it is the same pattern recognized when searching in Microsoft Windows. The asterisk symbol (*) in the pattern means, that at this place can be zero, or any number of any symbols.

Examples:

```
    * - All files on the drive or in the folder
    *.TXT - All files with "TXT" extension
    My*.* - All files starting with "My"
    MyFile.txt - Search for the file named "MyFile.txt"
```

Note

You can distinguish deleted files and folders from existing files and folders by the icons:

- Blue or yellow icon point to an existing file and folder
- Grev icon points to a deleted file and folder

9. Search, Organize and Recover files based on Signatures

In case if recovery software is unable to detect deleted files after QuickScan or SuperScan (for example, when directory area keeping file headers is wiped out or overwritten by other data), the only chance to recover files is to search for file signatures. In this case un-fragmented files can still be detected and recovered.

Active@ UNERASER comes with more than sixty predefined (internally programmed, very fast) file signatures to be analyzed and detected while SuperScan is in progress (MS Office Documents, Photo Camera Image formats, ZIP/RAR Archives, Music & Video MP3/MP4, etc..). For expert users there is advanced programming language which allows to define custom file signatures for UNERASER to search for specific data formats.

To search for standard file signatures:

- 1. Start Active@ UNERASER and choose a disk or volume to be inspected (place a cursor on it)
- 2. Launch **SuperScan** dialog box and define SuperScan options
- 3. Select All or Some file signatures to be recognized:

4. On a **SuperScan Signatures Recognition** tab verify signatures to be processed:

- 5. Click Start button and wait until something is recognized
- 6. Inspect specific groups in Signatures folder for files being detected
- 7. Preview and recover files (if detected) from specified groups

To preview, organize and recover files detected by signatures:

- 1. Select SuperScan node in the tree view on the left and Signature Files tab in the list view on the right
- 2. Expand general groups (Music, Documents) and specific sub-types (MP3, XLS,...) to inspect what is detected:

If file detected by signatures has some extended attributes, like AUTHOR, CREATED, TITLE, etc., these attributes
will be displayed on the right. By default the only 5 first detected file attributes being displayed. To display more
attributes, use Show Attributes drop down list

- 4. By default files are not sorted and displayed in the order of detection. To group files by attributes, click the column you want to sort on. If **Subsequent Column Sorting** option is turned ON, files are grouped & sorted on all columns followed the column you clicked. This could be convenient, for example, if you want to group music by **Artist** and then by **Album**
- 5. If you want to hide some attributes or change display order, click **Reorganize Attributes** button on the toolbar. Dialog appears and you can change the attribute for the particular file type (MP3, XLS, ...) to be displayed in the particular column on the screen. For example, default column order for music is **Artist, Album, Title, Genre, Year**,... To group MP3 first by **Year**, then by **Artist**, then by **Album**, change column order this way:

And you will see:

6. To recover files detected by Signatures, select the particular file or group of files, or even all signature files and click **Unerase** button. On **Unerase Options** dialog use **Organize by file meta-data** option to group files in folders based on attributes (meta-data):

7. Use Attribute-based folder depth parameter to organize recovered files in a specified number of sub-folders. For example, for the MP3 files default columns are Artist, Album, Title and default folder depth is 2. When you recover MP3s using default parameters, your music files will be organized first by Artist, then by Album, so all album songs will be in one folder. If you reorganize columns display like in example above (Year, Artist, Album,...) and specify folder depth 3, after recovery you'll have music grouped in folders first by Year, then by Artist, then by Album.

Custom File Signatures

Sometimes advanced users need to detect more specific file formats, not being described in standard set of file signatures.

Active@ UNERASER offers advanced tools to define user's templates for signatures to be analyzed. Signatures can be described using extended definition language which complies with RegExp (Regular Expressions). See language definition and syntax below.

To create and use a custom file signatures:

- 1. Create a text file containing one or multiple signatures definition (using syntax and examples below)
- 2. Launch Active@ UNERASER, select disk or volume to be inspected, and click **SuperScan** button
- 3. In SuperScan options, File types to be recognized based on signatures area, choose Some (Select)
- 4. Load created text file contents into Signatures Tree
 - Click Load Templates... button
 - Select created text file containing signatures definition

Find custom signatures in Signatures Tree and make sure that they are selected

- 5. Click **Scan** button to execute SuperScan
- 6. Inspect specific groups in Signatures Files panel for files being detected
- 7. Preview and recover files (if detected) from specified groups

Signatures definition language and examples:

```
Signature Templates Usage
; Empty lines and lines starting with semicolon are ignored
; Sections order and lines order in sections are not important
; Letter case is not important (excepting RegExp fields)
; Section TEMPLATES - required and contains fields numbering from one
        - TEMPLATE### - points to the section where signature template is described (numbered from one)
; Section Template Header - required and contains fields:
     - BEGIN - required. Points to the section describing begin of the signature file
     - FOOTER - non required. Points to the section describing end of the signature file
      - MAX SIZE - non required. Maximum file size to force file-end, if no file-end signature is detected. By
default it is 64 \text{Kb}.
      - GROUP - non required. If missed - template goes to User Defined templates group by default
     - DESCRIPTION - non required. This is a descriptive name of user template being displayed on a screen
     - EXTENSION - non required. This is a file extension to be assigned and displayed
     - SCRIPT - non required. Refers to the section where size of the file being calculated
      Note: If field SCRIPT is present, then field FOOTER is ignored
; Section describing file beginning (required), contains fields of the same type:
     <signature> = <offset start> | <offset end>
                    - expression (regular or RegExp-compatible). Expression max length is 1024 bytes.
     signature
     offset start - acceptable minimal signature offset from the beginning of the file
     offset end
                    - acceptable maximum signature offset from the beginning of the file
     If there are several fields listed in signature beginning, logical AND operation applied to confirm file
start.
; Section calculating file size (not required), contains operators of four types:
     <result> = <command> (<argument>, <argument>)
     <result> = <argument>
     IF (<argument< <condition> <argument>) GOTO <label>
     GOTO <label>
 <commands> : READ, ENDIAN, SUM, SUB, MUL, DIV, SHR, SHL, AND, OR and XOR
     Most of commands are the same as in assembler programming language, except:
     READ - first argument - data type (size) to be read, second - offset from the beginning of the file
     ENDIAN - first argument - data type (size), second - expression, which byte order will be swapped
     First argument for commands READ and ENDIAN must be one of reserved data types: BYTE, WORD, DWORD, QWORD
```

```
; <argument> : can be either a named variable or a constant
; <result> : can be the only named variable
; <condition>: can be one of : < <= == >= != (meaning is the same as in C++)
            : consists of label name followed by colon and it can precede any operator
; Label named EXIT has been reserved and instructs to complete the calculations
; Named variable SIZE has been reserved and keeps the file size
; Constants can be in Decimal form, Binary (followed by 'b'), Octal ('o'), and Hexadecimal ('h') or can be a text
; Section describing file end (not required), contains fields of the same type:
      <signature> [= <bytes to append>]
      signature
                      - expression (regular or RegExp-compatible). Expression max length is 1024 bytes.
      bytes to append - not required. How many bytes to append to the file after the signature is found
      If there are several fields listed in signature, logical OR operation applied to define file end.
                                                  Examples
[TEMPLATES]
TEMPLATE1 = PRIMITIVE HTML
TEMPLATE2 = PRIMITIVE JPG
TEMPLATE3 = QBW HEADER
TEMPLATE4 = CHM HEADER
TEMPLATE5 = SWF HEADER
TEMPLATE6 = PST HEADER
TEMPLATE7 = MRW HEADER
TEMPLATE8 = MID HEADER
TEMPLATE9 = CAB HEADER
TEMPLATE10 = BMP_HEADER
TEMPLATE11 = DJV_HEADER
[PRIMITIVE HTML]
DESCRIPTION = Primitive HTML Signature
EXTENSION = html
BEGIN=HTML BEGIN
FOOTER=HTML_FOOTER
MAX SIZE = \overline{6}55360
[HTML BEGIN]
<html = 0 | 512
<head = 0 | 1024
[HTML FOOTER]
</html> = 2
[PRIMITIVE JPG]
BEGIN=BEGIN.TEST.JPG
GROUP = Images and Camera RAW files
DESCRIPTION = Primitive JPG files
FOOTER=FOOTER-.TEST.JPG
EXTENSION = test.jpg
MAX SIZE = 3221225472
[BEGIN.TEST.JPG]
\xFF\xD8\xFF = 0 \mid 0
[FOOTER-.TEST.JPG]
\xFF\xD9
[DJV HEADER]
DESCRIPTION=DjVu Document
EXTENSION=djvu
BEGIN=DJV BEGIN
SCRIPT=DJV SCRIPT
[DJV BEGIN]
AT&TFORM=0 | 0
[DJV SCRIPT]
                size = read(dword, 8)
                size = endian(dword, size)
                size = sum(size, 12)
[QBW HEADER]
DESCRIPTION=QuickBooks Document
```

```
EXTENSION=qbw
BEGIN=QBW BEGIN
SCRIPT=QBW SCRIPT
[QBW BEGIN]
MAUI=96|96
[QBW_SCRIPT]
                 data = read(dword, 36)
                 temp = read(dword, 52)
                 if (temp <= data) goto exit
                 size = sum(temp, 1)
                 size = shl(size, 10)
[CHM_HEADER]
DESCRIPTION=Microsoft CHM Help
EXTENSION=chm
BEGIN=CHM BEGIN
SCRIPT=CHM SCRIPT
[CHM BEGIN]
ITSF=0|0
[CHM_SCRIPT]
                 version = read(dword, 4)
                 if (version == 0) goto exit
                 header = read(dword, 8)
                 if (header <= 1Ch) goto exit
                 temp = read(qword, header)
                 if (temp != 1FEh) goto exit
                 temp = sum(header, 8)
size = read(qword, temp)
                 temp = sum(header, 10h)
                 if (size > temp) goto exit
                 size = 0
[SWF HEADER]
DESCRIPTION=Adobe Flash SWF
EXTENSION=swf
BEGIN=SWF BEGIN
SCRIPT=SWF SCRIPT
[SWF BEGIN]
FWS=0|0
[SWF SCRIPT]
                 data = read(byte, 3)
                 if (data <= 10h) goto exit
                 size = read(dword, 4)
                 if (size <= 8) goto exit
                 size = 0
[PST HEADER]
DESCRIPTION=Outlook Archive
EXTENSION=pst
BEGIN=PST BEGIN
SCRIPT=PST SCRIPT
[PST BEGIN]
!BDN=0|0
[PST SCRIPT]
                 data = read(byte, 10)
if (data == 0Eh) goto valid
if (data != 17h) goto exit
                 size = read(dword, 184)
                 goto exit
valid:
                 size = read(dword, 168)
[MRW HEADER]
DESCRIPTION=Minolta Camera Images
EXTENSION=mrw
BEGIN=MRW BEGIN
SCRIPT=MRW SCRIPT
[MRW BEGIN]
\x00MRM=0|0
[MRW SCRIPT]
                 data = read(dword, 4)
                 if (data == 0) goto exit
                 width = read(word, 24)
                 if (width == 0) goto exit
                 width = endian(word, width)
```

31

```
height = read(word, 26)
                 if (height == 0) goto exit
                 height = endian(word, height)
                 pixel = read(byte, 32)
                 if (pixel == 0) goto exit
                 pixel = mul(pixel, width)
pixel = mul(pixel, height)
                 pixel = div(pixel, 8)
                 size = endian(dword, data)
                 size = sum(size, pixel)
                 size = sum(size, 8)
[MID HEADER]
DESCRIPTION=MIDI Audio
EXTENSION=mid
BEGIN=MID BEGIN
SCRIPT=MID SCRIPT
[MID BEGIN]
MThd=0 | 0
[MID_SCRIPT]
next:
                 temp = read(dword, size)
                 if (temp == "MThd") goto valid
if (temp != "MTrk") goto exit
valid:
                 size = sum(size, 4)
                 temp = read(dword, size)
                 size = sum(size, 4)
                 temp = endian(dword, temp)
                 size = sum(size, temp)
                 goto next
[CAB HEADER]
DESCRIPTION=Microsoft Compressed Archive CAB
EXTENSION=cab
BEGIN=CAB BEGIN
SCRIPT=CAB SCRIPT
[CAB BEGIN]
MSCF=0 | 0
[CAB SCRIPT]
                 version = read(word, 24)
                 if (version != 103h) goto exit
                 folders = read(word, 26)
                 folders = mul(folders, 8)
                 folders = sum(folders, 36)
                 files = read(word, 28)
                 files = mul(files, 16)
files = sum(files, folders)
                 temp = read(dword, 16)
                 if (temp < folders) goto exit
                 temp = read(dword, 8)
                 if (temp <= files) goto exit
                 flags = read(word, 30)
                 flags = and(flags, 4)
                 if (flags == 0) goto skip
                 flags = read(dword, 36)
                 if (flags != 20) goto skip
                 flags = read(dword, 44)
                 if (flags < temp) goto skip
                 size = flags
                 temp = read(dword, 48)
skip:
                 size = sum(temp, size)
[BMP HEADER]
DESCRIPTION=Bitmap Images BMP
EXTENSION=bmp
BEGIN=BMP BEGIN
SCRIPT=BMP SCRIPT
[BMP BEGIN]
BM=0 | 0
[BMP SCRIPT]
                 width = read(dword, 12h)
                 if (width == 0) goto exit
                 height = read(dword, 16h)
                 if (height == 0) goto exit
```

pixel = read(word, 1ch)

```
if (pixel == 1) goto valid
                if (pixel == 4) goto valid
                if (pixel == 8) goto valid
                if (pixel == 16) goto valid
                if (pixel == 24) goto valid
                if (pixel != 32) goto exit
valid:
                pixel = mul(pixel, width)
                pixel = mul(pixel, height)
                pixel = div(pixel, 1000b)
                rastr size = read(dword, 22h)
                if (rastr size < pixel) goto exit
                rastr offset = read(dword, 0Ah)
                if (rastr offset < 38) goto exit
                rastr_offset = sum(rastr_offset, rastr_size)
                size = read(dword, 2)
                if (size >= rastr_offset) goto exit
                size = 0
```

Important

Regular Expressions can be used while defining signature headers and footers. Please check RegExp syntax on a web, for example here.

10. Preview File (Check Recovery Status)

In order to recover files or folders, you must scan the drive or partition and then search for damaged or deleted files or folders. If you have found some damaged or deleted files and you are not sure whether or not a file is safe for recovery or you are not sure whether or not the file data has been overwritten on the drive, you may preview the content of file before recovery occurs.

For **Preview** mode to be available, **File Preview** component needs to be selected when you are installing the software. If File Preview has not been installed, **Preview** command will be greyed out and inaccessible.

If the file data has been overwritten on the drive, it is not likely that the file can be previewed. If this is the case, you will see a warning message, and file will be previewed in Hex format. If you plan to purchase the commercial version of Active@ UNERASER, you may want to preview file contents to help you determine whether or not the contents are valuable using the FREE version of the software. If you can preview file contents, it is likely that you can recover the file.

Preview file contents using the built-in preview module works with the following image files: *.bmp, *.wbmp, *.dib, *.gif, *.jpg, *.jpeg, *.pcx, *.ico, *.tif, *.tiff, *.png, *.wmf.

Other document types can be previewed using an external viewer like Microsoft Word or using the built-in Hex/Text viewer. If you want to preview a file named *MyDoc.DOC* you must have an application installed that is able to open *.DOC files. The file will be rendered and previewed using this application. If you do NOT have an application installed that is able to open *.DOC files, the file will be previewed in the default built-in Hex/Text viewer.

For example, if you have Microsoft Office installed, most likely you will be able to preview office document types: *.doc, *.docx, *.xlsx, *.ppt, *.pptx, *.vsd, *.mpp, *.rpt.

Important

Avoid previewing large files! In order to preview a file's contents, the file needs to be recovered and placed in temporary storage. The built-in or external preview utility reads this temporary file. If you have enough RAM, the temporary file is kept in volatile memory. If you do not have enough RAM, a temporary file could be written onto the drive that contains damaged or deleted files and there is a chance that you may overwrite your original deleted data.

To preview file contents and check recovery status:

- 1. In Active@ UNERASER, search for deleted files and folders and select the file.
- 2. To launch **Preview** module, use one of the following methods:
 - Click **Preview** toolbar button:

- Right-click the file, and choose Preview from the context menu
- Double-click the file
- Press Enter or Ctrl+P key combination
- 3. A Preview window appears with the first page of your document.

Note

You cannot preview encrypted files and files having size more than 10MB.

11. Rollback, Backup and Restore Disk Partitioning Info

Disk Partitioning Information is an MBR/GPT, Partition Table and Volume Boot Sectors for each existing partition on the disk.

You might ask, "Why should I backup Partitioning Info?"

Here is the answer: If you something goes wrong while attempting to recover the partition (for example you recovered wrong partition), you will be able to restore original partitioning structure for the drive being repaired.

Automatic Partitioning Backups

When you are trying to resolve your partitioning problem in place, you usually execute such commands of Active@ UNERASER as **Create/Fix Partitioning**, **Convert Partition Style**, **Fix Boot Sector**, **Delete Invalid Partition** and **Recover Partition** (in place). Every command execution has been automatically logged the partitioning backup file. If something goes wrong (you recovered not a proper partition, you accidentally removed a valid partition...) you always have a chance to rollback your last changes to the system.

