

### **TEST REPORT**

Report No.: 13090970HKG-002

**Sunflex Europe GmbH** 

Application
For
Certification
(Original Grant)
(FCC ID: 2AA95V01105)
(IC: 11532A-V01105)

**Transceiver** 

Prepared and Checked by: Approved by:

Signed On File Wong Cheuk Ho, Herbert Lead Engineer

Wong Kwok Yeung, Kenneth Lead Engineer

Date: December 2, 2013

The test report only allows to be revised within the retention period unless further standard or the requirement was noticed.

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

# **GENERAL INFORMATION**

# Sunflex Europe GmbH BRAND NAME: snakebyte Vyper

MODEL: V01105, V906855, V01099, V908316, V908323, V907296, M7005

FCC ID: 2AA95V01105 IC: 11532A-V01105

| Grantee:                  | Sunflex Europe GmbH                        |
|---------------------------|--------------------------------------------|
| Grantee Address:          | Konrad-Zuse-Str.13                         |
|                           | 58239 Schwerte                             |
|                           | Germany                                    |
| Contact Person:           | Jens Lawrenz                               |
| Tel:                      | +49-2304-59754 - 0                         |
| Fax:                      | +49-2304-59754 - 29                        |
| e-mail:                   | jens.lawrenz@sunflex-europe.com            |
| Manufacturer:             | Sunflex Europe GmbH                        |
| Manufacturer Address:     | Konrad-Zuse-Str.13                         |
|                           | 58239 Schwerte                             |
|                           | Germany                                    |
| Brand Name:               | snakebyte Vyper                            |
| Model:                    | V01105, V906855, V01099, V908316, V908323, |
|                           | V907296, M7005                             |
| Type of EUT:              | Transceiver                                |
| Description of EUT:       | 7inch Tablet PC                            |
| Serial Number:            | N/A                                        |
| FCC ID / IC:              | 2AA95V01105 / 11532A-V01105                |
| Date of Sample Submitted: | September 25, 2013                         |
| Date of Test:             | September 25, 2013 to October 22, 2013     |
| Report No.:               | 13090970HKG-002                            |
| Report Date:              | December 2, 2013                           |
| Environmental Conditions: | Temperature: +10 to 40°C                   |
|                           | Humidity: 10 to 90%                        |

Report No.: 13090970HKG-002

### SUMMARY OF TEST RESULT

Sunflex Europe GmbH BRAND NAME: snakebyte Vyper

MODEL: V01105, V906855, V01099, V908316, V908323, V907296, M7005

FCC ID: 2AA95V01105 IC: 11532A-V01105

| TEST SPECIFICATION                                   | REFERENCE                 | RESULTS |
|------------------------------------------------------|---------------------------|---------|
| Transmitter Power Line Conducted Emissions           | 15.207 /<br>RSS-Gen 7.2.4 | Pass    |
| Transmitter Field Strength and Bandwidth Requirement | 15.249 /<br>RSS-210 A2.9  | Pass    |
| Digital Device Radiated Emissions                    | 15.109 /<br>RSS-210 2.5   | Pass    |

The equipment under test is found to be complying with the following standards: FCC Part 15, October 1, 2012 Edition

RSS-210 Issue 8, December 2010

RSS-Gen Issue 3, December 2010

Note: 1. The EUT uses a permanently attached antenna which, in accordance to section 15.203, is considered sufficient to comply with the pervisions of this section.

2. Pursuant to FCC part 15 Section 15.215(c), the 20 dB bandwidth of the emission was contained within the frequency band designated (mentioned as above) which the EUT operated. The effects, if any, from frequency sweeping, frequency hopping, other modulation techniques and frequency stability over excepted variations in temperature and supply voltage were considered.

Report No.: 13090970HKG-002

# **Table of Contents**

| 1.0  | General Description                         |     |
|------|---------------------------------------------|-----|
| 1.1  | Product Description                         |     |
| 1.2  | Related Submittal(s) Grants                 |     |
| 1.3  | Test Methodology                            | 1   |
| 1.4  | Test Facility                               | 1   |
|      |                                             | _   |
| 2.0  | System Test Configuration                   |     |
| 2.1  | Justification                               |     |
| 2.2  | EUT Exercising Software                     |     |
| 2.3  | Special Accessories                         |     |
| 2.4  | Equipment Modification                      |     |
| 2.5  | Measurement Uncertainty                     |     |
| 2.6  | Support Equipment List and Description      | č   |
| 3.0  | Emission Results                            | _   |
| 3.1  | Field Strength Calculation                  |     |
| 3.1  | Radiated Emission Configuration Photograph  |     |
| 3.3  | Radiated Emission Data                      |     |
| 3.4  | Conducted Emission Configuration Photograph |     |
| 3.5  | Conducted Emission Data                     |     |
| 5.0  |                                             |     |
| 4.0  | Equipment Photographs                       | 30  |
|      |                                             |     |
| 5.0  | Product Labelling                           | 30  |
| C 0  | Tankwing Considerations                     | 0.0 |
| 6.0  | Technical Specifications                    | 30  |
| 7.0  | Instruction Manual                          | 30  |
|      | mon action manual                           | 30  |
| 8.0  | Miscellaneous Information                   | 31  |
| 8.1  | Measured Bandwidth                          |     |
| 8.2  | Discussion of Pulse Desensitization         | 42  |
| 8.3  | Calculation of Average Factor               |     |
| 8.4  | Emissions Test Procedures                   |     |
|      |                                             |     |
| 9.0  | Confidentiality Request                     | 44  |
| 40.0 |                                             |     |
| 10.0 | Equipment List                              | 45  |

Report No.: 13090970HKG-002

### 1.0 **General Description**

# 1.1 Product Description

The Equipment Under Test (EUT) is a tablet, equipped with HDMI, WiFi, Bluetooth 3.0/4.0, SD and USB Interface. The EUT operates in frequency range from 2412MHz to 2462MHz at 802.11b,g,n HT20 (11 channels with 5MHz spacing) and also operates in the frequency range 2402MHz to 2480MHz at Bluetooth 3.0 (79 channels with 1MHz spacing) while 2402MHz to 2480MHz at Bluetooth 4.0 (40 channels with 2MHz spacing). The EUT is powered by an external AC/DC adaptor or / and 3.7 VDC (1 x 3.7V 3400mAh rechargeable battery). The adaptor accepts 100-240VAC. WiFi and Bluetooth portions are in the same module that shares a single antenna. The applicant declared that the EUT is using non-adaptive frequency hopping in Bluetooth 3.0.

The Model: V906855, V01099, V908316, V908323, V907296 and M7005 are the same as the Model: V01105 in hardware aspect. The difference in model number serves as marketing strategy.

Antenna Type : Internal, Integral

For electronic filing, the brief circuit description is saved with filename: descri.pdf.

# 1.2 Related Submittal(s) Grants

This is a single application for certification of a transceiver.

The Declaration of the Conformity procedure of PC Connectivity for this transceiver (with FCC ID: 2AA95V01105) is being processed as the same time of this application.

# 1.3 Test Methodology

Both AC mains line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.4 (2009). All radiated measurements were performed in an Open Area Test Site. Preliminary scans were performed in the Open Area Test Site only to determine worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Justification Section" of this Application.

#### 1.4 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located at Garment Centre, 576 Castle Peak Road, Kowloon, Hong Kong. This test facility and site measurement data have been placed on file with the FCC and IC.

Report No.: 13090970HKG-002

### 2.0 **System Test Configuration**

#### 2.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it), and in the confines as outlined in ANSI C63.4 (2009).

The device was powered by 120VAC.

For maximizing emissions, the EUT was rotated through 360°, the antenna height was varied from 1 meter to 4 meters above the ground plane, and the antenna polarization was changed. This step by step procedure for maximizing emissions led to the data reported in Exhibit 3.0.

The rear of unit shall be flushed with the rear of the table.

The equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). The EUT was mounted to a plastic stand if necessary and placed on the wooden turntable, which enabled the engineer to maximize emissions through its placement in the three orthogonal axes.

All configuration (with and without PC connectivity, with and without docking during transceiver test) and setting of data rate for each 802.11b/g/n(HT20) mode had been considered, and worst case test data are shown on this test report.

### 2.2 EUT Exercising Software

There was no special software to exercise the device. Once the unit is powered up, it transmits the RF signal continuously.

# 2.3 Special Accessories

There are no special accessories necessary for compliance of this product.

# 2.4 Equipment Modification

Any modifications installed previous to testing by Sunflex Europe GmbH will be incorporated in each production model sold/leased in the United States and Canada.

Report No.: 13090970HKG-002

# 2.5 Measurement Uncertainty

When determining of the test conclusion, the Measurement Uncertainty of test has been considered.

# 2.6 Support Equipment List and Description

- 1. 1 x 4GB Kingston SD Card
- 2. 1 x 4GB USB Flash Drive
- 3. 1 x 2m HDMI cable
- 4. HDMI Monitor
- 1 x 2m long LAN cable (for termination only) (Provided by Intertek)
- 6. Notebook Computer
- 7. Software RF Test Tools
- 8. 1 x 1m USB cable
- 9. docking (Model: V01242; Additional Model: V908330)
- 10. AC/DC Adaptor

(Model: HNB050200E; Input: 100-240VAC 50/60Hz 0.35A; Output: 5VDC 2.0A) (Provided by Applicant)

Report No.: 13090970HKG-002

### 3.0 **Emission Results**

Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included.

# 3.1 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any), Average Factor (optional) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG - AV

where  $FS = Field Strength in dB\mu V/m$ 

RA = Receiver Amplitude (including preamplifier) in dBµV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB AV = Average Factor in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows:

FS = RR + LF

where  $FS = Field Strength in dB\mu V/m$ 

 $RR = RA - AG - AV in dB\mu V$ 

LF = CF + AF in dB

Assume a receiver reading of 52.0 dB $\mu$ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB are added. The amplifier gain of 29 dB and average factor of 5 dB are subtracted, giving a field strength of 27 dB $\mu$ V/m. This value in dB $\mu$ V/m was converted to its corresponding level in  $\mu$ V/m.

 $RA = 52.0 dB\mu V/m$ 

AF = 7.4 dB

 $RR = 18.0 dB\mu V$ 

CF = 1.6 dB

LF = 9.0 dB

AG = 29.0 dB

AV = 5.0 dB

FS = RR + LF

 $FS = 18 + 9 = 27 \, dB\mu V/m$ 

Level in  $\mu$ V/m = Common Antilogarithm [(27 dB $\mu$ V/m)/20] = 22.4  $\mu$ V/m

Report No.: 13090970HKG-002

# 3.2 Radiated Emission Configuration Photograph

The worst case in radiated emission was found at 2412.000 MHz

For electronic filing, the worst case radiated emission configuration photographs are saved with filename: radiated photos.pdf.

#### 3.3 Radiated Emission Data

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

Judgment: Passed by 1.4 dB (radiated emission)
Passed by 0.6 dB (bandedge)

# 3.4 Conducted Emission Configuration Photograph

The worst case in line-conducted emission was found at 0.402 MHz

For electronic filing, the worst case line-conducted configuration photographs are saved with filename: conducted photo.pdf.

### 3.5 Conducted Emission Data

The graph data of conducted emission is shown as below;

Judgment: Pass by 10.9 dB

Report No.: 13090970HKG-002

Worst-Case Operating Mode: WiFi + Bluetooth Transmitting, with docking

|     | EDIT          | PEAK LIST (Final | Measurement Resul | lts)           |  |  |  |  |  |
|-----|---------------|------------------|-------------------|----------------|--|--|--|--|--|
| Tra | ice1:         | CF15MQP          |                   |                |  |  |  |  |  |
| Tra | ice2:         | CF15MAV          |                   |                |  |  |  |  |  |
| Tra | ice3:         |                  |                   |                |  |  |  |  |  |
|     | TRACE         | FREQUENCY        | LEVEL dBµV        | DELTA LIMIT dB |  |  |  |  |  |
| 1   | Quasi Peak    | 204 kHz          | 45.48 L1          | -17.95         |  |  |  |  |  |
| 2   | CISPR Average | 204 kHz          | 36.17 L1          | -17.27         |  |  |  |  |  |
| 1   | Quasi Peak    | 235.5 kHz        | 36.85 L1          | -25.39         |  |  |  |  |  |
| 1   | Quasi Peak    | 334.5 kHz        | 42.38 L1          | -16.95         |  |  |  |  |  |
| 2   | CISPR Average | 402 kHz          | 36.88 L1          | -10.92         |  |  |  |  |  |
| 1   | Quasi Peak    | 406.5 kHz        | 33.16 L1          | -24.55         |  |  |  |  |  |
| 2   | CISPR Average | 537 kHz          | 32.11 L1          | -13.88         |  |  |  |  |  |
| 1   | Quasi Peak    | 604.5 kHz        | 30.82 L1          | -25.17         |  |  |  |  |  |
| 2   | CISPR Average | 739.5 kHz        | 22.64 L1          | -23.35         |  |  |  |  |  |
| 1   | Quasi Peak    | 807 kHz          | 25.51 L1          | -30.48         |  |  |  |  |  |
| 2   | CISPR Average | 807 kHz          | 19.83 L1          | -26.16         |  |  |  |  |  |
| 1   | Quasi Peak    | 1.2435 MHz       | 24.07 L1          | -31.92         |  |  |  |  |  |
| 2   | CISPR Average | 1.2435 MHz       | 14.46 L1          | -31.53         |  |  |  |  |  |
| 1   | Quasi Peak    | 1.545 MHz        | 23.98 L1          | -32.02         |  |  |  |  |  |
| 2   | CISPR Average | 1.545 MHz        | 13.89 L1          | -32.10         |  |  |  |  |  |
| 2   | CISPR Average | 2.3505 MHz       | 14.75 L1          | -31.24         |  |  |  |  |  |
| 1   | Quasi Peak    | 2.922 MHz        | 27.51 L1          | -28.48         |  |  |  |  |  |
| 2   | CISPR Average | 3.8265 MHz       | 24.33 L1          | -21.66         |  |  |  |  |  |
| 1   | Quasi Peak    | 4.029 MHz        | 34.44 L1          | -21.55         |  |  |  |  |  |
| 1   | Quasi Peak    | 4.461 MHz        | 33.84 L1          | -22.16         |  |  |  |  |  |



Report No.: 13090970HKG-002

Applicant: Sunflex Europe GmbH Date of Test: October 22, 2013

Model: V01105

Worst-Case Operating Mode: Standalone Transmitting (802.11b DSSS 11Mbps)

