Studying Mathematics

Thomas Prellberg

School of Mathematical Sciences Queen Mary, University of London

University of London Open Day Presentation 2009

Topic Outline

- 1 Why Mathematics?
 - Why You Should Study Mathematics
 - What is Mathematics
 - Transferable Skills
 - Career Opportunities
 - Mathematics at University
- Mathematical Problems
 - Some Million Dollar Problems
 - Examples of Solved and Open Problems
 - The 3n+1 Problem
 - Extending the Problem

Outline

- 1 Why Mathematics?
 - Why You Should Study Mathematics
 - What is Mathematics
 - Transferable Skills
 - Career Opportunities
 - Mathematics at University
- 2 Mathematical Problems

Good Reasons for Studying Mathematic

- You are really good at maths
- You like problem solving
- You could get into business school (or law, or ...)
- You want to keep your career options open

Bad Reasons for Studying Mathematics

- Your language skills are really weak
- You like memorising formulas
- Your marks are to weak to get you into ...
- You haven't yet figured out what you're good at

The Best Reason for Studying Mathematics

Good Reasons for Studying Mathematics

- You are really good at maths
- You like problem solving
- You could get into business school (or law, or ...)
- You want to keep your career options open

Bad Reasons for Studying Mathematics

- Your language skills are really weak
- You like memorising formulas
- Your marks are to weak to get you into ...
- You haven't yet figured out what you're good at

The Best Reason for Studying Mathematics

Good Reasons for Studying Mathematics

- You are really good at maths
- You like problem solving
- You could get into business school (or law, or ...)
- You want to keep your career options open

Bad Reasons for Studying Mathematics

- Your language skills are really weak
- You like memorising formulas
- Your marks are to weak to get you into ...
- You haven't yet figured out what you're good at

The Best Reason for Studying Mathematics

Good Reasons for Studying Mathematics

- You are really good at maths
- You like problem solving
- You could get into business school (or law, or ...)
- You want to keep your career options open

Bad Reasons for Studying Mathematics

- Your language skills are really weak
- You like memorising formulas
- Your marks are to weak to get you into ...
- You haven't yet figured out what you're good at

The Best Reason for Studying Mathematics

Why You Should Study Mathematics

Good Reasons for Studying Mathematics

- You are really good at maths
- You like problem solving
- You could get into business school (or law, or ...)
- You want to keep your career options open

Bad Reasons for Studying Mathematics

- Your language skills are really weak
- You like memorising formulas
- Your marks are to weak to get you into ...
- You haven't yet figured out what you're good at

The Best Reason for Studying Mathematics

Why You Should Study Mathematics

Good Reasons for Studying Mathematics

- You are really good at maths
- You like problem solving
- You could get into business school (or law, or ...)
- You want to keep your career options open

Bad Reasons for Studying Mathematics

- Your language skills are really weak
- You like memorising formulas
- Your marks are to weak to get you into ...
- You haven't yet figured out what you're good at

The Best Reason for Studying Mathematics

Good Reasons for Studying Mathematics

- You are really good at maths
- You like problem solving
- You could get into business school (or law, or ...)
- You want to keep your career options open

Bad Reasons for Studying Mathematics

- Your language skills are really weak
- You like memorising formulas
- Your marks are to weak to get you into ...
- You haven't yet figured out what you're good at

The Best Reason for Studying Mathematics

Why You Should Study Mathematics

Good Reasons for Studying Mathematics

- You are really good at maths
- You like problem solving
- You could get into business school (or law, or ...)
- You want to keep your career options open

Bad Reasons for Studying Mathematics

- Your language skills are really weak
- You like memorising formulas
- Your marks are to weak to get you into ...
- You haven't yet figured out what you're good at

The Best Reason for Studying Mathematics

Good Reasons for Studying Mathematics

- You are really good at maths
- You like problem solving
- You could get into business school (or law, or ...)
- You want to keep your career options open

Bad Reasons for Studying Mathematics

- Your language skills are really weak
- You like memorising formulas
- Your marks are to weak to get you into ...
- You haven't yet figured out what you're good at

The Best Reason for Studying Mathematics

Good Reasons for Studying Mathematics

- You are really good at maths
- You like problem solving
- You could get into business school (or law, or ...)
- You want to keep your career options open

Bad Reasons for Studying Mathematics

- Your language skills are really weak
- You like memorising formulas
- Your marks are to weak to get you into ...
- You haven't yet figured out what you're good at

The Best Reason for Studying Mathematics

Good Reasons for Studying Mathematics

- You are really good at maths
- You like problem solving
- You could get into business school (or law, or ...)
- You want to keep your career options open

Bad Reasons for Studying Mathematics

- Your language skills are really weak
- You like memorising formulas
- Your marks are to weak to get you into ...
- You haven't yet figured out what you're good at

The Best Reason for Studying Mathematics

Good Reasons for Studying Mathematics

- You are really good at maths
- You like problem solving
- You could get into business school (or law, or ...)
- You want to keep your career options open

