Mathematics 122

0	uiz	#1	7
W	uiz	<i>TT</i>	. 6

Name:	Key
	7

You must show your work to get full credit.

1. Let c and k be constants. Then find the following derivative $f(t) = 2ce^t - 2c(5)^t + kce^{2t} - 4e^k$.

Note
$$(4e^k)'=0$$

$$f'(t) = 2ce^{t}-2c(5)^t \ln s) + 2ke^{2t}$$
because it is constant

2. Find the equation of the tangent line to $y = e^{2x}$ at the point where x = 0. Reminder: The equation will have an equal sign in it. So make sure you answer has an equal sign.

The equation of the line through
$$(x_0, y_0)$$
 with slope m is

 $y = y_0 + m(x - x_0)$

In our case $x_0 = 0$ so $y_0 = y(0) = e^{2(0)} = 1$
 $y' = 2e^{2x}$ so $m = y'(0) = 2e^{0} = 2$

Thus the equation is

 $y = 1 + 2(x - 0)$
 $y = 1 + 2x$