FUNDAMENTOS DE CÁLCULO

CUARTA PRÁCTICA DIRIGIDA SEMESTRE ACADÉMICO 2021-1

Problemas Obligatorios

- 1. Halle los siguientes límites:
 - a) $\lim_{x\to 0} \arctan(e^x)$.
 - b) $\lim_{x\to 1} \ln(\arccos(x))$.
- 2. Determine el rango de la función $f(x) = \ln \left[sen(\frac{\pi x^2}{8}) \right], -2 \le x < 0$

Solución

1. a) Sean $t = e^x$ y y = arctan(t)

De las graficas, se tiene lo siguiente:

 $\lim_{x\to 0}\arctan(e^x)=\lim_{t\to 1}\arctan(t)=\arctan(1)=\frac{\pi}{4}.$

b) Sean $t = \arccos(x)$ y y = ln(t)

De las gráficas, se tiene lo siguiente: $\lim_{x\to 1^-} \arccos(x) = 0^+$

y no es posible aproximarse a 1 con valores permtidos mayores que 1, entonces $\lim_{x\to 1} \arccos(x) = 0^+$.

Así, tenemos

$$\lim_{x \to 1} \ln(\arccos(x)) = \lim_{t \to 0^+} \ln(t) = -\infty$$

2. Sea
$$t = g(x) = \frac{\pi x^2}{8}, -2 \le x < 0.$$

De la gráfica, se tiene que $Ran(g) = \left]0, \frac{\pi}{2}\right]$.

Sea $u = h(t) = sen(t), 0 < t \le \frac{\pi}{2}$. De la gráfica de h se tiene que Ran(h) = [0, 1].

Sea $v = i(u) = ln(u), 0 < u \le 1$. De la gráfica de v se tiene que $Ran(v) =]-\infty, 0]$.

Por tanto, $Ran(f) =]-\infty, 0]$.

San Miguel, 20 de noviembre de 2021.