

Experimental Characterization of Pu Separation by PUREX Process on a Low-Burnup, Pseudo-Fast-Neutron Irradiated DUO₂ for Product Decontamination Factors and Nuclear Forensics

A PhD. Prelims Defense by: Paul Mendoza

Chair: Dr. Sunil Chirayath

Committee Members: Dr. Sean McDeavitt

Dr. Craig Marianno

Dr. Cody Folden III.

Monday, February 27, 2017, 10:00 am

TEXAS A&M ENGINEERIN

AIEN 304

NUCLEAR SECURITY
SCIENCE & POLICY INSTITUTE

Outline

Introduction

Motivation

Contexts

Background

Objectives

Present Status of the Question

Procedure

Current and Expected Results

Experiment

Mass Spectrometry

Gamma Spectroscopy Results

Gamma Spectroscopy Results

Future Work

Motivation

- Current Events
 - Joint Comprehensive Plan of Action
 - Non-safeguarded reactors
 - Islamic State of Iraq and Syria
- Past Events
 - Septemer 11, 2001
- Limited scope of IAEA safeguards
- "the awful arithmetic of the atomic bomb" [1]
- ♦ Need for improved forensic capabilities^[2, 3, 4]

Definitions

- Special Nuclear Material (SNM)
 - ➤ Plutonium, ²³³U, or ²³⁵U
- Nuclear Forensics
 - The investiative activity that surrounds the search for attributes of undetermined radioactive specimens for the purpose of attribution.
- SNM origin attributes/indicators
 - Indicators or clues for SNM origin attribution. Examples include burnup, fluence rate, initial fuel enrichment, fuel age, and fast-to-thermal irradiation ratios
- Decontamination Factors (DF)
 - A measure of the effectiveness with which a product is decontaminated from a contaminant

$$DF_j = \frac{\frac{c_j}{c_{Pu}}|\text{initial}}{\frac{c_j}{c_{Pu}}|\text{final}}$$

National Context

"The United States has developed a nuclear forensics capability that has been demonstrated in real-world incidents of **interdicted materials** and in exercises of actions required after a nuclear detonation. The committee, however, has concerns about the program and finds that without strong leadership, careful planning, and additional funds, these capabilities will decline" [2]

Major areas of concern include:

- Organization
- Sustainability
- Workforce and Infrastructure
- * Procedures and Tools

Forensic Context

- Nature of inverse problems
- Plutonium purification necessary for weapons production

$$^{238}U + n \rightarrow ^{239}U \xrightarrow{\beta^{-}} \xrightarrow{T_{1/2}=23 \text{ min}} ^{239}Np \xrightarrow{\beta^{-}} \xrightarrow{239} Pu$$

 Attribution for unpurified Pu has been previously studied [5, 6, 7]

Nuclear Context

- ❖ Weapons-grade Pu can be extracted from reactor discharged fuel with a burnup of about 1 (GWD/tU)
- Pu isotopes produced in irradiated fuel can vary
- Two examples of reactors which can intentionally discharge low burned fuel for extracting weapon-grade Pu are:
 - Fast Breeder Reactor, CANDU Reactor

Chemical Context

- Plutonium Uranium Redox EXtraction (PUREX)
 - Liquid-liquid solvent extraction
 - Many stages:
- Distribution Coefficient (D): The ratio between the organic and aqueous phases (aka: D-values)

$$D = \frac{c_o}{c_{aq}}$$

- Specific element to element
- Vary widely^[8]
- The fraction of mass, f_o deposited in the organic phase, assuming a volume ratio between the aqueous and organic phases, V_R , is:

$$f_o = (1 + D^{-1}V_R^{-1})^{-1}$$

Chemical Context

- Lack of literature on decontamination factors and distribution coefficients for useful forensic elements (Cs, Sb, Eu, Rb, Sr, Nd, Pm, and Sm)
- With a known process and D-values, DF values for individual elements can be determined

