

ELECTRIC VEHICLE CHARGER

METU EE7566 Electric Drives in Electric and Hybrid Electric Vehicles

Instructor: Dr. Emine BOSTANCI

Prepared by Serhat ÖZKÜÇÜK

EV Types

Hybrid EV (HEV)

Plug-In Hybrid EV (PHEV)

Battery EV (BEV)

Extended Range EV (ER-EVs)

EVSE: Electric Vehicle Supply Equipment

• EVSE is a device that can communicate with electrical vehicles within the standards (IEC,ISO) and transmit the electrical energy to electric vehicles in a controlled way.

USA

Charge Types

- AC
- DC
- INDUCTIVE

EV – Charger Structure

DC Charging:

- -Infrastrecture investment is shared among hundreds of users
- -Large Power Rating
- -Fast Charging
- -Capable of integration with renewable resourches

AC Charging:

- -On-Board Charger
- -Limited Power
- -Slow Charging

EVSE Types

LEVEL 1 & LEVEL 2

1.4kW@12A 1.9kW@20A 4kW@17A 19.2kW@80A **LEVEL 3**

Up to 120kW

CHARGE TYPES (POWER)

Inductive Charge

- It is based on the transfer of energy through magnetic coupling.
- The electromagnet in the station constitutes half of a transformer and the other electromagnet under the vehicle the other half of the transformer.
- When the exact match between the electromagnets is achieved, the energy transfer starts.
- **OAK RIDGE Surges forward with 20-kilowatt wireless charging for EVs: https://www.youtube.com/watch?v=NP-SACM3jtQ

Typical inductively coupling stationary EV battery charging and GM EV1 system.

Direct Charge (AC) – MOD1

- Charged using standard household cables and socket outlets.
- Grounding is provided using the PE connection on the mains socket.
- It is the most preferred method of charging, but its use is prohibited in America, Canada, Israel and the UK (Safety Problems).

MOD 1	1 PHASE	3 PHASE
MAX. CURRENT	16A	16A
VOLTAGE	230V	400V
MAX. POWER	3.7kW	11kW

Portable structure

Direct Charge (AC) – MOD2

• It is based on charging the vehicle using standard household cables and socket outlets. In addition to MOD 1, the cable is equipped with a protection device (type A RCD).

 The ground connection is provided using the PE connection on the mains socket and the charging device and the charging compatibility communication with the protection device are provided by CP(Control Pilot) and PP(Proximity Pilot).

MOD 2	1 PHASE	3 PHASE
MAX. CURRENT	32A	32A
VOLTAGE	230V	400V
MAX. POWER	7.4kW	22kW

Portable structure

Direct Charge (AC) – MOD3

• The charger is permanently connected to the mains.

 Communication between the EV and EVSE is provided by CP(Control Pilot) and PP(Proximity Pilot) signals.

It is widely used in street or parking areas.

MOD 3	1 PHASE (Current/Voltage/Power)	3 PHASE (Current/Voltae/Power)
Normal Charge	16A/230V/3.7kW	16A/400V/11kW
Semi-Fast Charge	32A/230V/7.4kW	32A/400V/22kW
Fast Charge	70A/230V/16.1kW	63A/400V/44kW

Direct Charge (DC) - MOD4

- The charger is permanently connected to the mains. AC form of energy is isolated and converted to DC and supplied in the DC form to the Electric Vehicle.
- The power conversion required to feed the batteries has been made at DC charging stations and has been a solution to the reliability problems of electric vehicles.
- Wall and stationary types are common.
- The output voltage range depends on the station. Generally, electric vehicles have a nominal voltage of 400V.
- Communication with Electric Vehicles is provided by PLC or CAN.
- Modular structures are preferred for power conversion.

Direct Charge Modes and Times

Different charge modes and charge times

Charging time for 100 km of BEV range		Power supply	Power	Voltage	Max. current
AC	6-8 hours	Single phase	3.3 kW	230 V AC	16 A
AC	3–4 hours	Single phase	7.4 kW	230 V AC	32 A
AC	2–3 hours	Three phase	10 kW	400 V AC	16 A
AC	1–2 hours	Three phase	22 kW	400 V AC	32 A
AC	20-30 minutes	Three phase	43 kW	400 V AC	63 A
DC	20-30 minutes	Direct current	50 kW	400–500 V DC	100–125 A
DC	10 minutes	Direct current	120 kW	300-500 V DC	300–350 A

Charge Levels

Power Level	Description	Power Level
Level 1	Opportunity charger (any available outlet)	1.4kW (12A) 1.9kW (20A)
Level 2	Primary dedicated charger	4kW (17A) 19.2kW (80A)
Level 3	Commercial fast charger	Up to 100kW

Charge Socket Types

CHAdeMO DC (Japan)

DC COMBO (Europe)

EV and EVSE Communication

Proximity Plot (PP) (IEC Stds.)

