Rentgenografické difrakční určení mřížového parametru známé kubické látky

Ján Pulmann

13. 11. 2013

Úlohy

- 1. Pripravte vzorku na meranie a merajte na komerčnom práškovom difraktometre.
- 2. Z Braggovej rovnice vypočítajte medzirovinné vzdialenosti a mriežkové parametre pre jednotlivé difraktujúce roviny.
- 3. Urobte korekciu na inštrumentálne efekty a určte mriežkový parameter zadanej kubickej látky s maximálnou presnosťou
- 4. Nájdite štandardný práškový difraktogram danej látky v databázi PDF-2
- 5. Diskutujte odchýľky medzi určeným parametrom konkrétnej vzorky a tabelovaným mriežkovým parametrom.

Teória

Ak na kryštál dopadá žiarenie s vlnovou dĺžkou λ , budeme schopný v istých miestach pozorovať difrakčné maximá. Pre difrakciu na rovine s medzirovinnými vzdialenosťami d_{hkl} musí žiarenie dopadať pod uhlom θ_{hkl} spĺňajúcim vzťah ([1])

$$2d_{hkl}\sin\theta_{hkl} = \lambda. \tag{1}$$

V prípade práškovej difrakcie svietime monochromatickým Röntgenovým žiarením na vzorku zloženú z množstva malých kryštálov. Ak teda posvietime pod uhlom θ_{hkl} spĺňajúcim vzťah 1 pre nejaké vybrané h,k,l, niektoré kryštáliky budú mať roviny orientované správne, aby vznikla difrakcia. V Bragg-Brentanovej geometrii bude uhol medzi žiarením a vzorkou rovnaký ako medzi žiarením a detektorom, budeme teda pozorovať signál pre uhol $2\theta_{hkl}$ od smeru pôvodného žiarenia. Spektrum je (z dôvodov konvencie) závislosť intenzity na 2θ .

Pre kubickú mriežku platí jednoduchý vzťah pre medzirovinnú vzdialenosť rovín daných Millerovými indexami hkl (z [1])

$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}} \,. \tag{2}$$

Medzi štruktúrnymi typmi vieme rozlíšíť z vyhasínacích podmienok:

štruktúrny typ	difrakcia prebieha na rovinách				
primitívna	h,k,l ľubovoľné				
priestorovo centrovaná	súčet $h + k + l$ párny				
plošne centrovaná	h, k, l všetký párne alebo nepárne				
typ diamantu	(h, k, l) všetky párne so súčtom deliteľným 4) alebo všetky nepárne				

Tabuľka 1: Vyhasínacie podmienky

Na určenie štruktúrneho typu a koeficientov h, k, l každé namerané d_{hkl} vydelíme najnižším nameraným $d_{h_1k_1l_1}$. Toto číslo na mínus druhú značíme Q_i a jeho hodnota je

$$Q_i := \left(\frac{d_{h_1 k_1 l_1}}{d_{hkl}}\right)^2 = \frac{h^2 + k^2 + l^2}{h_1^2 + k_1^2 + l_1^2}.$$
 (3)

Hodnota tohoto výrazu bude rôzna podľa vyhasínacích podmienok,

štruktúrny typ	Q_i									
primitívna	1	2	3	4	5	6	8	9	10	11
priestorovo centrovaná	1	2	3	4	5	6	7	8	9	10
plošne centrovaná	1	1.33	2.66	3.67	4	5.33	6.33	6.67	8	9
typ diamantu	1	2.66	3.67	5.33	6.33	8	9	10.67	11.67	13.33

Tabuľka 2: Možné hodnoty pomeru Q_i

Korekcia

[1] uvádza vzťah pre korekciu nameraného mriežkového parametra. Ak zanedbáme členy popisujúce zbytkové napätie a poruchy kryštálovej mriežky, ostane člen popisujúci hlavne vysunutie vzorky z osi goniometru

$$a_{hkl}(\theta) = a_e + s\cos\theta\cot\theta\,, (4)$$

kde a_{hkl} je spočítaná mriežková konštanta z namerného d_{hkl} , a_e je extrapolovaný mriežkový parameter a s je konštanta popisujúca geometriu prístroja.

Postup merania

• Budeme merať v už spomínanej Bragg-Brentanovej geometrii. Používame prístroj PANalytical X'PertPRO. Urýchlovacie napätie je $40\,\mathrm{kV}$. Za röntgenovou lampou nasleduje optika na usmernenie zväzku. Pred detektorom je fólia z niklu slúžiaca hlavne na urezanie spektrálnej čiary K_β .

