ФАКУЛТЕТЕН №

- **Зад. 1.** В пространството са дадени 25 точки. Измежду всеки три от тях има поне две, които се намират на разстояние, по-малко от 1. Докажете, че съществува кълбо с радиус 1, съдържащо поне 13 от дадените точки.
- **Зад. 2.** По колко начина 7 души могат да се наредят в редица, така че трима от тях (приятелите A, B и C) да застанат един до друг в произволен ред? **Отг**.
- **Зад. 3.** Пресметнете сбора $\sum_{k=0}^{n} \binom{n}{k} \cdot 4^k$. <u>Отг.</u>
- **Зад. 4.** Решете с точност до неопределени коефициенти рекурентното уравнение: $T(n+1) = 10 \cdot T(n) 21 \cdot T(n-1) + 5 n^2 \cdot 6^n$. **Отг**.
- Зад. 5. Намерете минимално покриващо дърво на изобразения граф. Какво минимално общо тегло получихте? <u>Отг.</u>
- Зад. 6. За същия граф намерете най-кратките пътища от върха *А* до всички останали върхове. Изобразете получените пътища като дърво с корен *A*.
- Зад. 7. За същия граф намерете (с обосновка!) върховото хроматично число. Отг.
- **Зад. 8.** За същия граф намерете (с обосновка!) ребровото хроматично число. **Отг.**
- Зад. 9. Съществува ли ойлерова верига в показания граф? Ако да — постройте я. Ако не — обяснете защо не съществува такава. Отг.
- Зад.10. Съществува ли хамилтонов цикъл в показания граф? Ако да постройте го. Ако не обяснете защо не съществува такъв. Отг.
- **Зад.11.** Чрез алгоритъма на Куайн—Маккласки минимизирайте дизюнктивната нормална форма $y = \overline{x_2} \ \overline{x_1} \ x_0 \lor \overline{x_2} \ x_1 \ x_0 \lor x_2 \ \overline{x_1} \ \overline{x_0} \lor x_2 \ \overline{x_1} \ x_0 .$
- Зад.12. Планарен граф има 6 върха и 6 лица. Колко ребра има? Отг.

ФАКУЛТЕТЕН №

- **Зад. 1.** Дадена е квадратна таблица $n \times n$. Всяка клетка на таблицата е оцветена в един от общо n-1 различни цвята. На един ход можем да пребоядисаме всички клетки от даден ред или стълб в един и същи цвят, стига този цвят да го е имало в поне две от клетките на въпросния ред или стълб (непосредствено преди текущия ход). Докажете, че за краен брой ходове можем да пребоядисаме цялата таблица в един цвят.
- **Зад. 2.** По колко начина 6 деца могат да се подредят на въртележка с 6 еднакви места? Местата са неразличими, важна е само подредбата на децата. На всяко място може да се качи само едно дете. **Отг**.
- **Зад. 3.** Пресметнете сбора $\sum_{k=1}^{n} \binom{n}{k} \cdot k \cdot x^{k-1}$. **Отг**.
- **Зад. 4.** Решете с точност до неопределени коефициенти рекурентното уравнение: $T(n+1) = 11 \cdot T(n) 18 \cdot T(n-1) + 3n \cdot 2^n$. **Отг**.
- Зад. 5. Намерете минимално покриващо дърво на изобразения граф. Какво минимално общо тегло получихте? Отг.
- **Зад. 6.** За същия граф намерете най-кратките пътища от върха A до всички останали върхове. Изобразете получените пътища като дърво с корен A.
- **Зад. 7.** За същия граф намерете (с обосновка!) върховото хроматично число.

 Отг.

- **Зад. 8.** За същия граф намерете (с обосновка!) ребровото хроматично число. **Отг.**
- Зад. 9. Съществува ли ойлерова верига в показания граф? Ако да — постройте я. Ако не — обяснете защо не съществува такава. Отг.
- Зад.10. Съществува ли хамилтонов цикъл в показания граф? Ако да постройте го. Ако не обяснете защо не съществува такъв. Отг.
- **Зад.11.** Чрез алгоритъма на Куайн—Маккласки минимизирайте дизюнктивната нормална форма $y = \overline{x_2} \ \overline{x_1} \ x_0 \lor \overline{x_2} \ x_1 \ \overline{x_0} \lor x_2 \ \overline{x_1} \ \overline{x_0} \lor x_2 \ x_1 \ \overline{x_0}$. Отг.
- Зад.12. Дайте пример (с обосновка!) за непланарен хамилтонов граф. Отг.

ФАКУЛТЕТЕН №

- **Зад. 1.** Докажете, че от всеки осем цели числа, взети по произволен начин, могат да се изберат две, разликата от квадратите на които се дели на 13.
- **Зад. 2.** Колко различни венеца могат да се направят от 9 различни цветя? <u>Отг</u>.
- **Зад. 3.** Пресметнете сбора $\sum_{k=0}^{n} \binom{n}{k} \cdot 3^k \cdot 7^{n-k}$. **Отг**.
- **Зад. 4.** Решете с точност до неопределени коефициенти рекурентното уравнение: $T(n+1) = 13 \cdot T(n) 30 \cdot T(n-1) + 10^{n+3}$. **Отг**.
- Зад. 5. Намерете минимално покриващо дърво на изобразения граф. Какво минимално общо тегло получихте? <u>Отг.</u>
- **Зад. 6.** За същия граф намерете най-кратките пътища от върха A до всички останали върхове. Изобразете получените пътища като дърво с корен A.

- **Зад. 7.** За същия граф намерете (с обосновка!) върховото хроматично число. <u>Отг.</u>
- **Зад. 8.** За същия граф намерете (с обосновка!) ребровото хроматично число. **Отг.**
- Зад. 9. Съществува ли ойлерова верига в показания граф? Ако да постройте я. Ако не обяснете защо не съществува такава. Отг.
- Зад.10. Съществува ли хамилтонов цикъл в показания граф? Ако да постройте го. Ако не обяснете защо не съществува такъв. Отг.
- **Зад.11.** Чрез алгоритьма на Куайн—Маккласки минимизирайте дизюнктивната нормална форма $y=\overline{x_2}$ $\overline{x_1}$ $x_0 \vee \overline{x_2}$ x_1 $x_0 \vee x_2$ $\overline{x_1}$ $\overline{x_0}$ \vee x_2 x_1 x_0 . **Отг.**
- Зад.12. Планарен граф има 8 върха и 10 ребра. Колко лица има?

ФАКУЛТЕТЕН №

- **Зад. 1.** Можем ли да попълним таблица 3×3 , като във всяка клетка напишем някое от числата 0, 1, 2 така, че всички сборове по редове, по стълбове и по двата диагонала да бъдат различни? Ако да дайте пример. Ако не обяснете защо е невъзможно.
- Зад. 2. По колко начина можем да прочетем думата КИПЪР, ако от всяка буква можем да слезем само по диагонал наляво или надясно с една стъпка? (Почернените букви показват един възможен прочит.)

		К		К		
	И		И			
П		П		П		
	Ъ		Ъ		Ъ	
		P		P		P

Отг.

- **Зад. 3.** Пресметнете сбора $\sum_{k=2}^{n} \binom{n}{k}$. $k \cdot (k-1) \cdot x^{k-2}$. <u>Отг.</u>
- **Зад. 4.** Решете с точност до неопределени коефициенти рекурентното уравнение: $T(n+1) = 20 \cdot T(n) 75 \cdot T(n-1) + 5 n^3 \cdot 13^n n \cdot 15^{n-1}$. **Отг**.
- Зад. 5. Намерете минимално покриващо дърво на изобразения граф. Какво минимално общо тегло получихте? <u>Отг.</u>

- **Зад. 6.** За същия граф намерете най-кратките пътища от върха A до всички останали върхове. Изобразете получените пътища като дърво с корен A.
- Зад. 7. За същия граф намерете (с обосновка!) върховото хроматично число.
- Зад. 8. За същия граф намерете (с обосновка!) ребровото хроматично число.
- Зад. 9. Съществува ли ойлерова верига в показания граф? Ако да постройте я. Ако не обяснете защо не съществува такава. Отг.
- Зад.10. Съществува ли хамилтонов път в показания граф? А хамилтонов цикъл? Ако да постройте ги. Ако не обяснете защо не съществуват.

 Отг.
- **Зад.11.** Чрез алгоритъма на Куайн—Маккласки минимизирайте дизюнктивната нормална форма $y = \overline{x_2} \ \overline{x_1} \ \overline{x_0} \lor \overline{x_2} \ \overline{x_1} \ x_0 \lor \overline{x_2} \ \overline{x_1} \ \overline{x_0} \lor x_2 \ \overline{x_1} \ x_0$. **Отг.**
- Зад.12. Дайте пример (с обосновка!) за непланарен граф без ойлерова верига. Отг.

ФАКУЛТЕТЕН №

- **Зад. 1.** В квадрат със страна 3 см са разположени 11 точки. Докажете, че поне две от тези точки се намират на разстояние, по-малко от 1,5 см.
- **Зад. 2.** Намерете най-късия път от A до B. За целта именувайте върхове на намерения път с произволни латински букви и опишете пътя като редица от върхове.

- **Зад. 3.** Пресметнете сбора $C_n^1 C_n^2 + C_n^3 C_n^4 + \ldots + (-1)^{n+1} C_n^n$. **Отг**.
- **Зад. 4.** Решете с точност до неопределени коефициенти рекурентното уравнение: $T(n+1) = 12 \cdot T(n) 36 \cdot T(n-1) + 5 n^2 \cdot 6^n$. **Отг**.
- Зад. 5. Намерете минимално покриващо дърво на изобразения граф. Какво минимално общо тегло получихте? <u>Отг.</u>
- **Зад. 6.** За същия граф намерете най-кратките пътища от върха *A* до всички други върхове. Изобразете получените пътища като дърво с корен *A*.

- Зад. 7. За същия граф намерете (с обосновка!) върховото хроматично число. Отг.
- Зад. 8. За същия граф намерете (с обосновка!) ребровото хроматично число Отг.
- Зад. 9. Съществува ли ойлерова верига в показания граф? Ако да постройте я. Ако не обяснете защо не съществува такава. Отг.
- Зад.10. Съществува ли хамилтонов път в показания граф? Ако да постройте го. Ако не обяснете защо не съществува такъв. Отг.
- **Зад.11.** Чрез алгоритъма на Куайн—Маккласки минимизирайте дизюнктивната нормална форма $y=\overline{x_2}$ $\overline{x_1}$ $\overline{x_0}$ \vee $\overline{x_2}$ $\overline{x_1}$ $\overline{x_0}$ \vee $\overline{x_2}$ $\overline{x_1}$ $\overline{x_0}$ \vee $\overline{x_2}$ $\overline{x_1}$ $\overline{x_0}$ \vee $\overline{x_2}$ $\overline{x_1}$ $\overline{x_0}$.
- Зад.12. Планарен граф има 7 ребра и 3 лица. Колко върха има? Отг.

ФАКУЛТЕТЕН №

- **Зад. 1.** На квадратна маса със страна 70 см лежат разгънати 100 квадратни салфетки, без да се подават от краищата на масата. Страната на всяка салфетка е 10 см. Да се докаже, че в масата може да се забие гвоздей, който преминава през поне три салфетки.
- Зад. 2. По колко начина Дядо Коледа може да подари 19 еднакви подаръка на 6 деца така, че всяко дете да получи поне два подаръка? (Това, че подаръците са еднакви, означава, че има значение само броят на подаръците, получени от всяко дете.)

 Отг.
- **Зад. 3.** Пресметнете сбора $\sum_{k=0}^{n} \binom{n}{k} \cdot x^{2k}$. **Отг**.
- **Зад. 4.** Решете с точност до неопределени коефициенти рекурентното уравнение: $T(n+1) = 14 \cdot T(n) 49 \cdot T(n-1) + 2n^5 \cdot 3^n$. **Отг**.
- Зад. 5. Намерете минимално покриващо дърво на изобразения граф.
 Какво минимално общо тегло получихте?
 Отг.
- Зад. 6.За същия граф намерете
най-кратките пътища от върха A
до всички останали върхове.
Изобразете получените пътища
като дърво с корен A.
- Зад. 7. За същия граф намерете (с обосновка!) върховото хроматично число. Отг.

- **Зад. 8.** За същия граф намерете (с обосновка!) ребровото хроматично число. <u>Отг.</u>
- Зад. 9. Съществува ли ойлерова верига в показания граф? Ако да — постройте я. Ако не — обяснете защо не съществува такава. Отг.
- Зад.10. Съществува ли хамилтонов цикъл в показания граф?

 Ако да постройте го. Ако не обяснете защо не съществува такъв.

 Отг.

- **Зад.11.** Чрез алгоритъма на Куайн—Маккласки минимизирайте дизюнктивната нормална форма $y=x_2\,x_1\,x_0\,\vee\,\overline{x_2}\,\overline{x_1}\,x_0\,\vee\,x_2\,\overline{x_1}\,\overline{x_0}\,\vee\,\overline{x_2}\,x_1\,\overline{x_0}$. **Отг.**
- Зад.12. Дайте пример (с обосновка!) за непланарен граф без ойлерова верига. Отг.

ФАКУЛТЕТЕН №

- **Зад. 1.** В куб със страна 3 см са разположени 50 точки. Докажете, че поне две от тези точки се намират на разстояние, по-малко от 1,9 см.
- Зад. 2. Докажете, че *п*-мерният хиперкуб е хамилтонов граф.
- **Зад. 3.** Пресметнете сбора $\sum_{k=0}^{n} \binom{n}{k}$. 2015^{k+1}. <u>Отг</u>.
- **Зад. 4.** Решете с точност до неопределени коефициенти рекурентното уравнение: $T(n+1) = 12 \cdot T(n) 20 \cdot T(n-1) + 7 n^2 \cdot 9^n$. **Отг**.
- Зад. 5. Намерете минимално покриващо дърво на изобразения граф. Какво минимално общо тегло получихте? Отг.
- **Зад. 6.** За същия граф намерете най-кратките пътища от върха A до всички останали върхове. Изобразете получените пътища като дърво с корен A.

- **Зад. 7.** За същия граф намерете (с обосновка!) върховото хроматично число. **Отг.**
- **Зад. 8.** За същия граф намерете (с обосновка!) ребровото хроматично число. <u>Отг.</u>
- Зад. 9. Съществува ли ойлерова верига в показания граф? Ако да — постройте я. Ако не — обяснете защо не съществува такава. Отг.
- Зад.10. Съществува ли хамилтонов цикъл в показания граф?

 Ако да постройте го. Ако не обяснете защо не съществува такъв.

 Отг.

- **Зад.11.** Чрез алгоритьма на Куайн—Маккласки минимизирайте дизюнктивната нормална форма $y = \overline{x_2} \ x_1 \ x_0 \lor x_2 \ \overline{x_1} \ \overline{x_0} \lor x_2 \ \overline{x_1} \ x_0 \lor x_2 \ x_1 \ \overline{x_0}$. **Отг.**
- Зад.12. Планарен граф има 7 върха и 6 лица. Колко ребра има? Отг.