1. (a)
$$\frac{5}{188}$$

(b)
$$f_{x}(x) = 3x^{2}$$
 o(x<1, $f_{y}(y) = \frac{3}{2}(1-y^{2})$, o(y<1)

(c)
$$f(x/y) = \frac{2x}{1-y^2}$$
 $y \le x \le 1$, $f(x/y=\frac{1}{2}) = \frac{x}{5} = \frac{x}{5$

2.
$$f_{y}(y) = \frac{1}{3} + \frac{1}{6} \frac{2}{4}, 0 < \frac{1}{2} < \frac{1}{6}$$

 $f(x/y) = \frac{x^{2} + \frac{2y}{4}}{\frac{1}{6}y + \frac{1}{3}}, 0 \leq x \leq 1$
 $f(x/y) = \frac{1}{6} (x/y) = \frac$

3.
$$E(xy) = \int_{0}^{\infty} \int_{0}^{y} (xy) \cdot \frac{1}{64} e^{3/8} dxdy = 192$$

$$E(x) = \int_{0}^{\infty} \int_{0}^{y} x \cdot \frac{1}{64} e^{3/8} dxdy = 8$$

$$E(y) = \int_{0}^{\infty} \int_{0}^{y} y \cdot \frac{1}{64} e^{3/8} dxdy = 16$$

$$Cov(x,y) = 64.$$

$$Cov(x,y) = 64.$$
4. $f_{x}(x) = \frac{1}{14}(4x+3) \quad o(x+2), \quad E(x) = \frac{25}{21}, \quad v(x) = \frac{131}{44}$

$$f_{y}(y) = \frac{1}{14}(2y+5), \quad o(y+2) = \frac{25}{21}, \quad v(y) = \frac{143}{44}$$

(a)
$$E(XY) = \frac{9}{7}$$
 (b) $Cov(X,Y) = -8/441$

5.
$$C = \frac{6}{19}$$

7. do
$$x$$

8. $f_{x}(x) = x + \frac{1}{2}$ $o(x < 1)$ Find $E(x)$, $E(y)$, $Cov(x, y)$
 $V(x)$, $V(y)$, $Cov(x, y)$
 $f_{y}(y) = y + \frac{1}{2}$, $o(x < 1)$, then $f = -\frac{1}{11}$

9.
10.
$$f_{y}(y) = -\ln y$$
, $P(y \le 0.025) = 0.5987$, $P(x < 0.5/y > 0.25) = 0.1903$
 $-\frac{1}{2}(x^{2} + y^{2}) - \omega < x \le y < \infty$

9.

