Credit Derivatives

HW3

Sanyueh (Michael) Yao

Due on 3/1/2010

Exercise 1: Given a basket 10 firms with a notional of \$1m. Expected recovery rate of 50%. Choose to buy protection through (1) First-to-default swap or (2) First \$0.5 m losses? Why

	One default	Two defaults
If π < 50%	FtD cover all, but First layer doesn't cover all.	Same result as one default. Even though (1)(2) doesn't respond the 2 nd default. FtD still hold more coverage that
	* FtD is better	benefit from the 1 st default * FtD is better
If $\pi > 50\%$	*FtD =First Layer Loss	π is uniform distribution. The chance of $\pi > 50\%$ and $\pi < 50\%$ is about the same. However, the second default might be less likely. * First Layer Loss is better.
Conclusion	From the result above, FtD appears to cover more situations. As we mention above, First layer loss protection is only better while $\pi > 50\%$ with two default. The chance is slim based our general assumption. Therefore, if they are priced fairly (1) should be more expensive.(2) First \$0.5 m losses will be cheaper	

NYC

Exercise 2 (Forward CDS and Option on CDS):

CDS can be traded on either an all-running or an all-upfront basis with same maturity.

Reference Entity	All-running CDS	All-upfront CDS
A	150 bps	6.75%
В	100bps	4.25%
С	75bps	3.00%

What would be the fair all-running spread X on an index credit default swap on A, B, and C

Reference Entity	Protection Leg	Fee Leg
A	100*6.75%	$X \cdot 100 \left(\sum_{i=1}^{N} \overline{B}^{A} \left(0, T_{i} \right) \right) = X \cdot 100 \cdot Ann^{A} = X \cdot 100 \frac{675}{150}$
В	100*4.25%	$X \cdot 100 \left(\sum_{i=1}^{N} \overline{B}^{B} \left(0, T_{i} \right) \right) = X \cdot 100 \cdot Ann^{B} = X \cdot 100 \cdot \frac{425}{100}$
С	100*3%	$X \cdot 100 \left(\sum_{i=1}^{N} \overline{B}^{C} \left(0, T_{i} \right) \right) = X \cdot 100 \cdot Ann^{C} = X \cdot 100 \cdot \frac{300}{75}$
Total	14	1275X
Result		X =109.80 bps

Exercise 3(Marshall and Olkin's Trick):

- 1. Use MO trick to generate 1000 sample plot of $(\boldsymbol{U}^1, \boldsymbol{U}^2)$ when
- (a) C the Gumbel copula and θ = 2,5,50. Use the mixer Y being α -stable distributed with parameters

 $\alpha := \frac{1}{\theta}$ and $\beta := 1$. check starnd function

		Note
Process	(1) Generate $X^1X^{(I)} \sim iid$ uniform [0,1]	: I Uniform
	(2) $Y \perp X^{(1)}X^{(I)}$: 1 Uniform
	(3) Y's Laplace transform is $\phi^{-1}(t)$, i.e. $E(t)$	$E\left[e^{-tY}\right] = \phi^{-1}(t)$
	$Y \sim \alpha$ stable $\left(\alpha = \frac{1}{\theta}, \beta = 1\right)$	

NYC

	(4)Define $U^{(i)} = \phi^{-1}\left(-\frac{1}{Y}\log(X^{(i)})\right)$, i=1N
	$\therefore \phi(t) = (-\ln t)^{\theta} \therefore \phi^{-1}(s) = e^{-s^{\frac{1}{\theta}}}$
Formula for Gumbel	$C(u^{1}, u^{2}) = \exp\left(-\left\{\left(-\log(u^{1})\right)^{\theta} + \left(-\log(u^{2})\right)^{\theta}\right\}^{\frac{1}{\theta}}\right)$
Result	$Q(u^{(1)} \le u^{i},, u^{(I)} \le u^{I}) = C(u^{1}u^{I}) = \phi^{-1} \left(\sum_{i=1}^{I} \phi(u^{i}) \right)$

	Note
	%EX3Q1A clear all;
	Clear all/
	MC_Loops=1000;
	theta=2;
	alpha=1/theta;
	beta=1;
$Y \perp X^{(1)}X^{(I)}$	<pre>X1=rand(1,MC_Loops);</pre>
	<pre>X2=rand(2,MC_Loops); Y=starnd(alpha,beta,MC_Loops);</pre>
	i-stariu(aipia,beta,mc_noops)/
	<pre>U1=zeros(1,MC_Loops);</pre>
	U2=zeros(1,MC_Loops);
$U^{(i)} = \phi^{-1} \left(-\frac{1}{Y} \log(X^{(i)}) \right)$ $= e^{\left\{ -\frac{1}{Y} \log(X^{(i)}) \right\}^{\frac{1}{\theta}}}$	for i=1:MC_Loops
1	$s1 = -\log(X1(i))/Y(i);$
$- o^{\left\{-\frac{1}{Y}\log(X^{(i)})\right\}^{\frac{1}{\theta}}}$	s2=-log(X2(i))/Y(i); U1(i)=exp(-s1^(1/theta));
- e	U2(i)=exp(-s2^(1/theta));
	<pre>plot(U1(i),U2(i)) hold on</pre>
	end
Function	<pre>function X=starnd(alpha,beta,N)</pre>
	<pre>if nargin==2;</pre>
	N=1;
	end
	<pre>V=rand(1,N)*pi-pi/2;</pre>
	W=gamrnd(ones(1,N),1);
	if alpha==1
	X=(2/pi)*((pi/2+beta*V).*tan(V)-beta*log(W.*cos(V)./(pi/2+beta*V)));
	else
	B=atan(beta*tan(pi*alpha/2))/alpha; S=(1+beta^2*tan(pi*alpha/2)^2)^(1/(2*alpha));
	X=S.*sin(alpha*(V+B))./(cos(V).^(1/alpha)).*(cos(V-alpha*(V+B))./W).^((1-
	alpha)/alpha);
$\theta = 2$	end
$\theta - 2$	
	0.9
	0.7
	0.6
	0.5
	0.5 0.4 0.3 0.2 0.1
	0.3
	0.2
	0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(b) C is the Clayton Copula and $\theta=2,5,50$. Use the mixer Y being α -stable distributed with parameters $A:=\frac{1}{\theta}$ and B:=1 . check gamrand function

	Note
Process	(1) Generate $X^1X^{(I)} \sim iid$ uniform [0,1] : I Uniform
	$(2) Y \perp X^{(1)} \dots X^{(I)}$: 1 Uniform
	(3) Y's Laplace transform is $\phi^{-1}(t)$, i.e. $E\left[e^{-tY}\right] = \phi^{-1}(t)$
	$Y \sim \operatorname{Gamma}\left(A = \frac{1}{\theta}, B = 1\right)$
	(4) Define $U^{(i)} = \phi^{-1} \left(-\frac{1}{Y} \log(X^{(i)}) \right)$, i=1N
	$\therefore \phi(t) = t^{-\theta} - 1 \therefore \phi^{-1}(s) = (1+S)^{-\frac{1}{\theta}}$
Formula for Gumbel	$C(u^{1}, u^{2}) = \left\{ \left(u^{1} \right)^{-\theta} + \left(u^{2} \right)^{-\theta} - 1 \right\}^{-\frac{1}{\theta}}$
Result	$Q(u^{(1)} \le u^{i},, u^{(I)} \le u^{I}) = C(u^{1}u^{I}) = \phi^{-1} \left(\sum_{i=1}^{I} \phi(u^{i})\right)$

	Note
	%HW3.1.1 clear all;
	MC_Loops=1000;
$Y \perp X^{(1)}X^{(I)}$	<pre>theta=2; A=1/theta; B=1; X1=rand(1,MC_Loops); X2=rand(1,MC_Loops);</pre>
	Y=gamrnd(A,B,MC_Loops,1);

