Color Analysis of Floral Tissues

K. Uckele

2025-01-29

Contents

Introduction	2
Setup Load Required Libraries	
Quality Control Load Spectral Data from Google Sheets	e e
Spectral Data Processing Convert Data to rspec Objects Average the Spectra Fix Negative Reflectance Values Determine Smoothing Parameter Smooth the Spectral Data Scale the Spectral Data	
Petal Spectra Plot	8 8 9 10 11
Define spectral descriptors Calculate Spectral Descriptors Bract Plot Bract Spectral Descriptors Histograms Petal Summary Plot Petal Spectral Descriptors Histograms Labellum Summary	12 12 12 12 13 13 14 14
Data Formatting and Export Reformat Rownames	15

Export Summary	Descriptors to	CSV .		. 16
----------------	----------------	-------	--	------

Introduction

This analysis explores the color properties of different floral tissues — bract, petal, and labellum — using spectral data sourced from Google Sheets. The analysis includes data loading, quality control, spectral processing, visualization, and the computation of summary descriptors.

Setup

Load Required Libraries

```
## libraries
library(googlesheets4)
library(cowplot)
library(dplyr)
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
library(tibble)
library(knitr)
library(rmarkdown)
library(pavo)
```

Set working directory

```
# Set the root directory to the project root
knitr::opts_knit$set(root.dir = normalizePath("../"))
```

Define Custom Operators

```
# Define a 'not in' operator
`%notin%` = Negate(`%in%`)
```

Authenticate Google Sheets Access

Authenticate access to Google Sheets using your email. Ensure that the email has the necessary permissions to access the sheets.

```
# Authenticate with Google Sheets
gs4_auth(email = "kuckele@ucsc.edu")
```

Quality Control

Load Spectral Data from Google Sheets

We load the spectral data for bract, petal, and labellum from the specified Google Sheets.

```
# Specify the Google Sheets ID
sheet_id <- "12NWtlqKbLPAxU-rVBTqMQjY_6jH1DulVvNHS_QXAvFI"

# Load data for different floral tissues
bract <- read_sheet(ss = sheet_id, sheet = "Bract")

## v Reading from "Color".

## v Range ''Bract''.

petal <- read_sheet(ss = sheet_id, sheet = "Petal")

## v Reading from "Color".

## v Range ''Petal''.

labellum <- read_sheet(ss = sheet_id, sheet = "Labellum")

## v Reading from "Color".

## v Range ''Labellum''.</pre>
```

Spectral Data Processing

Convert Data to rspec Objects

The spectral data is converted into rspec objects using the pavo package for further analysis.

```
# Set seed for reproducibility
set.seed(1612217)
# Convert datasets to rspec objects with wavelength limits
bract\_spec \leftarrow as.rspec(bract, lim = c(300, 700), whichwl = 1)
## The spectral data contain 555 negative value(s),
## which may produce unexpected results if used in models.
## Consider using procspec() to correct them.
petal_spec \leftarrow as.rspec(petal, lim = c(300, 700), whichwl = 1)
## The spectral data contain 272 negative value(s),
## which may produce unexpected results if used in models.
## Consider using procspec() to correct them.
labellum_spec <- as.rspec(labellum, lim = c(300, 700), whichwl = 1)</pre>
# change column names
colnames(bract_spec) <- gsub("-", "x", colnames(bract_spec))</pre>
colnames(petal_spec) <- gsub("-", "x", colnames(petal_spec))</pre>
colnames(labellum_spec) <- gsub("-", "x", colnames(labellum_spec))</pre>
```

Note: The conversion may produce warnings about negative values in spectral data, which are addressed in subsequent steps.

Average the Spectra

Aggregate the spectral data by sample names, averaging replicates.

```
# Extract sample names by removing trailing numbers in parentheses
bract_samples \leftarrow gsub("\\([0-9]+\\)$", "", names(bract_spec))[-1]
petal_samples <- gsub("\\([0-9]+\\)$", "", names(petal_spec))[-1]</pre>
labellum_samples <- gsub("\\([0-9]+\\)$", "", names(labellum_spec))[-1]
# Verify sample counts
table(bract_samples)
## bract_samples
##
      125
                      39
                           39x10 39x109 39x110 39x115 39x116 39x117
                                                                        39x12 39x122
##
                                                                            2
                       1
                               2
                                       1
                                              2
                                                      2
                                                              1
                                                                     3
##
  39x123 39x125 39x126
                           39x13 39x130 39x136
                                                 39x14
                                                         39x15
                                                                 39x16
                                                                        39x17
                                                                                 39x2
                       2
                                              2
                                                      3
                                                             2
                                                                     4
##
        2
                2
                               1
                                       3
           39x23
                   39x25
                           39x27
                                  39x34
                                                                 39x41
                                                                                39x46
##
    39x21
                                          39x39
                                                  39x4
                                                         39x40
                                                                        39x44
                2
                       2
                               2
                                       2
                                              2
                                                      2
                                                             2
                                                                     2
                                                                            2
##
##
    39x49
           39x50
                   39x51
                           39x55
                                  39x56
                                          39x57
                                                  39x6
                                                         39x60
                                                                39x65
                                                                        39x67
                                                                                39x68
                       2
##
        2
                2
                               2
                                       2
                                              2
                                                      2
                                                             2
                                                                     2
                                                                            2
                                                                                    1
##
    39x75
           39x77
                   39x78
                           39x79
                                   39x8
                                          39x81
                                                 39x82
                                                         39x86
                                                                39x87
                                                                        39x89
                       2
                               2
                                              2
##
                2
                                       1
                                                      3
                                                             1
                                                                     1
    39x93
##
           39x95
                   39x96
                           39x98
                                  62x10 62x103 62x105 62x109 62x116 62x119 62x122
##
                2
                       2
                               2
                                       1
                                              2
                                                      2
                                                             1
  62x125 62x128 62x129
                          62x13 62x130 62x131 62x134 62x135 62x136 62x137 62x138
##
##
                       2
                               2
                                              2
                                                      1
                                                             2
        1
                1
                                      1
           62x14 62x140 62x143 62x144 62x147 62x151 62x152 62x153 62x154 62x157
##
  62x139
##
                       2
                               1
                                       2
                                              1
                                                      1
                                                             3
           62x16 62x162 62x167 62x168 62x169 62x17 62x172 62x173 62x175
##
  62x158
                                                                               62x18
                       2
                               2
                                              1
                                                      2
                                       1
## 62x182 62x185 62x188 62x189
                                  62x19 62x190 62x197 62x200 62x206
                                                                        62x21 62x214
                                       2
                                              2
                                                      2
                                                             2
##
                       1
                               1
                   62x22 62x220 62x225 62x233 62x234 62x240 62x251 62x252 62x258
## 62x218 62x219
##
        2
                2
                       2
                               1
                                       2
                                              1
                                                      1
                                                             2
                                                                     2
                                                                            1
## 62x261 62x264 62x265 62x267 62x268 62x276 62x282 62x293 62x296 62x300 62x302
                2
                       1
                               2
                                       2
                                              1
                                                      1
                                                             2
                                                                     1
##
  62x303 62x304 62x305 62x306 62x307 62x308 62x309 62x310 62x313 62x315 62x322
##
                       1
                               1
                                       2
                                              1
                                                      2
                                                             1
                1
                                                                     1
## 62x324 62x327 62x332 62x337 62x338 62x351 62x355 62x359 62x363 62x370
                                                                                 62x5
##
                       2
                                       2
                                                      2
                                                             2
                                                                     2
        1
                1
                               1
                                              1
                                                                            1
##
    62x57
           62x58
                   62x59
                           62x60
                                  62x63
                                          62x65
                                                 62x66
                                                         62x69
                                                                62x73
                                                                        62x74
                                                                                62x75
##
        2
                2
                       2
                               1
                                       1
                                              1
                                                      1
                                                             2
                                                                     2
                                                                            1
##
    62x77
           62x83
                   62x87
                           62x91
                                  62x92
                                          62x94
                                                 62x96
                                                          BRAC
                               2
                                       2
##
                2
                       1
                                              1
                                                      1
table(petal_samples)
## petal_samples
##
      125
             126
                           39x10 39x109 39x110 39x115 39x116 39x117
                                                                        39x12 39x122
                      39
                2
                       1
                               2
                                      1
                                              2
                                                      2
                                                             1
                                                                     3
                                                                            2
  39x123 39x125 39x126
                           39x13 39x130 39x136
                                                 39x14
                                                         39x15
                                                                39x16
                                                                        39x17
                                                                                 39x2
##
##
        2
                2
                       2
                               1
                                       3
                                              2
                                                      3
                                                             2
                                                                     4
                                                                            2
                   39x25
                                                                                39x46
##
    39x21
           39x23
                           39x27
                                  39x34
                                          39x39
                                                  39x4
                                                         39x40
                                                                39x41
                                                                        39x44
##
        2
                2
                       2
                               2
                                       2
                                              2
                                                      2
                                                             2
                                                                     2
                                                                            2
                                                                                    2
                          39x55 39x56 39x57
    39x49
           39x50
                   39x51
                                                  39x6
                                                        39x60 39x65
                                                                        39x67
                                                                                39x68
```

