Sistemas Operacionais Embarcados

Ponto de Controle Final Controlador MIDI

Igor de Alcantara Rabelo
Matrícula: 14/0143751
Universidade de Brasília
Gama, Brasil
E-mail:rabelo.alcantara.igor@gmail.com

Rodrigo Magalhaes Matrícula: 14/0031154 Universidade de Brasília Gama, Brasil E-mail:rodrigomacrt2@gmail.com

I. Justificativas

Dispositivos MIDI são uma solução de software e hardware para problemas musicais. Sua vantagem se encontra na capacidade de simular diversos tipos de sons e instrumentos com grande facilidade, não sendo necessário possuir ou saber tocar vários tipos de instrumentos para produzir uma música rica e complexa. Controladores MIDI ainda podem oferecer funções de mixagem e edição de áudio durante a gravação, oferecendo ao músico a liberdade de experimentar diversas sonoridades e até mesmo de tocar ao vivo.

O controlador MIDI, como representado na figura abaixo, é uma ferramenta musical que permite aos usuários fazerem diversas coisas em um estúdio de música. É de muita importância para quem trabalha em estúdios musicais pois o MIDI dá um grande poder de edição e sincroniza todo o estúdio em uma fábrica de tracks super eficiente, além de outros benefícios [1].

Figura 1. Controlador MIDI.

II. Objetivos

A intenção com este projeto é construir uma plataforma em hardware para produção de músicas on-the-go. A interface deverá possuir botões para representar cada nota da escala musical e para variação dos parâmetros do sinal (frequência, volume) e deverá suportar diversos sintetizadores.

Considerando o alto preço de Pads MIDI no mercado, toma-se como um dos objetivos deste projeto a tentativa de redução do custo da plataforma enquanto mantendo uma boa qualidade.

III. BILL OF MATERIALS

- 1. Raspberry Pi 3B+;
- 2. Cartão de memória;
- 3. Teclado de computador USB;
- 4. Display LCD;
- 5. Saídas para speaker (P2) e computador (USB);
- 6. Caixa de som Mini Speaker com entrada/saída p2;
- Softwares utilizados: Raspbian, TiMidity++ e ALSA(Advanced Linux Sound Architecture);

IV. Benefícios

Um dos grandes benefícios ao se usar um controlador MIDI é o de acionar sons musicais e tocar instrumentos musicais e também estes controladores podem ser usados para controlar outros dispositivos compatíveis com o MIDI, como luzes de palco, mixers de áudio digital e unidades complexas de efeitos de guitarra [3].

V. Desenvolvimento

Foram feitas algumas pesquisas para fazer a compra de um teclado MIDI que se encaixasse em um modelo mais próximo do profissional, porém, os custos seriam mais altos e também iria demorar mais para que o teclado chegasse porque teria que fazer o pedido em sites de outro país. Foi utilizado um teclado de computador de modelo ABNT2 mostrado na figura 2, para funcionar de modo que substituísse o teclado MIDI.

Para o desenvolvimento do protótipo inicial, foi utilizado um teclado de computador para testar os botões como se fosse um teclado MIDI. O código desenvolvido foi feito utilizando a linguagem C++ onde foi possível utilizar a biblioteca SDL que fornece uma plataforma simples para gráficos, som, e dispositivos de entrada.

A partir do SDL, pode-se interceptar os eventos do teclado (pressionamento e soltura de botões). Separou-se então quatro linhas do teclado com 12 teclas, suportando um alcance de 4 oitavas incluindo os semitons. Durante o processo de mapeamento entre os botões e as notas, percebeu-se que o layout do teclado pode afetar diretamente o reconhecimento de teclas. O SDL utiliza o layout QWERTY americano como base, que não possui referências para botões de acentuação muito comuns em teclados brasileiros. Felizmente, a biblioteca oferece identificações tanto por Keycode, dada pelo valor do símbolo em UTF-8, quanto por Scancode, dada pela posição física no teclado, sendo as duas utilizadas quando conveniente.

