Lecture 9

• **Read:** Chapter 6.6-6.8, 7.1-7.4.

Central Limit Theorem and Sample Mean

- Central Limit Theorem
- Applications of the Central Limit Theorem
- Sample Mean: Expected Value and Variance
- Sample Mean: Useful Inequalities
- Sample Mean: Sample Mean of Large Numbers
- Sample Mean: Law of Large Numbers

Sums of Random Variables

- $W_1 = X_1 + X_n$
- $f_{X_1,...,X_n}(X_1,...,X_n)$
- Special techniques
 - For E[W] and Var[W]
 - When $X_1, ... X_n$ are iid
 - \blacksquare Limit theorems for large values of n

Central Limit Theorem (I)

- States that the CDF of a sum of random variables converges to a Gaussian CDF.
- Allows us to use the properties of Gaussian random variables to obtain accurate estimates of probabilities associated with sums of random variables.
 - In many cases, exact calculation of these probabilities is extremely difficult.

Central Limit Theorem (II)

- Review: $X_1, X_2, ...$ iid Gaussian RVs
- $W_n = X_1 + ... + X_n$ is Gaussian with

$$E[W_n] = n\mu_X$$
$$Var[W_n] = n\sigma_X^2$$

• What if $X_1, X_2, ...$ are not Gaussian?

Sum of Bernoulli RVs

- 50 flips of a fair coin: $X_i = 1$ is H on flip i.
- W_n is binomial

$$ho_{W_n}(w) = egin{cases} inom{50}{w}(1/2)^{50} & \text{, } w = 0, 1, ..., 50 \\ 0 & \text{, otherwise} \end{cases}$$

What does this look like?

Sum of Bernoulli RVs (cont.)

Number of heads in 50 flips of a fair coin: 400 experimental repetitions vs. the binomial PMF

Central Limit Theorem

- Suppose X_i are iid RVs and let $W_n = X_1 + X_2 + ... + X_n$.
- Define Z_n

$$Z_n = \frac{W_n - E[W_n]}{\sqrt{Var[W_n]}} = \frac{W_n - n\mu_X}{\sqrt{n} \cdot \sigma_X}$$

• As $n \to \infty$, $Z_n \sim N(0,1)$ (Alternatively, $P[Z_n \le z] = \Phi(z)$).

Central Limit Theorem: Proof (I)

- We want to show that the MGF of Z_n approaches the MGF of a Gaussian RV.
- Consider $\phi_{Z_n}(s) = E\left[\exp\left(s\frac{W_n n\mu_X}{\sqrt{n} \cdot \sigma_X}\right)\right]$.

$$\frac{W_n - n\mu_X}{\sqrt{n} \cdot \sigma_X} = \frac{\sum X_i - n\mu_X}{\sqrt{n} \cdot \sigma_X}$$

$$= \frac{\sum_{i=1}^n (X_i - \mu_X)}{\sqrt{n} \cdot \sigma_X}$$

$$= \frac{1}{\sqrt{n}} \sum_{i=1}^n \frac{(X_i - \mu_X)}{\sigma_X}$$

$$= \frac{1}{\sqrt{n}} \sum_{i=1}^n Y_i \quad \text{, where, } Y_i = \frac{X_i - \mu_X}{\sigma_X}$$

Central Limit Theorem: Proof (II)

- MGF of Z_n is $\phi_{Z_n}(s) = E\left[\exp\left(s\frac{W_n n\mu_X}{\sqrt{n} \cdot \sigma_X}\right)\right]$.
- Replacing $\frac{W_n n\mu_X}{\sqrt{n} \cdot \sigma_X}$ with $\frac{1}{\sqrt{n}} \sum_{i=1}^n Y_i$, the MGF becomes

$$\phi_{Z_n}(s) = E\left[exp\left(\frac{s}{\sqrt{n}}\sum_{i=1}^n Y_i\right)\right]$$
$$= \left[\phi_Y\left(\frac{s}{\sqrt{n}}\right)\right]^n$$

Central Limit Theorem: Proof (III)

