Universidad de San Andrés Práctica F: Áreas y TFC Resultados

- 1. (a) 4
 - (b) $\frac{9}{2}$
 - (c) $\frac{24}{3}$
- 2. En cada uno de los siguientes casos, calcular el área de la región acotada encerrada ...
 - (a) 36,

- (b) $\frac{3}{2}$.
- 3. Calcular, en cada caso, el área encerrada por la curva y = f(x) y el eje x ...
 - (a) 8,

(c) 1,

(b) $6 \ln 3 - 6 \ln 2 - 1 \approx 1.43$,

- (d) $8 \ln 2 + 6 \approx 11.5$.
- 4. En cada caso, calcular el área de la región encerrada por las curvas ...
 - (a) $\frac{1}{3}$,

(c) $\frac{937}{12} \approx 78.1$, (d) $\frac{10}{3}$.

(b) $\frac{1}{4}$,

- 5. Calcular, en cada caso, el área encerrada entre las curvas y=f(x) e y=g(x) ...
 - (a) $2e + 2e^{-1} 4 \approx 2.17$,
 - (b) 1,
 - (c) $24 \ln 3 36 \ln 2 + 1 \approx 2.41$.
- 6. En cada uno de los siguientes casos, calcular el área de la región acotada ...
 - (a) 36,

(c) $\ln(2) - \frac{1}{2} \approx 0.193$.

(b) $\frac{8}{3}$,

- (d) $\frac{3-e}{2} \approx 0.141$.
- 7. Sean $f(x) = \frac{2x}{x-2}$ y g(x) = -2x 3. Hallar el área de la región acotada ... $4 \ln 5 - 20 \ln 2 + \frac{63}{4}$
- 8. Calcular el área de la región encerrada por los gráficos de las funciones ... $\frac{10}{27}e^7 + \frac{14}{27}e^{-5}.$
- 9. Calcular el área de la región determinada por las restricciones ...

- 10. Considerar la región limitada por la curva $y=\sqrt{2x+2},$ el eje x entre las rectas ... $a=\frac{1}{8}.$
- 11. Si el área comprendida entre la parábola $y=4x^2$ (con $x\geq 0$) y una recta ... La pendiente es 12.
- 12. Una compañía determina que el ingreso marginal (en dólares por día) está dado ... $-2\ln 3 \frac{3128}{5} \approx -628\, \rm USD$
- 13. Una población sufre una epidemia de gripe, siendo N(t) el número de personas ... Habrá 736 enfermos.
- 14. En 2010 se publica una estimación para la tasa mundial de consumo de petróleo ... Asumir que t son años a partir del 2010. Se consumirán $\frac{8000}{3} \frac{5600}{3}e^{-3/10} \approx 147$ miles de millones de barriles.

Teorema fundamental del cálculo

15. Calcular las derivadas de las siguientes funciones en los dominios indicados ...

(a)
$$F'(x) = e^{-x^2}$$
,

(d)
$$F'(x) = 3\frac{3x-1}{1+3x} - 2\frac{2x-1}{1+2x}$$

(b)
$$F'(x) = 2\ln(4x^2 + 1)$$
,

(e)
$$F'(x) = -\tan^2(x)\cos(x)$$
,

(c)
$$F'(x) = \frac{\sin(x)\cos(x)}{2 + \sin^3(x)}$$
,

(f)
$$F(x) = \frac{3x^2 \sin(x^3)}{1+x^6} - \frac{\sin(\ln x)}{x(1+\ln^2 x)}$$
.

- 16. Calcular los siguientes límites ...
 - (a) $\frac{2}{3}$,

(b) $\frac{2}{3}$,

- (c) $-\infty$.
- 17. Sea $f: (0, \frac{\pi}{2}) \to \mathbb{R}$ dada por $f(x) = \int_{0}^{\sin(x)} \frac{1}{t^2 \sqrt{1 t^2}} dt$. Probar que f es creciente en $(0, \frac{\pi}{2})$. $f'(x) = \frac{1}{\sin^2 x}$ en $(0, \frac{\pi}{2})$, es estrictamente positiva.
- 18. Hallar el dominio, intervalos de crecimiento y extremos de las siguientes funciones
 - (a) Dom $F = \mathbb{R}$, $C^{\nearrow} = (-\infty, 1) \cup (4, +\infty)$, $C^{\searrow} = (1, 4)$. Extremos: en x = 1 se alcanza un mÃjximo local y en x = 4 un mÃnimo local.
 - (b) Dom $F = \mathbb{R}$, $C^{\nearrow} = (-\infty, 3) \cup (5, +\infty)$, $C^{\searrow} = (3, 5)$. Extremos: en x = 3 se alcanza un máximo local y en x = 5 un mÃnimo local.
 - (c) Dom $F = [0, +\infty)$, $C^{\nearrow} = [0, 3)$, $C^{\searrow} = (3, +\infty)$. Extremos: en x = 3 se alcanza un máximo absoluto.
- 19. Sea $f: \mathbb{R} \to \mathbb{R}$ la función definida por $f(x)=3+\int\limits_0^x \frac{1+\sin(t)}{2+t^2}\,dt$... $y=3+\frac{1}{2}x$.
- 20. Considere la función $f: \mathbb{R} \to \mathbb{R}$ dada por $F(x) = \int_0^x e^{-t^2} dt \dots$ $p_4(x) = x \frac{1}{3}x^3.$
- 21. Sea $g: \mathbb{R} \to \mathbb{R}$ una función tal que su recta tangente en x=4 es ... $p_2(x)=-8(x-2)+3.$