MISP and Decaying of Indicators

MISP AND DECAYING OF INDICATORS

PRIMER FOR INDICATOR SCORING IN MISP

TIAM CIRCL
INFO@CIRCLLU
AUGUST 3, 2022

MISP and Decaying of Indicators

PRIMER FOR INDICATOR SCORING IN MISP

TEAM CIRCL

INFO@CIRCL.LU

AUGUST 3, 2022

OUTLINE OF THE PRESENTATION

- Present the components used in MISP to expire IOCs
- Present the current state of Indicators life-cycle management in MISP

MISP and Decaying of Indicators

Outline of the presentation

 Present the components used in MISP to expire IOCs # Present the current state of Indicators life-cycle

2022-

EXPIRING IOCS: WHY AND HOW?

INDICATORS LIFECYCLE - PROBLEM STATEMENT

- **Sharing information** about threats **is crucial**
- Organisations are sharing more and more

Contribution by unique organisation (Orgc.name) on MISPPriv:

Date	Unique Org
2013	17
2014	43
2015	82
2016	105
2017	118
2018	125
2019-10	135

```
1 {
2     "distribution": [1, 2, 3]
3 }
```

MISP and Decaying of Indicators

Expiring IOCs: Why and How?

Indicators lifecycle - Problem Statement

| State | Stat

INDICATORS LIFECYCLE - PROBLEM STATEMENT

- Various users and organisations can share data via MISP, multiple parties can be involved
 - ► Trust, data quality and relevance issues
 - ► Each user/organisation have **different use-cases** and interests
 - Conflicting interests: Operational security VS attribution
 - → Can be partially solved with *Taxonomies*

MISP and Decaying of Indicators Expiring IOCs: Why and How?

-Indicators lifecycle - Problem Statement

Various users and organisations can share data via MIS multiple parties can be involved

INDICATORS LIFECYCLE - PROBLEM STATEMENT

- Various users and organisations can share data via MISP, multiple parties can be involved
 - ► Trust, data quality and relevance issues
 - Each user/organisation have different use-cases and interests
 - Conflicting interests: Operational security VS attribution
 - \rightarrow Can be partially solved with *Taxonomies*
- Attributes can be shared in large quantities (more than 12M on MISPPRIV Sept. 2020)
 - Partial info about their **freshness** (Sightings)
 - ► Partial info about their **validity** (*last seen*)
 - \rightarrow Can be partially solved with our *Data model*

MISP's Decaying model combines the two

MISP and Decaying of Indicators

Expiring IOCs: Why and How?

-Indicators lifecycle - Problem Statement

DRS LIFECYCLE - PROBLEM STATEMENT

Various users and organisations can share data via MISP,
multiple parties can be involved.

Trust, data quality and relevance issues
 Each user/organisation have different use-cases and interests

■ Conflicting interests: Operational security VS attribution

→ Can be partially solved with Toxonomies

ISPPRIV - Sept. 2020)

➤ Partial info about their freshness (Sightings)

➤ Partial info about their validity (lost_seen)

rtial info about their validity (lost_seen)
be partially solved with our Data model
MISP's Decaying model combines the two

REQUIREMENTS TO ENJOY THE DECAYING FEATURE IN MISP

- Starting from MISP 2.4.116, the decaying feature is available
- **Update** decay models and **enable** some
- MISP Decaying strongly relies on Taxonomies and Sightings, don't forget to review their configuration

Note: The decaying feature has no impact on the information stored in MISP, it's just an **overlay** to be used in the user-interface and API

MISP and Decaying of Indicators Expiring IOCs: Why and How? # Starting from MISP 2.4.116, the decaying feature is available -Requirements to enjoy the decaying feature in MISP

Sightings - Refresher (1)

2022-08-03 N

Sightings - Refresher (1)

Sightings and a temperal context to indicators.

If Spiritings can be used to represent that you saw the loC

If Statement of the results (Spiriting Spiriting Spiriti

Sightings add a **temporal context** to indicators.

- Sightings can be used to represent that you saw the IoC
- **Usecase:** Continuous feedback loop MISP \leftrightarrow IDS

Sightings - Refresher (2)

Sightings add a temporal context to indicators.

- *Sightings* give more credibility/visibility to indicators
- This information can be used to **prioritise and decay** indicators

MISP and Decaying of Indicators

Expiring IOCs: Why and How?

Sightings - Refresher (2)

htings add a temporal context to indicators.

Sightings give more credibility/visibility to indicators
 This information can be used to prioritise and decay indicators

TAXONOMIES - REFRESHER (1)

- *Taxonomies* are a simple way to attach a classification to an *Event* or an *Attribute*
- Classification must be globally used to be efficient (or agreed on beforehand)

MISP and Decaying of Indicators
Expiring IOCs: Why and How?
Taxonomies - Refresher (1)

TAXONOMIES - REFRESHER (2)

→ Cherry-pick allowed *Tags*

MISP and Decaying of Indicators —Expiring IOCs: Why and How?

2022

└─Taxonomies - Refresher (2)

TAXONOMIES - REFRESHER (3)

- Some taxonomies have a numerical value
- Allows concepts to be used in an mathematical expression
 - \rightarrow Can be used to prioritise IoCs

admirality-scale taxonomy¹

Description	Valu
Completely reliable	100
Usually reliable	75
Fairly reliable	50
Not usually reliable	25
Unreliable	0
Reliability cannot be judged	50
Deliberatly deceptive	0

Description	Value
Confirmed by other sources	100
Probably true	75
Possibly true	50
Doubtful	25
Improbable	0
Truth cannot be judged	50

MISP and Decaying of Indicators
Expiring IOCs: Why and How?
Taxonomies - Refresher (3)

https://github.com/MISP/misp-taxonomies/blob/master/ admiralty-scale/machinetag.json

TAXONOMIES - REFRESHER (3)

admirality-scale taxonomy²

Deliberatly deceptive

Description	Valu
Completely reliable	100
Usually reliable	75
Fairly reliable	50
Not usually reliable	25
Unreliable	0
Reliability cannot be judged	50?

Description	value
Confirmed by other sources	100
Probably true	75
Possibly true	50
Doubtful	25
Improbable	0
Truth cannot be judged	50 ?

ightarrow Users can override tag numerical_value

0?

MISP and Decaying of Indicators

Expiring IOCs: Why and How?

Taxonomies - Refresher (3)

reality scale teasons of content of the content of

Dan and and

 $^{^2} https://github.com/MISP/misp-taxonomies/blob/master/admiralty-scale/machinetag.json\\$

-Scoring Indicators: Our solution

m base score(wormer, most)

► Function composed of the lifetime and decay sp
 ► Decreases the base_score over time

score(Attribute) = base_score(Attribute, Model) • decay(Model, time)

- base score(Attribute, Model)
 - ► Initial score of the *Attribute* only considering the context (*Attribute's type*, *Tags*)

- decay(Model, time)
 - ► Function composed of the lifetime and decay speed
 - ► Decreases the base score over time

SCORING INDICATORS: OUR SOLUTION

score(Attribute) = base_score(Attribute, Model) • decay(Model, time)

CURRENT IMPLEMENTATION IN MISP

IMPLEMENTATION IN MISP: Event/view

- Decay score toggle button
 - ► Shows Score for each *Models* associated to the *Attribute* type

MISP and Decaying of Indicators

—Current implementation in MISP

-Implementation in MISP: Event/view

IMPLEMENTATION IN MISP: API RESULT

/attributes/restSearch

```
"Attribute": [
    "category": "Network activity",
    "type": "ip-src",
    "to_ids": true,
    "timestamp": "1565703507",
    "value": "8.8.8.8",
    "decay score": [
        "score": 54.475223849544456,
        "decayed": false,
        "DecayingModel": {
          "id": "85",
          "name": "NIDS Simple Decaying Model"
```

MISP and Decaying of Indicators

Current implementation in MISP

Implementation in MISP: API result

IMPLEMENTATION IN MISP: OBJECTIVES

- Automatic scoring based on default values
- **User-friendly UI** to manually set *Model* configuration (lifetime, decay, etc.)
- **Simulation** tool
- Interaction through the API
- Opportunity to create your **own** formula or algorithm

MISP and Decaying of Indicators Current implementation in MISP -Implementation in MISP: Objectives

Automatic scoring based on default values

IMPLEMENTATION IN MISP: MODELS DEFINITION

$$\Rightarrow$$
 score = base_score $\cdot \left(1 - \left(\frac{t}{\tau}\right)^{\frac{1}{\delta}}\right)$

Models are an instanciation of the formula with configurable parameters:

- Parameters: lifetime, decay_rate, threshold
- base_score computation
- default base score
- associate Attribute types
- formula
- creator organisation

MISP and Decaying of Indicators

Current implementation in MISP

Implementation in MISP: Models definition

SENTATION IN MISP: MODELS DEFINITION

re an instanciation of the formula with configurable

ameters: lifetime, decay_rate, thres

base_score computation
 default base score

default base_score

creator organisation

26

2022-

IMPLEMENTATION IN MISP: MODELS TYPES

Two types of model are available

- **Default Models**: Created and shared by the community. Coming from misp-decaying-models repository³.
 - → Not editable
- Organisation Models: Created by a user on MISP
 - ► Can be hidden or shared to other organisation
 - → Fditable

MISP and Decaying of Indicators

Current implementation in MISP

—Implementation in MISP: Models Types

IMPLEMENTATION IN MISP: MODELS TYPES

Two types of model are available

■ Default Models: Created and shared by the community.

Coming from misp-decaying-models repository³.

→ Not editable

■ Organisation Models: Created by a user on MISP
 ➤ Can be hidden or shared to other organisation
 → Editable

https://github.com/MISP/misp-decaying-models.git

³https://github.com/MISP/misp-decaying-models.git

IMPLEMENTATION IN MISP: INDEX

Standard CRUD operations: View, update, add, create, delete, enable, export, import

2

MISP and Decaying of Indicators

—Current implementation in MISP

2022

-Implementation in MISP: Index

IMPLEMENTATION IN MISP: FINE TUNING TOOL

Configure models: Create, modify, visualise, perform mapping

MISP and Decaying of Indicators

Current implementation in MISP

-Implementation in MISP: Fine tuning tool

IMPLEMENTATION IN MISP. FINE YUNING TOOL

```
26
```

IMPLEMENTATION IN MISP: base_score TOOL

MISP and Decaying of Indicators

Current implementation in MISP:

Implementation in MISP: base_score tool

IMPLEMENTATION IN MISP: SIMULATION TOOL

Simulate decay on Attributes with different Models

MISP and Decaying of Indicators

Current implementation in MISP

—Implementation in MISP: simulation tool

IMPLEMENTATION IN MISP: API QUERY BODY

/attributes/restSearch

```
"includeDecayScore": 1,
"includeFullModel": 0,
"excludeDecayed": 0,
"decayingModel": [85],
"modelOverrides": {
    "threshold": 30
}
"score": 30,
}
```

MISP and Decaying of Indicators

—Current implementation in MISP

-Implementation in MISP: API query body

/attributes/restSearch

-*instandes-stearch : 1,
-*satisfaction :

CREATING A NEW DECAY ALGORITHM

```
1 <?php
include_once 'Base.php';
4 class Polynomial extends DecayingModelBase
      public const DESCRIPTION = 'The description of your new
      decaying algorithm';
      public function computeScore($model, $attribute, $base_score,
      $elapsed time)
         // algorithm returning a numerical score
      public function isDecayed($model, $attribute, $score)
          // algorithm returning a boolean stating
          // if the attribute is expired or not
18
```

MISP and Decaying of Indicators

Current implementation in MISP

-Creating a new decay algorithm

CHADING ANY DECAY ALGORITHM

Constitution of the state of

DECAYING MODELS 2.0

- Improved support of Sightings
 - ► False positive *Sightings* should somehow reduce the score
 - Expiration Sightings should mark the attribute as decayed
- Potential *Model* improvements
 - ► Instead of resetting the score to base_score once a Sighting is set, the score should be increased additively (based on a defined coefficient); thus **prioritizing surges** rather than infrequent Sightings
 - ► Take into account related *Tags* or *Correlations* when computing score
- Increase *Taxonomy* coverage
 - ► Users should be able to manually override the numerical value of *Tags*

MISP and Decaying of Indicators

Current implementation in MISP

-Decaying Models 2.0

YING MODELS 2.0

 False positive Sightings should somehow reduce th score
 Evolvation Sightings should mark the attribute as do:

Expiration Sightings should mark the attribute as de
 Potential Model improvements
 Instead of protition the copie to bace according to

Sighting is set, the score should be increased additivel (based on a defined coefficient); thus prioritizing surge rather than infrequent Sightings Take into account related Tags or Correlations when

Take into account related Tags or Correlations v computing score Increase Taxonomy coverage