Augmentation of brain MRIs using disentanglement and neural network expressivity

Status Seminar

Jon Middleton, Akshay Pai, Mads Nielsen, Stefan Sommer

UNIVERSITY OF COPENHAGEN

Task

Highlight abnormal regions in human brain MRIs

TaskHighlight abnormal regions in human brain MRIs

Task
Highlight abnormal regions in human brain MRIs

High-grade glioma (BraTS2019)

Task Highlight abnormal regions in human brain MRIs

High-grade glioma (BraTS2019)

Multiple sclerosis (MSSEG-2015)

Problem

Brain MRI data are scarce; training on scarce data will give an overfit model

Problem

Brain MRI data are scarce; training on scarce data will give an overfit model

Some Approaches

- Implicit data augmentation
 - Inductive bias via model architecture (group-equivariant CNNs)
 - In-network feature augmentation (moment exchange)

Problem

Brain MRI data are scarce; training on scarce data will give an overfit model

Some Approaches

- Implicit data augmentation
 - Inductive bias via model architecture (group-equivariant CNNs)
 - In-network feature augmentation (moment exchange)
- Explicit data augmentation
 - Interpolation (mixup)
 - Corruption (cutout, cutmix)
 - Intensification (gamma, bias-field)
 - Deformation (affine, elastic, diffeomorphic)

Problem

Brain MRI data are scarce; training on scarce data will give an overfit model

Some Approaches

- Implicit data augmentation
 - Inductive bias via model architecture (group-equivariant CNNs)
 - In-network feature augmentation (moment exchange)
- Explicit data augmentation
 - Interpolation (mixup)
 - Corruption (cutout, cutmix)
 - Intensification (gamma, bias-field)
 - Deformation (affine, elastic, diffeomorphic)

Translation equivariance in convolutional neural networks

Finite group-equivariant convolutional neural networks

Finite group-equivariant convolutional neural networks

Finite group-equivariant convolutional neural networks

Open source implementations of G-CNNs

e2cnn

https://github.com/QUVA-Lab/e2cnn

e3nn

https://github.com/e3nn/e3nn

Open source implementations of G-CNNs

GrouPy

https://github.com/tscohen/GrouPy

CubeNet

https://github.com/danielewworrall/cubenet

Harmonic Networks

https://github.com/danielewworrall/harmonicConvolutions


```
class Octahedral3D(Group):
    """Class for a three-dimensional representation of the octahedral group (a.k.a the group
    of symmetries of the cube, or the fourth symmetric group).
    11 11 11
    def __init__(self, inversion=False, name=None):
        self.generators = (Group.get_matrix([[0, 0, 1],
                                              [1, 0, 0],
                                              [0, 1, 0]]),
                           Group.get_matrix([[0, 1, 0],
                                              [-1, 0, 0],
                                              [0, 0, 1]]),)
        group_tuple = ops.generate(self.generators, 6, 3, 24)
```

```
class GroupConv3D(Layer):
    """Implementation of an equivariant 3D convolution layer. This implementation maps out of
    Euclidean space and into an output_group of choice.
    11 11 11
    def __init__(self, n_channels_in, n_channels_out, kernel_size=3,
                 strides=(1, 1, 1, 1, 1,), padding="SAME", input_group=Trivial(3),
                 output_group=Trivial(3), activation=None, trainable=True):
```


Possible cause

Not enough effective parameters in equivariant U-Nets

Example

Equivariance group: C4

Baseline U-Net: 12 filters in the first layer

C4 U-Net: 3 filters in the first layer

PADDIT (Orbes-Arteaga, et al. 2019)

Bayesian inference of a template MRI

$$p(I_k|\mathbf{v}_k, I_T, \sigma) = \frac{1}{(2\pi)^{V/2}\sigma^V} \exp\left(-\frac{\|I_T - I_k \circ \operatorname{Exp}(\mathbf{v}_k)\|^2}{2\sigma^2}\right)$$

PADDIT (Orbes-Arteaga, et al. 2019)

Bayesian inference of a template MRI

$$p(I_k|\mathbf{v}_k, I_T, \sigma) = \frac{1}{(2\pi)^{V/2}\sigma^V} \exp\left(-\frac{\|I_T - I_k \circ \operatorname{Exp}(\mathbf{v}_k)\|^2}{2\sigma^2}\right)$$

IT-VAE (Detlefsen and Hauberg, 2019)

Unsupervised disentanglement of shape and appearance

Decoded samples from conditional latent space distributions

Questions

What effect do VAE augmentation pipelines have on segmentation networks?

- What effect do VAE augmentation pipelines have on segmentation networks?
 - Naive latent space sampling

- What effect do VAE augmentation pipelines have on segmentation networks?
 - Naive latent space sampling
 - Instance-specific latent space sampling

- What effect do VAE augmentation pipelines have on segmentation networks?
 - Naive latent space sampling
 - Instance-specific latent space sampling
 - Mixed-instance latent space sampling

- What effect do VAE augmentation pipelines have on segmentation networks?
 - Naive latent space sampling
 - Instance-specific latent space sampling
 - Mixed-instance latent space sampling
- How well can an IT-VAE perform unsupervised groupwise registration?
 - This works for small datasets, but for MRIs?
 - Deformable autoencoders work for MRIs but are unconditioned

Thanks!

jami@di.ku.dk