Mechanika płynów - lab 0 Marcin TORGiren Fabrykowski 2 października 2012

Spis treści

1	Informacje organizacyjne			3
	1.1	Prowa	dzacy	3
	1.2	Skryp	t	3
	1.3	Grupa		3
2	Organizacja zajęć			3
	2.1	Ćwicz	enia	3
		2.1.1	Nr 2. Pomiar natężenia przepływu (ilość/czas) (to sa-	
			mo co wydatek,strumień)	3
		2.1.2		4
		2.1.3	Nr 16. Pomiar współczynnika przepływu w ośrodku po-	
			rowatym	4
		2.1.4	Pomiar lepkości powietrza	4
2.2 Harmonogram			onogram	4

Informacje organizacyjne 1

Prowadzacy 1.1

K. Filek, p 107, A1

1.2 Skrypt

Mechanika płynów z elementami pomiaroznawstwa, K. Filek, Rodczymialski(czy jakoś tak), Wacławik, 1990r

1.3 Grupa

grupa Id Osoby: Kamil Płonka, Kamil Górczyński, Jakub Siewierski plonkax@o2.pl

2 Organizacja zajęć

Ćwiczenia 2.1

Nr 2. Pomiar natężenia przepływu (ilość/czas) (to samo co wydatek, strumień)

$$Q = \frac{V}{t}$$
 Kryza pomiarowa, zwężka Venturiego, sonda prandtla
$$Q_{k,z} = \frac{\pi d_{k,z}^2}{4} \alpha_{k,z} \sqrt{\frac{2\Delta p_{k,z}}{\rho}}$$

$$\rho_{pow} = 1.15 \frac{kg}{m^3}$$

$$p_d = \frac{\rho V^2}{2}$$

$$V = \sqrt{\frac{2p_d}{\rho}}$$

$$Q = V_{sr} \frac{\pi d^2}{4}$$

$$V_{sr} = 0.8 V_{max}$$

$$Q = V_{sr} \frac{4}{4}$$
$$V_{sr} = 0.8V_{max}$$

2.1.2 Nr 8. Pomiar współczynnika oporu liniowego

$$\Delta p = \lambda \frac{L}{D} \frac{\rho V^2}{2}$$

$$\lambda = \frac{2D\Delta p}{L\rho V^2}$$

Zmiana średnicy: $V = 0.8\sqrt{2p_d}\rho \frac{D_p}{D}$

$$Re = \frac{V_{sr}D}{\nu}$$

$$\nu = 1.6 * 10^{-5} \frac{m^2}{s}$$

Nr 16. Pomiar współczynnika przepływu w ośrodku porowatym

Prawo Darcy'ego:
$$\vec{V} = -\frac{k}{\mu} \text{grad} p$$

$$k = \frac{\mu Q \ln \frac{r_z}{r_w}}{2\pi L \Delta p}$$

2.1.4 Pomiar lepkości powietrza

$$Q = \frac{\pi \Delta p D^4}{128 \mu L}$$

$$\mu = \frac{\pi \Delta p D^4 t}{128 V L}$$

$$Re = \frac{V_{sr} D}{\nu}$$

$$\mu = \frac{\pi \Delta p D^4 t}{128 V L}$$

$$Re = \frac{V_{sr}D}{\nu}$$

$$Re_{graniczne}^{\nu} = 2300$$

więcej - nie wiemy, ale raczej jest nielaminarny

2.2Harmonogram