ÔN TẬP GIỮA KỲ PHƯƠNG PHÁP TÍNH

80 +08

Dạng 1: a = 4,4924 $\delta a = 0,012\%$ Ta làm tròn a thành a* theo nguyên tắc quá bán đến chữ số thứ 2 sau dấu chấm. Tìm sai số tuyệt đối

Sai số tuyệt đối: $\Delta = \delta a. a + |a - a^*|$ (với a* là a làm đã được làm tròn 2 chữ số sau dấu chấm theo nguyên tắc quá bán)

LÀM TRÒN LÊN

Dạng 2: a = 15,077 $\delta a = 0,032\%$. Tìm số chữ số đáng tin

Bước 1: Tính δa . a = 0,0049 rồi so sánh với 0,005. Ta có 0,0049 < 0,005 = $\frac{1}{2}$. 10^{-2}

Trường hợp chữ số đầu tiên sau số $0 \ge 5$ thì làm tròn lên rồi so sánh.

VD: δa . a = 0,0065, ta làm tròn lên thành 0,01 rồi so sánh với 0,05. Ta có $0,01 < 0,05 = \frac{1}{2}$. 10^{-1}

Bước 2: Số chữ số đáng tin = 2 + 2 (số chữ số trước dấu phẩy của a + trị tuyệt đối số mũ của 10)

Dạng 3: $f = x^3 + xy + y^3$. Biết $x = 4,9421 \pm 0,0054$, $y = 3,5346 \pm 0,0010$. Tìm sai số tuyệt đối (sai số tương đối)

Sai số tuyệt đối: $\Delta f = |f'x|.\Delta x + |f'y|.\Delta y$

 $(v \acute{o} i \Delta x = 0.0054, \Delta y = 0.0010)$

CALC x = 4,9421 y = 3,5346

LÀM TRÒN LÊN

Sai số tương đối: $\delta f = \frac{\Delta f}{|f|}$ (với $|f| = |x^3 + xy + y^3|$ CALC x = 4,9421 y = 3,5346)

Vận dụng: Tính sai số tương đối của thể tích một hình trụ tròn có bán kính 5.7 ± 0.0005 và chiều cao 4.2 ± 0.0015 , cho $\pi = 3.14 \pm 0.0016$. (trích đề Dự thính 192)

Dạng 4: $f = 3x^2 + 10x - 24 = 0$. Khoảng cách li nghiệm [1,2], Nghiệm gần đúng $x^* = 1,47$. Sai số nhỏ nhất theo công thức đánh giá sai số tổng quát tổng quát x^* .

Bước 1: |f(x)| CALC $x = 1.47 \rightarrow A$

Bước 2: |f'(x)| CALC $\begin{cases} x = 1 \\ x = 2 \end{cases}$. Chọn kết quả min $\to B$

Bước 3: Sai số nhỏ nhất = $\frac{A}{R}$

LÀM TRÒN LÊN

Dạng 5: $f = 4x^3 - 6x^2 + 7x - 11 = 0$. Khoảng cách li nghiệm [1,2], Bằng phương pháp chia đôi. Tìm nghiệm gần đúng x^5 .

Bước 1: Nhập f. Tính f(1), f(2)

Nếu f(1) < 0, f(2) > 0 áp dụng quy tắc 1

Nếu f(1) > 0, f(2) < 0 áp dụng quy tắc 2

Bước 2: CALC lần lượt x_n theo bảng sau đến khi tìm được kết quả. (x_0 là trung bình cộng của 2 cận khoảng cách li nghiệm để cho)

N	a_n	b_n	$\mathbf{x}_{\mathbf{n}}$	Dấu
0				
1				
2				
3				
4				
5				

Quy tắc 1:

Dấu (-): giữ nguyên b, thay $a = x_n$ Dấu (+): giữ nguyên a, thay $b = x_n$

Quy tắc 2:

Dấu (-): giữ nguyên a, thay $b=x_n$ Dấu (+): giữ nguyên b, thay $a=x_n$

 \rightarrow Kết quả là x_n của lần lặp thứ 5 (x_5)

Dạng 6: $f = \sqrt[4]{2x + 11}$ là hàm co trong [0,1]. Tìm giá trị hệ số co q.