Použijeme lampu s medenou anódou. Charakteristické vlnové dĺžky, prislúchajúce prechodom $K_{\alpha_1},\,K_{\alpha_2}$ a K_{β} sú

$$\lambda_{\alpha_1} = 1.54050 \,\text{Å}$$
 $\lambda_{\alpha_2} = 1.54434 \,\text{Å}$
 $\lambda_{\beta} = 1.39217 \,\text{Å}$

- V nameranom spektre určíme polohy dvojíc peakov (prekryv K_{α_1} a K_{α_2}) prislúchajúcich difrakcii na jednej rovine. V programe WinPLOTR tieto peaky prekladáme súčtom dvoch lorentziánov (typ funkcie $1/(1+x^2)$) a určíme tak polohy peakov. Z 1 určíme d_{hkl} a z pomerov Q_i určíme štruktúrny typ látky. Potom môžeme určíť súčty $h^2 + k^2 + l^2$ a s pomocou vyhasínacých podmienok aj priamo čísla h, k, l.
- \bullet Podľa vzťahu 2 dopočítame $a_{hkl}.$ Teraz už môžeme zistiť korigovanú hodnotu mriežkového parametra prekladaním závislosťou 4.
- V papierovej a elektronickej databáze vyhľadáme vzorku podľa najsilnejších nameraných peakov a porovnáme určený priežkový parameter. Tiež si môžeme pomôcť ďalšími vlastnosťami vzorky ako farba.

Pomôcky

Práškový difraktometer PANalytical X'PertPRO, vzorka, počítač

Výsledky merania

V grafe 1 sú namerané difrakčné záznamy. Okrem popísanej metódy merania sme merali (pre malé uhly) aj bez niklového filtru. V grafe pozorujeme väčšiu intenzitu a tiež výrazné zosilnenie niektorých peakov.

V tabuľke 1 sú parametre prekladania jednotlivých peakov. Peaky sme museli prekladať súčtom dvoch lorentziánov, kvôli dvom blízkym čiaram K_{α_1} a K_{α_2} . My sme určovali polohu ľavého, intenzívnejšieho peaku prislúchajúcemu žiareniu K_{α_1} . Taktiež sme tu dopočítali medzirovinné vzdialenosti a pomery Q_i . Neistoty polôh a intenzít peakov sú neistoty prekladania z WinPLOTRu, tri peaky na najnižších uhloch majú zvýšenú neistotu - pri prekladaní sme totiž videli rozdiel určenej a skutočnej polohy peaku. Neistoty odvodených veličín vždy počítame podľa vzťahu o prenose chýb podľa prvých parciálnych derivácií.

Graf 1: Spektrá namerané s a bez tienenia

$2 heta$ / $^{\circ}$	Intenzita N	d_{hkl} / Å	Q_i
38.60 ± 0.01	6250 ± 20	2.3306 ± 0.0006	1.00
44.91 ± 0.01	15150 ± 20	2.0164 ± 0.0004	1.34
65.42 ± 0.01	4210 ± 10	1.4254 ± 0.0002	2.67
78.6696 ± 0.0006	1218 ± 7	1.215191 ± 0.000008	3.68
82.9098 ± 0.0007	964 ± 6	1.163467 ± 0.000008	4.01
99.773 ± 0.001	635 ± 8	1.007166 ± 0.000009	5.35
112.924 ± 0.001	492 ± 7	0.924091 ± 0.000007	6.36
117.5433 ± 0.0007	1868 ± 8	0.900763 ± 0.000003	6.69
139.101 ± 0.001	1891 ± 9	0.822056 ± 0.000003	8.04

Tabuľka 3: Vypočítané medzirovinné vzdialenosti a pomery d_{hkl}

Pohľadom do tabuľky 2 už ľahko určíme, že naša vzorka je plošne centrovaná. Najmenšie pozorované hkl teda je 111 a platí $h^2 + k^2 + l^2 = 3Q_i$. Teraz už vieme určiť (v našom prípade bude určenie jednoznačné) hodnoty h, k, l a teda aj a_{hkl} . Tento výpočet je v tabuľke 4

2θ / °	$3Q_i$	$\mid h \mid$	k	l	a_{hkl} / Å
38.60 ± 0.01	3.00	1	1	1	4.037 ± 0.001
44.91 ± 0.01	4.01	2	0	0	4.0329 ± 0.0009
65.42 ± 0.01	8.02	2	2	0	4.0317 ± 0.0006
78.6696 ± 0.0006	11.04	3	1	1	4.03033 ± 0.00003
82.9098 ± 0.0007	12.04	2	2	2	4.03037 ± 0.00003
99.773 ± 0.001	16.06	4	0	0	4.02866 ± 0.00004
112.924 ± 0.001	19.08	3	3	1	4.02802 ± 0.00003
117.5433 ± 0.0007	20.08	4	2	0	4.02834 ± 0.00002
139.101 ± 0.001	24.11	4	2	2	4.02724 ± 0.00001

Tabuľka 4: Určené Millerove koeficienty h, k, l a dopočítané mriežkové parametre

Teraz ostáva určiť korigovaný mriežkový parameter pomocou vzťahu 4. Závislosť nameraného a_{hkl} na $\cos\theta\cot\theta$ je v grafe 2 aj s preloženou hodnotou a parametrami fitu. Neistoty parametrov sú štatistické neistoty programu gnuplot. Pri prekladaní sú jednotlivé body vážené obrátenou hodnotou ich disperzie.

