

2021 - 2022 HS VIRTUAL CHALLENGE REGIONAL QUALIFIERS' MEET

MATHEMATICS

DO NOT OPEN TEST UNTIL TOLD TO DO SO

The Virtual Challenge MeetsTM

1.	Solve:	$\sqrt[3]{3x+4}+8=6$
1.	DUITE.	$V \rightarrow V \rightarrow V \rightarrow V$

 $(A) \quad -3$

(B) -4

(C) -5

(**D**) -6

 (\mathbf{E}) -7

2. The drama club at Bridgeport HS charges \$3.00 for student tickets and \$7.50 for adult tickets. They sold 180 tickets for their last production and brought in \$877.50. How many adult tickets did the club sell?

(A) 105

(B) 110

(C) 70

(D) 75

(E) 72

3. A department store is having a special sale where customers get 15% off the first \$20 worth of purchases, 25% off the next \$50 worth of purchases and 40% off purchases over \$70. How much will a customer's final bill be if he buys \$110 worth of merchandise?

(A) \$53.50

(B) \$66.00

(C) \$78.50

(D) \$70.50

\$64.50 **(E)**

4. It takes three workers 5 hours to plaster a wall. How long will it take 4 workers to plaster a wall that is the same length but twice as high?

(A) 9 hr

(B) 7.5 hr

(C) 8.5 hr

(D) 3 hr

(E) 10 hr

5. The line segment AB has endpoints (-3,5) and (7,1). Which of the following points lies on the perpendicular bisector of AB?

(A) (5,-6) **(B)** (7,1)

(C) (-3,-5)

(D) (-4,-12)

(E) (6,-2)

The volume of the isosceles trapezoidal prism shown is in³. (nearest in³)

(A)

1732 (B) 2000 (C) 2598 (D) 1500

(E) 1414

7. Simplify: $\frac{x^2 + 10x + 25}{x^2 - 25} \times \frac{x^2 - 10x + 25}{x - 5}$

(A) $r^2 + 25$ (B) $r^2 + 10r + 25$ (C) $r^2 - 25$

(D) x-5

(E) x+5

8. Tasty Serve Food Truck serves vanilla or chocolate ice cream with the following optional mix-ins: graham cracker crumbs, chocolate chips, chocolate cookie crumbles, chopped pecans, peanut butter cups or strawberry pieces. How many different ways can a customer order a vanilla or chocolate cup of ice cream?

(A) 63

(B) 128

(C) 64

(D) 126

(E) 120

9. Carl's bicycle tires have a diameter of 56 cm. One morning he set up a counter for the number of rotations one of his tires made on the way to school. When he arrived, the counter read 1628 revolutions. How many miles did Carl ride on his way to school? (nearest hundredth)

(A) 1.78 mi

(B) 0.89 mi

(C) 1.62 mi

(D) 0.81 mi

(E) 1.57 mi

	O		eg of a right tri han twice the le	O			O		leg, and the
(A)	20	(B)	210	(C)	70	(D)	24	(E)	120

For problems 12, 13 and 14, use the graph to the right.

(C) 28°

(C) 15

III. Contrapositive

13. Find the measure of angle $\angle ACB$. (nearest degree)

(B) 26°

(B) 12

(A)

(A) 11

22°

- 14. Find the area of triangle ABC. (nearest whole number)
- 15. $A = \begin{bmatrix} a & 4 \\ -5 & a \end{bmatrix}$ and $A^2 = \begin{bmatrix} -16 & 16 \\ -20 & -16 \end{bmatrix}$. Find the value of a.

I. Converse

(D) 25°

(D) 17

32°

18

(E)

(E)

16. Consider the statement "If a quadrilateral is a square, then it is a rectangle." Which of the following is true?

II. Inverse

- (A) I, II, III (B) I, III only (C) I, II only (D) III only (E) I only
- 17. Soybean meal is 18% protein by weight; cornmeal is 9% protein by weight. How many pounds of cornmeal should be combined with soybean meal if produce 360 pounds of a mixture that is 17% protein?
 - (A) 320 (B) 48 (C) 312 (D) 40 (E) 38

