Formelsammlung Experimentalphysik II

Juan, Janek

SS 21

Standpunkt: 4. Oktober 2021

-2 Umrechnungen

-2.0.1 Wissenschaftliche Notation

Zeichen	Faktor	Name
T	10^{12}	Tera
G	10^{9}	Giga
M	10^{6}	Mega
K	10^{3}	Kilo
Н	10^{2}	Hekto
D	10	Deka
d	10^{-1}	dezi
c	10^{-2}	centi
m	10^{-3}	milli
μ	10^{-6}	mikro
n	10^{-9}	nano
p	10^{-12}	piko

-2.0.2 Druckeinheiten

Atmosphärendruck	[at]	1
Newton/Quadratmeter		101300
Pascal	[Pa]	101300
Hectopascal	[hPa]	1013
Kilopascal	[Kpa]	101.3
Millibar	[mbar]	1013
Bar	[bar]	1.013

-1 Konstanten

-1.0.1 Wärmelehre

1. Boltzmann-Konstante: $k_B = 1,380 \ 649 \cdot 10^{-23} \ [\text{ J K}^{-1}]$

2. Avogadro Zahl: $N_A = 6,022\ 147\ 76 \cdot 10^{23}\ [\text{mol}^{-1}]$

3. Universelle Gaskonstante: $R = k_B N_A = 8,314 54 [\text{ J K}^{-1} \text{ mol}^{-1}]$

4. Thermischer Ausdennungskoeffizient: $\gamma = \frac{1}{273,15}$

-1.0.2 Elektrizität

1. Elektrische Feldkonstante: $\varepsilon_0 = 8,854~187\cdot 10^{-12}~[~A~s~V^{-1}~m^{-1}]$

2. Elementarladung: $e = 1,602\ 176 \cdot 10^{-19}\ \mathrm{C}$

3. Masse Elektron: $m_e = 9,109 \ 383 \cdot 10^{-31} \ \text{kg}$

4. Magnetische Feldkonstante: $\mu_0 = 4\pi 10^{-7} \ {\rm N} \ {\rm A}^{-2}$

0 Wärmelehre

0.0.1 Wiederholung PEP 1

1. Ideales Gasgesetz:^a $p \cdot V = n \cdot R \cdot T$

2. Druck-Dichte-Temperatur: $\frac{p_1V_1}{T_1} = \frac{p_2V_2}{T_2}$

3. Gesetz von Gay-Lussac:^b $V(T) = V_0(1 + \gamma T)$

4. Kraft:

$$F_n = p_{Druck} \cdot A$$
$$F = m \cdot A \cdot N \cdot \overline{v_x^2}$$

5. Mittlere kinetische Energie:

$$\overline{E_{kin}} = \frac{3}{2}k_B \cdot T$$

6. Innere Energie:

$$U = N \cdot \overline{E_{kin}}$$

7. Thermisches Gleichgewicht:

$$c_A \cdot m_A(T - T_A) = c_B \cdot m_B(T - T_B)$$

an : Anzahl der Mole bWann anwendbar?

0.1 Hauptsätze der Wärmelehre

1. Hauptsatz:^a

$$-\Delta U = \Delta Q + \Delta W$$

-Es gibt kein Perpetum Mobile erster Art.

2. Hauptsatz:

 $-\eta < 1$

-Wärme fließt von selbst nur vom Wärmeren zum Kälteren

-Es gibt keine Maschine deren Wirkungsgrad größer ist als der der Carnot-Maschine -In allen abgeschlossenen Systemen nimmt die Entropie im Laufe der Zeit zu $\Delta S \geq 0$

3. Hauptsatz:

-Es ist unmöglich den absoluten Nullpunkt zu erreichen. $(\Delta W \to \infty)$ $-S(T=0) = S_0 \to \Delta S(T=0) = 0$ (Nerzsche Theorem)

