

The FP-LAPW and APW+lo methods

Peter Blaha

Institute of Materials Chemistry **TU Wien**

APW based schemes

- APW (J.C.Slater 1937)
 - Non-linear eigenvalue problem
 - Computationally very demanding
- LAPW (O.K.Andersen 1975)
 - Generalized eigenvalue problem
 - Full-potential (A. Freeman et al.)
- Local orbitals (D.J.Singh 1991)
 - treatment of semi-core states (avoids ghostbands)
- APW+lo (E.Sjöstedt, L.Nordstörm, D.J.Singh 2000)
 - Efficience of APW + convenience of LAPW
 - Basis for

K.Schwarz, P.Blaha, G.K.H.Madsen, Comp.Phys.Commun.**147**, 71-76 (2002)

APW Augmented Plane Wave method

The unit cell is partitioned into:
 atomic spheres
 Interstitial region

Basisset:

PW: $e^{i(\vec{k}+\vec{K}).\vec{r}}$

Atomic partial waves

$$\sum_{\ell m} A_{\ell m}^K u_\ell(r', \varepsilon) Y_{\ell m}(\hat{r}')$$

join

 $u_l(r,\varepsilon)$ are the numerical solutions of the radial Schrödinger equation in a given spherical potential for a particular energy ε

A_{lm}^K coefficients for matching the PW

Slater's APW (1937)

H Hamiltonian S overlap matrix Atomic partial waves

$$\sum_{\ell m} A_{\ell m}^K u_{\ell}(r', \varepsilon) Y_{\ell m}(\hat{r}')$$

Energy dependent basis functions lead to →

Non-linear eigenvalue problem

One had to numerically search for the energy, for which the det|H-ES| vanishes. Computationally very demanding. "Exact" solution for given (spherical) potential!

Linearization of energy dependence

LAPW suggested by

O.K.Andersen,

Phys.Rev. B 12, 3060 (1975)

$$\Phi_{k_n} = \sum_{\ell m} \left[\underline{A_{\ell m}}(k_n) u_{\ell}(\underline{E_{\ell}}, r) + \underline{B_{\ell m}}(k_n) \dot{u}_{\ell}(\underline{E_{\ell}}, r) \right] Y_{\ell m}(\hat{r})$$

expand u_l at fixed energy E_l and add $\dot{u}_l = \partial u_l / \partial \mathcal{E}$

 A_{lm}^{k} , B_{lm}^{k} : join PWs in value and slope

- → General eigenvalue problem (diagonalization)
- → additional constraint requires more PWs than APW

Full-potential in LAPW (A.Freeman etal.)

SrTiO₃

Full potential

Muffin tin approximation

TiO₂ rutile

The potential (and charge density) can be of general form (no shape approximation)

$$V(r) = \begin{cases} \sum_{LM}^{\sum V_{LM}(r)Y_{LM}(\hat{r})} & r < R_{\alpha} \\ \sum_{K}^{\sum V_{K}} e^{i\vec{K}.\vec{r}} & r \in I \end{cases}$$

Inside each atomic sphere a local coordinate system is used (defining LM)

Core, semi-core and valence states

For example: Ti

- Valences states
 - High in energy
 - Delocalized wavefunctions
- Semi-core states
 - Medium energy
 - Principal QN one less than valence (e.g. in Ti 3p and 4p)
 - not completely confined inside sphere
- Core states
 - Low in energy
 - Reside inside sphere

1 Ry =13.605 eV

Problems of the LAPW method:

EFG Calculation for Rutile TiO_2 as a function of the Ti-p linearization energy E_p

P. Blaha, D.J. Singh, P.I. Sorantin and K. Schwarz, Phys. Rev. B **46**, 1321 (1992).

Problems of the LAPW method

Problems with semi-core states

ONE SOLUTION

Treat all the states in a single energy window:

- Automatically orthogonal.
- Need to add variational freedom.
- Could invent quadratic or cubic APW methods.

$$\varphi(\mathbf{r}) = \begin{cases} \frac{\Omega^{-1/2} \sum_{\mathbf{K}} C_{\mathbf{K}} e^{i(\mathbf{K}+\mathbf{k})\cdot\mathbf{r}}}{\sum_{lm} (A_{lm} u_{l}(\mathbf{r}) + B_{lm} \mathring{u}_{l}(\mathbf{r}) + C_{lm} \ddot{u}_{l}(\mathbf{r})) Y_{lm}(\mathbf{r})} \end{cases}$$

Problem: This requires an extra matching condition, e.g. second derivatives continuous ⇒method will be impractical due to the high planewave cut-off needed.

