

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA E ESTATÍSTICA

DEPARTAMENTO DE ESTATÍSTICA

PROVA II — MATD44

Professor: Raydonal Ospina **E-mail:** raydonal@castlab.org

Regras: Leia com atenção as perguntas. **Todas as questões devem ser detalhadas.** A prova deve ser claramente resolvida. Seja claro e organizado.

Atenção: Você deverá encaminhar a solução da sua prova digitalizada em formato **PDF** no email acima no dia 20/08/2023 até as 15:00h (GMT-3 - Horário de Brasília)

I contem as informações do gasto mensal em serviços públicos de uma amostra aleatória estratificada de 120 famílias na cidade de Salvador a qual foi geograficamente dividida em três estratos: Norte, Centro e Sul.

	Estratos			
Estatísticas	Norte (1)	Centro (2)	Sul (3)	
N_h	4000	6000	10000	
W_h	0,3	0,2	0,5	
n_h	40	36	44	
$ar{y}_h$	1,2	2,4	0,6	
\bar{Y}_h	9600	7200	6000	
s_h^2	0,36	1,21	0,04	
$\operatorname{Var}(ar{y}_h)$	0,000993	0,004404	0,000226	

Tabela 1: Informações do gasto familiar mensal em serviços públicos (em salários mínimos) a partir de uma amostra aleatória simples estratificada na cidade de Salvador.

- a) Estime o gasto médio e o gasto total de toda a população. Estabeleça um intervalo de confiança de 95% para essas medidas.
- b) Suponhamos que os custos de coletar a informação por família para cada um dos estratos são: $C_1 = R\$5.000, C_2 = R\3.000 e $C_3 = R\$1.000$, respectivamente. Assuma que que existem informações previas em relação a variabilidade de cada estrato e que estas informações

correspondem as estimativas s_h^2 da tabela I. Se o orçamento da coleta de informação não pode ser superior a R\$2,5 milhões qual deve ser o tamanho da amostra global e como ele deve ser dividido entre os diferentes estratos? Suponha que a função de custo é linear na forma

$$C = C_0 + \sum_{h=1}^{H} C_h n_h,$$

em que C é o orçamento total para a coleta de informação, C_0 é o custo fixo que não depende do número de unidades amostrais a serem selecionadas e C_h é o custo de amostrar uma unidade amostral no estrato h.

- (domínios)) Uma amostra aleatória simples e sem substituição de 56 pessoas foi selecionada de uma população de 1000 trabalhadores da empresa LINCATECH. Foram coletadas informações sobre a renda mensal em miles de reais (Renda) e o sexo (Sexo) do trabalhador. Com as informações da Tabela 2 estime:
 - a) Estime a proporção e o número total de mulheres na empresa. Estabeleça intervalos de confiança de 95% para a proporção e total de mulheres na empresa.
 - b) Podem ser consideradas válidas aproximações pela distribuição normal no item anterior? Explique.
 - c) Considera que as amostras, tanto de homens como de mulheres poderiam ser assumidas como amostras aleatórias simples e sem substituição das respectivas subpopulações de homens e mulheres da empresa? Explique.
 - d) Como poderia ser estimada a renda média e o total das mulheres para toda a empresa se não se conhecesse o número total delas?
 - e) Qual das duas subpopulações (homens, mulheres) é mais homogênea em relação a renda?

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA E ESTATÍSTICA

DEPARTAMENTO DE ESTATÍSTICA

PROVA II — MATD44

ID	Sexo	Renda	ID	Sexo	Renda
I	Fem	2094,90	15	Mas	2939,21
2	Mas	2386,14	16	Mas	1722,62
3	Mas	1562,82	17	Fem	2739,79
4	Mas	1781,41	18	Mas	1821,61
5	Mas	1603,14	19	Mas	1742,40
6	Mas	479,73	20	Mas	1845,22
7	Mas	2196,85	21	Mas	1916,60
8	Mas	2365,21	22	Mas	1329,28
9	Mas	2016,32	23	Mas	2143,04
10	Mas	1322,23	24	Mas	2618,97
ΙI	Fem	2589,08	25	Fem	1399,85
Ι2	Fem	2896,28	26	Mas	1610,41
13	Mas	1370,55	27	Mas	2300,84
14	Mas	975,94	28	Mas	1192,90
29	Mas	2715,62	43	Mas	1802,16
30	Mas	2042,58	44	Mas	2444,68
3 I	Mas	2235,73	45	Mas	2644,75
32	Mas	2223,33	46	Fem	1431,53
33	Mas	2618,16	47	Mas	1094,02
34	Mas	2206,57	48	Mas	1548,96
35	Mas	2432,08	49	Mas	2410,51
36	Mas	1340,94	50	Mas	2286,37
37	Mas	2321,37	51	Mas	1589,07
38	Mas	1922,91	52	Fem	1646,21
39	Mas	2520,83	53	Mas	3358,63
40	Mas	2063,78	54	Mas	1369,42
41	Mas	2335,66	55	Mas	2047,63
42	Mas	2357,94	56	Mas	1719,34

Tabela 2: Tabela de Informações dos empregados na amostra

(Estimação por conglomerados) suponha que o objetivo de uma pesquisa seja estimar a renda média em um bairro da cidade. Assuma que neste bairro existam $N_I=60$ quadras. (A quadra ou quarteirão é a menor área de espaço urbano delimitada por ruas, rios ou avenidas, caracterizando a unidade básica de formação destes espaços)

É realizado um plano de amostragem aleatória simples de conglomerados e são selecionadas $n_I=5$ quadras, nas quais todos os domicílios são entrevistados. Os resultados da pesquisa são apresentados na Tabela 3 a seguir:

ID da Qua- dra	Domicílios na Quadra	Renda To- tal na Qua- dra
AW45	120	25000
AW02	100	24000
AW ₃ I	80	19000
AW28	95	20100
AW ₄₄	80	18000

Tabela 3: Tabela das cinco quadras selecionadas

- (a) Estime a renda total dos domicílios no bairro. Reporte o coeficiente de variação estimado.
- (b) Estime o número de domicílios no bairro. Reporte o coeficiente de variação estimado.
- (c) Assumindo que no bairro existam N=2000 domicílios, estime a renda média dos domicílios no bairro. Reporte o coeficiente de variação estimado.
- (d) Estime a renda média utilizando o estimador de Hájek¹. Explique a diferença em relação à estimativa do ponto anterior.

BOA PROVA

$$\widehat{\overline{Y}}_{H} = \frac{\sum_{i \in s} y_{i}}{\sum_{i \in s} \frac{1}{\pi_{i}}}.$$

O denominador é um estimador do tamanho populacional.

¹Lembrete: O estimador de Hájek (1971) é uma forma aprimorada do estimador de razão. O estimador de Hájek para a média populacional pode ser expresso como: