telefication bv The Netherlands Chamber of Commerce 51565536 www.telefication.com

FCC RF Exposure Assessment

Product name : Gateway

Applicant : Velux A/S

FCC ID : XSG 832160

IC ID : 8642A-832160

Test report No.: 160601659 MPE Ver 1.00

laboratory certification approvals

Laboratory information

Accreditation

Telefication is designated by the FCC as an Accredited Test Firm for compliance testing of equipment subject to Certification under Parts 15 & 18. The Designation number is: NL0001

The Industry Canada registration number for the 3 meter test chamber of Telefication is: 4173A-1.

Documentation

Telefication complies with the accreditation criteria for test laboratories as laid down in ISO/IEC 17025:2005.

Testing Location

Test Site	Telefication B.V.
Test Site location	Edisonstraat 12a 6902 PK Zevenaar The Netherlands Tel. +31889983600 Fax. +31316583189
Test Site FCC	NL0001

Revision History

Version	Date	Remarks	Ву
v1.00	15-11-2017	Release version	KR

Table of Contents

Revision I	History	. 2
1 Gene	eral Description	. 4
1.1	Applicant	.4
1.2	Manufacturer	.4
1.3	Tested Equipment Under Test (EUT)	.4
1.4	MPE Calculation Method	.5
1.5	Product specifications of Equipment Under Test	.5
1.5.1		
1.5.2	Output Power Measurement for Wlan	.5
1.6	Calculation results	.6
17	Conclusions	7

1 General Description

1.1 Applicant

Client name: Velux A/S

Address Baekgaerdsvej 40
Zip code: 6900, Skjern
Telephone: +45 3058 1588

E-mail: j.a.m.thomsen@velux.com
Contact name: Mr. J.A.M. Thomsen

1.2 Manufacturer

Manufacturer name: Velux A/S

Address: Baekgaerdsvej 40
Zip code: 6900, Skjern
Telephone: +45 3058 1588

E-mail: j.a.m.thomsen@velux.com
Contact name: Mr. J.A.M. Thomsen

1.3 Tested Equipment Under Test (EUT)

Product name: Gateway
Brand name: VELUX

 Product type:
 io-homecontrol

 FCC ID:
 XSG 832160

 IC ID:
 8642A-832160

 Model(s):
 BE-RC010-01

Software version: -Hardware version: --

Date of receipt: 18-04-2016 Assessment: 15-11-2017

1.4 MPE Calculation Method

Calculation method of RF Safety Distance:

$$PD = \frac{Pout * G}{4\pi r^2}$$

Where:

PD = Power Density in mW/cm^2 Pout = Output power in mW G = Gain of antenna

R = Distance between observation point and centre of the radiator in cm

1.5 Product specifications of Equipment Under Test

Tx Frequency range (MHz):	IEEE 802.15.4: 2425 - 2475
	Wlan: 2400 – 2483.5
Rx frequency range (MHz):	IEEE 802.15.4: 2425 - 2475
	Wlan: 2400 - 2483.5
Maximum output power (mW EIRP):	IEEE 802.15.4: 10
	Wlan: 20.5
Antenna type :	PCB Antenna (PIFA)
Antenna gain(dBi):	IEEE 802.15.4: 1
-	Wlan: 0.36

1.5.1 Output Power Measurement for IEEE 802.15.4

Based on: Telefication test report 1606011659 004 v3.00

Peak method

Technology Std.	Channels	Frequency	Data rate	Peak output power	
		(MHz)		(dBm)	
	15	2425	250 kb/s	12.53	
IEEE 802.15.4	20	2450	250 kb/s	12.53	
	25	2475	250 kb/s	12.12	
Uncertainty			±1.78 dB		

Note: Peak output power = Measured value + Antenna gain

1.5.2 Output Power Measurement for Wlan

Based on: Telefication test report 161001057 01 Ver 2.00

Duty cycle

		, ,	
Technology Std.	Channel	Frequency (MHz)	Duty cycle (%)
	1	2412	100
IEEE 802.11b	6	2437	100
	11	2462	100
	1	2412	85.7
IEEE 802.11g	6	2437	85.2
·	11	2462	85.2
	1	2412	81.8
IEEE 802.11n	6	2437	84.6
	11	2462	80.8

Peak method

Technology Std.	Channel	Frequency (MHz)	Peak output power (dBm)	Peak output power (mW)
IEEE 802.11b	1	2412	20.47	111.4
	6	2437	20.40	109.6
	11	2462	20.26	106.1
Uncertainty	±0.63 dB			

Average method

Technology Std.	Channel Frequency (MHz)		Average output power (dBm)	Average output power (mW)	
	1		-4.97	0.32	
IEEE 802.11g	6	2437	-5.16	0.30	
	11 2462 -5.41 0.29				
Uncertainty	±0.63 dB				

Average method

Technology Std.	Channel	Frequency (MHz)	Average output power (dBm)	Average output power (mW)
IEEE 802.11n	1	2412	-11.00	0.08
	6	2437	-8.14	0.15
	11	2462	-8.82	0.13
Uncertainty	±0.63 dB			

1.6 Calculation results

Technology	Frequency	Power at	Antenna	Distance to	Power	Limit	Result
Std.	(MHz)	the	Gain	the Area of	density	(m W/	
		Antenna	(dBi)	Interest	(mW/	cm^2)	
		(mW)		(cm)	cm^2)		
IEEE 802.15.4		12.53	1	20	0.0081	1	Pass
IEEE 802.11b	2402 5	111.4	0.36	20	0.0631	1	Pass
IEEE 802.11g	2483.5	0.32	0.36	20	0.0178	1	Pass
IEEE 802.11n		0.15	0.36	20	0.0083	1	Pass

1.7 Conclusions

The MPE value of the Velux A/S Gateway meets the RF exposure limits for General Population / Uncontrolled Exposure FCC Rule Part 1.1310.

Assessment performed by:

Date : 15-11-2017 Name : ing. K.A. Roes

Function : Coordinator Radio Laboratory

Signature