Вводная лекция Методы оптимизации

Александр Безносиков

Московский физико-технический институт

5 сентября 2024

Команда курса: лектор

- Безносиков Александр Николаевич
- почта: beznosikov.an@phystech.edu, anbeznosikov@gmail.com
- tg: @abeznosikov

Команда курса: семинаристы

- Андреев Артем Викторович tg: @artyomandreyev
- Богданов Александр Иванович tg: @d0dos
- Былинкин Дмитрий Андреевич tg: @lxstsvund
- Кормаков Георгий Владимирович tg: @gkormakov
- Корнилов Никита Максимович tg: @Tugnir

Команда курса: лектор и семинаристы

- Моложавенко Александр Александрович tg: @MetaMelon
- Ткаченко Светлана tg: @Aikiseito
- Чежегов Савелий Андреевич tg: @Savochak
- Юдин Никита Евгеньевич tg: @nikitayudin

Команда курса: ассистенты

- Кузнецова Алина
- Лисов Петр
- Пичугин Александр
- Ребриков Алексей
- Торопин Иван
- Хафизов Фанис
- Янко Иван

Команда курса: помощь с материалами

- Баширов Наиль
- Подлипнова Ирина
- Прохоров Борис
- Шестаков Александр

Telegram беседа

Диск с материалами

Форма обратной связи

Правила игры: система оценивания

Вид активности	Баллы
тесты на 10 минут в начале	3
каждого семинара по теме	
прошлой лекции и прошлого	
семинара	
домашнее задание (выдается	3 + 3
каждую неделю)	
контрольная работа в	3
середине семестра по темам	
лекций и семинаров	
коллоквиум в конце семестра	3
по темам лекций и семинаров	
разбор статьи	2
Итого:	17

Организационные вопросы 00000000000000

Правила игры: система оценивания

- Для получения оценки удовлетворительно и выше необходимо, чтобы было выполнено хотя бы одно из следующих условий: оценка за коллоквиум ≥ 1 , оценка за KP ≥ 1 .
- Для получения оценки хорошо и выше необходимо, чтобы было выполнено оба следующих условия: оценка за коллоквиум ≥ 1 , оценка за $\mathsf{KP} \geq 1$.

Правила игры: комментарии

- Ни один из видов активности не является 100% обязательным, но смотри дополнительные правила выше.
- Тесты будут проводиться на каждом семинаре.
- ДЗ будут появляться в четверг. Время на выполнение: 2 недели
- ДЗ состоит из двух частей: основной и дополнительной.
 Основная часть легче и предполагается, что ее достаточно для хорошего погружения в курс, дополнительная часть для более глубого погружения в заинтересовавшие темы.
- При подозрении в списывании ДЗ баллы за конкретное домашнее задание обнуляются у всех авторов, подозреваемых в списывании (в том числе и у тех, кто дал списать).
- КР проводится в середине семестра в отдельный день (суббота/воскресенье).

Правила игры: комментарии

- Коллоквиум проходит в конце семестра во время последнего семинара и на зачетной неделе (на выбор). Программа коллоквиума соответствует всей программе курса, изученной в рамках лекций и семинаров. Принимают коллоквиум семинарист и несколько приглашенных преподавателей. Процедура коллоквиума соответствует процедуре проведения обычного устного экзамена на Физтехе с билетами, дополнительными вопросами/задачами и беседой в рамках курса.
- Разбор статьи предполагает полный разбор популярной статьи в области оптимизации. Необходимо разобраться в идее, в доказательствах, а также воспроизвести численные эксперименты, добавив к ним свои. Отчетность: 15 минутное выступление с презентацией на семинарском занятии. Заявки на разбор статьи принимаются до 31 октября.

Задача оптимизации

• Вопрос: какие приложения задач оптимизации знаете/уже встречали?

Задача оптимизации

- Вопрос: какие приложения задач оптимизации знаете/уже встречали? Приложений у оптимизации масса: машинное обучение, анализ данных, статистика, финансы, логистика, планирование, управление и многие другие.
- Оптимизация часто выступает инструментом во многих прикладных задачах, люди пользуются готовыми решениями/пакетами/"черными ящиками", который способны решать задачи оптимизации. Цель курса как познакомиться с такими "черными ящиками", так и заглянуть внутрь и понять, что лежит внутри (в том числе с токи зрения теории).

Bonpoc: Как формулируется задача оптимизации в машинном обучении?

