

Interpolation

- Interpolation is a process of computing intermediate values of an unknown function f(x) from a set of given values of that function.
- Let y = f(x) be a function of given by the values of $y_0, y_1, y_2, ..., y_n$ which it takes for the values $x_0, x_1, x_2, ... x_n$ of the independent variable x.
- If the given function f(x) is totally unknown or complicated, it is desirable to replace the given function by another which can be easily handled.
- Let $\phi(x)$ denotes an arbitrary simpler function so constructed that it takes the same values as f(x) for the values $x_0, x_1, x_2, ..., x_n$.
- Then if f(x) is replaced by $\phi(x)$ over a given interval, the process constitutes interpolation, and the function $\phi(x)$ is a formula of interpolation.

Interpolation

- The $\phi(x)$ can take a variety of forms.
- When $\phi(x)$ is a polynomial, the process of representing f(x) by $\phi(x)$ is called parabolic or polynomial interpolation.
- When $\phi(x)$ is a finite trigonometric series, the process is trigonometric interpolation.
- Similarly $\phi(x)$ may be a series of exponential function, Legendre polynomials, Bessel function, etc.
- In practical problems we always choose for $\phi(x)$ the simplest function which will represent the given function over the interval in question.

Interpolation: Justification

- The justification for replacing a given function by a polynomial rest on Weierstrass's [1885] theorem stated below:
 - Every function which is continuous in an interval (a, b) can be represented in that interval, to any desired degree of accuracy, by a polynomial.
 - That is, it is possible to find a polynomial P(x) such that $|f(x) P(x)| < \varepsilon$ for every value of x in the interval (a, b), where ε is the desired accuracy and $\varepsilon > 0$.

Interpolation: Justification

- To justify the replacement of a given trigonometric function Weierstrass's [1885] theorem states that:
 - Every continuous trigonometric function of period 2π can be represented by a finite trigonometric series of the form

$$g(x) = a_0 + a_1\sin(x) + a_2\sin(2x) + \dots + a_n\sin(nx) + b_1\cos(x) + b_2\cos(2x) + \dots + b_n\cos(nx)$$

That is, it is possible to find a trigonometric function g(x) such that $|f(x) - g(x)| < \varepsilon$ for every value of x in the interval 2π where ε is the desired accuracy and $\varepsilon > 0$.

Forward Differences

- If $y_0, y_1, y_2, ..., y_n$ denote a set of values of any function y = f(x), then $y_1 y_0, y_2 y_1, y_3 y_2, ..., y_n y_{n-1}$ are called the differences of the function y.
- We denote these differences by Δy_0 , Δy_1 , Δy_2 etc., where $\Delta y_0 = y_1 y_0$, $\Delta y_1 = y_2 y_1$, ..., $\Delta y_{n-1} = y_n y_{n-1}$, $\Delta y_n = y_{n+1} y_n$.
- Here, Δ is called the forward difference operator and Δy_0 , Δy_1 , Δy_2 , ..., Δy_n are called first forward differences.

Forward Differences

The differences of these first forward differences are called second forward differences and are denoted by $\Delta^2 y_0 = \Delta y_1 - \Delta y_0$, $\Delta^2 y_1 = \Delta y_2 - \Delta y_1$, etc.

 Similarly, one can define third forward differences, fourth forward differences, etc.

Forward Differences

Thus,

$$\Delta^{2} y_{0} = \Delta y_{1} - \Delta y_{0} = y_{2} - y_{1} - (y_{1} - y_{0}) = y_{2} - 2y_{1} + y_{0}$$

$$\Delta^{3} y_{0} = \Delta^{2} y_{1} - \Delta^{2} y_{0} = y_{3} - 2y_{2} + y_{1} - (y_{2} - 2y_{1} + y_{0})$$

$$= y_{3} - 3y_{2} + 3y_{1} - y_{0},$$

and

$$\Delta^4 y_1 = \Delta^3 y_1 - \Delta^3 y_0 = y_4 - 3y_3 + 3y_2 - y_1 - (y_3 - 3y_2 + 3y_1 - y_0)$$
$$= y_4 - 4y_3 + 6y_2 - 4y_1 + y_0$$

Forward (Diagonal) Difference Table

 Δ^2 Δ^3 Δ^5 \boldsymbol{x} y x_0 y_0 Δy_0 $\Delta^2 y_0$ x_1 y_1 Δy_1 $\Delta^3 y_0$ $\Delta^2 y_1 \qquad \qquad \Delta^4 y_0$ x_2 y_2 Δy_2 $\Delta^3 y_1$ $\Delta^2 y_2$ $\Delta^4\, y^{}_1$ y_3 x_3 $\Delta y_3 \qquad \Delta^3 y_2$ $\Delta^2 y_3 \qquad \Delta^4 y_2$ \mathcal{X}_4 y_4 Δy_4 $\Delta^3 y_3$ $\Delta^2 y_4$ \mathcal{X}_{5} y_5 Δy_5 x_6 y_6