 $^{a}\Delta Q$: Wärmeänderung, ΔW : Energieänderung (mechanische Arbeit)

$$\left(p + \frac{a \cdot n^2}{V^2}\right)(V - b \cdot n) = n \cdot R \cdot T$$

 $p_{real} < p_{ideal}$ $V_{real} > V_{ideal}$

 $^ab=4\cdot N_A\cdot V_A$: Covolumen, a: Kohäsionsdruck

Volumenarbeit und pV-Diagramme $_{0.4}$ Entropie

1. Arbeit: $W_{12} = -\int_{V_1}^{V_2} p \cdot dV$

Kompression: $\Delta W > 0$ Expansion: $\Delta W < 0$

2. Wirkungsgrad: $\eta = \frac{|\Delta W|}{\Delta Q_W}$

3. Zustandsänderungen:

Isobare: $(p = const)^a$ $\Delta W_{12} = -p(V_2 - V_1) = -nR(T_2 - T_1)$

 $\Delta Q_{12} = n \cdot c_p (T_2 - T_1)$ $\Delta U_{12} = n \cdot (c_p - R)(T_2 - T_1)$

Isotherme: $(T = const)^b$

 $\Delta U = \frac{f}{2}R \cdot \Delta T = 0$ $\Delta Q = -\Delta W$

 $\Delta Q_{12} = \int_{V_1}^{V_2} \frac{n \cdot R \cdot T}{V} dV = n \cdot R \cdot T \ln \left(\frac{V_2}{V_1}\right)$

Isochore: $(V = \text{const})^c$

 $\Delta W = pdV = 0$

 $\Delta Q_{12} = n \cdot c_V (T_2 - T_1)$

 $\Delta U_{12} = \Delta Q_{12} = \frac{f}{2} n \cdot R(T_2 - T_1)$

 $c_V = \frac{f}{2}R = c_p - R$

Adiabate: $(\Delta Q = 0)^d$

 $\Delta U_{12} = \Delta W_{12}$

 $dU = \frac{f}{2}n \cdot R \cdot dT = n \cdot c_V \cdot dT$

 $dW = -p \cdot dV = -n \cdot R \cdot T \frac{dV}{V}$ $c_V \frac{dT}{T} = -R \frac{dV}{V}$ $\to c_V \ln T = -R \ln V + \text{const}$

 $\rightarrow p \cdot V^{\gamma} = \text{const}$

Molwärme:

 $c_v = \frac{J}{2}R$

 $c_p = \frac{f+2}{2}R$

 ac_p : Molwärme bei konstantem Druck

 ${}^b f$: Freiheitsgrade, üblicherweise 3

 $^{c}c_{V}$: Molwärme bei konstantem Volumen

0.3Reale Gase und Flüssigkeiten

1. Van-der-Waals-Gleichung:

1. Entropie:

 $\Delta S = \int_{1}^{2} \frac{dQ_{rev}}{T}$

 $S = k_B \cdot \ln\left(\frac{1}{W}\right)$ $\Delta S = -k_B \cdot \ln W(V_1) > 0$

Reversibler Prozess:

 $\sum \frac{\Delta Q_i}{T_i} = const \Rightarrow \mathbf{p}, \mathbf{L}, E = const$

Irreversibler Prozess: $\sum_{i} \frac{\Delta Q_{i}}{T_{i}} < 0$

 ^{a}W = mechanische Arbeit, $W(V_{1})$ = Wahrscheinlichkeit

Transportprozesse

1. Fluss:

Energie: $J_E = \frac{dE}{dt}$ Masse: $J_m = \frac{dm}{dt}$ Ladung: $J_q = \frac{dq}{dt}$

2. Flussdichte: Energie: $j_E = \frac{dE}{Adt}$ Masse: $j_m = \frac{dm}{Adt}$ Ladung: $j_q = \frac{dq}{Adt}$

3. Kontinuitätsgleichung:

 $\frac{\partial \rho}{\partial t} = -\nabla \mathbf{j}$

1 Dim: $\frac{d\phi}{dt} + \frac{dj_x}{dx} = 0$ 3 Dim: $\frac{d\phi}{dt} + \nabla \mathbf{j} = 0$

- Wärmetransport mittels Wärmeleitung
 - 1. Wärmefluss: $^{a\ b}$ $J_Q = -\lambda A \frac{\Delta T}{\Delta x}$
 - 2. Fourier-Gesetz:

 $j_Q = -\lambda \frac{\Delta T}{\Delta x}$

 $a\lambda$: Wärmeleitungsfähigkeit $b\frac{\Delta T}{\Delta x} = \text{const}$

Diffusion

1. Teilchenstromdichte:^a $\mathbf{j} = \phi \cdot \mathbf{v}$

2. Ficksches Gesetz: bcd $\mathbf{j}_D = -D(T) \cdot \nabla n$

 $^a\phi$: Dichte

 ^{b}j : Nettofluss

 ${}^c \! D$: Diffusionskonstante

 dn : Teilchendichte

2 Elektrizität und Magnetismus

Maxwell Gleichungen

- 1. Gaußsches Gesetz: $\nabla \mathbf{D} = \rho$
- 2. Quellenfreiheit: $\nabla B = 0$
- 3. Induktionsgesetz:

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

4. Durchflutungsgesetz: $\nabla \times \mathbf{H} = \mathbf{j} + \frac{\partial \mathbf{D}}{\partial t}$

$$\nabla \times \mathbf{H} = \mathbf{j} + \frac{\bar{\partial} \mathbf{D}}{\partial t}$$

2.1Elektrostatik

1. Coulombsches Gesetz:
$$\begin{aligned} \mathbf{F}_C &= \frac{1}{4\pi\varepsilon_0} \cdot \frac{q \cdot Q}{r^2} \mathbf{e}_r \\ \mathbf{F}_C &= -\nabla E_{\mathrm{pot}}(\mathbf{r}) \end{aligned}$$

2. Elektrisches Feld:
$$\mathbf{E} = \frac{\mathbf{F}}{q} = \frac{Q}{4\pi\varepsilon_0 \cdot r^2} \mathbf{e}_r$$

$$E_{\mathrm{Linie}} = \frac{Q}{2\pi\varepsilon_0 R}$$

$$E_{\mathrm{Fläche}} = \frac{Q}{2\varepsilon_0 A}$$

$$E_{\mathrm{Allg}} = \frac{Q}{\varepsilon_0 A}$$

3. Elektrischer Fluss:

$$\Phi_E = \int_A \mathbf{E} \cdot d\mathbf{A}$$

4. Gaußsches Gesetz:
ab

$$\Phi_E = \frac{Q}{\varepsilon_0}$$

$$\nabla \mathbf{E} = \frac{\rho_q}{\varepsilon_0} = -\nabla \nabla \phi = -\nabla^2 \phi$$

5. Satz von Gauß:

$$\oint_A \mathbf{E} \, d\mathbf{A} = \int_V \nabla \mathbf{E} dV$$

6. Elektrisches Potential: $\phi(\mathbf{r}) = \frac{E_{\mathrm{pot}}(\mathbf{r})}{I}$

$$\phi(\mathbf{r}) = \frac{E_{\text{pot}}(\mathbf{r})}{a}$$

7. Elektrische Spannung:

$$U_{12} = \Delta \phi_{12} = -\int_{1}^{2} \mathbf{E} \, d\mathbf{s}$$

8. Dipolmoment:

$$\mathbf{p} = q \cdot \mathbf{d}$$

9. Arbeit Dipol:

$$W = -\mathbf{p} \cdot \mathbf{E}$$

10. Kraft Dipol:
$$\mathbf{F} = q \cdot d \cdot \frac{d\mathbf{E}}{dr} = \mathbf{p} \cdot \nabla \mathbf{E}$$

11. Kapazität:

$$C = \frac{Q}{U}$$

Parallelschaltung: $C = \sum_{i=1}^{N} C_i$, $U = U_i$

Reihenschaltung: $\frac{1}{C} = \sum_{i=1}^{N} \frac{1}{C_i}$, $Q = Q_i$

12. Arbeit Kondensator:
$$W = \int U \; \mathrm{d}Q = \frac{1}{2}CU^2$$

Mit Dielektrikum:
$$W_e = \frac{1}{2}\varepsilon_0 \cdot C_0 U^2 = \frac{Q^2}{2 \cdot \varepsilon_0 C_0}$$

13. Energie Kondensator:

$$E_C = \frac{1}{2}CU^2 = \frac{1}{2}\varepsilon_0 V E^2$$

Energiedichte: $w_e = \frac{E_C}{V} = \frac{1}{2} \varepsilon_0 E^2$

14. Permittivität:^d

$$C_{Diel} = \varepsilon_r C_0$$

15. Feldstärke Dielektrikum: e

$$E_{Diel} = \frac{\sigma_{tot}}{\varepsilon_0} = \frac{1}{\varepsilon_r} E_0$$

Ladungsdichte Dipol: $\sigma_p = \sigma_0 \left(1 - \frac{1}{\varepsilon_r} \right)$

