

5.4.3 电极上放电反应的一般规律

天津大学

邱海霞

电解质溶液:电解质的正、负离子

水解离的正、负离子

阴极: 电解质的正离子和水解离的H+

阳极:电解质的负离子和水解离的OH-

判断放电次序需综合考虑电极电势和超电势

析出电势

考虑超电势后的实际电极电势

例如:H+析出时,H+/H2电对的电极

电势称为H+的析出电势

标准电极电势

析出电势 离子浓度

超电势

电极上放电反应的一般规律

阴极

还原反应

- ◆电解质的正离子
- ◆水解离的H+

析出电势代数值较 大的物质首先放电

阳极

氧化反应

- ◆电解质的负离子
- ◆水解离的OH-

析出电势代数值较小的物质首先放电

CuCl₂水溶液的电解

阴极

 Cu^{2+}, H^{+}

析出电势较大的物质首先放电

- $E^{\Theta}(Cu^{2+}/Cu) > E^{\Theta}(H^{+}/H_{2})$
- ◆ H₂的超电势大于Cu , 使E(H+/H₂)变小

析出电势

 $Cu^{2+}>H^{+}$

 $Cu^{2+} + 2e^{-} \rightarrow Cu$

CuCl₂水溶液的电解

Cl-, OH-

析出电势较小的物质首先放电

- $E^{\Theta}(\text{Cl}_2/\text{Cl}^-) > E^{\Theta}(\text{O}_2/\text{OH}^-)$
- ◆ O₂的超电势大于Cl₂, 使E(O₂/OH-) 变大

析出电势 OH→ Cl- 2Cl- -2e-→Cl₂↑

总反应为: CuCl₂→Cu + Cl₂↑

Na₂SO₄水溶液的电解

<mark>阴极</mark> Na

 Na^+, H^+

析出电势代数值较大的物 质首先放电

- $E^{\Theta}(H^{+}/H_{2}) > E^{\Theta}(Na^{+}/Na)$ (-2.714V)
- ◆ 氢的超电势大于钠,使E(H+/H2)变小

析出电势 $H^+> Na^+$ $4H^+ + 4e^- \rightarrow 2H_2$

Na₂SO₄水溶液的电解

阳极

 SO_4^{2-} , OH-

析出电势小的物质首先放电

- $\bullet E^{\Theta}(O_2/OH^-)(0.401V) < E^{\Theta}(S_2O_8^{2-}/SO_4^{2-})(1.96V)$
- ◆氧的超电势较大, 使E(O₂/OH⁻) 变大

析出电势: OHSO₄²⁻ 4OH⁻ - 4e⁻→O₂↑ + 2H₂O

总反应: 2H₂O → O₂↑ +2H₂↑

阳极

OH-, Fe

析出电势较小的物质首先放电

以铁棒为阳极电解水

- E^{Θ} (Fe²⁺/Fe) < E^{Θ} (O₂/OH⁻)
- ◆ 氧的超电势较大,使E(O₂/OH⁻) 变大

析出电势 $Fe < OH^ Fe - 2e^- \rightarrow Fe^{2+}$

用一般金属作阳极,通常发生阳极溶解

电解ZnSO4时

$$E^{\Theta}(H^{+}/H_{2}) > E^{\Theta}(Zn^{2+}/Zn)$$
 阴极放电次序: $H^{+}>Zn^{2+}$

H2在锌电极上的超电势大,用锌作阴极,

析出电势
$$Zn^{2+}>H^+$$
 $Zn^{2+}+2e^-\to Zn$

ZnSO₄的电解沉积 湿法冶炼Zn

H₂在金属上的超电势大,使得应用电解法得到比氢气活泼的金属成为可能

阳极放电反应的一般规律

非金属元素的超电势数据不完整,接近中性或酸性溶液中,非金属阴离子在惰性电极上的放电次序:

I⁻, Br⁻, Cl⁻, OH⁻, 含氧酸根离子(SO₄²⁻, NO₃⁻, PO₄³⁻)

析出倾向逐渐减弱

阴极放电反应的一般规律

◆用石墨作电极,电解很活泼金属的盐溶液时,在阴极上一般得到氢气

- ◆电解不活泼金属的盐溶液时,在阴极上
 - 一般得到相应的金属