

PROPOSAL PENGAJUAN TUGAS AKHIR REALISASI SISTEM ANTENA SEKTORAL PADA FREKUENSI 924 MHz UNTUK KOMUNIKASI SELULAR (Bagian : Pembagi Daya Wilkinson 1x4)

PROPOSAL PENGAJUAN TUGAS AKHIR PROGRAM D3 TEKNIK TELEKOMUNIKASI

Diusulkan oleh:

Rahmat Fauzi 161331058 2016

POLITEKNIK NEGERI BANDUNG BANDUNG 2019

PENGESAHAAN PROPOSAL TUGAS AKHIR

1. Judul Kegiatan : Realisasi Sistem Antena Sektoral

Pada Frekuensi 924 Mhz Untuk

Komunikasi Selular (Bagian: Pembagi

Daya Wilkinson 1x4)

2. Bidang Kegiatan : Pengajuan Tugas Akhir Program D3 –

Teknik Telekomunikasi

3. Ketua Pelaksana Kegiatan

a. Nama Lengkap : Rahmat Fauzib. NIM : 161331058c. Jurusan : Teknik Elektro

d. Perguruan Tinggi : Politeknik Negeri Bandung

e. Alamat Rumah dan No. Telp/HP : Komp.GBA III B7 No.1 Bojongsoang

f. Alamat Email : Rahmatf197@gmail.com

4. Biaya Kegiatan Total

a. Kemristekdikti :

b. Sumber lain : Rp. 1.745.200 5. Jangka Waktu Pelaksanaan : 5 (lima) bulan

Bandung, 10 Febuari 2019

Dosen Pembimbing, Pengusul,

Asep Barnas Simanjuntak, BSEE, M.T Rahmat Fauzi

NIDN. 0021045802 NIM. 161331058

ABSTRAK

Pada komunikasi gelombang radio, diperlukan antena yang memiliki performansi bandwidth, frekuensi kerja, VSWR, Gain yang baik. Antena Mikrostrip adalah antena yang banyak dikembangkan dalam berbagai aplikasi. Salah satunya adalah pada bidang selular yang bekerja pada frekuensi 924 MHz. Antena mikrostrip ini dibuat dengan Konstanta dielektrik (ϵ r) = 4.4 dengan bahan FR-4 dan ketebalan 1.6 mm. Perencanaan antena array memiliki tujuan untuk meningkatkan nilai gain antena maupun nilai keterarahan (direktifitas) antena. Antena hasil perencanaan memiliki empat elemen peradiasi (patch). Sedangkan untuk pencatuannya antenna ini menggunakan teknik *Coaxial Feeding* yang terhubung dengan pembagi daya Wilkinson satu port input dan 4 port output. Pembagi daya ini juga memiliki bahan yang sama dengan antenanya dengan spesifikasi yaitu frekuensi kerja tengah 924 MHz, level daya keempat *port* sama, VSWR < 1.5, *return loss* \leq -20 dB, *insertion loss* < 1, Isolasi > 20 dB, Impedansi *port – port* nya sama yaitu 50 Ω .

Kata kunci: Antena array, Mikrostrip, Pembagi daya Wilkinson

DAFTAR ISI

PENGESAHAN PROPOSAL TUGAS AKHIR	ii
ABSTRAK	ii
DAFTAR ISI	iv
DAFTAR GAMBAR	v
DAFTAR TABEL	v
BAB I PENDAHULUAN	1
1.1 Latar Belakang Masalah	1
1.2 Tujuan	2
1.3 Luaran	2
1.4 Manfaat Produk	2
BAB II TINJAUAN PUSTAKA	3
BAB III METODE PELAKSANAAN	5
3.1 Perancangan	5
3.2 Persiapan	5
3.3 Realisasi	5
3.4 Pengujian	6
3.5 Analisa	6
3.6 Evaluasi	6
BAB IV BIAYA DAN JADWAL KEGIATAN	7
4.1 Anggaran Biaya	7
4.2 Jadwal Kegiatan	7
DAFTAR PUSTAKA	8
LAMPIRAN-LAMPIRAN	9
Lampiran 1 Biodata Pengusul dan Dosen Pembimbing	9
a. Biodata Pengusul	9
b. Dosen Pembimbing	10
Lampiran 2 Justifikasi Anggaran Kegiatan	12
Lampiran 3 Surat Pernyataan Ketua Pelaksana	13
Lampiran 4 Landasan Teori	14
Lampiran 5 Gambaran Teknologi yang Hendak Diterapkembangkan	15
Lampiran 5.2 Blok Diagram Sistem	15
Lampiran 5 3 Cara Keria Sistem	15

