Test Report of FCC CFR 47 Part 15 Subpart C

On Behalf of

GL Technologies (Hong Kong) Limited
Unit 210D, 2/F, Enterprise Place Hong Kong Science Park, Shatin, N.T.
Hong Kong, China

Product Name: Bluetooth Connected Body Fat Scale

Model/Type No.: W191

FCC ID: 2AFIW-MIFIV1

Prepared By: Shenzhen Hongcai Testing Technology Co., Ltd.

1st-3rd Floor, Building C, Shuanghuan Xin Yi Dai Hi-Tech Industrial Park, No.8 Baoging Road, Baolong Industrial Zone, Longgang

District, Shenzhen, Guangdong, China

Tel: +86-755-86337020 Fax:+86-755-86337028

Report Number: HCT17FR143E-1

Tested Date: June 2~July 8, 2017

Issued Date: July 10, 2017

Tested By: Jerry Zhao/ Jerry Zhao

Reviewed By:

Duryang

Approved By:

Tony Wu

Owen.Yang
EMC Technical Supervisor

EMC Technical Manager

TABLE OF CONTENTS

1.	GENERAL INFORMATION	4
	1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
	1.2 TEST STANDARDS	
	1.3 TEST FACILITY	
2.	SYSTEM TEST CONFIGURATION	
	2.1 EUT CONFIGURATION	
	2.3 GENERAL TEST PROCEDURES	
	2.4 Measurement Uncertainty	6
	2.5 Measure Results Explanation Example	7
	2.6. Information of EUT Configuration for Test	
_		
	SUMMARY OF TEST RESULTS	
4.	TEST OF AC POWER LINE CONDUCTED EMISSION	11
	4.1 APPLICABLE STANDARD	
	4.2 TEST SETUP DIAGRAM	
5.	TEST OF 6DB BANDWIDTH	12
	5.1 APPLICABLE STANDARD	
	5.2 EUT SETUP	
	5.4 Test Procedure	
	5.5 TEST RESULT	
6.	MAXIMUM OUTPUT POWER MEASUREMENT	15
	6.1 APPLICABLE STANDARD	15
	6.2 EUT SETUP	15
	6.3 TEST EQUIPMENT LIST AND DETAILS	
	6.5 TEST RESULT	
7	TEST OF PEAK POWER SPECTRAL DENSITY	
٠.	7.1 APPLICABLE STANDARD	
	7.2 EUT SETUP	
	7.3 TEST EQUIPMENT LIST AND DETAILS	
	7.4 TEST PROCEDURE	
8.	TEST OF CONDUCTED SPURIOUS EMISSION	
	8.1 APPLICABLE STANDARD	
	8.3 TEST EQUIPMENT LIST AND DETAILS	
	8.4 Test Procedure	19
	8.5 TEST RESULT	19
9.	TEST OF RADIATED SPURIOUS EMISSION	22
	9.1 APPLICABLE STANDARD	
	9.2 EUT SETUP	
	9.4 TEST RESULT	
10	TEST OF BAND EDGES EMISSION	
10	10.1 APPLICABLE STANDARD	
	10.2 EUT SETUP	
	10.3 TEST EQUIPMENT LIST AND DETAILS	37
	10.4 Test Procedure	37

10.5 Test Result	38
11. ANTENNA REQUIREMENT	44
11.1 STANDARD APPLICABLE	44
11.2 Antenna Connected Construction	44

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant:	Lifespan Brands LLC	
Address of applicant:	1200 Thorndale Ave, Elk Grove Village, ELK GROVE, Illinois, United States	
Manufacturer : Cha's Electronic Industries(Shenzhen)Co., Ltd		
Address of applicant:	Danzhutou Ind. District, Buji, Shenzhen, China	

General Description of E.U.T

Items	Description
EUT Description:	Bluetooth Connected Body Fat Scale
Model No.:	W191
Supplementary Model No.:	N/A
Trade Name:	WeighRite
RF Specification:	Bluetooth Low Energy
Frequency Band:	2402~2480MHz
Channel Spacing:	2 MHz
Number of Channels:	40
Type of Modulation:	GFSK
Antenna Gain	2.5dB
Antenna Type:	PCB Antenna
Rated Voltage:	DC4.5V from battery

Note: In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test.