Problem

Given the set of values

X	10	15	20	25	30	35
У	19.97	21.51	22.47	23.52	24.65	25.89

form the difference table and write down the values of

$$\Delta y_{10}$$
,

$$\Delta y_{10}$$
, $\Delta^2 y_{20}$, $\Delta^3 y_{15}$ and $\Delta^5 y_{10}$

$$\Delta^3 y_{15}$$

$$\Delta^5 y_{10}$$

$$\Delta y_{10} = y_{15} - y_{10} = 21.51 - 19.97 = 1.54$$

$$\Delta^2 y_{20} = \Delta^2 y_{25} - \Delta^2 y_{20} = (\Delta y_{30} - \Delta y_{25}) - (\Delta y_{25} - \Delta y_{20})$$

$$= \Delta y_{30} - 2\Delta y_{25} + \Delta y_{20} = 24.65 - 2 * 23.52 + 21.51 = -0.08$$

Problem

Given the set of values, find the followings

Backward (Horizontal) Differences

- The differences y_1 y_0 , y_2 y_1 , ..., y_n y_{n-1} are called Backward or Horizontal Differences, if they are denoted by ∇y_1 , ∇y_2 , ..., ∇y_n
- Here, $\nabla y_1 = y_1 y_0$, $\nabla y_2 = y_2 y_1$, ... $\nabla y_n = y_n y_{n-1}$,
- lacktriangle V is called the backward difference operator.
- In a similar way, one can define backward differences of higher orders.
- Thus we obtain,

$$\nabla^2 y_2 = \nabla y_2 - \nabla y_1 = y_2 - y_1 - (y_1 - y_0) = y_2 - 2y_1 + y_0,$$

$$\nabla^3 y_3 = \nabla^2 y_3 - \nabla^2 y_2 = y_3 - 3y_2 + 3y_1 - y_0, \quad etc$$

Backward (Horizontal) Difference Table

x	У	∇	∇^2	∇^3	∇^4	∇ ⁵	∇^6
$\overline{x_0}$	y_0	-					
x_1	\mathcal{Y}_1	∇y_1					
x_2	y_2	∇y_2	$\nabla^2 y_2$				
x_3	y_3	∇y_3	$\nabla^2 y_3$	$\nabla^3 y_3$			
x_4	${\cal Y}_4$	∇y_4	$\nabla^2 y_4$	$\nabla^3 y_4$	$\nabla^4 y_4$		
X_5	y_5	∇y_5	$\nabla^2 y_5$	$\nabla^3 y_5$	$ abla^4 y_5$	$\nabla^5 y_5$	
x_6	y_6	∇y_6	$ abla^2 y_6$	$\nabla^3 y_6$	$ abla^4 y_6$	$ abla^5 y_6$	$\nabla^6 y_6$

Problem

Given the set of values

X	10	15	20	25	30	35
У	19.97	21.51	22.47	23.52	24.65	25.89

form the difference table and write down the values of

$$\nabla y_{20}$$
,

$$\nabla y_{20}$$
, $\nabla^2 y_{25}$, $\nabla^3 y_{30}$ and $\nabla^5 y_{35}$

$$\nabla^3 y_{30}$$

$$\nabla^5 y_{35}$$

Problem

Given the set of values, find the followings

$$\nabla y_{10}$$
, $\nabla^2 y_{20}$, $\nabla^3 y_{15}$ and $\nabla^5 y_{10}$
x y ∇y_{10} $\nabla^2 y_{10}$ $\nabla^3 y_{15}$ $\nabla^4 y_{10}$ $\nabla^5 y_{10}$
10 19.97
15 21.51 1.54
20 22.47 0.96 -0.58
25 23.52 1.05 0.09 0.67
30 24.65 1.13 0.08 -0.01 -0.68
35 25.89 1.24 0.11 0.03 0.04 0.72

