ANLY-511 Case Study Group 9

Optimizing Study Time

Sonali Pednekar (ssp88), Rui Qiu (rq47), Zhaoyuan Qiu (zq37)

Georgetown University Oct 22, 2021 (updated: 2021-10-21)

Setup

Introduction

What is a Maximum Likelihood Estimation?

- Maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data.
- If the likelihood function is differentiable, the derivative test for determining maxima can be applied.
- The ordinary least squares estimator maximizes the likelihood of the linear regression model.

Introduction

time (h)	grade (0-100)	
0,01	15	
0,2	25	
0,25	34	
0,33	41	
0,5	39	
0,55	50	
1	60	
1,45	63	
1,6	65	
1,75	68	
1,9	67	
2,2	72	
2,5	77	
2,7	69	
2,85	70	

Linear Model (SLR)

SLR

This is the model that best describes the problem at hand

In this equation,

- Grade is an independent variable
- Predictor is the study time.
- The parameters, beta0 and beta1 are the coefficients

SLR

Fit a linear model to the dataset on any statistical software.

SLR

OLS Regression Results								
Dep. Variab Model: Method: Date: Time: No. Observa Df Residual Df Model: Covariance	itions: .s:		greast Squa 30 Dec 2 18:04	2018 1:49 30 28 1	Adj. F-sta Prob	ared: R-squared: tistic: (F-statistic): ikelihood:		0.856 0.851 166.2 2.70e-13 -104.46 212.9 215.7
	CO(ef	std err		t	P> t	[0.025	0.975]
const time	37.45 12.04		2.905 0.935		.892 .892	0.000 0.000	31.506 10.135	43.409 13.964
Omnibus: Prob(Omnibu Skew: Kurtosis:	ıs):		0. -0.	882 032 955 722				0.653 5.216 0.0737 6.55

Least Squares method was used to fit the model.

Recall Likelihood Function

Given output y, the likelihood function of the parameter heta is defined as,

$$L(\theta; y) = P(Y = y | \theta)$$

Simple Linear Regression

For SLR model,

$$y = \beta_0 + \beta_1 x + \sigma$$

Four hypotheses are raised,

- 1. Data points are mutually independent.
- 2. Dataset follows a normal distribution.
- 3. The error term σ follows a normal distribution whose mean equals to 0.
- 4. The output y is continuous.

Likelihood Function in SLR

Given the two parameters eta_0,eta_1 , input variable $X=x_i$ and error term σ , the likelihood function is built as,

$$L(eta_0,eta_1,\sigma;y)=P(Y=y|X=x_i;eta_0,eta_1,\sigma)$$

Conditional Density of y|x

In order to find the β_0, β_1 , which maximize $L(\beta_0, \beta_1, \sigma; y)$, let's take a look at the density function of y.

According to the hypothesis 1, 2 and 4, y should be continuously and normally distributed.

Therefore,

$$f(y)=rac{1}{\sqrt{2\pi}\sigma}e^{-rac{(y-\mu_y)^2}{2\sigma^2}}$$

Here
$$\mu_y=\mu_{eta_0}+\mu_{eta_1x}+\mu_{\sigma}=eta_0+eta_1\mu_x+\mu_{\sigma}$$

According to the hypothesis 3, $\mu_{\sigma}=0$. Therefore, $\mu_{y}=eta_{0}+eta_{1}\mu_{x}$.

$$f(y|x_i,eta_0,eta_1,\sigma)=rac{1}{\sqrt{2\pi}\sigma}e^{-rac{(y-(eta_0+eta_1x_i))^2}{2\sigma^2}}.$$

Probability of Observations

According to the hypothesis 1, the probability of all observed points are independent. The overall probability equals to the products of every point.

$$egin{aligned} \prod_{i=1}^n P(y|X=x_i;eta_0,eta_1,\sigma) &= \prod_{i=1}^n rac{1}{\sqrt{2\pi}\sigma} e^{-rac{(y_i-(eta_0+eta_1x_i))^2}{2\sigma^2}} \ &= \left(rac{1}{\sqrt{2\pi}\sigma}
ight)^n e^{-rac{\sum_{i=1}^n (y_i-(eta_0+eta_1x_i))^2}{2\sigma^2}} \end{aligned}$$

To maximize $\prod_{i=1}^n P(y|X=x_i;\beta_0,\beta_1,\sigma)$ equals to minimize $\sum_{i=1}^n (y_i-(\beta_0+\beta_1x_i))^2$, which is exactly the **sum of square error**.