2. Use Cholesky factorization to generate sample plots of (U^1, U^2) when C is the Normal copula with correlation $\rho \in \{-0.9, -0.5 - 0, 0.5, 0.9\}$

Note
%HW3.1.2 clear all; nPath=1000;
rho = 0;

```
x=zeros(2,nPath);
                                         row1=zeros(1,nPath);
                                         row2=zeros(1,nPath);
                                         sig=[1,rho;rho,1];
                                         A = chol(sig, 'lower');
X = A \cdot Z
                                         Z = randn(2,nPath);
U^{(i)} = \overline{F}\left(X^{(i)}\right) : \overline{F} \sim N\left(0,1\right)
                                         x=A*Z;
                                         result=normcdf(x,0,1);
                                         row1=result(1,:);
                                         row2=result(2,:);
                                         for i=1:nPath
                                              plot(row1(i),row2(i));
                                              hold on
                                         end
                                         hold off
                                         title('Normal Copula (rho=0)');
                                         xlabel('U^1');
                                         ylabel('U^2');
```


Exercise 4:

Given constant recoveries π , interest rate r. The thresholds, $\left(U^1,...,U^I\right)$, are uniform random variables distributed with a copula C. Assume that the default default times are of the Cox type with constant pre-default intensities $\lambda^i>0$. That is $\tau^i\triangleq\inf\left\{t\,|\,e^{-\lambda^it}\leq U^i\right\}$. Denote each individual name spread by \overline{s}^i (CDS-spread) whereas the spread of the corresponding Nth-to-default is denoted by \overline{s}^{NtD}

$\mathbf{1. Show} \ \overline{s}^{i} = (1 - \pi) \lambda^{i}$

	Note
Price of Fee leg (1): method 1	$\overline{s}^{i} \cdot \int_{0}^{T_{N}} \overline{B}(0,t)dt = \overline{s}^{i} \cdot \int_{0}^{T_{N}} e^{-(r+\lambda^{i})t}dt$
Method 2	$\overline{s}^{i} \cdot E^{Q} \left[\int_{0}^{T_{N}} D(t) \cdot 1_{\{\tau > T\}} dt \right] = \overline{s}^{i} \cdot E^{Q} \left[\int_{0}^{T_{N} \wedge \tau} e^{-rt} dt \right]$
Method 3	$\boxed{\overline{s}^i \cdot E^{\mathcal{Q}} \begin{bmatrix} \int_0^{T_N} D(t) \cdot 1_{\{\tau > T\}} dt \end{bmatrix} = \overline{s}^i \cdot E^{\mathcal{Q}} \begin{bmatrix} \int_0^{T_N} e^{-(r+\lambda)t} dt \end{bmatrix} = \overline{s}^i \cdot \int_0^{T_N} e^{-(r+\lambda)t} dt}$
Price of Recovery Leg (2)	$E^{Q}\left[\left(1-\pi\right)e^{-r\tau}\cdot 1_{\{\tau\leq T\}}\right] = \left(1-\pi\right)\cdot\int_{0}^{T_{N}}e^{-rt}\cdot P\left(t,G_{T}\right)dt = \left(1-\pi\right)\cdot\int_{0}^{T_{N}}e^{-rt}\cdot\lambda\cdot e^{-\lambda^{i}t}dt$ $=\left(1-\pi\right)\cdot\lambda^{i}\int_{0}^{T_{N}}e^{-rt}\cdot e^{-\lambda^{i}t}dt$
From Aven's result	$P(t \mid G_T) = -\frac{\partial}{\partial t} Q(\tau_1 > t \mid G_T) _{T=t} = -\frac{\partial}{\partial T} e^{-\lambda T} _{T=t} = \lambda^i \cdot e^{-\lambda^i T} _{T=t} = \lambda^i \cdot e^{-\lambda^i t}$
Combine (1)(2)	Combine (1)(2) we can have $S^i = (1-\pi)\lambda^i$

