GRADO EN INGENIERÍA INFORMÁTICA MATEMÁTICA DISCRETA

TABLA DE LÓGICA DE ENUNCIADOS

IMPLICACIONES TAUTOLÓGICAS

$P \wedge Q \Rightarrow P, Q$	S (Simplificacion)
$P \Rightarrow P \lor Q$	A (Adicion)
$Q \Rightarrow P \to Q$	C (Condicional)
$(P \to Q) \land (Q \to R) \Rightarrow P \to R$	SH (Silogismo hipotetico)
$(P \to Q) \land (R \to S) \land (P \lor R) \Rightarrow Q \lor S$	SD (Silogismo disyuntivo)
$(P \to Q) \land P \Rightarrow Q$	MP (Modus ponens)
$(P \to Q) \land \overline{Q} \Rightarrow \overline{P}$	MT (Modus tollens)
$(P \lor Q) \land \overline{P} \Rightarrow Q$	TP (Tollendo ponens)
$(P \to \emptyset) \Rightarrow \overline{P}$	RA (Reduccion al absurdo)

EQUIVALENCIAS TAUTOLÓGICAS

$P \to Q \equiv \overline{P} \lor Q$	CD (Condicional disyuntiva)
$(P \to Q) \land (Q \to P) \equiv P \Leftrightarrow Q$ $P \to Q \equiv \overline{Q} \to \overline{P}$	CB (Condicional bicondicional)
$P \to Q = Q \to P$ $P \lor (Q \lor R) \equiv (P \lor Q) \lor R$	T (Transposicion) Asociativa
$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$ $P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$	Asociativa
, , ,	
$P \lor Q \equiv Q \lor P$	Conmutativa
$P \wedge Q \equiv Q \wedge P$	Conmutativa
$P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$	
$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$	Distributiva
$P \vee \overline{P} \equiv \tau$	Propiedad de la negacion
$P \wedge \overline{P} \equiv \emptyset$	Propiedad de la negacion
$P \equiv \overline{\overline{P}}$	DN (Doble negacion)
$P \wedge P \equiv P$	Idempotencia
$P \lor P \equiv P$	Idempotencia
$P \lor \tau \equiv \tau$	Absorbente
$P \wedge \emptyset \equiv \emptyset$	Absorbente
$\overline{(P \vee Q)} \equiv \overline{P} \wedge \overline{Q}$	LM (Ley de Morgan)
$\overline{(P \wedge Q)} \equiv \overline{P} \vee \overline{Q}$	LM (Ley de Morgan)
$P \lor (P \land Q) \equiv P$	Simplificativa
$P \wedge (P \vee Q) \equiv P$	Simplificativa
$P \wedge \tau \equiv P$	Elemento neutro
$P \lor \emptyset \equiv P$	Elemento neutro
$(P \land Q) \to R \equiv P \to (Q \to R)$	LE (Ley de exportacion