Report No.: HCT17GR178E-1 Page 4 of 44 FCC ID: 2AHM2-W191

1.2 Test standards

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

KDB558074 D01 V04: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under Section 15.247.

1.3 Test Facility

All measurement required was performed at laboratory of Shenzhen CTL Testing Technology Co., Ltd. Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen 518055 China There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4 and CISPR 22/EN 55022 requirements.

FCC - Registration No.: 970318

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 970318, December, 2013.

IC Registration No.: 9618B

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration No.: 9618B on November 13, 2013.

Report No.: HCT17GR178E-1 Page 5 of 44 FCC ID: 2AHM2-W191

2. SYSTEM TEST CONFIGURATION

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The calibrated antennas used to sample the radiated field strength are mounted on a non-conductive, motorized antenna mast 3 or 10 meters from the leading edge of the turntable.

2.3 General Test Procedures

Conducted Emissions: The EUT is placed on the table, which is 0.8 m above ground plane According to the requirements in ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak detector mode.

Radiated Emissions: The EUT is a placed on as turntable, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in ANSI C63.10-2013.

2.4 Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Transmitter power conducted	+/- 0.57 dB
Transmitter power Radiated	+/- 2.20 dB
Conducted spurious emission 9KHz-40 GHz	+/- 2.20 dB
Occupied Bandwidth	+/- 0.01 dB
Power Line Conducted Emission	+/- 3.20 dB
Radiated Emission	+/- 4.32 dB

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: HCT17GR178E-1 Page 6 of 44 FCC ID: 2AHM2-W191

2.5 Measure Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

The spectrum analyzer offset is derived from RF cable less and attenuator factor. Offset= RF cable less+ attenuator factor.

Note: Using a temporary antenna connector for the EUT when the conducted measurements are performed.

Equipment	Manufacturer	Model No.	Frequency range(GHz)	Attenuation values(dBm)
Line	Zhenjiang south electronic	RG316	1-12	0.08
Connector	Zhenjiang south electronic	SMA-K/N-J	1-12	0.01

Report No.: HCT17GR178E-1 Page 7 of 44 FCC ID: 2AHM2-W191

2.6. Information of EUT Configuration for Test

The test software was used to control EUT work in Continuous Tx mode, and select test channel, wireless mode as below table.

Channel List:

Frequency band (MHz)				2400~	2483.5		
	Frequency		Frequency		Frequency		Frequency
Channel	(MHz)	Channel	(MHz)	Channel	(MHz)	Channel	(MHz)
37	2402	9	2422	18	2442	28	2462
0	2404	10	2424	19	2444	29	2464
1	2406	38	2426	20	2446	30	2466
2	2408	11	2428	21	2448	31	2468
3	2410	12	2430	22	2450	32	2470
4	2412	13	2432	23	2452	33	2472
5	2414	14	2434	24	2454	34	2474
6	2416	15	2436	25	2456	35	2476
7	2418	16	2438	26	2458	36	2478
8	2420	17	2440	27	2460	39	2480

2.7 List of Measuring Equipments Used

 $\label{tensor} \mbox{Test equipments list of Shenzhen CTL Testing Technology \ Co., Ltd.}$

No.	Equipment	Manufacturer	Model No.	S/N	Last Calculator	Due Calculator
1	EMI Test Receiver	R&S	ESCI	100687	2016-7-25	2017-7-24
2	EMI Test Receiver	R&S	ESPI	100097	2016-10-1	2017-10-31
3	Amplifier	HP	8447D	1937A02492	2016-7-25	2017-7-24
4	TRILOG Broadband Test- Antenna	SCHWARZBECK	VULB9163	9163-324	2016-7-25	2017-7-24
5	RF POWER AMPLIFIER	FRANKONIA	FLL-75	1020A1109	2016-7-25	2017-7-24
6	6DB Attenuator	FRANKONIA	N/A	1001698	2016-7-25	2017-7-24
7	10dB attenuator	ELECTRO- METRICS	EM-7600	836	2016-7-25	2017-7-24
8	Spectrum Analyzer	R&S	FSP	100397	2016-10-1	2017-10-31
9	Broadband preamplifier	SCH WARZBECK	BBV9718	9718-182	2016-7-25	2017-7-24
10	Power Sensor	Anritsu	ML2438A	1241002	2016-7-25	2017-7-24
11	Power Sensor	Anritsu	MA2411B	1207366	2016-7-25	2017-7-24
12	Horn Antenna	SCHWARZBECK	BBHA 9120D	0437	2016-7-25	2017-7-24
13	Horn Antenna	SCHWARZBECK	BBHA9170	0483	2016-7-25	2017-7-24

