Basics of Convex Optimization

Yanze Song

January 19, 2024

1 Introduction to Convexity

Convex Sets 1.1

Definition 1.1.1 (Lines and Line Segments). Let $x, y \in \mathbb{R}^n$ be two distinct points, then

- $\{\theta x + (1 \theta)y : \theta \in \mathbb{R}\}$ represents the line passing through x and y,
- $\{\theta x + (1 \theta)y : \theta \in [0, 1]\}$ represents the line segment passing through x and y.

Definition 1.1.2 (Affine Sets). A set $A \subseteq \mathbb{R}^n$ is affine if for all $x, y \in A$, $\theta \in \mathbb{R}$,

$$\theta x + (1 - \theta)y \in A$$
.

Definition 1.1.3 (Convex Sets). A set $\mathcal{C} \subseteq \mathbb{R}^n$ is convex if for all $x, y \in \mathcal{C}$, $\theta \in [0, 1]$,

$$\theta x + (1 - \theta)y \in C$$
.

1.2 Convex Set Examples

Definition 1.2.1 (Hyperplanes, Halfspaces & Polyhedra). Let $a \in \mathbb{R}^n \setminus \{0\}$, $b \in \mathbb{R}$, $A \in \mathcal{M}_n(\mathbb{R})$, $B \in \mathcal{M}_m(\mathbb{R})$, $\boldsymbol{b} \in \mathbb{R}^n$, $\boldsymbol{d} \in \mathbb{R}^m$, then

- A hyperplane has the form $\{x : a^Tx = b\}$,
- A halfspace has the form $\{x : a^T x \leq b\}$,
- A polyhedron has the form $\{x : Ax = b, Bx \leq d\}$.

Proposition 1.2.1. Hyperplanes, halfspaces and polyhedra are all convex. In particular, hyperplanes are affine.

Proof. We'll first prove that polyhedra are convex. Let $\mathcal{P} = \{x : Ax = b, Bx \leq d\}$ be a polyhedron, then for all $x, y \in \mathcal{P}, \theta \in [0, 1], \text{ consider } \theta x + (1 - \theta)y$:

$$A(\theta x + (1 - \theta)y) = \theta Ax + (1 - \theta)Ay = \theta b + (1 - \theta)b = b,$$

$$B(\theta x + (1 - \theta)x) = \theta Bx + (1 - \theta)Bx \leq \theta d + (1 - \theta)d = d$$

$$B(\theta x + (1 - \theta)y) = \theta Bx + (1 - \theta)By \le \theta d + (1 - \theta)d = d.$$

We proved that $\theta x + (1 - \theta)y \in \mathcal{P}$, and therefore \mathcal{P} is convex. It's trivial to see that hyperplanes are affine.

Operations that Preserve the Convexity of Sets

Proposition 1.3.1. Let $C_1, C_2 \subseteq \mathbb{R}^n$ be convex, then $C_1 \cap C_2$ is also convex.

Proof. For all $x, y \in C_1 \cap C_2$, $\theta \in [0, 1]$, consider $\theta x + (1 - \theta)y$:

$$x, y \in C_1 \Rightarrow \theta x + (1 - \theta)y \in C_1, x, y \in C_2 \Rightarrow \theta x + (1 - \theta)y \in C_2,$$

that is, we have $\theta x + (1 - \theta)y \in \mathcal{C}_1 \cap \mathcal{C}_2$, and this completes the proof.

Definition 1.3.1 (Affine Functions). Let $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ be a function, then \mathbf{f} is affine if there exists $A \in \mathcal{M}_{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$ s.t. for all $\mathbf{x} \in \mathbb{R}^n$,

$$f(x) = Ax + b.$$

In particular, scalar and linear (equivalently, matrix) transformations are affine transformations.

Proposition 1.3.2. Let $C \subseteq \mathbb{R}^n$ be convex, and $f : \mathbb{R}^n \to \mathbb{R}^m$ be an affine function, then f(C), i.e. the image of f over C is also convex.

Proof. For all $y_1, y_2 \in f(\mathcal{C})$, there exist $x_1, x_2 \in \mathcal{C}$ s.t.

$$f(x_1) = Ax_1 + b = y_1, f(x_2) = Ax_2 + b = y_2.$$

We'll then show that $\theta y_1 + (1 - \theta)y_2 \in f(\mathcal{C})$ for all $\theta \in [0, 1]$ as well:

$$\theta y_1 + (1 - \theta)y_2 = \theta(Ax_1 + b) + (1 - \theta)(Ax_2 + b) = A(\theta x_1 + (1 - \theta)x_2) + b = f(\theta x_1 + (1 - \theta)x_2)$$

where $\theta x_1 + (1 - \theta)x_2 \in \mathcal{C}$, and this completes the proof.

1.4 Assumptions

Remark 1.4.1. Unless otherwise specified, we assume C is a **open** convex set throughout this note to resolve the differentiability issue. Or we can equivalently assume f is differentiable over an open set that contains C.

1.5 Convex Functions

Definition 1.5.1 (Convex Functions). A function $f: \mathcal{C} \to \mathbb{R}$ is convex if for all $\mathbf{x}, \mathbf{y} \in \mathcal{C}$, $\theta \in [0, 1]$,

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y}).$$

Definition 1.5.2 (Strictly Convex Functions). A function $f: \mathcal{C} \to \mathbb{R}$ is strictly convex if for all $\mathbf{x} \neq \mathbf{y} \in \mathcal{C}$, $\theta \in (0,1)$,

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y).$$

Definition 1.5.3 (Concave Functions). A function $f: \mathcal{C} \to \mathbb{R}$ is concave if -f is convex. It is equivalent to define that f is concave if for all $\mathbf{x}, \mathbf{y} \in \mathcal{C}$, $\theta \in [0, 1]$,

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \ge \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y}).$$

Definition 1.5.4 (Affine Functions). A function $f: \mathbb{R}^n \to \mathbb{R}$ is affine if for all $x, y \in \mathbb{R}^n$, $\theta \in [0, 1]$,

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) = \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y}).$$

This is equivalent to Definition 1.3.1.

Proof. We're to prove for all $x, y \in \mathbb{R}^n, \theta \in [0, 1]$,

$$f(\theta x + (1 - \theta)y) = \theta f(x) + (1 - \theta)f(y) \Leftrightarrow f(x) = a^{T}x + b, \forall x \in \mathbb{R}^{n}$$

for some $a \in \mathbb{R}^n$, $b \in \mathbb{R}$. We'll first prove \Leftarrow . For all $x, y \in \mathbb{R}^n$, $\theta \in [0, 1]$, we have

$$f(\theta \boldsymbol{x} + (1 - \theta)\boldsymbol{y}) = \boldsymbol{a}^T(\theta \boldsymbol{x} + (1 - \theta)\boldsymbol{y}) + \boldsymbol{b} = \theta(\boldsymbol{a}^T\boldsymbol{x} + \boldsymbol{b}) + (1 - \theta)(\boldsymbol{a}^T\boldsymbol{y} + \boldsymbol{b}) = \theta f(\boldsymbol{x}) + (1 - \theta)f(\boldsymbol{y}).$$

Conversely, we define $g: \mathbb{R}^n \to \mathbb{R}$ s.t. g(x) = f(x) - f(0), then it's equivalent to prove that g is linear. Note that g satisfies the LHS as well, and g(0) = 0.

