الفصل الثاني: المجموعات، العلاقات و التطبيقات (تابع) Ensembles, relations et applications(suite)

4.2 العلاقات و التطبيقات relations et applications 1) العلاقات Relations

تعریف لتکن E و E مجموعتان و E جزء من الجداء الدیکارتی ExF. Relation de E dans F) بعلاقة من E نحو E (Relation de E dans F) بعلاقة من E بعلاقة من E بعلاقة E (E,F, E) بکتب E (E,F, E) و تسمى E (E,F, E) و تسمى E (E,F) بدیان العلاقة E (E,F) و لدینا E (E,F) E (E,F) E (E) E (E) و لدینا E (E) E) E

التكن $E = \{2,3,5\}$ و $E = \{2,3,5\}$ نعرف العلاقة R كالتالي $E = \{2,3,5\}$ نعرف العلاقة $E = \{2,3,5\}$ من أجل $E = \{2,3,5\}$ إذا وفقط إذا كان $E = \{2,3,5\}$ يقسم $E = \{2,3,5\}$ الدينا: $E = \{2,3,5\}$ $E = \{2,3,5\}$ إذا وفقط إذا كان $E = \{2,3,5\}$ يقسم $E = \{2,3,5\}$ إذا وفقط إذا كان $E = \{2,3,5\}$ يقسم $E = \{2,3,5\}$ إذا وفقط إذا كان $E = \{2,3,5\}$ وأذا كان $E = \{2,3,5\}$ وأذ

 $E = \{2,3,5\}$ يتكن $E = \{2,3,5\}$ يعرف العلاقة $E = \{2,3,5\}$ يعرف العلاقة a كالتالي: a من أجل $a \in E$, $b \in F$ إذا وفقط إذا كان a أكبر تماما من a لدينا: a 5 a 5 a 5 a 1 لدينا: a 5 a 5 a 1 لاينا: a 2 أكبر تماما من a 1 أكبر تماما من أكبر تماما

 $\Gamma=\{(5,3),\,(5,4)\}$ بيان العلاقة هو

3. لتكن $E = \{2,3,5\}$ و $E = \{2,3,5\}$ نعرف العلاقة $E = \{2,3,5\}$ ينان عدد العلاقة a+b عدد المنان عدد a+b إذا وفقط إذا كان a+b عدد المنان عدد a+b عدد a+b المنان a+b عدد المنان عدد المنان عدد المنان a+b عدد المنان عدد المنان عدد المنان a+b عدد المنان عدد المنان عدد المنان عدد المنان a+b عدد المنان عد

 $\Gamma=\{(2,4), (2,6), (3,3), (3,9), (5,3), (5,9)\}$ بيان العلاقة هو

ملاحظة: اذا كانت E=F نقول عن العلاق R انها علاقة ثنائية في E.

2) علاقة التكافؤ و علاقة الترتيب.

1.2 خواص علاقة ثنائية

لتكن Rعلاقة ثنائية في مجموعة E.

- (R انعكاسية Reflexive ⇔ (Reflexive
- (∀ x, y∈E : xRy ⇒ yRx) ⇔ (<mark>Symétrique تناظرية</mark> R) -
- $(\forall \ x, \ y \in E : xRy \land yRx \Rightarrow y=x) \Leftrightarrow (Asymétrique ضد تناظرية R)$ -
 - (∀ x, y, z∈E : xRy ∧ yRz ⇒ xRz) ⇔ (<mark>Transitive متعدية</mark> R) -

1.2علاقة التكافق

لتكن Rعلاقة ثنائية في مجموعة E.

R علاقة تكافؤ (Relation d'équivalence) اذا كانت انعكاسية، تناظرية و متعدية.

- صنف التكافؤ

ليكن $a \in E$. نسمي صنف تكافؤ (classe d'équivalence) العنصر a ونرمز له $a \in E$ مجموعة العناصر من $a \in E$ التي لها علاقة مع $a \in R$.

ā={x∈E : xRa}

امثلة:

$$\mathcal{R}_{1} = \big\{ (1,1), (2,2), (3,3)(1,3), (3,1) \big\} \quad \text{if } E = \big\{ (1,2,3) \big\} \quad \text{if } E = \big\{ (1,1), (2,2), (3,3) \big\} \quad \text{of } E = \big\{ (1,2), (2,2), (3,3) \big\} \quad \text{of } E = \big\{ (1,2), (2,2), (2,2), (2,2) \big\} \quad \text{of } E$$

علاقتا تكافؤ.

- في المثال الأول السابق لدينا
$$\{1,3\}$$
 , $\overline{2} = \{2\}$, $\overline{3} = \{1,3\}$ بالنسبة \mathbb{R}_2 و $\{3\}$ و $\{3\}$

$$\forall x,y \in \mathbb{R}_+^*: x\mathcal{R}y \Leftrightarrow xlny = ylnx$$
 , $E = \mathbb{R}_+^*$ (2 $\Big(\hat{\mathcal{R}}_+ \hat{\mathcal{R}}_+$

 $(∀x ∈ \mathbb{R}^*_+: x\mathcal{R}y) \Leftrightarrow (iablus : \mathcal{R})$

لدينا \mathcal{R} ادن \mathcal{R} انعكاسية. $\forall x \in \mathbb{R}_+^* : x lny = y lnx$ لدينا

 $(\forall x, y \in \mathbb{R}^*_+: x\mathcal{R}y \Rightarrow y\mathcal{R}x) \Leftrightarrow (\mathcal{R})$ - $x\mathcal{R}y \Rightarrow xlny = ylnx \Rightarrow ylnx = xlny \Rightarrow y\mathcal{R}x$ الدينا \mathcal{R} تناظرية.

 $(\forall x, y, z \in \mathbb{R}^*_+: x\mathcal{R}y \land y\mathcal{R}z \Rightarrow x\mathcal{R}z) \Leftrightarrow (\exists x \in \mathcal{R})$

$$\begin{cases} x\mathcal{R}y \\ \wedge \\ y\mathcal{R}z \end{cases} \Rightarrow \begin{cases} xlny = ylnx \\ \wedge \\ ylnz = zlny \end{cases} \Rightarrow \begin{cases} \frac{lny}{y} = \frac{lnx}{x} \\ \wedge \\ \frac{lnz}{z} = \frac{lny}{y} \end{cases} \Rightarrow \frac{lnz}{z} = \frac{lnx}{x} \Rightarrow xlnz = zlnx \Rightarrow x\mathcal{R}z \text{ then } 1 \text{ then } 2 \text{ then$$

ومنه ٦ متعدية مما سبق نجد أن ٦ علاقة تكافؤ.

- مجموعة حاصل قسمة

تسمى مجموعة كل أصناف التكافؤ وفق العلاقة R بمجموعة حاصل قسمة (Ensemble quotient) E على R و نرمز لها بـ <mark>E/R</mark>.

في المثال 1) جموعة حاصل القسمة هي: E/R₁₌{{1,3}, {2}}

2.2علاقة الترتيب

لتكن Rعلاقة ثنائية في مجموعة E.

R علاقة ترتيب(Relation d'ordre) اذا كانت انعكاسية، ضد تناظرية و متعدية.

- نقول عن علاقة الترتيب R انها علاقة ترتيب كلي (Relation d'ordre Totale)اذا تحقق: $\forall x, y \in E : xRy \vee yRx$
- نقول عن علاقة الترتيب R انها علاقة ترتيب جزئي (Relation d'ordre partiel)اذا كانت علاقة ترتيب غير كلى أي تحقق:

 $\exists x, y \in E : x\overline{R}y \wedge y\overline{R}x$

مثلا:

 $X, y \in IR : xRy \Leftrightarrow x \leq y : _ IR$ المعرفة على R العلاقة علاقة ترتيب كلى لان من اجل أي x و y من $x \le x$ او $x \le y$.

 $X, y \in IN : xRy \Leftrightarrow y$ يقسم X : IN = A المعرفة على IN العلاقة -2 علاقة ترتيب جزئي لانه من اجل x=2 و y=3 من y=3 فان 2 لايقسم 3 و 3 لايقسم 2.

3) التطبيقات Appliations

1.3 تعریف تطبیق F و F مجموعتین.

F عنصرًا وحيدًا من E نحو E كل علاقة تسمح بأن نرفق بكل عنصر من E عنصرًا وحيدًا من Eونرمز للتطبيق بـ:

$$f: E \longrightarrow F$$
$$x \longrightarrow y = f(x)$$

ترميز: تسمى E مجموعة المنطلق (أو البدء).

