mix-up: BEYOND EMPIRICAL RISK MINIMIZATION

-Summary-

Introduction

Notation & Effect

- Example : $(x, y) \sim P(X, Y)$, where x = input, y = target
- Prediction : f(x), where $f \in \mathcal{F}$ is expected to satisfy f(X) = Y
- Set of training data : $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$, where $(x_i, y_i) \sim P$
- Expected risk : $R(f) = \int l(f(x), y) dP(x, y)$

(note : distribution *P* is unknown in practical situations)

- Empirical distribution : $P_{\delta}(x, y) = \frac{1}{n} \sum_{i=1}^{n} \delta(x = x_i, y = y_i)$
- Empirical risk : $R_{\delta}(f) = \int l(f(x), y) dP_{\delta}(x, y) = \frac{1}{n} \sum_{i=1}^{n} l(f(x_i), y_i)$
- Set of vicinity training data = $\mathcal{D}_{\nu} = \{(\widetilde{x_i}, \widetilde{y_i})\}_{i=1}^m$ (sampled m times from vicinity distribution)
- Gaussian vicinity distribution : $\nu(\tilde{x}, \tilde{y} | x_i, y_i) = \mathcal{N}(\tilde{x} x_i, \sigma^2)\delta(\tilde{y} = y_i)$ (Chapelle, 2000)
- Mix-up vicinity distribution : $\mu(\tilde{x}, \tilde{y} | x_i, y_i) = \frac{1}{n} \sum_{j=1}^n \mathbb{E}_{\lambda} [\delta(\tilde{x} = \lambda x_i + (1 \lambda) x_j, \tilde{y} = \lambda y_i + (1 \lambda) y_j)]$, where $\lambda \sim Beta(\alpha, \alpha)$, $\alpha \in (0, \infty)$
- Empirical vicinal risk : $R_{\nu}(f) = \frac{1}{m} \sum_{i=1}^{m} l(f(\widetilde{x}_i), \widetilde{y}_i)$ (usually , $m = n^2$)

Effect: Minimizing the empirical vicinal risk with mix-up improve test error (compared to ERM)

=> generalize better and robust to adversarial attack

Experimental results – Image classification

Model	Method	Epochs	Top-1 Error	Top-5 Error
ResNet-50	ERM (Goyal et al., 2017) $mixup \ \alpha = 0.2$	90 90	23.5 23 .3	6.6
ResNet-101	ERM (Goyal et al., 2017) $mixup \ \alpha = 0.2$	90 90	22.1 21.5	5.6
ResNeXt-101 32*4d	ERM (Xie et al., 2016) ERM $mixup \alpha = 0.4$	100 90 90	21.2 21.2 20.7	5.6 5.3
ResNeXt-101 64*4d	ERM (Xie et al., 2016) $mixup \ \alpha = 0.4$	100 90	20.4 19.8	5.3 4.9
ResNet-50	ERM $mixup \ \alpha = 0.2$	$\frac{200}{200}$	23.6 22 .1	7.0 6.1
ResNet-101	$\overline{\text{ERM}}$ $mixup \ \alpha = 0.2$	$\frac{200}{200}$	22.0 20.8	$6.1 \\ 5.4$
ResNeXt-101 32*4d	ERM $mixup \ \alpha = 0.4$	$\frac{200}{200}$	21.3 20.1	5.9 5.0

Note

• Model with higher capacities or longer training runs are the ones to benefit the most from mix-up method.

(ex : ResNet-50 (0.2%) <-> ResNeXt-101(0.5 $^{\sim}$ 0.6%), ResNet-50 at epoch 90 / 200)

Experimental results – Speech data

Model	Method	Validation set	Test set
LeNet	ERM $ \begin{array}{l} \textit{mixup} \; (\alpha = 0.1) \\ \textit{mixup} \; (\alpha = 0.2) \end{array}$	9.8 10.1 10.2	10.3 10.8 11.3
VGG-11	ERM $mixup (\alpha = 0.1)$ $mixup (\alpha = 0.2)$	5.0 4.0 3.9	4.6 3.8 3.4

classification error

Note

• Data preprocess :

Data (65,000 utterances, ~1 sec, 30 classes) => Normalized spectrogram from waveforms

=> Mix-up both at waveform and spectrogram levels => Train model (CNN-based)

• Similarly, model with higher capacity (=VGG-11) benefits the most from mix-up method.

Experimental results – Memorization of corrupted labels

Label corruption	Method	Test error		Training error	
r		Best	Last	Real	Corrupted
	ERM	12.7	16.6	0.05	0.28
20%	ERM + dropout $(p = 0.7)$	8.8	10.4	5.26	83.55
	$mixup (\alpha = 8)$	5.9	6.4	2.27	86.32
	$mixup$ + dropout ($\alpha = 4, p = 0.1$)	6.2	6.2	1.92	85.02
	ERM	18.8	44.6	0.26	0.64
50%	ERM + dropout $(p = 0.8)$	14.1	15.5	12.71	86.98
	$mixup \ (\alpha = 32)$	11.3	12.7	5.84	85.71
	$mixup + dropout (\alpha = 8, p = 0.3)$	10.9	10.9	7.56	87.90
	ERM	36.5	73.9	0.62	0.83
80%	ERM + dropout $(p = 0.8)$	30.9	35.1	29.84	86.37
0070	$mixup\ (\alpha=32)$	25.3	30.9	18.92	85.44
	$mixup + dropout (\alpha = 8, p = 0.3)$	24.0	24.8	19.70	87.67

Note

- Certain portion of labels are replaced (corrupted) by random noises.
- Dropout + mix-up shows better performance on learning corrupted labels, compared to Dropout + ERM.

Experimental results – Robustness to adversarial examples

test error

Metric	Method	FGSM	I-FGSM
Top-1	ERM	90.7	99.9
	mixup	75.2	99.6
Top-5	ERM	63.1	93.4
	mixup	49.1	95.8

Metric	Method	FGSM	I-FGSM
Top-1	ERM mixup	57.0 46.0	57.3 40.9
Top-5	ERM mixup	24.8 17 .4	18.1 11.8

Note

- One of undesirable behavior of ERM is fragility to adversarial examples
- FGSM (Fast Gradient Sign Method) : $x_{adv} = x + \epsilon * sign(\nabla_x l(f(x), y))$ (exploit SGD process)
- I-FGSM(Iterative-FGSM): $x_{adv}^0 = x$, $x_{adv}^{N+1} = X_N^{adv} + \alpha * sign(\nabla_x l(f(x), y))$
- Black box FGSM / I-FGSM implementation :
 - Produce Adversarial examples (1st ERM model) ---> test robustness of 2nd /3rd model
 - (Use 3 models: $1^{st}/2^{nd}$ = trained using ERM / 3^{rd} = trained using mix-up)
- Mix-up method is better than ERM in terms of robustness to adversarial examples

⁽a) White box attacks.

⁽b) Black box attacks.

Experimental results – Non-image data

test error

Dataset	ERM	mixup
Abalone	74.0	73.6
Arcene	57.6	48.0
Arrhythmia	56.6	46.3

Dataset	ERM	mixup
Htru2	2.0	2.0
Iris	21.3	17.3
Phishing	16.3	15.2

Note

Mix-up method also works well on non-image data (better than ERM, in general)

Experimental results – Stabilization of GANs

iteration: 10, 100, 1000, 10000, 20000 / blue = dataset, orange = generated samples

Note

- Original optimization of GAN: $\max_g \min_d \mathbb{E}_{x,z} \left[l(d(x),1) + l(d(g(z)),0) \right]$ $(d(\cdot)) = \text{discriminator}, g(\cdot)) = \text{generator}, l = \text{binary cross entropy loss})$
- Mix-up optimization of GAN : $\max_{g} \min_{d} \mathbb{E}_{x,z,\lambda}[l(d(\lambda x + (1-\lambda)g(z)),\lambda)]$
- Training of mix-up GANs seems promisingly robust to hyper-parameter and architectural choices.

Ablation study

AC: mix between all classes

RP: mix between random pairs

KNN: mix between k-nearest neighbors

(Here, k = 200)

median test errors of the last 10 epochs

Method	Specification	Modified		Weight decay	
		Input	Target	10^{-4}	5×10^{-4}
ERM		×	X	5.53	5.18
mixup	AC + RP AC + KNN	√ ✓	√ ✓	4.24 4.98	4.68 5.26
mix labels and latent representations (AC + RP)	Layer 1 Layer 2 Layer 3 Layer 4 Layer 5	\ \ \ \	\ \ \ \	4.44 4.56 5.39 5.95 5.39	4.51 4.61 5.55 5.43 5.15

Question: What is mix-up doing? (Ablation studies)

- Form of data augmentation that encourages the model f to behave linearly in-between training examples.
- ⇒ It turns out (experimentally) that mix labels + mix latent representations does not show better performance than mix labels + mix raw inputs (original mix-up)
- ⇒ As in experiments on speech data, it seems crucial to choose how to preprocess raw data and interpolate... (can't figure out best preprocess method in practice circumstances)

Q: How to mix-up data in a good manner without background of data?

⇒ Mix labels + mix (trained) VAE outputs ?? (similar to mix labels + mix latent representations)