EE5600: Introto AI and ML

1. Linear Regression:

$$X = \begin{bmatrix} 1 & \chi'_{1} & \chi'_{2} & -- & \chi'_{d} \\ 1 & \chi'_{1} & \chi'_{2} & -- & \chi'_{d} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \chi'_{1} & \chi'_{2} & -- & \chi'_{d} \end{bmatrix}$$

$$1 \quad \chi''_{1} \quad \chi''_{2} \quad -- \quad \chi''_{d} \quad \chi''_{d+1}$$

$$1 \quad \chi''_{1} \quad \chi''_{2} \quad -- \quad \chi''_{d} \quad \chi''_{d+1}$$

$$1 \quad \chi''_{1} \quad \chi''_{2} \quad -- \quad \chi''_{d} \quad \chi''_{d+1}$$

$$1 \quad \chi''_{1} \quad \chi''_{2} \quad -- \quad \chi''_{d} \quad \chi''_{d+1}$$

No number of training examples

$$\bar{y} = \begin{pmatrix} y^{(i)} \\ y^{(i)} \\ y^{(i)} \end{pmatrix}_{N\times 1}$$
 outputs $\bar{w} = \begin{pmatrix} w_0 \\ w_1 \\ y^{(i)} \\ w_2 \\ w_3 \end{pmatrix}_{N\times 1}$

Cost function.
$$E(\bar{\omega}) = \sum_{i=1}^{N} (y^{(i)} - \hat{y}^{(i)})^2$$
(sum of squared error)

Here ŷiù is predicted output.

$$E(\overline{\omega}) = \sum_{i=1}^{N} (y^{(i)} - \sum_{j=0}^{d} x_{j}^{(i)} \omega_{j})^{2}$$

$$= (\bar{y} - \chi \bar{\omega})^{T} (\bar{y} - \chi \bar{\omega})$$

(weights that minimize the sum of squared error)

$$\nabla E(\bar{w}) = 0$$

$$E(\bar{\omega}) = \bar{y}^T \bar{y} - \bar{\omega}^T X^T \bar{y} - \bar{y}^T X \bar{\omega} + \bar{\omega}^T X^T X \bar{\omega}$$

$$\nabla E(\bar{\omega}) = -2 X^{\mathsf{T}} \bar{g} + 2 X^{\mathsf{T}} X \bar{\omega} = 0$$

$$\rightarrow 2 \quad \chi^{T} \left(\bar{y} - \chi \bar{\omega} \right) = 0$$

check second derivative of. => 2 X^TX This is positive definite (if X has full column

rank)

So,
$$\overline{\omega}^* = (X^T X)^{-1} X^T \overline{y}$$

2. Basis functions:
$$\phi_j(\bar{x}^{(i)}) \rightarrow 0 \leq j \leq M$$

$$\overline{W} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_m \end{bmatrix} (m+1) \times 1$$

$$\overline{W} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_m \end{bmatrix}_{(M+1)} \times 1$$

$$\begin{bmatrix} assuming & \phi_1(\cdot) & are \\ R(d+1) & R \end{bmatrix}$$

Prediction,
$$\hat{y}^{(i)} = \sum_{j=0}^{m} \phi_{j}(\bar{x}^{(i)}) \omega_{j}$$

Cost function,
$$E(\bar{\omega}) = \sum_{i=1}^{N} \left(y^{(i)} - \sum_{j=0}^{m} (\phi_{j}(\bar{x}^{(j)}) \, \omega_{j}) \right)^{2}$$

Notation:
$$\Phi_{j}(X) = \begin{bmatrix} \theta_{j}(\bar{x}^{(i)}) \\ \vdots \\ \theta_{j}(\bar{x}^{(i)}) \end{bmatrix}$$

$$E(\overline{\omega}) = (\overline{y} - \overline{\phi} \, \overline{\omega})^{T} (\overline{y} - \overline{\phi} \, \overline{\omega})$$

