第3节 双曲线渐近线相关问题 (★★★)

内容提要

圆锥曲线中,渐近线是双曲线独有的几何性质,渐近线相关考题较多,本节将归纳一些常见题型.

- 1. 借助渐近线分析直线与双曲线的交点个数:
- ①当直线 l 过原点时,若其斜率 $k \in (-\infty, -\frac{b}{a}] \cup [\frac{b}{a}, +\infty)$,则直线 l 与双曲线没有交点,如图 1; 若 $k \in (-\frac{b}{a}, \frac{b}{a})$,则直线 l 与双曲线有两个关于原点对称的交点,如图 2.
- ②当直线 l 过双曲线内部定点 P 时,若直线 l 的斜率 $k=\pm\frac{b}{a}$,即 l 与渐近线平行,则 l 与双曲线有 1 个交点,如图 3 中的 l_1 和 l_2 ; 若直线 l 的斜率 $k\in (-\frac{b}{a},\frac{b}{a})$,则直线 l 与双曲线的两支各有 1 个交点,如图 3 中的 l; 若 $k\in (-\infty,-\frac{b}{a})\cup (\frac{b}{a},+\infty)$,则直线与双曲线的同支有 2 个交点,如图 4 中的 l.
- ③当直线过双曲线外部定点 P(不与原点重合)时,分析交点个数还需借助切线,如图 5, l_1 和 l_4 是与渐近线平行的直线, l_2 和 l_3 是双曲线的两条切线,我们让直线 l 从 l_1 出发绕点 P 逆时针旋转,恰好为 l_1 时,与双曲线有 1 个交点;转到 l_1 和 l_2 之间时,与双曲线在同支有 2 个交点;恰好为 l_2 时,与双曲线有 1 个交点; 在 l_2 和 l_3 之间时,没有交点;恰好为 l_3 时,有 1 个交点;在 l_3 和 l_4 之间时,与双曲线在同支有 2 个交点;恰好为 l_4 时,有 1 个交点;从 l_4 继续转回 l_1 的过程中,与双曲线在两支上各有 1 个交点.

- 2. 渐近线的角度关系: 如图 6, 双曲线的两条渐近线关于 x 轴, y 轴对称, 所以图 6 中左右两个角相等, 设为 α ,中间两个角也相等, 设为 β ,且 α + β = 90°.
- 3. 双曲线的两类特征三角形:

①如图 7,F 为双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的右焦点,过 F 作一条渐近线的垂线,垂足为 A,则在 ΔAOF 中,|AF| = b,|OA| = a,|OF| = c,这个三角形有双曲线的全部特征,所以把 ΔAOF 称为双曲线的 "特征三角形",由对称性,这样的特征三角形有 4 个. 由于点 A 满足 |OA| = a,所以 A 在圆 $x^2 + y^2 = a^2$ 上,由

$$OA \perp AF$$
 可得 AF 是该圆的切线,若要求点 A 的坐标,可联立
$$\begin{cases} y = \frac{b}{a}x \\ x^2 + y^2 = a^2 \end{cases}$$
 求得
$$\begin{cases} x^2 = \frac{a^4}{c^2} \\ y^2 = \frac{a^2b^2}{c^2} \end{cases}$$
,所以图 7 中

点 A 的坐标为 $(\frac{a^2}{a}, \frac{ab}{a})$.

②如图 8,A 为双曲线的右顶点,过A 作x 轴的垂线交一条渐近线于点 B,则在 ΔAOB 中,|OA|=a,|AB|=b, |OB|=c,这个三角形也有双曲线的全部特征,所以把 $\triangle AOB$ 称为双曲线的"特征三角形",由对称性, 这样的特征三角形有4个.

典型例题

类型 I: 借助渐近线进行图形分析

【例 1】(2022•全国甲卷)记双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a>0,b>0)$ 的离心率为 e,写出满足条件"直线 y=2x与 C 无公共点"的 e 的一个值 .