DAFTAR GAMBAR

Gambar 4.1 Diagram Wilkinson Power Diviider
Gambar 5.1 Ilustrasi Sistem
Gambar 5.2 Blok Diagram Sistem
DAFTAR TABEL
Tabel 4.1 Ringkasan Anggaran Biaya
Tabel 4.2 Jadwal Kegiatan7

BAB 1 PENDAHULUAN

1.1 Latar Belakang Masalah

Indonesia yang kini jumlah penduduknya diperkiraan sebanyak 261 juta jiwa telah menggunakan telepon genggam sebanyak 236 juta unit. Jumlah diperkirakan akan terus bertambah mengingat tidak adanya pembatasan usia ataupun jumlah kepemilikan yang mengatur tentang kepemilikan dan penggunaan telepon genggam di Indonesia (Supriyadi, 2018). Namun untuk dapat menikmati layanan komunikasi yang disediakan oleh provider, handphone pengguna tersebut harus masuk ke dalam daerah yang tercakup oleh penyedia jaringan. Sebagai solusi dari masalah banyaknya pengguna yang harus dilayani ini maka dipakailah sebuah konsep yang bernama seluler. Dengan konsep seluler dimana wilayah cakupan dibagi-bagi menjadi lebih kecil yang dinamakan sel-sel, pada masing-masing sel terdapat BTS yang digunakan untuk melayani cakupan pelanggan di sel tersebut. Dengan menggunakan konsep seluler ini penggunaan daya yang digunakan menjadi jauh lebih kecil dari pada satu BTS harus melayani satu area yang luas. Oleh karena itu untuk mendukung konsep seluler penyedia jaringan harus memiliki antena yang memiliki pola radiasi yang optimal sesuai dengan kondisi demografi maupun topografi dari daerah yang dicakupnya. Antenna yang digunakan untuk seluler adalah antenna sektoral 120°. Menggunakan antenna sectoral ini akan mampu meningkatkan kapasitas dan efisiensi dibandingkan dengan antenna dengan pola radiasi omnidireksional (Rohmah, 2013). Efisiensi antenna sektoral lebih baik karena dengan menggunakan antenna sektoral daerah cakupan dapat diatur ke daerah yang memiliki jumlah pelanggan yang tinggi. Selain masalah dari dari pola radiasinya, antena tersebut harus memiliki gain yang cukup tinggi agar sistem berjalan dengan baik. Salah satu antena yang dapat digunakan dalam selular adalah antenna mikrostrip dikarenakan antena ini memiliki bentuk yang sederhana, ringan, dan dalam hal pabrikasi mudah, namun memiliki bandwith dan gain yang kecil (Silitonga, et al., 2015). Oleh karena itu hal ini diatasi dengan membuat antena dalam bentuk array (Alam & Nugorho, 2018). Penelitian tentang antena array masih dilakukan sampai sekarang, penelitian ini mencakup ke pola susun, bentuk patch dan pencatuannya. Hal ini masih terus dikembangkan dan diteliti untuk mendapatkan pola radiasi yang optimal. Salah satu bentuk dari penelitian terhadap antena mikrostrip ini maka kami mengusulkan untuk membuat Realisasi Sistem Antena Sektoral pada Frekuensi 924 MHz untuk Komunikasi Selular.

Pada proposal ini pengusul mendapat bagian membuat pencatuan daya untuk antena ini. Untuk mencatu daya ke antena susun tersebut, diperlukan sebuah pembagi daya yang bekerja pada frekuensi 924 MHz. Pembagi daya dapat sebagai *splitter* saja atau sekaligus *combainer* (Pozar, 1998). Ada beberapa jenis pembagi daya, namun yang digunakan pengusul untuk membuat pembagi daya yaitu jenis

Wilkinson. Jenis ini digunakan karena baik *port input* maupun *port outputnya* match (Helsis, 2004). Selain itu jenis ini digunakan karena dapat bekerja dua arah, penerima maupun pemancar. Sehingga keluaran yang dihasilkan dari pembagi daya ini sama besar, dimana nantinya pembagi daya ini memiliki 1 input dan 4 output. Dimana output keluaran nya memiliki impedansi yang sama yaitu 50Ω .

1.2 Tujuan

Tujuan dari tugas akhir ini adalah:

- 1. Merancang dan merealisasikan antena array 4 elemen.
- 2. Merancang dan merealisasikan pembagi daya wilkinson dengan 1 *input* dan 4 *output*.
- 3. Melakukan pengujian dan pengukuran terhadap antena yang dibuat dengan parameter seperti pola radiasi dan gain yang dihasilkan.
- 4. Melakukan pengujian dan pengukuran terhadap pembagi daya wilkinkon dengan parameter seperti VSWR, impedansi, *insertion loss*, *returun loss*, dan jumlah daya yang dikeluarkan.

1.3 Luaran

No	Jenis Luaran	Jumlah
1	Antena Array 4 Elemen	1 buah
2	Pembagi Daya Wilkinson 1x4	1 buah
3	Laporan Tugas Akhir	1 buah

1.4 Manfaat Produk

Perealisasian ini memberikan manfaat bagi beberapa pihak, yaitu:

- 1. Komunitas Keilmuan, manfaat penelitian ini yaitu menghasilkan sistem antenna yang lebih baik,sehingga dalam prakteknya mampu bekerja lebih effisien
- 2. Bagi Perguruan Tinggi, menjadi manfaat penelitian ini memberikan peningkatan kontribusi berupa makalah, publikasi dan meningkatkan kontribusi penelitian ilmiah serta memberikan keilmuan yang baru untuk disebarluaskan kepada para civitas akademika.
- 3. Bagi Negara, manfaat penelitian ini adalah meningkatkan daya saing publikasi makalah secara internasional sehingga dapat berkompetisi secara global dengan negara lainnya.

BAB II

TINJAUAN PUSTAKA

Dari beberapa literatur, penulis menemukan beberapa sumber yang berkaitan dengan penelitian ini, diantaranya: Seperti pembuatan antenna mikrostrip array 1x2 yang membuat berhasil mebuat antenna untuk meningkatkan gain pada aplikasi LTE antenna yang dibuat mampu memiliki nilai return loss -35 db dan nilai VSWR 1,035 dan terutama nilai gain yang mencapai 7.47 db (Alam & Nugorho, 2018). Namun percobaan ini dicoba pada frekuensi 2300 Mhz.

Selain 2x2 pernah ada juga yang melakukan penyusunan dengan teknik 1x4 pada percobaan ini antenna yang digunakan berbentuk rectangular dengan menggunakan teknik pencatuan metoda inset feed (Darmawan, et al., 2018). Pada percobaan ini didapatkan nilai gain yang cukup tinggi dan juga memiliki nilai return loss yang cukup baik, namun pada percobaan ini perancangannya tidak menggunakan teknik wilkinson sehingga banyak loss yang terjadi di sepanjang jalur. Selain itu antena ini didesain untuk frekuensi kerja 2.4 GHz, hal ini mirip seperti yang dilakukan oleh Reza dan teman-temannya yang membuat Antena Mikrostrip Rectangular Patch Array 4 Elemen dimana kala itu menggunakan bahan substrat yang digunakan adalah epoxy(FR-4) dimana parameter yang dihasilkan cukup memuaskan dari nilai VSWR, Return Loss, Bandwidth, dan Gain antenannya. Gain yang didapatkan cukup signifikan yaitu 6,67 dB (Syahputra, et al., 2017).

