2024 Spring Semester Midterm Exam Paper

Please note that the underlying spaces are finite-dimensional Euclidean spaces endowed with an inner product $\langle \cdot, \cdot \rangle$ and the Euclidean norm $\| \cdot \| := \sqrt{\langle \cdot, \cdot \rangle}$.

- 1. True or False. You are not required to give any justification of your answer. (2*10=20)
 - (a) A set $\Omega \subseteq \mathbb{R}^n$ is closed if it is locally closed around any $x \in \Omega$.
 - (b) **Remark:** A set $C \subseteq \mathbb{R}^n$ is locally closed around $\bar{x} \in C$ if there is r > 0 such that the set $C \cap \mathbb{B}_r(\bar{x})$ is closed, where $\mathbb{B}_r(\bar{x})$ stands for the closed ball with center \bar{x} and radius r > 0.
 - (c) Let $x^* \in \Omega \subseteq \mathbb{R}^n$, if $f(x) > f(x^*)$ for all $x \in \Omega \setminus \{x^*\}$, then x^* is a strict global minimizer of $f : \mathbb{R}^n \to \mathbb{R}$ over Ω .
 - (d) A set $\Omega \subseteq \mathbb{R}^n$ is convex if for any $x, y \in \Omega$ and $\lambda \in \mathbb{R}$ it holds that $\lambda x + (1 \lambda)y \in \Omega$.
 - (e) $f: \mathbb{R}^n \to \mathbb{R}$ is σ -strongly convex function if and only if $f(\cdot) \frac{\sigma}{2} \|\cdot\|^2$ is convex.
 - (f) Let $\Omega \subseteq \mathbb{R}^n$, \bar{x} is an interior point of Ω . Then any vector $d \in \mathbb{R}^n \setminus \{0\}$ is a feasible direction at $\bar{x} \in \Omega$.
 - (g) Let $f: \mathbb{R}^n \to \mathbb{R}$ be a smooth function with $\bar{x} \in \mathbb{R}^n$. Then the gradient vector $\nabla f(\bar{x})$ is max-rate ascending direction of f at \bar{x} .
 - (h) Consider the fixed-step-size gradient algorithm for the objective function $f: \mathbb{R}^n \to \mathbb{R}$ with L_f -Lipschitz continuous gradients over \mathbb{R}^n . If the initial point x^0 is chosen arbitrarily and constant stepsize $\alpha_k = \bar{\alpha}$ for $k := 0, 1, \cdots$. Then the iteration $\{f(x^k)\}_{k \geq 0}$ is decreasing for any constant stepsize $\bar{\alpha} > 0$.
 - (i) The sequence $\{x^k\}_{k\geq 0}$ converges linearly to \bar{x} if $x^k\to \bar{x}$ as $k\to\infty$ and

$$\frac{\|x^{k+1} - \bar{x}\|}{\|x^k - \bar{x}\|} \to 1 \text{ as } k \to \infty.$$

- (j) If a standard-form linear programming has a solution, then there exists an extreme point solution.
- (k) If linear programming in the standard form has a feasible solution, then there exists a basic feasible solution.
- 2. (5+5=10). Answer True or False for each of the following statements and justify your answer.
 - (a) If x^* is a global minimizer of f over Ω , and $x^* \in \Omega' \subset \Omega$. Then x^* is a local minimizer of f over Ω' .
 - (b) Applying the Newton's method to solve

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} \left\| Ax - b \right\|^2,$$

where A is a $m \times n$ real matrix with full column rank and $b \in \mathbb{R}^m$, it takes finite iterations to obtain the solution.

- 3. (15*2=30)
 - (a) Apply simplex method to solve the following linear programming problem.

$$\begin{array}{ll} \max & 4x_1 + 3x_2 + 5x_3 \\ s.t. & 3x_1 + x_2 + 3x_3 \leq 30 \\ & 2x_1 + 2x_2 + 3x_3 \leq 40 \\ & x_1, x_2, x_3 \geq 0 \end{array}$$

(b) Apply the KKT conditions to find all optimal solutions of the following convex programming:

$$\min x^2 + y^2 - \ln (x^2 y^2)$$

s.t. $x \le \ln y$
 $x \ge 1, y \ge 1$.

4. (6*4=24) Consider the convex problem

$$\min f(x)$$
 s.t. $x \in \Omega$.

where $f: \mathbb{R}^n \to \mathbb{R}$ is convex and continuously differentiable, while Ω is a nonempty convex subset in \mathbb{R}^n . Let $\bar{x} \in \Omega$ and denote the collection of all feasible directions of Ω at \bar{x} by $F(\bar{x})$, i.e.,

$$F(\bar{x}) := \{ 0 \neq d \in \mathbb{R}^n \mid \exists \bar{\alpha} > 0 \text{ such that } \bar{x} + \alpha d \in \Omega \text{ for any } \alpha \in (0, \bar{\alpha}] \}.$$

In addition, set

$$D(\bar{x}) = \left\{ d \in \mathbb{R}^n \mid \nabla f(\bar{x})^T d < 0 \right\},$$

$$\mathrm{cone} F(\bar{x}) = \left\{ \sum_{i=1}^n \lambda_i d_i \mid \lambda_i \ge 0, d_i \in F(\bar{x}) \text{ where } i := 1, 2, \cdots, n \text{ for all } n \in \mathbb{N} \right\}.$$

Show the following assertions:

- (i) $\{x \bar{x} \mid \text{ for any } x \in \Omega \setminus \{\bar{x}\}\} \subseteq F(\bar{x}).$
- (ii) $F(\bar{x}) \cup \{0\}$ is a convex cone.

Hint: A set $C \subseteq \mathbb{R}^n$ is a cone if $\lambda C \subseteq C$ for any $\lambda \geq 0$.

(iii) If $F(\bar{x}) \cap D(\bar{x}) = \emptyset$, then \bar{x} is a global minimizer of f over Ω .

Hint: Use the first-order optimality condition for constrained optimization under convex setting.

(iv) If \bar{x} is a global minimizer, then $\operatorname{cone} F(\bar{x}) \cap D(\bar{x}) = \emptyset$.

Hint: For a set $C \subseteq \mathbb{R}^n$, we have C = coneC if C is a convex cone.

5. (4+6+6=16) Consider the unconstrained optimization problem

$$\min f(x)$$
 s.t. $x \in \mathbb{R}^n$, (P)

where $f: \mathbb{R}^n \to \mathbb{R}$ is L_f -smooth. Assume $X^* \subset \mathbb{R}^n$, the optimal set of (P), is nonempty. Let f^* be the optimal value. Recall the gradient descent (GD) method to find the minimal value of f. You can use the following inequality:

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L_f}{2} ||y - x||^2 \text{ for any } x, y$$

- (a) Write down the iterative process of GD method with the constant step size L_f .
- (b) Show the sufficiently descending property of $\left\{ f\left(x^{k}\right)\right\} _{k>0}$, i.e,

$$f(x^k) - f(x^{k+1}) \ge \frac{1}{2L_f} \|\nabla f(x^k)\|^2$$
.

(c) show that

$$\min_{n=0,1,\cdots,k} \left\| \nabla f\left(x^{n}\right) \right\| \leq \sqrt{\frac{2L_{f}\left(f\left(x^{0}\right)-f^{*}\right)}{k+1}}.$$