Algorithms and Their Applications - Divide-and-Conquer -

Won-Yong Shin

April 20th, 2020

- The most-well known algorithm design strategy:
 - 1. Divide an instance of problem into two or more smaller instances
 - 2. Solve smaller instances *recursively*
 - 3. Obtain a solution to the original (larger) instance by combining these solutions

General Divide-and-Conquer Recurrence (1/2)

- Recurrence for the running time T(n):
 - T(n) = aT(n/b) + f(n) where $f(n) \in \Theta(n^d)$, $d \ge 0$

Master theorem

If
$$a < b^d$$
, $T(n) \in \Theta(n^d)$
If $a = b^d$, $T(n) \in \Theta(n^d \log n)$
If $a > b^d$, $T(n) \in \Theta(n^{\log b a})$

- Note: The same results hold with O instead of Θ
- Brief sketch of the proof:
 - Step 1: $n = b^k$, k = 1, 2, ...
 - Step 2: $T(b^k) = aT(b^{k-1}) + f(b^k)$ $= a[aT(b^{k-2}) + f(b^{k-1})] + f(b^k) = a^2T(b^{k-2}) + af(b^{k-1}) + f(b^k)$ $= \cdots$ $= a^k[T(1) + \sum_{i=1}^k f(b^i)/a^i]$

• Step 3:
$$T(n) = n^{\log_b a} [T(1) + \sum_{j=1}^{\log_b n} b^{jd}/a^j] = n^{\log_b a} [T(1) + \sum_{j=1}^{\log_b n} (b^d/a)^j]$$

General Divide-and-Conquer Recurrence (2/2)

Examples

- $T(n) = 4T(n/2) + n \Rightarrow T(n) \in ?$
- $T(n) = 4T(n/2) + n^2 \Rightarrow T(n) \in ?$
- $T(n) = 4T(n/2) + n^3 \Rightarrow T(n) \in ?$

Divide-and-Conquer Examples

- Examples
 - Sorting: mergesort and quicksort
 - The recursion-tree methods for solving recurrences
 - Multiplication of large integers
 - Matrix multiplication: Strassen's algorithm
 - Closest-pair and convex-hull algorithms

Step 1

■ Split array A[0..n-1] in two about equal halves and make copies of each half in arrays B and C

• Step 2

■ Sort arrays *B* and *C* recursively

• Step 3

- Merge sorted arrays *B* and *C* into array *A* as follows:
 - Repeat the following until no elements remain in one of the arrays:
 - ✓ Compare the first elements in the remaining unprocessed portions of the arrays
 - ✓ Copy the smaller of the two into *A*, while incrementing the index indicating the unprocessed portion of that array

• Step 4

■ Once all elements in one of the arrays are processed, copy the remaining unprocessed elements from the other array into *A*


```
ALGORITHM Mergesort(A[0..n-1])
    //Sorts array A[0..n-1] by recursive mergesort
    //Input: An array A[0..n-1] of orderable elements
    //Output: Array A[0..n-1] sorted in nondecreasing order
    if n > 1
        copy A[0..|n/2|-1] to B[0..|n/2|-1]
        copy A[|n/2|..n-1] to C[0..[n/2]-1]
        Mergesort(B[0..|n/2|-1])
        Mergesort(C[0..[n/2]-1])
        Merge(B, C, A)
ALGORITHM Merge(B[0..p-1], C[0..q-1], A[0..p+q-1])
    //Merges two sorted arrays into one sorted array
    //Input: Arrays B[0..p-1] and C[0..q-1] both sorted
    //Output: Sorted array A[0..p+q-1] of the elements of B and C
    i \leftarrow 0; i \leftarrow 0; k \leftarrow 0
    while i < p and j < q do
        if B[i] < C[j]
            A[k] \leftarrow B[i]; i \leftarrow i+1
        else A[k] \leftarrow C[j]; j \leftarrow j+1
        k \leftarrow k + 1
    if i = p
        copy C[i..q - 1] to A[k..p + q - 1]
    else copy B[i..p-1] to A[k..p+q-1]
```


