Projekt IEL

Matej Otcenas (xotcen01)

20. decembra 2018

Obsah

1	Príl	dad č.1	3
	1.1	Zadanie	3
	1.2	Postup	3
	1.3	Výsledok	6
2	Príl	dad č.2	7
	2.1	Zadanie	7
	2.2	Postup	7
	2.3	Výsledok	9
3	Príl	dad č.3	10
	3.1	Zadanie	10
	3.2	Postup	10
	3.3	Výsledok	12
4	Príl	klad č.4	13
	4.1	Zadanie	13
5	Príl	klad č.5	14
	5.1	Zadanie	14
	5.2	Postup diferenciálnej rovnice	15
	5.3	Výsledok 1	15
	5.4	Postup analytického riešenia	15
	5.5	Výsledok 2	17
6	Tab	uľka výsledkov	18

Riešené príklady 2018/19

1 Príklad č.1

1.1 Zadanie

Vypočítaj napätie U_3 a prúd I_3 . Použi metódu postupného zjednodušovania.

sk.	$U_1[V]$	$U_2[V]$	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
D	105	85	420	980	330	280	310	710	240	200

1.2 Postup

1. Obvod postupne zjednodušíme :

$$U = U_1 + U_2 = 105 + 85 = 190V$$

$$R_{12} = R_1 + R_2 = 980 + 420 = 1400\Omega$$

$$R_{78} = R_7 ||R_8 = \frac{R_7 * R_8}{R_7 + R_8} = \frac{240 * 200}{240 + 200} = 109.0909\Omega$$

2. Následne prevedieme transfiguráci
u $R_{12},\,R_3,\,R_4$ z trojuholníka na hviezdu a vzniknú nám rezistor
y $R_A,\,R_B,\,R_C.$

$$R_A = \frac{R_{12} * R_3}{R_{12} + R_3 + R_4} = \frac{1400 * 330}{1400 + 330 + 280} = 229.8507\Omega$$

$$R_B = \frac{R_{12} * R_4}{R_{12} + R_3 + R_4} = \frac{1400 * 280}{1400 + 330 + 280} = 195.0249\Omega$$

$$R_C = \frac{R_3 * R_4}{R_{12} + R_3 + R_4} = \frac{330 * 280}{1400 + 330 + 280} = 45.9701\Omega$$

3. Využijeme sériového zapojenia rezistorov
 $R_B\,+\,R_5$ a $R_C\,+\,R_6.$

$$R_{B5} = R_B + R_5 = 195.0249 + 310 = 505.0249\Omega$$

 $R_{C6} = R_C + R_6 = 45.9701 + 710 = 755.9701\Omega$

4. Tentokrát nám vzniknú dva paralelne zapojené rezistor
y R_{B5} a $R_{C6}\,$

$$R_{B5C6} = R_{B5} || R_{C6} = \frac{R_{B5} * R_{C6}}{R_{B5} + R_{C6}} = \frac{505.0249 * 755.9701}{505.0249 + 755.9701} = 302.7639\Omega$$

5. Znovu zjednodušíme sériovo zapojené rezistory R_{B5C6} a R_A .

$$R_{AB5C6} = R_{B5C6} + R_A = 302.7639 + 229.8507 = 532.6146\Omega$$

6. Nakoniec vypočítame R_{EKV} pomocou sériovo zapojených rezistorov
 R_{AB5C6} a $R_{78}.$

$$R_{EKV} = R_{AB5C6} + R_{EKV} = 532.6146 + 109.0909 = 641.7055\Omega$$

7. Zistíme celkový prúd
 $I = \frac{U_{12}}{R_{EKV}}$

$$I = \frac{190}{641.7055} = 0.2961 A$$

8. Analogicky sa musím vrátiť naspäť aby som zistil napäti
e U_3 a prúd $I_3.$ Potrebujem zostaviť rovnic
u $U_{R_3}=U_{12}$ - U_{R_6} - $U_{R_{78}}$

$$U_{R_{B5C6}} = U_{R_{C6}} = I * R_{B5C6} = 0.2961 * 302.7639 = 89.6484V$$

 $U_{R_{78}} = I * R_{78} = 0.2961 * 109.0909 = 32.3018V$

9. Vypočíta
m prúd $I_{R_{C6}}=I_{R_6}$ aby som mohol vypočítať napätie
 $U_{R_6}.$

$$I_{R_{C6}} = \frac{U_{R_{C6}}}{R_{C6}} = \frac{89.6484}{755.9701} = 0.1186A$$
 $U_{R_6} = I_{R_6} * R_6 = 0.1186 * 710 = 84.2060\Omega$

