Notebook UNTreeCiclo

Contents

1	C+-	+	3
	1.1	C++ plantilla	3
	1.2	Librerias	3
	1.3	Create	4
	1.4	Bitmask	4
	1.5	Custom Hashing	5
	1.6	Random	5
	1.7	Cosas de strings	5
2	\mathbf{Arb}		5
	2.1	Centroid Decomposition	5
	2.2	Hash Tree	6
	2.3	Heavy Light Decomposition	7
	2.4	Kruskal Reconstruction Tree	8
	2.5	LCA Binary Lifting	8
	2.6	LCA RMQ	9
	2.7	Sack	9
	2.8	Virtual Tree	10
3	Estr	cucturas de Datos	11
	3.1	Bit	11
	3.2	Bit 2D	11
	3.3	Cartesian Tree	11
	3.4	Disjoint Set Union	11
	3.5	Disjoint Sparse Table	12
	3.6	Dynamic Connectivity Offline	12
	3.7	DSU Bipartite	13
	3.8	Dynamic Segment Tree	13
	3.9	Implicit Treap	14
		Implicit Treap Father	15
		Li Chao	16
		Link Cut Tree	17
		Link Cut Tree Lazy	18
		Merge Sort Tree	20
		MOs Algorithm	20
		MOs Tree	$\frac{20}{20}$
		MOs Updates	21
		Ordered set	21
		Persistent Segment Tree	
	σ . $\tau \beta$	1 CLD1D0CH0 DCZHICH0 11CC	44

	3.20	Persistent Segment Tree Lazy	23
	3.21	Polynomial Updates	24
		Segment Tree Iterativo	24
	3.23	Segment Tree Recursivo	25
	3.24	Segment Tree 2D	25
	3.25	Segment Tree Beats	26
	3.26	Sparse Table	28
	3.27	Sparse Table 2D	28
	3.28	Sqrt Descomposition	28
	3.29	Treap	29
	3.30	Trie Bit	30
	3.31	Two Stacks	30
	3.32	Wavelet Tree	31
4	Fluj		32
	4.1	Blossom	32
	4.2	Dinic	32
	4.3	Edmonds Karp	34
	4.4	Hopcroft Karp	34
	4.5 4.6	Hungarian	$\frac{35}{35}$
	4.0	Maximum Bipartite Matching	35
	4.7	MCMF Vasito	36
	4.8	Scaling Algorithm	$\frac{30}{37}$
	4.9	Weighted Matching	37
	4.10	weighted Matching	31
5	Geo	ometria	38
	5.1	2D Tree	38
	5.2	3D	38
	5.3	Circulos	40
	5.4	Closest Points	42
	5.5	Convex Hull	42
	5.6	Delaunay	43
	5.7	Halfplanes	44
	5.8	KD Tree	45
	5.9	Lineas	46
		Manhattan	47
		Min Circle	47
		Puntos	48
		Poligonos	49
	5.14	Segmentos	54
	5 15	Triangle Union	55

		1		
6	Grafos	57	7.21 Miller Rabin Probabilistico	
	6.1 2sat		7.22 Mobius	
	6.2 Bellman Ford		7.23 Number Theoretic Transform	74
	6.3 Block Cut Tree		7.24 Pollard Rho	75
	6.4 Bridges Online		7.25 Simplex	75
	6.5 Camino Mas Corto De Longitud Fija		7.26 Simplex Int	76
	6.6 Clique		7.27 Totient y Divisores	77
	6.7 Cycle Directed	I	7.28 Xor Basis	77
	6.8 Cycle Undirected	61		
	6.9 Dial Algorithm	61 8		78
	6.10 Dijkstra	62	8.1 Bin Packing	78
	6.11 Dijkstra Sparse Graphs	62	8.2 Convex Hull Trick	78
	6.12 Eulerian Path Directed		8.3 CHT Dynamic	79
	6.13 Eulerian Path Undirected		8.4 Digit DP	79
	6.14 Floyd Warshall		8.5 Divide Conquer	79
	6.15 Kosaraju		8.6 Edit Distances	80
	6.16 kruskal		8.7 Kadane 2D	80
	6.17 Prim		8.8 Knuth	
	6.18 Puentes y Puntos		8.9 LIS	
	6.19 Shortest Path Faster Algorithm		8.10 SOS	
	6.20 Tarjan		0.10 505	01
	0. <u>=</u> 0	9	Strings	81
7	Matematicas	65	9.1 Aho Corasick	
	7.1 Bruijn sequences	65	9.2 Hashing	
	7.2 Convoluciones	I	9.3 Hashing 2D	
	7.3 Criba	67	9.4 KMP	
	7.4 Chinese Remainder Theorem	I	9.5 KMP Automaton	
	7.5 Divisors		9.6 Lyndon Factorization	
	7.6 Ecuaciones Diofanticas		9.7 Manacher	8/1
	7.7 Exponenciacion binaria		9.8 Minimum Expression	84
	7.8 Exponenciacion matricial		9.9 Next Permutation	
	7.9 Fast Fourier Transform		9.10 Palindromic Tree	
	7.10 Fibonacci Fast Doubling	I		
	7.11 Fraction		9.11 Suffix Array	
	7.12 Freivalds algorithm		9.12 Suffix Automaton	
	7.13 Gauss Jordan		9.13 Suffix Tree	
	7.14 Gauss Jordan mod 2		9.14 Trie	
		I	9.15 Trie Bit	
	7.15 GCD y LCM		9.16 Z Algorithm	
	7.16 Integral Definida		9.17 El especial	88
	7.17 Inverso modular	=0		
	7.18 Lagrange		10 Misc	90
	7.19 Logaritmo Discreto	73	10.1 Counting Sort	
	7.20 Miller Rabin	79	10.2 Dates	O.C

10.3	Expression Parsing
10.4	Hanoi
10.5	K mas frecuentes
10.6	5 Prefix3D
	Ternary Search
11 Tec	oría y miscelánea 9
	Sumatorias
11.2	Teoría de Grafos
	11.2.1 Teorema de Euler
	11.2.2 Planaridad de Grafos
	11.2.3 Truco del Cow Game
11.3	Teoría de Números
	11.3.1 Ecuaciones Diofánticas Lineales
	11.3.2 Pequeño Teorema de Fermat
	11.3.3 Teorema de Euler
11.4	Geometría
	11.4.1 Teorema de Pick
	11.4.2 Fórmula de Herón
	11.4.3 Relación de Existencia Triangular
11.5	6 Combinatoria
	11.5.1 Permutaciones
	11.5.2 Combinaciones
	11.5.3 Permutaciones con Repetición
	11.5.4 Combinaciones con Repetición
	11.5.5 Números de Catalan
	11.5.6 Estrellas y barras
11.6	DP Optimization Theory
1 ($\mathbb{C}++$
1 (· · · · · · · · · · · · · · · · · · ·
1.1	C++ plantilla
#ir	clude <bits stdc++.h=""></bits>
usi #de #de #de	<pre>ing namespace std; efine all(v) v.begin(), v.end() efine sz(arr) ((int) arr.size()) efine rep(i, a, b) for(int i = a; i < (b); ++i) edef pair<int, int=""> ii;</int,></pre>
tvr	<pre>pedef vector<int> vi; pedef long long ll; ust char ln = '\n';</int></pre>
#de	fine watch(x) cout<<#x<<"="< <x<<'\n'< td=""></x<<'\n'<>

```
#define print(arr) for(auto& x:arr)cout<<x<<" ";cout<<"\n</pre>
typedef long double ld;
typedef vector<ii> vii;
typedef vector<long long> v1;
typedef pair<ll, ll> pll;
typedef vector<pll> vll;
const int INF = 1e9;
const ll INFL = 1e18;
const int MOD = 1e9+7;
const double EPS = 1e-9;
const ld PI = acosl(-1);
int dirx[4] = \{0, -1, 1, 0\};
int diry[4] = \{-1, 0, 0, 1\};
int dr[] = \{1, 1, 0, -1, -1, -1, 0, 1\};
int dc[] = \{0, 1, 1, 1, 0, -1, -1, -1\};
const string ABC = "abcdefghijklmnopgrstuvwxyz";
void main2(){
int main() {
        ios::sync with stdio(false);
        cin.tie(0);
        cout << setprecision(20) << fixed;</pre>
    // freopen("file.in", "r", stdin);
// freopen("file.out", "w", stdout);
        clock t start = clock();
        main2();
        cerr<<double(clock()-start)/CLOCKS PER SEC<<" s\n
        return 0;
```

1.2 Librerias

```
// En caso de que no sirva #include <bits/stdc++.h>
#include <algorithm>
#include <iostream>
#include <iterator>
#include <sstream>
#include <fstream>
#include <cassert>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <string>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <deque>
#include <stack>
```

```
#include <list>
#include <map>
#include <set>
#include <bitset>
#include <iomanip>
#include <unordered map>
#include <tuple>
#include <random>
#include <chrono>
```

1.3 Create

```
import os
def folder(problem):
        os.makedirs(problem, exist_ok=True)
        with open(os.path.join(problem, "main.cpp"), "w")
            as f:
                f.write("")
        with open (os.path.join (problem, "in.txt"), "w")
           as f:
                f.write("")
with open ("plantilla.cpp", "w") as f:
        f.write("")
with open("out.txt", "w") as f:
        f.write("")
for i in range (ord('A'), ord('P') + 1):
        folder(chr(i))
```

1.4 Bitmask

```
los corrimientos.
                 -> Verifica si x es impar
x & 1
x & (1<<i)
                -> Verifica si el i-esimo bit esta
   encendido
x = x \mid (1 << i) \rightarrow Enciende el i-esimo bit
x = x \& (1 << i) -> Apaga el i-esimo bit
x = x ^ (1 << i) -> Invierte el i-esimo bit
                -> Invierte todos los bits
x = x
                -> Devuelve el bit encendido mas a la
x & -x
   derecha (potencia de 2, no el indice)
                -> Devuelve el bit apagado mas a la
^{\sim} x & (x+1)
   derecha (potencia de 2, no el indice)
x = x \mid (x+1) -> Enciende el bit apagado mas a la
   derecha
x = x & (x-1)
                -> Apaga el bit encendido mas a la
   derecha
```

* Operaciones a nivel de bits. Si n es ll usar 111<< en

```
-> Apaga en x los bits encendidos de y
x = x \& v
* Funciones del compilador qcc. Si n es ll agregar el
   sufijo ll, por ej: __builtin_clzll(n).
__builtin_clz(x)
                      -> Cantidad de bits apagados por la
    izguierda
__builtin_ctz(x)
                      -> Cantidad de bits apagados por la
    derecha. Indice del bit encendido mas a la derecha
__builtin_popcount(x) -> Cantida de bits encendidos
builtin ffs(x)
                          -> Posicion del primer bit
   prendido (lsb+1)
* Logaritmo en base 2 (entero). Indice del bit encendido
   mas a la izquierda. Si x es ll usar 63 y clzll(x).
// 0(1)
int lg2(const int &x) { return 31-__builtin_clz(x); }
* Itera, con indices, los bits encendidos de una mascara.
// O(#bits encendidos)
for (int x = mask; x; x &= x-1) {
        int i = __builtin_ctz(x);
* Itera todas las submascaras de una mascara. (Iterar
   todas las submascaras de todas las mascaras es O(3^n))
// O(2^(#bits encendidos))
for (int sub = mask; ; sub = (sub-1)&mask) {
        // ...
        if (sub == 0) break;
// Ascendente
for(int sub = 0; ; sub = (sub-mask) &mask) {
        // ...
        if (sub == mask) break;
* retorna la siguiente mask con la misma cantidad
   encendida
ll nextMask(ll x){
        11 c = x \& -x;
        11 r = x + c;
        return (((r ^ x) >> 2) / c) | r;
// optimiza el .count de los bitsets y el popcount
#pragma GCC target("popent")
// Formulas
a \mid b = a \cdot b + a \cdot b
a (a \& b) = (a | b) b
b^{(a \& b)} = (a | b)^{a}
(a \& b) \hat{} (a | b) = a \hat{} b
a + b = a | b + a \& b
```

 $a + b = a \cdot b + 2 * (a \& b)$

```
a - b = (a ^ (a & b)) - ((a | b) ^ a)
a - b = ((a | b) ^ b) - ((a | b) ^ a)
a - b = (a ^ (a & b)) - (b ^ (a & b))
a - b = ((a | b) ^ b) - (b ^ (a & b))
a ^ b = ^ (a & b) & (a | b)
si (x < y < z) entonces min(x^y, y^z) < (x^z)
```

1.5 Custom Hashing

```
struct custom_hash {
        static long long splitmix64(long long x) {
                x += 0x9e3779b97f4a7c15;
                x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
                x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
                return x ^ (x >> 31);
        size t operator()(long long x) const {
                static const long long FIXED_RANDOM =
                   chrono::steady clock::now().
                   time since epoch().count();
                return splitmix64(x + FIXED RANDOM);
        size_t operator()(const pair<int,int>& x) const {
                return (size t) x.first * 37U + (size t)
                   x.second;
        size_t operator()(const vector<int>& v) const {
                size t s = 0;
                for(auto &e : v)
                        s^=hash<int>()(e)+0x9e3779b9+(s
                           <<6)+(s>>2);
                return s;
};
unordered_map<long long, int, custom_hash> safe_map; //
   unordered map or qp hash table
safe map.max load factor(0.25);
safe_map.reserve(1024); // potencia de 2 mas cercana
multitest - no usar reserve (por el clear, es pesado)
```

1.6 Random

```
typedef unsigned long long u64;
mt19937_64 rng (chrono::steady_clock::now().
    time_since_epoch().count());
u64 xor_hash=rng();
// return random numbers in the range [1,r]
```

```
mt19937 rng (chrono::steady_clock::now().time_since_epoch
    ().count());
double rand(double l, double r) {return
    uniform_real_distribution<double>(l, r)(rng);}
int rand(int l, int r) {return uniform_int_distribution<
    int>(l, r)(rng);}
shuffle(all(vector), rng);
```

1.7 Cosas de strings

```
// si el caracter que separa el texto es distinto al
   espacio
// entonces descomentar el segundo parametro y cambiar el
    while por el otro
vector<string> split(const string &s/*, char c */) {
        vector<string> v;
        stringstream ss(s);
        string sub:
        while(ss>>sub)v.push back(sub);
        // while (getline (ss, sub, c)) if (sz(sub)) v.push back
            (sub);
        return v;
string s;
for (char& c:s) c=toupper(c);
for (char& c:s) c=tolower(c);
int n=stoi(s); // string -> int
int n=stoi(s, nullptr, 2); // bin string -> int
double d=stod(s); // string -> double
string s=to_string(n); // int -> string
cout << "\U0001F600"; // emojis
Quitar repetidos (lo pongo aca porque no se donde mas
   ponerlo)
sort(all(bs));
bs.resize(unique(all(bs)) - bs.begin());
```

2 Arboles

2.1 Centroid Decomposition

```
// O(n*log(n))
// 1) init(adj,n);
struct CentroidDecomposition{
    vector<vi> adj;
    vi dad,sz,proc;

    int operator[](int i){return dad[i];}
    void init(vector<vi>& adj2, int n){
        proc.assign(n,false);
```

```
dad.resize(n);
                sz.resize(n);
                adj=adj2;
                build();
        void build(int v=0, int p=-1) {
                int n=dfsSz(v, p);
                int centroid=dfsCentroid(v, p, n);
                dad[centroid]=p;
                // anadir dfs para el conteo de caminos
                proc[centroid]=true;
                for(int u:adj[centroid]) {
                         if (u==p || proc[u]) continue;
                         build(u,centroid);
        int dfsSz(int v,int p) {
                sz[v]=1;
                for(int u:adj[v]){
                         if (u==p || proc[u]) continue;
                         sz[v] += dfsSz(u, v);
                return sz[v];
        int dfsCentroid(int v, int p, int n) {
                for(int u:adj[v]){
                         if(u==p || proc[u])continue;
                         if (sz[u]>n/2) return dfsCentroid(u
                            , v, n);
                return v;
};
// para el arbol de centroides
// for (int b=a;b!=-1;b=cd[b])
```

2.2 Hash Tree

```
const int MOD=1e9+97;
const int P[2]={998244353,1000000007};
const int Q[2]={1000000033,1000000021};
const int R[2]={123456789,987654321};

int add(int a, int b) {return a+b>=MOD?a+b-MOD:a+b;}
int mul(int a, int b) {return ll(a)*b%MOD;}
int binpow(int a, int b) {
    int res=1;a%=MOD;
    while(b>0) {
        if(b&1) res=mul(res,a);
        a=mul(a,a);
        b>>=1;
```

```
return res%MOD:
// O(n), 1-indexed
struct Tree{
        vector<vi> q;
        int n;
        Tree(int _n):n(_n) {q.resize(n+1);}
        void add edge(int u, int v) {
                q[u].push back(v);
                q[v].push_back(u);
        ii hash(int u, int pre=0){
                vector<vi> nw(2,vi());
                for(int v:q[u])
                         if(v!=pre){
                                 ii tmp=hash(v,u);
                                 nw[0].push_back(tmp.first
                                 nw[1].push back(tmp.
                                     second);
                ii ans=\{0,0\};
                for(int i=0;i<2;++i){</pre>
                         int& tmp=(i?ans.second:ans.first)
                         for(int x:nw[i])tmp=add(tmp,
                            binpow(P[i], x));
                         tmp=add(mul(tmp,Q[i]),R[i]);
                return ans;
        // Isomorphism
        bool iso(Tree& t) {
                vi a=get centers();
                vi b=t.get centers();
                for (int x:a) for (int y:b) if (hash (x) ==t.
                    hash(y))return 1;
                return 0;
        vi get centers(){
                auto du=bfs(1);
                int v=max element(all(du))-du.begin();
                auto dv=bfs(v);
                int u=max_element(all(dv))-dv.begin();
                du=bfs(u);
                vi ans;
                for (int i=1; i<=n; ++i) {</pre>
                         if(du[i]+dv[i]==du[v] && du[i]>=
                            du[v]/2 \&\& dv[i] >= du[v]/2) {
                                 ans.push back(i);
```

```
return ans;
        vi bfs(int s){
                 queue<int> q;
                 vi d(n+1, n+2);
                 d[0] = -1;
                 q.push(s);
                 d[s]=0;
                 while(!q.empty()){
                         int u=q.front();
                         q.pop();
                         for(int v:q[u])
                                  if(d[u]+1<d[v]){
                                          d[v]=d[u]+1;
                                          q.push(v);
                 return d:
};
```

2.3 Heavy Light Decomposition

```
typedef long long T;
T oper(T a, T b) {return max(a,b);}
T null=-1e18;
struct SegTree{}; // Add Segment tree
// O(nlog(n)) build
// O(log(n)^2) (query - update) path
// O(log(n)) (query - update) subtree, node
// 1) call build(adj,n,root)
struct HLD{
        SeaTree st;
        vector<vi> adj;
        vi dad, root, dep, sz, pos;
        int time;
        bool edges=false; // if the values are on edges
            instead of nodes
        void build(vector<vi>& adj2, int n, int v=0) { //
            v is the root
                adj=adj2;
                dad.resize(n);
                root.resize(n);
                dep.resize(n);
                sz.resize(n);
                pos.resize(n);
                root[v]=dad[v]=v;
                dep[v]=time=0;
                dfsSz(v);
```

```
dfsHld(v);
        // vector<T> palst(n);
        // for(int i=0;i<n;++i)palst[pos[i]]=vals
        // st.build(palst);
        st.build(n);
void dfsSz(int x) {
        sz[x]=0;
        for(int& y:adj[x]){
                 if (y==dad[x]) continue;
                 dad[y]=x; dep[y]=dep[x]+1;
                 dfsSz(v);
                 sz[x] += sz[y] +1;
                 if(sz[y]>sz[adj[x][0]]) swap(y, adj
                     [x][0];
void dfsHld(int x) {
        pos[x]=time++;
        for(int v:adi[x]){
                 if (y==dad[x]) continue;
                 root[y] = (y = adj[x][0]?root[x]:y);
                 dfsHld(v);
// O(log(n)^2)
template <class Oper>
void processPath(int x, int y, Oper op) {
        for (; root [x]!=root [y]; y=dad[root [y]]) {
                 if (dep[root[x]]>dep[root[y]]) swap
                     (x,y);
                 op(pos[root[y]],pos[y]);
        if(dep[x]>dep[y])swap(x,y);
        op(pos[x]+edges,pos[y]);
void modifyPath(int x, int y, int v) {
        processPath(x,y,[this,&v](int 1, int r){
                 st.upd(l,r,v);
        });
T queryPath(int x, int y) {
        T res=null;
        processPath(x,y,[this,&res](int 1, int r)
                 res=oper(res, st.get(l,r));
        });
        return res;
// O(\log(n))
```

```
void modifySubtree(int x, int v) {
                st.upd(pos[x]+edges,pos[x]+sz[x],v);
        T quervSubtree(int x) {
                return st.get(pos[x]+edges,pos[x]+sz[x]);
        void modify(int x, int v) {st.set(pos[x],v);}
        void modifyEdge(int x, int y, int v) {
                if (dep[x] < dep[y]) swap(x, y);
                modifv(x,v);
};
```

2.4 Kruskal Reconstruction Tree

```
// Kruskal Reconstruction Tree (KRT)
// the main idea is to build a tree to efficiently answer
// about the minimum or maximum edge weight between two
   nodes.
// each edge will be represented as a node in the tree.
// query (a,b) = lca(a,b)
// Add LCA
const int maxn = 1e5+5;
const int maxm = 2e5+5;
vector<vi> adi;
// sometimes it is useful
int ver[2*(maxn+maxm)]; // node at position i in euler
   tour
int st[maxn+maxm]; // start time of v
int ft[maxn+maxm]; // finish time of v
struct DSU{
        vi p, size;
        vector<bool> roots; // if the graph is a forest
        DSU(int n) {
                p.assign(n,0);
                size.assign(n,1);
                roots.assign(n,true);
                for(int i=0; i<n; ++i)p[i]=i;
        int get(int a) {return (a==p[a]?a:p[a]=get(p[a]))
        // unite node a and node b with the edge m =>
           node m
        void unite(int a, int b, int m) {
                a=get(a);b=get(b);
                if (a==b) return;
                size[m]=size[a]+size[b];
                p[a]=p[b]=m;
                roots[a]=false;
```

```
roots[b]=false;
                adj[m].push_back(a);
                adj[m].push back(b);
};
```

2.5 LCA Binary Lifting

```
// O(n*log(n)) build
// O(\log(n)) kth, lca, dist
struct LCA{
        vector<vi> up;
        vi dep;
        int n, maxlog;
        void build(vector<vi>& adj, int root) {
                 n=sz(adj);
                 \max \log = ceil(\log 2(n)) + 3;
                 up.assign(n, vi(maxlog, -1));
                 dep.assign(n,0);
                 dfs(adj,root);
                 calc(n);
        void dfs(vector<vi>& adj, int v=0, int p=-1) {
                 up[v][0]=p;
                 for(int u:adj[v]){
                         if (u==p) continue;
                         dep[u]=dep[v]+1;
                         dfs(adj, u, v);
        void calc(int n) {
                 for (int l=1; l<maxlog; ++1) {</pre>
                         for(int i=0; i<n; ++i) {
                                  if (up[i][l-1]!=-1) {
                                          up[i][l]=up[up[i
                                              ][1-1]][1-1];
        // kth ancestor, return -1 if it doesnt exits
        int kth(int u, int k){
                 for (int l=maxlog-1; l>=0; --1) {
                         if(u!=-1 && k&(1<<1)){
                                  u=up[u][1];
                 return u:
        int lca(int a, int b) {
```

2.6 LCA RMQ

```
// Add RMO - Min
typedef int T;
struct Table{
        void build(vector<T>& a);
        int get(int 1, int r);
};
// O(n*log(n)) build
// O(1) lca
struct LCA{
        Table rmq;
        vi time, path, tmp;
        int n,ti;
        void build(vector<vi>& adj, int root) {
                path.clear(); tmp.clear();
                n=sz(adj);ti=0;
                time.resize(n);
                dfs(adj, root);
                rmq.build(tmp);
        void dfs(vector<vi>& adj, int u, int p=-1) {
                time[u]=ti++;
                for(int v:adj[u]){
                        if (v==p) continue;
                        path.push_back(u);
                        tmp.push_back(time[u]);
                         dfs(adj, v, u);
        int lca(int a, int b) { // check forest
                if (a==b) return a;
```

```
a=time[a],b=time[b];
if(a>b)swap(a,b);
return path[rmq.get(a,b-1)];
};
```

2.7 Sack

```
const int maxn = 1e5+5;
vi adj[maxn];
int ver[2*maxn]; // nodo en la posicion i del euler tour
int len[maxn]; // tamano del subarbol de v
int st[maxn]; // tiempo inicial de v
int ft[maxn]; // tiempo final de v
int pos=0;
// O(n*log(n))
// 1) dfs0(root);
// 2) dfs1(root);
void dfs0(int v=0, int p=-1){
        len[v]=1;
        ver[pos]=v;
        st[v]=pos++;
        for(int u:adj[v]){
                if (u==p) continue;
                dfs0(u,v);
                len[v] +=len[u];
        ver[pos]=v;
        ft[v]=pos++;
bool vis[maxn];
void ask(int v, bool add) {
        if(vis[v] && !add) {
                vis[v]=false;
                // eliminar nodo v
                // ...
        }else if(!vis[v] && add){
                vis[v]=true;
                // anadir nodo v
                // ...
void dfs1(int v=0, int p=-1, bool keep=true) {
        int mx=0,id=-1;
        for(int u:adj[v]){
                if (u==p) continue;
                if(len[u]>mx){
                        mx=len[u];
                        id=u;
```

2.8 Virtual Tree

```
// O(k*log(k))
// 1) build(n, root, adj);
// 2) query(nodes);
LCA q; // Add LCA
int lca(int a, int b) {return q.lca(a,b);};
struct VirtualTree{
        vector<vi> adj,adjVT;
        vector<int> st,ft;
        vector<bool> important;
        int pos=0;
        void build(vector<vi>& adj2, int n, int root) {
                important.assign(n, false);
                adjVT.assign(n,vi());
                st.resize(n);
                ft.resize(n);
                adj=adj2;pos=0;
                dfs(root);
        void dfs(int v, int p=-1){
                st[v]=pos++;
                for(int u:adj[v]){
                        if (u==p) continue;
                         dfs(u, v);
                ft[v]=pos++;
        bool upper (int v, int u) {return st[v] <= st[u] &&
            ft[v]>=ft[u];}
        int getRootVirtualTree(vi nodes) {
```

```
sort(all(nodes), [&](int v, int u) {
                    return st[v] < st[u]; });</pre>
                 int m=sz(nodes);
                 for(int i=0;i<m-1;++i){</pre>
                         int v=lca(nodes[i], nodes[i+1]);
                         nodes.push back(v);
                 sort(all(nodes), [&](int v, int u){
                    return st[v] < st[u]; });</pre>
                 nodes.erase(unique(all(nodes)), nodes.end
                 for(int u:nodes)adjVT[u].clear();
                 vi s:
                 s.push back(nodes[0]);
                 m=sz (nodes);
                 for (int i=1; i < m; ++i) {</pre>
                         int v=nodes[i];
                         while (sz(s) \ge 2 \&\& !upper(s.back())
                             , v)){
                                  adiVT[s[sz(s)-2]].
                                      push_back(s.back());
                                  s.pop_back();
                         s.push_back(v);
                 while (sz(s) >= 2) {
                         adjVT[s[sz(s)-2]].push_back(s.
                             back());
                         s.pop back();
                 return s[0];
        void dfs2(int u, int p=-1){
                 if(important[u]){
                          // pass
                 }else{
                          // pass
                 for(int v:adjVT[u]){
                         if (v==p) continue;
                         dfs2(v,u);
        void query(vi& nodes){
                 for(int u:nodes)important[u]=true;
                 int root=getRootVirtualTree(nodes);
                 dfs2(root);
                 // cout ans
                 for(int u:nodes)important[u]=false;
};
```

3 Estructuras de Datos

3.1 Bit

```
// O(n) build
// O(log(n)) get, upd
typedef long long T;
struct BIT{
        vector<T> t;
        int n;
        BIT(int _n) {
                 \overline{n} = n;
                 t.assign(n+1,0);
        void upd(int i, T v) { // add v to ith element
                 for(int j=i+1; j<=n; j+=j&-j)t[j]+=v;
        T get(int i) { // get sum of range [0,i0)
                 T ans=0;
                 for(int j=i; j; j-=j&-j) ans+=t[j];
                 return ans;
        T get(int 1, int r) { // get sum of range [1,r]
                 return get(r+1)-get(l);
};
```

3.2 Bit 2D

```
// O(n*m) build
// O(\log(n) * \log(m))  get, upd
typedef long long T;
struct BIT2D{
        vector<vector<T>> bit;
        int n,m;
        BIT2D(int _n, int _m) {
                 n=n; m=m;
                 bit.assign(n+1, vector<T>(m+1,0));
        T get(int x, int y) {
                 if(x<0 || v<0) return 0;
                 T v=0;
                 for(int i=x+1;i;i-=i&-i)
                         for(int j=y+1; j; j-=j&-j) v+=bit[i
                             ][j];
                 return v:
        T get(int x, int y, int x2, int y2) {
                 return get (x_2, y_2) -get (x_1, y_2) -get (x_2, y_1)
                    +qet(x-1,y-1);
        void upd(int x, int y, T dt){
```

3.3 Cartesian Tree

```
// O(n) build
typedef long long T;
struct CartesianTree{ // 1-indexed
        vector<int> 1,r;
        int root,n;
        CartesianTree(vector<T>& a) {
                 reverse(all(a));
                 a.push back(0);
                 reverse (all(a));
                 int tot=0; n=sz(a)-1;
                 1.assign(n+1,0);
                 r.assign(n+1,0);
                 vector<int> s(n+1,0);
                 vector<bool> vis(n+1, false);
                 for (int i=1; i<=n; ++i) {</pre>
                          int k=tot;
                          while(k>0 && a[s[k-1]]>a[i])k--;
                              // < max heap
                          if(k)r[s[k-1]]=i;
                          if(k<tot)l[i]=s[k];
                          s[k++]=i;
                          tot=k;
                 for (int i=1; i<=n; ++i) vis[l[i]]=vis[r[i</pre>
                    ] ] =1;
                 root=0;
                 for (int i=1; i<=n; ++i) {</pre>
                          if(!vis[i])root=i;
};
```

3.4 Disjoint Set Union

```
struct dsu{
   vi p,size;
   int sets,maxSize;

   dsu(int n) {
       p.assign(n,0);
       size.assign(n,1);
       sets = n;
```

3.5 Disjoint Sparse Table

```
// lo mismo que sparse table, pero para st opers
// O(n*log(n)) build
// O(1)  get
typedef int T;
T null = 0;
T op (T a, T b) {return a^b;}
struct DST {
        vector<vector<T>> pre, suf;
        int k, n;
        DST(vector<T>& a) {
                 n = sz(a);
                 k = log2(n) + 2;
                 pre.assign(k + 1, vector<T > (n));
                 suf.assign(k + 1, vector < T > (n));
                 for (int \dot{j} = 0; (1 << \dot{j}) <= n; ++\dot{j}) {
                          int mask = (1 << j) - 1;
                          T nw = null;
                          for (int i = 0; i < n; ++i) {
                                  nw = op(nw, a[i]);
                                  pre[j][i] = nw;
                                  if((i \& mask) == mask) nw
                                       = null:
                         nw = null;
                          for (int i = n - 1; i >= 0; --i) {
                                  nw = op(a[i], nw);
                                  suf[j][i] = nw;
                                  if((i \& mask) == 0) nw =
                                      null;
```

```
}
T get(int 1, int r) {
    if(1 == r) return pre[0][1];
    int i = 31 - __builtin_clz(l ^ r);
    return op(suf[i][1], pre[i][r]);
}
};
```

3.6 Dynamic Connectivity Offline

```
typedef pair<int, int> ii;
struct DSU {
        vector<int> p, size, h;
        int sets;
        void build(int n) {
                 sets=n;
                 p.assign(n,0);
                 size.assign(n,1);
                 for (int i=0; i < n; ++i) p[i] = i;</pre>
        int get(int a) {return (a==p[a]?a:get(p[a]));}
        void unite(int a, int b) {
                 a=get(a); b=get(b);
                 if (a==b) return;
                 if(size[a]>size[b])swap(a,b);
                 h.push_back(a);
                 size[b]+=size[a];
                 p[a]=b; sets--;
        void rollback(int s) {
                 while (sz(h)>s) {
                         int a=h.back();
                         h.pop_back();
                         size[p[a]]-=size[a];
                         p[a]=a; sets++;
};
// O(q*log(q)*log(n))
enum { ADD, DEL, QUERY };
struct Query { int type, u, v; };
struct DynCon {
        map<ii, int> edges; DSU uf;
        vector<Query> q;
        vector<int> t;
        void add(int u, int v) {
                 if(u>v) swap(u,v);
                 edges[\{u,v\}]=sz(q);
                 q.push back({ADD, u, v});
                 t.push back(-1);
        void del(int u, int v){
```

```
if(u>v) swap(u,v);
        int i=edges[{u,v}];
        t[i]=sz(q);
        q.push_back({DEL, u, v});
        t.push_back(i);
void querv() {
        q.push_back({QUERY, -1, -1});
        t.push_back(-1);
void dnc(int 1, int r) {
        if(r-l==1){
                 if (q[1].type==QUERY)
                         cout<<uf.sets<<"\n";</pre>
                 return;
        int m=1+(r-1)/2, k=sz(uf.h);
        for(int i=m; i<r; ++i)
                 if(q[i].type==DEL && t[i]<1)
                         uf.unite(q[i].u, q[i].v);
        dnc(1, m);
        uf.rollback(k);
        for(int i=1;i<m;++i)</pre>
                 if(q[i].type==ADD && t[i]>=r)
                         uf.unite(q[i].u, q[i].v);
        dnc(m, r);
        uf.rollback(k);
void init(int n){
        uf.build(n);
        if(!sz(q))return;
        for (int & ti:t) if (ti==-1) ti=sz(q);
        dnc(0, sz(q));
```

3.7 DSU Bipartite

};

```
// Bipartite graph
// get return the leader and the parity of the distance
   to the leader
typedef pair<int, int> ii;
struct DSU{
    vector<int> p, size, len;
    DSU(int n) {
        p.assign(n,0);
        len.assign(n,0);
        size.assign(n,1);
        for(int i=0;i<n;++i)p[i]=i;
    }
    ii get(int a) {
        if(a==p[a]) return {a, 0};
        ii va=get(p[a]);</pre>
```

```
p[a]=va.first;
len[a]=(len[a]+va.second)%2;
return {p[a], len[a]};
}
void unite(int a, int b) {
    ii va=get(a);
    ii vb=get(b);
    if(va.first==vb.first)return;
    if(size[va.first]>size[vb.first])swap(va, vb);
    p[va.first]=vb.first;
    len[va.first]=(va.second+vb.second+1)%2;
    size[vb.first]+=size[va.first];
}
};
```

3.8 Dynamic Segment Tree

```
// O(q*log(n)), q => queries
typedef long long T;
T null=0, noVal=0;
T oper(T a, T b) {return a+b;}
struct Node {
        T val, lz;
        int 1,r;
        Node *pl, *pr;
        Node(int ll, int rr) {
                 val=null; lz=noVal;
                 pl=pr=nullptr;
                 l=11; r=rr;
        void update() {
                 if (r-l==1) return;
                 val=oper(pl->val, pr->val);
        void update(T v) {
                 val += ((T)(r-1)) *v;
                 1z+=v;
        void extends() {
                 if(r-l!=1 && !pl) {
                         int m = (r+1)/2;
                         pl=new Node(1, m);
                         pr=new Node(m, r);
        void propagate() {
                 if (r-l==1) return;
                 if (lz==noVal) return;
                 pl->update(lz);
                 pr->update(lz);
                 lz=noVal;
};
```

```
typedef Node* PNode;
struct SegTree{
        PNode root;
        SeqTree(int 1, int r) {root=new Node(1, r+1);}
        void upd(PNode x, int 1, int r, T v){
                 int 1x=x->1, rx=x->r;
                 if (lx>=r | | l>=rx) return;
                if(lx>=1 && rx<=r){
                         x->update(v);
                         return;
                x->extends():
                x->propagate();
                upd(x->pl,l,r,v);
                upd(x->pr, l, r, v);
                x->update();
        T get(PNode x, int 1, int r) {
                 int lx=x->1, rx=x->r;
                if(lx>=r || l>=rx)return null;
                if(lx>=1 && rx<=r) return x->val;
                x->extends();
                x->propagate();
                T v1=qet(x->pl,l,r);
                T v2=qet(x->pr,l,r);
                 return oper (v1, v2);
        T get(int 1, int r) {return get(root, 1, r+1);}
        void upd(int 1, int r, T v) {upd(root, 1, r+1, v);}
};
```

3.9 Implicit Treap

```
// Treap => Binary Search Tree + Binary Heap
// 1. create a empty root (PTreap root=nullptr;)
// 2. Append the nodes in order (left -> right)
// PTreap tmp=new Treap(x);
// root=merge(root, tmp);
typedef long long T;
typedef unsigned long long u64;
mt19937_64 rng (chrono::steady_clock::now().
   time since_epoch().count());
T \text{ null} = 0;
struct Treap{
        Treap *1, *r; // left child, right child
        u64 prior; // random
        T val, sum, lz; // value, sum subtree, lazy
        int sz; // size subtree
        Treap(T v) {
```

```
l=r=nullptr;
                 prior=rnq();
                 val=sum=v;
                 1z=0; sz=1;
         Treap(){
                 delete 1;
                 delete r;
};
typedef Treap* PTreap;
int cnt(PTreap x) {return (!x?0:x->sz);}
T sum(PTreap x) {return (!x?0:x->sum);}
void update_helper(PTreap x, T v) {
        // 1z + v
        // val += v
        // sum += v
// propagate the lazy
void push(PTreap x) {
        if (x \& \& x \rightarrow lz) \{ // check x \rightarrow lz \}
                 if (x->1) update helper (x->1, 1);
                 if (x->r) update_helper (x->r, 1);
                 x -> 1z = 0;
// updates node with its children information
void pull(PTreap x) {
        push (x->1);
        push (x->r);
        x->sz=cnt(x->1)+cnt(x->r)+1;
        x->sum=sum(x->1)+sum(x->r)+x->val;
// Updates node value += v
void upd(PTreap x, T v) {
        if(!x)return;
        pull(x);
        update_helper(x, v);
// O(log(n)) divide the treap in two parts
// [count nodes == left], [the rest of nodes]
pair<PTreap, PTreap> split(PTreap x, int left) {
        if(!x)return {nullptr, nullptr};
        push(x);
        if(cnt(x->1)>=left)
                 auto got=split(x->1, left);
                 x->l=qot.second;
                 pull(x);
                 return {got.first, x};
        }else{
                 auto got=split(x->r, left-cnt(x->1)-1);
```

```
x->r=qot.first;
                 pull(x);
                 return {x, got.second};
// O(log(n)) merge two treap
// [nodes treap x ... nodes treap y]
PTreap merge (PTreap x, PTreap y) {
        if(!x)return y;
        if(!y)return x;
        push(x); push(y);
        if (x->prior<=y->prior) {
                 x \rightarrow r = merge(x \rightarrow r, y);
                  pull(x):
                  return x;
        }else{
                  y->l=merge(x, y->l);
                 pull(y);
                  return v;
// O(n) print the treap
void dfs(PTreap x) {
        if(!x)return;
        push(x);
        dfs(x->1);
        cout << x -> val << " ";
        dfs(x->r);
```

3.10 Implicit Treap Father

```
// Treap => Binary Search Tree + Binary Heap
// 1. create a empty root (PTreap root=nullptr;)
// 2. Append the nodes in order (left -> right)
// PTreap tmp=new Treap(x);
// root=merge(root, tmp);
// si se edita un treap, se tiene que hacer un pullAll
   hasta la raiz
// si no se hace esto, el treap queda con informacion
   pasada
// si se va a modificar un treap, hacer un pushAll para
   bajar los lazy
typedef long long T;
typedef unsigned long long u64;
mt19937_64 rng (chrono::steady_clock::now().
   time since epoch().count());
T null = 0:
struct Treap{
        Treap *1,*r,*dad; // left child, right child
```

```
u64 prior; // random
        T val, sum; // value, sum subtree
        int sz; // size subtree
        Treap(T v) {
                l=r=dad=nullptr;
                prior=rng();
                val=sum=v;
                sz=1;
        <sup>2</sup>Treap(){
                delete 1:
                delete r:
};
typedef Treap* PTreap;
int cnt(PTreap x) {return (!x?0:x->sz);}
T sum(PTreap x) {return (!x?0:x->sum);}
// updates node with its children information
void pull(PTreap x) {
        x->sz=cnt(x->1)+cnt(x->r)+1;
        x->sum=sum(x->1)+sum(x->r)+x->val;
        if (x->1) x->1->dad=x; //
        if (x->r) x->r->dad=x; //
// O(log(n)) divide the treap in two parts
// [count nodes == left], [the rest of nodes]
pair<PTreap, PTreap> split(PTreap x, int left) {
        if(!x)return {nullptr, nullptr};
        if(cnt(x->1)>=left){
                auto got=split(x->1, left);
                if (got.first) got.first->dad=nullptr; //
                x->l=qot.second;
                x->dad=nullptr; //
                pull(x);
                return {got.first, x};
        }else{
                auto got=split(x->r, left-cnt(x->l)-1);
                if (got.second) got.second->dad=nullptr; //
                x->r=qot.first;
                x->dad=nullptr; //
                pull(x);
                return {x, got.second};
// O(log(n)) merge two treap
// [nodes treap x ... nodes treap y]
PTreap merge (PTreap x, PTreap y) {
        if(!x)return y;
        if(!y)return x;
        if(x->prior<=y->prior) {
                x->r=merge(x->r, y);
                pull(x);
                return x;
```

```
}else{
                y->l=merge(x, y->l);
                pull(y);
                return y;
// O(log(n)) propagate the lazy [root->x]
void pushAll(PTreap x) {
        if(!x)return;
        pushAll(x->dad);
        push(x);
// O(log(n)) update the treap [root->x]
void pullAll(PTreap x) {
        if(!x)return;
        pull(x);
        pullAll(x->dad);
// O(log(n)) return the root and the position of x (1-
   indexed)
pair<PTreap, int> findRoot(PTreap x){
        pushAll(x);
        int pos=cnt(x->1);
        while(x->dad) {
                PTreap f=x->dad;
                if (x==f->r) pos+=cnt (f->1)+1;
                x=f:
        return {x,pos+1};
```

3.11 Li Chao

```
// inf max abs value that the function may take
typedef long long ty;
struct Line {
         ty m, b;
        Line(){}
        Line(ty m, ty b): m(m), b(b){}
        ty eval(ty x){return m * x + b;}
};
struct nLiChao{
        // see coments for min
        nLiChao *left = nullptr, *right = nullptr;
        ty l, r;
        Line line;
        nLiChao(ty l, ty r): l(l), r(r){
              line = {0, -inf}; // change to {0, inf};
```

```
// T(Log(Rango)) M(Log(rango))
        void addLine(Line nline) {
                ty m = (1 + r) >> 1;
                bool lef = nline.eval(1) > line.eval(1);
                    // change > to <
                bool mid = nline.eval(m) > line.eval(m);
                    // change > to <
                if (mid) swap(nline, line);
                if (r == 1) return;
                if (lef != mid) {
                         if (!left){
                                 left = new nLiChao(l, m);
                                 left -> line = nline;
                         else left -> addLine(nline);
                else{
                         if (!right) {
                                 right = new nLiChao(m +
                                    1, r);
                                 right -> line = nline;
                         else right -> addLine(nline);
        // T(Log(Rango))
        ty get(ty x) {
                \bar{t}v m = (l + r) >> 1;
                ty op1 = -\inf, op2 = -\inf; // change to
                    inf
                if(l == r) return line.eval(x);
                else if (x < m) {
                         if (left) op1 = left -> get(x);
                         return max(line.eval(x), op1); //
                             change max to min
                else{
                         if (right) op2 = right \rightarrow get(x);
                         return max(line.eval(x), op2); //
                             change max to min
};
int main() {
        // (rango superior) * (pendiente maxima) puede
            desbordarse
        // usar double o long double en el eval para
```

```
estos casos
// (puede dar problemas de precision)
nLiChao liChao(0, 1e18);
```

3.12 Link Cut Tree

```
// 1-indexed
// All operations are O(log(n))
typedef long long T;
struct SplayTree{
        struct Node{
                 int ch[2] = \{0, 0\}, p=0;
                T val=0, path=0; // values for path
                 T sub=0, vir=0; // values for subtree
                bool flip=0; // values for lazy
        vector<Node> ns;
        SplavTree(int n):ns(n+1){}
        T path(int u) {return (u?ns[u].path:0);}
        T subsum(int u) {return (u?ns[u].sub:0);}
        void push(int x) {
                 if(!x)return;
                int l=ns[x].ch[0], r=ns[x].ch[1];
                if(ns[x].flip){
                         ns[l].flip^=1,ns[r].flip^=1;
                         swap(ns[x].ch[0], ns[x].ch[1]);
                         // if the operation is like a
                            segment tree
                         // check swap the values
                         ns[x].flip=0;
        void pull(int x) {
                 int l=ns[x].ch[0], r=ns[x].ch[1];
                push(1); push(r);
                ns[x].path=max({path(1), path(r), ns[x].}
                 ns[x].sub=ns[x].vir+subsum(1)+subsum(r)+
                    ns[x].val;
        void set(int x, int d, int y) {ns[x].ch[d]=y;ns[y
            ].p=x;pull(x);
        void splay(int x) {
                 auto dir=[&](int x){
                         int p=ns[x].p;if(!p)return -1;
                         return ns[p].ch[0] == x?0:ns[p].ch
                            [1] == x?1:-1;
                 auto rotate=[&](int x){
                         int y=ns[x].p, z=ns[y].p, dx=dir(x)
                            , dy = dir(y);
                         set (y, dx, ns[x].ch[!dx]);
                         set (x, !dx, y);
```

```
if(^{\circ}dy) set (z, dy, x);
                         ns[x].p=z;
                 };
                 for(push(x); ~dir(x);) {
                         int y=ns[x].p, z=ns[y].p;
                         push(z);push(y);push(x);
                         int dx=dir(x), dy=dir(y);
                         if(^{\circ}dy) rotate (dx!=dy?x:y);
                         rotate(x);
} ;
struct LinkCut:SplayTree{
        LinkCut(int n):SplayTree(n){}
        // return the root of us tree
        int root(int u){
                access(u); splay(u); push(u);
                 while (ns[u].ch[0]) {u=ns[u].ch[0]; push(u)
                return splay(u),u;
        // return the parent of u
        int parent(int u) {
                access(u); splay(u); push(u);
                u=ns[u].ch[0];push(u);
                while (ns[u].ch[1]) {u=ns[u].ch[1]; push(u)
                return splay(u),u;
        int access(int x){
                int u=x, v=0;
                 for(;u;v=u,u=ns[u].p){
                         splay(u);
                         int& ov=ns[u].ch[1];
                         ns[u].vir+=ns[ov].sub;
                         ns[u].vir-=ns[v].sub;
                         ov=v; pull(u);
                return splay(x), v;
        // reroot the tree with x as root
        void reroot(int x){
                access(x); ns[x].flip^=1; push(x);
        // create a edge u->v, u is the child of v
        void link(int u, int v){
                reroot (u); access (v);
                ns[v].vir+=ns[u].sub;
                ns[u].p=v;pull(v);
        // delete the edge u->v, u is the child of v
        void cut(int u, int v){
                int r=root(u);
                reroot(u); access(v);
```

};

```
ns[v].ch[0]=ns[u].p=0;pull(v);
        reroot(r);
// delete the edge u->parent(u)
void cut(int u){
        access(u);
        ns[ns[u].ch[0]].p=0;
        ns[u].ch[0]=0;pull(u);
int lca(int u, int v) {
        if (root (u) !=root (v)) return -1;
        access(u); return access(v);
// return sum of the subtree of u with v as
   father
T subtree(int u, int v) {
        int r=root(u);
        reroot (v); access (u);
        T ans=ns[u].vir+ns[u].val;
        return reroot(r), ans;
T path(int u, int v) {
        int r=root(u);
        reroot (u); access (v); pull (v);
        T ans=ns[v].path;
        return reroot (r), ans;
void set(int u, T val){
        access(u);
        ns[u].val=val;
        pull(u);
```

3.13 Link Cut Tree Lazy

```
T subsum(int u) {return (u?ns[u].sub:0);}
void push(int x){
        if(!x)return;
        int l=ns[x].ch[0], r=ns[x].ch[1];
        if(ns[x].flip){
                 ns[1].flip^=1,ns[r].flip^=1;
                 swap (ns[x].ch[0], ns[x].ch[1]);
                 // if the operation is like a
                    segment tree
                 // check swap the values
                 ns[x].flip=0;
        if (ns[x].lz) { // check the lazy
                 // propagate the lazy
                 ns[x].sub+=ns[x].lz*ns[x].ssz;
                 ns[x].vir+=ns[x].lz*ns[x].vsz;
void pull(int x) {
        int l=ns[x].ch[0],r=ns[x].ch[1];
        push(1);push(r);
        ns[x].sz=size(1)+size(r)+1;
        ns[x].path=max({path(1), path(r), ns[x].}
        ns[x].sub=ns[x].vir+subsum(1)+subsum(r)+
            ns[x].val;
        ns[x].ssz=ns[x].vsz+subsize(l)+subsize(r)
            +1;
void set(int x, int d, int y) {ns[x].ch[d]=y;ns[y
    ].p=x;pull(x);}
void splay(int x) {
        auto dir=[&](int x){
                 int p=ns[x].p;if(!p)return -1;
                 return ns[p].ch[0] == x?0:ns[p].ch
                    [1] == x?1:-1;
        };
        auto rotate=[&](int x){
                 int y=ns[x].p, z=ns[y].p, dx=dir(x)
                    \overline{dy} = dir(y);
                 set (y, dx, ns[x].ch[!dx]);
                 set (x, !dx, y);
                 if(^{\circ}dy) set (z, dy, x);
                 ns[x].p=z;
        for (push (x); ~dir(x);) {
                 int y=ns[x].p, z=ns[y].p;
                 push(z);push(y);push(x);
                 int dx=dir(x), dy=dir(y);
                 if(~dy) rotate(dx!=dy?x:y);
                 rotate(x);
```

};

```
struct LinkCut:SplayTree{
        LinkCut(int n):SplayTree(n){}
        // return the root of us tree
        int root(int u){
                access(u); splay(u); push(u);
                while (ns[u].ch[0]) {u=ns[u].ch[0]; push(u)
                return splay(u),u;
        // return the parent of u
        int parent(int u){
                access(u); splay(u); push(u);
                u=ns[u].ch[0];push(u);
                while (ns[u].ch[1]) {u=ns[u].ch[1]; push(u)
                return splay(u),u;
        int access(int x){
                int u=x, v=0;
                for(;u;v=u,u=ns[u].p){
                        splay(u);
                        int& ov=ns[u].ch[1];
                        ns[u].vir+=ns[ov].sub;
                        ns[u].vsz+=ns[ov].ssz;
                        ns[u].vir-=ns[v].sub;
                        ns[u].vsz-=ns[v].ssz;
                        ov=v; pull(u);
                return splay(x), v;
        // reroot the tree with x as root
        void reroot(int x){
                access(x); ns[x].flip^=1; push(x);
        // create a edge u->v, u is the child of v
        void link(int u, int v){
                reroot (u);
                access(v);
                ns[v].vir+=ns[u].sub;
                ns[v].vsz+=ns[u].ssz;
                ns[u].p=v;pull(v);
        // delete the edge u->v, u is the child of v
        void cut(int u, int v){
                int r=root(u);
                reroot (u);
                access(v);
                ns[v].ch[0]=ns[u].p=0;pull(v);
                reroot(r);
```

```
// delete the edge u->parent(u)
void cut(int u){
        access(u);
        ns[ns[u].ch[0]].p=0;
        ns[u].ch[0]=0;pull(u);
int lca(int u, int v) {
        if (root (u) !=root (v)) return -1;
        access(u); return access(v);
int depth(int u){
        int r=root(u);
        reroot(r);
        access(u); splay(u); push(u);
        return ns[u].sz-1;
T path(int u, int v) {
        int r=root(u);
        reroot(u); access(v); pull(v);
        T ans=ns[v].path;
        return reroot (r), ans;
void set(int u, T val){
        access(u);
        ns[u].val=val;
        pull(u);
// update the value of the nodes in the path u->v
    with += val
void upd(int u, int v, T val){
        int r=root(u);
        reroot (u); access (v); splay (v);
        // change only the lazy
        // ns[v].val+=val;
        reroot(r);
T comp size(int u) {return ns[root(u)].ssz;}
T subtree size(int u) {
        int p=parent(u);
        if(!p)return comp_size(u);
        cut(u); int ans=comp size(u);
        link(u,p); return ans;
T subtree size(int u, int v){ // subtree of u
   with v as father
        int r=root(u);
        reroot (v); access (u);
        T ans=ns[u].vsz+1;
        return reroot(r), ans;
```

```
T comp sum(int u) {return ns[root(u)].sub;}
        T subtree_sum(int u) {
                 int p=parent(u);
                if(!p)return comp_sum(u);
                 cut(u); T ans=comp_sum(u);
                link(u,p); return ans;
        T subtree_sum(int u, int v) { // subtree of u with
             v as father
                 int r=root(u);
                 reroot (v); access (u);
                T ans=ns[u].vir+ns[u].val; // por el
                    reroot
                 return reroot(r), ans;
};
```

3.14 Merge Sort Tree

```
// O(n*log(n)) build
// O(log(n)^2) get
typedef long long T;
struct SegTree{
        int size;
        vector<vector<T>> vals;
        void oper(int x) {
                merge(all(vals[2*x+1]), all(vals[2*x+2]),
                     back inserter(vals[x]));
        SegTree(vector<T>& a) {
                 size=1;
                while (size<sz(a))size*=2;</pre>
                vals.resize(2*size);
                 build(a, 0, 0, size);
        void build(vector<T>& a, int x, int lx, int rx) {
                 if(rx-lx==1) {
                         if(lx<sz(a))vals[x]={a[lx]};
                         return;
                 int m = (1x+rx)/2;
                build(a, 2*x+1, 1x, m);
                 build(a, 2*x+2, m, rx);
                 oper(x);
        int get (int 1, int r, int val, int x, int lx, int
           rx) {
                 if(lx>=r | | l>=rx) return 0;
                 if(lx>=1 && rx<=r){
                         return upper_bound(all(vals[x]),
                            val) -vals[x].begin();
```

```
int m = (1x+rx)/2;
                 int v1=get(l,r,val,2*x+1,lx,m);
                int v2=get(1,r,val,2*x+2,m,rx);
                return v1+v2;
        int get(int 1, int r,int val) {return get(1,r+1,
            val, 0, 0, size);}
};
```

3.15 MOs Algorithm

```
// O((n+q)*sq), sq=n^{(1/2)}
// 1. fill queries[]
// 2. solve(n);
// 3. print ans[]
int sq;
struct query {int l,r,idx;};
bool cmp(query& a, query& b) {
        int x=a.1/sq;
        if (a.1/sq!=b.1/sq) return a.1/sq<b.1/sq;</pre>
        return (x&1?a.r<b.r:a.r>b.r);
vector<query> queries;
vector<11> ans;
ll act();
void add(int i); // add a[i]
void remove(int i); // remove a[i]
void solve(int n) {
        sq=ceil(sqrt(n));
        sort(all(queries), cmp);
        ans.assign(sz(queries),0);
        int 1=0, r=-1;
        for(auto [li,ri,i]:queries) {
                 while (r<ri) add (++r);</pre>
                 while (1>1i) add (--1);
                 while (r>ri) remove (r--);
                 while (1<li) remove (1++);</pre>
                 ans[i]=act();
```

3.16 MOs Tree

```
// add LCA
struct LCA{};
vector<vector<int>> adj;
const int maxn=1e5+5;
```

```
int ver[2*maxn]; // node at position i in euler tour
int st[maxn]; // start time of v
int ft[maxn]; // finish time of v
int pos=0;
LCA tree;
// O((n+q)*sq), sq=n^{(1/2)}
// 1. build euler tour and lca
// 2. add queries[]
// if (st[a]>st[b]) swap (a, b);
// queries.push_back({st[a]+1,st[b],i});
// 3. solve(n);
// 4. print ans[]
int sq;
void dfs(int u=0, int p=-1) {
        ver[pos]=u;
        st[u]=pos++;
        for(int v:adj[u]){
                 if (v==p) continue;
                 dfs(v,u);
        ver[pos]=u;
        ft[u]=pos++;
struct query {int l,r,idx;};
bool cmp(query& a, query& b) {
        int x=a.l/sq;
        if (a.l/sq!=b.l/sq) return a.l/sq<b.l/sq;</pre>
        return (x&1?a.r<b.r:a.r>b.r);
vector<query> queries;
vector<ll> ans;
bool vis[maxn];
11 act();
void add(int u); // add node u
void remove(int u); // remove node u
void ask(int u) {
        if(!vis[u])add(u);
        else remove(u);
        vis[u]=!vis[u];
void solve(int n) {
         sa=ceil(sart(n));
        sort(all(queries), cmp);
    ans.resize(sz(queries));
         int 1=0, r=-1;
    for(auto [li,ri,i]:queries) {
                 while(r<ri)ask(ver[++r]);</pre>
                 while(1>li) ask (ver[--1]);
                 while(r>ri)ask(ver[r--]);
                 while(l<li) ask(ver[l++]);</pre>
                 int a=ver[l-1],b=ver[r];
```

```
int c=tree.lca(a,b);
ask(c);
ans[i]=act();
ask(c);
```

3.17 MOs Updates

```
// O(q*(s+(n/s)^2)) \Rightarrow O(q*(n^2(2/3))), s=(2*(n^2))^2(1/3) -
    s=n^{(2/3)}
// 1. fill queries[] and upds[]
// dont confuse index in queries with updates, they are
// the struct upd saves the old value and the new value
// 2. solve(n);
// 3. print ans[]
int sq;
struct upd{int i,old,cur;};
struct query {int l,r,t,idx;};
bool cmp(query& a, query& b) {
        int x=a.l/sq;
        if (a.l/sq!=b.l/sq) return a.l/sq<b.l/sq;</pre>
        if (a.r/sq!=b.r/sq) return (x&1?a.r<b.r:a.r>b.r);
        return a.t<b.t;</pre>
vector<query> queries;
vector<upd> upds;
vector<11> ans:
ll act();
void add(int i); // add a[i]
void remove(int i); // remove a[i]
void update(int i, int v, int l, int r){
        // check if the update is with an active element
        if(l<=i && i<=r){
                remove(i);
                 // a[i]=v;
                // ...
                 add(i);
        // a[i]=v;
        // ...
void solve(int n) {
        sq=ceil(pow(n, 2.0/3.0));
        sort(all(queries), cmp);
    ans.resize(sz(queries));
        int l=0, r=-1, t=0;
        for(auto [li,ri,ti,i]:queries){
                 while(t<ti) update(upds[t].i, upds[t].cur, l</pre>
                    r),++t;
```

3.18 Ordered set

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
template<typename T> using ordered set = tree<T,
   null_type,less<T>, rb_tree_tag,
   tree order statistics node update>;
template<typename T> using ordered_multiset = tree<T,</pre>
   null_type,less_equal<T>, rb_tree_tag,
   tree order statistics node update>;
// ----- CONSTRUCTOR ----- //
// 1. Para ordenar por MAX cambiar less<int> por greater<
   int>
// 2. Para multiset cambiar less<int> por less_equal<int>
       Para borrar siendo multiset:
       int idx = st.order of key(value);
       st.erase(st.find_by_order(idx));
       st.swap(st2);
// ----- METHODS ----- //
st.find_by_order(k) // returns pointer to the k-th
   smallest element
st.order_of_key(x) // returns how many elements are
   smaller than x
st.find by order(k) == st.end() // true, if element does
   not exist
```

3.19 Persistent Segment Tree

```
// O(n*log(n)) build
// O(log(n)) get, set
// O((n+q)*log(n)) memory
typedef long long T;
struct Node{
        T val;
        int l,r; // saves the range of the node [l,r]
};
struct SegTree{
        vector<Node> ns;
        vector<int> roots; // roots of the differents
        versions
        T null=0;
```

```
int act=0,size; // act: number of nodes
T oper(T a, T b) {return a+b;}
SegTree(vector<T>& a, int n) {
        size=n;
        roots.push_back(build(a, 0, size));
void update(int x) {
        ns[x].val=oper(ns[ns[x].l].val, ns[ns[x].
            rl.val);
int newNode(T x){
        Node tmp=\{x, -1, -1\};
        ns.push back(tmp);
        return act++;
int newNode(int 1, int r){
        Node tmp={null,1,r};
        ns.push_back(tmp);
        update(act);
        return act++;
int build(vector<T>& a, int l, int r) {
        if(r-l==1) {return newNode(a[1]);}
        int m = (1+r)/2;
        return newNode (build (a, l, m), build (a, m,
             r));
int set(int x, int i, T v, int l, int r){
        if (r-l==1) return newNode(v);
        int m = (1+r)/2;
        if (i < m) return newNode (set (ns[x].l, i, v,</pre>
            1, m), ns[x].r);
        else return newNode(ns[x].l, set(ns[x].r,
             i, v, m, r));
T get(int x, int lx, int rx, int l, int r){
        if(lx>=r || l>=rx) return null;
        if(lx>=1 && rx<=r)return ns[x].val;</pre>
        int m = (1x+rx)/2;
        T v1=qet(ns[x].l, lx, m, l, r);
        T v2 = qet(ns[x].r, m, rx, l, r);
        return oper (v1, v2);
T get(int 1, int r, int time) {return get(roots[
   time], 0, size, 1, r+1);}
void set(int i, T v, int time) {roots.push_back(
   set(roots[time], i, v, 0, size));}
```

};

3.20 Persistent Segment Tree Lazy

```
// O(n*log(n)) build
// O(\log(n)) get, upd
// O((n+q)*log(n)) memory
typedef long long T;
struct Node {
        Node* left = nullptr;
        Node* right = nullptr;
        T val = 0, prop = 0;
typedef Node* PNode;
struct PerSegTree {
        vector<PNode> roots{};
        vector<T> vec{};
        int n = 0;
        T op (T a, T b) {
                return a+b;
        PNode newKid(PNode& curr) {
                 PNode newNode = new Node();
                newNode->left = curr->left;
                newNode->right = curr->right;
                newNode->prop = curr->prop;
                newNode->val = curr->val;
                return newNode;
        void lazy(int i, int j, PNode& curr) {
                if (!curr->prop) return;
                 curr \rightarrow val += ((T)(j - i + 1)) * curr \rightarrow
                if (i != j) {
                         curr->left = newKid(curr->left);
                         curr->right = newKid(curr->right)
                         curr->left->prop += curr->prop;
                         curr->right->prop += curr->prop;
                 curr->prop = 0;
        PNode build(int i, int j) {
                 PNode newNode = new Node();
                if (i == j) {
                         newNode->val = vec[i];
                 } else {
                         int mid = i + (j - i) / 2;
                         PNode leftt = build(i, mid);
                         PNode right = build(mid + 1, \dot{j});
                         newNode->val = op(leftt->val,
                            right->val);
                         newNode->left = leftt;
                         newNode->right = right;
```

```
return newNode;
PNode upd(int i, int j, int l, int r, T value,
   PNode& curr) {
        lazy(i, j, curr);
        if (i >= 1 && i <= r) {
                PNode newNode = newKid(curr);
                newNode->prop += value;
                lazy(i, j, newNode);
                return newNode:
        if (i > r || i < l) {
                return curr;
        PNode newNode = new Node();
        int mid = i + (j - i) / 2;
        newNode->left = upd(i, mid, l, r, value,
           curr->left);
        newNode - > right = upd (mid + 1, j, l, r,
           value, curr->right);
        newNode->val = op(newNode->left->val,
           newNode->right->val);
        return newNode;
T get(int i, int j, int l, int r, PNode& curr) {
        lazy(i, j, curr);
        if (j < l || r < i) {
                return 0;
        if (i >= 1 && i <= r) {
                return curr->val;
        int mid = i + (j - i) / 2;
        return op (get (i, mid, l, r, curr->left),
           get (mid + 1, j, l, r, curr->right));
// public methods
void build(vector<T>& vec) {
        if (vec.emptv()) return;
        n = vec.size();
        this->vec = vec;
        auto root = build(0, n - 1);
        roots.push back(root);
void upd(int 1, int r, T value, int time) {
       roots.push_back(upd(0, n - 1, 1, r, value
           , roots[time]));
T get(int 1, int r, int time) {
        return get (0, n - 1, 1, r, roots[time]);
```

```
int size() { return roots.size(); }
};
```

3.21 Polynomial Updates

```
11 gauss(ll x) {return (x*(x+111))/211;}
struct Node{
        11 sum=0; // the nodes value
        11 acum=0; // count completed levels
        ll cnt=0; // count of updates +1, +2, +3, ...
        void build(ll v) {
                acum=cnt=0;
                sum=v;
        void oper(Node& a, Node& b) {
                sum=a.sum+b.sum;
                acum=cnt=0;
        void lazy(ll len, ll acum, ll cnt){
                sum+= acum*len+gauss(len)* cnt;
                acum+=_acum;
                cnt+=_cnt;
};
struct SegTree{
        vector<Node> vals;
        Node null;
        int size;
        SegTree(vector<ll>& a) {
                size=1;
                while (size<sz(a))size*=2;</pre>
                vals.resize(2*size);
                build(a, 0, 0, size);
        void build(vector<ll>& a, int x, int lx, int rx){
                if(rx-1x==1){
                         if (lx<sz(a)) vals[x].build(a[lx]);</pre>
                         return;
                int m = (1x+rx)/2;
                build(a, 2*x+1, 1x, m);
                build(a, 2*x+2, m, rx);
                vals[x].oper(vals[2*x+1], vals[2*x+2]);
        void propagate(int x, int lx, int rx){
                if (rx-lx==1) return;
                if (vals[x].cnt==0) return;
                int m = (rx+lx)/2;
                vals[2*x+1].lazy(m-lx, vals[x].acum, vals
                    [x].cnt);
                vals[2*x+2].lazy(rx-m, vals[x].acum+ll(m-
                    lx) *vals[x].cnt, vals[x].cnt);
```

```
vals[x].acum=vals[x].cnt=0;
        void upd(int 1, int r, 11 v, int x, int 1x, int
            rx) {
                 if (rx<=l || r<=lx) return;</pre>
                 if(1<=1x && rx<=r){
                          vals[x].lazv(rx-lx,v*(lx-l),v);
                          return;
                 propagate(x,lx,rx);
                 int m = (1x+rx)/2;
                 upd(1, r, v, 2 \times x + 1, 1x, m);
                 upd(1, r, v, 2 \times x + 2, m, rx);
                 vals[x].oper(vals[2*x+1], vals[2*x+2]);
        ll get(int l, int r, int x, int lx, int rx){
                 if(rx<=l || r<=lx)return null.sum;</pre>
                 if(l<=lx && rx<=r)return vals[x].sum;</pre>
                 propagate(x,lx,rx);
                 int m = (lx + rx)/2;
                 ll v1=get(l,r,2*x+1,lx,m);
                 11 v2=qet(1,r,2*x+2,m,rx);
                 return v1+v2;
        11 get(int 1, int r) {return get(1,r+1,0,0,size);}
        void upd(int 1, int r, 11 v) {upd(1,r+1,v,0,0,size
            );}
        // v es la cantidad de veces que se aplica la
            operacion +1, +2, +3
} ;
```

3.22 Segment Tree Iterativo

```
struct segtree{
        int n; vl v; ll nulo = 0;
        11 op(ll a, ll b) {return a + b;}
         segtree(int n) : n(n) \{v = vl(2*n, nulo);\}
         segtree (vl &a): n(sz(a)), v(2*n) {
                 for(int i = 0; i<n; i++) v[n + i] = a[i];</pre>
                 for (int i = n-1; i > = 1; --i) v[i] = op(v[
                     i<<1], v[i<<1|1]);
        void upd(int k, ll nv) {
                 for (v[k += n] = nv; k > 1; k >>= 1) v[k
                     >>1] = op(v[k], v[k^1]);
        ll get(int l, int r){
                 11 \text{ vl} = \text{nulo}, \text{ vr} = \text{nulo};
```

```
for (1 += n, r += n+1; 1 < r; 1 >>= 1, r
>>= 1) {
        if (1&1) v1 = op(v1, v[1++]);
        if (r&1) vr = op(v[--r], vr);
}
return op(v1, vr);
}
};
```

3.23 Segment Tree Recursivo

```
typedef long long T;
struct SeqTree{
        vector<T> vals, lazy;
        T null=0, nolz=0;
        int size;
        T op (T a, T b) {return a+b;}
        SegTree(vector<T>& a) {
                 size=1:
                 while (size<sz(a)) size*=2;</pre>
                 vals.resize(2*size);
                 lazy.assign(2*size, nolz);
                 build(a, 0, 0, size);
        void build(vector<T>& a, int x, int lx, int rx) {
                 if(rx-lx==1) {
                         if(lx<sz(a))vals[x]=a[lx];
                         return;
                 int m = (1x+rx)/2;
                 build(a, 2*x+1, 1x, m);
                 build(a, 2*x+2, m, rx);
                 vals[x]=op(vals[2*x+1], vals[2*x+2]);
        void propagate(int x, int lx, int rx){
                 if (rx-lx==1) return;
                 if (lazy[x] == nolz) return;
                 int m = (1x+rx)/2;
                 lazy[2*x+1] += lazy[x];
                 vals[2*x+1]+=lazy[x]*((T)(m-lx));
                 lazy[2*x+2]+=lazy[x];
                 vals[2*x+2]+=lazy[x]*((T)(rx-m));
                 lazy[x]=nolz;
        void upd(int 1, int r, T v, int x, int lx, int rx)
                 if (rx<=l | | r<=lx) return;</pre>
                 if(1<=1x && rx<=r){
                         lazv[x]+=v;
                         vals[x] += v*((T)(rx-lx));
                         return;
```

```
propagate(x,lx,rx);
                 int m = (1x+rx)/2;
                 upd(1, r, v, 2 \times x + 1, 1x, m);
                 upd(1, r, v, 2 \times x + 2, m, rx);
                 vals[x] = op(vals[2*x+1], vals[2*x+2]);
        void set(int i, T v, int x, int lx, int rx){
                 if(rx-lx==1){
                          vals[x]=v;
                          return;
                 propagate(x,lx,rx);
                 int m = (1x+rx)/2;
                 if(i<m) set(i, v, 2*x+1, lx, m);
                 else set(i, v, 2*x+2, m, rx);
                 vals[x]=op(vals[2*x+1], vals[2*x+2]);
        T get(int 1, int r, int x, int lx, int rx) {
                 if(rx<=l || r<=lx)return null;</pre>
                 if(l<=lx && rx<=r)return vals[x];</pre>
                 propagate(x,lx,rx);
                 int m = (1x+rx)/2;
                 T v1=qet(1,r,2*x+1,1x,m);
                 T v2=qet(1,r,2*x+2,m,rx);
                 return op (v1, v2);
        T get(int 1, int r) {return get(1,r+1,0,0,size);}
        void upd(int 1, int r, T v) {upd(1,r+1,v,0,0,size)
        void set(int i, T val) {set(i,val,0,0,size);}
};
```

3.24 Segment Tree 2D

};