Extending the basis: Local orbitals (LO)

$$\Phi_{LO} = [A_{\ell m} u_{\ell}^{E_1} + B_{\ell m} \dot{u}_{\ell}^{E_1} + C_{\ell m} u_{\ell}^{E_2}] Y_{\ell m}(\hat{r})$$

- LO: contains a second $u_1(E_2)$
 - is confined to an atomic sphere
 - has zero value and slope at R
 - can treat two principal QN n for each azimuthal QN ℓ (3p and 4p)
 - corresponding states are strictly orthogonal (no "ghostbands")
 - tail of semi-core states can be represented by plane waves
 - only slight increase of basis set (matrix size)

D.J.Singh, Phys.Rev. B 43 6388 (1991)

The LAPW+LO Method

LAPW+LO converges like LAPW. The LO add a few basis functions (i.e. 3 per atom for p states). Can also use LO to relax linearization errors, e.g. for a narrow d or f band.

Suggested settings:

Two "energy" parameters, one for u and u and the other for $u^{(2)}$. Choose one at the semi-core position and the other at the valence.

New ideas from Uppsala and Washington

E.Sjöstedt, L.Nordström, D.J.Singh, An alternative way of linearizing the augmented plane wave method, Solid State Commun. 114, 15 (2000)

- Use APW, but at fixed E_{I} (superior PW convergence)
- Linearize with additional lo (add a few basis functions)

$$\Phi_{k_n} = \sum_{\ell m} A_{\ell m}(k_n) u_{\ell}(E_{\ell}, r) Y_{\ell m}(\hat{r})$$

$$\Phi_{lo} = [A_{\ell m} u_{\ell}^{E_1} + B_{\ell m} \dot{u}_{\ell}^{E_1}] Y_{\ell m}(\hat{r})$$

optimal solution: mixed basis

- use APW+lo for states which are difficult to converge: (f or d- states, atoms with small spheres)
- use LAPW+LO for all other atoms and ℓ

basis for

Convergence of the APW+LO Method

E. Sjostedt, L. Nordstrom and D.J. Singh, Solid State Commun. 114, 15 (2000).

Improved convergence of APW+lo

K.Schwarz, P.Blaha, G.K.H.Madsen, Comp.Phys.Commun.**147**, 71-76 (2002)

changes sign and converges slowly in LAPW

better convergence inAPW+lo

Relativistic treatment

For example: Ti

Valence states

- Scalar relativistic
 - mass-velocity
 - Darwin s-shift
- Spin orbit coupling on demand by second variational treatment
- Semi-core states
 - Scalar relativistic
 - No spin orbit coupling
 - on demand
 - spin orbit coupling by second variational treatment
 - Additional local orbital (see Th-6p_{1/2})
- Core states
 - Fully relativistic
 - Dirac equation

Relativistic semi-core states in fcc Th

FIG. 1. The total energy E as a function of the second-variation cutoff energy $E_{\rm cut}$ (the approximate size of the second-variational-step basis, including spin, is marked on the top axis) for two different muffin-tin radii. The standard FLAPW results are marked with circles, the results obtained with the additional $p_{1/2}$ local orbitals are marked with squares (the latter energies were increased by 3 eV in order to show the curves on the same plot).

- additional local orbitals for 6p_{1/2} orbital in Th
- Spin-orbit (2nd variational method)

FIG. 2. Density of states calculated with the scalar relativistic basis (top panel) and with the $p_{1/2}$ local orbitals extended basis (bottom panel). The splitting between the centers of $6p_{1/2}$ and $6p_{3/2}$ bands is shown.

J.Kuneš, P.Novak, R.Schmid, P.Blaha, K.Schwarz, Phys.Rev.B. 64, 153102 (2001)

Atomic forces (Yu et al.; Kohler et al.)

