PART A

Answer All Questions. Each Question carries 4 marks

- 1.Define equivalence relation with suitable example.
- 2. Let f,g: $R \rightarrow R$ be defined by f(x) = x+1, $g(x) = 2x^2+3$ find f 0 g and g 0 f. Is f 0 g = g 0 f?
- 3. What do you meant by Total order relation? Give an example.
- 4. Draw the Hasse diagram for the Poset [P(U), \subseteq] where $U = \{1,2,3\}$.
- 5. Find the rank of the matrix $\begin{bmatrix} 0 & 3 & 4 \\ -3 & 0 & -5 \\ -4 & 5 & 0 \end{bmatrix}$

PART B

Answer any five question. Each Question carries 6 marks.

- 6. Write the Warshall algorithm. Use to find the transitive closure of the relation $\{(1,3),(3,2),(2,4),(3,1),(4,1)\}$ on $\{1,2,3,4\}$.
- 7. If R is an equivalence relation then Prove that R⁻¹ is also an equivalence relation.
- 8. Find the eigen values and eigen vectors of the matrix $\begin{bmatrix} 4 & 2 & -2 \\ 2 & 5 & 0 \\ -2 & 0 & 3 \end{bmatrix}$
- 9. Solve the system of linear equations x + y + z = 6

$$x + 2y - 3z = -4$$

$$-x - 4y + 9z = 18$$
.

- 10. Prove that (Z, /) is a Patial Ordered set where / is the relation divides.
- 11. If R be a relation in the set of integers Z defined by $R = \{(x,y) : x \ Z, y \ Z, x-y \text{ is divisible by 3 }\}$ Describe the distinct equivalence class.
- 12. Consider the following relation on $\{1,2,3,4,5,6\}$. R = $\{(i,j):|i-j|=2\}$. Is R an equivalence Relation?