Prove: $4/6^2-3$).

FALSE PROOF.

Suppose $4/(n^2-3)$. $N^2-3=4k$ for some in legen k $N^2=4k+3$ $N=\frac{4k+3}{8k+3}$ But that can't be an integer!

So that's a contradiching $4/(n^2-3)$

 $7f(n^2-2) \text{ fn odd n.}$ $Suppose \\ 7[n^2-2] \\ n^2-2=7K \\ N^2=2+7K \\ N=7K+2 \\ \text{ so that's a contraded n.}$ $\text{what of } K=1? \\ 7K+2=9 \\ N=3 \\ 7[3^2-2=7]$

from $4/n^2-3$ means

from $1/n^2-3$ means

or mystiks $1/n^2-3$ means $1/n^2-3$ means

n=2 K+1

GOOD PROOF.

 $n^2 \equiv 3 \mod 4$ $n^2 \equiv 0,1,2^2 = 4 \equiv 0 \mod 4,3^2 \equiv 9 \equiv 1 \mod 4$ $n^2 \equiv 0,0$ or $n^2 \equiv 1 \mod 4$ therefore n^2 is never congruent $n^2 \equiv 0,0$ or $n^2 \equiv 1 \mod 4$ $n^2 \equiv 0,0$ or $n^2 \equiv 1 \mod 4$ therefore n^2 is never congruent $n^2 \equiv 0,0$ or $n^2 \equiv 1 \mod 4$ $n^2 \equiv 0,0$ or $n^2 \equiv 1,0$ $n^2 \equiv 0,0$ or $n^2 \equiv 1,0$ $n^2 \equiv 0,0$ $n^2 \equiv 0,$