

Interconnected collection of autonomous computers are called computer networks.

Networks come in many sizes, shapes and forms. They are usually connected together to make larger networks, with the Internet being the most well-known example of a network of networks.

Protocol Hierarchy

To reduce their design complexity, most networks are organized as a stack of layers or levels, each one built upon the one below it. The number of layers, the name of each layer, the contents of each layer, and the function of each layer differ from network to network. The purpose of each layer is to offer certain services to the higher layers while shielding those layers from the details of how the offered services are actually implemented. In a sense, each layer is a kind of virtual machine, offering certain services to the layer above it.

When layer n on one machine carries on a conversation with layer n on another machine, the rules and conventions used in this conversation are collectively known as the layer n protocol. Basically, a protocol is an agreement between the communicating parties on how communication is to proceed.

A five-layer network is illustrated in Fig. 1-13. The entities comprising the corresponding layers on different machines are called peers. The peers may be software processes, hardware devices, or even human beings. In other words, it is the peers that communicate by using the protocol to talk to each other.

Figure 1-13. Layers, protocols, and interfaces.

In reality, no data are directly transferred from layer n on one machine to layer n on another machine. Instead, each layer passes data and control information to the layer immediately below it, until the lowest layer is reached. Below layer 1 is the physical medium through which actual communication occurs. In Fig. 1-13, virtual communication is shown by dotted lines and physical communication by solid lines.

Between each pair of adjacent layers is an interface. The interface defines which primitive operations and services the lower layer makes available to the upper one. When network designers decide how many layers to include in a network and what each one should do, one of the most important considerations is defining clean interfaces between the layers. Doing so, in turn, requires that each layer perform a specific collection of well-understood functions.

Network Criteria

A network must be able to meet a certain number of criteria. The most important of these are performance, reliability, and security.

Performance : Performance can be measured in many ways, including transit time and response time. Transit time is the amount of time required for a message to travel from one device to another. Response time is the elapsed time between an inquiry and a response. The performance of a network depends on a number of factors, including the number of users, the type of transmission medium, the capabilities of the connected hardware, and the efficiency of the software.

Performance is often evaluated by two networking metrics: throughput and delay. We often need more throughput and less delay. However, these two criteria are often contradictory. If we try to send more data to the network, we may increase throughput but we increase the delay because of traffic congestion in the network.

Reliability: In addition to accuracy of delivery, network reliability is measured by the frequency of failure, the time it takes a link to recover from a failure, and the network's robustness in a catastrophe

Security: Network security issues include protecting data from unauthorized access, protecting data from damage and development, and implementing policies and procedures for recovery from breaches and data losses.

TOPOLOGIES Explained and notes given in class.

OSI Model Explained and notes given in class.

Difference between Connection-less and Connection - Oriented notes given in class.

Types of Network based on size

The types of network are classified based upon the size, the area it covers and its physical architecture. The three primary network categories are LAN, WAN and MAN. Each network differs in their characteristics such as distance, transmission speed, cables and cost.

Basic types

LAN (Local Area Network)

Local area networks, generally called LANs, are privately-owned networks within a single building or campus of up to a few kilometres in size. They are widely used to connect personal computers and workstations in company offices and factories to share resources (e.g., printers) and exchange information. LANs are distinguished from other kinds of networks by three characteristics:

- (1) Their size,
- (2) Their transmission technology, and
- (3) Their topology.

Coaxial or CAT 5 cables are normally used for connections.

Due to short distances, errors and noise are minimum.

Data transfer rate is 10 to 100 mbps.

Example: A computer lab in a school.

MAN (Metropolitan Area Network)

A metropolitan area network, or MAN, covers a city. The best-known example of a MAN is the cable television network available in many cities. This system grew from earlier community antenna systems used in areas with poor over-the-air television reception. In these early systems, a large antenna was placed on top of a nearby hill and signal was then piped to the subscribers' houses. At first, these were locally-designed, ad hoc systems. Then companies began jumping into the business, getting contracts from city governments to wire up an entire city. The next step was television programming and even entire channels designed for cable only. Often these channels were highly specialized, such as all news, all sports, all cooking, all gardening, and so on

Design to extend over a large area.

Connecting number of LAN's to form larger network, so that resources can be shared.

Networks can be up to 5 to 50 km.

Owned by organization or individual.

Data transfer rate is low compare to LAN.

Example: Organization with different branches located in the city.

WAN (Wide Area Network)

A wide area network, or WAN, spans a large geographical area, often a country or continent. It contains a collection of machines intended for running user (i.e., application) programs. These machines are called as hosts. The hosts are connected by a communication subnet, or just subnet for short. The hosts are owned by the customers (e.g., people's personal computers), whereas the communication subnet is typically owned and operated by a telephone company or Internet service provider. The job of the subnet is to carry messages from host to host, just as the telephone system carries words from speaker to listener.

