L16Ex_HeldCement

Rick Davila

6/09/2020

Perform data housekeeping - upload, name columns, display to make sure it reads properly, etc.

```
knitr::opts_chunk$set(echo = TRUE)

#Sys.setenv(JAVA_HOME='C:\\Program Files\\Java\\jdk-14.0.1') # for 64-bit version
#library(rJava)

library("xlsx") # Needed to read data
```

```
## Warning: package 'xlsx' was built under R version 4.0.4
```

```
library(MuMIn)
```

```
## Warning: package 'MuMIn' was built under R version 4.0.3
```

```
# Import data
Lex16_1 <- read.xlsx("data-ex-10-1.xlsx", sheetIndex = 1, sheetName=NULL, rowIndex=NULL, startRow=NULL, endRow=NULL, colInde
x= NULL, as.data.frame=TRUE, header=TRUE, colClasses=NA, keepFormulas=FALSE, encoding="unknown")

# Give Labels to data columns
names(Lex16_1) <- c("y", "x1", "x2", "x3", "x4")
attach(Lex16_1)

# Output data to make sure it reads properly
Lex16_1</pre>
```

y <dbl></dbl>	x1 <dbl></dbl>	x2 <dbl></dbl>	x3 <dbl></dbl>	x4 <dbl></dbl>
78.5	7	26	6	60

y <dbl></dbl>	x1 <dbl></dbl>	x2 <dbl></dbl>	x3 <dbl></dbl>	x4 <dbl></dbl>
74.3	1	29	15	52
104.3	11	56	8	20
87.6	11	31	8	47
95.9	7	52	6	33
109.2	11	55	9	22
102.7	3	71	17	6
72.5	1	31	22	44
93.1	2	54	18	22
115.9	21	47	4	26
1-10 of 13 rows			Previous	1 2 Next

Output data dimensions
dim(Lex16_1)

[1] 13 5

```
### Example 11.1 (p. 375) ###
# Reproduce Table 11.1 on p. 375

# First, generate lm model using all possible regressions
Lex16_1_lm <- lm(y~x1+x2+x3+x4, data=Lex16_1, na.action = "na.fail") # Linear model of raw data

# Use dredge() function to automatically perform all regressors regression
combinations <- dredge(Lex16_1_lm, extra = c(R_Sq = function(x) summary(x)$r.squared,R_Sq_Adj = function(x) summary(x)$adj.
r.squared, MS_Res = function(x) summary(x)$sigma^2,Cp, MallowCp = function(x) summary(x)$sigma^2*df.residual(x)/summary(Lex16_1_lm)$sigma^2-dim(Lex16_1)[1]+2*length(x$coefficients)))</pre>
```

Fixed term is "(Intercept)"

print(combinations)

```
## Global model call: lm(formula = v \sim x1 + x2 + x3 + x4, data = Lex16 1, na.action = "na.fail")
## ---
## Model selection table
##
      (Intrc)
                 х1
                         x2
                                 х3
                                              R_Sq R_Sq_Adj
                                                             MS_Res
                                                                         Ср
## 4
        52.58 1.468
                    0.6623
                                            0.9787
                                                     0.9744
                                                              5.790
                                                                      92.65
## 12
        71.65 1.452 0.4161
                                    -0.2365 0.9823
                                                     0.9764
                                                              5.330
                                                                      90.62
## 8
        48.19 1.696 0.6569 0.2500
                                            0.9823
                                                     0.9764
                                                              5.346
                                                                      90.88
## 10
      103.10 1.440
                                    -0.6140 0.9725
                                                     0.9670
                                                              7.476
                                                                     119.60
## 14
      111.70 1.052
                            -0.4100 -0.6428 0.9813
                                                     0.9750
                                                              5.648
                                                                      96.02
## 15
       203.60
                    -0.9234 -1.4480 -1.5570 0.9728
                                                     0.9638
                                                              8.202 139.40
        62.41 1.551 0.5102 0.1019 -0.1441 0.9824
## 16
                                                     0.9736
                                                              5.983
                                                                     107.70
## 13
      131.30
                            -1.2000 -0.7246 0.9353
                                                     0.9223 17.570
                                                                     281.20
## 7
        72.07
                     0.7313 -1.0080
                                            0.8470
                                                     0.8164
                                                             41.540 664.70
## 9
       117.60
                                    -0.7382 0.6745
                                                     0.6450
                                                             80.350 1205.00
        57.42
                                                     0.6359 82.390 1236.00
## 3
                     0.7891
                                            0.6663
## 11
        94.16
                     0.3109
                                    -0.4569 0.6801
                                                     0.6161 86.890 1390.00
## 2
        81.48 1.869
                                            0.5339
                                                     0.4916 115.100 1726.00
## 6
        72.35 2.312
                             0.4945
                                            0.5482
                                                     0.4578 122.700 1963.00
## 5
       110.20
                            -1.2560
                                            0.2859
                                                     0.2210 176.300 2645.00
## 1
        95.42
                                            0.0000
                                                     0.0000 226.300 3168.00
##
      MallowCp df logLik AICc delta weight
## 4
         2.678 4 -28.156 69.3 0.00 0.566
## 12
               5 -26.933 72.4 3.13 0.119
         3.018
## 8
         3.041 5 -26.952 72.5 3.16 0.116
## 10
         5.496 4 -29.817 72.6 3.32 0.107
## 14
         3.497 5 -27.310
                          73.2 3.88
                                      0.081
## 15
         7.337
               5 -29.734 78.0 8.73
                                      0.007
## 16
         5.000
                6 -26.918 79.8 10.52 0.003
               4 -35.372 83.7 14.43
## 13
        22.370
                                      0.000
## 7
        62.440
               4 -40.965 94.9 25.62 0.000
## 9
       138.700
               3 -45.872 100.4 31.10
                                      0.000
## 3
       142.500
               3 -46.035 100.7 31.42 0.000
## 11
       138.200
               4 -45.761 104.5 35.21 0.000
## 2
               3 -48.206 105.1 35.77
       202.500
                                      0.000
## 6
       198.100
               4 -48.005 109.0 39.70 0.000
## 5
       315.200 3 -50.980 110.6 41.31 0.000
## 1
       442.900 2 -53.168 111.5 42.22 0.000
## Models ranked by AICc(x)
```