10. Môžem zostaviť rovnicu z bodu č.8

$$U_{R_3} = U_{12} - U_{R_6} - U_{R_{78}} = 190 - 84.2060 - 32.3018 = 73.5019V$$

$$I_{R_3} = \frac{U_{R_3}}{R_3} = \frac{73.5019}{330} = 0.2227A$$

1.3 Výsledok

$$U_{R_3} = 73.5019V$$

 $I_{R_3} = 0.2227A$

2.1 Zadanie

Stanovte napätie U_{R_1} a prúd I_{R_1} . Použite metódu Théveninovej vety.

sk.	U[V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
В	100	50	310	610	220	570

2.2 Postup

1. Odpojíme rezistor R_1 , zdroj U a spočítame vnútorný odpo
r R_i

$$R_{45} = R_4 || R_5 = \frac{R_4 * R_5}{R_4 + R_5} = \frac{220 * 570}{220 + 570} = 158.7342\Omega$$

$$R_{345} = R_{45} + R_3 = 158.7342 + 610 = 768.7342\Omega$$

$$R_i = \frac{R_{345} * R_2}{R_{345} + R_2} = \frac{768.7342 * 310}{768.7342 + 310} = 220.9141\Omega$$

2. Vypočítame prúd ${\cal I}$ v obvode pomocou celkového odporu
 R_{CELK}

$$R_{23} = R_2 + R_3 = 310 + 610 = 920\Omega$$

$$R_{234} = R_{23}||R_4 = \frac{R_{23} * R_4}{R_{23} + R_4} = \frac{920 * 220}{920 + 220} = 177.5439\Omega$$

$$R_{CELK} = R_{234} + R_5 = 177.5439 + 570 = 747.5439\Omega$$

$$I = \frac{U}{R_{CELK}} = \frac{100}{747.5439} = 0.1338A$$

3. Vypočítam napätie $U_{THEV}=U_{R_2},$ ktoré je na odpor
e $R_2.$ Musíme vypočítať $I_{R_2}.$

$$\begin{array}{rcl} I_{R_{234}} & = & I \\ U_{R_{23}} & = & U_{R_{234}} \\ U_{R_{234}} & = & I*R_{234} = 0.1338*177.5439 = 23.7554V \\ I_{R_2} & = & I_{R_{23}} \\ I_{R_2} & = & \frac{U_{R_{23}}}{R_{23}} = 0.0258A \\ U_{THEV} & = & I_{R_2}*R_2 = 7.998V \end{array}$$

4. Pomocou $U_{THEV},$ vnútorného odpor
u R_i a odporu R_1 je možné stanoviť hľadaný prú
d I_{R_1} a napätie U_{R_1}

$$I_{R_1} = \frac{U_{THEV}}{Ri + R_1} = \frac{7.998V}{220.9141 + 50} = 0.0295A$$

$$U_{R_1} = R_1 * I_{R_1} = 50 * 0.0295 = 1.475V$$

2.3 Výsledok

$$U_{R_1} = 1.8350V$$

$$I_{R_1} = 0.0367A$$

Zadanie 3.1

Stanovte napätie U_{R_3} a prúd I_{R_3} . Použite metódu uzlových napätí ($U_A,\,U_B,\,$ U_C).

sk.	U[V]	$I_1[A]$	$I_2[A]$	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
G	160	0.65	0.45	46	41	53	33	29

3.2 Postup

1. Zostavíme rovnice pre 3 uzly A,B,C podľa
 I.K.Z

 $A: I_{R_1} - I_{R_2} + I_{R_3} - I_1 = 0$

 $B: I_{R_2} - I_{R_4} - I_{R_3} + I_1 = 0$ $C: I_{R_4} - I_{R_5} - I_2 = 0$

2. Jednotlivé odpory vyjadrím cez vodivosť

$$G_1 = \frac{1}{R_1} = 0.0217\Omega$$

$$G_2 = \frac{1}{R_2} = 0.0244\Omega$$

$$G_3 = \frac{1}{R_3} = 0.0189\Omega$$

$$G_4 = \frac{1}{R_4} = 0.0303\Omega$$

$$G_5 = \frac{1}{R_5} = 0.0345\Omega$$

 3. Rozpíšem rovnice podľa II.K.Za využijem vodivosť pre zjednodušenie výpočtu

A:
$$G_1 * (U - U_A) + G_3 * (U_B - U_A) - G_2 * U_A = I_1$$

B: $-G_4 * (U_B - U_C) - G_3 * (U_B - U_A) = -I_1 - I_2$
C: $G_4 * (U_B - U_C) - G_5 * U_C = I_2$

 $4. {\it Tieto}$ rovnice môžme upraviť tak aby sa nám z nich lepšie zostavila matica