• g preserves scalar multiplication, i.e., $\forall \alpha \in \mathbb{R} = [0,1] \cup (1,\infty) \cup (-\infty,0) : g(\alpha x) = \alpha g(x)$:

$$-\alpha \in [0,1] \Rightarrow \alpha, 1-\alpha \in [0,1]$$
:

$$g(\alpha \mathbf{x}) = g(\alpha \mathbf{x} + (1 - \alpha)\mathbf{0}) = \alpha g(\mathbf{x}) + (1 - \alpha)g(\mathbf{0}) = \alpha g(\mathbf{x})$$
(1)

$$-\alpha \in (1,\infty) \Rightarrow \frac{1}{\alpha} \in [0,1]$$
:

$$g(\alpha \mathbf{x}) = \alpha \frac{1}{\alpha} g(\alpha \mathbf{x}) \stackrel{(1)}{=} \alpha g(\frac{1}{\alpha} \alpha \mathbf{x}) = \alpha g(\mathbf{x})$$
 (2)

$$-\alpha \in (-\infty, 0) \Rightarrow -\alpha \in (0, \infty)$$
:

$$g(\alpha \mathbf{x}) = g(-\alpha(-\mathbf{x})) = -\alpha g(\mathbf{0} - \mathbf{x}) \stackrel{(4)}{=} -\alpha(g(\mathbf{0}) - g(\mathbf{x})) = \alpha g(\mathbf{x})$$
(3)

• g preserves addition, i.e., $\forall x, y \in \mathbb{R}^n : g(x + y) = g(x) + g(y)$: Let $\theta \in (0, 1)$, then

$$g(\boldsymbol{x} + \boldsymbol{y}) = g(\theta \frac{1}{\theta} \boldsymbol{x} + (1 - \theta) \frac{1}{1 - \theta} \boldsymbol{y}) = \theta g(\frac{1}{\theta} \boldsymbol{x}) + (1 - \theta) g(\frac{1}{1 - \theta} \boldsymbol{y}) \stackrel{\text{(1)}}{=} g(\boldsymbol{x}) + g(\boldsymbol{y}). \tag{4}$$

1.6 Theorems of Convex Functions

Proposition 1.6.1. Let $f: \mathcal{C} \to \mathbb{R}$ be a function, then

f is affine $\Leftrightarrow f$ is both convex and concave.

Proof. This holds if dom $(f) = \mathbb{R}^n$, so it directly applies to \mathcal{C} .

Proposition 1.6.2 (Convex Along All Lines). Let $f: \mathcal{C} \to \mathbb{R}$ be a function, then f is convex if and only if for all $x \in \mathcal{C}$, $d \in \mathcal{D} = \{d \in \mathbb{R}^n : \exists t > 0 : x + td \in \mathcal{C}\}$, i.e. the set of all feasible directions at x,

$$g(t) = f(x + td)$$
 is convex,

where $dom(g) = \{t : x + td \in \mathcal{C}\}.$

Proof. It's trivial to show that dom(g) is convex. Assume f is convex, then for all $t_1, t_2 \in dom(g), \theta \in [0, 1]$,

$$g(\theta t_1 + (1 - \theta)t_2) = f(\mathbf{x} + (\theta t_1 + (1 - \theta)t_2)\mathbf{d}) = f(\theta(\mathbf{x} + t_1\mathbf{d}) + (1 - \theta)(\mathbf{x} + t_2\mathbf{d}))$$

= $\theta f(\mathbf{x} + t_1\mathbf{d}) + (1 - \theta)f(\mathbf{x} + t_2\mathbf{d}) = \theta g(t_1) + (1 - \theta)g(t_2).$

Conversely, assume g is convex, then for all $x, y \in \mathcal{C}, \theta \in [0, 1],$

$$f(\theta \mathbf{y} + (1 - \theta)\mathbf{x}) = f(\mathbf{x} + \theta(\mathbf{y} - \mathbf{x})) = g(\theta)$$
$$= g(\theta \cdot 1 + (1 - \theta) \cdot 0) = \theta g(1) + (1 - \theta)g(0) = \theta f(\mathbf{y}) + (1 - \theta)f(\mathbf{x}).$$

Theorem 1.6.1 (First Order Convexity Condition). Let $f: \mathcal{C} \to \mathbb{R}$ be a differentiable function, then f is convex if and only if for all $x, y \in \mathcal{C}$,

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle.$$

Proof. First we assume f is convex, then for all $x, y \in \mathcal{C}$, $\theta \in (0, 1]$,

$$f(\theta y + (1 - \theta)x) \le \theta f(y) + (1 - \theta)f(x) \Rightarrow \frac{f(\theta y + (1 - \theta)x) - f(x)}{\theta} + f(x) \le f(y).$$

Let $g(\theta) = f(\theta y + (1 - \theta)x)$, so in particular f(x) = g(0), then it becomes for all $\theta \in (0, 1]$,

$$\frac{g(0+\theta)-g(0)}{\theta}+f(\boldsymbol{x})\leq f(\boldsymbol{y}).$$

With $\theta \to 0^+$ we have $g'(0) + f(x) \le f(y)$, where $g'(0) = \langle \nabla f(\theta y + (1 - \theta)x), y - x \rangle|_{\theta=0} = \langle \nabla f(x), y - x \rangle$. Conversely, for all $x \ne y \in \mathcal{C}$ (the case x = y is trivial), $\theta \in [0, 1]$, let $z = \theta x + (1 - \theta)y \in \mathcal{C}$, then

$$f(x) \ge f(z) + \langle \nabla f(z), x - z \rangle,$$
 (5)

$$f(\mathbf{y}) \ge f(\mathbf{z}) + \langle \nabla f(\mathbf{z}), \mathbf{y} - \mathbf{z} \rangle,$$
 (6)

and $\theta \cdot (5) + (1 - \theta) \cdot (6)$ completes the proof.

Remark 1.6.1. Here're some details for $g'(\theta)$:

$$g(\theta) = f(\underbrace{\theta y + (1 - \theta)x}_{u(\theta)}) = f(\underbrace{\theta y_1 + (1 - \theta)x_1}_{u_1(\theta)}, ..., \underbrace{\theta y_n + (1 - \theta)x_n}_{u_n(\theta)}),$$

so by the Chain Rule,

$$\frac{dg}{d\theta} = \frac{d}{d\theta} f(u_1(\theta), ..., u_n(\theta)) = \sum_{i=1}^n \frac{\partial f}{\partial u_i} \frac{du_i}{d\theta} = \sum_{i=1}^n \frac{\partial f}{\partial u_i} (y_i - x_i)$$

$$= \langle \nabla f(\mathbf{u}), \mathbf{y} - \mathbf{x} \rangle = \langle \nabla f(\theta \mathbf{y} + (1 - \theta)\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle.$$

Theorem 1.6.2 (Second Order Convexity Condition). Let $f: \mathcal{C} \to \mathbb{R}$ be a twice differentiable function, then f is convex if and only if for all $\mathbf{x} \in \mathcal{C}$,

$$\nabla^2 f(\boldsymbol{x}) \geq \boldsymbol{0}.$$

Proof. For all $x \in \mathcal{C}$, we have for all $d \in \mathbb{R}^n$, $x + td \in \mathcal{C}$ for some small t > 0. Then by the Taylor's Theorem,

$$f(\boldsymbol{x} + t\boldsymbol{d}) = f(\boldsymbol{x}) + t\langle \nabla f(\boldsymbol{x}), \boldsymbol{d} \rangle + \frac{1}{2}t^2\boldsymbol{d}^T\nabla^2 f(\boldsymbol{x})\boldsymbol{d} + o(t^2)$$

1.7 Optimality of Convex Functions

Theorem 1.7.1 (Local & Global Optimality). Let $f: \mathcal{C} \to \mathbb{R}$ be a convex function, then any locally optimal point is also globally optimal.