#### Table 1

# Radiated Emissions Pursuant to FCC Part 15 Section 15.249 Requirement

#### Channel 01

|         | •         |         |         |         |              |               |        |
|---------|-----------|---------|---------|---------|--------------|---------------|--------|
|         |           |         | Pre-Amp | Antenna | Net at       | Average Limit |        |
| Polari- | Frequency | Reading | Gain    | Factor  | 3m - Average | at 3m         | Margin |
| zation  | (MHz)     | (dBµV)  | (dB)    | (dB)    | (dBµV/m)     | (dBµV/m)      | (dB)   |
| Н       | 2412.000  | 96.2    | 33      | 29.4    | 92.6         | 94.0          | -1.4   |
| Н       | 4824.000  | 43.9    | 33      | 34.9    | 45.8         | 54.0          | -8.2   |
| Н       | 7236.000  | 40.2    | 33      | 37.9    | 45.1         | 54.0          | -8.9   |
| Н       | 9648.000  | 37.9    | 33      | 40.4    | 45.3         | 54.0          | -8.7   |
| Н       | 12060.000 | 37.7    | 33      | 40.5    | 45.2         | 54.0          | -8.8   |
| Н       | 14472.000 | 37.6    | 33      | 40.0    | 44.6         | 54.0          | -9.4   |

#### Channel 05

|         |           |         | Pre-Amp | Antenna | Net at       | Average Limit |        |
|---------|-----------|---------|---------|---------|--------------|---------------|--------|
| Polari- | Frequency | Reading | Gain    | Factor  | 3m - Average | at 3m         | Margin |
| zation  | (MHz)     | (dBµV)  | (dB)    | (dB)    | (dBµV/m)     | (dBµV/m)      | (dB)   |
| Н       | 2437.000  | 96.0    | 33      | 29.4    | 92.4         | 94.0          | -1.6   |
| Н       | 4874.000  | 43.4    | 33      | 34.9    | 45.3         | 54.0          | -8.7   |
| Н       | 7311.000  | 40.2    | 33      | 37.9    | 45.1         | 54.0          | -8.9   |
| Н       | 9748.000  | 37.8    | 33      | 40.4    | 45.2         | 54.0          | -8.8   |
| Н       | 12185.000 | 37.5    | 33      | 40.5    | 45.0         | 54.0          | -9.0   |
| Н       | 14622.000 | 39.4    | 33      | 38.4    | 44.8         | 54.0          | -9.2   |

#### Channel 11

|         |           |         | Pre-Amp | Antenna | Net at       | Average Limit |        |
|---------|-----------|---------|---------|---------|--------------|---------------|--------|
| Polari- | Frequency | Reading | Gain    | Factor  | 3m - Average | at 3m         | Margin |
| zation  | (MHz)     | (dBµV)  | (dB)    | (dB)    | (dBµV/m)     | (dBµV/m)      | (dB)   |
| Н       | 2462.000  | 95.8    | 33      | 29.4    | 92.2         | 94.0          | -1.8   |
| Н       | 4924.000  | 43.7    | 33      | 34.9    | 45.6         | 54.0          | -8.4   |
| Н       | 7386.000  | 40.4    | 33      | 37.9    | 45.3         | 54.0          | -8.7   |
| Н       | 9848.000  | 38.1    | 33      | 40.4    | 45.5         | 54.0          | -8.5   |
| Н       | 12310.000 | 37.7    | 33      | 40.5    | 45.2         | 54.0          | -8.8   |
| Н       | 14772.000 | 39.2    | 33      | 38.4    | 44.6         | 54.0          | -9.4   |

NOTES: 1. Average Detector is used for emission measurement.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative sign in the column shows value below limit.
- 4. Horn antenna is used for the emission over 1000MHz.
- 5. For the measurement of radiated emission, summation method was used which numerical integrating (in terms of linear power) over the transmitter occupied bandwidth.
- 6. For the linear power measurement, data in 1MHz spacing was collected by spectrum analyzer with 1MHz resolution bandwidth.

Report No.: 13090970HKG-002

Applicant: Sunflex Europe GmbH Date of Test: October 22, 2013

Model: V01105

Worst-Case Operating Mode: Standalone Transmitting (802.11b DSSS 11Mbps)

#### Table 2

# Radiated Emissions Pursuant to FCC Part 15 Section 15.249 Requirement

#### Channel 01

| Onamio ( | Sharmor o : |         |         |         |           |            |        |  |  |
|----------|-------------|---------|---------|---------|-----------|------------|--------|--|--|
|          |             |         | Pre-Amp | Antenna | Net at    | Peak Limit |        |  |  |
| Polari-  | Frequency   | Reading | Gain    | Factor  | 3m - Peak | at 3m      | Margin |  |  |
| zation   | (MHz)       | (dBµV)  | (dB)    | (dB)    | (dBµV/m)  | (dBµV/m)   | (dB)   |  |  |
| Н        | 2412.000    | 106.4   | 33      | 29.4    | 102.8     | 114.0      | -11.2  |  |  |
| Н        | 4824.000    | 52.9    | 33      | 34.9    | 54.8      | 74.0       | -19.2  |  |  |
| Н        | 7236.000    | 47.2    | 33      | 37.9    | 52.1      | 74.0       | -21.9  |  |  |
| Н        | 9648.000    | 43.5    | 33      | 40.4    | 50.9      | 74.0       | -23.1  |  |  |
| Н        | 12060.000   | 43.5    | 33      | 40.5    | 51.0      | 74.0       | -23.0  |  |  |
| Н        | 14472.000   | 43.6    | 33      | 40.0    | 50.6      | 74.0       | -23.4  |  |  |

# Channel 05

|         |           |         | Pre-Amp | Antenna | Net at    | Peak Limit    |        |
|---------|-----------|---------|---------|---------|-----------|---------------|--------|
| Polari- | Frequency | Reading | Gain    | Factor  | 3m - Peak | at 3m         | Margin |
| zation  | (MHz)     | (dBµV)  | (dB)    | (dB)    | (dBµV/m)  | $(dB\mu V/m)$ | (dB)   |
| Н       | 2437.000  | 106.2   | 33      | 29.4    | 102.6     | 114.0         | -11.4  |
| Н       | 4874.000  | 52.4    | 33      | 34.9    | 54.3      | 74.0          | -19.7  |
| Н       | 7311.000  | 47.2    | 33      | 37.9    | 52.1      | 74.0          | -21.9  |
| Н       | 9748.000  | 43.5    | 33      | 40.4    | 50.9      | 74.0          | -23.1  |
| Н       | 12185.000 | 43.5    | 33      | 40.5    | 51.0      | 74.0          | -23.0  |
| Н       | 14622.000 | 45.4    | 33      | 38.4    | 50.8      | 74.0          | -23.2  |

### Channel 11

|         |           |         | Pre-Amp | Antenna | Net at    | Peak Limit |        |
|---------|-----------|---------|---------|---------|-----------|------------|--------|
| Polari- | Frequency | Reading | Gain    | Factor  | 3m - Peak | at 3m      | Margin |
| zation  | (MHz)     | (dBµV)  | (dB)    | (dB)    | (dBµV/m)  | (dBµV/m)   | (dB)   |
| Н       | 2462.000  | 106.0   | 33      | 29.4    | 102.4     | 114.0      | -11.6  |
| Н       | 4924.000  | 52.3    | 33      | 34.9    | 54.2      | 74.0       | -19.8  |
| Н       | 7386.000  | 49.7    | 33      | 37.9    | 54.6      | 74.0       | -19.4  |
| Н       | 9848.000  | 43.9    | 33      | 40.4    | 51.3      | 74.0       | -22.7  |
| Н       | 12310.000 | 43.8    | 33      | 40.5    | 51.3      | 74.0       | -22.7  |
| Н       | 14772.000 | 45.2    | 33      | 38.4    | 50.6      | 74.0       | -23.4  |

#### NOTES: 1. Peak Detector is used for emission measurement.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative sign in the column shows value below limit.
- 4. Horn antenna is used for the emission over 1000MHz.
- 5. For the measurement of radiated emission, summation method was used which numerical integrating (in terms of linear power) over the transmitter occupied bandwidth.
- 6. For the linear power measurement, data in 1MHz spacing was collected by spectrum analyzer with 1MHz resolution bandwidth.

Report No.: 13090970HKG-002

Applicant: Sunflex Europe GmbH Date of Test: October 22, 2013

Model: V01105

Worst-Case Operating Mode: Standalone Transmitting (802.11g OFDM 54Mbps)

#### Table 3

# Radiated Emissions Pursuant to FCC Part 15 Section 15.249 Requirement

#### Channel 01

|         | •         |         |         |         |              |               |        |
|---------|-----------|---------|---------|---------|--------------|---------------|--------|
|         |           |         | Pre-Amp | Antenna | Net at       | Average Limit |        |
| Polari- | Frequency | Reading | Gain    | Factor  | 3m - Average | at 3m         | Margin |
| zation  | (MHz)     | (dBµV)  | (dB)    | (dB)    | (dBµV/m)     | (dBµV/m)      | (dB)   |
| Н       | 2412.000  | 85.4    | 33      | 29.4    | 81.8         | 94.0          | -12.2  |
| Н       | 4824.000  | 43.4    | 33      | 34.9    | 45.3         | 54.0          | -8.7   |
| Н       | 7236.000  | 40.2    | 33      | 37.9    | 45.1         | 54.0          | -8.9   |
| Н       | 9648.000  | 37.9    | 33      | 40.4    | 45.3         | 54.0          | -8.7   |
| Н       | 12060.000 | 37.7    | 33      | 40.5    | 45.2         | 54.0          | -8.8   |
| Н       | 14472.000 | 37.6    | 33      | 40.0    | 44.6         | 54.0          | -9.4   |

#### Channel 05

|         |           |         | Pre-Amp | Antenna | Net at       | Average Limit |        |
|---------|-----------|---------|---------|---------|--------------|---------------|--------|
| Polari- | Frequency | Reading | Gain    | Factor  | 3m - Average | at 3m         | Margin |
| zation  | (MHz)     | (dBµV)  | (dB)    | (dB)    | (dBµV/m)     | (dBµV/m)      | (dB)   |
| Н       | 2437.000  | 85.2    | 33      | 29.4    | 81.6         | 94.0          | -12.4  |
| Н       | 4874.000  | 43.4    | 33      | 34.9    | 45.3         | 54.0          | -8.7   |
| Н       | 7311.000  | 40.2    | 33      | 37.9    | 45.1         | 54.0          | -8.9   |
| Н       | 9748.000  | 37.8    | 33      | 40.4    | 45.2         | 54.0          | -8.8   |
| Н       | 12185.000 | 37.5    | 33      | 40.5    | 45.0         | 54.0          | -9.0   |
| Н       | 14622.000 | 39.2    | 33      | 38.4    | 44.6         | 54.0          | -9.4   |

#### Channel 11

|         |           |         | Pre-Amp | Antenna | Net at       | Average Limit |        |
|---------|-----------|---------|---------|---------|--------------|---------------|--------|
| Polari- | Frequency | Reading | Gain    | Factor  | 3m - Average | at 3m         | Margin |
| zation  | (MHz)     | (dBµV)  | (dB)    | (dB)    | (dBµV/m)     | (dBµV/m)      | (dB)   |
| Н       | 2462.000  | 84.8    | 33      | 29.4    | 81.2         | 94.0          | -12.8  |
| Н       | 4924.000  | 43.3    | 33      | 34.9    | 45.2         | 54.0          | -8.8   |
| Н       | 7386.000  | 39.6    | 33      | 37.9    | 44.5         | 54.0          | -9.5   |
| Н       | 9848.000  | 37.1    | 33      | 40.4    | 44.5         | 54.0          | -9.5   |
| Н       | 12310.000 | 37.7    | 33      | 40.5    | 45.2         | 54.0          | -8.8   |
| Н       | 14772.000 | 39.2    | 33      | 38.4    | 44.6         | 54.0          | -9.4   |

NOTES: 1. Average Detector is used for emission measurement.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative sign in the column shows value below limit.
- 4. Horn antenna is used for the emission over 1000MHz.
- 5. For the measurement of radiated emission, summation method was used which numerical integrating (in terms of linear power) over the transmitter occupied bandwidth.
- For the linear power measurement, data in 1MHz spacing was collected by spectrum analyzer with 1MHz resolution bandwidth.