19.	Find 1	the number th	at is $\frac{4}{1}$	$\frac{4}{1}$ of the way from	rom –	$2\frac{3}{4}$ and 11?				
	(A)	$1\frac{3}{4}$	(B)	$2\frac{1}{4}$	(C)	2	(D)	$2\frac{3}{4}$	(E)	$2\frac{1}{2}$
20.		h of the followi day for a year		pes of function	is the	best model fo	or the s	unrise times in	a fixe	ed location
	(A)	Logistic	(B)	Exponential	(C)	Sinusoidal	(D)	Quadratic	(E)	Logarithmic
21.	21. Chuck deposits \$18,000 in an account that earns 3.75% annual interest compounded monthly. At the same time, Larry deposits \$17,200 in an account that earns 4.25% annual interest compounded quarterly. How many years are required for the balance in Larry's account to equal the balance in Chuck's account? (nearest tenth)									
	(A)	8.8	(B)	8.9	(C)	9.1	(D)	9.2	(E)	9.4
22.	cot(2.	$(x) - \cot(x)$ sim	plifie	s to						
	(A)	$\csc(2x)$	(B)	$\csc(x)$	(C)	$-\sec^2 x$	(D)	$-\csc(2x)$	(E)	sec(2x)
23.	23. Find the domain of $f(x) = \frac{\sqrt{2x-10}}{4x^2-31x+21}$									
	(A)	$x \neq 7$	(B)	$x \ge 5$	(C)	<i>x</i> > 5	(D)	$x \neq \frac{3}{4}, x \neq 7$	(E)	$x \ge 5, x \ne 7$
24.		ommute 56 mi average speed		•		_		_		
	(A	(a) 60 min	(B)	66 min	(C)	48 min	(D) 5	0 min (E	70	min
25. Let w and m be the complex solutions to the equation $x^2 - x + 8 = 0$. If $w^2 - m^2 = \frac{a\sqrt{b}}{c}i$, where a, b and c are positive integers then the value of $a + b + c = $										
								20	(F)	25
 (A) 33 (B) 34 (C) 30 (D) 38 (E) 35 26. The point (2,-7) is reflected over the x-axis, reflected over the line y = x, rotated 270° clockwise around the origin, then shifted down three units to the point (a,b). a+b=? 										
	(A)	2	(B)	-9	(C)	-12	(D)	- 5	(E)	- 7
	27. At 8 AM on Monday morning, Carrie's plasma level of a pain medication was 1200 mg/L. The medication has a half-life of 6 hours. If no further doses were administered, what was the plasma level of the medication at 9:30 PM on Monday? (nearest mg/L)									
	(A)	300 mg/L		278 mg/L		267 mg/L		252 mg/L	(E)	259 mg/L

	it is ei	mpty four hou	rs afte	er developir	ıg tl	ne leal	k, what is the	rate of	loss? (neare	est gallo	n per minute)
	(A)	3 gal/min	(B)	2 gal/min		(C)	6 gal/min	(D)	8 gal/min	(E)	7 gal/min
29.	day. 300 oz	ter can produc Each regular s z of flour avail d6. What is the	cone : able f	requires 2 of or scones.	z of The	flour incon	r, each mini so ne from each	cone red regular	quires 1 oz o scone is \$0.	f flour, a	_
	(A)	\$19.50	(B)	\$26.00		(C)	\$22.50	(D)	\$14.25	(E)	\$17.50
30.	How	many distinct a	arran	gements car	n be	made	e with the lett	ers "SP	PRINGTIME	?"?	
	(A)	302,400	(B)	3,628,800		(C)	1,209,600	(D)	1,814,400	(E)	403,200
31.	The p	eriod of $h(x)$ =	$=\frac{1}{k}$ co	$s(4\pi kx)$ is	3. I	Find t	he amplitude	of $h(x)$).		
	(A)	12	(B)	6		(C)	4	(D)	3	(E)	1
32.		many points of coordinate sys		section occi	ur w	hen i	$r = 3\sin\theta - 1$	and <i>r</i> =	$=3, [0,2\pi], $	are grap	ohed on the
	(A)	0	(B)	1		(C)	2	(D)	3	(E)	4
33.	Find t	the angle betwe	een th	ne vectors <i>u</i>	$=\langle \hat{x}_{i}^{\dagger}$	3,-5,1	$ v\rangle$ and $ v\rangle$	$2,1,3\rangle$.	(nearest tent	h)	
	(A)	110.2°	(B)	110.9°		(C)	111.0°	(D)	111.2°	(E)	111.7°
34.	Conv	ert the rectang	ular e	equation to	pola	ar for	m: $3x - 7y -$	8=0.			
	(A)	$r = 8 \csc \theta$		(I	3)	$r = \frac{1}{3}$	$\frac{8}{\sin\theta - 1\cos\theta}$		(C) r =	= 8 sec <i>\theta</i>	
	(D)	$r = \frac{8}{3\cos\theta + 7}$	sin $ heta$	(I	E)	$r = \frac{1}{3}$	$\frac{8}{\cos\theta - 7\sin\theta}$	-			
35.	Find t	the distance be	tweer	the plane	4 <i>x</i> +	+ 2 <i>y</i> +	z = 4 and the	e point	(1,3,-2). (ne	earest te	nth)
	(A)	1.1	(B)	0.9		(C)	2.6	(D)	1.9	(E)	1.6
36.		the sum of all t ged to form a		_	ers v	whose	digits have a	sum of	f eight and w	hose diş	gits can all be
	(A)	1420	(B)	915		(C)	861	(D)	1925	(E)	1776
37.	Expre	ess $\log(10\sqrt{ab})$	in to	erms of <i>P</i> ar	ıd <i>Q</i>) if <i>P</i>	$= \log a$ and Q	$Q = \log t$	<i>b</i> .		
	(A)	$\frac{1}{2}(P+Q)+1$	(B)	$\frac{PQ}{2}$		(C)	$5P + \frac{1}{2}Q$	(D)	$10P + \frac{1}{2}Q$	(E)	$\frac{1}{2}(P+Q)+10$

