Digitaltechnik Wintersemester 2025/2026 Vorlesung 2

Inhalt

1 Umrechnen zwischen Zahlensystemen

2 Addition von vorzeichenlosen Binärzahlen

3 Vorzeichenbehaftete Binärzahlen

4 Logikgatter

Kap. 1.4, 4.2.7, 1.5, 4.2.1

nwendungs-	>"hello
oftware	world!"

Retriebssysteme

Gerätetreiher

Datenpfade

Steuerung Addierer

Speicher

Programme

Architektur **Architektur**

Befehle Register

Mikroarchitektur

Logik

+

Digitalschaltungen

Analogschaltungen

Bauteile

Physik

Inverter Vorstärkor Filter

LIND Gatter

Transistoren Dioden

Flektronen

Agenda

1 Umrechnen zwischen Zahlensystemen

Anwendungs->"hello world!" software

Betriebssysteme

Gerätetreiher

Programme

Architektur

Befehle Register

Datenpfade

Steuerung

Mikroarchitektur

Logik

+

Addierer Speicher

Digitalschaltungen o

LIND Gatter Inverter

Analogschaltungen

Vorstärkor Filter

Bauteile

Transistoren Dioden

Physik

Flektronen

Zweierpotenzen

$$16^{0} = 8^{0} = 2^{0} = 1$$

$$2^{1} = 2$$

$$2^{2} = 4$$

$$8^{1} = 2^{3} = 8$$

$$16^{1} = 2^{4} = 16$$

$$2^{5} = 32$$

$$8^{2} = 2^{6} = 64$$

$$2^{7} = 128$$

$$16^{10} = 2^{10} = 1 \text{ Ki}$$

$$2^{11} = 2 \text{ Ki}$$

$$2^{11} = 2 \text{ Ki}$$

$$2^{12} = 4 \text{ Ki}$$

$$2^{13} = 8 \text{ Ki}$$

$$2^{14} = 16 \text{ Ki}$$

$$2^{14}$$

polyadische Abbildung anwenden:

$$u_{2,5}(1\ 0011_2) = 2^0 + 2^1 + 2^4 = 19_{10}$$

$$u_{16.3}(4AF_{16}) = 15 \cdot 16^0 + 10 \cdot 16^1 + 4 \cdot 16^2 = 1199_{10}$$

Nibble-Werte

$0000_2 =$	010	$= 0_{16}$
$0001_2 =$	1_{10}	$=1_{16}$
$0010_2 =$	2 ₁₀	$= 2_{16}$
$0011_2 =$	3 ₁₀	$= 3_{16}$
$0100_2 =$	4 ₁₀	$= 4_{16}$
$0101_2 =$	5 ₁₀	$= 5_{16}$
$0110_2 =$	6 ₁₀	$= 6_{16}$
$0111_2 =$	7 ₁₀	$= 7_{16}$
$1000_2 =$	8 ₁₀	$= 8_{16}$
$1001_2 =$	9_{10}	$= 9_{16}$
$1010_2 =$	10_{10}	$= A_{16}$
$1011_2 =$	11_{10}	$= B_{16}$
$1100_2 =$	12 ₁₀	$= C_{16}$
$1101_2 =$	13 ₁₀	$= D_{16}$
$1110_2 =$	14 ₁₀	$= E_{16}$
$1111_2 =$	15 ₁₀	$= F_{16}$

Binär ↔ Hexadezimal

- Nibble-weise umwandeln
- bei least significant bit beginnen
- führende Nullen weglassen oder ergänzen (je nach geforderter Bitbreite)
- \blacksquare 11 1010 0110 1000₂ = 3*A*68₁₆

 \blacksquare 7*BF*₁₆ = 111 1011 1111₂

- Methode 1
 (links nach rechts):
 maximale Zweierpotenzen
 abziehen
 - 53_{10} = 32 + 21 = 32 + 16 + 5 = 32 + 16 + 4 + 1 $= 2^{5} + 2^{4} + 2^{2} + 2^{0}$ $= 11 \ 0101_{2}$

