

Volume: 04 Issue: 05 | Sep-Oct 2023 ISSN: 2660-4159

<http://cajmns.centralasianstudies.org>

Оценка Клеточного Лимфоцитарного Иммунитета При Инфекционном Мононуклеозе Эпштейна-Барр-Вирусной Этиологии У Взрослых

1. Келдиёрова Зилола Дониёровна

Received 2nd Aug 2023,
Accepted 19th Aug 2023,
Online 6th Sep 2023

¹ Бухарский государственный
медицинский институт имени Абу Али
ибн Сино, Узбекистан, г. Бухара

Резюме: При оценке показателей клеточного иммунитета у взрослых больных с инфекционным мононуклеозом Эпштейна-Барр-вирусной этиологии и острым бактериальным тонзиллитом был выявлен целый ряд изменений относительно клинически здоровых доноров с достоверными межгрупповыми различиями, позволяющими определить дифференциально-диагностические критерии инфекционного процесса определенной этиологии.

Ключевые слова: инфекционного мононуклеоз, клеточного иммунитета, инфекционного процесса.

Актуальность. Особое место среди герпесвирусов занимает инфекция, вызванная вирусом Эпштейна-Барр (ВЭБ) – Эпштейна-Барр-вирусная инфекция (ВЭБ – инфекция), относится к наиболее актуальным и распространенным заболеваниям в современной педиатрии и детской инфектологии, а также среди взрослого населения [1,2]. Одной из часто встречаемых форм ВЭБ-инфекции является инфекционный мононуклеоз (ИМ) [3,4]. Применение вирусологических, иммунологических и молекулярно-биологических методов обследования в клинической практике позволило установить широкую распространенность Эпштейна-Барр-вирусной инфекции и ее роль в формировании патологии иммунной системы различной степени выраженности [5]. Активная пролиферация вируса во всех органах и системах, имеющих лимфоидную ткань, приводит к структурным изменениям, оказывающим неблагоприятное воздействие на организм в целом. [7]. Вирус Эпштейна-Барр обладает множественными механизмами иммуносупрессии и ускользания от иммунного ответа хозяина, что может приводить к формированию хронической вирусной инфекции, в ходе которой иммунологические нарушения усугубляются. Также установлено, что ВЭБ нарушает механизмы иммунного ответа, подавляет продукцию интерферонов, блокирует механизмы апоптоза. [6]. На основе этих нарушений формируется вторичный иммунодефицит, способствующий формированию аутоиммунных и опухолевых процессов у генетически предрасположенных лиц. [8].

Иммунные нарушения при инфекционном мононуклеозе носят комплексный характер, они касаются как клеточного, так и гуморального звена, влекут за собой утяжеление течения, учащение осложнений заболевания, что отражает суть инфекционного мононуклеоза как болезни иммунной системы [9]. Анализ состояния иммунного статуса во взаимосвязи с

изменениями цитокинового спектра у детей, больных инфекционным мононуклеозом, в доступной нам литературе до настоящего времени не проводился, что и послужило основанием для постановки цели проводимого исследования.[10].

Целью исследования: При анализе популяционного и субпопуляционного состава лимфоцитов, наибольшие изменения были выявлены при инфекционном мононуклеозе. Так, общее содержание Т-лимфоцитов ($CD3^+$) и доли среди них $CD8^+$ -клеток достоверно возрастало у больных инфекционным мононуклеозом, тогда как при остром бактериальном тонзиллите данные показатели находились в пределах значений клинически здоровых доноров.

Материалы и методы исследования. Нами проведены исследования иммунной системы у 25 больных инфекционным мононуклеозом и 25 больных острым бактериальным тонзиллитом, которые составили основную группу. В то же время 25 контрольной группы было проведено иммунологическое обследование в период обострения заболевания и в стадии ремиссии. Показатели клеточного иммунитета у всех с инфекционным мононуклеозом сравнивали с показателями контрольной группы больных. Средний возраст обследованных детей составил $20,5 \pm 0,45$. Все обследованные получали общепринятые лечебные мероприятия.

