au-Tilting modules over one-point extensions by a simple module at a source point *

Hanpeng Gao

Department of Mathematics, Nanjing University, Nanjing 210093, Jiangsu Province, P.R. China

Abstract

Let B be an one-point extension of a finite dimensional k-algebra A by a simple A-module at a source point i. In this paper, we classify the τ -tilting modules over B. Moreover, it is shown that there are equations

$$|\tau$$
-tilt $B| = |\tau$ -tilt $A|+|\tau$ -tilt $A/\langle e_i\rangle|$ and $|s\tau$ -tilt $B| = 2|s\tau$ -tilt $A|+|s\tau$ -tilt $A/\langle e_i\rangle|$.

As a consequence, we can calculate the numbers of τ -tilting modules and support τ -tilting modules over linearly Dynkin type algebras whose square radical are zero.

2020 Mathematics Subject Classification: 16G20, 16G60. Key words: support τ -tilting modules, one-point extensions, Dynkin type algebras.

1 Introduction

As a generalization of tilting module, the concept of support τ -tilting modules is introduced by Adachi, Iyama and Reiten[2]. They are very important in representation theory of algebras because they are in bijection with some important objects including functorially finite torsion classes, 2-term silting complexes, cluster-tilting objects. It is very interesting to calculate the number of support τ -tilting modules over a given algebra.

For Dynkin type algebras Δ_n , the numbers of tilting modules and support tilting modules were first calculated in [6] via cluster algebras, and later in [8] via representation theory.

Recall that a finite-dimensional K-algebra is said to be a Nakayama algebra if every indecomposable projective module and every indecomposable injective module has a unique composition series. May authors calculate the numbers of τ -tilting modules and support τ -tilting modules over Nakayama algebras. In particular, for square radical zero Nakayama algebra Λ_n^2 with n simple modules, there are the following recurrence relations (see, [3, 4, 5]),

$$|\tau$$
-tilt $\Lambda_n^2| = |\tau$ -tilt $\Lambda_{n-1}^2| + |\tau$ -tilt $\Lambda_{n-2}^2|$ and $|s\tau$ -tilt $\Lambda_n^2| = 2|s\tau$ -tilt $\Lambda_{n-1}^2| + |s\tau$ -tilt $\Lambda_{n-2}^2|$.

E-mail: hpgao07@163.com

^{*}This work was partially supported by NSFC (Grant No. 11971225).

In this paper, we consider τ -tilting modules and support τ -tilting modules over the one-point extension B of A by a simple A-module at a source point i. We will show that there is a bijection

$$\tau$$
-tilt $B \mapsto \tau$ -tilt $A \coprod \tau$ -tilt $A/\langle e_i \rangle$.

We also get the following equations,

$$|\tau$$
-tilt $B| = |\tau$ -tilt $A| + |\tau$ -tilt $A/\langle e_i \rangle|$ and $|s\tau$ -tilt $B| = 2|s\tau$ -tilt $A| + |s\tau$ -tilt $A/\langle e_i \rangle|$.

As an application, we can calculate the numbers of τ -tilting modules and support τ -tilting modules over linearly Dynkin type algebras whose square radical are zero.

Throughout this paper, all algebras will be basic, connected, finite dimensional K-algebras over an algebraically closed field K. For an algebra A, we denote by mod A the category of finitely generated left A-modules and by τ the Auslander-Reiten translation of A. Let P_i be the indecomposable projective module and S_i the simple module of A corresponding to the point i for $i = 1, 2, \dots, n$. For $M \in \text{mod } A$, we also denote by |M| the number of pairwise nonisomorphic indecomposable summands of M and by add M the full subcategory of mod A consisting of direct summands of finite direct sums of copies of M. For a set X, we denote by |X| the cardinality of X. For two sets $X, Y, X \coprod Y$ means the disjoint union.

2 Main results

Let A be an algebra. we recall the definition about support τ -tilting modules.

Definition 2.1. ([2, Definition 0.1]) Let $M \in \text{mod } A$.

- (1) M is τ -rigid if $\operatorname{Hom}_A(M, \tau M) = 0$.
- (2) M is τ -tilting if it is τ -rigid and |M| = |A|.
- (3) M is support τ -tilting if it is a τ -tilting A/AeA-module for some idempotent e of A.

We will denote by τ -tilt A (respectively, $s\tau$ -tilt A) the set of isomorphism classes of basic τ -tilting (respectively, support τ -tilting) A-modules.

Let $X \in \text{mod } A$. The one-point extension of A by X is defined as the following matrix algebra

$$B = \begin{pmatrix} A & X \\ 0 & k \end{pmatrix}$$

with the ordinary matrix addition and the multiplication, and we write B := A[X] with a the extension point.

Let A be an algebra with a source point i, in this paper, we always assume $B := A[S_i]$. In this case, P_a is an indecomposable projective-injective B-module and S_a is a simple injective B-module by [1, Proposition 2.5(c)].

Lemma 2.2. Let $M \in \text{mod } B$. If M is τ -rigid, then $M \oplus P_a$ is also. Moreover, if M is τ -tilting, then it have P_a as a direct summand.

Proof. Since S_i is simple, there are only two indecomposable B-modules P_a , S_a which have S_a as a composition factor and they are injective, we have τM have no S_1 as a composition factor. Thus, $\operatorname{Hom}_A(P_a,\tau M)=0$ and, we get $M\oplus P_a$ is τ -rigid. If M is τ -tilting, then it is maximal τ -rigid by [2, Theorem 2.12]. Hence, it have P_a as a direct summand.

Theorem 2.3. There is a bijection

$$\tau$$
-tilt $A \coprod \tau$ -tilt $A \coprod \tau$ -tilt $A/\langle e_i \rangle$.

Proof. Let $M \in \tau$ -tilt $A \coprod \tau$ -tilt $A/\langle e_i \rangle$. If $M \in \tau$ -tilt A, then τM has no S_a as a composition factor since the vertex a is a source in B, and hence $\operatorname{Hom}_B(P_a, \tau M) = 0$. Therefore, $M \oplus P_a$ is a τ -tilting B-module since it is τ -rigid and $|M \oplus P_a| = |M| + 1 = |A| + 1 = |B|$. If $M \in \tau$ -tilt $A/\langle e_i \rangle$, then M has no S_i as a composition factor and τM has no S_a as a composition factor. Note that there is an almost split sequence $0 \to S_i \to P_a \to S_a \to 0$, we have $\tau S_a = S_i$. Thus,

$$\operatorname{Hom}_B(M \oplus P_a \oplus S_a, \tau(M \oplus P_1 \oplus S_a)) = \operatorname{Hom}_B(M \oplus P_a \oplus S_a, \tau M \oplus S_i) = 0.$$

So, $M \oplus P_a \oplus S_a$ is a τ -tilting B-module.

Conversely, Let $M \in \tau$ -tilt B. Then we decompose M as $M = P_a \oplus N$ by Lemma 2.2. If N has no S_a as direct summand, the N is a τ -tilting $B/\langle e_a \rangle (\cong A)$ -module, that is, $N \in \tau$ -tilt A. If N has S_a as direct summand, then we decompose N as $N = S_a \oplus L$ where L has no S_a as a composition factor. We claim that L has no S_i as a composition factor. Otherwise, there is a summand K of L such that the top of K is S_i since i is a source point. In particular, $\text{Hom}_B(L, S_i) \neq 0$. This implies

$$\operatorname{Hom}_B(M, \tau M) = \operatorname{Hom}_B(L \oplus P_a \oplus S_a, \tau L \oplus S_i) \neq 0.$$

This is a contradiction. Hence, L is a τ -tilting $A/\langle e_i \rangle$ -module, that is, $L \in \tau$ -tilt $A/\langle e_i \rangle$.

Corollary 2.4. All τ -tilting B-modules are exactly those forms $P_a \oplus M_1$ and $P_a \oplus S_a \oplus M_2$ where M_1 and M_2 are τ -tilting modules over A and $A/\langle e_i \rangle$ respectively.

The above Corollary give a relation about $|\tau$ -tilt B| and $|\tau$ -tilt A|.

Corollary 2.5. We have

$$|\tau$$
-tilt $B| = |\tau$ -tilt $A| + |\tau$ -tilt $A/\langle e_i \rangle|$.

Let A be an algebra and $M \in \text{mod } A$. M is called a (classical) tilting module if

- (1) The projective dimension of M is at most one.
- (2) $\operatorname{Ext}_{A}^{1}(M, M) = 0.$
- (3) |M| = |A|.

Hence, an A-module M is tilting if and only if it is a τ -tilting and its projective dimension is at most one by the Auslander-Reiten formula. The set of all tilting A-modules will be denoted by tilt A.

Corollary 2.6. Let A be an algebra with a source i. Assume that i is not a sink and $B := A[S_i]$. All tilting B-modules are exactly those forms $P_a \oplus M_1$ where M_1 is a tilting module over A. In particular, | tilt B | = | tilt A |.

Proof. By Corollary 2.4, All τ -tilting B-modules are exactly those forms $P_a \oplus M_1$ and $P_a \oplus S_a \oplus M_2$ where M_1 and M_2 are τ -tilting modules over A and $A/\langle e_i \rangle$ respectively. Note that the projective dimension of M_1 as A-module is equal to the projective dimension of M_1 as B-module since a is a source of B. Hence $P_a \oplus M_1$ is a tilting B-module if and only if M_1 is a tilting A-module.

Since there is an exact sequence $0 \to S_i \to P_a \to S_a \to 0$ in mod B, we have the projective dimension of S_a is at most two since S_i is not projective when i is not a sink. Hence $P_a \oplus S_a \oplus M_2$ is not tilting. Thus, $|\operatorname{tilt} B| = |\operatorname{tilt} A|$.

Example 2.7. Let B be a algebra given by the quiver

$$1 \rightarrow 2 \begin{array}{c} 3 \\ 4 \end{array}$$

with $\operatorname{rad}^2 = 0$. Assume that A is the path algebra given by the quiver $3 \leftarrow 2 \rightarrow 4$, we have B = A[2]. There are five τ -tilting A-modules as follows (there are exactly all tilting-A-modules since A is hereditary)

We only have one τ -tilting $A/\langle e_2 \rangle$ -module 3 4. Hence, we get all τ -tilting B-modules by Corollary 2.4.

$$\frac{1}{2}$$
 $\frac{3}{3}$ $\frac{2}{4}$ $\frac{4}{4}$, $\frac{1}{2}$ $\frac{2}{3}$ $\frac{2}{4}$ $\frac{2}{3}$, $\frac{1}{2}$ $\frac{2}{4}$ $\frac{2}{3}$ $\frac{2}{4}$ $\frac{2}{3}$, $\frac{1}{2}$ $\frac{2}{3}$ $\frac{2}{4}$ $\frac{2}{3}$, $\frac{1}{2}$ $\frac{1}{3}$ $\frac{3}{4}$.

By Corollary 2.6,

are all tilting B-modules

Next, we will consider the relationship between $s\tau$ -tilt B and $s\tau$ -tilt A. We need the following notions.

Let A be an algebra. The support τ -tilting quiver(or Hasse quiver) H(A) of A is defined as follows (more detail can be found [2, Definition 2.29])

- vertices: the isomorphisms classes of basic support τ -tilting A-modules.
- arrows: from a module to its left mutation.

It is well known that H(A) is a poset. Let \mathcal{N} be a subposet of H(A) and $\mathcal{N}' := H(A) \setminus \mathcal{N}$. We define a new quiver $H(A)^{\mathcal{N}}$ from H(A) as follows.

- vertices: vertices in H(A) and \mathcal{N}^+ where \mathcal{N}^+ is a copy of \mathcal{N} .
- arrows: $\{a_1 \to a_2 \mid a_1 \to a_2 \in \mathcal{N}'\} \coprod \{n_2 \to a_2 \mid n_2 \to a_2, n_2 \in \mathcal{N}, a_2 \in \mathcal{N}'\} \coprod \{n_1 \to n_2, n_1^+ \to n_2^+ \mid n_1 \to n_2 \in \mathcal{N}\} \coprod \{a_1 \to n_1^+ \mid a_1 \to n_1, n_1 \in \mathcal{N}, a_1 \in \mathcal{N}'\}$

$$\coprod \{n_1^+ \to n_1 \mid n_1 \in \mathcal{N}\}.$$

Suppose that A is an algebra with an indecomposable projective-injective module Q. Let $\overline{A} := A/\operatorname{soc}(Q)$ and

$$\mathcal{N} := \{ N \in \operatorname{s}\tau\text{-tilt }\overline{A} \mid Q/\operatorname{soc}(Q) \in \operatorname{add} N \text{ and } \operatorname{Hom}_A(N,Q) = 0 \}.$$

The following Lemma can be found in [4, Theorem 3.3].

Lemma 2.8. Let A be an algebra with an indecomposable projective-injective module Q. Then there is an isomorphism of posets

$$H(A) \longleftrightarrow H(\overline{A})^{\mathcal{N}}.$$

Applying this result to the algebra B, we have the following

Proposition 2.9. Let $\mathcal{N} := \{ S_a \oplus L \mid L \in \operatorname{s}\tau\text{-tilt } A/\langle e_i \rangle \}$. Then there is an isomorphism of posets

$$H(B) \longleftrightarrow H(A \times k)^{\mathcal{N}}.$$

Proof. Take $Q = P_a$ which is an indecomposable projective-injective B-module. Since $\operatorname{soc} P_a \cong S_i$, we have $\overline{B} = B/S_i \cong A \times k$ and $P_a/S_i \cong S_a$. We only need to show $\mathcal{N} = \{S_a \oplus L \mid L \in \operatorname{s}\tau\text{-tilt }A/\langle e_i \rangle\}$ in Lemma 2.8. Note that

$$\mathcal{N} = \{ N \in \operatorname{s}\tau\text{-tilt }\overline{B} \mid Q/\operatorname{soc}(Q) \in \operatorname{add} N \text{ and } \operatorname{Hom}_B(N,Q) = 0 \}$$

$$= \{ N \in \operatorname{s}\tau\text{-tilt}(A \times k) \mid S_a \in \operatorname{add} N \text{ and } \operatorname{Hom}_B(N,P_a) = 0 \}$$

$$= \{ S_a \oplus L \mid L \in \operatorname{silt} A \text{ and } \operatorname{Hom}_B(L,P_a) = 0 \}$$

$$= \{ S_a \oplus L \mid L \in \operatorname{silt} A \text{ and } \operatorname{Hom}_A(L,S_i) = 0 \}.$$

Since i is a source point of A, this implies L has no S_i as a composition factor and hence it is exactly a support τ -tilting $A/\langle e_i \rangle$ -module. Thus, $\mathcal{N} = \{S_a \oplus L \mid L \in s\tau$ -tilt $A/\langle e_i \rangle\}$.

Corollary 2.10. We have

$$|s\tau\text{-tilt }B| = 2|s\tau\text{-tilt }A| + |s\tau\text{-tilt }A/\langle e_i\rangle|.$$

Proof. According to the definition of $H(A \times k)^{\mathcal{N}}$, we have

$$|\operatorname{H}(A\times k)^{\mathcal{N}}| = |\operatorname{H}(A\times k)| + |\mathcal{N}| = 2|\operatorname{H}(A)| + |\mathcal{N}| = 2|\operatorname{s}\tau\text{-tilt }A| + |\operatorname{s}\tau\text{-tilt }A/\langle e_i\rangle|.$$

Therefore, $|s\tau\text{-tilt }B| = |H(B)| = 2|s\tau\text{-tilt }A| + |s\tau\text{-tilt }A/\langle e_i\rangle|$ by Proposition 2.9.

Now, it is easy to draw the quiver of H(B) from the quiver of H(A) as follows.

$$H(A) \to H(A \times k) \to H(A \times k)^{\mathcal{N}} \cong H(B).$$

Example 2.11. Let A be a finite dimensional k-algebra given by the quiver

$$2 \longrightarrow 1$$
.

Considering the one-point extension of A by the simple module corresponding to the point 2, the algebra B = A[2] is given by the quiver

$$3 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 1$$

with the relation $\alpha\beta = 0$. We can get the Hasse quiver H(B) of B as follows where \mathcal{N} is remarked by red and \mathcal{N}^+ by blue.

The linearly Dynkin type algebras be the following quivers.

$$A_n: n \longrightarrow n-1 \longrightarrow \cdots \longrightarrow 2 \longrightarrow 1$$

$$D_n: n \longrightarrow n-1 \longrightarrow \cdots \longrightarrow 3$$

Take $A_n^2 := kA_n/\operatorname{rad}^2$ and $D_n^2 := kD_n/\operatorname{rad}^2$. Applying our results, we can give recurrence relations about the numbers of τ -tilting modules and support τ -tilting modules over A_n^2 and D_n^2 .

Theorem 2.12. Let Λ_n^2 be an algebra $(A_n^2 \text{ or } D_n^2)$. Then we have

(1)
$$|\tau$$
-tilt $\Lambda_n^2| = |\tau$ -tilt $\Lambda_{n-1}^2| + |\tau$ -tilt $\Lambda_{n-2}^2|$.

(2)
$$|\operatorname{s}\tau\operatorname{-tilt}\Lambda_n^2| = 2|\operatorname{s}\tau\operatorname{-tilt}\Lambda_{n-1}^2| + |\operatorname{s}\tau\operatorname{-tilt}\Lambda_{n-2}^2|.$$

Proof. Since Λ_n^2 is the one-point extension of Λ_{n-1}^2 by simple module S_{n-1} and $\Lambda_{n-1}^2/\langle e_{n-1}\rangle \cong \Lambda_{n-2}^2$. Now, the result follows from Corollary 2.5 and Corollary 2.10.

Corollary 2.13.

(1)
$$| \operatorname{tilt} A_n^2 | = 2 \ (n \geqslant 2).$$

(2)
$$|\tau\text{-tilt }A_n^2| = \frac{(1+\sqrt{5})^{n+1}-(1-\sqrt{5})^{n+1}}{\sqrt{5}\cdot 2^{n+1}}.$$

(3)
$$|s\tau\text{-tilt }A_n^2| = \frac{(1+\sqrt{2})^n - (1-\sqrt{2})^n}{2\sqrt{2}}.$$

(4)
$$| \text{tilt } D_n^2 | = 5.$$

(5)
$$|\tau$$
-tilt $D_n^2| = \frac{(2\sqrt{5}-1)(1+\sqrt{5})^{n-1}+(2\sqrt{5}+1)(1-\sqrt{5})^{n-1}}{\sqrt{5}\cdot 2^{n-1}}$.

(6)
$$|s\tau\text{-tilt }D_n^2| = \frac{(3\sqrt{2}-1)(1+\sqrt{2})^{n-1}+(3\sqrt{2}+1)(1-\sqrt{2})^{n-1}}{\sqrt{2}}.$$

Example 2.14. We give some examples of the numbers of τ -tilting modules and support τ -tilting modules over A_n^2 and D_n^2 in the following tables.

\overline{n}	1	2	3	4	5	6	7	8	9	10
$ \tau$ -tilt A_n^2	1	2	3	5	8	13	21	34	55	89
$ s\tau\text{-tilt }A_n^2 $	2	5	12	29	70	169	408	985	2378	5741

\overline{n}	4	5	6	7	8	9	10
$ \tau$ -tilt $D_n^2 $						73	118
$ \operatorname{s} \tau$ -tilt D_n^2	32	78	118	454	1026	2506	6038

References

- [1] Auslander, M. Reiten, I. and Smalø, S. O., Representation Theory of Artin Algebras, Corrected reprint of the 1995 original, Cambridge Stud. in Adv. Math. 36, Cambridge Univ. Press, Cambridge, 1997.
- [2] Adachi, T., Iyama, O. and Reiten, I., τ -tilting theory. Compos. Math., 50: 415–452 (2014)
- [3] Asai, S., Semibricks. Int. Math. Res. Not. IMRN., 00(0): 1–62 (2018)
- [4] Adachi, T., The classification of τ -tilting modules over Nakayama algebras. J. Algebra, 452: 227–262 (2016)
- [5] Gao, H. and Schiffler, R., On the number of τ -tilting modules over Nakayama algebras. SIGMA, 16, 058, 13 pages (2020)
- [6] Fomin, S. and Zelevinsky, A., Y-sytstems and generalized associahedra. Ann. Math., 158: 977–1018 (2003)
- [7] Keller, B. and Vossieck, D., Aisles in derived categories. Bull. Soc. Math. Belg. Sér. A , 40(2): 239–253 (1988)

[8] Obaid, A., Nauman, S. K. ,Fakieh, W. M. and Ringel, C. M. , The number of support-tilting modules for a Dynkin algebra. J. Integer Seq., 18(10), Article 15.10.6, 24 pp.(2015)