PERTH MODERN SCHOOL

UNIT 3C/3D MAS – 2010

TEST 4 – POLAR COORDINATES, COMPLEX NUMBERS & PROOFS

NAME: DA	ATE:
[To achieve full marks and to allow assessment of particular outcomes, working and reasoning should be shown.] [A maximum of 2 marks will be deducted for incorrect rounding, units, etc.]	
This is Resource Free, no calculator allowed – 50 minutes for 40 marks:	
Question 1 [3 marks] Express $1-i$ and $1+\sqrt{3}i$ in polar form and hence simplify $(1+\sqrt{3}i)^s$	$\dot{s} \div (1-i)^4$.

Question 2 [2 marks]

Find the **exact** distance between the points A [6, 25°] and B [10, 145°]

Question 3 [5marks] Given z = 3 - 3i indicate on a single Argand Diagram the points representing a) z^{-1}

- b) **z**²
- c) iz
- d) $z\bar{z}$

Question 4	[2, 3 marks]
Question -	[2, 5 marks]

a) Express the following in the form (a, b) where (a, b) represents the complex number a + bi:

 $e^{2-0.5\pi i}$

b) Using $\cos \theta + i \sin \theta = e^{i\theta}$ and $\cos \theta - i \sin \theta = e^{-i\theta}$ obtain an expression for both $\sin \theta$ and $\cos \theta$ in terms of $e^{i\theta}$ and $e^{-i\theta}$.

Hence prove $\sin(2\theta) = 2 \sin \theta \cos \theta$.

Question 5 [2, 2 marks] a) Draw the graph of y = |2x + 1| + |2x - 1|

b) Hence, or otherwise, define y as a piecewise function

Question 6 [3 marks] OABC is a rhombus with $\overrightarrow{OA} = a$ and $\overrightarrow{OC} = c$.

Use vector methods to prove the diagonals of a rhombus are perpendicular to each other

Question 7 [4 marks]

Prove by exhaustion that for a positive integer n then n(n + 1) (n + 2) is a multiple of 3.

Question 8 [2, 2, 2 marks] a) Find the set of values for x for which 1 - x > 2|x + 1|.

b) Graph the function y = 1 - x - 2|x + 1|.

c) *Explain* how your graph can be used to solve part a).

Question 9 [3 marks] Determine exact values for all the roots of $\mathbf{z}^3 = -8 + 8\sqrt{3}i$

Question 10 [5 marks] Find all complex numbers Z satisfying $\frac{1}{z} + \frac{2}{z} = 1 + i$