Algoritmi e Strutture Dati

a.a. 2016/17

Compito del 05/09/2017

Cognome:	Nome:
Matricola:	E-mail:

Parte I

(30 minuti; ogni esercizio vale 2 punti)

- 1. Nell'ipotesi di indirizzamento aperto, scrivere uno pseudocodice per HASH-DELETE utilizzando il valore speciale DELETED per marcare la cella come vuota in caso di cancellazione. Qual è la complessità nel caso pessimo?
- 2. Si mostri, utilizzando la definizione, che la relazione O soddisfa la proprietà transitiva, ovvero:

"Se
$$f(n) = O(g(n))$$
 e $g(n) = O(h(n))$, allora $f(n) = O(h(n))$ "

3. Si supponga di eseguire l'algoritmo di Prim sul seguente grafo, utilizzando D come vertice sorgente:

- a) In quale ordine i vertici del grafo verranno estratti dall'algoritmo?
- b) Qual è il peso dell'albero di copertura minima?

Algoritmi e Strutture Dati

a.a. 2016/17

Compito del 05/09/2017

Cognome:	Nome:
Matricola:	E-mail:

Parte II

(2.5 ore; ogni esercizio vale 6 punti)

1. Sia T un albero generale i cui nodi hanno campi: **key**, **left-child** e **right-sib**. Progettare un algoritmo **efficiente** che dato T e un intero $k \ge 2$ stabilisca se T è un albero **k-ario completo**, e analizzarne la **complessità**.

Per l'esame da 12 CFU, deve essere fornita una funzione C e si deve dichiarare il tipo Node utilizzato per rappresentare l'albero generale.

Per l'esame da 9 CFU, è sufficiente specificare lo pseudocodice.

- 2. Si consideri un vettore v di n numeri reali **distinti** e un intero $k \in \{1, ..., n\}$; l'array **non** è ordinato.
 - a) Scrivere un algoritmo che, dati v, k e n, stampi i k valori più piccoli presenti in v. Il costo dell'algoritmo proposto deve essere al più O(kn).
 - b) Analizzare la complessità dell'algoritmo.
- 3. Si enunci e si dimostri il teorema fondamentale delle ricorrenze e lo si utilizzi per risolvere le seguenti ricorrenze (spiegando in quali casi del teorema ricade la soluzione di ciascuna equazione):
 - a) $T(n) = 4T(n/2) + \log n$
 - b) T(n) = 3T(n/3) + n/2
 - c) $T(n) = 7T(n/2) + n^2$
- 4. Dato un grafo orientato e pesato G=(V,E) con pesi positivi, cioè w(u,v)>0 per ogni $(u,v) \in E$, si vuole determinare se esiste in G un ciclo $c = \langle x_0, x_1, ..., x_q \rangle$ raggiungibile da un dato vertice "sorgente" s, in cui il prodotto dei pesi sugli archi sia minore di 1, cioè:

$$\prod_{i=1}^{q} w(x_{i-1}, x_i) < 1$$

Si sviluppi un algoritmo per risolvere questo problema, se ne discuta la correttezza e si determini la sua complessità computazionale. Inoltre, si simuli la sua esecuzione sul seguente grafo:

