Attorney's Docket No.: 28955.1050

Im

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of:

Confirmation No.: 5735

Masakazu FUNAHASHI, et al.

Serial No.: 10/535,311

Art Unit: 4174

Filed: May 18, 2005

Examiner: Michael E. Nelson

For:

ORGANIC ELECTROLUMINESCENCE ELEMENT

SUBMISSION OF VERIFIED ENGLISH TRANSLATION OF PRIORITY APPLICATION

Commissioner for Patents
U.S. PATENT AND TRADEMARK OFFICE
Randolph Building
401 Dulany Street
Alexandria, VA 22314

Mail Stop Amendment

Sir:

In addition to Applicants' Amendment filed April 15, 2008, applicants herewith file a <u>verified</u> English translation of Japanese priority application JP 2002-333865, thereby perfecting their claim for priority.

Respectfully submitted,

STEPTOE & JOHNSON LLP

Date: May 23, 2008

Houda MORAD

Roger W. Parkhurst Reg. No. 25,177 Houda Morad Reg. No. 56,742

STEPTOE & JOHNSON LLP 1330 Connecticut Avenue, NW Washington, DC 20036

Tel: 202-429-3000 Fax: 202-429-3902

VERIFICATION OF TRANSLATION

I, Yuko TANAKA of Shibashin Kanda Bldg. 3rd Floor, 26, Kanda Suda-cho 1-chome, Chiyoda-ku, Tokyo 101-0041 Japan

declare as follows:

- 1. that I am well acquainted with both the English and Japanese languages, and
- 2. that the attached document is a true and correct translation made by me to the best of my knowledge and belief of; -

the specification accompanying the Application No. 2002-333865 for a Patent made in Japan filed on November 18, 2002.

April 22, 2008

(Signature of Translator)

Juko Tanaka

[NAME OF DOCUMENT] PATENT APPLICATION

[REFERENCE NO.] IDK1436A

[SUBMISSION DATE] November 18, 2002

[ADDRESSED TO] Commissioner of Japanese Patent Office

[INTERNATIONAL PATENT CLASSIFICATION]

H05B 33/14

[INVENTOR]

[ADDRESS OR WHEREABOUTS] 1280, Kamiizumi

Sodegaura-shi, Chiba, 299-0293 Japan

[NAME] Masakazu FUNAHASHI

[INVENTOR]

[ADDRESS OR WHEREABOUTS] 1280, Kamiizumi

Sodegaura-shi, Chiba, 299-0293 Japan

[NAME] Kenichi FUKUOKA

[INVENTOR]

[ADDRESS OR WHEREABOUTS] 1280, Kamiizumi

Sodegaura-shi, Chiba, 299-0293 Japan

[NAME] Chishio HOSOKAWA

[PATENT APPLICANT]

[IDENTIFICATION NUMBER] 000183646

[NAME] IDEMITSU KOSAN CO., LTD.

[REPRESENTATIVE]

[IDENTIFICATION NUMBER] 100086759

[PATENT ATTORNEY]

[NAME] Kihei WATANABE

[REPRESENTATION OF FEE]

[DEPOSIT ACCOUNT NUMBER] 013619

[DEPOSIT AMOUNT] 21,000 yen

[LIST OF SUBMITTED MATTERS]

[NAME OF MATTER] Specification 1 set

[NAME OF MATTER] Drawing 1 set

[NAME OF MATTER] Abstract 1 set

[GENERAL POWER OF ATTORNEY NUMBER] 0200131

[NECESSITY OF PROOF] Necessary

[NAME OF THE DOCUMENT] Specification [TITLE OF THE INVENTION]

ORGANIC ELECTROLUMINESCENCE ELEMENT [SCOPE OF THE PATENT CLAIMS]

- 5 [Claim 1] An organic electroluminescence element comprising:
 - a pair of electrodes, and
- a light emitting layer provided between the pair of electrodes, the layer comprising a light-emitting-layer

 10 material, a first dopant and a second dopant that satisfy the following relations,
 - (A) EV0 > EV1 and EV0 > EV2
 - (B) ECO > EC2
 - (C) EG0 > EG1 and EG0 > EG2
- wherein EVO, EV1 and EV2 are the valence electron levels of the light-emitting-layer material, the first dopant and the second dopant, respectively; ECO and EC2 are the conduction levels of the light-emitting-layer material and the second dopant, respectively; and EGO, EG1 and EG2 are the energy gaps of the light-emitting-layer material, the first dopant and the second dopant, respectively.
 - [Claim 2] An organic electroluminescence element comprising:
 - a pair of electrodes, and
- a light emitting layer provided between the pair of electrodes, the layer comprising a light-emitting-layer material, a first dopant and a second dopant that satisfy the following relations,
 - (A') EV0 > EV1 and EV0 > EV2
- 30 (B') ECO > EC1 and ECO > EC2

wherein EVO, EV1 and EV2 are the valence electron levels of the light-emitting-layer material, the first dopant and the second dopant, respectively; and ECO, EC1 and EC2 are the conduction levels of the light-emitting-layer material, the first dopant and the second dopant, respectively.

[Claim 3] An organic electroluminescence element according to claim 2, wherein both the first dopant and the second dopant emit light.

[Claim 4] An organic electroluminescence element according to any one of claims 1 to 3, wherein the content of the first dopant and/or the second dopant is 20 wt% or less of entire the light emitting layer.

[Claim 5] An organic electroluminescence element according to any one of claims 1 to 4, wherein the first dopant has a hole-injection-aiding property, and/or the second dopant has an electron-injection-aiding property.

[Claim 6] An organic electroluminescence element according to any one of claims 1 to 5, wherein the difference between the valence electron level EVO of the light-emitting-layer material and the valence electron level EV1 of the first dopant is 0.4 eV or less and/or the difference between the conduction level ECO of the light-emitting-layer material and the conduction level EC2 of the second dopant is 0.4 eV or less.

[Claim 7] An organic electroluminescence element according to any one of claims 1 to 6, wherein the molecular weight of at least one of the light-emitting-layer material, the first dopant and the second dopant is from 100 to 1,500.

[Claim 8] An organic electroluminescence element according to any one of claims 1 to 7, wherein the glass-transition temperature of the light-emitting-layer material is 100° C or more.

[Claim 9] An organic electroluminescence element according to any one of claims 1 to 8, wherein the first dopant or the second dopant is selected from styrylamine derivatives, condensed aromatic ring compounds and arylamine-substitued condensed aromatic ring compounds.

[Claim 10] An organic electroluminescence element according to any one of claims 1 to 9, wherein the light-emitting-layer material comprises a compound having a hole transporting property and/or a compound having an electron transporting property.

[Claim 11] An organic electroluminescence element according to any one of claims 1 to 10, wherein the light-emitting-layer material is selected from phenylanthracene derivatives, naphtylanthracene derivatives, diphenylanthracene derivatives, aromatic amine derivatives and metal complexes.

