微积分I

3学分、外招

数学系王伟文

教材及参考书

教材

• 微积分I, 第五版, 赵树嫄, 中国人民大学出版社, 2021

参考书

微积分I学习指导,第五版,赵树嫄等编著,中国人民大学出版社,2022(教材配套)

课程要求

按时出勤、提交作业,有事请假。根据教学规定<mark>缺</mark> 勤/缺作业超过1/3不能参加期末考试;

上课请带上手机和草稿纸

雨课堂将是本课程随堂练习、问答、信息发布的重要平台,请各位同学务 必注册认证

微信上搜索雨课堂小程序,认证登陆后找到课程: 2024-微积分I

作业要求

- 每次提交作业不能超过3张A4纸,每一张标注学号和 姓名;
- · 每两周提交一次作业,提交日期随作业公布;
- 不符合提交要求将拒收:
- 除了解答正确与否,作业完成度也很重要的评价标准。

完成度>准确性

(一) 集合的概念

把一些**确定的、彼此不同的事物**作为一个整体来看待时,这个整体便称为是一个**集**合。

组成集合的那些个体称为集合的元素。

例如 某游戏中,某个英雄的所有技能构成一个集合,单独的技能即为该集合的元素。

(一) 集合的概念

通常用大写字母 $A \times B \times C$ 等表示集合,用小写字母 $a \times b \times c$ 等表示集合的元素。

如果a是集合A的元素,则记作 $a \in A$,读作a属于A;如果a不是集合A的元素,则记作 $a \notin A$,读作a不属于A。

(二) 集合的表示

(1) <u>列举法</u>:按任意顺序列出该集合的所有元素,并用 花括号"{}"括起来

亚瑟技能={誓约之盾,回旋打击,圣剑裁决,圣光守护}

(2) <u>描述法</u>:集合A的任意一个元素a满足都某一个条件或法则P(a),则集合A可以记为 $A = \{a | P(a)\}$

某一直线上的所有点: $\{(x,y)|x-y=0\}$

偶数: $\{x | x = 2n, n$ 为整数 $\}$

(三)全集、空集与子集

(1) 全集: 所有研究对象构成的集合,是一个相对的概念,依赖于研究对象,一般用U表示。

研究对象是咱们班的同学 VS 研究对象是咱们学院的同学

(三)全集、空集与子集

(1) 全集: 所有研究对象构成的集合,是一个相对的概念,依赖于研究对象,一般用U表示。

研究对象是咱们班的同学 VS 研究对象是咱们学院的同学

(2) 空集:空集不包括任何元素,记为⊘。

(三)全集、空集与子集

(1) 全集: 所有研究对象构成的集合,是一个相对的概念,依赖于研究对象,一般用U表示。

研究对象是咱们班的同学 VS 研究对象是咱们学院的同学

(2) 空集:空集不包括任何元素,记为⊘。

(3) <u>子集</u>: 所有属于集合A的元素均属于集合B,则称集合A包含于集合B,集合A是集合B的子集,记为 $A \subseteq B$,且若有 $A \neq B$ 则称集合A是集合B的真子集,记为 $A \subset B$ 。

(三)全集、空集与子集

关于子集的几个论断

- *A* ⊆ *A*, 任意集合是其自身的子集
- ∅⊆ *A*, 空集是任何集合的子集
- 若 $A \subseteq B$, $B \subseteq C$, 则 $A \subseteq C$

如何判断两个集合是否相等?

(四)集合运算:并、交、补、差

• <u>并集</u>:由所有属于集合A和集合B的元素所构成的集合 称为集合A与B的<u>并集</u>,记为 $A \cup B$ 。

如何用描述法表示?

(四)集合运算:并、交、补、差

• <u>并集</u>:由所有属于集合A和集合B的元素所构成的集合 称为集合A与B的<u>并集</u>,记为 $A \cup B$ 。

基本性质:

$$A \cup \emptyset = A$$
, $A \cup U = U$, $A \cup A = A$
 $A \subseteq A \cup B$, $B \subseteq A \cup B$

(四)集合运算:并、交、补、差

• $\underline{\mathbf{c}}$: 由**既属于**集合A**也属于**集合B的元素所构成的集合称为集合A与B的 $\underline{\mathbf{c}}$ 集,记为 $A \cap B$ 。

基本性质: $A \cap B \subseteq A$, $A \cap B \subseteq B$

$$A \cap \emptyset = \emptyset$$
, $A \cap U = A$, $A \cap A = A$

(四)集合运算:并、交、补、差

• $\underline{\underline{E}}$: 由属于集合A $\underline{\underline{C}}$ $\underline{\underline{C}$ $\underline{\underline{C}}$ $\underline{\underline$

基本性质: $A-B=\emptyset \Leftrightarrow A\subseteq B$

(四)集合运算:并、交、补、差

• $\frac{\mathbf{i} \cdot \mathbf{k}}{\mathbf{k}}$: 在全集U中,不属于集合A的元素所构成的集合 称为集合A补集,记为 \overline{A} 。

