Complete listing of claims:

Claim 1 (cancelled).

Claim 2 (previously presented) A compound according to claim 18 wherein R^1 is C_1 - C_6 alkyl which may optionally be substituted with one hydroxy, fluoro, CF_3 , or C_1 - C_4 alkoxy group and may optionally contain one double or triple bond provided that at least two carbons are present in the C_1 - C_6 alkyl group; and R^2 is benzyl, C_1 - C_6 alkyl, which may optionally contain one double or triple bond provided that at least two carbons are present, where said C_1 - C_6 alkyl and the phenyl moiety of said benzyl may optionally be substituted with one fluoro CF_3 , or C_1 - C_2 alkyl, C_1 - C_2 alkoxy or chloro group.

Claim 3 (previously presented) A compound according to claim 18 wherein: R³ is methyl, ethyl, chloro or methoxy; R⁴ is methyl or ethyl, G is hydrogen, methyl, ethyl, or E=G is C=O or C=S and R⁵ is phenyl, pyridyl, or pyrimidyl which is substituted with more than two substituents which are independently selected from C₁-C₄ alkyl and -O(C₁-C₄ alkyl), (C₁-C₄ alkyl)-O-(C₁-C₂ alkyl), CF₃, OCF₃, -CHO, (C₁-C₄alkyl)-OH, CN, Cl, F, Br, I and NO₂, wherein one of the carbon-carbon single bonds of each of the foregoing (C₁-C₄)alkyl, groups having at least two carbons may optionally be replaced by a carbon-carbon double or triple bond.

Claim 4 (previously presented) A compound according to claim 18 wherein A is N or A is CH or CCH₃ which may optionally be substituted by fluoro, chloro, CF₃, C₁-C₄ alkyl or C₁-C₄ alkoxy.

Claims 5, 6 and 7 (cancelled).

Claim 8 (previously presented) A compound according to claim 18 wherein F is NR⁴.

Claim 9 (previously presented) A compound as claimed in claim 18 wherein F is CHR⁴.

Claim 10 (previously presented) A compound according to claim 18 wherein F is nitrogen and is double bonded to E.

Claim 11 (cancelled).

Claim 12 (previously presented) A compound according to claim 18 wherein E is carbon.

Claim 13 (previously presented) A compound according to claim 18 wherein E is nitrogen.

Claim 14 (previously presented) A compound according to claim 18 wherein E is NR ²⁵ and R²⁵ is hydrogen, C₁-C₄ alkyl or-CF₃.

Claims 15, 16 and 17 (cancelled).

Claim 18 (previously amended)

A compound of the formula

$$R^3$$
 N
 D
 E
 G
 ZR^5

wherein the dashed lines represent optional double bonds;

B is $-NR^1R^2$, $-CR^1R^2R^{10}$, $-C(=CR^2R^{11})R^1$, $-NHCR^1R^2R^{10}$, $-OCR^1R^2R^{10}$, $-SCR^1R^2R^{10}$, $-CR^2R^{10}NHR^1$, $-CR^2R^{10}OR^1$, $-CR^2R^{10}SR^1$ or $-COR^2$:

E is nitrogen, CH or carbon;

D is nitrogen and is single bonded to all atoms to which it is attached, or D is carbon and is double bonded to E, or D is CH and is single bonded to E;

F is CHR⁴ or NR ⁴; provided that either 1) exactly one of D or E is nitrogen and F is CHR⁴ or 2) F is NR⁴ and neither D nor E is nitrogen;

G, when single bonded to E is hydrogen, C_1 - C_4 alkyl, -S(C_1 - C_4 alkyl), O(C_1 - C_4 alkyl), NH₂, -NH(C_1 - C_4 alkyl) or -N (C_1 - C_2 alkyl)(C_1 - C_4 alkyl) wherein each of the C_1 - C_4 alkyl groups of G may optionally be substituted by one hydroxy, -O(C_1 - C_2 alkyl) or fluoro group; and G when double bonded to E is oxygen, sulfur or NH; and G, when E is nitrogen and double bonded to D, is absent;

 R^1 is hydrogen, C_1 - C_6 alkyl optionally substituted with one or two substituents R^8 independently selected from hydroxy, fluoro, chloro, bromo, iodo, C_1 - C_4 alkoxy, CF_3 , -C(=O)O- $(C_1$ - C_4)alkyl, - $OC(=O)(C_1$ - C_4)alkyl, OC(=O)N (C_1 - C_4 alkyl)(C_1 - C_2 alkyl), - $OO(C_1$ - C_4 alkyl), - $OO(C_1$ -OO(C

