# Projet Machine Learning Python – Streamlit

## **Guide utilisateur**

Fatima-Zahra ZABAKA

Darcy NGUYEN

Victor LEBRETON

26/11/2024

Présentation de l'application

Vous retrouverez dans cette documentation les principaux écrans et les principales fonctionnalités de l'application Streamlit Machine Learning.

Elle vous permettra d'uploader un fichier de données. De transformer ces données et de les visualiser. Dans un second temps vous pourrez entrainer vos données dans notre modèle de machine learning afin de « prévoir » la valeur de certains champs.

Nous allons vous expliquer comment réaliser ceci à travers un guide utilisateur complet.

#

#

#

#

## Page d'accueil



Voici l'écran d'accueil sur lequel vous retrouverez vos données sources.

Vous avez la possibilité de <u>modifier vos données</u> si besoin dans le tableau « **Modification des données** ». Même principe de modification que sur Excel. Vous pourrez y <u>remplir des données manquantes</u> ou <u>modifier des données</u> erronées.

La modification des données entraine une mise à jour des dataframes, et les modifications sont conservées tout au long de la navigation sur l'application.

Vous pourrez également supprimer une ou plusieurs colonnes selon vos besoins d'analyse.



Supprimer une colonne entraine une mise à jour des données. Les Dataframes présents sur la page seront mis à jour excepté celui qui contient les sources originales.

Vous y retrouverez également un graphique de distribution de chaque variable, groupée sur un intervalle différent en fonction de chaque champ.



Ici la distribution de la variable « Magnesium » sur l'échantillon de données.

Analyse descriptive du Dataframe sur vos données sources. Permet de connaître différentes métriques.

## Analyse descriptive du dataframe

|       | alcohol | malic_acid | ash    | alcalinity_of_ash | magnesium | total_phenols | flavanoids | nonflavanoid_phenols | proanthocyanins | color_intensity | hue    | od280/od315_of_diluted_wines | proline  |
|-------|---------|------------|--------|-------------------|-----------|---------------|------------|----------------------|-----------------|-----------------|--------|------------------------------|----------|
| count | 178     | 178        | 178    | 178               | 178       | 178           | 178        | 178                  | 178             | 178             | 178    | 178                          | 178      |
| mean  | 13.0006 | 2.3363     | 2.3665 | 19.4949           | 99.7416   | 2.2951        | 2.0293     | 0.3619               | 1.5909          | 5.0581          | 0.9574 | 2.6117                       | 746.8933 |
| std   | 0.8118  | 1.1171     | 0.2743 | 3.3396            | 14.2825   | 0.6259        | 0.9989     | 0.1245               | 0.5724          | 2.3183          | 0.2286 | 0.71                         | 314.9075 |
| min   | 11.03   | 0.74       | 1.36   | 10.6              | 70        | 0.98          | 0.34       | 0.13                 | 0.41            | 1.28            | 0.48   | 1.27                         | 278      |
| 25%   | 12.3625 | 1.6025     | 2.21   | 17.2              | 88        | 1.7425        | 1.205      | 0.27                 | 1.25            | 3,22            | 0.7825 | 1.9375                       | 500.5    |
| 50%   | 13.05   | 1.865      | 2.36   | 19.5              | 98        | 2.355         | 2.135      | 0.34                 | 1.555           | 4.69            | 0.965  | 2.78                         | 673.5    |
| 75%   | 13.6775 | 3.0825     | 2.5575 | 21.5              | 107       | 2.8           | 2.875      | 0.4375               | 1.95            | 6.2             | 1.12   | 3.17                         | 985      |
| max   | 14.83   | 5.8        | 3.23   | 30                | 162       | 3.88          | 5.08       | 0.66                 | 3.58            | 13              | 1.71   | 4                            | 1,680    |

### **Page Visualisation**

Dans cette page vous retrouverez les colonnes de vos données sous forme de SELECT avec deux types de graphiques différents. En fonction de vos besoins en termes d'analyse de données vous pourrez sélectionner des colonnes différentes.





Ici, un graph « Area Chart With Gradient » qui représente le taux de l'intensité de couleur par rapport au flavanoids. Les colonnes sont modifiables et permutables.

Attention cependant, dans ce graphique vous ne pouvez pas sélectionner des colonnes de types Object ou String car elles ne sont pas numériques et ne permettent pas la visualisation des valeurs.

### **Page Modélisation**

Partie importante de notre application, elle vous permettra d'entrainer vos données dans un modèle de machine learning. Vous aurez la possibilité de choisir un algorithme différent en fonction de vos attentes.