Bad Reasons for Studying Mathematics

- Your language skills are really weak
- You like memorising formulas
- Your marks are to weak to get you into ...
- You haven't yet figured out what you're good at

The Best Reason for Studying Mathematics

Good Reasons for Studying Mathematics

- You are really good at maths
- You like problem solving
- You could get into business school (or law, or ...)
- You want to keep your career options open

Bad Reasons for Studying Mathematics

- Your language skills are really weak
- You like memorising formulas
- Your marks are to weak to get you into ...
- You haven't yet figured out what you're good at

The Best Reason for Studying Mathematics

Mathematics is not

- just "doing things with numbers and letters and other symbols"
- just a collection of facts and rote recipes
- just computational and arithmetic skills

- a way of thinking
- the language of science
- a creative discipline
- a source of pleasure and wonder
- a means of problem solving

Mathematics is not

- just "doing things with numbers and letters and other symbols"
- just a collection of facts and rote recipes
- just computational and arithmetic skills

- a way of thinking
- the language of science
- a creative discipline
- a source of pleasure and wonder
- a means of problem solving

Mathematics is not

- just "doing things with numbers and letters and other symbols"
- just a collection of facts and rote recipes
- just computational and arithmetic skills

- a way of thinking
- the language of science
- a creative discipline
- a source of pleasure and wonder
- a means of problem solving

Mathematics is not

- just "doing things with numbers and letters and other symbols"
- just a collection of facts and rote recipes
- just computational and arithmetic skills

- a way of thinking
- the language of science
- a creative discipline
- a source of pleasure and wonder
- a means of problem solving

Mathematics is not

- just "doing things with numbers and letters and other symbols"
- just a collection of facts and rote recipes
- just computational and arithmetic skills

- a way of thinking
- the language of science
- a creative discipline
- a source of pleasure and wonder
- a means of problem solving

Mathematics is not

- just "doing things with numbers and letters and other symbols"
- just a collection of facts and rote recipes
- just computational and arithmetic skills

- a way of thinking
- the language of science
- a creative discipline
- a source of pleasure and wonder
- a means of problem solving

Mathematics is not

- just "doing things with numbers and letters and other symbols"
- just a collection of facts and rote recipes
- just computational and arithmetic skills

- a way of thinking
- the language of science
- a creative discipline
- a source of pleasure and wonder
- a means of problem solving

Mathematics is not

- just "doing things with numbers and letters and other symbols"
- just a collection of facts and rote recipes
- just computational and arithmetic skills

- a way of thinking
- the language of science
- a creative discipline
- a source of pleasure and wonder
- a means of problem solving

Mathematics is not

- just "doing things with numbers and letters and other symbols"
- just a collection of facts and rote recipes
- just computational and arithmetic skills

- a way of thinking
- the language of science
- a creative discipline
- a source of pleasure and wonder
- a means of problem solving

Mathematics is not

- just "doing things with numbers and letters and other symbols"
- just a collection of facts and rote recipes
- just computational and arithmetic skills

- a way of thinking
- the language of science
- a creative discipline
- a source of pleasure and wonder
- a means of problem solving

Mathematics is not

- just "doing things with numbers and letters and other symbols"
- just a collection of facts and rote recipes
- just computational and arithmetic skills

- a way of thinking
- the language of science
- a creative discipline
- a source of pleasure and wonder
- a means of problem solving

- Analytical abilities
- Ability to work independently
- Ability to manage your own time
- Highly developed numerical skills
- Effective communication skills
- Apply mathematical modelling to real-world problems
- Practical computational skills

- Analytical abilities
- Ability to work independently
- Ability to manage your own time
- Highly developed numerical skills
- Effective communication skills
- Apply mathematical modelling to real-world problems
- Practical computational skills

- Analytical abilities
- Ability to work independently
- Ability to manage your own time
- Highly developed numerical skills
- Effective communication skills
- Apply mathematical modelling to real-world problems
- Practical computational skills

- Analytical abilities
- Ability to work independently
- Ability to manage your own time
- Highly developed numerical skills
- Effective communication skills
- Apply mathematical modelling to real-world problems
- Practical computational skills

- Analytical abilities
- Ability to work independently
- Ability to manage your own time
- Highly developed numerical skills
- Effective communication skills
- Apply mathematical modelling to real-world problems
- Practical computational skills

- Analytical abilities
- Ability to work independently
- Ability to manage your own time
- Highly developed numerical skills
- Effective communication skills
- Apply mathematical modelling to real-world problems
- Practical computational skills

- Analytical abilities
- Ability to work independently
- Ability to manage your own time
- Highly developed numerical skills
- Effective communication skills
- Apply mathematical modelling to real-world problems
- Practical computational skills

- Analytical abilities
- Ability to work independently
- Ability to manage your own time
- Highly developed numerical skills
- Effective communication skills
- Apply mathematical modelling to real-world problems
- Practical computational skills

