Memory decline in elderly with cerebral small vessel disease explained by temporal interactions between white matter hyperintensities and hippocampal atrophy

1. Showing the relationship between age and memory decline

First, we created a "null" model, which expressed the effect of age and time on a composite memory score. Years of education and sex were also added to the model as static covariates. In this first model, baseline age represents the cross-sectional effects of age on memory, while time between follow-ups and the square of time between follow-ups represent the linear and quadratic effects of temporal progression on memory, respectively.

_	_			
-	l,o	h	Ι۵	-1

	10 1.
	Dependent variable:
	memory
Baseline age (years)	-0.044^{***}
,	(-0.049, -0.038)
Sex	0.118**
	(0.018, 0.219)
Education (years)	0.134***
,	(0.105, 0.163)
Time to follow-up (linear)	-0.175***
- ` ,	(-0.194, -0.156)
Time to follow-up (quadratic)	0.017***
<u> </u>	(0.015, 0.020)
Observations	1,147
Log Likelihood	-856.868
Akaike Inf. Crit.	1,733.735
Bayesian Inf. Crit.	1,784.184
Note:	*p<0.1; **p<0.05; ***p<0.01

2. Examining the interaction between WMH and HV in explaining memory decline

We then adopted a data-driven approach to determine the role of WMH and HV in contributing to memory deficits. Using the null model as a baseline, three successive models were created: one with only the effects of WMH, a second with only the effects of HV, and a third with the simulatenous effects of WMH and HV.

These three models, along with the null model, were then compared to see which model best explained the data. Since the random effect is identical across all models, the fixed effects are compared. Also all other models can be seen as restricted cases of the final model.

In order to facilitate comparisons between models with different fixed effects, models were fit by minimising the negative log-likelihood. All models were then compared using a one-way ANOVA.

Table 2: Fixed effects results

		Depender	nt variable:	
		Me	mory	
	Null	WMH only	HV only	Full
	(1)	(2)	(3)	(4)
Baseline age (years)	044^{***} $(049,038)$	$040^{***} \\ (047,034)$		032^{***} (039,025)
Sex	.118* (.018, .219)	.126* (.026, .227)	$.052 \\ (052, .156)$.072 (032, .176)
Education (years)	.134*** (.105, .163)	.132*** (.104, .161)	.133*** (.104, .161)	.136*** (.108, .165)
Time to follow-up (linear)	175^{***} $(194,156)$	182^{***} $(201,162)$	331^{***} $(384,277)$	$\begin{array}{c}273^{***} \\ (330, 215) \end{array}$
Time to follow-up (quadratic)	.017*** (.015, .020)	.021*** (.019, .024)	.018*** (.016, .020)	.019*** (.017, .022)
WMH		014 (053, .026)		$ \begin{array}{c}504^{***} \\ (748,259) \end{array} $
WMH progression		$002^{***} (002,001)$		$ \begin{array}{c}001^* \\ (001,0001) \end{array} $
HV			.062* (.003, .120)	018 (089, .053)
Hippocampal atrophy			.021*** (.015, .028)	.013*** (.006, .020)
WMH * HV interaction				.064*** (.032, .095)
Observations Log Likelihood Akaike Inf. Crit. Bayesian Inf. Crit.	1,147 -856.868 1,733.735 1,784.184	1,147 -842.012 1,708.023 1,768.562	1,147 -822.121 1,668.242 1,728.781	1,147 -807.224 1,644.448 1,720.122
Note:	·	· · · · · · · · · · · · · · · · · · ·		<0.01: ***p<0.001

Note:

*p<0.05; **p<0.01; ***p<0.001

Both models with WMH only and HV only provided significantly better fit in comparison to the null model. The model with HV alone fit better than the model with WMH alone. Importantly, however, the model with

[%] Table created by stargazer v.5.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: ma, jan 22, 2018 - 12:10:00

[%] Table created by stargazer v.5.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu

[%] Date and time: ma, jan 22, 2018 - 12:10:00

Table 3:

	Df	AIC	BIC	logLik	deviance	Chisq	Chi Df	Pr(>Chisq)
model1	10	1,733.735	1,784.184	-856.868	1,713.735			
model2	12	1,708.023	1,768.562	-842.012	1,684.023	29.712	2	0.00000
model3	12	1,668.242	1,728.781	-822.121	1,644.242	39.781	0	0
model4	15	1,644.448	1,720.122	-807.224	1,614.448	29.794	3	0.00000

Table 4:

	Df	AIC	BIC	logLik	deviance	Chisq	Chi Df	Pr(>Chisq)
model5	14	1,658.078	1,728.707	-815.039	1,630.078			
model4	15	1,644.448	1,720.122	-807.224	1,614.448	15.630	1	0.0001

both WMH and HV provided the best fit to the data.

3. Memory examined separately as long-term memory (i.e. immediate and delayed memory) and working memory

Working memory and long-term memory were examined separately, as we have indications that they are affected differently by WMH and HV 1 .

3a. Working memory

Here we examined Working Memory separately.

% Table created by stargazer v.5.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: ma, jan 22, 2018 - 12:10:02

3b. Immediate memory

Here we examined Immediate Memory separately.

- % Table created by stargazer v.5.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
- % Date and time: ma, jan 22, 2018 12:10:04

3c. Delayed memory

Here we examined Delayed Memory separately.

% Table created by stargazer v.5.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: ma, jan 22, 2018 - 12:10:05

In all 3 memory domains, the full model with the WMH-HV interaction term showed significantly better model fit as well as a significant WMH-HV interaction term. The only difference was that in the model of Working Memory, the main effects of HV and hippocampal atrophy were not significant anymore.

¹Charlton RA, Barrick TR, Markus HS, Morris RG. The relationship between episodic long-term memory and white matter integrity in normal aging. Neuropsychologia 2010; 48: 114-22.

Table 5: Fixed effects results

		Dependent	t variable:	
		Working	Memory	
	Null	WMH only	HV only	Full
	(1)	(2)	(3)	(4)
Baseline age (years)	046***		041***	038***
	(054,038)	(052,034)	(051,032)	(048,028)
Sex	.191**	.198**	.152*	.173*
	(.057, .324)	(.065, .331)	(.013, .292)	(.034, .313)
Education (years)	.132***	.131***	.131***	.135***
	(.094, .170)	(.092, .169)	(.093, .169)	(.097, .173)
Time to follow-up (linear)	092***	095***	171***	119**
- ()	(119,064)	(123,068)	(247,096)	(200,038)
Time to follow-up (quadratic)	.003	.005**	.003	.004
,	(001, .006)	(.001, .009)	(0004, .006)	(0001, .007)
WMH		016		534**
		(070, .038)		(869,199)
WMH progression		001*		0004
1 0		(002,0002)		(001, .0005)
HV			.029	057
			(052, .111)	(156, .042)
Hippocampal atrophy			.011*	.004
			(.002, .020)	(006, .014)
WMH * HV interaction				.067**
				(.024, .111)
Observations	1,132	1,132	1,132	1,132
Log Likelihood	$-1,\!186.406$	-1,182.732	-1,181.520	-1,174.766
Akaike Inf. Crit.	2,392.813	$2,\!389.464$	$2,\!387.039$	$2,\!379.532$
Bayesian Inf. Crit.	2,443.130	2,449.845	2,447.420	2,455.009

Note: *p<0.05; **p<0.01; ***p<0.001

Table 6:

	Df	AIC	BIC	logLik	deviance	Chisq	Chi Df	Pr(>Chisq)
wm.model5	14	2,386.847	2,457.291	-1,179.423	2,358.847			
wm.model4	15	2,379.532	2,455.009	-1,174.766	2,349.532	9.314	1	0.002

