Safe Reinforcement Learning via Shielding

Mohammed Alshiekh, Roderick Bloem, Rudiger Ehlers, Bettina Konighofer, Scott Niekum, Ufuk Topcu

Presented by Karim Ghonim and Hossam Arafat

Sapienza University

July 2, 2019

Overview

- Motivation
- Introduction
- RL
- MDP
- Synthesis of Shields
- 6 Linear Temporal Logic LTL
 - Introduction to LTL
 - LTL Safety Specification and automata
- Synthesis through Safety Games
- Shielded Reinforcement Learning
- Experiments

Motivation

- Increasing use of learning-based controllers in physical systems in the proximity of humans strengthens the concern of whether these systems will operate safely
- Safety or more generally correctness during learning and execution of controllers has attracted significantly less attention than optimality and convergence
- How can we let a learning agent do whatever it is doing, and also monitor and interfere with its operation whenever absolutely needed in order to ensure safety?

What is "Safe" Reinforcement Learning?

- A framework that allows applying machine learning to control systems in a way that the correctness of the systems execution is guaranteed
- The shield monitors the actions selected by the learning agent and corrects them if and only if the chosen action is unsafe
- Real-life application
 - Autonomous Vehicles
- How do we define "Correctness"?

Shielded Reinforcement Learning

Reinforcement Learning

- Agent and Environment: the agent operates in an environment and obtains a reward after every performed action
- Goal: an agent must learn an optimal policy through trial-and-error via interactions with an unknown environment modeled by an MDP
- **Q-function**: gives a measure of how good action a is in state s

$$Q^{\pi}(s,a) \equiv r(s,a) + \gamma \sum_{t=1}^{T-1} \gamma^{t-1} r_t$$

where:

Q: Value of taking action a in state s

r: Reward obtained from taking action a in state s

t: The current time step γ : Discount Factor

T: The total number of steps per episode

Optimal Policy: computed as

$$\pi^*(s) = \arg\max_{a \in A} Q^*(s, a)$$

Markov Decision Process

- Defined as $M = \langle S, s_I, A, P, R \rangle$ where
 - S is a set of states
 - s_I is the initial state
 - A is a set of actions
 - P: transition function $P(s_{t+1}|s_t,a_t)$
 - $R: S \times A \times S \rightarrow \mathbb{R}$
- Solution to **MDP** called policy $\pi: S \to A$ that maximizes the cumulative discounted reward
- RL is the task of learning a possibly optimal policy, from an initial state s_I, on an MDP where only S and A are known, while P and R are not known.

Synthesis of Shields

Given: An LTL formula φ as specification with $Prop = \mathcal{I} \cup \mathcal{O}$.

Obtain: A model of a reactive system that **realizes** φ .

 \blacktriangleright For every sequence of inputs, the trace of the system satisfies φ .

Finite Reactive Systems

- Defined as $S = \langle Q, q_0, \Sigma_I, \Sigma_O, \delta, \lambda \rangle$ where
 - Q is a finite set of states
 - $q_I \in Q$ is the initial state
 - Σ_I : is the input alphabet
 - Σ_O : is the output alphabet
 - $\delta: Q \times \Sigma_I \to Q$ is the transition function
 - $\lambda: Q \times \Sigma_I \to \Sigma_O$ is the output function

Linear Temporal Logic - LTL

Allows expressing temporal patterns about a property (over infinite traces)

Syntax

```
X\varphi : \varphi is true in the next moment in time
```

 $\begin{array}{ll} G\varphi & : \varphi \text{ is true forever} \\ F\varphi & : \varphi \text{ is true eventually} \end{array}$

 $\varphi \mathcal{U} \psi$: φ is true until ψ is true

Example

$$G(level > 0) \land G(level < 100) \land G((open \land Xclose) \Rightarrow XXclose \land XXXclose) \land G((close \land Xopen) \Rightarrow XXopen \land XXXopen)$$

LTL

LTL Introduces

Safety Specification φ^S : something bad should never happen $G\neg(WaterLevel > 93)$

 φ^{S} defines a set of allowed traces

The reactive system $\mathcal S$ realizes φ^S if for every sequence of inputs, the trace of the system realizes φ^S

LTL Safety Specification and automata

LTL safety specifications can be translated into a safety word automaton that represents it.

