Tarefa 01 – Implentação de uma rede neural Perceptron (Livro texto pag 70. - 3.6 Projeto Prático)

Instruções para o desenvolvimento:

- 1)Desenvolver os algoritmos de treino e operação para o Percepton utilizando a linguagem python3 ou C.
- 2) Utilizar a taxa de aprendizagem de 0,01, com pesos inicializados aleatóriamente, Bias ou Limiar com valor de entrada -1, saida com valor -1 classe P1 e saida com valor 1 classe P2
- 3) Realiza 5 treinamentos utilizando o conjunto de dados de treino separado em 70% para treino e 30% para teste.
 - 4)Realizar a operação com o conjunto de dados de operação não classificados.
- 5) Elaborar um relatório do projeto no formato artigo(modelo SBC site: http://www.sbc.org.br/documentos-da-sbc/summary/169-templates-para-artigos-e-capitulos-de-livros/878-modelosparapublicaodeartigos), com no máximo 04 paginas.
- 6) Enviar o codigo-fonte e o artigo no formato PDF para o e-mail: fabianomoraes@pelotas.ifsul.edu.br até o dia 07/03/2019 23:59.

Intruções para o artigo:

- 1) O artigo deve conter as seções Introdução, Materiais e Métodos, Resultados e Discussão e Conclusão;
 - 2) Seção Introdução:
 - Nesta seção deve ser abordado o que é um percepton, seu uso e suas limitações.
 - 3) Seção Materiais e Métodos:
- Nesta seção deve ser descrito o computador usado e suas caracteristicas, o compilador usado na programação, como é o aprendizado de Hebb utilizado, as caracteristicas da rede neural implementada(numero de entradas, numero de saidas, numero de neuronios,...), explicação dos algoritmos de aprendizagem implementado e de operação(taxa de aprendizagem, método de inicialização dos pesos,...), numero de treinamentos realizados.
 - 4)Seção Resultados e Discussão:
- Nesta seção devem ser apresentados os resultados obtidos com o treinamento e teste da RNA.

- Sendo preenchida a tabela de treino

Treinamento	Vetor Pesos Iniciais			Vetor de pesos finais				Nº	
									epocas
	w0	w1	w2	w3	w0	w1	w2	w3	
1									
2									
3									
4									
5									

- Sendo preenchida a matriz de confusão do teste para cada treino e calculada a taxa de acerto média

	Obtido				
Desejado	Classe P1	Classe P2			
Classe P1	1	3			
Classe P2	4	2			

Obs: a matriz de confusão indica o indice de acerto da rede, no campo 1(classe P2) e 2(classe P2) vão os registros classificados corretamentes. No campo 3 vão os registros que são da classe P1 mas a rede classificou na Classe p2 e no campo 4 vão os registros que são da classe P2 mas a rede classificou na Classe P1. A taxa de acerto média é obtida pelo numero de entradas identificadas corretamente pelo numero de entradas existente em cada classe, sendo realizada a média artmeticas entre as taxas de acertos de todas as classes.

-Após preencher a tabela de operação

Amostra	<i>x</i> ₁	X 2	<i>X</i> ₃	<i>y</i> (T1)	у (Т2)	у (Т3)	у (Т4)	y (T5)
1	-0,3665	0,0620	5,9891		- House			- 100
2	-0,7842	1,1267	5,5912					
3	0,3012	0,5611	5,8234					
4	0,7757	1,0648	8,0677					
5	0,1570	0,8028	6,3040					
6	-0,7014	1,0316	3,6005					
7	0,3748	0,1536	6,1537					
8	-0,6920	0,9404	4,4058					
9	-1,3970	0,7141	4,9263					
10	-1,8842	-0,2805	1,2548	The same	Most of			

- Na discussão discorra por que o numero de epocas de treinamento varia em cada treinamento;
 - Discorra se é possivel afirmar que o processo é lineramente separavel.
 - -Análise os dados de teste quanto o acerto e aponte qual foi o melhor treinamento obtidos.
- -Análise os dados de operação e estime a qual classe cada amostra pertence baseado na taxa de acerto do teste e nos resultados obtidos durante a operação.

5)Seção conclusão

- Identifique qual a melhor estrutura obtida (pesos sinapticos) explicando o por que.