TD 4 Géométrie et nombres complexes

Rappels.

Exercice 1. Ecrire sous la forme x+iy, $(x,y) \in \mathbb{R}^2$, les nombres complexes suivants : **1.** $\forall n \in \mathbb{N}, i^n$ **2.** $\frac{1+2i}{2+i}$ **3.** $(2+3i)^3$ **4.** $\frac{2+5i}{1-i} + \frac{2-5i}{1+i}$

Exercice 2. Calculer le module et l'argument de chacun des nombres complexes suivants :

2. $-\sqrt{6} + i\sqrt{2}$ **3.** $(1-i)(\sqrt{3}-i)(\cos\frac{\pi}{5} + i\sin\frac{\pi}{5})$ **4.** $\left(\frac{1+i\sqrt{3}}{1-i}\right)^4$.

Exercice 3. Déterminer les entiers naturels n tels que $(1 - i\sqrt{3})^n$ soit

(1) imaginaire pur,

(2) réel négatif.

Exercice 4. Donner l'écriture cartésienne et l'écriture trigonométrique de $\frac{\sqrt{3}-i}{1-i}$. En déduire les valeurs de $\cos \frac{\pi}{12}$ et de $\sin \frac{\pi}{12}$.

Exercice 5.

- (1) Exprimer $\cos \theta$ à l'aide de $e^{i\theta}$ et de $e^{-i\theta}$.
- (2) Calculer $(e^{i\theta} + e^{-i\theta})^5$ à l'aide de la formule du binôme de Newton.
- (3) En regroupant les termes de la forme $e^{in\theta}$ et $e^{-in\theta}$, trouver une expression de $\cos^5\theta$ en fonction des cosinus et des sinus de multiples de θ .

Exercice 6.

- (1) Exprimer $e^{5i\theta}$ en fonction des puissances de $\cos \theta$ et de $\sin \theta$.
- (2) En déduire une expression de $\cos 5\theta$ en fonction des puissances de $\cos \theta$ et de $\sin \theta$.

Exercice 7. Soit x un nombre réel appartenant à $]-\pi,\pi[$. Déterminer le module et l'argument de $1 + e^{ix}$ (mettre $e^{i\frac{x}{2}}$ en facteur).

Exercice 8.

Soient $S = \sum_{k=0}^{n} \cos kx$ et $S' = \sum_{k=0}^{n} \sin kx$, pour $n \in \mathbb{N}^*$.

- (1) Donner une écriture trigonométrique de S + iS'.
- (2) En déduire une autre écriture de S et de S'.
- (3) Donner une autre écriture de $\sum_{k=0}^{n} {n \choose k} \cos kx$.

Cercles et droites dans le plan complexe.

Exercice 9. Déterminer l'ensemble des nombres complexes z tels que

 $(1) |1-z| \leq \frac{1}{2}$

(2) $\operatorname{Re}(1-z) \le \frac{1}{2}$ (3) $\operatorname{Re}(iz) \le \frac{1}{2}$

Exercice 10. On rappelle que l'équation d'un cercle dans le plan complexe peut être donné sous les deux formes suivantes :

- la forme $|z \omega| = r$,
- en développant la forme ci-dessus, $z\bar{z} \bar{\omega}z \omega\bar{z} + \gamma = 0$.

Donner ces deux formes pour chacun des cercles suivants :

- (1) Le cercle de centre -1 i et de rayon 3.
- (2) Le cercle d'equation $z\bar{z} + iz i\bar{z} 3 = 0$.
- (3) le cercle de diamètre le segment [A, B] où A est le point d'affixe 4+i et B le point d'affixe 1-3i.

Exercice 11. Déterminer l'ensemble des nombres complexes z tels que

(1) $|1 - \frac{1}{z}|^2 = 2$ (2) $\left|\frac{z-3}{z+3}\right| = 2$ (3) $\left|\frac{z-3}{z+3}\right| < 2$

Exercice 12. On rappelle que l'équation d'une droite dans le plan complexe peut être donnée sous les deux formes suivantes :

1

- la forme ax + bx = c, où $(a, b) \in \mathbb{R}^2 \setminus \{(0, 0)\}$,
- la forme $\bar{\omega}z + \omega \bar{z} = k$.

Donner les deux formes des équations des droites suivantes :

- (1) la droite d'equation y = 4x 2.
- (2) la droite Re(z) = 1.
- (3) la droite passant par les points d'affixe 4 + i et 1 3i.
- (4) la droite d'equation $(1+2i)\bar{z} + (1-2i)z + 4 = 0$.

