Heterogeneous Parallel Programming COMP4901D

Relational Query Processing on the GPU

Overview

- Relational query processing
 - Relational operators: select, project, join, aggr.
 - Access methods: table scan, B+-tree, hashing
 - Physical query operators
- Using the GPU for query co-processing
 - What can be done on the GPU and what not
 - On the GPU, how operators are implemented
 - Is co-processing worthwhile? If so, how?

Database Management Systems

DBMSs have been a 40-year success in various applications.

SQL and Query Operators

SELECT select-clause FROM from-clause [WHERE where-clause] [ORDER BY order-by-expression] [GROUP BY group-by-attributes [HAVING condition-for-each-group]]

SELECT customer-name FROM account, customer WHERE account.balance < 2500 AND account.customer-ID = customer.customer-ID

- Projection, aggregation
- Join
- Selection and/or Join condition
- Sort
- Partitioning
- Selection on partitions

DBMS Architecture

Relational Query Processing

Figure source: Silberschatz et al.

Query Evaluation on the GPU

- Bring data into the GPU memory
- Construct GPU-suitable index structures
- Implement operators using primitives
- Determine result size lock-free
- Handle data skew for better parallelism

GPUQP Architecture

GPU-Based Join Algorithms

- Non-indexed nested-loop join (NINLJ)
 - Use the map primitive on both tables
- Indexed nested-loop join (INLJ)
 - Use the map primitive on the outer table
 - Adopt CSS-Tree [Rao99] to index the inner table
- Sort-merge join (SMJ)
 - Use sort on both tables and map for merging
- Hash join (HJ)
 - Adopt radix join [Boncz99]
 - Use split on both tables for partitioning

Nested-Loops Join on the GPU

Result Output Lock-free

- Problem: Join result size unknown
- Solution: Count result size before output
 - Each thread counts the number of join results for the partitioned join.
 - Prefix sum for write locations for each thread and the total number of join results.
 - Each thread outputs the join results in parallel.

Skew Handling in SMJ & HJ

- Identify the partitions that do not fit into the local memory.
 - Given an array storing partition sizes, we split it into two groups.
 - Partitions larger than the local memory
 - Partitions not larger than the local memory
- Decompose each of the large partitions into multiple small chunks.

Experimental Setup

Implementations

CPU: OpenMP

GPU: CUDA and DirectX

	CMP (P4 Quad)	GPU (NV G80)	
Processors (HZ)	2.66G*4 1.35G*12 8		
Cache size	8MB	256KB	
Bandwidth	10.4	86.4	
(GB/sec)			

Performance on Uniform Data

Joins	CPU (sec)	GPU (sec)	Speedup
NINLJ	528.0	75.0	7.0
INLJ	4.2	0.7	6.1
SMJ	5.0	2.0	2.4
HJ	2.5	1.3	1.9

The GPU measurements include the time for data transfer between the GPU memory and the main memory.

Performance on Skewed Data

GDB: Beyond GPUQP

- Co-processing between the CPU and the GPU
 - The CPU handles disk IO, cost estimation, workload partitioning, and runs as a worker for a query when selected.
 - The GPU runs as a worker for a query when selected.
 - The cost model estimates the execution time of a query including memory stalls and computation.
 - Each operator can be (1) on the CPU only, (2) on the GPU only, and (3) on both processors.

Results from GDB

- The query cost model for the GPU was accurate.
- For TPC-H queries on disk-resident data, GDB's performance was similar to a commercial DBMS.
- For queries on in-memory data,
 - With data transfer time excluded, the GPU was 2-27 times faster than the CPU worker.
 - With data transfer time included, the GPU was 2-7 times faster on complex queries but 2-4 times slower on simple selections.
- GDB's co-processing achieved the best performance by making the right decision on where to execute a query.

Summary

- Relational query processing is a data-parallel task, suitable for GPU processing.
- Using data-parallel primitives as building blocks in GPU-based query processing simplifies programming and improves performance.
- Utilizing both the CPU and the GPU for query co-processing gets the best of both worlds.

http://www.cse.ust.hk/gpuqp