(19)日本国特許庁 (JP)

再 公 表 特 許(A1)

(11)国際公開番号

WO97/19382

発行日 平成10年(1998) 2月24日

(43)国際公開日 平成9年(1997)5月29日

(51) Int.Cl.8

識別記号 庁内整理番号 FΙ

G02C 7/06

審查請求 未請求 予備審查請求 未請求(全 52 頁)

出願番号 特願平9-518047

(21)国際出願番号

PCT/JP96/02973

(22)国際出願日

平成8年(1996)10月11日

(31)優先権主張番号 特願平7-306189

(32)優先日

平7(1995)11月24日

(33)優先権主張国

日本(JP)

(81)指定国

EP(AT, BE, CH, DE,

DK, ES, FI, FR, GB, GR, IE, IT, L

U, MC, NL, PT, SE), JP, SG, US

(71)出願人 セイコーエプソン株式会社

東京都新宿区西新宿2丁目4番1号

(72)発明者 向山 浩行

長野県諏訪市大和3丁目3番5号 セイコ

ーエプソン株式会社内

(72)発明者 加藤 一寿

長野県諏訪市大和3丁目3番5号 セイコ

ーエブソン株式会社内

(74)代理人 弁理士 横沢 志郎 (外1名)

(54) 【発明の名称】 累進多焦点レンズ、眼鏡レンズおよび累進多焦点レンズの製造方法

(57)【要約】

老視などの視力の補正に適した眼鏡レンズに用いられる 累進多焦点レンズにおいて、従来、物体側の面に付加さ れていた累進屈折面を眼球側の面に設ける。これによ り、物体側の面をペースカーブが一定の球面にできるの で、倍率のシェーブ・ファクターによる変動を防止する ことが可能となり、遠用部と近用部の倍率差を縮小する ことができ、また、累進部の倍率の変化を抑制すること ができる。従って、倍率差による像の揺れや歪みを低減 することができ、快適な視野が得られる累進多焦点レン ズを提供することができる。さらに、本発明の合成式を 用いて累進屈折面と乱視矯正用のトーリック面とを眼球 側の面に合成することが可能となり、乱視矯正用の累進 多焦点レンズにおいても像の揺れや歪みを低減すること ができる。

【特許請求の範囲】

1. 異なる屈折力を備えた遠用部および近用部と、これらの間で屈折力が累進的に変化する累進部とを備えた視力補正用の累進多焦点レンズにおいて、

この累進多焦点レンズの眼球側の面に前記遠用部、近用部および累進部を構成するための累進屈折面の曲率が付加されていることを特徴とする累進多焦点レンズ。

- 2. 請求項1において、前記累進多焦点レンズの物体側の面が球面であること を特徴とする累進多焦点レンズ。
- 3. 請求項1において、前記累進多焦点レンズの物体側の面が回転軸対称非球面であることを特徴とする累進多焦点レンズ。
- 4. 請求項1において、前記累進多焦点レンズの物体側の面が回転対称な面であり、前記遠用部から近用部に向かって延びる主注視線を有し、前記遠用部の前記主注視線の近傍の前記眼球側の面の平均面屈折力D1と、前記近用部の前記主注視線の近傍の前記眼球側の面の平均面屈折力D2と間に次の関係があることを特徴とする累進多焦点レンズ。
 - $0.5 \le (D1-D2) \le 3.5$ · · · (A)
- 5. 請求項1において、前記遠用部から近用部に向かって延びる主注視線を有し、この主注視線に沿った前記累進屈折面の曲率は、前記遠用部と比較し前記近用部の方が小さいことを特徴とする累進多焦点

レンズ。

- 6. 請求項1において、前記遠用部から近用部に向かって延びる主注視線を有し、前記遠用部を構成するための前記累進屈折面の曲率は、少なくとも1部の領域で、前記主注視線から離れるに従って小さくなることを特徴とする累進多焦点レンズ。
- 7. 請求項1において、前記遠用部から近用部に向かって延びる主注視線を有し、前記近用部を構成するための前記累進屈折面の曲率は、少なくとも1部の領域で、前記主注視線から離れるに従って大きくなることを特徴とする累進多焦点レンズ。

- 8. 請求項1において、前記遠用部から近用部に向かって延びる主注視線を有し、前記主注視線を構成するための前記累進屈折面の曲率は、少なくとも1部の領域で、直交する2方向の曲率が等しいことを特徴とする累進多焦点レンズ。
- 9. 請求項1において、前記眼球側の面が乱視矯正特性を有することを特徴とする累進多焦点レンズ。
- 10. 請求項1において、前記眼球側の面に、乱視矯正用のトーリック面の曲率が付加されていることを特徴とする累進多焦点レンズ。
- 11. 請求項1において、前記眼球側の面が円柱屈折力を有することを特徴とする累進多焦点レンズ。
- 12. 請求項1において、前記眼球側の面は、この眼球側の面が所望の視力補正特性を発揮することのみを目的として設定されたオリジナル累進屈折面と、前記眼球側の面が所望の乱視矯正特性を発揮することのみを目的として設定されたオリジナルトーリック面が合成された面であることを特徴とする累進多焦点レンズ。
- 13. 請求項12において、前記眼球側の面の任意の点P(X, Y, Z)における前記値Zが、前記オリジナル累進屈折面の近似曲率Cpと、前記オリジナルトーリック面のx方向の曲率Cxおよびy方向の曲率Cyとを用いて次の式で表されることを特徴とする累進多焦点レンズ。

$$Z = \frac{(Cp+Cx) X^{2} + (Cp+Cy) Y^{2}}{1 + \sqrt{(1 - (Cp+Cx)^{2} X^{2} - (Cp+Cy)^{2} Y^{2})}}$$
... (B)

ここで、前記点Pの位置を示す前記値X、YおよびZはx, yおよびz座標における値である。

- 14. 請求項1において、基底270度方向のプリズムが付加されていることを特徴とする累進多焦点レンズ。
- 15. 請求項1において、ディオプトリ単位で表された前記遠用部の頂点屈折 カPsと、この遠用部の頂点屈折力Psと前記近用部の頂点屈折力との差である

加入屈折力 Paと、前記累進多焦点レンズの物体側の面の屈折力 Pbとの間に次の関係があることを特徴とする累進多焦点レンズ。

$$Pb > Ps + Pa$$
 (C)

- 16. 請求項1に記載の累進多焦点レンズを眼鏡フレームの形状に合わせて玉型加工した眼鏡レンズ。
- 17. 請求項9に記載の累進多焦点レンズを眼鏡フレームの形状に合わせて玉型加工した眼鏡レンズ。
- 18. 請求項13に記載の累進多焦点レンズを眼鏡フレームの形状に合わせて 玉型加工した眼鏡レンズ。
- 19. 異なる屈折力を備えた遠用部および近用部と、これらの間で屈折力が累進的に変化する累進部とを備えた視力補正用の累進多焦点レンズの製造方法であって、

眼球側の面が所望の視力補正特性を発揮することのみを目的としてオリジナル 累進屈折面を求める第1の工程と、

前記眼球側の面が所望の所望の乱視矯正特性を発揮することのみを目的として オリジナルトーリック面を求める第2の工程と、

前記累進多焦点レンズの眼球側の面を、前記オリジナル累進屈折面および前記 オリジナルトーリック面から求める第3の工程とを有することを特徴とする累進 多焦点レンズの製造方法。

20. 請求項19において、前記第3の工程では、前記累進多焦点レンズの眼球側の面の任意の点P(X, Y, Z)における前記値Zを、前記オリジナル累進屈折面の近似曲率C p、前記オリジナルトーリック面のx 方向の曲率C x およびy 方向の曲車C y とを用いて次の式で求めることを特徴とする累進多焦点レンズの製造方法。

$$Z = \frac{(Cp + Cx) X^{2} + (Cp + Cy) Y^{2}}{1 + \sqrt{(1 - (Cp + Cx)^{2} X^{2} - (Cp + Cy)^{2} Y^{2})}}$$
... (B)