Report No.: 13090970HKG-002

Applicant: Sunflex Europe GmbH Date of Test: October 22, 2013

Model: V01105

Worst-Case Operating Mode: Standalone Transmitting (802.11g OFDM 54Mbps)

#### Table 4

# Radiated Emissions Pursuant to FCC Part 15 Section 15.249 Requirement

#### Channel 01

|         |           |         | Pre-Amp | Antenna | Net at    | Peak Limit |        |  |  |  |
|---------|-----------|---------|---------|---------|-----------|------------|--------|--|--|--|
| Polari- | Frequency | Reading | Gain    | Factor  | 3m - Peak | at 3m      | Margin |  |  |  |
| zation  | (MHz)     | (dBµV)  | (dB)    | (dB)    | (dBµV/m)  | (dBµV/m)   | (dB)   |  |  |  |
| Н       | 2412.000  | 104.8   | 33      | 29.4    | 101.2     | 114.0      | -12.8  |  |  |  |
| Н       | 4824.000  | 50.5    | 33      | 34.9    | 52.4      | 74.0       | -21.6  |  |  |  |
| Н       | 7236.000  | 47.2    | 33      | 37.9    | 52.1      | 74.0       | -21.9  |  |  |  |
| Н       | 9648.000  | 43.5    | 33      | 40.4    | 50.9      | 74.0       | -23.1  |  |  |  |
| Н       | 12060.000 | 43.5    | 33      | 40.5    | 51.0      | 74.0       | -23.0  |  |  |  |
| Н       | 14472.000 | 43.6    | 33      | 40.0    | 50.6      | 74.0       | -23.4  |  |  |  |

### Channel 05

|         |           |         | Pre-Amp | Antenna | Net at    | Peak Limit |        |
|---------|-----------|---------|---------|---------|-----------|------------|--------|
| Polari- | Frequency | Reading | Gain    | Factor  | 3m - Peak | at 3m      | Margin |
| zation  | (MHz)     | (dBµV)  | (dB)    | (dB)    | (dBµV/m)  | (dBµV/m)   | (dB)   |
| Н       | 2437.000  | 104.6   | 33      | 29.4    | 101.0     | 114.0      | -13.0  |
| Н       | 4874.000  | 50.4    | 33      | 34.9    | 52.3      | 74.0       | -21.7  |
| Н       | 7311.000  | 47.2    | 33      | 37.9    | 52.1      | 74.0       | -21.9  |
| Н       | 9748.000  | 43.5    | 33      | 40.4    | 50.9      | 74.0       | -23.1  |
| Н       | 12185.000 | 43.5    | 33      | 40.5    | 51.0      | 74.0       | -23.0  |
| Н       | 14622.000 | 45.4    | 33      | 38.4    | 50.8      | 74.0       | -23.2  |

### Channel 11

|         |           |         | Pre-Amp | Antenna | Net at    | Peak Limit |        |
|---------|-----------|---------|---------|---------|-----------|------------|--------|
| Polari- | Frequency | Reading | Gain    | Factor  | 3m - Peak | at 3m      | Margin |
| zation  | (MHz)     | (dBµV)  | (dB)    | (dB)    | (dBµV/m)  | (dBµV/m)   | (dB)   |
| Н       | 2462.000  | 104.0   | 33      | 29.4    | 100.4     | 114.0      | -13.6  |
| Н       | 4924.000  | 52.7    | 33      | 34.9    | 54.6      | 74.0       | -19.4  |
| Н       | 7386.000  | 49.0    | 33      | 37.9    | 53.9      | 74.0       | -20.1  |
| Н       | 9848.000  | 43.9    | 33      | 40.4    | 51.3      | 74.0       | -22.7  |
| Н       | 12310.000 | 43.8    | 33      | 40.5    | 51.3      | 74.0       | -22.7  |
| Н       | 14772.000 | 45.2    | 33      | 38.4    | 50.6      | 74.0       | -23.4  |

NOTES: 1. Peak Detector is used for emission measurement.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative sign in the column shows value below limit.
- 4. Horn antenna is used for the emission over 1000MHz.
- 5. For the measurement of radiated emission, summation method was used which numerical integrating (in terms of linear power) over the transmitter occupied bandwidth.
- 6. For the linear power measurement, data in 1MHz spacing was collected by spectrum analyzer with 1MHz resolution bandwidth.

Report No.: 13090970HKG-002

Applicant: Sunflex Europe GmbH Date of Test: October 22, 2013

Model: V01105

Worst-Case Operating Mode: Standalone Transmitting (802.11n HT20 mcs7 65Mbps)

#### Table 5

# Radiated Emissions Pursuant to FCC Part 15 Section 15.249 Requirement

#### Channel 01

|         |           |         | Pre-Amp | Antenna | Net at       | Average Limit |        |  |  |  |
|---------|-----------|---------|---------|---------|--------------|---------------|--------|--|--|--|
| Polari- | Frequency | Reading | Gain    | Factor  | 3m - Average | at 3m         | Margin |  |  |  |
| zation  | (MHz)     | (dBµV)  | (dB)    | (dB)    | (dBµV/m)     | (dBµV/m)      | (dB)   |  |  |  |
| Н       | 2412.000  | 85.2    | 33      | 29.4    | 81.6         | 94.0          | -12.4  |  |  |  |
| Н       | 4824.000  | 43.4    | 33      | 34.9    | 45.3         | 54.0          | -8.7   |  |  |  |
| Н       | 7236.000  | 40.2    | 33      | 37.9    | 45.1         | 54.0          | -8.9   |  |  |  |
| Н       | 9648.000  | 37.9    | 33      | 40.4    | 45.3         | 54.0          | -8.7   |  |  |  |
| Н       | 12060.000 | 37.7    | 33      | 40.5    | 45.2         | 54.0          | -8.8   |  |  |  |
| Н       | 14472.000 | 37.6    | 33      | 40.0    | 44.6         | 54.0          | -9.4   |  |  |  |

#### Channel 05

|         |           |         | Pre-Amp | Antenna | Net at       | Average Limit |        |
|---------|-----------|---------|---------|---------|--------------|---------------|--------|
| Polari- | Frequency | Reading | Gain    | Factor  | 3m - Average | at 3m         | Margin |
| zation  | (MHz)     | (dBµV)  | (dB)    | (dB)    | (dBµV/m)     | (dBµV/m)      | (dB)   |
| Н       | 2437.000  | 85.0    | 33      | 29.4    | 81.4         | 94.0          | -12.6  |
| Н       | 4874.000  | 43.4    | 33      | 34.9    | 45.3         | 54.0          | -8.7   |
| Н       | 7311.000  | 40.2    | 33      | 37.9    | 45.1         | 54.0          | -8.9   |
| Н       | 9748.000  | 37.8    | 33      | 40.4    | 45.2         | 54.0          | -8.8   |
| Н       | 12185.000 | 37.5    | 33      | 40.5    | 45.0         | 54.0          | -9.0   |
| Н       | 14622.000 | 39.2    | 33      | 38.4    | 44.6         | 54.0          | -9.4   |

#### Channel 11

|         |           |         | Pre-Amp | Antenna | Net at       | Average Limit |        |
|---------|-----------|---------|---------|---------|--------------|---------------|--------|
| Polari- | Frequency | Reading | Gain    | Factor  | 3m - Average |               | Margin |
| zation  | (MHz)     | (dBµV)  | (dB)    | (dB)    | (dBµV/m)     | (dBµV/m)      | (dB)   |
| Н       | 2462.000  | 85.0    | 33      | 29.4    | 81.4         | 94.0          | -12.6  |
| Н       | 4924.000  | 43.5    | 33      | 34.9    | 45.4         | 54.0          | -8.6   |
| Н       | 7386.000  | 40.4    | 33      | 37.9    | 45.3         | 54.0          | -8.7   |
| Н       | 9848.000  | 38.1    | 33      | 40.4    | 45.5         | 54.0          | -8.5   |
| Н       | 12310.000 | 37.7    | 33      | 40.5    | 45.2         | 54.0          | -8.8   |
| Н       | 14772.000 | 39.2    | 33      | 38.4    | 44.6         | 54.0          | -9.4   |

NOTES: 1. Average Detector is used for emission measurement.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative sign in the column shows value below limit.
- 4. Horn antenna is used for the emission over 1000MHz.
- 5. For the measurement of radiated emission, summation method was used which numerical integrating (in terms of linear power) over the transmitter occupied bandwidth.
- For the linear power measurement, data in 1MHz spacing was collected by spectrum analyzer with 1MHz resolution bandwidth.

Report No.: 13090970HKG-002

Applicant: Sunflex Europe GmbH Date of Test: October 22, 2013

Model: V01105

Worst-Case Operating Mode: Standalone Transmitting (802.11n HT20 mcs7 65Mbps)

#### Table 6

# Radiated Emissions Pursuant to FCC Part 15 Section 15.249 Requirement

#### Channel 01

| Onamio C | <i>-</i> 1 |         |         |         |           |            |        |
|----------|------------|---------|---------|---------|-----------|------------|--------|
|          |            |         | Pre-Amp | Antenna | Net at    | Peak Limit |        |
| Polari-  | Frequency  | Reading | Gain    | Factor  | 3m - Peak | at 3m      | Margin |
| zation   | (MHz)      | (dBµV)  | (dB)    | (dB)    | (dBµV/m)  | (dBµV/m)   | (dB)   |
| Н        | 2412.000   | 104.5   | 33      | 29.4    | 100.9     | 114.0      | -13.1  |
| Н        | 4824.000   | 50.5    | 33      | 34.9    | 52.4      | 74.0       | -21.6  |
| Н        | 7236.000   | 47.2    | 33      | 37.9    | 52.1      | 74.0       | -21.9  |
| Н        | 9648.000   | 43.4    | 33      | 40.4    | 50.8      | 74.0       | -23.2  |
| Н        | 12060.000  | 43.5    | 33      | 40.5    | 51.0      | 74.0       | -23.0  |
| Н        | 14472.000  | 43.6    | 33      | 40.0    | 50.6      | 74.0       | -23.4  |

# Channel 05

|         |           |         | Pre-Amp | Antenna | Net at    | Peak Limit |        |
|---------|-----------|---------|---------|---------|-----------|------------|--------|
| Polari- | Frequency | Reading | Gain    | Factor  | 3m - Peak | at 3m      | Margin |
| zation  | (MHz)     | (dBµV)  | (dB)    | (dB)    | (dBµV/m)  | (dBµV/m)   | (dB)   |
| Н       | 2437.000  | 104.2   | 33      | 29.4    | 100.6     | 114.0      | -13.4  |
| Н       | 4874.000  | 50.4    | 33      | 34.9    | 52.3      | 74.0       | -21.7  |
| Н       | 7311.000  | 47.2    | 33      | 37.9    | 52.1      | 74.0       | -21.9  |
| Н       | 9748.000  | 43.5    | 33      | 40.4    | 50.9      | 74.0       | -23.1  |
| Н       | 12185.000 | 43.5    | 33      | 40.5    | 51.0      | 74.0       | -23.0  |
| Н       | 14622.000 | 45.4    | 33      | 38.4    | 50.8      | 74.0       | -23.2  |

### Channel 11

|         |           |         | Pre-Amp | Antenna | Net at    | Peak Limit |        |
|---------|-----------|---------|---------|---------|-----------|------------|--------|
| Polari- | Frequency | Reading | Gain    | Factor  | 3m - Peak | at 3m      | Margin |
| zation  | (MHz)     | (dBµV)  | (dB)    | (dB)    | (dBµV/m)  | (dBµV/m)   | (dB)   |
| Н       | 2462.000  | 104.0   | 33      | 29.4    | 100.4     | 114.0      | -13.6  |
| Н       | 4924.000  | 52.0    | 33      | 34.9    | 53.9      | 74.0       | -20.1  |
| Н       | 7386.000  | 50.2    | 33      | 37.9    | 55.1      | 74.0       | -18.9  |
| Н       | 9848.000  | 43.9    | 33      | 40.4    | 51.3      | 74.0       | -22.7  |
| Н       | 12310.000 | 43.8    | 33      | 40.5    | 51.3      | 74.0       | -22.7  |
| Н       | 14772.000 | 45.2    | 33      | 38.4    | 50.6      | 74.0       | -23.4  |

#### NOTES: 1. Peak Detector is used for emission measurement.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative sign in the column shows value below limit.
- 4. Horn antenna is used for the emission over 1000MHz.
- 5. For the measurement of radiated emission, summation method was used which numerical integrating (in terms of linear power) over the transmitter occupied bandwidth.
- 6. For the linear power measurement, data in 1MHz spacing was collected by spectrum analyzer with 1MHz resolution bandwidth.

Report No.: 13090970HKG-002

Applicant: Sunflex Europe GmbH Date of Test: October 22, 2013

Model: V01105

Worst-Case Operating Mode: Standalone Transmitting (Bluetooth 4.0)

#### Table 7

# Radiated Emissions Pursuant to FCC Part 15 Section 15.249 Requirement

#### Lowest Channel

|         | LOWOOL CHAINICI |         |         |         |              |               |        |  |  |
|---------|-----------------|---------|---------|---------|--------------|---------------|--------|--|--|
|         |                 |         | Pre-Amp | Antenna | Net at       | Average Limit |        |  |  |
| Polari- | Frequency       | Reading | Gain    | Factor  | 3m - Average | at 3m         | Margin |  |  |
| zation  | (MHz)           | (dBµV)  | (dB)    | (dB)    | (dBµV/m)     | (dBµV/m)      | (dB)   |  |  |
| V       | 2402.000        | 90.5    | 33      | 29.4    | 86.9         | 94.0          | -7.1   |  |  |
| V       | 4804.000        | 44.9    | 33      | 34.9    | 46.8         | 54.0          | -7.2   |  |  |
| Н       | 7206.000        | 41.4    | 33      | 37.9    | 46.3         | 54.0          | -7.7   |  |  |
| Н       | 9608.000        | 38.8    | 33      | 40.4    | 46.2         | 54.0          | -7.8   |  |  |
| Н       | 12010.000       | 38.3    | 33      | 40.5    | 45.8         | 54.0          | -8.2   |  |  |
| Н       | 14412.000       | 38.5    | 33      | 40.0    | 45.5         | 54.0          | -8.5   |  |  |

### Middle Channel

|         |           |         | Pre-Amp | Antenna | Net at       | Average Limit |        |
|---------|-----------|---------|---------|---------|--------------|---------------|--------|
| Polari- | Frequency | Reading | Gain    | Factor  | 3m - Average | at 3m         | Margin |
| zation  | (MHz)     | (dBµV)  | (dB)    | (dB)    | (dBµV/m)     | (dBµV/m)      | (dB)   |
| V       | 2442.000  | 90.4    | 33      | 29.4    | 86.8         | 94.0          | -7.2   |
| V       | 4884.000  | 44.7    | 33      | 34.9    | 46.6         | 54.0          | -7.4   |
| Н       | 7326.000  | 41.4    | 33      | 37.9    | 46.3         | 54.0          | -7.7   |
| Н       | 9768.000  | 39.1    | 33      | 40.4    | 46.5         | 54.0          | -7.5   |
| Н       | 12210.000 | 38.3    | 33      | 40.5    | 45.8         | 54.0          | -8.2   |
| Н       | 14652.000 | 40.1    | 33      | 38.4    | 45.5         | 54.0          | -8.5   |

### **Highest Channel**

|         |           |         | Pre-Amp | Antenna | Net at       | Average Limit |        |
|---------|-----------|---------|---------|---------|--------------|---------------|--------|
| Polari- | Frequency | Reading | Gain    | Factor  | 3m - Average | at 3m         | Margin |
| zation  | (MHz)     | (dBµV)  | (dB)    | (dB)    | (dBµV/m)     | (dBµV/m)      | (dB)   |
| V       | 2480.000  | 90.4    | 33      | 29.4    | 86.8         | 94.0          | -7.2   |
| V       | 4960.000  | 44.7    | 33      | 34.9    | 46.6         | 54.0          | -7.4   |
| Н       | 7440.000  | 41.5    | 33      | 37.9    | 46.4         | 54.0          | -7.6   |
| Н       | 9920.000  | 38.8    | 33      | 40.4    | 46.2         | 54.0          | -7.8   |
| Н       | 12400.000 | 38.4    | 33      | 40.5    | 45.9         | 54.0          | -8.1   |
| Н       | 14880.000 | 39.9    | 33      | 38.4    | 45.3         | 54.0          | -8.7   |

NOTES: 1. Average Detector is used for emission measurement.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative sign in the column shows value below limit.
- 4. Horn antenna is used for the emission over 1000MHz.
- 5. For the measurement of radiated emission, summation method was used which numerical integrating (in terms of linear power) over the transmitter occupied bandwidth.
- 6. For the linear power measurement, data in 1MHz spacing was collected by spectrum analyzer with 1MHz resolution bandwidth.

