

ANÁLISIS DE COMPONENTES PRINCIPALES (PCA)

Alan Reyes-Figueroa Introducción a la Ciencia de Datos

(AULA 09) 04.FEBRERO.2021

Componentes principales

Objetivo: encontrar una estructura subyacente en los datos.

• Proyectar a un subespacio adecuado.

Componentes principales

Caso particular 1D: (proyectamos a un subespacio 1-dimensional).

Suponga que proyectamos a un subespacio $\langle \ell \rangle \Rightarrow \langle \ell, X \rangle = \ell^T X$. Buscamos maximizar

$$\max_{||\ell||=1} Var(\ell^T X) = \max_{\ell \neq o} \frac{Var(\ell^T X)}{\ell^T \ell} = \max_{\ell \neq o} \frac{\ell^T Var(X) \ell}{\ell^T \ell} = \max_{\ell \neq o} \frac{\ell^T (\mathbb{X}^T \mathbb{X}) \ell}{\ell^T \ell}.$$

(cociente de Rayleigh).

El teorema espectral

Teorema (Teorema espectral / Descomposición espectral)

Sea $A \in \mathbb{R}^{d \times d}$ una matriz simétrica (operador auto-adjunto). Entonces, A admite una descomposición de la forma

$$A = U \Lambda U^T$$

donde $\Lambda = diag(\lambda_1, \lambda_2, \dots, \lambda_d)$ es la matriz diagonal formada por los autovalores $\lambda_1 \geq \lambda_2 \geq \dots \lambda_d$ de A, y

$$U = \left(\mathbf{u}_1 \ \mathbf{u}_2 \ \ldots \ \mathbf{u}_d \right) \in \mathbb{R}^{d \times d}$$

es una matriz ortogonal cuyas columnas son los autovalores de A, con \mathbf{u}_i el autovalor correspondiente a λ_i , $i = 1, 2, \dots, d$.

El teorema espectral

Teorema (Teorema espectral / Descomposición espectral)

En otras palabras, A puede escribirse como una suma de matrices de rango 1

$$A = \sum_{i=1}^d \lambda_i \, \mathbf{u}_i \mathbf{u}_i^T.$$

Comentario:

Para $1 \le k \le d$, la suma $A = \sum_{i=1}^{\kappa} \lambda_i \mathbf{u}_i \mathbf{u}_i^T$, es una matriz de rango k siempre que los $\lambda_i \ne 0$ (ya que los \mathbf{u}_i son independientes).

El teorema espectral

Observaciones:

- Si A es simétrica y semi-definida positiva, existe $A^{1/2}$ tal que $A^{1/2}A^{1/2} = A$.
- Si todos los autovalores de A son no-negativos, $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_d \geq 0$, entonces $\Lambda^{1/2}$ existe y

$$\Lambda^{1/2} = diag(\lambda_1, \lambda_2, \dots, \lambda_d)^{1/2} = diag(\lambda_1^{1/2}, \lambda_2^{1/2}, \dots, \lambda_d^{1/2}).$$

• A partir de la descomposición espectral podemos calcular $A^{1/2}$. De hecho, si $A = U \Lambda U^T$, definimos $A^{1/2} = U \Lambda^{1/2} U^T$, y

$$A^{1/2}A^{1/2} = (U\Lambda^{1/2}U^{T})(U\Lambda^{1/2}U^{T}) = U\Lambda^{1/2}(U^{T}U)\Lambda^{1/2}U^{T}$$

= $U\Lambda^{1/2}\Lambda^{1/2}U^{T} = U\Lambda U^{T} = A$.

Descomposición SVD

Teorema (Descomposición en valores singulares (SVD))

Sea $A \in \mathbb{R}^{n \times d}$ una matriz de rango k. Para todo $1 \le r \le k$, existen matrices $U \in \mathbb{R}^{n \times r}$, $S \in \mathbb{R}^{r \times r}$, $V \in \mathbb{R}^{d \times r}$, tales que

$$A = USV^{T} = \sum_{i=1}^{T} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T},$$

con

- las columnas $\mathbf{u}_1, \dots, \mathbf{u}_r \in \mathbb{R}^n$ de U son los autovectores de AA^T ,
- las columnas $\mathbf{v}_1, \dots, \mathbf{v}_r \in \mathbb{R}^d$ de V son los autovectores de $\mathbf{A}^T \mathbf{A}$, $S = diag(\sigma_1, \dots, \sigma_r)$, $\sigma_i^2 = \lambda_i$, con λ_i los autovectores de \mathbf{u}_i y de \mathbf{v}_i ,
- Además, $\sigma_i \mathbf{u}_i = A \mathbf{v}_i$ y $\sigma_i \mathbf{v}_i = A^T \mathbf{u}_i$, para $i = 1, 2, \dots, r$.

Descomposición SVD

El teorema de descomposición espectral ocurre como un caso particular de la descomposición SVD:

Caso especial: A simétrica

$$A = USU^T = U\Lambda U^T = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{u}_i^T.$$

En este caso los autovectores de A y $A^TA = A^2 = AA^T$ coinciden, y los autovalores de A al cuadrado son los autovalores de A^TA .

