MAT02036 - Amostragem 2

Aula 01 - Visão Geral e Revisão

Markus Stein

Departamento de Estatística, IME/UFRGS

2022/2

Housekeeping

- Aproveitem o momento presencial para tirar dúvidas
- Se estivéssemos no ensino remoto ou à distância
 - o vocês poderiam estar somente ouvindo, sem interação
 - o u assistindo vídeos e material em outro momento
- Depois das aulas, rever material da aula passada
 - fazer exercícios
 - se preparar para a próxima aula

Visão geral de amostragem e AAS

- Denominamos população qualquer conjunto contendo um número finito
 N de unidades, que compartilham alguma(s) característica(s) em comum;
 - ∘ N é o tamanho da população.
- As unidades deste conjunto são denominadas unidades da população,
 - o representadas por um conjunto de N rótulos distintos denotado

$$U=\{1,2,\ldots,i,\ldots,N\},$$

- o i o **rótulo** para uma unidade genérica da população, $i \in U$.
- Exemplos:
 - domicílios e moradores de certa localidade;
 - indústrias instaladas num certo país;
 - fazendas situadas num certo estado;
 - o alunos matriculados em uma série da rede escolar estadual em 2022.
- Definição clara e precisa da *população de pesquisa*.

- Queremos **estimar** ou **inferir** certas quantidades ou **parâmetros** de **características** (variáveis) **numéricas** medidas ou **observadas** para, em tese, toda **unidade da população**.
- *Vetor populacional* é o conjunto de valores da variável correspondentes às unidades da população.
 - \circ Exemplo, se y é a variável de pesquisa (de interesse) e y_i é o valor dessa variável y para a unidade i, então

$$Y_U = \{y_1, \; y_2, \; \dots, \; y_i, \; \dots, \; y_N \}$$

é o *vetor populacional* gerado pela variável *y*.

Parâmetros-alvo (ou de interesse) podem ser quaisquer funções dos valores dos vetores populacionais:

total populacional (da variável
$$y$$
) $T_y = T = \sum_{i=1}^N y_i = \sum_{i \in U} y_i$

mais parâmetros-alvo:

_	
	Œ
	\smile

média populacional	$\overline{Y} = rac{T_y}{N} = rac{1}{N} \sum_{i \in U} y_i$;
proporção populacional P	$P=\overline{Y}$, para $y\in\{0,1\}.$
variância populacional	$Var_y = rac{1}{N} \sum_{i \in U} (y_i - \overline{Y})^2 = rac{1}{N} iggl[\sum_{i \in U} {y_i}^2 - N \overline{Y}^2 iggr]$
variância populacional	$S_y^2 = rac{1}{N-1} \sum_{i \in U} (y_i - \overline{Y})^2 = rac{N}{N-1} Var_y$
desvio padrão - DP populacional	$DP_y = S_y = \sqrt{S_y^2}$
coeficiente de variação - CV populacional	$CV_y = rac{DP_y}{\overline{Y}} = rac{S_y}{\overline{Y}}$

mais parâmetros-alvo: 🎯

$$F_y(a) = rac{1}{N} \sum_{i \in U} I(y_i \leq a).$$

- seja z outra variável de pesquisa, tomando valores z_i , $i \in U$, a $raz\~ao$ de totais das variáveis y e z como $R = \frac{\sum_{i \in U} y_i}{\sum_{i \in U} z_i} = Y/Z$
- a covariância populacional e a correlação populacional das variáveis y e z,

$$S_{yz} = rac{1}{N-1} \sum_{i \in U} (y_i - \overline{Y})(z_i - \overline{Z}) = rac{1}{N-1} \Biggl[\sum_{i \in U} y_i z_i - N \, \overline{Y} \, \overline{Z} \Biggr] \, \operatorname{e} \,
ho_{yz} = rac{S_{yz}}{S_y S_z}$$

Censo é possível?

Amostragem de populações finitas

- **pesquisa por amostragem** menor custo de obtenção dos dados, maior rapidez e redução da carga de coleta de informações.
 - conhecendo estimativas dos parâmetros e margem de erro podemos ter bons resultados?
- Uma **amostra** $s=\{i_1,i_2,\ldots,i_n\}$ é qualquer subconjunto não vazio de unidades selecionadas da população $U,s\subset U\ (1\leq n\leq N).$

índice	soma
$i \in s$: unidade i incluída na amostra s .	$\sum_{i \in s}$: em i sobre o conjunto de rótulos de unidades em s .
$s \ni i$: a amostra s contém a unidade i .	$\sum_{s\ni i}$: em s sobre o conjunto de amostras possíveis que contêm a unidade i .

- Consideraremos somente amostras probabilísticas,
 - o os dados amostrais para a variável y são representados por

$$Y_s = \{y_{i_1}, y_{i_2}, \dots, y_{i_n}\}$$

9 / 45

Amostragem probabilística

Suposições

- 1. S: espaço amostral; o conjunto de todas as amostras s possíveis, bem definido e enumerável (teoricamente), $S = \{s_1, s_2, \dots, s_j, \dots, s_{\nu}\};$
- 2. p(s): uma probabilidade conhecida (ou calculável) associada a cada amostra $s \in S$, denominada plano amostral,

$$\sum_{s \in S} p(s) = 1;$$

- 3. Uma única amostra $s \in S$ é selecionada com probabilidade p(s).
- 4. Associada a cada unidade $i \in U$ existe uma probabilidade positiva, π_i , dessa ser selecionada, denominada **probabilidade de inclusão** (de primeira ordem) da unidade i, tal que

$$\pi_i = P(i \in s) = \sum_{s
i i} p(s) > 0, orall i \in U.$$

5. π_i das **unidades selecionadas** e outros aspectos do **plano amostral** são levados em conta ao fazer **inferência** sobre os parâmetros.

Estatísticas, estimadores e estimativas

• Uma **estatística** é uma função real dos valores observados numa amostra, qualquer $f(y_{i_1}, y_{i_2}, \dots, y_{i_n})$. Exemplos:

total amostral ou soma amostral da variável \boldsymbol{y}	$t(s) = t = \sum_{i \in s} y_i$
média amostral da variável y	$\overline{y} = rac{t(s)}{n} = rac{1}{n} \sum_{i \in s} y_i$

- Um **estimador** $\hat{\theta}(s)$ é uma estatística usada para estimar um certo parâmetro θ de interesse.
 - Antes de observarmos s, $\hat{\theta}(s)$ é uma variável aleatória (v.a.) cuja distribuição temos interesse em conhecer, dela derivamos propriedades importantes de $\hat{\theta}(s)$.
 - Por simplicidade, denotamos $\hat{\theta}$, sem explicitar sua dependência de s, sempre que possível.
- Após a determinação da amostra s e a coleta dos dados das unidades, o valor calculado (observado) de $\hat{\theta}$ é chamado de **estimativa** do parâmetro.

Como escolher "bons" estimadores?

- O valor esperado de $\hat{\theta}$ é denotado por $E_p(\hat{\theta})$.
 - \circ $E_p(\cdot)$ designa o valor esperado sob a distribuição de probabilidades induzida pelo plano amostral:

$$E_p(\hat{ heta}) = \sum_{s \in S} \hat{ heta}(s) p(s).$$

• O **vício** (ou **viés** ou **tendência**) de $\hat{\theta}$ é definido como:

$$B_p(\hat{ heta}) = E_p(\hat{ heta}) - heta.$$

• o *vício relativo* de $\hat{\theta}$ é dado por:

$$RB_p(\hat{ heta}) = rac{B_p(\hat{ heta})}{ heta}.$$

• $\hat{\theta}$ é **não viciado** (ou **não enviesado** ou **não tendencioso**) para θ quando

$$E_p(\hat{ heta}) = heta,$$

ou

$$B_p(\hat{ heta}) = RB_p(\hat{ heta}) = 0,$$

Primeiro critério

- Para apoiar a **escolha de estimadores** sugere então que tratemos de usar *estimadores* sem vício, ou *não viciados*, ou ao menos *aproximadamente não viciados*.
- Quando isto for possível, teremos estimadores cuja distribuição será centrada no alvo desejado da inferência.
- Um mesmo parâmetro pode ter mais de um estimador não viciado disponível. Precisamos então de um segundo critério para ajudar na escolha de estimadores.

Quando um estimador é não viciado

- Nesse caso a *variância* de $\hat{\theta}$ mede a dispersão da distribuição do estimador em torno do alvo de inferência θ .
- A *variância* do estimador $\hat{\theta}$ é definida como:

$$Var_p(\hat{ heta}) = \sum_{s \in S} [\hat{ heta}(s) - E_p(\hat{ heta})]^2 p(s).$$

• Medidas alternativas da dispersão de $\hat{\theta}$ (que dependem da variância são):

Desvio padrão -
$$DP$$
 (ou erro padrão) $DP_p(\hat{ heta}) = [Var_p(\hat{ heta})]^{1/2}$. Coeficiente de variação - CV $CV_p(\hat{ heta}) = \frac{DP_p(\hat{ heta})}{ heta}$

• O *DP* mede a dispersão em unidade de medida igual à usada na mensuração da variável de interesse; e o *CV* expressa essa medida em termos relativos.

Quando um estimador é viciado

• Uma medida mais adequada da dispersão da distribuição do estimador em torno do alvo de inferência θ é o **erro quadrático médio** - **EQM**:

$$EQM_p(\hat{ heta}) = \sum_{s \in S} [\hat{ heta}(s) - heta]^2 p(s)$$

• Versões análogas ao *DP* e do *CV* para o caso de estimadores viciados:

$$egin{aligned} extbf{\textit{Erro médio - EM}} & EM_p(\hat{ heta}) = [EQM_p(\hat{ heta})]^{1/2} extbf{;} \ & Erro \ relativo \ médio - ERM \ & ERM_p(\hat{ heta}) = rac{EM_p(\hat{ heta})}{ heta}. \end{aligned}$$

Nosso segundo critério

- Queremos estimadores com os menores erros de estimação,
 - escolher sempre os estimadores com o menor *EQM*,
 - o u com a menor variância quando forem não viciados.

Como obter estimadores "ótimos"?

- Qual a diferença entre "Amostragem" ou "Inferência"?
 - Ambas utlizam amostras probabilísticas e funções dos dados observados para inferir sobre parâmetros.

No **contexto da Amostragem** (de popuções finitas)

- Não se estabelece uma distribuição de probabilidade (ou modelo) para os valores da variável y na amostra (ou na população(?)).
 - o diferente do "contexto usual" da **Inferência** (Estatística).
- Os parâmetros que se deseja estimar não são responsáveis pela especificação de uma tal distribuição de probabilidades (ou modelo).
 - \circ Em geral os parâmetros de interesse são definidos como funções dos valores (considerados fixos, mas desconhecidos) da variável y na população.
- Não há um procedimento geral para gerar estimadores que sejam ótimos nalgum sentido,
 - o ex., em "Inferência" temos o método da máxima verossimilhança.

• Os princípios usados em "Amostragem" para derivar estimadores dos parâmetros de interesse são baseados na simplicidade e no *método dos momentos*.

Suponha que o parâmetro-alvo é o $total\ populacional\ T_y = \sum_{i \in U} y_i,$ queremos:

- a. usar os dados amostrais $\{y_{i_1}, y_{i_2}, \dots, y_{i_n}\}$ para estimar T;
- b. medir ou estimar a $precis\~ao$ ou a $margem\ de\ erro$ da estimativa produzida para T.
 - Um **estimador linear** \widehat{T}_w do total populacional T é uma combinação linear dos valores amostrais y_i com *pesos amostrais* w_i , a serem definidos,

$$\widehat{T}_w = \sum_{i \in s} w_i y_i.$$

• Podemos usar os 2 critérios sugeridos para escolha de estimadores para determinar os pesos w_i ,

$$\hat{ heta}_{opt} = arg\, min_{\hat{ heta}} EQM_p(\hat{ heta}).$$

Exemplo: estimação do total e AAS

• Considere uma população fictícia com N=4 mulheres (unidades populacionais), de quem foi indagado o número de filhos tidos nascidos vivos (a variável y).

Valor da variável y por unidade da população de mulheres

Rótulo da unidade
$$(i)$$
1234TotalValor da variável (y_i) 00213

- Existem $\binom{4}{2} = 6 = \nu$ amostras possíveis de duas **unidades distintas**.
- O conjunto de todas as amostras possíveis é dado por

$$S = \{(1; 2); (1; 3); (1; 4); (2; 3); (2; 4); (3; 4)\}.$$

Exemplo: estimação do total e AAS

• Considere também um **plano amostral** p_1 :

```
\circ \ \ p_1(s)=1/6, orall s\in S .
```

```
N <- 4  # no. elementos na pop.
i <- 1:N  # indice dos elementos da pop.
n <- 2  # no. elementos na amostra
nu <- choose(N, n)  # no. possíveis amostras
j <- 1:nu  # indice dos elementos dos espaço amostral
S <- combn(N,n)  # espaço amostral
pls <- 1/nu  # plano amostral</pre>
```

Exemplo: estimação do total e AAS

• Apresentação detalhada do plano amostral p_1 .

Informações de cada amostra possível sob plano amostral p_1

Amostra	Unidades na Amostra s	Valores na Amostra s	$ \begin{array}{c} \textbf{Soma} \\ \textbf{Amostral} \ (t) \end{array} $	Probabilidades $p_1(s)$
1	{1;2}	{0;0}	0	1/6
2	{1;3}	{0;2}	2	1/6
3	{1;4}	{0;1}	1	1/6
4	{2;3}	{0;2}	2	1/6
5	{2;4}	{0;1}	1	1/6
6	{3;4}	{2;1}	3	1/6
Total	_	_	_	1

Exemplo: estimação do total e AAS

 $Probabilidade\ sob\ p_1\ para\ cada\ valor\ de\ t$

Valores possíveis de t	0	1	2	3
Com probabilidade $p_1(s)$	1/6	2/6	2/6	1/6

• O valor esperado de t é

$$E_{p_1}(t) = \sum_{s \in S} t(s) \, p_1(s) = 0 imes rac{1}{6} + 1 imes rac{2}{6} + 2 imes rac{2}{6} + 3 imes rac{1}{6} = rac{9}{6} = 1, 5$$

- Porém o **total populacional** é $T_y = \sum_{i \in U} y_i = 3.$
- Como $1, 5 = E_{p_1}(t) \neq T = 3$, dizemos que t seria um **estimador viciado** de T sob o plano amostral p_1 adotado.

Exemplo: estimação do total e AAS

- Podemos "corrigir" t de modo que fique não viciado para o total populacional;
 - Já que $Y/E_{p_1}(t)=3/1, 5=2$, multiplicando por 2 o valor de t resulta num estimador cujo valor esperado deve ser igual a Y.
- Considere o novo estimador de T dado por: $\widehat{T}=2 imes t=\sum_{i\in s}2 imes y_i=\widehat{T}_w.$

Probabilidade sob p_1 para cada valor de 2t

Valores possíveis de
$$2t$$
0246Com probabilidade $p_1(s)$ 1/62/62/61/6

$$E_{p_1}(\widehat{T}) = \sum_{s \in S} \widehat{T}(s) \, p_1(s) = 0 imes rac{1}{6} + 2 imes rac{2}{6} + 4 imes rac{2}{6} + 6 imes rac{1}{6} = rac{18}{6} = 3.$$

• Dizemos que $\widehat{T}=2\times t$ é um **estimador não viciado** de T sob o plano amostral p_1 considerado.

O método pelo qual deduzimos $\widehat{{_T}_w}$ é viável na prática?

A distribuição de aleatorização

Plano amostral p(s)

- Para deduzir os pesos do estimador \widehat{T}_w supomos:
 - conhecer todos os valores da variável de pesquisa;
 - para obter o valor esperado do estimador;
 - para então calcular pesos que levariam à obtenção do estimador ponderado não viciado.
- A função p(s) definida no conjunto S de todas as amostras possíveis é uma distribuição de probabilidades.
 - É possível obter a distribuição de probabilidades de estatísticas (ou estimadores) calculadas a partir de s.
- A distribuição de probabilidades assim obtida é chamada de distribuição de aleatorização da estatística ou estimador.

A distribuição de aleatorização

Plano amostral p(s)

- Na **amostragem probabilística**, inferências são feitas considerando a **distribuição de aleatorização**.
 - A única **suposição** é considerar como fonte de variação ou incerteza a possível repetição hipotética do processo de amostragem utilizando o **plano amostral** p(s), que resultaria em diferentes amostras $s_1, s_2, \ldots \in S$.
- A distribuição de $\widehat{T}_w=2 imes t=\sum_{i\in s}2 imes y_i$ determinada por p(s) é também chamada de **distribuição amostral** do estimador.
 - \circ Estudamos suas propriedades para avaliar se \widehat{T}_w é um bom estimador para o total populacional T.

- No Exemplo vimos como ober a distribuição amostral de um estimador induzida pelo plano amostral p(s).
 - \circ Os tamanhos da população N e da amostra n eram muito pequenos.
 - \circ conhecemos os valores da variável y para todas as unidades da população U.
- Na prática, trabalhar com a distribuição p(s) para derivar distribuições amostrais de estimadores é complicado.

Tamanhos do espaço amostral S para valores selecionados de N e n

N	n	binom(N,n)
4	2	6.000000e+00
10	4	2.100000e+02
100	10	1.731031e+13
1000	20	3.394828e+41
10000	100	6.520847e+241

- Uma saída é usar propriedades simplificadoras da distribuição induzida pelo plano amostral. Tratamos disso na próxima aula.
- Por hora vamos usar uma propriedade importante que pode ser deduzida a partir da distribuição de aleatorização.

• A *probabilidade de inclusão* da unidade *i* na amostra é dada por:

$$P(i \in s) = \pi_i = \sum_{s
i} p(s).$$

• Se tomarmos o inverso da probabilidade de inclusão $1/\pi_i$ como peso (w_i) de uma unidade amostrada, é fácil verificar que o estimador dado por \widehat{T}_w é não viciado para o total populacional T:

$$\widehat{T}_w = \sum_{i \in s} w_i y_i = \sum_{i \in s} rac{1}{\pi_i} y_i = \sum_{i \in s} \pi_i^{-1} y_i.$$

• Essa é propriedade importante e será demonstrada de maneira formal na próxima aula.

(cont.) Exemplo: estimação do total e AAS

• Usando a propriedade recém apresentada, os pesos amostrais nesse Exemplo são

$$w_i=1/\pi_i=rac{1}{1/2}=2, orall i,$$

para uma das amostras de tamanho n=2.

• O estimador ponderado do total nesse caso seria dado por:

$$\widehat{T}_w = \sum_{i \in s} w_i y_i = \sum_{i \in s} {\pi_i}^{-1} y_i = \sum_{i \in s} 2y_i = 2t.$$

• Já sabemos que este estimador é não viciado para *T*.

(cont.) Exemplo: estimação do total e AAS

- Considere a mesma população fictícia do exemplo anterior.
- Mas agora adote o plano amostral p_2 (para amostras de tamanho n=2).

Informações de cada amostra possível sob plano amostral p_2

Amostra	Unidades na Amostra s	Valores na Amostra s	$ \begin{array}{c} \textbf{Soma} \\ \textbf{Amostral} \; (t) \end{array} $	$\begin{array}{c} \textbf{Probabilidades} \\ p_2(s) \end{array}$
1	{1;2}	{0;0}	0	0,00
2	{1;3}	{0;2}	2	0,20
3	{1;4}	{0;1}	1	0,15
4	{2;3}	{0;2}	2	0,20
5	{2;4}	{0;1}	1	0,15
6	{3;4}	{2;1}	3	0,30
Total	-	_	_	1,00

32 / 45

(cont.) Exemplo: estimação do total e AAS

- Vamos agora usar as informações acima para:
- 1. Verificar que a estatística soma amostral (t) é viciada para estimar o total populacional T.
- 2.Obter / definir um estimador não viciado para o total populacional T.

 $Probabilidade\ sob\ p_2\ para\ cada\ valor\ de\ t$

Valores possíveis de t	0	1	2	3
Com probabilidade $p_2(s)$???	???	???	???

(cont.) Exemplo: estimação do total e AAS

- Vamos agora usar as informações acima para:
- 1. Verificar que a estatística soma amostral (t) é viciada para estimar o total populacional T.
- 2.Obter / definir um estimador não viciado para o total populacional T.

 $Probabilidade\ sob\ p_2\ para\ cada\ valor\ de\ t$

Valores possíveis de t	0	1	2	3
Com probabilidade $p_2(s)$	0,0	0,3	0,4	0,3

• O valor esperado de t sob o plano amostral p_2 é:

$$E_{p_2}(t)=$$
 ? ? ?

(cont.) Exemplo: estimação do total e AAS

- Vamos agora usar as informações acima para:
- 1. Verificar que a estatística soma amostral (t) é viciada para estimar o total populacional T.
- 2.Obter / definir um estimador não viciado para o total populacional T.

 $Probabilidade\ sob\ p_2\ para\ cada\ valor\ de\ t$

Valores possíveis de t	0	1	2	3
Com probabilidade $p_2(s)$	0,0	0,3	0,4	0,3

• O valor esperado de t sob o plano amostral p_2 é:

$$E_{p_2}(t) = \sum_{s \in S} t(s) p_2(s) = 0 imes 0, 0 + 1 imes 0, 3 + 2 imes 0, 4 + 3 imes 0, 3 = 2 < 3 = T$$

(cont.) Exemplo: estimação do total e AAS

• Para obter um estimador não viciado, devemos calcular pesos adequados para as unidades amostrais.

Probabilidade de inclusão e peso amostral de cada unidade sob o plano amostral p_2

Rótulo da unidade (i)	1	2	3	4
Probabilidade de inclusão (π_i)	???	???	???	???
Peso (w_i)	???	???	???	???

(cont.) Exemplo: estimação do total e AAS

• Para obter um estimador não viciado, devemos calcular pesos adequados para as unidades amostrais.

Probabilidade de inclusão e peso amostral de cada unidade sob o plano amostral p_2

Rótulo da unidade (i)	1	2	3	4
Probabilidade de inclusão (π_i)	7/20=0,35	7/20=0,35	7/10=0,70	3/5=0,60
Peso (w_i)	20/7=2,857	20/7=2,857	10/7=1,429	5/3=1,667

• Usando o estimador do total com os pesos adequados \widehat{T}_w , obtêm-se os valores das estimativas para cada amostra possível.

(cont.) Exemplo: estimação do total e AAS

Obtenção de estimativa sob plano amostral p_2 para cada amostra possível

Amostra	Valores na Amostra s	Total Amostral ponderado	$\begin{array}{c} \textbf{Probabilidades} \\ p_2(s) \end{array}$	Total × probabilidade
1	{0;0}	0	0,00	0
2	{0;2}	2x(10/7)	0,20	4/7
3	{0;1}	1x(5/3)	0,15	1/4
4	{0;2}	2x(10/7)	0,20	4/7
5	{0;1}	1x(5/3)	0,15	1/4
6	{2;1}	2x(10/7)+1x(5/3)	0,30	6/7+1/2
Total	-	-	1,00	3

(cont.) Exemplo: estimação do total e AAS

- 1. O estimador \widehat{T}_w obtido usando os pesos iguais a $1/\pi_i$ tem valor esperado igual ao total populacional T.
 - $\circ \ \widehat{T}_w$ é *não viciado* também sob o plano amostral p_2 .
- 2. Mesmo a **amostra 1** tendo **probabilidade nula** de ser selecionada **não viola** os critérios para que p_2 seja um plano de **amostragem probabilística**.
 - as unidades populacionais têm probabilidades positivas de inclusão na amostra. (Verificar)
- 3. Temos agora duas opções de plano amostral (de tamanho n=2), para estimar o total populacional T.
 - para ambos os planos amostrais temos estimadores não viciados do total populacional.

(cont.) Exemplo: estimação do total e AAS

• Estratégia 1: seleção equiprovável de amostras com estimador de total ponderado $(\widehat{T}=2t)$.

Probabilidade de seleção sob $p_1(s)$ para cada valor do estimador ponderado

Valores possíveis de
$$\widehat{T}=2t$$
0246Com probabilidade $p(s)$ sob $p_1(s)$ 1/62/62/61/6

• Estratégia 2: seleção de amostras com probabilidades desiguais e estimador de total ponderado (\widehat{T}_w) .

Probabilidade de seleção sob $p_2(s)$ para cada valor do estimador ponderado

Valores possíveis de \widehat{T}_w	5/3	20 /7	20/7+5/3
Com probabilidade $p(s)$ sob $p_2(s)$	0,30	0,40	0,30

(cont.) Exemplo: estimação do total e AAS

• Em ambos os casos o estimador é não viciado, então comparamos ad variâncias dos estimadores.

Obtenção da variância dos estimadores sob os planos amostrais p_2 e p_1

Amostra	Valores na Amostra	Estimativa sob p_2	Probabilidade sob p_2	Estimativa sob p_1	Probabilidade sob p_1
1	{0;0}	0	0,00	0	1/6
2	{0;2}	2x(10/7)	0,20	4	1/6
3	{0;1}	1x(5/3)	0,15	2	1/6
4	{0;2}	2x(10/7)	0,20	4	1/6
5	{0;1}	1x(5/3)	0,15	2	1/6
6	{2;1}	2x(10/7)+1x(5/3)	0,30	6	1/6
Variância	-	1,24	-	3,67	_ 41 / 45

(cont.) Exemplo: estimação do total e AAS

- O plano amostral p_2 fornece o estimador não viciado com menor variância em comparação com o plano p_1 e deve ser preferido, pois o tamanho das amostras (nossa medida de custo) é o mesmo.
- Minimizar a variância é o critério de desempate para escolha entre estratégias não viciadas de amostragem e estimação de igual custo total.

Este será então nosso segundo critério para escolha de estimadores. 👍

Para casa 🏠

- Compare o EQM dos estimadores $t \in 2t$, sob o plano p_1 , no Exemplo.
- Verificar se todas unidades populacionais têm probabilidade positiva de inclusão na amostra sob p_2 , no Exemplo.
- Qual o peso w_i para AASs e AASc?
- Rever os slides.
- Refazer o Exemplo.
- Ler seção 3,7 do livro 'Amostragem: Teoria e Prática Usando R'.

Próxima aula IIII

- Teoria básica
 - Estimador linear do total
 - Propriedados do estimador Horvitz-Thompson
- Laboratório de 😱

Muito obrigado!

Fonte: imagem do livro *Combined Survey Sampling Inference: Weighing of Basu's Elephants: Weighing Basu's Elephants.*

Resumo da notação

Notação	População	Amostra
Índice (rótulo)	$U = \{1, 2, \ldots, i, \ldots, N\}$	$s=\{i_1,i_2,\ldots,i_n\}$
Característica	$Y_U = \{y_1, \; y_2, \; \dots, \; y_i, \; \dots, \; y_N \}$	$Y_s=\{y_{i_1},y_{i_2},\ldots,y_{i_n}\}$
Total	$T = \sum_{i=1}^N y_i = \sum_{i \in U} y_i$	$\widehat{T} = t(s) = t = \sum_{i \in s} y_i$
Média	$\overline{Y} = rac{T}{N} = rac{1}{N} \sum_{i \in U} y_i$	$\widehat{\overline{Y}} = \overline{y} = rac{t(s)}{n} = rac{1}{n} \sum_{i \in s} y_i$
Variância	$Var_y = rac{1}{N} \sum_{i \in U} (y_i - extstyle extst$	$var_y = rac{1}{n} \sum_{i \in s} (y_i - \overline{y})^2$
Variância	$S_y^2 = rac{1}{N-1} \sum_{i \in U} (y_i - \overline{Y})^2$	$s_y^2 = rac{1}{n-1} \sum_{i \in s} (y_i - \overline{y})^2$

- Espaço amostral: $S = \{s_1, s_2, \dots, s_j, \dots, s_{\nu}\}$
- Plano amostral: p(s), em que $\sum_{s \in S} p(s) = 1$
- ullet Esperança em relação a p(s): $E_p[t(s)] = \sum_{s \in S} t(s) p(s)$
- ullet Variância em relação a p(s): $Var_p[t(s)] = \sum_{s \in S} [t(s) E_p(t)]^2 p(s)$