ここで、前記点Pの位置を示す前記値X、YおよびZはx, yおよびz座標における値である。

- 21. 請求項19において、前記累進多焦点レンズの物体側の面が球面であることを特徴とする累進多焦点レンズの製造方法。
- 22. 請求項19において、前記累進多焦点レンズの物体側の面が前記累進多 焦点レンズの縁厚を薄くする目的、または、前記累進多焦点レンズの非点収差を 改善する目的の少なくともいずれかの目的を備えた回転軸対称非球面であること を特徴とする累進多焦点レンズの製造方法。

【発明の詳細な説明】

発明の名称

累進多焦点レンズ、眼鏡レンズおよび累進多焦点レンズの製造方法 技術分野

本発明は、視力補正用の累進多焦点レンズ、これを用いた眼鏡レンズおよび累進多焦点レンズの製造方法に関するものである。

背景技術

累進多焦点レンズは、屈折力の異なる2つの視野部分と、これらの間で屈折力が累進的に変わる視野部分とを備えたレンズであり、これらの視野部分に境目がなく外観的に優れ、さらに、1つのレンズで異なる屈折力の視野を得ることができる。このため、老視などの視力の補正機能を備えた眼鏡レンズとして多く用いられている。図25に、眼鏡レンズとして多く用いられている従来の累進多焦点レンズの一般的な構造を示してある。この累進多焦点レンズ1は、遠距離の物を見るための視野部分である遠用部11が上方に設けられ、近距離の物をみるために遠用部11と異なる屈折力を備えた視野部分が近用部12として遠用部11の下方に設けられている。そして、これら遠用部11と近用部12が、遠距離と近距離の中間距離の物を見るために連続的に変化する屈折力を備えた視野部分である累進部13によって滑らかに連絡されている。

眼鏡用に用いられる単板のレンズ1においては、眼球側の屈折面2と、注視する物体側の屈折面3の2つの面によって眼鏡レンズに要求される全ての性能、例 えば、ユーザーの度数に合った頂点屈折力、乱

視を矯正するための円柱屈折力、老視を補正するための加入屈折力、さらには斜位を矯正するためのプリズム屈折力などを付与する必要がある。このため、図25に示すように、従来の累進多焦点レンズ1においては、これら遠用部11、近用部12および累進部13を構成するために連続的に変化する屈折力を与える累進屈折面5が物体側の屈折面3に形成され、眼球側の屈折面2は後述するように乱視矯正用の屈折面などとして用いられている。

図26に従来の累進多焦点レンズ1で得られる非点収差を示し、図27に従来

の累進多焦点レンズ1の物体側の屈折面3に構成された累進屈折面5のz座標の概略分布を示してある。なお、屈折面3において、平面をxy座標として、このxy平面に対し垂直なレンズの厚みを示す方向をz座標とする。xおよびy座標の方向は特に規定する必要はないが、以下においては、眼鏡レンズとして装着したときに上下となる方向をy座標、左右の方向をx座標として説明する。

累進屈折面5は、屈折力を連続的に変化させるように非球面になるので、面の各領域によって曲率が変化する。従って、図26から判るように、眼球側の面2が球面となった乱視矯正用ではない累進多焦点レンズ1であっても、物体側の面3に累進屈折面5を導入すると、x方向およびy方向の曲率差によって表面に非点収差が発生する。この非点収差をディオプトリ(D)単位で表し、所定のディオプトリの領域を等高線でつないで示したものが図26に示した非点収差図である。

乱視を伴わない眼鏡の使用者(ユーザー)は、レンズに現れた非点収差が1. 0ディオプトリ、望ましくは0.5ディオプトリ以下であれば、像のボケをそれ ほど知覚せずに明瞭な視覚が得られる。このため、遠用部から近用部に向かって 延び、目の輻輳を加味して若干鼻側

に曲がった主注視線(へそ状子午線)14に沿って非点収差が1.0ディオプトリあるいは望ましくは0.5ディオプトリ以下となる明視域21を配置してある。特に、この主注視線14の上では、x方向およびy方向の曲率差をほとんど無くして非点収差が発生しないようにしている。従って、主注視線14からレンズ1の周囲に向かって非球面状になるので非点収差が大きく現れる。さらに、このような非点収差が大きく変動すると、ユーザーが視線を動かしたときに視線に沿って像がゆれて不快感を与える原因となる。このため、視線の動きの大きな遠用部11においては非点収差がそれほど変動しないように設定してあり、また、その他の領域においても非点収差が大きく変動しないような累進屈折面5の設計がなされている。そして、レンズ1を眼鏡のフレームに合わせた形状に玉型加工して眼鏡用レンズ9を形成し、ユーザーに提供している。

図26および図27に示したレンズ1は、累進屈折面5の付加された物体側の

面3の基本的な屈折力を示すベースカーブ P b が 4. 00 D、加入度数 P a が 2. 00 V、眼球側の面 2 の面屈折力 D 2 が 6. 00 D、レンズの中心厚さ t が 3. 0 mm、レンズ径 d が 7 0. 0 mmのレンズである。

図28に、眼球側の面2に、乱視を矯正するために円柱屈折力Cを備えたトーリック面6が形成された従来の乱視用の累進多焦点レンズ1を示してある。また、図29にこのレンズの非点収差図を示してあり、図30にトーリック面6のz座標を示してある。図29に非点収差を示したレンズは、円柱屈折力Cが-2.00Dのものであり、他の条件は図26に非点収差を示したレンズと同一である。この乱視用の累進多焦点レンズ1は、主注視線14に沿って乱視を矯正するために2.00Dの非点収差がほぼ均等に導入され、上記と同様に眼鏡フ

レームに沿って玉型加工することにより眼鏡レンズ9を形成することができる。

このように、累進屈折面を用いて遠用部から近用部に連続的に屈折力が変化する眼鏡用レンズが乱視矯正も含めて市販されており、視力の補正用として多く用いられている。累進多焦点レンズは、視力の補正対象となる度数が大きく、また、遠用部と近用部の屈折力の差である加入度が大きいと、累進屈折面がさらに非球面化されるのでレンズに現れる非点収差も大きなものになる。このため、累進屈折面の形状を改良し、非点収差を通常使用するレンズの領域から外したり、急激な非点収差の変動を防止してユーザーに快適な視野を提供できるようにしている。非点収差の変動を抑制することにより像のゆれや歪みを改善できるが、累進多焦点レンズにおいては、遠用部と近用部の屈折力(パワー)の違いによっても像のゆれや歪みが発生する。すなわち、遠用部11は遠方に焦点が合うような屈折力を備えており、一方、近用部12は近傍に焦点が合うように遠用部11と異なる屈折力を備えている。従って、累進部13においては、倍率が徐々に変動するので、得られる像が揺れたり歪んだりするもう1つの主な原因となっている。

累進屈折面の設計においては、多種多様な提案がすでになされ、また、コンピュータの計算能力を生かした設計も盛んに行われており、累進屈折面の非点収差を改善して像のゆれや歪みを抑制するのはほぼ限界に達していると考えられる。 そこで、本発明においては、累進多焦点レンズの遠用部と近用部の倍率の変動に 起因する像の歪みや歪みを改善できる累進多焦点レンズを提供することを目的としている。そして、現状、累進屈折面の設計では限界に達しつつある像の揺れ・ 歪みをさらに大幅に低減でき、ユーザーに対しさらに快適な視野を提供

できる累進多焦点レンズおよび眼鏡レンズを提供することを目的としている。また、像の揺れや歪みの発生しやすい遠用部と近用部の度数の差(加入度)の大きなユーザーに対しても、揺れや歪みが少なく明瞭な視野を提供できる累進多焦点レンズおよび眼鏡レンズを提供することを目的としている。

発明の開示

このため、本願の発明者らは、累進多焦点レンズの倍率に与える累進屈折面の配置に着目し、累進屈折面を眼球側の面にもってくることにより、遠用部と近用部における倍率の差を縮小でき、これに起因する像の揺れや歪みを大幅に低減できることを見いだした。すなわち、本発明の、異なる屈折力を備えた遠用部および近用部と、これらの間で屈折力が累進的に変化する累進部とを備えた視力補正用の累進多焦点レンズにおいては、累進多焦点レンズの眼球側の面に遠用部、近用部および累進部を構成するための累進屈折面の曲率が付加されていることを特徴としている。

レンズの倍率SMは、一般的に次の式で表される。

$$SM = Mp \times Ms \cdot \cdot \cdot (1)$$

ここで、Mpはパワー・ファクター、また、Msはシェープ・ファクターと呼ばれ、図1に示すように、レンズの眼球側の面の頂点(内側頂点)から眼球までの距離をL、内側頂点の屈折力(内側頂点屈折力)をPo、レンズ中心の厚みを t、レンズの屈折率をn、レンズの物体側の面のベースカーブ(屈折力)をPbとすると以下のように表される。

$$Mp = 1 / (1 - L \times Po) \qquad (2)$$

$$Ms = 1/(1-(t\times Pb)/n) \cdot \cdot \cdot (3)$$

なお、式(2)および(3)の計算にあたっては、内側頂点屈折力 Poおよびベースカーブ Pb についてはディオプトリ(D)を、また、距離 Lおよび厚み t に

ついてはメートル (m) を用いる。

遠用部および近用部において視力の補正に寄与するのは内側頂点屈折力 Poで . あり、同一の内側頂点屈折力Poの得られるレンズであれば、物体側の面のベー スカーブPbの変動を抑制することにより、倍率SMの変化を抑えられることが 判る。例えば、凸面となる物体側の面のベースカーブPbを一定にすれば、シェ ープ・ファクターM s による倍率MSの変動をなくすことができる。しかしなが ら、図1に破線で示したように、累進屈折面を物体側の面に設けたのでは、物体 側のベースカーブPbを一定することはできず、さらに、加入度が大きくなるに つれてシェープ・ファクターM s の変動も大きくなり像の揺れや歪みが増大する 。そこで、本発明においては、累進屈折面をレンズの凹面となる眼球側の面に持 ってくることにより、図1に実線で示したように物体側の面のベースカーブPb の変動を抑制し、例えば、ベースカーブが一定となる球面の累進多焦点レンズを 提供できるようにしている。従って、本発明の累進多焦点レンズにおいては、遠 用部と近用部の倍率差を必要最小限に止めることができ、また、累進部における 倍率の変動も抑制できるので、像の歪みや揺れを低減することが可能となる。こ のため、本発明により、非点収差による性能は従来の累進多焦点レンズと同程度 であっても、像のゆれ・ゆがみが低減された累進多焦点レンズおよび眼鏡レンズ を提供することができ、ユーザーにさらに快適な視野を提供することができる。 特に、加入度の大きな累進多焦点レンズにおいては、ゆれ・ゆがみを大幅に低減 することができる。

図2に、ベースカーブPdが5.00D、加入度Paが3.00D

、球面屈折力Sが2.00D、屈折率nが1.662、距離Lが15.0mmの本発明の累進多焦点レンズで得られる倍率を例として、従来の物体側に累進屈折面を備えた累進多焦点レンズで得られる倍率と比較して示してある。本図から判るように、本発明の累進多焦点レンズにおいては、遠用部と近用部の倍率差が従来の倍率差の80%に抑制できており、大幅に像の揺れや歪みを防止できることが判る。

さらに、図3に示すように、加入度Paが大きくなるにつれて、この効果は顕

著である。図3は、上記のレンズに対してベースカーブPdを4.00D、球面屈折力Sを0.00Dとした本発明に係る眼球側の面(凹面)に累進屈折面を設けた累進多焦点レンズの遠用部と近用部の倍率差を例として示してある。また、これと比較できるように、物体側の面(凸面)に累進屈折面を設けた従来の累進多焦点レンズの遠用部と近用部の倍率差も示してある。本図から判るように、本発明の累進多焦点レンズにおいては、加入度Paにして1ランク(Paの差が0.25D程度)下から高加入度においては2ランク下の従来の累進多焦点レンズと同じ程度の倍率差にすることが可能であり、その結果、ユーザーが得る像の揺れや歪みにおいても、従来の1ランクあるいは2ランク下の加入度のレンズと同程度に抑制することができる。

本発明の累進多焦点レンズにおいては、眼球側の面に累進屈折面の曲率を付与するために、主注視線に沿った累進屈折面の曲率(曲率半径の逆数)は、遠用部と比較し近用部の方が小さくなる。また、遠用部においては少なくとも1部の領域で累進屈折面の曲率が主注視線から離れるに従って小さくなっており、また、近用部においては少なくとも1部の領域で累進屈折面の曲率が主注視線から離れるに従って大きくなる。

また、老視が殆ど進んでいないユーザーから、老視が進み調整力のほとんど無くなったユーザーまでの広い範囲に対して加入度が 0.5~3.5の範囲の累進多焦点レンズで対応することが可能であり、図 3 に示したように、この範囲内において本発明の累進多焦点レンズにおいては像の揺れや歪みの改善に大きな効果が得られることが判る。この範囲の加入度は、本発明の累進多焦点レンズの物体側の面が回転対称な面のときに、遠用部の主注視線の近傍の眼球側の平均面屈折力 D 1 と、近用部の主注視線の近傍の眼球側の平均面屈折力 D 2 を用いて次のように表される。

$$0. 5 \le (D1 - D2) \le 3. 5 \cdots (4)$$

さらに、累進屈折面としては、主注視線上において累進屈折面を構成する上で の非点収差を最小限することが望ましく、そのためには、主注視線の少なくとも 1部の領域で、累進屈折面の曲率は直交する2方向の曲率が等しくなるようにす ることが望ましい。

本発明の累進多焦点レンズにおいては、眼球側の面に累進屈折面を設けるので、眼球側の面に乱視矯正用のトーリック面の曲率も付加することにより、眼球側の面が乱視矯正特性を有する乱視矯正用の累進多焦点レンズを提供することができる。すなわち、眼球側の面が累進屈折面であり、さらに、円柱屈折力を有する累進多焦点レンズを提供することができる。そして、本発明の乱視矯正特性を備えた累進多焦点レンズを眼鏡レンズとして採用することにより、眼球側の面に累進屈折面を設けてあるので上述したように遠用部と近用部の倍率差を必要最小限に止めることができ、乱視を矯正することが可能であると共に像の歪みや揺れが少なく、乱視を有するユーザーに対してもさらに快適な視野を提供することができる。

眼球側の面に視力補正特性と乱視矯正特性とが付加された累進多焦

点レンズは、眼球側の面が所望の視力補正特性を発揮することのみを目的として 累進屈折面(以降においてはオリジナル累進屈折面)を求める第1の工程と、眼 球側の面が所望の所望の乱視矯正特性を発揮することのみを目的としてトーリッ ク面(以降においてはオリジナルトーリック面)を求める第2の工程と、累進多 焦点レンズの眼球側の面を、オリジナル累進屈折面およびオリジナルトーリック 面から求める第3の工程とを有する製造方法を用いることにより製造することが できる。オリジナル累進屈折面とオリジナルトーリック面とが合成された累進屈 折面を眼球側の面に持ってくることにより、トーリック面を用いた乱視の矯正機 能、および乱視の矯正以外の累進屈折面を用いた視力補正機能の両者を備え、さ らに、ゆれや歪みの少ない累進多焦点レンズを実現することができる。