Table 7: Fixed effects results

		Depende	nt variable:	
			te Memory	
	Null	WMH only	HV only	Full
	(1)	(2)	(3)	(4)
Baseline age (years)	$ \begin{array}{c}042^{***} \\ (049, 035) \end{array} $	$039^{***} (046,031)$	$033^{***} \\ (041,025)$	$030^{***} (039,021)$
Sex	$ \begin{array}{c} .114 \\ (003, .231) \end{array} $.121* (.004, .239)	.046 $(075, .167)$.065 (057, .186)
Education (years)	.147*** (.113, .181)	.145*** (.111, .179)	.146*** (.112, .179)	.149*** (.116, .183)
Time to follow-up (linear)	240^{***} $(265,215)$	247^{***} $(272,222)$	430^{***} $(496,364)$	375^{***} $(446,305)$
Time to follow-up (quadratic)	.028*** (.025, .031)	.032*** (.028, .035)	.028*** (.025, .031)	.030*** (.027, .033)
WMH		011 $(058, .036)$		468^{**} $(761,175)$
WMH progression		$002^{***} (003,001)$		$ \begin{array}{c}001^* \\ (002, 00003) \end{array} $
HV			$ \begin{array}{c} .050 \\ (020, .121) \end{array} $	021 $(107, .064)$
Hippocampal atrophy			.026*** (.018, .034)	.018*** (.010, .027)
WMH * HV interaction				.059** (.021, .097)
Observations Log Likelihood Akaike Inf. Crit. Bayesian Inf. Crit.	$ \begin{array}{c} 1,146 \\ -1,082.382 \\ 2,184.764 \\ 2,235.204 \end{array} $	$ \begin{array}{r} 1,146 \\ -1,070.884 \\ 2,165.767 \\ 2,226.295 \end{array} $	$ \begin{array}{c} 1,146 \\ -1,051.291 \\ 2,126.583 \\ 2,187.111 \end{array} $	$ \begin{array}{r} 1,146 \\ -1,041.592 \\ 2,113.184 \\ 2,188.844 \end{array} $

Note: p<0.05; **p<0.01; ***p<0.001

Table 8:

	Df	AIC	BIC	logLik	deviance	Chisq	Chi Df	Pr(>Chisq)
im.model5	14	2,120.532	2,191.148	-1,046.266	2,092.532			
im.model4	15	2,113.184	2,188.844	-1,041.592	2,083.184	9.348	1	0.002

Table 9: Fixed effects results

		Dependent	nt variable:	
		Delayed	Memory	
	Null	WMH only	HV only	Full
	(1)	(2)	(3)	(4)
Baseline age (years)	$045^{***} (052,038)$	$ \begin{array}{c}042^{***} \\ (050, 033) \end{array} $	$ \begin{array}{c}034^{***} \\ (042, 026) \end{array} $	$ \begin{array}{c}030^{***} \\ (039, 021) \end{array} $
Sex	.081 (041, .204)	.091 (032, .214)	008 (133, .118)	.016 (110, .142)
Education (years)	.122*** (.087, .158)	.120*** (.085, .156)	.121*** (.086, .156)	.125*** (.090, .159)
Time to follow-up (linear)	194*** $(219,169)$	$201^{***} (226,176)$	370^{***} (435,304)	$310^{***} \\ (381,240)$
Time to follow-up (quadratic)	.023*** (.020, .025)	.027*** (.023, .030)	.023*** (.020, .026)	.025*** (.021, .028)
WMH		014 $(063, .035)$		511*** $(811,212)$
WMH progression		002^{***} $(003,001)$		001^* $(002,0001)$
HV			.089* (.016, .161)	.010 (079, .098)
Hippocampal atrophy			.024*** (.016, .032)	.016*** (.008, .025)
WMH * HV interaction				.065** (.026, .103)
Observations	1,145	1,145	1,145	1,145
Log Likelihood	-1,097.762	-1,084.412	-1,062.280	-1,050.842
Akaike Inf. Crit. Bayesian Inf. Crit.	$\begin{array}{c} 2,215.523 \\ 2,265.955 \end{array}$	$2,192.823 \\ 2,253.341$	$2,148.560 \\ 2,209.078$	$2,131.685 \\ 2,207.332$

Note: p<0.05; **p<0.01; ***p<0.001

Table 10:

	Df	AIC	BIC	logLik	deviance	Chisq	Chi Df	Pr(>Chisq)
dm.model5	14	2,140.403	2,211.008	-1,056.202	2,112.403			
dm.model4	15	2,131.685	2,207.332	-1,050.842	2,101.685	10.719	1	0.001

4. Determine the specificity of the effect - Global brain atrophy

We then compared this model with several alternative competing models to determine the specificity of the effect.

4.1 Grey matter atrophy

We wanted to show that the effect of hippocampal atrophy was not part of general grey matter atrophy.