Methode 2 (rechts nach links): Halbieren mit Rest (sukzessives Durch-2-Teilen)

$$53_{10}$$

$$= 2 \cdot \underline{26} + 1$$

$$= 2 \cdot (2 \cdot \underline{13} + 0) + 1$$

$$= 2 \cdot (2 \cdot (2 \cdot \underline{6} + 1) + 0) + 1$$

$$= 2 \cdot (2 \cdot (2 \cdot (2 \cdot \underline{3} + 0) + 1) + 0) + 1$$

$$= 2 \cdot (2 \cdot (2 \cdot (2 \cdot (2 \cdot \underline{1} + \underline{1}) + \underline{0}) + \underline{1}) + \underline{0}) + \underline{1}$$

$$= 11 \ 0101_{2}$$

Umrechnen zwischen Zahlensystemen

Zweierpotenzen verinnerlichen!

Agenda

2 Addition von vorzeichenlosen Binärzahlen

Anwendungs->"hello world!" software

Programme

Betriebssysteme

Gerätetreiher

Architektur -

Befehle Register

Datenpfade

LIND Gatter

Inverter

Vorstärkor

Filter

Steuerung

Mikroarchitektur

Logik

Digital-

 \rightarrow

Addierer Speicher

schaltungen o

Analogschaltungen

Bauteile

Transistoren Dioden

Physik

Flektronen

Schriftliche Addition

Dezimal 1 1 Übertrag 3 7 3 4 Summand + 5 1 6 8 Summand = 8 9 0 2 Summe

Addition mit Überlauf

Binär		1	1	1			Übertrag
			1	0	1	1	Summand
	+		0	1	1	0	${\sf Summand}$
	=	1	0	0	0	1	Summe
	Üb	erla	uf				

- Digitale Systeme arbeiten i.d.R. mit festen Bitbreiten
 - Langzahlarithmetik nur in Software (Bitbreite nur durch verfügbaren Arbeitsspeicher beschränkt)
 - Overflow-flag zum Signalisieren arithmetischer Ausnahmen in Hardware
- Operation (bspw. Addition) läuft über, wenn Ergebnis nicht mit der verfügbaren Bitbreite dargestellt werden kann
- für 4 bit Addierer gilt zum Beispiel: 11 + 6 = 1 (siehe oben)

Agenda

3 Vorzeichenbehaftete Binärzahlen

Anwendungs->"hello world!" software

Betriebssysteme

Gerätetreiher

Programme

Architektur -

Befehle Register

Datenpfade

LIND Gatter

Inverter

Steuerung

Mikroarchitektur

 \rightarrow

Logik

Addierer Speicher

Digitalschaltungen o

Analog-

schaltungen

Vorstärkor Filter

Bauteile

Transistoren Dioden

Physik

Flektronen

Definition: Zweierkomplement

Die Funktion s_k bildet eine Bitfolge der Breite $k \in \mathbb{N}$ auf eine ganze Zahl ab:

$$\mathsf{s}_k: (a_{k-1}\dots a_1 a_0) \in \mathbb{B}^k \mapsto a_{k-1}\cdot (-2^{k-1}) + \sum_{i=0}^{k-2} a_i\cdot 2^i \in \mathbb{Z}$$

- **a** auch für Basen b > 2 verallgemeinerbar: $s_{b,k}$
 - wird aber heute kaum noch verwendet

Ganze Zahlen als Zweierkomplement

- niedrigstwertige Stelle: a₀
- höchstwertige Stelle: a_{k-1}
- kleinste darstellbare Zahl: $1 \cdot (-2^{k-1}) + \sum_{i=0}^{k-2} 0 \cdot 2^i = -2^{k-1}$
- größte darstellbare Zahl: $0 \cdot (-2^{k-1}) + \sum_{i=0}^{k-2} 1 \cdot 2^i = 2^{k-1} 1$
- Anzahl der darstellbaren Werte: 2^k
- lacktriangle eineindeutig (bijektiv) abbildbar auf Wertebereich $\{-2^{k-1},\dots,2^{k-1}-1\}$ für festes k

