Elliptic curves over \mathbb{F}_q

F. Pappalardi

Reminder from Thursday

The sum of points

Examples

Structure of $E(\mathbb{F}_2)$ Structure of $E(\mathbb{F}_3)$ Further Examples

Points of finite order 2

Lecture 4

Elliptic curves over finite fields

First steps

College of Sciences
Department of Mathematics
University of Salahaddin,
Erbil, Kurdistan December 7th, 2014

Francesco Pappalardi Dipartimento di Matematica e Fisica Università Roma Tre

Definition (Elliptic curve)

An elliptic curve over a field K is the data of a non singular Weierstraß equation

$$E: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6, a_i \in K$$

If $p = \operatorname{char} K > 3$,

$$\begin{split} \Delta_E &:= \frac{1}{2^4} \left(-a_1^5 a_3 a_4 - 8a_1^3 a_2 a_3 a_4 - 16a_1 a_2^2 a_3 a_4 + 36a_1^2 a_3^2 a_4 \right. \\ &- a_1^4 a_4^2 - 8a_1^2 a_2 a_4^2 - 16a_2^2 a_4^2 + 96a_1 a_3 a_4^2 + 64a_4^3 + \\ &a_1^6 a_6 + 12a_1^4 a_2 a_6 + 48a_1^2 a_2^2 a_6 + 64a_2^3 a_6 - 36a_1^3 a_3 a_6 \\ &- 144a_1 a_2 a_3 a_6 - 72a_1^2 a_4 a_6 - 288a_2 a_4 a_6 + 432a_6^2 \right) \neq 0 \end{split}$$

Thursday

The sum of points

Examples

Structure of $E(\mathbb{F}_2)$ Structure of $E(\mathbb{F}_3)$ Further Examples

Elliptic curves over K

After applying a suitable affine transformation we can always assume that E/K has a Weierstraß equation of the following form

Example (Classification (p = char K**))**

Е	р	Δ_E
$y^2 = x^3 + Ax + B$	≥ 5	$4A^3 + 27B^2$
$y^2 + xy = x^3 + a_2x^2 + a_6$	2	a_6^2
$y^2 + a_3 y = x^3 + a_4 x + a_6$	2	a_3^4
$y^2 = x^3 + Ax^2 + Bx + C$	3	$4A^{3}C - A^{2}B^{2} - 18ABC + 4B^{3} + 27C^{2}$

Let E/\mathbb{F}_q elliptic curve, set $\infty:=[0,1,0]$. Set $E(\mathbb{F}_q)=\{(x,y)\in\mathbb{F}_q^2:\ y^2=x^3+Ax+B\}\cup\{\infty\}$

Elliptic curves over \mathbb{F}_q

F. Pappalardi

Thursday

The sum of points

Examples

Structure of $E(\mathbb{F}_2)$ Structure of $E(\mathbb{F}_3)$ Further Examples

The definition of $E(\mathbb{F}_q)$

Let E/\mathbb{F}_a elliptic curve. Set

$$E(\mathbb{F}_q) = \{(x, y) \in \mathbb{F}_q^2 : y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6\} \cup \{\infty\}$$

Hence

$$E(\mathbb{F}_q) \subset \mathbb{F}_q^2 \cup \{\infty\}$$

 ∞ might be though as the "vertical direction"

Definition (line through points $P,Q \in E(\mathbb{F}_q)$)

 $r_{P,Q}$: $\begin{cases} \text{line through } P \text{ and } Q & \text{if } P \neq Q \\ \text{tangent line to } E \text{ at } P & \text{if } P = Q \end{cases}$

- if $\#(r_{P,Q}\cap E(\mathbb{F}_q))\geq 2 \Rightarrow \#(r_{P,Q}\cap E(\mathbb{F}_q))=3$ if tangent line, contact point is counted with multiplicity
- $r_{\infty,\infty} \cap E(\mathbb{F}_q) = \{\infty,\infty,\infty\}$
- $r_{P,Q}$: aX + b = 0 (vertical) $\Rightarrow \infty = \in r_{P,Q}$

Elliptic curves over \mathbb{F}_q

F. Pappalardi

Reminder from Thursday

ine sum or points

Examples

Structure of $E(\mathbb{F}_2)$ Structure of $E(\mathbb{F}_3)$ Further Examples

History (from WIKIPEDIA)

Carl Gustav Jacob Jacobi (10/12/1804 – 18/02/1851) was a German mathematician, who made fundamental contributions to elliptic functions, dynamics, differential equations, and number theory.

Some of His Achievements:

- Theta and elliptic function
- Hamilton Jacobi Theory
- Inventor of determinants
- Jacobi Identity
 [A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0

$$r_{P,Q} \cap E(\mathbb{F}_q) = \{P, Q, R\}$$

 $r_{B,\infty} \cap E(\mathbb{F}_q) = \{\infty, R, R'\}$

$$P +_E Q := R'$$

$$r_{P,\infty}\cap E(\mathbb{F}_q)=\{P,\infty,P'\}$$

$$-P := P'$$

Elliptic curves over \mathbb{F}_q

F. Pappalardi

Thursday

The sum of points

Examples

Structure of $E(\mathbb{F}_2)$ Structure of $E(\mathbb{F}_3)$ Further Examples

Examples
Structure of $E(\mathbb{F}_2)$ Structure of $E(\mathbb{F}_2)$

Further Examples
Points of finite order

Points of finite order Points of order 2

Theorem

The addition law on $E(\mathbb{F}_q)$ has the following properties:

(a)
$$P +_{\mathcal{E}} Q \in \mathcal{E}(\mathbb{F}_q)$$
 $\forall P, Q \in \mathcal{E}(\mathbb{F}_q)$

(b)
$$P +_E \infty = \infty +_E P = P$$
 $\forall P \in E(\mathbb{F}_q)$

(c)
$$P +_{\mathcal{E}} (-P) = \infty$$
 $\forall P \in \mathcal{E}(\mathbb{F}_q)$

(d)
$$P +_E (Q +_E R) = (P +_E Q) +_E R$$
 $\forall P, Q, R \in E(\mathbb{F}_q)$

(e)
$$P +_E Q = Q +_E P$$
 $\forall P, Q \in E(\mathbb{F}_q)$

- $(E(\mathbb{F}_q), +_E)$ commutative group
- All group properties are easy except associative law (d)
- Geometric proof of associativity uses Pappo's Theorem
- can substitute \mathbb{F}_q with any field K; Theorem holds for $(E(K), +_E)$
- In particular, if E/\mathbb{F}_q , can consider the groups $E(\mathbb{F}_q)$ or $E(\mathbb{F}_{q^n})$

Computing the inverse -P

$$E: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$

If
$$P = (x_1, y_1) \in E(\mathbb{F}_q)$$

Definition:
$$-P := P'$$
 where $r_{P,\infty} \cap E(\mathbb{F}_q) = \{P, \infty, P'\}$

Write $P' = (x_1', y_1')$. Since $r_{P,\infty} : x = x_1 \Rightarrow x_1' = x_1$ and y_1 satisfies

$$y^2 + a_1 x_1 y + a_3 y - (x_1^3 + a_2 x_1^2 + a_4 x_1 + a_6) = (y - y_1)(y - y_1')$$

So
$$y_1 + y_1' = -a_1x_1 - a_3$$
 (both coefficients of y) and

$$-P = -(x_1, y_1) = (x_1, -a_1x_1 - a_3 - y_1)$$

So, if
$$P_1 = (x_1, y_1), P_2 = (x_2, y_2) \in E(\mathbb{F}_q)$$
,

Definition: $P_1 +_E P_2 = -P_3$ where $r_{P_1,P_2} \cap E(\mathbb{F}_q) = \{P_1, P_2, P_3\}$

Finally, if $P_3 = (x_3, y_3)$, then

$$P_1 +_E P_2 = -P_3 = (x_3, -a_1x_3 - a_3 - y_3)$$

Elliptic curves over \mathbb{F}_q

F. Pappalardi

Reminder from Thursday

The sum of points

Examples

Structure of $E(\mathbb{F}_2)$ Structure of $E(\mathbb{F}_3)$ Further Examples

Lines through points of E

$$E: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$

where $a_1, a_3, a_2, a_4, a_6 \in \mathbb{F}_q$,

$$P_1 = (x_1, y_1), P_2 = (x_2, y_2) \in E(\mathbb{F}_q)$$

$$\lambda = \frac{y_2 - y_1}{x_2 - x_1}, \qquad \nu = \frac{y_1 x_2 - x_1 y_2}{x_2 - x_1}$$

- 2 $P_1 \neq P_2$ and $x_1 = x_2 \implies r_{P_1,P_2} : x = x_1$
- **3** $P_1 = P_2$ and $2y_1 + a_1x_1 + a_3 \neq 0 \implies r_{P_1,P_2} : y = \lambda x + \nu$

$$\lambda = \frac{3x_1^2 + 2a_2x_1 + a_4 - a_1y_1}{2y_1 + a_1x_1 + a_3}, \nu = -\frac{a_3y_1 + x_1^3 - a_4x_1 - 2a_6}{2y_1 + a_1x_1 + a_3}$$

- **6** $r_{P_1,\infty}: X = X_1$ $r_{\infty,\infty}: Z = 0$

Elliptic curves over \mathbb{F}_q

F. Pappalardi

Reminder from Thursday

The sum of points

Examples

Structure of $E(\mathbb{F}_2)$ Structure of $E(\mathbb{F}_3)$ Further Examples

Intersection between a line and E

We want to compute $P_3 = (x_3, y_3)$ where $r_{P_1, P_2} : y = \lambda x + \nu$,

$$r_{P_1,P_2} \cap E(\mathbb{F}_q) = \{P_1,P_2,P_3\}$$

We find the intersection:

$$r_{P_1,P_2} \cap E(\mathbb{F}_q) = \begin{cases} E: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6 \\ r_{P_1,P_2}: y = \lambda x + \nu \end{cases}$$

Substituting

 $(\lambda x + \nu)^2 + a_1 x(\lambda x + \nu) + a_3(\lambda x + \nu) = x^3 + a_2 x^2 + a_4 x + a_6$ Since x_1 and x_2 are solutions, we can find x_3 by comparing

$$x^{3} + a_{2}x^{2} + a_{4}x + a_{6} - ((\lambda x + \nu)^{2} + a_{1}x(\lambda x + \nu) + a_{3}(\lambda x + \nu)) =$$

$$x^{3} + (a_{2} - \lambda^{2} - a_{1}\lambda)x^{2} + \cdots =$$

$$(x - x_{1})(x - x_{2})(x - x_{3}) = x^{3} - (x_{1} + x_{2} + x_{3})x^{2} + \cdots$$

Equating coeffcients of x^2 ,

$$x_3 = \lambda^2 - a_1\lambda - a_2 - x_1 - x_2, \qquad y_3 = \lambda x_3 + \nu$$

Finally

$$P_3 = (\lambda^2 - a_1\lambda - a_2 - x_1 - x_2, \lambda^3 - a_1\lambda^2 - \lambda(a_2 + x_1 + x_2) + \nu)$$

Elliptic curves over \mathbb{F}_q

F. Pappalardi

Reminder from Thursday

ine sum of points

Examples

Structure of $E(\mathbb{F}_2)$ Structure of $E(\mathbb{F}_3)$ Further Examples

Formulas for Addition on *E* (Summary)

$$E: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$

$$P_1 = (x_1, y_1), P_2 = (x_2, y_2) \in E(\mathbb{F}_q) \setminus \{\infty\},$$

Addition Laws for the sum of affine points

- If $P_1 \neq P_2$
 - $x_1 = x_2$
 - $x_1 \neq x_2$

$$\lambda = \frac{y_2 - y_1}{x_2 - x_1}$$
 $\nu = \frac{y_1 x_2 - y_2 x_1}{x_2 - x_1}$

• If $P_1 = P_2$

•
$$2y_1 + a_1x + a_3 = 0$$

$$\Rightarrow P_1 +_E P_2 = 2P_1 = \infty$$

 \Rightarrow $P_1 +_E P_2 = \infty$

•
$$2y_1 + a_1x + a_3 \neq 0$$

$$\lambda = \frac{3x_1^2 + 2a_2x_1 + a_4 - a_1y_1}{2y_1 + a_1x + a_3}, \nu = -\frac{a_3y_1 + x_1^3 - a_4x_1 - 2a_6}{2y_1 + a_1x_1 + a_3}$$

Then

$$P_1 +_E P_2 = (\lambda^2 - a_1\lambda - a_2 - x_1 - x_2, -\lambda^3 - a_1^2\lambda + (\lambda + a_1)(a_2 + x_1 + x_2) - a_3 - \nu)$$

Elliptic curves over \mathbb{F}_q

F. Pappalardi

Reminder from Thursday

The sum of points

Examples

Structure of $E(\mathbb{F}_2)$ Structure of $E(\mathbb{F}_3)$ Further Examples

Formulas for Addition on *E* (Summary for special equation)

$$E: y^2 = x^3 + Ax + B$$

$$P_1 = (x_1, y_1), P_2 = (x_2, y_2) \in E(\mathbb{F}_q) \setminus \{\infty\},$$

Addition Laws for the sum of affine points

- If $P_1 \neq P_2$
 - $X_1 = X_2$
 - $X_1 \neq X_2$
- $\lambda = \frac{y_2 y_1}{x_2 x_1}$ $\nu = \frac{y_1 x_2 y_2 x_1}{x_2 x_1}$
- If $P_1 = P_2$
 - $y_1 = 0$
 - $v_1 \neq 0$

$$\lambda = \frac{3x_1^2 + A}{2y_1}, \nu = -\frac{x_1^3 - Ax_1 - 2B}{2y_1}$$

Then

$$P_1 +_E P_2 = (\lambda^2 - x_1 - x_2, -\lambda^3 + \lambda(x_1 + x_2) - \nu)$$

Elliptic curves over \mathbb{F}_{α}

F. Pappalardi

Reminder from Thursday

The sum of points

Examples

 \Rightarrow $P_1 +_E P_2 = \infty$

 $\Rightarrow P_1 +_E P_2 = 2P_1 = \infty$

Structure of $E(\mathbb{F}_2)$ Structure of $E(\mathbb{F}_3)$ Further Examples

Points of finite order

Points of order 2

(a)
$$P +_E Q \in E$$

$$E$$
 $\forall P,Q \in E$

(c)
$$P +_{E} (-P) = \infty$$

(b)
$$P +_E \infty = \infty +_E P = P$$
 $\forall P \in E$
(c) $P +_E (-P) = \infty$ $\forall P \in F$

(c)
$$P + E(-P) = \infty$$

(d)
$$P +_E (Q +_E R) = (P +_E Q) +_E R$$

(e)
$$P +_E Q = Q +_E P$$

$$\forall P, Q, R \in E$$

 $\forall P, Q \in E$

So $(E(\bar{K}), +_E)$ is an abelian group.

Remark:

If $E/K \Rightarrow \forall L, K \subset L \subset \overline{K}$, E(L) is an abelian group.

$$-P = -(x_1, y_1) = (x_1, -a_1x_1 - a_3 - y_1)$$

F. Pappalardi

Reminder from Thursday

Examples

Structure of $E(\mathbb{F}_2)$ Structure of $E(\mathbb{F}_3)$ Further Examples

A Finite Field Example

Over \mathbb{F}_p geometric pictures don't make sense.

Example

Let
$$E: y^2 = x^3 - 5x + 8/\mathbb{F}_{37}, \ P = (6,3), Q = (9,10) \in E(\mathbb{F}_{37})$$

$$r_{P,Q}: y = 27x + 26$$
 $r_{P,P}: y = 11x + 11$

$$r_{P,Q} \cap E(\mathbb{F}_{37}) = \begin{cases} y^2 = x^3 - 5x + 8 \\ y = 27x + 26 \end{cases} = \{(6,3), (9,10), (11,27)\}$$

$$r_{P,P} \cap E(\mathbb{F}_{37}) = \begin{cases} y^2 = x^3 - 5x + 8 \\ y = 11x + 11 \end{cases} = \{(6,3), (6,3), (35,26)\}$$

$$P +_E Q = (11, 10)$$
 $2P = (35, 11)$
 $3P = (34, 25), 4P = (8, 6), 5P = (16, 19), \dots 3P + 4Q = (31, 28), \dots$

Elliptic curves over \mathbb{F}_q

F. Pappalardi

Reminder from Thursday

ne sum or points

Examples

Structure of $E(\mathbb{F}_2)$ Structure of $E(\mathbb{F}_3)$ Further Examples

Group Structure

Theorem (Classification of finite abelian groups)

If G is abelian and finite, $\exists n_1, \dots, n_k \in \mathbb{N}^{>1}$ such that

- $2 G \cong C_{n_1} \oplus \cdots \oplus C_{n_k}$

Furthermore n_1, \ldots, n_k (Group Structure) are unique

Example (One can verify that:)

$$C_{2400} \oplus C_{72} \oplus C_{1440} \cong C_{12} \oplus C_{60} \oplus C_{15200}$$

Shall show that

$$E(\mathbb{F}_q)\cong C_n\oplus C_{nk} \qquad \exists n,k\in\mathbb{N}^{>0}$$

(i.e. $E(\mathbb{F}_q)$ is either cyclic (n = 1) or the product of 2 cyclic groups)

Elliptic curves over \mathbb{F}_q

F. Pappalardi

Reminder from Thursday

The sum of points

Examples

Structure of $E(\mathbb{F}_2)$ Structure of $E(\mathbb{F}_3)$ Further Examples

EXAMPLE: Elliptic curves over \mathbb{F}_2

From our previous list:

Groups of points

Е	$E(\mathbb{F}_2)$	$ E(\mathbb{F}_2) $
$y^2 + xy = x^3 + x^2 + 1$	$\{\infty, (0,1)\}$	2
$y^2 + xy = x^3 + 1$	$\{\infty, (0,1), (1,0), (1,1)\}$	4
$y^2 + y = x^3 + x$	$\{\infty, (0,0), (0,1), \\ (1,0), (1,1)\}$	5
$y^2 + y = x^3 + x + 1$	{∞}	1
$y^2 + y = x^3$	$\{\infty, (0,0), (0,1)\}$	3

So for each curve $E(\mathbb{F}_2)$ is cyclic except possibly for the second for which we need to distinguish between C_4 and $C_2 \oplus C_2$. Note: each C_i , $i = 1, \dots, 5$ is represented by a curve $/\mathbb{F}_2$ Elliptic curves over \mathbb{F}_q

F. Pappalardi

Reminder from Thursday

The sum of points

Examples

Structure of $E(\mathbb{F}_2)$ Structure of $E(\mathbb{F}_2)$

EXAMPLE: Elliptic curves over \mathbb{F}_3

From our previous list:

Groups of points

i	E _i	$E_i(\mathbb{F}_3)$	$ E_i(\mathbb{F}_3) $
1	$y^2 = x^3 + x$	$\{\infty, (0,0), (2,1), (2,2)\}$	4
2	$y^2 = x^3 - x$	$\{\infty, (1,0), (2,0), (0,0)\}$	4
3	$y^2 = x^3 - x + 1$	$\{\infty, (0, 1), (0, 2), (1, 1), (1, 2), (2, 1), (2, 2)\}$	7
4	$y^2 = x^3 - x - 1$	{∞}	1
5	$y^2 = x^3 + x^2 - 1$	$\{\infty, (1,1), (1,2)\}$	3
6	$y^2 = x^3 + x^2 + 1$	$\{\infty, (0,1), (0,2), (1,0), (2,1), (2,2)\}$	6
7	$y^2 = x^3 - x^2 + 1$	$\{\infty, (0,1), (0,2), (1,1), (1,2), \}$	5
8	$y^2 = x^3 - x^2 - 1$	$\{\infty, (2,0))\}$	2

Each $E_i(\mathbb{F}_3)$ is cyclic except possibly for $E_1(\mathbb{F}_3)$ and $E_2(\mathbb{F}_3)$ that could be either C_4 or $C_2 \oplus C_2$. We shall see that:

$$E_1(\mathbb{F}_3)\cong C_4$$
 and $E_2(\mathbb{F}_3)\cong C_2\oplus C_2$

Note: each C_i , i = 1, ..., 7 is represented by a curve $/\mathbb{F}_3$

Elliptic curves over \mathbb{F}_q

F. Pappalardi

Reminder from Thursday

The sum of points

Examples

Structure of $E(\mathbb{F}_2)$ Structure of $E(\mathbb{F}_3)$

Further Examples

EXAMPLE: Elliptic curves over \mathbb{F}_5

Example (Elliptic curves over \mathbb{F}_5)

- ∀E/F₅ (12 elliptic curves)
- $\#E(\mathbb{F}_5) \in \{2,3,4,5,6,7,8,9,10\}.$
- $\forall n, 2 \le n \le 10, \exists ! \ E/\mathbb{F}_5 : \#E(\mathbb{F}_5) = n$ with three exceptions:
- $E_1: y^2 = x^3 + 1$ and $E_2: y^2 = x^3 + 2$

$$E_1(\mathbb{F}_5)\cong E_2(\mathbb{F}_5)\cong C_6$$

• $E_3: y^2 = x^3 + x$ and $E_4: y^2 = x^3 + x + 2$ both order 4

$$E_3(\mathbb{F}_5)\cong C_2\oplus C_2 \qquad E_4(\mathbb{F}_5)\cong C_4$$

• $E_5: y^2 = x^3 + 4x$ and $E_6: y^2 = x^3 + 4x + 1$ both order 8

$$E_5(\mathbb{F}_5)\cong C_2\oplus C_4 \qquad E_6(\mathbb{F}_5)\cong C_8$$

• $E_7: y^2 = x^3 + x + 1$ order 9 and $E_7(\mathbb{F}_5) \cong C_9$

Elliptic curves over \mathbb{F}_q

F. Pappalardi

Reminder from Thursday

The sum of points

Examples

both order 6

Structure of $E(\mathbb{F}_2)$ Structure of $E(\mathbb{F}_3)$ Further Examples

Structure of $E(\mathbb{F}_3)$ Further Examples

Points of finite order

Let
$$P = (x_1, y_1) \in E(\mathbb{F}_q) \setminus \{\infty\},\$$

P has order 2
$$\iff$$
 2P = ∞ \iff P = -P

So

$$-P = (x_1, -a_1x_1 - a_3 - y_1) = (x_1, y_1) = P \implies 2y_1 = -a_1x_1 - a_3$$

If
$$p \neq 2$$
, can assume $E: y^2 = x^3 + Ax^2 + Bx + C$

$$-P = (x_1, -y_1) = (x_1, y_1) = P \implies y_1 = 0, x_1^3 + Ax_1^2 + Bx_1 + C = 0$$

