Politechnika Gdańska

Wydział Fizyki Technicznej i Matematyki Stosowanej

Anna Wieżel

Nr albumu: 132540

Funkcjonalne Modele Liniowe

Praca magisterska na kierunku MATEMATYKA w zakresie MATEMATYKA FINANSOWA

> Praca wykonana pod kierunkiem **dra hab. Karola Dziedziula** Katedra Analizy Matematycznej i Numerycznej

Oświadczenie kierujcego prac

Potwierdzam, że niniejsza praca została przygotowana pod moim kierunkiem i kwalifikuje si do przedstawienia jej w postpowaniu o nadanie tytułu zawodowego.

Data

Podpis kierujcego prac

Oświadczenie autora (autorów) pracy

Świadom odpowiedzialności prawnej oświadczam, że niniejsza praca dyplomowa została napisana przeze mnie samodzielnie i nie zawiera treści uzyskanych w sposób niezgodny z obowizujcymi przepisami.

Oświadczam również, że przedstawiona praca nie była wcześniej przedmiotem procedur zwizanych z uzyskaniem tytułu zawodowego w wyższej uczelni.

Oświadczam ponadto, że niniejsza wersja pracy jest identyczna z załczon wersj elektroniczn.

Data

Podpis autora (autorów) pracy

Streszczenie

 \cos

Słowa kluczowe

funkcjonalna analiza danych, dane funkcjonalne, funkcjonalne modele liniowe, test istotności

Dziedzina pracy (kody wg programu Socrates-Erasmus)

- 11.1 Matematyka
- 11.2 Statystyka

Klasyfikacja tematyczna

62 Statistics62-07 Data analysis62J12 Generalized linear models

Tytuł pracy w jzyku angielskim

Functional Linear Models

Spis treści

W	step
1.	Preliminaria
	1.1. Klasyfikacja operatorów liniowych
	1.2. Przestrzeń L^2
	1.3. Zmienne funkcjonalne w L^2 . Pojęcie operatora kowariancji
	1.4. Funkcjonalny model liniowy
2.	Test istotności w funkcjonalnym modelu liniowym
	2.1. Procedura testowa
	2.2. Formalne podstawy
3.	Przykład zastosowania
Α.	Kod w R
Bi	bliografia

Wstęp

Odpowiednik testu istotności dla prostego modelu regresji = F-test (+ t-test) [patrz: artykuł]

Rozdział 1

Preliminaria

Przestrzenią funkcyjną E nazywać będziemy przestrzeń liniową funkcji z dowolnego zbioru A do zbioru B.

Definicja 1.0.1 | Ferraty, Vieu|

Zmienną losową X nazywamy **zmienną funkcjonalną** wtedy i tylko wtedy, gdy przyjmuje wartości w nieskończenie wymiarowej przestrzeni (przestrzeni funkcyjnej). Obserwację χ zmiennej X nazywamy **daną funkcjonalną** (ang. functional data).

Jeśli zmienna funkcjonalna X (odpowiednio obserwacja χ) jest krzywą, to zachodzi $X=\{X(t),\ t\in T\}$ (odp. $\chi=\{\chi(t),\ t\in T\}$), gdzie zbiór indeksów $T\subset\mathbb{R}$. Taką zmienną funkcjonalną możemy zatem utożsamiać z procesem stochastycznym z nieskończenie wymiarową przestrzenią stanów. W szczególności, zmienna funkcjonalna może być powierzchnią, czyli dwuwymiarowym wektorem krzywych - wtedy, analogicznie, T będzie dwuwymiarowym zbiorem indeksów tj. $T\subset\mathbb{R}^2$ - lub dowolnie wymiarowym wektorem krzywych.

W niniejszej pracy skupimy się na zmiennych funkcjonalnych przyjmujących postać krzywych.

Aby zbudować pojęcie operatora kowariancji dla zmiennych funkcjonalnych wprowadzimy niezbędne pojęcia z dziedziny operatorów liniowych.

1.1. Klasyfikacja operatorów liniowych

Niech (Ω, \mathcal{F}, P) będzie przestrzenią probabilistyczną, Ω jest zatem zbiorem scenariuszy ω , \mathcal{F} jest σ -algebrą podzbiorów Ω , a P miarą prawdopodobieństwa nad \mathcal{F} . Dla uproszczenia zakładamy zupełność zadanej przestrzeni probabilistycznej. Rozważmy proces stochastyczny z czasem ciągłym $X = \{X_t, t \in T\}$, gdzie T jest przedziałem w \mathbb{R} , zdefiniowany na przestrzeni probabilistycznej (Ω, \mathcal{F}, P) , taki, że $X_t(\omega)$ należy do przestrzeni funkcyjnej E dla wszystkich $\omega \in \Omega$.

W pracy rozważać będziemy zmienne funkcjonalne przyjmujące wartości w przestrzeni Hilberta.

