Combinatorics

Lecturer: Prof. Imre Leader

Chapter 3. Projections

"If a set has small projections, must it be small?"

• Let $A \subset \mathcal{P}(X)$. For $Y \subset X$, the **projection** or **trace** of A on Y is

$$A|Y = \{x \cap Y : x \in A\}$$

"project A on the coordinates corresponding to Y" e.g. if $A = \{14, 25, 26, 127, 128\}$, then $A|\{1,2\} = \{1,2,12\}$ so $A|Y \subset \mathcal{P}(Y)$.

- Say A covers or shatters Y if $A|Y = \mathcal{P}(Y)$.
- The trace number or VC-dimension of A is (V : Vapnik, C : Cernovnkis)

$$tr(A) = max\{|Y| : A \text{ shatters } Y\}$$

Given |A|, how small can tr(A) be?

Equivalentely, if tr(A) < k (i.e. A does not shatter any k-set), how large can A be?

- Trivially, must have $|A| \leq (1-2^{-k})2^n$ (else A shatter every k-set)
- Could take $A = X^{(< k)}$ -no k-set Y is shattered, as $Y \not\in A|Y$.

Aim: $A = X^{(< k)}$ is the best

Remark: very striking as from each k-projection having size $\leq (1-2^{-k})$, total we are getting a very small (polynomial in n) bound on |A|.

Idea: trivial that $|A| \leq |X^{(< k)}|$ if A is a **down set**(i.e. if $x \in A$ and $y \subset x$ then $y \in x$). Indeed, must have $A \subset X^{(< k)}$, since if A contains a set x with $|x| \geq k$ then $A|x = \mathcal{P}(x)$. So "try to make A into a down-set".

For $A \subset \mathcal{P}(X)$ and $1 \leq i \leq n$ the *i*-down-compression of A is defined as follows:

for $x \in \mathcal{P}(x)$, set

$$D_i(x) = \begin{cases} x & \text{if } i \notin x \\ x - \{i\} & \text{if } i \in x \end{cases}$$

and set $D_i(A) = \{D_i(x) : x \in A\} \cup \{x \in A : D_i(x) \in A\}$. "remove element i whenever possible".

Theorem 1) (Sauer-Shelah lemma) Let $A \subset \mathcal{P}(X)$ with $\operatorname{tr}(A) < k$. Then $|A| \leq |X^{(< k)}|$.

proof) Given $1 \le i \le n$,

 $Claim : tr(D_i(A)) \le tr(A).$

proof) Write $B = D_i(A)$ - we'll show that if B shatters Y (some Y) then A shatters Y.

If $i \notin Y <$ then B|Y = A|Y, so may assume $i \in Y$. Given $z \subset Y$ with $i \notin z$, we'll show $z, z \cup \{i\} \in A|Y$. Since $z \cup \{i\} \in B|Y$, have $z \cup \{i\} \cup x \in B$, some $x \subset X \setminus Y$. Hence $z \cup x$ and $z \cup \{i\} \cup x \in A$ (by definition of D_i) whence $z, z \cup \{i\} \in A|Y$.

Now let $D = D_n(D_{n-1}(\cdots D_1(A)\cdots))$. Then |D| = |A|, D is a down-set and $\operatorname{tr}(D) \leq \operatorname{tr}(A) < k$. Thus $|D| \leq |X^{(< k)}|$.

(End of proof) \square

Remark: we used 1-dimensional compression.

Now, we have : if all k-dimensional projections have size $\leq 2^k - 1$, then A is small $(|A| \leq \sum_{i=0}^{k-1} \binom{n}{k})$

What about other bounds? For example, what if each k-dimensional projection is $\leq \frac{1}{2}$ -sized $(|A|Y| \leq 2^{k-1}?)$

- A **box** or **brick** in \mathbb{R}^n is a set of the form $[a_1, b_1] \times \cdots \times [a_n, b_n]$, where $a_i \leq b_i$ for all i.
- A **body** $S \subset \mathbb{R}^n$ is a *finite union* of bricks. For S a body, write |S| or m(S) for the volume of S.

Remarks:

- 1. Everything unchanged if we only assume S compact (or just bounded and measurable)
- 2. For $A \subset \mathcal{P}(X) \leftrightarrow \{0,1\}^n$, have corresponding body $\widehat{A} \subset \mathbb{R}^n$ with $m(\widehat{A}) = |A|$, namely:

$$\widehat{A} = \bigcup_{x \in A} [x_1, x_1 + 1] \times \cdots \times [x_n, x_n + 1]$$

For body $S \subset \mathbb{R}^n$ and $Y \subset \{1, 2 \cdots, n\}$, write S_Y for the projection of S onto the subspace spanned by the e_i , $i \in Y$.

e.g. for $S \subset \mathbb{R}^3$, S_1 is the projection of S onto the x-axis. i.e. $S_1 = \{x_1 : (x_1, x_2, x_3) \in S$, some $x_2, x_3\}$. S_{12} is the projection of S onto the xy-plane, i.e. $S_{12} = \{(x_1, x_2) : (x_1, x_2, x_3) \in S \text{ some } x_3\}$.

Question: When do an upper bound of |S| exist given the values of S_Y ?

e.g.

- for $S \subset \mathbb{R}^3$, $|S| \leq |S_1||S_2||S_3|$, as $S \subset S_1 \times S_2 \times S_3$. Also, $|S| \leq |S_{12}||S_3|$, as $S \subset S_{12} \times S_3$.
- But $\{|S_{12}|, S_{13}\}$ does not bound |S|, e.g. $S = [0, \frac{1}{N}] \times [0, N] \times [0, N]$.
- How about $\{|S_{12}|, |S_{23}|, |S_{13}|\}$?

Proposition 2) Let S be a body in \mathbb{R}^3 . Then $|S|^2 \le |S_{12}| |S_{23}| |S_{13}|$.

Notes

- 1. Can have equality, e.g. when S is a brick
- 2. For $S \subset \mathbb{R}^n$, the sections of S are the sets $S(x) \subset \mathbb{R}^{n-1} (x \in \mathbb{R})$ given by

$$S(x) = \{(x_1, \dots, x_{n-1}) \in \mathbb{R}^{n-1} : (x_1, \dots, x_{n-1}, x) \in S\}$$

proof) Suppose first that every section of S is a square, $S(x) = [0, f(x)] \times [0, f(x)]$ for all x. Then $|S_{12}| = M^2$, where $M = \max_x f(x)$. Also $|S_{13}| = |S_{23}| = \int f(x)dx$. So want : $(\int f^2)^2 \leq M^2(\int f)^2$, i.e. $\int f^2 \leq M \int f$, which is true because $f(x)^2 \leq M f(x)$ for all x.

For general S, define body $T \subset \mathbb{R}^3$ by giving its sections,

$$T(x) = [0,\sqrt{|S(x)|}] \times [0,\sqrt{|S(x)|}]$$

so |T| = |S|. Certainly have $|T_{12}| \le |S_{12}|$, since $|T_{12}| \le \max_x |T(x)|$.

Write $g(x) = |S(x)_1|$, $h(x) = |S(x)_2|$, so $|S(x)| \le g(x)h(x)$. Have $|S_{13}| = \int g(x)dx$ and $|S_{23}| = \int h(x)dx$. Also,

$$T_{13}| = |T_{23}| = \int \sqrt{|S(x)|} dx \le \int \sqrt{g(x)h(x)} dx$$

 $\le (\int g)^{1/2} (\int h)^{1/2}$ (Cauchy-Schwarz)

(End of proof) \square

• Sets $Y_1, \dots, Y_r \subset [n]$ cover [n] if $Y_1 \cup \dots \cup Y_r = [n]$. They are a **k-uniform cover** if each $i \in [n]$ belong to exactly k of Y_1, \dots, Y_r .

e.g. $\{1\}, \{2\}, \{3\}$ is a 1-uniform cover of [3]. $\{1\}, \{2,3\}$ is a 1-uniform cover of [3]. $\{1,2\}, \{1,3\}$ is not a uniform cover of [3]. $\{1,2\}, \{2,3\}, \{1,3\}$ is a 2-uniform cover of [3].

Aim: $|S|^k \leq |S_{Y_1}| \cdots |S_{Y_r}|$ where Y_1, \cdots, Y_r is a k-uniform cover of [n].

(29th November, Thursday)

(3rd example class is at 5pm Thursday, 24th - hand in Q1,5,6, directly to the pigeon hole)

Intersecting Families of Graphs

So far, for n families, our object lived in [n] (no structure). What if the ground set has some structure?

For example, ground set= $[n]^{(2)}$ =edges of a graph on [n]=subgraphs of H_n , there are $2^{n(n-1)/2}$ possible graphs.

