Modelowanie Matematyczne - Projekt 3

Bartłomiej Krawczyk, 310774

Zadanie

Zestaw 6 JG

Opis modelowanego problemu:

Przedsiębiorstwo produkuje trzy produkty P1, P2, P3 (sztuki). Każdy z tych produktów potrzebuje trzech różnych składników S1, S2, S3 (kg/jednostkę). Każdy z produktów ma inną ceną jednostkową sprzedaży C_{P1} , C_{P2} , C_{P3} (tyś.PLN/jednostkę). Firma zwraca uwagę na ekologię i szacuje jednostkowy poziom zanieczyszczeń emitowanych dla poszczególnych produktów Z_{P1} , Z_{P2} , Z_{P3} (kg/jednostkę). Dostępne są również jednostkowe koszty produkcji K_{P1} , K_{P2} , K_{P3} (tyś.PLN/jednostkę).

Ograniczenia:

- 1. Nie można użyć więcej niż 110 kg składnika S1, ale 100 kg jest akceptowalne.
- 2. Zaleca się użycie 50 kg składnika S2, ale zużycie powyżej 55 kg nie jest akceptowalne.
- 3. Nie jest akceptowalne zużycie składnika S3 powyżej $50~{\rm kg}.$
- 4. Zakłada się się, że produkcja produktu P1 powinna być nie mniejsza niż 3 sztuki, a produktu P3 nie mniejsza niż 5 sztuk.

Cele postawione przez zarządzających firmą:

- 1. Maksymalizacja zysków; dążenie do zysku na poziomie 150 tyś. PLN, ale akceptowalny jest zysk na poziomie 130 tyś PLN.
- 2. Minimalizacja emisji zanieczyszczeń; dażenie do emisji na poziomie 30 kg, ale poziom 35 kg jest akceptowalny.
- 3. Minimalizacja kosztów produkcji; dążenie do kosztów na poziomie 70 tyś. PLN, ale koszty na poziomie 80 tyś. sa akceptowalne.

Polecenia do wykonania:

- 1. (2) Sformułować i opisać wielokryterialny model planowania produkcji z wykorzystaniem metody punktu odniesienia.
- 2. (3) Sformułować i opisać wielokryterialny model optymalnego planowania produkcji z wykorzystaniem zbiorów rozmytych.
- 3. (10) Sformułować równoważne zadanie optymalizacji dla zadania 2 z wykorzystaniem zbiorów rozmytych adaptując podejście Zimmermana dla więcej niż jednego kryterium.
- 4. (3) Zapisz zadanie/zadania sformułowane w punkcie 1 w postaci do rozwiązania z wykorzystaniem wybranego narzędzia implementacji (np. AMPL, AIMMS) i rozwiąż to zadanie/zadania. W przypadku niedopuszczalności zadania zaproponuj zmianę celów i/lub innych parametrów.
- 5. (7) Zapisz zadania sformułowane w punkcie 3 w postaci do rozwiązania z wykorzystaniem wybranego narzędzia implementacji (np. AMPL, AIMMS) i rozwiąż te zadania. W przypadku niedopuszczalności zadania zaproponuj zmianę celów i/lub innych parametrów.
- 6. (3) Porównaj rozwiązania zadań z poprzednich dwóch punktów.
- 7. (2) Rozwiąż zadanie z punktu 2 za pomoca pakietu R FuzzyLP. Należy w obliczeniach rozpatrywać niezależnie każde z kryteriów.
- 8. (3) Zaproponuj i zastosuj graficzną formę analizy rozwiązań.

9. (2) Opisz zalety i wady modelowania opisanego problemu z wykorzystaniem zbiorów rozmytych.

Dane:

produkt	S1	S2	S3	Cx	Zx	Kx
P1	2	8	4	9	1	1
P2	10	1	0	21	1	3
P3	4	4	2	11	3	3

produkt [sztuki] \ składniki [kg/jednostkę]	S1	S2	S3
P1	2	8	4
P2	10	1	0
P3	4	4	2

produkt [sztuki] \ cena jednostkowa [tyś.PLN/jednostkę]	Cx
P1	9
P2	21
P3	11

produkt [sztuki] \ emitowane zanieczyszczenia [kg/jednostkę]	Zx
P1	1
P2	1
P3	3

produkt [sztuki] \ koszty produkcji [tyś.PLN/jednostkę]	Kx
P1	1
P2	3
P3	3

Opracowany domyślny model

Został przygotowany bazowy model na bazie, który w zależności od podpunktu zadania został rozbudowany o dodatkowe zbiory, parametry, zmienne decyzyjne, ograniczenia i funkcje oceny.