3. SUMMARY OF Test RESULTS

FCC/IC Rules	Description of Test	Result
FCC §15.207	AC Power Line Conducted Emission	Pass
FCC §15.247(a)	6dB Bandwidth	Pass
FCC §15.247(b)	Maximum Output Power	Pass
FCC §15.247(e)	Power Spectral Density	Pass
FCC §15.247 (d)	Conducted Spurious Emission	Pass
FCC §15.205 and §15.209	Radiated Spurious Emission	Pass
FCC§15.247 (d) and §15.205 and §15.209	Unwanted Emissions	Pass
FCC §15.203/15.247(b)/(c)	Antenna Requirement	Pass

4. Test OF AC POWER LINE CONDUCTED EMISSION

4.1 Applicable standard

Refer to FCC §15.207.

For a Low-power Radio-frequency Device is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Fraguency Bongo (MHT)	Limits	(dBuV)
Frequency Range (MHz)	Quasi-Peak	Average
0.150~0.500	66~56	56∼46
0.500~5.000	56	46
5.000~30.00	60	50

4.2 Test Setup Diagram

Remark: Not applicable. The EUT is powered by battery.

5. Test of 6dB Bandwidth

5.1 Applicable standard

Refer to FCC §15.247 (a) (2) and KDB558074 D01 V04 Section 8.2. The minimum 6dB bandwidth shall be at least 500 kHz.

5.2 EUT Setup

5.3 Test Equipment List and Details

See section 2.7.

5.4 Test Procedure

The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB. The transmitter output was connected to a spectrum analyzer and the parameter was set as below:

- 1. Set resolution bandwidth (RBW) = 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

5.5 Test Result

Temperature ($^{\circ}$) : 22~23	EUT: Bluetooth Connected Body Fat Scale
Humidity (%RH): 50~54	M/N: W191
Barometric Pressure (mbar): 950~1000	Operation Condition: Continuously Tx Mode

Channel	Channel Frequency (MHz)	6dB Bandwidth (kHz)	Minimum Limit (kHz)	Pass / Fail
Low	2402	656	500	PASS
Middle	2440	656	500	PASS
High	2480	676	500	PASS

6dB BANDWIDTH (GFSK CH Low)

6dB BANDWIDTH (GFSK CH Mid)

6dB BANDWIDTH (GFSK CH High)

6. Maximum Output Power Measurement

6.1 Applicable standard

Refer to FCC §15.247 (b) and KDB558074 D01 V04 Section 9.0. The maximum permissible conducted output power is 1Watt.

6.2 EUT Setup

Maximum Peak Conducted Output Power:

6.3 Test Equipment List and Details

See section 2.7.

6.4 Test Procedure

	Peak Conducte	d Output Power
☐ Spectru	ım analyzer	

- 1) Set RBW = 1MHz, VBW = 3MHz, Detector = Peak.
- 2) Sweep time = auto, Trace mode = max hold, Allow trace to fully stabilize.
- 3) Use the spectrum analyzer channel power measurement function with the band limits set equal to the DTS bandwidth edges.

□ Power	meter
---------	-------

A broadband Peak RF power meter is used for output power measurement. The video bandwidth of power meter is greater than DTS bandwidth of EUT. If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power.

6.5 Test Result

Temperature (°C) : 22~23	EUT: Bluetooth Connected Body Fat Scale
Humidity (%RH): 50~54	M/N: W191
Barometric Pressure (mbar): 950~1000	Operation Condition: Continuously Tx Mode

Modulation Type	Channel No.	Frequency (MHz)	Output Power (dBm)	Limit (dBm)	Result
BT LE	Low	2402	1.09	30	Pass
BT LE	Middle	2440	0.95	30	Pass
BT LE	High	2480	1.12	30	Pass

Report No.: HCT17GR178E-1 Page 15 of 44 FCC ID: 2AHM2-W191

7. Test of Peak Power Spectral Density

7.1 Applicable standard

Refer to FCC §15.247 (e) and KDB558074 D01 V04 Section 10.2.