28. A full cylindrical water tank with a radius of 1 yard and a height of 3 yards springs a steady leak. If

	(A)	2π	(B)	$\frac{10\pi}{3}$	(C)	$\frac{14\pi}{3}$	(D)	4π	(E) 3π	
39.	If $f(x)$	$(x) = x^{\sin x}$, find	d f'()	r).						
	(A)	$x^{\sin x} \left(\frac{\sin x}{x} \right)$	+ ln <i>x</i>	$\cos x$ (B)	$\left(\frac{\sin x}{x}\right)$	$+\ln x \cos x$		(C) $x^{\sin x} \left(\frac{S}{x}\right)$	$\frac{\ln x + \cos x}{x}$	
	(D)	$x^{\sin x} \left(\frac{\sin x}{x} \right)$	+ cos .	x (E)	$\left(\frac{\sin x}{x}\right)$	$\frac{+\ln x \cos x}{x}$				
40.	Consi	der the functio	on $g(x)$	c), which is co	ntinuo	ous and differe	ntiabl	e on [2,6], and	I with $g(2)$ =	= 4 and
	g(4) =	=4. If $g''(x)$	is con	tinuous and po	ositive	on [2,6], then	whicl	n of the followi	ng must be t	true?
	(A)	g'(3) = 0	(B)	g'(3) > 0	(C)	g'(3) < 0	(D)	g'(5) < 0 (E) $g'(5) >$	0
41.	Use fo	our rectangles	of equ	al width to ap	proxin	nate the area i	n the f	first quadrant	bounded by	the
	curves	$y_1 = \frac{2}{x}, x = 1$	1 and	x = 2. Use ri	ght en	dpoints of each	inter	val to find a lo	wer sum. (n	ıearest
	hundr	redth)								
	(A)	1.25	(B)	1.15	(C)	1.31	(D)	1.27	(E) 1.22	
42.	Consi	der the functio	on $f(.$	$(x) = x^3 - 3x + 3$	5. Wh	nich value(s) sa	tisfy t	he Mean Valu	e Theorem f	or
	Deriva	atives in the in	terval	[-2,2] ?						
	(A)	$\frac{2\sqrt{3}}{3}$ only	(B)	$-\frac{2\sqrt{3}}{3},\frac{2\sqrt{3}}{3}$	(C)	$-\frac{\sqrt{3}}{2}$ only	(D)	$-\frac{2\sqrt{3}}{3}$ only	$(E) -\frac{\sqrt{3}}{2}$	$,\frac{\sqrt{3}}{2}$
43.	Find a	all of the value	s of K	such that $f(x)$	(x) = Kx	$x^2 - 4x + 5 - K$	has t	wo distinct rea	l roots.	
	(A)	(-6,2)	(B)	$\left(-\infty,\frac{4}{5}\right)$	C) (-	-∞,-6)∪(2,∞)	(D)	(-∞,1)∪(4,	∞) (E) (1	.4)
44.	$\lim_{n\to\infty} \left($	$\left(1+\frac{1}{n}\right)^n$ is a definition	efiniti	on of what cor	nstant:					
	(A)	π	(B)	$oldsymbol{arphi}$	(C)	e	(D)	σ	(E) λ	
45.	Find t	the area of the	regio	n bounded by	the cu	$rves y_1 = x + 8$	and	$y_2 = 12 + x - x$	2.	
	(A)	10-2	(R)	$0\frac{1}{2}$	(C)	10	(D)	10-1	(F) 11	

