- 使用支持向量机(SVM)和不同损失函数的线性分类器——大作业1
 - 实验内容
 - 线性分类器
 - hinge loss
 - cross-entropy loss
 - 实验结果分析与讨论
 - 多项式回归实现分类器
 - 过拟合现象分析
 - 支持向量机SVM
 - SVM模型理论
 - 训练讨程
 - 结果比较

使用支持向量机 (SVM)和不同损失函数 的线性分类器——大作业1

学号 22336303 姓名 张西艾

实验内容

1.实现一个线性分类器,使用两种不同的损失函数: Hinge Loss (对应SVM的损失函数); Cross-Entropy Loss (对应于逻辑回归的损失函数)

比较两种损失函数在分类任务中的表现。

- 2.使用多项式回归实现一个分类器,并比较不同参数量下的结果,从中体会什么是过拟 合。
- 3.支持向量机SVM:选择两种核函数来训练SVM模型:线性核函数;高斯核函数(RBF)

线性分类器

比较两种损失函数(Hinge Loss 和 Cross-Entropy Loss)在线性分类模型中的表现。

hinge loss

代码见 hinge loss.py

结果如下:

```
epoch: 0 SVM with Hinge Loss Accuracy(training): 0.16483516483516483
epoch: 50 SVM with Hinge Loss Accuracy(training): 0.9604395604395605
epoch: 100 SVM with Hinge Loss Accuracy(training): 0.9692307692307692
epoch: 150 SVM with Hinge Loss Accuracy(training): 0.978021978021978
epoch: 200 SVM with Hinge Loss Accuracy(training): 0.9824175824175824
epoch: 250 SVM with Hinge Loss Accuracy(training): 0.9846153846153847
epoch: 300 SVM with Hinge Loss Accuracy(training): 0.9846153846153847
epoch: 350 SVM with Hinge Loss Accuracy(training): 0.98241758244175824
epoch: 400 SVM with Hinge Loss Accuracy(training): 0.98241758244175824
epoch: 450 SVM with Hinge Loss Accuracy(training): 0.98241758244175824
epoch: 450 SVM with Hinge Loss Accuracy(training): 0.9846153846153847
Training set metrics - Accuracy: 0.9846153846153847, Precision: 0.9821428571428571, Recall: 0.9763313609467456, F1 Score: 0.9792284866468843
Testing set metrics - Accuracy: 0.9824561403508771, Precision: 0.9767441860465116, Recall: 0.9767441860465116, F1 Score: 0.9767441860465116
```

cross-entropy loss

代码见 cross_entropy.py

结果如下:

```
Epoch 0:Accuracy(training): 0.5077
Epoch 10:Accuracy(training): 0.9429
Epoch 20:Accuracy(training): 0.9538
Epoch 30:Accuracy(training): 0.9626
Epoch 40:Accuracy(training): 0.9648
Epoch 50:Accuracy(training): 0.9648
Epoch 60:Accuracy(training): 0.9670
Epoch 70: Accuracy (training): 0.9714
Epoch 80:Accuracy(training): 0.9736
Epoch 90:Accuracy(training): 0.9758
Epoch 100:Accuracy(training): 0.9758
Epoch 110:Accuracy(training): 0.9758
Epoch 120:Accuracy(training): 0.9758
Epoch 130:Accuracy(training): 0.9780
Epoch 140:Accuracy(training): 0.9780
Epoch 150:Accuracy(training): 0.9802
Epoch 160:Accuracy(training): 0.9802
Epoch 170:Accuracy(training): 0.9802
Epoch 180:Accuracy(training): 0.9824
Epoch 190:Accuracy(training): 0.9824
Epoch 199:Accuracy(training): 0.9824
Training set metrics - Accuracy: 0.9824, Precision: 0.9877, Recall: 0.9641, F1 Score: 0.9758
Testing set metrics - Accuracy: 0.9561, Precision: 0.9348, Recall: 0.9556, F1 Score: 0.9451
```

实验结果分析与讨论

Hinge Loss在训练集和测试集上都显示出较高的准确率、精确率、召回率和F1值,表明 其在这项任务中表现更好。 Cross-Entropy Loss在训练集上表现良好,但在测试集上表 现较差,模型可能在训练集上过拟合。

