Resultados del Método Simplex Problema: 1

Emily Sánchez Viviana Vargas

Curso: Investigación de Operaciones Semestre: 2024-1

30 de octubre de 2025

George Dantzig (1914-2005) Creador del Método Simplex

${\bf \acute{I}ndice}$

1. El Algoritmo Simplex

1.1. Historia

El método Simplex fue desarrollado por George Dantzig en 1947 mientras trabajaba para la Fuerza Aérea de los Estados Unidos.

Es uno de los algoritmos más importantes en la historia de la optimización matemática y ha sido fundamental en el desarrollo de la programación lineal.

1.2. Propiedades Fundamentales

- Convergencia: El algoritmo converge a la solución óptima en un número finito de pasos (en la mayoría de los casos prácticos)
- Complejidad: En el peor caso tiene complejidad exponencial, pero en la práctica es muy eficiente
- Optimalidad: Garantiza encontrar la solución óptima global para problemas convexos
- Factibilidad: Mantiene la factibilidad en cada iteración

1.3. Descripción del Método

El método Simplex opera moviéndose entre vértices adyacentes del poliedro factible, mejorando el valor de la función objetivo en cada paso hasta alcanzar el óptimo.

2. Problema Original

2.1. Formulación Matemática

Problema de Maximización

$$Maximizar Z = 3X1 + 4X2$$

Sujeto a:

$$1X1 + 1X2 \le 40$$
$$1X1 + 2X2 \le 60$$

Con:

$$X1 \ge 0, \quad X2 \ge 0$$

3. Tabla Inicial

La tabla inicial del método Simplex incluye las variables de holgura para convertir las desigualdades en igualdades.

	X1	X2	s_1	s_2	L.D.
\mathbf{Z}	3	4	0	0	0
s_1	1	1	1	0	40
s_2	1	2	0	1	60

4. Tablas Intermedias

A continuación se presentan las tablas intermedias generadas durante la ejecución del algoritmo Simplex.

4.1. Iteración 0

	X 1	X2	s_1	s_2	L.D.
\mathbf{Z}	3	4	0	0	0
s_1	1	1	1	0	40
s_2	1	2	0	1	60

4.2. Iteración 1

	X 1	X2	s_1	s_2	L.D.
\mathbf{Z}	1	0	0	-2	-120
s_1	0.50	0	1	-0.50	10
s_2	0.50	1	0	0.50	30

4.3. Iteración 2

	X 1	X2	s_1	s_2	L.D.
\mathbf{Z}	0	0	-2	-1	-140
s_1	1	0	2	-1	20
s_2	0	1	-1	1	20

5. Tabla Final

La siguiente tabla representa la solución óptima del problema:

	X 1	X2	s_1	s_2	L.D.
${f Z}$	0	0	-2	-1	-140
X1	1	0	2	-1	20
X2	0	1	-1	1	20

6. Solución Óptima

Valor óptimo: Z = 140Solución óptima:

$$X1 = 20$$
$$X2 = 20$$

Tipo: Solución Única

El problema tiene una única solución óptima en el punto encontrado.

Iteraciones realizadas: 2