CS 581 – ADVANCED ARTIFICIAL INTELLIGENCE

TOPIC: BAYESIAN NETWORKS

♦ http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

MOTIVATION

- Efficient, intuitive, and modular representation of probability distributions
 - Represent joint and conditional distributions
- Structured and efficient inference
 - Answer probability and MAP queries
- BN structure represents correlation but can be used to answer causality questions under certain conditions

AN EXAMPLE

- Five binary variables
 - Earthquake, Burglary, Alarm, MaryCalls, JohnCalls
- Assume the following
 - E and B are uncorrelated
 - E and M are related only through A; similarly, E, J, and A
 - B and M are related only through A; similarly, B, J, and A
 - M and J are directly related through A; undirectly related through E and B; otherwise, M and J are unrelated
- One approach
 - Represent and estimate the full joint P(E, B, A, M, J)
 - How many independent parameters?
 - What can you tell about the relationships between the variables?
- Alternative approach
 - Bayesian network (next slide)

BURGLARY EXAMPLE

4

Possible Queries

- \circ P(B | J = true)
- \circ $P(B \mid M = true, J = true)$
- \circ P(M | B = true)
- \circ P(M | B = false)
- \circ P(M, J | B = true)
- \circ P(M | J = true)
- **o** ...

WE'LL COVER

- Bayesian networks (in detail)
 - https://en.wikipedia.org/wiki/Bayesian_network
- Hidden Markov Models (in detail)
 - https://en.wikipedia.org/wiki/Hidden_Markov_model
- Dynamic Bayesian networks (brief)
 - https://en.wikipedia.org/wiki/Dynamic_Bayesian_network
- Influence diagrams (in detail)
 - https://en.wikipedia.org/wiki/Influence_diagram
- Causal networks (brief)

BAYESIAN NETWORKS

- Random variables = nodes
- Direct relationships = directed edges
- BNs capture independencies
 - More compact than full joint representation
- Graphs provide
 - Graph theory / efficient reasoning
 - Intuition

DIRECTED GRAPHS

- A graph consists of nodes and edges
- **Nodes:** $X = \{X_1, X_2, ..., X_n\}$
- \circ Undirected Edge: $X_i X_j$
- \circ Directed Edge: $X_i \rightarrow X_j$
- A graph is **directed** if its *all* edges are directed

RELATIONSHIPS

- $\circ X_i \rightarrow X_j$
 - X_i is the parent
 - X_i is the **child**
- \circ X_i is an **ancestor** of X_j if there is a directed path from X_i to X_i
- X_i is a **descendant** of X_j if there is a directed path from X_i to X_i
- Nondescendants(X_i) = $X \setminus Descendants(X_i)$

BAYESIAN NETWORK FACTORIZATION

$$P(X_1,...,X_n) = \prod_i P(X_i | Pa(X_i))$$

BURGLARY EXAMPLE

12

STUDENT EXAMPLE

INDEPENDENCIES

- X is independent of its non-descendants given its parents
 - $X \perp Non-descendants(X) \mid Parents(X)$
- D-separation

Independencies — D-separation

- Definition: Observed ≡ Its value is known
- Causal trail
 - $X \rightarrow Y \rightarrow Z$; E.g., Burglary \rightarrow Alarm \rightarrow MaryCalls
 - X and Z are independent if Y is observed
- Evidential trail
 - $X \leftarrow Y \leftarrow Z$; E.g., MaryCalls \leftarrow Alarm \leftarrow Burglary
 - X and Z are independent if Y is observed
- Common cause
 - $X \leftarrow Y \rightarrow Z$; E.g., JohnCalls \leftarrow Alarm \rightarrow MaryCalls
 - X and Z are independent if Y is observed
- Common effect
 - $X \rightarrow Y \leftarrow Z$; E.g., Burglary \rightarrow Alarm \leftarrow Earthquake
 - X and Z are marginally independent, but they become dependent if Y or any of Y's descendants are observed

EXAMPLES

- o X causes Y and Y causes Z; no direct relationship between X and Z
 - $\bullet \quad X \to Y \to Z$
 - Nothing is marginally independent of each other
 - Z⊥X | Y
- Y causes both X and Z; no direct relationship between X and Z
 - $X \leftarrow Y \rightarrow Z$
 - Nothing is marginally independent of each other
 - Z ⊥ X | Y
- Both X and Z cause Y; no direct relationship between X and Z
 - $X \rightarrow Y \leftarrow Z$
 - X and Z are marginally independent
 - X and Z become dependent when the value of Y is known