Exercice 13. Calculer

- (1) le point d'intersection des droites d'équations $iz i\bar{z} = 2$ et $(1 + 2i)\bar{z} + (1 2i)z + 4 = 0$.
- (2) les points d'intersection de la droite Re(z) = 1 et du cercle |z i| = 3.
- (3) l'equation de la droite joignant les deux points d'intersection du cercle de centre -i de rayon 1 et du cercle de centre 2 + 2i de rayon 3 (il n'est pas demandé de calculer ces points d'intersection).

Racines de l'unité.

Exercice 14.

- (1) Déterminer les racines cubiques de l'unité (i.e. les complexes z tels que $z^3=1$). Donner leur forme algébrique et leur forme géométrique.
 - (2) Soient j et j' les deux racines non réelles de cette équation. Montrer que

$$j' = j^2 = \bar{j}$$
 $1 + j + j^2 = 0$.

Exercice 15. Résoudre dans $\mathbb C$ les équations :

- (1) $z^3 = 8i$,
- (2) $4z^4 = -i$,
- (3) $(z+1)^4 = -16$.

Exercice 16. Soit un entier $n \geq 2$.

- (1) Calculer la somme des racines n-èmes de l'unité dans \mathbb{C} .
- (2) Calculer le produit des racines n-èmes de l'unité dans \mathbb{C} .

Exercice 17.

- (1) En écrivant la somme des racines 5è de l'unité, trouver une relation entre $\cos(\frac{2\pi}{5})$ et $\cos(\frac{4\pi}{5})$.
- (2) En déduire les valeurs de $\cos(\frac{2\pi}{5})$ et $\cos(\frac{4\pi}{5})$.

Exercice 18. Résoudre les équations suivantes :

- (1) $z^n = \bar{z}$, pour n > 2.
- (2) $1 + 2z + 2z^2 + \ldots + 2z^{n-1} + z^n = 0$.

Exercice 19. Soit \mathbb{U}_n l'ensemble des racines n-èmes de l'unité dans \mathbb{C} . Calculer

$$\sum_{z \in \mathbb{U}_n} |z - 1|.$$

Exercice 20. Soit $a \in \mathbb{C}$ tel que |a| = 1 et z_1, \ldots, z_n les solutions de l'equation $z^n = a$. Montrer que les points d'affixes $(1 + z_1)^n, \ldots, (1 + z_n)^n$ sont alignés.

Exercice 21.

Une racine n-ième de l'unité x dans \mathbb{C} est dite *primitive* si pour toute autre racine n-ième de l'unité y il existe $k \in \mathbb{N}$ tel que $y = x^k$. Montrer que $x = e^{i\theta}$ est racine n-ième primitive de l'unité si et seulement si θ est de la forme $\frac{p}{n}$ où p est premier avec n.

Exercice 22. Pour tout $n \in \mathbb{N}^*$ on note $\mathbb{U}_n = \{z \in \mathbb{C}, z^n = 1\}$.

- (1) Montrer que si n divise $m \in \mathbb{N} \setminus \{0\}$ alors $\mathbb{U}_n \subset \mathbb{U}_m$.
- (2) Soient $m, n \in \mathbb{N} \setminus \{0\}$. Montrer que $\mathbb{U}_n \cap \mathbb{U}_m = \mathbb{U}_d$ où d = PGCD(n, m).

Exercice 23. On reprend les notations de l'exercice précédent.

(1) Montrer que pour tout $(z, z') \in \mathbb{U}_n \times \mathbb{U}_m$, on a $zz' \in \mathbb{U}_{mn}$. Soit $f : \mathbb{U}_n \times \mathbb{U}_m \to \mathbb{U}_{mn}$ l'application ainsi définie.

- (2) Montrer que f est injective si et seulement si 1 a pour unique antécédent le couple (1,1).
- (3) En déduire que f est une bijection si et seulement si n et m sont premiers entre eux.

Transformations du plan complexe.

Exercice 24. Soient $a, b, c \in \mathbb{C}$ et $f: \mathbb{C} \to \mathbb{C}$ la fonction polynomiale d'expression $f(z) = az^2 + bz + c$.

- (1) Montrer que si f est non constant, alors f est surjective.
- (2) Montrer que f est injective si et seulement si f est de degré 1.

Exercice 25. Déterminer l'expression de f(z) où $f: \mathbb{C} \to \mathbb{C}$ est

- (1) la translation de vecteur d'affixe 3 + i,
- (2) la rotation de centre 0 et d'angle $-2\pi/3$,
- (3) la rotation de centre -2 + i et d'angle $3\pi/4$,
- (4) la symétrie centrale par rapport au point 2,
- (5) l'homothetie de rapport 1/3 et de centre 3i,
- (6) la composée des deux transformations précédentes.