Rozważmy ośrodkową nieskończenie wymiarową przestrzeń Hilberta H z iloczynem skalarnym $\langle\cdot,\cdot\rangle$ zadającym normę $\|\cdot\|$ i oznaczmy przez $\mathcal L$ przestrzeń ciągłych (ograniczonych) operatorów liniowych w H z normą

$$\|\varPsi\|_{\mathcal{L}} := \sup\{\|\varPsi(x)\|: \ \|x\| \leqslant 1\}.$$

Definicja 1.1.1 [Horváth, Kokoszka]

Operator $\Psi \in \mathcal{L}$ nazywamy **operatorem zwartym**, jeśli istnieją dwie ortonormalne bazy $\{\nu_j\}_{j=1}^{\infty}$ i $\{f_j\}_{j=1}^{\infty}$, oraz ciąg liczb rzeczywistych $\{\lambda_j\}_{j=1}^{\infty}$ zbieżny do zera, takie że

$$\Psi(x) = \sum_{j=1}^{\infty} \lambda_j \langle x, \nu_j \rangle f_j, \quad x \in H.$$
 (1.1)

Bez straty ogólności możemy założyć, że w przedstawionej reprezentacji λ_j są wartościami dodatnimi, w razie konieczności wystarczy f_j zamienić na $-f_j$.

Równoważną definicją operatora zwartego jest spełnienie następującego warunku: zbieżność $\langle y, x_n \rangle \to \langle y, x \rangle$ dla każdego $y \in H$ implikuje $\| \Psi(x_n) - \Psi(x) \| \to 0$.

Inną klasą operatorów są operatory Hilberta-Schmidta, którą oznaczać będziemy przez \mathcal{S} .

Definicja 1.1.2 |Bosq|

Operatorem Hilberta-Schmidta nazywamy taki operator zwarty $\Psi \in \mathcal{L}$, dla którego ciąg $\{\lambda_j\}_{j=1}^{\infty}$ w reprezentacji (1.1) spełnia $\sum_{j=1}^{\infty} \lambda_j^2 < \infty$.

Uwaga 1.1.1 |Bosq|, |Horváth, Kokoszka|

Klasa S jest przestrzenią Hilberta z iloczynem skalarnym

$$\langle \Psi_1, \Psi_2 \rangle_{\mathcal{S}} := \sum_{j=1}^{\infty} \langle \Psi_1(e_j), \Psi_2(e_j) \rangle,$$

 $gdzie\ \{e_j\}_{j=1}^{\infty}\ jest\ dowolna\ baza\ ortonormalna\ w\ H.$

Powyższy iloczyn skalarny zadaje normę $\|\Psi\|_{\mathcal{S}} := \left(\sum_{j=1}^{\infty} \lambda_j^2\right)^{1/2}$.

Definicja 1.1.3 |Bosq|

Operator liniowy nazywamy **operatorem śladowym** (ang. nuclear operator), jeśli równość (1.1) spełniona jest dla ciągu takiego, że $\sum_{j=1}^{\infty} |\lambda_j| < \infty$.

Uwaga 1.1.2 |Bosq|

Klasa operatorów śladowych \mathcal{N} z normą $\|\Psi\|_{\mathcal{N}} := \sum_{j=1}^{\infty} |\lambda_j|$ jest przestrzenią Banacha.

Definicja 1.1.4 | Horváth, Kokoszka|

Operator $\Psi \in \mathcal{L}$ nazywamy **symetrycznym**, jeśli

$$\langle \Psi(x), y \rangle = \langle x, \Psi(y) \rangle, \quad x, y \in H,$$

oraz **nieujemnie określonym** (połowicznie pozytywnie określonym, ang. positive semidefinite), jeśli

$$\langle \Psi(x), x \rangle \geqslant 0, \quad x \in H.$$

Uwaga 1.1.3 [Horváth, Kokoszka]

Symetryczny nieujemnie określony operator Hilberta-Schmidta Ψ możemy przedstawić w reprezentacji

$$\Psi(x) = \sum_{j=1}^{\infty} \lambda_j \langle x, \nu_j \rangle \nu_j, \quad x \in H,$$
(1.2)

gdzie ortonormalne ν_j są **funkcjami własnymi** Ψ , tj. $\Psi(\nu_j) = \lambda_j \nu_j$. Funkcje ν_j mogą być rozszerzone do bazy, przez dopełnienie ortogonalne podprzestrzeni rozpiętej przez oryginalne ν_j . Możemy zatem założyć, że funkcje ν_j w (1.2) tworzą bazę, a pewne wartości λ_j mogą być równe zero.

1.2. Przestrzeń L^2

Przestrzeń $L^2 = L^2(K, \mathcal{A}, \mu)$ nad pewną przestrzenią liniową K jest zbiorem mierzalnych funkcji rzeczywistych określonych na K spełniających $\int_K x^2(t)dt < \infty$. Przestrzeń L^2 jest ośrodkową przestrzenią Hilberta z iloczynem skalarnym

$$\langle x, y \rangle := \int_K x(t)y(t)dt.$$

Tak jak zwyczajowo zapisujemy L^2 zamiast $L^2(K)$, tak w przypadku symbolu całki bez wskazania obszaru całkowania będziemy mieć na myśli całkowanie po całej przestrzeni K. Jeśli $x, y \in L^2$, równość x = y zawsze oznaczać będzie $\int [x(t) - y(t)]^2 dt = 0$.

