

Корреспондентный анализ и анализ главных компонент

Анализ и визуализация многомерных данных с использованием R

Вадим Хайтов, Марина Варфоломеева

Корреспондентрый анализ и анализ главных компонент

- Сложности при анализе видового состава сообществ при помощи анализа главных компонент
 - Анализ сырых данных
 - Трансформация Хеллингера
 - Расстояние хорды
- Корреспондентный анализ
 - Анализ таблиц сопряженности, хи-квадрат
 - Оси в корреспондентном анализе
 - Интерпретация графиков в корреспондентном анализе

Вы сможете

- · Избавляться от "эффекта подковы" в анализе главных компонент при помощи трансформаций данных
- Проводить корреспондентный анализ таблиц сопряженности
- Объяснить, что именно означает взаиморасположение точек объектов и переменных на графиках результатов корреспондентного анализа
- Интерпретировать графики результатов корреспондентного анализа

Анализ видового состава сообществ. Трансформации данных

Пример: Птицы в лесах Австралии

Обилие 102 видов птиц в 37 сайтах в юго-восточной Австралии (Mac Nally, 1989; данные из Quinn, Keough, 2002). Можно ли описать отношения между сайтами небольшим числом главных компонент?

```
library(readxl)
birds <- read excel(path = "data/macnally.xlsx")</pre>
str(birds)
## Classes 'tbl df', 'tbl' and 'data.frame':
                                                   37 obs. of 104 variables:
                      "Reedy Lake" "Pearcedale" "Warneet" "Cranbourne" ...
    $ SITE
               : chr
                      "Mixed" "Gippsland Ma" "Gippsland Ma" "Gippsland Ma" ...
    $ HABITAT
                 chr
                     3.4 3.4 8.4 3 5.6 8.1 8.3 4.6 3.2 4.6 ... 0 9.2 3.8 5 5.6 4.1 7.1 5.3 5.2 1.2 ...
    $ V1GST
               : num
    $ V2EYR
               : num
    $ V3GF
               : num
##
    $ V4BTH
               : num
    $ V5GWH
               : num
    $ V6WTTR
               : num
##
    $ V7WEHE
               : num
    $ V8WNHE
               : num
##
    $ V9SFW
                     0.4 8.3 4.9 6.9 9.2
               : num
    $ V10WBSW : num
##
    $ V11CR
               : num
    $ V12LK
               : num
    $ V13RWB
                     9.7 11.6 16.6
               : num
    $ V14AUR
               : num
    $ V15STTH: num
##
    $ V16LR
               : num
    $ V17WPHE
                      27.3 27.6 27.5 20 0 0 16.7
                num
    $ V18YTH
               : num
                      0 0 0 0 0 0 0 0 0 9.6
                                       1.4 2.2 0 1.2 1.3 2.3 ...
##
    $ V19ER
               : num
                      0 0 0 0 0 0 0 0 2.8 2.9
    $ V20PCU
               : num
                      0 3.7 0 2 3.5 3.4 5.5 5.1 7.1 0.6 ...
    $ V21ESP
               : num
```

названия переменных colnames(birds)

## ##	[1] [6]	"SITE" "V4BTH"	"HABITAT" "V5GWH"	"V1GST" "V6WTTR"	"V2EYR" "V7WEHE"	"V3GF" "V8WNHE"
## ##	[11] [16]	"V9SFW" "V14AUR"	"V10WBSW" "V15STTH"	"V11CR" "V16LR"	"V12LK" "V17WPHE"	"V13RWB" "V18YTH"
##	[21]	"V14A0I\"V19ER"	"V20PCU"	"V21ESP"	"V22SCR"	"V23RBFT"
##	[26]	"V24BFCS"	"V25WAG"	"V26WWCH"	"V27NHHE"	"V28VS"
##	[31]	"V29CST"	"V30BTR"	"V31AMAG"	"V32SCC"	"V33RWH"
##	[36]	"V34WSW"	"V35STP"	"V36YFHE"	"V37WHIP"	"V38GAL"
##	[41]	"V39FHE"	"V40BRTH"	"V41SPP"	"V42SIL"	"V43GCU"
##	[46]	"V44MUSK"	"V45MGLK"	"V46BHHE"	"V47RFC"	"V48YTBC"
##	[51]	"V49LYRE"	"V50CHE"	"V510WH"	"V52TRM"	"V53MB"
##	[56]	"V54STHR"	"V55LHE"	"V56FTC"	"V57PINK"	"V580B0"
##	[61]	"V59YR"	"V60LFB"	"V61SPW"	"V62RBTR"	"V63DWS"
##	[66]	"V64BELL"	"V65LWB"	"V66CBW"	"V67GGC"	"V68PIL"
##	[71]	"V69SKF"	"V70RSL"	"V71PD0V"	"V72CRP"	"V73JW"
##	[76]	"V74BCHE"	"V75RCR"	"V76GBB"	"V77RRP"	"V78LL0R"
##	[81]	"V79YTHE"	"V80RF"	"V81SHBC"	"V82AZKF"	"V83SFC"
##	[86]	"V84YRTH"	"V85R0SE"	"V86BC00"	"V87LFC"	"V88WG"
##	[91]	"V89PC00"	"V90WTG"	"V91NMIN"	"V92NFB"	"V93DB"
##	[96]	"V94RBEE"	"V95HBC"	"V96DF"	"V97PCL"	"V98FLAME"
##	[101]	"V99WVT"	"V100WBWS"	"V101LC0R"	"V102KING"	

```
# имена переводим в нижний регистр colnames(birds) <- tolower(colnames(birds)) # есть ли пропущенные значения any(!complete.cases(birds))
## [1] FALSE
```

Задание: Проведите анализ главных компонент

Результаты анализа главных компонент

```
library(vegan)
bird_pca <- rda(birds[ , -c(1, 2)], scale = TRUE)
# summary(bird_pca)
screeplot(bird_pca, type = "lines", bstick = TRUE) # график собственных чисел
```


• Первые две компоненты объясняют умеренное количество изменчивости

Факторные нагрузки

biplot(bird_pca, display = "species", scaling = 2, type = "t")

• У многих переменных факторные нагрузки велики сразу на две оси. Это может быть неудобно.

Обратите внимание, график в виде подковы!

Сайты 29 и 14 на самом деле расположены далеко друг от друга и мало похожи. Почему же они сближены на графике?

biplot(bird_pca, display = "sites", scaling = 1) # биплот расстояний

 Так происходит от того, что завышены корреляции между переменными из-за большого числа нулей

Чтобы исчез "эффект подковы" нужна трансформация исходных данных

- расстояние Хеллингера (Hellinger distance)
- · хордальное расстояние (chord distance)

```
birds_h <- decostand(birds[ , -c(1, 2)], "hellinger")
birds_ch <- decostand(birds[ , -c(1, 2)], "norm") # chord distance</pre>
```

Задание: Проведите анализ главных компонент по трансформированным данным

Сравните долю дисперсии, объясненной первыми двумя компонентами с результатами анализа нетрансформированных данных.

• В каком случае объясненная дисперсия больше?

Сравните получившиеся ординации объектов.

- Исчез ли "эффект подковы" после трансформации?
- Изменилась ли группировка объектов?

