A Fast, Cheap, High-Entropy Source for IoT Devices

Ben Lampert, Riad Wahby, Shane Leonard, Phil Levis

Introduction - How do you evaluate random number generators (RNG)

Entropy is a measure of an adversarial information on a sequence of bits given knowledge of how your random bits are being generated. Few important measures of random bit streams:

- -Bias and Shannon entropy (Probability distribution)
- -Serial Correlation
- -1bit of entropy per bit is ideal

Thoughts on random number generation

- "Any one who considers arithmetical methods of producing random digits is, of course, in a state of sin." -John Von Neumann (Mathematician)
- "Relying solely on the hardware random number generator which is using an implementation sealed inside a chip which is impossible to audit is a BAD idea."
- -Theodore Tso (Kernel Developer)

Why build our own?

- -Entropy pools in modern OS's have a lot of entropy sources to draw from (Hard drive timing, user inputs, incoming packet timing, etc).
- -Embedded IoT devices have less ways to gather entropy, therefore those sources of entropy must be very good.
- -loT devices have unique power and size constraints
- -Internal rand() type instructions can obfuscate where the entropy is coming from, so for security applications would be nice to make this transparent.

The HWRNG Approach

- Take a noise source (Thermal noise, radiation, radio noise, semiconductor noise)
- Amplify noise source (if necessary)
- 3) Digitize the noise source
- 4) Check health
- 5) Debias/Condition

http://csrc.nist.gov/publications/drafts/800-90/sp800-90b_second_draft.pdf

Existing HWRNG Devices (OneRNG)

OpenSource design

ADC sample an Avalanche Diode Noise Source (xor) with RF Energy

"Good" Entropy (~.935 bits entropy/bit)

OneRNG (http://onerng.info/)

More RNG Generators (Infinite Noise)

- "All three boards should produce log2(1.82) = **0.864 bits of entropy per bit** by design"
- -Entropy calculated based on loop gain of the system, amplifies resistor RMS noise voltage

https://github.com/waywardgeek/infnoise

More RNG Generators (Intel)

- -Uses an astable set of inverters (implemented with an SRAM cell and logic)
- -Moves system into an unstable region until thermal noise nudges system from equilibrium

http://spectrum.ieee.org/computing/hardware/behind-intels-new-randomnumber-generator

Many good ideas here! Can we do better?

- 1) Small, low cost, low power for IoT
- 2) Auditable entropy source
- 3) Can we get better entropy than other designs?

Let's build a RNG!

The Noise source

Choice of noise is critical!

- a) Probabilistic Noise
- b) Large Magnitude Noise
- c) Auditable
- d) Cheap, made from commodity parts

Based on these choices we chose Diode Avalanche noise as the noise source.

Reverse Bias Diode Noise

When reverse biased >6V, zener diodes exhibit avalanche current.

Electron multiplication as they travel across the junction.

Similar to "shot noise", but of much high magnitude.

Random Bit Generator, the Naive approach:

Drawbacks we need to address

- Requires a high voltage supply
 - -Means we will need to add some type of step up converter
- 2) Diode drops can drift over time
 - -Moves the mean of the distribution over time
 - -Need some type of way to track this
- 3) Reference Voltage could be susceptible to noise injection
 - -If reference moves, could start measuring more 1's than 0's, reduces entropy

1) Requires a high voltage supply - Use a boost

Benefits:

- -Relatively cheap way to create high voltage rails (~\$0.70)
- -Can be toggled on and off to avoid creating switching noise

2) Handling Drift - Use Negative Feedback

Benefits:

- -DC operating point is always set w.r.t. a reference voltage
- -Component variability is tolerable
- -Has the ability to reject power supply noise injection

3) Reference noise immunity? Use two noise sources.

Benefits:

-Both noise sources are biased to the same mean, so comparator is only comparing the noise distributions
-Two identical noise sources experience similar noise, comparator common mode rejection helps reduce external effects.

Final Circuit

Implementation

Board Area: <1.5cm² BOM Cost: \$1.44@10k

quantities

Results

Results

Bit generation: ~6.6M Transitions/Second

Sampled bits at 128KHz to produce uncorrelated bits

<3uJ per bit (10x more power per bit than Zigbee radio)

	Entropy	Serial Correlation
-13 °C	0.991007	-0.000525
25 °C	0.995133	0.000072

Now that we have high entropy, what next?

Want to keep generating entropy bits without needing to keep powering the HWRNG

Use HWRNG to seed a PRNG (AES counter mode) [Corrigan-Gibbs, USENIX HotOS, May 2015]

- 1) Sample 1024 raw bits
- 2) Debias using Von Neumann technique
- 3) Once you have sufficient entropy use a SHA256 hash to produce 256bits of entropy to seed AES in CTR mode.
- 4) Use AES in CTR mode and mask output to generate all future bits

Future Work

- -Integration into the Imix development board
- -Working on integrating this into the boot sequence to seed PRNG (AES in CTR mode)
- -Raw bits still need health check, have several nodes available to do this but need to implement them

Acknowledgements

Phil Levis (pal@cs.stanford.edu)

Riad Wahby (rsw@cs.stanford.edu)

Shane Leonard (shanel@stanford.edu)

Jesse Walker (Intel)

Contact:

Ben Lampert (lampertb@alumni.stanford.edu)

Questions?

What rate to sample at?

Power Supply Toggling

