Normalization of inelastic outcome.

D. Svirida for D. Kalinkin

ITEP, Moscow

10 октября 2013 г.

Аннотация

The note describes details of the procedure to normalize the outcome of inelastic events from $EPECUR\ data$

1 Введение

Выход неупругих событий на конечной стадии алгоритма в элемент телесного угла $d\Omega$ и импульсный интервал dp может быть представлен:

$$\frac{d^{2}N}{dpd\Omega}(p,\theta,\varphi) dp d\Omega \sim \frac{d\sigma}{d\Omega}(p,\theta) \sin\theta d\theta d\varphi \cdot \rho_{TARG}L_{TARG} \cdot \frac{dN_{1F}}{dp}(p) dp \alpha_{21} \alpha_{(BEAM\ TRIG)}(t(p)) \varepsilon_{PC}(t(p)) \varepsilon_{(BEAM\ ALGO)}(t(p)) \cdot A(p,\theta,\varphi) \varepsilon_{DC}(t(p),\theta,\varphi) \alpha_{(DC\ TRIG)}(t(p)) \varepsilon_{(DC\ ALGO)} \tag{1}$$

p – импульс частиц(ы) пучка, не центральный, а вычисленный для каждой частицы по координате и дисперсии в первом фокусе

 θ – полярный угол в лаб. системе

 φ – азимутальный угол в лаб. системе

t(p) подчеркивает тот факт, что хотя величина напрямую не зависит от p, ее нестабильность во времени может давать косвенно эффект зависимости от импульса, поскольку с течением времени центральный импульс канала перестраивается

 $\frac{dN}{dpd\Omega}(p,\theta,\varphi)\,dp\,d\Omega$ — фактический выход событий из алгоритма в определнный элемент телесного угла $d\Omega$ и импульсный интервал dp

 $\frac{d\sigma}{d\Omega}(p,\theta)$ — «сечение», точнее, некоторая сумма сечений всех неупругих реакций, которое, собственно, нужно определить. В основном интересна его зависимость от импульса p. Деление по интервалам θ может быть полезно только в надежде на то, что эффект узкой особенности сильнее проявится в каком-либо определенном интервале θ .

 ho_{TARG} и L_{TARG} – плотность и длина мишени по пучку, можно считать не несут никакой зависимости от (p,θ) и могут быть вовсе выброшены, все равно формула говорит только о пропорциональности

 $\frac{dN_{1F}}{dp}(p)dp$ — «истиное» количество частиц в интервале dp, прошедших через первый фокус, выраженное через плотность распределения по импульсам dN_{1F}/dp

 α_{21} — коэффициент передачи канала из 1-го во 2-й фокус. При правильной настройке канала в первом приближении не зависит от импульса. Более точно с уменьшенеим импульса увеличиваются потери за счет распадов пионов, но этот процесс невелик и уж точно не имеет узких

особенностей - можно пренебречь

 $\alpha_{(BEAM\ TRIG)}(t(p))$ – отбор частиц пучка за счет триггерных <u>пучковых</u> счетчиков. Весьма чувствителен, в частности, к горизонтальному положению пучка на мишени, которое плавает вопреки всем усилиям по стабилизации.

 $\varepsilon_{PC}(t(p))$ – эффективность пропорциональных камер, как ее видит алгоритм. Косвенно зависит от импульса в связи с плаванием во времени

 $\varepsilon_{(BEAM\ ALGO)}(t(p))$ — отбор частиц пучка в алгоритме восстановления пучковых треков и эффективность этого алгоритма, не связанная непосредственно с эффективностью камер. В частности, дополнительное обрезание по диаметру мишени подвержено эффекту, аналогичному $\alpha_{(BEAM\ TRIG)}(t(p))$

 $A(p,\theta,\varphi)$ — аксептанс установки, вообще говоря, результат Монте-Карло, которого просто нет для однотрековых событий и приплетать очень не хочется. Положение спасает тот факт, что зависимость от p очень слабая (это известно из упругого МС) и, опять же, точно без узких особенностей. Нашим результатом будут зависимости от p при определнных θ . Из-за отсутствия МС они будут несопоставимы друг с другом, но это и не очень важно. Про φ -зависимость — см. ниже

 $\varepsilon_{DC}(t(p),\theta,\varphi)$ – эффективность дрейфовых камер. Естественно плавает со временем, причем может быть по-разному в различных частях камер

 $\alpha_{(DC\ TRIG)}(t(p))$ – эффективность основного триггера установки (по сравнению с пучковым, то есть полная эффективность триггера $\alpha_{(BEAM\ TRIG)}\,\alpha_{(DC\ TRIG)})$. По сути определяется эффективностью антисчетчика и может заметно плавать, в том числе с интенсивностью пучка

 $\varepsilon_{(DC\ ALGO)}$ — эффективность алгоритма проведения треков по дрейфовым камерам, точнее, ее часть, не связанная непосредственно с ε_{DC} . Более точно было бы назвать долей выхода треков. Сочетание $\alpha_{(DC\ TRIG)}(t(p))\,\varepsilon_{(DC\ ALGO)}$ практически убирает плавание $\alpha_{(DC\ TRIG)}(t(p))$ — если даже событие без рассеяния не будет выключено антисчетчиком, алгоритм все равно не найдет в нем трека.

Количество плохо определенных компонент велико, но есть способ сильно улучшить ситуацию.

2 Распределение по импульсам в первом фокусе

Не очень сложно заметить, что содержимое второй строчки формулы (1) после выбрасывания dp представляет собой плотность распределения по импульсам частиц в первом фокусе, но не всех, а только тех частиц пучка, которые

- подверглись транспортировке из первого фокуса во второй (α_{12})
- привели к выработке пучкового триггера ($\alpha_{(BEAMTRIG)}$), в том числе геометрически попали в счетчики С1 и С2, выработали сигналы в них и сигналы мажоритарной логики в блоках пропорциональных камер
- дали срабатывание в необходимом количестве плоскостей проп. камер по каждой из проекций (ε_{PC}) как в первом, так и во втором фокусах. Отчасти это требование уже включено в предыдущий пункт, и от другой части, попадет в следующий
- прошли через алгоритм восстановления треков в обоих фокусах ($\varepsilon_{(BEAMALGO)}$), в том числе не были отброшены из-за двухтрековости, или из-за слишком большого χ^2 , или из-за чисто геометрического непопадания в область мишени.

то есть именно тех частиц пучка, которые потенциально могут быть в дальнейшем использованы для восстановления событий, если в дрейфовых камерах найдется что-нибудь полезное.

$$\frac{dn_{1F}}{dp}(p,t(p)) = \frac{dN_{1F}}{dp}(p) \alpha_{21} \alpha_{(BEAM\ TRIG)}(t(p)) \varepsilon_{PC}(t(p)) \varepsilon_{(BEAM\ ALGO)}(t(p))$$

Количество и распределения таких частиц относятся только к свойствам пучка и не зависят от свойств мишени и, тем более, от свойств основного триггера установки. Поэтому использовать основной триггер для получения таких распределений нельзя. Зато можно использовать чисто пучковый триггер, который наряду с основным может вырабатываться триггерным модулем.

3 Триггерная система

В триггерном модуле используются следующие логические комбинации совпадений:

- **Т0** $C1 \cdot C2 \cdot PC1F \cdot PC2F \cdot \overline{A}$ основной триггер установки, требующий выбывания пучковой частицы за счет взаимодействия в мишени
- **Т1** $C1 \cdot C2 \cdot PC1F \cdot PC2F$ чисто пучковый триггер, как раз для получения импульсного распределения в превом фокусе
- ${f T2}\ C1\cdot PC1F\cdot PC2F\cdot A$ триггер на пучковые частицы, не подверженный геометрическому обрезанию маленьким размером выделяющего счетчика мишени C2, может быть использован для получения неискаженных профилей пучка в области мишени, но сейчас не используется

C1 – счетчик в первом фокусе

C2 – выыделяющий счетчик мишени во втором фокусе

PC1F, PC2F – сигналы мажоритарных совпадений блоков проп. камер, требующие срабатывания хот бы 3 из 8 плоскостей соответствующего блока

A – антисчетчик за мишенью.

Если выработан триггер T0, производится считывание информации м пропорциональных и дрейфовых камер. При выработке T1 и T2 – только проп. камер.

Можно догадаться, что частота триггеров Т1 и Т2 получится значительно выше, чем у Т0. Чтобы не перегружать потока информации и не увеличивать мертвого времени установки, триггерный модуль позволяет прореживать триггера всех типов. Это означает, что если например для триггера Т1 установлен коэффициент прореживания 101 (а именно такой и установлен), толко каждый 101-й триггер такого типа Т1 приведет к считыванию проп. камер, остальные 100 будут просто проигнорированы. При такой установке количество Т1 сопоставимо с Т0, то есть статистическая значимость распределения $\frac{dn_{1F}}{dp}$ как раз соответствует статистике, получаемой по Т0.

Информация о том, к какому типу триггера отностися данное событие, содержится в слове маски физических триггеров (закопано довольно глубоко в потоке от триггерного модуля DTYPE TRIG, слово 3, см. [1]).

4 Аксептанс

Аксептанс $A(p, \theta, \varphi)$ в целях большего наукообразия диплома, наверное, нужно будет намонтекарлить, может быть, пользуясь Бориными заготовками. В данном случае нас интересует аксептанс по отношению к однотрековым событиям, чего пока ни Боря, ни Морозов не играли.

Однако, для получения нашего ответа это необязательно. Ведь никто не ждет, и правильно делает, что у аксептанса могут быть скачки или узкие особенности как у функции импульса пучка. Во-первых, им просто неоткуда взяться, а во-вторых, все что наиграно для упругих событий показывает, что эта величиа вообще очень слабо зависит от импульса пучка в нашем не очень широком кинематическом диапазоне. Поэтому в первом приближении об этой зависимости вообще можно забыть.

Зависимость от полярного угла θ конечно существует. Но искомым ответом для нас является наличие или отсутствие узкой особенности в импульсной зависимости в определнном интервале по θ . Да, такие графики при разных θ не будут сопоставимы друг с другом напрямую, но если особенность есть в каком-нибудь из них – мы ее увидим.

Сама по себе зависимость от азимутального угла φ нас не интересует, поскольку вообще не несет физической информации. По сути по этому углу мы будем интегрировать в области чувствительности. Так что его учет сводится к зависимости от θ ровно в той степени, в какой пределы интегрирования по φ зависят от θ .

5 Эффективность ДК

Эффективность камер $\varepsilon_{DC}(t,\theta,\varphi)$ следует считать отдельно для левого и правого плеч как функцию θ . Зависимость от φ нас интересует всего лишь в той же мере, что и у аксептанса, то есть только косвенно.

Эффективность считается так (для каждой данной области углов θ):

- 1. для каждой из плоскостей данной проекции блока проводятся треки по остальным трем плоскостям, и смотрится, есть ли срабатывание на треке в испытуемой плоскости. Доля таких срабатываний дает трековую эффективность данной плоскости e_i .
- 2. считаем эффйективность блока в данной проекции $e_p = e_1e_2e_3e_4 + (1-e_1)e_2e_3e_4 + (1-e_2)e_1e_3e_4 + (1-e_3)e_1e_2e_4 + (1-e_4)e_1e_2e_3$
- 3. считаем эффективность блока в целом $e_b = e_x e_y$

6 Заключение

Учитывая все вышесказанное, интересующую нас величину можно выразить следующим образом:

$$\frac{d\sigma}{d\Omega}(p,\theta) \sim \frac{\frac{d^2N}{dpd\Omega}(p,\theta)}{\frac{dn_{1F}}{dp}(p)\varepsilon_{DC}(\theta)}$$

 $\frac{d^2N}{dpd\Omega}(p,\theta)$ – количество однотрековых событий в данный бин $p,\theta,$ в результате работы алгоритма для триггеров $\mathrm{T}0$

 $\frac{dn_{1F}}{dp}(p)$ — плотность распределния по импульсам в первом фокусе, посчитанная по триггерам Т1 при помощи точно таких же алгоритмов обработки пучковых треков, что и для основных событий

 $\varepsilon_{DC}(\theta)$ – эффективность дрейфовых камер

Важно понимать, что все указанные величины усредняются за относительно небольшой промежуток времени, равный времени накопления одного файла данных, что позволяет эффективно отслеживать их плавные изменения.

Список литературы

[1] Epecur Data Format V1.1.doc