

(9) BUNDESREPUBLIK
DEUTSCHLAND

[®] Off nl gungsschrift[®] DE 41 30 221 A 1

(5) Int. Cl.⁵: A 61 K 37/547

DEUTSCHES PATENTAMT (1) Aktenzeichen:

P 41 30 221.4

2 Anmeldetag:

11. 9.91

Offenlegungstag:

18. 3.93

DE 4130221 A

(7) Anmelder:

Mucos Pharma GmbH, 8192 Geretsried, DE

(74) Vertreter:

Grünecker, A., Dipl.-Ing.; Kinkeldey, H., Dipl.-Ing. Dr.-Ing.; Stockmair, W., Dipl.-Ing. Dr.-Ing. Ae.E. Cal Tech; Schumann, K., Dipl.-Phys. Dr.rer.nat.; Jakob, P., Dipl.-Ing.; Bezold, G., Dipl.-Chem. Dr.rer.nat.; Meister, W., Dipl.-Ing.; Hilgers, H., Dipl.-Ing.; Meyer-Plath, H., Dipl.-Ing. Dr.-Ing.; Ehnold, A., Dipl.-Ing.; Schuster, T., Dipl.-Phys.; Goldbach, K., Dipl.-Ing.Dr.-Ing.; Aufenanger, M., Dipl.-Ing.; Klitzsch, G., Dipl.-Ing., Pat.-Anwälte, 8000 München

(72) Erfinder

Kunze, Rudolf, Dr., 1000 Berlin, DE; Ransberger, Karl, 8022 Grünwald, DE

Prüfungsantrag gem. § 44 PatG ist gestellt

- (§) Verwendung von proteolytischen Enzymen zur Herstellung eines Medikaments zur Behandlung einer Krankheit, an deren Entstehung Proteine mit einer C_H2-Domäne beteiligt sind
- Die vorliegende Erfindung betrifft die Verwendung von mindestens einem proteolytischen Enzym zur Herstellung eines Medikaments zur Behandlung einer Krankheit, an deren Entstehung mindestens ein Protein, enthaltend mindestens eine C_H2-Domäne, beteiligt ist. Insbesondere eignen sich die proteolytischen Enzyme zur Modulation von Immunglobulinen, so daß deren Bindungsfähigkeit für die Komplementkomponente C1q herabgesetzt wird. Diese Modulation von Immunglobulinen erlaubt beispielsweise eine wirkungsvolle Behandlung von Entzündungsvorgängen, an denen Komplement beteiligt ist.

Beschreibung

Die vorliegende Erfindung betrifft die Verwendung von mindestens einem proteolytischen Enzym zur Herstellung eines Medikaments zur Krankheit, an deren Entstehung mindestens ein Protein, enthaltend mindestens eine CH2-Domäne, beteiligt ist.

Das Immunsystem ist eine biologische Funktionseinheit mit hochspezifischen Reaktionsabläufen sowohl auf humoraler wie auf zellulärer Ebene. Störungen in diesem komplexen System sind an der Entstehung zahlreicher Krankheiten ursächlich beteiligt. So führen Defekte in der Entwicklung des Immunsystems zu sogenannten Immundefektkrankheiten, die durch eine erhöhte Anfälligkeit für Infektionen und Tumoren gekennzeichnet sind, wie beispielsweise der Agammaglobulinämie. Übersteigerte Reaktionsbereitschaft kann allergische Reaktionen oder Autoimmunkrankheiten auslösen, und eine gestörte immunologische Überwachungsfunktion des Organismus kann die Tumorentstehung und die Ausbreitung von pathogenen Mikroorganismen im Körper begünstigen.

Antiköper stellen für die humorale Antwort wesentliche Moleküle dar. Die den Antikörper bildenden schweren und leichten Proteinketten sind jeweils in verschiedene funktionelle Domänen unterteilt. So ist die variable Domäne der schweren Kette V_H an der Bindung des Antigens beteiligt, und die nachfolgenden Domänen C_H1, C_H2 und C_H3 sind für die sogenannten Effektorfunktionen eines Antikörpers, wie beispielsweise die Bindung von Komplementproteinen, verantwortlich. Insbesondere die C_H2-Domäne ist am initialen Schritt der Komplementaktivierung beteiligt.

