I. Le radian.

Définition : Le radian est, comme le degré ou le grade, une unité de mesure d'angles définie de la façon suivante:

Si l'arc \widehat{MN} d'un cerle de rayon R a pour longueur R, alors l'angle \widehat{MON} vaut 1 radian.

Remarque : La mesure en degrés celle en radians sont proportionnelles : 360 degrés $\leftrightarrow 2\pi$ radians.

Degrés	360	180	120	90	60		30		
Radians	2π					$\frac{\pi}{4}$		$\frac{7\pi}{4}$	$\frac{11\pi}{12}$

Définition: Le cercle trigonométrique est le cercle (\mathscr{C}) de centre O, de rayon 1 muni d'un sens de rotation, i.e. orienté de telle sorte que le sens positif (ou direct, ou trigonométrique) est celui du sens inverse de rotation des aiguilles d'une montre.

2

Trigonometrie

Vincent Pantaloni

On enroule la droite des réels sur le cercle trigonométrique, dans le sens positif mais aussi dans le sens négatif.

Ainsi tout nombre réel x correspond à un point M du cercle.

Placer des mesures positives puis négatives en radian sur le cercle trigonométrique :

3

II. Fonctions sinus et cosinus

Définition: Soit x un réel quelconque. Il lui correspond un unique point M de \mathscr{C} . On appelle ω sinus de x, noté $\cos x$ et sinus de x, noté $\sin x$, les coordonnées du point M dans le repère $(O; \vec{\imath}, \vec{\jmath})$.

D'après le cercle trigonométrique, on a les prop. :

$$\Delta \cos^2 x + \sin^2 x = \dots$$
 (Pythagore)

$$lacktriangledown$$
 ... $\leqslant \cos x \leqslant \ldots$ et ... $\leqslant \sin x \leqslant \ldots$

$$\nabla \cos(x+2\pi) = \cos x \text{ et } \sin(x+2\pi) = \sin x$$

 $x \in [-\pi; \pi]$ et $\cos x \geqslant \frac{\pi}{2}$.

t) Déterminer les réels x tels que

 $x \in [0, 2\pi]$ et $\cos x = \sin x$.

3) Déterminer les réels x tels que :

Quelles sont les valeurs possibles pour $\sin(x)$?

2) On sait que $x \in [0; 2\pi]$, et $\cos(x) = -\frac{12}{13}$.

Exercice. 1) Sachant qu'un angle x (en radians) est dans $[0;\frac{\pi}{2}]$ et que $\sin(x)=\frac{4}{5}$, déterminer $\cos(x)$.

$$\dots = \left(\frac{\pi \tilde{G}}{\tilde{\partial}} - \right) \text{so is } \dots = \left(\frac{\pi - 1}{\tilde{\partial}}\right) \text{mis } (\mathbf{\tilde{G}})$$

$$\dots = \left(\frac{\pi 7}{6}\right)$$
 mis onob $\frac{1}{2} = \left(\frac{\pi}{6}\right)$ mis (*)

$$\dots = \left(\frac{\pi 2}{8}\right) \operatorname{annc sin} \left(\frac{\pi}{8}\right) = \left(\frac{\pi}{8}\right) \operatorname{annc sin} \left(\mathbf{f}\right)$$

2)
$$\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$$
 donc $\cos\left(\frac{2\pi}{3}\right) = \cdots$

$$\dots = \left(\frac{\pi}{4}\right) \cos \operatorname{anob} \frac{2\sqrt{2}}{2} = \left(\frac{\pi}{4}\right) \cos \left(\mathbf{1}\right)$$

leurs exactes demandées. cos et sin ainsi que des symétries, déterminer les va-Exercice. En utilisant les valeurs remarquables de

Variations de cos et sin

Par lecture sur le cercle trigonométrique, compléter les deux tableaux de variation et identifier les courbes ci-dessous.

5 9

que 1 < 2 < 3 donc $1 < \sqrt{2} < \sqrt{3}$ et donc : à l'aide du quart de cercle ci-dessous en remarquant On retiendra les valeurs remarquables de sin et cos

 $\frac{3}{2}$