4-LIGHT-WAVE MIXED LIGHT GENERATING CIRCUIT AND OPTICAL CIRCUIT USING SAME

Patent number:

JP9033967 (A)

Publication date:

1997-02-07

Inventor(s):

MORI KUNIHIKO; MORIOKA TOSHIO; SARUWATARI

MASATOSHI +

Applicant(s): Classification: NIPPON TELEGRAPH & TELEPHONE +

- - ·

international:european:

G02F1/35; G02F1/39; G02F1/35; (IPC1-7): G02F1/39

Application number: JP19950210868 19950818

Priority number(s): JP19950210868 19950818; JP19940260443 19941025;

JP19950120155 19950518

Abstract of JP 9033967 (A)

PROBLEM TO BE SOLVED: To provide the 4-light-wave mixed light generating circuit which can separate and extract 4-light-wave mixed light (wavelength converted light and phase conjugate light) from signal light and exciting light without using a wavelength demultiplexing means such as a wavelength film and the optical circuit which uses it. SOLUTION: A ports 3 of a 2× 2 optical branching and coupling unit and an optical nonlinear medium are connected by a dispersive medium which has a specific length and a specific propagation constant and a port 4 and the optical nonlinear medium are connected by a dispersive medium which has a specific length and a specific propagation constant; and the signal light S (carrier angular frequency & omega s) and exciting lights P1 and P2 (carrier angular frequencies & omega p1 and & omega p2) are made incident from a port 1 of the optical branching and coupling unit 20 and the 4-light-wave mixed light (carrier angular frequency & omega f = & omega p1 + & omega p2 - & omega S) generated by the optical nonlinear medium is led out of a port

Also published as:

B JP3221647 (B2)

Data supplied from the espacenet database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-33967

(43)公開日 平成9年(1997)2月7日

(51) Int.Cl. 5

識別記号

庁内整理番号

FΙ

技術表示箇所

G02F 1/39

G02F 1/39

審査請求 未請求 請求項の数14 OL (全 29 頁)

(21)出願番号 特顯平7-210868 (22)出顧日 平成7年(1995) 8 月18日

(31)優先権主張番号 特願平6-260443 (32)優先日 ※6 (1994)10日25日

(32) 優先日 平 6 (1994) 10月25日 (33) 優先権主張国 日本 (JP)

(31) 優先権主張番号 特顯平7-120155 (32) 優先日 平 7 (1995) 5 月18日

(33)優先権主張国 日本(JP)

(71)出願人 000004226

日本電信電話株式会社

東京都新宿区西新宿三丁目19番2号

(72)発明者 森 邦彦

東京都千代田区内幸町1丁目1番6号 日

本電信電話株式会社内

(72)発明者 盛岡 敏夫

東京都千代田区内幸町1丁目1番6号 日

本電信電話株式会社内

(72)発明者 猿渡 正俊

東京都千代田区内幸町1丁目1番6号 日

本電信電話株式会社内

(74)代理人 弁理士 古谷 史旺

(54) 【発明の名称】 4光波混合光発生回路およびそれを用いた光回路

(57)【要約】

【課題】 波長フィルタ等の波長分離手段を用いずに、 4光波混合光(波長変換光,位相共役光)を信号光および励起光から分離して取り出すことができる4光波混合 光発生回路およびそれを用いた光回路を実現する。

【解決手段】 2×2 の光分岐結合器のボートと光非線形媒質とを所定の長さと伝搬定数を有する分散性媒質で接続し、ボートと光非線形媒質とを所定の長さと伝搬定数を有する分散性媒質で接続し、信号光S(キャリア角周波数 $\omega_{\rm p1}$, $\omega_{\rm p2}$)を光分岐結合器 20のボートから入射し、ボートから光非線形媒質で発生した 4光波混合光(キャリア角周波数 $\omega_{\rm f}=\omega_{\rm p1}+\omega_{\rm p2}-\omega_{\rm s}$)を取り出す。

【特許請求の範囲】

【請求項1】 キャリア角周波数 ω_s , ω_{p1} , ω_{p2} の光からキャリア角周波数 ω_t (= $\omega_{p1} + \omega_{p2} - \omega_s$)の光を発生させる光非線形媒質と、

キャリア角周波数 ω_s , ω_{p1} , ω_{p2} , ω_f の光をそれぞれ等しい強度および等しい偏波で分岐する2入力2出力の光分岐結合器と、

前記光分岐結合器の第1の出力ポートと前記光非線形媒質の一端とを結合する長さ L_1 ,伝搬定数 $K_1(\omega)$ の第1の分散性媒質と、

前記光分岐結合器の第2の出力ポートと前記光非線形媒質の他端とを結合する長さL2, 伝搬定数K2(ω)の第2の分散性媒質とを備え、

キャリア角周波数 ω_s の信号光およびキャリア角周波数 ω_{p1} , ω_{p2} の励起光を前記光分岐結合器の第1の入力ポートに入射し、前記光分岐結合器の第2の入力ポートから前記光非線形媒質中で発生したキャリア角周波数 ω_{f} ($=\omega_{p1}+\omega_{p2}-\omega_{s}$)の光を出射させ、

前記キャリア角周波数 ω_s , ω_{p1} , ω_{p2} は、整数n、許容誤差 e^{α} ($0 \le \alpha < 1/2$)としたときに、

 $\{ K_{2}(\omega_{s}) + K_{2}(\omega_{f}) - K_{2}(\omega_{p1}) - K_{2}(\omega_{p2}) \} L_{2} = \{ K_{1}(\omega_{s}) + K_{1}(\omega_{f}) - K_{1}(\omega_{p1}) - K_{1}(\omega_{p2}) \} L_{1} + (2n - 1 \pm \alpha) \pi$

の関係を有することを特徴とする4光波混合光発生回 路.

【請求項2】 請求項1に記載の4光波混合光発生回路 において、

信号光のキャリア角周波数 ω_s と、励起光のキャリア角周波数 ω_{s1} , ω_{s2} が、

 $\omega_{p1} < \omega_s < \omega_{p2}$

に設定されたことを特徴とする 4 光波混合光発生回路。 【請求項3】 キャリア角周波数 $\omega_{s,i}$ ($j=1,2,\cdots$,

N), ω_{p1} , ω_{p2} の光からキャリア角周波数 ω_{fj} (= ω_{p1} + ω_{p2} - ω_{sj}) の光を発生させる光非線形媒質と、

 $p_1 + \omega_{p_2} - \omega_{s,j}$)の元を発生させる元非採形採責と、 キャリア角周波数 $\omega_{s,j}$, ω_{p_1} , ω_{p_2} , $\omega_{f,j}$ の光をそれぞ れ等しい強度および等しい偏波で分岐する2入力2出力 の光分岐結合器と、

前記光分岐結合器の第1の出力ポートと前記光非線形媒質の一端とを結合する長さ L_1 ,伝搬定数 $K_1(\omega)$ の第1の分散性媒質と、

前記光分岐結合器の第2の出力ポートと前記光非線形媒質の他端とを結合する長さし2, 伝搬定数K2(ω)の第2の分散性媒質とを備え、

キャリア角周波数 ω_{sj} の波長多重信号光およびキャリア 角周波数 ω_{p1} , ω_{p2} の励起光を前記光分岐結合器の第 1 の入力ポートに入射し、前記光分岐結合器の第 2 の入力ポートから前記光非線形媒質中で発生したキャリア角周波数 ω_{fj} ($=\omega_{p1}+\omega_{p2}-\omega_{sj}$) の光を出射させ、

