CLIPPEDIMAGE= JP407090239A

PAT-NO: JP407090239A

DOCUMENT-IDENTIFIER: JP 07090239 A

TITLE: ELECTRICALLY CONDUCTIVE RESIN PASTE

PUBN-DATE: April 4, 1995

INVENTOR-INFORMATION:

NAME

OKUBO, HIKARI

KOBAYASHI, MICHIO

ASSIGNEE-INFORMATION:

NAME

SUMITOMO BAKELITE CO LTD

COUNTRY

N/A

APPL-NO: JP05239285

APPL-DATE: September 27, 1993

INT-CL (IPC): C09J163/00; C08G059/24; H01B001/20

ABSTRACT:

PURPOSE: To provide an electrically conductive resin paste composed of

respective specific epoxy compound, hydroxyl-containing compound and silver

powder at specific ratios, having excellent coating workability and low

water-absorption, providing a cured product having low
elastic modulus and free

from cracking and useful for bonding a semiconductor element to a metal frame, etc.

CONSTITUTION: This electrically conductive resin paste contains, as essential

components, (A) 60-85wt.% of silver powder, (B) 3-20wt.% of an epoxy compound

having naphthalene skeleton and expressed by the formula I (R<SB>1</SB> and

R<SB>2</SB> are $\underline{\textbf{glycidyl ether}}$ group or H and at least one of R<SB>1</SB> and

R<SB>2</SB> is **glycidyl ether** group; (n) is 0 or 1), e.g 1,6-dihydroxynaphthalene diglycidyl ether and (C) 0.1-20wt.% of a compound

having two phenolic hydroxyl groups in one molecule.

COPYRIGHT: (C) 1995, JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

FΙ

(11)特許出願公開番号

特開平7-90239

(43)公開日 平成7年(1995)4月4日

(51) Int.Cl.⁶

識別記号

庁内整理番号

技術表示箇所

CO9J 163/00 C 0 8 G 59/24 **JFM**

NHQ

H 0 1 B 1/20

Α

審査請求 未請求 請求項の数3 OL (全 7 頁)

(21)出願番号

特願平5-239285

(71)出願人 000002141

住友ベークライト株式会社

東京都千代田区内幸町1丁目2番2号

(22)出顧日 平成5年(1993)9月27日

(72)発明者 大久保 光

東京都千代田区内幸町1丁目2番2号 住

友ペークライト株式会社内

(72)発明者 小林 道雄

東京都千代田区内幸町1丁目2番2号 住

友ベークライト株式会社内

(54) 【発明の名称】 導電性樹脂ペースト

(57)【要約】

【構成】 銀粉、ナフタレン骨格を有するエポキシ化合 物、1分子内に2個のフェノール性水酸基を有する化合 物を必須成分とし、全導電性樹脂ペースト中に銀粉が6 0~85重量%、ナフタレン骨格を有するエポキシ化合 物が3~20重量%、1分子内に2個のフェノール性水 酸基を有する化合物が0.1~20重量%含まれてなる 半導体素子接着用導電性樹脂ペースト。

【効果】 ディスペンス時の塗布作業性が良い。硬化物 の弾性率が低く、また吸水率が低い。さらに吸水処理に よる接着強度の低下が少ないため、銅フレームと大型チ ップの組み合わせでもフレームとチップの熱膨張率の差 に基づくチップの歪が非常に小さく、特に薄型パッケー ジで使用しても半田リフロー時にクラックは発生しな 11

【特許請求の範囲】

【請求項1】 (A)銀粉、(B)下記式(1)で示されるナフタレン骨格を有するエポキシ化合物、(C)1分子内に2個のフェノール性水酸基を有する化合物を必須成分とし、全導電性樹脂ペースト中の銀粉が60~8*

*5重量%、ナフタレン骨格を有するエポキシ化合物が3~20重量%、1分子内に2個のフェノール性水酸基を有する化合物が0.1~20重量%であることを特徴とする導電性樹脂ペースト。