Hinge Loss主要用于支持向量机(SVM)等最大间隔分类器,它对线性可分数据集特别有效。如果数据集确实是线性可分的,Hinge Loss可以更有效地找到决策边界,因为它专注于将不同类别的数据点正确分开,而不是预测概率。Hinge Loss对异常值和噪声不太敏感,因为它只关注那些位于间隔边界附近的数据点(即支持向量)。相比之下,交叉熵损失函数对所有数据点的预测误差都敏感,包括异常值。使用Hinge Loss时,SVM的正则化项直接作用于权重,这有助于防止过拟合。在交叉熵损失函数中,正则化通常需要单独添加,并且可能不如SVM中的正则化那样直接。

多项式回归实现分类器

代码见 polyfit.py

结果如下:

Degree 1: Accuracy = 0.9211

Degree 2: Accuracy = 0.9298

Degree 3: Accuracy = 0.9298

Degree 5: Accuracy = 0.9298

Degree 10: Accuracy = 0.9211

Degree 20: Accuracy = 0.9123

Degree 25: Accuracy = 0.9035

不同参数量下的拟合曲线如图所示:

过拟合现象分析

过拟合是指模型在训练数据上表现得很好,但是在新的、未见过的数据上表现不佳的现象。这通常是因为模型过于复杂,捕捉到了训练数据中的噪声和细节,而没有抓住数据的潜在分布。

1阶多项式(线性模型):准确率为0.9211。

2阶多项式:准确率提高到0.9298,表明增加模型复杂度可以提高拟合质量。

3阶和5阶多项式:准确率保持在0.9298,与2阶多项式相同,表明进一步提高模型复杂度并没有带来更多的好处。

10阶多项式:准确率下降到0.9211,与1阶多项式相同,表明过高的模型复杂度可能导致过拟合。

20阶和25阶多项式:准确率进一步下降到0.9123和0.9035,这表明模型在训练数据上捕捉到了噪声,而没有很好地泛化到新数据上。

从2阶到5阶多项式,增加模型复杂度并没有提高准确率。从10阶到25阶多项式,准确率 开始下降,从拟合曲线上也可以看出模型开始过拟合。20阶和25阶多项式的准确率低于 2阶多项式,这表明高阶模型在训练数据上的表现并不比简单模型好。

支持向量机SVM

SVM模型理论

支持向量机 (SVM) 是一种监督学习算法,主要用于分类问题。它的基本原理是通过找到一个最优的超平面来分隔不同的类别。

支持向量: 支持向量是距离决策边界最近的样本点,它们位于间隔边界上。这些点是最关键的数据点,因为它们决定了超平面的位置和方向。如果数据集中没有这些支持向量,超平面的位置可能会改变。

间隔最大化: SVM的一个核心目标是找到一个超平面,使得不同类别之间的间隔最大化。间隔是指从超平面到最近样本点的距离。最大化间隔的目的是提高分类器的泛化能力,即在未知数据上的表现。一个较大的间隔意味着模型对于训练数据的噪声和扰动更加鲁棒。

核函数:在现实世界中,许多数据集并不是线性可分的。核函数允许SVM在高维空间中寻找决策边界,而无需显式地计算数据点在高维空间中的坐标。核技巧通过将原始特征映射到高维空间,使得非线性问题转化为线性问题。常用的核函数包括:线性核,适用于线性可分的数据。多项式核:适用于需要曲线决策边界的情况。高斯径向基函数(RBF)核:适用于非常复杂的非线性问题。Sigmoid核:类似于神经网络中的激活函数。

训练过程

代码见 SVM.py

在 scikit-learn中, 我们通过创建 SVC类的实例来初始化SVM模型。

SVM通过引入惩罚参数C来实现**正则化**,以避免模型过于复杂。C参数是一个惩罚参数,它控制着模型对误分类点的惩罚强度。C的值越大,模型对误分类的惩罚就越大,这可能导致模型在训练集上的拟合更好,但泛化能力变差,从而可能出现过拟合。相反,C的值越小,模型对误分类的惩罚就越小,这可能导致模型在训练集上的拟合不足,但泛化能力更好,从而可能出现欠拟合。 gamma 参数定义了单个训练样本的影响范围,即高斯核的宽度。gamma 的值越大,高斯核的宽度就越小,支持向量的影响范围就越小,决策边界就越复杂,模型就越倾向于捕捉训练数据中的细微波动,可能导致过拟

合。相反,gamma 的值越小,高斯核的宽度就越大,支持向量的影响范围就越广,决策边界就越平滑,模型就越倾向于捕捉训练数据中的一般趋势,这有助于提高模型的泛化能力。 在GridSearchCV类中,交叉验证是内置的,这意味着在寻找最佳超参数的过程中,它会对每一组超参数组合进行交叉验证。在GridSearchCV中,可以通过cv参数来指定交叉验证的折数。在实际训练中,我们设置cv=5,使用**5折交叉验证**来评估每一组超参数的性能。scoring='accuracy'表示使用准确率作为评估标准。