2 2 2 2 2 2 39x75 39x77 39x78 39x79 39x8 39x81 39x82 39x86 39x87 39x89 39x92 39x93 39x95 39x96 39x98 62x10 62x103 62x105 62x109 62x116 62x119 62x122 ## ## 62x125 62x128 62x129 62x13 62x130 62x131 62x134 62x135 62x136 62x137 62x138 2 1 ## 62x139 62x14 62x140 62x143 62x144 62x147 62x151 62x152 62x153 62x154 62x157 1 1 ## 62x158 62x16 62x162 62x167 62x168 62x169 62x17 62x172 62x173 62x175 62x18 ## 62x182 62x185 62x188 62x189 62x19 62x190 62x197 62x200 62x206 62x21 62x214 ## 62x218 62x219 62x22 62x220 62x225 62x233 62x234 62x240 62x251 62x252 62x258 ## 62x261 62x262 62x264 62x265 62x268 62x276 62x282 62x293 62x296 62x300 62x302 ## 62x303 62x304 62x305 62x306 62x307 62x308 62x309 62x310 62x313 62x315 62x322 ## 62x324 62x327 62x332 62x337 62x338 62x351 62x355 62x359 62x363 62x370 ## 62x57 62x58 62x59 62x60 62x63 62x65 62x66 62x69 62x73 62x74 62x75 ## 62x77 62x83 62x87 62x91 62x92 62x94 62x96 BRAC ##

table(labellum_samples)

labellum_samples ## ## .3 39x123 39x125 39x126 39x13 39x130 39x136 39x14 39x15 39x16 39x17 39x21 39x23 39x25 39x27 39x34 39x39 39x4 39x40 39x41 39x44 39x46 ## 39x49 39x50 39x51 39x55 39x56 39x57 39x6 39x60 39x65 39x67 ## ## 39x75 39x77 39x78 39x79 ## 39x93 39x95 39x96 39x98 62x10 62x103 62x105 62x109 62x116 62x119 62x122 ## ## 62x125 62x128 62x129 62x13 62x130 62x131 62x134 62x135 62x136 62x137 62x138 ## 62x139 62x14 62x140 62x143 62x144 62x147 62x151 62x152 62x153 62x154 62x157 ## 62x158 62x16 62x162 62x167 62x168 62x169 62x17 62x172 62x173 62x175 62x18 ## 62x182 62x185 62x188 62x189 62x19 62x190 62x197 62x200 62x206 62x21 62x214 ## 62x218 62x219 62x22 62x220 62x225 62x233 62x234 62x240 62x251 62x252 62x258 ## 62x261 62x262 62x264 62x265 62x268 62x276 62x282 62x293 62x296 62x300 62x302 ## 62x303 62x304 62x305 62x306 62x307 62x308 62x309 62x310 62x313 62x315 62x322

```
## 62x324 62x327 62x332 62x337 62x338 62x351 62x355 62x359 62x363 62x370
                                                                            62x5
##
                      2
                             2
                                    2
                                           1
                                                  2
                                                         2
                                                                2
                                                                               1
        1
              1
                                                                       1
##
   62x57 62x58 62x59 62x60 62x63 62x65 62x66 62x69
                                                            62x73 62x74 62x75
##
                      2
                                                  1
                                                         2
                                                                2
                                                                               1
                             1
                                    1
                                           1
                                                                       1
   62x77
##
          62x83
                  62x87
                         62x91
                                62x92
                                       62x94
                                              62x96
                                                      BRAC
##
                             2
                                    2
                      1
# Aggregate spectra by sample names using mean
bract_spec_avg <- aggspec(bract_spec, by = bract_samples, FUN = mean)</pre>
petal_spec_avg <- aggspec(petal_spec, by = petal_samples, FUN = mean)</pre>
labellum_spec_avg <- aggspec(labellum_spec, by = labellum_samples, FUN = mean)
```