Após resolvido o problema de mapeamento, notou-se que o reconhecimento do clique de múltiplas teclas em simultâneo não era realizado nativamente pela biblioteca. Criou-se então um vetor de armazenamento de estados para as 48 teclas e uma função condicional, semelhante aos eventos de borda de subida e de descida, que as impedia de executar as mesmas linhas de código antes que houvesse uma mudança de estados. Assim que o botão é pressionado, a posição do vetor referente à tecla recebe valor 1, e quando solto o valor volta a 0. Por organização, transferiu-se a função criada para um header SimpleEvent.h, reduzindo aproximadamente 600 linhas do código principal. Ambos os códigos podem ser vistos na referência 1.

Para a segunda etapa de desenvolvimento do projeto, implementou-se o envio de mensagens MIDI, adicionando funcionalidades básicas ao projeto. Utilizando-se a biblioteca RtMidi.h, criou-se um canal de comunicação entre o driver de áudio do Raspbian (ALSA) e um sintetizador open source third party (TiMidity++), possibilitando a reprodução de áudio.

Seguindo o protocolo de mensagens MIDI [6], definiu-se as funções responsáveis por ligar e desligar as notas musicais, aumentar e diminuir o volume, variar a frequência das teclas e alterar o instrumento sintetizado. As mensagens são basicamente compostas por entre 2 e 3 bytes, sendo o primeiro

byte de status (informa a operação a ser realizada) enquanto os remanescentes são parâmetros dessa instrução.

O layout do teclado em relação às funções pode ser visto a seguir:

Figura 2. Layout para teclado do tipo ABNT2.

VI. RESULTADOS

Para a fase inicial do projeto, utilizou-se a impressão do nome das notas e seu estado de ativação (pressionado ou solto) para verificar o funcionamento do código (Figura 3). Verificou-se que o reconhecimento de teclas simultâneas funcionou corretamente e o vetor de armazenamento de estados foi utilizado para a reprodução das formas de onda. Com a função KeyboardWatchdog, da biblioteca SimpleEvent.h, adaptada para receber apenas uma struct como argumento será possível criar uma thread para rodar a interceptação de teclas paralelamente a função que reproduz áudio, esperando-se assim a redução do tempo de resposta do programa.

Figura 3. Reconhecimento de teclas.

Para a segunda fase do projeto, conclui-se a interface de áudio. Agora, ao invés de imprimir as notas no terminal, o programa envia mensagens MIDI ao sintetizador que agora reproduz o som em tempo real. Ao ligar e desligar as notas, passa-se um valor específico para a frequência e outro para o volume. Neste caso, nenhum parâmetro desta mensagem pode ser alterado retroativamente, o que significa que para mudar

de volume ou a frequência base da nota, deve desligá-la e ligá-la novamente.

A função de bend de frequência, por ser uma mensagem separada da instrução de ativação de notas, é capaz de distorcer a frequência da nota em tempo real (retroativamente). Adicionou-se também a opção de troca de instrumentos. Utilizando-se das combinações numéricas de 000 a 127 do Keypad, tornou-se possível selecionar entre todos os instrumentos disponíveis na SoundFont para teste e para selecionar todos os 128 timbres possíveis. Para selecionar o timbre desejado, foi utilizado uma espécie de menu para a troca usando as teclas do próprio teclado MIDI.

Por fim foi adicionado uma função de looping. Ao ser reproduzido um conjunto de notas usando o looping é possível fazer com que as notas sejam gravadas e reproduzidas novamente da mesma forma que foi tocada antes.

Na figura 4 está sendo apresentado um fluxograma de cada função do teclado MIDI. Nesse fluxograma estão contidas as funções de instrumentos, volume, notas, frequência e looping. Nele também está explicando o algoritmo que foi usado para o funcionamento do teclado MIDI usando a RaspBerry Pi.

Discussões e Conclusão

Em conclusão, foram efetivamente implementadas as funções de toque polifônico, variação de volume, distorção de frequência, troca de instrumentos e loop. Em relação aos gastos, um protótipo com visual mais profissional custaria por volta do dobro do preço do projeto em seu estado atual (teclado comum + Raspberry Pi 3B+). Ao início do projeto, esperava se problemas de tempo de resposta perceptível entre o pressionar das teclas e a saída do aúdio. Felizmente, estes problemas não foram observados.

Como propostas de melhorias, a inclusão de uma interface de display e a solução de alguns problemas relacionados ao loop (habilidades de manter o instrumento utilizado durante a gravação e de limpar o loop armazenado em memória a fim de se iniciar outro).

