

Chapter 2: The Chemistry of Life

TABLE OF CONTENTS

2.1 — The Nature of Matter

Atoms

Protons and Neutrons

Electrons

Elements & Isotopes

Isotopes

Radioactive Isotopes

Chemical Compounds

Chemical Bonds

Ionic Bonds

Covalent Bonds

Van der Waals Forces

2.2 — Properties of Water

The Water Molecule

Polarity

Hydrogen Bonding

Solutions & Suspensions

Solutions

Acids, Bases & pH

The pH Scale

Acids

Bases

Buffers

2.3 — Carbon Compounds

The Chemistry of Carbon

Biomolecules

Carbohydrates

Lipids

Nucleic Acids

Proteins

2.4 — Chemical Reactions & Enzymes

Chemical Reactions

Energy in Reactions

Activation Energy

Enzymes

Nature's Catalysts

The Enzyme-Substrate Complex

Regulation of Enzyme Activity

2.1 — The Nature of Matter

Atoms

Atom: basic unit of matter

- Came from Democritus
- The point at which you break something and it no longer what it was before
 - Atomos → "unable to be cut"

Atoms are **NOT** the smallest unit of matter. There are **subatomic** particles.

• Protons, Neutrons, Electrons

Protons and Neutrons

About the same mass

Protons: + (positively-charged)

Neutrons: 0 (neutrally-charged)

• Nucleus: binding of protons and neutrons at the center of the atom

Electrons

Electrons: - (negatively-charged)

- 1/1840 the mass of a proton
- Constant motion surrounding the nucleus
 - Attracted to the protons in the nucleus but remain in orbit because of the energy of their motion

Atoms have equal amounts of protons and electrons (electrically-neutral).

Elements & Isotopes

Chemical Element → a pure substance that consists of only one type of atom

Represented by one or two-letter symbols

Isotopes

Atoms can have different numbers of neutrons.

• Isotopes: atoms that differ in the amount of neutrons they have

Mass Number: total number of protons and neutrons in an atom

Weighted → all possible isotopes are used in the calculation of average mass

All isotopes of an element have the same properties.

Radioactive Isotopes

Have unstable nuclei (break down over time)

Radioactive isotopes are used to ...

- Treat/fight cancer
- Kill food-spoiling bacteria
- "Trace" the movement of substances inside an organism

Chemical Compounds

Most elements are found in *compounds* with other elements.

- Chemical Compound: a chemical combination of two or more elements in a definite proportion
 - Shown in a chemical formula (shorthand for the composition of a chemical compound)

The properties of compounds look very different from the elements that they're formed from

Chemical Bonds

- Involves the outermost electrons of the atoms (valence electrons)
 - Covalent and ionic bonds

Ionic Bonds

lonic Bond: one or more electrons are transferred from one atom to another

- Atoms that lose electrons → positively-charged cations
- Atoms that gain electrons → negatively-charged anions

lons: positively or negatively-charged atoms

Covalent Bonds

Covalent Bond: moving electrons travel around the nuclei of both atoms

- Single Covalent Bond → shares 2 electrons
- Double Covalent Bond → shares 4 electrons

Triple Covalent Bond → shares 6 electrons

Molecule: structure formed when atoms are joined together by covalent bonds

Van der Waals Forces

Some atoms have a stronger attraction to electrons than others.

Van der Waals Forces: intermolecular forces of attraction between molecules

2.2 — Properties of Water

The Water Molecule

- Found in a liquid state across most of the Earth
- In a neutral state

Polarity

Water's nucleus attracts electrons.

A partial positive and partial negative charge on two ends

Hydrogen Bonding

Hydrogen Bonding: the attraction between a hydrogen atom with a partial positive charge and another atom with a partial negative charge

Most Common Partially-Negative Atoms Involved in Hydrogen Bonding:
 Oxygen, Nitrogen, and Fluorine

Cohesion: attraction between molecules of the same substance

Adhesion: attraction between molecules of different substances

Heat Capacity → takes large amounts of heat energy to make molecules to move faster

Raises the temperature of water

Water has a **HIGH** heat capacity.

• Water can take in a lot of heat and not change much temperature

Solutions & Suspensions

Water is often found in a mixture.

 Mixture: a material composed of two or more elements or compounds that physically mixed together (not chemically-combined)

Two Types of Mixtures that can be Made with Water: Solutions and Suspensions

Solutions

Evenly-distributed components

Solute → substance that is being dissolved

Solvent → substance in which the solute dissolves in

Water can dissolve both ionic compounds and other polar molecules.

