UCS 1625 - Foundations of Data Science Assignment-2

Name: S. Nachammai

Class: CSE - B

Register Number: 185001112

BREAST CANCER CLASSIFICATION

1) Implement Support Vector Machine in Python for a sample dataset

Breast Cancer Classification Using SVM

CODE:

#Import libraries

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline from sklearn.model selection import train test split df cancer=pd.read csv('data.csv')

First 5 variables (features) plotted sns.pairplot(df cancer, hue = 'target', vars = ['mean radius', 'mean texture', 'mean perimeter', 'mean area', 'mean smoothness'])

0.0 (Blue) = Malignant (Cancer)

#Benign and malignant count in our dataset

df_cancer['target'].value_counts()
sns.countplot(df cancer['target'], label = "Count")

We have 212 - Malignant, and 357 - Benign

#Correlation between features

plt.figure(figsize=(20,12)) sns.heatmap(df cancer.corr(), annot=True)

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff7be008cc0>

#Model Training

X = df_cancer.drop(['target'], axis = 1)
y = df_cancer['target']
#80%-Training & 20%-Testing

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random state = 20)

#SVM model

from sklearn.svm import SVC
svc_model = SVC()
svc_model.fit(X_train, y_train)
#prediction
y_predict = svc_model.predict(X_test)

#Confusion Matrix

from sklearn.metrics import classification_report, confusion_matrix cm = np.array(confusion_matrix(y_test, y_predict, labels=[1,0])) confusion = pd.DataFrame(cm, index=['is_cancer', 'is_healthy'], columns=['predicted_cancer', 'predicted_healthy'])

confusion

Out[30]:		predicted_cancer	predicted_healthy
	is_cancer	66	0
	is_healthy	1	47

sns.heatmap(confusion, annot=True)

Out[31]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff7b4c2b198>

#Classification Report

print(classification report(y test, y predict))

In [32]: print(classification_report(y_test,y_predict))

	precision	recall	f1-score	support
0.0 1.0		0.98 1.00	0.99 0.99	48 66
accuracy macro avg weighted avg	0.99	0.99 0.99	0.99 0.99 0.99	114 114 114

We have a very high accuracy of **0.99** with only one false prediction.

Breast Cancer Classification Using K - Means Clustering

CODE:

#Import libraries

import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler from sklearn.cluster import Kmeans from sklearn.metrics import classification_report, confusion_matrix

df=pd.read csv('data.csv')

#Scaling the datasets

scaler=StandardScaler()
scaled data=scaler.fit transform(data)

#Visualizing the data

x=scaled_data[:,0]
y=scaled_data[:,1]
z=scaled_data[:,2]

plt.figure(figsize=(10,10))
plt.subplot(221)
plt.title('First componenet of PCA')
plt.hist(x)
plt.subplot(222)
plt.title('Second componenet of PCA')
plt.hist(y)
plt.subplot(223)
plt.title('Third componenet of PCA')
plt.hist(z)

#K-Means Clustering

k_means=KMeans(n_clusters=2)
pred_clusters=k_means.fit_predict(trans_data)
k=[2,3,5]
error_list=[]
for k_val in k:
 k_means=KMeans(n_clusters=k_val)
 k_means.fit_predict(trans_data)
 error_list.append(k_means.inertia_)
pd.DataFrame(error_list,k)

#Plotting curve between SSE and K

plt.plot(k,error list)

We can see that at K=3 the SSE error is less

#Visualize the data and the centroid using k=3

```
pred_clusters=k_means.fit_predict(trans_data)
centers=k_means.cluster_centers_

df_new=pd.DataFrame(trans_data,columns=['col1','col2','col3'])
df_new['clusters']=pred_clusters
data0=df_new[df_new['clusters']==0]
data1=df_new[df_new['clusters']==1]
```

#Plotting clusters

k means=KMeans(n clusters=2)

plt.figure(figsize=(8,8))
plt.scatter(data0['col1'],data0['col2'],color='blue',label='1st cluster')
plt.scatter(data1['col1'],data1['col2'],color='orange',label='2nd cluster')
plt.scatter(centers[:,0],centers[:,1],marker='*',color='black',label='centroid')
plt.xlabel('Fisrt component')
plt.ylabel('Second component')
plt.legend()

print(confusion_matrix(df_new['clusters'],k_means.labels_))
print(classification_report(df_new['clusters'],k_means.labels_))

OUTPUT:

Confusion Matrix

```
In [25]: print(confusion_matrix(df_new['clusters'],k_means.labels_))
      [[380     0]
      [ 0     189]]
```

Classification Report

```
In [26]: print(classification report(df new['clusters'],k means.labels ))
                       precision
                                    recall f1-score
                                                       support
                    0
                            1.00
                                      1.00
                                                1.00
                                                           380
                    1
                            1.00
                                      1.00
                                                1.00
                                                           189
                                                           569
                                                1.00
             accuracy
            macro avq
                            1.00
                                      1.00
                                                1.00
                            1.00
                                      1.00
                                                1.00
                                                           569
         weighted avg
In [27]: df new['clusters']=np.where(df new['clusters']==1,'B','M')
In [28]: df new['clusters'].value counts()
Out[28]: M
              380
         R
              189
         Name: clusters, dtype: int64
```

We have obtained a model with a very high accuracy

3)Write down the applications of Hidden Markov Model. Tabulate the differences and similarities of Bayesian and Markov Networks.

Applications of Hidden Markov Model:

- -> Human identification using Gait
- -> Human action recognition from Time Seguential Images
- -> Facial expression identification from videos
- -> Video analysis and tracking
- -> Modeling and analyzing biological sequences
- -> Speech and gesture recognition

<u>Similarities between Bayesian and Markov Networks:</u>

- 1. Probabilistic transitions between these states
- 2. Next state determined only by the current state (Markov property)
- 3. Finite number of states
- 4. Representation of dependencies

Differences between Bayesian and Markov Networks:

Hidden Markov Model	Bayesian Network
Markov network can represent cyclic dependencies	Bayesian network cannot represent cyclic dependencies
Markov network is an undirected graphical model	Bayesian network is a directed graphical model
The main weakness of is their inability to represent induced and non-transitive dependencies; two independent variables will be directly connected by an edge, merely because some other variable depends on both. As a result, many useful independencies go unrepresented in the network.	Bayesian networks use the richer language of directed graphs, where the directions of the arrows permit us to distinguish genuine dependencies from spurious dependencies induced by hypothetical observations.
The general idea of any Markov Process is that "given the present, future is independent of the past"	The general idea of any Bayesian method is that "given the prior, future is independent of the past