Table 11: Fixed effects results

	Table 11: F	ixed effects results		
		Depende	nt variable:	
		Me	emory	
	Null	WMH only	GMV only	Full
	(1)	(2)	(3)	(4)
Baseline age (years)	$ \begin{array}{c}044^{***} \\ (049, 038) \end{array} $	$ \begin{array}{c}040^{***} \\ (047,034) \end{array} $	038^{***} $(045,031)$	$036^{***} (043,029)$
Sex	.118* (.018, .219)	.126* (.026, .227)	.065 $(041, .171)$.081 (026, .187)
Education (years)	.134*** (.105, .163)	.132*** (.104, .161)	.132*** (.103, .161)	.133*** (.104, .162)
Time to follow-up (linear)		182^{***} $(201,162)$		395^{***} $(488,303)$
Time to follow-up (quadratic)	.017*** (.015, .020)	.021*** (.019, .024)	.019*** (.017, .021)	.020*** (.018, .023)
WMH		014 (053, .026)		500^* (888,112)
WMH progression		002^{***} $(002,001)$		$ \begin{array}{c}001^* \\ (001,00004) \end{array} $
GMV			.0004 (001, .002)	001 $(002, .001)$
GM atrophy			.0005*** (.0004, .001)	.0004*** (.0002, .001)
WMH * GMV interaction				.001* (.0002, .001)
Observations	1,147	1,147	1,147	1,147
Log Likelihood	-856.868	-842.012	-827.147	-819.365
Akaike Inf. Crit. Bayesian Inf. Crit.	$1,733.735 \\ 1,784.184$	$1,708.023 \\ 1,768.562$	1,678.294 1,738.833	$1,668.730 \\ 1,744.404$
DayColall IIII. Olli.	1,104.104	1,100.002	1,100.000	1,144.404

7

*p<0.05; **p<0.01; ***p<0.001

Note:

% Table created by stargazer v.5.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: ma, jan 22, 2018 - 12:10:07

Table 12:

	Df	AIC	BIC	logLik	deviance	Chisq	Chi Df	Pr(>Chisq)
model4	15	1,644.448	1,720.122	-807.224	1,614.448			
gm.model4	15	1,668.730	1,744.404	-819.365	1,638.730	0	0	1

% Table created by stargazer v.5.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: ma, jan 22, 2018 - 12:10:07

Table 13:

	Df	AIC	BIC	logLik	deviance	Chisq	Chi Df	Pr(>Chisq)
gm.model5	14	1,672.722	1,743.351	-822.361	1,644.722			
$\operatorname{gm.model4}$	15	1,668.730	1,744.404	-819.365	1,638.730	5.992	1	0.014

% Table created by stargazer v.5.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: ma, jan 22, 2018 - 12:10:07

Table 14:

	Df	AIC	BIC	logLik	deviance	Chisq	Chi Df	Pr(>Chisq)
gm.m5	13	1,744.544	1,810.127	-859.272	1,718.544			
gm.m4	14	1,742.865	1,813.494	-857.433	1,714.865	3.678	1	0.055

The effect was not specific to hippocampal atrophy, as the interaction term of WMH with GMV was also significantly associated with memory performance.

4.2 Combined model with both HV & GMV interactions

We next built a combined model with both WMH-HV and WMH-GMV interactions included, to examine the relative strengths of the WMH-HV and WMH-GMV interactions.

% Table created by stargazer v.5.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: ma, jan 22, 2018 - 12:10:09

The effect was not specific to hippocampal atrophy, as the interaction term of WMH with GMV was also significantly associated with memory performance. However, when GMV and HV were both included in the model, only the WMH-HV interaction remained significant.

5. Determine the specificity of the effect - Other cognitive domains

We then compared this model with several alternative competing models to determine the specificity of the effect.

5.1 Global cognition

We wanted to test whether the effect is specific for memory, rather than general cognition.

