Chem 260 – Third Exam

On the following pages are seven problems covering material in equilibrium chemistry and kinetics. Read each problem carefully and think about how best to approach the problem before you begin work. If you aren't sure how to begin a problem, then move on; working on a new problem may stimulate an idea that helps you solve the more troublesome one. For problems requiring a written response, be sure that your answer directly and clearly answers the question. No brain dumps allowed! Generous partial credit is available, but only if you include sufficient work for evaluation.

Problem 1/16	Problem 5/12
Problem 2/16	Problem 6/12
Problem 3/12	Problem 7/16
Problem 4/16	Total/100

A few constants are given here:

$$d_{H_2O} = 1.00 \text{ g/mL}$$
 $S_{H_2O} = 4.184 \text{ J/g} \cdot ^{o}\text{C}$ $R = 8.314 \text{ J/mol}_{rxn} \cdot \text{K}$ $F = 96,485 \text{ J/V} \cdot \text{mol e}^{-}$ $K_w = 1.00 \times 10^{-14}$

Problem 1. The sulfide ion, S^{2-} , forms insoluble compounds with many metal ions. Given that the solubility product for Ag_2S is 1.6×10^{-49} and that for Bi_2S_3 is 1.1×10^{-73} , which compound will have the smallest molar solubility and which will have the smallest mass solubility?

$$\begin{array}{lll} Ag_2S(s)\leftrightarrows 2Ag^+ + S^{2-} & Bi_2S_3(s)\leftrightarrows 2Bi^{3+} + 3S^{2-} \\ \text{let } x \text{ be the molar solubility} & \text{let } x \text{ be the molar solubility} \\ [Ag^+] = 2x \quad [S^{2-}] = x & [Bi^{3+}] = 2x \quad [S^{2-}] = 3x \\ K_{sp} = 1.6\times 10^{-49} = (2x)^2(x) = 4x^3 & K_{sp} = 1.1\times 10^{-73} = (2x)^2(3x)^3 = 108x^5 \\ x = 3.42\times 10^{-17} \text{ M} & x = 1.00\times 10^{-15} \text{ M} \end{array}$$

The smaller molar solubility is that for Ag_2S . Multiplying the molar solubilities by molar mass gives the mass solubility of Ag_2S as 8.47×10^{-15} g/L (MM = 247.8 g/mol) and that for Bi_2S_3 as 5.14×10^{-13} g/L (MM = 513.8 g/L). The smaller mass solubility is for Ag_2S .

Problem 2. The ligand EDTA, which forms strong complexes with many metal ions, is often used to keep a metal ion in solution under conditions in which it might otherwise precipitate. Suppose you add 0.010 moles of $Pb(NO_3)_2$ and 0.050 moles of Na_4EDTA to a 1-L volumetric flask and dilute to volume with a pH 13.00 buffer. Will a precipitate of $Pb(OH)_2$ form? The solubility product for $Pb(OH)_2$ is 1.2×10^{-15} and the formation constant for $Pb(EDTA)^{2-}$ is 1.1×10^{18} .

There are several approaches to solving this problem, all of which ultimately require comparing two numbers to each other, one based on an equilibrium calculation and one derived from the starting conditions. One approach begins by determining the [Pb²⁺] in equilibrium with EDTA and determining if that is sufficient to precipitate Pb(OH)₂.

Pb ²⁺	+	EDTA ⁴⁻	Ħ	Pb(EDTA) ²⁻
0.010		0.050		0
-0.010		-0.010		+0.010
0		0.040		0.010
+X		+X		-X
X		0.040+X		0.010 - X

To solve we let the reaction proceed to completion and then relax back to equilibrium (see table to the left). To simplify, we assume that 0.040 + X is 0.040 and that 0.010 - X is 0.010. Substituting into K_1 and solving gives

$$K_1 = \frac{[Pb(EDTA)^{2-}]}{[Pb^{2+}][EDTA^{4-}]} = 1.1 \times 10^{18} = \frac{(0.010)}{(X)(0.040)}$$

for which X is $2.27{\times}10^{-19}$ M (assumptions ok). Solving for Q_{sp}

$$Q_{sp} = (Pb^{2+})(OH^{-})^{2} = (2.27 \times 10^{-19})(0.1)^{2} = 2.27 \times 10^{-21}$$

which is smaller than the K_{sp} ; thus, no precipitate forms. Another solution is at the end of this answer key.

Problem 3. The rate law for the reaction of methylacetate, CH_3COOCH_3 , with water is known to be $R = k[CH_3COOCH_3][H_3O^+]$. For each of the following actions, will the reaction's rate constant increase, decrease or remain the same. Place an X in the appropriate box and explain your choice in one sentence.

action	increase	decrease	remain the same	explanation
increase the pH of the system			X	The rate constant depends upon activation energy and temperature as shown by the equation $k = Ze^{-Ea/RT}$.
shake the reaction mixture during reaction			X	Increasing pH will decrease [H ₃ O ⁺] and make the reaction slower, but it will not affect k. Shaking does not
increase the temperature	X			change E_a or T and has no affect on k. Increasing temperature makes k larger.

Problem 4. The oxidation of NO to NO₂ is an important reaction in the atmosphere. A study of the reaction's kinetics gives the following results:

Trial	[NO], M	[O ₂], M	Initial Rate (M/s)
1	4.5×10 ⁻²	2.2×10 ⁻²	8.00×10 ⁻³
2	4.5×10 ⁻²	4.5×10 ⁻²	1.60×10 ⁻²
3	9.0×10 ⁻²	9.0×10 ⁻²	0.128

What is the rate law and the rate constant for this reaction; limit yourself to any one trial when determining the rate constant.

