TorsionNet

Runxuan Jiang Tarun Gogineni Josh Ambuj Paul University of Michigan Ann Arbor, MI 48109, USA RUNXUANJ@UMICH.EDU TGOG@UMICH.EDU

Editor: TBD

Abstract

We propose TorsionNet, an open-source deep reinforcement learning library designed for molecular conformer generation using Python. TorsionNet features several pre-built environments and baseline agents based on state-of-the-art algorithms in the field. The environments and agents are built on a modular interface, allowing users to easily build and test new implementations. Additionally, TorsionNet comes with extensive logging and visualization tools for evaluation of agents and generated conformers, as well as a toolkit for generating and modifying molecules. TorsionNet is well-tested and thoroughly documented, and is available through on PyPi and on Github: https://github.com/ZimmermanGroup/conformer-ml.

Keywords: reinforcement learning, deep learning, deep reinforcement learning, open source, conformer generation, computational chemistry

1. Introduction

In the past decade, deep reinforcement learning has been increasingly explored in the field of computational chemistry, including tasks such as protein folding [], improving chemical reactions [], and conformer generation [].

2. TorsionNet Architecture

pass

2.1 Environments

pass

2.2 Molecule Generation

pass

2.3 Agents

pass

©2000 Marina Meilă and Michael I. Jordan.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at http://jmlr.org/papers/v1/meila00a.html.

 $Jiang, \dots$

2.4 Models

pass

2.5 Logging and Analysis

pass

3. Future Work

pass

4. Conclusions

pass

Acknowledgments

We would like to acknowledge \dots

References

Appendix A.