The Operation of **Merge**()

- "Worst-case" efficiency:
 - Assume that n is a power of 2
 - The number of **key comparisons**:

$$C(n) = 2C(n/2) + C_{merge}(n)$$
 for $n > 1$, $C(1) = 0$

- Worst case analysis: $C_{worst}(n) = 2C_{worst}(n/2) + n 1$
- $C(n) = \Theta(n \log n)$
- Variation of mergesort
 - Can be implemented *without recursion* (bottom-up)
 - Can divide a list to be sorted in *more than two* parts

- Step 1
 - Select a *pivot* (partitioning element) here, the first element
- Step 2
 - Rearrange the list so that all the elements in the *first s positions* are smaller than or equal to the *pivot* and all the elements in the *remaining n-s positions* are larger than or equal to the *pivot*

$$\underbrace{A[0]\dots A[s-1]}_{\text{all are } \leq A[s]} \underbrace{A[s]}_{\text{all are } \geq A[s]} \underbrace{A[s+1]\dots A[n-1]}_{\text{all are } \geq A[s]}$$

- Step 3
 - Exchange the pivot with the last element in the first (i.e., ≤) subarray the pivot is now in its final position
- Step 4
 - Sort the two subarrays recursively

0	1	2	3	4	5	6	7
5	<i>i</i> 3	1	9	8	2	4	<i>j</i> 7
5	3	1	<i>i</i> 9	8	2	j 4 j 9	7
5	3	1	<i>i</i> 4	8	2	<i>j</i> 9	7
5	3	1	4	<i>i</i> 8	<i>j</i> 2	9	7
5	3	1	4	i 8 i 2 j 2	2 j 2 j 8 i 8	9	7
5	3	1	4		<i>i</i> 8	9	7
2	3	1	4	5	8	9	7
2	<i>i</i> 3	1	4 <i>j</i> 4				
2	<i>i</i> 3	<i>i</i> 1	4				
2	3 ; 3 ; 3 ; 1	1 1 1 3 i 3	4				
2	<i>j</i> 1	<i>i</i> 3	4				
1 1	2	3	4				
1							
		3	i j 4				
		3 ; 3	i j 4 i 4 4				
		3	4				


```
ALGORITHM Quicksort(A[l..r])
    //Sorts a subarray by quicksort
    //Input: Subarray of array A[0..n-1], defined by its left and right
             indices l and r
    //
    //Output: Subarray A[l..r] sorted in nondecreasing order
    if l \leq r
        s \leftarrow Partition(A[l..r]) //s is a split position
         Quicksort(A[l..s-1])
         Quicksort(A[s+1..r])
ALGORITHM HoarePartition(A[l..r])
    //Partitions a subarray by Hoare's algorithm, using the first element
    //
              as a pivot
    //Input: Subarray of array A[0..n-1], defined by its left and right
              indices l and r (l < r)
    //Output: Partition of A[l..r], with the split position returned as
              this function's value
    //
    p \leftarrow A[l]
    i \leftarrow l; j \leftarrow r + 1
    repeat
         repeat i \leftarrow i + 1 until A[i] \ge p
         repeat j \leftarrow j - 1 until A[j] \le p
         swap(A[i], A[j])
    until i \geq j
    \operatorname{swap}(A[i], A[j]) //undo last swap when i \geq j
    swap(A[l], A[j])
    return j
```


The Operation of **Partition()**: Alternative Approach


```
PARTITION (A, p, r)

1 x = A[r]

2 i = p - 1

3 for j = p to r - 1

4 if A[j] \le x

5 i = i + 1

6 exchange A[i] with A[j]

7 exchange A[i + 1] with A[r]

8 return i + 1
```


- Best case efficiency:
 - When all the splits are in the *middle*
 - The number of **key comparisons**:

$$C_{best}(n) = 2C_{best}(n/2) + n$$
 for $n > 1$, $C_{best}(1) = 0$

- $C(n) = \Theta(n \log n)$
- Worst case efficiency:
 - When all the splits are skewed to the extreme
 - Sorted array!
 - $C(n) = \Theta(n^2)$