Proof. Let x^* be a local optimum, then there exists R > 0 s.t. for all $x \in \{x \in \mathcal{C} : ||x - x^*|| \le R\}$,

$$f(\boldsymbol{x}^*) \leq f(\boldsymbol{x}).$$

To prove by contradiction, assume there exists $x_0 \in \mathcal{C} \setminus \{x^*\}$ s.t.

$$f(\boldsymbol{x}_0) < f(\boldsymbol{x}^*),$$

and it's clear that $\|\boldsymbol{x}_0 - \boldsymbol{x}^*\| > R$. Now consider the point $\boldsymbol{x}_R = \theta \boldsymbol{x}^* + (1 - \theta) \boldsymbol{x}_0 \in \mathcal{C}$ where $\theta = 1 - \frac{R}{\|\boldsymbol{x}_0 - \boldsymbol{x}^*\|} \in (0, 1)$, note that $\|\boldsymbol{x}_R - \boldsymbol{x}^*\| = R$, then

$$f(\theta x^* + (1 - \theta)x_0) = f(x_R) \ge f(x^*) > \theta f(x^*) + (1 - \theta)f(x_0),$$

which contradicts with the convexity of f, and this completes the proof.

Theorem 1.7.2 (First Order Optimality Condition). Let $f: \mathcal{C} \to \mathbb{R}$ be convex and differentiable, then \mathbf{x}^* minimizes f over \mathcal{C} if and only if for all $\mathbf{x} \in \mathcal{C}$,

$$\langle \nabla f(\mathbf{x}^*), \mathbf{x} - \mathbf{x}^* \rangle \ge 0. \tag{7}$$

In particular if $C = \mathbb{R}^n$, then \mathbf{x}^* minimizes f over \mathbb{R}^n if and only if

$$\nabla f(\boldsymbol{x}^*) = \mathbf{0}.$$

Proof. To prove by contradiction, assume x^* minimizes f over C, and there exists $x_0 \in C$ s.t. $\langle \nabla f(x^*), x_0 - x^* \rangle < 0$. Similar to Theorem 1.6.1, define $g(\theta) = f(\theta x_0 + (1 - \theta)x^*)$, then

$$\lim_{\theta \to 0^+} \frac{g(0+\theta) - g(0)}{\theta} = \langle \nabla f(\boldsymbol{x}^*), \boldsymbol{x}_0 - \boldsymbol{x}^* \rangle < 0,$$

which implies that $g(0 + \theta) < g(0)$ for some small $\theta > 0$, contradicting with the minimality of \boldsymbol{x}^* . Conversely, assume $\langle \nabla f(\boldsymbol{x}^*), \boldsymbol{x} - \boldsymbol{x}^* \rangle \geq 0 \Rightarrow f(\boldsymbol{x}^*) + \langle \nabla f(\boldsymbol{x}^*), \boldsymbol{x} - \boldsymbol{x}^* \rangle \geq f(\boldsymbol{x}^*)$. By Theorem 1.6.1, for all $\boldsymbol{x} \in \mathcal{C}$,

$$f(\boldsymbol{x}) \ge f(\boldsymbol{x}^*) + \langle \nabla f(\boldsymbol{x}^*), \boldsymbol{x} - \boldsymbol{x}^* \rangle \ge f(\boldsymbol{x}^*),$$

showing that \boldsymbol{x}^* minimizes f over \mathcal{C} . If $\mathcal{C} = \mathbb{R}^n$, assume \boldsymbol{x}^* minimizes f over \mathbb{R}^n , and $\frac{\partial}{\partial x_i} f(\boldsymbol{x}^*) \neq 0$ for some i. We then have $f(\boldsymbol{x}^* + \theta \boldsymbol{e}_i) < f(\boldsymbol{x}^*)$ for some small $\theta \neq 0$, which contradict with the minimality of \boldsymbol{x}^* . The converse can be proved directly using the above part.

1.8 Other types of Convex Functions

1.8.1 Strong Convexity

Definition 1.8.1 (Strongly Convex Functions). A function $f: \mathcal{C} \to \mathbb{R}$ is σ -strongly convex w.r.t. some norm $\|\cdot\|$ for some $\sigma > 0$ if for all $\mathbf{x}, \mathbf{y} \in \mathcal{C}$, $\theta \in [0, 1]$,

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y) - \frac{\sigma}{2}\theta(1 - \theta)||x - y||^2$$

Proposition 1.8.1 (Quadratic Lower Bound of Strongly Convex Functions). Let $f: \mathcal{C} \to \mathbb{R}$ be differentiable, then f is σ -strongly convex if and only if for all $\mathbf{x}, \mathbf{y} \in \mathcal{C}$,

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\sigma}{2} ||y - x||^2.$$

Proof. It's very similar to Proof 1.6. Let f be σ -strongly convex, then for all $x, y \in \mathcal{C}$, $\theta \in (0, 1]$,

$$f(\theta y + (1 - \theta)x) \le \theta f(y) + (1 - \theta)f(x) - \frac{\sigma}{2}\theta(1 - \theta)\|y - x\|^2$$

$$\Rightarrow f(x) + \frac{f(\theta y - (1 - \theta)x) - f(x)}{\theta} + \frac{\sigma}{2}(1 - \theta)\|y - x\|^2 \le f(y),$$

then with $\theta \to 0^+$ we completes the proof for \Rightarrow . Conversely, for all $\boldsymbol{x} \neq \boldsymbol{y} \in \mathcal{C}$, $\theta \in [0,1]$, let $\boldsymbol{z} = \theta \boldsymbol{x} + (1-\theta)\boldsymbol{y}$, then

$$f(x) \ge f(z) + \langle \nabla f(z), x - z \rangle + \frac{\sigma}{2} ||x - z||^2,$$
 (8)

$$f(\mathbf{y}) \ge f(\mathbf{z}) + \langle \nabla f(\mathbf{z}), \mathbf{y} - \mathbf{z} \rangle + \frac{\sigma}{2} \|\mathbf{y} - \mathbf{z}\|^2$$
 (9)

and $\theta \cdot (8) + (1 - \theta) \cdot (9)$ we get $f(\theta \boldsymbol{x} + (1 - \theta)\boldsymbol{y}) \le \theta f(\boldsymbol{x}) + (1 - \theta)f(\boldsymbol{y}) - \sigma\theta(1 - \theta)\|\boldsymbol{x} - \boldsymbol{y}\|^2$, which implies the one in Definition 1.8.1.