Ważną klasę operatorów liniowych na przestrzeni L^2 stanowią operatory całkowe.

Definicja 1.2.1 Operatorem całkowym nazywamy operator liniowy Ψ dający się przedstawić w formie

$$\varPsi(x)(t) = \int \psi(t,s) x(s) ds, \quad x \in L^2,$$

 $gdzie \ \psi \ stanowi \ jqdro \ całkowe \ operatora \ \Psi.$

Uwaga 1.2.1 [Horváth, Kokoszka]

Operatory całkowe są operatorami Hilberta-Schmidta wtedy i tylko wtedy, gdy

$$\iint \psi^2(t,s)dtds < \infty.$$

Ponadto zachodzi

$$\|\Psi\|_{\mathcal{S}}^2 = \iint \psi^2(t,s)dtds.$$

Uwaga 1.2.2 (Twierdzenie Mercera) [Horváth, Kokoszka]

Jeśli operator spełnia również $\psi(s,t) = \psi(t,s)$ oraz $\iint \psi(t,s)x(t)x(s)dtds \geqslant 0$, to operator całkowy Ψ jest symetryczny i nieujemnie określony, zatem z uwagi 1.1.3 mamy

$$\psi(t,s) = \sum_{j=1}^{\infty} \lambda_j \nu_j(t) \nu_j(s) \quad w \ L^2(K) \times L^2(K).$$

Jeżeli funkcja ψ jest ciągła, powyższe rozwinięcie jest prawdziwe dla wszystkich $s,t\in K$ i szereg jest zbieżny jednostajnie.

1.3. Zmienne funkcjonalne w L^2 . Pojęcie operatora kowariancji

Rozważmy zmienną funkcjonalną $X = \{X(t), t \in T\}$ będącą krzywą $(T \subset \mathbb{R})$ jako element losowy z przestrzeni $L^2(T)$ zaopatrzonej w σ -algebrę borelowskich podzbiorów T. Mówimy, że zmienna X jest **całkowalna**, jeśli $\mathbb{E} \|X\| = \mathbb{E} \left[\int X^2(t) dt \right]^{1/2} < \infty$.

Definicja 1.3.1 |Bosq|

Operator kowariancji scentrowanej zmiennej funkcjonalnej X (tj. $\mathbb{E}X = 0$) przyjmującej wartości w przestrzeni funkcyjnej L^2 spełniającej $\mathbb{E} \|X\|^2 < \infty$ definiujemy następująco

$$C_X(x) := \mathbb{E}[\langle X, x \rangle X], \quad x \in L^2.$$

Jeśli Y jest zmienną funkcjonalną spełniającą powyższe warunki, wtedy operator kowariancji między zmiennymi X i Y przedstawiamy jako

$$C_{X,Y}(x) := \mathbb{E}[\langle X, x \rangle Y], \quad x \in L^2$$

oraz

$$C_{Y,X}(x) := \mathbb{E}[\langle Y, x \rangle X], \quad x \in L^2.$$

Operator kowariancji jest operatorem całkowym, czyli

$$C_X(x)(t) = \int c(t,s)x(s)ds$$
, gdzie $c(t,s) = \mathbb{E}[X(t)X(s)]$.

Oczywistym jest, że c(t,s) = c(s,t) i mamy

$$\iint c(t,s)x(t)x(s)dtds = \iint \mathbb{E}\left[X(t)X(s)\right]x(t)x(s)dtds = \mathbb{E}\left[\left(\int X(t)x(t)dt\right)^2\right] \geqslant 0.$$

Zatem operator kowariancji C_X jest symetryczny oraz nieujemnie określony. Wartości własne λ_j operatora C_X są dodatnie i spełniony jest warunek $\sum_{j=1}^{\infty} \lambda_j = \mathbb{E} \|X\|^2 < \infty$. C_X jest operatorem Hilberta-Schmidta (a nawet operatorem śladowym) i posiada on następującą reprezentację

$$C_X(x) = \sum_{j=1}^{\infty} \lambda_j \langle x, \nu_j \rangle \nu_j, \quad x \in L^2.$$

[już tu: estymatory operatorów kowariancji?]

1.4. Funkcjonalny model liniowy

Standardowy model liniowy dla par zmiennych skalarnych Y_n i wektorów \mathbf{X}_n (n = 1, ..., N), przy założeniu $\mathbb{E}Y_n = 0$, $\mathbb{E}\mathbf{X}_n = \mathbf{0}^1$, ma postać

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon},\tag{1.3}$$

gdzie

 \mathbf{Y} jest wektorem zmiennych objaśnianych długości N,

X jest macierzą zmiennych objaśniających wymiaru $N \times p$,

 β jest wektorem parametrów długości p,

 ε jest wektorem błędów losowych długości N.

