

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

TECHNICAL SCIENCES P2

NOVEMBER 2024

MARKS: 75

TIME: 11/2 hours

This question paper consists of 11 pages and 4 data sheets.

INSTRUCTIONS AND INFORMATION

- 1. Write your centre number and examination number in the appropriate spaces on the ANSWER BOOK.
- This question paper consists of SIX questions. Answer ALL the questions in the ANSWER BOOK.
- 3. Start EACH question on a NEW page in the ANSWER BOOK.
- 4. Number the answers correctly according to the numbering system used in this question paper.
- 5. Leave ONE line between two subquestions, e.g. between QUESTION 2.1 and QUESTION 2.2.
- 6. You may use a non-programmable calculator.
- 7. You are advised to use the attached DATA SHEETS.
- 8. Round off your FINAL numerical answers to a minimum of TWO decimal places.
- 9. Give brief motivations, discussions, etc. where required.
- 10. Write neatly and legibly.

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Various options are provided as possible answers to the following questions. Choose the answer and write only the letter (A-D) next to the question numbers (1.1 to 1.5) in the ANSWER BOOK, e.g. 1.6 D. ...

1.1 Consider the following examples of isomers:

Example 1	but-1-ene	but-2-ene
Example 2	1-chloropropane	2-chloropropane

Both examples represent ...

- Α functional isomers.
- В positional isomers.
- C chain isomers.
- D structural isomers. (2)
- 1.2 Which ONE of the following is the CORRECT condensed structural formula for 2,3-dimethylbutane?
 - Α CH₃C(CH₃)₂CH₂CH₃
 - В CH₃CH(CH₃)CH₂CH₂CH₃
 - C CH₃CH(CH₃)CH(CH₃)CH₃
 - D CH₃CH₂CH₂CH₂CH₃ (2)

Consider the circuit diagram below. 1.3

Which ONE of the following graphs best describes the relationship between the current and applied voltage?

Which ONE of the following combinations is TRUE for an electrolytic cell? 1.4

	ANODE	CATHODE	ENERGY CONVERSION		
Α	Negative	Positive	Chemical to electrical		
В	Positive	Negative	Electrical to chemical		
С	Negative	Positive	Mechanical to electrical		
D	Positive	Negative	Electrical to mechanical		

Copyright reserved Please turn over

(2)

(2)

- 1.5 ONE of the disadvantages of photovoltaic cells is that ...
 - A toxic chemicals are used in the production process.
 - B the cells are placed on an unused space on rooftops.
 - C photovoltaic systems are quiet and not a disturbance.
 - D energy produced by solar cells is clean.

(2) **[10]**

QUESTION 2 (Start on a new page.)

Consider the following organic compounds represented by letters A to E.

A	H H H H H 	В	O=C-C-H H-C-H H-C-H
С	Methyl propanoate	D	H ₂ CCH ₂
Е	2-methylpropan-2-ol		

2.1 Refer to compound **A** and write down the:

2.2 Refer to compound **B** and write down the:

2.3 Compound **C** is formed when a carboxylic acid reacts with an alcohol.

2.4 Write down the letter that represents a compound that is a/an:

2.5 Classify the alcohol referred to in QUESTION 2.4.2 as PRIMARY, SECONDARY or TERTIARY. (1)

[13]

QUESTION 3 (Start on a new page.)

Use the organic compounds below to answer the questions that follow.

Bro	moethane	Ethanol	Ethane	Ethanoic acid					
3.1	Define the term boiling point.								
3.2	Arrange the compounds in order of decreasing boiling point.								
3.3	Write down the relationship between the boiling points of organic compounds and their intermolecular forces.								
3.4	Which ONE of the compounds will have the highest vapour pressure when they are compared at the same temperature?								
3.5	Identify the type of intermolecular forces present in bromoethane and ethane, and compare their strengths.								
3.6	Methyl met	hanoate is an isomer of	ethanoic acid.						
	3.6.1	What type of isomers ar	e these organic compo	ounds?					
	3.6.2	Define the type of isome	er referred to in QUES	ΓΙΟΝ 3.6.1.					

QUESTION 4 (Start on a new page.)

The flow chart below illustrates different organic reactions in which compound **A** is converted to different compounds, **B**, **C** and **D**. Study the flow chart carefully and then answer the questions that follow.