Tính |f'(x)| CALC $\begin{cases} x = 0 \\ x = 1 \end{cases}$. Chọn kết quả max là q

Dạng 7: $f = \sqrt[3]{2x+6}$ lặp trên [2,3]. $x_o = 2,2$. Nghiệm gần đúng x_2 theo phương pháp lặp đơn:

Nhập hàm |f(x)| CALC $x_0 \rightarrow x_1 \rightarrow CALC$ ans $\rightarrow x_2$

(Nếu đề tìm nghiệm gần đúng x_n thì ta rồi CALC x_o rồi CALC ans cho đến khi tìm được nghiệm x_n)

Dạng 8: Cho $x = \sqrt[3]{5x+4}$; lặp đơn [2;3]; $x_0 = 2,6$. Tính số lần lặp nhỏ nhất để được nghiệm với sai số (**TIÊN NGHIỆM**) $< \varepsilon$

Bước 1: Tính $x_1 = |\sqrt[3]{5x+4}|$ CALC $x_0 \to x_1 \to A$

Bước 2: Tính q = |f'(x)| $\begin{cases} calc \ 2 \\ calc \ 3 \end{cases}$ chọn kết quả $max \rightarrow B$

Bước 3: Áp dụng CT: $n \geq log_q\left(\frac{\varepsilon(1-q)}{|x_1-x_0|}\right) = log_B\left(\frac{\varepsilon(1-B)}{|A-x_0|}\right) \longrightarrow n$

LÀM TRÒN LÊN SỐ NGUYÊN

Dạng 9: $f = \sqrt[3]{2x+6}$ lặp trên [2,3]. $x_0 = 2,2$. Sai số tuyệt đối nhỏ nhất của nghiệm x_2 theo công thức hậu nghiệm hoặc tiên nghiệm.

Bước 1: Tính q = |f'(x)| CALC $\begin{cases} x = 2 \\ x = 3 \end{cases}$. Chọn kết quả max $\rightarrow \mathbf{C}$ (Như dạng 6)

Bước 2: Tính $x_1 \rightarrow \boldsymbol{A}, x_2 \rightarrow \boldsymbol{B}$ (Như dạng 7)

Bước 3: Áp dụng công thức để tim sai số: $\Delta = \frac{q^2 |x_1 - x_0|}{1-q} (Tiên \ nghiệm)$ hoặc $\Delta = \frac{q \cdot |x_2 - x_1|}{1-q} (Hậu \ nghiệm)$

LÀM TRÒN LÊN

CÔNG THỨC TỔNG QUÁT: $\Delta = \frac{q^n |x_1 - x_0|}{1 - q} (Tiên nghiệm)$ hoặc $\Delta = \frac{q |x_n - x_{n-1}|}{1 - q} (Hậu nghiệm)$

Dạng 10: $f = 6x^3 - 13x^2 + 12x + 27 = 0$. $x_0 = 2,2$. Tính x_1 theo phương pháp Newton.

Nhập: $x - \frac{f(x)}{f(x)}$ CALC $x_0 \rightarrow x_1$

(Nếu đề không cho x_o mà nghiệm x_o được chọn theo Fourier thì làm như bước 1 dạng 11 để tìm x_o rồi mới làm bài như dạng 10)

(Nếu đề tìm nghiệm gần đúng x_n thì ta rồi CALC x_o rồi CALC ans cho đến khi tìm được nghiệm x_n)

Dạng 11: $f = 6x^3 + 14x^2 + 16x + 17 = 0$. Khoảng cách li nghiệm [-5,8; -5.9]. Trong phương pháp Newton, chọn x_o theo Fourier, sai số gần đúng x_1 , tính theo công thức sai số tổng quát.

Bước 1: Tính f(x). f''(x) CALC $\begin{cases} x = -5.8 \\ x = -5.9 \end{cases}$ chọn $x_o = -5.9$ (nếu kết quả dương)

Bước 2: Tìm $x_1 = x - \frac{f(x)}{f'(x)}$ CALC $x_o \to \boldsymbol{A}$ (như dạng 10)

Bước 3: Tính |f(x)| CALC $A \rightarrow B$

Bước 4: |f'(x)| CALC $\begin{cases} x = -5.8 \\ x = -5.9 \end{cases}$ Chọn kết quả min $\to C$

Bước 5: sai số gần đúng $\Delta = \frac{B}{c}$

LÀM TRÒN LÊN

(Nếu đề tìm sai số gần đúng x_n thì ta làm đến bước 2 rồi CALC ans CALC ans cho đến khi tìm được nghiệm x_n rồi mới lưu vào A, các bước còn lại tương tự, không thay đổi.)

