Année 2019/2020 Module: Calcul Stochastique

Série 2

Espérance Conditionnelle et Martingales

Exercice 1 Soit (Ω, \mathcal{F}, P) un espace de probabilité et \mathcal{A} une sous-tribu de \mathcal{F} . Pour toute variable aléatoire $X \in L^2(\Omega, \mathcal{F}, P)$, on définit la variance conditionnelle $V(X \mid \mathcal{A})$ par :

$$V(X \mid \mathcal{A}) = E \left[(X - E(X \mid \mathcal{A}))^2 \mid \mathcal{A} \right]$$

1/ Montrer que $V(X \mid A) = E(X^2 \mid A) - E(X \mid A)^2$. En particulier, $E(X \mid A)^2 \leq E(X^2 \mid A)$. 2/ Montrer que $V(X) = E[V(X \mid A)] + Var[E(X \mid A)]$. En particulier, $V[E(X \mid A)] \leq V(X)$. Discuter le cas d'égalité.

Exercice 2 Montrer qu'un processus $(X_t)_{t\in\mathbb{T}}$, muni de sa filtration naturelle $(\mathcal{F}_t)_{t\in\mathbb{T}}$, est une martingale si et seulement si pour tout $s, t \in \mathbb{T}$, $s \leq t$ et tout $A \in \mathcal{F}_s$,

$$\int_{A} X_{s} dP = \int_{A} X_{t} dP.$$

Exercice 3 Soit $(X_t)_{t\geq 0}$ une martingale à temps continu relativement à la filtration $(\mathcal{F}_t)_{t\geq 0}$. Démontrer que si $s\leq t$:

$$E\left[(X_t - X_s)^2 \mid \mathcal{F}_s\right] = E\left[(X_t^2 - X_s^2) \mid \mathcal{F}_s\right]$$

Exercice 4 Soit $\{N(t)\}_{t\geq 0}$ un processus de Poisson de taux λ et $(\mathcal{F}_t)_{t\geq 0}$ la filtration naturelle associée. Montrer que le processus $Y(t) = \exp\{\alpha N(t) - \lambda t(e^{\alpha} - 1)\}$ pour tout $t \in \mathbb{R}_+$ et α un paramètre réel, est une martingale.

Exercice 5 Soit τ_1 et τ_2 deux temps d'arrêt relativement à la filtration \mathcal{F}_n . Montrer que $\tau_1 + \tau_2$, $\tau_1 \vee \tau_2 = \sup\{\tau_1, \tau_2\}$ et $\tau_1 \wedge \tau_2$ sont des temps d'arrêt.

Exercice 6 Montrer que pour s < t et $A \in \mathcal{F}_s$, $\tau = s\mathbf{1}_A + t\mathbf{1}_{A^c}$ est un temps d'arrêt.

Exercice 7 Soit τ un temps d'arrêt relativement à la filtration $(\mathcal{F}_t)_{t\geq 0}$, $\mathcal{F}_t \subset \mathcal{F} \ \forall t\geq 0$.

- 1/ Montrer que $\mathcal{F}_{\tau} = \{A \in \mathcal{F}, \forall t \geq 0, A \cap \{\tau \leq t\} \in \mathcal{F}_t\}$ est une tribu.
- 2/ Démontrer que τ est \mathcal{F}_{τ} mesurable.
- 3/ Soit τ_1 et τ_2 deux temps d'arrêt, tels que $\tau_1 \leq \tau_2$ (p.s). Montrer que $\mathcal{F}_{\tau_1} \subset \mathcal{F}_{\tau_2}$.
- $4/Soit \{X(t), t \geq 0\}$ une martingale relativement à la filtration $\{\mathcal{F}_t\}_{t\geq 0}$. Montrer que $\{X(t \wedge \tau), t \geq 0\}$ est une martingale.

Exercice 8 Soit $(M_t, t \ge 0)$ une (\mathcal{F}_t) -martingale et τ un temps d'arrêt borné prenant ses valeurs dans un ensemble dénombrable. Soit Y une variable aléatoire bornée \mathcal{F}_{τ} mesurable. Soit $N_t = Y(M_t - M_{t \land \tau})$. Montrer que $(N_t)_{t > 0}$ est une martingale.

Exercice 9 Considérons l'espace probabilisé (Ω, \mathcal{A}, P) sur lequel sont construites deux filtrations $(\mathcal{F}_t)_{t\geq 0}$ et $(\mathcal{G}_t)_{t\geq 0}$ satisfaisant $\mathcal{F}_t\subseteq \mathcal{G}_t$.

- 1) Soit $M = (M_t)_{t\geq 0}$ une \mathcal{F}_t -martingale (martingale par rapport à la filtration $(\mathcal{F}_t)_{t\geq 0}$) et soit $N = (N_t)_{t\geq 0}$ une \mathcal{G}_t -martingale . Est-ce que M est une \mathcal{G}_t -martingale ? Est-ce que N est une \mathcal{F}_t -martingale ? Justifiez vos réponses.
- 2) Soit T un \mathcal{F}_t -temps d'arrêt (temps d'arrêt par rapport à la filtration $(\mathcal{F}_t)_{t\geq 0}$) et S un \mathcal{G}_t -temps d'arrêt. Est-ce que S est un \mathcal{F}_t -temps d'arrêt? Est-ce que T est un \mathcal{G}_t -temps d'arrêt? Justifiez vos réponses.

