Question 5:

Use the definition of Θ in order to show the following:

a.
$$5n^3 + 2n^2 + 3n = \Theta(n^3)$$

Proof:

$$f(n) = 5n3 + 2n2 + 3n$$

$$g(n) = \Theta(n3)$$

In this proof I'll show that $5n^3 + 2n^2 + 3n = \Theta(n^3)$ by showing that $c_2 * g(n) \le f(n) \le c_1 * g(n)$ for all values of $n \ge n_0$.

First we must establish c_1

$5n^3 + 2n^2 + 3n \le 5n^3 + 2n^2 + 3n$	Starting values of $f(n) \le f(n)$
$5n^3 + 2n^2 + 3n \le 6n^3$	Increase the largest co-efficient by 1, and drop the rest.
$f(n) \le 6 * n^3$	Analyze against the starting proof.
$c_1 = 6$	Final value of \boldsymbol{c}_1

Next we must establish c_2

$5n^3 + 2n^2 + 3n \le 5n^3 + 2n^2 + 3n$	Starting values of $f(n) \le f(n)$
$5n^3 \le 5n^3 + 2n^2 + 3n$	Since all the values to the right of the inequality are positive, and n must be positive, this will also evaluate to true.
$4n^3 \le 5n^3 + 2n^2 + 3n$	Drop the multiple by 1 just for good measure on the left of the inequality.
$4 * n^3 \le f(n)$	Analyze against the starting proof.
$c_2 = 4$	Final value of \boldsymbol{c}_{2}

Next we solve for $\boldsymbol{n}_{\!\scriptscriptstyle 0}$ for both of the constants.

Solving $n_{_{\scriptstyle 0}}$ for $f(n) \leq c_{_{\scriptstyle 1}}^{\ \ *} \ g(n)$

$5n^3 + 2n^2 + 3n \le 6n^3$	Starting expression
$2n^2 + 3n \le n^3$	Subtract $5n^3$ from both sides.
$2n + 3 \le n^2$	Divide by n
$n^2 - 2n - 3 \ge 0$	Arrange to equal 0.
$(n-3)(n+1) \ge 0$	Factor the expression.
$n - 3 \ge 0 \Rightarrow n \ge 3$ $n + 1 \ge 0 \Rightarrow n \ge -1$	Evaluate both factors against zero.
Therefore, $n \ge 3$ for $f(n) \le c_1^* g(n)$	Since we're only evaluating positive values of n , we can eliminate one of the factors.

Solving n_0 for $f(n) \le c_2^* g(n)$

$4n^3 \le 5n^3 + 2n^2 + 3n$	Starting expression
$0 \le n^3 + 2n^2 + 3n$	Subtract $4n^3$ from both sides.
$0 \le n^2 + 2n + 3$	Divide by n
$n^2 + 2n + 3 \ge 0$	Flip the sides
Therefore, $n \ge 1$ for $c_2 * g(n) \le f(n)$	Since we know that all n must be positive, all possible values of n will result in the inequality being true.

And lastly, we compare the $\boldsymbol{n}_{\!\scriptscriptstyle 0}$ values and can conclude:

If we take

$$c_1^{} = 6$$

$$c_2^{} = 4$$

$$n_0 = 3$$

Then, $5n^3+2n^2+3n=\Theta(n^3)$ in the form of $c_2*g(n)\leq f(n)\leq c_1*g(n)$ for all values of $n\geq n_0$.

b.
$$\sqrt{7n^2 + 2n - 8} = \Theta(n)$$

Proof:

$$f(n) = \sqrt{7n^2 + 2n - 8}$$

$$g(n) = \Theta(n)$$

In this proof I'll show that $\sqrt{7n^2+2n-8}=\Theta(n)$ by showing that c_2^* $g(n)\leq f(n)\leq c_1^*$ g(n) for all values of $n\geq n_0$.

First we must establish $\boldsymbol{c}_{\scriptscriptstyle 1}$

$\sqrt{7n^2 + 2n - 8} \le \sqrt{7n^2 + 2n - 8}$	Starting values of $f(n) \le f(n)$
$\sqrt{7n^2 + 2n - 8} \le \sqrt{7n^2 + 2n^2 + n^2}$	$2n^2 + n^2$ is going to be larger than $2n - 8$ for all positive values of n .
$\sqrt{7n^2 + 2n - 8} \le \sqrt{10n^2}$	Simplify the right hand side.
$\sqrt{7n^2 + 2n - 8} \le \sqrt{10}n$	Calculate square root of the right hand size.
$f(n) \le \sqrt{10} * n$	Analyze against the starting proof.
$c_1 = \sqrt{10}$	Final value of \boldsymbol{c}_1

Next we must establish c_2

$\sqrt{7n^2 + 2n - 8} \le \sqrt{7n^2 + 2n - 8}$	Starting values of $f(n) \le f(n)$
$\sqrt{7n^2} \le \sqrt{7n^2 + 2n - 8}$	Since $2n-8$ is positive for $n \ge 4$, we can ignore it for the lower bound.
$\sqrt{7}n \le \sqrt{7n^2 + 2n - 8}$	Calculate square root of the left hand side.
$\sqrt{7} * n \le f(n)$	Analyze against the starting proof.
$c_2 = \sqrt{7}$	Final value of \boldsymbol{c}_2

Since we already established $n \geq 4$ while finding c_2 we can use that for the proof.

If we take

$$c_1 = \sqrt{10}$$
$$c_2 = \sqrt{7}$$
$$n_0 = 4$$

Then, $\sqrt{7n^2+2n-8}=\Theta(n)$ in the form of $c_2*g(n)\leq f(n)\leq c_1*g(n)$ for all values of $n\geq n_0$.