PointSplit: Towards On-device 3D Object Detection with Heterogeneous Low-power Accelerators

Presented by **Keondo Park**You Rim Choi, Inhoe Lee, Hyung-Sin Kim
May 10, 2023

Seoul National University
Graduate School of Data Science

POTENTIAL to run more complex task?

On-device machine learning

Mobile heterogeneous processors

Our Target Task

Baseline: 3D Object Detector

Baseline: 2D + 3D Fusion

Which Job to Which Processor?

Features

- Very fast NN inference
- Limited to NN operations

- Slower NN inference
- Wide coverage of operations

Challenge: Naïve Combination

PointPainting and PoinetNet++ on GPU and NPU

Challenge: Quantization

PointSplit

Low utilization of system under naïve combination

1. System - Algorithm joint optimization

- Biased farthest point sampling
- Parallelizable feature extractor

GPU/NPU Parallelization (Naïve Approach)

GPU/NPU Parallelization (Naïve Approach)

Farthest Point Sampling

Base sampling technique in PointNet++.

Biased Farthest Point Sampling

Biased towards painted points using foreground boundary!

Comparison of Sampling Techniques

Reminder: Naïve Combination

PointPainting and PoinetNet++ on GPU and NPU

Parallelizable Feature Extractor

Runtime schedule of *PointSplit* on GPU and NPU

PointSplit

- 1. System Algorithm joint optimization
 - Biased farthest point sampling
 - Parallelizable feature extractor

Large quant. errors without quant. granularity consideration

2. Role-based groupwise quantization

Large Quantization Errors in tflite

Large Quantization Errors in tflite

Channelwise Quantization?

Role-based Groupwise Quantization

Distribution of activations by channel in the last layer of *Proposal* Module

Role-based Groupwise Quantization

Distribution of activations by channel in the last layer of *Voting* Module

Quant. Granularity based on Role-Group

Implementation: Dataset

SUN RGB-D (Primary)

Snapshot

Scannet V2 (Secondary)

Reconstruction from >100 snapshots

Implementation: Model

- Deeplabv3+ finetuning for PointPainting.
- 3D object detector **Tensorflow** conversion from original **PyTorch** implementation.
 - For INT8 quantization and EdgeTPU-compiling supported by tflite.

Implementation: Hardware platform

Hardware platform with heterogeneous accelerators

FP32 Detection Accuracy on SUN RGB-D

INT8 Detection Accuracy on SUN RGB-D

Detection Accuracy on Recent 3D Object Detectors

- GroupFree3D: Uses Transformer modules.
- RepSurf: Uses sophisticated 3D input representation.

Results on FP32 (SUN RGB-D), implemented in Tensorflow

Impact of Quantization Granularity

Results on **PointSplit** (SUN RGB-D)

Latency on SUN RGB-D

Latency on Scannet V2

Conclusion

On-device 3D object detection with heterogeneous accelerators

PointSplit: system-algorithm joint optimization

- Parallelizable feature extractor
- Biased farthest point sampling
- Role-based groupwise quantization
- 11-25x latency reduction, preserving accuracy

Biased Farthest Point Sampling: Algorithm

- Farthest point sampling(FPS): base sampling technique in VoteNet.
 - FPS twice? Two identical pointsets → Detection accuracy
- Can we sample two complementary point sets?
 - Another important information from segmentation results: Foreground boundary!

Algorithm: Farthest Point Sampling

Initialization:

P: Input point cloud

 $S = \{s_1\}$: Sampled point set. s_1 is randomly selected sample from P.

Distance from $p_k \in P$ to $S = \{s_1\}$:

$$d_S(p_k) = d(p_k, s_1) = \sqrt{(p_{k,x} - s_{1,x})^2 + (p_{k,y} - s_{1,y})^2 + (p_{k,z} - s_{1,z})^2}$$

For i = 2, ..., l, repeat steps (a) – (c)

(a) Find the farthest sample away from S:

$$s_i = argmax d_S(p), p \in P$$

- (b) Add s_i as a new seed into S.
- (c) Update the distance from $p_k \in P$ to S:

$$d_S(p_k) \leftarrow \min\{d_S(p), d(p_k, s_i)\}$$

Biased FPS: More weights on favored (foreground) points (denoted as \mathcal{A}) in distance metric.

$$d(p_k, s_i) = \mathbf{w} * \sqrt{(p_{k,x} - s_{i,x})^2 + (p_{k,y} - s_{i,y})^2 + (p_{k,z} - s_{i,z})^2}$$

$$\mathbf{where} \mathbf{w} = \begin{cases} w_0 & \text{if } p_{k,x} \in \mathcal{A} \text{ or } s_{i,x} \in \mathcal{A} \\ 1 & \text{otherwise} \end{cases}$$

- Detection accuracy (SUN RGB-D, primary dataset)
 - PointPainting: sequential 2D/3D fusion improves mAP@0.25 by 3.3.
 - PointSplit achieves better mAP@0.25 than PointPainting or RandomSplit.
 - Even after quantization, PointSplit shows comparable mAP to PointPainting.

