

SEQUENCE LISTING

<110> DEBBRAH, KNUTZON
PATENT & TRADEMARK OFFICE
PRADIP
HUANG, YUNG-SHENG
THURMOND, JENNIFER
CHAUDHARY, SUNITA
LEONARD, AMANDA

<120> Methods and Compositions for Synthesis of Long Chain Polyunsaturated Fatty Acids

<130> CGAB-210 USA

<140> US 09/367,013

<141> 1999-08-05

<150> US 08/834,655

<151> 1997-04-11

<160> 40

<170> PatentIn version 3.0

<210> 1

<211> 1617

<212> DNA

<213> Mortierella alpina

<220>

<221> misc_feature

<222> ()..()

<223> Description of Combined DNA/RNA Molecule: Delta-6 Desaturase Nucleic Acid Sequence

C
<400> 1
cgacactcct tccttcttct caccgtcct agtcccccttc aaccccccctc tttgacaaag 60
acaacaaacc atggctgctg ctcccagtgt gaggacgtt actcggggccg aggtttgaa 120
tgccgaggct ctgaatgagg gcaagaagga tgccgaggca cccttcttga tgatcatcga 180
caacaaggta tacatgttcc gcgagttcgt ccctgatcat cccgggtggaa gtgtgattct 240
cacgcacgtt ggcaaggacg gcactgacgt ctttgacact ttccaccccg aggctgctt 300
ggagactctt gccaactttt acgttggtga tattgacgag agcgaccgcg atatcaagaa 360
tcatgacttt gcggccgagg tccgcaagct gcgtacccctg ttccagtcgtc ttggttacta 420
cgattcttcc aaggcatact acgccttcaa ggtctcggtc aacctctgca tctggggttt 480
gtcgacggtc attgtggcca agtggggcca gacctcgacc ctcgccaacg tgctctcgcc 540
tgcgctttt ggtctgttct ggcagcagtg cgatggttg gtcacgact ttttgcata 600
ccaggtcttc caggaccgtt tctggggta tctttcggc gccttcttgg gaggtgtctg 660
ccagggttcc tcgtcctcgtt ggtggaaagga caagcacaac actcaccacg ccggcccaa 720

cgtccacggc	gaggatcccc	acattgacac	ccaccctctg	ttgacctgga	gtgagcatgc	780
gttggagatg	ttctcgatg	tcccagatga	ggagctgacc	cgcattgtgt	cgcgttcat	840
ggtcctgaac	cagacctggt	tttacttccc	cattctctcg	tttgcccgtc	tctcctggtg	900
cctccagtc	attctctttg	tgctgcctaa	cggtcaggcc	cacaagccct	cgggcgcgcg	960
tgtgcccata	tcgttggatcg	agcagctgtc	gcttgcgatg	cactggacct	ggtacctcgc	1020
caccatgttc	ctgttcatca	aggatcccgt	caacatgctg	gtgtactttt	tggtgtcgca	1080
ggcggtgtgc	ggaaacttgt	tggcgatcgt	gttctcgctc	aaccacaacg	gtatgcctgt	1140
gatctcgaag	gaggaggcgg	tcgatatgga	tttcttcacg	aaggagatca	tcacgggtcg	1200
tgatgtccac	ccgggtctat	ttgccaactg	gttcacgggt	ggattgaact	atcagatcga	1260
gcaccacttg	ttcccttcga	tgcctcgcca	caactttca	aagatccagc	ctgctgtcga	1320
gaccctgtgc	aaaaagtaca	atgtccgata	ccacaccacc	ggtatgatcg	aggaaactgc	1380
agaggtcttt	agccgtctga	acgaggtctc	caaggctgcc	tccaagatgg	gtaaggcgca	1440
gtaaaaaaaaa	aaacaaggac	gtttttttc	gccagtgct	gtgcctgtgc	ctgcttccct	1500
tgtcaagtcg	agcgttctg	gaaaggatcg	ttcagtgcag	tatcatcatt	ctcctttac	1560
cccccgctca	tatctcattc	atttctctta	ttaaacaact	tgtcccccc	ttcacccg	1617

<210> 2
 <211> 457
 <212> PRT
 <213> Mortierella alpina

<400> 2

Met Ala Ala Ala Pro Ser Val Arg Thr Phe Thr Arg Ala Glu Val Leu
 1 5 10 15

Asn Ala Glu Ala Leu Asn Glu Gly Lys Lys Asp Ala Glu Ala Pro Phe
 20 25 30

Leu Met Ile Ile Asp Asn Lys Val Tyr Asp Val Arg Glu Phe Val Pro
 35 40 45

Asp His Pro Gly Gly Ser Val Ile Leu Thr His Val Gly Lys Asp Gly
 50 55 60

Thr Asp Val Phe Asp Thr Phe His Pro Glu Ala Ala Trp Glu Thr Leu
 65 70 75 80

Ala Asn Phe Tyr Val Gly Asp Ile Asp Glu Ser Asp Arg Asp Ile Lys
 85 90 95

Asn Asp Asp Phe Ala Ala Glu Val Arg Lys Leu Arg Thr Leu Phe Gln
 100 105 110

Ser Leu Gly Tyr Tyr Asp Ser Ser Lys Ala Tyr Tyr Ala Phe Lys Val
 115 120 125

Ser Phe Asn Leu Cys Ile Trp Gly Leu Ser Thr Val Ile Val Ala Lys
130 135 140

Trp Gly Gln Thr Ser Thr Leu Ala Asn Val Leu Ser Ala Ala Leu Leu
145 150 155 160

Gly Leu Phe Trp Gln Gln Cys Gly Trp Leu Ala His Asp Phe Leu His
165 170 175

His Gln Val Phe Gln Asp Arg Phe Trp Gly Asp Leu Phe Gly Ala Phe
180 185 190

Leu Gly Gly Val Cys Gln Gly Phe Ser Ser Ser Trp Trp Lys Asp Lys
195 200 205

His Asn Thr His His Ala Ala Pro Asn Val His Gly Glu Asp Pro Asp
210 215 220

Ile Asp Thr His Pro Leu Leu Thr Trp Ser Glu His Ala Leu Glu Met
225 230 235 240

Phe Ser Asp Val Pro Asp Glu Glu Leu Thr Arg Met Trp Ser Arg Phe
245 250 255

Met Val Leu Asn Gln Thr Trp Phe Tyr Phe Pro Ile Leu Ser Phe Ala
260 265 270

Arg Leu Ser Trp Cys Leu Gln Ser Ile Leu Phe Val Leu Pro Asn Gly
275 280 285

Gln Ala His Lys Pro Ser Gly Ala Arg Val Pro Ile Ser Leu Val Glu
290 295 300

Gln Leu Ser Leu Ala Met His Trp Thr Trp Tyr Leu Ala Thr Met Phe
305 310 315 320

Leu Phe Ile Lys Asp Pro Val Asn Met Leu Val Tyr Phe Leu Val Ser
325 330 335

Gln Ala Val Cys Gly Asn Leu Leu Ala Ile Val Phe Ser Leu Asn His
340 345 350

Asn Gly Met Pro Val Ile Ser Lys Glu Glu Ala Val Asp Met Asp Phe
355 360 365

Phe Thr Lys Gln Ile Ile Thr Gly Arg Asp Val His Pro Gly Leu Phe
370 375 380

Ala Asn Trp Phe Thr Gly Gly Leu Asn Tyr Gln Ile Glu His His Leu
385 390 395 400

Phe Pro Ser Met Pro Arg His Asn Phe Ser Lys Ile Gln Pro Ala Val
405 410 415

Glu Thr Leu Cys Lys Lys Tyr Asn Val Arg Tyr His Thr Thr Gly Met
420 425 430

Ile Glu Gly Thr Ala Glu Val Phe Ser Arg Leu Asn Glu Val Ser Lys
435 440 445

Ala Ala Ser Lys Met Gly Lys Ala Gln
450 455

<210> 3
<211> 1488
<212> DNA
<213> Mortierella alpina

<400> 3	
gtcccccgtc gctgtcgcca cacccatcc tccctcgctc cctctgcgtt tgtccttggc	60
ccacccgtctc tcctccaccc tccgagacga ctgcaactgt aatcaggaac cgacaaatac	120
acgatttctt tttactcagc accaactcaa aatcctcaac cgcaaccctt tttcaggatg	180
gcacccctcca acactatcga tgccggttt acccagcgtc atatcagcac ctcggcccc	240
aactcggcca agcctgcctt cgagcgcaac taccagctcc ccgagttcac catcaaggag	300
atccggagagt gcattccctgc ccactgcttt gagcgctccg gtctccgtgg tctctgccac	360
gttgccatcg atctgacttg ggctcgctc ttgttccctgg ctgcgaccctt gatcgacaag	420
tttgagaatc ctttgatccg ctatttggcc tggcctgtt actggatcat gcagggattt	480
gtctgcaccgg gtgtctgggt gctggctcac gagtgtggtc atcagtcctt ctcgacactcc	540
aagaccctca acaacacagt tgggtggatc ttgcactcga tgctcttggg cccctaccac	600
tcctggagaa tctcgactc gaagcaccac aaggccactg gccatatgac caaggaccag	660
gtctttgtgc ccaagaccgg ctcccagggtt ggcttgcttc ccaaggagaa cgctgctgct	720
gccgttcagg aggaggacat gtccgtgcac ctggatgagg aggctccat tggactttt	780
ttctggatgg tgatccagggtt cttgttcgga tggcccgctt acctgattat gaacgcctct	840
ggccaagact acggccgctg gacctcgac ttccacacgt actcgcccat ctttgagccc	900
cgcaacttt tcgacattat tatctcgac ctcgggtgtt tggctgccct cggtgccctg	960
atctatgcct ccatgcagggtt gtcgctctt accgtcacca agtactatat tggccctac	1020
ctctttgtca acttttgggtt ggtcctgatc accttcttgc agcacaccga tcccaagctg	1080
ccccattacc gcgagggtgc ctggaaatttc cagcgtggag ctcttgcac cgttgaccgc	1140
tctttggca agttcttggaa ccataatgttc cacggcattt tccacaccca tggccat	1200
cacttgttct cgcaaatttgc gtttaccat gctgagggaaat ctacctatca tctcaagaaaa	1260
ctgctggagat agtactatgtt gtacgaccctt tcccccgttgc tcgttgcgtt ctggaggatcg	1320
ttccgtgagt ggcgatttgtt ggaggatcatc ggagacgtgg tcttttcaa gaagtaaaaa	1380
aaaagacaat ggaccacaca caacccgttc tctacagacc tacgttatcat gtagccatac	1440
cacttcataa aagaacatga gctcttagagg cgtgtcatcc gcccctcc	1488

