1. Passage en coordonnées polaires

Soit $f: \mathcal{U} \to \mathbb{R}$ une fonction de classe C^1 définie sur un ouvert \mathcal{U} de \mathbb{R}^2 . Calculer $\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2$ en coordonnées polaires.

2. Laplacien en coordonnées polaires

On rappelle que si F est une fonction de classe C^2 de \mathbb{R}^2 dans \mathbb{R} , son laplacien est défini par :

$$\Delta F = \frac{\partial^2 F}{\partial x^2} + \frac{\partial^2 F}{\partial y^2}.$$

On fait le changement de variables en coordonnées polaires $x=r\cos\theta$ et $y=r\sin\theta$. Donner la nouvelle expression du laplacien par rapport aux variables r et θ (c'est-à-dire poser $f(r,\theta)=F(r\cos\theta,r\sin\theta)$ et exprimer ΔF en fonction de $f,\,r,\,\theta$ et des dérivées partielles de f).