Algebra Booleana

Corso di Architettura degli elaboratori e laboratorio

Modulo Laboratorio

Gabriella Verga

Introduzione

L'Algebra Booleana è un sistema algebrico in cui ogni variabile può assumere solo 2 valori (0 e 1)

Principali operazioni definite su variabili binarie (FUNZIONI LOGICHE FONDAMENTALI):

- Somma logica o OR
- Prodotto logico o AND
- Complementazione, Negazione, Inversione o NOT
- Differenza simmetrica, OR esclusivo o XOR

Ciascuna operazione prende in ingresso una o più variabili binarie e rende in uscita una variabile binaria

Somma logica o OR

- La somma logica o OR è una funzione che vale 1 solo se almeno uno dei suoi ingressi binari vale 1.
- Si denota tramite gli operatori a due argomenti "+" o "V"
- La forma algebrica della somma è:

•
$$f(x_1, x_2) = x_1 + x_2 = x_1 \vee x_2$$

• Dove x₁,x₂ si dicono variabili d'ingresso ed f il valore di uscita della funzione.

X ₁	X ₂	f(x ₁ ,x ₂)
0	0	0
0	1	1
1	0	1
1	1	1

Proprietà base della Somma logica

- Proprietà commutativa: $x_1 + x_2 = x_2 + x_1$
- Proprietà associativa: $x_1 + (x_2 + x_3) = (x_1 + x_2) + x_3$
- Pertanto:

•
$$f = x_1 + x_2 + x_3 + + x_n = 1 \iff \exists x_i \mid x_i = 1 \text{ con } 1 \le i \le n$$

- Identità:
- 1 + x = 1
- 0 + x = x

Prodotto logico o AND

- Il prodotto logico o AND è una funzione che vale 1 solo se tutti i suoi ingressi binari valgono 1
- Si denota tramite gli operatori a due argomenti "·" ο "Λ"
- La forma algebrica della somma è:

•
$$f(x_1, x_2) = x_1 \cdot x_2 = x_1 \wedge x_2$$

X ₁	X ₂	f(x ₁ ,x ₂)
0	0	0
0	1	0
1	0	0
1	1	1

Proprietà base del Prodotto logico

- Proprietà commutativa: $x_1 \cdot x_2 = x_2 \cdot x_1$
- Proprietà associativa: $x_1 \cdot (x_2 \cdot x_3) = (x_1 \cdot x_2) \cdot x_3$
- Pertanto:

•
$$f = x_1 \cdot x_2 \cdot x_3 \cdot \dots \cdot x_n = 1 \Leftrightarrow \forall x_i \mid x_i = 1 \text{ con } 1 \leq i \leq n$$

- Identità:
- $1 \cdot x = x$
- $0 \cdot x = 0$

Operatori di Negazione o NOT

- Il complemento logico o inversione o NOT è una funzione che inverte il valore dell'unica variabile in ingresso
- Si denota tramite gli operatori a due argomenti "-" o "¬"
- La forma algebrica della inversione è:

•
$$f(x_1) = \neg x_1$$

• Proprietà di involuzione (doppia negazione)

$\mathbf{x_1}$	f(x ₁)
0	1
1	0

Differenza simmetrica o XOR

- La differenza simmetrica o XOR è la funzione che vale 1 se e solo se gli 1 nei suoi ingressi sono in numero dispari.
- Si denota tramite gli operatori a due argomenti "⊕".
- La forma algebrica della differenza simmetrica è:

•
$$f(x_1, x_2) = x_1 \oplus x_2$$

X ₁	x ₂	f(x ₁ ,x ₂)
0	0	0
0	1	1
1	0	1
1	1	0

Proprietà

- Proprietà commutativa: $x_1 \oplus x_2 = x_2 \oplus x_1$
- Proprietà associativa: $x_1 \oplus (x_2 \oplus x_3) = (x_1 \oplus x_2) \oplus x_3$
- Identità:
- $1 \oplus x = \overline{x}$
- $0 \oplus x = x$

• f=
$$x_1 \oplus x_2 = x_1 \times x_2 + x_1 \times x_2$$

X ₁	X ₂	$\overline{\mathbf{x}}_{1} \mathbf{x}_{2}$	$x_1 \overline{x_2}$	f
0	0	0	0	0
0	1	1	0	1
1	0	0	1	1
1	1	0	0	0

