COSC 2430 lab 6: Dijkstra's Shortest Path

1. Introduction

A graph (denoted as G = (V, E)) consists of a non-empty set of vertices or nodes V and a set of edges E. A vertex represents an endpoint of an edge. An edge joins two vertices a, b and is represented by set of vertices it connects. In this lab, you will create a C++ program that will calculate the minimum travel distance between two vertices in a graph. You can use STL implementation and Dijkstra's algorithm for this lab.

2. Input and Output

- a. Input file
 - The first line in the input will contain four integers m, n, x, and y, each separated by a space
 - m is the number of vertices, n is the number of edges in the graph, x is the starting vertex and y is the destination
 - Each line in the next n lines will contain three integers a, b, and c, each separated by a space
 - a and b denote an edge that join two vertices a and b, integer c will represent the distance from a to b
 - There will be no duplicate label for vertices
- b. Output file
 - Output the minimum distance travel between x and y

3. Example Output

input1.txt

7737

125

133

146

252

453

564

575

output1.txt

15

4. Turn in your lab assignment

Lab 6 needs to be turned in to our Linux server, follow the link here https://rizk.netlify.app/courses/cosc2430/2_resources/

Make sure to create a folder under your root directory, name it lab6 (name need to be lower case), copy your code and argumentmanager.h to this folder, no testcase or other files needed.

confirmation.			