Independence \Leftrightarrow Factorization

- Independence ⇒ Factorization
- Factorization ⇒ Independence

REASONING PATTERNS

Causal reasoning

- From causes to effects
 - E.g., Burglary to Alarm to MaryCalls
 - E.g., Intelligence to Grade to Letter

Evidential reasoning

- From effects to the causes
 - E.g., JohnCalls to Alarm to Earthquake
 - E.g, Letter to Grade to Difficulty

Explaining away/inter-causal reasoning

- Causes of a common effect interact
 - E.g., Earthquake, Burglary, and Alarm (and Alarm's descendants)
 - E.g., Difficulty, Intelligence, and Grade (and Grade's descendants)

Inference in Bayesian Networks

- There are several methods, some are exact and some are approximate
- We will study two in this class
 - Variable elimination
 - Message passing on linear chains

QUERYING A DISTRIBUTION

• Evidence (E=e): what is known, Query (Y): variables of interest, X is the set of all variables that include E, Y, and potentially others

1. Probability query

• P(Y | e) = ?

2. MAP query

- $W = X \setminus E$ (i.e., all the non-evidence variables)
- $MAP(\mathbf{W} | \mathbf{e}) = argmax_{\mathbf{w}} P(\mathbf{w}, \mathbf{e})$
- Important: We *cannot* find **w** by finding the maximum likely value for each variable individually

3. Marginal MAP query

- $MAP(Y | e) = argmax_y P(y | e)$
- Let $\mathbf{Z} = \mathbf{X} \setminus \mathbf{E} \cup \mathbf{Y}$
- MAP($\mathbf{Y} \mid \mathbf{e}$) = argmax_y $\sum_{\mathbf{z}} P(\mathbf{z}, \mathbf{y} \mid \mathbf{e})$

20

VARIABLE ELIMINATION

• Let

- V be the set of all variables, Q be the set of query variables, E be the set of evidence variables
- $P(\mathbf{Q} \mid \mathbf{E})$ be the query
- 1. Write down the joint dist. using the Bayesian network structure
- 2. Set the variables in **E** to their respective values
- 3. Sum over all variables in $V \setminus (Q \cup E)$
 - a) Pick an order for variables in $V \setminus (Q \cup E)$
 - b) For each variable V_i in $V \setminus (Q \cup E)$, create a new factor by
 - Multiplying all the factors that contains V_i, and
 - Summing over possible values of V_i
- 4. Normalize the last remaining factor (this step is unnecessary if **E** is empty)

IRRELEVANT

- Let
 - V be the set of all variables, Q be the set of query variables, E be the set of evidence variables
 - $P(\mathbf{Q} \mid \mathbf{E})$ be the query
- \circ *Y* ∈ $V \setminus \{Q \cup E\}$ is irrelevant iff
 - $Y \notin Ancestors \ of \{Q \cup E\}$
 - o or
 - $Y \perp Q \mid E$
- Examples

VARIABLE ELIMINATION FOR MAP

- Variable elimination works by multiplying and summing
- It's also called *sum-product* algorithm
- We can use the same technique for MAP, if we replace the sum operator with a max operator
- The algorithm is called *max-product*
- A few differences
 - Sum is replaced with max
 - All variables (except evidence) are eliminated
 - We need to trace back our steps to find the MAP assignment

MARGINAL MAP

Marginal MAP query

- $MAP(Y|e) = argmax_y P(y|e)$
- Let $Z = X \setminus E \cup Y$
- MAP(Y | e) = argmax_y $\sum_{z} P(z, y | e)$
- \circ We need to sum out Z
- Max-sum-product algorithm
 - First, eliminate **Z** using sum-product algorithm
 - Then, find MAP for *Y* using max-product algorithm
- Unfortunately, max and sum cannot be interleaved
- The variables are partitioned into three disjoint sets: E, Z, Y
- \circ This partitioning limits which orders we can choose, as we can order only within $oldsymbol{Z}$ and within $oldsymbol{Y}$

VARIABLE ELIMINATION EXAMPLES

• See OneNote

MESSAGE PASSING

• We will cover this for HMMs

LINEAR GAUSSIAN EXERCISE

- Given $X \rightarrow Y$
 - $p(X) \sim N(\mu_X; \sigma_X^2)$
 - $p(Y \mid X) \sim N(\beta_0 + \beta_1 \mu_X; \sigma_Y^2)$
- Calculate
 - p(Y)
 - p(Y | X = 5)
 - p(X | Y = 5)
 - p(X,Y)

GENERAL DISCUSSION

- Applications
- Other topics
 - Approximate inference
 - Learning
 - Parameters
 - Structure