1 Mutual Information

1.1 Exponential Decay in Markov Chains

If we have a Markov chain defined by the matrix M, which is *irreducible* and *aperiodic*, and has a finite state space $E = \{1, ..., n\}$, then we have that

$$\lim_{i\to\infty} \boldsymbol{M}^i = \boldsymbol{M}_{\boldsymbol{\mu}} \quad ,$$

where M_{μ} is the matrix whose columns all consist of the unique stationary probability distribution μ .

Now, let us consider two random variables X and Y, which will denote the state of the Markov chain at times t_0 and $t_0 + \tau$ respectively. We assume that we measure these variables very late in the process, where we already have that $M^{t_0} \approx M_{\mu}$. We will use this "equality" later.

Our goal now is to quantify the mutual information of X and Y, that is, the discrepancy between the joint probability distribution P(X,Y) and the one defined by the product of the two marginalized distributions, that is $P'(X,Y) := P(X) \cdot P(Y)$. We use the Kullback-Leibler divergence, so our target expression becomes

$$D(P(X,Y) \parallel P'(X,Y))$$
.

Note that of course this divergence $I(X,Y) \coloneqq D(P(X,Y) \parallel P'(X,Y))$ depends on the properties of M, as well as on τ . Because M is irreducible and aperiodic, it follows that $|\lambda_2| < 1$. The claim is that

$$I(X,Y) \in \mathcal{O}(|\lambda_2|^{\tau})$$
.

There is a lot of math involved, so let us first get an intuition for what is going on. When considering Markov chains, we consider a set of states, say $E = \{A, B, C\}$, and for each time $t \in \mathbb{N}$ we assign a probability to the random variable $X_t \in E$. So let us consider the following Markov chain in figure 1.

If $\tau=1$, i.e. we consider the mutual information of to consecutive states, we get a large value of I(X,Y), as if X_{t_0} is either A or C, then X_{t_0+1} is uniquely determined, so we have a strong dependency between the two random variables. If, however, we have $\tau=5$, then we can reach every state independent of the starting position. To see this, note that we can reach every state from A in four steps:

Figure 1: A simple irreducible aperiodic Markov chain. Note that if $X_{t_0} = C$, then we know that $X_{t_0+1} = A$.

- $A \rightarrow B \rightarrow C \rightarrow A \rightarrow B$
- $A \rightarrow B \rightarrow A \rightarrow B \rightarrow C$
- $A \rightarrow B \rightarrow A \rightarrow B \rightarrow A$

The last step can then be used to go around in a cycle. If we on the other hand started at B or C, then we could go to A in one step, and consequently to every other state in the following four. Hence, the probability distribution will "wash out" over time and converge to the stationary one, which results in a decline of I(X,Y) for increasing τ .

Because we measure our X very late in time, meaning t_0 is very large, we will have that $P(X=a) \approx \mu_a$ because of this "washing out". Similarly, we have $P(Y=b) \approx \mu_b$, since the probability distribution will only get attracted more towards μ . As we now increase τ , P(Y=b | X=a) itself will converge to μ_b exactly due to the same "washing out" reason. Note that $P(Y=b | X=a) = (M^{\tau})_{b,a} \xrightarrow{\tau \to \infty} \mu_b$. And, of course, if $P(X=a,Y=b) = P(X=a) \cdot P(Y=b | X=a) = \mu_a \cdot \mu_b$, we have I(X,Y)=0. Hence, in a sense the theorem describes how fast $M^{\tau}p_0$ converges to μ , or, equivalently, M^{τ} towards M_{μ} .

Now it's time to dive into the math. In the following, we try to reconstruct the arguments given in the paper. We also adopt the notation $P(a,b) \equiv P(X=a,Y=b)$. By definition of the Kullback-Leibler divergence, we have

$$D(P(X,Y) \| P'(X,Y)) = \sum_{(a,b) \in E^2} P(a,b) \log_B \frac{P(a,b)}{P(a)P(b)} .$$

The idea is now that $log_B(\bullet)$ is *concave*. Hence, we can upper bound it by its

Taylor expansion of the first degree at the point $x_0 = 1$:

$$\log_B(x) \le \log_B(x_0) + \log'_B(x_0)(x - x_0)$$

$$= 0 + \frac{\ln'(x_0)}{\ln(B)}(x - 1)$$

$$= \frac{\frac{1}{x_0}}{\ln(B)}(x - 1)$$

$$= \frac{x - 1}{\ln(B)} .$$

For simplicity, we set B := e. So our expression becomes

$$D(P(X,Y) || P'(X,Y)) \le \frac{1}{\ln(B)} \sum_{(a,b) \in E^2} P(a,b) \left(\frac{P(a,b)}{P(a)P(b)} - 1 \right)$$

$$= \sum_{(a,b) \in E^2} P(a,b) \left(\frac{P(a,b)}{P(a)P(b)} - 1 \right)$$

$$= \left(\sum_{(a,b) \in E^2} P(a,b) \frac{P(a,b)}{P(a)P(b)} \right) - 1$$

$$= \left(\sum_{(a,b) \in E^2} \frac{P(a,b)^2}{P(a)P(b)} \right) - 1$$

$$= : I_R(X,Y) .$$

The authors of the paper coin this definition for $I_R(X,Y)$ the rational mutual information, as it has some useful properties. As discussed, we can approximate $P(a) \approx \mu_a$ and $P(b) \approx \mu_b$, and also $P(b|a) = (M^{\tau})_{b,a}$. Thus:

$$I_R(X,Y) + 1 = \sum_{(a,b) \in E^2} \frac{P(a,b)^2}{P(a)P(b)}$$

$$= \sum_{(a,b) \in E^2} \frac{P(b \mid a)^2 P(a)^2}{P(a)P(b)}$$

$$= \sum_{(a,b) \in E^2} \frac{\mu_a}{\mu_b} \left[(\mathbf{M}^{\tau})_{b,a} \right]^2$$

