Expert Setter

A problem setter is called an *expert* if **at least** 50% of their problems are approved by Chef.

Munchy submitted X problems for approval. If Y problems out of those were approved, find whether Munchy is an expert or not.

Input Format

- The first line of input will contain a single integer T, denoting the number of test cases.
- Each test case consists of a two space-separated integers X and Y the number of problems submitted and the number of problems that were approved by Chef.

Output Format

For each test case, output on a new line YES, if Munchy is an expert. Otherwise, print NO.

The output is case-insensitive. Thus, the strings YES, yes, yeS, and Yes are all considered the same.

Constraints

- 1 ≤ *T* ≤ 1000
- $1 \le Y \le X \le 10^6$

Sample 1:

Input		
Output		
4 5 3	YES YES	
11	NO YES	
4 1 2 1	YES	
2 1		

Explanation:

Test case 1: We are given that 3 out of 5 problems were approved. Thus, 60% of the problems were approved. Since at least 50% of the problems were approved, Munchy is an *expert*.

Test case 2: We are given that 1 out of 1 problems were approved. Thus, 100% of the problems were approved. Since at least 50% of the problems were approved, Munchy is an *expert*.

Test case 3: We are given that 1 out of 4 problems were approved. Thus, 25% of the problems were approved. Since at least 50% of the problems were not approved, Munchy is not an *expert*.

Test case 4: We are given that 1 out of 2 problems were approved. Thus, 50% of the problems were approved. Since at least 50% of the problems were approved, Munchy is an *expert*.