Beispiele

$$s_4(1010_2) = 0 \cdot 2^0 + 1 \cdot 2^1 + 0 \cdot 2^2 + 1 \cdot (-2^3) = -6_{10}$$

$$s_4(0110_2) = 0 \cdot 2^0 + 1 \cdot 2^1 + 1 \cdot 2^2 + 0 \cdot (-2^3) = +6_{10}$$

• kompatibel mit binärer (unsigned) Addition:

• kein Überlauf bei Addition positiver und negativer Zahl gleicher Breite

 Methode 1 (links nach rechts): größtmögliche Zweierpotenzen abziehen

$$-53_{10} = -64 + \underline{11}$$

$$= -64 + 8 + \underline{3}$$

$$= -64 + 8 + 2 + 1$$

$$= -2^{6} + 2^{3} + 2^{1} + 2^{0}$$

$$= 100 \ 1011_{2}$$

■ Methode 2 (rechts nach links): Betrag negieren = Komplement (bitweise ā) und Inkrement (+1) (Reihenfolge beachten!)

$$-53_{10} = \overline{53_{10}} + 1$$

$$= \overline{011} \ 0101_2 + 1$$

$$= 100 \ 1010_2 + 1$$

$$= 100 \ 1011_2$$

- in beiden Fällen auf korrekte/geforderte Bitbreite achten
- ggf. müssen führende Null(en) schon für Betragsdarstellung eingefügt werden

${\sf Zweierkomplement} \to {\sf Dezimal}$

 Methode 1: polyadische Abbildung direkt anwenden

$$100 \ 1011_2$$
= $-2^6 + 2^3 + 2^1 + 2^0$
= $-64 + 8 + 2 + 1$
= -53_{10}

■ Methode 2:

Betrag berechnen =

Komplement (bitweise ā)

und Inkrement (+1)

Nur falls MSB=1

$$100 \ 1011_2 = -(\overline{100} \ 1011_2 + 1)$$

$$= -(011 \ 0100_2 + 1)$$

$$= -011 \ 0101_2$$

$$= -53_{10}$$

Methode 2: Betrag berechnen = direkt

Nur falls MSB=0

$$000\ 1011_2 = 11$$

Bitbreitenerweiterung

- notwendig, um unterschiedlich breite Bitfolgen zu addieren
- zero extension:
 - Auffüllen mit führenden Nullen für vorzeichenlose Darstellung

$$u_{2,k+1}(0a_{k-1}\ldots a_0)=0\cdot 2^k+\sum_{i=0}^{k-1}a_i\cdot 2^i=u_{2,k}(a_{k-1}\ldots a_0)$$

- sign extension:
 - Auffüllen mit Wert des Vorzeichen-Bits für Zweierkomplement Darstellung

$$s_{k+1}(a_{k-1}a_{k-1} \dots a_0) = a_{k-1} \cdot \underbrace{(-2^k)}_{2 \cdot (-2^{k-1})} + a_{k-1} \cdot 2^{k-1} + \sum_{i=0}^{k-2} a_i \cdot 2^i$$

$$= a_{k-1} \cdot \left(-2^{k-1} - 2^{k-1} + 2^{k-1}\right) + \sum_{i=0}^{k-2} a_i \cdot 2^i$$

$$= s_k(a_{k-1} \dots a_0)$$

Bitbreitenerweiterung Beispiel

 -5_{10} im Zweierkomplement von 4 auf 8 Bit erweitern:

$$5_{10} = 0101_{2}$$

$$\Rightarrow -5_{10} = \overline{0101_{2}} + 1$$

$$= 1010_{2} + 1$$

$$= 1011_{2}$$

$$= 1111 \ 1011_{2}$$

$$Probe : -(-5_{10}) = \overline{1111\ 1011_2} + 1 = 0000\ 0100_2 + 1$$
$$= 0000\ 0101_2$$
$$= 5_{10}$$