Proposition 1.8.2 (Sum of Strongly Convex Functions). Let $f: \mathcal{C} \to \mathbb{R}$ be σ -strongly convex, $g: \mathcal{C} \to \mathbb{R}$ be convex, both of which are differentiable, then

h = f + g is also σ -strongly convex.

Proof. For $x, y \in \mathcal{C}$,

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\sigma}{2} ||y - x||^2,$$

 $g(y) \ge g(x) + \langle \nabla f(x), y - x \rangle,$

and after adding we have

$$\underbrace{f(\boldsymbol{y}) + g(\boldsymbol{y})}_{h(\boldsymbol{y})} \geq \underbrace{f(\boldsymbol{x}) + g(\boldsymbol{x})}_{h(\boldsymbol{x})} + \langle \underbrace{\nabla f(\boldsymbol{x}) + \nabla g(\boldsymbol{x})}_{\nabla h(\boldsymbol{x})}, \boldsymbol{y} - \boldsymbol{x} \rangle + \frac{\sigma}{2} \|\boldsymbol{y} - \boldsymbol{x}\|^2,$$

so h = f + g is σ -strongly convex.

Proposition 1.8.3. Let $f: \mathcal{C} \to \mathbb{R}$ be differentiable and σ -strongly convex w.r.t. some norm $\|\cdot\|$, and $\mathbf{x}^* = \operatorname{argmin}_{\mathbf{x} \in \mathcal{C}} f(\mathbf{x})$, then for all $\mathbf{x} \in \mathcal{C}$, we have

$$f(x) - f(x^*) \ge \frac{\sigma}{2} ||x - x^*||^2.$$

Proof. By strong convexity,

$$f(\boldsymbol{w}) - f(\boldsymbol{w}^*) \ge \langle \nabla f(\boldsymbol{w}^*), \boldsymbol{w} - \boldsymbol{w}^* \rangle + \frac{\sigma}{2} \|\boldsymbol{w} - \boldsymbol{w}^*\|^2,$$

where $\langle \nabla f(\boldsymbol{w}^*), f(\boldsymbol{w}) - \boldsymbol{w}^* \rangle \geq 0$ by convexity, and this completes the proof. This gives a bit more information than $f(\boldsymbol{w}) - f(\boldsymbol{w}^*) \geq 0$.

1.8.2 Lipschitz Continuity

Definition 1.8.2 (Lipschitz Continuous Functions). A function $f: \mathcal{X} \to \mathbb{R}$ is L-Lipschitz continuous w.r.t. some norm $\|\cdot\|$ if for all $x, y \in \mathcal{X}$, we have

$$|f(x) - f(y)| \le L||x - y||.$$

Proposition 1.8.4 (Lipschitzness, Convexity and Bounded Gradient). Let $f: \mathcal{C} \to \mathbb{R}$ be convex and differentiable, then f is L-Lipschitz w.r.t. some norm $\|\cdot\|$ if and only if for all $x \in \mathcal{C}$,

$$\|\nabla f(\boldsymbol{x})\| \leq L.$$

Proof. For all $x \in \text{int}(\mathcal{C})$, there exist $\eta > 0$ s.t. $x + \eta \nabla f(x) \in \mathcal{C}$. By Theorem 1.6.1,

$$f(x + \eta \nabla f(x)) > f(x) + \langle \nabla f(x), x + \eta \nabla f(x) - x \rangle \Rightarrow |f(x + \eta \nabla f(x)) - f(x)| > ||\eta \nabla f(x)||^2$$

and then by lipschitzness,

$$|L||x + \eta \nabla f(x) - x|| > |f(x + \eta \nabla f(x)) - f(x)| > ||\eta \nabla f(x)||^2$$

which yields $\|\nabla f(\boldsymbol{x})\| \leq L$.

1.9 Convex Function Examples

Example 1.9.1 (Common Convex and Concave Functions). The convexity of the followings can be proved using the above:

- e^x , $x \log x$, $-\log x$ are convex
- x^{α} is convex on $\mathbb{R}_{>0}$ for $\alpha \geq 1$ or $\alpha \leq 0$
- Every norm $\|\boldsymbol{x}\|$ on \mathbb{R}^n is convex
- Geometric mean $f(\mathbf{x}) = (\prod_{i=1}^n x_i)^{\frac{1}{n}}$ is concave on $\mathbb{R}^n_{>0}$

1.10 Operations that Preserve the Convexity of Functions

Proposition 1.10.1 (Non-negative Weighted Sums). Let $f_1, f_2 : \mathcal{C} \to \mathbb{R}$ be convex, $\omega_1, \omega_2 \geq 0$, then

$$f = \omega_1 f_1 + \omega_2 f_2$$
 is convex.

Proof. For all $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{C}, \, \theta \in [0, 1],$

$$f(\theta \boldsymbol{x} + (1 - \theta)\boldsymbol{y}) = (\omega_1 f_1 + \omega_2 f_2)(\theta \boldsymbol{x} + (1 - \theta)\boldsymbol{y})$$

$$= \omega_1 f_1(\theta \boldsymbol{x} + (1 - \theta \boldsymbol{y})) + \omega_2 f_2(\theta \boldsymbol{x} + (1 - \theta)\boldsymbol{y})$$

$$\leq \theta \omega_1 f_1(\boldsymbol{x}) + (1 - \theta)\omega_1 f_1(\boldsymbol{y}) + \theta \omega_2 f_2(\boldsymbol{x}) + (1 - \theta)\omega_2 f_2(\boldsymbol{y})$$

$$= \theta f(\boldsymbol{x}) + (1 - \theta)f(\boldsymbol{y}).$$

Proposition 1.10.2 (Composition with an Affine Map). Let $f: \mathcal{C} \to \mathbb{R}$ be convex, $A \in \mathcal{M}_{m \times n}$, $b \in \mathbb{R}^m$, then

$$g(\mathbf{x}) = f(A\mathbf{x} + \mathbf{b})$$
 is convex,

where $dom(g) = \{x : Ax + b \in \mathcal{C}\}.$

Proof. For all $\boldsymbol{x}, \boldsymbol{y} \in \text{dom}(g), \ \theta \in [0, 1],$

$$\begin{split} g(\theta \boldsymbol{x} + (1 - \theta) \boldsymbol{y}) &= f(A(\theta \boldsymbol{x} + (1 - \theta) \boldsymbol{y}) + \boldsymbol{b}) \\ &= f(\theta (A \boldsymbol{x} + \boldsymbol{b}) + (1 - \theta) (A \boldsymbol{y} + \boldsymbol{b})) \\ &\leq \theta f(A \boldsymbol{x} + \boldsymbol{b}) + (1 - \theta) f(A \boldsymbol{y} + \boldsymbol{b}) \\ &= \theta g(\boldsymbol{x}) + (1 - \theta) g(\boldsymbol{y}). \end{split}$$

Proposition 1.10.3 (Pointwise Maximum). Let $f_1, f_2 : \mathcal{C} \to \mathbb{R}$ be convex, then

$$f(\mathbf{x}) = \max\{f_1(\mathbf{x}), f_2(\mathbf{x})\}$$
 is convex.

Proof. For all $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{C}, \, \theta \in [0, 1],$

$$f(\theta \boldsymbol{x} + (1 - \theta)\boldsymbol{y}) = \max\{f_1(\theta \boldsymbol{x} + (1 - \theta)\boldsymbol{y}), f_2(\theta \boldsymbol{x} + (1 - \theta)\boldsymbol{y})\}$$

$$\leq \max\{\theta f_1(\boldsymbol{x}) + (1 - \theta)f_1(\boldsymbol{y}), \theta f_2(\boldsymbol{x}) + (1 - \theta)f_2(\boldsymbol{y})\}$$

$$\leq \theta \max\{f_1(\boldsymbol{x}), f_2(\boldsymbol{x})\} + (1 - \theta)\max\{f_1(\boldsymbol{y}), f_2(\boldsymbol{y})\}$$

$$= \theta f(\boldsymbol{x}) + (1 - \theta)f(\boldsymbol{y})$$

1.11 Relationship between Convex Sets and Convex Functions

Definition 1.11.1 (Graphs, Epigraphs, Level Sets and Sublevel Sets). Let $f: \mathcal{X} \to \mathbb{R}$ be a function, then

- The graph of f is defined as $\{(\boldsymbol{x}, f(\boldsymbol{x})) : \boldsymbol{x} \in \mathcal{X}\} \subseteq \mathbb{R}^{n+1}$,
- The epigraph of f is defined as $\{(x,t): x \in \mathcal{X}, t \geq f(x)\} \subseteq \mathbb{R}^{n+1}$, denoted by epi(f),
- The α -level set of f is defined as $\{x : x \in \mathcal{X}, f(x) = \alpha\}$,
- The α -sublevel set of f is defined as $\{x : x \in \mathcal{X}, f(x) \leq \alpha\}$, denoted by C_{α} .

Proposition 1.11.1. Let $f: \mathcal{C} \to \mathbb{R}$ be a function, then f is convex if and only if

epi(f) is convex.

Proof. Assume f is convex, then for all $(\boldsymbol{x}, t_1), (\boldsymbol{y}, t_2) \in \text{epi}(f), \ \theta \in [0, 1]$, consider $\theta(\boldsymbol{x}, f(\boldsymbol{x})) + (1 - \theta)(\boldsymbol{y}, f(\boldsymbol{y})) = (\theta \boldsymbol{x} + (1 - \theta)\boldsymbol{y}, \theta t_1 + (1 - \theta)t_2)$,

$$\theta t_1 + (1 - \theta)t_2 \ge \theta f(\boldsymbol{x}) + (1 - \theta)f(\boldsymbol{y}) \ge f(\theta \boldsymbol{x} + (1 - \theta)\boldsymbol{y}),$$

and hence $\theta(\boldsymbol{x}, f(\boldsymbol{x})) + (1 - \theta)(\boldsymbol{y}, f(\boldsymbol{y})) \in \text{epi}(f)$. Conversely, assume epi(f) is convex, then for all $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{C}, \theta \in [0, 1]$, consider $(\boldsymbol{x}, f(\boldsymbol{x})), (\boldsymbol{y}, f(\boldsymbol{y})) \in \text{epi}(f)$,

$$\theta(\boldsymbol{x}, f(\boldsymbol{x})) + (1 - \theta)(\boldsymbol{y}, f(\boldsymbol{y})) = (\theta \boldsymbol{x} + (1 - \theta)\boldsymbol{y}, \theta f(\boldsymbol{x}) + (1 - \theta)f(\boldsymbol{y})) \in \text{epi}(f),$$

and hence $\theta f(\boldsymbol{x}) + (1 - \theta)f(\boldsymbol{y}) \ge f(\theta \boldsymbol{x} + (1 - \theta)\boldsymbol{y}).$

Proposition 1.11.2. Let $f: \mathcal{C} \to \mathbb{R}$ be convex, then for all α ,

 C_{α} is convex.

Proof. For all $\boldsymbol{x}, \boldsymbol{y} \in C_{\alpha}, \ \theta \in [0, 1],$

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y) \le \alpha,$$

and hence $\theta \boldsymbol{x} + (1 - \theta) \boldsymbol{y} \in C_{\alpha}$.

2 Convex Optimization: Concepts

Definition 2.0.1 (*Mathematical Optimization*). Let $\{f_i\}_{i=0}^m$ and $\{h_j\}_{j=1}^p : \mathbb{R}^n \to \mathbb{R}$ be functions. We use the following notation to represent the standard/canonical form of a *mathematical optimization* problem:

minimize:
$$f_0(\boldsymbol{x})$$

subject to: $f_i(\boldsymbol{x}) \leq 0, \ \forall i \in \{1, 2, ..., m\}$
 $h_j(\boldsymbol{x}) = 0, \ \forall j \in \{1, 2, ..., p\}.$

Here are some related terminologies:

- x: optimization variable
- f_0 : objective function
- $\{f_i(\boldsymbol{x}) \leq 0\}_{i=1}^m$: inequality constraints
- $\{h_i(\boldsymbol{x}) = 0\}_{j=1}^p$: equality constraints
- \bullet A point x is feasible if it satisfies all constraints, and infeasible otherwise.
- The feasible set $C \subseteq \mathbb{R}^n$ is the set of all feasible points.
- The problem is feasible if $C \neq \emptyset$, and infeasible otherwise.
- The optimal value p^* is defined as $\inf_{x} \{f_0(x) \mid x \in C\}$, which may or may not be attainable.
- A feasible point x^* is globally optimal, or optimal if $f(x^*) = p^*$. There may be multiple optimal points.
- A feasible point \boldsymbol{x}^* is locally optimal if $\exists R > 0 : f_0(\boldsymbol{x}^*) = \min_{\boldsymbol{x}} \{f_0(\boldsymbol{x}) \mid \boldsymbol{x} \in C \text{ and } ||\boldsymbol{x} \boldsymbol{x}^*|| \leq R\}.$
- The problem is unbounded below if $p^* = -\infty$.

Here are some other equivalent forms to represent an optimization problem:

Definition 2.0.2 (*Indicator Function Form*). With respect to the problem above, the *indicator function form* looks like:

$$\underset{\boldsymbol{x}}{\text{minimize:}} \ f_0(\boldsymbol{x}) + I_C(\boldsymbol{x})$$

where the indicator function I_C is defined as follows:

$$I_C \colon \mathbb{R}^n \to \mathbb{R}$$

$$\boldsymbol{x} \mapsto \begin{cases} f_0(\boldsymbol{x}), & \text{if } \boldsymbol{x} \in C \\ \infty, & \text{otherwise.} \end{cases}$$

Remark 2.0.1. The Indicator function form relaxes the problem, while sacrificing its convex property, i.e., it is no longer a convex optimization problem.

