Teoremas sobre integrales

2015-02-16 9:00

1 Teorema fundamental

2 Longitud

3 Teorema de estimación

Teorema

Sea $f: U \to \mathbb{C}$ continua, y sea $F: U \to \mathbb{C}$ tal que F' = f. Si $\gamma: [a, b] \to U$ es suave a trozos, entonces:

$$\int_{\gamma} f(z) dz = [F(z)]_{\gamma(a)}^{\gamma(b)} = F(\gamma(b)) - F(\gamma(a)).$$

Teorema

Sea $f: U \to \mathbb{C}$ continua, y sea $F: U \to \mathbb{C}$ tal que F' = f. Si $\gamma: [a, b] \to U$ es suave a trozos, entonces:

$$\int_{\gamma} f(z) dz = [F(z)]_{\gamma(a)}^{\gamma(b)} = F(\gamma(b)) - F(\gamma(a)).$$

En particular, si γ es una curva cerrada, se obtiene que $\int_{\gamma} f(z) dz = 0$.

Longitud

Sea $\gamma: [a, b] \to U$ una curva suave. Su Longitud se define como:

$$\int_{\gamma} |dz| = \int_{a}^{b} |\gamma'(t)| \, dt$$

Longitud

Sea $\gamma: [a, b] \to U$ una curva suave. Su longitud se define como:

$$\int_{\gamma} |dz| = \int_{a}^{b} |\gamma'(t)| \, dt$$

Sea $f: U \to \mathbb{C}$ continua. La integral de f sobre γ respecto a longitud de arco se define como:

$$\int_{\gamma} f(z) |dz| = \int_{a}^{b} f(\gamma(t)) |\gamma'(t)| dt$$

Teorema

Sean $f: U \to \mathbb{C}$ continua y γ una curva suave a trozos en en U. Entonces:

$$\left| \int_{\gamma} f(z) \, dz \right| \leq \int_{\gamma} |f(z)| \, |dz|$$