[Mając dane realizacje zmiennych \mathbf{Y} oraz \mathbf{X} poszukiwany wektor współczynników modelu $\boldsymbol{\beta}$ znajdujemy metodą najmniejszych kwadratów.]

Poza narzuconym już założeniem o scentrowanych zmiennych losowych \mathbf{Y} i \mathbf{X} (tu: jedynie aby uniknąć uwzględniania wyrazu wolnego²) najważniejszymi założeniami powyższego modelu liniowego są wymagania, aby zmienna losowa $\boldsymbol{\varepsilon}$ opisująca błąd modelu również spełniała $\mathbb{E}[\boldsymbol{\varepsilon}] = 0$ oraz aby nie była skorelowana ze zmiennymi X_n).

Rozważać będziemy odpowiednik modelu liniowego dla zmiennych funkcjonalnych. Dla uproszczenia (podobnie jak wyżej) zakładać będziemy, że zmienne objaśniane i objaśniające mają

¹przenieść tę uwagę/wytłumaczenie do przypisu?

²przenieść tę uwagę/wytłumaczenie do przypisu?

średnie równe zero. **Pełen model funkcjonalny** (ang. *fully functional model*) przyjmuje postać

$$Y_n = \Psi X_n + \varepsilon_n, \quad n = 1, ..., N, \tag{1.4}$$

gdzie krzywe Y_n , X_n oraz nieobserwowalny błąd ε_n należą do przestrzeni Hilberta $L^2(T)$. Operator $\Psi: L^2 \to L^2$ jest ograniczonym operatorem liniowym, który w szczególności jest również operatorem całkowym, którego jądro całkowe $\psi(t,s)$ jest funkcją całkowalną z kwadratem na $T \times T$. Równość (1.4) rozumiemy zatem następująco

$$Y_n(t) = \int \psi(s,t)X_n(s)ds + \varepsilon_n(t), \quad n = 1,...,N.$$

[Nazwa powyższego modelu wynika z faktu, że zarówno zmienne objaśniane Y_n jak i zmienne objaśniające X_n są zmiennymi funkcjonalnymi. Niewielkim uproszczeniem są pozostałe typy funkcjonalnych modeli liniowych, tj.

- model z odpowiedzią skalarną (ang. scalar response model)

$$Y_n = \int \psi(s)X_n(s)ds + \varepsilon_n, \quad n = 1, ..., N,$$

w którym tylko zmienne objaśniające X są zmiennymi funkcjonalnymi,

- model z odpowiedzią funkcyjną (ang. functional response model)

$$Y_n(t) = \psi(t)X_n + \varepsilon_n(t), \quad n = 1, ..., N,$$

w którym zmienne objaśniające X_n są skalarami.]

Naturalnym problemem pojawiającym się przy funkcjonalnym modelu liniowym jest estymacja operatora $\Psi...$

Rozdział 2

Test istotności w funkcjonalnym modelu liniowym

2.1. Procedura testowa

Jednym z podstawowych testów na efektywność modelu jest test istotności zmiennych objaśniających. Jak w przypadku modelu liniowego dla zmiennych skalarnych (postaci (1.3)) testuje się hipotezę o zerowaniu się wektora β , tak w przypadku funkcjonalnego modelu liniowego badamy zerowanie się operatora Ψ , tj. hipotezy

$$H_0: \quad \Psi = 0 \quad \text{przeciw} \quad H_A: \quad \Psi \neq 0.$$

Zauważmy, że przyjęcie H_0 nie oznacza braku związku między zmienną objaśnianą a objaśniającą. Prowadzi jedynie do stwierdzenia braku zależności liniowej.

Zakładamy, że zmienna objaśniana Y_n , zmienne objaśniające X_n i błędy ε_n są scentrowanymi zmiennymi losowymi przyjmującymi wartości w przestrzeni Hilberta L^2 . Oznaczając przez X (analogicznie Y) losową funkcję o tym samym rozkładzie co X_n (Y_n) wprowadzamy operatory

$$C(x) = \mathbb{E}[\langle X, x \rangle X], \quad \Gamma(x) = \mathbb{E}[\langle Y, x \rangle Y], \quad \Delta(x) = \mathbb{E}[\langle X, x \rangle Y].$$

Przez $\widehat{C},\,\widehat{\Gamma},\,\widehat{\Delta}$ oznaczamy ich estymatory, np.

$$\widehat{C}(x) = \frac{1}{N} \sum_{n=1}^{N} \langle X_n, x \rangle X_n.$$

Definiujemy również wartości i wektory własne C i Γ

$$C(v_k) = \lambda_k v_k, \quad \Gamma(u_j) = \gamma_j u_j,$$

których estymatory będziemy oznaczać $(\widehat{\lambda}_k, \widehat{v}_k)$, $(\widehat{\gamma}_j, \widehat{u}_j)$.