Definition 2.0.3 (Epigraph Form). With respect to the problem above, the epigraph form looks like:

minimize:
$$t$$
 subject to: $f_i(\boldsymbol{x}) \leq 0$, $\forall i \in \{1, 2, ..., m\}$
$$h_j(\boldsymbol{x}) = 0, \ \forall j \in \{1, 2, ..., p\}$$

$$f_0(\boldsymbol{x}) \leq t.$$

Remark 2.0.2. The optimization variable changes from x to (x,t), so rigorously, all constraint functions should be (slightly) modified correspondingly. But we will skip these for simplicity.

Definition 2.0.4 (Convex Optimization). Let $\{f_i\}_{i=0}^m : \mathbb{R}^n \to \mathbb{R}$ be convex functions, $\{a_j\}_{j=1}^p \in \mathbb{R}^n$, and $\{b_j\}_{j=1}^p \in \mathbb{R}$, then a convex optimization problem has the form:

minimize:
$$f_0(\boldsymbol{x})$$

subject to: $f_i(\boldsymbol{x}) \leq 0$, $\forall i \in \{1, 2, ..., m\}$
 $\boldsymbol{a}_j^T \boldsymbol{x} - b_j = 0$, $\forall j \in \{1, 2, ..., p\}$,

or equivalently, it has the form:

minimize:
$$f_0(\boldsymbol{x})$$

subject to: $f_i(\boldsymbol{x}) \leq 0, \quad \forall i \in \{1, 2, ..., m\}$
 $A\boldsymbol{x} - \boldsymbol{b} = \boldsymbol{0}.$

Remark 2.0.3. Convex optimization has three more requirements:

- The objective function f_0 must be convex,
- The inequality constraint functions $\{f_i\}_{i=1}^m$ must be convex,
- The equality constraint functions $\{h_j(\boldsymbol{x}) = \boldsymbol{a}_j^T \boldsymbol{x} b_j\}_{j=1}^p$ must be affine.

The resulting feasible set from the form above is convex because:

- Any sublevel set of a convex function $\{f_i\}_{i=1}^m$ is convex,
- Hyperplanes are affine $\{x \mid a_j^T x b_j = 0\}_{j=1}^p$, and therefore convex,
- The intersection of convex sets is convex.

Remark 2.0.4. A concave maximization problem can be transformed into an equivalent convex minimization problem.

Remark 2.0.5. We may encounter a case where the constraint functions are not convex, but the feasible set is still convex. Here we do **not** consider it a convex optimization problem. We must strictly follow the definition.

3 Convex Optimization: Duality

Consider a general optimization problem (not necessarily convex) in the canonical form:

min:
$$f_0(\mathbf{x})$$

s.t.: $f_i(\mathbf{x}) \le 0$, $\forall i \in \{1, 2, ..., m\}$
 $h_j(\mathbf{x}) = 0$, $\forall j \in \{1, 2, ..., p\}$.

Denote the optimal value by p^* , and the optimal point by x^* . Then we define the following associated functions:

Definition 3.0.1 (Lagrangian Function). The associated Lagrangian function $L : \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$ is defined as follows:

$$L(oldsymbol{x},oldsymbol{\lambda},oldsymbol{
u})=f_0(oldsymbol{x})+\sum_{i=1}^m\lambda_if_i(oldsymbol{x})+\sum_{i=1}^p
u_jh_j(oldsymbol{x}),$$

where $\{\lambda_i\}_{i=1}^m$ and $\{\nu_j\}_{j=1}^p$ are called the Lagrange multipliers.

Remark 3.0.1. This involves the idea of *relaxation*: we are more interested in a *nearby* problem which is easier to solve. The way we acquire a nearby problem is to move the constraints to the objective function, and penalize the violations of the constraints using the multipliers. A solution of a nearby problem provides information about the original problem.

Definition 3.0.2 (Dual Function). As motivated, the associated dual function $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$ is defined as follows:

$$g(\lambda, \nu) = \inf_{x} L(x, \lambda, \nu).$$

where λ and ν are called the dual variables.

Remark 3.0.2. The motivation to define g is intuitive: since we have already considered the feasibility of x in f_0 through the penalty, there is no need to add additional constraints on x, i.e., we can relax the problem. However, it can be the case that L being minimal is due to negative penalty + not-optimized f_0 , which makes it only a nearby problem.

Remark 3.0.3. Regardless of the concavity of the original problem, g is always concave. To see this, if we traverse all $x \in \mathbb{R}^n$, we will have a set of an infinite number of affine functions of $(\lambda, \nu)^T$. The pointwise infimum function over such a set is concave.

Theorem 3.0.1 (Weak Duality). With respect to an optimization problem, we have

$$\forall \lambda \geq 0 : \forall \nu \in \mathbb{R}^p : g(\lambda, \nu) \leq p^*.$$

This property is called the weak duality, and it holds for any optimization problem.

Proof.

$$g(\boldsymbol{\lambda}, \boldsymbol{\nu}) := \inf_{\boldsymbol{x}} L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})$$

$$= \inf_{\boldsymbol{x}} f_0(\boldsymbol{x}) + \sum_{i=1}^m \lambda_i f_i(\boldsymbol{x}) + \sum_{j=1}^p \nu_j h_j(\boldsymbol{x})$$

$$\leq f_0(\boldsymbol{x}^*) + \sum_{i=1}^m \lambda_i f_i(\boldsymbol{x}^*) + \sum_{j=1}^p \nu_j h_j(\boldsymbol{x}^*)$$

$$\leq f_0(\boldsymbol{x}^*), \text{ since } \boldsymbol{x}^* \text{ is feasible}$$

$$= p^*.$$

Remark 3.0.4. Weak duality says that under $\lambda \geq 0$, $g(\lambda, \nu)$ is a lower bound for p^* . A natural question is then raised: what is $\max_{\lambda \geq 0} g(\lambda, \nu)$, i.e. the largest lower bound? Can it be equal to p^* ? In that case, we say the *strong duality* holds. We are interested in these questions, because it will be our best approximation of p^* from the dual perspective.

Definition 3.0.3 (Dual Problem). As motivated, we are to consider the following optimization problem:

$$\max_{(\boldsymbol{\lambda},\boldsymbol{\nu})} g(\boldsymbol{\lambda},\boldsymbol{\nu})$$

s.t.:
$$\lambda \geq 0$$
,

which is called the associated dual problem, and the original one is called the primal problem. Denote the optimal value by d^* , and the optimal point by $(\lambda^*, \nu^*)^T$. The duality gap is defined as $p^* - d^*$.

Remark 3.0.5. Regardless of the convexity of the primal problem, the dual problem is always convex. To see this, we argued that g is always concave, and maximizing a concave function is equivalent to minimizing a convex function. In addition, the inequality constrained function is convex, and hence the problem is convex.

Remark 3.0.6. Under strong duality, we can solve p^* from the dual perspective, which is always convex. It turns out that most (but not all) convex optimization problems have strong duality. There are many results establishing conditions (called *constraint qualifications*) on the problem, under which the strong duality holds. We will see one below.

