# $\Pi\Lambda H30$

### ΕΝΟΤΗΤΑ 3: ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ

Μάθημα 3.1: Κανονικές Εκφράσεις

Δημήτρης Ψούνης





#### Α. Σκοπός του Μαθήματος

#### Β. Θεωρία

- 1. Εισαγωγικοί Ορισμοί
  - 1. Αλφάβητο
  - 2. Γλώσσα
  - 3. Πράξεις Γλωσσών
- 2. Κανονικές Εκφράσεις
  - 1. Συντακτικό Κανονικών Εκφράσεων
  - 2. Παραδείγματα Κανονικών Εκφράσεων
  - 3. Τυπικός Ορισμός Κανονικής Έκφρασης
  - 4. Κανονικές Γλώσσες
  - 5. Θεώρημα: Κάθε Πεπερασμένη Γλωσσα είναι κανονική

#### Γ.Ασκήσεις

Ασκησεις Κατανόησης Εφαρμογές

### Α. Σκοπός του Μαθήματος

#### Οι στόχοι του μαθήματος είναι:

#### Επίπεδο Α

- > Κατασκευή Κανονικών Εκφράσεων
- > Ορισμός Κανονικής Έκφρασης και Κανονικής Γλώσσας
- > Ορισμός Πράξεων Γλωσσών

#### Επίπεδο Β

> Τυπικός Ορισμός Κανονικής Γλώσσας

#### Επίπεδο Γ

> (-)

### 1.Εισαγωγικοί Ορισμοί

#### 1.Αλφάβητο

#### Ορισμός:

Αλφάβητο είναι οποιοδήποτε πεπερασμένο σύνολο συμβόλων. Συμβολίζεται με Σ

#### Παραδείγματα:

- Σ={0,1} το δυαδικό αλφάβητο
- $\Sigma = \{a,b\}$
- Σ={A,B,Γ,...,Ω} το αλφαβητο των ελληνικών κεφαλαίων γραμμάτων

#### Ορισμός:

Έστω Σ ένα αλφάβητο. Το σύνολο όλων των συμβολοσειρών που μπορούμε να παράγουμε από σύμβολα του Σ, συμβολίζεται με Σ\*.

Το σύνολο Σ\* καλείται <u>αστέρι Kleene</u> του Σ και συμβολίζει την διάταξη 0 ή περισσότερων συμβόλων του Σ

#### Παράδειγμα

Έστω Σ={0,1} το δυαδικό αλφάβητο

Τότε  $\Sigma^*$ ={ $\epsilon$ ,0,1,00,01,10,11,000,001,010,011,100,101,110,111,...}

Ορισμός: Το ε είναι η συμβολοσειρά μήκους 0 και καλείται κενή συμβολοσειρά

### 1.Εισαγωγικοί Ορισμοί

#### 2.Γλώσσα

#### Ορισμός:

Γλώσσα ενός αλφαβήτου Σ είναι οποιοδήποτε υποσύνολο του Σ\*. Συνήθως συμβολίζεται με L.

Παραδείγματα γλωσσών του Σ={0,1}:

- L<sub>1</sub>={ w | w αρχίζει με 00}
- L<sub>2</sub>={ w | w περιέχει το 11}
- L<sub>3</sub>={ w | w τελειώνει με 01}
- L<sub>4</sub>={ w | w έχει μήκος τουλάχιστον 2}
- L<sub>5</sub>={ w | w έχει άρτιο πλήθος 1}
- L<sub>6</sub>={ w | H w είναι παλινδρομική}
- L<sub>7</sub>={ w | Ο δυαδικός αριθμός που αντιστοιχεί στην w είναι πρώτος αριθμός}
- ....
- > Μπορούμε να κατασκευάσουμε άπειρες γλώσσες ενός αλφαβήτου.

www.psounis.gr|

### Β. Θεωρία

### 1.Εισαγωγικοί Ορισμοί

#### 3.Πράξεις Γλωσσών

#### Ορισμός:

Έστω L, L<sub>1</sub>, L<sub>2</sub> γλώσσες του αλφαβήτου Σ. Ορίζονται οι γλώσσες:

- ightharpoonup Τομή Γλωσσών:  $L_1 \cap L_2 = \{w | w \in L_1 \text{ και } w \in L_2\}$
- ightharpoonup Παράθεση (ή Συνένωση) Γλωσσών:  $L_1L_2 = \{xy | x \in L_1$  και  $y \in L_2\}$
- $\triangleright$  Συμπλήρωμα Γλωσσας:  $\overline{L} = \{w | w \notin L\}$
- **Αστέρι Kleene Γλωσσας:**  $L^* = \{w | H w είναι παράθεση 0 ή περισσοτέρων συμβολοσειρών της L.$

#### Παράδειγμα στο Σ={α,β}

Av L1= $\{w|w \text{ αρχίζει με α}\}$  και L2= $\{w|w \text{ τελειώνει με β}\}$  Τότε  $L_1 \cap L_2=\{w|w \text{ αρχίζει με α και τελειώνει με β}\}$ 

### 2.Κανονικές Εκφράσεις

#### 1. Συντακτικό Κανονικών Εκφράσεων

- Μια κανονική έκφραση είναι ένας εύκολος τρόπος περιγραφής των συμβολοσειρών που ανήκουν σε μία κανονική γλώσσα.
- Οι κανονικές γλώσσες είναι οι απλούστερες γλώσσες που μπορούν να κατασκευασθούν.
- Παράδειγμα: Ποια η κανονική έκφραση της γλώσσας L={w∈ {0,1}\*|w αρχίζει με 1};
  - ➤ Η κανονική έκφραση είναι 1(0+1)\*
    - Η κανονική έκφραση είναι μια συμβολοσειρά που διαβάζεται από αριστερά προς τα δεξιά.
    - Ο πρώτος 1 σημαίνει ότι ξεκινά με 1.
    - Ο όρος (0+1)\* διαβάζεται 0 ή 1 (λόγω του 0+1) επαναλαμβάνεται 0 ή περισσότερες φορές.
  - > Αν εφαρμόσουμε το αστέρι Kleene διαδοχικά 0,1,2,... φορές παίρνουμε:
    - > 1
    - 1(0+1)=10 ή 11
    - 1(0+1)(0+1)=100 ή 101 ή 110 ή 111
    - > ....

### 2.Κανονικές Εκφράσεις

#### 1. Συντακτικό Κανονικών Εκφράσεων

#### Πρακτικά:

#### Μια κανονική έκφραση κατασκευάζεται με τα εξής στοιχεία:

- 1. Τα σύμβολα του αλφαβήτου
- 2. Το + που διαβάζεται «ή διαζευκτικό»
- 3. Το \* που είναι το αστέρι Kleene. Διαβάζεται «0 ή περισσότερες φορές».
- 4. Παρενθέσεις που υποδεικνύουν την προτεραιότητα των πράξεων
- 5. Υπονοείται και η πράξη της παράθεσης που είναι όταν έχουμε δύο διαδοχικές παραστάσεις και σημαίνει ότι παραθέτουμε (βάζουμε διαδοχικά) την πρώτη και την δεύτερη παράσταση.

Η προτεραιότητα των συμβόλων είναι πρώτα το αστέρι Kleene, έπειτα η παράθεση και έπειτα το +, εφόσον αυτή δεν καθορίζεται με παρενθέσεις.

Π.χ. η κανονική έκφραση 11\*+(00)\* ορίζει την γλώσσα που περιέχει συμβολοσειρές που:

- Ή έχουν τουλάχιστον έναν άσσο (και κανένα μηδενικό)
- Ή συμβολοσειρές που έχουν άρτια μηδενικά (και κανέναν άσσο)

### 2.Κανονικές Εκφράσεις

- 2. Παραδείγματα Κανονικών Εκφράσεων
  - ΑΣΚΗΣΗ: Κατασκευάστε Κανονικές Εκφράσεις για τις Γλώσσες του {0,1}:

    - L<sub>2</sub>={ w | w αρχίζει με 00 }
    - L<sub>3</sub>={ w | w περιέχει το 01 }
    - L<sub>4</sub>={ w | w έχει μήκος 2 }
    - L<sub>5</sub>={ w | w έχει μήκος τουλάχιστον 2 }
    - L<sub>6</sub>={ w | w έχει μήκος το πολύ 2 }
    - L<sub>7</sub>={ w | w έχει άρτιο μήκος }
    - L<sub>8</sub>={ w | w έχει περιττό μήκος }
    - L<sub>9</sub>={ w | w έχει άρτιο μήκος ή αρχίζει με 00}
    - L<sub>10</sub>={ w | w δεν αρχίζει με 01}

    - L<sub>12</sub>={ w | w περιέχει άρτια 0}

### 2.Κανονικές Εκφράσεις

- 3. Τυπικός Ορισμός Κανονικής Έκφρασης
  - Κάθε κανονική έκφραση αντιστοιχεί σε μία γλώσσα. Η κατασκευή της
    γλώσσας που αντιστοιχεί στην έκφραση μπορεί να γίνει με τον τυπικό ορισμό:

#### Ορισμός:

- Ø είναι η κανονική έκφραση που αντιστοιχεί στην κενή γλώσσα.
- ε είναι η κανονική έκφραση που αντιστοιχεί στην γλώσσα (ε)
- Για κάθε σύμβολο  $\sigma \in \Sigma$ , σ είναι η κανονική έκφραση που αντιστοιχεί στην γλωσσα  $\{\sigma\}$
- Αν r και s είναι εκφράσεις που αντιστοιχούν στις γλώσσες  $L_r$  και  $L_s$ , τότε και οι (rs), (r+s) και  $r^*$  είναι οι κανονικές εκφράσεις που αντιστοιχούν στις κανονικές γλώσσες  $L_rL_s$ ,  $L_r+L_s$ ,  $L_r^*$
- Τίποτα δεν είναι κανονική έκφραση αν δεν παράγεται από κάποιον από τους παραπάνω κανόνες.

#### www.psounis.gr

### Β. Θεωρία

### 2.Κανονικές Εκφράσεις

#### 4. Ορισμός Κανονικής Γλώσσας

#### Ορισμός:

- Μία γλώσσα θα λέγεται κανονική γλώσσα αν και μόνο αν
  - Υπάρχει κανονική έκφραση που την περιγράφει.
  - > Συνεπώς όλες οι γλώσσες της προηγούμενης άσκησης είναι κανονικές.
  - > Υπάρχουν και άλλοι τύποι γλωσσών που θα δούμε σε επόμενες ενότητες:
    - > Γλώσσες Ανεξάρτητες συμφραζομένων
    - Αποφασίσιμες Γλώσσες
    - Αποδεκτές Γλώσσες
  - Κάθε οικογένεια γλωσσών σχετίζεται με το πόσο δύσκολο είναι να υπολογιστούν τα μέλη της. Έτσι κάθε μία συμβολίζει και ένα επίπεδο δυσκολίας του <u>υπολογισμού</u>.
    - Οι καν. γλώσσες υπολογίζονται από Πεπερασμένο Αυτόματο (Ενοτ.3)
    - > Οι γλώσσες χωρίς συμφραζόμενα από Αυτόματο Στοίβας (Ενότητα 4)
    - > Οι αποφασίσιμες γλώσσες από Μηχανή Turing (Ενότητα 5)
    - Οι αποδεκτές γλώσσες ΔΕΝ υπολογίζονται (Ενότητα 5)

#### www.psounis.gr

## Β. Θεωρία

### 2.Κανονικές Εκφράσεις

- 4. Ορισμός Κανονικής Γλώσσας
  - ΑΣΚΗΣΗ: Ορίστε με περιγραφικό τρόπο τις γλώσσες των κανονικών εκφράσεων:
    - 1. (0+1)\*11(0+1)\*
    - 2. 0(0+1)\*10
    - 3. 00(0+1)\*11(0+1)\*11
    - 4. 0(0+1)\*0 + 1(0+1)\*1
    - 5. 1(0+1)\*0 + 0(0+1)\*1
    - 6. 0\*(10\*10\*)\*
    - 7. 0(0+1)\*+(0+1)\*1
    - 8. 1(00+01+10+11)\*
    - 9. (0+10\*1)\*
    - 10. 0\*(10\*10\*10\*)\*