Test obejmuje obcięcie powyższych operatorów na podprzestrzenie skończenie wymiarowe. Podprzestrzeń $\mathcal{V}_p = \operatorname{span}\{v_1,...,v_p\}$ zawiera najlepsze przybliżenia X_n , które są liniowymi kombinacjami pierwszych p głównych składowych (ang, Functional Principal Components, FPC). Metodą głównych składowych wyznaczamy p największych wartości własnych operatora \widehat{C} tak, że $\widehat{\mathcal{V}}_p = \operatorname{span}\{\widehat{v}_1,...,\widehat{v}_p\}$ zawiera najlepsze przybliżenie X_n . Analogicznie $\mathcal{U}_q = \operatorname{span}\{u_1,...,u_q\}$ zawiera przybliżenia $\operatorname{span}\{Y_1,...,Y_N\}$.

Z równości

$$Y(t) = \int \psi(s, t) X(s) ds + \varepsilon(t)$$

wynika $\Delta = \psi C$ i dla $k \leq p$ mamy

$$\psi(\upsilon_k) = \lambda_k^{-1} \Delta(\upsilon_k).$$

Stąd, ψ zeruje się na span $\{v_1,...,v_p\}$ wtedy i tylko wtedy, gdy $\Delta(v_k)=0$ dla każdego k=1,...,p. Zauważmy, że

$$\Delta(\upsilon_k) \approx \widehat{\Delta}(\upsilon_k) = \frac{1}{N} \sum_{n=1}^{N} \langle X_n, \upsilon_k \rangle Y_n.$$

Skoro zatem span $\{Y_1,...,Y_N\}$ są dobrze aproksymowane przez \mathcal{U}_q , to możemy ograniczyć się do sprawdzania czy

$$\langle \widehat{\Delta}(v_k), u_j \rangle = 0, \quad k = 1, ..., p, \quad j = 1, ..., q.$$
 (2.1)

Jeśli H_0 jest prawdziwa, to dla każdego $x \in \mathcal{V}_p$, $\psi(x)$ nie należy do \mathcal{U}_q . Co znaczy, że żadna funkcja Y_n nie może być opisana jako liniowa kombinacja X_n , n = 1, ..., N. Statystyka testowa powinna zatem sumować kwadraty iloczynów skalarnych (2.1). Poniższe twierdzenia prowadzą do wyznaczenia statystyki

$$\widehat{T}_N(p,q) = N \sum_{k=1}^p \sum_{j=1}^q \widehat{\lambda}_k^{-1} \widehat{\gamma}_j^{-1} \left\langle \widehat{\Delta}(\widehat{v}_k), \widehat{u}_j \right\rangle^2, \tag{2.2}$$

która zbiega według rozkładu do rozkładu χ^2 z pq stopniami swobody. Przy czym

$$\left\langle \widehat{\Delta}(\widehat{v}_k), \widehat{u}_j \right\rangle = \left\langle \frac{1}{N} \sum_{n=1}^N \left\langle X_n, \widehat{v}_k \right\rangle Y_n, \widehat{u}_j \right\rangle = \frac{1}{N} \sum_{n=1}^N \left\langle X_n, \widehat{v}_k \right\rangle \left\langle Y_n, \widehat{u}_j \right\rangle$$

oraz $\lambda_k = \mathbb{E} \langle X, v_k \rangle^2$ i $\gamma_i = \mathbb{E} \langle Y, u_i \rangle^2$.

Uwaga 2.1.1 Oczywistym jest, że jeśli odrzucamy H_0 , to $\psi(v_k) \neq 0$ dla pewnego $k \geqslant 1$. Jednak ograniczając się do p największych wartości własnych, test jest skuteczny tylko jeśli ψ nie zanika na którymś wektorze v_k , k = 1, ..., p. Aczkolwiek takie ograniczenie jest intuicyjnie niegroźne, ponieważ test ma za zadanie sprawdzić czy główne źródła zmienności Y mogą być opisane przez główne źródła zmienności zmiennych X.

Schemat przebiegu testu

- 1. Sprawdzamy założenie o liniowości metodą FPC score predictor-response plots.
- 2. Wybieramy liczbę głównych składowych p i q metodami $scree\ test$ oraz CPV.
- 3. Wyliczamy wartość statystyki $\widehat{T}_N(p,q)$ (2.2).
- 4. Jeśli $\widehat{T}_N(p,q) > \chi_{pq}^2(1-\alpha)$, to odrzucamy hipotezę zerową o braku liniowej zależności. W przeciwnym razie nie mamy podstaw do odrzucenia H_0 .

...