A DFA is a tuple $\varphi^s = \langle Q, q_0, \Sigma, \delta, F \rangle$

Q is the finite set of states

 $q_0 \in Q$ is the initial state

 $\sum_{F\subseteq Q}$ is the input alphabet

is the set of safe states

 $\delta: Q \times \Sigma \to S$ is the transition function

A run induced by the trace $\sigma = \{\sigma_0, \sigma_1, \sigma_2...\sigma_m\}$ is a sequence of states $q = q_0, q_1...$ such that $q_{i+1} = \delta(q_i, \sigma_i) \ \forall i \in N$.

A trace σ of a system S satisfies φ^s if the induced run visits only safe states, i.e., $\forall i > 0. q_i \in F$.

Example: Resource Arbiter

Synthesis of an arbiter:

- ightharpoonup Two clients issue **requests** r_1 , r_2 for access to shared resources.
- ▶ The arbiter produces **grants** g_1 , g_2 granting access to the resources.

$$\varphi = G(\neg g_1 \lor \neg g_2) \land G(r_1 \Rightarrow Fg_1) \land G(r_2 \Rightarrow Fg_2)$$

The **specification** φ of the arbiter is the conjunction of:

- 1. **Mutual exclusion:** at no point in time should both g_1 and g_2 be true.
- 2. **Response:** every request r_i from client i (for $i \in \{1, 2\}$) should eventually be followed by grant g_i for client i.

Abstraction

- Planning ahead does not require the environment dynamics to be completely known in advance
- A (coarse finite-state) abstraction of the environment dynamics is needed to reason about when exactly a specification violation cannot be avoided
- Abstraction has to be conservative w.r.t. the behavior of the real MDP
- Abstraction may have finitely many states even if the MDP has infinitely many states

Abstraction

Given an MDP $M = \langle S, s_I, A, P, R \rangle$ and an MDP Observer Function $f: S \to I$

An Abstraction is a tuple $\varphi^{\mathcal{M}} = \langle Q_{\mathcal{M}}, q_{0,\mathcal{M}}, \Sigma, \delta_{\mathcal{M}}, F_{\mathcal{M}} \rangle$

 $Q_{\mathcal{M}}$ is the finite set of states

 $q_{0,\mathcal{M}} \in Q$ is the initial state

 $\Sigma = A \times L$ is the input alphabet

 $F \subset Q$ is the set of safe states

The transition function, $\delta_{\mathcal{M}}$, specifies the next state as, for every trace $s_0, s_1... \in S$ with the corresponding action sequence $a_0, a_1... \in A$ of the MDP, for every automaton run $q = q_0, q_1...Q$ of $\varphi^{\mathcal{M}}$:

$$q_{i+1} = \delta_{\mathcal{M}}(q_i, l_i, a_i))$$
 for $l_i = L(s_i) \ \forall \in \mathbb{N}$

Example

Synthesis through Safety Games

- Translate φ^s and $\varphi^{\mathcal{M}}$ to a safety game $G = (G, g_0, \Sigma_I, \Sigma_O, \delta, F^g)$ between two players.
- Compute the winning region $W \subseteq F^g$ of G
- Translate G and W to a reactive system S = $(Q_S, q_{0,S}, \Sigma_{I,S}, \Sigma_{O,S}, \delta_S, \lambda_S)$, that constitutes the shield.

Interaction of Shield & Agent

The shield monitors the actions of the agent, and substitutes the selected actions by safe actions whenever this is necessary to prevent the violation of φ^{S}

Shield

- In each step t, the agent selects an action a_t^1
- The shield forwards a_t to the environment, i.e., $a_t = a_t^1$. Only if a_t^1 is unsafe w.r.t. φ^S , the shield selects a different action $a_t \neq a_t^1$ instead.
- The environment executes a_t , moves to s_{t+1} and provides r_{t+1} .
- The agent receives a_t and r_{t+1} , and updates its policy for a_t using r_{t+1}

Rewards for unsafe Actions

- ullet Assign a punishment $r_{t+1}^{'} < 0$ to a_t^1
 - The agent learns that selecting a_t^1 at state s_t is unsafe, without ever violating φ^S
 - No guarantee that unsafe actions are not part of the final policy
 - Shield has to remain active even after the learning phase
- Assign the reward r_{t+1} to a_t^1
 - Picking unsafe actions can likely be part of an optimal policy by the agent
 - Since an unsafe action is always mapped to a safe one, this does not pose a problem and the agent never has to learn to avoid it
 - Shield is (again) needed during the learning and execution phases

Experiments

Demonstration

Jupyter Notebook