

An Introduction to the Classical Theory of Computation

Dr. Hugo García Tecocoatzi

Instituto Tecnológico y de Estudios Superiores de Monterrey

August 14th 2025

About me

- Education: Double Ph.D. in Theoretical Particle Physics
 - University of Genoa (Italy)
 - UNAM (Mexico)
- Research Areas:
 - Nuclear Physics: Heavy-ion double charge exchange (DCE), single/two-nucleon transfer, single charge exchange reactions.
 - Member (since 2017) of the NUMEN Collaboration
 - Particle Physics:
 - First theoretical prediction of excited Ω_b , confirmed by LHCb, 2020.
 - Studies on hidden-charm pentaquarks (LHCb, 2019).
 - Predictions for heavy hybrid meson strong decay widths.
 - Effective models for light and heavy-flavor baryons.
- New Skills: Certified in data science, Al, Python, machine learning, and generative Al.

Upcoming Talk (join on Friday) via:

- Zoom link
- YouTube live stream

Subjects in this block

- 2.0 Introduction.
 - Classical vs Quantum Computing.
- 2.1 Turing machines.
- 2.2 Universal Turing machines.
- 2.3 Gate-based Universal model of classical computation.
- 2.4 Complexity theory in a nutshell: classes P, NP, NP-Complete and NP-hard.

Classical vs Quantum: Inputs and Usage

- Classical computers handle most everyday tasks:
 - Text processing, databases, web services.
 - Scientific simulations of modest size.
- Quantum computers require inputs encoded into quantum states:
 - Data must often be prepared from classical sources.
 - Results are measured back into classical bits.
- Hybrid approach in practice:
 - Classical PC prepares data and controls the quantum hardware.
 - Quantum processor executes the quantum algorithm.
 - Classical PC processes and stores the results.

When Quantum is Faster (and When It's Not)

Quantum advantage:

- Exponential speedups: Shor's algorithm for factoring large integers.
- Quadratic speedups: Grover's algorithm for unstructured search.
- Simulating quantum systems in physics and chemistry.

Classical advantage:

- Most arithmetic and logical operations.
- Small or medium-size problems where quantum setup overhead is large.
- Data-heavy tasks without a known quantum speedup.

2.1 Turing Machines

A foundational model of computation introduced by Alan Turing (1936)

Why do we need Turing Machines?

- Before modern computers existed, mathematicians wanted to formally define what it means to compute.
- Alan Turing proposed a simple, abstract machine to capture the essence of computation.
- Still relevant today for:
 - Defining what problems are solvable.
 - Proving limits of computation.

General Description of a Turing Machine

- A theoretical model of computation that forms the foundation for understanding algorithms and the limits of computation.
- Consists of:
 - An infinite tape divided into cells.
 - A **read/write head** that moves along the tape.
 - A finite control unit with a set of states and rules.
- Operates by reading the current symbol, consulting transition rules, writing a new symbol, moving the head, and changing state.
- Despite its simplicity, can simulate any computer algorithm.
- Powerful tool for exploring computability and complexity.

Basic Components

A Turing Machine consists of:

- Infinite tape divided into cells, each holding one symbol.
- 4 Head that can:
 - Read the current symbol.
 - Write a symbol.
 - Move one cell left or right.
- Finite control with a set of states, including:
 - Start state.
 - Accept/reject states (halting conditions).

Illustration of a Turing Machine showing the tape, head, and control unit.

Formal Definition

A Turing Machine M is a 7-tuple:

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\mathsf{accept}}, q_{\mathsf{reject}})$$

Where:

- Q: finite set of states.
- Σ: input alphabet (no blank symbol).
- Γ : tape alphabet ($\Sigma \subset \Gamma$, includes blank symbol).
- δ : transition function:

$$\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$$

- q_0 : start state.
- $q_{\text{accept}}, q_{\text{reject}} \in Q$: halting states.

How a Turing Machine Works

- Machine starts in q_0 with input on the tape.
- 2 Reads the symbol under the head.
- Transition function:
 - Changes the state.
 - Writes a symbol on the tape.
 - Moves the head left (L) or right (R).
- Repeats until reaching q_{accept} or q_{reject}.

Example of a Turing Machine execution.

Example: Unary Increment

Task: Given an input in unary notation (e.g., 111 for the number 3), produce the number incremented by 1 (1111 for 4).

Idea:

- Start at the leftmost symbol.
- Move right until a blank symbol (_) is found.
- Write 1 in the blank.
- 4 Halt.

```
Tape alphabet: \{ 1, \bot \}
States: \{ q_0 \text{ (start)}, q_{\text{halt (halt)}} \}
```

Step-by-Step Execution

Initial tape: ...[_] [1] [1] [1] [_] [_] ...