Central Differences and Central Difference Table

The central difference operator δ is defined by the relations

$$y_{1} - y_{0} = \delta y_{\frac{1}{2}}, \qquad y_{2} - y_{1} = \delta y_{\frac{3}{2}}, \dots, y_{n} - y_{n-1} = \delta y_{n-\frac{1}{2}}$$

$$x_{0} \quad y_{0} \quad \delta y_{\frac{1}{2}}$$

$$x_{1} \quad y_{1} \quad \delta^{2} y_{1} \quad \delta^{3} y_{\frac{3}{2}}$$

$$x_{2} \quad y_{2} \quad \delta^{2} y_{2} \quad \delta^{4} y_{2} \quad \delta^{5} y_{\frac{5}{2}}$$

$$x_{3} \quad y_{3} \quad \delta^{2} y_{3} \quad \delta^{3} y_{\frac{5}{2}} \quad \delta^{5} y_{\frac{5}{2}}$$

$$x_{4} \quad y_{4} \quad \delta^{2} y_{4} \quad \delta^{3} y_{\frac{5}{2}} \quad \delta^{4} y_{4} \quad \delta^{5} y_{\frac{7}{2}}$$

$$x_{5} \quad y_{5} \quad \delta^{2} y_{5} \quad \delta^{3} y_{\frac{5}{2}} \quad \delta^{4} y_{4} \quad \delta^{5} y_{\frac{7}{2}}$$

Problem

Given the set of values

X	10	15	20	25	30	35
у	19.97	21.51	22.47	23.52	24.65	25.89

form the difference table and write down the values of

$$\delta y_{10}$$
,

$$\delta y_{10}$$
, $\delta^2 y_{20}$, $\delta^3 y_{15}$ and $\delta^5 y_{10}$

$$\delta^3 y_{15}$$

$$\delta^5 y_{10}$$

Relations in the Three Difference Table

• From the three tables we can see that

$$\Delta y_0 = y_1 - y_0$$

$$\nabla y_1 = y_1 - y_0$$

$$\delta_{\frac{1}{2}} = y_1 - y_0$$

$$\Delta^{3} y_{2} = \Delta^{2} y_{3} - \Delta^{2} y_{2} = (\Delta y_{4} - \Delta y_{3}) - (\Delta y_{3} - \Delta y_{2})$$

$$= \Delta y_{4} - 2\Delta y_{3} + \Delta y_{2} = (y_{5} - y_{4}) - 2(y_{4} - y_{3}) + (y_{3} - y_{2})$$

$$= y_{5} - 3y_{4} + 3y_{3} - y_{2}$$

$$\nabla^{3} y_{5} = \nabla^{2} y_{5} - \nabla^{2} y_{4} = (\nabla y_{5} - \nabla y_{4}) - (\nabla y_{4} - \nabla y_{3})$$

$$= \nabla y_{5} - 2\nabla y_{4} + \nabla y_{3} = (y_{5} - y_{4}) - 2(y_{4} - y_{3}) + (y_{3} - y_{2})$$

$$= y_{5} - 3y_{4} + 3y_{3} - y_{2}$$

$$\Delta y_0 = \nabla y_1 = \delta_{\frac{1}{2}}$$

$$\Delta^3 y_2 = \nabla^3 y_5 = \delta^3 y_{\frac{7}{2}}$$

Relations in the Three Difference Table

Thus we obtain

$$\Delta^m y_k = \nabla^m y_{k+m} = \delta^m y_{(2k+m)/2}$$

Effect of an Error in a Tabular Value

Let y_0 , y_1 , y_2 , ... y_n be the true values of a function, and suppose the value y_3 to be effected with an error ε , so that its erroneous value is $y_3 + \varepsilon$. Then the successive differences of the y's are as shown below:

у	Δ	$oldsymbol{\Delta}^2$	Δ^3
y_0			
	Δy_0		
\mathcal{Y}_1		$\Delta^2 y_0$	
	Δy_1		$\Delta^3 y_0 + \varepsilon$
y_2		$\Delta^2 y_1 + \varepsilon$	
	$\Delta y_2 + \varepsilon$		$\Delta^3 y_1 - 3\varepsilon$
$y_3 + \varepsilon$		$\Delta^2 y_2 - 2\varepsilon$	
	$\Delta y_3 - \varepsilon$		$\Delta^3 y_2 + 3\varepsilon$
y_4		$\Delta^2 y_3 + \varepsilon$	
	Δy_4		$\Delta^3 y_3 - \varepsilon$
y_5		$\Delta^2 y_4$	
	Δy_5		
y_6			

Cont.

