Ch 13: Direct Memory Access and DMA Controlled I/O (13.1-13.2)

13.1 Basic DMA Operation

- 2 control signals: request and acknowledge DMA
- DMA removes mp from between i/o devices and memory
- · used for fast memory access
- almost obsolete now
- HOLD pin: input used to requests a DMA action
 - higher priority than INTR and NMI
 - HOLD > NMI > INTR
 - when NMI comes, current instruction gets complete before listening to NMI
 - when HOLD comes, immediately everything paused and listened to HOLD
 - only reset pin has higher priority than HOLD
- HLDA pin: output used to acknowledge DMA action
 - o bus goes to high impedance state
 - o its a signal to the requesting device that the processor has relinquished control of memory and io space
- DMA read transfers data from memory to IO
- DMA write transfers data from IO to memory
- memory and IO are controlled simultaneously thus separate control signals
- whenever read is issued, both MRDC and IOWC are activated
- whenever write is issued both MWTC and IORC are activated
- DMA controller is needed by 8086/8088. is like a mp for memory and io mediation
 - o provides which io device and which memory address
- newer ones have different parts(inbuilt) for this thus no dma controller
- data transfer speed for DMA depends on speed of memory device or DMA controller
 - o if memory speed is 50ns then DMA transfers at rate of 1/50 ns or 20M bytes per second
 - o if DMA controller has speed 15MHz with 50 ns memory, transfer rate is 15 MHz because DMA controller is slower than memory
- DMA controller slows the speed mostly
- Now used PCI express(20Gbps), Serial ATA(300Mbps)

13.2 The 8237 DMA Controller

- supplies memory and IO with control signals and address info during DMA transfer
- its like a small mp
- dedicated functioning
- 4 channel device expandable to any number of channels
- adequate for small systems
- transfer rates upto 1.3M bps
- address 64K bytes and transfer with a single programming
- Pin Definitions on pdf page 512-517
 - o clock to be inverted
- Internal Registers
 - CAR: current address register
 - 16 bit memory address is held for DMA transfer
 - increments or decrements on every byte of data transferred depends on programming
 - CWCR: current word count register
 - no of bytes to be transferred is stored here
 - one less than the total is stored
 - BA and BWC (base address and base word count)
 - used when auto initialisation is selected
 - when same amount as previous transfer is to be retransferred
 - dont have to request DMA again if u know once wont be enough
 - CR (command register):
 - programs operation of 8237 DMA controller
 - uses bit position 0 selects the mode (memory to memory or io to memory)
 - Fig 13-4 for each bit
 - MR (mode register)
 - Programs the mode of operation

- each channel has its own selected by bit 1 and 0
- rest bits decide operation, auto initialisation, inc/dec, and mode
- demand mode: data transfers until EOP signal comes
- single mode: transfers current word count, DMA may have to be requested again
- block mode: all data transferred at once
- cascade mode : when multiple DMA controllers
- BR bur request:
 - requests DMA transfer via software
 - external signal not available for dma transfer
 - used in case of memory to memory
 - external signal is generated when io accesses dma
 - fig 13-6 for bit numbers
- MRSR (mask register set/reset)
 - to disable channels, set mask
 - different commands for each channel
 - reset enables all
 - fig 13-7
- MSR mask register:
 - to disable or enable all channels at once
 - used combined with MRSR
- o SR status register
 - show status of each dma channel
 - whether channel has reached TC (terminal count) i.e. transferred all its bytes)
 - if yes, terminated
 - fig 13-9
- Software Commands
 - to control operations
 - o can be controlled by direct commands not binary bit
 - o master clear: same as RESET signal, disables all channels
 - o clear mask register: enables all 4 dma channels
 - o clear first/last flip flop: selects which byte high word/ low word is written in current address
 - F/L = 0, low; F/L = 1, high
 - to program 8237:
 - F/L is cleared using clear F/L command
 - channel is disabled
 - Least Significant Bit and Most SB of address are programmed
 - LSB and MSB of count are programmed