Dạng 12: Cho ma trận A. Với giá trị α nào thì ma trận xác định dương? (Hoặc bài toán khác tìm α để ma trận A tồn tại phân tích Cholesky)

Ma trận xác định dương khi: Det(1) > 0 và Det(2) > 0 và Det(3) > 0. Giải hệ tìm α . Nếu kết quả: $B < \alpha < A$ (B làm tròn lên, A giữ nguyên)

Dạng 13: Cho ma trận A. Phân tích $A = B.B^T$, theo phương pháp Choleski, tổng các phần tử $tr(B) = b_{11} + b_{22} + b_{33}$ của ma trận B:

Bước 1: Tính Det(1); Det(2); Det(3)

Bước 2: Tính $B_{11} = \sqrt{Det(1)}$

 $B_{22} = \sqrt{\frac{Det(2)}{Det(1)}}$

 $B_{33} = \sqrt{\frac{Det(3)}{Det(2)}}$

ightarrow tổng các phần tử tr(B)

Biên soạn: Trương Đức An

Dạng 14: Cho ma trận A. Phân tích A = L.U, theo phương pháp Doolite, tổng các phần tử $tr(U) = U_{11} + U_{22} + U_{33}$ của ma trận U.

$$U_{11} = Det(1)$$

$$U_{22} = \frac{Det(2)}{Det(1)}$$

$$U_{33} = \frac{Det(3)}{Det(2)}$$

 \rightarrow tổng các phần tử tr(U)

Dạng 15: Cho ma trận A. Phân tích $A = B.B^T$, theo phương pháp Choleski. Tìm phần tử B_{32} của ma trận B.

Ta có:
$$\frac{a_{31}}{\sqrt{a_{11}}} \cdot \frac{a_{21}}{\sqrt{a_{11}}} + \sqrt{\frac{\det{(2)}}{\det{(1)}}} \cdot x = a_{32}$$
 $\rightarrow B_{32} = x =$

$$\rightarrow B_{32} = x =$$

Dạng 16: Cho ma trận A. Phân tích A = L.U, theo phương pháp Doolite. Tìm phần tử L_{32} của ma trận L

Ta có:
$$\frac{a_{31}}{a_{11}}$$
. $a_{12} + \frac{Det(2)}{Det(1)}$. $x = a_{32}$

$$\rightarrow L_{32} = x =$$

Dạng 17: Cho ma trận A. Phân tích A = L.U, theo phương pháp Doolite. Tìm phần tử U_{23} của ma trận L

Ta có:
$$\frac{a_{21}}{a_{11}}$$
. $a_{13} + x = a_{23}$

$$\rightarrow U_{23} = x =$$

Dạng 18: Cho ma trận A. Giá trị của biểu thức $(\|A\|_{\infty} - \|A\|_{1})^{2}$

 $||A||_{\infty}$: Chuẩn vô cùng (theo hàng)

 $||A||_1$: chuẩn một (theo cột)

Dạng 19: Cho ma trận A. Số điều kiện tính theo chuẩn một/ chuẩn vô cùng của A

Chuẩn một: $K_1(A) = ||A||_1 . ||A^{-1}||_1$

Chuẩn vô cùng: $K_{\infty}(A) = ||A||_{\infty} . ||A^{-1}||_{\infty}$

LÀM TRÒN LÊN

Dạng 20: Cho hệ phương trình $\begin{cases} 9x_1 + 3x_2 = 2 \\ -2x_1 + 15x_2 = 4 \end{cases}$. Theo phương pháp Jacobi, tìm Ma trận lặp T_j

$$T_j = \begin{pmatrix} 0 & \frac{-3}{9} \\ \frac{2}{15} & 0 \end{pmatrix}$$

Dạng 21: Cho hệ phương trình $\begin{cases} 9x_1 + 3x_2 = 2 \\ -2x_1 + 15x_2 = 4 \end{cases}$. $x^{(0)} = [0,2;0,3]^T$. Tính $x^{(3)}$ theo phương pháp Jacobi

Bước 1:
$$_{0,3\rightarrow B}^{0,2\rightarrow A}$$

Bước 2: Nhập:
$$D = \frac{-3B+2}{9} : X = \frac{2A+4}{15} : A = D : B = X$$
 $CALC = =$

$$\rightarrow \chi^{(1)} \rightarrow \chi^{(2)} \rightarrow \chi^{(3)}$$

Dạng 22: Cho hệ phương trình $\begin{cases} 12x_1 - 2x_2 = 2 \\ -5x_1 + 11x_2 = 6 \end{cases}$. Theo phương pháp Gauss-seidel, tìm ma trận lặp T_g

$$T_g = (\textit{Ma trận} \ \Delta \ \text{dưới})^{-1}. (\textit{Ma trận} \ \Delta \ \text{trên})$$
 Giữ nguyên đường chéo Dương chéo bằng 0 , đổi dấu các phần tử

Dạng 23: Cho hệ phương trình $\begin{cases} 8x_1 - 3x_2 = 4 \\ -2x_1 + 17x_2 = 4 \end{cases}$. $x^{(0)} = [0,3;0,6]^T$. Tính $x^{(3)}$ theo phương pháp Gauss-seidel

