Monash University
Faculty of Information Technology

Lecture 13 Chomsky Normal Form

Slides by David Albrecht (2011), some additions and modifications by Graham Farr (2013).

FIT2014 Theory of Computation

Overview

- Chomsky Normal Form
- CYK Parsing algorithm
- Pumping Lemma

Chomsky Normal Form

A CFG is said to be in Chomsky Normal Form if all the productions are in the form

Nonterminal -> Nonterminal Nonterminal

(called a live production)

or

Nonterminal → terminal

(called a dead production)

For any context-free language L, the non-empty words in L can be generated by a grammar in Chomsky Normal Form.

- First eliminate all ε productions.
 - may need some new productions, to keep the effect of an empty production
- For each terminal, \mathbf{a} , ensure that there is a production of the form $\mathbf{A} \to \mathbf{a}$, and replace \mathbf{a} in all other productions by \mathbf{A} .
 - (Note **A** may need to be a new non-terminal symbol.)
- Eliminate all unit productions.
 - Given a rule $\mathbf{A} \to \mathbf{B}$:
 - For each rule $\mathbf{B} \to \mathbf{string}$ create a new rule $\mathbf{A} \to \mathbf{string}$,
 - then delete $\mathbf{A} \rightarrow \mathbf{B}$
- For any production that has more than 2 non-terminals on the right-hand side, split them into a sequence of productions that have only 2 non-terminals on the righthand side.

Consider the CFG

$$S \rightarrow bA \mid aB$$

 $A \rightarrow a \mid aS \mid bAA$
 $B \rightarrow b \mid bS \mid aBB$

Then:

$$S \rightarrow B_1A \mid A_1B$$

 $A \rightarrow a \mid A_1S \mid B_1AA$ $A_1 \rightarrow a$
 $B \rightarrow b \mid B_1S \mid A_1BB$ $B_1 \rightarrow b$

Then:

$$S \rightarrow B_1A \mid A_1B$$

$$A \rightarrow a \mid A_1S \mid B_1R_1 \qquad A_1 \rightarrow a$$

$$B \rightarrow b \mid B_1S \mid A_1R_2 \qquad B_1 \rightarrow b$$

$$R_1 \rightarrow AA$$

$$R_2 \rightarrow BB$$

Consequences

Cocke-Younger-Kasami (CYK) algorithm

- For each CFG and string s, we can decide whether or not s is generated by the CFG.
- bottom-up parsing

Pumping Lemma for CFG

 is used to show there exists non-context-free languages.

CYK Algorithm

For each CFG and string s, we can decide whether or not s is generated by the CFG.

Proof (CYK Algorithm)

Idea of Proof:

- Find the Chomsky Normal Form for the non-empty words generated by the grammar.
- Add $S \rightarrow \epsilon$ if ϵ can be generated by the CFG.
- If $s = \varepsilon$ then state that s can be generated if and only if $s \to \varepsilon$ is a production.
- Assume $s = t_1 t_2 t_n$ is non-empty.
- For each letter t_k find the non-terminals which can produce t_k
- For each of the following pairs:

$$t_1t_2$$
, t_2t_3 , ..., $t_{n-1}t_n$

find the non-terminals that can produce the pair.

For each of the following triples:

$$t_1t_2t_3$$
, $t_2t_3t_4$, ..., $t_{n-2}t_{n-1}t_n$

find the non-terminals that can produce the triple.

• Continue, in this way to find the list of non-terminal that can produce $\mathbf{s} = \mathbf{t_1} \mathbf{t_2} \mathbf{t_n}$. If **S** is one of the non-terminals then **s** can be generated, otherwise **s** cannot be generated.

CYK Algorithm

Exercises:

Turn this sketch proof into a correct proof by induction.

Determine the complexity of the algorithm, in big-O notation.

Pumping Lemma

- Let **G** be any CFG in CNF with k non-terminal symbols and w is any word generated by **G** with length greater than 2^{k-1} .
- Then there exist strings u, v, x, y, and z such that
 - w = uvxyz
 - \circ v and y are not both ε ,
 - $|\mathbf{vxy}| \leq 2^k$, and
 - all of $uv^2xy^2z, ..., uv^nxy^nz, ...$ are generated by **G**.

Chomsky Normal Form: derivation tree is binary. If max path length of binary tree = ℓ , then # leaves $\leq 2^{\ell}$.

In derivation tree for Chomsky Normal Form, leaves correspond to letters (terminal symbols), and each leaf is an only child (i.e., its parent has degree 2 in the graph, and has no other children).

Terminals come only from productions of the form
 Non-terminal → terminal

So actually # leaves $\leq 2^{\ell-1}$.

Put k = # non-terminal symbols.

Let w be any string of length $> 2^{k-1}$.

Longest path in derivation tree for w has length $\ge k+1$.

If longest path had length $\le k$, then # leaves $\le 2^{k-1}$ (see prev. slide), so $|w| \le 2^{k-1}$, since leaves correspond to terminals.

Now, recall: for a path, # nodes = length + 1.

So # nodes in longest path $\geq k+2$.

The last of these is a leaf (terminal node). All the others are non-terminals. So the path has $\geq k+1$ non-terminals.

But the number of different non-terminals is $\leq k$.

So the path contains two identical non-terminals.

Call them P.

So we can generate uvxyz, uv²xy²z, uv³xy³z,, uvⁿxyⁿz, ...

Note also:

We can choose the two repeated non-terminals P to be as far down the path as possible, so there are no other repeated non-terminals in the path from the higher P down to the leaf.

So the path from the upper P downwards has at most k non-terminal nodes apart from the upper P. So the word derived from P by this subtree has at most 2^k letters.

$$L = \{a^n b^n a^n : n \ge 0\}$$

Assume L is a context free language.

Then there exists a CFG which generates L.

Convert this CFG to CNF.

Suppose it has **k non-terminal** symbols.

Take $N > 2^{k-1}/3$

Let $w = a^N b^N a^N$.

Then $length(w) > 2^{k-1}$

- So, by the Pumping Lemma, there exist strings **u**, **v**, **x**, **y**, and **z**
- such that
 - \circ w = uvxyz
 - \circ v and y are not both ε , and
 - uv^2xy^2z , ..., uv^nxy^nz ,... are all in L.
- Case I: ab is in v or y.
- Case 2: ba is in v or y.
- Case 3: **v** and **y** are all **a**'s or all **b**'s or one of them is ε.
- Consider: **uv²xy²z**. Contradiction
- Therefore L is a non-context-free language.

Revision

- Know the uses of Chomsky Normal Form.
- Know and use the CYK algorithm.
- Know that there exist non-Context Free languages.
- Know an example of a language which is not a Context Free Language.
- Use Pumping Lemma to prove that certain languages are not context-free.
- Reading: Sipser, pp 108-111, 125-129.

Preparation

Read

•M.Sipser, "Introduction to the Theory of Computation", Chapter 3.