Therefore, the likelihood function can be updated as

$$L(eta_0,eta_1,x_i;y) = -\sum_{i=1}^n (y_i - (eta_0 + eta_1 x_i))^2 = -SSE$$

Estimate β_0

In order to find β_0 and β_1 , which maximize $L(\beta_0,\beta_1,x_i;y)$, partial derivative methods will be used.

$$egin{aligned} rac{\partial L}{\partial eta_0} &= 2 \sum_{i=1}^n (y_i - eta_0 - eta_1 x_i) = 0 \ \downarrow \ \hat{eta_0} &= rac{\sum_{i=1}^n y_i - \sum_{i=1}^n eta_1 x_i}{n} = ar{y} - eta_1 ar{x} \end{aligned}$$

Estimate β_1

$$\begin{split} \frac{\partial L}{\partial \beta_1} &= 2\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) x_i = 0 \\ \downarrow \\ \sum_{i=1}^n (x_i y_i - \beta_0 x_i - \beta_1 x_i^2) &= \sum_{i=1}^n (x_i y_i - (\overline{y} - \beta_1 \overline{x}) x_i - \beta_1 x_i^2) \\ &= \sum_{i=1}^n x_i y_i - \overline{y} \sum_{i=1}^n x_i + \beta_1 (\overline{x} \sum_{i=1}^n x_i - \sum_{i=1}^n x_i^2) \\ &= 0 \\ \downarrow \\ \hat{\beta_1} &= \frac{\overline{y} \sum_{i=1}^n \frac{x_i}{n} - \sum_{i=1}^n \frac{x_i y_i}{n}}{\overline{x} \sum_{i=1}^n \frac{x_i}{n} - \sum_{i=1}^n \frac{x_i^2}{n}} = \frac{\overline{x} \overline{y} - \overline{x} \overline{y}}{\overline{x}^2 - \overline{x}^2} = \frac{\text{Cov}(x, y)}{\text{Var}(x)} \end{split}$$

Experiment with Similar Data

Housing Prices (1)

• Let's just jump into a Kaggle data

data source: https://www.kaggle.com/c/home-data-for-ml-course

• we extract the train.csv and only pay attention to one variable LotArea and the response SalePrice

Housing Prices (2)

```
dat ← read_csv("train.csv") %>% select(LotArea, SalePrice)
ggplot(dat, aes(x = LotArea, y = SalePrice)) +
  geom_point(alpha = .2, size = .5, colour = "grey20")
```


Housing Prices (3)

- not so good, try do some transformation(s) (not required though)
- but always do this, cuz the more "normal" our variables are, the "normal" fit the model will be (it's also one of the assumptions of a linear model and you can always use q-q plot to check that).

Housing Prices (4)

```
ggplot(dat, aes(x = log(LotArea), y = log(SalePrice))) +
geom_point(alpha = .2, size = .5, colour = "grey20")
```


Housing Prices (5)

```
lm mod ← linear reg() %>%
   set_engine("lm")
lm fit \leftarrow lm mod \%>\%
  fit(log(SalePrice) ~ log(LotArea), data = dat)
lm fit
## parsnip model object
###
## Fit time: 7ms
###
## Call:
## stats::lm(formula = log(SalePrice) ~ log(LotArea), data = data)
###
## Coefficients:
   (Intercept) log(LotArea)
##
##
         9.2113
                       0.3087
```

Housing Prices (6)

```
tidy(lm fit)
## # A tibble: 2 × 5
                   estimate std.error statistic p.value
##
     term
     <chr>>
                      < [db] >
                                 < dbl >
                                            < [db] >
                                                      <fdb>
##
## 1 (Intercept) 9.21 0.169 54.5 0
## 2 log(LotArea)
                      0.309 0.0185
                                            16.7 3.47e-57
                       \log(\text{SalePrice}) = \beta_0 + \beta_1 \times \log(\text{LotArea})
```

- so the estimate of intercept eta_0 and the estimate of LotArea term eta_1 are 9.21 and 0.309 respectively.
- how are we gonna get those two estimates?
- the core idea is to take the likelihood of all observations (which is the product of all pdfs of these observations). And remember, the we "assume" the data is normally distributed, that's the reason why we can use normal distribution as the pdf here.