Report No.: 13090970HKG-002

Applicant: Sunflex Europe GmbH Date of Test: October 22, 2013

Model: V01105

Worst-Case Operating Mode: Standalone Transmitting (Bluetooth 4.0)

#### Table 8

# Radiated Emissions Pursuant to FCC Part 15 Section 15.249 Requirement

#### **Lowest Channel**

|         |           |         | Pre-Amp | Antenna | Net at    | Peak Limit |        |
|---------|-----------|---------|---------|---------|-----------|------------|--------|
| Polari- | Frequency | Reading | Gain    | Factor  | 3m - Peak | at 3m      | Margin |
| zation  | (MHz)     | (dBµV)  | (dB)    | (dB)    | (dBµV/m)  | (dBµV/m)   | (dB)   |
| V       | 2402.000  | 106.6   | 33      | 29.4    | 103.0     | 114.0      | -11.0  |
| ٧       | 4804.000  | 49.7    | 33      | 34.9    | 51.6      | 74.0       | -22.4  |
| Η       | 7206.000  | 45.7    | 33      | 37.9    | 50.6      | 74.0       | -23.4  |
| I       | 9608.000  | 42.8    | 33      | 40.4    | 50.2      | 74.0       | -23.8  |
| Н       | 12010.000 | 42.0    | 33      | 40.5    | 49.5      | 74.0       | -24.5  |
| Н       | 14412.000 | 42.3    | 33      | 40.0    | 49.3      | 74.0       | -24.7  |

#### Middle Channel

|         |           |         | Pre-Amp | Antenna | Net at    | Peak Limit |        |
|---------|-----------|---------|---------|---------|-----------|------------|--------|
| Polari- | Frequency | Reading | Gain    | Factor  | 3m - Peak | at 3m      | Margin |
| zation  | (MHz)     | (dBµV)  | (dB)    | (dB)    | (dBµV/m)  | (dBµV/m)   | (dB)   |
| V       | 2442.000  | 106.0   | 33      | 29.4    | 102.4     | 114.0      | -11.6  |
| V       | 4884.000  | 49.3    | 33      | 34.9    | 51.2      | 74.0       | -22.8  |
| Н       | 7326.000  | 45.5    | 33      | 37.9    | 50.4      | 74.0       | -23.6  |
| Н       | 9768.000  | 42.8    | 33      | 40.4    | 50.2      | 74.0       | -23.8  |
| Н       | 12210.000 | 42.0    | 33      | 40.5    | 49.5      | 74.0       | -24.5  |
| Н       | 14652.000 | 43.9    | 33      | 38.4    | 49.3      | 74.0       | -24.7  |

### **Highest Channel**

|         |           |         | Pre-Amp | Antenna | Net at    | Peak Limit |        |
|---------|-----------|---------|---------|---------|-----------|------------|--------|
| Polari- | Frequency | Reading | Gain    | Factor  | 3m - Peak | at 3m      | Margin |
| zation  | (MHz)     | (dBµV)  | (dB)    | (dB)    | (dBµV/m)  | (dBµV/m)   | (dB)   |
| V       | 2480.000  | 105.8   | 33      | 29.4    | 102.2     | 114.0      | -11.8  |
| V       | 4960.000  | 49.4    | 33      | 34.9    | 51.3      | 74.0       | -22.7  |
| Н       | 7440.000  | 45.4    | 33      | 37.9    | 50.3      | 74.0       | -23.7  |
| Н       | 9920.000  | 42.1    | 33      | 40.4    | 49.5      | 74.0       | -24.5  |
| Н       | 12400.000 | 41.9    | 33      | 40.5    | 49.4      | 74.0       | -24.6  |
| Н       | 14880.000 | 43.9    | 33      | 38.4    | 49.3      | 74.0       | -24.7  |

#### NOTES: 1. Peak Detector is used for emission measurement.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative sign in the column shows value below limit.
- 4. Horn antenna is used for the emission over 1000MHz.
- 5. For the measurement of radiated emission, summation method was used which numerical integrating (in terms of linear power) over the transmitter occupied bandwidth.
- 6. For the linear power measurement, data in 1MHz spacing was collected by spectrum analyzer with 1MHz resolution bandwidth.

Report No.: 13090970HKG-002

Applicant: Sunflex Europe GmbH Date of Test: October 22, 2013

Model: V01105

Worst-Case Operating Mode: Standalone Transmitting (Bluetooth 3.0)

#### Table 9

# Radiated Emissions Pursuant to FCC Part 15 Section 15.249 Requirement

#### Lowest Channel

| _0      | Onamo     |         |         |         |           |         |            |               |        |
|---------|-----------|---------|---------|---------|-----------|---------|------------|---------------|--------|
|         |           |         | Pre-Amp | Antenna | Net at    | Average | Calculated | Average Limit |        |
| Polari- | Frequency | Reading | Gain    | Factor  | 3m - Peak | Factor  | at 3m      | at 3m         | Margin |
| zation  | (MHz)     | (dBµV)  | (dB)    | (dB)    | (dBµV/m)  | (dB)    | (dBµV/m)   | (dBµV/m)      | (dB)   |
| V       | 2402.000  | 101.4   | 33      | 29.4    | 97.8      | 30.1    | 67.7       | 94.0          | -26.3  |
| V       | 4804.000  | 49.7    | 33      | 34.9    | 51.6      | 30.1    | 21.5       | 54.0          | -32.5  |
| Η       | 7206.000  | 45.7    | 33      | 37.9    | 50.6      | 30.1    | 20.5       | 54.0          | -33.5  |
| Н       | 9608.000  | 42.8    | 33      | 40.4    | 50.2      | 30.1    | 20.1       | 54.0          | -33.9  |
| Н       | 12010.000 | 42.0    | 33      | 40.5    | 49.5      | 30.1    | 19.4       | 54.0          | -34.6  |
| Н       | 14412.000 | 42.3    | 33      | 40.0    | 49.3      | 30.1    | 19.2       | 54.0          | -34.8  |

#### Middle Channel

|         |           |         | Pre-Amp | Antenna | Net at    | Average | Calculated | Average Limit |        |
|---------|-----------|---------|---------|---------|-----------|---------|------------|---------------|--------|
| Polari- | Frequency | Reading | Gain    | Factor  | 3m - Peak | Factor  | at 3m      | at 3m         | Margin |
| zation  | (MHz)     | (dBµV)  | (dB)    | (dB)    | (dBµV/m)  | (dB)    | (dBµV/m)   | (dBµV/m)      | (dB)   |
| V       | 2442.000  | 101.0   | 33      | 29.4    | 97.4      | 30.1    | 67.3       | 94.0          | -26.7  |
| V       | 4884.000  | 49.3    | 33      | 34.9    | 51.2      | 30.1    | 21.1       | 54.0          | -32.9  |
| Н       | 7326.000  | 45.5    | 33      | 37.9    | 50.4      | 30.1    | 20.3       | 54.0          | -33.7  |
| Н       | 9768.000  | 42.8    | 33      | 40.4    | 50.2      | 30.1    | 20.1       | 54.0          | -33.9  |
| Н       | 12210.000 | 42.0    | 33      | 40.5    | 49.5      | 30.1    | 19.4       | 54.0          | -34.6  |
| Н       | 14652.000 | 43.9    | 33      | 38.4    | 49.3      | 30.1    | 19.2       | 54.0          | -34.8  |

**Highest Channel** 

|         |           |         | Pre-Amp | Antenna | Net at    | Average | Calculated | Average Limit |        |
|---------|-----------|---------|---------|---------|-----------|---------|------------|---------------|--------|
| Polari- | Frequency | Reading | Gain    | Factor  | 3m - Peak | Factor  | at 3m      | at 3m         | Margin |
| zation  | (MHz)     | (dBµV)  | (dB)    | (dB)    | (dBµV/m)  | (dB)    | (dBµV/m)   | (dBµV/m)      | (dB)   |
| V       | 2480.000  | 99.6    | 33      | 29.4    | 96.0      | 30.1    | 65.9       | 94.0          | -28.1  |
| V       | 4960.000  | 49.4    | 33      | 34.9    | 51.3      | 30.1    | 21.2       | 54.0          | -32.8  |
| Н       | 7440.000  | 45.4    | 33      | 37.9    | 50.3      | 30.1    | 20.2       | 54.0          | -33.8  |
| Н       | 9920.000  | 42.1    | 33      | 40.4    | 49.5      | 30.1    | 19.4       | 54.0          | -34.6  |
| Н       | 12400.000 | 41.9    | 33      | 40.5    | 49.4      | 30.1    | 19.3       | 54.0          | -34.7  |
| Н       | 14880.000 | 43.9    | 33      | 38.4    | 49.3      | 30.1    | 19.2       | 54.0          | -34.8  |

#### NOTES: 1. Average Detector is used for emission measurement.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative sign in the column shows value below limit.
- 4. Horn antenna is used for the emission over 1000MHz.
- 5. For the measurement of radiated emission, summation method was used which numerical integrating (in terms of linear power) over the transmitter occupied bandwidth.
- 6. For the linear power measurement, data in 1MHz spacing was collected by spectrum analyzer with 1MHz resolution bandwidth.

Report No.: 13090970HKG-002

Applicant: Sunflex Europe GmbH Date of Test: October 22, 2013

Model: V01105

Worst-Case Operating Mode: Standalone Transmitting (Bluetooth 3.0)

#### Table 10

# Radiated Emissions Pursuant to FCC Part 15 Section 15.249 Requirement

#### **Lowest Channel**

|         |           |         | Pre-Amp | Antenna | Net at    | Peak Limit |        |
|---------|-----------|---------|---------|---------|-----------|------------|--------|
| Polari- | Frequency | Reading | Gain    | Factor  | 3m - Peak | at 3m      | Margin |
| zation  | (MHz)     | (dBµV)  | (dB)    | (dB)    | (dBµV/m)  | (dBµV/m)   | (dB)   |
| V       | 2402.000  | 101.4   | 33      | 29.4    | 97.8      | 114.0      | -16.2  |
| V       | 4804.000  | 49.7    | 33      | 34.9    | 51.6      | 74.0       | -22.4  |
| Н       | 7206.000  | 45.7    | 33      | 37.9    | 50.6      | 74.0       | -23.4  |
| Н       | 9608.000  | 42.8    | 33      | 40.4    | 50.2      | 74.0       | -23.8  |
| Н       | 12010.000 | 42.0    | 33      | 40.5    | 49.5      | 74.0       | -24.5  |
| Н       | 14412.000 | 42.3    | 33      | 40.0    | 49.3      | 74.0       | -24.7  |
|         |           |         |         |         |           |            |        |

#### Middle Channel

|         |           |         | Pre-Amp | Antenna | Net at    | Peak Limit |        |
|---------|-----------|---------|---------|---------|-----------|------------|--------|
| Polari- | Frequency | Reading | Gain    | Factor  | 3m - Peak | at 3m      | Margin |
| zation  | (MHz)     | (dBµV)  | (dB)    | (dB)    | (dBµV/m)  | (dBµV/m)   | (dB)   |
| V       | 2442.000  | 101.0   | 33      | 29.4    | 97.4      | 114.0      | -16.6  |
| V       | 4884.000  | 49.3    | 33      | 34.9    | 51.2      | 74.0       | -22.8  |
| Н       | 7326.000  | 45.5    | 33      | 37.9    | 50.4      | 74.0       | -23.6  |
| Н       | 9768.000  | 42.8    | 33      | 40.4    | 50.2      | 74.0       | -23.8  |
| Н       | 12210.000 | 42.0    | 33      | 40.5    | 49.5      | 74.0       | -24.5  |
| Н       | 14652.000 | 43.9    | 33      | 38.4    | 49.3      | 74.0       | -24.7  |

#### **Highest Channel**

|         |           |         | Pre-Amp | Antenna | Net at    | Peak Limit |        |
|---------|-----------|---------|---------|---------|-----------|------------|--------|
| Polari- | Frequency | Reading | Gain    | Factor  | 3m - Peak | at 3m      | Margin |
| zation  | (MHz)     | (dBµV)  | (dB)    | (dB)    | (dBµV/m)  | (dBµV/m)   | (dB)   |
| V       | 2480.000  | 99.6    | 33      | 29.4    | 96.0      | 114.0      | -18.0  |
| V       | 4960.000  | 49.4    | 33      | 34.9    | 51.3      | 74.0       | -22.7  |
| Н       | 7440.000  | 45.4    | 33      | 37.9    | 50.3      | 74.0       | -23.7  |
| Н       | 9920.000  | 42.1    | 33      | 40.4    | 49.5      | 74.0       | -24.5  |
| Н       | 12400.000 | 41.9    | 33      | 40.5    | 49.4      | 74.0       | -24.6  |
| Н       | 14880.000 | 43.9    | 33      | 38.4    | 49.3      | 74.0       | -24.7  |

#### NOTES:

- 1. Peak Detector is used for emission measurement.
- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative sign in the column shows value below limit.
- 4. Horn antenna is used for the emission over 1000MHz.
- 5. For the measurement of radiated emission, summation method was used which numerical integrating (in terms of linear power) over the transmitter occupied bandwidth.
- 6. For the linear power measurement, data in 1MHz spacing was collected by spectrum analyzer with 1MHz resolution bandwidth.

