Amortized Complexity of Information-Theoretically Secure MPC Revisited¹

Ignacio Cascudo, Ronald Cramer, Chaoping Xing, and Chen Yuan

Presenter: Liu Xiaoyi

¹eprint 2018/429

In the BGW-model...

How to use SIMD to squeeze more "computation" into a single computation pass?

In the BGW-model...

How to use SIMD to squeeze more "computation" into a single computation pass?

With packed Shamir secret sharing.

 $\Omega(n)$ parallel instances: $O(n) \to O(1)$ communication per multiplication gate.

In the BGW-model...

How to use SIMD to squeeze more "computation" into a single computation pass?

With packed Shamir secret sharing.

 $\Omega(n)$ parallel instances: $O(n) \to O(1)$ communication per multiplication gate.

SSS requires a "large enough" field. Can we encode multiple elements in the base field together? e.g. when the base field is small (\mathbb{F}_2)

Squeezing elements together

Namely, can we have a map: $\phi: \mathbb{F}_q^k \to \mathbb{F}_{q^m}$, and some protocol to evaluate arithmetic circuits "through" ϕ :

- Input: All parties receives k inputs $\boldsymbol{x}=(x_1,...,x_k)\in\mathbb{F}_k$.
- Encode: compute $\phi(\boldsymbol{x}) \in \mathbb{F}_{q^m}$
- Compute: All parties evaluate arithmetic circuit with $\phi(x)$ as input, reconstruct output $\phi(o) \in \mathbb{F}_{q^m}$
- Decode: computing $o = \phi^{-1}(\phi(o))$

Main result fo the paper

Yes, we can! And pretty efficiently: $\forall q \forall k \exists m \exists \phi : \mathbb{F}_q^k \to \mathbb{F}_{q^m}$, where m = O(k)

Main result fo the paper

Yes, we can! And pretty efficiently: $\forall q \forall k \exists m \exists \phi : \mathbb{F}_q^k \to \mathbb{F}_{q^m}$, where m = O(k)

In malicious settings,

- Modified DN protocol with small fields: Do $\Omega(\log n)$ parallel computation, $O(n\log n) \to O(n)$ bit per gate.
- Modified DN protocol with small fields and suboptimal threshold: Combine with Packed SSS, $O(\log n) \to O(1)$ bit per gate.

What is omitted in this presentation

- The concrete construction of such ϕ , and proof of why can m=O(k). Instead, several praticle parameter choices are given.
- The detailed handling of player elimination.

The procedure

$$\phi: \mathbb{F}_q^k \to \mathbb{F}_{q^m}$$

- Input: All parties receives k inputs $\boldsymbol{x}=(x_1,...,x_k)\in\mathbb{F}_k$.
- Encode: compute $\phi(\boldsymbol{x}) \in \mathbb{F}_{q^m}$
- Compute: All parties evaluate arithmetic circuit with $\phi(x)$ as input, reconstruct output $\phi(o) \in \mathbb{F}_{q^m}$
- Decode: computing $o = \phi^{-1}(\phi(o))$

"Just use the bits"

$$\phi: \mathbb{F}_q^k \leftrightarrow \mathbb{F}_{q^k}$$

"Just use the bits"

$$\phi: \mathbb{F}_q^k \leftrightarrow \mathbb{F}_{q^k}$$

... but multiplication does not work.

Notably, \mathbb{F}_q^k contains zero divisors for $k \geq 2$.

Giving up strict inverse for multiplication

Define a pair of \mathbb{F}_q -linear maps:

$$\phi: \mathbb{F}_q^k \leftrightarrows \mathbb{F}_{q^m}: \psi$$

where ψ is the "decode multiplication" map:

$$\boldsymbol{x} * \boldsymbol{y} = \psi(\phi(\boldsymbol{x}) \cdot \phi(\boldsymbol{y}))$$

Giving up

All of the following do not necessarily hold:

•
$$\phi(\boldsymbol{x} * \boldsymbol{y}) = \phi(\boldsymbol{x}) \cdot \phi(\boldsymbol{y})$$

Define a pair •
$$\boldsymbol{x} = \psi(\phi(\boldsymbol{x}))$$

•
$$x * y * z = \psi(\phi(x) \cdot \phi(y) \cdot \phi(z))$$

where ψ is the "decode multiplication" map:

$$\boldsymbol{x} * \boldsymbol{y} = \psi(\phi(\boldsymbol{x}) \cdot \phi(\boldsymbol{y}))$$