Once water has dissolved all the water possible, it is saturated

Acids, Bases & pH

Water molecules split apart to form ions.

$$H_2O \longrightarrow H^+ + OH^-$$

water \longrightarrow hydrogen ion + hydroxide ion

The pH Scale

- Measurement system to indicate the concentration of H ⁺ and OH ⁻ ions in a solution
- Ranges from 0 to 14

pH of 7 \rightarrow equal concentrations of H $^+$ and OH $^-$

• Ex. pure water

```
pH < 7 \rightarrow \text{more H}^+ \text{ than OH}^- \text{ (acidic)}

pH > 7 \rightarrow \text{more OH}^- \text{ than H}^+ \text{ (basic)}
```

Each step on the pH scale has a factor of 10.

• pH of 4 has 10x as many H + ions as pH of 5

Acids

Acid: any compound that forms H ⁺ ions in solution

- High concentrations of H ⁺ than pure water
- Strong acids $\rightarrow pH 1-3$
 - Ex. hydrochloric acid (HCI)

Bases

Base: any compound that forms OH^- in solution

- Low concentrations of H * than pure water
- Strong bases → pH 11-14
 - Ex. lye (commonly NaOH)

Buffers

Buffers: weak acids or bases that can react with strong acids or bases to prevent sharp, sudden changes in pH

Helps to maintain homeostasis and keep bodily fluids in check

Human body pH should be between 6.5 and 7.5.

2.3 — Carbon Compounds

The Chemistry of Carbon

Carbon can make strong covalent bonds with many elements.

- All living organisms have carbon
- Carbon molecules can form chains (bonding with other carbons)

Biomolecules

Biomolecules: large, organic molecules found in living things

- Also known as macromolecules because of their size
- Made from many smaller molecules
- Formed through polymerization

Polymerization: a process in which compounds are built by joining smaller ones together

- Smaller units → monomers
 - Can be identical or different
- Formations → polymers

Carbohydrates

Carbohydrates: compounds made up of carbon, hydrogen, and oxygen atoms (common ratio \rightarrow 1:2:1)

- Used by living things as a source of energy
- Extra sugar can be stored as starches
 - Known as sugar molecules

Monosaccharides: single sugar molecules

Polysaccharides: large biomolecules formed by joining many monosaccharides together

• **Glycogen** → stores energy

Lipids

Lipids: a large and varied group of biomolecules that are generally not soluble in water

- Made from carbon and hydrogen atoms
- Ex. fats, oils, waxes

Steroids synthesized by the body are lipids.

Function as chemical messengers

Lipids can be formed when glycerol & fatty acids bond.

- Saturated → all carbons are connected by single covalent bonds
- Unsaturated → at least one double bond

Nucleic Acids

Nucleic Acids: biomolecules containing hydrogen, oxygen, nitrogen, carbon, and phosphorus

• Polymers assembled from *nucleotides* (the monomers)

Nucleotides consists of:

- A 5-Carbon Sugar
- A Phosphate Group
- A Nitrogenous Base

Nucleic acids function to transmit genetic information.

Two Types of Nucleic Acids: DNA and RNA

Proteins

Proteins: biomolecules that contain *nitrogen*, carbon, hydrogen, and oxygen

Polymers of amino acids

Amino Acids: compounds with an amino group on one end and a carboxyl group on the other

Linked by peptide bonds to form a polypeptide

Proteins are built from one or more polypeptides.

• Variety of functions (ex. controlling reaction rate, regulating cell processes)

Amino acids can join each other.

Proteins are some of the most diverse molecules.

Proteins have four levels of organization.

- 1. Sequence of Amino Acids
- 2. Folding of the Polypeptide Chain
- 3. 3D Arrangement of the Polypeptide Chain
- 4. How Polypeptide Chains (if more than one) are Organized in Relation to One Another

2.4 — Chemical Reactions & Enzymes

Chemical Reactions

Chemical Reaction: a process that changes a set of chemicals into another

Mass and energy are conserved

Reactants: elements/compounds entering into a reaction

Products: elements/compounds produced by a reaction

Chemical reactions change the chemical bonds

Energy in Reactions

Energy is released or absorbed when chemical bonds are formed or broken.

Chemical reactions that release energy occur on their own.

Chemical reactions that absorb energy require an energy source.

Organisms need energy to carry out reactions.

Activation Energy

Activation Energy: the energy needed to start a reaction

Involved whether releasing or absorbing energy

Enzymes

Catalyst: a substance that speeds up the rate of a reaction

Nature's Catalysts

Enzymes: proteins that act as biological catalysts

Lower activation energies

Enzymes are very specific, tailored to certain reactions.

The Enzyme-Substrate Complex

Enzymes provide a site for reactants to react.

Reduces energy needed

Substrates: reactants of enzyme-catalyzed reactions

Bind to a site on the enzyme called the active site

Active sites and substrates have precise fits to match together.

Regulation of Enzyme Activity

Enzymes ...

- Control chemical pathways
- Make materials needed by cells
- Release energy
- Transfer information

Enzyme activity can be affected by **temperature**, **pH**, and **regulatory molecules**.

- Most enzymes work at around 37°C
- Some molecules show 'on' or 'off' chemical signals