CS4618: Artificial Intelligence I

Agents

Derek Bridge School of Computer Science and Information Technology University College Cork

Initialization

In [1]:

%reload_ext autoreload
%autoreload 2
%matplotlib inline

In [2]:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

Intelligence

- My far-from-perfect definition:
 - A system's degree of intelligence is defined in terms of its capacity to act autonomously and rationally when faced with disorder, uncertainty, imprecision and intractability.
- · Key points:
 - Intelligence is not a binary concept; it's a matter of degree
 - Autonomous, e.g. not under remote control; e.g. skills acquired by learning rather than instinct/pre-programming
 - Rational: acting so as to achieve your goals, given your beliefs
 - Certain situations are more challenging than others: disorder, uncertainty, imprecision, intractability (see also discussion of Environments, below)

Agents

• An **agent** is anything that can be viewed as **perceiving** its environment through **sensors** and **acting** upon that environment through **effectors**

Robots

• Robots are **embodied** agents, situated in **physical** environments

Software agents

• Software agents (sometimes called softbots) are situated in virtual environments

Sense, Plan, Act

- Sense
 - Use sensors to find things out about the environment
- Plan
 - Decide on the next action(s)
- Act
 - Use effector(s) to carry out the chosen action(s)

Action function

- The task of the Plan phase is to implement an action function that maps
 - from percept sequences
 - to the actions the agents can perform
- · In intelligent agents, this function exhibits high degrees of
 - autonomy and
 - rationality

Environments

- · Fully observable vs. partially observable
- · Deterministic vs. stochastic
- · Single-step vs. sequential
- Static vs. dynamic
- · Discrete vs. continuous
- · Single-agent vs. multi-agent
- Exercise: classify the environments of a chess program, a spam filter, a robot vacuum cleaner, and an autonomous car

Agents

- · Reactive agents
- Deliberative agents

Table-Driven Agents

- · At each point in time:
 - $\mathbf{s} = SENSE()$;
 - a = LOOKUP(s, table);
 - **■** *EXECUTE*(*a*);

Class exercise: Table-Driven Wall-Following Agent

1. Suppose the agent has 8 touch sensors, each returning 0 or 1

How many table entries will there be?

Class exercise

2. In fact, only three sensors are needed:

How many table entries will there be?

Class exercise

- 3. The actions are:
 - MOVE:
 - this moves the agent one cell forward
 - TURN(d, n) where d = LEFT or d = RIGHT and n = 0, 1, 2, etc.:
 - this turns the agent to the left or right, n lots of 45°

Fill in the table so that the agent walks the walls anticlockwise

Percept	Action
000	
001	
010	
011	
100	
101	
110	
111	

Discussion

- Is this agent autonomous?
- When is the table-driven approach a *possible* approach?
- When is it a practicable approach?