Discrete Case

	Note
Price of Fee leg	If CDS buyer pay $S\Delta$ at $T_{\scriptscriptstyle n}$, then the value of fee leg will be:
	$S^{i}\Delta\sum_{k=1}^{n}\tilde{E}\left[D(T_{n})\cdot 1_{\{\tau>T_{n}\}}\right] = S^{i}\Delta\sum_{k=1}^{n}B\left(0,T_{n}\right)P\left(0,T_{n}\right) = S^{i}\Delta\sum_{k=1}^{n}\overline{B}\left(0,T_{n}\right) (1)$
Price of Recovery Leg	$\left(1-\pi\right)\sum_{k=1}^{n} \tilde{E}\left[D(T_{n})\cdot 1_{\tau\in\left[T_{n-1},T_{n}\right]}\right] = \left(1-\pi\right)\sum_{k=1}^{n} B\left(0,T_{n}\right)\left(Q\left(\tau\leq T_{n-1}\right)-Q\left(\tau\leq T_{n}\right)\right)$
	$= (1-\pi) \sum_{k=1}^{n} B(0,T_{n}) (P(0,T_{n-1}) - P(0,T_{n}))$
	$= (1-\pi) \sum_{k=1}^{n} B(0,T_n) \left(\frac{P(0,T_{n-1}) - P(0,T_n)}{\Delta} \right) \Delta$
	$= (1-\pi) \sum_{k=1}^{n} B(0,T_n) \left(\frac{e^{-\lambda(n-1)\Delta} - e^{-\lambda(n)\Delta}}{\Delta} \right) \Delta$
	$= (1-\pi) \sum_{k=1}^{n} B(0,T_n) \left(\frac{e^{-\lambda \Delta}}{\Delta}\right) \Delta$
	$\approx (1 - \pi) \cdot \lambda \cdot \Delta \cdot \sum_{k=1}^{n} B(0, T_{n}) $ (2)
Combine (1)(2)	$S\Delta\sum_{k=1}^{n}\overline{B}(0,T_{n})\approx(1-\pi)\cdot\lambda\cdot\Delta\cdot\sum_{k=1}^{n}B(0,T_{n})$
	$S = ig(1-\piig)\lambda$. Therefore for ith contract, we can have $S^i = ig(1-\piig)\lambda^i$

2. If the thresholds are independent (i.e., independent U^{i} 's) show that : $\overline{s}^{FtD} = \sum_{i=1}^{I} \overline{s}^{i}$