Let $A \subset \mathcal{P}([n]^{(2)})$ be a family of graphs on n vertices. For any fixed graph H, we say A is H-intersecting if $\forall G, G' \in A, G \cap G'$ contains a copy of H (" $G \cap G' \supset H$ ") e.g. $H = P_1$ =single edge. Then A is H-intersecting implies that $|A| \leq \frac{1}{2}2^{n(n-1)/2}$ (as cannot have both $G, G^c \in A$) and can achieve this, e.g. $A = \{G : 12 \in G\}$. (indeed, for any H (non-empty), A being H-intersecting implies $|A| \leq \frac{1}{2}2^{n(n-1)/2}$).

What about $H = P_2$? $(P_2 = \bullet \bullet \bullet \bullet)$

Obvious guess is $A = \{G : G \text{ contains } H_0\}$ where $H_0 = \{\text{some fixed copy of } P_2\}$, e.g.

 $H_0 = \frac{1}{4} \frac{2}{3}$. This has size $A = \frac{1}{4} 2^{n(n-1)/2}$. But can do better: e.g. $A = \{G: d_G(1) \ge \frac{n}{2} + 1\}$ (where $d_G(1) = \#$ edges out of 1). This has

$$|A| = 2^{n(n-1)/2} (\frac{1}{2} - \frac{c}{\sqrt{n}}) = (\frac{1}{2} + o(1))2^{n(n-1)/2}$$

i.e. tends to $\frac{1}{2}2^{n(n-1)/2}$

Similarly, if H is any star $\Big(\nearrow \Big)$, we have H-intersecting families of size $(\frac{1}{2} - o(1))2^{n(n-1)/2}$. \triangle -intersecting $(\triangle = \text{triangle})$?

Obvious guess is $|A| = \frac{1}{8}2^{n(n-1)/2}$ $(A = \{G : G \supset \text{fixed triangles }\})$

Simonovits-Sos conjecture: If A is \triangle -intersecting, then $|A| \leq \frac{1}{8}2^{n(n-1)/2}$.

Theorem 8) Let $A \subset \mathcal{P}([n]^{(2)})$ be \triangle -intersecting. Then $|A| \leq \frac{1}{4}2^{n(n-1)/2}$.

proof) Say n is even.

Consider the projection of A onto the edge-set $Y = B^{(2)} \cup (B^c)^{(2)}$, any $B \subset [n]$, B = n/2. then $G, G' \in A$ implies $G \cap G'$ must meet Y. (Because every triangle meets Y). Thus A|Y is an intersecting family of sets. So

$$|A|Y| \le \frac{1}{2} 2^{2\binom{n/2}{2}} = 2^{2\binom{n/2}{2}(1 - \frac{1}{2\binom{n/2}{2}})}$$

But the Y form a uniform cover of $[n]^{(2)}$ (as B varies) so by Corollary 5, have

$$|A| \le 2^{2\binom{n/2}{2}} = 2^{\binom{n/2}{2}(1 - \frac{1}{2\binom{n/2}{2}})}$$

so done if

$$\binom{n}{2} \left(1 - \frac{1}{2\binom{n/2}{2}}\right) \ge 2$$

But $(LHS) = \frac{n(n-1)}{2 \cdot \frac{n}{2} \cdot (\frac{n}{2} - 1)} = \frac{n-1}{\frac{n}{2} - 1} > 2$, so done.

For n odd, the proof is same with $|B| = \frac{n-1}{2}$

(End of proof) \square

Simonovits-Sos conjecture was proved in 2010 (Ellis, Filmu, Friedent)

Say H common if $\max\{|A|: A \subset \mathcal{P}([n]^{(2)}) \text{ is } H\text{-intersecting}\} = (\frac{1}{2} - o(1))2^{n(n-1)/2}$. e.g. every star is common, \triangle is not common. Any disjoint union of stars is also common, e.g. take n very large, k large and

$$A = \{G : \text{at least } \frac{k}{2} + 3 \text{ of vertices } 1, \dots k \text{ have degree} \ge \frac{n}{2} + 5\}$$

Key question : is $P_3(=)$ common?

This is an open question!

Easy fact : every G, not a union of stars, contains \triangle or P_3 .

So if we know P_3 not common, we would also know -

Alon's common graphs conjecture : H is common $\Leftrightarrow H$ is a union of stars.

But: Christofides (2008) gave a P_3 -intersecting family with density $\frac{17}{128} > \frac{1}{8}$.