```
for (int i=0; i< n; ++i) for (int j=0; j< m; ++j)
             st[i+n][j+m]=a[i][j];
         for (int i=0; i< n; ++i) for (int j=m-1; j>=1; --
             j) st[i+n][j] = op(st[i+n][j << 1], st[i+n]
             ][j<<1|1]);
         for (int i=n-1; i>=1; --i) for (int j=0; j<2*m
             ; ++j) st[i][j]=op(st[i<<1][j], st[i]
             <<1|1|[i]);
void set(int x, int y, T v){
         st[x+n][y+m]=v;
         for(int ¬=y+m; ¬>1; ¬>>=1) st [x+n] [¬>>1] =op (
             st[x+n][j], st[x+n][j^1]);
         for (int i=x+n; i>1; i>>=1) for (int j=y+m; j; j
            >>=1) st[i>>1][j]=op(st[i][j], st[i^1][
             j]);
T get (int x0, int y0, int x1, int y1) {
         T r=neutro;
         for (int i0=x0+n, i1=x1+n+1; i0<i1; i0>>=1, i1
            >>=1) {
                  int t[4], q=0;
                  if (i0&1) t [q++]=i0++;
                  if (i1&1) t [q++]=--i1;
                  for (int k=0; k < q; ++k) for (int j0=y0
                      +m, i1=v1+m+1; i0<i1; i0>>=1, i1
                     >>=1){
                           if(j0&1)r=op(r,st[t[k]][
                               j0++]);
                           if(j1&1) r = op(r, st[t]k)
                               ] [ -- j1] );
         return r:
```

3.25 Segment Tree Beats

```
// O(n*log(n)) build
// O(log(n)) get, upd
// updMax[l,r] -> ai = max(ai, v)
// updMin[l,r] -> ai = min(ai, v)
// updAdd[l,r] -> ai = ai + v
// get[l,r] -> return sum of the range [l,r]
typedef long long T;
T null=0,noval=0;
T INF=1e18;
struct Node{
    T sum,lazy;
    T max1,max2,maxc;
    T min1,min2,minc;
```

```
void build(T x) {
                 sum=max1=min1=x;
                 maxc=minc=1;
                 lazv=noVal;
                 max2 = -INF;
                 min2=INF;
        void oper(Node& a, Node& b) {
                 sum=a.sum+b.sum;
                 if(a.max1>b.max1) {
                          max1=a.max1:
                          maxc=a.maxc;
                          \max 2 = \max (a.\max 2, b.\max 1);
                 }else if(a.max1<b.max1){</pre>
                          \max 1=b.\max 1;
                          maxc=b.maxc;
                          max2=max(b.max2, a.max1);
                 }else{
                          \max 1 = a. \max 1;
                          maxc=a.maxc+b.maxc;
                          max2=max(a.max2, b.max2);
                 if(a.min1<b.min1) {</pre>
                          min1=a.min1;
                          minc=a.minc;
                          min2=min(a.min2, b.min1);
                 }else if(a.min1>b.min1){
                          min1=b.min1;
                          minc=b.minc;
                          min2=min(b.min2, a.min1);
                 }else{
                          min1=a.min1;
                          minc=a.minc+b.minc;
                          min2=min(a.min2, b.min2);
struct SegTree{
        vector<Node> vals:
        int size;
        SegTree(vector<T>& a) {
                 size=1;
                 while (size<sz(a)) size *= 2;</pre>
                 vals.resize(2*size);
                 build(a, 0, 0, size);
        void build(vector<T>& a, int x, int lx, int rx) {
                 if(rx-lx==1){
                          if(lx<sz(a))vals[x].build(a[lx]);</pre>
                          return;
```

```
int m = (1x+rx)/2;
        build(a, 2*x+1, 1x, m);
        build(a, 2*x+2, m, rx);
        vals[x].oper(vals[2*x+1], vals[2*x+2]);
void propagateMax(T v, int x, int lx, int rx){
        if(vals[x].min1>=v) return;
        vals[x].sum-=vals[x].min1*vals[x].minc;
        vals[x].min1=v;
        vals[x].sum+=vals[x].min1*vals[x].minc;
        if(rx-lx==1) {
                vals[x].max1=v;
        }else{
                if(v>=vals[x].max1){
                         vals[x].max1=v;
                 }else if(v>vals[x].max2){
                         vals[x].max2=v;
void propagateMin(T v, int x, int lx, int rx){
        if (vals[x].max1<=v) return;</pre>
        vals[x].sum-=vals[x].max1*vals[x].maxc;
        vals[x].max1=v;
        vals[x].sum+=vals[x].max1*vals[x].maxc;
        if(rx-lx==1){
                vals[x].min1=v;
        }else{
                if(v<=vals[x].min1){</pre>
                         vals[x].min1=v;
                 }else if(v<vals[x].min2){</pre>
                         vals[x].min2=v;
void propagateAdd(T v, int x, int lx, int rx){
        vals[x].sum+=v*((T)(rx-lx));
        vals[x].lazy+=v;
        vals[x].max1+=v;
        vals[x].min1+=v;
        if(vals[x].max2!=-INF)vals[x].max2+=v;
        if (vals[x].min2!=INF) vals[x].min2+=v;
void propagate(int x, int lx, int rx){
        if (rx-lx==1) return;
        int m = (lx + rx)/2;
        if(vals[x].lazv!=noVal){
                propagateAdd(vals[x].lazy, 2*x+1,
                     lx, m);
                propagateAdd(vals[x].lazy, 2*x+2,
                     m, rx);
                vals[x].lazy=noVal;
```

```
propagateMin(vals[x].max1, 2*x+1, lx, m);
        propagateMin(vals[x].max1, 2*x+2, m, rx);
        propagateMax(vals[x].min1, 2*x+1, lx, m);
        propagateMax(vals[x].min1, 2*x+2, m, rx);
void updAdd(int 1, int r, T v, int x, int lx, int
   rx) {
        if(lx>=r || l>=rx)return;
        if(lx>=1 && rx<=r){
                propagateAdd(v, x, lx, rx);
                return;
        propagate(x,lx,rx);
        int m = (1x+rx)/2;
        updAdd(l,r,v,2*x+1,lx,m);
        updAdd(1,r,v,2*x+2,m,rx);
        vals[x].oper(vals[2*x+1], vals[2*x+2]);
void updMax(int 1, int r, T v, int x, int lx, int
   rx) {
        if(lx>=r || l>=rx || vals[x].min1>v)
           return;
        if(lx>=1 && rx<=r && vals[x].min2>v) {
                propagateMax(v, x, lx, rx);
                return;
        propagate(x,lx,rx);
        int m = (1x+rx)/2;
        updMax(1, r, v, 2 * x + 1, 1x, m);
        updMax(1,r,v,2*x+2,m,rx);
        vals[x].oper(vals[2*x+1], vals[2*x+2]);
void updMin(int 1, int r, T v, int x, int lx, int
   rx) {
        if(lx>=r || l>=rx || vals[x].max1<v)
           return:
        if(lx>=1 && rx<=r && vals[x].max2<v){
                propagateMin(v, x, lx, rx);
                return:
        propagate(x,lx,rx);
        int m = (1x+rx)/2;
        updMin(l,r,v,2*x+1,lx,m);
        updMin(l,r,v,2*x+2,m,rx);
        vals[x].oper(vals[2*x+1], vals[2*x+2]);
T get(int 1, int r, int x, int lx, int rx) {
        if(lx>=r || l>=rx)return null;
        if(lx>=1 && rx<=r)return vals[x].sum;</pre>
        propagate(x,lx,rx);
```

```
int m = (1x+rx)/2;
                 T v1=qet (1, r, 2*x+1, 1x, m);
                 T v2=qet(1,r,2*x+2,m,rx);
                 return v1+v2;
        T get(int 1, int r) {return get(1,r+1,0,0,size);}
        void updAdd(int 1, int r, T v) {updAdd(1,r+1,v)
            ,0,0,size);}
        void updMin(int 1, int r, T v) {updMin(1,r+1,v)
            ,0,0,size);}
        void updMax(int 1, int r, T v) {updMax(1,r+1,v)
            ,0,0,size);}
};
```

3.26 Sparse Table

```
// O(n*log(n)) build
// O(1) get
typedef long long T;
Top(Ta, Tb); // max, min, gcd ...
struct Table{
        vector<vector<T>> st;
        Table(vector<T>& v) {
                 st.clear();
                 int n=v.size();
                 st.push back(v);
                 for(int j=1; (1<<j)<=n;++j) {
                          st.push_back(vector<T>(n));
                          for (int i=0; i+(1<<(i-1))< n; ++i) {
                                  st[j][i] = op(st[j-1][i], st
                                      [\dot{1}-1][\dot{1}+(1<<(\dot{1}-1))];
        T get(int 1, int r) {
                 int j=31- builtin clz(r-l+1);
                 return op(st[j][l], st[j][r-(1<<j)+1]);
};
```

3.27 Sparse Table 2D

```
// O(n*m*log(n)*log(m)) build
// O(1) get
typedef int T;
const int maxn = 1000, logn = 10;
T st[logn][maxn][logn][maxn];
int lg2[maxn+1];
T op (T a, T b); // min, max, qcd...
void build(int n, int m, vector<vector<T>>& a) {
```

```
for (int i=2; i \le \max(n,m); ++i) lg2[i] = lg2[i/2] +1;
        for(int i=0;i<n;++i){</pre>
                 for(int j=0; j<m;++j)
                          st[0][i][0][j]=a[i][j];
                 for(int k2=1; k2<logn; ++k2)
                          for (int j=\bar{0}; j+(1<<(k2-1))< m;++j)
                                   st[0][i][k2][j]=op(st[0][
                                       i][k2-1][j], st[0][i][
                                       k2-1][\dot{1}+(1<<(k2-1))]);
        for(int k1=1; k1<logn; ++k1)
                 for(int i=0; i<n;++i)
                          for(int k2=0; k2<logn; ++k2)
                                   for(int j=0; j<m; ++j)
                                            st[k1][i][k2][j]=
                                                op(st[k1-1][i
                                                ][k2][j], st[
                                                k1-1 | i+(1<<(
                                                k1-1))][k2][j
                                                ]);
T get(int x1, int y1, int x2, int y2){
        x2++; y2++;
        int a=lg2[x2-x1];
        int b=lq2[y2-y1];
        return op (
                 op(st[a][x1][b][y1],
                          st[a][x2-(1<<a)][b][y1]),
                 op (st [a] [x1] [b] [y2-(1<b)],
                          st[a][x2-(1<<a)][b][y2-(1<<b)])
        );
```

Sqrt Descomposition 3.28

```
// O(n) build
// O(n/b+b) get, set
typedef long long T;
struct SQRT{
        int b; // check b
        vector<T> a,bls;
        SQRT(vector<T>& arr, int n) {
                b=ceil(sqrt(n));a=arr;
                bls.assign(b, 0);
                for(int i=0; i<n; ++i) {
                         bls[i/b] += a[i];
        void set(int x, int v){
                bls[x/b] -= a[x];
                a[x]=v;
                bls[x/b]+=a[x];
```

3.29 Treap

```
// Treap => Binary Search Tree + Binary Heap
// 1. create a empty root (PTreap root=nullptr;)
// 2. Append the nodes in asc order
// PTreap tmp=new Treap(x);
// root=merge(root, tmp);
typedef long long T;
typedef unsigned long long u64;
mt19937_64 rng (chrono::steady_clock::now().
   time since epoch().count());
T \text{ null} = 0;
struct Treap{
        Treap *1,*r,*dad; // left child, right child
        u64 prior; // random
        T val; // value
        int sz; // size subtree
        Treap(T v) {
                l=r=nullptr;
                prior=rng();
                val=v;sz=1;
        Treap(){
                delete 1;
                delete r;
};
typedef Treap* PTreap;
int cnt(PTreap x) {return (!x?0:x->sz);}
// updates node with its children information
void pull(PTreap x) {
        x->sz=cnt(x->1)+cnt(x->r)+1;
        if (x->1) x->1->dad=x;
        if (x->r) x->r->dad=x;
// O(log(n)) divide the treap in two parts
// [nodes value <= key], [nodes value > key]
pair<PTreap, PTreap> split(PTreap x, T key) {
        if(!x)return {nullptr, nullptr};
```

```
if (x->val>kev) {
                 auto got=split(x->1, key);
                 x->l=qot.second;
                 pull(x);
                 return {got.first, x};
        }else{
                 auto got=split(x->r, key);
                 x->r=qot.first;
                 pull(x);
                 return {x, got.second};
// O(log(n)) merge two treap
// if all values in treap x < all values in treap y
PTreap merge (PTreap x, PTreap y) {
        if(!x)return v;
        if(!y)return x;
        if (x->prior<=y->prior) {
                 x \rightarrow r = merge(x \rightarrow r, y);
                 pull(x);
                 return x;
        }else{
                 y->l=merge(x, y->l);
                 pull(y);
                 return v;
// O(n*log(n))
// Combine two treap into one
PTreap combine (PTreap x, PTreap y) {
        if(!x)return v;
        if(!y)return x;
        if (x->prior<y->prior) swap (x, y);
        auto z=split(y, x->val);
        x \rightarrow r = combine(x \rightarrow r, z.second);
        x->l=combine(z.first, x->l);
        return x;
// O(log(n))
// return kth element - indexed 0
T kth(PTreap& x, int k){
        if(!x)return null;
        if (k==cnt (x->1)) return x->val;
        if (k < cnt(x->1)) return kth(x->1, k);
        return kth(x->r, k-cnt(x->1)-1);
// O(log(n))
// return {index, val}
pair<int, T> lower_bound(PTreap x, T key) {
        if(!x)return {0, null};
        if(x->val<key){</pre>
                 auto y=lower bound(x->r, key);
```

```
y.first+=cnt(x->1)+1;
return y;
}
auto y=lower_bound(x->1, key);
if(y.first==cnt(x->1))y.second=x->val;
return y;
}
// O(n) print the treap
void dfs(PTreap x) {
    if(!x) return;
    dfs(x->1);
    cout<<x->val<<" ";
    dfs(x->r);
}
```

3.30 Trie Bit

```
struct node{
int childs[2]{-1, -1};
};
struct TrieBit{
        vector<node> nds;
        vi passNums;
        TrieBit(){
                nds.pb(node());
                passNums.pb(0);
        void insert(int num) {
                int cur = 0;
                for(int i = 30; i >= 0; i--){
                        bool bit = (num >> i) & 1;
                        if (nds[cur].childs[bit] == -1) {
                                 nds[cur].childs[bit] =
                                    nds.size();
                                 nds.pb(node());
                                 passNums.pb(0);
                         passNums[cur]++;
                         cur = nds[cur].childs[bit];
                passNums[cur]++;
        void remove(int num) {
                int cur = 0;
                for(int i = 30; i >= 0; i--) {
                        bool bit = (num >> i) & 1;
                        passNums[cur]--;
                         cur = nds[cur].childs[bit];
```

```
passNums[cur]--;
}
int maxXor(int num) {
    int ans = 0;
    int cur = 0;
    for(int i = 30; i >= 0; i--) {
        bool bit = (num >> i) & 1;

        int n1 = nds[cur].childs[!bit];
        if (n1 != -1 && passNums[n1]) {
            ans += (1 << i);
            bit = !bit;
        }
        cur = nds[cur].childs[bit];
}
return ans;
}
</pre>
```

3.31 Two Stacks

```
// O(1) push, pop, get
typedef long long T;
struct Node{T val,acum;};
struct TwoStacks{
        stack<Node> s1,s2;
        void push(T x){
                Node tmp=\{x, x\};
                if(!s2.empty()){
                         // tmp.acum + s2.top().acum
                s2.push(tmp);
        void pop(){
                if(s1.empty()){
                         while(!s2.empty()){
                                 Node tmp=s2.top();
                                 if(s1.empty()) {
                                          // tmp.acum = tmp
                                              . va 1
                                 }else{
                                          // tmp.acum + s1.
                                             top().acum
                                 s1.push(tmp);
                                 s2.pop();
                 s1.pop();
```

3.32 Wavelet Tree

};

```
const int maxn = 1e5+5;
const int maxv = 1e9;
const int minv = -1e9;
// O(n*log(n)) build
// O(\log(n)) kth, lte, cnt, sum
// 1. int a[maxn];
// 2. WaveletTree wt;
// 3. fill a[1;n]
// 4. wt.build(a+1, a+n+1, minv, maxv);
struct WaveletTree { // indexed 1
        int lo, hi:
        WaveletTree *1, *r;
        int *b, bsz, csz;
        ll *c;
        WaveletTree() {
                hi=bsz=csz=0;
                l=r=NULL;
                10=1;
        void build(int *from, int *to, int x, int y) {
                 lo=x, hi=v;
                if (from>=to) return;
                 int mid=lo+(hi-lo)/2;
                 auto f=[mid](int x){return x<=mid;};</pre>
                 b=(int*)malloc((to-from+2)*sizeof(int));
                bsz=0;
                b[bsz++]=0;
                 c=(ll*)malloc((to-from+2)*sizeof(ll));
                 csz=0;
                 c[csz++]=0;
                 for(auto it=from;it!=to;++it) {
                         b[bsz] = (b[bsz-1] + f(*it));
                         c[csz] = (c[csz-1] + (*it));
                         bsz++;csz++;
                 if (hi==lo) return;
```

```
auto pivot=stable partition(from, to, f);
        l=new WaveletTree();
        l->build(from, pivot, lo, mid);
        r=new WaveletTree();
        r->build(pivot, to, mid+1, hi);
//kth smallest element in [1, r]
int kth(int 1, int r, int k){
        if(l>r)return 0;
        if(lo==hi)return lo;
        int inLeft=b[r]-b[l-1], lb=b[l-1], rb=b[r
        if (k<=inLeft) return this->l->kth(lb+1, rb
        return this->r->kth(l-lb, r-rb, k-inLeft)
//count of numbers in [1, r] Less than or equal
   to k
int lte(int 1, int r, int k){
        if(1>r || k<10) return 0;
        if (hi<=k) return r-l+1;</pre>
        int lb=b[1-1], rb=b[r];
        return this->l->lte(lb+1, rb, k)+this->r
           ->lte(l-lb, r-rb, k);
//count of numbers in [l, r] equal to k
int count(int 1, int r, int k){
        if(l>r || k<lo || k>hi)return 0;
        if(lo==hi)return r-l+1;
        int lb=b[l-1], rb=b[r];
        int mid=(lo+hi)>>1;
        if (k<=mid) return this->l->count (lb+1, rb,
        return this->r->count(l-lb, r-rb, k);
//sum of numbers in [l ,r] less than or equal to
11 sum(int 1, int r, int k){
        if(1>r || k<10) return 0;
        if (hi<=k) return c[r]-c[l-1];</pre>
        int lb=b[l-1], rb=b[r];
        return this->l->sum(lb+1, rb, k)+this->r
           \rightarrowsum(l-lb, r-rb, k);
~WaveletTree(){
        delete 1;
        delete r;
```

} **;**

FLUJOS

4 Flujos

4.1 Blossom

```
// O(|E||V|^2)
struct network {
  struct struct edge { int v; struct edge * n; };
 typedef struct edge* edge;
  int n;
  struct_edge pool[MAXE]; ///2*n*n;
  edge top;
  vector<edge> adj;
  queue<int> q;
 vector<int> f, base, ing, inb, inp, match;
  vector<vector<int>> ed;
 network(int n) : n(n), match(n, -1), adj(n), top(pool),
      f(n), base(n),
                   inq(n), inb(n), inp(n), ed(n, vector<
                      int>(n)) {}
 void add edge(int u, int v) {
    if(ed[u][v]) return;
    ed[u][v] = 1;
    top->v = v, top->n = adj[u], adj[u] = top++;
    top->v = u, top->n = adj[v], adj[v] = top++;
  int get lca(int root, int u, int v) {
    fill(inp.begin(), inp.end(), 0);
    while(1) {
      inp[u = base[u]] = 1;
      if(u == root) break;
      u = f[ match[u] ];
    while(1) {
      if(inp[v = base[v]]) return v;
      else \bar{v} = f[ match[v] ];
 void mark(int lca, int u) {
    while(base[u] != lca) {
      int v = match[u];
      inb[base[u]] = 1;
      inb[base[v]] = 1;
      u = f[v];
      if(base[u] != lca) f[u] = v;
 void blossom contraction(int s, int u, int v) {
    int lca = get_lca(s, u, v);
    fill(inb.begin(), inb.end(), 0);
   mark(lca, u); mark(lca, v);
    if(base[u] != lca) f[u] = v;
    if(base[v] != lca) f[v] = u;
   for (int u = 0; u < n; u++)
      if(inb[base[u]]) {
```

```
base[u] = lca;
        if(!inq[u]) {
         inq[u] = 1;
          q.push(u);
  int bfs(int s) {
    fill(inq.begin(), inq.end(), 0);
    fill(f.begin(), f.end(), -1);
    for(int i = 0; i < n; i++) base[i] = i;</pre>
    q = queue<int>();
    q.push(s);
    inq[s] = 1;
    while(q.size()) {
      int u = q.front(); q.pop();
      for (edge e = adj[u]; e; e = e -> n) {
        int v = e -> v;
        if(base[u] != base[v] && match[u] != v) {
          if ((v == s) | | (match[v] != -1 && f[match[v]]
            blossom_contraction(s, u, v);
          else if (f[v] == -1) {
            f[v] = u;
            if (match[v] == -1) return v;
            else if(!ing[match[v]]) {
              inq[match[v]] = 1;
              q.push(match[v]);
    return -1;
  int doit(int u) {
    if(u == -1) return 0;
    int v = f[u];
    doit(match[v]);
    match[v] = u; match[u] = v;
    return u != -1;
  /// (i < net.match[i]) => means match
  int maximum matching() {
    int ans = 0;
    for(int u = 0; u < n; u++)
      ans += (match[u] == -1) && doit(bfs(u));
    return ans;
};
```

```
4.2 Dinic
```

```
// O(|E| * |V|^2)
struct edge { ll v, cap, inv, flow, ori; };
struct network {
        ll n, s, t;
        vector<ll> lvl;
        vector<vector<edge>> q;
        network(ll n) : \tilde{n}(n), lvl(n), g(n) {}
        void add_edge(int u, int v, ll c) {
                q[u].push_back(\{v, c, sz(q[v]), 0, 1\});
                q[v].push_back({u, 0, sz(q[u])-1, c, 0});
        bool bfs() {
                fill(lvl.begin(), lvl.end(), -1);
                queue<11> q;
                [vl[s] = 0;
                for(q.push(s); q.size(); q.pop()) {
                        ll u = q.front();
                        for(auto &e : q[u]) {
                                 if(e.cap > 0 && lvl[e.v]
                                    == -1) {
                                         lvl[e.v] = lvl[u]
                                             ]+1;
                                         q.push(e.v);
                return lvl[t] != -1;
        11 dfs(ll u, ll nf) {
                if(u == t) return nf;
                ll res = 0;
                for(auto &e : q[u]) {
                        if(e.cap > 0 && lvl[e.v] == lvl[u
                            ]+1) {
                                 ll tf = dfs(e.v, min(nf,
                                    e.cap));
                                 res += tf; nf -= tf; e.
                                    cap -= tf;
                                 g[e.v][e.inv].cap += tf;
                                 q[e.v][e.inv].flow -= tf;
                                 e.flow += tf;
                                 if(nf == 0) return res;
                if(!res) lvl[u] = -1;
                return res;
        ll \max flow(ll so, ll si, ll res = 0) {
                s = so; t = si;
                while(bfs()) res += dfs(s, LONG LONG MAX)
                return res;
        void min cut(){
                queue<11> q;
                vector<bool> vis(n, 0);
```

```
vis[s] = 1;
        for(q.push(s); q.size(); q.pop()) {
                ll u = q.front();
                for(auto &e : q[u]) {
                         if(e.cap > 0 && !vis[e.v
                            ]) {
                                 a.push(e.v);
                                 vis[e.v] = 1;
        vii ans;
        for (int i = 0; i<n; i++) {</pre>
                for (auto &e : q[i]) {
                         if (vis[i] && !vis[e.v]
                            && e.ori) {
                                 ans.push back({i
                                    +1, e.v+1);
        for (auto [x, y] : ans) cout << x << ' '</pre>
           << y << ln;
bool dfs2(vi &path, vector<bool> &vis, int u) {
        vis[u] = 1;
        for (auto &e : g[u]) {
                if (e.flow > 0 && e.ori && !vis[e
                    .v]){
                         if (e.v == t || dfs2(path
                            , vis, e.v)){
                                 path.push back (e.
                                    v);
                                 e.flow = 0;
                                 return 1;
        return 0;
void disjoint paths() {
        vi path;
        vector<bool> vis(n, 0);
        while (dfs2(path, vis, s)){
                path.push_back(s);
                reverse (all (path));
                cout << sz(path) << ln;
                for (int v : path) cout << v+1 <<
                cout << ln;
                path.clear(); vis.assign(n, 0);
```

} ;

4.3 Edmonds Karp

```
// O(V * E^2)
ll bfs(vector<vi> &adj, vector<vl> &capacity, int s, int
   t, vi& parent) {
        fill(parent.begin(), parent.end(), -1);
        parent[s] = -2;
        queue<pll> q;
        q.push({s, INFL});
        while (!q.empty()) {
                int cur = q.front().first;
                ll flow = q.front().second;
                q.pop();
                for (int next : adj[cur]) {
                        if (parent[next] == -1LL &&
                            capacity[cur][next]) {
                                 parent[next] = cur;
                                 ll new_flow = min(flow,
                                    capacity[cur][next]);
                                 if (next == t)
                                         return new flow;
                                 q.push({next, new_flow});
        return 0;
11 maxflow(vector<vi> &adj, vector<vl> &capacity, int s,
   int t, int n) {
        11 \text{ flow} = 0;
        vi parent(n);
        ll new flow;
        while ((new_flow = bfs(adj, capacity, s, t,
           parent))) {
                flow += new flow;
                int cur = t;
                while (cur != s) {
                        int prev = parent[cur];
                        capacity[prev][cur] -= new_flow;
                        capacity[cur][prev] += new flow;
                        cur = prev;
        return flow;
```

4.4 Hopcroft Karp

```
// O(|E|*sqrt(|V|))
struct mbm {
  vector<vector<int>> q;
  vector<int> d, match;
  int nil, l, r;
  /// u \rightarrow 0 to 1, v \rightarrow 0 to r
  mbm(int l, int r) : q(l+r), d(l+l+r, INF), match(l+r, l)
     +r),
                       nil(l+r), l(l), r(r) {}
  void add_edge(int a, int b) {
    q[a].push back(1+b);
    q[1+b].push back(a);
 bool bfs() {
    queue<int> q;
    for(int u = 0; u < 1; u++) {
      if (match[u] == nil) {
        d[u] = 0;
        q.push(u);
      } else d[u] = INF;
    d[nil] = INF;
    while(q.size()) {
      int u = q.front(); q.pop();
      if(u == nil) continue;
      for(auto v : q[u]) {
        if(d[match[v]] == INF) {
          d[match[v]] = d[u]+1;
          q.push(match[v]);
    return d[nil] != INF;
  bool dfs(int u) {
    if(u == nil) return true;
    for(int v : q[u]) {
      if (d[match[v]] == d[u]+1 && dfs(match[v])) {
        match[v] = u; match[u] = v;
        return true;
    d[u] = INF;
    return false:
  int max matching() {
    int ans = 0;
    while(bfs()) {
      for(int u = 0; u < 1; u++) {</pre>
        ans += (match[u] == nil && dfs(u));
    return ans;
  void matchs() {
```

```
for (int i = 0; i<1; i++) {
    if (match[i] == l+r) continue;
    cout << i+1 << ' ' << match[i]+1-1 << ln;
    }
};</pre>
```

4.5 Hungarian

```
#define rep(i, a, b) for(int i = a; i < (b); ++i)
typedef double type;
const type INF_TYPE = LLONG_MAX;
pair<type, vi> hungarian(const vector<vector<type>> &a) {
        if (a.empty()) return {0, {}};
        int n = sz(a) + 1, m = sz(a[0]) + 1;
        vector<type> u(n), v(m); vi p(m), ans(n-1);
        rep(i,1,n) {
                i = [0]q
                int j0 = 0; // add "dummy" worker 0
                vector<type> dist(m, INF TYPE); vi pre(m,
                vector<bool> done(m + 1);
                do { // dijkstra
                        done[j0] = true;
                        int i\bar{0} = p[i0], i1; type delta =
                            INF_TYPE;
                        rep(j,1,m) if (!done[j]) {
                                 auto cur = a[i0 - 1][j -
                                   1] - u[i0] - v[j];
                                 if (cur < dist[j]) dist[j</pre>
                                    ] = cur, pre[j] = j0;
                                 if (dist[j] < delta)</pre>
                                    delta = dist[i], i1 =
                                    j;
                        rep(j,0,m) {
                                 if (done[j]) u[p[j]] +=
                                    delta, v[j] -= delta;
                                 else dist[j] -= delta;
                        j0 = j1;
                } while (p[j0]);
                while (j0) { // update alternating path
                        int j1 = pre[j0];
                        p[j0] = p[j1], j0 = j1;
        rep(j,1,m) if (p[j]) ans[p[j] - 1] = j - 1;
        return {-v[0], ans}; // min cost
```

4.6 Maximum Bipartite Matching

```
// O(|E| * |V|)
struct mbm {
        int 1, r;
        vector<vector<int>> q;
        vector<int> match, seen;
        mbm(int 1, int r) : 1(1), r(r), g(1), match(r),
            seen(r){}
        void add_edge(int 1, int r) { g[1].push_back(r);
        bool dfs(int u) {
                for(auto v : q[u]) {
                        if(seen[v]++) continue;
                        if (match[v] == -1 || dfs(match[v])
                            ])) {
                                match[v] = u;
                                 return true;
                return false;
        int max_matching() {
                int ans = 0;
                fill(match.begin(), match.end(), -1);
                for(int u = 0; u < 1; ++u) {
                        fill(seen.begin(), seen.end(), 0)
                        ans += dfs(u);
                return ans;
        void matchs() {
                for (int i = 0; i<r; i++) {
                        if (match[i] == -1) continue;
                        cout << match[i]+1 << ' ' << i+1
                             << ln;
} ;
```

4.7 Minimum Cost Maximum Flow

```
// O(|V|*|E|^2*log(|E|))
template <class type>
struct mcmf {
    struct edge { int u, v, cap, flow; type cost; };
    int n;
    vector<edge> ed;
    vector<vector<int>> g;
    vector<iint>> p;
    vector<type> d, phi;
    mcmf(int n) : n(n), g(n), p(n), d(n), phi(n) {}
```

```
void add edge(int u, int v, int cap, type cost) {
        g[u].push_back(ed.size());
        ed.push_back({u, v, cap, 0, cost});
        q[v].push back(ed.size());
        ed.push_back({v, u, 0, 0, -cost});
bool dijkstra(int s, int t) {
        fill(d.begin(), d.end(), INF_TYPE);
        fill(p.begin(), p.end(), -1);
        set<pair<type, int>> q;
        d[s] = 0;
        for(q.insert({d[s], s}); q.size();) {
                int u = (*q.begin()).second; q.
                    erase(q.begin());
                for(auto v : q[u]) {
                        auto &e = ed[v];
                        type nd = d[e.u] + e.cost +
                            phi[e.u]-phi[e.v];
                        if(0 < (e.cap-e.flow) &&
                            nd < d[e.v]) {
                                 q.erase({d[e.v],
                                    e.v});
                                 d[e.v] = nd; p[e.
                                    v = v;
                                 q.insert({d[e.v],
                                     e.v});
        for(int i = 0; i < n; i++) phi[i] = min(</pre>
           INF_TYPE, phi[i]+d[i]);
        return d[t] != INF TYPE;
pair<int, type> max flow(int s, int t) {
        type mc = 0;
        int mf = 0;
        fill(phi.begin(), phi.end(), 0);
        while(dijkstra(s, t)) {
                int flow = INF;
                for(int v = p[t]; v != -1; v = p[
                     ed[v].u ])
                        flow = min(flow, ed[v].
                            cap-ed[v].flow);
                for (int v = p[t]; v != -1; v = p[
                     ed[v].u ]) {
                        edge &e1 = ed[v];
                        edge &e2 = ed[v^1];
                        mc += e1.cost*flow;
                        e1.flow += flow;
                        e2.flow -= flow;
                mf += flow;
        return {mf, mc};
```

} **;**

4.8 MCMF Vasito

```
// O(|E| * |F| * log(|V|))
typedef int tf;
typedef int tc;
const tf INFFLOW=1e9;
const tc INFCOST=1e9;
struct MCF {
  int n;
  vector<tc> prio, pot; vector<tf> curflow; vector<int>
     prevedge, prevnode;
  priority queue<pair<tc, int>, vector<pair<tc, int>>,
     greater<pair<tc, int>>> q;
  struct edge{int to, rev; tf f, cap; tc cost;};
  vector<vector<edge>> q;
 MCF(int n):n(n),prio(n),curflow(n),prevedge(n),prevnode
      (n), pot(n), q(n) {}
  void add edge(int s, int t, tf cap, tc cost) {
    q[s].push\_back((edge)\{t,sz(g[t]),0,cap,cost\});
    q[t].push_back((edge) {s,sz(q[s])-1,0,0,-cost});
  pair<tf,tc> get flow(int s, int t) {
    tf flow=0; tc flowcost=0;
    while(1){
      q.push({0, s});
      fill(all(prio), INFCOST);
      prio(s)=0; curflow(s)=INFFLOW;
      while(!a.emptv()) {
        auto cur=q.top();
        tc d=cur.first;
        int u=cur.second;
        q.pop();
        if(d!=prio[u]) continue;
        for (int i=0; i < sz(g[u]); ++i) {</pre>
          edge \&e=g[u][i];
          int v=e.to;
          if(e.cap<=e.f) continue;</pre>
          tc nprio=prio[u]+e.cost+pot[u]-pot[v];
          if(prio[v]>nprio) {
            prio[v]=nprio;
            q.push({nprio, v});
            prevnode[v]=u; prevedge[v]=i;
            curflow[v]=min(curflow[u], e.cap-e.f);
      if(prio[t] == INFCOST) break;
      for(int i=0;i<n;i++) pot[i]+=prio[i];</pre>
      tf df=min(curflow[t], INFFLOW-flow);
      flow+=df;
      for(int v=t; v!=s; v=prevnode[v]) {
```

```
edge &e=g[prevnode[v]][prevedge[v]];
    e.f+=df; g[v][e.rev].f-=df;
    flowcost+=df*e.cost;
}

return {flow,flowcost};
};
```

4.9 Scaling Algorithm

```
// O(|E|^2 * log(C)) C = maximum edge weight of the graph
struct MaxFlow {
    static const 11 INF = 1e18;
    struct Edge {int u,v;ll w;};
    int n, s, t;
    vector<vector<int>> q;
    vector<Edge> ed;
    vector<bool> vis;
    11 \text{ flow} = 0;
   MaxFlow(int n, int s, int t) : n(n), s(s), t(t), q(n)
    int add edge(int u, int v, ll forward, ll backward =
        const int id = (int)ed.size();
        q[u].emplace back(id);
        ed.push_back({u, v, forward});
        q[v].emplace back(id + 1);
        ed.push_back({v, u, backward});
        return id;
    bool dfs(int node, ll lim) {
        if (node == t) return true;
        if (vis[node]) return false;
        vis[node] = true;
        for (int i : q[node]) {
            auto &e = ed[i];
            auto &back = ed[i ^ 1];
            if (e.w >= lim) {
                if (dfs(e.v, lim)) {
                    e.w -= lim;
                    back.w += lim;
                    return true;
        return false:
    ll max flow() {
        for (ll bit = 1ll << 62; bit > 0; bit /= 2) {
            bool found = false;
            do {
                vis.assign(n, false);
```