Housing Prices (7)

- then, we take the log of the likelihood. Why? because of calculus. recall that if we want to find the maximizer/minimizer of a product of some polynomials, very computationally expensive. But if we take the log, the product of polynomials will turn to the sum of polynomials.
- eventually, finding the maximizer/minimizer = solve for the equation where (first derivative = 0).

Housing Prices (8)

```
beta_1_est ← cov(log(dat$LotArea), log(dat$SalePrice)) / var(log(dat$LotArea))
beta_1_est

## [1] 0.3087226

beta_0_est ← mean(log(dat$SalePrice)) - beta_1_est * mean(log(dat$LotArea))
beta_0_est

## [1] 9.21133
```

Housing Prices (9)

Redraw the model in a more stylish manner:

Homebrew vs Package

Response vs Prediction (1)

Shov	v 🔻 🕶 entrie	es		Search:		
	LotArea 🛊	SalePrice +	log LotArea ∳	log SalePrice 🛊	Estimated log(SalePrice)	
1	8450	208500	9.04192172035122	12.247694320221	12.002774817351	
2	9600	181500	9.16951837745593	12.109010932687	12.0421667831259	
3	11250	223500	9.32812340763257	12.3171666930358	12.0911317330095	
4	9550	140000	9.16429643347478	11.8493977015914	12.0405546512468	
5	14260	250000	9.56521369396829	12.4292161968444	12.1643268515716	
6	14115	143000	9.55499334068759	11.870599909242	12.1611715980111	
7	10084	307000	9.21870528830781	12.6346030265693	12.0573518918334	
Showing 1 to 7 of 1,460 entries						
		Pr	revious 1 2	3 4 5	209 Next	

SLR in Matrix Form

$$egin{bmatrix} egin{aligned} egin{aligned} egin{aligned} Y_1 \ Y_2 \ dots \ Y_n \end{aligned} &= egin{bmatrix} eta_0 + eta_1 X_1 \ eta_0 + eta_1 X_2 \ dots \ eta_0 + eta_1 X_n \end{aligned} + egin{bmatrix} \epsilon_1 \ \epsilon_2 \ dots \ eta_n \end{aligned} &= egin{bmatrix} Y_1 \ Y_2 \ dots \ Y_n \end{aligned} &= egin{bmatrix} 1 & X_1 \ 1 & X_2 \ dots \ 1 & X_n \end{aligned} &= egin{bmatrix} eta_0 \ eta_1 \end{aligned} + egin{bmatrix} \epsilon_1 \ \epsilon_2 \ dots \ eta_n \end{aligned} &= egin{bmatrix} \epsilon_1 & X_1 \ 1 & X_2 \ dots \ \dot{\epsilon}_n \end{aligned} &= egin{bmatrix} eta_0 \ eta_1 \end{aligned} &= egin{bmatrix} \epsilon_1 & \lambda_1 \ 1 & \lambda_2 \ dots & dots \ \dot{\epsilon}_n \end{aligned} &= egin{bmatrix} \epsilon_1 & \lambda_1 \ a_1 & \lambda_2 \ dots & dots \ \dot{\epsilon}_n \end{aligned} &= egin{bmatrix} \epsilon_1 & \lambda_1 \ a_2 & dots \ \dot{\epsilon}_n \end{aligned} &= egin{bmatrix} \epsilon_1 & \lambda_1 \ a_2 & dots \ \dot{\epsilon}_n \end{aligned} &= egin{bmatrix} \epsilon_1 & \lambda_1 \ a_2 & dots \ \dot{\epsilon}_n \end{aligned} &= egin{bmatrix} \epsilon_1 & \lambda_2 \ dots & dots \ \dot{\epsilon}_n \end{aligned} &= egin{bmatrix} \epsilon_1 & \lambda_2 \ dots & dots & \dot{\epsilon}_n \end{aligned} &= egin{bmatrix} \epsilon_1 & \lambda_2 \ dots & dots & \dot{\epsilon}_n \end{aligned} &= egin{bmatrix} \epsilon_1 & \lambda_2 \ dots & dots & \dot{\epsilon}_n \end{aligned} &= egin{bmatrix} \epsilon_1 & \lambda_2 \ dots & \dot{\epsilon}_n \end{aligned} &= egin{bmatrix} \epsilon_1 & \lambda_2 \ dots & \dot{\epsilon}_n \end{aligned} &= egin{bmatrix} \epsilon_1 & \lambda_2 \ dots & \dot{\epsilon}_n \end{aligned} &= egin{bmatrix} \epsilon_1 & \lambda_2 \ dots & \dot{\epsilon}_n \end{aligned} &= egin{bmatrix} \epsilon_1 & \lambda_2 \ dots & \dot{\epsilon}_n \end{aligned} &= egin{bmatrix} \epsilon_1 & \lambda_2 \ dots & \dot{\epsilon}_n \end{aligned} &= egin{bmatrix} \epsilon_1 & \lambda_2 \ dots & \dot{\epsilon}_n \end{aligned} &= egin{bmatrix} \epsilon_1 & \lambda_2 \ dots & \dot{\epsilon}_n \end{aligned} &= egin{bmatrix} \epsilon_1 & \lambda_2 \ dots & \dot{\epsilon}_n \end{aligned} &= egin{bmatrix} \epsilon_1 & \lambda_2 \ dots & \dot{\epsilon}_n \end{aligned} &= egin{bmatrix} \epsilon_1 & \lambda_2 \ dots & \dot{\epsilon}_n \end{aligned} &= egin{bmatrix} \epsilon_1 & \lambda_2 \ dots & \dot{\epsilon}_n \end{aligned} &= egin{bmatrix} \epsilon_1 & \lambda_2 \ dots & \dot{\epsilon}_n \end{aligned} &= egin{bmatrix} \epsilon_1 & \lambda_2 \ dots & \dot{\epsilon}_n \end{aligned} &= egin{bmatrix} \epsilon_1 & \lambda_2 \ \dot{\epsilon}_n & \dot{\epsilon}_n \end{aligned} &= egin{bmatrix} \epsilon_1 & \lambda_2 \ \dot{\epsilon}_n & \dot{\epsilon}_n \end{aligned} &= egin{bmatrix} \epsilon_2 & \dot{\epsilon}_n & \dot{\epsilon}_n & \dot{\epsilon}_n \end{aligned} &= egin{bmatrix} \epsilon_1 & \lambda_2 & \dot{\epsilon}_n & \dot$$

