# Data Mining - Lab 4

Huỳnh Thị Thắm - 18110209

```
In [1]: # import basic libraries
import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
# import plot libraries
import seaborn as sns
import matplotlib.pyplot as plt
```

In [3]: path='Dataset/telecom\_churn.csv'
df\_customer=pd.read\_csv(path)
df\_customer.head(10)

### Out[3]:

|   | State | Account length |     | International<br>plan | Voice<br>mail<br>plan | Number<br>vmail<br>messages | Total<br>day<br>minutes | Total<br>day<br>calls | Total<br>day<br>charge | Total<br>eve<br>minutes | Total<br>eve<br>calls | Total<br>eve<br>charge | Total<br>night<br>minutes | Total<br>night<br>calls | Total<br>night<br>charge | Total<br>intl<br>minutes | Total<br>intl<br>calls ( |
|---|-------|----------------|-----|-----------------------|-----------------------|-----------------------------|-------------------------|-----------------------|------------------------|-------------------------|-----------------------|------------------------|---------------------------|-------------------------|--------------------------|--------------------------|--------------------------|
| 0 | KS    | 128            | 415 | No                    | Yes                   | 25                          | 265.1                   | 110                   | 45.07                  | 197.4                   | 99                    | 16.78                  | 244.7                     | 91                      | 11.01                    | 10.0                     | 3                        |
| 1 | ОН    | 107            | 415 | No                    | Yes                   | 26                          | 161.6                   | 123                   | 27.47                  | 195.5                   | 103                   | 16.62                  | 254.4                     | 103                     | 11.45                    | 13.7                     | 3                        |
| 2 | NJ    | 137            | 415 | No                    | No                    | 0                           | 243.4                   | 114                   | 41.38                  | 121.2                   | 110                   | 10.30                  | 162.6                     | 104                     | 7.32                     | 12.2                     | 5                        |
| 3 | ОН    | 84             | 408 | Yes                   | No                    | 0                           | 299.4                   | 71                    | 50.90                  | 61.9                    | 88                    | 5.26                   | 196.9                     | 89                      | 8.86                     | 6.6                      | 7                        |
| 4 | OK    | 75             | 415 | Yes                   | No                    | 0                           | 166.7                   | 113                   | 28.34                  | 148.3                   | 122                   | 12.61                  | 186.9                     | 121                     | 8.41                     | 10.1                     | 3                        |
| 5 | AL    | 118            | 510 | Yes                   | No                    | 0                           | 223.4                   | 98                    | 37.98                  | 220.6                   | 101                   | 18.75                  | 203.9                     | 118                     | 9.18                     | 6.3                      | 6                        |
| 6 | MA    | 121            | 510 | No                    | Yes                   | 24                          | 218.2                   | 88                    | 37.09                  | 348.5                   | 108                   | 29.62                  | 212.6                     | 118                     | 9.57                     | 7.5                      | 7                        |
| 7 | МО    | 147            | 415 | Yes                   | No                    | 0                           | 157.0                   | 79                    | 26.69                  | 103.1                   | 94                    | 8.76                   | 211.8                     | 96                      | 9.53                     | 7.1                      | 6                        |
| 8 | LA    | 117            | 408 | No                    | No                    | 0                           | 184.5                   | 97                    | 31.37                  | 351.6                   | 80                    | 29.89                  | 215.8                     | 90                      | 9.71                     | 8.7                      | 4                        |
| 9 | WV    | 141            | 415 | Yes                   | Yes                   | 37                          | 258.6                   | 84                    | 43.96                  | 222.0                   | 111                   | 18.87                  | 326.4                     | 97                      | 14.69                    | 11.2                     | 5                        |
|   |       |                |     |                       |                       |                             |                         |                       |                        |                         |                       |                        |                           |                         |                          |                          |                          |

4

In [4]: path='Dataset/BigMartSales.csv'
df\_mart=pd.read\_csv(path)
df\_mart.head(10)

### Out[4]:

|   | Item_Identifier | Item_Weight | Item_Fat_Content | Item_Visibility | Item_Type                | Item_MRP | Outlet_Identifier | Outlet_Establishment_Year | Outlet_Size | Out |
|---|-----------------|-------------|------------------|-----------------|--------------------------|----------|-------------------|---------------------------|-------------|-----|
| 0 | FDA15           | 9.300       | Low Fat          | 0.016047        | Dairy                    | 249.8092 | OUT049            | 1999                      | Medium      |     |
| 1 | DRC01           | 5.920       | Regular          | 0.019278        | Soft Drinks              | 48.2692  | OUT018            | 2009                      | Medium      |     |
| 2 | FDN15           | 17.500      | Low Fat          | 0.016760        | Meat                     | 141.6180 | OUT049            | 1999                      | Medium      |     |
| 3 | FDX07           | 19.200      | Regular          | 0.000000        | Fruits and<br>Vegetables | 182.0950 | OUT010            | 1998                      | NaN         |     |
| 4 | NCD19           | 8.930       | Low Fat          | 0.000000        | Household                | 53.8614  | OUT013            | 1987                      | High        |     |
| 5 | FDP36           | 10.395      | Regular          | 0.000000        | Baking<br>Goods          | 51.4008  | OUT018            | 2009                      | Medium      |     |
| 6 | FDO10           | 13.650      | Regular          | 0.012741        | Snack<br>Foods           | 57.6588  | OUT013            | 1987                      | High        |     |
| 7 | FDP10           | NaN         | Low Fat          | 0.127470        | Snack<br>Foods           | 107.7622 | OUT027            | 1985                      | Medium      |     |
| 8 | FDH17           | 16.200      | Regular          | 0.016687        | Frozen<br>Foods          | 96.9726  | OUT045            | 2002                      | NaN         |     |
| 9 | FDU28           | 19.200      | Regular          | 0.094450        | Frozen<br>Foods          | 187.8214 | OUT017            | 2007                      | NaN         |     |

```
In [5]: #Consider dataset BigMart Sales
        print('Columns s name of BigMart Sales dataset: \n',df mart.columns)
        print('Columns s name of Customer Churn dataset: \n',df customer.columns)
        print('Shape of BigMart Sales dataset before drop null values: ',df mart.shape)
        print('Shape of Customer Churn dataset before drop null values: ',df customer.shape)
        df mart=df mart.dropna()
        df customer=df customer.dropna()
        print('Shape of BigMart Sales dataset after drop null values: ',df mart.shape)
        print('Shape of Customer Churn dataset afterr drop null values: ',df customer.shape)
        Columns s name of BigMart Sales dataset:
         Index(['Item Identifier', 'Item Weight', 'Item Fat Content', 'Item Visibility',
                'Item Type', 'Item MRP', 'Outlet Identifier',
               'Outlet Establishment Year', 'Outlet Size', 'Outlet Location Type',
               'Outlet Type', 'Item Outlet Sales'],
              dtvpe='object')
        Columns s name of Customer Churn dataset:
         Index(['State', 'Account length', 'Area code', 'International plan',
                'Voice mail plan', 'Number vmail messages', 'Total day minutes',
               'Total day calls', 'Total day charge', 'Total eve minutes',
               'Total eve calls', 'Total eve charge', 'Total night minutes',
               'Total night calls', 'Total night charge', 'Total intl minutes',
               'Total intl calls', 'Total intl charge', 'Customer service calls',
               'Churn'],
              dtvpe='object')
        Shape of BigMart Sales dataset before drop null values: (8523, 12)
        Shape of Customer Churn dataset before drop null values: (3333, 20)
        Shape of BigMart Sales dataset after drop null values: (4650, 12)
        Shape of Customer Churn dataset afterr drop null values: (3333, 20)
```

Với mỗi tiêu chí/ thuộc tính của dữ liệu CustomerChurn hay BigMartSales chọn một hình vẽ EDA phù hợp kèm theo nhận xét của bạn về tiêu chí/thuộc tính đó:

#### **BigMart Sales**

## In [6]: print('Type of each features of BigMart Sales: \n',df\_mart.dtypes)

Type of each features of BigMart Sales: Item\_Identifier object Item Weight float64 Item Fat Content object Item\_Visibility float64 Item\_Type object Item MRP float64 Outlet Identifier object Outlet\_Establishment\_Year int64 Outlet Size object Outlet Location Type object Outlet\_Type object Item Outlet Sales float64 dtype: object

```
In [7]: sns.catplot(x='Item_Fat_Content',kind='count',data=df_mart)
```

Out[7]: <seaborn.axisgrid.FacetGrid at 0x1d7c0a40b20>



Ta thấy, Item fat content có số lượng Low Fat là chiếm nhiều nhất và nhỏ nhất là low fat.