 $(k,m)_q$ — RMFE (Reverse multiplication friendly embedding)

Define a pair of \mathbb{F}_q -linear maps:

$$\phi: \mathbb{F}_q^k \leftrightarrows \mathbb{F}_{q^m}: \psi$$

where ψ is the "decode multiplication" map:

$$\boldsymbol{x} * \boldsymbol{y} = \psi(\phi(\boldsymbol{x}) \cdot \phi(\boldsymbol{y}))$$

Thm. Exists $(k, m)_q$ -RMFE for all k, q with m = O(k)

Random gates

• (k) uniformly random \mathbb{F}_q elements

•

•

Random gates

- (k) uniformly random \mathbb{F}_q elements
- $\phi(r_1,...,r_k)$ with uniformly random $r_1,...,r_k \in \mathbb{F}_q$

•

Random gates

- (k) uniformly random \mathbb{F}_q elements
- $\phi(r_1,...,r_k)$ with uniformly random $r_1,...,r_k \in \mathbb{F}_q$
- Uniformly random $r' \in \text{Im } \phi$

Random gates

- (k) uniformly random \mathbb{F}_q elements
- $\phi(r_1,...,r_k)$ with uniformly random $r_1,...,r_k \in \mathbb{F}_q$
- Uniformly random $r' \in \operatorname{Im} \phi \qquad \longleftarrow$ This is a \mathbb{F}_q -linear subspace

The hyper-invertible matrices

 $A \in \mathbb{F}^{m \times n}$ (n < m) is super-invertible if the matrices formed by selecting any n rows of A is invertible.

The hyper-invertible matrices

 $A \in \mathbb{F}^{m \times n}$ is *hyper-invertible* if for all $k \leq \min(m, n)$, the matrices formed by selecting any k rows and k columns of A is invertible.

The hyper-invertible matrices

 $A \in \mathbb{F}^{n \times n}$ is *hyper-invertible* if for all $k \leq n$, the matrices formed by selecting any k rows and k columns of A is invertible.

The hyper-invertible matrices

 $A \in \mathbb{F}^{n \times n}$ is *hyper-invertible* if for all $k \leq n$, the matrices formed by selecting any k rows and k columns of A is invertible.

Construction: Select 2n evaluation points $\alpha_1, ..., \alpha_n, \beta_1, ..., \beta_n$. Consider the \mathbb{F} -linear map of reconstructing a degree-(n-1) polynomial from n values as evaluations at $\alpha_1, ..., \alpha_n$, and evaluate the polynomial at $\beta_1, ..., \beta_n$.

$$\lambda_{i,j} = \prod_{k \in \{1,\dots,n\} \setminus j} \frac{\beta_i - \alpha_k}{\alpha_j - \alpha_k}$$

$\Pi_{\mathrm{RandElIm}\phi}$: Generate random elements in Im ϕ

- Fixed public $n \times n$ hyper-invertible matrix M. $1 \le T \le n-2t$
- Outputs: T correct secret sharings of uniformly random Im ϕ elements

- Each party P_i uniformly samples a $s^i \in \text{Im } \phi$, shares it.
- Parties locally computes $\left(\left[r^1 \right],...,\left[r^n \right] \right)^T = M \cdot \left(\left[s^1 \right],...,\left[s^n \right] \right)^T$
- For each $T+1 \le i \le n$, P_i opens r^i , and check if it's in Im ϕ . If not, complains.
- Output unopened $[r^1], ..., [r^T]$

- RANDOM VALUES BROM HUDER INTERPRIBLE MATRICES
- I Fact: If all honest parties are happy, then $[r^1], ..., [r^T]$ are correct,
- and adversary has no information of them besides $r^1,...,r^T\in \mathrm{Im}\ \phi$
- Outputs: T correct secret sharings of uniformly random Im ϕ elements
 - Each party P_i uniformly samples a $s^i \in \text{Im } \phi$, shares it.
 - Parties locally computes $\left(\left[r^{1}\right],...,\left[r^{n}\right]\right)^{T}=M\cdot\left(\left[s^{1}\right],...,\left[s^{n}\right]\right)^{T}$
 - For each $T+1 \leq i \leq n$, P_i opens r^i , and check if it's in Im ϕ . If not, complains.
 - Output unopened $[r^1], ..., [r^T]$

