北京市第五十中学 2015-2016 学年度第一学期

2015. 11

- 一、在下列各题的四个备选答案中,有且只有一个是正确的,请将正确选项的字母填在表格 中相应的位置. (每题 3 分, 共 30 分)
- 1. 下列运算中, 计算结果正确的是(
 - A. $x^2 \div x = x^2$ B. $x \Box x^3 = 2x^3$

- C. $(x^3)^2 = x^5$ D. $x^3 + x^2 = 2x^6$
- 2. 下列各式变形中,是因式分解的为()
 - A. $a^2 2ab + b^2 1 = (a b)^2 1$ B. $x^4 1 = (x^2 + 1)(x + 1)(x 1)$

C. $(x+2)(x-2) = x^2 - 4$

- D. $2x^2 + 2x = 2x^2(1 + \frac{1}{x^2})$
- 3. 如图, OP 平分 $\angle MON$, $PA \perp ON$ 于点 A, 点 Q 是射线 OM 上的 一个动点,若PA=4,则PQ的最小值为(
 - A. 1
- B. 2
- C. 3
- D. 4

D

- 4. 如图, $\triangle ABC \cong \triangle FDE$, $\angle C = 40^{\circ}$, $\angle F = 110^{\circ}$, 则 $\angle B$ 等于 ()
 - A. 20°
- B. 30°
- C. 40°
- D. 150°
- 5. 若 $x^2 = x 4$ 是完全平方式,则m的值是()
 - A. -2
- B. 2或-2
- C. 4
- D. 4或-4

- A. 75°
- B. 60°
- C. 50°
- D. 45°

- A. AB = AC
- B. BD = CD
- C. $\angle B = \angle C$
- D. $\angle BDA = \angle CDA$

- A. 0
- B. 1
- C. 2
- D. -2

- A. 3
- B. 6
- C. 9
- D. 18

10. 如图,将 $\triangle ABC$ 沿DE、HG、EF翻折,三个顶点均落 在点O处, $\angle 1 = 129^{\circ}$,则 $\angle 2$ 的度数为(

A. 49°

B. 50°

C. 51°

D. 52°

二、填空(每题3分,共24分)

11. 计算
$$3x^3$$
 [$\left(-\frac{1}{9}x^2\right)$] = ______; $-(-2a^2)^4$ = _____.

12. 如图,BE,CD 是 $\triangle ABC$ 的高,且 BD = EC,判定 $\triangle BCD \cong \triangle CBE$ 的依据是 "_____".

13. 计算 79.8×80.2 = _____;
$$\left(-\frac{2}{3}\right)^{2013} \times \left(1\frac{1}{2}\right)^{2014} = _____$$

- 14. 分解因式 $ax^4 9ay^2 =$ _____.
- 15. 已知 $10^m = 2$, $10^n = 3$,则 $10^{m-n} =$ ______.
- 16. 如果 a+b=7, ab=13,则 a^2-ab+b^2 的值是_____.
- 17. 已知 AD 是 $\triangle ABC$ 的高线,且 $\angle ABD = 20^{\circ}$, $\angle ACD = 60^{\circ}$,则 $\angle BAC$ 的度数是_____.
- 18. 如图,在 $\triangle ABC$ 中, $\angle A = \alpha$,点 D 在 BC 延长线上, $\angle ABC$ 与 $\angle ACD$ 的平分线交于点 A_{1} , $\angle A_{1}BC$ 与 $\angle A_{1}CD$ 的平分线相交于点 A_{2} ,得 $\angle A_{2}$,以此类推一: $\angle A_{2012}BC$ 与 $\angle A_{2012}CD$ 的平分线相交于点 A_{2013} , 例 $\angle A_{2013}$ = ______. (用含 α 的代数式表示)

- 三、画图题(本题4分)
- 19. 如图, $\triangle ABC$ 中, $\angle C = 90^\circ$,试在 AC 上找一点 P,使 P 到斜边的距离的等于 PC,(保留作图痕迹)并回答作图依据为_______.

四、计算: (每题 4 分, 共 16 分)

20.
$$-4a^2b^4 \div \frac{1}{2}ab^2 + (-6a^2b^4) + 2ab^3$$
.

21.
$$(2x^3 - 3x - 7)\Box 5x - (1 - 5x)(3x^2 + 1)$$

- 22. (a+b-c)(a-b+c)
- 23. $2015 + 2015^2 2016^2$
- 五、解答及证明题: (24-27 每题 5 分, 28 题 6 分, 共 26 分)
- 24. 己知 $x^2 5x = 14$, 求 $(x-1)(2x-1) (x+1)^2 + 1$ 的值.
- 25. 先化简, 再求值: $[(2x-y)^2 + (y+2x)(y-2x) 2y(4x-y)] \div 4y$, 其中 $x = \frac{1}{3}$, y = 2.
- 26. 如图,在 $\triangle ABC$ 中,AB = AC,AD是BC边上的中线, $BE \perp AC$ 于点E. 求证: $\angle CBE = \angle BAD$.

- 27. 如图,两个大小不同的等腰直角三角形三角板如图 1 所示放置,图 2 是由它抽象的几何图形,B,C,E 在同一条直线上,连结 DC. 请找出图 2 中的全等三角形,并说明 BE 与 CD 位置和数量的关系(不再添加其它线段,不再标注或使用其它字母).
- 解:(1)你找到的全等三角形是:______

(2)

- 28. 将两个全等的直角三角形 ABC 和 DBE 按图 1 方式摆放,其中 $\angle ACB = \angle DEB = 90^\circ$, $\angle A = \angle D = 30^\circ$,点 E 落在 AB 上, DE 所在直线交 AC 所在直线于点 F .
 - (1) 求证: AF + EF = DE;

- (2)若将图 1 的 $\triangle DEB$ 绕点 B 按顺时针方向旋转角 α ,且 0° < α < 60° ,其它条件不变,请在图 2 中画出变换后的图形,并直接写出(1)的结论是否仍然成立?
- (3) 若将图 1 的 $\triangle DEB$ 段点 B 按顺时针方向旋转角 β ,且 $60^{\circ} < \beta < 180^{\circ}$,其它条件不为,你认为 (1) 的结论还成立吗请在图 3 中画出变换后的图形,若成立,写出证明过程;若不成立,请写出 AF 、 EF 与 DE 之间的关系,并说明理由.

附加题: (本题 10 分,不计入总分)

如图 $\triangle ABC$ 中, $\angle BAC = 60^\circ$, $\angle ACB = 40^\circ$, 点 P 、 Q 分别在 BC 、 AC 上, 并且 AP 、 BQ 分别是 $\angle BAC$ 、 $\angle ABC$ 的角平分线, 求证: BQ + AQ = AB + BP .

