Introduction to Research Data Analysis

Myo Minn Oo

PNGIMR

2022-04-09

Outline

- Research Questions
- Introduction to Statistics
- Introduction to R and RStudio
- Descriptive Statistics: Number Summary
- 5 Descriptive Statistics: categorical data
- 6 Relationship between two variables

Section 1

Research Questions

A Good Research Question

FINER

- Feasible
- Interesting
- Novel
- Ethical
- Relevant

Our Study Outline - SARS-COV-2 Prevalence Study

Research Question: Among samples tested for COVID-19 infection at PNGIMR lab, what are the positivity rates of COVID-19 infection and predictors for being positive?

Study design: cross-sectional study

Subjects: samples that were tested RT-PCR for COVID-19 infection between September 2021 and March 2022

Outcome/Dependent variable: being positive on RT-PCR

Predictors/Independent variable: age, sex, residence, being symptomatic, previous contact, travel history, COVID-19 vaccination status, vaccination dose, number of symptoms

Potential confounders: reasons for testing

Type of Study Designs

- Cross-sectional
- Cohort
- Case-control
- Randomized control trials (RCT)

Section 2

Introduction to Statistics

What is statistics?

- Statistics the practice and study of collecting and analyzing data
- Summary statistics understanding or summary of some data

What can statistics do?

- How likely is a sample to be positive on a PCR test? Are samples more likely to be positive if people were tested at different clinic or purpose?
- What is the risk of dying if a person tested positive for COVID-19 infection? What interventions can we do to reduce the risk of death?
- A/B tests: which ads or adovacy method is more effective in getting people to test for COVID-19?

What **can't** statistics do?

• Why is antivax working?

Instead

• Are people who were tested for COVID-19 favorable toward COVID-19 vaccination?

But . . .

• Even so this won't tell us if more testing would lead to more vaccination.

Types of Statistics

Descriptive

describe and summarize data

Examples:

- 50% of samples tested positive
- 25% of people tested for COVID-19 were symptomatic
- 5% died during hospitalization

Inferential

 Use a sample of data to make inferences about a larger population

Examples:

- What percent of test samples were tested positive?
- etc

Types of data

Numeric (quantitative)

- Continuous (measured)
 - age, weight, height
 - time from sample collection to date of test result reported
- Discrete (counted)
 - number of contact persons
 - number of symptoms

Categorical (Qualitative)

- Nominal (Unordered)
 - sex (male / female)
 - province where patients live, country of origin
- Ordinal (Ordered)
 - Dose of vaccination: 0, 1, 2+ doses
 - likert scale: strong diagree, disagree, neutral, agree, strongly agree

Categorical data represented as numbers

Nominal (unordered)

- sex: male / female -> 1 / 2
- country of origin (1, 2, 3, ...)

Ordinal (ordered)

- Dose of vaccination: 0, 1, 2
- likert scale: 1, 2, 3, 4, 5

Why does data type matter?

Summary Statistics

```
mtcars %>%
    summarize(avg_speed = mean(mpg))
```

```
## avg_speed
## 1 20.09062
```


Why does data type matter?

Summary Statistics

```
mtcars %>%
  tabyl(gear) %>%
  adorn_pct_formatting()
```

```
## gear n percent
## 3 15 46.9%
## 4 12 37.5%
## 5 5 15.6%
```


Section 3

Introduction to R and RStudio

See R Handout!

Let's practice R!

Section 4

Descriptive Statistics: Number Summary

mtcars

mtcars

##		mpg	cyl	disp	hp	${\tt drat}$	wt	qsec	vs	am	gear	carb	
##	Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4	
##	Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4	
##	Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1	
##	Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1	
##	Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2	
##	Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1	
##	Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4	
##	Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2	
##	Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2	
##	Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4	
##	Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4	
##	Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3	
	Myo Minn Oo (PNGIMR) Introduction to Research Data Analysis								202	22-04-09	9	18	79

How is mpg distributed in this dataset?

