

Guarantee IP Lookup Performancewith FIB Explosion

Tong Yang(ICT), Gaogang Xie(ICT), Yanbiao Li(HNU), Qiaobin Fu(ICT) Alex X. Liu(MSU), Qi Li(ICT), Laurent Mathy(ULG)

Performance Issue in IP Lookup

- FIB increasing: 15% per year; FIB size: 512,000
- 512k bug: In 2014.8, Cisco says that web browsing speeds could slow over the next week as old hardware is upgraded to handle the 512K FIB.

Motivation

- On-chip vs. Off-chip memory. 10 times faster, but limited in size.
- With FIBs increasing, for almost all packets

State-of-the-art

- Achieving constant IP lookup time
 - TCAM-based
 - Trie pipeline using FPGA
 - full-expansion
 - **DIR-24-8**
- Achieving small memory
 - Based on Bloom Filter
 - Level compression, path compression
 - LC-trie

How to satisfy both constant lookup time and small on-chip memory usage?

SAIL Framework

- Observation: almost all packets hit 0~24 prefixes
- Two Splitting
 - Splitting lookup process
 - Splitting prefix length

Finding	prefix	length	Finding next hop
	P	8	I mams meat mop

Prefix length 0~24	On-chip	Off-chip
Prefix length 25~32	Off-chip	Off-chip

Splitting

How to avoid searching both short and long prefixes?

Pivot Pushing & Lookup

Pivot push:

Update of SAIL_B

changing 001*, or inserting 0010* only need to update off-chip tables

Optimization

- SAIL_B
 - Lookup: 25 on-chip memory accesses in worst case
 - Update: 1 on-chip memory access
- Lookup Oriented Optimization (SAIL_L)
 - Lookup: 2 on-chip memory accesses in worst case
 - Update: unbounded, low average update complexity
- Update Oriented Optimization (SAIL_U)
 - Lookup: 4 on-chip memory accesses in worst case
 - Update: 1 on-chip memory access
- Extension: SAIL for Multiple FIBs (SAIL_M)

SAIL_U

SAIL_M

SAILs in worst case

	On-Chip Memory	Lookup (on-chip)	Update (on-chip)
SAIL_B	= 4MB	25	1
SAIL_L	≤ 2.13MB	2	Unbounded
SAIL_U	≤ 2.03MB	4	1
SAIL_M	≤ 2.13MB	2	Unbounded

Worst case: 2 off-chip memory accesses for lookup

Implementations

- **FPGA:** Xilinx ISE 13.2 IDE; Xilinx Virtex 7 device; Onchip memory is 8.26MB
 - SAIL_B, SAIL_U, and SAIL_L
- Intel CPU: Core(TM) i7-3520M 2.9 GHz; 64KB L1,
 512KB L2, 4MB L3; DRAM 8GB
 - SAIL_L and SAIL_M
- **GPU:** NVIDIA GPU (Tesla C2075, 1147 MHz, 5376 MB device memory, 448 CUDA cores), Intel CPU (Xeon E5-2630, 2.30 GHz, 6 Cores).
 - SAIL_L
- Many-core: TLR4-03680, 36 cores, each 256K L2 cache.
 - SAIL_L

Evaluation

• FIBs

- Real FIB from a tier-1 router in China
- 18 real FIBs from www.ripe.net

Traces

- Real packet traces from the same tier-1 router
- Generating random packet traces
- Generating packer traces according to FIBs

Comparing with

- **PBF** [sigcomm 03]
- LC-trie [applied in Linux Kernel]
- Tree Bitmap
- Lulea [sigcomm 97 best paper]

FPGA Simulation

SAIL Algorithms	Lookup Speed	Throughput
SAIL_B	351Mpps	112Gbps
SAIL_U	405Mpps	130Gbps
SAIL_L	479Mpps	153Gbps

Intel CPU: real FIB and traces

Intel CPU: 12 FIBs using prefix-based and random traces

Intel CPU: Update

GPU: Lookup speed VS. batch size

GPU: Lookup latency VS. batch size

Tilera GX-36: Lookup VS. # of cores

Conclusion

- Two-dimensional Splitting Framework: SAIL
- Three optimization algorithms
 - SAIL_U, SAIL_L, SAIL_M
 - Up to 2.13MB on-chip memory usage
 - 2 off-chip memory accesses
- Suitable for different platforms
 - FPGA, CPU, GPU, Many-core
 - Up to 673.22~708.71 Mpps
- Future work: SAIL to IPv6 lookup

Source codes of SAIL, LC-trie, Tree Bitmap, and Lulea

http://fi.ict.ac.cn/firg.php?n=PublicationsAmpTalks.OpenSource

Thanks

http://fi.ict.ac.cn