[Claim 12] An organic electroluminescence element according to claim 11, wherein the phenylanthracene derivatives, the naphtylanthracene derivatives or the diphenylanthracene derivatives contain an alkenyl group.

[Claim 13] An organic electroluminescence element according to any one of claims 1 to 12, further comprising a hole injecting layer between the anode and the light emitting layer; the hole injecting layer comprising a compound having a phenylenediamine structure.

30 [DETAILED DESCRIPTION OF THE INVENTION]

[0001]

[Technical Field of the invention]

The present invention relates to an organic electroluminescence element.

5 [0002]

10

15

30

[Related Conventional Art]

About organic electroluminescence elements (referred to as organic EL elements hereinafter) using an organic substance, the use thereof as inexpensive, large-area, full color display devices of a solid light emission type, has been promising, and many developments thereof have been made.

An organic EL element is composed of a light emitting layer and a pair of opposite electrodes. Fig. 3 is a sectional view of an ordinary organic EL element.

This organic EL element 10 has a light emitting layer 14 sandwiched between a pair of electrodes, an anode 12 and a cathode 13. The light emitting layer 14 is usually composed of plural laminated layers. When an electric 20 field is applied across the electrodes 12 and 13 in this element 10, electrons are injected from the cathode 13 and holes are injected from the anode 12. The electrons and the holes are recombined in the light emitting layer 14 so as to cause an exciting state. When the exciting state 25 returns to a ground state, energy is emitted as light.

Fig. 4 shows an energy diagram of the organic EL element in Fig. 3. In Fig. 3, a valence electron level EV0 (HOMO) and a conduction level ECO (LUMO), which are energy levels of the light emitting layer 14, are shown. Holes go in from the anode 12 and electrons go in from the cathode

13. The holes and the electrons are combined with each other in the light emitting layer 14 to emit light.

[0003]

Recently, the practical use of organic EL element displays has been started, and it has been desired to make the luminance and the efficiency thereof higher and make the durability longer.

There is known a technique of adding a very small amount of a fluorescent molecule (dopant) to a light

10 emitting layer in order to satisfy the above-mentioned desire. As the fluorescent molecule, a coumalin, cyanine, perylene or pyran derivative is disclosed (see, for example, Patent Document 1).

Fig. 5 illustrates an energy diagram of an organic EL element to which a dopant is added. In this figure, ECO represents the conduction level of the host; EVO, the valence electron level of the host; EC1, the conduction level of the dopant; and EV1, the valence electron level of the dopant. EgO and Eg1 represent the energy gap

20 (difference between the ECO and the EVO) of the host and the energy gap (difference between the EC1 and the EV1) of the dopant, respectively.

The dopant receives the energy of the excited host effectively to make the luminescent efficiency high. It is however necessary that the energy gap Egl of the dopant is smaller than the energy gap Eg0 of the host in order for the dopant to emit light.

[0004]

About an improvement in the efficiency of organic EL 30 element displays, an efficiency of about 6 to 7 cd/A is

attained. In order to make the efficiency thereof higher and make the durability thereof long, investigations on the addition of various dopants have been made.

For example, a technique of adding distyrylarylene which contains arylamine to a light emitting layer is disclosed (see, for example, Patent Document 2). This technique makes it possible to realize a blue light emitting element having a long durability and give an efficiency of more than 8 cd/A.

Disclosed is also a technique of mixing a diamine type hole transporting material with an electron transporting property, and adding, to this mixture layer, a fluorescent material such as rubrene (see, for example, Patent Document 3). This technique enables a half life of approximately several thousands hours at an initial luminance of several hundreds nit.

[0005]

20

Such techniques of adding a dopant to a light emitting layer are very important for improving the luminescent efficiency and emission lifetime of organic EL elements.

Thus, various improvements are applied thereto.

However, an organic EL element having a sufficient efficiency and durability has not been developed.

For example, the use of a dopant for carrier

25 transportation or excitation energy shift in a light emitting layer is disclosed. In particular, the following light emitting layers are disclosed: a light emitting layers using Alq, which is an organic metal complex, as a host material, a fluorescent dye such as DCM1, DCM2 or Nile

30 Red as a luminescent dopant, DPA, OXD8 or the like as a

dopant for carrier transportation, and/or rubrene or the like as a dopant for excitation energy shift (see, for example, Patent Document 4).

In this technique, however, the light emitting layer

5 captures both kinds of charges of holes and electrons by
using a single luminescent dopant; therefore, the
luminescent wavelength therefrom is inconveniently long.
In other words, when materials are selected respectively in
order to make the injection efficiency of charges from

10 electrodes good, the energy gap between the valence
electron level of the selected hole transporting material
and the conductive level of the selected electron
transporting material becomes about 2.5 eV or less, so as
to cause a problem that light having a longer wavelength

15 than yellowish green wavelengths is emitted.

[0006]

In order to make the durability of an organic EL element longer, a luminescent dopant having an electron trapping property is added thereto. When the addition concentration thereof is increased to sufficiently obtain the advantageous effect of the dopant, the electron trapping property becomes stronger so as to cause a problem that the driving voltage of the organic EL element becomes high.

25 Further, when the addition concentration becomes larger, the molecules of the dopant contact each other, thereby causing concentration quenching to result in a problem that the efficiency of the organic EL element becomes low.

A carrier transporting dopant, which is a dopant other

than the luminescent dopant and is added to the light emitting layer, does not undergo energy shift from the host material; therefore, the carrier transporting dopant gives an effect only for decreasing the driving voltage of the organic EL element.

[0007]

5

15

25

30

As another example, there is disclosed an organic electroluminescence layer wherein a host material contains a first dopant which can receive electron-hole bonding energy and a second dopant which can capture holes (see, for example, Patent Document 5).

In the examples thereof, the luminescent efficiency and the emission lifetime are improved like the above-mentioned examples than examples wherein a single kind of dopant is used. However, in the case of the structure wherein two kinds of dopants can each emit light, each of the dopants captures electrons so that the driving voltage is essentially high, this high driving voltage being improved by the use of a carrier transporting dopant.

20 [0008]

As still another example, there is disclosed an organic EL element wherein a first dopant of a diamine derivative and a second dopant of rubrene are incorporated into a host material in a light emitting layer (see, for example, Patent Document 6).

However, in this element structure also, the diamine derivative, which is the first dopant, has a shorter fluorescent peak wavelength, that is, a larger energy gap than the host material. Thus, the mobility of carriers is improved, thereby making the driving voltage low. However,

the effect of improving the emission lifetime is small. [0009]

Fig. 6 shows an energy diagram of an organic EL element wherein two kinds of dopants are added, disclosed in Patent Document 6.

In this figure, description of the same symbols as in Fig. 5 is omitted. EC2 represents the conduction level of the second dopant; EV2, the valence electron level of the second dopant; and Eg2, the energy gap (the difference between EC2 and EV2) of the second dopant.

In this organic EL element, the energy gap Eg2 of the second dopant, which is one of the dopants, is larger than the energy gap Eg0 of the host. Therefore, this dopant does not emit light.