carbon single bonds of any alkyl having at least four carbons, and from one to three carboncarbon single bonds of any said alkyl having at least six carbons may optionally be replaced with a carbon-carbon double or triple bond; or R² is aryl or (C₁-C₄ alkylene)aryl, wherein said aryl and the aryl moiety of said (C₁-C₄ alkylene)aryl is selected from phenyl, naphthyl, thienyl, benzothienyl, pyridyl, quinolyl, pyrazinyl, pyrimidinyl, imidazolyl, furanyl, benzofuranyl, benzothiazolyl, isothiazolyl, pyrazolyl, pyrrolyl, indolyl, pyrrolopyridyl, oxazolyl and benzoxazolvl; or R2 is C3-C8 cycloalkyl or (C1-C6 alkylene)(C3-C8 cycloalkyl), wherein one or two of the carbon atoms of said cycloalkyl and the 5 to 8 membered cycloalkyl moieties of said (C₁-C₆ alkylene)(C₃-C₈ cycloalkyl) may optionally and independently be replaced by an oxygen or sulfur atom or by NZ^2 wherein Z^2 is selected from hydrogen, C_1 - C_4 alkyl, benzyl and C_1 - C_4 alkanoyl, and wherein each of the foregoing R² groups may optionally be substituted with from one to three substituents independently selected from chloro, fluoro, hydroxy and C₁-C₄ alkyl, or with one substituent selected from bromo, iodo, C₁-C₆ alkoxy, -OC(=O)(C₁-C₆ alkyl), OC(=O)N (C₁-C₄ alkyl)(C,-C₂ alkyl), -S(C₁ -C₆ alkyl), amino, -NH(C₁-C₂ alkyl), -N(C₁-C₂ alkyl)(C₁-C₄ alkyl), $-N(C_1-C_4 \text{ alkyl})-CO-(C_1-C_4 \text{ alkyl})$, $-NHCO(C_1-C_4 \text{ alkyl})$, -COOH, $-COO(C_1-C_4 \text{ alkyl})$, - $CONH(C_1-C_4 \text{ alkyl}), CON(C_1-C_4 \text{ alkyl})(C_1-C_2 \text{ alkyl}), -SH, -CN, -NO_2, -SO(C_1-C_4 \text{ alkyl}), -SO(C_1-C_4 \text{$ $S0_2(C_1-C_4 \text{ alkyl})$, $-SO_2NH(C_1-C_4 \text{ alkyl})$ and $-SO_2N(C_1-C_4 \text{ alkyl})(C_1-C_2 \text{ alkyl})$;

-NR¹R² may form a 3 to 8 membered ring,[[,]] said ring consisting of single bonds, wherein, when said ring has from 5 to 8 members, one or two of the ring carbon atoms of such a 5 to 8 membered ring may optionally and independently be replaced by an oxygen or sulfur atom or by NZ³ wherein Z³ is hydrogen, C₁-C₄ alkyl, benzyl and C₁C₄ alkanoyl, and wherein from one to three of the single bonds of such a 3 to 8 membered ring that are carbon-carbon or carbon-nitrogen single bonds may each optionally be replaced by a double bond;

or $-CR^1R^2R^{10}$ may form a 3 to 8 membered carbocyclic ring, said ring consisting of single bonds, wherein from one to three of the single bonds of such a 3 to 8 membered ring that are earbon or carbon nitrogen single bonds may each optionally be replaced by a double bond;

 R^3 is hydrogen, C_1 - C_4 alkyl, $O(C_1$ - C_4 alkyl), chloro, fluoro, bromo, iodo, -CN, - $S(C_1$ - C_4 alkyl) or -S0₂(C_1 - C_4 alkyl) wherein each of the (C_1 - C_4 alkyl) moieties in the foregoing R^3 groups may optionally be substituted with one substituent R^9 selected from hydroxy, fluoro and (C_1 - C_2 alkoxy);

each of R^4 is, independently hydrogen, (C₁-C₆ alkyl), fluoro, chloro, bromo, iodo, hydroxy, cyano, amino, nitro, -O(C₁-C₄ alkyl), N (C₁-C₄ alkyl)(C₁-C₂ alkyl), -S(C₁-C₄ alkyl), -

SO(C_1 - C_4 alkyl), -SO₂(C_1 - C_4 alkyl), -CO(C_1 - C_4 alkyl), -C(=O)H or C(=O)O (C,- C_4 alkyl), wherein one or two of the carbon-carbon single bonds in each of the (C_1 - C_6 alkyl) and (C_1 - C_4 alkyl) moieties in the foregoing R^4 groups may optionally be replaced with a carbon-carbon double or triple bond and wherein each of said (C_1 - C_6 alkyl) and (C_1 - C_4 alkyl) moieties may optionally be substituted with one or two substituents independently selected from hydroxy, amino, C_1 - C_3 alkoxy, dimethylamino, methylamino, ethylamino, -NHC(=O)CH₃, fluoro, chloro, -CN, -C00H, -C(=O)O(C_1 -C4 alkyl), -C(=O)(C_1 - C_4 alkyl) and NO₂;