• The Taylor series of a real function f(x) that is infinitely differentiable in a neighborhood of a real number a is the power series

power series
$$f(x) = f(a) + \frac{f'(a)}{1!}(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f^{(3)}(a)}{3!}(x - a)^3 + \dots$$

$$= \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x - a)^n$$

• Writing the Taylor series expansion for $\phi_Y\left(\frac{s}{\sqrt{n}}\right)$, as $n\to\infty$,

$$\begin{split} \phi_{Y}\left(\frac{s}{\sqrt{n}}\right) &= 1 + \frac{\partial \phi_{Y}\left(\frac{s}{\sqrt{n}}\right)}{\partial s}\bigg|_{s=0} \cdot \frac{s}{\sqrt{n}} + \frac{\partial^{2}\phi_{Y}\left(\frac{s}{\sqrt{n}}\right)}{\partial^{2}s}\bigg|_{s=0} \cdot \frac{1}{2!}\left(\frac{s}{\sqrt{n}}\right)^{2} \\ &= 1 + E[Y] \cdot \frac{s}{\sqrt{n}} + E[Y^{2}] \cdot \frac{s^{2}}{2n} \quad \text{where, } Y = \frac{X - \mu}{\sigma} \end{split}$$

• Since E[Y] = 0 and $E[Y^2] = Var[Y] = 1$,

$$\phi_{Z_n}(s) pprox \left(1 + rac{s^2}{2n}
ight)^n$$

Central Limit Theorem: Proof (IV)

• Fact: (Limit definition of the exponential function)

$$\lim_{n\to\infty} \left(1 + \frac{a}{n}\right)^n = e^a$$

So,

$$\lim_{n\to\infty}\phi_{Z_n}(s)=e^{s^2/2}$$

- Note: $e^{s^2/2}$ is the MGF of a Gaussian RV with mean 0 and variance 1.
- So, the theorem has been proven.

Central Limit Theorem: Setup

- X_i iid.
- $W_n = X_1 + X_2 + ... + X_n$
- Let $Z_n = \frac{W_n E[W_n]}{\sqrt{Var[W_n]}}$.
- Then, as $n \to \infty$, $Z_n \sim N(0,1)$ or alternatively, $P[Z_n \le z] = \Phi(z)$ (Alternatively, $W_n \sim N(n\mu_X, n\sigma_X^2)$.)

Applying the Central Limit Theorem (CLT)

- $W_n = X_1 + X_2 + ... + X_n$, X_i are iid.
- Find $P[W_n \le w] = P\left[\frac{W_n n\mu_X}{\sqrt{n\sigma_X^2}} \le \frac{w n\mu_X}{\sqrt{n\sigma_X^2}}\right].$
- Note: $E[W_n] = n\mu_X$ and $Var[W_n] = n\sigma_X^2$

$$P[W_n \le w] \stackrel{CLT}{pprox} P\left[Z \le \frac{w - n\mu_X}{\sqrt{n\sigma_X^2}}\right]$$
, where $Z \sim N(0, 1)$

$$= \Phi\left(\frac{w - n\mu_X}{\sqrt{n\sigma_X^2}}\right)$$

Central Limit Theorem for Uniform RVs

Central Limit Theorem for Binomial RVs

Central Limit Theorem: Example

- Suppose orders at a restaurant are iid with mean $\mu_X = 8$ TL and standard deviation $\sigma_X = 2$ TL.
- Estimate the probability that the first 100 customers spend a total exceeding 840 TL.

Consider
$$W_{100} = \sum_{i=1}^{100} X_i$$
, $\left[\frac{W_n - n\mu_X}{\sqrt{n} \cdot \sigma_X} = \frac{W_{100} - 100 \times 8}{\sqrt{100} \cdot 2} \right]$

Our goal is to compute:

$$P[W_{100} \ge 840] = P\left[\frac{W_{100} - 800}{10 \times 2} \ge \frac{840 - 800}{10 \times 2}\right]$$

$$= P\left[\frac{W_{100} - 800}{10 \times 2} \ge 2\right]$$

$$= P[Z \ge 2] \quad \text{, where } Z \sim N(0, 1)$$

$$= 1 - \Phi(2)$$

$$P[Z \ge 2] = 2.28 \times 10^{-2}$$

16 / 50

4D > 4B > 4B > 4B > 900

Sample Mean

- To define the sample mean, consider repeated independent trials of an experiment.
- Each trial results in one observation of a random variable, X. After n trials, we have sample values of the n RVs, $X_1, ..., X_n$ all with the same PDF as X.
- The sample mean is the numerical average of the observations.

