Rules of Thumb

YuShuen Wang, CS, NCTU

• Slides refer to https://www.cs.ubc.ca/~tmm/

Rules of Thumb

- No unjustified 3D
 - –Power of the plane
 - Disparity of depth
 - Occlusion hides information
 - Perspective distortion dangers
 - -Tilted text isn't legible
- No unjustified 2D
- Eyes beat memory
- Resolution over immersion
- Overview first, zoom and filter, details on demand
- Responsiveness is required
- Function first, form next

No unjustified 3D: Power of the plane

 high-ranked spatial position channels: planar spatial position –not depth!

> Channels: Expressiveness Types and Effectiveness Ranks Magnitude Channels: Ordered Attributes Position on common scale Position on unaligned scale Length (1D size) Tilt/angle Effectiveness Area (2D size) Depth (3D position)

Steven's Psychophysical Power Law: S= IN

No unjustified 3D: Danger of depth

- we don't really live in 3D: we see in 2.05D
 - -acquire more info on image plane quickly from eye movements
 - -acquire more info for depth slower, from head/body motion

Occlusion hides information

- occlusion
- interaction complexity

Perspective distortion loses information

- perspective distortion
 - interferes with all size channel encodings
 - power of the plane is lost!

[Visualizing the Results of Multimedia Web Search Engines. Mukherjea, Hirata, and Hara. InfoVis 96]

3D vs 2D bar charts

 3D bars never a good idea!

[http://perceptualedge.com/files/GraphDesignIQ.html]

Tilted text isn't legible

- Text legibility
 - -far worse when tilted from image plane

Further reading

[Exploring and Reducing the Effects of Orientation on Text Readability in Volumetric Displays.

Grossman et al. CHI 2007]

[Visualizing the World-Wide Web with the Navigational View Builder.

Mukherjea and Foley. Computer Networks and ISDN Systems, 1995.]

No unjustified 3D example: Time-series data

 extruded curves: detailed comparisons impossible Total KW-consumption ECN KW 17 dec. 12 nov 8 oct 3 sep 30 jul. 2000 25 jun. 1600 21 may 1200 16 apr. 12 mar. hours KW

1 jan. 0:00

No unjustified 3D example: Transform for new data abstraction

- Derived data: cluster hierarchy
- Juxtapose multiple views: calendar, superimposed 2D curves

Justified 3D: shape perception

 benefits outweigh costs when task is shape perception for 3D spatial data

-interactive navigation supports synthesis across many

viewpoints

→ Shape

[Image-Based Streamline Generation and Rendering. Li and Shen. IEEE Trans. Visualization and Computer Graphics (TVCG) 13:3 (2007), 630–640.]

Information Landscape

 The density of the points on the plane is computed as a derived attribute and used to construct a surface whose height varies according to this attribute in order to show its value in a form similar to geographic terrain

Suggestive Contours for Conveying Shape [Doug DeCarlo et al. 2003]

Apparent Ridges for Line Drawing [Tilke Judd et al. 2007]

The maxima of the normal variation with respect to the viewing plane.

How Well Do Line Drawings Depict Shape? [Forrester Cole et al. 2009]

Justified 3D: Economic growth curve

A 3-D View of a Chart That Predicts The Economic Future: The Yield Curve

By GREGOR AISCH and AMANDA COX MARCH 18, 2015

No unjustified 3D

- 3D legitimate for true 3D spatial data
- 3D needs very careful justification for abstract data
 - enthusiasm in 1990s, but now skepticism
 - be especially careful with 3D for point clouds or networks

No unjustified 2D

- consider whether network data requires 2D spatial layout
 - –especially if reading text is central to task!
 - arranging as network means lower information density and harder label lookup compared to text lists
- benefits outweigh costs when topological structure/context important for task
 - be especially careful for search results, document collections, ontologies

Eyes beat memory

- principle: external cognition vs. internal memory
 - -easy to compare by moving eyes between side-by-side views
 - -harder to compare visible item to memory of what you saw
- implications for animation
 - -great for choreographed storytelling
 - -great for transitions between two states
 - -poor for many states with changes everywhere
 - consider small multiples instead

literalabstractanimationsmall multiplesshow time with timeshow time with space

Eyes beat memory example: Cerebral

- small multiples: one graph instance per experimental condition
 - -same spatial layout
 - -color differently, by condition

[Cerebral: Visualizing Multiple Experimental Conditions on a Graph with Biological Context. Barsky, Munzner, Gardy, and Kincaid. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis 2008) 14:6 (2008), 1253–1260.]

Why not animation?

- disparate frames and regions: comparison difficult
 - -vs contiguous frames
 - -vs small region
 - -vs coherent motion of group

- safe special case
 - -animated transitions

Change blindness (改變視盲)

- if attention is directed elsewhere, even drastic changes not noticeable
 - https://youtu.be/pqgwZEdoH5w

Resolution beats Immersion

- immersion typically not helpful for abstract data
 - -do not need sense of presence or stereoscopic 3D
- resolution much more important
 - -pixels are the scarcest resource
 - desktop also better for workflow integration
- virtual reality for abstract data very difficult to justify

Overview first, zoom and filter, details on demand

Influential mantra from Shneiderman

[The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations. Shneiderman. Proc. IEEE Visual Languages, pp. 336-343, 1996.]

- overview = summary
 - -microcosm of full vis design problem
 - Query
 - → Identify

Responsiveness is required

- three major categories
 - -0.1 seconds: perceptual processing
 - 1 second: immediate response
 - 10 seconds: brief tasks
 - –Jacob Nielsen's Response Times: The Three Important Limits:

- importance of visual feedback
 - How is Nintendo doing in interactive feedback

Function first, form next

- start with focus on functionality
 - -straightforward to improve aesthetics later on, as refinement
 - -if no expertise in-house, find good graphic designer to work with
- dangerous to start with aesthetics
 - -usually impossible to add function retroactively

Further reading

- Visualization Analysis and Design. Tamara Munzner. CRC Press, 2014.
 - Chap 6: Rules of Thumb