

MOUSE Fkh^{sf} cDNA SEQUENCE

1	GCTGATCCCC	CTCTAGCAGT	CCACTTCACC	AAGGTGAGCG	AGTGTCCCTG
51	CTCTCCCCCA	CCAGACAÇAG	CTCTGCTGGC	GAAAGTGGCA	GAGAGGTATT
101	GAGGGTGGGT	GTCAGGAGCC-	CACCAGTACA	GCTGGAAACA	CCCAGCCACT
151	CCAGCTCCCG	GCAACTTCTC	CTGACTCTGC	CTTCAGACGA	GACTTGGAAG
201	ACAGTCACAT	CTCAGCAGCT	CCTCTGCCGT	TATCCAGCCT	GCCTCTGACA
251	AGAACCCAAT	GCCCAACCCT	AGGCCAGCCA	AGCCTATGGC	TCCTTCCTTG
301	GCCCTTGGCC	CATCCCCAGG	AGTCTTGCCA	AGCTGGAAGA	CTGCACCCAA
351	GGGCTCAGAA	CTTCTAGGGA	CCAGGGGCTC	TGGGGGACCC	TTCCAAGGTC
401	GGGACCTGCG	AAGTGGGGCC	CACACCTCTT	${\tt CTTCCTTGAA}$	CCCCCTGCCA
451	CCATCCCAGC	TGCAGCTGCC	TACAGTGCCC	CTAGTCATGG	TGGCACCGTC
501	TGGGGCCCGA	CTAGGTCCCT	CACCCCACCT	ACAGGCCCTT	CTCCAGGACA
551	GACCACACTT	CATGCATCAG	CTCTCCACTG	TGGATGCCCA	TGCCCAGACC
601	CCTGTGCTCC	AAGTGCGTCC	ACTGGACAAC	CCAGCCATGA	TCAGCCTCCC
651	ACCACCTTCT	GCTGCCACTG	GGGTCTTCTC	CCTCAAGGCC	CGGCCTGGCC
701	TGCCACCTGG	GATCAATGTG	GCCAGTCTGG	AATGGGTGTC	CAGGGAGCCA
751	GCTCTACTCT	GCACCTTCCC	ACGCTCGGGT	ACACCCAGGA	AAGACAGCAA
801	CCTTTTGGCT	GCACCCCAAG	GATCCTACCC	ACTGCTGGCA	AATGGAGTCT
851	GCAAGTGGCC	TGGTTGTGAG	AAGGTCTTCG	AGGAGCCAGA	AGAGTTTCTC
901	AAGCACTGCC	AAGCAGATCA	TCTCCTGGAT	GAGAAAGGCA	AGGCCCAGTG
951	CCTCCTCCAG	AGAGAAGTGG	TGCAGTCTCT	GGAGCAGCAG	CTGGAGCTGG
1001	AAAAGGAGAA	GCTGGGAGCT	ATGCAGGCCC	ACCTGGCTGG	GAAGATGGCG
1051	CTGGCCAAGG	CTCCATCTGT	GGCCTCAATG	GACAAGAGCT	CTTGCTGCAT
1101	CGTAGCCACC	AGTACTCAGG	GCAGTGTGCT	CCCGGCCTGG	TCTGCTCCTC
1151	GGGAGGCTCC	AGACGGCGGC	CTGTTTGCAG	TGCGGAGGCA	CCTCTGGGGA
1201	AGCCATGGCA	ATAGTTCCTT	CCCAGAGTTC	TTCCACAACA	TGGACTACTT
1251	CAAGTACCAC	AATATGCGAC	CCCCTTTCAC	CTATGCCACC	CTTATCCGAT
1301	GGGCCATCCT	GGAAGCCCCG	GAGAGGCAGA	GGACACTCAA	TGAAATCTAC
1351	CATTGGTTTA	CTCGCATGTT	CGCCTACTTC	AGAAACCACC	CCGCCACCTG
1401	GAAGAATGCC	ATCCGCCACA	ACCTGAGCCT	GCACAAGTGC	TTTGTGCGAG
1451	TGGAGAGCGA	GAAGGGAGCA	GTGTGGACCG	TAGATGAATT	TGAGTTTCGC
1501	AAGAAGAGGA	GCCAACGCCC	CAACAAGTGC	TCCAATCCCT	GCCCTTGACC
1551	TCAAAACCAA	GAAAAGGTGG	GCGGGGGAGG	GGGCCAAAAC	CATGAGACTG
1601	AGGCTGTGGG	GGCAAGGAGG	CAAGTCCTAC	GTGTACCTAT	GGAAACCGGG
1651	CGATGATGTG	CCTGCTATCA	GGGCCTCTGC	TCCCTATCTA	GCTGCCCTCC
1701	TAGATCATAT	CATCTGCCTT	ACAGCTGAGA	GGGGTGCCAA	TCCCAGCCTA
1751	GCCCCTAGTT	CCAACCTAGC	CCCAAGATGA	ACTTTCCAGT	CAAAGAGCCC
1801	TCACAACCAG	CTATACATAT	CTGCCTTGGC	CACTGCCAAG	CAGAAAGATG
1851	ACAGACACCA	TCCTAATATT	TACTCAACCC	AAACCCTAAA	ACATGAAGAG
1901	CCTGCCTTGG	TACATTCGTG	AACTTTCAAA	GTTAGTCATG	CAGTCACACA
1951	TGACTGCAGT	CCTACTGACT	CACACCCCAA	AGCACTCACC	CACAACATCT
2001	GGAACCACGG	GCACTATCAC	ACATAGGTGT	ATATACAGAC	CCTTACACAG
2051	CAACAGCACT	GGAACCTTCA	CAATTACATC	CCCCCAAACC	ACACAGGCAT
2101	AACTGATCAT	ACGCAGCCTC	AAGCAATGCC	CAAAATACAA	GTCAGACACA
2151	GCTTGTCAGA				

Figure 1

MOUSE Fkhst PROTEIN SEQUENCE

1	MPNPRPAKPM	APSLALGPSP	GVLPSWKTAP	KGSELLGTRG	SGGPFQGRDL
51	RSGAHTSSSL	NPLPPSQLQL	PTVPLVMVAP	SGARLGPSPH	LQALLQDRPH
101	FMHQLSTVDA	HAQTPVLQVR	PLDNPAMISL	PPPSAATGVF	SLKARPGLPP
151	GINVASLEWV	SREPALLCTF	PRSGTPRKDS	NLLAAPQGSY	PLLANGVCKW
201	PGCEKVFEEP	EEFLKHCQAD	HLLDEKGKAQ	CLLQREVVQS	LEQQLELEKE
251	KLGAMQAHLA	GKMALAKAPS	VASMDKSSCC	IVATSTQGSV	LPAWSAPREA
301	PDGGLFAVRR	HLWGSHGNSS	FPEFFHNMDY	FKYHNMRPPF	TYATLIRWAI
351	LEAPERQRTL	NEIYHWFTRM	FAYFRNHPAT	WKNAIRHNLS	LHKCFVRVES
401	EKGAVWTVDE	FEFRKKRSQR	PNKCSNPCP*		

HUMAN FKHI cDNA Sequence

```
1 GCACACACTC ATCGAAAAAA ATTTGGATTA TTAGAAGAGA GAGGTCTGCG
  51 GCTTCCACAC CGTACAGCGT-GGTTTTTCTT CTCGGTATAA AAGCAAAGTT
 101 GTTTTGATA CGTGACAGTT TCCCACAAGC CAGGCTGATC CTTTTCTGTC
     AGTCCACTTC ACCAAGCCTG CCCTTGGACA AGGACCCGAT GCCCAACCCC
 201 AGGCCTGGCA AGCCCTCGGC CCCTTCCTTG GCCCTTGGCC CATCCCCAGG
 251 AGCCTCGCCC AGCTGGAGGG CTGCACCCAA AGCCTCAGAC CTGCTGGGGG
      CCCGGGGCCC AGGGGGAACC TTCCAGGGCC GAGATCTTCG AGGCGGGGCC
 301
     CATGCCTCCT CTTCTTCCTT GAACCCCATG CCACCATCGC AGCTGCAGCT
 401 GCCCACACTG CCCCTAGTCA TGGTGGCACC CTCCGGGGCA CGGCTGGGCC
 451 CCTTGCCCCA CTTACAGGCA CTCCTCCAGG ACAGGCCACA TTTCATGCAC
 501 CAGCTCTCAA CGGTGGATGC CCACGCCCGG ACCCCTGTGC TGCAGGTGCA
 551 CCCCCTGGAG AGCCCAGCCA TGATCAGCCT CACACCACCC ACCACCGCCA
 601 CTGGGGTCTT CTCCCTCAAG GCCCGGCCTG GCCTCCCACC TGGGATCAAC
 651
     GTGGCCAGCC TGGAATGGGT GTCCAGGGAG CCGGCACTGC TCTGCACCTT
 701 CCCAAATCCC AGTGCACCCA GGAAGGACAG CACCCTTTCG GCTGTGCCCC
 751 AGAGCTCCTA CCCACTGCTG GCAAATGGTG TCTGCAAGTG GCCCGGATGT
 801 GAGAAGGTCT TCGAAGAGCC AGAGGACTTC CTCAAGCACT GCCAGGCGGA
851 CCATCTTCTG GATGAGAAGG GCAGGGCACA ATGTCTCCTC CAGAGAGAGA
 901 TGGTACAGTC TCTGGAGCAG CAGCTGGTGC TGGAGAAGGA GAAGCTGAGT
951
     GCCATGCAGG CCCACCTGGC TGGGAAAATG GCACTGACCA AGGCTTCATC
1001 TGTGGCATCA TCCGACAAGG GCTCCTGCTG CATCGTAGCT GCTGGCAGCC
1051 AAGGCCCTGT CGTCCCAGCC TGGTCTGGCC CCCGGGAGGC CCCTGACAGC
1101 CTGTTTGCTG TCCGGAGGCA CCTGTGGGGT AGCCATGGAA ACAGCACATT
1151 CCCAGAGTTC CTCCACAACA TGGACTACTT CAAGTTCCAC AACATGCGAC
1201 CCCCTTCAC CTACGCCACG CTCATCCGCT GGGCCATCCT GGAGGCTCCA
1251 GAGAAGCAGC GGACACTCAA TGAGATCTAC CACTGGTTCA CACGCATGTT
1301 TGCCTTCTTC AGAAACCATC CTGCCACCTG GAAGAACGCC ATCCGCCACA
1351 ACCTGAGTCT GCACAAGTGC TTTGTGCGGG TGGAGAGCGA GAAGGGGGCT
1401 GTGTGGACCG TGGATGAGCT GGAGTTCCGC AAGAAACGGA GCCAGAGGCC
1451 CAGCAGGTGT TCCAACCCTA CACCTGGCCC CTGACCTCAA GATCAAGGAA
1501 AGGAGGATGG ACGAACAGGG GCCAAACTGG TGGGAGGCAG AGGTGGTGGG
1551 GGCAGGGATG ATAGGCCCTG GATGTGCCCA CAGGGACCAA GAAGTGAGGT
1601 TTCCACTGTC TTGCCTGCCA GGGCCCCTGT TCCCCCGCTG GCAGCCACCC
1651 CCTCCCCCAT CATATCCTTT GCCCCAAGGC TGCTCAGAGG GGCCCCGGTC
1701 CTGGCCCCAG CCCCCACCTC CGCCCCAGAC ACACCCCCCA GTCGAGCCCT
1751 GCAGCCAAAC AGAGCCTTCA CAACCAGCCA CACAGAGCCT GCCTCAGCTG
1801 CTCGCACAGA TTACTTCAGG GCTGGAAAAG TCACACAGAC ACACAAAATG
1851 TCACAATCCT GTCCCTCAC
```

