

João António da Silva Melo | 2019216747

Miguel António Gabriel de Almeida Faria | 2019216809

Relatório do Trabalho Prático RC

Introdução

Este trabalho prático foi realizado no âmbito da disciplina de Redes de Comunicação. Tem como objetivo implementar um sistema de troca de mensagens entre utilizadores, recorrendo a diversas técnicas de comunicação e com recurso aos protocolos da pilha protocolar TCP/IP. Com este relatório pretende-se mostrar a maneira como a divisão das redes foi feita, os IP's que foram atribuídos no cenário de rede e a parte inicial da rede de comunicação de suporte à aplicação (envolvendo NAT).

Trabalho Prático

Os IP's foram atribuídos de acordo com este cenário de rede. Tal como pedido no enunciado, o cenário está dividido em 4 redes com as respetivas máscaras:

- A rede atribuída à porta f1/0 do router R1e aos PCs PC1 e PC2 foi a rede 193.136.212.128/26, tendo os PCs a default gateway 193.136.212.129.
- A rede atribuída à porta f1/0 do router R2 e aos PCs PC3 e PC4 foi a rede 193.136.212.192/27, tendo os PCs a default gateway 193.136.212.193.

- A rede atribuída às portas e0/0 do router R1, R2 e R3 foi a rede 193.136.212.248/29.
- A rede atribuída à porta f1/0 do router R3 e ao Server foi a rede 10.90.0.0/24, tendo o Server a default gateway 10.90.0.1.

Comunicação P2P

Para a comunicação P2P, definimos uma rota do router R1 para a rede f1/0 do router R2, e vice-versa, de maneira que se consiga fazer a troca de pacotes, "ping", entre os PCs das duas redes.

```
ip route 193.136.212.192 255.255.255.224 193.136.212.250 R1 ip route 193.136.212.128 255.255.255.192 193.136.212.251 R2
```

Comunicação cliente-servidor

Para a comunicação cliente-servidor, definimos no router R3 duas rotas, uma para cada uma das redes a que não tinha acesso: a rede de R1, PC1 e PC2 e a rede de R2, PC3 e PC4.

```
ip route 193.136.212.128 255.255.255.192 193.136.212.251 ip route 193.136.212.192 255.255.255.224 193.136.212.250
```

Após isso, configurámos ainda no router R3 o SNAT e DNAT de acordo com os comandos fornecidos no enunciado, atribuindo-se a rede 10.90.0.0 como rede interna (inside) e a rede 193.136.212.248 como rede externa (outside).

```
access-list 30 permit 10.90.0.0 0.0.0.255
```

```
ip nat inside source list 30 interface Ethernet0/0 overload ip nat inside source static tcp 10.90.0.2 80 193.136.212.249 80 extendable
```

-Desenvolvimento do código em C

O nosso trabalho prático é constituído por 2 ficheiros .C que permitem simular as ligações TCP e UDP a um servidor.

A divisão da rede ficou definida para a utilização de UDP por parte dos clientes e do TCP por parte dos administradores, sendo que, na nossa aplicação apenas um administrador se consegue conectar, não havendo mais que um em simultâneo.

Comunicação Servidor-Cliente

Quando o servidor é iniciado, são indicadas as portas destinadas aos utilizadores e aos administradores. Assim, quando um utilizador se pretende conectar, utiliza a porta UDP, verificando-se o mesmo para o administrador, com a porta TCP. Para utilizar a comunicação Servidor-Cliente, o utilizador escolhe a opção que permite a execução desta funcionalidade, sendo que, esta só é apresentada caso este tenha a permissão no ficheiro de Registos (FicheiroRegistos.txt). Ao escolher a opção, o servidor pede ao utilizador o username da pessoa a quem se quer enviar uma mensagem e o conteúdo da mesma, fazendo a ligação com o outro utilizador através do IP e porta obtidos previamente quando este se ligou ao servidor. No nosso programa, para que o utilizador consiga visualizar a mensagem recebida, identificamos o username de quem os está a contactar e para que não haja problemas com a leitura da informação é criado um processo filho,

após a autenticação do utilizador, que estará sempre a imprimir na CL (Command-Line) toda a informação direcionada ao utilizador.

Comunicação Peer-To-Peer

Como referido no ponto anterior, a informação de todos os utilizadores, com a exceção dos administradores, é armazenada no sistema, tornando-se mais simples quando é pedida a funcionalidade P2P (Peer-To-Peer). Quando é escolhida esta opção, é novamente pedido ao utilizador o username de quem ele quer iniciar uma conversação. Após serem fornecidas as informações, por parte do utilizador, o servidor irá enviar de volta ao utilizador as informações necessárias para iniciar uma ligação com o utilizador pedido. Assim, esta mensagem irá com uma tag especial, que fará com que o processo filho escreva em memória partilhada as informações, estando o processo pai em espera até que estas estejam corretas, removendo-a após ter sido utilizada para enviar a mensagem. Do lado do recetor da mensagem, o utilizador é informado com o username de quem lhe enviou a mensagem.

Comunicação Multicast

Esta funcionalidade seria utilizada para permitir a comunicação em grupo de vários users, porém não a conseguimos implementar.

Administrador

Dado que para a ligação do administrador ao servidor apenas é necessária a validação dos dados e que este se ligue através da porta TCP, destinada às configurações, uma vez conectado, o administrador tem a capacidade de listar todos os utilizadores, acrescentar/remover utilizadores e quando não tiver mais a fazer poderá sair. A ligação no nosso programa é limitada a apenas um administrador.

Como utilizar

Utilizador => Introduzir o nome e palavra-passe, estas têm de estar previamente inseridas no ficheiro de texto e dependem de letras maiúsculas e minúsculas. Dado que, o nosso o ficheiro de configurações guarda o endereço-ip do utilizador, também é necessário que estes sejam iguais, assim, no GNS3 o utilizador terá de garantir que se está a ligar no PC que contém esse endereço IP na nossa rede. Após a sua validação, o utilizador será apresentado com um menu, sendo necessário que se escreva a sua abreviatura, por exemplo, P2P (Peer-to-Peer). De seguida, dependendo da sua opção, será indicado o que fazer.

Administrador => Esquema semelhante ao do utilizador, sendo que este consegue modificar a informação nos ficheiros, após a validação dos dados este tem acesso a todas as suas funcionalidades, tendo de fornecer comandos válidos, por exemplo, apagar um utilizador que exista. De notar que a distinção entre o administrador e o utilizador comum no nosso trabalho é feita através da porta em que este se liga, assim sendo, não é propriamente um parâmetro no nosso ficheiro de configurações que permite a sua

distinção, dado que, na teoria todos os utilizadores podem ser administradores caso se conectem com a porta destinada a esse fim.

<u>Portas e Comandos Utilizador</u> => Para se conectar como utilizador, no simulador de rede, ligar na porta 160, sendo esta a destinada ao UDP no router 3, colocando o IP 193.136.212.249. (./client 193.136.212.249 160). Para conectar como administrador será necessário ligar na porta 80 (./client 193.136.212.249 80).

<u>Portas e Comandos Servidor</u> => Apesar de o nosso código ser moldável perante a porta tcp e udp a utilizar, é necessário que esta seja mudada no GNS3, na configuração do router, caso contrário o código não funcionará. (./server porta-udp porta-tcp)