

### UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO TECNOLÓGICO DE JOINVILLE

#### **GUSTAVO ROHRICHT MACHADO**

# AVALIAÇÃO DO DESEMPENHO ENERGÉTICO DE SISTEMAS AUTOMOTIVOS DE CONDICIONAMENTO DE AR

Orientador: Prof. Diogo Lôndero da Silva, Dr.Eng.

Joinville 2024

#### **RESUMO**

Este relatório apresenta uma análise experimental do comportamento transiente de um sistema automotivo de condicionamento de ar automotivo considerando diferentes condições de operação. Para tanto, a partir da literatura disponível, foi elaborado o plano experimental e a adaptação do aparato experimental de condicionamento de ar automotivo do laboratório de refrigeração veicular (REVE) para coleta de dados. Durante os ensaios, serão coletados os dados das medições de temperatura, pressão, umidade relativa e vazão mássica em diferentes pontos do sistema de condicionamento de ar automotivo com o intuito de montar uma base de dados para a análise e comparação dos resultados. Desta forma, serão estimadas as incertezas experimentais e as propriedades do sistema para descrever o funcionamento dos equipamentos nos aspectos gerais, realizando o balanço de massa e energia em cada componente da bancada experimental. Os ensaios experimentais serão realizados entre as faixas de operação de 500 até 890 rpm no compressor, com temperatura controlada por dispositivos eletrônicos, mantendo a temperatura do condensador e a temperatura no evaporador constantes e alterando a vazão de ar no evaporador.

**Palavras-chave**: Condicionamento de ar automotivo; Eficiência energética; Aquisição transiente de dados experimentais.

#### **ABSTRACT**

This report presents an experimental analysis of the transient behavior of an automotive air conditioning system considering different operating conditions. For this purpose, based on the available literature, an experimental plan was developed and the experimental apparatus for automotive air conditioning of the Vehicle Refrigeration Laboratory (REVE) was adapted for data collection. During the tests, data from measurements of temperature, pressure, relative humidity and mass flow will be collected at different points of the automotive air conditioning system in order to assemble a database for analysis and comparison of the results. In this way, the experimental uncertainties and the properties of the system will be estimated to describe the operation of the equipment in general aspects, performing the mass and energy balance in each component of the experimental bench. The experimental tests will be carried out between the operating ranges of 500 to 890 rpm in the compressor, with temperature controlled by electronic devices, keeping the condenser temperature and evaporator temperature constant and changing the air flow in the evaporator.

**Keywords**: Automotive air conditioning; Energy efficiency; Transient acquisition of experimental data

#### Agradecimentos

Ao Laboratório de Refrigeração Veicular (REVE) da Universidade Federal de Santa Catarina (UFSC) pelo suporte na realização deste projeto, ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ) e a Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (Fapesc) pelo apoio na financeiro para aquisição dos equipamentos necessário para a construção do aparato. O presente trabalho foi realizado com apoio do CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico - Brasil.

# LISTA DE FIGURAS

| 1  | Representação do sistema MAC (Mobile air conditioning) no veiculo Packard |    |
|----|---------------------------------------------------------------------------|----|
|    | 180                                                                       | 8  |
| 2  | Bancada experimental                                                      | 11 |
| 3  | Representação dos pontos de instalação dos transdutores                   | 12 |
| 4  | Inversor CFW-300 Utilizado para Alterar a Velocidade de Rotação do Com-   |    |
|    | pressor                                                                   | 14 |
| 5  | Painel Utilizado para Alterar a Vazão de Ar do Ventilador do Evaporador   | 15 |
| 6  | Representação Visual da Histerese Normalizada                             | 16 |
| 7  | Temperaturas de Descarga e Sucção do Transiente de P1 e P3                | 19 |
| 8  | Vazão de Fluído Refrigerante Transiente de P1 e P3                        | 20 |
| 9  | Pressões de Sucção e Descarga P1 e P3                                     | 21 |
| 10 | Pressão de Descarga e Sucção P2                                           | 22 |
| 11 | Temperaturas de Sucção e Descarga P2                                      | 23 |
| 12 | Histereses Normalizadas das Principais Variáveis do Teste                 | 24 |
| 13 | Pressão de Sucção nas Perturbações P4 e P5                                | 25 |
| 14 | Temperatura de Sucção nas Perturbações P4 e P5                            | 26 |
| 15 | Temperatura de Descarga nas Perturbações P4 e P5                          | 27 |
| 16 | Capacidade de Resfriamento nas Perturbações P1 e P3                       | 28 |
| 17 | Análise do COP nas Perturbações P1 e P3                                   | 29 |
| 18 | Capacidade de Resfriamento e Potência de Consumo do Compressor nas        |    |
|    | Perturbações                                                              | 30 |
| 19 | Análise do COP nas Perturbações P2                                        | 31 |
| 20 | Capacidade de Resfriamento e Potência de Consumo do Compressor nas        |    |
|    | Perturbações P4 e P5                                                      | 32 |
| 21 | Análise do COP e Histerese                                                | 33 |