Career Opportunities

- Academic Research
- Aerospace
- Biotechnology
- Business and Finance
- Chemicals
- Construction
- Defence
- Electronics
- Energy

- Environment
- Health Care
- Management
- Marketing
- Materials
- Pharmaceuticals
- Retail
- Teaching
- Transport

- Academic Research
- Aerospace
- Biotechnology
- Business and Finance
 - Accountant: 19-25K
 - Actuary: 23-28K
- Chemicals
- Construction
- Defence
- Electronics
- Energy

- Environment
- Health Care
- Management
- Marketing
- Materials
- Pharmaceuticals
- Retail
- Teaching
- Transport

- Academic Research
- Aerospace
- Biotechnology
- Business and Finance
 - Accountant: 19-25K
 - Actuary: 23-28K
- Chemicals
- Construction
 - Surveying: 17-25K
- Defence
- Electronics
- Energy

- Environment
- Health Care
- Management
- Marketing
- Materials
- Pharmaceuticals
- Retail
- Teaching
- Transport

- Academic Research
- Aerospace
- Biotechnology
- Business and Finance
 - Accountant: 19-25K
 - Actuary: 23-28K
- Chemicals
- Construction
 - Surveying: 17-25K
- Defence
- Electronics
- Energy

- Environment
- Health Care
- Management
 - Consultant: 25-30K
- Marketing
- Materials
- Pharmaceuticals
- Retail
- Teaching
- Transport

- Academic Research
- Aerospace
- Biotechnology
- Business and Finance
 - Accountant: 19-25K
 - Actuary: 23-28K
- Chemicals
- Construction
 - Surveying: 17-25K
- Defence
- Electronics
- Energy

- Environment
- Health Care
- Management
 - Consultant: 25-30K
- Marketing
 - Market Researcher: 19-24K
- Materials
- Pharmaceuticals
- Retail
- Teaching
- Transport

- Academic Research
- Aerospace
- Biotechnology
- Business and Finance
 - Accountant: 19-25K
 - Actuary: 23-28K
- Chemicals
- Construction
 - Surveying: 17-25K
- Defence
- Electronics
- Energy

- Environment
- Health Care
- Management
 - Consultant: 25-30K
- Marketing
 - Market Researcher: 19-24K
- Materials
- Pharmaceuticals
 - Medical Statistics: 19-30K
- Retail
- Teaching
- Transport

- Academic Research
- Aerospace
- Biotechnology
- Business and Finance
 - Accountant: 19-25K
 - Actuary: 23-28K
- Chemicals
- Construction
 - Surveying: 17-25K
- Defence
- Electronics
- Energy

- Environment
- Health Care
- Management
 - Consultant: 25-30K
- Marketing
 - Market Researcher: 19-24K
- Materials
- Pharmaceuticals
 - Medical Statistics: 19-30K
- Retail
- Teaching
 - Teacher 20-25K
- Transport

- Academic Research
 - PhD Scholarship: 15K
- Aerospace
- Biotechnology
- Business and Finance
 - Accountant: 19-25K
 - Actuary: 23-28K
- Chemicals
- Construction
 - Surveying: 17-25K
- Defence
- Electronics
- Energy

- Environment
- Health Care
- Management
 - Consultant: 25-30K
- Marketing
 - Market Researcher: 19-24K
- Materials
- Pharmaceuticals
 - Medical Statistics: 19-30K
- Retail
- Teaching
 - Teacher 20-25K
- Transport

Why You Should Study Mathematics What is Mathematics Transferable Skills Career Opportunities Mathematics at University

Three-Year BSc Degree Courses (Example: QMUL)

Title	Code	Req.
Mathematics	G100	320
Pure Mathematics	G110	320
Mathematics and Statistics	GG31	320
Mathematics, Statistics, and Financial Economics	GL11	320
Mathematics with Finance and Accounting	G1N4	320
Mathematics with Business Management	G1N1	320
Mathematics with Business Management and Finance	GN13	320
Mathematics and Computing	GG14	320
Mathematics and Physics	FG31	320

A=120, B=100

Other Degree Courses (Example: QMUL)

Degree	Years	Title	Code	Req.
MSci	4	Mathematics	G102	340
MSci	4	Mathematics with Statistics	G1G3	340
BSc	3	Computer Science with Mathematics	GG41	320
BSc	3	Economics, Mathematics, and Statistics	LG11	340
	1	Science & Eng. Foundation Programme	FGH0	180

- All University of London degrees are honours (including pass degrees)
- Course unit system instead of joint or combined honours

Other Degree Courses (Example: QMUL)

Degree	Years	Title	Code	Req.
MSci	4	Mathematics	G102	340
MSci	4	Mathematics with Statistics	G1G3	340
BSc	3	Computer Science with Mathematics	GG41	320
BSc	3	Economics, Mathematics, and Statistics	LG11	340
	1	Science & Eng. Foundation Programme	FGH0	180

- All University of London degrees are honours (including pass degrees)
- Course unit system instead of joint or combined honours