Extraction

$$\begin{array}{l} UO_{2(aq)}^{2+} + 2NO_{3(aq)}^{-} + 2TBP_{(o)} \leftrightarrow UO_{2}(NO_{3})_{2} \cdot 2TBP_{(o)}^{[9]} \\ Pu_{(aq)}^{4+} + 4NO_{3(aq)}^{-} + 2TBP_{(o)} \leftrightarrow Pu(NO_{3})_{4} \cdot 2TBP_{(o)} \end{array}$$

Add clean immiscible organic solvent phase Shake or stir to allow molecules to partition Phases settle and separate with gravity

Extraction

$$UO_{2(aq)}^{2+} + 2NO_{3(aq)}^{-} + 2TBP_{(o)} \leftrightarrow UO_{2}(NO_{3})_{2} \cdot 2TBP_{(o)}^{[9]}$$

$$Pu_{(aq)}^{4+} + 4NO_{3(aq)}^{-} + 2TBP_{(o)} \leftrightarrow Pu(NO_{3})_{4} \cdot 2TBP_{(o)}$$

Add clean immiscible organic solvent phase

Final
$$(D = \frac{c_{o,f}}{c_{A,f}})$$
:

$$M_{tot} = c_{A,f} V_A + c_{o,f} V_o \label{eq:mtot}$$

 $M_{tot} = c_{A,i}V_A$

Solving for $c_{o,f}$ in terms of D:

$$c_{o,f} = \frac{M_{tot}}{\frac{V_A}{V_A} + V}$$

Solving for $\frac{c_{A,i}}{c_{o,f}}$:

$$\frac{c_{A,i}}{c_{o,f}} = \frac{\frac{V_{A}}{D} + V_{o}}{V_{A}} = \frac{1}{D} + \frac{V_{o}}{V_{A}}$$

partition

Phases settle and separate with gravity

Extraction

$$\begin{array}{l} UO_{2(aq)}^{2+} + 2NO_{3(aq)}^{-} + 2TBP_{(o)} \leftrightarrow UO_{2}(NO_{3})_{2} \cdot 2TBP_{(o)}^{[9]} \\ Pu_{(aq)}^{4+} + 4NO_{3(aq)}^{-} + 2TBP_{(o)} \leftrightarrow Pu(NO_{3})_{4} \cdot 2TBP_{(o)} \end{array}$$

Add clean immiscible organic solvent phase

02/27/2017

$$\frac{c_{A,i}}{c_{o,f}} = \frac{\frac{V_A}{D} + V_o}{V_A} = \frac{1}{D} + \frac{V_o}{V_A}$$

Phases settle and separate with

Back-Extraction

$$Pu(NO_3)_4(TBP)_{2(o)} + Fe^{2+}_{(aq)} \leftrightarrow Pu^{3+}_{(aq)} + 4NO^-_{3(aq)} + 2TBP_{(o)}{}^{[10]}$$

Back-Extraction

$$Pu(NO_3)_4(TBP)_{2(o)} + Fe_{(aq)}^{2+} \leftrightarrow Pu_{(aq)}^{3+} + 4NO_{3(aq)}^{-} + 2TBP_{(o)}^{[10]}$$

Add clean immiscible aqueous solvent phase

Initial:

$$M_{org} = c_{o,f}V_o$$

Final
$$(D_2 = \frac{c_{o,f2}}{c_{A2,f}})$$
:

$$M_{org} = c_{A2,f}V_{A2} + c_{o,f2}V_o$$

Solving for $c_{A2,f}$ in terms of D_2 :

$$c_{A2,f} = \frac{M_{org}}{V_{A2} + D_2V_2}$$

Solving for $\frac{c_{A,i}}{c_{A2,f}}$ (note: $c_{A,i}$ is from the *initial* aqueous phase):

$$\frac{c_{A,i}}{c_{A2,f}} = \! \frac{1}{f_o} \frac{V_{A2} + D_2 V_o}{V_A}$$

partition

Phases settle and separate with gravity

Back-Extraction

$$Pu(NO_3)_4(TBP)_{2(o)} + Fe^{2+}_{(aq)} \leftrightarrow Pu^{3+}_{(aq)} + 4NO^{-}_{3(aq)} + 2TBP_{(o)}^{[10]}$$

aqueous solvent phase

partition

Phases settle and separate with gravity

Decontamination Factors and their use

- After several cycles of Pu extraction/scrubbing/back-extraction are completed, the effectiveness of a PUREX cycle is described by the decontamination factor (DF):
- DFs are characteristic of different process cycles
- Larger values (10⁷) for industrial scale PUREX (compared to benchtop)^[8, 9]

