CS669/DS403 Assignment 1

September 22, 2022

Note.

- i. This is an **individual** assignment.
- ii. You should not use an ML library. For example, you cannot use scikit-learn or similar.
- iii. Submit a report with figures and discussions. The report should be named as PRA1_rollnum.pdf. Roll number is in lowercase. If you use a different name, your submission will not be considered.
- iv. The report should include a Google Colab page with your code and outputs.
- v. The assignment is due on 10 October 2022.
 - 1. You are going to perform speech activity detection (SAD.) Given a sequence of signal frames, classify each frame as speech or non-speech. Two types of 1-D features are provided: short-time energy, and Melfilterbank energy. Which of these features are better at correctly detecting speech? Plot ROC curves to justify your choice.
 - You can use a simple unimodal Gaussian to estimate the distribution of the features. Use sample mean and sample variance as parameters of the Gaussian.
 - The ground truth files are provided with 1 meaning speech and 0 meaning non-speech.
 - Use Segment 2 for estimating the model and segment 3 for testing (ie ROC curves will be computed on Segment 3.)

• Refer to ROC curves in Duda's textbook (Sec 2.8.3)

Expected outputs

Plot of ROC curves for each feature used.

- 2. Develop a Bayes classifier with Gaussian class conditional densities to classify two datasets, each having 3 classes. The first dataset is linearly separable, and the second is not. Use random 50% of data for training and 50% for test. Build the following classifiers C1-C4:
 - C1: Covariance for all classes is $I\sigma^2$. Use the average of the sample variances for all dimensions, for all classes, from the training data as σ^2 .
 - C2: Full but equal covariance for all classes, Σ . Use the average of the sample covariance matrix from all classes in the train data as Σ .
 - C3: Diagonal covariance matrix, distinct for each class. Use variances from the sample covariance matrix for each class.
 - C4: Full covariance matrix, distinct for each class. Use the sample covariance matrix for each class.

Expected outputs

- (a) Summarize the classifier performance as in Table 1. Use separate tables for linear and non-linear data.
- (b) For each classifier, and for each dataset, plot the decision regions with class data in different colours. You will thus have 8 plots. A sample plot is shown in Figure 1.

Classifier	Acc.	Prec.	Recall	F-score
C1	•	•	•	•
C2	•	•	•	•
<i>C3</i>	•	•	•	•
C4	•	•	•	•

Table 1: Format of table for question 2. Acc = average accuracy of all classes, Prec = average precision of all classes, Recall = average recall of all classes, F-score = average F-score of all classes.

Acknowledgement: Q2 is based on a similar one prepared at Speech and Vision Lab, IIT Madras.

Figure 1: Sample plot for classifier ${\it C2}.$