Adapun yang merancang antenna mikrostrip dengan patch segitiga array yang membuat antenna untuk aplikasi WLAN dimana nilai VSWR yang didapatkan 1.073 nilai return loss -29,028 dan nilai gain yang dihasilkan 2,952 db, ini dapat disebabkan karena penggunaan elemen pancar yang hanya dua sehingga nilai gain yang didapatkan hanya berdada pada 3 dB. Hal ini hampir sama dengan yang dilakukan di Universitas Jember dimana mereka pun sama menggunakan dua elemen namun dengan bentuk patch circular dengan metoda linear array dimana nilai gain yang didapatkan pun berada dikisaran 2,873 dB (Ridho, et al., 2015).

Untuk pencatuannya pengusul mempunyai referensi untuk membuat pembagi daya ini diantaranya :

Pertama, Perancangan dan Realisasi Wilkinson 4-Way Power Divider dengan Beda Fasa 90 derajat Pada Frekuensi 2300 - 2400 MHz (Rahmawati, et al., 2010). Dari perancangan tersebut mereka menggunakan 2 material dielektrik yang berbeda yaitu material Epoxy FR-4 dan material Duroid/RO4003C. Dimana hasilnya menunjukan untuk parameter SWR dan Isolasinya marterial Epoxy FR-4 lebih baik dari material Duroid, namun Duroid memiliki *insertion loss* yang lebih

kecil dari Epoxy FR-4. Namun perancangan ini digunakan pada frekuensi 2300 - 2400 MHz, sedangkan pembagi daya untuk frekunsi 924 MHz.

Kedua, Perancangan Dan Realisasi Power Divider Sebagai Pembagi Daya Pada Antena Pemancar Tv Kampus It Telkom Pada Frekuensi 534 MHz – 542 MHz (Z Nz, 2011). Pada perancangan ini telah dihasilkan hasil pengukuran diantaranya *return loss* yang didapatkan yaitu sebesar -21,171, lalu VSWR yang didapat bernilai 1,191 dimana spesifikasi ini telah memenuhi syarat. Namun pada perancangan ini frekuensi kerjanya pada 534 – 542 MHz.

Dari beberapa literatur tersebut pengusul akan merancang sebuah pembagi daya dengan jenis wilkinson dengan bahan yang digunakan yaitu Epoxy FR-4 karena dari literatur yang telah didapatkan bahwa hasilnya cukup baik dan dapat menghasilkan pengukuran sesuai dengan spesifikasi yang diinginkan, selain itu harga bahan material ini cukup terjangkau. Lalu frekuensi kerja pada pembagi daya wilkinson ini berkerja pada 924 MHz sesuai dengan perancangan antenanya yang bekerja pada frekuensi 924 MHz.

BAB III METODE PELAKSANAAN

3.1 Perancangan

Sistem ini dirancang dengan tujuan untuk membagi daya sama besar untuk receiver maupun transmitter pada antena mikrostrip ini. Peracangan ini dilakukan dengan spesifikasi alat yang diinginkan, seperti frekuensi kerja, VSWR, impedansi, insertion loss, return loss, dan jumlah daya yang keluar dari alat.

Spesifikasi pembagi daya Wilkinson:

- 1. VSWR < 1.5
- 2. Insertion Loss < 1 dB
- 3. Return Loss ≤ 20 dB
- 4. Isolasi > 20 dB

3.2 Persiapan

Pada tahap persiapan ini akan dilakukan studi pasar dalam ketersediaan dan harga komponen yang akan dibutuhkan untuk alat yang akan dibuat nanti, setelah melakukan studi pasar selanjutnya akan dilakukan pembelian komponen yang akan dibutuhkan, tetapi sebelumnya akan mengkaji dan merekap hasil dari studi pasar terlebih dahulu, yang bertujuan agar dalam proses pembelian komponen tidak terjadi kesalahan.