HUMAN FKH^{sf} PROTEIN SEQUENCE

1	MPNPRPGKPS	APSLALGPSP	GASPSWRAAP	KASDLLGARG	PGGTFQGRDL
51	RGGAHASSSS	LNPMPPSQLQ	${\tt LPTLPLVMVA}$	PSGARLGPLP	HLQALLQDRE
101	HFMHQLSTVD	AHARTPVLQV	HPLESPAMIS	LTPPTTATGV	FSLKARPGLE
151	PGINVASLEW	VSREPALLCT	FPNPSAPRKD	STLSAVPQSS	YPLLANGVCK
201	WPGCEKVFEE	PEDFLKHCQA	DHLLDEKGRA	QCLLQREMVQ	SLEQQLVLER
251	EKLSAMQAHL	AGKMALTKAS	${\tt SVASSDKGSC}$	CIVAAGSQGP	VVPAWSGPRE
301	APDSLFAVRR	HLWGSHGNST	FPEFLHNMDY	FKFHNMRPPF	TYATLIRWAI
351	LEAPEKQRTL	NEIYHWFTRM	FAFFRNHPAT	WKNAIRHNLS	LHKCFVRVES
401	PROMINITION OF	T E ED WYDCOD	DEDCEMBEDO	D+	

Vector for generation of FKH^{sf} Transgenic mice

FKHsf Transgene corrects the defect in scurfy animals

FKHsf tg mice have reduce lymph node cells compared to normal cells

	Mo	Mouse genotype	ype
	Normal	Scurfy	Transgenic
Cell number			
Cells / LN	0.92	1.97	7 0.29
Cells / Thymus	0.76	0.54	4 0.76

FKHsf transgenic mice respond poorly to in vitro stimulation

	Mo	Mouse genotype	ype
	Normal	Scurfy	Scurfy Transgenid
Proliferation			
No stimulation	778	23488	596
Anti-CD3+Anti-CD28	22932	225981	9106

FKHsf cDNA

Ξ

10

6

œ

9

Ŋ

4

(exons) joined by heavy horizontal lines (introns). Coding exons are numbered 1-11 as determined by sequence analysis of FKHst cDNA; non-coding 5' exons are labelled a and b. The FKHst-specific and JM2-specific splicing patterns and Comparison of FKH" and JM2 cDNAs. Exon/intron structure is shown (Genomic) as open rectangles resulting cDNAs are indicated above and below the genomic structure, respectively.

Forkhead Human FKH ^{sī}	96.4%		Mouse Fkhsf	Mouse Fkhst	Mouse Fkhst
Mid	82.8%				
JNZ	95.8%				
N-terminal	83.4%	-			

Human and mouse FKHsf proteins are highly conserved.