上述した第3の工程において、乱視矯正特性を備えたオリジナルトーリック面を構成するためのz座標の値に、視力補正特性を備えたオリジナル累進屈折面を構成するz座標の値を付加して乱視矯正特性を備えた累進屈折面を構成することも可能である。しかしながら、本願発明者が検討した結果によると、従来の物体側が累進屈折面で眼球側がトーリック面の乱視矯正用の累進多焦点レンズと同等の乱視を矯正する性能(非点収差特性)を得るためには、次の式(5)に示すよ

うな合成式を用いて累進屈折面を構成することが望ましい。すなわち、第3の工程では、累進多焦点レンズの眼球側の面の任意の点P(X,Y,Z)における値Zを、オリジナル累進屈折面の近似曲率Cp、オリジナルトーリック面のx方向の曲率Cxおよびy方向の曲率Cyとを用いて次の式(5)によって求めることにより、従来の累進多焦点レンズと同等の乱視を矯正する能力と視力を補正する能力を備え、さらに、倍率差が小さく揺れや歪みの改善された乱視矯正用の累進多焦

点レンズを提供することができる。

$$Z = \frac{(Cp+Cx) X^{2} + (Cp+Cy) Y^{2}}{1 + \sqrt{(1 - (Cp+Cx))^{2} X^{2} - (Cp+Cy)^{2} Y^{2})}} \cdot \cdot \cdot (5)$$

本発明においては、このような合成式(5)を採用することにより、眼球側の面にオリジナル累進屈折面とオリジナルトーリック面の特性を付加することが可能である。従って、眼球側に視力補正用の累進屈折面を備えた累進多焦点レンズ

、さらに、眼球側に視力補正用と乱視矯正用の両者の特性を有する累進屈折面を 備えた累進多焦点レンズを提供することが可能であり、乱視を持たないユーザー から乱視の矯正が必要なユーザーまでの範囲をカバーできる幅広い範囲の眼鏡レン

ズを実現できる。このため、全てのユーザーに対し累進多焦点レンズを用いた揺れや歪みの少ない眼鏡レンズをシリーズ化して市場に提供することが可能になる

また、眼球側に累進屈折面を設けた累進多焦点レンズにおいても、基底270度方向のプリズムを付加することにより、薄型化することが可能である。また、遠用部の頂点屈折力Psと、加入屈折力(加入度)Paと、累進多焦点レンズの物体側の面の屈折力(ベースカーブ)Pbが次の式を満足するように設定することにより、眼鏡レンズに適したメニスカスレンズとして本発明の眼球側に累進屈折面を備えた累進多焦点レンズを提供することができる。

$$Pb > Ps + Pa \qquad \cdots \qquad (6)$$

図面の簡単な説明

図1は、本発明の累進多焦点レンズの概要を示す説明図である。

図2は、本発明の累進多焦点レンズの遠用部の倍率、近用部の倍率および遠用部と近用部の倍率差の例を表にして従来の累進多焦点レンズと比較して示す図である。

図3は、本発明の累進多焦点レンズの加入度毎の遠用部と近用部の倍率差の例 を表にして従来の累進多焦点レンズと比較して示す図である。

図4は、本発明の実施例1に係る累進多焦点レンズの概要を示す図であり、図4(a)は正面図、図4(b)は主注視線に沿った断面図である。

図5は、図4に示す累進多焦点レンズの非点収差を示す図である。

図6は、図4に示す累進多焦点レンズの眼球側の面のz座標を示す図である。

図7は、図4に示す累進多焦点レンズの主注視線に沿った眼球側の面の曲率半径(曲率の逆数)を示す図である。

図8は、図4に示す累進多焦点レンズの主注視線に直交する方向の眼球側の面の曲率半径を示す図であり、図8(a)は遠用部の曲率半径を示し、図8(b)は近用部の曲率半径を示す図である。

図9は、図4に示す累進多焦点レンズに270度基底のプリズムを施す様子を示す図であり、図9(a)はプリズムを施さない例の累進多焦点レンズの断面を示し、図9(b)はプリズムを施した例の累進多焦点レンズの断面を示してある

図10は、本発明の実施例2に係る累進多焦点レンズの概要を示す図であり、

図10(a)は正面図、図10(b)は主注視線に沿った断面図である。

図11は、図10に示す累進多焦点レンズの非点収差を示す図である。

図12は、図10に示す累進多焦点レンズの眼球側の面の 2座標を

示す図である。

図13は、本発明の視力補正能力と乱視矯正能力とを備えた累進多焦点レンズの製造方法を示すフローチャートである。

図14は、本発明の視力補正能力と乱視矯正能力とを備えた累進多焦点レンズの遠用部と近用部の倍率差の例を表にして従来の累進多焦点レンズと比較して示す図である。

図15は、本発明の実施例2においてオリジナル累進屈折面とオリジナルトーリック面を加算したレンズの概要を示す図であり、図15 (a) は正面図、図15 (b) は主注視線に沿った断面図である。

図16は、図15に示すレンズの非点収差を示す図である。

図17は、図15に示すレンズの眼球側の面の2座標を示す図である。

図18は、図10に示す本発明の実施例2の累進多焦点レンズの主注視線に沿った非点収差の変化を、図28に示す従来の累進多焦点レンズおよび図15に示すレンズのそれと共に示すグラフである。

図19は、本発明の異なる実施例の累進多焦点レンズの非点収差を示す図である。

図20は、図19に示した累進多焦点レンズに対応する従来の累進多焦点レンズの非点収差を示す図である。

図21は、図19に対応して合成式を用いずに形成した累進多焦点レンズの非点収差を示す図である。

図22は、本発明のさらに異なる実施例の累進多焦点レンズの非点収差を示す図である。

図23は、図22に示した累進多焦点レンズに対応する従来の累進多焦点レンズの非点収差を示す図である。

図24は、図22に対応して合成式を用いずに形成した累進多焦点レンズの非点収差を示す図である。

図25は、従来の累進多焦点レンズの概要を示す図であり、図25 (a) は正面図、図25 (b) は主注視線に沿った断面図である。

図26は、図25に示す累進多焦点レンズの非点収差を示す図である。

図27は、図25に示す累進多焦点レンズの物体側の累進屈折面のz座標を示す図である。

図28は、従来の乱視矯正用の累進多焦点レンズの概要を示す図であり、図28(a)は正面図、図28(b)は主注視線に沿った断面

図である。

図29は、図28に示す累進多焦点レンズの非点収差を示す図である。

図30は、図28に示す累進多焦点レンズの眼球側のトーリック面の z 座標を示す図である。

発明を実施するための最良の形態

以下に、本発明に基づき設計した幾つかの累進多焦点レンズに基づき、本発明をさらに詳しく説明する。

[実施例1]

図4に、本発明の眼球側の面2に累進屈折面5を設けた累進多焦点レンズ10 を示してある。本例の累進多焦点レンズ10は、図25に示した従来の累進多焦 点レンズと同様に、上方に遠距離の物を見るための視野部分である遠用部11が 設けられ、下方に近距離の物をみるために遠用部11と異なる屈折力を備えた視野部分が近用部12として設けられており、さらに、これら遠用部11と近用部12を連続的に屈折力が変化する累進部13によって滑らかに連絡された累進多焦点レンズである。本例の累進多焦点レンズ10は、遠用部11、近用部12および累進部13を構成するために非球面となる累進屈折面5を眼球側の面2に設けてある。このため、物体側の面3はベースカーブPdが一定となる球面に成形することができる。従って、上記において、式(1)~(3)を用いて説明したように、遠用部11と近用

部12の倍率差が小さくなっており、累進部13においては倍率が変化する割合を小さくすることができる。従って、従来の物体側の面に累進屈折面を設けた累進多焦点レンズに比べ、倍率差に起因する像の揺れや歪みを大幅に低減することができる。

