Advanced Topics in Machine Learning Programming Task

Jannis Becke, Christian Lausberger and Maik Riestock
Otto von Guericke University Magdeburg - Data and Knowledge Engineering Group

APPROACH

an der aufgabenstellung angelehnt

- analyse the data set and its various attributes
- clean the data (e.g. missing values)
- select an appropriate subset of the attributes and explain your choice
- use different suitable machine learning algorithms (either implement them, or use existing libraries, e.g. Weka)
- determine the quality of your model (e.g. through cross-validation, log loss3, confusion matrix)
- compare your results between different algorithms

fr die bearbeitung dieser aufgaben verwendeten wir die libary von weka.

weka ist eine

DATABASE

source what it is about what the attributes are about

3. PREPROCESSING

3.1 attributes

remove of attributes

3.2 instances

handling of missing values remove of instances?

3.3 conclusion

4. CLASSIFICATION

Was istr das problem? 3-class problem welche vorgaben? Specifically, different suitable machine learning algorithms should include:

- algorithm based on SVM
- algorithm for semi-supervised classification
- one additionally supervised algorithm

overview of: used classifier used evaluation methots results contains:

• used data set

This documentation was created in the context of the course Advanced Topics in Machine Learning summer term 2014/15. This course was held by: Prof. Dr. Andreas Nurnberger, M.Sc. Tatiana Gossen; Research group Data and Knowledge Engineering Group, Otto-von-Guericke-University of Magdeburg, Germany.

- used classifier(with configuration)
- used evaluation method(with configuration)
- numbers(correct in generell, for each class)

Table I. Ergebnisse der Klassifikation des IBK und RandomForest

und Kandonn ofest				
	Set	Algorithm	Evaluation	Result
	set	SVM%	Percentage Split%	52%

explain the results

5. CONCLUSION

List of Tables

APPENDIX

A. TASK DESCRIPTION

Use the Diabetes 130-US hospitals for years 1999-2008 Data Set. This dataset contains records with 55 features for more than 100000 patients. 55 features include information about the diabetic encounters, including demographics, diagnoses, diabetic medications, number of visits in the year preceding the encounter, and payer information. Note that even though some attributes are codified using numeric values, they are nominal (not numeric) attributes. Browse additional information about the attributes in the paper cited on the dataset website. The goal of this assignment is to find suitable methods in the area of machine learning to determine the readmission attribute of a patient and to estimate the quality of selected approaches.

In order to achieve this goal, the following tasks have to be completed:

- analyse the data set and its various attributes
- clean the data (e.g. missing values)
- select an appropriate subset of the attributes and explain your choice
- use different suitable machine learning algorithms (either implement them, or use existing libraries, e.g. Weka)
- determine the quality of your model (e.g. through cross-validation, log loss3, confusion matrix)
- compare your results between different algorithms Specifically, different suitable machine learning algorithms should include:
- at least two classification algorithms, one of which, SVM, you learn during the course
- at least one algorithm for semi-supervised classification. Use a part of the dataset as unlabeled data for learning (omit the label)