МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ

по лабораторной работе №1 по дисциплине «Цифровая обработка сигналов»

Тема: Дискретные сигналы

Студенты гр. 8383	 Ларин А.
	 Бобенко Н. С.
Преподаватель	Середа А. И.

Санкт-Петербург

2021

Цель работы.

Изучить математическое описание дискретных сигналов и овладеть программными средствами их моделирования.

Основные теоретические положения.

В теории цифровой обработки сигналов (ЦОС) принято разделять операции дискретизации по времени и квантования по уровню. Полагая операцию квантования отсутствующей, изучают дискретные сигналы и линейные дискретные системы (ЛДС), а затем, отдельно, — эффекты нелинейной операции квантования.

Дискретным называют сигнал, дискретный по времени и непрерывный по состоянию (уровню), который описывается последовательностью чисел бесконечной разрядности x(nT) или x(n), называемой коротко последовательностью. Значения nT, $n \in Z_{+ll}$, называют дискретным временем, где T — период дискретизации, а n — дискретным нормированным временем.

В теории ЦОС термины «дискретный сигнал» и «последовательность» употребляют в тождественном смысле.

Цифровым называют сигнал, дискретный по времени и квантованный по состоянию (уровню), который описывается последовательностью чисел конечной разрядности — квантованной последовательностью $\tilde{x}(nT)$ или $\tilde{x}(n)$. При компьютерном моделировании под дискретным сигналом условно понимают последовательность чисел максимально возможной разрядности, а под цифровым — последовательность чисел заданной разрядности.

Постановка задачи.

С помощью программных средств провести моделирование и анализ дискретных последовательностей. Результаты подкрепить соответствующими графиками и выводами.

Порядок выполнения работы.

- $\delta_d(k)$ с выводом 1. Смоделировать единичный цифровой импульс времени $nT \in [0;(N-1)T]$ и дискретного графиков на интервале $n \in [0; N-1]$ Пояснить нормированного времени дискретного между дискретным и дискретным нормированным взаимосвязь временем и различие между цифровым единичным импульсом и функцией Дирака.
- 2. Смоделировать дискретный единичный скачок $\sigma_d(k)$ с выводом графиков на интервале дискретного времени $nT \in [0;(N-1)T]$ и дискретного нормированного времени $n \in [0;N-1]$. Пояснить соответствие между дискретным единичным скачком и функцией Хэвисайда, а также чему равна частота дискретизации дискретного единичного скачка.
- 3. Смоделировать дискретную экспоненциальную функцию $s_1(k)$ с выводом графиков на интервале дискретного времени $nT \in [0;(N-1)T]$ и дискретного нормированного времени $n \in [0;N-1]$. Пояснить соответствие между дискретной и аналоговой экспонентами.
- 4. Смоделировать дискретный комплексный гармонический сигнал $s_2(k) = C \exp \exp(j\widehat{\omega}_0 k)$ с выводом графиков вещественной и мнимой частей на интервале времени $n \in [0; N-1]$. Записать данный сигнал в виде комбинации двух вещественных последовательностей.
- 5. Вывести графики последовательностей $\delta_d(k)$, $\sigma_d(k)$ и $s_1(k)$, задержанных на m отсчетов, на интервале времени $n \in [0; N-1]$. Записать формулы задержанных последовательностей.
- 6. Смоделировать дискретный прямоугольный импульс $s_3(k)$:

$$s_{_{\! 3}}(k) = \{\,U\,$$
 , $n_{_{\! 0}} \! \leq \! n \! \leq \! n_{_{\! 0}} \! + \! n_{_{\! imp}} \! + \! 1\,0$, иначе

на основе дискретного единичного скачка с выводом графика на интервале времени $n \in [0; N-1]$. Пояснить как выполняется моделирование импульса.

7. Смоделировать линейную комбинацию дискретных гармонических сигналов $s_4(k)$:

$$s_4(k) = a_1 x_1(k) + a_2 x_2(k) + a_3 x_3(k)$$
,

где

$$x_i(k) = B_i \sin \sin(\hat{\omega} ik)$$

с выводом графиков последовательностей $x_i(k)$ и $s_4(k)$ на интервале времени $n \in [0;5N-1]$. Вычислить среднее значение, энергию и среднюю мощность последовательности $s_4(k)$. Пояснить, какие операции при моделировании линейной комбинации сигналов и как определяют указанные характеристики.

- 8. Смоделировать дискретную затухающую синусоиду $s_5(k) = |a|^k \cos \cos (\widehat{\omega}_0 k)$ и вывести график на интервале времени $n \in [0; N-1]$. Пояснить операции при моделировании данного сигнала.
- 9. Вывести график пяти периодов периодической последовательности $s_6(k)$ дискретных прямоугольных импульсов амплитуды U и длительности n_{imp} с периодом, вдвое большим длительности импульса. Пояснить операции при моделировании периодической последовательности.
- 10. Сделать выводы.

Выполнение работы.

1. Моделирование единичного цифрового импульса $\delta_d(k)$. Графики для интервала дискретного времени $nT \in [0;(N-1)T]$ и дискретного нормированного времени $n \in [0;N-1]$ представлены на рисунках 1.1, 1.2.

Рисунок 1.1 — Единичный цифровой импульс $\delta_d(nT)$

Рисунок 1.2 — Единичный цифровой импульс $\delta_d(n)$

Дискретное нормированное время полагает частоту дискретизации равной 1. В дискретном времени частота дискретиизации равна *Т* Цифровой единичный импульс имеет амплитуда равной 1 и период 0. У функции дирака произведение периода на амплитуду равна 1, период стремится к 0, а амплитуда к бесконечности.

