

Hijacking Bitcoin

Routing Attacks on Cryptocurrencies

Hichem Belhocine Bern Universität 19 March 2019

Lecturer: Prof. Dr. Christian Cachin

Can routing attacks impact Bitcoin?

Bitcoin should be robust against routing attacks Bitcoin is highly decentralized network of nodes

Bitcoin nodes ...

- are scattered all around the globe
- establish random connections
- use multihoming and additional overlay networks

Bitcoin is highly centralized from both routing and mining viewpoint

Mining power is centralized to few hosting networks

cumulative % of mining power

68% of the mining power is only hosted in 10 networks

Few transit networks can intercept a large fraction of the Bitcoin connections

63% of Bitcoin traffic is only intercepted by 3 networks

Because of these characteristics two routing attacks practical and effective today

Each attack differs in terms of its visibility, impact, and targets

Hijacking Bitcoin

Routing Attacks on Cryptocurrencies

Background

BGP and Bitcoin

Partitioning attack

splitting the network

Delay attack

slowing the network down

Countermeasures

short-term and long-term

Bitcoin is a distributed network of nodes Establish random connections between each other

Each node keeps a ledger of all transactions ever performed: "the blockchain"

 Tx a1a53743
 Tx x5f78432
 Tx x5f78432

 Tx b5x89433
 Tx h1t91267
 Tx h1t91267

The Blockchain is a chain of Blocks The Blockchain is extended by miners

Miners collaborate forming mining pools

Bitcoin connections are routed over the Internet

The Internet is composed of Autonomous Systems (ASes) BGP computes the forwarding path across them

Bitcoin messages are propagated unencrypted and without any integrity guarantees

Hijacking Bitcoin

Routing Attacks on Cryptocurrencies

Background

BGP and Bitcoin

Partitioning attack

splitting the network

Delay attack

slowing the network down

Countermeasures

short-term and long-term

The goal of a partitioning attack is to split the Bitcoin network into two disjoint components

Denial of Service

Revenue Loss

Double spending

Denial of Service

Bitcoin clients cannot secure or propagate transactions

Revenue Loss

Double spending

Denial of Service

Revenue Loss

Blocks in component with less mining power are discarded

Double spending

Denial of Service

Revenue Loss

Double spending

Transactions in components with less mining power can be reverted

How does the attack work?

Let's say an attacker wants to partition the network into the left and right side

For doing so, the attacker will manipulate BGP routes to intercept any traffic to the nodes in the right

Let us focus on node F

Provider (AS6) is responsible for IP prefix

AS6 will create a BGP advertisement

AS6's advertisement is propagated AS-by-AS until all ASes in the Internet learn about it

AS1 will learn the path via AS7 then AS6

BGP does not check the validity of advertisements, meaning any AS can announce any prefix

Consider that the attacker advertises a prefix that cover the IP of F

The advertisement of the attacker is more-specific

As IP routers prefer more-specific prefixes, the attacker route will be preferred

Traffic to node F is hijacked

By hijacking the IP prefixes pertaining to the right nodes, the attacker can intercept all their connections

The attacker can drop all connections crossing the partition

Not all partition are feasible in practice: some connections cannot be intercepted

Bitcoin connections:

- within a mining pool
- within an AS
- Private connections between mining pools

The partition attack is evaluated in terms of practicality and time efficiency

Practicality

Time efficiency

Can it actually happen?

Infer the Bitcoin topology

Splitting the mining power even to half can be done by hijacking less than 100 prefixes

Splitting the mining power even to half can be done by hijacking less than 100 prefixes

negligible compared to the hijacks
That happening in the internet every day

Hijacks of up to 1k of prefixes are frequently seen in the Internet today

The partition attack is also evaluated in terms of time efficiency

Practicality

Time efficiency

How long does it take?

We measure the time required to perform a partition attack by attacking our own nodes

We hoste a few Bitcoin nodes at Bern and advertise a covering prefix via Vienna

All the traffic to our nodes are routed via Vienna

We hijacke our nodes by another BGP peer that Located in Salzburg

184.164.232**.1-6**

We measure the time required for a rogue AS to divert all the traffic to our nodes

It takes less than 2 minutes for the attacker to intercept all the connections

cumulative % of connections intercepted

Hijacking Bitcoin

Routing Attacks on Cryptocurrencies

1 Background

BGP and Bitcoin

2 Partitioning attack

splitting the network

3 Delay attack

slowing the network down

4 Countermeasures

short-term and long-term

The goal of a delay attack is to keep the victim uninformed of the latest Block

Merchant

Mining pool

Regular node

Merchant

susceptible to double-spending attacks

Mining pool

Regular node

Merchant

Mining pool

waste their mining power by mining on an obsolete chain

Regular node

Merchant

Mining pool

Regular node

unable to collaborate to the peer-to-peer network

Merchant

How does a delay attack work?

Consider these three Bitcoin nodes

An attacker wishes to delay the block propagation Between node A and the victim

The victim receives two advertisement for the **block**

The victim requests the **block** to one of its peer, say A

The attacker could drop the **GETDATA** message

The attacker could drop the delivery of the **block** message itself

Both cases will lead the victim to kill the connection (Bitoin runs over TCP)

The attacker could intercept the **GETDATA** and modifies its content

And by modifying the ID of the requested block, the attacker triggers the delivery of an older block

The delivery of the older block from node A triggers no error message at the victim

The victim will wait for 20 minutes for the actual block to be delivered

To keep the connection alive, the attacker will trigger the block delivery by modifying another **GETDATA** message

The block is delivered before the timeout and the attack goes undetected

The delay attack is evaluated in terms of effectiveness and practicality

Effectiveness

How much time does the victim stay uniformed?

Practicality

Is it likely to happen?

Connect the victim with the Bitcoin network Assume, the fraction of his connections are routed by the attacker

Doing so. The attacker can keep the victim uninformed for most of its uptime

Using this setup, we find that

If the attacker intercept 50% of the victim connections

The victim will stay uninformed 63% Of it's uptime

The vast majority of the Bitcoin network is at risk

If the attacker intercept 50% of the victim connections

The victim will stay uninformed 63% Of it's uptime

67% nodes vulnerable to attack by at least by one AS adversary

Hijacking Bitcoin

Routing Attacks on Cryptocurrencies

1 Background

BGP and Bitcoin

2 Partitioning attack

splitting the network

3 Delay attack

slowing the network down

4 Countermeasures

short-term and long-term

Both sort-term and long-term countermeasures exist

Short-term countermeasures are simple shifts in the Bitcoin clients

Short-term

Bitcoin client could select it's peer in Routing-aware manner

reduce risk of having one ISP seeing all connections

Bitcoin client could monitor the behavior with it's peer

Detect abnormal changes that might be a sign of a partition

Long-term countermeasures provide more guarantees

Long-term

Use end-to-end encryption

prevent delay attacks (not partition attacks)

Deploy secure routing protocols

prevent partition attacks (not delay attacks)

Hijacking Bitcoin

Routing Attacks on Cryptocurrencies

Bitcoin is vulnerable to routing attacks

The potential impact on the currency is worrying

Countermeasures exist