Clustering

Jeff Leek

@jtleek

www.jtleek.com

Key ideas Find "close" samples/genes/etc. Put them into groups

Clustering is important

Defining distance

$$\sqrt{(X_1 - X_2)^2 + (Y_1 - Y_2)^2}$$
Baltimore (X₂,Y₂)

https://en.wikipedia.org/wiki/Taxicab_geometry

Hierarchical clustering Find "closest" points Merge Repeat

Cluster Dendrogram

distxy hclust (*, "complete")

K-means clustering Initialize cluster "centers" Assign values **Update centers** Reassign values Repeat

Notes

- Can be useful for exploring multivariate relationships
- Things that have a bigger than expected impact
 - Scaling
 - Outliers
 - Starting values (k-means)
- Selecting the number of clusters isn't trivial
- Better to visualize!
- Widely overutilized/overinterpreted

Further resources

- http://stat.ethz.ch/education/semesters/SS_2006/CompStat/sk-ch2.pdf
- http://www.cbcb.umd.edu/~hcorrada/PracticalML/
- Rafa's Distances and Clustering Video
- Elements of statistical learning
- Vadim's lecture notes
- http://www.public.iastate.
 edu/~maitra/stat501/lectures/ModelBasedClustering.pdf
- http://www.ics.uci.edu/~smyth/courses/cs274/readings/fraley_raftery.
 pdf