

센서 / 카메라 / 위치정보 활용

공개 SW 개발자 대회

㈜라람인터랙티브 박 유 태 @컨버전스(안드로이드 펍)

Android Camera

Android Location (GPS, NETWORK)

Android COMPASS

Android Camera

Android Location (GPS, NETWORK)

Android COMPASS

AR

- 1. Augmented Reality
- 2. Camera
- 3. Location
- 4. Compass
- 5. OpenSource

- 실제와 가상의 혼합
- Ronald Azuma의 정의
 - 현실(Real- world elements)의 이미지와 가상의 이미지를 결합한 것.
 - 실시간으로 인터랙션(interaction)이 가능한 것.
 - 3차원의 공간 안에 놓인 것.

VR (Virtual Reality)

- 실제와 가상의 혼합
 - Virtual Reality

AR (Augmented Reality)

- 실제와 가상의 혼합
 - Augmented Reality

< ARToolkit >

Location- based AR

• AR 구현의 필수 고려 사항

Location-based AR

- 특징 추출
 - Marker, Markerless
 - Location

• But.

- 가짜 AR ??
 - Location도 하나의 특징
 - Real AR ? Pseudo- AR? 은 소모적인 논쟁
 - -헤게모니.
 - -특징에대한인식

Location-based AR

- 실제와 가상의 혼합
 - Augmented Reality

Location- based AR in Android

• 필요 조건

Android Camera SurfaceView

•권한 설정

– <uses-permission android:name="android.permission.CAMERA" />

SurfaceView for Camera Capture Frame

- What is SurfaceView?
 - UI Thread가 아닌 다른 Thread에서 UI 작업: 성능!
 - The surface is Z ordered so that it is behind the window holding its SurfaceView
 - the SurfaceView punches a hole in its window to allow its surface to be displayed.

SurfaceView

Rha Rham Interactive Inc.

SurfaceView

- CallBack 메커니즘
 - surfaceCreated
 - Surface 생성시 호출.
 - surfaceChanged
 - Surface 변경시 호출(화면 크기...)
 - surfaceDestroyed
 - Surface 제거시 호출, 할당된 자원 반납.
- Holder를 통한 관리
 - getHolder();

SurfaceView

```
Camera camera;
SurfaceHolder previewHolder;
public CustomCameraView(Context ctx)
  super(ctx);
  previewHolder = this.getHolder();
  previewHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);
  previewHolder.addCallback(surfaceHolderListener);
```


Surface Create

```
SurfaceHolder.Callback surfaceHolderListener = new
SurfaceHolder.Callback() {
     public void surfaceCreated(SurfaceHolder holder) {
        camera=Camera. open();
        try
         camera.setPreviewDisplay(previewHolder);
        catch (Throwable t) {
```


Surface Change

```
public void surfaceChanged(SurfaceHolder
surfaceHolder, int format, int w, int h)
{
    Parameters params = camera.getParameters();
    params.setPreviewSize(320, 480);
    params.setPictureFormat(PixelFormat. JPEG);
    camera.setParameters(params);
    camera.startPreview();
}
```


Surface Destroy

```
public void surfaceDestroyed(SurfaceHolder arg0)
{
    // TODO Auto-generated method stub
    camera.stopPreview();
    camera.release();
}
```


Android Location

GPS Provider Network Provider

• 현재 위치의 자세한 정보가 필요해!!

• 권한 설정

- <uses- permission android:name="android.permission.LOCATION"/>
- <uses- permission android:name="android.permission.ACCESS_FINE_LOCATION" />
- <uses- permission android:name="android.permission.ACCESS_COARSE_LOCATION" />

Location Manager

```
locMan =
  (LocationManager)ctx.getSystemService(Context.
LOCATION_SERVICE);

locMan.requestLocationUpdates(LocationManager.
GPS_PROVIDER, 100, 1, this);

public void requestLocationUpdates(String provider, long minTime, float minDistance, LocationListener)
```


GPS Provider

- ACCESS FINE LOCATION Permission.
- Cold Start : 2분~ 15분 소요.
- 환경적 요인에 민감.

Network Provider

- ACCESS_COARSE_LOCATION Permission.
- 위치확인 가능한 Network 연결 시 바로 작동
- 오차범위가 크다.


```
public void onLocationChanged(Location location)
     if(curLocation == null) {
        curLocation = location;
        ARView.Location = location;
        locationChanged = true;
     else if(curLocation.getLatitude() == location.getLatitude() &&
             curLocation.getLongitude() == location.getLongitude()){
         locationChanged = false;
     else{
         locationChanged = true;
     curLocation = location;
     postInvalidate();
```


Android Compass

Sensor SensorEvent, SensorManager

넌 대체 누굴 보고 있는 거야?