3.3 Realisasi

Dalam merealisasikan sebuah *power divider* dibutuhkan suatu perancangan dan perhitungan sesuai dengan teori yang ada. Pembagi daya ini akan direalisasikan dengan menggunakan saluran planar mikrostrip. Material yang dipakai yaitu Epoxy FR-4. Impedansi karakteristik (Z_0) kabel yang digunakan yaitu 50Ω . Lebar strip, permitivitas efektif, panjang gelombang dan panjang saluran pada saluran mikrostrip didapatkan pada perhitungan yang sesuai dengan spesifikasi dan frekuensi yang diinginkan. Pembuatan PCB menggunakan PCB double layer, layer atas berisi *layout* jalur, layer bawah sebagai *ground plane*. Pembagi daya ini terdiri dari 1 *input* dan 4 *output*. Konentor yang digunakan yaitu konektor SMA *Female*. Kabel yang digunakan untuk menyambungkan dengan antena digunakan kabel jenis koaksil RG-58 karena memiliki impedansi sama yaitu 50Ω . Dalam perancangan *casing*, antena dan pembagi daya ini akan berada dalam satu *casing*.

3.4 Pengujian

Pengujian dilakukan dengan mengukur parameter pembagi daya untuk memperoleh data – data yang hasilnya akan dibandingkan dengan spesifikasi yang telah ditentukan. Parameter yang akan diuji dari pembagi daya ini antara lain :

1. Return Loss

Pengukuran *Return Loss* dilakukan untuk mengetahui seberapa besar perbandingan daya yang dipantulkan dengan daya yang dikirim. Dengan mengetahui *return loss* kita dapat menghitung VSWR. Pada pembagi ini, VSWR yang diinginkan adalah lebih kecil 1.5.

2. Insertion Loss

Pengukuran *insertion loss* adalah redaman yang diterima oleh beban. Pada pembagi daya ini *insertion loss* yang diinginkan adalah 3dB.

3. Isolasi antar port output

Pengukuran isolasi antar *port* keluaran dilakukan untuk mengetahui seberapa besar pengaruh *port* keluaran yang satu terhadap *port* keluaran yang lain. Cara pengukurannya sama dengan *insertion loss*, perbedaannya adalah *port* yang diukur adalah *port* keluaran yang saty ke *port* keluaran yang lain. Semakin besar redaman artinya pengaruh antar *port* semakin kecil. Idealnya isolasi antar keluaran adalah tak terhingga.

3.5 Analisa

Dari hasil pengukuran alat tersebut, akan terlihat bahwa apakah hasil pengukuran dengan spesifikasi yang diinginkan sesuai. Lalu akan dibandingkan juga hasil pengukuran ini dengan simulasi yang telah dilakukan. Apabila ada ketidaksesuaian maka akan dianalisa penyebab *error* nya.

3.6 Evaluasi

Untuk tahap evaluasi ini diharapkan pembagi daya yang direalisasikan sesuai dengan spesifikasi yang telah ditentukan melalui proses perhitungan dan simulasi, agar saat digabung kan dengan antenanya dapat berjalan dengan baik sesuai spesifikasi yang diinginkan.

BAB IV BIAYA DAN JADWAL KEGIATAN

4.1 Anggaran Biaya

Tabel 4.1 Ringkasan Anggaran Biaya

No	Jenis Biaya	Biaya(Rp)
1	Biaya Penunjang Tugas Akhir	Rp. 40.000
2	Biaya Bahan Habis Pakai	Rp. 1.497.500
3	Biaya Perjalanan	Rp. 67.700
4	Lain - Lain	Rp. 140.000
Jumlah		Rp. 1.745.200

4.2 Jadwal Kegiatan

Tabel 4.2 Jadwal Kegiatan

No. Agenda]	Bulan	l	
110.	o. Agenda		2	3	4	5
1.	Survei Material Bahan dan Komponen					
2.	Pemilihan dan Pembelian Barang					
3.	Perancanga dan Proses Simulasi pada Simulator					
4.	Realisasi Sistem					
5.	Pengujian Sisitem					
6.	Analisis dan Pemecahan Masalah					
7.	Penyusunan Laporan TA					

DAFTAR PUSTAKA

Alam, S. & Nugorho, R. F., 2018. PERANCANGAN ANTENA MIKROSTRIP ARRAY 2x1 UNTUK MENINGKATKAN GAIN UNTUK APLIKASI LTE PADA FREKUENSI 2.300 MHz. *Jurnal Teknik dan Ilmu Komputer*, Volume 7, pp. 365-378.

Dahlan & Achmad, E., 2009. Perencanaan Dan Pembuatan Antena Mikrostrip Array 2x2 Pada Frekuensi 1575 Mhz. *EECCIS*, Volume III, pp. 53-56.