前記キャリア角周波数 ω_{sj} , ω_{p1} , ω_{p2} は、整数n、許容誤差 α (0 $\leq \alpha < 1/2$) としたときに、

 $\{ K_{2}(\omega_{fj}) + K_{2}(\omega_{sj}) - K_{2}(\omega_{p1}) - K_{2}(\omega_{p2}) \} L_{2}$ $= \{ K_{1}(\omega_{fj}) + K_{1}(\omega_{sj}) - K_{1}(\omega_{p1}) - K_{1}(\omega_{p2}) \} L_{1} + (2n - 1 \pm \alpha) \pi$

の関係を有することを特徴とする4光波混合光発生回 路

【請求項4】 請求項3に記載の4光波混合光発生回路 において、

波長多重信号光のキャリア角周波数 ω_{sj} ($j=1,2,\cdots$, N)と、励起光のキャリア角周波数 ω_{p1} , ω_{p2} が、 $\omega_{p1} < \omega_{sj} < \omega_{p2}$

に設定されたことを特徴とする4光波混合光発生回路。 【請求項5】 請求項1から請求項4のいずれかに記載 の4光波混合光発生回路において、

光非線形媒質、光分岐結合器、第1の分散性媒質および 第2の分散性媒質が偏波保持性を有することを特徴とす る4光波混合光発生回路。

【請求項6】 請求項1から請求項4のいずれかに記載の4光波混合光発生回路において、

偏波保持型の光非線形媒質、光分岐結合器、分散性媒質 中の偏波分散を補償する手段を備えたことを特徴とする 4光波混合光発生回路。

【請求項7】 請求項1から請求項4のいずれかに記載の4光波混合光発生回路において、

信号光および励起光を結合する光合波器を備え、その光 合波器の出力光を光分岐結合器の第1の入力ポートに入 射することを特徴とする4光波混合光発生回路。

【請求項8】 請求項1から請求項4のいずれかに記載の4光波混合光発生回路において、

光分岐結合器の第1の入力ポートから出射される信号光 および励起光を阻止する手段を備えたことを特徴とする 4光波混合光発生回路。

【請求項9】 請求項1から請求項4のいずれかに記載の4光波混合光発生回路において、

光分岐結合器の第2の入力ポートの出射光からキャリア 角周波数 ω_f ($=\omega_{p1}+\omega_{p2}-\omega_s$)または ω_{fj} ($=\omega_{p1}+\omega_{p2}-\omega_s$)。の4光波混合光のみを通過させる光フィルタを備えたことを特徴とする4光波混合光発生回路。

【請求項10】 請求項1から請求項4のいずれかに記載の4光波混合光発生回路において、

信号光または励起光が角度変調されていることを特徴と する4光波混合光発生回路。

【請求項11】 請求項10に記載の4光波混合光発生 回路において、

信号光の角度変調量 $\phi_s(t)$ または $\phi_{sj}(t)$ および励起光の角度変調量 $\phi_{s1}(t)$ $\phi_{s2}(t)$ が、

 $\phi_{p1}(t) + \phi_{p2}(t) - \phi_{s}(t) = 0$

または

 $\phi_{p1}(t) + \phi_{p2}(t) - \phi_{sj}(t) = 0$

の関係に設定されたことを特徴とする4光波混合光発生 回路 【請求項12】 請求項1から請求項4のいずれかに記載の4光波混合光発生回路において、

キャリア角周波数 α_{p1} , α_{p2} の励起光が信号光に同期して強度変調されていることを特徴とする4光波混合光発生回路。

【請求項13】 請求項7に記載の4光波混合光発生回路をM段縦続に接続し、

第1段の4光波混合光発生回路に、時分割多重されたキャリア角周波数 ω_{s0} の入力光パルス列と所定のチャネルに同期したキャリア角周波数 $\omega_{p11},\omega_{p21}$ の第1のゲート光パルスとを入射し、キャリア角周波数 ω_{s1} ($=\omega_{p11}+\omega_{p21}-\omega_{s0}$) の光を出射し、

第 n 段 ($n=1,2,\cdots,M$) の 4 光波混合光発生回路に、第 n-1 段の 4 光波混合光発生回路から出射される所定のチャネルに対応したキャリア角周波数 $\omega_{s(n-1)}$ の光と、前記所定のチャネルに同期したキャリア角周波数 ω_{p1n} ω_{p2n} の第 n のゲート光パルスとを入射し、キャリア角周波数 ω_{sn} ($=\omega_{p11}+\omega_{p21}-\omega_{s(n-1)}$) の光を出射する構成であることを特徴とする光回路。

【請求項14】 時分割多重されたキャリア角周波数 ω 。の入力光パルス列と、これに同期し、第kチャネル (k=1,2,…,N) に対応するキャリア角周波数 ω $_{p2k}$ のゲート光パルスとを合波する光合波器と、

光分岐結合器の第1の入力ポートに前記光合波器の出力 光を入射し、光分岐結合器の第2の入力ポートから、前 記所定のチャネルに対応したキャリア角周波数 $\omega_{\rm fk}$ (= $\omega_{\rm plk}+\omega_{\rm p2k}-\omega_{\rm s}$) の光を出射する請求項1に記載の 4光波混合光発生回路と、

前記キャリア角周波数 $\omega_{\rm fk}$ の光を分離する光分波器とを備えたことを特徴とする光回路。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、光非線形媒質中に 誘起される3次の光パラメトリック効果を利用して4光 波混合光を発生する4光波混合光発生回路、およびそれ を用いて波長変換、位相共役光の発生(スペクトル反 転)、全光スイッチング(光パルス分離)の各手段とし て用いられる光回路に関する。

[0002]

【従来の技術】図21は、従来の4光波混合光発生回路の構成を示す。図において、信号光S(キャリア角周波数 ω_s)と、励起光 P_1 , P_2 (キャリア角周波数 ω_{p1} , ω_{p2}) は光合波器11で結合され、光非線形媒質12に同時に入力されて伝搬することにより、3次の光パラメトリック効果が誘起される。そして、4光波混合過程によりキャリア角周波数 ω_f ($=\omega_{p1}+\omega_{p2}-\omega_s$)の4光波混合光Fが発生する。

【0003】この4光波混合光Fは、キャリア角周波数 $(\omega_{p1}+\omega_{p2})/2$ に対して信号光Sのスペクトルと鏡映 対称の関係にあり、信号光Sの位相共役光でもある。す

なわち、4光波混合光発生回路は位相共役光発生回路にもなる。図22には、縮退した励起光P(キャリア角周波数 ω_p)を用いた場合の構成を示す。また、4光波混合光発生回路は、波長多重信号光の各波長を一括変換する波長変換回路にもなる。たとえば、4光波混合光発生回路に波長多重されたN個の信号光 $S_1 \sim S_N$ (キャリア角周波数 $\omega_{s1} \sim \omega_{sN}$)を入力すると、キャリア角周波数 $\omega_{f1} \sim \omega_{fN}$ ($\omega_{fj} = \omega_{p1} + \omega_{p2} - \omega_{sj}$ 、 $j = 1 \sim N$)の4光波混合光 $F_1 \sim F_N$ が発生し、波長多重信号光の各波長を一括変換することができる。図23には、縮退した励起光P(キャリア角周波数 ω_p)を用いた場合の構成を示す。

