- 1.1) $\prod_{id, person name} (\sigma_{company name = "BigBank"}(works))$
- 1.2) ∏id, person_name, city(σcompany_name = "BigBank"(works))

 Wworks.person_name=employee.person_name employee)
- 1.3) ∏id, person_name, street, city(σ_{company_name} = "BigBank" ^ salary > 10000(works)) ⋈works.person_name=employee.person_name employee)
- 1.4) joined \leftarrow (works $\bowtie_{works.company_name=company_name}$ company)

∏id, person_name (joined ⋈ joined.person_name=employee.person_name ^ joined.city=employee.cityemployee)

- 2.1) $\prod_{id, person_name}$ (employee) $\prod_{id, person_name}$ ($\sigma_{company_name}$ = "BigBank" (works))
- 2.2) ∏_{id}, person_name(works) ∏_{works.id},
 works.person_name(works ⋈ works.salary≤works_2.salary ρworks_2 (works))
- 3) instructor(ID, name, <u>dept_name</u>, salary) department(<u>dept_name</u>, building, budget) Inserting: (22222, Einstein, Physics, 95000)

into the instructor table, where the department table doesn't have the department Physics, would violate the foreign key constraint

Deleting: (Physics, Watson, 70000)

From the department table, where at least one instructor has dept_name as Physics, would violate the foreign key constraint

4) Candidate keys: {person_name}, {street}, {city}. One of them can be primary key. In the RM of DB, a primary key is a specific choice of a minimal set of attributes