6.003: Signals and Systems

Signals and Systems

6.003: Signals and Systems

Today's handouts: Single package containing

Slides for Lecture 1

Subject Information & Calendar

Lecturer: Denny Freeman

Instructors: Peter Hagelstein

Rahul Sarpeshkar

Website: mit.edu/6.003

Text: Signals and Systems – Oppenheim and Willsky

6.003: Homework

Doing the homework is essential for understanding the content.

- where subject matter is/isn't learned
- equivalent to "practice" in sports or music

Weekly Homework Assignments

- Conventional Homework Problems plus
- Engineering Design Problems (Python/Matlab)

Open Office Hours!

- Stata Basement
- Mondays and Tuesdays, afternoons and early evenings

6.003: Signals and Systems

Collaboration Policy

- Discussion of concepts in homework is encouraged
- Sharing of homework or code is not permitted and will be reported to the COD

Firm Deadlines

- Homework must be submitted in recitation on due date
- Each student can submit one late homework assignment without penalty.
- Grades on other late assignments will be multiplied by 0.5 (unless excused by an Instructor, Dean, or Medical Official).

6.003 At-A-Glance

	Tuesday	Wedne	esday	Thursday	Friday
Feb 2	L1: Signals and Systems		R1: Continuous & Discrete Systems	L2: Discrete-Time Systems	R2: Difference Equations
Feb 9	L3: Feedback, Cycles, and Modes	HW1 due	R3: Feedback, Cycles, and Modes	L4: CT Operator Representations	R4: CT Systems
Feb 16	Presidents Day: Monday Schedule	HW2 due	R5: CT Operator Representations	L5: Second-Order Systems	R6: Second-Order Systems
Feb 23	L6: Laplace and Z Transforms	HW3 due	R7: Laplace and Z Transforms	L7: Transform Properties	R8: Transform Properties
Mar 2	L8: Convolution; Impulse Response	EX4	Exam 1 no recitation	L9: Frequency Response	R9: Convolution and Freq. Resp.
Mar 9	L10: Bode Diagrams	HW5 due	R10: Bode Diagrams	L11: DT Feedback and Control	R11: Feedback and Control
Mar 16	L12: CT Feedback and Control	HW6 due	R12: CT Feedback and Control	L13: CT Feedback and Control	R13: CT Feedback and Control
Mar 23	Spring Week				
Mar 30	L14: CT Fourier Series	HW7	R14: CT Fourier Series	L15: CT Fourier Series	R15: CT Fourier Series
Apr 6	L16: CT Fourier Transform	EX8 due	Exam 2 no recitation	L17: CT Fourier Transform	R16: CT Fourier Transform
Apr 13	L18: DT Fourier Transform	HW9 due	R17: DT Fourier Transform	L19: DT Fourier Transform	R18: DT Fourier Transform
Apr 20	Patriots Day Vacation	HW10	R19: Fourier Transforms	L20: Fourier Relations	R20: Fourier Relations
Apr 27	L21: Sampling	EX11 due	Exam 3 no recitation	L22: Sampling	R21: Sampling
May 4	L23: Modulation	HW12 due	R22: Modulation	L24: Modulation	R23: Modulation
May 11	L25: Applications of 6.003	EX13	R24: Review	Breakfast with Staff	Study Period
May 18	Final Examination Period				

6.003: Signals and Systems

Weekly meetings with class representatives

- help staff understand student perspective
- learn about teaching

One representative from each section (4 total)

Tentatively meet on Thursday afternoon

The Signals and Systems Abstraction

Describe a **system** (physical, mathematical, or computational) by the way it transforms an **input signal** into an **output signal**.

Example: Mass and Spring

Example: Mass and Spring

Example: Mass and Spring

Example: Tanks

Example: Tanks

Example: Cell Phone System

Example: Cell Phone System

Signals and Systems: Widely Applicable

The Signals and Systems approach has broad application: electrical, mechanical, optical, acoustic, biological, financial, ...

