Apprentissage d'un langage régulier avec L^*

Sebastien Bonduelle, Pablo Espana Gutierrez*

À rendre avant le vendredi 29 novembre à 13h16 UTC+01:00

Ce devoir porte sur une méthode pour apprendre automatiquement un langage régulier. Plus précisément, nous allons étudier et implémenter un algorithme capable d'apprendre efficacement un langage \mathcal{L} en utilisant deux oracles simples donnant un minimum d'information sur ce langage : un premier oracle permettra de savoir si un mot donné est dans le langage; un second permet de tester si un automate a pour langage \mathcal{L} , et d'obtenir un mot contre-exemple si ce n'est pas le cas.

On se donne un alphabet Σ fixé et connu de l'apprenant(e). On suppose fixé un langage régulier \mathcal{L} , inconnu de l'apprenant(e).

Pour l'implémentation, l'utilisateur jouera le rôle de l'enseignant (les oracles) et la machine exécutera l'algorithme L^* et jouera le rôle de l'apprenant. Il y a trois fichiers fournis :

- automator.mli (qui donne les types des fonctions et leurs spécifications), à ne pas modifier;
- automator.cmi qui est le fichier automator.mli après compilation, à ne pas toucher;
- automator.ml qui suit la spécification de l'interface automator.mli; certaines fonctions sont déjà implémentées, d'autres seront à implémenter au long du sujet.

Pour exécuter le programme automator.ml, il faut le compiler (après chaque modification) avec la commande ocamlc -o automator automator.ml ce qui produit l'exécutable automator, que vous pouvez exécuter avec la commande ./automator.

^{*}D'après un sujet de David Baelde

1 Représentation des automates

Nous allons représenter certains automates par des paires (S,T) où S et T sont des ensembles finis de mots, avec S clos par préfixe 1 et T clos par suffixe. Deux mots $u,v\in \Sigma^*$ sont dits T-équivalents si, pour tout $w\in T$, on a $uw\in \mathcal{L}$ ssi $vw\in \mathcal{L}$. Une paire (S,T) est dite correcte quand S ne contient pas deux mots distincts qui soient T-équivalents. Elle est complète quand, pour tous $u\in S$ et $a\in \Sigma$, il existe un mot $v\in S$ qui est T-équivalent à ua.

Question 1

Dans cette question on suppose que $\Sigma = \{a, b\}$ et \mathcal{L} est le langage des mots ne contenant pas le facteur ab. Pour chaque (S_i, T_i) ci-dessous, indiquer si la paire est correcte, et si elle est complète.

- 1. $S_1 = T_1 = \emptyset$.
- 2. $S_2 = \{\epsilon, a\} \text{ et } T_2 = \{b, \epsilon\}.$
- 3. $S_3 = \{\epsilon, a, b\}$ et $T_3 = \{b, \epsilon\}$.

Question 2

Implémenter le type des langages finis language, puis la fonction make_t_equiv qui prend en argument un oracle pour l'appartenance et un langage fini t, et qui renvoie la fonction qui à une paire de mots (u, v) associe true si u et v sont t-équivalents, false sinon.

Étant donné une paire (S,T) on construit un automate $\mathcal{A}(S,T)$ comme suit :

- Les états de l'automate sont les mots de S.
- L'état initial est ϵ , les états finaux sont les mots $u \in S \cap \mathcal{L}$.
- On a une transition $u \stackrel{a}{\to} v$ quand v est T-équivalent à ua.

Question 3

Donner l'automate $\mathcal{A}(S_i, T_i)$ pour chacune des paires de la question précédente.

Question 4

Expliquer comment construire $\mathcal{A}(S,T)$ à l'aide d'appels à l'oracle. Donner le nombre d'appels faits ainsi que le nombre d'appels différents.

^{1.} Pour tout $w \in S$ et tout préfixe w' de w, on a aussi $w' \in S$.

Question 5

Implémenter le type des automates finis fa ainsi que les tests is_init et is_final et les itérateurs iter_states, iter_trans. Cela vous permettra d'utiliser la fonction display pour visualiser des automates. On pourra utiliser des listes d'association².

Question 6

Implémenter la fonction guess qui prend en argument un oracle pour l'appartenance, l'alphabet sigma et les langages finis s et t et renvoie l'automate $\mathcal{A}(S,T)$.

Question 7

Soit (S,T) une paire correcte et complète. Montrer que $\mathcal{A}(S,T)$ est déterministe et complet.

Question 8

Soit (S,T) une paire correcte. Montrer que le cardinal de S ne peut excéder le nombre de résiduels du langage \mathcal{L} .

Question 9

Soit une paire correcte (S, T). Montrer que l'on peut calculer une extension $S' \supseteq S$ tel que (S', T) est correcte et complète.

Question 10

Implémenter la fonction extend_s qui prend en argument un oracle pour l'appartenance, l'alphabet sigma et les langages finis s et t et renvoie un langage s' tel que décrit dans la question précédente.

Question 11 – Non nécessaire pour la suite.

Soit (S,T) une paire correcte et complète. Montrer que $\mathcal{A}(S,T)$ est (isomorphe à) l'automate minimal reconnaissant son langage.

^{2.} Association Lists

2 Algorithme d'apprentissage

On se donne deux oracles ayant accès à \mathcal{L} . On a d'abord un oracle d'appartenance, qui prend en entrée un mot w et indique si $w \in \mathcal{L}$. On considère d'autre part un oracle d'équivalence, qui prend en entrée un automate et indique si le langage de cet automate est \mathcal{L} . Si ce n'est pas le cas, l'oracle fournit un mot pour lequel l'automate et \mathcal{L} sont en désaccord 3 . On considère l'algorithme suivant, utilisant ces deux oracles :

- 1. Initialiser $(S,T) := (\{\epsilon\}, \{\epsilon\}).$
- 2. Si (S,T) n'est pas complète étendre S:=S' comme dans la question 9.
- 3. Faire une requête d'équivalence pour $\mathcal{A}(S,T)$.
- 4. Si la requête réussit, terminer : on a un automate reconnaissant \mathcal{L} .
- 5. Sinon, on obtient un contre-exemple w: ajouter w et tous ses suffixes à T et retourner à l'étape 2.

Question 12

Montrer que la paire (S,T) est correcte tout au long de l'exécution de l'algorithme.

Question 13

Implémenter la fonction extend_t qui prend en argument un langage fini t et un mot w et renvoie l'union de t et de l'ensemble des suffixes de w.

Question 14

Dans cette question on prend $\Sigma = \{a, b\}$ et $\mathcal{L} = \{w \in \Sigma^* \mid |w|_b = 3 \mod 4\}$. Montrer que l'algorithme permet de déterminer l'automate minimal de \mathcal{L} en deux itérations (deux requêtes d'équivalence). On supposera que l'oracle d'équivalence donne des contre-exemples de longueur minimale.

Question 15

Implémenter la fonction l_star qui déroule une exécution interactive de L^* entre l'apprenant (la machine) et l'enseignant (l'utilisateur, jouant le rôle d'oracle). On utilisera get_sigma pour donner à l'apprenant l'alphabet utilisé. On utilisera $print_word$ et ask_in comme oracle d'appartenance et display et ask_equiv comme oracle d'équivalence.

^{3.} Soit le mot est accepté par l'automate mais n'est pas dans \mathcal{L} , soit il est dans \mathcal{L} mais n'est pas accepté par l'automate.

Question 16

Vous remarquez probablement que vous devez répondre beaucoup de fois à la même question. Implémenter une fonction memo qui prend en argument une fonction f et renvoie une fonction qui se comporte comme f mais qui se souvient des réponses aux appels à f, et l'utiliser pour éviter le problème mentionné plus tôt.

Question 17

Considérons un passage par l'étape 5 avec un contre-exemple $w = w_1 \dots w_n$, qui va provoquer l'extension de T en $T' = T \cup \{w_i \dots w_n \mid 1 \le i \le n+1\}$. On suppose que (S, T') est complète, afin de montrer par l'absurde que ce n'est pas possible.

- 1. Montrer que $\mathcal{A}(S,T)$ et $\mathcal{A}(S,T')$ sont identiques.
- 2. Montrer que $\epsilon \xrightarrow{w} w'$ avec $w' \in \mathcal{L}$ ssi $w \in \mathcal{L}$.
- 3. Conclure.

Question 18

Montrer que l'algorithme termine, en donnant une borne sur le nombre de passages par l'étape 2.

Question 19

En déduire une nouvelle méthode de minimisation d'automate.

Question 20

Montrer que la complexité globale de l'algorithme est polynomiale en le nombre de résiduels de \mathcal{L} et la taille des contre-exemples donnés par l'oracle d'équivalence, en bornant le nombre total d'appels aux deux oracles. Peut-on limiter la longueur des contre-exemples pour obtenir une complexité polynomiale en le nombre de résiduels de \mathcal{L} ?