R⁵ is phenyl, naphthyl, thienyl, benzothienyl, pyridyl, quinolyl, pyrazinyl, furanyl, benzofuranyl, benzothiazolyl, benzisothiazolyl, benzisoxazolyl, benzimidazolyl, indolyl, benzoxazolyl or C₃-C₈ cycloalkyl wherein one or two of the carbon atoms of said cycloalkyl rings that contain at least 5 ring members may optionally and independently be replaced by an oxygen or sulfur atom or by NZ⁴ wherein N⁴ is hydrogen, C₁-C₄ is alkyl or benzyl; and wherein each of the foregoing R⁵ groups is substituted with from one to four substituents wherein one to three of said substituents may be selected, independently, from chloro, C₁-C₆ alkyl and -O(C₁-C₆ alkyl) and one of said substituents may be selected from bromo, iodo, formyl, -CN, -CF₃, -NO₂, $-NH_2$, $-NH(C_1-C_4 \text{ alkyl})$, $-N(C_1-C_2 \text{ alkyl})(C_1-C_6 \text{ alkyl})$, $-C(=O)O(C_1-C_4 \text{ alkyl})$, $-C(=O)(C_1 C_4 \text{ alkyl})$ alkyl), -COOH, -S02NH(C1-C4 alkyl), -S02N (C1-C2 alkyl) (C1-C4 alkyl), -SO2NH2, NHSO2 (C1-C4 alkyl) C₄ alkyl), -S(C₁-C₆ alkyl) and -SO₂ (C₁-C₆ alkyl), and wherein each of the C₁-C₄ alkyl and C₁-C₆ alkyl, moieties in the foregoing R⁵ groups may optionally be substituted with one or two substituents independently selected from fluoro, hydroxy, amino, methylamino, dimethylamino and acetyl; and furthermore wherein when R⁵ is phenyl or pyridyl substituted with three substituents, said substituents can further be selected from (C₁-C₄ alkyl)O(C₁-C₄ alkyl), OCF₃, and fluoro, and one carbon-carbon single bond of each (C₁-C₄) alkyl group of said substituents having between two and four carbon atoms may be optionally replaced with a carbon-carbon double or triple bond; or R⁵ is pyrimidyl substituted by three substituents independently selected from C₁.C₄ alkyl, -O(C₁.C₄ alkyl), CF₃,OCF₃, -CHO, (C₁.C₄ alkyl)-OH, CN, Cl, F, Br, I and NO2 wherein a carbon-carbon single bond of said (C1.C4) alkyl groups having been two and four carbon atoms may optionally be replaced by a carbon-carbon double or triple bond;

 R^7 is hydrogen, C_1 . C_4 alkyl, halo, cyano, hydroxy, $O(C_1$. C_4 alkyl) - $C(=O)(C_1$. C_4 alkyl), - $C(=O)O(C_1$. C_4 alkyl), - OCF_3 , - CF_3 , - CH_2 -OH, - $CH_2O(C_1$. C_4 alkyl);

R¹⁰ is hydrogen, hydroxy, methoxy or fluoro;

R¹¹ is hydrogen or C₁.C₄ alkyl; and

with the proviso that: (a) when R⁴ is attached to nitrogen, it not halo, cyano or nitro; and (b) one of E, D and F must be nitrogen or substituted nitrogen, and only one of E, D and F can be nitrogen or substituted nitrogen;

Z is NH, oxygen, sulfur, -N(C_1 . C_4 alkyl), -NC(=O)(C_1 C_2 alkyl) NC(-O)O(C_1 - C_2 alkyl or CR^{13} R^{14} wherein R^{13} and R^{14} are independently selected from hydrogen, trifluoromethyl and methyl with the exception that one of R^{13} and R^{14} can be cyano;

or a pharmaceutically acceptable salt of such compound. Claims 19 - 24 (cancelled)

Claim 25 (previously amended)

A compound of the formula

wherein the dashed lines represent optional double bonds;

B is $-NR^1R^2$, $-CR^1R^2R^{10}$, $-C(=CR^2R^{11})R^1$, $-NHCR^1R^2R^{10}$, $-OCR^1R^2R^{10}$, $-SCR^1R^2R^{10}$, $-CR^2R^{10}NHR^1$, $-CR^2R^{10}OR^1$, $-CR^2R^{10}SR^1$ or $-COR^2$:

E is nitrogen, CH or carbon;

D is nitrogen and is single bonded to all atoms to which it is attached, or D is carbon and is double bonded to E, or D is CH and is single bonded to E;

F is CHR⁴ or NR⁴; provided that either 1) exactly one of D or E is nitrogen and F is CHR⁴ or 2) F is NR⁴ and neither D nor E is nitrogen;

G, when single bonded to E is hydrogen, C_1 - C_4 alkyl, -S(C_1 - C_4 alkyl), -O(C_1 - C_4 alkyl), NH₂, -NH(C_1 - C_4 alkyl) or -N (C_1 - C_2 alkyl)(C_1 - C_4 alkyl) wherein each of the C_1 - C_4 alkyl groups of G may optionally be substituted by one hydroxy, -O(C_1 - C_2 alkyl) or fluoro group; and G when double bonded to E is oxygen, sulfur or NH; and G, when E is nitrogen and double bonded to D, is absent;