minimizing the cost function,

$$-2 \Phi^T \bar{y} + 2 \Phi^T \Phi \bar{\omega} = 0$$

$$= (\Phi^{T}\Phi)^{T}\Phi^{T}\bar{g}$$

3.
$$G(x) = \frac{1}{1+e^{-x}}$$
 $Tanh(x) = \frac{e^{+x} - x}{e^{x} + e^{-x}}$

$$Tonh(n) = \frac{1-e^{-2n}}{1+e^{-2n}} = \frac{2}{1+e^{-2n}} - \frac{1+e^{-2n}}{1+e^{-2n}} = 26(2n)-1$$

$$Tanh(n) = 2\sigma(2n) - 1$$

$$\hat{y}(x, \underline{w}) = W_0 + \sum_{i=1}^{M} w_i \sigma(\frac{x-4i}{5})$$

$$\hat{y}(x, u) = u_0 + \sum_{j=1}^{n} u_j \tanh\left(\frac{x - u_j}{s}\right)$$

$$= u_0 + \sum_{j=1}^{n} \left(2u_j \sigma\left(\frac{2x - 2u_j}{s}\right) - u_j\right)$$

$$\frac{f\left(\frac{1}{2},\frac{1}{2}\right)}{g\left(\frac{1}{2},\frac{1}{2}\right)} = \frac{V_0 + \sum_{j=1}^{M} V_j \cdot \sigma\left(\frac{1}{2} - \frac{1}{2}\right) - \frac{V_j}{2}}{\left(\frac{1}{2} - \frac{1}{2}\right) - \frac{V_j}{2}} \quad \left(\frac{1}{2} - \frac{1}{2}\right) \cdot \left(\frac{1}{2} - \frac{1}{2}\right) \cdot$$

4.
$$X = \begin{bmatrix} 1 & \chi_{1}^{(1)} & \chi_{2}^{(1)} & --- & \chi_{2}^{(1)} \\ 1 & \chi_{1}^{(2)} & \chi_{2}^{(2)} & --- & \chi_{2}^{(1)} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \chi_{1}^{(N)} & \chi_{2}^{(N)} & --- & \chi_{2}^{(N)} \\ 1 & \chi_{1}^{(N)} & --- & \chi_{2}^{(N)} & --- & \chi_{2}^{(N)} \\ 1 & \chi_{1}^{(N)} & \chi_{2}^{(N)} & --- & \chi_{2}^{(N)} \\ 1 & \chi_{1}^{(N)} & \chi_{2}^{(N)} & --- &$$

Weights:
$$W = \begin{bmatrix} w_0 & w_0 \\ w_1 & w_1 \\ \vdots & w_n \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{bmatrix} \begin{bmatrix} w_1 \\ \vdots$$

Cost function
$$E(W) = \sum_{i=1}^{N} || \bar{y}^{(i)} - \hat{g}^{(i)}||^2$$

$$\hat{y} = X.W$$

$$\hat{y} = X.W$$

$$\hat{p} = 0$$

$$E(w) = \sum_{i=1}^{N} \sum_{j=1}^{K} (y_{ij}^{(i)} - \hat{y_{j}^{(i)}})^{2}$$

$$= \sum_{i=1}^{N} \left(y_{i}^{ij} - \sum_{p=0}^{d} (\chi_{p}^{ij} \omega_{p}^{(ij)})^{2} \right)^{2}$$

$$= \sum_{j=1}^{K} \left[y_{j}^{(i)} - \sum_{p=0}^{d} (n_{p}^{(i)} \omega_{p}^{(i)})^{2} \right]^{2}$$

let's write this as
$$E(W) = \sum_{j=1}^{K} E(\overline{w}^{(j)})$$

$$E(W) = \sum_{i=1}^{k} E(\overline{w}^{(i)})$$

where
$$\overline{\omega}^{(j)} = (\omega_0^{(j)}, \omega_0^{(j)}, \omega_0^{(j)})^T$$

Minimizing E(W) is minimizing each term in $\sum_{j=1}^{E} E(\bar{\omega}^{(j)})$ (each of $E(\bar{\omega}^{(j)})$ is a positive quantity)
non-negative ine. The target of the state of optimizing, with = (XTX) XT 7; where \bar{y}_i is jth column in γ . So optimizing weights matrix: $W = \left(\left(\left(X^{T} X \right)^{-1} X^{T} \overline{y}_{i} \right)^{T} \left(X^{T} X \right)^{-1} X^{T} \overline{y}_{i} - \left(X^{T} X \right)^{-1} X^{T} \overline{y}_{i} \right)$ $= (X^{T}X)^{-1}X^{T} \left[\overline{g}_{i} \ \overline{g}_{i} - \overline{g}_{k} \right]$ $W = (X^T X)^{-1} X^T Y$