Zbiory

- $PRODUCTS = \{P1, P2, P3\}$ zbiór możliwych do wyprodukowania produktów,
- $COMPONENTS = \{S1, S2, S3\}$ zbiór składników, z których wytwarzane są produkty,
- $OBJECTIVES = \{S1, S2, income, emissions, cost\}$ zbiór nazwanych zmiennych decyzyjnych, dla których ustalone są aspiracje. Tak zdefiniowany zbiór pozwala na uproszczenie zapisu niektórych ograniczeń.

Parametry

• $PRODUCT_INCOME[p], p \in PRODUCTS$ - jednostkowa cena sprzedaży produktów p (tyś.PLN/jednostkę),

PRODUCTS	$PRODUCT_INCOME[p]$
P1	9
P2	21
P3	11

• $EMITTED_POLLUTANTS[p]$, $p \in PRODUCTS$ - jednostkowy poziom zanieczyszczeń emitowanych dla poszczególnych produktów p (kg/jednostkę),

$\overline{PRODUCTS}$	$EMITTED_POLLUTANTS[p]$
P1	1
P2	1
P3	3

• $PRODUCTION_COST[p]$, $p \in PRODUCTS$ - jednostkowe koszty produkcji produktu p (tyś.PLN/jednostkę),

PRODUCTS	$PRODUCTION_COST[p]$
P1	1
P2	3
P3	3

• $PRODUCT_COMPONENTS[p][c], \ p \in PRODUCTS, \ c \in COMPONENTS$ - wymagana ilość składnika c do wytworzenia produktu p.

$\overline{PRODUCT_COMPONENTS[p][c]}$	S1	S2	S3
P1	2	8	4
P2	10	1	0
P3	4	4	2

Dodatkowe parametry wynikające z zadanych ograniczeń:

- $COMPONENT_USAGE_HARD_LIMIT[c],\ c\in COMPONENTS$ - maksymalna ilość składnika c jaką można wykorzystać,

COMPONENTS	$COMPONENT_USAGE_HARD_LIMIT[c]$
S1	110
S2	55

$\overline{COMPONENTS}$	$COMPONENT_USAGE_HARD_LIMIT[c]$
S3	50

• $MINIMAL_PRODUCTION[p],\ p\in PRODUCTS$ - minimalna ilość sztuk produktu p jaką należy wyprodukować,

PRODUCTS	$MINIMAL_PRODUCTION[p]$
P1	3
P2	0
P3	5

- $MIN_INCOME = 130$ minimalny akceptowalny poziom zarobków,
- $MAX_EMISSIONS = 35$ maksymalny akceptowalny poziom emisji zanieczyszczeń,
- $MAX_COST = 80$ maksymalny akceptowalny koszt wytwarzania wszystkich produktów.

Parametry wynikające z zadanych aspiracji:

• ASPIRATIONS[o], $o \in OBJECTIVES$ - aspiracje ustalone dla poszczególnych zmiennych decyzyjnych.

$\overline{OBJECTIVES}$	ASPIRATIONS[o]
S1	100
S2	50
income	150
emissions	30
cost	70

Zmienne decyzyjne

- $production[p], p \in PRODUCTS$ zmienna reprezentująca ilość wyprodukowanych produktów typu p,
- $component_usage[c]$, $c \in COMPONENTS$ reprezentuje całkowite wykorzystanie składnika typu c do produkcji wszystkich produktów,
- income zmienna pomocnicza oznaczająca całkowity zysk ze sprzedaży produktów,
- emissions całkowite zanieczyszczenia wyemitowane podczas produkcji wszystkich produktów,
- $\cos t$ sumaryczne koszty produkcji wyrobów.

