

Module Outline

- Binary Logic and Basic Gates
- Boolean Algebra
- · The Boolean expression for a logic circuit
- · Implementation of a logic circuit using B.E
- Implementation of a logic circuit via truth table
- Converting a Boolean expression to a truth table
- · Simplification of Boolean Functions

Binary Logic

- Deals with variables that take on only two discrete values and operations of mathematical logic that are applied to these variables
- · The two values are known by different names:
 - HIGH and LOW
 - TRUE and FALSE
 - 0 and 1
- Variables may be denoted by any name but single letter character names such as A, B, C, X, Y, Z, etc. are common and easy to use

Logical Operations

· AND

- Represented by a dot · or sometimes ^ or ^
- Binary operator, i.e. operates on two variables at a time

· OR

- Represented by a + or sometimes \vee or \cup
- Binary operator, i.e. operates on two variables at a time

NOT

- Represented by a bar over the variable, e.g. A or A'
- Unary operator, i.e. operates on a single variable
- Also referred to as COMPELMENT operator

Binary Logic and Basic Gates

- Digital Circuits and Systems are complex
- However, the basic building blocks of all digital circuits and systems are logic gates
- Logic gates are therefore called the basic primitives of digital systems
- · Logic gates in reality are implemented using electronic components such as transistors
- However, we are not concerned with their internal electronic properties but rather their external logic behavior

Standard Symbols

Truth Table

 A table of combinations of the binary variables showing the relationship between the values the variables take on and the values of the result of the operation

	7 P O .						
AND			OR			NOT	
X	Υ	$Z = X \cdot Y$	X	Υ	Z = X + Y	X	$Z = \overline{X}$
0	0	0	0	0	0	0	1
0	1	0	0	1	1	1	0
1	0	0	1	0	1		
4	4	l 4	1	4	l		

Gates with More Than Two Inputs

3-Input AND gate

6-Input OR gate

Truth Table

AND			
X	Υ	Z	$F = X \cdot Y \cdot Z$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Boolean Algebra

- Defines rules of operations on Binary Logic and Logic Functions
- Sometimes similar to Binary Arithmetic but some times different - because binary logic variables can only take on two possible values 0 and 1
- A Boolean function consists of a binary variable denoting the function, an equals sign, and an algebraic expression formed by using binary variables. For example

$$F = X + Y'Z$$

Truth Tables for Boolean Functions

- Truth Table can be constructed for every boolean function
- A boolean function of n-variables will have 2^n rows in its truth table
- These 2^n inputs are formed by counting from 0 to $2^n 1$
- For example G(W,X,Y,Z) will have 16 rows in the truth table and F(A,B) will have 4 rows

Truth Table for F = X + Y'Z

X	У	Z	À,	Y'Z	X + Y'Z
0	0	0	1	0	0
0	0	1	1	1	1
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	1	0	1
1	0	1	1	1	1
1	1	0	0	0	1
1	1	1	0	0	1

Logic Circuit Diagram for F = X + Y'Z

Implementation of a logic circuit using a boolean expression

$$Y = AB(CD' + EF)$$

$$Y = AB(CD' + EF)$$

Timing Diagram

- ☐ Horizontal axis represents time
- □Vertical axis shows the value of the signal
- ☐ High voltage level represents 1 and low voltage level represents 0
- ☐Timing diagrams are very important in digital systems design and verification

Basic Identities of Boolean Algebra

1.
$$X + 0 = X$$

2.
$$X \cdot 1 = X$$

3.
$$X + 1 = 1$$

4.
$$X \cdot 0 = 0$$

5.
$$X + X = X$$

6.
$$X \cdot X = X$$

7.
$$X + X' = 1$$

8.
$$X \cdot X' = 0$$

9.
$$(X')' = X$$

Basic Identities of Boolean Algebra

- X + Y = Y + X
 XY = YX
- 3. X + (Y + Z) = (X + Y) + Z4. X (YZ) = (XY)Z
- 5. X(Y+Z) = XY+XZ
- 6. X + YZ = (X+Y)(X+Z)
- 7. (X + Y)' = X'Y'8. (XY)' = X' + Y'

Distributive

DeMorgan's

	OR		
1	x+1 = 1		
2	x+x'=1		
3	X+X=X		
4	$\mathbf{x} + 0 = \mathbf{x}$		
5	(x')' = x		
6	x+y=y+x		
7	x+(y+z) = (x+y)+z		
8	x.(y+z) = x.y+x.z		
9	(x+y)' = x'.y'		
10	x+(x,y) = x		

	AND			
1	x.1 = x			
2	$\mathbf{x}_{\bullet}\mathbf{x}' = 0$			
3	$x \cdot x = x$			
4	x.0 = 0			
5	(x')' = x			
6	x.y = y.x			
7	x.(y.z) = (x.y).z			
8	$x+y\cdot z = (x+y)\cdot (x+z)$			
9	(x.y)' = x' + y'			
10	$x \cdot (x+y) = x$			

Algebraic Manipulation

- Using basic identities a boolean function can be simplified
- For example

$$F = X'YZ + X'YZ' + XZ$$

Algebraic Manipulation

- Using basic identities a boolean function can be simplified
- For example

$$F = X'YZ + X'YZ' + XZ$$

$$= X'Y(Z + Z') + XZ$$

$$= X'Y \cdot 1 + XZ$$

$$= X'Y + XZ$$

- 1. X + XY =
- 2. XY + XY' =
- 3. X + X'Y =
- 4. X(X + Y) =
- 5. (X + Y)(X + Y') =
- 6. X(X' + Y) =

1.
$$X + XY = X (1+Y) = X$$

$$4. X (X + Y) = X + XY = X (1 + Y) = X$$

- 1. X + XY = X (1+Y) = X
- 2. XY + XY' = X (Y + Y') = X
- 3. X + X'Y = (X + X')(X + Y) = X + Y
- 4. X(X + Y) = X + XY = X(1 + Y) = X
- 5. (X + Y)(X + Y') = X + XY' + XY + YY'= X (1 + Y') + XY
 - $= X \cdot X + XY$
 - = X + XY
 - = X (1 + Y)
 - = X
- 6. X(X' + Y) = XX' + XY = XY

5.
$$(X + Y)(X + Y')$$
 = $X + XY' + XY + YY'$
= $X (1 + Y') + XY$
= $X \cdot 1 + XY$
= $X + XY$
= $X (1 + Y)$
= $X (1 + Y)$

- 1. X + XY = X (1+Y) = X
- 2. XY + XY' = X (Y + Y') = X
- 3. X + X'Y = (X + X')(X + Y) = X + Y
- 4. X(X + Y) = X + XY = X(1 + Y) = X
- 5. (X + Y)(X + Y') = X + XY' + XY + YY'= X (1 + Y') + XY
 - $= X \cdot 1 + XY$
 - = X + XY
 - = X (1 + Y)
 - = X
- 6. X(X' + Y) = XX' + XY = XY

Example

 Simplify the following Boolean expression and implement logic circuit for it

$$Y = A'B'C' + A'B'C + A'BC + ABC$$

$$Y = A'B'C' + A'B'C + A'BC + ABC$$

= $A'B'(C'+C) + BC(A'+A)$
= $A'B'+BC$

Combinational logic circuits

NOR & NAND

Basic Identities of Boolean Algebra

- X + Y = Y + X
 XY = YX
- 3. X + (Y + Z) = (X + Y) + Z4. X (YZ) = (XY)Z
- 5. X(Y+Z) = XY+XZ
- 6. X + YZ = (X+Y)(X+Z)
- 7. (X + Y)' = X'Y'8. (XY)' = X' + Y'

Distributive

DeMorgan's

$$(A + B)' = A'B'$$

$$(AB)' = A' + B'$$

$$\overline{A + B} = \overline{A} \bullet \overline{B}$$

 $\overline{\mathbf{A} \bullet \mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$

نظرية ديمورجان الأولى:

نظرية ديمورجان الثانية:

Negative-OR

Example

$$Y = (\overline{AB})(\overline{CD})$$

From Demorgan Theorem

$$Y = \overline{\overline{AB}} + \overline{\overline{CD}}$$

Then Y = AB + CD

$$\overline{A + B} = \overline{A} \bullet \overline{B}$$

Negative-AND

$$Y = \overline{(\overline{A + B}) + (\overline{C + D})}$$

From Demorgan Theorem

$$Y = (\overline{\overline{A + B}}) \bullet (\overline{C + D})$$

$$Y = (A + B) \bullet (C + D)$$

طبق نظريات ديمورجان على التعبير البوليني التالي:

$$Y = (A + \overline{B} + \overline{C}) \bullet (\overline{A} + B + \overline{C})$$

$$Y = (A + \overline{B} + \overline{C}) \bullet (\overline{A} + B + \overline{C})$$

$$= (\overline{A} + \overline{B} + \overline{C}) + (\overline{A} + B + \overline{C})$$

$$= (\overline{A} + \overline{B} + \overline{C}) + (\overline{A} + B + \overline{C})$$

$$= \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} \overline{C} = \overline{A} B C + \overline{A} \overline{B} C$$

طبق نظريات ديمورجان على التعبير البوليني التالي:

$$Y = (\overline{A} + B) + CD$$

$$= (\overline{A} + B).\overline{CD}$$

$$= (\overline{A}.\overline{B})(\overline{C} + \overline{D})$$

$$= A\overline{B}(\overline{C} + \overline{D})$$

Thank you

