Implementação dos Algoritmos de Busca A* e IDA* para o Jogo dos 8

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

COPPE - Programa de Engenharia de Sistemas e Computação

Disciplina: COS740 - Inteligência Artificial

Professora: Inês Dutra

Eduardo Melione Abreu Marconi F. P. Rivello de Carvalho

O Jogo dos 8

- Tabuleiro com 8 peças e um espaço vazio
- As peças adjacentes ao espaço vazio podem ser movidas (jogada válida)
- Deseja-se saber o caminho para chegar a uma configuração denominada estado final, a partir de outra - estado inicial

Estado final:

1	2	m
4	5	6
7	8	

Estado inicial:

	2	3
1	4	5
7	8	6

Possui solução?

- Nem sempre há solução
- Os nós são divididos em 2 grafos, sem conexão entre eles
- O parâmetro de desordem (PD) indica em qual dos grupos um estado se encontra (grupo dos pares e dos ímpares)
- O PD é obtido contando quantas peças estão fora de ordem entre si 123 123 876

123 123 870 456 456 543 780 870 210 PD=0 PD=1 PD=28

Complexidade do Problema Utilizando algoritmo de *força bruta*

Tabuleiro	Número de Nós	Tempo	Memória
3x3	3.6×10^5	36 ms	3.11 MB
4x4	$2x10^{13}$	24 dias	304.47 TB

Considerando um computador capaz de expandir 10 milhões de nós por segundo

Estima-se que um Pentium 3 800Mhz (que foi usado para teste) seja capaz de expandir em torno de 500 mil nós por segundo

Métodos Informados de Busca

- Usam informações do domínio do problema para selecionar o melhor caminho até encontrar sua solução
- Define-se uma função heurística h(n) que avalia o custo (ou distância) do caminho de um nó n até o estado final do problema (solução)
- Avalia-se o resultado da função heurística h(n), para decidir qual nó será expandido no próximo nível

Função Heurística

- Deve ser sempre menor ou igual ao melhor valor possível
- A função de custo nunca pode decrescer
- Propriedades:
 - -h(n) = 0, n é o nó objetivo
 - -h(n) > 0, a solução está em outro nó
 - -h(n) tem valor infinito se é impossível atingir o estado final

Manhattan Distance

• É a soma das distâncias entre as peças e suas respectivas posições

Estado final:

1	2	ന
4	5	6
7	8	

Distâncias:

1:1

4: 1

5: 1

6: 1

Estado inicial:

	2	ო
1	4	5
7	8	6

Manhattan Distance: 4

Algoritmo A*

- Expandir o nó que pertence ao caminho com um menor custo associado
- Função de avaliação: f(n) = g(n) + h(n), onde g(n) dá o valor do custo do caminho percorrido desde a raiz até o nó n
- Tenta primeiro os nós com menor custo
- Complexidade espacial exponencial
- Encontra caminho ótimo

Implementação do A*

- Listas de nós Open e Closed
- Inserção ordenada (Open)
- Busca por estados já visitados

Algoritmo IDA*

- Semelhante ao A*
- Porém, são traçados contornos, que limitam a profundidade da busca, poupando memória
- Estados repetidos: custo maior de CPU

Implementação IDA*

- Função recursiva (não precisa de listas)
- Número máximo de nós alocados é a profundidade da solução

Resultados

Inicio:	Fim:
876	1 2 3
5 4 3	804
120	765

Método	Tempo	Nós gerados	Nós alocados	Memória Utilizada
A*	7,20s	14.297	8.153	260.896 bytes
IDA*	12,11s	5.110.461	29	696 bytes

Solução ótima: 28 passos

Máquina utilizada: Pentium 3 800Mhz, 512MB RAM

Resultados

Inicio:	Fim:
876	1 2 3
5 4 3	456
2 1 0	780

Método	Tempo	Nós gerados	Nós alocados	Memória Utilizada
A^*	18,15s	21.302	11.957	382.624 bytes
IDA*	37,45s	15.839.889	31	744 bytes

Solução ótima: 30 passos

Máquina utilizada: Pentium 3 800Mhz, 512MB RAM

Conclusões

- Os métodos estudados, A* e IDA* se comportaram como previsto
- A*: rápido, porém requer muita memória
- IDA*: mais lento, porém utiliza o mínimo necessário de memória

Referências Bibliográficas

- RUSSEL, S. and NORVING, P. Artificial Intelligence. A Modern Approach. Prentice Hall, 1995.
- SCHILDT, H. C: the complete reference. Berkeley Osborne McGraw-hill, 1987.
- BITTENCOURT, G. Inteligência artificial: ferramentas e teorias. Campinas, São Paulo Instituto de Computação. Unicamp, 1996.
- GORANZON, B. and JOSEFSON, I. Knowledge, Skill and Artificial Intelligence. Foundations and Applications of Artificial Intelligence. Springer-Verlag, New York, 1988.