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.2 EUT Setup

Spectrum Analyzer

7.3 Test Equipment List and Details

See section 2.7.

7.4 Test Procedure

- Maximum peak conducted output power was used to demonstrate compliance to the fundamental output power limit.
- 1) Set the RBW = 3kHz, VBW = 10kHz.
- 2) Detector = Peak, Sweep time = auto couple.
- 3) Trace mode = max hold, allow trace to fully stabilize.
- 4) Use the peak marker function to determine the maximum amplitude level.
- Maximum (average) conducted output power was used to demonstrate compliance to the fundamental output power limit.
- 1) Set the RBW = 100kHz, VBW = 300 kHz.
- 2) Detector = RMS, Sweep time = auto couple.
- 3) Perform the measurement over a single sweep.
- 4) Use the peak marker function to determine the maximum amplitude level.

7.5 Test Result

Temperature ($^{\circ}$ C) : 22~23	EUT: Bluetooth Connected Body Fat Scale
Humidity (%RH): 50~54	M/N: W191
Barometric Pressure (mbar): 950~1000	Operation Condition: Continuously Tx Mode

Channel	Channel Frequency (MHz)	Power Level in 3KHz RBW (dBm/3kHz)	Maximum Limit (dBm/3kHz)	Pass / Fail
Low	2412	-13.18	8	PASS
Middle	2437	-13.11	8	PASS
High	2462	-13.03	8	PASS

POWER SPECTRAL DENSITY (GFSK CH Low)

POWER SPECTRAL DENSITY (GFSK CH Mid)

POWER SPECTRAL DENSITY (GFSK CH CH High)

8. Test of Conducted Spurious Emission

8.1 Applicable standard

Refer to FCC §15.247 (d) and KDB558074 D01 V04 Section 11.3.

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions that fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209.

8.2 EUT Setup

8.3 Test Equipment List and Details

See section 2.7.

8.4 Test Procedure

- 1. Set start frequency to DTS channel edge frequency.
- 2. Set stop frequency so as to encompass the spectrum to be examined.
- 3. Set RBW = 100 kHz.
- 4. Set VBW \geq 300 kHz.
- 5. Detector = peak.
- 6. Trace Mode = max hold.
- 7. Sweep = auto couple.
- 8. Allow the trace to stabilize (this may take some time, depending on the extent of the span).
- 9. Use peak marker function to determine maximum amplitude of all unwanted emissions within any 100 kHz bandwidth.

8.5 Test Result

Temperature (°C) : 22~23	EUT: Bluetooth Connected Body Fat Scale
Humidity (%RH): 50~54	M/N: W191
Barometric Pressure (mbar): 950~1000	Operation Condition: Continuously Tx Mode

Test Result: PASS

GFSK mode Channel Low

Channel Middle

Channel High

9. Test of Radiated Spurious Emission

9.1 Applicable standard

Refer to FCC §15.205, §15.209 and KDB558074 D01 V04 Section 12.1, 12.2.7

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table per Section 15.209.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 — 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

9.2 EUT Setup

For radiated emission below 30MHz

For radiated emission from 30MHz to1GHz

Report No.: HCT17GR178E-1 Page 22 of 44 FCC ID: 2AHM2-W191

For radiated emission from above1GHz

9.3 Test Procedure

- 1. Configure the EUT according to ANSI C63.10-2013
- 2. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
- 4. For band edge emission, the antenna tower was scan (from 1 M to 4 M) and then the turn table was rotated (from 0 degree to 360 degrees) to find the maximum reading.