It has been generally considered that in order for a dopant to emit light, like the energy gap Egl, the energy gap of the dopant needs to be smaller than the energy gap of the host and the conduction level of the dopant needs to be higher than the conduction level of the host. In short, it has been considered that when EC2 is lower than ECO, like the second dopant, light is not emitted.

[0010]

5

10

[Patent Document 1] Japanese Patent Application Laid-Open No. 63-264692

25 [Patent Document 2] WO 94/6157

[Patent Document 3] Japanese Patent Application Laid-Open No. 8-048656

[Patent Document 4] Japanese Patent Application Laid-Open No. 2000-164362 (Examples 7 to 16)

30 [Patent Document 5] Japanese Patent Application Laid-

Open No. 2002-38140

[Patent Document 6] Japanese Patent Application Laid-Open No. 2002-117980

[0011]

5 [Subject to be solved by the Invention]

In light of the above-mentioned problems, an object of the present invention is to provide an organic electroluminescence element having a high luminance, a high efficiency and a long durability.

10 [0012]

[Means for solving the Subject]

The inventors have made various researches about dopants, and found out that light can be emitted even if the conduction level of a dopant is lower than the conduction level of a host. Furthermore, the inventors have found out that on the basis of this fact, the durability of an organic EL element is improved when energy gaps of a host and a dopant therein satisfy a specific relation, and then made the present invention.

20 [0013]

According to the present invention, there is provided an organic electroluminescence element comprising:

- a pair of electrodes, and
- a light emitting layer provided between the pair of 25 electrodes, the layer comprising a light-emitting-layer material, a first dopant and a second dopant that satisfy the following relations,
 - (A) EV0 > EV1 and EV0 > EV2
 - (B) ECO > EC2
- (C) EGO > EG1 and EGO > EG2

wherein EVO, EV1 and EV2 are the valence electron levels of the light-emitting-layer material, the first dopant and the second dopant, respectively; ECO and EC2 are the conduction levels of the light-emitting-layer material and the second dopant, respectively; and EGO, EG1 and EG2 are the energy gaps of the light-emitting-layer material, the first dopant and the second dopant, respectively.

[0014]

According to the present invention, there is provided 10 an organic electroluminescence element comprising:

- a pair of electrodes, and
- a light emitting layer provided between the pair of electrodes, the layer comprising a light-emitting-layer material, a first dopant and a second dopant that satisfy the following relations,
 - (A') EV0 > EV1 and EV0 > EV2
 - (B') EC0 \geq EC1 and EC0 > EC2

wherein EVO, EV1 and EV2 are the valence electron levels of the light-emitting-layer material, the first dopant and the 20 second dopant, respectively; and ECO, EC1 and EC2 are the conduction levels of the light-emitting-layer material, the first dopant and the second dopant, respectively.

[0015]

[Embodiment of the Invention]

- An organic EL element of a first embodiment of the present invention has a light emitting layer formed between a pair of electrodes, the light emitting layer comprising a light-emitting-layer material, and a first dopant and a second dopant that satisfy the following relations:
- 30 (A) EV0 > EV1 and EV0 > EV2

(B) EC0 ≥ EC2

5

30

- (C) Eg0 > Eg1 and Eg0 > Eg2 wherein EV0, EV1 and EV2 are the valence electron levels of the light-emitting-layer material, the first dopant and the
- the light-emitting-layer material, the first dopant and the second dopant, respectively; ECO and EC2 are the conduction levels of the light-emitting-layer material and the second dopant, respectively; and EGO, EG1 and EG2 are the energy gaps of the light-emitting-layer material, the first dopant and the second dopant, respectively.
- Fig. 1 is the energy diagram of this organic EL element.

In the energy diagram, the level of vacuum (not illustrated) is used as a standard, and the following are shown: the valence electron level EVO and the conduction

15 level ECO of the light-emitting-layer material; the valence electron level EV1 and the conduction level EC1 of the first dopant; and the valence electron level EV2 and the conduction level EC2 of the second dopant. Shown are also the energy gap EgO of the light-emitting-layer material,

20 the energy gap Eg1 of the first dopant, and the energy gap Eg2 of the second dopant. The energy gaps are each the difference in energy between the valence electron level of each of the materials and the conduction level thereof.

In this figure, an arrow represents the direction 25 along which the energy level becomes higher.

The valance electron levels are a value measured by use of a photoelectron spectrometer (AC-1, manufactured by Riken Keiki Co., Ltd.) in the atmosphere. The energy gaps are a value measured from an absorption edge of the absorption spectrum in benzene. The conduction levels are

a value calculated from measured values of the valence electron level and the energy gap.

[0016]

As shown in Fig. 1, in this light emitting layer, the valence electron level EVO of the light-emitting-layer material is higher than the valence electron level EV1 of the first dopant and the valence electron level EV2 of the second dopant. That is to say, the relation of EVO > EV1 and EVO > EV2 is satisfied. Such a structure enables the first and second dopants to easily capture holes injected into the host material to emit light. Preferably, the energy level difference 5 between EVO and EV1 is 0.4 eV or less.

[0017]

The conduction level ECO of the light-emitting-layer material is not less than the conduction level EC2 of the second dopant. That is, the relation of ECO ≥ EC2 is satisfied. The purpose of this is to cause the second dopant not to capture electron injected into the light-emitting-layer material. In this way, the function of capturing holes is strengthened, so that luminescence having a long durability can be attained at a low voltage.

The energy level difference 6 between ECO and EC2 is preferably 0.4 eV or less.

25 [0018]

The energy gap Eg0 of the light-emitting-layer material is larger than the energy gap Eg1 of the first dopant and the energy gap Eg2 of the second dopant. That is, the relation of Eg0 > Eg1, Eg2 is satisfied.

The light-emitting-layer material is deteriorated by

the repetition of excitation and inactivation. In the present invention, however, both of the first and second dopants can receive energy shift from the excitation state of the light-emitting-layer material; therefore, the invention makes it possible to suppress the deterioration of the light-emitting-layer material as compared with the case that either one of the dopants can receive energy shift from the excitation state of the light-emitting-layer material. Accordingly, the luminescent efficiency of the element can be improved and the durability thereof can be made long.

[0019]

In an organic EL element of a second embodiment of the present invention, a light emitting layer is formed between a pair of electrodes, and the light emitting layer comprises a light-emitting-layer material, and a first dopant and a second dopant that satisfy the following relation:

- (A') EV0 > EV1 and EV0 > EV2
- 20 (B') ECO ≥ EC1 and ECO ≥ EC2 wherein EVO, EV1 and EV2 are the valence electron levels of the light-emitting-layer material, the first dopant and the second dopant, respectively; and ECO, EC1 and EC2 are the conduction levels of the light-emitting-layer material, the 25 first dopant, and the second dopant, respectively.

[0020]

Fig. 2 is the energy diagram of this organic EL element.

Symbols shown in Fig. 2 have the same meanings as the $30\,$ symbols shown in Fig. 1.

As shown in Fig. 2, in this light emitting layer, the conduction level ECO of the light-emitting-layer material is not less than the conduction level EC1 of the first dopant and the conduction level EC2 of the second dopant.

That is, the relation of ECO ≥ EC1, EC2 is satisfied. The purpose of this is to cause each of the dopants not to capture electrons. The element having such a structure can be driven at a low voltage.

[0021]

Like the above-mentioned light emitting layer, the valence electron level EVO of the light-emitting-layer material is higher than the valence electron level EV1 of the first dopant and the valence electron level EV2 of the second dopant. That is, the relation of EVO > EV1 and EVO > EV2 is satisfied. Such a structure enables the first and second dopants to easily capture holes injected into the light-emitting-layer material to emit light.

[0022]

A dopant needs to be added up to a concentration that
the dopant can sufficiently capture holes injected into the
light-emitting-layer material. In the case that two kinds
of dopants having the above-mentioned relations are added,
the concentration of the each of the dopants is relatively
smaller than in the case that only one kind of dopant is
added. It is therefore possible to restrain concentration
quenching based on contact between the dopants. For this
reason, the durability of the organic EL element can be
made long.

This is particularly remarkable in the case of blue 30 light emitting elements. The above-mentioned structure is

a particularly preferable for element structures having a large energy gap.

[0023]

For this light emitting layer also, it is preferred that the energy level difference 5 between EVO and EV1 is smaller than 0.4 eV and the energy level difference 6 between ECO and EC2 is smaller than 0.4 eV.

[0024]

It is preferred that the energy gap Eg0 of the light10 emitting-layer material is larger than the energy gap Eg1
of the first dopant or the energy gap Eg2 of the second
dopant.

Furthermore, it is preferred that the energy gap Eg0 of the light-emitting-layer material is larger than both of the energy gap Eg1 of the first dopant and the energy gap Eg2 of the second dopant. This causes both of the first and second dopants to emit light.

[0025]

In the organic EL element of the invention, a light20 emitting-layer material (host material) and dopants that
are used in conventional organic EL elements can be used if
the light-emitting-layer material and the first and second
dopants are selected to satisfy the above-mentioned
relations.

25 [0026]

30

Examples of the light-emitting-layer material include phenylanthracene, naphthylanthracene, diphenylanthracene derivatives, aromatic amine derivatives, metal complexes, polyphenyl derivatives, carbazole derivatives, and styrylarylene derivatives. The material is preferably

selected from phenylanthracene, naphthylanthracene, diphenylanthracene derivatives, aromatic amine derivatives, and metal complexes. It is particularly preferred that phenylanthracene, naphthylanthracene, or diphenylanthracene derivatives contain an alkenyl group.

The glass transition temperature of the lightemitting-layer material is preferably 100°C or higher in order to maintain the thermal stability of the organic EL element. The temperature is in particular preferably 120°C or higher.

Specific compound examples of the light-emitting-layer material are illustrated below.

[0027]

10

[0028]

The light-emitting-layer material preferably contains a hole transmitting compound and/or an electron transmitting compound.

The hole transmitting compound is a compound having a property of transporting holes when an electric field is applied thereto. Examples thereof include polyphenyl derivatives, aromatic amines, and styrylarylene derivatives.

The electron transmitting compound is a compound

10 having a property of transporting electrons when an
electric field is applied thereto. Examples thereof
include metal complexes such as an 8-hydroxyquinolinol
aluminum complex.

[0029]

The light-emitting-layer material is preferably composed of an electron transmitting first light-emitting-layer material and a hole transmitting second light-emitting-layer material. This makes it possible that two different compounds play a part for transporting holes and a part for transporting electrons, respectively, to transport the holes and the electrons stably into a recombining zone.

[0030]

Examples of the first dopant and the second dopant

25 include arylamine derivatives, styrylamine derivatives,
condensed aromatic ring compounds, and arylaminesubstituted condensed aromatic ring compounds. They are
preferably selected from arylamine derivatives, styrylamine
derivatives, condensed aromatic ring compounds, and

30 arylamine-substituted condensed aromatic ring compounds.

Specific examples of the dopants are illustrated below. [0031]

[0032]

The first dopant preferably has a hole-injectionaiding property, and the second dopant preferably has an electron-injection-aiding property.

The hole-injection-aiding property is a property of improving the injection of holes into a host material. Examples of a compound having the property include styrylamine derivatives and aromatic amine derivatives.

The electron-injection-aiding property is a property of improving the injection of electrons into a host material. Examples of a compound having a property include condensed polycyclic aromatic compounds such as rubrene and perylene.

15 [0033]

About the molecular weights of the light-emittinglayer material, the first dopant and the second dopants, at
least one thereof is preferably from 100 to 1500, in
particular preferably from 500 to 1000. All of the

5 molecular weights are in particular preferably from 100 to
1500. If the molecular weights are smaller than 100, a
stable thin film may not be formed. If the molecular
weights are larger than 1500, the vapor deposition
temperature may be too high so that the compounds may
thermally decompose.

[0034]

About the method for forming the light emitting layer, the light emitting layer can be formed by making an organic light-emitting material wherein the light-emitting-layer

15 material, the first dopant and the second dopant are mixed into a thin film by vacuum deposition, sputtering, spin coating, casting or some other method. The layer is preferably formed by vacuum deposition since a homogeneous film is easily obtained and pinholes are not easily

20 generated.

When the thin film is formed, the light-emitting-layer material, the first dopant and the second dopant are preferably mixed into a homogeneous state.

The amounts of the first and second dopants added to

25 the whole of the light emitting layer are each preferably

20% or less by weight, in particular preferably from 1 to

10% by weight. If each of the amounts is more than 20% by

weight, the concentration of the dopant is too high so that
the luminescent efficiency may lower.

A compound other than the light-emitting-layer material, the first dopant and the second dopant may be added to the light emitting layer. For example, a third dopant may be added thereto.

In the light emitting layer, at least one kind of electrons and holes is preferably transported, and both kinds of them are more preferably transported. As described above, specifically, it is preferred to use, as the light-emitting-layer material, a mixture of an electron transmitting first light-emitting-layer material and a hole transmitting second light-emitting-layer material.

[0036]

15

As discussed previously, the organic EL element of the invention has an emitting layer between a pair of electrodes.

The specific structure of the organic EL element of the invention include the following:

- i) Anode/emitting layer/cathode,
- ii) Anode/hole injecting layer/emitting layer/cathode,
- 20 iii) Anode/emitting layer/electron injecting layer/cathode,
 - iv) Anode/hole injecting layer/emitting layer/electron injecting layer/cathode,
- v) Anode/organic semiconductor layer/emitting
 25 layer/cathode,
 - vi) Anode/organic semiconductor layer/electron barrier layer/emitting layer/cathode,
 - vii) Anode/organic semiconductor layer/emitting layer/adhesion improving layer/cathode,
- viii) Anode/hole injecting layer/hole transporting

layer/emitting layer/electron injecting layer/cathode,

- ix) Anode/insulator layer/emitting layer/insulator layer/cathode,
- x) Anode/inorganic semiconductor layer/insulator
- 5 layer/emitting layer/insulator layer/cathode,
 - xi) Anode/organic semiconductor layer/insulator layer/emitting layer/insulator layer/cathode,
 - xii) Anode/insulator layer/hole injecting layer/hole
 transporting layer/emitting layer/insulator layer/cathode,
 and
 - xiii) Anode/insulator layer/hole injecting layer/hole transporting layer/emitting layer/electron injecting layer/cathode.

