Modeling Temporary Impact Functions from Limit Order Book Data

Devansh Srivastava

July 31, 2025

Introduction

This report addresses the modeling of the temporary market impact function $g_t(x)$, defined as the slippage (relative to the prevailing mid-price) incurred by a market order of size x at time t. Using depth-10 limit order book data for the three stocks SOUN, FROG, and CRWV, we empirically estimate the temporary impact function and provide a mathematical framework for optimally allocating trades over time to minimize total execution cost.

1 Empirical Modeling of Temporary Impact (Problem 1)

The temporary impact function $g_t(x)$ describes the cost penalty for executing x shares at time t, relative to the prevailing mid price. Our analysis involved:

- 1. Order Book Reconstruction: At one-minute intervals, a full snapshot (10 levels per side) of the LOB was constructed for each ticker.
- 2. Market Order Simulation: For a grid of order sizes x, simulated aggressive market orders consume liquidity, tracking fill prices.
- 3. Slippage Calculation: For each simulated trade, slippage is calculated as

$$Slippage = VWAP^1 - Pre-trade Mid Price$$

- 4. Curve Fitting: To the average slippage versus x, we fit both linear models $(g(x) = \beta x)$ and power-law models $(g(x) = kx^{\alpha})$.
- 5. Model Evaluation: R^2 scores are computed for fit quality.

Empirical Results Interpretation and Model Choice

• Power-law superiority: For all tickers, the power-law model $g(x) = kx^{\alpha}$ fits better than linear (all R_{lin}^2 are negative: linear is worse than fitting a constant mean).

¹VWAP (Volume Weighted Average Price): VWAP = $\frac{\sum (\text{price} \times \text{size})}{\sum \text{size}}$

Ticker	k (Power Law)	α (Power Law)	R_{pl}^2	β (Linear)	R_{lin}^2
SOUN	0.0236	0.07	0.047	0.00001	-13.6
FROG	0.0165	0.35	0.143	0.00007	-0.68
CRWV	0.0757	0.14	0.046	0.00002	-1.56

Table 1: Empirical model fits: mean slippage power-law and linear parameters for three tickers. R_{pl}^2 : power law fit, R_{lin}^2 : linear fit quality.

- Sublinear impact: The exponents α are all in (0,1), indicating that the impact function is concave—i.e., average slippage rises with order size, but at a decreasing rate.
- Implication: Real LOBs for these names and this day are sufficiently deep and liquid; for the tested range, marginal cost per share decreases as size rises. This is typical for high-liquidity environments or when most simulated order sizes are much less than total displayed liquidity.
- Model recommendation: For further modeling and optimization, use $g_t(x) = k_t x^{\alpha_t}$, with k_t , α_t locally estimated from LOB data in each time period as needed.

2 Mathematical Framework for Optimal Scheduling (Problem 2)

Suppose you must buy exactly S shares over a trading day split into N periods, purchasing x_i shares in period i (i = 1, ..., N). The goal is to minimize total expected slippage using the fitted cost functions.

Setup

Variables:
$$\mathbf{x} = (x_1, x_2, \dots, x_N)$$

Constraints: $\sum_{i=1}^{N} x_i = S, \quad x_i \ge 0$

For each trading period t_i , you model the cost of executing x_i shares as:

$$g_{t_i}(x_i) = k_{t_i} x_i^{\alpha_{t_i}} \qquad (0 < \alpha_{t_i} < 1, \ k_{t_i} > 0)$$

Total cost to minimize:

Total Cost =
$$\sum_{i=1}^{N} g_{t_i}(x_i) = \sum_{i=1}^{N} k_{t_i} x_i^{\alpha_{t_i}}$$

Optimization Problem

$$\min_{\mathbf{x}} \quad \sum_{i=1}^{N} k_{t_i} x_i^{\alpha_{t_i}}$$
s.t.
$$\sum_{i=1}^{N} x_i = S, \quad x_i \ge 0 \,\forall i$$

Solution Approach and Interpretation

- 1. Concave Costs $(0 < \alpha < 1)$:
 - Here, $g_{t_i}(x_i)$ is sublinear (diminishing marginal cost), so the cost-minimizing solution for a purely concave objective without further constraints is to execute the entire order in the period where k_{t_i} is lowest.
 - This "bang-bang" solution is not realistic in practice due to liquidity, market risk, and execution constraints.
 - 2. Lagrangian and First-Order Conditions: Define the Lagrangian:

$$\mathcal{L}(\mathbf{x}, \lambda) = \sum_{i=1}^{N} k_{t_i} x_i^{\alpha_{t_i}} + \lambda \left(\sum_{i=1}^{N} x_i - S \right)$$

First-order condition for x_i :

$$k_{t_j} \alpha_{t_j} x_j^{\alpha_{t_j} - 1} + \lambda = 0 \implies x_j^{\alpha_{t_j} - 1} = -\frac{\lambda}{k_{t_j} \alpha_{t_j}}$$

With $0 < \alpha_{t_j} < 1$, $x_j^{\alpha_{t_j}-1}$ is decreasing in x_j , so the solution concentrates allocation in the "cheapest" periods.

- **3. Realistic Execution:** To generate robust and practical schedules, augment the base cost minimization with additional constraints:
 - Liquidity caps: $0 \le x_i \le L_{t_i}$
 - Risk penalties: Penalize variance of execution price or non-uniform schedules, e.g. as in Almgren-Chriss:

$$\min_{\mathbf{x}} \sum_{i=1}^{N} k_{t_i} x_i^{\alpha_{t_i}} + \gamma \text{Var}(\text{Final Price})$$

where $\gamma > 0$ is risk aversion.

Numerical Solution

Because (i) α_{t_i} , k_{t_i} may vary, (ii) additional constraints matter, and (iii) objective is not (jointly) convex, you must solve numerically. Use packages like scipy.optimize.minimize or convex/concave solvers with your empirically fit $g_{t_i}(x_i)$. A typical workflow:

3

1. Fit k_{t_i} , α_{t_i} from recent LOB at each t_i .

- 2. Set L_{t_i} by observed max depth/liquidity.
- 3. Solve minimization for \mathbf{x} under constraints.
- 4. Recalibrate schedule as new information or fills occur.

3 Summary

- For your data, empirical cost functions are *concave* $(0 < \alpha < 1)$: slippage increases with order size, but sublinearly.
- The base optimal scheduling, in this regime, would push most (or all) volume into the periods with the smallest k_{t_i} , but real-world execution adds risk, liquidity, and operational constraints.
- Correct practice is to continually update $g_{t_i}(x)$, encode all practical execution limitations, and solve numerically for the allocation vector $(x_1, ..., x_N)$ at each step.

Note: All analysis, simulation code, and fit results were computed as shown in the attached notebook. Refer to the github repo at <u>link</u> for all code and analysis.