0

Suppose that there is an error of +1 unit in a certain tabular value. As higher differences are formed, the error spreads out fanwise, and is at the same time, considerably magnified as shown below:

y	Δ	Δ ²	Δ^3	Δ^4	Δ^5	$(x \perp y)^n = \sum_{n=0}^{\infty} \binom{n}{x^{n-k}y^k}$
0						$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$
	0					
0		0				
	0		0			
0		0		0		
	0		0		1	
0		0		1		
	0		1		- 5	
0		1		- 4		
	1		- 3		10	
1		- 2		6		
	– 1		3		– 10	
0		1		– 4		
	0		– 1		5	
0	0	0	0	1	1	
0	0	0	0	0	– 1	
0	0	0	0	0		
0		0	U			
U	30 October 2017 0	U				21

Cont.

The table shows the following characteristics:

- •The effect of an error increases with the successive differences.
- •The coefficients of the ε 's are the binomial coefficients with alternating signs.
- •The algebraic sum of the errors in any difference column is zero.
- •The maximum error in the differences is in the same horizontal line as the erroneous value.

The table in the next slide shows the effect of horizontal difference table:

Cont.

y	Δ	Δ^2	Δ^3	Δ^4	Δ^5	
3010						
	414				$-4 \ \epsilon = 178$	
3424		-36			$\varepsilon = -45$ (approximate)	
	378		-39		$\varepsilon = -45$ (approximate)	
3802		-75		178		
	303		139	\sim	-449	
4105		64		-271		
	367		-132		452	
4472		-68		181	6.0071	
	299		49		$\epsilon = -2/1$	
4771		-19		-46	$6 \epsilon = -271$ $\epsilon = -45$ (approximate)	te)
	280		3		o ie (appromina	
5051		-16				
	264					
5315						

Therefore, the actual entry is $4105 - \varepsilon = 4105 - (-45) = 4150$

Pascal's Triangle

(D:								1								
•	1:							1		1							
2	2:						1		2		1						
	3:					1		3		3		1					
Z	4:				1		4		6		4		1				
į	5:			1		5		10		10		5		1			
(5 :		1		6		15		20		15		6		1		
	7 :	1		7		21		35		35		21		7		1	
8	B: 1		8		28		56		70		56		28		8		1

Effect of an Error in a Tabular Value of Backward Interpolation

<i>x</i>	<i>y</i>	∇	∇ ²	∇³ ∇°	4
x_0	у ₀				
x_1	y 1	∇y_1			
x_2	y ₂	∇ y $_2$	$ abla^2 y_2$		
x_3	y ₃	∇y_3	$ abla^2 y_3$	$\nabla^3 y_3$	
x_4	y ₄	∇ y $_4$	$ abla^2 y_4$	$ abla^3 y_4$	$ abla^4 y_4$
<i>x</i> ₅	$y_5 + \varepsilon$	$\nabla y_5 + \varepsilon$	$\nabla^2 y_5 + \varepsilon$	$\nabla^3 y_5 + \varepsilon$	$\nabla^4 y_5 + \varepsilon$
<i>x</i> ₆	y ₆	$\nabla y_6 - \varepsilon$	$\nabla^2 y_6 - 2\varepsilon$	$\nabla^3 y_6 - 3\varepsilon$	$ abla^4 y_6 - 4 \varepsilon$
<i>x</i> ₇	y ₇	∇ y $_{7}$	$\nabla^2 y_7 + \varepsilon$	$\nabla^3 y_7 + 3\varepsilon$	$\nabla^4 y_7 + 6\varepsilon$
<i>x</i> ₈	y ₈	∇ y $_{8}$	$ abla^2 y_8$	$\nabla^3 y_8 - \varepsilon$	$ abla^4 y_8 - 4 \varepsilon$
x_9	y ₉	∇ y $_{9}$	$ abla^2 y_9$	$ abla^3 y_9$	$\nabla^4 y_9 + \varepsilon$
<i>x</i> ₁₀	y ₁₀	∇ y ₁₀	$ abla^2 y_{10}$	$\nabla^3 y_{10}$	$ abla^4 y_{10}$

- The effect of the error is the same as in the preceding table
- But in this table the first erroneous of any order is in the same horizontal line as the erroneous tabular value.

- Let y = f(x) denote a function which takes the values $y_0, y_1, y_2, ..., y_n$ for the equidistant values $x_0, x_1, x_2, ..., x_n$ of the independent variable x.
- It is required to find $\phi(x)$, a polynomial of the *n*-th degree such that y and $\phi(x)$ agree at the tabulated points (i.e., they have the same values).
- Let $\phi(x)$ denote a polynomial of the *n*-th degree.
- This polynomial can be written in the form

$$\phi(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + a_3(x - x_0)(x - x_1)(x - x_2) + a_3(x - x_0)(x - x_1)(x - x_2) + a_3(x - x_0)(x - x_1)(x - x_2)$$
+....+ $a_n(x - x_0)(x - x_1)....(x - x_{n-1})$ (1)