No geral, o projeto excedeu as perspectivas, sendo adicionadas funções muito mais complexas que as planejadas inicialmente.

Por fim, a lista de instrumentos utilizados e seu código de ativação são apresentados em anexo na figura 5.

VII. REFERÊNCIAS

[1] RasPiano:

https://github.com/RodrigoMac/Sistemas-Embarcados/tree/master/RasPiano

[2] SDLwiki:

https://wiki.libsdl.org/FrontPage

[3]Raspberry Pi Midi-Keyboard:

https://www.youtube.com/watch?v=mpeTHLr1vlc

[4]ALSA(Advanced Linux Sound Architecture):

https://www.alsa-project.org/wiki/Main Page

[5]Timidity:

https://wiki.archlinux.org/index.php/Timidity

[6]Summary of MIDI Messages:

https://www.midi.org/midi/specifications/item/table-1-summar v-of-midi-message

Figura 4. Fluxograma do teclado MIDI.

Piano Family	Bass Instruments	Reed Instruments	Synthesized Effects
1 Acoustic Piano	33 Acoustic Bass	65 Soprano Sax	97 Rain
2 Bright Piano	34 Finger Bass	66 Alto Sax	98 Soundtrack
3 ElecGrand	35 Pick Bass	67 Tenor Sax	99 Crystal
4 Honky Tonk	36 Fretless Bass	68 Baritone Sax	100 Atmosphere
5 Elec Piano 1	37 Slap Bass 1	69 Oboe	101 Brightness
6 Elec Piano 2	38 Slap Bass 2	70 English Horn	102 Goblins
7 Harsichord	39 Synth Bass 1	71 Bassoon	103 Echoes
8 Clavichord	40 Synth Bass 2	72 Clarinet	104 Sci-Fi
Chromatic Percussion	Strings, Harp and Timpani	Other Woodwind Instruments	Ethnic Instruments
9 Celesta	41 Violin	73 Piccolo	105 Sitar
10 Glockenspiel	42 Viola	74 Flute	106 Banjo
11 Music Box	43 Cello	75 Recorder	107 Shamisen
12 Vibraphone	44 Contra Bass	76 Pan Flute	108 Koto
13 Marimba	45 Tremelo Strings	77 Blown Bottle	109 Kalimba
14 Xylophone	46 Pizzicato	78 Shakuhachi	110 Bagpipe
15 Tubular Bells	47 Harp	79 Whistle	111 Fiddle
16 Dulcimer	48 Timpani	80 Ocarina	112 Shanai
Organ Family and Accordians	Ensemble Voices	Synthesized Lead Sound	Percussive Instruments
17 Drawbar Org	49 Strings 1	81 Square Wave	113 Tinkle Bell
18 Percussive	50 Strings 2	82 Sawtooth	114 Agogo
19 Rock Organ	51 Synth Strings 1	83 Calliope	115 Steel Drums
20 Church Organ	52 Synth Strings 2	84 Chiffer	116 Woodblock
21 Reed Organ	53 Choir Aahs	85 Charang	117 Taiko Drum
22 Accordian	54 Voice Oohs	86 Voice Lead	118 Melodic Tom
23 Harmonica	55 Synth Voice	87 Root+Fifth	119 Synth Drum
24 Tango Accdn	56 Orchestra Hit	88 Bass Lead	120 Reverse Cymbal
Guitars	Brass Instruments	Synthesized Pads	Sound Effects
25 Acoustic Gtr	57 Trumpet	89 New Age	121 Fret Noise
26 Steel Guitar	58 Trombone	90 Warm Pad	122 Breath Noise
27 Jazz Guitar	59 Tuba	91 Polysynth Pad	123 Sea Shore
28 Clean Elect Gtr	60 Muted Trumpet	92 Choir Pad	124 Bird Tweet
29 Muted Guitar	61 French Horn	93 Bowed Pad	125 Telephone
30 Overdriven Gtr	62 Brass Section	94 Metallic Pad	126 Helicopter
31 Distorted Gtr	63 Synth Brass 1	95 Halo Pad	127 Applause
32 Harmonics	64 Synth Brass 2	96 Sweep Pad	128 Gun Shot

Figura 5. Lista de instrumentos implementados no teclado MIDI.