Advanced Business Data Mining

MSIS 522 – Lesson 2

Course Overview

- Lecture 1 Fundamentals of Machine Learning
- Lecture 2 Decision Tree
- Lecture 3 Ensemble Learning
- Lecture 4 Clustering
- Lecture 5 Recommendation Systems

Recap of Lesson 1

What is Machine Learning?

A computer program is said to learn from **experience** E with respect to some class of **tasks** T and **performance measure** P if its performance at tasks in T, as measured by P, improves with experience E. -- Tom Mitchell

Improving *performance P* with *experience E* at some *task T*.

3 Types of Machine Learning Algorithms

Supervised Learning

- **Regression**: A regression model predicts **continuous values**. For example, regression models make predictions that answer questions like the following:
 - What is the value of a house in California?
 - What is the demand of a product on Amazon next month?
- Classification: A classification model predicts discrete values. For example, classification models make predictions that answer questions like the following:
 - Is a given email message spam or not spam?
 - Is this an image of a dog, a cat, or a hamster?

Generalization

Machine Learning is all about **generalization** to future unseen data points.

- **Underfitting** a model is too simple and can not capture the underlying patterns within the data, thus does not perform well on new data.
- **Overfitting** a model tries to fit the training data so closely that it does not generalize well to new data.

Table: The age-income dataset.

ID	AGE	INCOME
1	21	24,000
2	32	48,000
3	62	83,000
4	72	61,000
5	84	52,000

K-fold Cross-validation

- 1. Divide the training data into K parts.
- 2. Use K-1 of the parts for training and 1 for testing.
- 3. Repeat the procedure K times, rotating the test set.
- 4. Determine the performance based on the results across all K iterations.

Leave-one-out Cross-validation is the extreme case of K-fold Cross-Validation where we keep only one data point in the test set.

Outline

- Linear Model and Its Limitation
- Decision Tree
- Hyper-parameter Tuning
- One-hot Encoding
- Lab

Linear Model and Its Limitation

Linear Model

Linear Regression

Predict continuous values, e.g. house price

Logistic Regression

Predict discrete values, e.g. email spam

Linear Regression

$$h_{w}(x) = w_0 + w_1 x$$

Mean Squared Error (MSE): the average squared difference between the actual and predicted values.

$$\mathcal{L}(w) = \frac{1}{N} \sum_{i=1}^{N} (y_i - h_{w}(x_i))^2$$

> Find parameters $w = \{w_0, w_1\}$ that minimize MSE over the training dataset.

Logistic Regression

$$h_{w}(x) = \sigma(w_0 + w_1 x)$$

Decision Boundary

 Cross Entropy (aka log-loss) measures the performance of a classification model based on its probabilistic output.

$$\mathcal{L}(w) = -\frac{1}{N} \sum_{i=1}^{N} [y_i \log(h_w(x_i)) + (1 - y_i) \log(1 - h_w(x_i))]$$

$$\log(h_w(x_i)) \quad \text{if } y_i = 1$$

$$\log(1 - h_w(x_i)) \quad \text{if } y_i = 0$$

> Find parameters w = {w₀, w₁} that minimize the cross entropy over the training dataset.

Linear Separable

Linear Separable

Not Linear Separable

Logical AND

X1	X2	Y
1	1	1
1	0	0
0	1	0
0	0	0

Logical OR

X1	X2	Y
1	1	1
1	0	0
0	1	0
0	0	0

Logical XOR

X1	X2	Y
1	1	0
1	0	1
0	1	1
0	0	0

Handle Nonlinear Separable Data

• Project existing data into other dimensional space so that data becomes linear separable in that space and then apply a linear model.

• Use a more powerful model which can model non-linearity in the data by itself.

Decision Tree

Decision Tree Basics

- **Decision nodes (blue)**: each node represents a test on a particular attribute.
- Leaf nodes (green): each node represents a prediction.

- Read down the tree to derive rules.
- # of leaf nodes equals # of rules encoded in a decision tree.

