Université Abou Bekr Belkaid Tlemcen Faculté des Sciences Département de Mathématiques

Année Universitaire 2019-2020

1ère Année LMD Mathématique et Informatique

Algèbre 2

Corrigé de TD sur : Les applications linéaires

Exercice 1:

Les applications suivantes de E dans F sont elles linéaires? Si oui, déterminer une base du noyau et une base de l'image.

1.
$$E = F = \mathbb{R}^2, \forall (x, y) \in \mathbb{R}^2 : f(x, y) = (2x + 3y, x).$$
 OUI,

$$Kerf = \{(x,y) \in \mathbb{R}^2 : f(x,y) = (0,0)\} = \{(x,y) \in \mathbb{R}^2 : (2x+3y,x) = (0,0)\} = \{(0,0)\}$$

$$dimKerf + dimImf = 0 + dimImf = dimE = 2$$
,

donc on peut prendre par exemple la base canonique comme base de Imf.

2.
$$E = F = \mathbb{R}^2, \forall (x, y) \in \mathbb{R}^2 : f(x, y) = (y, x + y + 1). \text{ NON car } f(0, 0) \neq (0, 0).$$

3.
$$E = \mathbb{R}^3, F = \mathbb{R}, \forall (x, y, z) \in \mathbb{R}^3 : f(x, y, z) = x + 2y + z$$
. OUI,

$$Kerf = \{(x, y, z) \in \mathbb{R}^3 : f(x, y, z) = 0\} = \{(x, y, z) \in \mathbb{R}^3 : x + 2y + z = 0\} = \{(x, y, z) \in \mathbb{R}^3 : x = -2y - z\}$$

donc
$$Kerf = \{(-2y - z, y, z)/y, z \in \mathbb{R}\} = \{(-2y, y, 0) + (-z, 0, z)/y, z \in \mathbb{R}\} = \{y(-2, 1, 0) + z(-1, 0, 1)/y, z \in \mathbb{R}\}$$
, donc une base de $Kerf$ est $\{(-2, 1, 0), (-1, 0, 1)\}$.

$$dimKerf + dimImf = 2 + dimImf = dimE = 3$$
,

donc dimIm f = 1.

4. $E = F = \mathbb{R}^2, \forall (x, y) \in \mathbb{R}^2 : f(x, y) = (x + y, xy)$. NON car la deuxième composante est de degré 2.

5.
$$E = F = \mathbb{R}, \forall x \in \mathbb{R} : f(x) = x^2$$
. NON car f est de degré 2.

Exercice 2:

Donner dans chaque cas la dimension du noyau de f, puis le rang de f.

L'application f est-elle injective? surjective? bijective?

1. $f: \mathbb{R}^3 \to \mathbb{R}^3$, f(x, y, z) = (y, z, x). $Kerf = \{(0, 0, 0)\}$ donc dimKerf = 0 et par le théorème Noyau-image $dimImf = rgf = dim\mathbb{R}^3 - dimKerf = 3$ et par suite f est injective, surjective et bijective.

2. $f: \mathbb{R}^3 \to \mathbb{R}^3$, f(x, y, z) = (x + y, y + z, x - z). Si on résoud f(x, y, z) = (0, 0, 0) on obtient x = -y, y = -z, x = z, ce qui nous donne

$$Kerf = \{(-y,y,-y)/y \in \mathbb{R}\} = \{y(-1,1,-1)/y \in \mathbb{R}\}$$

donc la dimension du noyau est 1. Par suite le rgf = dimImf = dimE - dimKerf = 3 - 1 = 2. f n'est ni injective ni surjective et donc non bijective.

3. $f: \mathbb{C}^3 \to \mathbb{C}^4$, f(x,y,z) = (x+y+z)(1,i,-1,i). Un vecteur de Kerf satisfait x+y+z=0 donc z=-x-y, et par suite

$$Kerf = \{(x,y,-x-y)/x,y \in \mathbb{C}\} = \{(x,0,-x) + (0,y,-y)/x,y \in \mathbb{C}\}.$$

On remarque que $\{(1,0,-1),(0,1,-1)\}$ une base de Kerf et donc dimKerf=2, et rgf=dimImf=dimE-dimKerf=3-2=1.

f n'est ni injective ni surjective et donc non bijective.

4. $f: \mathbb{C}^2 \to \mathbb{C}^4$, f(x,y) = (x-y, x+iy, (2+i)x+y, 3ix+y). Pour trouver Kerf il faut résoudre le système

$$\begin{cases} x - y = 0 \\ x + iy = 0 \\ (2+i)x + y = 0 \\ 3ix + y = 0 \end{cases}$$

On obtient x = y = 0. Donc $Kerf = \{(0,0)\} \Rightarrow dimKerf = 0$, et rgf = dimImf = dimE - dimKerf = 2 - 0 = 2. f est injective, non surjective et donc non bijective.