### **LISTA DE TABELAS**

- 1 Perturbações Geradas no Sistema de Refrigeração para Análise do Transiente 13
- 2 Perturbações Geradas no Sistema de Refrigeração para Análise da Histerese 13
- 3 Velocidades de Rotação do Compressor Aferidas para as Perturbações P1-P5 18

# **SUMÁRIO**

| 1  | INTRODUÇÃO              |                                                              |    |  |  |
|----|-------------------------|--------------------------------------------------------------|----|--|--|
|    | 1.1                     | OBJETIVOS                                                    | 9  |  |  |
|    |                         | 1.1.1 Objetivo Geral                                         | 9  |  |  |
|    |                         | 1.1.2 Objetivos Específicos                                  | 10 |  |  |
| 2  | MATERIAIS E MÉTODOS     |                                                              |    |  |  |
|    | 2.1                     | PLANEJAMENTO EXPERIMENTAL                                    | 13 |  |  |
|    | 2.2                     | DETERMINAÇÃO DOS TEMPOS DE ACOMODAÇÃO DO SISTEMA             | 15 |  |  |
|    | 2.3                     | ANÁLISE E COMPARAÇÃO DAS HISTERESES                          | 15 |  |  |
|    | 2.4                     | DETERMINAÇÃO DO COP DO SISTEMA                               | 16 |  |  |
| 3  | RESULTADOS E DISCUSSÕES |                                                              |    |  |  |
|    | 3.1                     | PERTURBAÇÃO PELA VARIAÇÃO DA VAZÃO DE AR DO VENTILADOR .     | 18 |  |  |
|    | 3.2                     | PERTURBAÇÃO PELA FREQUÊNCIA DE ROTAÇÃO DO COMPRESSOR         | 21 |  |  |
|    | 3.3                     | ANÁLISE DA HISTERESE                                         | 23 |  |  |
|    | 3.4                     | ANÁLISE DO COP                                               | 27 |  |  |
|    |                         | 3.4.1 Efeito da Variação da Vazão de Ar do Ventilador no COP | 27 |  |  |
|    |                         | 3.4.2 Efeito da Frequência de Rotação do Compressor no COP   | 29 |  |  |
|    |                         | 3.4.3 Efeito da Histerese no COP                             | 31 |  |  |
|    | 3.5                     | PARÂMETROS DE CONTROLE                                       | 33 |  |  |
| 4  | CON                     | ICLUSÃO                                                      | 34 |  |  |
| RI | EFER                    | ÊNCIAS                                                       | 35 |  |  |

# 1 INTRODUÇÃO

Em decorrência da popularização dos veículos de carroceria fechado, constatou-se a necessidade do desenvolvimento de sistemas voltados à garantia do conforto térmico de seus ocupantes. Assim, na década de 1930, iniciou-se nos Estados Unidos o desenvolvimento do sistema de condicionamento de ar em veículos, com o primeiro registro de comercialização do primeiro veículo com sistema de condicionamento de ar nativo de fábrica, o Packard 180 (One-Eighty) produzido pela fabricante Packard Motor Car (Bhatti, 1999), o qual é apresentado na Figura 1, assim como a disposição dos principais componentes necessários para o funcionamento do sistema de condicionamento de ar no veículo.

Figura 1 – Representação do sistema MAC (Mobile air conditioning) no veículo Packard 180.



Fonte: Bhatti adaptado por Santos (2005).

Atualmente, o Brasil está bem ranqueado na produção de veículos com sistema de condicionamento de ar nativo de fábrica, sendo o maior montador de veículos com ar condicionado da América do Sul e o 10º maior da América Latina com cerca de dois milhões de unidades de passeio (Da Silva; De Oliveira; Juliani *et al.*, 2024). Analisando o ano de novembro de 2024, a frota de veículos somente no Brasil era de 123,5 milhões, aproximadamente 63 milhões são automóveis, o que equivale a cerca de 51,2% (Ministério dos Transportes, 2024).

Esse sistema de condicionamento de ar automotivo consome uma parte significativa da potência do motor durante a operação do veículo, com sua eficiência de refrigeração

diretamente relacionada à capacidade de carga térmica. Em média, o ar-condicionado é utilizado entre 43% e 49% do tempo total de uso do veículo (Farrington; Rugh, 2000).

O sistema por compressão mecânica de vapor utilizado em sistemas veiculares, segundo Da Silva e Melo (2016), possui uma estrutura semelhante à dos sistemas de condicionamento de ar mecânico convencionais. Os principais componentes desses sistemas incluem trocadores de calor, um compressor e uma válvula ou dispositivo de expansão.

O princípio de funcionamento dos sistemas de condicionamento de ar e de refrigeração por compressão mecânica de vapor é compreendido pela operação dos quatro principais componentes: o compressor promove o escoamento do refrigerante ao longo do sistema, elevando a pressão e temperatura do fluido refrigerante, enquanto isso, o evaporador e condensador atuam como trocadores de calor, absorvendo e rejeitando o calor do ambiente a ser resfriado, e o dispositivo de expansão realiza a expansão isentrópica do fluido refrigerante, causando a redução da temperatura do mesmo (Junior, 2023).

Em geral, as propriedades dos sistemas veiculares não permanecem constantes durante toda a operação de um veículo, sendo precedidas por um regime transitório em que as propriedades do sistema variam devido a fatores externos. Além disso, deve-se levar em conta o ciclo tradicional de controle da temperatura do veículo, no qual o sistema é acionado e desligado continuamente com o objetivo de atingir uma temperatura determinada (Juliani; Jaskowiak; Da Silva, 2017).

Durante a operação nesse tipo de regime, os componentes podem apresentar não uniformidade das condições internas, a vazão mássica do refrigerante varia continuamente, resultando em mudanças na distribuição do refrigerante entre os componentes do sistema assim como a variação do superaquecimento e o ponto de operação do dispositivo de expansão, que se ajusta e regula continuamente para a operação (Rangel, 2007). Devido a esse motivo, faz-se necessário a realização de mais estudos sobre o comportamento do sistema durante o regime transiente com o intuito de aumentar a eficiência do sistema de condicionamento de ar.

#### 1.1 OBJETIVOS

#### 1.1.1 Objetivo Geral

Análise experimental do comportamento transiente de um sistema de condicionamento de ar automotivo e de seu ciclo de histerese para avaliar o seu efeito sobre o coeficiente de performance (COP), considerando diferentes condições de operação.

#### 1.1.2 Objetivos Específicos

Para alcançar o objetivo geral, os objetivos específicos propostos são:

- 1) Revisão bibliográfica e obtenção de dados do sistema de referência;
- 2) Identificar modos para controle da rotação do compressor;
- 3) Adaptação do aparato experimental;
- 4) Estimativa das incertezas experimentais;
- 5) Elaboração do plano experimental;
- 6) Realização dos experimentos e obtenção da base de dados experimental;
- 7) Análise dos resultados.

### 2 MATERIAIS E MÉTODOS

O aparato experimental consiste em um sistema de condicionamento de ar automotivo equipado com transdutores de pressão, temperatura e umidade relativa, vazão mássica e controle de temperatura com resistências elétricas, além de um sistema de aquisição de dados instalado na bancada de testes, destinado à execução de ensaios experimentais e à coleta de dados. Detalhes adicionais sobre a bancada experimental podem ser encontrados no relatório de De Oliveira (2023) e no artigo de Da Silva, De Oliveira, Juliani *et al.* (2024).

As atividades experimentais serão conduzidas no laboratório de refrigeração veicular, situado no campus Joinville da Universidade Federal de Santa Catarina (REVE, 2023). Por sua vez, uma imagem real da bancada que será utilizada para a obtenção dos dados experimentais é apresentada na Figura 2.



Figura 2 – Bancada experimental.

Fonte: O Autor (2024)

Para a coleta de dados, foram instalados transdutores em pontos específicos no sistema de condicionamento de ar, com 17 transdutores de temperatura, 2 transdutores de pressão, 2 transdutores de umidade relativa e 3 resistências para o controle de temperatura. As posições dos pontos de medição das propriedades do sistema estão presentes na figura 3.



Figura 3 – Representação dos pontos de instalação dos transdutores.

Fonte: O Autor (2024)

#### 2.1 PLANEJAMENTO EXPERIMENTAL

O plano de teste foi desenvolvido com o objetivo de validar os dados obtidos pelo sistema de aquisição. Para a realização da fase experimental, foram elaborados dois roteiros para duas análises distintas: A primeira, que pode ser encontrada na tabela 1, tem o intuito único de analisar como diferentes perturbações causadas ao sistema afetam seu comportamento transiente. Os testes serão realizados alterando dois principais parâmetros: a frequência de rotação do compressor e a posição de velocidade do ventilador do evaporador.

Tabela 1 – Perturbações Geradas no Sistema de Refrigeração para Análise do Transiente

| Perturbação | Frequência de Rotação do Compressor Esperada [RPM] | Posição Ventilador |
|-------------|----------------------------------------------------|--------------------|
| P1          | 500                                                | 1 → 4              |
| P2          | 500 → 890                                          | 4                  |
| P3          | 890                                                | 4  ightarrow 1     |

Fonte: O Autor (2025)

Na segunda análise, o intuito principal muda. Pretende-se gerar uma perturbação ao sistema, esperar que ele entre em estado permanente e, então, voltar ao seu estado inicial, observando assim se existe histerese no sistema de refrigeração e, posteriormente, avaliando seu impacto. A tabela 2 então mostra as perturbações causadas no sistema para a segunda parte deste trabalho. Apenas a frequência de rotação foi alterada, aumentando-a e depois voltando ao ponto original, mantendo a posição do ventilador fixa.

Tabela 2 – Perturbações Geradas no Sistema de Refrigeração para Análise da Histerese

| Perturbação | Frequência de Rotação do Compressor Esperada [RPM] | Posição Ventilador |
|-------------|----------------------------------------------------|--------------------|
| P4          | 890 → 1074                                         | 4                  |
| P5          | 1074 → 890                                         | 4                  |

Fonte: O Autor (2025)

Para alterar a frequência de rotação do compressor, o laboratório REVE (2023) tem à sua disposição um inversor CFW-300 da WEG conforme a figura 4. O inversor controla a amplitude e frequência do sinal (em Hertz) de tensão alternada que chega até o motor trifásico que é acoplado ao compressor através de uma embreagem eletromagnética. Este sinal de tensão com frequência diferente da rede elétrica é, então, responsável por

controlar a velocidade de rotação do motor e, por consequência, do compressor. A variação da frequência pode ser facilmente alterada nos parâmetros do inversor e, com a ajuda de uma tabela experimental do laboratório, é possível saber a correspondência da frequência de rotação em Hertz do sinal gerado pela rotação do compressor em RPM.

