Sveučilište u Splitu Fakultet elektrotehnike, strojarstva i brodogradnje

Algoritmi

Vježba 3

Nositelj kolegija: izv.prof.dr.sc Matko Šarić

Suradnici u nastavi: asistent Marin Maslov, mag.ing.

Vježba 3

Zadatak 1.

Izaberite jednu ili više točnih tvrdnji

(a) $n^2 \epsilon O(n)$	(a) $3n + 5 \in \Omega(n + (n \log n))$	(a) $n \log n \in \Theta(n + (n \log n) + n^2)$
(b) $n^2 \epsilon O(n^2)$	(b) $3n + 5 \in \Omega(n + (n \log n))$	(b) $n \log n \in \Theta(3n + (n \log n))$
(c) $n^2 \in O(n \log n)$	(c) $3n + 5 \in \Omega(n^2)$	(c) $n \log n \in \Theta(n^2)$
(d) $n^2 \epsilon O(log n)$	(d) $3n + 5 \in \Omega(\log n)$	(d) $n \log n \in \Theta(\log n)$
(e) ništa od navedenog	(e) ništa od navedenog	(e) ništa od navedenog

Zadatak 2.

Riješi sljedeću rekurziju.

$$T(n) = T(n-1) + ldn$$

Pretpostavi da je T(n) konstanta za dovoljno mali n. Pronađi funkciju g(n) takvu da je $T(n) = \Theta(g(n))$. Funkcija g(n) treba biti izražena bez upotrebe simbola Σ .

 \mathbf{Q} Logaritam ld n, predstavlja binarni logaritam $\log_2 n$.

Zadatak 3.

Upotrebom iterativne metode riješi sljedeću rekurziju.

$$T(n) = \begin{cases} 1 & za \ n = 1 \\ T(n-1) + n^2 & za \ ostale \end{cases}$$

Pronađi funkciju g(n) takvu da je $T(n) = \Theta(g(n))$. Funkcija g(n) treba biti izražena bez upotrebe simbola Σ .

Zadatak 4.

Riješi slijedeću rekurziju primjenom iterativne metode.

$$T(n) = \begin{cases} 1 & za \ n = 1 \\ 4T\left(\frac{n}{2}\right) + n^2 & za \ ostale \end{cases}$$