Totale Ladungsdichte: $\sigma_{tot} = \sigma_0 - \sigma_p$ Feldstärke Vakuum: $E_0 = \frac{\varepsilon_r}{\varepsilon_0} \sigma_{tot}$

16. Polarisation:^f

$$\mathbf{P} = \frac{1}{V} \sum_{i=1}^{n} \mathbf{p}_{i}$$

$$P = \frac{Q_{p} \cdot d}{V} = \frac{\sigma_{p} \cdot A \cdot d}{V} = \sigma_{p}$$

17. Dielektrische Verschiebung:^{gh}

$$\mathbf{D} = \varepsilon_0 \cdot \mathbf{E}_{diel} + \mathbf{P} = \varepsilon_r \cdot \varepsilon_0 \cdot \mathbf{E}_{diel} = \varepsilon_0 \cdot \mathbf{E}_0$$

18. Energiedichte:
$$\omega_e = \frac{1}{2}\varepsilon_r\varepsilon_0\mathbf{E}^2 = \frac{1}{2}\mathbf{E}\cdot\mathbf{D}$$

^afür geschlossene Oberflächen um eine Ladung

 ${}^b\mathbf{Z}$ weitens in differentieller Form

 cE_C : Energie, E: Elektrische Feldstärke

 dC_0 : Kapazität im Vakuum, $\varepsilon_r > 1$: Permittivitätszahl

 $^{e}E_{0}$: Elektrische Feldstärke im Vakuum

 $f_{\mathbf{p}_i}$: Dipolmomente

^gAuch elektrische Flussdichte

 ${}^h\mathbf{D}$ ist gleich im Vakuum und in Materie, per Defi-

2.2Elektrische Gleichströme

1. Ohmsches Gesetz:

$$U = R \cdot I$$

2. Strom:
$$I = \frac{dQ}{dt} = \int_A \mathbf{j} \cdot d\mathbf{A}$$

3. Stromdichte:^a

$$j = \frac{I}{A} = \frac{1}{A} \cdot \frac{dQ}{dt}$$

$$\mathbf{j} = \rho \cdot \mathbf{v} = n \cdot q_e \cdot \mathbf{v}_D$$

$$j = \frac{U}{R \cdot A} = \frac{l \cdot E}{R \cdot A} = \sigma \cdot E$$

4. Kontinuitätsgleichung:

$$\frac{\partial \rho}{\partial t} + \nabla \mathbf{j} = 0$$

5. Spannung:

$$U = \phi_a - \overline{\phi_b} = E \cdot \Delta l$$

6. Differentieller Widerstand:

$$r = \frac{\mathrm{d}U}{\mathrm{d}I}$$

7. Differentielle Leitfähigkeit:

$$s = \frac{\mathrm{d}I}{\mathrm{d}U}$$

8. Spezifische Leitfähigkeit: $\sigma = \frac{l}{R \cdot A}$

$$\sigma = \frac{l}{R \cdot A}$$

9. Leitfähigkeit:
$$S = \sigma \cdot \frac{A}{l}$$

10. Widerstand: $R = \rho \cdot \frac{l}{A}$

$$R = \rho \cdot \frac{l}{A}$$

11. Elektrische Leistung:

$$P = I \cdot II$$

Konstanter Widerstand:
$$P = R \cdot I^2 = \frac{U^2}{R}$$

12. Leistungsverlust:^b

$$P_V = P - P_L$$

13. Kirchhoffsche Regeln:

Knotenregel: $\sum I_K = 0$ Maschenregel: $\sum U_K = 0$

14. Widerstand:

Reihenschaltung: $R = \sum R_i$ Parallelschaltung: $\frac{1}{R} = \sum \frac{1}{R_i}$

Magnetostatik

1. Magnetischer Fluss:

$$\Phi_m = \int_A \mathbf{B} \cdot d\mathbf{A}$$

2. Magnetische Kraft:

$$\mathbf{F} = I(\mathbf{l} \times \mathbf{B})$$

$$F = I \cdot B \cdot l \cdot \sin c$$

$$F = I(I \times B)$$

$$F = I \cdot B \cdot l \cdot \sin \alpha$$
Parallele Leiter: $\frac{F}{l} = \frac{\mu_0 I_1 I_2}{2\pi d}$