【化1】

$$CH_2 - CHO$$

$$CH_2 - CHO$$

$$CH_2 - CHO$$

$$CH_2 - CHO$$

【請求項2】 式(1)のナフタレン骨格を有するエポキシ化合物が1,6-ジヒドロキシナフタレンジグリシジルエーテルであることを特徴とする請求項1記載の導電性樹脂ペースト。

【請求項3】 全導電性樹脂ペースト中に1分子内に2個のフェノール性水酸基を有する化合物を2~10重量%含むことを特徴とする請求項1、又は請求項2記載の導電性樹脂ペースト。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はIC、LSI等の半導体素子を金属フレーム等に接着する導電性樹脂ペーストに関するものである。

[0002]

【従来の技術】近年のエレクトロニクス産業の著しい発 展に伴い、トランジスタ,IC、LSI、超LSIと半 導体素子における回路の集積度は急激に増大している。 このため、半導体素子の大きさも、従来長辺が数mm程 度だったものが10数mmと飛躍的に増大している。ま た、リードフレームも従来の42合金から熱伝導性も良 く安価である銅材が主流となりつつある。一方、半導体 製品の実装方法は表面実装法に、しかも高密度実装化の ため半導体製品自体の大きさは小さく、かつ薄くなって きている。このような半導体製品の動向に従い、半導体 製品の構成材料に対する要求性能も変化してきており、 半導体素子と金属フレームを接合するダイボンディング 用導電性樹脂ペーストに対しても、従来求められていた 接合の信頼性のみならず、大型チップと銅フレームの熱 膨張率の差に基づく熱応力を吸収緩和する応力緩和特 性、更に薄型パッケージでの表面実装に基づく耐半田ク※50

※ラック特性が要求され始めている。

【0003】ここで、応力緩和特性は半導体素子の材料 であるシリコン等の線熱膨張係数が3×10-6/℃であ るのに対し、銅フレームの線熱膨張係数は20×10-6 ✓で一桁大きいため、ダイボンディング用導電性樹脂 ペーストの加熱硬化後の冷却過程において銅フレームの 方がシリコンチップより大きな割合で収縮することによ り、チップの反り、ひいてはチップクラックあるいはダ イボンディング用導電性樹脂ペーストの剥離等を引き起 こし、IC、LSI等の半導体製品の特性不良の一因な る可能性がある。このような熱応力を吸収緩和するため にダイボンディング用導電性樹脂ペーストを低弾性率に する必要があるが、従来のエボキシ系ダイボンディング 用導電性樹脂ペーストでは、熱硬化性樹脂であるため三 次元架橋し弾性率が高くなり、大型チップと銅フレーム との熱膨張率の差に基づく歪を吸収するに至らなかっ た。一方線状高分子タイプのポリイミド樹脂系ダイボン ディング用導電性樹脂ペーストではエポキシ系ダイボン ディング用導電性樹脂ペーストに比べ硬化物の弾性率は 小さく、チップの反りは改良される。しかしポリイミド 樹脂をダイボンディング用導電性樹脂ペーストとして用 いる場合には、塗布作業性の点からN-メチルー2-ピ ロリドン、N、N-ジメチルホルムアミド等の多量の極 性溶剤に溶解して粘度を調整しなければならない。この ときの溶剤量はダイボンディング用樹脂ペーストの30 重量%にもなり、半導体素子と金属フレームの接着に用 いた場合、硬化加熱時の溶剤の抜け跡として硬化物中に ボイドが発生し、接着強度、熱伝導性及び導電性の低下 の原因となり信頼性の面から好ましくない。

【0004】また、表面実装あるいは高密度実装を目的

3

としたパッケージサイズの小型化、薄型化に基づく実装時の熱ストレスの急激な増加により半導体封止材だけでなくダイボンディング用導電性樹脂ペーストにも耐リフロークラック性が要求されてきている。ダイボンディング用導電性樹脂ペーストの耐リフロークラック性は、半田リフロー時のストレスを緩和吸収するために、リフロー温度付近で低弾性率であるとともに、半田リフローの前処理段階での吸水率が小さく、かつ吸水後でも充分な接合強度を示すことが必要であるがエポキシ及びボリイミド樹脂ペーストを含めてこれらの特性を満足するもの10はなかった。