Fix Negative Reflectance Values

Negative reflectance values are corrected by adding the minimum reflectance.

```
# Fix negative values by adding the minimum reflectance
bract_spec_avg <- procspec(bract_spec_avg, fixneg = "addmin")

## processing options applied:
## Negative value correction: added min to all reflectance

petal_spec_avg <- procspec(petal_spec_avg, fixneg = "addmin")

## processing options applied:
## Negative value correction: added min to all reflectance

labellum_spec_avg <- procspec(labellum_spec_avg, fixneg = "addmin")

## processing options applied:
## Negative value correction: added min to all reflectance</pre>
```

Determine Smoothing Parameter

Use plotsmooth to visualize and decide on an appropriate smoothing span.

Choose a span (e.g., 0.2) based on the plot to balance smoothness and data fidelity.

Smooth the Spectral Data

Apply smoothing to the spectral data using the chosen span.

```
# Apply smoothing with span = 0.2
bract_spec_sm <- procspec(bract_spec_avg, opt = "smooth", span = 0.2)

## processing options applied:
## smoothing spectra with a span of 0.2

petal_spec_sm <- procspec(petal_spec_avg, opt = "smooth", span = 0.2)

## processing options applied:
## smoothing spectra with a span of 0.2

labellum_spec_sm <- procspec(labellum_spec_avg, opt = "smooth", span = 0.2)

## processing options applied:
## smoothing spectra with a span of 0.2</pre>
```

Scale the Spectral Data

Scale the spectral data to different reference points for comparative analysis.

```
# Scale spectra to both minimum and maximum reflectance
bract_spec_scaleminmax <- procspec(bract_spec_sm, opt = c("min", "max"))
## processing options applied:
## Scaling spectra to a minimum value of zero</pre>
```

```
## Scaling spectra to a maximum value of 1

petal_spec_scaleminmax <- procspec(petal_spec_sm, opt = c("min", "max"))

## processing options applied:
## Scaling spectra to a minimum value of zero
## Scaling spectra to a maximum value of 1

labellum_spec_scaleminmax <- procspec(labellum_spec_sm, opt = c("min", "max"))

## processing options applied:
## Scaling spectra to a minimum value of zero
## Scaling spectra to a maximum value of 1</pre>
```

Plot Processed Spectra

Visualize the processed spectral data for each floral tissue, highlighting specific samples.

Define Common Plotting Parameters

```
# Define a color palette for highlighting specific samples
highlight_colors <- c(rep("lightgrey", 170), "gold1", "gold1", "darkgreen")</pre>
```

Bract Spectra Plot

Bract Spectra

Petal Spectra Plot

Petal Spectra

Labellum Spectra Plot

Labellum Spectra

Combine and Save Spectral Plots with Highlighted Parents

##

```
# Save combined spectra plots with highlighted parental samples
pdf("./results/figures/Combined_Spectra_Bract_Petal_Labellum_Cbracteatus_Clasius_hybrids.pdf", width = .
par(mfrow = c(1, 3))
# Increase left margin to provide more space for y-axis labels
par(mar = c(5, 5, 4, 2) + 0.1) # c(bottom, left, top, right)
plot(bract_spec_scaleminmax[order_spec_bract], type = "o", col = highlight_colors,
     main = "Bract spectra", xlab = "Wavelength (nm)", ylab = "Reflectance (%)",
     cex.main = 3, cex.lab = 2.5, cex.axis = 2, lwd = 2)
legend("topleft", legend = c("C. bracteatus parent", "C. lasius parent"),
       col = c("darkgreen", "gold1"), lty = 1, cex = 2.5, bty = "n")
plot(petal_spec_scaleminmax[order_spec_petal], type = "o", col = highlight_colors,
     main = "Petal spectra", xlab = "Wavelength (nm)", ylab = "Reflectance (%)",
     cex.main = 3, cex.lab = 2.5, cex.axis = 2, lwd = 2)
legend("topleft", legend = c("C. bracteatus parent", "C. lasius parent"),
       col = c("darkgreen", "gold1"), lty = 1, cex = 2.5, bty = "n")
plot(labellum_spec_scaleminmax[order_spec_labellum], type = "o", col = highlight_colors,
     main = "Labellum spectra", xlab = "Wavelength (nm)", ylab = "Reflectance (%)",
     cex.main = 3, cex.lab = 2.5, cex.axis = 2, lwd = 2)
legend("topleft", legend = c("C. bracteatus parent", "C. lasius parent"),
       col = c("darkgreen", "gold1"), lty = 1, cex = 2.5, bty = "n")
dev.off()
## pdf
```

Spectral Descriptors

We compute various spectral descriptors to quantify the color properties of the floral tissues.

