Tutorial 2: Lorenz-Reservoir Computing

The well-known toy model for atmospheric variability is the Lorenz 1963 model given by the set of ODEs,

$$\frac{dx}{dt} = s(y - x) \tag{1a}$$

$$\frac{dx}{dt} = s(y - x) \tag{1a}$$

$$\frac{dy}{dt} = rx - y - xz \tag{1b}$$

$$\frac{dz}{dt} = xy - bz \tag{1c}$$

$$\frac{dz}{dt} = xy - bz \tag{1c}$$

This system is, for standard values of parameters s = 10, r = 28 and b = 2.667, a chaotic system with sensitivity to initial conditions. In this project, we will look at the skill of Reservoir Computer (RC) based predictions, using the Python Notebook provided.

- (i) Generate data by using a time step $\Delta t = 0.02$ and integrating over the time interval [-100, 25]. Use the interval [-100, 0] as training data and the interval [0, 25] as 'truth'.
- (ii) Use initial hyperparameter values d = 300 (reservoir size), $\langle k \rangle = 6$ (mean degree), $\rho = 1.2$ (spectral radius), $\sigma = 0.1$ (interval in uniform distribution defining W_{in}), and $\beta = 0$ (regularization), see B5_notes. Train the RC using the training data set and generate a RC prediction \mathbf{x}_R of the 'truth' \mathbf{x} over the test interval [0, 25]. Set a tolerance error

$$\epsilon = ||\mathbf{x} - \mathbf{x}_R||^2$$

and determine the time t_e when $\epsilon > 0.1$.

- (iii) How could one determine the Lyapunov exponents of the Lorenz system, using the RC approach (you do not have to do this, but you may)?
- (iv) Study the effect of the hyperparameter ρ on t_e and try to explain the behavior.
- (v) To which of the hyperparameters is t_e most sensitive? How could one optimize the values of these hyperparameters to maximize t_e ?