Результаты исследования. Сходный разнонаправленный характер изменений, в виде снижения показателей при ИМ и сохранения нормального уровня реагирования при ОБТ, был выявлен в отношении $CD4^+$ -лимфоцитов, их соотношения с содержанием Т-цитотоксических ($CD8^+$), В-лимфоцитов ($CD19^+$) и относительного содержания NK-клеток ($CD16^+$) (таблица 1, рисунок 1). Снижение иммунорегуляторного индекса $CD4^+/CD8^+$ до $0,4 \pm 0,02$ у больных инфекционным мононуклеозом позволяет предположить о возможном присоединении вторичной бактериальной инфекции. Несмотря на то что NK-клетки врожденного иммунитета также принимают активное участие в противовирусной защите, выявленный факт их достоверного снижения у больных ИМ может свидетельствовать о ведущей роли Т-киллеров в уничтожении вируса Эпштейна-Барр.

Таблица 1. Изменение показателей лимфоцитарного иммунитета у пациентов с инфекционным мононуклеозом ВЭБ-этиологии и острым бактериальным тонзиллитом ($M \pm m, p$)

Показатель /группа	Инфекционный мононуклеоз (n=25)	Острый бактериальный тонзиллит (n=25)	Контроль (здоровые доноры) (n=25)
Лимфоциты, %	$52,4 \pm 3,90 \#$	$22,6 \pm 3,6 *$	$43,7 \pm 4,5$
Лимфоциты, абс.	$3,5 \pm 0,50 \#$	$1,7 \pm 0,2 *$	$3,2 \pm 0,5$
$CD3 (+)$, %	$87,1 \pm 1,80 * \#$	$73,4 \pm 2,5$	$73,2 \pm 2,5$
$CD3 (+)$, абс.	$2,7 \pm 0,30 \#$	$1,3 \pm 0,21$	$2,3 \pm 0,4$
$CD4 (+)$, %	$22,6 \pm 2,00 * \#$	$44,1 \pm 1,9$	$42,1 \pm 1,8$
$CD4 (+)$, абс.	$0,7 \pm 0,10 *$	$0,8 \pm 0,10 *$	$1,3 \pm 0,2$
$CD8 (+)$, %	$63,3 \pm 2,80 * \#$	$31,9 \pm 1,80$	$33,7 \pm 1,6$
$CD8 (+)$, абс.	$\uparrow 2,0 \pm 0,20 * \#$	$0,6 \pm 0,10 *$	$1,1 \pm 0,2$
$CD4 (+)/CD8 (+)$, y.e.	$0,4 \pm 0,02 * \#$	$1,4 \pm 0,10$	$1,3 \pm 0,1$
$CD19 (+)$, %	$2,6 \pm 0,60 * \#$	$12,1 \pm 1,10$	$10,0 \pm 1,32$
$CD19 (+)$, абс.	$0,1 \pm 0,01 * \#$	$0,2 \pm 0,01 *$	$0,3 \pm 0,10$
$CD16 (+)$, %	$9,4 \pm 1,70 * \#$	$14,3 \pm 2,80$	$16,2 \pm 2,40$
$CD16 (+)$, абс.	$0,3 \pm 0,10 *$	$0,2 \pm 0,01 *$	$0,5 \pm 0,10$

Примечание: * - достоверность отличий от контроля ($p < 0,01$); # - достоверные различия в клинических группах

Рис. 1. Сравнительная оценка основных популяций и субпопуляций лимфоцитов у больных инфекционным мононуклеозом

Тем не менее, с точки зрения иммунопатогенеза инфекционного мононуклеоза, наиболее диагностически значимыми показателями следует считать двукратное увеличение цитотоксических Т-клеток и резкое снижение содержания (в 4,5 раза) В-лимфоцитов, что может быть обусловлено биологическими особенностями вируса Эпштейна-Барр, к которому на В-лимфоцитах имеются специфические рецепторы – CD21.

При исследовании корреляционных взаимосвязей между показателями клеточного иммунитета и активностью ферментов лимфоцитов установлена выраженная обратная связь между процентным содержанием $CD19^+$ -клеток и активностью КФ лимфоцитов ($r=-0,76$). Установлена умеренная корреляционная связь между процентным и абсолютным содержанием $CD19^+$ -клеток и уровнем IL-1 α (0,46 и 0,43, соответственно) (таблица 2).