図5および図6に、眼球側の面2に累進屈折面を設けた本発明の累進多焦点レ ンズ10の非点収差図と、眼球側の面2、すなわち、累進屈折面5の2座標を示 してある。本例の累進多焦点レンズ10は、先に図26および図27に基づき説 明した、物体側の面3に累進屈折面を設けた従来の累進多焦点レンズと同程度の 非点収差が得られるように設計されている。図5および図6に示した本例の累進 多焦点レンズ10は、物体側の面3が球面であり、その屈折力を示すベースカー ブPbは4.00Dに一定となっている。眼球側の面2については、遠用部11 の平均面屈折力が6.00D、近用部12の平均面屈折力が4.00Dであり、 加入度数Paが2.00Dに設定されている。また、遠用部11の球面屈折力s は-2.00Dで、レンズの中心厚さ t が 3.0 mm、レンズ径 d が 70.0 m mとなっている。このような条件下で図4に示したような累進屈折面5を眼球側 の面2に設けることができ、その結果、図5に示すような非点収差を持った累進 多焦点レンズ10を得ることができる。図5に示した本例の累進多焦点レンズ1 0の非点収差は、図26に示した従来の累進多焦点レンズの非点収差とほぼ同じ であり、眼球側の面2に累進屈折面5を設けても非点収差に関しては従来の物体 側の面3に累進屈折面を設けた累進多焦点レンズと同等の性能を持った累進多焦

点レンズ10を実現できることが判る。

従って、本例の累進多焦点レンズ10は、非点収差については、従来と同等の 性能を備え、明視領域が十分に確保され、非点収差の変動

に起因する像の歪みや揺れの少ない累進多焦点レンズである。さらに、遠用部11と近用部12との倍率差について比較すると、本例の累進多焦点レンズ10においては、遠用部11の倍率が0.976、近用部12の倍率が1.007であり、その差は0.031である。これに対し、図25に示した従来の物体側に累進屈折面が設けられたレンズ1においては、遠用部の倍率が0.976、近用部の倍率が1.011であり、その差は0.035である。従って、本例の累進多焦点レンズ10においては、遠近の倍率差が従来の12~13%程度改善できていることが判る。このように倍率差が縮小されることにより、本例の累進多焦点レンズ10においては、倍率差に起因して累進多焦点レンズに起きる像の揺れや歪みを従来にも増して改善することが可能になる。このため、本例の累進多焦点レンズ10を眼鏡フレームに合わせて玉型加工することにより、明るく、揺れや歪みが大幅に改善された眼鏡レンズ9を提供することができる。

本例の眼球側の面 2 に設けられた累進屈折面 5 についてさらに説明する。図 7 に主注視線 1 4 に沿った累進屈折面 5 の曲率半径の変化を示してある。本図の 2 座標は、注視する物体の方向を負に、眼球の方向を正に設定してある。主注視線 1 4 に沿った累進屈折面 5 の曲率半径のうち、上方の遠用部 1 1 を構成する曲率 半径を r 1、近用部 1 2を構成する曲率半径を r 2とすると、眼鏡用の累進多焦点レンズにおいては遠用部 1 1 の屈折力の値は近用部 1 2 の屈折力の値より小さく、すなわち、遠用部 1 1 の屈折力の値から近用部 1 2 の屈折力の値を差し引くと負になるように設定してあるので、本例の累進多焦点レンズ 1 0 の曲率半径 r 1 は曲率半径 r 2 より小さくなる。従って、それぞれの曲率半径 r 1 および r 2 の逆数である曲率 C 1 および C 2 で表すと、遠用部 1 1 の曲率 C 1 と近用部 1 2 の曲率 C 2 は次の関係を満

たす必要がある。

$$C1 > C2 \qquad \cdots \qquad (7)$$

また、遠用部11の主注視線14に対して直交する方向15の曲率半径は、図8(a)に示すように、曲率半径の大きな近用部12と連続的な累進部13を構成するために主注視線14から離れるに従って大きくなる領域を備えている。一方、近用部12の主注視線14に対して直交する方向16の曲率は、図8(b)に示すように曲率半径の小さな遠用部11と連続的な累進部13を構成するために主注視線14から離れるに従って小さくなる領域を備えている。すなわち、遠用部11の主注視線14と直交する方向15において、主注視線14の近傍の曲率半径をr3、主注視線14から5~35mm程度はなれた領域の曲率半径をr4とすると曲率半径r3はr4と同じあるいは小さくなる。これを曲率半径r3 およびr4の逆数である曲率C3およびC4で表すと、遠用部11においては、主注視線14の近傍の曲率C3に対し主注視線14から離れた領域の曲率C4は次の関係を満たす。

$$C3 \ge C4 \cdots (8)$$

遠用部11を構成する眼球側の面2を球面として遠用部11に広い明視域を確保し、累進部13を近用部12の近傍に集中することももちろん可能であり、この場合は、遠用部11においては、曲率C3と曲率C4が等しくなる。

一方、近用部 12の主注視線 14と直交する方向 16において、主注視線 14の近傍の曲率を r5、主注視線 14から $5\sim35$ mm程度はなれた領域の曲率を r6とすると曲率 r5は r6と同じあるいは大きくなる。従って、曲率半径 r5 および r6の逆数である曲率 r5は r6で表すと、近用部 r5においては、主注視線 r60 近傍の曲

率C5に対し主注視線14から離れた領域の曲率C6は次の関係を満たす。

$$C5 \leq C6 \qquad \cdots \qquad (9)$$

近用部12においても、眼球側の面2を球面として近用部12に広い明視域を確保し、累進部13を遠用部11の近傍に集中することが可能であり、この場合は、近用部12においては、曲率C5と曲率C6が等しくなる。

なお、主注視線14に対し水平側方に向かった上記(8)および(9)式の曲

率半径の変化は、主注視線14に直交する方向15および16の曲率を例にとって説明したが、特に方向に対し厳密な限定はなく、主注視線14から遠ざかるにつれ平均的な曲率が上記(8)および(9)式を満足していれば良い。

本例の眼鏡レンズ9をユーザーが装着した場合は、主注視線14に沿って眼球が動くことが多い。このため、乱視の矯正を必要としない累進多焦点レンズ10においては、像の歪みや揺れを防止するために主注視線14をへそ点の集合で構成することが望ましい。従って、上述した各曲率C1、C2、C3およびC5の間に次の関係が成り立つ。

$$C1 = C3$$

$$C2 = C5 \qquad \cdots \qquad (10)$$

このとき、主注視線14に沿った遠用部11の眼球側の面2の平均面屈折力D1 と、近用部12の眼球側の面2の平均面屈折力D2は次の式で表される。

$$D1 = (n-1) \times C1$$

 $D2 = (n-1) \times C2 \cdot \cdot \cdot (11)$

ここで、nは本例の累進多焦点レンズ10を構成するレンズ材の屈折

率である。

本例の累進多焦点レンズ10は、物体側の面3が球面で構成されているので、加入度Pdは遠用部11の平均面屈折力D1と近用部12の平均面屈折力D2の差で表すことができる。さらに、式(7)に示したように遠用部11の曲率C1が近用部12の曲率C2よりも大きいので、眼球側の面2においては、遠用部11の平均面屈折力D1は近用部12の平均面屈折力D2よりも大きくなる。上記において図3に基づき説明したように、本発明の累進多焦点レンズ10を用いることにより、調整力のほとんどないユーザー用の加入度が3.5ディオプトリの累進多焦点レンズから、老視がほとんど進んでいない加入度が0.5ディオプトリの累進多焦点レンズの広い範囲内で、遠用部11と近用部12の倍率差を縮小することができ、像の揺れや歪みを抑制してユーザーに快適な視野を提供することができる。例えば、調節力の全く無い装用者でも3.50ディオプトリーあれば無限遠方から約30cmまでを明視できる。この加入度の範囲を遠用部11お