Report No.: 13090970HKG-002

Applicant: Sunflex Europe GmbH Date of Test: October 22, 2013

Model: V01105

Worst-Case Operating Mode: Simultaneous Transmitting (802.11b DSSS 11Mbps and

Bluetooth 4.0)

Radiated Emissions
Pursuant to FCC Part 15 Section 15.249 Requirement

Table 11

| 1 disdant to 1 00 1 art 13 dection 13:243 Requirement |           |         |         |         |              |               |        |  |  |
|-------------------------------------------------------|-----------|---------|---------|---------|--------------|---------------|--------|--|--|
|                                                       |           |         | Pre-Amp | Antenna | Net at       | Average Limit |        |  |  |
| Polari-                                               | Frequency | Reading | Gain    | Factor  | 3m - Average | at 3m         | Margin |  |  |
| zation                                                | (MHz)     | (dBµV)  | (dB)    | (dB)    | (dBµV/m)     | (dBµV/m)      | (dB)   |  |  |
| Н                                                     | 2402.000  | 73.4    | 33      | 29.4    | 69.8         | 94.0          | -24.2  |  |  |
| Н                                                     | 2412.000  | 91.8    | 33      | 29.4    | 88.2         | 94.0          | -5.8   |  |  |
| Н                                                     | 2437.000  | 91.4    | 33      | 29.4    | 87.8         | 94.0          | -6.2   |  |  |
| Н                                                     | 2442.000  | 72.4    | 33      | 29.4    | 68.8         | 94.0          | -25.2  |  |  |
| Н                                                     | 2462.000  | 91.0    | 33      | 29.4    | 87.4         | 94.0          | -6.6   |  |  |
| Н                                                     | 2480.000  | 72.0    | 33      | 29.4    | 68.4         | 94.0          | -25.6  |  |  |
| Н                                                     | 4814.000  | 42.9    | 33      | 34.9    | 44.8         | 54.0          | -9.2   |  |  |
| Н                                                     | 4839.000  | 42.7    | 33      | 34.9    | 44.6         | 54.0          | -9.4   |  |  |
| Н                                                     | 4854.000  | 43.3    | 33      | 34.9    | 45.2         | 54.0          | -8.8   |  |  |
| Н                                                     | 4864.000  | 43.5    | 33      | 34.9    | 45.4         | 54.0          | -8.6   |  |  |
| Н                                                     | 4879.000  | 43.1    | 33      | 34.9    | 45.0         | 54.0          | -9.0   |  |  |
| Н                                                     | 4892.000  | 42.3    | 33      | 34.9    | 44.2         | 54.0          | -9.8   |  |  |
| Н                                                     | 4904.000  | 42.9    | 33      | 34.9    | 44.8         | 54.0          | -9.2   |  |  |
| Н                                                     | 4917.000  | 42.1    | 33      | 34.9    | 44.0         | 54.0          | -10.0  |  |  |
| Н                                                     | 4942.000  | 42.7    | 33      | 34.9    | 44.6         | 54.0          | -9.4   |  |  |

NOTES: 1. Average Detector is used for emission measurement.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative sign in the column shows value below limit.
- 4. Horn antenna is used for the emission over 1000MHz.
- 5. For the measurement of radiated emission, summation method was used which numerical integrating (in terms of linear power) over the transmitter occupied bandwidth.
- 6. For the linear power measurement, data in 1MHz spacing was collected by spectrum analyzer with 1MHz resolution bandwidth.

Report No.: 13090970HKG-002

Applicant: Sunflex Europe GmbH Date of Test: October 22, 2013

Model: V01105

Worst-Case Operating Mode: Simultaneous Transmitting (802.11b DSSS 11Mbps and

Bluetooth 4.0)

Radiated Emissions
Pursuant to FCC Part 15 Section 15.249 Requirement

Table 12

| 1 disdant to 1 00 1 dit 10 0cotion 10:245 Neganement |           |         |         |         |           |            |        |  |  |
|------------------------------------------------------|-----------|---------|---------|---------|-----------|------------|--------|--|--|
|                                                      |           |         | Pre-Amp | Antenna | Net at    | Peak Limit |        |  |  |
| Polari-                                              | Frequency | Reading | Gain    | Factor  | 3m - Peak | at 3m      | Margin |  |  |
| zation                                               | (MHz)     | (dBµV)  | (dB)    | (dB)    | (dBµV/m)  | (dBµV/m)   | (dB)   |  |  |
| Н                                                    | 2402.000  | 88.4    | 33      | 29.4    | 84.8      | 114.0      | -29.2  |  |  |
| Н                                                    | 2412.000  | 102.4   | 33      | 29.4    | 98.8      | 114.0      | -15.2  |  |  |
| Н                                                    | 2437.000  | 102.0   | 33      | 29.4    | 98.4      | 114.0      | -15.6  |  |  |
| Н                                                    | 2442.000  | 87.8    | 33      | 29.4    | 84.2      | 114.0      | -29.8  |  |  |
| Н                                                    | 2462.000  | 101.2   | 33      | 29.4    | 97.6      | 114.0      | -16.4  |  |  |
| Н                                                    | 2480.000  | 87.2    | 33      | 29.4    | 83.6      | 114.0      | -30.4  |  |  |
| Н                                                    | 4814.000  | 48.3    | 33      | 34.9    | 50.2      | 74.0       | -23.8  |  |  |
| Н                                                    | 4839.000  | 48.5    | 33      | 34.9    | 50.4      | 74.0       | -23.6  |  |  |
| Н                                                    | 4854.000  | 48.9    | 33      | 34.9    | 50.8      | 74.0       | -23.2  |  |  |
| Н                                                    | 4864.000  | 48.5    | 33      | 34.9    | 50.4      | 74.0       | -23.6  |  |  |
| Н                                                    | 4879.000  | 48.1    | 33      | 34.9    | 50.0      | 74.0       | -24.0  |  |  |
| Н                                                    | 4892.000  | 48.3    | 33      | 34.9    | 50.2      | 74.0       | -23.8  |  |  |
| Н                                                    | 4904.000  | 48.3    | 33      | 34.9    | 50.2      | 74.0       | -23.8  |  |  |
| Н                                                    | 4917.000  | 48.1    | 33      | 34.9    | 50.0      | 74.0       | -24.0  |  |  |
| Н                                                    | 4942.000  | 48.5    | 33      | 34.9    | 50.4      | 74.0       | -23.6  |  |  |

NOTES: 1. Peak Detector is used for emission measurement.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative sign in the column shows value below limit.
- 4. Horn antenna is used for the emission over 1000MHz.
- 5. For the measurement of radiated emission, summation method was used which numerical integrating (in terms of linear power) over the transmitter occupied bandwidth.
- For the linear power measurement, data in 1MHz spacing was collected by spectrum analyzer with 1MHz resolution bandwidth.

Report No.: 13090970HKG-002

Applicant: Sunflex Europe GmbH Date of Test: October 22, 2013

Model: V01105

Worst-Case Operating Mode: Simultaneous Transmitting (802.11g OFDM 54Mbps and

Bluetooth 4.0)

Table 13

# Radiated Emissions Pursuant to FCC Part 15 Section 15.249 Requirement

|         | r disdant to 1 00 f art 10 000tion 10:240 Requirement |         |         |         |              |               |        |  |  |
|---------|-------------------------------------------------------|---------|---------|---------|--------------|---------------|--------|--|--|
|         |                                                       |         | Pre-Amp | Antenna | Net at       | Average Limit |        |  |  |
| Polari- | Frequency                                             | Reading | Gain    | Factor  | 3m - Average | at 3m         | Margin |  |  |
| zation  | (MHz)                                                 | (dBµV)  | (dB)    | (dB)    | (dBµV/m)     | (dBµV/m)      | (dB)   |  |  |
| Н       | 2402.000                                              | 72.2    | 33      | 29.4    | 68.6         | 94.0          | -25.4  |  |  |
| Н       | 2412.000                                              | 89.8    | 33      | 29.4    | 86.2         | 94.0          | -7.8   |  |  |
| Н       | 2437.000                                              | 89.6    | 33      | 29.4    | 86.0         | 94.0          | -8.0   |  |  |
| Н       | 2442.000                                              | 72.2    | 33      | 29.4    | 68.6         | 94.0          | -25.4  |  |  |
| Н       | 2462.000                                              | 91.4    | 33      | 29.4    | 87.8         | 94.0          | -6.2   |  |  |
| Н       | 2480.000                                              | 71.6    | 33      | 29.4    | 68.0         | 94.0          | -26.0  |  |  |
| Н       | 4814.000                                              | 42.7    | 33      | 34.9    | 44.6         | 54.0          | -9.4   |  |  |
| Н       | 4839.000                                              | 42.9    | 33      | 34.9    | 44.8         | 54.0          | -9.2   |  |  |
| Н       | 4854.000                                              | 43.5    | 33      | 34.9    | 45.4         | 54.0          | -8.6   |  |  |
| Н       | 4864.000                                              | 43.3    | 33      | 34.9    | 45.2         | 54.0          | -8.8   |  |  |
| Н       | 4879.000                                              | 43.3    | 33      | 34.9    | 45.2         | 54.0          | -8.8   |  |  |
| Н       | 4892.000                                              | 42.5    | 33      | 34.9    | 44.4         | 54.0          | -9.6   |  |  |
| Н       | 4904.000                                              | 42.7    | 33      | 34.9    | 44.6         | 54.0          | -9.4   |  |  |
| Н       | 4917.000                                              | 42.3    | 33      | 34.9    | 44.2         | 54.0          | -9.8   |  |  |
| Н       | 4942.000                                              | 42.3    | 33      | 34.9    | 44.2         | 54.0          | -9.8   |  |  |

NOTES: 1. Average Detector is used for emission measurement.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative sign in the column shows value below limit.
- 4. Horn antenna is used for the emission over 1000MHz.
- 5. For the measurement of radiated emission, summation method was used which numerical integrating (in terms of linear power) over the transmitter occupied bandwidth.
- 6. For the linear power measurement, data in 1MHz spacing was collected by spectrum analyzer with 1MHz resolution bandwidth.

Report No.: 13090970HKG-002

Applicant: Sunflex Europe GmbH Date of Test: October 22, 2013

Model: V01105

Worst-Case Operating Mode: Simultaneous Transmitting (802.11g OFDM 54Mbps and

Bluetooth 4.0)

Radiated Emissions
Pursuant to FCC Part 15 Section 15.249 Requirement

Table 14

|         | Ful       | suant to F | CC Part I | 3 Section | 15.249 Keqi | an emem    |        |
|---------|-----------|------------|-----------|-----------|-------------|------------|--------|
|         |           |            | Pre-Amp   | Antenna   | Net at      | Peak Limit |        |
| Polari- | Frequency | Reading    | Gain      | Factor    | 3m - Peak   | at 3m      | Margin |
| zation  | (MHz)     | (dBµV)     | (dB)      | (dB)      | (dBµV/m)    | (dBµV/m)   | (dB)   |
| Н       | 2402.000  | 86.4       | 33        | 29.4      | 82.8        | 114.0      | -31.2  |
| Н       | 2412.000  | 101.0      | 33        | 29.4      | 97.4        | 114.0      | -16.6  |
| Н       | 2437.000  | 100.8      | 33        | 29.4      | 97.2        | 114.0      | -16.8  |
| Н       | 2442.000  | 85.8       | 33        | 29.4      | 82.2        | 114.0      | -31.8  |
| Н       | 2462.000  | 100.4      | 33        | 29.4      | 96.8        | 114.0      | -17.2  |
| Н       | 2480.000  | 86.0       | 33        | 29.4      | 82.4        | 114.0      | -31.6  |
| Н       | 4814.000  | 48.5       | 33        | 34.9      | 50.4        | 74.0       | -23.6  |
| Н       | 4839.000  | 48.3       | 33        | 34.9      | 50.2        | 74.0       | -23.8  |
| Н       | 4854.000  | 48.5       | 33        | 34.9      | 50.4        | 74.0       | -23.6  |
| Н       | 4864.000  | 48.3       | 33        | 34.9      | 50.2        | 74.0       | -23.8  |
| Н       | 4879.000  | 48.3       | 33        | 34.9      | 50.2        | 74.0       | -23.8  |
| Н       | 4892.000  | 48.5       | 33        | 34.9      | 50.4        | 74.0       | -23.6  |
| Н       | 4904.000  | 48.3       | 33        | 34.9      | 50.2        | 74.0       | -23.8  |
| Н       | 4917.000  | 48.3       | 33        | 34.9      | 50.2        | 74.0       | -23.8  |
| Н       | 4942.000  | 48.3       | 33        | 34.9      | 50.2        | 74.0       | -23.8  |

NOTES: 1. Peak Detector is used for emission measurement.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative sign in the column shows value below limit.
- 4. Horn antenna is used for the emission over 1000MHz.
- 5. For the measurement of radiated emission, summation method was used which numerical integrating (in terms of linear power) over the transmitter occupied bandwidth.
- For the linear power measurement, data in 1MHz spacing was collected by spectrum analyzer with 1MHz resolution bandwidth.

Report No.: 13090970HKG-002

Applicant: Sunflex Europe GmbH Date of Test: October 22, 2013

Model: V01105

Worst-Case Operating Mode: Simultaneous Transmitting (802.11n HT20 mcs7 65Mbps

and Bluetooth 4.0)

Table 15

# Radiated Emissions Pursuant to FCC Part 15 Section 15.249 Requirement

|         | r disdant to 1 CC 1 art 13 Section 13.249 Nequirement |         |         |         |              |               |        |  |  |  |  |
|---------|-------------------------------------------------------|---------|---------|---------|--------------|---------------|--------|--|--|--|--|
|         |                                                       |         | Pre-Amp | Antenna | Net at       | Average Limit |        |  |  |  |  |
| Polari- | Frequency                                             | Reading | Gain    | Factor  | 3m - Average | at 3m         | Margin |  |  |  |  |
| zation  | (MHz)                                                 | (dBµV)  | (dB)    | (dB)    | (dBµV/m)     | (dBµV/m)      | (dB)   |  |  |  |  |
| Н       | 2402.000                                              | 71.4    | 33      | 29.4    | 67.8         | 94.0          | -26.2  |  |  |  |  |
| Н       | 2412.000                                              | 85.8    | 33      | 29.4    | 82.2         | 94.0          | -11.8  |  |  |  |  |
| Н       | 2437.000                                              | 85.6    | 33      | 29.4    | 82.0         | 94.0          | -12.0  |  |  |  |  |
| Н       | 2442.000                                              | 71.0    | 33      | 29.4    | 67.4         | 94.0          | -26.6  |  |  |  |  |
| Н       | 2462.000                                              | 85.4    | 33      | 29.4    | 81.8         | 94.0          | -12.2  |  |  |  |  |
| Н       | 2480.000                                              | 70.8    | 33      | 29.4    | 67.2         | 94.0          | -26.8  |  |  |  |  |
| Н       | 4814.000                                              | 42.4    | 33      | 34.9    | 44.3         | 54.0          | -9.7   |  |  |  |  |
| Н       | 4839.000                                              | 42.6    | 33      | 34.9    | 44.5         | 54.0          | -9.5   |  |  |  |  |
| Н       | 4854.000                                              | 43.3    | 33      | 34.9    | 45.2         | 54.0          | -8.8   |  |  |  |  |
| Н       | 4864.000                                              | 43.3    | 33      | 34.9    | 45.2         | 54.0          | -8.8   |  |  |  |  |
| Н       | 4879.000                                              | 43.5    | 33      | 34.9    | 45.4         | 54.0          | -8.6   |  |  |  |  |
| Н       | 4892.000                                              | 42.3    | 33      | 34.9    | 44.2         | 54.0          | -9.8   |  |  |  |  |
| Н       | 4904.000                                              | 42.7    | 33      | 34.9    | 44.6         | 54.0          | -9.4   |  |  |  |  |
| Н       | 4917.000                                              | 42.1    | 33      | 34.9    | 44.0         | 54.0          | -10.0  |  |  |  |  |
| Н       | 4942.000                                              | 42.3    | 33      | 34.9    | 44.2         | 54.0          | -9.8   |  |  |  |  |

NOTES: 1. Average Detector is used for emission measurement.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative sign in the column shows value below limit.
- 4. Horn antenna is used for the emission over 1000MHz.
- 5. For the measurement of radiated emission, summation method was used which numerical integrating (in terms of linear power) over the transmitter occupied bandwidth.
- 6. For the linear power measurement, data in 1MHz spacing was collected by spectrum analyzer with 1MHz resolution bandwidth.

