PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

Internationales Büro INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 7:

C07D 413/04, A01N 43/836, 47/06, 47/10, 47/28

(11) Internationale Veröffentlichungsnummer: WO 00/35913

(43) Internationales

Veröffentlichungsdatum:

22. Juni 2000 (22.06.00)

(21) Internationales Aktenzeichen:

PCT/EP99/09684

A1

(22) Internationales Anmeldedatum: 9. Dezember 1999 (09.12.99)

(30) Prioritätsdaten:

198 58 193.9

17. Dezember 1998 (17.12.98) DE

(71) Anmelder: AVENTIS CROPSCIENCE GMBH [DE/DE]; Miraustrasse 54, D-13509 Berlin (DE).

(72) Erfinder: HARMSEN, Sven; Merkurstrasse 36, D-23562
Lübeck (DE). BASTIAANS, Henricus, Maria, Martinus;
Stockheimer Weg 9a, D-61250 Usingen (DE). SCHAPER,
Wolfgang; Kapellenweg 5c, D-86420 Diedorf (DE).
TIEBES, Jörg; Prieststrasse 15, D-60320 Frankfurt (DE).
DÖLLER, Uwe; Rembrandtring 24a, D-63110 Rodgau
(DE). JANS, Daniela; Schöne Aussicht 11, D-61348
Bad Homburg v. d. H. (DE). SANFT, Ulrich; Am
Vogelgesang 7g, D-65817 Eppstein/Ts (DE). HEMPEL,
Waltraut; Zum Morgengraben 18, D-65835 Liederbach
(DE). THÖNESSEN, Maria-Theresia; Frauenlobstrasse 10,
D-55262 Heidesheim (DE).

(81) Bestimmungsstaaten: AE, AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CR, CU, CZ, DM, EE, GD, GE, HR, HU, ID, IL, IN, IS, JP, KG, KP, KR, KZ, LC, LK, LR, LT, LV, MA, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TJ, TM, TR, TT, UA, UZ, VN, YU, ZA, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Mit internationalem Recherchenbericht.

(54) Title: 4-TRIFLUOROMETHYL-3-OXADIAZOLYL PYRIDINES, METHODS FOR THE PRODUCTION THEREOF, AGENTS CONTAINING THESE COMPOUNDS, AND THEIR USE AS PESTICIDES

(54) Bezeichnung: 4-TRIFLUORMETHYL-3-OXADIAZOLYLPYRIDINE, VERFAHREN ZU IHRER HERSTELLUNG, SIE ENTHALTENDE MITTEL UND IHRE VERWENDUNG ALS SCHÄDLINGSBEKÄMPFUNGSMITTEL

(I)

(57) Abstract

The invention relates to 4-trifluoromethyl-3-oxadiazolyl pyridines of general formula (I), to methods for the production thereof, to agents containing the inventive compounds, and to the use of these compounds for combating animal pests, especially insects, red spiders, ectoparasites and parasitic helminths. X and Y have the meanings cited in the description.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft 4-Trifluormethyl-3-oxadiazolylpyridine der allgemeinen Formel (I), Verfahren zu ihrer Herstellung, sie enthaltende Mittel sowie die Verwendung dieser Verbindungen zur Bekämpfung von tierischen Schädlingen, insbesondere Insekten, Spinnmilben, Ektoparasiten und Helminthen. X, Y haben die in der Beschreibung angegebenen Bedeutungen.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

4.7	Albanien .	ES	Spanien	LS	Lesotho	SI	Slowenien
AL	Armenien	FI	Finnland	LT	Litanen	SK	Slowakei
AM AT	Österreich	FR	Frankreich	LÜ	Luxemburg	SN	Senegal
	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AU	Austranen Aserbaidschan	GB	Vereinigtes Königreich	MC	Моласо	TD	Tschad
AZ		GE	Georgien	MD	Republik Moldau	TG	Togo
BA	Bosnien-Herzegowina	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BB	Barbados	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BE	Belgien	GR	Griechenland		Republik Mazedonien	TR	Türkei
BF	Burkina Faso	HU		ML	Mali	TT	Trinidad und Tobago
BG	Bulgarien	IE	Ungarn Irland	MN	Mongolei	UA	Ukraine
BJ	Benin			MR	Mauretanien	UG	Uganda
BR	Brasilien	IL	Israel	MW	Malawi	US	Vereinigte Staaten von
BY	Belarus	IS	Island	MX	Mexiko	U.S	Amerika
CA	Kanada	IT	Italien		***************************************	UZ	Usbekistan
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger Niederlande	VN	Vietnam
CG	Kongo	KE	Kenia	NL		YU	Jugoslawien
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	ZW	Zintoabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumānien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dānemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

1

Beschreibung

4-Trifluormethyl-3-oxadiazolylpyridine, Verfahren zu ihrer Herstellung, sie enthaltende Mittel und ihre Verwendung als Schädlingsbekämpfungsmittel

Die Erfindung betrifft 4-Trifluormethyl-3-oxadiazolylpyridine, Verfahren zu ihrer Herstellung, sie enthaltende Mittel sowie ihre Verwendung zur Bekämpfung von tierischen Schädlingen, insbesondere Insekten, Spinnmilben, Ektoparasiten und Helminthen.

Es ist bereits bekannt, daß geeignet substituierte Pyridine akarizide und insektizide Wirkung zeigen. So sind in WO 95/07891 Pyridine beschrieben, die in 4-Position einen über ein Heteroatom verknüpften Cycloalkylrest und in 3-Position eine Gruppe unterschiedlicher Substituenten tragen. Jedoch ist die gewünschte Wirkung gegenüber den Schadorganismen nicht immer ausreichend. Darüber hinaus weisen diese Verbindungen oftmals unerwünschte toxikologische Eigenschaften gegenüber Säugetieren und aquatischen Lebewesen auf.

Aufgabe der vorliegenden Erfindung ist die Bereitstellung von Verbindungen mit guten insektiziden und akariziden Eigenschaften bei gleichzeitig geringer Toxizität gegenüber Säugetieren und aquatischen Lebewesen.

In der nicht vorveröffentlichten WO-A-98/57969 sind 4-Haloalkylpyridine und -pyrimidine zur Verwendung als Schädlingsbekämpfungsmittel vorgeschlagen.

Es wurde nun gefunden, daß Verbindungen der allgemeinen Formel (I), gegebenenfalls auch als Salze, im Vergleich zu den bereits bekannten Verbindungen ein gutes Wirkungsspektrum gegenüber tierischen Schädlingen bei

gleichzeitig günstigeren toxikologischen Eigenschaften gegenüber Säugetieren und aquatischen Lebewesen aufweisen.

Gegenstand der Erfindung sind daher 4-Trifluormethyl-3-oxadiazolylpyridinderivate der Formel (I),

wobei die Symbole und Indizes folgende Bedeutungen haben:

m ist 0 oder 1;

X ist eine Einfachbindung, eine geradkettige Alkylengruppe mit 1, 2 oder 3 C-Atomen oder eine verzweigten Alkylengruppe mit 3 bis 9 C-Atomen, wobei ein oder mehrere H-Atome durch F ersetzt sein können;

Y ist -O-, -S-, -SO-, -SO₂-, -O-CO-, -O-CO-O-, -SO₂-O-, -O-SO₂-, -NR¹-, -NR²-CO-, -NR³-CO-O-, -NR⁴-CO-NR⁵-, -O-CO-CO-O-, -O-CO-NR⁶, -SO₂-NR⁷, -NR⁸-SO₂-;

R,R¹,R²,R³,R⁴,R⁵,R⁶,R⁷,R⁸ sind gleich oder verschieden, unabhängig voneinander H, $(C_1-C_{10})\text{-Alkyl}, \ (C_2-C_{10})\text{-Alkenyl}, \ (C_2-C_{10})\text{-Alkinyl}, \ (C_3-C_8)\text{-Cycloalkyl},$ $(C_4-C_8)\text{-Cycloalkenyl}, \ (C_6-C_8)\text{-Cycloalkinyl}, \ \text{Heterocyclyl} \ \text{oder -(CH}_2)_{1-4}\text{-}$ Heterocyclyl,

wobei jede der acht letztgenannten Gruppen gegebenenfalls ein oder mehrfach substituiert ist, und wobei gegebenenfalls jeweils R und R¹, R und R², R und R⁵, R und R⁶, R und R⁷, R und R⁸ oder R und X zusammen auch ein Ringsystem bilden können;

mit der Maßgabe, daß die Verbindungen, in denen

$$X = -, Y = O, R = H$$

$$X = -$$
, $Y = O$, $R = Me$

$$X = -$$
, $Y = 0$, $R = Et$

$$X = -$$
, $Y = O$, $R = CHF2$

$$X = -$$
, $Y = O$, $R = CH2Ph$

$$X = CH_2$$
, $Y = O$, $R = 2$ -Furanyl

$$X = CH_2$$
, $Y = O$, $R = Me$

$$X = CH_2$$
, $Y = O$, $R = 5$ -Isoxazolyl

$$X = CH_2$$
, $Y = O$, $R = 5$ -Nitrolfuran-2-yl

$$X = CH_2CH_2$$
, $Y = O$, $R = H$

$$X = CH_2CH_2$$
; $Y = O$, $R = Me$

$$X = CH_2CH_2$$
, $Y = O$, $R = CH_2$

$$X = CH_2CH_2$$
, $Y = O$, $R = Et$

$$X = CH_2CH_2$$
, $Y = O$, $R = H$

$$X = CH_2CH_2$$
, $Y = OC(O)$, $R = 4$ -F-phenyl

$$X = CH_2CH_2$$
, $Y = OC(O)$, $R = 2,6$ -Difluorphenyl

$$X = CH_2CH_2$$
, $Y = OC(O)$, $R = 4$ -Nitrophenyl

$$X = CH_2CH_2$$
, $Y = OC(O)$, $R = t$ -Bu

$$X = CH_2CH_2$$
, $Y = OC(O)$, $R = Cyclopropyl$

$$X = CH_2CH_2$$
, $Y = OC(O)$, $R = Me$

$$X = CH_2CH_2CH_2$$
, $Y = O$, $R = H$

$$X = -$$
, $Y = S(O)$, $R = 4$ -Brombenzyl

$$X = CH_2$$
, $Y = S$, $R = Me$

$$X = CH_2$$
, $Y = S(O)$, $R = Me$

$$X = CH_2, Y = S(O)_2, R = t-Bu$$

$$X = CH_2$$
, $Y = S$, $R = 2$ -Thienyl

$$X = CH_2CH_2$$
, $Y = S$, $R = Me$

$$X = CH_2CH_2$$
, $Y = S$, $R = n-Pr$

$$X = CH_2CH_2$$
, $Y = S$, $R = Benzyl$

$$X = CH_2CH_2$$
, $Y = S$, $R = 2$ -Thienyl-methyl

$$X = CH_2CH_2CH_2$$
, $Y = S$, $R = Me$

$$X = CH_2CH_2CH_2$$
, $Y = S(O)$, $R = Me$

4

 $X = CH_2CH_2CH_2CH_2$, Y = S, $R = CH_2CH_2CH_2CH_2OMe$ ausgenommen sind.

m ist vorzugsweise 0.

Ist m 1 und Y enthält eine S(O)_n-Gruppe, so ist n vorzugweise 2.

- X ist vorzugsweise eine Einfachbindung, CH₂, CH₂-CH₂, CH₂-CH(CH₃) oder -CH₂-C(CH₃)₂-.
- Y ist vorzugsweise -O-, -S-, -SO-, -SO₂-, -O-CO-, -O-CO-O, -O-CO-NR⁶-, -SO-NR⁷-, -O-SO₂- oder -SO₂-O-.
- R,R¹,R²,R³,R⁴,R⁵,R⁶,R⁷,R⁸ sind vorzugsweise gleich oder verschieden, unabhängig voneinander H, (C₁-C₆)-Alkyl, (C₂-C₆)-Alkenyl, (C₂-C₆)-Alkinyl, (C₃-C₈)-Cycloalkyl, (C₄-C₈)-Cycloalkenyl, (C₆-C₈)-Cycloalkinyl, Heterocyclyl, -(CH₂)_{1,4}-Heterocyclyl,

wobei die acht zuletzt genannten Reste gegebenenfalls mit einem oder mehreren Resten aus der Gruppe

Halogen, Cyano, Nitro, Hydroxy, -C(=W)R9, (=W),

- $-C(=NOR^9)R^9$, $-C(=NNR^9_2)R^9$, $-C(=W)OR^9$, $-C(=W)NR^9_2$, $-OC(=W)R^9$,
- -OC(=W)OR9, -NR9C(=W)R9, -N[C(=W)R9]2, -NR9C(=W)OR9,
- -C(=W)NR9-NR92, -C(=W)NR9-NR9[C(=W)R9], -NR9-C(=W)NR92,
- -NR9-NR9C(=W)R9, -NR9-N[C(=W)R9]2, -N[(C=W)R9]-NR92,
- -NR9-N[(C=W)R9]2, -NR9-NR9[(C=W)WR9],
- -NR9-[(C=W)NR92], -NR9(C=NR9)R9, -NR9(C=NR9)NR92,
- -O-NR⁹,, -O-NR⁹(C=W)R⁹, -SO₂NR⁹,, -NR⁹SO₂R⁹, -SO₂OR⁹, -OSO₂R⁹,
- -OR9, -NR92, -SR9, -SiR93, -SeR9, -PR92, -P(=W)R92,
- -SOR⁹, -SO₂R⁹, -PW₂R⁹₂, -PW₃R⁹₂, Aryl und Heterocyclyl,

von denen die beiden letztgenannten Reste gegebenenfalls mit einem oder mehreren Resten aus der Gruppe

 (C_1-C_6) -Alkyl, (C_2-C_6) -Alkenyl, (C_2-C_6) -Alkinyl, (C_3-C_8) -Cycloalkyl, (C_4-C_8) -Cycloalkenyl, (C_6-C_8) -Cycloalkinyl, (C_1-C_6) -Haloalkyl,

 (C_2-C_6) -Haloalkenyl, (C_2-C_6) -Haloalkinyl, Halogen, $-OR^{10}$, $-NR^{10}_2$, $-SR^{10}$, $-SiR^{10}_3$, $-C(=W)R^{10}$, $-C(=W)OR^{10}$, $-C(=W)NR^{10}_2$, $-SO_2R^{10}$, Nitro, Cyano und Hydroxy substituiert sind,

substituiert sind.

und wobei gegebenenfalls jeweils R und R¹, R und R², R und R⁵, R und R⁶, R und R⁶, R und Rơ, R und Rơ oder R und X zusammen auch ein Ringsystem bilden können.

Bevorzugt zum Aufbau solcher Ringsysteme sind - $(CH_2)_3$ -, - $(CH_2)_4$ -, - $(CH_2)_5$ -, - $(CH_2)_2$ -O- $(CH_2)_2$ -, - $(CH_2)_2$ -NR³- $(CH_2)_2$ -, -(thiophen-3,4-diyl)-C(O)-, CH(imidazolyl-)CF $_2$ C(O)-, -CH(Me)CH $_2$ C(O)-, -CMe $_2$ CH $_2$ C(O)-, -CH(Me)CH $_2$ C(O)-, -CH(Me)CH $_2$ C(O)-, -CH $_2$ CH $_3$ C(O)-, -CH $_3$ CH $_4$ C(O)-, -CH $_4$ CH $_5$ C(O)-, -CH $_4$ CH $_5$ C(O)-, -CH $_5$ CI- $(CH_2)_4$ -]CH $_5$ C(O)-, -(1,2-Cyclohexylen)-C(O)-, -(Cyclohexen-4,5-diyl)-C(O)-, -CH $_5$ -C(H)Ph-CH $_5$ -C(O)-, -CMe=CMe-C(O)-, -CH $_5$ -C(O)-, besonders bevorzugt sind - $(CH_2)_3$ -, - $(CH_2)_5$ -

W ist O oder S.

R⁹ ist Wasserstoff,

MICHAEL MICH MARGINALI

 (C_1-C_6) -Alkyl, (C_2-C_6) -Alkenyl, (C_2-C_6) -Alkinyl, (C_3-C_8) -Cycloalkyl, (C_4-C_8) -Cycloalkenyl, (C_3-C_8) -Cycloalkyl- (C_1-C_4) -Alkyl, (C_4-C_8) -Cycloalkenyl- (C_1-C_4) -Alkyl, (C_3-C_8) -Cycloalkyl- (C_2-C_4) -Alkenyl, (C_4-C_8) -Cycloalkenyl- (C_1-C_4) -Alkenyl, (C_1-C_6) -Alkyl- (C_3-C_8) -Cycloalkyl, (C_2-C_6) -Alkenyl- (C_3-C_8) -Cycloalkyl, (C_1-C_6) -Alkyl- (C_4-C_8) -Cycloalkyl, (C_1-C_6) -Alkyl- (C_4-C_8) -Cycloalkenyl, (C_2-C_6) -Alkenyl- (C_4-C_8) -Cycloalkenyl, wobei die vierzehn letztgenannten Reste gegebenenfalls mit einem oder mehreren Resten aus der Gruppe

Halogen, Cyano, Nitro, Hydroxy, Thio, Amino, Formyl, (C_1-C_6) -Alkoxy, (C_2-C_6) -Alkenyloxy, (C_2-C_6) -Alkinyloxy, (C_1-C_6) -Haloalkyloxy, (C_2-C_6) -

Haloalkenyloxy, (C_2-C_6) -Haloalkinyloxy, (C_3-C_8) -Cycloalkoxy, (C_4-C_8) -Cycloalkenyloxy, (C₃-C₈)-Halocycloalkoxy, (C₄-C₈)-Halocycloalkenyloxy, (C_3-C_8) -Cycloalkyl- (C_1-C_4) -Alkoxy, (C_4-C_8) -Cycloalkenyl- (C_1-C_4) -Alkoxy, (C_3-C_8) -Cycloalkyl- (C_2-C_4) -Alkenyloxy, (C_4-C_8) -Cycloalkenyl- (C_1-C_4) -Alkenyloxy, (C_1-C_6) -Alkyl- (C_3-C_8) -Cycloalkoxy, (C_2-C_6) -Alkenyl- (C_3-C_8) -Cycloalkoxy, (C_2-C_6) -Alkinyl- (C_3-C_8) -Cycloalkoxy, (C_1-C_6) -Alkyl- (C_4-C_8) -Cycloalkenyloxy, (C_2-C_8) -Alkenyl- (C_4-C_8) -Cycloalkenyloxy, (C_1-C_4) -Alkoxy- (C_1-C_6) -Alkoxy, (C_1-C_4) -Alkoxy- (C_2-C_6) -Alkenyloxy, Carbamoyl, (C₁-C₆)-Mono- oder Dialkylcarbamoyl, (C₁-C₆)-Mono- oder Dihaloalkylcarbamoyl, (C₃-C₈)-Mono- oder Dicycloalkylcarbamoyl, (C_1-C_6) -Alkoxycarbonyl, (C_3-C_8) -Cycloalkoxycarbonyl, (C_1-C_6) -Alkanoyloxy, (C₃-C₈)-Cycloalkanoyloxy, (C₁-C₆)-Haloalkoxycarbonyl, (C_1-C_6) -Haloalkanoyloxy, (C_1-C_6) -Alkanamido, (C_1-C_6) -Haloalkanamido, (C₂-C₆)-Alkenamido, (C₃-C₆)-Cycloalkanamido, (C₃-C₆)-Cycloalkyl- (C_1-C_4) -Alkanamido, (C_1-C_6) -Alkylthio, (C_2-C_6) -Alkenylthio, (C_2-C_6) -Alkinylthio, (C_1-C_6) -Haloalkylthio, (C_2-C_6) -Haloalkenylthio, (C_2-C_6) -Haloalkinylthio, (C₃-C₈)-Cycloalkylthio, (C₄-C₈)-Cycloalkenylthio, (C_3-C_8) -Halocycloalkthio, (C_4-C_8) -Halocycloalkenylthio, (C_3-C_8) -Cycloalkyl- (C_1-C_4) -Alkylthio, (C_4-C_8) -Cycloalkenyl- (C_1-C_4) -Alkylthio, (C_3-C_8) -Cycloalkyl- (C_2-C_4) -Alkenylthio, (C_4-C_8) -Cycloalkenyl- (C_1-C_4) -Alkenylthio, (C₁-C₆)-Alkyl-(C₃-C₈)-Cycloalkylthio, (C₂-C₆)-Alkenyl-(C₃-C₈)-Cycloalkylthio, (C₂-C₆)-Alkinyl-(C₃-C₈)-Cycloalkylthio, (C₁-C₆)-Alkyl-(C₄-C₈)-Cycloalkenylthio, (C₂-C₆)-Alkenyl-(C₄-C₈)-Cycloalkenylthio, (C_1-C_6) -Alkylsulfinyl, (C_2-C_6) -Alkenylsulfinyl, (C_2-C_6) -Alkinylsulfinyl, (C_1-C_6) -Alkylsulfinyl, (C_1-C_6) -Alkylsulfinyl, (C_2-C_6) -Alkylsulfinyl, (C_1-C_6) -Alkylsulfinyl, (C_2-C_6) -Alkylsulfinyl, (C_2-C_6) -Alkylsulfinyl, (C_3-C_6) -Alky C_6)-Haloalkylsulfinyl, (C_2-C_6) -Haloalkenylsulfinyl, (C_2-C_6) -Haloalkinylsulfinyl, (C₃-C₈)-Cycloalkylsulfinyl, (C₄-C₈)-Cycloalkenylsulfinyl, (C₃-C₈)-Halocycloalksulfinyl, (C₄-C₈)-Halocycloalkenylsulfinyl, (C₃-C₈)-Cycloalkyl-(C₁-C₄)-Alkylsulfinyl, (C₄- C_8)-Cycloalkenyl- (C_1-C_4) -Alkylsulfinyl, (C_3-C_8) -Cycloalkyl- (C_2-C_4) -Alkenylsulfinyl, (C_4-C_8) -Cycloalkenyl- (C_1-C_4) -Alkenylsulfinyl, (C_1-C_6) -Alkyl- (C_3-C_8) -Cycloalkylsulfinyl, (C_2-C_6) -Alkenyl- (C_3-C_8) -

Cycloalkylsulfinyl, (C_2-C_6) -Alkinyl- (C_3-C_8) -Cycloalkylsulfinyl, (C_1-C_6) -Alkyl- (C_4-C_8) -Cycloalkenylsulfinyl, (C_2-C_6) -Alkenyl- (C_4-C_8) -Cycloalkenylsulfinyl, (C₁-C₆)-Alkylsulfonyl, (C₂-C₆)-Alkenylsulfonyl, (C_2-C_6) -Alkinylsulfonyl, (C_1-C_6) -Haloalkylsulfonyl, (C_2-C_6) -Haloalkenylsulfonyl, (C₂-C₆)-Haloalkinylsulfonyl, (C₃-C₈)-Cycloalkylsulfonyl, (C₄-C₈)-Cycloalkenylsulfonyl, (C₃-C₈)-Halocycloalksulfonyl, (C₄-C₈)-Halocycloalkenylsulfonyl, (C₃-C₈)-Cycloalkyl- (C_1-C_4) -Alkylsulfonyl, (C_4-C_8) -Cycloalkenyl- (C_1-C_4) -Alkylsulfonyl, (C_3-C_8) -Cycloalkyl- (C_2-C_4) -Alkenylsulfonyl, (C_4-C_8) -Cycloalkenyl- (C_1-C_4) -Alkenylsulfonyl, (C_1-C_6) -Alkyl- (C_3-C_8) -Cycloalkylsulfonyl, (C2-C6)-Alkenyl-(C3-C8)-Cycloalkylsulfonyl, (C2-C6)-Alkinyl- (C_3-C_8) -Cycloalkylsulfonyl, (C_1-C_6) -Alkyl- (C_4-C_8) -Cycloalkenylsulfonyl, (C₂-C₆)-Alkenyl-(C₄-C₈)-Cycloalkenylsulfonyl, (C_1-C_6) -Alkylamino, (C_2-C_6) -Alkenylamino, (C_2-C_6) -Alkinylamino, (C_1-C_6) -Haloalkylamino, (C_2-C_6) -Haloalkenylamino, (C_2-C_6) -Haloalkinylamino, (C₃-C₈)-Cycloalkylamino, (C₄-C₈)-Cycloalkenylamino, (C₃-C₈)-Halocycloalkamino, (C₄-C₈)-Halocycloalkenylamino, (C₃-C₈)-Cycloalkyl- (C_1-C_4) -Alkylamino, (C_4-C_8) -Cycloalkenyl- (C_1-C_4) -Alkylamino, (C_3-C_8) -Cycloalkyl- (C_2-C_4) -Alkenylamino, (C_4-C_8) -Cycloalkenyl- (C_1-C_4) -Alkenylamino, (C₁-C₆)-Alkyl-(C₃-C₈)-Cycloalkylamino, (C₂-C₆)-Alkenyl-(C₃-C₈)-Cycloalkylamino, (C₂-C₆)-Alkinyl-(C₃-C₈)-Cycloalkylamino, (C_1-C_6) -Alkyl- (C_4-C_8) -Cycloalkenylamino, (C_2-C_6) -Alkenyl- (C_4-C_8) -Cycloalkenylamino, (C₁-C₆)-Trialkylsilyl, Aryl, Aryloxy, Arylthio, Arylamino, Aryl- (C_1-C_4) -Alkoxy, Aryl- (C_2-C_4) -Alkenyloxy, Aryl- (C_1-C_4) -Alkylthio, Aryl-(C₂-C₄)-Alkenylthio, Aryl-(C₁-C₄)-Alkylamino, Aryl-(C₂-C₄)-Alkenylamino, Aryl-(C₁-C₆)-Dialkylsilyl, Diaryl-(C₁-C₆)-Alkylsilyl. Triarylsilyl und 5- oder 6-gliedriges Heterocyclyl, wobei der cyclische Teil der vierzehn letztgenannten Reste gegebenenfalls durch einen oder mehrere Reste aus der Gruppe Halogen, Cyano, Nitro, Amino, Hydroxy, Thio, (C₁-C₄)-Alkyl, (C₁-C₄)-Haloalkyl, (C_3-C_8) -Cycloalkyl, (C_1-C_4) -Alkoxy, (C_1-C_4) -Haloalkoxy,

 (C_1-C_4) -Alkylthio, (C_1-C_4) -Haloalkylthio, (C_1-C_4) -Alkylamino, (C_1-C_4) -Haloalkylamino, Formyl und (C_1-C_4) -Alkanoyl substituiert ist,

substituiert sind.

Aryl, 4-, 5- oder 6-gliedriges Heterocyclyl,

wobei die beiden letztgenannten Reste gegebenenfalls durch einen oder mehrere Reste aus der Gruppe

Halogen, Cyano, Nitro, Hydroxy, Thio, Amino, Formyl, (C₁-C₆)-Alkoxy, (C_2-C_6) -Alkenyloxy, (C_2-C_6) -Alkinyloxy, (C_1-C_6) -Haloalkyloxy, (C_2-C_6) -Haloalkenyloxy, (C₂-C₆)-Haloalkinyloxy, (C₃-C₈)-Cycloalkoxy, (C₄-C₈)-Cycloalkenyloxy, (C₃-C₈)-Halocycloalkoxy, (C₄-C₈)-Halocycloalkenyloxy, Carbamoyl, (C₁-C₆)-Mono- oder Dialkylcarbamoyl, (C₁-C₆)-Alkoxycarbonyl, (C₁-C₆)-Alkanoyloxy, (C₁-C₆)-Mone- oder Dihaloalkylcarbamoyl, (C₁-C₆)-Haloalkoxycarbonyl, (C₁-C₆)-Haloalkanoyloxy, (C₁-C₆)-Alkanamido, (C₁-C₆)-Haloalkanamido, (C₂-C₆)-Alkenamido, (C₁-C₆)-Alkylthio, (C₂-C₆)-Alkenylthio, (C₂-C₆)-Alkinylthio, (C_1-C_6) -Haloalkylthio, (C_2-C_6) -Haloalkenylthio, (C_2-C_6) -Haloalkinylthio, (C₃-C₈)-Cycloalkylthio, (C₄-C₈)-Cycloalkenylthio, (C₃-C₈)-Halocycloalkthio, (C₄-C₈)-Halocycloalkenylthio, (C₁-C₆)-Alkylsulfinyl, (C_2-C_6) -Alkenylsulfinyl, (C_2-C_6) -Alkinylsulfinyl, (C_1-C_6) -Haloalkylsulfinyl, (C₂-C₆)-Haloalkenylsulfinyl, (C₂-C₆)-Haloalkinylsulfinyl, (C_3-C_8) -Cycloalkylsulfinyl, (C_4-C_8) -Cycloalkenylsulfinyl, (C_3-C_8) -Halocycloalksulfinyl, (C₄-C₈)-Halocycloalkenylsulfinyl, (C₁-C₆)-Alkylsulfonyl, (C_2-C_6) -Alkenylsulfonyl, (C_2-C_6) -Alkinylsulfonyl, (C_1-C_6) -Haloalkylsulfonyl, (C2-C6)-Haloalkenylsulfonyl, (C2-C6)-Haloalkinylsulfonyl, (C₃-C₈)-Cycloalkylsulfonyl, (C₄-C₈)-Cycloalkenylsulfonyl, (C₃-C₈)-Halocycloalksulfonyl, (C₄-C₈)-Halocycloalkenylsulfonyl, (C₁-C₆)-Alkylamino, (C₂-C₆)-Alkenylamino, (C_2-C_6) -Alkinylamino, (C_1-C_6) -Haloalkylamino, (C_2-C_6) -

Haloalkenylamino, (C₂-C₆)-Haloalkinylamino, (C₃-C₈)-Cycloalkylamino,

9

 (C_4-C_8) -Cycloalkenylamino, (C_3-C_8) -Halocycloalkamino und (C_4-C_8) -Halocycloalkenylamino substituiert sind.

Besonders bevorzugt sind R, R¹-R³: H, (C_1-C_6) -Alkyl, (C_2-C_6) -Alkenyl, (C_2-C_6) -Alkinyl, Heterocyclyl, wobei die vier letztgenannten Reste gegebenenfalls mit einem oder mehreren, vorzugsweise einem bis vier, Resten aus der Gruppe Halogen, vorzugsweise F, CN, SiMe₃, -O- (C_1-C_6) -Alkyl, -S- (C_1-C_6) -Alkyl oder -O-CO- (C_1-C_6) -Alkyl substituiert sind.

Ganz besonders bevorzugt sind Verbindungen der Formel I-1 bis I-32, auch in Form ihrer Pyridin-N-Oxide, wobei die Symbole und Indizes die oben angegebenen Bedeutungen haben:

$$CF_3$$
 $O-CO-NR^6-R$
 CF_3
 $O-CO-NR^7-R$
 $O-CO-NR^6-R$
 $O-NCO-NR^6-R$
 O

RNSDOCID: <WO 0035913A1 L >

In gleicher Weise bevorzugt sind die entsprechenden Formeln I-33 bis I-96 in denen Y -CH₂-CH₂-, -CH₂-CH(CH₃)-, -CH₂-CH₂-CH₂- und -CH₂-C(CH₃)₂- bedeutet.

Die Bezeichnung "Halogen" umfaßt Fluor, Chlor, Brom und lod.

Unter dem Ausdruck "(C₁-C₄)-Alkyl" ist ein unverzweigter oder verzweigter Kohlenwasserstoffrest mit 1, 2, 3 oder 4 Kohlenstoffatomen, wie z.B. der Methyl-, Ethyl-, Propyl-, Isopropyl-, 1-Butyl-, 2-Butyl-, 2-Methylpropyl- oder tert.-Butylrest zu verstehen. Entsprechend ist unter Alkylresten mit einem größeren Bereich an Kohlenstoffatomen ein unverzweigter oder verzweigter gesättigter Kohlenwasserstoffrest zu verstehen, der eine Anzahl an Kohlenstoffatomen enthält, die dieser Bereichsangabe entspricht. Der Ausdruck "(C₁-C₆)-Alkyl" umfaßt demnach die vorgenannten Alkylreste, sowie z.B. den Pentyl-, 2-Methylbutyl-, 1,1-Dimethylpropyl- oder Hexyl-Rest. Unter dem Ausdruck "(C₁-C₁₀)-Alkyl" sind die vorgenannten Alkylreste, sowie z.B. der Nonyl-, 1-Decyl- oder 2-Decyl-Rest zu verstehen.

Unter " (C_1-C_4) -Haloalkyl" ist eine unter dem Ausdruck " (C_1-C_4) -Alkyl" genannte Alkylgruppe zu verstehen, in der ein oder mehrere Wasserstoffatome durch die gleiche Anzahl gleicher oder verschiedener Halogenatome, bevorzugt Chlor oder Fluor, ersetzt sind, wie die Trifluormethyl-, die 1-Fluorethyl-, die 2,2,2-Trifluorethyl-, die Chlormethyl-, Fluormethyl-, die Difluormethyl- und die 1,1,2,2-Tetrafluorethylgruppe.

Unter " (C_1-C_4) -Alkoxy" ist eine Alkoxygruppe zu verstehen, deren Kohlenwasserstoffrest die unter dem Ausdruck " (C_1-C_4) -Alkyl" angegebene Bedeutung hat. Sinngemäß sind Alkoxygruppen zu verstehen, die einen größeren Bereich an Kohlenstoffatomen umfassen.

Die Bezeichnungen "Alkenyl" und "Alkinyl" mit einer vorangestellten Bereichsangabe von Kohlenstoffatomen bedeuten einen geradkettigen oder verzweigten Kohlenwasserstoffrest mit einer dieser Bereichsangabe entsprechenden Kohlenstoffatomzahl, der mindestens eine Mehrfachbindung beinhaltet, wobei sich diese an beliebiger Position des betreffenden ungesättigten Restes befinden kann. "(C2-C4)-Alkenyl" steht demnach z.B. für die Vinyl-, Allyl-, 2-Methyl-2-propen- oder 2-Butenyl-Gruppe; "(C2-C6)-Alkenyl" steht für die vorstehend genannten Reste sowie z.B. für die Pentenyl-, 2-Methylpentenyl- oder die Hexenyl-Gruppe. "(C2-C4)-Alkinyl" steht z.B. für die Ethinyl-, Propargyl-, 2-Methyl-2-propin- oder 2-Butinyl-Gruppe. Unter "(C2-C6)-Alkinyl" sind die vorstehend genannten Reste sowie z.B. die 2-Pentinyl- oder die 2-Hexinyl-Gruppe und unter "(C2-C10)-Alkinyl" die vorstehend genannten Reste sowie z.B. die 2-Octinyl- oder die 2-Decinyl-Gruppe zu verstehen.

"(C₃-C₈)-Cycloalkyl" steht für monocyclische Alkylreste, wie den Cyclopropyl-, Cyclobutyl-, Cyclopentyl-, Cyclohexyl-, Cycloheptyl- oder Cyclooctylrest und für bicyclische Alkylreste, wie den Norbornylrest.

Unter dem Ausdruck " (C_3-C_8) -Cycloalkyl- (C_1-C_4) -alkyl " ist beispielsweise der Cyclopropylmethyl-, Cyclopentylmethyl-, Cyclohexylmethyl-, Cyclohexylethyl- und Cyclohexylbutyl-Rest und unter dem Ausdruck " (C_1-C_6) -Alkyl- (C_3-C_8) -cycloalkyl beispielsweise der 1-Methyl-cyclopropyl-, 1-Methyl-cyclopentyl-, 1-Methyl-cyclohexyl-, 3-Hexyl-cyclobutyl- und 4-tert.-Butyl-cyclohexyl-Rest zu verstehen.

"(C₁-C₄)-Alkoxy-(C₁-C₆)-alkyloxy" bedeutet eine wie vorstehend definierte Alkoxy-Gruppe, die durch eine weitere Alkoxy-Gruppe substituiert ist, wie z.B. 1-Ethoxy-ethoxy.

Unter " (C_3-C_8) -Cycloalkoxy" oder " (C_3-C_8) -Cycloalkylthio" ist einer der oben angeführten (C_3-C_8) -Cycloalkyl-Reste, der über ein Sauerstoff- oder Schwefelatom verknüpft ist, zu verstehen.

"(C₃-C₈)-Cycloalkyl-(C₁-C₆)-alkoxy" bedeutet z.B. die Cyclopropylmethoxy, Cyclobutylmethoxy-, Cyclopentylmethoxy-, Cyclohexylmethoxy-, Cyclohexylethoxy-oder die Cyclohexylbutoxy-Gruppe;

Der Ausdruck "(C₁-C₄)-Alkyl-(C₃-C₈)-cycloalkoxy" steht z.B. für die Methylcyclopropyloxy-, Methylcyclobutyloxy- oder die Butylcyclohexyloxy-Gruppe.

" (C_1-C_6) -Alkylthio" steht für eine Alkylthiogruppe, deren Kohlenwasserstoffrest die unter dem Ausdruck " (C_1-C_6) -Alkyl" angegebene Bedeutung hat.

Analog bedeuten " (C_1-C_6) -Alkylsulfinyl" z.B. die Methyl-, Ethyl-, Propyl-, Isopropyl-, Butyl-, Isobutyl-, sek.-Butyl- oder tert.-Butylsulfinyl-Gruppe und " (C_1-C_6) -Alkylsulfonyl" z.B. die Methyl-, Ethyl-, Propyl-, Isopropyl-, Butyl-, Isobutyl-, sek.-Butyl- oder tert.-Butylsulfonyl-Gruppe.

"(C₁-C₆)-Alkylamino" steht für ein Stickstoffatom, das durch ein oder zwei, gleiche oder verschiedene Alkylreste der obigen Definition substituiert ist.

Der Ausdruck "(C₁-C₆)-Mono- oder Dialkylcarbamoyl" bedeutet eine Carbamoylgruppe mit einem oder zwei Kohlenwasserstoffresten, die die unter dem Ausdruck "(C₁-C₆-Alkyl)" angegebene Bedeutung haben und die im Fall von zwei Kohlenwasserstoffresten gleich oder verschieden sein können.

Analog bedeutet " (C_1-C_6) -Dihaloalkylcarbamoyl" eine Carbamoylgruppe, die zwei (C_1-C_6) -Haloalkylreste gemäß der obigen Definition oder einen (C_1-C_6) -Haloalkylrest und einen (C_1-C_6) -Alkylrest gemäß der obigen Definition trägt.

"(C₁-C₆)-Alkanoyl" steht z.B. für die Acetyl-, Propionyl-, Butyryl- oder 2-Methylbutyryl-Gruppe;

Unter dem Ausdruck "Aryl" ist ein carbocyclischer, d.h. aus Kohlenstoffatomen aufgebauter, aromatischer Rest mit vorzugsweise 6 bis 14, insbesondere 6 bis 12 C-Atomen, wie beispielsweise Phenyl, Naphthyl oder Biphenylyl, vorzugsweise Phenyl zu verstehen. "Aroyl" bedeutet demnach einen wie vorstehend definierter Arylrest, der über eine Carbonyl-Gruppe gebunden ist, wie z.B. die Benzoyl-Gruppe.

Der Ausdruck "Heterocyclyl" steht vorzugsweise für einen cyclischen Rest, der vollständig gesättigt, teilweise ungesättigt oder vollständig ungesättigt sein kann und der durch mindestens ein oder mehrere gleiche oder verschiedene Atome aus der Gruppe Stickstoff, Schwefel oder Sauerstoff unterbrochen sein kann, wobei jedoch nicht zwei Sauerstoffatome direkt benachbart sein dürfen und noch mindestens ein Kohlenstoffatom im Ring vorhanden sein muß, wie z.B. ein Rest von Thiophen. Furan, Pyrrol, Thiazol, Oxazol, Imidazol, Isothiazol, Isoxazol, Pyrazol, 1,3,4-Oxadiazol, 1,3,4-Thiadiazol, 1,3,4-Triazol, 1,2,4-Oxadiazol, 1,2,4-Thiadiazol, 1,2,4-Triazol, 1,2,3-Triazol, 1,2,3,4-Tetrazol, Benzo[b]thiophen, Benzo[b]furan, Indol, Benzo[c]thiophen, Benzo[c]furan, Isoindol, Benzoxazol, Benzothiazol, Benzimidazol, Benzisoxazol, Benzisothiazol, Benzopyrazol, Benzothiadiazol, Benzotriazol, Dibenzofuran, Dibenzothiophen, Carbazol, Pyridin, Pyrazin, Pyrimidin, Pyridazin, 1,3,5-Triazin, 1,2,4-Triazin, 1,2,4,5-Tetrazin, Chinolin, Isochinolin, Chinoxalin, Chinazolin, Cinnolin, 1,8-Naphthyridin, 1,5-Naphthyridin, 1,6-Naphthyridin, 1,7-Naphthyridin, Phthalazin, Pyridopyrimidin, Purin, Pteridin, 4H-Chinolizin, Piperidin, Pyrrolidin, Oxazolin, Tetrahydrofuran, Tetrahydropyran, Isoxzolidin oder Thiazolidin. Der Ausdruck "Heteroaromat" umfaßt demnach von den vorstehend

unter "Heterocycly" genannten Bedeutungen jeweils die vollständig ungesättigten aromatischen heterocyclischen Verbindungen.

Heterocyclyl bedeutet besonders bevorzugt ein gesättigtes, teilgesättigtes oder aromatisches Ringsystem mit 3 bis 6 Ringgliedern und 1 bis 4 Heteroatomen aus der Gruppe O, S und N, wobei mindestens ein Kohlenstoffatom im Ring vorhanden sein muß.

Ganz besonders bevorzugt bedeutet Heterocyclyl ein Radikal des Pyridin, Pyrimidin, (1,2,4)-Oxadiazol, (1,3,4)-Oxadiazol, Pyrrol, Furan, Thiophen, Oxazol, Thiazol, Imidazol, Pyrazol, Isoxazol, 1,2,4-Triazol, Tetrazol, Pyrazin, Pyridazin, Oxazolin, Thiazolin, Tetrahydrofuran, Tetrahydropyran, Morpholin, Piperidin, Piperazin, Pyrrolin, Pyrrolidin, Oxazolidin, Thiazolidin, Oxiran und Oxetan.

"Aryl- (C_1-C_4) -alkoxy" steht für einen über eine (C_1-C_4) -Alkoxygruppe verknüpften Arylrest, z.B. den Benzyloxy-, Phenylethoxy-, Phenylbutoxy- oder Naphthylmethoxy-Rest.

"Arylthio" bedeutet einen über ein Schwefelatom verknüpften Arylrest, z.B. den Phenylthio- oder den 1- oder 2-Naphthylthio-Rest. Analog bedeutet "Aryloxy" z.B. den Phenoxy- oder 1- oder 2-Naphthyloxy-Rest.

"Aryl-(C₁-C₄)-alkylthio" steht für einen Arylrest, der über einen Alkylthiorest verknüpft ist, z.B. der Benzylthio-, Naphthylmethylthio- oder die Phenylethylthio-Rest.

Der Ausdruck " (C_1-C_6) -Trialkylsilyl" bedeutet ein Siliciumatom, das drei gleiche oder verschiedene Alkylreste gemäß der obigen Definition trägt. Analog stehen "Aryl- (C_1-C_6) -Dialkylsilyl" für ein Siliciumatom, das einen Arylrest und zwei gleiche oder verschiedene Alkylreste gemäß der obigen Definition trägt, "Diaryl- (C_1-C_6) -Alkylsilyl" für ein Siliciumatom, das einen Alkylrest und zwei gleiche oder verschiedene

17

Arylreste gemäß der obigen Definition trägt, und "Triarylsilyl" für ein Siliciumatom, das drei gleiche oder verschiedene Arylreste gemäß der obigen Definition trägt.

In den Fällen, in denen zwei oder mehrere Reste R⁹ in einem Substituenten auftreten, wie z.B. bei -C(=W)NR⁹₂, können diese gleich oder verschieden sein.

Je nach Art der oben definierten Substituenten weisen die Verbindungen der allgemeinen Formel (I) saure oder basische Eigenschaften auf und können Salze bilden. Tragen die Verbindungen der allgemeinen Formel (I) beispielsweise Gruppen wie Hydroxy, Carboxy oder andere, saure Eigenschaften induzierende Gruppen, so können diese Verbindungen mit Basen zu Salzen umgesetzt werden. Geeignete Basen sind beispielsweise Hydroxide, Carbonate, Hydrogencarbonate der Alkaliund Erdalkalimetalle, insbesondere die von Natrium, Kalium, Magnesium und Calcium, weiterhin Ammoniak, primäre, sekundäre und tertiäre Amine mit (C,-C₄)-Alkylresten sowie Mono-, Di- und Trialkanolamine von (C₁-C₄)-Alkanolen. Tragen die Verbindungen der allgemeinen Formel (I) beispielsweise Gruppen wie Amino. Alkylamino oder andere, basische Eigenschaften induzierende Gruppen, so können diese Verbindungen mit Säuren zu Salzen umgesetzt werden. Geeignete Säuren sind beispielsweise Mineralsäuren, wie Salz-, Schwefel- und Phosphorsäure, organische Säuren, wie Essigsäure oder Oxalsäure, und saure Salze, wie NaHSO4 und KHSO₄. Die so erhältlichen Salze weisen ebenfalls insektizide, akarizide und nematizide Eigenschaften auf.

Die Verbindungen der allgemeinen Formel (I) können ein oder mehrere asymmetrische Kohlenstoffatome oder Stereoisomere an Doppelbindungen aufweisen. Es können daher Enantiomere oder Diastereomere auftreten. Die Erfindung umfaßt sowohl die reinen Isomeren als auch deren Gemische. Die Gemische von Diastereomeren können nach gebräuchlichen Methoden, z.B. durch selektive Kristallisation aus geeigneten Lösungsmitteln oder durch Chromatographie in die Isomeren aufgetrennt werden. Racemate können nach üblichen Methoden in die Enantiomeren aufgetrennt werden.

Die Herstellung der erfindungsgemäßen Verbindungen erfolgt nach an sich literaturbekannten Methoden, wie sie in Standardwerken zur Organischen Synthese, z.B. Houben-Weyl, Methoden der Organischen Chemie, Georg-Thieme-Verlag, Stuttgart, beschrieben werden.

Die Herstellung erfolgt dabei unter Reaktionsbedingungen, die für die genannten Umsetzungen bekannt und geeignet sind. Dabei kann man auch von an sich bekannten, hier nicht näher erwähnten Varianten Gebrauch machen.

Die Ausgangsstoffe können gewünschtenfalls auch in situ gebildet werden, und zwar derart, daß man sie aus dem Reaktionsgemisch nicht isoliert, sondern sofort weiter zu den Verbindungen der Formel (I) umsetzt.

Zur Herstellung von Verbindungen der allgemeinen Formel (I) setzt man z.B. aktivierte Derivate der Säure der allgemeinen Formel (II),

in Gegenwart einer Base mit einer Verbindung der Formel (III) um,

H₂N
$$X-Y-R$$

in welcher der Rest X-Y-R wie in Formel (I) definiert ist oder einer Vorstufe eines solchen Rests entspricht. Als aktiviertes Derivat kann beispielsweise ein Säurehalogenid, ein Ester oder ein Anhydrid eingesetzt werden. Als Basen eignen sich Amine, wie Triethylamin, Diisopropylethylamin, Pyridin oder Lutidin, Alkalimetallhydroxide, Alkalimetallalkoholate, wie Natriumethanolat oder Kalium-tertbutanolat, oder Alkylmetallverbindungen, wie Butyllithium.

Die beschriebene Reaktion kann je nach Wahl der Bedingungen als Einstufenprozeß oder als Zweistufenprozeß durchgeführt werden, wobei Verbindungen der Formel (IV) durchlaufen werden:

$$CF_3$$
 O N R' (IV)

Verbindungen der Formel (IV) können durch Erhitzen in einem inerten Lösungsmittel zu den 1,2,4-Oxadiazolen bei Temperaturen bis zu 180°C sowie durch Zusatz wasserentziehender Reagentien (z.B. Amberlyst) cyclisiert werden.

Verbindungen der Formel (IV) sind auch direkt zugänglich aus der Säure der Formel (II) und Amidoximen der Formel (III) durch Verwendung eines wasserentziehenden Reagenzes wie Dicyclohexylcarbodiimid, 1-Ethyl-3-(3-dimethylamino-propyl)carbodiimid oder N,N'-Carbonyldiimidazol.

Sowohl 4-Trifluormethylnicotinsäure (II) wie auch Amidoxime der Formel (III) sind käuflich oder können nach literaturbekannten Verfahren hergestellt werden (siehe zum Beispiel: Houben-Weyl, Methoden der organischen Chemie, Band X/4, Seite 209-212; EP-A 0 580 374; G.F. Holland, J.N. Pereira, J. Med. Chem., 1967, 10, 149).

Nach beendetem Aufbau der Oxadiazolylgruppe, die in der nachfolgenden Grafik beispielhaft aufgezeigt wird, durch z.B. Kondensations-, Cyclisierungs- oder Cycloadditionsreaktionen kann der Rest R noch gewünschtenfalls weiter derivatisiert werden, wobei die breite Methodenpalette der organisch-chemischen Synthese eingesetzt werden kann.

$$CF_3$$
 CO_2Me
 $HO-N$
 $NaOEt$
 CF_3
 $O-N$
 N

Als zentrale Intermediate von Ethern, Thioethem und analogen Derivaten dienen haloalkyl-, hydroxyalkyl- sowie aminoalkylsubstituierte Oxadiazol-Derivate der Formel (V),

die dann nach Standardverfahren der organischen Synthese in die entsprechenden Zielverbindungen umgewandelt werden können.

Ether der Formel (I) sind durch Veretherung entsprechender Hydroxyverbindungen erhältlich, wobei die Hydroxyverbindung zweckmäßig zunächst in ein entsprechendes Metallderivat, z.B. durch Behandeln mit NaH, NaNH₂, NaOH, KOH, Na₂CO₃ in das entsprechende Alkalimetallalkoholat übergeführt wird. Dieses kann dann mit dem entsprechenden Alkylhalogenid, Alkylsulfonat oder Dialkylsulfat umgesetzt werden, zweckmäßig in einem inertem Lösungsmittel, wie Aceton, 1,2-Dimethoxyethan, DMF oder Dimethylsulfoxid, oder auch mit einem Überschuß an wäßriger oder wäßrig-alkoholischer NaOH oder KOH bei Temperaturen zwischen etwa 20°C und 100°C.

Derivate der Aminoverbindung (VI) können beispielsweise durch Reaktion der Chlorverbindung ((V), V = CI) mit Aminen

oder über das zentrale Intermediat ((V); $V = NH_2$) hergestellt werden. Der Aufbau des zentralen Intermediats ((V); $V = NH_2$) gelingt entweder durch Umsetzung des Chlorderivats ((V); V = CI) mit Ammoniak in Gegenwart einer geeigneten Base oder besser durch Reaktion desselben Chlorderivats ((V); V = CI) mit Kaliumphthalimid und anschließender Hydrazinolyse. Die weitere Derivatisierung dieses zentralen Intermediats ((V); $V = NH_2$) erfolgt durch Umsetzung mit geeigneten Elektrophilen.

Zur Herstellung der Sulfoxide ((VII); n =1) und der Sulfone ((VII); n=2) verwendet man beispielsweise die entsprechenden Thioether der allgemeinen Formel (VII); n=0):

Die Synthese gelingt durch Oxidation mit einem Oxidationsmittel, wie z.B. meta-Chlorperbenzoesäure, durch geeignete Wahl von Stöchiometrie und Temperatur.

$$\begin{array}{c} CF_3 \\ N \end{array}$$

$$\begin{array}{c} K=0,S,N \\ N \end{array}$$

$$\begin{array}{c} K=S \end{array}$$

$$\begin{array}{c} CF_3 \\ N \end{array}$$

Die Synthese der Esteralkyl-substituierten Oxadiazol-Derivate (VIII) gelingt beispielsweise durch Substitution von Chlor in ((V); V = CI) mit Alkalicarboxylaten oder durch Veresterung des Hydroxyalkyloxadiazols ((V); V = OH) mit aktivierten Carbonsäurederivaten.

Aus dem Hydroxyalkyloxadiazol ((V); V = OH) lassen sich auf analoge Weise auch die entsprechenden Sulfonate generieren.

Zur Darstellung der Sulfonamide (X) wird die Chloralkylverbindung ((V); V = Cl) mit Natriumsulfit in das entsprechende Natriumsulfonat (IX) überführt, das dann seinerseits zu dem angestrebten Sulfonamid (X) weiter derivatisiert werden kann.

Kollektionen aus Verbindungen der Formel (I), die nach oben genannten Schema synthetisiert werden können, können auch in parallelisierter Weise hergestellt werden, wobei dies in manueller, teilweise automatisierter oder vollständig automatisierter Weise geschehen kann. Dabei ist es beispielsweise möglich, die Reaktionsdurchführung, die Aufarbeitung oder die Reinigung der Produkte bzw. Zwischenstufen zu automatisieren. Insgesamt wird hierunter eine Vorgehensweise verstanden, wie sie beispielsweise durch S.H. DeWitt in "Annual Reports in Combinatorial Chemistry and Molecular Diversity: Automated Synthesis", Band 1, Verlag Escom 1997, Seite 69 bis 77 beschrieben ist.

Zur parallelisierten Reaktionsdurchführung und Aufarbeitung können eine Reihe von im Handel erhältlichen Geräten verwendet werden, wie sie beispielsweise von den Firmen Stem Corporation, Woodrolfe road, Tollesbury, Essex, CM9 8SE, England oder H+P Labortechnik GmbH, Bruckmannring 28, 85764 Oberschleißheim, Deutschland oder der Firma Radleys, Shirehill, Saffron Walden, Essex, England, angeboten werden. Für die parallelisierte Aufreinigung von Verbindungen der allgemeinen Formel (I) beziehungsweise von bei der Herstellung anfallenden Zwischenprodukten stehen unter anderem Chromatographieapparaturen zur Verfügung, beispielsweise der Firma ISCO, Inc., 4700 Superior Street, Lincoln, NE 68504, USA.

Die aufgeführten Apparaturen führen zu einer modularen Vorgehensweise, bei der die einzelnen Arbeitsschritte automatisiert sind, zwischen den Arbeitsschritten jedoch manuelle Operationen durchgeführt werden müssen. Dies kann durch den Einsatz von teilweise oder vollständige integrierten Automationssystemen umgangen werden, bei denen die jeweiligen Automationsmodule beispielsweise durch Roboter bedient werden. Derartige Automationssysteme können zum Beispiel von der Firma Zymark Corporation, Zymark Center, Hopkinton, MA 01748, USA bezogen werden.

Neben den hier beschriebenen kann die Herstellung von Verbindungen der allgemeinen Formel (I) vollständig oder partiell durch Festphasen - unterstützte - Methoden erfolgen. Zu diesem Zweck werden einzelne Zwischenstufen oder alle Zwischenstufen der Synthese oder einer für die entsprechende Vorgehensweise angepaßten Synthese an ein Syntheseharz gebunden. Festphasen – unterstützte - Synthesemethoden sind in der Fachliteratur hinreichend beschrieben, z.B. Barry A. Bunin in "The Combinatorial Index", Verlag Academic Press, 1998.

Die Verwendung von Festphasen unterstützten Synthesemethoden erlaubt eine Reihe von literaturbekannten Protokollen, die wiederum manuell oder automatisierten ausgeführt werden können. Zum Beispiel kann die

"Teebeutelmethode" (Houghten, US 4,631,211; Houghten et al., Proc. Natl. Acad. Sci, 1985, 82, 5131-5135) mit Produkten der Firma IRORI, 11149 North Torrey Pines Road, La Jolla, CA 92037, USA teilweise automatisiert werden. Die Automatisierung von Festphasen unterstützten Parallelsynthesen gelingt beispielsweise durch Apparaturen der Firmen Argonaut Technologies, Inc., 887 Industrial Road, San Carlos, CA 94070, USA oder MultiSynTech GmbH, Wullener Feld 4, 58454 Witten, Deutschland.

Die Herstellung gemäß der hier beschriebenen Verfahren liefert Verbindungen der Formel (I) in Form von Substanzkollektionen, die Bibliotheken genannt werden. Gegenstand der vorliegenden Erfindung sind auch Bibliotheken, die mindestens zwei Verbindungen der Formel (I) enthalten.

Die Verbindungen der Formel (I) eignen sich bei guter Pflanzenverträglichkeit und günstiger Warmblütertoxizität zur Bekämpfung von tierischen Schädlingen, insbesondere Insekten, Spinnentieren, Helminthen und Mollusken, ganz besonders bevorzugt zur Bekämpfung von Insekten und Spinnentieren, die in der Landwirtschaft, bei der Tierzucht, in Forsten, im Vorrats- und Materialschutz sowie auf dem Hygienesektor vorkommen. Sie sind gegen normal sensible und resistente Arten sowie alle oder einzelne Entwicklungsstadien wirksam. Zu den oben erwähnten Schädlingen gehören:

Aus der Ordnung der Acarina z.B. Acarus siro, Argas spp., Ornithodoros spp., Dermanyssus gallinae, Eriophyes ribis, Phyllocoptruta oleivora, Boophilus spp., Rhipicephalus spp., Amblyomma spp., Hyalomma spp., Ixodes spp., Psoroptes spp., Chorioptes spp., Sarcoptes spp., Tarsonemus spp., Bryobia praetiosa, Panonychus spp., Tetranychus spp., Eotetranychus spp., Oligonychus spp., Eutetranychus spp.. Aus der Ordnung der Isopoda z.B. Oniscus aselus, Armadium vulgare, Porcellio scaber.

