

Attention: ce n'est pas le terminal sous le simulateur, mais celui sous votre programme!

Afficher le terminal série ^ ① :

Ceci permet de communiquer entre robot et ordinateur. Avec l'instruction print () nous pouvons afficher les valeurs des variables.

Posez les capteurs infrarouges (sous le robot) exactement sur les 4 cases et mesurez les valeurs lues par les 2 capteurs

valeurs lues par les z			
blanc	gris 25%	gris 50%	noir
892 848 417 560	222 293	160242	21 97

Prog 6 : s'afrêter au bord de la table

Quand nous appuyons le bouton B, le robot commence à avancer avec une vitesse de 60. Si tout fonctionne bien, le robot doit s'arrêter au bord de la table.

Que fait le bout de code suivant ?

Code	Explication	
<pre>if left < 100 or right < 100: robot.move(0, 0)</pre>	Si les carteurs droit et ganche détectent une valeur de confourments	up 104
Alignez une feuille avec le bord de la ta		

Prog 7 : suivi de ligne

Le suivi de ligne est une tache classique en robotique. Avec les deux capteurs, nous allons faire une mesure différentielle (soustraction).

Code	Explication	
d = left - right	le passe par ule la différence entre la droite et la gencre et cela dat valoir d	
d = d // 10	cela send l'ajustement du salot moins unugge (dibission en éneparlo)	
robot.move(10 - d, 10 + d)	le notiet à juste en jonc ton de d	

Mettez un stylo dans le robot, et démontrez le suivi de ligne avec la piste sur la page suivante.

	le sens de l'horloge.
robot.move(0, 60, 4000)	le solot tourne avec une presse de (1) avec la soue droite rendant (1880 ms

Mesurez les angles de l'arc

Angle du premier arc	
Angle du deuxième arc	

Prog 3: dessiner un triangle

Programmez le robot pour dessiner un triangle d'un côté d'environ 10 cm.

Ajoutez un commentaire à chaque ligne de code.

```
for i in range (3):
. Octob. move (60, 60, 500)
. Nobel. move (60, -60, 100)
```

Prog 4: dessiner un hexagone

Programmez le robot pour dessiner un hexagone d'un côté d'environ 5 cm.

Ajoutez un commentaire à chaque ligne de code.

```
for i in range (6):

. noto . move (60,60,250)

. noto . move (60,60,00)
```

Prog 5 : les 2 capteurs de lumière

Le robot possède 2 capteurs de lumière qui lui permettent de détecter le bord de la table ou une ligne noire.

```
if prog == 5:
    if button_b.is_pressed():
        left = pin1.read_analog()
        right = pin2.read_analog()
        print(left, right)
        sleep(200)
```


Que font ces lignes de code?

Code	Comportement du robot
<pre>left = pin1.read_analog()</pre>	le contem ganche détecte la
right = pin2.read_analog()	le conteur dont détecte la valeur de la couleur
<pre>print(left, right)</pre>	affiche les valeurs détectées

Pour lire ces valeurs, nous allons afficher le terminal sér e (console). Pour ceci le micro:bit doit être connecté avec un câble à l'ordinateur.

- prog2 dessiner un S
- prog3 dessiner un triangle
- prog4 dessiner un hexagone

Prog 0 : dessiner un trait

Ce programme fait avancer et reculer le robot. Que font ces deux lignes de code exactement ?

Code	Comportement du robot	
robot.move(60, 60, 1000)	le robot avance avec les	
	deux roues à la vitesse 60,	
	pendant 1000 ms	
robot.move(-60, -60, 500)	le nobet recute avec les 2 roues ouvec la viterse Opendant 1000 ms	

Utilisez un stylo pour laisser une trace. Faites les mesures suivantes.

Longueur de la ligne quand le robot avance	Bem
Longueur de la ligne quand le robot recule	4. Secon
Calculez la vitesse du robot quand il avance	0,08 m/s
(formule : vitesse = distance/ temps). Quelle est l'unité ?	of Organis
Vitesse du robot quand il recule	0,08 pm/3

Prog 1: dessiner un V

Que font ces 3 lignes de code? Que fait le robot ? Que dessine-t-il ? Il tourne de quel angle ? dans quel sens ?