```
found = dfs(s, bit);
    flow += bit * found;
} while (found);
}
return flow;
}
};
```

4.10 Weighted Matching

```
// O(|V|^3)
typedef int type;
struct matching weighted {
  int 1, r;
  vector<vector<type>> c;
  matching weighted (int 1, int r) : 1(1), r(r), c(1,
     vector<type>(r)) {
    assert (1 < = r);
  void add_edge(int a, int b, type cost) { c[a][b] = cost
     ; }
  type matching() {
    vector<type> v(r), d(r); // v: potential
    vector<int> ml(l, -1), mr(r, -1); // matching pairs
    vector<int> idx(r), prev(r);
    iota(idx.begin(), idx.end(), 0);
    auto residue = [&](int i, int j) { return c[i][j]-v[j
       ]; };
    for(int f = 0; f < 1; ++f) {
      for (int j = 0; j < r; ++j) {
        d[i] = residue(f, i);
        prev[j] = f;
      type w;
      int j, 1;
      for (int s = 0, t = 0;;) {
        if(s == t) {
          1 = s;
          w = d[idx[t++]];
          for(int k = t; k < r; ++k) {
            j = idx[k];
            type h = d[i];
            if (h <= w) {
              if (h < w) t = s, w = h;
              idx[k] = idx[t];
              idx[t++] = j;
          for (int k = s; k < t; ++k) {
            j = idx[k];
            if (mr[j] < 0) goto aug;
```

```
5 GEOMETRIA
```

```
int q = idx[s++], i = mr[q];
        for (int k = t; k < r; ++k) {
          i = idx[k];
          type h = residue(i, j) - residue(i, q) + w;
          if (h < d[i]) {
            d[i] = h;
            prev[j] = i;
            if(h == w) {
              if(mr[j] < 0) goto aug;</pre>
              idx[k] = idx[t];
              idx[t++] = j;
          }
      aug: for (int k = 0; k < 1; ++k)
       v[idx[k]] += d[idx[k]] - w;
      int i;
      do {
        mr[j] = i = prev[j];
        swap(i, ml[i]);
      } while (i != f);
    type opt = 0;
    for (int i = 0; i < 1; ++i)
      opt += c[i][ml[i]]; // (i, ml[i]) is a solution
    return opt;
};
```

5 Geometria

5.1 2D Tree

```
// given a set of points, answer queries of nearest point
    in O(\log(n))
bool onx(pt a, pt b) {return a.x < b.x;}</pre>
bool ony(pt a, pt b) {return a.y < b.y;}</pre>
struct Node {
        pt pp;
        If x0 = \inf, x1 = -\inf, y0 = \inf, y1 = -\inf;
        Node *first = 0, *second = 0;
        ll distance(pt p) {
                 11 x = min(max(x0, p.x), x1);
                 ll y = min(max(y0, p.y), y1);
                 return norm2 (pt (x, y) - p);
        Node(vector<pt>&& vp) : pp(vp[0]) {
                 for(pt p : vp) {
                         x0 = min(x0, p.x);
             x1 = max(x1, p.x);
```

```
y0 = min(y0, p.y);
            v1 = max(y1, p.y);
                if(vp.size() > 1) {
                         sort(all(vp), x1 - x0 >= y1 - y0
                             ? onx : ony);
                         int m = vp.size() / 2;
                         first = new Node({vp.begin(), vp.
                             begin() + m});
                         second = new Node({vp.begin() + m
                             , vp.end() });
};
struct KDTree {
        Node* root:
        KDTree(const vector<pt>& vp): root(new Node({all(
            {}(({qv
        pair<11, pt> search(pt p, Node *node) {
                if(!node->first){
                         // avoid query point as answer
                         // if(p.x == node->pp.x && p.y ==
                              node->pp.y) return {inf, pt()
                         return {norm2 (p-node->pp), node->
                            pp};
                Node *f = node \rightarrow first, *s = node \rightarrow second;
                ll bf = f->distance(p), bs = s ->
                    distance(p);
                if(bf > bs) swap(bf, bs), swap(f, s);
                auto best = search(p, f);
                if(bs < best.ff) best = min(best, search(</pre>
                    p, s));
                return best;
        pair<ll, pt> nearest(pt p) { return search(p, root
           ); }
};
```

5.2 3D

```
typedef double lf;
struct p3 {
    lf x, y, z;
        p3(){}
        p3(lf x, lf y, lf z): x(x), y(y), z(z){}
    p3 operator + (p3 p){ return {x + p.x, y + p.y, z + p.z}; }
    p3 operator - (p3 p){ return {x - p.x, y - p.y, z - p.z}; }
    p3 operator * (lf d){ return {x * d, y * d, z * d}; }
    p3 operator / (lf d){ return {x * d, y * d, z * d}; }
```

```
// only for floating point
    // Some comparators
    bool operator == (p3 p) { return tie(x, y, z) == tie(p
       .x, p.y, p.z); }
   bool operator != (p3 p) { return !operator == (p); }
        void print() { cout << x << " " << y << " " << z</pre>
        // scale: (newnorm / norm) * p3
};
lf dot(p3 v, p3 w) { return v.x * w.x + v.y * w.y + v.z *
   w.z; }
p3 cross(p3 v, p3 w) {
    return { v.y * w.z - v.z * w.y, v.z * w.x - v.x * w.z
       , v.x * w.y - v.y * w.x };
lf norm2(p3 v) { return dot(v, v); }
lf norm(p3 v) { return sqrt(norm2(v)); }
p3 unit(p3 v) { return v / norm(v); }
// ang(RAD)
double angle(p3 v, p3 w) {
    double cos theta = dot(v, w) / norm(v) / norm(w);
    return acos(max(-1.0, min(1.0, cos_theta)));
// orient s, pgr form a triangle pos: 'up', zero = on,
   nea = 'dow'
lf orient(p3 p, p3 q, p3 r, p3 s){
        return dot(cross((q - p), (r - p)), (s - p));
// same as 2D but in n-normal direction
lf orient_by_normal(p3 p, p3 q, p3 r, p3 n) {
        return dot(cross((q - p), (r - p)), n);
struct plane {
    p3 n; lf d; // n: normal d: dist to zero
    // From normal n and offset d
    plane(p3 n, lf d): n(n), d(d) {}
    // From normal n and point P
    plane(p3 n, p3 p): n(n), d(dot(n, p)) {}
    // From three non-collinear points P,Q,R
    plane(p3 p, p3 q, p3 r): plane(cross((q - p), (r - p)
       ), p){}
    // - these work with lf = int
    lf side(p3 p) { return dot(n, p) - d; }
    double dist(p3 p) { return abs(side(p)) / norm(n); }
    plane translate(p3 t) {return \{n, d + dot(n, t)\}; }
    /// - these require lf = double
    plane shift up(double dist) { return {n, d + dist *
       norm(n) }; }
    p3 proj(p3 p) { return p - n * side(p) / norm2(n); }
    p3 refl(p3 p) { return p - n * 2 * side(p) / norm2(n);
```

```
} ;
struct line3d {
        p3 d, o; // d: dir o: point on line
        // From two points P, Q
        line3d(p3 p, p3 q): d(q - p), o(p){}
        // From two planes p1, p2 (requires lf = double)
        line3d(plane p1, plane p2) {
                d = cross(p1.n, p2.n);
                o = cross((p2.n * p1.d - p1.n * p2.d), d)
                    / norm2(d);
        // - these work with lf = int
        double dist2(p3 p) { return norm2(cross(d, (p - o)
           )) / norm2(d); }
        double dist(p3 p) { return sqrt(dist2(p)); }
        bool cmp_proj(p3 p, p3 q) { return dot(d, p) < dot
            (d, q); }
        // - these require If = double
        p3 proj(p3 p) { return o + d * dot(d, (p - o)) /
           norm2(d);
        p3 refl(p3 p) { return proj(p) * 2 - p; }
        p3 inter(plane p) { return o - d * p.side(o) / dot
            (p.n, d); }
        // get other point: pl.o + pl.d * t;
} ;
double dist(line3d 11, line3d 12) {
        p3 n = cross(11.d, 12.d);
        if(n == p3(0, 0, 0)) return 11.dist(12.o); //
           parallel
        return abs(dot((12.o - 11.o), n)) / norm(n);
// closest point on 11 to 12
p3 closest on line1(line3d l1, line3d l2) {
        p3 n2 = cross(12.d, cross(11.d, 12.d));
        return 11.0 + 11.d * (dot((12.0 - 11.0), n2)) /
           dot(11.d, n2);
double small angle(p3 v, p3 w) { return acos(min(abs(dot(v
   (w) / norm(v) / norm(w), 1.0); } // 0.90
double angle(plane p1, plane p2) { return small_angle(p1.n
    p2.n); }
bool is_parallel(plane p1, plane p2) { return cross(p1.n,
   p2.n) == p3(0, 0, 0);
bool is perpendicular (plane p1, plane p2) { return dot (p1.
   n, p2.n) == 0;
double angle(line3d 11, line3d 12) { return small_angle(l1
   .d, 12.d); }
bool is parallel(line3d l1, line3d l2) { return cross(l1.d
   , 12.d) == p3(0, 0, 0); }
bool is perpendicular(line3d 11, line3d 12) { return dot(
   11.d, 12.d) == 0;
double angle(plane p, line3d l) { return M_PI / 2 -
```

```
small_angle(p.n, l.d); }
bool is_parallel(plane p, line3d l) { return dot(p.n, l.d)
    == 0;
bool is perpendicular (plane p, line3d 1) { return cross(p.
   n, 1.d) == p3(0, 0, 0);
line3d perp_through(plane p, p3 o) { return line3d(o, o +
plane perp through (line3d 1, p3 o) { return plane (l.d, o);
pair<p3, lf> smallest enclosing sphere(vector<p3> p) {
    int n = p.size();
    p3 c(0, 0, 0);
    for (int i = 0; i < n; i++) c = c + p[i];
    c = c / n;
    double ratio = 0.1;
    int pos = 0;
    int it = 100000;
    while (it--) {
        pos = 0;
        for (int i = 1; i < n; i++) {
            if(norm2(c - p[i]) > norm2(c - p[pos])) pos =
                i;
        c = c + (p[pos] - c) * ratio;
        ratio *= 0.998;
    return {c, sqrt(norm2(c - p[pos]))};
```

5.3 Circulos

```
// add Lines Points
enum {OUT, IN, ON};
struct circle {
       pt center; lf r;
        // (x - xo)^2 + (y - yo)^2 = r^2
        circle(pt c, lf r): center(c), r(r){};
        // circle that passes through abc
        circle(pt a, pt b, pt c) {
                b = b - a, c = c - a;
                assert (cross(b, c) != 0); // no
                    circumcircle if A, B, C aligned
                pt cen = a + rot 90 (b * norm2 (c) - c *
                   norm2(b)) / cross(b, c) / 2;
                center = cen;
                r = norm(a - cen);
        // diameter = segment pg
        circle(pt p, pt q) {
```

```
center = (p + q) * 0.5L;
                r = dis(p, q) * 0.5L;
        int contains(pt &p) {
                lf det = r * r - dis2(center, p);
                if(fabsl(det) <= EPS) return ON;</pre>
                return (det > EPS ? IN : OUT);
        bool in(circle c) { return norm(center - c.center)
            + r <= c.r + EPS; } // non strict
};
// centers of the circles that pass through ab and has
vector<pt> centers(pt a, pt b, lf r) {
        if (norm(a - b) > 2 * r + EPS) return {};
        pt m = (a + b) / 2;
        double f = sqrt(r * r / norm2(a - m) - 1);
        pt c = rot 90 (a - m) * f;
        return {m - c, m + c};
vector<pt> inter cl(circle c, line l){
        vector<pt> s;
        pt p = l.proj(c.center);
        If d = norm(p - c.center);
        if(d - EPS > c.r) return s;
        if (abs(d - c.r) <= EPS) { s.push back(p); return s</pre>
        d=sqrt(c.r * c.r - d * d);
        s.push back(p + normalize(l.v) * d);
        s.push back (p - normalize(l.v) * d);
        return s;
vector<pt> inter_cc(circle c1, circle c2) {
        pt dir = c2.center - c1.center;
        1f d2 = dis2(c1.center, c2.center);
        if(d2 \le E0) {
                //assert(fabsl(c1.r - c2.r) > E0);
                return {};
        1f td = 0.5L * (d2 + c1.r * c1.r - c2.r * c2.r)
        1f h2 = c1.r * c1.r - td / d2 * td;
        pt p = c1.center + dir * (td / d2);
        if(fabsl( h2 ) < EPS) return {p};</pre>
        if(h2 < 0.0L) return {};
        pt dir h = rot 90 (dir) * sqrtl(h2 / d2);
        return {p + dir_h, p - dir_h};
```

```
5.3 Circulos
```

```
//compute intersection of line through points a and b
//circle centered at c with radius r > 0
vector<pt> circle_line_intersection(pt c, lf r, pt a, pt
   vector<pt> ret;
    b = b - a; a = a - c;
   lf A = dot(b, b), B = dot(a, b);
   lf C = dot(a, a) - r * r, D = B * B - A * C;
    if (D < -EPS) return ret;</pre>
    ret.push back(c + a + b * (-B + sqrt(D + EPS)) / A);
    if (D > EPS) ret.push back(c + a + b * (-B - sqrt(D))
        / A);
    return ret:
// circle-line inter = 1, inner: 1 = 0x0 \ 0 = 0=0
vector<pair<pt, pt>> tangents(circle c1, circle c2, bool
   inner) {
        vector<pair<pt, pt>> out;
        if (inner) c2.r = -c2.r; // inner tangent
        pt d = c2.center - c1.center;
        double dr = c1.r - c2.r, d2 = norm2(d), h2 = d2 - c2.r
            dr * dr;
        if (d2 == 0 || h2 < 0) { assert(h2 != 0); return
           {}; } // (identical)
        for (double s : {-1, 1}) {
                pt v = (d * dr + rot 90(d) * sqrt(h2) * s)
                    / d2;
                out.push_back({c1.center + v * c1.r, c2.
                   center + v * c2.r);
        return out; // if size 1: circle are tangent
// circle targent passing through pt p
pair<pt, pt> tangent_through_pt(circle c, pt p){
        pair<pt, pt> out;
        double d = norm2(p - c.center);
        if (d < c.r) return {};
        pt base = c.center - p;
        double w = sqrt(norm2(base) - c.r * c.r);
        pt a = \{w, c.r\}, b = \{w, -c.r\};
        pt s = p + base * a / norm2(base) * w;
        pt t = p + base * b / norm2(base) * w;
        out = \{s, t\};
        return out;
lf safeAcos(lf x) {
        if (x < -1.0) x = -1.0;
        if (x > 1.0) x = 1.0;
        return acos(x);
lf areaOfIntersectionOfTwoCircles(circle c1, circle c2){
```

```
1f r1 = c1.r, r2 = c2.r, d = dis(c1.center, c2.
                          center);
                  if(d \ge r1 + r2) return 0.0L;
                  if(d \le fabs1(r2 - r1)) return PI * (r1 < r2 ? r1
                             * r1 : r2 * r2);
                  lf alpha = safeAcos((r1 * r1 - r2 * r2 + d * d) /
                             (2.0L * d * r1));
                  lf betha = safeAcos((r2 * r2 - r1 * r1 + d * d) / range = ra
                             (2.0L * d * r2));
                  lf a1 = r1 * r1 * (alpha - sinl(alpha) * cosl(
                          alpha));
                  lf a2 = r2 * r2 * (betha - sinl(betha) * cosl(
                          betha));
                  return a1 + a2;
} ;
lf intertriangle(circle& c, pt a, pt b){ // area of
        intersection with oab
                  if(abs(cross((c.center - a), (c.center - b))) <=</pre>
                          EPS) return 0.;
                  vector<pt> q = \{a\}, w = inter_cl(c, line(a, b));
                  if(w.size() == 2) for(auto p: w) if(dot((a - p),
                           (b - p)) < -EPS) q.push back(p);
                  q.push back(b);
                  if(q.size() == 4 \&\& dot((q[0] - q[1]), (q[2] - q[1]))
                           [1]) > EPS) swap(q[1], q[2]);
                  lf s = 0;
                  for(int i = 0; i < q.size() - 1; ++i){}
                                    if(!c.contains(q[i]) || !c.contains(q[i +
                                              1])) s += c.r * c.r * min angle((g[i])
                                              - c.center), q[i+1] - c.center) / 2;
                                    else s += abs(cross((q[i] - c.center), (q
                                            [i + 1] - c.center) / 2);
                  return s;
bool circumcircle contains(vector<pt> tr, pt D) { //
        triange CCW
    pt A = tr[0] - D, B = tr[1] - D, C = tr[2] - D;
    lf norm_a = norm2(tr[0]) - norm2(D);
    lf norm b = norm2(tr[1]) - norm2(D);
    If norm c = norm2(tr[2]) - norm2(D);
    lf det1 = A.x * (B.y * norm c - norm b * C.y);
    lf det2 = B.x * (C.y * norm_a - norm_c * A.y);
    lf det3 = C.x * (A.y * norm_b - norm_a * B.y);
    return det1 + det2 + det3 > E0;
// r[k]: area covered by at least k circles
// O(n^2 \log n) (high constant)
vector<lf> intercircles(vector<circle> c){
                  vector<lf> r(c.size() + 1);
                  for(int i = 0; i < c.size(); ++i){</pre>
```

```
int k = 1; pt 0 = c[i].center;
        vector<pair<pt, int>> p = {
                 \{c[i].center + pt(1,0) * c[i].r,
                 \{c[i].center - pt(1,0) * c[i].r,
                    0 } };
        for(int j = 0; j < c.size(); ++j) if(j !=
             i) {
                bool b0 = c[i].in(c[j]), b1 = c[j]
                    ].in(c[i]);
                if (b0 && (!b1 || i < j)) ++k;
                else if(!b0 && !b1){
                         auto v = inter_cc(c[i], c
                             [ j ] );
                         if(v.size() == 2){
                                 swap(v[0], v[1]);
                                 p.push_back({v
                                     [0], 1});
                                 p.push back({v
                                     [1], -1\});
                                 if (polar_cmp(v[1])
                                      - 0, v[0] - 0
                                     )) ++k;
        sort(all(p), [&](auto& a, auto& b){
            return polar cmp(a.first - 0, b.first
            - O); } j;
        for(int j = 0; j < p.size(); ++j){</pre>
                pt p0 = p[j ? j - 1 : p.size()
                    -1].first, p1 = p[j].first;
                lf a = min\_angle((p0 - c[i]).
                    center), (p1 - c[i].center));
                r[k] += (p0.x - p1.x) * (p0.y + p1.x)
                    p1.y) / 2 + c[i].r * c[i].r *
                    (a - \sin(a)) / 2;
                k += p[j].second;
return r:
```

5.4 Closest Points

```
// O(nlogn)
pair<pt, pt> closest_points(vector<pt> v) {
    sort(v.begin(), v.end());
    pair<pt, pt> ans;
    lf d2 = INF;

function<void( int, int )> solve = [&](int l, int r) {
```

```
if(l == r) return;
        int mid = (1 + r) / 2;
        lf x \text{ mid} = v[\text{mid}].x;
        solve(1, mid);
        solve (mid + 1, r);
        vector<pt> aux;
        int p1 = 1, p2 = mid + 1;
        while (p1 <= mid && p2 <= r) {
                 if (v[p1].y < v[p2].y) aux.
                    push back (v[p1++]);
                 else aux.push back(v[p2++]);
        while(p1 <= mid) aux.push back(v[p1++]);</pre>
        while (p2 \le r) aux.push back (v[p2++]);
        vector<pt> nb;
        for(int i = 1; i <= r; ++i) {
        v[i] = aux[i - 1];
        lf dx = (x_mid - v[i].x);
        if(dx * dx < d2)
                 nb.push_back(v[i]);
        for(int i = 0; i < (int) nb.size(); ++i){</pre>
        for(int k = i + 1; k < (int) nb.size();</pre>
            ++k) {
                 lf dy = (nb[k].y - nb[i].y);
                 if(dy * dy > d2) break;
                 lf nd2 = dis2(nb[i], nb[k]);
                 if(nd2 < d2) d2 = nd2, ans = {nb[}
                    il, nb[k]};
solve(0, v.size() -1);
return ans;
```

5.5 Convex Hull

5.6 Delaunay

```
// Returns planar graph representing Delaunay's
   triangulation.
// Edges for each vertex are in ccw order.
// Voronoi vertices = the circumcenters of the Delaunay
   triangles.
// O(nlogn)
typedef struct OuadEdge* O;
struct QuadEdge {
        int id, used;
        pt o;
        O rot, nxt;
        QuadEdge(int id=-1, pt o=pt(INF,INF)):id(id),used
            (0), o(o), rot(0), nxt(0) {}
        Q rev() {return rot->rot; }
        Q next() {return nxt;}
        Q prev() {return rot->next()->rot; }
        pt dest() {return rev() ->o; }
};
Q edge(pt a, pt b, int ida, int idb) {
        Q e1=new QuadEdge(ida,a);
        Q e2=new QuadEdge(idb,b);
        O e3=new OuadEdge;
        O e4=new OuadEdge;
        tie(e1->rot,e2->rot,e3->rot,e4->rot)={e3,e4,e2,e1
        tie(e1->nxt,e2->nxt,e3->nxt,e4->nxt) = \{e1,e2,e4,e3
        return e1;
void splice(Q a, Q b){
        swap(a->nxt->rot->nxt,b->nxt->rot->nxt);
        swap (a->nxt,b->nxt);
void del_edge(Q& e, Q ne) {
```

```
splice(e,e->prev()); splice(e->rev(),e->rev()->
           prev());
        delete e->rev()->rot; delete e->rev();
        delete e->rot; delete e;
        e=ne;
Q conn(Q a, Q b) {
        Q = e = e d = (a - d = st(), b - so, a - s = v() - s = d, b - s = d);
        splice(e, a->rev()->prev());
        splice(e->rev(),b);
        return e;
auto area(pt p, pt q, pt r) { return cross((q-p), (r-q)); }
bool circumcircle_contains(vector<pt> tr, pt D) {
        if (orient(tr[0], tr[1], tr[2]) < 0) reverse(all(
    pt A = tr[0] - D, B = tr[1] - D, C = tr[2] - D;
    lf norm a = norm2(tr[0]) - norm2(D);
    lf norm b = norm2(tr[1]) - norm2(D);
    lf norm c = norm2(tr[2]) - norm2(D);
    lf det1 = A.x * (B.y * norm c - norm b * C.y);
    lf det2 = B.x * (C.y * norm_a - norm_c * A.y);
    lf det3 = C.x * (A.y * norm_b - norm_a * B.y);
    return det1 + det2 + det3 > 0;
pair<Q,Q> build tr(vector<pt>& p, int 1, int r){
        if(r-1+1<=3){
                Q a=edge(p[1], p[1+1], 1, 1+1), b=edge(p[1
                    +1],p[r],l+1,r);
                if(r-1+1==2) return {a,a->rev()};
                splice(a->rev(),b);
                auto ar=area(p[1],p[1+1],p[r]);
                Q c=abs(ar)>EPS?conn(b,a):0;
                if(ar>=-EPS) return {a,b->rev()};
                return {c->rev(),c};
        int m = (1+r)/2;
        auto [la,ra]=build tr(p,l,m);
        auto [lb,rb]=build_tr(p,m+1,r);
        while (1) {
                if(orient(lb->o,ra->o, ra->dest()) > 0)
                    ra=ra->rev()->prev();
                else if(orient(lb->o,ra->o,lb->dest()) >
                    0) lb=lb->rev()->next();
                else break;
        0 b=conn(lb->rev(),ra);
        auto valid=[&](Q e) {return orient(e->dest(),b->
            dest(), b->0) > 0; ;
        if(ra->o==la->o) la=b->rev();
```

```
if(lb->o==rb->o) rb=b;
        while(1){
                 0 L=b->rev()->next();
                if(valid(L)) while(circumcircle contains
                    ({b->dest(),b->o,L->dest()},L->next()
                    ->dest())) del edge(L,L->next());
                 0 R=b->prev();
                if(valid(R)) while(circumcircle contains
                    ({b->dest(),b->o,R->dest()},R->prev()
                    ->dest())) del edge(R,R->prev());
                if(!valid(L)&&!valid(R)) break;
                 if(!valid(L) | | (valid(R) &&
                    circumcircle contains({L->dest(),L->o,
                    R->o, R->dest()))) b=conn(R,b->rev());
                 else b=conn(b->rev(),L->rev());
        return {la,rb};
vector<vector<int>> delaunay(vector<pt> v) {
        int n=v.size(); auto tmp=v;
        vector<int> id(n); iota(all(id),0);
        sort(all(id),[&](int l, int r){return v[l]<v[r</pre>
        for(int i = 0; i < n; ++i) v[i]=tmp[id[i]];</pre>
        assert (unique (all (v)) == v.end());
        vector<vector<int>> q(n);
        int col=1;
        for(int i = 2; i < n; ++i) col &= abs(area(v[i], v</pre>
            [i-1], v[i-2])) <= EPS;
        if(col){
                 for (int i = 1; i < n; i++) q[id[i-1]].pb(
                    id[i]),q[id[i]].pb(id[i-1]);
        else{
                 Q e=build tr(v, 0, n-1).first;
                vector<0> edg={e};
                 for(int i=0;i<edq.size();e=edg[i++]){</pre>
                         for(Q at=e;!at->used;at=at->next
                             ()){
                                 at->used=1;
                                 g[id[at->id]].pb(id[at->
                                     rev()->id]);
                                 edq.pb(at->rev());
        return q;
```

5.7 Halfplanes

```
const lf INF = 1e100;
struct Halfplane {
```

```
pt p, pq; // p: point on line, pq: dir, take left
        lf angle;
        Halfplane(){}
        Halfplane(pt& a, pt& b): p(a), pq(b - a) {
                angle = atan21(pq.y, pq.x);
        bool out(const pt& r) { return cross(pq, r - p) <</pre>
            -EPS; } // checks if p is inside the half plane
        bool operator < (const Halfplane& e) const {</pre>
            return angle < e.angle; }</pre>
};
// intersection pt of the lines of 2 halfplanes
pt inter(const Halfplane& s, const Halfplane& t) {
        if (abs(cross(s.pq, t.pq)) <= EPS) return {INF,</pre>
        If alpha = cross((t.p - s.p), t.pq) / cross(s.pq,
            t.pa);
        return s.p + (s.pq * alpha);
// O(nlogn) return CCW polygon
vector<pt> hp intersect(vector<Halfplane>& H) {
        pt box[4] = \{pt(INF, INF), pt(-INF, INF), pt(-INF)\}
            , -INF), pt(INF, -INF)};
        for(int i = 0; i < 4; ++i ) {</pre>
                Halfplane aux(box[i], box[(i + 1) % 4]);
                H.push back(aux);
        sort(H.begin(), H.end());
        deque < Halfplane > dq;
        int len = 0;
        for(int i = 0; i < int(H.size()); ++i){</pre>
                while (len > 1 && H[i].out(inter(dq[len -
                     1], dq[len - 2]))){
                         dq.pop_back();
                         --len:
                while (len > 1 && H[i].out(inter(dq[0],
                    dq[1]))){
                         dq.pop_front();
                         --len;
                if (len > 0 && fabsl(cross(H[i].pq, dq[
                    len - 1].pq)) < EPS){
                         if (dot(H[i].pq, dq[len - 1].pq)
                             < 0.0) return vector<pt>();
                         if (H[i].out(dq[len - 1].p)) {
                                 dq.pop back();
                                 --len:
                         } else continue;
```

5

```
dq.push back(H[i]);
                                                                           ++len;
                                     while (len > 2 && dq[0].out(inter(dq[len - 1], dq
                                                      [len - 2]))
                                                                           dq.pop_back();
                                                                           --len;
                                     while (len > 2 && dq[len - 1].out(inter(dq[0], dq
                                                      [1]))){
                                                                           dq.pop front();
                                                                           --len;
                                     if (len < 3) return vector<pt>();
                                     vector<pt> ret(len);
                                      for(int i = 0; i + 1 < len; ++i) ret[i] = inter(</pre>
                                                     dq[i], dq[i + 1]);
                                     ret.back() = inter(dq[len - 1], dq[0]);
                                      // remove repeated points if needed
                                     return ret;
// intersection of halfplanes
vector<pt> hp_intersect(vector<halfplane>& b) {
                                    vector<pt> box = \{\{\inf, \inf\}, \{-\inf\}, \{-
                                                          -inf}, {inf, -inf}};
                                     for (int i = 0; i < 4; i++) {
                                                                          b.push back(\{box[i], box[(i + 1) % 4]\});
                                     sort(b.begin(), b.end());
                                     int n = b.size(), q = 1, h = 0;
                                     vector<halfplane> c(n + 10);
                                     for(int i = 0; i < n; i++) {</pre>
                                                                          while (q < h \& \& b[i] . out (inter(c[h], c[h -
                                                                                              1]))) h--;
                                                                           while (q < h \&\& b[i].out(inter(c[q], c[q +
                                                                                              11))) g++;
                                                                           c[++h] = b[i];
                                                                           if(q < h \&\& abs(cross(c[h].pq, c[h-1].pq))
                                                                                                                if (dot (c[h].pq, c[h - 1].pq) <=
                                                                                                                                0) return {};
                                                                                                                if (b[i].out(c[h].p)) c[h] = b[i];
                                     while (q < h - 1 \&\& c[q].out(inter(c[h], c[h - 1]))
                                                    )) h--;
```

```
while (q < h - 1 \&\& c[h].out(inter(c[q], c[q + 1]))
              )) q++;
          if(h - q <= 1) return {};
          c[h + 1] = c[a];
          vector<pt> s;
          for(int i = q; i < h + 1; i++) s.pb(inter(c[i], c
              [i + 1]);
          return s:
5.8 KD Tree
  const ll INF = 2e18;
  const int D = 2; // dimension
  struct ptd{
          int p[D];
          bool operator !=(const ptd &a) const {
                  bool ok = 1;
                   for (int i = 0; i < D; i++) ok &= (p[i] ==
                       a.p[i]);
                  return !ok;
  } ;
  struct kd node{
          ptd p;
          int axis;
          kd node *left, *right;
```

} **;**

};

struct cmp points {

int axis;

11 dis2(ptd a, ptd b) {

struct KDTree{

ll ans = 0;

return ans;

vector<ptd> arr;

kd node* root;

cmp points(){}

const {

cmp points(int x): axis(x){}

bool operator () (const ptd &a, const ptd &b)

return a.p[axis] < b.p[axis];</pre>

]) * 1ll * (a.p[i] - b.p[i]);

KDTree(vector<ptd> &vptd): arr(vptd) {

build(root, 0, sz(vptd) - 1);

for (int i = 0; i < D; i++) ans += (a.p[i] - b.p[i]

```
// O(nlogn)
   void build(kd_node* &node, int 1, int r) {
            if(1 > r) {
                    node = nullptr;
                    return;
            node = new kd node();
            if(1 == r) {
                    node -> p = arr[l];
                    node->left = nullptr;
                    node->right = nullptr;
                    return;
            11 \text{ bAxis} = 0;
            11 \text{ mRange} = 0;
            for (int axis = 0; axis < D; ++axis) {
                    11 minVal = INF, maxVal = -INF;
                    for (int i = 1; i <= r; ++i) {
                             minVal = min(minVal, (ll))
                                arr[i].p[axis]);
                             maxVal = max(maxVal, (11)
                                arr[i].p[axis]);
                    if (maxVal - minVal > mRange) {
                             mRange = maxVal - minVal;
                             bAxis = axis;
            int mid = (1 + r) / 2;
            nth_element(arr.begin() + l, arr.begin()
               + mid, arr.begin() + r + 1, cmp points
                (bAxis));
            node->p = arr[mid];
            node->axis = bAxis;
            build(node->left, l, mid);
            build(node->right, mid + 1, r);
   void nearest(kd node* node, ptd q, pair<11, ptd>
       &ans){
            if(node == NULL) return;
            if(node->left == NULL && node->right ==
               NULL) {
                    if(!(q != node->p)) return; //
                        avoid query point as answer
                    if (ans.first > dis2(node->p, q))
                         ans = \{dis2(node->p, q), node\}
                        ->p};
                    return;
```

```
int axis = node->axis;
                int value = node->p.p[axis];
                if(q.p[axis] <= value) {</pre>
                         nearest(node->left, q, ans);
                         ll diff = value - q.p[axis];
                         if(diff * diff <= ans.ff) nearest</pre>
                             (node->right, q, ans);
                }else{
                         nearest(node->right, q, ans);
                         11 diff = q.p[axis] - value;
                         if(diff * diff <= ans.ff) nearest</pre>
                             (node->left, q, ans);
    // O(logn) Returns {squared distance, nearest point}
        pair<ll, ptd> nearest(ptd q){
                pair<ll, ptd> ans = {INF, ptd()};
                nearest(root, q, ans);
                return ans;
};
```

5.9 Lineas

```
// add points operators
struct line {
        pt v; lf c; // v: dir, c: mov y
        line(pt v, lf c) : v(v), c(c) {}
        line(lf a, lf b, lf c) : v({b, -a}), c(c) {} //
           ax + by = c
        line(pt p, pt q): v(q - p), c(cross(v, p)) {}
        bool operator < (line 1) { return cross(v, 1.v) >
           0; }
        bool operator == (line 1) { return (abs(cross(v, 1)))
           (v) <= E0) && c == 1.c; } // abs(c) == abs(1.
        lf side(pt p) { return cross(v, p) - c; }
        lf dist(pt p) { return abs(side(p)) / norm(v); }
        lf dist2(pt p) { return side(p) * side(p) / (lf)
           norm2(v); }
        line perp through (pt p) { return {p, p + rot90(v)
           }; } // line perp to v passing through p
        bool cmp_proj(pt p, pt q) { return dot(v, p) < dot</pre>
            (v, q); } // order for points over the line
        // use: auto fsort = [&l1] (const pt &a, const pt
           &b) { return 11.cmp_proj(a, b); };
        line translate(pt t) { return {v, c + cross(v, t)
           }; }
        line shift_left(lf d) { return {v, c + d*norm(v)};
```

```
pt proj(pt p) { return p - rot90(v) * side(p) /
           norm2(v); } // pt provected on the line
        pt refl(pt p) { return p - rot 90(v) * 2 * side(p)
           / norm2(v); } // pt reflected on the other
           side of the line
        bool has (pt p) { return abs (cross (v, p) - c) <= E0
           ; }; // pt on line
        lf evalx(lf x) {
                assert (fabsl(v.x) > EPS);
                return (c + v.v * x) / v.x;
};
pt inter_ll(line l1, line l2) {
        if (abs(cross(11.v, 12.v)) <= EPS) return {INF,
           INF \; // parallel
        return (12.v * 11.c - 11.v * 12.c) / cross(11.v,
           12.v); // floating points
// bisector divides the angle in 2 equal angles
// interior line goes on the same direction as 11 and 12
line bisector(line 11, line 12, bool interior) {
        // assert (cross(11.v, 12.v) != 0); // 11 and 12
           cannot be parallel
        lf sign = interior ? 1 : -1;
        return {12.v / norm(12.v) + 11.v / norm(11.v) *
           sian,
                        12.c / norm(12.v) + 11.c / norm(
                           11.v) * sign};
```

5.10 Manhattan

```
});
    map<11, 11, greater<11>> active; // (xs, id)
    for(auto i : ids){
                     for (auto it = active.lower_bound(
                        ps[i].x); it != active.end();
                        active.erase(it++)){
            11 j = it->second;
            if (ps[i].x - ps[i].y > ps[j].x - ps[j].y
                ) break;
            assert(ps[i].x \rightarrow= ps[j].x && ps[i].y \rightarrow=
                ps[j].y);
            edges.push_back(\{(ps[i].x - ps[j].x) + (
                ps[i].y - ps[j].y), i, j);
        active[ps[i].x] = i;
    for (auto &p : ps) { // rotate
        if (rot & 1) p.x *=-1;
        else swap(p.x, p.y);
return edges;
```

5.11 Min Circle

