VISVESVARAYA TECHNOLOGICAL UNIVERSITY

"JnanaSangama", Belgaum -590014, Karnataka.

LAB

REPORTON

MACHINE LEARNING

Submitted by

Girish Kumar S K(1BM21CS068)

in partial fulfillment for the award of the degree of
BACHELOR OF ENGINEERING in
COMPUTER SCIENCE AND ENGINEERING

B. M. S. College of Engineering, Bull Temple Road, Bangalore 560019(March 2024 to June 2024)

B. M. S. College of Engineering, Bull Temple Road, Bangalore 560019

(Affiliated To Visvesvaraya Technological University, Belgaum)

Department of Computer Science and Engineering

CERTIFICATE

This is to certify that the Lab work entitled "MACHINE LEARNING" is carried out by Girish Kumar S K (1BM21CS068) who is bonafide student of B.M.S. College of Engineering. It is in partial fulfillment for the award of Bachelor of Engineering in Computer Science and Engineering of the Visveswaraya Technological University, Belgaumduring the year 2023-2024. The lab report has been approved as it satisfies the academic requirements in respect of Machine Learning Lab - (22CS3PCMAL) work prescribed for thesaid degree.

Dr. K. Panimozhi Assistant Professor BMSCE, Bengaluru **Dr. Jyothi S Nayak**Prof.& Head, Dept. of CSE
BMSCE, Bengaluru

Index Sheet

Sl. No.	Experiment Title	Page No.
1	Write a python program to import and export data using Pandas library functions	4
2	Demonstrate various data pre-processing techniques for a given dataset	7
3	Use an appropriate data set for building the decision tree (ID3) and apply this knowledge to classify a new sample.	10
4	Build KNN Classification model for a given dataset.	14
5	Implement Linear and Multi-Linear Regression algorithm using appropriate dataset	21
6	Build Logistic Regression Model for a given dataset	28
7	Build Support vector machine model for a given dataset.	38
8	Build k-Means algorithm to cluster a set of data stored in a .CSV file.	44
9	Implement Dimensionality reduction using Principle Component Analysis (PCA) method.	48
10	Build Artificial Neural Network model with back propagation on a given dataset	52
11	a) Implement Random forest ensemble method on a given dataset.b) Implement Boosting ensemble method on a given dataset.	56

Course outcomes:

CO1	Apply machine learning techniques in computing systems
CO2	Evaluate the model using metrics
CO3	Design a model using machine learning to solve a problem
CO4	Conduct experiments to solve real-world problems using appropriate machine learning techniques

Lab1

Date: 05/04/2024

Write a python program to import and export data using Pandas library functions

	PAGE NO: DATE: 05/04/24
*	Importing & Exporting data using pandas library
	import pandas as pd
· See As	df = pd. read_csv('austin_data.csv") df.head()
275336	⇒ Reading data from URL url = "https://archieve"
	col-names = [" sepal-length_in_cm", "sepal_width_in_cm",
also W.	"petal_length_in_cm", "petal_wedth_in_cm",
	+ = Jake Mice "classes")
	iris_data = pd. read_csv(url, names = col.names)
	=> Exporting dataframe to csv file
	irix_data. lo_cxv ("cleaned_irix_data.csv")

CODE:

iris_data.to_csv("cleaned_iris_data.csv")

OUTPUT:

1. Dataset -

2. After reading dataset from URL -

3. CSV file after exporting -

Date: 12-04-2024

1.Use an appropriate data set for building the decision tree (ID3) and apply this knowledge to classify a new sample.

Algorithm:

Algorit	hm:
	PAGE NO: DATE: 12-04-2024
+ +	
gny	Use an appropriate data set for building the
present i	decision tree (103) and apply this knowledge
	to clanify a new sample.
	ID3 Atgarithm a stagent
	103 (Examples, Target_attribute, Attributes)
	examples are borning examples. Target_attribute
	is the attribute whose value is to be predicted
	by the love. Altoribules is a list of other.
	attributes that may be lested by learned decision
	tree. Returns a decision tree that correctly
	danifies given examples-
	· Create a Root node for tree
	· If all Examples are positive, Return Ningle
	node true Poot, with label = +
	· If all Examples are negotive Return single
iman Jo	- node tree Root, with latel =-
	· If Attributes is empty, Return the
	Common value of Target-attribute in
	examples
(Other wine Begin
	· A & the attribute from Attribute that
	Post + clavilies - old
	The decision attribute for Root + A
7 don -	for each possible value, vi, of A,
	· Add new tree branch below Root,
	corresponding to but A=v;
	· Let examples v; be the gubsil of
	examples that have value vi for A
	· If Examples vi, is empty
	The state of the s
The same of the sa	

```
Then below this new branch add a

leaf node with label = most common value of

Target attribute in Examples

· Else blow this new branch add the

subtree ID3 (Examples vi, Target attr-
ibute, Attributes (A))

· End

· Return Root

* The best attribute is one with be highest
information gain
```