$\Pi_{\mathrm{RandElIm}\phi}$: Generate random elements in Im ϕ

- Fixed public $n \times n$ hyper-invertible matrix M. $1 \le T \le n-2t$
- Outputs: T correct secret sharings of uniformly random Im ϕ elements

- Each party P_i uniformly samples a $s^i \in \text{Im } \phi$, shares it.
- Parties locally computes $\left(\left[r^1 \right],...,\left[r^n \right] \right)^T = M \cdot \left(\left[s^1 \right],...,\left[s^n \right] \right)^T$
- For each $T+1 \le i \le n$, P_i opens r^i , and check if it's in Im ϕ . If not, complains.
- Output uno

Where is M and Im ϕ defined upon?

Bundling secret sharings together

Fundmentally, the problem is that the secret space is too small, so the sharing scheme **may not be linear** over the extension field.

$$\mathbb{F}_q$$
 vs. \mathbb{F}_{q^m}

Bundling secret sharings together

Fundmentally, the problem is that the secret space is too small, so the sharing scheme **may not be linear** over the extension field.

$$\mathbb{F}_q$$
 vs. \mathbb{F}_{q^m}

But if we gather m \mathbb{F}_q -linear secret sharing together, they can natually form a \mathbb{F}_{q^m} -linear secret sharing, while being individually easily accessible.

Bundling secret sharings together

Assume we want to force the secrets to lie in \mathbb{F}_q -linear subspace $V\subseteq \mathbb{F}_{q^m}^v$

If we have m of them, we can form a $m \times n$ \mathbb{F}_q^m matrix with everyones' shares.

$$\begin{pmatrix} [x_1] \\ \dots \\ [x_m] \end{pmatrix}$$

\mathbb{F}_{q^m} elements as $\mathbb{F}_q^{m imes m}$ matrices

Fix a basis of \mathbb{F}_{q^m} as a \mathbb{F}_q -vector space. Then $\forall \lambda \in \mathbb{F}_{q^m}$:

$$\lambda \cdot (-) : \mathbb{F}_{q^m} \to \mathbb{F}_{q^m}$$

is a linear map. Thus each λ can be identified with a $\mathbb{F}_q^{m \times m}$.

\mathbb{F}_{q^m} elements as $\mathbb{F}_q^{m imes m}$ matrices

Fix a basis of \mathbb{F}_{q^m} as a \mathbb{F}_q -vector space. Then $\forall \lambda \in \mathbb{F}_{q^m}$:

$$\lambda \cdot (-) : \mathbb{F}_{q^m} \to \mathbb{F}_{q^m}$$

is a linear map. Thus each λ can be identified with a $\mathbb{F}_q^{m \times m}$.

This induces a (injective) \mathbb{F}_q -algebra morphism $\Phi: \mathbb{F}_{q^m} \to \mathbb{F}_q^{m \times m}$ that fixes \mathbb{F}_q :

$$\forall \lambda \in \mathbb{F}_{\!q} \subseteq \mathbb{F}_{\!q^m}, \Phi(\lambda) = \lambda \cdot I_{m \times m}$$

\mathbb{F}_{q^m} elements as $\mathbb{F}_q^{m imes m}$ matrices

$$\begin{pmatrix} [y_1] \\ \dots \\ [y_m] \end{pmatrix} = \lambda \cdot \begin{pmatrix} [x_1] \\ \dots \\ [x_m] \end{pmatrix} \stackrel{\text{\tiny def}}{=} \Phi(\lambda) \cdot \begin{pmatrix} [x_1] \\ \dots \\ [x_m] \end{pmatrix}$$

- $x_1, ..., x_m \in V \Rightarrow y_1, ..., y_m \in V$
- Compatible with \mathbb{F}_q -linear.

$\Pi_{\mathrm{RandElSub}(V)}$: Generate random elements in V

- Fixed \mathbb{F}_q -vector subspace $V \subseteq \mathbb{F}_{q^m}^v$.
- Fixed basis for \mathbb{F}_{q^m} as a \mathbb{F}_q -vector space.
- Fixed public $n \times n$ hyper-invertible matrix M.
- $1 \le T \le n 2t$.
- Outputs: $T \times m$ correct secret sharings of uniformly random V elements

Exactly the same as $\Pi_{\mathrm{RandElIm}\phi}$

What's missing

• Multiplication

$$(\phi \circ \psi)(\phi(\boldsymbol{x}) \cdot \phi(\boldsymbol{y})) = \phi(\boldsymbol{x} * \boldsymbol{y})$$

•

What's missing

• Multiplication

$$(\phi \circ \psi)(\phi(\boldsymbol{x}) \cdot \phi(\boldsymbol{y})) = \phi(\boldsymbol{x} * \boldsymbol{y})$$

• Verify input shares

$\Pi_{CorrInput}$: Checking the consistency of sharings

- Input: A secret sharing [x]
- Output: Accepts if $x \in \text{Im } \phi$, rejects otherwise.

