System Dynamics representation of SEIR Model

$$\frac{dE}{dt} = \frac{pq}{VA}IS - \alpha E,$$

$$\frac{\mathrm{dI}}{\mathrm{dt}} = \alpha \mathrm{E} - \gamma \mathrm{I}$$

$$\frac{dR}{dt} = \gamma I$$

$$S+I+E+R=N$$
,

Managnas	
Variable	Name
S	Suceptible
E	Exposed
	Infected
R	Recovered
V	Room Volume
Α	Ventilation Rate
q	Quanta production
р	Pulmonary Ventilation rate

Model Representation

Model Source: Noakes, C.J., Beggs, C.B., Sleigh, P.A. and Kerr, K.G., 2006. Modelling the transmission of airborne infections in enclosed spaces. Epidemiology & Infection, 134(5), pp.1082-1091.

Sensitivity Analysis: Percentage of Population Recovered with different room Volumes, 7200,

7900 and 9000 m3

SEIR dynamics

- Explicit Representation of
- Accumulations (Inertia)
- Causal Relationships
- Exogenous vs Endogenous Variables
- Feedback Loop visibility (R,B)