08.12 Assignment Instructions

Instructions: Write a program that models an individual's CO₂ production and reduction.

- 1. If the 08.12 Assignments project has not yet been created in the Mod08 Assignments folder, please do so now.
- 2. Be sure to save a copy of these instructions in the Mod08 Documents folder.
- 3. Print a copy for your notebook.
- 4. Read the instructions carefully before you attempt the assignment.
- 5. The program should be written in OOP format using a tester class.
- 6. For the data structure, use either an array of objects or an **ArrayList**.
- 7. Create a minimum of five different objects.
- 8. Your CO2 footprint should account for the following:
 - annual estimate of gasoline used
 - annual estimate of electricity used
 - annual household waste produced
 - annual household waste recycled
 - replacement of incandescent bulbs
- 9. The constructor should include the following parameters:
 - annual gasoline used
 - average electricity bill and average electricity price
 - number of people in home
 - recycle paper, plastic, glass, or cans (Booleans)
 - number of light bulbs replaced
- 10. You have already written programs for gasoline use, electricity use, waste produced, and waste recycled, so you may reuse any of the existing code.
- 11. Emission reduction from the replacement of one 75 watt incandescent bulb with a 25 watt ENERGY STAR compact fluorescent light bulb can be calculated as follows:

Emission Reduction = Number of Bulbs * 1.37 * 73

- 12. Print the results in a user-friendly format (see expected output).
- 13. Create a pseudocode algorithm before you begin coding.
- 14. Using a word processor, create a class diagram for the **CO2Footprint** class. (The class documentation will help guide you.)

Expected Output: When your program runs correctly you should see output similar to the following screen shot. (Your results will show five rows of data.)

I		Pounds of CO2			Τ	Pounds	of	C02	1		I
I		Emmitted from			1	Reduced	i fi	rom	1		I
Gas	1	Electricity	I	Waste	1	Recycling	1	New Bulbs	1	CO2 Footprint	I
======	= ==		= =		= =		= =:		= =		1
48000.00	1	16440.00	1	1018.00	Τ	422.00	1	100.0	1	64935.99	I
38400.00	1	16111.20	Ι	3054.00	Ι	691.80	1	500.1	Ι	56373.35	ı

Grading: Your assignment will be graded according to the following rubric.

Grading Rubric	Pts
Comments include name, date, and purpose of program.	1
Source code written in two classes.	3
Constructor correctly written.	3
Statement to invoke constructor included.	4
Method headers correctly written.	4
Individual methods invoked on an object from main() method.	4
All calculations correct.	3
Output formatted with printf().	2
No compiler or runtime errors.	1
Class diagram included and pseudocode included.	3
Thoughtful PMR included.	2

Submission: Submit the files for the CO2Footprint and CO2FootprintTester classes, as well as the class diagram and the pseudocode algorithm, as Assignment 08.12 for a grade.