# A General Approach to Define Binders using Matching Logic

Xiaohong Chen and Grigore Rosu {xc3,grosu}@illinois.edu



#### **Motivation: K Formal Semantics Framework**



- K is a formal semantics framework
- K has been used to define real-world languages
  - C, Java, JavaScript, Python, EVM, Solidity, ...
- K makes it easy to define PL syntax & semantics
  - Including defining binders

Theoretical Question: What does [binder] mean?



## **Matching Logic: Logical Foundation of K**



- Previous work[...,LMCS'17,LICS'19]
  - FOL
  - Separation logic
  - Hoare logic
  - Temporal logics
  - Modal  $\mu$ -calculus
  - ...
- new This paper studies logical systems where binders play a major role.
  - λ-calculus
  - $\pi$ -calculus
  - Various type systems
  - ..

#### **Main Contribution**

1. A simple variant of matching logic that is more suitable for defining binders (sections 3-5).

Then, taking  $\lambda$ -calculus as an example:

- 2. A matching logic theory  $\Gamma^{\lambda}$  (section 6) and an encoding of  $\lambda$ -expressions:  $\lambda x. e \equiv \text{lambda}[x: Var] e$
- 3. A set of theorems that establish the correctness of the encoding:
  - a. (Conservative Extension, Theorem 36)  $\vdash_{\lambda} e_1 = e_2 \text{ iff } \Gamma^{\lambda} \vdash e_1 = e_2$
  - b. (Deductive Completeness, Theorem 36)  $\Gamma^{\lambda} \vdash e_1 = e_2 \text{ iff } \Gamma^{\lambda} \models e_1 = e_2$
  - c. (Representative Completeness, Section 8.2.2). For any  $\lambda$ -theory T, there is a matching logic model  $M_T \models \Gamma^{\lambda}$  such that  $T \vdash_{\lambda} e_1 = e_2$  iff  $M_T \models e_1 = e_2$ .
  - d. (Capturing All Models, Lemma 32).
    - For any  $\lambda$ -calculus model A, there is a matching logic model  $M_A \models \Gamma^{\lambda}$  such that  $A \models_{\lambda} e_1 = e_2$  iff  $M_T \models e_1 = e_2$ .
- 4. Generalization to other systems with binders: System F, pure type systems, ... in a unifying way (section 9).

Straightforward Encoding: Binders = (1) Creating a binding + (2) Building a term

## **Matching Logic Overview**

A simple logic focused on pattern matching



- Patterns can be matched by zero, one, or more elements.
  - zero
  - one
  - zero V one
  - succ n
  - even
  - succ even

- *mult3*
- $even \land mult3$
- $1 \mapsto 2$
- $1 \mapsto 2 * 2 \mapsto 3$
- $\exists x. 1 \mapsto x \land x \ge 42$
- $h_1 * h_2 \equiv \exists h . h \land (h * h_1 \subseteq h_2)$

### **Matching Logic Theories**

- A theory is a collection of symbols, notations, and a set of axioms about them.
- **Example**:  $\Gamma^{Nat}$ , the theory of natural numbers
  - *zero*, *succ*, *plus*: symbols
  - $\exists x. zero = x$ , i.e., zero is matched by exactly one element (i.e., it is a FOL-style term)
  - $\forall x \exists y. succ \ x = y$ , i.e., succ is a FOL-style function
  - $\forall x. zero \neq succ x$
  - $\forall x \forall y. succ \ x = succ \ y \rightarrow x = y$
  - $x + y \equiv plus \ x \ y$ , just a notation for better readability
  - $\forall y$ . plus zero y = y
  - $\forall x \forall y. plus (succ x) y = succ (plus x y)$
- In the paper, we defined many basic theories:
  - $\Gamma^{Pair}$ , the theory of pairs.  $\langle x, y \rangle$  represents the pair of x and y
  - $\Gamma^{Sort}$ , the theory of sorts.  $\forall x : Nat. \varphi$  and  $\exists x : Nat. \varphi$
  - $\Gamma^{Function}$ , the theory of functions.  $succ: Nat \rightarrow Nat$  and  $plus: Nat \times Nat \rightarrow Nat$

## Theory of $\lambda$ -Calculus $\Gamma^{\lambda}$



the <u>set</u> of all pairs (i.e., the <u>graph</u>):  $\exists x : Var. \langle x, e \rangle$  the binding of x in e is created by the  $\exists$ -binder of matching logic

Therefore, we let

- $[x: Var] e \equiv \text{intension } \exists x: Var. \langle x, e \rangle$
- $\lambda x. e \equiv \text{lambda}[x: Var] e$



## Encoding of $\lambda$ -Expressions and Its Correctness





#### Generalization

It's easy to generalize  $\Gamma^{\lambda}$  to other binder-featured systems.

- $vx.e \equiv nu[x]e$ ; new process name creation in  $\pi$ -calculus;
- $\Pi t. e \equiv \text{Pi } [t] e$ ;  $\Pi$ -type constructor in System F;
- $\lambda x$ :  $e_1$ .  $e_2 \equiv \text{lambda}([x] e_2) e_1$ ; typed functions in pure type systems.

We give a systematic treatment of all the above via <u>Term-Generic Logic (TGL)</u>; check our paper for more details (section 9).





#### **Conclusion**

- We proposed a general approach to defining binders in matching logic, the foundation of K.
- We proposed a simple variant of matching logic.
- We studied untyped  $\lambda$ -calculus and proposed the encoding  $\lambda x$ .  $e \equiv \text{lambda}[x:Var]e$
- We proved the correctness of the encoding.
- We generalized the encoding to other systems with binders in a systematic way.
- For more details, read our papers

The conference paper: <a href="http://fsl.cs.illinois.edu/FSL/papers/2020/chen-rosu-2020-icfp/chen-rosu-2020-icfp-public.pdf">http://fsl.cs.illinois.edu/FSL/papers/2020/chen-rosu-2020-icfp/chen-rosu-2020-icfp-public.pdf</a>
The companion technical report (containing all proof details): <a href="http://hdl.handle.net/2142/106608">http://hdl.handle.net/2142/106608</a>