Darmawan, P. A., Nur, L. O. & Wijanto, H., 2018. ANTENA MIKROSTRIP ARRAY 1×4 INSET-FED PATCH PERSEGI untuk WIFI 2,4 GHz ACCESS POINT. *e-Proceeding of Engineering*, Volume 5, pp. 321-330.

Helsis, F., 2004. FOUR WAY POWER DIVIDER UNTUK APLIKASI PEMANCAR PADA FREKUENSI 890-960 MHz, Bandung: Politeknik Negeri Bandung.

Pozar, M. D., 1998. Microwave Engineering. 2 ed. s.l.:John Wiley & Sons.

Rahmawati, E., Sumajudin, B. & Wahyu, Y., 2010. Perancangan dan Realisasi Wilkinson 4-Way Power Divider dengan Beda Fasa 90 derajat Pada Frekuensi 2300 - 2400 MHz. *Tugas Akhir.*

Ridho, V. A., Utomo, S. B. & Setiabudi, D., 2015. Perancangan dan Realisasi Antena Mikrostrip 700 MHz Model Patch Circular Dengan Metode Linear Array Sebagai Penerima TV Digital. *elektronik Jurnal Arus Elektro Indonesia*, Volume 1, pp. 45-49.

Rohmah, Y. S., 2013. KONSEP DASAR SELULER, Bandung: s.n.

Silitonga, R. P., Wijanto, H. & Wahyu, Y., 2015. PERANCANGAN DAN REALISASI ANTENA MIKROSTRIP REKTANGULAR BERCELAH UNTUK TRIPLE BAND (900 MHZ, 1800 MHZ, 2400 MHZ) (. *e-Proceeding of Engineering*, Volume 2, pp. 7204-7212.

Supriyadi, E., 2018. *IDN TIMES*. [Online]
Available at: https://www.idntimes.com/tech/gadget/eka-supriyadi/daftar-6-negara-pengguna-ponsel-terbanyak-di-dunia-ada-indonesia-c1c2
[Diakses 31 January 2019].

Syahputra, M. R., S. & Irhamsyah, M., 2017. Perancangan Antena Microstrip Rectangular Patch Array 4 Elemen Untuk Aplikasi LTE. *Kitektro*, Volume 2, pp. 52-58.

Z Nz, E. F., 2011. PERANCANGAN DAN REALISASI POWER DIVIDER SEBAGAI PEMBAGI DAYA PADA ANTENA PEMANCAR TV KAMPUS IT TELKOM PADA FREKUENSI 534MHZ-542MHZ, Bandung: Unversitas Telkom.

LAMPIRAN-LAMPIRAN

Lampiran 1. Biodata Pengusul dan Dosen Pembimbing

1. Biodata Pengusul

A. Identitas Diri

1	Nama Lengkap	Rahmat Fauzi
2	Jenis Kelamin	L
3	Program Studi	Teknik Telekomunikasi
4	NIM	161331058
5	Tempat dan Tanggal Lahir	Bandung, 17 November 1997
6	Alamat E-mail	Rahmatf197@gmail.com
7	Nomor Telepon/HP	085322490064

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1			
2			
3			

C. Penghargaan Yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1			
2			
3			

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Tugas Akhir Program D-3 Teknik Telekomunikasi Politeknik Negeri Bandung.

Bandung, 10 Februari 2019 Pengusul,

Rahmat Fauzi

2. Dosen Pembimbing

A. Identitas Diri

1	Nama Lengkap	Asep Barnas Simanjuntak, BSEE, M.T	
2	Jenis Kelamin	L	
3	Program Studi	D3 Teknik Telekomunikasi	
4	NIP/NIDN	195804211985031002/0021045802	
5	Tempat dan Tanggal	Pandung 21 April 1059	
3	Lahir	Bandung, 21 April 1958	
6	Alamat E-mail	abesimanjuntak@yahoo.com	
7	Nomor Telepon/HP	081320274317	