Das Vorhandensein einer C_H2-Domäne ist jedoch nicht auf Immunglobuline beschränkt, sondern die C_H2-Struktur ist beispielsweise auch in T-Zell-Rezeptorproteinen, Zelladhäsionsmolekülen und den im Haupthistokompatibilitätskomplex codierten Proteinen der Klasse I und II sehr ähnlich vorhanden. Zahlreiche Proteine mit einer zu der Domänenstruktur der Immunglobuline ähnlichen Struktur werden zu den Proteinen der sogenannten Immunglobulinsuperfamilie zusammengefaßt. Eine Übersicht über Proteine, enthaltend eine C_H2-Struktur, ist gegeben in A. F. Williams and A. N. Barcley, "The Immunoglobulin Superfamily-Domains for Cell Surface Recognition", Ann. Rev. Immunol, 1988, 6, 381 – 405.

Im folgenden wird unter dem Begriff C_H2-Struktur bzw. C_H2-Domäne der Bereich eines Proteinmoleküls verstanden, der eine ähnliche Struktur wie die C_H2-Domäne von IgG aufweist. In der Literatur wird für eine solche Struktur auch der Begriff C2-Domäne oder C2-Set verwendet.

Wie oben für die Immunglobuline erläutert, besitzt die C_H2-Struktur auch in den weiteren Mitgliedern der Immunglobulinsuperfamilie häufig eine Effektorfunktion, die an der Entstehung verschiedenster Krankheitsbilder beteiligt sein kann. Eine Auflistung C_H2-Struktur assoziierter Krankheitsbilder zeigt die Tabelle 1. In dieser Tabelle sind Krankheitsbilder aufgeführt, an deren Entstehung verschiedene Proteine enthaltend mindestens eine C_H2-Struktur beteiligt sind.

35

40

45

50

55

60

65

Tabelle !

Vorkommen von CH2-assoziierten Proteinstrukturen bei v rschiedenen Krankheitsbildern

