CODE No.:16MC1BS01 SVEC16

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to JNTUA, Anantapur)

M.C.A. I Semester (SVEC16) Regular/Supplementary Examinations January - 2018
MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE
[MASTER OF COMPUTER APPLICATIONS]

Time: 3 hours

Max. Marks: 60

Answer One Question from each Unit All questions carry equal marks

UNIT-I

1. a) Prove that $(\neg P \land (\neg Q \land R)) \lor (Q \land R) \lor (P \land R) \Leftrightarrow R$ 6 Marks

b) Derive $P \to (Q \to S)$ using the rule C P if necessary from $P \to (Q \to R)$, $Q \to (R) \to S$).

6 Marks

(OR)

2. a) Obtain the principal disjunctive normal form of the formula $P \rightarrow (P \land (P \rightarrow Q))$.

6 Marks

b) Show that $\mathbf{R} \wedge (\mathbf{P} \vee \mathbf{Q})$ is a valid conclusion from the premises $\mathbf{P} \vee \mathbf{Q}, \mathbf{Q} \rightarrow \mathbf{R}, \mathbf{P} \rightarrow \mathbf{M}$ and $\neg \mathbf{M}$

6 Marks

UNIT-II

3. What is equivalence relation? If $A = \{1,2,3,4\}$, give an example of relation on 12 Marks A that is:

- i) Reflexive and symmetric, but not transitive
- ii) Reflexive and transitive, but not symmetric
- iii) Symmetric and transitive, but not reflexive

(OR)

- 4. a) If $A = \{1, 2, 3, 5, 30\}$ and R is the divisibility relation, prove that (A, R) is a 6 Marks lattice but not a distributive lattice.
 - b) Define Inverse function. Consider the function **f**: $\mathbf{R} \rightarrow \mathbf{R}$ defined by 6 Marks f(x) = 2x + 5. Let a function **g**: $\mathbf{R} \rightarrow \mathbf{R}$ be defined by $g(x) = \frac{1}{2}(x 5)$. Prove that **g** is an inverse of **f**.

UNIT-III)

- 5. a) What is group? Explain the axioms of a group with a suitable example.
 - 6 Marks
 - b) Show that any group G is abelian iff $(ab)^2 = a^2b^2$ for all $a, b \in G$.

6 Marks

(OR)

- 6. a) Consider the semi group $(\mathbf{R}^+, *)$ and $(\mathbf{R}, +)$ where \mathbf{R}^+ is the set of all positive real numbers with usual multiplication * and + is the usual addition. Let the function $\mathbf{f} \colon \mathbf{R}^+ \to \mathbf{R}$ be defined by $f(x) = \log_{\mathbf{e}} x$ for any $x \in \mathbf{R}^+$. Is f an isomorphism? Justify.
 - b) Use mathematical induction to prove that $\mathbf{n}^3 \mathbf{n}$ is divisible by 3 whenever \mathbf{n} is a 6 Marks positive integer.

UNIT-IV

- 7. Find the generating functions for the following sequences. 12 Marks
 - i) 1^2 , 2^2 , 3^2 ,...... ii) 0, 2, 6, 12, 20, 30, 42...... iii) 1^3 , 2^3 , 3^3 ,......

8. Solve the recurrence relation $a_n = 6a_{n-1} - 12a_{n-2} + 8a_{n-3}$, given that $a_0 = 1$, $a_1 = 4$ 12 Marks and $a_2 = 28$.

UNIT-V

- 9. a) Distinguish between Euler circuits and Hamiltonian circuits.
 b) Explain Breadth first search and Depth first search algorithm for a spanning tree.
 (OR)
 6 Marks
 6 Marks
- 10. a) Show that a connected multigraph has an Euler circuit if and only if each of its 6 Marks vertices has even degree.
 - b) Define chromatic number of graph. Find the chromatic number of the following: 6 Marks i) Tree ii) Complete graph (Kn) iii) cycle (Cn)

₩ ₩ ₩