- Average case efficiency:
 - \blacksquare When the partition split happen in each position s with the same probability
 - Random arrays
 - The number of **key comparisons**:

$$C_{avg}(n) = \frac{1}{n} \sum_{s=0}^{n-1} [(n+1) + C_{avg}(s) + C_{avg}(n-1-s)]$$

- Improvements:
 - Better pivot selection: median-of-three partitioning
 - Elimination of *recursion*
 - These combine to 20-25% improvement

Divide-and-Conquer Examples

- Examples
 - Sorting: mergesort and quicksort
 - The recursion-tree methods for solving recurrences
 - Multiplication of large integers
 - Matrix multiplication: Strassen's algorithm
 - Closest-pair algorithm
 - Convex-hull algorithm

How a recursion tree provides a good guess

Total: $O(n^2)$

The Recursion-Tree Method: Guess Work

Guess work

$$T(n) = cn^{2} + \frac{3}{16}cn^{2} + \left(\frac{3}{16}\right)^{2}cn^{2} + \dots + \left(\frac{3}{16}\right)^{\log_{4}n - 1}cn^{2} + \Theta(n^{\log_{4}3})$$

$$< \sum_{i=0}^{\infty} \left(\frac{3}{16}\right)^{i}cn^{2} + \Theta(n^{\log_{4}3})$$

$$= O(n^{2})$$

The Recursion-Tree Method: Another Example

• A recursion tree for the recurrence:

$$T(n) = T(n/3) + T(2n/3) + cn$$

Multiplication of Large Integers

Algorithm 1

■ Consider the problem of multiplying two (large) *n*-digit integers represented by arrays of their digits such as:

$$A = 12345678901357986429$$
 $B = 87654321284820912836$

The grade-school algorithm:

$$\begin{array}{c} a_1 \ a_2 \dots \ a_n \\ b_1 \ b_2 \dots \ b_n \\ (d_{10}) \ d_{11} d_{12} \dots \ d_{1n} \\ (d_{20}) \ d_{21} d_{22} \dots \ d_{2n} \\ \dots \\ (d_{n0}) \ d_{n1} d_{n2} \dots \ d_{nn} \end{array}$$

■ Efficiency: n^2 one-digit multiplications

First Divide-and-Conquer Algorithm

Algorithm 2

■ A small example: A * B where A = 2135 and B = 4014

$$A = 21 \cdot 10^2 + 35$$
, $B = 40 \cdot 10^2 + 14$
So, $A * B = (21 \cdot 10^2 + 35) * (40 \cdot 10^2 + 14)$
 $= 21 * 40 \cdot 10^4 + (21 * 14 + 35 * 40) \cdot 10^2 + 35 * 14$

■ In general, if $A = A_1A_2$ and $B = B_1B_2$ (where A and B are n-digit, A_1 , A_2 , B_1 , and B_2 are n/2-digit numbers), then

$$A * B = A_1 * B_1 10^n + (A_1 * B_2 + A_2 * B_1) 10^{n/2} + A_2 * B_2$$

■ Recurrence for the number of one-digit multiplications M(n):

$$M(n) = 4M(n/2), M(1) = 1$$

Second Divide-and-Conquer Algorithm

Algorithm 3

- $A * B = A_1 * B_1 \cdot 10^n + (A_1 * B_2 + A_2 * B_1) \cdot 10^{n/2} + A_2 * B_2$
- The idea is to decrease the number of multiplications <u>from 4 to 3</u>:

$$A_1 * B_2 + A_2 * B_1 = (A_1 + A_2) * (B_1 + B_2) - A_1 * B_1 - A_2 * B_2$$

- which requires only 3 multiplications at the expense of extra additions/subtractions
- The recurrence for the number of multiplications

$$M(n) = 3M(n/2)$$
 for $n > 1$, $M(1) = 1$
 $M(2^k) = 3M(2^{k-1}) = 3[3M(2^{k-2})] = 3^2M(2^{k-2})$
 $n = 2^k$ $= \cdots = 3^iM(2^{k-i}) = \cdots = 3^kM(2^{k-k}) = 3^k$
 $M(n) \approx n^{1.585}$

