Proportional-Integral-Derivative (PID) Control

Course 1, Module 5, Lesson 1

Learning Objectives

- In this module, you'll
 - Review basics of linear time-invariant (LTI) control
 - Develop proportional-integral-derivative (PID) controllers for longitudinal vehicle control
 - Combine feedforward and feedback control to improve speed tracking performance
- In this video, you'll
 - Review the basics of LTI control
 - Explore the design of PID controllers

Control Development

Typical Feedback Control Loop

Plant System or Process

System Representation:

- The plant system could be linear or nonlinear
- Plant representation: state-space form and transfer functions
- Linear time-invariant systems can be expressed using transfer functions

Transfer Function:

• A transfer function G is a relation between input U and output Y Y(s) = G(s)U(s) $S = \sigma + j\omega$

- Expressed in the Laplace domain, as a function of s, a complex variable $Y(s) = G(s)U(s) = \frac{N(s)}{D(s)}U(s)$
- o Zeros roots of numerator, Poles roots of denominator 系統加多星をとし、系統加数点星を身が極。

Controller or Compensator

- Control algorithms can vary from simple to complex
- Some simple algorithms, widely used in industry:
 - Lead-lag controllers
 - PID controllers
- More complex algorithms
 - Nonlinear methods: Feedback linearization, Backstepping, Sliding mode
 - Optimization methods: Model predictive control

PID Controller

In the time domain:

$$u(t) = K_P e(t) + K_I \int_0^t e(t)dt + K_D \dot{e}(t)$$

where K_P , K_I , K_D are the proportional, integral and derivative gains

In the Laplace domain:

$$U(s) = G_c(s)E(s) = \left(K_P + \frac{K_I}{s} + K_D s\right)E(s)$$
$$= \left(\frac{K_D s^2 + K_P s + K_I}{s}\right)E(s)$$

Proportional-Integral Derivative Controller

$$G_c(s) = \frac{K_D s^2 + K_P s + K_I}{s}$$
two zeros added one pole added

- The pole is at the origin
- The zeros can be arbitrary places on the complex plane
- PID controller design selects zero locations, by selecting P, I, and D gains
- There are several algorithms to select the PID gains (e.g. Zeigler-Nichols)

Characteristics of P, I, and D Gains

Example: Second Order System

$$m\ddot{x} + b\dot{x} + kx = F, \qquad x(0) = 0$$

$$ms^2X(s) + bsX(s) + kX(s) = F(s)$$

$$G(s) = \frac{X(s)}{F(s)} = \frac{1}{ms^2 + bs + k}$$

Open-Loop Step Response

• Let m = 1, b = 10, k = 20, F = 1.

Closed-loop Response

• For the unity feedback, i.e., H(s) = 1, the closed loop system is given by,

$$\frac{Y(s)}{R(s)} = \frac{G(s)G_c(s)}{1 + G(s)G_c(s)}$$

Step Response

Step Response for PID Control

PID controller is given by,

$$G_{PID}(s) = \left(K_P + K_D s + \frac{K_I}{s}\right)$$

The closed loop system becomes,

$$G_{CL}(s) = \frac{K_D s^2 + K_P s + K_I}{s^3 + (10 + K_D)s^2 + (20 + K_P)s + K_I}$$

Summary

What we have learned from this lesson:

- Why we employ controller and its importance
- PID controller (simple but useful and applied) along with the tuning method

What is next?

Longitudinal speed control of a vehicle using PID controller