Smart Agriculture

Drd. Mureșan Horea

Cuprins

- 1. Motivație
- 2. Objective
- 3. Metodologie
 - a. Familii de detectori
 - b. Structura generală
- 4. Crearea unui set de date
 - a. Factori ce afectează calitatea unui set de date
- 5. Seturi de date existente

Raționamente pentru sisteme inteligente în agricultură

- Forța de muncă disponibilă este în scădere raportată la efortul aferent procesului de cultivare, îngrijire și recoltă
- Interesul pentru specializări în domenii ale agriculturii este în scădere

Raționamente pentru sisteme inteligente în agricultură

- Costul materialelor pentru tratamente preventive şi pentru fertilizare
- Costul închirierii sau a întreţinerii spaţiilor de depozitare pentru produse

Raționamente pentru sisteme inteligente în agricultură

- Monitorizarea dezvoltării şi sănătății plantelor
 - Proces continuu, consumator de timp
 - Necesită inspecție sau analize conduse de experți
 - Potențial susceptibilă la eroare umană

Objective

- Detectarea fructelor de pe plante (pomi, arbuşti, viţe, etc)
 - Estimarea recoltei
 - estimarea spațiului necesar pentru depozitare
 - estimarea resurselor necesare pentru recoltă
- Identificarea frunzelor afectate de boli
 - Monitorizarea stării de sănătate a plantelor
 - mărirea vitezei de reacție la apariția bolilor
 - aplicarea de tratamente specifice

Metodologie

Localizare obiecte

- o Input: Imagine cu unul sau mai multe obiecte
- Output: Listă de tupluri ce reprezintă regiuni din imagine care conțin obiecte (de obicei reprezentate prin coordonatele unui punct + înălțime și lățime)

Clasificare obiecte

- o Input: Imagine cu un singur obiect
- Output: O etichetă sau clasă ce reprezintă obiectul din imagine

Detecție obiecte

- Input: Imagine cu unul sau mai multe obiecte
- Output: Listă de tupluri ce reprezintă regiuni din imagine care conțin obiecte împreună cu clasa asociată fiecărui obiect

Clase de detectori

- R-CNN (Region-based convolutional neural network)
 - Fast R-CNN
 - Faster R-CNN
- SSD (Single Shot MultiBox Detector)
- YOLO (You Only Look Once)

Structura Faster R-CNN

Crearea seturilor de date

- Culegerea datelor
 - Asigurarea unui grad suficient de varianță
 - Echilibrarea numărului de imagini per clasă
- Adnotări
 - asocierea unei clase fiecărei imagini (clasificare)
 - asocierea unor bounding boxes + clasă (detecție)
- Augmentare date (opţional)
 - o Decupare, rotație, modificare nivel zoom
 - Modificarea nivelurilor de luminozitate, contrast, saturație

Factori

- Varianța condițiilor de iluminare
 - o Condiții meteorologice
 - Densitatea frunzelor și locația fructelor
- Varianța nivelului de ocluzie
 - Densitatea frunzelor și locația fructelor
- Varianță introdusă de poziționarea obiectivului
 - Unghiul la care se fac poze
 - Distanța de la care se fac poze

Instrumente de lucru

- Implementare rețele neuronale:
 - Tensorflow
 - Keras
 - Pytorch
 - Caffe
- Prelucrare imagini:
 - OpenCV
 - Pillow
- Utile:
 - o csv fișiere cu date separate de virgulă
 - o pickle serializare date
 - o pandas reprezentare date tabelare

Seturi de date - Fructe

- Clasificare
 - https://github.com/Horea94/Fruit-Images-Dataset
 - https://www.kaggle.com/datasets/moltean/fruits
- Detecție
 - https://www.kaggle.com/datasets/mbkinaci/fruit-images-for-object-detection
- Imagini fără adnotări pentru detecție
 - https://www.kaggle.com/datasets/aelchimminut/fruits262
 - https://www.kaggle.com/datasets/kritikseth/fruit-and-vegetable-image-recognition

Seturi de date - Frunze

Clasificare boli pe baza imaginilor cu frunze:

- https://www.kaggle.com/c/cassava-leaf-disease-classification/
- https://www.kaggle.com/datasets/kaustubhb999/tomatoleaf
- https://www.kaggle.com/datasets/smaranjitghose/corn-or-maize-leaf-dise ase-dataset