A:
$$-U_A * (G_1 + G_2 + G_3) + G_3 * U_B + G_1 * U = I_1$$

B: $-U_B * (G_4 + G_3) + G_4 * U_C + G_3 * U_A = -I_1 - I_2$
C: $-U_C * (G_4 + G_5) + G_4 * U_B = I_2$

5.Z týchto rovníc následne zostavíme maticu

$$\begin{bmatrix} -G_1 - G_2 - G_3 & G_3 & 0 \\ G_3 & -G_4 - G_3 & G_4 \\ 0 & G_4 & -G_4 - G_5 \end{bmatrix} * \begin{bmatrix} U_A \\ U_B \\ U_C \end{bmatrix} = \begin{bmatrix} I_1 - (G_1 * U) \\ -I_1 - I_2 \\ I_2 \end{bmatrix}$$

6. Spočítame jej determinant D_{et} , a potom dosadíme pravú stranu rovnice za U_A a U_B a spočítame ich detrminanty D_{et_A} D_{et_B}

$$\begin{bmatrix} -0.065 & 0.0189 & 0 \\ 0.0189 & -0.0492 & 0.0303 \\ 0 & 0.0303 & -0.0648 \end{bmatrix} * \begin{bmatrix} U_A \\ U_B \\ U_C \end{bmatrix} = \begin{bmatrix} -2.822 \\ -1.1 \\ 0.45 \end{bmatrix}$$

 $7.D_{et}, D_{et_A}$ a D_{et_B} po výpočte:

$$\begin{array}{lll} D_{et} & = & [(-0.000207) - (-0.000059 - 0.000023)] = -0.000207 + 0.000082 = -0.000125 \\ D_{et_A} & = & [(-0.008996 + 0.000257) - (-0.002591 + 0.001347)] = -0.008739 + 0.00125 = -0.0074 \\ D_{et_B} & = & [(-0.004633) - (-0.000886 + 0.003456)] = -0.004633 - 0.00257 = -0.007203 \\ \end{array}$$

8.Z toho získame napätia U_A a U_B

$$U_A = \frac{D_{et_A}}{D_{et}} = \frac{-0.0075}{-0.000125} = 60V$$

$$U_B = \frac{D_{et_B}}{D_{et}} = \frac{-0.0072}{-0.000125} = 57.6V$$

9. Aby sme zistili U_{R_3} a I_{R_3} musíme zostaviť následovnú rovnicu

$$U_{R_3} = I_{R_3} * R_3 = \frac{U_A - U_B}{R_3} * R_3 = U_A - U_B = 57.6 - 60 = -2.4V$$

$$I_{R_3} = \frac{U_{R_3}}{R_3} = \frac{-2.4}{53} = -0.04528A$$

3.3 Výsledok

10. Výsledky nám vyšli záporné lebo sme zvolili opačný smer v smyčke čo však nevadí a my môžme iba odstrániť znamienko

$$U_{R_3} = 2.4V$$
 $I_{R_3} = 0.04528A$

4.1 Zadanie

Pre napájacie napätie platí: $u_1 = U_1 * sin(2\pi ft)$, $u_2 = U_2 * sin(2\pi ft)$. Vo vzťahu pre napätie $u_{C_2} = U_{C_2} * sin(2\pi ft + \varphi_{C_2})$ určte $|U_{C_2}|$ a φ_{C_2} . Použite metódu smyčkových prúdov.

Pozn: Pomocné "smery šípok napájacích zdrojov platia pre špeciálny časový okamih $(t=\frac{\pi}{2\omega}).$ "

ſ	sk.	$U_1[V]$	$U_2[V]$	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$L_1 [mH]$	$L_2 [mH]$	$C_1 [\mu F]$	$C_2 [\mu F]$	f[Hz]
ſ	D	45	50	13	15	13	180	90	210	75	85

!!!TODO!!!

