

The Shape of Edge Differential Privacy

(1A) Random Dot-Product Graphs

RDPGs encompass a large class of commonly used models

(Definition) Given \mathbb{P} on \mathbb{R}^d and p+q=d such that:

- ullet For $\mathbb{I}_{p,q}=\mathsf{Diag}\left(\mathbf{1}_p^{ op},-\mathbf{1}_q^{ op}
 ight)$, and
- For all $oldsymbol{X}, oldsymbol{Y} \sim \mathbb{P}$ such that $oldsymbol{X} oldsymbol{\perp} oldsymbol{Y}$

 $\left\langle {m{X}}, \mathbb{I}_{p,q}{m{Y}} \right
angle_2 \in [0,1]$ a.s.

Then $G \sim \mathsf{RDPG}(\mathbb{P})$ if, for all $\{m{X}_1, m{X}_2 \dots m{X}_n\} \sim \mathbb{P}$, $\mathsf{edge}(m{X}_i, m{X}_j) \Big| m{X}_1 \dots m{X}_n \sim \mathsf{Bernoulli}\left(\left\langle m{X}_i, \mathbb{I}_{p,q} m{X}_j \right\rangle_2$

Spectral embeddings of RDPGs recover topological information

(2A) Theoretical Results

For $\epsilon>0$ and $G\sim\mathsf{RDPG}(\mathbb{P})$, where $\mathsf{supp}(\mathbb{P})=\mathcal{M}\subset\mathbb{R}^d$

(i) $\mathcal{A}_{\epsilon}(G) \sim \mathsf{RDPG}(\mathbb{P}_{\epsilon})$ with $\mathsf{supp}(\mathbb{P}_{\epsilon}) = \mathcal{M}_{\epsilon} \subset \mathbb{R}^{d+1}$ s.t. $\mathcal{M}_{\epsilon} = \xi(\mathcal{M})$ and $\mathbb{P}_{\epsilon} = \xi_{\sharp}\mathbb{P}$ is the pushforward of \mathbb{P} via

$$\xi: \boldsymbol{x} \mapsto \left(\sqrt{1 - 2\pi(\epsilon)}\right) \boldsymbol{x} \oplus \sqrt{\pi(\epsilon)}$$

- (ii) \mathcal{M}_{ϵ} is diffeomorphic to \mathcal{M} , and diam $\mathcal{M}_{\epsilon} \downarrow$ as $\epsilon \downarrow$.
- (iii) When $\epsilon=0$, $\mathcal{M}_{\epsilon}=\{m{x}_0\}$ with $\|m{x}_0\|=rac{1}{2}$ and $m{x}_0\perp\mathcal{M}$ RDPG $(\delta_{m{x}_0})\sim$ Erdős-Rényi $\left(rac{1}{2}
 ight)$
- (iv)* When $\mathbb{X}_n = \Phi(G)$ and $\mathbb{Y}_n = \Phi(\mathcal{A}_{\epsilon}(G))$ denote the spectral embeddings of G and $\mathcal{A}_{\epsilon}(G)$, then as $n \to \infty$ $W_{\infty}^{\mathsf{SI}}(\mathbb{X}_n, \mathbb{Y}_n) \stackrel{p}{\longrightarrow} 0$

* Under some mild regularity assumptions

Siddharth Vishwanath and Jonathan Hehir

The Pennsylvania State University

TL; DR

Given a graph $G \sim \mathcal{G}$, the ϵ -edge DP graph $\mathcal{A}_{\epsilon}(G)$ preserves topological structure for a large class of random graphs \mathcal{G} .

(1B) Differential Privacy via edgeFlip

Let $\mathcal{G}^n=\{(V,E):|V|=n\}=$ Class of graphs with n vertices **(Definition)** $\mathscr{M}:\mathcal{G}^n\to\mathcal{G}^n$ satisfies $\underline{\epsilon\text{-edge DP}}$ if for all graphs $G_1\overset{e}{\sim}G_2$ differing in a single edge, i.e. $E_1\Delta E_2=\{e\}$

 $\mathbb{P}\left(\mathcal{M}(G_1) \in S\right) \le e^{\epsilon} \, \mathbb{P}\left(\mathcal{M}(G_2) \in S\right) \ \forall S \subseteq \mathcal{G}^n$

(edgeFlip) For graph G, $\epsilon > 0$ and $\pi(\epsilon) := (1 + e^{\epsilon})^{-1} \in (0, 1)$, edgeFlip is the mechanism $\mathcal{A}_{\epsilon}(G) : \mathcal{G}^n \to \mathcal{G}^n$ such that

$$\mathcal{A}_{\epsilon}\left(\mathsf{e}(i,j)\right)\left|\mathsf{e}(i,j)\right. = egin{cases} \mathsf{e}(i,j) & \mathsf{w.p.} \ 1-\pi(\epsilon) \ 1-\mathsf{e}(i,j) & \mathsf{w.p.} \ \pi(\epsilon) \end{cases}$$

References

- [1] F. Chazal, et al. Persistence-based clustering in Riemannian manifolds. Journal of ACM, 2013
- [2] V. Karwa, et al. Sharing social network data. Journal of the Royal Statistical Society, 2017
- [3] A. Athreya, et al. *Statistical inference on random dot product graphs.* Journal of Machine Learning Research, 2017
- [4] V. Solanki, et al. Persistent homology of graph embeddings. arXiv:1912.10238, 2019

(1C) Measuring Shape using Topology

Topological Data Analysis has emerged as a propitious tool for uncovering low-dimensional structures underlying data

(Persistence Diagram) Given $X_n = \{X_1, \dots, X_n\}$, the multiscale evolution of topological features is summarized in Dgm (X_n)

- Dgm (\mathbb{X}_n) lives in a metric space $(\mathfrak{D}, W_{\infty})$
- $W_{\infty}(\cdot,\cdot)$ is the Wasserstein metric for matchings
- The "shape distortion" between points \mathbb{X}_n and \mathbb{Y}_n can be quantified by $W_{\infty}(\mathsf{Dgm}(\mathbb{X}_n),\mathsf{Dgm}(\mathbb{Y}_n))$
- However, W_{∞} is sensitive to the "units" of the underlying metric, e.g., distances in inches vs. cm

This can be overcome by considering the **shift-invariant distance**- $W_{\infty}^{\sf SI}(\cdot,\cdot)$

$$W_{\infty}^{\mathsf{SI}}(D_1,D_2) = \inf_{s \in \mathbb{R}} W_{\infty}(D_1 \oplus s, D_2)$$

(2B) Simulations & Experiments

- 1. The effect of edgeFlip brings the clusters closer together as per result (2A) (ii)
- 2. edgeFlip outperforms LaplaceFlip, which is another $\epsilon\text{-edge}$ DP mechanism

3. Topology aware spectral clustering algorithms, which are more appropriate for the data and the privacy mechanism, lead to noticeably better results