3. Lorentz-Kraft:

$$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$$

4. Drehmoment:

$$\mathbf{M} = \mathbf{d} \times \mathbf{F} = \mathbf{d} \times I(\mathbf{l} \times \mathbf{B}) = I(\mathbf{A} \times \mathbf{B})$$

Dipol: $\mathbf{M} = \boldsymbol{\mu} \times \mathbf{B}$

5. Magnetisches Moment:

$$\mu = I \cdot \mathbf{A}$$

6. Hallspannung:^a

$$U_H = \frac{I \cdot B}{n \cdot q \cdot d} = \frac{R_H \cdot I \cdot B}{d}$$

7. Magnetisches Feld:^b

$$\mathbf{B} = \frac{\mu_0 \cdot I}{2\pi \cdot r} (\hat{\mathbf{l}} \times \hat{\mathbf{r}})$$

2.4Grundgleichungen der Magnetostatik

1. Magnetischer Fluss durch geschlossene Oberfläche:

$$\oint \mathbf{B} \cdot d\mathbf{A} = 0$$

2. Quellenfreiheit:

$$\nabla \mathbf{B} = 0$$

3. Satz von Gauß:

$$\int_{V} \nabla \mathbf{B} = \oint \mathbf{B} \cdot d\mathbf{A}$$

4. Amperesche Durchflutungsgesetz:
$$\oint_C \mathbf{B} \cdot \mathrm{d}\mathbf{s} = \mu_0 \sum_k I_k = \mu_0 I_{Innen}$$

5. Amp. Durchflutungsgesetz (differentiell):

$$\nabla \times \mathbf{\dot{B}} = \mu_0 \mathbf{j}$$

6. Biot-Savart-Gesetz:

$$d\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \cdot \frac{\mathbf{j}(\mathbf{r}') \times (\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^3} dV$$

$$d\mathbf{B}(\mathbf{r}) = \frac{\mu_0 I}{4\pi} \frac{d\mathbf{l} \times (\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^3}$$

$$d\mathbf{B}(\mathbf{r}) = \frac{\mu_0 I}{4\pi} \frac{d\mathbf{l} \times (\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^3}$$

2.5Materie im Magnetfeld

1. Magnetisierung:
ab
 $\mathbf{M} = \frac{1}{V} \sum \mu_{\mathbf{i}} = \frac{I_m}{l} \mathbf{\hat{n}}$

$$\mathbf{M} = \chi_m \mathbf{H} = \frac{\chi_m}{\chi_m + 1} \frac{\mathbf{B}}{\mu_0}$$
$$\mathbf{M} = \frac{1}{3} \frac{\mu \mathbf{B}_{\text{ext}}}{k_B T} \cdot M_s$$

$$\mathbf{M} = \frac{1}{3} \frac{\mu \mathbf{B}_{\text{ext}}}{k_B T} \cdot M_s$$

2. Dipolmoment: cd

$$\boldsymbol{\mu_i} = I_i \cdot \mathbf{A} = I_m \frac{dl}{l} \mathbf{A}$$

3. Gesamtmagnetstärke:

$$\mathbf{B} = \mathbf{B}_0 + \mu_0 \mathbf{M}$$

$$\mathbf{B} = \mu_0 \mu \mathbf{H}$$

4. Magnetische Erregung:

 $[^]a n = \frac{N}{V}$: Ladungsträger pro Volumen, \mathbf{v}_D : Driftgeschwindigkeit

 $^{{}^}bP_L$: Leistung, die wegen eines extra Widerstands R_L verloren geht

 $^{{}^{}a}R_{H}$: Hallkonstante

 $^{^{}b}\mu_{0}$: Feldkonstante

$$\mathbf{H} = \frac{1}{\mu_0} \mathbf{B} - \mathbf{M}$$

 $a\chi_m = \mu - 1$: magnetische Suszeptibilität

 ${}^b\mathbf{M}_s\colon \mathbf{S\"{a}ttigungsmagnetisierung}$

 $^{c}I_{i}$: kleiner Kreisstrom

 dI_m : Molekularstrom

Induktion und elektromagnetische Wechselfelder

1. Induzierte Spannung:

$$U_{\text{ind}} = -\dot{\Phi_m}(t)$$

$$U_{\text{ind}} = -L \cdot \dot{I}$$

2. Potentialdifferenz:

$$dU_{\text{ind}} = E_{\text{ind}} \cdot dl = v \cdot B \cdot dl$$

3. Induktivität: $L = \frac{\Phi_m}{I}$

$$L = \frac{\Phi_m}{I}$$

4. Ampere-Maxwell Gesetz:

$$\oint \mathbf{B} \, d\mathbf{s} = \mu_0 \int \mathbf{j} \, d\mathbf{A} + \mu_0 \cdot \varepsilon_0 \int \dot{\mathbf{E}} \, d\mathbf{A}
\nabla \times \mathbf{B} = \mu_0 \cdot \mathbf{j} + \mu_0 \cdot \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