【0004】なお、図21~図23に示す従来構成では、信号光S、励起光 P_1 , P_2 , P、4光波混合光Fのすべてが光非線形媒質12から同一方向に重なって出射されるので、4光波混合光Fを取り出すためにキャリア角周波数 ω_f の光のみを通す波長フィルタ13が用いられる。

[0005]

【発明が解決しようとする課題】ところで、信号光Sから4光波混合光Fへの変換利得(4光波混合光強度/信号光強度)を大きくするには、信号光と励起光のキャリア角周波数 ω_s , ω_{p1} , ω_{p2} を接近させ、励起光強度を大きくする必要があった。したがって、波長フィルタ13としては、4光波混合光強度に対して通常大きな強度を有する励起光を抑圧し、かつ励起光とキャリア角周波数が接近した4光波混合光を通過させる性能が要求された。しかし、この場合、1段の波長フィルタでは励起光を十分に抑圧することが困難であり、多数段組み合わせることによる損失の増加や構成の複雑化が避けられなかった。

【0006】また、従来の4光波混合光発生回路では、信号光Sのスペクトルが反転した位相共役光(4光波混合光F)が生成される際に、キャリア角周波数が上記の例では ω_s から ω_f ($=\omega_{p1}+\omega_{p2}-\omega_s$) にシフトする。このため、位相共役光発生回路として光ファイバ伝送路中で用いる場合には、その前後における信号光と位相共役光に対する波長分散値の変化が避けられなかった。

【0007】また、波長多重信号光の一括波長変換回路 として用いる場合には、2つの信号光 S_{n} , S_{n} のキャ リア角周波数 ω_{sn} , ω_{sn} と励起光 P_{1} , P_{2} のキャリア角 周波数 ω_{p1} , ω_{p2} が、

 $\omega_{sn} + \omega_{sn} = \omega_{p1} + \omega_{p2}$

の関係にあれば、4光波混合光 F_n , F_n のキャリア角周波数は、入れ替わって ω_{sn} , ω_{sn} となり、信号光のキャリア角周波数の交換と同等の効果が得られる。しかし、従来の4光波混合光発生回路では、信号光 S_n と4光波混合光 F_n 、信号光 S_n と4光波混合光 F_n のキャリア角周波数が同じになり、波長フィルタ13で分離す

ることが不可能であった。

【0008】本発明は、波長フィルタ等の波長分離手段 を用いずに、4光波混合光(波長変換光,位相共役光) を信号光および励起光から分離して取り出すことができ る4光波混合光発生回路およびそれを用いた光回路を提 供することを目的とする。

[0009]

【課題を解決するための手段】本発明の4光波混合光発 生回路は、2×2の光分岐結合器のポートと光非線形 媒質とを所定の長さと伝搬定数を有する分散性媒質で接 続し、ポートと光非線形媒質とを所定の長さと伝搬定 数を有する分散性媒質で接続し、信号光S(キャリア角 周波数ως)と励起光P1,P2(キャリア角周波数 ω_{01} , ω_{02}) を光分岐結合器 20のポートから入射 し、ポートから光非線形媒質で発生した4光波混合光 $(キャリア角周波数 \omega_f = \omega_{p1} + \omega_{p2} - \omega_s)$ を取り出

[0010]

【発明の実施の形態】

(請求項1の実施形態)図1は、請求項1の4光波混合 光発生回路の実施形態を示す。図において、2×2の光 分岐結合器20のポート,を接続する分散性媒質中 に光非線形媒質12が挿入される。ここで、ポートと 光非線形媒質12とを接続する分散性媒質21の長さを L_1 、伝搬定数を $K_1(\omega)$ とし、ポートと光非線形媒

$$\begin{aligned} & A_{sR} = A_{s} \exp(-i K_{1}(\omega_{s}) L_{1}) \\ & A_{p1R} = A_{p1} \exp(-i K_{1}(\omega_{p1}) L_{1}) \\ & A_{p2R} = A_{p2} \exp(-i K_{1}(\omega_{p2}) L_{1}) \end{aligned}$$

と表される。

【0013】一方、光分岐結合器20のポートに分岐 された信号光Sおよび励起光P1,P2は、分散性媒質 22→光非線形媒質12→分散性媒質21→ポートの

$$A_{sL} = A_s \exp(-i K_2(\omega_s) L_2 - i \pi/2) \qquad \cdots (4)$$

$$A_{p1L} = A_{p1} \exp(-i K_2(\omega_{p1}) L_2 - i \pi/2) \qquad \cdots (5)$$

$$A_{p2L} = A_{p2} \exp(-i K_2(\omega_{p2}) L_2 - i \pi/2) \qquad \cdots (6)$$

と表される。

【0014】光非線形媒質12中では、信号光Sと励起 $\mathrm{\mathcal{H}P}_1, \mathrm{P}_2$ が右回りと左回りでそれぞれ同時に伝搬する ことで誘起される3次の光パラメトリック効果により、 キャリア角周波数 ω_f (= $\omega_{p1} + \omega_{p2} - \omega_s$) の4光波混 合光Fが発生する。この右回り成分と左回り成分は、再 び光分岐結合器20に入射して干渉する。ただし、信号 光Sおよび励起光P1,P2 は、光非線形媒質12および 分散性媒質21,22中で波長分散による位相変化を受 け、光非線形媒質12中で非線形効果(自己位相変調,

$$A_{fR} = C A_{sR}^* A_{p1R} A_{p2R}$$

$$= C A_{s}^* A_{p1} A_{p2} \exp[i(K_1(\omega_s) - K_1(\omega_{p1}) - K_1(\omega_{p2})) L_1]$$
...(7)

と表される。また(4),(5),(6)式で示される左回りの信 号光Sと励起光P1,P2から発生する左回りの4光波混

質12とを接続する分散性媒質22の長さをL2、伝搬 定数をΚ2(ω)とする。光分岐結合器20は、キャリア 角周波数 ω_s , ω_{p1} , ω_{p2} , $\omega_f (=\omega_{p1}+\omega_{p2}-\omega_s)$ の光を等しい強度および等しい偏波で分岐する特性を有

【0011】キャリア角周波数ω。の信号光Sとキャリ ア角周波数 ω_{p1} , ω_{p2} の励起光 P_1 , P_2 は光分岐結合器 20のボートから入射され、それぞれ等しい強度およ び等しい偏波でポート、に分岐される。ただし、ポ ートに対してクロスポートとなるポートから出射さ れる信号光Sおよび励起光P1,P2は、スルーポートと なるポートから出射される信号光Sおよび励起光P1, P, に対して光の位相が90度遅れる。したがって、ポー トにおける信号光Sの複素電界振幅をA。とし、励起 光P₁, P₂ の複素電界振幅をA₁, A₂とすると、ポー トにおける信号光Sの複素電界振幅はA。exp(-iπ /2) となり、励起光P₁, P₂ の複素電界振幅はA_{p1} exp $(-i \pi/2)$, $A_{p2} \exp(-i \pi/2)$ となる。

