Cryptanalyse des chiffrements par substitution Master DID, I131

Les deux méthodes classiques sont :

- celle qui consiste à calculer l'indice de coïncidence, proposée par Wolfe Friedmann (1881-1869, né en Moldavie et cryptologue de l'armée américaine);
- le test de Kasiski (Friedrich Kasiski, 1805-1881, officier cryptologue, au sein de l'armée prussienne).

Ce qui suit est reproduit de "Cryptographie, théorie et pratique" de D. Stinson (2^{ème} édition).

1 Indice de Coïncidence - Définition

Soit $x = x_1 x_2 \dots x_n$ une chaîne composée de n caractères alphabétiques. L'indice de coïncidence est la probabilité que deux caractères aléatoires de x soient identiques.

On note respectivement f_0, f_1, \ldots, f_{25} les fréquences absolues de A, B, \ldots, Z . Pour chaque $i, 0 \le i \le 25$, il y a $\binom{f_i}{2}$ façons de choisir deux caractères i parmi les n caractères du texte. Donc, on a

$$Ic(x) = \frac{\sum_{i=0}^{25} f_i(f_i - 1)}{n(n-1)} \tag{1}$$

En français, la probabilité d'apparition des lettres est donnée figure 1. Dans ce cas, en notant p_0, p_1, \ldots, p_{25} les probabilités d'apparition des lettres A, B, \ldots, Z , on peut s'attendre à ce que l'indice de coïncidence soit

$$Ic(x) = \sum_{i=0}^{25} p_i^2 = 0{,}0778.$$

Dans le cas d'une suite de lettre aléatoire, on aurait

$$Ic(x) = 26 \cdot \left(\frac{1}{26}\right)^2 = 0{,}038.$$

C'est ce biais que l'on exploite.

2 Cas du chiffrement de de Vigenère

Ce test peut être utilisé dans le cas du chiffrement de de Vigenère, à condition de l'adapter à l'hypothèse d'une longueur de clé.

— on découpe le texte chiffré en sous-chaînes correspondant aux suites de lettres chiffrées par le même caractère de la clé. Ceci revient, pour une hypothèse de clé de longueur l, à prendre un caractère tout les l caractères à partir du premier pour constituer la première

^{1.} On rappelle le coefficient binomial $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

A	В	С	D	Е	F	G	Н	I	J	K	L	M
8.4	1.06	3.03	4.18	17.26	1.12	1.27	0.92	7.34	0.31	0.05	6.01	2.96
N	О	Р	Q	R	S	Т	U	V	W	X	Y	Z

FIGURE 1 – Fréquence d'apparition des lettres en français.

sous-chaîne, puis à recommencer à partir du deuxième caractère pour la deuxième sous-chaîne, et à poursuivre ainsi jusqu'à former les l sous-chaînes (la dernière commençant par le (l-1)ème caractère;

- on calcule l'indice de coïncidence de chacune de ces sous-chaînes et on en fait la moyenne pour avoir l'indice de coïncidence global;
- lorsque l'hypothèse sur la longueur de la clé est la bonne, l'indice de coïncidence global doit être sensiblement supérieur à la valeur pour une suite de lettre aléatoire (0,038) et se rapprocher de 0,0778 pour un texte en français.

3 Test de Kasiski

Friedrich Kasiski est un officier prussien (1805-1881), et cryptologue, au sein de l'armée prussienne. Il propose une méthode de cryptanalyse du chiffrement de Vigenère basée sur l'observation suivante :

- deux segments identiques du texte clair sont chiffrés de façon identiques dès qu'ils sont décalés de $x \equiv 0 \mod m$ (m est la longueur de la clé);
- inversement, il en découle que deux segments identiques d'une longueur suffisante (3 suffit souvent) ont de bonnes chances de provenir d'un segment identique du texte clair.

Ceci donne lieu au test suivant :

- on collecte les paires de segments identiques sur le texte chiffré;
- on note les distances entre leurs premiers caractères;
- on obtient ainsi une suite de distances : d_1, d_2, \cdots , on peut conjecturer que m est le plus grand diviseur commun des valeurs d_i .

Ce test est complémentaire du précédent, et permet de trouver la longeur de la clé.