Homework 5

Name: 方嘉聪 ID: 2200017849

Problem 1. (Textbook 5.9). 设有 n 项任务由 k 个可并行操作的机器完成, 完成任务 i 所需要的时间为 t_i . 求一个最佳任务分配方案, 使得完成时间 (即从时刻 0 计时, 到最后一台机器停止的时间) 达到最短.

Answer. 设 n 个任务的编号为 $1, 2, \dots, n$, k 台机器的编号为 $1, 2, \dots, k$. 使用深度优先遍历, 根节点分支出 k 条边, 分别表示任务 1 分配给机器 $1, 2, \dots, k$. 递归地, 对于每个节点, 分支出 k 条边, 表示任务 2 分配给机器 $1, 2, \dots, k$. 以此类推, 直到任务 n 分配给机器 $1, 2, \dots, k$, 由此可以得到 k^n 个分配方案.

用 $< i_1, i_2, \cdots, i_n > (\forall j \in \{1, 2, \cdots, n\}, 1 \le i_j \le k)$ 表示任务 $1, 2, \cdots, n$ 分配到了机器 i_1, i_2, \cdots, i_n . 对于每一个分配方案,对每个机器 j 会得到一个任务序列 $w_1, w_2, \cdots, w_{u_j}$,计算 u_j 个任务完成的总时间,即为机器 j 的完成时间. 从中选取最大的完成时间,即为这个分配方案的完成时间. 时间复杂度为 $O(nk^n)$.

从所有的分配方案中选取完成时间最短的一个, 即为最优的任务分配方案. 时间复杂度为 $O(k^n)$. 故总的时间复杂度为 $O(nk^n)$.

Problem 2. (Textbook 5.10). 在 Problem 1 中, 假设每个任务有个完成期限 B_i , 以及超出期限的罚款数 f_i . 试求一个最佳任务分配方案, 使得罚款总和最小.

Answer. 类似 **Problem 1** 得到任务分配方案 $< i_1, i_2, \cdots, i_n >$ (时间复杂度 $O(n \cdot k^n)$). 对于每个任务分配方案,设机器 j 分到的任务为 $w_1, w_2, \cdots, w_{u_j}$. 遍历任务序列的不同排列,计算各个顺序下的罚款总和,选取最小的一个排列 (解空间是一个排列树,按照深度优先遍历),时间复杂度为 $O(n \cdot n! \cdot k^n)$. 最后从 k^n 个方案中选取总罚款数最小的任务分配方案,时间复杂度为 $O(k^n)$. 故整个问题的时间复杂度为 $O(n \cdot n! \cdot k^n)$.

Problem 3. (Minimizing Kendall tau distance). Given m rank lists denoted as P_1, P_2, \ldots, P_m , each of which is a permutation of integers from 1 to n. We want to find an aggregation rank list S which is also a permutation of integers from 1 to n, and minimizes the *Kendall tau distance* between S and P_1, P_2, \ldots, P_m .

Kendall tau distance is defined as:

$$K(S; P_1, P_2, P_3, \dots, P_m) = \sum_{k=1}^{m} |\{(i, j) \mid \text{rank}(i, P_k) < \text{rank}(j, P_k) \text{ and } \text{rank}(i, S) > \text{rank}(j, S)\}|$$

where rank(i, P) represents the rank of i in permutation P. Please use the **branch-and-bound** method to solve this problem and provide **complexity analysis**.

Answer. 注意到 $K(S; P_1) = |\{(i, j) \mid \operatorname{rank}(i, P_1) < \operatorname{rank}(j, P_1) \text{ and } \operatorname{rank}(i, S) > \operatorname{rank}(j, S)\}|$ 等价于计算以 P_1 为参照 S 的逆序对数. 那么使用归并排序的思想,可以在 $O(n \log n)$ 的时间内计算出 $K(S; P_1)$.

按照字典顺序生成 $1,2,\cdots,n$ 的一个排列的树, 用深度优先搜索遍历这个树, 时间复杂度为 O(n!). 每次遍历到叶子节点时, 计算 $K(S; P_1, P_2, \cdots, P_m)$ (时间复杂度为 $O(mn \log n)$), 并更新最小值. 总的时间复杂度为 $O(n!mn \log n)$.

下面叙述如何通过分支限界技术来进行剪枝,设 $A_{t,k} = \langle i_1, i_2, \cdots, i_k \rangle$ 为当前的排列 (t 属于一个表示所有 n! 排列的指标集), L 为当前的最小距离 (初始化为 ∞). 设代价函数 (估计 $A_{t,k}$ 的 Kendall tau distance 下界) 为 $F(A_{t,k})$, $dis(A_{t,k})$ 表示目前得到的 Kendall tau distance. 则有以下剪枝策略:

- 1. 若 $dis(A_{t,k}) + F(A_{t,k}) \ge L$, 则剪枝.
- 2. 若 $K(S_t; P_1, P_2, \dots, P_m) < L$, 则更新 L.

$F(A_{t,k})$ 的定义为:

计算 i_1, i_2, \dots, i_k 出现在 $P_j(\forall j \in \{1, 2, \dots, m\})$ 的后 n - k 位的次数,记为 $C_{j,t,k}$,实现上可以直接 扫描一遍,计算一个 $C_{j,t,k}$ 的时间复杂度为 O(k(n-k)). 计算所有的 $C_{j,t,k}$,总的时间复杂度会增加 $O(n! \cdot m \cdot n^3)$,

令 $F(A_{t,k}) = \sum_{j=1}^{m} C_{j,t,k}^2$. 这是由于在最理想的情况下,假设可以做到 S 的后 n-k 对于所有的 P_j 都没有逆序对,那么只要考虑 S 的后 n-k 个元素与 P_j 的后 k 个元素的逆序对数. 对每个 P_j , $C_{j,t,k}^2$ 即为一个下界. 故这样定义的 $F(A_{t,k})$ 是一个合适的代价函数.

故最终总的时间复杂度为 $O(n! \cdot m \cdot n^3)$. 在实际应用中可能对不同情况再具体评估一下剪枝的效果.

 \triangleleft

Problem 4. (Circuit Routing). As shown in Figure 1, the printed circuit board (PCB) divides the wiring area into an $m \times n$ grid array. We want to determine the shortest routing scheme connecting the grid **a** to the grid **b**. To avoid crossing lines, the grid with already routed wires has been marked as blocked (as shown in **1** in Figure 1), and other lines are not allowed to pass through the blocked grid. When routing, the circuit wires can only be routed in a straight line or at a right angle. Please use the **branch-and-bound** method to solve this problem, explain the specific process, and analyze the **time complexity** of the algorithm (worst case).

Fig. 1. PCB routing example

Answer. 使用优先队列实现的广度优先搜索 (回溯, 每个节点只访问一次), 从 a 开始, 先将其周围的

合法节点加入优先队列中, 优先队列按照代价 (记为 f(a)) 从小到大排序. 每次取出代价最小的节点进行扩展, 直到取出的节点为终点或者优先队列为空. 时间复杂度为 $O(mn\log(mn))$.

进一步剪枝优化,给每个格点一个坐标 (i,j). 采用 A^* 搜索,设节点 A 的代价 f(A) = g(A) + h(A),其中 g(A) 表示目前已经走过的路径长度,h(A) 为启发函数. 这里取 h(A) 为 A 到终点 (记为 B) 的曼哈顿距离 $|x_a - x_b| + |y_a - y_b|$,显然 h(A) 是 A 到 B 的最短距离的一个下界,故 A^* 搜索的结果一定是最优解,时间复杂度为 $O(mn\log(mn))$.