 R^1 is hydrogen, C_1 - C_6 alkyl optionally substituted with one or two substituents R^8 independently selected from hydroxy, fluoro, chloro, bromo, iodo, C_1 - C_4 alkoxy, CF_3 , $-C(=O)O-(C(=O)O-(C_1-C_4)$ alkyl, $-OC(=O)(C_1-C_4)$ alkyl, OC(=O)N (C_1 - C_4 alkyl)(C_1 - C_2 alkyl), $-CONH(C_1-C_4)$ alkyl), $-CONH(C_1-C_4)$ alkyl), $-CONH(C_1-C_4)$ alkyl), $-CONH(C_1-C_4)$ alkyl), $-S(C_1-C_4)$ alkyl), $-S(C_1-C_4)$

SO₂NH(C₁-C₄ alkyl), SO₂N(C₁-C₄ alkyl)(C₁ - C₂ alkyl), wherein a carbon-carbon single bond of each of the C₁-C₄ alkyl groups in the foregoing R¹ groups having at least two carbons may optionally be replaced with a carbon-carbon double or triple bond, and one or two carbon-carbon single bonds of each of the C₁-C₄ alkyl groups in the foregoing R¹ groups having four carbon atoms may optionally be replaced with a carbon-carbon double or triple bond; R^2 is C_1 - C_{12} alkyl wherein one carbon-carbon single bond of any said alkyl group having at least two carbons, one or two carbon-carbon single bonds of any alkyl having at least four carbons, and from one to three carbon-carbon single bonds of any said alkyl having at least six carbons may optionally be replaced with a carbon-carbon double or triple bond; or R² is aryl or (C₁-C₄ alkylene)aryl, wherein said aryl and the aryl moiety of said (C₁-C₄ alkylene)aryl is selected from phenyl, naphthyl, thienyl, benzothienyl, pyridyl, quinolyl, pyrazinyl, pyrimidinyl, imidazolyl, furanyl, benzofuranyl, benzothiazolyl, isothiazolyl, pyrrazolyl, pyrrolyl, indolyl, pyrrolopyridyl, oxazolyl and benzoxazolyl; or R² is C₃-C₈ cycloalkyl or (C₁-C₆ alkylene)(C₃-C₈ cycloalkyl), wherein one or two of the carbon atoms of said cycloalkyl and, the 5 to 8 membered cycloalkyl moieties of said (C₁-C₆ alkylene)(C₃-C₈ cycloalkyl) may optionally and independently be replaced by an oxygen or sulfur atom or by NZ² wherein Z² is selected from hydrogen, C₁-C₄ alkyl, benzyl and C₁-C₄ alkanoyl, and wherein each of the foregoing R² groups may optionally be substituted with from one to three substituents independently selected from chloro, fluoro, hydroxy and C₁-C₄ alkyl, or with one substituent selected from bromo, iodo, C₁-C₆ alkoxy, -OC(=O)(C₁-C₆ alkyl), $OC(=O)N(C_1-C_4 \text{ alkyl})(C_1-C_2 \text{ alkyl})$, $-S(C_1-C_6 \text{ alkyl})$, amino, $-NH(C_1-C_2 \text{ alkyl})$, $-N(C_1-C_2 \text{ alkyl})$ alkyl)(C_1 - C_4 alkyl), -N(C_1 - C_4 alkyl)-CO-(C_1 - C_4 alkyl), -NHCO(C_1 - C_4 alkyl), -COOH, - $COO(C_1-C_4 \text{ alkyl})$, $-CONH(C_1-C_4 \text{ alkyl})$, $CON(C_1-C_4 \text{ alkyl})$, $-CON(C_1-C_4 \text{ alky$ $SO(C_1-C_4 \text{ alkyl}), -SO_2(C_1-C_4 \text{ alkyl}), -SO_2NH(C_1-C_4 \text{ alkyl}) \text{ and } -SO_2N \text{ } (C_1-C_4 \text{ alkyl})(C_1-C_2 \text{ alkyl})$ alkyl);-NR¹R² may form a 3 to 8 membered ring, [[,]] said ring consisting of single bonds, wherein, when said ring has from 5 to 8 members, one or two of the ring carbon atoms of such a 5 to 8 membered ring may optionally and independently be replaced by an oxygen or sulfur atom or by NZ3 wherein Z3 is hydrogen, C1-C4 alkyl, benzyl and C1-C4 alkanoyl, and wherein from one to three of the single bonds of such a 3 to 8 membered ring that are carbon-carbon or carbon-nitrogen single bonds may each optionally be replaced by a double bond;

or $-CR^1R^2R^{10}$ may form a 3 to 8 membered carbocyclic ring, said ring consisting of single bonds, wherein from one to three of the single bonds of such a 3 to 8 membered ring that are carbon or carbon nitrogen single bonds may each optionally be replaced by a double bond;

 R^3 is hydrogen, C_1 - C_4 alkyl, $O(C_1$ - C_4 alkyl), chloro, fluoro, bromo, iodo, -CN, - $S(C_1$ - C_4 alkyl) or - $SO_2(C_1$ - C_4 alkyl) wherein each of the $(C_1$ - C_4 alkyl) moieties in the foregoing R^3 groups may optionally be substituted with one substituent R^9 selected from hydroxy, fluoro and $(C_1$ - C_2 alkoxy);

each of of R^4 is, independently hydrogen, $(C_1-C_6 \text{ alkyl})$, fluoro, chloro, bromo, iodo, hydroxy, cyano, amino, nitro, $-O(C_1-C_4 \text{ alkyl})$, $N(C_1-C_4 \text{ alkyl})$, $C_1-C_2 \text{ alkyl}$, $-S(C_1-C_4 \text{ alkyl})$, $-S(C_1-C_4 \text{ alkyl})$, $-C(C_1-C_4 \text{ alkyl})$, wherein one or two of the carbon-carbon single bonds in each of the $(C_1-C_6 \text{ alkyl})$ and $(C_1-C_4 \text{ alkyl})$ moieties in the foregoing R^4 groups may optionally be replaced with a carbon-carbon double or triple bond and wherein each of said $(C_1-C_6 \text{ alkyl})$ and $(C_1-C_4 \text{ lkyl})$ moieties may optionally be substituted with one or two substituents independently selected from hydroxy, amino, C_1-C_3 alkoxy, dimethylamino, methylamino, ethylamino, $-NHC(C_1-C_2)$, fluoro, chloro, $-C(C_1-C_2)$, $-C(C_1-C_4 \text{ alkyl})$, $-C(C_1-C_4 \text{ alkyl})$, and $-C(C_1-C_4 \text{ alkyl})$, and $-C(C_1-C_4 \text{ alkyl})$, and $-C(C_1-C_4 \text{ alkyl})$, $-C(C_1-C_4 \text{ alkyl})$, and $-C(C_$

R⁵ is phenyl, naphthyl, thienyl, benzothienyl, pyridyl, quinolyl, pyrazinyl, furanyl, benzofuranyl, benzothiazolyl, benzisothiazolyl, benzisoxazolyl, benzimidazolyl, indolyl, benzoxazolyl or C₃-C₈ cycloalkyl wherein one or two of the carbon atoms of said cycloalkyl rings that contain at least 5 ring members may optionally and independently be replaced by an oxygen or sulfur atom or by NZ⁴ wherein N⁴ is hydrogen, C₁-C₄ is alkyl or benzyl; and wherein each of the foregoing R⁵ groups is substituted with from one to four substituents wherein one to three of said substituents may be selected,independently, from chloro, C₁-C₆ alkyl and -O(C₁-C₆ alkyl) and one of said substituents may be selected from bromo, iodo, formyl, -CN, -CF₃, -NO₂ -NH₂, -NH(C₁-C₄ alkyl), - N(C₁-C₂ alkyl)(C₁-C₆ alkyl), -C(=O)O(C₁-C₄ alkyl), -C(=O)(C₁ C₄ alkyl), -C(=O)(C₁ C₄ alkyl), S(C₁-C₆ alkyl) and -SO₂ (C₁-C₆ alkyl), and wherein each of the C₁-C₄ alkyl and C,-C₆ alkyl, moieties in the foregoing R⁵ groups may optionally be substituted with one or two substituents independently selected from fluoro, hydroxy, amino, methylamino, dimethylamino and acetyl;

 R^7 is hydrogen, C_1 C_4 alkyl, halo, cyano, hydroxy, $-O(C_1-C_4$ alkyl) $-C(=O)(C_1-C_4$ alkyl), $-C(=O)O(C_1-C_4$ alkyl), $-OCF_3$, $-CF_3$, $-CH_2-OH$, $-CH_2O(C_1-C_4$ alkyl);

R¹⁰ is hydrogen, hydroxy, methoxy or fluoro;

R¹¹ is hydrogen or C₁-C₄ alkyl; and

with the proviso that: (a) when R⁴ is attached to nitrogen, it not halo, cyano or nitro; and (b) one of E, D and F must be nitrogen or substituted nitrogen, and only one of E, D and F can be nitrogen or substituted nitrogen;

Z is NH, oxygen, sulfur, -N(C_1 - C_4 alkyl), -NC(=O)(C_1 - C_2 alkyl) NC(-O)O(C_1 - C_2 alkyl or CR¹³ R¹⁴ wherein R¹³ and R¹⁴ are independently selected from hydrogen, trifluoromethyl and methyl with the exception that one of R¹³ and R¹⁴ can be cyano;

or a pharmaceutically acceptable salt of such compound.