Usually, the structure viii) out of these is 15 preferably used.

[0037]

10

Materials commonly used for parts of an organic EL element other than an emitting layer, whose materials have been described above, can be used when the organic EL element of the invention is produced.

Specific examples of the materials are described in detail below.

[0038]

The organic EL element of the present invention is

formed on a transparent substrate. The transparent
substrate is a substrate for supporting the organic EL
element, and is preferably a flat or smooth substrate
having a transmittance of 50% or more to light rays within
visible ranges of 400 to 700 nm.

30 Specific examples thereof include a glass plate and a

polymer plate. Examples of the glass plate include sodalime glass, barium/strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer 5 plate include polycarbonate, acrylic polymer, polyethylene terephthalate, polyethersulfide, and polysulfone.

[0039]

An anode is preferably made of an electrode material with a large work function (4 eV or more), which is a metal, alloy, electroconductive compound or mixture thereof.

Specific examples of the electrode materials include conductive materials such as metals e.g., Au, CuI, ITO, IZO, SnO₂ and ZnO.

The anode can be formed by forming these electrode

15 materials into a thin film by vapor deposition, sputtering
or the like.

In the case where luminescence from the emitting layer is taken out through the anode, the transmittance of the anode to the luminescence is preferably more than 10%.

The sheet resistance of the anode is preferably several hundreds Ω/\Box or less. The film thickness of the anode, which is varied in accordance with the material thereof, is usually from 10 nm to 1 μ m, preferably from 10 to 200 nm.

25 [0040]

30

The hole injecting, transporting layer is a layer for helping the injection of holes into the emitting layer so as to transport holes to a light emitting region. The hole mobility thereof is large and the ionization energy thereof is usually as small as 5.5 eV or less. Such a hole

injecting, transporting layer is preferably made of a material which can transport holes to the emitting layer at a lower electric field intensity. The hole mobility thereof is preferably at least 10^{-4} cm²/V·second when an electric field of, e.g., 10^4 to 10^6 V/cm is applied.

The material for forming the hole injecting,
transporting layer is not particularly limited so long as
the material has the above-mentioned preferred natures.
The material can be arbitrarily selected from materials

which have been widely used as a hole transporting material
in photoconductive materials and known materials used in a
hole injecting layer of organic EL elements.

[0041]

Specific examples thereof include triazole derivatives 15 (see USP No. 3,112,197 and others), oxadiazole derivatives (see USP No. 3,189,447 and others), imidazole derivatives (see JP-B-37-16096 and others), polyarylalkane derivatives (see USP Nos. 3,615,402, 3,820,989 and 3,542,544, JP-B-45-555 and 51-10983, JP-A-51-93224, 55-17105, 56-4148, 55-108667, 55-156953 and 56-36656, and others), pyrazoline 20 derivatives and pyrazolone derivatives (see USP Nos. 3,180,729 and 4,278,746, JP-A-55-88064, 55-88065, 49-105537, 55-51086, 56-80051, 56-88141, 57-45545, 54-112637 and 55-74546, and others), phenylene diamine derivatives (see USP 25 No. 3,615,404, JP-B-51-10105, 46-3712 and 47-25336, JP-A-54-53435, 54-110536 and 54-119925, and others), arylamine derivatives (see USP Nos. 3,567,450, 3,180,703, 3,240,597, 3,658,520, 4,232,103, 4,175,961 and 4,012,376, JP-B-49-35702 and 39-27577, JP-A-55-144250, 56-119132 and 56-22437, 30 DE1,110,518, and others), amino-substituted chalcone

derivatives (see USP No. 3,526,501, and others), oxazole derivatives (ones disclosed in USP No. 3,257,203, and others), styrylanthracene derivatives (see JP-A-56-46234, and others), fluorenone derivatives (JP-A-54-110837, and others), hydrazone derivatives (see USP Nos. 3,717,462, JP-A-54-59143, 55-52063, 55-52064, 55-46760, 55-85495, 57-11350, 57-148749 and 2-311591, and others), stylbene derivatives (see JP-A-61-210363, 61-228451, 61-14642, 61-72255, 62-47646, 62-36674, 62-10652, 62-30255, 60-93455, 60-94462, 60-174749 and 60-175052, and others), silazane derivatives (USP No. 4,950,950), polysilanes (JP-A-2-204996), aniline copolymers (JP-A-2-282263), and electroconductive oligomers (in particular thiophene oligomers) disclosed in JP-A-1-211399.

15 [0042]

The above-mentioned substances can be used as the material of the hole injecting, transporting layer. The following are preferably used: porphyrin compounds (disclosed in JP-A-63-2956965 and others), aromatic tertiary amine compounds and styrylamine compounds (see USP No. 4,127,412, JP-A-53-27033, 54-58445, 54-149634, 54-64299, 55-79450, 55-144250, 56-119132, 61-295558, 61-98353 and 63-295695, and others), in particular, the aromatic tertiary amine compounds.

25 [0043]

30

The following can also be given as examples: 4,4'-bis(N-(1-naphthyl)-N-phenylamino)biphenyl (hereinafter abbreviated to NPD), which has in the molecule thereof two condensed aromatic rings, disclosed in USP No. 5,061,569, and 4,4',4''-tris(N-(3-methylphenyl)-N-

phenylamino)triphenylamine (hereinafter abbreviated to MTDATA), wherein three triphenylamine units are linked to each other in a star-burst form, disclosed in JP-A-4-308688.

Inorganic compounds such as aromatic dimethylidene

5 type compounds, p-type Si and p-type SiC can also be used
as the material of the hole injecting, transporting layer.

[0044]

The hole injecting, transporting layer can be formed by making the above-mentioned compound(s) into a thin film 10 by a known method, such as vacuum deposition, spin coating, casting or LB technique. The film thickness of the hole injecting, transporting layer is not particularly limited, and is usually from 5 nm to 5 µm. This hole injecting, transporting layer may be a single layer made of one or 15 more out of the above-mentioned materials. A hole injecting, transporting layer made of a compound different from that in another hole injecting, transporting layer may be laminated thereon.

In the invention, a hole injecting layer is preferably 20 formed between an anode and an emitting layer. A compound of which the hole injecting layer is made preferably contains a phenylene diamine structure.

