Student Information

Name : Emre Geçit

ID: 2521581

Answer 1

a)

b)

c)

states	a	b	
$\overline{\{q_0\}}$	$\{q_0, q_1\}$	$\{q_0, q_4\}$	$\{q_0, q_1\}, \{q_0, q_4\}$ added
$\{q_0,q_1\}$	$\{q_0,q_1,q_2\}$	$\{q_0,q_4\}$	$\{q_0, q_1, q_2\}$ added
$\{q_0,q_4\}$	$\{q_0,q_1\}$	$\{q_0,q_4,q_5\}$	$\{q_0, q_4, q_5\}$ added
$\{q_0,q_1,q_2\}$	$\{q_0,q_1,q_2\}$	$\{q_0, q_2, q_3, q_4\}$	$\{q_0, q_2, q_3, q_4\}$ added
$\{q_0,q_4,q_5\}$	$\{q_0, q_1, q_5, q_6\}$	$\{q_0,q_4,q_5\}$	$\{q_0, q_1, q_5, q_6\}$ added
$\{q_0, q_2, q_3, q_4\}$	$\{q_0,q_1,q_2\}$	$\{q_0, q_2, q_3, q_4, q_5, q_7\}$	$\{q_0, q_2, q_3, q_4, q_5, q_7\}$ added
$\{q_0, q_1, q_5, q_6\}$	$\{q_0, q_1, q_2, q_5, q_6, q_7\}$	$\{q_0,q_4,q_5\}$	$\{q_0, q_1, q_2, q_5, q_6, q_7\}$ added
$\{q_0, q_2, q_3, q_4, q_5, q_7\}$	$\{q_0, q_1, q_2, q_5, q_6, q_7\}$	$\{q_0, q_2, q_3, q_4, q_5, q_7\}$	no new state
$\{q_0, q_1, q_2, q_5, q_6, q_7\}$	$\{q_0, q_1, q_2, q_5, q_6, q_7\}$	$\{q_0, q_2, q_3, q_4, q_5, q_7\}$	no new state

$$\mathbf{Q} = \{\{q_0\}, \{q_0, q_1\}, \{q_0, q_4\}, \{q_0, q_1, q_2\}, \{q_0, q_4, q_5\}, \{q_0, q_2, q_3, q_4\}, \{q_0, q_1, q_5, q_6\}, \{q_0, q_2, q_3, q_4, q_5, q_7\}, \{q_0, q_1, q_2, q_5, q_6, q_7\}\}$$

$$\Sigma = \{a,b\}$$

$$s = \{q_0\}$$

 $F = \{\{q_0, q_2, q_3, q_4, q_5, q_7\}, \{q_0, q_1, q_2, q_5, q_6, q_7\}\}$

	states	a	b
	$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0, q_4\}$
	$\{q_0,q_1\}$	$\{q_0,q_1,q_2\}$	$\{q_0,q_4\}$
	$\{q_0, q_4\}$	$\{q_0,q_1\}$	$\{q_0,q_4,q_5\}$
Λ)	$\{q_0,q_1,q_2\}$	$\{q_0,q_1,q_2\}$	$\{q_0, q_2, q_3, q_4\}$
<u> </u>	$\{q_0,q_4,q_5\}$	$\{q_0, q_1, q_5, q_6\}$	$\{q_0,q_4,q_5\}$
	$\{q_0, q_2, q_3, q_4\}$	$\{q_0,q_1,q_2\}$	$\{q_0, q_2, q_3, q_4, q_5, q_7\}$
	$\{q_0, q_1, q_5, q_6\}$	$\{q_0, q_1, q_2, q_5, q_6, q_7\}$	$\{q_0,q_4,q_5\}$
	$\{q_0, q_2, q_3, q_4, q_5, q_7\}$	$\{q_0, q_1, q_2, q_5, q_6, q_7\}$	$\{q_0, q_2, q_3, q_4, q_5, q_7\}$
	$\{q_0, q_1, q_2, q_5, q_6, q_7\}$	$\{q_0, q_1, q_2, q_5, q_6, q_7\}$	$\{q_0, q_2, q_3, q_4, q_5, q_7\}$

d)

For NFA:

For each possible path through the NFA, we either reach empty string without otherside the accepting state or we reach a state that does not accept our current character. Therefore, ω' is not accepted by our NFA.

For DFA: $(q_0, bbabb) \vdash (q_0q_4, babb) \vdash (q_0q_4q_5, abb) \vdash (q_0q_1q_5q_6, bb) \vdash (q_0q_4q_5, b) \vdash (q_0q_4q_5, e)$

Since we reached the empty string other side the accepting state, we conclude that ω' is not accepted by our DFA.

Answer 2

a)

Complement of a regular language is another regular language by the closure properties

Theorem: Complement of an irregular language is an irregular language.

Proof: Let A be an irregular language that does not obey the theorem. Then \overline{A} is a regular language. Then, by the closure properties, $\overline{\overline{A}}$ is again, a regular language. But this contradicts with the first definition. Then we conclude, there is no irregular language of which its complement is a regular language.

By combining and using the properties above, we can conclude that there is a biconditionality between the regularity of language L_1 and L_2 . That is, L_2 is regular if and only if L_1 is regular and L_2 is irregular if and only if L_1 is irregular.

Assume that L_1 is regular.

Let l be the pumping length.

There is a split w = xyz for all $|w| \ge l$, $|xy| \le l$, $y \ne e$ and $xy^iz \in L_1$.

For even 1: p = l

For odd 1: p = l + 1

 $w = a^{p/2+1}b^{p/2}$

First possible split: x=a^{p/2+1} , y=b^s, z=b^{p/2-s} (s \le p/2 - 1)

For $i \geq 3$, xy^iz is not in the language. This split is not valid.

Second possible split: x=a^{p/2+1-t} , y=a^tb^s, z=b^{p/2-s} (s \le p/2 - 1)

For i > 1, xy^iz is not in the language. This split is not valid.

Third possible split: $x=a^{p/2+1-t}$, $y=a^t$, $z=b^{p/2}$

For i = 0, xy^iz is not in the language. This split is not valid.

Since no split can satisfy the pumping lemma conditions, L_1 is not regular. By the theorems above, neither L_2 is regular.

b)

Proof that L_5 is regular:

Since a NFA can be drawn for L_5 , L_5 is regular.

Proof that L_6 is regular:

Since L_6 can be expressed by a regular expression L_6 is regular.

 $L_4 \cup L_5 \cup L_6 = L_5 \cup L_6$ since L_4 is a subset of L_5 . (In L_5 's definition, if we choose $m = n \neq 0$ we reach L_4). Thus, $L_4 \cup L_5 = L_5$

 $L_5 \cup L_6$ is regular since L_5 and L_6 are both regular. (by the closure properties)