Total Energy:

- Electrostatic energy
- Kinetic energy
- XC-energy

• Force on atom α :

- Pulay corrections
 - Core
 - Valence
- of matrix elements over all occupied states

$$U[\rho] = \frac{1}{2} \int d^{3}\vec{r} \ \rho(\vec{r}) V_{es}(\vec{r}) + \frac{1}{2} \sum_{\alpha} Z_{\alpha} V_{es}^{\alpha}(\vec{r})$$

$$T[\rho] = \sum_{i} n_{i} \varepsilon_{i} - \int d^{3}\vec{r} \ \rho(\vec{r}) V_{eff}(\vec{r})$$

$$E_{xc}[\rho] = \int d^3 \vec{r} \ \rho(\vec{r}) \varepsilon_{xc}(\vec{r})$$

$$\vec{F}^{\alpha} = \frac{-dE_{tot}}{d\vec{R}_{\alpha}} = F_{HF}^{\alpha} + F_{core}^{\alpha} + F_{val}^{\alpha}$$

• Hellmann-Feynman-force
$$F_{HF}^{\alpha} = Z_{\alpha} \sum_{m=-1}^{1} \lim_{r_{\alpha} \to 0} \frac{V_{1m}^{es}(r_{\alpha})}{r_{\alpha}} \nabla_{\alpha} [r_{\alpha} Y_{1m}(\hat{r})]$$

$$F_{core}^{\alpha} = -\int \rho_{core}(r) \nabla_{\alpha} V_{eff}(r) d\vec{r}$$

$$\begin{array}{l} \bullet \hspace{0.5cm} \text{ expensive, contains a summation} \\ \text{of matrix elements over all} \\ \text{occupied states} \end{array} \qquad F_{val}^{\alpha} = \int\limits_{\alpha} V_{eff}(r) \nabla_{\alpha} \rho_{val}(r) \, d\vec{r} + \sum_{k,i} n_i \sum_{K,K'} c_i^*(K') c_i(K) \times \\ \left[(K^2 - \varepsilon_i) \oint \phi_{K'}^*(r) \phi_K(r) \, dS_{\alpha} - i(K - K') \left\langle \phi_{K'} \middle| H - \varepsilon_i \middle| \phi_K \right\rangle_{\alpha} \right]$$

Quantum mechanics at work

WIEN2k software package

WIEN97: ~500 users

WIEN2k: ~1100 users

mailinglist: 1800 users

An Augmented Plane Wave Plus Local
Orbital
Program for Calculating Crystal Properties

Peter Blaha
Karlheinz Schwarz
Georg Madsen
Dieter Kvasnicka
Joachim Luitz

November 2001 Vienna, AUSTRIA Vienna University of Technology

http://www.wien2k.at

Development of WIEN2k

- Authors of WIEN2k
 - P. Blaha, K. Schwarz, D. Kvasnicka, G. Madsen and J. Luitz
- Other contributions to WIEN2k
 - C. Ambrosch-Draxl (Univ. Graz, Austria), optics
 - T. Charpin (Paris), elastic constants
 - R. Dohmen und J. Pichlmeier (RZG, Garching), parallelization
 - R. Laskowski (Vienna), non-collinear magnetism, parallelization
 - L. Marks (Northwestern, US), various optimizations
 - P. Novák and J. Kunes (Prague), LDA+U, SO
 - B. Olejnik (Vienna), non-linear optics,
 - C. Persson (Uppsala), irreducible representations
 - M. Scheffler (Fritz Haber Inst., Berlin), forces
 - **D.J.Singh** (NRL, Washington D.C.), local oribtals (LO), APW+lo
 - E. Sjöstedt and L Nordström (Uppsala, Sweden), APW+lo
 - J. Sofo and J. Fuhr (Barriloche), Bader analysis
 - B. Yanchitsky and A. Timoshevskii (Kiev), spacegroup
- and many others

International co-operations

More than 1000 user groups worldwide

■ *Industries* (Canon, Eastman, Exxon, Fuji, A.D.Little, Mitsubishi, Motorola, NEC, Norsk Hydro, Osram, Panasonic, Samsung, Sony).