```
// minimo circulo que encierra todos los puntos
// Promedio: O(n), Peor: O(n^2)
Circle min circle(vector<pt> v) {
        random shuffle(v.begin(), v.end()); // shuffle(
           all(vec), rng);
        auto f2 = [\&] (int a, int b) {
                Circle ans(v[a], v[b]);
                for(int i = 0; i < a; ++ i)
                if (ans.contains(v[i]) == OUT) ans =
                    Circle(v[i], v[a], v[b]);
                return ans;
        };
        auto f1 = [&] ( int a ) {
                Circle ans (v[a], 0.0L);
                for(int i = 0; i < a; ++i)
                if(ans.contains(v[i]) == OUT) ans = f2(i)
                    , a );
                return ans:
        };
        Circle ans (v[0], 0.0L);
        for(int i = 1; i < (int) v.size(); ++i)</pre>
                if(ans.contains(v[i]) == OUT ) ans = f1(i
                   );
```

```
return ans;
}
```

5.12 Puntos

```
typedef long double lf;
const lf EPS = 1e-9;
const 1f E0 = 0.0L; //Keep = 0 for integer coordinates,
   otherwise = EPS
const lf PI = acos(-1);
struct pt {
        lf x, y;
        pt(){}
        pt(lf a, lf b): x(a), y(b) {}
        pt(lf ang): x(cos(ang)), y(sin(ang)){} // Polar
           unit point: ang(RAD)
        pt operator - (const pt &q) const { return {x - q
            .x , y - q.y \}; }
        pt operator + (const pt &q) const { return {x + q
            .x , y + q.y \}; }
        pt operator * (pt p) { return {x * p.x - y * p.y,
           x * p.y + y * p.x;
        pt operator * (const lf &t) const { return {x * t
            , y * t }; }
        pt operator / (const lf &t) const { return {x / t
             , y / t }; }
        bool operator == (pt p) { return abs(x - p.x) <=
           EPS && abs(y - p.y) <= EPS; }
        bool operator != (pt p) { return !operator==(p); }
        bool operator < (const pt & q) const { // set /
           sort
                if (fabsl(x - q.x) > E0) return x < q.x;
                return y < q.y;</pre>
        void print() { cout << x << " " << y << "\n"; }</pre>
};
pt normalize(pt p) {
        lf norm = hypotl(p.x, p.y);
        if(fabsl(norm) > EPS) return {p.x /= norm, p.y /=
             norm };
        else return p;
int cmp(lf a, lf b) { return (a + EPS < b ? -1 : (b + EPS <</pre>
    a? 1:0)); } // float comparator
// rota ccw
pt rot90(pt p) { return {-p.y, p.x}; }
// w(RAD)
pt rot(pt p, lf w) { return {cosl(w) * p.x - sinl(w) * p.y
   *, sinl(w) * p.x + cosl(w) * p.y); }
lf norm2(pt p) { return p.x * p.x + p.y * p.y; }
```

```
lf norm(pt p) { return hypotl(p.x, p.y); }
lf dis2(pt p, pt q) { return norm2(p - q); }
lf dis(pt p, pt q) { return norm(p - q); }
If arg(pt a) {return atan2(a.y, a.x); } // ang(RAD) a x-
If dot(pt a, pt b) { return a.x * b.x + a.y * b.y; } // x
       = 90 -> cos = 0
lf cross(pt a, pt b) { return a.x * b.y - a.y * b.x; } //
       x = 180 -> \sin = 0
lf orient(pt a, pt b, pt c) { return cross(b - a, c - a);
       } // AB clockwise = -
int sign(lf x) { return (EPS < x) - (x < -EPS); }
// p inside angle abc (center in a)
bool in_angle(pt a, pt b, pt c, pt p) {
                  //assert(fabsl(orient(a, b, c)) > E0);
                  if(orient(a, b, c) < -E0)
                                    return orient(a, b, p) >= -E0 || orient(a
                                            , c, p) <= E0;
                  return orient(a, b, p) >= -E0 && orient(a, c, p)
                          \leq E0;
lf min_angle(pt a, pt b) { return acos(max((lf)-1.0, min())
       lf) 1.0, dot(a, b) /norm(a) /norm(b)))); } // ang(RAD)
lf angle(pt a, pt b) { return atan2(cross(a, b), dot(a, b)
       ); } // ang(RAD)
lf angle(pt a, pt b, pt c){ // ang(RAD) AB AC ccw
                  lf ang = angle(b - a, c - a);
                  if (ang < 0) ang += 2 * PI;
                  return ang;
bool half(pt p) { // true if is in (0, 180] (line is x
       axis)
                  // assert(p.x != 0 || p.y != 0); // the argument
                          of (0, 0) is undefined
                  return p.y > 0 | | (p.y == 0 && p.x < 0);
bool half_from(pt p, pt v = \{1, 0\}) {
                  return cross(v,p) < 0 \mid \mid (cross(v,p) == 0 && dot(v,p) == 0 & dot(v,p) & 
                         v, p) < 0;
// polar sort
bool polar cmp(const pt &a, const pt &b) {
                  return make tuple(half(a), 0) < make tuple(half(b)
                         ), cross(a,b));
void polar_sort(vector<pt> &v, pt o) { // sort points in
       counterclockwise with respect to point o
                  sort(v.begin(), v.end(), [&](pt a,pt b) {
                                    return make_tuple(half(a - o), 0.0, norm2
```

```
((a - o))) < make tuple(half(b - o),
                    cross(a - o, b - o), norm2((b - o)));
        });
int cuad(pt p) { // REVISAR
        if(p.x > 0 \&\& p.y >= 0) return 0;
        if(p.x <= 0 && p.y > 0) return 1;
        if(p.x < 0 && p.y <= 0) return 2;
        if (p.x >= 0 \&\& p.v < 0) return 3;
        return -1; //x == 0 \&\& v == 0
bool cmp(pt p1, pt p2) {
        int c1 = cuad(p1), c2 = cuad(p2);
        return c1 == c2 ? p1.y * p2.x < p1.x * p2.y : c1
           < c2;
// O(n*2^d*d)
// Return the max manhattan distance between points with
   d-dimension.
ll max_distance_manhattan(vector<vi> p, int d) {
        long long ans = 0;
        for (int msk = 0; msk < (1 << d); msk++) {
                long long mx = LLONG MIN, mn = LLONG MAX;
                for (int i = 0; i < n; i++) {</pre>
                        long long cur = 0;
                        for (int j = 0; j < d; j++) {
                                 if (msk & (1 << j)) cur
                                    += p[i][j];
                                 else cur -= p[i][j];
                        mx = max(mx, cur);
                        mn = min(mn, cur);
                ans = max(ans, mx - mn);
        return ans:
ll sd_to_ll(string num, int canDec = 6) {
        string nnum = "";
        bool ok = 0;
        for (int i = 0; i < sz(num); i++) {
                if (num[i] == '.') {
                        ok = 1:
                        continue;
                if (ok) canDec--;
                nnum.pb(num[i]);
        while(canDec--) nnum.pb('0');
        return stoll(nnum);
```

5.13 Poligonos

```
// add Points Lines Segments Circles
// points in polygon(vector<pt>) ccw or cw
enum {OUT, IN, ON};
lf area(vector<pt>& p) {
        lf r = 0.;
        for(int i = 0, n = p.size(); i < n; ++i){</pre>
                r += cross(p[i], p[(i + 1) % n]);
        return r / 2; // negative if CW, positive if CCW
lf perimeter(vector<pt>& p) {
        lf per = 0;
        for (int i = 0, n = p.size(); i < n; ++i) {
                 per += norm(p[i] - p[(i + 1) % n]);
        return per;
bool is convex(vector<pt>& p) {
        bool pos = 0, neg = 0;
        for (int i = 0, n = p.size(); i < n; i++) {</pre>
                 int o = orient(p[i], p[(i + 1) % n], p[(i + 1) % n]
                     + 2) % n]);
                 if (o > 0) pos = 1;
                 if (o < 0) neg = 1;
        return ! (pos && neg);
int point_in_polygon(vector<pt>& pol, pt& p) {
        int wn = 0;
        for(int i = 0, n = pol.size(); i < n; ++i) {
                 If c = orient(p, pol[i], pol[(i + 1) % n
                 if(fabsl(c) <= E0 && dot(pol[i] - p, pol
                    [(i + 1) % n] - p) <= E0) return ON;
                    // on segment
                 if(c > 0 && pol[i].y <= p.y + E0 && pol[(
                i + 1) % n].y - p.y > E0) ++wn;
if(c < 0 && pol[(i + 1) % n].y <= p.y +
                    E0 && pol[i].y - p.y > E0) --wn;
        return wn ? IN : OUT;
// O(logn) polygon CCW, remove collinear
int point_in_convex_polygon(const vector<pt> &pol, const
   pt &p){
```

```
int low = 1, high = pol.size() - 1;
        while (high - low > 1) {
                int mid = (low + high) / 2;
                if(orient(pol[0], pol[mid], p) >= -E0)
                    low = mid;
                else high = mid;
        if(orient(pol[0], pol[low], p) < -E0) return OUT;</pre>
        if (orient (pol[low], pol[high], p) < -E0) return</pre>
        if(orient(pol[high], pol[0], p) < -E0) return OUT</pre>
        if(low == 1 \&\& orient(pol[0], pol[low], p) <= E0)
        if(orient(pol[low], pol[high], p) <= E0) return</pre>
        if(high == (int) pol.size() -1 && orient(pol[high
            ], pol[0], p) <= E0) return ON;
        return IN;
// convex polygons in some order (CCW, CW)
vector<pt> minkowski(vector<pt> P, vector<pt> Q) {
        rotate(P.begin(), min element(P.begin(), P.end())
            , P.end());
        rotate(Q.begin(), min_element(Q.begin(), Q.end())
           , Q.end());
        P.push back (P[0]), P.push back (P[1]);
        Q.push_back(Q[0]), Q.push_back(Q[1]);
        vector<pt> ans;
        size t i = 0, j = 0;
        while(i < P.size() - 2 || j < Q.size() - 2) {
                ans.push_back(P[i] + Q[j]);
                lf dt = cross(P[i + 1] - P[i], Q[j + 1] -
                if(dt \ge E0 \&\& i < P.size() - 2) ++i;
                if(dt \le E0 \&\& j < Q.size() - 2) ++j;
        return ans;
pt centroid(vector<pt>& p) {
        pt c{0, 0};
        If scale = 6. * area(p);
        for (int i = 0, n = p.size(); i < n; ++i){</pre>
                c = c + (p[i] + p[(i + 1) % n]) * cross(p)
                    [i], p[(i + 1) % n]);
        return c / scale;
void normalize(vector<pt>& p) { // polygon CCW
        int bottom = min element(p.begin(), p.end()) - p.
           begin();
```

```
vector<pt> tmp(p.begin() + bottom, p.end());
        tmp.insert(tmp.end(), p.begin(), p.begin()+bottom
           );
        p.swap(tmp);
        bottom = 0;
void remove col(vector<pt>& p) {
        vector<pt> s;
        for(int i = 0, n = p.size(); i < n; i++){</pre>
                if(!on\_segment(p[(i - 1 + n) % n], p[(i + n) % n]))
                    1) % n], p[i])) s.push_back(p[i]);
        p.swap(s);
void delete repetead(vector<pt>& p) {
        vector<pt> aux;
        sort(p.begin(), p.end());
        for (pt &pi : p) {
                if (aux.empty() || aux.back() != pi) aux.
                   push back(pi);
        p.swap(aux);
pt farthest (vector<pt>& p, pt v) { // O(log(n)) only
   CONVEX, v: dir
        int n = p.size();
        if(n < 10){
                int k = 0;
                for (int i = 1; i < n; i++) if (dot (v, (p[i
                   | - p[k])) > EPS) k = i;
                return p[k];
        pt a = p[1] - p[0];
        int s = 0, e = n, ua = dot(v, a) > EPS;
        if(!ua && dot(v, (p[n-1] - p[0])) <= EPS)
           return p[0];
        while (1) {
                int m = (s + e) / 2;
                pt c = p[(m + 1) % n] - p[m];
                int uc = dot(v, c) > EPS;
                if(!uc && dot(v, (p[(m - 1 + n) % n] - p[
                    m])) <= EPS) return p[m];
                if(ua && (!uc || dot(v, (p[s] - p[m])) >
                    EPS)) e = m;
                else if(ua || uc || dot(v, (p[s] - p[m]))
                    >= -EPS) s = m, a = c, ua = uc;
                else e = m;
                assert (e > s + 1);
vector<pt> cut(vector<pt>& p, line l) {
        // cut CONVEX polygon by line 1
```

```
// returns part at left of l.pg
        vector<pt> q;
        for(int i = 0, n = p.size(); i < n; i++) {</pre>
                int d0 = sign(l.side(p[i]));
                int d1 = sign(1.side(p[(i + 1) % n]));
                if(d0 >= 0) q.push back(p[i]);
                line m(p[i], p[(i + 1) % n]);
                if(d0 * d1 < 0 && !(abs(cross(l.v, m.v)))
                    \leq EPS)){
                         q.push back((inter ll(l, m)));
        return q;
// O(n)
vector<pair<int, int>> antipodal(vector<pt>& p) {
        vector<pair<int, int>> ans;
        int n = p.size();
        if (n == 2) ans.push_back({0, 1});
        if (n < 3) return ans;</pre>
        auto nxt = [\&] (int x) \{ return (x + 1 == n ? 0 : x = n ) \}
             + 1); };
        auto area2 = [&] (pt a, pt b, pt c) { return cross(
           b - a, c - a); };
        int b0 = 0;
        while (abs (area2 (p[n - 1], p[0], p[nxt (b0)])) >
            abs (area2(p[n - 1], p[0], p[b0]))) ++b0;
        for (int b = b0, a = 0; b != 0 && a <= b0; ++a) {
                ans.push_back({a, b});
                while (abs(area2(p[a], p[nxt(a)], p[nxt(b
                    )])) > abs(area2(p[a], p[nxt(a)], p[b
                    ]))){
                         b = nxt(b);
                         if (a != b0 || b != 0) ans.
                            push back({a, b});
                         else return ans;
                if (abs(area2(p[a], p[nxt(a)], p[nxt(b)])
                    ) == abs(area2(p[a], p[nxt(a)], p[b]))
                    ) {
                         if (a != b0 \mid | b \mid = n - 1) ans.
                            push back({a, nxt(b)});
                         else ans.push back({nxt(a), b});
        return ans;
// O(n)
// square distance of most distant points, prereq: convex
   , ccw, NO COLLINEAR POINTS
lf callipers(vector<pt>& p) {
        int n = p.size();
        lf r = 0;
```

```
for (int i = 0, j = n < 2 ? 0 : 1; <math>i < j; ++i) {
                 for (;;\dot{j} = (\dot{j} + 1) % n) {
                         r = max(r, norm2(p[i] - p[j]));
                         if(cross((p[(i + 1) % n] - p[i]),
                              (p[(j + 1) % n] - p[j])) <=
                             EPS) break;
        return r;
// O(n + m) max_dist between 2 points (pa, pb) of 2
   Convex polygons (a, b)
lf rotating callipers(vector<pt>& a, vector<pt>& b) { //
        if (a.size() > b.size()) swap(a, b); // <- del or
        pair<ll, int > start = \{-1, -1\};
        if(a.size() == 1) swap(a, b);
        for(int i = 0; i < a.size(); i++) start = max(</pre>
            start, \{norm2(b[0] - a[i]), i\});
        if(b.size() == 1) return start.first;
        lf r = 0;
        for(int i = 0, j = start.second; i < b.size(); ++</pre>
            i){
                 for(;; j = (j + 1) % a.size()){
                         r = max(r, norm2(b[i] - a[j]));
                         if(cross((b[(i + 1) % b.size()] -
                              b[i]), (a[(j + 1) % a.size()]
                              - a[j])) <= EPS) break;</pre>
        return r;
lf intercircle(vector<pt>& p, circle c){ // area of
   intersection with circle
        lf r=0.;
        for(int i = 0, n = p.size(); i < n; i++){</pre>
                 int j = (i + 1) % n;
                 If w = intertriangle(c, p[i], p[i]);
                 if(cross((p[j] - c.center), (p[i] - c.
                    center)) > 0) r += w;
                 else r -= w;
        return abs(r);
ll pick(vector<pt>& p) {
        11 boundary = 0;
        for (int i = 0, n = p.size(); i < n; i++) {</pre>
                 int j = (i + 1 == n ? 0 : i + 1);
                 boundary += \gcd((11) \operatorname{abs}(p[i].x - p[j].x)
                    ), (ll) abs(p[i].y - p[j].y));
```

```
5.13 Poligonos
```

```
oligonos
```

```
return abs(area(p)) + 1 - boundary / 2;
// minimum distance between two parallel lines (non
   necessarily axis parallel)
// such that the polygon can be put between the lines
// O(n) CCW polygon
lf width(vector<pt> &p) {
    int n = (int)p.size();
    if (n <= 2) return 0;
    lf ans = inf;
    int i = 0, j = 1;
    while (i < n) {
        while (cross(p[(i + 1) % n] - p[i], p[(j + 1) % n])
          ] - p[j]) >= 0) j = (j + 1) % n;
        line l1(p[i], p[(i + 1) \% n]);
        ans = min(ans, l1.dist(p[j]));
        i++;
    return ans;
// O(n) {minimum perimeter, minimum area} CCW polygon
pair<ld, ld> minimum enclosing rectangle(vector<pt> &p) {
        int n = p.size();
        if (n <= 2) return {perimeter(p), 0};</pre>
        int mndot = 0;
    lf tmp = dot(p[1] - p[0], p[0]);
        for (int i = 1; i < n; i++) {
                if (dot(p[1] - p[0], p[i]) <= tmp) {</pre>
                        tmp = dot(p[1] - p[0], p[i]);
                        mndot = i;
        ld ansP = inf;
        ld ansA = inf;
        int i = 0, j = 1, mxdot = 1;
        while (i < n) {
                pt cur = p[(i + 1) % n] - p[i];
        while (cross(cur, p[(j + 1) % n] - p[j]) >= 0) j
           = (i + 1) % n;
        while (dot(p[(mxdot + 1) % n], cur) >= dot(p[
           mxdot], cur)) mxdot = (mxdot + 1) % n;
        while (dot(p[(mndot + 1) % n], cur) <= dot(p[
           mndot], cur)) mndot = (mndot + 1) % n;
        line l1(p[i], p[(i + 1) % n]);
        // minimum perimeter
        ansP = min(ansP, 2.0 * ((dot(p[mxdot], cur) / 
           norm(cur) - dot(p[mndot], cur) / norm(cur)) +
           11.dist(p[i])));
        // minimum area
        ansA = min(ansA, (dot(p[mxdot], cur) / norm(cur)
           - dot(p[mndot], cur) / norm(cur)) * l1.dist(p[
           j]));
```

```
i++;
    return {ansP, ansA};
// maximum distance from a convex polygon to another
   convex polygon
lf maximum dist_from_polygon_to_polygon(vector<pt> &u,
   vector<pt> &v) \{ \frac{1}{0} (n) \}
    int n = (int)u.size(), m = (int)v.size();
    lf ans = 0;
    if (n < 3 | | m < 3) {
        for (int i = 0; i < n; i++) {</pre>
            for (int j = 0; j < m; j++) ans = max(ans,
                dis2(u[i], v[i]));
        return sqrt(ans);
    if (u[0].x > v[0].x) swap(n, m), swap(u, v);
    int i = 0, j = 0, step = n + m + 10;
    while (j + 1 < m \&\& v[j].x < v[j + 1].x) j++;
    while (step--) {
        if (cross(u[(i + 1) % n] - u[i], v[(j + 1) % m] -
            v[\dot{j}]) >= 0) \dot{j} = (\dot{j} + 1) \% m;
        else i = (i + 1) % n;
        ans = \max(ans, dis2(u[i], v[j]));
    return sgrt (ans);
pt project from point to seq(pt a, pt b, pt c) {
    double r = dis2(a, b);
    if (sign(r) == 0) return a;
   r = dot(c - a, b - a) / r;
    if (r < 0) return a;</pre>
    if (r > 1) return b;
    return a + (b - a) * r;
// minimum distance from point c to segment ab
lf pt_to_seg(pt a, pt b, pt c) {
    return dis(c, project from point to seq(a, b, c));
pair<pt, int> point_poly_tangent(vector<pt> &p, pt Q, int
    dir, int 1, int r) {
    while (r - 1 > 1) {
        int mid = (1 + r) >> 1;
        bool pvs = sign(orient(Q, p[mid], p[mid - 1])) !=
        bool nxt = sign(orient(0, p[mid], p[mid + 1])) !=
            -dir:
        if (pvs && nxt) return {p[mid], mid};
```

```
if (!(pvs || nxt)) {
                              auto p1 = point_poly_tangent(p, Q, dir, mid +
                              auto p2 = point poly tangent(p, Q, dir, 1,
                                      mid - 1);
                              return sign(orient(Q, p1.first, p2.first)) ==
                                        dir ? p1 : p2;
                   if (!pvs) {
                              if (sign(orient(0, p[mid], p[l])) == dir) r
                                      = mid - 1;
                              else if (sign(orient(Q, p[1], p[r])) == dir)
                                      r = mid - 1;
                              else l = mid + 1;
                   if (!nxt) {
                              if (sign(orient(Q, p[mid], p[l])) == dir) 1
                                      = mid + 1;
                              else if (sign(orient(Q, p[l], p[r])) == dir)
                                      r = mid - 1;
                              else l = mid + 1;
          pair<pt, int> ret = {p[1], 1};
          for (int i = 1 + 1; i <= r; i++) ret = sign(orient(Q,
                    ret.first, p[i])) != dir ? make pair(p[i], i) :
         return ret;
// (ccw, cw) tangents from a point that is outside this
        convex polygon
// returns indexes of the points
// ccw means the tangent from Q to that point is in the
        same direction as the polygon ccw direction
pair<int, int> tangents from point to polygon(vector<pt>
        &p, pt Q) {
         int ccw = point_poly_tangent(p, Q, 1, 0, (int)p.size
                   () - 1).second;
         int cw = point_poly_tangent(p, Q, -1, 0, (int)p.size
                   () - 1).second;
         return make_pair(ccw, cw);
// minimum distance from a point to a convex polygon
// it assumes point lie strictly outside the polygon
lf dist_from_point_to_polygon(vector<pt> &p, pt z) {
          lf ans = inf;
          int n = p.size();
          if (n <= 3) {
                   for (int i = 0; i < n; i++) ans = min(ans,</pre>
                            pt_{t_0} = pt_{t_0} 
                   return ans;
          pair<int, int> dum = tangents_from_point_to_polygon(p
                  , z);
```

```
int r = dum.first;
    int 1 = dum.second;
    if(1 > r) r += n;
    while (1 < r) {
        int mid = (1 + r) >> 1;
        lf left = dis2(p[mid % n], z), right= dis2(p[(mid
            + 1) % n], z);
        ans = min({ans, left, right});
        if(left < right) r = mid;</pre>
        else l = mid + 1;
    ans = sqrt(ans);
    ans = min(ans, pt_to_seq(p[1 % n], p[(1 + 1) % n], z)
    ans = min(ans, pt_to_seq(p[1 % n], p[(1 - 1 + n) % n])
       ], z));
    return ans;
// minimum distance from a convex polygon to another
   convex polygon
// the polygon doesnot overlap or touch
lf dist_from_polygon_to_polygon(vector<pt> &p1, vector<pt</pre>
   > &p2) { // O(n log n)}
    lf ans = inf;
    for (int i = 0; i < p1.size(); i++) {</pre>
        ans = min(ans, dist_from_point_to_polygon(p2, p1[
    for (int i = 0; i < p2.size(); i++) {</pre>
        ans = min(ans, dist_from_point_to_polygon(p1, p2[
           il));
    return ans;
// it returns a point such that the sum of distances
// from that point to all points in p is minimum
// O(n log^2 MX)
PT geometric_median(vector<PT> p) {
        auto tot dist = [&](PT z) {
            double res = 0;
            for (int i = 0; i < p.size(); i++) res +=</pre>
                dist(p[i], z);
            return res;
        auto findY = [&](double x) {
            double yl = -1e5, yr = 1e5;
            for (int i = 0; i < 60; i++) {
                double ym1 = yl + (yr - yl) / 3;
                double ym2 = yr - (yr - y1) / 3;
                double d1 = tot_dist(PT(x, ym1));
                double d2 = tot dist(PT(x, vm2));
                if (d1 < d2) yr = ym2;
                else yl = ym1;
```

```
return pair<double, double> (yl, tot_dist(PT(
                x, y1));
    double x1 = -1e5, xr = 1e5;
    for (int i = 0; i < 60; i++) {</pre>
        double xm1 = x1 + (xr - x1) / 3;
        double xm2 = xr - (xr - x1) / 3;
        double y1, d1, y2, d2;
        auto z = findY(\bar{x}m1); y1 = z.first; d1 = z.second;
        z = findY(xm2); y2 = \overline{z}.first; d2 = z.second;
        if (d1 < d2) xr = xm2;
        else x1 = xm1;
    return {xl, findY(xl).first };
// ear decomposition, O(n^3) but faster
vector<vector<pt>> triangulate(vector<pt> p) {
        vector<vector<pt>> v;
        while (p.size() >= 3) {
                for (int i = 0, n = p.size(); i < n; i++)
                         int pre = i == 0 ? n - 1 : i -
                            1;;
                         int nxt = i == n - 1 ? 0 : i +
                            1;;
                         lf ori = orient(p[i], p[pre], p[
                            nxtl);
                         if (ori < 0) {
                                 int ok = 1;
                                 for (int j = 0; j < n; j
                                    ++) {
                                         if (j == i || j
                                             == pre || j ==
                                              nxt) continue;
                                          vector < pt > tr = {
                                             p[i], p[pre],
                                             p[nxt]};
                                          if (
                                             point_in_polygon
                                             (tr , p[j]) !=
                                              OUT) {
                                                  ok = 0;
                                                  break:
                                 if (ok) {
                                          v.push_back({p[
                                             pre], p[i], p[
                                             p.erase(p.begin()
                                              + i);
```

```
break;
}

return v;
}
```

5.14 Segmentos

```
// add Lines Points
bool in disk(pt a, pt b, pt p) { // pt p inside ab disk
        return dot(a - p, b - p) \le E0;
bool on segment (pt a, pt b, pt p) { // p on ab
        return orient(a, b, p) == 0 \&\& in disk(a, b, p);
// ab crossing cd
bool proper_inter(pt a, pt b, pt c, pt d, pt& out) {
        lf oa = orient(c, d, a);
        lf ob = orient(c, d, b);
        lf oc = orient(a, b, c);
        lf od = orient(a, b, d);
        // Proper intersection exists iff opposite signs
        if (oa * ob < 0 && oc * od < 0)
                out = (a * ob - b * oa) / (ob - oa);
                return true;
        return false:
// intersection bwn segments
set<pt> inter_ss(pt a, pt b, pt c, pt d) {
        pt out;
        if (proper_inter(a, b, c, d, out)) return {out};
        set<pt> s;
        if (on_segment(c, d, a)) s.insert(a); // a in cd
        if (on_segment(c, d, b)) s.insert(b); // b in cd
        if (on_segment(a, b, c)) s.insert(c); // c in ab
        if (on segment(a, b, d)) s.insert(d); // d in ab
        return s;
If pt to seg(pt a, pt b, pt p) { // p to ab
        if (a != b) {
                line l(a, b);
                if (l.cmp_proj(a, p) && l.cmp_proj(p, b))
                    // if closest to projection = (a, p,
                   b)
                        return l.dist(p); // output
                            distance to line
```

```
return min(norm(p - a), norm(p - b)); //
           otherwise distance to A or B
lf seg_to_seg(pt a, pt b, pt c, pt d) {
        pt dummy;
        if (proper inter(a, b, c, d, dummy)) return 0; //
            ab intersects cd
        return min({pt_to_seg(a, b, c), pt_to_seg(a, b, d
           ), pt_to_seg(c, d, a), pt_to_seg(c, d, b)});
           // try the 4 pts
int length union(vector<pt>& a) { // REVISAR
        int n = a.size();
        vector<pair<int, bool>> x(n * 2);
        for (int i = 0; i < n; i++) {
                x[i * 2] = \{a[i].x, false\};
                x[i * 2 + 1] = \{a[i].y, true\};
        sort(x.begin(), x.end());
        int result = 0;
        int c = 0;
        for (int i = 0; i < n * 2; i++) {
                if (i > 0 && x[i].first > x[i - 1].first
                   && c > 0) result += x[i].first - x[i -
                    1].first;
                if (x[i].second) c--;
                else c++;
        return result;
```

5.15 Triangle Union

```
// Area of the union of a set of n triangles
// T(n^2 logn) M(n)

typedef double dbl;

const dbl eps = 1e-9;

inline bool eq(dbl x, dbl y) {
    return fabs(x - y) < eps;
}

inline bool lt(dbl x, dbl y) {
    return x < y - eps;
}

inline bool gt(dbl x, dbl y) {
    return x > y + eps;
}

inline bool le(dbl x, dbl y) {
    return x < y + eps;
}</pre>
```

```
inline bool ge(dbl x, dbl v){
    return x > y - eps;
struct ptT{
    dbl x, y;
    ptT(){}
    ptT(dbl x, dbl y): x(x), y(y) {}
    inline ptT operator - (const ptT & p)const{
        return ptT{x - p.x, y - p.y};
    inline ptT operator + (const ptT & p)const{
        return ptT\{x + p.x, y + p.y\};
    inline ptT operator * (dbl a)const{
        return ptT\{x * a, y * a\};
    inline dbl cross(const ptT & p)const{
        return x * p.y - y * p.x;
    inline dbl dot(const ptT & p)const{
        return x * p.x + y * p.y;
    inline bool operator == (const ptT & p)const{
        return eq(x, p.x) && eq(y, p.y);
};
struct LineT{
    ptT p[2];
    LineT(){}
    LineT(ptT a, ptT b):p\{a, b\}\{\}
    ptT vec()const{
        return p[1] - p[0];
    ptT& operator [](size_t i){
        return p[i];
};
inline bool lexComp(const ptT & 1, const ptT & r) {
    if(fabs(l.x - r.x) > eps){
        return 1.x < r.x;</pre>
    else return l.y < r.y;</pre>
vector<ptT> interSegSeg(LineT 11, LineT 12) {
    if(eq(11.vec().cross(12.vec()), 0)){
        if(!eq(l1.vec().cross(l2[0] - l1[0]), 0))
            return {};
        if(!lexComp(l1[0], l1[1]))
            swap(\bar{11}[0], 11[1]);
        if(!lexComp(12[0], 12[1]))
            swap(12[0], 12[1]);
```

```
Triangle Union
```

```
GEOMETRIA
```

```
ptT l = lexComp(l1[0], l2[0]) ? l2[0] : l1[0];
        ptT r = lexComp(11[1], 12[1]) ? 11[1] : 12[1];
        if(1 == r)
            return {1};
        else return lexComp(l, r) ? vector<ptT>{l, r} :
           vector<ptT>();
    else{
        dbl s = (12[0] - 11[0]).cross(12.vec()) / 11.vec
           ().cross(12.vec());
        ptT inter = 11[0] + 11.vec() * s;
        if(qe(s, 0) \&\& le(s, 1) \&\& le((12[0] - inter).dot
            (12[1] - inter), 0))
            return {inter};
        else
            return {};
inline char get_segtype(LineT segment, ptT other_point){
    if(eq(seament[0].x, seament[1].x))
        return 0;
    if(!lexComp(segment[0], segment[1]))
        swap(segment[0], segment[1]);
    return (segment[1] - segment[0]).cross(other_point -
       segment[0]) > 0 ? 1 : -1;
dbl union area(vector<tuple<ptT, ptT, ptT> > triangles){
    vector<LineT> segments(3 * triangles.size());
    vector<char> segtype(segments.size());
    for (size t i = 0; i < triangles.size(); i++) {
        ptT a, b, c;
        tie(a, b, c) = triangles[i];
        segments [3 * i] = lexComp(a, b) ? LineT(a, b) :
           LineT(b, a);
        seqtype[3 * i] = qet_seqtype(segments[3 * i], c);
        segments [3 * i + 1] = lexComp(b, c)? LineT(b, c)
            : LineT(c, b);
        seqtype[3 * i + 1] = qet_seqtype(segments[3 * i +
            11, a);
        segments [3 * i + 2] = lexComp(c, a)? LineT(c, a)
            : LineT(a, c);
        seqtype[3 * i + 2] = qet seqtype(segments[3 * i +
            21, b);
    vector<dbl> k(segments.size()), b(segments.size());
    for (size t i = 0; i < segments.size(); i++) {
        if(seatype[i]){
            k[i] = (segments[i][1].v - segments[i][0].v)
                / (segments[i][1].x - segments[i][0].x);
            b[i] = segments[i][0].y - k[i] * segments[i]
               ][0].x;
    dbl ans = 0;
```

```
for(size t i = 0; i < segments.size(); i++){</pre>
    if(!seatvpe[i])
        continue;
    dbl l = segments[i][0].x, r = segments[i][1].x;
    vector<pair<dbl, int> > evts;
    for(size_t j = 0; j < segments.size(); j++) {</pre>
        if(!seatype[i] || i == i)
            continue;
        dbl l1 = segments[\dot{j}][0].x, r1 = segments[\dot{j}
           ][1].x;
        if(ge(l1, r) || ge(l, r1))
            continue;
        dbl common l = max(l, ll), common r = min(r, ll)
        auto pts = interSeqSeq(segments[i], segments[
           j]);
        if(pts.emptv()){
            dbl yll = k[j] * common_l + b[j];
            dbl yl = k[i] * common l + b[i];
            if(lt(yl1, yl) == (seqtype[i] == 1)){
                int evt type = -seqtype[i] * seqtype[
                evts.emplace back(common l, evt type)
                evts.emplace back(common r, -evt type
        else if(pts.size() == 1u){
            dbl vl = k[i] * common_l + b[i], yll = k[
                j] * common_l + b[j];
            int evt type = -seqtype[i] * seqtype[j];
            if(lt(vl1, vl) == (seqtype[i] == 1)){
                evts.emplace_back(common_l, evt_type)
                evts.emplace_back(pts[0].x, -evt_type
                   );
            yl = k[i] * common r + b[i], yll = k[i] *
                 common_r + b[j];
            if(lt(yl1, yl) == (seqtype[i] == 1)){
                evts.emplace back(pts[0].x, evt type)
                evts.emplace back(common r, -evt type
                    );
        else{
            if(segtype[j] != segtype[i] || j > i){
                evts.emplace_back(common_1, -2);
                evts.emplace back(common r, 2);
    evts.emplace back(1, 0);
```

```
6 GRAFOS
```

```
sort(evts.begin(), evts.end());
    size_t j = 0;
    int balance = 0;
    while(j < evts.size()){</pre>
        size t ptr = j;
        while(ptr < evts.size() && eq(evts[j].first,</pre>
            evts[ptr].first)){
            balance += evts[ptr].second;
            ++ptr;
        if(!balance && !eq(evts[j].first, r)){
            dbl next_x = ptr == evts.size() ? r :
                evts[ptr].first;
            ans -= seqtype[i] \star (k[i] \star (next_x +
                evts[j].first) + 2 * b[i]) * (next x -
                 evts[i].first);
        j = ptr;
return ans/2;
```

6 Grafos

6.1 2sat

```
// O(n+m)
// (x1 or y1) and (x2 or y2) and ... and (xn or yn)
struct sat2{
        vector<vector<vi>>> q;
        vector<bool> vis, val;
        stack<int> st;
        vi comp;
        int n;
        sat2(int n):n(n),q(2, vector<vi>(2*n)),vis(2*n),
           val(2*n), comp(2*n) {}
        int neg(int x) {return 2*n-x-1;} // get not x
        void make_true(int u) {add_edge(neg(u), u);}
        void make false(int u) {make true(neg(u));}
        void add or(int u, int v) {implication(neg(u), v);}
            // (u or v)
        void diff(int u, int v) \{eq(u, neg(v));\} // u != v
        void eq(int u, int v) {
                implication(u, v);
                implication(v, u);
        void implication(int u,int v) {
                add_edge(u, v);
```

```
add edge (neg (v), neg (u));
        void add edge(int u, int v){
                 q[0][u].push back(v);
                 q[1][v].push_back(u);
        void dfs(int id, int u, int t=0) {
                 vis[u]=true;
                 for(auto &v:g[id][u])
                          if(!vis[v])dfs(id, v, t);
                 if (id) comp[u]=t;
                 else st.push(u);
        void kosaraju() {
                 for(int u=0; u<n; ++u) {
                          if(!vis[u])dfs(0, u);
                          if(!vis[neq(u)])dfs(0, neq(u));
                 vis.assign(2*n, false);
                 int t=0;
                 while(!st.empty()){
                          int u=st.top();st.pop();
                          if(!vis[u])dfs(1, u, t++);
        // return true if satisfiable, fills val[]
        bool check(){
                 kosaraju();
                 for (int i=0; i < n; ++i) {</pre>
                          if (comp[i] == comp[neg(i)]) return
                              false;
                          val[i]=comp[i]>comp[neg(i)];
                 return true;
};
int m,n;cin>>m>>n;
sat2 s(n);
char c1, c2;
for (int a, b, i=0; i < m; ++i) {</pre>
        cin>>c1>>a>>c2>>b;
        a--;b--;
        if(c1=='-')a=s.neg(a);
        if(c2=='-')b=s.neg(b);
        s.add or(a,b);
if(s.check()){
        for (int i=0; i < n; ++i) cout << (s.val[i]?'+':'-') << " "</pre>
        cout << "\n";
}else cout<<"IMPOSSIBLE\n";</pre>
```

6.2 Bellman Ford

```
// O(V*E)
vi bellman ford(vector<vii> &adj, int s, int n) {
        vi dist(n, INF); dist[s] = 0;
        for (int i = 0; i < n-1; i++) {
                 bool modified = false;
                 for (int u = 0; u < n; u + +)
                         if (dist[u] != INF)
                                  for (auto &[v, w] : adj[u
                                     ]){
                                          if (dist[v] <=</pre>
                                              dist[u] + w)
                                              continue;
                                          dist[v] = dist[u]
                                          modified = true;
                 if (!modified) break;
        bool negativeCicle = false;
        for (int u = 0; u < n; u + +)
                 if (dist[u] != INF)
                         for (auto &[v, w] : adj[u]){
                                  if (dist[v] > dist[u] + w
                                       negativeCicle = true
        return dist;
```

6.3 Block Cut Tree

```
// O(n) build
// bi connected save the edges
const int maxn = 1e5+5;
int lowLink[maxn] , dfn[maxn];
vector<vector<ii>>> bi connected;
stack<ii> comps;
int ndfn;
void tarjan(vector<vi>& adj, int u=0, int par=-1) {
        dfn[u] = lowLink[u] = ndfn++;
        for(auto &v : adj[u]){
                if (v != par && dfn[v] < dfn[u])
                        comps.push({u, v});
                if (dfn[v] == -1) {
                        tarjan(adj, v, u);
                        lowLink[u] = min(lowLink[u] ,
                            lowLink[v]);
                        if (lowLink[v] >= dfn[u]){
```

```
bi connected.emplace back
                                     (vector<ii>());
                                 ii edge;
                                 do{
                                          edge = comps.top
                                              ();
                                          comps.pop();
                                          bi connected.back
                                              emplace back (
                                              edge);
                                  }while (edge.first != u ||
                                      edge.second != v);
                                  reverse (all (bi connected.
                                     back()));
                 }else if(v != par) {
                         lowLink[u] = min(lowLink[u], dfn
                             [V]);
void init(vector<vi>& adj){
        for(int i=0;i<sz(adj);++i)</pre>
                dfn[i]=-1;
        bi_connected.clear();
        comps=stack<ii>();
        ndfn=0;
        tarjan(adj);
```

6.4 Bridges Online

```
vector<int> par, dsu 2ecc, dsu cc, dsu cc size;
int bridges;
int lca iteration;
vector<int> last visit;
void init(int n) {
        par.resize(n);
        dsu_2ecc.resize(n);
        dsu_cc.resize(n);
        dsu cc size.resize(n);
        lca_iteration = 0;
        last visit.assign(n, 0);
        for (int i=0; i<n; ++i) {</pre>
                dsu \ 2ecc[i] = i;
                dsu cc[i] = i;
                dsu_cc_size[i] = 1;
                par[i] = -1;
        bridges = 0;
```

```
int find 2ecc(int v) {
        if (v == -1)
                return -1:
        return dsu 2ecc[v] == v ? v : dsu 2ecc[v] =
           find 2ecc(dsu 2ecc[v]);
int find cc(int v) {
        v = find 2ecc(v);
        return dsu cc[v] == v ? v : dsu cc[v] = find cc(
           dsu cc[v]);
void make root(int v) {
        int root = v;
        int child = -1;
        while (v != -1)
                int p = find_2ecc(par[v]);
                par[v] = child;
                dsu\_cc[v] = root;
                child = v;
                v = p;
        dsu cc size[root] = dsu cc size[child];
void merge path (int a, int b) {
        ++lca iteration;
        vector<int> path a, path b;
        int lca = -1;
        while (lca == -1) {
                if (a !=-1) {
                        a = find_2ecc(a);
                        path a.push back(a);
                        if (last visit[a] ==
                            lca iteration) {
                                lca = a;
                                break;
                        last_visit[a] = lca_iteration;
                        a = par[a];
                if (b !=-1) {
                        b = find 2ecc(b);
                        path_b.push_back(b);
                        if (last visit[b] ==
                            lca_iteration) {
                                lca = b;
                                break:
                        last_visit[b] = lca_iteration;
                        b = par[b];
```

```
for (int v : path_a) {
                dsu_2ecc[v] = lca;
                if (v == lca)
                        break;
                --bridges;
        for (int v : path b) {
                dsu_2ecc[v] = lca;
                if (v == lca)
                        break:
                --bridges;
void add edge(int a, int b) {
        a = find 2ecc(a);
        b = find 2ecc(b);
        if (a == b)
                return;
        int ca = find cc(a);
        int cb = find cc(b);
        if (ca != cb) {
                ++bridges;
                if (dsu_cc_size[ca] > dsu_cc_size[cb]) {
                        swap(a, b);
                        swap(ca, cb);
                make root(a);
                par[a] = dsu cc[a] = b;
                dsu_cc_size[cb] += dsu_cc_size[a];
        } else {
                merge path(a, b);
```

6.5 Camino Mas Corto De Longitud Fija

```
6.6 Clique
```

```
6 GRAFOS
```

```
}

return ans;

}

int main() {

    int n, m, k; cin >> n >> m >> k;

    vector<vl> adj(n, vl(n, INFL));

    for (int i = 0; i<m; i++) {
            ll a, b, c; cin >> a >> b >> c; a--; b--;
            adj[a][b] = min(adj[a][b], c);

}

matrix graph(n, n, adj);
graph = pow(graph, k-1);

cout << (graph.m[0][n-1]==INFL ? -1 : graph.m[0][n-1]) << "\n";

return 0;

}
</pre>
```

6.6 Clique

9

```
* Credit: kactl
 * Given a graph as a symmetric bitset matrix (without
    any self edges)
 * Finds the maximum clique
 * Can be used to find the maximum independent set by
    finding a clique of the complement graph.
 * Runs in about 1s for n=155, and faster for sparse
    graphs
 * 0 indexed
const int N = 40;
typedef vector<bitset<N>> graph;
struct Maxclique {
  double limit = 0.025, pk = 0;
  struct Vertex {
    int i, d = 0;
  typedef vector<Vertex> vv;
  graph e;
  vv V;
  vector<vector<int>> C;
  vector<int> qmax, q, S, old;
  void init(vv& r) {
    for (auto \& v : r) v.d = 0;
    for (auto& v : r) for (auto j : r) v.d += e[v.i][j.i
       ];
    sort(r.begin(), r.end(), [](auto a, auto b) {
```

```
return a.d > b.d;
    int mxD = r[0].d;
    for (int i = 0; i < sz(r); i++) r[i].d = min(i, mxD)
       + 1;
 void expand(vv& R, int lev = 1) {
    S[lev] += S[lev - 1] - old[lev];
    old[lev] = S[lev - 1];
    while (sz(R)) {
      if (sz(q) + R.back().d <= sz(qmax)) return;</pre>
      g.push back(R.back().i);
      for(auto v : R) if (e[R.back().i][v.i]) T.push_back
          (\{v.i\});
      if (sz(T)) {
        if (S[lev]++ / ++pk < limit) init(T);
        int j = 0, mxk = 1, mnk = max(sz(gmax) - sz(g) +
           1, 1);
        C[1].clear(), C[2].clear();
        for (auto v : T) {
          int k = 1;
          auto f = [&](int i) {
            return e[v.i][i];
          while (any_of(C[k].begin(), C[k].end(), f)) k
          if (k > mxk) mxk = k, C[mxk + 1].clear();
          if (k < mnk) T[j++].i = v.i;
          C[k].push_back(v.i);
        if (j > 0) T[j - 1].d = 0;
        for (int k = mnk; k \le mxk; k++) for (int i : C[k]
          T[j].i = i, T[j++].d = k;
        expand(T, lev + 1);
      } else if (sz(q) > sz(qmax)) qmax = q;
      q.pop_back(), R.pop_back();
 Maxclique(graph g) : e(g), C(sz(e) + 1), S(sz(C)), old(
    for (int i = 0; i < sz(e); i++) V.push back(\{i\});
  vector<int> solve() { // returns the clique
    init(V), expand(V);
    return qmax;
} ;
```

6.7 Cycle Directed

vector<vi> adj;
vi parent,color;

```
int cy0, cy1;
bool dfs(int v) {
        color[v]=1;
        for(int u:adj[v]){
                 if(color[u] == 0) {
                          parent[u]=v;
                         if (dfs(u)) return true;
                 }else if(color[u]==1){
                          cv1=v;
                          c\bar{y}0=u;
                          return true;
        color[v]=2;
        return false;
//O(m)
void find cycle(int n) {
        color.assign(n, 0);
        parent.assign(n, -1);
        cv0 = -1;
        for(int v=0; v<n; ++v) {
                 if(color[v]==0){
                         if (dfs(v))break;
        if(cv0==-1){
                 cout << "IMPOSSIBLE \n";
                 return;
        vi cycle;
        cycle.push back(cy0);
        for (int v=cy1; v!=cy0; v=parent[v]) cycle.push_back(
            v);
        cycle.push_back(cy0);
        reverse(cycle.begin(),cycle.end());
        print(cycle);
```

6.8 Cycle Undirected

```
vector<vi> adj;
vector<bool> visited;
int cy0,cy1;
vi parent;
bool dfs(int v, int par) {
    visited[v]=true;
    for(int u:adj[v]) {
        if(u==par) continue;
        if(visited[u]) {
            cy1=v;
            cy0=u;
```

```
return true;
                 parent[u]=v;
                 if(dfs(u,parent[u]))return true;
        return false;
//O(m)
void find_cycle(int n) {
        visited.assign(n, false);
        parent.assign(n, -1);
        cv0 = -1;
        for (int v=0; v<n; ++v) {</pre>
                 if(!visited[v]){
                 if(dfs(v, parent[v]))break;
        if(cy0==-1){
                 cout << "IMPOSSIBLE\n";</pre>
                 return;
        vi cycle;
        cycle.push back(cy0);
        for (int v=cy1; v!=cy0; v=parent[v]) cycle.push_back(
        cycle.push_back(cy0);
        print(cycle);
```

6.9 Dial Algorithm

```
const int maxn = 2e5+5;
vector<ii> adj[maxn];
// O(n*k+m)
// bfs for edge weights in the range [0, k]
void bfs(int s, int n, int k) {
        vector<queue<int>> qs(k+1, queue<int>());
        vector<bool> vis(n, false);
        vector<int> dist(n, 1e9);
        qs[0].push(s);
        dist[s]=0;
        int pos=0, num=1;
        while (num) {
                while (qs[pos%(k+1)].empty())pos++;
                int u=qs[pos%(k+1)].front();
                qs[pos%(k+1)].pop();
                num --;
                if(vis[u])continue;
                vis[u]=true;
                for(auto [w,v]:adj[u]){
                         if (dist[v]>dist[u]+w) {
                                 dist[v]=dist[u]+w;
```

```
qs[dist[v]%(k+1)].push(v)
num++;
}
}
```

6.10 Dijkstra

6.11 Dijkstra Sparse Graphs

```
// O(E*log(V))
vl dijkstra(vector<vector<pll>>> &adj, int s, int n) {
        vl dist(n, INFL); dist[s] = 0;
        set<pll> pq;
        pq.insert(pll(0, s));
        while(!pq.empty()){
                pll front = *pq.begin(); pq.erase(pq.
                   begin());
                11 d = front.first, u = front.second;
                for (auto &[v, w] : adj[u]){
                        if (dist[u] + w < dist[v]) {
                                 pq.erase(pll(dist[v], v))
                                 dist[v] = dist[u] + w;
                                 pq.insert(pll(dist[v], v)
                                    );
        return dist;
```

6.12 Eulerian Path Directed

```
const int maxn = 1e5+5;
vector<int> adj[maxn],path;
int out[maxn], in[maxn]; // remember
void dfs(int v) {
        while(!adj[v].empty()){
                int u=adi[v].back();
                adj[v].pop_back();
                dfs(u);
        path.push back(v);
// n -> nodes, m -> edges, s -> start, e -> end
void eulerian_path(int n, int m, int s, int e){
        for (int i=0;i<n;++i) {</pre>
                if(i==s || i==e)continue;
                if(in[i]!=out[i]){
                         cout << "IMPOSSIBLE \n";
                         return;
        if (out[s]-in[s]!=1 || in[e]-out[e]!=1) {
                cout << "IMPOSSIBLE\n";
                return;
        dfs(s);
        reverse(path.begin(), path.end());
        if (sz (path) !=m+1 || path.back()!=e) cout <<"
            IMPOSSIBLE\n";
        else print(path);
```

6.13 Eulerian Path Undirected

6.14 Floyd Warshall

6.15 Kosaraju

```
const int maxn = 1e5+5;
// construir el grafo inverso
// remember adj[a]->b, adj_rev[b]->a
vi adj_rev[maxn], adj[maxn];
bool used[maxn];
int idx[maxn]; // componente de cada nodo
vi order, comp;
// O(n+m)
void dfs1(int v) {
    used[v]=true;
    for(int u:adj[v])
        if(!used[u])dfs1(u);
        order.push_back(v);
```

```
void dfs2(int v){
        used[v]=true;
        comp.push_back(v);
        for(int u:adj_rev[v])
                 if(!used[u])dfs2(u);
// returna el numero de componentes
int init(int n){
        for (int i=0; i<n; ++i) if (!used[i]) dfs1(i);</pre>
        for (int i=0;i<n;++i)used[i]=false;</pre>
        reverse (all (order));
        int i=0;
        for(int v:order) {
                 if(!used[v]){
                          dfs2(v);
                          for(int u:comp)idx[u]=j;
                          comp.clear();
                          j++;
        return j;
```

6.16 kruskal

6.17 Prim

```
// O(E * log V)
// check: primer parametro de prim
// check: cuando no hay mst
vector<vii> adj;
vi tomado;
```

```
priority queue<ii> pq;
void process(int u) {
        tomado[u] = 1;
        for (auto &[v, w] : adj[u]){
                 if (!tomado[v]) pq.emplace(-w, -v);
int prim(int v, int n){
        tomado.assign(n, 0);
        process(0);
        int mst costo = 0, tomados = 0;
        while (!pq.empty()) {
                 auto [w, u] = pq.top(); pq.pop();
w = -w; u = -u;
                 if (tomado[u]) continue;
                 mst_costo += w;
                 process(u);
                 tomados++;
                 if (tomados == n-1) break;
        return mst costo;
```

6.18 Puentes y Puntos

```
const int maxn = 1e5+5;
vector<bool> vis;
vi adj[maxn]; // undirected
vi tin, low;
int timer;
void dfs(int u,int p=-1) {
        vis[u]=true;
        tin[u]=low[u]=timer++;
        int children=0;
        for(int v:adi[u]){
                if (v==p) continue;
                if (vis[v])low[u]=min(low[u],tin[v]);
                else{
                         dfs(v,u);
                         low[u] = min(low[u], low[v]);
                         if(low[v]>tin[u]); // u-v puente
                         if (low[v]>=tin[u] && p!=-1); // u
                             punto de articulacion
                         ++children;
        if (p==-1 && children>1); // u punto de
           articulacion
// O(n+m)
void init(int n) {
        timer=0;
```

```
vis.assign(n, false);
tin.assign(n,-1); low.assign(n,-1);
for(int i=0;i<n;++i) {</pre>
        if(!vis[i])dfs(i);
```

6.19 Shortest Path Faster Algorithm

```
//Algoritmo mas rapido de ruta minima
//O(V*E) peor caso, O(E) en promedio.
bool spfa(vector<vii> &adj, vector<int> &d, int s, int n)
        d.assign(n, INF);
        vector<int> cnt(n, 0);
        vector<bool> inqueue(n, false);
        queue<int> q;
        d[s] = 0;
        q.push(s);
        inqueue[s] = true;
        while (!q.empty()) {
                int v = q.front();
                q.pop();
                inqueue[v] = false;
                for (auto& [to, len] : adj[v]) {
                        if (d[v] + len < d[to]) {
                                d[to] = d[v] + len;
                                if (!inqueue[to]) {
                                         q.push(to);
                                         inqueue[to] =
                                            true;
                                         cnt[to]++;
                                         if (cnt[to] > n)
                                                 return
                                                     false:
                                                     //
                                                     ciclo
                                                     negativo
        return true;
```

6.20 Tarjan

```
// O(n+m) build graph in g[] and callt()
const int maxn = 2e5 + 5;
vi low, num, comp, q[maxn];
```

```
int scc, timer;
stack<int> st;
void tjn(int u) {
        low[u] = num[u] = timer++; st.push(u); int v;
        for(int v: q[u]) {
                 if(num[v] == -1) tjn(v);
                 if(comp[v]==-1) low[u] = min(low[u], low[u])
                     v]);
        if(low[u]==num[u]) {
                 do\{ v = st.top(); st.pop(); comp[v]=scc;
                  } while (u != v);
                 ++scc;
void callt(int n) {
        timer = scc= 0;
        num = low = comp = vector\langle int \rangle (n, -1);
        for(int i = 0; i<n; i++) if(num[i]==-1) tjn(i);</pre>
```

7 Matematicas

7.1 Bruijn sequences

```
// Given alphabet [0, k) constructs a cyclic string
// of length k n that contains every length n string as
   substr.
vi deBruijnSeq(int k, int n, int lim) {
        if (k == 1) return {0};
        vi seq, aux(n + 1);
        int cont = 0;
        function<void(int,int)> gen = [&](int t, int p) {
                if (t > n) {
                        if (n % p == 0) for (int i = 1; i)

                                if (cont >= lim) return;
                                seq.push_back(aux[i]);
                                cont++;
                } else {
                        aux[t] = aux[t - p];
                        gen(t + 1, p);
                        while (++aux[t] < k)
                                if (cont >= lim) return;
                                gen(t + 1, t);
        };
        gen(1, 1);
    // for (int i = 0; i < n-1; i++) seg.push back(0);
        return seq;
```

7.2 Convoluciones

```
// c[k] = sumatoria (i&j = k, += a[i]*b[j]) AND
   convolution
//c[k] = sumatoria (i|j = k, += a[i]*b[j]) OR
   convolution
// c[k] = sumatoria (i^i = k, += a[i]*b[i]) XOR
   convolution
// c[k] = sumatoria (qcd(i, j) = k, += a[i]*b[j]) GCD
   convolution
// c[k] = sumatoria (lcm(i, j) = k, += a[i]*b[j]) LCM
   convolution
// todas las funciones tienen operaciones con modulo
// si es indexando en 1 entonces se pone un cero al
   principio y listo
template<int MOD> struct mint {
        static const int mod = MOD;
        explicit operator int() const { return v; }
        mint():v(0) {}
        mint(ll v):v(int(v%MOD)) \{ v += (v<0)*MOD; \}
        void build(ll _v) { v=int(_v%MOD), v+=(v<0)*MOD;
        mint& operator+=(mint o) {
                if ((v += o.v) >= MOD) v -= MOD;
                return *this; }
        mint& operator-=(mint o) {
                if ((v -= o.v) < 0) v += MOD;
                return *this; }
        mint& operator *= (mint o) {
                v = int((ll)v*o.v%MOD); return *this; }
        friend mint pow(mint a, ll p) { assert(p \ge 0);
                return p==0?1:pow(a*a,p/2)*(p&1?a:1); }
        friend mint inv(mint a) { assert(a.v != 0);
           return pow(a, MOD-2); }
        friend mint operator+(mint a, mint b) { return a
        friend mint operator-(mint a, mint b) { return a
        friend mint operator*(mint a, mint b) { return a
           \star = b;
using mi = mint<998244353>;
template<typename T>
void SubsetZetaTransform(vector<T>& v) {
        const int n = v.size(); // n must be a power of 2
        for (int j = 1; j < n; j <<= 1) {
                for (int i = 0; i < n; i++)
                        if (i & j) v[i] += v[i ^ j];
```

```
template<typename T>
void SubsetMobiusTransform(vector<T>& v) {
        const int n = v.size(); // n must be a power of 2
        for (int j = 1; j < n; j <<= 1) {</pre>
                for (int i = 0; i < n; i++)
                         if (i & j) v[i] -= v[i ^ j];
template<typename T>
void SupersetZetaTransform(vector<T>& v) {
        const int n = v.size(); // n must be a power of 2
        for (int j = 1; j < n; j <<= 1) {
    for (int i = 0; i < n; i++)</pre>
                         if (i & j) v[i ^ j] += v[i];
template<typename T>
void SupersetMobiusTransform(vector<T>& v) {
        const int n = v.size(); // n must be a power of 2
        for (int j = 1; j < n; j <<= 1) {</pre>
                for (int i = 0; i < n; i++)</pre>
                         if (i & j) v[i ^ j] -= v[i];
vector<int> PrimeEnumerate(int n) {
        vector<int> P; vector<bool> B(n + 1, 1);
        for (int i = 2; i <= n; i++) {
                if (B[i]) P.push_back(i);
                for (int j: P) { if (i * j > n) break; B
                    [i * j] = 0; if (i % j == 0) break; }
        return P;
template<typename T>
void DivisorZetaTransform(vector<T>& v) {
        const int n = sz(v) - 1;
        for (int p : PrimeEnumerate(n)) {
                for (int i = 1; i * p <= n; i++)
                         v[i * p] += v[i];
template<typename T>
void DivisorMobiusTransform(vector<T>& v) {
        const int n = sz(v) - 1;
        for (int p : PrimeEnumerate(n)) {
                for (int i = n / p; i; i--)
                         v[i * p] -= v[i];
template<tvpename T>
void MultipleZetaTransform(vector<T>& v) {
```

```
const int n = sz(v) - 1;
        for (int p : PrimeEnumerate(n)) {
                for (int i = n / p; i; i--)
                        v[i] += v[i * p];
template<tvpename T>
void MultipleMobiusTransform(vector<T>& v) {
        const int n = sz(v) - 1;
        for (int p : PrimeEnumerate(n)) {
                for (int i = 1; i * p <= n; i++)
                        v[i] = v[i * p];
template<typename T>
vector<T> AndConvolution(vector<T> A, vector<T> B) {
        SupersetZetaTransform(A);
        SupersetZetaTransform(B);
        for (int i = 0; i < sz(A); i++) A[i] *= B[i];
        SupersetMobiusTransform(A);
        return A;
template<typename T>
vector<T> OrConvolution(vector<T> A, vector<T> B) {
        SubsetZetaTransform(A);
        SubsetZetaTransform(B);
        for (int i = 0; i < sz(A); i++) A[i] *= B[i];
        SubsetMobiusTransform(A);
        return A;
template<typename T>
vector<T> GCDConvolution(vector<T> A, vector<T> B) {
        MultipleZetaTransform(A);
        MultipleZetaTransform(B);
        for (int i = 0; i < sz(A); i++) A[i] *= B[i];</pre>
        MultipleMobiusTransform(A);
        return A;
template<typename T>
vector<T> LCMConvolution(vector<T> A, vector<T> B) {
        DivisorZetaTransform(A);
        DivisorZetaTransform(B);
        for (int i = 0; i < sz(A); i++) A[i] *= B[i];
        DivisorMobiusTransform(A);
        return A;
template<typename T>
vector<T> XORConvolution(vector<T> A, vector<T> B) {
        const int n = sz(A);
        auto FWT = [&](vector<T>& v) {
                for (int len = 1; len < n; len <<= 1) {</pre>
```

```
for (int i = 0; i < n; i += (len
                               << 1)) {
                                    for (int j = 0; j < len;
                                        j++) {
                                             T u(v[i + j]);
                                             T w(v[i + j + len
                                                 ]);
                                             v[i + j] = u + w;
                                                  v[i + j + len
                                                 1 = u - w;
         FWT(A); FWT(B);
         for (int i = 0; i < n; i++) A[i] *= B[i];</pre>
         FWT(A);
         T \text{ inv } n(\text{inv}(T(n)));
         for (int i = 0; i < n; i++) A[i] *= inv_n;</pre>
         return A;
void main2(){
         int n;
         cin>>n;
         vector<mi> a(1 << n), b(1 << n);
         for (int x, i=0; i < sz(a); ++i) {cin>>x; a[i].build(x);}
         for(int x, i=0; i < sz(b); ++i) { cin >> x; b[i].build(x); }
         vector<mi> ans=XORConvolution(a,b);
         for (int i=0; i < sz (ans); ++i) cout < < ans[i].v << "";</pre>
```

7.3 Criba

```
// O((R-L+1)\log(\log(R)) + \operatorname{sgrt}(R)\log(\log(\operatorname{sgrt}(R)))
// R-L+1 <= 1e7, R <= 1e14
void segmentedSieve(long long L, long long R) {
    // generate all primes up to sgrt(R)
    long long lim = sqrt(R) + 3;
    vector<bool> mark(lim + 1, false);
    vector<long long> primes;
    for (long long i = 2; i <= lim; ++i) {
        if (!mark[i]) {
             primes.emplace_back(i);
             for (long long j = i * i; j <= \lim; j += i)
                 mark[i] = true;
    vector<bool> isPrime(R - L + 1, true);
    for (long long i : primes)
        for (long long j = \max(i * i, (L + i - 1) / i * i)
            ); j <= R; j += i)
            isPrime[j - L] = false;
    if (L == 1)
        isPrime[0] = false;
```

7.4 Chinese Remainder Theorem

```
/// Complexity: |N|*log(|N|)
/// Tested: Not vet.
/// finds a suitable x that meets: x is congruent to a i
   mod n i
/** Works for non-coprime moduli.
Returns \{-1,-1\} if solution does not exist or input is
    invalid.
Otherwise, returns \{x,L\}, where x is the solution unique
   to mod L = LCM \ of \ mods
pll crt(vl A, vl M) {
        ll n = A.size(), a1 = A[0], m1 = M[0];
        for(ll i = 1; i < n; i++) {
                 11 \ a2 = A[i], \ m2 = M[i];
                 11 q = \underline{\hspace{0.2cm}} gcd(m1, m2);
                 if(a1 % q!= a2 % q) return {-1,-1};
                 ll p, q;
                 extended_euclid(m1/g, m2/g, p, g);
                 11 \mod = m1 / q * m2;
                 q %= mod; p %= mod;
                11 \times = ((111*(a1*mod)*(m2/g))*mod*q + (1)
                    11*(a2*mod)*(m1/q))*mod*p) % mod; //
                    if WA there is overflow
                 a1 = x;
                if (a1 < 0) a1 += mod;
                m1 = mod;
```

```
return {a1, m1};
}
```

7.5 Divisors

```
// d(n) = (a1+1)*(a2+1)*...*(ak+1)
11 numDiv(map<11, 11>& f) {
        ll ans=1;
        for(auto [ ,pot]:f)ans=mul(ans, (pot+111));
        return ans;
// sigma(n) = (p1^(a1+1)-1)/(p1-1) * (p2^(a2+1)-1)/(p2-1)
    * ... * (p\bar{k}^{(ak+1)-1})/(p\bar{k}-1)
// suma divisores a la xth potencia
ll sumDiv(map<11, 11>& f){
        11 ans=1,potencia=1;
        for(auto [num, pot]:f){
                11 p=binpow(num, (pot+111) *potencia) -111;
                ans=mul(ans, mul(p, inv(num-111)));
        return ans;
ll productDiv(map<ll, ll>& f) {
        ll pi=1, res=1;
        for(auto [num, pot]:f){
                11 p=binpow(num, pot*(pot+111)/211);
                res=mul(binpow(res, pot+111),binpow(p, pi
                pi=mul(pi, pot+111, MOD-111);
        return res;
// si a y b son coprimos, entonces:
// sigma(a*b) = sigma(a)*sigma(b)
// d(a*b) = d(a)*d(b)
```

7.6 Ecuaciones Diofanticas

```
// O(log(n))
ll extended_euclid(ll a, ll b, ll &x, ll &y) {
    ll xx = y = 0;
    ll yy = x = 1;
    while (b) {
        ll q = a / b;
        ll t = b; b = a % b; a = t;
        t = xx; xx = x - q * xx; x = t;
        t = yy; yy = y - q * yy; y = t;
    }
    return a;
}
```

```
// a*x+b*y=c. returns valid x and y if possible.
// all solutions are of the form (x0 + k * b / q, y0 - k
   *b/q
bool find any solution (ll a, ll b, ll c, ll &x0, ll &y0,
    ll &a) {
        if (a == 0 and b == 0) {
                if (c) return false;
                x0 = y0 = q = 0;
                return true;
        q = extended_euclid (abs(a), abs(b), x0, y0);
        if (c % q != 0) return false;
        x0 *= c / q;
        v0 \star = c / q;
        if (a < 0) x0 *= -1;
        if (b < 0) v0 *= -1;
        return true;
void shift solution(ll &x, ll &y, ll a, ll b, ll cnt) {
        x += cnt * b;
        v = cnt * a;
// returns the number of solutions where x is in the
   range[minx, maxx] and y is in the range[miny, maxy]
11 find_all_solutions(ll a, ll b, ll c, ll minx, ll maxx,
    11 miny, 11 maxy) {
        11 x, v, a;
        if (find any solution (a, b, c, x, y, g) == 0)
           return 0;
        if (a == 0 and b == 0) {
                assert(c == 0);
                return 1LL * (maxx - minx + 1) * (maxy -
                   miny + 1);
        if (a == 0) {
                return (maxx - minx + 1) * (miny <= c / b
                     and c / b <= maxy);
        if (b == 0) {
                return (maxy - miny + 1) * (minx <= c / a</pre>
                     and c / a <= maxx);
        a /= q, b /= q;
        11 \text{ sign}_a = a > 0 ? +1 : -1;
        ll sign b = b > 0 ? +1 : -1;
        shift solution (x, y, a, b, (minx - x) / b);
        if (x < minx) shift_solution(x, y, a, b, sign_b);</pre>
        if (x > maxx) return 0;
        11 \ 1x1 = x;
        shift_solution(x, y, a, b, (maxx - x) / b);
        if (x > maxx) shift_solution (x, y, a, b, -sign_b
           );
        11 rx1 = x;
        shift_solution(x, y, a, b, -(miny - y) / a);
        if (y < miny) shift_solution (x, y, a, b, -sign_a</pre>
```

```
if (y > maxy) return 0;
ll lx2 = x;
shift_solution(x, y, a, b, -(maxy - y) / a);
if (y > maxy) shift_solution(x, y, a, b, sign_a);
ll rx2 = x;
if (lx2 > rx2) swap (lx2, rx2);
ll lx = max(lx1, lx2);
ll rx = min(rx1, rx2);
if (lx > rx) return 0;
return (rx - lx) / abs(b) + 1;
}

///finds the first k / x + b * k / gcd(a, b) >= val
ll greater_or_equal_than(ll a, ll b, ll x, ll val, ll g)
{
    ld got = 1.0 * (val - x) * g / b;
    return b > 0 ? ceil(got) : floor(got);
}
```

7.7 Exponenciacion binaria

7.8 Exponenciacion matricial

```
ans.m[i][j] +=
                                              mod(m[i][k],
                                              MOD) * mod(b.m)
                                              [k][j], MOD);
                                           ans.m[i][j] = mod
                                              (ans.m[i][i],
                                              MOD);
                 return ans:
};
matrix pow(matrix &b, ll p) {
        matrix ans(b.r, b.c, vector<vl>(b.r, vl(b.c, 0)))
        for (int i = 0; i < b.r; i++) ans.m[i][i] = 1;</pre>
        while (p) {
                 if (p&1) {
                         ans = ans*b;
                 b = b*b;
                 p >>= 1;
        return ans;
```

7.9 Fast Fourier Transform

```
///Complexity: O(N log N)
///tested: https://codeforces.com/gym/104373/problem/E
#define rep(i, a, b) for(int i = a; i < (b); ++i)
#define sz (v) ((int)v.size())
#define trav(a, x) for(auto& a : x)
#define all(v) v.begin(), v.end()
typedef vector<ll> vl;
typedef vector<int> vi;
typedef complex<double> C;
typedef vector<double> vd;
void fft(vector<C>& a) {
        int n = sz(a), L = 31 - builtin clz(n);
        static vector<complex<long double>> R(2, 1);
        static vector<C> rt(2, 1); // (^ 10% faster if
           double)
        for (static int k = 2; k < n; k *= 2) {
                R.resize(n); rt.resize(n);
                auto x = polar(1.0L, acos(-1.0L) / k);
                rep(i,k,2*k) rt[i] = R[i] = i&1 ? R[i/2]
                   * x : R[i/2];
        vi rev(n);
        rep(i, 0, n) rev[i] = (rev[i / 2] | (i & 1) << L) /
            2;
```

```
rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);
        for (int k = 1; k < n; k *= 2)
                for (int i = 0; i < n; i += 2 * k) rep(j
                   ,0,k) {
                        // C z = rt[j+k] * a[i+j+k]; //
                            (25% faster if hand-rolled)
                           /// include-line
                        auto x = (double *) & rt[j+k], y =
                            (double *) &a[i+j+k];
                            / exclude-line
                        C z(x[0]*y[0] - x[1]*y[1], x[0]*y
                           [1] + x[1] * y[0]);
                            / exclude-line
                        a[i + j + k] = a[i + j] - z;
                        a[i + j] += z;
vl conv(const vl& a, const vl& b) {
        if (a.empty() || b.empty()) return {};
        vd res(sz(a) + sz(b) - 1);
        int L = 32 - \underline{\text{builtin\_clz}(\text{sz}(\text{res}))}, n = 1 << L;
        vector<C> in(n), out(n);
        copy(all(a), begin(in));
        rep(i, 0, sz(b)) in[i].imag(b[i]);
        fft(in);
        trav(x, in) x *= x;
        1);
        fft (out);
        vector<ll> resp(sz(res));
        rep(i, 0, sz(res)) resp[i] = round(imag(out[i]) /
           (4.0 * n));
        return resp;
```

7.10 Fibonacci Fast Doubling

7.11 Fraction