解析: 过原点的直线与双曲线没有交点的临界状态是渐近线, 故可画图, 比较斜率,

如图,直线 y = 2x与 C 无公共点 $\Leftrightarrow \frac{b}{a} \le 2 \Leftrightarrow b \le 2a \Leftrightarrow b^2 \le 4a^2 \Leftrightarrow c^2 - a^2 \le 4a^2 \Leftrightarrow \frac{c^2}{a^2} \le 5$,

所以 $e^2 \le 5$,结合e > 1可得 $1 < e \le \sqrt{5}$.

答案: 2 (答案不唯一,满足 $1 < e \le \sqrt{5}$ 的 e 值均可)

【变式】已知双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的焦距为 2c, F_1 , F_2 为其左、右两个焦点,直线 l 经过点 (0,b)且斜率为 1,若 l 上存在点 P 满足 $|PF_1| - |PF_2| = 2b$,则 C 的离心率的取值范围为()

- (A) $(1,\sqrt{2})$ (B) $(\sqrt{2},\sqrt{3})$ (C) $(1,\sqrt{3})$ (D) $(\sqrt{2},+\infty)$

解析:看到 $|PF_1|-|PF_2|=2b$,联想到点P在某双曲线(不是双曲线C)上,该双曲线的焦点也是 F_1 , F_2 , 但距离之差是定值 2b,相当于和原双曲线 C 相比,c 不变,把 a 和 b 交换即可,

由题意,满足 $|PF_1|-|PF_2|=2b$ 的点P在双曲线 $\frac{x^2}{b^2}-\frac{y^2}{a^2}=1$ 的右支上,所以直线l与该双曲线右支有交点,涉及直线与双曲线的交点问题,可借助渐近线来分析,

如图,则直线 l 的斜率是 1,双曲线 $\frac{x^2}{b^2} - \frac{y^2}{a^2} = 1$ 渐近线是 $y = \pm \frac{a}{b}x$,

由图可知要使 l 与该双曲线右支有交点,只需 $1<\frac{a}{b}$,所以 a>b,从而 $a^2>b^2=c^2-a^2$,故 $\frac{c^2}{a^2}<2$,

所以 $e < \sqrt{2}$,又e > 1,所以 $1 < e < \sqrt{2}$.

答案: A

【反思】从上面两道题可以看出,涉及直线与双曲线的交点个数问题,常借助渐近线来分析临界状态.

【例 2】已知双曲线 $C: \frac{y^2}{a^2} - \frac{x^2}{b^2} = \overline{1}(a > 0, b > 0)$,若直线 x = -b 与 C 的两条渐近线分别交于 A, B 两点, O 为原点,且 \overrightarrow{OA} 与 \overrightarrow{OB} 的夹角为 60° ,则 C 的离心率为(

(A) 2 (B)
$$\frac{3}{2}$$
 (C) $\sqrt{3}$ (D) $\frac{2\sqrt{3}}{3}$

解析: 如图,由所给向量的夹角可求得渐近线的倾斜角,进而求出斜率,

由题意, $\angle AOB = 60^{\circ}$,设直线 AB = 5x 轴交于点 D,E 为渐近线上第一象限的一点,则 $\angle BOD = 30^{\circ}$,

所以 $\angle EOx = \angle BOD = 30^\circ$,故渐近线 BE 的倾斜角为 30° ,其斜率 $\frac{a}{b} = \tan 30^\circ = \frac{\sqrt{3}}{3}$,所以 $b = \sqrt{3}a$,

从而
$$b^2 = c^2 - a^2 = 3a^2$$
,整理得: $\frac{c^2}{a^2} = 4$,故离心率 $e = \frac{c}{a} = 2$.

答案: A

【变式】已知双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左、右焦点分别为 F_1 , F_2 ,以线段 F_1F_2 为直径的圆与 y 轴的正半轴交于点 B ,连接 F_1B , F_2B 分别交双曲线的渐近线于点 E , F , 若四边形 OFBE 为平行四边形,

则 C 的离心率为 $____$.

