CS224

Section No: 5 Spring 2021 Lab No: 6

Full Name / Bilkent ID: Burak Öztürk / 21901841

A. Direct Mapped Caches

Row Major Averaging

Matrix Size: 50 x 50

	Block Size (number of words)				
Cache Size (bytes)	16	32	64	128	256
2048	Miss Rate: 6%	Miss Rate: 3%	Miss Rate: 2%	Miss Rate: 1%	Miss Rate: 0%
	Miss #: 162	Miss #: 82	Miss #: 42	Miss #: 21	Miss #: 11
4096	Miss Rate: 6%	Miss Rate: 3%	Miss Rate: 2%	Miss Rate: 1%	Miss Rate: 0%
	Miss #: 162	Miss #: 82	Miss #: 42	Miss #: 21	Miss #: 11
8192	Miss Rate: 6%	Miss Rate: 3%	Miss Rate: 2%	Miss Rate: 1%	Miss Rate: 0%
	Miss #: 162	Miss #: 82	Miss #: 42	Miss #: 21	Miss #: 11
16384	Miss Rate: 6%	Miss Rate: 3%	Miss Rate: 2%	Miss Rate: 1%	Miss Rate: 0%
	Miss #: 162	Miss #: 82	Miss #: 42	Miss #: 21	Miss #: 11
32768	Miss Rate: 6%	Miss Rate: 3%	Miss Rate: 2%	Miss Rate: 1%	Miss Rate: 0%
	Miss #: 162	Miss #: 82	Miss #: 42	Miss #: 21	Miss #: 11

Matrix Size: 100 x 100

	Block Size (number of words)				
Cache Size (bytes)	16	32	64	128	256
2048	Miss Rate: 6%	Miss Rate: 3%	Miss Rate: 2%	Miss Rate: 1%	Miss Rate: 0%
	Miss #: 631	Miss #: 317	Miss #: 160	Miss #: 80	Miss #: 41
4096	Miss Rate: 6%	Miss Rate: 3%	Miss Rate: 2%	Miss Rate: 1%	Miss Rate: 0%
	Miss #: 631	Miss #: 317	Miss #: 160	Miss #: 80	Miss #: 41
8192	Miss Rate: 6%	Miss Rate: 3%	Miss Rate: 2%	Miss Rate: 1%	Miss Rate: 0%
	Miss #: 631	Miss #: 317	Miss #: 160	Miss #: 80	Miss #: 41
16384	Miss Rate: 6%	Miss Rate: 3%	Miss Rate: 2%	Miss Rate: 1%	Miss Rate: 0%
	Miss #: 631	Miss #: 317	Miss #: 160	Miss #: 80	Miss #: 41
32768	Miss Rate: 6%	Miss Rate: 3%	Miss Rate: 2%	Miss Rate: 1%	Miss Rate: 0%
	Miss #: 631	Miss #: 317	Miss #: 160	Miss #: 80	Miss #: 41

Column Major Averaging

Matrix Size: 50 x 50

	Block Size (number of words)				
Cache Size (bytes)	16	32	64	128	256
2048	Miss Rate: 60%	Miss Rate: 92%	Miss Rate: 73%	Miss Rate: 37%	Miss Rate: 20%
	Miss #: 1619	Miss #: 2503	Miss #: 1966	Miss #: 1001	Miss #: 551
4096	Miss Rate: 36%	Miss Rate: 60%	Miss Rate: 73%	Miss Rate: 37%	Miss Rate: 20%
	Miss #: 977	Miss #: 1637	Miss #: 1966	Miss #: 1001	Miss #: 551
8192	Miss Rate: 35%	Miss Rate: 34%	Miss Rate: 28%	Miss Rate: 15%	Miss Rate: 11%
	Miss #: 950	Miss #: 926	Miss #: 754	Miss #: 413	Miss #: 306
16384	Miss Rate: 6%	Miss Rate: 3%	Miss Rate: 2%	Miss Rate: 1%	Miss Rate: 0%
	Miss #: 162	Miss #: 82	Miss #: 42	Miss #: 21	Miss #: 12
32768	Miss Rate: 6%	Miss Rate: 3%	Miss Rate: 2%	Miss Rate: 1%	Miss Rate: 0%
	Miss #: 162	Miss #: 82	Miss #: 42	Miss #: 21	Miss #: 12