<210> 4

<211> 399

<212> PRT

<213> Mortierella alpina

<400> 4

Met Ala Pro Pro Asn Thr Ile Asp Ala Gly Leu Thr Gln Arg His Ile
1 5 10 15

Ser Thr Ser Ala Pro Asn Ser Ala Lys Pro Ala Phe Glu Arg Asn Tyr
20 25 30

Gln Leu Pro Glu Phe Thr Ile Lys Glu Ile Arg Glu Cys Ile Pro Ala
35 40 45

His Cys Phe Glu Arg Ser Gly Leu Arg Gly Leu Cys His Val Ala Ile
50 55 60

Asp Leu Thr Trp Ala Ser Leu Leu Phe Leu Ala Ala Thr Gln Ile Asp
65 70 75 80

Lys Phe Glu Asn Pro Leu Ile Arg Tyr Leu Ala Trp Pro Val Tyr Trp
85 90 95

Ile Met Gln Gly Ile Val Cys Thr Gly Val Trp Val Leu Ala His Glu
100 105 110

Cys Gly His Gln Ser Phe Ser Thr Ser Lys Thr Leu Asn Asn Thr Val
115 120 125

Gly Trp Ile Leu His Ser Met Leu Leu Val Pro Tyr His Ser Trp Arg
130 135 140

Ile Ser His Ser Lys His His Lys Ala Thr Gly His Met Thr Lys Asp
145 150 155 160

Gln Val Phe Val Pro Lys Thr Arg Ser Gln Val Gly Leu Pro Pro Lys
165 170 175

Glu Asn Ala Ala Ala Val Gln Glu Glu Asp Met Ser Val His Leu
180 185 190

Asp Glu Glu Ala Pro Ile Val Thr Leu Phe Trp Met Val Ile Gln Phe
195 200 205

Leu Phe Gly Trp Pro Ala Tyr Leu Ile Met Asn Ala Ser Gly Gln Asp
210 215 220

Tyr Gly Arg Trp Thr Ser His Phe His Thr Tyr Ser Pro Ile Phe Glu
225 230 235 240

Pro Arg Asn Phe Phe Asp Ile Ile Ile Ser Asp Leu Gly Val Leu Ala
245 250 255

Ala Leu Gly Ala Leu Ile Tyr Ala Ser Met Gln Leu Ser Leu Leu Thr
260 265 270

Val Thr Lys Tyr Tyr Ile Val Pro Tyr Leu Phe Val Asn Phe Trp Leu
275 280 285

Val Leu Ile Thr Phe Leu Gln His Thr Asp Pro Lys Leu Pro His Tyr

290

295

300

Arg Glu Gly Ala Trp Asn Phe Gln Arg Gly Ala Leu Cys Thr Val Asp
 305 310 315 320

Arg Ser Phe Gly Lys Phe Leu Asp His Met Phe His Gly Ile Val His
 325 330 335

Thr His Val Ala His His Leu Phe Ser Gln Met Pro Phe Tyr His Ala
 340 345 350

Glu Glu Ala Thr Tyr His Leu Lys Lys Leu Leu Gly Glu Tyr Tyr Val
 355 360 365

Tyr Asp Pro Ser Pro Ile Val Val Ala Val Trp Arg Ser Phe Arg Glu
 370 375 380

Cys Arg Phe Val Glu Asp Gln Gly Asp Val Val Phe Phe Lys Lys
 385 390 395

<210> 5

<211> 355

<212> PRT

<213> Mortierella alpina

<400> 5

Glu Val Arg Lys Leu Arg Thr Leu Phe Gln Ser Leu Gly Tyr Tyr Asp
 1 5 10 15

Ser Ser Lys Ala Tyr Tyr Ala Phe Lys Val Ser Phe Asn Leu Cys Ile
 20 25 30

Trp Gly Leu Ser Thr Val Ile Val Ala Lys Trp Gly Gln Thr Ser Thr
 35 40 45

Leu Ala Asn Val Leu Ser Ala Ala Leu Leu Gly Leu Phe Trp Gln Gln
 50 55 60

Cys Gly Trp Leu Ala His Asp Phe Leu His His Gln Val Phe Gln Asp
 65 70 75 80

Arg Phe Trp Gly Asp Leu Phe Gly Ala Phe Leu Gly Gly Val Cys Gln
 85 90 95

Gly Phe Ser Ser Ser Trp Trp Lys Asp Lys His Asn Thr His His Ala
 100 105 110

Ala Pro Asn Val His Gly Glu Asp Pro Asp Ile Asp Thr His Pro Leu
 115 120 125

Leu Thr Trp Ser Glu His Ala Leu Glu Met Phe Ser Asp Val Pro Asp
 130 135 140

Glu Glu Leu Thr Arg Met Trp Ser Arg Phe Met Val Leu Asn Gln Thr
 145 150 155 160

Trp Phe Tyr Phe Pro Ile Leu Ser Phe Ala Arg Leu Ser Trp Cys Leu
 165 170 175

Gln Ser Ile Leu Phe Val Leu Pro Asn Gly Gln Ala His Lys Pro Ser

180

185

190

Gly Ala Arg Val Pro Ile Ser Leu Val Glu Gln Leu Ser Leu Ala Met
195 200 205

His Trp Thr Trp Tyr Leu Ala Thr Met Phe Leu Phe Ile Lys Asp Pro
210 215 220

Val Asn Met Leu Val Tyr Phe Leu Val Ser Gln Ala Val Cys Gly Asn
225 230 235 240

Leu Leu Ala Ile Val Phe Ser Leu Asn His Asn Gly Met Pro Val Ile
245 250 255

Ser Lys Glu Glu Ala Val Asp Met Asp Phe Phe Thr Lys Gln Ile Ile
260 265 270

Thr Gly Arg Asp Val His Pro Gly Leu Phe Ala Asn Trp Phe Thr Gly
275 280 285

Gly Leu Asn Tyr Gln Ile Glu His His Leu Phe Pro Ser Met Pro Arg
290 295 300

His Asn Phe Ser Lys Ile Gln Pro Ala Val Glu Thr Leu Cys Lys Lys
305 310 315 320

Tyr Asn Val Arg Tyr His Thr Thr Gly Met Ile Glu Gly Thr Ala Glu
325 330 335

Val Phe Ser Arg Leu Asn Glu Val Ser Lys Ala Ala Ser Lys Met Gly
340 345 350

Lys Ala Gln
355

<210> 6
<211> 104
<212> PRT
<213> Arabidopsis thaliana

<220>
<221> UNSURE
<222> (1)..(104)
<223> Amino acids 27, 48, and 63 uncertain of sequence

<400> 6

Val Thr Leu Tyr Thr Leu Ala Phe Val Ala Ala Asn Ser Leu Gly Val
1 5 10 15

Leu Tyr Gly Val Leu Ala Cys Pro Ser Val Xaa Pro His Gln Ile Ala
20 25 30

Ala Gly Leu Leu Gly Leu Leu Trp Ile Gln Ser Ala Tyr Ile Gly Xaa
35 40 45

Asp Ser Gly His Tyr Val Ile Met Ser Asn Lys Ser Asn Asn Xaa Phe
50 55 60

Ala Gln Leu Leu Ser Gly Asn Cys Leu Thr Gly Ile Ile Ala Trp Trp

65	70	75	80
Lys Trp Thr His Asn Ala His His Leu Ala Cys Asn Ser Leu Asp Tyr			
85		90	95
Gly Pro Asn Leu Gln His Ile Pro			
100			
<210> 7			
<211> 252			
<212> PRT			
<213> Arabidopsis thaliana			
<400> 7			
Gly Val Leu Tyr Gly Val Leu Ala Cys Thr Ser Val Phe Ala His Gln			
1	5	10	15
Ile Ala Ala Ala Leu Leu Gly Leu Leu Trp Ile Gln Ser Ala Tyr Ile			
20		25	30
Gly His Asp Ser Gly His Tyr Val Ile Met Ser Asn Lys Ser Tyr Asn			
35	40		45
Arg Phe Ala Gln Leu Leu Ser Gly Asn Cys Leu Thr Gly Ile Ser Ile			
50	55		60
Ala Trp Trp Lys Trp Thr His Asn Ala His His Leu Ala Cys Asn Ser			
65	70	75	80
Leu Asp Tyr Asp Pro Asp Leu Gln His Ile Pro Val Phe Ala Val Ser			
85		90	95
Thr Lys Phe Phe Ser Ser Leu Thr Ser Arg Phe Tyr Asp Arg Lys Leu			
100		105	110
Thr Phe Gly Pro Val Ala Arg Phe Leu Val Ser Tyr Gln His Phe Thr			
115		120	125
Tyr Tyr Pro Val Asn Cys Phe Gly Arg Ile Asn Leu Phe Ile Gln Thr			
130		135	140
Phe Leu Leu Leu Phe Ser Lys Arg Glu Val Pro Asp Arg Ala Leu Asn			
145		150	155
160			
Phe Ala Gly Ile Leu Val Phe Trp Thr Trp Phe Pro Leu Leu Val Ser			
165		170	175
Cys Leu Pro Asn Trp Pro Glu Arg Phe Phe Phe Val Phe Thr Ser Phe			
180		185	190
Thr Val Thr Ala Leu Gln His Ile Gln Phe Thr Leu Asn His Phe Ala			
195		200	205
Ala Asp Val Tyr Val Gly Pro Pro Thr Gly Ser Asp Trp Phe Glu Lys			
210		215	220
Gln Ala Ala Gly Thr Ile Asp Ile Ser Cys Arg Ser Tyr Met Asp Trp			
225		230	235
240			
Phe Phe Gly Gly Leu Gln Phe Gln Leu Glu His His			

245

250

<210> 8
<211> 125
<212> PRT
<213> Arabidopsis thaliana

<220>
<221> UNSURE
<222> (1)..(125)
<223> Amino acids 2, 3, 30, 121, and 125 uncertain of sequence.