2.7 Schaltvorgänge, Wechselstrom und Schwingkreis

1. Einschaltvorgang:

Induktivität:

$$U_0 - L \cdot \dot{I} = I \cdot R$$
$$I(t) = \frac{U_0}{R} \left(1 - e^{-\frac{R}{L}t} \right)$$

Kapazität:

$$\begin{aligned} U_0 - RI &= \frac{Q}{C} \\ - R\dot{I} &= \frac{I}{C} \\ I(t) &= \frac{U_0}{R} \cdot \mathrm{e}^{-\frac{t}{R \cdot C}} \\ U(t) &= U_0 \cdot \left(1 - \mathrm{e}^{-\frac{t}{R \cdot C}} \right) \end{aligned}$$

2. Ausschaltvorgang:

Induktivität:

$$I(t) = \frac{U_0}{R} e^{-\frac{R}{L}t}$$

$$U(t) = I(t) \cdot R = U_0 \cdot e^{-\frac{R}{L}t}$$

Kapazität:

$$I(t) = -I_0 \cdot e^{-\frac{t}{R \cdot C}}$$
$$U(t) = U_0 \cdot e^{-\frac{t}{R \cdot C}}$$

3. RLC-Stromkreis:

Leistung:

$$P(t) = U \cdot I = U_0 I_0 \cos^2 \omega t$$
$$\bar{P} = U_{\text{eff}} \cdot I_{\text{eff}} = \frac{U_0}{\sqrt{2}} \cdot \frac{U_0}{\sqrt{2}}$$

Stromstärke:

$$I = \frac{1}{L} \int_0^r U_0 \cos \omega t' \, dt' = \frac{U_0}{\omega L} \sin \omega t$$

Widerstand:

$$Z_C = \frac{1}{\omega C}$$
$$Z_L = \omega L$$

Komplexe Beschreibung:

$$U(t) = \hat{U}e^{i\omega t}$$

$$I(t) = \hat{I}e^{i\omega t}$$

$$Z_C = \frac{1}{i\omega C}$$

$$Z_L = i\omega L$$

4. RLC-Schwingkreis:

Differentialgleichung:

a.
$$0 = L \cdot \ddot{I} + \dot{I} \cdot R + \frac{I}{C}$$

b. $\omega \cdot U_0 \cdot e^{i\left(\omega t + \frac{\pi}{2}\right)} = L \cdot \ddot{I} + \dot{I} \cdot R + \frac{I}{C}$

Lösung a :

$$\begin{split} I_a(t) &= C_1 \cdot \mathrm{e}^{-\gamma t} \cdot \mathrm{e}^{i\omega_R t} + C_2 \cdot \mathrm{e}^{-\gamma t} \cdot \mathrm{e}^{-i\omega_R t} \\ I_b(t) &= \rho \cdot \mathrm{e}^{i\varphi} \cdot \mathrm{e}^{i\omega t} \\ \rho &= \frac{U_0}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}} \\ \varphi &= \frac{\pi}{2} - \arctan\frac{\gamma \omega}{\omega_0^2 - \omega^2} \end{split}$$

5. Transformator

Spannung:

$$U_i = -N_i \cdot \dot{\Phi}_M$$

$$U_2 = \frac{N_2}{N_1} U_1$$

Leistung:

$$P = U_2 I_2 = U_1 I_1$$

6. Elektrische und magnetische Energie:

RC-Kreis:

$$\begin{split} P &= C \cdot U \cdot \dot{U} \\ E_{RC} &= \int_0^t P(t') \; \mathrm{d}t' = \frac{CU(t)^2}{2} \\ W_{\mathrm{el}} &= \frac{1}{2} \varepsilon \cdot \varepsilon_0 \cdot V \cdot E^2 = \frac{DE}{2} \end{split}$$

