The long-run effects of monetary policy

Òscar Jordà * Sanjay R. Singh § Alan M. Taylor‡

Economic Fluctuations & Growth Program Meeting July 2023

- * Federal Reserve Bank of San Francisco; University of California, Davis
- § Federal Reserve Bank of San Francisco; University of California, Davis
 - [‡] University of California, Davis; NBER; CEPR

How long do the effects of monetary interventions last? Methods

data: historical panel, 115 years x 17

identification: trilemma of international macroeconomics

method: local projections instrumental variables (LP-IV)

This paper

Outline of the key empirical findings

- 1 large persistent effects of monetary shocks
 - twelve years later, real GDP lower relative to pre-shock trend
 - labor returns to pre-trend level
 - capital and TFP persistently lower
- 2 sign asymmetry
 - persistence with tightening shocks, not with easing shocks
- **3** US & UK monetary shocks
 - Extend replication of 3 published papers to 8-year horizons

EMPIRICAL ANALYSIS

Data

Annual 1900–2015 (excluding world wars) for 17 advanced economies

Data requirement: long span of data for outcomes/controls and the IV

Jordà, Schularick & Taylor (2017)
www.macrohistory.net/data/
Interest rates, output, inflation, investment, house & stock prices, consumption ...

Bergeaud, Cette & Lecat (2016)
www.longtermproductivity.com

hours worked, number of employees, capital stock (machines and buildings)...

17 advanced economies in our sample:
Australia, Belgium, Canada, Denmark, Finland, France, Germany, Italy, Japan, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, U.K., and U.S.

The trilemma instrument. Jordà, Schularick and Taylor (2020, JME) peg + open to capital → correlated interest rates

3 subpopulations: bases (b), pegs, floats

 $k_{i,t}$ index \in [0,1] Quinn, Schindler, and Toyoda (2011), 1 is open

$$\mathbf{Z}_{i,t}^{j} = D_{i,t}^{j} k_{i,t} \Delta \widehat{R}_{b(i,t),t}$$
 (base "pre-cleaned" using $\mathbf{X}_{b(i,t),t}$ controls) $j = P, F$ $j = P$ if peg in t and $t - 1$

- intervention: $\Delta R_{i,t}$ short-rate proxy, 3-mo govt. bill
- instrument: z_{i,t} trilemma IV
- outcomes: home output and its components (at t, t + 1, ..., t + H)

summary stats exchange regime switches base rate changes

Home—base country links by era

Base country interest rate	Pre-WW1	Interwar	Bretton Woods	Post-BW
UK (Gold standard/BW base)	All countries		Sterling bloc: AUS*	
UK/USA/France composite (Gold standard base)		All countries		
USA (BW/Post-BW base)			All other countries	Dollar bloc: AUS, CAN, CHE, JPN, NOR
Germany (EMS/ERM/Eurozone base)				All other countries

^{*} we treat AUS as moving to a dollar peg in 1967

The instrument is relevant

For identification need correlation of rates, not equality: do not need UIP.

First Stage:
$$\Delta R_{i,t} = \kappa_i + z_{i,t}^P \lambda_P + z_{i,t}^F \lambda_F + x_{i,t}g + \eta_{i,t}$$

	All years	PostWW2
$\overline{\lambda_{Pegs}}$	0.59***	0.61***
λ_{Pegs} t-statistic	[9.47]	[9.02]
$\lambda_{\sf Floats}$	0.27***	0.26***
t-statistic	[3.30]	[2.77]

coefficients \approx Obstfeld, Shambaugh & Taylor (2005), not 0/1: dirty pegs and floats

What are the controls?

implementation details on choice of x:

- log real GDP; log real C; log real I
- log CPI
- short-term (3m) + long-term (5y) govt. rates
- log real stock prices; log real house prices
- credit to GDP
- log real global GDP: common global shocks

lags:

transformations: log differences \times 100

(except interest rates and credit to GDP ratio)

sample: 1900–2015, 17 advanced economies, annual frequency

Panel local projections with external instruments: LP-IV

assumption that instrument is valid, conditional on controls x (saturate)

$$y_{i,t+h} - y_{i,t-1} = \alpha_{i,h} + x_{i,t} \gamma_h + \widehat{\Delta R}_{i,t} \beta_h + \nu_{i,t+h}$$
 (second stage LP)

 β_h : cumulative IRF of variable y at horizon h relative to horizon -1 in response to an instrumented interest rate change.

Note: results robust with using one instrument $z_{i,t}^{p}$.

Empirics

baseline result: real GDP — the long shadow

+ confidence bands: 68% and 95% Driscoll & Kraay (1998) standard errors, sample: 1900–2015

short term nominal interest rate and CPI

† confidence bands: 68% and 95% Driscoll & Kraay (1998) standard errors, sample: 1900–2015

SOLOW DECOMPOSITION & ASYMMETRY

Inspecting the mechanism – LPs for the Solow decomposition

† confidence bands: 68% and 95% Driscoll & Kraay (1998) standard errors, sample: 1900–2015

Asymmetric responses, contractionary shocks

 $\mbox{\dag}$ confidence bands: 68% and 95% Driscoll & Kraay (1998) standard errors, sample: 1900–2015

Asymmetric responses, expansionary shocks

† confidence bands: 68% and 95% Driscoll & Kraay (1998) standard errors, sample: 1900–2015

Robustness

- 1 Absence of Pre-trends
- 2 Drop one country at a time
- 3 Dropping 5-year windows at a time
- 4 Post-WW2 sample
- 5 Exclusion restriction: NK-open economy based spillover correction
- 6 Exclusion restriction: Open-economy controls
- 7 Structural Breaks in TFP growth

OTHER MONETARY SHOCKS

US Economy: Brunnermeier, Palia, Sastry, and Sims (2021, AER)

Conclusion: Pushing on a long string?

long-run money neutrality may not hold

- a monetary tightening shock:
 - causes output to decline over a long period of time
 - because it causes the capital stock and TFP to decline

evidence based on

- small-open economy NK model to formalize identification
- LP-IV estimation using universe of available historical data
- various robustness exercises and alternative identification schemes

The long-run effects of monetary policy

Òscar Jordà * Sanjay R. Singh § Alan M. Taylor‡

Economic Fluctuations & Growth Program Meeting July 2023

- * Federal Reserve Bank of San Francisco; University of California, Davis
- § Federal Reserve Bank of San Francisco; University of California, Davis
 - [‡] University of California, Davis; NBER; CEPR

additional slides

Summary statistics

average peg: 21 years (note: gold + Bretton Woods)
Obstfeld and Rogoff (1995): 5yrs (developing countries)

pegs are more open than floats

average degree of capital openness: \bar{k}

ĉ	ıll years	post	WW2
pegs $(q = 1)$	floats $(q=0)$	pegs $(q=1)$	floats $(q=0)$
0.87 (0.21)	0.70 (0.31)	0.76 (0.24)	0.74 (0.30)

how often do countries switch exchange rate regime? excluding wars

	1870–2013		1870-1939		1948–2015	
	Frequency	%	Frequency	%	Frequency	%
float to peg no change peg to float	19 954 19	2 96 2	6 191 8	3 93 4	13 763 11	2 97 1
Total	992	100	205	100	787	100

IV construction

Residualized component $\Delta \widehat{R}_{b(i,t),t}$ of base country interest rates

 $\Delta \widehat{R}_{b(i,t),t} = (\Delta R_{b(i,t),t} - \Delta \widetilde{R}_{b(i,t),t})$ where b(i,t) denotes the base for country i at time t and the final term is the predicted interest rate from a cleaning regression.

ROBUSTNESS

Robustness with pre-trends: IRF of Real GDP

+ confidence bands: 68% and 95% Driscoll & Kraay (1998) standard errors, sample: 1900–2015

open economy variables: exclusion restriction

control for (i) base country GDP, (ii) global GDP, (iii) own current account and (iv) exchange rate wrt USD

+ confidence bands: 68% and 95% Driscoll & Kraay (1998) standard errors, sample: 1900–2015

Post-WW2 sample: IRF of Real GDP

+ confidence bands: 68% and 95% Driscoll & Kraay (1998) standard errors, sample: 1948–2015

Dropping successive 5-year windows one at a time: IRF of Real GDP

Dropping each country one at a time: IRF of Real GDP

Spillover: exclusion restriction violation

If the instrument $z_{i,t}$ affects the outcome through other channels θ

$$y_{i,t+h} - y_{i,t} = \alpha_{i,h} + x_{i,t} \gamma_h + \widehat{\Delta R}_{i,t} \beta_h + z_{i,t} \theta + \nu_{i,t+h}$$

• e.g. a recession in base reduces demand for home exports

Spillover correction:

Employ a control function approach, by using the model to get a bound:

$$\theta = \underbrace{\begin{array}{c} \text{share of exported tradables} \\ \text{in home output} \end{array}}_{\text{calibrate: } \Phi \in [0, \ 0.3]} \times \underbrace{\begin{array}{c} \text{responsiveness of exported} \\ \text{tradable demand to base interest rate} \\ \text{assumption: upper bound } = \beta_h \end{array}}_{\text{assumption: upper bound } = \beta_h$$

ightarrow Estimate an augmented LP :

$$y_{i,t+h} - y_{i,t} = \alpha_{i,h} + + x_{i,t} \gamma_h + \left(\widehat{\Delta R}_{i,t} + \Phi z_{i,t}\right) \beta_h + \nu_{i,t+h}$$

Model-based spillover correction

+ confidence bands: 68% and 95% Driscoll & Kraay (1998) standard errors, sample: 1900–2015

Structural breaks in TFP growth: IRF of real GDP:

Fernald, 2007, 2014; Gordon 2016

Allow intercept to be regime-dependent based on Bai & Perron (1998)

t confidence bands: 68% and 95% Driscoll & Kraay (1998) standard errors, sample: 1900–2015

Other Monetary Shocks: US Economy

- 1 Miranda-Agrippino and Ricco (2021 AEJ Macro, 2023 JME)
 - high-frequency surprises around FOMC announcements + Greenbook forecasts
 - monthly Bayesian proxy-VAR(12)
 - Sample 1979:1- 2014:12
- 2 Brunnermeier, Palia, Sastry, and Sims (2021, AER)
 - identification by heteroskedasticity (Rigobon 2003)
 - ten-variable monthly Bayesian SVAR(10) model
 - Sample 1973:1–2015:6

Other Monetary Shocks: UK Economy

- 1 Cesa-Bianchi, Thwaites, and Vicondoa (2020, EER)
 - series of monetary policy surprises for the UK using intra-day three-month Sterling futures data
 - monthly proxy SVAR(4)
 - Sample 1992:1 2015:1

Miranda-Agrippino and Ricco (2021, AEJ Macro)

Cesa-Bianchi, Thwaites, and Vicondoa (2020, EER)

Extend replication code of published studies to 8-year horizon

Shaded areas denote 68% confidence intervals computed using moving block bootstrap with 5,000 replications.