Partial Differentiation

Mathematical Methods in the Physical Sciences

Steve Mazza

Naval Postgraduate School Monterey, CA

SE3030, Winter/2014
Quantitative Methods of Systems Engineering

Lorenz Attractor

Introduction

Definition

Derivatives of a multi-variable function where all variables are held fixed during differentiation except the variable of interest.

To denote this we generically write $\frac{\partial}{\partial r}$, which means the partial derivative with respect to r. We more frequently see $\frac{\partial z}{\partial r}$, which means the partial derivative of z with respect to r. In equations of more than two variables we may see $\left(\frac{\partial z}{\partial r}\right)_x$, which denotes the partial derivative of z with respect to r, holding x constant.

Example

4.1.12

$$z = x^{2} + 2y^{2}, x = r\cos\theta, y = r\sin\theta$$
$$= x^{2} + 2y^{2}$$
$$= r^{2}\cos^{2}\theta + 2r^{2}\sin^{2}\theta$$
$$\left(\frac{\partial z}{\partial y}\right)_{\theta} = 2r\cos^{2}\theta + 4r\sin^{2}\theta$$
$$= 2r\left(\cos^{2}\theta + 2r\sin^{2}\theta\right)$$

Power Series in Two Variables

Our standard power series expansions can be re-written in terms of partial differential equations.

Definition

$$f(x,y) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y} \right)^n f(a,b)$$

- A power series about a given point for a function of 2 variables is unique.
- Any methods from Chapter 1 may be used.

Power Series Example

We can arrive at the 2-variable expansion by finding the Maclaurin series expansions for sin and cos in the table on page 26 of Boas.

Example 1, Boas, p. 191

$$f(x,y) = \sin x \cos y$$

$$= \left(x - \frac{x^3}{3!} + \cdots\right) \cdot \left(1 - \frac{y^2}{2!} + \cdots\right)$$

$$= x - \frac{x^3}{3!} - \frac{xy^2}{2!} + \cdots$$

Total Differentials

Total Differentiation in 2 Variables

$$dz = \frac{\partial}{\partial x}dx + \frac{\partial}{\partial y}dy$$

Approximation: For sufficiently small values of Δx and Δy ,

- $\Delta z = \Delta f = f_x(x, y)\Delta x + f_y(x, y)\Delta u$, and
- $f(x + \Delta x, y + \Delta y) \equiv f(x, y) + f_x(x, y) \Delta x + f_y(x, y) \Delta y$.

Approximations Using Differentials

Example 4, Boas, p. 197

The relative error in length measurement is $\pm 5\%$ and the relative error in radius measurement is $\pm 10\%$. We want to find the largest value that |dR/R| can have.

$$R = \frac{kl}{r^2}$$

$$\ln R = \ln k + \ln l - 2\ln r$$

$$\frac{dR}{R} = \left| \frac{dl}{l} \right| - 2 \left| \frac{dr}{r} \right|$$

$$= 0.05 + 2(0.10)$$

$$= 0.25$$

Chain Rule

The chain rule is a formula for computing the derivative of the composition of two or more functions.

In General

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dv} \cdot \frac{dv}{dx}$$

Find dy/dx if $y = \ln \sin 2x$

$$\frac{dy}{dx} = \frac{1}{\sin 2x} \cdot \frac{d}{dx} (\sin 2x)$$
$$= \frac{1}{\sin 2x} \cdot \cos 2x \cdot \frac{d}{dx} (2x)$$
$$= 2 \cot 2x$$

Implicit Differentiation

We can differentiate with respect to a given term in some cases where we cannot solve for that term with respect to another.

Given $x + e^x = t$, find dx/dt

We realize that x is a function of t even though we cannot solve x for t directly.

$$x + e^{x} = t$$

$$\frac{dx}{dt} + e^{x} \frac{dx}{dt} = 1$$

$$\frac{dx}{dt} = \frac{1}{1 + e^{x}}$$

This example can be found in Boas, p 202.

Chain Rule (Redux)

We can extend our earlier discussion of the Chain Rule where z=f(x,y) and x and y were functions of some variable t by considering the case where x and y are functions of two variables, s and t. z is a function of both s and t and we want to be able to find $\partial z/\partial s$ and $\partial z/\partial t$.

Chain Rule (Redux) Example

Boas, 4.7.3

Given:
$$z = xe^{-y}, x = \cosh t, y = \cos s$$

Find: $\frac{\partial z}{\partial s}xe^{-y} = \cosh(t)e^{-\cos(s)}$
Chain Rule: $\frac{d}{ds} = \frac{de^u}{du}\frac{du}{ds}, u = -\cos(s)$
Constants: $= \cosh(t)e^{-\cos(s)}\left(-\frac{d}{ds}\cos(s)\right)$
 $= \cosh(t)e^{-\cos(s)}\sin(s)$

Applications

Helps us locate

- Hills
- Valleys
- Saddle Points

Questions?