Figura 4 – Inversor CFW-300 Utilizado para Alterar a Velocidade de Rotação do Compressor



Fonte: O Autor (2025)

A posição do ventilador pode ser alterada em um painel analógico que é similar ao de muitos automóveis comerciais, como mostra a figura 5. É evidente que, diferentemente da frequência de rotação do compressor, o controle da vazão de ar do ventilador é menos preciso. A posição 0 representa o ventilador completamente desligado, enquanto as posições 1-4 representam um crescente de velocidade. A vazão de ar do ventilador nestas posições foi aferida em testes anteriores e estes dados estão inclusos no artigo de Londero et al. (2023).

Figura 5 – Painel Utilizado para Alterar a Vazão de Ar do Ventilador do Evaporador

### 2.2 DETERMINAÇÃO DOS TEMPOS DE ACOMODAÇÃO DO SISTEMA

### 2.3 ANÁLISE E COMPARAÇÃO DAS HISTERESES

Antes de realizar as análises em si, é preciso definir uma forma de comparar a histerese de várias variáveis diferentes de forma única. A histerese é usualmente definida como a área entre as curvas de subida e descida,isto é, a diferença de caminho entre a ida e volta a um mesmo ponto. A fim de ser possível relacionar diferentes variáveis com variações distintas, a histerese será calculada da seguinte forma: é feito o cálculo da diferença entre a área das curvas de subida e descida da velocidade de rotação do compressor, então esta área é dividida pela multiplicação dos intervalos das variáveis nos eixos t e y a fim de normalizá-la; por fim, é aplicado o módulo neste número. De forma genérica pode-se escrever a fórmula utilizada para o cálculo da histerese normalizada H<sub>norm</sub> como:

$$H_{norm} = \left| \frac{\int_{t_0}^t f_{subida}(t)dt - \int_{t_0}^t f_{descida}(t)dt}{\Delta y \Delta t} \right|$$
 (1)

Em que t representa o tempo do teste, e as funções genéricas f podem representar: temperatura, pressão ou vazão de fluido refrigerante. No entanto, como estas funções de ida e da volta na equação 1 são desconhecidas, dada a natureza do estudo experimental, estas integrais são calculadas de forma numérica utilizando o método numérico de 1/3 de Simpson composto (Chapra, 2013). Uma representação visual do que a equação 1 representa é apresentada na figura 6, as funções  $f_{subida}(t)$  e  $f_{descida}(t)$  são representadas pelas curvas não tracejadas e o retângulo tracejado representa a área  $\Delta y \Delta t$ . Ao encontrar a área entre as duas curvas e dividi-la pela área do retângulo em que elas estão inscritas, encontra-se a porcentagem de histerese de determinada variável.



Figura 6 – Representação Visual da Histerese Normalizada

Fonte: O Autor (2025)

### 2.4 DETERMINAÇÃO DO COP DO SISTEMA

O COP segue alguns dos métodos e dados experimentais já utilizados e existentes no laboratório REVE (2023), como no artigo de Londero *et al.* (2023) no qual já constam dados experimentais da taxa de transferência de massa necessária para calcular o COP nas condições deste artigo. Isto é, o COP será avaliado da seguinte forma:

$$COP = \frac{\dot{Q}_e}{\dot{W}}$$
 (2)

Em que  $\dot{W}$  é o consumo de potência do compressor e  $\dot{Q}_e$  é a capacidade de resfriamento do evaporador dada por:

$$\dot{Q}_e = \dot{m}_{ar}(h_{ar,entrada} - h_{ar,sada}) \tag{3}$$

Em que  $\dot{m}_{ar}$  é a taxa de transferência de massa de ar e  $h_{ar}$  é a entalpia do ar úmido. O valor de  $\dot{m}_{ar}$  será definido como 0,058 kg/s, dados experimentais provenientes do artigo de Londero *et al.* (2023). Os dados de entalpia são determinados utilizando o software ESS, para o cálculo das entalpias de entrada, os dados experimentais da temperatura e umidade relativa de entrada do evaporador foram utilizados, assumindo pressão constante igual a uma atmosfera. Para as entalpias de saída, foi também assumida uma pressão constante de uma atmosfera e utilizado os dados de temperatura e umidade relativa de saída do evaporador.

### 3 RESULTADOS E DISCUSSÕES

Nesta seção será discutido, da melhor maneira possível, os resultados obtidos causando as perturbações P1-P5 no sistema de refrigeração. Antes de iniciar o tópico da variação das temperaturas e pressões, é importante saber se as velocidades de rotação reais do compressor estão próximas do esperado durante o planejamento experimental. A tabela 3 mostra as velocidades de rotação aferidas utilizando o tacômetro MDT-2238B. Nota-se que estas velocidades estão próximas das esperadas conforme as tabelas 1 e 2,logo, conclui-se que as condições de teste reais estão dentro do planejamento experimental esperado.