Objectives I

Characterize a 4 extraction 3 back-extraction PUREX process

Collect D-values for each step

Collect DF-values for the process

- Prepare alpha samples for each step (triplicate)
 - Analyze alpha samples for each step
- □ Convert alpha spec + gamma spec data to DF values
- Convert Mass spec data to DF values (published)
- Mathematically connect D-values to DFs
 - Derive equations with uncertainty propagation
 - Analyze connection with uncertainty

Objectives II

Determine attribution indicators:

 Mathematically derive equations for above indicators with respect to one of the isotopes determined above

- Fast-to-thermal ratios (requires iteration)
- Program a system to iteratively solve for these parameters given heavy metal concentration ratios
 - Make a program that can read ENDF files for x-sections
 Create/Use a bateman solver with automated x-section modifications
 Create program to calculate single group x-sections from ENDF data and an assumed fast-to-thermal ratio
 - Couple all programs together in a single program
- Use above information to determine indicators for three sets of data

Present Status of the Question

Forensic Status

D-values and DF values

Procedure

Analytical Procedure - Burnup

Analytical Procedure - Fluence Rate

Analytical Procedure - Initial Enrichment

Analytical Procedure - Fuel Age

Analytical Procedure - Fast-to-thermal ratio

Experimental Procedure - Chemistry Procedure

Experimental Procedure - Mass Spectrometry

Experimental Procedure - Gamma Spectrometry

Experimental Procedure - Alpha Spectrometry

Current and Expected Results

Irradiation

- $12.9 \pm 0.1 \text{ mg of DUO}_2$ was irradiated
 - High Flux Isotope Reactor at Oak Ridge National Laboratory
- * Burnup was 4.43 ± 0.31 GWd/tHM^[11] from ¹³⁷Cs
- * $0.196 \pm \text{mg}$ of total Pu was produced as measured by ICP-MS

Dissolution of the spent fuel pellet

Glovebox

Experiments

- Single stage extraction and back-extraction
 - Purpose: quantify product recovery, D-values and DF values for single stage extraction and back extraction
 - Conditions:

Starting Solution	Extraction Solution	Back extraction solution
4 M nitric acid	30% vol.% TBP, 70 vol.% kerosene	0.024 M ferrous sulfamate in 0.75 M nitric acid

- Multi-contact extraction and back-extraction
 - Purpose: Quantify DF for a process with 4 extractions, 3 back extractions
 - Conditions:

Starting Solution	Extraction Solution	Back extraction solution
4 M nitric acid	30% vol.% TBP, 70 vol.% kerosene	0.024 M ferrous sulfamate in 4 M nitric acid

Mass spectrometry Results

Recoveries of U and Pu								
		Pu Recovery	U Recovery					
	Single stage	(83.4±9.5)%	(11.2±1.3)%					
	Multi-contact Cycle 1	$(99.7\pm4.2)\%$	$(6.8\pm0.3)\%$					
	Multi-contact Cycle 2	$(93.0\pm4.6)\%$	$(6.6\pm0.3)\%$					
	Overall Experiment 2	$(92.7\pm6.0)\%$	$(0.45\pm0.03)\%$					