よび近用部12の平均面屈折力D1およびD2を用いて示すと、先に説明したように次の式(4)となる。

$$0.5 \le (D1-D2) \le 3.5 \cdots (4)$$

乱視の矯正を行うためにトーリック面が眼球側の面2に付加された場合は、次の実施例に示すように主注視線14はへそ点の集合とはならず、乱視を矯正するために主注視線14に沿ってほぼ一定の非点収差が付加される。

また、詳しくは特公平2-39768号に開示されているように、眼鏡レンズをより薄型化し、また、規格化するなどの原因により主注視線14に沿って屈折力に方向性が生じてしまう場合は、その屈折力による非点収差を打ち消す方向に、曲率差による非点収差を発生させ

ることが望ましい。従って、このような場合は、主注視線14に沿った曲率C1 およびC2と、これに直交する方向の曲率C3およびC5に差を設けることが望ましい。本例の眼球側の面2に累進屈折面5を設けた累進多焦点レンズ10においては、レンズ外周部にゆくほど主注視線14に沿った屈折力Ptの方が直交する方向の屈折力Psよりも一般にプラスの度数が得られるようになる。従って、このような場合は、屈折力PtおよびPsによる非点収差を打ち消すために、以下の式(12)に示すように、主注視線14に沿った曲率C1およびC2を、直交する方向の曲率C3およびC5より若干大きくすることが望ましい。

$$C2 > C5 \cdots (12)$$

また、図9(a)に示すように、本例の累進多焦点レンズ10は、眼球側の面2が累進屈折面5になっているので近用部12に対し遠用部11のレンズが厚くなる。従って、累進多焦点レンズ10を薄く、軽くするためには、視力矯正を目的としない基底270度方向のプリズムを付加することが望ましい。これにより、図9(b)に示すように非常に薄い累進多焦点レンズ10を実現することができる。なお、プリズム基底の方向は、レンズの眼球側の面2に垂直に入射した光線がプリズム効果によって振れる方向を、物体側の面3から見て水平線を基準に反時計回りの角度で示している。また、この際に付加するプリズム量は、0.2

5~3.00プリズムディオプトリの間で、ユーザーに対し最適な値を選択する ことができる。

また、本例の累進多焦点レンズ10において、眼鏡レンズに適した物体側の面3が凸面で、眼球側の面2が凹面とするためには、遠用部11の内側頂点の屈折力(頂点屈折力) Psと、加入屈折力(加入度

) Paと、累進多焦点レンズの物体側の面2の屈折力(ベースカーブ) Pbが上述した次の式(6)を満足するように設定する必要がある。

$$Pb > Ps + Pa \qquad \cdots \qquad (6)$$

この式(6)を満足するように頂点屈折力 Ps、加入度 Paおよびベースカーブ Pbを選択することにより、メニスカス形状の累進多焦点レンズ 10とすること ができ、顔面にフィットする眼鏡レンズを提供できる。

〔実施例2〕

図10に、本発明の眼球側の面2に累進屈折面5およびトーリック面6の特性を設けた累進多焦点レンズ10を示してある。なお、以降においては、眼球側の面2に形成される視力補正特性および乱視矯正特性の両方の機能を備えた本例の累進屈折面と区別するために、眼球側の面が所望の視力補正特性(乱視矯正特性以外の特性)を発揮することのみを目的として設定された累進屈折面をオリジナル累進屈折面と呼び、眼球側の面が所望の乱視矯正特性を発揮することのみを目的として設定されたトーリック面をオリジナルトーリック面と呼ぶことにする。

本例の累進多焦点レンズ10は、図13にフローチャートを用いて示すような 手順で設計され製造される。まず、ステップST1において、ユーザーの老視の 程度や眼鏡の使い方などの状況に合わせたパラメータによってオリジナル累進屈 折面を求め、その結果を座標あるいは曲率などとして記憶する。これと前後して 、ステップST2において、ユーザーの乱視を矯正するためのオリジナルトーリ ック面を求め、その結果を曲率として記憶する。もちろん、座標として記憶する

とも可能である。そして、ステップST3において、ステップST1およびST

2の結果を用いて、視力補正特性および乱視矯正特性を備えた眼球側の面の各座標を求める。本例においては、ステップST3において、上述したような次の合成式(5)を用い眼球側の面2の2座標の値2を求めている。

$$Z = \frac{(Cp+Cx) X^{2} + (Cp+Cy) Y^{2}}{1 + \sqrt{(1 - (Cp+Cx)^{2} X^{2} - (Cp+Cy)^{2} Y^{2})}}$$
... (5)

そして、この合成式(5)を用いることにより、図28に示した従来の累進多焦点レンズと同様に、視力の補正のために乱視の矯正を行う機能を備えた累進多焦点レンズを提供できるようにしている。

図11に、図29に示した物体側の面3に累進屈折面を設け眼球側の面2にトーリック面を設けた従来の累進多焦点レンズに対応する、本発明の累進多焦点レンズ10の非点収差図を示してある。また、図12に本例の累進多焦点レンズ10の2座標の値を示してある。上記の式(5)を用いて図6に示したオリジナル累進屈折面5と、図30に示したオリジナルトーリック面6を合成することにより、図12に示したような2座標の値2を備えた眼球側の面2を合成することができる。この眼球側の面2と球面状の物体側の面3を用いて本例の累進多焦点レンズ10が形成されており、図11に示すような図29とほぼ同一の非点収差特性を備えた乱視矯正用の累進多焦点レンズを得ることができる。従って、本発明により、物体側の面3に累進屈折面が設けられ眼球側の面2にトーリック面が設けられた従来の累進多焦点レンズと同等の視力補正能力と乱視矯正能力を備えた累進多焦点レンズ10を得ることができる。

このように、本例においては、眼球側の面に視力補正用の累進屈折

面の曲率に加え乱視矯正用のトーリック面の曲率を付加でき、眼球側の面が乱視 矯正特性も有するように、すなわち、円柱屈折力を有するようにすることができ る。従って、視力補正能力と乱視矯正能力を備えた累進屈折面を眼球側に用意で きるので、視力補正能力と乱視矯正能力に加え、遠用部11と近用部12の倍率 差を少なくでき、像の揺れや歪みが改善された累進多焦点レンズ10を提供する ことができる。本例の累進多焦点レンズ10の遠近の倍率差は、図14に示すように、従来のレンズと比較すると、90度方向および180度方向のいずれにおいても12~13%は改善できており、本発明により、乱視矯正用の累進多焦点レンズにおいても、揺れや歪みを少なくできることが判る。従って、本例の累進多焦点レンズ10を眼鏡フレームに沿って玉型加工することにより、視力と乱視を矯正でき、像の揺れや歪みの非常に少ない眼鏡レンズ9を提供することが可能となる。このため、本発明の眼鏡レンズ9により、乱視を持ったユーザーに対しても快適な視野を提供することができる。

なお、図11および図12に示した累進多焦点レンズ10は、物体側の面3の 屈折力を示すベースカーブPbは4.00Dで一定となっている。眼球側の面2 は、トーリック面を合成する前の累進屈折面5が実施例1と同じく遠用部11の 平均面屈折力が6.00D、近用部12の平均面屈折力が4.00D、加入度数 Paが2.00Dに設定されており、これに対し、乱視軸が90度で、球面屈折力 Sが-2.00D、円柱屈折力Cが-2.00Dのトーリック面が合成されている。また、レンズの中心厚さtが3.0mm、レンズ径dが70.0mmとなっている。