- 4.1 Write down the homologous series to which compound **A** belongs. (1)
- 4.2 Consider the reaction in which compound **A** is converted to compound **B**.
 - 4.2.1 Draw the structural formula of compound **B**. (2)
 - 4.2.2 Explain why compound **B** is called a tertiary haloalkane. (2)
 - 4.2.3 Why is it important that there should be no water in the reaction mixture? (2)

4.3	Consider the reaction in which compound B is converted to compound C .										
	4.3.1	Write down ONE reaction condition for this reaction.	(1)								
	4.3.2	Use molecular formulae to write a balanced chemical equation for this reaction.	(3)								
4.4	Consider	the conversion of compound A to compound C .									
	4.4.1	Write down the NAME and the TYPE of this chemical reaction.	(2)								
	4.4.2	Write down the chemical formula of the inorganic reactant that is used.	(1)								
4.5	Consider down the:	the reaction where compound A is converted to compound D . Write									
	4.5.1	NAME of the inorganic reactant needed for the reaction	(1)								
	4.5.2	Symbol of the catalyst used during the reaction	(1) [16]								

QUESTION 5 (Start on a new page.)

A learner wants to electroplate an iron ring with silver to enhance its appearance and increase its value. The iron ring is cleaned thoroughly before the electroplating takes place.

5.1 Define the term electrolysis. (2) 5.2 Why must the iron ring be cleaned thoroughly before electroplating takes place? (2) Is electrode **X** the anode or cathode? 5.3 (1) 5.4 Give a reason for the answer to QUESTION 5.3. (2) 5.5 Write down the NAME of ion X⁺. (1) 5.6 Write down the half-reaction taking place at the iron ring. [10]

QUESTION 6 (Start on a new page.)

A group of learners set up an electrochemical cell, as shown in the diagram below. The cell is INCOMPLETE.

- 6.1 What type of electrochemical cell is this? (1)
- 6.2 Explain the answer to QUESTION 6.1. (2)
- 6.3 What is the reading on the voltmeter? (1)
- 6.4 Write down the name of the component needed to complete the circuit. (1)
- 6.5 State TWO functions of the component named in QUESTION 6.4.

The component in QUESTION 6.4 is inserted and the voltmeter reading increases. The graphs below show the change in the masses of both electrodes **A** and **B** while the cell is in operation.

6.6 Which graph (**X** or **Y**) below represents the change in the mass of electrode **A**? Write down only **X** or **Y**.

- 6.7 Is electrode **A** an oxidising agent or reducing agent? Explain the answer. (2)
- 6.8 Calculate the emf of the cell while in operation. (4)

 [14]

TOTAL: 75

(2)

DATA FOR TECHNICAL SCIENCES GRADE 12 PAPER 2 GEGEWENS VIR TEGNIESE WETENSKAPPE GRAAD 12 VRAESTEL 2

TABLE 1/TABEL 1: PHYSICAL CONSTANTS/FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	p ^θ	1,01 x 10 ⁵ Pa
Standard temperature Standaardtemperatuur	Т	0 °C/273 K

TABLE 2/TABEL 2: FORMULAE/FORMULES

Emf/Emk	E^{θ} cell = E^{θ} cathode - E^{θ} anode / E^{θ} sel = E^{θ} katode - E^{θ} anode
	or/of
	E^{θ} cell = E^{θ} reduction - E^{θ} oxidation / E^{θ} sel = E^{θ} reduksie - E^{θ} oksidasie
	or/of
	E^{θ} cell = E^{θ} oxidising agent - E^{θ} reducing agent / E^{θ} sel = E^{θ} oksideermiddel - E^{θ} reduseermiddel

TABLE 3: THE PERIODIC TABLE OF ELEMENTS/TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

	1 (I)	(2 (II)		3		4	5	6	7	8 Atomic	9 c numbe	10 er	11	12	13 (III)	14 (IV)	15 (V)	16 (VI)	17 (VII)	18 (VIII)
2,1	1 H 1							KEY	SLEUT	EL	Atoo	omgetal ¥ 29									2 He 4
1,0	3 Li 7	1,5	4 Be 9						ectrone ektrone		y ← €	Cu 63,5	Symbo Simbo			2,0 B B 11	2,5 C 12	ος N 14	3,5 0 16	4,0 19 6 H 6	10 Ne 20
6,0	23	1,2	12 Mg 24						Ber	naderd	ate relat e relatie	we atoo	mmass	a		13 13 13	ω 14 Σ Si 28	75 7, B 31	16 5, S 32	ວ 17 ຕົ Cℓ 35,5	18 Ar 40
8,0	19 K 39	1,0	20 Ca 40	1,3	21 Sc 45	1,5	22 Ti 48	9, V 51	9 Cr 52	55	[∞] . Fe 56	ω Co 59	28 ∞ Ni 59	ე 5 Cu 63,5		9 31 Ga 70	∞ 32	`` 75	7, Se 79	35 Br 80	36 Kr 84
8,0	37 Rb 86	1,0	38 Sr 88	1,2	39 Y 89	1,4	40 Zr 91	41 Nb 92	∞ Mo 96		7 Ru 101	103		108		115		` 122			54 Xe 131
2,0	55 Cs 133	6'0	56 Ba 137		57 La 139	1,6	72 Hf 179	73 Ta 181	74 W 184	75 Re 186	Os	77 Ir 192	78 Pt 195	79 Au 197	80 Hg 201		∞ Pb 207	6, Bi 209	84 0, Po	85 At	86 Rn
2'0	87 Fr	6'0	88 Ra 226		89 Ac			58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
								140 90 Th	141 91 Pa	144 92 U	93 Np	150 94 Pu	152 95 Am	157 96 Cm	159 97 Bk	163 98 Cf	165 99 Es	167 100 Fm	169 101 Md	173 102 No	175 103 Lr
								232		238											