5.1 Zadanie

Zostavte diferenciálnu rovnicu popisujúcu chovanie obvodu na obrázku, ďalej ju upravte dosadením hodnôt parametrov. Vypočítajte analytické riešenie $u_C = f(t)$. Vykonajte kontrolu výpočtu dosadením do zostavenej diferenciálnej rovnice.

sk.	C[F]	$R\left[\Omega\right]$	$u_C(0) [V]$
В	10	20	8

5.2 Postup diferenciálnej rovnice

1. Poznznáme $R, C, u_C(0)$ a vieme vyjadriť:

$$A: I = \frac{U_R}{R}$$

$$I = I_C = I_R$$

$$U_R + U_C = 0 \implies U_R = -U_C$$

2. Ďalej určíme počiatočnú podmienku
 $U_c(0)=U_{C_p}$ a zostavíme ďalšiu rovnicu

$$B: U_C' = \frac{1}{C} * I_C$$

5.3 Výsledok 1

3. Dosadíme rovnicu A do B a určíme diferenciálnu rovnicu prvého rádu

$$U'_{C} = \frac{1}{C} * \frac{U_{R}}{R}$$

$$U'_{C} = \frac{U_{R}}{R * C}$$

$$U'_{C} = -\frac{U_{C}}{R * C} = -\frac{U_{C}}{200}$$

5.4 Postup analytického riešenia

1. Vyjadriť charakteristickú rovnicu

Pozn.:
$$U'_C \to \lambda$$

 $U_C \to 1$

$$U'_C = -\frac{U_C}{R*C}$$

$$\lambda = -\frac{1}{R*C}$$

$$\lambda = -\frac{1}{20*10}$$

$$\lambda = -\frac{1}{200}$$

2.Očakávaný tvar rovnice

$$u_C(t) = k(t) * e^{\lambda * t}$$

$$u_C(t) = k(t) * e^{-\frac{t}{200}}$$

3.Zderivujeme rovnicu

$$U_C' = k'(t) * e^{-\frac{t}{200}} + k(t) * e^{-\frac{t}{200}*(-\frac{1}{200})}$$

4. Dosadíme U_C' a U_C do rov
nice $U_C' + \frac{U_C}{R*C} = 0$

$$k'(t) * e^{-\frac{t}{200}} - \frac{k(t) * e^{-\frac{t}{200}}}{200} + \frac{k(t) * e^{-\frac{t}{200}}}{200} = 0$$

5. Vyjadríme k'(t)

$$k'(t) * e^{-\frac{t}{200}} = 0$$

6. Zintegrujeme k'(t)

$$\int k'(t)$$
$$k(t) = 0 + k$$

7. Dosadíme k(t) do očakávaného riešenia (bod č.2)

$$u_C(t) = k * e^{-\frac{t}{200}}$$

8. Dosadíme počiatočnú podmienku ${\cal U}_{C}(0)={\cal U}_{C_{p}}$

$$U_{C_p} = k * e^{-\frac{t}{200}} = k * e^0 = k * 1$$

 $U_{C_p} = k$

5.5 Výsledok 2

9. Výsledná rovnica pre $u_C(t)$

$$Vieme: u_C(0) = U_{C_p} * e^{-\frac{t}{200}}$$

 $U_{C_p} = 8$

$$u_C(t) = 8 * e^{-\frac{t}{200}}$$

10. Urobíme skúšku správnosti dosadením U_C' a U_C do pôvodnej rovnice (t=0)

$$U_{C}(0) = U_{C_{p}} * e^{-\frac{t}{R} * C}$$

$$U'_{C} = -\frac{U_{C}}{R * C}$$

$$-\frac{U_{C_{p}}}{R * C} * e^{-\frac{t}{R} * C} = -\frac{U_{C_{p}}}{R * C} * e^{-\frac{t}{R} * C}$$

$$-\frac{U_{C_{p}}}{R * C} = -\frac{U_{C_{p}}}{R * C}$$

$$-\frac{8}{20 * 10} = -\frac{8}{20 * 10}$$

$$-0.04 = -0.04$$

6 Tabuľka výsledkov

pr.č	sk.	výsledok
1	D	$U_{R_3} = 73.5019[V]$ $I_{R_3} = 0.2227[A]$
2	В	$U_{R_1} = 1.4750[V]$ $I_{R_1} = 0.0295[A]$
3	G	$U_{R_3} = 2.4[V]$ $I_{R_3} = 0.04528[A]$
4	D	!!!TODO!!!
5	В	$U'_C = -\frac{U_C}{200}$ $u_C(t) = 8 * e^{-\frac{t}{200}}$