Додаток 1

Міністерство освіти і науки України

Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського"

Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 5 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження складних циклічних алгоритмів»

Варіант 23

Виконав студент ІП-15, Мочалов Дмитро Юрійович

Перевірив Вєчєрковська Анастасія Сергіївна

Лабораторна робота 5

Дослідження складних циклічних алгоритмів

Мета – дослідити особливості роботи складних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант 23

Задача. Для чисел, що належать діапазону [a, b] визначити дільники, що ϵ членами послідовності Фібоначі.

Змінна	Тип	Ім'я	Призначення
Початкове значення діапазону	Цілий	a	Вхідні данні
ітерація	Цілий	i	Лічильник
Кінцеве значення діапазону	Цілий	b	Вхідні данні
Минулий член послідовності Фібоначі	Цілий	Fib1	Проміжні данні
Минулий член послідовності Фібоначі	Цілий	Fib2	Проміжні данні
Член послідовності Фібоначі	Цілий	Fib_digit	Результат

Таким чином, математичне модулювання зводится до знаходження членів послідовності Фібоначі поки вони меньше чисел з діапазону там перевірки чи ε вони дільниками цих чисел. Для отримання остачі від ділення використаємо %.

Крок1: визначитись з алгоритмом

Крок2: деталізуємо алгоритм проходження по числам з діапазону

Крок2: деталізуємо алгоритм знаходження дільників які є членами послідовності Фібоначі

Псевдокод

Крок1

Початок

Деталізуємо алгоритм проходження по числам з діапазону

Деталізуємо алгоритм знаходження дільників які є членами послідовності Фібоначі

Кінець

Крок2

```
Початок
```

```
повторити
```

```
для і від а до b
```

Деталізуємо алгоритм знаходження дільників які є членами послідовності Фібоначі

все повторити

Кінець

```
Крок3
```

Початок

```
повторити
```

```
для і від 1 до п

fib1 := 0;

fib2 := 1;

fib_digit := fib2;

повторити

поки fib_digit <= і

якщо і%fib_digit == 0

то

вивести fib_digit

все якщо

fib1 := fib2;

fib2 := fib_digit;

fib_digit := fib1 + fib2;

все повторити

все повторити
```

Кінець

Блок-схема

Випробовування алгоритму

Крок	Дія
	Початок
1	a = 1
2	b = 3
3	I = 1
4	Fib1 = 0
5	Fib2 = 1
6	Fib_digit = 1
7	Вивести Fib_digit
8	I = 2
9	Fib1 = 0
10	Fib2 = 1
11	Fib_digit = 1
12	Вивести Fib_digit
13	Fib1 = 1
14	Fib2 = 1
15	Fib_digit = 2
16	Вивести Fib_digit
17	i = 3

18	Fib1 = 0	
19	Fib2 = 1	
20	Fib_digit = 1	
21	Вивести Fib_digit	
22	Fib1 = 1	
23	Fib2 = 1	
24	Fib_digit = 2	
25	Fib1 = 1	
26	Fib2 = 2	
27	Fib_digit = 3	
28	Вивести Fib_digit	
	Кінець	

Висновок:Ми дослідити особливості роботи складних циклів та набули практичних навичок їх використання під час складання програмних специфікацій.