ODI DOD

Questions to be discussed: 1 & 4

- 1. Consider a database with the following two relations where the key attributes are shown underlined:
 - R (<u>a</u>, b, c, d)
 - T (<u>h</u>, i, j)

Assume the following for this question.

- 1. Relation R contains 10,000 pages with each page containing 30 records.
- 2. Relation T contains 8,000 pages with each page containing 100 records.
- 3. There are three unclustered indexes on relation R:
 - I_b : a B⁺-tree index on (b) with at most 100 entries in each leaf page.
 - I_c : a B⁺-tree index on (c) with at most 100 entries in each leaf page.
 - I_{bc} : a B⁺-tree index on (b, c) with at most 50 entries in each leaf page.
- 4. There are three unclustered indexes on relation T:
 - I_i : a B⁺-tree index on (i) with at most 200 entries in each leaf page.
 - I_j : a B⁺-tree index on (j) with at most 200 entries in each leaf page.
 - I_{ij} : a B⁺-tree index on (i, j) with at most 100 entries in each leaf page.
- 5. Each of the indexes has two levels of internal nodes.
- 6. Only 10% of R records satisfy the condition "b > 20".
- 7. Only 5% of R records satisfy the condition "c = 100".
- 8. Only 1% of R records satisfy both the conditions "b > 20" and "c = 100".
- 9. Only 5% of T records satisfy the condition "i > 50".
- 10. Only 5% of T records satisfy the condition "j > 30".
- 11. Only 4% of T records satisfy both the conditions "i > 50" and "j > 30".
- 12. The cost metric to use is the number of page I/Os. Ignore the cost of writing out the final result.
- 13. There are 25 buffer pages available.
- 14. The database system supports only four join algorithms (Block Nested-loop Join, Indexed Nested-loop Join, Optimized Sort-Merge Join, and Grace Hash Join), and supports only the hash-based algorithm for set intersections.

Consider the following three queries.

O1.	SELECT	*	Ω_2	SELECT	*	Q3:	SELECT	sts.
ω_{1} .			\mathbb{Q}^{Z} .				FROM	R. T
	FROM	R		FROM	T			R.d = T.h
	WHERE	b > 20		WHERE	i > 50			
	AND	c = 100		AND	i > 30		AND	R.b > 20
	TIND	C = 100		MIND	J > 30		AND	R.c = 100
							AND	T.i > 50
							AND	T.i > 30

Answer the following three questions:

- (a) What is the least cost plan for query Q1? What is its cost?
- (b) What is the least cost plan for query Q2? What is its cost?
- (c) What is the least cost plan for query Q3? What is its cost?

2. Consider a relation $R(\underline{a}, b, c)$, where the domains of all the attributes are positive integers. Assume that ||R|| = 10000, $||\pi_b(R)|| = 100$, and $||\pi_c(R)|| = 20$.

Estimate the result size for each of the following queries.

- (a) SELECT * FROM R WHERE b = 10
- (b) SELECT * FROM R WHERE $(b \ge 20)$ AND (b < 40)
- (c) SELECT * FROM R WHERE $b \neq 7$
- (d) SELECT * FROM R WHERE (b = 20) AND (c = 40)
- (e) SELECT * FROM R WHERE (b = 20) OR (c = 40)
- 3. Consider a database with the following three relations:
 - R(a,b,c) with ||R|| = 200, $||\pi_b(R)|| = 20$, and $||\pi_c(R)|| = 50$
 - S(d, e, b) with ||S|| = 800 and $||\pi_b(S)|| = 40$
 - T(f, g, c) with ||T|| = 500 and $||\pi_c(T)|| = 100$

Estimate the result cardinality for each of the following queries:

- (a) Q_1 : SELECT * FROM R JOIN S ON R.b = S.b
- (b) Q_2 : SELECT * FROM R JOIN S ON R.b = S.b JOIN T ON R.c = T.c
- 4. Consider a relation R with ||R|| = 121 and an attribute A with $||\pi_A(R)|| = 20$. The actual distribution of attribute A is shown below.

Value of A	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
# of tuples	1	15	6	8	2	3	0	1	20	3	0	10	6	8	12	7	0	8	5	6

- (a) Construct an equidepth histogram H_3 with 3 buckets.
- (b) Estimate the size for each of the following queries using H_3 .
 - i. Q_1 : SELECT * FROM R WHERE A = 5
 - ii. Q_2 : SELECT * FROM R WHERE A = 8
 - iii. Q_3 : SELECT * FROM R WHERE A ≥ 6 AND A ≤ 17
- (c) Construct an equidepth histogram H'_3 with 3 buckets and top-2 MCV.
- (d) Repeat part (b) using H'_3 .
- (e) Construct an equidepth histogram H_5 with 5 buckets.
- (f) Repeat part (b) using H_5 .

- 5. (Exercise 17.2, R&G) For each of the following schedules, state whether is it view/conflict serializable.
 - (a) $R_1(X)$, $R_2(X)$, $W_1(X)$, $W_2(X)$, $Commit_1$, $Commit_2$
 - (b) $W_1(X)$, $R_2(Y)$, $R_1(Y)$, $R_2(X)$, $Commit_1$, $Commit_2$
 - (c) $R_1(X)$, $R_2(Y)$, $W_3(X)$, $R_2(X)$, $R_1(Y)$, $Commit_1$, $Commit_2$, $Commit_3$
 - (d) $R_1(X)$, $R_1(Y)$, $W_1(X)$, $R_2(Y)$, $W_3(Y)$, $W_1(X)$, $R_2(Y)$, $Commit_1$, $Commit_2$, $Commit_3$
 - (e) $R_1(X)$, $W_2(X)$, $W_1(X)$, $Commit_2$, $Commit_1$
 - (f) $W_1(X)$, $R_2(X)$, $W_1(X)$, $Commit_2$, $Commit_1$
 - (g) $R_2(X)$, $W_3(X)$, $Commit_3$, $W_1(Y)$, $Commit_1$, $R_2(Y)$, $W_2(Z)$, $Commit_2$
 - (h) $R_1(X)$, $W_2(X)$, $Commit_2$, $W_1(X)$, $Commit_1$, $R_3(X)$, $Commit_3$
 - (i) $R_1(X)$, $W_2(X)$, $W_1(X)$, $R_3(X)$, $Commit_1$, $Commit_2$, $Commit_3$
 - (j) $R_1(X)$, $R_2(Y)$, $W_3(X)$, $W_3(Z)$, $R_2(X)$, $R_1(Y)$, $W_1(Z)$, $W_2(Z)$, $Commit_1$, $Commit_2$, $Commit_3$
- 6. Prove that a conflict serializable schedule is also a view serializable schedule.
- 7. Prove that a schedule is conflict serializable if and only if its conflict serializability graph is acyclic.
- 8. Prove that a view serializable schedule without any blind write is also a conflict serializable schedule.