LC-Kreis:

$$\begin{split} P &= L \cdot I \cdot \dot{I} \\ E_{LC} &= \frac{LI(t)^2}{2} \\ W_{\text{mag}} &= \frac{1}{2} \mu \cdot \mu_0 \cdot V \cdot H^2 = \frac{BH}{2} \end{split}$$

Elekromagnetische Energiedichte:

$$w_{\rm em} = \frac{1}{2} (\mathbf{E} \cdot \mathbf{D} + \mathbf{B} \cdot \mathbf{H})$$

$${}^a\gamma=rac{R}{L}$$
: Dämpfung ${}^b\omega_R=\sqrt{\omega_0^2+\gamma^2}$: Eigenfrequenz

warum hat die Zusamenfassung ihr ganzes Unterkapitel:/

2.9 Elektromagnetische Wellen

$$y(\mathbf{x}, t) = A \sin(\mathbf{k}\mathbf{x} \pm \omega t) + B \cos(\mathbf{k}\mathbf{x} \pm \omega t)$$

2. Kugelwelle:

$$y(r,t) = \frac{A}{r} e^{i(kr \pm \omega t)}$$

3. Inverse Wellenlänge:

$$k = \frac{2\pi}{\lambda}$$

4. Phasengeschwindigkeit: $v_{\mathrm{Phase}} = \frac{\lambda}{T} = \frac{\omega}{k}$

$$v_{\mathrm{Phase}} = \frac{\lambda}{T} = \frac{\omega}{k}$$

5. Interferenz gleicher Amplitude:

$$\Psi(x,t) = \Psi_1 + \Psi_2$$

$$= 2A \cdot \cos\left(\frac{k_1 + k_2}{2}x - \frac{\omega_1 + \omega_2}{2}t\right)$$

$$\cdot \cos\left(\frac{k_1 - k_2}{2}x - \frac{\omega_1 - \omega_2}{2}t\right)$$

6. Wellengleichung:
$$\frac{\partial^2 \Psi}{\partial t^2} - v^2 \frac{\partial^2 \Psi}{\partial x^2} = 0$$

7. Amplitudenfunktion:
$$A(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \Psi(x,0) e^{i\mathbf{k}\cdot\mathbf{x}} dx$$

8. Wellenfunktion:

$$\Psi(\mathbf{x},t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} A(k) e^{i(\mathbf{k} \cdot \mathbf{x} - \omega t)} dk$$

9. Geschwindigkeit:

Phase:
$$v_{\text{phase}} = \frac{\omega}{k}$$

Gruppe:
$$v_{\text{Gruppe}} = \frac{\mathrm{d}\omega}{\mathrm{d}k}$$

10. Elektromagnetische Wellengleichung:

$$\Delta \mathbf{E} = -\nabla \times \frac{\partial \mathbf{B}}{\partial t}$$

11. Verhältnis E zu B:

$$E = cB$$

12. Poynting Vektor:

$$\mathbf{S} = \frac{1}{\mu_0} (\mathbf{E} \times \mathbf{B})$$

$$\mathbf{S} = \frac{1}{\mu_0} (\mathbf{E} \times \mathbf{B})$$

$$S = \frac{B_0 E_0}{\mu_0} \cos^2 (\omega t - kx)$$

2.10Wellenoptik

1. Huygensches Prinzip:

Aus jedem Punkt eines ebenen Wellen-

frontes wird eine Kugelwelle erzeugt.

2. Gangunterschied: ab

Max:
$$\Delta x = d \sin \theta = m\lambda$$

Min: $\Delta x = d \sin \theta = \left(m + \frac{1}{2}\right)\lambda$

3. Abstand auf Schirm: $x_m = \frac{\lambda Lm}{d}$

$$x_m = \frac{\lambda Lm}{d}$$

4. Phasenwinkel:
$$\delta = \frac{2\pi}{\lambda} d \sin \theta = k d \sin \theta$$

5. Intensität:

$$I = I_0 \cdot E^2 \langle S \rangle$$

6. Fermatsche's Prinzip:

Licht nimmt den Weg so, dass die Zeit bis zum Ziel (lokal) minimiert wird.

7. Brechung:

$$\frac{\sin \alpha_1}{\sin \alpha_2} = \frac{\lambda_1}{\lambda_2} = \frac{n_2}{n_1}$$

 $^a\theta$: Winkel zwischen Lichtstrahl und Schirm

 ^{b}m : Ordnungszahl