CSCI 1520: Algorithmic Aspects of Machine Learning (Spring 2025) Coding Assignment 1

Due at 11:59pm ET, Thursday, Feb 27

Getting Started.

- You can use any programming language for this coding assignment.
- You cannot use packages or functions that directly solve the problem.

Assignment Overview. In this assignment, you will develop scalable algorithms for finding similar documents. You will be given a list of articles from a real-world dataset. Your task is to find articles that are most similar to each other.

Input. You will be given an input file documents. The first line of this file has three integers: n, k, and q. This is followed by n documents, one on each line. Each document is a sequence of alphanumeric tokens separated by a single space.

Your task is to output q pairs of documents that are similar to each other, where similarity is measured by the Jaccard similarity between the sets of k-shingles of two documents.

Output. The output file should have q lines. Each line should have two integers $1 \le i \ne j \le n$, separated by a single space. These q pairs of integers must be distinct, where (i, j) and (j, i) are considered the same pair. Note that documents are numbered from 1 to n.

Submission.

- Your submission should consist of exactly 3 files:
 - 1. An output file lsh_ans in the specified format.
 - 2. A text file (e.g., .cpp, .py) containing your source code.
 - 3. A .pdf file providing a detailed explanation of your approach.
- We may ask you to show us that running the submitted code does produce the submitted output file.

Evaluation. Let S_i denote the set of all k-shingles (i.e., substrings of length k) that appear in document i (without removing spaces). For this assignment, the similarity between document i and document j is defined as

$$sim(i,j) = \frac{|S_i \cap S_j|}{|S_i \cup S_j|}.$$

Note that the value of k = 6 is fixed. You cannot choose k.

Suppose your output is $(i_1, j_1), \dots (i_q, j_q)$. Your solution will be evaluated based on the minimum similarity of these pairs:

$$F = \min_{1 \le \ell \le q} \sin(i_{\ell}, j_{\ell}) .$$

Grading. This assignment will be graded out of 14 points:

- (3 point) Your code should have good readability and should be well commented.
- (3 point) Your explanation pdf must be typed (e.g., MS Word or LaTeX). You should give an overview of your ideas and approach in the first 2 pages. Material beyond the first 2 pages will be read at the discretion of the instructor/TAs.
- (8 points) You will receive a score of (60F 2.8), where F is the minimum similarity defined earlier. If the score is lower than 0 or higher than 4, it is set to 0 or 4. In particular, you will receive full credit if F > 0.18.
- (2 bonus point) You will receive 2 bonus point if your minimum similarity F is among the highest 20% of all received submissions.
- We may deduct up to 8 points for any formatting error in your output (including but not limited to, not naming the output file lsh_ans , not outputting exactly q lines, or not outputting exactly q distinct pairs of integers between 1 and n).

Dataset. The input file was obtained from the WikiText Dataset introduced in [MXBS17]. Specifically, the WikiText-103 word level dataset was used ¹. This dataset contains 28592 articles selected from verified Good and Featured articles on Wikipedia ².

For this assignment, we processed the WikiText-103 dataset as follows: We used the regular expression " $\n = [^=]*[^=] = \n \n$ " to find the title of each article. We converted all letters to lowercase and removed all tokens with non-alphanumeric characters (e.g., "I-95"), converted consecutive whitespace characters to a single space, and placed one article on each line (keeping the article/section titles).

Remarks/Hints. You are free to use any algorithms to find similar documents. Due to this reason, the following hints may not apply to your solution.

- One possible approach is to use MinHash and locality sensitive hashing.
- The dataset (and the input file) contains duplicate articles, which have similarity 1. You are allowed to output these duplicate articles as a pair.
- As a sanity check, for k=6, the first two documents have $|S_1|=11018$ and $|S_2|=11112$ unique k-shingles, and $|S_1 \cap S_2|=2160$, so $\sin(1,2)\approx 0.108$.
- A less systematic approach is to check the similarity of t pairs of articles and output the top q pairs. One can check all pairs for the first $\Theta(\sqrt{t})$ documents, or sample t pairs uniformly at random. One can choose the value of t to trade off runtime and solution quality.
- The titles of all 28592 articles are provided in a supplemental file wiki.titles.

¹See https://blog.salesforceairesearch.com/the-wikitext-long-term-dependency-language-modeling-dataset/, available under the Creative Commons Attribution-ShareAlike License.

 $^{^2\}mathrm{See}$ https://en.wikipedia.org/wiki/Wikipedia:Good_articles and https://en.wikipedia.org/wiki/Wikipedia:Featured_articles.

Optional Tasks. After completing the assignment, you can explore the following questions. There are no bonus points for these tasks.

- What is the distribution of the similarity between a random pair of articles in this dataset?
- \bullet How does the value of k affect the similarity distribution, most similar pairs, and runtime?
- What if we work with multi-set of k-shingles and use the Jaccard similarity for multi-sets?
- Recall that topic modeling and matrix factorization can be used to measure the similarity of documents. Compare the most similar pairs found by topic modeling and k-shingles.

References

[MXBS17] S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer sentinel mixture models. In *Proceedings of the 5th International Conference on Learning Representations (ICLR)*. OpenReview.net, 2017.