Simple linear regression with weighted sum of squared error:

$$E(\overline{\omega}) = \sum_{i=1}^{N} r_i (y^{ij} - \hat{y}^{ij})^2 = \sum_{i=1}^{N} r_i [y^{ij} - \sum_{j=0}^{d} r_j^{ij} \omega_j]^2$$

$$E(\vec{\omega}) = \sum_{i=1}^{N} ((\hat{y}^{(i)} - \hat{y}^{(i)}) r_i) (\hat{y}^{(i)} - \hat{y}^{(i)})$$

$$= (\bar{y} - \hat{g})^{T} R (\bar{y} - \hat{g})$$

$$R = \begin{bmatrix} \Lambda_{1} & \bar{g} \\ \bar{g} & \bar{g} \end{bmatrix}$$

$$= (\bar{y} - \bar{\hat{y}})^{T} R (\bar{y} - \bar{\hat{y}}) \qquad R = \begin{bmatrix} \lambda_{1} & 0 & 0 & 0 & 0 \\ 0 & \lambda_{2} & 0 & 0 & 0 \\ 0 & \lambda_{3} & 0 & 0 & 0 \\ 0$$

$$E(\bar{\omega}) = \bar{y}^T R \bar{y} - \bar{\omega}^T X^T R \bar{y} - \bar{y}^T R X \bar{\omega} + \bar{\omega}^T X^T R X \bar{\omega}$$

minimizing this $\Rightarrow \nabla E(\bar{\omega}) = 0$

$$\frac{\nabla E(\vec{\omega})}{\nabla E(\vec{\omega})} = \frac{2(Rx)^{T} \vec{g}}{4}$$

$$\nabla E(\overline{\omega}) = -2(Rx)^T \overline{y} + 2 \chi^T R \chi \overline{\omega} = 0$$

$$\overline{\omega}^* = (X^T R X)^{-1} (R X)^T \overline{y}$$

$$\overline{\omega}^* = (X^T R X)^{-1} X^T R \overline{y}$$

$$X = \begin{bmatrix} \chi_1^{(1)} & \chi_2^{(1)} & \dots & \chi_d^{(n)} \\ \chi_1^{(n)} & \chi_2^{(n)} & \dots & \chi_d^{(n)} \end{bmatrix}$$

$$\widetilde{\omega} = \left(\omega, \, \omega_2 - - - \omega_d \right)^T$$

$$E(\widetilde{\omega}) = \left(\widetilde{g} - X \widetilde{\omega} \right)^T \left(\widetilde{g} - X \widetilde{\omega} \right) + \lambda \, \widetilde{\omega}^T \widetilde{\omega}$$

$$\nabla E(\widetilde{\omega}) = 0$$

$$\Rightarrow \quad \nabla E(\widetilde{\omega}) = -2 \, X^T \left(\widetilde{g} - X \widetilde{\omega} \right) + 2 \lambda \, \widetilde{L} \, \widetilde{\omega} = 0$$

$$\Rightarrow \quad -2 \, X^T \widetilde{g} + 2 \, X^T X \, \widetilde{\omega} + 2 \lambda \, \widetilde{L} \, \widetilde{\omega} = 0$$

$$\Rightarrow \quad \overline{\omega} \left(X \right)$$

$$(X \, X^T + \lambda \, T) \, \widetilde{\omega} = X^T \widetilde{g}$$

$$\Rightarrow \quad \widetilde{\omega}^* = (X \, X^T + \lambda \, T)^T \, X^T \, \widetilde{g}$$

$$\widetilde{\omega}^* = (X \, X^T + \lambda \, T)^T \, X^T \, \widetilde{g}$$

Regularization helps in avoiding overfotting.