Bước 1: $_{0.6\rightarrow B}^{0,3\rightarrow A}$

Bước 2: Nhập:
$$A = \frac{3B+4}{8} : B = \frac{2A+4}{17}$$
 $CALC = =$

$$\rightarrow \chi^{(1)} \rightarrow \chi^{(2)} \rightarrow \chi^{(3)}$$

Dạng 24: Cho hệ phương trình $\begin{cases} 8x_1 - 3x_2 = 2 \\ -7x_1 + 18x_2 = 7 \end{cases}$. $x^{(0)} = [0,5;0,3]^T$, sai số $\Delta x^{(2)}$ của vecto $x^{(2)}$ theo phương pháp Jacobi, sử dụng công thức hậu nghiệm và chuẩn vô cùng là:

Bước 1: Tìm T_j (như dạng 20) $\rightarrow \|T_j\|_{\infty}$ hoặc $\|T_j\|_{1}$

Bước 2: Tìm $x^{(1)}$, $x^{(2)}$ (như dạng 21) $\rightarrow \| x^{(2)} - x^{(1)} \|_{\infty}$ hoặc $\| x^{(2)} - x^{(1)} \|_{1}$

Bước 3: Áp dụng công thức: $\Delta x^{(2)} = \frac{\|T_j\|_{\infty}}{1 - \|T_j\|_{\infty}}$. $\|x^{(2)} - x^{(1)}\|_{\infty}$ (Hậu nghiệm) hoặc $\Delta x^{(2)} = \frac{\|T_j\|_{\infty}^2}{1 - \|T_j\|_{\infty}}$. $\|x^{(1)} - x^{(0)}\|_{\infty}$ (Tiên nghiệm)

(Nếu đề yêu cầu chuẩn một thì đổi chuẩn vô cùng thành chuẩn một rồi áp dụng công thức trên)

LÀM TRÒN LÊN

Dạng 25: Cho hệ phương trình $\begin{cases} 11x_1 - 2x_2 = 2 \\ -4x_1 + 14x_2 = 5 \end{cases}$. $x^{(0)} = [0,3;1,0]^T$, sai số $\Delta x^{(2)}$ của vecto $x^{(2)}$ theo phương pháp Gauss-seidel, sử dụng công thức tiên nghiệm và chuẩn vô cùng là:

Bước 1: Tìm T_g (như dạng 22) $\rightarrow \parallel T_g \parallel_{\infty}$ hoặc $\parallel T_g \parallel_1$

Bước 2: Tìm $x^{(1)}$ (như dạng 23) $\to \| x^{(1)} - x^{(0)} \|_{\infty}$ hoặc $\| x^{(1)} - x^{(0)} \|_{1}$

Bước 3: Áp dụng công thức: $\Delta x^{(2)} = \frac{\|T_g\|_{\infty}^2}{1-\|T_g\|_{\infty}}$. $\|x^{(1)}-x^{(0)}\|_{\infty}$ (Tiên nghiệm) hoặc $\Delta x^{(2)} = \frac{\|T_g\|_{\infty}}{1-\|T_g\|_{\infty}}$. $\|x^{(2)}-x^{(1)}\|_{\infty}$ (Hậu nghiệm)

(Nếu đề yêu cầu chuẩn một thì đổi chuẩn vô cùng thành chuẩn một rồi áp dụng công thức trên)

LÀM TRÒN LÊN

 $\hat{\text{CONG TH\'UC T\^{O}NG QU\'AT:}} \ \Delta x^{(2)} = \frac{\|T\|^n}{1 - \|T\|}. \ \left\| x^{(1)} - x^{(0)} \right\| (Ti\^{e}n \ nghi\^{e}m) \quad \text{ hoặc } \quad \Delta x^{(2)} = \frac{\|T\|}{1 - \|T\|}. \ \left\| x^{(n)} - x^{(n-1)} \right\| (H\^{q}u \ nghi\^{e}m)$

Nhập: $\mathbf{D} = \mathbf{A} : \mathbf{X} = \mathbf{B} : \mathbf{A} = \cdots : \mathbf{B} = \cdots : \mathbf{E} = |\mathbf{D} - \mathbf{A}| - \mathbf{\epsilon} : \mathbf{F} = |\mathbf{X} - \mathbf{B}| - \mathbf{\epsilon} : \mathbf{M} = \mathbf{M} + \mathbf{1}$ CALC ($\mathbf{A} = 1,2$; $\mathbf{B} = 2,1$, những giá trị còn lại = 0) Bấm "=" cho đến khi tìm thấy E và F cùng âm (lần đầu tiên), ta đọc kết quả của M sau đó.