[0005]

【発明が解決しようとする課題】本発明はIC等の大型 チップと銅フレームとの組み合わせでもチップクラック* *やチップの反りによるIC等の特性不良が生じず、かつ 薄型パッケージでの半田リフロークラックが発生しない 高信頼性の導電性樹脂ペーストを提供するものである。 【0006】

-【課題を解決するための手段】本発明は(A)銀粉、

(B)下記式(1)で示されるナフタレン骨格を有する エボキシ化合物、(C)1分子内に2個のフェノール性 水酸基を有する化合物を必須成分とし、全導電性樹脂ペースト中の銀粉が60~85重量%、ナフタレン骨格を 有するエボキシ化合物が3~20重量%、1分子内に2 個のフェノール性水酸基を有する化合物が0.1~20 重量%である導電性樹脂ペーストであり、

[0007]

【化2】

$$CH_{2} - CHO$$

$$CH_{2} - CHO$$

$$CH_{2} - CHO$$

$$CH_{2} - CHO$$

【0008】塗布作業性が良好でかつ主剤であるエボキシ化合物中にナフタレン骨格を導入すること、ならびに硬化剤として2個のフェノール性水酸基を有する化合物を使用することにより、硬化物の架橋密度が低下し、低弾性率となるためIC、LSI等の大型チップと銅フレームの組み合わせでも熱膨張率の差に基づく歪を吸収し応力緩和特性に優れるものである。更に、硬化物は高温での弾性率が低く、かつ非極性のナフタレン環の導入により吸水率が低く、しかも吸水による接着強度の低下の小さい耐リフロークラック性に優れるものである。

【0009】本発明に用いる銀粉は用いる分野が電子電気分野のためハロゲンイオン、アルカリ金属イオン等のイオン性不純物量が10ppm以下であることが望ましい。また形状としてはフレーク状、樹脂状あるいは球状のものを単独あるいは混合して用いることができる。更に粒径に関しては通常平均粒径が2~10μm、最大粒径は50μm以下程度のものが好ましく、比較的細かい銀粉と粗い銀粉を混合して用いてもよい。銀粉量が60重量%未満だと硬化物の電気伝導性が低下し、85重量%を越えると樹脂ペーストの粘度が高くなり過ぎ、塗布作業性の低下の原因となるので好ましくない。

30※【0010】本発明で用いる式(1)で示されるナフタ レン骨格を有するエポキシ化合物は、非極性のナフタレ ン環の導入により架橋点間の距離が長くなり、硬化物の 弾性率が低くなるとともに、高温での低弾性率化が図 れ、更に吸水率が低く、しかも吸水による接着強度の低 下が小さいという特徴がある。ここで、nは0又は1で あり、2以上だと導電性樹脂の粘度が高くなり過ぎるた め好ましくない。Ri、R2はグリシジルエーテル基、又 は水素であり少なくとも一方はグリシジルエーテル基で ある。式(1)で示されるナフタレン骨格を有するエポ キシ化合物の中で、好ましいのは1,6-ジヒドロキシ ナフタレンジグリシジルエーテルである。ナフタレン骨 格を有するエポキシ樹脂は、全導電性樹脂ペースト中3 ~20重量%含まれる。3重量%未満だとナフタレン骨 格を有するエポキシ化合物の効果が充分に現れず、20 重量%を越えるとナフタレン骨格を有するエポキシ化合 物自体が高粘度のため導電性樹脂ペーストの粘度が高く なり過ぎ塗布作業性の低下をきたす。