基本性质: $A \cup \overline{A} = U$, $A \cap \overline{A} = \emptyset$

(四)集合运算:并、交、补、差

交换律:
$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

结合律:
$$(A \cup B) \cup C = A \cup (B \cup C)$$

$$(A \cap B) \cap C = A \cap (B \cap C)$$

分配律:
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

对偶律:
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

(五)笛卡尔乘积

行集: $A = \{1, 2, 3, ..., 14\}$ 列集: $B = \{1, 2, 3, ..., 29, 30\}$

座位: $A \times B = \{(1,1), (1,2), ..., (14,30)\}$ 笛卡尔乘积

 $(2,1) \neq (1,2)$

(五)笛卡尔乘积

• $\underline{\text{thermal in } B_1}$: 给定两个集合 $A \setminus B_1$ 对于任意 $x \in A_1, y \in A_2$ B, 所有**二元<u>有序</u>组**(x,y)构成的集合,称为集合A与集 合B的<u>笛卡尔乘积</u>,记为 $A \times B$,即

$$A \times B = \{(x, y) | x \in A, y \in B\}$$

(一)实数与数轴

有理数: $\frac{1}{q}$ 其中p, q为既约

整数,且 $q \neq 0$.

数轴 0 1 x

实数与数轴上的点是一一对应的。

(二)绝对值

设x为一实数,则其绝对值定义为

$$|x| = \begin{cases} x, x \ge 0 \\ -x, x < 0 \end{cases}$$

几何意义: |x|表示数轴上点x到原点的距离。

|x - y|表示数轴上两点x和y之间的距离。

(二)绝对值

绝对值不等式的解:

$$|x| < a \Leftrightarrow -a < x < a;$$
 $|x| > a \Leftrightarrow x < -a \xrightarrow{} x > a$
 $|a| = \sqrt{a^2};$

(二)绝对值

$$|3x| < 3$$
 \longrightarrow $-3 < 3x < 3$ \longrightarrow $-1 < x < 1$

$$|x| > 3$$
 $x > 3$ 或 $x < -3$

(三)区间

我们都知道数轴上的第一个点对应一个实数,那么 数轴上的一段怎么表示?

(三)区间

我们都知道数轴上的第一个点对应一个实数,那么 🕡 🖜 数轴上的一段怎么表示?

开区间 $(a,b) \stackrel{\text{def}}{=} \{x | a < x < b\}$

闭区间 $[a,b] \stackrel{\text{def}}{=} \{x | a \le x \le b\}$

(三)区间

半开区间 $[a,b) \stackrel{\text{def}}{=} \{x | a \leq x < b\}$

半开区间 $(a,b] \stackrel{\text{def}}{=} \{x | a < x \le b\}$

(三)区间

无穷区间

$$[a, +\infty) \stackrel{\text{def}}{=} \{x | x \ge a\}$$

$$(-\infty, b) \stackrel{\text{def}}{=} \{x | x < b\}$$

$$(-\infty, +\infty) \stackrel{\text{def}}{=} \{x | x \in R\}$$

(四)邻域

我们都知道数轴上的第一个点对应一个实数,那么 🙃 怎么在数轴上表示某一个点的邻居?

实数x的左邻右里

(四)邻域

邻域 在数轴上,以点 x_0 为中心,以 $\delta(>0)$ 为半径的**开区间** $(x_0 - \delta, x_0 + \delta)$,称为 x_0 的**邻域**,记为 $U(x_0, \delta)$ 。 $U(x_0, \delta) \stackrel{\text{def}}{=} \{x | x_0 - \delta < x < x_0 + \delta\}$

(四)邻域

空心邻域 在数轴上,以点 x_0 为中心,以 δ (> 0)为半径,且不包括 x_0 的**开区间**($x_0 - \delta$, x_0) \cup (x_0 , $x_0 + \delta$), 称为 x_0 的空心邻域, 记为 $\dot{U}(x_0,\delta)$ 。

$$\dot{U}(x_0, \delta) \stackrel{\text{def}}{=} \{x | x_0 - \delta < x < x_0 \vec{\mathbf{x}} x_0 < x < x_0 + \delta\}$$

(一) 函数概念

- UP主收入 ~ 视频播放量
- 超市利润成本

(一)函数概念

海拔(米)	气压 (mb)
-400	1062.2
-200	1037.5
0	1013.3
200	989.5
400	966.1
600	943.2
800	920.8
1000	898.7
1200	877.2
1400	856
1600	835.2
1800	814.9
2000	795
2200	775.4
2400	756.3
2600	737.5
2800	719.1
3000	701.1
3200	683.4
3400	666.2
3600	649.2
3800	632.6
4000	616.4
4200	600.5
4400	584.9
4600	569.7

$$P_a = 101.3 \times \left[1 - 0.0255 \times \frac{H}{1000} \left(\frac{6357}{6357 + \frac{H}{1000}} \right) \right]^{5.25}$$