Are country and worldwide network. Contains multiple LAN's and MAN's.

Distinguished in terms of geographical range.

Uses satellites and microwave relays.

Data transfer rate depends upon the ISP provider and varies over the location.

Best example is the internet.

The TCP/IP Reference Model

Unlike OSI reference model, TCP/IP reference model has only 4 layers. They are,

- 1. Host-to-Network Layer
- 2. Internet Layer 24
- 3. Transport Layer
- 4. Application Layer

Host-to-Network Layer:

The TCP/IP reference model does not really say much about what happens here, except to point out that the host has to connect to the network using some protocol so it can send IP packets to it. This protocol is not defined and varies from host to host and network to network.

Internet Layer:

This layer, called the internet layer, is the linchpin that holds the whole architecture together. Its job is to permit hosts to inject packets into any network and have they travel independently to the destination (potentially on a different network). They may even arrive in a different order than they were sent, in which case it is the job of higher layers to rearrange them, if in-order delivery is desired. Note that "internet" is used here in a generic sense, even though this layer is present in the Internet.

The internet layer defines an official packet format and protocol called IP (Internet Protocol). The job of the internet layer is to deliver IP packets where they are supposed to go. Packet routing is clearly the major issue here, as is avoiding congestion. For these reasons, it is reasonable to say that the TCP/IP internet layer is similar in functionality to the OSI network layer. Fig. shows this correspondence.

The Transport Layer:

The layer above the internet layer in the TCP/IP model is now usually called the transport layer. It is designed to allow peer entities on the source and destination hosts to carry on a conversation, just as in the OSI transport layer. Two end-to-end transport protocols have been defined here. The first one, TCP (Transmission Control Protocol), is a reliable connection-oriented protocol that allows a byte stream originating on one machine to be delivered without error on any other machine in the internet. It fragments the incoming byte stream into discrete messages and passes each one on to the internet layer. At the destination, the receiving TCP process reassembles the received messages into the output stream. TCP also handles flow control

to make sure a fast sender cannot swamp a slow receiver with more messages than it can handle.

Fig.1: The TCP/IP reference model.

The second protocol in this layer, UDP (User Datagram Protocol), is an unreliable, connectionless protocol for applications that do not want TCP's sequencing or flow control and wish to provide their own. It is also widely used for one-shot, client-server-type request-reply queries and applications in which prompt delivery is more important than accurate delivery, such as transmitting speech or video. The relation of IP, TCP, and UDP is shown in Fig.2. Since the model was developed, IP has been implemented on many other networks.

Fig.2: Protocols and networks in the TCP/IP model initially.

The Application Layer:

The TCP/IP model does not have session or presentation layers. On top of the transport layer is the application layer. It contains all the higher-level protocols. The early ones included virtual terminal (TELNET), file transfer (FTP), and electronic mail (SMTP), as shown in Fig.6.2. The virtual terminal protocol allows a user on one machine to log onto a distant machine and work there. The file transfer protocol provides a way to move data efficiently from one machine to another. Electronic mail was originally just a kind of file transfer, but later a specialized protocol (SMTP) was developed for it. Many other protocols have been added to these over the years: the Domain Name System (DNS) for mapping host names onto their network addresses, NNTP, the protocol for moving USENET news articles around, and HTTP, the protocol for fetching pages on the World Wide Web, and many others.

OSI VS TCP/IP Reference Model

OSI	TCP/IP		
OSI represents Open System Interconnection.	TCP/IP model represents the Transmission Control Protocol / Internet Protocol.		
OSI is a generic, protocol independent standard. It is acting as an interaction gateway between the network and the final-user.	TCP/IP model depends on standard protocols about which the computer network has created. It is a connection protocol that assigns the network of hosts over the internet.		
The OSI model was developed first, and then protocols were created to fit the network architecture's needs.	The protocols were created first and then built the TCP/IP model.		
It provides quality services.	It does not provide quality services.		
The OSI model represents defines administration, interfaces and conventions. It describes clearly which layer provides services.	It does not mention the services, interfaces, and protocols.		
The protocols of the OSI model are better unseen and can be returned with another appropriate protocol quickly.	The TCP/IP model protocols are not hidden, and we cannot fit a new protocol stack in it.		
It is difficult as distinguished to TCP/IP.	It is simpler than OSI.		
It provides both connection and connectionless oriented transmission in the network layer; however, only connection-oriented transmission in the transport layer.	It provides connectionless transmission in the network layer and supports connecting and connectionless-oriented transmission in the transport layer.		
It uses a horizontal approach.	It uses a vertical approach.		
The smallest size of the OSI header is 5 bytes.	The smallest size of the TCP/IP header is 20 bytes.		
Protocols are unknown in the OSI model and are returned while the technology modifies.	In TCP/IP, returning protocol is not difficult.		