برقی ادوار

خالد خان بوسفر: کی کامسیٹ انسٹیٹیوٹ آف انفار میشن ٹیکنالوجی، اسلام آباد khalidyousafzai@comsats.edu.pk

عنوان

1																																											بنياد	1	
1																																		باو	قى د	1	واور	قىر	،برز	ن ما بار	برق	1	.1		
6																																							ر زنهم	ر وناو	قانو	1	.2		
8																																							,	۔ مائی او		1	3		
15																																								بن. ن پرز		-	.4		
15																																										1	.т		
17																																								1.4					
1 /		•	•		•	•	•	٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	Ö	نان	•		1.4	.2				
2.7																																									/(a ·	حمتىا	مزا	2.	
27																																							انهم	وناو	روا ر قال		.1	_	
35	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	(```	دن, نین ا		_	.1		
																																										_			
51																																								مليه وا		_	.3		
52				•																				•		•								•	•				او	يم د ب	لطب	_	.4		
55																																								ندوسا		_	.5		
58																																								مليه وا		2	.6		
59																												ہے	نا_	جا	بإيا	زباو	ال	يكسا	؞ؙۣڕ	تمت	مزاه	ے	אל_	ازی	متو	2	.7		
61																										ت	احم	امز	وي	ساو	کام	ر ال	حمتو	مز ا	زی	متوان	ندو.	مته	اور	يمرو	تقي	2	.8		
68																																		ت	21;	یم	تواز	رمز	راو	' مله وا	سل	2	.9		
73																																										2.	10		
76																																										2.			
84																																													
91																																													
91	•		•	•	•	•	٠	•	٠	•	٠	٠	•	•	•	٠	•	•	•	•	•	•	•	•	•	٠	•	•		•	•)	ادوا	ے ا	وا_	ے	, (حال	w	0	تاز	۷.	13		
101																																						ز ک	, ,	زراز	هٔ رُّ اه	ر , ح	[]	3	
101																																					Ψ	, ,	ر ن	رران ح	ر رار تح.	.ب. ع	1	J	
104	1		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		٠,	•	را		;	٠	ال	استع	•	ر منبع	ربيه .ر ۱۰۰بع	بر غه		.2		
117																																											.2		
123																																											.3 .4		
143	٠.		•	•	•	•	٠	٠	٠	٠	٠	٠	٠	•	•	•	•	•	•	•	•	•	٠	•	٠	٠				وار	ءادا	_	ے وا	<u> </u>	Λ(تعمار	والمع	د با	\dot{c}	رتان	'یہ	3	.4		

iv

ناليع منبع ربادا ستعال كرنے والے ادوار	3.5	
دائری تجربیه	3.6	
غیر تا آبع منتج استعال کرنے والے ادوار		
غير تالع منبغ رواستعال كرنے والے ادوار		
نالع منبج استعمال کرنے والے ادوار		
دائری ترکیب اور ترکیب جوژ کاموازنه	3.10	
		4
كامل حيالي ايميليغائر		
مثقی ایمپلیغائر	4.2	
شبت ایمپلیغائر	4.3	
منتقكم كار	4.4	
متقى كار	4.5	
178		
متوازن اور غير متوازن صورت		
موازینه کار		
آلاتی ایم پلیغائر	4.9	
107	V .	_
187 187		5
مئله خطیّت		
مساوی ادوار	5.4 5.5	
نالع منتج استعال کرنے والے ادوار	5.6	
نالیع منیج اور غیر تالیع منیج دونوں استعمال کرنے والے ادوار	5.7	
زیادہ کے زیادہ طاقت منتقل کرنے کامسکلہ	5.8	
رامالہ گی) برق گیراو	6
ر من برین میں ہے۔ برق گیر	6.1	0
بن پر	6.2	
مانکہ پر اور امالہ گیر کے خصوصات		
رن پر اوراقائه پر کے موقعی کا بیان کا دریا ہوتا ہے۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔		
سنندوادر کے برق پر		
ر در ادا در ادا در		
متعاد دادامانه پر		
وار قامان نیز		
علیات چیند رکنے ۱۳۶۶ میں اور در میں میں ہوتات کی ہوتات کی اور در میں اور در میں اور در میں اور در میں میں اور تقرق کار میں		
200	0.7	
		7
	7.1	
ا کې در جي اد وار	7.2	

7.2.1 رد عمل کی عمومی مساوات	7.3 7.4	
سائن نماتفاعل	برقرار 8.1 8.2	8
دوری سمتیر	8.3 8.4	
برقی ر کاوٹ اور برقی فراوانی کی کی کی در میں میں میں ہے۔ کی در برقی فراوانی کی کی کی میں ہے۔ کی میں میں کی میں	8.5 8.6	
كرخوفي مساوات	8.7 8.8 8.9	
برتی طاقت	برقرار	9
اوسط طاقت	9.1 9.2 9.3	
موثرقيت	9.4	

عـــنوان

باب9 بر قرار بر قی طاقت

9.1 كماتى طاقت

شکل 9.1 میں بوجھ $\, Z \,\,$ کو بدلتی رو منبع طاقت فراہم کرتا ہے۔اس عمومی دور کے برقرار دباو اور برقرار رو درج ذیل کھھے جا سکتے ہیں۔

(9.1)
$$v(t) = V_0 \cos(\omega t + \phi_v)$$
$$i(t) = I_0 \cos(\omega t + \phi_i)$$