図15に、上記の合成式(5)を用いる代わりに、図6に示したオリジナル累 進屈折面のz座標の値に、図30に示したオリジナルトー

リック面の z 座標の値を加えて眼球側の面 2 を形成した累進屈折面を備えたレンズ19を示してある。また、図16にこのレンズ19の非点収差図を示し、図17にこのレンズ19の眼球側の面 2 の z 座標を示してある。オリジナル累進屈折面の z 座標の値に、オリジナルトーリック面の z 座標の値を加えることによっても視力補正特性および乱視矯正特性を備えた累進屈折面を形成することは可能である。しかしながら図16から判るように、上述した合成式(5)を用いない場合は、図29に示した従来の乱視矯正用の累進多焦点レンズと同等の非点収差を得ることが難しく、従来の乱視矯正用の累進多焦点レンズと全く同等の視力の補正と乱視矯正能力は得にくいことが判る。

この様子は、図18に示したそれぞれの累進多焦点レンズの主注視線14に沿

った非点収差の変化にも現れている。図18には、図29に示した従来の乱視矯正用の累進多焦点レンズ1の主注視線14に沿った非点収差の絶対値を黒丸の破線31で示してあり、合成式(5)を用いて形成した図11の乱視矯正用の累進多焦点レンズ10の主注視線14に沿った非点収差の絶対値を黒丸の実線32で示してある。本図から判るように、合成式(5)を用いて眼球側の面2を合成した本例の累進多焦点レンズ10においては、主注視線のほぼ全域にわたって従来の累進多焦点レンズ10においては、主注視線のほぼ全域にわたって従来の累進多焦点レンズ1と同様に、乱視矯正を目的とした視力補正能力を害することのない2Dの非点収差が非常に安定して確保できている。これに対し、オリジナル界進屈折面の座標にオリジナルトーリック面の座標を単純に加えた図16のレンズ19の累進屈折面においては、図18に黒四角の破線33で示すように、主注視線に沿って乱視矯正を目的とした2Dの非点収差が得られてはいるが、合成式(5)を用いたレンズ10に比較すると安定した非点収差を確保することが難しくなっている。特に、レンズ19の周辺部において非点収

差の変動が大きく、乱視矯正用の非点収差を確保することが難しい。また、非点収差の変動も比較的大きいので、合成式(5)を用いて製造した累進多焦点レンズ10と比較すると主注視線に沿って眼球を動かした際に像が揺れたり歪みやすい。このように、合成式(5)を用いてオリジナル累進屈折面とオリジナルトーリック面とを合成することにより、いっそう快適で揺れの少ない視野の確保された累進多焦点レンズを提供できることが判る。

なお、上記では、レンズの上下方向(AXIS90度)にトーリック面の球面 屈折力を設定した処方を施した場合(すなわち、レンズの左右方向にトーリック 面の円柱屈折力を設定した処方を施した場合)を例に示しているが、本発明はこ れに限定されないことはもちろんである。すなわち、xy軸の方向は上述した方 向にかぎらす、適当な方向に設定できることができ、その座標系で上述した処理 を行うことができる。例えば、レンズの左右方向にトーリック面の球面屈折力を 設定した処方を施す場合であっても、それに合わせてxy座標のx軸とy軸の方 向を上記に示した例に対しそれぞれ左に90度回転させる操作を施すだけで本実 施例の式(5)を用いた合成方法を適用することができる。さらに、レンズの任 意の方向(斜めの方向を含む)にトーリック面の球面屈折力を設定した処方を施す場合であってもx y座標のx 軸とy 軸の方向を上記に示した例に対しそれぞれ左に α 度(α は 0 \sim 3 6 0 度の任意の角度)回転させる操作を施すだけで本実施例の式(5)を用いた合成方法を適用できる。

このような場合には、まず、実施例1に示すような乱視矯正能力をもたない累進屈折面(オリジナル累進屈折面)を決定する工程を行うことは上述した通りである。そして、その後の式(5)の計算にあっては、オリジナル累進屈折面を表現する座標系とトーリック面を表現

する座標系とに同じ座標系を用いる必要がある。従って、乱視矯正能力を持たないオリジナル累進屈折面の決定にあたっては、トーリック面の表現に合致した座標系、すなわち、トーリック面の球面屈折力を設定した方向を加味して上記の例に対し左に α 度回転した座標系を用いて、乱視矯正能力を持たないオリジナル累進屈折面を表現できるようにすることが計算を簡便にする点から望ましい。

[その他の実施例]

図19から図24に、他の条件で本発明の合成式(5)を用いて乱視矯正用の累進多焦点レンズ10を形成した例を示してある。図19は、オリジナル累進屈折面5とオリジナルトーリック面6が最も球面に近い状態のものを合成式(5)で合成して形成した本発明の累進多焦点レンズ10の非点収差を示してある。本例の累進多焦点レンズ10は、球面屈折力Sが0.00D、円柱屈折力Cが-0.25D、乱視軸45度および加入度Paが0.50Dで設計されており、図20に同じ条件で設計された従来の累進多焦点レンズ1の非点収差を示してある。図19および図20を比較して判るように、合成式(5)を用いることにより、従来の累進多焦点レンズ1とほぼ同等の非点収差を持った累進多焦点レンズ10が得られており、視力の補正と乱視矯正の能力については従来と同等の性能を持った累進多焦点レンズを得ることができる。さらに、本例の累進多焦点レンズ10は、眼球側の面2に累進屈折面5とトーリック面6の機能を発揮する曲率を付与してあるので、物体側の面3はベースカーブが一定した球面にすることができる。従って、上述した実施例と同様に遠用部と近用部との倍率差を小さくでき、

また、累進部の倍率変動も小さくできるので像の揺れや歪みの少ない快適な視野 をユーザーに提供することができる。

この例においても、オリジナル累進屈折面とオリジナルトーリック面の z 座標の値を単純に加算して眼球側の面 2 を形成したレンズ 1 9 の非点収差を図 2 1 に示してある。この図に示した非点収差の状態を図 1 9 および図 2 0 の非点収差の状態と比較すると、合成式 (5) を用いることにより、非点収差においては従来の累進多焦点レンズ 1 と同様の性能を備えたレンズを提供できることが判る。従って、本発明により像の揺れや歪みを小さくできるので、従来の累進多焦点レンズに比べいっそう快適に眼鏡レンズとして装着できる累進多焦点レンズを提供することができる。

図22は、オリジナル累進屈折面5とオリジナルトーリック面6が最も球面から離れた状態のものを合成式(5)で合成して形成した本発明の累進多焦点レンズ10の非点収差を示してあり、合成された眼球側の面2の2座標の変動が最も大きくなる本発明の累進多焦点レンズの例である。本例の累進多焦点レンズ10は、球面屈折力Sが0.00D、円柱屈折力Cが-6.00D、乱視軸45度および加入度Paが3.50Dで設計されており、図23に同じ条件で設計された従来の累進多焦点レンズ1の非点収差を示してある。図22および図23を比較して判るように、合成式(5)を用いることにより、本例においても従来の累進多焦点レンズ1とほぼ同等の非点収差を持った累進多焦点レンズ10を得ることができる。このように、本発明の合成式(5)は、加入度Paが0.5~3.5Dの累進屈折面5と、円柱屈折力Cが0.25~6.00Dのトーリック面6の全ての範囲の面を合成するのに有効である。従って、本発明の合成式(5)を用いることにより、眼球側の面2に累進屈折面を備え、像の揺れや歪みが大幅に改善された乱視矯正用の累進多焦点レンズを提供することができ

る。

この例においても、図24に累進屈折面とトーリック面の z 座標を加算して眼球側の面2を形成したレンズ19の非点収差を示してある。本図から判るように

、本例においてもオリジナル累進屈折面とオリジナルトーリック面の z 座標を加えたレンズと比較し、合成式(5)を用いることにより、より非点収差の改善された内面累進多焦点レンズを得ることができる。