- Take an unused [r] from RandElSub(Im ϕ)
- Computes [x + r], publicly opens it, checks if $x + r \in \text{Im } \phi$

Π_{ReEncode} : Computes $\phi \circ \psi$

- Input: A secret sharings [x]
- Output: $[\phi(\psi(x))]$

Π_{ReEncode} : Computes $\phi \circ \psi$

- Input: A secret sharings [x]
- Output: $[\phi(\psi(x))]$

Notice that $\phi \circ \psi$ is \mathbb{F}_q -linear, but not \mathbb{F}_{q^m} -linear, i.e. there may not exists a $\lambda \in \mathbb{F}_{q^m}$ s.t. $\phi \circ \psi = \lambda \cdot (-)$

But: $W=\left\{(x,\phi(\psi(x))):x\in\mathbb{F}_{q^m}\right\}\subseteq \left(\mathbb{F}_{q^m}\right)^2$ is a \mathbb{F}_q -linear subspace.

Π_{ReEncode} : Computes $\phi \circ \psi$

- Input: A secret sharings [x]
- Output: $[\phi(\psi(x))]$

- Take an unused $([r], [\phi(\psi(r))])$ from RandElSub(W)
- Computes [x + r], publicly opens it
- Locally compute $\phi(\psi(x+r)) [\phi(\psi(r))] = [\phi(\psi(x))]$

Conclusion

In the BGW-model, there is an efficient MPC protocol for n parties...

- ...secure against the maximal number of active corruptions $\lfloor \frac{n-1}{3} \rfloor$ that computes $\Omega(\log n)$ evaluations of a single binary circuit in parallel with an amortized communication complexity (per instance) of O(n) bits per gate.
- For every $\varepsilon > 0$, ...secure against a submaximal number of active corruptions $t < (1-\varepsilon)\frac{n}{3}$ that computes $\Omega(n\log n)$ evaluations of a single binary circuit in parallel with an amortized communication complexity (per instance) of O(1) bits per gate.

RMFE AND BOOLEAN CIRCUITS

Concatenation of RMFEs

If (ϕ_1,ψ_1) is an $(k_1,m_1)_{q^{m_2}}$ -RMFE, (ϕ_2,ψ_2) is an $(k_2,m_2)_q$ -RMFE, then the following pair of map gives a $(k_1k_2,m_1m_2)_q$ -RMFE:

$$\begin{split} \left(x_{1},...,x_{k_{1}}\right) &\mapsto \left(\phi_{2}(x_{1}),...,\phi_{2}\Big(x_{k_{1}}\Big)\right) \mapsto \phi_{1}\Big(\phi_{2}(x_{1}),...,\phi_{2}\Big(x_{k_{1}}\Big)\Big) \\ a &\mapsto \psi_{1}(a) = \Big(u_{1},...,u_{k_{1}}\Big) \mapsto \Big(\psi_{2}(u_{1}),...,\psi_{2}\Big(u_{k_{1}}\Big)\Big) \end{split}$$

RMFE AND BOOLEAN CIRCUITS

For boolean circuits

With q=2, there exists $(3,5)_2$ -RMFE and a family of $(k,m)_{32}$ -RMFE where $\frac{m}{k} \to \frac{62}{21}$.

Thus, there exists a family of $(k, m)_2$ -RMFE with $\frac{m}{k} \to 4.92...$

RMFE AND BOOLEAN CIRCUITS

Construction for relatively small k

If $1 \le k \le q+1$, there exists a $(k, 2k-1)_q$ -RMFE

Choose any primitive element a of $\mathbb{F}_{q^{2k-1}}/\mathbb{F}_q$, choose k evaluation points $\alpha_1,...,\alpha_k\in\mathbb{F}_q\cup\{\infty\}$

 ϕ is defined as (evaluate at $a \circ \text{Langrange interpolation}$)

Thank you! Q&A