2.2. Formalne podstawy

Założenie 2.2.1 [Kokoszka et al. (2008)], [Horváth, Kokoszka] Trójka $(Y_n, X_n, \varepsilon_n)$ tworzy ciąg niezależnych elementów losowych o jednakowym rozkładzie, takich że ε_n jest niezależne od X_n oraz

$$\mathbb{E}X_n = 0, \quad \mathbb{E}\varepsilon_n = 0,$$

$$\mathbb{E}||X_n||^4 < \infty \quad i \quad \mathbb{E}||\varepsilon_n||^4 < \infty.$$

Założenie 2.2.2 [Kokoszka et al. (2008)], [Horváth, Kokoszka] Wartości własne operatorów C oraz Γ spełniają, dla pewnych p > 0 i q > 0

$$\lambda_1>\lambda_2>\ldots>\lambda_p>\lambda_{p+1},\quad \gamma_1>\gamma_2>\ldots>\gamma_q>\gamma_{q+1}.$$

Twierdzenie 2.2.1 [Kokoszka et al. (2008)], [Horváth, Kokoszka] Jeśli spełnione są H_0 i powyższe Założenia 2.2.1, 2.2.2, to $\widehat{T}_N(p,q) \stackrel{d}{\longrightarrow} \chi^2_{pq}$ przy $N \to \infty$.

Twierdzenie 2.2.2 [Kokoszka et al. (2008)], [Horváth, Kokoszka] Przy Założeniach 2.2.1, 2.2.2 oraz jeśli $\langle \psi(v_k), u_j \rangle \neq 0$ dla pewnych $k \leqslant p$ oraz $j \leqslant q$, to $\widehat{T}_N(p,q) \xrightarrow{P} \chi_{pq}^2 \ przy \ N \to \infty$.

Dowody...

Lemat 2.2.1 [Kokoszka et al. (2008)], [Bosq] Przy powyższych Założeniach spełnione są nierówności

$$\limsup_{N \to \infty} N \mathbb{E} \| \nu_k - \widehat{\nu}_k \|^2 < \infty, \quad \limsup_{N \to \infty} N \mathbb{E} \| u_j - \widehat{u}_j \|^2 < \infty,$$

$$\limsup_{N \to \infty} N \mathbb{E}\left[\left|\gamma_k - \widehat{\gamma}_k\right|^2\right] < \infty, \quad \limsup_{N \to \infty} N \mathbb{E}\left[\left|\lambda_j - \widehat{\lambda}_j\right|^2\right] < \infty,$$

 $dla \ k \leq p \ oraz \ j \leq q.$

Lemat 2.2.2 [Kokoszka et al. (2008)], [Horváth, Kokoszka] Jeśli spełnione są H_0 i powyższe Założenia, to dla $j \leq q$, $k \leq p$

$$\sqrt{N}\langle \widehat{\Delta}\nu_k, u_j \rangle \stackrel{d}{\longrightarrow} \eta_{kj} \sqrt{\gamma_k \lambda_j},$$

gdzie $\eta_{kj} \sim N(0,1)$. Przy czym $\eta_{k,j}$ oraz $\eta_{k'j'}$ są niezależne dla $(k,j) \neq (k',j')$.

Dowód. Przy H₀

$$\sqrt{N}\langle \widehat{\Delta}\nu_k, u_j \rangle = N^{-1/2} \sum_{n=1}^N \langle X_n, \nu_k \rangle \langle \varepsilon_n, u_j \rangle.$$

... Aby udowodnić niezależność między η_{kj} i $\eta_{k'j'}$ dla $(k,j) \neq (k',j')$, wystarczy pokazać, że $\sqrt{N}(\widehat{\Delta}(\nu_k), u_j)$ i $\sqrt{N}(\widehat{\Delta}(\nu_{k'}), u_{j'})$ są nieskorelowane

$$\begin{split} &\mathbb{E}\left[\sqrt{N}\langle\widehat{\Delta}(\nu_{k}),u_{j}\rangle,\sqrt{N}\langle\widehat{\Delta}(\nu_{k'}),u_{j'}\rangle\right] \\ &=\frac{1}{N}\mathbb{E}\left[\sum_{n=1}^{N}\langle X_{n},\nu_{k}\rangle\langle\varepsilon_{n},u_{j}\rangle\sum_{n'=1}^{N}\langle X_{n'},\nu_{k'}\rangle\langle\varepsilon_{n'},u_{j'}\rangle\right] \\ &=\frac{1}{N}\sum_{n,n'=1}^{N}\mathbb{E}\left[\langle X_{n},\nu_{k}\rangle\langle X_{n'},\nu_{k'}\rangle\right]\mathbb{E}\left[\langle\varepsilon_{n},u_{j}\rangle\langle\varepsilon_{n'},u_{j'}\rangle\right] \\ &=\frac{1}{N}\sum_{n=1}^{N}\mathbb{E}\left[\langle X_{n},\nu_{k}\rangle\langle X_{n},\nu_{k'}\rangle\right]\mathbb{E}\left[\langle\varepsilon_{n},u_{j}\rangle\langle\varepsilon_{n},u_{j'}\rangle\right] \\ &=\langle C(\nu_{k}),\nu_{k'}\rangle\langle\Gamma u_{j},u_{j'}\rangle=\gamma_{k}\delta_{kk'}\gamma_{j}\delta jj'. \end{split}$$

Przypomnijmy, że norma Hilberta-Schmidta operatora Hilberta-Schmidta S zdefiniowana jest wzorem $||S||_{\mathcal{S}}^2 = \sum_{j=1}^{\infty} ||S(e_j)||^2$, gdzie ciąg $\{e_1, e_2, ...\}$ stanowi bazę ortonormalną oraz, że norma ta jest nie mniejsza od normy operatorowej, tj. $||S||_{\mathcal{L}}^2 \leq ||S||_{\mathcal{S}}^2$.