38. Find the sum of the solutions in the interval $[0,2\pi]$ for $\cos^2\theta - \sin^2\theta = \cos\theta$.

46. Find the volume of the solid generated by revolving the region bounded by the graphs of $x = y^2$ and $x = 4$ about the line $x = 6$.								
$(A) \frac{384\pi}{15}$	$(\mathbf{B}) \frac{354\pi}{5}$	$(C) \frac{384\pi}{5}$	$(D) \frac{354\pi}{2}$	(E) 128π				
47. If $\frac{A}{x+3} + \frac{B}{x+2} =$	47. If $\frac{A}{x+3} + \frac{B}{x+2} = \frac{2x+36}{x^2+x-6}$, then $A+B=?$							
(A) 10	(B) 2	(C) 8	(D) -2	(E) 6				
48. Find the interval	of convergence of $\sum_{n=0}^{\infty}$	$\frac{(-3)^n x^n}{\sqrt{n+1}}$						
(A) $\left[-\frac{1}{3},0\right]$	(B) $(-\infty,\infty)$	(C) (-1,1)	$(D) \left(-\frac{1}{3}, \frac{1}{3}\right]$	(E) (1,∞)				
49. The top five 2021 finishers in the NCAA DI Women's 10,000 M in Eugene, OR had times of 32:16.13, 32:22.11, 32:34.05, 32:34.16 and 32:35.59. What is the positive difference between the mean and median times? (nearest hundredth)								
(A) 0.08	(B) 0.09	(C) 0.10	(D) 0.11	(E) 0.13				
50. Evaluate $\int_{-1}^{8} (3+4g'(x))dx$ using the table below.								
x	-1 0	2 5	7	8				
$\frac{x}{g(x)}$	17 12	14 47	89	116				
(A) 2	(B) 23	(C) 293	(D) 423	(E) 475				

51. What is the area of a regular hexagon in terms of the length, s, of one side?

(A) $\frac{3s^2\sqrt{3}}{}$	$(B) \frac{3s^2\sqrt{3}}{}$	(C) $\frac{s^2\sqrt{3}}{}$	(D) $\frac{s^2\sqrt{3}}{}$	(E) $\frac{3s^2\sqrt{3}}{}$
$\frac{1}{2}$	$\frac{\mathbf{D}}{3}$	4	$\frac{\mathbf{D}}{\mathbf{G}}$	$\frac{\mathbf{L}}{\mathbf{\Delta}}$

52. Meredith has bins containing 9 flavors of candies. In how many ways can she package 5 to sell if she can repeat flavors?

(A) 3003 (B) 715 (C) 2002 (D) 1001 (E) 1287

53. A statistics class at a large school with 3500 students took an SRS of 150 students and determined that 120 of the students were taking a math class while 30 were not. Construct a 95% confidence interval for p, the proportion of the students at the school taking a math class. (nearest ten-thousandth)

 $\text{(A)} \quad (0.718, 0.882) \quad \text{(B)} \quad (0.732, 0.868) \quad \text{(C)} \quad (0.702, 0.890) \quad \text{(D)} \quad (0.736, \, 0.864) \quad \text{(E)} \quad (0.720, 0.880)$

54. The faces of a fair tetrahedral die are labeled with the numbers 1, 2, 3 and 4. If the die is rolled five times, find the probability that at least one roll was a 2. (nearest thousandth)						
(A)	0.999	(B) 0.598	(C) 0.763	(D) 0.673	(E) 0.727	
55. If $y^2 = 5 - 12i$ and $y^3 = -9 - 46i$, where $y = a + bi$ then $a + b =$						

(C) -62

 (\mathbf{D}) 5

4.9975

(E)

4.4817

(D)

(E)

-68

- (A) Newton (B) Leibniz (C) Napier (D) Euler (E) Descarte
- 57. A linear regression was performed using the following data points: A(1,11), B(3,31), C(5,59), D(7,95) and E(9,139).

 The absolute value of the residual for point D is ______. (nearest tenth)

(B) 1

(A) 6

(A) 4.4005

- (A) 2.8 (B) 3.1 (C) 3.7 (D) 4.0 (E) 4.9
- 58. The graph of f'(x) is shown on the right. The points marked have integer coordinates. If f(1) = 82, then f(6) =____.

59. Simplify to the nearest ten-thousandth place: $1+1.5+\frac{1.5^2}{2!}+\frac{1.5^3}{3!}+\frac{1.5^4}{4!}+...$

(B) 4.0707

60. A company produces bags of flour labeled 10 pounds. In reality, the mean weight of the bags is 10.1 pounds with a standard deviation of 0.15 pounds. If two bags are selected at random, what is the

(C) 4.9975

probability that both will weigh more than 10.2 pounds? (nearest thousandth)

(A) 0.064 (B) 0.008 (C) 0.252 (D) 0.249 (E) 0.062

2021-2022

Virtual Challenge Regional Qualifiers' Meet Mathematics – Student Answer Sheet

~	~ .
Contestant Name	Grade

Score 2: _____

	Score 3:	Final Score:
1	21	41
2	22	42
3	23	43
4	24	44
5	25	45
6	26	46
7	27	47
8	28	48
9	29	49
10	30	50
11	31	51
12	32	52
13	33	53
14	34	54
15	35	55
16	36	56
17	37	57
18	38	58
19	39	59
20.	40.	60.

Score 1:_____