Exercice 26. Inversement, caractériser les applications suivantes de $\mathbb C$ dans $\mathbb C$:

- (1) f(z) = z 5 i,
- (2) $f(z) = e^{\frac{i\pi}{3}}z + 4$,
- (3) $f(z) = 3e^{\frac{i\pi}{2}}z$.

Exercice 27. Soient $f, g: \mathbb{C} \to \mathbb{C}$ les applications définies par $f(z) = -i\bar{z} + 1 + i$ et $g(z) = i\bar{z} - 1 + i$, respectivement.

- (1) Déterminer les points fixes de f, c'est à dire les $z \in \mathbb{C}$ tels que f(z) = z, et les points fixes de g.
- (2) Soit $h = f \circ q$. Quelle est cette transformation, que peut-on dire de son centre?

Exercice 28. Soit $f: \mathbb{C} \to \mathbb{C}$ l'application définie par f(z) = az + b, où $a, b \in \mathbb{C}$ et $a \neq 1$.

- (1) Montrer que f admet un unique point fixe ω .
- On écrit $a = \rho e^{i\theta}$, où $\rho, \theta \in \mathbb{R}$.
- (2) Donner l'image de $z \in \mathbb{C}$ par la rotation r de centre ω et d'angle θ .
- (3) Donner l'image de $z \in \mathbb{C}$ par l'homothétie h de centre ω et de rapport ρ .
- (4) Donner l'image d'un complexe z par $r \circ h$ en fonction de a, b et z. Que peut-on en conclure?

Exercice 29. Soit $f: z \in \mathbb{C} \mapsto (-1 + i\sqrt{3})z - i\sqrt{3}$.

- (1) Déterminer les points fixes de f.
- (2) Montrer que f est une similitude directe, c'est-à-dire la composée d'une rotation et d'une homothétie de rapport positif.
- (3) Montrer que f est la composée d'une homothétie de centre 0 dont on donnera le rapport et d'une rotation, dont on donnera le centre et l'angle.

Exercice 30. Etant donnés $a, b \in \mathbb{C}$, on définit l'application $f_{a,b} : z \mapsto az + b$.

- (1) Montrer que $f_{a,b}$ est une bijection de \mathbb{C} si et seulement si $a \neq 0$.
- (2) Montrer que l'ensemble $S = \{f_{a,b}, a \in \mathbb{C}^*, b \in \mathbb{C}\}$ muni de la loi \circ est un groupe.

Exercice 31. On considère dans cet exercice l'application $f: \mathbb{C}^* \to \mathbb{C}^*$ définie par $f(z) = \frac{1}{z}$.

- (1) Montrer que f est bijective et déterminer son application réciproque.
- (2) Déterminer l'ensemble des $z \in \mathbb{C}$ tel que $\operatorname{Im}(f(z)) \geq 0$.
- (3) Donner l'image par f de l'axe réel et l'axe imaginaire.
- (4) Montrer que l'image d'une droite passant par l'origine (privée de 0) est une droite passant par l'origine (privée de 0).
- (5) Calculer l'image par f de la droite passant par les points d'affixe 1 et i (indication : on pourra d'abord écrire l'equation en z et \bar{z} de la droite joignant ces 2 points).
 - (6) Généraliser en déterminant l'image d'une droite quelconque qui ne passe pas par 0.
 - (7) Déterminer l'image d'un cercle passant par l'origine.
 - (8) Déterminer l'image par f du cercle de centre 0 de rayon r.
 - (9) Déterminer l'image d'un cercle quelconque qui ne passe pas par l'origine.

Exercice 32. Soit $f: \mathbb{C} \to \mathbb{C}$ la fonction définie par $f(z) = \frac{-1+z}{1+z}$. (1) Montrer que f définit une bijection de $\mathbb{C} \setminus \{-1\}$ sur $\mathbb{C} \setminus \{1\}$ et calculer son inverse.

- (2) Soient $a, b \in \mathbb{R}$ tels que $a^2 > b$. Montrer que $|z|^2 + a(z + \bar{z}) + b = 0$ est l'équation du cercle de centre -a et de rayon $\sqrt{a^2 b}$.
 - (3) Ecrire l'equation de la droite Δ passant par i-1 et -2.
 - (4) Calculer l'image par f de la droite Δ .
 - (5) Soit $\rho > 0$. Calculer l'image par f du cercle de centre 0 et de rayon ρ .