

Theoretische Informatik

Logik

Normalform

Definition Literal

» negierte oder nicht negierte atomare Aussage
 P − positives Literal, ¬ P − negatives Literal

Definition Konjunktive Normalform

- » Eine Formel der Aussagenlogik ist in konjunktiver Normalform (KNF), wenn sie eine Konjunktion von Disjunktionstermen ist.
- » Disjunktionsterme sind dabei Disjunktionen von Literalen → Klauseln.
- » Literale sind nichtnegierte oder negierte atomare Aussagen.

$$\bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{m_i} p_{ij} \right)$$

- Definition Disjunktive Normalform
 - » Eine Formel der Aussagenlogik ist in disjunktiver Normalform (DNF), wenn sie eine Disjunktion von Konjunktionstermen ist.
 - » Konjunktionsterme sind dabei Konjunktionen von Literalen.

$$\bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{m_i} p_{ij} \right)$$

Normalform

Beispiele "Konjunktive Normalform"

- \rightarrow (A \vee ¬B) \wedge (B \vee ¬C \vee ¬D)
- » A Λ (B V C)
- » A A B
- » 1

Beispiele "Disjunktive Normalform"

- $(A \wedge B) \vee (A \wedge B \wedge C) \vee (B \wedge C) \vee D$
- » A V B
- » A ∨ (B ∧ C)
- » 1

Normalform – Beispiel

Boolescher Ausdruck: $a \wedge \neg (b \wedge c)$

- Anwendung von deMorgan (10):
 - \rightarrow a \wedge (\neg b \vee \neg c)

(das ist bereits die KNF)

- Anwendung des Distributivgesetzes (9)

» $(a \land \neg b) \lor (a \land \neg c)$ (das ist bereits die DNF)

Normalform – Regeln für die Anwendung

- 1) Entferne \rightarrow , \leftrightarrow entsprechend der Def.
- 2) Negationen nach innen ziehen:

$$^{>}$$
 $^{\neg}$ $^{\neg}$

3) Anwendung der Distributivgesetze

» KNF:
$$F \lor (G \land H)$$
 \rightarrow $(F \lor G) \land (F \lor H)$
» DNF: $F \land (G \lor H)$ \rightarrow $(F \land G) \lor (F \land H)$

4) Überflüssiges Entfernen, Vereinfachen

$$F \land 1 \rightarrow F, \qquad F \land F \rightarrow F$$

- Satz (Aussagenlogisch Normalformen)
 - » Jede aussagenlogische Formel F kann in disjunktiver Normalform geschrieben werden.
 - » Jede aussagenlogische Formel F kann in konjunktiver Normalform geschrieben werden.

- Satz (Eigenschaften der KNF und DNF)
 - Eine KNF ist gültig gerade dann wenn alle ihre Klauseln gültig sind
 - » Eine DNF ist unerfüllbar gerade dann wenn alle ihre Klauseln unerfüllbar sind

- Wahrheitstafelmethode
 - » Eine regelbasierte Möglichkeit eine DNF und eine KNF zu konstruieren, geht mit Wahrheitstafeln.
 - » Anmerkung / Problem:
 Wahrheitstafeln werden sehr groß und das Verfahren wird somit ineffizient.

Normalform

Wahrheitstafelmethode (DNF)

_ <i>A</i>	В	<i>C</i>	<i>F</i>
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Idee für die DNF?

Normalform

Wahrheitstafelmethode (DNF)

A	В	C	F	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	$\neg A \land B \land C$
1	0	0	1	$A \wedge \neg B \wedge \neg C$
1	0	1	0	
1	1	0	0	
1	1	1	1	$A \wedge B \wedge C$

$$(\neg A \land B \land C) \lor (A \land \neg B \land \neg C) \lor (A \land B \land C)$$

Normalform

Wahrheitstafelmethode (KNF)

A	В	<i>C</i>	<i>F</i>
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

KNF ... ?

Normalform

Wahrheitstafelmethode (KNF)

A	В	C	<i>F</i>	
0	0	0	0	$A \lor B \lor C$
0	0	1	0	$A \lor B \lor \neg C$
0	1	0	0	$A \lor \neg B \lor C$
0	1	1	1	
1	0	0	1	
1	0	1	0	$\neg A \lor B \lor \neg C$
1	1	0	0	$\neg A \lor \neg B \lor C$
1	1	1	1	

$$(A \lor B \lor C) \land (A \lor B \lor \neg C) \land (A \lor \neg B \lor C) \land (\neg A \lor B \lor \neg C) \land (\neg A \lor \neg B \lor C)$$

- Aufgabe Aussagenlogische Umformungen in DNF und KNF
 - » Wandeln Sie folgende Formeln in eine DNF oder KNF um. Geben Sie bei jedem Schritt an, welche Gesetze Sie benutzt haben.
 - 1. $c \rightarrow a \lor b$
 - 2. $((X \rightarrow Y) \rightarrow (X \land \neg Z)) \lor (Y \rightarrow Z)$
 - 3. $a \land \neg b \rightarrow c$
 - **4.** $(\neg a \rightarrow b \lor c) \leftrightarrow \neg c$