Таблица 2. Корреляционная зависимость показателей клеточного иммунитета и активности ферментов лимфоцитов

Показатель	L	Лф	Лф абс.	CD19(+)%	CD19(+)/абс	MFICD19
СЦИ-КФ	-0,07	-0,01	0,05	-0,76	-0,50	0,30
0 ст. (нул. акт.)	-0,12	0,20	-0,08	0,65	0,42	-0,09
1 ст. (низ. акт.)	0,56	-0,04	0,25	0,64	0,53	-0,44
2 ст. (ум. акт.)	-0,20	0,00	-0,08	-0,27	-0,18	-0,02
3 ст. (выс. акт.)	-0,28	-0,06	-0,11	-0,80	-0,61	0,45
СЦИ- α -НАЭ	-0,29	-0,03	-0,30	0,31	0,09	-0,69
0 ст. (нул. акт.)	-0,55	-0,30	-0,42	-0,23	-0,33	0,21
1 ст. (низ. акт.)	0,47	0,13	0,46	-0,26	0,02	0,63
2 ст. (ум. акт.)	-0,71	-0,27	-0,67	0,21	-0,18	-0,43
3 ст. (выс. акт.)	-0,20	-0,03	-0,24	0,27	0,09	-0,74
α -НАЭ+	0,48	0,05	0,28	-0,02	0,07	-0,21
КФ+	0,25	-0,15	0,14	-0,56	-0,34	0,08

Примечание: L – лейкоциты, Лф – лимфоциты, α -НАЭ+ - клетки, содержащие окрашенный фермент (1-3 степени), КФ+ - клетки, содержащие окрашенный фермент (1-3 степени)

Таким образом, при инфекционном мононуклеозе Эпштейна-Барр-вирусной этиологии у взрослых в периферической крови увеличивается число и доля лимфоцитов, относительное и абсолютное количество CD3⁺-клеток за счет роста числа CD8⁺-лимфоцитов, снижается количество CD4⁺, CD16⁺ и CD19⁺-клеток, тогда как при остром бактериальном тонзиллите число и доля лимфоцитов снижается, а субпопуляционный состав лимфоцитов сохраняется в пределах значений клинически здоровых доноров.

Оценка одновременной экспрессии функционально значимых рецепторов лимфоцитов при инфекционном мононуклеозе Эпштейна - Барр-вирусной этиологии у взрослых. Учитывая биологические особенности вируса Эпштейна-Барр (расположение специфических рецепторов – CD21 на В-лимфоцитах) была проанализирована структура В-лимфоцитарной популяции с учетом клеток, одновременно несущих мембранные рецепторы (CD19, CD21, CD81) как у клинически здоровых доноров, так и у взрослых больных инфекционным мононуклеозом Эпштейна-Барр- вирусной этиологии и острым бактериальным тонзиллитом. В ходе проведенных исследований было выявлено, что среди В-лимфоцитов содержание CD19⁺CD21⁺CD81⁺-лимфоцитов достоверно превышает уровень здоровых доноров только при остром бактериальном тонзиллите, тогда как при инфекционном мононуклеозе имеет место достоверное его снижение (таблица 3, рисунок 2).

Наряду с этим в общей популяции В-лимфоцитов, экспрессирующих CD19-антителы, обнаружены две субпопуляции, отличающиеся редукцией одного из функционально значимых рецепторов: CD19⁺CD21⁺CD81⁻ и CD19⁺CD21⁻ CD81⁺. При анализе содержания редуцированной по CD21-антителу субпопуляции В-клеток выявлено ее достоверное и выраженное снижение при инфекционном мононуклеозе Эпштейна-Барр-вирусной этиологии, тогда как содержание CD19⁺CD81⁺CD21⁻-В-лимфоцитов было достоверно повышенено при остром бактериальном тонзиллите (таблица 3, рисунок 2). При анализе содержания редуцированной по CD81- антигену субпопуляции В-лимфоцитов также выявлено ее достоверное и выраженное снижение при ИМ, тогда как при ОБТ содержание CD19⁺ CD21⁺ CD81⁻-В-клеток достоверно не отличалось от показателей группы клинически здоровых доноров (таблица 3, рисунок 2).

