Derivative of scalar function w.r.t. arguments of matrix multiplication operation

Kadulin V.

October 18, 2022

Let $A \in \mathbb{R}^{N \times D}$, $B \in \mathbb{R}^{D \times M}$, $f : \mathbb{R}^{N \times M} \to \mathbb{R}$ is a differentiable function, C = AB, f(C) = y. We also know $\frac{\partial y}{\partial C}$

Derive $\frac{\partial y}{\partial A}$, $\frac{\partial y}{\partial B}$. Let's make a simple example: N=D=M=2. Then

$$A = \begin{bmatrix} a_0 & a_1 \\ a_2 & a_3 \end{bmatrix}, B = \begin{bmatrix} b_0 & b_1 \\ b_2 & b_3 \end{bmatrix}, C = \begin{bmatrix} c_0 & c_1 \\ c_2 & c_3 \end{bmatrix}.$$

1

1. Let's consider first row of A = a and first column of B = b. Then $c_0 = a \cdot b = a_0 b_0 + a_1 b_2$ is a scalar.

$$\frac{\partial y}{\partial a_0} = \frac{\partial y}{\partial c_0} \frac{\partial c_0}{\partial a_0} = \frac{\partial y}{\partial c_0} b_0$$

2. Let's consider first row of A = a and full matrix B. Then c = aB = $\begin{bmatrix} c_0 & c_1 \end{bmatrix} = \begin{bmatrix} a_0 b_0 + a_1 b_2 & a_0 b_1 + a_1 b_3 \end{bmatrix}$ is a row vector.

$$\frac{\partial y}{\partial a_0} = \frac{\partial y}{\partial c} \frac{\partial c}{\partial a_0} = \begin{bmatrix} \frac{\partial y}{\partial c_0} & \frac{\partial y}{\partial c_1} \end{bmatrix} \begin{bmatrix} b_0 & b_1 \end{bmatrix}^\top$$

Note that:

- left operand is i-th row in $\frac{\partial y}{\partial C}$, $0 \le i < N$
- right operand is transposed j-th row in $B, 0 \le j < D$

So,
$$\frac{\partial y}{\partial A} = \frac{\partial y}{\partial C} B^{\top}$$
.

$\mathbf{2} \qquad \frac{\partial y}{\partial E}$

1. Let's consider first row of A=a and first column of B=b. Then $c_0=a\cdot b=a_0b_0+a_1b_2$ is a scalar.

$$\frac{\partial y}{\partial b_0} = \frac{\partial y}{\partial c_0} \frac{\partial c_0}{\partial b_0} = \frac{\partial y}{\partial c_0} a_0$$

2. Let's consider full matrix A and first column of B = b. Then $c = Ab = \begin{bmatrix} c_0 \\ c_2 \end{bmatrix} = \begin{bmatrix} a_0b_0 + a_1b_2 \\ a_2b_0 + a_3b_2 \end{bmatrix}$ is a column vector.

$$\frac{\partial y}{\partial b_0} = \frac{\partial y}{\partial c} \frac{\partial c}{\partial b_0} = \begin{bmatrix} \frac{\partial y}{\partial c_0} \\ \frac{\partial y}{\partial c_2} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} a_0 \\ a_2 \end{bmatrix} = \begin{bmatrix} a_0 \\ a_2 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \frac{\partial y}{\partial c_0} \\ \frac{\partial y}{\partial c_2} \end{bmatrix}$$

Note that:

- left operand is transposed i-th column in $A, 0 \le i < D$
- right operand is j-th column in $\frac{\partial y}{\partial C}$, $0 \leq j < M$

So,
$$\frac{\partial y}{\partial B} = A^{\top} \frac{\partial y}{\partial C}$$
.