Mass Spectrometry Results

Decontamination Factors

Element (Z)	SS	Error	MC Cycle 1	Error	Isotopes Used
Rb(37)	39.0	5.9	11.8	0.8	⁸⁵ Rb
Sr(38)	283	43	84.6	5.9	⁹⁰ Sr
Mo(42)	5.7	0.8	1.9	0.2	^{97,98,100} Mo
Ru(44)	59.2	6.4	16.6	2.5	^{101,102,104} Ru
Pd(46)	65	14	8.9	1.2	¹¹⁰ Pd
Cd(48)	74	17	22.1	2.5	¹¹² Cd
Cs(55)	177	28	52.9	3.9	¹³³ Cs
Ce(58)	43	16	11.5	4.9	^{140,142} Ce
Nd(60)	19.2	2.1	5.9	0.4	¹⁴³ Nd
Pm(61)	12.8	1.9	3.9	0.3	¹⁴⁷ Pm
Sm(62)	11.5	1.5	3.6	0.3	¹⁵¹ Sm
Eu(63)	10.0	1.4	3.6	0.3	¹⁵⁴ Eu
U(92)	7.4	1.2	14.7	0.9	²³⁸ U

Gamma Spectroscopy Results

Initial vs Final solutions

Subsection 5

Future Work

Objectives I

Characterize a 4 extraction 3 back-extraction PUREX process

Collect D-values for each step

Collect DF-values for the process

- Prepare alpha samples for each step (triplicate)
 - Analyze alpha samples for each step
- □ Convert alpha spec + gamma spec data to DF values
- Convert Mass spec data to DF values (published)
- Mathematically connect D-values to DFs
 - Derive equations with uncertainty propagation
 - Analyze connection with uncertainty

Objectives II

Determine attribution indicators:

 Mathematically derive equations for above indicators with respect to one of the isotopes determined above

- Fast-to-thermal ratios (requires iteration)
- Program a system to iteratively solve for these parameters given heavy metal concentration ratios
 - Make a program that can read ENDF files for x-sections
 Create/Use a bateman solver with automated x-section modifications
 Create program to calculate single group x-sections from ENDF data and an assumed fast-to-thermal ratio
 - Couple all programs together in a single program
- Use above information to determine indicators for three sets of data

Questions?

Previous Experiment Results

Decontamination Factors for multi-contact extraction.

References I

- [1] Dwight D Eisenhower. Atoms for peace speech. Voices of Democracy, 1953.
- [2] Nuclear Forensics: A Capability at Risk (Abbreviated Version). The National Academies Press, Washington, DC, 2010.
- [3] AAAS/APS. Nuclear forensics: Role, state of the art and program needs. Report, AAAS/APS, 2008.
- [4] Kenton J Moody, Ian D Hutcheon, and Patrick M Grant. Nuclear forensic analysis. CRC Press, 2014.
- [5] Sunil S Chirayath, Jeremy M Osborn, and Taylor M Coles. Trace fission product ratios for nuclear forensics attribution of weapons-grade plutonium from fast and thermal reactors. *Science & Global Security*, 23(1):48–67, 2015.
- [6] Mark Robert Scott. *Nuclear forensics: attributing the source of spent fuel used in an RDD event.* PhD thesis, Texas A&M University, 2005.
- [7] Alexander Glaser. Isotopic signatures of weapon-grade plutonium from dedicated natural uranium-fueled production reactors and their relevance for nuclear forensic analysis. *Nuclear Science and Engineering*, 163(1):26–33, 2009.

References II

- [8] Sidney M Stoller, Walter Henry Zinn, Stuart MacLain, and Atomic Energy Commission USA. Reactor handbook. 2. Fuel reprocessing. Interscience Publ., 1961.
- [9] M Benedict, H Levi, and T Pigford. Nuclear chemical engineering. Nucl. Sci. Eng.; (United States), 82(4), 1982.
- [10] RJM Konings, LR Morss, J Fuger, LR Morss, NM Edelstein, and J Fuger. The chemistry of the actinide and transactinide elements. *Springer, Dordrecht*, 4:2113–224, 2006.
- [11] Mathew Wayne Swinney. Experimental and Computational Assessment of Trace Nuclide Ratios in Weapons Grade Plutonium for Nuclear Forensics Analysis. PhD thesis, 2015.
- [12] Kenneth D Kok. Nuclear engineering handbook, volume 60. CRC Press, 2009.
- [13] Sunil S. Chirayath, Jeremy M. Osborn, and Taylor M. Coles. Trace fission product ratios for nuclear forensics attribution of weapons-grade plutonium from fast and thermal reactors. Science and Global Security, 23(1):48–67, 2015.

Mass Spec

