Cylindrical and Spherical Coordinates

Cylindrical Coordinates

- 1. Plot the following points whose cylindrical coordinates are given
 - (a) $4, \pi/3, -2$

(b) 4, 0, 2

Solution:

- 2. Convert from rectangular to cylindrical coordinates:
 - (a) (-1,1,1)

Solution:

(b) $(-2, 2\sqrt{3}, 3)$

Solution:

- 3. Convert from cylindrical coordinates to rectangular coordinates
 - (a) $(4, \pi/3, -2)$

Solution:

(b) (4,0,2)

Solution:

4. Sketch the solid described by the following

(a)

$$0 \le r \le 2$$
, $-\pi/2 \le \theta \le \pi/2$, $0 \le z \le 1$

Solution:

(b)

$$0 \le \theta \le \pi/2, \quad r \le z \le 2$$

Solution:

- 5. Describe in words or draw a rough sketch of the surface whose equation is given
 - (a) $\theta = \pi/4$

Solution:

(b) r = 15

Solution:

(c) $z = 4 - r^2$

Solution:

(d) $2r^2 + z^2 = 1$

Solution:

- 6. Convert the given equation to cylindrical coordinates
 - (a) $x^2 4x + y^2 + z^2 = 1$

Solution:

(b) $z = x^2 - y^2$

Solution:

Spherical Coordinates

- 7. Plot the following points whose spherical coordinates are given then find the rectangular coordinates for the same point.
 - (a) $(6, \pi/3, \pi/6)$

Solution:

(b) $(3, \pi/2, 3\pi/4)$

Solution:

- 8. Convert from rectangular to spherical coordinates:
 - (a) (0, -2, 0)

Solution:

(b) $(1, 0, \sqrt{3})$

Solution:

- 9. Identify or describe in words or sketch the surface whose equation is given
 - (a) $\rho = 3$

Solution:

(b) $\rho = \sin \theta \sin \phi$

Solution:

- 10. Write the equation in spherical coordinates
 - (a) $z^2 = x^2 + y^2$

Solution:

(b) x + 2y + 3z = 1

Solution:

(c) $x^2 + z^2 = 9$

Solution: