

Bluetooth e Práticas com SE

Curso Superior de Tecnologia em Sistemas Embarcados

Professor: Fernando Silvano Gonçalves fernando.goncalves@ifsc.edu.br
Junho de 2023

Cronograma

Encontro	Data	Nº Aulas	Conteúdo
1	29-fev.	04	Recepção e Apresentação do Unidade / Apresentação do Plano de Ensino / Avaliação Diagnóstica / Introdução a sistemas embarcados
2	02-mar.	04	Conceitos e Características e Aplicações de Sistemas Embarcados / Histórico de Sistemas Embarcados / Práticas com Arduino
3	07-mar.	04	Microcontroladores, Microprocessadores / Periféricos / Introdução ao Arduino / Introdução ao C
4	14-mar.	04	Introdução à Linguagens de Programação / Comunicação Serial
5	21-mar.	04	Entrada de Dados via Serial
6	28-mar.	04	Linguagem C para Arduino
7	04-abr.	04	Variáveis e Operadores
8	11-abr.	04	Estruturas Condicionais
9	18-abr.	04	Práticas com Arduino e entradas e saídas analógicas e digitais
10	25-abr.	04	Práticas com Arduino e entradas e saídas analógicas e digitais

Cronograma

Encontro	Data	Nº Aulas	Conteúdo
11	02-mai.	04	Avaliação 01
12	09-mai.	04	Avaliação 01
13	16-mai.	04	Correção da Avaliação / Introdução a estruturas de repetição
14	18-mai.	04	Estruturas de Repetição / Comunicação I2C / Display 16x2
15		04	Timers, Interrupções / Sensores (LDR)
16		04	Comunicação I2C / Display LCD / Sensores (Ultrassônico, DHT-22)
17		04	Atuadores (Servomotor, Motor DC, Relé) / PWM / Ponte H,
18		04	Comunicação Bluetooth / Práticas com Sensores e atuadores
19		04	Práticas com Sensores e atuadores
20		04	Conselho de Classe / Atividades de Recuperação e Encerramento da UC
		80	

- Módulo utilizado para comunicação sem fio entre o Arduino e algum outro dispositivo com bluetooth.
- As informações recebidas pelo módulo são repassadas ao Arduino via serial.
- O alcance do módulo é de aproximadamente 10 metros.
- Esse módulo funciona apenas em modo slave (escravo).

- O módulo possui 4 pinos: **VCC** (alimentação de 3,6 à 6v), **GND**, **RX** e **TX**.
- O nível lógico dos pinos RX e TX é de 3.3v, o que significa que, para o Arduino Uno, necessitamos de um divisor de tensão no pino RX para evitar que o módulo seja danificado.

HC-06 Connections to Arduino

HC-05 Connections to Arduino

Proposta de Atividade

Aplicativo para Comunicação Bluetooth

Para a comunicação com o Arduino via bluetooth temos várias aplicações gratuitas, por exemplo, o aplicativo RoboRemoFree Bluetooth o qual pode ser baixado na loja do Google Play.


```
#include <SoftwareSerial.h>
SoftwareSerial mySerial(9,8);
void setup() {
 Serial.begin(9600);
 mySerial.begin(9600);
 pinMode(3, OUTPUT);
 pinMode(4, OUTPUT);
void loop() {
 char dados;
 if(mySerial.available()){
  dados = mySerial.read();
  Serial.println(dados);
```

```
switch(dados){
  case 'A':
    digitalWrite(3, !digitalRead(3));
    digitalWrite(4, !digitalRead(4));
  break;
  case 'B':
    digitalWrite(3, !digitalRead(3));
  break;
  case 'C':
    digitalWrite(4, !digitalRead(4));
  break;
}
delay(300);
}
```


Prática com Bluetooth

- Crie um circuito com 4 leds, um display LCD e um LDR;
- Caso o Arduino receba o código 1 Acione o LED 1 e mostre uma mensagem na tela por 2 segundos;
- Caso o Arduino receba o código 2 Acione o LED 2 e mostre na tela o seu nome por 1 segundo;
- Caso o Arduino receba o código 3 Acione o LED 3 e mostre na tela o nome da disciplina e a data atual;
- □ Caso o Arduino receba o código 4 Acione o LED 4 e mostre a leitura do LDR, você deve sair caso receba a mensagem 'e';
- Mostre uma mensagem inicial no LCD, essa deve ser exibida sempre que finalizar uma das opções.