■ The recurrence for the number of additions

$$A(n) = 3A(n/2) + cn$$
 for $n > 1$, $A(1) = 1$

$$A(n) \approx n^{1.585}$$

Strassen's formula:

$$\begin{bmatrix} c_{00} & c_{01} \\ c_{10} & c_{11} \end{bmatrix} = \begin{bmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{bmatrix} * \begin{bmatrix} b_{00} & b_{01} \\ b_{10} & b_{11} \end{bmatrix}$$
$$= \begin{bmatrix} m_1 + m_4 - m_5 + m_7 & m_3 + m_5 \\ m_2 + m_4 & m_1 + m_3 - m_2 + m_6 \end{bmatrix}$$

$$m_1 = (a_{00} + a_{11}) * (b_{00} + b_{11})$$

$$m_2 = (a_{10} + a_{11}) * b_{00}$$

$$m_3 = a_{00} * (b_{01} - b_{11})$$

$$m_4 = a_{11} * (b_{10} - b_{00})$$

$$m_5 = (a_{00} + a_{01}) * b_{11}$$

$$m_6 = (a_{10} - a_{00}) * (b_{00} + b_{01})$$

$$m_7 = (a_{01} - a_{11}) * (b_{10} + b_{11})$$

- Comparison
 - **Brute-force algorithm**: 8 multiplications and 4 additions
 - **Strassen's algorithm**: 7 multiplications and 18 additions/subtractions
 - \blacksquare *Asymptotic* superiority as n goes to infinity

- Generalization
 - Divide *A*, *B*, and *C* into $4 n/2 \times n/2$ submatrices:

$$\begin{bmatrix} C_{00} & C_{01} \\ C_{10} & C_{11} \end{bmatrix} = \begin{bmatrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{bmatrix} * \begin{bmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{bmatrix}$$

• The recurrence for the number of multiplications

$$M(n) = 7M(n/2)$$
 for $n > 1$, $M(1) = 1$
 $M(2^k) = 7M(2^{k-1}) = 7[7M(2^{k-2})] = 7^2M(2^{k-2}) = \cdots$
 $n = 2^k$ $= 7^iM(2^{k-i}) \cdots = 7^kM(2^{k-k}) = 7^k$
 $M(n) \approx n^{2.807}$

• The recurrence for the number of additions

$$A(n) = 7A(n/2) + 18(n/2)^2$$
 for $n > 1$, $A(1) = 0$
 $A(n) \approx n^{2.807}$

Divide-and-Conquer Examples

Examples

- Sorting: mergesort and quicksort
- The recursion-tree methods for solving recurrences
- Multiplication of large integers
- Matrix multiplication: Strassen's algorithm
- Closest-pair algorithm
- Convex-hull algorithm

Closest-Pair Problem by Divide-and-Conquer (1/2)

Step 1

Divide the points given into two subsets P_l and P_r by a vertical line x = m so that half the points lie to the left or on the line and half the points lie to the right or on the line

Closest-Pair Problem by Divide-and-Conquer (2/2)

Step 2

Find recursively the closest pairs for the left and right subsets

• Step 3

- $\blacksquare \operatorname{Set} d = \min\{d_l, d_r\}$
- We can limit our attention to the points in the symmetric vertical strip *S* of width 2*d* as possible closest pair (The points are stored and processed in increasing order of their *y* coordinates)

Step 4

- Scan the points in the vertical strip *S* from the lowest up
- For every point p(x,y) in the strip, inspect points in the strip that may be closer to p than d


```
ALGORITHM EfficientClosestPair(P, Q)
    //Solves the closest-pair problem by divide-and-conquer
    //Input: An array P of n > 2 points in the Cartesian plane sorted in
              nondecreasing order of their x coordinates and an array Q of the
              same points sorted in nondecreasing order of the y coordinates
    //Output: Euclidean distance between the closest pair of points
    if n < 3
         return the minimal distance found by the brute-force algorithm
    else
         copy the first \lceil n/2 \rceil points of P to array P_1
         copy the same \lceil n/2 \rceil points from Q to array Q_1
         copy the remaining \lfloor n/2 \rfloor points of P to array P_r
         copy the same \lfloor n/2 \rfloor points from Q to array Q_r
         d_l \leftarrow EfficientClosestPair(P_l, Q_l)
         d_r \leftarrow EfficientClosestPair(P_r,\ Q_r)
         d \leftarrow \min\{d_1, d_n\}
         m \leftarrow P[\lceil n/2 \rceil - 1].x
         copy all the points of Q for which |x - m| < d into array S[0..num - 1]
         dminsq \leftarrow d^2
         for i \leftarrow 0 to num - 2 do
              k \leftarrow i + 1
              while k \le num - 1 and (S[k].y - S[i].y)^2 < dminsq
                                                                                                  Linear in n
                   dminsq \leftarrow \min((S[k].x - S[i].x)^2 + (S[k].y - S[i].y)^2, dminsq)
                   k \leftarrow k + 1
    return sqrt(dminsq)
```

Efficiency of the Closest-Pair Algorithm

• Recurrence:

$$T(n) = 2T(n/2) + M(n)$$
, where $M(n) \in \Theta(n)$

- By the Master Theorem (with a = 2, b = 2, d = 1)
 - Solution: $T(n) \in \Theta(n \log n)$
- Comparison with the brute-force algorithm

- Convex hull
 - Smallest convex set that includes given points
 - Assume that points are sorted by *x*-coordinate values
 - Identify *extreme points* P_1 and P_n (*leftmost* and *rightmost*)
 - Compute *upper hull* recursively
 - Compute *lower hull* in a similar manner

- Compute *upper hull* recursively
 - Find point P_{max} that is farthest away from line P_1P_n
 - Compute the upper hull of the points to the left of line P_1P_{max}
 - Compute the upper hull of the points to the left of line $P_{\text{max}}P_n$
- Compute lower hull in a similar manner

Efficiency of the Quickhull Algorithm

- Time efficiency:
 - Finding point farthest away from line P_1P_n can be done in *linear* time
 - Worst case: $\Theta(n^2)$ (same as quicksort)
 - Average case: $\Theta(n)$ (under the reasonable assumption that distribution of points given is *uniform*)
 - Check with the Master Theorem by finding a, b, and d
- Discussion on efficiencies
 - If points are **not** initially sorted by x-coordinate value, this can be accomplished in $O(n \log n)$ time
 - Several $O(n \log n)$ algorithms for convex hull are known
- Comparison with the brute-force algorithm


```
GRAHAM-SCAN(Q)
```

```
let p_0 be the point in Q with the minimum y-coordinate,
                                                                            O(n) time
         or the leftmost such point in case of a tie
    let \langle p_1, p_2, \dots, p_m \rangle be the remaining points in Q,
         sorted by polar angle in counterclockwise order around p_0
                                                                            O(n \log n) time
         (if more than one point has the same angle, remove all but
         the one that is farthest from p_0)
    let S be an empty stack
    PUSH(p_0, S)
    PUSH(p_1, S)
    PUSH(p_2, S)
    for i = 3 to m
         while the angle formed by points NEXT-TO-TOP(S), TOP(S),
 8
                                                                                     Q = \{p_0, p_1, \dots, p_{12}\}\
                   and p_i makes a nonleft turn
 9
              Pop(S)
10
         PUSH(p_i, S)
    return S
```


Total: $O(n \log n)$ time

The Execution of Graham-Scan (1/2)

The Execution of Graham-Scan (2/2)

 p_0

(l)

 p_0

(k)