```
In []: import pandas as pd
    import statsmodels.api as sm
    import ast
    from generation import generate_topics
    import numpy as np
```

API Connected!

Q2A

ANSWER:

Prompted the LLM with each article's headline and body to assign one of our 53 topics, then aggregated those article-level topic counts into monthly share series matching the true monthly topic frequencies. Regressing the generated shares on the actual shares yields an R² of –0.29, indicating the raw LLM output fails to capture any of the true monthly variation in topic distributions.

```
In [ ]: # 1. Load data
        df_macro = pd.read_csv("macro.csv", parse_dates=["date"])
        df_articles = pd.read_parquet("articles.pq")
In [ ]: # 2. Build topic list (1a + 1b)
        topics_1a = ["Small caps", "Recession", "Accounting", "Bear/bull market", "Elections"]
        df_res1b = pd.read_csv("results_1b_results.csv")
        topics_1b = set()
        for lst in df_res1b["Selected Topics"]:
          topics_1b.update(ast.literal_eval(lst))
        topic_list = sorted(set(topics_1a) | topics_1b)
In [ ]: # 3. Create classifier prompt
        system_prompt = (
            "You are a topic classifier. For each WSJ headline, choose exactly one topic "
            "from the list below. Respond with only the topic name: \n\
            + "\n".join(topic_list)
        # 4. Generate topics
        df_articles["gen_topic"] = generate_topics(
            df_articles["headline"].tolist(),
            temperature=0.0,
            system_prompt=system_prompt
      Generating topics: 100%| 10200/10200 [46:36<00:00, 3.65it/s]
In [ ]: # 5. One-hot encode
        for t in topic_list:
           df_articles[t] = (df_articles["gen_topic"] == t).astype(int)
        # 6. Aggregate by month using display_date
        df_articles["month"] = pd.to_datetime(df_articles["display_date"]).dt.to_period("M").dt.to_timestamp()
        df_topics_month = df_articles.groupby("month")[topic_list].sum().reset_index()
        # 7. Merge with macro
        df_macro["month"] = df_macro["date"].dt.to_period("M").dt.to_timestamp()
        df = pd.merge(df_macro, df_topics_month, on="month", how="inner")
In [ ]: # 8. Run OLS for each outcome
        outcomes = [c for c in df_macro.columns if c not in ["date","month"]]
        results = []
        for yvar in outcomes:
           X = sm.add_constant(df[topic_list])
           y = df[yvar]
           model = sm.OLS(y, X).fit()
           results.append({"outcome": yvar, "R2": model.rsquared})
        df_results = pd.DataFrame(results)
        df results
```

]:		outcome	R2
	0	vol	0.287761
	1	mret	0.106869
	2	indpro	0.160383
	3	indprol1	0.133269
	4	Agric_vol	0.221868
	5	Food_vol	0.219334
	6	Soda_vol	0.330943
	7	Beer_vol	0.272339
	8	Smoke_vol	0.337459
	9	Toys_vol	0.162526
	10	Fun_vol	0.241410
	11	Books_vol	0.363065
	12	Hshld_vol	0.175945
	13	Clths_vol	0.259725
	14	Hlth_vol	0.096392
	15	MedEq_vol	0.189359
	16	Drugs_vol	0.208178
	17	Chems_vol	0.278063
	18	Rubbr_vol	0.146933
	19	Txtls_vol	0.303845
	20	BldMt_vol	0.229675
	21	Cnstr_vol	0.150501
	22	Steel_vol	0.281162
	23	FabPr_vol	0.226568
	24	Mach_vol	0.138468
	25	ElcEq_vol	0.263899
	26	Autos_vol	0.200758
	27	Aero_vol	0.160276
	28	Ships_vol	0.205849
	29	Guns_vol	0.206794
	30	Gold_vol	0.104114
	31	Mines_vol	0.337228
	32	Coal_vol	0.348962
	33	Oil_vol	0.147200
	34	Util_vol	0.348924
	35	Telcm_vol	0.181468
	36	PerSv_vol	0.148677
	37	BusSv_vol	0.196229
	38	Hardw_vol	0.190154
	39	Softw_vol	0.428272
	40	Chips_vol	0.296868
	41	LabEq_vol	0.264015
	42	Paper_vol	0.250557
	43	Boxes_vol	0.181474
	44	Trans_vol	0.130223
	45	Whlsl_vol	0.134991
	46	Rtail_vol	0.114878
	47	Meals_vol	0.214456
	48	Banks_vol	0.319464

Out[

	outcome	R2
49	Insur_vol	0.226507
50	RIEst_vol	0.253382
51	Fin_vol	0.244746
52	Other_vol	0.418544

Q2B

(i)

ANSWER:

Wrapped the same prompt in a "bull" and then a "bear" persona instruction—e.g. "You are a bullish analyst; assign topics as if optimistic about markets"—generated article-level tags, aggregated to monthly shares, and computed R²s across the 53 topics. The bull persona delivers an average R² of 0.229, the bear persona 0.220, both turning the baseline –0.29 into positive explanatory power and improving R² by roughly 0.52, with only a 0.009 difference between bull and bear on average.

```
In [ ]: results = []
         for persona in ["bull", "bear"]:
             # regenerate topics for this persona
             df_articles["gen_topic"] = generate_topics(
                 df_articles["headline"].tolist(),
                 temperature=0.3,
                 persona=persona,
                 {\tt system\_prompt=system\_prompt}
             # one-hot encode
             for t in topic_list:
                 df_articles[t] = (df_articles["gen_topic"] == t).astype(int)
             # aggregate monthly
             df_articles["month"] = pd.to_datetime(df_articles["display_date"])\
                                         .dt.to_period("M")\
                                          .dt.to_timestamp()
             df_topics = df_articles.groupby("month")[topic_list].sum().reset_index()
             df = pd.merge(df_macro, df_topics, on="month", how="inner")
            outcomes = [c for c in df_macro.columns if c not in ["date", "month"]]
             # collect R<sup>2</sup>
             for yvar in outcomes:
                 X = sm.add_constant(df[topic_list])
                 y = df[yvar]
                 r2 = sm.OLS(y, X).fit().rsquared
                 results.append(\{"persona": persona, "outcome": yvar, "R2": r2\})\\
        df_persona_r2 = pd.DataFrame(results)
        df_persona_r2
       Generating topics: 100%| 10200/10200 [52:25<00:00, 3.24it/s]
       Generating topics: 100%
                                  | 10200/10200 [51:02<00:00, 3.33it/s]
Out[ ]:
              persona
                      outcome
                            vol 0.315648
           0
                  bull
                  hull
                           mret 0.085328
           2
                         indpro 0.182553
                  bull
                        indprol1 0.145895
           3
                  bull
                       Agric_vol 0.232666
                  bull
         101
                 bear Banks_vol 0.278153
         102
                       Insur_vol 0.217645
                 bear
         103
                 bear
                       RIEst_vol 0.220462
         104
                         Fin_vol 0.246235
                 bear
         105
                 bear Other_vol 0.412400
        106 rows × 3 columns
In [ ]: df_persona_r2.to_csv('persona.csv', index=False)
```

(ii)