یوں کسی بھی لمچہ بوچھ کو منتقل طاقت درج ذیل ہو گا

(9.2)
$$p(t) = v(t)i(t)$$

$$= V_0 I_0 \cos(\omega t + \phi_v) \cos(\omega t + \phi_i)$$

جس میں

(9.3)
$$\cos \alpha \cos \beta = \frac{\cos(\alpha - \beta) + \cos(\alpha + \beta)}{2}$$

استعال کرتے ہوئے

(9.4)
$$p(t) = \frac{V_0 I_0}{2} \left[\cos(\phi_v - \phi_i) + \cos(2\omega t + \phi_v + \phi_i) \right]$$

باب 9. بر قرار برقی طب قت

ملتا ہے جہاں $\alpha=\omega t+\phi_v$ اور $\beta=\omega t+\phi_i$ اور $\beta=\omega t+\phi_i$ اور کیھ سکتے ہیں کہ کمحاتی طاقت دو اجزاء کا مجموعہ ہے۔ پہلا جزو مستقل طاقت ہے جو وقت کے ساتھ تبدیل نہیں ہوتا جبکہ دو سرا جزو دگنی تعدد کا بدلتی رو طاقت ہے۔

مثال 9.1: شکل 9.1 میں بر قرار دباو $Z=5/20^\circ$ ور $v(t)=15\cos(100t+45^\circ)$ اور $Z=5/20^\circ$ بیں۔بو جھ کو منتقل کمحاتی طاقت دریافت کریں۔

حل: دوری سمتیات استعال کرتے ہوئے

$$\hat{I} = \frac{15/45^{\circ}}{5/20^{\circ}}$$

= 3/25° A

لعيني

$$i(t) = 3\cos(100t + 25^\circ) \,\mathrm{A}$$

لکھا جا سکتا ہے۔ یوں مساوات 9.4 سے کماتی طاقت درج ذیل لکھی جاسکتی ہے۔

$$p(t) = 22.5 \left[\cos 20^{\circ} + \cos(200t + 70^{\circ})\right]$$

= 21.143 + 22.5 \cos(200t + 70^{\circ}) W

د باو، رو اور طاقت کے خط شکل 9.2 میں دکھائے گئے ہیں۔درج بالا مساوات میں $21.143 \, \mathrm{W}$ مستقل طاقت ہے جو وقت کے ساتھ تبدیل نہیں ہوتا جبکہ $200 \, \mathrm{rad} \, \mathrm{s}^{-1}$ کی $22.5 \, \mathrm{cos}(200t + 70^\circ) \, \mathrm{W}$ کوقت کے ساتھ تبدیل نہیں ہوتا جبکہ $200 \, \mathrm{rad} \, \mathrm{s}^{-1}$

9.1. لمحت تي طاقت

مثال 9.2: شکل $Z=Z_0/\phi_z$ اور $v(t)=V_0\cos(\omega t+\phi_v)\,\mathrm{V}$ بین روور یافت کریں۔ مثال 9.2 شکل 9.1 مثال 9.2 مثال 9.2 شکل 9.1 مثال 9.2 شکل 9.2 شکل 9.1 مثال 9.2 شکل 9.2 شکل

حل: دوری سمتیات استعال کرتے ہوئے

$$\hat{I} = \frac{V_0/\phi_v}{Z_0/\phi_z}$$

$$= \frac{V_0}{Z_0}/\phi_v - \phi_z$$

کھا جا سکتا ہے جس سے وقتی دائرہ کار میں رو درج ذیل حاصل ہوتی ہے۔

$$i(t) = \frac{V_0}{Z_0}\cos(\omega t + \phi_v - \phi_z)$$

 $\phi_v - \phi_z$ مساوات θ_i میں دیے عمومی رو کے ساتھ موازنہ کرتے ہوئے آپ دیکھ سکتے ہیں کہ ϕ_i در حقیقت میں $\phi_v - \phi_z$ مساوات ϕ_i درج ذیل کھا جا سکتا ہے۔

$$\phi_v - \phi_i = \phi_z$$

دہراتے تفاعل (مثلاً سائن نما تفاعل) کے ایک دوری عرصے پر تکمل کو دوری عرصے سے تقسیم کرنے سے تفاعل کی اوسط قیمت حاصل ہوتی ہے۔یوں مساوات 9.1 میں دیے دباواور روکی صورت میں بوجھ کو منتقل اوسط طاقت درج ذیل ہوگی

(9.7)
$$P = \frac{1}{T} \int_{t_0}^{t_0+T} p(t) dt = \frac{V_0 I_0}{T} \int_{t_0}^{t_0+T} \cos(\omega t + \phi_v) \cos(\omega t + \phi_i) dt$$

جہاں t_0 کوئی بھی لمحہ ہو سکتا ہے جبکہ $T=\frac{2\pi}{\omega}$ دباویا روکا دوری عرصہ ہے۔ حقیقت میں ہم ایک دوری عرصے کی بجائے n کمل دوری عرصے پر تکمل لیتے ہوئے n دوری عرصے سے تقسیم کرتے ہوئے بھی اوسط قیمت حاصل کر سکتے ہیں۔ یوں اوسط طاقت درج ذیل بھی لکھی جاسکتی ہے۔

$$(9.8) P = \frac{V_0 I_0}{nT} \int_{t_0}^{t_0 + nT} \cos(\omega t + \phi_v) \cos(\omega t + \phi_i) dt$$

