INTEGRAÇÃO NUMÉRICA

O procedimento usual de cálculo de uma integral definida é encontrar uma antiderivada do integrando e aplicar o Teorema Fundamental do Cálculo. Há situações, entretanto, nas quais é necessário se obter uma aproximação numérica da integral, como por exemplo:

- A anti-derivada do integrando não pode ser obtida analiticamente.
- Cálculo da área de uma função representada por dados provenientes de medidas experimentais.

Matematicamente, a integral definida de uma função f em um intervalo [a,b] é dada por:

$$\int_{a}^{b} f(x)dx = \lim_{n \to +\infty} \sum_{k=1}^{n} f(x_{k}^{*}) \Delta x.$$
(5.1)

Nesta equação, a soma que aparece no lado direito é chamada de soma de Riemann; o intervalo [a,b] é dividido em n subintervalos de comprimento $\Delta x = \frac{b-a}{n}$ e x_k^* denota um ponto arbitrário no k-ésimo subintervalo.

Os métodos de integração numérica usuais são derivados das fórmulas de Newton-Cotes. O procedimento consiste, basicamente, em substituir a função original por outra função, cuja integração possa ser realizada de modo mais simples, ou seja:

$$\int_{a}^{b} f(x)dx \cong \int_{a}^{b} f_{n}(x)dx. \tag{5.2}$$

A função $f_n(x)$ é um polinômio de grau n, dado na forma apresentado na equação (5.19) ou na forma de um polinômio de Lagrange.

Os métodos de integração numérica estudados nesta seção são:

- Método do trapézio simples.
- Método do trapézio múltiplo.
- Método de Simpson $\frac{1}{3}$ simples.
- Método de Simpson $\frac{1}{3}$ múltiplo.
- Método de Simpson $\frac{3}{8}$ simples.

5.1 MÉTODO DO TRAPÉZIO SIMPLES

Neste caso, $f_n(x)$ é uma função polinomial de primeiro grau. Geometricamente, a regra do trapézio simples determina a área do trapézio formado pelos extremos, a abscissa e a reta que liga os pontos (figura 5.1), ou seja:

$$I \cong \int_{a}^{b} \left[f(a) + \frac{f(b) - f(a)}{b - a} (x - a) \right] dx.$$

$$(5.3)$$

A solução dessa equação resulta, então, no método do trapézio simples:

$$I \cong (b-a)\frac{f(a)+f(b)}{2}. \tag{5.4}$$

Figura 5.1. Representação gráfica da regra do trapézio simples.

5.2 MÉTODO DO TRAPÉZIO MÚLTIPLO

Uma forma de melhorar a estimativa do método do trapézio simples é aumentar o número de intervalos, aplicando o método a cada segmento, de forma a aproximar a curva da função por uma reta (figura 5.2).

Supondo que existam n+1 pontos: $(x_0, x_1, x_2, ..., x_n)$, tem-se então, n segmentos de tamanho:

$$h = \frac{x_n - x_0}{n} \,. \tag{5.5}$$

A integral é então calculada, conforme expressão (5.6):

$$I \cong \int_{x_0}^{x_1} f(x)dx + \int_{x_1}^{x_2} f(x)dx + \dots + \int_{x_{n-1}}^{x_n} f(x)dx.$$
 (5.6)

Figura 5.2. Representação gráfica da regra do trapézio múltipla.

Substituindo a expressão (5.4) na expressão (5.6), obtém-se:

$$I \cong h \frac{f(x_0) + f(x_1)}{2} + h \frac{f(x_1) + f(x_2)}{2} + \dots + h \frac{f(x_{n-1}) + f(x_n)}{2}.$$
 (5.7)

A solução dessa equação resulta, então, na regra do trapézio múltiplo:

$$I \cong \frac{h}{2} \left[f(x_0) + 2 \sum_{i=1}^{n-1} f(x_i) + f(x_n) \right].$$
 (5.8)

5.3 MÉTODO DE SIMPSON $\frac{1}{3}$ SIMPLES

O método de Simpson ½ simples utiliza um polinômio de Lagrange de segunda ordem para aproximar a função (figura 5.3):

$$I \cong \int_{x_0}^{x_1} \left[\frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} f(x_0) + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} f(x_1) + \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} f(x_2) \right] dx$$

$$(5.9)$$

A solução dessa equação resulta, então, na regra de Simpson $\frac{1}{3}$ simples:

Figura 5.3. Representação gráfica da regra de Simpson $\frac{1}{3}$ simples.

5.4 MÉTODO DE SIMPSON $\frac{1}{3}$ MÚLTIPLO

Semelhante ao que se fez com a regra do trapézio múltipla, a melhoria da estimativa do cálculo da integral é obtida aumentando o número de intervalos e aplicando o método a cada segmento (figura 5.4). Isso é feito substituindo a expressão (5.10) na expressão (5.6), ou seja:

$$I \cong 2h \frac{f(x_0) + 4f(x_1) + f(x_2)}{6} + 2h \frac{f(x_2) + 4f(x_3) + f(x_4)}{6} + \dots$$

$$+ 2h \frac{f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)}{6}$$

$$(5.11)$$

A solução dessa equação resulta então, na regra de Simpson $\frac{1}{3}$ múltipla:

$$I \cong \frac{h}{3} \left[f(x_0) + 4 \sum_{i=1,3,5}^{n-1} f(x_i) + 2 \sum_{i=2,4,6}^{n-2} f(x_i) + f(x_n) \right].$$
 (5.12)

Observa-se que um número par de segmentos deve ser utilizado.

Figura 5.4. Representação gráfica da regra de Simpson $\frac{1}{3}$ múltipla.

5.5 MÉTODO DE SIMPSON $\frac{3}{8}$ SIMPLES

A regra de Simpson $\frac{3}{8}$ simples utiliza um polinômio de Lagrange de terceira ordem para aproximar a função (figura 5.5):

$$I \cong \int_{x_0}^{x_1} \left[\frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)} f(x_0) + \frac{(x - x_0)(x - x_2)(x - x_3)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)} f(x_1) + \dots \right]$$

$$\frac{(x - x_1)(x - x_0)(x - x_3)}{(x_2 - x_1)(x_2 - x_0)(x_2 - x_3)} f(x_2) + \frac{(x - x_0)(x - x_2)(x - x_1)}{(x_3 - x_0)(x_3 - x_2)(x_3 - x_1)} f(x_3) \right] dx$$

$$(5.13)$$

A solução dessa equação resulta, então, na regra de Simpson $\frac{3}{8}$ simples:

$$I \cong \frac{(x_3 - x_0)}{8} [f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)].$$
 (5.14)

Observa-se que um número ímpar de segmentos deve ser utilizado.

Figura 5.5. Representação gráfica da regra de Simpson $\frac{3}{8}$ simples.

5.6 AVALIAÇÃO DOS MÉTODOS

A avaliação dos métodos foi feita utilizando-se a seguinte integral: $\int_0^1 x^{0,1} (1,2-x) (1-e^{20(x-1)}) dx$, cujo valor verdadeiro é I=0,602297.

- O método do trapézio simples resultou em I = 0.
- O método do trapézio múltiplo resultou na seguinte tabela de dados:

Tabela 5.1. Método do trapézio múltiplo (a = 0; b = 1).

n	I	erro (%)
1	0	100
2	0,3265	45,79
3	0,4293	28,72
4	0,4786	20,54
5	0,5070	15,82
10	0,5598	7,06
20	0,5830	3,20
500	0,6018	0,08

- O método de Simpson $\frac{1}{3}$ simples resultou em I = 0.4354, com um erro de 27,71%.
- O método de Simpson $\frac{1}{3}$ múltiplo resultou na seguinte tabela de dados:

Tabela 5.2. Método de Simpson $\frac{1}{3}$ múltiplo (a = 0; b = 1).

n	I	Erro (%)
2	0,4354	27,71
4	0,5293	12,12
6	0,5574	7,45
8	0,5702	5,33
10	0,5774	4,13
20	0,5908	1,91
500	0,6020	0,05

• O método de Simpson $\frac{3}{8}$ simples resultou em I = 0.4830, com erro de 19,81%.

Embora aplicamos as regras de integração nos dados apresentados, poderíamos encontrar uma função, através de regressão ou interpolação, a fim de determinar analiticamente sua integral. Mesmo apresentados estes modelos para integração numérica, há diversos outros modelos produzidos que minimizam o erro devido a aproximações.

Os erros cometidos pelos métodos de integração pode ser obtidos analiticamente. As expressões de erro de cada regra são apresentadas na tabela 5.3.

Tabela 5.3. Fórmulas de computação dos erros.

Método	Erro
Regra Trapézio simples	$-\frac{(b-a)^3}{12}f''(\varphi)$
Regra Trapézio múltipla	$-\frac{(b-a)^3}{12n^2}\overline{f}''$
Regra Simpson 1/3 simples	$-\frac{(b-a)^5}{2880} f^{(4)}(\varphi)$
Regra Simpson 1/3 Múltipla	$-\frac{(b-a)^5}{180n^4}\overline{f}^{(4)}$
Regra Simpson 3/8	$-\frac{(b-a)^5}{6480}f^{(4)}(\varphi)$