Implementing Factor Analysis and PCA in Excel and VBA

Vitthal Srinivasan CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Explain returns of a stock using returns of several other stocks using PCA

Use VBA to create a user-generated function for eigen analysis in Excel

Calculate principal components of the financial data

Relate the principal components to underlying latent factors

Perform a regression using these principal components

PCA in Excel and VBA

Explain Google's returns

Yahoo finance

Using returns of correlated stocks

Eigen Decomposition

VBA

On covariance matrix

Principal Components

From eigen vectors

Uncorrelated components

Covariance and Correlation

Correlation matrix signals trouble

Multicollinearity problems

Scree Plot

Number of dimensions

Discard low-value dimensions

Interpret and Regress

Beta, bonds, sectors

Now regress Google

Building Is Hard, Using Is Easy

Building a solver for eigen values and eigen vectors is hard

User

Using eigen values and eigen vectors for PCA is easy

Demo

Implement Eigen analysis in VBA
Use this to implement PCA in Excel
Apply multiple regression to the

principal components found this way

Correlation Matrix

k columns

Each element is the correlation of two random variables

Correlation Matrix

k columns

Diagonal elements are always 1

PCA's Forte

Many, Highly Correlated Xi

Unequal Eigenvalues

PCA for Highly Correlated Data

Correlation = +1

As X increases, Y increases linearly

Correlation = -1

As X increases, Y decreases linearly

Correlation = 0

Changes in X independent* of changes in Y

PCA for Highly Correlated Data

Rule-of-thumb: If average absolute values of off-diagonal entries is less than 0.3, PCA not a great idea

Covariance (x,y) =
$$\sum_{n} \frac{(x_i - \overline{x})(y_i - \overline{y})}{n}$$

Covariance (x,y) =
$$\sum_{n} \frac{(x_i - \overline{x})(y_i - \overline{y})}{n}$$

Covariance (x,y) =
$$\sum_{n} \frac{(x_i - \overline{x})(y_i - \overline{y})}{n}$$

Covariance (x,y) =
$$\sum_{n} \frac{(x_i - \overline{x})(y_i - \overline{y})}{n}$$

Covariance (x,y) =
$$\sum_{n} \frac{(x_i - \overline{x})(y_i - \overline{y})}{n}$$

Covariance (x,y) =
$$\sum_{n} \frac{(x_i - \overline{x})(y_i - \overline{y})}{n}$$

Covariance (x,y) =
$$\sum_{n} \frac{(x_i - \overline{x})(y_i - \overline{y})}{n}$$

Intuition: Positive Covariance

Intuition: Positive Covariance

The deviations around the means of the two series are in-sync

Intuition: Negative Covariance

Intuition: Negative Covariance

The deviations around the means of the two series are out-of-sync

Principal Components Analysis

Eigenvalue Decomposition

Principal Components:

Eigenvectors:

Eigenvalues:

Interpreting Eigenvalues

These vectors F_i are arranged in order of decreasing variance

The greater the variance of a principal component, the more important it is

Interpreting Eigenvalues

The greater the eigenvalue of a principal component, the more important it is

Scree Plots

Scree Plots

Scree Plots

Use the Scree plot to determine how many principal components to discard

Intuition: Covariance and Variance

Each principal component is the matrix product of the original data and the corresponding eigenvector

PCA should always be applied on the covariance matrix of standardised vectors

Standardising Data

X11 X_{1k} **X**21 X₂k **X**31 X₃k X_{n1} Xnk $avg(X_1)$ $avg(X_k)$ $stdev(X_1)$ $stdev(X_k)$

Standardising Data

$$\frac{x_{11} - avg(X_1)}{stdev(X_1)}$$

$$\frac{x_{1k} - avg(X_k)}{stdev(X_k)}$$

$$\frac{x_{1k} - avg(X_k)}{stdev(X_k)}$$

$$\frac{x_{1k} - avg(X_k)}{stdev(X_k)}$$

Each column of the standardised data has mean 0 and variance 1

PCA for Latent Factor Identification

Exploratory Factor Analysis: Experts trace back principal components to observable factors

3 Latent Factors in Stock Returns

Market Movements Interest Rates Industry Sectors

Fi = X Vi

n rows, n rows, k rows,

1 column k columns 1 column

Intuition: Positive Covariance

Variance is the covariance of a series with itself

Summary

VBA can be used to add powerful usergenerated functions to Excel

Eigen analysis of covariance matrices is easy to implement via VBA

Such analysis of equity returns reveals three important principal components

These closely correlate with underlying economic factors

Regression using these principal components is free of multicollinearity issues