Decision Tree to the Rescue

Logical XOR

X1	X2	Y
1	1	0
1	0	1
0	1	1
0	0	0

Decision Boundaries

Decision Tree divides the input space into **axis-parallel** rectangles and label each rectangle with the class with most data in it.

A More Realistic Decision Tree

Classification And Regression Trees (CART)

• Classification Trees - predict categorical variable.

• **Regression Trees** - predict continuous variable.

How to construct a Decision Tree?

- Choose an attribute (i.e. a feature) for root.
- Split data using chosen attribute into disjoint subsets.
- Recursive partitioning for each subset.

Split of a Categorical Variable

- Examine all possible ways in which the categories can be split into two groups.
- E.g. categories A, B, C can be split 3 ways.
 - \circ {A} and {B, C}
 - \circ {B} and {A, C}
 - \circ {C} and {A, B}
- In theory, we have an exponential number of different splits.
- In practice, we often use one vs the rest.

How to Construct a Decision Tree

Training Set: 3 features and 2 classes

X	Y	Z	C
1	1	1	I
1	1	0	I
0	0	1	II
1	0	0	II

How do we build a Decision Tree to distinguish class I from II?

Classification Impurity Measure: Entropy

• Entropy measures the level of impurity in a group of examples.

$$H(x) = -\sum_{i} p_{i} \log(p_{i})$$

16/30 are green circles; 14/30 are pink crosses $log_2(16/30) = -.9$; $log_2(14/30) = -1.1$ Entropy = -(16/30)(-.9) - (14/30)(-1.1) = .99

Entropy for 2-class Cases

 What is the entropy of a group in which all examples belong to the same class?

$$-$$
 entropy = - 1 $\log_2 1 = 0$

not a good training set for learning

 What is the entropy of a group with 50% in either class?

$$-$$
 entropy = $-0.5 \log_2 0.5 - 0.5 \log_2 0.5 = 1$

good training set for learning

Minimum impurity

Maximum impurity

Quiz: Andrew Moore's Entropy in a Nutshell

Low Entropy

High Entropy

Information Gain

- Determine **which attribute** in a given set of training features is most useful for discriminating between the classes.
- **Information Gain** tells us how important a given attribute is in discriminating between the classes.
- Choose the attribute and split that maximize the information gain.

Information Gain = entropy(parent) – [average entropy(children)]

Information Gain Example

Information Gain = entropy(parent) – [average entropy(children)]

child entropy –
$$\left(\frac{13}{17}\cdot\log\frac{13}{17}\right)$$
 – $\left(\frac{4}{17}\cdot\log\frac{4}{17}\right)$ = 0.787

Entire population (30 instances)

$$\frac{\text{child}}{\text{entropy}} - \left(\frac{1}{13}\cdot\log\frac{13}{17}\right) - \left(\frac{4}{17}\cdot\log\frac{4}{17}\right) = 0.787$$

$$\frac{\text{child}}{\text{entropy}} - \left(\frac{1}{13}\cdot\log\frac{1}{13}\right) - \left(\frac{12}{13}\cdot\log\frac{12}{13}\right) = 0.391$$

parent – $\left(\frac{14}{30}\cdot\log\frac{14}{30}\right)$ – $\left(\frac{16}{30}\cdot\log\frac{16}{30}\right)$ = 0.996

(Weighted) Average Entropy of Children = $\left(\frac{17}{30}\cdot0.787\right) + \left(\frac{13}{30}\cdot0.391\right) = 0.615$

Information Gain = 0.996 - 0.615 = 0.38 for this split

Quiz

Training Set: 3 features and 2 classes

X	Y	Z	С
1	1	1	I
1	1	0	I
0	0	1	II
1	0	0	II

How do we build a Decision Tree to distinguish class I from II?