Course Unit System

Advantages:

- Flexibility
- Opportunities to take modules in other departments
- Freedom to shape your programme of study
- Specialisation in penultimate and final year

Typically,

- take 8 modules in first year (no choice)
- choose 8 of 16 modules in second year
- choose 8 of 24 modules in third year

Course Unit System

Advantages:

- Flexibility
- Opportunities to take modules in other departments
- Freedom to shape your programme of study
- Specialisation in penultimate and final year

Typically,

- take 8 modules in first year (no choice)
- choose 8 of 16 modules in second year
- choose 8 of 24 modules in third year

Outline

- Why Mathematics?
- 2 Mathematical Problems
 - Some Million Dollar Problems
 - Examples of Solved and Open Problems
 - The 3n+1 Problem
 - Extending the Problem

7 Prize Problems, selected by Clay Mathematics Institute in 2000

- Birch and Swinnerton-Dyer Conjecture
- Hodge Conjecture
- Navier-Stokes Equations
- P vs NP
- Poincaré Conjecture
- Riemann Hypothesis
- Yang-Mills Theory

7 Prize Problems, selected by Clay Mathematics Institute in 2000

- Birch and Swinnerton-Dyer Conjecture
- Hodge Conjecture
- Navier-Stokes Equations
- P vs NP
- Poincaré Conjecture
- Riemann Hypothesis
- Yang-Mills Theory

7 Prize Problems, selected by Clay Mathematics Institute in 2000

- Birch and Swinnerton-Dyer Conjecture
- Hodge Conjecture
- Navier-Stokes Equations
- P vs NP
- Poincaré Conjecture
- Riemann Hypothesis
- Yang-Mills Theory

7 Prize Problems, selected by Clay Mathematics Institute in 2000

- Birch and Swinnerton-Dyer Conjecture
- Hodge Conjecture
- Navier-Stokes Equations
- P vs NP
- Poincaré Conjecture
- Riemann Hypothesis
- Yang-Mills Theory

Some "recently" proved problems

• Fermat's last theorem (1637, proved 1994): If an integer *n* is greater than 2, then the equation

$$a^n + b^n = c^n$$

has no solutions in non-zero integers a, b, and c.

For n = 2, this is of course possible, for example

$$3^2 + 4^2 = 5^2 .$$

 The four colour theorem (1852, proved 1976): Given any plane separated into regions, such as a political map of the states of a country, the regions may be coloured using no more than four colours.

Some "recently" proved problems:

• Fermat's last theorem (1637, proved 1994): If an integer *n* is greater than 2, then the equation

$$a^n + b^n = c^n$$

has no solutions in non-zero integers a, b, and c.

For n = 2, this is of course possible, for example

$$3^2 + 4^2 = 5^2 \ .$$

 The four colour theorem (1852, proved 1976): Given any plane separated into regions, such as a political map of the states of a country, the regions may be coloured using no more than four colours

Some "recently" proved problems:

• Fermat's last theorem (1637, proved 1994): If an integer *n* is greater than 2, then the equation

$$a^n + b^n = c^n$$

has no solutions in non-zero integers a, b, and c.

For n = 2, this is of course possible, for example

$$3^2 + 4^2 = 5^2$$

 The four colour theorem (1852, proved 1976): Given any plane separated into regions, such as a political map of the states of a country, the regions may be coloured using no more than four colours

Some "recently" proved problems:

• Fermat's last theorem (1637, proved 1994): If an integer *n* is greater than 2, then the equation

$$a^n + b^n = c^n$$

has no solutions in non-zero integers a, b, and c.

For n = 2, this is of course possible, for example

$$3^2 + 4^2 = 5^2$$
.

 The four colour theorem (1852, proved 1976): Given any plane separated into regions, such as a political map of the states of a country, the regions may be coloured using no more than four colour

Some "recently" proved problems:

• Fermat's last theorem (1637, proved 1994): If an integer *n* is greater than 2, then the equation

$$a^n + b^n = c^n$$

has no solutions in non-zero integers a, b, and c.

For n = 2, this is of course possible, for example

$$3^2 + 4^2 = 5^2$$
.

• The four colour theorem (1852, proved 1976): Given any plane separated into regions, such as a political map of the states of a country, the regions may be coloured using no more than four colours.

Some "recently" proved problems:

• Fermat's last theorem (1637, proved 1994): If an integer *n* is greater than 2, then the equation

$$a^n + b^n = c^n$$

has no solutions in non-zero integers a, b, and c.

For n = 2, this is of course possible, for example

$$3^2 + 4^2 = 5^2$$
.

 The four colour theorem (1852, proved 1976): Given any plane separated into regions, such as a political map of the states of a country, the regions may be coloured using no more than four colours.

Some unsolved problems:

• Goldbach's conjecture (1742): every even integer greater than 2 can be written as the sum of two primes.

For example,
$$18 = 5 + 13 = 7 + 11$$
.

• The twin prime conjecture (300 BC): there are infinitely many primes p such that p + 2 is also prime.