Sample Mean

- $X_1, ..., X_n$ are iid, each with PDF $f_X(x)$
- The sample mean of X is the RV:

$$M_n(X) = \frac{X_1 + X_2 + \dots + X_n}{n}$$

- Remember $M_n(X)$ is an RV!
- $M_n(X)$ is <u>not</u> the expected value E[X].
- As n increases without bound, $M_n(X)$ predictably approaches E[X].

Mean and Variance of $M_n(X)$

• Theorem: The sample mean $M_n(X)$ has expectation and variance:

$$E[M_n(X)] = E[X]$$

 $Var[M_n(X)] = \frac{Var[X]}{n}$

- $\lim_{n\to\infty} Var[M_n(X)] = 0$ suggests $M_n(X) \to E[X]$.
- How does a sequence of RVs approach a constant?
 - Markov inequality
 - Chebyshev inequality
 - Chernoff inequality

Useful Inequalities

- Often, the performance of a system is determined by the probability of an undesirable event.
- The primary performance for a digital communication system is the probability of a bit error.
- For a fire alarm, the probability of a false alarm may be ignored when there is an actual fire.
- When an exact calculation is too difficult, an upper bound offers a way to guarantee that the probability of the undesirable event will not be too high.

Markov Inequality

Theorem: (Markov Inequality) For nonnegative RV X and c > 0,

$$P[X \ge c] \le \frac{E[X]}{c}$$

• Proof: Since X is a nonnegative RV, $f_X(x) = 0$ for x < 0.

$$E[X] = \int_0^{+\infty} x f_X(x) dx$$

$$= \underbrace{\int_0^c x f_X(x) dx}_{0 \le \infty} + \int_c^{\infty} x f_X(x) dx$$

$$\ge \int_c^{\infty} x f_X(x) dx \ge c \int_c^{\infty} f_X(x) dx = cP[X \ge c]$$

Markov Inequality: Example

- X = height (in meters) of a random adult
- E[X] = 1.60 m
- We want to know the probability of finding an adult with height over 3.20 m.
- Markov inequality says:

$$P[X \ge 3.20] \le \frac{1.60}{3.20} = \frac{1}{2} \longrightarrow \text{a very crude bound!}$$

• Statement is true, but is so weak it sounds wrong!

Chebyshev Inequality (I)

• Let $X = (Y - \mu_Y)^2$ and apply the Markov inequality:

$$P[(Y - \mu_Y)^2 \ge c^2] \le \frac{E[(Y - \mu_Y)^2]}{c^2}$$

- Reminder: Markov $X \ge 0$, $c \ge 0$, $P[X \ge c^2] \le \frac{E[X]}{c^2}$
- Now suppose we are given Y.
- Let $X = (Y \mu_Y)^2$, note $X \ge 0$.

$$P[(Y - \mu_Y)^2 \ge c^2] \le \frac{Var[Y]}{c^2}$$
$$P[|Y - \mu_Y| \ge c] \le \frac{Var[Y]}{c^2}$$

Chebyshev Inequality (II)

• Theorem: (Chebyshev Inequality) For any RV X and c > 0,

$$P[|X - \mu_X| \ge c] \le \frac{Var[X]}{c^2}$$

Chebyshev Inequality: Example

• For height X, E[X] = 1.60 m and $\sigma_X = 0.30$ m

$$P[X \ge 3.20] = P[X - \mu_X \ge 3.20 - \mu_X] = P[X - \mu_X \ge 1.60]$$

$$P[|X - \mu_X| \ge 1.60]$$

• Chebyshev:
$$P[X \ge 3.20] = P[|X - \mu_X| \ge 1.60]$$

$$\le \frac{Var[X]}{(1.60)^2}$$

$$\le \frac{\sigma_X^2}{(1.60)^2}$$

Chernoff Bound

• <u>Theorem:</u> (Chernoff Bound) For an arbitrary RV X and a constant c,

$$P[X \ge c] \le \min_{s \ge 0} e^{-sc} \phi_X(s)$$

Chernoff Bound: Proof 1

• Proof: Let Y = exp(sX) for $s \ge 0$. Then, since $Y \ge 0$, by Markov's inequality

$$P[Y \ge e^{sc}] \le \frac{E[Y]}{e^{sc}}$$

So,

$$P[X \ge c] \le e^{-sc} E[exp(sX)]$$

$$\le e^{-sc} \phi_X(s)$$

27 / 50

Now optimize to get the tightest upper bound.

