Algorithm Analysis and Design (CS1.301)

Monsoon 2021, IIIT Hyderabad 20 November, Saturday (Lecture 19)

Byzantine Agreement

The Problem

Consider a point-to-point network S (which can be modelled as a graph). The problem consists of simulating a broadcast channel from one node to all other nodes in S.

A protocol that enables this should simulate a true broadcast channel (up to some level of fault tolerance). One that relies on a number of steps, for example, is unacceptable as the failure of even one step can lead to discrepancies that would never occur in a true broadcast. We required an "atomic" protocol.

Another issue is the possibility of different messages being sent to different nodes, which a true channel would not encounter.

The textbook statement of the problem is as follows. Each process starts with an input from a fixed set $V = \{0, 1\}$; the players must eventually output decisions fulfilling three conditions even in the presence of Byzantine corruption (complete takeover of the system including the code it runs) of up to t of the n players:

- agreement: all non-faulty processes decide on the same value $u \in V$.
- validity: if all non-faulty processes start with the save initial value $u \in V$, then u = v.
- termination: all non-faulty processes eventually decide.

Solutions

Protocol for 1 out of 4

The procedure in this case consists of an exchange of messages. In the first round, each player shares its input values with every other one; in the second round, all players share the values obtained in the first round.

Thus, at the end, each player has a 4×4 matrix V, where V_{ij} is the message that player i says it received from player j. These matrices can differ across

Network Model	IPC: Undirected graphs, Digraphs, Hypergraphs (Radio networks etc.), Quantum Networks Timing: Synchrony, Asynchrony, Partial Synchrony
Protocol Model	Basic Postulates/Assumptions: Deterministic/Randomized protocols (Interactive PPTM's), Quantum Protocols.
	<u>Composability</u> : Stand-alone, sequentially composable, concurrently composable, universally composable etc.
Adversary Model	Computational Power: PPT, unbounded power Corruption type: Passive, fail-stop, Byzantine Corruption Capacity: threshold, non-threshold Mobility: Static, Adaptive, Mobile
Security Model	Perfect, Unconditional, Statistical, Computational Security
Inquiry/Objective	Definition, Possibility, Feasibility, Optimality of solutions

Figure 1: Various Models

players by at most one row and one colum; thus we can take the majority to find out the true message.

Connectivity Challenge

It can be proved that in a synchronous P2P network of n nodes, of which t are Byzantine-faulty, consensus is possible iff the network is (2t+1)-connected.