For example, 17 and 19 are twin primes.

• How many different Sudoku squares of size $n \times n$ are there? There are

valid 9×9 Sudoku squares. The problem is to find a formula for general n.

There are many more well-known open problems, see e.g. http://en.wikipedia.org/wiki/Unsolved_problems_in_mathematics

Some unsolved problems:

• Goldbach's conjecture (1742): every even integer greater than 2 can be written as the sum of two primes.

For example,
$$18 = 5 + 13 = 7 + 11$$
.

• The twin prime conjecture (300 BC): there are infinitely many primes p such that p + 2 is also prime.

For example, 17 and 19 are twin primes.

• How many different Sudoku squares of size $n \times n$ are there? There are

valid 9×9 Sudoku squares. The problem is to find a formula for general n.

There are many more well-known open problems, see e.g. http://en.wikipedia.org/wiki/Unsolved_problems_in_mathematics

Some unsolved problems:

• Goldbach's conjecture (1742): every even integer greater than 2 can be written as the sum of two primes.

For example,
$$18 = 5 + 13 = 7 + 11$$
.

• The twin prime conjecture (300 BC): there are infinitely many primes p such that p + 2 is also prime.

For example, 17 and 19 are twin primes.

• How many different Sudoku squares of size $n \times n$ are there? There are

valid 9×9 Sudoku squares. The problem is to find a formula for general n.

There are many more well-known open problems, see e.g. http://en.wikipedia.org/wiki/Unsolved_problems_in_mathematic

Some unsolved problems:

• Goldbach's conjecture (1742): every even integer greater than 2 can be written as the sum of two primes.

For example,
$$18 = 5 + 13 = 7 + 11$$
.

• The twin prime conjecture (300 BC): there are infinitely many primes p such that p + 2 is also prime.

For example, 17 and 19 are twin primes.

• How many different Sudoku squares of size $n \times n$ are there? There are

valid 9×9 Sudoku squares. The problem is to find a formula for general n.

There are many more well-known open problems, see e.g. http://en.wikipedia.org/wiki/Unsolved_problems_in_mathematic

Some unsolved problems:

• Goldbach's conjecture (1742): every even integer greater than 2 can be written as the sum of two primes.

For example,
$$18 = 5 + 13 = 7 + 11$$
.

• The twin prime conjecture (300 BC): there are infinitely many primes p such that p + 2 is also prime.

For example, 17 and 19 are twin primes.

• How many different Sudoku squares of size $n \times n$ are there? There are

valid 9×9 Sudoku squares. The problem is to find a formula for general n.

There are many more well-known open problems, see e.g. http://en.wikipedia.org/wiki/Unsolved_problems_in_mathematic:

Some unsolved problems:

• Goldbach's conjecture (1742): every even integer greater than 2 can be written as the sum of two primes.

For example,
$$18 = 5 + 13 = 7 + 11$$
.

• The twin prime conjecture (300 BC): there are infinitely many primes p such that p + 2 is also prime.

For example, 17 and 19 are twin primes.

• How many different Sudoku squares of size $n \times n$ are there? There are

valid 9×9 Sudoku squares. The problem is to find a formula for general n.

There are many more well-known open problems, see e.g. http://en.wikipedia.org/wiki/Unsolved_problems_in_mathemati

Some unsolved problems:

• Goldbach's conjecture (1742): every even integer greater than 2 can be written as the sum of two primes.

For example,
$$18 = 5 + 13 = 7 + 11$$
.

• The twin prime conjecture (300 BC): there are infinitely many primes p such that p + 2 is also prime.

For example, 17 and 19 are twin primes.

• How many different Sudoku squares of size $n \times n$ are there?

There are

valid 9×9 Sudoku squares. The problem is to find a formula for general n.

There are many more well-known open problems, see e.g. http://en.wikipedia.org/wiki/Unsolved_problems_in_mathematics

Some unsolved problems:

• Goldbach's conjecture (1742): every even integer greater than 2 can be written as the sum of two primes.

For example,
$$18 = 5 + 13 = 7 + 11$$
.

• The twin prime conjecture (300 BC): there are infinitely many primes p such that p + 2 is also prime.

For example, 17 and 19 are twin primes.

• How many different Sudoku squares of size $n \times n$ are there? There are

valid 9×9 Sudoku squares. The problem is to find a formula for general n.

There are many more well-known open problems, see e.g. http://en.wikipedia.org/wiki/Unsolved_problems_in_mathemati

Some unsolved problems:

• Goldbach's conjecture (1742): every even integer greater than 2 can be written as the sum of two primes.

For example,
$$18 = 5 + 13 = 7 + 11$$
.

• The twin prime conjecture (300 BC): there are infinitely many primes p such that p + 2 is also prime.

For example, 17 and 19 are twin primes.

• How many different Sudoku squares of size $n \times n$ are there? There are

valid 9×9 Sudoku squares. The problem is to find a formula for general n.

