

Ikhlaq Sidhu Chief Scientist & Founding Director, Sutardja Center for Entrepreneurship & Technology IEOR Emerging Area Professor Award, UC Berkeley

Remember this Classification Example

Illustration only
These numbers are not real

Classification Extended to Multiple Variables

Train Data

$$f(x_i, W) = \frac{1}{1 + e^{-(w_0 + x_i, 1 w_1 + x_i, 2 w_2 ...)}}$$

Model for Prediction

Y2 boundary Y3 boundary

One way is by likelihood that it is red vs green

P(green|x) > Prob (red|x) for all x (this is maximum likelihood estimation)

For Reference: Maximum Likelihood Estimation

To use the method of maximum likelihood,^[7] one first specifies the joint density function for all observations. For an independent and identically distributed sample, this joint density function is

$$f(x_1, x_2, \ldots, x_n \mid heta) = f(x_1 \mid heta) imes f(x_2 \mid heta) imes \cdots imes f(x_n \mid heta).$$

Now we look at this function from a different perspective by considering the observed values $x_1, x_2, ..., x_n$ to be fixed "parameters" of this function, whereas θ will be the function's variable and allowed to vary freely; this same function will be called the likelihood:

$$\mathcal{L}(heta\,;\,x_1,\ldots,x_n)=f(x_1,x_2,\ldots,x_n\mid heta)=\prod_{i=1}^n f(x_i\mid heta).$$

Note that ";" denotes a separation between the two categories of input arguments: the parameters heta and the observations x_1,\ldots,x_n .

In practice it is often more convenient when working with the natural logarithm of the likelihood function, called the log-likelihood:

$$\ln \mathcal{L}(heta\,;\,x_1,\ldots,x_n) = \sum_{i=1}^n \ln f(x_i\mid heta),$$

or the average log-likelihood:

$$\hat{\ell} = \frac{1}{n} \ln \mathcal{L}.$$

The hat over ℓ indicates that it is akin to some estimator. Indeed, $\hat{\ell}$ estimates the expected log-likelihood of a single observation in the model.

The method of maximum likelihood estimates θ_0 by finding a value of θ that maximizes $\hat{\ell}(\theta; x)$. This method of estimation defines a maximum likelihood estimator (MLE) of θ_0 :

Another way would be to use a loss function to decide

Lred(x): red loss as a function of vector X (assume the actual outcome is red, then Lred(x) is larger when x is not likely predict to be red.

Lgreen(x): green loss as a function of vector X

Boundary could be where L(red)=L(green)

e.g. Cross Entropy
$$= -t \ln(f(ec{x})) - (1-t) \ln(1-f(ec{x}))$$

Another way would be to use a loss function to decide:

In math notation:

Loss Function: $L(\theta, \delta(X))$

Expected Loss: $R(\theta, \delta) = \mathbb{E}(L(\theta, \delta(X)))$

Another way would be to use a loss function to decide:

Boundary could be where L(red)=L(green)
BUT THERE IS A PROBLEM WITH THIS

Consider the Application:

Reward or Risk is not same as loss

National Security Red = there is a national security breach

Green = everything is OK

Predicted	Predicted No Breach	Predicted Breach
Actual: No Breach	Loss = 0 COST = 0	Loss = .5 COST = 10
Actual: Breach	Loss = 0.6 COST = 1000	Loss = 0 COST = 0

Consider the Application:

Reward or Risk is not same as loss

National Security Red = there is a national security breach

Green = everything is OK

Predicted	Predicted No Breach	Predicted Breach
Actual: No Breach	Loss = 0 COST = 0	Loss = .5 COST = 10
Actual: Breach	Loss = 0.6 COST = 1000	Loss = 0 COST = 0

Supermarket Coupon by fingerprint Red = fingerprint does not match for supermarket coupon

Green = fingerprint match

Predicted	Predicted Match	Predicted No Match
Actual: Match	Loss = 0 COST = 0	Loss = .5 COST = 1000
Actual: No match	Loss = 0.6 COST = 10	Loss = 0 COST = 0

A Risk Function will consider the application

Predicted	Predicted RED	Predicted GREEN
Actual:	#500	#100
RED	Risk = 0	COST = 50
Actual:	#300	#300
GREEN	COST = 10	Risk = 0

We want to set the boundary where the Risk of False Positive = Risk of False Negative

Alpha x FPcost = Beta x FNcost

Risk (Red = actual, Green = predicted)

- = Prob (Red actual and Green predicted) x cost of false negative
- $= 100/600 \times 50 = 8.3$

Risk (Green actual, Red predicted) = Prob (Green actual, red predicted) x cost of false positive)

= 300/600m x 10 = 5

End of Section