Exercice 10 Soit T > 0 un nombre réel. Pour $0 = t_1 < \cdots < t_n < t_{n+1} < \cdots$ et $i = 1, \dots, n, \dots$ soit ϕ_i des fonctions bornées \mathcal{F}_{t_i} -mesurables et ϕ_0 une fonction bornée \mathcal{F}_0 -mesurable. On définit le processus élémentaire $X(t,\omega) = \phi_0(\omega) \mathbf{1}_{\{0\}}(t) + \sum_{i=1}^{\infty} \phi_i(\omega) \mathbf{1}_{]t_i,t_{i+1}]}(t)$. Montrer que $(X(t))_{t\geq 0}$ est progressivement mesurable.

Exercice 11 Deux joueurs jouent à un jeu équitable. On note Z_n le résultat de la $n^{i \`{e}me}$ partie pour le premier joueur. Les Z_n sont indépendantes et: $P(Z_n=+1)=P(Z_n=-1)=1/2$. On note \mathcal{F}_n la filtration engendrée par les résultats des n premières parties, et X_n la fortune du premier joueur après la $n^{i \`{e}me}$ partie. Sa fortune initiale est fixée: $X_0=a$. pour tout $n \ge 1$, on a donc: $X_n=a+Z_1+...+Z_n$. Le second joueur a une fortune initiale fixée à b et la partie se termine par la ruine de l'un des deux joueurs. On définit donc: $T=\min\{n, X_n=0 \text{ ou } X_n=a+b\}$.

- 1/ Montrer que $(X_n)_n$ est une martingale et que T est un temps d'arrêt, relativement à (\mathcal{F}_n) .
- 2/ Montrer que: $P(T > n) \le P(0 < X_n < a + b)$. Déduire du théorème de la limite centrale que P(T > n) tend vers 0, puis que T est fini.
- 3/ Déduire du théorème d'arrêt que: $P(X_T = 0) = \frac{b}{a+b}$ et $P(X_T = a+b) = \frac{a}{a+b}$.
- 4/ Montrer que $E(X_T^2) E(T) = a^2$. Conclure que E(T) = ab.
- **5**/ Observons que pour tout réel $\lambda : E\left[e^{\lambda Z_n}\right] = \frac{e^{\lambda} + e^{-\lambda}}{2} = \cosh(\lambda)$. Pour tout $n \geq 0$, on pose $Y_n(\lambda) = \exp(\lambda X_n) \left(\cosh(\lambda)\right)^{-n}$. Montrer que $(Y_n(\lambda))_n$ est une martingale.
- 6/ Déduire du théorème d'arrêt que: $E\left[\left(\cosh(\lambda)\right)^{-T}\left(I_0\left(X_T\right) + e^{\lambda(a+b)}I_{a+b}\left(X_T\right)\right)\right] = e^{\lambda a}$.

Exercice 12 Soit $(X_n)_{n\geq 1}$ une suite de v.a. indépendantes et de même loi donnée par: $P(X_1=+1)=p,\ P(X_1=-1)=q=1-p.$ On pose $S_0=0,\ S_n=X_1+X_2+\cdots+X_n$ pour $n\geq 1,$ et $\mathcal{F}_n=\sigma\left(X_1,\ldots,X_n\right)$

- 1/ Montrer que $Z_n = \left(\frac{q}{p}\right)^{S_n}$ est une martingale par rapport à \mathcal{F}_n .
- 2/ Déduire de l'inégalité maximale que: $P\left(\sup_{n\geq 0} S_n \geq k\right) \leq \left(\frac{p}{q}\right)^k$ et que, lorsque q>p

$$E\left(\sup_{n\geq 0} S_n\right) \leq \frac{p}{q-p}.$$

Exercice 13 Soit $(M(t))_{t\geq 0}$ une martingale positive continue issue de a>0 (M(0)=a) et telle que: $\lim_{t\to\infty} M(t)=0$ (p.s.). En introduisant le temps d'arrêt $T_x=\inf\{t\geq 0, M(t)\geq x\}$, montrer que $S=\sup\{M(t);\,t\geq 0\}$ suit la même loi que $\frac{a}{U}$ avec U une variable aléatoire uniforme sur [0,1].

Exercice 14 A la date 0, une urne contient une boule blanche et une boule noire. A la date 1, on prélève une boule, on note sa couleur, puis on la remet dans l'urne avec une boule supplémentaire de même couleur. on itère cette opération aux dates $2,3,\ldots$. Soit B_n , $n \geq 0$ le nombre de boules blanches dans l'urne après la $n^{\text{ème}}$ opération.

- 1/Montrer que la suite: $X_n = \frac{B_n}{n+2}$ est une martingale relativement à $\mathcal{F}_n = \sigma(B_1, \dots, B_n)$.
- 2/ Montrer que le rapport du nombre de boules blanches au nombre de boules noires converge p.s. vers une limite.