Aus der Ordnung der Diplopoda z.B. Blaniulus guttulatus.

Aus der Ordnung der Chilopoda z.B. Geophilus carpophagus, Scutigera spp..

Aus der Ordnung der Symphyla z.B. Scutigerella immaculata.

Aus der Ordnung der Thysanura z.B. Lepisma saccharina.

Aus der Ordnung der Collembola z.B. Onychiurus armatus.

Aus der Ordnung der Orthoptera z.B. Blatta orientalis, Periplaneta americana, Leucophaea maderae, Blattella germanica, Acheta domesticus, Gryllotalpa spp., Locusta migratoria migratorioides, Melanoplus differentialis, Schistocerca gregaria. Aus der Ordnung des Isoptera z.B. Reticulitermes spp..

Aus der Ordnung der Anoplura z.B. Phylloera vastatrix, Pemphigus spp., Pediculus humanus corporis, Haematopinus spp., Linognathus spp..

Aus der Ordnung der Mallophaga z.B. Trichodectes pp., Damalinea spp..

Aus der Ordnung der Thysanoptera z.B. Hercinothrips femoralis, Thrips tabaci.

Aus der Ordnung der Heteroptera z.B. Eurygaster spp., Dysdercus intermedius, Piesma quadrata, Cimex lectularius, Rhodnius prolixus, Triatoma spp..

Aus der Ordnung der Homoptera z.B. Aleurodes brassicae, Bemisia tabaci, Trialeurodes vaporariorum, Aphis gossypii, Brevicoryne brassicae, Cryptomyzus ribis, Doralis fabae, Doralis pomi, Eriosoma lanigerum, Hyalopterus arundinis, Macrosiphum avenae, Myzus spp., Phorodon humuli, Rhopalosiphum padi, Empoasca spp., Euscelus bilobatus, Nephotettix cincticeps, Lecanium corni, Saissetia oleae, Laodelphax striatellus, Nilaparvata lugens, Aonidiella aurantii, Aspidiotus hederae, Pseudococcus spp., Psylla spp..

Aus der Ordnung der Lepidoptera z.B. Pectinophora gossypiella, Bupalus piniarius, Cheimatobia brumata, Lithocolletis blancardella, Hyponomeuta padella, Plutella maculipennis, Malacosoma neustria, Euproctis chrysorrhoea, Lymantria spp., Bucculatrix thurberiella, Phyllocnistis citrella, Agrotis spp., Euxoa spp., Feltia spp., Earias insulana, Heliothis spp., Laphygma exigua, Mamestra brassicae, Panolis flammea, Prodenia litura, Spodoptera spp., Trichoplusia ni, Carpocapsa pomonella, Pieris spp., Chilo spp., Pyrausta nubilalis, Ephestia kuehniella, Galleria mellonella, Cacoecia podana, Capua reticulana, Choristoneura fumiferana, Clysia ambiguella, Homona magnanima, Tortrix viridana.

Aus der Ordnung der Coleoptera z.B. Anobium punctatum, Rhizopertha dominica, Bruchidius obtectus, Acanthoscelides obtectus, Hylotrupes bajulus, Agelastica alni,

Leptinotarsa decemlineata, Phaedon cochleariae, Diabrotica spp., Psylloides chrysocephala, Epilachna varivestis, Atomaria spp., Oryzaephilus surinamensis, Anthonomus spp., Sitophilus spp., Otiorrhynchus sulcatus, Cosmopolites sordidus, Ceuthorrynchus assimilis, Hypera postica, Dermestes spp., Trogoderma, Anthrenus spp., Attagenus spp., Lyctus spp., Meligethes aeneus, Ptinus spp., Niptus hololeucus, Gibbium psylloides, Tribolium spp., Tenebrio molitor, Agriotes spp., Conoderus spp., Melolontha melolontha, Amphimallon solstitialis, Costelytra zealandica.

Aus der Ordnung der Hymenoptera z.B. Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Vespa spp..

Aus der Ordnung der Diptera z.B. Aedes spp., Anopheles spp., Culex spp., Drosophila melanogaster, Musca spp., Fannia spp., Calliphora erythrocephala, Lucilia spp., Chrysomyia spp., Cuterebra spp., Gastrophilus spp., Hypobosca spp., Stomoxys spp., Oestrus spp., Hypoderma spp., Tabanus spp., Tannia spp., Bibio hortulanus, Oscinella frit, Phorbia spp., Pegomyia hyoscyami, Ceratitis capitata, Dacus oleae, Tipula paludosa.

Aus der Ordnung der Siphonaptera z.B. Xenopsylla cheopsis, Ceratophyllus spp.. Aus der Ordnung der Arachnida z.B. Scorpio maurus, Latrodectus mactans. Aus der Klasse der Helminthen z.B. Haemonchus, Trichostrongulus, Ostertagia, Cooperia, Chabertia, Strongyloides, Oesophagostomum, Hyostrongulus, Ancylostoma, Ascaris und Heterakis sowie Fasciola.

Aus der Klasse der Gastropoda z.B. Deroceras spp., Arion spp., Lymnaea spp., Galba spp., Succinea spp., Biomphalaria spp., Bulinus spp., Oncomelania spp.. Aus der Klasse der Bivalva z.B. Dreissena spp..

Zu den pflanzenparasitären Nematoden, die erfindungsgemäß bekämpft werden können, gehören beispielsweise die wurzelparasitären Bodennematoden wie z.B. solche der Gattungen Meloidogyne (Wurzelgallennematoden, wie Meloidogyne incognita, Meloidogyne hapla und Meloidogyne javanica), Heterodera und

29

Globodera (zystenbildende Nematoden, wie Globodera rostochiensis, Globodera pallida, Heterodera trifolii) sowie der Gattungen Radopholus wie Radopholus similis, Pratylenchus wie Pratyglenchus neglectus, Pratylenchus penetrans und Pratylenchus curvitatus;

Tylenchulus wie Tylenchulus semipenetrans, Tylenchorhynchus, wie Tylenchorhynchus dubius und Tylenchorhynchus claytoni, Rotylenchus wie Rotylenchus robustus, Heliocotylenchus wie Haliocotylenchus multicinctus, Belonoaimus wie Belonoaimus longicaudatus, Longidorus wie Longidorus elongatus, Trichodorus wie Trichodorus primitivus und Xiphinema wie Xiphinema index.

Ferner lassen sich mit den erfindungsgemäßen Verbindungen die Nematodengattungen Ditylenchus (Stengelparasiten, wie Ditylenchus dipsaci und Ditylenchus destructor), Aphelenchoides (Blattnematoden, wie Aphelenchoides ritzemabosi) und Anguina (Blütennematoden, wie Anguina tritici) bekämpfen.

Die Erfindung betrifft auch Mittel, beispielsweise Pflanzenschutzmittel, vorzugsweise insektizide, akarizide, ixodizide, nematizide, molluskizide oder fungizide, besonders bevorzugt insektizide und akarizide Mittel, die eine oder mehrere Verbindungen der Formel (I) neben geeigneten Formulierungshilfsmitteln enthalten.

Die erfindungsgemäßen Mittel enthalten die Wirkstoffe der Formel (I) im allgemeinen zu 1 bis 95 Gew.-%.

Zur Herstellung der erfindungsgemäßen Mittel gibt man den Wirkstoff und die weiteren Zusätze zusammen und bringt sie in eine geeignete Anwendungsform.

Die Erfindung betrifft auch Mittel, insbesondere insektizide und akarizide Mittel, die die Verbindungen der Formel (I) neben geeigneten Formulierungshilfsmitteln enthalten.

_ ____ ...

Die erfindungsgemäßen Mittel enthalten die Wirkstoffe der Formeln (I) im allgemeinen zu 1 bis 95 Gew.-%. Sie können auf verschiedene Art formuliert werden, je nachdem wie es durch die biologischen und/oder chemischphysikalischen Parameter vorgegeben ist. Als Formulierungsmöglichkeiten kommen daher beispielsweise in Frage:

Spritzpulver (WP), emulgierbare Konzentrate (EC), wäßrige Lösungen (SL), Emulsionen, versprühbare Lösungen, Dispersionen auf Öl- oder Wasserbasis (SC), Suspoemulsionen (SE), Stäubemittel (DP), Beizmittel, Granulate in Form von Mikro-, Sprüh-, Aufzugs- und Adsorptionsgranulaten, wasserdispergierbare Granulate (WG), ULV-Formulierungen, Mikrokapseln, Wachse oder Köder.

Diese einzelnen Formulierungstypen sind im Prinzip bekannt und beispielsweise beschrieben in: Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hauser Verlag München, 4. Aufl. 1986; van Falkenberg, "Pesticides Formulations", Marcel Dekker N.Y., 2nd Ed. 1972-73; K. Martens, "Spray Drying Handbook", 3rd Ed. 1979, G. Goodwin Ltd. London.

Die notwendigen Formulierungshilfsmittel, d.h. Träger- und/oder oberflächenaktive Stoffe, wie Inertmaterialien, Tenside, Lösungsmittel und weitere Zusatzstoffe sind ebenfalls bekannt und beispielsweise beschrieben in: Watkins, "Handbook of Insecticide Dust Diluents and Garriers", 2nd Ed., Darland Books, Caldwell N.J.; H. v. Olphen, "Introduction to Clay Colloid Chemistry", 2nd Ed., J. Wiley & Sons, N.Y.; Marsden, "Solvents Guide", 2nd Ed., Interscience, N.Y. 1950; McCutcheon's, "Detergents and Emulsifiers Annual", MC Publ. Corp., Ridgewood N.J.; Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., N.Y. 1964; Schönfeldt, "Grenzflächenaktive Äthylenoxidaddukte", Wiss. Verlagsgesell., Stuttgart 1967; Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hauser Verlag München, 4. Aufl. 1986.

Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen pestizid wirksamen Stoffen, Düngemitteln und/oder Wachstumsregulatoren

herstellen, z.B. in Form einer Fertigformulierung oder als Tankmix. Spritzpulver sind in Wasser gleichmäßig dispergierbare Präparate, die neben dem Wirkstoff außer einem Verdünnungs- oder Inertstoff noch Netzmittel, z.B. polyoxethylierte Alkylphenole, polyoxethylierte Fettalkohole, Alkyl- oder Alkylphenol-sulfonate und Dispergiermittel, z.B. ligninsulfonsaures Natrium, 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium enthalten.

Emulgierbare Konzentrate werden durch Auflösen des Wirkstoffes in einem organischen Lösungsmittel, z.B. Butanol, Cyclohexanon, Dimethylformamid, Xylol oder auch höhersiedenden Aromaten oder Kohlenwasserstoffen unter Zusatz von einem oder mehreren Emulgatoren hergestellt. Als Emulgatoren können beispielsweise verwendet werden: Alkylarylsulfonsaure Calcium-Salze wie Cadodecylbenzol-sulfonat oder nichtionische Emulgatoren wie Fettsäurepolyglykolester, Alkylarylpolyglykolether, Fettalkoholpolyglykolether, Propylenoxid-Ethylenoxid-Kondensationsprodukte, Alkylpolyether, Sorbitanfettsäureester, Polyoxyethylensorbitan-Fettsäureester oder Polyoxethylensorbitester.

Stäubemittel erhält man durch Vermahlen des Wirkstoffes mit fein verteilten festen Stoffen, z.B. Talkum, natürlichen Tonen, wie Kaolin, Bentonit, Pyrophillit oder Diatomeenerde. Granulate können entweder durch Verdüsen des Wirkstoffes auf adsorptionsfähiges, granuliertes Inertmaterial hergestellt werden oder durch Aufbringen von Wirkstoffkonzentraten mittels Klebemitteln, z.B. Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen, auf die Oberfläche von Trägerstoffen wie Sand, Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in der für die Herstellung von Düngemittelgranulaten üblichen Weise gewünschtenfalls in Mischung mit Düngemitteln – granuliert werden.

In Spritzpulvern beträgt die Wirkstoffkonzentration üblicherweise etwa 10 bis 90 Gew.-%, der Rest zu 100 Gew.-% besteht aus üblichen Formulierungsbestandteilen. Bei emulgierbaren Konzentraten kann die Wirkstoffkonzentration etwa 5 bis 80 Gew.-% betragen. Staubförmige Formulierungen enthalten meistens 5 bis 20 Gew.-

% an Wirkstoff, versprühbare Lösungen etwa 2 bis 20 Gew.-%. Bei Granulaten hängt der Wirkstoffgehalt zum Teil davon ab, ob die wirksame Verbindung flüssig oder fest vorliegt und welche Granulierhilfsmittel, Füllstoffe usw. verwendet werden.

Daneben enthalten die genannten Wirkstofformulierungen gegebenenfalls die jeweils üblichen Haft-, Netz-, Dispergier-, Emulgier-, Penetrations-, Lösungsmittel, Füll- oder Trägerstoffe.

Zur Anwendung werden die in handelsüblicher Form vorliegenden Konzentrate gegebenenfalls in üblicher Weise verdünnt, z.B. bei Spritzpulvern, emulgierbaren Konzentraten, Dispersionen und teilweise auch bei Mikrogranulaten mittels Wasser. Staubförmige und granulierte Zubereitungen sowie versprühbare Lösungen werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt.

Mit den äußeren Bedingungen wie Temperatur, Feuchtigkeit u.a. variiert die erforderliche Aufwandmenge. Sie kann innerhalb weiter Grenzen schwanken, z.B. zwischen 0,0005 und 10,0 kg/ha oder mehr Aktivsubstanz, vorzugsweise liegt sie jedoch zwischen 0,001 und 5 kg/ha Wirkstoff.

Die erfindungsgemäßen Wirkstoffe können in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischungen mit anderen Wirkstoffen, wie Insektiziden, Lockstoffen, Sterilantien, Akariziden, Nematiziden, Fungiziden, wachstumsregulierenden Stoffen oder Herbiziden vorliegen.

Zu den Schädlingsbekämpfungsmitteln zählen beispielsweise Phosphorsäureester, Carbamate, Carbonsäureester, Formamidine, Zinnverbindungen und durch Mikroorganismen hergestellte Stoffe.

Bevorzugte Mischungspartner sind:

aus der Gruppe der Phosphorverbindungen

Acephate, Azamethiphos, Azinphos-ethyl, Azinphos-methyl, Bromophos, Bromophos-ethyl, Cadusafos (F-67825), Chlorethoxyphos, Chlorfenvinphos, Chlorpyrifos, Chlorpyrifos-methyl, Demeton, Demeton-S-methyl, Demeton-S-methyl, Demeton-S-methyl sulfon, Dialifos, Diazinon, Dichlorvos, Dicrotophos, Dimethoate, Disulfoton, EPN, Ethion, Ethoprophos, Etrimfos, Famphur, Fenamiphos, Fenitriothion, Fensulfothion, Fenthion, Fonofos, Formothion, Fosthiazate (ASC-66824) Heptenophos, Isazophos, Isothioate, Isoxathion, Malathion, Methacrifos, Methamidophos, Methidathion, Salithion, Mevinphos, Monocrotophos, Naled, Omethoate, Oxydemeton-methyl, Parathion, Parathion-methyl, Phenthoate, Phorate, Phosalone, Phosfolan, Phosphocarb (BAS-301), Phosmet, Phosphamidon, Phoxim, Pirimiphos, Pirimiphos-ethyl, Pirimiphos-methyl, Profenofos, Propaphos, Proetamphos, Prothiofos, Pyraclofos, Pyridapenthion, Quinalphos, Sulprofos, Temephos, Terbufos, Tebupirimfos, Tetrachlorvinphos, Thiometon, Triazophos, Trichlorphon, Vamidothion;

2. aus der Gruppe der Carbamate

Alanycarb (OK-135), Aldicarb, 2-sec.-Butylphenylmethylcarbamate (BPMC), Carbaryl, Carbofuran, Carbosulfan, Cloethocarb, Benfuracarb, Ethiofencarb, Furathiocarb, HCN-801, Isoprocarb, Methomyl, 5-Methyl-m-cumenylbutyryl(methyl)carbamate, Oxamyl, Pirimicarb, Propoxur, Thiodicarb, Thiofanox, 1-Methylthio(ethylideneamino)-N-methyl-N-(morpholinothio)carbamate (UC 51717), Triazamate;

3. aus der Gruppe der Carbonsäureester

Acrinathrin, Allethrin, Alphametrin, 5-Benzyl-3-furylmethyl-(E)-(1R)-cis-2,2-dimethyl-3-(2-oxothiolan-3-ylidenemethyl)cyclopropanecarboxylate, Beta-Cyfluthrin, Beta-Cypermethrin, Bioallethrin, Bioallethrin((S)-cyclopentylisomer), Bioresmethrin, Bifenthrin, (RS)-1-Cyano-1-(6-phenoxy-2-pyridyl)methyl-(1RS)-trans-3-(4-tert.butylphenyl)-2,2-dimethylcyclopropanecarboxylate (NCI 85193), Cycloprothrin, Cyfluthrin, Cyhalothrin, Cythithrin, Cypermethrin, Cyphenothrin, Deltamethrin,

Empenthrin, Esfenvalerate, Fenfluthrin, Fenpropathrin, Fenvalerate, Flucythrinate, Flumethrin, Fluvalinate (D-Isomer), Imiprothrin (S-41311), Lambda-Cyhalothrin, Permethrin, Phenothrin ((R)-Isomer), Prallethrin, Pyrethrine (natürliche Produkte), Resmethrin, Tefluthrin, Tetramethrin, Theta-Cypermethrin (TD-2344), Tralomethrin, Transfluthrin, Zeta-Cypermethrin (F-56701);

- aus der Gruppe der Amidine
 Amitraz, Chlordimeform;
- aus der Gruppe der Zinnverbindungen
 Cyhexatin, Fenbutatinoxide;

6. Sonstige

Abamectin, ABG-9008, Acetamiprid, Anagrapha falcitera, AKD-1022, AKD-3059, ANS-118, Bacillus thuringiensis, Beauveria bassianea, Bensultap, Bifenazate (D-2341), Binapacryl, BJL-932, Bromopropylate, BTG-504, BTG-505, Buprofezin, Camphechlor, Cartap, Chlorobenzilate, Chlorfenapyr, Chlorfluazuron, 2-(4-Chlorphenyl)-4,5-diphenylthiophen (UBI-T 930), Chlorfentezine, Chromafenozide (ANS-118), CG-216, CG-217, CG-234, A-184699, Cyclopropancarbonsäure-(2naphthylmethyl)ester (Ro12-0470), Cyromazin, Diacloden (Thiamethoxam), Diafenthiuron, N-(3,5-Dichlor-4-(1,1,2,3,3,3-hexafluor-1-propyloxy) phenyl)carbamoyl)-2-chlorbenzcarboximidsäureethylester, DDT, Dicofol, Diflubenzuron, N-(2,3-Dihydro-3-methyl-1,3-thiazol-2-ylidene)-2,4-xylidine, Dinobuton, Dinocap, Diofenolan, DPX-062, Emamectin-Benzoate (MK-244), Endosulfan, Ethiprole (Sulfethiprole), Ethofenprox, Etoxazole (YI-5301), Fenazaquin, Fenoxycarb, Fipronil, Fluazuron, Flumite (Flufenzine, SZI-121), 2-Fluoro-5-(4-(4ethoxyphenyl)-4-methyl-1-pentyl)diphenylether (MTI 800), Granulose- und Kernpolyederviren, Fenpyroximate, Fenthiocarb, Flubenzimine, Flucycloxuron, Flufenoxuron, Flufenprox (ICI-A5683), Fluproxyfen, Gamma-HCH, Halofenozide (RH-0345), Halofenprox (MTI-732), Hexaflumuron (DE_473), Hexythiazox, HOI-9004, Hydramethylnon (AC 217300), Lufenuron, Imidacloprid, Indoxacarb (DPX-

35

MP062), Kanemite (AKD-2023), M-020, MTI-446, Ivermectin, M-020, Methoxyfenozide (Intrepid, RH-2485), Milbemectin, NC-196, Neemgard, Nitenpyram (TI-304), 2-Nitromethyl-4,5-dihydro-6H-thiazin (DS 52618), 2-Nitromethyl-3,4-dihydrothiazol (SD 35651), 2-Nitromethylene-1,2-thiazinan-3-ylcarbamaldehyde (WL 108477), Pyriproxyfen (S-71639), NC-196, NC-1111, NNI-9768, Novaluron (MCW-275), OK-9701, OK-9601, OK-9602, Propargite, Pymethrozine, Pyridaben, Pyrimidifen (SU-8801), RH-0345, RH-2485, RYI-210, S-1283, S-1833, SB7242, SI-8601, Silafluofen, Silomadine (CG-177), Spinosad, SU-9118, Tebufenozide, Tebufenpyrad (MK-239), Teflubenzuron, Tetradifon, Tetrasul, Thiacloprid, Thiocyclam, TI-435, Tolfenpyrad (OMI-88), Triazamate (RH-7988), Triflumuron, Verbutin, Vertalec (Mykotal), YI-5301,

Die oben genannten Kombinationspartner stellen bekannte Wirkstoffe dar, die zum großen Teil in Ch.R Worthing, S.B. Walker, The Pesticide Manual, 11. Auflage, British Crop Protection Council Farnham, 1997 beschrieben sind.

Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungsformen kann von 0,00000001 bis zu 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,00001 und 1 Gew.-% liegen.

Die Anwendung geschieht in einer den Anwendungsformen angepaßten üblichen Weise.

Die erfindungsgemäßen Wirkstoffe eignen sich auch zur Bekämpfung von Endound Ektoparasiten auf dem veterinärmedizinischen Gebiet bzw. auf dem Gebiet der Tierhaltung. Die Anwendung der erfindungsgemäßen Wirkstoffe geschieht hier in bekannter Weise wie durch orale Anwendung in Form von beispielsweise Tabletten, Kapseln, Tränken, Granulaten, durch dermale Anwendung in Form beispielsweise des Tauchens (Dippen), Sprühens (Sprayen), Aufgießen (pour-on and spot-on) und des Einpuderns sowie durch parenterale Anwendung in Form beispielsweise der Injektion. Die erfindungsgemäßen Verbindungen der Formel (I) können demgemäß auch besonders vorteilhaft in der Viehhaltung (z.B. Rinder, Schafe, Schweine und Geflügel wie Hühner, Gänse usw.) eingesetzt werden. In einer bevorzugten Ausführungsform der Erfindung werden den Tieren die Verbindungen, gegebenenfalls in geeigneten Formulierungen und gegebenenfalls mit dem Trinkwasser oder Futter oral verabreicht. Da eine Ausscheidung im Kot in wirksamer Weise erfolgt, läßt sich auf diese Weise sehr einfach die Entwicklung von Insekten im Kot der Tiere verhindern. Die jeweils geeigneten Dosierungen und Formulierungen sind insbesondere von der Art und dem Entwicklungsstadium der Nutztiere und auch vom Befallsdruck abhängig und lassen sich nach den üblichen Methoden leicht ermitteln und festlegen. Die Verbindungen können bei Rindern z.B. in Dosierungen von 0,01 bis 1 mg/kg Körpergewicht eingesetzt werden.

Neben den bisher genannten Applikationsverfahren zeigen die erfindungsgemässen Wirkstoffe der Formel (I) eine hervorragende systemische Wirkung. Die Wirkstoffe können daher auch über Pflanzenteile, unterirdische wie oberirdische (Wurzel, Stengel, Blatt), in die Pflanzen eingebracht werden, wenn die Wirkstoffe in flüssiger oder fester Form in die direkte Umgebung der Pflanze appliziert werden (z.B. Granulate in der Erdapplikation, Applikation in gefluteten Reisfeldern).

Daneben sind die erfindungsgemäßen Wirkstoffe in besonderer Weise zu Behandlung von vegetativen und generativen Vermehrungsmaterial einsetzbar, wie z.B. von Saatgut von beispielsweise Getreide, Gemüse, Baumwolle, Reis, Zuckerrübe und anderen Kultur- und Zierpflanzen, von Zwiebeln, Stecklingen und Knollen weiterer vegetativ vermehrter Kultur- und Zierpflanzen. Die Behandlung hierfür kann vor der Saat bzw. dem Pflanzvorgang erfolgen (z.B. durch spezielle Techniken des Seedcoatings, durch Beizung in flüssiger oder fester Form oder Seedboxtreatment), während des Saatvorgangs bzw. des Pflanzens oder nach dem Saat- bzw. Pflanzvorgang durch spezielle Applikationstechniken (z.B. Saatreihenbehandlung). Die angewandte Wirkstoffmenge kann entsprechend der

37

Anwendung in einem größerem Bereich schwanken. Im allgemeinen liegen die Aufwandmengen zwischen 1 g und 10 kg Wirkstoff pro Hektar Bodenfläche.

Die Verbindungen der Formel (I) können auch zur Bekämpfung von Schadpflanzen in Kulturen von bekannten oder noch zu entwickelnden gentechnisch veränderten Pflanzen eingesetzt werden. Die transgenen Pflanzen zeichnen sich in der Regel durch besondere vorteilhafte Eigenschaften aus, beispielsweise durch Resistenzen gegenüber bestimmten Pflanzenschutzmitteln, Resistenzen gegenüber Pflanzenkrankheiten oder Erregern von Pflanzenkrankheiten, wie bestimmten Insekten oder Mikroorganismen, wie Pilzen, Bakterien oder Viren. Andere besondere Eigenschaften betreffen z.B. das Erntegut hinsichtlich Menge, Qualität, Lagerfähigkeit, Zusammensetzung und spezieller Inhaltsstoffe. So sind transgene Pflanzen mit erhöhtem Stärkegehalt oder veränderter Qualität der Stärke oder solche mit anderer Fettsäurezusammensetzung des Ernteguts bekannt.

Bevorzugt ist die Anwendung in wirtschaftlich bedeutenden transgenen Kulturen von Nutz- und Zierpflanzen, z.B. von Getreide, wie Weizen, Gerste, Roggen, Hafer, Hirse, Reis, Maniok und Mais, oder auch Kulturen von Zuckerrübe, Baumwolle, Soja, Raps, Kartoffel, Tomate, Erbse und anderen Gemüsesorten.

Bei der Anwendung in transgenen Kulturen, insbesondere mit Insektenresistenzen treten neben den in anderen Kulturen zu beobachtenden Wirkungen gegenüber Schadorganismen oftmals Wirkungen auf, die für die Applikation in der jeweiligen transgenen Kultur spezifisch sind, beispielsweise ein verändertes oder speziell erweitertes Schädlingsspektrum, das bekämpft werden kann oder veränderte Aufwandmengen, die für die Applikation eingesetzt werden können.

Gegenstand der Erfindung ist deshalb auch die Verwendung von Verbindungen der Formel (I) zur Bekämpfung von Schadorganismen in transgenen Kulturpflanzen.

Die Anwendung der erfindungsgemäßen Verbindungen beinhaltet neben direkter Applikation auf die Schädlinge jede andere Applikation, bei der Verbindungen der Formel (I) auf die Schädlinge wirken. Solche indirekten Applikationen können beispielsweise in der Anwendung von Verbindungen liegen, die, beispielsweise im Boden, der Pflanze oder dem Schädling, zu Verbindungen der Formel (I) zerfallen oder abgebaut werden.

Auf den Inhalt der deutschen Patentanmeldung 198 581 93.9, deren Priorität die vorliegende Anmeldung beansprucht, sowie auf den Inhalt der beiliegenden Zusammenfassung wird hiermit ausdrücklich Bezug genommen; sie gelten durch Zitat als Bestandteil dieser Beschreibung.

Nachfolgende Beispiele dienen zur Erläuterung der Erfindung.

A. Chemische Beispiele

Beispiel 1

Eine Lösung von 4-Trifluormethylnicotinsäure (2,2 g) in 40 ml THF wurde bei Raumtemperatur mit 1,1-Carbonyldiimidazol (1,9 g) versetzt und 30 min auf 40°C erhitzt. Anschließend gab man Furfurylsulfonylacetamidoxim (2,5 g) zu und ließ bei 40°C weitere 5 h rühren. Dann wurde das Reaktionsgemisch im Vakuum eingeengt und auf Eiswasser gegossen. Der entstandene Niederschlag wurde abgesaugt und abschließend im Trockenschrank getrocknet. Man erhielt 4-Trifluormethylnicotinsäure-(furfurylsulfonylacetamidoxim)-ester in Form eines farblosen Feststoffs (Schmelzpunkt 171°C).