Homebrew MLE Estimation

```
homebrew_slr ← function(x, y){
  beta_1_est ← cov(x, y) / var(x)
  beta_0_est ← mean(y) - beta_1_est * mean(x)
  return(c(beta_0_est, beta_1_est))
}
homebrew_slr(dat$`log LotArea`, dat$`log SalePrice`)
## [1] 9.2113297 0.3087226
```

Response vs Prediction (2)

Sho	w 🔻 • entries		Search:				
	log LotArea ∳	log SalePrice 🖣	Estimated log(SalePrice)	Estimated log(SalePrice) *			
1	9.04192172035122	12.247694320221	12.002774817351	12.002774817351			
2	9.16951837745593	12.109010932687	12.0421667831259				
3	9.32812340763257	12.3171666930358	12.0911317330095	12.0911317330095			
4	9.16429643347478	11.8493977015914	12.0405546512468	12.0405546512468			
5	9.56521369396829	12.4292161968444	12.1643268515716	12.1643268515716			
6	9.55499334068759	11.870599909242	12.1611715980111	12.1611715980111			
7	9.21870528830781	12.6346030265693	12.0573518918334	12.0573518918334			
Showing 1 to 7 of 1,460 entries							
		Previous 1	2 3 4 5	209 Next			

Summary

Summary

The model in the article is a Simple Linear Regression (SLR) model, it only considers one variable and one continuous response.

However, an SLR model usually "over-simplifies" the real world. (It might be true for some extreme cases.) You see, a single factor does not lead to a certain result. This world does not operate like this.

For a more complex case, we might want to consider Multiple Linear Regression (MLR) with more than one variables. In some cases, a Generalized Linear Model is considered to fit the data. That is, of course, another topic we should discuss.

Scripts and slides used in the presentation are available on GitHub: rexarski/case-study-mle.

Slides created via the R package xaringan.

The chakra comes from remark.js, knitr, and R Markdown.