Note	Derivation Process
\because independent U^i 's \therefore default time are independent	$Q\left(\tau^{\mathit{FtD}} > T\right) = Q\left(\tau^{1},\tau^{N} > T\right) = \prod_{i=1}^{N} Q\left(\tau^{i} > T\right) = \prod_{i=1}^{N} e^{-\lambda^{i}T} = e^{-\sum\limits_{i=1}^{N} \lambda^{i}T}$
Fee leg with the result we got above (1)	$\overline{s}^{FtD} \cdot \tilde{E} \left[D(T) \cdot 1_{\left\{\tau^{FtD} > T\right\}} \right] = \overline{s}^{FtD} \int_{0}^{T} e^{-rt} e^{-\sum_{i=1}^{N} \lambda^{i} T} dt$
Protection Leg (2)	$\tilde{E}\Big[(1-\pi)\Big(e^{-r\tau_1}\cdot 1_{\{\tau_1 \leq T\}}e^{-r\tau_N}\cdot 1_{\{\tau_N \leq T\}}\Big)\Big] = (1-\pi)\int_0^T e^{-r\tau_1}e^{-r\tau_N}P(t,G_T)dt$
	$= (1 - \pi) \int_{0}^{T} e^{-r\tau_{1}} e^{-r\tau_{N}} \sum_{i=1}^{N} \lambda^{i} \cdot e^{-\sum_{i=1}^{N} \lambda^{i} t} dt$
	$= (1-\pi) \sum_{i=1}^{N} \lambda^{i} \int_{0}^{T} e^{-r\tau_{1}} e^{-r\tau_{N}} \cdot e^{-\sum_{i=1}^{N} \lambda^{i} t} dt$
From Aven's result	$P\left(t,G_{T}\right) = -\frac{\partial}{\partial t}Q\left(\tau_{1} > t\tau_{N} > t \mid G_{T}\right) _{T=t} = -\frac{\partial}{\partial T}e^{-\sum\limits_{i=1}^{N}\lambda^{i}T} _{T=t} = -\frac{\partial}{\partial T}e^{-\sum\limits_{i=1}^{N}\lambda^{i}T} _{T=t}$
	$\left = \sum_{i=1}^N \left \lambda^i \cdot e^{-\sum_{i=1}^N \lambda^i T} \right _{T=t} = \sum_{i=1}^N \left \lambda^i \cdot e^{-\sum_{i=1}^N \lambda^i t} \right $
Combine (1) (2)	$\overline{s}^{FtD} = (1 - \pi) \sum_{i=1}^{N} \lambda^{i} = \sum_{i=1}^{N} \lambda^{i} (1 - \pi) \text{ we also know that } \overline{s}^{i} = (1 - \pi) \lambda^{i}.$
	Therefore $\overline{s}^{FiD} = \sum_{i=1}^{N} \overline{s}^{i}$ (Here we may change N to I) to fit the question.

3. Show analytically that if $U^i = U^1$ for i=2,3...I. $\overline{s}^{FtD} = \max_{i \in \{1...I\}} \overline{s}^i$

Note	Derivation Process
If they are not independent	$Q(\tau^{FtD} > T) = Q(\tau^{1} > T,, \tau^{N} > T) = Q(e^{-\lambda_{1}t} > u_{1},, e^{-\lambda_{N}t} > u_{N})$
	$=Q(e^{-\lambda_{< N>}t}>u_1)=e^{-\lambda_{< N>}t}$
Fee leg with the result we got above (1)	$\overline{s}^{FtD} \cdot \tilde{E} \left[D(T) \cdot 1_{\left\{ \tau^{FtD} > T \right\}} \right] = \overline{s}^{FtD} \int_{0}^{T} e^{-rt} e^{-\lambda_{< N > } t} dt$
Protection Leg (2)	$\tilde{E}\Big[(1-\pi) \Big(e^{-r\tau_1} \cdot 1_{\{\tau_1 \le T\}} e^{-r\tau_N} \cdot 1_{\{\tau_N \le T\}} \Big) \Big] = \Big(1-\pi\Big) \int_0^T e^{-r\tau_1} e^{-r\tau_N} P(t, G_T) dt$
	$= (1-\pi) \int_{0}^{T} e^{-r\tau_{1}} e^{-r\tau_{N}} \cdot \lambda_{< N >} e^{-\lambda_{< N >} t} dt = (1-\pi) \lambda_{< N >} \int_{0}^{T} e^{-r\tau_{1}} e^{-r\tau_{N}} \cdot e^{-\lambda_{< N >} t} dt$
From Aven's result	$P(t,G_T) = -\frac{\partial}{\partial t} Q(\tau_1 > t \tau_N > t \mid G_T) _{T=t} = -\frac{\partial}{\partial T} e^{-\lambda_{< N} > T} _{T=t} = \lambda_{< N} > e^{-\lambda_{< N} > T} _{T=t}$
	$=\lambda_{< N>}e^{-\lambda_{< N>}t}$
Combine (1) (2)	$\overline{s}^{\mathit{FtD}} = (1 - \pi) \lambda_{< N>} \text{ we know that } \lambda_{< N>} = \max_{i \in \{i, \dots, N\}} \left\{ \lambda_i \right\}. \text{ Therefore } \overline{s}^{\mathit{FtD}} = \max_{i \in \{i, \dots, I\}} \overline{s}^{\mathit{i}}$
	(Here we may change N to I) to fit the question.

