Théorie des Langages

TD 5 Déterminisation d'un Automate fini non déterministe

Sauf avis contraire, on considère dans ces exercice que l'alphabet est $\Sigma = \{a,b\}$.

Exercice 1

1. Déterminiser l'automate \mathcal{A} suivant, défini par sa table de transition :

T	а	b
1	{1,2}	1
2	3	3
(3)	3	

2. Comparer les lectures du mot « ababa » par \mathcal{A} et par l'automate déterministe équivalent.

Exercice 2

1. Déterminiser l'automate \mathcal{A}_z suivant, possédant deux états initiaux :

Exercice 3

1. Déterminiser l'automate \mathcal{A}_3 suivant, possédant une transition spontanée :

T	а	b	ε
1	{2,3}	3	
2	4	4	
3		4	
4			1

2. Comparer les lecture du mot « abaaa » par les différents automates équivalents obtenus.

Exercice 4

1. Déterminiser l'automate \mathcal{A}_4 suivant, possédant plusieurs transitions spontanées :

2. Comparer les lecture du mot « aaaba » par les différents automates équivalents obtenus.

Exercice 5

Soit l'automate fini non déterministe \mathcal{A} défini sur l'alphabet $\Sigma = \{a,b\}$:

- 1. Donner l'arbre de lecture du mot "aabba" par cet automate. Ce mot est-il accepté par \mathcal{A} ?
- 2. Construire un automate fini A' déterministe équivalent à A.

Exercice 6

On considère l'automate fini non déterministe \mathcal{Z} défini sur l'alphabet $\Sigma = \{a,b\}$:

Donner une lecture acceptante du mot a^3ba par cet automate.

1. Construire un automate fini déterministe \mathcal{E}' équivalent à \mathcal{E} . Vérifier la lecture de a^3ba