According to KDB558074 D01 V04 Section 12.1, 12.2.7, the analyzer setting is as below:

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Set RBW = 120kHz(for emissions from 30MHz-1GHz)
- 3. Detector = Quasi-Peak
- 4. Trace Mode = max hold.
- 5. Sweep = auto couple.
- 6. Trace was allowed to stabilize

Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Set RBW = 1MHz
- 3. Set VBW = 3MHz
- 4. Detector = Peak
- 5. Trace Mode = max hold.
- 6. Sweep = auto couple.
- 7. Trace was allowed to stabilize

Average Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Set RBW = 1MHz

- 3. Set VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Number of measurement points=1001 (>= 2 x span/RBW)
- 6. Sweep = auto couple.
- 7. Trace (RMS) averaging was performed over at least 100 traces

9.4 Test Result

Temperature (°C) : 22~23	EUT: Bluetooth Connected Body Fat Scale
Humidity (%RH): 50~54	M/N: GL-MIFI
Barometric Pressure (mbar): 950~1000	Operation Condition: Charging, Normal operation, Continuously Tx Mode

RADIATED EMISSION BELOW 30 MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Emission Levels (dBuV/m)	Limit (dBµV/m)	Margin (dB)	Detector Mode
0.59	25.56	8.22	-1.01	32.77	67.00	-34.23	QP
19.55	24.45	8.17	-1.20	31.42	49.50	-18.08	QP
22.58	24.00	8.03	-1.05	30.98	49.50	-18.52	QP

Note:

- 1. The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos. The worst case data is recorded in the report.
- 2. Emission level (dBuV/m) =Raw Value (dBuV) + Correction Factor (dB/m)
- 3. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 4. The other emission levels were very low against the limit.
- 5. Margin value = Emission level.- Limit value

Radiated Spurious Emission Data Below 1GHz Channel Low:2402MHz

Operating Condition: TX Mode

Test Specification: DC4.5V from battery Comment: Polarization: Horizontal

SWEEP TABLE: "test (30M-1G)"
Short Description: Field Strength
Start Stop Detector Meas. IF
Trachency Time Bandw. Transducer Frequency Frequency Time Bandw.
30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz VULB9163 NEW

MEASUREMENT RESULT: "14CR067E02 red"

Frequency MHz	Level dBµV/m		Limit dBµV/m	_		Height cm	Azimuth deg	Polarization
53.280000	32.70	15.7	40.0	7.3	QP	100.0	0.00	HORIZONTAL
55.220000	33.30	15.6	40.0	6.7	QP	100.0	0.00	HORIZONTAL
158.040000	32.40	12.7	43.5	11.1	QP	100.0	0.00	HORIZONTAL
235.640000	33.60	16.6	46.0	12.4	QP	100.0	0.00	HORIZONTAL
276.380000	32.50	18.0	46.0	13.5	QP	100.0	0.00	HORIZONTAL
751 680000	36 00	27 3	46.0	10.0	OP	100.0	0.00	HORIZONTAL

Radiated Spurious Emission Data Below 1GHz Channel Low:2402MHz

Operating Condition: TX Mode

Test Specification: DC4.5V from battery Comment: Polarization: Vertical

SWEEP TABLE: "test (30M-1G)"

Short Description: Field Strength
Start Stop Detector Meas. IF Transducer
Frequency Frequency Time Bandw.
30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz VULB9163 NEW

MEASUREMENT RESULT: "14CR067E01 red"

Frequency MHz	Level dBµV/m		Limit dBµV/m	_		Height cm	Azimuth deg	Polarization
51.340000	33.10	15.7	40.0	6.9	QP	100.0	0.00	VERTICAL
55.220000	31.00	15.6	40.0	9.0	QP	100.0	0.00	VERTICAL
158.040000	27.10	12.7	43.5	16.4	QP	100.0	0.00	VERTICAL
206.540000	31.60	15.0	43.5	11.9	QP	100.0	0.00	VERTICAL
553.800000	31.60	25.1	46.0	14.4	QP	100.0	0.00	VERTICAL
953.440000	35.90	29.6	46.0	10.1	QP	100.0	0.00	VERTICAL

Radiated Spurious Emission Data Below 1GHz

Channel Middle: 2440MHz

Operating Condition: TX Mode

Test Specification: DC4.5V from battery Comment: Polarization: Horizontal

SWEEP TABLE: "test (30M-1G)"
Short Description: Field Strength
Start Stop Detector Meas. IF
Time Banc IF Bandw. Transducer Frequency Frequency Time Bandw.
30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz VULB9163 NEW