تسمى F مجموعة الوصول.

x تسمى سابقة و y = f(x) تسمى صورة العنصر x

أمثلة:

تطبيقf

و ليس تطبيقا

3.2 خواص التطبيقات

التطبيق المتباين Application Injective

: نقول أن f متباين إذا حقَق

$$\forall x_1, x_2 \in E : f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

باستعمال عكس النقيض هذا يكافئ: يكون f متباين اذا حقق:

$$\forall x_1, x_2 \in E : x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$$

التطبيق الغامر Application Surjective

.ليكن $f:E\longrightarrow F$ تطبيقا

نقول أن f غامر إذا حقق:

$$\forall x \in F$$
, $\exists x \in E : f(x) = y$

وهو ما يكافئ :

من أجل كل y من f(x) = y المعادلة F من أجل كل على الأقل.

التطبيق التقابلي Application Bijective

ايكن $f:E\longrightarrow F$ تطبيقا.

نقول أن f(x) = y تقابل إذا كان متباينا و غامرًا. و هو ما يكافئ أن المعادلة f(x) = y تقبل حلاً وحيدًا من أجل كل $F \ni y$.

أمثلة

(1

این لان: $f: IN \rightarrow IN^*$ (2

 $n \rightarrow f(n) = n+1$

 \forall n, m \in IN : f(n)=f(m) \Leftrightarrow n+1=m+1 \Leftrightarrow n=m

غامر لان:

 $\forall m \in IN: \exists n \in IN / m = f(n)$?

 $m=f(n)\Leftrightarrow m=n+1\Leftrightarrow n=m-1$: المعادلة $m=f(n)\Leftrightarrow m=f(n)$ تقبل حلا على الأقل. بالفعل لدينا

اذا فهو تطبيق تقابلي.

غیر متباین لان: $f: IR \rightarrow IR$ (3

 $x \rightarrow f(x)=x^2$

 $\exists x_1 = -1, x_2 = 1 \in IR : x_1 \neq x_2 \text{ et } f(x_1) = f(x_2) = 1$

و غير غامر لان y=-1 ليس له سابقة. فهو بالتالي تطبيق غير تقابلي.

تساوي تطبيقين: Egalité de deux applications

اذا كان: $g:G\to H$ و $f:E\to F$ اندا كان: $g:G\to H$ اندا كان:

. \forall x∈E : f(x)=g(x) و F =H و E=G

التطبيق المطابق: Application identique

 $_{
m L}$ لتكن $_{
m C}$ مجموعة التطبيق المطابق على $_{
m E}$ هو التطبيق الذي يرمز له

 $I_E: E \to E$ $x \in E: I_E(x) = x$

تركيب تطبيقين: Composition des applications

ليكن $f:E\to F$ و $g:F\to G$ تطبيقين. نسمي تركيب التطبيقين $g:F\to G$ و التطبيق عيث:

gof: $E \rightarrow G$

 $\forall x \in E : (g \circ f)(x) = g[f(x)]$

مثال:

g:
$$[0 \ 2] \rightarrow [0 \ 1]$$
 f: $[0 \ 1] \rightarrow [0 \ 2]$
y \rightarrow x=g(x)=(x - 1)² v \rightarrow x=f (y)= 2 - x

gof:
$$[0\ 1] \to [0\ 2]$$

$$(gof)(x)=g[f(x)]=(2-x-1)^2=(1-x)^2=x^2-2x+1.$$

fog: $[0\ 2] \to [0\ 1]$

 $(f \circ g)(x) = f[g(x)] = 2 - g(x) = 2 - (x-1)^2 = -x^2 + 2x + 1.$

اذن بشكل عام فان: gof ≠ fog .

التطبيق العكسي لتطبيق تقابلي L'application réciproque d'une application bijective

. f^{-1} الدا كان f:E o F يرمز له أوا عكسيا (Application réciproque) يرمز له

$$f^{-1}: F \to E$$
 $x \in E, y \in F: y = f(x) \Leftrightarrow x = f^{-1}(y)$ $y \to x = f^{-1}(y)$

تمرين: نعتبر التطبيق f المعرف ب:

$$f : F \to E$$

 $x \to y = f(x) = \frac{x+1}{x-2}$

هل f متباین؟ هل هو غامر؟ هل هو تقابلی؟

حدد مجموعة الوصول حتى يكون تقابلي. و عين تطبيقه العكسي f^{-1} .

- التباين:

$$\forall x_{1}, x_{2} \in IR-\{-2\}:$$

$$f(x_{1})=f(x_{2}) \Leftrightarrow \frac{x_{1}+1}{x_{1}-2} = \frac{x_{2}+1}{x_{2}-2} \Leftrightarrow (x_{1}+1)(x_{2}-2) = (x_{1}-2)(x_{2}+1)$$

$$\Leftrightarrow 3x_{1}=3x_{2} \Leftrightarrow x_{1}=x_{2}$$

اذن f متباین.