W celu prostszego zapisu wzorów na zadane aspiracje został zdefiniowany dodatkowy wektor zmiennych decyzyjnych:

• objectives[o], $o \in OBJECTIVES$ - zmienna agregująca wartości kilku innych zmiennych decyzyjnych. W ramach tej zmiennej zostały także zdefiniowane odpowiednie ograniczenia:

```
objectives[S1] = component\_usage[S1]
objectives[S2] = component\_usage[S2]
objectives[income] = income
objectives[emissions] = emissions
objectives[cost] = cost
```

W celu prostszego zapisu wzorów na zadane nieakceptowalne poziomy został zdefiniowany dodatkowy wektor zmiennych decyzyjnych:

 hard_limits[o], o ∈ OBJECTIVES - zmienna agregująca wartości kilku innych parametrów. W ramach tej zmiennej zostały także zdefiniowane odpowiednie ograniczenia:

```
\begin{split} hard\_limits[S1] &= COMPONENT\_USAGE\_HARD\_LIMIT[S1]; \\ hard\_limits[S2] &= COMPONENT\_USAGE\_HARD\_LIMIT[S2]; \\ hard\_limits[income] &= MIN\_INCOME; \\ hard\_limits[emissions] &= MAX\_EMISSIONS; \\ hard\_limits[cost] &= MAX\_COST; \end{split}
```

Ograniczenia

Ograniczenia wynikające z treści:

• Poszczególne składniki są wykorzystywane do produkcji różnych produktów w różnych proporcjach:

$$\forall c \in COMPONENTS:$$

$$component_usage[c] = \sum_{p \in PRODUCTS} PRODUCT_COMPONENTS[p,c] \cdot production[p]$$

 Na całkowity zysk składają się zarobki ze sprzedaży wyprodukowanych wyrobów pomniejszone o koszty produkcji:

$$income = (\sum_{p \in PRODUCTS} PRODUCT_INCOME[p] \cdot production[p]) - cost$$

• Całkowity emisje są rezultatem zanieczyszczeń wytworzonych podczas produkcji poszczególnych produktów:

$$emissions = \sum_{p \in PRODUCTS} EMITTED_POLLUTANTS[p] \cdot production[p]$$

Całkowite koszty produkcji składają się z kosztów wytworzenia poszczególnych produktów:

$$cost = \sum p \in PRODUCTSPRODUCTION_COST[p] \cdot production[p]$$

Ograniczenia wynikające z zadanych ograniczeń:

• Zadane są limity wykorzystania poszczególnych składników, których przekroczenie jest nieakceptowalne:

$$\forall c \in COMPONENTS : component_usage[c] \leq COMPONENT_USAGE_HARD_LIMIT[c]$$

• Narzucona jest minimalna produkcja poszczególnych produktów:

$$\forall p \in PRODUCTS : production[p] \ge MINIMAL_PRODUCTION[p]$$

• Oczekujemy minimalnych zysków na poziomie MIN INCOME:

$$income \ge MIN \ INCOME$$

- Można wyprodukować maksymalnie $MAX_EMISSIONS$ zanieczyszczeń:

$$emissions \leq MAX_EMISSIONS$$

- Koszty produkcji nie mogą przekroczyć MAX_COST :

$$cost \leq MAX_COST$$

Funkcja oceny

Funkcje oceny, które są optymalizowane będą zdefiniowane oddzielnie w zależności od rozwiązywanego podpunktu.

1. Sformułować i opisać wielokryterialny model planowania produkcji z wykorzystaniem metody punktu odniesienia.

Model bazuje na przygotowanym modelu podstawowym. W tym rozdziałe zostaną zdefiniowane jedynie dodatkowe parametry, ograniczenia, i zmienne decyzyjne. Zostały one zdefiniowane, by wykorzystać metodę punktu odniesienia.

Zbiory

• RANGE = {utopia, nadir} - zbiór pozwalający na ustalenie zakresu dla zmiennych celu.