Chernoff Bound: Proof 2

• **Proof:** In terms of the unit step function, u(x), we observe that

$$P[X \ge c] = \int_{c}^{\infty} f_X(x) dx = \int_{-\infty}^{\infty} u(x - c) f_X(x) dx$$

• For all $s \ge 0$, $u(x-c) \le e^{s(x-c)}$. This implies

$$P[X \ge c] = \int_{-\infty}^{\infty} e^{s(x-c)} f_X(x) dx$$
$$= e^{-sc} \int_{-\infty}^{\infty} e^{sx} f_X(x) dx = e^{-sc} \phi_X(s)$$

- This claim is true for any $s \ge 0$.
- Hence, the upper bound must hold when we choose s to minimize $e^{-sc}\phi_X(s)$.

Chernoff Bound

- By referring to the MGF of an RV, the Chernoff bound generally offers a better bound than the Chebyshev inequality.
- The Chernoff bound can be applied to any random variable.
- However, for small values of c, $e^{-sc}\phi_X(s)$ will be minimized by a negative value of s.
- In this case, the minimizing nonnegative s=0 and the Chernoff bound gives the trivial answer: $P[X \ge c] \le 1$.

Chernoff Bound: Example

- If the height of a randomly chosen adult is a Gaussian RV with expected value E[X]=1.60 meters and standard deviation $\sigma_X=0.30$ meters, use the Chernoff bound to find an upper bound on $P[X\geq 3.20]$.
- Since X is N(1.60,0.30), we find in the table for MGFs that the MGF of X is $\phi_X(s)=e^{(3.20s+0.3^2s^2)/2}$
- Thus, the Chernoff bound is

$$P[X \ge 3.20] \le \min_{s \ge 0} e^{-3.20s} e^{(3.20s + 0.09s^2)/2} = \min_{s \ge 0} e^{(0.09s^2 - 3.20s)/2}$$

- To find the minimizing s, it is sufficient to choose s to minimize $h(s) = 0.09s^2 3.20s$.
- Setting the derivative dh(s)/ds = 0.18s 3.20 = 0 yields $s = 160/9 \approx 17.77$.
- Applying s = 160/9 to the bound yields

$$P[X \ge 3.20] \le e^{(0.09s^2 - 3.20s)/2} \Big|_{s = 160/9} = 6.65 \times 10^{-7}$$

Chebyshev Inequality Applied to $M_n(X)$ (I)

• Recall Chebyshev bound:

$$P[|X - \mu_X| \ge c] \le \frac{Var[X]}{c^2}$$

Consider
$$M_n(X) o E[M_n(X)] = E[X]$$

 $o Var[M_n(X)] = \frac{Var[X]}{n}$

Chebyshev Inequality Applied to $M_n(X)$ (II)

• For any c > 0,

$$P[|M_n(X) - \mu_X| \ge c] \le \frac{Var[X]}{nc^2} = \alpha$$

$$P[|M_n(X) - \mu_X| < c] = 1 - P[|M_n(X) - \mu_X| \ge c]$$

$$\ge 1 - \frac{Var[X]}{nc^2} = 1 - \alpha$$

$$\mu_{X}$$
-c μ_{X} μ_{X} +c μ_{X}

900

Chebyshev Inequality Applied to $M_n(X)$ (III)

$$P[|M_n(X) - \mu_X| < c] \ge 1 - \frac{Var[X]}{nc^2} = 1 - \alpha$$

• The probability of the sample mean being more than $\pm c$ away from the expected value is less than $\frac{Var[X]}{nc^2}$.

$$P[|M_n(X) - \mu_X| < c] \ge 1 - \alpha$$

$$P[\mu_X \in [M_n(X) - c, M_n(X) + c]] \ge 1 - \alpha$$

- c = size of confidence interval
- $\alpha = \frac{Var[X]}{nc^2} = \text{confidence coefficient}$
- small α = high confidence

Example: Voter Survey (I)

- "Out of 1103 voters, the percentage of those that support Jones is $58\% \pm 3\%$."
- In this case, the data provides an estimate $M_n(X) = 0.58$.
- What is the confidence coefficient α of this statement?