Таблица 3. Сравнительная оценка В-лимфоцитов, одновременно экспрессирующих функционально значимые рецепторы (CD19, CD21, CD81), при инфекционном мононуклеозе и остром бактериальном тонзиллите

Показатель/группа	Инфекционный мононуклеоз (M±m)	Острый бактериальный тонзиллит (M±m)	Контроль (M±m)
(CD19 ⁺ CD21 ⁺ CD81 ⁺)-лимфоциты	↓ 1,52±0,27*	6,1±0,88* ↑	3,65±1,06
MFI 21	8,2±4,55* ↑	3±0,48	2,5±0,34
MFI 81	4,6±0,73* ↑	3,7±0,52	3,1±0,31
MFI 19	8,8±0,84* ↑	7,0±0,34	6,6±0,33
(CD19 ⁺ CD21 ⁺ CD81 ⁻)-лимфоциты	↓ 0,8±0,37*	2,7±0,64	2,2±0,57
MFI 21	4,1±0,46* ↑	2,3±0,14	2,2±0,20

MFI 19	$8,8 \pm 0,84^* \uparrow$	$7,0 \pm 0,34$	$6,6 \pm 0,33$
(CD19 ⁺ CD21 ⁻ CD81 ⁺)-лимфоциты	$\downarrow 0,4 \pm 0,05^*$	$2,5 \pm 0,28^* \uparrow$	$1,3 \pm 0,32$
MFI 81	$11,2 \pm 2,07^* \uparrow$	$5,5 \pm 0,91$	$4,7 \pm 0,84$
MFI 19	$8,8 \pm 0,84^* \uparrow$	$7,0 \pm 0,34$	$6,6 \pm 0,33$

Примечание: * - достоверность отличий от контроля ($p < 0,01$)

При исследовании величины плотности экспрессии молекул (MFI) на поверхности В-лимфоцитов, выявлено, что исключительно при инфекционном мононуклеозе Эпштейна-Барр-вирусной этиологии у взрослых наблюдается достоверное ее увеличение в отношении всех видов рецепторов на трех субпопуляциях В-лимфоцитов относительно острого бактериального тонзиллита и группы клинически здоровых доноров. Так, плотность экспрессии CD19⁺-рецепторов при инфекционном мононуклеозе в 1,3 раза выше группы здоровых доноров. Уровень плотности экспрессии CD21⁺-лимфоцитов, одновременно экспрессирующих на поверхности CD19⁺ CD21⁺ CD81⁺, в 3,3 раза превышает группу здоровых доноров, а в группе лимфоцитов, одновременно экспрессирующих CD19⁺ CD21⁺ CD81⁻, в 1,8 раз превышает группу здоровых доноров. Уровень плотности экспрессии CD81⁺-лимфоцитов, одновременно экспрессирующих на поверхности CD19⁺ CD21⁺ CD81⁺, в 1,5 раза превышает группу клинически здоровых доноров, а в группе лимфоцитов, одновременно экспрессирующих CD19⁺ CD21⁻ CD81⁺, в 2,4 раза превышает группу здоровых доноров. При этом уровень плотности в отношении всех видов рецепторов на трех субпопуляциях В-лимфоцитов при остром бактериальном тонзиллите достоверно от группы клинически здоровых доноров не отличался (рисунок 2).

Рис. 2. Плотность распределения рецепторов (MFI) на поверхности В-лимфоцитов

Таким образом, для инфекционного мононуклеоза Эпштейна-Барр-вирусной этиологии у взрослых характерен количественный дефицит CD19⁺-В-лимфоцитов, включая CD19⁺ CD21⁺ CD81⁺-, CD19⁺ CD21⁻ CD81⁺- и CD19⁺ CD21⁺ CD81⁻- лимфоциты, при достоверном увеличении плотности рецепторов CD19, CD21, CD81 в экспрессирующих их субпопуляциях В-клеток. Тогда как при остром бактериальном тонзиллите количество CD19⁺CD21⁺CD81⁺- и CD19⁺ CD21⁻ CD81⁺- лимфоцитов возрастало при неизменной плотности молекул CD19, CD21, CD81 в экспрессирующих их субпопуляциях В-клеток.

Сравнительная оценка величины плотности экспрессии молекул CD19⁺, CD21⁺, CD81⁺ при инфекционном мононуклеозе Эпштейна-Барр-вирусной этиологии и остром бактериальном тонзиллите у взрослых позволяет получить дополнительные дифференциально-диагностические критерии.

Алгоритм дифференциальной диагностики инфекционного мононуклеоза Эпштейна-Барр-вирусной этиологии у взрослых. Для повышения качества дифференциальной диагностики инфекционного мононуклеоза Эпштейна-Барр-вирусной этиологии у взрослых разработан диагностический алгоритм, включающий оценку значимости ведущих клинических симптомов и синдромов, а также результаты общеклинических исследований (ОАК, БАК), оценку цитокинового профиля, результаты цитохимической активности лимфоцитов и показатели клеточного иммунитета в виде основного субпопуляционного состава лимфоцитов с последующим определением количества В-лимфоцитов, несущих мембранные рецепторы (CD19, CD21, CD81) и определение плотности экспрессии этих рецепторов.

При наличии у больного молодого возраста, острого начала заболевания, лихорадки в течении 3-5 дней и более, острого тонзиллита и полилимфоаденопатии можно предположить диагноз «острый бактериальный тонзиллит» или «инфекционный мононуклеоз», если же определяется гепатосplenомегалия, то возможен диагноз «острый вирусный гепатит». В таком случае необходимо провести забор венозной крови на общий анализ и биохимический анализ с определением АЛТ, АСТ, общего билирубина.

При получении результата возможны несколько сочетаний признаков:

- 1) лейкоцитоз, палочкоядерный сдвиг, отсутствие атипичных мононуклеаров, нормальные значения АЛТ и АСТ, в таком случае вероятен диагноз «острый бактериальный тонзиллит»;
- 2) лейкоцитоз, лимфоцитоз (\pm), атипичные мононуклеары (\pm), повышение АЛТ при нормальном значении АСТ, в таком случае возможны диагнозы «острый бактериальный тонзиллит» или «инфекционный мононуклеоз»;
- 3) лейкоцитоз, лимфоцитоз, атипичные мононуклеары, повышение АЛТ и АСТ, в таком случае вероятнее всего диагноз «инфекционный мононуклеоз»;
- 4) нормоцитоз, атипичные мононуклеары (\pm), повышение АЛТ и АСТ, повышение общего билирубина (\pm), в таком случае возможны диагноз «инфекционный мононуклеоз» или «острый вирусный гепатит».

Следующим этапом в диагностике станет забор венозной крови у больного на ИФА ВЭБ, ПЦР (ДНК ВЭБ), маркеры вирусных гепатитов (HBsAg, At HB_{cor}, At HCV). Если в ИФА обнаруживаются антитела VCA IgM ВЭБ и ДНК ВЭБ (\pm) при отрицательных маркерах вирусного гепатита, то диагноз «инфекционный мононуклеоз». Если обнаруживаются маркеры вирусного гепатита, то диагноз «острый вирусный гепатит». Третий возможный вариант – отрицательные маркеры вирусного гепатита и отрицательные результаты ИФА и ПЦР ВЭБ при характерной клинической картине, в этом случае необходимо повторно взять ИФА ВЭБ, ПЦР (ДНК ВЭБ) и воспользоваться дополнительными методами диагностики.

Цитохимический метод (определение активности кислой фосфатазы лимфоцитов): при инфекционном мононуклеозе Эпштейна-Барр-вирусной этиологии происходит умеренное снижение активности КФ лимфоцитов (на 19,0% от среднего значения этого показателя в группе клинически здоровых доноров) при относительно равномерном распределении клеток всех степеней активности, для тяжелого течения ИМ у взрослых характерно снижение клеток с высокой (3-й ст.) активностью в 2 раза; при остром бактериальном тонзиллите снижение

активности КФ лимфоцитов происходит на 60% от значений группы клинически здоровых доноров, что в 2 раза меньше, чем при ИМ, за счет снижения содержания клеток с высокой (3-й ст.) (на 86,5%) и умеренной (2-й ст.) (на 56,0%) активностью и преобладающего увеличения (на 96,0%) содержания клеток без активности фермента (0-й ст.); при остром вирусном гепатите «В» происходит падение активности КФ лимфоцитов на 70% от показателя в группе клинически здоровых доноров, что в 3 раза меньше, чем при ИМ, за счет практического исчезновения клеток с умеренной (2-й ст.) и высокой (3-й ст.) активностью (снижение на 90,0% и 93,0% соответственно) и преобладания клеток с нулевой (0 ст.) и низкой (1-й ст.) активностью фермента.