[0045]

The organic semiconductor layer is a layer for helping

25 the injection of holes or electrons into the emitting layer,
and is preferably a layer having an electroconductivity of

10⁻¹⁰ S/cm or more. The material of such an organic
semiconductor layer may be an electroconductive oligomer,
such as thiophene-containing oligomer or arylamine
30 containing oligomer disclosed in JP-A-8-193191, an

electroconductive dendrimer such as arylamine-containing dendrimer.

[0046]

The electron injecting layer is a layer for helping

the injection of electrons into the emitting layer, and has a large electron mobility. The adhesion improving layer is a layer made of a material particularly good in adhesion to the cathode among such electron injecting layers. The material used in the electron injecting layer is preferably a metal complex of 8-hydroxyquinoline or a derivative thereof.

Specific examples of the above-mentioned metal complex of 8-hydroxyquinoline or derivative include metal chelate oxynoid compounds each containing a chelate of oxine (generally, 8-quinolinol or 8-hydroxyquinoline).

For example, Alq can be used in the electron injecting layer.

Examples of the oxadiazole derivative include electron transferring compounds represented by the following general formulas [1] to [3]:

[0047]

15

20

$$Ar^{1} - Ar^{2}$$
 [1]

$$Ar^3 \xrightarrow{N-N} Ar^4 \xrightarrow{N-N} Ar^5$$
 [2]

wherein Ar¹, Ar², Ar³, Ar⁵, Ar⁶ and Ar⁹ each represent a substituted or unsubstituted aryl group and may be the same as or different from each other, and Ar⁴, Ar⁷ and Ar⁸ represent substituted or unsubstituted arylene groups and 5 may be the same as or different from each other.

[0048]

Examples of the aryl group include phenyl, biphenyl, anthranyl, perylenyl, and pyrenyl groups. Examples of the arylene group include phenylene, naphthylene, biphenylene, anthranylene, perylenylene, and pyrenylene groups.

Examples of the substituent include alkyl groups with 1 to 10 carbons, alkoxy groups with 1 to 10 carbons, and a cyano group. The electron transferring compounds are preferably ones having capability of forming a thin film.

Specific examples of the electron transferring compounds include the following:

[0049]

[0050]

5

An electron injection layer may be formed which is made of an alkali metal oxide, alkaline earth metal oxide, alkali metal halide or alkaline earth metal halide.

Specific examples thereof include lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, calcium oxide and calcium fluoride.

Furthermore, a small amount of an alkali metal or an alkaline earth metal may be added to an organic compound layer to form an electron injection region. The addition amount thereof is preferably from 0.1 to 10 mol%.

[0051]

For the cathode, the following may be used: an electrode substance made of a metal, an alloy or an electroconductive compound which has a small work function (4 eV or less), or a mixture thereof. Specific examples of the electrode substance include sodium, sodium-potassium alloy, magnesium, lithium, magnesium/silver alloy, aluminum/aluminum oxide, aluminum/lithium alloy, indium, and rare earth metals.

This cathode can be formed by making the electrode substance(s) into a thin film by vapor deposition, sputtering or some other method.

In the case where luminescence from the emitting layer is taken out through the cathode, it is preferred to make the transmittance of the cathode to the luminescence larger than 10%.

The sheet resistance of the cathode is preferably several hundreds Ω/\Box or less, and the film thickness thereof is usually from 10 nm to 1 μ m, preferably from 50 to 200 nm.

[0052]

- In the organic EL element, pixel defects based on leakage or a short circuit are easily generated since an electric field is applied to the super thin film. In order to prevent this, it is preferred to insert an insulator thin layer between the pair of electrodes.
- Examples of the material used in the insulator layer include aluminum oxide, lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, aluminum nitride, titanium oxide, silicon oxide, germanium oxide, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, and vanadium oxide.

A mixture or laminate thereof may be used. [0053]

The organic EL element can be produced by forming an 25 anode and an emitting layer, optionally forming a hole injecting layer and an electron injecting layer, and further forming a cathode by use of the materials and methods exemplified above. The organic EL element can be produced in the order reverse to the above, i.e., the order 30 from a cathode to an anode.

An example of the production of the organic EL element will be described below which has a structure wherein the following are successively formed over a transparent substrate: anode/hole injecting layer/emitting layer/electron injecting layer/cathode.

[0054]

10

First, a thin film made of an anode material is formed into a thickness of 1 μm or less, preferably 10 to 200 nm on an appropriate transparent substrate by vapor deposition, sputtering or some other method, thereby forming an anode.

Next, a hole injecting layer is formed on this anode. As described above, the hole injecting layer can be formed by vacuum deposition, spin coating, casting, LB technique, or some other method. Vacuum deposition is preferred since 15 a homogenous film is easily obtained and pinholes are not easily generated. In the case where the hole injecting layer is formed by vacuum deposition, conditions for the deposition are varied in accordance with the used compound (the material for the hole injecting layer), the crystal 20 structure or recombining structure of the hole injecting layer, and others. In general, the conditions are appropriately selected from the following: deposition source temperatures of 50 to 450° C, vacuum degrees of 10^{-7} to 10^{-3} torr, vapor deposition rates of 0.01 to 50 nm/second, substrate temperatures of -50 to 300°C, and film 25

[0055]

thicknesses of 5 nm to 5 μ m.

Next, an emitting layer is disposed on the hole injecting layer. The emitting layer can be formed by using a desired organic luminescent material and making the

material into a thin film by vacuum deposition, sputtering, spin coating, casting or some other method. Vacuum deposition is preferred since a homogenous film is easily obtained and pinholes are not easily generated. In the case where the emitting layer is formed by vacuum deposition, conditions for the deposition, which are varied dependently on the used compound, can be generally selected from conditions similar to those for the hole injecting layer.

10 [0056]

Next, an electron injecting layer is formed on this emitting layer. Like the hole injecting layer and the emitting layer, the layer is preferably formed by vacuum deposition in order to obtain a homogenous film.

15 Conditions for the deposition can be selected from conditions similar to those for the hole injecting layer and the emitting layer.

Lastly, a cathode is laminated thereon to obtain an organic EL element.

The cathode is made of a metal, and vapor deposition or sputtering may be used. However, vacuum deposition is preferred in order to protect underlying organic layers from being damaged when the cathode film is formed.

[0057]

About the organic EL element production that has been described so far, it is preferred that the formation from the anode to the cathode is continuously carried out, using only one vacuuming operation.

In the case where a DC voltage is applied to the organic EL element, luminescence can be observed when the

polarity of the anode and that of the cathode are made positive and negative, respectively, and the voltage of 5 to 40 V is applied. Even if a voltage is applied thereto in the state that the polarities are reverse to the above, no electric current flows so that luminescence is not generated at all. In the case where an AC voltage is applied thereto, uniform luminescence can be observed only when the polarity of the anode and that of the cathode are made positive and negative, respectively. The waveform of the AC to be applied may be arbitrarily selected.

[0058]

The organic EL element of the invention has an improved luminance, light emitting efficiency or durability. Thus, the organic EL element is suitably used as a light source such as a flat illuminant of wall-hanging television and a backlight of a display, a display of cell phone and PDA, a car navigation, an instrument panel of car and an illumination.

