review

- big picture of applied stats: see 36200 image idk
- we have statistics $(\overline{x}, \hat{p}, ...)$ and standard error $(SE_{\overline{x}}, SE_{\hat{p}}, ...)$
- population: literally everyone, hard to measure
- sample: subset of population
- parameter: perfect summary (e.g. mean height)
- statistic: measurable summary (e.g. mean height of sample)
- stderr of stat: typical variation due to random sampling.
 - diff error formulae for each stat.
 - ► this course: simply calc with software
- inference: give estimate and measure of how far off it might be
 - if statistic is random and sampling distribution known, we have probabilistic inference; can get p-value or margin or err

1 variable EDA

- · categorical
 - ▶ bar graph
 - percent summaries
- quantitative
 - histogram
 - center: \overline{x} , median
 - ▶ spread: stddev, IQR, range
 - ▶ five number summary/box plot

1 variable transformations

- need normal distributions?
- $x^{\frac{1}{n}}$, $\log(x+c)$ so everything is > 1.
- the above's inverses
- quantile plots (qqplot) can help us diagnose if normal enough (look for straight line)

2 variable EDA

- explanatory x axis \rightarrow response y axis

Review of 2 Variable EDA (graphs and summaries to explore bivariate relationships)

[Reference: prerequisite course]

1 variable inference

- statistics $(\overline{x},S_x,\ldots)$ predicts parameters (μ,σ,\ldots)
- components:
 - point estimation: estimate via single number calculated
 - interval estimation: give plausible interview and how plausible
 - ▶ significance testing about hypotheses: assess evidence for/against claim about
- 95% confidence interval for μ is $\overline{X} \pm 2 \cdot \operatorname{SE}_{\overline{X}}$
 - (works for arbitrary parameter/statistic estimate)
 - any sample Standard Error SE is $\frac{S}{\sqrt{n}}$ with sample stddev S (but remember, we just use software)
 - technically, 2 should be $t_{\rm crit}$ which varies with n, but it approximates to 2 for 95% confidence when large n
- · hypotheses testing
 - H_0 vs H_A
 - "p value is compared to significance level. we do (not) reject the null hypothesis. we do (not) have sufficient evidence that ..."
 - ► remember: p finds boolean evidence of difference from norm, not magitude of difference

Statistical Model Primer

- statistical models are often of form: quantity = expectation + error
- in 1 variable, eg: $Y_i = \mu + \varepsilon_i$ where μ is the prediction and ε_i is the error at i.
 - we also specify the distribution and mean + stddev of the errors
- in 2 variables, eg: for some X axis value, $Y_i = \mu_{Y|X} + \varepsilon_i$
 - we also specify the shape, center, spread of the distribution of errors

Simple Linear Regression

- our model idea is $Y_i = \beta_0 + \beta_1 X + \varepsilon_i$ where we assume the errors are
 - ▶ independent, mean 0, constant stddev/spread (for required for least squares)
 - are normal (required for inference)
 - (can be denoted iid, $N(\mu = 0, \text{variance} = \sigma^2)$)
- our **sample** regression equation is $\hat{y} = b_0 + b_1 X$
- notice that we have three parameters: β_0, β_1, σ
 - they are estimated by b_0, b_1 (when using least squares), and $\hat{\sigma}$: what R calls "Residual standard error"
- to apply the model:
 - 1. **state** the model
 - eg: "we use the SLR model. vision distance = $\beta_0 + \beta_1 \cdot \text{age} + \varepsilon_i$ where errors are independent, mean 0, constant stddev, normal.
 - 2. validate the data works for the model
 - ▶ linearity: visual inspection
 - errors are:
 - independent: residual plot. residuals "patternlessly" above and below 0 line.
 - mean 0: residual plot. reasonably centered around 0.
 - constant stddev: residual plot. reasonably constant spread, scanning left to right
 - ▶ if there are problems, consider diff model/transformations
 - 3. **estimate** the parameters
 - use software to find $b_0, b_1, \hat{\sigma}$
 - 4. **inference**: is data probably showing a relationship between X and Y?
 - t test for $\beta_1 = \text{or} \neq 0$
 - 5. **measure strength** of model with \mathbb{R}^2 (if not chance)
 - R^2 is the percent of variability in Y that can be attibuted to the linear relationship with X
 - ► "Multiple R-squared" in R. NOT "Adjusted"
 - 6. **predict** of Y from X (for individual with X or all people with X)
 - ▶ the equation predicts the point estimate of Y given X
 - ullet get prediction vs confidence interval via R for probable values of Y for individual or all at X