- The main task is to check the cable is connected. Activates the installed charger in the vehicle.
- Provides information about the maximum current that the cable can carry. The current is determined by the resistance value between PP and PE in the socket.

Resistance	Max. Current
1.5kohm	13A
680ohm	20A
220ohm	32A
100ohm	63A

Control Pilot (CP) (IEC Stds.)

- It carries the information of the vehicle case.
- Used for MOD2, MOD3, MOD4.
- The maximum current for charging is reported (duty cycle) to the vehicle within this signal.

Chargers (Converters)

Light weight, High efficiency, Small volume, Low electromagnetic interference, Low current ripple drawn from the Fuel Cell or the battery

Unidirectional Chargers

Non-Isolated

Diode Bridge + Buck

+ Boost

+ Buck-Boost

Isolated

Diode Bridge +Flyback(<100W)

+Forward(50-200W)

+Pushpull(100-500W)

+Half-bridge(200-500W

+Full-bridge(>500W)

+SEPIC(>500W)

+CUK(>500W)

+Multilevel

ow Power

Slow Charging

Fast Charging High Power

Bidirectional Chargers

Non-Isolated or Isolated

Pushpull

Half-bridge

Full-bridge (VSI - CSI)

Multilevel (VSI - CSI)

Matrix Converters

Phase Single

	Configurations		Properties and Comparison	Methods for Improving Performance	Control Algorithms
Bidirectional Chargers Unidirectional Chargers	Single-phase Non-isolated or Isolated (Low power-slow charging)	-Diode Bridge + Buck -Diode Bridge + Boost -Diode Bridge + Buck/Boost -Diode Bridge + Isolated Con Flyback - Forward	Buck is the simplest converter if you require an output voltage that is lower than the input, as it requires only a small number of components. It wastes very little energy. Boost converts a lower input voltage to a higher output. It contains at least a pair of diodes and transistors and at least one capacitor or any energy storage element. Output voltage can be either higher or lower than input in Buck-Boost; also, a negative-polarity output is obtained with respect to the common terminal of the input current. The main advantage is the small number of devices. Disadvantages are the high input voltage ripple and high electrical stresses. Flyback is widely used in applications where an isolated conversion is required, for low-power ranges. High output voltages can be quite easily obtained, because there is no inductor in the output section. It is simple and inexpensive, but has high voltage stress and low efficiency due to leakage inductor. Forward can be considered a direct derivative of the Push-Pull converter, where one of the switches is replaced by a diode. The cost is usually lower, which makes this topology very common. Similar to the buck-boost, the CUK provides a negative-polarity regulated output voltage with respect to the common terminal of the input. Advantages are a continuous current at the input (and at the output) and reduced input and output	-PFC -Bridgless boost PFC -Interleaved: Reduced battery charging current,	
	Three-phase Non-isolated or Isolated (High power-fast charging)	- Pushpull - Half-Bridge - Full-Bridge - SEPIC - CUK - Multilevel	current. Disadvantages are a high number of passive components, large inductors and high electrical stresses. SEPIC contains two large inductors and output capacitor; output current is discontinuous. It has a non-inverting buck-boost characteristic. It also exhibits (like the Cuk) the desirable feature that the switch control terminal is connected to ground; this simplifies the construction of the gate drive circuitry. Voltage stresses in the capacitor are lower than in the Cuk. It exhibits non-pulsating input current. Transfer capacitor is rated only to input voltage. Cuk and SEPIC/Luo can convert power bidirectionally by using two active switches. The current stress for active switches and diodes in the Cuk and SEPIC/Luo are larger than that in the half bridge under the same input/output voltage and power conditions. Therefore, the half-bridge is expected to be more efficient. It also has fewer inductors and capacitors.	inductor size and stress on output capacitor, but limited power level -Bridgless Interleaved: High power level -Multicell -Resonant Circuit:	-PI -PID -Sliding Mode -Fuzzy Logic -Adaptive
	Single-phase Non-isolated or Isolated (Low power- slow charging)	-Push-pull -Half-Bridge -Full- Bridge (VSI -CSI)	Half-Bridge: Fewer components, lower cost, control simplicity, but high component stress. It has the same number of active and passive components as the two-quadrant buck-boost. There is only one inductor instead of two (SEPIC – CUK). Higher efficiency than the SEPIC and CUK, because it has lower inductor conduction and switching losses. Drawback is its discontinuous output current when operating as boost. Full-Bridge: More components and PWM inputs, control complexity, higher cost, but lower component stress. It has a high conversion ratio and power level. Multilevel: Requires additional control circuitry. Additional components increase cost and complexity, but lower component stress and losses. It has high efficiency, reduced size and switching frequency. It includes EMI and a high frequency component and a small and inexpensive filter.	Reduced switching stress and losses, high efficiency -Soft/Hard switching -Zero voltage and current switching (ZVS ZCS): Reduced	-Neural Network
	Three-phase Non-isolated or Isolated (High power-fast charging)	-Matrix Converters	Matrix Converters: Provides sinusoidal input/output waveforms, with minimal higher order harmonics and no subharmonics. It has inherent bidirectional energy flow; the input power factor can be fully controlled. It has minimal energy storage requirements, which allows elimination of bulky and lifetime-limited energy-storing capacitors. But it has a maximum input/output voltage transfer ratio limited to 87% for sinusoidal input and output waveforms and requires more semiconductor devices than a conventional ac-ac indirect power frequency converter, since no monolithic bidirectional switches exist and, consequently, discrete unidirectional devices, variously arranged, have to be used for each bidirectional switch. It is particularly sensitive to disturbances of the input voltage system.	size and weight	