Tabela 3 – Velocidades de Rotação do Compressor Aferidas para as Perturbações P1-P5

| Perturbação | Frequência de Rotação Compressor Medida [RPM] |
|-------------|-----------------------------------------------|
| P1          | 489                                           |
| P2          | 838                                           |
| P3          | 838                                           |
| P4          | 1083                                          |
| P5          | 883                                           |

Fonte: O Autor (2025)

### 3.1 PERTURBAÇÃO PELA VARIAÇÃO DA VAZÃO DE AR DO VENTI-LADOR

A primeira observação, que talvez seja a mais específica entre todas, não observada de maneira tão clara, por exemplo, nas perturbações de rotação, são oscilações análogas às oscilações senoidais decrescentes até que o sistema estabilize em um determinado valor de temperatura ou pressão. Por exemplo, a figura 14 mostra o comportamento mencionado na temperatura de sucção e descarga do compressor nas perturbações P1 e P3.



Figura 7 – Temperaturas de Descarga e Sucção do Transiente de P1 e P3

Nota-se, na figura 7, que há um pico máximo de temperatura de sucção e descarga em P1 logo após o aumento da vazão de ar. Isto ocorre devido a um evaporador subalimentado (Stoecker; Jones, 1982). Isto ocorre quando a válvula de expansão não consegue alimentar o evaporador com refrigerante o suficiente para refrigerar a superfície do evaporador adequadamente; como resultado, a temperatura e pressão sobem.

O pico mínimo de temperatura ocorre logo depois, provavelmente, ocorre devido a um evaporador inundado,isto é, após a subalimentação do evaporador, a válvula de expansão então deixa que mais fluido refrigerante passe até que o evaporador inunde, esta interpretação pode ser embasada com dados experimentais como na figura 8, onde há um pico máximo de vazão de fluido refrigerante ao mesmo tempo em que as temperaturas de sucção e descarga são mínimas. Também, no artigo de Cavallaro e Bullard (1994) foi observado que aumentar a vazão de ar do ventilador implica em um aumento do coeficiente de transferência de calor h do sistema. Isto também deve estar auxiliando para que a queda da temperatura ocorra mais rapidamente.



Figura 8 – Vazão de Fluído Refrigerante Transiente de P1 e P3

No entanto, a temperatura após isso sobe, e oscila até estabilizar. Esta subida de temperatura possivelmente tem relação com que, embora o coeficiente de transferência de calor tenha aumentado, há mais vazão de ar do que o que pode ser resfriado de maneira mais eficaz pelo sistema, então as temperaturas sobem, e fazem isso oscilando, procurando a posição de equilíbrio entre a pressão de sucção e o fluxo da taxa de massa (Stoecker; Jones, 1982).

No caso de P3 não são observados extremos de temperatura, provavelmente pois, como a velocidade e vazão de ar neste caso são reduzidos, diminuí-los é uma alteração menos brusca no sistema, ela apenas decresce oscilando, devido possivelmente à mesma razão que P1 cresce, isto é, com menos vazão de ar é mais fácil resfriá-lo e oscila procurando o equilíbrio.

As pressões de descarga e sucção ambas crescem ou decrescem conjuntamente, o que é o oposto do observado nas pressões nas perturbações por rotação. Como na figura 9,o aumento das pressões ou diminuição delas ocorre em decorrência do aumento ou diminuição da carga térmica no evaporador, respectivamente (Datta; Das; Mukhopadhyay, 2014).



Figura 9 – Pressões de Sucção e Descarga P1 e P3

### 3.2 PERTURBAÇÃO PELA FREQUÊNCIA DE ROTAÇÃO DO COMPRES-SOR

As perturbações causadas por rotação, como P2, P4 e P5, demonstraram um comportamento, em geral, menos oscilatório do que as que foram apresentadas previamente na subseção 3.1. É perceptível que, em relação às pressões, quando há aumento da velocidade de rotação do compressor, a pressão de descarga sobe e a de sucção desce, esta relação inversa entre as pressões também foi apontada em outros trabalhos, como o estudo de Datta, Das e Mukhopadhyay (2014). Por exemplo, a figura 10 mostra esta relação nas pressões de P2.



Figura 10 – Pressão de Descarga e Sucção P2

A relação inversa entre as pressões pode ser explicada devido à capacidade do compressor aumentar quando a rotação é elevada, variando então inversamente as quedas de pressão do diagrama P-V do compressor com o RPM ao quadrado (Phillippi, 2008). É observado também uma maior variação na pressão de descarga do que na pressão de sucção; tal comportamento ocorre devido ao aumento da região ocupada por líquido subresfriado no condensador. A prática é usual e serve à função de fazer com que apenas líquido entre na válvula de expansão (Stoecker; Jones, 1982),

O transiente da parte de sucção é mais rápido que na parte de descarga e isto é possível de concluir não somente das pressões, mas também das temperaturas respectivas, assim como mostra a figura 11. Esta diferente velocidade dos transientes ocorre, provavelmente, devido à maior inércia térmica do condensador, fazendo com que a sua resposta seja mais lenta e também devido ao efeito da válvula de expansão. Ao aumentar a velocidade do compressor, a carga térmica aumenta quase que instantaneamente no sistema, isto aumenta a pressão e temperatura de descarga e mais fluido refrigerante é sugado pelo compressor por consequência. No entanto, a válvula de expansão ainda demora para permitir que mais fluido refrigerante passe para o evaporador (Chen *et al.*, 2008). Então, causando atraso, como visto na figura 10 e 11.