4. What would be the prices for all other NtD swaps, \overline{s}^{NtD} in the setting of the previous question.

Comment	Based on the logic from previous questions, \overline{s}^{NtD} would be the Nth largest spread of the all
	firms in the portfolio.

5. Compute \overline{S}^{NtD} and $E^{\mathcal{Q}} \Big[\tau^{NtD} \Big]$ for the normal copula with $\sum_{ii} = 1 \sum_{ij} = \rho$

Individual Spread	100 bps
Maturity	5 years
Interest rate R	4%
Recovery rate	35%

Note	Derivation Process
	clear all;
	<pre>%define underlying parameters nPath=100000;T=5;pi=0.35; N=5; rho=0.2;</pre>
	r=0.04; spread=0.01; lambda=spread/(1-pi); % Intensity
	x=zeros(5,nPath);
	<pre>sig=[1,rho,rho,rho,rho; rho,1,rho,rho; rho,rho,1,rho,rho; rho,rho,rho,1,rho; rho,rho,rho,rho,1];</pre>
	A = chol(sig, 'lower');
Ed (Ed)	<pre>ZZ=normrnd(0,1,5,nPath); xVal=A*ZZ;</pre>
$Q^{FtD}\left(\tau^{FtD} > G_T\right)$ $= C\left(Y_T^1,, Y_T^N G_T\right)$	<pre>UU=normcdf(xVal,0,1); TAU=-log(UU)/lambda; TAU=sort(TAU, 'ascend');</pre>
	<pre>NtdProtPV=(1-pi).*exp(-r.*TAU).*(TAU<t); ntdrapv="(1-exp(-r.*min(TAU,T)))./r;</pre"></t);></pre>
	<pre>meanNtdProtPV=mean(NtdProtPV,2); meanNtdRAPV=mean(NtdRAPV,2);</pre>
	<pre>NtdSpread= meanNtdProtPV./meanNtdRAPV*10000; NtdTau=mean(TAU,2);</pre>
	<pre>series=1:1:5; disp('EX4.Q5:'); disp(['NtD</pre>
Numerical Result	EX4.Q5: NtD : 1 2 3 4 5 Spread(bps) :442.3732 89.59785 17.34494 2.520427 0.2376288 Survival Time : 16.86096 33.47403 53.8091 82.69703 138.2433

NtD 1		2	3	4	5
Spread	442.3732	89.59785	17.34494	2.520427	0.2376288
Survival Time	16.86096	33.47403	53.8091	82.69703	138.2433

A: basket of FtD, 2td,...5tD and Portfolio B: Basket of the corresponding 5 CDS's.

6. Are the initial time value of two portfolio the same?

Comment	Yes, they are the same. Since they are all-running, it costs buyer nothing to enter the contract.
	Therefore, they have the same initial value.

7. Does the recovery leg of Portfolio A replicate the recovery leg of portfolio B?

Comment	Yes. When the first bond default, FtD in Portfolio A will be executed with the same level of
	payment of particular bond in Portfolio B. Same case for 2tD5tD

8. Does the premium leg of Portfolio A replicate the premium leg of portfolio B?

Comment	No. The premium leg of portfolio can't replicate each other.
	For Portfolio A, more is paid earlier in the time frame. But for portfolio B, spread decrease
	more steadily. But the PV of the payment streams should be equal to each other.

9. Will a basket of all 5 NtD protection contract be a perfect hedge for the portfolio of corresponding individual credit default swap?

Comment	For a perfect hedge we will need to exactly replicate the cash flows. From fee leg point, the
	spread payment streams for 2 portfolios are very different cash flow. It won't be a perfect
	hedge. They occur at different times with different sizes though their PV should be the same
	If defaults occur, the protection payment received from A and B are the same.

