

INSIGHT MCA CLASSES

LIVE GOPAL AGARWAL

M.Sc. 5 Years (IIT-Kanpur)

H.O.: 113/3-K Friends Colony, Swaroop Nagar, Kanpur-B.O. :Saket Nagar & Kakadeo, Kanpur

- Let A(t) denote the area bounded by the curve $y = e^{-|x|}$, the x-axis and the straight lines x = -tand x = t. Then $\lim A(t)$ is equal to [IIT JAM] 2007]
 - (a) 1*
 - (b) 1
- (c) 1/2
- (d) 0
- 2. If k is a constant such that $xy + k = e^{(x-1)^{2/2}}$ satisfies differential equation $x\frac{dy}{dx} = (x^2 - x - 1)y + (x - 1)$, then k is equal to

[IIT JAM 2007]

- (a) 1*
- (b) 0
- (c) -1
- (d) -2
- 3. Which of the following functions is uniformly continuous on the domain as stated?
 - (a) $f(x) = x^2, x \in \mathbb{R}$
 - (b) $f(x) = \frac{1}{x}, x \in [1, \infty) *$
 - (c) $f(x) = \tan x$, $x \in (-\pi/2, \pi/2)$
 - (d) $f(x) = [x], x \in [0,1]$ [IIT JAM 2007] ([x] is the greatest integer less than or equal to x)
- 4. Let R be the ringh of polynomials over Z, and let I be the ideal of R generated by the polynomial
 - $x^3 + x + 1$. Then the number of elements in the quotient ring R/I is [IIT JAM 2007] (a) 2 (b) 4 (c) 8*(d) 16
- 5. Which of the following sets is a basis for the [IIT JAM 2007]

$$W = \left\{ \begin{bmatrix} x & y \\ 0 & t \end{bmatrix} : x + 2y + t = 0, y + t = 0 \right\}$$

of the vector space all real 2×2 matrices?

[IIT JAM 2007]

- (a) $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$
- (b) $\left\{ \begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \right\}$
- (c) $\left\{ \begin{bmatrix} -1 & 1 \\ 2 & -1 \end{bmatrix} \right\}$ (d) $\left\{ \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \right\} *$

Regd. No. 1014

- Let G be an Abelian group of order 10. Let $S\{g \in G : g^{-1} = g\}$. Then the number of non-identity elements in S is [IIT JAM 2007] (b) 2(c) 1*
- 7. Let (a_n) be an increasing sequence of positive real numbers such that the series $\sum_{k=1}^{\infty} a_k$ is divergent.

Let
$$s_n = \sum_{k=1}^n a_k$$
 for $n = 1, 2,...$ and $l_n = \sum_{k=2}^n \frac{a_k}{s_{k-1} s_k}$

for n = 2, 3,... Then $\lim_{n\to\infty} t_n$ is equal to

[IIT JAM 2007]

- (a) $1/a_1$ * (b) 0 (c) $1/(a_1+a_2)$ (d) a_1+a_2
- For every function $f:[0,1] \to \mathbb{R}$ which is twice differentiable and satisfies $f'(x) \ge 1$ for all $x \in [0,1]$, we must have [IIT JAM 2007]
 - (a) $f''(x) \ge 0$ for all $x \in [0,1]$
 - (b) $f(x) \ge x$ for all $x \in [0,1]$
 - (c) $f(x_2) x_2 \le f(x_1) x_1$ for all $x_1, x_2 \in [0,1]$ with $x_2 \ge x_1$
 - *(d) $f(x_2) x_2 \ge f(x_1) x_1$ for al with

 $x_2 \ge x_1$

9. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by **[IIT JAM 2007]**

$$f(x,y) = \begin{cases} \frac{x^2 y}{x^4 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Which of the following statements holds regarding the continuity and the existence of partial derivatives of f at (0, 0)?

- (a) Both partial derivatives of f exist at (0,0) and f is continuous at (0,0)
- (b) Bothe partial derivatives of f exist at (0, 0) and f is NOT continuous at (0,0)*
- (c) One partial derivative of f does NOT exist at (0,0) and f is continuous at (0,0)
- (d) One partial derivative of f does NOT exist at (0,0) and f is NOT continuous at (0,0)
- 10. Suppose (c_n) is a sequence of real numbers such that $\lim_{n\to\infty} \left|c_n\right|^{1/n}$ exists and is non-zero. If the radius

of convergence of the power series $\sum_{n=0}^{\infty} c_n x^n$ is equal to r, then the radius of convergence of the power series $\sum_{n=0}^{\infty} n^2 c_n x^n$ is **[IIT JAM 2007]**