- What is a typical value?
- Where is the center of the data?
 - mean
 - median
 - mode

mtcars %>% select(mpg)

##	mpg
## Mazda RX4	21.0
## Mazda RX4 Wag	21.0
## Datsun 710	22.8
## Hornet 4 Drive	21.4
## Hornet Sportabout	18.7
## Valiant	18.1
## Duster 360	14.3
## Merc 240D	24.4
## Merc 230	22.8
## Merc 280	19.2

Measure of center: mean

$$\textit{mean_mpg} = \frac{21.0 + 21.0 + 22.8 + ...}{32} = 20.09062$$

```
mtcars %>%
    summarize(avg_speed = mean(mpg))
```

```
## avg_speed
## 1 20.09062
```

Measure of center: median

- sort the numbers in ascending order
- if odd number, take the middle one
- if even number, add the middle twos and divide the summation by 2.

```
mtcars %>%
    arrange(mpg) %>%
    unlist(mpg, use.names = FALSE) %>%
    .[16:17]
```

```
## [1] 19.2 19.2
```

```
median\_mpg = \frac{19.2 + 19.2}{2} = 19.2
```

```
mtcars %>%
    summarize(median mpg = median(mpg
```

```
## median_mpg
## 1 19.2
```

21 / 79

Measure of center: mode

```
mtcars %>%
    count(mpg, sort = TRUE)
##
       mpg n
## 1
      10.4 2
## 2
      15.2 2
## 3
      19.2 2
## 4
      21.0 2
## 5
      21.4 2
## 6
      22.8 2
      30.4 2
## 7
## 8
      13.3 1
## 9
      14.3 1
```

10 14.7 1 ## 11 15 0 1

Measure of Spread: standard deviation

$$sd_mpg = \sqrt{\frac{\sum (x_i - \mu)^2}{n - 1}}$$

```
mtcars %>%
    summarize(sd_mpg = sd(mpg))
```

```
## sd_mpg
## 1 6.026948
```

Measure of Spread: Interquartile Range

- points that equally divide your data into four quartiles
- first quartile, Q1 = 25%
- second quartile, $Q2 = 50\% \sim median$
- thrid quartile, Q3 = 75%
- interquartile Range (Q1, Q3)

```
## median q1 q3
## 1 19.2 15.425 22.8
```

Other measures of spread: range

- minimum and maximum values
- useful for checking invalid values

```
## mean minimum maximum
## 1 20.09062 10.4 33.9
```

Distributions

See R Handout!

Let's practice in R!

Visualization: histogram

```
mtcars %>%
   ggplot(aes(mpg)) +
   geom_histogram(bins = 5) +
   theme_classic()
```


Visualization: boxplot

```
mtcars %>%
    ggplot(aes(mpg)) +
    geom_boxplot() +
    coord_flip() +
    theme_classic()
```


See R Handout!

Let's practice in R!

Section 5

Descriptive Statistics: categorical data

Displaying frequency and proportions

Gear ratio

```
mtcars %>%
  tabyl(gear) %>%
  adorn_totals("row") %>%
  adorn_pct_formatting()
```

```
## gear n percent
## 3 15 46.9%
## 4 12 37.5%
## 5 5 15.6%
## Total 32 100.0%
```

Automatic transmission

```
mtcars %>%
  tabyl(am) %>%
  adorn_totals("row") %>%
  adorn_pct_formatting()
```

```
## am n percent
## 0 19 59.4%
## 1 13 40.6%
## Total 32 100.0%
```

Barplots

```
mtcars %>%
    ggplot(aes(gear)) +
    geom_bar() +
    theme_classic()
```


See R Handout!

Let's practice in R!

Section 6

Relationship between two variables

Relationship between two variables

- categorical ~ categorical » cross-tabulation (contigency table)
- categorical ~ numerical » grouped (stratified) summary measures
- numerical ~ numerical » pearson's correlation (r)

categorical ~ categorical

```
mtcars %>%
    tabyl(gear, am) %>%
    adorn_totals(c("row", "col")) %>%
    adorn_percentages("row") %>%
    adorn_pet_formatting(digits = 1, affix_sign = FALSE) %>%
    adorn_ns("front")
```

```
## gear 0 1 Total

## 3 15 (100.0) 0 (0.0) 15 (100.0)

## 4 4 (33.3) 8 (66.7) 12 (100.0)

## 5 0 (0.0) 5 (100.0) 5 (100.0)

## Total 19 (59.4) 13 (40.6) 32 (100.0)
```

categorical ~ numerical

```
mtcars %>%
   group_by(gear) %>%
   summarise(mean = mean(mpg),
        sd = sd(mpg))
```

```
## # A tibble: 3 x 3
## gear mean sd
## <dbl> <dbl> <dbl> <dbl> ## 1 3 16.1 3.37
## 2 4 24.5 5.28
## 3 5 21.4 6.66
```

numerical ~ numerical

- correlation value ranges from −1 to +1
- value 0 = no correlation
- \bullet -1 = absolute negative association
- ullet +1 = absoluate positive association
- around 0.4 = weak association
- around 0.8 = strong association
- Assumption of linear association

```
mtcars %>%
    summarise(correlation = cor(mpg, wt))
```

```
## correlation
## 1 -0.8676594
```

Visualization: categorical ~ categorical

Visualization: categorical ~ numerical

Visualization: numerical ~ numerical

See R Handout!

Let's practice in R!

Section 7

Inferential Statistics

Inferential Statistics

- Confidence Intervals (CI)
- p-value

Confidence Intervals

- If 100 similar studies were carried out, the true unknown value of the population will lie in the range of confidence intervals for 95 times.
- mostly commonly used cut-off = 95%
- If no true association exists, there is 5% chance that we will find a false association.
- more robust than a single estimate like means or proportion

p-value

- how likely our data would have occured by random change
- decision on whether to reject null hypothesis; does not mean it's true.
- arbitarily set value = 0.05 or 5% » .95 or 95% Confidence Interval
- largely depend on sample size: increasing sample size will likely lower p-value.
- No p-value hacking!!

statistical tests and data type

- categorical ~ categorical » cross-tabulation (contigency table)
 - chi-squared test of independence (each cell must be greater than 5!)
 - If not, use Fisher's exact test.
 - if you have ordered data, use different tests.
- categorical ~ numerical » grouped (stratified) summary measures
 - t-test (normal distribution, equal variance) to compare two means
 - if not, use Wilcoxon tests.
- numerical ~ numerical » pearson's correlation (r)
 - to compare more than two groups, use ANOVA (same assumptions as t-test)
 - if not, use Kruskal Wallis test.

Due to time constraint, we won't cover them in details. Interpretation of p-value is the same across all tests.

In addition, there are many other statistical tests that are out of scope for this workshop.

See R Handout!

Let's practice in R!

Section 8

Confounding versus interaction

Confounding variable

- a variable that is associated with both your outcome (dependent variable) and predictors (independent variables)
- Example:
 - coffee drinking is strongly associated with lung cancer.
 - seems like smokers are also heavey coffee drinker.
 - So smoking confounds the non-association between coffee drinking and lung cancer.

Interaction

- the effect of a variable on outcome depends on a second variable.
- Example:
 - type of food (icecream versus hotdogs) + condiments (chocolate sauce versus mustard)
 - Do you prefer ketchup or chocolate sauce on your food?
 - It actually depends on the type of food!

Confounding versus interaction

- if there are confounders, leave confoundees (variables affected by confounders) out of your analysis
- if there are interactions, account the interaction effect in your model.

How do you know which is which? - you don't know in most cases - check during variable selection aka model building - literature or previous knowledge - biological pathways or plausibility - pathway analysis like DAG or SEM??

Section 9

Regression

Regression

- statistical model
 - to explore relationship between an outcome and predictors
 - to predict outcome based on the values of predictors
- Jargons
 - outcome a.k.a dependent variable or y
 - predictors a.k.a independent variables or x

Linear versus logistic

- linear regression: outcome is continus
- logistic regression: outcome is logical

Visualizing linear relationship

```
mtcars %>%
   ggplot(aes(mpg, wt)) +
   geom_point() +
   theme_classic()
```


Adding a linear trend

'geom smooth()' using formula 'y ~ : ¥

20

mpg

10

15

30

25

Straight lines defined by two things

Intercept The y value at the point when x is zero

Slope The amount y value increase if x value increases by one unit

Equation

$$y = intercept + slope * x$$

Running a linear model

```
lm(mpg ~ wt, data = mtcars)
```

##

```
## Call:
## lm(formula = mpg ~ wt, data = mtcars)
##
## Coefficients:
## (Intercept) wt
## 37.285 -5.344
```

Interpreting the model

```
##
## Call:
## lm(formula = mpg ~ wt, data = mtcars)
##
## Coefficients:
## (Intercept) wt
## 37.285 -5.344
```

$$mpg = 37.285 + (-5.344) * wt$$

In every 1000 lbs increase, 5.344 mile per gallon will reduce.