10. Compute and plot NtD prices as a function of correlation. $\rho \in (0,1)$

```
clear all;
Code
                     %define underlying parameters
                     nPath=10;pi=0.35;T=5;r=0.04;
                     NtD=1;
                     nfirm=5
                     rhos =0.01:0.01:0.99;
                     size=99;
                     spread=0.01;
                     lambda=spread/(1-pi);%Intensity
                     for NtD=1:5
                         for i=1:size
                         sig=rho*(ones(nfirm,nfirm)-eye(nfirm))+eye(nfirm);
                         A=chol(sig,'lower');
                         ZZ=normrnd(0,1,nfirm,nPath);
                         x=A*ZZ;
                         UU=normcdf(x,0,1);
                         UU=sort(UU,1,'descend');
                         TAU=-log(UU)/lambda;
                         nTau=TAU(NtD,:);
                         ntdTaus=(nTau<nfirm).*nTau;</pre>
                         NtdProtPV=(1-pi).*(ntdTaus>0).*exp(-r.*ntdTaus);
```

```
\label{eq:ntdRapv} $$\operatorname{NtdRapV}=(1-\exp(-(r.*ntdTaus)))./r+(ntdTaus==0).*(1-\exp(-r.*T))./r;
                            meanNtdProtPV=mean(NtdProtPV);
                            meanNtdRAPV=mean(NtdRAPV);
                            NtDspread(1,NtD) = meanNtdProtPV/meanNtdRAPV*10000;
                            spread(NtD,i)=NtDspread(1,NtD);
                       end
                       \verb|plot(rhos,spread(1,:),rhos,spread(2,:),rhos,spread(3,:),rhos,spread(4,:),rhos,spread(5,:))|;
                       title(['Summary Plot of NtD']);
                       xlabel('rho');
                       ylabel('Spread(bps)');
                       Legend('FtD','2tD','3tD','4tD','5tD','Location','NorthEast');
                       figure;
                       XX=cumsum(spread);
                       plot(rhos,XX(5,:));
Summary Plot
                                             Summary Plot of NtD
                                                                    FtD
                                                                    2tD
                                                                    3tD
                                                                    4tD
                            350
                            300
                            250
                            150
                            100
                                                  0.5
                                                      0.6
                                                              0.8 0.9
```

NYC

11. Explain why $\overline{s}^{\it FtD}$ is decreasing with correlation, where $\overline{s}^{\it NtD}$ is increasing for large N

Comment	About \overline{s}^{FtD} : when correlation is low and approaching independence, \overline{s}^{FtD} can be high because first default take the max of U (of 5). As correlation increases, first default and last default are pulled forward the same point of 2tD5tD.
	About \overline{s}^{NtD} : when correlation is low and approaching independence, \overline{s}^{NtD} can be low because last default take the min of U (of 5). As correlation increases, first default and last default are pulled forward the point of 2tD5tD.
	Intuitively, when correlation is high, defaults happen one after another in a short period of time, , the FtD is not as good a credit protection tool since the second default will soon follow. The FtD decrease with correlation increase. But for large N, the NtD default will occur a lot sooner when correlation is high. Therefore the NtD contract will be more expensive as correlation increase.

Exercise 5 (Relative Trading):

Given 5 years index and its traches.

Product	Upfront Payment	Running Spread (bps)	Fixed Spread DV01
Index	-0.5 275		4.22
0-10% Tranche	71		2.9
10-15% Tranche	35		4.1
15-25 Tranche		325	4.4
25-35 Tranche		80	4.5
35-100 Tranche		11	4.2

1. PV of Protection Leg for index

	Notional	Upfront Payment (%)	Running Spread	Fixed Spread	%	Protection Leg	PV of	Total
Index	\$100	-0.5%	275	4.22	11.105%	For Index	\$11.105	\$11.105

