Plot in python:

- 1. Create a line plot of the function $y = \sin(x)$ with a solid blue line and circle markers.
- 2. Plot y = cos(x) with a dashed green line and square markers.
- 3. Create a line plot of $y = e^x$ with a dotted red line and triangle markers.
- 4. Plot y = log(x) with a dash-dot black line and star markers.
- 5. Create a subplot with two line plots: one for $y = \sin(x)$ and one for $y = \cos(x)$.
- 6. Plot $y = x^2$ with a thick purple line and plus markers.
- 7. Create a line plot with a figure size of 10x5 inches, plotting $y = \sqrt{x}$ with a solid orange line and diamond markers.
- 8. Plot y = tan(x) with a thin gray line and 'x' markers.
- 9. Create a line plot of $y = \sin(x) + \cos(x)$ with a dash-dot blue line and cross markers.
- 10. Plot $y = \frac{1}{x}$ with a solid green line and hexagon markers.
- 11. Create a subplot with two rows and one column. In the first subplot, plot $y = x^3$ with a solid red line. In the second subplot, plot $y = x^4$ with a dashed blue line.
- 12. Create a line plot of $y = \sin(x)$ with a figure size of 12x6 inches, using a dotted black line and 'o' markers.
- 13. Plot $y = e^{-x}$ with a thick orange line and 'D' markers.

- 14. Create a subplot with two line plots: one for $y = \sin(x)$ with a dashed green line and one for $y = \cos(x)$ with a solid blue line.
- 15. Plot $y = \sin(2x)$ with a dash-dot purple line and 's' markers.
- 16. Create a line plot of y = cos(2x) with a thick black line and 'o' markers.
- 17. Create a subplot with three rows and one column. In the first subplot, plot $y = \sin(x)$ with a solid red line. In the second subplot, plot $y = \cos(x)$ with a dashed green line. In the third subplot, plot $y = \sin(x) + \cos(x)$ with a dash-dot blue line.
- 18. Plot $y = x^2 2x + 1$ with a solid blue line and 'x' markers.
- 19. Create a line plot of $y = \sqrt{x}$ with a figure size of 8x4 inches, using a dotted green line and '+' markers.
- 20. Plot $y = \sin(x) \cos(x)$ with a thick red line and diamond markers.
- 21. Create a subplot with the function $y = \sin(x)$, its first derivative $y' = \cos(x)$, and its second derivative $y'' = -\sin(x)$. Use a solid line for the function and dashed lines for the derivatives.
- 22. Create a subplot with the function $y = x^2$, its first derivative y' = 2x, and its second derivative y'' = 2. Use different line styles and markers for each plot.
- 23. Plot $y = e^x$ with subplots showing its first derivative $y' = e^x$ and second derivative $y'' = e^x$. Use solid lines for the function and dashed lines for the derivatives.
- 24. Create a subplot with y = log(x), its first derivative $y' = \frac{1}{x}$ and its second derivative $y'' = \frac{1}{x^2}$. Use different colors and line styles for each.

25. Plot y = tan(x) with subplots showing its first derivative $y' = sec^2(x)$ and its second derivative $y'' = 2sec^2(x) tan(x)$.

Steepest Descent Method

1. Implement the Steepest Descent Method to minimize the function $f(x, y) = x^2 + y^2$.

Initialize the starting point at (1, 1), set the step size $\alpha = 0.1$, and use a convergence tolerance of 1e-6.

2. Apply the Steepest Descent Method to minimize the following functions:

$$- f(x, y) = x^2 + 2xy + y^2$$

$$- f(x, y) = \sin(x) + \cos(y)$$

Initialize at (0, 0) and use a step size $\alpha = 0.01$ and a convergence tolerance of 1e-6.

3. Convergence Analysis

Implement the Steepest Descent Method for the function $f(x, y) = (x - 1)^2 + (y - 2)^2$ with different step sizes ($\alpha = 0.1$, $\alpha = 0.01$).

- 4. Implement the Steepest Descent Method to minimize the function $f(x, y) = x^2 + 2xy + y^2$.
- 5. Apply the Steepest Descent Method to minimize the non-quadratic function $f(x, y) = e^{-(-(x^2 + y^2))}$.

Use a starting point (1, 1), a step size $\alpha = 0.1$, and a convergence tolerance of 1e-6.