- We shall now determine the coefficients a_0 , a_1 , a_2 , ..., a_n , so that we can get $\phi(x_0) = y_0$, $\phi(x_1) = y_1$, $\phi(x_2) = y_2$, ..., $\phi(x_n) = y_n$.
- We know that

$$\phi(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + a_3(x - x_0)(x - x_1)(x - x_2) + a_3(x - x_0)(x - x_1)(x - x_2) + a_3(x - x_0)(x - x_1)(x - x_2)$$
+.....+ $a_n(x - x_0)(x - x_1)$(x - x_{n-1}) (1)

- We can substitute the given successive values x_0 , x_1 , x_2 , ..., x_n in equation (1).
- At the same time we can put $\phi(x_0) = y_0$, $\phi(x_1) = y_1$, $\phi(x_2) = y_2$, ..., $\phi(x_n) = y_n$.
- And let x_1 $x_0 = h$. Then, x_2 $x_0 = 2h$, etc, (since the values of x are equidistance).

• In equation (1) we have

$$\phi(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + a_3(x - x_0)(x - x_1)(x - x_2) + \dots + a_n(x - x_0)(x - x_1) \dots (x - x_{n-1})$$
(1)

• That is, at $x = x_0$ (substituting x with x_0 in equation (1)) we have

$$\phi(x_0) = a_0 + a_1(x_0 - x_0) + a_2(x_0 - x_0)(x_0 - x_1) + \dots + a_n(x_0 - x_0)(x_0 - x_1) \dots (x_0 - x_{n-1})$$

$$or, \phi(x_0) = a_0 = y_0$$

- Therefore we get, $a_0 = y_0$
- Similarly, substituting x_1 in the eq(1) we get

$$\phi(x_1) = y_1 = a_0 + a_1(x_1 - x_0) = y_0 + a_1 h$$

$$or, a_1 = \frac{y_1 - y_0}{h} = \frac{\Delta y_0}{h}$$

• Substituting x_2 in equation (1) we get,

$$y_2 = a_0 + a_1(x_2 - x_0) + a_2(x_2 - x_0)(x_2 - x_1)$$

$$= y_0 + \frac{y_1 - y_0}{h}(2h) + a_2(2h)(h)$$

$$\Rightarrow a_2 = \frac{y_2 - 2y_1 + y_0}{2h^2} = \frac{\Delta^2 y_0}{2h^2}$$

• Substituting x_3 in equation (1) we get,

$$y_3 = a_0 + a_1(x_3 - x_0) + a_2(x_3 - x_0)(x_3 - x_1) + a_3(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)$$

$$= y_0 + \frac{y_1 - y_0}{h}(3h) + \frac{y_2 - 2y_1 + y_0}{2h^2}(3h)(2h) + a_3(3h)(2h)(h)$$

$$\Rightarrow a_3 = \frac{y_3 - 3y_2 + 3y_1 - y_0}{6h^3} = \frac{\Delta^3 y_0}{3!h^3}$$

Similarly,

$$a_4 = \frac{\Delta^4 y_0}{4!h^4} \quad (Class \quad Work)$$

$$a_5 = \frac{\Delta^5 y_0}{5!h^5}, \quad a_6 = \frac{\Delta^6 y_0}{6!h^6}, \dots, a_n = \frac{\Delta^n y_0}{n!h^n}$$

Substituting in equation (1) the values a_0 , a_1 , a_2 ,... a_n , we have,

$$\phi(x) = y_0 + \frac{\Delta y_0}{h} (x - x_0) + \frac{\Delta^2 y_0}{2h^2} (x - x_0)(x - x_1) + \frac{\Delta^3 y_0}{3!h^3} (x - x_0)(x - x_1)(x - x_2) + \dots + \frac{\Delta^n y_0}{n!h^n} (x - x_0)(x - x_1) \dots (x - x_{n-1})$$
 (2)

- This is Newton's formula for forward interpolation, written in term of *x*.
- This formula can be simplified by a change of variable.

