

PRINCÍPIOS DE COMUNICAÇÕES

Transmissão Banda Base: Códigos de

Linha e Sinalização M-PAM

Prof. Daniel Cunha dcunha@cin.ufpe.br

- Introdução
- Códigos de linha (sinais PCM)
 - Classificação dos códigos de linha
 - Exemplos de códigos de linha
- Conceito de "bits por amostra" e "bits por símbolo"
- Dimensionamento do quantizador
- Sinalização M-PAM
- Conclusões

Formas de onda para dígitos binários: (a) sequência PCM. (b) sinais PCM.

Fonte: Adaptado de Digital Communications, B. Sklar, 2002.

Classificação dos códigos de linha

- NRZ (Não Retorno ao Zero)
- RZ (Retorno ao Zero)
- Codificados em fase (Bifase)
- Binário Multinível*

- Grupo NRZ
 - NRZ L (nível)
 - Muito utilizado em circuitos lógicos digitais.
 - Simples e de fácil implementação.
 - Comunicação entre componentes de um computador.

Sinalização PCM NRZ-L.

- Grupo NRZ
 - NRZ M (marca)
 - Utilizado em gravação magnética.
 - Mudança de nível (bit 1), sem mudança de nível (bit 0).
 - Conhecido por "codificação diferencial".

Sinalização PCM NRZ-M.

- Grupo NRZ
 - NRZ S (espaço)
 - Utilizado em gravação magnética.
 - Mudança de nível (bit 0), sem mudança de nível (bit 1).

Sinalização PCM NRZ-S.

Grupo RZ

Unipolar RZ

- Pulso positivo de meia duração (bit 1), ausência de pulso (bit 0).
- Transmissão banda base e gravação magnética.

Sinalização PCM Unipolar RZ.

Grupo RZ

Polar RZ

- Pulso positivo (bit 1), Pulso negativo (bit 0).
- Os pulsos s\(\tilde{a}\) de meio intervalo de bit (retorno ao zero).
- Transmissão banda base e gravação magnética.

Sinalização PCM Polar RZ.

Grupo RZ

- AMI (Alternate Mark Inversion)
 - Pulsos alternados (bit 1), ausência de pulso (bit 0).
 - Utilizado em sistemas telefônicos.
 - Problemas de sincronismo com o envio de vários bits 0.

Sinalização PCM AMI.

Solução para o problema do código AMI!

HDB-3 (High Density Bipolar)

- Ocorrência de 4 zeros: substituição por uma sequência especial
 (000V ou B00V).
- A escolha da sequência especial é feita de forma que os pulsos V consecutivos tenham polaridades alternadas.
- B00V: Usada quando há um nº par de 1's após a última sequência especial.
- 000V: Usada quando há um nº ímpar de 1's após a última sequência especial.

HDB-3 (High Density Bipolar)

Forma de onda transmitida

Sinalização HDB-3.

Fonte: Sistemas de Comunicação Analógicos e Digitais Modernos, Lathi/Ding, 2012.

Grupo Bifase

- Manchester (bifase-L)
 - Transição de descida (bit 1), Transição de subida (bit 0).
 - Utilizado em redes locais de computadores (Ethernet).
 - Sincronismo sempre presente.

Sinalização PCM Manchester.

Grupo Bifase

- Manchester diferencial (bifase-M)
 - Transições regulares sempre presentes.
 - Transições intermediárias: somente no bit 1.
 - Utilizado em redes Token Ring.

Sinalização PCM Manchester diferencial.

- Qual a razão de haver tantos formatos de sinais PCM?
- Características da sinalização PCM
 - Presença da componente DC
 - Auto-sincronismo
 - Detecção de erros
 - Compressão de banda
 - Imunidade a ruído

Atributos especiais de um sinal PCM

- Caracterização espectral
- Capacidade de sincronização de bit
- Capacidade de detecção de erros
- Imunidade a ruído e interferência
- Custo e complexidade de implementação

Bits por amostra e bits por símbolo

- Formatação de informação analógica

• Amostragem, quantização e codificação.

Cln.ufpe.br

- Como dimensionar o número de bits por amostra?
 - Em função da distorção de quantização tolerável.

$$|e| \le p V_{pp}$$

(ERRO DE DISTORÇÃO DE QUANTIZAÇÃO)

Sinalização M-PAM

- Um de M níveis de amplitude é atribuído para cada um dos M símbolos possíveis.
- Comparação das formas de onda PCM e M-PAM
 - Considere uma cadeia de bits com taxa R (bps)
 - Sinalização M-PAM (multinível)
 - Símbolo de k bits;
 - Taxa de símbolo R_s (largura de banda)
 - Redução da largura de banda do sinal transmitido.

Sinalização M-PAM

Modulação M-PAM: (a) 8 níveis. (b) 2 níveis (PCM).

Sinalização M-PAM

- Qual o preço cobrado pela redução de banda?
 - O receptor precisará distinguir entre mais níveis de cada pulso.
 - Qual a implicação do aumento do número de níveis*?
- Qual o preço associado ao uso da modulação PCM?
 - Aumento da largura de banda do sinal.
- Por que não usar pulsos binários com a mesma duração de pulsos da modulação 8-PAM?
 - Atraso na transmissão.

- A informação em um sinal analógico com $f_m = 3$ kHz é transmitida por um sistema 16-PAM. A distorção de quantização especificada não pode exceder $\pm 1\%$ do valor de tensão pico-a-pico do sinal analógico.
- (a) Qual o nº mínimo de bits/amostra que deve ser usado na digitalização do sinal analógico?
- (b) Qual a taxa de amostragem mínima que garante a reconstrução do sinal e qual a taxa de dados resultante?
- (c) Qual a taxa de símbolo (ou taxa de pulsos PAM)?
- (d) Se a largura de banda de transmissão for de 12 kHz, calcule a eficiência espectral deste sistema.

- Introdução
- Códigos de linha (sinais PCM)
 - Classificação dos códigos de linha
 - Exemplos de códigos de linha
- Conceitos de "bits por amostra" e "bits por símbolo"
- Dimensionamento do quantizador
- Sinalização M-PAM