CODE:

```
import pandas as pd
from sklearn.tree import DecisionTreeClassifier, plot_tree
import matplotlib.pyplot as plt
import math
df = pd.read_csv('/content/diabetes.csv')
df
def calculate_entropy(data, target_column):
       total_rows = len(data)
       target_values = data[target_column].unique()
       entropy = 0
       for value in target_values:
              # Calculate the proportion of instances with the current value
              value_count = len(data[data[target_column] == value])
              proportion = value_count / total_rows
              entropy -= proportion * math.log2(proportion)
       return entropy
entropy_outcome = calculate_entropy(df, 'Outcome')
print(f"Entropy of the dataset: {entropy_outcome}")
def calculate_entropy(data, target_column): # for each categorical variable
       total_rows = len(data)
       target values = data[target column].unique()
```

```
entropy = 0
       for value in target_values:
              # Calculate the proportion of instances with the current value
              value_count = len(data[data[target_column] == value])
               proportion = value_count / total_rows
               entropy -= proportion * math.log2(proportion) if proportion != 0 else 0
       return entropy
def calculate_information_gain(data, feature, target_column):
       # Calculate weighted average entropy for the feature
       unique_values = data[feature].unique()
       weighted_entropy = 0
       for value in unique values:
               subset = data[data[feature] == value]
               proportion = len(subset) / len(data)
               weighted_entropy += proportion * calculate_entropy(subset, target_column)
       # Calculate information gain
       information_gain = entropy_outcome - weighted_entropy
       return information gain
for column in df.columns[:-1]:
       entropy = calculate_entropy(df, column)
       information_gain = calculate_information_gain(df, column, 'Outcome')
       print(f"{column} - Entropy: {entropy:.3f}, Information Gain: {information_gain:.3f}")
# Feature selection for the first step in making decision tree
selected_feature = 'DiabetesPedigreeFunction'
# Create a decision tree
clf = DecisionTreeClassifier(criterion='entropy', max_depth=1)
X = df[[selected_feature]]
y = df['Outcome']
clf.fit(X, y)
plt.figure(figsize=(8, 6))
plot_tree(clf, feature_names=[selected_feature], class_names=['0', '1'], filled=True,
rounded=True)
plt.show()
def id3(data, target_column, features):
       if len(data[target_column].unique()) == 1:
               return data[target_column].iloc[0]
```

```
if len(features) == 0:
               return data[target_column].mode().iloc[0]
       best_feature = max(features, key=lambda x: calculate_information_gain(data, x,
target_column))
       tree = {best_feature: {}}
       features = [f for f in features if f != best_feature]
       for value in data[best_feature].unique():
               subset = data[data[best_feature] == value]
               tree[best_feature][value] = id3(subset, target_column, features)
       return tree
id3(df, 'Outcome', ['Pregnancies',
                                     'Glucose',
                                                     'BloodPressure',
                                                                            'SkinThickness',
       'Insulin',
                      'BMI', 'DiabetesPedigreeFunction', 'Age'])
```

OUTPUT:

1. Entropy of Dataset:

Entropy of the dataset: 0.9331343166407831

2. Entropy and Information Gain of each feature

```
Pregnancies - Entropy: 3.482, Information Gain: 0.062
Glucose - Entropy: 6.751, Information Gain: 0.304
BloodPressure - Entropy: 4.792, Information Gain: 0.059
SkinThickness - Entropy: 4.586, Information Gain: 0.082
Insulin - Entropy: 4.682, Information Gain: 0.277
BMI - Entropy: 7.594, Information Gain: 0.344
DiabetesPedigreeFunction - Entropy: 8.829, Information Gain: 0.651
Age - Entropy: 5.029, Information Gain: 0.141
```

