Programozási Technológia I. beadandó feladat

Perczel-Szabó Dániel GQF4SF

1. Feladat

Rögzítsen a síkon egy pontot, és töltsön fel egy gyűjteményt különféle szabályos (kör, szabályos háromszög, négyzet, szabályos hatszög) síkidomokkal! Határozza meg a legkisebb téglalapot, amely lefedi az összes síkidomot és oldalai párhuzamosak a tengelyekkel! Minden síkidom reprezentálható a középpontjával és az oldalhosszal, illetve a sugárral, ha feltesszük, hogy a sokszögek esetében az egyik oldal párhuzamos a koordináta rendszer vízszintes tengelyével, és a többi csúcs ezen oldalra fektetett egyenes felett helyezkedik el. A síkidomokat szövegfájlból töltse be! A fájl első sorában szerepeljen a síkidomok száma, majd az egyes síkidomok. Az első jel azonosítja a síkidom fajtáját, amit követnek a középpont koordinátái és a szükséges hosszúság. A feladatokban a beolvasáson kívül a síkidomokat egységesen kezelje, ennek érdekében a síkidomokat leíró osztályokat egy közös ősosztályból származtassa!

2. Terv

2.1. Típusok

2.1.1. PlaneFigure

A különböző síkiidomok származtatására a PlaneFigure absztrakt ősosztályt használjuk. Ez három adattagot tartalmaz, a síkidom típusát (char type), a középpontot reprezentáló (kételemű) tömböt (double centerPoint[]) és a sugár/oldal hosszát (double lengthOfR). Továbbá itt kerültek létrehozásra az absztrakt leftmostPoint(), rightmostPoint(), topPoint() és bottomPoint() függvények.

2.1.2. Síkidomok

A síkidomokat (Circle, Triangle, Square, Hexagon) a PlaneFigures osztályból származtatjuk. Az ősosztály absztrakt metódusait felülírjuk úgy, hogy minden síkidom esetén a megfelelő (legbaloldalibb, legjobboldalibb, legfelső, legalsó) pontokkal térjenek vissza.

2.1.3. Database

A síkidomok tárolására a Database osztályban létrehozott listát használjuk. Ebben az osztályban definiáljuk a read() metódust, amely a fájlbeolvasásért felel. Itt található továbbá a maxPoint(ArrayList<double[]>,int) és a minPoint(ArrayList<double[]>,int) függvény, melyek a paraméterben megadott listában megkeresik a legnagyobb illetve legkisebb elemet a második paraméter alapján. Végül itt definiáljuk a smallestRectangle() függvényt, amely megválaszolja a feladat kérdését, először listákba rendezi az egyes síkidomok legszélső pontjait, majd ezek közül kiválasztja a legkisebbeket, illetve legnagyobbakat. Ezen pontok koordinátáinak felhasználásával pedig megkapjuk a legkisebb, minden síkidomot magába foglaló téglalap sarkainak koordinátáit két tizedesjegyre kerekítve.

2.2. Osztálydiagram

3. Tesztesetek

Leírás	Bemenet (fájl)	Elvárt kimenet
Nem létező fájl	noSuchFile.txt	File not found!
Üres fájl	emptyFile.txt	NoSuchElementException
Ismeretlen síkidom a fájl-	unknownFigure.txt	Invalid input!
ban		
Egy elemű fájl	oneFigure.txt	Top right: (3.0;3.0), bottom
		right: (3.0;-3.0), bottom left: (-
		3.0;-3.0), top left: (-3.0;3.0)
Több elemű fájl	data.txt	Top right: (7.5;6.89), bottom
		right: (7.5;-5.46), bottom left: (-
		5.0;-5.46), top left: (-5.0;6.89)
Több elemű fájl #2	data2.txt	Top right: (7.8;8.07), bottom
		right: (7.8;-5.87), bottom left: (-
		4.7;-5.87), top left: (-4.7;8.07)
Nagy elemszámú fájl	data3.txt	Top right: (8.5;8.43), bottom
		right: (8.5;-5.87), bottom left: (-
		4.7;-5.87), top left: (-4.7;8.43)