Figura 11 – Temperaturas de Sucção e Descarga P2

### 3.3 ANÁLISE DA HISTERESE

Utilizando o método de análise introduzido na subseção 2.3 deste trabalho,foi possível calcular a histerese normalizada das principais variáveis do sistema de refrigeração. A figura 12 demonstra então estes valores encontrados.



Figura 12 – Histereses Normalizadas das Principais Variáveis do Teste

Nota-se que as histereses mais altas encontram-se próximas da região da válvula de expansão. Tanto na sua entrada como na sua saída, o que é um possível indício de que ela é a principal responsável pela diferença entre os caminhos de subida e descida de rotação. Foi também perceptível que a velocidade de convergência das variáveis de teste é afetada pela subida ou descida de rotação, principalmente das de menor histerese, como a temperatura e pressão de sucção. Por exemplo, o gráfico da figura 13 mostra a pressão de sucção nas perturbações P4 e P5, nota-se que em boa parte do transiente na subida de rotação há uma lacuna na coleta dos dados. Isto acontece pois a subida do transiente foi mais rápida do que a taxa de amostragem do sistema de aquisição.



Figura 13 – Pressão de Sucção nas Perturbações P4 e P5

Uma possível explicação para esta mudança da velocidade de convergência pode ser o efeito da válvula de expansão. Quando a velocidade de rotação do compressor é diminuída, a vazão de fluido refrigerante passando pela válvula diminui, então ela começa a se fechar, não completamente, mas há diminuição da seção por onde passa o fluido, causando atraso no aumento da pressão de sucção. Contrastando com a situação oposta, isto é, durante o aumento da velocidade de rotação, há um aumento na vazão de fluido refrigerante, e a válvula já está completamente aberta, permitindo que a pressão varie mais facilmente. Tal comportamento é observável não só na pressão de sucção, mas também na temperatura, como mostra a figura 14, o que demonstra que o comportamento citado acima é compatível com a observação experimental.



Figura 14 – Temperatura de Sucção nas Perturbações P4 e P5

O transiente da pressão e temperatura descarga é mais lento que o de sucção, como demonstrado na figura 15. O que já era esperado, conforme discutido na subseção 3.2 de forma mais detalhada. Percebe-se, no entanto, após a estabilização da temperatura de descarga em P5, ela não volta ao mesmo valor que tinha inicialmente em P4, o que deveria ser o comportamento esperado. É razoável propor que isto ocorra devido ao aumento da temperatura ambiente, que foi de 22 °C em P4 para 24°C ao final de P5, o que diminui a eficiência do sistema de refrigeração, e consequentemente, a temperatura de descarga não conseguiu voltar ao seu valor inicial.



Figura 15 – Temperatura de Descarga nas Perturbações P4 e P5

A maior histerese encontrada nas variáveis de descarga, como observado na figura 12, pode ser explicada pois estas variáveis são mais lentas em seu transiente, e são dependentes das variáveis de sucção e da ação da válvula de expansão, isto é, elas acabam acumulando no seu resultado o efeitos da histerese destas outras partes do sistema.

#### **ANÁLISE DO COP** 3.4

Nesta subseção, serão apresentadas as análises do Coeficiente de Performance (COP) do sistema de refrigeração nas condições de perturbação aplicadas ao sistema. O cálculo e determinação do COP foram feitos conforme detalhado na subseção 2.4.

#### 3.4.1 Efeito da Variação da Vazão de Ar do Ventilador no COP

A capacidade de resfriamento do sistema oscila ao aumentar a vazão de ar do ventilador, o que é um resultado razoável devido ao analisado das perturbações nas temperaturas e pressões de sucção e descarga do compressor, analisadas com mais detalhe na subseção 3.1.A capacidade de resfriamento decresce e oscila com o aumento da vazão de ar do ventilador isto é para P1, como pode ser visto na figura 16 isto ocorre devido,

principalmente a temperatura de saída e umidade relativa de saída do evaporador que apresentaram oscilações, o que afeta diretamente os cálculos de entalpia do ar. P3 oscila menos, o que deve estar relacionado com as razões explicadas anteriormente na subseção 3.1.



