

Testing Piketty's Hypothesis on the Drivers of Income Inequality: Evidence from Panels VARs with Heterogeneous Dynamics

**IMF Working Paper** 

**Carlos Góes** 

## Roadmap

- 1. Motivation
  - 1.1 Relevance and contribution to the literature
  - 1.2 Piketty's Model
- 2. Data and Stylized Facts
  - 2.1 Data
  - 2.2 Stylized Facts
- 3. Methodology and Results
  - 3.1 Panel VAR Methodology
  - 3.2 Empirical Models
  - 3.3 Results
  - 3.4 Robustness
- 4. Discussion and Conclusions
  - 4.1 Implications of results and alternative explanations for inequality
  - 4.2 Conclusions

# Relevance and contribution to the literature Why it matters?

- Capital in the Twenty-First Century, while rich in data, provides no formal empirical testing for its theoretical causal chain.
- The main contribution of this paper is to provide a rigorous empirical test of Piketty's very influential hypothesis.
- Knowing if Piketty is correct is very important, since without knowing the underlying causes of inequality trends, it is impossible to design policy actions to counter them.

## Piketty's Model

What to test

#### **Assumptions**

- $Y_t = K_t^{\alpha} L_t^{1-\alpha}$ ;  $K_{t+1} = (1-\delta)K_t + sY_t$ ;  $Y_{t+1} = (1+g)Y_t$
- Since  $\frac{\partial Y_t}{\partial K_t} = \alpha \frac{Y_t}{K_t}$ , defining  $r \equiv \frac{\partial Y_t}{\partial K_t}$  means  $\alpha = \frac{rK_t}{Y_t}$  (1)

#### Sustainable growth path

- At the steady state  $\frac{d}{dt} \left[ \frac{K_t}{Y_t} \right] = 0$ , which implies:
  - $\frac{\dot{K}}{K} = \frac{\dot{Y}}{Y}, \quad \frac{sY \delta K}{K} = \frac{gY}{Y}, \quad \frac{\bar{\bar{K}}}{\bar{Y}} = \frac{\bar{s}}{\bar{g} + \bar{\delta}}$  (2)
- Substituting (2) into (1) yields  $\bar{\alpha} = \frac{\bar{r}\bar{s}}{\bar{g}+\bar{b}}$

# Piketty's Model

Understanding  $\bar{\alpha}=rac{\bar{r}\bar{s}}{\bar{g}+\bar{b}}$  in a dynamic framework

#### Dynamic version of the second fundamental law

- Dynamically, adding random shocks to the steady state:  $\alpha_t = \bar{\alpha} + \Phi(L)\xi_t$ .
- Source of ξ<sub>t</sub>? Piketty takes the savings rate as somewhat constant and argues that the capital share (α) and income inequality (z) are rising functions of r – g.

## **Hypotheses**

- Baseline:  $H_b$ : if  $\Delta(r-g) > 0$ , then  $\Delta z > 0$ ,  $\Delta \alpha > 0$
- Alternative:  $H_a$ : if  $\Delta(r-g) > 0$ , then  $\Delta z \le 0$ ,  $\Delta \alpha \le 0$

#### Data

#### How to Measure It?

 Sample of 19 advanced countries with maximum range from 1980 through 2012

#### The easy ones

• Inequality proxied by the Share of the Top 1% (z) from Piketty's World Top Incomes Database; capital share ( $\alpha$ ) from the Penn World Tables; real growth rates (g) from WEO.

#### Real rate of return

- Baseline:  $r_{i,t} = [(1 \tau_{i,t})i_{i,t} d_{i,t}]$ , with corporate tax rates  $(\tau)$ , LT soverign bond yields (i) & percentage change in deflators (d).
- Alternatives: ST interest rates, implied from National Accounts

# **Stylized Facts**

How Variables Evolved over Time



Figure: Distribution of capital share and share of the top 1% over time. Y-axis in percent, x-axis represents period averages. The sample refers to an unbalanced panel of 19 advanced economies ranging from 1981-2010. Boxplots show interquartile ranges and medians. Whiskers show minimum and maximums.

## **Stylized Facts**

How (r-g) Correlates with Capital Share and Inequality



Figure: Contemporaneous correlations between r-g spread and capital share or share of the top 1%, respectively. The sample refers to an unbalanced panel of 19 advanced economies ranging from 1981-2012. Variables are demeaned to account for time-invariant country-specific characteristics.

# Panel VAR Methodology

Pedroni's Panel VAR with Heterogeneous Dynamics

#### Several advantages to this methodology

- Full heterogeneity in statics (different intercepts), dynamics (different slopes) and lag lengths.
- Goes beyond averages: information about several moments of the distributions of IRFs for each response horizon
  - much more robust inference
- Uses time effects to decompose impulse responses between responses to idiosyncratic shocks and country-specific responses to common shocks.