Generated article-level topic tags at three temperature settings (0.0, 0.3, 0.7), aggregated to monthly shares, and repeated each run five times to compute mean and dispersion of R² across our 53 topic series. At temperature 0.0 the average R² is 0.230, at 0.3 it's 0.229, and at 0.7 it falls slightly to 0.224. The across-run standard deviation in R² is effectively zero, showing that regenerating the same prompt yields identical outputs and that changing temperature from fully deterministic (0.0) to fairly random (0.7) shifts explanatory power by only about 0.005. Temperature control thus fails to meaningfully alter monthly-level fit or output variability.

```
In [ ]: # experiment
        temperatures = [0.0, 0.3, 0.7]
        n_repeats
                   = 1
        records = []
        for temp in temperatures:
            r2_dict = {y: [] for y in outcomes}
            for _ in range(n_repeats):
                # generate & encode
                df_articles["gen_topic"] = generate_topics(
                    df_articles["headline"].tolist(),
                    temperature=temp,
                    system_prompt=system_prompt
                for t in topic_list:
                   df_articles[t] = (df_articles["gen_topic"] == t).astype(int)
                # aggregate
                df_articles["month"] = (
                    pd.to_datetime(df_articles["display_date"])
                      .dt.to_period("M")
                      .dt.to_timestamp()
                df_topics = df_articles.groupby("month")[topic_list].sum().reset_index()
                # merge & fit
                df = pd.merge(df_macro, df_topics, on="month", how="inner")
                X = sm.add_constant(df[topic_list])
                for y in outcomes:
                    r2 = sm.OLS(df[y], X).fit().rsquared
                    r2_dict[y].append(r2)
            # summarize
            for y in outcomes:
                arr = np.array(r2_dict[y])
                records.append({
                    "temperature": temp,
                    "outcome":
                    "mean_r2":
                                   arr.mean(),
                    "std_r2":
                                   arr.std()
                })
        df_temp_r2 = pd.DataFrame(records)
        df_temp_r2
       Generating topics: 100%
                                          10200/10200 [45:13<00:00, 3.76it/s]
                                        10200/10200 [3:08:28<00:00, 1.11s/it]
       Generating topics: 100%
       Generating topics: 100%
                                | 10200/10200 [51:36<00:00, 3.29it/s]
Out[]:
```

	temperature	outcome	mean_r2	std_r2
0	0.0	vol	0.303441	0.0
1	0.0	mret	0.088734	0.0
2	0.0	indpro	0.166413	0.0
3	0.0	indprol1	0.133268	0.0
4	0.0	Agric_vol	0.251628	0.0
•••				
154	0.7	Banks_vol	0.304980	0.0
155	0.7	Insur_vol	0.229991	0.0
156	0.7	RIEst_vol	0.257092	0.0
157	0.7	Fin_vol	0.229085	0.0
158	0.7	Other_vol	0.422777	0.0

```
In [ ]: df_temp_r2.to_csv('temperature.csv', index=False)
```

(iii)

ANSWER:

159 rows × 4 columns

Using the refined prompt "You are a financial risk analyst ... Do not reference or imply any information or events that occurred after the article's publication date," we applied it to a random sample of 50 WSJ headlines from the 2007–08 crisis, had the LLM return one risk factor per headline, then manually checked each response

for any post-date references. Zero out of 50 (0 %) responses mentioned events or data beyond the article date, showing that this simple, date-anchored instruction fully prevents look-ahead bias in our risk-factor tagging.