Definition 3.0.4 (Relative Interior). Let $S \subseteq \mathbb{R}^n$ be a set, then its relative interior is defined as

$$relint(S) := \{ \boldsymbol{x} \in S \mid \exists r > 0 : (B(\boldsymbol{x}, r) \cap aff(S)) \subseteq C \},$$

where B is a ball of radius r centered at \boldsymbol{x} , i.e., $B(\boldsymbol{x},r) = \{\boldsymbol{y} \mid ||\boldsymbol{y} - \boldsymbol{x}|| \leq r\}$, and aff(S) is the affine hull of S, i.e. the smallest affine set that contains S.

Theorem 3.0.2 (Slater's Condition). Given a convex optimization problem, strong duality holds if there exists a strictly feasible point in the relative interior of C, i.e.,

$$\exists x \in \text{relint}(C) : f_i(x) < 0, \forall i \in \{1, 2, ..., m\}, \text{ and } Ax - b = 0.$$

In particular, when the inequality constraint functions are all affine, the feasibility does not have to be strict.

Proof. Skipped for now. \Box

Here are two immediate results followed from strong duality:

Proposition 3.0.1 (Stationarity & Complementary Slackness). Assume strong duality holds, then we have stationarity:

$$abla_{oldsymbol{x}}L(oldsymbol{x}^*,oldsymbol{\lambda}^*,oldsymbol{
u}^*) =
abla f_0(oldsymbol{x}^*) + \sum_{i=1}^m \lambda_i^*
abla f_i(oldsymbol{x}^*) + \sum_{j=1}^p
u_j^*
abla h_j(oldsymbol{x}^*) = oldsymbol{0},$$

and complementary slackness:

$$\forall i \in \{1, 2, ..., m\} : \lambda_i^* f_i(\mathbf{x}^*) = 0.$$

Proof.

$$f_0(\boldsymbol{x}^*) = g(\boldsymbol{\lambda}^*, \boldsymbol{\nu}^*)$$

$$= \inf_{\boldsymbol{x}} L(\boldsymbol{x}, \boldsymbol{\lambda}^*, \boldsymbol{\nu}^*)$$

$$\leq L(\boldsymbol{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\nu}^*)$$

$$= f_0(\boldsymbol{x}^*) + \sum_{i=1}^m \lambda_i^* f_i(\boldsymbol{x}^*) + \sum_{j=1}^p \nu_j^* h_j(\boldsymbol{x}^*)$$

$$\leq f_0(\boldsymbol{x}^*),$$

which means that it should be equality everywhere. Therefore, \boldsymbol{x}^* is a minimizer of $L(\boldsymbol{x}, \boldsymbol{\lambda}^*, \boldsymbol{\nu}^*)$ over \mathbb{R}^n , and we have stationarity by the First-Order Optimality Condition. Due to the feasibility of \boldsymbol{x}^* and $\boldsymbol{\lambda}^*$, we have $\sum_{j=1}^p \nu_j^* h_j(\boldsymbol{x}^*) = 0$ and therefore $\sum_{i=1}^m \lambda_i^* f_i(\boldsymbol{x}^*) = 0$. The fact that $\lambda_i^* f_i(\boldsymbol{x}^*)$ is non-positive forces it to be zero, and then we have complementary slackness.

Theorem 3.0.3 (KKT Conditions). The KKT conditions are as follows:

- $\forall i \in \{1, 2, ..., m\} : f_i(\boldsymbol{x}^*) \leq 0 \text{ and } A\boldsymbol{x}^* \boldsymbol{b} = \boldsymbol{0} \dots primal feasibility$
- $\nabla f_0(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(\mathbf{x}^*) + \sum_{j=1}^p \nu_j^* \nabla h_j(\mathbf{x}^*) = \mathbf{0}$ stationarity

We have the following conclusions:

Putting up together, assume we have strong duality (e.g. $convex\ problem + Slater's\ condition)$,

 (x^*, λ^*, ν^*) satisfies the KKT conditions $\Leftrightarrow x^*$ and (λ^*, ν^*) are primal and dual optimal.

Proof. Necessity is trivial to prove (we in fact proved it from the above proposition). Regarding sufficiency, we assume (x, λ, ν) satisfies the KKT conditions. By weak duality, we have

$$g(\lambda, \nu) \leq f_0(x^*).$$

By assumption, we also have

$$egin{aligned} g(oldsymbol{\lambda}, oldsymbol{
u}) &= \inf_{oldsymbol{x}} L(oldsymbol{x}, oldsymbol{\lambda}, oldsymbol{
u}) \ &= L(oldsymbol{x}, oldsymbol{\lambda}, oldsymbol{
u}) \ &= f_0(oldsymbol{x}), \end{aligned}$$

and hence we have $f_0(\boldsymbol{x}) \leq f_0(\boldsymbol{x}^*)$. It must be the case that $f_0(\boldsymbol{x}) = f_0(\boldsymbol{x}^*)$, or otherwise it will contradict with the optimality of \boldsymbol{x}^* . This proves that \boldsymbol{x} is primal optimal. In addition, we also have $g(\boldsymbol{\lambda}, \boldsymbol{\nu}) = f_0(\boldsymbol{x}) = f_0(\boldsymbol{x}^*) = p^*$, and clearly, $g(\boldsymbol{\lambda}, \boldsymbol{\nu})$ has reached its maximum, which makes $(\boldsymbol{\lambda}, \boldsymbol{\nu})$ dual optimal.

4 Convex Optimization: Algorithms

Let $f:\mathbb{R}^n\to\mathbb{R}$ be a convex and differentiable function. We will first consider the unconstrained problem:

$$\min_{\boldsymbol{x}} : f(\boldsymbol{x}).$$

By the First-Order Optimality Condition, it is equivalent to solve

$$\nabla f(\boldsymbol{x}) = \mathbf{0},$$

which is a root-finding problem, where *fixed point iteration* can be found useful. Several algorithms in this section are instances of the fixed point iteration. Before moving on, we need some definitions first:

Proposition 4.0.1. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex function. With respect to some norm, f is L-Lipschitz continuous implies

$$\forall x \in \mathbb{R}^n : ||\nabla f(x)|| \le L,$$

that is, the gradient of f is bounded.

Proof.

Algorithm 1 Gradient Descent

```
Initialize x_0, \epsilon, and k=0.

while ||\nabla f(x_k)|| > \epsilon do

Direction: -\nabla f(x_k).

Step size: \alpha_k.

Update: x_{k+1} \coloneqq x_k - \alpha_k \nabla f(x_k).

k \coloneqq k+1.

end while
```

Theorem 4.0.1 (Convergence Rate of Gradient Descent: Convex Case). Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex and differentiable function, and additionally ∇f is Lipschitz continuous with a constant L > 0, that is, $\forall \mathbf{x_1}, \mathbf{x_2} \in \mathbb{R}^n : ||\nabla f(\mathbf{x_1}) - \nabla f(\mathbf{x_2})||_2 \le L||\mathbf{x_1} - \mathbf{x_2}||_2$. Then gradient descent with a fixed step size $\alpha \le \frac{1}{L}$ satisfies:

$$f(x_k) - f(x^*) \le \frac{||x_0 - x^*||_2^2}{2\alpha k}.$$

This means that gradient descent is guaranteed to converge with rate $\mathcal{O}(\frac{1}{k})$, or reaching a sub-optimal tolerance level ϵ requires $\mathcal{O}(\frac{1}{\epsilon})$ iterations, where $\epsilon \coloneqq |f(\boldsymbol{x}_k) - f(\boldsymbol{x}^*)|$.