10.
$$f_{y}(y) = -\ln y$$
, $p(y \le 0.025) = 0.5987$, $p(x \ge 0.517)$

11. $p_{y}(y) = -\ln y$, $p(y \le 0.025) = 0.5987$, $p(x \ge 0.517)$

12. $p_{y}(y) = -\ln y$, $p(y \le 0.025) = 0.5987$, $p(x \ge 0.517)$

11. $p_{y}(y) = -\ln y$, $p(y \le 0.025) = 0.5987$, $p(x \ge 0.517)$

12. $p_{y}(y) = -\ln y$, $p(y) = -\ln y$, $p(x \ge 0.517)$

12. $p_{y}(y) = -\ln y$, $p(x \ge 0.517)$

13. $p_{y}(y) = -\ln y$, $p(x \ge 0.517)$

14. $p_{y}(y) = -\ln y$, $p(y \ge 0.517)$

15. $p_{y}(y) = -\ln y$, $p(x \ge 0.517)$

16. $p_{y}(y) = -\ln y$, $p(x \ge 0.517)$

17. $p_{y}(y) = -\ln y$, $p(x \ge 0.517)$

18. $p_{y}(x \ge 0.517)$

19. $p_{y}(x \ge 0.517)$

10. $p_{y}(x \ge 0.517)$

11. $p_{y}(x \ge 0.517)$

12. $p_{y}(x \ge 0.517)$

13. $p_{y}(x \ge 0.517)$

14. $p_{y}(x \ge 0.517)$

15. $p_{y}(x \ge 0.517)$

16. $p_{y}(x \ge 0.517)$

17. $p_{y}(x \ge 0.517)$

18. $p_{y}(x \ge 0.517)$

19. $p_{y}(x \ge 0.517)$

10. $p_{y}(x \ge 0.517)$

11. $p_{y}(x \ge 0.517)$

11. $p_{y}(x \ge 0.517)$

12. $p_{y}(x \ge 0.517)$

13. $p_{y}(x \ge 0.517)$

14. $p_{y}(x \ge 0.517)$

15. $p_{y}(x \ge 0.517)$

16. $p_{y}(x \ge 0.517)$

17. $p_{y}(x \ge 0.517)$

18. $p_{y}(x \ge 0.517)$

19. $p_{y}(x \ge 0.517)$

19. $p_{y}(x \ge 0.517)$

10. $p_{y}(x \ge 0.517)$

11. $p_{y}(x \ge 0.517)$

11. $p_{y}(x \ge 0.517)$

12. $p_{y}(x \ge 0.517)$

13. $p_{y}(x \ge 0.517)$

14. $p_{y}(x \ge 0.517)$

15. $p_{y}(x \ge 0.517)$

16. $p_{y}(x \ge 0.517)$

17. $p_{y}(x \ge 0.517)$

18. $p_{y}(x \ge 0.517)$

19. $p_{y}(x \ge 0.517)$

19. $p_{y}(x \ge 0.517)$

19. $p_{y}(x \ge 0.517)$

10. $p_{y}(x \ge 0.517)$

11. $p_{y}(x \ge 0.517)$

11. $p_{y}(x \ge 0.517)$

12. $p_{y}(x \ge 0.517)$

13. $p_{y}(x \ge 0.517)$

14. $p_{y}(x \ge 0.517)$

15. $p_{y}(x \ge 0.517)$

16. $p_{y}(x \ge 0.517)$

17. $p_{y}(x \ge 0.517)$

18. $p_{y}(x \ge 0.517)$

19. $p_{y}(x \ge 0.517)$

19. $p_{y}(x \ge 0.517)$

19. $p_{y}(x \ge 0.517)$

19. $p_{y}(x \ge 0.517)$

10. $p_{y}(x \ge 0.517)$

11. $p_{y}(x \ge 0.517)$

11. $p_{y}(x \ge 0.517)$

12. $p_{y}(x \ge 0.517)$

13. $p_{y}(x \ge 0.517)$

14. $p_{y}(x \ge 0.517)$

15. $p_{y}(x \ge 0.517)$

16. $p_{y}(x \ge 0.517)$

17. $p_{y}(x \ge 0.517)$

18. $p_{y}(x \ge 0.517)$

19. $p_{y}(x \ge 0.517)$

19. p_{y

$$f_{X}(x) = \frac{1}{\sqrt{2\pi}} e^{\frac{1}{2}x^{2}}$$
, $f_{Y}(y) = e^{\frac{1}{2}x^{2}}$, $f_{X}(y) = e^{\frac{1$

$$f_{X}(X) = \sqrt{2\pi}$$

$$X \sim \mathcal{N}(0;1) \quad Y \sim \mathcal{N}(0,1) \quad \text{on } X+Y \sim \mathcal{N}(0,2) \quad .$$

$$P[-\sqrt{2} \langle X+Y \langle \sqrt{2} \rangle] \rightarrow \text{find} \quad \text{on } X+Y \sim \mathcal{N}(0,2) \quad .$$

$$P[-1 \langle Z \langle 1 \rangle] = \text{feetable} \quad .$$

$$P[-1 \langle Z \langle 1 \rangle] = 86, \quad E(Z,Z_2) = 64$$

$$P[-1(ZZ)] = 86$$
, $E(Z_1) = 64$
 $f_{Z_1} = 2$, $E(Z_2) = 86$, $E(Z_1) = 64$

$$f_{z,\overline{z}z} = 0.60749$$
.

13. Hint find $f_{X}(x)$, $f_{y}(x)$, thun $E[y(x=x)]$.

15. (i) Cov
$$(x,y) = 0$$

(ii) Not independent as $P(-1,-1) \neq P_{x}(-1)P_{y}(-1)$
 $\frac{1}{8} \neq \frac{3}{8} \cdot \frac{3}{8}$.

19.
$$G(\frac{1}{2}, \frac{1}{2})$$
Ans = 0.7759

20 $A=3$, $\sigma^2=16$ Ans = 0.7759
 η_{-1}
 $f(y)$, $f_{1/2}(y) = n(f(y))$

19.
$$G(\frac{1}{2}, \frac{1}{2})$$

Ans = 0.7759

20. $A=3$, $\sigma^2=16$

Ans = 0.7759

21. $f_{y_1}(y) = n(1-F(y)) \cdot f(y)$, $f_{y_2}(y) = n(F(y))^{n-1}f(y)$.

As $F_{\chi}(x) = 1-\overline{e}^{2\chi}$, $f_{\chi}(x) = 2\overline{e}^{2\chi}$, find $f_{y_1}(y)$, $f_{y_2}(y)$.

As
$$F_{\chi}(x) = (-e^{-\frac{1}{2}\sigma_{\chi}^{2}u})$$

$$\int_{0}^{2} (u, v) = \frac{1}{\pi} e^{\frac{1}{2}\sigma_{\chi}^{2}u} \frac{1}{2(v^{2}+1)} \quad o(u, v)$$

$$\int_{0}^{2} (u) = \frac{1}{\pi(v^{2}+1)} \frac{1}{2(v^{2}+1)} \int_{0}^{2} e^{-\lambda y} dy$$

23.
$$f_{y,y_2}(y_1,y_2) = \frac{1}{y_2} \lambda^2 e^{\lambda y_1}$$

26. do it (Standarde)
26. do it (Standarde)
27. (a) do it as
$$X_1 \sim N(6,1)$$
.
(b) typo Error, $P[X_2 \leq 5 | X_1 = 5] \rightarrow dv$ it
(c) Do it

28. bo it. (a) 0.1891 (b) 0.2024

29. (i) 0.1586

(ii) 0.5249.

30. WHE CLT
$$F(Y)=2$$
, $V(X)=\frac{1}{12}$ $F(Y)=5$, $V(Y)=\frac{1}{12}$

31. Use clT $F(Y)=2$, $F(Y)=3$, $F(Y)=3$, $F(Y)=3$, $F(Y)=3$, $F(Y)=4$, $F(Y$