Note

- the number of points of order 2 in $E(\mathbb{F}_q)$ equals the number of roots of $X^3 + Ax^2 + Bx + C$ in \mathbb{F}_q
- roots are distinct since discriminant $\Delta_E \neq 0$
- $E(\mathbb{F}_{q^6})$ has always 3 points of order 2 if E/\mathbb{F}_q
- $E[2] := \{P \in E(\bar{\mathbb{F}}_q) : 2P = \infty\} \cong C_2 \oplus C_2$

Determining points of order 2 (continues)

• If
$$p = 2$$
 and $E: y^2 + a_3y = x^3 + a_2x^2 + a_6$

$$-P = (x_1, a_3 + y_1) = (x_1, y_1) = P \implies a_3 = 0$$

Absurd ($a_3 = 0$) and there are no points of order 2.

• If p = 2 and $E : y^2 + xy = x^3 + a_4x + a_6$

$$-P = (x_1, x_1 + y_1) = (x_1, y_1) = P \implies x_1 = 0, y_1^2 = a_6$$

So there is exactly one point of order 2 namely $(0, \sqrt{a_6})$

Definition

2-torsion points

$$E[2] = \{ P \in E : 2P = \infty \}.$$

In conclusion

$$E[2] \cong \begin{cases} C_2 \oplus C_2 & \text{if } \rho > 2 \\ C_2 & \text{if } \rho = 2, E : y^2 + xy = x^3 + a_4x + a_6 \\ \{\infty\} & \text{if } \rho = 2, E : y^2 + a_3y = x^3 + a_2x^2 + a_6 \end{cases}$$

Elliptic curves over \mathbb{F}_q

F. Pappalardi

Reminder from Thursday

The sum of points

Examples

Structure of $E(\mathbb{F}_2)$ Structure of $E(\mathbb{F}_3)$ Further Examples

Points of finite order

Points of order 2

Elliptic curves over \mathbb{F}_2 , \mathbb{F}_3 and \mathbb{F}_5

Each curve $/\mathbb{F}_2$ has cyclic $E(\mathbb{F}_2)$.

E	$E(\mathbb{F}_2)$	$ E(\mathbb{F}_2) $
$y^2 + xy = x^3 + x^2 + 1$	$\{\infty, (0, 1)\}$	2
$y^2 + xy = x^3 + 1$	$\{\infty, (0,1), (1,0), (1,1)\}$	4
$y^2 + y = x^3 + x$	$\{\infty, (0,0), (0,1), (1,0), (1,1)\}$	5
$y^2 + y = x^3 + x + 1$	$\{\infty\}$	1
$y^2 + y = x^3$	$\{\infty, (0,0), (0,1)\}$	3

•
$$E_1: y^2 = x^3 + x$$
 $E_2: y^2 = x^3 - x$

$$E_2: y^2=x^3-x$$

$$E_1(\mathbb{F}_3)\cong C_4$$
 and $E_2(\mathbb{F}_3)\cong C_2\oplus C_2$

•
$$E_3: y^2 = x^3 + x^3$$

•
$$E_3: y^2 = x^3 + x$$
 $E_4: y^2 = x^3 + x + 2$

$$E_3(\mathbb{F}_5)\cong C_2\oplus C_2$$
 and $E_4(\mathbb{F}_5)\cong C_4$

$$E_4(\mathbb{F}_5)\cong C_4$$

•
$$E_5: y^2 = x^3 + 4x$$

$$E_6: y^2 = x^3 + 4x + 1$$

$$E_5(\mathbb{F}_5)\cong C_2\oplus C_4$$
 and $E_6(\mathbb{F}_5)\cong C_8$

$$E_6(\mathbb{F}_5)\cong C$$

Elliptic curves over \mathbb{F}_{Q}

F. Pappalardi

Reminder from Thursday

The sum of points

Examples

Structure of $E(\mathbb{F}_2)$ Structure of $E(\mathbb{F}_3)$ Further Examples

Points of finite order

Points of order 2