Verifica Sperimentale della Legge di Hooke con Metodo Statico e Dinamico

Eugenio Dormicchi¹, Giovanni Oliveri¹, Mattia Sotgia^{1, 2}

¹Gruppo C03, Esperienza di laboratorio n. 5

²In presenza in laboratorio per la presa dati

Presa dati– 10 Marzo 2021, 15:00– 18:00; Analisi dati– <end-date here>

Obiettivo— Vogliamo verificare la validità della legge di Hooke per cui la forza $\vec{\mathbf{F}}$ applicata su un corpo elastico è direttamente proporzionale all'elongazione causata, secondo la legge $F = k \cdot \Delta l$. Metodi— Sfruttiamo due modelli per ricavare in modo differente la costante k legata alla molla. Considerando la molla in una condizione statica, con un corpo di massa nota m_i , e misurando l'allungamento l_i causato dalla massa, possiamo ricavare k_{statico} . Se invece mettiamo in oscillazione dalla condizione di equilibrio l_0 possiamo dal periodo T_i ricavare k_{dinamico} (considerando il moto nel regime elastico). Risultati—

Conclusione-

1. Obiettivo

Obiettivo dell'esperienza è quello di verificare la validità della relazione $\vec{F} = k\Delta\vec{l}$ (che possiamo considerare nel nostro caso $F = k \cdot \Delta l$, poiché consideriamo solo componenti lungo lo stesso asse) per cui la forza \vec{F} esercitata su un corpo elastico è direttamente proporzionale all'allungamento causato dalla stessa forza, a meno di una costante k. Per verificare la legge di Hooke esguiamo misure su due modelli, uno statico e uno dinamico, e confrontiamo graficamente il risultato ottenuto. Infine vogliamo ricavare il valore rispettivamente di $k_{\rm statico}$ e di $k_{\rm dinamico}$, ed esegure una verifica della compatibilità dei valori. Se tali valori risultano compatbili infine proviamo a ricavare il valore della miglior stima, ottenuto con una media pesata sugli errori associati.

2. Strumentazione

3. Metodi

Tutte le misure sono riportate nelle unità del Sistema Internazionale (SI). Si assume come nota e costante l'accelerazione di gravità $g_t = (9.8056 \pm 0.0001 \text{ stat}) \text{ m/s}^2$.

Si fa spesso riferimento anche alla regola del 3σ , con la quale si vuole intendere la volontà di trasformare un errore di tipo massimo in errore statistico, e quindi considerando il valore vero con una probabilità statistica del $3\sigma\approx 99.73\%$ di probabilità del dato vero.

I valori riportati sono stati approssimati tenendo conto di alcune convenzioni prese. Si approssima l'errore ad una cifra significativa se tale cifra è \geqslant 3, altrimenti se tale cifra è 1 o 2 allora si considerano due cifre significative. Considerando quindi le posizioni decimali significative dell'errore si approssima per eccesso il valore numerico della grandezza.

In entrambi i modelli la molla è sempre utilizzata in un regime elastico, tale per cui la molla è capace di ritornare alla condizione iniziale, e quindi in una condizione in cui l'energia totale del sistema si conserva.

4. Risultati

5. Conclusione

- 5.1. Controlli
- 5.2. Possibili errori sistematici