ماوات 9.4 کی مدد سے ماوات 9.7 درج ذیل لکھا جائے گا۔

(9.9)
$$P = \frac{V_0 I_0}{2T} \int_{t_0}^{t_0+T} \left[\cos(\phi_v - \phi_i) + \cos(2\omega t + \phi_v + \phi_i) \right] dt \\ = \frac{V_0 I_0}{2T} \int_{t_0}^{t_0+T} \cos(\phi_v - \phi_i) dt + \frac{V_0 I_0}{2T} \int_{t_0}^{t_0+T} \cos(2\omega t + \phi_v + \phi_i) dt$$

درج بالا تکمل کے دواجزاء کو باری باری حل کرتے ہیں۔ پہلا جزومتنقل ہے للنذااس کو تکمل کے باہر لکھتے ہوئے حل کرتے ہیں۔

$$\begin{split} \frac{V_0 I_0}{2T} \int_{t_0}^{t_0 + T} \cos(\phi_v - \phi_i) \, \mathrm{d}t &= \frac{V_0 I_0}{2T} \cos(\phi_v - \phi_i) \int_{t_0}^{t_0 + T} \mathrm{d}t \\ &= \frac{V_0 I_0}{2T} \cos(\phi_v - \phi_i) t \bigg|_{t_0}^{t_0 + T} \\ &= \frac{V_0 I_0}{2} \cos(\phi_v - \phi_i) \end{split}$$

اب مساوات 9.9 کے دوسرے جزو کو حل کرتے ہیں

$$\frac{V_0 I_0}{2T} \int_{t_0}^{t_0+T} \cos(2\omega t + \phi_v + \phi_i) dt = \frac{V_0 I_0}{2T} \frac{\sin(2\omega t + \phi_v + \phi_i)}{2\omega} \Big|_{t_0}^{t_0+T}$$
= 0

9.2 اوسط طب قت

جہاں $\sin \alpha = \sin(\alpha + T)$ کا استعال کیا گیا ہے۔ یوں مساوات 9.9 سے درج ذیل اوسط طاقت حاصل ہوتا ہے۔

(9.10)
$$P = \frac{V_0 I_0}{2} \cos(\phi_v - \phi_i)$$

 $\phi_i - \phi_v$ یا $\phi_v - \phi_i$ یا کادلیل کوسائن کادلیل $\phi_v - \phi_i$ یا ساوات میں کوسائن کادلیل $\phi_v - \phi_v$ یا $\phi_v - \phi_v$ یا کھا جا سکتا ہے۔ مساوات 6.9 کو استعال کرتے ہوئے درج بالا مساوات کو دوبارہ لکھتے ہیں۔

$$(9.11) P = \frac{V_0 I_0}{2} \cos \phi_z$$

 $^{\circ}$ خالص مزاحمتی رکاوٹ $Z=R/0^{\circ}$ کا زاویہ ہٹاو $^{\circ}$ ہوتا ہے للذا $^{\circ}$ النظ $^{\circ}$ کا زاویہ ہٹاو اللہ کا خالقت

$$(9.12) P_{\ddot{\nu}} = \frac{V_0 I_0}{2}$$

ہو گا جہاں V_0 سے مراد مزاحمت کے دباو کا حیطہ ہے۔ قانون اوہم سے درج بالا کو درج ذیل صورتوں میں بھی لکھا جا سکتا ہے۔

$$(9.13) P_{\ddot{5}^2 | \dot{7}^*} = \frac{I_0^2 R}{2}$$

(9.14)
$$P_{\ddot{\mathcal{S}}^{2}_{i}} = \frac{V_{0}^{2}}{2R}$$

درج بالا تینوں مساوات کا یک سمتی رو میں مزاحمتی ضیاع کے مساوات کے ساتھ موازنہ کرنے سے معلوم ہوتا ہے کہ موجودہ تینوں مساوات کے نسب نما میں دو (2) کا اضافی عدد پایا جاتا ہے جس پر حصہ 9.4 میں تبحرہ کیا جائے گا۔

امالی متعاملیت کی رکاوٹ $Z_C = X_C / -90^\circ$ جبکہ برق گیر متعاملیت کی رکاوٹ $Z_C = X_C / -90^\circ$ ہوتی ہے۔ چونکہ $\cos(\mp 90^\circ) = 0$ ہوتا ہے لہذا غیر مزاحمتی رکاوٹ کی طاقت صفر ہو گی۔

$$(9.15) P_{يوالي} = 0$$

چونکہ خالص متعامل پرزوں کو صفر اوسط طاقت منتقل ہوتی ہے المذاانہیں بسے ضیاع پرزمے ¹ کہتے ہیں۔دور کا متعامل حصہ، دوری عرصے کے کچھ حصے میں دور سے طاقت حاصل کرتے ہوئے ذخیرہ کرتا ہے جبکہ دوری عرصے کے کسی دوسرے حصے میں اسی طاقت کو دور کو واپس کرتا ہے۔ با__9. برقم ادبرقی طباقت 448

مثال 9.3: شكل 9.3 ميں ركاوٹ كى اوسط طاقت دريافت كريں۔

حل:رو درج ذیل ہے۔

$$\hat{I} = \frac{50/30^{\circ}}{3+j6} = \frac{50/30^{\circ}}{3+j6} = \frac{50/30^{\circ}}{\sqrt{45}/63.435^{\circ}} = 7.454/-33.435^{\circ} \,A$$

نوں

$$P = \frac{V_0 I_0}{2} \cos(\phi_v - \phi_i)$$

$$= \frac{(50)(7.454)}{2} \cos[30^\circ - (-33.435^\circ)]$$

$$= 83.34 \text{ W}$$

ہو گا۔ چونکہ طاقت صرف مزاحت میں ضائع ہوتی ہے المذایبی جواب مساوات 9.12سے بھی حاصل کیا جا سکتا ہے جہاں سے مراد مزاحمت کے دباو کا حیطہ ہے۔ تقسیم دباوسے مزاحمت کا دباو درج ذیل ہے V_0

$$\hat{V}_R = \left(\frac{3}{3+j6}\right) 50 / 30^\circ = 22.361 / -33.435^\circ$$

جس سے مزاحمت کا اوسط طاقت درج ذیل ہو گا۔

$$P = \frac{V_0 I_0}{2} = \frac{(22.361)(7.454)}{2} = 83.34 \,\mathrm{W}$$

lossless components¹

9.2 اوسط طب قت

 $P=rac{I_0^2R}{2}=rac{(7.454^2)(3)}{2}=83.34\,\mathrm{W}$ $P=rac{V_0^2}{2R}=rac{(22.361^2)}{(2)(3)}=83.34\,\mathrm{W}$

مثال 9.4 شكل 9.4 مين منبغ د ياو كا اوسط طاقت حاصل كريں۔دور كے بقايا پر زوں كا اوسط طاقت بحى دريافت كريں۔ $\hat{I}_L = \frac{10/30^\circ}{j5} = \frac{10/30^\circ}{5/90^\circ} = 2/-60^\circ$ $\hat{I}_R = \frac{10/30^\circ}{2} = \frac{10/30^\circ}{2/0^\circ} = 5/30^\circ$ $\hat{I}_R = \frac{10/30^\circ}{2} = \frac{10/30^\circ}{2/0^\circ} = 5/30^\circ$ $\hat{I}_R = \frac{10/30^\circ}{2+j2} = \frac{10/30^\circ}{\sqrt{8/45^\circ}} = \frac{5}{\sqrt{2}}/-15^\circ$ $\hat{I}_C = \frac{10/30^\circ}{-j10} = \frac{10/30^\circ}{10/-90^\circ} = 1/120^\circ$ $\hat{I}_m = -\left[\hat{I}_L + \hat{I}_R + \hat{I}_Z + \hat{I}_C\right] = 8.27647/-175.01689^\circ$

باب.9. بر قرار برقی طب قت

یوں انفرادی شاخوں کے اوسط طاقت مساوات 9.10 یا مساوات 9.11 سے درج ذیل ہوں گے۔

$$P_{L} = \frac{(30)(2)}{2}\cos(90^{\circ})$$
 = 0 W

$$P_R = \frac{(30)(5)}{2}\cos(0^\circ) = 75\,\mathrm{W}$$

$$P_Z = \frac{(30)(\frac{5}{\sqrt{2}})}{2}\cos(45^\circ)$$
 = 37.5 W

$$P_C = \frac{(30)(1)}{2}\cos(90^\circ) = 0 \,\mathrm{W}$$

$$P_m = \frac{(30)(8.27647)}{2}\cos[(30^\circ + 175.01689^\circ)] = -112.5 \,\mathrm{W}$$

مثبت جواب طاقت کا ضیاع ہے جبکہ منفی جواب طاقت کی پیداوار ہے۔آپ دیکھ سکتے ہیں کہ منبع کی طاقتی پیداوار 112.5W ہے جو دور میں طاقت کے ضیاع

$$P_L + P_R + P_Z + P_C = 0 + 75 + 37.5 + 0 = 112.5 \text{ W}$$

کے عین برابر ہے۔

مثق 9.1: شكل 9.5 كے تمام مزاحمتوں ميں ضائع ہونے والا اوسط طاقت دريافت كريں۔

 $P_{5\,\Omega}=14.975\,\mathrm{W}$ ، $P_{4\,\Omega}=17.491\,\mathrm{W}$. برات:

مشق 9.2: شكل 9.6 ك تمام مزاحمتول مين ضائع هونے والا اوسط طاقت دريافت كريں۔

 $P_{4\,\Omega}=100\,\mathrm{W}$ ، $P_{2\,\Omega}=50\,\mathrm{W}$: برایت:

9.2, اوسط طب قت

باب 9. بر قرار برقی طب قت

مثق 9.3: شکل 9.7 کے تمام مزاحمتوں میں ضائع ہونے والا اوسط طاقت دریافت کریں۔

 $P_{6\,\Omega}=11.42\,\mathrm{W}$ ، $P_{3\,\Omega}=5.71\,\mathrm{W}$ ، $P_{2\,\Omega}=22.72\,\mathrm{W}$. بابت:

ایک سے زیادہ منبع کی صورت میں آپ کسی بھی ترکیب کو استعال کرتے ہوئے شاخوں کی رواور جوڑ کے دباو حاصل کرتے ہوئے طاقت دریافت کر سکتے ہیں۔البتہ یاد رہے کہ ترکیب نفاذ سے طاقت کا تخمینہ نہیں لگایا جا سکتا چونکہ طاقت مربع دباو (یا مربع رو) کا تعلق رکھتا ہے جو غیر خطی تعلق ہے۔