• На практике обычно имеется только конечная выборка/конечный набор данных $(a_1, b_1), \ldots, (a_n, b_n)$, на котором формулируется задача минимизации эмпирической функции потерь:

$$\min_{x \in \mathbb{R}^d} \left\{ \hat{f}(x) = \frac{1}{n} \sum_{i=1}^n \ell(g(x, a_i), b_i) \right\}. \tag{1}$$

• Однако предполагается, что выборка взята из некоторого распределения \mathcal{D} , и хочется получить хорошее приближенное решение задачи минимизации ожидаемой функции потерь:

$$\min_{\mathbf{x} \in \mathbb{R}^d} \left\{ f(\mathbf{x}) = \mathbb{E}_{(a,b) \sim \mathcal{D}}[\ell(g(\mathbf{x},a),b)] \right\}. \tag{2}$$

Вопрос: Какие примеры ℓ и g уже встречались?

• Линейная регрессия: $g(x,a) = \langle x,a \rangle$, $\ell(b_1,b_2) = (b_1 - b_2)^2$.

• NLP: g — NLP transformer (LLM), $I(b_1,b_2)=-\int b_1(x)\log b_2(x)dx$ (cross-entropy на прдсказание следующего слова)

- (1) называется оффлайн постановкой, (2) обычно называется онлайн постановкой. Вопрос: почему?
- В (1), у нас есть выборки данных, которые можно обрабатывать как угодно, забыв об исходном распределении \mathcal{D} . В (2) может не быть выборки. Данные поступают в сеть по одной точке за раз. Нам нужно обрабатывать эти данные в момент их поступления, времени на сбор большого набора данных нет.

• **Вопрос**: Возникает естественный вопрос - как связаны эти задачи? (1) является Монте-Карло аппроксимацией интеграла (2).

Теорема

Если $\ell(g(x,a_i),b_i)$ выпукла по x для любых $a_i,\ b_i,\ M$ -Липшицева по x, и мы ограничим область поиска минимума множеством Q с диаметром D, тогда для $\hat{x}^*=\operatorname{argmin}_{x\in Q}\hat{f}(x)$ с вероятностью хотя бы $1-\delta$

$$\left| f(\hat{x}^*) - \min_{x \in Q} f(x) \right| = O\left(\sqrt{\frac{M^2 D^2 d \ln(n) \ln(d/\delta)}{n}}\right).$$

• Популярность оптимизации в машинном обучении

Adam: A method for stochastic optimization

193709 20

2014

DP Kingma, J Ba arXiv preprint arXiv:1412.6980

• Одна из ключевых секций на ведущих ML конференциях.

Статистика

Предположим, что некоторая переменная b зависит от переменных $a_1, a_2, a_3, \ldots, a_{d-1}$ линейным образом:

$$b(a_1,\ldots,a_{d-1})=x_0+x_1a_1+x_2a_2+\ldots+x_{d-1}a_{d-1},$$

где коэффициенты x_0, \dots, x_{d-1} нам неизвестны. Предположим, что мы хотим найти эти коэффициенты, измеряя переменную b при различных значениях a_1, \dots, a_{d-1} . Казалось бы, в этом нет ничего сложного, ведь для решения системы достаточно провести d измерений. Вопрос: какая проблема?В действительности измерения производятся с некоторой погрешностью: для заданного набора $a_1^i, a_2^i, \dots, a_{d-1}^i$ мы измеряем

$$b_i = x_0 + x_1 a_1 + \ldots + x_{d-1} a_{d-1} + \xi_i,$$

где $\xi_i \sim \mathcal{N}(0, \sigma^2)$.

4□ > 4問 > 4 = > 4 = > = 90

Статистика

- Другими словами, мы предполагаем, что $b_i \sim \mathcal{N}(x_0 + x_1 a_1 + \ldots + x_{d-1} a_{d-1}, \sigma^2)$, где параметры $x = (x_0, \ldots, x_{d-1})^\top$ должны быть найдены по выборке $\{b_i\}_{i=1}^n$ (мы будем считать, что b_1, \ldots, b_n независимые случайные величины). Вопрос: Из каких соображений выбрать параметры x_0, \ldots, x_{d-1} ?
- Можно, например, рассмотреть оценку максимального правдоподобия (для краткости введем вектор $x^i = (1, x_1^i, \dots, x_{d-1}^i)^{\top}$):

$$x^* = \arg\max_{x \in \mathbb{R}^d} \prod_{i=1}^n \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma^2} (b_i - \langle a^i, x \rangle)^2\right)$$
$$= \arg\max_{x \in \mathbb{R}^d} \ln\left(\prod_{i=1}^d \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma^2} (b_i - \langle a^i, x \rangle)^2\right)\right).$$