【0011】また本発明ではナフタレン骨格を有するエポキシ化合物の他に、必要により以下に示すような通常のエポキシ樹脂との併用も可能である。併用可能なエポ

キシ樹脂としては、例えばビスフェノールA、ビスフェ ノールF、フェノールノボラック樹脂及びクレゾールノ ボラック樹脂類とエピクロルヒドリンとの反応により得 られるポリグリシジルエーテル、ブタンジオールジグリ シジルエーテル、ネオペンチルグリコールジグリシジル エーテル等の脂肪族エポキシ、ジグリシジルヒダントイ ン等の複素環式エポキシ、ビニルシクロヘキセンジオキ サイド、ジシクロペンタジエンジオキサイド、アリサイ クリックジエボキシーアジペイトのような脂環式エポキ シ、さらにはnーブチルグリシジルエーテル、バーサテ 10 ィック酸グリシジルエステル、スチレンオサイド、エチ ルヘキシルグリシジルエーテル、フェニルグリシジルエ ーテル、クレジルグリシジルエーテル、ブチルフェニル グリシジルエーテル等のような通常のエポキシ樹脂の希 釈剤として用いられるものがあり、これらは単独あるい は混合しても併用可能である。

【0012】更に、本発明で用いる硬化剤は1分子内に2個のフェノール性水酸基を有する化合物で、全導電性樹脂ペースト中に0.1~20重量%、好ましくは2~10重量%含むものである。フェノールノボラック樹脂20のような、多官能の樹脂では硬化物の架橋密度が高くなるため、弾性率が高くなり応力緩和特性が低下すると共に硬化物中の自由体積が大きくなるため吸水率が大きくなってしまうので好ましくない。全導電性樹脂ペースト中に0.1重量%未満だと要求する低応力性・低吸水性が望めなく、20重量%を越えると硬化剤量が多くなり過ぎ、硬化後過剰のフェノール性水酸基が未反応の状態で残存するため硬化物の吸水率が大きくなったり、あるいは硬化後も充分な架橋構造となりえず、熱時の接着強度が極端に低くなるため好ましくない。30

【0013】1分子内に2個のフェノール性水酸基を有 する化合物としては、ビスフェノールA、ビスフェノー ルF、ビスフェノールS、テトラメチルビスフェノール A、テトラメチルビスフェノールF、テトラメチルビス フェノールS、ジヒドロキシジフェニルエーテル、ジヒ ドロキシベンゾフェノン、oーヒドロキシフェノール、 mーヒドロキシフェノール、pーヒドロキシフェノー ル、ビフェノール、テトラメチルビフェノール、エチリ デンビスフェノール、メチルエチリデンビス (メチルフ ェノール)、α-メチルベンジリデンビスフェノール、 40 シクロヘキシリデンビスフェノール等が挙げられ、これ らは単独でも混合して用いても差し支えない。 又必要 に応じ、潜在性アミン硬化剤等の他の硬化剤と併用して もよく、3級アミン、イミダゾール類、トリフェニルホ スフィン、テトラフェニルホスフィンテトラフェニルボ レート等といった一般にエポキシ樹脂とフェノール系硬 化剤との硬化促進剤として知られている化合物を添加す ることもできる。本発明においては必要に応じ可撓性付 与剤、消泡剤、カップリング剤等を用いることもでき

た後、三本ロールを用いて混練し、混練後真空下脱泡し 樹脂ペーストを得る等がある。

【0014】以下実施例を用いて本発明を具体的に説明する。なお配合割合は重量部である。

実施例1~4

粒径1~30μmで、平均粒径3μmのフレーク状銀粉と1、6~ジヒドロキシナフタレンジグリシジルエーテル(エボキシ当量141、常温で液状、以下ナフタレンエポキシA)、ビスフェノールAとエピクロルヒドリンとの反応により得られるジグリシジルビスフェノールA(エボキシ当量180、常温で液体、以下ビスAエボキシ)、クレジルグリシジルエーテル(エポキシ当量185)、ビスフェノールA(水酸基当量114)、ジシアンジアミド、ジアザビシクロウンデセンを表1に示す割合で配合し、3本ロールで混練して導電性樹脂ペーストを得た。この導電性樹脂ペーストを真空チャンバーにて、2mmHgで30分間脱泡した後、以下の方法により各種性能を評価した。

【 0 0 1 5 】 粘度 : E型粘度計(3°コーン) 0 を用い25℃、2.5 r p m での値を測定し粘度とし か

糸引き性 : 導電性樹脂ペーストの中へ直径1mm のピンを深さ5mmまで入れ、ピンを300mm/分の速度で引き上げ、ペーストが切れたときの高さを測定した。

体積抵抗率 : スライドガラス上にベーストを幅4mm、厚さ30μmに塗布し、200℃オーブン中で60分間硬化した後硬化物の体積抵抗率を測定した。

弾性率 : テフロンシート上にペーストを幅10mm、長さ約150mm、厚さ0.1mmに塗布し、200℃オーブン中60分間硬化した後、引張り試験機で試験長100mm、引張り速度1mm/分にて測定し得られた応力ーひずみ曲線の初期勾配より弾性率を算出した。

吸水率 : テフロンシート上にペーストを50×50×0.1 mmになるように塗布し200℃オーブン中60分間硬化した後、85℃、85%、72時間吸水処理を行い、処理前後の重量変化より吸水率を算出した。接着強度 : 5×5 mmのシリコンチップをペーストを用いて銅フレームにマウントし200℃オーブン中60分間硬化した。硬化後プッシュプルゲージを用い240℃での熱時ダイシェア強度を測定した。また硬化後のサンプルを85℃、85%、72時間吸水処理し、240℃での熱時ダイシェア強度を測定した。

スフィン、テトラフェニルホスフィンテトラフェニルボ 耐パッケージクラック性:シリカフィラーを約78%含 レート等といった一般にエポキシ樹脂とフェノール系硬 有するビフェノール型エポキシ/フェノールノボラック 化剤との硬化促進剤として知られている化合物を添加す ることもできる。本発明においては必要に応じ可撓性付 与剤、消泡剤、カップリング剤等を用いることもでき ロー(240℃、10秒)にかけ、断面観察により内部 る。本発明の製造方法には、例えば各成分を予備混合し 50 クラックの数を測定し耐パッケージクラック性の指標と 7

した。

パッケージ : $80pQFP(14\times20\times$

1. $5 \text{mmt} \text{ t} \text{ 4} \times 20 \times 2. \text{ 0 mmt}$

チップサイズ

: 7.5×7.5mm (アルミ

配線のみ)

リードフレーム : 42アロイ

成形

: 175℃、2分

ポストモールドキュア: 175℃、4時間

【0016】実施例5

シジルエーテルに変えて、ジヒドロキシナフタレンの2 分子をメチレン基で結合した化合物をグリシジルエーテ ル化した4官能のもの(エポキシ当量161、軟化点9 1℃、以下ナフタレンエポキシB)を用いた他は、実施 例1~4と同様にして導電性樹脂ペーストを作製し評価 した。評価結果を表1に示す。

実施例6

硬化促進剤としてトリフェニルホスフィンを用いた他

8

は、実施例1~4と同様にして、導電性樹脂ペーストを 作製し評価した。評価結果を表1に示す。

実施例7

硬化剤としてビスフェノールF (水酸基当量100)を 用いた他は、実施例1~4と同様にして導電性樹脂ペー ストを作製し評価した。評価結果を表1に示す。実施例

硬化剤としてテトラメチルビスフェノールF (水酸基当 量128、以下TMBPF)を用いた他は、実施例1~ 実施例1~4の1、6-ジヒドロキシナフタレンジグリ 10 4と同様にして導電性樹脂ペーストを作製し評価した。 評価結果を表1に示す。

【0017】比較例1~6

表2に示す配合割合で実施例と全く同様にして導電性樹 脂ペーストを作製した。なお比較例6では用いる硬化剤 としてフェノールノボラック樹脂(水酸基104、軟化 点85℃)を用いた。評価結果を表2に示す。

[0018]

【表1】

	_	r –	_) 	т	т-	100	T	T	T=	т-	145	T .	_	1	Lac	ТӘ	Т=	1 -	1	1 (_	1	_	
	実施例	∞	7.0	12.0			11. 3			5.0		1.6	0.1		130	8	5×10^{-4}	420	0.19	2400	2400	0	0	C	
		-	70.0	12.0			11.3		5.0			1.6	0.1		116	3	7×10-	440	0.21	2200	2100	0	0	С	
		9	70.0	12.0			11.3	5.0				1.0		0.7	128	က	7×10^{-4}	440	0.21	2400	2300	0	0	С	
		2	70.0		6.0	6.0	11.3	5.0				1.6	0.1		180	4	6×10^{-4}	460	0.24	3000	2800	0	0	С	
		4	84.0	3.3		3.0	6.0	2. 7				0.9	0.1		194	5	1×10-4	500	0.20	2800	2700	0	0	0	
		ന	61.0	18.0		-	12.3	6.5				2. 1	0. 1		8.2	2	1×10^{-3}	400	0.28	2000	1700	0	0	0	
		2	70.0	8.3		5.0	10.0	5.0				1.6	0.1		108	2	5×10-4	440	0.23	2200	2000	0	0	0	
		-	70.0	12.0			11.3	5.0			1	1.6	0. 1		124	က	6×10^{-4}	- 450	0.25	2300	2200	0	0	0	
				-yA	· シB		ジルエーテル				14		ンデホン	1717	PS	800	ij.c∎	kg/nm²	%	g f	gf	個/6	個/6		
		-		*	タレンエポキ	タレンエボキ	Aエボキシ	ジルグリシ	721-NA	フェノールF	ВРГ	ノールノポラ	アンジアミド	ザビシクロウ	フェニルホス		생	抗率		- FSI-	強度 吸水前	吸水後	7件 1.5mmt	2.0mmt	平価
			銀粉	77	配ナフ	л К	7 7	л Х	カメ	TMB	7 x	<i>y</i>	合ジア	۲ با		十 米 十	体積.	本体	极长撥	接着強度		能一耐クラック性		総合評価	

[0019]

40【表2】

12

表 2

	7		***	表2										
			比較例											
			1	2	3	4	5	6						
	銀粉		70.	0 70. (55. 0	87. 0	62.0	70.0						
	ナフタレンエポ	キシΑ		22. (18. (5. 2	8. 3	12. 0						
配	ナフタレンエポ-	キシΒ												
	ビスAエポキシ)										
	クレジルグリシ:	ジルエーテル	11.	3. 6	17.0	4.8	6. 0	11. 3						
	ビスフェノール	5.	3. 3	7. 5	2. 2	22. 0								
	ビスフェノール]				<u> </u>									
	TMBPF					Ì								
	フェノールノボラ	ラック						5. 0						
	ジシアンジアミ	3	1. (1. 0	2. 4	0.7	1. 6							
合	ジアザビシクロリ	フンデセン	0. :	0.1	0.1	0.1	0. 1							
	トリフェニルホス	スフィン												
	粘度	PS	9 8	780	84	462	520	188						
性	糸引き	mm	£ 2			15		5						
	体積抵抗率	Ω•cm	8×10^{-1}	46×10-4	10-2以上	7×10^{-5}	硬化せず	6×10^{-4}						
	弾性率	kg/mm ²	46(500	390	590		500						
	吸水率	%	0. 25	0. 21	0.30	0.18		0.26						
	接着強度 吸水前		2400	3100	2400	3300	10	2800						
	吸水後		400	2900	2300	3100	0	2500						
能	耐クラック性 1.5mmt	個/6	6	0	0	0	硬化せず	2						
		個/6	(0	0	0		0						
	総合評価		×	×	X	×	×	×						

[0020]

【発明の効果】本発明の導電性樹脂ペーストは、ディス 低く、銅、42合金等の金属フレーム、セラミック基 板、ガラスエポキシ等の有機基板へのIC、LSI等の 半導体素子の接着に用いることができる。特に銅フレー ムへの大型チップの接着に適しており、銅フレームとシ*

*リコンチップの熱膨張率の差に基づく I C、L S I 等の 特性不良を防ぐことができ、更には硬化物の吸水率が低 ペンス塗布時の作業性が良好で、また硬化物の弾性率が 30 く、吸水による接着強度の低下が少ないため薄型パッケ ージに使用しても、半田処理時にクラックの発生しない 従来になかった高信頼性の半導体素子接着用の導電性樹 脂ペーストである。