5. $f: \mathbb{R}^3 \to \mathbb{R}^3$, f(x, y, z) = (2x + my - z, 2x + 2y, x - 2z), selon la valeur du paramètre réel m. Pour trouver Kerf il faut résoudre le système

$$\begin{cases} 2x + my - z = 0 \\ 2x + 2y = 0 \\ x - 2z = 0 \end{cases} \Rightarrow \begin{cases} \frac{3}{2}x + my = 0 \\ x = -y \\ x = 2z \end{cases}$$

on obtient $(\frac{3}{2} - m)x = 0$.

- 1. Si $m \neq \frac{3}{2} \Rightarrow x = y = z = 0$ donc $Kerf = \{(0,0,0)\} \Rightarrow dimKerf = 0$ et rgf = dimImf = dimE dimkerf = 3 0 = 3. f est injective et surjective donc bijective.
- 2. Si $m = \frac{3}{2} \Rightarrow x = 2z, x = -y$ donc

$$Kerf = \{(x, -x, \frac{x}{2})/x \in \mathbb{R}\} = \{x(1, -1, \frac{1}{2})/x \in \mathbb{R}\},\$$

donc dimKerf = 1 et rgf = dimImf = dimE - dimKerf = 3 - 1 = 2. f non injective, non surjective et donc non bijective.

Exercice 3:

Soit $\mathbb{R}_4[X]$ l'ensemble des polynômes à coefficients réels de degré inférieur ou égal à 4. Montrer que l'application f de $\mathbb{R}_4[X]$ dans lui même, définie par f(P) = P - P' est linéaire. Montrons que $\forall p_1, p_2 \in \mathbb{R}_4[X], \forall \alpha, \beta \in \mathbb{R} : f(\alpha p_1 + \beta p_2) = \alpha f(p_1) + \beta f(p_2)$.

$$f(\alpha p_1 + \beta p_2) = (\alpha p_1 + \beta p_2) + -(\alpha p_1 + \beta p_2)' = \alpha p_1 - \alpha p_1' + \beta p_2 - \beta p_2' = \alpha f(p_1) + \beta f(p_2).$$

L'application f est-elle injective? surjective?

Soit $p_0 \in Kerf \Rightarrow f(p_0) = p_0 - p'_0 = 0 \Rightarrow p_0 = p'_0 \Rightarrow p_0 = 0$ le polynôme nul. Donc f est injective. Puisque l'ensemble de départ est égal à l'ensemble d'arrivé avec une dimension finie donc f injective implique que f est surjective.

Exercice 4:

Soit f l'application de \mathbb{R}^3 dans \mathbb{R}^3 définie par f(x,y,z)=(-x+2y+z,y+3z,2x-2y+4z). a. Donner une base de l'image et une base du noyau de f.

Soit (u, v, w) un élément de l'image donc il existe $(x, y, z) \in \mathbb{R}^3$ tels que u = -x + 2y + z, v = y + 3z, w = 2x - 2y + 4z. On remarque que w = 2(v - u). Donc (u, v, w) = (u, v, 2(v - u)) = (u, 0, -2u) + (0, v, 2v) = u(1, 0, -2) + v(0, 1, 2). Alors une base de Imf est $\{(1, 0, -2), (0, 1, 2)\}$.

Maintenant, soit $(x, y, z) \in Kerf$ ceci implique que f(x, y, z) = 0. Donc aura le système suivant :

$$\begin{cases}
-x + 2y + z = 0 \\
y + 3z = 0 \\
2x - 2y + 4z = 0
\end{cases}$$

En résolvant ce système on trouve x=-5z, y=-3z. Alors un élément $(x,y,z)\in Kerf$ s'écrit (x,y,z)=(-5z,-3z,z)=z(-5,-3,1). Donc une base de Kerf est $\{(-5,-3,1)\}$.

Décrire l'image de f par un système d'équations linéaires.

$$\begin{cases} u = a_1 \\ v = a_2 \\ w = -2a_1 + 2a_2 \end{cases}$$

b. Soit E le sous-espace vectoriel de \mathbb{R}^3 d'équation x=y. Quelle est la dimension de E? $E=\{(x,y,z)\in\mathbb{R}^3/x=y\}=\{(x,x,z)/x,z\in\mathbb{R}\}=\{x(1,1,0)+z(0,0,1)/x,z\in\mathbb{R}\}.$ On remarque que E est engendré par la famille de vecteurs $\{(1,1,0),(0,0,1)\}$ qui est libre donc dim E=2.

Donner une base de f(E) et une base de $f^{-1}(E)$.

$$f(E) = \{ f(u)/u \in E \}$$

On calcul f(x, x, z) = (-x + 2x + z, x + 3z, 2x - 2x + 4z) = (x + z, x + 3z, 4z). Donc

$$f(E) = \{(x+z, x+3z, 4z)/x, z \in \mathbb{R}\} = \{(x, x, 0) + (z, 3z, 4z)/x, z \in \mathbb{R}\}.$$

Alors

$$f(E) = \{x(1,1,0) + z(1,3,4)/x, z \in \mathbb{R}\}.$$

Une base de f(E) est $\{(1,1,0),(1,3,4)\}.$

$$f^{-1}(E) = \{ u \in \mathbb{R}^3 / f(u) \in E \}.$$

Soit $u=(x,y,z)\in\mathbb{R}^3$, alors $f(u)=(-x+2y+z,y+3z,2x-2y+4z)\in E$ entraine que $-x+2y+z=y+3z\Rightarrow x=y-2z$. Donc

$$f^{-1}(E) = \{(x, y, z) \in \mathbb{R}^3 / x = y - 2z\} = \{(y - 2z, y, z) / y, z \in \mathbb{R}\} = \{(y, y, 0) + (-2z, 0, z) / y, z \in \mathbb{R}\}$$

Ce qui entraine que

$$f^{-1}(E) = \{y(1,1,0) + z(-2,0,1)/y, z \in \mathbb{R}\}.$$

Une base de $f^{-1}(E)$ est $\{(1,1,0),(-2,0,1)\}.$

Exercice 5:

Soit $f: \mathbb{R}_{n+1}[X] \to \mathbb{R}_n[X]$ définie par f(P) = (n+1)P - XP'.

1. Justifier que f est bien définie et que c'est une application linéaire.

OUI, en effet soit $P \in \mathbb{R}_{n+1}[X]$ donc $P(x) = a_0 + a_1 X + a_2 X^2 + \dots + a_n X^n + a_{n+1} X^{n+1}$. Donc

$$f(P) = (n+1)(a_0 + a_1X + a_2X^2 + \dots + a_nX^n + a_{n+1}X^{n+1}) - X(a_1 + 2a_2X + \dots + na_nX^{n-1} + (n+1)a_{n+1}X^n).$$

On remarque que le terme de X^{n+1} s'annule donc on obtient un polynôme de degré n. Donc f est bien définie.

2. Déterminer le noyau de f. Soit $P_0 \in Kerf \Rightarrow f(P_0) = 0 \Rightarrow (n+1)P_0 = XP_0'$. C'est une

équation différentielle qui admet $P(X) = kX^{n+1}$ comme solution et donc dimKerf = 1.

3. Montrer que f est surjective. Par suite, en appliquant le théorème du Noyau-Image on trouve :

$$dimImf = dim(\mathbb{R}_{n+1}[X]) - dimKerf = n+2-1 = n+1 = dim\mathbb{R}_n[X].$$

Ce qui permet de déduire que f est surjective.

Exercice 6: (SUPP)

Soit E et F deux espaces vectoriels de dimension finie et f une application linéaire de E dans F. Montrer que f est un isomorphisme si et seulement si l'image par f de toute base de E est une base de F.

C'est une équivalence!

" \Rightarrow ": Soit f un isomorphisme=application linéaire+ bijective. Montrons que l'image par f de toute base de E est une base de F. Soit $\mathbb{B} = \{w_1, w_2, ..., w_p\}$ une base de E, et $\mathbb{B}' = \{f(w_1), f(w_2), ..., f(w_p)\}$ une famille de F. Montrons que \mathbb{B}' est une base de F.

1. Montrons que \mathbb{B}' est libre : Soient $\alpha_1, \alpha_2, ..., \alpha_p \in \mathbb{R}$, tels que

$$\alpha_1 f(w_1) + \alpha_2 f(w_2) + \dots + \alpha_p f(w_p) = 0.$$

Puisque f est linéaire et injective (car f est bijective par hypothèse) on a

$$f(\alpha_1 w_1 + \alpha_2 w_2 + \dots + \alpha_p w_p) = 0 \Rightarrow \alpha_1 w_1 + \alpha_2 w_2 + \dots + \alpha_p w_p = 0 \Rightarrow \alpha_1 + \alpha_2 + \dots + \alpha_p = 0,$$

car $\{w_1, w_2, ..., w_p\}$ est une base (libre et génératrice). Ce qui nous donne que \mathbb{B}' est libre.

2. Montrons que \mathbb{B}' est génératrice : Soit $y \in F$. Comme f est surjective, il existe $x \in E$ tel que y = f(x). Comme \mathbb{B} est génératrice, on peut trouver $a_1, a_2, ..., a_p$ des réels tels que $x = a_1w_1 + a_2w_2 + ... + a_pw_p$. Ainsi, $y = f(x) = f(a_1w_1 + a_2w_2 + ... + a_pw_p) = a_1f(w_1) + a_2f(w_2) + ... + a_pf(w_p)$. Donc \mathbb{B}' est génératrice.

" \Leftarrow " : Montrons que f est bijective :

1. Soit $x \in Kerf$. Comme $\mathbb{B} = \{w_1, w_2, ..., w_p\}$ est une base, il existe des réels $a_1, a_2, ..., a_p$ tels que

$$x = a_1 w_1 + a_2 w_2 + \dots + a_n w_n$$
.

Alors

$$f(x) = 0 = f(a_1w_1 + a_2w_2 + \dots + a_pw_p) = a_1f(w_1) + a_2f(w_2) + \dots + a_pf(w_p)$$

Puisque $\mathbb{B}' = \{f(w_1), f(w_2), ..., f(w_p)\}$ est libre, tous les a_i sont nuls et donc x est nul. Donc f est injective.

2. La définition de f surjective est que pour chaque $y \in F$, on peut trouver un $x \in E$ tel que y = f(x).

Soit $y \in F$. Par hypothèse $\mathbb{B}' = \{f(w_1), f(w_2), ..., f(w_p)\}$ est génératrice dans F donc

$$y = \alpha_1 f(w_1) + \alpha_2 f(w_2) + \dots + \alpha_p f(w_p) = f(\alpha_1 w_1 + \alpha_2 w_2 + \dots + \alpha_p w_p),$$

et puisque $\mathbb{B} = \{w_1, w_2, ..., w_p\}$ est génératrice dans E donc il existe $x = \alpha_1 w_1 + \alpha_2 w_2 + ... + \alpha_p w_p \in E$ tel que y = f(x), donc f est surjective.

Exercice 7: (SUPP)

Soient E un espace vectoriel réel de dimension 3, (e_1, e_2, e_3) une base de E et λ un réel. Montrer que les relations $f_{\lambda}(e_1) = e_1 + e_2$, $f_{\lambda}(e_2) = e_1 - e_2$, et $f_{\lambda}(e_3) = e_1 + \lambda e_3$, définissent une application linéaire f_{λ} de E dans E. Soit $x \in E$, x s'écrit dans la base $x = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3$, et $f_{\lambda}(x) \in E \Rightarrow f_{\lambda}(x) = \beta_1 e_1 + \beta_2 e_2 + \beta_3 e_3$. Donc

$$\alpha_1 f_{\lambda}(e_1) + \alpha_2 f_{\lambda}(e_2) + \alpha_3 f_{\lambda}(e_3) = \alpha_1 (e_1 + e_2) + \alpha_2 (e_1 - e_2) + \alpha_3 (e_1 + \lambda e_3) = (\alpha_1 + \alpha_2 + \alpha_3) e_1 + (\alpha_1 - \alpha_2) e_2 + \lambda \alpha_3 e_3.$$

Cette définition rend automatiquement f_{λ} linéaire.

Comment choisir λ pour que f_{λ} soit injective? surjective?

Soit $x \in Kerf \Rightarrow (\alpha_1 + \alpha_2 + \alpha_3)e_1 + (\alpha_1 - \alpha_2)e_2 + \lambda \alpha_3 e_3 = 0$. Puisque $\{e_1, e_2, e_3\}$ est une base de E donc aura

$$\begin{cases} \alpha_1 + \alpha_2 + \alpha_3 = 0 \\ \alpha_1 - \alpha_2 = 0 \\ \lambda \alpha_3 = 0 \end{cases}$$

Si $\lambda \neq 0$ alors on obtient $\alpha_1 = \alpha_2 = \alpha_3 = 0$ et donc f_{λ} est injective, et par suite en appliquant le théorème du Noyau-Image on obtient que

$$dimImf = dimE - dimKerf = 3 - 0 = 3,$$

donc f_{λ} est surjective.

Si $\lambda = 0$ alors f_{λ} n'est pas injective car on aura $\alpha_3 \neq 0, \alpha_1 - \alpha_2 = 0$, et $\alpha_1 + \alpha_2 + \alpha_3 = 0$ et donc f non surjective.

Références

- 1. Algèbre, Cours de Mathématiques pour la première année, site web: http://exo7.emath.fr/
- 2. Algèbre linéaire, 5e édition, de Joseph Grifone.
- 3. Le succès en algèbre en fiches-méthodes : 1re année, de Abdelaziz El Kaabouchi.

Auteur

M. Mamchaoui

Laboratoire de Statistiques et Modélisation Aléatoires (LSMA). Faculté des Sciences. Département de Mathématiques. Université Abou Bakr Belkaïd, Tlemcen, BP 119, 13000 Tlemcen, Algérie.

E-mail: mohamed.mamchaoui@univ-tlemcen.dz

Site-web:

https://sites.google.com/view/mamcha/enseignements/11-mathématiques-informatique