from the combinations, select the first to models

```
# model 1 model.1 <- lm(y \sim x1 + x2) summary(model.1)
```

```
##
## Call:
## lm(formula = y \sim x1 + x2)
##
## Residuals:
     Min
            1Q Median
                        3Q Max
## -2.893 -1.574 -1.302 1.363 4.048
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## x1
             1.46831
                       0.12130 12.11 2.69e-07 ***
                       0.04585 14.44 5.03e-08 ***
## x2
              0.66225
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.406 on 10 degrees of freedom
## Multiple R-squared: 0.9787, Adjusted R-squared: 0.9744
## F-statistic: 229.5 on 2 and 10 DF, p-value: 4.407e-09
```

anova(model.1)

	Df <int></int>	Sum Sq <dbl></dbl>	Mean Sq <dbl></dbl>	F value <dbl></dbl>	Pr(>F) <dbl></dbl>
x1	1	1450.07633	1450.076328	250.4256	2.088092e-08
x2	1	1207.78227	1207.782266	208.5818	5.028960e-08
Residuals	10	57.90448	5.790448	NA	NA
3 rows					

```
# model 2

model.2 \leftarrow lm(y \sim x1 + x2 + x4)

summary(model.2)
```

```
##
## Call:
## lm(formula = y \sim x1 + x2 + x4)
##
## Residuals:
               1Q Median
      Min
                               3Q
                                      Max
## -3.0919 -1.8016 0.2562 1.2818 3.8982
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 71.6483
                        14.1424 5.066 0.000675 ***
## x1
               1.4519
                           0.1170 12.410 5.78e-07 ***
## x2
                0.4161
                           0.1856 2.242 0.051687 .
## x4
               -0.2365
                           0.1733 -1.365 0.205395
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.309 on 9 degrees of freedom
## Multiple R-squared: 0.9823, Adjusted R-squared: 0.9764
## F-statistic: 166.8 on 3 and 9 DF, p-value: 3.323e-08
```

anova(model.2)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
x1	1	1450.076328	1450.076328	272.043870	4.933517e-08
x2	1	1207.782266	1207.782266	226.587908	1.094167e-07
x4	1	9.931754	9.931754	1.863262	2.053954e-01
Residuals	9	47.972729	5.330303	NA	NA
4 rows					

model 1 fitted equation

$$\hat{y} = 52.5773489 + (1.4683057)x_1 + (0.6622505)x_2$$

model 2 fitted equation

$$\hat{y} = 71.648307 + (1.451938)x_1 + (0.4161098)x_2 + (-0.2365402)x_4$$

Example 11.1 (p. 375)

Reproduce Table 11.1 on p. 375

```
library(e1071)
library(xtable)
# using x1,x2 and x4 data values, calculate respective model y hats
model.1.out <- model.1$coefficients[1] +</pre>
  model.1$coefficients[2] * x1 +
  model.1$coefficients[3] * x2
model.2.out <- model.2$coefficients[1] +</pre>
  model.2$coefficients[2] * x1 +
  model.2$coefficients[3] * x2 +
  model.2$coefficients[4] * x4
table models <- data.frame(cbind(y,x1,x2,x3,x4,model.1.out,model.2.out))
out <- table models
colnames(out) <- c("$y$",</pre>
                    "$x 1$",
                    "$x 2$",
                    "$x 3$",
                    "$x 4$",
                    "model 1",
                    "model 2")
tab <- (xtable(out, digits=c(0,1,0,0,0,0,3,3)))
print(tab, type="html")
```

```
y \mid x_1 \mid x_2 \mid x_3 \mid x_4 model 1 model 2
```

1	78.5	7	26	6	60	80.074	78.438
2	74.3	1	29	15	52	73.251	72.867
3	104.3	11	56	8	20	105.815	106.191
4	87.6	11	31	8	47	89.258	89.402
5	95.9	7	52	6	33	97.293	95.644
6	109.2	11	55	9	22	105.152	105.302
7	102.7	3	71	17	6	104.002	104.129
8	72.5	1	31	22	44	74.575	75.592
9	93.1	2	54	18	22	91.275	91.818
10	115.9	21	47	4	26	114.538	115.546
11	83.8	1	40	23	34	80.536	81.702
12	113.3	11	66	9	12	112.437	112.244
13	109.4	10	68	8	12	112.293	111.625