【0012】このように、光分岐結合器20のポート に分岐された信号光Sおよび励起光P1,P2 は、分散性 媒質21→光非線形媒質12→分散性媒質22→ポート の順に右回りで伝搬する。ここで、ポートから分散 性媒質21を介して光非線形媒質12に入射される右回 りの信号光Sの複素電界振幅A_{sR}および励起光P₁,P 2 の複素電界振幅A_{21R} , A_{22R} は、

> ...(1) ...(2)

> > ...(3)

順に左回りで伝搬する。ここで、ポートから分散性媒

質22を介して光非線形媒質12に入射される左回りの 信号光Sの複素電界振幅Aslおよび励起光P1,P2の複 素電界振幅Apil , Apil は、

相互位相変調)による位相変化を受けるが、右回りと左 回りによる位相差は生じない。したがって、本回路は、 信号光Sおよび励起光P1,P2 に対して、いわゆる光ル ープミラーとして動作し (D.B.Mortimore, "Fiberloop reflectors", IEEE Journal of Lightwave Technology, vol.6, pp.1217-1224, 1988) 、信号光Sおよび励起光 P₁, P₂ はポートに 100%出射される。

【0015】一方、(1),(2),(3)式で示される右回りの 信号光Sと励起光P1, P2 から発生する右回りの4光波 混合光Fの複素電界振幅Afrは、

合光Fの複素電界振幅Aftは、

$$A_{fL} = C A_{sL} + A_{p1L} A_{p2L}$$

$$= C A_{s} + A_{p1} A_{p2} \exp[i(K_{2}(\omega_{s}) - K_{2}(\omega_{p1}) - K_{2}(\omega_{p2})) L_{2} - i\pi/2] \cdots (8)$$

と表される。なお、Cは変換効率(4光波混合光Fの強度/(信号光Sの強度×励起光 P_1 の強度×励起光 P_2 の強度))の平方根である。

【0016】この右回りと左回りの4光波混合光Fがそれぞれ分散性媒質22,21を介してポート,に到達したときの複素電界振幅A4,A3は、

$$A_{4} = A_{fR} \exp(-i K_{2}(\omega_{f}) L_{2})$$

$$= C A_{s} * A_{p1} A_{p2} \exp(-i (K_{1}(\omega_{f}) L_{1} + K_{2}(\omega_{f}) L_{2})) \exp(i \Delta K_{1} L_{1})$$
...(0)

$$A_{3} = A_{fL} \exp(-i K_{1}(\omega_{f}) L_{1})$$

$$= C A_{s} * A_{p1} A_{p2} \exp\{-i (K_{1}(\omega_{f}) L_{1} + K_{2}(\omega_{f}) L_{2})\} \exp(i \Delta K_{2} L_{2} - i \pi/2)$$
...(10)

と表される。なお、

$$\Delta K_{1} = K_{1}(\omega_{s}) + K_{1}(\omega_{f}) - K_{1}(\omega_{p1}) - K_{1}(\omega_{p2}) \qquad \cdots (11)$$

$$\Delta K_{2} = K_{2}(\omega_{s}) + K_{2}(\omega_{f}) - K_{2}(\omega_{p1}) - K_{2}(\omega_{p2}) \qquad \cdots (12)$$

である。

の4光波混合光Fが干渉し、ボート,に出射される 4光波混合光Fの複素電界振幅A₁, A₂ は、

【0017】光分岐結合器20ではこの右回りと左回り

$$A_1 \propto A_3 + A_4 \exp(-i \pi/2)$$

$$\propto \exp(i \Delta K_2 L_2) + \exp(i \Delta K_1 L_1) \qquad \cdots (13)$$

$$A_2 \propto A_3 \exp(-i \pi/2) + A_4$$

$$\propto -\exp(i \Delta K_2 L_2) + \exp(i \Delta K_1 L_1) \qquad \cdots (14)$$

と表される。したがって、分散性媒質21,22が

$$\Delta K_2 L_2 = \Delta K_1 L_1 + (2n-1)\pi$$
 (nは整数) ...(15)

となる条件を満たすとき、4光波混合光Fをポートに 100%出射させることができ、ポートに出射される信号光Sおよび励起光 P_1 , P_2 と完全に分離することができる。

$$\Delta K_2 L_2 = \Delta K_1 L_1 + (2n - 1 \pm \alpha) \pi \quad (n \text{ id整数}) \qquad \cdots$$

めると、

となる。その場合には、許容誤差αに応じてポートに 出射される4光波混合光Fのレベルは低下するが、ポートに出射される信号光Sおよび励起光P₁, P₂に対す る干渉条件は変わらず、アイソレーションには影響がな いので実用上の問題はない。

【0019】以上のように4光波混合光発生回路を構成し、(15)、(16) 式に示す条件を満たす分散性媒質21,22を用いることにより、波長フィルタ等の波長分離手段を用いることなく、光非線形媒質12で発生した4光波混合光Fと信号光Sおよび励起光P₁,P₂とを分離することができる。なお、信号光Sおよび励起光P₁,P₂に雑音光成分が含まれる場合も、雑音光成分はポートから信号光Sおよび励起光P₁;P₂とともに出射されるので、4光波混合光Fに混入することはない。

【0020】(請求項2の実施形態)図2は、請求項2の4光波混合光発生回路の実施形態を示す。4光波混合光発生回路の構成は、図1のものと同じである。ここでは、 ω_s と ω_f が($\omega_{p1}+\omega_{p2}$)/2に関して対称となり、発生した4光波混合光Fが位相共役光となることを示す。図のように、信号光Sと励起光 P_1 , P_2 のキャリ

$$A_{s,iR} = A_{s,i} \exp(-i K_1(\omega_{s,i}) L_1)$$

と表される。

ア角周波数を ω_{p1} < ω_{s} < ω_{p2} とし、 ω_{s} = $(\omega_{p1} + \omega_{p2})$ /2とすると、信号光Sと4光波混合光(位相共役光)Fのキャリア角周波数が一致する。この場合でも、信号光Sと4光波混合光(位相共役光)Fの分離は、上述した原理により可能である。

【0018】縮退した励起光を用いる場合には、上記の

式を $\omega_{p1} = \omega_{p2}$ 、 $A_{p1} = A_{p2}$ とおけばよい。なお、(15) 式に示す条件に所定の許容誤差 α (0 $\leq \alpha$ <1/2) を認

【0021】(請求項3の実施形態)図3は、請求項3の4光波混合光発生回路の実施形態を示す。4光波混合光発生回路の構成は図1のものと同じである。ここでは、キャリア角周波数 $\omega_{s,j}$ ($j=1,2,\cdots,N$)の波長多重信号光 S_{ij} と、キャリア角周波数 $\omega_{p,1}$ 、 $\omega_{p,2}$ の励起光 P_{1} 、 P_{2} を光分岐結合器20のボートから入射する。ただし、各信号光の強度は、信号光相互の非線形相互作用が無視できる程度に設定する。

【0022】光分岐結合器20のポートに分岐された 波長多重信号光 S_j と励起光 P_1 , P_2 は、分散性媒質 21→光非線形媒質 12→分散性媒質 22→ポートの 順に右回りで伝搬する。ここで、ポートから分散性媒質 21を介して光非線形媒質 12に入射される右回りの 波長多重信号光 S_j の複素電界振幅 $A_{s,iR}$ は、

