Approximate Functions

Going Deep

Jonathon Hare

Vision, Learning and Control University of Southampton

Overview

- No free lunch and universal approximation
- Why go deep?
- Problems of going deep
- Some fixes:
 - Improving gradient flow with skip connections
 - Regularising with Dropout

• Statistical learning theory claims that a machine can generalise well from a finite training set.

¹or perhaps more generally rules which are not certain

- Statistical learning theory claims that a machine can generalise well from a finite training set.
- This contradicts basic inductive reasoning which says to derive a rule describing every member of a set one must have information about every member.

¹or perhaps more generally rules which are not certain

- Statistical learning theory claims that a machine can generalise well from a finite training set.
- This contradicts basic inductive reasoning which says to derive a rule describing every member of a set one must have information about every member.
- Machine learning avoids this problem by learning probabilistic¹ rules which are probably correct about most members of the set they concern.

¹or perhaps more generally rules which are not certain

- Statistical learning theory claims that a machine can generalise well from a finite training set.
- This contradicts basic inductive reasoning which says to derive a rule describing every member of a set one must have information about every member.
- Machine learning avoids this problem by learning probabilistic¹ rules which are probably correct about most members of the set they concern.
- But, no free lunch theorem states that every possible classification machine has the same error when averaged over all possible data-generating distributions.

¹or perhaps more generally rules which are not certain

- Statistical learning theory claims that a machine can generalise well from a finite training set.
- This contradicts basic inductive reasoning which says to derive a rule describing every member of a set one must have information about every member.
- Machine learning avoids this problem by learning probabilistic¹ rules which are probably correct about most members of the set they concern.
- But, no free lunch theorem states that every possible classification machine has the same error when averaged over all possible data-generating distributions.
 - No machine learning algorithm is universally better than any other!

¹or perhaps more generally rules which are not certain

- Statistical learning theory claims that a machine can generalise well from a finite training set.
- This contradicts basic inductive reasoning which says to derive a rule describing every member of a set one must have information about every member.
- Machine learning avoids this problem by learning probabilistic¹ rules which are probably correct about most members of the set they concern.
- But, no free lunch theorem states that every possible classification machine has the same error when averaged over all possible data-generating distributions.
 - No machine learning algorithm is universally better than any other!
 - Fortunately, in the real world, data is generated by a small subset of generating distributions...

¹or perhaps more generally rules which are not certain

Let $\psi : \mathbb{R} \to \mathbb{R}$ be a nonconstant, bounded, and continuous function.

Let $\psi : \mathbb{R} \to \mathbb{R}$ be a nonconstant, bounded, and continuous function. Let I_m denote the m-dimensional unit hypercube $[0,1]^m$.

Let $\psi : \mathbb{R} \to \mathbb{R}$ be a nonconstant, bounded, and continuous function. Let I_m denote the m-dimensional unit hypercube $[0,1]^m$. The space of real-valued continuous functions on I_m is denoted by $C(I_m)$.

Let $\psi:\mathbb{R}\to\mathbb{R}$ be a nonconstant, bounded, and continuous function. Let I_m denote the m-dimensional unit hypercube $[0,1]^m$. The space of real-valued continuous functions on I_m is denoted by $C(I_m)$. Then, given any $\varepsilon>0$ and any function $f\in C(I_m)$, there exist an integer N, real constants $v_i,b_i\in\mathbb{R}$ and real vectors $w_i\in\mathbb{R}^m$ for $i=1,\ldots,N$, such that we may define:

 $F(x) = \sum_{i=1}^{N} v_i \psi(w_i^T x + b_i)$ as an approximate realization of the function f; that is,

Let $\psi:\mathbb{R}\to\mathbb{R}$ be a nonconstant, bounded, and continuous function. Let I_m denote the m-dimensional unit hypercube $[0,1]^m$. The space of real-valued continuous functions on I_m is denoted by $C(I_m)$. Then, given any $\varepsilon>0$ and any function $f\in C(I_m)$, there exist an integer N, real constants $v_i,b_i\in\mathbb{R}$ and real vectors $w_i\in\mathbb{R}^m$ for $i=1,\ldots,N$, such that we may define:

 $F(x) = \sum_{i=1}^{N} v_i \psi(w_i^T x + b_i)$ as an approximate realization of the function f; that is,

$$|F(x)-f(x)|<\varepsilon\ \forall\ \in I_m.$$

Let $\psi:\mathbb{R}\to\mathbb{R}$ be a nonconstant, bounded, and continuous function. Let I_m denote the m-dimensional unit hypercube $[0,1]^m$. The space of real-valued continuous functions on I_m is denoted by $C(I_m)$. Then, given any $\varepsilon>0$ and any function $f\in C(I_m)$, there exist an integer N, real constants $v_i,b_i\in\mathbb{R}$ and real vectors $w_i\in\mathbb{R}^m$ for $i=1,\ldots,N$, such that we may define:

 $F(x) = \sum_{i=1}^{N} v_i \psi(w_i^T x + b_i)$ as an approximate realization of the function f; that is,

$$|F(x)-f(x)|<\varepsilon\ \forall\ \in I_m.$$

 \implies simple neural networks can represent a wide variety of interesting functions when given appropriate parameters.

Yes!

²note that it has been shown that the gradients of the function are approximated by the network to an arbitrary precision

- Yes!
- But. ...

 worse-case analysis shows it might be exponential (possibly one hidden unit for *every* input configuration)

²note that it has been shown that the gradients of the function are approximated by the network to an arbitrary precision

- Yes!
- But, ...
 - to get the precision you require (small ε), you might need a really large number of hidden units (very large N).
 - worse-case analysis shows it might be exponential (possibly one hidden unit for every input configuration)

²note that it has been shown that the gradients of the function are approximated by the network to an arbitrary precision

- Yes!
- But, ...
 - to get the precision you require (small ε), you might need a really large number of hidden units (very large N).
 - worse-case analysis shows it might be exponential (possibly one hidden unit for every input configuration)
 - We've not said anything about learnability...

²note that it has been shown that the gradients of the function are approximated by the network to an arbitrary precision

- Yes!
- But, ...
 - to get the precision you require (small ε), you might need a really large number of hidden units (very large N).
 - worse-case analysis shows it might be exponential (possibly one hidden unit for every input configuration)
 - We've not said anything about learnability...
 - The optimiser might not find a good solution².

²note that it has been shown that the gradients of the function are approximated by the network to an arbitrary precision

- Yes!
- But, ...
 - to get the precision you require (small ε), you might need a really large number of hidden units (very large N).
 - worse-case analysis shows it might be exponential (possibly one hidden unit for every input configuration)
 - We've not said anything about learnability...
 - The optimiser might not find a good solution².
 - The training algorithm might just choose the wrong solution as a result of overfitting.

²note that it has been shown that the gradients of the function are approximated by the network to an arbitrary precision

- Yes!
- But, ...
 - to get the precision you require (small ε), you might need a really large number of hidden units (very large N).
 - worse-case analysis shows it might be exponential (possibly one hidden unit for every input configuration)
 - We've not said anything about learnability...
 - The optimiser might not find a good solution².
 - The training algorithm might just choose the wrong solution as a result of overfitting.
 - There is no known universal proceedure for examining a set of examples and choosing a function that will generalise to points out of the training set.

²note that it has been shown that the gradients of the function are approximated by the network to an arbitrary precision

Then Why Go Deep?

- There are functions you can compute with a deep neural network that shallow networks require exponentially more hidden units to compute.
- The following function is more efficient to implement using a deep neural network: $y = x_1 \oplus x_2 \oplus x_3 \oplus \cdots \oplus x_n$

 The vanishing and exploding gradient problem is a difficulty found in training NN with gradient-based learning methods and backpropagation.

- The vanishing and exploding gradient problem is a difficulty found in training NN with gradient-based learning methods and backpropagation.
- In training, the gradient may become vanishingly small (or large), effectively preventing the weight from changing its value (or exploding in value).

- The vanishing and exploding gradient problem is a difficulty found in training NN with gradient-based learning methods and backpropagation.
- In training, the gradient may become vanishingly small (or large), effectively preventing the weight from changing its value (or exploding in value).
- This leads to the neural network not being able to train.

- The vanishing and exploding gradient problem is a difficulty found in training NN with gradient-based learning methods and backpropagation.
- In training, the gradient may become vanishingly small (or large), effectively preventing the weight from changing its value (or exploding in value).
- This leads to the neural network not being able to train.
- This issue affects many-layered networks (feed-forward), as well as recurrent networks.

Issues with Going Deep

• One of the most effective ways to resolve the vanishing gradient problem is with residual neural networks (ResNets)³.

³K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," CVPR, Las Vegas, NV, 2016, pp. 770-778.

- One of the most effective ways to resolve the vanishing gradient problem is with residual neural networks (ResNets)³.
- ResNets are artificial neural networks that use skip connections to jump over layers.

³K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," CVPR, Las Vegas, NV, 2016, pp. 770-778.

