

ALUMNO:

10.	nc
н.	rs

Asignatura: IN0P13 Procesadores de Lenguaje

Curso: 2020/2021 Examen: Final Fecha: 29-01-21

Semestre: 1 Convocatoria: Ordinaria

1. La siguiente gramática reconoce expresiones lógicas.

```
E \rightarrow T E'

E' \rightarrow || T E' | \epsilon

T \rightarrow F T'

T' \rightarrow && F T' | \epsilon

F \rightarrow (E) | id | true | false | ! F
```

[1,0 punto] Construya los conjuntos FIRST y FOLLOW y la tabla de análisis sintáctico descendente de la gramática.

[1,5 puntos] Utilice la tabla de análisis para reconocer la expresión (id || !id) && id. Muestre el valor de la pila, la entrada y la regla de producción aplicada en cada caso.

[1,5 puntos] Construya el árbol sintáctico que se genera durante el proceso de análisis recursivo descendente.

2. [3,0 puntos] Escriba las acciones semánticas de verificación de tipos para las siguientes reglas (apuntes).

3. La siguiente gramática reconoce la declaración de variables de tipos de datos primitivos.

$$D \rightarrow T L$$
 $T \rightarrow int \mid float$
 $L \rightarrow L_1$, id | id

[1,0 punto] Defina las acciones semánticas de la gramática de declaración de variables.

4. [2,0 puntos] Defina una gramática y las acciones semánticas para calcular la función XOR de una cadena de bits. Por ejemplo, para la cadena de 8 bits 10010100, la función XOR es 1.

A	В	XOR
0	0	0
0	1	1
1	0	1
1	1	0

FIRST

- 1. Si X es un símbolo terminal, entonces $FIRST(X) = \{X\}$
- 2. Si X es un símbolo no terminal y $X \rightarrow \varepsilon$, FIRST(X) contiene ε
- 3. Si X es un símbolo no terminal y $X \to Y_1 Y_2 \dots Y_k$, se añade a al FIRST(X) si para algún valor de i, a pertenece al FIRST(Y_i) y ε pertenece a todos los FIRST(Y₁) ... FIRST(Y_{i-1}), es decir, siempre que $Y_1 Y_2 \dots Y_{i-1} \Rightarrow^* \varepsilon$. Si ε pertenece a FIRST(Y_j) para toda j = 1, 2, ..., k, se añade ε al FIRST(X)

FOLLOW

- 1. Si *S* es el símbolo de inicio, se añade \$ a FOLLOW(S). El símbolo \$ representa el fin de la entrada
- 2. Si existe una regla de producción A \rightarrow α B β , todo FIRST(β) está en FOLLOW(B), excepto ϵ
- 3. Si existe una regla de producción $A \to \alpha B$ o $A \to \alpha B$ β donde FIRST(β) contiene ϵ , es decir $\beta \Rightarrow^* \epsilon$, todo FOLLOW(A) está en FOLLOW(B)