- (a) less than r
- (b) greater than r
- (c) equal to r*
- (d) equal to 0
- 11. The rank of the matrix $\begin{vmatrix} 1 & 4 & 8 \\ 2 & 10 & 22 \\ 0 & 4 & 12 \end{vmatrix}$ is

[IIT JAM 2007]

(a) 3

(b) 2*

(c) 1

(d) 0

12. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function. If

 $\int_{0}^{x} f(2t)dt = \frac{x}{\pi}\sin(\pi x) \text{ for all } x \in \mathbb{R}, \text{ then } f(2) \text{ is}$

qual to

- (a) 1*
- (b) 0

- 13. Let $\vec{u} = (ae^x \sin y 4x)\hat{i} + (2y + e^x \cos y)\hat{j} + az\hat{k}$, where a is a constant. If the line integral $\oint \vec{u} \cdot d\vec{r}$ over every closed curve C is zero, then a is equal [IIT JAM 2007]

(a) -2

- (b) 1
- (c)0
- (d) 1*
- 14. One of the integrating factors of the differential equation $(y^2-3xy)dx+(x^2-xy)dy=0$ is
 - (a) $1/(x^2y^2)$ (b) $1/(x^2y)^*$

 - (c) $1/(xy^2)$ (d) 1/(xy) [IIT JAM 2007]
- 15. Let C denote the boundary of the semi-circular disk $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1, y \ge 0\}$ and let

 $\varphi(x, y) = x^2 + y$ for $(x, y) \in D$. If \hat{n} is the outward unit normal to C, then the integral

 $\oint (\vec{\nabla} \varphi) \cdot \hat{n} ds$, evaluated counter-clockwise over C,

is equal to

[IIT JAM 2007]

- (a) 0
- (b) $\pi 2*$
- (d) $\pi + 2$

16. (a) Let
$$M = \begin{bmatrix} 1+i & 2i & i+3 \\ 0 & 1-i & 3i \\ 0 & 0 & i \end{bmatrix}$$
. Determine the

eigenvalues of the matrix $B = M^2 - 2M + I$. ANS. -1, -1, -2i

(b) Let N be a square matrix of order 2. If the determinant of N is equal to 9 and the sum of the diagonal entries of N is equal to 10, then determine the eigenvalues of N.(9+6)

[IIT JAM 2007]

ANS. 1,9

17. (a) Using the method of variation of parameters, solve the differential equation

$$x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} - y = x^{2}$$
, [IIT JAM 2007]

given that x and 1/x are two solutions of the corresponding homogeneous equation.

(b) Find the real number α such that the differential equation

$$\frac{d^2y}{dx^2} + 2(\alpha - 1)(\alpha - 3)\frac{dy}{dx} + (\alpha - 2)y = 0$$

has a solution $y(x) = \alpha \cos(\beta x) + b \sin(\beta x)$

for some non-zero real number a, b, β . (6)

18. (a) Let a, b, c be non-zero real numbers such that $(a - b)^2 = 4ac$. Solve the differential equation

$$a(x+\sqrt{2})^2 \frac{d^2y}{dx^2} + b(x+\sqrt{2})\frac{dy}{dx} + cy = 0$$
 .(9)

(b) Solve the differential equation

$$dx + (e^{y\sin y} - x)(y\cos y + \sin y)dy = 0.(6)$$
[IIT JAM 2007]

19. Let $f(x, y) = x(x - 2y^2)$ for $(x, y) \in \mathbb{R}^2$. Show that f has a local minimum at (0, 0) on every straight line through (0, 0). Is (0, 0) a critical point of f? Find the discriminant of f at (0, 0). Does f have a local minimum at (0, 0)? Justify your answers.(15)

[IIT JAM 2007]

- 20. (a) Find the finite volume enclosed by the paraboloids $z = 2 x^2 y^2$ and $z = x^2 + y^2$. (9)
 - (b) Let $f:[0,3] \to \mathbb{R}$ be a continuous function with $\int_{0}^{3} f(x)dx = 3$. Evaluate

$$\int_{0}^{3} [xf(x) + \int_{0}^{x} f(t)dt] dx$$
. (6) [IIT JAM 2007]

