Physics

* Lecture 2 *

* Simple Harmonic motion*

Linear motion - Les Tes	Circular motion - Lists
2 distance Ila V -> Velocity - is- a acceleration - ilse	θ→ Seta Estilies II W→ omega Alpha Alpha
$V=\frac{\alpha}{t}$	$w = \frac{\theta}{t}, \theta = wt$

V. Amplitude 7211

From the Figure & June :-

$$V = \frac{d\alpha}{dt} = -rw\sin wt$$

$$a = \frac{dv}{dt} = -r w \cos w t = -w^2 x$$

ر الروم V = تفاضل الرام V من الجلام عن عن عن الجلام عن العالم الروم الر

If: \(\frac{\pi}{2} = r \sin(\wt_{+}\alpha)\), Find a

$$V = \frac{d\alpha}{dt} = Wr Cos(Wt_{+}\alpha)$$

$$\alpha = \frac{dv}{dt} = -W^2 Sin(W_{+}\alpha)$$
, $Sin(W_{+}\alpha) = \alpha$

$$\dot{x} = - \dot{w} x$$

22/33

$$W = 2\pi F \implies F = \frac{W}{2\pi} \qquad T = \frac{1}{F} = \frac{2\pi}{W}$$

$$\int \frac{\chi}{f} = \int \frac{S \sin \left(2\pi t + \frac{\pi}{H}\right)}{At} \qquad \int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}{S} \cos \left(2\pi t + \frac{\pi}{H}\right)$$

$$\int \frac{dx}{dt} = \int \frac{1}$$

<2>>>

* Simple Hendulum * 1 = - m9 Sin0 , Sind = tand = o , "Sind = 2 - F = +mg = ma = + wx $-\widetilde{W} = \frac{9}{1}, \quad \widetilde{W} = \sqrt{\frac{9}{1}} = \frac{21}{1}$ - - 27/ = 3 = H7 = H7 = H7 = H7 = S = slope A Lu Sec2 * Strain * Strass = + Strain Volumetric

* Hook Law. - Stress & Strain 1) Longitudinal Strain. FXAl => H=YAL * Y: Young's modulus C pare utin Makes Kg, m $\frac{1}{\sqrt{\frac{N}{m^2}}}$ gm, cm Y -> dyne Cur 2) Volumetric Strain: EXXV == -BAY * B: Bulk's modulus

Ne sign means the pressure which makes the volume decrease.

Les pestap (sill bizzill as full 3/2) 3) Shear Strain.

M. rigidity modulus

<< 11>>