Valuing On-the-Ball Actions in Soccer

A Critical Comparison of xT and VAEP

Maaike Van Roy, Pieter Robberechts, Tom Decroos, Jesse Davis

What is the value of a player's actions?

Action valuing frameworks PlayeRank Deep learning EPV No one ever compares these!

Goal of this work: Compare xT and VAEP

Value actions in event stream data

Туре	Player	Time	Result	Start	End
Pass		2'34	Success	X=40, Y=24	X=45, Y=44
Pass		2'36	Success	X=45, Y=44	X=64, Y=66
Dribble ▶		2'38	Success	X=64, Y=66	X=85, Y=66
Tackle .		2'40	Fail	X=85, Y=66	X=85, Y=66

Action a_i moves the game from state S_{i-1} to state S_i

 S_{i-1}

 S_i

Game states receive values

Two questions for action valuing frameworks:

- How are game states represented?
- How are game states valued?

Next: How is this tackled by xT and VAEP?

Expected Threat (xT) - Karun Singh

https://karun.in/blog/expected-threat.html

xT: Game state representation

Possession-based Markov model values ball-progressing actions

$$xT_{value}(a_i) = Q(S_i) - Q(S_{i-1})$$
 $xT(a_{i,end}) xT(a_{i,start})$

xT: Value of a game state

shoot move
$$xT(z) = s_z * xG(z) + m_z * \sum_{z'=1}^{M*N} T_{z \to z'} * xT(z')$$

Dynamic programming

System of linear equations

(VAEP) - Decroos et al. (KDD 2019)

Valuing Actions by Estimating Probabilities

VAEP: Intuition

Value game state by expected impact on score:

- (1) Increases short-term prob. of team T scoring(2) Decreases short-term prob. of team T
- (2) Decreases short-term prob. of team T conceding

$$VAEP_{value}(a_i) = Q(S_i) - Q(S_{i-1})$$

$$Q(S_i) = P_{\text{scores}}^k(S_i, T) - P_{\text{concedes}}^k(S_i, T)$$

VAEP: Features that describe game state S_i

- a) Simple features
 - Action type
 - Result, ...
- b) Complex features
 - Distance to goal
 - Time between actions, ...
- c) Context features
 - Goal difference, ...

VAEP: Value of a game state

X: Features

Y: Labels 1 if team T scores/concedes in next k actions

F: Probabilistic classifier

Eg. XGBoost

Let's talk about the differences between xT and VAEP

- due to game state representation (3)
- due to action sequences looked at (2)

Differences due to the game state representation

VAEP **==**

Richer action + game

- Limited game dynamics
- 2) Ball-progressing actions
- 3) Interpretable

All actions

context

il actions

Explanation not straightforward

Differences due to the action sequences looked at

Four illustrative examples to compare the action values

- (risky) backward passes
- set up counter attacks
- forward dribble into penalty box
- through ball near penalty box

Datasets used

Models trained on 2017/2018 English Premier League

Models tested on 2018/2019 English Premier League

SPADL-format

VAEP assigns more diverse values to "risky"

backward passes

VAEP generally assigns higher values to 1st ball progression of counter attacks

Short forward dribbles inside penalty box are not valued by xT

xT values through balls higher than VAEP

Comparing player ratings (>=900min)

- Compare with traditional player metrics
- Top 25 players
- Robustness of the rating systems

Both show differences to traditional metrics

EPL 18/19

1	Eden Hazard	=	1
2	Adama Traoré	•	16
3	Kevin De Bruyne	•	24
4	Alex Iwobi	•	25
5	Anthony Martial	•	6
6	Felipe Anderson	•	8
7	Alexis Sánchez	•	106
8	Gerard Deulofeu		2
9	Wilfried Zaha	•	12
10	Riyad Mahrez		3

1	Eden Hazard	= 1
2	Gerard Deulofeu	V 8
3	Riyad Mahrez	T 10
4	Xherdan Shaqiri	V 24
5	Son Heung-Min	▼ 47
6	Anthony Martial	 5
7	Mohamed Salah	T 14
8	Felipe Anderson	 6
9	Raheem Sterling	T 11
10	Jonjo Shelvey	T 18

Robustness

Intuition: few outstanding actions should not alter assessments dramatically: correlation on different samples

xT is more robust

Conclusions

Conceptual, qualitative and quantitative comparison of xT and VAEP

Differences due to game state representation and actions valued

- VAEP risk-reward tradeoff
- xT more robust
- Rankings deviate

Additional insight!

Online resources

https://github.com/ML-KULeuven/socceraction/

- VAEP + xT
- pip install socceraction

https://dtai.cs.kuleuven.be/sports

- @p_robberechts
- a Tom Decroos
- @jessejdavis1

Thank you!