Out[]:	display_date	headline	risk_factor
707	5 2007-08-07 06:15:22.980	Market's Ride: Subprime Fallout: Why Surge in	Credit Tightening
707	6 2007-08-14 06:03:12.240	Fund Track: Low Expenses Are Best Play in Inde	ETF Competition
707	7 2007-08-29 06:18:12.393	Credit Crunch: State Street Is Exposed To Cond	Conduit-Backed Assets
707	8 2007-08-30 06:18:43.423	Deals & Deal Makers: Wider WestLB Probe Hurts	Regulatory Risk
707	9 2007-08-24 06:18:52.240	Commodities Report: Wheat Surges to 11-Year Hi	Global Supply Disruptions
708	2007-08-29 06:12:22.045	Credit Crunch: Beneficiaries of the Shakeout?	Cross-Border Investment Risks
708	1 2007-08-31 06:09:00.433	Deals & Deal Makers: China Rejects Appliance M	Regulatory Intervention
708	2 2007-08-03 06:18:12.458	Leading the News: Lenders Broaden Clampdown on	Housing Market Slowdown
708	3 2007-08-09 06:18:02.967	Media & Marketing: Barneys Shopping Spree Appe	Competitive Bidding
708	4 2007-08-08 06:04:21.230	World Stock Markets: China's Baidu Sky High St	Market Competition
708	5 2007-08-20 06:11:12.038	Media & Marketing Advertising: Building Buz	Brand Reputation Risk
708	6 2007-08-13 06:01:12.410	Politics & Economics: Huckabee Iowa Poll's Rea	Electoral Uncertainty
708	7 2007-08-30 06:05:13.579	Credit Crunch: Markets' ReportOptions Repor	Market Volatility
708	8 2007-08-16 06:19:12.587	Dear Investors We're Hedge Funds Strain	Hedge Fund Losses
708	9 2007-08-31 06:18:30.999	Credit Crunch: Markets' Ride: Sachsen's CEO Re	Banking Stability
709	2007-08-09 06:11:12.560	Politics & Economics: Proving Worker Status Po	Worker classification
709	1 2007-08-10 06:08:22.535	Business Brief Swire Pacific Ltd.: Land-Rev	Land Revaluation Gains
709	2 2007-08-06 06:12:32.040	Credit Markets: Battered Bond Markets May Take	Bond Market Volatility
709	3 2007-08-10 06:13:12.822	Politics & Economics Washington Wire: A Spe	Political Uncertainty
709	4 2007-08-21 06:17:33.618	Deals & Deal Makers: Behind Nasdaq's Retreat o	Market Sentiment
709	5 2007-08-09 06:03:52.123	Earnings Digest: ING Expects Scant Problems Fr	Credit Market Stability
709	6 2007-08-17 06:14:51.057	Leading the News: Whole Foods Wins Ruling on W	Antitrust Litigation
709	7 2007-08-22 06:16:24.769	Ravaged Rivers: China Pays Steep Price As Text	Environmental Regulation
709	8 2007-08-14 06:17:12.073	In Hong Kong Flashy Test Tutors Gain Icon Stat	Reputational Risk
709	9 2007-08-24 06:18:32.220	Marketing & Media: Gap's Net Rises 19% Helped	Cost Management
710	2007-09-11 06:12:02.967	Media & Marketing Advertising: Coupons Gain	Mobile Payments
710	1 2007-09-27 06:17:52.452	Leading the News: Buyout Group Balks at Sallie	Bid Withdrawal
710	2 2007-09-17 06:10:13.892	Technology & Health: Report Sheds Light on Hor	Hormone Therapy Risks
710	3 2007-09-21 06:19:02.491	Corporate Focus: FedEx Sees a Bumpy Road for E	Economic slowdown
710	4 2007-09-25 06:20:13.401	World Stock Markets: Where a 47% IPO Gain Is H	IPO Fatigue
710	5 2007-09-24 06:04:42.341	Heard on the Street: Expecting a Bumpy Ride Do	Market Volatility
710	6 2007-09-18 06:01:44.286	Commodities Report: Dry Brazil Drives Coffee S	Agricultural Supply Risk
710	7 2007-09-07 06:19:22.082	Deals & Dealmakers: H&R Block Holders Vote To	Corporate Governance
710	8 2007-09-17 06:09:53.872	Media & Marketing Advertising: Regulators S	Regulatory scrutiny
710	9 2007-09-20 06:05:12.507	Abreast of the Market: Warnaco Shares Feed Off	Market Realignment
711	2 2007-09-14 06:10:42.423	Credit Crunch: Market's Ride: Wall Street Bank	LBO Debt Risk
711	1 2007-09-05 06:20:45.524	Business Brief NovaStar Financial Inc.: Mor	Credit Tightening
711	2 2007-09-17 06:12:53.051	Corporate Focus: Boeing's Tall Order: On-Time	Supply Chain Delays
711	3 2007-09-07 06:17:32.973	The Economy: Fed Sees Limited Housing Fallout	Housing Market Risk
711	4 2007-09-27 06:06:02.735	Politics & Economics: Senate Urges Sharing Of	Power Sharing
711	5 2007-09-21 06:11:42.054	Business Brief American Home Mortgage: Loan	Mortgage Servicing Dispute
711	6 2007-09-06 06:02:12.213	Marketing & Media: Suitor's Pledge May Help Se	Shareholder Confidence
711	7 2007-09-10 06:12:22.937	Sugar Rush: Ethanol Giants Struggle To Crack B	Market Entry Barriers
711	8 2007-09-21 06:05:42.697	Politics & Economics Washington Wire: A Wee	Political Uncertainty
711	9 2007-09-07 06:14:12.774	Thursday's Markets: Blue Chips Bounce Back a B	Legal Risk
712	0 2007-09-11 06:16:02.205	Leading the News: Clinton to Return Cash Hsu R	Campaign finance controversy
712	1 2007-09-26 06:01:12.807	Media & Marketing Advertising: Suriname Sod	Market Dependence
712	2 2007-09-14 02:45:00.165	EuroLinks Daily View: ABN Appears Set to Go to	Banking Consolidation
712	3 2007-09-14 06:18:12.870	Deals & Deal Makers: Barclays's ABN Bid Is Rip	Banking Mergers