Define spectral descriptors

B1: Total brightness B2: Mean brightness B3: Intensity (Rmax) S1U to S1R: Relative contributions of UV, Violet, Blue, Green, Yellow, and Red spectral ranges to total brightness S2: Spectral saturation (Rmax/Rmin) S3: Chroma S4: Spectral purity S5: Chroma S6: Contrast (Rmax - Rmin) S7: Spectral saturation S8: Chroma ((Rmax - Rmin)/B2) S9: Carotenoid chroma ((R700 - R450)/R700) S10: Peaky chroma H1 to H5: Hue metrics (e.g., peak wavelength) Note: Some metrics may be sensitive to spectral noise.

Calculate Spectral Descriptors

Bract

```
# Calculate spectral descriptors for bract
summary_bract <- summary(bract_spec_scaleminmax)

# Remove S2 due to infinite values
summary_bract <- summary_bract %>% select(-S2)

# Extract metrics for parents
bract125 <- round(summary_bract["125", ], 3)
bract126 <- round(summary_bract["126", ], 3)
bractBRAC <- round(summary_bract["BRAC", ], 3)</pre>
```

Plot Bract Spectral Descriptors Histograms

```
pdf("./results/figures/bract_descriptors_histograms.pdf", width = 14, height = 10)
# Set up plotting area: 4 rows x 6 columns for histograms
par(mfrow = c(4, 6),
                           # 4 rows, 6 columns
   mar = c(5, 5, 4, 2) + 0.1, # Margins for each plot: bottom, left, top, right
    oma = c(0, 0, 0, 5)) # Outer margins: bottom, left, top, right
# Loop through each metric and plot histogram with parental lines
for (i in 1:ncol(summary bract)) {
 hist(summary bract[, i],
       xlab = colnames(summary_bract)[i],
      main = colnames(summary_bract)[i],
      col = "lightgrey",
      border = "white")
  # Add vertical lines for parental samples
  abline(v = bract125[i], col = 'gold1', lwd = 3)
                                                    # C. lasius parent
 abline(v = bract126[i], col = 'gold1', lwd = 3) # C. lasius parent
  abline(v = bractBRAC[i], col = 'darkgreen', lwd = 3) # C. bracteatus parent
}
# Allow drawing in the outer margin
par(xpd = TRUE)
plot.new()
```

```
# Add a shared legend in the outer right margin
legend("topright",
      inset = c(0, 0), # Adjusts the position of the legend
      legend = c("C. lasius parent", "C. bracteatus parent"),
      col = c("gold1", "darkgreen"),
      lty = 1,
                            # Line type: solid
      lwd = 3,
                           # Line width
      cex = 1.5,
                           # Text size
      bty = "n")
                           # No box around the legend
# Close the PDF device to save the file
dev.off()
## pdf
##
```

Petal Summary

```
# Calculate summary statistics for petal
summary_petal <- summary(petal_spec_scaleminmax)

# Remove S2 due to infinite values
summary_petal <- summary_petal %>% select(-S2)

# Extract metrics for specific samples
petal125 <- round(summary_petal["125", ], 3)
petal126 <- round(summary_petal["126", ], 3)
petalBRAC <- round(summary_petal["BRAC", ], 3)</pre>
```

