1

NCERT 10.5.3 Q16

EE23BTECH11038 - Rohith Madhani*

Question: A sum of ₹700 is to be used to give seven cash prizes to students of a school for their overall academic performance. If each prize is ₹20 less than its preceding prize, find the value of each of the prizes.

Solution:

Parameter	Description	Value
x(n)	n th term of discrete signal	(x(0)+nd)u(n)
x(0)	1 st term of the AP	?
y(n)	Sum of n terms of the AP	x(n)*u(n)
d	Common Difference of the AP	-20

TABLE 0: Given parameters

From (??)

$$X(z) = \frac{x(0)}{1 - z^{-1}} - \frac{20.z^{-1}}{(1 - z^{-1})^2}; |z| > 1$$
 (1)

$$\therefore y(n) = x(n) * u(n)$$
 (2)

$$Y(z) = X(z)U(z) \tag{3}$$

$$Y(z) = \frac{x(0)}{(1 - z^{-1})^2} - \frac{20.z^{-1}}{(1 - z^{-1})^3}; |z| > 1$$
 (4)

$$y(6) = \frac{1}{2\pi j} \oint_{c} Y(z)z^{5}dz$$

$$= \frac{1}{2\pi j} \int \frac{x(0).z^{7}}{(z-1)^{2}}dz - \frac{1}{2\pi j} \int \frac{20.z^{7}}{(z-1)^{3}}dz$$
(6)

$$\therefore R = \frac{1}{(m-1)!} \lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} \left((z-a)^m f(z) \right) \tag{7}$$

$$R_1 = \frac{1}{1!} \lim_{z \to 1} \frac{d}{dz} \left((z - 1)^2 \cdot \frac{x(0) \cdot z^7}{(z - 1)^2} \right)$$
 (8)

$$= 7 \times x(0) \tag{9}$$

$$R_2 = \frac{1}{2!} \lim_{z \to 1} \frac{d^2}{dz^2} \left((z - 1)^3 \cdot \frac{-20 \cdot z^7}{(z - 1)^3} \right)$$
 (10)

$$= -420$$
 (11)

$$\implies y(6) = R_1 + R_2 \tag{12}$$

$$700 = -420 + 7 \times x(0) \tag{13}$$

$$\therefore x(0) = 160 \tag{14}$$

The value of each of the prizes is 160,140,120,100,80,60,40.

Fig. 0: $y(n) = 170n - 10n^2$

Using contour integration for inverse Z transformation,