Jour 8 : ln et intégrale

1. On considère la fonction g définie sur]0; $+\infty[$ par

$$g(x) = \ln x - \frac{2}{x}$$

On donne ci-dessous le tableau de variations de g.

х	0	$2,3 x_0 2,4$	+∞
g(x)		→ 0	→ +∞

Démontrer toutes les propriétés de la fonction g regroupées dans ce tableau.

2. Soit f la fonction définie sur]0; $+\infty[$ par

$$f(x) = \frac{5\ln x}{x}$$

a. Montrer que $f(x_0) = \frac{10}{x_0^2}$ où x_0 est le réel apparaissant dans le tableau ci-dessus.

b. Soit *a* un réel. Pour a > 1, exprimer $\int_{1}^{a} f(t) dt$ en fonction de *a*.

3. On a tracé dans le repère orthonormal $(0, \overrightarrow{i}, \overrightarrow{j})$ ci-dessous les courbes représentatives des fonctions f et g notées respectivement (\mathscr{C}_f) et (\mathscr{C}_g) .

On appelle I le point de coordonnées (1; 0), P_0 le point d'intersection de (\mathscr{C}_g) et de l'axe des abscisses, M_0 le point de (\mathscr{C}_f) ayant même abscisse que P_0 et H_0 le projeté orthogonal de M_0 sur l'axe des ordonnées.

On nomme (\mathcal{D}_1) le domaine du plan délimité par la courbe (\mathscr{C}_f) et les segments $[IP_0]$ et $[P_0M_0]$.

On nomme (\mathcal{D}_2) le domaine du plan délimité par le rectangle construit à partir de [OI] et $[OH_0]$.

Démontrer que les deux domaines (\mathcal{D}_1) et (\mathcal{D}_2) ont même aire, puis donner un encadrement d'amplitude 0,2 de cette aire.