解析:如图,要求离心率,可先从几何关系分析渐近线的夹角,由题意,四边形 *OFBE* 为平行四边形,又 F_1F_2 是圆的直径,所以 $BF_1 \perp BF_2$,故四边形 OFBE 为矩形,所以 $\angle EOF = 90^\circ$,

结合两条渐近线关于y轴对称知 $\angle FOB = 45^{\circ}$,所以 $\angle FOF_2 = 45^{\circ}$,

从而渐近线 *OF* 的斜率 $\frac{b}{a} = \tan 45^\circ = 1$,故 a = b,所以 $a^2 = b^2 = c^2 - a^2$,整理得: $\frac{c^2}{a^2} = 2$,故 $e = \frac{c}{a} = \sqrt{2}$.

答案: √2

【反思】①双曲线的两条渐近线分别关于 x 轴,y 轴对称,由此可得到一些特殊的角度相等关系,这也是渐近线最基础的几何性质;②两渐近线夹角为90°的双曲线是等轴双曲线,其离心率为 $\sqrt{2}$.

【例 3】已知 F 是双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的右焦点,点 A 是 C 的左顶点,O 为原点,过 F 作 C 的一条渐近线的垂线,垂足为 P,若 $\angle PAF = 30^\circ$,则 C 的离心率为_____.

解析: 涉及渐近线, 先考虑通过几何关系分析渐近线的倾斜角,

如图,渐近线为 $y = \frac{b}{a}x$,即 bx - ay = 0, 右焦点 F(c,0) 到渐近线的距离 $|PF| = \frac{|bc|}{\sqrt{b^2 + (-a)^2}} = \frac{|bc|}{c} = b$,

又|OF|=c,所以 $|OP|=\sqrt{|OF|^2-|PF|^2}=\sqrt{c^2-b^2}=a$,因为|OA|=a,所以|OP|=|OA|,

从而 $\angle APO = \angle PAO = 30^{\circ}$,故 $\angle POF = \angle PAO + \angle APO = 60^{\circ}$,

有了渐近线的倾斜角,可求其斜率,再转换成离心率即可,

所以渐近线 *OP* 的斜率 $\frac{b}{a} = \tan 60^{\circ} = \sqrt{3}$,从而 $b = \sqrt{3}a$,故 $b^2 = c^2 - a^2 = 3a^2$,

整理得: $\frac{c^2}{a^2} = 4$,所以 C 的离心率 $e = \frac{c}{a} = 2$.

答案: 2

【**反思**】上图中的 ΔPOF 的三边长分别为 a, b, c, 我们把它叫做双曲线的一个"特征三角形",在后续的某些题目中,熟悉这一结论,可以迅速发现图形中的一些几何关系.

【变式 1】(2019・新课标 I 卷) 已知双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左、右焦点分别为 F_1 , F_2 ,过 F_1 的直线与 C 的两条渐近线分别交于 A,B 两点,若 $\overline{F_1A} = \overline{AB}$, $\overline{F_1B} \cdot \overline{F_2B} = 0$,则 C 的离心率为_____. 解法 1:条件中有向量的数量积,可考虑设坐标来算,如图,点 B 在渐近线 $y = \frac{b}{-x}$ 上,

可设
$$B(x_0, \frac{b}{a}x_0)$$
, $F_1(-c, 0)$, $F_2(c, 0)$,则 $\overline{F_1B} = (x_0 + c, \frac{b}{a}x_0)$, $\overline{F_2B} = (x_0 - c, \frac{b}{a}x_0)$,

所以
$$\overline{F_1B} \cdot \overline{F_2B} = (x_0 + c)(x_0 - c) + \frac{b^2}{a^2}x_0^2 = (1 + \frac{b^2}{a^2})x_0^2 - c^2 = \frac{c^2}{a^2}x_0^2 - c^2 = 0$$
,