Precedenza tra operatori

Operatore	Precedenza
Negazione – NOT	1
Prodotto – AND	2
Somma – OR	3
OR esclusivo – XOR	4

Per forzare la precedenza di un operatore si possono usare le parentesi.

$$(x_1x_2) + (x_1\overline{x_2}) + (\overline{x_1}x_2)$$

 $x_1(x_2 + x_1)(\overline{x_2} + \overline{x_1}) x_2$

$$x_1x_2 + x_1\overline{x}_2 + \overline{x}_1x_2$$
$$x_1x_2 + x_1\overline{x}_2 + \overline{x}_1x_2$$

Altre proprietà: Regole dell'algebra di Boole

REGOLA		FORMA DUALE
	Proprietà Distributiva	
$x + y \cdot z = (x + y) \cdot (x + z)$		$x \cdot (y + z) = (x \cdot y) + (x \cdot z)$
	Proprietà Di idempotenza	
x + x = x		$x \cdot x = x$
	Proprietà di complemento	
$x + \neg x = 1$		$x \cdot \neg x = 0$
	Proprietà dello 1 e dello 0	
1 + x = 1		$0 \cdot x = 0$

Teorema di De Morgan

_		_				
Χ	+	У	=	X	•	У

X	у	X	y	$\overline{\mathbf{x}} \cdot \overline{\mathbf{y}}$	x + y	$\overline{x + y}$
0	0	1	1	1	0	1
0	1	1	0	0	1	0
1	0	0	1	0	1	0
1	1	0	0	0	1	0

$$\overline{\mathbf{x} \cdot \mathbf{y}} = \overline{\mathbf{x}} + \overline{\mathbf{y}}$$

X	у	X	<u>y</u>	$\overline{x} + \overline{y}$	х·у	$\overline{\mathbf{x} \cdot \mathbf{y}}$
0	0	1	1	1	0	1
0	1	1	0	1	0	1
1	0	0	1	1	0	1
1	1	0	0	0	1	0

Funzioni Logiche e tabelle di verità

Funzioni Logiche

- Funzione logica: funzione con una o più variabili BINARIE di ingresso ed una variabile BINARIA di uscita.
- Una funzione logica può essere espressa con (una SOLA) una TABELLA DI VERITA'.
- Una tabella di verità ha 2^m righe con m+1 colonne, dove m è il numero di variabili in ingresso.

X ₁	X ₂	$y = f(x_{1,}x_{2})$
0	0	1
0	1	0
1	0	0
1	1	1

con:

- $f(x_1, x_2) = \overline{x_1} \overline{x_2} + x_1 x_2$
- m = 2
- numero di righe 4
- numero di colonne 3

Espressione logica

- Esistono **infinite** espressioni che rappresentano una funzione logica. Per sapere quale funzione è rappresentata da una espressione logica basta calcolarne la tabella di verità.
- Data una tabella di verità che rappresenta una certa funzione è possibile derivare le espressioni logiche equivalente.
- Si dicono **forme canoniche** due procedimenti standard per trovare un'espressione logica (non minima) corrispondente.
 - PRIMA FORMA CANONICA (SOP)
 - SECONDA FORMA CANONICA (POS)

Prima Forma canonica

SOMMA DI PRODOTTI (SOP)

- 1. Si individuano tutti i casi in cui il risultato è pari a 1.
- 2. Per ogni caso, si costruisce un prodotto delle n variabili (detto **mintermine**). Ogni variabile è:
 - \checkmark se uguale a 1 \rightarrow FORMA DIRETTA
 - ✓ se uguale a 0 → FORMA NEGATA
- 3. Si sommano tra loro i prodotti ottenuti.

Esempio

x ₁	X ₂	x ₃	f ₁
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

$$f_1 = \overline{x_1} \overline{x_2} \overline{x_3} + \overline{x_1} \overline{x_2} x_3 + \overline{x_1} x_2 x_3 + x_1 x_2 x_3$$

Seconda Forma canonica

PRODOTTO DI SOMME (POS)

- 1. Si individuano tutti i casi in cui il risultato è pari a 0.
- 2. Per ogni caso, si costruisce una somma delle n variabili (detto **maxtermine**). Ogni variabile è:
 - ✓ se uguale a 0 → FORMA DIRETTA
 - ✓ se uguale a 1 → FORMA NEGATA
- 3. Si moltiplicano tra loro le somme ottenute.