- One of the most effective ways to resolve the vanishing gradient problem is with residual neural networks (ResNets)³.
- ResNets are artificial neural networks that use skip connections to jump over layers.
- The vanishing gradient problem is mitigated in ResNets by reusing activations from a previous layer.

³K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," CVPR, Las Vegas, NV, 2016, pp. 770-778.

Figure 2. Residual learning: a building block.⁴

⁴K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," CVPR, Las Vegas, NV, 2016, pp. 770-778.

Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

⁵K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," CVPR, Las Vegas, NV, 2016, pp. 770-778.

Figure 6. Training on **CIFAR-10**. Dashed lines denote training error, and bold lines denote testing error. **Left**: plain networks. The error of plain-110 is higher than 60% and not displayed. **Middle**: ResNets. **Right**: ResNets with 110 and 1202 layers.

⁶K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," CVPR, Las Vegas, NV, 2016, pp. 770-778.

 Neural networks with a large number of parameters (and hidden layers) are powerful, however, overfitting is a serious problem in such systems.

- Neural networks with a large number of parameters (and hidden layers) are powerful, however, overfitting is a serious problem in such systems.
- Dropout is a form of regularization

- Neural networks with a large number of parameters (and hidden layers) are powerful, however, overfitting is a serious problem in such systems.
- Dropout is a form of regularization
- The key idea in dropout is to randomly drop neurons, including all of the connections, from the neural network during training.

(a) Standard Neural Network

(b) Network after Dropout

7

⁷ Image from: https://www.researchgate.net/figure/ Dropout-neural-network-model-a-is-a-standard-neural-network-b-is-the-same-fig3_309206911

 In the learning phase, we stochastically remove hidden units by setting a dropout probability for each layer in the network. We then randomly decide wether or not a neuron in a given layer is removed stochastically.

• We define a random binary mask $m^{(I)}$ which is used to remove neurons, and note, $m^{(I)}$ changes for each iteration of the backpropagation algorithm.

- We define a random binary mask $m^{(I)}$ which is used to remove neurons, and note, $m^{(I)}$ changes for each iteration of the backpropagation algorithm.
- ullet For layers, I=1 to L-1, for the forward pass of backpropagation, we then compute

$$a^{(l)} = \sigma(w^{(l)}a^{(l-1)} + b^{(l)}) \odot m^{(l)}$$
(1)

- We define a random binary mask $m^{(I)}$ which is used to remove neurons, and note, $m^{(I)}$ changes for each iteration of the backpropagation algorithm.
- ullet For layers, I=1 to L-1, for the forward pass of backpropagation, we then compute

$$a^{(l)} = \sigma(w^{(l)}a^{(l-1)} + b^{(l)}) \odot m^{(l)}$$
 (1)

• For layer L,

$$a^{(L)} = \sigma(w^{(L)}a^{(L-1)} + b^{(I)})$$
 (2)

- We define a random binary mask $m^{(I)}$ which is used to remove neurons, and note, $m^{(I)}$ changes for each iteration of the backpropagation algorithm.
- ullet For layers, I=1 to L-1, for the forward pass of backpropagation, we then compute

$$a^{(l)} = \sigma(w^{(l)}a^{(l-1)} + b^{(l)}) \odot m^{(l)}$$
 (1)

• For layer L,

$$a^{(L)} = \sigma(w^{(L)}a^{(L-1)} + b^{(I)})$$
 (2)

• For the backward pass of the backpropagation algorithm,

$$\delta^{L} = \Delta_{a} J \odot \sigma'(z^{L}) \tag{3}$$

- We define a random binary mask $m^{(I)}$ which is used to remove neurons, and note, $m^{(I)}$ changes for each iteration of the backpropagation algorithm.
- ullet For layers, I=1 to L-1, for the forward pass of backpropagation, we then compute

$$a^{(l)} = \sigma(w^{(l)}a^{(l-1)} + b^{(l)}) \odot m^{(l)}$$
(1)

• For layer L,

$$a^{(L)} = \sigma(w^{(L)}a^{(L-1)} + b^{(I)})$$
 (2)

• For the backward pass of the backpropagation algorithm,

$$\delta^{L} = \Delta_{a} J \odot \sigma'(z^{L}) \tag{3}$$

$$\delta^{l} = ((w^{l+1})^{\mathsf{T}} \delta^{l+1}) \odot \sigma^{\prime}(z^{l}) \odot m^{(l)}$$

$$\tag{4}$$

Why Does Dropout Work?

 Neurons cannot co-adapt to other units (they cannot assume that all of the other units will be present)

Why Does Dropout Work?

- Neurons cannot co-adapt to other units (they cannot assume that all of the other units will be present)
- By breaking co-adaptation, each unit will ultimately find more general features