In [8]: | sns.catplot(x='Item\_Type',kind='count',data=df\_mart).set\_xticklabels(rotation=90)

Out[8]: <seaborn.axisgrid.FacetGrid at 0x1d7c64c7fa0>



Item type chiếm số lượng lớn nhất là Snack Foods và Fruits and Vegetables

```
In [14]: f = plt.figure(figsize=(20,8))
gs = f.add_gridspec(2, 3)

with sns.axes_style("darkgrid"):
    ax = f.add_subplot(gs[0, 0])
    sns.distplot(df_mart.Item_Weight,bins=20)

with sns.axes_style("white"):
    ax = f.add_subplot(gs[0, 1])
    sns.distplot(df_mart.Item_Visibility)

with sns.axes_style("ticks"):
    ax = f.add_subplot(gs[0, 2])
    sns.distplot(df_mart.Item_MRP,bins=10)

with sns.axes_style("white"):
    ax = f.add_subplot(gs[1, 0])
    sns.distplot(df_mart.Item_Outlet_Sales,bins=20)
```







Theo distplot thì Item\_weight trông không tuân theo phân phối chuẩn và tập trung chủ yếu là mức từ 5 tới 10. Ta thấy item\_visibility tuân theo phân phối chuẩn nhưng hơi lệch phải và tập trung chủ yếu ở mức từ 0.03 tới 0.05 Item\_MRP tập trung nhiều ở 75-100 và từ 150 - 200 Item\_Outlet\_sales tuân theo phân phối chuẩn và hơi lệch phải với đỉnh ở 1500 - 2000

```
In [15]: sns.catplot(x='Outlet_Size',kind='count',data=df_mart)
sns.catplot(x='Outlet_Location_Type',kind='count',data=df_mart)
```

Out[15]: <seaborn.axisgrid.FacetGrid at 0x1d7c67e1610>



h.,



Số lượng outlet\_size của Medium và Small khá đều nhau và tương tự cho Tier 1, tier 2 cho outlet\_location\_type

```
In [16]: #Outlet_Establishment_Year
sns.catplot(x='Outlet_Establishment_Year',kind='count',data=df_mart)
```

Out[16]: <seaborn.axisgrid.FacetGrid at 0x1d7c6b3b970>



Năm establish outlet là đều nhau với các năm là 1987, 1997, 1999, 2004, 2009

#### **Customer Churn**

```
In [17]: print('Type of each features of Customer Churn: \n',df_customer.dtypes)
```

```
Type of each features of Customer Churn:
 State
                            object
Account length
                            int64
Area code
                            int64
International plan
                           object
Voice mail plan
                           obiect
                            int64
Number vmail messages
Total day minutes
                          float64
Total day calls
                            int64
Total day charge
                          float64
Total eve minutes
                          float64
Total eve calls
                            int64
                          float64
Total eve charge
Total night minutes
                          float64
Total night calls
                            int64
Total night charge
                          float64
Total intl minutes
                          float64
Total intl calls
                            int64
Total intl charge
                          float64
Customer service calls
                            int64
Churn
                             bool
dtype: object
```

```
In [18]: f = plt.figure(figsize=(8,8))
    gs = f.add_gridspec(2, 3)
    ax = f.add_subplot(gs[0, 0])
    sns.distplot(df_customer['Total day minutes'],bins=20)
    ax = f.add_subplot(gs[0, 1])
    sns.distplot(df_customer['Total day calls'],bins=20)
    ax = f.add_subplot(gs[0, 2])
    sns.distplot(df_customer['Total day charge'],bins=20)
    ax = f.add_subplot(gs[1, 0])
    sns.distplot(df_customer['Total eve minutes'],bins=20)
    ax = f.add_subplot(gs[1, 1])
    sns.distplot(df_customer['Total eve calls'],bins=20)
    ax = f.add_subplot(gs[1, 2])
    sns.distplot(df_customer['Total eve charge'],bins=20)
    f.tight_layout()
```



Tât cả các plot đều tuân theo dạng chuẩn trong đó đỉnh nằm ở giữa đồ thị

```
In [19]: f = plt.figure(figsize=(8,8))
    gs = f.add_gridspec(2, 3)
    ax = f.add_subplot(gs[0, 0])
    sns.distplot(df_customer['Total night minutes'],bins=20)
    ax = f.add_subplot(gs[0, 1])
    sns.distplot(df_customer['Total night calls'],bins=20)
    ax = f.add_subplot(gs[0, 2])
    sns.distplot(df_customer['Total night charge'],bins=20)
    ax = f.add_subplot(gs[1, 0])
    sns.distplot(df_customer['Total intl minutes'],bins=20)
    ax = f.add_subplot(gs[1, 1])
    sns.distplot(df_customer['Total intl calls'],bins=20)
    ax = f.add_subplot(gs[1, 2])
    sns.distplot(df_customer['Total intl charge'],bins=20)
    f.tight_layout()
```