مثق 9.4: شكل 9.8 مين اوسط طاقت كي پيداوار اور ضياع معلوم كريں۔

 $P_{2\,\Omega}=30.72\,\mathrm{W}$, $P_{40\underline{/0^\circ}}=-5.36\,\mathrm{W}$, $P_{20\underline{/30^\circ}}=-25.36\,\mathrm{W}$

شكل 9.10: زياده سے زيادہ اوسط طاقت منتقل كرنے كامسكه۔

مثق 9.5: شكل 9.9 مين اوسط طاقت كى پيداوار اور ضياع معلوم كريں۔

جواب: اوسط طاقت کی پیدا دار اور طاقت کا ضیاع صفر واٹ ہیں۔

9.3 زیادہ سے زیادہ اوسط طاقت منتقل کرنے کامسکلہ

یک سمتی روادوار میں ہم زیادہ سے زیادہ طاقت منتقل کرنے کے مسئلے پر ہم حصہ 5.8 میں غور کر چکے ہیں۔آئیں بدلتی رو کی صورت میں اسی مسئلے پر دوبارہ غور کریں۔

کسی بھی دور کا تھونن مساوی حاصل کیا جا سکتا ہے۔ شکل 9.10 میں تھونن مساوی دور کے ساتھ بوجھ جوڑا گیا ہے جہاں تھونن دباو کو کہا گیا ہے۔ ہم جاننا چاہتے ہیں کہ بوجھ کو کس صورت میں زیادہ سے زیادہ اوسط طاقت منتقل ہو گا۔ باب.9. بر ترار برتی طاقت

شکل کو دیکھ کر درج ذیل لکھا جا سکتا ہے

$$\hat{\mathbf{l}}_{\mathcal{B},\mathbf{y}} = \frac{\hat{V}_{\mathbf{y}}}{\mathbf{Z}_{\dot{\mathbf{z}},\dot{\mathbf{y}}}} + \mathbf{Z}_{\mathcal{B},\mathbf{y}}$$

جہاں

$$egin{align} oldsymbol{Z}_{\dot{oldsymbol{arphi}}} &= R_{\dot{oldsymbol{arphi}}} + j X_{\dot{oldsymbol{arphi}}} \ oldsymbol{Z}_{oldsymbol{arphi}} &= R_{oldsymbol{arphi}} + j X_{oldsymbol{arphi}} \ \hat{V}_{oldsymbol{arphi}} &= V_{oldsymbol{arphi}} igg/\phi_{oldsymbol{arphi}} \ egin{align} & \phi_{oldsymbol{arphi}} \ oldsymbol{arphi} \ oldsymbol{arphi}$$

ہیں۔ درج بالا میں امالی رکاوٹ کی صورت میں X کی قیمت مثبت ہوگی جبکہ برق گیر رکاوٹ کی صورت میں اس کی قیمت منفی ہوگی۔ یوں مساوات 9.16 کو درج ذیل لکھا جا سکتا ہے

$$\hat{I}_{\text{pr}} = \frac{V_{\text{blue}}/\phi_{\text{blue}}}{R_{\text{pr}}+jX_{\text{pr}}+jX_{\text{pr}}+jX_{\text{pr}}+jX_{\text{pr}}}$$

جس کی حتمی قیمت درج ذیل ہے۔

$$I_{\mathcal{B}, \mathcal{A}} = rac{V_{\mathcal{A}}}{\sqrt{(R_{\mathcal{C}, \mathcal{B}} + R_{\mathcal{B}, \mathcal{A}})^2 + (X_{\mathcal{C}, \mathcal{B}} + X_{\mathcal{B}, \mathcal{A}})^2}}$$

بوجھ كو منتقل اوسط طاقت مساوات 9.13 كى مدد سے لكھتے ہيں۔

$$P_{\vec{e},\vec{y}} = \frac{1}{2} I_{\vec{e},\vec{y}}^2 R_{\vec{e},\vec{y}}^2$$

$$= \frac{\frac{1}{2} V_{\vec{e},\vec{y}}^2 R_{\vec{e},\vec{y}}^2}{(R_{\vec{e},\vec{y}}^2 + R_{\vec{e},\vec{y}}^2)^2 + (X_{\vec{e},\vec{y}}^2 + X_{\vec{e},\vec{y}}^2)^2}$$

ہم جانتے ہیں کہ X میں طاقت ضائع نہیں ہوتا للذا اس کو اوسطاً صفر طاقت منتقل ہوتا ہے۔ درج بالا مساوات میں کسر کے نسب نما میں X+y بوجھ X کی قیمت کم سے کم کرتے ہوئے طاقت بڑھائی جاسکتی ہے۔ درج ذیل صورت میں اس قیمت کو صفر بنایا جاسکتا ہے۔

$$(9.18)$$
 بوجھ کو زیادہ سے زیادہ طاقت کی منتقلی کا پہلا شرط تھونن $X=-X$

مساوات 9.18 کے شرط پر پورااترتے ہوئے مساوات 9.17 کو درج ذیل لکھا جا سکتا ہے۔

(9.19)
$$P_{\vec{x},\vec{y}} = \frac{V_{\text{bl}}^2 R_{\vec{x},\vec{y}}}{2(R_{\vec{x},\vec{y}} + R_{\vec{x},\vec{y}})^2}$$