以上に説明したように、本発明の累進多焦点レンズにおいては、累進屈折面を 眼球側の面に設定することにより、物体側の面を非球面とせざるを得ない設計から開放し、物体側の面をベースカーブが一定の球面で構成できるようにしている 。従って、物体側の面に起因するシェープ・ファクターMsによる倍率MSの変動を防止することができるので、遠用部と近用部の倍率差を低減することが可能になる。このため、近年、累進屈折面の設計技術が進み、累進多焦点レンズに現れる非点収差を改善することにより像の揺れや歪みが限界まで抑制された状況の中で、本発明により、さらに遠用部と近用部との倍率差に起因する像の揺れや歪みを改善できる累進多焦点レンズを提供することができる。特に、遠用部と近用部の屈折力の差の大きな加入度の高い累進多焦点レンズにおいて、本発明の累進多焦点レンズを用いることにより、像の揺れや歪みを大幅に改善することができる。従って、本発明により、像の揺れや歪みに悩まされている加入度の大きな累進多焦点レンズのユーザーに対し快適な視野を提供することが可能になる。

また、本発明においては、眼球側の面に累進屈折面と乱視矯正用のトーリック 面を合成して所定の性能を発揮できる合成式を提供してお

り、この合成式を用いることにより、乱視矯正用の累進多焦点レンズにおいても、累進屈折面を眼球側の面に設けて像の揺れや歪みを改善することができる。従って、本発明により、乱視矯正の有無に係わらずユーザーに対し揺れや歪みが抑制された快適な視野を提供できる累進多焦点レンズを実現することができる。本発明の合成式を用いることにより、本発明の累進多焦点レンズを、これまでのどのような累進面設計のレンズに対しても適用でき、揺れや歪みの改善といった本発明の効果を得ることができる。従って、従来、物体側の面に累進屈折面が設けられて市販されていた累進多焦点レンズのシリーズを全て眼球側に累進屈折面を設けたシリーズとして置き換えて市販することが可能であり、全てのユーザーに対して快適で明るい視野を提供することができる。

さらに、本発明の累進多焦点レンズにおいては、眼球側の面に累進屈折面およびトーリック面を設定できるので、物体側の面を自由な目的で使用することができる。上述したように、物体側の凸面をベースカーブの一定したファッショナブルな球面として像の揺れや歪みを防止するとともにファッション性に富んだ眼鏡レンズを提供することが可能になる。また、レンズ全体の非点収差を改善するために、物体側の凸面を回転軸対称な非球面とすることも可能である。特開平2-289818号には、物体側の凸面として、回転軸対称の対称軸の少なくとも近傍においては対称軸からレンズ外周方向に曲率が実質的に増加する非球面状の凸面を採用することにより、レンズの縁厚を薄くでき、これと共に非点収差を改善できることが開示されている。このような回転軸対称非球面の凸面を本発明の累進多焦点レンズの凸面に採用することも可能である。さらに、物体側の凸面としては球面または回転軸対称な非球面に限定されるものではなく、非点収差などのレン

ズの光学的な性能をさらに向上させるための非球面、ユーザーの個性に合ったファッショナブルな非球面を物体側の凸面を設けることも可能である。このように、本発明により、累進多焦点レンズとしての光学的な性能にファッション性を与えるための非球面を凸面に設けることも可能である。従って、本発明の累進多焦点レンズを眼鏡レンズに加工することにより、累進多焦点レンズとしての光学的な性能にファッショナブルな個性の主張を加味した眼鏡レンズを提供することも可能であり、さらに眼鏡レンズの物体側の面の用途を様々に広げることができる

なお、本明細書に記載した好ましい実施例は例示的なものであり、限定的なものでないことはもちろんである。本発明の範囲は、添付の特許請求の範囲によって示すものであり、本発明の精神および範囲内に含まれる全ての変形例は本発明の請求の範囲に含まれるものである。

産業上の利用可能性

本発明は、眼鏡レンズとして用いられる累進多焦点レンズに関するものであり、本発明により、従来の累進多焦点レンズと同等に老視補正機能と乱視矯正機能

に加えて、遠用部と近用部の倍率差の少ない、ユーザーに対し像の揺れや歪みが 大幅に低減された明るく快適な視野を提供できる累進多焦点レンズを実現できる

【図1】

図 1

【図2】

図2

	凹面菜進(本発明)	凸面累進(従来)
遠用の倍率	1. 047	1. 047
近用の倍率	1. 097	1. 108
遠近の倍率差	0.050	0. 061

[図3]

加入度(D)	凹面累進(本発明)	凸面累進(従来)
0. 50	0, 008	0. 009
0. 75	0. 011	0. 013
1. 00	0. 015	0.018
1. 25	0.019	0.022
1. 50	0.023	0. 027
1. 75	0. 027	0. 032
2. 00	0. 031	0. 036
2. 25	0. 035	0. 041
2. 50	0. 039	0.046
2. 75	0. 043	0. 051
3. 00	0.048	0.055
3. 25	0.052	0, 060
3. 50	0. 056	0.065

図4】

図4

【図5】

図5

【図6】

図6

Z座標(mm)

【図7】

[図8]

【図9】

【図10】

【図11】

図11

【図12】

Z座標(mm)

【図13】

図13

【図14】

図14

	凹面累進(本発明) 90g旃 180g姉		凸面累進(従来) 90g崩 180g崩	
遠用の倍率	0. 976	0. 947	0. 976	0. 947
近用の倍率	1. 007	0. 976	1. 011	0. 980
遠近の倍率差	0, 031	0, 029	0. 035	0. 033

【図15】

図15

【図16】

【図17】

Z座標 (mm)

【図18】

主注視線の収差推移 (S-2.00 C-2.00 AX90°)

【図19】

【図20】

【図21】

[図22]

【図23】

図23

(46)

【図24】

図24

【図25】

図25

【図26】

図26

【図27】

Z座標(mm)

【図28】

図28

【図29】

【図30】

Z座標(mm)

【国際調査報告】

国際出願番号 PCT/JP96/02973 国際調査報告 発明の風する分野の分類(国際特許分類(IPC)) A. Int. C1° G02C 7/06 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. C1° G02C 7/06 最小限資料以外の資料で調査を行った分野に含まれるもの 日本国実用新案公報1926-1996 日本国公開実用新築公報1971-1996 日本国景録実用新菜公報1994-1996 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) 関連すると認められる文献 引用文献の 関連する カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 JP、06-118353、A (山口 喜古) 28. 4月. 1994 (28. 04. 1-3, 7, 16 94) (ファミリーなし) Y JP、02-289818、A (セイコーエプソン株式会社) 29. 11月1990 3. 7 (29.11.90)371460, A2 & EP, & EP. 371460, A3 & US, 5050979, A & EP. 371460, B1 & DE, 68921432, CO & DE, 68921432, T2 Y JP、57-158829、A (株式会社保谷レンズ) 30. 9月. 1982 (30 16 .09.82& EP. 61918, A1 & AU, 8212482, A1 & AU, 534193, B2 & EP. 61918, B1 □ C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。 引用文献のカテゴリー の日の後に公表された文献 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって もの て出願と矛盾するものではなく、発明の原理又は理 「E」先行文献ではあるが、国際出版日以後に公表されたも 論の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明 「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以 文献(理由を付す) 上の文献との、当業者にとって自明である組合せに 「〇」口頭による開示、使用、展示等に含及する文献 よって進歩性がないと考えられるもの 「PI国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献 国際調査を完了した日 国際調査報告の発送日 17.12.96 06.12.96 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 2 H 6605 日本国特許庁 (ISA/JP) 平井 聡子 郵便番号100 東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 3232

(注)この公表は、国際事務局(WIPO)により国際公開された公報を基に作成したものである。

なおこの公表に係る日本語特許出願(日本語実用新案登録出願)の国際公開の 効果は、特許法第184条の10第1項(実用新案法第48条の13第2項)に より生ずるものであり、本掲載とは関係ありません。