Increasing oxidising ability/ Toenemende oksiderende vermoë

TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARD-REDUKSIEPOTENSIALE

Half-reaction	s/Hal	freaksies	E ^Θ (V)
F ₂ (g) + 2e ⁻	=	2F-	+ 2,87
Co ³⁺ + e ⁻	=	Co ²⁺	+ 1,81
H ₂ O ₂ + 2H ⁺ +2e ⁻	=	2H ₂ O	+1,77
MnO ₄ ⁻ + 8H ⁺ +5e ⁻	=	Mn ²⁺ + 4H ₂ O	+ 1,51
Cl ₂ (g) + 2e ⁻	=	2Cl-	+ 1,36
Cr ₂ O ₇ ²⁻ + 14H ⁺ +6e ⁻	=	2Cr ³⁺ + 7H ₂ O	+ 1,33
O ₂ (g) + 4H ⁺ + 4e ⁻	=	2H ₂ O	+ 1,23
MnO ₂ + 4H ⁺ + 2e ⁻	=	Mn ²⁺ + 2H ₂ O	+ 1,23
Pt ²⁺ + 2e ⁻	=	Pt	+ 1,20
$Br_2(\ell) + 2e^-$	=	2Br ⁻	+ 1,07
NO ₃ ⁻ + 4H ⁺ + 3e ⁻	=	NO(g) + 2H ₂ O	+ 0,96
Hg ²⁺ + 2e ⁻	=	Hg(ℓ)	+ 0,85
Ag+ + e -	=	Ag	+ 0,80
NO ₃ ⁻ + 2H ⁺ + e ⁻	=	$NO_2(g) + H_2O$	+ 0,80
Fe ³⁺ + e ⁻	=	Fe ²⁺	+ 0,77
O ₂ (g) + 2H ⁺ + 2e ⁻	=	H ₂ O ₂	+ 0,68
I ₂ + 2e ⁻	=	2l ⁻	+ 0,54
Cu+ + e⁻	=	Cu	+ 0,52
SO ₂ + 4H ⁺ + 4e ⁻	=	S + 2H ₂ O	+ 0,45
2H ₂ O + O ₂ + 4e ⁻	=	40H-	+ 0,40
Cu ²⁺ + 2e ⁻	=	Cu	+ 0,34
SO ₄ ²⁻ + 4H ⁺ + 2e ⁻	=	SO ₂ (g) + 2H ₂ O	+ 0,17
Cu²+ + e⁻	=	Cu+	+ 0,16
Sn ⁴⁺ + 2e ⁻	=	Sn ²⁺	+ 0,15
S + 2H+ + 2e-	=	H ₂ S(g)	+ 0,14
2H⁺ + 2e⁻	=	H ₂ (g)	0,00
Fe ³⁺ + 3e ⁻	=	Fe	- 0,06
Pb ²⁺ + 2e ⁻	=	Pb	- 0,13
Sn ²⁺ + 2e ⁻	=	Sn	- 0,14
Ni ²⁺ + 2e ⁻	=	Ni	- 0,27
Co ²⁺ + 2e ⁻	=	Со	- 0,28
Cd ²⁺ + 2e ⁻	=	Cd	- 0,40
Cr ³⁺ + e ⁻	=	Cr ²⁺	- 0,41
Fe ²⁺ + 2e ⁻	=	Fe	- 0,44
Cr ³⁺ + 3e ⁻	=	Cr	- 0,74
Zn ²⁺ + 2e ⁻	=	Zn	- 0,76
2H ₂ O + 2e⁻	=	H ₂ (g) + 2OH ⁻	- 0,83
Cr ²⁺ + 2e ⁻	=	Cr	- 0,91
Mn ²⁺ + 2e ⁻	=	Mn	- 1,18
Al ³⁺ + 3e ⁻	=	Al	- 1,66
Mg ²⁺ + 2e ⁻	=	Mg	- 2,36
Na⁺ + e⁻	=	Na	- 2,71
Ca ²⁺ + 2e ⁻	=	Ca	- 2,87
Sr ²⁺ + 2e ⁻	=	Sr	- 2,89
Ba ²⁺ + 2e ⁻	=	Ва	- 2,90
Cs+ + e-	=	Cs	- 2,92
K⁺ + e⁻	=	K	- 2,93
Li+ + e⁻	=	Li	- 3,05

