

Utilizando Python Para Salvar Vidas: O Uso de NLP Para Melhorar o Atendimento de Emergências Médicas

Palestrantes:
Prof. Dr. Wagner de Lara Machado
Dalton Breno Costa

Partnerships

João Vissoci

Pesquisador na divisão de Emergency Medicine do departamento de Cirurgia, e na divisão Duke Global Neurosurgery and Neuroscience (DGNN) do departamento de Neurocirurgia, na Duke University.

Wagner de Lara Machado

Psicólogo pela ULBRA, Mestre e Doutor em Psicologia pela UFRGS, realizou estágio de Pós-doutorado na UFRGS, professor do PPG Psicologia da PUCRS e coordenador do grupo de pesquisa Avaliação em Bem-estar e Saúde Mental (ABES - PUCRS).

Dalton Breno Costa

Estudante de Psicologia na UFCSPA, realizou estágio em psicometria na Université de Moncton (Canadá) e atualmente é bolsista de Iniciação Científica do grupo de pesquisa Avaliação, Reabilitação e Interação Humano-animal (ARIHA - PUCRS).

BMC Medicine

OPINION

Open Access

The new field of 'precision psychiatry'

Brisa S. Fernandes^{1,2,3*}, Leanne M. Williams^{4,5}, Johann Steiner⁶, Marion Leboyer⁷, André F. Carvalho⁸ and Michael Berk^{1,2,9,10}

Development of Standardized, Culturally Appropriate Prehospital Chief Complaints in eSwatini: First steps and analytical strategy

Prof. Dr. Wagner de Lara Machado, Prof. Dr. João Vissoci e Dalton Costa

Project Context

- Emergency conditions: death rates in LMICs.
- Emergency care systems: underdeveloped or non-existence.
- Lack and poor quality standardized patient data.
- Records: free-text form.
- Problems to obtain reliable and informative data.

Project aim

- Utilize natural language processing to develop and prospectively validate culturally-relevant chief complaint categories for use in prehospital services in the country of eSwatini (formerly Swaziland).
- Based on pre-existing emergency call center data.

Project Objectives

- Improve: Public Health and Emergency Health Care.
- Data driven policies and interventions.

Topic Modeling

Topic Modeling

- There are several algorithms for creating Topic Modeling:
 - Scikit-Learn Library:
 - Latent Semantic Indexing (LSI)
 - Latent Dirichlet Allocation (LDA)
 - Non-negative Matrix Factorization (NMF)
 - Gensim Library:
 - Latent Semantic Indexing (LSI)
 - Latent Dirichlet Allocation (LDA)
 - Hierarchical Dirichlet Process (HDP)

Latent Semantic Indexing (LSI)

- LSI is also known as Latent Semantic Analysis (LSA).
- LSI is based on the principle that words that are used in the same contexts tend to have similar meanings.

Latent Dirichlet Allocation (LDA)

The aim of the experiment...

- Create and compare two Topic Modeling models (LSI and LDA) from the Gensim library.
- Interpret the categories created.
- Create and compare two neural network models using the Keras library.

Data

- The data comes from a medical emergency call center in Eswatini, Africa.
- The tests were conducted using data from 2017.

Year	2014/2015	2015/2016	2017	
n	40,091	72,859	29,416	

Record Example

J	K	Ĺ	
allType 💌	location	cond -	callStatus
Primary Call	Moyeni	Speech disturbance, right hemi paralysis	Dispatched
Primary Call	Manzini	abdomina pain and vomiting since yesterday	Dispatched
Primary Call	Mahlanya	coughing hematemisis weak HIV positive but not on art CD\$ count is 648	Dispatched
Primary Call	Mbabane	collapsed conscious sweating fever been to Maputo	Not Dispatched
Primary Call	Mayiwane	diabetic patient unconscious	Dispatched
Primary Call	Zulwini	maternal case Primi Gravida Labour Pains Discgarging Fluids full term	Not Dispatched
Primary Call	Moneni	no injuries but transported to hospital	Dispatched
Primary Call	Mavalela	maternal case primi gravida full term EDD 26 january labour pains contractions 5minut	Dispatched
Primary Call	Lomshiyo	abdominal pains diarrhoea with blood weak not ambulant anorexia since yesterday sl	Dispatched
Primary Call	Rockland	loss of appetite anorexia pedal eadema and swollen knees not ambulant and weak	Dispatched
Primary Call	Nkoyoyo	HIV positive since 2012 loss of strength anorexia not yet on art	Dispatched
Primary Call	Nkoyoyo	maternal case labour pains since 0100hrs para 2 gravida 2 contractions of interval of 5	Dispatched
Primary Call	Sibane Hotel	epleptic pt diabetic patient collapsed and conscious	Dispatched

Method

Step 1 - Text Clearing

Spell Correction

>>>from textblob import **TextBlob**

>>>b = TextBlob("I havv goood
speling!")

>>>print(b.correct())

I have good spelling!

+600 substituições manuais de palavras

>>> text = text.str.replace('abdominalapains',
'abdominal pain')

Step 1 - Text Clearing

- All words were replaced to lowercase.
- All numbers, punctuation, line breaks, and whitespace were removed.
- Stopwords were removed using the NLTK library.

Step 1 - Text Clearing

• **Stemming**: process that consists in normalizing the words to their root.