Figura 16 – Capacidade de Resfriamento nas Perturbações P1 e P3

Fonte: O Autor (2025)

Portanto o COP também oscila, como pode ser visto na figura 17. A oscilação do COP é completamente relacionada a oscilação da capacidade de resfriamento neste caso, já que a potência de consumo do compressor é mantida fixa. Oscilando para P1 e menos para P3. Nota-se que o COP inicial de P1 e P3 são completamente diferentes, isto, claro, tem relação com a rotação do compressor, que embora fixas, são distintas como apresentado na figura 16. O COP final é muito similar entre P1 e P3, isto ocorre pois, embora a capacidade de resfriamento de P1 seja menor que a de P3, a razão entre capacidade de resfriamento e potência de consumo do compressor, isto é, o COP, neste caso são ambas muito similares.



Figura 17 – Análise do COP nas Perturbações P1 e P3

### 3.4.2 Efeito da Frequência de Rotação do Compressor no COP

Nesta situação, ao aumentar a frequência de rotação do compressor, a capacidade de resfriamento do sistema aumenta, como pode ser visto na figura 18. Isto ocorre devido entalpia de saída e diminuição da entalpia de entrada do ar. O que consequentemente causa o aumento da capacidade de resfriamento do evaporador.

Figura 18 – Capacidade de Resfriamento e Potência de Consumo do Compressor nas Perturbações



No entanto o oposto ocorre no COP, como pode ser visto na figura 19, o COP diminui com o aumento da frequência de rotação do compressor. Este resultado é bem documentado na literatura, por exemplo Masche *et al.* (2021) explica que o COP diminui devido ao aumento da potência de consumo do compressor, aumentar mais que a capacidade de resfriamento do sistema. Também pode estar atrelado às quedas de pressão do fluido refrigerante ao passar pelos trocadores de calor como mencionado estudado por Constantino e Kanizawa (2022) o que pode levar a diminuição também da eficiência da compressão em rotações mais elevadas como mencionado por Stoecker (1998).



Figura 19 – Análise do COP nas Perturbações P2

#### 3.4.3 Efeito da Histerese no COP

Conforme Masche *et al.* (2021), a influência da histerese no COP é muito mais dramática do que na capacidade resfriamento do sistema. Isto acontece pois, o trabalho de entrada de refrigeradores eficientes é muito baixo. o COP cai rapidamente e a histerese aumentada devido a redução da capacidade de resfriamento e o aumento do trabalho de entrada do compressor. Esta frase é possível de ser verificada, para a capacidade de resfriamento, observando a figura 20. Ela demostra como a capacidade de resfriamento e a potência de consumo do compressor variam nas perturbações P4 e P5. A potência de consumo do compressor varia, para efeitos práticos, quase que instantaneamente, enquanto a capacidade de resfriamento varia de forma mais lenta e gradual, pois o transiente das entalpias estão relacionados aos transientes de umidade e temperaturas do evaporador, que dependem também do restante do sistema, enquanto a rotação do compressor apenas ao inversor.

Figura 20 – Capacidade de Resfriamento e Potência de Consumo do Compressor nas Perturbações P4 e P5



Utilizando a equação 2, então é possível determinar o COP do sistema nas perturbações P4 e P5, o que pode ser visto na figura 21, nota-se que a histerese do COP, como dito por Masche *et al.* (2021), é bem acentuada e isto ocorre devido ao impacto da variação da potência de consumo do compressor ser consideravelmente maior do que a variação da capacidade de resfriamento do sistema.



Figura 21 – Análise do COP e Histerese

## 3.5 PARÂMETROS DE CONTROLE

### 4 CONCLUSÃO

Neste trabalho, foi proposta a análise experimental do comportamento transiente de um sistema automotivo de condicionamento de ar, para isso, foi realizada a identificação dos modos de operação para controle da rotação do compressor, a adaptação da bancada experimental e análise dos resultados de um sistema de condicionamento de ar automotivo do laboratório de refrigeração veicular (REVE), assim como dos modos de operação.

O aparato experimental passou por ajustes e modificações necessárias e encontra-se plenamente preparado para a realização dos experimentos.

O plano experimental foi estruturado para garantir que as condições entre os transientes estejam definidas para a realização dos testes. Essa abordagem visa garantir a confiabilidade e a reprodutibilidade dos dados coletados durante os experimentos. O aluno que dará continuidade aos experimentos já está atuando no laboratório e em treinamento para obtenção dos dados experimentais.

Sendo assim, a execução das etapas previstas até o momento está concluída. Os testes previstos no cronograma do projeto serão realizados a partir do início de 2025.

### **REFERÊNCIAS**

BHATTI, M. S. Riding in Comfort, Part 2: Evolution of Automotive Air Conditioning. **ASHRAE Journal**, v. 41, n. 8, p. 51–57, 1999. Disponível em:

https://www.ashrae.org/file%20library/about/mission%20and%20vision/ashrae% 20and%20industry%20history/evolution-of-automotive-heating-riding-in-comfort-part-ii.pdf. Acesso em: 28 nov. 2024.

CAVALLARO, Alberto; BULLARD, C.W. Effects of Varying Fan Speed on a Refrigerator/Freezer System. **ACRC**, jul. 1994.

CHAPRA, Steven C. **Métodos Númericos Aplicados com MatLab para Engenheiros e Cientistas**. 3. ed. Porto Alegre: AMGH, 2013.