Increasing reducing ability/Toenemende reduserende vermoë

TABLE 4B: STANDARD REDUCTION POTENTIALS TABEL 4B: STANDAARD-REDUKSIEPOTENSIALE

Half-reactions/F	lalfrea	aksies	E [⊕] (V)
Li ⁺ + e ⁻	=	Li	- 3,05
K+ + e-	=	K	- 2,93
Cs+ + e-	=	Cs	- 2,92
Ba ²⁺ + 2e ⁻	=	Ва	- 2,90
Sr ²⁺ + 2e ⁻	=	Sr	- 2,89
Ca ²⁺ + 2e ⁻	=	Ca	- 2,87
Na+ + e-	=	Na	- 2,71
Mg ²⁺ + 2e ⁻	=	Mg	- 2,36
Al ³⁺ + 3e ⁻	=	Αl	- 1,66
Mn ²⁺ + 2e ⁻	=	Mn	- 1,18
Cr ²⁺ + 2e ⁻	=	Cr	- 0,91
2H ₂ O + 2e ⁻	=	H ₂ (g) + 2OH ⁻	- 0,83
Zn ²⁺ + 2e ⁻	=	Zn	- 0,76
Cr ³⁺ + 3e ⁻	=	Cr	- 0,74
Fe ²⁺ + 2e ⁻	=	Fe	- 0,44
Cr ³⁺ + e ⁻	=	Cr ²⁺	- 0,41
Cd ²⁺ + 2e ⁻	=	Cd	- 0,40
Co ²⁺ + 2e ⁻	=	Co	- 0,28
Ni ²⁺ + 2e ⁻	=	Ni	- 0,27
Sn ²⁺ + 2e ⁻	=	Sn	- 0,14
Pb ²⁺ + 2e ⁻	=	Pb	- 0,13
Fe ³⁺ + 3e ⁻	=	Fe	- 0,06
2H+ + 2e-	=	H ₂ (g)	0,00
S + 2H+ + 2e-	=	H ₂ S(g)	+ 0,14
Sn ⁴⁺ + 2e ⁻	=	Sn ²⁺	+ 0,15
Cu ²⁺ + e ⁻	=	Cu ⁺	+ 0,16
SO ₄ ⁻ + 4H ⁺ + 2e ⁻	=	$SO_2(g) + 2H_2O$	+ 0,17
Cu ²⁺ + 2e ⁻	=	Cu	+ 0,34
2H ₂ O + O ₂ + 4e ⁻	=	40H ⁻	+ 0,40
SO ₂ + 4H ⁺ + 4e ⁻	=	S + 2H ₂ O	+ 0,45
Cu ⁺ + e ⁻	11 11 11 11 11	Cu	+ 0,52
l ₂ + 2e ⁻	=	2l ⁻	+ 0,54
$O_2(g) + 2H^+ + 2e^-$	=	H ₂ O ₂	+ 0,68
Fe ³⁺ + e ⁻		Fe ²⁺	+ 0,77
NO ₃ ⁻ + 2H ⁺ + e ⁻	=	$NO_2(g) + H_2O$	+ 0,80
Ag+ + e-	=	Ag	+ 0,80
Hg ²⁺ + 2e ⁻	=	Hg(ℓ)	+ 0,85
NO ₃ ⁻ + 4H ⁺ + 3e ⁻	=	NO(g) + 2H ₂ O	+ 0,96
$Br_2(\ell) + 2e^{-\ell}$	=	2Br ⁻	+ 1,07
Pt ²⁺ + 2 e ⁻	=	Pt	+ 1,20
MnO ₂ + 4H ⁺ + 2e ⁻	=	Mn ²⁺ + 2H ₂ O	+ 1,23
$O_2(g) + 4H^+ + 4e^-$	=	2H ₂ O	+ 1,23
Cr ₂ O ₇ ⁻ + 14H ⁺ +6e ⁻	=	2Cr ³⁺ + 7H ₂ O	+ 1,33
Cl ₂ (g) + 2e ⁻	=	2Cl-	+ 1,36
MnO ₄ ⁻ + 8H ⁺ + 5e ⁻	=	Mn ²⁺ + 4H ₂ O	+ 1,51
H ₂ O ₂ + 2H ⁺ +2 e ⁻	=	2H ₂ O	+1,77
Co ³⁺ + e ⁻	=	Co ²⁺	+ 1,81
F ₂ (g) + 2e ⁻	=	2F ⁻	+ 2,87

Increasing strength of reducing agents/Toenemende sterkte van reduseermiddels