VinoMetrics

James Kenny and Matthew Batchelor

Mission: Build a model that predicts the quality of wine

Data set: Wine Quality from UCI Machine Learning Repository; based on Vinho Verde wine from Northern Portugal

Description of data

WINE DATAFRAME	Input variable Explained variable		
Count	11	1	
Index	['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar', 'chlorides', 'free sulfur dioxide', 'total sulfur dioxide', 'density','pH', 'sulphates', 'alcohol']	['quality']	
Dtype	float	int	
Null values	0		
Instances red (of which duplicates)	1599 (240 = 15%)		
Instances white (of which duplicates)	4898 (937 = 19%)		

Optional: Variable overview

Input variables - effect - controlled by producer \checkmark 'fixed acidity' - more or less robust 'volatile acidity' - tanginess or sharpness ✓ 'citric acid' - notes of lemon or lime 🗸 'residual sugar' - sweetness ✓ 'chlorides' - saltiness 'free sulfur dioxide' - preservative 'total sulfur dioxide' - stability and longevity 'density' - richness (high = 'full-bodied)
\(\square\$ 'pH' - acidity ✓ 'sulphates' - maintains freshness 🗸 'alcohol' - strength (high = warm, full-bodied) ✓

Output variable

'quality'

Score: 0-10

Mean average of mean average of 3 wine tastings by wine experts

Variable - correlation heatmap (red wine)

Optional: Strongest correlated variable combination (alcohol x quality) – example of 'piecewise linear regression'

Linear regression - before optimization

Linear Regression Model

```
In [9]: # Linear regression
        lm = LinearRegression()
        model = lm.fit(X_train, y_train)
        print(f'model coefficients:\n {model.coef }\n')
        print(f'model intercept:\n {model.intercept_}\n')
        # Applying model to X test
        y_pred = model.predict(X_test)
        #y_pred = pd.DataFrame(scaler_s_v.inverse_transform(y_pred)) # inversing y
        v pred = pd.DataFrame(v pred)
        y_pred = y_pred.rename(columns = {0:"y_pred"})
        y_test = y_test.reset_index(drop=True)
        y_test = y_test.rename(columns = {"quality":"y_test"})
        residuals_df = pd.concat([y_test,y_pred], axis = 1)
        residuals_df["residual"] = residuals_df["y_test"] - residuals_df["y_pred"]
        # Root mean squared error
        rmse = mse(y_test, residuals_df["y_pred"], squared=False)
        print(f'Root mean squared error: {rmse} \n')
        r2 = r2_score(y_test, residuals_df["y_pred"])
        print(f'R2: {r2} \n')
        # Calculating adjusted R^2
        n = X_train.shape[0] # Number of observations in the training set
        p = X_train.shape[1] # Number of features used for training
        adjusted r2 = 1 - (1 - r2) * (n - 1) / (n - p - 1)
        print(f'Adjusted R2: {adjusted_r2} \n')
        residuals_df
        model coefficients:
         [[-4.14972197e-02 -9.94118538e-01 -2.30359318e-02 -2.34947735e-03
          -2.04381921e+00 5.60218000e-03 -3.96020465e-03 2.31453631e+01
          -8.73151979e-01 9.07091584e-01 3.04300621e-01]]
        model intercept:
         [-17.15994201]
        Root mean squared error: 0.6377068568203348
        R2: 0.39830469246210143
        Adjusted R2: 0.3917320525585096
```

OLS Regression Results - before model optimization

```
In [16]: X_train = sm.add_constant(X_train)
    model = sm.OLS(y_train,X_train).fit()
    model.summary()
```

Out[16]:

OLS Regression Results

OLS Regression Resu	ITS					
Dep. Variable:		quality	R	-squared:	0.347	
Model:		OLS	Adj. R	-squared:	0.340	
Method:	Least So	quares	F	-statistic:	48.71	
Date:	Thu, 08 Feb	2024 F	Prob (F-	statistic):	1.27e-85	
Time:	11	:29:31	Log-Li	kelihood:	-1030.6	
No. Observations:		1019		AIC:	2085.	
Df Residuals:		1007		BIC:	2144.	
Df Model:		11				
Covariance Type:	non	robust				
	coef	std err	1	t P> t	[0.025	0.975]
const	-17.1599	27.713	-0.619	0.536	-71.542	37.222
fixed_acidity	-0.0415	0.035	-1.201	0.230	-0.109	0.026
volatile_acidity	-0.9941	0.157	-6.320	0.000	-1.303	-0.685
citric_acid	-0.0230	0.189	-0.122	0.903	-0.394	0.348
residual_sugar	-0.0023	0.020	-0.115	0.909	-0.042	0.038
chlorides	-2.0438	0.513	-3.982	0.000	-3.051	-1.037
free_sulfur_dioxide	0.0056	0.003	1.950	0.051	-3.53e-05	0.011
total_sulfur_dioxide	-0.0040	0.001	-4.148	0.000	-0.006	-0.002
density	23.1454	28.311	0.818	0.414	-32.410	78.700
pH	-0.8732	0.261	-3.341	0.001	-1.386	-0.360
sulphates	0.9071	0.148	6.115	0.000	0.616	1.198
alcohol	0.3043	0.034	8.840	0.000	0.237	0.372
Omnibus: 14	1.137 Du	rbin-Wat	tson:	1.974		
Prob(Omnibus):	0.001 Jarq	ue-Bera	(JB):	17.934		
Skew: -0	0.177	Prob	(JB): (0.000128		
Kurtosis: 3	3.545	Cond	. No. 1	.15e+05		

Hypothesis testing

H0:
$$\beta$$
 1 = β 2 = β 3 = β 4 = β 5 = β 6 = β 8 = β 9 = β 10 = β 11 = 0

Null hypothesis: The coefficients of all input variables are equal to 0.

None of our wine properties predict wine quality.

H1:
$$\beta$$
 1 = β 2 = β 3 = β 4 = β 5 = β 6 = β 7 = β 8 = β 9 = β 10 = β 11 != 0

Significant linear relationship between at least one of the 11 input variables and the explained variable.

At least one of our wine properties predicts wine quality.

R-squared:	0.347	
Adj. R-squared:	0.340	
F-statistic:	48.71	
Prob (F-statistic):	1.27e-85	

Linear regression - optimization

Linear regression - impact

Optimization techniques applied:

- IQR method to address outliers (Applied)
 - Action: Converted outliers to 0.25/0.75 percentile
- Recursive Feature Elimination (RFE) to decrease redundancy (Tested, not applied)
 - Action: dropped 'free_sulfur_dioxide' after testing
- Scaler/Transformer iteration (Applied) –
 exhaustive trial and error approach to improve
 R2 and adjusted R2
 - Action: Standard Scaler on *X*, no scaler on *y*

R2:

Before optimization: 0.347 After optimization: **0.409**

R2 adjusted:

Before optimization: 0.340 After optimization: **0.404**

Linear regression - impact

Print coefficients mapping?

Stated mission:

• Build a model that predicts the quality of wine

Outcome:

- 40% of the variability in wine quality can be accounted for by the input variables
- 60% of the variability in wine quality is unexplained by the input variables

Model evaluation

<Distribution of scores (red wine, all data minus duplicates)>

Model evaluation

<Wine Data: Red wine: Distribution of Residuals (test data, 340 instances)>

Model evaluation

<Mean of residuals by quality group (red wine, test data, 340 instances>

Our model was predominantly trained on wines that scored 5-7/10

As a result, our model is a much stronger predictor (lower residuals) for wines in the 5-7 quality groups.

Constraints of model

- data availability: lack of accessible data to further train model; wine properties seem to be the 'secret sauce' and wine producers are not necessarily incentivised to publish this data
- **consumer value:** as this data is not printed on wine bottles, our model is of little value to consumers
- colour sensitivity: a model trained on red wine failed to predict white wine quality as effectively
 - other possible sensitivities: no data on effect of grape or location
- R2: 60% of variability in quality is unexplained by this model

Conclusion

- While flawed, our model has *some* degree of explanatory power in predicting wine quality. On a scale of 0-10 points, we can predict score to within 0.6 points of accuracy on average
- In a commercial setting, our model would fulfil a business need of enabling wine producers to increase their likelihood of producing high-quality wine

INTRODUCING THE MVP OF THE VINOMETRICS WINE QUALITY PREDICTOR ©