Parametry

- $\beta = 10^{-3}$ parametr pozwalający na ograniczenie wzrostu wartości funkcji oceny dla zmiennych decyzyjnych ponad zadany poziom aspiracji. Funkcja oceny dla parametrów, które ten poziom osiągnęły będzie rosła o β wolniej, niż dla tych zmiennych, które tego poziomu nie osiągnęły,
- $\varepsilon = 10^{-4}/5 = 2 \cdot 10^{-5}$ parametr z wagą jaką będziemy przyjmować dla sumy zmiennych celu. Zapewnia on, że każde otrzymane rozwiązanie będzie efektywne,
- $OBJECTIVE_RANGE[o][r]$, $o \in OBJECTIVES$, $r \in RANGE$ wyliczone na podstawie bazowego modelu dla każdej zmiennej celu wartości utopii i nadiru:

$\overline{OBJECTIVE_RANGE[o][r]}$	utopia	nadir
S1	64	106
S2	48	55
income	208	134
emissions	22	28
cost	30	42

Zmienne decyzyjne

- $\lambda[o]$, $o \in OBJECTIVES$ parametry normalizujące zakres zmienności kryteriów. Wyliczone na bazie wartości utopii i nadiru dla poszczególnych celów o,
- accomplishment[o], $o \in OBJECTIVES$ wyznaczony poziom zadowolenia z osiągnięcia poszczególnych wartości zmiennych celu o,
- lower bound dolne ograniczenie wszystkich poziomów zadowolenia z osiągniecia aspiracji.

Ograniczenia

• Wyliczamy parametr normalizujący λ na bazie wartości utopii i nadiru:

$$\lambda[o] = 1/(OBJECTIVE_RANGE[o][utopia] - OBJECTIVE_RANGE[o][nadir])$$

• Wprowadzamy zmienna lower bound, która bedzie mniejsza niż każde z poziomów zadowolenia:

$$\forall o \in OBJECTIVES : lower \ bound \leq accomplishment[o]$$

• Poziom zadowolenia dla wartości przekraczających aspiracje będzie pomniejszony o β :

$$\forall o \in OBJECTIVES : accomplishment[o] \leq \beta \cdot \lambda[o] \cdot (objectives[o] - ASPIRATIONS[o])$$

Poziom zadowolenia będzie rósł liniowo zgodnie z wartościami celu, do osiągnięcia poziomu aspiracji:

$$\forall o \in OBJECTIVES : accomplishment[o] < \lambda[o] \cdot (objectives[o] - ASPIRATIONS[o])$$

Funkcja oceny

 W pierwszej kolejności maksymalizujemy najmniejszy poziom zadowolenia, a z mniejszą wagą maksymalizujemy całkowite zadowolenie:

$$max(lower_bound + \varepsilon \cdot \sum_{o \in OBJECTIVES} accomplishment[o])$$

2. Sformułować i opisać wielokryterialny model optymalnego planowania produkcji z wykorzystaniem zbiorów rozmytych.

Model bazuje na przygotowanym modelu podstawowym. W tym rozdziale zostaną zdefiniowane jedynie dodatkowe parametry, ograniczenia, ograniczenia rozmyte, zmienne decyzyjne i cele rozmyte. Zostały one zdefiniowane, by wykorzystać metodę zbiorów rozmytych.

Zmienne decyzyjne

• tolerance[o], o ∈ OBJECTIVES - zmienna reprezentująca rozmycie ograniczeń (wartość stała). Zostało przyjęte, że dla zmiennych z górnym nieakceptowalnym ograniczeniem wartość jest dodatnia, a z dolnym ograniczeniem wartość ujemna.

Ograniczenia

 Przyjęty poziom tolerancji możemy osiągnąć poprzez odjęcie od ustalonych nieprzekraczalnych limitów naszych aspiracji:

$$\forall o \in OBJECTIVES : tolerance[o] = hard_limits[o] - ASPIRATIONS[o]$$

Ograniczenia rozmyte

• Nie powinniśmy wykorzystać więcej składnika S1 niż zadany poziom aspiracji z poziomem tolerancji równym |tolerance[S1]|:

$$component_usage[S1] \leq ASPIRATIONS[S1]$$

• Nie powinniśmy wykorzystać więcej składnika S2 niż zadany poziom aspiracji z poziomem tolerancji równym |tolerance[S2]|:

$$component_usage[S2] \underset{\sim}{\leq} ASPIRATIONS[S2]$$

Cele rozmyte

• Celujemy by zysk przekroczył poziom aspiracji z poziomem tolerancji równym |tolerance[income]|:

$$income \leq \underset{\sim}{ASPIRATIONS}[income]$$

• Celujemy by emisja zanieczyszczeń była mniejsza niż zadany poziom aspiracji z poziomem tolerancji równym |tolerance[emissions]|:

$$emissions \leq ASPIRATIONS[emissions]$$

• Celujemy by całkowite koszty były mniejsze niż zadany poziom aspiracji z poziomem tolerancji równym |tolerance[cost]|:

$$cost \leq ASPIRATIONS[cost]$$

3. Sformułować równoważne zadanie optymalizacji dla zadania 2 z wykorzystaniem zbiorów rozmytych adaptując podejście Zimmermana dla więcej niż jednego kryterium.

Model bazuje na przygotowanym modelu podstawowym. W tym rozdziale zostaną zdefiniowane jedynie dodatkowe parametry, ograniczenia, zmienne decyzyjne i funkcje oceny. Zostały one zdefiniowane, by wykorzystać metodę zbiorów rozmytych z podejściem Zimmermana dla więcej niż jednego kryterium.

Zmienne decyzyjne

- α zmienna decyzyjna dla α -przekrojów,
- $tolerance[o], o \in OBJECTIVES$ zmienna reprezentująca rozmycie ograniczeń (wartość stała). Zostało przyjęte, że dla zmiennych z górnym nieakceptowalnym ograniczeniem wartość jest dodatnia, a z dolnym ograniczeniem wartość ujemna.

Ograniczenia

• Zmienna α może przyjmować wartości z zakresu [0; 1]. Warto tutaj zwrócić uwagę, że przez narzucone górne ograniczenie na wartość α w efekcie możemy otrzymać rozwiązanie, które nie będzie najlepszym jeśli byśmy brali pod uwagę także inne kryteria:

$$0 \le \alpha \le 1$$

 Przyjęty poziom tolerancji możemy osiągnąć poprzez odjęcie od ustalonych nieprzekraczalnych limitów naszych aspiracji:

$$\forall o \in OBJECTIVES : tolerance[o] = hard_limits[o] - ASPIRATIONS[o]$$

Definiujemy rozmyte ograniczenia:

• Ograniczenia dla celów, które maksymalizujemy (znak dla tolerance[o] zależy od przyjętych założeń):

$$\forall o \in OBJECTIVES, \ tolerance[o] <= 0:$$

$$objectives[o] \geq ASPIRATIONS[o] + tolerance[o] \cdot (1 - \alpha)$$

• Ograniczenia dla celów, które minimalizujemy (znak dla tolerance[o] zależy od przyjętych założeń):

$$\forall o \in OBJECTIVES, \ tolerance[o] >= 0:$$

$$objectives[o] \leq ASPIRATIONS[o] + tolerance[o] \cdot (1 - \alpha)$$

Przygotowany bazowy model

4. Zapisz zadanie/zadania sformułowane w punkcie 1 w postaci do rozwiązania z wykorzystaniem wybranego narzędzia implementacji (np. AMPL, AIMMS) i rozwiąż to zadanie/zadania. W przypadku niedopuszczalności zadania zaproponuj zmianę celów i/lub innych parametrów.

5. Zapisz zadania sformułowane w punkcie 3 w postaci do rozwiązania z wykorzystaniem wybranego narzędzia implementacji (np. AMPL, AIMMS) i rozwiąż te zadania. W przypadku niedopuszczalności zadania zaproponuj zmianę celów i/lub innych parametrów.

6. Porównaj rozwiązania zadań z poprzednich dwóch punktów.

7. Rozwiąż zadanie z punktu 2 za pomoca pakietu R-FuzzyLP. Należy w obliczeniach rozpatrywać niezależnie każde z kryteriów.

14

8. Zaproponuj i zastosuj graficzną formę analizy rozwiązań.

9. Opisz zalety i wady modelowania opisanego problemu z wykorzystaniem zbiorów rozmytych.

Zalety	Wady
TODO	TODO