Tất cả đều dạng chuẩn và có đỉnh ở giữa đồ thị. Trừ total\_intl call bị lệch phải

In [20]: sns.catplot(x='State',kind='count',data=df\_customer,height=8).set\_xticklabels(rotation=60)

Out[20]: <seaborn.axisgrid.FacetGrid at 0x1d7c6a971c0>



WV là state có số lần xuất hiện nhiều nhất

```
In [21]: sns.catplot(x='International plan',kind='count',data=df_customer)
```

Out[21]: <seaborn.axisgrid.FacetGrid at 0x1d7c6baadc0>



Đa số có international plan là No với khoảng 3000

In [22]: sns.catplot(x='Voice mail plan',kind='count',data=df\_customer)

Out[22]: <seaborn.axisgrid.FacetGrid at 0x1d7c7dc5130>



```
In [23]: sns.catplot(x='Customer service calls',kind='count',data=df_customer)
```

Out[23]: <seaborn.axisgrid.FacetGrid at 0x1d7c675c2e0>



Số lượng trông giống phân phối chuẩn và có sốlượng nhiều nhất ở 1 với khoảng 1200

In [24]: sns.catplot(x='Churn',kind='count',data=df\_customer)

Out[24]: <seaborn.axisgrid.FacetGrid at 0x1d7c6977580>



False chiếm đa số với hơn 2500

Chọn 2, 3, hay 4 tiêu chí bạn nghi ngờ có mối quan hệ với nhau mật thiết và biểu diễn chúng lên một hình EDA sau đó cho nhận xét về mối quan hệ (Mỗi dữ liệu CustomerChurn hay BigMartSales cho 3 TH này)

## **BigMartSales**

```
In [25]: sns.catplot(x='Outlet_Location_Type',y='Item_Outlet_Sales',hue='Outlet_Size',kind='box',data=df_mart)
```

Out[25]: <seaborn.axisgrid.FacetGrid at 0x1d7c7d644c0>



Có vẽ như Tier 2 chỉ có Outlet\_Size ở dạng Small, Tier 1 không có Outlet có kích cỡ lớn và tier 3 không có outlet cỡ n

```
In [26]: sns.catplot(x='Item_Type',y='Item_Outlet_Sales',kind='box',data=df_mart).set_xticklabels(rotation=90)
```

Out[26]: <seaborn.axisgrid.FacetGrid at 0x1d7c80227f0>



Có vẻ như Hard Drink có lượng Item\_Outlet\_Sales thấp hơn cả. Trong khi đó với Item\_type là Seafood thì người ta chi tiêu nhiều tiền hơn cho Item Outlet

In [27]: sns.catplot(x='Item\_Type',y='Item\_Weight',kind='box',data=df\_mart).set\_xticklabels(rotation=90)

Out[27]: <seaborn.axisgrid.FacetGrid at 0x1d7c65d6130>



Những khách hàng mua household, Dairy, Health and Hygiene, Seafood và Others có xu hướng có cân nặng Item cao hơn những hàng mua Item type khác.

#### **Customer Churn**

----

```
In [28]: sns.catplot(data=df_customer,x='International plan',y='Churn',hue='Voice mail plan',kind='bar')
```

Out[28]: <seaborn.axisgrid.FacetGrid at 0x1d7c7f1f160>



Với international plan No thì số lượng Voice mail plan với Churn đều thấp. Trong khi đó, tí lệ Voice mail plan và Chu Yes hay no thì đều đa số nằm ở International plan là Yes.

```
In [29]: sns.catplot(data=df_customer,x='Churn',y='Customer service calls',kind='box')
```

Out[29]: <seaborn.axisgrid.FacetGrid at 0x1d7c694cd00>



Với những khách hàng có Churn là True thì trung bình số cuộc gọi dịch vụ mà họ thực hiện Nhiều hơn rất nhiều so với khách hàng không Churn.

In [30]: sns.catplot(data=df\_customer,x='State',y='Total day minutes',kind='box',height=8).set\_xticklabels(rotation=60)

Out[30]: <seaborn.axisgrid.FacetGrid at 0x1d7c69ccf70>



In [31]: sns.catplot(data=df\_customer,x='State',y='Churn',kind='bar',height=8).set\_xticklabels(rotation=60)

Out[31]: <seaborn.axisgrid.FacetGrid at 0x1d7c822b640>



Bang NJ, TX, CA, MD là các bang có tỉ lệ Churn cao nhất.