- Europe: (EHT Zürich, MPI Stuttgart, Dresden, FHI Berlin, DESY, TH Aachen, ESRF, Prague, Paris, Chalmers, Cambridge, Oxford)
- America: ARG, BZ, CDN, MX, USA (MIT, NIST, Berkeley, Princeton, Harvard, Argonne NL, Los Alamos Nat.Lab., Penn State, Georgia Tech, Lehigh, Chicago, SUNY, UC St.Barbara, Toronto)
- far east: AUS, China, India, JPN, Korea, Pakistan, Singapore, Taiwan (Beijing, Tokyo, Osaka, Sendai, Tsukuba, Hong Kong)

Registration at <u>www.wien2k.at</u>

- 400/4000 Euro for Universites/Industries
- code download via www (with password), updates, bug fixes, news
- usersguide, faq-page, mailing-list with help-requests

WIEN2k - WORKSHOPS

- "WIEN-workshops" started in 1993 in Vienna and subsequent workshops were held not only in Vienna, but also in Trieste, Isfahan (Iran), twice at PennState (US), in Kyoto (Japan) and at UCLA (California, US).
- WIEN2007: <u>Hands on Workshop on the WIEN2k</u> <u>package</u>

Penn State University, USA, June 11-14, 2007

■ 14th WIEN2k — WORKSHOP, a satellite meeting to ICMAT'07 (Symposium O)

IHPC, Singapore, July 6-9, 2007

General remarks on WIEN2k

- WIEN2k consists of many independent F90 programs, which are linked together via C-shell scripts (needs Unix/Linux)
- real/complex version (inversion)
- 10 atom cells on 256Mb PC / 100 atom cells require 1-2 Gb RAM
- k-point parallel on clusters with common NFS (slow network)
- MPI/Scalapack parallelization for big cases (>100 atoms) and fast network (h-BN/Rh(111) nanomesh: 1100 atoms+vacuum on 64-100 cpus)
- You can run WIEN2k using any www-browser and the w2web interface, but also at the command line of an xterm.
- Each "case" runs in his own directory ./case
- The "master input" is called case.struct
- Initialize a calculation: init_lapw
- Run scf-cycle: run_lapw (runsp_lapw)
- Input/output/scf files have endings as the corresponding programs:
 - case.output1...lapw1; case.in2...lapw2; case.scf0...lapw0
- Inputs are generated using STRUCTGEN(w2web) and init_lapw

w2web GUI (graphical user interface)

- Structure generator
 - spacegroup selection
 - import cif file
- step by step initialization
 - symmetry detection
 - automatic input generation
- SCF calculations
 - Magnetism (spin-polarization)
 - Spin-orbit coupling
 - Forces (automatic geometry optimization)
- Guided Tasks
 - Energy band structure
 - DOS
 - Electron density
 - X-ray spectra
 - Optics

Program structure of WIEN2k

init_lapw

- initialization
- symmetry detection (F, I, Ccentering, inversion)
- input generation with recommended defaults
- quality (and computing time) depends on k-mesh and R.Kmax (determines #PW)

run_lapw

- scf-cycle
- optional with SO and/or LDA+U
- different convergence criteria (energy, charge, forces)
- save_lapw tic_gga_100k_rk7_vol0
 - cp case.struct and clmsum files,
 - mv case.scf file
 - rm case.broyd* files

Task for electron density plot

A task consists of

- a series of steps
- that must be executed
- to generate a plot

For electron density plot

- select states by E-window in case.in2 (e.g. valence e: Ti-3d,4s, C-2s,2p)
- for difference densities make sure you calculate the same states for the free atoms
- select plane for plot (do not put an atom at the corner or edges)
- generate 3D or contour plot with gnuplot or Xcrysden (Tone.Kokalj@ijs.si)
- reset EMIN in case.in2

TiC electron density

- NaCl structure (100) plane
- Valence electrons only
- plot in 2 dimensions
- Shows
 - charge distribution
 - covalent bonding
 - between the Ti-3d and C-2p electrons
 - *e_q/t_{2q}* symmetry

- *_lapw -h "help switch" of all WIEN2k-scripts
- help_lapw:
 - opens usersguide.pdf; Use ^f keyword to search for an item ("index")
- html-version of the UG: (\$WIENROOT/SRC_usersguide/usersguide.html)
- http://www.wien2k.at/reg_user
 - FAQ page with answers to common questions
 - Update information: When you think the program has an error, please check newest version
 - Textbook section: DFT and the family of LAPW methods by S.Cottenier
 - Mailing-list:
 - subscribe to the list (always use the same email)
 - full text search of the "digest" (your questions may have been answered before)
 - posting questions: Provide sufficient information, locate your problem (case.dayfile, *.error, case.scf, case.outputX).
 - "My calculation crashed. Please help." This will most likely not be answered.

Properties with WIEN2k - I

- DFT: LDA, various GGAs; meta-GGA, LDA+U; Hybrids for "correlated electrons")
- Energy bands
 - classification of irreducible representations
 - 'character-plot' (emphasize a certain band-character)
- Density of states
 - including partial DOS with I and m- character (eg. p_x , p_y , p_z)

h-BN/Ni(111): σ and π bands

Properties with WIEN2k - II

Electron density, potential

- total-, valence-, difference-, spin-densities, ρ of selected states
- 1-D, 2D- and 3D-plots (Xcrysden)
- X-ray structure factors
- Bader 's atom-in-molecule analysis, critical-points, atomic basins and charges $(\nabla \rho.\vec{n}=0)$
- spin+orbital magnetic moments (+ spin-orbit)

Hyperfine parameters

- hyperfine fields (contact + dipolar + orbital contribution)
- Isomer shift
- Electric field gradients

Y₂Nb₂O₇: Peak A (Nb₂) 4-center bond (d-z²)

Properties with WIEN2k - III

Total energy and forces

- optimization of internal coordinates, (damped MD, BROYDEN)
- cell parameter only via E_{tot} (no stress tensor)
- elastic constants for cubic cells
- Phonons via a direct method (based on forces from supercells)
 - interface to PHONON (K.Parlinski) bands, DOS, thermodynamics, neutrons

Pyrochlore structure of $Y_2Nb_2O_7$: strong phonon instabilities \rightarrow phase transition

Properties with WIEN2k - IV

Spectroscopy

- core levels (with core holes)
- X-ray emission, absorption, electron-energy-loss
 - (core valence/conduction-band transitions including matrix elements and angular dep.)
 - EELS inclusion of possible non-dipol transititons (momentum transfer)

• optical properties (dielectric function in RPA, JDOS including momentum matrix

elements and Kramers-Kronig)

• fermi surface (2D, 3D)

(Final state rule)

from ground-state DOS

Properties with WIEN2k - V

New developments (available)

- non-linear optics (B.Olejnik)
- non-collinear magnetism (spin-spirals to fully-relativistic) (R.Laskowski)
- transport properties (Fermi velocities, Seebeck, conductivity, thermoelectrics, ..)
 (G.Madsen)

Intra-atomic NCM, fcc Pu

Spin density maps of **fcc Pu**. Calculation in FULL mode with SO. Average momenta point to $\langle 001 \rangle$

Advantage/disadvantage of WIEN2k

- + robust all-electron full-potential method
- + unbiased basisset, one convergence parameter (LDA-limit)
- + all elements of periodic table (equal expensive), metals
- + LDA, GGA, meta-GGA, LDA+U, spin-orbit
- + many properties and tools (supercells, symmetry)
- + w2web (for novice users)
- ? speed + memory requirements
 - + very efficient basis for large spheres (2 bohr) (Fe: 12Ry, O: 9Ry)
 - less efficient for small spheres (1 bohr) (O: 25 Ry)
 - large cells, many atoms (n³, iterative diagonalization not perfect)
 - full H, S matrix stored → large memory required
 - + many k-points do not require more memory
- no stress tensor
- no linear response

- There are many ways to make efficient use of DFT calculations
- APW+lo method (as implemented in WIEN2k) is one of them
 - all electron
 - full-potential
 - highly accurate benchmark for other methods
 - many properties
 - user friendly
 - widely used
 - development by several groups
 - large user community
 - used by many experimental groups

Thank you for your attention!