Dạng 27: Cho hệ phương trình ${7,3x_1 - 2,1x_2 = 4,2 \atop 2,1x_1 + 9,3x_2 = 2,2}$. $x^{(0)} = [1,2;2,1]^T$. Dùng phương pháp Gauss-seidel, tìm chỉ số n nhỏ nhất sao cho $||x^{(n)} - x^{(n-1)}||_1 < ε$ (GAUSS - SEIDEL CHUẨN MỘT)

Nhập: $\mathbf{D} = \mathbf{A} : \mathbf{X} = \mathbf{B} : \mathbf{A} = \cdots : \mathbf{B} = \cdots : \mathbf{E} = |\mathbf{D} - \mathbf{A}| + |\mathbf{X} - \mathbf{B}| - \mathbf{\epsilon} : \mathbf{M} = \mathbf{M} + \mathbf{1}$ CALC ($\mathbf{A} = 1,2$; $\mathbf{B} = 2,1$, những giá trị còn lại = 0) Bấm "=" cho đến khi tìm thấy E âm (lần đầu tiên), ta đọc kết quả của M sau đó.

Dạng 28: Cho hệ phương trình $\begin{cases} 7.3x_1 - 2.1x_2 = 4.2 \\ 2.1x_1 + 9.3x_2 = 2.2 \end{cases}$. $x^{(0)} = [1.2; 2.1]^T$. Dùng phương pháp Jacobi, tìm chỉ số n nhỏ nhất để $\|x^{(n)} - x^{(n-1)}\|_{\infty} < \epsilon$ (JACOBI CHUẨN VÔ CÙNG)

Nhập: $\mathbf{D} = \cdots : \mathbf{X} = \cdots : \mathbf{E} = |\mathbf{D} - \mathbf{A}| - \mathbf{\epsilon} : \mathbf{F} = |\mathbf{X} - \mathbf{B}| - \mathbf{\epsilon} : \mathbf{A} = \mathbf{D} : \mathbf{B} = \mathbf{X} : \mathbf{M} = \mathbf{M} + \mathbf{1}$ CALC (A = 1,2; B = 2,1, những giá trị còn lại = 0) Bấm "=" cho đến khi tìm thấy E và F cùng âm (lần đầu tiên), ta đọc kết quả của M sau đó.

Dạng 29: Cho hệ phương trình $\begin{cases} 7.3 x_1 - 2.1 x_2 = 4.2 \\ 2.1 x_1 + 9.3 x_2 = 2.2 \end{cases}$. $x^{(0)} = [1.2; 2.1]^T$. Dùng phương pháp Jacobi, tìm chỉ số n nhỏ nhất để $\|x^{(n)} - x^{(n-1)}\|_1 < \epsilon$ (JACOBI CHUẨN MỘT)

Nhập: $\mathbf{D} = \cdots : \mathbf{X} = \cdots : \mathbf{E} = |\mathbf{D} - \mathbf{A}| + |\mathbf{X} - \mathbf{B}| - \mathbf{\epsilon} : \mathbf{A} = \mathbf{D} : \mathbf{B} = \mathbf{X} : \mathbf{M} = \mathbf{M} + \mathbf{1}$ CALC ($\mathbf{A} = 1,2$; $\mathbf{B} = 2,1$, những giá trị còn lại = 0) Bấm "=" cho đến khi tìm thấy E âm (lần đầu tiên), ta đọc kết quả của M sau đó.

Dạng 30: Cho hệ phương trình $\begin{cases} 15x_1 - 2x_2 = 6 \\ 3x_1 + 11x_2 = 7 \end{cases}$. $x^{(0)} = [1; 1,5]^T$. Dùng phương pháp Jacobi, tìm số lần lặp cần thiết sao cho nghiệm có sai số (sai số TIÊN NGHIỆM) chuẩn vô cùng $< \varepsilon$

Bước 1: Tính |T| và $x^{(1)} \rightarrow ||x^{(1)} - x^{(0)}||$

ÁP DỤNG CÔNG THỨC: $n \geq \log_{||T||} \left(\frac{\varepsilon(1-||T||)}{\|x^{(1)}-x^{(0)}\|} \right) \longrightarrow n$

LÀM TRÒN LÊN SỐ NGUYÊN

 $\begin{aligned} \textbf{Dạng 31:} & \text{ Cho hệ phương trình } \begin{cases} 3.2x_1 - 1.1x_2 = 0.2 \\ -2.1x_1 + 4.3x_2 = 1.9 \end{cases} \cdot x^{(0)} = [0.3; -4.2]^T. & \text{ Dùng phương pháp Gauss-seidel, tìm chỉ số n nhỏ nhất sao cho sai số } \\ x_n & \text{ theo công thức } \textbf{HẬU NGHIỆM chuẩn vô cùng} < \varepsilon \text{ (GAUSS - SEIDEL CHUẨN VÔ CÙNG)} \end{aligned}$