Plot Petal Spectral Descriptors Histograms

```
pdf("./results/figures/petal_descriptors_histograms.pdf", width = 14, height = 10)
# Set up plotting area: 4 rows x 6 columns for histograms
                       # 4 rows, 6 columns
par(mfrow = c(4, 6),
    mar = c(5, 5, 4, 2) + 0.1, # Margins for each plot: bottom, left, top, right
    oma = c(0, 0, 0, 5)) # Outer margins: bottom, left, top, right
# Loop through each metric and plot histogram with parental lines
for (i in 1:ncol(summary_petal)) {
  hist(summary_petal[, i],
       xlab = colnames(summary_petal)[i],
       main = colnames(summary_petal)[i],
       col = "lightgrey",
       border = "white")
  # Add vertical lines for parental samples
  abline(v = petal125[i], col = 'gold1', lwd = 3)  # C. lasius parent
abline(v = petal126[i], col = 'gold1', lwd = 3)  # C. lasius parent
  abline(v = petalBRAC[i], col = 'darkgreen', lwd = 3) # C. bracteatus parent
# Allow drawing in the outer margin
```

```
par(xpd = TRUE)
plot.new()
# Add a shared legend in the outer right margin
legend("topright",
      inset = c(0, 0), # Adjusts the position of the legend
      legend = c("C. lasius parent", "C. bracteatus parent"),
      col = c("gold1", "darkgreen"),
      lty = 1,
                            # Line type: solid
      lwd = 3,
                           # Line width
      cex = 1.5,
                           # Text size
      bty = "n")
                           # No box around the legend
# Close the PDF device to save the file
dev.off()
## pdf
##
```

Labellum Summary

```
# Calculate summary statistics for labellum
summary_labellum <- summary(labellum_spec_scaleminmax)

# Remove S2 due to infinite values
summary_labellum <- summary_labellum %>% select(-S2)

# Extract metrics for specific samples
labellum125 <- round(summary_labellum["125", ], 3)
labellum126 <- round(summary_labellum["126", ], 3)
labellumBRAC <- round(summary_labellum["BRAC", ], 3)</pre>
```

Plot Labellum Spectral Descriptors Histograms

```
pdf("./results/figures/labellum_descriptors_histograms.pdf", width = 14, height = 10)
# Set up plotting area: 4 rows x 6 columns for histograms
par(mfrow = c(4, 6),
                       # 4 rows, 6 columns
   mar = c(5, 5, 4, 2) + 0.1, # Margins for each plot: bottom, left, top, right
   oma = c(0, 0, 0, 5)) # Outer margins: bottom, left, top, right
# Loop through each metric and plot histogram with parental lines
for (i in 1:ncol(summary_labellum)) {
 hist(summary_labellum[, i],
      xlab = colnames(summary_labellum)[i],
      main = colnames(summary_labellum)[i],
      col = "lightgrey",
      border = "white")
 # Add vertical lines for parental samples
 abline(v = labellum125[i], col = 'gold1', lwd = 3) # C. lasius parent
 abline(v = labellum126[i], col = 'gold1', lwd = 3) # C. lasius parent
```

```
abline(v = labellumBRAC[i], col = 'darkgreen', lwd = 3) # C. bracteatus parent
}
# Allow drawing in the outer margin
par(xpd = TRUE)
plot.new()
# Add a shared legend in the outer right margin
legend("topright",
      inset = c(0, 0), # Adjusts the position of the legend
      legend = c("C. lasius parent", "C. bracteatus parent"),
       col = c("gold1", "darkgreen"),
      lty = 1,
                            # Line type: solid
      lwd = 3,
                            # Line width
       cex = 1.5,
                            # Text size
      bty = "n")
                            # No box around the legend
# Close the PDF device to save the file
dev.off()
## pdf
## 2
```

Data Formatting and Export

Reformat Rownames

Replace 'x' with ' ' in row names for consistency.

```
# Replace 'x' with '_' in row names
rownames(summary_bract) <- gsub("x", "_", rownames(summary_bract))
rownames(summary_petal) <- gsub("x", "_", rownames(summary_petal))
rownames(summary_labellum) <- gsub("x", "_", rownames(summary_labellum))</pre>
```

Subset and Rename Columns

Select relevant metrics and rename columns to indicate their corresponding floral tissue.

Convert Rownames to a Column

Add the row names as a new column id to facilitate merging.

```
# Convert row names to a column named 'id'
summary_bract <- summary_bract %>% rownames_to_column(var = "id")
summary_petal <- summary_petal %>% rownames_to_column(var = "id")
summary_labellum <- summary_labellum %>% rownames_to_column(var = "id")
```

Merge Summary Dataframes

Combine the summary dataframes for bract, petal, and labellum into a single dataframe.

```
# Merge bract and petal summaries by 'id'
joined_df <- summary_bract %>%
full_join(summary_petal, by = "id") %>%
full_join(summary_labellum, by = "id")
```

Export Summary Descriptors to CSV

Save the combined summary descriptors to a CSV file for further analysis or reporting.