CHEN, Yiming *et al.* A study on the operational stability of a refrigeration system having a variable speed compressor. **International Journal of Refrigeration**, v. 31, n. 8, p. 1368–1374, 2008. ISSN 0140-7007. DOI:

https://doi.org/10.1016/j.ijrefrig.2008.04.012.

CONSTANTINO, Matheus Coitinho; KANIZAWA, Fabio Toshio. Evaluation of pressure drop effect on COP of single-stage vapor compression refrigeration cycles. **Thermal Science and Engineering Progress**, v. 28, p. 101048, 2022. ISSN 2451-9049. DOI: https://doi.org/10.1016/j.tsep.2021.101048. Disponível em: https://www.sciencedirect.com/science/article/pii/S2451904921002092.

DA SILVA, D.L.; DE OLIVEIRA, I.S.; JULIANI, A.D.P. *et al.* Avaliação do desempenho térmico de sistemas de ar condicionado automotivo: uma abordagem experimental combinando primeira e segunda leis da termodinâmica. **J. Braz. Soc. Mech. Sci. Eng.**, v. 46, p. 703, 2024. DOI: 10.1007/s40430-024-05283-1. Acesso em: 28 nov. 2024.

DA SILVA, D.L.; MELO, Cláudio. A Perspective on R&D&I Activities in the Brazilian Mobile Air Conditioning Market. *In:* 16TH Brazilian Congress of Thermal Sciences and Engineering. Vitória, ES, Brazil: [s. n.], 2016. Disponível em: https://refridynamics.ufsc.br/. Acesso em: 10 out. 2024.

DATTA, Santanu; DAS, Prasanta Kumar; MUKHOPADHYAY, Siddhartha. **Effect of Refrigerant Charge, Compressor Speed and Air Flow Through the Evaporator on the Performance of an Automotive Air Conditioning Systemm**. *In:* Disponível em: https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=2469&context=iracc#: ~:text=Increase%20of%20blower%20speed%20induces, are%20direct%20outcome%20of%20that.&text=Figure%204%20describes%20the%20effect, compressor%20speeds%20and%20blower%20settings.. Acesso em: 13 jun. 2025.

DE OLIVEIRA, Igor Santos. **Avaliação do desempenho energético de sistemas automotivos de condicionamento de ar**. *In:* 33º Seminário de Iniciação Científica e Tecnológica. Santa Catarina, Brazil: Universidade Federal de Santa Catarina, 2023. Acesso em: 10 nov. 2024.

FARRINGTON, R.; RUGH, J. Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range. *In:* EARTH Technologies Forum. Washington, D.C.: National Renewable Energy Laboratory (NREL), 2000.

JULIANI, Aline Durrer; JASKOWIAK, Pablo Andretta; DA SILVA, Diogo Lôndero. III Congresso Nacional das Engenharias da Mobilidade. 2017.

JUNIOR, Alan Coelho Kremer. **Modelagem matemática e simulação de um condensador do tipo tubo aleta empregado em um condicionador de ar doméstico**. 2023. Diss. (Mestrado) – Universidade Federal de Santa Catarina, Santa Catarina, Brazil. Disponível em: <a href="https://repositorio.ufsc.br/handle/123456789/245221">https://repositorio.ufsc.br/handle/123456789/245221</a>. Acesso em: 28 nov. 2024.

LONDERO, Diogo da Silva *et al.* Experimental Thermal Performance Evaluation of an Automotive Air Conditioning System. *In:* COBEM. Florianópolis: [s. n.], jan. 2023. DOI: 10.26678/ABCM.COBEM2023.COB2023-1460.

MASCHE, M. et al. Impact of hysteresis on caloric cooling performance. International Journal of Refrigeration, v. 121, p. 302–312, 2021. ISSN 0140-7007. DOI: https://doi.org/10.1016/j.ijrefrig.2020.10.012. Disponível em: https://www.sciencedirect.com/science/article/pii/S0140700720304229.

MINISTÉRIO DOS TRANSPORTES. Frota Nacional (Novembro de 2024). 2024. Disponível em: https://www.gov.br/transportes/pt-br/assuntos/transito/conteudo-Senatran/frota-de-veiculos-2024. Acesso em: 12 dez. 2024.

PHILLIPPI, Greg. **Turbomachinery Laboratory, Texas A&M Engineering Experiment Station**. *In:* BASIC Thermodynamics of Reciprocating Compression. [*S. I.: s. n.*], 2008. Disponível em: https://core.ac.uk/download/pdf/147252848.pdf. Acesso em: 13 jun. 2025.

RANGEL, Sergio de Camargo. **Simulação transiente de um sistema de refrigeração doméstico - Análise paramétrica**. 2007. f. 102. Diss. (Mestrado) – Universidade de São Paulo, São Carlos, Brazil.

REVE. Laboratório de Refrigeração Veicular. 2023. Disponível em: https://refridynamics.ufsc.br/. Acesso em: 20 out. 2024.

STOECKER, W. F.; JONES, J. W. **Refrigeration and Air Conditioning**. 2. ed. Porto Alegre: McGraw-Hill, 1982.

STOECKER, Wilbert F. **Industrial Refrigeration Handbook**. 1st. New York: McGraw-Hill, 1998.