Introduction to Graph Databases and Neo4j

What Is a Graph Database?

Roland Guijt www.rmgsolutions.nl @rolandguijt

Agenda

What is a Graph?

What is a Graph Database?

Why a Graph Database?

Graph
Databases vs
Relational
Databases

Graph
Databases vs
Nosql
Databases

Examples of Graph Databases

What Is a Graph Database?

Roland Guijt www.rmgsolutions.nl @rolandguijt

A **graph database** is a database that uses graph structures to represent and store data

Graph Databases

Property Graph Model

Contains nodes and relationships

Nodes and relationships contain **properties**

Relationships are named and directed with a start and end node

Joanna Name: Joanna City: Salt Lake City Married: true

Works_For Since: 2010/1/1 Pluralsight
Name: Pluralsight
City: Salt Lake City
Rocks: true

Why a Graph Database?

"Consider the type of database for every application you're writing"

Why a Graph Database?

Highly related data

Flexible schema

Structure and queries are brain friendly (= easier)

Graph Databases vs. Relational Databases

Relational	Graph
Tables	Nodes
Schema with nullables	No schema
Relations with foreign keys	Relation is first class citizen
Related data fetched with joins	Related data fetched with a pattern

Relational Databases Advantages

Highly **structured** data

Calculations within one table

Grouping of data

The Foreign Key System

Customer		
CustomerId	Name	City
1	Joanna	Salt Lake City

Order			
Orderld	CustomerId	Date	
1	1	2015/ 1/1	

Lineltem		
Orderld	ProductId	Quantity
1	1	5

Product		
ProductId	Description	Use
1	Candle	Inside

Partner and Vukotic's Experiment

- Social network
- Friends of Friends structure
- mySql and Neo4j
- 1000.000 people
- Each with an average of 50 friends
- Depth 2: Find all friends of a user's friends
- Depth 3: Find all friends of friends of a user's friends
- Etc.

Depth	Rel. Db (s)	Neo4j (s)	# records
2	0,016	0,01	~2500
3	30,267	0,168	~110000
4	1543,505	1,359	~600000
5	Unfinished	2,132	~8000000

Relational Database Normalization

Created when disk space was **expensive**

Normalization is encouraged

A Document

Document Databases

All **related** data in one entity

Duplication of data is not something to avoid

Copy master data

Documents

```
Customer
                     Customer
Name: Joanna
                Name: Peter
City: Salt Lake City City: Dallas
Order: {
        Order: {
                 id: 2,
id: 1,
Date: 2015/1/1
                 Date: 2015/2/1
LineItems: [{ LineItems: [{
 Quantity: 3, Quantity: 2,
 Product: { Product: {
  Description: "Ca Description: "Matches",
  Use: "Inside"
                 Use: "Inside"
```

Graph Databases vs. Document Databases

Document	Graph
Document	Nodes
No schema	No schema
Relations with foreign keys or embedded	Relation is first class citizen
Related data fetched with joins or embedded	Related data fetched with a pattern

A Social Graph

Who shares Cathy's skills?

Who works in the same company as Cathy and shares the most skills?

Security

Which rights does Deborah have? Who edited a blog post and when?

Logistics

Summary

- A graph is a collection of nodes connected by relationships
- Graph databases are flexible and performant with highly related data
- All database types have their place
- Relational database suitable for reporting and calculation on a single table. Weak point: related tables
- Document database suitable to store objects. Weak point: related documents
- Graph databases are great in many scenarios, but not all

What's Next?

Neo4j