Comparing trials 1 and 2 shows that the rate increases by a factor of 2 when the concentration of O_2 increases by a bit more than a factor of 2. This is consistent with a reaction that is first order in O_2 . Comparing trials 2 and 3 shows that rate increases by a factor of 8 when the concentration of both NO and O_2 increase by a factor of 2. Since O_2 is 8, the overall order must be 3. Knowing that the order for O_2 is 1 means that the order for NO must be 2. The rate law, therefore, is Rate = O_2 is 1 means that using the data from trial 1 is O_2 is O_3 .

Problem 5. In the presence of a tungsten catalyst and at an elevated temperature, the decomposition of NH₃ to N₂ and H₂ occurs at a constant rate, with a rate constant of 3.7×10^{-6} M¹ s⁻¹. How long will it take for 99.9% of the NH₃ in a reaction vessel to undergo decomposition?

A reaction that occurs at a constant rate is zero order, for which

$$[NH_3]_t = [NH_3]_0 - kt$$

If we let the initial concentration be 1, then at time t the concentration will be 0.001; thus

$$0.001 = 1 - (3.7 \times 10^{-6})t$$

Solving gives the time as 2.7×10^5 s. Other choices for $[NH_3]_0$ will give different results.

Problem 6. Another important atmospheric reaction is the formation of CCl₄ from chloroform and chlorine

$$CHCl_3(g) + Cl_2(g) \rightarrow CCl_4(g) + HCl(g)$$

The following mechanism has been proposed for this reaction

$$Cl_{2}(g) \leftrightarrows 2Cl(g)$$

$$Cl(g) + CHCl_{3}(g) \to HCl(g) + CCl_{3}(g)$$

$$CCl_{3}(g) + Cl(g) \to CCl_{4}(g)$$

in which the second step is rate-determining with a rate constant of k_2 . What is the rate law for the overall reaction? You may assume that the first step is at equilibrium with an equilibrium constant of K_{eq} . Write your rate law in terms of an observed rate constant, k_{obs} , and indicate how k_{obs} is related to k_2 and K_{eq} .

The rds is the second step, for which the rate law is

Rate =
$$k_2$$
[Cl][CHCl₃]

The concentration of Cl is given by the equilibrium constant for the first step; thus

$$K_{eq} = [Cl]^2/[Cl_2]$$
 and $[Cl] = (K_{eq})^{1/2}[Cl_2]^{1/2}$

Substituting back gives

Rate =
$$k_2(K_{eq})^{1/2}[Cl_2]^{1/2}[CHCl_3]$$
 with $k_{obs} = k_2(K_{eq})^{1/2}$

Problem 7. Shown below are three graphs of kinetic data from a study of the reaction

$$A + B \rightarrow C$$

The first panel shows the original data as plots of [A] vs. time and [B] vs. time. The remaining two panels show transformations of this data. When studying the change in concentration of A, [B]_o was set at 0.30 M, and when studying the change in [B] the initial concentration of A was set to 0.3 M. Using this data determine the reaction's rate law and rate constant.

From the original data, the linear plot for [B] vs. time indicates that the reaction is zero-order in B, and the plot of [A] vs. time indicates that the reaction is not zero-order in A. The linear plot for 1/[A] vs. time, however, indicates that the reaction is second-order in A. The rate law, therefore, is

Rate =
$$k[A]^2$$

The best way to find the value of k is to determine the slope for the plot of 1/[A] vs. time, which is 75.9, giving a rate constant of 75.9 M^{-1} s⁻¹. An alternative approach is to find the slope of the plot of [B] vs. time, for which the rate law is $R = k_{obs} = k[A]_o^2$. The slope is 3.0×10^{-7} , which, since the $[A]_o$ is 0.3 M, gives k as 3.3×10^{-6} M⁻¹ s⁻¹. The fact that the rate constants are not identical means that the reaction's stoichiometry must be something other than 1:1.

Two Additional Approaches to Answering Problem 2.

If EDTA is added to a solution containing Pb(OH)₂, then the following equilibrium might exist (note the use of word might as the equilibrium reaction can exist only if Pb(OH)2 is present, a fact that we don't yet know):

$$Pb(OH)_2(s) + EDTA^{4-} \leftrightarrows Pb(EDTA)^{2-} + 2OH^- \quad K = K_{sp} \times K_1 = 1320$$

Using an ICE table

$Pb(OH)_2(s)$	+	EDTA ⁴⁻	↓ ↑	Pb(EDTA) ²⁻	+	2OH⁻
-		0.050		0		0.1
-		-X		+X		-
_		0.050 - X		X		0.1

equation for K gives $1320 = \frac{(X)(0.1)^2}{(0.050 \text{ Yz})}$

$$1320 = \frac{(X)(0.1)^2}{(0.050 - X)}$$

Solving gives X = 0.04999962. This value, however, is impossible because it using up this many moles of EDTA requires dissolving the same number of moles of Pb(OH)2, of which we have only 0.010 moles. This means that there must not be any precipitate in the system and the equilibrium reaction does not in fact exist.

An another approach, which begins from the same reaction, recognizes that no more than 0.010 moles of EDTA can react and then determines if an equilibrium might exist; thus

$Pb(OH)_2(s)$	+	EDTA ⁴⁻	11	Pb(EDTA) ²⁻	+	2OH-
-		0.050		0		0.1
-		-0.010		+0.010		-
-		0.040		0.010		0.1
-		+X		-X		-
-		0.040 + X		0.010 - X		0.1

a negative number for a result. A negative number, however, makes no sense as it means that when the reaction go back toward equilibrium by shifting to

the reactants side (the second-to-last row), the reaction actually shifted to the right. This contradiction occurs because the initial shift to the right (the change in EDTA of -0.010) dissolved all of the Pb(OH)₂, destroying the equilibrium. Again, no solid is present.