•시스템 서비스 획득

Sensor List

Sensor Class

- TYPE ACCELEROMETER
 - A constant describing an accelerometer sensor type.
- TYPE_GYROSCOPE
 - A constant describing a gyroscope sensor type
- TYPE LIGHT
 - A constant describing an light sensor type.
- TYPE MAGNETIC FIELD
 - · A constant describing a magnetic field sensor type.
- TYPE ORIENTATION
 - deprecated. use SensorManager.getOrientation() instead.
- TYPE_PRESSURE
 - A constant describing a pressure sensor type
- TYPE PROXIMITY
 - A constant describing an proximity sensor type.
- TYPE_TEMPERATURE
 - A constant describing a temperature sensor type

Sensor

public final float[] values

The length and contents of the values array vary depending on which sensor type is being monitored (see also Sensor Event for a definition of the coordinate system used):

Sensor.TYPE_ORIENTATION:

All values are angles in degrees.

values[0]: Azimuth, angle between the magnetic north direction and the Y axis, around the Z axis (0 to 359). 0=North, 90=East, 180=South, 270=West

values[1]: Pitch, rotation around X axis (-180 to 180), with positive values when the z-axis moves toward the y-axis.

values[2]: Roll, rotation around Y axis (-90 to 90), with positive values when the x-axis moves away from the z-axis.

Note: This definition is different from yaw, pitch and roll used in aviation where the X axis is along the long side of the plane (tail to nose).

Note: It is preferable to use getRotationMatrix() in conjunction with remapCoordinateSystem() and getOrientation() to compute these values; while it may be more expensive, it is usually more accurate.

Sensor.TYPE_ACCELEROMETER:

All values are in SI units (m/s^2) and measure the acceleration applied to the phone minus the force of gravity.

values[0]: Acceleration minus Gx on the x-axis

values[1]: Acceleration minus Gy on the y-axis

values[2]: Acceleration minus Gz on the z-axis

Examples:

- . When the device lies flat on a table and is pushed on its left side toward the right, the x acceleration value is positive.
- . When the device lies flat on a table, the acceleration value is +9.81, which correspond to the acceleration of the device (0 m/s^2) minus the force of gravity (-9.81 m/s^2).
- When the device lies flat on a table and is pushed toward the sky with an acceleration of A m/s^2, the acceleration value is equal to A+9.81 which correspond to the acceleration of the device (+A m/s^2) minus the force of gravity (-9.81 m/s^2).

Yaw, Pitch and Roll

Azimuth, Pitch and Roll

- Device Orientation
 - Orientation Sensor directly Legacy
 - Accelerometers + Magnetic field
- According to Android Doc
 - SLOW...
 - But increased accuracy, ability to modify

Note: It is preferable to use getRotationMatrix() in conjunction with remapCoordinateSystem() and getOrientation() to compute these values; while it may be more expensive, it is usually more accurate.

Sensor - Legacy

```
public static volatile float direction = (float) 0;
  public static volatile float inclination;
  public static volatile float rollingZ = (float)0;
  public static volatile float kFilteringFactor =
(float) 0.05;
  public static float aboveOrBelow = (float)0;
  public void onAccuracyChanged(Sensor arg0, int
arq1) { }
  public void onSensorChanged(SensorEvent evt)
      float vals[] = evt.values;
      if(evt.sensor.getType() ==
Sensor. TYPE ORIENTATION)
         float rawDirection = vals[0];
         direction = (float) ((rawDirection *
kFilteringFactor) +
            (direction * (1.0 - kFilteringFactor)));
```

Sensor - conjunction

```
• float[] values = new float[3];
• float[] R = new float[9];
• SensorManager.getRotationMatrix(R,
  null, accelerometerValues, magneticFieldValues);

    SensorManager.getOrientation(R, values);

• // Convert from <a href="radians">radians</a> to degrees.
values[0] = (float) Math.toDegrees(values[0]);
values[1] = (float) Math.toDegrees(values[1]);
values[2] = (float) Math.toDegrees(values[2]);
```


• SensorManager.getRotationMatrix(R, null, aValues, mValues); • float[] outR = new float[9]; • SensorManager.remapCoordinateSystem(R, SensorManager .AXIS_X, SensorManager.AXIS_Z, outR); • SensorManager.getOrientation(outR, values); • // Convert from <u>radians</u> to degrees. • <u>values</u>[0] = (**float**) Math.toDegrees(<u>values</u>[0]); • <u>values[1] = (float) Math.toDegrees(values[1]);</u>

• <u>values</u>[2] = (**float**) Math.toDegrees(<u>values</u>[2]);

Location- based AR in Android

AR OpenSource

- NyARToolkit
 - http://nyatla.jp/nyartoolkit/wiki/index.php?Fr ontPage.en
- AndAR
 - http://code.google.com/p/andar/
- mixare
 - http://www.mixare.org/

- 안드로이드 펍 www.androidpub.com
- Professional Android2 Reto meier, Wrox
- Wikipedia
 - Android
 - AR
 - Wii Remote
 - Azimuth, Pitch, Roll

Thanks!!

박유태 ㈜라람인터랙티브