Cociente de Rayleigh

Teorema (Cociente de Rayleigh, caso 1D)

Sea $A \in \mathbb{R}^{d \times d}$ una matriz simétrica, $A \succeq O$. Entonces, el cociente de Rayleigh

$$\max_{\mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^T A \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$$

alcanza su máximo exactamente en $\mathbf{x} = \mathbf{u}_1$, el autovector asociado al mayor autovalor λ_1 de A.

Prueba:

Sea $A = U \wedge U^T$ la descomposición espectral del A, A con autovalores $\lambda_1 \geq \lambda_2 \geq \dots \lambda_d \geq 0$, y $U = [\mathbf{u_1} \ \mathbf{u_2} \ \dots \ \mathbf{u_d}]$, con $\mathbf{u_i}$ el autovalor correspondiente a λ_i , $i = 1, 2, \dots, d$.

Cociente de Rayleigh

Tomemos $A^{1/2} = U\Lambda^{1/2}U^T$. Consideremos el cambio de base $\mathbf{y} = U^T\mathbf{x}$. Entonces

$$\max_{\mathbf{x} \neq 0} \frac{\mathbf{x}^{T} \mathbf{A} \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}} = \max_{\mathbf{x} \neq 0} \frac{\mathbf{x}^{T} A^{1/2} \mathbf{A}^{1/2} \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}} = \max_{\mathbf{x} \neq 0} \frac{\mathbf{x}^{T} U \Lambda^{1/2} U^{T} U \lambda^{1/2} U^{T} \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}} = \max_{\mathbf{x} \neq 0} \frac{\mathbf{x}^{T} U \Lambda U^{T} \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}$$

$$= \max_{\mathbf{x} \neq 0} \frac{\mathbf{x}^{T} U \Lambda U^{T} \mathbf{x}}{\mathbf{x}^{T} U U^{T} \mathbf{x}} = \max_{\mathbf{x} \neq 0} \frac{(U^{T} \mathbf{x})^{T} \Lambda (U^{T} \mathbf{x})}{(U^{T} \mathbf{x})^{T} (U^{T} \mathbf{x})} = \max_{\mathbf{y} \neq 0} \frac{\mathbf{y}^{T} \Lambda \mathbf{y}}{\mathbf{y}^{T} \mathbf{y}} = \max_{||\mathbf{y}||=1} \mathbf{y}^{T} \Lambda \mathbf{y}$$

$$= \max_{||\mathbf{y}||=1} \sum_{i=1}^{d} \lambda_{i} y_{i}^{2} \leq \max_{||\mathbf{y}||=1} \sum_{i=1}^{d} \lambda_{1} y_{i}^{2} = \lambda_{1}.$$

Cociente de Rayleigh

Luego, el valor del cociente de Rayleigh, está limitado superiormente por λ_1 .

Por otro lado, si $\mathbf{y} = \mathbf{e}_1 = (1, 0, \dots, 0)$, entonces

$$\frac{\mathbf{y}^{\mathsf{T}} \wedge \mathbf{y}}{\mathbf{y}^{\mathsf{T}} \mathbf{y}} = \mathbf{y}^{\mathsf{T}} \wedge \mathbf{y} = \mathbf{e}^{\mathsf{T}} \wedge \mathbf{e}_{1} = \sum_{i=1}^{d} \lambda_{i} \mathbf{e}_{1i}^{2} = \lambda_{1}.$$

Portanto, el cociente de Rayleigh alcanza su máximo en $\mathbf{y} = \mathbf{e}_1$. Volviendo a las coordenadas originales, como $\mathbf{y} = U^T \mathbf{x}$, entonces

$$\mathbf{x} = (U^T)^{-1} \mathbf{e}_1 = U \mathbf{e}_1 = \mathbf{u}_1.$$

De modo que el cociente de Rayleigh alcanza su máximo en $\mathbf{x}=\mathbf{e}_1$, el autovector asociado al mayor autovalor de A. \square

Proyección PCA

Caso general: Proyectar a un subespacio *r*-dimensional.

Buscamos direcciones ortogonales $\{\ell_i\}_{i=1}^r$ que generan el supespacio de proyección.

$$\max_{||\ell_i||=1} Var(\ell_i^T X) = \max_{\ell_i \neq 0} \frac{\ell_i^T Cov(X)\ell_i}{\ell_i^T \ell_i}, \quad \text{sujeto a } \ell_i \perp \ell_1, \ldots, \ell_{i-1}, \ i = 2, 3, \ldots, r.$$

<u>Solución</u>: $\{\ell_i\}$ son los autovectores asociados a los primeros r autovectores de Cov(X).

<u>Prueba</u>: El caso i = 1 está resuelto, la proyección se maximiza con el autovector \mathbf{u}_1 , la primer columna de U en la descomposición SVD de Cov(X).

Proyección PCA

Sea A = Cov(X). Ilustramos ahora como proyectar en la segunda dirección. Para ello, consideramos el espacio ortogonal a $\langle \mathbf{u}_1 \rangle$, esto es, borramos la información de la matriz A en la dirección de \mathbf{u}_1 :

$$\mathbf{A}_2 = \mathbf{A} - \lambda_1 \mathbf{u}_1 \mathbf{u}_1^T = \sum_{i=1}^d \lambda_i \mathbf{u}_i \mathbf{u}_i^T - \lambda_1 \mathbf{u}_1 \mathbf{u}_1^T = \sum_{i=2}^d \lambda_i \mathbf{u}_i \mathbf{u}_i^T.$$

Observe que $A_2 \in \mathbb{R}^{d \times d}$ es una matriz d-dimensional, pero con ceros en toda su primera fila y columna (en la base $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_d$. Luego, podemos considerarla como una matriz d-1-dimensional. La información en el resto de dimensiones no ha cambiado, esto es, los autovalores y autovectores de A_2 son, respectivamente $\lambda_2 > \ldots > \lambda_d$, y $\mathbf{u}_2, \ldots, \mathbf{u}_d$.

Proyección PCA

De ahí, resolver el problema

$$\max_{\ell_2 \neq 0} \frac{\ell_2^T A \ell_2}{\ell_2^T \ell_2}, \quad \text{sujeto a } \ell_2 \perp \boldsymbol{u_1},$$

se reduce a

$$\max_{\ell_2 \neq 0} \frac{\ell_2^\mathsf{T} \mathsf{A}_2 \ell_2}{\ell_2^\mathsf{T} \ell_2}.$$

Ya vimos que la solución de este cociente de Rayleigh es dada por \mathbf{u}_2 , el autovector asociado al mayor autovalor λ_2 de A_2 .

Este mismo proceso se generaliza al resto de dimensiones ℓ_3,\ldots,ℓ_r . Esto termina la prueba de la descomposición PCA. \Box

Aproximaciones de bajo rango

Teorema (Eckart-Young)

Sea $A \in \mathbb{R}^{n \times d}$, $n \geq d$, una matriz cuya descomposición SVD está dada por

$$A = USV^T = \sum_{i=1}^d \sigma_i \mathbf{u}_i \mathbf{v}_i^T.$$

Entonces, la matriz \widehat{A}_r de rango r, $1 \le r \le d$, que mejor aproxima A en el sentido de minimizar $\min_{\substack{rank \ \widehat{A}_r < r}} ||A - \widehat{A}_r||_F^2$

se obtiene de truncar la descomposición en valores dingulares de A:

$$\widehat{\mathbf{A}}_r = \mathbf{U}_r \mathbf{S}_r \mathbf{V}_r^\mathsf{T} = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^\mathsf{T},$$

Aproximaciones de bajo rango

Teorema (Eckart-Young) donde

$$U_r = [\mathbf{u_1} \ \mathbf{u_2} \ \dots \ \mathbf{u_r}], \ S_r = diag(\sigma_1, \sigma_2 \dots, \sigma_r), \ V_r = [\mathbf{v_1} \ \mathbf{v_2} \ \dots \ \mathbf{v_r}].$$

En ese caso, el error de aproximación está dado por

$$||A - \widehat{A_r}||_F^2 = \sum_{i=r+1}^d \lambda_i,$$

0

$$||\mathbf{A} - \widehat{\mathbf{A}_r}||_2^2 = \lambda_{r+1}.$$

Aproximaciones de bajo rango

Obs!

- Las direcciones \mathbf{u}_i se llaman las **componentes principales** de \mathbb{X} .
- La descomposición SVD proporciona un mecanismo para proyectar los datos al "mejor" subespacio de dimensión $r \leq d$. Dicha proyección se obtiene haciendo

$$X_{proj} = X V_r^T$$
.

- Los autovalores λ_i de $\mathbb{X}^T\mathbb{X}$ nos proporcionan un mecanismo para medir el error, vía $||A \widehat{A_r}||_F^2 = \sum_{i=r+1}^d \lambda_i$.
- El cociente $\frac{\sum_{i=1}^{r} \lambda_i}{\sum_{i=1}^{d} \lambda_i}$, $r=1,2,\ldots,d$, se interpreta como el porcentaje de variabilidad de los datos \mathbb{X} que es explicada por las primeras r componentes principales.

Compresión de imágenes usando PCA.

Original r = 1 r = 2 r = 4 r = 8 r = 16 r = 32

r = 64

Imagen Original (256 \times 256), aproximaciones con rango = 1, 2, 4, 8, 16, 32, 64.

En PCA la estructura de los datos se capta solamente a través de las matrices Cov(X) o Corr(X).

Dos veces misma correlación. =(

Obs.

- Cuidado con desviaciones fuertes de normalidad.
- Lo ideal es investigar la normalidad de los datos en la práctica, al menos ver si escala es continua, distribución unimodal, simétrica, ...

Contraejemplos

