

Markscheme

May 2018

Chemistry

Standard level

Paper 2

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

C	uestion	Answers	Notes	Total
1.	а	$n(H_2SO_4)$ «= 0.0500 dm ³ × 0.100 mol dm ⁻³ » = 0.00500/5.00 × 10 ⁻³ «mol» \checkmark		1
1.	b	$H_2SO_4(aq) + Mg(OH)_2(s) \rightarrow MgSO_4(aq) + 2H_2O(I)$	Accept an ionic equation.	1
1.	С	«n(H ₂ SO ₄) = $\frac{1}{2}$ × n(NaOH) = $\frac{1}{2}$ (0.02080 dm ³ × 0.1133 mol dm ⁻³)» 0.001178/1.178 × 10 ⁻³ «mol» ✓		1
1.	d	$n(H_2SO_4)$ reacted «= 0.00500 – 0.001178» = 0.00382/3.82 × 10 ⁻³ «mol» \checkmark		1
1.	е	$n(Mg(OH)_2)$ «= $n(H_2SO_4)$ =» = 0.00382/3.82 × 10 ⁻³ «mol» \checkmark m(Mg(OH) ₂) «= 0.00382 mol × 58.33 g mol ⁻¹ » = 0.223 «g» \checkmark	Award [2] for correct final answer.	2
1.	f	% Mg(OH) ₂ «= $\frac{0.223 \text{ g}}{1.24 \text{ g}}$ × 100» = 18.0 «%» ✓	Answer must show three significant figures.	1

Question	Answers	Notes	Total
2. a	E _{a(catalyst)} Without catalyst) Without catalyst) Without catalyst) Without catalyst) Without catalyst) Without catalyst) $E_{a(without catalyst)}$ $E_{a(without catalyst)}$ $E_{a(catalyst)} < E_{a(without catalyst)}$ on x-axis \checkmark	M1: Accept "speed" for x-axis label. Accept "number of particles", "N", "frequency" or "probability «density»" for y-axis label. Do not accept "potential energy" for x-axis label. M2: Do not accept a curve that touches the x-axis at high energy. Do not award M2 if two curves are drawn. M3: Ignore any shading under the curve.	3

C	Questi	on	Answers	Notes	Total
2.	b	i	Time curve starting from origin with steeper gradient <i>AND</i> reaching same maximum volume ✓		1
2.	b	ii	rate decreases OR slower reaction ✓ «ethanoic acid» partially dissociated/ionized «in solution/water» OR lower [H⁺] ✓	Accept "weak acid" or "higher pH".	2

C	Question		Answers	Notes	Total
2.	С		«pH» converts «wide range of [H ⁺]» into simple «log» scale/numbers OR «pH» avoids need for exponential/scientific notation OR «pH» converts small numbers into values «typically» between 0/1 and 14 OR «pH» allows easy comparison of values of [H ⁺] ✓	Accept "uses values between 0/1 and 14". Do not accept "easier to use". Do not accept "easier for calculations".	1
2.	d		«species» do not differ by a «single» proton/H ⁺ OR conjugate base of H ₃ PO ₄ is H ₂ PO ₄ ⁻ «not HPO ₄ ²⁻ » OR conjugate acid of HPO ₄ ²⁻ is H ₂ PO ₄ ⁻ «not H ₃ PO ₄ » ✓	Do not accept "hydrogen/H" for "H+/proton".	1

C	uesti	on	Answers	Notes	Total
3.	а	i	↑		1
			4 levels showing convergence at higher energy ✓		
3.	а	ii	$ \begin{array}{c} $		1

C	uesti	on	Answers	Notes	Total
3.	b	i	same number of shells/«outer» energy level/shielding <i>AND</i> nuclear charge/number of protons/Z _{eff} increases «causing a stronger pull on the outer electrons» ✓		1
3.	b	ii	 K⁺ 19 protons AND Cl⁻ 17 protons OR K⁺ has «two» more protons ✓ same number of electrons/isoelectronic «thus pulled closer together» ✓ 		2
3.	С	i	1 1111111		1
3.	С	ii	Anode (positive electrode): $Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-} \checkmark$ $Cathode (negative electrode):$ $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s) \checkmark$	Accept $Cu(s) - 2e^{-} \rightarrow Cu^{2+}$ (aq). Accept \rightleftharpoons for \rightarrow . Award [1 max] if the equations are at the wrong electrodes.	2
3.	С	iii	«external» circuit/wire <i>AND</i> from positive/anode to negative/cathode electrode ✓	Accept "through power supply/battery" instead of "circuit".	1

C	Question		Answers	Notes	Total
4.	а		bonds broken: 4(C–H) + 2(H–O) / 4(414) + 2(463) / 2582 «kJ» ✓ bonds made: 3(H–H) + C≡O / 3(436) + 1077 / 2385 «kJ» ✓	Award [3] for correct final answer. Award [2 max] for -197 «kJ».	3
			$\Delta H \ll \sum BE_{\text{(bonds broken)}} - \sum BE_{\text{(bonds made)}} = 2582 - 2385 \text{»} = \text{«+» } 197 \text{ «kJ» } \checkmark$		
4.	b	i	$\Delta H_{\rm f}^{\ominus}$ for any element = 0 «by definition» OR no energy required to form an element «in its stable form» from itself \checkmark		1
4.	b	ii	$\Delta H^{\ominus} = \sum \Delta H_{f \text{ (products)}}^{\ominus} - \sum \Delta H_{f \text{ (reactants)}}^{\ominus} = -111 + 0 - [-74.0 + (-242)] $ $= \text{ 4-$} \times 205 \text{ 4-$} \times \text{$4$-$} \times 4-$$		1
4.	b	iii	«bond enthalpies» averaged values «over similar compounds» OR «bond enthalpies» are not specific to these compounds ✓		1

5.	а	Q: non-equilibrium concentrations AND K _c : equilibrium concentrations		
		OR		1
		Q: «measured» at any time <i>AND</i> K _c : «measured» at equilibrium ✓		
5.	b		Do not award M2 without M1.	2

C	uesti	on	Answers	Notes	Total
6.	а	i	polar bonds «between H and group 16 element» OR difference in electronegativities «between H and group 16 element» ✓ uneven distribution of charge/electron cloud OR	M2: Do not accept "net/overall dipole moment" without further evaluation	2
			non-linear/bent/V-shaped/angular shape «due to lone pairs» OR polar bonds/dipoles do not cancel out ✓	moment" without further explanation. Accept "non-symmetrical «shape/distribution of charge»".	
6.	а	ii	number of electrons increases ✓ London/dispersion/instantaneous induced dipole-induced dipole forces increase ✓	M1: Accept "M _r /A _r increases" or "molecules become larger in size/mass/surface area".	2
6.	b		Electron domain geometry: tetrahedral ✓ Molecular geometry: bent/V-shaped/angular ✓	Both marks can be awarded for clear diagrams. Electron domain geometry requires a 3-D diagram showing the tetrahedral arrangement.	2

(Question	Answers	Notes	Total
7.	a	Physical evidence:	M1:	
		equal C–C bond «lengths/strengths»	Accept "all C–C–C bond angles are	
		OR	equal".	
		regular hexagon		
		OR		
		«all» C–C have bond order of 1.5		
		OR		
		«all» C–C intermediate between single and double bonds ✓		
		Chemical evidence:		
		undergoes substitution reaction «more readily than addition»		2
		OR		
		does not discolour/react with bromine water		
		OR		
		substitution forms only one isomer for 1,2-disubstitution «presence of alternate double bonds would form two isomers»		
		OR		
		more stable than expected «compared to hypothetical molecule cyclohexa-1,3,5-triene»		
		OR		
		enthalpy change of hydrogenation/combustion is less exothermic than predicted «for cyclohexa-1,3,5-triene» ✓		

C	Question		Answers	Notes	Total
7.	b	i	$3CH_3CH_2CH_2OH(I) + Cr_2O_7^{2-}(aq) + 8H^+(aq) \rightarrow 3CH_3CH_2CHO(aq) + 2Cr^{3+}(aq) + 7H_2O(I)$ correct reactants and products ✓ balanced equation ✓		2
7.	b	ii	Aldehyde: by distillation «removed from reaction mixture as soon as formed» ✓ Carboxylic acid: «heat mixture under» reflux «to achieve complete oxidation to –COOH» ✓	Accept clear diagrams or descriptions of the processes.	2
7.	С	i			1
7.	С	ii	A: C–H «in alkanes, alkenes, arenes» AND B: C=O «in aldehydes, ketones, carboxylic acids and esters» ✓		1

Question	1	Answers	Notes	Total
		Any two of: OR C ₆ H ₅ COOCH ₃ ✓ OR CH ₃ COOC ₆ H ₅ ✓ OR HCOOCH ₂ C ₆ H ₅ ✓	Do not penalize use of Kekule structures for the phenyl group. Accept the following structures: H ₃ C CH ₃ CH ₃ Award [1 max] for two correct aliphatic/linear esters with the molecular formula C ₈ H ₈ O ₂ .	2
7. c i		C ₆ H ₅ COOCH ₃ «signal at 4 ppm (3.7 – 4.8 range in data table) due to alkyl group on ester» ✓		1