Table 15: Fixed effects results

		Depender	nt variable:	
			mory	
	WMH only	WMH * HV	WMH * GMV	Both
	(1)	(2)	(3)	(4)
Baseline age (years)	$ \begin{array}{c}040^{***} \\ (047,034) \end{array} $	032^{***} $(039,025)$	036^{***} $(043,029)$	$031^{***} (039,024)$
Sex	.126* (.026, .227)	$.072 \\ (032, .176)$.081 (026, .187)	.058 (048, .165)
Education (years)	.132*** (.104, .161)	.136*** (.108, .165)	.133*** (.104, .162)	.136*** (.108, .164)
Time to follow-up (linear)	182^{***} $(201,162)$	273^{***} $(330,215)$	395*** $(488,303)$	364^{***} (454,273)
Time to follow-up (quadratic)	.021*** (.019, .024)	.019*** (.017, .022)	.020*** (.018, .023)	.019*** (.017, .022)
WMH	014 $(053, .026)$	504^{***} (748,259)	500^* $(888,112)$	606^{**} $(992,221)$
WMH progression	002^{***} $(002,001)$	001^* $(001,0001)$	001* $(001,00004)$	0005 $(001, .0002)$
HV		$ \begin{array}{c}018 \\ (089, .053) \end{array} $.007 (074, .087)
Hippocampal atrophy		.013*** (.006, .020)		.007 (002, .016)
WMH * HV interaction		.064*** (.032, .095)		.056** (.018, .093)
GMV			001 $(002, .001)$	$ \begin{array}{c}001 \\ (002, .001) \end{array} $
GM atrophy			.0004*** (.0002, .001)	.0002* (.00005, .0004)
WMH * GM interaction			.001* (.0002, .001)	.0003 (0005, .001)
Observations	1,147	1,147	1,147	1,147
Log Likelihood	-842.012	-807.224	-819.365	-802.709
Akaike Inf. Crit.	1,708.023	1,644.448	1,668.730	1,641.419
Bayesian Inf. Crit.	1,768.562	1,720.122	1,744.404	1,732.227

Table 16:

	Df	AIC	BIC	logLik	deviance	Chisq	Chi Df	Pr(>Chisq)
spec.m.wmh	12	1,708.023	1,768.562	-842.012	1,684.023			
spec.m.hv	15	1,644.448	1,720.122	-807.224	1,614.448	69.575	3	0
spec.m.gmv	15	1,668.730	1,744.404	-819.365	1,638.730	0	0	1
spec.m.both	18	1,641.419	1,732.227	-802.709	1,605.419	33.311	3	0.00000

Table 17: Fixed effects results

		Dependent	nt variable:	
			ve Index	
	Null	WMH only	HV only	Full
	(1)	(2)	(3)	(4)
Baseline age (years)	$043^{***} (048,037)$	$039^{***} (045,033)$	$034^{***} \\ (040,027)$	$030^{***} (037,024)$
Sex	.115* (.022, .209)	.126** (.033, .219)	$.045 \\ (052, .143)$.067 (030, .163)
Education (years)	.166*** (.139, .192)	.164*** (.137, .190)	.164*** (.138, .191)	.167*** (.140, .193)
Time to follow-up (linear)	$125^{***} (140,111)$	$132^{***} (146,117)$	275^{***} $(317,233)$	224^{***} $(270,178)$
Time to follow-up (quadratic)	.010*** (.009, .012)	.014*** (.012, .016)	.011*** (.009, .012)	.012*** (.010, .014)
WMH		023 (058, .012)		$431^{***} \\ (644,218)$
WMH progression		002^{***} $(002,001)$		001^{**} $(001,0002)$
HV			.072** (.021, .123)	.002 (060, .065)
Hippocampal atrophy			.020*** (.015, .025)	.013*** (.008, .019)
WMH * HV interaction				.053*** (.026, .080)
Observations	1,147	1,147	1,147	1,147
Log Likelihood	-658.432	-638.823	-609.023	-592.641
	· · · · · · · · · · · · · · · · · · ·	*	*	$1,215.282 \\ 1,290.956$
	· · · · · · · · · · · · · · · · · · ·	*	· · · · · · · · · · · · · · · · · · ·	-5 1,2

Note:

*p<0.05; **p<0.01; ***p<0.001

% Table created by stargazer v.5.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: ma, jan 22, 2018 - 12:10:11

Table 18:

	Df	AIC	BIC	logLik	deviance	Chisq	Chi Df	Pr(>Chisq)
ci.model5	14	1,227.553	1,298.182	-599.777	1,199.553			
ci.model4	15	1,215.282	1,290.956	-592.641	1,185.282	14.271	1	0.0002

5.2 Psychomotor speed

Next, we wanted to test whether the effect is specific for memory, rather than psychomotor speed.

% Table created by stargazer v.5.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: ma, jan 22, 2018 - 12:10:12

5.3 Executive function

Next, we wanted to test whether the effect is specific for memory, rather than executive function.

% Table created by stargazer v.5.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: ma, jan 22, 2018 - 12:10:14

The combined effects of WMH and hippocampal atrophy are not specific to memory performance; they also explain global cognitive functioning as well as psychomotor speed and executive function.

Table 19: Fixed effects results

		Dependent	t variable:	
		Psychomo	tor Speed	
	Null	WMH only	HV only	Full
	(1)	(2)	(3)	(4)
Baseline age (years)	$045^{***} \\ (052,039)$	$ \begin{array}{c}040^{***} \\ (047,032) \end{array} $	$036^{***} \\ (043,028)$	$ \begin{array}{c}031^{***} \\ (039, 023) \end{array} $
Sex	.161** (.048, .273)	.175** (.063, .287)	.082 (035, .200)	.107 (010, .224)
Education (years)	.171*** (.138, .203)	.168*** (.136, .200)	.170*** (.137, .202)	.169*** (.137, .201)
Time to follow-up (linear)	087^{***} $(104,071)$	091^{***} $(108,075)$	187^{***} $(240,135)$	156*** $(214,098)$
Time to follow-up (quadratic)	.004*** (.002, .006)	.007*** (.005, .009)	.005*** (.003, .006)	.006*** (.004, .008)
WMH		051^* $(094,009)$		$305^* \\ (564,047)$
WMH progression		001^{***} $(002,0005)$		001 $(001, .0001)$
HV			.093** (.030, .156)	.043 $(033, .120)$
Hippocampal atrophy			.014*** (.008, .020)	.010** (.003, .017)
WMH * HV interaction				.033* (.0001, .067)
Observations	1,138	1,138	1,138	1,138
Log Likelihood	-842.978	-831.142	-819.337	-810.764
Akaike Inf. Crit.	1,705.957	1,686.284	1,662.675	$1,\!651.528$
Bayesian Inf. Crit.	1,756.327	1,746.729	1,723.119	1,727.083

Note:

*p<0.05; **p<0.01; ***p<0.001

Table 20:

	Df	AIC	BIC	logLik	deviance	Chisq	Chi Df	Pr(>Chisq)
ps.model5	14	1,653.340	1,723.859	-812.670	1,625.340			
ps.model4	15	1,651.528	1,727.083	-810.764	1,621.528	3.812	1	0.051

Table 21: Fixed effects results

		Depender	nt variable:	
			e function	
	Null	WMH only	HV only	Full
	(1)	(2)	(3)	(4)
Baseline age (years)	$038^{***} \\ (044,033)$	035***	$032^{***} \\ (039,025)$	029^{***} $(036,021)$
Sex	.037 $(063, .136)$	$.046 \\ (054, .145)$	017 $(122, .087)$.003 (101, .108)
Education (years)	.181*** (.152, .209)	.179*** (.151, .208)	.179*** (.151, .208)	.182*** (.154, .211)
Time to follow-up (linear)	038*** $(057,018)$	044^{***} $(064,024)$	180^{***} $(231,128)$	126*** $(181,070)$
Time to follow-up (quadratic)	.001 (002, .003)	.004** (.002, .007)	.001 (001, .003)	.003* (.0002, .005)
WMH		013 $(052, .026)$		429^{***} $(674,184)$
WMH progression		002^{***} $(002,001)$		$ \begin{array}{c}001^{**} \\ (001,0002) \end{array} $
HV			.044 (014, .102)	024 (095, .047)
Hippocampal atrophy			.019*** (.013, .025)	.012*** (.005, .019)
WMH * HV interaction				.054*** (.022, .085)
Observations	1,147	1,147	1,147	1,147
Log Likelihood	-844.436	-829.147	-816.935	-803.482
Akaike Inf. Crit.	1,708.873	1,682.293	1,657.870	1,636.964
Bayesian Inf. Crit.	1,759.322	1,742.832	1,718.409	1,712.637

Note: *p<0.05; **p<0.01; ***p<0.001

Table 22:

	Df	AIC	BIC	logLik	deviance	Chisq	Chi Df	Pr(>Chisq)
ef.model5	14	1,646.107	1,716.735	-809.053	1,618.107			
ef.model4	15	1,636.964	1,712.637	-803.482	1,606.964	11.143	1	0.001