Graf 2: Určenie extrapolovanej hodnoty mriežkového parametra

Podľa d_{hkl} tiež vyhľadáme možné látky v databáze. Najbližší kandidát je LiF, ktorý spĺňa všetky vlastnosti. Jeho mriežkový parameter je v databáze PDF-2 udávaný ako 4.0270 Å. Udávané intenzity peakov nezodpovedajú úplne presne nameraným intenzitám.

Ďalší podobný kandidát, Al, vylúčime aj na základe farby vzorky - tá je biela a nemetalická.

Diskusia

V grafe 1 vidíme efekt niklového filtru. Znížil intenzitu všeobecne (čo má práve negatívny vplyv na meranie, pretože sa snažíme dosiahnuť čo najviac zaznamenaných lúčov), ale výrazne potlačil peaky prislúchajúce čiare K_{β} . Ďalšia pozorovaná čiara môže byť tiež čiara wolfrámu, ktorý znečistil anódu lampy kvôli vysokým teplotám. Na zázname s filtrom sú tieto peaky takmer nepozorovateľné, bez filtru dosahujú výšky ostatných peakov. My sa ich chceme zbaviť kvôli zjednodušieniu záznamu a vyhodnotenia.

Pri fitovaní vo WinPLOTRi pre najmenšie uhly 2θ už prekladaná funkcia nesúhlasila s nameranými hodnotami ideálne. Vidíme to aj na vypočítaných hodnotách Q_i , ktoré sa už na druhom desatinnom mieste líšia s hodnotami v tabuľke 2 2. Keďže všetky namerané hodnoty Q_i sú väčšie ako tie tabelované, očakávame, že sme namerali príliš malé $d_{h_1k_1l_1}$. [2] udáva ako možný dôvod asymetrie peakov prílišnú štrbinu pred detektorom. Detektor potom zaznamenáva časť kuželu, na ktorom vzniká koštruktívna interferencia. Takéto vysvetlenie súhlasí s pozorovaním, že asymetria je veľká pre malé uhly - malé uhly znamenajú väčší polomer krivosti a teda väčší efekt zakrivenia kužela.

Priložený záznam z *PDF-2* udáva pomer intenzít prvých troch peakov ako 95 : 100 : 48, my sme ale pozorovali skôr 41 : 100 : 28. [2] spomína, že kvôli drveniu častíc nám ostávajú pomerne veľké veľkosti a tým sa obmedzuje ich počet. Menší počet častíc potom spôsobí systematické odchýľky kvôli nehomogenite ich rozloženia ich orientácií.

Vidíme, že sme určili hodnotu mriežkového parametru s dobrou presnosťou - 5 platných cifier a v rámci chyby merania sa zhoduje s udávanou hodnotou mriežkovej konštantny. Mali sme zrejme šťastie, že išlo o čistú vzorku a správne sa nám podarilo skorigovať vplyvy meracieho prístroja. Je možné, že je určenie neistoty a_e je príliš optimistické.

Ďalšie chyby mohli spôsobiť práve javy, ktorých popis sme nezahrnuli do vzťahu 4 - napätie vo vzorke a kryštálové poruchy.

Záver

Namerali sme spektrum vzorky (graf 1) a určili sme plohy peakov. Dopočítali sme d_{hkl} a Q_i - tabuľka 3. Určili sme, že ide o plošne centrovanú látku a dopočítali sme mriežkové parametre - tabuľka 4. Nakoniec sme urobili korekciu na vyosenie vzorky (ktorá bola cielene vyosená, aby sme namerali nejaký efekt) v grafe 2 a určili sme extrapolovaný mriežkový parameter

$$a_e = (4.0269 \pm 0.0002) \,\text{Å}$$
.

Meraný materiál sme identifikovali ako fluorid lítny.

Ku protokolu je okrem záznamu z merania priložená aj karta LiF a vytlačené spektrum pre meranie s filtrom.

Literatúra

- [1] Stránky s pokynmi ku úlohe A19 http://krystal.karlov.mff.cuni.cz/kfes/vyuka/lp/ 18.11.2013
- [2] Systematic Errors and Sample Preparation for X-Ray Powder Diffraction. *Jim Connolly*. prezentácia http://epswww.unm.edu/xrd/xrdclass/07-Errors-Sample-Prep-PPT.pdf