3. Decision Tree:

Lab 3

1.Linear Regression

Observation Screenshot:

Date: 03/05/2024


```
# Prediction on test set
plt.scatter(X_test, y_test, color = 'lightcoral')
plt.plt(X_train, y_pred_train, color = 'firebrick')
plt.title('Salary vs Experience (Test Set)')
plt.title('Salary vs Experience (Test Set)')
plt.lepend(['X_train/Pred(y_test)', 'X_train/y_train'], title = 'Sal/Exp', loc-'best', facecolor-'white')
plt.box(False)

Salary vs Experience (Test Set)

Sal/Exp
X_train/Pred(y_test)
X_train/Y_train

100000 -

$\frac{\text{Sal}}{\text{0}} \text{80000} -

$\frac{\text{0}}{\text{0}} \text{80000} -

$\frac{\text{0}}{\text{0}}
```

2. Multiple Linear Regression

Observation Screenshot

```
Multiple Linear
             * light Regression
                    aplit
                               dataset
                                              into
                                                      training & lesting set
                                           multiple independent variables
                      create regression model
                           regression = Linear Regression ()
                              brain set
                  4. fit
                   S. Test model using test set
                                       actual value of predicted value
In [34]:
             #Importing the libraries
             import pandas as pd
             import numpy as np
             import matplotlib.pyplot as plt
import seaborn as sns
             # import warnings
             import warnings
             warnings.filterwarnings("ignore")
             # We will use some methods from the sklearn module
             from sklearn import linear_model
from sklearn.linear_model import LinearRegression
             from sklearn import metrics
             from sklearn.metrics import mean_squared_error, mean_absolute_error from sklearn.model selection import train test split, cross val score
In [25]:
            # Reading the Dataset
df = pd.read_csv("data.csv")
In [26]:
            df.head()
Out[26]:
                      Car
                                Model Volume Weight CO2
            0
                   Toyoty
                                 Aygo
                                             1000
                                                         790
                                                                 99
               Mitsubishi Space Star
                                                                 95
                                             1200
                                                       1160
                                             1000
                    Skoda
                                 Citigo
                                    500
                                              900
                                                        865
                                                                 90
                      Mini
                               Cooper
                                             1500
                                                       1140
                                                                105
In [27]: df.shape
Out[27]:
               (36, 5)
In [28]: df.corr(numeric_only=True)
Out[28]:
                             Volume
                                           Weight
                                                              CO2
               Volume
                            1.000000 0.753537
                                                       0.592082
               Weight 0.753537 1.000000 0.552150
                    CO2 0.592082 0.552150 1.000000
In [29]: print(df.describe())
                                           Weight
36.000000
1292.277778
242.123889
790.000000
                          Volume
36.000000
                                                                  36.000000
                       36.000000
1611.11111
388.975047
900.000000
1475.000000
1600.000000
2000.000000
                                                                36.000000
102.027778
7.454571
90.000000
97.750000
99.000000
             mean
std
             min
25%
                                           1117.250000
             50%
             75%
max
                                            1418.250000
1746.000000
                #Setting the value for X and Y
X = df[['Weight', 'Volume']]
y = df['CO2']
In [30]:
In [31]:
               fig, axs = plt.subplots(2, figsize = (5,5))
plt1 = sns.boxplot(df['Weight'], ax = axs[0])
plt2 = sns.boxplot(df['Volume'], ax = axs[1])
plt.tight_layout()
```


In [36]: X_train,X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 100)

```
In [36]:
          X_train,X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 100)
In [37]:
           y train.shape
Out[37]: (25,)
In [38]:
           y_test.shape
Out[38]: (11,)
In [39]:
           reg_model = linear_model.LinearRegression()
In [40]:
           #Fitting the Multiple Linear Regression model
           reg_model = LinearRegression().fit(X_train, y_train)
In [41]: #Printing the model coefficients
           print('Intercept: ',reg_model.intercept_)
# pair the feature names with the coefficients
           list(zip(X, reg_model.coef_))
        Intercept: 74.33882836589245
Out[41]: [('Weight', 0.0171800645996374), ('Volume', 0.0025046399866402976)]
In [42]: #Predicting the Test and Train set result
           y_pred= reg_model.predict(X_test)
           x_pred= reg_model.predict(X_train)
 In [43]: \parallel print("Prediction for test set: {}".format(y_pred))
         Prediction for test set: [ 90.41571939 102.16323413 99.56363213 104.56661845 101.54657652
          95.94770019 108.64011848 102.22654214 92.80374837 97.27327129
          97,570744631
 In [44]: #Actual value and the predicted value
           reg_model_diff = pd.DataFrame({'Actual value': y_test, 'Predicted value': y_pred})
           reg_model_diff
 Out[44]:
             Actual value Predicted value
                              90.415719
          19
                     105
                             102.163234
                              99.563632
          32
                     104
          35
                     120
                             104.566618
           7
                     92
                             101.546577
          12
                     99
                             95.947700
          29
                     114
                             108.640118
          33
                     108
                             102.226542
                              92.803748
           5
                     105
           1
                      95
                              97.273271
          18
                     104
                              97.570745
 mse = metrics.mean_squared_error(y_test, y_pred)
           r2 = np.sqrt(metrics.mean_squared_error(y_test, y_pred))
           print('Mean Absolute Error:', mae)
           print('Mean Square Error:', mse)
           print('Root Mean Square Error:', r2)
         Mean Absolute Error: 6.901980901636316
         Mean Square Error: 63.39765310998794
```

Root Mean Square Error: 7,96226432053018

3.KNN Algorithm:

Observation Screenshot

```
* Build KNN damification model for given detaset

Algorithm:

1) Depine value of K and a distance metre

2) For given point, calculate distance, between given

point of every other point in dataset

37 choose k, closest points

42 The class / value of given point is majority of

that k points.

Ef a couldidian distance is used as

distance mete:

then d = \( \frac{(x_1 - u_2)^2 + (y_1 - y_2)^2}{2} \)
```

```
In [1]:
    from sklearn.model_selection import train_test_split
    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.metrics import classification_report, confusion_matrix
    from sklearn import datasets
    iris = datasets.load_iris()

x = iris.data
y = iris.target

print('sepal-length', 'sepal-width', 'petal-length', 'petal-width')
print(x)
print('class: 0 - Iris-Setosa, 1 - Iris-Versicolour, 2 - Iris-Virginica')
print(y)
```

```
sepal-length sepal-width petal-length petal-width [[5.1 3.5 1.4 0.2] [4.9 3. 1.4 0.2] [4.7 3.2 1.3 0.2]
```

```
In [5]: x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.3)
         #To Training the model and Nearest nighbors K=5
         classifier = KNeighborsClassifier(n_neighbors=5)
         classifier.fit(x_train, y_train)
         #to make predictions on our test data
         y_pred=classifier.predict(x_test)
         print('Prediction -')
         for i,test in enumerate(x_test) :
          print(f'{test} - {y_pred[i]}')
         # print('Confusion Matrix')
         # print(confusion_matrix(y_test,y_pred))
         # print('Accuracy Metrics')
         # print(classification_report(y_test,y_pred))
       Prediction -
       [5.2 4.1 1.5 0.1] - 0
       [5.5 2.3 4. 1.3] - 1
       [6.7 3.1 4.7 1.5] - 1
```

Lab 4

Date: 17/05/2024

Logistic Regression Algorithm

Observation Screenshot:

```
03/05/2024
Implement Cognitic Regression using appropriate
  detaret
fune logist R (x, y, learning rate, rum its).
     Entralize random values for
        Bias (b)
         i=1 to num-its:
         logits = X x w+b
         pred = sigmoid (Logits)
              = compute - loss (y, topred)
                   weights of hos using gradients
   return wh
func signoid (x)
                 / (++ exp(-x))
      return
       Compute loss (y-brue, y-pred)
                    y brew)
     return lou
```

```
In [ ]:
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
          from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
         import plotly as py
         import plotly.graph_objs as go
import time
         init_notebook_mode(connected=True)
In [ ]: def sigmoid(X, weight):
             z = np.dot(X, weight)
return 1 / (1 + np.exp(-z))
In [ ]: def loss(h, y):
             return (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean()
In [ ]: | def gradient_descent(X, h, y):
             return np.dot(X.T, (h - y)) / y.shape[0]
         def update_weight_loss(weight, learning_rate, gradient):
              return weight - learning_rate * gradient
In [ ]: def log_likelihood(x, y, weights):
             z = np.dot(x, weights)
             11 = np.sum(y*z - np.log(1 + np.exp(z)))
              return 11
```

```
In [ ]: | def gradient_ascent(X, h, y):
             return np.dot(X.T, y - h)
         def update_weight_mle(weight, learning_rate, gradient):
             return weight + learning_rate * gradient
In [ ]: | data = pd.read_csv("/content/WA_Fn-UseC_-Telco-Customer-Churn.csv")
         print("Dataset size")
         print("Rows {} Columns {}".format(data.shape[0], data.shape[1]))
         print("Columns and data types")
         pd.DataFrame(data.dtypes).rename(columns = {0:'dtype'})
       Dataset size
       Rows 7043 Columns 21
       Columns and data types
Out[ ]:
              customerID object
                  gender object
             SeniorCitizen
                           int64
In [ ]:
          df = data.copy()
In [ ]: churns = ["Yes", "No"]
          fig = {
 'data': [
                      'x': df.loc[(df['Churn']==churn), 'MonthlyCharges'],
                      'y': df.loc[(df['Churn']==churn),'tenure'],
                      'name': churn, 'mode': 'markers',
                  } for churn in churns
              'layout': {
                  'title': 'Tenure vs Monthly Charges',
                  'xaxis': {'title': 'Monthly Charges'},
'yaxis': {'title': "Tenure"}
          }
          py.offline.iplot(fig)
In [ ]: | figs = []
          for churn in churns:
              figs.append(
                  go.Box(
                      y = df.loc[(df['Churn']==churn),'tenure'],
                      name = churn
          layout = go.Layout(
              title = "Tenure",
              xaxis = {"title" : "Churn?"},
              yaxis = {"title" : "Tenure"},
              width=800,
              height=500
          fig = go.Figure(data=figs, layout=layout)
          py.offline.iplot(fig)
```

```
In [ ]:
    df['class'] = df['Churn'].apply(lambda x : 1 if x == "Yes" else 0)
    # features will be saved as X and our target will be saved as y
X = df[['tenure','MonthlyCharges']].copy()
X2 = df[['tenure','MonthlyCharges']].copy()
y = df['class'].copy()
```

21

```
In [ ]: start_time = time.time()
          num_iter = 100000
          intercept = np.ones((X.shape[0], 1))
          X = np.concatenate((intercept, X), axis=1)
          theta = np.zeros(X.shape[1])
          for i in range(num_iter):
              h = sigmoid(X, theta)
              gradient = gradient_descent(X, h, y)
              theta = update_weight_loss(theta, 0.1, gradient)
          print("Training time (Log Reg using Gradient descent):" + str(time.time() - start_time) + " seconds")
          print("Learning rate: {}\nIteration: {}".format(0.1, num_iter))
        Training time (Log Reg using Gradient descent):70.8485119342804 seconds
        Learning rate: 0.1
        Iteration: 100000
 In [ ]:
         result = sigmoid(X, theta)
 In [ ]: \| f = pd.DataFrame(np.around(result, decimals=6)).join(y)
          f['pred'] = f[0].apply(lambda x : 0 if x < 0.5 else 1)
          print("Accuracy (Loss minimization):")
          f.loc[f['pred']==f['class']].shape[0] / f.shape[0] * 100
        Accuracy (Loss minimization):
 Out[ ]: 53.301150078091716
 In [ ]:
          start_time = time.time()
          num_iter = 100000
          intercept2 = np.ones((X2.shape[0], 1))
          X2 = np.concatenate((intercept2, X2), axis=1)
          theta2 = np.zeros(X2.shape[1])
          for i in range(num_iter):
              h2 = sigmoid(X2, theta2)
              gradient2 = gradient_ascent(X2, h2, y) #np.dot(X.T, (h - y)) / y.size
              theta2 = update_weight_mle(theta2, 0.1, gradient2)
          print("Training time (Log Reg using MLE):" + str(time.time() - start_time) + "seconds")
          print("Learning rate: {}\nIteration: {}".format(0.1, num_iter))
In [ ]: | from sklearn.linear_model import LogisticRegression
         clf = LogisticRegression(fit_intercept=True, max_iter=100000)
         clf.fit(df[['tenure','MonthlyCharges']], y)
         print("Training time (sklearn's LogisticRegression module):" + str(time.time() - start_time) + " seconds")
         print("Learning rate: {}\nIteration: {}".format(0.1, num_iter))
       Training time (sklearn's LogisticRegression module):83.02515387535095 seconds
       Learning rate: 0.1
       Iteration: 100000
In [ ]: | result3 = clf.predict(df[['tenure','MonthlyCharges']])
In [ ]: | print("Accuracy (sklearn's Logistic Regression):")
         f3 = pd.DataFrame(result3).join(y)
         f3.loc[f3[0]==f3['class']].shape[0] / f3.shape[0] * 100
       Accuracy (sklearn's Logistic Regression):
Out[ ]: 78.44668465142695
```