Bước 1: Tính $\frac{\|Tg\|_{\infty}}{\|1-Tg\|_{\infty}}$, ghi lại kết quả, đặt là Y (hạn chế lưu biến vì dễ sai)

Bước 2: Nhập: $\mathbf{D} = \mathbf{A} : \mathbf{X} = \mathbf{B} : \mathbf{A} = \cdots : \mathbf{E} = \mathbf{Y}. |\mathbf{D} - \mathbf{A}| - \mathbf{\epsilon} : \mathbf{F} = \mathbf{Y}. |\mathbf{X} - \mathbf{B}| - \mathbf{\epsilon} : \mathbf{M} = \mathbf{M} + \mathbf{1}$ CALC ($\mathbf{A} = 0.3$; $\mathbf{B} = -4.2$; những giá trị còn lại = 0, chỗ \mathbf{Y} ta nên thế kết quả vào, không nên đặt biến dễ sai)

Bấm "=" cho đến khi tìm thấy E và F cùng âm (lần đầu tiên), ta đọc kết quả của M sau đó.

Dạng 32: Cho hệ phương trình $\begin{cases} 3.2x_1 - 1.1x_2 = 0.2 \\ -2.1x_1 + 4.3x_2 = 1.9 \end{cases}$. $x^{(0)} = [0.3; -4.2]^T$. Dùng phương pháp Gauss-seidel, tìm chỉ số n nhỏ nhất sao cho **sai số** x_n theo công thức **HẬU NGHIỆM chuẩn một** $< \varepsilon$ (GAUSS - SEIDEL CHUẨN MỘT)

Bước 1: Tính $\frac{\|Tg\|_1}{\|1-Tg\|_1}$, ghi lại kết quả, đặt là Y (hạn chế lưu biến vì dễ sai)

Bước 2: Nhập: $\mathbf{D} = \mathbf{A} : \mathbf{X} = \mathbf{B} : \mathbf{A} = \cdots : \mathbf{B} = \cdots : \mathbf{E} = \mathbf{Y}.(|\mathbf{D} - \mathbf{A}| + |\mathbf{X} - \mathbf{B}|) - \mathbf{\epsilon} : \mathbf{M} = \mathbf{M} + \mathbf{1}$ CALC ($\mathbf{A} = 0.3$; $\mathbf{B} = -4.2$; những giá trị còn lại = 0, chỗ Y ta nên thế kết quả vào, không nên đặt biến dễ sai)

Bấm "=" cho đến khi tìm thấy E âm (lần đầu tiên), ta đọc kết quả của M sau đó.

Dạng 31: Cho hệ phương trình $\begin{cases} 3.2x_1 - 1.1x_2 = 0.2 \\ -2.1x_1 + 4.3x_2 = 1.9 \end{cases}$ $x^{(0)} = [0.3; -4.2]^T$. Dùng phương Jacobi, tìm chỉ số n nhỏ nhất sao cho **sai số** x_n theo công thức **HÂU NGHIÊM chuẩn vô cùng** $< \varepsilon$ (JACOBI CHUẨN VÔ CÙNG)

Bước 1: Tính $\frac{\|Tj\|_{\infty}}{\|1-Tj\|_{\infty}}$, ghi lại kết quả, đặt là Y (hạn chế lưu biến vì dễ sai)

Bước 2: Nhập: $\mathbf{D} = \cdots : \mathbf{X} = \cdots : \mathbf{E} = \mathbf{Y}. |\mathbf{D} - \mathbf{A}| - \mathbf{\epsilon} : \mathbf{F} = \mathbf{Y}. |\mathbf{X} - \mathbf{B}| - \mathbf{\epsilon} : \mathbf{A} = \mathbf{D} : \mathbf{B} = \mathbf{X} : \mathbf{M} = \mathbf{M} + \mathbf{1}$ CALC (A = 0,3; B = -4,2; những giá trị còn lại = 0, chỗ Y ta nên thế kết quả vào, không nên đặt biến dễ sai)

Bấm "=" cho đến khi tìm thấy E và F cùng âm (lần đầu tiên), ta đọc kết quả của M sau đó.