式中, P_a ——当地平均大气压, kPa; H --当地海拔高度, m。

自变量

(一) 函数概念

若D是一个非空集合,设有一个对应规则f,使得每一个 $x \in D$ 都有一个唯一确定的实数y与之对应,则称f为定义在D上的一个<u>函数关系</u>,或称变量y是变量x的函数,记作y = f(x), $x \in D$ 。

(一) 函数概念

若D是一个非空集合,设有一个对应规则f,使得每一个 $x \in D$ 都有一个唯一确定的实数y与之对应,则称f为定义在D上的一个<u>函数关系</u>,或称变量y是变量x的函数,记作y = f(x), $x \in D$ 。

- · 变量x称为自变量,变量y称为因变量
- 集合D称为函数f的定义域,记为D(f)
- *f* 所有可能的取值构成的集合称为该函数的<u>值域</u>,记为

$$R_f = f(D) = \{y | y = f(x), x \in D\}$$

(一)函数概念

若D是一个非空集合,设有一个对应规则f,使得每一个 $x \in D$ 都有一个唯一确定的实数y与之对应,则称f为定义在D上的一个<u>函数关系</u>,或称变量y是变量x的函数,记作y = f(x), $x \in D$ 。

- 变量x称为<u>自变量</u>,变量y称为因变量
- 集合D称为函数f的<u>定义域</u>,记为D(f)
- · f所有可能的取值构成的集合称为该函数的值域,记为

$$R_f = f(D) = \{y | y = f(x), x \in D\}$$

函数由定义域与对应规则这两个要素确定!!!

(二)函数的定义域

一些常见函数的自然定义域

•
$$y = \sqrt{x}, x \ge 0$$

•
$$y = \log x$$
, $x > 0$

•
$$y = \frac{1}{x}$$
, $x \neq 0$

(二)函数的定义域

例1 求函数 $y = \sqrt{3x - 2}$ 的定义域

(二)函数的定义域

例1 求函数 $y = \sqrt{3x - 2}$ 的定义域

解由函数的自然定义域知

$$3x - 2 \ge 0$$

故该函数的定义域为 $x \ge \frac{2}{3}$.

(二)函数的定义域

例1 求函数
$$y = \frac{1}{\log_{10}(3x-2)}$$
的定义域

(二)函数的定义域

例1 求函数
$$y = \frac{1}{\log_{10}(3x-2)}$$
的定义域

解由函数的自然定义域知

$$3x - 2 > 0$$

且

$$\log_{10}(3x-2) \neq 0$$
, $\mathbb{I} 3x - 2 \neq 1$

$$\begin{cases} 3x-2>0\\ 3x-2\neq 1 \end{cases}$$
, 故 $x>\frac{2}{3}$ 且 $x\neq 1$,

该函数的定义域为 $(\frac{2}{3},1) \cup (1,+\infty)$

(二)函数的定义域

例2 判断函数 $y = x = 5y = \frac{x^2}{x}$ 是否是相同的函数关系

例3 判断函数y = x = 5 与 $y = \sqrt{x^2}$ 是否是相同的函数关系

(二)函数的定义域

例2 判断函数 $y = x = 5y = \frac{x^2}{x}$ 是否是相同的函数关系

解:不是,因为定义域不同,前者 $D(f) = (-\infty, +\infty)$,

后者 $D(f) = (-\infty, 0)U(0, +\infty)$

例3 判断函数 $y = x = \sqrt{x^2}$ 是否是相同的函数关系

解:不是,因为对应法则不同,前者y = f(x) = x

后者y = |x|

(三)分段函数

<u>分段函数</u> 在定义域内不能用单一的对应法则表示自变量x与因变量y的对应关系

(三)分段函数

例如,
$$f(x) = \begin{cases} x^2 - 1, & x \le 0 \\ 2x - 1, & x > 0 \end{cases}$$

注意: 分段函数在其定义域内表示一个函数,而不是几个函数。

(三)建立函数关系例题

例4 某工厂生产某产品,每日最多生产100单位。它的日固定成本为130元,生产一个单位产品的可变成本为6元。求该厂日总成本函数及平均单位成本函数。

(三)建立函数关系例题

例4 某工厂生产某产品,每日最多生产100单位。它的日固定成本为130元,生产一个单位产品的可变成本为6元。求该厂日总成本函数及平均单位成本函数。

解 设日总成本为C, 平均单位成本为 \bar{C} , 日产量为x, 由题设知 $x \leq 100$ 。

日总成本由固定成本与可变成本组成, 故

$$C = 130 + 6x, x \in [0, 100]$$

平均单位成本即为日总成本与日产量之比,

$$\bar{C} = \frac{130 + 6x}{x} = \frac{130}{x} + 5, x \in (0, 100]$$