Device Modeling Report

COMPONENTS: OPERATIONAL AMPLIFIER

PART NUMBER: NJM2902

MANUFACTURER: NEW JAPAN RADIO CO.,LTD

Bee Technologies Inc.

SPICE MODEL


```
*$
*PART NUMBER: NJM2902
*MANUFACTURER: NEW JAPAN RADIO
* All Rights Reserved Copyright (c) Bee Technologies Inc. 2007
.Subckt NJM2902 OUT1 -IN1 +IN1 V+ +IN2 -IN2 OUT2 OUT3 -IN3 +IN3 V-
+ +IN4 -IN4 OUT4
X U1
          +IN1 -IN1 V+ V- OUT1 NJM2902 S
X U2
          +IN2 -IN2 V+ V- OUT2 NJM2902 S
X_U3
          +IN3 -IN3 V+ V- OUT3 NJM2902_S
X_U4
          +IN4 -IN4 V+ V- OUT4 NJM2902_S
.ends NJM2902
.subckt NJM2902 S 12345
       11 12 52.660E-12
 с1
  c2
       6 7 29.000E-12
  dc
       5 53 dy
  de
      54 5 dy
  dlp 90 91 dx
  dln 92 90 dx
       4 3 dx
  egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
       7 99 poly(5) vb vc ve vlp vln 0 22.343E6 -1E3 1E3 22E6 -22E6
  fb
        6 0 11 12 188.50E-6
  ga
 gcm 0 6 10 99 10.600E-9
       3 10 dc 15.040E-6
  iee
  hlim 90 0 vlim 1K
       11 2 13 qx1
  q1
       12 1 14 qx2
  q2
  r2
       6 9 100.00E3
       4 11 5.3052E3
  rc1
      4 12 5.3052E3
  rc2
  re1
      13 10 1.8517E3
  re2
      14 10 1.8517E3
  ree
      10 99 13.298E6
  ro1
       8 5 50
      7 99 25
  ro2
  rp
       3 4 1023.5
  νb
       9 0 dc 0
  VC
       3 53 dc 2.2879
       54 4 dc .79791
  ve
  vlim 7 8 dc 0
  vlp 91 0 dc 20
      0 92 dc 20
  vln
.model dx D(Is=800.00E-18)
.model dy D(Is=800.00E-18 Rs=1m Cjo=10p)
.model qx1 PNP(Is=800.00E-18 Bf=410.65)
.model qx2 PNP(Is=868.6645E-18 Bf=337.03)
.ends
*$
```

Output Voltage Swing, +Vout and -Vout

Simulation result

Evaluation circuit

Output Voltage Swing	Data sheet	Simulation	%Error
+Vout(V)	3.5	3.5086	0.246
-Vout(V)	0	0	0

Input Offset Voltage

Simulation result

Evaluation Circuit

Input offset Voltage	Data sheet	Simulation	%Error
V _{os} (mV)	2	2.0102	0.510

Slew Rate

Simulation result

Evaluation Circuit

V ⁺ / V ⁻ = ±15V	Data sheet	Simulation	%Error
SR (V/us)	0.5	0.502	0.4

Input Current

Simulation result

Evaluation Circuit

Input Current	Data sheet	Simulation	% Error
I _b (nA)	20	20.503	2.515
I _{bos} (nA)	5	5.1141	2.282

Open loop Voltage Gain vs. Frequency, Av-dc, f-0dB

Simulation result

Evaluation Circuit

	Data sheet	Simulation	% Error
Av (dB)	100	100.242	0.242
f-0dB (MHz)	0.5	0.504	0.800

Operating Current

Simulation result

Evaluation Circuit

Operating Current	Data sheet	Simulation	% Error
I _{CC} (mA)	1	1.0099	0.99

Common-Mode Rejection Ratio

Simulation result

Evaluation Circuit

CMRR = AV/ACM

= 100000/(0.585526/0.1)

	Data sheet	Simulation	% Error
CMRR (dB)	85	84.649	-0.413