Dạng 32: Cho hệ phương trình $\begin{cases} 3.2x_1 - 1.1x_2 = 0.2 \\ -2.1x_1 + 4.3x_2 = 1.9 \end{cases}$. $x^{(0)} = [0.3; -4.2]^T$. Dùng phương pháp Jacobi, tìm chỉ số n nhỏ nhất sao cho **sai số** x_n theo công thức **HÂU NGHIÊM chuẩn một** $< \varepsilon$ (JACOBI CHUẨN MÔT)

Bước 1: Tính $\frac{\|Tj\|_1}{\|1-Tj\|_1}$, ghi lại kết quả, đặt là Y (hạn chế lưu biến vì dễ sai)

Bước 2: Nhập: $\mathbf{D} = \cdots : \mathbf{X} = \cdots : \mathbf{E} = \mathbf{Y}$. $(|\mathbf{D} - \mathbf{A}| + |\mathbf{X} - \mathbf{B}|) - \mathbf{\epsilon} : \mathbf{A} = \mathbf{D} : \mathbf{B} = \mathbf{X} : \mathbf{M} = \mathbf{M} + \mathbf{1}$ CALC ($\mathbf{A} = 0.3$; $\mathbf{B} = -4.2$; những giá trị còn lại = 0, chỗ Y ta nên thế kết quả vào, không nên đặt biến dễ sai)

Bấm "=" cho đến khi tìm thấy E âm (lần đầu tiên), ta đọc kết quả của M sau đó.

Dạng 33: Cho phương trình $x = \sqrt[3]{8x+8}$ thỏa điều kiện lập đơn trên [3;4]. Nếu chọn $x_0 = 3,2$. Tìm chỉ số n nhỏ nhất sao cho $|x_n - x_{n-1}| < \varepsilon$

Nhập: $\mathbf{D} = |\sqrt[3]{8\mathbf{A} + \mathbf{8}}| : \mathbf{E} = |\mathbf{D} - \mathbf{A}| - \varepsilon : \mathbf{A} = \mathbf{D} : \mathbf{M} = \mathbf{M} + \mathbf{1} \text{ CALC A} = 3,2$

Bấm "=" cho đến khi tìm thấy E âm (lần đầu tiên), ta đọc kết quả của M sau đó.

Dạng 34: Cho phương trình $x = \sqrt[3]{8x+8}$ thỏa điều kiện lập đơn trên [3;4]. Nếu chọn $x_0 = 3,2$. Tìm chỉ số n nhỏ nhất sao cho **sai số** theo của x_n theo công thức $\mathbf{H}\mathbf{\hat{A}}\mathbf{U}$ $\mathbf{N}\mathbf{G}\mathbf{H}\mathbf{\hat{E}}\mathbf{M} < \varepsilon$

Bước 1: Tính q = |f'(x)| CALC $\begin{cases} x = 3 \\ x = 4 \end{cases}$. Chọn kết quả max $\rightarrow \mathbf{C}$ (Như dạng 6)

Bước 2: Tính $\frac{q}{1-a}$ ghi lại kết quả, đặt là Y (hạn chế lưu biến vì dễ sai)

Bước 3: Nhập: $\mathbf{D} = \left| \sqrt[3]{\mathbf{8A} + \mathbf{8}} \right| : \mathbf{E} = \mathbf{Y}. \left| \mathbf{D} - \mathbf{A} \right| - \mathbf{\epsilon} : \mathbf{A} = \mathbf{D} : \mathbf{M} = \mathbf{M} + \mathbf{1} \text{ CALC A} = 3,2;$ chỗ Y ta nên thế kết quả vào, không nên đặt biến dễ sai)

Bấm "=" cho đến khi tìm thấy E âm (lần đầu tiên), ta đọc kết quả của M sau đó.

Dạng 35: Cho phương trình $f(x) = (x-2)^2 - \ln(x+1) = 0$. Khoảng cách li nghiệm [1, 2]. Sử dụng phương pháp Newton, chọn x_0 theo điều kiện Fourier, tìm x_n và Δx_n sao cho $\Delta x_n < 10^{-3}$

Bước 1: Tính f(x). f''(x) CALC $\begin{cases} x=1\\ x=2 \end{cases}$. Chọn $x_0=1$ (nếu kết quả dương và ngược lại)

Bước 2: Tính |f'(x)| CALC $\begin{cases} x = 1 \\ x = 2 \end{cases}$ Chọn kết quả min $\to \mathbf{A}$

Bước 3: Nhập: $x = x - \frac{f(x)}{f'(x)} \cdot \frac{|f(x)|}{A}$ CALC $x = x_o$

Bước 4: Bấm "=" cho đến khi thấy $\frac{|f(x)|}{A} < 10^{-3}$, ta đọc giá trị $\Delta x_n = \frac{|f(x)|}{A}$ và bấm quay lại để đọc giá trị $x_n = x - \frac{f(x)}{f'(x)}$ tương ứng.