Quiz: Split on attribute X

X	Y	Z	C I
1	1	1	I
1	1	0	I
0	0	1	II II
1	0	0	II

Split on attribute X

If X is the best attribute, this node would be further split.

$$X=1$$
 III $E_{child1} = -(1/3)\log_2(1/3)-(2/3)\log_2(2/3)$ $= .5284 + .39$ $= .9184$ $E_{child2} = 0$

$$E_{parent}$$
= 1 GAIN = 1 - (3/4)(.9184) - (1/4)(0) = .3112

Quiz: Split on attribute Y

X	Y	Z	C
1	1	1	I
1	1	0	I
0	0	1	II
1	0	0	II

Split on attribute Y

Quiz: Split on attribute Z

X	Y	Z	C
1	1	1	Ι
1	1	0	Ι
0	0	1	II
1	0	0	II

Split on attribute Z

$$E_{parent} = 1$$

GAIN = 1 - (1/2)(1) - (1/2)(1) = 0 ie. NO GAIN; WORST

Classification Impurity Measure: Gini Impurity

$$I_G = 1 - \sum_{j=1}^{c} p_j^2$$

- **Gini impurity/index** is a measure to quantify the level of impurity in a group of examples.
 - \circ I(A) = 0 when all cases belong to the same class.
 - Max value when all classes are equally represented.

Split of a Numerical Variable

- For each numerical attribute:
 - Sort the attribute from the smallest to the largest.
 - Linearly scan these values and choose the split position leading to the maximum impurity reduction (i.e. information gain).

	Cheat		No	T	No	•	N	0	Ye	S	Ye	S	Ye	s	N	lo	N	lo	١	lo		No	
											Ta	xab	le In	com	e								
Sorted Values	_		60		70)	7	5	85	5	9	0	9	5	10	00	13	20	1	25		220	
Split Positions		5	5	6	5	7	2	8	0	8	7	9	2	9	7	1	10	1	22	1	72	23	0
		<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
	Gini	0.4	20	0.4	100	0.3	75	0.3	343	0.4	117	0.4	400	0.3	300	0.3	343	0.3	375	0.4	100	0.4	20

How to avoid overfitting in Decision Tree?

- Decision tree is very powerful in modeling complex patterns within the data.
- As the nodes increase, we can represent arbitrarily complex decision boundaries.

- Two major ways to prevent overfitting:
 - Set constraints on the tree size.
 - True pruning.

Setting Constraints on Tree Size

Pruning Decision Tree

- Grow the decision tree to a large depth.
- Start at the bottom and start removing leaves which are giving us negative returns based on a validation dataset.

Pros and Cons of Decision Tree

• Pros:

- Easy to interpret.
- Model nonlinear decision boundary.
- Works well out of the box.

• Cons:

- Tend to overfit if not properly tuned on validation data.
- Sensitive to feature space rotation due to axis parallel decision boundaries.

Learning Optimal Decision Tree is NP-complete

- Optimal Decision Tree finds the best partition of the data to achieve the global minimum error.
- Greed learning in constructing a Decision Tree does not guarantee optimality.

x_1	\boldsymbol{x}_2	x ₃	y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Decision Tree Variants

C4.5

- Multiple way split
- Error based Pruning

CART

- Binary split
- Cost-Complexity Pruning

Hyper-parameter Tuning

Generalization

Machine Learning is all about **generalization** to future unseen data points.

Hyper-parameters of Decision Tree

Grid Search

Find the best configuration for the hyper-parameters used in a ML model.

One-hot Encoding

What's One-hot Encoding?

• Categorical variables cannot be easily handled for most of the machine learning algorithms, e.g. linear regression, support vector machine and neural networks.

Food Name	Categorical #	Calories	
Apple	1	95	
Chicken	2	231	
Broccoli	3	50	

• One-hot encoding is a process by which **categorical variables** are converted into a form that could be provided to ML algorithms to do a better job in prediction.

One-hot Encoding Example

Label Encoding

Food Name	Categorical #	Calories		
Apple	1	95		
Chicken	2	231		
Broccoli	3	50		

One Hot Encoding

Apple	Chicken	Broccoli	Calories		
1	0	0	95		
0	1	0	231		
0	0	1	50		

Deal with Categorical Features of High Cardinality

For categorical features of high cardinality, one-hot encoding could potentially creates a huge sparse feature vector, making it hard for ML to learn.

- Solution 1: one-hot encode a subset of the most common values of that variable and encode the rest as one value.
- Solution 2: substitute the value with the average of the target variable for each value in the training set.

Lab

