Machine Learning (IT3190E)

Quang Nhat NGUYEN

quang.nguyennhat@hust.edu.vn

Hanoi University of Science and Technology
School of Information and Communication Technology
Academic year 2020-2021

The course's content:

- Introduction
 - Machine learning
 - Successful applications of ML in practice
 - Software frameworks and tools
- Performance evaluation of ML system
- Supervised learning
- Unsupervised learning
- Ensemble learning
- Reinforcement learning

Introduction of Machine learning

- Machine Learning (ML) is a traditional and very active field of Artificial Intelligence (AI)
- Some examples of definition of ML
 - → A process by that a system improves its performance [Simon, 1983]
 - → A process by that a computer program improves its performance in a task through experience [Mitchell, 1997]
 - → A programming of computers to improve a performance criterion based on past sample data or experience [Alpaydin, 2004]
- Representation of a ML problem [Mitchell, 1997]
 - ML = Improvement of a task's efficiency through experience
 - A task *T*
 - For the evaluation criteria of performance P
 - By using some experience E

Example of ML problem (1)

Email spam filtering:

- T: To predict (i.e., to filter) spam emails
- P: % of correctly classified (i.e., predicted) incoming emails
- E: A set of sample emails, where each email is represented by a set of attributes (e.g., a set of keywords) and its corresponding label (i.e., normal or spam)

Example of ML problem (2)

Web page categorization (classification):

- T: To categorize Web pages in predefined categories
- P: % of correctly categorized Web pages
- E: A set of Web pages, and each one associates with a category

Example of ML problem (3)

Handwritten characters recognition

- T: To recognize the words that appear in a captured image of a handwritten document
- P: % of correctly recognized words
- E: A set of captured images of handwritten words, where each image associates with a word's label (ID)

Example of ML problem (4)

Risk estimation of loan application:

- T: To estimate the level (e.g., high or low) of risk of a loan application
- P: % of correctly estimated high-levelrisk loan applications (i.e., those do not return the loans, or returns in a long delay)
- E: A set of loan applications, where each loan application is represented by a set of attributes and a risk level value (high/low)

Successful applications of ML in practice (1)

- Human-machine communication
 - Voice, Gesture, Language understanding, ...

Successful applications of ML in practice (2)

- Entertainment
 - Music, Movies, Games, News, Social networks, ...

Successful applications of ML in practice (3)

- Transportation
 - Automatic car, Traffic surveillance, Car ride demand estimation, ...

Successful applications of ML in practice (4)

E-commerce

 Recommendation of products and services, Customer need prediction, Promotion campaigns, ...

Successful applications of ML in practice (5)

- System security
 - Computer virus detection, Network intrusion detection, Spam email filtering,...

Successful applications of ML in practice (6)

Marketing and advertisement

Machine learning process

Machine learning

14

Main elements of ML problem (1)

Training (learning) examples

- The training feedback is included in training examples or indirectly provided (e.g., from the working environment)
- They are supervised or unsupervised training examples
- The training examples should be compatible with (i.e., representative for)
 the future test examples

The target function to be learned

- F: $X \to \{0,1\}$
- F: X → A set of class labels
- F: X → R⁺ (i.e., a domain of positive real values)

• ...

Machine learning

15

Main elements of ML problem (2)

- Representation of the target function to be learned
 - A polynomial function
 - A set of rules
 - A decision tree
 - An artificial neural network
 - •
- ML algorithm that can learn approximately the target function
 - Regression-based
 - Rule induction
 - Decision tree learning (e.g., ID3 or C4.5)
 - Back-propagation

• ...

Challenges in ML (1)

- Learning algorithm
 - Which learning algorithms can learn approximately a given target function?
 - Under which conditions, a selected learning algorithm converges (approximately) the target function?
 - For a specific application problem and a specific example (object) representation, which learning algorithm performs best?

Challenges in ML (2)

- Training examples
 - How many training examples are enough for the training?
 - How does the size of the training set (i.e., the number of training examples) affect the accuracy of the learned target function?
 - How do error (noise) and/or missing-value examples affect the accuracy?

Challenges in ML(3)

- Learning process
 - What is the best ways of use order of training examples?
 - How does the order of using training examples vary the complexity of the ML problem?
 - How does the application problem-specific knowledge (apart from the training examples) contribute to the machine learning process?

Challenges in ML (4)

- Learning capability
 - Which target function the system should learn?
 - Representation of the target function: Representation capability (e.g., linear / non-linear function) vs. Complexity of the learning algorithm and learning process
 - The theorical limits for the learning capability of learning algorithms?
 - The system's capability of generalization from the training examples?
 - Under-fitting problem
 - Over-fitting problem
 - The system's capability of self-adapting its internal architectural representation?
 - To improve the system's capability of representation and learning of the target function

Challenges in ML (5)

- **WHEN** should a trained model be re-trained?
 - The trained model has performed well on the past examples
 - But at a certain time, the trained model performs significantly poor on the newly coming examples
- **HOW** should a trained model be re-trained?
 - To adapt to the newly coming examples

21

Generalization capability (1)

- Generalization shows the ability of the model to still achieve high accuracy for future (unseen) data
 - Note: We cannot use any test examples during model selection/training!
 - Use the validation set (often extracted from (as a small part of) the original training set) to serve as unseen data in the model training/selection
 - Assumption: The data characteristics are similar between the validation and test sets!

Generalization capability (2)

- 2 common (and should be avoided!) problems of generalization:
 - Under-fitting: Achieve low accuracy on all the training, validation and test sets
 - Often make false conclusions (i.e., the "high bias" characteristic)
 - Over-fitting: Achieve high accuracy on the training set, but low accuracy on the validation and test sets
 - Tend to make different conclusions for the same (or rather similar) examples (i.e., the "high variance" characteristic)

(https://towardsdatascience.com/underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6fe4a8a49dbf)

Problem of over-fit learning (1)

- A learned target function h is considered over-fit to a specific training set if there exists another target function h' such that:
 - h' produces lower accuracy than h for the training set, but
 - h' produces higher accuracy than h for the whole dataset (including also those examples that are evaluated after the training process)

Problem of over-fit learning (2)

- Assume that D is the whole dataset, and D_train the training set
- Assume that Err_D(h) is the error caused by the target function h on D, and Err_{D_train}(h) is the error caused by the target function h on D_train
- The target function h is over-fit to D_train if there exists another target function h':
 - $Err_{D train}(h) < Err_{D train}(h')$, and
 - $Err_D(h) > Err_D(h')$

Problem of over-fit learning (3)

- The problem of over-fit learning is often caused by:
 - Errors (noises) in the training set (i.e., by a collection/construction of the training set)
 - The number of training examples is too small, or not representative for the overall distribution of all the examples of the learning problem
 - The accuracy is too high/ideal (~100%) for the training set – The training process converges at a target function that is ideal/perfect for the training examples (but not good for future/unseen examples)

Problem of over-fit learning (4)

Amongst those target functions learned, which one best generalizes from the training examples?

Important Note: The goal of machine learning is to achieve high accuracy in prediction for future examples, not for the training ones

- Occam's razor: To select the <u>simplest</u> <u>suitable</u> target function (<u>not necessarily</u> <u>perfect</u>) for the training examples
 - → A better generalization
 - → Easier for explanation/interpretation
 - → Lower in computing cost

Which target function f(x) achieves a highest accuracy for <u>future</u> examples?

Example of over-fit learning

Continuing the Decision Tree learning process <u>decreases the accuracy</u> on the test set though <u>increases the accuracy on the training set</u>

Frameworks and tools for ML (1)

- TensorFlow (www.tensorflow.org)
 - OS: Linux, Mac OS, Windows, Android
 - Programming language: Python, C++, Java
- Caffe (caffe.berkeleyvision.org)
 - OS: Linux, Mac OS, Windows
 - Programming language: Python, Matlab
- Caffe2 (caffe2.ai), PyTorch (pytorch.org)
 - On March, 2018, Caffe2 and PyTorch is merged into a single platform
 - OS: Linux, Mac OS, Windows, iOS, Android, Raspbian
 - Programming language: C++, Python
- Keras (keras.io)
 - OS: Linux, Mac OS, Windows
 - Programming language: Python
- Theano (deeplearning.net/software/Theano)
 - OS: Linux, Mac OS, Windows
 - Programming language: Python

Machine learning

29

Frameworks and tools for ML (2)

- CNTK (www.microsoft.com/en-us/research/product/ cognitive-toolkit/)
 - OS: Windows, Linux
 - Programming language: Python, C++, C#
- Deeplearning4j (deeplearning4j.org)
 - OS: Linux, Mac OS, Windows, Android
 - Programming language: Java, Scala, Clojure, Python
- Apache Mahout (mahout.apache.org)
 - OS: Any OSs with JVM installed
 - Programming language: Java, Scala
- MLlib of Apache Spark (https://spark.apache.org/mllib/)
 - OS: Any OSs with JVM installed
 - Programming language: Java, Python, Scala, R
- Weka (http://www.cs.waikato.ac.nz/ml/weka/)
 - OS: Any OSs with JVM installed
 - Programming language: Java

Online courses

- Statistics-101 (provided by IBM) https://cognitiveclass.ai/courses/statistics-101
- Machine Learning with Python (provided by IBM) https://cognitiveclass.ai/courses/machine-learning-with-python
- Machine Learning Foundations: A Case Study Approach (provided by University of Washington)

https://www.coursera.org/learn/ml-foundations

- Machine Learning (provided by Stanford University) https://www.coursera.org/learn/machine-learning
- Predictive Analytics and Data Mining (provided by University of Illinois at Urbana-Champaign)

https://www.coursera.org/learn/predictive-analytics-data-mining

 Data Mining Specialization (provided by University of Illinois at Urbana-Champaign)

https://www.coursera.org/specializations/data-mining

References

- E. Alpaydin. Introduction to Machine Learning. The MIT Press, 2004.
- T. M. Mitchell. *Machine Learning*. McGraw-Hill, 1997.
- H. A. Simon. Why Should Machines Learn? In R. S. Michalski, J. Carbonell, and T. M. Mitchell (Eds.): Machine learning: An artificial intelligence approach, chapter 2, pp. 25-38. Morgan Kaufmann, 1983.

32