Algoritmi e Strutture di Dati Alberi radicati

m.patrignani

110-alberi-radicati-08

copyright ©2019 maurizio.patrignani@uniroma3.it

Nota di copyright

- queste slides sono protette dalle leggi sul copyright
- il titolo ed il copyright relativi alle slides (inclusi, ma non limitatamente, immagini, foto, animazioni, video, audio, musica e testo) sono di proprietà degli autori indicati sulla prima pagina
- le slides possono essere riprodotte ed utilizzate liberamente, non a fini di lucro, da università e scuole pubbliche e da istituti pubblici di ricerca
- ogni altro uso o riproduzione è vietata, se non esplicitamente autorizzata per iscritto, a priori, da parte degli autori
- gli autori non si assumono nessuna responsabilità per il contenuto delle slides, che sono comunque soggette a cambiamento
- questa nota di copyright non deve essere mai rimossa e deve essere riportata anche in casi di uso parziale

110-alberi-radicati-08

Sommario

- Alberi radicati
 - definizione e uso
- Strutture di dati per rappresentare alberi
 - alberi binari, alberi di grado arbitrario
- Esercizi sugli alberi

110-alberi-radicati-08

copyright ©2019 maurizio.patrignani@uniroma3.it

Definizione di albero radicato (rooted tree)

- Un *albero radicato* è un insieme di nodi, su cui è definita una relazione binaria "x è figlio di y" (oppure "y è genitore di x") tale che:
 - ogni nodo ha un solo genitore, con l'eccezione della radice che non ha genitori
 - 2. c'è un cammino diretto da ogni nodo alla radice
 - l'albero, cioè, è connesso

110-alberi-radicati-08

Esempio di albero radicato

- Un albero può essere costruito a partire dalla radice aggiungendo ogni volta un nodo *x* come figlio di un nodo *y* già esistente
 - ciò giustifica il fatto che, se l'albero ha *n* nodi, allora ci sono *n*-1 relazioni genitore/figlio

110-alberi-radicati-08 copyright ©2019 maurizio.patrignani@uniroma3.it

Numerose applicazioni usano alberi

- I rapporti di ereditarietà determinano alberi
 - alberi genealogici o filogenetici
 - ereditarietà di classi nella programmazione ad oggetti
- I rapporti gerarchici sono alberi
 - gerarchie organizzative, di controllo, di responsabilità
- I rapporti di contenimento formano alberi
 - la classificazione scientifica degli organismi (tassonomie)
 - le directory del filesystem
 - i cammini minimi da una sorgente a tutti i nodi di una rete
- La struttura sintattica di una frase è un'albero
 - alberi sintattici
-

Alberi: definizioni

- Due nodi che hanno lo stesso genitore si dicono fratelli
- Il numero di figli di un nodo è il suo grado
- I nodi di grado zero sono foglie
- Un nodo non foglia è detto *nodo interno*

110-alberi-radicati-08

copyright ©2019 maurizio.patrignani@uniroma3.it

Tipi di alberi

- Alberi binari
 - ogni nodo può avere solamente un figlio sinistro e un figlio destro
 - l'ordine dei figli è generalmente significativo
 - si distingue tra avere il solo figlio sinistro e avere il solo figlio destro
- Alberi di grado arbitrario
 - non è noto a priori il numero massimo dei figli di un nodo
 - l'ordine dei figli generalmente non è significativo

110-alberi-radicati-08

Alberi: definizioni

- Una sequenza di nodi tali che uno è il genitore del successivo è detta cammino
 - il cammino percorre gli archi alla rovescia rispetto alla figura qui sopra
- Il numero degli archi di un cammino è la sua lunghezza

110-alberi-radicati-08

copyright ©2019 maurizio.patrignani@uniroma3.it

Alberi: definizioni

- La profondità di un nodo è la lunghezza del cammino dal nodo alla radice
- La profondità del nodo più profondo è *l'altezza* dell'albero

110-alberi-radicati-08

- Qualunque nodo x sul cammino (unico) dalla y alla radice è un *antenato* di y, mentre y è un *discendente* di x;
- L'insieme costituito da un nodo z e da tutti i suoi discendenti è il *sottoalbero radicato a z*

110-alberi-radicati-08

copyright ©2019 maurizio.patrignani@uniroma3.it

Alberi: definizioni

albero binario albero binario completo

- Un albero *ordinato* è un albero per il quale l'ordine dei figli di ogni nodo è significativo (non possono essere permutati)
- Un albero *binario* è un albero ordinato in cui i nodi hanno grado al più due
- Un albero binario è *completo* se ogni livello presenta tutti i nodi possibili

110-alberi-radicati-08

110-alberi-radicati-08

- ha 2^h foglie, dunque $h = \log_2(\text{numero foglie})$
- − ha 2^h-1 nodi interni
- ha 2h+1-1 nodi enhole la rodice

110-alberi-radicati-08 copyright ©2019 maurizio.patrignani@uniroma3.it

Il tipo astratto albero

- Tipo astratto albero di interi
 - domini
 - il dominio di interesse è l'insieme degli alberi di interi
 - dominio di supporto: i riferimenti R che identificano le posizioni nell'albero
 - dominio di supporto: gli interi $Z = \{0, 1, -1, 2, -2, ...\}$
 - dominio di supporto: i booleani B = {true, false}
 - costanti
 - l'albero vuoto

Operazioni del tipo astratto albero

Operazioni sugli alberi di interi

- ritorna il riferimento alla radice:

- ritorna il riferimento al figlio sinistro:

- ritorna il riferimento al figlio destro:

- ritorna l'intero nel nodo specificato:

verifica se un albero è vuoto:

aggiunge un nodo come radice:

aggiunge un nodo come figlio sinistro:

aggiunge un nodo come figlio destro:

elimina una foglia:

cerca un nodo:

svuota l'albero:

conta i nodi dell'albero:

LEFT: $T \times R \rightarrow R$ RIGHT: $T \times R \rightarrow R$ INFO: $T \times R \rightarrow Z$ IS EMPTY: $T \rightarrow B$ ADD ROOT: $T \times Z \rightarrow T$ ADD LEFT: $T \times R \times Z \rightarrow T$ ADD RIGHT: $T \times R \times Z \rightarrow T$

DELETE_LEAF: $L \times R \rightarrow L$ SEARCH: $T \times Z \rightarrow R$

EMPTY: $T \rightarrow T$ SIZE: $T \rightarrow Z$

ROOT: $T \rightarrow R$

110-alberi-radicati-08 copyright ©2019 maurizio.patrignani@uniroma3.it

Rappresentazione di alberi binari

• Analogamente alle liste, gli alberi binari possono essere rappresentati mediante oggetti e riferimenti

Rappresentazione di alberi binari

- Un <u>nodo dell'albero binario</u> è un oggetto con i quattro campi
 - parent: riferimento al nodo genitore
 - left: riferimento al figlio sinistro
 - right: riferimento al figlio destro
 - info: dati satellite

110-alberi-radicati-08 copyright ©2

copyright ©2019 maurizio.patrignani@uniroma3.it

Operazioni sugli alberi binari

- NEW TREE()
 - restituisce una struttura rappresentante l'albero vuoto
 - questa funzione rappresenta la costante
- IS EMPTY(t)
 - restituisce TRUE se l'albero è vuoto
- ROOT(t)
 - restituisce il riferimento alla radice dell'albero (NULL se t è vuoto)
- LEFT(t,n)
 - restituisce il riferimento (può essere NULL) al figlio sinistro del nodo n
- RIGHT(t,n)
 - restituisce il riferimento (può essere NULL) al figlio destro del nodo n
- INFO(t,n)
 - restituisce le informazioni (dati satellite) memorizzate nel nodo n
- •

Esercizi sugli alberi binari

1. Scrivi lo pseudocodice delle funzioni

```
NEW_TREE()
IS_EMPTY(t)
ROOT(t)
LEFT(t,n)
RIGHT(t,n)
INFO(t,n)
```

descritte nella slide precedente

2. Scrivi lo pseudocodice della funzione TWO_CHILDREN(n) che ritorna TRUE se il nodo n ha due figli, FALSE altrimenti

110-alberi-radicati-08

copyright ©2019 maurizio.patrignani@uniroma3.it

Esercizi sugli alberi binari

- 3. Scrivi lo pseudocodice della procedura

 ADD_ROOT(t,z) che aggiunga il nodo radice con
 valore z all'albero binario t
 - assumi che t sia vuoto
- 4. Scrivi lo pseudocodice delle procedure

 ADD_LEFT(t,n,z) e ADD_RIGHT(t,n,z) che
 aggiungono il figlio sinistro e destro al nodo n,
 contenente il valore z
- 5. Scrivi lo pseudocodice della funzione
 ONLY LEFT(t) che restituisce TRUE se tutti i nodi
 dell'albero binario t hanno solamente il figlio
 sinistro (o nessun figlio), FALSE altrimenti
 - se l'albero è vuoto restituisci TRUE

Rappresentazione di alberi di grado arbitrario

- Per rappresentare alberi di grado arbitrario si possono utilizzare diverse strategie
 - uso di una lista per i figli di ogni nodo
 - poco usato perché molto prolisso
 - uso di una struttura detta "figlio-sinistro-fratellodestro"
 - più sintetico

110-alberi-radicati-08

Struttura "figlio-sinistro-fratello-destro"

- I nodi hanno gli usuali campi parent, left, right e info
 - i campi parent e info hanno il significato usuale
 - il campo left è un riferimento al figlio di sinistra (cioè al primo figlio)
 - il campo right, invece di essere un riferimento al figlio destro, è un riferimento al prossimo fratello

Operazioni sugli alberi qualsiasi

- NEW TREE()
 - restituisce una struttura rappresentante l'albero vuoto
- IS EMPTY(t)
 - restituisce TRUE se l'albero è vuoto
- ROOT(t)
 - restituisce il riferimento alla radice dell'albero (NULL se t è vuoto)
- FIRST CHILD(t,n)
 - restituisce il riferimento (può essere NULL) al figlio sinistro del nodo n
- NEXT SIBLING(t,n)
 - restituisce il riferimento (può essere NULL) al fratello destro del nodo n
- INFO(t,n)
 - restituisce l'intero memorizzato nel nodo n
- •

110-alberi-radicati-08 copyright ©2019 maurizio.patrignani@uniroma3.it

Esercizi sugli alberi qualsiasi

- 6. Scrivi lo pseudocodice della procedura ADD_ROOT(t,z) che aggiunga un nodo radice con valore z all'albero t
 - supponi che l'albero t sia vuoto
- 7. Scrivi lo pseudocodice della procedura

 ADD_SIBLING(t,n,z) che aggiunge al nodo
 n un figlio che contiene il valore z