Now, we can rewrite eq(2) in the following equivalent form

$$\phi(x) = y_0 + \Delta y_0 \left(\frac{x - x_0}{1!h}\right) + \frac{\Delta^2 y_0}{2!} \left(\frac{x - x_0}{h}\right) \left(\frac{x - x_1}{h}\right) + \dots + \frac{\Delta^n y_0}{n!} \left(\frac{x - x_0}{h}\right) \left(\frac{x - x_1}{h}\right) \dots \left(\frac{x - x_{n-1}}{h}\right)$$
(3)

Now, put the following in equation (3)

$$\frac{x - x_0}{h} = u, \quad or \qquad x = x_0 + hu$$

• Then, since $x_1 = x_0 + h$, $x_2 = x_0 + 2h$, etc. we have

$$\frac{x - x_1}{h} = \frac{x - (x_0 + h)}{h} = \frac{x - x_0}{h} - \frac{h}{h} = u - 1$$

Similarly,

$$\frac{x - x_2}{h} = \frac{x - (x_0 + 2h)}{h} = \frac{x - x_0}{h} - \frac{2h}{h} = u - 2,$$

••••••

$$\frac{x - x_{n-1}}{h} = \frac{x - [x_0 + (n-1)h]}{h} = \frac{x - x_0}{h} - \frac{(n-1)h}{h} = u - n + 1$$

■ Substituting the values of $(x - x_0)/h$, $(x - x_1)/h$ etc. in equation (3)

$$\phi(x) = \phi(x_0 + hu) = g(u)$$

$$= y_0 + u\Delta y_0 + \frac{u(u-1)}{2!} \Delta^2 y_0 + \frac{u(u-1)(u-2)}{3!} \Delta^3 y_0 + \dots$$

$$+ \frac{u(u-1)(u-2)(u-3)\dots(u-n+1)}{n!} \Delta^n y_0 \qquad (4)$$

- This is the form in which Newton's formula for forward interpolation is usually written.
- The reason for the name "forward" interpolation formula since the formula contains values of the tabulated function from y_0 onward to the right (forward from y_0) and none to the left of this value.
- Because of this fact this formula is used mainly for interpolating the values of y near the beginning of a set of tabular values.

Example 1

Find the cubic polynomial which takes the following values

$$v(0) = 1$$
.

$$y(0) = 1,$$
 $y(1) = 0,$ $y(2) = 1$

$$v(2) = 1$$

and

$$y(3) = 10$$

Hence, or otherwise obtain y(0.5).

Solution.

$$\chi$$

 Δ^3

6

-1

0

9

3

10

Example 1 Cont.

Here, h = 1, and

$$y(x) = y_0 + \frac{\Delta y_0}{h}(x - x_0) + \frac{\Delta^2 y_0}{2h^2}(x - x_0)(x - x_1) + \frac{\Delta^3 y_0}{3!h^3}(x - x_0)(x - x_1)(x - x_2) + \frac{\Delta^n y_0}{n!h^n}(x - x_0)(x - x_1)\dots(x - x_{n-1})$$

$$x = y_0 + \frac{\Delta^n y_0}{3!h^3}(x - x_0)(x - x_1)(x - x_2) + \frac{\Delta^n y_0}{3!h^3}(x - x_0)(x - x_1)(x - x_2) + \frac{\Delta^n y_0}{n!h^n}(x - x_0)(x - x_1)\dots(x - x_{n-1})$$

$$0 = 1$$

$$=1+\frac{(-1)(x-0)}{1}+\frac{(x-0)(x-1)}{2(1)^2}(2)+\frac{(x-0)(x-1)(x-2)}{6(1)^3}(6)$$

$$=1-x+x(x-1)+x(x-1)(x-2)$$

$$=1-x+x^2-x+x^3-3x^2+2x$$

$$=x^3-2x^2+1$$

x	y	Δ	Δ^2	Δ^3
0	1			
		-1		
1	0		2	
		1		6
2	1		8	
		9		
3	10			

Example 1 Cont.

Therefore, the polynomial we obtained for the given tabular values is.

$$y = x^3 - 2x^2 + 1$$

Now,

$$y(0.5) = (0.5)^3 - 2*(0.5)^2 + 1 = 0.625$$

(which is the same value as that obtained by substituting x = 0.5 in the cubic polynomial above.)

The table below gives the values of tan(x) for $0.10 \le x \le 0.30$.

Find tan(0.12)

\mathcal{X}	0.10	0.15	0.20	0.25	0.30
$y = \tan x$	0.1003	0.1511	0.2027	0.2553	0.3093

Answer is 0.120537

The population of a town is given below for a range of years. Estimate the population for the year 1895.