Krankheitsbild	C _H 2-Struktur	C _H 2-Form
Entzündungen		
Ödeme Vaskulitis (Ref. 1, 2, 3, 4, 5)	in Endothelzellrezeptoren ICAM-1 (CD54) ICAM-2 VCAM	Pentamer Dimer Septamer
A	PECAM(CD31)	Hexamer
Autoimmunerkrankungen Rheumatismus	Ig in Immunkomplexen und gewebsgebundenen	mindestens
Lupus Erythematodes nultiple Sklerose (Ref. 7, 9)	Autoantikörpern, auf aktivierten Lymphozyten/Monozyten (CD25)	4 Polymer
mmunkomplexerkrankungen Glomerulonephritis (Ref. 8)	als Immunglobulin in Immunkomplexen	Polymer
Fumorerkrankungen Verschiedene Karzinome (Ref. 12)	Bestandteil des karzinoembryonalen Antigens (CEA)	Hexamer
Viruserkrankungen Varizella Zoster (Ref. 10, 11)	als Immunkomplex, als Immunglobulin auf virusproduzierenden Zellen	mindestens 4 Polymer
HIV (Ref. 12, 13)	im Ig des Immunkomplex, im CD4-Rezept.	mindestens 4 Polymer, im CD4- Monomer
	uctural Analysis of Human Immunoglobulin, G: Localization on nst Disease, 6th ann. Meet. Long Beach, Clin. Physiol Biochem.	
D. E. Staunton; S. D. Marlin und C Members of the Immunoglobulin an A. F. Williams und A. N. Barclay; I Immunol. 6 (1988), S. 381 — 405. D. L. Simmons; C. Walter; C. Pow	of the immune system, Nature 346 (1990), S. 425—434. Stratowa et al.; Primary Structure of ICAM-1 Demonstrates of Integrin Supergene Families, Cell 52 (1988), S. 925—933. The Immunoglobulin Superfamily-Domains for Cell Surface Refer und R. Pigott; Molecular Cloning of CD31, A Putative II.	ecognition, Ann. Rev.
 D. P. Stites und A. I. Terr, Cardia Appleton & Lange, East Norwalk (1) 	pembryonic Antigen, J. Exp. Med. 171 (1990), S. 2147—2152. c and Vascular Diseases, in: Basic and Clinical Immunology, 991), S. 492—505. c Diseases, in: Basic and Clinical Immunology, 7. Auflage, Kap. 3	
	eases, in: Basic and Clinical Immunology, 7. Auflage, Kap. 41, Ap	
 D. P. Stites und A. J. Terr, Renal Dist Norwalk (1991), S. 526 – 538. D. P. Stites und A. I. Terr, Neurologi 	eases, in: Basic and Clinical Immunology, 7. Auflage, Kap. 41, Ap c Diseases, in: Basic and Clinical Immunology, 7. Auflage, Kap. 4	•
 D. P. Stites und A. J. Terr, Renal Dist Norwalk (1991), S. 526 – 538. D. P. Stites und A. I. Terr, Neurologi East Norwalk (1991), S. 552 – 563. M. H. Wansbrough-Jones et al.; Co Herpes simplex virus reactivation, J. 	c Diseases, in: Basic and Clinical Immunology, 7. Auflage, Kap. 4 cmplement activation and spleen function in erythema multificin. Lab. Immunol. (1986), Nr. 21, S. 83 – 85.	3, Appleton & Lange, orme associated with
 D. P. Stites und A. J. Terr, Renal Diss Norwalk (1991), S. 526 – 538. D. P. Stites und A. I. Terr, Neurologi East Norwalk (1991), S. 552 – 563. M. H. Wansbrough-Jones et al.; Cotherpes simplex virus reactivation, J. C. Y. Lin et al.; Nephrotic syndrome 	c Diseases, in: Basic and Clinical Immunology, 7. Auflage, Kap. 4 smplement activation and spleen function in erythema multif	33, Appleton & Lange, orme associated with

In Tabelle 2 sind die immunologischen Reaktionspartner für eine C_H2-Struktur aus verschiedenen Proteinen sowie die durch die Interaktion der C_H2-Struktur mit dem immunologischen Reaktionspartner hervorrufbaren pathoimmunologische bzw. physiologische Folgereaktionen aufgelistet.

Tabelle 2
Immunologische Reaktiionspartner von C_H2-haltigen Strukturen

5	C _H 2 stammt von	immunologische Reaktionspartner	pathoimmunologische/physiologische Folgen
10	antigenfixiertem Immunglobulin G, M (Immunkomplex)	C1q der Komplementproteine	"klassische" Entzündungsreaktionen, Komplementaktivierung
	Auto-Antigen-fixiertes Immunglobulin, z. B. DNA	C1q der Komplementproteine	Entzündungsreaktionen, Immunkomplexablagerungen, Komplementaktivierung
15	gewebsgebundene Autoantikörper, z.B. Acetylcholinrezeptor (G, M, autoreaktive Antikörper)	C1q der Komplementproteine	Entzündungsreaktionen Komplementaktivierung
20	lmmunglobulin G	Rheumafaktoren G, M, A	Entzündungsreaktionen, systemisch und lokał
	Adhäsionsrezeptor ICAM-1 "Inter Cellular Adhesion Molecule"	CD11a, CD11b, CD11c, CD18-positive Lymphozyten, Granulozyten und Monozyten	Anlagerung der Immunozyten an den Rezeptor, Entzündungen, systemisch und lokal, Endothelläsionen
25	Endothelzellrezeptor ICAM-2 "Inter Cellular Adhesion Molecule"	CD11a, CD18-positive Lymphozyten, -Granulozyten und Monozyten	Anlagerung der Immunozyten an den Rezeptor, Entzündungen, systemisch und lokal, Endothelläsionen
30	Endothelzellrezeptor VCAM "Vascular Cell Adhesion Molecule"	CD49d, CD29-positive Lymphozyten, Monozyten	Anlagerung der Immunozyten an den Rezeptor, Entzündungen, systemisch und lokal, Endothelläsionen
35	Endothelzellrezeptor PECAM "Platelet Endothel Cell Adhesion Molecule"	Thrombozyten, CD31-positive Zellen, mit sich selbst!?	Entzündungen, systemisch und lokal, Thrombozytopenie?
	CEA ⁺ der Tumorzellen (verschiedene Karzinome)	Tumorzellen selbst	CEA realisiert wahrscheinlich den intensiven Zellkontakt, den Tumorzellen für das Wachstum brauchen

