Вопрос \mathbb{N} **2.** Докажите, что если $\det A \neq 0$, то при выборе главного элемента в столбце среди элементов, лежащих не выше главной диагонали, всегда найдется хотя бы один элемент, отличный от нуля.

Ответ. Доказательство от противного. Предположим, что на i—ом шаге при выборе главного элемента в i—ом столбце все элементы не выше главной диагонали нулевые, то есть матрица имеет вид:

$$A^{(i)} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1i} & a_{1(i+1)} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2i} & a_{2(i+1)} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{(i-1)i} & a_{(i-1)(i+1)} & \dots & a_{(i-1)n} \\ 0 & 0 & \dots & 0 & a_{i(i+1)} & \dots & a_{in} \\ 0 & 0 & \dots & 0 & a_{(i+1)(i+1)} & \dots & a_{in} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 & a_{n(i+1)} & \dots & a_{nn} \end{pmatrix}$$

Элементарные преобразования строк (столбцов) матрицы не меняют значения определителя, следовательно, определитель полученной матрицы $A^{(i)}$ равен определителю исходной марицы A.

Теперь раскроем определитель $A^{(i)}$ по первому столбцу (i-1) раз. В итоге получим:

$$\det A^{(i)} = a_{11} \cdot \ldots \cdot a_{(i-1)(i-1)} \cdot \begin{vmatrix} 0 & a_{i(i+1)} & \ldots & a_{in} \\ 0 & a_{(i+1)(i+1)} & \ldots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & a_{n(i+1)} & \ldots & a_{nn} \end{vmatrix} = 0,$$

но по условию $\det A \neq 0$. Получили противоречие. Доказано

Вопрос№5. А) Приведите пример матрицы, у которой число обусловленности велико, а определитель мал.

Рассмотрим такую матрицу:

$$\begin{pmatrix} 1 & 0 \\ 0 & 10^{-5} \end{pmatrix}.$$

Определитель $\det A = 10^{-5}$. Число обусловленности $condA = 10^{5}$.

 Б) Приведите пример матрицы, у которой число обусловленности мало, а определитель велик.

Пусть значение ε близко к нулю.

Рассмотрим такую матрицу:

$$\begin{pmatrix} \frac{1}{\varepsilon} & 0\\ 0 & \frac{1}{\varepsilon} \end{pmatrix}$$

Ее определитель равен бесконечности.

Теперь домножим матрицу на ε .

У числа обусловленности есть свойство: умножение матрицы A на на произвольную константу $\alpha \neq 0$ не приведет к изменению ее числа обусловленности, т. к. в этом случае обратная матрица окажется умноженной на величину α^{-1} .

Число обусловленности condA = 1.

Вопрос№8. В каких случаях целесообразно использовать метод Гаусса, а в каких — методы, основанные на факторизации матрицы?

Метод Гаусса целесообразно использовать, когда матрица и столбец изменяются.

Метод QR-разложения целесообразно использовать, когда матрица остается неизменной, а столбец правой части изменяется. С помощью метода вращений можно один раз вычислить ортогональную матрицу Q и верхнетреугольную матрицу R, а далее использовать только обратный ход метода Гаусса для различных векторов правой части.

Вопрос№10. Объясните, почему, говоря о векторах, норму $\|\cdot\|_1$ часто называют октаэдрической, норму $\|\cdot\|_2$ — шаровой, а норму $\|\cdot\|_\infty$ — кубической.

Норму $\|\cdot\|_1$ называют октаэдрической, т.к. единичный шар $\{x:\|x\|_1\leq 1\}$ представляет собой в трехмерном пространстве октаэдр. Норму $\|\cdot\|_2$ называют шаровой, так как единичный шар $\{x:\|x\|_2\leq 1\}$ представляет собой в трехмерном пространстве шар. Норму $\|\cdot\|_\infty$ называют кубической, так как единичный шар $\{x:\|x\|_\infty\leq 1\}$ представляет собой в трехмерном пространстве куб.