Automi e TM

Corso di Fondamenti di Informatica - 1 modulo Corso di Laurea in Informatica Università di Roma "Tor Vergata"

Prof. Giorgio Gambosi

Definire una MTD a 1 nastro che, dato un numero in binario, ne calcola il doppio, in binario.

Definire una MTD che accetta il linguaggio L su $\{0,1\}$ tale che per ogni $w \in L$ si ha che ogni prefisso di w (eccetto ε) ha più 1 che 0. Mostrare le computazioni eseguite dalla MTD su input 00101 e 00110.

Si consideri la MTD $\mathcal{M} = (\{q_0, q_1, q_2\}, \{a, b\}, \{a, b, _\}, \delta, q_0, _, \{q_2\}),$ dove δ è composta dalle quattro transizioni:

$$\begin{array}{rcl} \delta(q_{0},a) & = & \{(q_{0},_,R)\} \\ \delta(q_{0},b) & = & \{(q_{1},_,R)\} \\ \delta(q_{1},b) & = & \{(q_{1},_,R)\} \\ \delta(q_{1},_) & = & \{(q_{2},_,R)\} \end{array}$$

- 1. Specificare la sequenza di mosse operate da \mathcal{M} sugli input abb e bb.
- 2. Fornire una descrizione di $L(\mathcal{M})$ mediante espressione regolare.
- 3. Supponiamo di aggiungere alle precedenti la transizione $\delta(q_1, a) = \{(q_0, _, R)\}$: fornire una espressione regolare che descriva il nuovo linguaggio accettato.

Sia dato il linguaggio $L=\{\sigma\in\{a,b\}^*\mid \sigma=a^nb^n,n>o\}$. Definire una Macchina di Turing deterministica che riconosca L.

Definire una MTD a 3 nastri che accetta il linguaggio $L = \{a^ib^jc^k \mid i,j,k \geq 1 \text{ e } i=j \text{ o } j=k\}.$