<400> 8

Gly Xaa Xaa Asn Phe Ala Gly Ile Leu Val Phe Trp Thr Trp Phe Pro
1 5 10 15

Leu Leu Val Ser Cys Leu Pro Asn Trp Pro Glu Arg Phe Xaa Phe Val
20 25 30

Phe Thr Gly Phe Thr Val Thr Ala Leu Gln His Ile Gln Phe Thr Leu
35 40 45

Asn His Phe Ala Ala Asp Val Tyr Val Gly Pro Pro Thr Gly Ser Asp
50 55 60

Trp Phe Glu Lys Gln Ala Ala Gly Thr Ile Asp Ile Ser Cys Arg Ser
65 70 75 80

Tyr Met Asp Trp Phe Phe Cys Gly Leu Gln Phe Gln Leu Glu His His
85 90 95

Leu Phe Pro Arg Leu Pro Arg Cys His Leu Arg Lys Val Ser Pro Val
100 105 110

Gly Gln Arg Gly Phe Gln Arg Lys Xaa Asn Leu Ser Xaa
115 120 125

<210> 9
<211> 131
<212> PRT
<213> Homo sapiens

<220>
<221> UNSURE
<222> (1)..(131)
<223> Amino acid at 110 uncertain of sequence

<400> 9

Pro Ala Thr Glu Val Gly Gly Leu Ala Trp Met Ile Thr Phe Tyr Val
1 5 10 15

Arg Phe Phe Leu Thr Tyr Val Pro Leu Leu Gly Leu Lys Ala Phe Leu
20 25 30

Gly Leu Phe Phe Ile Val Arg Phe Leu Glu Ser Asn Trp Phe Val Trp
35 40 45

Val Thr Gln Met Asn His Ile Pro Met His Ile Asp His Asp Arg Asn
50 55 60

Met Asp Trp Val Ser Thr Gln Leu Gln Ala Thr Cys Asn Val His Lys
65 70 75 80

Ser Ala Phe Asn Asp Trp Phe Ser Gly His Leu Asn Phe Gln Ile Glu
85 90 95

His His Leu Phe Pro Thr Met Pro Arg His Asn Tyr His Xaa Val Ala
100 105 110

Pro Leu Val Gln Ser Leu Cys Ala Lys His Gly Ile Glu Tyr Gln Ser
115 120 125

Lys Pro Leu
130

<210> 10

<211> 87

<212> PRT

<213> Caenorhabditis elegans

<400> 10

Cys Ser Pro Lys Ser Ser Pro Thr Arg Asn Met Thr Pro Ser Pro Phe
1 5 10 15

Ile Asp Trp Leu Trp Gly Gly Leu Asn Tyr Gln Ile Glu His His Leu
20 25 30

Phe Pro Thr Met Pro Arg Cys Asn Leu Asn Arg Cys Met Lys Tyr Val
35 40 45

Lys Glu Trp Cys Ala Glu Asn Asn Leu Pro Tyr Leu Val Asp Asp Tyr
50 55 60

Phe Val Gly Tyr Asn Leu Asn Leu Gln Gln Leu Lys Asn Met Ala Glu
65 70 75 80

Leu Val Gln Ala Lys Ala Ala
85

<210> 11

<211> 143

<212> PRT

<213> Homo sapiens

<220>

<221> UNSURE

<222> (1)..(143)

<223> Amino acid 125 uncertain of sequence

<400> 11

Arg His Glu Ala Ala Arg Gly Gly Thr Arg Leu Ala Tyr Met Leu Val
1 5 10 15

Cys Met Gln Trp Thr Asp Leu Leu Trp Ala Ala Ser Phe Tyr Ser Arg
20 25 30

Phe Phe Leu Ser Tyr Ser Pro Phe Tyr Gly Ala Thr Gly Thr Leu Leu
35 40 45

Leu Phe Val Ala Val Arg Val Leu Glu Ser His Trp Phe Val Trp Ile
50 55 60

Thr Gln Met Asn His Ile Pro Lys Glu Ile Gly His Glu Lys His Arg
65 70 75 80

Asp Trp Ala Ser Ser Gln Leu Ala Ala Thr Cys Asn Val Glu Pro Ser
85 90 95

Leu Phe Ile Asp Trp Phe Ser Gly His Leu Asn Phe Gln Ile Glu His
100 105 110

His Leu Phe Pro Thr Met Thr Arg His Asn Tyr Arg Xaa Val Ala Pro
115 120 125

Leu Val Lys Ala Phe Cys Ala Lys His Gly Leu His Tyr Glu Val
130 135 140

<210> 12

<211> 35

<212> DNA

<213> Artificial/Unknown

<220>

<221> misc_feature

<222> ()..()

<223> Description of Artificial Sequence: PCR Primer

<400> 12

ccaagttct gcaggagctc tttttttt tttt

35

<210> 13

<211> 33

<212> DNA

<213> Artificial/Unknown

<220>

<221> misc_feature

<222> ()..()

<223> Description of Combined RNA/DNA Molecule:PCR Primer

<400> 13

cuacuacuac uaggagtcc ctacggtgtt ttg

33

<210> 14

<211> 33

<212> DNA

<213> Artificial/Unknown

<220>

<221> misc_feature

<222> ()..()

<223> Description of Combined RNA/DNA Molecule:PCR Primer

<400> 14
caucaucauc auatgatgct caagctgaaa ctg

33

<210> 15
<211> 39
<212> DNA
<213> Artificial/Unknown

<220>
<221> misc_feature
<222> ()..()
<223> Description of Artificial Sequence: PCR Primer

<400> 15
tacccaactcg agaaaaatggc tgctgctccc agtgtgagg

39

<210> 16
<211> 39
<212> DNA
<213> Artificial/Unknown

<220>
<221> misc_feature
<222> ()..()
<223> Description of Artificial Sequence:PCR Primer

<400> 16
aactgatcta gattactgcg ccttaccat cttggaggc

39

<210> 17
<211> 39
<212> DNA
<213> Artificial/Unknown

<220>
<221> misc_feature
<222> ()..()
<223> Description of Artificial Sequence:PCR Primer

<400> 17
tacccaactcg agaaaaatggc acctcccaac actatcgat

39

<210> 18
<211> 39
<212> DNA
<213> Artificial/Unknown

<220>
<221> misc_feature
<222> ()..()
<223> Description of Artificial Sequence:PCR Primer

<400> 18
aactgatcta gattacttct tgaaaaagac cacgtctcc 39

<210> 19
<211> 746
<212> DNA
<213> Dictyostelium discoideum

<400> 19
cgtatgtcac tccattccaa actcgttcat ggtatcataa atatcaaacac atttacgctc 60
cactcctcta tggtatattac acactcaa atcgtactca agattggaa gctttgtaa 120
aggatggtaa aaatggtgca attcggtta gtgtcgccac aaatttcgat aaggccgctt 180
acgtcattgg taaaattgtct ttgttttct tccgtttcat ccttccactc cgttatcata 240
gctttacaga tttaatttgt tatttcctca ttgctgaatt cgtctttggg tggtatctca 300
caattaattt ccaagtttagt catgtcgctg aagatctcaa attctttgct acccctgaaa 360
gaccagatga accatctcaa atcaatgaag attgggcaat ccttcaactt aaaactactc 420
aagattatgg tcatggttca ctcccttgta ccttttttag tgggttctta aatcatcaag 480
ttgttcatca ttatttccca tcaattgctc aagatttcta cccacaactt gtaccaattg 540
taaaagaagt ttgtaaagaa cataacatta cttaccacat taaaccaa ac ttcaactgaag 600
ctattatgtc acacattaat tacctttaca aaatgggtaa tgatccagat tatgttaaaa 660
aaccattagc ctcaaaagat gattaaatga aataactaa aaaccaatta tttactttg 720
acaaacagta atattaataa atacaa 746

<210> 20
<211> 228
<212> PRT
<213> Dictyostelium discoideum

<220>
<221> UNSURE
<222> (1)..(228)
<223> Amino acid 228 uncertain of sequence

<400> 20

Tyr Val Thr Pro Phe Gln Thr Arg Ser Trp Tyr His Lys Tyr Gln His
1 5 10 15

Ile Tyr Ala Pro Leu Leu Tyr Gly Ile Tyr Thr Leu Lys Tyr Arg Thr
20 25 30

Gln Asp Trp Glu Ala Phe Val Lys Asp Gly Lys Asn Gly Ala Ile Arg
35 40 45

Val Ser Val Ala Thr Asn Phe Asp Lys Ala Ala Tyr Val Ile Gly Lys

50

55

60

Leu Ser Phe Val Phe Phe Arg Phe Ile Leu Pro Leu Arg Tyr His Ser
 65 70 75 80

Phe Thr Asp Leu Ile Cys Tyr Phe Leu Ile Ala Glu Phe Val Phe Gly
 85 90 95

Trp Tyr Leu Thr Ile Asn Phe Gln Val Ser His Val Ala Glu Asp Leu
 100 105 110

Lys Phe Phe Ala Thr Pro Glu Arg Pro Asp Glu Pro Ser Gln Ile Asn
 115 120 125

Glu Asp Trp Ala Ile Leu Gln Leu Lys Thr Thr Gln Asp Tyr Gly His
 130 135 140

Gly Ser Leu Leu Cys Thr Phe Phe Ser Gly Ser Leu Asn His Gln Val
 145 150 155 160

Val His His Leu Phe Pro Ser Ile Ala Gln Asp Phe Tyr Pro Gln Leu
 165 170 175

Val Pro Ile Val Lys Glu Val Cys Lys Glu His Asn Ile Thr Tyr His
 180 185 190

Ile Lys Pro Asn Phe Thr Glu Ala Ile Met Ser His Ile Asn Tyr Leu
 195 200 205

Tyr Lys Met Gly Asn Asp Pro Asp Tyr Val Lys Lys Pro Leu Ala Ser
 210 215 220

Lys Asp Asp Xaa
 225

<210> 21

<211> 494

<212> DNA

<213> Phaeodactylum tricorntatum

<220>

<221> misc_feature

<222> ()..()