Claim 26-27 (cancelled)

Claim 28 (previously amended) A compound of the formula

wherein the dashed lines represent optional double bonds;

B is $-NR^1R^2$, $-CR^1R^2R^{10}$, $-C(=CR^2R^{11})R^1$, $-NHCR^1R^2R^{10}$, $-OCR^1R^2R^{10}$, $-SCR^1R^2R^{10}$, $-CR^2R^{10}NHR^1$, $-CR^2R^{10}OR^1$, $-CR^2R^{10}SR^1$ or $-COR^2$;

E is nitrogen, CH or carbon;

D is nitrogen and is single bonded to all atoms to which it is attached, or D is carbon and is double bonded to E, or D is CH and is single bonded to E;

F is CHR⁴ or NR⁴, provided that either 1) exactly one of D or E is nitrogen and F is CHR⁴ or 2) F is NR⁴ and neither D nor E is nitrogen

G, when single bonded to E is hydrogen, C_1 - C_4 alkyl, -S(C_1 -C4 alkyl), -O(C_1 - C_4 alkyl), NH₂, -NH(C_1 - C_4 alkyl) or -N (C_1 - C_2 alkyl)(C_1 - C_4 alkyl) wherein each of the C_1 - C_4 alkyl groups of G may optionally be substituted by one hydroxy, -O(C_1 - C_2 alkyl) or fluoro group; and G when double bonded to E is oxygen, sulfur or NH; and G, when E is nitrogen and double bonded to D, is absent;

 R^1 is C_1 - C_6 alkyl optionally substituted with one substituent selected from hydroxy, fluoro,, CF_3 , or C_{1-4} alkoxy wherein a carbon-carbon single bond of each of the C_1 - C_4 alkyl groups in the foregoing R_1 groups having at least two carbons may optionally be replaced with a carbon-carbon double or triple bond, R^2 is benzyl or C_{1-6} alkyl which may optionally contain one

double or triple bond and wherein said C_{1-6} alkyl and the phenyl moiety of said benzyl may optionally be substituted with one fluoro, Cf_3 , C_1-C_2 alkyl C_1-C_2 alkoxy or chloro group.;

-NR¹R² may form a 3 to 8 membered ring,[[,]] said ring consisting of single bonds, wherein, when said ring has from 5 to 8 members, one or two of the ring carbon atoms of such a 5 to 8 membered ring may optionally and independently be replaced by an oxygen or sulfur atom or by NZ³ wherein Z³ is hydrogen, C₁-C₄ alkyl, benzyl and C₁-C₄ alkanoyl, and wherein from one to three of the single bonds of such a 3 to 8 membered ring that are carbon-carbon or carbon-nitrogen single bonds may each optionally be replaced by a double bond;

or $-CR^1R^2R^{10}$ may form a 3 to 8 membered carbocyclic ring, said ring consisting of single bonds, wherein from one to three of the single bonds of such a 3 to 8 membered ring that are earbon or carbon nitrogen single bonds may each optionally be replaced by a double bond;

 R^3 is hydrogen, C_1 - C_4 alkyl, $O(C_1$ - C_4 alkyl), chloro, fluoro, bromo, iodo, -CN, -S(C_1 - C_4 alkyl) or -S0₂(C_1 - C_4 alkyl) wherein each of the (C_1 - C_4 alkyl) moieties in the foregoing R^3 groups may optionally be substituted with one substituent R^9 selected from hydroxy, fluoro and (C_1 - C_2 alkoxy);

each of R^4 is, independently hydrogen, $(C_1-C_6 \text{ alkyl})$, fluoro, chloro, bromo, iodo, hydroxy, cyano, amino, nitro, $-O(C_1-C_4 \text{ alkyl})$, $N(C_1-C_4 \text{ alkyl})$, $C_1-C_2 \text{ alkyl}$, $-S(C_1-C_4 \text{ alkyl})$, $-S(C_1-C_4 \text{ alkyl})$, $-C(C_1-C_4 \text{ alkyl})$, wherein one or two of the carbon-carbon single bonds in each of the $(C_1-C_6 \text{ alkyl})$ and $(C_1-C_4 \text{ alkyl})$ moieties in the foregoing R^4 groups may optionally be replaced with a carbon-carbon double or triple bond and wherein each of said $(C_1-C_6 \text{ alkyl})$ and $(C_1-C_4 \text{ alkyl})$ moieties may optionally be substituted with one or two substituents independently selected from hydroxy, amino, C_1-C_3 alkoxy, dimethylamino, methylamino, ethylamino, $-NHC(C_1-C_2)$, fluoro, chloro, $-C(C_1-C_2)$, $-C(C_1-C_4)$, alkyl), $-C(C_1-C_4)$, alkyl) and $-C(C_1-C_4)$

R⁵ is phenyl, naphthyl, thienyl, benzothienyl, pyridyl, quinolyl, pyrazinyl, furanyl, benzofuranyl, benzothiazolyl, benzisothiazolyl, benzisoxazolyl, benzimidazolyl, indolyl, benzoxazolyl or C₃-C₈ cycloalkyl wherein one or two of the carbon atoms of said cycloalkyl rings that contain at least 5 ring members may optionally and independently be replaced by an oxygen or sulfur atom or by NZ⁴ wherein N⁴ is hydrogen, C₁-C₄ is alkyl or benzyl; and wherein each of the foregoing R⁵ groups is substituted with from one to four substituents wherein one to three of said substituents may be selected, independently, from chloro, C₁-C₆ alkyl and -O(C₁-C₆ alkyl) and one of said substituents may be selected from bromo, iodo, formyl, -CN, -CF₃, -NO₂,-