Aufgabe der vorliegenden Erfindung ist es, ein Medikament bereitzustellen, mit dem eine Krankheit, an deren Entstehung mindestens ein Protein, enthaltend mindestens eine CH2-Domäne, beteiligt ist, wirksam behandelt werden kann.

Diese Aufgabe wird erfindungsgemäß gelöst durch ein Medikament, zu dessen Herstellung mindestens ein proteolytisches Enzym verwendet wird.

Es wurde überraschenderweise gefunden, daß proteolytische Enzyme äußerst selektiv die C_H2-Struktur in Proteinen modulieren, so daß die C_H2-Struktur ihre Effektorfunktion verliert, die übrigen humoralen bzw. zellulären Funktionen jedoch erhalten bleiben.

Erfindungsgemäß besonders geeignete proteolytische Enzyme sind Trypsin, Papain, a-Chymotrypsin und Pankreatin. Ganz besonders geeignet sind Papain und Trypsin, wobei eine Kombination von Papain und Trypsin sich als besonders wirkungsvoll erweist.

Papain ist ein proteolytisches Enzym, das aus dem Milchsaft der unreifen, fleischigen Früchte des Melonenbaumes Carica papaia nach üblichen Methoden herstellbar ist.

Trypsin und α-Chymotrypsin sind proteolytische Enzyme, die aus Pankreas nach üblichen Methoden herstellbar sind.

Pankreatin wird aus Schweine- oder Rinderpankreas gewonnen.

40

Die proteolytischen Enzyme sind besonders geeignet zur Behandlung einer Krankheit, an deren Entstehung mindestens ein Protein, das zu der Immunglobulinsuperfamilie gehört, beteiligt ist, und insbesondere, wenn ein Immunglobulin beteiligt ist.

Die durch das bzw. die proteolytischen Enzyme modulierten Immunglobuline zeichnen sich dadurch aus, daß deren Bindungsfähigkeit für die Komplementkomponente C1q erniedrigt ist. Dies gilt für natürliche C1q-bindende Immunglobuline (Subklassen IgG₁, IgG₂, IgG₃, IgM und teilweise IgA).

Die geänderte C1q-Bindungsfähigkeit wird vermutlich durch eine Konformationsänderung der CH2-Domäne aufgrund der Enzymeinwirkung verursacht. Dabei kann die Konformationsänderung entweder durch eine enzymatisch verursachte Änderung unmittelbar in der CH2-Domän hervorgerufen werden, oder die proteolytischen Enzyme bewirken eine Strukturänderung in den der CH2-Domäne benachbarten Bereichen, und diese Änderungen beeinflussen die Konformation der CH2-Domäne.

