Aufgabe 1 (Herbst1994). Gegeben seien $a, b \in /QQ^{\times}$. Zeigen Sie: Wenn es einen Körperisomorphismus

$$\varphi: \mathbb{Q}(\sqrt{a}) \to \mathbb{Q}(\sqrt{b})$$

gibt, dann gilt $\frac{a}{b} \in (\mathbb{Q}^{\times})^2$.

Aufgabe 2 (Herbst 2015). Sei $K \subset L$ eine Körpererweiterung und seien $\alpha, \beta \in L$ algebraisch über K. Sei f das Minimalpolynom von α über K und g das Minimalpolynom von β über K. Zeigen Sie, daß f irreduzibel über $K(\beta)$ ist, genau dann, wenn g irreduzibel über $K(\alpha)$ ist.

Aufgabe 3 (Frühjahr 1985). Berechne die Grade der folgenden Körpererweiterungen in $\mathbb R$ bzw. $\mathbb C$:

- (a) $\mathbb{Q} \subset \mathbb{Q}(\sqrt[7]{40})$.
- (b) $\mathbb{Q}(i) \subset \mathbb{Q}(e^{\frac{\pi i}{8}}).$

Aufgabe 4. Seien $p, q \in \mathbb{N}$ verschiedene Primzahlen. Man bestimme das Minimalpolynom von $\sqrt{p} + \sqrt{q}$ über \mathbb{Q} .

Aufgabe 5 (??). Sei $K \subset L$ eine Körpererweiterung, seien $\alpha, \beta \in L$ gegeben, so daß $\alpha + \beta$ und $\alpha\beta$ algebraisch über K sind. Man zeige, daß α und β algebraisch über K sind.

Aufgabe 6. Ist der Körper $\mathbb{C}(t)$ der rationalen Funktionen über \mathbb{C} algebraisch abgeschloßen?