Code	Comportement du robot	
robot.move(60, 60, 1000)	le robot avance avec les	
	deux roues à la vitesse 60,	
	pendant 1000 ms	
robot.move(60, -60, 1000)	le sobot tourne avec une lave à une vite	
	de 60 et l'autre à -60 pardant 1000m	
robot.move(60, 60, 1000)	le nolat avance avec les 2 noves à la viterse 60 mendant 1000 ms	
	enterse 60 mendant 1000 ms	
Macuraz las anglas	1	

Angle de pivotement du robot

Prog 2 : dessiner un S

Que font ces 3 lignes de code? Que fait le robot ? Que dessine-t-il ? Il tourne de quel angle ? dans quel sens ?

Code	Comportement du robot	
	le robot dessine un arc de	
	cercle d'environs 120° dans	

Pour utiliser ces fonctions, vous devez importer le module **KitronikMOVEMotor**. Vous pouvez trouver l'original sur GitHub:

https://github.com/KitronikLtd/micropython-microbit-kitronik-MOVE-motor/tree/master

La méthode move()

Pour simplifier l'utilisation, nous avons ajouté une méthode supplémentaire move (speed1, speed2, duration=0. Cette méthode permet de contrôler les deux moteurs simultanément avec une vitesse allant de -255 à +255, pendant une durée spécifiée. Si la durée est 0, le robot ne s'arrête pas, et continue à bouger.

```
def move(self, speed1, speed2, duration=0):
    if speed1 == 0:
        self.motorOff('l')
    elif speed1 > 0:
       self.motorOn('l', 'f', speed1)
    else:
       self.motorOn('l', 'r', -speed1)
    if speed2 == 0:
        self.motorOff('r')
    elif speed2 > 0:
        self.motorOn('r', 'f', speed2)
    else:
        self.motorOn('r', 'r', -speed2)
    if duration > 0:
        sleep(duration)
        self.move(0, 0)
```

Expliquez la signification des 3 paramètres de la méthode move ()

speed1	vitesse du moteur gauche, allant de		
	-255 à 255		
speed2	2 vitare du noteur droite, allant de 255à 255		
duration	la dunée du manvement		

Comme nous avons modifié le module, nous adaptons également sa version dans la première ligne.

microbit-module: KitronikMOVEMotor@1.1.1

Chargement des fichiers

- Ouvrez le navigateur Googe Chrome
- Allez sur la page de l'éditeur: python.microbit.org
- Chargez le programme principal : main.py
- Ajoutez le module KitronikMOVEMotor.py

Documentation des traces

Prenez des feuilles A4, mettez votre nom, et la date du jour en haut de chaque page. Désignez vos traces par prog0 à prog4. Mesurez et annotez les distances (en cm) et les angles (en degrées) à coté des traces. Ajoutez des explications et commentaires sur la feuille :

- prog0 dessiner un trait
- prog1 dessiner un V

TP robot

Nom: Delonue	Classe: 3H4	No. matériel: 🗤 o 4
Prénom : Elougn	Date: 09/08/2015	

Description du robot

Le robot kitronik :MOVE motor for BBC micro:bit est un véhicule avec 2 moteurs, un buzzer, 4 LEDs, un capteur optique de suivi de ligne et en capteur ultrason pour mesurer la distance, et 2 connecteurs pour des servomoteurs qui pourraient servir à contrôler un bras ou une pince.

Le micro:bit communique avec le robot en utilisant les broches suivantes (données). En lisant la description ci-dessus, remplissez les éléments manguants du tableau.

pins	élément	fonction
0	buzzers	faire un son, par exemple sirène, klaxon
1, 2	délecteur oplique	détecter le bord de table, suivre une ligne noir
8	reopiseels	allumer des LED coloriées, blanc (phares), orange (clignoteurs), rouge (freinage),
13, 14	capteurs altrason	mesurer une distance, pour éviter un obstacle
15, 16	servomoteur 1, 2	Benger despires par occupte
19, 20	moteurs (I2C)	remettre au robot d'avancer
	,	