

Backofen*

a) Die Temperatur im Inneren eines Bratens nennt man Kerntemperatur. Sie wird mithilfe eines Bratenthermometers gemessen.

Der zeitliche Verlauf der Kerntemperatur lässt sich für einen bestimmten Braten modellhaft durch die Funktion T beschreiben (siehe unten stehende Abbildung).

$$T(t) = a + \frac{100}{3} \cdot t \cdot e^{1 - c \cdot t}$$

 $t \dots$ Zeit in h mit t = 0 für den Beginn des Bratvorgangs

T(t) ... Kerntemperatur des Bratens zur Zeit t in °C

a, c ... positive Parameter

- 1) Kennzeichnen Sie in der obigen Abbildung das größtmögliche Zeitintervall, in dem die Kerntemperatur mindestens 70 °C beträgt. [0/1 P.]
- 2) Begründen Sie, warum die Stelle des Maximums von T nicht vom Parameter a abhängt. [0/1 P.]
- 3) Geben Sie mithilfe der obigen Abbildung den Parameter a an.

$$a = {^{\circ}C}$$
 [0/1 P.]

Die Koordinaten von T_{max} können durch die Parameter a und c beschrieben werden.

Es gilt:
$$T_{\text{max}} = \left(\frac{1}{c} \middle| a + \frac{100}{3 \cdot c}\right)$$

4) Ermitteln Sie mithilfe der obigen Abbildung den Parameter c. [0/1 P.]

Bundesministerium Bildung, Wissenschaft und Forschung

b) Eine Pizza wird aus dem Backofen genommen und kühlt ab.

Der zeitliche Verlauf der Temperatur dieser Pizza kann näherungsweise durch die Funktion T beschrieben werden. Die momentane Änderungsrate von T ist jeweils proportional zur Differenz zwischen T und der Umgebungstemperatur T_{\cup} . Der Proportionalitätsfaktor wird mit k bezeichnet.

- t ... Zeit in min
- T(t) ... Temperatur zur Zeit t in °C
- T_{\cup} ... Umgebungstemperatur in °C
- k > 0 ... Proportionalitätsfaktor in min⁻¹
- 1) Stellen Sie eine Differenzialgleichung für T auf.

[0/1 P.]

2) Zeigen Sie, dass eine allgemeine Lösung dieser Differenzialgleichung lautet:

$$T(t) = T_{11} + C \cdot e^{-k \cdot t}$$

[0/1 P.]

3) Geben Sie die allgemeine Lösung $T_{\rm h}$ der zugehörigen homogenen Differenzialgleichung an.

$$T_{\rm b}(t) =$$

[0/1 P.]

Für einen bestimmten Abkühlvorgang gilt: $k = 0,026 \text{ min}^{-1}$, $T_{U} = 20 \,^{\circ}\text{C}$ und $T(0) = 200 \,^{\circ}\text{C}$.

4) Ermitteln Sie die spezielle Lösung der Differenzialgleichung für *T* für diesen Abkühlvorgang. [0/1 P.]

Bundesministerium Bildung, Wissenschaft

und Forschung

Möglicher Lösungsweg

a1)

a2) Der Parameter a bewirkt nur eine Verschiebung entlang der senkrechten Achse und beeinflusst die Maximumstelle nicht.

oder:

Die Maximumstelle wird mithilfe der 1. Ableitung berechnet. Beim Ableiten fällt der Parameter a weg.

a3) $a = 30 \, ^{\circ}\text{C}$ Toleranzbereich: [29; 33]

a4)
$$80 = 30 + \frac{100}{3 \cdot c}$$
 $c = \frac{2}{3}$

- a1) Ein Punkt für das Kennzeichnen des richtigen Zeitintervalls.
- a2) Ein Punkt für das richtige Begründen.
- a3) Ein Punkt für das Angeben des richtigen Wertes von a.
- a4) Ein Punkt für das richtige Ermitteln des Parameters c.

Bundesministerium

Bildung, Wissenschaft und Forschung

b1)
$$\frac{dT}{dt} = -k \cdot (T - T_{\cup})$$
 oder $\frac{dT}{dt} = k \cdot (T_{\cup} - T)$

b2)
$$\int \frac{dT}{(T - T_{\cup})} = \int -k \, dt \quad oder \quad \int \frac{T'}{(T - T_{\cup})} \, dt = \int -k \, dt$$
$$\ln|T - T_{\cup}| = -k \cdot t + C_1$$
$$T(t) = T_{\cup} + C \cdot e^{-k \cdot t}$$

Auch ein Nachweis durch Einsetzen der angegebenen allgemeinen Lösung in die Differenzialgleichung ist als richtig zu werten.

b3)
$$T_{h}(t) = C \cdot e^{-k \cdot t}$$

b4)
$$T(0) = 200$$
 oder $200 = 20 + C \cdot e^{-0.026 \cdot 0}$

$$C = 180$$

$$T(t) = 20 + 180 \cdot e^{-0.026 \cdot t}$$

- b1) Ein Punkt für das richtige Aufstellen der Differenzialgleichung.
- b2) Ein Punkt für das richtige Zeigen.
- **b3)** Ein Punkt für das Angeben der richtigen allgemeinen Lösung der homogenen Differenzialgleichung.
- b4) Ein Punkt für das richtige Ermitteln der speziellen Lösung der Differenzialgleichung.