### 2.Κανονικές Εκφράσεις

5. Κάθε Πεπερασμένη Γλώσσα είναι Κανονική

#### Θεώρημα:

#### Κάθε πεπερασμένη γλωσσα είναι κανονική

Απόδειξη: Πράγματι περιγράφεται από την κανονική έκφραση που με + θα ενώνει όλες τις συμβολοσειρές της γλώσσας

#### Παράδειγμα:

Έστω L= $\{ε,0,1,00,01,10,11\}$ 

Η L είναι κανονική γιατί περιγράφεται από την κανονική έκφραση: ε+0+1+00+01+10+11

## Γ. Ασκήσεις Άσκηση Κατανόησης 1

```
Δίδονται οι γλώσσες του αλφαβήτου \{0,1\}: L_1=\{w|w\ αρχίζει\ με\ 0\}
```

 $L_2=\{w|w$  τελειώνει με 1 $\}$ 

Εξετάστε ποιες από τις ακόλουθες συμβολοσειρές ανήκουν στις γλώσσες:

$$L_1 \cup L_2$$
,  $L_1 \cap L_2$ ,  $L_1L_2$ ,  $L_2L_1$ ,  $\overline{L_1}$ ,  $\overline{L_2}$ ,  $L_1^*$ ,  $L_2^*$ 

- $> w_1 = 0011$
- > w<sub>2</sub>=0010
- $> w_3 = 1111$
- $> w_4 = 1011$

Κατασκευάστε κανονικές εκφράσεις για τις γλώσσες:

- $ightharpoonup L_1 = \{w \in \{0,1\}^* | η w ξεκινά με το 00 και τελειώνει με 10\}$
- $> L_2 = {w∈ {0,1}*| η w ξεκινά με το 11, περιέχει το 00 και τελειώνει με 10}$
- $ightharpoonup L_3=\{w\in\{a,b\}^*| η w περιέχει το aabb\}$
- L₄={w∈ {a,b}\*| η w περιέχει τρία συνεχόμενα a}
- Arr L<sub>5</sub>={w∈ {a,b}\*| η w περιέχει άρτια a ή περιττά b}

Κατασκευάστε κανονικές εκφράσεις για τις γλώσσες:

- $> L_1 = {w∈ {0,1}*| η w ξεκινά με 01}$
- L<sub>2</sub>={w∈ {0,1}\*| η w περιέχει το 01}
- L<sub>3</sub>={w∈ {0,1}\*| η w τελειώνει με 01}
- L<sub>4</sub>={w∈ {0,1}\*| η w δεν ξεκινά με 01}
- $> L<sub>5</sub>={w∈ {0,1}*| η w δεν περιέχει το 01}$
- $> L<sub>6</sub>={w∈ {0,1}*| η w δεν τελειώνει με 01}$

Δώστε τις γλώσσες με αλφάβητο {0,1} που αντιστοιχούν στις παρακάτω κανονικές εκφράσεις:

1. 
$$L = 0*1(0*10*1)*0*$$

2. 
$$L = 1^* + 1^*01^* + 1^*01^*01^*$$

3. 
$$L = (0 + 1)^* 11 + (0 + 1)^* 10 + (0 + 1)^* 01 + 0 + 1 + \varepsilon$$

4. 
$$L = 1(0 + 1)^* + 0(0 + 1)^*$$

5. 
$$L = 1*(01*01*01*)*$$

- 1. Δώστε κανονική έκφραση για τη γλώσσα με όλες τις λέξεις του Σ= {a,b} που δεν τελειώνουν σε ab ή ba.
- 2. Περιγράψτε με λόγια την γλώσσα με κανονική έκφραση b\*a(b\*ab\*a)\*b\*.
- 3. Είναι κανονική στο  $\Sigma$ = {a,b} γλώσσα η L={a<sup>i</sup>b<sup>i</sup> |0 ≤i≤3}
- 4. Είναι κανονική στο Σ= {0,1} η γλώσσα L' = {(00111)<sup>n</sup> | n ≥0} όπου n οποιοσδήποτε φυσικός αριθμός;
- 5. Είναι κανονική γλώσσα στο  $\Sigma = \{a,b\}$  η  $N = \{(a+b)^i | i > 2\}$