Name: Srishti Pandey Class-Roll No.: TY9-40

Batch: B

PRN: 22UF17054CM100

## **Experiment No. 4**

<u>Aim:</u> Implementation of Clustering algorithm (K-means / Agglomerative).

#### **Introduction:**

- Clustering is an unsupervised machine learning technique used to group similar data points based on certain features.
   Unlike classification, clustering does not require labeled data.
- K-means Clustering: A centroid-based algorithm that partitions data into K clusters by minimizing intra-cluster variance. It iteratively assigns points to the nearest cluster center and updates the centroids.
- Agglomerative Hierarchical Clustering: A bottom-up approach
  where each data point starts as its own cluster. Clusters are
  merged step-by-step based on similarity until a single cluster is
  formed or a stopping criterion is met.

### **Procedure:**

- 1. Import Necessary Libraries
- 2. Load and Prepare the Dataset
- 3. Determine the Optimal Number of Clusters (For K-means)
- 4. Apply Clustering Algorithm
- 5. Visualize the Clusters
- 6. Evaluate the Clustering Performance
- 7. Interpret Results

```
Name: Srishti Pandey
Class-Roll No.: TY9-40
```

Batch: B

PRN: 22UF17054CM100

```
import random
import matplotlib.pyplot as plt
def k_means_clustering():
  # Step 1: Accept user input
  data = list(map(float, input("Enter numbers separated by spaces: ").split()))
  k = int(input("Enter the number of clusters (k): "))
  # Step 2: Initialize cluster means randomly
  means = random.sample(data, k)
  print(f"Initial means: {means}")
  iteration = 0
  while True:
   iteration += 1
    print(f"Iteration {iteration}:")
    # Step 3: Assign each data point to the nearest mean
    clusters = {i: [] for i in range(k)}
    for point in data:
     distances = [abs(point - mean) for mean in means]
      cluster_index = distances.index(min(distances))
     clusters[cluster_index].append(point)
    # Step 4: Calculate new means
    new_means = []
    for i in range(k):
      if clusters[i]:
        new_means.append(sum(clusters[i]) / len(clusters[i]))
        new_means.append(means[i]) # Keep the same mean if the cluster is empty
    print(f"Clusters: {clusters}")
    print(f"Updated means: {new_means}")
    # Step 5: Check for exact match in means
    if new_means == means:
      print("Exact same means achieved. Clustering complete.")
    means = new means
  print("Final clusters:")
  for i in range(k):
    print(f"Cluster {i + 1}: {clusters[i]}")
  # Visualization
  plt.figure(figsize=(8, 6))
  for i, cluster in clusters.items():
  plt.scatter(cluster, \ [i+1] * len(cluster), \ label=f'Cluster \ \{i+1\}') \\ plt.scatter(means, \ range(1, \ k+1), \ color='red', \ marker='x', \ label='Means', \ s=100) \\
  plt.title("K-Means Clustering")
  plt.xlabel("Data Points")
  plt.ylabel("Clusters")
  plt.legend()
  plt.grid()
  plt.show()
if __name__ == "__main__":
   k_means_clustering()
```

```
Enter numbers separated by spaces: 15 30 45 60 75 90 105
Enter the number of clusters (k): 4
Initial means: [75.0, 45.0, 30.0, 90.0]
Iteration 1:
Clusters: {0: [60.0, 75.0], 1: [45.0], 2: [15.0, 30.0], 3: [90.0, 105.0]}
Updated means: [67.5, 45.0, 22.5, 97.5]
Iteration 2:
Clusters: {0: [60.0, 75.0], 1: [45.0], 2: [15.0, 30.0], 3: [90.0, 105.0]}
Updated means: [67.5, 45.0, 22.5, 97.5]
Exact same means achieved. Clustering complete.
Final clusters:
Cluster 1: [60.0, 75.0]
Cluster 2: [45.0]
Cluster 3: [15.0, 30.0]
Cluster 4: [90.0, 105.0]
```



Start coding or generate with AI.

#### **Conclusion:**

Clustering algorithms like K-means and Agglomerative Clustering play a crucial role in unsupervised learning, enabling the automatic grouping of similar data points without prior labels. K-means is efficient and works well with large datasets, whereas Agglomerative Clustering provides a hierarchical view of data relationships. The choice of algorithm depends on dataset characteristics and the desired clustering structure. By properly selecting the number of clusters and evaluating performance using appropriate metrics, clustering can provide meaningful insights, aiding in decision-making across various domains such as marketing, biology, and cybersecurity.

#### **Review Questions:**

1. What is the K-means clustering algorithm, and how does it work?

#### Ans:

- **Definition**: Unsupervised machine learning algorithm that partitions data into K clusters based on feature similarity.
- Working:
- 1. Choose K Select the number of clusters.
- 2. Initialize Centroids Randomly pick K data points as initial cluster centers.
- 3. Assign Data Points Assign each point to the nearest centroid.
- 4. Update Centroids Recalculate centroids as the mean of assigned points.
- 5. Repeat Until Convergence Iterate until centroids stabilize.
- 2. How do you determine the optimal number of clusters in K-means?

Ans:

- Elbow Method Plots WCSS for different K values; the "elbow point" where WCSS drops sharply is the best K.
- Silhouette Score Measures cluster cohesion and separation (-1 to 1); a higher score means better clustering.
- Gap Statistic Compares WCSS to expected WCSS for random data; the highest gap value suggests the optimal K.
- Davies-Bouldin Index (DBI) Measures cluster compactness and separation; lower values indicate better clustering.
- Dendrogram (Hierarchical Clustering) Helps visualize natural clusters, useful for estimating K before applying K-means.

# 3. What are the common distance metrics used in Agglomerative Clustering?

#### Ans:

- Euclidean Distance Measures the straight-line distance between two points; widely used for numerical data.
- Manhattan Distance Calculates the sum of absolute differences between coordinates; useful when movements are restricted to grid-based paths.
- Minkowski Distance A generalized metric that includes Euclidean (p=2) and Manhattan (p=1) distances.
- Cosine Similarity Measures the angle between two vectors; commonly used for text and high-dimensional data.
- Mahalanobis Distance Accounts for correlations between variables; useful when features have different scales or correlations.

**Github Link:** https://github.com/SrishtiPandey15/DWM-Batch-B-Exps