

Ahsanullah University of Science & Technology

Department of Computer Science & Engineering

Course No : CSE3108

Course Title : Digital System Design Lab

Assignment No : 01

Date of Performance: 06.06.22 Date of Submission: 19.06.22

Submitted To : Dr. Md. Raqibul Hasan & Ms. Mohsena Ashraf

Submitted By-

Section: A

Group: A1_Group 3

ID: 190204002

190204003

190204012

190204021

Introduction:

The main purpose of this experiment is to design a 4bit Anithmetic and Logical Unit. from the given function table. An arithmetic logic unit (ALU) is a digital circuit used to perform anithmetic and logic operations. In this experiment, from the given function we will generate function. For this, we will have to derive equation from the given table using the selector bits for three imports. After simplifying the equation, we will need to implement these functions on the Predeus. Thus ALV and generate the output of the given fundious.

Problem Statement:

32	5,	30	Output	Function
0	0	0	A:-B:-1	Bub treat with Boronous
G	0	1	A:	Treamsfere A
0	1	0	A:-1	Decrement A
0	1	1	A: +B:-1	Add with Larry
1	0	×	A:	Complement A
1	1	×	A: Bi	AND

Function Generation:

52	5,	50	Z	×	Υ	Output	Function
0	0	0	0	A;	Bi	A:-B:-1	Subtract with Bonnow
0	0	1	0	A;	0	A;	Transfer A
0	1	0	0	A;	1	A; -1	Decrement A
0	t	1	ł	A;	Bi	A; +D; +1	Add with Canny
1	0	×	0	Ā;	0	Ā;	Complement A
1	1	×	0	A; B;	0	Ai. Bi	AND

K-Map!

For Z,

52 5150	5,50	5,50	5,50	5,50
52	0	D		0
51	. 0	0	0	0

Fon Y,

5150	5,50	5,50	5,50	5,50
52	阎	0	Bi	
52	D	0	D	0

=
$$\overline{S_{2}}\overline{S_{1}}\overline{S_{0}}\overline{B_{1}}$$
 + $\overline{S_{2}}S_{1}S_{0}B_{1}$ + $\overline{S_{2}}S_{1}\overline{S_{0}}$. 1
= $\overline{S_{1}}\overline{S_{1}}\overline{S_{0}}\overline{B_{1}}$ + $\overline{S_{2}}S_{1}$ ($S_{0}B_{1}$ + $\overline{S_{0}}$)
= $\overline{S_{1}}\overline{S_{1}}\overline{S_{0}}\overline{B_{1}}$ + $\overline{S_{2}}S_{1}$ ($\overline{S_{0}}$ + $\overline{B_{1}}$)
= $\overline{S_{1}}\overline{S_{1}}\overline{S_{0}}\overline{B_{1}}$ + $\overline{S_{1}}\overline{S_{0}}\overline{S_{0}}$ + $\overline{S_{1}}\overline{S_{1}}\overline{S_{0}}\overline{B_{1}}$)

=
$$5_{2}(5, 5_{0}) + 5_{1}5_{0} + 5_{1}5_{0} + 5_{1}5_{0}$$

= $5_{2}(5, 5_{0}) + 5_{1}5_{0} (1+D_{1})$
= $5_{2}(5, 5_{0}) + 5_{1}5_{0}$

Fonx,

52 63%	5150	5,50	5,50	5,50
SL	[A;	Ai	A	AL
3,	(A)	X	×	A: B:

Equipment and Budget:

Ic Number	Grate	Piece (IC)	Price (Each)	Price (Total)
IC 7404	NOT	2_	25	50
IC 7408	2 Input AND	12	20	240
IC 7432	2 Input or	4	25	100
IC 7486	2 Input XOR	2	23	46
	lboard	1	165	165

Total Cost = 601.

图 Result:

For substructing with bornow operation>>

			9	Inpi	 			All man gament has the system			(atput			
57	61	5.	Az	A a	Ag	Aa	Bg	Ba	Ba	Ba	Cat	Fo	Fa	Fi	Fo
			0	1	0	1	0	0	1	0	1	0	0	1	0
0	0	0	1	0	0	1	0	1	0	0	1	0	1	0	0
			1	1	0	0	1	0	0	0	1	0	0	1	<u></u>

For transfer A operation:

Alle C			In	pit								0	pit		
62	54	50	Az	AZ	A ₄	A,	B3	B2	BI	Bo	Cout.	Fz	FZ	FL	Fo
			0	1	0	1	Ō	0	0	0	0	0	1	0	1
0	σ	1	1	0	0	2	0	0	0	0	0	1	0	0	1
				1	0	0	0	0	0	0	0			0	0

For decrement operation:

		6	Inpi	1								Oi	tput		
53	61	50	Az	Az	AA	Ao	B3	Ba	Ba	Bo	Cot	F3	Fz	FL	Fo
			0	1	0	7	0	0	2	0	1	0		0	0
0	1	0	1	0	0	1	0	1	Ò	0	7	1	0	0	0
			1.	1	0	0	1	0	0	0	7	1	0	Δ	1

Ac	dd	W	ith	C	aru	ry c	per	ratio	m;								
				In	pit							1 - 1	at	pit			_
62	5	a 5	1.	3	Az	A	Ao	13	B2	BA	130	Cout	F3	Fz	Fa	Fo	
			(1	0	1	0	0	1	0	0	1	0	0	0	
0	7	1		1	0	0	1	0	1	0	0	0	7	4	A	0	_ '
			1			0	0		0	0	0	1	0	1	0	1	
Fon	N	/OT	C	pe	ena	tion	ا ،										
			In	pit					7			a.	out	put			
52	31	50	Az		AZ	AA	A	Ba	B2	BA	Bo	Cout	Fa	Fa	Fa	R	
			0		Δ	0	7					0	1	0	11	0	
1	0	X	1		0	0	1	0	0	0	0	0	0	1	1	0	

For AND Operation:

	T		In	out								out	aut		
32	34	30	A3	Az	A	Ao	B3	B2	Ba	B.	Cort	F3	F ₂	Fa	Fo
es e			0	1	0	A	0	0	1	0	0	0	0	0	0
1	Δ	X	1	0	0	1	0)	0	0	0	0	0	0	0
			1)	0	0	1	0	0	0	0	1	0	0	0

母 Conclusion:

The software we use to execute the simulation have some realistic feature, on that account the instrumental ermons occurred. Concerning our first step, we derived the equation of the inputs, simplified those input equations and reduced the equation. Our ALU was displaying inaccurate nesults on imputoutputs for logical operations however was working connectly for anithmatic operation. This we have implemented the circuit using the direct equations we aguited from the table without simplifying it and this time the function were working connectly, But when he are going to implement this practically, there might be an issue in view of the fact that ive have used many IC's and circuit becomes more phone to ennon.