在支持向量机(SVM)的训练过程中,通常使用的是优化算法如**序列最小优化算法 SMO**,而不是梯度下降。SVM的优化问题是一个凸二次规划问题,而SMO算法是专门针对这类问题设计的一种有效算法。SMO算法将SVM的复杂优化问题分解为多个二分类问题,然后逐一解决,从而找到原始问题的解。虽然梯度下降是一种广泛使用的优化算法,尤其在深度学习和大规模优化问题中,但它并不适用于SVM的优化问题。SVM的优化目标是找到一个最大化间隔的超平面,而这个目标函数不是光滑的(因为存在间隔最大化的合页损失函数),这使得梯度下降难以直接应用。

结果比较

线性核的结果如下:

线性核最佳参数: {'C': 0.1}

线性核最优模型的训练集分类报告:

precision	recall	f1-score	support
0.98	0.99	0.99	249
0.99	0.97	0.98	149
		0.00	700
		0.98	398
0.98	0.98	0.98	398
0.98	0.98	0.98	398
	0.98	0.98 0.99 0.99 0.97 0.98 0.98	0.98 0.99 0.99 0.99 0.97 0.98 0.98 0.98 0.98

线性核最优模型的测试集分类报告:

	precision	recall	f1-score	support
В	0.98	0.99	0.99	108
M	0.98	0.97	0.98	63
accuracy			0.98	171
macro avg	0.98	0.98	0.98	171
weighted avg	0.98	0.98	0.98	171

线性核最优模型的训练集准确率: 0.9824120603015075 线性核最优模型的训练集精确率: 0.9863013698630136 线性核最优模型的训练集召回率: 0.9664429530201343 线性核最优模型的训练集F1值: 0.9762711864406781 线性核最优模型的测试集准确率: 0.9824561403508771 线性核最优模型的测试集精确率: 0.9838709677419355 线性核最优模型的测试集召回率: 0.9682539682539683 线性核最优模型的测试集F1值: 0.976

高斯核的结果如下:

高斯核最佳参数: {'C': 100, 'gamma': 'scale'}

高斯核最优模型的训练集分类报告:

	precision	recall	f1-score	support
В	1.00	1.00	1.00	249
M		1.00	1.00	149
000110001			1 00	700
accuracy			1.00	398
macro avg	1.00	1.00	1.00	398
weighted avg	1.00	1.00	1.00	398

高斯核最优模型的测试集分类报告:

	precision	recall	f1-score	support
В	0.98	0.94	0.96	108
М	0.91	0.97	0.94	63
accuracy			0.95	171
macro avg	0.95	0.96	0.95	171
weighted avg	0.95	0.95	0.95	171

高斯核最优模型的训练集准确率: 1.0

高斯核最优模型的训练集精确率: 1.0

高斯核最优模型的训练集召回率: 1.0

高斯核最优模型的训练集F1值: 1.0

高斯核最优模型的测试集准确率: 0.9532163742690059

高斯核最优模型的测试集精确率: 0.9104477611940298

高斯核最优模型的测试集召回率: 0.9682539682539683

高斯核最优模型的测试集F1值: 0.9384615384615386

训练集性能: 高斯核在训练集上达到了完美的准确率、精确率、召回率和F1值,表明它在训练数据上完美地拟合了所有数据点。线性核在训练集上的性能也非常出色,但略低于高斯核。

测试集性能:线性核在测试集上的性能非常稳定,准确率、精确率、召回率和F1值都很高,与训练集性能相当接近。高斯核在测试集上的性能显著下降,准确率降低到0.9532,精确率降低到0.9104,尽管召回率仍然很高。

高斯核在训练集上完美拟合,但在测试集上性能下降,这表明可能存在过拟合。过拟合意味着模型在训练数据上表现太好,以至于它学习到了训练数据中的噪声和细节,而不是潜在的数据分布。线性核在训练集和测试集上的性能更加均衡,表明它具有更好的泛化能力。

线性核函数通常具有更好的泛化能力。它不会像高斯核那样对训练数据中的噪声和异常值过于敏感,因此在测试集上的表现更为稳定。高斯核函数通过映射到高维空间来处理非线性问题,这可能导致过拟合,尤其是在样本数量有限的情况下。线性核函数由于其简单性,不太可能在训练数据上过拟合。