Sistema de Predição de Doenças Cardíacas Utilizando o Classificador Ingênuo de Bayes

NOSSO GRUPO

MARIA CLARA ACRUCHI

MARIA LUÍSA DOS SANTOS

VINÍCIUS SALES OLIVEIRA

00

Tópicos

♦ Introdução e Objetivos

Apresentação do tema abordado e os objetivos da nossa aplicação.

◆ Experimentos e Testes

Abordaremos os experimentos executados, seus protocolos e quais tipos de validação foram usados. Implementação eMétodos utilizados

Onde será mostrado como foi realizada a implementação e quais foram as técnicas e métodos utilizados para melhorá-la

 Análise dos Resultados e Conclusões

Uma análise de validação da técnica será realizada para discutirmos as conclusões obtidas nesse processo.

Introdução e Objetivos

Introdução

Objetivos

Predição de diagnóstico de cardiopatias

Construção de um sistema capaz de ajudar a reduzir o excesso de mortes, identificando características e padrões associados às doenças cardiovasculares em uma base de dados do repositório público UCI.

Data Science e Machine Learning

Utilização do Classificador Ingênuo de Bayes a partir de recursos e bibliotecas de aprendizagem de máquina para identificar esses padrões, no objetivo de inferir um diagnóstico de uma doença cardíaca.

Acesso menos desigual ao diagnóstico

Além de ser um utensílio que ajudará profissionais da saúde a tomar decisões clínicas mais rápidas e precisas do que os sistemas tradicionais de apoio podem oferecer.

Implementação e Métodos utilizados

0

Base de Dados

DESCRIÇÃO DOS PARÂMETROS DA BASE DE DADOS

Atributo	Descrição			
age	Idade em anos			
sex	Valor 1: masculino. Valor 0: feminino			
ср	Tipo da dor no peito. Valor 1: angina típica. Valor 2: angina atípica. Valor 3: dor não-anginosa. Valor 4: assin- tomático			
trestbps	Pressão sanguínea em repouso medida em mmHg			
chol	Colesterol sérico em mg/dl			
fbs	Nível de açúcar no sangue em jejum >120mg/dl. Valor 1: verdadeiro. Valor 0: falso			
restcg	Resultado de eletrocardiografia em re- pouso. Valor 0: normal. Valor 1: tem anormalidade ST-T. Valor 2: demonstra hipertrofia ventricular esquerda (LVH)			
thalach	Frequência cardíaca máxima			

exang	Angina induzida por exercício. Valor 1: sim. Valor 0: não				
oldpeak	Depressão do segmento ST induzida por exercício em relação ao repouso				
slope	Inclinação do oldpeak.Valor 0: ascendente. Valor 1: plano. Valor 2: descendente				
ca	Número de vasos sanguíneos				
thal	Determina o quão bem o sangue flui pela musculatura do coração. Valor 3: normal. Valor 6: fixed defect. Valor 7: reversable defect				
num	Diagnóstico de doença cardíaca, é o estreitamento das artérias dado pelo resultado de uma angiografia. Valor 0: < 50% diameter narrowing. Valor 1: > 50% diameter narrowing				

Análise Exploratória dos Dados

Entender o que cada variável representa

Nomear os parâmetros

Definir o tipo de cada variável

Tratar valores inválidos e espaços vazios

X

Remoção de Outliers

XI

Remoção de Outliers

Remoção de valores inválidos

Valores de colesterol iguais a zero

Substituição pela média dos valores da coluna

Valores não binários em uma coluna binária

As linhas com esses valores foram removidas

Gráficos e exemplos

Dados Numéricos

Gráficos e exemplos

Dados Categóricos

Análise Estatistica

XV

✓ Idade das pessoas diagnosticadas com doenças cardíacas:

Análise Estatística

✓ Frequência cardíaca máxima dentre os que têm diagnóstico positivo:

Classificador Ingênuo de Bayes

Principal conceito da Probabilidade Condicional

Método robusto e de alto desempenho

Fácil implementação e útil em grandes Data Sets

Supõe independência entre as variáveis

Identificação de padrões de ocorrência

Classificador Ingênuo de Bayes

Aplicação com a Distribuição Gaussiana

Pelos gráficos, os atributos possuíam Distribuição Normal

Análise dos Resultados

O

Análise de Resultados

Validação Cruzada

Evita que o modelo seja adequado apenas para essa base de dados (overfitting)

Métricas e Indicadores

Recall

Precisão

Métricas e Indicadores

Matriz de Confusão

	Previsão de Diagnóstico Negativo	Previsão de Diagnóstico Positivo	
Verdadeiro Negativo	36	15	
Verdadeiro Positivo	4	9	

Experimentos e Análise dos Resultados

Métricas Analisadas

Recall é a métrica mais importante para a análise

Falsos negativos são muito mais prejudiciais no contexto de diagnóstico de doenças

É a base para os demais experimentos

Modelo treinado para toda a base de dados

Resultados

	Precisão	Recall	f1-score	Suporte
Negativo (0)	0.90	0.71	0.79	51
Positivo (1)	0.38	0.69	0.49	13
Acurácia	-	-	0.70	64
Média Macro	0.64	0.70	0.64	64
Média Ponderada	0.79	0.70	0.73	64

00

Estratificação dos pelos rótulos das classes

Observar o efeito de um conjunto de treinamento e de teste balanceados.

00

Resultados

	Precisão	Recall	f1-score	Suporte
Negativo (0)	0.81	0.74	0.78	47
Positivo (1)	0.43	0.53	0.47	17
Acurácia	-	-	0.69	64
Média Macro	0.62	0.64	0.63	64
Média Ponderada	0.71	0.69	0.70	64

Uso do algoritmo Boruta

Retorna um conjunto das melhores variáveis para se usar 00

	Precisão	Recall	f1-score	Suporte
Negativo (0)	0.85	0.67	0.75	51
Positivo (1)	0.29	0.54	0.38	13
Acurácia	-	-	0.64	64
Média Macro	0.57	0.60	0.56	64
Média Ponderada	0.74	0.64	0.67	64

Dados do experimento anterior foram estratificados antes do modelo ser treinado

Observar o efeito de um conjunto de treinamento e de teste balanceados.

00

00

Resultados

	Precisão	Recall	f1-score	Suporte
Negativo (0)	0.80	0.85	0.82	47
Positivo (1)	0.50	0.41	0.45	17
Acurácia	-	-	0.73	64
Média Macro	0.65	0.67	0.64	64
Média Ponderada	0.72	0.73	0.73	64

Conclusões e Discussões

Não prevê bem os diagnósticos positivos

Não atinge o objetivo inicial de ser um modelo capaz de prever a incidência de doenças cardíacas Prevê bem os diagnósticos negativos

Embora não atinja o objetivo, o modelo é eficaz para o contexto mais arriscado: receber um diagnóstico negativo quando o indivíduo possui a doença, já que o número de falso negativos é mínimo