Proof.

Theorem 4.0.2 (Convergence rate of Gradient descent: Strongly Convex Case). Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex and differentiable function, where ∇f is Lipschitz continuous with a constant L > 0, and additionally f is strongly convex with a parameter m, that is, $\forall \mathbf{x_1}, \mathbf{x_2} \in \mathbb{R}^n : f(\mathbf{x_2}) \geq f(\mathbf{x_1}) + \nabla f(\mathbf{x_1})^T(\mathbf{x_2} - \mathbf{x_1}) + \frac{m}{2}||\mathbf{x_2} - \mathbf{x_1}||_2^2$. Then gradient descent with a fixed step size $\alpha \leq \frac{2}{m+L}$ satisfies:

$$f(x_k) - f(x^*) \le \frac{\gamma^k L||x_0 - x^*||_2^2}{2}, \text{ where } \gamma \in (0, 1).$$

This means that gradient descent is guaranteed to converge with rate $\mathcal{O}(\gamma^k)$, or reaching a sub-optimal tolerance level ϵ requires $\mathcal{O}(\frac{1}{\log(\frac{1}{\epsilon})})$ iterations.

Proof.

Algorithm 2 Newton's Method

```
Initialize x_0, and k = 0.

while ||\nabla f(x_k)|| > \epsilon do \Rightarrow Could use other stopping criteria Direction: -\nabla^2 f(x_k)^{-1} \nabla f(x_k).

Step size: \alpha_k.

Update: x_{k+1} := x_k - \alpha_k \nabla^2 f(x_k)^{-1} \nabla f(x_k).

k := k+1.

end while
```

Now, we will then consider the equality-constrained problem:

$$\underset{\boldsymbol{x}}{\text{minimize:}} \ f_0(\boldsymbol{x})$$

subject to:
$$Ax - b = 0$$
.

The idea is to eliminate the equality constraints.

Lastly, we will consider the general convex optimization problem:

minimize:
$$f_0(\boldsymbol{x})$$

subject to: $f_i(\boldsymbol{x}) \leq 0, \ \forall i \in \{1, 2, ..., m\}$
 $h_j(\boldsymbol{x}) = 0, \ \forall j \in \{1, 2, ..., p\}.$

There are multiple algorithms to solve the unconstrained problem, and here we will focus on one algorithm called *Barrier methods*, a.k.a. *interior point methods*, (*IPM*). We will use *barrier functions* such that high cost will be added due to infeasibility.

Our first choice of the barrier function is the indicator function:

5 Other Useful Concepts

5.1 Inner Product

Definition 5.1.1 (Inner Product). An inner product on a vector space V is a function

$$\langle \cdot, \cdot \rangle : \mathcal{V} \times \mathcal{V} \to \mathbb{R}$$

s.t. the following axioms hold:

- $\forall u, v \in \mathcal{V} : \langle u, v \rangle = \langle v, u \rangle$,
- $\forall u, v, w \in \mathcal{V} : \langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$,
- $\forall u, v \in \mathcal{V}, c \in \mathbb{R} : \langle cu, v \rangle = c \langle u, v \rangle,$
- $\forall u \in \mathcal{V} : \langle u, u \rangle \geq 0$, and $\langle u, u \rangle = 0 \Leftrightarrow u = 0$.

A vector space \mathcal{V} together with an inner product $\langle \cdot, \cdot \rangle$ is called an inner product space, denoted by $(\mathcal{V}, \langle \cdot, \cdot \rangle)$.

Definition 5.1.2 (Euclidean Inner Product). The Euclidean inner product is an inner product on \mathbb{R}^n with $\langle \cdot, \cdot \rangle$ defined as

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \boldsymbol{u}^T \boldsymbol{v}$$

for all $u, v \in \mathbb{R}^n$. Sometimes it's referred to as the dot product, denoted by $u \cdot v$.

5.2 Norm

Definition 5.2.1 (Norm). W.r.t. the inner product space $(\mathcal{V}, \langle \cdot, \cdot \rangle)$, the induced norm is the function

$$\|\cdot\|:\mathcal{V}\to\mathbb{R}_{>0}$$

where $\|\mathbf{u}\| = \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}$ for all $\mathbf{u} \in \mathcal{V}$.

Lemma 5.2.1 (Properties of Norms). Let $\|\cdot\|$ be a norm on \mathcal{V} ,

- $\forall u \in \mathcal{V} : ||u|| \ge 0$, and $||u|| = 0 \Leftrightarrow u = 0$,
- $\forall \mathbf{u} \in \mathcal{V}, c \in \mathbb{R} : ||c\mathbf{u}|| = |c| \cdot ||\mathbf{u}||.$

Theorem 5.2.1 (Cauchy–Schwarz Inequality). Let $(\mathcal{V}, \langle \cdot, \cdot \rangle)$ be an inner product space, then for all $u, v \in \mathcal{V}$,

$$|\langle \boldsymbol{u}, \boldsymbol{v} \rangle| \leq ||\boldsymbol{u}|| \cdot ||\boldsymbol{v}||.$$

The equality holds when they're linearly dependent.

Theorem 5.2.2 (Triangle Inequality). Let $(\mathcal{V}, \langle \cdot, \cdot \rangle)$ be an inner product space, then for all $u, v \in \mathcal{V}$,

$$||u + v|| \le ||u|| + ||v||.$$

Definition 5.2.2 $(\ell_p\text{-Norm})$. On \mathbb{R}^n , the $\ell_p\text{-norm} \|\cdot\|_p$ for some $p \geq 1$ is a norm s.t. for all $\mathbf{x} \in \mathbb{R}^n$,

$$\|\boldsymbol{x}\|_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{\frac{1}{p}}.$$

Remark 5.2.1. Here're some common ℓ_p -norms on \mathbb{R}^n :

•
$$p = 1$$
: $||x||_1 = \sum_{i=1}^n |x_i|$

- p = 2: $\|\boldsymbol{x}\|_2 = \sqrt{\sum_{i=1}^n x_i^2} = \sqrt{\boldsymbol{x}^T \boldsymbol{x}}$, which is called the Euclidean norm
- $p = \infty$: $||x||_{\infty} = \max\{|x_1|, |x_2|, ..., |x_n|\}$

Definition 5.2.3 (Dual Norm). Let $\|\cdot\|$ be a norm on \mathbb{R}^n , then its associated dual norm $\|\cdot\|_*$ is defined as $\|\boldsymbol{u}\|_* = \sup\{\boldsymbol{u}^T\boldsymbol{v} : \|\boldsymbol{v}\| \leq 1, \boldsymbol{v} \in \mathbb{R}^n\}$

for all $\mathbf{u} \in \mathbb{R}^n$.

6 References