A TIME OUT TO REVISIT SSE IN MORE DETAIL Steady State Error At this point, we are going to take a time out from Root Locus, and revisit the concept of steady state error in a bit more detail, thinking about the "integrator" We previously explored the concept of SS error in response to step inputs -> we will now explore this concept in regard to a wider range of inputs. Let's look at 3 inputs that might be given to a position control system Time Function <u>Name</u> Form Physical Meaning constant Step position constant velocity Ramp 742 Parabola constant acceleration In real systems, SSE can occur as a result of the system configuration and the applied input

Real ex	camples	for eo	ch in	out tu	pe:		
1) STEP	: A sus	tem wit	hao	osition	montrol	sustem	trying
	to he	old a	steadu	. comm	control nanded p	position	J
			3				
	->a	satell	ite ir	oeps	tationar	y orbi	ተ
	<i>⇒</i> 200	sition (con trol	of an	tationar antenn	a or ra	mera
	190	0.7.0					
2) Ramp:	A suste	m w11	n a po	sition	control	sustem	ÌS
2)Ramp:	com Ma	nded to	nold	a	onstant v	velocitu	
	⇒ A	sustem	to tra	ck a	satellile	across	the.
	sk	V			satellile	QC () C	
	⇒Ã	oround	radar to	rackina	an airc	raft mo	oving at
	0.	constar	nt veloc	ritu y			J
3) Parabo	la: A	astem	with	position	control	that is	ho Idina
	Cons	bant ac	celeration	ρυσ. <i>γ</i>			7
	s tr	ackina	00 000	o location	ng miss	le or co	ocket
		9		.01001			

To know the SSE, we need to know the behavior of the function as $t \rightarrow \infty$, or it's final value.

So we need to know what $f(-\infty)$ is.

The final value theorem tells us that

Only if students want to see if
$$\mathcal{L}\left\{f(t)\right\} - \int_{0}^{\infty} f(t)e^{st}dt = sF(s) - f(0)$$
as $s \to 0$

$$\int_{0}^{\infty} f(t)dt = f(\infty) - f(0) = \lim_{s \to 0} sF(s) - f(0)$$

$$f(\infty) = \lim_{s \to 0} sF(s) \iff \text{only applies to stable systems with no more than I pole at origin}$$
What we actually want to know is the error at ∞

if T(s) = C(s) => CLTF
R(s)

$$E(s) = R(s) - C(s) = R(s)[1 - T(s)]$$

$$e(\omega) = \lim_{s \to 0} s + E(s) = \lim_{s \to 0} s + R(s)[1 - T(s)]$$

So let's do a gurck example step
$$T(s) = \underbrace{5}_{(s^2 + 7s + 10)} R(s) = \underbrace{1}_{S} U$$
find the SSG:
$$E(s) = R(s) [1 - \overline{1}(s)] = \underbrace{1}_{S} [1 - \underbrace{5}_{S^2 + 7s + 10}] = \underbrace{5^2 + 7s + 5}_{S(s^2 + 7s + 10)}$$

Find the SSG:

$$E(s) = R(s) [1 - J(s)] = \underbrace{1}_{S} [1 - \underbrace{5}_{S^2 + 7S + 10}] = \underbrace{s^2}_{S(s^2 + 10)} = \underbrace{s^2}_{S^2 + 7S + 10} = \underbrace{5}_{S^2 + 7S + 10} = \underbrace{5}_{S^2$$

what is
$$R(s) = 1$$
? (impulse)

now e(6) =
$$\limsup_{s \to 0} s = \frac{5(s^2 + 7s + 5)}{s^2 + 7s + 10} = 0$$

Example: Find the steady state error for the following inputs: a) 50(+) b) 5tu(t) c) 5t20(+) u(t) = unit step 100 (S+2) (S+6) S(S+3) (S+4) > first we r should verify closed loop system is Stable - it is! a) Step: 1 (R(s)) = 5/s e (00) = 5 estep (00) = 5 5 1 + 1mG(s) = 5 = 0 **=** 00 b)ramp: 1(R(s)) = 5/s2 $e(\infty) = 5e_{ramp}(\infty) = 5 = 5 \text{ or } 1$ lim sG(s) 100 = 20100

C) parabola:
$$L(R(s)) = 10/s^3$$

$$= \frac{100}{100} = \frac{10}{100} = \frac{10}{100}$$

$$= \frac{100}{100} = \frac{10}{100}$$

 $C_{\text{ramp}}(\infty) = \frac{1}{\lim_{s \to 0} sG(s)}$ $C_{\text{probable}}(\infty) = \frac{1}{\lim_{s \to 0} s^2G(s)}$

Therefore, we define these as static error constants

position constant: $K_p = \lim_{s \to 0} G(s)$ velocity constant: $K_v = \lim_{s \to 0} S(s)$

acceleration constant: $Ka = \lim_{s \to 0} s^2 G(s)$

Don't forget these all were derived for unity feedback with G(s) as the feedforward function

for
$$G_2$$
: $K_p = \lim_{s \to 0} G_2(s) = \infty$
 $K_v = \lim_{s \to 0} SG_2(s) = SO_0(z)(s)(s) = 31.25$
 $K_a = \lim_{s \to 0} S^2G_2(s) = 0$
 $S_{a \to 0} = 0$

Example takeaway > the number of integrators in the forward path has a direct impact on the values of Kp, Kv, Ka The number of integrators in the forward path is ossigned as an attribute of a system, called system type Parabola Ramp Step Ka Error fxn Kv 1+Kp Kp = const Kv = 0 Ka =G TypeO e(b): 1 e(oo) = 00 €(∞)= ∞ 1+ Kp (no integrator) Kv = const Kp = 00 Ka = 0 Typel e (00) = 00 e(00) - 1 Ku e(&)= B (lintegrator) Ka = const Kv = 00 Kp= 00 e(00)=1 Ka TypeZ උ (∞) = ෮ 6(00)=0 (2 integrators)

Wny do	we are?				
Up until	now, u	ue have	focused	on transi	ent
				on transion main design	
But, as	we saw	in our	PID root	locus exan	nple, SSE
is also	a design	criteria	ot concer	1	
A PI or	PID ad	ds 1 inte	egrator to	the system,	which
eliminates	SSE in	response t	o a step	the system, b, but whether the plant	it can
ab prove	depends	an the de	JIIOJVIICS 01	The sports	
9	o Increases	system to	upe by 1		
In addition	on to ou	r transient	t criteria.	we might a	so get
requiremen	nts on	SS6		0	0
Ex: K	x = 1000	s the requi	rement who	ch means:	
		istem is stal			
		stem is typ			
		t input is		nout slope	
		•			
But.	this tell	s us noth	ning about	the transion	t response
Let's	learn ho	uw to ou	t togethe	w everuthin	na we
know	so far to	design	controller	er everythings that meet	all our
design	criterio	thus far bility			
		nsient'respo	nse		
			4		