Example: Voter Survey (II)

- Experiment: Observe whether a random voter support Jones
- X = 1 if the voter supports Jones, and X = 0 otherwise.
- X is a Bernoulli RV: E[X] = p, Var[X] = p(1 p).
- Problem statement gives \pm 3%. So, for c = 0.03

$$P[|M_n(X) - \mu_X| < 0.03] \ge 1 - \frac{p(1-p)}{n(0.03)^2} = 1 - \alpha$$

confidence is
$$\alpha = \frac{p(1-p)}{n(0.03)^2}$$

- Note: Var[X] is a function of p here.
- We can find an upper bound for Var[X] by taking the derivative with respect to p and setting it equal to 0.

$$Var[X] = f(p) = p(1-p) = p - p^2$$

 $f'(p) = 1 - 2p = 0$

- So, p = 1/2 maximizes Var[X] and this maximum value is $Var[X] = 1/2 \cdot (1 1/2) = 1/4$.
- For all p, Var[X] = p(1-p) < 1/4.

Example: Voter Survey (III)

confidence is
$$\alpha = \frac{p(1-p)}{n(0.03)^2}$$

For all p , $Var[X] = p(1-p) \le 0.25$, $\alpha \le \frac{0.25}{n(0.03)^2} = \frac{277.778}{n}$

- So, for n = 1103 samples, $\alpha \le 0.25$.
- This means that $1 \alpha \ge 0.75$, or we are 75% confident.

Summary

- $M_n(X) = \frac{X_1 + X_2 + ... + X_n}{n}$: "sample mean"
 - $E[M_n(X)] = \mu_X$
 - $Var[M_n(X)] = \frac{Var[X]}{n}$
- · Chebyshev Bound

$$P[|Y - \mu_Y| \ge c] \le \frac{Var[Y]}{c^2}$$

Key Result

•
$$P[|M_n(X) - \mu_X| \ge c] \le \frac{Var[X]}{nc^2} = \alpha$$

- $P[|M_n(X) \mu_X| \le c] \ge 1 \alpha$
- The probability that $M_n(X)$ lies within $\pm c$ of its own mean exceeds $1 \alpha =$ our confidence level

Averaged Measurements (I)

- X_i is the *i*th independent measurement (in cm) of a board, the exact length of which is b cm: $X_i = b + Z_i$
- Z_i is random, $E[Z_i] = 0$, $\sigma_Z = 1$
- Use $M_n(X)$ to get accurate estimate
- By taking the average of a large number of measurements, we hope to get the estimated length $M_n(X)$ close to b.
- How many measurements should be made to guarantee that with a probability of $1-\alpha=0.99$ or higher, the estimate is within 0.1 cm of the exact length of the board? That is, what should n be?

$$M_n(X) = rac{X_1 + X_2 + ... + X_n}{n}$$
 $E[M_n(X)] = b$
 $Var[M_n(X)] = rac{1}{n}$

39 / 50

Averaged Measurements (II)

•
$$E[X_i] = b$$
, $Var[X_i] = Var[Z] = 1$

$$P[|M_n(X) - b| < 0.1] \ge 1 - \frac{1}{n(0.1)^2} = 1 - \frac{100}{n}$$

 $P[|M_n(X) - b| < 0.1] \ge 0.99$ if $\frac{100}{n} \le 0.01$

• We need $n \ge 10,000$ measurements.