B. Riwayat Pendidikan

Gelar Akademik	Sarjana	S2/Magister	S3/Doktor
Nama Institusi	University of	Institut Teknologi	
	Kentucky USA	Bandung	-
Jurusan/Prodi	Tekniik Elektro	Teknik	
	Tekilik Elektro	Telekomunikasi	-
Tahun Masuk -	1988 - 1990	2001 - 2004	
Lulus	1900 - 1990	2001 - 2004	-

C. Rekam Jejak Tri Dharma PT

C.1 Pendidikan/Pengajaran

No	Nama Mata Kuliah	Wajib/Pilihan	SKS
1	Teknik Antena dan	Waiib	
	Propagasi	Wajib	
2	Perancangan Antena	Wajib	
3	Medan Elektromagnetik	Wajib	
4	Praktek HF dan Antena	Wajib	

C.2 Penelitian

No	Judul Peneliatian	Penyandang Dana	Tahun
1	Perancangan dan Implementasi Digital Microwave Radio Link	DIPA	2012
2	Antena TV Kampus	DIPA	2016
3	Pengembangan Alat untuk Mengukur dan Menvisualisasikan Pola Radiasi Antena sebagai Alat Bantu Pengajaran Praktikum Teknik	DIPA	2017

	Antena dan Propagasi di Laboratorium Radio		
4	Realisasi Antena Yagi 7 Elemen pada Frekuensi 915 MHz Menggunakan Balun Bazooka untuk Objek Pengukuran Propagasi dan Pola Radiasi Antena	DIPA	2017

C.3 Pengabdian Kepada Masyarakat

No	Judul Pengabdian kerpada	Penyandang Dana	Tahun
	Masyarakat		
1	Aplikasi Interkom via LAN		
	untuk Informasi Siskamling dan	DIPA	2012
	Basis Data di Lingkungan	DIPA	2012
	RT/RW		
2	Pendampingan Perancangan		
	Sistem Komunikasi Radio dan		
	Data untuk Anggota SENKOM	DIPA	2016
	MITRA POLRI Provinsi Jawa		
	Barat		

Semua data yang bisa saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Tugas Akhir D-3 Teknik Telekomunikasi Politeknik Negeri Bandung.

Bandung, 10 Februari 2019 Dosen Pembimbing,

Asep Barnas Simanjuntak, BSEE, M.T NIDN. 0021045802

Lampiran 2. Justifikasi Anggaran Kegiatan

1. Peralatan Penunjang

Material	Volume	Harga Satuan (Rp)	Jumlah (Rp)
Kertas HVS A4 80 gr	1 Rim	45.000	40.000
		SUB TOTAL (Rp)	40.000

2. Bahan Habis Pakai

Material	Volume	Harga Satuan (Rp)	Jumlah (Rp)
Epoxy FR-4 (PCB) 20	4 Buah	35.000	140.000
cm x 20 cm		33.000	140.000
Konektor SMA	10 Buah	12.500	125.000
Cetak PCB	4 Buah	200.000	800.000
Casing	1 Buah	400.000	400.000
Kabel koaksial RG-58	5 Meter	6500	32.500
		SUB TOTAL (Rp)	1.497.500

3. Perjalanan

Material	Volume	Harga Satuan (Rp)	Jumlah (Rp)
Perjalanan mencetak	6 Liter	7.450	44.700
PCB dan membuat			
casing			
Biaya Parkir	6 kali	2000	12.000
Ongkos Kirim Barang	1 Kali	11.000,-	11.000
		SUB TOTAL (Rp)	67.700

4. Lain-lain

Material	Volume	Harga Satuan (Rp)	Jumlah (Rp)
Pembuatan Laporan	2	30.000	60.000
Fotocopy dan Jilid	2	40.000	80.000
		SUB TOTAL (Rp)	140.000
		Total (Keseluruhan)	1.745.200

Lampiran 3. Surat Pernyataan Pengusul

KEMENTERIAN RISET, TEKNOLOGI, DAN PENDIDIKAN TINGGI POLITEKNIK NEGERI BANDUNG

Jln. Gegerkalong Hilir, Ds. Ciwaruga, Bandung 40012, Kotak Pos 1234, Telepon (022) 2013789, Fax. (022) 2013889 Homepage: www.polban.ac.id Email: polban@polban.ac.id