MEASUREMENT RESULT: "14CR067E03 red"

Frequency MHz	Level dBµV/m		Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
53.280000	32.40	15.7	40.0	7.6	QP	100.0	0.00	HORIZONTAL
57.160000	33.50	15.1	40.0	6.5	QP	100.0	0.00	HORIZONTAL
206.540000	34.70	15.0	43.5	8.8	QP	100.0	0.00	HORIZONTAL
276.380000	33.30	18.0	46.0	12.7	QP	100.0	0.00	HORIZONTAL
751.680000	37.70	27.3	46.0	8.3	QP	100.0	0.00	HORIZONTAL
831.220000	37.10	28.4	46.0	8.9	OP	100.0	0.00	HORIZONTAL

Radiated Spurious Emission Data Below 1GHz

Channel Middle: 2440MHz

Operating Condition: TX Mode

Test Specification: DC4.5V from battery Comment: Polarization: Vertical

SWEEP TABLE: "test (30M-1G)"
Short Description: Field Strength
Start Stop Detector Meas. IF
Transparate Frequency Time Band IF Transducer
Bandw. Frequency Frequency Time Bandw. 30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz VULB9163 NEW

MEASUREMENT RESULT: "14CR067E04 red"

Frequency MHz	Level dBµV/m		Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
53.280000	36.70	15.7	40.0	3.3	QP	100.0	0.00	VERTICAL
55.220000	33.70	15.6	40.0	6.3	QP	100.0	0.00	VERTICAL
206.540000	30.10	15.0	43.5	13.4	QP	100.0	0.00	VERTICAL
414.120000	31.50	21.8	46.0	14.5	QP	100.0	0.00	VERTICAL
553.800000	32.00	25.1	46.0	14.0	QP	100.0	0.00	VERTICAL
829.280000	35.70	28.4	46.0	10.3	QP	100.0	0.00	VERTICAL

Radiated Spurious Emission Data Below 1GHz

Channel High: 2480MHz

Operating Condition: TX Mode

Test Specification: DC4.5V from battery
Comment: Polarization: Horizontal

SWEEP TABLE: "test (30M-1G)"

Short Description: Field Strength
Start Stop Detector Meas. IF Transducer
Frequency Frequency Time Bandw.
30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz VULB9163 NEW

MEASUREMENT RESULT: "14CR067E06 red"

Frequency MHz	Level dBµV/m		Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
53.280000	31.50	15.7	40.0	8.5	QP	100.0	0.00	HORIZONTAL
57.160000	33.10	15.1	40.0	6.9	QP	100.0	0.00	HORIZONTAL
148.340000	31.30	12.3	43.5	12.2	QP	100.0	0.00	HORIZONTAL
206.540000	34.80	15.0	43.5	8.7	QP	100.0	0.00	HORIZONTAL
231.760000	32.70	16.3	46.0	13.3	QP	100.0	0.00	HORIZONTAL
751.680000	37.30	27.3	46.0	8.7	QP	100.0	0.00	HORIZONTAL

Radiated Spurious Emission Data Below 1GHz Channel High:

Channel High: 2480MHz

Operating Condition: TX Mode

Test Specification: DC4.5V from battery Comment: Polarization: Vertical

SWEEP TABLE: "test (30M-1G)"

Short Description: Field Strength
Start Stop Detector Meas. IF
Frequency Frequency Time Ban Transducer Frequency Frequency Bandw.

1.0 GHz 30.0 MHz MaxPeak Coupled 100 kHz VULB9163 NEW

MEASUREMENT RESULT: "14CR067E05 red"

Frequency MHz	Level dBµV/m		Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
53.280000	33.90	15.7	40.0	6.1	QP	100.0	0.00	VERTICAL
55.220000	31.10	15.6	40.0	8.9	QP	100.0	0.00	VERTICAL
159.980000	26.40	12.8	43.5	17.1	QP	100.0	0.00	VERTICAL
206.540000	31.70	15.0	43.5	11.8	ÕР	100.0	0.00	VERTICAL
551.860000	34.50	25.0	46.0	11.5	ÕР	100.0	0.00	VERTICAL
908.820000	37.10	29.3	46.0	8.9	ÕР	100.0	0.00	VERTICAL