Определение цитокинового статуса (IL-1 α , IL-1 β , IL-1Ra и IL-4, INF- γ): при инфекционном мононуклеозе происходит повышение уровня IL-1 α (в 1,7 раза), IL-1 β (в 1,6 раза) и INF- γ (в 4,3 раза), для тяжелого течения ИМ характерно двукратное повышение IL-1 α и IL-1 β , 7-кратный рост концентрации INF- γ и повышение IL-1Ra (в 2,3 раза); при остром бактериальном тонзиллите происходит двукратное повышение уровней IL-1 β и INF- γ ; для острого вирусного гепатита «В» характерно резкое увеличение уровня активности IL-1 β (в 18 раз), повышение INF- γ (в 2,3 раза) и IL-1Ra (в 1,3 раза).

Определение общей иммунограммы с последующим определением количества В-лимфоцитов, несущих мембранные рецепторы (CD19, CD21, CD81) и определение плотности экспрессии этих рецепторов: при инфекционном мононуклеозе происходит увеличение количества CD3 $^{+}$ -лимфоцитов с увеличением CD8 $^{+}$ -клеток и снижение числа CD4 $^{+}$, CD16 $^{+}$, CD19 $^{+}$ -лимфоцитов, включая субпопуляции с фенотипом CD19 $^{+}$ CD21 $^{+}$ CD81 $^{-}$, CD19 $^{+}$ CD21 $^{-}$ CD81 $^{+}$ и CD19 $^{+}$ CD21 $^{+}$ CD81 $^{-}$ -лимфоцитов, при увеличение плотности экспрессии CD19, CD21, CD81 рецепторов в экспрессирующих субпопуляциях В-лимфоцитов; при остром бактериальном тонзиллите происходит снижение общего числа лимфоцитов, при сохранении нормального уровня CD3 $^{+}$, CD4 $^{+}$, CD8 $^{+}$, CD16 $^{+}$, CD19 $^{+}$ -лимфоцитов, увеличения количества В-лимфоцитов в субпопуляциях CD19 $^{+}$ CD21 $^{+}$ CD81 $^{-}$ и CD19 $^{+}$ CD21 $^{-}$ CD81 $^{+}$ -клеток при нормальных значениях плотности экспрессии CD19, CD21, CD81 рецепторов в экспрессирующих субпопуляциях В-лимфоцитов.

Выводы. Таким образом, применение данного алгоритма может повысить качество дифференциальной диагностики инфекционного мононуклеоза Эпштейна-Барр-вирусной этиологии у взрослых, что позволит своевременно скорректировать тактику ведения и приведет к сокращению срока стационарного лечения и медико-социальной реабилитации.

Использованные литературы.

1. Balfour H.H., Odumade O.A. Behavioral, virologic, and immunologic factors associated with acquisition and severity of primary Epstein-Barr virus. Infection in university students//J. Infect. Dis.-2013.Vol.207.-P.80-88.
2. Keldiyorova Z.D., // State of the immune system in children with infectious mononucleosis.// New day in medicine. Бухоро -1 (33) 2021. С. 283-286
3. Keldiyorova, Z. D. (2022). Analysis of the results of immunological examination in infectious mononucleosis in Children. Middle european scientific bulletin. Europea, 23, 255-258.
4. Keldiyorova, Z. D. (2022). Immunological features of infectious mononucleosis in children. Инфекция, иммунитет и фармакология, 3, 110-116.