Esempio

x ₁	X ₂	x ₃	f ₁
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

$$f_1 = (x_1 + \overline{x_2} + x_3) \cdot (\overline{x_1} + x_2 + x_3) \cdot (\overline{x_1} + x_2 + \overline{x_3}) \cdot (\overline{x_1} + \overline{x_2} + x_3)$$

Sintesi in forma minima

Sintesi in forma minima

- Due espressioni logiche si dicono equivalenti se hanno la medesima tabella di verità.
- Una espressione si dice in **forma minima** quando non esiste nessun altra espressione equivalente con un costo inferiore.
- E' possibile ridurre il costo del circuito sottoponendo l'espressione algebrica a una serie di trasformazioni algebriche.
- Una funzione minimizzata comporta un circuito logico più semplice e di conseguenza a più basso costo ed ingombro rispetto a quello realizzato partendo dalla funzione non minimizzata.
- Per espressioni SOP e POS usiamo il criterio di costo dei **LETTERALI** (ma ne esistono altri): il costo di un espressione è dato dal numero di comparse di variabili nell'espressione stessa.
- Ad esempio: $(x_1 + x_2) \cdot (\overline{x_1} + \overline{x_2}) \cdot (x_1 + x_2) \rightarrow COSTO 6$

$$x_1 \cdot x_2 \rightarrow COSTO 2$$

Facciamo un passo indietro..

REGOLA	FORMA DUALE
	Proprietà Distributiva
$x + y \cdot z = (x + y) \cdot (x + z)$	$x \cdot (y + z) = (x \cdot y) + $
	Proprietà Di idempotenza
x + x = x	$x \cdot x =$
	Proprietà di complemento
$x + \neg x = 1$	$x \cdot \neg x =$
	Proprietà dello 1 e dello 0
1 + x = 1	0 · x =

Primo esempio di Minimizzazione

$$\overline{x}_{1}\overline{x}_{2}\overline{x}_{3} + \overline{x}_{1}\overline{x}_{2}x_{3} + \overline{x}_{1}x_{2}x_{3} + x_{1}x_{2}x_{3} = \\
= \overline{x}_{1}\overline{x}_{2}(\overline{x}_{3} + x_{3}) + x_{2}x_{3}(\overline{x}_{1} + x_{1}) = (distributiva) \\
= \overline{x}_{1}\overline{x}_{2} \cdot 1 + x_{2}x_{3} \cdot 1 = (complemento) \\
= \overline{x}_{1}\overline{x}_{2} + x_{2}x_{3} = (forma\ minima)$$

Secondo esempio di Minimizzazione

```
\overline{x}_{1}\overline{x}_{2}\overline{x}_{3} + \overline{x}_{1}\overline{x}_{2}x_{3} + \overline{x}_{1}x_{2}\overline{x}_{3} + x_{1}\overline{x}_{2}\overline{x}_{3} + x_{1}\overline{x}_{2}x_{3} = \overline{x}_{1}\overline{x}_{2}\overline{x}_{3} + \overline{x}_{1}\overline{x}_{2}\overline{x}_{3} + \overline{x}_{1}\overline{x}_{2}\overline{x}_{3} + \overline{x}_{1}\overline{x}_{2}\overline{x}_{3} + x_{1}\overline{x}_{2}\overline{x}_{3} + x_{1}\overline{x}_{2}x_{3} = (idempotenza)
= \overline{x}_{1}\overline{x}_{2}(\overline{x}_{3} + x_{3}) + \overline{x}_{1}\overline{x}_{3}(\overline{x}_{2} + x_{2}) + x_{1}\overline{x}_{2}(\overline{x}_{3} + x_{3}) = (distributiva)
= \overline{x}_{1}\overline{x}_{2} \cdot 1 + \overline{x}_{1}\overline{x}_{3} \cdot 1 + x_{1}\overline{x}_{2} \cdot 1 = (complemento)
= \overline{x}_{1}\overline{x}_{2} + \overline{x}_{1}\overline{x}_{3} + x_{1}\overline{x}_{2} = \overline{x}_{2}(\overline{x}_{1} + x_{1}) + \overline{x}_{1}\overline{x}_{3} = (distributiva)
= \overline{x}_{2}(\overline{x}_{1} + x_{1}) + \overline{x}_{1}\overline{x}_{3} = (complemento)
= \overline{x}_{2} \cdot 1 + \overline{x}_{1}\overline{x}_{3} = (complemento)
= \overline{x}_{2} + \overline{x}_{1}\overline{x}_{3} = (forma\ minima)
```