UNIVERSIDADE FEDERAL DO AMAZONAS

DISCIPLINA: LABORATÓRIO DE SISTEMA DE CONTROLE

ENSAIO 03: COMPORTAMENTO DE SISTEMAS DE 3^a ORDEM

OBJETIVOS:

- 1. Compreender o funcionamento eletromagnético de um servomotor DC com campo constante.
- 2. Identificar o comportamento transitório e permanente de um sistema de 3ª ordem
- 3. Predizer a influência de polos no comportamento transitório de um sistema de $2^{\underline{a}}$ ordem.
- 4. Realizar função de transferência e diagramas de simulação analógica
- 5. Observar o comportamento de um sistema de 3^a ordem.
- 6. Compreender o conceito de pólo dominante e utilizaá-lo para predizer o comportamento dinâmico de sistemas com ordem igual ou superior a 3.

Formulação do Problema: O desenho abaixo representa um servomotor acoplado a uma antena parabólica através de caixa de redução de engrenagem.

O modelo de estado do sistema é dado por

$$\dot{x}(t) = \begin{bmatrix} -\frac{R_a}{L_a} & -\frac{K_b}{L_a} & 0 \\ \frac{K_t}{J_{eq}} & -\frac{B_{eq}}{J_{eq}} & 0 \\ 0 & 1 & 0 \end{bmatrix} x(t) + \begin{bmatrix} \frac{1}{L_a} \\ 0 \\ 0 \end{bmatrix} u(t)$$

$$R_a - \text{Resistência de armadura} = 5 \Omega$$

$$L_a - \text{Indutância de armadura} = 200 \text{ mH}$$

$$K_b - \text{Constante de fecm do motor} = 0,08 \text{ V.s/rad}$$

$$K_t - \text{Constante de torque do motor } 10 \text{ oz.in/A}$$

$$y(t) = \begin{bmatrix} 0 & \frac{N_1 \cdot N_3}{N_2 \cdot N_4} & 0\\ 0 & 0 & \frac{N_1 \cdot N_3}{N_2 \cdot N_4} \end{bmatrix} x(t)$$

 J_m – Inércia conjunto motor + engrenagem 1 = 0,05 Kg.m²

 J_2 - Inércia engrenagem 2 + engrenagem 3 = 0,0075 Kg.m²

J₄ – Inércia do conjunto engrenagem 4 + antena 0,80 Kg.m²

 B_1 - Coeficiente de atrito eixo motor = 10 N/m/s

 $B_2 - 4.0 \text{ N/m/s}$

 $B_4 = 15 \text{ N/m/s}$

N₁ – Número de dentes da engrenagem 1

N₂ – Número de dentes da engrenagem 2

N₃ – Número de dentes da engrenagem 3

N₄ – Número de dentes da engrenagem 4

u – Tensão de armadura

x₁ – Corrente de armadura

x₂ – Velocidade angular do conjunto de engrenagens 2 e 3

x₃ – Posição angular do eixo do motor

y - velocidade angular e posição da antena

$$\boldsymbol{J}_{eq} = \boldsymbol{J}_{m} + \left(\frac{N_{1}}{N_{2}}\right)^{2} \boldsymbol{J}_{2} + \left(\frac{N_{1}N_{3}}{N_{2}N_{4}}\right)^{2} \boldsymbol{J}_{4}$$

$$B_{eq} = B_1 + \left(\frac{N_1}{N_2}\right)^2 B_2 + \left(\frac{N_1 N_3}{N_2 N_4}\right)^2 B_4$$

- $1^{\underline{a}}$) Simule o sistema para o trem de engrenagens 1 com N_1 =10, N_2 =50, N_3 =10 e N_4 =20 e uma entrada degrau unitário.
- a) No matlab declare a planta como uma estrutura sys no modelo de estados. Use o comando função P1=ss(A, B,C,D).
- b) Determine a função de transferência da planta. Use o comando G1=tf(P1)
- c) Determine os pólos e zeros da planta. Use o comando ZP1=zpk(P1)
- $2^{\underline{a}}$) Simule o sistema para o trem de engrenagens 2 com N_1 =10, N_2 =80, N_3 =40 e N_4 =50 e uma entrada degrau unitário.
- a) No matlab declare a planta como uma estrutura sys no modelo de estados. Use o comando função P2=ss(A, B,C,D).
- b) Determine a função de transferência da planta. Use o comando G2=tf(P1)
- c) Determine os pólos e zeros da planta. Use o comando ZP2=zpk(P1)

 3^a) Simule a planta 2 em malha fechada usando um potenciômetro rotativo como sensor de posição K_s = 0,5 V/rad um potenciômetro deslizante para ajuste de setpoint com o mesmo ganho K_s e um amplificador de tensão com ganho ajustado livremente.. Veja figura.

- a) Simule para um setpoint de 60° ($\pi/3$ rad.). Ajuste K de modo a obter comportamento subamortecido.
- b) Quais os pólos do sistema em malha fechada para o valor de K obtido em a.? Justifique porque ocorreu a oscilação.

Formulação do Problema: Um sistema dinâmico de 3ª ordem é modelado por

$$G(s) = \frac{4\omega_n^2}{\left(s+p\right)\left(s^2 + 2\zeta\omega_n s + \omega_n^2\right)}$$

tem como resposta ao degrau unitário uma saída da forma

$$y(t) = K_1 + K_2 e^{-pt} + K_3 e^{-\zeta \omega_n t} sen(\omega_d t - \varphi)$$

onde $\omega_d = \omega_n \sqrt{1 - \zeta^2}$ e K_1 , K_2 e K_3 são constantes

- 4^{a}) Faça uma realização de G(s) com 02 funções de transferências em paralelo no Simulink. Assuma que $\omega_n = 3 \ rad \ / \ s$ $\zeta = 0.5$ e mostre as saídas dos subsistemas e do sistema Utilize a função residue no matlab para decompor em frações parciais
- a) Simule para $p = 5\zeta\omega_n$. Que termos prevalecem no comportamento? Que tipo de comportamento o sistema apresenta
- b) Simule para $p = \frac{\zeta \omega_n}{5}$ Que termos prevalecem no comportamento? Qual o tipo de comportamento do sistema.
- c) Simule para $p = \zeta \omega_n$. Que termos prevalecem no comportamento?
- d) Comente sobre que pólos determinam o comportamento dinâmico de um sistema, consolidando o conceito de pólos dominantes.