LƯU Ý: x_2 : QUÁ BÁN Δx_2 : LÀM TRÒN LÊN

Dạng 36: Cho hệ phương trình: $\begin{cases} 34x_1 + 2,73x_2 - 1,85x_3 = 12,89 \\ 1,34x_1 + 29x_2 - 3,24x_3 = 15,73 & x^{(0)} = (0,1; 0,3; 0,4). \text{ Tìm } x^{(3)} \text{ theo phương pháp Gauss - seidel.} \\ 1,18x_1 - 4,87x_2 + 32,6x_3 = 18,42 \end{cases}$

Bước 1: Nhập:

$$A = \frac{-2,73B + 1,85C + 12,89}{34} : B = \frac{-1,34A + 3,24C + 15,73}{29} : C = \frac{-1,18A + 4,87B + 18,42}{32,6} \quad CALC B = 0,3; C = 0,4; A = 0,1$$

Bước 2: Bấm "=" cho đến khi tìm được $x^{(3)}$.

Dạng 37: Cho hệ phương trình: $\begin{cases} 14,3x_1 + 1,73x_2 - 1,85x_3 = 12,891 \\ 1,34x_1 + 16,5x_2 - 3,24x_3 = 15,731; \ x^{(0)} = (1,5;0,3;3,4). \ \text{Tìm } x^{(3)} \text{ theo phương pháp Jacobi.} \\ 1,18x_1 - 4,87x_2 + 18,7x_3 = 18,421 \end{cases}$

$$\text{Bur\'oc 1: Nhập: Ma trận A} = \begin{pmatrix} 0 & -\frac{1,73}{14,3} & \frac{1,85}{14,3} \\ -\frac{1,34}{16,5} & 0 & \frac{3,24}{16,5} \\ -\frac{1,18}{18,7} & \frac{4,87}{18,7} & 0 \end{pmatrix}; \text{ Ma trận B} = \begin{pmatrix} \frac{12,891}{14,3} \\ \frac{15,731}{16,5} \\ \frac{18,421}{18,7} \end{pmatrix}; \text{ Ma trận C} = \begin{pmatrix} 1,5 \\ 0,3 \\ 3,4 \end{pmatrix}$$

 $x^{(1)} = \max \operatorname{trận} B + \max \operatorname{trận} A \times \max \operatorname{trận} C$ Bước 2: Tính: $x^{(2)} = \max \operatorname{trận} B + \max \operatorname{trận} A \times \max \operatorname{trận} A \operatorname{ns} \rightarrow \begin{cases} x_1^{(3)} = x_2^{(3)} = x_2^{(3)} = x_1^{(3)} \end{cases}$ $x^{(3)} = \max \operatorname{trận} A \times \max \operatorname{trận}$

Dạng 38: Cho ma trận $A = \begin{pmatrix} 1 & 5 & -3 & 3 \\ 2 & 3 & -1 & 2 \\ -1 & 2 & 5 & 4 \\ 3 & -2 & 1 & 2 \end{pmatrix}$. Phân tích A = LU theo phương pháp Doolittle.

$$u_{11} = \det(1) \qquad u_{22} = \frac{\det(2)}{\det(1)} \qquad u_{33} = \frac{\det(3)}{\det(2)} \qquad u_{44} = \frac{\det(4)}{\det(3)} \qquad u_{23} = \frac{a_{23}.a_{11} - a_{21}.a_{13}}{a_{11}} \qquad u_{24} = \frac{a_{24}.a_{11} - a_{21}.a_{14}}{a_{11}}$$

$$u_{34} = a_{33} - \frac{a_{31}.a_{13}}{a_{11}} - \frac{(a_{32}.a_{11} - a_{31}.a_{12})(a_{23}.a_{11} - a_{21}.a_{13})}{(a_{22}.a_{11}^2 - a_{21}.a_{12}.a_{11})} \qquad l_{32} = \frac{a_{32}.a_{11} - a_{31}.a_{12}}{a_{22}.a_{11} - a_{21}.a_{12}} \qquad l_{42} = \frac{a_{42}.a_{11} - a_{41}.a_{12}}{a_{22}.a_{11} - a_{21}.a_{12}}$$

$$l_{43} = \frac{a_{43} - \frac{a_{41}.a_{13}}{a_{11}} - \frac{(a_{42}.a_{11} - a_{41}.a_{12})(a_{23}.a_{11} - a_{21}.a_{13})}{(a_{22}.a_{11}^2 - a_{21}.a_{12}.a_{11})}$$

$$a_{33} - \frac{a_{31}.a_{13}}{a_{11}} - \frac{(a_{32}.a_{11} - a_{31}.a_{12})(a_{23}.a_{11} - a_{21}.a_{13})}{(a_{22}.a_{11}^2 - a_{21}.a_{12}.a_{11})}$$

LƯU Ý: $l_{11}=l_{22}=l_{33}=l_{44}=1$, cột 1 ma trận L = cột 1 ma trận A, hàng 1 ma trận U = hàng 1 ma trận A

→ Ngoài những phần tử trên, tất cả phần tử còn lại đều = 0