Channel Low:2402MHz Polarization: Vertical

PK:

Limit Over Ant Read Freq Factor Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m

- 7171.00 39.47 26.96 45.50 74.00 -28.50 Peak
- 10010.00 39.40 28.85 46.24 74.00 -27.76 Peak
- 13614.00 42.39 33.78 48.13 74.00 -25.87 Peak 17660.00 43.46 34.87 51.79 74.00 -22.21 Peak

AV:

Ant Read Limit Over Freq Factor Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dB

- 7035.00 39.49 37.37 56.30 74.00 -17.70 Average
- 3 10044.00 39.42 40.22 57.51 74.00 -16.49 Average
- 4 13597.00 42.38 43.34 62.67 74.00 -11.33 Average
- 5 17677.00 43.31 46.09 62.92 74.00 -11.08 Average

Channel Low:2402MHz Polarization: Horizontal

PK:

AV:

Ant Read Limit Over Freq Factor Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dB 2 4808.00 35.16 34.34 43.32 74.00 -30.68 Peak

3 7001.00 39.50 26.26 45.28 74.00 -28.72 Peak

4 10044.00 39.42 28.55 45.84 74.00 -28.16 Peak

5 14872.00 42.30 36.01 49.45 74.00 -24.55 Peak

6 17677.00 43.31 34.82 51.65 74.00 -22.35 Peak

Ant Read Limit Over Freq Factor Level Level Line Limit Remark

MHz dB/m dBuV/m dBuV/m dB 4808.00 35.16 51.95 60.93 74.00 -13.07 Average 3 6916.00 39.30 37.91 56.39 74.00 -17.61 Average 4 10010.00 39.40 40.10 57.49 74.00 -16.51 Average 5 13597.00 42.38 41.85 61.18 74.00 -12.82 Average

FCC ID: 2AHM2-W191

6 17490.00 44.79 44.73 62.40 74.00-11.60 Average

Channel Middle:2440MHz Polarization: Vertical

PK:

Ant Read Limit Over Freq Factor Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dB

- 2 7001.00 39.50 26.54 45.56 74.00 -28.44 Peak
- 3 10061.00 39.42 28.97 46.19 74.00 -27.81 Peak
- 4 14889.00 42.28 36.00 49.40 74.00 -24.60 Peak
- 5 17677.00 43.31 34.96 51.79 74.00 -22.21 Peak

AV:

Ant Read Limit Over Freq Factor Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dB

- 2 4876,00 35,35 46,46 55,75 74,00 -18,25 Average
- 3 7171,00 39,47 38,32 56,86 74,00 -17,14 Average
- 4 13597.00 42.38 42.74 62.07 74.00 -11.93 Average
- 5 17677.00 43.31 46.26 63.09 74.00 -10.91 Average

Channel Middle:2440MHz Polarization: Horizontal

PK:

Ant Read Limit Over Freq Factor Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dB 2 4876.00 35.35 32.55 41.84 74.00 -32.16 Peak

3 7001.00 39.50 26.51 45.53 74.00 -28.47 Peak

4 10010.00 39.40 29.09 46.48 74.00 -27.52 Peak

5 14889.00 42.28 36.15 49.55 74.00 -24.45 Peak

6 17609.00 43.88 34.48 51.65 74.00 -22.35 Peak

AV:

Ant Read Limit Over Freq Factor Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dB

2 4876.00 35.35 48.73 58.02 74.00 -15.98 Average

3 7035.00 39.49 37.81 56.74 74.00 -17.26 Average

4 10010.00 39.40 39.81 57.20 74.00 -16.80 Average

5 13597.00 42.38 43.34 62.67 74.00 -11.33 Average

6 17507.00 44.74 44.88 62.56 74.00 -11.44 Average

Channel High:2480MHz Polarization: Vertical

PK:

Ant Read Limit Over Freq Factor Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dB

2 7001.00 39.50 26.44 45.46 74.00-28.54 Peak

3 10010.00 39.40 28.78 46.17 74.00 -27.83 Peak

4 13631.00 42.40 33.89 48.26 74.00 -25.74 Peak

5 14855.00 42.33 35.90 49.38 74.00 -24.62 Peak

6 17609.00 43.88 34.53 51.70 74.00 -22.30 Peak

AV:

Ant Read Limit Over Freq Factor Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dB

2 6984.00 39.46 37.07 55.99 74.00 -18.01 Average

3 9993.00 39.39 39.74 57.13 74.00 -16.87 Average

4 14804.00 42.41 46.27 59.89 74.00 -14.11 Average

5 17779.00 42.46 46.27 62.60 74.00 -11.40 Average

Channel High:2480MHz Polarization: Horizontal

PK:

Ant Read Limit Over Freq Factor Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dB

- 2 7171.00 39.47 27.00 45.54 74.00 -28.46 Peak
- 3 10010.00 39.40 28.88 46.27 74.00 -27.73 Peak
- 4 13665.00 42.43 33.66 48.06 74.00 -25.94 Peak
- 5 17694.00 43.17 34.77 51.52 74.00 -22.48 Peak

AV:

Ant Read Limit Over Freq Factor Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dB

- 2 7222.00 39.46 37.44 55.84 74.00 -18.16 Average
- 3 10282.00 39.51 39.60 56.15 74.00 -17.85 Average
- 4 13597.00 42.38 45.44 64.77 74.00 -9.23 Average
- 5 17575.00 44.17 45.71 63.05 74.00 -10.95 Average

10. Test of Band Edges Emission

10.1 Applicable standard

Refer to FCC §15.247 (d) and KDB558074 D01 V04 Section 13.0

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions that fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209.

10.2 EUT Setup

Radiated Measurement Setup

Conducted Measurement Setup

Spectrum Analyzer

10.3 Test Equipment List and Details

See section 2.7.

10.4 Test Procedure

Conducted Measurement

KDB558074 D01 V04 Section 11.3

1.Set the center frequency and span to encompass frequency range to be measured.

2.Set the RBW = 100 kHz.

Report No.: HCT17GR178E-1 Page 37 of 44 FCC ID: 2AHM2-W191

- 3.Set the VBW \geq 3 x RBW.
- 4.Detector = peak.
- 5.Sweep time = auto couple.
- 6.Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8.Use the peak marker function to determine the maximum amplitude level.

Radiated Measurement

KDB558074 D01 V04 Section 12.1, 12.2.7

Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Set RBW = 1MHz
- 3. Set VBW = 3MHz
- 4. Detector = Peak
- 5. Trace Mode = max hold.
- 6. Sweep = auto couple.
- 7. Trace was allowed to stabilize

Average Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Set RBW = 1MHz
- 3. Set VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Sweep = auto couple.
- 6. Trace (RMS) averaging was performed over at least 100 traces

Note:

- 1. Configure the EUT according to ANSI C63.10-2013
- 2. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
- 4. For band edge emission, the antenna tower was scan (from 1 M to 4 M) and then the turn table was rotated (from 0 degree to 360 degrees) to find the maximum reading.

10.5 Test Result

Temperature (°C) : 22~23	EUT: Bluetooth Connected Body Fat Scale				
Humidity (%RH): 50~54	M/N: W191				
Barometric Pressure (mbar): 950~1000	Operation Condition: Continuously Tx Mode				

For Radiated Band edge Measurement

Channel Low: 2402MHz Polarization: Horizontal

PΚ

AV:

Channel Low: 2402MHz Polarization: Vertical

PΚ

AV

Channel High:2480MHz Polarization: Horizontal

PΚ

AV

Channel High:2480MHz Polarization: Vertical

PΚ

ΑV

Note:

- 1. Margin value = Emission level.- Limit
- 2. The other emission levels were very low against the limit.

For Conducted Band edge Measurement

Channel Low: 2402MHz

Channel High:2480MHz

11. ANTENNA REQUIREMENT

11.1 standard Applicable

Refer to FCC Section 15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Section 15.247(b)/(c)

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

If the intentional radiator is used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

11.2 Antenna Connected Construction

There are no provisions for connections to an external antenna. The antenna is designed with PCB antenna and no consideration of replacement. The antenna used in this product is complied with standard. The maximum Gain of the antenna lower than 6.0dBi and have the definite antenna Specification.

···End of Report···

Report No.: HCT17GR178E-1 Page 44 of 44 FCC ID: 2AHM2-W191