

Cell and Tissue Engineering Cell Adhesion, Part 1

Martin Bergert,
Max Planck Institute for Molecular Cell Biology and Genetics

Why is cell adhesion so important?

Haptotaxis

Why is cell adhesion so important?

Haptotaxis

Cell-cell adhesion

Why is cell adhesion so important?

Haptotaxis

Cell-matrix adhesion

Cell-cell adhesion

4

Cell adhesion happens near the cell membrane

5% carbohydrate

50% protein

45% lipid (abundant anionic phospholipid phosphatidylserine give the membrane a net negative charge)

Mechanics of cell adhesion

Poly(L-lysine)

Mechanics of cell adhesion

Repulsive forces
Charge
Osmotic imbalance
Compression of surface molecules

Poly(L-lysine)

Attractive force van der Waals (>200Å) ~1000dynes/cm²

Mechanics of cell adhesion

Poly(L-lysine)

Attractive force van der Waals (>200Å) ~1000dynes/cm²

Leukocyte adhesion cascade

stimuli

Cell extravasation

Wikipedia.org

$$L + R \overset{k_{on}}{\underset{k_{off}}{\Longleftrightarrow}} LRC$$

$$\frac{[L][R]}{[LRC]} = \frac{k_{off}}{k_{on}} = K_d = \frac{1}{K_d}$$

 k_{on} – forward rate constant

 k_{off} – reverse rate constant

 K_d – dissociation equilibrium constant

 K_a – association equilibrium constant

Cell 2

i.e. endothelial cell

Bond strength estimations

Tensile strength for affinity bonds

δ (Å)	K _d (M)	F (µdyn/m olecule)
10	10 ⁻⁶	6
1	10 ⁻¹²	120

Bond strength estimations

Tensile strength for affinity bonds

δ (Å)	K _d (M)	F (µdyn/m olecule)
10	10 ⁻⁶	6
1	10 ⁻¹²	120

Assume

- average bond of 40µdyne/molecule
- 2) Bonds spaced 1µm apart on the cell surface

4,000dyn/cm² produced from specific binding

Sedimentation-detachment

Sedimentation-detachment

Centrifugation

Sedimentation-detachment

Centrifugation

Fluid flow chambers

Rewind and review

Forming a bond

Measuring adhesion and bond strength