[0059]

20 [Examples]

The invention will be explained with reference to examples hereinafter, while the invention shall not be limited to the following examples.

In each example, the properties of compounds used and compound the com

(1) Valence electron level: It was measured with a photoelectron spectroscopic instrument (AC-1, Riken Keiki Co., LTD) in air. Specifically, light was irradiated to a 30 material and the amount of electrons generated by charge separation was measured.

- (2) Energy gap: It was measured based on an absorption edge of an absorption spectrum in benzene. Specifically, an absorption spectrum was measured with a commercially available ultraviolet-visible spectrophotometer. The energy gap was calculated from the wavelength in which the spectrum begins to raise.
- (3) Conduction level: It was calculated from the measured values of a valence electron level and an energy gap.
- 10 (4) Luminance: It was measured with a spectro radio luminance meter (CS-1000, MINOLTA Co., Ltd.).
 - (5) Efficiency: It was calculated from a current density and a luminance (100 nit) measured with a multimeter.
- (6) Half life: For an element sealed, it was measured at 15 room temperature at 1000 nit of an initial luminance and constant current.

The formulas of compounds used in examples and comparative examples are shown below.

The valence electron levels, conduction levels and 20 energy gaps of these compounds are shown to Table 1. [0060]

$$\begin{array}{c} Me \\ N \\ - C \\ -$$

NPB

D5

D6

[0061]

Table 1

Compound	Valence electron level (EC)	Conduction Level (EC)	Energy Gap (EC)
Н1	5.7	2.7	3.0
Н2	5.7	2.8	2.9
Н3	5.7	2.7	3.0
D1	5.5	2.7	2.8
D2	5.4	2.6	2.8
D3	5.4	2.5	2.9
D4	5.6	3.0	2.6
D5	5.2	3.1	2.1
D6	5.3	3.1	2.2
NPB	5.4	2.3	3.1

[0062]

5 Example 1

A grass substrate of 25 mm by 75 mm by 1.1 mm with an ITO transparence electrode (GEOMATEC CO., LTD.) was subjected to ultrasonic cleaning with isopropyl alcohol for 5 minutes, and cleaned with ultraviolet rays and ozone for 30 minutes.

The resultant substrate was mounted on a substrate holder in a vacuum deposition device. First, a film of N,N'-bis(N,N'-diphenyl-4-aminophenyl)-N,N'-diphenyl-4,4'-diamino-1,1'-biphenyl (TPD232 film), having a film thickness of 60 nm, was formed so as to cover the surface of the transparence electrode on which transparence electrode lines were formed. The TPD232 film functions as a hole injecting layer.

After forming the TPD232 film, a layer of N,N,N',N'-

tetra(4-biphenyl)-diaminobiphenylene (TBDB layer), having a film thickness of 20 nm, was formed on the TPD232 film. The film functions as a hole transporting layer.

Thereafter H1 as a light-emitting-layer material, D1 as a first dopant and D2 as a second dopant were deposited to form a 40nm-thick film such that D1:D2:H1 (weight ratio) was 1:1:40. The film functions as a light emitting layer.

Next, an Alq film with a film thickness of 10 nm was formed on the film. The Alq film functions as an electron injecting layer.

Thereafter Alq and lithium as a reductive dopant (lithium source: Saesgetter Co., Ltd.) were co-deposited to form an Alq:Li film (film thickness of 10nm) as an electron injecting layer (cathode). Metal aluminum was deposited on this Alq:Li film to form a metallic cathode, thereby forming an organic EL element.

[0063]

Example 2

An organic EL element was produced in the same way as 20 Example 1 except that H2 was used instead of H1, and D3 was used instead of D1.

[0064]

Example 3

An organic EL element was produced in the same way as 25 Example 2 except that D1 was used instead of D2.

[0065]

Example 4

An organic EL element was produced in the same way as Example 1 except that D2 was used instead of D1, and D4 was used instead of D2.

[0066]

Example 5

An organic EL element was produced in the same way as Example 1 except that H3 was used instead of H1.

5 [0067]

Comparative Example 1

An organic EL element was produced in the same way as Example 1 except that D2 was not used.

[0068]

10 Comparative Example 2

An organic EL element was produced in the same way as Example 1 except D1 was not used.

[0069]

Comparative Example 3

An organic EL element was produced in the same way as Example 1 except that NPB was used instead of D2.

[0070]

Comparative Example 4

An organic EL element was produced in the same way as 20 Example 2 except that D1 was not used.

[0071]

Comparative Example 5

An organic EL element was produced in the same way as Example 2 except that D3 was not used.

25 [0072]

Comparative Example 6

An organic EL element was produced in the same way as Example 3 except that D3 was not used.

[0073]

30 Comparative Example 7

An organic EL element was produced in the same way as Example 4 except that D2 was not used.

[0074]

Comparative Example 8

5 An organic EL element was produced in the same way as Example 5 except that D2 was not used.

[0075]

Comparative Example 9

An organic EL element was produced in the same way as $10\,$ Example 5 except that D1 was not used.

[0076]

Comparative Example 10

An organic EL element was produced in the same way as Example 1 except that D5 was used instead of D1, and D6 was used instead of D2.

[0077]

Comparative Example 11

An organic EL element was produced in the same way as Example 1 except that D5 was used instead of D1, and NPB 20 was used instead of D2.

In the organic EL elements produced in Examples 1 to 5 and Comparative Examples 1 to 11, light-emitting-layer materials used; and each kind, valence electron level and conduction level of the first dopants and the second dopants used are shown in Table 2.

[0078]

Table 2

25

Light emitting layer material	I First donant	Second dopant	Туре
1 2 3 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2			"-

Exam. 1	Н1	EV0:5.7 EC0:2.7 Eg0:3.0	D1	EV1:5.5 EC1:2.7 Eg1:2.8	D2	EV2:5.4 EC2:2.6 Eg2:2.8	①
Exam. 2	Н2	EV0:5.7 EC0:2.8 Eg0:2.9	D1	EV1:5.5 EC1:2.7 Eg1:2.8	D3	EV2:5.4 EC2:2.5 Eg2:2.9	2
Exam. 3	Н2	EV0:5.7 EC0:2.8 Eg0:2.9	D2	EV1:5.4 EC1:2.6 Eg1:2.8	D3	EV2:5.4 EC2:2.5 Eg2:2.9	2
Exam. 4	Н1	EV0:5.7 EC0:2.7 Eg0:3.0	D4	EV1:5.6 EC1:3.0 Eg1:2.6	D2	EV2:5.4 EC2:2.6 Eg2:2.8	①
Exam. 5	н3	EV0:5.7 EC0:2.7 Eg0:3.0	D1	EV1:5.5 EC1:2.7 Eg1:2.8	D2	EV2:5.4 EC2:2.6 Eg2:2.8	1
Com. Exam. 1	Н1	EV0:5.7 EC0:2.7 Eg0:3.0	D1	EV1:5.5 EC1:2.7 Eg1:2.8	none	·	
Com. Exam. 2	н1	EV0:5.7 EC0:2.7 Eg0:3.0	none		D2	EV2:5.4 EC2:2.6 Eg2:2.8	
Com. Exam. 3	н1	EV0:5.7 EC0:2.7 Eg0:3.0	D1	EV1:5.5 EC1:2.7 Eg1:2.8	NPB	EV2:5.4 EC2:2.3 Eg2:3.1	
Com. Exam. 4	Н2	EV0:5.7 EC0:2.8 Eg0:2.9	none		D3	EV2:5.4 EC2:2.5 Eg2:2.9	
Com. Exam. 5	Н2	EV0:5.7 EC0:2.8 Eg0:2.9	D1	EV1:5.5 EC1:2.7 Eg1:2.8	none		
Com. Exam. 6	Н2	EV0:5.7 EC0:2.8 Eg0:2.9	none		D2	EV1:5.4 EC1:2.6 Eg1:2.8	
Com. Exam. 7	н1	EV0:5.7 EC0:2.7 Eg0:3.0	D4	EV1:5.6 EC1:3.0 Eg1:2.6	none		
Com. Exam. 8	н3	EV0:5.7 EC0:2.7 Eg0:3.0	D1	EV1:5.5 EC1:2.7 Eg1:2.8	none		
Com. Exam. 9	н3	EV0:5.7 EC0:2.7 Eg0:3.0	none		D2	EV2:5.4 EC2:2.6 Eg2:2.8	

Com. Exam. 10	Н1	EV0:5.7 EC0:2.7 Eg0:3.0	D5	EV1:5.2 EC1:3.1 Eg1:2.1	D6	EV2:5.3 EC2:3.1 Eg2:2.2	
Com. Exam. 11	Н1	EV0:5.7 EC0:2.7 Eg0:3.0	D5	EV1:5.2 EC1:3.1 Eg1:2.1	NPB	EV2:5.4 EC2:2.3 Eg2:3.1	

Type

5

- ① EV0 > EV1, EV0 > EV2, EC0 \geq EC2, Eg0 > Eg1 and Eg0 > Eg2
- ② EV0 > EV1, EV0 > EV2, EC0 \geq EC1 and EC0 \geq EC2 [0079]

Evaluation example

The organic EL elements produced in examples 1 to 5 and comparative examples 1 to 11, were evaluated for a luminescent efficiency at a luminance near 100 nit, and a 10 half life at 1000 nit of an initial luminance. Evaluation results were shown in Table 3.

[0080]

Table 3

	Type	Driving voltage (V) @100 nit	Light emitting efficiency (cd·A) @100 nit	Half life (h) @1000 nit	Color of emitted light
Exam. 1	①	5.0	12.3	15000	blue
Com. Exam. 1		5.1	12.1	7000	blue
Com. Exam. 2		5.5	6.0	6000	pure blue
Com. Exam. 3		5.2	12.0	7000	blue
Exam. 2	2	4.9	12.2	8000	blue
Com. Exam. 4		5.6	4.4	800	pure blue
Com. Exam. 5		5.1	8.3	3000	blue

1	1	1	1	i	1
Exam. 3	2	5.4	6.3	3000	pure blue
Com. Exam. 4		5.6	4.4	800	pure blue
Com. Exam. 6		5.6	4.7	700	pure blue
Exam. 4	①	5.5	11.2	20000	yerrow
Com. Exam. 2		5.5	6.0	6000	pure blue
Com. Exam. 7		5.4	9.3	12000	yerrow
Exam. 5	①	4.6	9.8	3700	blue
Com. Exam. 8		4.7	9.4	2800	blue
Com. Exam. 9		5.2	5.0	500	pure blue
Exam. 6	①	7.2	7.1	8000	orange
Com. Exam. 10		8.0	6.4	3000	orange
Com. Exam. 11		7.7	6.2	5000	orange

Type

5

- ① EV0 > EV1, EV0 > EV2, EC0 \geq EC2, Eg0 > Eg1 and Eg0 > Eg2
- ② EV0 > EV1, EV0 > EV2, EC0 \geq EC1 and EC0 \geq EC2

[0081]

The results of Example 1 and Comparative Examples 1 to 3, Example 2 and Comparative Examples 4 and 5, Example 3 and Comparative Examples 4 and 6, Example 4 and Comparative 10 Examples 1 and 7, Example 5 and Comparative Examples 8 and 9, shown in Table 3, disclosed that the element of the present invention had a high light emitting efficiency and a remarkably long durability.

[0082]

[Advantageous Effect of the Invention]

The present invention can provide an organic electroluminescence element having a high luminance, a high efficiency and a long durability.

[Brief Description of the Drawings]

- Fig. 1 is the energy diagram of a light emitting layer of an organic EL element of a first embodiment of the invention.
- Fig. 2 is the energy diagram of a light emitting layer of an organic EL element of a second embodiment of the invention.
 - Fig. 3 is a sectional view of an ordinary organic EL element.
- Fig. 4 is the energy diagram of an organic EL element.
 - Fig. 5 is the energy diagram of an organic EL element to which a dopant is added.
 - Fig. 6 is the energy diagram of an organic EL element to which two kinds of dopants are added.
- 20 [Description of the Reference Numerals]
 - EVO the valence electron level of a light-emitting-layer material
 - ECO the conduction level of a light-emitting-layer material
- 25 EV1 the valence electron level of a first dopant
 - EC1 the conduction level of a first dopant
 - EV2 the valence electron level of a second dopant
 - EC2 the conduction level of a second dopant
 - Eg0 the energy gap of a light-emitting-layer material
- 30 Egl the energy gap of a first dopant

Eg2 the energy gap of a second dopant

- 5 the energy level difference between EVO and EV1
- 6 the energy level difference between ECO and EC2
- 10 an organic EL element
- 5 12 an anode
 - 13 a cathode
 - 14 a light-emitting-layer

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

[NAME OF THE DOCUMENT] ABSTRACT OF THE DISCLOSURE [ABSTRACT]

[SUBJECT] An organic electroluminescence element having a high luminance, a high efficiency and a long durability 5 is provided.

[SOLVING MEANS] An organic electroluminescence element including a pair of electrodes, and a light emitting layer provided between the pair of electrodes, the layer including a light-emitting-layer material, a first dopant and a second dopant that satisfy the following relations,

- (A) EV0 > EV1 and EV0 > EV2
- (B) EC0 > EC2

10

(C) EG0 > EG1 and EG0 > EG2

wherein EVO, EV1 and EV2 are the valence electron levels of the light-emitting-layer material, the first dopant and the second dopant, respectively; ECO and EC2 are the conduction levels of the light-emitting-layer material and the second dopant, respectively; and EGO, EG1 and EG2 are the energy gaps of the light-emitting-layer material, the first dopant and the second dopant, respectively.

[SELECTED DRAWING] Fig. 1