College of Engineering Pune

Linear Algebra and Univariate Calculus(D.S.Y)
Tutorial 1

Basics of Matrices, System of linear equations and Determinants

1. Let

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Compute A^2 , A^3 , A^4 and B^2 , B^3 . Generalize A and B to 4x4 matrix.

- 2. Let A be a diagonal matrix with diagonal elements $a_1, a_2, ..., a_n$. What is A^2 , A^3 , A^k for any positive integer k.
- 3. Let A be a square matrix.
 - (a) If $A^2 = 0$ show that I A is invertible.
 - (b) If $A^3 = 0$ show that I A is invertible.
 - (c) In general, If $A^n = 0$ for some positive integer n, show that I A is invertible.
- 4. If the inverse of A^2 is B, show that the inverse of A is AB. (Thus A is invertible whenever A^2 is invertible)
- 5. (a) If A is invertible and if AB = BC, then prove that B = C.
 - (b) If A is $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, find an example with AB = BC but $B \neq C$.
- 6. Give examples of A and B such that
 - (a) A + B is not invertible although A and B are invertible.
 - (b) A + B is invertible although A and B are not invertible.
 - (c) All of A, B and A + B are invertible.
- 7. (a) Show that for any square matrix, the matrix $A + {}^{t} A$ is symmetric.
 - (b) Show that for any square matrix, the matrix $A-^tA$ is skew-symmetric.
 - (c) If a matrix is skew-symmetric then what can you say about its diagonal entries.
 - (d) Show that any square matrix can always be written as sum of symmetric and skew-symmetric matrix.
- 8. Let A be a skew-symmetric matric with odd order then what can you say about its determinant?
- 9. True or false, with reason if true or counterexample if false
 - (a) If A and B are symmetric then AB is symmetric.

- (b) If A and B are invertible then BA is invertible.
- 10. Let A and B be two matrices of the same size. We say that A is **similar** to B if there exists an invertible matrix T such that $B = TAT^{-1}$. Suppose this is the case. Prove:
 - (a) B is similar to A.
 - (b) A is invertible iff B is invertible.
 - (c) ${}^{t}A$ is similar to ${}^{t}B$.
 - (d) Suppose $A^n = 0$ and B is an invertible matrix of the same size as A. Show that $(BAB^{-1})^n = 0$.
- 11. Find solutions to following systems using Gauss Elimination method.

(a)
$$3x + y + z = 0$$

(b)
$$-2x + 3y + z + 4w = 0$$

 $x + y + 2z + 3w = 0$
 $2x + y + z - 2w = 0$

(c)
$$3x + 4y - 2z = 0$$

 $x + y + z = 0$
 $-x - 3y + 5z = 0$

(d)
$$-3x + y + z = 0$$

 $x - y + z - 2w = 0$
 $-x + y - 3w = 0$

(e)
$$x + y + z + w = 0$$

 $x + y + z - w = 4$
 $x + y - z + w = -4$
 $x - y + z + w = 2$

(f)
$$2x - 2y + 4z + 3w = 9$$

 $x - y + 2z + 2w = 6$
 $2x - 2y + z + 2w = 3$
 $x - y + w = 2$

12. Determine the values of a and b for which the system has (i) No solution (ii) Infinite number of solutions (iii) Unique solution.

(a)
$$x + 2y + 3z = 6$$

 $x + 3y + 5z = 9$
 $2x + 5y + az = b$

(b)
$$2x + 3y + 5z = 9$$

 $7x + 3y - 2z = 8$
 $2x + 3y + az = b$

13. Find inverses of the following matrices, if exists.

(a)
$$\begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 2 & 3 & 4 \\ 4 & 3 & 1 \\ 1 & 2 & 4 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 2 & 3 & 4 \\ 4 & 3 & 1 \\ 1 & 2 & 4 \end{bmatrix}$$