Für die Herstellung eines M dikaments sind die folgenden Enzymmeng n pro Tablette besonders geeignet:

Trypsin ist vorzugsweise in einer Menge von 10 bis 30 mg, besonders b vorzugt in einer Menge von 24 mg, zu verwenden. Für α-Chymotrypsin werden vorzugsweise 1 bis 10 mg, insbesondere 1 mg, verwendet. Für Papain sind 40 bis 100 mg besonders geeignet, 60 mg sind ganz besonders geeignet. Für Pankreatin sind 50 bis 200 mg bevorzugt geeignet, wobei 100 mg ganz besonders geeignet sind. Vorzugsweise werden dem Medikament die üblichen Hilfs- und Trägerstoffe zugesetzt. Gegebenenfalls kann das Medikament noch zusätzliche proteolytische Enzyme enthalten.

Die folgenden Beispiele erläutern die Erfindung.

An eine Mikrotiterplatte mit 96 Vertiefungen und erhöhter Adsorption (erhältlich von der Firma Nunc) als Festphase wurde das F(ab')2-Fragment von humanem Immunglobulin G adsorptiv gebunden. Um eine adsorptive Bindung weiterer Moleküle an die Festphase zu verhindern, wurde die aktive Plastikoberfläche mit einer 0,1% Rinderserumalbumin-Lösung anschließend überschichtet.

An das an die Festphase fixierte humane F(ab')₂-Fragment, das als Antigen fungiert, wurde dann ein Kaninchenantikörper der Klasse G gegen Human-IgG F(ab')₂ gebunden, die dann zusammen einen Immunkomplex darstellen. Dieser Immunkomplex wurde den verschiedenen Lösungen mit proteolytischem Enzym, die unterschiedliche Konzentrationen an Enzym enthielten, verschieden lang andauernden Perioden ausgesetzt.

Die Änderung der C1q-Bindungsfähigkeit des Immunkomplexes durch die Enzymeinwirkung wurde über die quantitative Bestimmung von gebundenem, humanem C1q ermittelt. Die Detektion des gebundenen C1q erfolgte mit einem anti-Human-C1q-Antikörper der Klasse G aus Schaf, wobei der Schafsantikörper an alkalische Phosphatase gekoppelt war, deren Umsatz von p-Nitrophenylphosphat bei 405 nm photometrisch bestimmt wurde. Die Quantifizierung der immunkomplexgebundenen C1q-Menge erfolgte über eine mitgeführte Eichkurve. In den Fig. 1 bis 4 sind einige Ergebnisse der durchgeführten Versuchsreihen graphisch dargestellt.

Fig. 1 zeigt ein mit Papain erhaltenes Ergebnis, bei dem der Immunkomplex 30 min lang bei 37°C und verschiedenen Enzymkonzentrationen inkubiert wurde. Die Referenzkonzentration des C1q betrug 2000 ng/ml. Pro Meßwert wurden vier Parallelversuche durchgeführt. Die Mittelwerte der bestimmten C1q-Konzentration sind als rautenförmige Symbole mit der dazugehörigen Standardabweichung eingezeichnet. Bei Symbolen ohne Fehlerbalken war die Standardabweichung nicht mehr graphisch darstellbar.

In Fig. 2 sind die für Enzymmengen zwischen 10 und 100 ng/ml erhaltenen Werte reziprok zu der Darstellung in Fig. 1 aufgetragen. Auf dieser Darstellung läßt sich die Papainkonzentration ermitteln, die zur Halbierung der C1q-Bindungsfähigkeit führt (Halbeffektkonzentration).

In Fig. 3 und 4 sind die mit Trypsin erhaltenen Ergebnisse in analoger Weise zu Fig. 1 und 2 dargestellt. Die Inkubationszeit mit Trypsin betrug 120 min bei 37°C. Jeder Meßwert stellt das Ergebnis von 4 parallelen Versuchen dar.

Tabelle 3 enthält eine Zusammenstellung der Enzymkonzentrationen, die zur Halbierung der C1q-Bindungsfähigkeit in den oben beschriebenen Versuchen benötigt wurden.

Tabelle 3

Enzym	50% Reduktion der C1q-Bindung bei ng/ml	Vertrauensbereich	Enzym- einwirkzeit
Papain	62,5 (50 100)	> 99%	30 min
Trypsin	23 (20 – 27)	>95%	120 min

40

45

65

Die gefundenen Minimal- bzw. Maximalwerte sind in Klammern angegeben.