آئیں جانتے ہیں کہ کس قیمت کے بوجہ R کو زیادہ سے زیادہ طاقت منتقل ہو گی۔یہ جاننے کے لئے درج بالا مساوات کے تفرق کو صفر کے برابر پُر کرتے ہوئے بوجہ R کی درکار قیمت حاصل کرتے ہیں۔

$$\frac{\mathrm{d}P_{\vec{x},\vec{y},}}{\mathrm{d}R_{\vec{x},\vec{y},}} = \frac{V_{\vec{x},\vec{y},}^2\left(R_{\vec{y},\vec{y},\vec{z}} + R_{\vec{x},\vec{y},\vec{y}}\right)^2 - 2V_{\vec{x},\vec{y},}^2R_{\vec{x},\vec{y},}^2\left(R_{\vec{y},\vec{y},\vec{z}} + R_{\vec{x},\vec{y},\vec{y}}\right)}{2\left(R_{\vec{y},\vec{y},\vec{z}} + R_{\vec{x},\vec{y},\vec{y}}\right)^4} = 0$$

اس سے

$$(9.20)$$
 بوجھ کو زیادہ سے زیادہ طاقت کی منتقلی کا دوسرا شرط تھونن $R_{e,i}=R_{e,i}$

حاصل ہوتا ہے۔اس منتیج کے تحت بوجھ کو اس صورت زیادہ سے زیادہ طاقت منتقل ہوگی جب بوجھ کی مزاحمت دور کے تھونن مزاحمت کے برابر ہو۔ مساوات 9.18 اور مساوات 9.20 کو استعال کرتے ہوئے، بوجھ کو زیادہ سے زیادہ طاقت منتقل ہونے کی شرط کو درج ذیل کھا جا سکتا ہے۔

$$(9.21) R_{\vec{\omega_e}, \vec{y}} + jX_{\vec{\omega_e}, \vec{y}} = R_{\vec{\omega_e}, \vec{y}} - jX_{\vec{\omega_e}, \vec{y}}$$

$$Z_{\vec{\omega_e}, \vec{y}} = Z_{\vec{\omega_e}, \vec{y}}^*$$

مساوات 9.21 کی صورت میں زیادہ سے زیادہ اوسط طاقت درج ذیل حاصل ہو گ۔

$$(9.22) P_{\text{just}} = \frac{V_{\text{bls}}^2}{8R_{\text{arg}}}$$

 $(X_L=0)$ کی صورت میں میاوات 9.17 کے تفرق کو صفر $(X_L=0)$ کی مزاحمتی بوجھ $rac{\mathrm{d}P_{e,j}}{\mathrm{d}R}=0$

کے برابر پر کرنے سے درج ذیل ملتاہے۔

(9.23)
$$R_{\bar{\omega}_{i},j} = \sqrt{R_{\bar{\omega}_{i},j}^{2} + X_{\bar{\omega}_{i},j}^{2}} + X_{\bar{\omega}_{i},j}^{2}$$

باب.9. بر قرار برق ك قت

مثال 9.5: شکل 9.11 میں بوجھ کے رکاوٹ کی وہ قیمت دریافت کریں جس پر بوجھ کو زیادہ سے زیادہ طاقت منتقل ہو گا۔اس طاقت کی قیمت بھی دریافت کریں۔

حل: سب سے پہلے بوجھ کو ہٹاتے ہوئے بقایا دور کا تھونن مساوی حاصل کرنا ہو گا۔ شکل-ب میں منبع دباو کو قصر دور کیا گیا ہے تاکہ تھونن مزاحمت حاصل کی جا سکے۔اسی طرح شکل-پ میں کھلے دور دباوکی نشاندہی کی گئی ہے۔ شکل-ب تھونن

ر كاوٹ لکھتے ہیں۔

$$Z_{\ddot{v_e}\ddot{\dot{v}_e}} = -j4 + \frac{(6)(j2)}{6+j2} = \frac{3}{5} - j\frac{11}{5}\Omega$$

یوں بوجھ کو زیادہ سے زیادہ طاقت کی منتقلی کے لئے ضروری ہے کہ بوجھ کی رکاوٹ درج ذیل ہو۔

$$oldsymbol{Z}_{\mathcal{Z},\mathcal{Y}}=rac{3}{5}+jrac{11}{5}\,\Omega$$

شکل-پ میں برق گیر میں صفر روہے لہذااس پر دباو بھی صفر ہو گا۔اس طرح مزاحمت پر دباو ہی تھونن دباوہے جسے تقسیم دباو کے کلیے سے لکھتے ہیں۔

$$\hat{V}_{\text{ps}} = \left(\frac{6}{6+j2}\right) (20\underline{/0^{\circ}}) = 18.97\underline{/-18.43^{\circ}} \,\text{V}$$

شکل-ت میں تھونن مساوی دور کو بوجھ کے ساتھ جوڑ کر د کھایا گیاہے جہاں سے رو حاصل کرتے ہیں۔

$$\begin{split} \hat{I}_{\mathbf{z},\mathbf{z}'} &= \frac{18.97 / -18.43^{\circ}}{\frac{3}{5} - j\frac{11}{5} + \frac{3}{5} + j\frac{11}{5}} \\ &= 15.81 / -18.43^{\circ} \, \mathrm{A} \end{split}$$

یوں بوجھ کو منتقل اوسط طاقت درج ذیل ہو گا۔

$$P_{\vec{x},\vec{y}} = \frac{(15.81^2)(0.6)}{2} = 74.99 \,\mathrm{W}$$

مثال 9.6: شکل 9.12 میں بوجھ کے رکاوٹ Z_L کی وہ قیمت دریافت کریں جس پر اس کو زیادہ سے زیادہ اوسط طاقت منتقل ہو گا۔اس طاقت کو تخمینہ بھی لگائیں۔