解得: $x_0 = a$ 或-a (舍去), 故B(a,b),

求得了 B,可由 $\overrightarrow{F_1A} = \overrightarrow{AB}$ 求 A 的坐标,代入另一渐近线 $y = -\frac{b}{a}$ 邓即可建立方程求离心率,

由
$$\overrightarrow{F_1A} = \overrightarrow{AB}$$
知 A 为 F_1B 中点,所以 $A(\frac{a-c}{2}, \frac{b}{2})$,代入 $y = -\frac{b}{a}x$ 得: $\frac{b}{2} = -\frac{b}{a} \cdot \frac{a-c}{2}$,

整理得: c=2a, 故 C 的离心率 $e=\frac{c}{a}=2$.

解法 2: 所给的数量积恰好为 0, 可翻译为垂直, 于是也可尝试分析几何特征, 找渐近线的倾斜角,

如图,由
$$\overrightarrow{F_1B} \cdot \overrightarrow{F_2B} = 0$$
知 $BF_1 \perp BF_2$,又 O 为 F_1F_2 中点,所以 $|OB| = \frac{1}{2}|F_1F_2| = |OF_1|$,

由 $\overrightarrow{F_1A} = \overrightarrow{AB}$ 知A为 F_1B 中点,故 $\angle AOB = \angle AOF_1$,(原因:等腰三角形底边中线也是顶角的平分线)

又由渐近线的对称性, $\angle AOF_1 = \angle BOF_2$,所以 $\angle AOB = \angle AOF_1 = \angle BOF_2 = 60^\circ$,

从而渐近线 OB 的斜率 $\frac{b}{a} = \tan \angle BOF_2 = \tan 60^\circ = \sqrt{3}$,故 $b = \sqrt{3}a$,

所以
$$b^2 = 3a^2$$
,从而 $c^2 - a^2 = 3a^2$,故 $e = \frac{c}{a} = 2$.

答案: 2

【变式 2】已知双曲线 $E: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左、右焦点分别为 F_1 , F_2 ,圆 $O: x^2 + y^2 = a^2$ 与 E 的一条渐近线的一个交点为 M ,若 $|MF_2| = \frac{\sqrt{2}}{2} |F_1F_2|$,则 E 的离心率为(

(A)
$$\sqrt{2}$$
 (B) $\sqrt{3}$ (C) $\sqrt{5}$ (D) $\sqrt{6}$

解析:由对称性,不妨设M在x轴上方,有如图 1 和图 2 所示的两种情况,应先判断是哪种,

若为图 1,则 ΔMOF_2 是双曲线的一个特征三角形,所以 $|MF_2| = b < \frac{\sqrt{2}}{2} |F_1F_2| = \sqrt{2}c$,不合题意;

若为图 2,则 ΔMOF_1 是双曲线的一个特征三角形,

可抓住 ZMOF, 和 ZMOF, 互补,用"双余弦法"建立方程求离心率,

在 ΔMOF_1 中, $\left|OM\right|=a$, $\left|OF_1\right|=c$, 且 $OM\perp MF_1$, 所以 $\cos \angle MOF_1=\frac{a}{c}$,

在
$$\Delta MOF_2$$
中, $\left| MF_2 \right| = \frac{\sqrt{2}}{2} \left| F_1 F_2 \right| = \sqrt{2}c$, $\left| OF_2 \right| = c$, 所以 $\cos \angle MOF_2 = \frac{\left| OM \right|^2 + \left| OF_2 \right|^2 - \left| MF_2 \right|^2}{2 \left| OM \right| \cdot \left| OF_2 \right|} = \frac{a^2 - c^2}{2ac}$,

由图可知 $\angle MOF_1 = \pi - \angle MOF_2$, 所以 $\cos \angle MOF_1 = \cos(\pi - \angle MOF_2) = -\cos \angle MOF_2$,

故
$$\frac{a}{c} = -\frac{a^2 - c^2}{2ac}$$
,整理得: $\frac{c^2}{a^2} = 3$,所以离心率 $e = \frac{c}{a} = \sqrt{3}$.