¹H-NMR (DMSO-d⁶, 300 MHz): 4.09 (s, 2H), 4.86 (s, 2H), 6.55 (m, 1H), 6.63 (m, 1H), 7.08 (s, 2H), 7.75 (m, 1H), 7.94 (d, J=5Hz, 1H), 9.07 (d, J=5Hz, 1H), 9.30 (s, 1H).

Beispiel 2

Den zuvor beschriebenen Amidoximester (4,0 g) versetzte man mit 80 ml Toluol und 60 ml Xylol sowie Amberlyst 15 (1,0 g). Das Reaktionsgemisch wurde 6 h auf 125°C erhitzt. Anschließend wurde abgesaugt und das Filtrat im Vakuum eingeengt und durch Chromatographie (Kieselgel, Ethylacetat/Petrolether, 4:1) gereinigt. Durch abschließendes Ausrühren mit n-Heptan erhielt man [5-(4'-Trifluormethylpyridin-3'yl)-[1,2,4]-oxdiazol-3-methyl]-furfuryl-sulfon als hellgelben Feststoff (Schmelzpunkt 99°C).

¹H-NMR (CDCl₃, 300 MHz): 4.53 (s, 2H), 4.62 (s, 2H), 6.44 (m, 1H), 6.69 (m 1H), 7.54 (m, 1H), 7.82 (d, J=5Hz, 1H), 9.08 (d, J=5Hz, 1H), 9.40 (s, 1H).

Beispiel 3

Ein Gemisch von 3-Chlormethyl-5-(4-trifluormethyl-3-pyridyl)-1,2,4-oxadiazol (1,0 g), Natriumsulfit (0,9 g), Wasser (18 ml) und Methanol (18 ml) wurde 6 Stunden lang bei 50° gerührt. Anschließend wurde das Reaktionsgemisch eingeengt der Rückstand in Methanol aufgenommen und filtriert. Danach wurde die Methanol-Lösung eingeengt und den Rückstand mit Dieethylether ausgerührt. Auf diese Weise wurde

als schwach gelblicher Feststoff erhalten (Fp = 214°C).

¹H-NMR (DMSO-d⁶, 300 MHz): 4.02 (s, 2H), 8.09 (d, J=5H, 1H), 9.15 (d, J=5Hz, 1H), 9.33 (s, 1H).

Das oben beschriebene Natriumsulfonat (0,95 g) wurde in Phosphoroxychlorid 30 ml) suspendiert und 5 Stunden lang auf Rückflußtemperatur erhitzt. Anschließend wurde das überschüssige Phosphoroxychlorid abdestilliert und das zurückbleibende Sulfonylchlorid in Dichlormethan (10 ml) aufgenommen. Diese Suspension wurde mit Ethylmethylamin (150 ml) versetzt und noch eine Stunde bei Raumtemperatur nachgerührt.

Anschließend wurde mit Wasser, 5 %iger wäßriger Kaliumhydrogensulfatlösung und mit gesättigter Natriumhydrogencarbonatlösung gewaschen. Das nach Trocknen (MgSO₄) und Einengen der Dichlormethanphase erhaltene Rohprodukt wurde chromatographisch gereinigt. Auf diese Weise wurde das gewünschte Sulfonamid als farbloses Öl erhalten.

¹H-NMR (CDCl₃, 300 MHz): 1.23 (6, J=7Hz, 3H), 2.92 (s, 3H), 3.25 (Q, J=7Hz), 2H), 4.54 (s, 2H), 7.90 (d, J=5Hz, 1H), 9.06 (d, J=5Hz, 1H), 9.35 (s, 1H).

In analoger Weise werden die in Tabelle 1 aufgeführten Sulfonamide hergestellt.

Beispiel 4

3-[(2-Hydroxyethyl)thiomethyl]-5-(4-trifluormethyl-3-pyridyl)-1,2,4-oxadiazol

Zu einer Lösung von 3-Chlormethyl-5-(4-trifluormethyl-3-pyridyl)-1,2,4-oxadiazol (0,5 g), 2-Mercaptoethanol (0,13 g) in Methanol (5 ml) wurde Natriummethanolatlösung (0,31 ml, 30 % in Methanol) gegeben und 5 Stunden bei Raumtemperatur gerührt.

41

Anschließend wurde Wasser zugesetzt und mit Essigsäureethylester extrahiert. Die organische Phase wurde mit Wasser gewaschen, getrocknet (MgSO₄), filtriert und eingeengt. Die chromatographische Reinigung erfolgte an Kieselgel mit Heptan/Essigsäureethylester. Das Rohprodukt ergab die gewünschte Verbindung als schwach braunes Öl.

¹H-NMR (CDCl₃, 300 MHz): 2.88 (t, J=7Hz, 2H), 3.04 (b, s, 1H), 3.82 (t, J=7Hz, 2H), 3.94 (s, 2H), 7.80 (d, J=5Hz, 1H), 9.04 (d, J=5Hz, 1H), 9.35 (s, 1H).

Beispiel 5

3-Ethoxymethy!-5-(4-trifluormethyl-3-pyridyl)-1,2,4-oxadiazol

3-lodmethyl-5-(4-trifluormethyl-3-pyridyl)-1,2,4-oxadiazol (0,5 g) wurde in einer frisch hergestellten Natriumethanolatlösung (30 mg Natrium in 7 ml Ethanol) gelöst und 6 Stunden lang bei Raumtemperatur gerührt.

Anschließend wurde das Reaktionsgemisch eingeengt, in Essigsäureethylester aufgenommen, mit Wasser gewaschen, getrocknet (MgSO₄), filtriert und eingeengt.

Die chromatographische Reinigung des Rohprodukts ergab den gewünschten Ether als gelbliches Öl.

¹H-NMR (CDCl₃, 300 MHz): 1.31 (t, J=7Hz, 3H), 3.72 (t, J=7Hz, 2H), 4.76 (s, 2H), 7.70 (d, J=5Hz, 1H), 9.03 (d, J=5Hz, 1H), 9.33 (s, 1H).

In analoger Weise werden die in Tabelle 1 aufgeführten Ether hergestellt.

Beispiel 6

Ethyl-[(4'-(trifluormethyl)pyridin-3'-yl)-5-[1,2,4]-oxadiazol-3-methyl]-carbonat

3-Hydroxymethyl-5-(4'-(trifluormethyl)-pyridin-3'-yl)-[1,2,4]-oxadiazol (1,0 g) wurde in Acetonitril (10 ml) vorgelegt und mit Triethylamin (0,5 g) versetzt. Nach Zugabe von Chlorameisensäureethylester (0,5 g) wurde 6 h bei Raumtemperatur gerührt. Das Reaktionsgemisch wurde sodann mit Ethylacetat (5 ml) versetzt, mit 2N Natriumcarbonatlösung gewaschen und über MgSO₄ getrocknet. Das nach Abfiltrieren des Trockenmittels und Einengen im Vakuum erhaltene Rohprodukt wurde säulenchromatographisch (Kieselgel, n-Heptan/Ethylacetat, 1:1) gereinigt. Man erhielt das angestrebte Produkt als Öl.

¹H-NMR (CDCl₃, 300 MHz): 1.38 (t, J=7Hz, 3H), 4.31 (q, J=7Hz, 2H), 5.43 (s, 2H), 7.80 (d, J=5Hz, 1H), 9.04 (d, J=5Hz, 1H), 9.37 (s, 1H).

Tabelle 1:

Bsp. Nr.	Υ	R	R'	m.p. [°C]
1	0	n-Pr		
2	0	i-Pr		1
3	0	n-Bu	1	
4	0	Ìi-Bu	ļ	Öl
5	0	Allyi		
6	0	CH ₂ C≡CH	-	'
7	0	CH=CH₂		- [
8	0	CH₂CH₂F		
9	0	CF₃		
10	0	CH₂CF₃]
11	0	CH₂CN	ļ	
12	0	Cyclopropyl		
13	0	Cyclopropylmethyl		
14	0	CH₂CO₂Me		

Bsp. Nr.	Υ	R	R'	m.p. [°C]
15	0	CH ₂ CH ₂ NMe ₂		
16	0	CH ₂ -(N-morpholinyl)		
17	0	2-Chlor-pyridin-5-yl-methyl		
18	Ō	2-Furanyl		
19	O	2-Pyrimidinyl	l	
20	o	2-Oxazolyl		
21	Ŏ	5-[1,2,4]-oxdiazolyl		1
22	0	Tetrazolyl		
23	S	Н	<u> </u>	
24	S	Me		
•	S	Et		
25	0			
26	S	n-Pr		
27	S	i-Pr		
28	S	n-Bu		
29	S	i-Bu		
30	S	Allyl		
31	S	CH₂C≡CH		
32	S	CH=CH ₂		
33	s .	CH ₂ CH ₂ F		
34	s	CF ₃	1	i
35	S	CH ₂ CF ₃		
36	s ·	CH₂CN	ł	
37	S	Cyclopropyl		
38	S	Cyclopropylmethyl	1]
39	s	CH ₂ CO ₂ Me		
40	s	CH ₂ CH ₂ NMe ₂		
41	s	CH ₂ -(N-morpholinyl)		1
42	s	2-Chlor-pyridin-5-yl-methyl	1	<u> </u>
43	s	2-Furanyl]
44	S			1
	S	2-Pyrimidinyl		
45	0	2-Oxazolyl		
46	S	5-[1,2,4]-oxdiazolyl		
47	S	Tetrazolyi	<u> </u>	ļ
48	S(O)	Ме	1	
49	S(O)	Et		
50	S(O)	n-Pr		
51	S(O)	i-Pr	1	1
52	S(O)	n-Bu		ļ
53	S(O)	i-Bu	1	
54	S(O)	Allyl		
55	s(o)	CH ₂ C≡CH		1
56	s(o)	CH=CH ₂		
57	S(O)	CH₂CH₂F	1	1
58	S(O)	CF ₃	1	
59	S(O)	CH ₂ CF ₃		1
60	S(O)	CH ₂ CN		
61	S(O)	Cyclopropyi		
62	S(O)	Cyclopropylmethyl	1	
63				
03	S(O)	CH₂CO₂Me		

MICHAELD - MAEDINA 1 -

Bsp. Nr.	Υ	R	R'	m.p. [°C]
64	S(O)	CH ₂ CH ₂ NMe ₂		
65	S(O)	CH ₂ -(N-morpholinyl)		ľ
66	S(O)	2-Chlor-pyridin-5-yl-methyl		
67	S(O)	2-Furanyl		1
68	S(O)	2-Pyrimidinyl		ļ
69	S(O)	2-Oxazolyl]	
70	S(O)	5-[1,2,4]-oxdiazolyl		
71	S(O)	Tetrazolyl		
72	S(O) ₂	Me		
73	S(O) ₂	Et		ł
74	S(O) ₂	n-Pr		
75	S(O) ₂	i-Pr		İ
76	S(O) ₂	n-Bu		
77	S(O) ₂	i-Bu	i	
78	S(O) ₂	Aliyi		
79	S(O) ₂	CH₂C≡CH		
80	S(O) ₂	CH=CH ₂		
81	S(O) ₂	CH,CH,F	i l	
82				
1	S(O) ₂	CF ₃		İ
83	S(O) ₂	CH₂CF₃		
84	S(O) ₂	CH₂CN		i
85	S(O) ₂	Cyclopropyl		1
86	S(O)₂	Cyclopropylmethyl		
87	S(O) ₂	CH₂CO₂Me		1
88	S(O)₂	CH ₂ CH ₂ NMe ₂		
89	S(O)₂	CH₂-(N-morpholinyl)	İ	
90	S(O)₂	2-Chlor-pyridin-5-yl-methyl		
91	S(O) ₂	2-Furanyl	Ì '	
92	S(O) ₂	2-Pyrimidinyl	l	
93	S(O) ₂	2-Oxazolyl		
94	S(O) ₂	5-[1,2,4]-oxdiazolyl	ŀ	
94a	S(O) ₂	Tetrazolyl		
95	OC(O)	H	1	
96	00(0)	Me		
97		Et		
98	00(0)	n-Pr		
	OC(O)			
99	OC(O)	i-Pr	1	
100	OC(O)	n-Bu		
101	OC(O)	i-Bu	1	[
102	OC(O)	Allyi	1	
103	OC(O)	CH₂C≡CH	1	!
104	OC(O)	CH=CH₂	[
105	OC(O)	CH ₂ CH ₂ F		
106	00(0)	CF ₃	1	1
107	oc(o)	CH ₂ CF ₃	1	
108	00(0)	CH₂CN	1	
109	00(0)	Cyclopropyl	1	
110	00(0)	Cyclopropylmethyl		}
111	00(0)		1	
	100(0)	CH₂CO₂Me	_i	1

Bsp. Nr.	Υ	R	R'	m.p. [°C]
112	OC(O)	CH ₂ CH ₂ NMe ₂		
113	OC(O)	CH₂-(N-morpholinyl)	İ	
114	OC(O)	2-Chlor-pyridin-5-yl-methyl]
115	OC(O)	2-Furanyl	1	1
116	OC(O)	2-Pyrimidinyl		-
117	oc(o)	2-Oxazolyl	1	
118	oc(o)	5-[1,2,4]-oxdiazolyl		
119	oc(o)	Tetrazolyl		
120	00(0)0	Me		
121	00(0)0	Et		
122	00(0)0	n-Pr		
123	00(0)0	i-Pr		
124	00(0)0	n-Bu		
125	00(0)0	i-Bu		
126	00(0)0	Aliyi		İ
127	00(0)0	CH ₂ C≡CH		
128	00(0)0	CH ₂ C=CH		
129	00(0)0	CH ₂ CH ₂ F		
130	00(0)0			
131	00(0)0			
132	00(0)0	CH₂CF₃ CH₂CN		
133	00(0)0	t -		
134	00(0)0	Cyclopropyl		l
135	00(0)0	Cyclopropylmethyl		
136	00(0)0	CH₂CO₂Me		
137	00(0)0	CH ₂ CH ₂ NMe ₂		
138	00(0)0	CH ₂ -(N-morpholinyl)		
139	00(0)0	2-Chlor-pyridin-5-yl-methyl		
140	00(0)0	2-Furanyl		
141	00(0)0	2-Pyrimidinyl		
142	00(0)0	2-Oxazolyl		
143	00(0)0	5-[1,2,4]-oxdiazolyl		
144	00(0)0	Tetrazolyl	1	İ
		CH₂CH₂OMe	ļ 	
145	OC(O)NR'	H	Н	
146	OC(O)NR'	Me	H	
147	OC(O)NR'	Et	H	
148	OC(O)NR'	n-Pr	Н	
149	OC(O)NR'	i-Pr	H	
150	OC(O)NR'	n-Bu	Н	
151	OC(O)NR'	i-Bu	H] 1
152	OC(O)NR'	Allyl	H	
153	OC(O)NR'	CH₂C≡CH	Н	
154	OC(O)NR'	CH=CH ₂	H	
155	OC(O)NR'	CH₂CH₂F	H	
156	OC(O)NR'	CF ₃	Н	
157	OC(O)NR"	CH₂CF₃	Н	
158	OC(O)NR'	CH₂CN	Н	[]
159	OC(O)NR'	Cyclopropyl	Н	
160	OC(O)NR'	Cyclopropylmethyl	H	<u></u>

Bsp. Nr.	Υ	R	R'	m.p. [°C]
161	OC(O)NR'	CH ₂ CO ₂ Me	Н	
162	OC(O)NR'	CH ₂ CH ₂ NMe ₂	Н	
163	OC(O)NR'	CH ₂ -(N-morpholinyl)	Н	
164	OC(O)NR'	2-Chlor-pyridin-5-yl-methyl	Н	
165	OC(O)NR'	2-Furanyl	Н	
166	OC(O)NR'	2-Pyrimidinyl	Н	
167	OC(O)NR'	2-Oxazolyl	Н	
168	OC(O)NR'	5-[1,2,4]-oxdiazolyl	Н	
169	OC(O)NR'	Tetrazolyl	Н	İ
170	OC(O)NR'	Н	Me	
171	OC(O)NR'	Ме	Ме	
172	OC(O)NR'	Et	Ме	
173	OC(O)NR'	n-Pr	Me	
174	OC(O)NR'	i-Pr	Me	
175	OC(O)NR'	n-Bu	Me	ľ
176	OC(O)NR'	i-Bu	Me	
177	OC(0)NR'	Allyl	Me	
178	OC(O)NR'	CH₂C≡CH	Me	
179	OC(O)NR'	CH=CH ₂	Me	
180	OC(O)NR'	CH₂CH₂F	Me	
181	OC(O)NR'	CF ₃	Me	
182	OC(O)NR"	CH₂CF₃	Me	
183	OC(O)NR'	CH ₂ CN	Me	
184	OC(O)NR'	Cyclopropyl	Me	
185	OC(O)NR'	Cyclopropylmethyl	Ме	
186	OC(O)NR'	CH ₂ CO ₂ Me	Ме	
187	OC(O)NR'	CH ₂ CH ₂ NMe ₂	Ме	
188	OC(O)NR'	CH ₂ -(N-morpholinyl)	Me	}
189	OC(O)NR'	2-Chlor-pyridin-5-yl-methyl	Me	
190	OC(O)NR'	2-Furanyl	Me	
191	OC(O)NR'	2-Pyrimidinyl	Me	ļ
192	OC(O)NR'	2-Oxazolyl	Me	
193	OC(O)NR'	5-[1,2,4]-oxdiazolyl	Me	
194	OC(O)NR'	Tetrazolyl	Ме	1
195	OC(O)NR'	Н	Et	
196	OC(O)NR'	Me	Et	
197	OC(O)NR'	Et	Et	[
198	OC(O)NR'	n-Pr	Et	
199	OC(O)NR'	i-Pr	Et	
200	OC(O)NR'	n-Bu	Et	
201	OC(O)NR'	i-Bu	Et	
202	OC(O)NR'	Allyl	Et	
203	OC(O)NR'	CH₂C≡CH	Et	
204	OC(O)NR'	CH=CH ₂	Et	
205	OC(O)NR'	CH ₂ CH ₂ F	Et	
206	OC(O)NR'	CF ₃	Et	
207	OC(O)NR"	CH₂CF₃	Et	
208	OC(O)NR'	CH₂CN	Et	
209	OC(O)NR'	Cyclopropyl	Et	1
	<u> </u>			<u></u>

Bsp. Nr.	Υ	R	R'	m.p. [°C]
210	OC(O)NR'	Cyclopropylmethyl	Et	
211	OC(O)NR'	CH₂CO₂Me	Et	i i
212	OC(O)NR'	CH ₂ CH ₂ NMe ₂	Et	
213	OC(0)NR'	CH ₂ -(N-morpholinyl)	Et	
214	OC(0)NR'	1	1	}
215	, , ,	2-Chlor-pyridin-5-yl-methyl	Et	
l .	OC(O)NR'	2-Furanyl	Et	
216	OC(O)NR'	2-Pyrimidinyl	Et	
217	OC(O)NR'	2-Oxazolyl	Et	
218	OC(O)NR'	5-[1,2,4]-oxdiazolyl	Et	
219	OC(O)NR'	Tetrazolyl	Et	
220	OC(O)C(O)O	Н		
221	0C(0)C(0)0	Me		
222	00(0)0(0)0	Et		
223	00(0)0(0)0	n-Pr		
224	00(0)0(0)0	i-Pr		
225	00(0)0(0)0	n-Bu		
226	0C(0)C(0)0	i-Bu		
227	0C(0)C(0)0	Allyl		
228	00(0)0(0)0	•		
1		CH₂C≡CH		
229	0C(0)C(0)0	CH=CH₂		
230	0C(0)C(0)0	CH₂CH₂F		
231	0C(0)C(0)0	CF₃		
232	oc(ó)c(o)o	CH₂CF₃		1
234	0C(0)C(0)0	CH₂CN		·
235	0C(0)C(0)0	Cyclopropyl		
236	OC(O)C(O)O	Cyclopropylmethyl		
237	OC(O)C(O)O	CH ₂ CO ₂ Me		
238	00(0)0(0)0	CH ₂ CH ₂ NMe ₂		
239	00(0)0(0)0	CH ₂ -(N-morpholinyl)		i
240	0000000	2-Chlor-pyridin-5-yl-methyl		
241	00(0)0(0)0	2-Furanyl		
242	0C(0)C(0)0	2-Pyrimidinyl		
243	00(0)0(0)0	2-Oxazolyl		
244	00(0)0(0)0			
245	0C(0)C(0)0	5-[1,2,4]-oxdiazolyl	ļ	
		Tetrazolyl	ļ	
246	S(O)₂NR'	H	Н	
247	S(O)₂NR'	Me	Н	
248	S(O)₂NR'	Et_	Н	
249	S(O)₂NR'	n-Pr	Н	
250	S(O)₂NR'	i-Pr	Н	
251	S(O)₂NR'	n-Bu	H	
252	S(O)₂NR'	i-Bu	Н	
253	S(O)₂NR'	Allyl	H	
254	S(O)₂NR'	CH₂C≡CH	Н	
255	S(O)₂NR'	CH=CH ₂	Н	1
256	S(O)2NR'	CH ₂ CH ₂ F	H	1
257	S(O)₂NR'	CF ₃	н	
258	S(O) ₂ NR'	CH ₂ CF ₃	Н	
259	S(O)₂NR'	CH ₂ CN	H	ļ
	10(0/2/4/	1 01 12014	<u> </u>	L

MINDOOID 480 MSEN13A1 I -

Bsp. Nr.	Υ	R	R'	m.p. [°C]
260	S(O) ₂ NR'	Cyclopropyl	Н	
261	S(O) ₂ NR'	Cyclopropylmethyl	Н	
262	S(O) ₂ NR'	CH ₂ CO ₂ Me	Н	
263	S(O) ₂ NR'	CH ₂ CH ₂ NMe ₂	H .	
264	S(O)₂NR'	CH ₂ -(N-morpholinyl)	н	
265	S(O) ₂ NR'	2-Chlor-pyridin-5-yl-methyl	Н	
266	S(O)₂NR'	2-Furanyl	Н	
267	S(O)₂NR'	2-Pyrimidinyl	Н	
268	S(O) ₂ NR'	2-Oxazolyl	н	
269	S(O)₂NR'	5-[1,2,4]-oxdiazolyl	Н	
270	S(O)₂NR'	Tetrazolyl	Ι	
271	S(O)₂NR'	Н	Ме	
272	S(O)₂NR'	Me	Ме	
273	S(O) ₂ NR'	€t	Ме	
274	S(O)₂NR'	n-Pr	Ме	
275	S(O) ₂ NR'	i-Pr	Ме	
276	S(O) ₂ NR'	n-Bu	Ме	
277	S(O)2NR'	i-Bu	Ме	
278	S(O) ₂ NR'	Allyl	Ме	į
279	S(O) ₂ NR'	CH ₂ C≡CH	Ме	
280	S(O) ₂ NR'	CH=CH ₂	Ме	
281	S(O)₂NR'	CH ₂ CH ₂ F	Me	
282	S(O) ₂ NR'	CF ₃	Ме	
283	S(O) ₂ NR'	CH ₂ CF ₃	Me	
284	S(O)₂NR'	CH₂CN	Me	
285	S(O)₂NR'	Cyclopropyl	Me	[
286	S(O) ₂ NR'	Cyclopropylmethyl	Me	ì
287	S(O)₂NR'	CH₂CO₂Me	Me	
288	S(O)₂NR'	CH ₂ CH ₂ NMe ₂	Me	1
289	S(O)₂NR'	CH₂-(N-morpholinyl)	Me	
289	S(O) ₂ NR'	2-Chlor-pyridin-5-yl-methyl	Me	1
290	S(O)₂NR'	2-Furanyl	Me	ļ .
291	S(O)₂NR'	2-Pyrimidinyl	Me	
292	S(O)₂NR'	2-Oxazolyl	Me	
293	S(O)₂NR'	5-[1,2,4]-oxdiazolyl	Me	1
294	S(O)₂NR'	Tetrazolyl	Me	
295	S(O)₂NR'	Н	Et	
296	S(O)₂NR'	Me	Et	
297	S(O)₂NR'	Et	Et	
298	S(O)₂NR'	n-Pr	Et	
299	S(O)₂NR'	i-Pr	Et	
300	S(O)₂NR'	n-Bu	Et	1
301	S(O)₂NR'	i-Bu	Et	1
302	S(O)₂NR'	Allyl	Et	1
303	S(O)₂NR'	CH ₂ C≡CH	Et	
304	S(O)₂NR'	CH=CH ₂	Et	
305	S(O)₂NR'	CH ₂ CH ₂ F	Et	1
306	S(O)₂NR'	CF ₃	Et	
307	S(O)₂NR'	CH₂CF₃	Et	

Bsp. Nr.	Υ	R	R'	m.p. [°C]
308	S(O)₂NR'	CH₂CN	Et	
309	S(O)₂NR'	Cyclopropyl	Et	
310	S(O)₂NR'	Cyclopropylmethyl	Et	
311	S(O)₂NR'	CH₂CO₂Me	Et	
312	S(O)₂NR'	CH₂CH₂NMe₂	Et	
313	S(O)₂NR'	CH₂-(N-morpholinyl)	Et	
314	S(O)₂NR'	2-Chlor-pyridin-5-yl-methyl	Et	
315	S(O)₂NR'	2-Furanyl	Et	
316	S(O)₂NR'	2-Pyrimidinyl	Et	
317	S(O)₂NR'	2-Oxazolyl	Et	
318	S(O)₂NR'	5-[1,2,4]-oxdiazolyl	Et	
319	S(O)₂NR'	Tetrazolyl	Et	

Tabelle 2:

Bsp. Nr.	Y	R	R'	m.p. [°C]
1	0	Н		128
2	0	Et		Öl
2	0	n-Pr		
4	О	i-Pr		Öl
4 5 6	0	n-Bu	ļ	Öl
6	0	i-Bu		Öl
7	o	Allyl		Öi
8	O	CH₂C≘CH		Öi
9	ō	CH=CH ₂		•
10	o	CH ₂ CH ₂ F		
11	o	CF ₃		
12	0	CH₂CF₃	ľ	ÖI
13	lo	CH ₂ CN		
14	o .	Cyclopropyl		
15	lo .	Cyclopropylmethyl	· ·	ÖI
16	0	CH ₂ CO ₂ Me	1	ا ً ا
17	o			ļ
18	0			Öı
19	0	CH ₂ -(N-morpholinyl)		0'
20	0	2-Chlor-pyridin-5-yl-methyl	Ì	
21	0	2-Furanyl		
22	0	2-Pyrimidinyl		
23	0	2-Oxazolyl		
23		5-[1,2,4]-oxdiazolyl		
	0	Tetrazolyl		ÖI
25	0	1,3-Oxindol-2-yl		Öl
26	0	CH ₂ CH ₂ OMe	1	
27	0	CH ₂ CH ₂ OCH ₂ CH ₂ OMe	ļ	ÖI
28	0	CH ₂ CH ₂ SCH ₂ CH ₃	<u> </u>	ÖI
29	S	H		ابر
30	s	Et	1	ÖI ÖI
31	S	n-Pr		OI
32	18	i-Pr	1	
33	S	n-Bu		<u>.</u> .
34	S	i-Bu	1	Öl
35	s	Allyi		ÖI
36	S	CH ₂ C≡CH	1	
37	s	CH=CH₂		
38	s	CH₂CH₂F	ì	
39	S	CF ₃	-	ÖI
40	S	CH ₂ CF ₃		ÖI
41	S	CH₂CN		ł

Don Mr	Y	В	10:	- (90)
Bsp. Nr.		R	R'	m.p. [°C]
42	S	Cyclopropyl	1	
43	S	Cyclopropylmethyl	ļ	
44	S	CH₂CO₂Me		Öl
45	S	CH₂CO₂Et		Öl
46	S	CH₂CH₂CO₂Me		Öl
47	<i>。。。。。。。。。。。。。。</i> 。。。。。。。。。。。。。。。。。。。。。。	CH ₂ CH ₂ NMe ₂		
48	s	CH₂-(N-morpholinyI)		
49	s	2-Chlor-pyridin-5-yl-methyl		
50	S	2-Furanyl		
51	G C	2-Pyridinyl		Öl
52	9	2-Pyrimidinyl		kristallin
	3			Kristallin
53	0	2-Oxazolyl		
54	S	5-[1,2,4]-oxdiazolyl		
55	S	Tetrazolyl		
56	S	CH₂CH₂OH		Öl
57	S	Ac		ÖI
		ÇF ₃		
		3		
58	s	N. A. A.	ļ	
		CH ₂		
		/// / — // — //		
		N0		
]
			<u> </u>	
				
	·			
59	NR'	l (136
				,,,,
		` '		
60	NR'C(0)0	CMe ₃	Н	Öl
	1			_]
	1	CH ₂ CF ₃	1]
		, N		
61	NR'	// 1/	CO₂allyl	Öl
		N, N	' '	
[0		
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-	
		l 'N	Ì	
				1
62	NR'SO ₂	C(H)CI ₂	Me	Öl
63	NR'SO₂	Bu	Me	Öl
64	NR'SO₂	Pr	Ме	Öl
65	S	N-Me-imidazol-2-yl		fest
66	s	[1,2,4]-triazol-3-yl		fest
67	S	4-Me-[1,2,4]-triazol-3-yl		kristallin
68	S	4-Me-tetrazol-5-yl		fest
69	S	2-Thiazolin-2-yl		kristallin
70	s	Cyclohexyl		Wachs
71	S(O)		 	14400113
171	13(0)	Et	1	1

Bsp. Nr.	Y	R	R'	m.p. [°C]
72	S(O)	n-Pr		
73	S(O)	i-Pr	i i	Öl
74	S(O)	n-Bu		
75	S(O)	i-Bu		
76	S(O)	Allyl		
77	S(O)	CH₂C≡CH	1	
78	S(O)	CH=CH ₂	1	
	S(O)	CH ₂ CH ₂ F		
79				fest
80	S(O)	CF ₃		129
81	S(O)	CH ₂ CF ₃		129
82	S(O)	CH₂CN		
83	S(O)	Cyclopropyl		
84	S(O)	Cyclopropylmethyl		
85	S(O)	CH₂CO₂Me		ŀ
86	S(O)	CH ₂ CH ₂ NMe ₂		
87	S(O)	CH₂-(N-morpholinyl)		
88	S(O)	2-Chlor-pyridin-5-yl-methyl		
89	S(O)	2-Furanyl		
90	S(O)	2-Pyrimidinyl		
91	S(O)	2-Oxazolyl		
92	S(O)	5-[1,2,4]-oxdiazolyl		
93	S(O)	Tetrazolyl	ł	
94	S(O) ₂	Me		92
95	S(O) ₂	Et	ł	
96	S(O) ₂	n-Pr	1	73
97	S(O) ₂	i-Pr		109
98	S(O) ₂	n-Bu	1	
99	S(O) ₂	n-Hex	1	87
100	S(O) ₂	i-Bu		
101	S(O) ₂	Allyl		
102	S(O) ₂	CH₂C≡CH		
103	S(O) ₂	CH=CH ₂	İ	
104	S(O) ₂	CH ₂ CH ₂ F	ł	
105	S(O) ₂	CF ₃	1	
106	S(O) ₂	CH₂CF₃	1	kristallin
107	S(O) ₂	CH ₂ CN		
108	S(O) ₂	Cyclopropyl	· I	
108	S(O) ₂	Cyclopropylmethyl		
1109	S(O) ₂	CH ₂ CO ₂ Me		
1111	S(O) ₂ S(O) ₂	CH ₂ CO ₂ Me CH ₂ CH ₂ NMe ₂	1	
1112	S(O) ₂ S(O) ₂	CH ₂ -(N-morpholinyl)	1	
113	S(O) ₂ S(O) ₂	2-Chlor-pyridin-5-yl-methyl		
1		2-Chlor-pyridin-5-yi-metriyi		
114	S(O) ₂	•	1	99
115	S(O) ₂	2-Furfuryl		100
116	S(O) ₂	2-Thienyl		1.00
117	S(O) ₂	2-Pyrimidinyl		
118	S(O) ₂	2-Oxazolyl		1
119	S(O)₂	5-[1,2,4]-oxdiazolyl	- {	1
120	S(O) ₂	Tetrazolyl	ł	214
121	S(O) ₂	ONa	i	214
122	S(O) ₂	p-F-benzyl		156

Bsp. Nr.	Υ	R	R'	m.p. [°C]
123	OC(O)	Н		
124	OC(O)	Me		
125	OC(O)	Et		ÖI
126	OC(O)	n-Pr	ļ	-
127	OC(O)	i-Pr		
128	oc(o)	n-Bu		
129	OC(O)	i-Bu		Öı
130	OC(O)	t-Bu		Öi
131	00(0)	Aliyi		[]
132	OC(O)	CH ₂ C≡CH		
133	OC(O)	CH=CH ₂		ÖI
134	OC(O)	CH ₂ CH ₂ F		0,
135	OC(O)	CF ₃		
136	OC(O)	CH ₂ CF ₃		
137	OC(O)	CH ₂ CH ₂ SiMe ₃		ÖI
138	OC(O)			Öl
139	OC(O)	Cyclopropyl		
140	OC(O)			
141	OC(O)	Cyclopropylmethyl		ÖI
142	OC(O)	CH₂CO₂Me		OI
143	OC(O)	CH₂CH₂NMe₂ CH₂OMe		
144	OC(O)	CH ₂ -(N-morpholinyl)		
145	OC(O)			
146	OC(O)	2-Chlor-pyridin-5-yl-methyl		
147		2-Furanyl		
148	OC(O)	2-Pyrimidinyl		
1	OC(O)	2-Oxazolyl		
149	OC(O)	5-[1,2,4]-oxdiazolyl		
150	OC(O)	Tetrazolyl		, l
151	OC(O)	2-Oxo-pyrrolidin-5-yl		Öl
152	OC(O)O	H		ш.
153	OC(O)O	Me		Ö!
154	OC(O)O	Et_		Öl
155	OC(O)O	n-Pr		ÖI
156	OC(O)O	i-Pr		
157	00(0)0	n-Bu		
158	00(0)0	i-Bu		
159	00(0)0	Allyl		
160	OC(O)O	CH₂C≡CH		
161	OC(O)O	CH=CH₂		
162	OC(0)O	CH₂CH₂F]
163	OC(O)O	CF₃		
164	OC(0)O	CH₂CF₃	İ	1
165	OC(O)O	CH₂CN		
166	OC(0)O	Cyclopropyl		
167	OC(O)O	Cyclopropylmethyl		
168	00(0)0	CH ₂ CO ₂ Me	1	
169	OC(O)O	CH ₂ CH ₂ NMe ₂		1
170	00(0)0	CH ₂ -(N-morpholinyl)	}	
171	00(0)0	2-Chlor-pyridin-5-yl-methyl		
172	00(0)0	2-Furanyl		
173	OC(O)O	2-Pyrimidinyl	ļ	}

m.p. [°C]
Öl
!
1
1
1
1
ì
-

Bsp. Nr.	Y	R	R'	m.p. [°C]
225	OC(O)NR'	5-[1,2,4]-oxdiazolyl	Me	
226	OC(O)NR'	Tetrazolyl	Me	
227	OC(O)NR'	n-Hex	Ме	
228	OC(O)NR'	Н	Et	
229	OC(O)NR'	Me	Et	
230	OC(O)NR'	Et	Et	
231	OC(O)NR'	n-Pr	Et	
232	OC(O)NR'	i-Pr	Et	
233	OC(O)NR'	n-Bu	Et	
234	OC(O)NR'	i-Bu	Et	
235	OC(O)NR'	Allyl .	Et	
236	OC(O)NR'	CH₂C≡CH	Et	
237	OC(O)NR'	CH=CH ₂	Et	
238	OC(0)NR'	CH₂CH₂F	Et	
239	OC(O)NR'	CF ₃	Et	
240	OC(0)NR'	CH ₂ CF ₃	Et	
241	OC(O)NR'	CH₂CN	Et	
242	OC(0)NR'	Cyclopropyl	Et	
243	OC(O)NR'	Cyclopropylmethyl	Et	
244	OC(O)NR'	CH₂CO₂Me	Et	
245	OC(O)NR'	CH ₂ CH ₂ NMe ₂	Et	
246	OC(O)NR'	CH ₂ -(N-morpholinyI)	Et	
247	OC(O)NR'	2-Chlor-pyridin-5-yl-methyl	Et	}
248	OC(O)NR'	2-Furanyl	Et	•
249	OC(O)NR'	2-Pyrimidinyl	Et	1
250	OC(O)NR'	2-Oxazolyl	Et	
251	OC(O)NR'	5-[1,2,4]-oxdiazolyl	Et	
252	OC(0)NR'	Tetrazolyl	Et	
253	OC(0)NR'	H	Et	
254	00(0)0(0)0	H		
255	00(0)0(0)0	Me	1	öı
256	00(0)0(0)0	Et	Į.	Öi
257	00(0)0(0)0	n-Pr		
258	00(0)0(0)0	i-Pr		
259	00(0)0(0)0	n-Bu		
260	00(0)0(0)0	i-Bu		
261	00(0)0(0)0	Allyl		1
262	00(0)0(0)0	CH ₂ C≡CH		
263	00(0)0(0)0	CH=CH ₂		
264	00(0)0(0)0	CH ₂ CH ₂ F		
265	00(0)0(0)0	CF ₃		
266	0C(0)C(0)O	CH ₂ CF ₃	1	
267	00(0)0(0)0	CH ₂ CN		
268	00(0)0(0)0	Cyclopropyl		
269	00(0)0(0)0	Cyclopropylmethyl		
270	00(0)0(0)0	CH ₂ CO ₂ Me	1	
271	00(0)0(0)0	CH ₂ CO ₂ Me CH ₂ CH ₂ NMe ₂		
272	00(0)0(0)0	CH ₂ -(N-morpholinyl)		
273	00(0)0(0)0	2-Chlor-pyridin-5-yl-methyl		
274	00(0)0(0)0	2-Furanyi		
275	00(0)0(0)0	2-Pyrimidinyl		
210	100(0)0(0)0	12-Fyriinidinyi	1	<u> L</u>

Bsp. Nr.	Υ	R	R'	m.p. [°C]
276	OC(0)C(0)O	2-Oxazolyl		
277	00(0)0(0)0	5-[1,2,4]-oxdiazolyl		
278	00(0)0(0)0	Tetrazolyl		
279	S(O)₂NR'	Н	Н	
280	S(O) ₂ NR'	Me	lн	
281	S(O)2NR'	Et	н	
282	S(O) ₂ NR'	n-Pr	H .	
283	S(O)2NR'	i-Pr	Н	93
284	S(O)₂NR'	n-Bu	Н	
285	S(O)2NR'	i-Bu	н	
286	S(O) ₂ NR'	Allyl .	н	83
287	S(O) ₂ NR'	CH ₂ C≡CH	н	
288	S(O)₂NR'	CH=CH,	н	
289	S(O)₂NR'	CH,CH,F	Н	
290	S(O)₂NR'	CF ₃	н	
291	S(O)₂NR'	CH₂CF₃	H :	
292	S(O) ₂ NR'	CH₂CN CH₂CN	н	
293	S(O) ₂ NR'	Cyclopropyl	н	
294	S(O)₂NR'	Cyclopropylmethyl	н	fest
295	S(O) ₂ NR'	CH ₂ CO ₂ Me	н	
296	S(O) ₂ NR'	CH ₂ CH ₂ NMe ₂	Н	
297	S(O) ₂ NR'	CH ₂ -(N-morpholinyl)	н	
298	S(O) ₂ NR'	2-Chlor-pyridin-5-yl-methyl	H	
299	S(O) ₂ NR'	2-Furanyl	Н	
300	S(O) ₂ NR'	2-Pyrimidinyl	Н	
301	S(O) ₂ NR'	2-Oxazolyl	Н	·
302	S(O) ₂ NR'	5-[1,2,4]-oxdiazolyl	Н	
303	S(O)₂NR'	Tetrazolyl	н	İ
304	S(O)₂NR'	Н	Ме	
305	S(O)₂NR'	Me	Me	
306	S(O)₂NR'	Et	Me	Öl
307	S(O)₂NR'	n-Pr	Me	
308	S(O)₂NR'	i-Pr	Me	Öl
309	S(O)₂NR'	n-Bu	Me	
310	S(O)₂NR'	i-Bu	Ме	
311	S(O)₂NR'	Aliyi	Me	
312	S(O)₂NR'	CH ₂ C≡CH	Ме	94
313	S(O)₂NR'	CH=CH₂	Me	
314	S(O)₂NR'	CH₂CH₂F	Me	
315	S(O)₂NR′	CF₃	Me	
316	S(O)₂NR'	CH₂CF₃	Me	
317	S(O)₂NR'	CH₂CN	Ме	
318	S(O)₂NR'	Cyclopropyl	Me	
319	S(O)₂NR'	Cyclopropylmethyl	Me	1
320	S(O)₂NR'	CH₂CO₂Me	Me	
321	S(O)₂NR'	CH₂CH₂NMe₂	Me	
322	S(O)₂NR'	CH₂-(N-morpholinyl)	Ме	
323	S(O)₂NR'	2-Chlor-pyridin-5-yl-methyl	Ме	
324	S(O)₂NR'	Furanyl	Me	
325	S(O)₂NR'	2-Pyrimidinyl	Me	
326	S(O)₂NR'	2-Oxazolyl	Me	<u> </u>

Bsp. Nr.	Y	R	R'	[90]
327	S(O) ₂ NR'	5-[1,2,4]-oxdiazolyl	Me	m.p. [°C]
328	S(O) ₂ NR'	Tetrazolyl	Me	
329	S(O) ₂ NR'	H		<u> </u>
330	S(O) ₂ NR'	Me	Et	
331	S(O) ₂ NR'	Et	Et	
332	S(O) ₂ NR'	n-Pr	Et	
333	S(O) ₂ NR'	i-Pr	Et	
334	S(O) ₂ NR'	n-Bu	Et	70
335	S(O) ₂ NR'	i-Bu	Et	
336	S(O) ₂ NR'	Aliyi	Et]
337	S(O) ₂ NR'		Et	ÖI
338	S(O)₂NR'	CH ₂ C≡CH	Et	
339		CH=CH₂	Et	
340	S(O) ₂ NR'	CH₂CH₂F	Et	İ
341	S(O)₂NR'	CF ₃	Et	
342	S(O)₂NR'	CH₂CF₃	Et	Ì
343	S(O)₂NR'	CH₂CN	Et	
344	S(O)₂NR'	Cyclopropyl	Et	
345	S(O) ₂ NR'	Cyclopropylmethyl	Et	
346	S(O)₂NR'	CH₂CO₂Me	Et	
347	S(O)₂NR' S(O)₂NR'	CH₂CH₂NMe₂	Et	
348	, , , _	CH₂-(N-morpholinyl)	Et	
349	S(O)₂NR'	2-Chlor-pyridin-5-yl-methyl	Et	
350	S(O) ₂ NR'	Furanyl	Et	
351	S(O)₂NR' S(O)₂NR'	2-Pyrimidinyl	Et	
352	S(O) ₂ NR'	2-Oxazolyl	Et	
353	S(O) ₂ NR'	5-[1,2,4]-oxdiazolyl	Et	
354	S(O) ₂ NR'	Tetrazolyl n-Pr	Et	<u> </u>
355	S(O)₂NR'	1	n-Pr	Öl
356	S(O)₂NR'	CH ₂ SCH ₂ CH ₂	n-Pr	
357	S(O) ₂ NR'	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH=CHCH ₂ CH ₂	n-Pr	152
358	S		n-Pr	138
359		2-methylmercapto-1,3,4-thiad	iazoi-5-yi	92
360	S S S	5-(trifluormethyl)-pyridin-2-yl		78
361	0	3-(trifluormethyl)-pyridin-2-yl 4-methyl-thiazol-2-yl		68
362	0	3-(mothylmoropate) 4.2.4 this di		Öl
363	S	3-(methylmercapto)-1,2,4-thiadi	azoi-o-yi	ÖI
364	[-	4-Pyridinyl		88
365	S S S S S S S S	2-Methyl-furan-3-yl		Öl
366	اع ا	4-(trifluormethoxy)-phenyl 2-lmidazolyl		57
367	s	5-Methyl-1,2,4-triazol-3-yl		171
368	S			95
369	S	2-Thiazolyl		Öl
370	ls.	Dimethylamino-thiocarbonyl		fest
371	S	4,6-Dimethyl-pyrimidin-2-yl 5-Methyl-1,3,4-thiadiazol-2-yl		ÖI
372	NR'C(S)NH	CO ₂ Et	ш	98
	1111 0(0)1111	UU2EL	H	136

Bsp. Nr.	Υ	R	R'	m.p. [°C]
373	NR'C(O)	CH(imidazolyl-)CF₂C(O)		Öl
374	NR'C(O)	CH(Me)CH₂C(O)		Ö
375	NR'C(O)	CMe ₂ CH ₂ C(O)		Öi
1	NR'C(O)	CH(Me)CH(Me)C(O)		Öi
376				Öi
377	NR'C(O)	CH₂CH₂CH₂C(O)		Ö
378	NR'C(O)	CH(Me)CH₂CH₂C(O)		
379	NR'C(O)	CH₂CH(Me)CH₂C(O)		ÖI
380	NR'C(O)	CH₂CMe₂CH₂C(O)		Öl
381	NR'C(O)	$CH_2C[-(CH_2)_4-]CH_2C(O)$		Öl
382	NR'C(O)	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		192
383	NR'C(O)N(H)	CH(CHMe ₂)CO ₂ Et	H	Ŏi
384	NR'C(S)N(H)	Et	Н	Öi
1		CMe ₃	Н	113
385	NR'C(S)N(H)		H	Öi
386	NR'C(S)N(H)	-p-Tol	[7	
387	NR'C(O)	CF ₃	Н	148
388	NR'C(O)N(H)	Et	Н	144
389	NR'C(O)N(H)	C(H)Me ₂	H	159
390	NR'C(O)N(H)	Bu	H	117
391	NR'C(O)N(H)	(CH ₂) ₄ Me	Н	118
392	NR'C(O)N(H)	Cyclohexyl	Н	160
393	NR'C(O)N(H)	C(H)MeCO ₂ Et	Н	157
394	NR'C(O)N(H)	C(O)Ph	Н	182
1		(4-CF ₃ -Ph)	Н	170
395	NR'C(O)N(H)	$(2,6-C_6H_3F_2)$	Н	193
396	NR'C(O)N(H)	(2,0-0611312)	111	133
397	NR'C(O)			ÖI
	11010101	LOUI CAUDICILI CAO		-
398	NR'C(O)	CH ₂ C(H)PhCH ₂ C(O)		Öl
399	NR'C(O)	CMe=CMeC(O)		ÖI
400	NR'C(O)			ÖI
		C(O)		

Bsp. Nr.	Υ	R	R'	m.p. [°C]
401	NR'C(O)N(H)	CMe ₃	Н	120
402	NR'C(O)O	CH₂C≡CH	Н	fest
403	NR'SO₂	C(H)Me ₂	H	ÖI
404	NR'C(O)	CH₂OC(O)Me	l H	80
405	NR'C(O)	(CH ₂) ₃ Cl	l H	56
406	NR'C(O)	(CH ₂) ₂ SMe	H	96
407	NR'C(O)O	Bu	∫H	Öl
408	NR'C(O)O	Cyclopentyl	H	ÖI
409	NR'C(O)	CH ₂ CH ₂ C(O)		87
410	NR'C(O)N(H)	Ph	Н	129
411	NR'H*HSO₄-	Н .	Н	fest

Tabelle 3:

Bsp. Nr.	Υ	R	R'	m.p. [°C]
1	0	n-Pr		Öl
2	0	i-Pr		ÖI
2	0	n-Bu		
4	0	i-Bu		
5	0	Allyl		Öl
6	0	CH ₂ C≡CH		Öl
7	0	CH=CH ₂		
8	0	CH₂CH₂F		
9	0	CF ₃		
10	0	CH₂CF₃		
11	0	CH₂CN		
12	0	Cyclopropyl		ļ
13	0	Cyclopropylmethyl]
14	0	CH₂CO₂Me		
15	0	CH₂CH₂NMe₂		
16	0	CH₂-(N-morpholinyl)		
17	0	2-Chlor-pyridin-5-yl-methyl		
18	0	n-Hex		
19	0	2-Furanyl		
20	0	2-Pyrimidinyl		
21	0	2-Oxazolyl		
22	0	5-[1,2,4]-oxdiazolyl		
23	0	Tetrazolyl		
24	0	2-Hexahydropropanyl	<u></u>	
25	S	Н		
26	S	Et		м.
27	S	i-Pr		Öl
28	S	n-Bu		
29	S	i-Bu		
30	S	Allyl		
31	S	CH ₂ C≡CH		
32	S	CH=CH₂		
33	S S S S S S S S S S S S S S S S S S S	CH₂CH₂F		
34	S	CF ₃		ام
35	S	CH₂CF₃		ÖI
36	S	CH₂CN		1
37	S	Cyclopropyl		1
38	S	Cyclopropylmethyl		

Bsp. Nr.	Υ	R	R'	m n [°C]
39	S	CH ₂ CO ₂ Me	 	m.p. [°C]
40	S	CH ₂ CH ₂ NMe ₂		
41	s	CH ₂ -(N-morpholinyl)		
42	S			
43	S	2-Chlor-pyridin-5-yl-methyl		
44	S	n-Hex		
45	S	2-Furanyl		
1	0	2-Pyrimidinyl		
46	S	2-Oxazolyi		
47	S	5-[1,2,4]-oxdiazolyl		
48		Tetrazolyl		
49	S	CH ₂ CH ₂ N CF ₃		ÖI
50	S(O)	Me		
51	s(o)	Et		ĺ
52	S(O)	n-Pr		
53	S(O)	i-Pr		İ
54	S(O)	n-Bu		
55	S(O)	i-Bu		1
56	S(O)	Allyl		
57	S(O)	CH ₂ C≡CH		İ
58	S(O)	CH ₂ C≅CH CH=CH ₂		
59	S(O)	CH ₂ CH ₂ F	•	[
60	S(O)			į
61	S(O)	CH ₂ CF ₃		l
62	S(O)			
63	S(O)	CH₂CN		
64		Cyclopropyl		
65	S(O)	Cyclopropylmethyl	1	į
66	S(O)	CH₂CO₂Me	ļ	İ
67	S(O)	CH ₂ CH ₂ NMe ₂	}	
68	S(O)	CH ₂ -(N-morpholinyl)		
69	S(O)	2-Chlor-pyridin-5-yl-methyl		
70	S(O)	n-Hex		
	S(O)	2-Furanyl		İ
71	'S(O)	2-Pyrimidinyl		
72	S(O)	2-Oxazolyl		
73	S(O)	5-[1,2,4]-oxdiazolyl		1
74	S(O)	Tetrazolyl		
75	S(O) ₂	Me		84
76	S(O) ₂	Et		İ
77	S(O) ₂	n-Pr		1
78	S(O) ₂	i-Pr		
79	S(O) ₂	n-Bu		į
80	S(O) ₂	i-Bu		1
81	S(O) ₂	Allyi]

Bsp. Nr.	Y	R	R'	m.p. [°C]
82	S(O) ₂	CH ₂ C≡CH		
83	S(O) ₂	CH=CH ₂		ļ .
84	S(O) ₂	CH ₂ CH ₂ F		
85	S(O) ₂	CF ₃		
86	S(O) ₂	CH₂CF₃		1
	S(O) ₂	CH ₂ CN		
87		I =		
88	S(O) ₂	Cyclopropyl		
89	S(O) ₂	Cyclopropylmethyl		
90	S(O) ₂	CH₂CO₂Me		
91	S(O) ₂	CH₂CH₂NMe₂		1
92	S(O) ₂	CH₂-(N-morpholinyl)		
93	S(O) ₂	2-Chlor-pyridin-5-yl-methyl		
94	S(O) ₂	n-Hex	İ	
95	S(O) ₂	Furanyl		
96	S(O) ₂	2-Pyrimidinyl		1
97	S(O) ₂	2-Oxazolyl		
98	S(O) ₂	5-[1,2,4]-oxdiazolyl		
99	S(O) ₂	Tetrazolyl		
100	OC(O)	Н		
101	OC(O)	l Et		
1	00(0)	n-Pr	-	
102		i-Pr		
103	OC(O)	i .		1
104	OC(O) .	n-Bu	·	1
105	OC(O)	i-Bu		
106	OC(O)	Allyl	Ì	
107	OC(O)	CH₂C≡CH		1
108	OC(O)	CH=CH₂		
109	OC(O)	CH₂CH₂F	1	
110	OC(O)	\CF₃		1
1111	OC(O)	CH₂CF₃		
112	OC(O)	CH₂CN		
113	OC(O)	Cyclopropyl	1	1
114	OC(O)	Cyclopropylmethyl		
115	00(0)	CH ₂ CO ₂ Me		ì
116	00(0)	CH ₂ CH ₂ NMe ₂		
117	00(0)	CH ₂ -(N-morpholinyl)		
118	00(0)	2-Chlor-pyridin-5-yl-methyl		1
		n-Hex		
119	00(0)		1	
120	OC(O)	2-Furanyl		
121	OC(O)	2-Pyrimidinyl		
122	OC(O)	2-Oxazolyl	1	
123	OC(O)	5-[1,2,4]-oxdiazolyl		
124	OC(O)	Tetrazolyl		
125	00(0)0	Ме		1
126	00(0)0	Et		
127	OC(O)O	n-Pr		
128	00(0)0	i-Pr	,	
129	00(0)0	n-Bu		
130	00(0)0	i-Bu		

WO 00/35913 PCT/EP99/09684

131 OC(O) 132 OC(O)	O Allyl			
132 OC(O)		Į		m.p. [°C]
133 OC(O)	1 - 1 - 2 1			
134 OC(O)				
135 OC(O)	- 2 - 2			
136 OC(O)	' ' '		İ	
	,			
1 1 1	_ 1 -			
138 OC(O)	-7			
139 OC(O)	1 . 7 1 1. 7	lmethyl		
140 OC(O)	1 2 2			
141 OC(O)	1			
142 OC(O)	, <u>~</u> ,			
143 OC(O)	1	idin-5-yl-methyl		
144 OC(O)				
145 OC(O)	O 2-Furanyl	Ī	•	
146 OC(O)		yl		
147 OC(O)				
148 OC(O)		diazolyl		
149 OC(O)				i
150 OC(O)			Н	
151 OC(O)	NR' Me	11	Н [į
152 OC(O)	NR' Et	.] [H	
154 OC(O)	NR' n-Pr	1:	н	
155 OC(O)	NR' i-Pr		н	
156 OC(O)	NR' n-Bu		н	
157 OC(O)	NR' i-Bu	1	н	
158 OC(O)	NR' Allyl	li l	н	
159 OC(O)		1	Н	
160 OC(O)			H	
161 OC(O)			H	
162 OC(O)		3	 H	
163 OC(O)			H	
164 OC(O)		1	H	
165 OC(O)		1	H	
166 OC(O)		l l	H	
167 OC(O)	1 2 1 12	•	H	
168 OC(O)	• •			į
169 OC(O)	1 2 2		H	
1 ' ' '	1 2 \		H	
1 1 1			H	
171 OC(O)			H	
172 OC(O)	,	· ·	H	
173 OC(O)			H	
174 OC(O)			H	
175 OC(O)			Н	
176 OC(O)			H	
177 OC(O)			Ме	
178 OC(O)		1	Me	
179 OC(O)			Me	
180 OC(O)	NR' n-Pr		Ме	

Bsp. Nr.	Υ	R	R'	m.p. [°C]
181	1 1	i-Pr	Ме	
182	OC(O)NR'	n-Bu	Ме	1
183	OC(O)NR'	i-Bu	Ме	
184	OC(O)NR'	Allyi	Ме]
185	OC(O)NR'	CH₂C≡CH	Ме	
186	OC(O)NR'	CH=CH ₂	Ме]
187	OC(O)NR'	CH ₂ CH ₂ F	Me	
188	OC(O)NR'	CF ₃	Me	
189	OC(O)NR'	CH ₂ CF ₃	Me	1
190	OC(O)NR'	CH₂CN	Me]
191	OC(O)NR'	Cyclopropyl	Ме	
192	OC(O)NR'	Cyclopropylmethyl	Ме	
193	OC(O)NR'	CH ₂ CO ₂ Me	Me	
	OC(O)NR'	CH ₂ CH ₂ NMe ₂	Me	ļ
194	OC(O)NR'	CH ₂ -(N-morpholinyl)	Me	
195	OC(O)NR'	2-Chlor-pyridin-5-yl-methyl	Me	
196	, ,		Me	
197	OC(O)NR'	n-Hex	Me	
198	OC(O)NR'	2-Furanyl	Me	
199	OC(O)NR'	2-Pyrimidinyl	Me	
200	OC(O)NR'	2-Oxazolyl	Me	
201	OC(O)NR'	5-[1,2,4]-oxdiazolyl	Me	
202	OC(O)NR'	Tetrazolyl		
203	OC(O)NR'	Н	Et	
204	OC(O)NR'	Me	Et	
205	OC(O)NR'	Et	Et	
206	OC(O)NR'	n-Pr	Et	
207	OC(O)NR'	i-Pr	Et	
208	OC(O)NR'	n-Bu	Et	
209	OC(O)NR'	i-Bu	Et	ì
210	OC(O)NR'	Allyl	Et	
211	OC(O)NR'	CH₂C≡CH	Et	
212	OC(O)NR'	CH=CH ₂	Et	1
213	OC(O)NR'	CH ₂ CH ₂ F	Et	
214	OC(O)NR'	CF ₃	Et	
215	OC(O)NR'	CH₂CF₃	Et	Į.
216	OC(O)NR'	CH ₂ CN	Et	
217	OC(O)NR'	Cyclopropyl	Et	
218	OC(O)NR'	Cyclopropylmethyl	Et	1
219	OC(O)NR'	CH ₂ CO ₂ Me	Et	
220	OC(O)NR'	CH ₂ CH ₂ NMe ₂	Et	
1	OC(O)NR'	CH ₂ -(N-morpholinyl)	Et	
221		2-Chlor-pyridin-5-yl-methyl	i	
222	OC(O)NR' OC(O)NR'	n-Hex	Et	
223	1 , ,		Et	1
224	OC(O)NR'	2-Furanyi	Et	1
225	OC(O)NR'	2-Pyrimidinyl	Et	1
226	OC(O)NR'	2-Oxazolyl		1
227	OC(O)NR'	5-[1,2,4]-oxdiazolyl	Et	
228	OC(O)NR'	Tetrazolyl	Et	
229	OC(O)C(O)O	i H	I	l