50 x 50 Column Major Averaging

Matrix Size: 100 x 100

	Block Size (number of words)				
Cache Size (bytes)	16	32	64	128	256
2048	Miss Rate: 98%	Miss Rate: 98%	Miss Rate: 98%	Miss Rate: 77%	Miss Rate: 38%
	Miss #: 10005	Miss #: 10003	Miss #: 10005	Miss #: 7817	Miss #: 3917
4096	Miss Rate: 83%	Miss Rate: 98%	Miss Rate: 83%	Miss Rate: 77%	Miss Rate: 38%
	Miss #: 8487	Miss #: 10003	Miss #: 8487	Miss #: 7817	Miss #: 3917
8192	Miss Rate: 83%	Miss Rate: 91%	Miss Rate: 83%	Miss Rate: 77%	Miss Rate: 38%
	Miss #: 8487	Miss #: 9245	Miss #: 8487	Miss #: 7817	Miss #: 3917
16384	Miss Rate: 83%	Miss Rate: 91%	Miss Rate: 83%	Miss Rate: 77%	Miss Rate: 38%
	Miss #: 8487	Miss #: 9245	Miss #: 8487	Miss #: 7817	Miss #: 3917
32768	Miss Rate: 83%	Miss Rate: 91%	Miss Rate: 83%	Miss Rate: 28%	Miss Rate: 14%
	Miss #: 8487	Miss #: 9245	Miss #: 8487	Miss #: 2882	Miss #: 1457

B. Fully Associative Caches

Column Major Averaging

Matrix Size: 50 x 50

	Cache Type				
Cache Size/Block Size	Direct Mapped	Fully Associative / LRU	Fully Associative / Random		
16384 / 64 (Good)	2%	2%	2%		
4096 / 128 (Medium)	37%	37%	33%		
2048 / 32 (Poor)	92%	92%	88%		

Graph:

As seen in the graph, results are exactly same for all three caches (Fully associative / Random is a little better due to randomness.). Change from direct mapped to fully associative cache does not make a difference because while doing column by column reading neighboring integers are placed in cache too and cache is large enough to get same miss rate for every cache. That means for "good" cache, there is enough cache size in direct mapped therefore fully associative is not needed and for "medium" and "poor" caches, most of the misses are not conflict misses but capacity miss therefore fully associativity does not help.

Matrix Size: 100 x 100

\sim 1	
Cache	Iwnα
Cacne	I y DC

C 1		-J F -	
Cache Size/Block Size	Direct Mapped	Fully Associative / LRU	Fully Associative / Random
32768 / 256 (Good)	14%	38%	13%
2048 / 256 (Medium)	38%	38%	38%
2048 / 16 (Poor)	98%	98%	94%

Graph:

This graph's conclusion is same as 50×50 matrix's graph except for "good". For "good" configuration, fully associative / LRU cache type is not same for miss rate as other but worse. This is because there wasn't much conflict misses from the direct mapping and fully associativity brings capacity misses. Therefore it is not helping and making performance worse.

C. N-way Set Associative Caches

Column Major Averaging

Matrix Size: 50 x 50

Cache Size/Block	Size: 4096 / 128 (Med	dium)		
N-way Cache	1	2	4	8
Hit Rate	63	63	63	63
Miss Rate	37	37	37	37
Miss Count	1001	1001	1001	1001
Cache Size/Block	Size: 16384 / 64 (Goo	od)		
N-way Cache	4	8	16	32
Hit Rate	98	98	98	98
Miss Rate	2	2	2	2
Miss Count	42	42	42	42
Cache Size/Block	Size: 2048 / 32 (Poor)		
N-way Cache	2	4	8	16
Hit Rate	8	8	8	8
Miss Rate	92	92	92	92
Miss Count	2503	2503	2503	2503

For all three cases, miss rate does not change as the N increases or decreases because as in Part B, misses are not conflict misses but capacity misses. Therefore making cache more divided by increasing N, does not do any good other than wasting resources.