Als Kontrollversuche dafür, daß der durch Trypsin bzw. Papain hervorgerufene Effekt auf die Bindungsfähigkeit von Immunkomplexen für C1q nicht auf einen unspezifischen proteolytischen Abbau von Proteinen des Inkubationsansatzes zurückzuführen ist, wurden Versuche durchgeführt, bei denen die Zugabe der proteolytischen Enzyme zu dem Inkubationsansatz erst nach erfolgter Bindung von C1q an den Immunkomplex erfolgte. Bei diesen Inkubationsansätzen wurden keine Änderungen in der Menge des an den Immunkomplex gebundenen C1q mit Enzymmengen der Halbwertskonzentration und gleicher Inkubationsdauer beobachtet. Dieses Ergebnis läßt eindeutig den Schluß zu, daß die verwendeten proteolytischen Enzyme selektiv die Bindungsdomäne für C1q, d. h. die CH2-Domäne modulieren, und zwar derart, daß deren C1q-Bindungsfähigkeit herabgesetzt wird. Somit eignen sich die proteolytischen Enzyme insbesondere zur Behandlung von mit Komplement vermittelten Entzündungsreaktionen.

Die Modulierung der C_H2-Struktur durch proteolytische Enzyme konnte auch für die membranständigen Proteine CD4 auf T-Lymphozyten bzw. Monozyten und CD54 auf Monozyten beobachtet werden. In den Fällen der CD4 und CD54-Moleküle führt die Einwirkung von Trypsin zur Reduktion der Rezeptorepitopdichte auf den Zellen. Einen ähnlichen Effekt übt Trypsin auf das Rezeptorprotein CD31 von B-Zellen aus.

Die oben erläuterte erfindungsgemäße Verwendung von proteolytischen Enzymen erlaubt somit, ein weites Spektrum verschiedenster Krankheiten, an deren Entstehung mindestens ein Protein mit einer CH2-Domäne beteiligt ist, wie beispielsweise Komplement vermittelte Entzündungsreaktionen, wirkungsvoll zu therapieren.

Patentansprüche

1. Verwendung von mindestens einem proteolytischen Enzym zur Herstellung eines Medikaments zur

5

Behandlung einer Krankheit, an deren Entstehung mindestens ein Protein, enthaltend mindestens eine CH2-Domäne, beteiligt ist.

- 2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, daß als proteolytisches Enzym Papain und/oder Trypsin verwendet wird.
- 3. Verwendung nach Anspruch 2, dadurch gekennzeichnet, daß als proteolytisches Enzym Trypsin verwendet wird.

5

10

15

20

25

30

35

40

45

50

55

60

65

- 4. Verwendung nach Anspruch 2, dadurch gekennzeichnet, daß als proteolytisches Enzym Papain verwendet wird.
- 5. Verwendung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß ein Protein der Immunglobulinsuperfamilie an der Entstehung der Krankheit beteiligt ist.
- 6. Verwendung nach Anspruch 5, dadurch gekennzeichnet, daß ein Immunglobulin an der Entstehung der Krankheit beteiligt ist.
- 7. Verwendung nach Anspruch 6, dadurch gekennzeichnet, daß Komplement vermittelte Entzündungen behandelt werden.

Hierzu 4 Seite(n) Zeichnungen

6

Nummer: Int. Cl.⁵: Offenlegungstag:

DE 41 30 221 A1 A 61 K 37/547 18. März 1993

FIG. 1

Nummer: Int. Cl.⁵: Offent gungstag:

DE 41 30 221 A1 A 61 K 37/547 18. März 1993

Nummer: Int. Cl.⁵; Off nlegungstag:

DE 41 30 221 A1 A 61 K 37/547 18. März 1993

Nummer: Int. Cl.⁵:

A 61 K 37/647 18. März 1993

Int. Cl.⁸: Offenlegungstag:

