CS & IT

ENGINERING

Graph Theory

Connectivity in
Graphs part -03
Lecture No. 08

Trail:

closed Trail: Trail + starting = ending vertices

Euler circuit: « closed Trail + cover au edges

Thm: Graph is Euler Graph if and only if degrees of all vertices are even (connected)

sclosed. del edges

not Euler Graph.

Trail:

open Trail: St # ending vertices.

and a service of the service of the

open Trail + au edges enactly once.

Thm: Graph contains Euler path if and only if it contains enactly 2 odd

odd: Vertices.

(Starting = Closed Trail
endingvertices) Closed Trail
Euleviciviti

Degrees of all vertices one even open Trail. (Starting + ending vertices

Eulev Path.

emactly 2 odd vertices.

Path:

Closed Path: Path + st = ending vertices.

Hamiltonian circuit & closed Path + all vertices enactly once.

Hamiltonian ckt:

Graph which contains Hicis Hamiltonian Graph.

Scloged. all vertices enactly once.

Sopen path

Coversall verbices enactly once.

> Hamiltonian Path. 3.

covening all vertices.

Closed Path.

Hamiltonian ckt.

open path.

Hamiltonian Path

Every Hamiltonian circuit contains Hamiltonian Path (True)

Every Hamiltonian Path contains H. ((false)-)

Line Graph of Euler. Graph is also Hamiltonian Graph.

All complete Graphs are Hamiltonian Graph (n23) all cycle Graphs are Hamiltonian Graphs (True) all wheel Graphs are Hamiltonian Graphs (True) all Km,n are Hamiltonian Graph m=n) (m,n > 2)

all km, n are Hamiltonian Graph (m, n = 2

K2, 2.

£ 3, 2

K4,4.

all km,n contains Hamiltonian Path. (m-n/52)

covening

all edges

closed Trail

Euler circuit

open Trail.

Euler Path

all vertices.

Closed Path.

Hamiltonian CKt open Path

Hamiltonian Path.