الغمر

 $\forall y \in IR, \ \exists ? \ x \in IR - \{-2\} : y = f(x).$

أى هل المعادلة y=f(x) ذات المجهول x تملك حلا أى هل y=f(x)

$$f(x) = y \longleftrightarrow \frac{x+1}{x-2} = y$$

$$\longleftrightarrow x+1 = xy - 2y$$

$$\longleftrightarrow xy - x = 2y + 1$$

$$\longleftrightarrow x(y-1) = 2y + 1$$

من اجل y=1 المعادلة الأخيرة تصبح: $0=3 \Leftrightarrow 0=3$ و هذا مستحيل أي x غير موجود او بتعبير اخر y=1 ليست له سابقة و بالتالي y=1 تطبيق غير غامر.

F=IR-{1} غامرا و بالتالي تقابليا يجب ان تكون مجموعة الوصول $v \neq 1$ فان:

$$y=f(x) \Leftrightarrow x(y-1)=2y+1 \Leftrightarrow x=\frac{2y+1}{y-1} \in E=IR-\{2\}$$
?
$$. \ x\in E \text{ في } x\neq 2$$
 ينجد $x=2$ و بالتالي $x=2$ و بالتالي $x=2$ و بالتالي $x=2$ و بالتالي $x=2$

اذن $f: IR-\{2\} o IR-\{1\}$ تطبیق تقابلي

و تطبیقه العکسي $x \rightarrow y = f(x) = \frac{x+1}{x-2}$

 $f^{-1}: IR-\{1\} \to IR-\{2\}$ $y \to x=f^{-1}(y)=\frac{2y+1}{y-1}$

و يمكن كتابة كذلك:

$$f^{-1}: IR-\{1\} \to IR-\{2\}$$

 $x \to y=f^{-1}(x)=\frac{2x+1}{x-1}$

الصورة المباشرة:

 $E \supset A$ نطبیقا ولتکن $f:E \longrightarrow F$ لیکن

: — وفق التطبيق f المجموعة الجزئية من F والمعرفة ب المحموعة $f(A) = \{f(x)/x \in A\}$ $= \{y \in F/\exists x \in A : y = f(x)\}$

خواص الصورة المباشرة الأولى:

$$.f\left(\phi\right)=\phi$$
 . أ
 $A_{1}\subset A_{2}\Rightarrow f\left(A_{1}\right)\subset f\left(A_{2}\right)$. ب
 $f\left(A_{1}\cup A_{2}\right)=f\left(A_{1}\right)\cup f\left(A_{2}\right)$. ج

 $f(x) = \frac{x}{x^2+1}$: المعرف بـ التطبيق f المعرف بـ

بضع
$$f$$
 متباین $f(A)$ متباین $A = \left\{0, \frac{1}{2}, 1, 2\right\}$ متباین وضع

$$f(A) = \{f(0), f(\frac{1}{2}), f(1), f(2)\} = \{0, \frac{2}{5}, \frac{1}{2}\} \text{ car } f(\frac{1}{2}) = f(2) = \frac{2}{5}.$$

ومنه f غير متباين.

الصورة العكسية:

: — وفق التطبيق
$$E$$
 المجموعة الجزئية من E والمعرفة ب نسمي الصورة العكسية للجزء $F \supset B$ والمعرفة ب نسمي الصورة العكسية للجزء $f^{-1}(B) = \{x \in E \ / f(x) \in B\}$

خواص الصورة العكسية:

$$f^{-1}(\phi) = \phi \cdot 1$$

$$f^{-1}(F) = E$$
 .2

$$f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$$
 .3

$$f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$$
.4

$$f(x) = \frac{x}{x^2+1}$$
 مثال: نعتبر المثال السابق

.y=f(x) عين قيم y من IR التي لها سوابق. أي نحل المعادلة

$$y = \frac{x}{1+x^2} \iff yx^2 - x + y = 0$$

- x=0 لما y=0 فان -
- $y = [-\frac{1}{2}, \frac{1}{2}]$ من اجل قيم $\Delta > 0$ اذن $\Delta = 1$ -4 y^2 اندرجة الثانية مميزها $\Delta = 1$ -4 y^2 اذن $\Delta = 1$ من اجل قيم الدرجة الثانية مميزها ولاحة الذن $\Delta = 1$