МАТЕРИАЛЫ ЗАДАНИЙ ОТБОРОЧНОГО ЭТАПА

Олимпиады школьников "Надежда энергетики" в 2017/18 учебном году

ФИЗИКА

ЗАДАНИЕ ПО ФИЗИКЕ 7 класс

1. От пристани «Школьная» до пристани «Студенческая», расположенной ниже по течению реки, ходит речной трамвайчик. Когда тем же маршрутом следует буксир с тяжёлой баржей, скорость которого (относительно воды) в n раз меньше скорости трамвайчика, то он затрачивает на свой путь в k раз больше времени, чем трамвайчик (n>1, k>1). Во сколько раз дольше, чем трамвайчик, будет плыть бревно от «Школьной» до «Студенческой»?

Решение.

Введём следующие обозначения:

u – скорость течения реки, v – скорость буксира, S – расстояние между пристанями.

$$\begin{cases} (nv+u)t = S \\ (v+u)kt = S \\ uxt = S \end{cases}$$

$$\begin{cases} (nv+u)t = uxt \\ (v+u)kt = uxt \end{cases}$$

$$\begin{cases} (nv = u(x-1) \\ kv = u(x-k) \\ \frac{n}{k} = \frac{x-1}{x-k} \end{cases}$$

$$nx - nk = kx - k$$

$$x = k \cdot \frac{n-1}{n-k}$$

Ответ: в $k \cdot \frac{n-1}{n-k}$ дольше.

ЗАДАНИЕ ПО ФИЗИКЕ 8 класс

2. В Астрахани на баржу погрузили партию арбузов массой m_1 . Известно, что спелые арбузы состоят в основном из воды. В данной партии доля воды в арбузах составляла x_1 (т.е. отношение массы воды в арбузах к массе арбузов равнялось x_1). Погода стояла жаркая. Пока арбузы плыли в Москву, доля воды в них уменьшалась из-за испарения воды. По прибытии в Москву доля воды в арбузах составляла уже x_2 . Найдите массу арбузов, привезённых в Москву.

Решение

Масса НЕ ВОДЫ в арбузах не изменяется при испарении воды. Тогда:

$$m_1(1-x_1) = m_2(1-x_2)$$

 $m_2 = m_1 \frac{1-x_1}{1-x_2}$.

ЗАДАНИЕ ПО ФИЗИКЕ 9 класс

3. Паук-серебрянка тащит пузырек воздуха под воду. На глубине 10 см радиус пузырька составил 3 мм. Определите выталкивающую силу, действующую на этот пузырек, и оцените давление воздуха в нем на глубине 5 м. Считайте, что давление воздуха в пузырьке обратно пропорционально его объему. Объем шара можно вычислить по формуле $V = \frac{4}{3}\pi R^3$, где R – радиус шара.

Решение.

Давление в пузырьке складывается из атмосферного, гидростатического и поверхностного натяжения (которым мы пренебрегаем). Таким образом, давление воздуха в пузырьке на глубине 5 метров $P_2 = P_0 + \rho g h_2$. Можно также пренебречь гидростатическим давлением на небольшой глубине (не считать ошибкой). Таким образом, чтобы вычислить выталкивающую силу (силу Архимеда) на новой глубине, нужно вычислить новый объем

пузырька:
$$V_2 = \frac{V_1 \left(P_0 + \rho g h_1\right)}{P_0 + \rho g h_2}$$
, где ρ – плотность воды. Тогда $F_A = \frac{4\pi R^3 \left(P_0 + \rho g h_1\right)}{3 \left(P_0 + \rho g h_2\right)} \rho_{\rm sodul} g$.

Можно пренебречь гидростатическим давлением на небольшой глубине h_1 , т.е. $P_1 = P_0 + \rho g h_1 = P_0$.

В этом случае Р=1,5 атм, : F арх=0,75 мН.

Ответ: F_арх=0,75 мН; Р=1,5 атм (150 кПа).

ЗАДАНИЕ ПО ФИЗИКЕ 10 класс

4. Маленький тяжёлый шарик, подвешенный на лёгкой нерастяжимой нити, совершает колебания в вертикальной плоскости. В момент наибольшего отклонения шарика от положения равновесия его ускорение составляет a=3g/5, а максимальная высота, на которую поднимается шарик (если её отсчитывать от положения равновесия), составляет h=20 см. Определите длину нити.