Adding a categorical variable

Let's add am indicating automatic transmission by 0 and manual by 1

'geom_smooth()' using formula 'y ~ :

Adding a categorical variable to the linear model

We need to convert am to a factor type to indicate as categorical data. Converting it as character also works.

```
lm(mpg ~ wt + factor(am), data = mtcars)
```

```
##
## Call:
## lm(formula = mpg ~ wt + factor(am), data = mtcars)
##
## Coefficients:
## (Intercept) wt factor(am)1
## 37.32155 -5.35281 -0.02362
```

Interpreting a linear model with two predictors

```
##
## Call:
## lm(formula = mpg ~ wt + factor(am), data = mtcars)
##
## Coefficients:
## (Intercept) wt factor(am)1
## 37.32155 -5.35281 -0.02362
```

• while keeping the same weight, cars with manual transmission will reduce additional 0.02362 miles per gallon, compared to cars with automatic transmission.

Assessing model fit

- coefficient of determination R-squared » just squaring Pearson's correlation r
 - always increase when number of predictors increases not good for multivariable model
- adjusted R-squared
 - penalized for number of predictors
- RSE = residual standard error
 - typical difference between prediction and observed values
- AIC
- BIC

Checking model fit

```
mpg model <- lm(mpg ~ wt + factor(am), data = mtcars)</pre>
summary(mpg model)
##
## Call:
## lm(formula = mpg ~ wt + factor(am), data = mtcars)
##
## Residuals:
##
      Min
             1Q Median
                           3Q
                                       Max
## -4.5295 -2.3619 -0.1317 1.4025 6.8782
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37.32155 3.05464 12.218 5.84e-13 ***
                E 2E201
```

Checking model fit using glance()

```
mpg_model %>%
    glance()

## # A tibble: 1 x 12
```

r.squared adj.r.squared sigma statistic p.value df logLik

We look at sigma for RSE. The value of RSE is 3.10.

typical difference between predicted mpg and observed mpg is 3.10 miles per gallon.

library(broom)

##

AIC

Visualizing model fit

Visualizing model fit 2

What is next!

- model diagnostics in details
- quadratic or cubed model
- modelling on transformed data
- prediction
- outliers, leverage or influential points
- model building or variable selection

See R Handout!

Let's practice in R!

Section 10

Logistic Regression

Logistic Regression

- another type of linear regression
- The outcome variable is logical » meaning 1 and 0.

We can still run a linear model on the binary outcome.

```
lm(am ~ mpg, data = mtcars)
```

```
##
## Call:
## lm(formula = am ~ mpg, data = mtcars)
##
## Coefficients:
## (Intercept) mpg
## -0.59149 0.04966
```

Visualizing linear model on binary outcome

Let's add am indicating automatic transmission by 0 and manual by 1

Odds Ratio

$$OddsRatio = \frac{Probability_of_something_happening}{probability_of_something_not_happening}$$

$$OddsRatio = \frac{probability}{(1-probability)}$$

$$OddsRatio = \frac{0.25}{(1-0.25)} = \frac{1}{3}$$

Running a logistic regression

```
logm1 <- glm(am ~ mpg, data = mtcars, family = binomial)</pre>
summary(logm1)
##
## Call:
## glm(formula = am ~ mpg, family = binomial, data = mtcars)
##
## Deviance Residuals:
##
      Min
                1Q Median
                                  3Q
                                          Max
## -1.5701 -0.7531 -0.4245 0.5866 2.0617
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -6.6035 2.3514 -2.808 0.00498 **
                 0 2070
                                           0 00751 **
```

Displaying coefficient estimates

```
logm1 %>%
    tidy()
```

```
# A tibble: 2 x 5
               estimate std.error statistic p.value
##
    term
##
    <chr>
                  dbl>
                            <dbl>
                                     <dbl>
                                             <dbl>
##
    (Intercept)
                 -6.60
                           2.35
                                     -2.81 0.00498
                  0.307
                           0.115
                                      2.67 0.00751
##
  2
    mpg
```

With 1 mpg increase, there is 0.307 log odds chance of being manual. *it is hard to understand log odds scale without visualization.*

Calculating odds ratios

```
cbind(
    exp(coef(logm1)),
    exp(confint(logm1))
)

## Waiting for profiling to be done...
```

```
## 2.5 % 97.5 %
## (Intercept) 0.001355579 4.425443e-06 0.06255158
## mpg 1.359379288 1.129764e+00 1.79946863
```

See R Handout!

Let's practice in R!