Averaged Measurements (III)

• Find n if Z_i are iid Gaussian.

$$M_n(X) = b + \frac{1}{n}(Z_1 + ... + Z_n) = b + M_n(Z)$$
 is Gaussian with $E[M_n(Z)] = 0$
$$Var[M_n(Z)] = \frac{Var[Z]}{n} = \frac{1}{n}$$
 $\Longrightarrow M_n(Z) \sim N\left(0, \frac{1}{n}\right)$

Averaged Measurements (IV)

• Thus,

$$P[|M_n(X) - b| < 0.1] = P[|b + M_n(Z) - b| < 0.1]$$

= $P[|M_n(Z)| < 0.1]$

Averaged Measurements (V)

• Since $M_n(Z) \sim N\left(0, \frac{1}{n}\right)$,

$$M_n(Z) = rac{1}{\sqrt{n}}Y$$
 , where $Y \sim N(0,1)$
$$P[|M_n(Z)| < 0.1] = P\left[\left|rac{1}{\sqrt{n}}Y\right| < 0.1
ight]$$

$$= P[|Y| \le 0.1\sqrt{n}]$$

$$= \Phi(0.1\sqrt{n}) - (1 - \Phi(0.1\sqrt{n}))$$

$$= 2\Phi(0.1\sqrt{n}) - 1$$

$$P[|M_n(X) - b| < 0.1] \ge 0.99$$

Averaged Measurements (VI)

• We can compute *n* such that:

$$2\Phi(0.1\sqrt{n}) - 1 \ge 0.99$$

$$\Phi(0.1\sqrt{n}) \ge \frac{1.99}{2}$$

$$\Phi(0.1\sqrt{n}) \ge 0.995$$

$$0.1\sqrt{n} \ge 2.58$$

$$n \ge 666$$

• We find that $n \ge 666$, a number much smaller than the 10,000 we had found previously.

Weak Law of Large Numbers

• Suppose $X_1, X_2, ..., X_n$ are iid, then

$$\frac{X_1 + X_2 + ... + X_n}{n} \longrightarrow \mu_X$$
 "in probability"

That is.

$$P\left[\left|rac{X_1+X_2+...+X_n}{n}-\mu_X
ight|\geq c
ight]\longrightarrow 0 ext{ as } n o\infty ext{ for any } c>0$$

- So, the sample mean converges in probability to the true mean.
- With high probability, the sample mean for a large enough fixed value of n is close to the true mean.
- Proof: Use the Chebyshev bound:

$$P[|M_n(X) - \mu_X| \ge c] \le \frac{Var[X]}{nc^2}$$

45 / 50

Central Limit Theorem

• Suppose $X_1, X_2, ..., X_n$ are iid, then

$$\frac{X_1 + X_2 + ... + X_n - n\mu_X}{\sqrt{n}\sigma_X} \stackrel{n \to \infty}{\longrightarrow} \textit{N}(0,1) \text{ "in distribution"}$$

That is,

$$P\left[\frac{X_1+X_2+...+X_n-n\mu_X}{\sqrt{n}\sigma_X}\leq z\right]=\Phi(z)$$

Central Limit Theorem

Example: Estimating confidence that one is close to

- $P[|S_n \mu|] \ge \frac{\sigma \epsilon}{\sqrt{n}} \approx P[|Z \ge \epsilon|]$
- used to determine when to stop a simulation, i.e., how big should n be?

Central Limit Theorem: Applications

- Central Limit Theorem explains the common appearance of the "bell curve" in density estimates applied to real world data
- In cases like electronic noise, examination grades, etc., we can
 often regard a single measured value as the weighted average
 of a large number of small effects
- Signal processing: smoothing signals
- Traffic engineering: how many vehicles safe in tunnel and for how long?
- Statistical mechanics
- Network engineering
- Bacteria in food samples
- Many other applications...

Approximations and Closeness

Approximations: consider system models as time evolves, or some scaling parameter becomes small/large, e.g., noise small, population large.

Applications: estimation, design of circuits and system subject to noise, stochastic approximations/models for systems

Which notion of closeness is most useful? Depends!

- for closeness of most realizations then convergence in probability is appropriate, i.e., we are willing to accept a small probability of failure
- in some cases, we only care that the distributions be the same, then convergence in distribution is appropriate, e.g., convergence to the steady state.

What Limit Do I Use When?

Depends on application...

- LLN study of stability of systems
- CLT heavy traffic limits (study of performance when systems are overloaded)