Решение.

В точке максимального отклонения ускорение только тангенциальное, поэтому

$$a = g sin\alpha; \quad cos\alpha = \sqrt{1 - \left(\frac{a}{g}\right)^2} \\ h = l \cdot (1 - cos\alpha) \\ l = \frac{h}{1 - \sqrt{1 - \left(\frac{a}{g}\right)^2}} = \frac{20}{1 - \sqrt{1 - \frac{9}{25}}} = 20 \cdot 2 = 100 \text{ cm} = 1 \text{ m}$$

5. Пузырек воздуха медленно всплывает из глубины. На глубине 5 м радиус пузырька составил 1 мм. Во сколько раз изменится масса паров воды в этом пузырьке, когда до поверхности ему останется 10 см? Вкладом сил поверхностного натяжения пренебречь, температуру воды считать неизменной.

Решение.

Давление в пузырьке складывается из атмосферного, гидростатического и поверхностного натяжения (которым пренебрегаем). Таким образом $P_1 = P_0 + \rho g h_1$, а $P_2 = P_0 + \rho g h_2$. Можно также пренебречь гидростатическим давлением на небольшой глубине h_1 . Т.к. процесс медленный, а пузырек маленький, то температура внутри пузырька успевает выровняться с температурой воды, а влажность остается 100%, следовательно парциальное давление (плотность) паров воды неизменно. Следовательно, отношение масс паров воды в пузырьке в начале и в конце процесса определяется только отношением начального и конечного объемов пузырька: $\frac{m_2}{m_1} = \frac{V_2}{V_1} = \frac{\left(P_0 + \rho g h_1\right)}{P_0 + \rho g h_2}.$

Ответ: увеличится в 1,5 раза

6. Нормальное ускорение частицы постоянно по модулю. Нарисуйте траекторию движения частицы, если проекция тангенциального ускорения на направление вектора скорости больше нуля. Объясните рисунок.

Решение.

По условию задачи тангенциальное ускорение частицы сонаправлено с вектором скорости, т.е. модуль скорости увеличивается. Поскольку нормальное ускорение $(a_n = \frac{V^2}{R})$ постоянно по величине, то радиус кривизны траектории увеличивается. Траектория движения частицы – раскручивающаяся спираль.

7. Уравнение траектории мяча имеет вид $y = x - kx^2$, где k – размерный коэффициент. Определите максимальную высоту подъема мяча.

Решение.

Из уравнения траектории следует, что:

- 1. мяч брошен под углом 45° к горизонту,
- 2. дальность полета мяча равна $\frac{1}{\kappa} = 2 sin \alpha cos \alpha \frac{v_0^2}{g}$.

Максимальная высота подъема равна $sin^2 \alpha \frac{v_0^2}{2g} = \frac{1}{4\kappa}$.

ЗАДАНИЕ ПО ФИЗИКЕ 11 класс

8. Скорости двух разноимённо заряженных частиц, движущихся в однородном магнитном поле с известной магнитной индукцией B из одной точки, одинаковы и в некоторый момент времени перпендикулярны друг другу и перпендикулярны линиям магнитной индукции. Определите, на каком расстоянии друг от друга будут находиться частицы, когда изменение импульса этой системы частиц достигнет максимально возможного значения, равного K. Модуль заряда частиц известен и равен Q.

В начальный момент времени скорости частиц \vec{v}^+ и \vec{v}^- перпендикулярны друг другу, частицы движутся по окружностям (см.рис.). Начальное значение импульса системы частиц $\vec{p}_1 + \vec{p}_2 = \vec{P}_{_{\!\!H}}$, причем $P_{_{\!\!H}} = m v \sqrt{2}$. Изменение импульса системы станет максимальным, когда $\vec{P}_{_{\!\!H}} = -2m \vec{v}$ (см.рис.), модуль изменения импульса системы $|\Delta P| = \left(2 + \sqrt{2}\right)mv = K$. Радиусы лоренцевых окружностей одинаковы ($R = \frac{m v}{QB}$). Расстояние между частицами в этот момент времени $AB = 2R = \frac{2K}{\left(2 + \sqrt{2}\right)QB}$.

*Если изменить знаки зарядов частиц, рисунок изменится, а ответ – нет.

9. Скорости двух разноимённо заряженных частиц, движущихся в однородном магнитном поле с известной магнитной индукцией B, одинаковы и в начальный момент времени перпендикулярны друг другу и перпендикулярны линиям магнитной индукции. Определите, через какой минимальный промежуток времени импульс системы этих двух частиц достигнет максимального значения. Модуль заряда частиц известен и равен Q, массы частиц одинаковы и равны m.

В начальный момент времени скорости частиц \vec{v}^+ и \vec{v}^- перпендикулярны друг другу, частицы движутся по окружностям (см.рис.), периоды обращения частиц одинаковы. Максимальное значение модуля импульса системы частиц $|\vec{p}_1 + \vec{p}_2| = 2$ то достигается через

время $\tau = \frac{3T}{8} (T$ - период обращения). Если изменить направление одного из векторов (\vec{v}^+, \vec{v}^-)

или
$$\vec{B}$$
) то $\tau^* = \frac{T}{8}$.

Omsem:
$$\tau = \frac{3\pi m}{4OB}$$
, $\tau^* = \frac{\pi m}{4OB}$

10. К конденсатору ёмкостью C и зарядом q присоединили последовательно незаряженный конденсатор ёмкостью 2C. Затем схему замкнули незаряженным конденсатором ёмкостью 3С. Какое количество теплоты выделилось в системе?

$$\begin{array}{ccc}
C & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & + \\
 & +$$

Решение

Так как заряд системы не изменяется, а конденсаторы 2С и 3С соединены последовательно друг другу и параллельно конденсатору С, то

$$Q = \frac{q^2}{2C} - \frac{q^2}{2 \cdot \left(C + \frac{2C \cdot 3C}{2C + 3C}\right)} = \frac{q^2}{2C} \cdot \left(1 - \frac{5}{5 + 6}\right) = \frac{q^2}{2C} \cdot \frac{6}{11} = \frac{3q^2}{11C}$$

11. На противоположных концах горизонтальной невесомой недеформированной пружины укреплены два различных по массе груза. Пружину растянули, приложив к грузам одинаковые по величине, но противоположные по направлению силы. При этом одно из тел сместилось на расстояние a, а другое – на b = 4a. Каким

период колебаний, если отпустить оба одновременно? Коэффициент жесткости пружины к. Тела и пружина находятся на гладком горизонтальном столе. Масса более легкого тела равна m_1 .

Решение

Центр масс X_u системы остается на месте. Используя связь между смещениями тел, получим, например, для первого тела:

$$m_1 a_1 + k \Delta x_1 \frac{m_1 + m_2}{m_1 m_2} = 0.$$

Это уравнение гармонических колебаний с периодом

$$T = 2\pi \sqrt{\frac{m_1 m_2}{k \left(m_1 + m_2\right)}} \ .$$

Большее смещение у легкого тела, т.е. масса тяжелого 4
$$m_I$$
. Тогда
$$T = 2\pi \sqrt{\frac{m_1 m_2}{k \left(m_1 + m_2\right)}} = 4\pi \sqrt{\frac{m_1}{5k}} \; .$$

12. Маленький тяжёлый шарик массой m, подвешенный на лёгкой нерастяжимой нити, совершает колебания в вертикальной плоскости. Минимальное значение силы натяжения нити в процессе движения шарика равно T_1 =0,6mg. Определите максимальное значение этой силы.

Решение.

В точке максимального отклонения ускорение только тангенциальное, поэтому из второго закона Ньютона получаем

$$ma_n = T_1 - mgcos\alpha$$

 $cos\alpha = 0.6$

В момент прохождения положения равновесия ускорение шарика равно

$$a_n = \frac{v^2}{l}$$

$$ma_n = T_{max} - mg$$

$$m\frac{v^2}{2} = mgH = mgl(1 - cos\alpha) = \frac{mgl}{5}$$

$$a_n = \frac{v^2}{l} = \frac{2}{5}g.$$

$$T_{max} = ma_n + mg = 1,8mg.$$