# Panel VAR Methodology

Pedroni's Panel VAR with Heterogeneous Dynamics

#### The model

$$B_i y_{i,t}^* = A_i(L) y_{i,t-1}^* + e_{i,t}$$

- $y_{i,t}^*$  is *n*-dimensional vector of demeaned stacked endogenous variables
- $A_i(L) \equiv (\sum_{j=0}^{J_i} A_j^i L^j)$  is a polynomial of lagged coefficients with country-specific lag-lengths  $J_i$
- A<sup>i</sup><sub>i</sub> is a matrix of coefficients
- e<sub>i,t</sub> is is a vector of stacked residuals
- B<sub>i</sub> is a matrix of contemporaneous coefficients

# Heterogeneous dynamics

Beyond averages: what does it mean?



Figure: Distribution of IRFs for all countries presented as interquartile range, median and average.

## **Empirical Models**

Set of structural Panel VARs

#### I build three structural Panel VARs

- In Model 1,  $y_{i,t} \equiv [p_{i,t}, z_{i,t}]'$ , where  $z_{i,t}$  is the share of the top 1% and  $p_{i,t} \equiv (r_{i,t} g_{i,t})$ .
- In Model 2,  $y_{i,t} \equiv [p_{i,t}, k_{i,t}]'$ , where  $k_{i,t}$  is the share of capital.
- In Model 3,  $y_{i,t} \equiv [p_{i,t}, s_{i,t}, k_{i,t}]'$ , incorporating the savings rate  $(s_{i,t})$ .

The identification strategies are recursive, short-term, lower triangular restrictions on the  $B_i$  matrices and follow Piketty's theoretical model: i.e., take r-g as the (most) exogenous variable. In the robustness section, I present results with the inverted restrictions.

## Effects of (r-g) on Inequality



Figure. Model 1: Heterogeneous composite impulse responses across sample. The median, averages, and interquartile ranges were calculated from the distribution of IRFs of the 19 cross-sections.

## Effects of (r - g) on Inequality



Figure. Model 1: Median composite responses and confidence intervals. Median response across a heterogeneous distribution of IRFs across 19 countries. Confidence intervals calculated from a resampling simulation with 500 repetitions.

## Effects of (r - g) on Inequality



Figure. Model 1: Decomposition of median composite responses. Median responses can be decomposed into country-specific responses to common shocks and responses to idiosyncratic shocks through the use of loading factors that denote the relative importance of common shocks for each country

## Effects of (r-g) on Capital Share



Figure. Model 2: Heterogeneous composite impulse responses across sample. The median, averages, and interquartile ranges were calculated from the distribution of IRFs of the 18 cross-sections.

#### Why do We See This Reponse?



Figure: Contemporaneous correlations between GDP growth and changes in the savings rate. The sample refers to an unbalanced panel of 18 advanced economies ranging from 1981-2012. Variables are demeaned to account for time-invariant, country-specific characteristics.

## Effects of (r - g) on Capital Share and Savings



Figure. Model 3: Heterogeneous composite impulse responses across sample. The median, averages, and interquartile ranges were calculated from the distribution of IRFs of the 18 cross-sections.

## Effects of (r - g) on Capital Share and Savings



Figure. Model 3: Median composite responses and confidence intervals. Median response across a heterogeneous distribution of IRFs across 18 countries. Confidence intervals calculated from a resampling simulation with 500 repetitions.

# What does heterogeneity imply?

Which variables correlate with the cross-sectional dimension of IRFs



Figure: Correlation between heterogeneous responses and intergenerational elasticity of income and social expenditure, respectively. Y-axis in percent, x-axis represents period averages. Data on intergerational elasticity of income from Corak (2016) and Causa and Johansson (2013). Data on social spending from the OECD's social expenditure database.

#### Robustness

## Different specifications for r and inverted cholesky ordering



Figure: Robustness checks - re-estimation of Models 1 and 3: Median composite responses. This figure compares median responses across a distribution of IRFs of 19 (Model 1) / 18 (Model 3) countries using different specifications.

20/23

# Implications of results

What the results mean and how do they relate to previous tests?

- Piketty: as r g move up,  $\alpha$  moves up, and inequality moves up.
- This paper suggests there are endogenous forces preventing that: non-negligible diminishing returns on capital and pro-cyclical changes in the savings rate.
- This paper confirms the single-equation results of Acemoglu & Robinson (2015).
- This paper provides support for the theoretical model proposed by Krusell & Smith (2015), who argue that Piketty's predictions are grounded on a flawed theory of savings.

# Alternative explanations for inequality

#### The literature is quite rich

- Most of the increase inequality is due to labor income inequality not factor income inequality (Francese and Mulas-Granados, 2015)
- Potential explanations:
  - Changes in labor market institutions, e.g. deunionization:
    Dabla-Norris et al. (2015), Jaumotte and Buitron (2015).
  - Innovation and technological change (Shumpeterian effect):
    Aghion et al. (2015).
  - Social exclusion in marriages: Mare (2016), Greenwood et al. (2012).
  - Exclusive institutions exacerbate inequality: Chong and Gradstein (2007), Acemoglu and Robinson (2015).

#### **Conclusions**

What is the takeaway?

- Using the best available data, I find no evidence to corroborate the idea that the r — g gap drives the capital share or inequality;
- There are endogenous forces (diminishing marginal returns to capital and pro-cyclical changes in the savings rate) which explains this;
- Observed inequality have other causes and policy solutions to counter it should not focus on r g, but elsewhere.