NH_{2.} -NH(C₁-C₄ alkyl), -N(C₁-C₂ alkyl)(C₁-C₆ alkyl), -C(=O)O(C₁-C₄ alkyl), -C(=O)(C₁-C₄ alkyl), -C(=O)(C₁-C₄ alkyl), -SO₂NH(C₁-C₄ alkyl), -SO₂NH₂, NHSO₂ (C₁-C₄ alkyl), -S(C₁-C₆ alkyl) and -SO₂ (C₁-C₆ alkyl), and wherein each of the C₁-C₄ alkyl and C₁-C₆ alkyl, moieties in the foregoing R^5 groups may optionally be substituted with one or two substituents independently selected from fluoro, hydroxy, amino, methylamino, dimethylamino and acetyl;

 R^7 is hydrogen, C_1 - C_4 alkyl, halo, cyano, hydroxy, -O(C_1 - C_4 alkyl) -C(=O)(C_1 - C_4 alkyl), -C(=O)O(C_1 - C_4 alkyl), -OCF₃, -CF₃, -CH₂-OH, -CH₂O(C_1 - C_4 alkyl);

R¹⁰ is hydrogen, hydroxy, methoxy or fluoro;

R¹¹ is hydrogen or C₁-C₄ alkyl; and

with the proviso that: (a) when R⁴ is attached to nitrogen, it not halo, cyano or nitro; and (b) one of E, D and F must be nitrogen or substituted nitrogen, and only one of E, D and F can be nitrogen or substituted nitrogen;

Z is NH, oxygen, sulfur, -N(C_1 - C_4 alkyl), -NC(=O)(C_1 - C_2 alkyl) NC(-O)O(C_1 - C_2 alkyl or CR^{13} R^{14} wherein R^{13} and R^{14} are independently selected from hydrogen, trifluoromethyl and methyl with the exception that one of R^{13} and R^{14} can be cyano;

or a pharmaceutically acceptable salt of such compound.

Claim 29 (previously amended) A compound of the formula

wherein the dashed lines represent optional double bonds;

B is $-NR^1R^2$, $-CR^1R^2R^{10}$, $-C(=CR^2R^{11})R^1$, $-NHCR^1R^2R^{10}$, $-OCR^1R^2R^{10}$, $-SCR^1R^2R^{10}$, $-CR^2R^{10}NHR^1$, $-CR^2R^{10}OR^1$, $-CR^2R^{10}SR^1$ or $-COR^2$;

E is nitrogen, CH or carbon;

D is nitrogen and is single bonded to all atoms to which it is attached, or D is carbon and is double bonded to E, or D is CH and is single bonded to E;

F is CHR⁴ or NR⁴; provided that either 1) exactly one of D or E is nitrogen and F is CHR⁴ or 2) F is NR⁴ and neither D nor E is nitrogen;

G, is hydrogen, methyl or ethyl or E=G is C=O or C=S;