答案: B

【总结】由例3及其变式可发现,渐近线问题中对于几何条件的翻译和做法,与前面小节大同小异.

类型Ⅱ: 渐近线相关的综合运算

【例 4】已知双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左焦点为 F,过 F 且与 x 轴垂直的直线 l 与双曲线交于 A, B

两点,交双曲线的渐近线于 C、D 两点, $|CD| = \sqrt{2}|AB|$,则双曲线的离心率为_____.

解析:求出|AB|和|CD|,即可建立方程求离心率,求|AB|可用通径公式,第|CD|可联立求坐标,

由题意,
$$|AB| = \frac{2b^2}{a}$$
, $l: x = -c$, 联立
$$\begin{cases} y = -\frac{b}{a}x \\ x = -c \end{cases}$$
 解得: $y = \frac{bc}{a}$,如图, $y_c = \frac{bc}{a}$,由对称性知 $|CD| = \frac{2bc}{a}$,

因为
$$|CD| = \sqrt{2}|AB|$$
,所以 $\frac{2bc}{a} = \sqrt{2} \cdot \frac{2b^2}{a}$,从而 $c = \sqrt{2}b$,故 $c^2 = 2b^2 = 2c^2 - 2a^2$,

整理得: $\frac{c^2}{a^2} = 2$,所以双曲线的离心率 $e = \frac{c}{a} = \sqrt{2}$.

答案: √2

【例 5】(2022・浙江卷) 已知双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左焦点为 F,过 F 且斜率为 $\frac{b}{4a}$ 的直线交双曲线于点 $A(x_1,y_1)$,交双曲线的渐近线于点 $B(x_2,y_2)$,且 $x_1 < 0 < x_2$,若 |FB| = 3|FA|,则双曲线的离心率是

解析:如图,B的坐标可联立直线AB和渐近线方程来求,先求B,

由题意,
$$F(-c,0)$$
,直线 AB 的方程为 $y = \frac{b}{4a}(x+c)$,联立
$$\begin{cases} y = \frac{b}{4a}(x+c) \\ y = \frac{b}{a}x \end{cases}$$
解得:
$$\begin{cases} x = \frac{c}{3} \\ y = \frac{bc}{3a} \end{cases}$$
,所以 $B(\frac{c}{3}, \frac{bc}{3a})$,

题干给出|FB|=3|FA|,可由此构造相似三角形求得A的坐标,代入双曲线即可建立方程求离心率,

作
$$AD \perp x$$
 轴于 D , $BE \perp x$ 轴于 E , 则 $\Delta FAD \hookrightarrow \Delta FBE$, 且 $E(\frac{c}{3},0)$, $|EF| = \frac{4c}{3}$, $|BE| = \frac{bc}{3a}$,

因为
$$|FB| = 3|FA|$$
,所以 $\frac{|FD|}{|EF|} = \frac{|AD|}{|BE|} = \frac{1}{3}$,故 $|FD| = \frac{1}{3}|EF| = \frac{4c}{9}$, $|OD| = |OF| - |FD| = \frac{5c}{9}$, $|AD| = \frac{1}{3}|BE| = \frac{bc}{9a}$,

所以
$$A(-\frac{5c}{9},\frac{bc}{9a})$$
,代入 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 可得: $\frac{25c^2}{81a^2}-\frac{b^2c^2}{81a^2b^2}=1$,整理得: $\frac{c^2}{a^2}=\frac{27}{8}$,故离心率 $e=\frac{c}{a}=\frac{3\sqrt{6}}{4}$.

答案: $\frac{3\sqrt{6}}{4}$

【总结】从上面两道题可以看出,渐近线有关问题,若不便从几何角度分析,也可用其方程参与运算,按 代数的方法来求解问题,但这样做计算量往往更大一些,为次选方案.