SURAT PERNYATAAN PENGUSUL

Yang bertanda tangan di bawah ini:

Nama : Rahmat Fauzi

NIM : 161331058

Program Studi : D-III Teknik Telekomunikasi

Jurusan : Teknik Elektro

Dengan ini menyatakan bahwa proposal Tugas Akhir saya dengan judul "Realisasi Sistem Antena Sektoral Pada Frekuensi 924 Mhz untuk Komunikasi Selular (Bagian: Pembagi Daya Wilkinson 1x4)" yang diusulkan untuk tahun anggaran 2019 adalah asli karya dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penelitian yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenar-benarnya.

Bandung, 01 Februari 2019 Yang menyatakan,

> Rahmat Fauzi NIM. 161331058

Lampiran 4: Landasan Teori

4.1 Pembagi/Penggabung Daya Wilkinson

Pembagi/penggabung daya wilkinson termasuk dalam kategori struktur biner. Perangkat ini cukup sederhana dan banyak digunakan. Jumlah perangkat yang digabungkan pada jenis penggabung ini memiliki struktur biner. Bentuk ini disebut pula sebagai struktur pohon. Pembagi/penggabung jenis biner memiliki fitur utama yaitu *port – port* masukannya sesuai (*matched*) dengan *port* keluaran dan terisolasi satu sama lain.

Pembagi/penggabung daya Wilkinson merupakan pembagi/penggabung hibrid N jalan (N – way hybrid combiner/divider). Transformer ini mampu membagi daya masukan menjadi beberapa daya keluaran pada sejumlah N – port serta memberikan isolasi antar port keluarannya.

Gambar 4.1 Diagram Wilkinson Power Divider

Unit pembagi daya Wilkinson sederhana, seperti diperlihatkan pada Gambar 4.1, merupakan sebuah 2 – way divider yang terdiri dari dua buah saluran transformer $\lambda/4$ dengan masing – masing impedansi karakteristik 70.7 λ dan sebuah resistor 100Ω diantara keduanya. Karena kedua *port* keluaran memiliki beban 50Ω maka diperlukan saluran $\lambda/4$ untuk mentransformasikan saluran 100Ω ke beban 50Ω , sehingga diperoleh impedansi karakteristik (Z_0) saluran tersebut sebesar 70.7Ω .

Pada pembagi daya Wilkinson, port masukan dan keluaran identik dan mempunyai harga impedansi Z_0 . Transformer $\lambda/4$ digunakan dalam rangkaian ini untuk memudahkan kita dalam memahami kondisi matching. Matching dari port keluaran sangatlah perlu untuk transfer daya yang lebih baik dari masukan ke keluaran. Jika port keluaran match, maka tidak ada daya yang dipantulkan dari port keluaran. Pada Gambar 4.1.2, daya masukan diberikan pada port 1, sedangkan port 2 dan port 3 diterminasi dengan impedansi beban yang sesuai, sehingga tidak ada arus yang mengalir pada resistor yang terhubung dengan port keluaran. Resistor tersebut digunakan untuk mengisolasi part keluarannya. Ini merupakan fitur dari pembagi daya Wilkinson yaitu adanya resistor yang terhubung ke beberapa port keluaranya. Jika terdapat efek coupling antar port keluaran, isolasi resistor akan mengindari efek tersebut pada port keluaran.

Lampiran 5. Gambaran Teknologi yang Hendak Diterapkembangkan

Antena Array

Pembagi Daya Wilkinson 1x4

Gambar 5.1 Ilustrsi Sistem

Keterangan:

: Sub sistem dikerjakan oleh Pandri Petrus

: Sub sistem dikerjakan oleh Pengusul

Lampiran 5.2 Blok Diagram Sistem

Gambar 5.2 Blok Diagram Sistem

Lampiran 5.3 Cara Kerja Sistem

Pada ilustrasi diatas, pertama – tama *transmitter* akan mengirimkan sinyal dan daya, lalu akan masuk pada pembagi daya yang akan dibagi dayanya sama besar ke antena array tesebut. Antena array akan memancarkan sinyal tersebut dan diterima oleh alat komunikasi seluler.