Lemat 2.2.3 [Kokoszka et al. (2008)], [Horváth, Kokoszka] Przy założeniach Twierdzenia 2.2.1 mamy

$$\mathbb{E} \left\| \widehat{\Delta} \right\|_{\mathcal{S}}^2 = N^{-1} \mathbb{E} \left\| X \right\|^2 \mathbb{E} \left\| \varepsilon_1 \right\|^2.$$

Dowód. Zauważmy, że

$$\left\|\widehat{\Delta}(e_j)\right\|^2 = N^{-2} \sum_{n,n'=1}^N \langle X_n, e_j \rangle \langle X_{n'}, e_j \rangle \langle Y_n, Y_{n'} \rangle.$$

Stąd mamy

$$\mathbb{E} \|\widehat{\Delta}\|_{\mathcal{S}}^{2} = N^{-2} \sum_{j=1}^{\infty} \sum_{n,n'=1}^{N} \mathbb{E} \left[\langle X_{n}, e_{j} \rangle \langle X_{n'}, e_{j} \rangle \langle \varepsilon_{n}, \varepsilon_{n'} \rangle \right]$$

$$= N^{-2} \sum_{j=1}^{\infty} \sum_{n,n'=1}^{N} \mathbb{E} \langle X_{n}, e_{j} \rangle^{2} \mathbb{E} \|\varepsilon_{n}\|^{2}$$

$$= N^{-1} \mathbb{E} \|\varepsilon_{1}\|^{2} \sum_{j=1}^{\infty} \langle X, e_{j} \rangle^{2} = N^{-1} \mathbb{E} \|\varepsilon_{1}\|^{2} \|X\|^{2}.$$

Lemat 2.2.4 [Kokoszka et al. (2008)], [Horváth, Kokoszka] Zalóżmy, że $\{U_n\}_{n=1}^{\infty}$ oraz $\{V_n\}_{n=1}^{\infty}$ są ciągami elementów losowych z przestrzeni Hilberta takich, że $||U_n|| \stackrel{P}{\to} 0$ i $||V_n|| = O_P(1)$, tj.

$$\lim_{C \to \infty} \limsup_{n \to \infty} P(\|V_n\| > C) = 0.$$

Wtedy zachodzi

$$\langle U_n, V_n \rangle \stackrel{P}{\longrightarrow} 0.$$

Dowód. Prawdziwość lematu wynika z analogicznej własności dla losowych ciągów liczb rzeczywistych i nierówności $|\langle U_n, V_n \rangle| \leq ||U_n|| ||V_n||$.

Lemat 2.2.5 [Kokoszka et al. (2008)], [Horváth, Kokoszka] Przy założeniach Twierdzenia 2.2.1, dla $j \leq q$, $k \leq p$ zachodzi

$$\sqrt{N}\langle \widehat{\Delta}(\widehat{\nu}_k), \widehat{u}_j \rangle \xrightarrow{d} \eta_{kj} \sqrt{\gamma_k \lambda_j},$$

 $gdzie \eta_{kj} definiowane są jak w Lemacie 2.2.2.$

Dowód. Na mocy Lematu 2.2.2, wystarczy pokazać

$$\sqrt{N}\langle \widehat{\Delta}(\widehat{\nu}_k), \widehat{u}_i \rangle - \sqrt{N}\langle \widehat{\Delta}(\nu_k), u_i \rangle \stackrel{P}{\longrightarrow} 0.$$
 (2.3)

Równość (2.3) wynika z

$$\sqrt{N}\langle \hat{\Delta}(\hat{\nu}_k), \hat{u}_j - u_j \rangle \stackrel{P}{\longrightarrow} 0$$
 (2.4)

i

$$\sqrt{N}\langle \hat{\Delta}(\hat{\nu}_k - \nu_k), \hat{u}_j \rangle \xrightarrow{P} 0.$$
 (2.5)

Aby udowodnić równość (2.4), zauważmy, że $\sqrt{N}(\hat{u}_j - u_j) = O_P(1)$ oraz, na mocy Lematu 2.2.3, $\mathbb{E} \| \hat{\Delta}(\nu_k) \| \leq \mathbb{E} \| \hat{\Delta} \|_{\mathcal{S}} = O(N^{-1/2})$. Stąd równość (2.4) wynika z Lematu 2.2.4...