Signals and Systems: Modular

The representation does not depend upon the physical substrate.

focuses on the flow of information, abstracts away everything else

Signals and Systems: Hierarchical

Representations of component systems are easily combined.

Example: cascade of component systems

Composite system

Component and composite systems have the same form, and are analyzed with same methods.

Signals are mathematical functions.

- independent variable = time
- dependent variable = voltage, flow rate, sound pressure

continuous "time" (CT) and discrete "time" (DT)

Many physical systems operate in continuous time.

- mass and spring
- leaky tank

Digital computations are done in discrete time.

• state machines: given the current input and current state, what is the next output and next state.

Sampling: converting CT signals to DT

T =sampling interval

Important for computational manipulation of physical data.

- digital representations of audio signals (e.g., MP3)
- digital representations of pictures (e.g., JPEG)

Reconstruction: converting DT signals to CT

zero-order hold

T =sampling interval

commonly used in audio output devices such as CD players

Reconstruction: converting DT signals to CT piecewise linear

T =sampling interval

commonly used in rendering images

Computer generated speech (by Robert Donovan)

Listen to the following four manipulated signals:

$$f_1(t)$$
, $f_2(t)$, $f_3(t)$, $f_4(t)$.

- $f_1(t) = f(2t)$
- $\bullet \quad f_2(t) = -f(t)$
- $f_3(t) = f(2t)$
- $\bullet \quad f_4(t) = 2f(t)$

Computer generated speech (by Robert Donovan)

Listen to the following four manipulated signals:

$$f_1(t)$$
, $f_2(t)$, $f_3(t)$, $f_4(t)$.

- $f_1(t) = f(2t)$
- $\bullet \quad f_2(t) = -f(t)$
- $f_3(t) = f(2t)$
- $f_4(t) = 2f(t)$

Computer generated speech (by Robert Donovan)

Listen to the following four manipulated signals:

$$f_1(t)$$
, $f_2(t)$, $f_3(t)$, $f_4(t)$.

- $f_1(t) = f(2t)$
- $\bullet \quad f_2(t) = -f(t)$
- $f_3(t) = f(2t)$
- $f_4(t) = 2f(t)$

Computer generated speech (by Robert Donovan)

Listen to the following four manipulated signals:

$$f_1(t)$$
, $f_2(t)$, $f_3(t)$, $f_4(t)$.

- $f_1(t) = f(2t)$
- $\bullet \quad f_2(t) = -f(t)$
- $f_3(t) = f(2t)$
- $\bullet \quad f_4(t) = 2f(t)$

Computer generated speech (by Robert Donovan)

Listen to the following four manipulated signals:

$$f_1(t)$$
, $f_2(t)$, $f_3(t)$, $f_4(t)$.

- $f_1(t) = f(2t)$
- $\bullet \quad f_2(t) = -f(t)$
- $f_3(t) = f(2t)$
- $f_4(t) = 2f(t)$

Computer generated speech (by Robert Donovan)

Listen to the following four manipulated signals:

$$f_1(t)$$
, $f_2(t)$, $f_3(t)$, $f_4(t)$.

- $f_1(t) = f(2t)$
- $\bullet \quad f_2(t) = -f(t)$
- $f_3(t) = f(2t)$
- $\bullet \quad f_4(t) = 2f(t)$

Computer generated speech (by Robert Donovan)

Listen to the following four manipulated signals:

$$f_1(t)$$
, $f_2(t)$, $f_3(t)$, $f_4(t)$.

- $f_1(t) = f(2t)$
- $\bullet \quad f_2(t) = -f(t)$
- $f_3(t) = f(2t)$
- $\bullet \quad f_4(t) = 2f(t)$

Computer generated speech (by Robert Donovan)

Listen to the following four manipulated signals:

$$f_1(t)$$
, $f_2(t)$, $f_3(t)$, $f_4(t)$.

