RMP-L1-Configuration Space

Workspace:

- all reachable points of the end-effector.
- robot modelling: as joints, links.
- ▼ collision check of a path from A to B:
 - discretize the path into multiple small sub-paths: check collision of sub-paths
 - large obstacles: larger steps
 - small obstacles in confined space: smaller steps
 - —> testing each step necessary, each test **computationally expensive**: for each sub-path, test all parts of robot structure for all obstacles.
 - —> other representations of robot
 - —> transform workspace into configuration space: easier test, robot represented as a single point.

Robot modelling

- **▼** Robot modelling
 - ▼ rigid body
 - ▼ types
 - one single rigid body: represented as one point

- ▼ several linked rigid bodies as **links**, each rigid body is connected with **joints**
 - each rigid body can be represented as one point: motion of one point represents this rigid body
 - motion parametrization: point representation rotation as θ , translation as (x,y,z)
- **▼ Degree of Freedom: minimum** number of parameters needed to fully describe a motion.
 - open chains / serial mechanism: DOF increase by 1 when adding 1 joint.
 - common joint: revolute 1 DOF
 - closed chains / parallel mechanism: $DOF = N(k-1) \sum_{i=1}^n (N-f_i)$
 - N: each movable link has N DOF planar: N = 3, spatial: N = 6
 - k: number of **links** (including stationary ground link)
 - k-1: number of movable links
 - o n: number of joints
 - f_i : DOF of each joint revolute: 1,

Configuration Space

- **▼** configuration space C:
 - motivation: **abstraction** of motion. describe motion by the **cause**.
 - workspace: (x,y) position of the end effector
 - \circ config-space: rotation of the links (θ_1, θ_2)
 - all possible configurations of the robot motions, robot represented as a point

- dimension: minimum number of independent variables in the representation of
 - the configuration degrees of freedom (DOF)
 - \circ redundant dimension: not independent. (eg: represent screw with rotation θ and translation x a line exists in config-space)
- topology: not Cartesian space, a toral space
- challenge: **projection of the obstacles** onto config-space. The shape of the obstacles depends on
 - shape of the obstacles
 - structure of robot
 - -> no direct transformation
- ▼ examples: drawing of workspaces VS. config-spaces

Workspace can be parametrized differently, but Configuration space defines only the minimum number of parameters that fully describe the motion, independent of parametrization.

- ▼ rigid robot in 2D-workspace: #parameters aren't necessarily minimum(DOF)
 - 3 parameters: (x,y) with orientation θ
 - 4 parameters: (x,y) with (u= $cos\theta$,v= $sin\theta$)
 - 3D config-space: $q=(x,y,\theta)$, independent of parametrization (DOF = 3).
- ▼ rigid robot in 3D-workspace
 - 12 parameters: translation T = (x,y,z) with **rotation matrix** $R_{3\times3}$
 - 6 parameters: translation T = (x,y,z) with **euler angles** (α,β,γ) rotation around the x,y,z-axis
 - \circ Problem with Euler angles: **gimbal lock**, lost of 1 DOF when eg: $\beta=90\,^\circ$, changing α or γ has same effect.
 - --> different rotation orders has different representations

• 7 parameters: translation T = (x,y,z) with Axis-angle representation (k_1,k_2,k_3,θ) for rotation: roation matrix R is represented by Rodrigues formula

$$R = I + (1 - \cos\theta) \cdot K^2 + \sin\theta \cdot K$$

- K: skew-symmetric matrix, rotation axis
- \circ θ : rotation angle
- no gimbal lock, able to describe every motion.
- 7 parameters: translation T =(x,y,z) with orientation as **unit** quadranions (u_1,u_2,u_3,u_4)
 - compact, no sigularity(gimbal lock), reflect topology of orientation space.
- 6D config-space: $q = (x, y, z, \alpha, \beta, \gamma)$ position, orientation

▼ Paths

- a **continuous curve** connecting start configuration q and end configuration q^\prime
 - —> represents the **change of geometric structure to get to goal**.

$$\tau: s \in [0,1] \to \tau(s) \in C, \ \tau[0] = q, \tau[1] = q'$$

• trajectory: a path parametrized by time

$$au:t\in [0,T] o au(t)\in C$$
 , $au[0]=q, au[T]=q'$

- constraints: max/min. length, bounded curvature, smoothness, min/max. time
- free path: lies entirely in the free space F. Robot doesn't slide along obstacle boundaries.
 - free space F is open subset of C
- semi-free path: Robot can slide along obstacle boundaries
 - semi-free space is closed subset of C

▼ Obstacles

- **collsion-free, free configuration** *q*: robot doesn't collide with any obstacles.
- configuration space obstacles: C-obstacles
 - shape: combination of obstacle shape and robot shape
- ▼ construction of free space and C-obstales:
 - **▼ collision test** (brute-force)

Process:

- 1. **discretization:** divide the space into grids. eg: 0.1° accuracy for $\theta_1 \in [0, 180\degree], \theta_2 \in [0, 360\degree]$ —> 1800 x 3600 space
- 2. test for collision against each obstacles for each grid.
- 3. if collision: grid = 1; if no collision: grid =0
 - -> C-obstacles: grids with collision.
- —> number of test: 1800 x 3600 x n, (n: #obstacles), **computation expensive**, **offline test necessary**.
- ▼ robot padding: influence of the robot shape on config-space
 - for circular or regular shaped robots
 - Process:
 - 1. schrink the robot into a point (cicular: radius r, rectangular: width and length)
 - 2. pad the shape onto the obstacles
 - --> faster and easier than brute-force collision test

▼ collision test with hulls:

- Motivation:
 - accelerate brute-force collision test
 - most of the space is free
- Process:
 - 1. surround the robot with a hull: sphere, rectangular, triangle, etc.

- if the hull collides with obstacles: further testing if no collision: free space
- by defining the size of hull: control the complexity of the test.
- Hulls:
 - \circ sphere: r
 - \circ rectangular: $x_{min}, x_{max}, y_{min}, y_{max}$
 - rectangular with PCA: find greatest variation and orthogal direction
 - triangle with PCA

holonomic & non-holonomic systems:

- holonomic: all parameters of DOF are independent. —> no koppling between motion parameters.
- non-holonomic: **not all** parameters are **independent.** —> additional constraints.
 - eg: car a car can't move horizontally without changing orientation.