Quiz I - Die dunkle Bedrohung (Hat nichts mit dem Moodle-Quiz zu tun)

Agenda

4 Logikgatter

Anwendungs->"hello world!" software

Programme

Retriebssysteme

Gerätetreiher

Architektur -

Befehle Register

Datenpfade

Steuerung

Mikroarchitektur

Logik

Digital-

+

Addierer

Speicher

schaltungen o

LIND Gatter Inverter

Analogschaltungen

Vorstärkor Filter

Bauteile

Transistoren Dioden

Physik

George Boole 1815 - 1864

- in einfachen Verhältnissen geboren
- brachte sich selbst Mathematik bei
- Professor am Queen's College in Irland
- "An Investigation of the Laws of Thought" (1854)
- ⇒ grundlegende logische Variablen und Operationen

Kap. 1.5, 4.2.1

Logische Operationen

- verknüpfen binäre Werte: $\mathbb{B}^n \to \mathbb{B}^k$
- \blacksquare zunächst k=1
- Beispiele für
 - *n* = 1: NOT
 - n = 2: AND, OR, XOR
 - *n* = 3: MUX
- Charakterisierung durch Wahrheitswertetabellen

SystemVerilog: assign Y = A;

alternativ: $Y = !A = CA = \neg A$ SystemVerilog: assign Y = $\sim A$;

Α	В	Υ
0	0	0
0	1	0
1	0	0
1	1	1

alternativ: $Y = A \cdot B = A \& B = A \wedge B$ SystemVerilog: assign Y = A & B;

alternativ: $Y = A | B = A \vee B$ SystemVerilog: assign Y = A | B;

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

alternativ: $Y = A^B$ SystemVerilog: assign Y = A ^ B;

Α	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

SystemVerilog: assign $Y = A \sim \& B$;

Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	0

SystemVerilog: assign Y = A \sim | B;

Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	1

entspricht Test auf Gleichheit SystemVerilog: assign Y = A ~ B;

$$\begin{array}{c}
A \\
B \\
C
\end{array}$$

$$Y = A \oplus B \oplus C$$

Α	В	C	Υ	
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	0	SystemVerilog: assign Y = A ^ B ^ C;
1	0	0	1	
1	0	1	0	
1	1	0	0	
1	1	1	1	

XOR mit mehreren Eingängen

- "repräsentiert" die Anzahl der Einsen an Eingängen (modulo 2)
- \Rightarrow Paritätsfunktion p: $(a_{k-1} \dots a_0) \in \mathbb{B}^k \mapsto a_{k-1} \oplus \dots \oplus a_0 \in \mathbb{B}$
 - $p(a) = 0 \Rightarrow$ Quersumme von a ist gerade
 - $p(a) = 1 \Rightarrow$ Quersumme von a ist ungerade

Zusammenfassung und Ausblick

- 1 Umrechnen zwischen Zahlensystemen
- 2 Addition von vorzeichenlosen Binärzahlen
- 3 Vorzeichenbehaftete Binärzahlen
- 4 Logikgatter

nächste Vorlesung beinhaltet

physikalische Realisierung von Logikgattern

Moodle-Quiz zu Vorlesung 01 muss bis nächste Woche Donnerstag 12:00 abgegeben werden.

nwendungs-	>"hello
oftware	world!"

Programme

Retriebssysteme

Gerätetreiher

Datenpfade

LIND Gatter Inverter

Steuerung

Architektur

Befehle Register

Mikroarchitektur

Logik

Addierer Speicher

Analog-

schaltungen

Vorstärkor Filter

Bauteile

Transistoren Dioden

Physik