2. Моделирование дискретного единичного скачка $\sigma_d(k) = \{1, k \ge 0; 0, k < 0\}$. Графики дискретного единичного скачка для дискретного времени $nT \in [0; (N-1)T]$ и дискретного нормированного времени $n \in [0; N-1]$ приведены на рис. 2.1, 2.2 соотвественно.

Рисунок 2.1 — Дискретный единичный скачок $\delta_d(nT)$

Рисунок 2.2 — Дискретный единичный скачок $\delta_d(n)$

Дискретный единичный скачек $\delta_d(n)$ можно определить как интеграл от $-\infty$ до n функции Хевисайда. Частота дискретизации дискретного единичного скачка равна частоте дискретизации времени

3. Моделирование дискретной экспоненциальной функции $s_1(k)$. Графики дискретной экспоненциальной функции на интервале дискретного времени $nT \in [0; (N-1)T]$ и дискретного нормированного времени $n \in [0; N-1]$ представлены на рис. 3.1, 3.2.

Рисунок 3.1 – Дискретная экспоненциальная функция $s_1(nT)$

Рисунок 3.2 — Дискретная экспоненциальная функция $s_1(n)$ Дискретная экспонента вычисляется аналогично аналоговой, но с поправкой на разрядность числа, т.у. берется по модулю некоторого числа

4. Моделирование дискретного комплексного гармонического сигнала $s_2(k) = C \exp(j\hat{\omega}_0 k)$. Графики вещественной и мнимой частей на интервале времени $n \in [0; N-1]$ представлены на рис. 4.1, 4.2.

Рисунок 4.1 – Гармонический сигнал, вещественная часть

Рисунок 4.2 – Гармонический сигнал, мнимая часть Компоненты сигнала в виде комбинации двух вещественных последовательностей.

$$\Re(x(k)) = C\cos(\widehat{\omega}_0 Tk)$$
$$\Im(x(k)) = C\sin(\widehat{\omega}_0 Tk)$$

5. Графики последовательностей $\delta_d(k)$, $\sigma_d(k)$ и $s_1(k)$, задержанных на m отсчетов, на интервале времени $n\!\in\![0\,;N\!-\!1]$. Представлены на рис. $5.1-\!\!\!-\!5.4$.

Рисунок 5.1 — Задержанный график $\delta_{\it d}(n,m)$

Рисунок 5.2-3адержанный график $\delta_d(n,m)$

Рисунок 5.3 – Задержанный график

Формулы для задержанных графиков

Единичный импульс: $\delta_d(k-m) = \{1, k=m; 0, k \neq m\}$

Единичный скачек: $\sigma_{\scriptscriptstyle d}(k-m) = \{1, k \geq m; 0, k < m\}$

Дискретная экспоненциальная функция: $s_1(k-m) = \{a^{k-m}, k \ge m; 0, k < m\}$

6. Моделирование дискретного прямоугольного импульса $s_3(k) = \{U, n_0 \le n \le n_0 + n_{imp} + 1; 0, u + a u e\}$ на основе дискретного единичного скачка с выводом графика на интервале времени $n \in [0; N-1]$. График импульса представлен на рис. 5

Рисунок 5 — Дискретный прямоугольный импульс Импульс представляет из себя сумму двух скачков с смещением на начало и конец интервала, второй отрицателен.

7. Моделированеи линейной комбинации дискретных гармонических сигналов $s_4(k) = a_1 x_1(k) + a_2 x_2(k) + a_3 x_3(k)$,

где

$$x_i(k) = B_i \sin(\hat{\omega} ik)$$

Графики гармоник $x_i(k)$ представлены на рис. 7.1 — 7.3. График комбинации сигналов представлен на рис. 7.4

Рисунок $7.1 - x_1(k)$

Рисунок $7.2 - x_2(k)$

Рисунок $7.3 - x_3(k)$

Рисунок 7.4 — $s_4(k)$

Характеристикаи последовательности: Среднее значение: $M = \frac{1}{N} \sum_{i=0}^{N-1} x_i = 0.283960$

Является средним по средним каждого сигнала в сумме Энергия: $E = \sum_{1}^{1} x^2 = 2231.474157$.

Средняя мощность:
$$P = \frac{\sum_{1}^{10} x^2}{N} = 14.876494$$

8. Моделирование дискретной затухающей синусоиды $s_5(k) = |a|^k \cos(\hat{\omega}_0 k)$. График приведен на рис. 8.1.

Рисунок 8 — Дискретная затухающая синусоида $s_5(k)$ представляет Моделирование сигнала ИЗ себя произведение синусоидального сигнала на огибающую, являющуюся

экспоненциальным затуханием

 n_{imp}

прямоугольных

c

9. График пяти периодов периодической последовательности $s_6(k)$ U импульсов амплитуды периодом, вдвое большим длительности

импульса.

дискретных

длительности

Рисунок 9 – График пяти периодов периодической последовательности

Периодическая послеодвательность представляет из себя сумму пяти сигналов, являющихся прямоугольными импульсами со смещениями

Выводы.

Были исследованы операции описания дискретных сигналов, а так же способы из моделирования. Были изучены принципы и способы генерации еденичного импульса, единичного скачка, их отношение к функции Хевисайда, дискретная экспоненциальная функция.

Был изучен и сгенерирован дискретный гармонический сигнал, затухающая синусойда, линейная комбинация таких сигналов, изучены их свойства. Сгенерированы прямоугольные импульсы, а также периодический сигнал из таких импульсов. Сможелированы и изучены сигналы с задержкой