Year : x	1891	1901	1911	1921	1931
Population: <i>y</i> (in thousands)	46	66	81	93	101

Answer: 54.85 Thousands

- Let y = f(x) denote a function which takes the values $y_0, y_1, y_2, ..., y_n$ for the equidistant values $x_0, x_1, x_2, ..., x_n$ of the independent variable x.
- It is required to find $\phi(x)$, a polynomial of the *n*-th degree such that y and $\phi(x)$ agree at the tabulated points (i.e., they have the same values).
- Let $\phi(x)$ denote a polynomial of the *n*-th degree.
- This polynomial can be written in the form

$$\phi(x) = a_0 + a_1(x - x_n) + a_2(x - x_n)(x - x_{n-1}) + a_3(x - x_n)(x - x_{n-1})(x - x_{n-2}) + a_3(x - x_n)(x - x_n)(x - x_{n-1}) + a_3(x - x_n)(x - x_n)(x - x_{n-1}) + a_3(x - x_n)(x - x_$$

- We shall now determine the coefficients a_0 , a_1 , a_2 , ..., a_n , so that we can get $\phi(x_n) = y_n$, $\phi(x_{n-1}) = y_{n-1}$, $\phi(x_{n-2}) = y_{n-2}$, ..., $\phi(x_0) = y_0$.
- We know that

$$\phi(x) = a_0 + a_1(x - x_n) + a_2(x - x_n)(x - x_{n-1}) + a_3(x - x_n)(x - x_{n-1})(x - x_{n-2}) + \dots + a_n(x - x_n)(x - x_{n-1}) \dots (x - x_1)$$
(1)

- We can substitute the given successive values x_n , x_{n-1} , x_{n-2} , ..., x_0 in equation (1).
- At the same time we can put $\phi(x_n) = y_n$, $\phi(x_{n-1}) = y_{n-1}$, $\phi(x_{n-2}) = y_{n-2}$, ..., $\phi(x_0) = y_0$.
- And let x_{n-1} $x_n = -h$. Then, x_{n-2} $x_n = -2h$, etc, (since the values of x are equidistance).

■ In equation (1) we have

$$\phi(x) = a_0 + a_1(x - x_n) + a_2(x - x_n)(x - x_{n-1}) + a_3(x - x_n)(x - x_{n-1})(x - x_{n-2}) + \dots + a_n(x - x_n)(x - x_{n-1}) \dots (x - x_1)$$
(1)

■ That is, at $x = x_n$ (substituting x with x_n in equation (1)) we have

$$\phi(x_n) = a_0 + a_1(x_n - x_n) + a_2(x_n - x_n)(x_n - x_{n-1}) + \dots + a_n(x_n - x_n)(x_n - x_{n-1}) \dots (x_n - x_1)$$

$$or, \phi(x_n) = a_0 = y_n$$

- Therefore we get, $a_0 = y_n$
- Similarly,

$$y_{n-1} = a_0 + a_1(x_{n-1} - x_n) = y_n - a_1 h$$

$$or, a_1 = \frac{y_n - y_{n-1}}{h} = \frac{\nabla y_n}{h}$$

• Substituting x_2 in equation (1) we get,

$$y_{n-2} = a_0 + a_1(x_{n-2} - x_n) + a_2(x_{n-2} - x_n)(x_{n-2} - x_{n-1})$$

$$= y_n + \frac{y_n - y_{n-1}}{h}(-2h) + a_2(-2h)(-h)$$

$$\Rightarrow a_2 = \frac{y_n - 2y_{n-1} + y_{n-2}}{2h^2} = \frac{\nabla^2 y_n}{2h^2}$$

• Substituting x_{n-3} in equation (1) we get,

$$y_{n-3} = a_0 + a_1(x_{n-3} - x_n) + a_2(x_{n-3} - x_n)(x_{n-3} - x_{n-1})$$

+ $a_3(x_{n-3} - x_n)(x_{n-3} - x_{n-1})(x_{n-3} - x_{n-2})$

$$a_3 = \frac{\nabla^3 y_n}{3! h^3}$$
 (Class Work)

Similarly,

$$a_4 = \frac{\nabla^4 y_n}{4!h^6}, ..., a_n = \frac{\nabla^n y_n}{n!h^n}$$

Substituting in equation (1) the values a_0 , a_1 , a_2 ,... a_n , we have,

$$\phi(x) = y_n + \frac{\nabla y_n}{h} (x - x_n) + \frac{\nabla^2 y_n}{2h^2} (x - x_n) (x - x_{n-1}) + \frac{\nabla^3 y_n}{3!h^3} (x - x_n) (x - x_{n-1}) (x - x_{n-2}) + \frac{\nabla^n y_n}{n!h^n} (x - x_n) (x - x_n) (x - x_{n-1}) \dots (x - x_1)$$
 (2)

- This is Newton's formula for backward interpolation, written in term of x.
- This formula can be simplified by a change of variable.