Let us now focus on $(M^{\tau})_{b,a}$. For simplicity, we consider the case that the eigenvalues of M are all distinct, and hence M being diagonalizable. Note that since M is irreducible and aperiodic, we have that $1 = \lambda_1 > |\lambda_2| \ge \cdots \ge |\lambda_n|$. The authors provide proof for the other case as well. But for now, let

$$M = BDB^{-1}$$

be the diagonalization of M. Of course, we immediately see that $M^{\tau} = BD^{\tau}B^{-1}$. Hence, it is easy to verify that

$$({m M}^{ au})_{b,a} = \sum_{c=1}^n \lambda_c^{ au} {m B}_{b,c} ({m B}^{-1})_{c,a} \quad .$$

Okay, that was a lot of math. Now it is a good time to reassure ourselves what we actually have achieved. What do we expect $(\mathbf{M}^{\tau})_{b,a}$ to look like for $\tau \to \infty$? μ_b of course. What does \mathbf{B} look like? Well, this is very hard to tell, it at least should have a scaled version of μ in its first column. But we cannot really infer any information about \mathbf{B}^{-1} . But we know

$$egin{aligned} oldsymbol{\mu}_b &= \lim_{ au o \infty} (oldsymbol{M}^ au)_{b,a} \ &= \lim_{ au o \infty} \sum_{c=1}^n \lambda_c^ au oldsymbol{B}_{b,c} (oldsymbol{B}^{-1})_{c,a} \ &= \lambda_1 oldsymbol{B}_{b,1} (oldsymbol{B}^{-1})_{1,a} \end{aligned}$$

So we know that

$$(\boldsymbol{M}^{\tau})_{b,a} = \boldsymbol{\mu}_b \pm \mathcal{O}(|\lambda_2|^{\tau})$$
 .

Note that this is informal writing. It would be more precise to state that $|(\mathbf{M}^{\tau})_{b,a} - \boldsymbol{\mu}_b| \in \mathcal{O}(|\lambda_2|^{\tau}).$

This is looking promising, as this means that the discrepancy between $(M^{\tau})_{b,a}$ and μ_b decays exponentially. The only thing left to do is translating this exponential decay to the mutual independence measure $I_R(X,Y)$. To this end, we plug our results back into our previous equation. Note that this step deviates from the procedure in the paper (own interpretation, informal!). Thus:

$$\begin{split} I_{R}(X,Y) &= \left(\sum_{(a,b) \in E^{2}} \frac{\mu_{a}}{\mu_{b}} \left[(\boldsymbol{M}^{\tau})_{b,a} \right]^{2} \right) - 1 \\ &= \sum_{(a,b) \in E^{2}} \frac{\mu_{a}}{\mu_{b}} \left[(\boldsymbol{M}^{\tau})_{b,a} \right]^{2} - \mu_{a} \mu_{b} \\ &= \sum_{(a,b) \in E^{2}} \frac{\mu_{a}}{\mu_{b}} \left[\mu_{b} \pm \mathcal{O}(|\lambda_{2}|^{\tau}) \right]^{2} - \mu_{a} \mu_{b} \\ &= \sum_{(a,b) \in E^{2}} \frac{\mu_{a}}{\mu_{b}} \left[\mu_{b}^{2} \pm \mathcal{O}(|\lambda_{2}|^{\tau}) \right] - \mu_{a} \mu_{b} \\ &= \pm \sum_{(a,b) \in E^{2}} \frac{\mu_{a}}{\mu_{b}} \mathcal{O}(|\lambda_{2}|^{\tau}) \quad , \end{split}$$

where we have used multiple facts about μ . For instance, $\sum_{a \in E} \mu_a = 1$ and thus $\sum_{(a,b) \in E^2} \mu_a \mu_b = 1$, as well as $0 < \mu_a < 1$ for all $a \in E$ (at least for |E| > 1). We now use the latter inequality again: We see that we can always bound $\frac{\mu_a}{\mu_b}$ from above, i.e. there exists $\alpha \in \mathbb{R}$ s.t. for all $(a,b) \in E^2$ we have $\frac{\mu_a}{\mu_b} < \alpha$. Hence:

$$\begin{split} |I_R(X,Y)| &\in \sum_{(a,b) \in E^2} \frac{\mu_a}{\mu_b} \mathcal{O}(|\lambda_2|^\tau) \\ &\Longrightarrow |I_R(X,Y)| \in \sum_{(a,b) \in E^2} \alpha \mathcal{O}(|\lambda_2|^\tau) \\ &\Longrightarrow |I_R(X,Y)| \in n^2 \alpha \mathcal{O}(|\lambda_2|^\tau) \\ &\Longrightarrow |I_R(X,Y)| \in \mathcal{O}(|\lambda_2|^\tau) \quad . \end{split}$$

Of course, $I_R(X,Y) \geq 0$, so really $I_R(X,Y) \in \mathcal{O}(|\lambda_2|^{\tau})$. Since $0 \leq I(X,Y) \leq I_R(X,Y)$, we also have $I(X,Y) \in \mathcal{O}(|\lambda_2|^{\tau})$.