```
typedef __int128 T;
struct Fraction{
        T num, den;
        Fraction():num(0),den(1){}
        Fraction (T n): num(n), den(1)  }
        Fraction(T n,T d):num(n),den(d) {reduce();}
        void reduce(){
                 // assert (den!=0);
                T gcd= gcd(num, den); // <-
                num/=qcd, den/=qcd;
                if (den<0) num=-num, den=-den;</pre>
        Fraction fractional part() const{ // x - floor(x)
                Fraction fp=Fraction(num%den,den);
                if (fp<Fraction(0))fp+=Fraction(1);</pre>
                return fp;
        T compare (Fraction f) const { return num*f.den-den*f
        Fraction operator + (const Fraction& f) {return
            Fraction(num*f.den+den*f.num,den*f.den);}
        Fraction operator - (const Fraction& f) {return
            Fraction(num*f.den-den*f.num,den*f.den);}
        Fraction operator * (const Fraction& f) {
                Fraction a=Fraction(num, f.den);
                Fraction b=Fraction(f.num,den);
                return Fraction(a.num*b.num,a.den*b.den);
        Fraction operator / (const Fraction& f) {return *
           this*Fraction(f.den,f.num);}
        Fraction operator += (const Fraction& f) {return *
            this=*this+f;}
        Fraction operator -= (const Fraction& f) {return *
            this=*this-f;}
        Fraction operator *= (const Fraction& f) {return *
            this=*this*f;}
        Fraction operator /= (const Fraction& f) {return *
            this=*this/f;}
        bool operator == (const Fraction& f) const{return
            compare (f) == 0;
        bool operator != (const Fraction& f) const{return
            compare (f) !=0;
        bool operator >= (const Fraction& f) const{return
            compare (f) \ge 0;
        bool operator <= (const Fraction& f)const{return</pre>
            compare (f) \le 0;
        bool operator > (const Fraction& f)const{return
            compare (f) > 0;
        bool operator < (const Fraction& f)const{return</pre>
            compare (f) < 0;
Fraction operator - (const Fraction& f) {return Fraction(-
   f.num, f.den);}
ostream& operator << (ostream& os, const Fraction& f) {
```

```
return os<<"("<<(11) f.num<<"/"<<(11) f.den<<")";}</pre>
```

7.12 Freivalds algorithm

7.13 Gauss Jordan

```
// O(min(n, m)*n*m)
const double EPS = 1e-9;
const int INF = 2; // it doesn't actually have to be
   infinity or a big number
int gauss (vector < vector<double> > a, vector<double> &
   ans) {
        int n = (int) a.size();
        int m = (int) a[0].size() - 1;
        vector<int> where (m, -1);
        for (int col=0, row=0; col<m && row<n; ++col) {</pre>
                 int sel = row;
                 for (int i=row; i<n; ++i)</pre>
                         if (abs (a[i][col]) > abs (a[sel
                             1[col]))
                                  sel = i;
                 if (abs (a[sel][col]) < EPS)</pre>
                         continue:
                 for (int i=col; i<=m; ++i)</pre>
                         swap (a[sel][i], a[row][i]);
                 where [col] = row;
                 for (int i=0; i<n; ++i)
                         if (i != row) {
                                  double c = a[i][col] / a[
                                     rowl[col];
                                  for (int j=col; j<=m; ++j
```

```
a[i][j] = a[row]
                                     ][j] * c;
        ++row;
ans.assign (m, 0);
for (int i=0; i<m; ++i)
        if (where[i] != -1)
                 ans[i] = a[where[i]][m] / a[where
                    [i]][i];
for (int i=0; i<n; ++i) {</pre>
        double sum = 0;
        for (int j=0; j<m; ++j)
                 sum += ans[j] * a[i][j];
        if (abs (sum - a[i][m]) > EPS)
                 return 0;
for (int i=0; i<m; ++i)</pre>
        if (where [i] == -1)
                 return INF;
return 1:
```

7.14 Gauss Jordan mod 2

```
// O(min(n, m)*n*m)
int gauss (vector < bitset<N> > &a, int n, int m, bitset<</pre>
   N> & ans) {
        vector<int> where (m, -1);
        for (int col=0, row=0; col<m && row<n; ++col) {</pre>
                 for (int i=row; i<n; ++i)</pre>
                         if (a[i][col]) {
                                  swap (a[i], a[row]);
                                  break;
                 if (! a[row][col])
                         continue;
                 where [col] = row;
                 for (int i=0; i<n; ++i)</pre>
                         if (i != row && a[i][col])
                                  a[i] ^= a[row];
                 ++row:
        for (int i=0; i<m; ++i)
                 if (where[i] != -1)
                         ans[i] = a[where[i]][m] / a[where
                             [i]][i];
        for (int i=0; i<n; ++i) {
                double sum = 0;
                 for (int j=0; j<m; ++j)
                         sum += ans[j] * a[i][j];
```

```
if (abs (sum - a[i][m]) > EPS)
                return 0;
for (int i=0; i<m; ++i)
        if (where [i] == -1)
                return INF:
return 1;
```

7.15 GCD y LCM

```
//0(\log 10 \, n) \, n == \max(a, b)
int gcd(int a, int b) { return b == 0 ? a : gcd(b, a%b);
int lcm(int a, int b) { return a / gcd(a, b) * b; }
//gcd(a, b, c) = gcd(a, gcd(b, c))
//gcd(a, b) = gcd(a, b-a)
// O(\log(\min(a, b)) - a*x+b*y=\gcd(a, b)
ll gcd(ll a, ll b, ll &x, ll &y) {
        x=1, y=0;
        11 \times 1=0, y1=1, a1=a, b1=b;
        while(b1) {
                 ll q=a1/b1;
                 tie(x, x1) = make_tuple(x1, x-q*x1);
                 tie(y, y1)=make_tuple(y1, y-q*y1);
                 tie(a1, b1) = make tuple(b1, a1-q*b1);
        }return a1;
```

7.16 Integral Definida

```
const int steps = 1e6; // %2==0
double f(double x);
double simpson(double a, double b) {
        double h=(b-a)/steps;
        double s=f(a)+f(b);
        for (int i=1; i <= steps-1; i++) {</pre>
                 double x=a+h*i;
                 s+=f(x)*((i&1)?4:2);
        s*=h/3;
        return s;
```

7.17 Inverso modular

```
11 mod(ll a, ll m) {
        return ((a%m) + m) % m;
```

```
11 modInverse(ll b, ll m) {
        11 x, y;
        ll d = extEuclid(b, m, x, y); //obtiene b*x + m*
           v == d
        if (d != 1) return -1;
                                        //indica error
        // b*x + m*y == 1, ahora aplicamos (mod m) para
           obtener\ b*x == 1 \pmod{m}
        return mod(x, m);
// Otra forma
// O(log MOD)
ll inv (ll a) {
        return binpow(a, MOD-2, MOD);
//Modulo constante
inv[1] = 1;
for(int i = 2; i < p; ++i)
        inv[i] = (p - (p / i) * inv[p % i] % p) % p;
```

7.18 Lagrange

```
const int N = 1e6;
int f[N], fr[N];
void initC() {
  f[0] = 1;
  for (int i=1; i<N; i++) f[i] = mul(f[i-1], i);</pre>
  fr[N-1] = inv(f[N-1]);
  for(int i=N-1; i>=1; --i) fr[i-1] = mul(fr[i], i);
// mint C(int n, int k) { return k<0 | | k>n ? 0 : f[n] *
   fr[k] * fr[n-k]; }
struct LagrangePol {
  int n;
  vi y, den, l, r;
  LagrangePol(vector<int> f): n(sz(f)), y(f), den(n), l(n
     ), r(n) \{ / / f[i] := f(i) \}
    // Calcula interpol. pol P in O(n) := deg(P) = sz(v)
    initC();
    for (int i = 0; i<n; i++) {</pre>
      den[i] = mul(fr[n-1-i], fr[i]);
      if((n-1-i) \& 1) den[i] = mod(-den[i]);
  int eval(int x) { // Evaluate LagrangePoly P(x) in O(n)
   1[0] = r[n-1] = 1;
    for (int i = 1; i < n; i++) l[i] = mul(l[i-1], mod(x - 1))
       i + 1));
    for (int i=n-2; i>=0; --i) r[i] = mul(r[i+1], mod(x -
       i - 1));
```

```
int ans = 0;
    for (int i = 0; i < n; i++) ans = add(ans, mul(mul(l[i
       ], r[i]), mul(y[i], den[i])));
    return ans;
};
// Para Xs que no sean de [0, N]
/// Complexity: 0(|N|^2)
/// Tested: https://tinyurl.com/y23sh38k
vector<lf> X, F;
lf f(lf x) {
 lf answer = 0;
  for (int i = 0; i < sz(X); i++) {
    lf prod = F[i];
    for (int j = 0; j < sz(X); j++) {
      if(i == j) continue;
      prod = mul(prod, divide(sbt(x, X[i]), sbt(X[i], X[i]))
         1)));
    answer = add(answer, prod);
  return answer;
//given y=f(x) for x [0, degree]
vi interpolation( vi &y ) {
  int n = sz(y);
  vi u = v, ans(n), sum(n);
  ans[0] = u[0], sum[0] = 1;
  for( int i = 1; i < n; ++i )</pre>
    int inv = binpow(i, MOD - 2);
    for( int j = n - 1; j >= i; --j)
      u[\dot{j}] = 1LL * (u[\dot{j}] - u[\dot{j} - 1] + MOD) * inv % MOD;
    for ( int j = i; j > 0; --j )
      sum[j] = (sum[j - 1] - 1LL * (i - 1) * sum[j] % MOD
          + MOD) % MOD;
      ans[j] = (ans[j] + 1LL * sum[j] * u[i]) % MOD;
    sum[0] = 1LL * (i - 1) * (MOD - sum[0]) % MOD;
    ans[0] = (ans[0] + 1LL * sum[0] * u[i]) % MOD;
  return ans;
```

7.19 Logaritmo Discreto

```
// O(sqrt(m))
// Returns minimum x for which a ^ x % m = b % m.
int solve(int a, int b, int m) {
```

```
// if (a == 0) return b == 0 ? 1 : -1; Casos 0^x
   = b
a %= m, b %= m;
int k = 1, add = 0, q;
while ((g = gcd(a, m)) > 1) {
        if (b == k)
                return add:
        if (b % a)
                return -1;
        b /= q, m /= q, ++add;
        k = (\tilde{k} * 111 * a / q) % m;
int n = sqrt(m) + 1;
int an = \bar{1};
for (int i = 0; i < n; ++i)
        an = (an * 111 * a) % m;
unordered_map<int, int> vals;
for (int q = 0, cur = b; q <= n; ++q) {</pre>
        vals[cur] = q;
        cur = (cur * 111 * a) % m;
for (int p = 1, cur = k; p \le n; ++p) {
        cur = (cur * 111 * an) % m;
        if (vals.count(cur)) {
                int ans = n * p - vals[cur] + add
                 return ans;
return -1;
```

7.20 Miller Rabin

```
bool witness (ll a, ll s, ll d, ll n) {
        ll x = fpow(a, d, n);
        if (x == 1 \mid | x == n - 1) return false;
        for (int i = 0; i < s - 1; i++) {</pre>
                 x = mul(x, x, n);
                 if (x == 1) return true;
                 if (x == n - 1) return false;
        return true;
11 \text{ test}[] = \{2, 3, 5, 7, 11, 13, 17, 19, 23, 0\};
bool is prime (ll n) {
        if (n < 2) return false;</pre>
        if (n == 2) return true;
        if (n % 2 == 0) return false;
        11 d = n - 1, s = 0;
        while (d \% 2 == 0) ++s, d /= 2;
        for (int i = 0; test[i] && test[i] < n; ++i)</pre>
                 if (witness(test[i], s, d, n))
                         return false:
        return true;
```

7.21 Miller Rabin Probabilistico

```
using u64 = uint64_t;
using u128 = uint128 t;
u64 binpower(u64 base, u64 e, u64 mod) {
        u64 \text{ result} = 1;
        base %= mod;
        while (e) {
                if (e & 1)
                        result = (u128) result * base %
                            mod:
                base = (u128)base * base % mod;
                e >>= 1;
        return result:
bool check composite(u64 n, u64 a, u64 d, int s) {
        u64 x = binpower(a, d, n);
        if (x == 1 | | x == n - 1)
                return false:
        for (int r = 1; r < s; r++) {
                x = (u128)x * x % n;
                if (x == n - 1)
                        return false;
        return true;
};
bool MillerRabin (u64 n, int iter=5) { // returns true if
   n is probably prime, else returns false.
```

7.22 Mobius

```
// 1 if n is 1
// 0 if n has a squared prime factor
// (-1)^k if n is a product of k distinct prime factors
const int N = 1e6+1;
int mob[N];
void mobius() {
        mob[1] = 1;
        for (int i = 2; i < N; i++) {</pre>
                mob[i]--;
                for (int j = i + i; j < N; j += i) {
                        mob[i] -= mob[i];
// to count coprime pairs
// ans=n*(n-1)/2
// for(int x:a) {
                for(int y:divisors[a])cnt[y]++;
// ans+= (mobius[v] *cnt[v] * (cnt[v]-1))/2
```

7.23 Number Theoretic Transform

```
const int N = 1 << 20;
const int mod = 469762049; //998244353
const int root = 3;
int lim, rev[N], w[N], wn[N], inv_lim;
void reduce(int &x) { x = (x + mod) % mod; }
int POW(int x, int y, int ans = 1) {
    for (; y; y >>= 1, x = (long long) x * x % mod)
        if (y & 1) ans = (long long) ans * x % mod;
    return ans;
```

```
void precompute(int len) {
        \lim = wn[0] = 1; int s = -1;
        while (lim < len) lim <<= 1, ++s;
        for (int i = 0; i < lim; ++i) rev[i] = rev[i >>
           1) >> 1 | (i & 1) << s;
        const int g = POW(root, (mod - 1) / lim);
        inv \lim = POW(\lim, mod - 2);
        for (int i = 1; i < lim; ++i) wn[i] = (long long)
            wn[i - 1] * a % mod;
void ntt(vector<int> &a, int typ) {
        for (int i = 0; i < lim; ++i) if (i < rev[i])</pre>
           swap(a[i], a[rev[i]]);
        for (int i = 1; i < lim; i <<= 1) {</pre>
                for (int j = 0, t = \lim / i / 2; j < i;
                    ++j) w[j] = wn[j * t];
                for (int j = 0; j < lim; j += i << 1) {
                         for (int k = 0; k < i; ++k) {
                                 const int x = a[k + j], y
                                     = (long long) a[k + j]
                                     + i] * w[k] % mod;
                                 reduce(a[k + j] += y -
                                    mod), reduce(a[k + j +
                                     i = x - y);
        if (!typ) {
                reverse(a.begin() + 1, a.begin() + lim);
                for (int i = 0; i < lim; ++i) a[i] = (</pre>
                    long long) a[i] * inv lim % mod;
vector<int> multiply(vector<int> &f, vector<int> &q) {
        int n=(int)f.size() + (int)q.size() - 1;
        precompute(n);
        vector<int> a = f, b = q;
        a.resize(lim); b.resize(lim);
        ntt(a, 1), ntt(b, 1);
        for (int i = 0; i < lim; ++i) a[i] = (long long)</pre>
           a[i] * b[i] % mod;
        ntt(a, 0);
        a.resize(n + 1);
        return a;
```

7.24 Pollard Rho

```
//O(n^{(1/4)}) (?)
ll pollard rho(ll n, ll c) {
        11 x = 2, y = 2, i = 1, k = 2, d;
        while (true) {
```

```
x = (mul(x, x, n) + c);
                 if (x >= n) x -= n;
                 d = \underline{\hspace{0.2cm}} gcd(x - y, n);
                 if (d > 1) return d;
                 if (++i == k) y = x, k <<= 1;
        return n;
void factorize(ll n, vector<ll> &f) {
        if (n == 1) return;
        if (is prime(n)) {
                 f.push back(n);
                 return;
        11 d = n;
        for (int i = 2; d == n; i++)
                 d = pollard rho(n, i);
        factorize(d, f);
        factorize(n/d, f);
```

7.25 Simplex

```
// Maximizar c1*x1 + c2*x2 + c3*x3 ...
// Restricciones a11*x1 + a12*x2 <= b1, a22*x2 + a23*x3
// Retorna valor optimo y valores de las variables
// O(c^2*b), O(c*b) - variables c, restricciones b
typedef double lf;
const lf EPS = 1e-9;
struct Simplex{
        vector<vector<lf>> A;
        vector<lf> B.C:
        vector<int> X,Y;
        lf z;
        int n,m;
        Simplex(vector<vector<lf>> _a, vector<lf> _b,
            vector<lf> _c) {
                 A= a; B= b; C= c;
                 n=B.size(); m=C.size(); z=0.;
                 X=vector<int>(m); Y=vector<int>(n);
                 for (int i=0; i<m; ++i) X[i]=i;</pre>
                 for (int i=0; i<n; ++i) Y[i]=i+m;</pre>
        void pivot(int x, int y) {
                 swap(X[y],Y[x]);
                 B[x]/=A[x][y];
                 for(int i=0;i<m;++i)if(i!=y)A[x][i]/=A[x</pre>
                     ][y];
                 A[x][y]=1/A[x][y];
                 for (int i=0; i < n; ++i) if (i!=x&&abs(A[i][y])</pre>
                     >EPS) {
```

```
B[i] -= A[i][y] *B[x];
                   for (int j=0; j<m; ++j) if (j!=y) A[i] [</pre>
                       j] -= A[i][y] *A[x][j];
                   A[i][y] = -A[i][y] * A[x][y];
         z+=C[v]*B[x];
         for (int i=0; i < m; ++i) if (i!=y) C[i] -= C[y] *A[</pre>
             x][i];
         C[y] = -C[y] *A[x][y];
pair<lf, vector<lf>> maximize() {
         while (1) {
                   int x=-1, y=-1;
                   lf mn=-EPS:
                   for (int i=0;i<n;++i) if (B[i] <mn) mn</pre>
                       =B[i], x=i;
                   if (x<0) break;</pre>
                   for (int i=0; i<m; ++i) if (A[x][i]<-</pre>
                       EPS) {y=i;break;}
                   // assert (y>=0) \rightarrow y<0, no
                       solution to Ax<=B
                   pivot(x, v);
         while(1){
                   if mx=EPS;
                   int x=-1, y=-1;
                   for (int i=0; i<m; ++i) if (C[i]>mx) mx
                       =C[i], v=i;
                   if (v<0)break;</pre>
                   lf mn=1e200;
                   for (int i=0; i<n; ++i) if (A[i][y]>
                       EPS\&\&B[i]/A[i][y]<mn)mn=B[i]/A
                       [i][y],x=i;
                   // assert (x>=0) -> x<0, unbounded
                   pivot(x,y);
         vector<lf> r(m);
         for(int i=0;i<n;++i)if(Y[i]<m)r[Y[i]]=B[i</pre>
             ];
         return {z,r};
```

7.26Simplex Int

};

```
// Maximizar c1*x1 + c2*x2 + c3*x3 ...
// Restricciones a11*x1 + a12*x2 <= b1, a22*x2 + a23*x3
   <= h2 . . .
// Retorna valor optimo y valores de las variables
// O(c^2*b), O(c*b) - variables c, restricciones b (tle)
struct Fraction{};
typedef Fraction lf;
```

```
const lf ZERO(0), INF(1e18);
struct Simplex{
         vector<vector<lf>> A;
         vector<lf> B.C:
         vector<int> X,Y;
         lf z;
         int n,m;
         Simplex (vector<vector<lf>> _a, vector<lf> _b,
             vector<lf> c) {
                  A = a; B = b; C = c;
                  n=B.size(); m=C.size(); z=ZERO;
                  X=vector<int>(m); Y=vector<int>(n);
                  for (int i=0; i<m; ++i) X[i]=i;</pre>
                  for (int i=0; i < n; ++i) Y[i] = i + m;</pre>
         void pivot(int x, int y) {
                  swap (X[y], Y[x]);
                  B[x]/=A[x][y];
                  for (int i=0; i<m; ++i) if (i!=v) A[x][i]/=A[x
                      ] [y];
                  A[x][y] = Fraction(1)/A[x][y];
                  for (int i=0; i<n; ++i) if (i!=x && A[i][y]!=</pre>
                      ZERO) {
                            B[i] -= A[i][y] *B[x];
                            for (int j=0; j < m; ++ j) if (j!=y) A[i] [
                                j] -= A[i][y] *A[x][j];
                            A[i][y] = -A[i][y] *A[x][y];
                  z+=C[y]*B[x];
                  for (int i=0; i < m; ++i) if (i!=y) C[i] -= C[y] *A[</pre>
                      x][i];
                  C[y] = -C[y] *A[x][y];
         pair<lf, vector<lf>> maximize() {
                  while(1){
                            int x=-1, y=-1;
                            lf mn=ZERO;
                            for (int i=0;i<n;++i) if (B[i]<mn) mn</pre>
                                =B[i], x=i;
                            if(x<0)break;</pre>
                            for (int i=0; i<m; ++i) if (A[x][i] <</pre>
                                ZERO) {y=i;break;}
                            // assert (y>=0) -> y<0, no
                                solution to Ax<=B
                            pivot(x, y);
                  while (1) {
                            lf mx=ZERO:
                            int x=-1, y=-1;
                            for (int i=0; i<m; ++i) if (C[i]>mx) mx
                                =C[i], v=i;
                            if (v<0) break;</pre>
                            lf mn=INF;
```

```
for (int i=0; i<n; ++i) if (A[i][y]>
                     ZERO && B[i]/A[i][y] < mn) mn = B[i]
                     ]/A[i][y], x=i;
                  // assert (x \ge 0) \rightarrow x < 0, unbounded
                 pivot(x,y);
         vector<lf> r(m);
         for (int i=0; i<n; ++i) if (Y[i] <m) r[Y[i]] =B[i</pre>
         return {z,r};
pair<Fraction, vector<Fraction>> maximize_int() {
         while (1) {
                  auto sol=maximize();
                 bool all int=true;
                  for(auto &x:sol.second)all_int&=x
                      .fractional part() == ZERO;
                  if(all_int)return sol;
                  Fraction nw b=ZERO;
                  int id=-1;
                  for (int i=0; i < n; ++i) {</pre>
                          Fraction fp=B[i].
                              fractional part();
                          if (fp>=nw b) nw b=fp, id=i;
                  vector<Fraction> nw a;
                  for (auto &x:A[id]) nw a.push back
                      (-x.fractional part());
                  A.push_back(nw_a);
                  B.push_back(-nw_b);
                  Y.push_back(n+m);n++;
```

7.27 Totient y Divisores

};

```
vector<int> count_divisors_sieve() {
   bitset<mx> is_prime; is_prime.set();
   vector<int> cnt(mx, 1);
   is_prime[0] = is_prime[1] = 0;
   for(int i = 2; i < mx; i++) {
        if(!is_prime[i]) continue;
        cnt[i]++;
        for(int j = i+i; j < mx; j += i) {
            int n = j, c = 1;
            while( n%i == 0 ) n /= i, c++;
            cnt[j] *= c;
            is_prime[j] = 0;
      }
    }
   return cnt;</pre>
```

```
vector<int> euler phi sieve() {
        bitset<mx> is_prime; is_prime.set();
        vector<int> phi(mx);
        iota(phi.begin(), phi.end(), 0);
        is_prime[0] = is_prime[1] = 0;
        for(int i = 2; i < mx; i++) {</pre>
                if(!is prime[i]) continue;
                for(int j = i; j < mx; j += i) {
                         phi[j] -= phi[j]/i;
                         is prime[j] = 0;
        return phi;
ll euler phi(ll n) {
        ll ans = n;
        for(ll i = 2; i * i <= n; ++i) {</pre>
                if(n % i == 0) {
                         ans -= ans / i;
                         while (n % i == 0) n /= i;
        if(n > 1) ans -= ans / n;
        return ans:
```

7.28 Xor Basis

```
template<typename T = int, int B = 31>
struct Basis {
        T a[B];
        Basis() {
                memset(a, 0, sizeof a);
        void insert(T x){
                for (int i = B - 1; i >= 0; i--) {
                        if (x >> i & 1) {
                                if (a[i]) x ^= a[i];
                                else {
                                         a[i] = x;
                                         break:
        bool can(T x) {
                for (int i = B - 1; i >= 0; i--) {
                        x = min(x, x ^a a[i]);
                return x == 0;
        T \max xor(T ans = 0) {
                for(int i = B - 1; i >= 0; i--) {
                        ans = max(ans, ans ^a[i]);
```

```
}
return ans;
}
};

// Basis<long long, 63> B;
// Cantidad de xor diferentes es 2^sz(base)
// Cantidad de subsets xor = 0 es 2^(n-sz(base))
```

8 Programacion dinamica

8.1 Bin Packing

```
int main() {
        ll n, capacidad;
        cin >> n >> capacidad;
        vl pesos(n, 0);
        forx(i, n) cin >> pesos[i];
        vector<pll> dp((1 << n));
        dp[0] = \{1, 0\};
        // dp[X] = \{\#numero de paquetes, peso de min
            paquete}
        // La idea es probar todos los subset y en cada
            uno preguntarnos
        // quien es mejor para subirse de ultimo buscando
             minimizar
        // primero el numero de paquetes
        for (int subset = 1; subset < (1 << n); subset++)</pre>
                 dp[subset] = \{21, 0\};
                 for (int iPer = 0; iPer < n; iPer++) {</pre>
                         if ((subset >> iPer) & 1) {
                                 pll ant = dp[subset ^ (1
                                     << iPer) 1:
                                 ll k = ant.ff;
                                 ll w = ant.ss;
                                 if (w + pesos[iPer] >
                                     capacidad) {
                                          k++;
                                          w = min(pesos[
                                             iPer], w);
                                 } else {
                                          w += pesos[iPer];
                                 dp[subset] = min(dp[
                                     subset], \{k, w\});
```

```
cout << dp[(1 << n) - 1].ff << ln;
}</pre>
```

8.2 Convex Hull Trick

```
// - Me dan las pendientes ordenadas
// Caso 1: Me hacen las querys ordenadas
// O(N + O)
// Caso 2: Me hacen querys arbitrarias
// O(N + QlogN)
struct CHT {
    // funciona tanto para min como para max, depende del
        orden en que pasamos las lineas
    struct Line {
        int slope, yIntercept;
        Line (int slope, int yIntercept) : slope (slope),
           yIntercept (yIntercept) { }
        int val(int x) { return slope * x + yIntercept; }
        int intersect(Line y) {
            return (y.yIntercept - yIntercept + slope - y
                .slope - 1) / (slope - y.slope);
    };
    deque<pair<Line, int>> dq;
    void insert(int slope, int yIntercept){
        // lower hull \sin m1 < m2 < m3
        // upper hull si si m1 > m2 > m3
        Line newLine(slope, yIntercept);
        while (!dq.empty() && dq.back().second >= dq.back
            ().first.intersect(newLine)) dq.pop_back();
        if (dq.empty()) {
            dq.emplace_back(newLine, 0);
            return;
        dq.emplace back(newLine, dq.back().first.
           intersect(newLine));
    int query(int x) { // cuando las consultas son
       crecientes
        while (dq.size() > 1) {
            if (dq[1].second <= x) dq.pop_front();</pre>
            else break;
        return dq[0].first.val(x);
    int query2(int x) { // cuando son arbitrarias
        auto qry = *lower_bound(dq.rbegin(), dq.rend(),
                                make_pair(Line(0, 0), x),
```

8.3 CHT Dynamic

```
// O((N+Q) \log N) < -usando set para add y bs para q
// lineas de la forma mx + b
#pragma once
struct Line {
        mutable 11 m, b, p;
        bool operator<(const Line& o) const { return m <</pre>
        bool operator<(ll x) const { return p < x; }</pre>
};
struct CHT : multiset<Line, less<>> {
        // (for doubles, use inf = 1/.0, div(a,b) = a/b)
        static const ll inf = LLONG MAX;
        static const bool mini = 0; // <---- 1 FOR MIN
        ll div(ll a, ll b) { // floored division
                return a / b - ((a ^ b) < 0 && a % b); }
        bool isect(iterator x, iterator y) {
                if (y == end()) return x \rightarrow p = inf, 0;
                if (x->m == y->m) x->p = x->b > y->b?
                    inf : -inf;
                 else x->p = div(y->b - x->b, x->m - y->m)
                 return x->p >= y->p;
        void add(ll m, ll b) {
                if (mini) { m \star= -1, b \star= -1; }
                 auto z = insert(\{m, b, 0\}), y = z++, x =
                 while (isect(v, z)) z = erase(z);
                 if (x != begin() \&\& isect(--x, y)) isect(
                    x, y = erase(y);
                 while ((y = x) != begin() \&\& (--x)->p >=
                    y->p)
                         isect(x, erase(y));
        11 query(ll x) {
                 assert(!empty());
                 auto l = *lower bound(x);
                if (mini) return -1.m * x + -1.b;
                 else return 1.m * x + 1.b;
};
```

8.4 Digit DP

```
// dp[pos][count of d][limit]
11 dp[20][20][2];
int k,d;
// count numbers <= c with k occurrences of d
ll dfs(string& c, int x=0, int y=0, bool z=0){
        if (dp[x][y][z]!=-1) return dp[x][y][z];
        dp[x][y][z] = (y = = k);
        if(x==(int)c.size())
                return dp[x][y][z];
        int limit=9;
        if(!z){
                limit=c[x]-'0';
        dp[x][y][z]=0;
        for(int i=0;i<=limit;++i){</pre>
                if(z)dp[x][y][z]+=dfs(c, x+1, y+(i==d), z
                else dp[x][y][z] += dfs(c, x+1, y+(i==d), i
                    imit);
        return dp[x][y][z];
// count(0,m) - count(0,n-1) = count(n,m)
ll query(ll n, ll m){
        string s1=to string(m);
        string s2=to string(n-111);
        memset(dp, -1, sizeof(dp));
        ll ans=dfs(s1);
        if (n<=011) return ans; // check</pre>
        memset(dp, -1, sizeof(dp));
        return ans-dfs(s2);
```

8.5 Divide Conquer

```
PROGRAMACION DINAMICA
```

```
pair<long long, int> best = {LLONG MAX, -1};
        for (int k = optl; k \le min(mid, optr); k++) {
                best = min(best, \{(k ? dp before[k - 1] :
                     0) + C(k, mid), k);
        dp cur[mid] = best.first;
        int opt = best.second;
        compute(l, mid - 1, optl, opt);
        compute(mid + 1, r, opt, optr);
int solve() {
        for (int i = 0; i < n; i++)</pre>
                dp before[i] = C(0, i);
        for (int i = 1; i < m; i++) {
                compute (0, n - 1, 0, n - 1);
                dp_before = dp_cur;
        return dp before[n - 1];
```

8.6 Edit Distances

```
int editDistances(string& wor1, string& wor2) {
         // O(tam1*tam2)
         // minimo de letras que debemos insertar, elminar
              o reemplazar
         // de worl para obtener wor2
         11 tam1=wor1.size();
         11 tam2=wor2.size();
         vector\langle vl \rangle dp(tam2+1, vl(tam1+1,0));
         for (int i=0; i<=tam1; i++) dp [0] [i]=i;</pre>
         for (int i=0; i<=tam2; i++) dp[i][0]=i;</pre>
         dp[0][0]=0;
         for(int i=1;i<=tam2;i++) {</pre>
                  for(int j=1; j<=tam1; j++) {
                          [1] op1 = min(dp[i-1][j], dp[i][j]
                              -11)+1;
                           // el minimo entre eliminar o
                              insertar
                           11 \text{ op2} = dp[i-1][j-1]; //
                              reemplazarlo
                           if (wor1[j-1]!=wor2[i-1]) op2++;
                           // si el reemplazo tiene efecto o
                                quedo iqual
                           dp[i][j]=min(op1,op2);
         return dp[tam2][tam1];
```

8.7 Kadane 2D

```
int main() {
        11 fil,col;cin>>fil>>col;
        vector<vl> grid(fil,vl(col,0));
// Algoritmo de Kadane/DP para suma maxima de una matriz
   2D en o(n^3)
        for(int i=0;i<fil;i++) {</pre>
                 for (int e=0; e < col; e++) {</pre>
                          11 num; cin>>num;
                          if (e>0) grid[i][e]=num+grid[i][e
                              -11;
                           else grid[i][e]=num;
        ll maxGlobal = LONG_LONG_MIN;
        for (int l=0; l<col; l++) {</pre>
                 for(int r=1;r<col;r++) {</pre>
                          11 maxLoc=0;
                          for(int row=0;row<fil;row++) {</pre>
                                   if (1>0) maxLoc+=grid[row
                                       ][r]-grid[row][l-1];
                                   else maxLoc+=grid[row][r
                                       ];
                                   if (maxLoc<0) maxLoc=0;</pre>
                                   maxGlobal= max(maxGlobal,
                                       maxLoc);
```

8.8 Knuth

```
// C[b][c] <= C[a][d]
// C[a][c] + C[b][d] <= C[a][d] + C[b][c] where a < b < c
int solve() {
        int N;
        ... // read N and input
        int dp[N][N], opt[N][N];
        auto C = [\&] (int i, int j) {
                ... // Implement cost function C.
        };
        for (int i = 0; i < N; i++) {</pre>
                opt[i][i] = i;
                ... // Initialize dp[i][i] according to
                    the problem
```

```
8.9 LIS
```

```
0
```

```
9 STRINGS
```

8.9 LIS

```
// O(n*log(n))
// retorna los indices de un lis
// cambiar el tipo y revisar si permite iguales
typedef int T;
vi lis(vector<T>& a, bool equal) {
        vi prev(sz(a));
        typedef pair<T, int> p;
        vector res;
        for (int i=0; i < sz(a); ++i) {</pre>
                 auto it=lower_bound(all(res), p{a[i],(
                    equal?i:0)});
                 if (it==res.end()) res.emplace_back(), it=
                    res.end()-1;
                 *it={a[i],i};
                 prev[i] = (it == res.begin())?0:(it-1)->
                    second;
        int l=sz(res), act=res.back().second;
        vi ans(1);
        while(l--) ans[l] = act, act = prev[act];
        return ans;
```

8.10 SOS

```
const int bits = 23;
int dp[1<<bits];
// O(n*2^n)
void SOS() {</pre>
```

```
for (int i = 0; i < (1 << bits); ++i) dp[i] = A[i]
        // top - down (informacion de las submascaras)
        for(int i = 0; i < bits; ++i){</pre>
                 for(int s = 0; s < (1 << bits); ++s){</pre>
                          if(s & (1 << i)){
                                   dp[s] += dp[s ^ (1 << i)
        // bottom - up (informacion de las supermascaras)
        for(int i = 0; i < bits; ++i){</pre>
                 for (int s = (1 << bits) - 1; s >= 0; --s)
                          if(s & (1 << i)){
                                   dp[s ^ (1 << i)] += dp[s
                                      1;
int dp2[1<<bits][bits+1];</pre>
// O(2^n*n^2)
void cnt(){
        vector<int> a;
        for (int x:a) dp2[x][0]++;
        // dp[s][c] = number of s^ai with c bits
        for(int i=0;i<bits;++i) {</pre>
                 for(int c=i;c>=0;--c){
                          for (int s=0; s<(1<<bits); ++s) {</pre>
                                   dp2[s^{(1<< i)}][c+1] += dp2[s
                                      ][c];
```

9 Strings

9.1 Aho Corasick

```
// 1) init() trie and add() strings
// 2) build() aho-corasick
// 3) process the text
// 4) dfs to calculate dp

// suf: longest proper suffix that's also in the trie
// dad: closest suffix link that is terminal
```