强化训练

1. (2023 • 北京模拟 • ★★) 已知双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的一个焦点为 $(\sqrt{5}, 0)$,且与直线 $y = \pm 2x$ 没 有公共点,则双曲线的方程可以为____.(填一个满足要求的双曲线方程即可)

- 2. (2023・重庆二模・★★) 已知点 P(1,2)和双曲线 $C: x^2 \frac{y^2}{4} = 1$, 过点 P 且与双曲线 C 只有 1 个公共点 的直线有()
 - (A) 2条 (B) 3条 (C) 4条 (D) 无数条

3. $(2022 \cdot 江苏南京模拟 \cdot ★★)已知双曲线 <math>C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的两条渐近线的夹角为 $\frac{\pi}{3}$,则此双 曲线的离心率为 .

- 4. (2022 江苏南京模拟 ★★)椭圆 $C_1: \frac{x^2}{4} + \frac{y^2}{3} = 1$ 与双曲线 $C_2: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的离心率之积为
- 1,则 C_2 的两条渐近线的倾斜角分别为(
- (A) $\frac{\pi}{6}$, $-\frac{\pi}{6}$ (B) $\frac{\pi}{3}$, $-\frac{\pi}{3}$ (C) $\frac{\pi}{6}$, $\frac{5\pi}{6}$ (D) $\frac{\pi}{3}$, $\frac{2\pi}{3}$

- 5. (2020・新课标 II 巻・★★★) 设 O 为坐标原点,直线 x = a 与双曲线 $C: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的两条 渐近线分别交于 D, E 两点,若 ΔODE 的面积为 8,则 C 的焦距的最小值为(
- (A) 4

 - (B) 8 (C) 16
- (D) 32

- 6. (2022 广东珠海模拟 ★★★) 已知双曲线 $C: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左、右焦点分别为 F_1 , F_2 , 点 A 在 C 的过第二、四象限的渐近线 l 上,且 $AF_2 \perp l$,若 $\left|BF_2\right| - \left|BF_1\right| = 2a$, $\overline{F_2B} + 2\overline{BA} = \overline{0}$,则 C 的离心 率为()

- (A) $\sqrt{2}$ (B) $\sqrt{5}$ (C) $\sqrt{6}$ (D) $2\sqrt{2}$

- 7. $(2023 \cdot 福建统考 \cdot \star \star \star)$ 已知双曲线 $C: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的离心率为 $\sqrt{5}$,左、右焦点分别为 F_1 , F_2 , F_2 关于C的一条渐近线的对称点为P,若 $|PF_1|=2$,则 ΔPF_1F_2 的面积为()
- (A) 2 (B) $\sqrt{5}$ (C) 3 (D) 4

8. $(2022 \cdot 江西南昌模拟 \cdot \star \star \star \star)$ 双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左、右焦点分别为 F_1 , F_2 ,在 C的渐近线上存在一点 M,使 $\angle OMF_2 = 90^\circ$,且 M 在第一象限,若 $|MF_1| = 3|MF_2|$,则 C 的离心率为_____.

9. $(\bigstar \bigstar \bigstar)$ 双曲线 $C : \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 (a > 0, b > 0)$ 的右焦点为 F,过 F 作一条渐近线的垂线 l,垂足为 M,若 l 与另一条渐近线的交点是 N,且 $\overrightarrow{MN} = 5 \overrightarrow{MF}$,则 C 的离心率为_____.

10. $(2022 \cdot 河南新安模拟 \cdot \star \star \star)$ 已知双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的一条渐近线与圆 $A: (x-a)^2 + y^2 = b^2$ 交于 P, Q 两点,O 为原点,若 Q 为 OP 中点,则 C 的离心率为() (A) $\sqrt{2}$ (B) $\frac{3\sqrt{2}}{2}$ (C) $\frac{2\sqrt{3}}{3}$ (D) $\sqrt{3}$

《一数•高考数学核心方法》