Underdetermined linear systems a short story with some code

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.

Kamila Zdybał

Université libre de Bruxelles, kamila.zdybal@ulb.ac.be camillejr.github.io/science-docs, kamila.zdybal@gmail.com

Preface

This document is still in preparation. Please feel free to contact me with any suggestions, corrections or comments.

Keywords

underdetermined linear systems, linear algebra, matrix decomposition, matrix approximation

Contents

 1 Introduction
 1

 2 Matlab example
 1

 3 Possible applications
 1

 3.1 Principal Component Analysis
 1

1 Introduction

For an undertermined linear system (where matrix \boldsymbol{A} is size $(n \times m)$ and n < m):

$$\mathbf{A}x = b \tag{1}$$

an infinite number of solutions exists. MATLAB implements various methods of computing possible solutions for x. In this paper we investigate the differences in the available solutions by analyzing their histograms. Four methods were selected: backslash \ operator, computing a pseudo-inverse pinv(), and two least-squares algorithms lsqnonneg() and lsqr().

2 Matlab example

We focus on an example where matrix \boldsymbol{A} is size (100×500) and a vector \boldsymbol{b} is size (100×1) ; both are populated by normally distributed random numbers.

Figure 1: Histograms of four solutions to an undetermined linear system.

3 Possible applications

3.1 Principal Component Analysis

Figure 2: Random, semi-structured and structured raw data

Figure 3: Random, semi-structured and structured raw data sets. PCA reconstruction with $\mathbf{1}^{st}$ Principal Component.

References

- [1] Nathan Kutz, Data Driven Discovery of Dynamical Systems and PDEs, an online lecture
- [2] Gilbert Strang, Introduction to Linear Algebra, Fifth Edition, 2016