Backups are stored for each physical device at the location **Partitioning auto-backups default path** in Settings.

To rollback partitioning changes:

- 1. Start Active@ UNERASER and select a physical device that you want to rollback changes for
- 2. From Partition menu click Rollback Partition Changes... command
- 3. Select a backup file, or confirm the backup file default location
- 4. Select a restore point to rollback to. If you executed several commands, these commands listed from top to bottom, and you can select a particular place to revert to
- Click Rollback
- 6. Rollback process starts, you can check the results in log

Important

To be able to rollback partitioning to the any particular restore point, we recommend you to use the only standard functions of Active@ UNERASER, and avoid using other tools, like Windows Disk Manager (to remove partitions, initialize disk, etc..)

To backup Disk Partitioning Info:

- Start Active@ UNERASER and select a physical device (HDD, USB, Memory Card...) that you want to create a backup for
- 2. From Partition menu click Backup Partitioning Info... command
- 3. Select a file name and location where to store backup
- 4. Click Save

To restore Disk Partitioning Info from the backup:

- 1. Start Active@ UNERASER and select a physical device that you want to restore backup for
- 2. From Partition menu click Restore Partitioning Info... command
- 3. Select a backup file
- 4. Click Open
- 5. Restoration process starts, you can check the results in log

Important

Existing disk partitioning structure will be overwritten on the disk where you restore Disk Partitioning Info backup file to.

12. Fix damaged MBR/GPT and use Disk Partitioning Tools

Fixing MBR/GPT

If partition table looks OK for the disk you are recovering physically (you see all volumes in the Explorer Tree), but your computer still does not boot from this disk, it is possible that Master Boot Record (MBR) is damaged by virus or overwritten. You can try to use **Fix Partitioning** command to replace existing MBR with the one from the set of templates (the typical one).

To fix damaged Master Boot Record (MBR) or GUID Partition Table (GPT):

- 1. Select the disk in you want to fix MBR/GPT for (place cursor on it)
- 2. In the main window, from the **Partition** menu, choose **Create/Fix Partitioning...**
- 3. In confirmation dialog make sure that a proper disk is selected for MBR fixing
- 4. Click either MBR or GPT (depending on a partitioning style you like) to confirm the command and wait while list of disks is being refreshed:

Converting Partition Style

If you want to change "old" MBR style to a "new" one (GPT) to be able having more than four primary partitions or for some other reasons, you can easily do it with Active@ UNERASER. The same applied if you want to return from a "modern" GPT to "obsolete" MBR (but most compatible), for example, to work with disk under Windows 95/98/ME environments.

To convert partition style:

- 1. Select the physical disk which partitioning style will be converted (place cursor on it)
- 2. In the main window, from the Partition menu, choose Convert Partition Style...
- 3. In confirmation dialog make sure that a proper partitioning style will be applied
- 4. Click **Yes** to confirm the command and wait while list of disks is being refreshed:

Deleting Invalid Partition

If you know for sure that partition on the disk is NOT valid (damaged, or created by mistake instead of deleted one, or recovered not properly) you can delete the existing partition first and then try to search and recover other partitions.

This is also the only option when you found deleted partition using **QuickScan** or **SuperScan**, and you know for sure that it is valid, but you are unable to recover it in place due to overlapping with others existing partitions. You are to detect the invalid partition first, delete it and then to recover the only partition you are interested in.

To delete invalid partition:

- Verify that existing partition you want to delete is actually invalid partition (Windows Explorer is not displaying it
 properly, or unable to access it and suggests to format it, or displays a garbage instead of your files)
- 2. Select the partition to be deleted (place cursor on it)
- 3. In the main window, from the Partition menu, choose Delete Invalid Partition
- 4. In confirmation dialog make sure that a proper partition is selected for deletion
- 5. Click **Yes** to confirm the command and wait while list of disks is being refreshed

Note

You can delete the only existing partition (**Primary** or **Extended**) and you cannot delete the **System** partition (**Active** one or having **Windows** installed). If you need to delete the **Extended** partition, make sure that it is empty (no logical drives left in it). If logical drives exist in **Extended** partition, you are to delete them first, then to delete **Extended** partition itself.

Important

Create/Fix Partitioning and **Delete Invalid Partition** commands for the hardware device has been automatically logged to the partitioning backup file, and you can always rollback you changes later on.

Note

Create/Fix Partitioning function is available in commercial (purchased) version only.

13. Fix Damaged Partition/Volume Boot Sector

Fixing Boot Sector

If volume looks OK for the disk you are recovering (you see all volumes in the Explorer Tree), but Windows still does not recognize a volume, or says "Volume is inaccessible", it is possible that Partition Boot Sector (or Copy of Boot Sector) is

damaged by virus or overwritten. You can try to use **Fix Boot Sector** command to replace Primary Boot Sector with its Copy (or backward), or both of them from the set of templates (typical boot sector). The idea is the same as for the <u>Manual Volume</u> <u>Recovery Mode</u>.

To fix damaged Partition (Volume) Boot Sector:

- 1. Select the volume (logical disk) you want to fix Boot Sector for (place cursor on it)
- In the main window, from the Partition menu, choose Fix Boot Sector... or execute the same command from the context menu
- 3. In the dialog compare boot sector values, change them if needed, and select an action to execute. Details...
- 4. Click **Fix** to confirm the command and wait while list of disks is being refreshed

Important

Fix Boot Sector command for the hardware device has been automatically logged to the partitioning backup file, and you can always rollback you changes later on.

Note

Fix Boot Sector function is available in commercial (purchased) version only.

14. Apply Boot Sector Template

Applying Boot Sector Template to any disk's sector

In some rare cases partition cannot be automatically recovered successfully due to the damage of boot sector structures. Another scenario includes deleted/damaged volume cannot even be found due to critical damage of volume structures.

If you know exact location of a Volume Boot Sector and its parameters, you can try to recover Boot Sector manually by applying a proper Boot Sector Template (all major file systems supported) to a particular disk sector.

To apply a Boot Sector Template:

- Start Active@ UNERASER and select any existing or found volume/partition on the physical device where you
 want to apply a Boot Sector Template and click Boot Sector Template... from Tools menu or from the
 context menu
- **Boot Sector Template** dialog appears:

- In case if you want to fix not the volume's first sector (zero numbered) and you know exact location, type the sector number to the **Selected Sector** filed, then click **Set Sector** button. Alternatively you can use plus and minus buttons to navigate. Sectors are numbered starting from zero number and navigation occurs only within selected volume/partition
- Apply a particular File System Template by clicking a related item in the list at the left side. All major file systems are supported
- Chosen File System Template will be applied to the selected sector and file system's boot sector structure will be pre-populated with valued being read from the selected sector
- Basic validity check is performed and if applied values are valid, these numbers will be displayed in green color.
 If values presumably invalid you will see red colored values
- You can change any parameter manually by typing proper values to selected parameters, however you need a deep knowledge of disk structures
- If you are satisfied with an applied template and its parameters, click **Save** button to store changes back to the selected sector on disk.

Important

This feature designed for use by Professionals only. You need a deep knowledge of Boot Sector and File System structures to be able to apply proper Boot Sector parameters.

15. Re-create Deleted or Damaged Disk Array (RAID) Virtually

There are many reasons for a Redundant Array of Independent Disks (RAID) system to fail (RAID controller failures, software RAID emulator errors, etc.). Active@ UNERASER provides an easy way to assemble array disks together and make damaged or deleted data accessible.

You can combine together a disk that was previously used as a part of a RAID system in a temporal (virtual) disk array. With this virtual configuration, you are able to perform all drive file recovery manipulations as though it is regular drive. You can even to create a Disk Image for the whole RAID and store it to the safe location.

It is important that you specify the parameters of the RAID system that you know existed before the fault so that you can virtually reassemble the same system.

It is also important to list the disks in the correct order when making a virtual disk array. In most cases, the correct order is unknown. The only way to discover the correct order is to try all available combinations until you reach the one that works. If you are dealing with only two disks, it is simple. You have only two ways to arrange the order. If there are three disks, you must try a maximum of six combinations. If there are four disks, 24 combinations, and so on...

Each time you try a combination, write down the order you are trying, click **OK** and check the results by trying to access and scan the newly-created virtual RAID that is added to the list of **Local System Devices**. If you don't see your data or if there was an error during virtual array creation, mark this one as a failure and try another order of disks in array.

To create a Virtual Disk Array (RAID):

1. To open Recreate Disk Array (RAID) dialog, in the Action menu, choose Recreate RAID (Virtually)...

- 2. To choose a supported RAID type, in the **Virtual Volume Type** area, choose one of the following:
 - <u>Stripe Array</u> (RAID-0) Data located in stripes (blocks of size 32KB, 64KB, 128KB, etc.) distributed between two or more drives
 - Mirror Array (RAID-1) Data on two disks is identical provides complete data duplication (or mirroring)
 - <u>RAID-5 Array</u> Data located in stripes distributed between two or more drives with parity control
 - Span Array Data located contiguously on one disk then on another disk, and so on...
- 3. To select disks from a list to create a virtual disk array:
 - a. In the Available Disks list, select a device (or disk image)
 - b. To add it to the Selected Disks list, click Add

- c. Repeat steps a. and b. for every disk in the original array. If one of the disks is physically damaged and not accessible, and if you have selected RAID-0 or RAID-5 in step 2, from the **Available Disks** list add **Damaged Device** instead of the named damaged disk
- To change the order of disks in the **Selected Disks** list, select a disk name and click **Up** or **Down** to change its position in the list
- 4. To indicate the size of the stripe block, in the **Options** area, type the size of the block in kilobytes in the **Stripe Block** (**RAID0 and RAID5**) field. This is applicable only to RAID-0 and RAID-5 arrays. Standard values are 32Kb, 64Kb, 128Kb, 256Kb. If you are not sure, try each size until you get the correct one
- 5. To indicate the offset and the size of the device, measured in <u>sectors</u> (each sector is 512 bytes), in the **Disk Area to Use in RAID (Sectors)** area, type the values in the **Device offset** and **Size** fields. In most cases, the default values are acceptable. Some RAID controllers use only part of the disk surface. For example HighPoint 370 uses the first 100 sectors on the first drive for its own system information. In this case you would specify the offset as 100 sectors
- 6. Click **OK** to start Virtual Disk Array reassembly process
- 7. In the **Local System Devices** list, a new Virtual Disk Array <u>device node</u> appears. You may treat this new node and its contents the same way that you treat other device nodes in the list.

You may follow the standard steps to <u>scan</u> the Virtual Disk Array node, then search for files and folders to be recovered. You may also create a Disk Image of the whole Virtual Disk Array to work with it later on.

Note

When dealing with Span Arrays, you may get the size of a Damaged Disk a couple of ways:

- Go to the hard drive manufacturer's web site and look for the model.
- Look for the device geometry label on the top of the physical drive. If you find it (it is not always there) you can multiply the parameters C*H*S (Cylinders * Heads *Sectors per Track) to get the number of sectors. For example, Samsung SW0212A has the following: CYL 4092, HD 16, SEC 63, 2.1GB. Multiply 4,092*16*63 to get 4,124,736 sectors. To calculate the disk size, multiply 4,124,736*512 = 2,111,864,832bytes = 2.1GB. We just confirmed the size 2.1GB. The size is marked on drive label and that proves that our calculations are correct.

Important

When dealing with RAID5 Arrays, if the most frequently used Left Asynchronous type does not work for you, you may try some several different types of building array:

- Left Asynchronous (the most frequently used in hardware RAIDs)
- Left Synchronous (used in the most software RAIDs, based on LDM)
- Right Synchronous
- Right Asynchronous

You may consult your RAID controller manufacturer to determine the proper RAID5 type being used in hardware.