<223> n at positions 11,20,29,31,40,53,453,489 may be a, c, g, or t

<400> 21

ttttggagg ntccaagttt accacggant nggcaagttt acggggcgga aancggtttt 60

ccccccaagc cttttgtcga ctgggtctgt ggtggcttcc agtaccaagt cgaccaccac 120

ttattcccca gcctgccccg acacaatctg gccaaagacac acgcacttgtt cgaatcgttc 180

tgcaaggagt ggggtgtcca gtaccacgaa gccgaccccg tggacgggac catgaaagtcc 240

ttgcaccatt tgggcagcgt ggccggcgaa ttcgtcggtt atttgtacg cgacggaccc 300

gccatgtaat cgtcgttgtt gacgatgcaa gggttcacgc acatctacac acactcactc 360

acacaacttag tgtaactcgt atagaattcg gtgtcgacct ggaccttggtt tgactgggtt 420

gggatagggt aggtaggcgg acgcgtgggt cgncccccggg aattctgtga ccggtacctg 480
gccccgcgtna aagt 494

<210> 22
<211> 102
<212> PRT
<213> Phaeodactylum tricornutum

<220>
<221> UNSURE
<222> (1)..(102)
<223> Amino acids 4,7,10,11,14, and 18 uncertain of sequence

<400> 22

Phe Trp Lys Xaa Pro Ser Xaa Pro Arg Xaa Xaa Gln Val Xaa Gly Ala
1 5 10 15

Glu Xaa Gly Phe Pro Pro Lys Pro Phe Val Asp Trp Phe Cys Gly Gly
20 25 30

Phe Gln Tyr Gln Val Asp His His Leu Phe Pro Ser Leu Pro Arg His
35 40 45

Asn Leu Ala Lys Thr His Ala Leu Val Glu Ser Phe Cys Lys Glu Trp
50 55 60

Gly Val Gln Tyr His Glu Ala Asp Leu Val Asp Gly Thr Met Glu Val
65 70 75 80

Leu His His Leu Gly Ser Val Ala Gly Glu Phe Val Val Asp Phe Val
85 90 95

Arg Asp Gly Pro Ala Met
100

<210> 23
<211> 520
<212> DNA
<213> Artificial/Unknown

<220>
<221> misc_feature
<222> ()..()
<223> Description of Artificial Sequence: Schizochytrium cDNA Clone

<400> 23
ggatggagtt cgtctggatc gctgtgcgtc acgcgcacgtg gtttaagcgt catgggtgcg 60
cttgggtaca cgccggggca gtcgttgggc atgtacttgt gcgcctttgg tctcggctgc 120
atttacattt ttctgcagtt cgccgtaagt cacaccatt tgcccgtgag caacccggag 180
gatcagctgc attggctcga gtacgcgcgg accacactgt gaacatcagc accaagtctg 240
ggtttgcac atggtgatc tcgaacctca actttcagat cgagcaccac ctttccccca 300

cggcgccccca gttccgttcc aaggagatca gcccgcgcgt cgaggccctc ttcaagcgcc 360
acggtctccc ttactacgac atgccctaca cgagcgcgt ctccaccacc tttgccaacc 420
tctactccgt cggccattcc gtcggcgacg ccaagcgcga ctagcctt ttccttagacc 480
ttaattcccc accccacccc atgttctgtc ttccctccgc 520

<210> 24
<211> 153
<212> PRT
<213> Artificial/Unknown

<220>
<221> misc_feature
<222> ()...()
<223> Description of Artificial Sequence:Schizochytrium cDNA Clone

<400> 24

Met Glu Phe Val Trp Ile Ala Val Arg Tyr Ala Thr Trp Phe Lys Arg
1 5 10 15

His Gly Cys Ala Trp Val His Ala Gly Ala Val Val Gly His Val Leu
20 25 30

Val Arg Leu Trp Ser Arg Leu His Leu His Phe Ser Ala Val Arg Arg
35 40 45

Lys Ser His Pro Phe Ala Arg Glu Gln Pro Gly Gly Ser Ala Ala Leu
50 55 60

Ala Arg Val Arg Ala Asp His Thr Val Asn Ile Ser Thr Lys Ser Trp
65 70 75 80

Phe Val Thr Trp Trp Met Ser Asn Leu Asn Phe Gln Ile Glu His His
85 90 95

Leu Phe Pro Thr Ala Pro Gln Phe Arg Phe Lys Glu Ile Ser Pro Arg
100 105 110

Val Glu Ala Leu Phe Lys Arg His Gly Leu Pro Tyr Tyr Asp Met Pro
115 120 125

Tyr Thr Ser Ala Val Ser Thr Thr Phe Ala Asn Leu Tyr Ser Val Gly
130 135 140

His Ser Val Gly Asp Ala Lys Arg Asp
145 150

<210> 25
<211> 420
<212> DNA
<213> Artificial/Unknown

<220>
<221> misc_feature
<222> ()...()
<223> Description of Artificial Sequence:Schizochytrium cDNA Clone

<400> 25
acgcgtccgc ccacgcgtcc gccgcgagca actcatcaag gaaggctact ttgacccttc 60
gctcccgcac atgacgtacc gcgtggtcga gattgttgc tcttcgtgc ttccctttg 120
gctgatgggt cagtcttcac ccctcgcgct cgctctcggc attgtcgtca gcggcatctc 180
tcagggtcgc tgccgctggg taatgcata gatgggcat gggtcgttca ctggtgtcat 240
ttggcttgac gaccgggtgt gcgagttctt ttacggcggtt ggttgtggca tgagcggtca 300
ttactggaaa aaccagcaca gcaaacacca cgcagcgcca aaccggctcg agcacatgt 360
agatctcaac accttgccat tggtggcctt caacgagcgc gtcgtgcga aggtccgacc 420

<210> 26
<211> 140
<212> PRT
<213> Artificial/Unknown

<220>
<221> misc_feature
<222> ()..()
<223> Description of Artificial Sequence: Schizophyllum cDNA Clone

<400> 26

Arg Val Arg Pro Arg Val Arg Arg Glu Gln Leu Ile Lys Glu Gly Tyr
1 5 10 15

Phe Asp Pro Ser Leu Pro His Met Thr Tyr Arg Val Val Glu Ile Val
20 25 30

Val Leu Phe Val Leu Ser Phe Trp Leu Met Gly Gln Ser Ser Pro Leu
35 40 45

Ala Leu Ala Leu Gly Ile Val Val Ser Gly Ile Ser Gln Gly Arg Cys
50 55 60

Gly Trp Val Met His Glu Met Gly His Gly Ser Phe Thr Gly Val Ile
65 70 75 80

Trp Leu Asp Asp Arg Leu Cys Glu Phe Phe Tyr Gly Val Gly Cys Gly
85 90 95

Met Ser Gly His Tyr Trp Lys Asn Gln His Ser Lys His His Ala Ala
100 105 110

Pro Asn Arg Leu Glu His Asp Val Asp Leu Asn Thr Leu Pro Leu Val
115 120 125

Ala Phe Asn Glu Arg Val Val Arg Lys Val Arg Pro
130 135 140

<210> 27
<211> 1219
<212> DNA

<213> Homo sapiens

<400> 27

gcacggcggac	cgcgccggg	agatcctggc	aaagtatcca	gagataaaagt	ccttgatgaa	60
acctgatccc	aatttgcata	ttgattataat	tatgtatggtt	ctcacccagt	tgggtgcatt	120
ttacatagta	aaagacttgg	actggaaatg	ggtcataat	gggcctatg	cgtttggcag	180
ttgcattaac	cactcaatga	ctctggctat	tcatgagatt	gcccacaaatg	ctgccttgg	240
caactgcaaa	gcaatgtgga	atcgctggtt	tggaatgttt	gctaatcttc	ctattggat	300
tccatattca	atttccttta	agaggatata	catggatcat	catcggtacc	ttggagactga	360
tggcgctcgat	gtagatattc	ctacccgattt	tgagggctgg	ttcttctgt	ccgctttcag	420
aaagttata	tgggttattc	ttcagcctct	cttttatgcc	tttcgacctc	tgttcatcaa	480
ccccaaacca	attacgtatc	tggaagttat	caataccgtg	gcacaggtca	cttttgacat	540
ttaatttat	tacttttgg	gaattaaatc	cttagtctac	atgttggcag	catcttact	600
tggcctgggt	ttgcacccaa	tttctggaca	ttttatagct	gagcattaca	tgttcttaaa	660
gggtcatgaa	acttactcat	attatggcc	tctgaattt	cttaccttca	atgtgggtta	720
tcataatgaa	catcatgatt	tccccaacat	tcctggaaaa	agtcttccac	tggtagggaa	780
aatagcagct	gaatactatg	acaacccc	tcactacaat	tcctggataa	aagtactgt	840
tgattttgt	atggatgata	caataagtcc	ctactcaaga	atgaagaggg	accaaaaagg	900
agagatggtg	ctggagtaaa	tatcattagt	gccaaaggga	ttcttctcca	aaactttaga	960
tgataaaatg	gaattttgc	attattaaac	ttgagaccag	tgtgctcag	aagctcccct	1020
ggcacaattt	cagagtaaga	gctcggtat	accaagaagt	aatctggct	tttaaacagt	1080
cagcctgact	ctgtactgct	cagtttca	cacagggaaac	ttgtgacttg	tgtattatcg	1140
tcattgagga	tgtttcactc	atgtctgtca	ttttataaagc	atatcattt	aaaagcttct	1200
aaaaagctat	ttcgccagg					1219

<210> 28

<211> 655

<212> DNA

<213> Homo sapiens

<400> 28

ttaccttcta	cgtccgcttc	ttcctca	ttgtgccact	attggggctg	aaagcttcct	60
gggccttttc	ttcatagtc	ggttcctgg	aagcaactgg	tttgtgtggg	tgacacagat	120
gaaccatatt	cccatgcaca	ttgatcatga	ccggAACATG	gactgggtt	ccacccagct	180
ccaggccaca	tgcaatgtcc	acaagtctgc	cttcaatgac	tggttcagtg	gacacctaa	240
cttccagatt	gagcaccatc	ttttcccac	gatgcctcga	cacaattacc	acaaagtggc	300

tccccctggtg cagtccttgt gtgccaaagca tggcatagag taccagtcca agcccctgct 360
gtcagcccttc gccgacatca tccactcaact aaaggagtca gggcagctct ggctagatgc 420
ctatcttac caataacaac agccaccctg cccagtcgtt aagaagagga ggaagactct 480
ggagccaaagg cagaggggag cttgagggac aatgccacta tagttaata ctcagagggg 540
gttgggtttt gggacataaaa gcctctgact caaactcctc ccttttatct tctagccaca 600
gttctaagac ccaaagtggg gggtggacac agaagtccct aggagggaaag gagct 655

<210> 29
<211> 304
<212> DNA
<213> Homo sapiens

<400> 29
gtcttttact ttggcaatgg ctggattcct accctcatca cggcctttgt cttgctacc 60
tctcaggccc aagctggatg gctgcaacat gattatggcc acctgtctgt ctacagaaaa 120
cccaagtgg aaccacttgt ccacaaattc gtcattggcc acttaaaggg tgccctcgcc 180
aactggtgga atcatcgcca cttccagcac cacgccaagg ctaacatctt ccacaaggat 240
cccgatgtga acatgctgca cgtgtttgtt ctgggcgaat ggcagcccat cgagtacggc 300
aaga 304

<210> 30
<211> 918
<212> DNA
<213> Homo sapiens

<400> 30
cagggaccta ccccgcgcta cttcacctgg gacgaggtgg cccagcgctc agggtgcgag 60
gagcgggtggc tagtgatcga ccgtaaggtg tacaacatca gcgagttcac ccggccggcat 120
ccagggggct cccgggtcat cagccactac gccgggcagg atgccacggg tccctttgtg 180
gccttccaca tcaacaaggg cttgtgaag aagtatatga actctctcct gattggagaa 240
ctgtctccag agcagcccaag cttgagccc accaagaata aagagctgac agatgagttc 300
cgggagctgc gggccacagt ggagcggatg gggctcatga aggccaacca tgtcttcttc 360
ctgctgtacc tgctgcacat cttgctgctg gatgggtgcag cctggctcac ctttgggtc 420
tttgggacgt ctttttggc cttcctcctc tggcggtgc tgctcagtgc agttcaggcc 480
caggctggct ggctgcagca tgactttggg cacctgtcgg tcttcagcac ctcaaagtgg 540
aaccatctgc tacatcattt tgtgattggc cacctgaagg gggccccccgc cagttggtg 600
aaccacatgc acttccagca ccatgccaag cccaaactgct tccgcaaaga cccagacatc 660

aacatgcata	ccttcttctt	tgccttgaaa	aagatcctct	ctgtggagct	tggaaacag	720
aagaaaaaat	atatgccgt	caaccaccag	cacaratact	tcttcctaatt	tggccccc	780
gccttgctgc	ctctctactt	ccagtggat	atttctatt	ttgttatcca	gcgaaagaag	840
tgggtggact	tggcctggat	cagcaaacag	gaatacgtat	aagccggct	tccattgtcc	900
accgcaaatg	cttctaaa					918
<210>	31					
<211>	1686					
<212>	DNA					
<213>	Homo sapiens					
<400>	31					
gccacttaaa	gggtgcctct	gc当地actgg	ggaatcatcg	ccacttccag	caccacgcca	60
agcctaaca	cttccacaag	gatcccgt	tgaacatgt	gcacgtgtt	gttctggcg	120
aatggcagcc	catcgagtac	ggcaagaaga	agctgaaata	cctgcctac	aatcaccagc	180
acgaaatactt	cttcctgatt	ggccgcccgc	tgctcatccc	catgtatttc	cagtaccaga	240
tcatcatgac	catgatcg	cataagaact	gggtggacct	ggcttggcc	gtcagctact	300
acatccgg	tttcatcacc	tacatccctt	tctacggcat	cctggagcc	ctcctttcc	360
tcaacttcat	cagg	tttgcact	gagaccact	gttttgttg	ggtcacacag	420
tcgtcatgga	gattgaccag	gaggcctacc	gtgactgg	cagtagccag	ctgacagcc	480
cctgcaacgt	ggagcagtcc	ttttcaacg	actggttcag	tggcacac	tttccaga	540
ttgagcacca	cctttcccc	accatgcccc	ggcacaactt	acacaagatc	gccccgtgg	600
tgaagtctct	atgtgccaag	catggcattt	aataccagga	gaagccgcta	ctgagggccc	660
tgctggacat	catcagg	ctgaagaagt	ctggaaagct	gtggctgg	gcctac	720
acaaatgaag	ccacagcccc	cggacaccg	tggggaaagg	gtgcagg	gtgtatggcc	780
agaggaatga	tgggtttt	ttctgaggg	tgtccgagag	gctgggtat	gcactgctca	840
cggacccat	gttggatctt	tctcccttc	tcctctc	tttctttca	catctcccc	900
atagcaccc	gccctcatgg	gacctgcct	ccctcagcc	tcagccatca	gccatggccc	960
tcccagtgcc	tcctagcccc	ttttccaag	gagcagag	gtggccaccg	gggggtggctc	1020
tgtcctac	ccactctctg	cccctaaaga	tgggaggaga	ccagcgg	atgggtctgg	1080
cctgtgagtc	tcccttgca	gcctgg	taggcattac	ccccgtttt	gttcttcaga	1140
tgctcttggg	gttcataggg	gcaggtccta	gtcgggcagg	gcccctgacc	ctcccggcct	1200
ggcttcactc	tccctgacgg	ctgcccattgg	tccaccc	tttcatagagg	cctgcttgt	1260
tacaaagctc	gggtctccct	cctgcagctc	ggttaagtac	ccgaggcctc	tcttaagatg	1320

tccagggccc caggccccg	ggcacagcca gccaaacct	tggccctgg aagagtcc	1380
caccccatca ctagagtgt	ctgaccctgg gcttcacgg	gccccattcc accgcctccc	1440
caacttgagc ctgtgacctt	gggaccaaag gggagtc	ccctgtcttg tgactcagca	1500
gaggcagtgg ccacgttcag	ggagggccc	gctggccctgg aggctcagcc	1560
ctttcctca gggtgtcctg	aggtccaaga ttctggagca	atctgaccct tctccaaagg	1620
ctctgttatac agctgggcag	tgccagccaa tccctggcca	tttggcccca ggggacgtgg	1680
gccctg			1686

<210> 32
<211> 1843
<212> DNA
<213> Homo sapiens

<400> 32			
gtctttact ttggcaatgg	ctggattcct accctcatca	cggcctttgt cttgttacc	60
tctcaggccc aagctggatg	gctgcaacat gattatggcc	acctgtctgt ctacagaaaa	120
cccaagtggaa accacttgt	ccacaattc gtcattggcc	acttaaaggg tgcctctgcc	180
aactggtgga atcatcgcca	cttccagcac cacgccaagc	ctaacatctt ccacaaggat	240
cccgatgtga acatgctgca	cgtgtttgtt ctggcgaat	ggcagcccat cgagtacggc	300
aagaagaagc tgaaatacct	gccctacaat caccagcacg	aataacttctt cctgattggg	360
ccgcccgtgc tcatccccat	gtattccag taccagatca	tcatgaccat gatcgccat	420
aagaactggg tggacctggc	ctggccgtc agtactaca	tccggttctt catcacctac	480
atccctttct acggcatcct	gggagccctc ctttcctca	acttcatcag gttcctggag	540
agccactggt ttgtgtgggt	cacacagatg aatcacatcg	tcatggagat tgaccaggag	600
gcctaccgtg actgggttcag	tagccagctg acagccacct	gcaacgtggc gcagtccttc	660
ttcaacgact gttcagtgg	acacctaacttcc	ttccagattt agcaccacct	720
atgccccggc acaacttaca	caagatcgcc	ccgctgggtga agtctctatg tgccaaagcat	780
ggcattgaat accaggagaa	gccgctactg	agggccctgc tggacatcat	840
aagaagtctg ggaagctgtg	gctggacgccc	taccttcaca aatgaagcca	900
gacaccgtgg ggaagggggtg	caggtgggggt	gatggccaga ggaatgatgg	960
tgaggggtgt ccgagaggct	ggtgtatgca	ctgctcacgg accccatgtt	1020
ccctttctcc tctcctttt	ctcttcacat	ctccccata gcaccctgcc	1080
ctgcccctccc tcagccgtca	gccatcagcc	atggccctcc cagtgccctcc	1140
ttccaaggag cagagagggtg	gccaccgggg	gtggctctgt cctacacttca	1200

ctaaagatgg	gaggagacca	gcggtccatg	ggtctggcct	gtgagtctcc	cttgcagcc	1260
tggtaactag	gcatcacccc	cgcttgggtt	cttcagatgc	tcttggggtt	cataggggca	1320
ggtcctagtc	gggcagggcc	cctgaccctc	ccggcctggc	ttcactctcc	ctgacggctg	1380
ccattggtcc	accctttcat	agagaggcct	gctttgttac	aaagctcggg	tctccctcct	1440
gcagctcggt	taagtacccg	aggcctctct	taagatgtcc	agggccccag	gcccgcgggc	1500
acagccagcc	caaaccctgg	gcccttggaaag	agtccctccac	cccatcacta	gagtgctctg	1560
accctgggct	ttcacgggccc	ccattccacc	gcctcccaa	cttgcgcctg	tgaccttggg	1620
accaaagggg	gagtccctcg	tctcttgtga	ctcagcagag	gcagtggcca	cgttcaggga	1680
ggggccggct	ggcctggagg	ctcagccac	cctccagctt	ttcctcaggg	tgtcctgagg	1740
tccaagattc	tggagcaatc	tgacccttct	ccaaaggctc	tgttatcagc	tgggcagtc	1800
cagccaatcc	ctggccattt	ggcccccaggg	gacgtgggccc	ctg		1843

<210> 33
 <211> 2257
 <212> DNA
 <213> Homo sapiens

<400> 33						
cagggaccta	ccccgcgcta	cttcacctgg	gacgaggtgg	cccagcgctc	agggtgcgag	60
gagcggtggc	tagtgcata	ccgtaaggtg	tacaacatca	gcgagttcac	ccgcccggcat	120
ccagggggct	cccggtcat	cagccactac	gccgggcagg	atgccacgga	tccctttgtg	180
gccttccaca	tcaacaaggg	ccttgtgaag	aagtatatga	actctctcct	gattggagaa	240
ctgtctccag	agcagccacag	cttgagcccc	accaagaata	aagagctgac	agatgagttc	300
cgggagctgc	gggccacagt	ggagcgatg	gggctcatga	aggccaacca	tgtcttcttc	360
ctgctgtacc	tgctgcacat	cttgctgctg	gatggtgcag	cctggctcac	cctttgggtc	420
tttgggacgt	cctttttgcc	cttcctccctc	tgtgcgggtgc	tgctcagtgc	agttcagcag	480
gccccagctg	gatggctgca	acatgattat	ggccacctgt	ctgtctacag	aaaacccaag	540
tggaaccacc	ttgtccacaa	attcgtcatt	ggccacttaa	agggtgcctc	tgccaaactgg	600
tggaatcatc	gccacttcca	gcaccacgccc	aagcctaaca	tcttccacaa	ggatcccgat	660
gtgaacatgc	tgcacgtgtt	tgttctgggc	aatggcagc	ccatcgagta	cgccaagaag	720
aagctgaaat	acctgcctta	caatcaccag	cacgaatact	tcttcctgtat	tgggcccgg	780
ctgctcatcc	ccatgtat	ccagtagcc	atcatcatga	ccatgatcgt	ccataagaac	840
tgggtggacc	tggcctgggc	cgtcagctac	tacatccggt	tcttcatcac	ctacatccct	900
ttctacggca	tcctgggagc	cctccttttc	ctcaacttca	tcaggttcct	ggagagccac	960

tggtttgtt	gggtcacaca	gatgaatcac	atcgcatgg	agattgacca	ggaggcctac	1020
cgtgactgg	ttagtagcca	gctgacagcc	acctgcaacg	tggagcagtc	cttcttcaac	1080
gactggttca	gtggacaccc	taacttccag	attgagcacc	accttccc	caccatgcc	1140
cggcacaact	tacacaagat	cgcggcgtg	gtgaagtctc	tatgtccaa	gcatggcatt	1200
gaataccagg	agaagccgct	actgagggcc	ctgctggaca	tcatcaggc	cctgaagaag	1260
tctgggaagc	tgtggctgga	cgcctaccc	cacaaatgaa	gccacagccc	ccgggacacc	1320
gtggggaaagg	ggtgcagg	gggtgatggc	cagaggaatg	atgggctttt	gttctgaggg	1380
gtgtccgaga	ggctggtgta	tgcactgctc	acggacccc	tgttggatct	ttctccctt	1440
ctcctctcct	tttctcttc	acatctcccc	catagcaccc	tgcctcatg	ggacctgccc	1500
tccctcagcc	gtcagccatc	agccatggcc	ctcccaagtgc	ctcctagccc	cttctccaa	1560
ggagcagaga	ggtggccacc	gggggtggct	ctgtcctacc	tccactctct	gcccctaag	1620
atgggaggag	accagcggc	catgggtctg	gcctgtgagt	ctcccttgc	agcctggc	1680
ctaggcatca	cccccgctt	gttcttcag	atgctcttgg	gttcataagg	ggcaggcct	1740
atcggggcag	ggcccctgac	cctccggcc	tggcttact	ctccctgacg	gctgccattg	1800
gtccaccctt	tcatagagag	gcctgctttt	ttacaaagct	cgggtctccc	tcctgcagct	1860
cggtaagta	cccgaggcct	ctcttaagat	gtccagggcc	ccaggcccgc	gggcacagcc	1920
agcccaaacc	ttggggccctg	gaagagtcct	ccacccatc	actagagtgc	tctgaccctg	1980
ggcttcacg	ggccccattc	caccgcctcc	ccaaacttgc	cctgtgaccc	tgggaccaaa	2040
gggggagtcc	ctcgctcttt	gtgactcagc	agaggcagtg	gccacgttca	gggagggcc	2100
ggctggcctg	gaggctcagc	ccacccctca	gctttcctc	agggtgtctt	gaggtc当地	2160
attctggagc	aatctgaccc	ttctccaaag	gctctgttat	cagctggca	gtgccagcc	2220
atccctggcc	atttggccccc	agggacgtg	ggccctg			2257

<210> 34
 <211> 406
 <212> PRT
 <213> Homo sapiens

<220>
 <221> UNSURE
 <222> (1)..(406)
 <223> Amino acids 306,329,331,334,358,375, and 382 uncertain of sequence

<400> 34

His Ala Asp Arg Arg Arg Glu Ile Leu Ala Lys Tyr Pro Glu Ile Lys
 1 5 10 15

Ser Leu Met Lys Pro Asp Pro Asn Leu Ile Trp Ile Ile Ile Met Met
20 25 30

Val Leu Thr Gln Leu Gly Ala Phe Tyr Ile Val Lys Asp Leu Asp Trp
35 40 45

Lys Trp Val Ile Phe Gly Ala Tyr Ala Phe Gly Ser Cys Ile Asn His
50 55 60

Ser Met Thr Leu Ala Ile His Glu Ile Ala His Asn Ala Ala Phe Gly
65 70 75 80

Asn Cys Lys Ala Met Trp Asn Arg Trp Phe Gly Met Phe Ala Asn Leu
85 90 95

Pro Ile Gly Ile Pro Tyr Ser Ile Ser Phe Lys Arg Tyr His Met Asp
100 105 110

His His Arg Tyr Leu Gly Ala Asp Gly Val Asp Val Asp Ile Pro Thr
115 120 125

Asp Phe Glu Gly Trp Phe Phe Cys Thr Ala Phe Arg Lys Phe Ile Trp
130 135 140

Val Ile Leu Gln Pro Leu Phe Tyr Ala Phe Arg Pro Leu Phe Ile Asn
145 150 155 160

Pro Lys Pro Ile Thr Tyr Leu Glu Val Ile Asn Thr Val Ala Gln Val
165 170 175

Thr Phe Asp Ile Leu Ile Tyr Tyr Phe Leu Gly Ile Lys Ser Leu Val
180 185 190

Tyr Met Leu Ala Ala Ser Leu Leu Gly Leu Gly Leu His Pro Ile Ser
195 200 205

Gly His Phe Ile Ala Glu His Tyr Met Phe Leu Lys Gly His Glu Thr
210 215 220

Tyr Ser Tyr Tyr Gly Pro Leu Asn Leu Leu Thr Phe Asn Val Gly Tyr
225 230 235 240

His Asn Glu His His Asp Phe Pro Asn Ile Pro Gly Lys Ser Leu Pro
245 250 255

Leu Val Arg Lys Ile Ala Ala Glu Tyr Tyr Asp Asn Leu Pro His Tyr
260 265 270

Asn Ser Trp Ile Lys Val Leu Tyr Asp Phe Val Met Asp Asp Thr Ile
275 280 285

Ser Pro Tyr Ser Arg Met Lys Arg His Gln Lys Gly Glu Met Val Leu
290 295 300

Glu Xaa Ile Ser Leu Val Pro Lys Gly Phe Phe Ser Lys Thr Leu Asp
305 310 315 320

Asp Lys Met Glu Phe Leu His Tyr Xaa Thr Xaa Asp Gln Xaa Cys Ser
325 330 335

Glu Ala Pro Leu Ala Gln Phe Gln Ser Lys Ser Ser Val Ile Pro Arg

340

345

350

Ser Glu Ser Gly Phe Xaa Thr Val Ser Leu Thr Leu Tyr Cys Ser Val
355 360 365

Ser Leu Thr Gly Asn Leu Xaa Leu Val Tyr Tyr Arg His Xaa Gly Cys
370 375 380

Phe Thr His Val Cys His Phe Ile Ser Ile Ser Phe Lys Lys Leu Leu
 385 390 395 400

Lys Ser Tyr Phe Ala Arg
405

<210> 35

<211> 218

<212> PRT

<213> Homo sapiens

<220>

<221> UNSURE

<222> (1) .. (218)

<223> Amino acids 145, 168, 174, 186, 189, 198, and 202 uncertain of sequence

<400> 35

Tyr Leu Leu Arg Pro Leu Leu Pro His Leu Cys Ala Thr Ile Gly Ala
1 5 10 15

Glu Ser Phe Leu Gly Leu Phe Phe Ile Val Arg Phe Leu Glu Ser Asn
20 25 30

Trp Phe Val Trp Val Thr Gln Met Asn His Ile Pro Met His Ile Asp
35 40 45

His Asp Arg Asn Met Asp Trp Val Ser Thr Gln Leu Gln Ala Thr Cys
50 55 60

Asn	Val	His	Lys	Ser	Ala	Phe	Asn	Asp	Trp	Phe	Ser	Gly	His	Leu	Asn
65				70					75						80

Phe Gln Ile Glu His His Leu Phe Pro Thr Met Pro Arg His Asn Tyr
85 90 . . 95

His Lys Val Ala Pro Leu Val Gln Ser Leu Cys Ala Lys His Gly Ile
100 105 110

Glu Tyr Gln Ser Lys Pro Leu Leu Ser Ala Phe Ala Asp Ile Ile His
115 . 120 125

Ser Leu Lys Glu Ser Gly Gln Leu Trp Leu Asp Ala Tyr Leu His Gln
130 135 140

Xaa Gln Gln Pro Pro Cys Pro Val Trp Lys Lys Arg Arg Lys Thr Leu
145 . . . 150 155 . . . 160

Glu Pro Arg Gln Arg Gly Ala Xaa Gly Thr Met Pro Leu Xaa Phe Asn
165 170 175

Thr Gln Arg Gly Leu Gly Leu Gly Thr Xaa Ser Leu Xaa Leu Lys Leu
180 185 190

Leu Pro Phe Ile Phe Xaa Pro Gln Phe Xaa Asp Pro Lys Trp Gly Val
195 200 205

Asp Thr Glu Val Pro Arg Arg Glu Gly Ala
210 215

<210> 36

<211> 87

<212> PRT

<213> Homo sapiens

<220>

<221> UNSURE

<222> (1)..(87)

<223> Amino acid 87 uncertain of sequence

<400> 36

Val Phe Tyr Phe Gly Asn Gly Trp Ile Pro Thr Leu Ile Thr Ala Phe
1 5 10 15

Val Leu Ala Thr Ser Gln Ala Gln Ala Gly Trp Leu Gln His Asp Tyr
20 25 30

Gly His Leu Ser Val Tyr Arg Lys Pro Lys Trp Asn His Leu Val His
35 40 45

Lys Phe Val Ile Gly His Leu Lys Gly Ala Ser Ala Asn Trp Trp Asn
50 55 60

His Arg His Phe Gln His His Ala Lys Pro Asn Leu Gly Glu Trp Gln
65 70 75 80

Pro Ile Glu Tyr Gly Lys Xaa
85

<210> 37

<211> 306

<212> PRT

<213> Homo sapiens

<220>

<221> UNSURE

<222> (1)..(306)

<223> Amino acid 252 uncertain of sequence

<400> 37

Gln Gly Pro Thr Pro Arg Tyr Phe Thr Trp Asp Glu Val Ala Gln Arg
1 5 10 15

Ser Gly Cys Glu Glu Arg Trp Leu Val Ile Asp Arg Lys Val Tyr Asn
20 25 30

Ile Ser Glu Phe Thr Arg Arg His Pro Gly Gly Ser Arg Val Ile Ser

35

40

45

His Tyr Ala Gly Gln Asp Ala Thr Asp Pro Phe Val Ala Phe His Ile
 50 55 60

Asn Lys Gly Leu Val Lys Lys Tyr Met Asn Ser Leu Leu Ile Gly Glu
 65 70 75 80

Leu Ser Pro Glu Gln Pro Ser Phe Glu Pro Thr Lys Asn Lys Glu Leu
 85 90 95

Thr Asp Glu Phe Arg Glu Leu Arg Ala Thr Val Glu Arg Met Gly Leu
 100 105 110

Met Lys Ala Asn His Val Phe Phe Leu Leu Tyr Leu Leu His Ile Leu
 115 120 125

Leu Leu Asp Gly Ala Ala Trp Leu Thr Leu Trp Val Phe Gly Thr Ser
 130 135 140

Phe Leu Pro Phe Leu Leu Cys Ala Val Leu Leu Ser Ala Val Gln Ala
 145 150 155 160

Gln Ala Gly Trp Leu Gln His Asp Phe Gly His Leu Ser Val Phe Ser
 165 170 175

Thr Ser Lys Trp Asn His Leu Leu His His Phe Val Ile Gly His Leu
 180 185 190

Lys Gly Ala Pro Ala Ser Trp Trp Asn His Met His Phe Gln His His
 195 200 205

Ala Lys Pro Asn Cys Phe Arg Lys Asp Pro Asp Ile Asn Met His Pro
 210 215 220

Phe Phe Phe Ala Leu Gly Lys Ile Leu Ser Val Glu Leu Gly Lys Gln
 225 230 235 240

Lys Lys Lys Tyr Met Pro Tyr Asn His Gln His Xaa Tyr Phe Phe Leu
 245 250 255

Ile Gly Pro Pro Ala Leu Leu Pro Leu Tyr Phe Gln Trp Tyr Ile Phe
 260 265 270

Tyr Phe Val Ile Gln Arg Lys Lys Trp Val Asp Leu Ala Trp Ile Ser
 275 280 285

Lys Gln Glu Tyr Asp Glu Ala Gly Leu Pro Leu Ser Thr Ala Asn Ala
 290 295 300

Ser Lys
 305

<210> 38
 <211> 562
 <212> PRT
 <213> Homo sapiens

<220>
 <221> UNSURE
 <222> (1)...(562)

<223> Amino acids 242, 268, 405, 438, 464, 482, 497, and 562 uncertain of sequence

<400> 38

His Leu Lys Gly Ala Ser Ala Asn Trp Trp Asn His Arg His Phe Gln
1 5 10 15

His His Ala Lys Pro Asn Ile Phe His Lys Asp Pro Asp Val Asn Met
20 25 30

Leu His Val Phe Val Leu Gly Glu Trp Gln Pro Ile Glu Tyr Gly Lys
35 40 45

Lys Lys Leu Lys Tyr Leu Pro Tyr Asn His Gln His Glu Tyr Phe Phe
50 55 60

Leu Ile Gly Pro Pro Leu Leu Ile Pro Met Tyr Phe Gln Tyr Gln Ile
65 70 75 80

Ile Met Thr Met Ile Val His Lys Asn Trp Val Asp Leu Ala Trp Ala
85 90 95

Val Ser Tyr Tyr Ile Arg Phe Phe Ile Thr Tyr Ile Pro Phe Tyr Gly
100 105 110

Ile Leu Gly Ala Leu Leu Phe Leu Asn Phe Ile Arg Phe Leu Glu Ser
115 120 125

His Trp Phe Val Trp Val Thr Gln Met Asn His Ile Val Met Glu Ile
130 135 140

Asp Gln Glu Ala Tyr Arg Asp Trp Phe Ser Ser Gln Leu Thr Ala Thr
145 150 155 160

Cys Asn Val Glu Gln Ser Phe Phe Asn Asp Trp Phe Ser Gly His Leu
165 170 175

Asn Phe Gln Ile Glu His His Leu Phe Pro Thr Met Pro Arg His Asn
180 185 190

Leu His Lys Ile Ala Pro Leu Val Lys Ser Leu Cys Ala Lys His Gly
195 200 205

Ile Glu Tyr Gln Glu Lys Pro Leu Leu Arg Ala Leu Leu Asp Ile Ile
210 215 220

Arg Ser Leu Lys Lys Ser Gly Lys Leu Trp Leu Asp Ala Tyr Leu His
225 230 235 240

Lys Xaa Ser His Ser Pro Arg Asp Thr Val Gly Lys Gly Cys Arg Trp
245 250 255

Gly Asp Gly Gln Arg Asn Asp Gly Leu Leu Phe Xaa Gly Val Ser Glu
260 265 270

Arg Leu Val Tyr Ala Leu Leu Thr Asp Pro Met Leu Asp Leu Ser Pro
275 280 285

Phe Leu Leu Ser Phe Phe Ser Ser His Leu Pro His Ser Thr Leu Pro

290

295

300

Ser Trp Asp Leu Pro Ser Leu Ser Arg Gln Pro Ser Ala Met Ala Leu
 305 310 315 320

Pro Val Pro Pro Ser Pro Phe Phe Gln Gly Ala Glu Arg Trp Pro Pro
 325 330 335

Gly Val Ala Leu Ser Tyr Leu His Ser Leu Pro Leu Lys Met Gly Gly
 340 345 350

Asp Gln Arg Ser Met Gly Leu Ala Cys Glu Ser Pro Leu Ala Ala Trp
 355 360 365

Ser Leu Gly Ile Thr Pro Ala Leu Val Leu Gln Met Leu Leu Gly Phe
 370 375 380

Ile Gly Ala Gly Pro Ser Arg Ala Gly Pro Leu Thr Leu Pro Ala Trp
 385 390 395 400

Leu His Ser Pro Xaa Arg Leu Pro Leu Val His Pro Phe Ile Glu Arg
 405 410 415

Pro Ala Leu Leu Gln Ser Ser Gly Leu Pro Pro Ala Ala Arg Leu Ser
 420 425 430

Thr Arg Gly Leu Ser Xaa Asp Val Gln Gly Pro Arg Pro Ala Gly Thr
 435 440 445

Ala Ser Pro Asn Leu Gly Pro Trp Lys Ser Pro Pro Pro His His Xaa
 450 455 460

Ser Ala Leu Thr Leu Gly Phe His Gly Pro His Ser Thr Ala Ser Pro
 465 470 475 480

Thr Xaa Ala Cys Asp Leu Gly Thr Lys Gly Gly Val Pro Arg Leu Leu
 485 490 495

Xaa Leu Ser Arg Gly Ser Gly His Val Gln Gly Gly Ala Gly Trp Pro
 500 505 510

Gly Gly Ser Ala His Pro Pro Ala Phe Pro Gln Gly Val Leu Arg Ser
 515 520 525

Lys Ile Leu Glu Gln Ser Asp Pro Ser Pro Lys Ala Leu Leu Ser Ala
 530 535 540

Gly Gln Cys Gln Pro Ile Pro Gly His Leu Ala Pro Gly Asp Val Gly
 545 550 555 560

Pro Xaa

<210> 39

<211> 615

<212> PRT

<213> Homo sapiens

<220>

<221> UNSURE

<222> (1)...(615)

<223> Amino acids 295, 321, 458, 491, 517, 535, 550, and 615 uncertain of sequence

<400> 39

Val Phe Tyr Phe Gly Asn Gly Trp Ile Pro Thr Leu Ile Thr Ala Phe
1 5 10 15

Val Leu Ala Thr Ser Gln Ala Gln Ala Gly Trp Leu Gln His Asp Tyr
20 25 30

Gly His Leu Ser Val Tyr Arg Lys Pro Lys Trp Asn His Leu Val His
35 40 45

Lys Phe Val Ile Gly His Leu Lys Gly Ala Ser Ala Asn Trp Trp Asn
50 55 60

His Arg His Phe Gln His His Ala Lys Pro Asn Ile Phe His Lys Asp
65 70 75 80

Pro Asp Val Asn Met Leu His Val Phe Val Leu Gly Glu Trp Gln Pro
85 90 95

Ile Glu Tyr Gly Lys Lys Leu Lys Tyr Leu Pro Tyr Asn His Gln
100 105 110

His Glu Tyr Phe Phe Leu Ile Gly Pro Pro Leu Leu Ile Pro Met Tyr
115 120 125

Phe Gln Tyr Gln Ile Ile Met Thr Met Ile Val His Lys Asn Trp Val
130 135 140

Asp Leu Ala Trp Ala Val Ser Tyr Tyr Ile Arg Phe Phe Ile Thr Tyr
145 150 155 160

Ile Pro Phe Tyr Gly Ile Leu Gly Ala Leu Leu Phe Leu Asn Phe Ile
165 170 175

Arg Phe Leu Glu Ser His Trp Phe Val Trp Val Thr Gln Met Asn His
180 185 190

Ile Val Met Glu Ile Asp Gln Glu Ala Tyr Arg Asp Trp Phe Ser Ser
195 200 205

Gln Leu Thr Ala Thr Cys Asn Val Glu Gln Ser Phe Phe Asn Asp Trp
210 215 220

Phe Ser Gly His Leu Asn Phe Gln Ile Glu His His Leu Phe Pro Thr
225 230 235 240

Met Pro Arg His Asn Leu His Lys Ile Ala Pro Leu Val Lys Ser Leu
245 250 255

Cys Ala Lys His Gly Ile Glu Tyr Gln Glu Lys Pro Leu Leu Arg Ala
260 265 270

Leu Leu Asp Ile Ile Arg Ser Leu Lys Lys Ser Gly Lys Leu Trp Leu
275 280 285

Asp Ala Tyr Leu His Lys Xaa Ser His Ser Pro Arg Asp Thr Val Gly

290

295

300

Lys Gly Cys Arg Trp Gly Asp Gly Gln Arg Asn Asp Gly Leu Leu Phe
 305 310 315 320

Xaa Gly Val Ser Glu Arg Leu Val Tyr Ala Leu Leu Thr Asp Pro Met
 325 330 335

Leu Asp Leu Ser Pro Phe Leu Leu Ser Phe Phe Ser Ser His Leu Pro
 340 345 350

His Ser Thr Leu Pro Ser Trp Asp Leu Pro Ser Leu Ser Arg Gln Pro
 355 360 365

Ser Ala Met Ala Leu Pro Val Pro Pro Ser Pro Phe Phe Gln Gly Ala
 370 375 380

Glu Arg Trp Pro Pro Gly Val Ala Leu Ser Tyr Leu His Ser Leu Pro
 385 390 395 400

Leu Lys Met Gly Gly Asp Gln Arg Ser Met Gly Leu Ala Cys Glu Ser
 405 410 415

Pro Leu Ala Ala Trp Ser Leu Gly Ile Thr Pro Ala Leu Val Leu Gln
 420 425 430

Met Leu Leu Gly Phe Ile Gly Ala Gly Pro Ser Arg Ala Gly Pro Leu
 435 440 445

Thr Leu Pro Ala Trp Leu His Ser Pro Xaa Arg Leu Pro Leu Val His
 450 455 460

Pro Phe Ile Glu Arg Pro Ala Leu Leu Gln Ser Ser Gly Leu Pro Pro
 465 470 475 480

Ala Ala Arg Leu Ser Thr Arg Gly Leu Ser Xaa Asp Val Gln Gly Pro
 485 490 495

Arg Pro Ala Gly Thr Ala Ser Pro Asn Leu Gly Pro Trp Lys Ser Pro
 500 505 510

Pro Pro His His Xaa Ser Ala Leu Thr Leu Gly Phe His Gly Pro His
 515 520 525

Ser Thr Ala Ser Pro Thr Xaa Ala Cys Asp Leu Gly Thr Lys Gly Gly
 530 535 540

Val Pro Arg Leu Leu Xaa Leu Ser Arg Gly Ser Gly His Val Gln Gly
 545 550 555 560

Gly Ala Gly Trp Pro Gly Gly Ser Ala His Pro Pro Ala Phe Pro Gln
 565 570 575

Gly Val Leu Arg Ser Lys Ile Leu Glu Gln Ser Asp Pro Ser Pro Lys
 580 585 590

Ala Leu Leu Ser Ala Gly Gln Cys Gln Pro Ile Pro Gly His Leu Ala
 595 600 605

Pro Gly Asp Val Gly Pro Xaa
 610 615

<210> 40
<211> 753
<212> PRT
<213> Homo sapiens

<220>
<221> UNSURE
<222> (1)..(753)
<223> Amino acids 433,459,596,629,655,673,688, and 753 uncertain of sequence

<400> 40

Gln Gly Pro Thr Pro Arg Tyr Phe Thr Trp Asp Glu Val Ala Gln Arg
1 5 10 15

Ser Gly Cys Glu Glu Arg Trp Leu Val Ile Asp Arg Lys Val Tyr Asn
20 25 30

Ile Ser Glu Phe Thr Arg Arg His Pro Gly Gly Ser Arg Val Ile Ser
35 40 45

His Tyr Ala Gly Gln Asp Ala Thr Asp Pro Phe Val Ala Phe His Ile
50 55 60

Asn Lys Gly Leu Val Lys Lys Tyr Met Asn Ser Leu Leu Ile Gly Glu
65 70 75 80

Leu Ser Pro Glu Gln Pro Ser Phe Glu Pro Thr Lys Asn Lys Glu Leu
85 90 95

Thr Asp Glu Phe Arg Glu Leu Arg Ala Thr Val Glu Arg Met Gly Leu
100 105 110

Met Lys Ala Asn His Val Phe Phe Leu Leu Tyr Leu Leu His Ile Leu
115 120 125

Leu Leu Asp Gly Ala Ala Trp Leu Thr Leu Trp Val Phe Gly Thr Ser
130 135 140

Phe Leu Pro Phe Leu Leu Cys Ala Val Leu Leu Ser Ala Val Gln Gln
145 150 155 160

Ala Gln Ala Gly Trp Leu Gln His Asp Tyr Gly His Leu Ser Val Tyr
165 170 175

Arg Lys Pro Lys Trp Asn His Leu Val His Lys Phe Val Ile Gly His
180 185 190

Leu Lys Gly Ala Ser Ala Asn Trp Trp Asn His Arg His Phe Gln His
195 200 205

His Ala Lys Pro Asn Ile Phe His Lys Asp Pro Asp Val Asn Met Leu
210 215 220

His Val Phe Val Leu Gly Glu Trp Gln Pro Ile Glu Tyr Gly Lys Lys
225 230 235 240

Lys Leu Lys Tyr Leu Pro Tyr Asn His Gln His Glu Tyr Phe Phe Leu
245 250 255

Ile Gly Pro Pro Leu Leu Ile Pro Met Tyr Phe Gln Tyr Gln Ile Ile
260 265 270

Met Thr Met Ile Val His Lys Asn Trp Val Asp Leu Ala Trp Ala Val
275 280 285

Ser Tyr Tyr Ile Arg Phe Phe Ile Thr Tyr Ile Pro Phe Tyr Gly Ile
290 295 300

Leu Gly Ala Leu Leu Phe Leu Asn Phe Ile Arg Phe Leu Glu Ser His
305 310 315 320

Trp Phe Val Trp Val Thr Gln Met Asn His Ile Val Met Glu Ile Asp
325 330 335

Gln Glu Ala Tyr Arg Asp Trp Phe Ser Ser Gln Leu Thr Ala Thr Cys
340 345 350

Asn Val Glu Gln Ser Phe Phe Asn Asp Trp Phe Ser Gly His Leu Asn
355 360 365

Phe Gln Ile Glu His His Leu Phe Pro Thr Met Pro Arg His Asn Leu
370 375 380

His Lys Ile Ala Pro Leu Val Lys Ser Leu Cys Ala Lys His Gly Ile
385 390 395 400

Glu Tyr Gln Glu Lys Pro Leu Leu Arg Ala Leu Leu Asp Ile Ile Arg
405 410 415

Ser Leu Lys Lys Ser Gly Lys Leu Trp Leu Asp Ala Tyr Leu His Lys
420 425 430

Xaa Ser His Ser Pro Arg Asp Thr Val Gly Lys Gly Cys Arg Trp Gly
435 440 445

Asp Gly Gln Arg Asn Asp Gly Leu Leu Phe Xaa Gly Val Ser Glu Arg
450 455 460

Leu Val Tyr Ala Leu Leu Thr Asp Pro Met Leu Asp Leu Ser Pro Phe
465 470 475 480

Leu Leu Ser Phe Phe Ser Ser His Leu Pro His Ser Thr Leu Pro Ser
485 490 495

Trp Asp Leu Pro Ser Leu Ser Arg Gln Pro Ser Ala Met Ala Leu Pro
500 505 510

Val Pro Pro Ser Pro Phe Phe Gln Gly Ala Glu Arg Trp Pro Pro Gly
515 520 525

Val Ala Leu Ser Tyr Leu His Ser Leu Pro Leu Lys Met Gly Gly Asp
530 535 540

Gln Arg Ser Met Gly Leu Ala Cys Glu Ser Pro Leu Ala Ala Trp Ser
545 550 555 560

Leu Gly Ile Thr Pro Ala Leu Val Leu Gln Met Leu Leu Gly Phe Ile
565 570 575

Gly Ala Gly Pro Ser Arg Ala Gly Pro Leu Thr Leu Pro Ala Trp Leu
580 585 590

His Ser Pro Xaa Arg Leu Pro Leu Val His Pro Phe Ile Glu Arg Pro
595 600 605

Ala Leu Leu Gln Ser Ser Gly Leu Pro Pro Ala Ala Arg Leu Ser Thr
610 615 620

Arg Gly Leu Ser Xaa Asp Val Gln Gly Pro Arg Pro Ala Gly Thr Ala
625 630 635 640

Ser Pro Asn Leu Gly Pro Trp Lys Ser Pro Pro Pro His His Xaa Ser
645 650 655

Ala Leu Thr Leu Gly Phe His Gly Pro His Ser Thr Ala Ser Pro Thr
660 665 670

Xaa Ala Cys Asp Leu Gly Thr Lys Gly Gly Val Pro Arg Leu Leu Xaa
675 680 685

Leu Ser Arg Gly Ser Gly His Val Gln Gly Gly Ala Gly Trp Pro Gly
690 695 700

Gly Ser Ala His Pro Pro Ala Phe Pro Gln Gly Val Leu Arg Ser Lys
705 710 715 720

Ile Leu Glu Gln Ser Asp Pro Ser Pro Lys Ala Leu Leu Ser Ala Gly
725 730 735

Gln Cys Gln Pro Ile Pro Gly His Leu Ala Pro Gly Asp Val Gly Pro
740 745 750

Xaa

C
Cont