WO 00/35913

Bsp. Nr.	Υ	R	R'	m.p. [°C]
230	OC(O)C(O)O	Ме		
231	00(0)0(0)0	Et		
232	00(0)0(0)0	n-Pr		
233	0000000	i-Pr		
234	0000000	n-Bu		
235	0000000	i-Bu		1
236	0000000	Allyl		
237	0000000	CH₂C≡CH		
238	0000000	CH=CH ₂		
239	0000000	CH ₂ CH ₂ F		
240	0000000	CF ₃		
241	00(0)0(0)0	CH ₂ CF ₃		
242	00(0)0(0)0	CH₂CN		j
243	00(0)0(0)0	Cyclopropyl		1
244	00(0)0(0)0	Cyclopropylmethyl		
245	0C(0)C(0)0	CH₂CO₂Me		
246	0C(0)C(0)0	CH ₂ CH ₂ NMe ₂		
247	0C(0)C(0)0	CH ₂ -(N-morpholinyl)		
248	OC(O)C(O)O	2-Chlor-pyridin-5-yl-methyl		
249	0C(0)C(0)0	n-Hex		
250	0C(0)C(0)0	Furanyl		
251	0C(0)C(0)0	2-Pyrimidinyl		
252	0C(0)C(0)0	2-Oxazolyl		
253	0C(0)C(0)0	5-[1,2,4]-oxdiazolyl		
254	0C(0)C(0)0	Tetrazolyl		İ
255	S(O) ₂ NR'	H	Н	
256	S(O)₂NR'	Me	H	
257	S(O) ₂ NR'	Et	H	
258	S(O)₂NR'	n-Pr	Н	
259	S(O) ₂ NR'	i-Pr	H	İ
260	S(O) ₂ NR'	n-Bu	H	ŀ
261	S(O) ₂ NR'	i-Bu	н	
262	S(O)₂NR'	Aliyi	Н	
263	S(O) ₂ NR'	CH₂C≡CH	H	
264	S(O) ₂ NR'	CH=CH ₂	H .	
265	S(O)₂NR'	CH ₂ CH ₂ F	Н	
266	S(O)₂NR'	CF ₃	Н	
267	S(O) ₂ NR'	CH ₂ CF ₃	н	
268	S(O)₂NR'	CH ₂ CN	Н	ļ ļ
269	S(O) ₂ NR'	Cyclopropyl	H	
270	S(O) ₂ NR'	Cyclopropylmethyl	H	
271	S(O) ₂ NR'	CH ₂ CO ₂ Me	Н	
272	S(O) ₂ NR'	CH ₂ CH ₂ NMe ₂	Н	
273	S(O) ₂ NR'	CH ₂ -(N-morpholinyl)	Н	
274	S(O) ₂ NR'	2-Chlor-pyridin-5-yl-methyl	l.i	
275	S(O) ₂ NR'	n-Hex	l'H	j i
276	S(O) ₂ NR'	Furanyl	Н	
277	S(O) ₂ NR'	2-Pyrimidinyl	;;	
278	S(O) ₂ NR'	2-Oxazolyl	H	
	10(0/2:41	L-CAGZOIYI	1	<u> </u>

Bsp. Nr.	ΙΥ	R	R'	m.p. [°C]
279	S(O) ₂ NR'	5-[1,2,4]-oxdiazolyl		1
280	S(O)₂NR'	Tetrazolyl		
281	S(O)₂NR'	Н	Me	
282	S(O) ₂ NR'	Me	Ме	1
283	S(O) ₂ NR'	Et	Me	
284	S(O) ₂ NR'	n-Pr	Me	
285	S(O) ₂ NR'	i-Pr	Me	
286	S(O) ₂ NR'	n-Bu	Me	
		i-Bu	Me	
287	S(O)₂NR'	Allyl	Me	
288	S(O)₂NR'	1 *	Me	
289	S(O)₂NR'	CH₂C≡CH	Me	İ
290	S(O)₂NR'	CH=CH ₂	Me	
291	S(O)₂NR'	CH₂CH₂F	1	
292	S(O)₂NR'	CF ₃	Me	
293	S(O)₂NR'	CH₂CF₃	Me	
294	S(O)₂NR'	CH₂CN	Ме	
295	S(O)₂NR'	Cyclopropyl	Ме	
296	S(O)₂NR'	Cyclopropylmethyl	Me	
297	S(O)₂NR'	CH₂CO₂Me	Ме	
298	S(O)₂NR'	CH ₂ CH ₂ NMe ₂	Ме	
299	S(O) ₂ NR'	CH ₂ -(N-morpholinyl)	Me	
300	S(O) ₂ NR'	2-Chlor-pyridin-5-yl-methyl	Me	
301	S(O) ₂ NR'	n-Hex	Me	
302	S(O) ₂ NR'	Furanyl	Me	
303	S(O)2NR'	2-Pyrimidinyl	Ме	
304	S(O) ₂ NR'	2-Oxazolyl	Ме	
305	S(O) ₂ NR'	5-[1,2,4]-oxdiazolyl	Me	
306	S(O)₂NR'	Tetrazolyl	Ме	
307	S(O) ₂ NR'	H	Et	
308	S(O) ₂ NR'	Me	Et	
309	S(O) ₂ NR'	Et	Et	
310	S(O) ₂ NR'	n-Pr	Et	
311	S(O) ₂ NR'	i-Pr	Et	
1		n-Bu	Et	
312	S(O) ₂ NR'	i-Bu	Et	
313	S(O) ₂ NR'	Allyl	Et	
314	S(O)₂NR'	1 -	Et	
315	S(O)₂NR'	CH ₂ C≡CH	Et	
316	S(O)₂NR'	CH=CH ₂	Et	
317	S(O)₂NR'	CH₂CH₂F	Et	
318	S(O)₂NR'	CF ₃	l l	
319	S(O)₂NR'	CH₂CF₃	Et	
320	S(O)₂NR'	CH₂CN	Et	
321	S(O)₂NR'	Cyclopropyl	Et	1
322	S(O)₂NR'	Cyclopropylmethyl	Et	
323	S(O)₂NR'	CH₂CO₂Me	Et	
324	S(O)₂NR'	CH₂CH₂NMe₂	Et	
325	S(O)₂NR'	CH ₂ -(N-morpholinyl)	Et	
326	S(O)₂NR'	2-Chlor-pyridin-5-yl-methyl	Et	1
327	S(O)₂NR'	n-Hex	Et	

Bsp. Nr.	Υ	R	R'	m.p. [°C]
328	S(O)₂NR'	Furanyl	Et	
329	S(O)₂NR'	n-Hex	Et	
330	S(O) ₂ NR'	2-Pyrimidinyl	Et	
331	S(O) ₂ NR'	2-Oxazolyl	Et	
332	S(O) ₂ NR'	5-[1,2,4]-oxdiazolyl	Et	
333	S(O)₂NR'	Tetrazolyl	Et	

Tabelle 4:

Bsp. Nr.	Υ	R	R'	m.p. [°C]
1	0	Н		1
	lo	Me		
2 3	0	Et	Ì	Öl
4	0	n-Pr		
5	0	i-Pr		
6	0	n-Bu		
7	0	i-Bu		
8	lo	Allyl		
9	0	CH₂C≡CH		1
10	0	CH=CH ₂		1
111	0	CH₂CH₂F		1
12	0	CF ₃		
13	0	CH ₂ CF ₃		
14	0	CH ₂ CN] .
15	0	Cyclopropyl		
16	0	Cyclopropylmethyl		
17	0	CH₂CO₂Me		
18	0	CH ₂ CH ₂ NMe ₂		
19	0	CH ₂ -(N-morpholinyl))	
20	0	2-Chlor-pyridin-5-yl-		
21	0	n-Hex		
22	0	2-Furanyl		Ì
23	0	2-Pyrimidinyl		
24	0	2-Oxazolyl		•
25	0	5-[1,2,4]-oxdiazolyl	Ì	
26	0	Tetrazolyl		
27	S	Н		
28	S	Me		
29	İS	Et		
30	S	n-Pr	1	l
31	S	i-Pr		
32	S	n-Bu		
33	s	i-Bu		
34	S	Allyl		
35	S	CH₂C≡CH		
36	s	CH=CH₂		
37	S	CH ₂ CH ₂ F		
38	s	CF ₃		

Bsp. Nr.	Ÿ	R	R'	m.p. [°C]
39	S	CH ₂ CF ₃		
40	S	CH₂CN	ŀ	
41	s	Cyclopropyl	<u> </u>	
42	s	Cyclopropylmethyl		
43	s	CH₂CO₂Me		
44	S	CH ₂ CH ₂ NMe ₂		
45	S	CH ₂ -(N-morpholinyl)		
46	s	2-Chlor-pyridin-5-yl-methyl		
47	S	n-Hex		
48	S S	2-Furanyl		
49	S	2-Pyrimidinyl		
50	S	2-Oxazolyl		
51	S	5-[1,2,4]-oxdiazolyl		
52	s	Tetrazolyl		
53	S(O)	H		
54	S(O)	Me		
55	S(O)	Et		
56	S(O)	n-Pr		
57	S(O) .	i-Pr		
58	S(O)	n-Bu		
59	S(O)	i-Bu		
60	S(O)	Aliyi		
61	S(O)	CH₂C≡CH		
62	S(O)	CH=CH ₂		
63	S(O)	CH ₂ CH ₂ F		
64	S(O)	CF ₃		
65	S(O)	CH ₂ CF ₃		
66	S(O)	CH₂CN	[
67	S(O)	Cyclopropyl		
68	S(O)	Cyclopropylmethyl	}	
69	S(O)	CH ₂ CO ₂ Me		
70	S(O)	CH ₂ CH ₂ NMe ₂		
71	S(O)	CH ₂ -(N-morpholinyl)		
72	S(O)	2-Chlor-pyridin-5-yl-methyl		
73	S(O)	n-Hex		
74	s(o)	2-Furanyl		
75	S(O)	2-Pyrimidinyl		
76	s(o)	2-Oxazolyl		
77	s(O)	5-[1,2,4]-oxdiazolyl		
78	s(o)	Tetrazolyi		
79	S(O) ₂	n-Hex		
80	S(O) ₂	Me	1	
81	S(O) ₂	Et		
82	S(O) ₂	n-Pr		
83	S(O) ₂	i-Pr		
84	S(O) ₂	n-Bu		İ
85	S(O) ₂	i-Bu	İ	
86	S(O) ₂	Allyl	1	
87	S(O) ₂	CH₂C≡CH		
	13(472	10,120-011		1

Bsp. Nr.	Υ	R	R'	m.p. [°C]
88	S(O) ₂	CH=CH ₂		
89	S(O) ₂	CH ₂ CH ₂ F		
90	S(O) ₂	CF ₃		İ
91	S(O) ₂	CH ₂ CF ₃		
•		CH ₂ CN		
92	S(O) ₂			
93	S(O) ₂	Cyclopropyl		
94	S(O) ₂	Cyclopropylmethyl		
95	S(O) ₂	CH₂CO₂Me		j
96	S(O) ₂	CH₂CH₂NMe₂		
97	S(O) ₂	CH₂-(N-morpholinyl)		
98	S(O) ₂	2-Chlor-pyridin-5-yl-methyl		
99	S(O) ₂	n-Hex		
100	S(O) ₂	2-Furanyl		
101	S(O) ₂	2-Pyrimidinyl		
102	S(O) ₂	2-Oxazolyl		
103	S(O) ₂	5-[1,2,4]-oxdiazolyl		
104	S(O) ₂	Tetrazolyl		
		H		
105	OC(O)	•		
106	OC(O)	Me		
107	OC(O)	Et_		
108	OC(O)	n-Pr		
109	OC(O)	i-Pr		l . I
110	OC(O)	n-Bu	·	
1111	OC(O)	i-Bu	ļ	
112	OC(O)	Allyl	[
113	OC(O)	CH ₂ C≡CH	ļ	
114	OC(O)	CH=CH ₂		
115	OC(O)	CH ₂ CH ₂ F	1	
116	oc(o)	CF ₃		
117	00(0)	CH₂CF₃		
118	00(0)	CH ₂ CN		
119	OC(O)	Cyclopropyl		
120	OC(O)	Cyclopropylmethyl		
121	00(0)	Cyclopropylinetryl		
1				
122	OC(O)	CH ₂ CH ₂ NMe ₂		
123	OC(O)	CH ₂ -(N-morpholinyl)		
124	OC(O)	2-Chlor-pyridin-5-yl-methyl		
125	OC(O)	n-Hex		
126	OC(O)	2-Furanyl		
127	OC(O)	2-Pyrimidinyl	1	
128	OC(O)	2-Oxazolyl		
129	OC(O)	5-[1,2,4]-oxdiazolyl	1	
130	OC(O)	Tetrazolyl	<u> </u>	<u> </u>
131	OC(O)O	n-Hex		
132	00(0)0	Ме	1	
133	00(0)0	Et		
134	00(0)0	n-Pr		
135	00(0)0	i-Pr		
136		n-Bu	1	
130	OC(O)O	11-Du		_i

Bsp. Nr.	Y	R	R'	m.p. [°C]
137	OC(O)O	i-Bu		
138	0C(0)0	Aliyi		
139	00(0)0	CH ₂ C≡CH		
140	00(0)0	CH=CH ₂		
141	00(0)0	CH ₂ CH ₂ F		
142	00(0)0	CF ₃		
143	00(0)0	CH ₂ CF ₃		
144	00(0)0	CH ₂ CN		
145	00(0)0	Cyclopropyl		
146	00(0)0	Cyclopropylmethyl		
147	00(0)0	CH ₂ CO ₂ Me		
148	00(0)0	CH ₂ CH ₂ NMe ₂		
149	00(0)0	CH ₂ -(N-morpholinyl)		
150	00(0)0	2-Chlor-pyridin-5-yl-methyl		
151	00(0)0	n-Hex		
152	00(0)0	2-Furanyl		
152	00(0)0			
153	00(0)0	2-Pyrimidinyl		
155	00(0)0	2-Oxazolyl		
l		5-[1,2,4]-oxdiazolyl		
156	00(0)0	Tetrazolyl		
157	OC(O)NR'	H	Н	
158	OC(O)NR'	Me	Н	
159	OC(O)NR'	Et_	Н	
160	OC(O)NR'	n-Pr	H	
161	OC(O)NR'	i-Pr	H	
162	OC(O)NR'	n-Bu	Н	
163	OC(O)NR'	i-Bu	H	
164	OC(O)NR'	Allyl	H	
165	OC(O)NR'	CH₂C≡CH	Н	
166	OC(O)NR'	CH=CH₂	Н	
167	OC(O)NR'	CH₂CH₂F	Н	
168	OC(O)NR'	CF ₃	н	
169	OC(O)NR'	CH₂CF₃	Н	
170	OC(O)NR'	CH₂CN	Н	
171	OC(O)NR'	Cyclopropyl	Н	
172	OC(O)NR'	Cyclopropylmethyl	Н	[
173	OC(O)NR'	CH₂CO₂Me	Н	
174	OC(O)NR'	CH ₂ CH ₂ NMe ₂	H	
175	OC(O)NR'	CH ₂ -(N-morpholinyl)	Н	
176	OC(O)NR'	2-Chlor-pyridin-5-yl-methyl	ļн	
177	OC(O)NR'	n-Hex	Н	
178	OC(O)NR'	2-Furanyl	H	
179	OC(O)NR'	2-Pyrimidinyl	ļн	
180	OC(O)NR'	2-Oxazolyl	Н	
181	OC(0)NR'	5-[1,2,4]-oxdiazolyl	Н	
182	OC(O)NR'	Tetrazolyl	Н	
183	OC(O)NR'	Н	Me	
184	OC(O)NR'	Me	Me	
185	OC(O)NR'	Et	Me	
_100	100(0)/4/	T-,	Livie	1

Bsp. Nr.	Υ	R	R'	m.p. [°C]
186	OC(O)NR'	n-Pr	Ме	
187	OC(O)NR'	i-Pr	Me	
188	OC(O)NR'	n-Bu	Ме	
189	OC(O)NR'	i-Bu	Me	
190	OC(O)NR'	Allyl	Ме	
191	OC(O)NR'	CH₂C≡CH	Me	
192	OC(O)NR'	CH=CH,	Me	
193	OC(O)NR'	CH ₂ CH ₂ F	Ме	
194	OC(O)NR'	CF ₃	Me	
195	OC(O)NR'	CH ₂ CF ₃	Me	
196	OC(O)NR'	CH ₂ CN	Ме	
197	OC(O)NR'	Cyclopropyl	Ме	
198	OC(O)NR'	Cyclopropylmethyl	Me	
199	OC(O)NR'	CH₂CO₂Me	Ме	
200	OC(O)NR'	CH ₂ CH ₂ NMe ₂	Ме	
201	OC(O)NR'	CH ₂ -(N-morpholinyl)	Me	
202	OC(0)NR'	2-Chlor-pyridin-5-yl-methyl	Me	
203	OC(O)NR'	n-Hex	Me	
204	OC(O)NR'	2-Furanyl	Me	
205	OC(O)NR'	2-Pyrimidinyl	Ме	
206	OC(O)NR'	2-Oxazolyi	Me	
207	OC(O)NR'	5-[1,2,4]-oxdiazolyl	Me	
208	OC(O)NR'	Tetrazolyi	Me	
209	OC(O)NR'	H	Et	
210	OC(O)NR'	Me	Et	
211	OC(O)NR'	Et	Et	
212	OC(O)NR'	n-Pr	Et	
213	OC(O)NR'	i-Pr	Et	
214	OC(O)NR'	n-Bu	Et	
215	OC(O)NR'	i-Bu	Et	l l
216	OC(O)NR'	Allyl	Et	1
217	OC(O)NR'	CH₂C≡CH	Et	
218	OC(O)NR'	CH=CH ₂	Et	
219	OC(O)NR'	CH ₂ CH ₂ F	Et	
220	OC(O)NR'	CF ₃	Et	
221	OC(O)NR'	1 -	Et	
222	OC(O)NR'	CH₂CF₃ CH₂CN	Et	
223	OC(O)NR'	Cyclopropyl	Et	
224	OC(O)NR'	Cyclopropylmethyl	Et	
225	OC(O)NR'	CH ₂ CO ₂ Me	Et	
226	OC(O)NR'	CH ₂ CO ₂ Me CH ₂ CH ₂ NMe ₂	Et	
227	1 ' '		Et	
228	OC(O)NR'	CH ₂ -(N-morpholinyl)	Et	
220	OC(O)NR'	2-Chlor-pyridin-5-yl-methyl	Et	
230	1 7 7	2-Furanyl	Et	
1	OC(O)NR'	2-Pyrimidinyl	Et	
231	OC(O)NR'	2-Oxazolyl	Et	1
232	OC(O)NR'	5-[1,2,4]-oxdiazolyl	Et	
234	OC(O)NR'	Tetrazolyl		
235	OC(O)NR'	n-Hex	Et	<u> </u>

Bsp. Nr.	Υ	R	R'	m.p. [°C]
236	OC(0)C(0)0	Cyclobutyl		
237	OC(0)C(0)O	Me		
238	00(0)0(0)0	Et		
239	00(0)0(0)0	n-Pr		
240	0(0)0(0)0	i-Pr		
241	00(0)0(0)0	n-Bu		
242	00(0)0(0)0	i-Bu		
243	00(0)0(0)0	Allyl		
244	00(0)0(0)0	CH₂C≡CH		
245	00(0)0(0)0	CH=CH ₂		
246	00(0)0(0)0	CH ₂ CH ₂ F		
247	00(0)0(0)0	CF ₃		ļ.
248	00(0)0(0)0	CH ₂ CF ₃		
249	00(0)0(0)0	CH ₂ CN		
250	00(0)0(0)0	Cyclopropyl		<u> </u>
251	00(0)0(0)0	Cyclopropylmethyl		
252	00(0)0(0)0	CH ₂ CO ₂ Me		
253	00(0)0(0)0	CH ₂ CH ₂ NMe ₂		
254	0C(0)C(0)0	CH ₂ -(N-morpholinyl)		
255	00(0)0(0)0	2-Chlor-pyridin-5-yl-methyl		
256	00(0)0(0)0	n-Hex		
257	00(0)0(0)0	Furanyl		
258	00(0)0(0)0	2-Pyrimidinyl		
259	00(0)0(0)0	2-Oxazolyl		
260	00(0)0(0)0	5-[1,2,4]-oxdiazolyl		· ·
261	00(0)0(0)0	Tetrazolyl	3	
262	S(O) ₂ NR'	H	Н	**
263	S(O)₂NR'	Me	н	
264	S(O)₂NR'	Et	н	
265	S(O)₂NR'	n-Pr	н	
266	S(O)₂NR'	i-Pr	Н	
267	S(O)₂NR'	n-Bu	н	
268	S(O)₂NR'	i-Bu	Н	
269	S(O) ₂ NR'	Allyl	н	
270	S(O)₂NR'	CH₂C≡CH	н	
271	S(O) ₂ NR'	CH=CH ₂	Н	
272	S(O) ₂ NR'	CH₂CH₂F	Н	
273	S(O) ₂ NR'	CF ₃	Н	
274	S(O)₂NR'	CH₂CF₃	Н	
275	S(O)₂NR'	CH₂CN	H	
276	S(O)₂NR'	Cyclopropyl	H	
277	S(O)₂NR'	Cyclopropylmethyl	Н	
278	S(O) ₂ NR'	CH₂CO₂Me	Н	
279	S(O)₂NR'	CH ₂ CH ₂ NMe ₂	Н	
280	S(O) ₂ NR'	CH ₂ -(N-morpholinyl)	Н	
281	S(O)₂NR'	2-Chlor-pyridin-5-yl-methyl	Н	
282	S(O)₂NR'	n-Hex	Н	
283	S(O) ₂ NR'	2-Furanyl	Н	
284	S(O)₂NR'	2-Pyrimidinyl	н	

Bsp. Nr.	Υ	R	R'	m.p. [°C]
285	S(O) ₂ NR'	2-Oxazolyl	Н	
286	S(O)₂NR'	5-[1,2,4]-oxdiazolyl	Н	
287	S(O)₂NR'	Tetrazolyl	Н	
288	S(O) ₂ NR'	Н	Ме	
289	S(O) ₂ NR'	Ме	Ме	
290	S(O) ₂ NR'	Et	Ме	
300	S(O) ₂ NR'	n-Pr	Me	
301	S(O) ₂ NR'	i-Pr	Ме	
302	S(O) ₂ NR'	n-Bu	Ме	1
303	S(O)2NR'	i-Bu	Ме	
304	S(O) ₂ NR'	Allyl	Ме	1
305	S(O) ₂ NR'	CH,C≡CH	Ме	
306	S(O) ₂ NR'	CH=CH ₂	Ме	
307	S(O)2NR'	CH₂CH₂F	Me	1
308	S(O) ₂ NR'	CF ₃	Me	
309	S(O) ₂ NR'	CH₂CF₃	Ме	
310	S(O) ₂ NR'	CH ₂ CN	Ме	
311	S(O)₂NR'	Cyclopropyl	Ме	
312	S(O) ₂ NR'	Cyclopropylmethyl	Me	
313	S(O) ₂ NR'	CH ₂ CO ₂ Me	Me	
314	S(O) ₂ NR'-	CH ₂ CH ₂ NMe ₂	Ме	1
315	S(O)₂NR'	CH ₂ -(N-morpholinyl)	Me	
316	S(O) ₂ NR'	2-Chlor-pyridin-5-yl-methyl	Me	
317	S(O) ₂ NR'	n-Hex	Ме	
318	S(O) ₂ NR'	2-Furanyl	Me	
319	S(O) ₂ NR'	2-Pyrimidinyl	Me	
320	S(O) ₂ NR'	2-Oxazolyi	Me	
321	S(O)₂NR'	5-[1,2,4]-oxdiazolyl	Me	
322	S(O)₂NR'	Tetrazolyl	Ме	
323	S(O) ₂ NR'	Н	Et	
324	S(O)₂NR'	Me	Et	
325	S(O)₂NR'	Et	Et	
326	S(O)₂NR'	n-Pr	Et	
327	S(O)₂NR'	i-Pr	Et	
328	S(O)₂NR'	n-Bu	Et	
329	S(O)₂NR'	i-Bu	Et	
330	S(O) ₂ NR'	Allyl	Et	
331	S(O) ₂ NR'	CH₂C≡CH	Et	
332	S(O) ₂ NR'	CH=CH ₂	Et	
333	S(O) ₂ NR'	CH,CH,F	Et	
334	S(O) ₂ NR'	CF ₃	Et	
335	S(O) ₂ NR'	CH ₂ CF ₃	Et	
336	S(O)₂NR'	CH₂CN	Et	
337	S(O) ₂ NR'	Cyclopropyl	Et	
338	S(O)₂NR'	Cyclopropylmethyl	Et	
339	S(O) ₂ NR'	CH ₂ CO ₂ Me	Et	
340	S(O) ₂ NR'	CH ₂ CH ₂ NMe ₂	Et	
341	S(O) ₂ NR'	CH ₂ -(N-morpholinyl)	Et	
342	S(O)₂NR'	2-Chlor-pyridin-5-yl-methy	Et	

Bsp. Nr.	Υ	R	R'	m.p. [°C]
344	S(O)₂NR'	n-Hex	Et	
345	S(O)₂NR'	2-Furanyl	Et	
346	S(O)₂NR'	2-Pyrimidinyl	Et	
347	S(O)₂NR'	2-Oxazolyl	Et	
348	S(O)₂NR'	5-[1,2,4]-oxdiazolyl	Et	
349	S(O)₂NR'	Tetrazolyl	Et	

Tabelle 5:

Bsp. Nr.	Υ	R	R'	m.p. [°C].
1	0	Н		
2	0	Ме		1
3	0	Et		
4	0	n-Pr		
5	0	i-Pr		
6	0	n-Bu		
7	0	i-Bu		
8	0	Allyl		
9	0	CH ₂ C≡CH		
10	0	CH=CH₂		
11	0	CH₂CH₂F		i
12	0	CF₃		
13	0	CH₂CF₃	}	
14	0	CH₂CN	ļ	
15	0	Cyclopropyl	{	1
16	0	Cyclopropylmethyl		
17	0	CH₂CO₂Me		
18	0	CH ₂ CH ₂ NMe ₂		
19	0	CH₂-(N-morpholinyl)		
20	0	2-Chlor-pyridin-5-yl-methyl		
21	0	n-Hex		}
22	0	2-Furanyl		
23	0	2-Pyrimidinyl		
24	0	2-Oxazolyl		
25	0	5-[1,2,4]-oxdiazolyl		
26	0	Tetrazolyl		
27	S	Н		
28	s	Me	}	
29	s	Et	1	
30	S	n-Pr		
31	S	i-Pr		
32	S	n-Bu		
33	S	i-Bu		
33	s	Allyl		
34	s	CH₂C≡CH		
35	S	Tetrazolyl		1
36	S	CH=CH ₂		
37	555555555555555555555555555555555555555	CH₂CH₂F		
38	S	CF ₃		<u> </u>

Bsp. Nr.	Υ	R	R'	m.p. [°C].
39	S	CH₂CF₃		
40	s	CH₂CN		
41	S	Cyclopropyl		
42	S	Cyclopropylmethyl		
43	S	CH ₂ CO ₂ Me		
44	S	CH ₂ CH ₂ NMe ₂		
45	S	CH ₂ -(N-morpholinyl)		1
46	S	2-Chlor-pyridin-5-yl-methyl		}
47	S	n-Hex		
48	S	2-Furanyl		
49	S	2-Pyrimidinyl		
50	S	2-Oxazolyl		
51	S	5-[1,2,4]-oxdiazolyl		
51a	S	Tetrazolyl		
52				
53	S(O)	Cyclobutyl		
1	S(O)	Me		
54	S(O)	Et		
55	S(O)	n-Pr		
56	S(O)	i-Pr		
57	S(O)	n-Bu		ļ
58	S(O)	i-Bu		
59	S(O)	Allyl	:	
60	S(O)	CH ₂ C≡CH		
61	S(O)	CH=CH₂		
62	S(O)	CH₂CH₂F		
63	S(O)	CF₃		
64	S(O)	CH₂CF₃		
65	S(O)	CH₂CN		
66	S(O)	Cyclopropyl		1
67	S(O)	Cyclopropylmethyl		:
68	S(O)	CH₂CO₂Me		
69	S(O)	CH ₂ CH ₂ NMe ₂		
70	S(O)	CH ₂ -(N-morpholinyl)		
71	S(O)	2-Chlor-pyridin-5-yl-methyl		İ
72	S(O)	n-Hex	1	
73	S(O)	2-Furanyl		
74	S(O)	2-Pyrimidinyl		
75	S(O)	2-Oxazolyl	[
76	S(O)	5-[1,2,4]-oxdiazolyl		
77	S(O)	Tetrazolyl		
78	S(O) ₂	Cyclobutyl		
79	S(O) ₂	Me		
80	S(O) ₂	Et		
81	S(O) ₂	n-Pr		
82	S(O) ₂	i-Pr		
83	S(O) ₂	n-Bu]
84	S(O) ₂	i-Bu		
85	S(O) ₂	Allyl		
86	S(O) ₂	CH₂C≡CH		1
	10(0/2	0,120=011	1	<u>L</u>

Bsp. Nr.	Υ	R	R'	m.p. [°C].
87	S(O) ₂	CH=CH₂		
88	S(O) ₂	CH ₂ CH ₂ F	[-	
89	S(O) ₂	CF ₃		
90	S(O) ₂	CH ₂ CF ₃		
91	S(O) ₂	CH ₂ CN		
92	S(O) ₂	Cyclopropyl		
93	S(O) ₂	Cyclopropylmethyl		
94	S(O) ₂	CH₂CO₂Me		
95	S(O) ₂	CH ₂ CH ₂ NMe ₂		
96	S(O) ₂	CH ₂ -(N-morpholinyl)		
97	S(O) ₂	2-Chlor-pyridin-5-yl-methyl		
98	S(O) ₂	n-Hex	1	
99	S(O) ₂	2-Furanyl		1
		2-Pyrimidinyl		
100	S(O) ₂	2-Cymhairyi 2-Oxazolyl		1
101	S(O) ₂			
102	S(O) ₂	5-[1,2,4]-oxdiazolyl		
103	S(O) ₂	Tetrazolyl		
104	OC(O)	H		
105	OC(O)	Me		1
106	OC(O)	Et		
107	OC(O)	n-Pr		
108	OC(O)	i-Pr		
109	OC(O)	n-Bu		
110	OC(O)	i-Bu	1	
111	OC(O)	Allyl	ļ	
112	OC(O)	CH ₂ C≡CH		1
113	OC(Q)	CH=CH₂		
114	OC(O)	CH₂CH₂F		1
115	OC(O)	CF₃		1
116	OC(O)	CH ₂ CF ₃		
117	OC(O)	CH ₂ CN		
118	OC(O)	Cyclopropyl		
119	OC(O)	Cyclopropylmethyl		
120	OC(O)	CH ₂ CO ₂ Me		
121	OC(O)	CH ₂ CH ₂ NMe ₂	1	
122	OC(O)	CH ₂ -(N-morpholinyl)	1	
123	OC(O)	2-Chlor-pyridin-5-yl-methyl		[
124	oc(o)	n-Hex	1	
125	oc(o)	2-Furanyl	1	
126	oc(o)	2-Pyrimidinyl		\
127	oc(o)	2-Oxazolyl		
128	OC(O)	5-[1,2,4]-oxdiazolyl		
129	00(0)	Tetrazolyl		
130	00(0)0	Cyclobutyl		
131	00(0)0	Me		1
132	00(0)0	Et	1	
133	00(0)0	n-Pr		
134	00(0)0	i-Pr	1	
135	00(0)0	n-Bu	1	
100	100(0)0	14		

Bsp. Nr.	Y	R	R'	m.p. [°C].
136	OC(O)O	i-Bu		
137	00(0)0	Allyl		
138	00(0)0	CH₂C≡CH		
139	00(0)0	CH=CH ₂	İ	
140	00(0)0	CH₂CH₂F		
141	00(0)0	CF ₃		
142	00(0)0			
		CH ₂ CF ₃		
143	00(0)0	CH₂CN]	
144	0C(0)0	Cyclopropyl	ĺ	ŀ
145	0C(0)0	Cyclopropylmethyl		
146	00(0)0	CH₂CO₂Me		
147	OC(O)O	CH₂CH₂NMe₂	1	
148	OC(O)O	CH₂-(N-morpholinyl)		
149	0C(0)0	2-Chlor-pyridin-5-yl-methyl		
150	OC(O)O	n-Hex		
151	0C(0)0	2-Furanyl		
152	0C(0)0	2-Pyrimidinyl		1
153	0C(0)0	2-Oxazolyl		
154	0C(0)0	5-[1,2,4]-oxdiazolyl		İ
155	00(0)0	Tetrazolyl		
156	OC(O)NR'	H	Н	
157	OC(O)NR'	Me	Н .	
158	OC(O)NR'	Et	H	
159	OC(O)NR'	n-Pr	lH	1
160	OC(O)NR'	i-Pr	Н	
161	OC(O)NR'	n-Bu	Н	
162	OC(O)NR'	i-Bu	Н	
163	OC(O)NR'	Allyl	Н	1
164	OC(O)NR'	CH,C≡CH	Н	
165	OC(O)NR'	CH=CH ₂	Н	
166	OC(O)NR'	CH ₂ CH ₂ F	Н	ļ
167	OC(O)NR'	CF ₃	H	1
168	OC(O)NR'	CH ₂ CF ₃	H	
169	OC(O)NR'	CH ₂ CN	lн	
170	OC(O)NR'	Cyclopropyl	Н	
171	OC(O)NR'		Н	
l l	, , ,	Cyclopropylmethyl	H	
172	OC(O)NR'	CH₂CO₂Me		
173	OC(O)NR'	CH ₂ CH ₂ NMe ₂	H	
174	OC(O)NR'	CH ₂ -(N-morpholinyl)	H	
175	OC(O)NR'	2-Chlor-pyridin-5-yl-methyl	H	
176	OC(O)NR'	n-Hex	H	
177	OC(O)NR'	2-Furanyl	H	1
178	OC(O)NR'	2-Pyrimidinyl	H	
179	OC(O)NR'	2-Oxazolyl	H	1
180	OC(O)NR'	5-[1,2,4]-oxdiazolyl	H	
181	OC(O)NR'	Tetrazolyl	Н	
182	OC(O)NR'	Н	Ме	
183	OC(O)NR'	Me	Me	
184	OC(O)NR'	Et	Ме	

Bsp. Nr.	Y	R	R'	m.p. [°C].
185	OC(O)NR'	n-Pr	Ме	
186	OC(O)NR'	i-Pr	Ме	
187	OC(O)NR'	n-Bu	Ме	
188	OC(O)NR'	i-Bu	Me	
189	OC(O)NR'	Allyi	Me	İ
190	OC(O)NR'	CH₂C≡CH	Ме	
200	OC(O)NR'	CH=CH ₂	Ме	
201	OC(O)NR'	CH ₂ CH ₂ F	Me	
202	OC(O)NR'	CF ₃	Ме	
203	OC(O)NR'	CH ₂ CF ₃	Ме	
204	OC(O)NR'	CH ₂ CN	Me	}
205	OC(0)NR'	Cyclopropyl	Me	
206	OC(0)NR'	Cyclopropylmethyl	Me	
207	OC(0)NR'	CH ₂ CO ₂ Me	Me	
208	OC(0)NR'	CH ₂ CH ₂ NMe ₂	Me	ļ
209	OC(0)NR'	CH ₂ -(N-morpholinyl)	Me	
210	OC(0)NR'	2-Chlor-pyridin-5-yl-methyl	Me	
210	OC(O)NR'	n-Hex	Me	
1	OC(0)NR'		Me	
212	1	2-Furanyl	Me	
213	OC(O)NR'	2-Pyrimidinyl	Me	
214	OC(O)NR'	2-Oxazolyl	Me	
215	OC(O)NR'	5-[1,2,4]-oxdiazolyl	Me	
216	OC(O)NR'	Tetrazolyl	<u> </u>	
217	OC(O)NR'	H	Et	<u> </u>
218	OC(O)NR'	Me	Et	1
219	OC(O)NR'	Et	Et	
220	OC(O)NR'	n-Pr	Et	1
221	OC(O)NR'	i-Pr	Et	
222	OC(O)NR'	n-Bu	Et	1
223	OC(O)NR'	i-Bu	Et	
224	OC(O)NR'	Allyl	Et	1
225	OC(O)NR'	CH₂C≡CH	Et	
226	OC(O)NR'	CH=CH ₂	Et	
227	OC(O)NR'	CH₂CH₂F	Et	
228	OC(O)NR'	CF ₃	Et	
229	OC(O)NR'	CH₂CF₃	Et	1
230	OC(O)NR'	CH₂CN	Et	
231	OC(O)NR'	Cyclopropyl	Et	
232	OC(O)NR'	Cyclopropylmethyl	Et	
233	OC(O)NR'	CH₂CO₂Me	Et	
234	OC(O)NR'	CH₂CH₂NMe₂	Et	
235	OC(O)NR'	CH₂-(N-morpholinyl)	Et	1
236	OC(O)NR'	2-Chlor-pyridin-5-yl-methyl	Et	
237	OC(O)NR'	n-Hex	Et	
238	OC(O)NR'	2-Furanyl	Et	
239	OC(O)NR'	2-Pyrimidinyl	Et	
240	OC(O)NR'	2-Oxazolyl	Et	
241	OC(O)NR'	5-[1,2,4]-oxdiazolyl	Et	
242	OC(O)NR'	Tetrazolyl	Et	<u> </u>

Bsp. Nr.	Υ	R	R'	m.p. [°C].
243	OC(O)C(O)O	cyclobutyl		
244	00(0)0(0)0	Me		1
245	00(0)0(0)0	Et		ĺ
246	00(0)0(0)0	n-Pr		
247	00(0)0(0)0	i-Pr		l i
248	00(0)0(0)0	n-Bu		
249	00(0)0(0)0	i-Bu		
250	00(0)0(0)0	Aliyi		1
251	00(0)0(0)0	CH ₂ C≡CH		
252	OC(O)C(O)O	CH=CH ₂		
253	OC(O)C(O)O	CH,CH,F		
254	OC(O)C(O)O	CF ₃		
255	OC(O)C(O)O	CH ₂ CF ₃		
256	OC(O)C(O)O	CH₂CN		
257	OC(O)C(O)O	Cyclopropyl		
258	OC(O)C(O)O	Cyclopropylmethyl		
259	OC(O)C(O)O	CH₂CO₂Me		
260	OC(O)C(O)O	CH ₂ CH ₂ NMe ₂		
261	OC(O)C(O)O	CH ₂ -(N-morpholinyl)		
262	OC(O)C(O)O	2-Chlor-pyridin-5-yl-methyl		
263	OC(O)C(O)O	n-Hex		
264	OC(O)C(O)O	2-Furanyl		1
265	OC(O)C(O)O	2-Pyrimidinyl		ļ [
266	OC(O)C(O)O	2-Oxazolyi		
267	OC(O)C(O)O	5-[1,2,4]-oxdiazolyl	·	
268	OC(O)C(O)O	Tetrazolyl		
269	S(O)₂NR'	Н	Me	
270	S(O)₂NR'	Ме	Me	
271	S(O)₂NR'	Et	Me	
272	S(O)₂NR'	n-Pr	Ме	
273	S(O)₂NR'	i-Pr	Me	
274	S(O)₂NR'	n-Bu	Me	
275	S(O)₂NR'	i-Bu	Me	
276	S(O)₂NR′	Allyl	Me	
277	S(O)₂NR'	CH₂C≡CH	Ме	
278	S(O)₂NR'	CH=CH₂	Me	
279	S(O)₂NR'	CH₂CH₂F	Me	
280	S(O)₂NR'	CF ₃	Ме	1
281	S(O)₂NR'	CH₂CF₃	Me	
282	S(O)₂NR'	CH₂CN	Me	
283	S(O) ₂ NR'	Cyclopropyl	Ме	
284	S(O)₂NR'	Cyclopropylmethyl	Me	
285	S(O) ₂ NR'	CH₂CO₂Me	Me	
286	S(O)₂NR'	CH ₂ CH ₂ NMe ₂	Me	
287	S(O)₂NR'	CH₂-(N-morpholinyl)	Me	
288	S(O)₂NR'	2-Chlor-pyridin-5-yl-methyl	Me	
289	S(O)₂NR'	n-Hex	Me	
290	S(O)₂NR'	2-Furanyl	Me	
291	S(O)₂NR'	2-Pyrimidinyl	Me	

Bsp. Nr.	Y	R	R'	m.p. [°C].
292	S(O)₂NR'	2-Oxazolyl	Ме	
293	S(O)₂NR'	5-[1,2,4]-oxdiazolyl	Ме	
294	S(O)₂NR'	Tetrazolyl	Ме	
295	S(O)₂NR'	Н	Et	
296	S(O)₂NR'	Me	Et	
297	S(O)₂NR'	Et	Et	
298	S(O)₂NR'	n-Pr	Et	
299	S(O)₂NR'	i-Pr	Et	
300	S(O)₂NR'	n-Bu	Et	ŀ
301	S(O)₂NR'	i-Bu	Et	
302	S(O)₂NR'	Allyl	Et	
303	S(O)₂NR'	CH ₂ C≡CH	Et	
304	S(O)₂NR'	CH=CH₂	Et	
305	S(O)₂NR'	CH₂CH₂F	Et	
306	S(O)₂NR'	CF ₃	Et	
307	S(O)₂NR'	CH₂CF₃	Et	
308	S(O)₂NR'	CH₂CN	Et	
309	S(O)₂NR'	Cyclopropyl	Et	
310	S(O)₂NR'	Cyclopropylmethyl	Et	
311	S(O)₂NR'	CH₂CO₂Me	Et	
312	S(O)₂NR'	CH ₂ CH ₂ NMe ₂	Et	
313	S(O)₂NR'	CH₂-(N-morpholinyl)	Et .	
314	S(O)₂NR'	2-Chlor-pyridin-5-yl-methyl	Et	_
315	S(O)₂NR'	n-Hex	Et	
316	S(O)₂NR'	2-Furanyl	Et	
317	S(O)₂NR'	2-Pyrimidinyl	Et	
318	S(O)₂NR'	2-Oxazolyl	Et	
319	S(O)₂NR'	5-[1,2,4]-oxdiazolyl	Et	
320	S(O)₂NR'	Tetrazolyl	Et	_

Tabelle 6:

Bsp. Nr.	Υ	R	R'	m.p. [°C]
1	0	Н .		
2	0	Ме		
2 3	0	Et		ļ
4 5	0	n-Pr		
5	0	i-Pr		
6	0	n-Bu		
6	0	i-Bu		
8	0	Allyl		
9	0	CH ₂ C≡CH		
10	0	CH=CH ₂		
11	0	CH₂CH₂F		
12	0	CF ₃		
13	0	CH₂CF₃		
14	0	CH₂CN		
15	O.	Cyclopropyl		
16	Ö	Cyclopropylmethyl		·
17	0	CH₂CO₂Me		
18	0	CH ₂ CH ₂ NMe ₂		
19	o	CH ₂ -(N-morpholinyl)		
20	0	2-Chlor-pyridin-5-yl-methyl		
21	o	2-Furanyl		}
22	0	2-Pyrimidinyl		
23	0	2-Oxazolyl		
24	0	5-[1,2,4]-oxdiazolyl		
25	0	Tetrazolyl		
26	S	Н		
27	s	Ме	:	
28	s	Et		
29	S	n-Pr		
30	S S S S	i-Pr	}	
31	S	n-Bu		
32	S S S	i-Bu		
33	s	Aliyi		
34	s	CH ₂ C≡CH		
35	s	CH=CH ₂	ļ	[
36	s	CH ₂ CH ₂ F		
37	s s	CF ₃		
38	s	CH₂CF₃		
39	S	CH ₂ CN		
	<u> </u>		1	

Bsp. Nr.	Y	R	R'	m.p. [°C]
40	S	Cyclopropyl		
41	S	Cyclopropylmethyl]
42	S	CH₂CO₂Me		1
43	9	CH ₂ CH ₂ NMe ₂	f	
1	S S S S S S S S			
44	5	CH ₂ -(N-morpholinyl)		1
45	S	2-Chlor-pyridin-5-yl-methyl		
46	S	2-Furanyl		
47	S	2-Pyrimidinyl]
48	S	2-Oxazolyl]
49	s	5-[1,2,4]-oxdiazolyl		1
50	S	Tetrazolyl		1
51	S(O)	n-Hex		
52	S(O)	Me		
53	s(o)	Et		
54	S(O)	n-Pr		
55	S(O)	i-Pr	1	
5]
56	S(O)	n-Bu	ļ	
57	S(O)	i-Bu		
58	S(O) .	Allyl		
59	S(O)	CH₂C≡CH		
60	S(O)	CH=CH ₂	1	
61	S(O)	CH ₂ CH ₂ F		
62	S(O)	CF ₃		
63	S(O)	CH ₂ CF ₃		'
64				
1	S(O)	CH₂CN		
65	S(O)	Cyclopropyl		
66	S(O)	Cyclopropylmethyl		
67	S(O)	CH₂CO₂Me	1	1
68	S(O)	CH ₂ CH ₂ NMe ₂		1
69	S(O)	CH₂-(N-morpholinyl)	1	
70	S(O)	2-Chlor-pyridin-5-yl-methyl		1
71	S(O)	2-Furanyl		•
72	S(O)	2-Pyrimidinyl		
73	S(O)		Ì	
•		2-Oxazolyl		
74	S(O)	5-[1,2,4]-oxdiazolyl	1	
75	S(O)	Tetrazolyl	_	<u> </u>
76	S(O) ₂	n-Hex		
77	S(O) ₂	Me		
78	S(O)₂	Et		
79	S(O) ₂	n-Pr		
80	S(O) ₂	i-Pr		
81	S(O) ₂	n-Bu		
82		i-Bu	1	
	S(O) ₂			1
83	S(O) ₂	Allyl	1	
84	S(O) ₂	CH ₂ C≡CH	1	1
85	S(O) ₂	CH=CH₂	1	
86	S(O) ₂	CH ₂ CH ₂ F	1	1
87	S(O) ₂	CF ₃		
88	S(O) ₂	CH ₂ CF ₃		1
100	1 0 0 /2	01 1201 3	I	<u> </u>

Bsp. Nr. Y R R' m.p. 89 $S(O)_2$ CH_2CN Cyclopropyl 90 $S(O)_2$ $Cyclopropyl$ 90 $S(O)_2$ <	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c cccc} 96 & S(O)_2 & 2\text{-Furanyl} \\ 97 & S(O)_2 & 2\text{-Pyrimidinyl} \end{array} $	
97 S(O) ₂ 2-Pyrimidinyl	
196 15(U). 12-UX370(V) 1 1	
99 S(O) ₂ 5-[1,2,4]-oxdiazolyl	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
101 OC(O) H	
102 OC(O) Me	
103 OC(O) Et	
104 OC(O) n-Pr	
105 OC(O) i-Pr	
106 OC(O) n-Bu	
107 OC(O) i-Bu	
1 ' '	1
108 OC(O) Allyl	
109 OC(O) CH₂C≡CH	
110 OC(O) CH=CH ₂	
111 OC(O) CH ₂ CH ₂ F	
112 OC(0) CF ₃	
113 OC(O) CH ₂ CF ₃	
114 OC(O) CH₂CN	
115 OC(O) Cyclopropyl	İ
116 OC(O) Cyclopropylmethyl	i
117 OC(O) CH₂CO₂Me	
118 OC(O) CH ₂ CH ₂ NMe ₂	1
119 OC(O) CH₂-(N-morpholinyl)	1
120 OC(O) 2-Chlor-pyridin-5-yl-methyl	
121 OC(O) 2-Furanyl	Ì
122 OC(O) 2-Pyrimidinyl	
123 OC(O) 2-Oxazolyl	
124 OC(O) 5-[1,2,4]-oxdiazolyl	1
125 OC(O) Tetrazolyl	
126 OC(O)O n-Hex	
127 OC(O)O Me	
128 OC(O)O Et	ļ
129 OC(O)O n-Pr	
130 OC(O)O i-Pr	
131 OC(O)O n-Bu	1
132 OC(O)O i-Bu	
133 OC(O)O Allyl	
134 OC(O)O CH₂C≡CH	
135 OC(0)O CH=CH ₂	
136 OC(O)O CH ₂ CH ₂ F	
137 OC(0)O CF ₃	,

Bsp. Nr.	Υ	R	R'	m.p. [°C]
138	OC(0)0	CH ₂ CF ₃		
139	OC(O)O	CH₂CN		
140	00(0)0	Cyclopropyl		
141	00(0)0	Cyclopropylmethyl		
142	00(0)0	CH ₂ CO ₂ Me		<u> </u>
143	00(0)0	CH ₂ CH ₂ NMe ₂		
144	00(0)0	CH ₂ -(N-morpholinyl)		
145	00(0)0	2-Chlor-pyridin-5-yl-methyl		
146	00(0)0	2-Furanyl		
147	00(0)0	2-Pyrimidinyl		
148	00(0)0	2-Oxazolyl		
149	00(0)0	5-[1,2,4]-oxdiazolyl		
150	00(0)0	Tetrazolyl		
151	OC(O)NR'	Н	Н	
152	OC(0)NR'	Me	Н	
153	OC(0)NR'	Et	H	
154	OC(O)NR'	n-Pr	H	
155	OC(O)NR'	i-Pr	Н	
156	OC(O)NR'	n-Bu	H	
157	OC(0)NR'	i-Bu	H	
158	OC(O)NR'	Allyl	H	
159	OC(0)NR'	CH ₂ C≡CH	H	
160	OC(O)NR'		Н	
161	OC(O)NR'	CH=CH ₂	H	
162	OC(0)NR'	CH₂CH₂F	H	
163	1 ' '	CF ₃	H	
164	OC(O)NR'	CH ₂ CF ₃	H	
165	OC(O)NR'	CH₂CN	t .	[
166	OC(O)NR'	Cyclopropyl	H	[
167	OC(O)NR'	Cyclopropylmethyl	H	
168	OC(O)NR'	CH₂CO₂Me	H	
169	OC(O)NR'	CH₂CH₂NMe₂	H	
170	OC(O)NR'	CH₂-(N-morpholinyI)	H	
170	OC(O)NR'	2-Chlor-pyridin-5-yl-methyl	H	
l.	OC(O)NR'	2-Furanyl	H	
172	OC(O)NR'	2-Pyrimidinyl	H	
173	OC(O)NR'	2-Oxazolyl	H	
174	OC(O)NR'	5-[1,2,4]-oxdiazolyl	H	
175	OC(O)NR'	Tetrazolyl	Н	
176	OC(O)NR'	H	Me	ļ
177	OC(O)NR'	Me	Me	
178	OC(O)NR'	Et_	Me	
179	OC(O)NR'	n-Pr	Ме	
180	OC(O)NR'	i-Pr	Me	
181	OC(O)NR'	n-Bu	Ме	
182	OC(O)NR'	i-Bu	Ме	
183	OC(O)NR'	Allyl	Me	
184	OC(O)NR'	CH₂C≡CH	Ме	
185	OC(O)NR'	CH=CH₂	Ме	
186	OC(O)NR'	CH₂CH₂F	Me	

Bsp. Nr.	Υ	R	R'	m.p. [°C]
187	OC(O)NR'	CF ₃	Ме	
188	OC(O)NR'	CH ₂ CF ₃	Me	
189	OC(O)NR'	CH ₂ CN	Me	
190	OC(O)NR'	Cyclopropyl	Me	
191	OC(O)NR'	Cyclopropylmethyl	Me	
192	OC(O)NR'	CH ₂ CO ₂ Me	Me	
193	OC(O)NR'	CH ₂ CH ₂ NMe ₂	Me	
194	OC(O)NR'	CH ₂ -(N-morpholinyl)	Me	
195	OC(O)NR'	2-Chlor-pyridin-5-yl-methyl	Me	
196	OC(O)NR'	Furanyl	Me	
197	OC(O)NR'	2-Pyrimidinyl	Me	
198	OC(O)NR'	2-Oxazolyl	Me	
199	OC(0)NR'	5-[1,2,4]-oxdiazolyl	Me	
200	OC(O)NR'	Tetrazolyl		
201	OC(O)NR'	H	Me	
202	OC(O)NR'	п Ме	Et]
203			Et	
	OC(O)NR'	Et - D-	Et	
204	OC(O)NR'	n-Pr : n-	Et	ļ
205	OC(O)NR'	i-Pr	Et	
206	OC(O)NR'	n-Bu	Et	
207	OC(O)NR'	i-Bu	Et	
208	OC(O)NR'	Allyl	Et	
209	OC(O)NR'	CH₂C≡CH	Et	
210	OC(O)NR'	CH=CH₂	Et	
211	OC(O)NR'	CH₂CH₂F	Et	
212	OC(O)NR'	CF₃	Et	ļ
213	OC(O)NR'	CH₂CF₃	Et	
214	OC(O)NR'	CH₂CN	Et	
215	OC(O)NR'	Cyclopropyl	Et	
216	OC(O)NR'	Cyclopropylmethyl	Et	
217	OC(O)NR'	CH₂CO₂Me	Et	
218	OC(O)NR'	CH₂CH₂NMe₂	Et	
219	OC(O)NR'	CH ₂ -(N-morpholinyl)	Et	
220	OC(O)NR'	2-Chlor-pyridin-5-yl-methyl	Et	
221	OC(O)NR'	2-Furanyl	Et	
222	OC(O)NR'	2-Pyrimidinyl	Et	
223	OC(O)NR'	2-Oxazolyl	Et	
224	OC(O)NR'	5-[1,2,4]-oxdiazolyl	Et	
225	OC(O)NR'	Tetrazolyl	Et	
226	OC(0)C(0)O	n-Hex		
227	0(0)0(0)0	Me		
228	00(0)0(0)0	Et		
229	0(0)0(0)0	n-Pr		
230	0(0)0(0)0	i-Pr	1	
231	00(0)0(0)0	n-Bu		
232	00(0)0(0)0	i-Bu		
233	00(0)0(0)0	Aliyi	l	
234	00(0)0(0)0	CH₂C≡CH]
235	00(0)0(0)0	CH=CH ₂	l	
L		1 - 1 - 2 - 2	<u> </u>	1