Head starts at the first cell in q_0 .

Step	Action
1	Read 1, move right.
2	Read 1, move right.
3	Read 1, move right.
4	Read _, write 1.
5	Enter q_{halt} and stop.

Final tape: ...[_][1][1][1][1][...

Result: Unary number incremented by 1.

Example: Turing Machine for $L = \{0^n1^n\}$

Goal: Accept strings with the same number of 0's followed by the same number of 1's.

Algorithm:

- Start at the leftmost cell.
- Find the first unmarked 0, replace it with X.
- 3 Move right until the first unmarked 1, replace it with Y.
- Move left to the start of the tape.
- Repeat steps 2-4 until:
 - All 0's are marked X and all 1's are marked Y → Accept.
 - $\bullet \ \, \text{Mismatch found (wrong order or unequal counts)} \to \textbf{Reject}.$

Tape alphabet: $\{0, 1, X, Y, \square\}$

Execution Example: Input 0011

 $[0][0][1][1][_]...$ Initial tape:

Step	Tape	Action
1	$[0][0][1][1][_]$	Mark first $0 \to X$, move right
2	[X][0][1][1][₋]	Mark next $0 o X$, move right
3	[X][X][1][1][₋]	Mark first $1 o Y$, move left
4	[X][X][Y][1][₋]	Move left to find unmarked 0 (none left)
5	[X][X][Y][Y][_]	All matched: Accept

Final tape: $[X][X][Y][Y][_]...$

Result: String belongs to *L*.

TM for $L = \{0^n 1^n \mid n \ge 1\}$ — Formal Definition

A Turing Machine M deciding L:

$$\textit{M} = (\textit{Q}, \Sigma, \Gamma, \delta, \textit{q}_{\mathsf{start}}, \textit{q}_{\mathsf{accept}}, \textit{q}_{\mathsf{reject}})$$

- $Q = \{q_{\text{start}}, q_0, q_1, q_2, q_{\text{accept}}, q_{\text{reject}}\}$
- $\Sigma = \{0, 1\}$
- $\Gamma = \{0, 1, X, Y, \square\}$ (\square is blank)
- q_{start} is the start state
- $q_{\text{accept}}, q_{\text{reject}}$ are halting states

Intuition: Pair each leftmost unmarked 0 with the rightmost next unmarked 1 by marking them X and Y; repeat from the left. Reject on order/count mismatches.

Legend: Head \rightarrow cell with arrow; states shown above the tape.

q_{start}

Mark first $0 \rightarrow X$ and move right

Legend: Head \rightarrow cell with arrow; states shown above the tape.

q₁ (scan to first unmarked 1)

Skip 0/X/Y until a 1 is found

Legend: Head \rightarrow cell with arrow; states shown above the tape.

q₂ (return left after matching)

Matched $1 \rightarrow Y$, move left to the left end

Legend: Head \rightarrow cell with arrow; states shown above the tape.

q₀ (seek next unmarked 0)

From left blank, step right and resume pairing

Legend: Head \rightarrow cell with arrow; states shown above the tape.

 q_2 (after matching the second 1)

All 0's have been paired and marked

Legend: Head \rightarrow cell with arrow; states shown above the tape.

 q_{accept}

No unmarked 0/1 remain \Rightarrow Accept

Exercise: Design a TM for $L = 0.1^{n}0$

Language:

$$L = \{ 01^n0 \mid n \ge 1 \}$$

That is: strings that start with a single 0, followed by one or more 1's, and end with a single 0.

Your task:

- **Step 1:** Write the high-level algorithm for deciding *L*.
 - Check that the first symbol is 0.
 - Verify that at least one 1 follows.
 - Ensure the final symbol is 0 and nothing else after it.
- **Step 2:** Define the 7-tuple $M = (Q, \Sigma, \Gamma, \delta, q_{\text{start}}, q_{\text{accept}}, q_{\text{reject}})$.
- **Step 3:** Draw the state diagram and label the transitions.
- **Step 4:** Test with example inputs:

Hint:

- Scan the first symbol and confirm it's 0.
- Loop over consecutive 1's.
- Accept if the next symbol is a single 0 and the tape ends after it.

Why They Matter

- **Universality:** Any computation can be expressed as a Turing Machine.
- Limits: Some problems are not solvable by any Turing Machine.
- Theoretical foundation for:
 - Complexity theory.
 - Programming languages.
 - Modern computer architecture.

Turing Machines: Key Takeaways

- Abstract, simple, yet powerful computational model.
- Consists of an infinite tape, a head, and finite control.
- Formalizes the concept of an algorithm.
- Foundation for understanding computability and complexity.