【0023】一方、光分岐結合器20のポートに分岐

された波長多重信号光 S_3 と励起光 P_1 , P_2 は、分散性 媒質 $22 \rightarrow$ 光非線形媒質 $12 \rightarrow$ 分散性媒質 $21 \rightarrow$ ポート の順に左回りで伝搬する。ここで、ボートから分散

 $A_{s,i,l} = A_{s,i} \exp(-i K_2(\omega_{s,i}) L_2 - i \pi/2)$

と表される。

【0024】光非線形煤質12中では、波長多重信号光 S_j と励起光 P_1 , P_2 が右回りと左回りでそれぞれ同時に伝搬することで誘起される3次の光パラメトリック効果により、キャリア角周波数 ω_{fj} ($=\omega_{p1}+\omega_{p2}-\omega_{sj}$) の波長多重された4光波混合光 F_j が発生する。

$$A_{fjR} = C A_{sj} \cdot A_{p1} A_{p2} \exp[i(K_1(\omega_{sj}) - K_1(\omega_{p1}) - K_1(\omega_{p2})) L_1]$$

と表される。また左回りの波長多重信号光 S_j と励起光 P_1 , P_2 から発生する左回りの波長多重された4光波混

合光Fj の複素電界振幅Afjl は、

混合光F_jの複素電界振幅A_{fjR}は、

2 はポートに 100%出射される。

$$A_{fjL} = C A_{sj} * A_{p1} A_{p2} \exp[i(K_2(\omega_{sj}) - K_2(\omega_{p1}) - K_2(\omega_{p2})) L_2 - i\pi/2]$$
...(8')

と表される。

【0026】この右回りと左回りの波長多重された4光波混合光F,がそれぞれ分散性媒質22,21を介して

ポート, に到達したときの複素電界振幅A_{4j}, A_{3j} は、

性媒質22を介して光非線形媒質12に入射される左回

この右回り成分と左回り成分は、再び光分岐結合器20

に入射して干渉し、波長多重信号光S; と励起光P1, P

【0025】一方、右回りの波長多重信号光S」と励起

光P₁, P₂ から発生する右回りの波長多重された4光波

りの波長多重信号光S_jの複素電界振幅A_{sjL}は、

...(4')

$$\begin{split} &A_{4j} = C \, A_{sj} \cdot A_{p1} \, A_{p2} \exp(-i \, (K_1 \, (\omega_{fj}) L_1 + K_2 \, (\omega_{fj}) L_2)) \exp(i \, \Delta K_{1j} L_1) \\ & \cdots (9') \\ &A_{3j} = C \, A_{sj} \cdot A_{p1} \, A_{p2} \exp(-i \, (K_1 \, (\omega_{fj}) L_1 + K_2 \, (\omega_{fj}) L_2)) \exp(i \, \Delta K_{2j} L_2 - i \, \pi/2) \\ & \cdots (10') \end{split}$$

と表される。なお、

$$\Delta K_{1j} = K_{1}(\omega_{sj}) + K_{1}(\omega_{fj}) - K_{1}(\omega_{p1}) - K_{1}(\omega_{p2}) \qquad \cdots (11')$$

$$\Delta K_{2j} = K_{2}(\omega_{sj}) + K_{2}(\omega_{fj}) - K_{2}(\omega_{p1}) - K_{2}(\omega_{p2}) \qquad \cdots (12')$$

である。

【0027】光分岐結合器20では、この右回りと左回りの4光波混合光 F_j が各波長ごとに干渉し、ボート

が各波長ごとに干渉し、ポート A_{1.i}∝ exp(iΔK_{2.i} L₂)+exp(iΔK_{1.i} L₁) ····(13')

$$A_{2j} \propto -\exp(i \Delta K_{2j} L_2) + \exp(i \Delta K_{1j} L_1)$$

と表される。したがって、分散性媒質21,22が

$$\Delta K_{25}L_2 = \Delta K_{15}L_1 + (2n-1)\pi$$
 (nは整数) ...(15')

となる条件を満たすとき、波長多重された4光波混合光 F_j をボートに 100%出射させることができ、ボート に出射される波長多重信号光 S_j および励起光 P_1 , P_2 と完全に分離することができる。

 $\Delta K_{2j}L_2 = \Delta K_{1j}L_1 + (2n-1\pm\alpha)\pi$

となる。その場合には、許容誤差 α に応じてボートに出射される波長多重された4光波混合光 F_j のレベルは低下するが、ボートに出射される波長多重信号光 S_j と励起光 P_1 , P_2 に対する干渉条件は変わらず、アイソレーションには影響がないので実用上の問題はない。【0029】以上のように4光波混合光発生回路を構成し、(15'),(16') 式に示す条件を満たす分散性媒質21,22 を用いることにより、波長フィルタ等の波長分離手段を用いることなく、波長多重信号光 S_j (j=1,2,…,N)の各波長を一括変換した4光波混合光 F_j を、波長多重信号光 S_j および励起光 P_1 , P_2 から分離して取り出すことができる。

【0028】縮退した励起光を用いる場合には、上記の式を $\omega_{p1}=\omega_{p2}$ 、 $A_{p1}=A_{p2}$ とおけばよい。なお、(15') 式に示す条件に所定の許容誤差 α ($0 \le \alpha < 1/2$)を認めると、

...(14')

,に出射される波長多重された4光波混合光F_;の

複素電界振幅A_{1j}, A_{2j}は、

【0030】また、2つの信号光 S_n , S_n のキャリア 角周波数 ω_{sn} , ω_{sn} と、励起光 P_1 , P_2 のキャリア角周 波数 ω_{p1} , ω_{p2} が、

 $\omega_{sm} + \omega_{sn} = \omega_{p1} + \omega_{p2}$

の関係にあれば、発生する4光波混合光 F_n , F_n のキャリア角周波数は入れ替わって ω_{sn} , ω_{sn} となり、2つの信号光 S_n , S_n の波長交換が行われる。

【0031】ところで、光非線形媒質12では、キャリア角周波数 $\omega_{p1}+\omega_{p2}-\omega_{sj}$ の4光波混合光 F_j の他に、励起光 P_1 , P_2 をそれぞれ縮退した励起光として、キャリア角周波数2 $\omega_{p1}-\omega_{sj}$, 2 $\omega_{p2}-\omega_{sj}$ の不要な4光波混合光が $\omega_{p1}-\omega_{p2}$ の間隔で発生する。4光波混

合光 F_j と不要な4光波混合光との間を遠ざけ分離を容易にするには、図4に示すように、波長多重信号光 S_j と励起光 P_1 , P_2 のキャリア角周波数を

 $\omega_{p1} < \omega_{sj} < \omega_{p2}$

のように設定すればよい(請求項4)。このとき、非縮退励起光に対する 4 光波混合光 F_j は、 ω_{p1} と ω_{p2} の間にキャリア角周波数 $\omega_{p1}+\omega_{p2}-\omega_{sj}$ で発生する。一方、縮退励起光に対する不要な 4 光波混合光は、 ω_{p1} と ω_{p2} の外側にキャリア角周波数 $2\omega_{p1}-\omega_{sj}$, $2\omega_{p2}-\omega_{sj}$ で発生する。これにより、両者を容易に分離することができる。

[0032]

【実施例】以下、請求項1の4光波混合光発生回路を「4光波混合光発生回路」といい、請求項2の4光波混合光発生回路を「位相共役光発生回路」といい、請求項3,4の4光波混合光発生回路を「波長多重信号光の一括波長変換回路」という。

(縮退励起光を用いた構成)図5は、縮退励起光を用いた4光波混合光発生回路の実施例構成を示す。

【0033】本実施例の特徴は、図1の構成において、縮退した励起光、すなわちキャリア角周波数が $\omega_p = \omega_{p1} = \omega_{p2}$ の励起光Pを用いるところにある。本実施例では、キャリア角周波数 ω_s の信号光Sおよびキャリア角周波数 ω_p の励起光Pを光分岐結合器20のボートから入射すると、光非線形媒質12中でキャリア角周波数 ω_f ($=2\omega_p-\omega_s$)の4光波混合光Fが発生する。この4光波混合光Fは光分岐結合器20のボートから出射され、信号光Sおよび励起光Pがボートから出射される。

【0034】図6は、縮退励起光を用いた波長多重信号光の一括波長変換回路の実施例構成を示す。本実施例の特徴は、図3の構成において、縮退した励起光、すなわちキャリア角周波数が $\omega_p = \omega_{p1} = \omega_{p2}$ の励起光Pを用いるところにある。本実施例では、キャリア角周波数 $\omega_{s,j}$ ($j=1,2,\cdots,N$)の波長多重信号光 S_j およびキャリア角周波数 ω_p の励起光Pを光分岐結合器20のポートから入射すると、光非線形媒質12中でキャリア角周波数 $\omega_{f,j}$ ($=2\omega_p-\omega_{s,j}$)の4光波混合光 F_j が発生する。この波長多重された4光波混合光 F_j は光分岐結合器20のポートから出射され、波長多重信号光 S_j および励起光Pがポートから出射される。

【0035】なお、2つの信号光 S_n , S_n のキャリア 角周波数 ω_{s_0} , ω_{s_0} と、励起光Pのキャリア角周波数 ω , が、

 $\omega_{\rm sn} + \omega_{\rm sn} = 2 \, \omega_{\rm p}$

の関係にあれば、発生する4光波混合光 F_a , F_n のキャリア角周波数は入れ替わって ω_{sn} , ω_{sn} となり、2つの信号光 S_a , S_n の波長交換が行われる。

【0036】(偏波保持型の構成)図7は、偏波保持型の4光波混合光発生回路の実施例構成を示す。本実施例

の特徴は、図1の構成の各部を偏波保持型とし、偏波保 持型の光分岐結合器23、偏波保持型の光非線形媒質2 4、偏波保持型の分散性媒質25,26を用いた構成に ある。これは、図2に示す位相共役光発生回路および図 3、図4に示す波長多重信号光の一括波長変換回路にお いても同様である。回路中における信号光および励起光 の偏波状態の変動は、4光波混合光に対する信号光およ び励起光の漏れ込みを引き起こす。そこで、各部を偏波 保持型とすることにより、回路中の偏波クロストークを 抑圧し、4光波混合光に対する信号光および励起光のア イソレーションを向上させる。この偏波保持型部品に は、偏波保持光ファイバ等の複屈折性素子を用い、これ らの複屈折の主軸に沿った偏波状態の信号光および励起 光を入射することにより、回路中での偏波状態は維持さ れる。このような偏波保持手段に加えて、回路入出力部 またはループ中に偏光子等の単一偏波素子を挿入する方 法も効果的である。

【0037】(偏波分散補償手段を備えた構成)図8は 偏波分散補償手段を備えた4光波混合光発生回路の実施 例構成を示す。本実施例の特徴は、図7の偏波保持構成 にそれぞれ複屈折導波路等の偏波分散補償手段27を設 けた構成にある。これは、図2に示す位相共役光発生回 路および図3,図4に示す波長多重信号光の一括波長変 換回路においても同様である。

【0038】入力される信号光の偏波状態が変化する と、出力される4光波混合光の波形および強度が変化す る。これは、偏波保持のために導入された回路部品の複 屈折 (偏波分散) が信号光波形に歪みを生じさせるため である。そこで、複屈折導波路等の偏波分散補償手段2 7を回路中に挿入し、偏波保持型の光非線形媒質24の 2つの複屈折の主軸に対する信号光の変換利得を等しく する。たとえば、偏波保持光ファイバのような各偏波軸 に対する変換効率が等しい偏波保持型の光非線形媒質2 4を用いる場合には、励起光を各偏波軸に1:1の強度 比で入射する。また、半導体光増幅器のような2つの偏 波軸に対する変換効率が異なるものを用いる場合には、 各偏波軸に対する変換利得が等しくなるように励起光の 強度比を設定する。これにより、偏波保持型の光分岐結 合器23、光非線形媒質24および分散性媒質25,2 6中の偏波分散による4光波混合光の波形劣化を防ぐこ とができる。

【0039】なお、偏波分散補償手段27は、図に示すように4光波混合光の出射部(光分岐結合器23のボート)に配置する他に、信号光および励起光の入射部(光分岐結合器23のボート)、あるいはループ中(光分岐結合器23のボート,間)に配置してもよい。また、特開平6-67053号公報(偏波無依存型光パルス分離回路および偏波無依存型光パルス多重回路)に示すように、ループ内の光非線形媒質24や分散性媒質25,26を中点直交接続する方法をとってもよ

41.

【0040】(信号光と励起光の合波手段を備えた構成)図9は、信号光と励起光の合波手段を備えた4光波混合光発生回路の実施例構成を示す。本実施例の特徴は、図1の構成において、光分岐結合器20のポートの前段に、信号光Sおよび励起光P1,P2 を結合する光合波器11を配置する構成にある。これは、図2に示す位相共役光発生回路および図3,図4に示す波長多重信号光の一括波長変換回路においても同様である。

【0041】なお、波長変換回路として用いる場合には、4光波混合光Fのキャリア角周波数 $\omega_{\rm F}$ は、励起光 P_1 , P_2 のキャリア角周波数 $\omega_{\rm P1}$, $\omega_{\rm P2}$ を変えることにより同調可能である。

(戻り信号光および励起光を阻止する構成)図10は、 戻り信号光および励起光を阻止する4光波混合光発生回 路の実施例構成を示す。

【0042】本実施例の特徴は、図1の構成において、光分岐結合器20のボートから出射される信号光Sおよび励起光 P_1 , P_2 を阻止する手段を備えた構成にある。これは、図2に示す位相共役光発生回路および図3,図4に示す波長多重信号光の一括波長変換回路においても同様である。信号光Sおよび励起光 P_1 , P_2 は信号光光源や励起光光源に悪影響を及ぼしかねない。そこで、信号光Sおよび励起光 P_1 , P_2 を入射する光分岐結合器20のポートに戻り光の阻止手段28を配置し、ボートから出射される信号光Sおよび励起光 P_1 , P_2 を阻止する。なお、戻り光の阻止手段28には、光アイソレータや光サーキュレータを用いることができる。

【0043】(4光波混合光に漏れ込んだ不要光成分の抑圧)図11は、4光波混合光に漏れ込んだ不要光成分を抑圧する4光波混合光発生回路の実施例構成を示す。本実施例の特徴は、図1の構成において、光分岐結合器20のポートから出射される4光波混合光Fに漏れ込んだ不要な光成分を抑圧する手段を備えた構成にある。これは、図2に示す位相共役光発生回路および図3,図4に示す波長多重信号光の一括波長変換回路においても同様である。

【0044】光分岐結合器20の分岐比(50%: 50%)の非対称性や、光分岐結合器20、光非線形媒質12、分散性媒質21, 22中における信号光S, $S_1 \sim S_N$ および励起光 P_1 , P_2 の偏波クロストークは、出射光に信号光や励起光が漏れ込む原因となる。また、キャリア 角周波数 ω_s , ω_{p1} , ω_{p2} の信号光および励起光からキャリア角周波数 ω_f ($=\omega_{p1}+\omega_{p2}-\omega_s$)の4光波混合光下を発生させる場合に、それと同時にキャリア角周波数 $2\omega_{p1}-\omega_s$, $2\omega_{p2}-\omega_s$ の4光波混合光も発生する。

【0045】そこで、4光波混合光Fまたは $F_1 \sim F_N$

を出射する光分岐結合器 20のポートにキャリア角周 波数 ω_f または $\omega_{fl}\sim\omega_{fl}$ のみを通す波長フィルタ 13 を配置し、ポートから出射される不要な光成分を抑圧する。

(角度変調励起光を用いた構成)図12は、角度変調励 起光を用いた位相共役光発生回路の実施例構成を示す。 【0046】図13は、角度変調励起光を用いた波長多 重信号光の一括波長変換回路の実施例構成を示す。本実 施例の特徴は、図2および図3の構成において、2つの 励起光P₁, P₂ に位相変調または周波数変調等の角度変 調を加えることである。スペクトル幅の小さいCW励起 光を用いると、光非線形媒質12および分散性媒質2 1,22中で発生する誘導ブリルアン散乱光や誘導回折 格子による非線形後方散乱光が光分岐結合器20のポー トから出力される。本実施例のように励起光に角度変 調を加えて励起光スペクトルの帯域を広げることによ り、後方散乱光発生の閾値強度が増大するので、強い励 起光の入射が可能となる。特に、図12,図13に示す ように2つの励起光に互いに共役な角度変調を加える と、瞬時のキャリア角周波数 $(\omega_{n1} + \omega_{n2})/2$ が一定に 保たれるので、発生する4光波混合光F, Fi のキャリ ア角周波数の変動を防ぐことができる。

【0047】一般には、信号光の角度変調量 ϕ_s (t)(または ϕ_{sj} (t))と、励起光の角度変調量 ϕ_{p1} (t), ϕ_{p2} (t)を

 $\phi_{p1}(t) + \phi_{p2}(t) - \phi_{s}(t) = 0$ (または $\phi_{p1}(t) + \phi_{p2}(t) - \phi_{sj}(t) = 0$)

に設定すれば、発生する4光波混合光のキャリア角周波 数の変動を防ぐことができる。

【0048】(強度変調励起光を用いた構成)図14 は、強度変調励起光を用いた位相共役光発生回路の実施例構成を示す。図15は、強度変調励起光を用いた波長多重信号光の一括波長変換回路の実施例構成を示す。本実施例の特徴は、図2および図3の構成において、2つの励起光P₁,P₂ に信号光S(波長多重信号光S_j)に同期した強度変調を加えることである。

【0049】本実施例によっても、図12,図13に示す実施例と同様に後方散乱光の発生を抑圧することができる。さらに、本実施例では、平均励起光強度を一定にしたままピーク励起光強度を増加させることができる。なお、本実施例の強度変調と角度変調を併用することが可能である。図16は、本発明の位相共役光発生回路の実際の動作例を示す。

【0050】ここでは、偏波保持型の光非線形媒質24 および分散性媒質25, 26 として偏波保持光ファイバを用い、2つの励起光 P_1 , P_2 に位相変調を加えた。
(a) は光分岐結合器23のポートに入射する信号光S および励起光 P_1 , P_2 の時間一波長像であり、(b) は光分岐結合器23のポートから出射される位相共役光F の時間一波長像である。このように、信号光Sの波長と

同じ波長で位相共役光下が発生可能である。

【0051】(光ゲート回路)図17は、2入力の光ゲ ート回路(光AND回路)となる4光波混合光発生回路 の実施例構成を示す。本実施例の特徴は、光合波器11 で入力光パルスSinとゲート光パルスGを結合し、光ア イソレータ28を介して光分岐結合器20のポートに 入力する構成により、2入力1出力の光ゲート回路(光 AND回路)を実現したところにある。

【0052】本実施例では、キャリア角周波数ω。の信 号光Sを入力光パルスSinとし、キャリア角周波数ω。 の励起光Pをゲート光パルスGとし、キャリア角周波数 ω_f (= $2\omega_p$ - ω_s) の4光波混合光Fを出力光パルス Sout とする。この入力光パルスSinとゲート光パルス Gが光非線形媒質12中で重なるように入射されたとき (タイムスロットto) に出力光パルスSout が発生す る。ただし、本実施例の光ゲート回路は波長変換(ω。 →ω_f)を伴う。

【0053】図18は、3入力の光ゲート回路(光AN D回路)となる4光波混合光発生回路の実施例構成を示 す。本実施例の特徴は、図17の光ゲート回路と同様の 構成により、波長変換を伴わない3入力1出力の光ゲー ト回路(光AND回路)を実現したところにある。本実 施例では、入力光パルスSinのキャリア角周波数ω。に 対して、

$2\omega_s = \omega_{p1} + \omega_{p2}$

の関係を有するキャリア角周波数 ω_{p1} , ω_{p2} のゲート光 パルス G_1 , G_2 を用いる。これにより、光非線形媒質 12中で入力光パルス S_{in} とゲート光パルス G_{1} , G_{2} が 重なったときに発生する4光波混合光のキャリア角周波 数はω。となる。すなわち、入力光パルスSinと、出力 光パルスSout のキャリア角周波数は同じになる。ただ し、キャリア角周波数ω。の入力光パルスSinは、ゲー ト光パルスG1, G2 とともに光分岐結合器20のポー トに入射され、またポートから出射される。一方、 キャリア角周波数ω。の出力光パルスSout は、光分岐 結合器20のポートから出射される。

【0054】(光パルス分離回路)図19は、光パルス 分離回路となる4光波混合光発生回路の実施例構成を示 す。 本実施例の特徴は、図17の光ゲート回路を複数段 接続することにより、時分割多重された光パルス信号を 分離する光パルス分離回路を実現するところにある。

【0055】本実施例では、キャリア角周波数 ω。の入 力光パルスSinに対して、第1段の光ゲート回路ではキ ャリア角周波数ω。のゲート光パルスG」を入力し、そ のタイムスロット(t_2 , t_4)にキャリア角周波数 ω_f (= $2\omega_0 - \omega_s$) の出力光パルス S_{out1} を出力させる。これ により、まずタイムスロット(t2, t4)の2チャネルを 分離する。次に、このキャリア角周波数ω_f の出力光パ ルスSoutiに対して、第2段の光ゲート回路ではキャリ ア角周波数ω。のゲート光パルスG₂ を入力し、タイム

スロット(t_4)にキャリア角周波数 ω_s (= $2\omega_p - \omega_f$) の出力光パルスSout2を出力させる。これにより、最終 的にゲート光パルスG1, G2 が共にオンとなるタイム スロット(t4)の1チャネルが分離される。