Анализ главных компонент

```
bird h pca <- rda(birds h)</pre>
summary (bird h pca)
##
## Call:
## rda(X = birds h)
##
## Partitioning of variance:
##
                  Inertia Proportion
## Total
                    0.459
                    0.459
## Unconstrained
## Eigenvalues, and their contribution to the variance
## Importance of components:
##
                                     PC2
                                            PC3
                                                    PC4
                                                           PC5
                             PC1
                                                                   PC6
                                                                           PC7
## Eigenvalue 0.136 0.0627 0.0534 0.0250 0.0199 0.0184 0.0152 ## Proportion Explained 0.296 0.1365 0.1163 0.0545 0.0433 0.0400 0.0331
## Cumulative Proportion 0.296 0.4321 0.5484 0.6029 0.6463 0.6863 0.7194
##
                              PC8
                                      PC9
                                            PC10
                                                     PC11
                           0.0133 0.0109 0.0101 0.00893 0.00821 0.00812
## Eigenvalue
## Proportion Explained 0.0289 0.0238 0.0220 0.01943 0.01787 0.01767
## Cumulative Proportion 0.7482 0.7720 0.7940 0.81343 0.83129 0.84896
##
                              PC14
                                                PC16
## Eigenvalue
                           0.00678 0.00653 0.00582 0.00547 0.0051 0.00479
## Proportion Explained
                          0.01476 0.01421 0.01268 0.01190 0.0111 0.01043
## Cumulative Proportion 0.86373 0.87794 0.89062 0.90252 0.9136 0.92405
##
                                       PC21
                                                PC22
                                                        PC23
                                                                 PC24
                              PC20
                           0.00416 0.00362 0.00331 0.00311 0.00305 0.00241
## Eigenvalue
## Proportion Explained 0.00906 0.00787 0.00720 0.00676 0.00664 0.00524
## Cumulative Proportion 0.93311 0.94098 0.94818 0.95495 0.96158 0.96682
##
                              PC26
                                       PC27
                                                PC28
                                                        PC29
                                                                 PC30
                                                                          PC31
## Eigenvalue
                           0.00225 0.00199 0.00195 0.00161 0.00156 0.00135
```

Собственные числа

screeplot(bird_h_pca, bstick = TRUE)

Ординация до и после трансформации данных

op <- par(mfrow = c(1, 3), cex = 0.9, mar = c(4, 4, 2.5, 0.5)) biplot(bird_pca, display = "sites", scaling = 1, main = "PCA,\nбез трансформации") plot(procrustes(bird_h_pca, bird_pca), main = "Прокрустово\nпреобразование") biplot(bird_h_pca, display = "sites", scaling = 1, main = "PCA,\nтрансформация Хеллингера") par(op)

Для успешного применения анализа главных компонент нужно:

- Линейные связи между переменными (т.к. матрица корреляций или ковариаций)
- Исключить наблюдения, в которых есть пропущенные значения
- Если много нулей трансформация данных
- Если очень много нулей удалить такие переменные из анализа

Корреспондентный анализ

Пример: Крысы

Число грызунов разных видов в нескольких сайтах в южной Калифорнии (Bolger et al. 1997). Некоторые из этих сайтов оказались изолированы из-за урбанизации. Кроме того, несколько сайтов в исследовании из нефрагментированной местности.

```
rats <- read.csv("data/bolger1.csv")</pre>
head(rats, 2)
         SITE TYPE RRATTUS MMUSCUL PCALIFO PEREMIC RMEGALO NFUSCIP
## 1 Florida FRAG
                                  13
                                           3
                                          57
                                                   65
                                                            9
                                                                    16
## 2 Sandmark FRAG
     NLEPIDA PFALLAX MCALIFO
                            3
## 2
# имена переводим в нижний регистр
colnames(rats) <- tolower(colnames(rats))</pre>
# есть ли пропущенные значения
any(!complete.cases(rats))
## [1] FALSE
```

Задание: проведите анализ главных компонент

- Используйте хордальное расстояние
- Нарисуйте биплот расстояний

```
rats_ch <- decostand(rats[ , -c(1, 2)], "norm") # chord distance</pre>
 rats_ch_pca <- rda(rats_ch)</pre>
# summary(rats_ch_pca)
op <- par(mfrow = c(1, 2))
screeplot(rats_ch_pca, bstick = TRUE, main = "График собственных чисел")
biplot(rats_ch_pca, scaling = 1, main = "РСА, хордальное расстояние")
par(op)
```

График собственных чисел

РСА, хордальное расстояние

Анализ таблиц сопряженности

Корреспондентный анализ был придуман для анализа сводных таблиц вроде этой:

Горох	Желтый	Зеленый
Гладкий	99	42
Морщинистый	29	13

Ожидаемые частоты

Таблица наблюдаемых частот

Горох	Желтый	Зеленый	Сумма
Гладкий	99	42	141
Морщинистый	29	13	42
Сумма	128	55	183

Ожидаемая частота желтого и гладкого, если эти признаки независимы:

вероятность быть желтым * вероятность быть гладким * общее число горошин

$$\frac{141}{183} \times \frac{128}{183} \times 183 = \frac{141 \times 128}{183} = 98.6$$

Можно посчитать ожидаемые частоты в каждой ячейке

Таблица наблюдаемых частот

Горох	Желтый	Зеленый	Сумма
Гладкий	99	42	141
Морщинистый	29	13	42
Сумма	128	55	183

Ожидаемая частота желтого и гладкого, если эти признаки независимы:

вероятность быть желтым * вероятность быть гладким * общее число горошин

$$\frac{141}{183} \times \frac{128}{183} \times 183 = \frac{141 \times 128}{183} = 98.6$$

Таблица ожидаемых частот

Горох	Желтый	Зеленый
Гладкий	98.6	42.4
Морщинистый	29.4	12.6

Проверяем гипотезу о независимости столбцов и строк

Таблица наблюдаемых частот

Горох	Желтый	Зеленый	Сумма
Гладкий	99	42	141
Морщинистый	29	13	42
Сумма	128	55	183

Таблица ожидаемых частот

Горох	Желтый	Зеленый
Гладкий	98.6	42.4
Морщинистый	29.4	12.6

- Если столбцы и строки независимы, то наблюдаемые частоты не будут отличаться от ожидаемых
- * Для каждой ячейки: $\chi^2 = \sum \frac{(\text{наблюд.частота} \text{ожид.частота})^2}{\text{ожид.частота}}$
- · Общий хи-квадрат это сумма по таблице $\chi^2 = \sum \chi_{ij}^2$

Корреспондентный анализ

хи-квадрат - это мера независимости переменных (строк и столбцов)

Корреспондентный анализ помогает визуализировать матрицу хи-квадратов, если переменных очень много

Mexaника похожа на анализ главных компонент (вернее, SVD - singular value decomposition)

Вместо столбцов и строк исходных данных получатся новые переменные - главные оси (principal axes)

Свойства главных осей

- Главные оси независимы друг от друга (перпендикулярны)
- · Каждая последующая объясняет меньше общей инерции (общего хи-квадрат, а не изменчивости!!!)
- Всего осей может быть не больше чем минимальное из этих значений: (число строк 1), (число столбцов 1)
- Первая ось переменные, которые объясняют максимум зависимости строк от столбцов (значения которых сильнее всего отличаются от ожидаемых для данных объектов)
- · Результаты изображаются в виде точечных графиков, похожих на биплоты (осторожно, scaling!)

Корреспондентный анализ данных про крыс

```
rats_ca <- cca(rats[ , -c(1, 2)])
summary(rats ca)
##
## Call:
## cca(X = rats[, -c(1, 2)])
## Partitioning of mean squared contingency coefficient:
                 Inertia Proportion
## Total
                    1.72
## Unconstrained
                    1.72
## Eigenvalues, and their contribution to the mean squared contingency coefficient
## Importance of components:
                                 CA2
                                       CA3
                                              CA4
                                                     CA5
                           CA1
                                                            CA6
                                                                    CA7
## Eigenvalue
                         0.746 0.459 0.288 0.1528 0.0357 0.0246 0.0113
## Proportion Explained 0.434 0.267 0.167 0.0889 0.0207 0.0143 0.0066
## Cumulative Proportion 0.434 0.701 0.868 0.9572 0.9779 0.9922 0.9989
##
                             CA8
## Eigenvalue
                         0.00198
## Proportion Explained 0.00115
## Cumulative Proportion 1.00000
## Scaling 2 for species and site scores
## * Species are scaled proportional to eigenvalues
## * Sites are unscaled: weighted dispersion equal on all dimensions
##
## Species scores
##
              CA1
                      CA2
                              CA3
                                     CA4
                                              CA5
                                                       CA6
## rrattus 2.606 5.2987 -0.0486 -0.205 0.03006 -0.00376
```