Статистика

 Поскольку логарифм произведения равен сумме логарифмов, а аддитивные и мультипликативные константы не меняют точку оптимума, получаем:

$$\begin{aligned} x^* &=& \arg\max_{\mathbf{x}\in\mathbb{R}^d} \left\{ \mathsf{Const} + \sum_{i=1}^n -\frac{1}{2\sigma^2} (b_i - \langle \mathbf{a}^i, \mathbf{x} \rangle)^2 \right\} \\ &=& \arg\min_{\mathbf{x}\in\mathbb{R}^d} \sum_{i=1}^n (b_i - \langle \mathbf{a}^i, \mathbf{x} \rangle)^2 \\ &=& \arg\min_{\mathbf{x}\in\mathbb{R}^d} \|A\mathbf{x} - \mathbf{b}\|_2^2, \end{aligned}$$

где A составлена из строк $(a^i)^{\top}$.

Рюкзак

- На производстве могут выпускать товары d типов, нужно оптимально организовать производство (разработать план $\{x_i\}_{i=1}^d$, сколько товаров каждого типа производить). Чтобы
 - 🚺 выполнялись ограничения на рабочую силу (для производства 1 у.е. товара iго типа в месяц нужно a_i работников, всего работников A): $\sum_{i=1}^d a_i x_i \leq A$,
 - была возможность закупить сырье (для производства 1 у.е. товара iго типа в месяц нужно b_i сырья j при этом цена формируется в зависимости от размера заказа по функции $c_i(\cdot)$, всего средств на закупку C): $\sum_{i=1}^d \sum_{i=1}^n c_j(b_j x_i) \leq C,$
 - 3 а главное максимизировалась прибыль от продажи (цена за 1 у.е. товара *i*го типа d_i): $\max_{\{x_i\}>0} d_i x_i$.

Вопрос: по-хорошему x_i дискретны, а мы решаем непрерывную задачу это сильно страшно? Зависит от масштабов производства: округление может дать хороший результат, но существуют и более хитрые трюки, как решать дискретные задачи через непрерывные.

Задача коммивояжера

• На плоскости заданы N точек с координатами $\{x_i, y_i\}_{i=1}^N$, нужно построить путь кратчайшей длины, проходящий через все точки. Формально:

$$\min_{\mathsf{path}} \left[\sum_{i=1}^{N-1} (x_{\mathsf{path}(i+1)} - x_{\mathsf{path}(i)})^2 + (y_{\mathsf{path}(i+1)} - y_{\mathsf{path}(i)})^2 \right].$$

Существует масса способов ее решения, один из самых популярных — линейное программирование.

Немного истории

- 1847: Коши и градиентный спуск для линейных систем
- 1950ые: линейное программирование (быстро перешло в нелинейное программирование), появление стохастических методов
- 1980ые: появление теории для общих задач.
- 2010ые: задачи оптимизации большого размера, теория стохастических методов

Задача оптимизации

$$\min_{\substack{g_i(x)\&0,\\i=1,\ldots,m,\\x\in Q}} f(x)$$

- ullet $Q\subseteq \mathbb{R}^d$ подмножество d-мерного пространства
- ullet $f:Q o\mathbb{R}$ некоторая функция, заданная на множестве Q
- ullet В качестве & берётся \le либо =
- ullet $g_i(x):Q o\mathbb{R},\ i=1,\ldots,m$ функции, задающие ограничения

Вопрос: что можно сказать про эту задач? сложная ли эта задача?

Задачи оптимизации. Первые наблюдения.

- **1** В общем случае задачи оптимизации могут не иметь решения. Например, задача $\min_{x \in \mathbb{R}} x$ не имеет решения.
- 2 Задачи оптимизации часто нельзя решить аналитически.
- ③ Их сложность зависит от вида целевой функции f, множества Q и может зависеть от размерности x.

Если же задача оптимизации имеет решение, то на практике её обычно решают, вообще говоря, приближённо. Для этого применяются специальные алгоритмы, которые и называют методами оптимизации.