There are many more well-known open problems, see e.g. http://en.wikipedia.org/wiki/Unsolved_problems_in_mathematics

Some Million Dollar Problems Examples of Solved and Open Problems The 3n+1 Problem Extending the Problem

"The history of mathematics is a history of horrendously difficult problems being solved by young people too ignorant to know that they were impossible."

Freeman Dyson, "Birds and Frogs", AMS Einstein Lecture 2008

The 3n+1 Problem

Consider the following operation on an arbitrary positive integer:

- If the number is even, divide it by two.
- If the number is odd, triple it and add one.

$$f(n) = \begin{cases} n/2 & \text{if n is even,} \\ 3n+1 & \text{if n is odd.} \end{cases}$$

Form a sequence by performing this operation repeatedly, beginning with any positive integer.

• Example: n = 6 produces the sequence

$$6, 3, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, \dots$$

The Conjecture is:

This process will eventually reach the number 1, regardless of which positive integer is chosen initially.

The 3n+1 Problem

Consider the following operation on an arbitrary positive integer:

- If the number is even, divide it by two.
- If the number is odd, triple it and add one.

$$f(n) = \begin{cases} n/2 & \text{if n is even,} \\ 3n+1 & \text{if n is odd.} \end{cases}$$

Form a sequence by performing this operation repeatedly, beginning with any positive integer.

• Example: n = 6 produces the sequence

$$6, 3, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, \dots$$

The Conjecture is:

This process will eventually reach the number 1, regardless of which positive integer is chosen initially.

The 3n+1 Problem

Consider the following operation on an arbitrary positive integer:

- If the number is even, divide it by two.
- If the number is odd, triple it and add one.

$$f(n) = \begin{cases} n/2 & \text{if n is even,} \\ 3n+1 & \text{if n is odd.} \end{cases}$$

Form a sequence by performing this operation repeatedly, beginning with any positive integer.

• Example: n = 6 produces the sequence

$$6, 3, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, \dots$$

The Conjecture is:

This process will eventually reach the number 1, regardless of which positive integer is chosen initially.

Consider the following operation on an arbitrary positive integer:

- If the number is even, divide it by two.
- If the number is odd, triple it and add one.

$$f(n) = \begin{cases} n/2 & \text{if n is even,} \\ 3n+1 & \text{if n is odd.} \end{cases}$$

Form a sequence by performing this operation repeatedly, beginning with any positive integer.

• Example: n = 6 produces the sequence

The Conjecture is

Consider the following operation on an arbitrary positive integer:

- If the number is even, divide it by two.
- If the number is odd, triple it and add one.

$$f(n) = \begin{cases} n/2 & \text{if n is even,} \\ 3n+1 & \text{if n is odd.} \end{cases}$$

Form a sequence by performing this operation repeatedly, beginning with any positive integer.

• Example: n = 6 produces the sequence

The Conjecture is

Consider the following operation on an arbitrary positive integer:

- If the number is even, divide it by two.
- If the number is odd, triple it and add one.

$$f(n) = \begin{cases} n/2 & \text{if n is even,} \\ 3n+1 & \text{if n is odd.} \end{cases}$$

Form a sequence by performing this operation repeatedly, beginning with any positive integer.

• Example: n = 6 produces the sequence

The Conjecture is

Consider the following operation on an arbitrary positive integer:

- If the number is even, divide it by two.
- If the number is odd, triple it and add one.

$$f(n) = \begin{cases} n/2 & \text{if n is even,} \\ 3n+1 & \text{if n is odd.} \end{cases}$$

Form a sequence by performing this operation repeatedly, beginning with any positive integer.

• Example: n = 6 produces the sequence

$$6, 3, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, \dots$$

The Conjecture is

Consider the following operation on an arbitrary positive integer:

- If the number is even, divide it by two.
- If the number is odd, triple it and add one.

$$f(n) = \begin{cases} n/2 & \text{if n is even,} \\ 3n+1 & \text{if n is odd.} \end{cases}$$

Form a sequence by performing this operation repeatedly, beginning with any positive integer.

• Example: n = 6 produces the sequence

$$6, 3, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, \dots$$

The Conjecture is

Consider the following operation on an arbitrary positive integer:

- If the number is even, divide it by two.
- If the number is odd, triple it and add one.

$$f(n) = \begin{cases} n/2 & \text{if n is even,} \\ 3n+1 & \text{if n is odd.} \end{cases}$$

Form a sequence by performing this operation repeatedly, beginning with any positive integer.

• Example: n = 6 produces the sequence

$$6, 3, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, \dots$$

The Conjecture is

Consider the following operation on an arbitrary positive integer:

- If the number is even, divide it by two.
- If the number is odd, triple it and add one.

$$f(n) = \begin{cases} n/2 & \text{if n is even,} \\ 3n+1 & \text{if n is odd.} \end{cases}$$

Form a sequence by performing this operation repeatedly, beginning with any positive integer.

• Example: n = 6 produces the sequence

$$6, 3, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, \dots$$

The Conjecture is

Consider the following operation on an arbitrary positive integer:

- If the number is even, divide it by two.
- If the number is odd, triple it and add one.

$$f(n) = \begin{cases} n/2 & \text{if n is even,} \\ 3n+1 & \text{if n is odd.} \end{cases}$$

Form a sequence by performing this operation repeatedly, beginning with any positive integer.

• Example: n = 6 produces the sequence

$$6, 3, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, \dots$$

The Conjecture is

Consider the following operation on an arbitrary positive integer:

- If the number is even, divide it by two.
- If the number is odd, triple it and add one.

$$f(n) = \begin{cases} n/2 & \text{if n is even,} \\ 3n+1 & \text{if n is odd.} \end{cases}$$

Form a sequence by performing this operation repeatedly, beginning with any positive integer.

• Example: n = 6 produces the sequence

$$6, 3, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, \dots$$

The Conjecture is

Consider the following operation on an arbitrary positive integer:

- If the number is even, divide it by two.
- If the number is odd, triple it and add one.

$$f(n) = \begin{cases} n/2 & \text{if n is even,} \\ 3n+1 & \text{if n is odd.} \end{cases}$$

Form a sequence by performing this operation repeatedly, beginning with any positive integer.

• Example: n = 6 produces the sequence

$$6, 3, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, \dots$$

The Conjecture is

Consider the following operation on an arbitrary positive integer:

- If the number is even, divide it by two.
- If the number is odd, triple it and add one.

$$f(n) = \begin{cases} n/2 & \text{if n is even,} \\ 3n+1 & \text{if n is odd.} \end{cases}$$

Form a sequence by performing this operation repeatedly, beginning with any positive integer.

• Example: n = 6 produces the sequence

$$6, 3, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, \dots$$

The Conjecture is

Consider the following operation on an arbitrary positive integer:

- If the number is even, divide it by two.
- If the number is odd, triple it and add one.

$$f(n) = \begin{cases} n/2 & \text{if n is even,} \\ 3n+1 & \text{if n is odd.} \end{cases}$$

Form a sequence by performing this operation repeatedly, beginning with any positive integer.

• Example: n = 6 produces the sequence

$$6, 3, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, \dots$$

The Conjecture is

Consider the following operation on an arbitrary positive integer:

- If the number is even, divide it by two.
- If the number is odd, triple it and add one.

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ is even,} \\ 3n+1 & \text{if } n \text{ is odd.} \end{cases}$$

Form a sequence by performing this operation repeatedly, beginning with any positive integer.

• Example: n = 6 produces the sequence

$$6, 3, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, \dots$$

The Conjecture is:

Some Examples

Examples:

• n = 11 produces the sequence

$$11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.$$

• *n* = 27 produces the sequence 27,82,41,124,62,31,94,47,142,71,214,107,322,161,484,242,121, 364,182,91,274,137,412,206,103,310,155,466,233,700,350,175, 526,263,790,395,1186,593,1780,890,445,1336,668,334,167,502,251,754,377,1132,566,283,850,425,1276,638,319,958,479,1438,719,2158,1079,3238,1619,4858,2429,7288,3644,1822,911,2734,1367,4102,2051,6154,3077,9232,4616,2308,1154,577,1732,866,433,1300,650,325,976,488,244,122,61,184,92,46,23,70,35,106,53.160,80,40,20,10.5,16.8,4,2,1.

Some Examples

Examples:

• n = 11 produces the sequence

$$11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.$$

• *n* = 27 produces the sequence 27,82,41,124,62,31,94,47,142,71,214,107,322,161,484,242,121, 364,182,91,274,137,412,206,103,310,155,466,233,700,350,175, 526,263,790,395,1186,593,1780,890,445,1336,668,334,167,502, 251,754,377,1132,566,283,850,425,1276,638,319,958,479,1438, 719,2158,1079,3238,1619,4858,2429,7288,3644,1822,911,2734, 1367,4102,2051,6154,3077,9232,4616,2308,1154,577,1732,866, 433,1300,650,325,976,488,244,122,61,184,92,46,23,70,35,106, 53,160,80,40,20,10,5,16,8,4,2,1.

Graphing the Sequences

A graph of the sequence obtained from n = 27

This sequence takes 111 steps, climbing to over 9000 before descending to 1

Graphing the Sequences

A graph of the sequence obtained from n = 27

This sequence takes 111 steps, climbing to over 9000 before descending to 1.

