Linean Algebra 2101. HW &

Daniel	Sull
	0.1

TRUE or FALSE?

Easy to see that both A and B are route 2 (nontingular)

$$AB = \begin{vmatrix} 1 & 1 & | & 3 & 1 \\ 2 & -2 & | & 1 & -1 \end{vmatrix} = \begin{vmatrix} 4 & 0 \\ 4 & 4 \end{vmatrix}$$

$$(AB)(B^{1}A^{-1}) = ABB^{7}A^{-1} = A(BB^{-1})A^{-1} = A \cdot IA^{-1} = AA^{-1} = I$$

(c) A monsingular, implies
$$(-A)$$
 non singular

TRUE. It suffices to exhibit $(-A)^{-1}$

but $(-A)^{-1} = -A^{-1}$ since $(-A)(-A)^{-1} = (-A) - A^{-1} = A \cdot A^{-1} = D$

(d) A, B nonshipular in plies A+B unshipular
FALSE Frexample 1-21 + 1-1 0 00 00 00 00 00 00 00 00 00 00 00 00
 (e) A=LU. U noningular => A monsingular.
 TRUE. Lalvays nonsingulas.
since product of unsupular matrices is
un dugular. A=L.V is undiagular.
 Another proof: A = U'L", this AT exists.
 (if Vioupper triangular)
 yet another proof. Unonsugular if and why if
 its diagonal entries are mongeo that is
yet another proof. Unonshyrder if and why if its diagonal entries are mongao, that is all diagonal entries are pivots. We have ne pivots
rouk A = 20, ruon d'agrilar
 (F) the inverse of a bower triangular is upper triangular.
 PALSE, En example let L= 121
L-1= 1-21) is not apper triangular
In fact. The inverse of a bown triangular mustrix is always lower triangular, and the inverse of an upper triangular.
3- 11

Thus
$$x = \begin{vmatrix} 110 \\ -36 \\ 8 \end{vmatrix}$$
 - check $A \cdot x = b$.

For $b = \begin{vmatrix} 6 \\ 8 \end{vmatrix}$, solve $b = b$.

 $y = b$
 $y =$

$$\begin{array}{c} y_{1}=1 \\ y_{1}+y_{2}=0 \\ y_{2}=-4 \\ y_{3}=1+2 \cdot (-4) + y_{3}=0 \\ y_{4}=-4 \\ y_{5}=-4 \\ y_{5$$

Second column of A' is $X = \begin{vmatrix} -\frac{20}{3} \\ 5/2 \\ -\frac{2}{3} \end{vmatrix} = \frac{1}{5}$ For the third column, let b= 0 solve Ly=b y1=0 1,=0 13=1 $X_1 = Y - \frac{1}{3} = \frac{7}{3}$ third column of A is $x = \begin{bmatrix} 7/3 \\ -1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 7\\ -3 \end{bmatrix}$ Hus $A^{-1} = \begin{bmatrix} 10 & -40 & 14 \\ -42 & 15 & -6 \end{bmatrix}$ 3.10.3] - T\$ 2 0 A= 1 \$ 1 . let us compute

0 1 \$ the LU factorization, and set unditions on 3

$$E_{21} = -1/\frac{7}{7} \cdot 1 \cdot 0$$
 and we need $\frac{7}{7} + 0$

$$E_{21}A = 0$$
 $\frac{7}{5} - \frac{2}{5} \cdot 1$ and we need 0 1 $\frac{7}{5}$

3-2 +0 that is 3-2+0, i.e. 3+1/2

$$\begin{bmatrix}
\frac{7}{3} & 2 & 0 \\
\frac{7}{3} & \frac{7}{3} & \frac{7}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{bmatrix} = U$$

$$=\frac{\overline{5}^{3}-2\overline{5}-\overline{5}}{\overline{5}^{2}-2}=\frac{\overline{5}^{3}-3\overline{5}}{\overline{5}^{2}-2}\neq 0$$

that is (32-3) \$ \$ \$ 0 or 3 + + 1/3.

Thus for $\overline{3} = 0$, $\overline{3} = \pm \sqrt{2}$, A fails to have an LU factorization (without pivoting), and for $\overline{3} = \pm \sqrt{3}$, A is singular.

3.10,6 (a) Let us just multiply L.U

$$L.U = \begin{cases} \pi_1 & \delta_1 & O & O \\ d_1 & d_1\delta_1 + \pi_2 & \delta_2 & O \\ 0 & \pi_1 & \delta_2 & \delta_3 \\ \theta & O & \chi_3 & \frac{\lambda_3 \delta_3}{\pi_3} + \pi_4 \end{cases}$$

comparing with A we have Ti=B, and

So Tit = Bi-Aiti as desired.

(b) We apply this recursion to T, that is to the case $\beta_i = 2$ i=1,2,3 $\beta_4 = 1$ $\alpha_i = \delta_i = -1$ (so that $\alpha_i : \delta_i = 1$)

and we obtain IT, = 2

$$T_{2} = 2 - \frac{1}{2} = \frac{3}{2}$$

$$T_{3} = 2 - \frac{1}{3} = 2 - \frac{2}{3} = \frac{4}{3}$$

$$T_{y} = 1 - \frac{1}{y_{13}} = 1 - \frac{3}{4} = \frac{1}{4}$$

So that
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ -1/2 & 1 & 0 & 0 \\ 0 & -2/3 & 1 & 0 \\ 0 & 0 & -3/4 & 1 \end{bmatrix}$$

check that #= L.V.

[Note that one could use this recursion for the matrix in exercise 3.10.3]