When training data is noisy, the model won't be ab able to generalize well to future data. Regularization helps in shrinking these learned estimates to zero.

$$E(\bar{\omega}) = \sum_{i=1}^{N} (\gamma_i - \omega_i x_i - \omega_0 - \omega_i x_i)^2$$

?. Cost function:

 $\hat{y} = \omega_{n} x' + \omega_{0}$ $= \omega_{n} (n+2) + \omega_{0}$

$$E(\vec{\omega}) = \sum_{i=1}^{N} \{(y_i - \omega_i x_i - \omega_0)^2 + (\omega_i x_i)^2 + 2(y_i - \omega_i x_i - \omega_0)(\omega_i x_i)\}$$

$$= \sum_{i=1}^{N} (y_i - \omega_i x_i - \omega_0)^2 + NE([\omega_i, \vec{n}, \vec{n}])$$

$$= \sum_{i=1}^{N} (y_i - \omega_i x_i - \omega_0)^2 + NE([\omega_i, \vec{n}, \vec{n}])$$

$$= \sum_{i=1}^{N} (y_i - \omega_i x_i - \omega_0)^2 + NE([\omega_i, \vec{n}, \vec{n}])$$

$$= \sum_{i=1}^{N} (y_i - \omega_i x_i - \omega_0)^2 + \sum_{i=1}^{N} \sum_{i=1}^{N} x_i + \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} x_i + \sum_{i=1}^{N} x_i$$

8. We have
$$P(\bar{y}|x,\bar{\omega},\sigma^2) \sim N(\bar{y},\bar{z},\omega_{\bar{y}},\sigma^2)$$

$$P(\bar{\omega}|x) \sim N(\bar{z},\sigma^2) \sim N(\bar{z},\bar{z},\omega_{\bar{y}},\sigma^2)$$

$$P(\bar{\omega}|x,\bar{z},\sigma^2) \sim N(\bar{z},\bar{z},\omega_{\bar{z}},\sigma^2)$$

$$P(\bar{\omega}|x,\bar{z},\sigma^2) \sim N(\bar{z},\bar{z},\omega_{\bar{z}},\sigma^2)$$

$$P(\bar{\omega}|x,\bar{y},z,\sigma) = P(\bar{y}|x,\bar{\omega},\sigma_{\bar{z}},\rho(\bar{\omega}|z))$$

$$P(\bar{\omega}|x,\bar{y},z,\sigma) = P(\bar{y}|x,\bar{\omega},\sigma_{\bar{z}},\rho(\bar{\omega}|z))$$

$$P(\bar{z}|x,\bar{\omega},\sigma) \propto P(\bar{z}|x,\bar{\omega},\sigma) P(\bar{\omega}|z)$$

$$P(\bar{y}|x,\bar{\omega},\sigma) p(\bar{\omega}|z) = \frac{1}{(\bar{z},\bar{z},\bar{z},\bar{z})} \exp(\frac{\bar{z},\bar{z},\bar{z}}{\bar{z},\bar{z}})$$

$$P(\bar{z}|x,\bar{\omega},\sigma) p(\bar{\omega}|z) = \frac{1}{(\bar{z},\bar{z},\bar{z},\bar{z})} \exp(\frac{\bar{z},\bar{z},\bar{z}}{\bar{z},\bar{z}})$$

 $(\overline{y} - \overline{y})^{N} (\overline{y} - \overline{$

$$= \frac{1}{\left(\sqrt{2\pi}\sqrt{3}\right)^{N}}\left(\sqrt{2\pi}\sqrt{3}\right)^{N}d\exp\left[-\frac{\left(\sqrt{3}-\sqrt{3}\right)^{N}\left(\sqrt{3}-\sqrt{3}\right)}{2\sigma^{2}}+\frac{\sigma^{2}}{\sigma^{2}}\sqrt{2}\sqrt{3}\right]}$$

maninizing this probability is minimizing
the expression in exponent (without -ve sign)

i.e. minimizing $(\bar{y}-\bar{y})^T(\bar{g}-\bar{g}) + \bar{\sigma}^2 \bar{\omega}^T \bar{\omega}$

This empression is similar to 12 regularizations

with $\sqrt{\frac{2}{3}}$ $\sqrt{\frac{2}{3}}$