at one or more amino acid positions, said positions selected from the group consisting of Leu₁₇₃; Ala₁₇₉, Met₁₈₀, Arg₁₈₁, Ser₉₈, Ser₂₅₅ and Leu₁₉₈ in *Arabidopsis* or at an analogous amino acid residue in an EPSPS paralog: b. identifying a cell having, a mutated EPSPS gene, which cell has substantially normal growth as compared to a corresponding wild-type plant cell; and c. regenerating a non-transgenic herbicide resistant or tolerant plant from said plant cell. 15. (As Twice Amended) A method for producing a non-transgenic herbicide resistant or tolerant plant comprising a. introducing into a plant cell a recombinagenic oligonucleobase to produce a mutant EPSPS gene that expresses an EPSPS protein that is mutated at one or more amino acid positions, said positions selected from the group consisting of Leu $_{173}$; Ala $_{179}$, Met $_{180}$, Arg $_{181}$, Ser $_{98}$, Ser $_{255}$ and Leu $_{198}$ in *Arabidopsis* or at an analogous amino acid residue in an EPSPS paralog; b. identifying a cell having a mutated EPSPS gene, which encoded mutant EPSPS protein has substantially the same catalytic activity as compared to a corresponding wild type EPSPS protein; and c. regenerating a non-transgenic herbicide resistant or tolerant plant from said plant cell. 20. (As TwiceAmended) The method according to claim 14 in which the positions in the Zea mays paralog are selected from the group consisting of Leug-Ala₁₀₃, Met₁₀₄ Arg₁₀₅, Ser₂₃, Ser₁₇₉, and Leu₁₂₂. 21. (As Twice Amended) The method according to claim 14 in which the positions in the *Brassica napus* paralog are selected from the group consisting of

22. (As Twice Amended) The method according to claim 14 in which the positions in the *Petunia hybrida* are selected from the group consisting of Leu₁₆₉. Ala₁₇₅, Met₁₇₆, Arg₁₇₇, Ser₉₄, Ser₂₅₁ and Leu₁₉₄

Please add the following new Claims 25, 26, 27 and 28:

- 25. The method according to claim 15 in which the positions in the *Zea mays* paralog are selected from the group consisting of Leu₉₇, Ala₁₀₃, Met₁₀₄ Arg₁₀₅, Ser₂₃, Ser₁₇₉, and Leu₁₂₂.
- 26. The method according to claim 15 in which the positions in the *Brassica* napus paralog are selected from the group consisting of Leu₁₆₉, Ala₁₇₅, Met₁₇₆, Arg₁₇₇. Ser₉₄, Ser₂₅₁ and Leu₁₉₄.
- 27. The method according to claim 15 in which the positions in the *Petunia hybrida* are selected from the group consisting of Leu₁₆₉, Ala₁₇₅. Met₁₇₆, Arg₁₇₇. Ser₉₄, Ser₂₅₁ and Leu₁₉₄.
- 28. A method for producing a non-transgenic herbicide resistant or tolerant plant comprising:
- a. introducing into a plant cell a recombinagenic oligonucleobase to produce a mutant EPSPS gene that expresses an EPSPS protein that is mutated in two amino acid positions, said positions selected from the group consisting of Thr₁₇₈ and Pro₁₈₂, in *Arabidopsis* or at an analogous amino acid residue in an EPSPS paralog wherein the Thr₁₇₈ is changed to Val or Leu and Pro₁₈₂ is changed to Ser;
- b. identifying a cell having, a mutated EPSPS gene, which cell has substantially normal growth as compared to a corresponding wild-type plant cell; and
 - c. regenerating a non-transgenic herbicide resistant or tolerant plant