16. Create and Work with a Disk Image

A Disk Image is a mirror copy of your entire <u>logical drive</u> or <u>physical device</u> stored as set of files. It may be a good idea to create a Disk Image for a drive, if you have enough space on another drive.

You might ask, "Why should I create a Disk Image on a drive that holds my data?"

Here is the answer: If you do something wrong while attempting to recover the partition, you will be able to recover files and folders from the Disk Image that you have wisely created.

Disk Image (Active@ Image format) consists of configuration file (with an extension .DIM) and set of file chunks having extensions .000, .001, .002 ... By default Active@ UNERASER tries to create one file (chunk) for the whole volume/device, however, in case if target location is FAT/FAT32, it may not be possible due to file system limitations. In this particular case disk image split to several chunks and each file has a size of 2Gb. Chunks content can be RAW or RAW-Compressed, depending on settings.

To create a Disk Image:

- 1. Start Active@ UNERASER and select a drive or physical device that you want to create an image for
- 2. To open the **Create Disk Image** dialog box, do one of the following:
 - Select the item and click Create Image menu item from File menu or press Ctrl+I key combination
 - Right-click the selected item, and choose Create Image on the context menu
- 3. In the Save In drop-down list, select another physical device or to another logical drive
- 4. Browse to the folder where you want to save the Disk Image
- 5. To give the Disk Image file a different name, type one in the **File Name** field
- 6. Click Save

Watch the progress and wait while drive's contents are copied to the new location. You may cancel the process of image creation anytime by clicking **Stop**.

Disk image creation default options:

To change a default disk image storage path, compression methods, splitting to chunks and some other options, open **Settings**, go to **Images** tab and customize default disk image creation options:

Important

You must always create a Disk Image on a drive other than the source drive. Do not try to save a Disk Image of a drive onto itself.

To open and work with a Disk Image:

- 1. Start Active@ UNERASER
- 2. To invoke the Open Image dialog, do one of the following:
 - Press **Ctrl+O** key combination
 - In the File menu, choose Open Image...
- 3. Use drop-down list box at bottom to specify disk image type: Active@ Image, Any RAW image, VMWare or VirtualPC Disk image
- 4. Locate and select disk image file you want to open. Click Open
- 5. Confirm Disk Image Type, Bytes per Sector and chunks, specified in configuration file:

- 6. If there are no configuration file, you can add chunks and change their order manually, using buttons at the right side
- 7. Click **OK** to complete configuration and read disk image structures

The opened disk image appears in the Local System Devices list.

You may treat the opened Disk Image node and its content the same way that you treat other device nodes in the list. You may follow the same steps to scan the volume and then search for files and folders to be recovered. Or you can use opened Disk Images as devices for creating RAID Virtual Arrays.

Active@ UNERASER can open:

- RAW and RAW-Compressed disk images (Active@ Image format: *.DIM)
- RAW disk images created by third party software (WinHex, etc...)
- Disk Images (RAW format) composed from several chunks
- VMWARE (*.vmdk) and VirtualPC (*.vhd) Disk Images

Note

If you've created raw disk image using other third-party utilities (like copying sectors from **WinHex**) you are still able to open it! Just choose **Any Raw Image** disk image type in the **Open File** standard dialog and you will see all files on the disk. Select the required one.

17. Inspect disk data with integrated Disk Editor

Advanced users and IT professionals may require inspecting raw disk structures before actual recovery occurs - to evaluate damage to the data and recovery chances. For these purposes Disk Editor (Hex Viewer) supplied as a separate application and is accessible from recovery panel. Launch it from the context menu for the object to be inspected (hard disk, volume, file data):

For FAT/FAT32 & NTFS volumes inspection of headers of file records is available, for example Disk Editor is launched and "NTFS MFT file record" template is applied for binary data automatically:

Active@ Disk Editor basics

Active@ Disk Editor uses a simple, low-level disk viewer which displays information in binary and text modes at the same time. You can use this view to analyze the contents of data storage structure elements such as:

- Hard disk drives
- SSD & USB Disks
- Partitions & Volumes
- Files

The Main Features:

- Enhanced template view
- Detailed MFT record information
- Side-by-side Compare and Edit
- Fields coloring with data in tooltips
- Extensive exFAT support
- Fast navigation points
- Filling selection with a pattern
- Unicode support
- Quick Disk Info
- Bookmarks
- Data Inspector

Enhanced template view

Template view shows parsed records of the most important areas on disk, allowing easily interpretation and editing. When you navigate to a point of interest, a proper template is selected automatically. The following templates are supported: MBR, NTFS boot sector, FAT boot sector, FAT32 boot sector, exFAT boot sector, HFS+ Volume header, Ext2/Ext3 superblock, NTFS MFT file record, FAT directory entry, exFAT directory entry, LDM structures. As you edit data in Hex, ASCII or Unicode pane or in Templates window, modified data is fully synchronized between views. After each modification a template view is recalculated giving you an up-to-date interpretation of data.

Detailed MFT record information

MFT file record template shows data in great detalization level using multiple levels. You can examine a standard header, all attributes and attribute data of the record. The attributes interpreted are: \$STANDARD_INFORMATION, \$ATTRIBUTE_LIST, \$FILE_NAME, \$OBJECT_ID, \$SECURITY_DESCRIPTOR, \$VOLUME_NAME, \$VOLUME_INFORMATION, \$DATA, \$INDEX_ROOT, \$INDEX_ALLOCATION, \$BITMAP, \$REPARSE_POINT, \$EA_INFORMATION, \$EA, \$LOGGED_UTILITY_STREAM.

Side-by-side Compare and Edit

Some records like boot sectors have their copies. Templates view automatically detects records supporting copies and shows both main and copy values allowing to compare them. You can arbitrary set an offset of main record and its copy.

Fields coloring with data in tooltips

Individual template fields are colored in hexadecimal pane giving a quick overview of all data. As you travel along fields in Templates window, the current field is highlighted in Hex pane. Hover mouse over a colored field to get a tooltip with additional information.

Extensive exFAT support

exFAT boot sector as well as all types of exFAT directory entries are supported giving you a detailed information on different exFAT structures. Move template offset up/down feature allows easily navigate between records.

Fast navigation points

You don't need to guess what is the sector of root directory on FAT volume is or where is \$MFT record on NTFS partition located. Simply use fast navigation points set up in the menu. When Disk Editor opens an object, the most important areas are detected and automatically added to the list. They include boot sectors, FAT tables, root directory, \$MFT and \$MFT Mirror and others.

Filling selection with a pattern

It might be handy to fill an area on the disk with particular data. Besides simply zeroing an area by providing 00 as hexadecimal value you can specify any hexadecimal or text pattern for better flexibility.

Unicode support

Work with hexadecimal, ASCII or Unicode representation of data. Editing data in Unicode pane allows to enter extended characters directly while ASCII and Hexadecimal panes gives you control over individual bytes.

Quick Disk Info

Properties window gives a concise overview of disk or partition opened in Disk Editor. If unwanted this information can be hidden to save screen space.

Bookmarks

When analyzing large amounts of data don't get lost when navigating between different points. Easily bookmark locations by keyboard shortcuts and cycle through them. If you need even more flexibility, you can give any bookmark a name and navigate between them using a bookmark window.

Data Inspector

As you move a cursor along, data under cursor is automatically interpreted and shown in Data Inspector in different formats. You can see them as one to four byte numbers as well as time and other useful structures.

18. Activate Software with a Registration Key

After you have downloaded the FREE version - that can detect deleted partitions and files is able to recover the only one file per session - to get full functionality, you need to activate it with a registration key.

To activate the FREE version, you do not need to re-install software. You do not have to re-scan hard drives to detect deleted partitions and files. All you have to do is to enter the registration key and continue working with the software registered in your name. You may purchase a registration key from our web site or from many third-party re-sellers.

When typing the Name information, be careful to spell the name and e-mail exactly the way you specified them while purchasing the registration key. Any variation will cause product activation and registration to fail.

You can activate and register FREE software in one of two ways:

1. In the main window, from the **Help** menu, choose **Enter Registration Key...** The **Enter Key** dialog box appears.

- If you have not purchased your registration key yet, click **Buy Now!** to go to our web site and purchase
 it online.
- In the Name field, type your Name for a Personal License or type your company name for a Corporate License.
- c. In the **Key** field, type your registration key, or you may copy your registration key and paste it in this field.
- d. Click OK.

- If you are using the FREE version, it can detect deleted partitions and files. You can inspect and verify its content. If you try to recover a partition or more than one file per session, the FREE version limitation dialog box appears.
 - a. If you have not purchased your registration key yet, click **Buy Online** to go to our web site and purchase it online.
 - b. If you have purchased your registration key, click Enter Key. The Enter Key dialog box appears. Follow instructions in number 1, above.

After you have activated and registered the product successfully, you may continue with recovery of the partition and files being detected previously.

19. Concept of File Signatures

If the data loss was caused due to a total file system failure, even the best file recovery programs can only recover the files by signature. These programs use algorithms to determine the beginning, end and extension of a file without relying on data that used to be contained in the file system. This works for only un-fragmented files (stored on the disk as a continuous set of file data clusters). The file organizing functions allow you to create folders based on information contained inside the file and outside the file system it is stored in, and move / copy the file to these folders. This is useful when you detected and recovered files by signatures, but recovered files have abstract names. The file organizer function is primarily used to open files of a chosen extension, look at data contained within that file, create a folder structure that matches the data contained within the file and move / copy the file to that folder. Its primary function is to organize / rename files after a catastrophic data loss. Typically these files will be recovered into a single folder with names like **file0001.jpg**, or **file1234.mp3**. This may leave you with several folders of recovered data bat the data within these folders will be difficult to use.

This is an example how NOT organized files detected by signatures could look like:

Name	Count	Size
► Compressed Archives	13	25.5 MB
► Formatted Text files	11	6.16 MB
Images and Camera Raw files	331	56.6 MB
▶ Microsoft Office Documents	79	20.6 MB
▲ 🖺 Music and Videos	20	74.1 MB
⊿ 🖟 mp3	15	73.9 MB
Found_163775519_701120.mp3		685 KB
Found_163795008_7491872.m		7.14 MB
Found_163943451_449468.mp3		439 KB
Found_164008165_710510.mp3		694 KB
Found_164009785_712388.mp3		696 KB
Found_164043192_1638400.m		1.56 MB
Found_167439524_768000.mp3		750 KB
Found_168197052_1439869.m		1.37 MB
Found_170118696_7162776.m		6.83 MB

By using the file organizer, you can quickly and easily organize these files into folders that you can recognize and use your recovered files. An example of the tremendous power of this data can be illustrated by the following scenario. You had a total file system failure and had your files recovered by signature. You now have your data stored in folders containing tens of thousands of JPG files, and another folder with all your MP3 files, and another folder with all your M4A files. These files have names like **file3124.MP3** or **file1556 M4A**. By using the file organizer, you could select your folder containing all the MP3 files, choose your re-organizing options and then recover files to the specified folder's structure.

The MP3 files (or at least the ones that contain the relevant information) without re-organization could be arranged as follows: **D:\recovered\MP3\File3124.MP3**

may be renamed to something like:

D:\MP3\year\Bandname\album\songname.mp3

You can use this functionality to organize files using information stored in the file itself. This is an example how organized signature files could look like:

... and what you could see in Windows Explorer after recovery occurred:

In order to organize a file using the information stored within it, the file must obviously have the required information stored within it, and the information must be stored according to the standards of the file specification.

Just because a file has an extension of JPG or MP3, does not ensure it contains the information the program needs to extract in order to rename it. If this information is not present, the program will consider the file unrenamable. If the required option is chosen, the unrenamable files will be moved to a specific folder chosen to house all the files that are unrenamable. The following types of picture files can be organized using information contained within the file.

Picture files (with embodied tiff information):

- 3FR (Hasselblad 3F RAW Image)
- ARW (Sonv RAW image file)
- CR2 (Canon Digital Camera Raw Image Format)
- **CRW** (Canon Digital Camera Raw Image Format)
- **DCR** (Kodak Digital Camera Raw Image File)
- JPG (Joint Photographics Experts Group)
- KDC (Kodak DC120 digital camera RAW image definition)
- **NEF** (Nikon Digital SLR Camera Raw Image File)
- **ORF** (Olympus Digital Camera Raw Image File)
- RW2 (Panasonic Lumix RAW image file)
- SR2 (Sony Digital Camera Raw Image File)
- **TIF/TIFF** (Tagged Image File Format)
- R3D (Red One)

Music files:

- MP3 (MPEG Layer 3)
- M4A (MPEG-4 Audio)

Microsoft Office documents (non-compressed and compressed):

- DOC, DOCX, DOCM, DOTX, DOTM (Microsoft Word)
- XLS, XLSX, XLSM, XLTX, XLTM (Microsoft Excel)
- PPT, PPTX, POTX, POTM, PPTM (Microsoft Power Point)
- VSD (Microsoft Visio)
- MPP (Microsoft Project)
- RPT (Microsoft Reports)

20. Glossary of Terms

boot record

See boot sector.

boot sector

• The boot sector continues the process of loading the operating system into computer memory. It can be either the MBR (see MBR, below) or the partition boot sector (see partition boot sector, below).

cluster

• A group of disk sectors that contain file data. It is the smallest allocation unit for storing a file. For example, if the file size is 100 bytes and the cluster size is 4096 bytes, the file system reserves one cluster, or 4096 bytes for file data.

data striping

• Spreading blocks of data from files across multiple disk drives. Quicker read and write performance is a result.

device node

In the Local System Devices list, a physical device containing logical drives.

disk mirroring

Identical data is written to two disks simultaneously. Used when access to data at all times is critical.

FAT

• File Allocation Table. An area that contains the records of every other file data and directory in a FAT-formatted hard disk drive. The operating system needs this information to access the files and define the data cluster's chain. There are FAT32, FAT16 and FAT versions.

file

• A collection of data with a file name and file attributes, like size.. Almost all information stored in a computer must be in a file.

folder

 An object that can contain a group of files. Folders are used to organize information. In DOS and UNIX, folders are called directories or root areas.

HDD

Hard disk drive.

log file

A file that lists all events that have occurred. For example, Active@ File Recovery writes a log file entry for every
request made to the program and every event that happens as a result. You can see the log at the bottom of the main
screen.

logical drive

A partition is a logical drive because it does not affect the physical hard disk other than the defined space that it
occupies, yet it behaves like a separate disk drive.

MBR

• The Master Boot Record (MBR) is a small program that is executed when the computer is first turned on. Typically, the MBR can be found on the first sector of a disk. The MBR first reads the disk's partition table to determine which partition is used to load the operating system. The MBR then transfers control to this partition's "boot sector" to continue the process. Loading the operating system is called "booting" the computer.

MFT

 Master File Table. A file that contains the records of every other file and directory in an NTFS-formatted hard disk drive. The operating system needs this information to access the files.

Named Streams

NTFS supports multiple data streams where the stream name identifies a new data attribute on the file. A handle can
be opened to each data stream. A data stream, then, is a unique set of file attributes. Streams have separate opportunistic
locks, file locks, and sizes, but common permissions.

NTFS

NT File System. NTFS was created to provide a more reliable operating system, compared to the FAT file system.

partition

• A section of memory or hard disk isolated for a specific purpose. Each partition can behave like a separate disk drive.

partition boot sector

On NTFS or FAT file systems, the partition boot sector is a small program that is executed when the operating system
tries to access a particular partition. On personal computers, the Master Boot Record uses the partition boot sector on the
system partition to determine file system type, cluster size, etc. and to load the operating system kernel files. Partition
boot sector is the first sector of the partition.

partition status

 SuperScan gives each partition a rating depending on how likely it is to recover data on the partition. Statuses rated from Excellent to Very Bad.

physical device

A piece of hardware that is attached to your computer by screws or wires. A hard disk drive is a physical device. It is
also referred to as a physical drive.

RAID-0

• Provides data striping but no redundancy. This method provides quick performance but does not deliver fault tolerance. If one drive fails then all data in the array is lost.

RAID-1

 Writes identical data to two separate disks. Level 1 provides quick read performance and the same write performance as single disks.

RAID-5

• Provides data striping at the byte level and also stripe error correction information. This results in excellent performance and good fault tolerance. Level 5 is one of the most popular implementations of RAID.

root area (and root folder)

An object that can contain a group of files in a FAT file system. In other words, a directory or folder. The root folder is
the top-level folder that has no parent and can have children. A logical drive can have only one root folder. Its name is
usually '.' (dot).

sector

• The smallest unit that can be accessed on a disk. Tracks are concentric circles around the disk and the sectors are segments within each circle.

signature files

• File types are recognized by specific patterns that may serve as a reference for file recovery. When a file header is damaged, the type of file may be determined by examining patterns in the damaged file and comparing these patterns to known file type templates.

span array

A series of dynamic drives linked together to make one contiguous spanned volume.

templates

• File types are recognized by specific patterns that may serve as a reference for file recovery. When a file header is damaged, the type of file may be determined by examining patterns in the damaged file and comparing these patterns to known file type templates. This same pattern-matching process can be applied to deleted or damaged partitions. Using FAT or NTFS templates, recovery software can assume that a particular sector is a FAT or NTFS boot sector because parts of it match a known pattern.

volume

 A fixed amount of storage on a hard disk. A physical device may contain a number of volumes. It is also possible for a single volume to span a number of physical devices.