AEE 343 Compressible Flow Problem set 2

Due date: 2/12/2015

Problem 1

Determine the Mach number of a car moving in standard air at a speed of (a) 25 mph, (b) 55 mph, and (c) 100 mph.

Problem 2

At the seashore, you observe a high-speed aircraft moving overhead at an elevation of 10,000 ft. You hear the plane 8 s after it passes directly overhead. Using a nominal air temperature of 40° F, estimate the Mach number and speed of the aircraft (in ft/s).

Problem 3

A normal shock stands in a duct. The fluid is air, which may be considered an ideal gas. Properties upstream of the shock are $T_1 = 5^{\circ}C$, $p_1 = 65 \text{ kPa}$, and $V_1 = 668 \text{ m/s}$. Determine properties downstream of the shock and the entropy rise $(s_2 - s_1)$ across the shock.

Problem 4

Just upstream of a normal shock in an ideal gas flow, $M_1 = 3$, $p_1 = 65$ psia, $T_1 = 600^{\circ}R$. Determine $(M_2, p_2, T_2, P_{02}, T_{02})$ downstream of the shock if the gas is (a) air, and (b) helium. Note that $\gamma = 1.66$ for helium.

Problem 5

The Pitot tube on a supersonic aircraft cruising at an altitude of 30,000 ft senses a stagnation pressure of 12 psia. If the atmosphere is considered standard, determine the air speed and Mach number of the aircraft.

Problem 6

Derive the following relation

$$M^{*2} = \frac{(\gamma + 1)M^2}{2 + (\gamma - 1)M^2}$$