Theory

Count the Humben of subset with given sum

Th: $an(7 = \{2,3,5,6,8,10\}$ sum = 10

012: 3

< 2,3,5> 3 ways < 107 Possible Previously, we have seen that, is it possible to find a subset with given sum

false > 0 ~

True > >0

HOW, we have (realed a 2D Vector dp[n+1][sum+1]

(i)

		0 4	1	2	3	ч ,	5	6	~	
	0	7	0	0	0	0	0	0	Ô	
	,	T								
	2	T								-
	3	T								
1	4	T								
\mathcal{N}		_,			•					

which represent Whether is It possible to Create a subset with given sum !

$$ant = (1,3,5,6)$$

$$\stackrel{\longleftarrow}{\longrightarrow}$$

HOW, we have (realed a 2D Vector dp[n+1)[sum+1]

which represent whether is it possible to Create a subset with given sum?

False -> 0

True > 1

w Com so

```
bool subset sum ( vewor (int) arm, int n, int sum)
        Base if (n==0) return false ;
109/5
                   'if ( own [n-1] <= sum)
                        & chon
                          Subselsum ( and, n-1, sum - ans[n-1])
Subselsum ( an, n-1, sum );
                    Usc
                         ruurn Subselsum ( own, n-1, sum);
```


we have 2 choices consider this or not 2 (Not coulder) (Consider) $\frac{\cos(3)}{M} = 3$ on (7= 11,3,5,2)

bool Count Subset (Vector (int) arm, int n, int sum) Base [if (n==0) return 0; condition [if (sum ==0) return 1; if (am [n-1] <= sum) roborn Countsubset (over, n-1, sum-over [n-1]) + Count Subset (ann, n-1, Sum); Count Subset (ann, n-1, Sum);

bool (ount Subset (Vector <int) own, int n, int sum)

(if (dp[n][sum]!= (-1)) return dp[n][sum]; Base [if (n==0) return 0; condition [if (sum ==0) return 1; if (arm [n-1] <= sum) roturn dp[n][sum]= (ount subset (our, n-1, sum-our[n-1]) (ount subset (ann, n-1, sum); return d'p[n][sum] = (ount subset (onn, n-1, sum);