Reduce an orbit by replacing 3n + 1 with (3n + 1)/2:

$$10, 5, 16, 8, 4, 2, 1, 4, 2, 1, \dots$$

shortens to

$$10, 5, 8, 4, 2, 1, 2, 1, \dots$$

$$f(x) = \frac{x}{2}\cos^2\left(\frac{\pi}{2}x\right) + \frac{3x+1}{2}\sin^2\left(\frac{\pi}{2}x\right)$$

Reduce an orbit by replacing 3n + 1 with (3n + 1)/2:

$$10, 5, \frac{16}{10}, 8, 4, 2, 1, \frac{4}{10}, 2, 1, \dots$$

shortens to

$$10, 5, 8, 4, 2, 1, 2, 1, \dots$$

$$f(x) = \frac{x}{2} \cos^2 \left(\frac{\pi}{2}x\right) + \frac{3x+1}{2} \sin^2 \left(\frac{\pi}{2}x\right)$$

Reduce an orbit by replacing 3n + 1 with (3n + 1)/2:

$$10, 5, \frac{16}{10}, 8, 4, 2, 1, \frac{4}{10}, 2, 1, \dots$$

shortens to

$$10, 5, 8, 4, 2, 1, 2, 1, \dots$$

$$f(x) = \frac{x}{2}\cos^2\left(\frac{\pi}{2}x\right) + \frac{3x+1}{2}\sin^2\left(\frac{\pi}{2}x\right)$$

Reduce an orbit by replacing 3n + 1 with (3n + 1)/2:

$$10, 5, \frac{16}{10}, 8, 4, 2, 1, \frac{4}{10}, 2, 1, \dots$$

shortens to

$$10, 5, 8, 4, 2, 1, 2, 1, \dots$$

$$f(x) = \frac{x}{2}\cos^2\left(\frac{\pi}{2}x\right) + \frac{3x+1}{2}\sin^2\left(\frac{\pi}{2}x\right)$$

$$10 \rightarrow 5 \rightarrow 8$$

Reduce an orbit by replacing 3n + 1 with (3n + 1)/2:

$$10, 5, \frac{16}{10}, 8, 4, 2, 1, \frac{4}{10}, 2, 1, \dots$$

shortens to

$$10, 5, 8, 4, 2, 1, 2, 1, \dots$$

$$f(x) = \frac{x}{2}\cos^2\left(\frac{\pi}{2}x\right) + \frac{3x+1}{2}\sin^2\left(\frac{\pi}{2}x\right)$$

$$10 \rightarrow 5 \rightarrow 8 \rightarrow 4$$

Reduce an orbit by replacing 3n + 1 with (3n + 1)/2:

$$10, 5, \frac{16}{10}, 8, 4, 2, 1, \frac{4}{10}, 2, 1, \dots$$

shortens to

$$10, 5, 8, 4, 2, 1, 2, 1, \dots$$

$$f(x) = \frac{x}{2}\cos^2\left(\frac{\pi}{2}x\right) + \frac{3x+1}{2}\sin^2\left(\frac{\pi}{2}x\right)$$

$$10 \rightarrow 5 \rightarrow 8 \rightarrow 4 \rightarrow 2$$

Reduce an orbit by replacing 3n + 1 with (3n + 1)/2:

$$10, 5, \frac{16}{10}, 8, 4, 2, 1, \frac{4}{10}, 2, 1, \dots$$

shortens to

$$10, 5, 8, 4, 2, 1, 2, 1, \dots$$

$$f(x) = \frac{x}{2}\cos^2\left(\frac{\pi}{2}x\right) + \frac{3x+1}{2}\sin^2\left(\frac{\pi}{2}x\right)$$

$$10 \rightarrow 5 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

Reduce an orbit by replacing 3n + 1 with (3n + 1)/2:

$$10, 5, \frac{16}{10}, 8, 4, 2, 1, \frac{4}{10}, 2, 1, \dots$$

shortens to

$$10, 5, 8, 4, 2, 1, 2, 1, \dots$$

$$f(x) = \frac{x}{2}\cos^2\left(\frac{\pi}{2}x\right) + \frac{3x+1}{2}\sin^2\left(\frac{\pi}{2}x\right)$$

$$10 \rightarrow 5 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow 2$$

Reduce an orbit by replacing 3n + 1 with (3n + 1)/2:

$$10, 5, \frac{16}{10}, 8, 4, 2, 1, \frac{4}{10}, 2, 1, \dots$$

shortens to

$$10, 5, 8, 4, 2, 1, 2, 1, \dots$$

$$f(x) = \frac{x}{2}\cos^2\left(\frac{\pi}{2}x\right) + \frac{3x+1}{2}\sin^2\left(\frac{\pi}{2}x\right)$$

A "cobweb" plot

Reduce an orbit by replacing 3n + 1 with (3n + 1)/2:

$$10, 5, \frac{16}{10}, 8, 4, 2, 1, \frac{4}{10}, 2, 1, \dots$$

shortens to

$$10, 5, 8, 4, 2, 1, 2, 1, \dots$$

$$f(x) = \frac{x}{2}\cos^2\left(\frac{\pi}{2}x\right) + \frac{3x+1}{2}\sin^2\left(\frac{\pi}{2}x\right)$$

Iterating on Complex Numbers

Some Million Dollar Problems
Examples of Solved and Open Problem:
The 3n+1 Problem
Extending the Problem

"Mathematics is not yet ready for such problems."

Paul Erdős, 1913 - 1996

The End