5. Keldiyorova, Z. D. (2023). CLINICAL CHARACTERISTICS IN PATIENTS WITH INFECTIOUS MONONUCLEOSIS. Galaxy International Interdisciplinary Research Journal, 11(4), 410-414.
6. Keldiyorova, Z. D. (2023). CLINICAL CHARACTERISTICS IN PATIENTS WITH INFECTIOUS MONONUCLEOSIS. Galaxy International Interdisciplinary Research Journal, 11(4), 410-414.
7. Keldiyorova, Z. D. (2023). CLINICAL CHARACTERISTICS IN PATIENTS WITH INFECTIOUS MONONUCLEOSIS. Galaxy International Interdisciplinary Research Journal, 11(4), 410-414.
8. Keldiyorova, Z. D. (2023). STATE OF CELLULAR IMMUNE IN CHILDREN WITH INFECTIOUS MONONUCLEOSIS. Oriental renaissance: Innovative, educational, natural and social sciences, 3(2), 926-931. Келдиёрова, З. Д. НОВЫЙ ДЕНЬ В МЕДИЦИНЕ. НОВЫЙ ДЕНЬ В МЕДИЦИНЕ Учредители: Бухарский государственный медицинский институт, ООО "Новый день в медицине", (2), 231-234.
9. Keldiyorova, Z. D. (2023). STATE OF CELLULAR IMMUNE IN CHILDREN WITH INFECTIOUS MONONUCLEOSIS. Oriental renaissance: Innovative, educational, natural and social sciences, 3(2), 926-931.
10. Keldiyorova, Z. D. (2023). STATE OF CELLULAR IMMUNE IN CHILDREN WITH INFECTIOUS MONONUCLEOSIS. Oriental renaissance: Innovative, educational, natural and social sciences, 3(2), 926-931.
11. Narzullayev, N. U., Mirzoyeva, M. R., & KELDIYOROVA, Z. D. (2020). Immunological features of infectious mononucleosis Epstein-Barr virus etiology in children. International Journal of Pharmaceutical Research (09752366), 12(3).
12. Ulug M., Celen M. K., Ayaz C., Geyik M. F., Hosoglu S. Acute hepatitis: a rare complication of Epstein- Barr virus (EBV) infection // J. Infect Dev Ctries. - 2010. - № 28:4(10). - P. 668-673.
13. Valentini P., Angelone D. F., MiceliSopo S., Ngilikpima C. J., Ranno O. Cholestatic jaundice in infectious mononucleosis // Minerva pediat. - 2018. - Vol. 52. - № 5-6. - P. 303-306.
14. Белозеров Е. С. Иммунодефициты и донозологические формы иммunoиспресии / Е. С. Белозеров, Н. К. Шагшарданов, Е. И. Змушко. - Семипалатинск, 2008. - С. 141—163.
15. Волоха А. П. Эпштейна-Барр вирусная инфекция у детей // Современная педиатрия. - 2015. - № 4 (68). - С. 103
16. Келдиёрова З.Д. Иммунологические особенности инфекционного мононуклеоза эпштейна-барр-вирусной этиологии у детей.// Новый день в медицине. Бухоро - №2 (34). 2021. С. 231-234
17. Келдиёрова З.Д. Состояние иммунной системы у детей с инфекционным мононуклеозом и обоснование иммунокорригирующей терапии.// Central Asian Journal Of Medical and Natural Sciences.
18. Келдиёрова, З. (2022). Состояние иммунной системы при инфекционном мононуклеозе у детей. Журнал "Медицина и инновации", (3), 322-330.
19. Келдиёрова, З. (2022). Состояние иммунной системы при инфекционном мононуклеозе у детей. Журнал "Медицина и инновации", (3), 322-330.

20. Келдиёрова, З. (2022). Состояние иммунной системы при инфекционном мононуклеозе у детей. *Журнал "Медицина и инновации"*, (3), 322-330.
21. Келдиёрова, З. Д. (2021). Иммунологические особенности инфекционного мононуклеоза эпштейна-барр-вирусной этиологии у детей. *Новый день в медицине. Бухоро*, 2, 34.
22. Келдиёрова, З. Д. (2021). Иммунологические особенности инфекционного мононуклеоза эпштейна-барр-вирусной этиологии у детей. *Новый день в медицине. Бухоро*, 2, 34.
23. Келдиёрова, З. Д. (2021). Состояние иммунной системы у детей с инфекционным мононуклеозом и обоснование иммунокорригирующей терапии. *Central Asian Journal of Medical and Natural Science*, 258-265.
24. Нарзуллаев, Н. У., Мирзаева, М. Р., & Келдиёрова, З. Д. (2020). Цитокиновый Профиль Детей С Острым Воспалением Небных Миндалин При Остром Инфекционном Мононуклеозе На Фоне Лечения. *Новый день в медицине*, (2), 459-461.
25. Спиридович В.И.,Кастусик С.В.,Кудин А.П. Оценка эффективности разных методов терапии инфекционного мононуклеоза у детей // Медицинский журнал .2012. №3.-С.148-151.
26. Филатова Е. Н., СолнцевЛ. А., Уткин О.В. Влияние сезонных факторов на динамику уровня заболеваемости инфекционным мононуклеозом в разных возрастных группах (на примере Нижнего Новгорода)// Эпидемиология и инфекционные болезни. - М., 2017. - №2. -С. 79-85.