- 21. (a) Let S be the surface $\{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + 2z = 2, \ z \ge 0\} \quad ,$ and let \hat{n} be the outward unit normal to S. If $\vec{F} = y\hat{i} + xz\hat{j} + (x^2 + y^2)\hat{k} \text{ , then evaluate the integral } \iint_{S} \vec{F} \cdot \hat{n} dS \, . \tag{9}$
 - (b) Let $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $r = |\vec{r}|$. If a scalar field φ and a vector field \vec{u} satisfy $\nabla \varphi = \nabla \times \vec{u} + f(r)\vec{r}$, where f is an arbitrary differentiable function, then show that $\nabla^2 \varphi = rf'(r) + 3f(r) \cdot (6)$ [IIT JAM 2007]
- 22. (a) Let D be the region bounded by the concentric spheres $S_1: x^2 + y^2 + z^2 = a^2$ and $S_2: x^2 + y^2 + z^2 = b^2$, where a < b. Let \hat{n} be the unit normal to S_1 directed away from the origin. If $\nabla^2 \varphi = 0$ in D and $\varphi = 0$ on S_2 , then show that

$$\iiint\limits_{D} \left| \vec{\nabla} \varphi \right|^{2} dV + \iint\limits_{S_{1}} \varphi(\vec{\nabla} \varphi) . \hat{n} dS = 0$$
(9)

(b) Let C be the curve In R³ given by $x^2 + y^2 = a^2$, z = 0 traced counter-clockwise,

- and let $\vec{F} = x^2 y^3 \hat{i} + \hat{j} + z \hat{k}$. Using Stoke's theorem, evaluate $\oint_C \vec{F} \cdot d\vec{r} \cdot (6)$ [IIT JAM 2007]
- 23. Let V be the subspace of R⁴ spanned by the vectors (1, 0, 1, 2), (2, 1, 3, 4) and (3, 1, 4, 6). Let $T:V \to R^2$ be a linear transformation given by T (x, y, z, t) = (x y, z t) for all $(x, y, z, t) \in V$. Find a basis for the null space of T and also a basis for the range space of T. (15)[IIT JAM 2007]
- 24. (a) Compute the double integral $\iint_D (x+2y)dx dy$, where D is the region in the xy-plane bounded by the straight lines y = x + 3, y = x 3, y = -2x + 4 and y = -2x 2.(9)[IIT JAM 2007]

(b)
$$\int_{0}^{\pi/2} \left[\int_{\pi/2}^{\pi} \frac{\sin x}{x} dx \right] dy + \int_{\pi/2}^{\pi} \left[\int_{y}^{\pi} \frac{\sin x}{x} dx \right] dy$$
 (6)

- 25. (a) Deos the series $\sum_{k=1}^{\infty} \frac{(-1)^k k + x^k}{k^2}$ converge
 - uniformly for $x \in [-1,1]$? Justify. (9)
 - (b) Suppose (f_n) is a sequence of real-valued functions defined on R and f is a real-valued function defined on R such that $|f_n(x) f(x)| \le |a_n|$ for all $n \in N$ and $a_n \to 0$ as $n \to \infty$. Must the sequence (f_n) be uniformly convergent on **R**? Justify. (6) [IIT JAM 2007]
- 26. (a) Suppose f is a real-valued thrice differentiable function defined on **R** such that f'''(x) > 0 for all $x \in R$. Using Taylor's formula, show that

$$f(x_2) - f(x_1) > (x_2 - x_1) f'\left(\frac{x_1 + x_2}{2}\right)$$
 for

all x_1 and x_2 in **R** with $x_2 > x_1$. (9)

- (b) Let (a_n) and (b_n) be sequences of real numbers such that $a_n \le a_{n+1} \le b_{n+1} \le b_n$ for all $n \in \mathbb{N}$. Must there exist a real number x such that $a_n \le x \le b_n$ for all $n \in \mathbb{N}$? Justify your answer. (6)[IIT JAM 2007]
- 27. Let G be the group of all 2×2 matrices with real entries with respect to matrix multiplication. Let

G₁ be the smallest subgroup of G containing

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \text{ and } \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \text{, and } G_2 \text{ be the smallest of }$$

G containing
$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
 and $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$. Determine

all elements of G_1 and find their orders. Determine all elements of G_2 and find their orders. Does there exist a one-to-one homomorphism from G_1 onto G_2 ? Justify. (15)[IIT JAM 2007]

- 28. (a) Let p be a prime number and let **Z** be the ring of integers. If an ideal J and **Z** contains the set p**Z** properly, then show that $J = \mathbf{Z}$. (Here $p\mathbf{Z} = \{px : x \in \mathbf{Z}\}$). (9)
 - (b) Consider the ring $R = \{a + ib : a, b \in \mathbb{Z}\}$ with usual addition and multiplication. Find all invertible elements of **R**.(6)[**IIT JAM 2007**]
- 29. (a) Suppose E is a non-empty subset of **R** which is bounded above, and let $\alpha = \sup E$. (9)
 - (b) Find all limit points of the set

$$E = \left\{ n + \frac{1}{2m} : n, m \in \mathbb{N} \right\} . (6) [\mathbf{IIT} \quad \mathbf{JAM}$$
2007]