Wniosek 2.2.1 [Kokoszka et al. (2008)], [Horváth, Kokoszka] Przy założeniach Twierdzenia 2.2.1, dla $j \leq q$, $k \leq p$ zachodzi

$$\sqrt{N}\langle \hat{\lambda}_k^{-1/2} \hat{\gamma}_j^{-1/2} \widehat{\Delta}(\hat{\nu}_k), \hat{u}_j \rangle \stackrel{d}{\longrightarrow} \eta_{kj},$$

gdzie η_{kj} definiowane są jak w Lemacie 2.2.2.

Lemat 2.2.6 [Kokoszka et al. (2008)], [Horváth, Kokoszka] Jeśli $\{Y_n\}_{n\geqslant 1}$ są elementami losowymi o jednakowych rozkładach, to zachodzi $\mathbb{E}\|\widehat{\Delta}\| \leqslant \mathbb{E}\|Y\|^2$.

Dowód. Dla dowolnego $u \in L^2$ takiego, że $||u|| \leq 1$, mamy

$$\|\widehat{\Delta}u\| \leqslant N^{-1} \sum_{n=1}^{N} |\langle Y_n, u \rangle| \|Y_n\| \leqslant N^{-1} \sum_{n=1}^{N} \|Y_n\|^2.$$

Co ze względu na założenie, że Y_n mają jednakowy rozkład, jest równoważne tezie lematu. \square

Lemat 2.2.7 [Kokoszka et al. (2008)], [Horváth, Kokoszka] Jeżeli spełnione jest Założenie 2.2.1, wtedy dla dowolnych funkcji $\nu, u \in L^2$

$$\langle \widehat{\Delta}(\nu), u \rangle \xrightarrow{P} \langle \Delta(\nu), u \rangle.$$

Dowód. Tezę otrzymujemy korzystając z Prawa Wielkich Liczb zauważając

$$\langle \widehat{\Delta}(\nu), u \rangle = \frac{1}{N} \sum_{n=1}^{N} \langle X_n, \nu \rangle \langle Y_n, u \rangle$$

oraz

$$\mathbb{E}[\langle X_n, \nu \rangle \langle Y_n, u \rangle] = \mathbb{E}[\langle \langle X_n, \nu \rangle Y_n, u \rangle] = \langle \Delta(\nu), u \rangle.$$

Lemat 2.2.8 [Kokoszka et al. (2008)], [Horváth, Kokoszka] Jeżeli spełnione są Założenia 2.2.1 i 2.2.2, to

$$\langle \widehat{\Delta}(\widehat{\nu}_k), \widehat{u}_j \rangle \xrightarrow{P} \langle \Delta(\nu_k), u_j \rangle, \quad dla \ k \leqslant p, \ j \leqslant q.$$

Dowód. Na mocy Lematu 2.2.7 wystarczy pokazać

$$\langle \widehat{\Delta}(\nu_k), \widehat{u}_j - u_j \rangle \stackrel{P}{\longrightarrow} 0$$

i

$$\langle \widehat{\Delta}(\widehat{\nu}_k) - \widehat{\Delta}(\nu_k), \widehat{u}_j \rangle \stackrel{P}{\longrightarrow} 0.$$

Relacje te wynikają z Lematu 2.2.4 oraz Lematu 2.2.6.

Dowód Twierdzenia 2.2.2. Wprowadźmy oznaczenie

$$\widehat{S}_N(p,q) = \sum_{k=1}^p \sum_{j=1}^q \widehat{\lambda}_k^{-1} \widehat{\gamma}_j^{-1} \langle \widehat{\Delta}(\widehat{\nu}_k), \widehat{u}_j \rangle^2.$$

Na mocy Lematu 2.2.8 ...

Rozdział 3

Przykład zastosowania

Magnetometer data... dostępne na stronie INTERMAGNET [I]

Rysunek 3.1: Mapa stacji meteorologicznych należących do programu INTERMAGNET Korzystając z dostępnego pakietu fda ([R: fda])

Dodatek A

$\mathbf{Kod} \ \mathbf{w} \ \mathbf{R}$

...

Bibliografia

- [Bosq] D. Bosq, Linear Processes in Function Spaces. Springer, 2000.
- [Ferraty, Vieu] F. Ferraty, P. Vieu, Nonparametric Functional Data Analysis. Theory and practice. Springer, 2006.
- [Horváth, Kokoszka] L. Horváth, P. Kokoszka, Interference for Functional Data with Applications. Springer, 2012.
- [I] INTERMAGNET http://www.intermagnet.org/index-eng.php
- [Kokoszka et al. (2008)] P. Kokoszka, I. Maslova, J. Sojka, L. Zhu, Testing for lack of dependence in the functional linear model. Canadian Journal of Statistics, 2008, 36, 207-222.
- [R: fda] J. O. Ramsay, H. Wickham, S. Graves, G. Hooker, *Package 'fda'*. On-line: https://cran.r-project.org/web/packages/fda/fda.pdf
- [Ramsay, Silverman] J. O. Ramsay, B. W. Silverman, Functional Data Analysis. Springer, 2005.