Example: "likes", "liked", "likely", "liking" → like

```
from nltk.stem import PorterStemmer

def stemmer(text):
    st = PorterStemmer()
    text = text.apply(lambda x: " ".join([st.stem(word) for word in x.split()]))
    return(text)
```

• Calls composed of three or fewer words were excluded.

```
def remove_short_sentences(text):
    return(pd.Series(map(lambda x: x[1], filter(lambda x: (len(x[1].split(" ")) > 3), text.iteritems()))))
```

Step 2 - Exploration of the Data

```
from wordcloud import WordCloud

def show_wordcloud(data, title = None):
   wordcloud = WordCloud(background_color='white', max_words=200,
   max_font_size=40, scale=3, random_state=1).generate(str(data))
```

Cleaning Results

Original:

29.403 calls

383.522 words

After cleaning:

22.815 calls

168.271 words

Step 3 - Preprocessing Data

- Word Tokenization: procedure of dividing a sentence into pieces, each piece is called a Token. Example:
 - input: "ower abdomin pain sport blood weak dizzi pas urin onset"
 - output: ['lower', 'abdomin', 'pain', 'sport', 'blood', 'weak', 'dizzi', 'pas', 'urin', 'onset']

```
from nltk.tokenize import RegexpTokenizer

def preprocess_data(doc_set):
   tokenizer = RegexpTokenizer(r'\w+')
        # list for tokenized documents in loop
   texts = []
   # loop through document list
   for i in doc_set:
        tokens = tokenizer.tokenize(i)
        # add tokens to list
        texts.append(tokens)
   return texts
```

Step 3 - Preprocessing Data with the Gensim Library

- **Bigrams and Trigrams**: process that joins words that are composed or has a better meaning together. Bigrams are compositions of two words and trigrams of three words. Example:
 - "difficult" and "breath" → difficult_breath

```
from gensim.models import Phrases
bigram = Phrases(Phrase_Token, min_count=30, threshold=15)
for idx in range(len(Phrase_Token)):
    for token in bigram[Phrase_Token[idx]]:
        if '_' in token:
            Phrase_Token[idx].append(token)
trigram = Phrases(bigram[Phrase_Token], min_count=30, threshold=15)
for idx in range(len(bigram[Phrase_Token])):
    for token in trigram[bigram[Phrase_Token][idx]]:
        if '_' in token:
        bigram[Phrase_Token][idx].append(token)
```

Step 3 - Preprocessing Data with the Gensim Library

- Removal of tokens that are very frequent or very rare.
- Creation of the Corpus or Bag of Words (BoW).

	it	is	puppy	cat	pen	a	this
it is a puppy	1	1	1	0	0	1	0
it is a kitten	1	1	0	0	0	1	0
it is a cat	1	1	0	1	0	1	0
that is a dog and this is a pen	0	2	0	0	1	2	1
it is a matrix	1	1	0	0	0	1	0

Final Corpus

Step 4 - Creating and Exploring Topic Modeling Models

 To generate models with Gensim it is necessary to provide the Numbers of Topics and Corpus.

from gensim.models import LdaModel, LsiModel

```
lsimodel = LsiModel(corpus=corpus, num_topics=2, id2word=dictionary)
ldamodel = LdaModel(corpus=corpus, num topics=9, id2word=dictionary)
```

- What is the optimal number of topics?
 - Topic Coherence: measures that provide the degree of semantic similarity between words and topic.

Step 4 - Creating and Exploring Topic Modeling Models

Topic Coherence Exploration

Topic Coherence Exploration

LSI

Visualização do Modelo de LDA

https://daltonbc96.github.io/vis.html

Step 5 - Comparing Techniques

Step 6 - Topic Evaluation

Topic	Description
1	Bleeding, emergencies with pregnant women, abortion, bleeding, injury or pain in the abdominal region
2	Severe pain, fractures, falls, limb displacement, swelling, edema
3	Traumas and head injuries, assault injuries, deep wounds, stab yeast, deep laceration
4	Dyspnea, asthma attack, tachycardia, chest pain, use of sprays, coughing
5	Start of labor, mucu, contractions, pain, bleeding, full term pregnancy
6	Severe headache, fever, weak body, dizziness, body pain
7	Loss of strength, vomiting, diarrhea, abdominal pain, poor appetite, ulcers
8	Complications of medication ingestion, postpartum complications and other medical emergencies
9	Sudden collapse, convulsions, semiconscious or unconscious, slow or rapid breathing, heart problems

Reading Indication

https://medium.com/ensina-ai/inteligencia-artificial-saude-psicologia-psiquiatria-23dbdbcb2e17

Step 7 - Training of Neural Networks with the Keras library

Word Tokenization with the Keras library.

- Training and Test Data
 - Training: 15970 calls (70%)
 - Test: 6845 calls (30%)

- Neural Networks:
 - Long Short Term Memory (LSTM)
 - Convolutional Neural Network (CNN)

Step 7 - Training of Neural Networks

LSTM

Accuracy: 0.887

Loss: 0.650

CNN

Accuracy: 0.957

Loss: 0.140

Conclusion

- LDA was coherent and effective in recovering the structure of medical emergency data. CNN had the best performance in classifying emergency data.
- This categorization system may enable the specialization of emergency services.
- More insights and information about emergencies.

Next Steps

- Improve the unsupervised model and then invest in supervised learning.
- Correlate the learned model to the clinical outcome.
- Improve records of emergency calls (quality of writing).

Obrigado!

Utilizando Python Para Salvar Vidas:

O Uso de NLP Para Melhorar o Atendimento de Emergências Médicas

Prof. Dr. Wagner de Lara Machado wag.lm.psico@gmail.com

Dalton Breno Costa dalton.bc96@gmail.com