Item	Bathtub	Bed	Bookshelf	Chair	Desk	Dresser	Nightstand	Sofa	Table	Toilet	Overall
VoteNet (FP32)	72.4	84.0	25.3	74.1	24.2	30.0	61.4	61.6	49.7	86.8	56.9
PointPainting (FP32)	68.0	86.5	29.6	74.1	24.6	39.9	61.8	77.9	49.3	90.0	60.2

- Detection accuracy on multiple datasets, varying threshold or precision.
 - On Scannet, PointSplit also shows comparable performance.
 - At IoU thresholds of 0.5, PointSplit also shows comparable performance.
 - Regardless of precision, PointSplit shows good performance.

Precision	Method	Dataset			
	Method	SUN RGB-D	Scannet V2		
		@0.25 / @0.5	@0.25 / @0.5		
FP32	VoteNet	56.9 / 31.1	54.9 / 30.4		
	PointPainting	60.2 / 32.8	56.4 / 31.7		
	RandomSplit	60.4 / 32.0	55.2 / 31.2		
	PointSplit	61.4 / 32.7	56.1 / 32.4		
INT8	VoteNet	29.3 / 3.0	41.7 / 11.6		
	PointPainting	32.3 / 3.2	48.8 / 18.2		
	PointSplit	59.9 / 32.5	55.7 / 30.3		

- Communication overhead
 - Alternating GPU / NPU may incur communication overhead. This is our limitation.
- How to measure comm. overhead?
 - GPU memory copy time could be measured with NVIDIA profiler.
 - Such a tool is not provided for EdgeTPU.
 - Our trick:
 - (1) Measure original tflite time: t_comm + t_comp
 - (2) Create another tflite with same input/output but twice computation: t_comm + t_comp*2
 - (2) (1) = t comp, then we can also calculate t comm

	Latency (ms)					
Processor	Communication	Computation	Total			
GPU	80	248	328			
EdgeTPU (estimates)	360	121	481			

Latency

- To inference a single scene (2D + 3D) from SUN RGB-D with a GPU Only, it takes > 8,000ms.
- PointSplit decreases the latency to 750ms (11.4x faster), while keeping comparable detection accuracy.
 - Use of EdgeTPU increases the inference speed by 8.9x, and pipelining increases the inference speed further by 1.3x.
- On ScannetV2, the final latency decreases from 27,000ms to 1,400ms (24.7x).

Peak memory

- Peak memory consumption decreased from 2.25GB to 1.18GB, thanks to lightweight software platform(tflite) as well as quantization.
- Parallelizing across heterogeneous processors does not sacrifice memory consumption.

(a) Latency on SUN RGB-D

(b) Latency on Scannet V2

- Latency on more hardware configuration
 - The operations are assigned to different processor combinations (e.g. CPU – EdgeTPU: Point manipulation on CPU and Neural nets on EdgeTPU).
 - Across all combinations, PointSplit improved the inference time by up to 1.8x on both SUN RGB-D and Scannet V2.

- Latency on each processor per layer shows that the largest gain in inference time comes from parallelizing 2D-3D fusion (PointPainting) and SA1 point manipulation.
- At later SA layers, GPU time decreases but EdgeTPU time increases then decrease. This indicates further optimization room for job allocation.

(a) Latency on SUN RGB-D

(b) Latency on Scannet V2

Layers	GPU	EdgeTPU		
2D-3D fusion	-	222 ms		
SA1	199 ms	47 ms		
SA2	52 ms	71 ms		
SA3	25 ms	84 ms		
SA4	20 ms	21 ms		

Detection Accuracy on Scannet V2

Latency on more hardware configuration

Recall PointSplit's pipelining scheme...

Latency on more hardware configuration

Results on SUN RGB-D

PointSplit

- Can we optimize the model structure to have higher utilization on GPU/NPU?
- Let's sample 2 point sets from the input point cloud, then process independently.
 - Sample M centroids \rightarrow (Sample M/2 centroids) \times 2.