22

Lab 5

Date: 24.05.2024

1. K Means Clustering Algorithm

Observation Screenshot:

```
34 K- means Chustering
 Adgarithm:
                              to decide
     " Select mumber of K
   dusters
    2. Select random 'k' points or (centroids)
    3. Arrigh each grownt to closest control
  which will form the predered "W cheston
  Et eart cluster
    6. Peptat step 3 realign the centroid
    6. It any reassignment go to step @ ele
  go to finish
    7. The model is drained
Output:
          45
           44
          3.5
          3
         1.5
```

Code and Output:

```
In []:  # import some data to play with
    iris = datasets.load_iris()
    X = pd.DataFrame(iris.data)
    X.columns = ['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width']
    y = pd.DataFrame(iris.target)
    y.columns = ['Targets']

In []:  # Build the K Means Model
    model = KMeans(n_clusters=3)
    model.fit(X) # model.labels _: Gives cluster no for which samples belongs

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of 'n_init' will change from 10 to 'auto' in 1.4. Set the value of 'n_init' explicitly to suppress the warning
    warnings.warn(

Out[]: KMeans(n_clusters=3)
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In []:  # # Wiscoline Ata a Marthale a supplies.
```

```
In [ ]: # # Visualise the clustering results
plt.figure(figsize=(14,14))
colormap = np.array(['red', 'lime', 'black'])
```

<Figure size 1400x1400 with 0 Axes>

```
In [ ]: # Plot the Original Classifications using Petal features
plt.subplot(2, 2, 1)
plt.scatter(X.Petal_Length, X.Petal_Width, c=colormap[y.Targets], s=40)
plt.title('Real Clusters')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
```

```
Out[ ]: Text(0, 0.5, 'Petal Width')
```



```
In []: # Plot the Models Classifications
    plt.subplot(2, 2, 2)
    plt.scatter(X.Petal_Length, X.Petal_Width, c=colormap[model.labels_], s=40)
    plt.title('K-Means Clustering')
    plt.xlabel('Petal Length')
    plt.ylabel('Petal Width')
```

Out[]: Text(0, 0.5, 'Petal Width')

2. Support Vector Machine

Observation Screenshot:

	DATE: 24 05 2024
	's Support Vector Machine
	1 Production Notice
	Algorithm:
1	1. Define kernel function eg: K(2,, x2) = 21.22
1	Eq: K(x1,x2) = x1.x2
1	Control of the contro
1	Solve quadratic programming problem to
1	find and and and and and and and and and a
1	3. Compute weight & bias
	4. Identify the support vectors
100	5. Make predictions
	To to frish
	Output: hemat is subsame out it
	> model = svm (x)
	model . fit (v. train y train)
	predictions = model . predict (k. text)
	accuracy (y test, predictions)
	- 0.930 23
	→ model predict ([-0.47069, -0.1604,
	> model predict ([-0.47069, -0.1604, 0.19695]) array (0)
	0.146193)
	array (0)

```
# Load the Iris dataset
iris = load_iris()
In [3]:
              # Convert the dataset into a pandas DataFrame
iris_df = pd.DataFrame(data=iris.data, columns=iris.feature_names)
iris_df['target'] = iris.target
In [4]:
              # Display the first few rows of the DataFrame
print(iris_df.head())
                                                                                              petal width (cm)
               sepal length (cm)
                                         sepal width (cm)
                                                                    petal length (cm)
                                                             3.5
3.0
3.2
3.1
3.6
                                                                                                                 0.2
0.2
0.2
0.2
                                   5.1
4.9
4.7
                                                                                        1.4
               target
In [5]:
             Iris Dataset - Sepal Length vs Sepal Width
                                                                                                                      2.00
          4.5
                                                                                                                      1.75
         4.0
                                                                                                                      1.50
                                                                                                                      1.25
         3.5
      Sepal Width (cm)
                                                                                                                      1.00 5
         3.0
                                                                                                                       0.75
                                                                                                                      0.50
         2.5
                                                                                                                      0.25
          2.0
                                                                                                                      0.00
                      4.5
                                  5.0
                                                         6.0
                                                                                 7.0
                                             5.5
                                                                                                        8.0
                                                   Sepal Length (cm)
n [6]:
         # Splitting the dataset into training and testing sets
         X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3, random_state=42)
n [7]:
         # Creating and training the SVM classifier
svm_classifier = SVC(kernel='linear')
svm_classifier.fit(X_train, y_train)
         # Predicting the LabeLs for the test set
y_pred = svm_classifier.predict(X_test)
         accuracy = accuracy_score(y_test, y_pred)
print("Accuracy of SVM Classifier:", accuracy)
      Accuracy of SVM Classifier: 1.0
n [8]: y_pred
```