Bsp. Nr.	Υ	R	R'	m.p. [°C]
236	OC(O)C(O)O	CH ₂ CH ₂ F		
237	00(0)0(0)0	CF ₃		
238	00(0)0(0)0	CH ₂ CF ₃		İ
239	0C(0)C(0)0	CH₂CN		
240	00(0)0(0)0	Cyclopropyl		Ì
241	0C(0)C(0)0	Cyclopropylmethyl		l
242	00(0)0(0)0	CH₂CO₂Me		
243	00(0)0(0)0	CH ₂ CH ₂ NMe ₂		
244	00(0)0(0)0	CH ₂ -(N-morpholinyl)		[
245	00(0)0(0)0	2-Chlor-pyridin-5-yl-methyl		
246	00(0)0(0)0	2-Furanyl		i
247	0C(0)C(0)0	2-Pyrimidinyl		
248	0C(0)C(0)0	2-Oxazolyl		İ
249	0C(0)C(0)0	5-[1,2,4]-oxdiazolyl		
250	00(0)0(0)0	Tetrazolyl		
251	S(O) ₂ NR'	H	Н	
252	S(O) ₂ NR'	Me	н	
253	S(O)₂NR'	Et	H	j
254	S(O)₂NR'	n-Pr	H	
255	S(O) ₂ NR'	i-Pr	Н	Į
256	S(O) ₂ NR'	n-Bu	H ·	ļ
257	S(O) ₂ NR'	i-Bu	H	Ì
258	S(O) ₂ NR'	Allyl	н	
259	S(O)₂NR'	•	Н	
260		CH ₂ C≡CH	Н	
B	S(O)₂NR'	CH=CH ₂	H	
261 262	S(O)₂NR' S(O)₂NR'	CH₂CH₂F	H	
263	S(O)₂NR'	CF ₃	Н	
264		CH ₂ CF ₃	Н	
265	S(O) ₂ NR'	CH ₂ CN	H	
266	S(O)₂NR'	Cyclopropyl	lH	
1	S(O)₂NR'	Cyclopropylmethyl	Н	
267 268	S(O)₂NR'	CH ₂ CO ₂ Me	Н	
269	S(O)₂NR'	CH ₂ CH ₂ NMe ₂	Н	
270	S(O)₂NR'	CH ₂ -(N-morpholinyl)	Н	
•	S(O)₂NR'	2-Chlor-pyridin-5-yl-methyl	H	
271 272	S(O)₂NR' S(O)₂NR'	2-Furanyl 2-Pyrimidinyl	H	
273	S(O)₂NR'	, -	H	
274	S(O)₂NR'	2-Oxazolyl	Н	
275	S(O)₂NR'	5-[1,2,4]-oxdiazolyl	H	
		Tetrazolyl		ļ
276	S(O)₂NR'	H	Me	
277	S(O)₂NR'	Me	Me	
278	S(O)₂NR'	Et	Me	
279	S(O)₂NR'	n-Pr	Me	
280	S(O) ₂ NR'	i-Pr	Me	
281	S(O)₂NR'	n-Bu	Ме	
282	S(O)₂NR'	i-Bu	Me	
283	S(O)₂NR'	Allyl	Me	
284	S(O)₂NR'	CH₂C≡CH	Me	

Bsp. Nr.	Υ	R	R'	m.p. [°C]
285	S(O)₂NR'	CH=CH ₂	Ме	
286	S(O)₂NR'	CH₂CH₂F	Ме	İ
287	S(O)₂NR'	CF₃	Me	
288	S(O)₂NR'	CH₂CF₃	Ме	1
289	S(O)₂NR'	CH₂CN	Ме	1
290	S(O)₂NR'	Cyclopropyl	Ме	
291	S(O)₂NR'	Cyclopropylmethyl	Me	
292	S(O) ₂ NR'	CH ₂ CO ₂ Me	Me	
293	S(O) ₂ NR'	CH ₂ CH ₂ NMe ₂	Ме	
294	S(O) ₂ NR'	CH ₂ -(N-morpholinyl)	Ме	
295	S(O) ₂ NR'	2-Chlor-pyridin-5-yl-methyl	Ме	
296	S(O) ₂ NR'	2-Furanyl	Me	
297	S(O) ₂ NR'	2-Pyrimidinyl	Ме	
298	S(O) ₂ NR'	2-Oxazolyl	Me	
299	S(O)₂NR'	5-[1,2,4]-oxdiazolyl	Ме	
300	S(O)₂NR'	Tetrazolyl	Ме	
301	S(O) ₂ NR'	Н	Et	
302	S(O)₂NR'	Me	Et	
303	S(O) ₂ NR'	Et	Et	
304	S(O)₂NR'	n-Pr	Et	
305	S(O)₂NR'	i-Pr	Et	
306	S(O)₂NR'	n-Bu	Et	
307	S(O)₂NR'	i-Bu	Et	
308	S(O)₂NR'	Allyl	Et	
309	S(O)₂NR'	CH,C≡CH	Et	
310	S(O)₂NR'	CH=CH ₂	Et	
311	S(O)₂NR'	CH ₂ CH ₂ F	Et	
312	S(O)₂NR'	CF ₃	Et	
313	S(O)₂NR'	CH ₂ CF ₃	Et	
314	S(O)₂NR'	CH₂CN	Et	
315	S(O)₂NR'	Cyclopropyl	Et	
316	S(O)₂NR'	Cyclopropylmethyl	Et .	
317	S(O)₂NR'	CH₂CO₂Me	Et	
318	S(O)₂NR'	CH ₂ CH ₂ NMe ₂	Et	
319	S(O)₂NR'	CH ₂ -(N-morpholinyl)	Et	
320	S(O)₂NR'	2-Chlor-pyridin-5-yl-methyl	Et	
321	S(O)₂NR'	2-Furanyl	Et	
322	S(O)₂NR'	2-Pyrimidinyl	Et	
323	S(O)₂NR'	2-Oxazolyl	Et	
324	S(O)₂NR'	5-[1,2,4]-oxdiazolyl	Et	
325	S(O)₂NR'	Tetrazolyl	Et	Ì

- B. Formulierungsbeispiele
- a) Ein Stäubemittel wird erhalten, indem man 10 Gew.-Teile Wirkstoff und 90 Gew.-Teile Talkum als Inertstoff mischt und in einer Schlagmühle zerkleinert.
- b) Ein in Wasser leicht dispergierbares, benetzbares Pulver wird erhalten, indem man 25 Gew.-Teile Wirkstoff, 65 Gew.-Teile kaolinhaltigen Quarz als Inertstoff, 10 Gew.-Teile ligninsulfonsaures Kalium und 1 Gew.-Teil oleoylmethyltaurinsaures Natrium als Netz- und Dispergiermittel mischt und in einer Stiftmühle mahlt.
- c) Ein in Wasser leicht dispergierbares Dispersionskonzentrat stellt man her, indem man 40 Gew.-teile Wirkstoff mit 7 Gew.-Teilen eines Sulfobernsteinsäurehalbesters, 2 Gew.-Teilen eines Ligninsulfonsäure-Natriumsalzes und 51 Gew.-Teilen Wasser mischt und in einer Reibkugelmühle auf eine Feinheit von unter 5 Mikron vermahlt.
- d) Ein emulgierbares Konzentrat läßt sich herstellen aus 15 Gew.-Teilen Wirkstoff, 75 Gew.-Teilen Cyclohexan als Lösungsmittel und 10 Gew.-Teilen oxethyliertem Nonylphenol (10 EO) als Emulgator.
- e) Ein Granulat läßt sich herstellen aus 2 bis 15 Gew.-Teilen Wirkstoff und einem inerten Granulatträgermaterial wie Attapulgit, Bimsgranulat und/oder Quarzsand. Zweckmäßigerweise verwendet man eine Suspension des Spritzpulvers aus Beispiel b) mit einem Feststoffanteil von 30 % und spritzt diese auf die Oberfläche eines Attapulgitgranulats, trocknet und vermischt innig. Dabei beträgt der Gewichtsanteil des Spritzpulvers ca. 5 % und der des inerten Trägermaterials ca. 95 % des fertigen Granulats.

WO 00/35913 PCT/EP99/09684

91

C. Biologische Beispiele

Beispiel 1

Angekeimte Ackerbohnen-Samen (Vicia faba) mit Keimwurzeln wurden in mit Leitungswasser gefüllte Braunglasfläschchen übertragen und anschließend mit ca. 100 schwarzen Bohnenblattläusen (Aphis fabae) belegt. Pflanzen und Blattläuse wurden dann für 5 Sekunden in eine wäßrige Lösung des zu prüfenden und formulierten Präparates getaucht. Nach dem Abtropfen wurden Pflanze und Tiere in einer Klimakammer gelagert (16 Stunden Licht/Tag, 25 °C, 40-60 % RF). Nach 3 und 6 Tagen Lagerung wurde die Wirkung des Präparates auf die Blattläuse festgestellt. Bei einer Konzentration von 300 ppm (bezogen auf den Gehalt an Wirkstoff) bewirkten die Präparate gemäß Beispiele Nr. 2/29, 2/43, 2/67, 2/6, 3/6, 3/50, 3/75 und 3/49 eine 90-100 %ige Mortalität der Blattläuse.

Die Numerierung der Verbindungen ist mit Tabelle/Nr. in der Tabelle angegeben.

Beispiel 2

Die Blätter von 12 Reispflanzen mit einer Halmlänge von 8 cm wurden für 5 Sekunden in eine wäßrige Lösung des zu prüfenden und formulierten Präparates getaucht. Nach dem Abtropfen wurden die so behandelten Reispflanzen in eine Petrischale gelegt und mit ca. 20 Larven (L3-Stadium) der Reiszikadenart Nilaparvata lugens besetzt. Nach dem Verschließen der Petrischale wurde diese in einer Klimakammer gelagert (16 Stunden Licht/Tag, 25 °C, 40-60 % RF). Nach 6 Tagen Lagerung wurde die Mortalität der Zikadenlarven bestimmt. Bei einer Konzentration von 300 ppm (bezogen auf den Gehalt an Wirkstoff) bewirkten die Präparate gemäß Beispiele Nr. 2/97, 2/127, 2/153, 2/255, 3/50 und 3/75 eine 90-100 %ige Mortalität.

Beispiel 3

Angekeimte Ackerbohnen-Samen (Vicia faba) mit Keimwurzeln wurden in mit Leitungswasser gefüllte Braunglasfläschchen übertragen. Vier Mililiter einer wäßrigen Lösung des zu prüfenden und formulierten Präparates wurde in das Braunglasfläschchen hineinpipettiert. Anschließend wurde die Ackerbohne mit ca. 100 schwarzen Bohnenblattläusen (Aphis fabae) stark belegt. Pflanze und Tiere wurden dann in einer Klimakammer gelagert (16 Stunden Licht/Tag, 25 °C, 40-60 % RF). Nach 3 und 6 Tagen Lagerung wurde die wurzelsystemische Wirkung des Präparates auf die Blattläuse festgestellt. Bei einer Konzentration von 30 ppm (bezogen auf den Gehalt an Wirkstoff) bewirkten die Präparate gemäß Beispiele Nr. 2/29, 2/43, 2/55, 2/67, 2/97, 2/6, 2/167, 2/153, 3/6, 3/50, 3/75 und 3/49 eine 90-100 %ige Mortalität der Blattläuse durch wurzelsystemische Wirksamkeit.

Patentansprüche

1. 4-Trifluormethyl-3-oxadiazolylpyridine der allgemeinen Formel (I), gegebenenfalls auch in Form der Salze,

m ist 0 oder 1;

X ist eine Einfachbindung, eine geradkettige Alkylengruppe mit 1, 2 oder 3 C-Atomen oder einer verzweigten Alkylengruppe mit 3 bis 9 C-Atomen, wobei ein oder mehrere H-Atome durch F ersetzt sein können;

Y ist -O-, -S-, -SO₂-, -O-CO-, -O-CO-O-, -SO₂-O-, -O-SO₂-, -NR¹-, -NR²-CO-, -NR³-CO-O-, -NR⁴-CO-NR⁵-, -O-CO-CO-O-, -O-CO-NR⁶, -SO₂-NR⁷ oder -NR⁸-SO₂-;

R,R¹,R²,R³,R⁴,R⁵,R⁶,R⁷,R⁸ sind gleich oder verschieden, unabhängig voneinander H, (C_1-C_{10}) -Alkyl, (C_2-C_{10}) -Alkenyl, (C_2-C_{10}) -Alkinyl, (C_3-C_8) -Cycloalkyl, (C_4-C_8) -Cycloalkenyl, (C_6-C_8) -Cycloalkinyl, Heterocyclyl oder - $(CH_2)_{1-4}$ -Heterocyclyl,

wobei jede der acht letztgenannten Gruppen gegebenenfalls ein oder mehrfach substituiert ist, und wobei gegebenenfalls jeweils R und R¹, R und R², R und R⁵, R und R⁶, R und R⁷, R und R⁸ oder R und X jeweils zusammen auch ein Ringsystem bilden können;

mit der Maßgabe, daß die Verbindungen, in denen

$$X = -, Y = O, R = H$$

$$X = -$$
, $Y = O$, $R = Me$

$$X = -$$
, $Y = O$, $R = Et$

$$X = -$$
, $Y = O$, $R = CHF2$

$$X = -$$
, $Y = O$, $R = CH2Ph$

$$X = CH_2$$
, $Y = O$, $R = 2$ -Furanyl

$$X = CH_2$$
, $Y = O$, $R = Me$

$$X = CH_2$$
, $Y = O$, $R = 5$ -isoxazolyl

$$X = CH_2$$
, $Y = O$, $R = 5$ -nitrol-furan-2-yl

$$X = CH_2CH_2$$
, $Y = O$, $R = H$

$$X = CH_2CH_2$$
; $Y = O$, $R = Me$

$$X = CH_2CH_2$$
, $Y = O$, $R = CH_2$

$$X = CH_2CH_2$$
, $Y = O$, $R = Et$

$$X = CH_2CH_2$$
, $Y = O$,

$$X = CH_2CH_2$$
; $Y = OC(O)$, $R = 4-F$ -phenyl

$$X = CH_2CH_2$$
, $Y = OC(O)$, $R = 2,6$ -Difluorphenyl

$$X = CH_2CH_2$$
, $Y = OC(O)$, $R = 4$ -Nitrophenyl

$$X = CH_2CH_2$$
, $Y = OC(O)$, $R = t-Bu$

$$X = CH_2CH_2$$
, $Y = OC(O)$, $R = Cyclopropyl$

$$X = CH_2CH_2$$
, $Y = OC(O)$, $R = Me$

$$X = CH_2CH_2CH_2$$
, $Y = O$, $R = H$

$$X = -$$
, $Y = S(O)$, $R = 4$ -Brombenzyl

$$X = CH_2$$
, $Y = S$, $R = Me$

$$X = CH_2$$
, $Y = S(O)$, $R = Me$

$$X = CH_2, Y = S(O)_2, R = t-Bu$$

$$X = CH_2$$
, $Y = S$, $R = 2$ -Thienyl

$$X = CH_2CH_2$$
, $Y = S$, $R = Me$

$$X = CH_2CH_2$$
, $Y = S$, $R = n-Pr$

$$X = CH_2CH_2$$
, $Y = S$, $R = Benzyl$

$$X = CH_2CH_2$$
, $Y = S$, $R = 2$ -Thienyl-methyl

$$X = CH_2CH_2CH_2$$
, $Y = S$, $R = Me$

$$X = CH_2CH_2CH_2$$
, $Y = SO$, $R = Me$

 $X = CH_2CH_2CH_2CH_2$, Y = S, $R = CH_2CH_2CH_2CH_2OMe$ ausgenommen sind.

- 2. 4-Trifluormethyl-3-oxadiazolylpyridine nach Anspruch 1, dadurch gekennzeichnet, daß m in der Formel (I) 0 bedeutet.
- 3. 4-Trifluormethyl-3-oxadiazolylpyridine nach Anspruch 1 und/oder 2, dadurch gekennzeichnet, daß X in der Formel (I) eine Einfachbindung, -CH₂-, -CH₂-CH₂-, -CH₂-CH₂-, bedeutet.
- 4. 4-Trifluormethyl-3-oxadiazolylpyridine nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß Y in der Formel (I) -O-, -S-, -SO-, -SO₂-, -O-CO-, -O-CO-O-, -O-CO-NR⁶-, -SO₂-NR⁷-, -O-SO₂- oder -SO₂-O- bedeutet.
- 5. Verfahren zur Herstellung von Verbindungen der allgemeinen Formel (I) nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß aktivierte Derivate der Säure der allgemeinen Formel (II),

in Gegenwart einer Base mit einer Verbindung der Formel (III),

in welcher der Rest X-Y-R wie in Formel (I) definiert ist, oder eine Vorstufe eines dort definierten Restes darstellt, umgesetzt werden.

MINNOOID WA AMERICAL I .

- 6. Mittel mit insektizider, akarizider und/oder nematizider Wirkung, gekennzeichnet durch einen Gehalt an mindestens einer Verbindung nach einem der Ansprüche 1 bis 4.
- 7. Mittel mit insektizider, akarizider und nematizider Wirkung nach Anspruch 6 in Mischung mit Träger- und/oder oberflächenaktiven Stoffen.
- 8. Mittel nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß es einen weiteren Wirkstoff aus der Gruppe Akarizide, Fungizide, Herbizide, Insektizide, Nematizide oder wachstumsregulierende Stoffe enthält.
- 9. Verwendung einer Verbindungen nach einem der Ansprüche 1 bis 4 oder eines Mittels nach Anspruch 6 oder 7, zur Herstellung eines Tierarzneimittels.
- 10. Verfahren zur Bekämpfung von Schadinsekten, Acarina und Nematoden, dadurch gekennzeichnet, daß man eine wirksame Menge einer Verbindung nach einem der Ansprüche 1 bis 4 oder eines Mittels nach einem der Ansprüche 6 bis 8 auf den Ort der gewünschten Wirkung appliziert.
- 11. Verfahren zum Schutz von Nutzpflanzen vor der unerwünschten Einwirkung durch Schadinsekten, Acarina und Nematoden, dadurch gekennzeichnet, daß mindestens eine der Verbindungen nach einem der Ansprüche 1 bis 4 oder ein Mittel nach einem oder mehreren der Ansprüche 6 bis 8 zur Behandlung des Nutzpflanzen-Saatgutes verwendet wird.
- 12. Verwendung von Verbindungen nach einem der Ansprüche 1 bis 4 oder eines Mittels nach einem der Ansprüche 6 bis 8 zur Bekämpfung von Schadinsekten, Acarina und Nematoden.

Interna. ...ai Application No PCT/EP 99/09684

A. CLASSI IPC 7	FICATION OF SUBJECT MATTER C07D413/04 A01N43/836 A01N47/0	6 A01N47/10 A01	N47/28					
According to International Patent Classification (IPC) or to both national classification and IPC								
	SEARCHED							
	Minimum documentation searched (classification system followed by classification symbols) IPC 7 CO7D A01N							
Documenta	tion searched other than minimum documentation to the extent that s	uch documents are included in the fields	searched					
Electronic d	ata base consulted during the international search (name of data bas	se and, where practical, search terms us	ed)					
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT							
Category °	Citation of document, with indication, where appropriate, of the rele	evant passages	Relevant to claim No.					
Р,Х	WO 98 57969 A (HOECHST SCHERING A GMBH) 23 December 1998 (1998-12-2 cited in the application Tabelle 1, Verbindungen 171-174, 308, 310, 311, 352 claims 1,5-12	3)	1-12					
P,X	& DE 197 25 450 A 17 December 1998 (1998-12-17)							
А	EP 0 185 256 A (F. HOFFMANN-LA RO AG) 25 June 1986 (1986-06-25) column 21, line 35 - line 38; cla 1,13-17	•	1,6-12					
А	EP 0 580 374 A (ISHIHARA SANGYO K LTD.) 26 January 1994 (1994-01-26 cited in the application claims 1,2,12-17	AISHA,	1,6-12					
X Furti	her documents are listed in the continuation of box C.	X Patent family members are liste	ed in annex.					
* Special ca	ategories of cited documents:							
*Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "S" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention								
"E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "X" document of particular relevance; the claimed invention cannot be considered novel or								
"O" document referring to an oral disclosure, use, exhibition or other means and ocument is combined with one or more other such document is combined with one or more other such document is combination being obvious to a person skilled in the art. "B" document published prior to the international filling date but later than the priority date claimed "&" document member of the same patent family								
	actual completion of the international search	· · · · · · · · · · · · · · · · · · ·						
	21 March 2000 28/03/2000 28/03/2000							
Name and r	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer						
	NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Hass, C						

Form PCT/ISA/210 (second sheet) (July 1992)

International Application No
PCT/EP 99/09684

	101/21 39/03004
*'nuation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
WO 95 07891 A (HOECHST SCHERING AGREVO	1,6-12
GMBH) 23 March 1995 (1995-03-23) cited in the application claims 1,7-10,12-14,16-18	
DE 42 39 727 A (BAYER AG) 1 June 1994 (1994-06-01) Tabelle 2, Beispiele Nr. 20, 27-36 claims 1,4-7	6-12
	·

information on patent family members

Internal. ..el Application No
PCT/EP 99/09684

Patent document cited in search report		Publication date	l	Patent family member(s)	Publication date
WO 9857969	Α	23-12-1998	DE AU	19725450 A 8624398 A	17-12-1998 04-01-1999
EP 185256	A	25-06-1986	ZA AT AU CA DK EG ES ES HU IL NZ PT US BR	9805180 A 60594 T 589931 B 5148685 A 1273342 A 552685 A 17800 A 550205 D 8708214 A 556895 D 8801642 A 39971 A,B 77343 A 214566 A 81749 A,B 4788210 A 8506390 A	17-12-1998
EP 580374	Α	26-01-1994	GR JP ZA AT AU BR CA CN CZ DE DE	853049 A 61152661 A 8509576 A 132489 T 4210693 A 9302960 A 2100011 A,C 1081670 A,B 9301502 A 69301205 D 69301205 T	22-04-1986 11-07-1986 27-08-1986 27-08-1986 03-01-1996 03-02-1994 16-02-1994 09-02-1994 16-02-1994 15-02-1996 05-09-1996
			DK EG ES GR HK HU IL JP JP MX	580374 T 20154 A 2085118 T 3018953 T 1001896 A 68334 A,B 106340 A 2994182 B 6321903 A 9304425 A	20-05-1996 31-07-1997 16-05-1996 31-05-1996 17-07-1998 28-06-1995 12-03-1999 27-12-1999 22-11-1994 28-02-1994
			PL RU SK US ZA	299769 A 2083562 C 75093 A 5360806 A 9305042 A	05-04-1994 10-07-1997 08-06-1994 01-11-1994 05-04-1994
WO 9507891	A	23-03-1995	DE AU BR CN EP JP TR	4331179 A 7615294 A 9407541 A 1130901 A 0719256 A 9502446 T 28674 A	16-03-1995 03-04-1995 31-12-1996 11-09-1996 03-07-1996 11-03-1997

Form PCT/ISA/210 (patent family annex) (July 1992)

Information on patent family members

Interna. .at Application No
PCT/EP 99/09684

Patent document cited in search report		Publication date		atent family member(s)	Publication date
DE 4239727	A	01-06-1994	AU	5624594 A	22-06-1994
			WO	9412496 A	09-06-1994
			EP	0670836 A	13-09-1995
			JP	8504192 T	07-05-1996
			ÜS	5633267 A	27-05-1997
			us	5756523 A	26-05-1998

Form PCT/ISA/210 (patent family annex) (July 1992)

Internat. .ales Aktenzeichen PCT/EP 99/09684

							
IPK 7	ifizierung des anmeldungsgegenstandes CO7D413/04 AO1N43/836 AO1N47/0	6 A01N47/10 AC	01N47/28				
Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK							
	RCHIERTE GEBIETE						
	rter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbo	da)					
IPK 7	CO7D A01N	,					
Recherchie	rte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, so	weit diese unter die recherchierten Ge	biete fallen				
Während de	er internationalen Recherche konsultierte elektronische Datenbank (N	ame der Datenbank und evtl. verwend	dete Suchbegriffe)				
C. ALS WE	SENTLICH ANGESEHENE UNTERLAGEN						
Kategone	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe	e der in Betracht kommenden Teile	Setr. Anspruch Nr.				
P,X	WO 98 57969 A (HOECHST SCHERING A GMBH) 23. Dezember 1998 (1998-12-in der Anmeldung erwähnt Tabelle 1, Verbindungen 171-174, 308, 310, 311, 352	23)	1-12				
Р,Х	Ansprüche 1,5-12 & DE 197 25 450 A 17. Dezember 1998 (1998-12-17)	•					
A	EP 0 185 256 A (F. HOFFMANN-LA RO AG) 25. Juni 1986 (1986-06-25) Spalte 21, Zeile 35 - Zeile 38; A 1,13-17		1,6-12				
А	EP 0 580 374 A (ISHIHARA SANGYO K LTD.) 26. Januar 1994 (1994-01-26 in der Anmeldung erwähnt Ansprüche 1,2,12-17		1,6-12				
	tere Veröffentlichungen sind der Fortsetzung von Feld C zu	<u></u>					
X Weit entn	ehmen	X Siehe Anhang Patentfamilie					
Besondere Kategorien von angegebenen Veröffentlichungen: "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist war dem internationalen Anmeldedatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist							
"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie auserübet). "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachte Erfindung kann allein aufgrund dieser Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung von besonderer Bedeutung; die beanspruchte kann allein aufgrund dieser Veröffentlichung von besonderer Bedeutung; die beanspruchte kann allein aufgrund dieser Veröffentlichung von besonderer Bedeutung; die beanspruchte kann allein aufgrund dieser Veröffentlichung von besonderer Bedeutung; die beanspruchte ka							
ausgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist "Ann nacht as auf ermindenscher I atigkeit beruhend betrachten werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist "A" Veröffentlichung, die Mittglied derselben Patentfamilie ist							
	Abschlusses der internationalen Recherche	,					
2	21. März 2000 Absendedatum des Internationalen Recherche 28/03/2000						
Name und f	Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2	Bevollmächtigter Bediensteter					
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Hass, C					

Internatic alles Aktenzeichen
PCT/EP 99/09684

C.(Fortsetz	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN		
(ategone°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kom	menden Teile	Betr. Anspruch Nr.
A	WO 95 07891 A (HOECHST SCHERING AGREVO GMBH) 23. März 1995 (1995-03-23) in der Anmeldung erwähnt Ansprüche 1,7-10,12-14,16-18		1,6-12
Α	DE 42 39 727 A (BAYER AG) 1. Juni 1994 (1994-06-01) Tabelle 2, Beispiele Nr. 20, 27-36 Ansprüche 1,4-7		6-12
			·
`			
		·	

MICHOCOLO 4410 MOENTOATI 1 -

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internaticles Aktenzeichen
PCT/EP 99/09684

	echerchenberic tes Patentdoku		Datum der Veröffentlichung		fitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO	9857969	A	23-12-1998	DE	19725450 A	17-12-1998
				ΑÜ	8624398 A	04-01-1999
				ZA	9805180 A	17-12-1998
EP	185256	Α	25-06-1986	AT	60594 T	15-02-1991
				AU	589931 B	26-10-1989
				AU	5148685 A	26-06-1986
				CA	1273342 A	28-08-1990
				DK EG	552685 A 17800 A	22-06-1986
				ES	550205 D	30-08-1990 01-10-1987
				ES	8708214 A	16-12-1987
				ËS	556895 D	16-02-1988
				ES	8801642 A	16-04-1988
				HU	39971 A,B	28-11-1986
				IL	77343 A	17-09-1990
				NZ	214566 A	27-07-1989
				PT	81749 A,B	01-01-1986
				US	4788210 A	29-11-1988
				BR GR	8506390 A 853049 A	02-09-1986
				JP	61152661 A	22-04-1986 11-07-1986
				ZA	8509576 A	27-08-1986
EP !	580374	Α	26-01-1994	AT	132489 T	15-01-1996
				AU	4210693 A	03-02-1994
				BR	9302960 A	16-02-1994
				CA	2100011 A,C	24-01-1994
				CN CZ	1081670 A,B 9301502 A	09-02-1994 16-02-1994
				DE	69301205 D	15-02-1996
				DE	69301205 T	05-09-1996
				DK	580374 T	20-05-1996
				EG	20154 A	31-07-1997
				ES	2085118 T	16-05-1996
				GR HK	3018953 T	31-05-1996
				HU	1001896 A 68334 A,B	17-07-1998 28-06-1995
				IL	106340 A	12-03-1999
				ĴΡ	2994182 B	27-12-1999
				JP	6321903 A	22-11-1994
				MX	9304425 A	28-02-1994
				PL	299769 A	05-04-1994
				RU	2083562 C	10-07-1997
				SK US	75093 A 5360806 A	08-06-1994 01-11-1994
				ZA	9305042 A	05-04-1994
WO 9	9507891	Α	23-03-1995	DE	4331179 A	16-03-1995
				AU	7615294 A	03-04-1995
				BR	9407541 A	31-12-1996
				CN	1130901 A	11-09-1996
				EP	0719256 A	03-07-1996
				JP TR	9502446 T 28674 A	11-03-1997
				US	20074 A 5723450 A	16-01-1997 03-03-1998
				ZA	9407040 A	02-05-1995
					11	AF 00 1330

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

International les Aktenzeichen
PCT/EP 99/09684

Im Recherchenbericht angeführtes Patentdokument	Datum der	Mitglied(er) der	Datum der
	Veröffentlichung	Patentfamilie	Veröffentlichung
DE 4239727 A	01-06-1994	AU 5624594 A WO 9412496 A EP 0670836 A JP 8504192 T US 5633267 A US 5756523 A	22-06-1994 09-06-1994 13-09-1995 07-05-1996 27-05-1997 26-05-1998

Formblatt PCT/ISA/210 (Anhang Patentfamilie)(Juli 1992)