حل: بوجھ کے ساتھ جڑے دور کا تھونن مساوی حاصل کرتے ہیں۔ شکل-ب سے نارٹن دباو کھلا کہ حاصل ہو گا۔ شکل- بے بائیں دائرے کی مساوات لکھتے ہیں

$$\hat{V}_x + 12/0^\circ = \hat{I}_1(j6 + 2 + j2)$$

باب 9. بر قرار برتی طاقت

جہاں

$$\hat{V}_x = -j2\hat{I}_1$$

کے برابر ہے۔ درج بالا دو مساوات کو حل کرنے سے درج ذیل ملتا ہے۔

$$\begin{split} \hat{I}_1 &= \frac{12/0^{\circ}}{2+j10} \\ &= \frac{3}{13} - j\frac{15}{13} \\ &= 1.17669/-78.69^{\circ} \, \text{A} \end{split}$$

يوں تھونن د باو درج ذيل ہو گا۔

$$\hat{V}_{\text{JJ}} = (j2)(\hat{I}_1) - 12/0^{\circ}$$
= 9.703/177.27° V

شکل۔ یہ سے نارٹن رو دریافت کرتے ہیں۔ دونوں دائروں کے کرخوف مساوات اور \hat{V}_x کی مساوات کھتے ہیں

$$\hat{V}_x + 12 = \hat{I}_2(j6 + 2 + j2) - \hat{I}_3(j2)$$

$$12 + \hat{I}_3(j2 - j3 + 3) - \hat{I}_2(j2) = 0$$

$$\hat{V}_x = (\hat{I}_3 - \hat{I}_2)(j2)$$

درج بالا تین ہمزاد مساوات کو \hat{I}_3 کے لئے حل کرنے سے درج ذیل حاصل ہوتا ہے۔

$$\hat{I}_3 = \hat{I}_{\phi', k} = -\frac{12}{5} - j\frac{6}{5}$$

= 2.683/-153.435° A

تھونن دباو اور نارٹن رو سے تھونن ر کاوٹ حاصل کرتے ہیں۔

$$Z_{ij} = \frac{\hat{V}_{ij}}{\hat{l}_{ij}}$$

$$= \frac{9.703/177.27^{\circ}}{2.683/-153.435^{\circ}}$$

$$= 3.616/-29.291^{\circ}$$

$$= 3.154 - j1.769 \Omega$$

باب 9. بر قرار برقی طب قت

بوجھ کوزیادہ سے زیادہ اوسط طاقت منتقل کرنے کی خاطر بوجھ کے رکاوٹ کی درکار قیمت 0 3.154 + j1.769 بوجھ کے رکاوٹ کی سے اوجھ کی روحاصل کرتے ہیں۔ ہے۔شکل-ت میں تھونن دور کے ساتھ بوجھ جڑا ہوا دکھایا گیا ہے جہاں سے بوجھ کی روحاصل کرتے ہیں۔

$$\hat{I} = \frac{9.703/177.27^{\circ}}{3.154 - j1.769 + 3.154 + j1.769}$$
$$= 1.538/177.27^{\circ} \text{ A}$$

يوں بوجھ كو درج ذيل اوسط طاقت منتقل ہو گا۔

$$P_{\text{pixt}} = \frac{(1.538^2)(3.154)}{2} = 3.73 \,\text{W}$$

مثق 9.6: شکل 9.13 میں بوجھ Z_L کے رکاوٹ کی وہ قیمت دریافت کریں جس پر بوجھ کو زیادہ سے زیادہ اوسط طاقت منتقل ہو گا۔زیادہ سے زیادہ منتقل اوسط طاقت کی قیمت بھی دریافت کریں۔

 $7.18\,\mathrm{W}$ ، $Z_L=5.1-j1.53\,\Omega$ جوابات:

مثق 9.7: شکل 9.14 میں بوجھ Z_L کے رکاوٹ کی وہ قیمت دریافت کریں جس پر بوجھ کو زیادہ سے زیادہ اوسط طاقت منتقل ہو گا۔ زیادہ سے زیادہ منتقل اوسط طاقت کی قیمت بھی دریافت کریں۔ جوابات: $Z_L = 2 + j_2^2 \Omega$

مثق 9.8: شکل 9.15 میں بوجھ Z_L کے رکاوٹ کی وہ قیمت دریافت کریں جس پر بوجھ کو زیادہ سے زیادہ اوسط طاقت منتقل ہو گا۔ زیادہ سے زیادہ منتقل اوسط طاقت کی قیمت بھی دریافت کریں۔ جوابات: $\Omega = 2.85 - j2.05$

مشق 9.9: شکل 9.16 میں بوجھ Z_L کے رکاوٹ کی وہ قیمت دریافت کریں جس پر بوجھ کو زیادہ سے زیادہ اوسط طاقت منتقل ہو گا۔زیادہ سے زیادہ منتقل اوسط طاقت کی قیمت بھی دریافت کریں۔

 $33.03\,\mathrm{W}$ ، $m{Z}_L = 5.077j6.385\,\Omega$ جوابات:

باب 9. بر قرار برتی طب قت

9.4 موثر قيمت

9.4 موثرقیت

 I^2 کے سمتی رو ادوار پر ہم تفصیلاً غور کر چکے ہیں جہاں ہم نے دیکھا کہ مزاحمت R میں یک سمتی رو I^2 کے گزرنے سے مزاحمت میں I^2 طاقت کا ضیاع ہوتا ہے۔ یک سمتی رو کی مقدار تبدیل نہیں ہوتی للذا مزاحمت کو ہر لمحہ بر قرار I^2 مواقت فراہم ہوتا ہے۔ غیر تغیر طاقت کا اوسط بھی I^2 ہو گا۔ اس کے بر عکس سائن نمارو کی صورت میں مزاحمت کو منتقل طاقت لمحہ بالمحہ تبدیل ہوتا ہے۔ یوں $I(t) = I_0 \cos(\omega t)$ کی صورت میں لمحہ I_0 پر مزاحمتی طاقت زیادہ ہو گا جاتی اتار چڑھاو کی وجہ سے سائن نمارو کی صورت میں مزاحمت کو منتقل اوسط طاقت I_0 عاصل ہوتا ہے۔ یوں I_0 حیطے کی سائن نمارو مزاحمت کو منتقل اوسط طاقت I_0 عاصل ہوتا ہے۔ یوں I_0 حیطے کی سائن نمارو کی موثر قیمت I_0 تجاتی طرح کسی شکل کی دہراتی ہوئی رو کی موثر قیمت I_0 سے مراد وہ یک سمتی رو ہے جو مزاحمت کو اس دہراتی ہوئی رو کے طاقت کے برابر طاقت نتقل کرتی ہو۔

ہم جانتے ہیں کہ رو i(t) مزاحمت R کو $i^2(t)$ کھاتی طاقت منتقل کرتی ہے۔اگراس رو کا دوری عرصہ T ہو تب مزاحمت کو اوسطاً

(9.24)
$$P = \frac{1}{T} \int_{t_0}^{t_0 + T} i^2(t) R \, dt$$

طاقت منتقل ہو گا۔ ہم یہ بھی جانتے ہیں کہ I_m یک سمتی رواسی مزاحت کو درج ذیل طاقت منتقل کرتی ہے۔

$$(9.25) P = I_m^2 R$$

اگر مزاحمت کو دونوں روایک برابر طاقت منتقل کرتی ہوں تب درج ذیل لکھا جا سکتا ہے

$$I_m^2 R = \frac{1}{T} \int_{t_0}^{t_0+T} i^2(t) R \, \mathrm{d}t$$

جسسے

(9.26)
$$I_m = \sqrt{\frac{1}{T} \int_{t_0}^{t_0 + T} i^2(t) \, \mathrm{d}t}$$

 I_m عاصل ہوتا ہے۔ مساوات 9.26 موثر رو ا

باب.9. بر قرار برقی طب قت

موثر دباو کو بھی اسی طرح حاصل کیا جا سکتا ہے۔ مزاحمت R کے متوازی دباو v(t) نسب کرنے سے مزاحمت کو لمحاتی طور پر $\frac{v^2(t)}{R}$ طاقت منتقل ہو گا۔ اگر دباو کا دوری عرصہ T ہو تب مزاحمت کو اوسطاً

(9.27)
$$P = \frac{1}{T} \int_{t_0}^{t_0 + T} \frac{v^2(t)}{R} dt$$

طاقت منتقل ہو گا۔ اسی مزاحمت کو یک سمتی دباو V_m اوسطاً درج ذیل طاقت فراہم کرتا ہے۔

$$(9.28) P = \frac{V_m^2}{R}$$

دونوں طاقت برابر ہونے کی صورت میں موثر دباو کی مساوات درج ذیل حاصل ہوتی ہے۔

(9.29)
$$V_m = \sqrt{\frac{1}{T} \int_{t_0}^{t_0 + T} v^2(t) \, \mathrm{d}t}$$

آئیں ان مساوات کی مدد سے چند امواج کی موثر قیمتیں دریافت کریں۔

مثال 9.7: بدلتی رو $i(t) = I_0 \cos(\omega t + \phi)$ کی موثر قیت دریافت کریں۔

حل: اس موج کا دوری عرصہ $T=rac{2\pi}{\omega}$ ہے۔ مساوات 9.26 سے رو کی موثر قیمت حاصل کرتے ہیں۔ فی الحال جذر کی نثان سے چھٹکارا حاصل کرنے کی خاطر مساوات کا مربع لکھتے ہوئے آگے بڑھتے ہیں۔

$$I_m^2 = \frac{1}{T} \int_0^T I_0^2 \cos^2(\omega t + \phi) dt$$

یبال $\cos^2 \alpha = \frac{1+\cos 2\alpha}{2}$ یبال $\cos^2 \alpha = \frac{1+\cos 2\alpha}{2}$

$$I_m^2 = \frac{I_0^2}{T} \int_0^T \frac{1}{2} dt + \frac{I_0^2}{T} \int_0^T \frac{\cos 2(\omega t + \phi)}{2} dt$$

جس میں دوسرا تکمل صفر کے برابر ہے۔ پہلا تکمل حل کرتے ہوئے

$$I_m^2 = \frac{I_0^2}{T} \frac{1}{2} t \Big|_0^T$$

9.4. موثر قيت

لعتني

 $I_m = \frac{I_0}{\sqrt{2}}$

لکھا جا سکتا ہے۔

مثق 9.10: درج بالا مثال میں دوسرے تکمل کو حل کرتے ہوئے ثابت کریں کہ یہ صفر کے برابر ہے۔

باب 9. برقرار برقی طب قت

466