Методы оптимизации

- Нет смысла искать лучший метод для решения конкретной задачи. Например, лучший метод для решений задачи $\min_{x \in \mathbb{R}^d} \|x\|^2$ сходится за 1 итерацию: этот метод просто всегда выдаёт ответ $x^*=0$. Очевидно, что для других задач такой метод не пригоден.
- Эффективность метода определяется для класса задач, т.к. обычно численные методы разрабатываются для *приближённого* решения множества однотипных задач.
- Метод разрабатывается для класса задач
 ⇒ метод не может иметь с самого начала полной информации о задаче. Вместо этого метод использует модель задачи, например, формулировку задачи, описание функциональных компонент, множества, на котором происходит оптимизация и т.д.

• Предполагается, что численный метод может накапливать специфическую информацию о задаче при помощи некоторого оракула. Под оракулом можно понимать некоторое устройство (программу, процедуру), которое отвечает на последовательные вопросы численного метода.

Вопрос: Какого рода вопросы хочется задавать оракулу?

Примеры оракулов

- Оракул нулевого порядка в запрашиваемой точке x возвращает значение целевой функции f(x).
- Оракул первого порядка в запрашиваемой точке возвращает значение функции f(x) и её градиент в данной точке $\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \dots, \frac{\partial f(x)}{\partial x_n}\right)$.
- Оракул второго порядка в запрашиваемой точке возвращает значение и градиент функции $f(x), \nabla f(x)$, а также её гессиан в данной точке $\left(\nabla f^2(x)\right)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}$.

Общая итеративная схема метода оптимизации ${\mathcal M}$

Входные данные: начальная точка x^0 (0 — верхний индекс), требуемая точность решения задачи $\varepsilon > 0$.

Настройка. Задать k=0 (счётчик итераций) и $I_{-1}=\varnothing$ (накапливаемая информационная модель решаемой задачи).

Основной цикл

- $oldsymbol{0}$ Задать вопрос к оракулу $\mathcal O$ в точке x^k .
- **2** Пересчитать информационную модель: $I_k = I_{k-1} \cup (x^k, \mathcal{O}(x^k))$.
- footnotesize 3 Применить правило метода ${\cal M}$ для получения новой точки x^{k+1} по модели I_k .
- **4** Проверить критерий остановки $\mathcal{T}_{\varepsilon}$. Если критерий выполнен, то выдать ответ \bar{x} , иначе положить k:=k+1 и вернуться на шаг 1.

Примеры итерационных методов. Градиентный спуск

Рассмотрим задачу оптимизации

$$\min_{x\in\mathbb{R}^d}f(x),$$

где функция f(x) дифференцируема. Предположим, что в любой точке мы можем посчитать её градиент.

Алгоритм 1 Градиентный спуск с постоянным размером шага

Вход: размер шага $\gamma > 0$, стартовая точка $x^0 \in \mathbb{R}^d$, количество итераций K

- 1: **for** k = 0, 1, ..., K 1 **do**
- 2: Вычислить $\nabla f(x^k)$
- 3: $x^{k+1} = x^k \gamma \nabla f(x^k)$
- 4: end for

Выход: x^K

Вопрос: в чем Алгоритм 1 отличается от определения общей итеративной схемы? В итеративной схеме использовался $\mathcal{T}_{\varepsilon}$.

Критерии останова

• По аргументу:

$$||x^k - x^*|| \le \varepsilon.$$

Вопрос: какие проблемы тут видим?

х* – неизвестно, но можно так:

$$||x^{k+1} - x^k|| \le ||x^{k+1} - x^*|| + ||x^k - x^*||.$$

Тогда если $||x^{k+1} - x^*|| < ||x^k - x^*|| < \varepsilon$, следует $||x^{k+1} - x^k|| < 2\varepsilon$ (в обратную сторону, очевидно, неверно). $||x^{k+1} - x^k|| < \varepsilon$ – это скорее практический вариант критерия, который работает, если есть понимание (интуиция), что $||x^k - x^*|| \to 0$.

- x^* не уникально. Тогда можно поменять следующий критерий
- По функции: $f(x^k) - f^* \leq \varepsilon$.

Часто f^* известно, например, для $f(x) = \|Ax - b\|^2$. На практике можно использовать $|f(x^k) - f(x^{k+1})|$.

• По норме градиента: $\|\nabla f(x^k)\| < \varepsilon$.

Вопрос: когда такой критерий можно использовать? В безусловной оптимизации

Сложность методов оптимизации

- Аналитическая/Оракульная сложность число обращений к оракулу, необходимое для решения задачи с точностью ε .
- Арифметическая/Временна'я сложность общее число вычислений (включая работу оракула), необходимых для решения задачи с точностью ε .