Сколько общей инерции объясняют первые две главных оси?

```
eig <- eigenvals(rats_ca)
eig/sum(eig)*100

## CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8
## 43.4 26.7 16.7 8.9 2.1 1.4 0.7 0.1

cumsum(eig)/sum(eig)*100

## CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8
## 43.4 70.1 86.8 95.7 97.8 99.2 99.9 100.0</pre>
```

Сколько главных осей достаточно?

screeplot(rats_ca, type = "lines", bstick = TRUE)

Scaling

Разные варианты scaling не меняют порядок расположения, но меняют расстояния между объектами.

scaling 1 (для графиков "расстояний")- расстояния между объектами пропорциональны хи-квадрату

scaling 2 (для графиков "переменных")- расстояния между переменными пропорциональны хи-квадрату

scaling 3 (компромиссный вариант)- нечто среднее между 1 и 2

Биплот расстояний

- Если объект и переменная расположены рядом, то у этого объекта значение переменной выше ожидаемого (ожидаемого при условии независимости объектов и переменных).
- · Если объект и переменная расположены далеко, то у этого объекта значение переменной ниже ожидаемого.

```
plot(rats_ca, scaling = 1)
```


Создаем функцию, чтобы быстрее рисовать цветные графики

```
col ord plot <- function(ord, scaling = 1, colvec = NULL, colfac, pch = 21,
   lab.cex = 1, leg.cex = 0.9, leg.pos = "bottom", ncol = 1, display.labs = TRUE,
   display.legend = TRUE, ...) {
   if (is.null(colvec)) {
       # создаем вектор цветов
       ncolours <- length(levels(colfac))</pre>
        colvec <- rainbow(ncolours, s = 0.8, v = 0.9)
   plot(ord, type = "n", scaling = scaling, ...) # пустой график
   # точки, раскрашенные по уровням фактора
   points(ord, display = "sites", scaling = scaling, pch = pch, col = colvec[colfac],
        bq = colvec[colfac], ...)
   if (display.labs == TRUE) {
       # подписи переменных
       text(ord, display = "species", scaling = scaling, cex = lab.cex)
   }
if (display.legend == TRUE) {
       # легенда
        legend(x = leg.pos, legend = levels(colfac), bty = "n", pch = pch,
            col = colvec, pt.bg = colvec, cex = leg.cex, ncol = ncol)
```

Графики РСА и СА

График СА

• На графике СА видно, что в нескольких местах больше *R.rattus* и *M.musculus*, чем ожидается (это интролушенты)

Задание: Проведите корреспондентный анализ данных про птиц

• исчез ли эффект подковы?

Решение

· Остался "эффект дуги" (так называется "эффект подковы" для корреспондентного анализа)

Take home messages

- Анализ главных компонент
 - При анализе счетных признаков трансформация данных нужна, чтобы избежать "эффекта подковы"
- Корреспондентный анализ
 - придуман для анализа таблиц сопряженности
 - использует расстояние хи-квадрат
 - собственные числа отражают хи-квадрат, объясненный осями (степень зависимости столбцов и строк)

Дополнительные ресурсы

- Borcard, D., Gillet, F., Legendre, P., 2011. Numerical ecology with R. Springer.
- · Legendre, P., Legendre, L., 2012. Numerical ecology. Elsevier.
- Oksanen, J., 2011. Multivariate analysis of ecological communities in R: vegan tutorial. R
 package version 2–0.
- The Ordination Web Page URL http://ordination.okstate.edu/ (accessed 10.21.13).
- Quinn, G.G.P., Keough, M.J., 2002. Experimental design and data analysis for biologists.
 Cambridge University Press.
- · Zuur, A.F., Ieno, E.N., Smith, G.M., 2007. Analysing ecological data. Springer.