Report No.: 13090970HKG-002

Applicant: Sunflex Europe GmbH Date of Test: October 22, 2013

Model: V01105

Worst-Case Operating Mode: Simultaneous Transmitting (802.11n HT20 mcs7 65Mbps

and Bluetooth 4.0)

Table 16

# Radiated Emissions Pursuant to FCC Part 15 Section 15.249 Requirement

|         | r disdant to r oo r dit to occitori 10.240 Requirement |         |         |         |           |            |        |  |  |  |  |
|---------|--------------------------------------------------------|---------|---------|---------|-----------|------------|--------|--|--|--|--|
|         |                                                        |         | Pre-Amp | Antenna | Net at    | Peak Limit |        |  |  |  |  |
| Polari- | Frequency                                              | Reading | Gain    | Factor  | 3m - Peak | at 3m      | Margin |  |  |  |  |
| zation  | (MHz)                                                  | (dBµV)  | (dB)    | (dB)    | (dBµV/m)  | (dBµV/m)   | (dB)   |  |  |  |  |
| Н       | 2402.000                                               | 85.4    | 33      | 29.4    | 81.8      | 114.0      | -32.2  |  |  |  |  |
| Н       | 2412.000                                               | 100.0   | 33      | 29.4    | 96.4      | 114.0      | -17.6  |  |  |  |  |
| Н       | 2437.000                                               | 99.8    | 33      | 29.4    | 96.2      | 114.0      | -17.8  |  |  |  |  |
| Н       | 2442.000                                               | 84.8    | 33      | 29.4    | 81.2      | 114.0      | -32.8  |  |  |  |  |
| Н       | 2462.000                                               | 99.4    | 33      | 29.4    | 95.8      | 114.0      | -18.2  |  |  |  |  |
| Н       | 2480.000                                               | 84.6    | 33      | 29.4    | 81.0      | 114.0      | -33.0  |  |  |  |  |
| Н       | 4814.000                                               | 48.3    | 33      | 34.9    | 50.2      | 74.0       | -23.8  |  |  |  |  |
| Н       | 4839.000                                               | 48.1    | 33      | 34.9    | 50.0      | 74.0       | -24.0  |  |  |  |  |
| Н       | 4854.000                                               | 48.4    | 33      | 34.9    | 50.3      | 74.0       | -23.7  |  |  |  |  |
| Н       | 4864.000                                               | 48.5    | 33      | 34.9    | 50.4      | 74.0       | -23.6  |  |  |  |  |
| Н       | 4879.000                                               | 48.1    | 33      | 34.9    | 50.0      | 74.0       | -24.0  |  |  |  |  |
| Н       | 4892.000                                               | 48.3    | 33      | 34.9    | 50.2      | 74.0       | -23.8  |  |  |  |  |
| Н       | 4904.000                                               | 48.1    | 33      | 34.9    | 50.0      | 74.0       | -24.0  |  |  |  |  |
| Н       | 4917.000                                               | 48.1    | 33      | 34.9    | 50.0      | 74.0       | -24.0  |  |  |  |  |
| Н       | 4942.000                                               | 48.3    | 33      | 34.9    | 50.2      | 74.0       | -23.8  |  |  |  |  |

NOTES: 1. Peak Detector is used for emission measurement.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative sign in the column shows value below limit.
- 4. Horn antenna is used for the emission over 1000MHz.
- 5. For the measurement of radiated emission, summation method was used which numerical integrating (in terms of linear power) over the transmitter occupied bandwidth.
- For the linear power measurement, data in 1MHz spacing was collected by spectrum analyzer with 1MHz resolution bandwidth.

Report No.: 13090970HKG-002

Applicant: Sunflex Europe GmbH Date of Test: October 22, 2013

Model: V01105

Worst-Case Operating Mode: Simultaneous Transmitting (802.11b DSSS 11Mbps and

Bluetooth 3.0)

Radiated Emissions
Pursuant to FCC Part 15 Section 15.249 Requirement

Table 17

|         | Fursuant to FCC Part 13 Section 13.249 Requirement |         |         |         |              |               |        |  |  |  |  |  |
|---------|----------------------------------------------------|---------|---------|---------|--------------|---------------|--------|--|--|--|--|--|
|         |                                                    |         | Pre-Amp | Antenna | Net at       | Average Limit |        |  |  |  |  |  |
| Polari- | Frequency                                          | Reading | Gain    | Factor  | 3m - Average | at 3m         | Margin |  |  |  |  |  |
| zation  | (MHz)                                              | (dBµV)  | (dB)    | (dB)    | (dBµV/m)     | (dBµV/m)      | (dB)   |  |  |  |  |  |
| V       | 2402.000                                           | 72.4    | 33      | 29.4    | 68.8         | 94.0          | -25.2  |  |  |  |  |  |
| V       | 2412.000                                           | 91.6    | 33      | 29.4    | 88.0         | 94.0          | -6.0   |  |  |  |  |  |
| V       | 2437.000                                           | 91.2    | 33      | 29.4    | 87.6         | 94.0          | -6.4   |  |  |  |  |  |
| Н       | 2442.000                                           | 71.9    | 33      | 29.4    | 68.3         | 94.0          | -25.7  |  |  |  |  |  |
| Н       | 2462.000                                           | 90.8    | 33      | 29.4    | 87.2         | 94.0          | -6.8   |  |  |  |  |  |
| Н       | 2480.000                                           | 71.8    | 33      | 29.4    | 68.2         | 94.0          | -25.8  |  |  |  |  |  |
| Н       | 4814.000                                           | 42.7    | 33      | 34.9    | 44.6         | 54.0          | -9.4   |  |  |  |  |  |
| Н       | 4839.000                                           | 42.6    | 33      | 34.9    | 44.5         | 54.0          | -9.5   |  |  |  |  |  |
| Н       | 4854.000                                           | 43.2    | 33      | 34.9    | 45.1         | 54.0          | -8.9   |  |  |  |  |  |
| Н       | 4864.000                                           | 43.3    | 33      | 34.9    | 45.2         | 54.0          | -8.8   |  |  |  |  |  |
| Н       | 4879.000                                           | 43.5    | 33      | 34.9    | 45.4         | 54.0          | -8.6   |  |  |  |  |  |
| Н       | 4892.000                                           | 42.5    | 33      | 34.9    | 44.4         | 54.0          | -9.6   |  |  |  |  |  |
| Н       | 4904.000                                           | 42.3    | 33      | 34.9    | 44.2         | 54.0          | -9.8   |  |  |  |  |  |
| Н       | 4917.000                                           | 42.5    | 33      | 34.9    | 44.4         | 54.0          | -9.6   |  |  |  |  |  |
| Н       | 4942.000                                           | 42.5    | 33      | 34.9    | 44.4         | 54.0          | -9.6   |  |  |  |  |  |

NOTES: 1. Average Detector is used for emission measurement.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative sign in the column shows value below limit.
- 4. Horn antenna is used for the emission over 1000MHz.
- 5. For the measurement of radiated emission, summation method was used which numerical integrating (in terms of linear power) over the transmitter occupied bandwidth.
- 6. For the linear power measurement, data in 1MHz spacing was collected by spectrum analyzer with 1MHz resolution bandwidth.

Report No.: 13090970HKG-002

Applicant: Sunflex Europe GmbH Date of Test: October 22, 2013

Model: V01105

Worst-Case Operating Mode: Simultaneous Transmitting (802.11b DSSS 11Mbps and

Bluetooth 3.0)

Table 18

Radiated Emissions
Pursuant to FCC Part 15 Section 15.249 Requirement

|         | Ful       | suant to F | CC Part I | 3 Section | 15.249 Keqi | an emem    |        |
|---------|-----------|------------|-----------|-----------|-------------|------------|--------|
|         |           |            | Pre-Amp   | Antenna   | Net at      | Peak Limit |        |
| Polari- | Frequency | Reading    | Gain      | Factor    | 3m - Peak   | at 3m      | Margin |
| zation  | (MHz)     | (dBµV)     | (dB)      | (dB)      | (dBµV/m)    | (dBµV/m)   | (dB)   |
| Н       | 2402.000  | 86.2       | 33        | 29.4      | 82.6        | 114.0      | -31.4  |
| Н       | 2412.000  | 102.3      | 33        | 29.4      | 98.7        | 114.0      | -15.3  |
| Н       | 2437.000  | 102.0      | 33        | 29.4      | 98.4        | 114.0      | -15.6  |
| Н       | 2442.000  | 85.7       | 33        | 29.4      | 82.1        | 114.0      | -31.9  |
| Н       | 2462.000  | 101.1      | 33        | 29.4      | 97.5        | 114.0      | -16.5  |
| Н       | 2480.000  | 85.6       | 33        | 29.4      | 82.0        | 114.0      | -32.0  |
| Н       | 4814.000  | 48.1       | 33        | 34.9      | 50.0        | 74.0       | -24.0  |
| Н       | 4839.000  | 48.3       | 33        | 34.9      | 50.2        | 74.0       | -23.8  |
| Н       | 4854.000  | 48.3       | 33        | 34.9      | 50.2        | 74.0       | -23.8  |
| Н       | 4864.000  | 48.3       | 33        | 34.9      | 50.2        | 74.0       | -23.8  |
| Н       | 4879.000  | 48.4       | 33        | 34.9      | 50.3        | 74.0       | -23.7  |
| Н       | 4892.000  | 48.2       | 33        | 34.9      | 50.1        | 74.0       | -23.9  |
| Н       | 4904.000  | 48.2       | 33        | 34.9      | 50.1        | 74.0       | -23.9  |
| Н       | 4917.000  | 48.1       | 33        | 34.9      | 50.0        | 74.0       | -24.0  |
| Н       | 4942.000  | 48.3       | 33        | 34.9      | 50.2        | 74.0       | -23.8  |

NOTES: 1. Peak Detector is used for emission measurement.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative sign in the column shows value below limit.
- 4. Horn antenna is used for the emission over 1000MHz.
- 5. For the measurement of radiated emission, summation method was used which numerical integrating (in terms of linear power) over the transmitter occupied bandwidth.
- For the linear power measurement, data in 1MHz spacing was collected by spectrum analyzer with 1MHz resolution bandwidth.

Report No.: 13090970HKG-002

Applicant: Sunflex Europe GmbH Date of Test: October 22, 2013

Model: V01105

Worst-Case Operating Mode: Simultaneous Transmitting (802.11g OFDM 54Mbps and

Bluetooth 3.0)

Table 19

# Radiated Emissions Pursuant to FCC Part 15 Section 15.249 Requirement

| r disdant to r CC r art 13 Section 13.243 Requirement |           |         |         |         |              |               |        |  |
|-------------------------------------------------------|-----------|---------|---------|---------|--------------|---------------|--------|--|
|                                                       |           |         | Pre-Amp | Antenna | Net at       | Average Limit |        |  |
| Polari-                                               | Frequency | Reading | Gain    | Factor  | 3m - Average | at 3m         | Margin |  |
| zation                                                | (MHz)     | (dBµV)  | (dB)    | (dB)    | (dBµV/m)     | (dBµV/m)      | (dB)   |  |
| Н                                                     | 2402.000  | 72.0    | 33      | 29.4    | 68.4         | 94.0          | -25.6  |  |
| Н                                                     | 2412.000  | 89.6    | 33      | 29.4    | 86.0         | 94.0          | -8.0   |  |
| Н                                                     | 2437.000  | 89.6    | 33      | 29.4    | 86.0         | 94.0          | -8.0   |  |
| Н                                                     | 2442.000  | 71.8    | 33      | 29.4    | 68.2         | 94.0          | -25.8  |  |
| Н                                                     | 2462.000  | 91.2    | 33      | 29.4    | 87.6         | 94.0          | -6.4   |  |
| Н                                                     | 2480.000  | 71.6    | 33      | 29.4    | 68.0         | 94.0          | -26.0  |  |
| Н                                                     | 4814.000  | 42.3    | 33      | 34.9    | 44.2         | 54.0          | -9.8   |  |
| Н                                                     | 4839.000  | 42.3    | 33      | 34.9    | 44.2         | 54.0          | -9.8   |  |
| Н                                                     | 4854.000  | 43.3    | 33      | 34.9    | 45.2         | 54.0          | -8.8   |  |
| Н                                                     | 4864.000  | 43.4    | 33      | 34.9    | 45.3         | 54.0          | -8.7   |  |
| Н                                                     | 4879.000  | 43.3    | 33      | 34.9    | 45.2         | 54.0          | -8.8   |  |
| Н                                                     | 4892.000  | 42.4    | 33      | 34.9    | 44.3         | 54.0          | -9.7   |  |
| Н                                                     | 4904.000  | 42.2    | 33      | 34.9    | 44.1         | 54.0          | -9.9   |  |
| Н                                                     | 4917.000  | 42.1    | 33      | 34.9    | 44.0         | 54.0          | -10.0  |  |
| Н                                                     | 4942.000  | 42.1    | 33      | 34.9    | 44.0         | 54.0          | -10.0  |  |

NOTES: 1. Average Detector is used for emission measurement.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative sign in the column shows value below limit.
- 4. Horn antenna is used for the emission over 1000MHz.
- 5. For the measurement of radiated emission, summation method was used which numerical integrating (in terms of linear power) over the transmitter occupied bandwidth.
- 6. For the linear power measurement, data in 1MHz spacing was collected by spectrum analyzer with 1MHz resolution bandwidth.

Report No.: 13090970HKG-002

Applicant: Sunflex Europe GmbH Date of Test: October 22, 2013

Model: V01105

Worst-Case Operating Mode: Simultaneous Transmitting (802.11g OFDM 54Mbps and

Bluetooth 3.0)

Table 20

# Radiated Emissions Pursuant to FCC Part 15 Section 15.249 Requirement

|         | r disdant to 1 00 f art 10 occitor 10:245 requirement |         |         |         |           |            |        |  |  |  |  |
|---------|-------------------------------------------------------|---------|---------|---------|-----------|------------|--------|--|--|--|--|
|         |                                                       |         | Pre-Amp | Antenna | Net at    | Peak Limit |        |  |  |  |  |
| Polari- | Frequency                                             | Reading | Gain    | Factor  | 3m - Peak | at 3m      | Margin |  |  |  |  |
| zation  | (MHz)                                                 | (dBµV)  | (dB)    | (dB)    | (dBµV/m)  | (dBµV/m)   | (dB)   |  |  |  |  |
| Н       | 2402.000                                              | 86.0    | 33      | 29.4    | 82.4      | 114.0      | -31.6  |  |  |  |  |
| Н       | 2412.000                                              | 100.7   | 33      | 29.4    | 97.1      | 114.0      | -16.9  |  |  |  |  |
| Н       | 2437.000                                              | 100.6   | 33      | 29.4    | 97.0      | 114.0      | -17.0  |  |  |  |  |
| Н       | 2442.000                                              | 85.7    | 33      | 29.4    | 82.1      | 114.0      | -31.9  |  |  |  |  |
| Н       | 2462.000                                              | 100.0   | 33      | 29.4    | 96.4      | 114.0      | -17.6  |  |  |  |  |
| Н       | 2480.000                                              | 85.7    | 33      | 29.4    | 82.1      | 114.0      | -31.9  |  |  |  |  |
| Н       | 4814.000                                              | 48.3    | 33      | 34.9    | 50.2      | 74.0       | -23.8  |  |  |  |  |
| Н       | 4839.000                                              | 48.4    | 33      | 34.9    | 50.3      | 74.0       | -23.7  |  |  |  |  |
| Н       | 4854.000                                              | 48.4    | 33      | 34.9    | 50.3      | 74.0       | -23.7  |  |  |  |  |
| Н       | 4864.000                                              | 48.2    | 33      | 34.9    | 50.1      | 74.0       | -23.9  |  |  |  |  |
| Н       | 4879.000                                              | 48.2    | 33      | 34.9    | 50.1      | 74.0       | -23.9  |  |  |  |  |
| Н       | 4892.000                                              | 48.4    | 33      | 34.9    | 50.3      | 74.0       | -23.7  |  |  |  |  |
| Н       | 4904.000                                              | 48.2    | 33      | 34.9    | 50.1      | 74.0       | -23.9  |  |  |  |  |
| Н       | 4917.000                                              | 48.2    | 33      | 34.9    | 50.1      | 74.0       | -23.9  |  |  |  |  |
| Н       | 4942.000                                              | 48.1    | 33      | 34.9    | 50.0      | 74.0       | -24.0  |  |  |  |  |
|         |                                                       |         |         |         |           |            |        |  |  |  |  |

NOTES: 1. Peak Detector is used for emission measurement.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative sign in the column shows value below limit.
- 4. Horn antenna is used for the emission over 1000MHz.
- 5. For the measurement of radiated emission, summation method was used which numerical integrating (in terms of linear power) over the transmitter occupied bandwidth.
- For the linear power measurement, data in 1MHz spacing was collected by spectrum analyzer with 1MHz resolution bandwidth.

Report No.: 13090970HKG-002

Applicant: Sunflex Europe GmbH Date of Test: October 22, 2013

Model: V01105

Worst-Case Operating Mode: Simultaneous Transmitting (802.11n HT20 mcs7 65Mbps

and Bluetooth 3.0)

Radiated Emissions
Pursuant to FCC Part 15 Section 15.249 Requirement

Table 21

|         | r disdant to 1 00 f art 13 occitori 13:243 requirement |         |         |         |              |               |        |  |  |  |
|---------|--------------------------------------------------------|---------|---------|---------|--------------|---------------|--------|--|--|--|
|         |                                                        |         | Pre-Amp | Antenna | Net at       | Average Limit |        |  |  |  |
| Polari- | Frequency                                              | Reading | Gain    | Factor  | 3m - Average | at 3m         | Margin |  |  |  |
| zation  | (MHz)                                                  | (dBµV)  | (dB)    | (dB)    | (dBµV/m)     | (dBµV/m)      | (dB)   |  |  |  |
| Н       | 2402.000                                               | 71.2    | 33      | 29.4    | 67.6         | 94.0          | -26.4  |  |  |  |
| Н       | 2412.000                                               | 85.7    | 33      | 29.4    | 82.1         | 94.0          | -11.9  |  |  |  |
| Н       | 2437.000                                               | 85.6    | 33      | 29.4    | 82.0         | 94.0          | -12.0  |  |  |  |
| Н       | 2442.000                                               | 70.8    | 33      | 29.4    | 67.2         | 94.0          | -26.8  |  |  |  |
| Н       | 2462.000                                               | 85.3    | 33      | 29.4    | 81.7         | 94.0          | -12.3  |  |  |  |
| Н       | 2480.000                                               | 70.7    | 33      | 29.4    | 67.1         | 94.0          | -26.9  |  |  |  |
| Н       | 4814.000                                               | 42.3    | 33      | 34.9    | 44.2         | 54.0          | -9.8   |  |  |  |
| Н       | 4839.000                                               | 42.3    | 33      | 34.9    | 44.2         | 54.0          | -9.8   |  |  |  |
| Н       | 4854.000                                               | 43.2    | 33      | 34.9    | 45.1         | 54.0          | -8.9   |  |  |  |
| Н       | 4864.000                                               | 43.3    | 33      | 34.9    | 45.2         | 54.0          | -8.8   |  |  |  |
| Н       | 4879.000                                               | 43.4    | 33      | 34.9    | 45.3         | 54.0          | -8.7   |  |  |  |
| Н       | 4892.000                                               | 42.2    | 33      | 34.9    | 44.1         | 54.0          | -9.9   |  |  |  |
| Н       | 4904.000                                               | 42.7    | 33      | 34.9    | 44.6         | 54.0          | -9.4   |  |  |  |
| Н       | 4917.000                                               | 42.2    | 33      | 34.9    | 44.1         | 54.0          | -9.9   |  |  |  |
| Н       | 4942.000                                               | 42.3    | 33      | 34.9    | 44.2         | 54.0          | -9.8   |  |  |  |

NOTES: 1. Average Detector is used for emission measurement.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative sign in the column shows value below limit.
- 4. Horn antenna is used for the emission over 1000MHz.
- 5. For the measurement of radiated emission, summation method was used which numerical integrating (in terms of linear power) over the transmitter occupied bandwidth.
- 6. For the linear power measurement, data in 1MHz spacing was collected by spectrum analyzer with 1MHz resolution bandwidth.

Report No.: 13090970HKG-002

Applicant: Sunflex Europe GmbH Date of Test: October 22, 2013

Model: V01105

Worst-Case Operating Mode: Simultaneous Transmitting (802.11n HT20 mcs7 65Mbps

and Bluetooth 3.0)

Table 22

# Radiated Emissions Pursuant to FCC Part 15 Section 15.249 Requirement

|          |                                                                                                                                                                   |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fursuant to FCC Fart 13 Section 13.243 Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|          |                                                                                                                                                                   | Pre-Amp                                                                                                                                                                              | Antenna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Net at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Peak Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| requency | Reading                                                                                                                                                           | Gain                                                                                                                                                                                 | Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3m - Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | at 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Margin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |
| (MHz)    | (dBµV)                                                                                                                                                            | (dB)                                                                                                                                                                                 | (dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (dBµV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (dBµV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |
| 2402.000 | 84.8                                                                                                                                                              | 33                                                                                                                                                                                   | 29.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 81.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 114.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -32.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
| 2412.000 | 99.9                                                                                                                                                              | 33                                                                                                                                                                                   | 29.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 96.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 114.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -17.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
| 2437.000 | 99.7                                                                                                                                                              | 33                                                                                                                                                                                   | 29.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 96.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 114.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -17.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
| 2442.000 | 84.7                                                                                                                                                              | 33                                                                                                                                                                                   | 29.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 81.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 114.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -32.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
| 2462.000 | 99.2                                                                                                                                                              | 33                                                                                                                                                                                   | 29.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 95.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 114.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -18.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
| 2480.000 | 84.6                                                                                                                                                              | 33                                                                                                                                                                                   | 29.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 81.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 114.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -33.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
| 4814.000 | 48.2                                                                                                                                                              | 33                                                                                                                                                                                   | 34.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 74.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -23.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
| 4839.000 | 48.1                                                                                                                                                              | 33                                                                                                                                                                                   | 34.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 74.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
| 4854.000 | 48.2                                                                                                                                                              | 33                                                                                                                                                                                   | 34.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 74.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -23.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
| 4864.000 | 48.3                                                                                                                                                              | 33                                                                                                                                                                                   | 34.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 74.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -23.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
| 4879.000 | 48.3                                                                                                                                                              | 33                                                                                                                                                                                   | 34.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 74.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -23.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
| 4892.000 | 48.2                                                                                                                                                              | 33                                                                                                                                                                                   | 34.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 74.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -23.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
| 4904.000 | 48.1                                                                                                                                                              | 33                                                                                                                                                                                   | 34.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 74.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
| 4917.000 | 48.3                                                                                                                                                              | 33                                                                                                                                                                                   | 34.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 74.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -23.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
| 4942.000 | 48.3                                                                                                                                                              | 33                                                                                                                                                                                   | 34.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 74.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -23.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
|          | (MHz)<br>2402.000<br>2412.000<br>2437.000<br>2442.000<br>2462.000<br>2480.000<br>4814.000<br>4839.000<br>4854.000<br>4864.000<br>4879.000<br>4892.000<br>4904.000 | (MHz) (dBµV) 2402.000 84.8 2412.000 99.9 2437.000 99.7 2442.000 84.7 2462.000 99.2 2480.000 84.6 4814.000 48.2 4839.000 48.1 4854.000 48.3 4879.000 48.3 4892.000 48.1 4917.000 48.3 | Frequency         Reading (dBµV)         Gain (dB)           (MHz)         (dBµV)         (dB)           (2402.000         84.8         33           (2412.000         99.9         33           (2437.000         99.7         33           (2442.000         84.7         33           (2462.000         99.2         33           (2480.000         84.6         33           (839.000         48.1         33           (854.000         48.2         33           (864.000         48.3         33           (879.000         48.3         33           (892.000         48.1         33           (8904.000         48.1         33           (4904.000         48.3         33 | Frequency (MHz)         Reading (dBµV)         Gain (dB)         Factor (dB)           2402.000         84.8         33         29.4           2412.000         99.9         33         29.4           2437.000         99.7         33         29.4           2442.000         84.7         33         29.4           2462.000         99.2         33         29.4           2480.000         84.6         33         29.4           4814.000         48.2         33         34.9           4854.000         48.1         33         34.9           4864.000         48.3         33         34.9           4879.000         48.3         33         34.9           4892.000         48.1         33         34.9           4904.000         48.1         33         34.9           4917.000         48.3         33         34.9 | Frequency (MHz)         Reading (dBμV)         Gain (dB)         Factor (dB)         3m - Peak (dBμV/m)           2402.000         84.8         33         29.4         81.2           2412.000         99.9         33         29.4         96.3           2437.000         99.7         33         29.4         96.1           2442.000         84.7         33         29.4         81.1           2462.000         99.2         33         29.4         95.6           2480.000         84.6         33         29.4         81.0           4814.000         48.2         33         34.9         50.1           4839.000         48.1         33         34.9         50.0           4854.000         48.2         33         34.9         50.1           4864.000         48.3         33         34.9         50.2           4879.000         48.3         33         34.9         50.1           4904.000         48.1         33         34.9         50.1           4904.000         48.3         33         34.9         50.0           4917.000         48.3         33         34.9         50.0 | Frequency (MHz)         Reading (dBμV)         Gain (dB)         Factor (dB)         3m - Peak (dBμV/m)         at 3m (dBμV/m)           2402.000         84.8         33         29.4         81.2         114.0           2412.000         99.9         33         29.4         96.3         114.0           2437.000         99.7         33         29.4         96.1         114.0           2442.000         84.7         33         29.4         81.1         114.0           2462.000         99.2         33         29.4         95.6         114.0           2480.000         84.6         33         29.4         81.0         114.0           4814.000         48.2         33         34.9         50.1         74.0           4839.000         48.1         33         34.9         50.1         74.0           4864.000         48.2         33         34.9         50.2         74.0           4879.000         48.3         33         34.9         50.1         74.0           4892.000         48.1         33         34.9         50.1         74.0           4817.000         48.3         33         34.9         50.2         74.0 |  |  |  |  |  |  |  |  |

NOTES: 1. Peak Detector is used for emission measurement.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative sign in the column shows value below limit.
- 4. Horn antenna is used for the emission over 1000MHz.
- 5. For the measurement of radiated emission, summation method was used which numerical integrating (in terms of linear power) over the transmitter occupied bandwidth.
- For the linear power measurement, data in 1MHz spacing was collected by spectrum analyzer with 1MHz resolution bandwidth.

Report No.: 13090970HKG-002

Applicant: Sunflex Europe GmbH Date of Test: October 22, 2013

Model: V01105

Worst-Case Operating Mode: WiFi + Bluetooth On with Docking

Table 23

# Radiated Emissions Pursuant to FCC Part 15 Section 15.109 Requirement

|              |           |         | Pre- | Antenna | Net      | Limit    |        |
|--------------|-----------|---------|------|---------|----------|----------|--------|
|              | Frequency | Reading | amp  | Factor  | at 3m    | at 3m    | Margin |
| Polarization | (MHz)     | (dBµV)  | (dB) | (dB)    | (dBµV/m) | (dBµV/m) | (dB)   |
| V            | 48.126    | 39.6    | 16   | 11.0    | 34.6     | 40.0     | -5.4   |
| V            | 100.025   | 38.8    | 16   | 12.0    | 34.8     | 43.5     | -8.7   |
| V            | 187.025   | 35.3    | 16   | 16.0    | 35.3     | 43.5     | -8.2   |
| Н            | 242.189   | 38.8    | 16   | 19.0    | 41.8     | 46.0     | -4.2   |
| Н            | 302.503   | 34.2    | 16   | 22.0    | 40.2     | 46.0     | -5.8   |
| Н            | 333.541   | 28.9    | 16   | 24.0    | 36.9     | 46.0     | -9.1   |
| Н            | 593.971   | 25.5    | 16   | 29.0    | 38.5     | 46.0     | -7.5   |
| Н            | 742.463   | 26.5    | 16   | 30.0    | 40.5     | 46.0     | -5.5   |
| Н            | 973.256   | 25.2    | 16   | 33.0    | 42.2     | 54.0     | -11.8  |

NOTES: 1. Peak Detector Data unless otherwise stated.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative sign in the column shows value below limit.
- 4. Horn antenna is used for the emission over 1000MHz.

Report No.: 13090970HKG-002

# 4.0 **Equipment Photographs**

For electronic filing, the photographs are saved with filename: external photos.pdf and internal photos.pdf.

# 5.0 **Product Labelling**

For electronics filing, the FCC ID label artwork and the label location are saved with filename: label.pdf.

# 6.0 <u>Technical Specifications</u>

For electronic filing, the block diagram and schematic of the tested EUT are saved with filename: block.pdf and circuit.pdf respectively.

# 7.0 **Instruction Manual**

For electronic filing, a preliminary copy of the Instruction Manual is saved with filename: manual.pdf.

This manual will be provided to the end-user with each unit sold/leased in the United States and Canada.

Report No.: 13090970HKG-002

### 8.0 **Miscellaneous Information**

The miscellaneous information includes details of the test procedure and measured bandwidth / calculation of factor such as pulse desensitization and averaging factor.

#### 8.1 Measured Bandwidth

From the following plots, they show that the fundamental emissions are confined in the specified band (2400MHz to 2483.5MHz). In case of the fundamental emissions are within two standard bandwidths from the bandedge, the delta measurement technique is used for determining bandedge compliance. Standard bandwidth is the bandwidth specified by ANSI C63.4 (2009) for frequency being measured.

Emissions radiated outside of the specified frequency bands, except harmonics, are attenuated by 50dB below the level of the fundamental or to the general radiated emissions limits in Section 15.209, whichever is the lesser attenuation, which meet the requirement of part 15.249(d).

Report No.: 13090970HKG-002

# Peak Measurement (802.11b DSSS 11Mbps)



Report No.: 13090970HKG-002

Peak Measurement (802.11b DSSS 11Mbps)

Bandedge compliance is determined by applying marker-delta method, i.e. (Bandedge Plot).

Lower bandedge

Peak Resultant field strength = Fundamental emissions (peak value) – delta from the plot

```
=102.8 dB\mu V/m - 44.5 dB
=58.3 dB\mu V/m
```

Average Resultant field strength = Fundamental emissions (average value) – delta from the plot

```
=92.6 dB\muV/m - 44.5 dB
=48.1 dB\muV/m
```

Upper bandedge

Peak Resultant field strength = Fundamental emissions (peak value) – delta from the plot

```
=102.4 dB\muV/m - 58.4 dB
=44.0 dB\muV/m
```

Average Resultant field strength = Fundamental emissions (average value) – delta from the plot

```
=92.2 dB\mu V/m - 58.4 dB
=33.8 dB\mu V/m
```

The resultant field strength meets the general radiated emission limit in section 15.209, which does not exceed 74 dB $\mu$ V/m (Peak Limit) and 54 dB $\mu$ V/m (Average Limit).

Report No.: 13090970HKG-002

## Peak Measurement (802.11g OFDM 54Mbps)



Report No.: 13090970HKG-002

Peak Measurement (802.11g OFDM 54Mbps)

Bandedge compliance is determined by applying marker-delta method, i.e. (Bandedge Plot).

Lower bandedge

Peak Resultant field strength = Fundamental emissions (peak value) – delta from the plot

```
=101.2 dB\mu V/m - 28.4 dB =72.8 dB\mu V/m
```

Average Resultant field strength = Fundamental emissions (average value) – delta from the plot

```
=81.8 dB\muV/m - 28.4 dB
=53.4 dB\muV/m
```

Upper bandedge

Peak Resultant field strength = Fundamental emissions (peak value) – delta from the plot

```
=100.4 dB\muV/m - 46.3 dB
=54.1 dB\muV/m
```

Average Resultant field strength = Fundamental emissions (average value) – delta from the plot

```
=81.2 dB\muV/m - 46.3 dB
=34.9 dB\muV/m
```

The resultant field strength meets the general radiated emission limit in section 15.209, which does not exceed 74 dB $\mu$ V/m (Peak Limit) and 54 dB $\mu$ V/m (Average Limit).

Report No.: 13090970HKG-002

## Peak Measurement (802.11n HT20 mcs7 65Mbps)



Report No.: 13090970HKG-002

Peak Measurement (802.11n HT20 mcs7 65Mbps)

Bandedge compliance is determined by applying marker-delta method, i.e. (Bandedge Plot).

Lower bandedge

Peak Resultant field strength = Fundamental emissions (peak value) – delta from the plot

```
=100.9 dB\mu V/m - 28.5 dB =72.4 dB\mu V/m
```

Average Resultant field strength = Fundamental emissions (average value) – delta from the plot

```
=81.6 dB\muV/m - 28.5 dB
=53.1 dB\muV/m
```

Upper bandedge

Peak Resultant field strength = Fundamental emissions (peak value) – delta from the plot

```
=100.4 dB\mu V/m - 44.4 dB =56.0 dB\mu V/m
```

Average Resultant field strength = Fundamental emissions (average value) – delta from the plot

```
=81.4 dB\muV/m - 44.4 dB
=37.0 dB\muV/m
```

The resultant field strength meets the general radiated emission limit in section 15.209, which does not exceed 74 dB $\mu$ V/m (Peak Limit) and 54 dB $\mu$ V/m (Average Limit).

Report No.: 13090970HKG-002

## Peak Measurement (Bluetooth 4.0)



Report No.: 13090970HKG-002

#### Peak Measurement (Bluetooth 4.0)

Bandedge compliance is determined by applying marker-delta method, i.e. (Bandedge Plot).

Lower bandedge

Peak Resultant field strength = Fundamental emissions (peak value) – delta from the plot

```
=103.0 dB\muV/m - 55.9 dB
=47.1 dB\muV/m
```

Average Resultant field strength = Fundamental emissions (average value) – delta from the plot

```
=86.9 dB\muV/m - 55.9 dB =31.0 dB\muV/m
```

Upper bandedge

Peak Resultant field strength = Fundamental emissions (peak value) – delta from the plot

```
=102.2 dB\muV/m - 53.8 dB
=48.4 dB\muV/m
```

Average Resultant field strength = Fundamental emissions (average value) – delta from the plot

```
=86.8 dB\mu V/m - 53.8 dB
=33.0 dB\mu V/m
```

The resultant field strength meets the general radiated emission limit in section 15.209, which does not exceed 74 dB $\mu$ V/m (Peak Limit) and 54 dB $\mu$ V/m (Average Limit).

Report No.: 13090970HKG-002

## Peak Measurement (Bluetooth 3.0)



Report No.: 13090970HKG-002

#### Peak Measurement (Bluetooth 3.0)

Bandedge compliance is determined by applying marker-delta method, i.e. (Bandedge Plot).

Lower bandedge

Peak Resultant field strength = Fundamental emissions (peak value) – delta from the plot

```
=97.8 dB\mu V/m - 44.0 dB
=53.8 dB\mu V/m
```

Average Resultant field strength = Fundamental emissions (average value) – delta from the plot

```
=67.7 dB\muV/m - 44.0 dB =23.7 dB\muV/m
```

Upper bandedge

Peak Resultant field strength = Fundamental emissions (peak value) – delta from the plot

```
=96.0 dB\mu V/m - 45.6 dB
=50.4 dB\mu V/m
```

Average Resultant field strength = Fundamental emissions (average value) – delta from the plot

```
=65.9 dB\mu V/m - 45.6 dB
=20.3 dB\mu V/m
```

The resultant field strength meets the general radiated emission limit in section 15.209, which does not exceed 74 dB $\mu$ V/m (Peak Limit) and 54 dB $\mu$ V/m (Average Limit).

Report No.: 13090970HKG-002

#### 8.2 Discussion of Pulse Desensitization

For WiFi and Bluetooth 4.0: Pulse desensitivity is not applicable for this device. Since the transmitter transmits the RF signal continuously.

For Bluetooth 3.0: The effective period (Teff) is approximately 3.125ms for a digital "1" bit which illustrated on technical specification, with a resolution bandwidth (3dB) of 1MHz, so the pulse desensitivity factor is 0dB.

## 8.3 Calculation of Average Factor

For WiFi and Bluetooth 4.0: The average factor is not applicable for this device as the transmitted signal is a continuously signal.

For Bluetooth 3.0: Based on the Bluetooth Specification Version 3.0 + EDR, the transmitter ON time for each timeslot of Bluetooth is  $625\mu s$ . DH5 has the maximum duty cycle, which consists of 5 continuous Tx slots and 1 Rx slot. Therefore one hopset take (5+1) x  $625\mu s = 3.75ms$ . For one period for a pseudo-random hopping through all 79 RF channels, it takes: 79 x 3.75ms = 296.25ms.

The dwell time for DH5 is  $5 \times 625 \mu s = 3.125 ms$ .

Therefore,

Duty Cycle (DC) = Maximum On time in 100ms/100ms = 3.125ms/100ms = 0.03125

Average Factor (AF) of Bluetooth in dB =  $20 \log_{10} (0.03125)$ = -30.1 dB

Report No.: 13090970HKG-002

#### 8.4 Emissions Test Procedures

The following is a description of the test procedure used by Intertek Testing Services Hong Kong Ltd. in the measurements of transmitter operating under the Part 15, Subpart C rules.

The test set-up and procedures described below are designed to meet the requirements of ANSI C63.4 (2009). A typical or an unmodulated CW signal at the operating frequency of the EUT has been supplied to the EUT for all measurements. Such a signal is supplied by a signal generator and an antenna in close proximity to the EUT. The signal level is sufficient to stabilize the local oscillator of the EUT.

The transmitting equipment under test (EUT) is placed on a wooden turntable which is four feet in diameter and approximately one meter in height above the ground plane. During the radiated emissions test, the turntable is rotated and any cables leaving the EUT are manipulated to find the configuration resulting in maximum emissions. The EUT is adjusted through all three orthogonal axis to obtain maximum emission levels. The antenna height and polarization are also varied during the testing to search for maximum signal levels. The height of the antenna is varied from one to four meters.

Detector function for radiated emissions is in peak mode. Average readings, when required, are taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings. A detailed description for the calculation of the average factor can be found in Exhibit 8.3.

The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower. For line conducted emissions, the range scanned is 150 kHz to 30 MHz.

Report No.: 13090970HKG-002

#### 8.4 Emissions Test Procedures (cont'd)

The EUT is warmed up for 15 minutes prior to the test.

AC power to the unit is varied from 85% to 115% nominal and variation in the fundamental emission field strength is recorded. If battery powered, a new, fully charged battery is used.

Conducted measurements were made as described in ANSI C63.4 (2009).

The IF bandwidth used for measurement of radiated signal strength was 100 kHz or greater when frequency is below 1000 MHz. Where pulsed transmissions of short enough pulse duration warrant, a greater bandwidth is selected according to the recommendations of Hewlett Packard Application Note 150-2. A discussion of whether pulse desensitivity is applicable to this unit is included in this report (See Exhibit 8.1). Above 1000 MHz, a resolution bandwidth of 1 MHz is used.

Transmitter measurements are normally conducted at a measurement distance of three meters. However, to assure low enough noise floor in the forbidden bands and above 1 GHz, signals are acquired at a distance of one meter or less. All measurements are extrapolated to three meters using inverse scaling, unless otherwise reported. Measurements taken at a closer distance are so marked.

## 9.0 **Confidentiality Request**

For electronic filing, a preliminary copy of the confidentiality request is saved with filename: request.pdf.

Report No.: 13090970HKG-002

# 10.0 **Equipment List**

## 1) Radiated Emissions Test

| Equipment            | EMI Test Receiver | Biconical Antenna | Log Periodic Antenna |
|----------------------|-------------------|-------------------|----------------------|
| Registration No.     | EW-2666           | EW-0954           | EW-0446              |
| Manufacturer         | R&S               | EMCO              | EMCO                 |
| Model No.            | ESCI7             | 3104C             | 3146                 |
| Calibration Date     | Jun. 20, 2013     | Apr. 30, 2013     | Apr. 30, 2013        |
| Calibration Due Date | Jun. 20, 2014     | Oct. 30, 2014     | Oct. 30, 2014        |

| Equipment            | Spectrum Analyzer | Double Ridged Guide Antenna |
|----------------------|-------------------|-----------------------------|
| Registration No.     | EW-2188           | EW-1015                     |
| Manufacturer         | AGILENTTECH       | EMCO                        |
| Model No.            | E4407B            | 3115                        |
| Calibration Date     | Nov. 05, 2012     | Mar. 05, 2013               |
| Calibration Due Date | Nov. 05, 2013     | Sep. 05, 2014               |

## 2) Conducted Emissions Test

| Equipment            | EMI Test Receiver | LISN          |
|----------------------|-------------------|---------------|
| Registration No.     | EW-2500           | EW-2501       |
| Manufacturer         | R&S               | R&S           |
| Model No.            | ESCI              | ENV-216       |
| Calibration Date     | Mar. 22, 2013     | Nov. 30, 2012 |
| Calibration Due Date | Feb. 28, 2014     | Nov. 30, 2013 |

## 3) Bandedge Measurement

| Equipment            | Spectrum Analyzer |
|----------------------|-------------------|
| Registration No.     | EW-2329           |
| Manufacturer         | R&S               |
| Model No.            | FSP3              |
| Calibration Date     | Jan. 30, 2013     |
| Calibration Due Date | Jan. 30, 2014     |

Report No.: 13090970HKG-002