2. PV of Protection Leg for Each Tranches

	Upfront Payment (%)	Running Spread	Fixed Spread:DV01	%		Notion	PV	Protection Leg
0-10% Tranche	71.0%		2.9		71.000%	100	\$71.00	0-10% Tranche
10-15% Tranche	35.0%		4.1		35.000%	100	\$35.00	10-15% Tranche
15-25 Tranche		325	4.4		14.300%	100	\$14.30	15-25 Tranche
25-35 Tranche		80	4.5		3.600%	100	\$3.60	25-35 Tranche
35-100 Tranche		11	4.2		0.462%	100	\$0.46	35-100 Tranche

Comment	As per the response in BB, we assume this question is about buying \$100 worth of contract
	on 'each' tranches.
	This is a little bit different from what we will get in the following question. (PV is \$10.94)

3. Construct a relative value trade and quantify its net PV.

	Upfront Payment (%)	Running Spread	Fixed Spread	%		Notional				PV of	Total
Index	-0.5%	275	4.22		11.105%	\$100		Protection Leg	For Index	\$11.105	\$11.10
	Upfront Payment (%)	Running Spread	Fixed Spread:DV01	%		Notion	PV	Protection Leg	Weight	Total	
0-10% Tranche	71.0%		2.9		71.000%	100	\$71.00	0-10% Tranche	0.1	\$7.10	
10-15% Tranche	35.0%		4.1		35.000%	100	\$35.00	10-15% Tranche	0.05	\$1.75	
15-25 Tranche		325	4.4		14.300%	100	\$14.30	15-25 Tranche	0.1	\$1.43	
25-35 Tranche		80	4.5		3.600%	100	\$3.60	25-35 Tranche	0.1	\$0.36	
35-100 Tranche		11	4.2		0.462%	100	\$0.46	35-100 Tranche	0.65	\$0.30	\$10.94
										Profit	\$0.164

Trade Strategy We can buy protection leg of each tranches and short index and grasp profit of \$0.1647

4. What the spread of 35%-100% tranche need to be in order eliminate relative value opportunity?

Trade Strategy	We need 65*X*4.2=0.3+0.1647
	X=17.03 bps

5. What is the initial net cash flow from relative value trade?

Initial Cash Flow				Initial Cash Flow	Total
	Q5	Sell Index	Get	(\$0.50)	
		Buy Tranches	Pay	\$7.10	
				\$1.75	(\$9.35)
Conclusion	Initial F	Initial Payment is Net PV is -\$9.35			

6. What is the on-going annual cash flow assuming no defaults?

On-going Cash Flow				Running Cash Flow	Total	
	Q6	Sell Index	Receive	\$2.75		
		Buy Tranches	0-10% Tranche	\$0.00		
			10-15% Tranche	\$0.00		
			15-25 Tranche	\$0.33		
			25-35 Tranche	\$0.08		
			35-100 Tranche	\$0.07	\$2.2735	
Conclusion	Running Cash Flow is net inflow of \$2.2735					

7. Once the position is established, will a parallel increase in the level of risk-free interest rates result in a gain or loss? Why?

Comment	We will lose money. Our receivables on selling index will be reduced. We are paying
	running payment on the last three tranches. The biggest one is in the middle. We might not
	be able to enjoy huge deduction of our liability. Initial payment won't be impacted.
	Therefore. We will lose money.

8. Once the position is established, will a parallel increase in the level of CDS spreads result in a gain or loss? Why?

Cor	mment	We sell index and buy the individual tranches, therefore we pay the CDS spread on the tranches and
		receive the CDS spreads on the index. However, the incase of the CDS will cause DV01 value to come
		down. We indeed pay less for the last three tranches, with the reduced DV01. Our income from
		index would be calculated through smaller DV01. The fact that that increase 100 names. Therefore
		the total effect would be a loss.

9. If no defaults are realized, will this position have resulted in a gain or loss on initial investment relative to the risk-free rate?

Comment	If no default occurs, we would continue to receive a net cash flow from running spread
	payments without reduction of notional. We should have a gain.