The HEV/EV requires numerous types of high-voltage converters, including unidirectional and bidirectional dc-dc topologies. (Source: <u>TI Training: "How to Design Multi-kW DC/DC Converters for Electric Vehicles (EVs) – EV System Overview" video</u>:

https://training.ti.com/how-design-multi-kw-dcdc-converters-electric-vehicles-evs-ev-system-overview?cu=1128387

MOD4 DC Charger: ABB Wallbox 20kW

Internal Structure of ABB DC Charger

- 1 Input Filter Block
- 2 Display control,Communication,Main board
- 3 EV Communication
- 4 Output
- 5 DC Contactor
- 6 GSM Module

Converter Board of ABB DC Charger

Converter Board of ABB DC Charger

- 1 AC Input
- 2 Input Filtering
- 3 Supplier Transformers
- 4 AC/DC DC/DC Blocks
- 5 DC Output

MOD3 AC Charger: VESTEL EV Charger

MOD3 (IEC)

- Wi-Fi , NFC/RFID , GSM
- LED Display(RB)
- Charge Start/Stop Button

DC WALLBOX BENCHMARK

- Delta DC Wallbox EV Charger (CCS: 200-500V, Chademo:50-500V, 60A, 25kW, 3phase)
- IES Keywatt DC Charger (CCS, Chademo, GB/T, 2output, 200-520V, 65A, 24kW, 3&1phase, IP54, IK07/09)
- **ABB** DC Wallbox EV Charger (CCS, Chademo, GB/T, 2output, 60A, 22.5kW, 3phase)

DC WALLBOX BENCHMARK

 Designwerk Mobile DC Charger (CCS, Chademo, 280-450V, 60A, 21kW, 3phase, IP54)

 Efacec DC Wallbox EV Charger
 (CCS: 260-425V, 60A, 24kW, 3&1phase, IP54, IK10)

DC TOTEM/SELF STANDING BENCHMARK

ABB 350kW

ABB

ABB

ABB

DC TOTEM/SELF STANDING BENCHMARK

EFACEC 150 kW

EFACEC

ENEL

References

- Review of Battery Charger Topologies, Charging Power Levels, and Infrastructure for Plug-In Electric and Hybrid Vehicles, Murat Yilmaz and Philip T. Krein, 2013
- Review of Integrated Charging Methods for Plug-In Electric and Hybrid Vehicles, Murat Yilmaz and Philip T. Krein, 2012
- https://training.ti.com/how-design-multi-kw-dcdc-converters-electricvehicles-evs
- DC/DC Converters for Electric Vehicles, Monzer Al Sakka, Joeri Van Mierlo and Hamid Gualous, 2011
- https://www.electronicdesign.com/automotive/more-electrificationmeans-greater-automobile-efficiency
- Design and Analysis of 60 kW DC-DC Converter for Hybrid Electric Vehicle Applications, Muhammad Rafiq, Mohammed Fareed Ul Hasan, Prof. Torbjörn Thiringer.
- Powering The Future, Shenzhen Megmeet Electrical Co.,Ltd.
- Electric Vehicle Charger Stations, Garry H. Fox.