 R^1 is hydrogen, $C_1\text{-}C_6$ alkyl optionally substituted with one or two substituents R^8 independently selected from hydroxy, fluoro, chloro, bromo, iodo, C₁-C₄ alkoxy, CF₃, -C(=O)O- (C_1-C_4) alkyl, $-OC(=O)(C_1-C_4)$ alkyl, $OC(=O)N(C_1-C_4)$ alkyl), $-NHCO(C_1-C_4)$ alkyl, $-OC(=O)(C_1-C_4)$ alkyl), $-OC(=O)(C_1-C_4)$ alkyl, $-OC(=O)(C_1-C_4)$ alkyl), $-OC(=O)(C_1-C_4)$ alkyl, $-OC(=O)(C_1-C_4)$ alkyl), $-OC(=O)(C_1-C_4)$ alkyl, $-OC(=O)(C_1-C_4)$ alkyl), $-OC(=O)(C_1-C_4)$ alkyl, $-OC(=O)(C_1-C_4)$ alkyl), $-OC(=O)(C_1-C_4)$ alkyl, $-OC(=O)(C_1-C_4)$ alkyl), $-OC(=O)(C_1-C_4)$ alkyl, $-OC(=O)(C_1-C_4)$ alkyl), $-OC(=O)(C_1-C_4)$ alkyl) -COOH, -COO(C₁-C₄ alkyl), -CONH(C₁-C₄ alkyl), -CON (C₁-C₄ alkyl)(C₁-C₂ alkyl), -S(C₁-C₄ alkyl), -CN, NO₂, -SO(C₁-C₄ alkyl), -SO₂(C₁-C₄ alkyl), -SO₂NH(C₁-C₄ alkyl), SO₂N(C₁-C₄ alkyl)(C₁-C₂ alkyl), wherein a carbon-carbon single bond of each of the C₁-C₄ alkyl groups in the foregoing R¹ groups having at least two carbons may optionally be replaced with a carboncarbon double or triple bond, and one or two carbon-carbon single bonds of each of the C1-C4 alkyl groups in the foregoing R¹ groups having four carbon atoms may optionally be replaced with a carbon-carbon double or triple bond; R^2 is C_1 - C_{12} alkyl wherein one carbon-carbon single bond of any said alkyl group having at least two carbons, one or two carbon-carbon single bonds of any alkyl having at least four carbons, and from one to three carbon-carbon single bonds of any said alkyl having at least six carbons may optionally be replaced with a carbon-carbon double or triple bond; or R² is aryl or (C₁-C₄ alkylene)aryl, wherein said aryl and the aryl moiety of said (C₁-C₄ alkylene)aryl is selected from phenyl, naphthyl, thienyl, benzothienyl, pyridyl, quinolyl, pyrazinyl, pyrimidinyl, imidazolyl, furanyl, benzofuranyl, benzothiazolyl, isothiazolyl, pyrazolyl, pyrrolyl, indolyl, pyrrolopyridyl, oxazolyl and benzoxazolyl; or R2 is C3-C8 cycloalkyl or (C₁-C₆ alkylene)(C₃-C₈ cycloalkyl), wherein one or two of the carbon atoms of said cycloalkyl and the 5 to 8 membered cycloalkyl moieties of said (C₁-C₆ alkylene)(C₃-C₈ cycloalkyl) may optionally and independently be replaced by an oxygen or sulfur atom or by NZ² wherein Z² is selected from hydrogen, C₁-C₄ alkyl, benzyl and C₁-C₄ alkanoyl, and wherein each of the foregoing R² groups may optionally be substituted with from one to three substituents independently selected from chloro, fluoro, hydroxy and C₁-C₄ alkyl, or with one substituent selected from bromo, iodo, C₁-C₆ alkoxy, -OC(=O)(C₁-C₆ alkyl), OC(=O)N(C₁-C₄ alkyl)(C_1 - C_2 alkyl), -S(C_1 - C_6 alkyl), amino, -NH(C_1 - C_2 alkyl), -N(C_1 - C_2 alkyl)(C_1 - C_4 alkyl), - $N(C_1-C_4 \text{ alkyl})-CO-(C_1-C_4 \text{ alkyl})$, -NHCO($C_1-C_4 \text{ alkyl}$), -COOH, - COO($C_1-C_4 \text{ alkyl}$), - $CONH(C_1-C_4 \text{ alkyl}), CON(C_1-C_4 \text{ alkyl})(C_1-C_2 \text{ alkyl}), -SH, -CN, -NO_2, -SO(C_1-C_4 \text{ alkyl}), -SO(C_1-C_4 \text{$ $S0_2(C_1-C_4 \text{ alkyl})$, $-SO_2NH(C_1-C_4 \text{ alkyl})$ and $-SO_2N(C_1-C_4 \text{ alkyl})(C_1-C_2 \text{ alkyl})$;

-NR¹R² may form a 3 to 8 membered ring,[[,]] said ring consisting of single bonds, wherein, when said ring has from 5 to 8 members, one or two of the ring carbon atoms of such a 5 to 8 membered ring may optionally and independently be replaced by an oxygen or sulfur atom or by NZ³ wherein Z^3 is hydrogen, C_1 - C_4 alkyl, benzyl and C_1 - C_4 alkanoyl, and wherein

from one to three of the single bonds of such a 3 to 8 membered ring that are carbon-carbon or carbon-nitrogen single bonds may each optionally be replaced by a double bond;

or $-CR^1R^2R^{10}$ may form a 3 to 8 membered carbocyclic ring, said ring consisting of single bonds, wherein from one to three of the single bonds of such a 3 to 8 membered ring that are carbon or carbon nitrogen single bonds may each optionally be replaced by a double bond;

R³ is methyl, ethyl, chloro or methoxy;

each of R⁴ is methyl, ethyl or trifluoro methyl;

R⁵ is phenyl or pyridyl,

 R^7 is hydrogen, C_1 - C_4 alkyl, halo, cyano, hydroxy, -O(C_1 - C_4 alkyl) -C(=O)(C_1 - C_4 alkyl), -C(=O)O(C_1 - C_4 alkyl), -OCF₃, -CF₃, -CH₂-OH, -CH₂O(C_1 - C_4 alkyl);

R¹⁰ is hydrogen, hydroxy, methoxy or fluoro;

R₁₁ is hydrogen or C₁-C₄ alkyl; and

with the proviso that: (a) when R⁴ is attached to nitrogen, it not halo, cyano or nitro; and (b) one of E, D and F must be nitrogen or substituted nitrogen, and only one of E, D and F can be nitrogen or substituted nitrogen;

Z is NH, oxygen, sulfur, -N(C₁-C₄ alkyl), -NC(=O)(C₁-C₂ alkyl) NC(-O)O(C₁-C₂ alkyl) or CR^{13} R^{14} wherein R^{13} and R^{14} are independently selected from hydrogen, trifluoromethyl and methyl with the exception that one of R^{13} and R^{14} can be cyano;

or a pharmaceutically acceptable salt of such compound.