3. Principal Component Analysis

Observation Screenshot:

27 Principal Component Algorithm:	Analysis:	0.	
· Colculate mean			
2. Colculation Sp co	maiante_	metrix	
3. Eigen values of en Computation of			
5. Computation 57	Fist opn	height co	momenta
6 Geometric mean	4 4	Just 1so	CAA DO
Oculput			
pea explained rain	in ce -rati	0	
Array (60.988 941	18 , dole;	20458)	

```
In [1]:
         import matplotlib.pyplot as plt
         from sklearn import datasets
         from sklearn.decomposition import PCA
         from sklearn.preprocessing import StandardScaler
         import pandas as pd
         import numpy as np
         # Load the iris dataset
         iris = datasets.load_iris()
         X = pd.DataFrame(iris.data, columns=['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width'])
         y = pd.DataFrame(iris.target, columns=['Targets'])
         # Standardize the data
         scaler = StandardScaler()
         X_scaled = scaler.fit_transform(X)
         # Apply PCA
         pca = PCA(n_components=2)
         X_pca = pca.fit_transform(X_scaled)
         # Convert PCA result to a DataFrame
         X_pca_df = pd.DataFrame(X_pca, columns=['PCA1', 'PCA2'])
         # Add the target column for visualization
         X_pca_df['Targets'] = y.Targets
         # Visualize the PCA result
         plt.figure(figsize=(14, 7))
         colormap = np.array(['red', 'lime', 'black'])
         # Plot the PCA transformed data
         plt.scatter(X_pca_df.PCA1, X_pca_df.PCA2, c=colormap[X_pca_df.Targets], s=40)
         plt.title('PCA of Iris Dataset')
         plt.xlabel('Principal Component 1')
         plt.ylabel('Principal Component 2')
        plt.show()
```


Lab - 6

Date: 31/05/2024

1.Build Artificial Neural Network model with back propagation on a given dataset.

Observation Screenshot:

#	Artificial Newsal Nebwook with back Propogation
	Oronoration
	TTO THE PARTY OF T
	Algorithm
	1. Pritialize Darameters
E ment	a mormalise i/o features matrix n
- way	normalise O/P 'n' not hyper garameters: 'no. of epochs', as of never
2	not hyper parameters: 'no. of epochs' as I way
	The state of the s
	2. Défine activation func
	2. Défine activation func - sigmoid function adjustments
	3. Training network
	· forward propogation
	- Compute ip to hidden layer
-	- Add bay
	- apply activation func
	7. 0
	4. Backward propagation
Care B	- comput error
	- compute gradient
	- compute gradient - compute delta
	5. Update weights & biases
	Output: [p ([0.6667 1]
	[0.333 0.556]
13/3	[0.1 0667]
	Actual 0/p -> [(0.92) [0.86] [0.89])
	[[0.8005(025)
	predicted 0/9 - [(0.80056875)
	Lo-801123477
12 150	The state of the s

```
import numpy as np
x = np.array(([2,9],[1,5],[3,6]),dtype = float)
y = np.array(([92],[86],[89]),dtype = float)
x = x/np.amax(x,axis=0)
y = y/100
epoch = 5000
inputlayer_neurons = 2
hiddenlayer_neurons = 3
output_neurons = 1
wh = np.random.uniform(size=(inputlayer_neurons,hiddenlayer_neurons))
bh = np.random.uniform(size=(1,hiddenlayer_neurons))
wout = np.random.uniform(size=(hiddentayer_neurons,output_neurons))
bout = np.random.uniform(size=(1,output_neurons))
                                                                                     hiddengrad = der_sigmoid(hlayer_act)
                                                                                     d_hiddenlayer = EH*hiddengrad
def sigmoid(x):
 return 1/(1+np.exp(-x))
                                                                                     wout += hlayer_act.T.dot(d_output)*lr
                                                                                     wh += x.T.dot(d_hiddenlayer)*lr
def der_sigmoid(x):
return x*(1-x)
                                                                                     print("Input: \n" + str(x))
                                                                                     print("Actual output: \n" + str(y))
                                                                                     print("Predicted Output: \n",output)
for i in range(epoch):
                                                                                 Input:
                                                                                 [[0.66666667 1.
  # forward propagation
hinpl = np.dot(x,wh)
                                                                                   [0.33333333 0.55555556]
  hinp = hinp1 + bh
                                                                                                  0.66666667]]
  hlayer_act = sigmoid(hinp)
outinpl = np.dot(hlayer_act,wout)
                                                                                 Actual output:
                                                                                 [[0.92]
  outinp = outinp1 + bout
output = sigmoid(outinp)
                                                                                   [0.86]
                                                                                  [0.89]]
                                                                                 Predicted Output:
                                                                                   [[0.80056875]
  E0 = y - output
  outgrad = der sigmoid(output)
                                                                                   [0.79393831]
  d_output = E0*outgrad
EH = d_output.dot(wout.T)
                                                                                   [0.80112347]]
```

2. Implement Random forest ensemble method on a given dataset.

Observation Screenshot:


```
import pandas as pd
from sklearn.model selection import train test split
from sklearn.model selection import train test split
from sklearn.motel simport accuracy.score, classification_report, confusion_matrix
from sklearn import datasets

# Load the data
iris_data = datasets.load_iris()

X = pd.DataFrame(iris_data.data, columns=['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width'])

# Check the info of the modified data
# print(iris_data.info())

# Split the data into training and testing sets
X_train, X_test, Y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=42)

# Initialize the Random Forest classifier
rf_classifier = RandomForestclassifier(n_estimators=100, random_state=42)

# Fit the classifier to the training data
rf_classifier.init(X_train, y_train)

# Predict on the test data
print(rint(X_train, y_train)

# Predict on the test data
print(rint(X_train, y_train)

# Print classification report
print(classification Report;
print(classification Report;
print(classification Report;
print(classification Report;
print(classification Report)
print(classification Report)
print(confusion matrix;
)
precision recall fl-score support

0 1.00 1.00 1.00 0.97 19
2 1.00 0.94 0.99 60

weighted avg 0.98 0.98 0.98 60

weighted avg 0.98 0.98 0.98 60

weighted avg 0.98 0.98 0.98 60

confusion Matrix:
[23 1 0]
[0 1 17]
```

3. Implement Boosting ensemble method on a given dataset

Observation Screenshot:


```
[10] from sklearn.linear_model import LogisticRegression
                      from sklearn.ensemble import AdaBoostClassifier
                      from sklearn import metrics
                     from sklearn import datasets
\frac{\checkmark}{Os} [11] import pandas as pd
                      import matplotlib.pyplot as plt
                      from sklearn.model_selection import train_test_split
 _{\text{Os}} [12] # Load the iris dataset
                      iris = datasets.load_iris()
                      X = pd.DataFrame(iris.data, columns=['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width'])
                      y = pd.DataFrame(iris.target, columns=['Targets'])
[13] X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.4,random_state=42)
\frac{\checkmark}{O_{0}} [14] mylogregmodel = LogisticRegression()
[15] adabc = AdaBoostClassifier(n_estimators = 150, estimator = mylogregmodel, learning_rate = 1)
model = adabc.fit(X_train, y_train)
         🚁 /usr/local/lib/python3.10/dist-packages/sklearn/utils/validation.py:1143: DataConversionWarning: A
                           y = column_or_ld(y, warn=True)

v  [17] y_pred = model.predict(X_test)

vision [18] metrics.accuracy_score(y_test, y_pred)
```