【0056】なお、第1段の光ゲート回路では、キャリ ア角周波数ω。の入力光パルスSinからキャリア角周波 数 ω_f の出力光パルス(4光波混合光) S_{out1} が発生す る。また、第2段の光ゲート回路では、キャリア角周波 数 ω_f の出力光パルス S_{out1} からキャリア角周波数 ω_s の出力光パルス(4光波混合光)Sout2が発生する。こ れにより、入力光パルスSinと出力光パルスSout2の入 出力関係は図18の3入力の光ゲート回路と同じで、ゲ ート光G1, G2の波長が1種類ですむ特徴がある。光 ゲート回路の複数段接続は、図18の3入力の光ゲート 回路にも適用可能である。

【0057】図20は、光パルス分離回路となる4光波 混合光発生回路の実施例構成を示す。本実施例の特徴 は、図17の光ゲート回路と、4波長分波型の光分波器 29を組み合わせることにより、時分割多重された光パ ルス信号のうち4チャネルを一括して分離する光パルス 分離回路を実現するところにある。

【0058】図において、キャリア角周波数 ω_s の入力 光パルスSinに対して、各タイムスロットta(k=1,2,3, 4)ごとに異なるキャリア角周波数ωοκのゲート光パルス Gkを入力し、各タイムスロットtkごとにキャリア角周 波数 ω_{fk} (=2 ω_{pk} - ω_s)の出力光パルスSouthを出力 させる。この出力光パルスSout1, Sout2, Sout3, S α_{014} は、光分波器29でキャリア角周波数 α_{f1} , α_{f2} , ω_{f3} , ω_{f4} ごとに分波することにより、4 チャネルを一 括して分離することができる。

【0059】なお、k=1,2,3,4 に対して、関係式 $\{K_2(\omega_s) + K_2(\omega_{fk}) - 2K_2(\omega_{pk})\}\ L_2 = \{K$ $_{1}(\omega_{s})+K_{1}(\omega_{fk})-K_{1}(\omega_{pk})\}L_{1}+(2n-1\pm\alpha)\pi$ が満足されるものとする。以上示した光パルス分離回路 の実施例構成では、各タイムスロットにおいて縮退した ゲート光による4光波混合を用いたが、縮退しないゲー ト光を用いても同様の効果を得ることができる。

[0060]

【発明の効果】以上説明したように、本発明の4光波混 合光発生回路は、波長フィルタ等の光合分波手段を用い ることなく、所定の条件を満たす分散性媒質を用いるこ とにより、発生した4光波混合光と信号光および励起光 とを分離することができる。したがって、波長フィルタ による帯域制限を受けないので、超高速光信号の処理が 可能となり、さらに信号光と励起光の波長を接近させて 4光波混合光の発生効率を向上させることができる。 【0061】また、本発明の4光波混合光発生回路は、 入射信号光のキャリア角周波数と等しい、または近接し

たキャリア角周波数の位相共役光を発生させ、信号光お よび励起光から分離して取り出すという、従来不可能で あった効果を得ることができる。さらに、本発明の4光 波混合光発生回路は、波長多重信号光の一括波長変換に も適用でき、従来不可能であった波長多重信号光相互の 波長交換を実現することができる。

【0062】なお、信号光および励起光に雑音光成分が 含まれる場合も、雑音光成分は信号光および励起光とと もに出射され、4光波混合光(位相共役光,波長変換 光)に不要な雑音が重畳されることはないので、4光波 混合光のSN比を向上させることができる。したがっ て、本発明の4光波混合光発生回路を用いた光回路を構 成することにより、高効率、高SN比、広帯域の波長変 換、位相共役光の発生(スペクトル反転)、全光スイッ チング(光パルス分離)が可能となる。

【図面の簡単な説明】

- 【図1】請求項1の4光波混合光発生回路の実施形態を 示す図。
- 【図2】請求項2の4光波混合光発生回路の実施形態を 示す図。
- 【図3】請求項3の4光波混合光発生回路の実施形態を示す図。
- 【図4】請求項4の4光波混合光発生回路の実施形態を 示す図。
- 【図5】縮退励起光を用いた4光波混合光発生回路の実施例構成を示す図。
- 【図6】縮退励起光を用いた波長多重信号光の一括波長 変換回路の実施例構成を示す図。
- 【図7】偏波保持型の4光波混合光発生回路の実施例構成を示す図。
- 【図8】偏波分散補償手段を備えた4光波混合光発生回路の実施例構成を示す図。
- 【図9】信号光と励起光の合波手段を備えた4光波混合 光発生回路の実施例構成を示す図。
- 【図10】戻り信号光および励起光を阻止する4光波混合光発生回路の実施例構成を示す図。
- 【図11】4光波混合光に漏れ込んだ不要光成分を抑圧 する4光波混合光発生回路の実施例構成を示す図。

- 【図12】角度変調励起光を用いた位相共役光発生回路 の実施例構成を示す図。
- 【図13】角度変調励起光を用いた波長多重信号光の一 括波長変換回路の実施例構成を示す図。
- 【図14】強度変調励起光を用いた位相共役光発生回路 の実施例構成を示す図。
- 【図15】強度変調励起光を用いた波長多重信号光の一 括波長変換回路の実施例構成を示す図。
- 【図16】本発明の位相共役光発生回路の実際の動作例 を示す図。
- 【図17】2入力の光ゲート回路(光AND回路)となる4光波混合光発生回路の実施例構成を示す図。
- 【図18】3入力の光ゲート回路(光AND回路)となる4光波混合光発生回路の実施例構成を示す図。
- 【図19】光パルス分離回路となる4光波混合光発生回路の実施例構成を示す図。
- 【図20】光パルス分離回路となる4光波混合光発生回路の実施例構成を示す図。
- 【図21】従来の4光波混合光発生回路の構成を示す 図
- 【図22】従来の位相共役光発生回路の構成を示す図。
- 【図23】従来の波長多重信号光の一括波長変換回路の 構成を示す図。

【符号の説明】

- 11 光合波器
- 12 光非線形媒質
- 13 波長フィルタ(ω_f)
- 20 光分岐結合器
- 21,22 分散性媒質
- 23 偏波保持型の光分岐結合器
- 24 偏波保持型の光非線形媒質
- 25,26 偏波保持型の分散性媒質
- 27 偏波分散補償手段
- 28 光アイソレータ
- 29 光分波器

【図1】

【図2】

【図3】

【図4】

【図5】

縮退励起光を用いた4光波混合光発生回路の実施例構成

【図6】

縮退励起光を用いた波長多重信号光の一括波長変換回路の実施例構成

【図7】 偏波保持型の4光波混合光発生回路の実施例構成

【図8】 偏波分散補償手段を備えた4光波混合光発生回路の実施例構成

【図9】

信号光と励起光の合波手段を備えた4光波混合光発生回路の実施例構成

【図10】

戻り信号光および励起光を阻止する4光波混合光発生回路の実施例構成

【図11】

4 光波混合光に漏れ込んだ不要光成分を抑圧する 4 光波混合光発生回路の実施例構成

【図16】

【図12】

【図13】

【图14】

【図15】

【図17】

【図18】

【図19】

[図20]

【図21】

従来の4光波混合光発生回路の構成

【図22】

【図23】