Now, we can rewrite eq(2) in the following equivalent form

$$\phi(x) = y_n + \nabla y_n \left(\frac{x - x_n}{h}\right) + \frac{\nabla^2 y_n}{2} \left(\frac{x - x_n}{h}\right) \left(\frac{x - x_{n-1}}{h}\right) + \frac{\nabla^3 y_n}{3!} \left(\frac{x - x_n}{h}\right) \left(\frac{x - x_{n-1}}{h}\right) \left(\frac{x - x_{n-2}}{h}\right) + \dots + \frac{\nabla^n y_n}{n!} \left(\frac{x - x_n}{h}\right) \left(\frac{x - x_{n-1}}{h}\right) \left(\frac{x - x_{n-2}}{h}\right) \left(\frac{x - x_{n-3}}{h}\right) \dots \left(\frac{x - x_1}{h}\right)$$
(3)

Now, put the following in equation (3)

$$\frac{x - x_n}{h} = u, \quad or \quad x = x_n + hu$$

• Then, since $x_{n-1} = x_n - h$, $x_{n-2} = x_n - 2h$, etc. we have

$$\frac{x - x_{n-1}}{h} = \frac{x - (x_n - h)}{h} = \frac{x - x_n}{h} + \frac{h}{h} = u + 1$$

Similarly,

$$\frac{x - x_{n-2}}{h} = \frac{x - (x_n - 2h)}{h} = \frac{x - x_n}{h} + \frac{2h}{h} = u + 2,$$

••••••

$$\frac{x - x_1}{h} = \frac{x - [x_n - (n-1)h]}{h} = \frac{x - x_n}{h} + \frac{(n-1)h}{h} = u + n - 1$$

• Substituting the values of $(x - x_n)/h$, $(x - x_{n-1})/h$ etc. in equation (3)

$$\phi(x) = \phi(x_n + hu) = g(u)$$

$$= y_n + u\nabla y_n + \frac{u(u+1)}{2!}\nabla^2 y_n + \frac{u(u+1)(u+2)}{3!}\nabla^3 y_n + \frac{u(u+1)(u+2)(u+3)....(u+n-1)}{n!}\nabla^n y_n$$
(2)

- This is the form in which Newton's formula for backward interpolation is usually written.
- The reason for the name "backward" interpolation formula since the formula contains values of the tabulated function from y_n onward to the left (backward from y_n) and none to the right of this value.
- Because of this fact this formula is used mainly for interpolating the values of *y* near the end of a set of tabular values.

The table below gives the values of tan(x) for $0.10 \le x \le 0.30$.

Find tan (0.26)

X	0.10	0.15	0.20	0.25	0.30
$y = \tan x$	0.1003	0.1511	0.2027	0.2553	0.3093

Answer is 0.265952

The population of a town is given below for a range of years. Estimate the population for the year 1925.

Year : x	1891	1901	1911	1921	1931
Population: <i>y</i> (in thousands)	46	66	81	93	101

Answer: 98.837 Thousands

Extrapolation

- If the n^{th} differences of a tabulated function are constant when the values of the independent variable are taken in arithmetic progression, the function is a polynomial of degree n.
- The process of finding the value of y for some value of x outside the given range is called extrapolation.
- If a tabulated value is a polynomial, then interpolation and extrapolation would give exact values.
- Newton's forward difference formula is used to extrapolate values to the right of y_n .
- Newton's Backward difference formula is used to extrapolate values to the left of y_0 .

The table below gives the values of $\tan x$ for $0.10 \le x \le 0.30$.

Find tan (0.05) and tan (0.50)

X	0.10	0.15	0.20	0.25	0.30
$y = \tan x$	x 0.1003	0.1511	0.2027	0.2553	0.3093

Solution tan (0.5) = 0.050048 and tan (5.0) = 0.545836

Example

The table below gives the values of y are consecutive terms of a series of which the number 21.6 is the 6^{th} term.

Find the first and tenth terms of the series.

\mathcal{X}	3	4	5	6	7	8	9
у	2.7	6.4	12.5	21.6	34.3	51.2	72.9

Solution

The difference table is shown in the next page

Example

X	У	Δ	Δ^2	Δ^3	Δ^4
3	2.7				
		3.7			
4	6.4		2.4		
		6.1		0.6	
5	12.5		3.0		0
		9.1		0.6	
6	21.6		3.6		0
		12.7		0.6	
7	34.3		4.2		0
		16.9		0.6	
8	51.2		4.8		
		21.7			
9	72.9				

- From the difference table, it will be seen that the third differences are constant
- Hence, the tabulated function represents a polynomial of the third degree.

Solution

$$y(1) = 0.1$$

 $y(10) = 100$