FICHE DE COURS 22

CHAMP NEWTONIEN

Ce que je dois être capable de faire après avoir appris mon cours

Définir un mouvement à champ de force newtonien.
Montrer que pour un tel mouvement l'énergie mécanique et le moment cinétique du système sont conservés.
Montrer que la trajectoire est plane.
Établir l'expression de la constante des aires.
Établir l'expression de l'énergie potentielle du système dans le cas d'un champ newtonien.
Établir l'expression de l'énergie potentielle effective du système dans le cas d'un champ newtonien.
Discuter graphiquement et quantitativement en fonction de $E_m=E_0=cte$ les différents types de trajectoire envisageables.
Distinguer les cas attractif et répulsif.
Étudier la fonction $E_{p,\text{eff}}(r)$ dans le cas attractif.
Énoncer les lois de Kepler.
Établir les relations vitesse-rayon, période-rayon et énergies-rayon dans le cas d'une trajectoire circulaire.
Connaître l'expression de l'énergie mécanique pour une trajectoire circulaire et savoir la généraliser au cas d'une trajectoire elliptique.
Définir la notion de satellite géostationnaire.
Montrer qu'un tel satellite décrit une trajectoire circulaire uniforme dans le plan de l'équateur.
Établir l'expression de son altitude et connaître la valeur numérique associée.
Définir, établir les expressions, et connaître les valeurs numériques, des deux vitesses cosmiques terrestres.

Les relations sur lesquelles je m'appuie pour développer mes calculs

 \square Force centrale newtonienne :

$$\overrightarrow{F} = -\frac{k}{r^2} \overrightarrow{u_r}$$
 et $E_p = -\frac{k}{r}$

où k est une constante positive si la force est attractive et négative si elle est répulsive.

 \Box Constante des aires :

$$\boxed{ C = r^2 \dot{\theta} = \frac{L_0}{m} \quad \text{où} \quad \overrightarrow{\mathcal{L}_O(M)} = L_0 \overrightarrow{u_z} \quad \text{avec} \quad L_0 = cte}$$

 $\hfill \square$ Vitesse aréolaire (aire algébrique couverte par unité de temps) :

$$\mathcal{V} = \frac{C}{2}$$

☐ Energie mécanique (expression générale) :

$$E_m = \underbrace{\frac{1}{2}m\dot{r}^2}_{\text{\'energie cin\'etique effective $E_{c_{\rm eff}}$}}^{\text{\'energie cin\'etique de rotation}}_{\text{\'energie cin\'etique effective $E_{c_{\rm eff}}$}}^{\text{\'energie cin\'etique de rotation}}_{\text{\'energie potentielle effective $E_{p_{\rm eff}}$}}^{\text{\'energie potentielle}}_{\text{\'energie potentielle effective $E_{p_{\rm eff}}$}}^{\text{\'energie potentielle}}_{\text{\'energie potentielle}}^{\text{\'energie potentielle}}_{\text{\'energie poten$$

☐ Energie mécanique (cas particuliers) :

$$E_{m_{\rm circ}}=-rac{k}{2R}$$
 (trajectoire circulaire)
$$E_{m_{\rm ellipse}}=-rac{k}{2a}$$
 (trajectoire elliptique)

☐ Trajectoire circulaire :

$$R_0 = \frac{mC^2}{k} \qquad \text{et} \qquad v = \sqrt{\frac{GM}{R_0}} \qquad \text{et} \qquad \frac{T^2}{R_0^3} = \frac{4\pi^2}{GM}$$

☐ Vitesses cosmiques terrestres :

$$v_1 = \sqrt{\frac{GM_T}{R_T}} = 7.9 \,\mathrm{km \, s^{-1}}$$
 (satellisation) et $v_2 = \sqrt{\frac{2GM_T}{R_T}} = 11.2 \,\mathrm{km \, s^{-1}}$ (libération)

 \square Équation polaire d'une conique - parabole (e = 1), hyperbole (e > 1), ellipse (0 < e < 1), cercle (e = 0):

$$r = \frac{p}{1 + e\cos\theta}$$

avec $p = R_0 = \frac{mC^2}{k}$ le paramètre de la conique et e l'excentricité.