Dans un premier temps vous allez sélectionner une colonne dont vous souhaitez prédire les données. En fonction du type de champs contenus dans cette colonne vous allez adapter l'algorithme qui entraine le modèle. Random Forest ou Linear Regression.

Vous aurez la possibilité de choisir la taille de vos échantillons d'entrainement et de test. (Plus vous avez de données d'entrainement, plus les résultats seront « précis ».

Une fois que vous avez paramétré le modèle vous pouvez l'entraîner et ainsi voir les « prédictions ».

S'affiche alors un nouveau dataframe contenant les résultats.

Vous pouvez alors vous rediriger vers l'onglet Evaluation qui vous permettra de connaître les métriques de réussite de notre modèle.

|     | malic_acid | ash  | alcalinity_of_ash | magnesium | total_phenols | flavanoids | nonflavanoid_phenols | proanthocyanins | color_intensity | hue  | od280/od315_of_diluted_wines | proline | taux     | target_Vin amer | target_Vin sucré | target_Vin équilibré | Prévision_alcohol | target |
|-----|------------|------|-------------------|-----------|---------------|------------|----------------------|-----------------|-----------------|------|------------------------------|---------|----------|-----------------|------------------|----------------------|-------------------|--------|
|     | 0.94       | 1.36 | 10.6              | 88        | 1.98          | 0.57       | 0.28                 | 0.42            | 1.95            | 1.05 | 1.82                         | 520     | 342.1053 |                 |                  |                      | 12.3519           | 12.37  |
| 130 | 1.35       | 2.32 | 18                | 122       | 1.51          | 1.25       | 0.21                 | 0.94            | 4.1             | 0.76 | 1.29                         | 630     | 328      |                 |                  |                      | 12.8952           | 12.86  |
|     | 1.57       | 2,62 | 20                | 115       | 2.95          | 3.4        | 0.4                  | 1.72            | 6.6             | 1.13 | 2.57                         | 1,130   | 194.1176 |                 |                  |                      | 13.773            | 13.83  |
|     | 1.51       | 2.2  | 21.5              | 85        | 2.46          | 2.17       | 0.52                 | 2.01            | 1.9             | 1.71 | 2.87                         | 407     | 87.5576  |                 |                  |                      | 12.2997           | 11.03  |
|     | 1.41       | 1.98 | 16                | 85        | 2.55          | 2.5        | 0.29                 | 1.77            | 2.9             | 1.23 | 2.74                         | 428     | 116      |                 |                  |                      | 12.2685           | 12.29  |
| 24  | 1.81       | 2.61 | 20                | 96        | 2.53          | 2.61       | 0.28                 | 1.66            | 3.52            | 1.12 | 3.82                         | 845     | 134.8659 |                 |                  |                      | 13.3129           | 13.5   |
|     | 1.17       | 1.92 | 19.6              | 78        | 2.11          | 2          | 0.27                 | 1.04            | 4.68            | 1.12 | 3.48                         | 510     | 234      |                 |                  |                      | 12.953            | 12.37  |
| 86  | 1.61       | 2.31 | 22.8              | 90        | 1.78          | 1.69       | 0.43                 | 1.56            | 2.45            | 1.33 | 2.26                         | 495     | 144.9704 |                 |                  |                      | 12.2144           | 12.16  |
|     | 1.09       | 2.3  | 21                | 101       | 3.38          | 2.14       | 0.13                 | 1.65            | 3.21            | 0.99 | 3.13                         | 886     | 150      |                 |                  |                      | 12.1388           | 11.96  |
|     | 5.51       | 2.64 | 25                | 96        | 1.79          | 0.6        | 0.63                 | 1.1             | 5               | 0.82 | 1.69                         | 515     | 833.3333 |                 |                  |                      | 13.2365           | 12.53  |
|     |            |      |                   |           |               |            |                      |                 |                 |      |                              |         |          | _               |                  |                      |                   |        |

#### **Page Evaluation**

En fonction de l'algorithme sélectionné nous affichons des métriques différentes. Voici ici celles du Random Forest.



Les flèches vers le haut permettront à terme de voir l'évolution de la précision du modèle de machine learning.

Vous pouvez constater grâce à ces données, la précision et la pertinence des données qui sont générées par le modèle.

Nous arrivons au bout de cette présentation, nous avons pour projet de la faire évoluer et nous publieront d'ici 15 ans une ROAD MAP. Qui contiendra tous les changements que nous souhaitons apporter. En plus de prendre en compte les retour utilisateurs.