1. write the number of all possible matrices of order 2×3 with each entry 1 or 2.

2. If
$$A = \begin{bmatrix} 1 & -2 & 3 \\ -4 & 2 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 3 \\ 4 & 5 \\ 2 & 1 \end{bmatrix}$ and $BA = (b_{i,j})$, Find $b_{21} + b_{32}$.

- 3. if $\overrightarrow{a} = 4$, $\overrightarrow{b} = 3$ and \overrightarrow{a} , $\overrightarrow{b} = 6\sqrt{3}$, the nfind the value of $\overrightarrow{a} \times \overrightarrow{b}$
- 4. What are the coordinates of the point which is the reflection of the point (α, β, γ) in the XZ-plane?
- 5. write the value of $A = \begin{bmatrix} a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c \end{bmatrix}$
- 6. Find the position vector of the point which divides the join of points with position $\overrightarrow{a} + 3\overrightarrow{b}$ and $\overrightarrow{a} \cdot \overrightarrow{b}$ internally in the ratio 1: 3.
- 7. On her birthday Seema decided to donate some money to children of an orphanage home. If there were 8 children less, every one would have got |10 more. However, if there were 16 children more, every one would have got |10 less. Using matrix method, find the number of children and the amount distributed by Seema. What values are reflected by Seema's decision?
- 8. Show that the function R(x) given by: $R(x) = \begin{cases} \frac{e^{1/x}-1}{e^{1/x}+1}, & \text{if } x \neq 0, \\ -1, & \text{if } x = 0 \end{cases}$ is discontinuous at x = 0.
- 9. Evaluate: $\int_{1}^{5} |x-1| + |x-2| + |x-3| dx$
- 10. Evaluate: $\int_0^{\pi} \frac{x \sin x}{1 + 3 \cos^2 x} dx$
- 11. Find: $\int (3x+5)\sqrt{5} + 4x 2x^2 dx$
- 12. solve the differential equation : $(x^2 + 3xy + y^2) dx x^2 dy = 0$ given that y = 0, when x = 1.
- 13. $solveforx : tan^{-1} \frac{2-x}{2+x} = \frac{1}{2} tan^{-1} \frac{x}{2}, x > 0$
- 14. prove that $2\sin^{-1}\frac{3}{5} \tan^{-1}\frac{17}{31} = \frac{\pi}{4}$

- 15. A committee of 4 students is selected at random from a group consisting of 7 boys and 4 girls. Find the probability that there are exactly 2 boys in the committee, given that at least one girl must be there in the committee.
- 16. A random variable *X* has the following probability distributio:

X	0	1	2	3	4	5	6
P(X)	c	2c	2c	3c	c^2	$2c^2$	$7c^2 + c$

Find the value of c and also calculate mean of the distribution.

- 17. Show that the lines $\frac{x-1}{3} = \frac{y-1}{-1} = \frac{z-1}{0}$ and $\frac{x-4}{2} = \frac{y}{0} = \frac{z+1}{3}$ intersect. Find their point of intersection.
- 18. $x = e^{\cos 2t}$ and $y = e^{\sin 2t}$, prove that $\frac{dy}{dx} = \frac{-y \log x}{x \log y}$.
- 19. verify mean value theorem for the function $f(x) = 2\sin x + \sin 2x$ on $[0, \pi]$.
- 20. Find the angle between the vectors $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} \overrightarrow{b}$ if $\overrightarrow{a} = 2\hat{i} \hat{j} + 3\hat{k}$ and $\overrightarrow{b} = 3\hat{i} + \hat{j} 2\hat{k}$, and hence find a vector perpendicular to both $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} \overrightarrow{b}$.
- 21. Find the equation of the tangent line to the curve $y = \sqrt{5x 3} 5$, which is parallel to line 4x 2y + 5 = 0.
- 22. solve the differential equation : $x\frac{dy}{dx} + y x + xycotx = 0$; $x \ne 0$.
- 23. Find: $\int \frac{2x+1}{(x^2+1)(x^2+4)} dx.$
- 24. solve for x: $\begin{bmatrix} a+x & a-x & a-x \\ a-x & a+x & a-x \\ a-x & a-x & a+x \end{bmatrix} = 0$, using properties of determinants.
- 25. using elementary row operations find the inverse of matrix $A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$ and hence solve the following system of equations 3x 3y + 4z = 21, 2x 3y + 4z = 20, -y + z = 5.

- 26. using integration, find the area of the angle formed by negative x-axis and tangent and normal to the circle $x^2 + y^2 = 9$ at $(-1, 2\sqrt{2})$.
- 27. A company manufactures two types of cardigans type A and type B. It costs ₹360 to make a type A cardigan and ₹120 to make a type B cardigan. The company can make at most 300 cardigans and spend at most ₹72,000 a day. The number of cardigans of type B cannot exceed the number of cardigans of type A by more than 200. The company makes a profit of ₹100 for each cardigan of type A and ₹50 for every cardigan of type B. Formulate this problem as a linear programming problem to maximise the profit to the company. Solve it graphically and find maximum profit.
- 28. A, B and C throw a pair of dice in that order alternately till one of them gets a total of 9 and wins the game. Find their respective probabilities of winning. if A starts first.
- 29. Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi-vertical angle a is one-third that of the cone and the greatest volume of the cylinder is $\frac{4}{27}\pi h^3 tan^2\alpha$.
- 30. Find the intervals in which the function $f(x) = \frac{4sinx}{2+cosx} x$; $0 \le x \le 2\pi$ is strictly increasing or strictly decreasing.
- 31. Find the coordinates of the foot of perpendicular and perpendicular distance from the point P(4, 3, 2) to the plane x + 2y + 3z = 2. Also find the image of P in the plane.
- 32. show that the relation R defined by (a,b) R $(c,d) \Rightarrow a+d=b+c$ on the $A \times A$, where $a = \{1,2,3,....10\}$ is an equivalence relation. Hence write the equivalence class [(3,4)]; $a,b,c,d \in A$.