Lecture 1

TRAINING datapoints

 $x_1, \dots, x_n \in \mathbb{R}^d$ $y_1, \dots, y_n \in \{-1, +1\}$

UNSEEN | new datapoint

× -> what is y!

Learn the dependency

× --> y

	Color	Height	Width
(2)	green	smoll	large
Ø	red	small	Mene
3	blue	Shoul	Smell
4	Ved	large	Small
5	green	large	Small
6	yellow	large	small

green 0 height small 0
ved 1
blue 2
yellow 3 width small 0
large 1

 x_1 , ..., $\times_N \in \mathbb{R}$

n=6 d=3

$$P(y=\pm 1|x, \emptyset)$$
new dataset $\{(x, y, \dots, (x_n, y_n)\}$
datapoint

$$= \frac{1}{K} \sum_{i \in eV_K(x, \emptyset)} \mathcal{A}(y_i = +1)$$

$$ext{eq} \left(\begin{array}{c} \times \\ \times \end{array} \right)$$
 the set of nearest-neighbors of x in x distance between $x = x$ and $x = x$

$$K=3 \quad \mathcal{N}_3(\times, \infty) = \{1, s, 5\}$$

$$P(y=+1 \mid x, \emptyset)$$

$$= \frac{1}{3} \geq (y=+1)$$

$$\{1, 3, 5\}$$

$$\begin{array}{ccc}
\times_{1} & y_{1} = +1 \\
\times_{3} & Y_{3} = +1 \\
\times_{5} & Y_{5} = -1
\end{array}$$

$$\rho(y=+1/x, \infty)
= \frac{1}{3} \sum_{i \in \{1,3,5\}} 4(y_i = +1)
= \frac{1}{3} \times \{1,3,5\}
= \frac{1}{3} \times \{1+1+0\}$$

Binary supervised classification

TRAINING SET

1 - Nearest - neighbor large sample training set n --> + 0 d << n asymptotic setting error of 1-NN number of mistakes 2 x best error possible Error = 1%. 1-NN cror = 2% 15/, 35%.

$$\frac{1}{h}$$
 $\frac{1}{n-1+a}$

$$K \ll n$$
 $K = \frac{\sqrt{n}}{2}$

$$K - NN$$
 with $K = o(n)$

Approximate NN search

$$\widetilde{d_i} = \| \times - \times i \|_{\mathbf{Z}}$$

Hashing techniques

$$x \in \mathbb{R}^d$$
 Ax

A:
$$iid$$
 $eN(0,1)$ $\forall i,j \in \{1,...,p\}$

$$\times \{1,...,p\}$$

Linear models

$$\begin{array}{c|c} x \in \mathbb{R} \\ \beta_1 \in \mathbb{R}^{d-1} \\ \vdots \\ \beta_{d-1} \end{array}$$

$$\begin{array}{c|c} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{d-1} \end{array}$$

$$y = x'\beta + (\beta_0)^{\epsilon} \quad \text{Interact}$$

$$x^T\beta = \left[x' \mid x^2 \mid x^3 \mid x^4\right] \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_4 \end{bmatrix}$$

$$= \sum_{j=1}^{4} \beta_j x^j$$

Min
$$\beta, \beta = \frac{1}{n} \left[\frac{1}{3} - x; \beta^{2} \right]^{2}$$

$$+ \frac{\lambda}{2} \left[\frac{1}{3} - x; \beta^{2} \right]^{2}$$
REGULARIZATION

. $\|\beta\|_2^2$ L_2 reg° penalty

. $\|\beta\|_2$ L_1 reg penalty

— sparsity

select features

LASSO Min $\frac{1}{n} \stackrel{\circ}{\underset{i=1}{\sum}} \left(g_i - \left(\chi_i^T \beta + \beta_0 \right) \right)^2$

Model evaluation

Training wron

Test error