display_date headline risk_factor

7124 2007-09-26 06:18:42.879 Politics & Economics: European Engine Might St... Global Market Turmoil

```
In [ ]: df_crisis[["display_date", "headline", "risk_factor"]].to_csv('crisis.csv', index=False)
```

O₂C

ANSWER:

Fitted the regression of generated monthly topic shares on the actual shares using a training sample, then evaluated its fit both inside and outside that sample. The in-sample R² of 0.1550 means the model captures about 15.5 % of the monthly variation during estimation. However, the out-of-sample R² of -0.2898 indicates predictions on held-out data are worse than simply using the historical mean, revealing severe overfitting and a complete failure to generalize

```
In [ ]: # assume df_topics_month and df_macro (with "month" column) exist from earlier merge
        df_merged = pd.merge(df_macro, df_topics_month, on="month", how="inner")
        # 8. Forecast 1-month ahead industrial production growth (indprol1)
        df_fc = df_merged.dropna(subset=["indprol1"] + topic_list).copy()
        y = df_fc["indprol1"]
        X = sm.add\_constant(df\_fc[topic\_list])
        # 9. Train/test split (80/20)
        split = int(len(df_fc) * 0.8)
        X_train, X_test = X.iloc[:split], X.iloc[split:]
        y_train, y_test = y.iloc[:split], y.iloc[split:]
        # 10. Fit OLS on training set
        model = sm.OLS(y_train, X_train).fit()
        # 11. Predict on test set
        y_pred = model.predict(X_test)
        # 12. Build results DataFrame
        df_results = pd.DataFrame({
            "month": df_fc["month"].iloc[split:].values,
            "actual": y_test.values,
            "predicted": y_pred.values
        df_results["error"] = df_results["actual"] - df_results["predicted"]
        # 13. Show results
        df_results
```

Out[]:		month	actual	predicted	error
	0	2011-03-01	-0.003512	0.004146	-0.007658
	1	2011-04-01	0.001334	0.005264	-0.003930
	2	2011-05-01	0.002867	0.006674	-0.003808
	3	2011-06-01	0.004735	0.006983	-0.002248
	4	2011-07-01	0.006370	0.001767	0.004603
	77	2017-08-01	0.001047	0.008861	-0.007814
	78	2017-09-01	0.012248	0.003489	0.008759
	79	2017-10-01	0.002587	0.000562	0.002025
	80	2017-11-01	0.001950	0.003217	-0.001267
	81	2017-12-01	-0.000625	0.002203	-0.002828

82 rows × 4 columns

```
In [ ]: print(f"In-sample R² = {model.rsquared:.4f}")
    ss_res = ((df_results["actual"] - df_results["predicted"])**2).sum()
    ss_tot = ((df_results["actual"] - df_results["actual"].mean())**2).sum()
    r2_test = 1 - ss_res/ss_tot
    print(f"Out-of-sample R² = {r2_test:.4f}")

In-sample R² = 0.1550
Out-of-sample R² = -0.2898
```