- $f_1(t) = f(2t)$
- $\bullet \quad f_2(t) = -f(t)$
- $f_3(t) = f(2t)$
- $f_4(t) = 2f(t)$

Computer generated speech (by Robert Donovan)

Listen to the following four manipulated signals:

$$f_1(t)$$
, $f_2(t)$, $f_3(t)$, $f_4(t)$.

- $f_1(t) = f(2t)$ \checkmark
- $f_2(t) = -f(t)$ X
- $f_3(t) = f(2t)$ \times $f_4(t) = 2f(t)$ \checkmark
- $\bullet \quad f_4(t) = 2f(t)$

How many images match the expressions beneath them?

$$x = 0$$
 $\rightarrow f_1(0, y) = f(0, y)$ \checkmark
 $x = 250$ $\rightarrow f_1(250, y) = f(500, y)$ \times
 $x = 0$ $\rightarrow f_2(0, y) = f(-250, y)$ \checkmark
 $x = 250$ $\rightarrow f_2(250, y) = f(250, y)$ \checkmark
 $x = 0$ $\rightarrow f_3(0, y) = f(-250, y)$ \times
 $x = 250$ $\rightarrow f_3(250, y) = f(-500, y)$ \times

How many images match the expressions beneath them?

The Signals and Systems Abstraction

Describe a **system** (physical, mathematical, or computational) by the way it transforms an **input signal** into an **output signal**.

Example System: Leaky Tank

Formulate a mathematical description of this system.

What determines the leak rate?

The holes in each of the following tanks have equal size. Which tank has the largest leak rate $r_1(t)$?

The holes in each of the following tanks have equal size. Which tank has the largest leak rate $r_1(t)$? 2

Example System: Leaky Tank

Formulate a mathematical description of this system.

Assume linear leaking: $r_1(t) \propto h_1(t)$

What determines the height $h_1(t)$?

Example System: Leaky Tank

Formulate a mathematical description of this system.

Assume linear leaking:

$$r_1(t) \propto h_1(t)$$

Assume water is conserved:

$$\frac{dh_1(t)}{dt} \propto r_0(t) - r_1(t)$$

Solve:

$$\frac{dr_1(t)}{dt} \propto r_0(t) - r_1(t)$$

What are the dimensions of constant of proportionality C?

$$\frac{dr_1(t)}{dt} = C(r_0(t) - r_1(t))$$

What are the dimensions of constant of proportionality C? inverse time (to match dimensions of dt)

$$\frac{dr_1(t)}{dt} = C(r_0(t) - r_1(t))$$

Analysis of the Leaky Tank

Call the constant of proportionality $1/\tau$.

Then τ is called the **time constant** of the system.

$$\frac{dr_1(t)}{dt} = \frac{r_0(t)}{\tau} - \frac{r_1(t)}{\tau}$$

Which of the following tanks has the largest time constant au?

Which of the following tanks has the largest time constant τ ? 4

Analysis of the Leaky Tank

Call the constant of proportionality $1/\tau$.

Then τ is called the **time constant** of the system.

$$\frac{dr_1(t)}{dt} = \frac{r_0(t)}{\tau} - \frac{r_1(t)}{\tau}$$

Assume that the tank is initially empty, and then water enters at a constant rate $r_0(t) = 1$. Determine the output rate $r_1(t)$.

Explain the shape of this curve mathematically.

Explain the shape of this curve physically.

Leaky Tanks and Capacitors

Although derived for a leaky tank, this sort of model can be used to represent a variety of physical systems.

Water accumulates in a leaky tank.

Charge accumulates in a capacitor.

$$rac{dv}{dt} = rac{i_i - i_o}{C} \propto i_i - i_o$$
 analogous to $rac{dh}{dt} \propto r_0 - r_1$

MIT OpenCourseWare http://ocw.mit.edu

6.003 Signals and Systems Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.