UNIVERSIDADE FEDERAL DA GRANDE DOURADOS

Cálculo Diferencial e Integral

Derivadas

7 de Setembro de 2016

(1) Um tanque de água tem o formato de um cone circular invertido (ver figura) com raio da base igual a 2 metros e 4 metros de altura. Se água está sendo bombeada no tanque a uma taxa de $2m^3/min$, encontre a taxa de variação na qual o nível da água está crescendo quando está a 3 metros de profundidade.

- (2) Uma partícula está se movendo ao longo de uma hipérbole $y = \frac{8}{x}$. Ao alcançar o ponto (4,2), a coordenada y está decrescendo a uma taxa de 3 cm/s. Quão rápido a coordenada x do ponto está mudando neste instante.
- (3) Seja $f(x) = x \operatorname{sen} x$, com $x \in [0, 4\pi]$.
 - a) Encontre os intervalos de crescimento e decrescimento.
 - b) Encontre os pontos de máximo e mínimo locais e absolutos.
 - c) Encontre os intervalos de concavidade e os pontos de inflexão.
 - d) Use as informações dos itens anteriores e esboce o gráfico.
- (4) Seja $f(x) = \frac{2x^2 8}{x^2 16}$, com $x \in \mathbb{R}$.
 - a) Encontre os intervalos de crescimento e decrescimento.
 - b) Encontre os pontos de máximo e mínimo locais.
 - c) Encontre os intervalos de concavidade e os pontos de inflexão.
 - d) Encontre as assíntotas verticais e horizontais.
 - e) Use as informações dos itens anteriores e esboce o gráfico.
- (5) Um conteiner para estocagem retangular com uma tampa aberta deve ter um volume de 10 m^3 . O comprimento de sua base é o dobro da largura. O material para a base custa R\$10 por

metro quadrado. O material para os lados custa R\$6 por metro quadrado. Encontre o custo dos materiais para o mais barato desses conteiners.

- (6) Usando o Teorema da Diferença Constante, mostre que:
 - a) Se f'(x) = g'(x) para todo x no intervalo $(-\infty, +\infty)$, e se f e g possuem os mesmo valor em algum ponto x_0 , então f(x) = g(x) para todo x em $(-\infty, +\infty)$.
 - b) Se f'(x) = g'(x) para todo x no intervalo $(-\infty, +\infty)$, e se $f(x_0) g(x_0) = c$ em algum ponto x_0 , então

$$f(x) - g(x) = c$$

para todo x em $(-\infty, +\infty)$.

Bibliografia:

Cálculo Vol 1 - Anton, H.

Cálculo Vol 1 - Stewart, J.