```
// cnt: number of strings that end exactly at node v
const int maxn = 2e5+5;
const int alpha = 26;
vector<int> adj[maxn];
int to[maxn][alpha], cnt[maxn], dad[maxn], suf[maxn], act; //
    not to change
int conv(char ch) {return ((ch>='a' && ch<='z')?ch-'a':ch-
   'A'+26);}
void init(){
        for(int i=0;i<=act;++i){</pre>
                suf[i]=cnt[i]=dad[i]=0;
                adi[i].clear();
                memset(to[i], 0, sizeof(to[i]));
        act=0;
int add(string& s){
        int u=0:
        for(char ch:s){
                int c=conv(ch);
                if(!to[u][c])to[u][c]=++act;
                u=to[u][c];
        cnt[u]++;
        return u;
// O(sum(|s|)*alpha)
void build() {
        queue<int> q{{0}};
        while(!q.empty()){
                int u=q.front();q.pop();
                for(int i=0;i<alpha;++i){</pre>
                         int v=to[u][i];
                         if(!v)to[u][i]=to[suf[u]][i];
                         else q.push(v);
                         if(!u || !v)continue;
                         suf[v]=to[suf[u]][i];
                         dad[v]=cnt[suf[v]]?suf[v]:dad[suf
                             [V]];
        for(int i=1;i<=act;++i) {</pre>
                adj[i].push_back(dad[i]);
                adj[dad[i]].push back(i);
```

9.2 Hashing

```
// O(n) build - O(1) get // 1. prepare() in the main
```

```
// 2. hashing<string> hs("hello");
// 3. hs.get(1,r);
// Chars are in [1, BASE]
// BASE is prime or random(lim, MOD-lim)
// If chars are in [0, BASE) then compare the hashes for
   lenath
// 1000234999, 1000567999, 1000111997, 1000777121,
   1001265673, 1001864327, 999727999, 1070777777
// if hash(multiset 1) == hash(multiset 2) then (r+a1)*(r+a1)
   a2)...(r+an) == (r+b1) * (r+b2)...(r+bn) // (Collision n/a)
   MOD)
const ii BASE (257, 367);
const int MOD[2] = { 1001864327, 1001265673 };
int add(int a, int b, int m) {return a+b>=m?a+b-m:a+b;}
int sbt(int a, int b, int m){return a-b<0?a-b+m:a-b;}</pre>
int mul(int a, int b, int m) {return ll(a) *b%m;}
11 operator ! (const ii a) { return (11(a.first) << 32) |</pre>
    a.second; }
ii operator + (const ii& a, const ii& b) {return {add(a.
   first, b.first, MOD[0]), add(a.second, b.second, MOD
   [1])};}
ii operator - (const ii& a, const ii& b) {return {sbt(a.
   first, b.first, MOD[0]), sbt(a.second, b.second, MOD
ii operator * (const ii& a, const ii& b) {return {mul(a.
   first, b.first, MOD[0]), mul(a.second, b.second, MOD
   [1])};}
const int maxn = 1e6+5;
ii pot[maxn];
void prepare() { // remember!!!
        pot[0] = ii\{1,1\};
        rep(i,1,maxn) pot[i] = pot[i-1] * BASE;
template <class type>
struct Hashing{
        vector<ii> h;
        Hashing(type& t) {
                h.assign(sz(t)+1, ii\{0,0\});
                rep(i, 1, sz(h)) h[i] = h[i-1] * BASE + ii{
                    t[i-1], t[i-1]};
        ii get(int l, int r){
                return h[r+1] - h[1] * pot[r-1+1];
};
ii combine(ii a, ii b, int lenb){
        return a * pot[lenb] + b;
```

9.3 Hashing 2D

```
// Revisar primero los comentarios en hashing!!!
// 1-indexed
const ii BX(3731, 3731), BY(2999, 2999);
const int MOD[2] = { 998244353, 1001265673 };
int add(int a, int b, int m) {return a+b>=m?a+b-m:a+b;}
int sbt(int a, int b, int m) {return a-b<0?a-b+m:a-b;}</pre>
int mul(int a, int b, int m) {return ll(a) *b%m;}
11 operator ! (const ii a) { return (ll(a.first) << 32) |</pre>
    a.second; }
ii operator + (const ii& a, const ii& b) {return {add(a.
   first, b.first, MOD[0]), add(a.second, b.second, MOD
ii operator - (const ii& a, const ii& b) {return {sbt(a.
   first, b.first, MOD[0]), sbt(a.second, b.second, MOD
   [1])};}
ii operator * (const ii& a, const ii& b) {return {mul(a.
   first, b.first, MOD[0]), mul(a.second, b.second, MOD
   [1])};}
const int maxn = 1e6+5;
ii PX[maxn], PY[maxn];
void prepare() { // remember!!!
        PX[0] = PY[0] = ii\{1,1\};
        rep(i,1,maxn) {
                 PX[i] = PX[i-1] * BX;
                 PY[i] = PY[i-1] * BY;
template <class type>
struct Hashing2D { // 1-indexed
        vector<vector<ii>>> hs;
        int n, m;
        Hashing2D(vector<type>& s) {
                 n = sz(s), m = sz(s[0]);
                hs.assign(n + 1, vector\langle ii \rangle(m + 1, \{0,0\})
                 rep(i, 0, n) rep(j, 0, m)
                         hs[i + 1][j + 1] = {s[i][j], s[i]}
                            ][†]};
                rep(i, 0, n+1) rep(j, 0, m)
                         hs[i][j+1] = hs[i][j+1] + hs[
                            i][j] * BY;
                 rep(i, 0, n) rep(j, 0, m+1)
                         hs[i + 1][j] = hs[i + 1][j] + hs[
                            i][j] * BX;
        ii get(int x1, int y1, int x2, int y2) {
                 assert (1 \leq x1 && x1 \leq x2 && x2 \leq n);
                 assert (1 \leq y1 && y1 \leq y2 && y2 \leq m);
                x1--; y1--;
                 int dx = x^2 - x^1, dy = y^2 - y^1;
```

9.4 KMP

```
// O(n)
vector<int> phi(string& s){
        int n=sz(s):
        vector<int> tmp(n);
        for(int i=1, j=0; i<n; ++i) {
                 while(j>0 && s[j]!=s[i])j=tmp[j-1];
                 if(s[i]==s[j])j++;
                 tmp[i]=i;
        return tmp;
// O(n+m)
int kmp(string& s, string& p){
        int n=sz(s), m=sz(p), cnt=0;
        vector<int> pi=phi(p);
        for (int i=0, j=0; i < n; ++i) {</pre>
                 while ( j && s[i]!=p[j]) j=pi[j-1];
                 if(s[i]==p[j])j++;
                 if ( j==m) {
                          cnt++;
                          j=pi[j-1];
        return cnt;
```

9.5 KMP Automaton

```
p=to[p][conv(s[i])];
```

9.6 Lyndon Factorization

```
// A string is called simple if it is strictly smaller
   than all its nontrivial cyclic shifts.
// The Lyndon factorization of the string is s = w1 \ w2
// where all strings wi are simple, and they are in non-
   increasing order
// w1 >= w2 >= ... >= wk
// this factorization exists and it is unique
// O(n)
vector<string> duval(string& s){
        vector<string> factorization;
        int n=sz(s), i=0;
        while(i<n) {</pre>
                 int j=i+1, k=i;
                 while(j < n \& \& s[k] <= s[j]) {
                         if(s[k]<s[j])k=i;
                         else k++;
                         j++;
                 while (i \le k) {
                         factorization.push_back(s.substr(
                             i, j-k));
                         i += j - k;
        return factorization;
```

9.7 Manacher

```
// O(n), par (raiz, izg, der) 1 - impar 0
vi manacher(string& s, int par) {
         int l=0, r=-1, n=sz(s);
         vi m(n, 0);
         for (int i=0; i < n; ++i) {</pre>
                  int k=(i>r?(1-par):min(m[1+r-i+par], r-i
                      +par))+par;
                  while (i+k-par < n \&\& i-k>=0 \&\& s[i+k-par]==
                      s[i-k])++k;
                  m[i]=k-par; --k;
                  if (i+k-par>r) l=i-k, r=i+k-par;
         for (int i=0; i < n; ++i) m[i] = (m[i]-1+par) *2+1-par;</pre>
         return m;
```

9.8 Minimum Expression

```
// O(n)
int minimum_expression(string s){
        s=s+s;int n=sz(s), i=0, j=1, k=0;
        while (i+k< n \&\& j+k< n) {
                 if (s[i+k] == s[j+k])k++;
                 else if (s[i+k]>s[j+k])i=i+k+1, k=0; // <
                 else j=j+k+1, k=0;
                 if(i==j)j++;
        return min(i, j);
```

9.9 Next Permutation

```
// O(n)
// 1) find the last i such that ai <ai+1
// 2) find the last j such that ai<aj
// 3) swap i and j, then reverse the segment [i+1, n-1]
string nextPermutation(string& s){
        string ans(s);
        int n=sz(s);
        int i=n-2;
        while(i>=0 && ans[i]>=ans[i+1])i--;
        if(i<0)return "no permutation";</pre>
        int j=n-1;
        while (ans[i]>=ans[j])j--;
        swap(ans[i], ans[j]);
        int l=i+1, r=n-1;
        while (r>1) swap (ans[r--], ans[l++]);
        return ans;
```

9.10 Palindromic Tree

```
const int alpha = 26;
const char mini = 'a';
// tree.suf: the longest suffix-palindrome link
// tree.dad - tree.to: the parent palindrome by removing
   the first and last character
// node 0 = root with len -1 for odd
// node 1 = root with len 0 for even
struct Node {
    int to[alpha], suf, len, cnt, dad;
   Node (int x, int l = 0, int c = 1): len(x), suf(l),
       cnt(c) {
```

```
memset(to, 0, sizeof(to));
    int& operator [] (int i) { return to[i]; }
} ;
struct PalindromicTree {
    vector<Node> tree:
        vector<int> palo; // longest suffix-palindrome in
            the position i
    string s;
    int n, last; // max suffix palindrome
    PalindromicTree(string t = "") {
        n = last = 0;
        tree.push back(Node(-1));
        tree.push back(Node(0));
                for(char& c:t) add_char(c);
                // Propagate counts up the suffix links
                for(int i=sz(tree)-1;i>=2;i--){
                        tree[tree[i].suf].cnt+=tree[i].
    int getsuf(int p) {
        while (n - tree[p].len - 1 < 0 || s[n - tree[p].
           len - 1] != s[n])
                        p = tree[p].suf;
        return p;
    void add char(char ch) {
        s.push back(ch);
        int p = getsuf(last), c = ch - mini;
        if (!tree[p][c]) {
            int suf = getsuf(tree[p].suf);
            suf = max(1, tree[suf][c]);
            tree[p][c] = sz(tree);
            tree.push back(Node(tree[p].len + 2, suf, 0))
        last = tree[p][c];
        tree[last].dad = p;
        tree[last].cnt++;n++;
                palo.push back(tree[last].len);
} ;
```

9.11 Suffix Array

```
// O(n*log(n)) - char in [1, lim)
// sa: is the starting position of the i-th lex smallest
    suffix
// rnk: is the rank (position in SA) of the suffix
    starting at i
```

```
// lcp: is the longest common prefix between sa[i] and sa
auto SuffixArray(string s, int lim=256) {
        s.push\_back(0); int n = sz(s), k = 0, a, b;
        vi sa, lcp, rnk(all(s)), y(n), ws(max(n, lim));
        sa = lcp = y, iota(all(sa), 0);
        for (int j = 0, p = 0; p < n; j = max(1, j * 2),
           lim = p) {
                p = j, iota(all(y), n - j);
                rep(i, 0, n) if (sa[i] >= j) y[p++] = sa[i]
                    - j;
                fill(all(ws), 0);
                rep(i,0,n) ws[rnk[i]]++;
                rep(i,1,lim) ws[i] += ws[i-1];
                for (int i = n; i--;) sa[--ws[rnk[y[i]]]]
                    = y[i];
                swap(rnk, y), p = 1, rnk[sa[0]] = 0;
                rep(i, 1, n) a = sa[i - 1], b = sa[i], rnk[
                        (y[a] == y[b] && y[a + j] == y[b]
                           + j]) ? p - 1 : p++;
        for (int i = 0, i; i < n - 1; lcp[rnk[i++]] = k)
                for (k \& \& k--, j = sa[rnk[i] - 1]; s[i +
                   k] == s[j + k]; k++);
        reverse(all(lcp));lcp.pop_back();reverse(all(lcp)
        return tuple{sa, rnk, lcp};
```

9.12 Suffix Automaton

```
// O(n*log(alpha))
// suf: suffix link (like aho if not match)
// len: length of the longest string in this state
// minlen: smallest string of node v = (v.suf == -1.20:v.suf
   .len) + 1
// end: if this state is terminal
// count different strings [i.suf.len+1, i.len]
// para saber cuantos substrings itnee a en b, ir
   procesando los
// prefijos y al marcarlos procesar la cantidad visitando
    los sufijos de los nodos
// contribucion es u.len - u.suf.len, tener en cuenta con
    que len se llego
// puede ser un len2 para manejar eso min(u.len, u.len2) -
   u.suf.len
// a->b->c->b->c
//b \rightarrow c
template<int alpha = 26>
struct SuffixAutomaton {
        struct Node {
```

```
// array<int, alpha> to; TLE, add -> int
            conv(char ch)
        map<char, int> to;
        int len = 0, suf = 0;
        bool end = false;
};
vector<Node> sa;
int last = 0;
ll substrs = 0;
SuffixAutomaton(string &s) {
        sa.reserve(sz(s) *2);
        last = add_node();
        sa[0].suf = -1;
        for (char &c : s) add_char(c);
        for (int p = last; p; p = sa[p].suf) sa[p
            l.end = 1;
int add_node() { sa.push_back({}); return sz(sa)
void add char(char c) {
        int u = add_node(), p = last;
sa[u].len = sa[last].len + 1;
        while (p != -1 \&\& !sa[p].to.count(c)) {
                 sa[p].to[c] = u;
                substrs += p != 0 ? sa[p].len -
                    sa[sa[p].suf].len : 1;
                 p = sa[p].suf;
        if (p != -1) {
                 int q = sa[p].to[c];
                if (sa[p].len + 1 != sa[q].len) {
                         int clone = add node();
                         sa[clone] = sa[q];
                         sa[clone].len = sa[p].len
                              + 1;
                         sa[q].suf = sa[u].suf =
                             clone;
                         while (p !=-1 \&\& sa[p].
                             to[\bar{c}] == q) {
                                  sa[p].to[c] =
                                     clone;
                                  p = sa[p].suf;
                 } else sa[u].suf = q;
        last = u;
// Aplicaciones
int dfs(int u) { // count
        if (sa[u].cnt!=-1) return sa[u].cnt;
        sa[u].cnt=sa[u].end;
```

```
for(auto [ ,v]:sa[u].to){
                sa[u].cnt+=dfs(v);
        return sa[u].cnt;
void dfs2(int u) { // grade primero
        sa[u].pre--;
        if (sa[u].pre>0) return;
        for (auto [_, v]:sa[u].to) {
                sa[v].cnt2+=sa[u].cnt2;
                dfs2(v);
void dfs2(){
        vector<int> order(sz(sa)-1);
        for (int i=1; i < sz (sa); ++i) order[i-1]=i;</pre>
        sort(order.begin(), order.end(), [&](int
           a, int b) { return sa[a].len > sa[b].
           len; });
        for(auto &i : order) {
                // suf.cnt += i.cnt
int lcs(string& t){
        int u=0, l=0, ans=0;
        for(char c:t) {
                while(u && !sa[u].to.count(c)){
                         u=sa[u].suf;
                         l=sa[u].len;
                if(sa[u].to.count(c)){
                         u=sa[u].to[c];
                         1++;
                ans=max(ans, 1);
        return ans:
bool query(string& t){
        int u=0;
        for(char c:t){
                if(!sa[u].to.count(c))return
                    false;
                u=sa[u].to[c];
        return true;
void cyclic(string& t) { // dfs(0) primero
        int u=0,1=0;
        int m=sz(t);
        t+=t;
        unordered set<int> s; // vector<bool>
```

```
9.13 Suffix Tree
```

STRINGS

```
\frac{\infty}{7}
```

```
9.13 Suffix Tree
```

};

```
// O(n)
// pos: start of the edge
// len: edge length
// link: suffix link
struct SuffixTree{
        vector<map<char,int>> to;
        vector<int> pos,len,link;
        int size=0,inf=1e9;
        string s;
        int make(int _pos, int _len) {
                to.push back(map<char,int>());
                pos.push back (pos);
                len.push back (len);
                link.push_back(-1);
                return size++;
        void add(int& p, int& lef, char c) {
                s+=c;++lef;int lst=0;
                for(;lef;p?p=link[p]:lef--){
                        while (lef>1 && lef>len[to[p][s[sz
                            (s) - lef[]]) {
                                 p=to[p][s[sz(s)-lef]], lef
                                    -=len[p];
```

for(char ch:t){

11 ans=0;

cout << ans << "\n";

int c=conv(ch);

if(sa[u].to[c]){

if(l==m){

for(int u:s)ans+=sa[u].cnt;

1++;

}else{

while(u && !sa[u].to[c]){

u=sa[u].suf;

l=sa[u].len;

u=sa[u].to[c];

s.insert(u);

if(sa[u].minlen==m) {

1--;

u=sa[u].suf;

l=sa[u].len;

```
char e=s[sz(s)-lef];
                         int& q=to[p][e];
                         if(!q){
                                  q=make(sz(s)-lef,inf),
                                     link[lst]=p,lst=0;
                         }else{
                                  char t=s[pos[q]+lef-1];
                                 if (t==c) {link[lst]=p;
                                     return; }
                                 int u=make(pos[q],lef-1);
                                 to[u][c]=make(sz(s)-1, inf
                                     );
                                 to[u][t]=q;
                                 pos[a] += lef -1;
                                 if(len[q]!=inf)len[q]=
                                     lef-1;
                                 q=u,link[lst]=u,lst=u;
        SuffixTree(string& s){
                make (-1, 0); int p=0, lef=0;
                for(char c:_s)add(p,lef,c);
                add(p,lef,'$'); // smallest char
                 s.pop back();
        int query(string& p) {
                 for(int i=0, u=0, n=sz(p);;) {
                         if(i==n || !to[u].count(p[i]))
                             return i;
                         u=to[u][p[i]];
                         for (int j=0; j<len[u];++j) {</pre>
                                 if(i==n || s[pos[u]+j]!=p
                                     [i])return i;
                                 i++;
        vector<int> sa;
        void genSA(int x=0, int Len=0){
                if(!sz(to[x]))sa.push back(pos[x]-Len);
                else for (auto t:to[x]) genSA (t.second, Len+
                    len[x]);
};
```

9.14 Trie

```
const int maxn = 2e6+5;
const int alpha = 26;
```

```
int to[maxn][alpha]; // to[ul[c]: node u edge with the
   letter c
int cnt[maxn]; // count of word ending in this node
int act: // trie node cound
int conv(char ch) {return ((ch>='a' && ch<='z')?ch-'a':ch-</pre>
   'A'+26);}
void init(){
        for(int i=0;i<=act;++i){
                memset(to[i],0,sizeof(to[i]));
                 cnt[i]=0;
        act=0;
void add(string& s){
        int u=\bar{0};
        for(char ch:s){
                int c=conv(ch);
                if(!to[u][c])to[u][c]=++act;
                u=to[u][c];
        cnt[u]++;
```

9.15 Trie Bit

```
const int maxn = 5e5+5;
const int bits = 30;
const int alpha = 2;
int to[maxn*bits][alpha]; // to[u][c]: node u edge with
   the letter c
int cnt[maxn*bits]; // count of word ending in this node
int act; // trie node cound
int conv(int x, int i) {return ((x&(1<<i))?1:0);}</pre>
void init(){
        for (int i=0; i <= act; ++i) {</pre>
                 memset(to[i],0,sizeof(to[i]));
                 cnt[i]=0;
        act=0;
void add(int x){
        int u=0;
        for(int i=bits;i>=0;--i){
                 int c=conv(x,i);
                 if(!to[u][c])to[u][c]=++act;
                 cnt[u]++;
                 u=to[u][c];
        cnt[u]++;
```

9.16 Z Algorithm

9.17 El especial

```
#include<bits/stdc++.h>
using namespace std;
const int N = 1e5 + 9;
struct ST {
  \#define lc (n << 1)
  \#define rc ((n \ll 1) | 1)
  long long t[4 * N], lazy[4 * N];
  ST() {
    memset(t, 0, sizeof t);
    memset(lazy, 0, sizeof lazy);
  inline void push(int n, int b, int e) {
    if (lazy[n] == 0) return;
    t[n] = t[n] + lazy[n] * (e - b + 1);
    if (b != e) {
      lazy[lc] = lazy[lc] + lazy[n];
      lazy[rc] = lazy[rc] + lazy[n];
```

```
9.17 El especial
```

```
lazv[n] = 0;
  inline long long combine(long long a, long long b) {
    return a + b;
  inline void pull(int n) {
    t[n] = t[lc] + t[rc];
  void upd(int n, int b, int e, int i, int j, int v) {
    push(n, b, e);
    if (j < b || e < i) return;
    if (i <= b && e <= j) {
      lazy[n] = v; //set lazy
      push(n, b, e);
      return;
    int mid = (b + e) >> 1;
    upd(lc, b, mid, i, j, v);
    upd(rc, mid + 1, e, i, j, v);
    pull(n);
  long long query(int n, int b, int e, int i, int j) {
    push(n, b, e);
    if (i > e | | b > j) return 0; //return null
    if (i <= b && e <= j) return t[n];</pre>
    int mid = (b + e) >> 1;
    return combine (query (lc, b, mid, i, j), query (rc, mid
        + 1, e, i, j));
}st;
struct node
  int len, link, firstpos;
 map<char, int> nxt;
};
vector<node> t;
struct SuffixAutomaton {
  int sz, last;
  vector<int> terminal;
  vector<int> dp;
  vector<vector<int>> q;
  SuffixAutomaton() {}
  SuffixAutomaton(int n) {
    t.clear(); t.resize(2 * n);
    terminal.resize(2 * n, 0);
    dp.resize(2 * n, -1); sz = 1; last = 0;
    q.resize(2 * n);
    t[0].len = 0; t[0].link = -1; t[0].firstpos = 0;
  void extend(char c) {
    int p = last;
    int cur = sz++;
    t[cur].len = t[last].len + 1;
    t[cur].firstpos = t[cur].len;
```

```
p = last;
    while (p != -1 \&\& !t[p].nxt.count(c)) {
      t[p].nxt[c] = cur;
      p = t[p].link;
    if (p == -1) t[cur].link = 0;
      int q = t[p].nxt[c];
      if (t[p].len + 1 == t[q].len) t[cur].link = q;
      else {
        int clone = sz++;
        t[clone] = t[q];
        t[clone].len = t[p].len + 1;
        while (p != -1 \&\& t[p].nxt[c] == q) {
          t[p].nxt[c] = clone;
          p = t[p].link;
        t[q].link = t[cur].link = clone;
    last = cur;
};
pair<int, int> modifies[N * 2];
int cnt;
namespace lct {
  int par[N * 2], lazy[N * 2], last[N * 2], c[N * 2][2];
  void mark(int x, int v) {
    lazy[x] = last[x] = v;
 void push(int x) {
    if (lazy[x]) {
      if (c[x][0]) {
        mark(c[x][0], lazy[x]);
      if (c[x][1]) {
        mark(c[x][1], lazy[x]);
      lazv[x] = 0;
 bool is root(int x) {
    return c[par[x]][0] != x && c[par[x]][1] != x;
  void rotate(int x) {
    int y = par[x], z = par[y], k = c[y][1] == x;
    if (!is_root(y)) {
      c[z][c[z][1] == y] = x;
    par[c[y][k] = c[x][!k]] = y;
    par[par[c[x][!k] = y] = x] = z;
 void splay(int x) {
    static int st[N];
```

```
90
```

```
int dateToInt(int y, int m, int d){
         return 1461*(y+4800+(m-14)/12)/4+367*(m-2-(m-14)
            /12 * 12) / 12 -
                  3*((v+4900+(m-14)/12)/100)/4+d-32075;
void intToDate(int jd, int& y, int& m, int& d) {
         int x, n, i, j; x = jd + 68569;
         n=4*x/146097; x=(146097*n+3)/4;
         i = (4000 * (x+1)) / 1461001; x = 1461 * i / 4 - 31;
```

```
int top = 0;
    st[++top] = x;
    for (int i = x; !is_root(i); i = par[i]) {
      st[++top] = par[i];
    while (top) {
      push(st[top--]);
    while (!is_root(x)) {
      int y = par[x], z = par[y];
      if (!is root(y)) {
        rotate((c[y][1] == x) == (c[z][1] == y) ? y : x);
      rotate(x);
  void access(int x, int v) {
    int z = 0;
    cnt = 0;
    while (x) {
      splav(x);
      modifies[++cnt] = make pair(t[x - 1].len, last[x]);
      c[x][1] = z;
      mark(x, v);
      z = x;
      x = par[x];
int pos[N];
vector<pair<int, int>> Q[N];
long long ans[N];
int32 t main() {
  ios_base::sync_with_stdio(0);
  cin.tie(0);
  int n, q; cin >> n >> q;
  string s; cin >> s;
  SuffixAutomaton sa(n);
  for (int i = 1; i <= q; i++) {
    int 1, r; cin >> 1 >> r;
    ++1; ++r;
    Q[r].push back({l, i});
  s = "." + s;
  pos[0] = 1;
  for (int i = 1; i <= n; ++i) {
    sa.extend(s[i]);
    pos[i] = sa.last + 1;
  for (int i = 1; i <= sa.sz; ++i) {</pre>
    lct::par[i] = t[i - 1].link + 1;
  for (int i = 1; i <= n; ++i) {</pre>
    st.upd(1, 1, n, 1, i, 1);
    lct::access(pos[i], i);
```

```
int last = 0;
  for (int j = cnt; j > 1; --j) {
    pair<int, int> p = modifies[j];
    if (p.first) {
      if (p.second) {
        st.upd(1, 1, n, p.second - p.first + 1, p.
           second - last, -1);
      last = p.first;
  // st.query(l, l) = number of distinct substrings
     which lastly occured in starting position 1 for
     prefix [1, i]
  for (auto [1, id]: Q[i]) {
    ans[id] = st.query(1, 1, n, 1, i);
for (int i = 1; i <= q; i++) {
  cout << ans[i] << '\n';
return 0;
```

10 Misc

10.1 Counting Sort

```
// O(n+k)
void counting sort(vi& a) {
        int n=sz(a);
        int maxi=*max element(all(a));
        int mini=*min element(all(a));
        int k=maxi-mini+1;
        vi cnt(k,0);
        for (int i=0;i<n;++i)++cnt[a[i]-mini];</pre>
        for (int i=0, j=0; i < k; ++i)
                 while (cnt[i]--) a [j++]=i+mini;
```

10.2 Dates

```
10
```

10.3 Expression Parsing

```
// O(n) - eval() de python
bool delim(char c) {return c==' ';}
bool is op(char c){return c=='+' || c=='-' || c=='*' || c
   ==' /'; }
bool is unary (char c) {return c=='+' | | c=='-';}
int priority(char op){
        if(op<0) return 3;</pre>
        if(op=='+' || op=='-') return 1;
        if(op=='*' || op=='/') return 2;
        return -1;
void process op(stack<int>& st, char op){
        if(op<0){
                 int l=st.top();st.pop();
                 switch(-op) {
                         case '+':st.push(1);break;
                         case '-':st.push(-1);break;
        }else{
                 int r=st.top();st.pop();
                 int l=st.top();st.pop();
                 switch(op) {
                         case '+':st.push(l+r);break;
                         case '-':st.push(l-r);break;
                         case '*':st.push(l*r);break;
                         case '/':st.push(l/r);break;
int evaluate(string& s){
        stack<int> st;
        stack<char> op;
        bool may_be_unary=true;
        for (int i=0; i < sz(s); ++i) {
                if (delim(s[i])) continue;
                if(s[i] == '('){
                         op.push('(');
                         may_be_unary=true;
```

```
}else if(s[i]==')'){
                while (op.top()!='('){
                         process_op(st, op.top());
                         op.pop();
                op.pop();
                may be unary=false;
        }else if(is_op(s[i])){
                char cur op=s[i];
                if (may_be_unary && is_unary(
                    cur_op))cur_op=-cur_op;
                while(!op.empty() && ((cur op >=
                    0 && priority(op.top()) >=
                    priority(cur_op)) || (cur_op <</pre>
                     0 && priority(op.top()) >
                    priority(cur_op)))){
                         process_op(st, op.top());
                         op.pop();
                op.push(cur op);
                may be unary=true;
        }else{
                int number=0;
                while(i<sz(s) && isalnum(s[i]))</pre>
                    number=number *10+s[i++]-'0';
                st.push(number);
                may_be_unary=false;
while(!op.empty()){
        process_op(st, op.top());
        op.pop();
return st.top();
```

10.4 Hanoi

```
// hanoi(n) = 2 * hanoi(n-1) + 1
// hanoi(n, 1, 3)
vector<int> ans;
void hanoi(int x, int start, int end){
    if(!x)return;
    hanoi(x-1, start, 6-start-end);
    ans.push_back({start, end});
    hanoi(x-1, 6-start-end, end);
}
```

10.5 K mas frecuentes

// los k numeros mas frecuentes

```
// el cero es un valor neutral dentro del vector
// no usarlo en el array original (a[i] > 0, i \in [0, n-1])
// el vector guarda {valor, contador}
// pero contador es para el algo, no es la cantidad real
// algoritmo de misra-gries O(k^2)
vector<ii> null(k, {0,0});
vector<ii> init(int v){
        vector<ii> a=null;
        a[0] = \{v, 1\};
        return a;
vector<ii> oper(vector<ii> a, vector<ii> b, int k) {
        for (int i = 0; i < k; ++i) if (b[i].first) {
                int p = -1, q = -1;
                for (int j = 0; j < k; ++j) {
                        if (b[i].first == a[j].first) p =
                        if (!a[j].first) q = j;
                if (p !=-1) {
                        a[p].second += b[i].second;
                \} else if (q != -1) {
                        a[q] = b[i];
                } else {
                        int mn = b[i].second;
                        for (int j = 0; j < k; ++j) mn =
                            min(mn, a[i].second);
                        for (int j = 0; j < k; ++j) a[j].
                            second -= mn;
                        b[i].second -= mn;
                        for (int j = 0; j < k; ++j) if (!
                            a[i].second) {
                                if (b[i].second > 0) {
                                         a[j] = b[i], b[i]
                                            ].second = 0;
                                 } else {
                                         a[j].first = 0;
        return a:
```

10.6 Prefix3D

```
const int N = 100;
int A[N][N][N];
int preffix[N + 1][N + 1][N + 1];
void build(int n) {
    for (int x = 1; x <= n; x++) {
        for (int y = 1; y <= n; y++) {</pre>
```

```
for (int z = 1; z \le n; z++) {
                                preffix[x][y][z] = A[x -
                                    1][y - 1][z - 1]
                                        + preffix[x - 1][
                                            y][z] +
                                            preffix[x][v -
                                             1|[z] +
                                            preffix[x][y][
                                            z - 1]
                                         - preffix[x - 1][
                                            y - 1][z] -
                                            preffix[x -
                                            1][v][z - 1] -
                                             preffix[x][y
                                            - 1][z - 1]
                                        + preffix[x - 1][
                                            y - 1 [z - 1];
ll query(int lx, int rx, int ly, int ry, int lz, int rz){
        ll ans = preffix[rx][ry][rz]
                - preffix[lx - 1][ry][rz] - preffix[rx][
                   ly - 1][rz] - preffix[rx][ry][lz - 1]
                + preffix[lx - 1][ly - 1][rz] + preffix[
                   lx - 1 [ry] [lz - 1] + preffix[rx] [ly -
                    11[lz - 1]
                - preffix[lx - 1][ly - 1][lz - 1];
        return ans;
```

10.7 Ternary Search

```
int f(int x);
int ternary() {
    int l,r;
    while(r-l>6) {
        int m1=l+(r-l)/3;
        int m2=r-(r-l)/3;
        if(f(m1)<f(m2))l=m1; // revisar desempate
        else r=m2;
    }
    int ans=l,val=f(l);</pre>
```

11 Teoría y miscelánea

11.1 Sumatorias

•
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

•
$$\sum_{i=1}^{n} i^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$$

•
$$\sum_{i=1}^{n} i^5 = \frac{(n(n+1))^2 (2n^2 + 2n - 1)}{12}$$

$$\bullet \sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$$

•
$$\sum_{i=0}^{n} x^i = \frac{x^{n+1}-1}{x-1}$$
 para $x \neq 1$

11.2 Teoría de Grafos

11.2.1 Teorema de Euler

En un grafo conectado planar, se cumple que V-E+F=2, donde V es el número de vértices, E es el número de aristas y F es el número de caras. Para varios componentes la formula es: V-E+F=1+C, siendo C el número de componentes.

11.2.2 Planaridad de Grafos

Un grafo es planar si y solo si no contiene un subgrafo homeomorfo a K_5 (grafo completo con 5 vértices) ni a $K_{3,3}$ (grafo bipartito completo con 3 vértices en cada conjunto).

11.2.3 Truco del Cow Game

Dadas restricciones de la forma:

$$x_a - x_b \le d$$

podemos transformar cada desigualdad en una arista dirigida:

$$b \to a \quad \text{con peso } d$$

```
for(int i=l+1;i<=r;++i) {
    int val2=f(i);
    if(val2>val) {
        val=val2;
        ans=i;
    }
} return val;
}
```

Luego, ejecutando un algoritmo de camino más corto desde un nodo inicial s, obtenemos:

$$\operatorname{dist}[i] = \max(x_i - x_s)$$

Nota: Pueden aparecer pesos negativos, por lo que se debe usar Bellman-Ford o SPFA, no Dijkstra.

11.3 Teoría de Números

11.3.1 Ecuaciones Diofánticas Lineales

Una ecuación diofántica lineal es una ecuación en la que se buscan soluciones enteras x e y que satisfagan la relación lineal ax+by=c, donde a, b y c son constantes dadas.

Para encontrar soluciones enteras positivas en una ecuación diofántica lineal, podemos seguir el siguiente proceso:

- 1. Encontrar una solución particular: Encuentra una solución particular (x_0, y_0) de la ecuación. Esto puede hacerse utilizando el algoritmo de Euclides extendido.
- 2. Encontrar la solución general: Una vez que tengas una solución particular, puedes obtener la solución general utilizando la fórmula:

$$x = x_0 + \frac{b}{\operatorname{mcd}(a, b)} \cdot t$$

$$y = y_0 - \frac{a}{\operatorname{mcd}(a, b)} \cdot t$$

donde t es un parámetro entero.

3. Restringir a soluciones positivas: Si deseas soluciones positivas, asegúrate de que las soluciones generales satisfagan $x \ge 0$ y $y \ge 0$. Puedes ajustar el valor de t para cumplir con estas restricciones.

11.3.2 Pequeño Teorema de Fermat

Si p es un número primo y a es un entero no divisible por p, entonces $a^{p-1} \equiv 1 \pmod{p}$.

11.3.3 Teorema de Euler

Para cualquier número entero positivo n y un entero a coprimo con n, se cumple que $a^{\phi(n)} \equiv 1 \pmod{n}$, donde $\phi(n)$ es la función phi de Euler, que representa la cantidad de enteros positivos menores que n y coprimos con n.

11.4 Geometría

11.4.1 Teorema de Pick

Sea un poligono simple cuyos vertices tienen coordenadas enteras. Si B es el numero de puntos enteros en el borde, I el numero de puntos enteros en el interior del poligono, entonces el area A del poligono se puede calcular con la formula:

$$A = I + \frac{B}{2} - 1$$

11.4.2 Fórmula de Herón

Si los lados del triángulo tienen longitudes a, b y c, y s es el semiperímetro (es decir, $s = \frac{a+b+c}{2}$), entonces el área A del triángulo está dada por:

$$A = \sqrt{s(s-a)(s-b)(s-c)}$$

11.4.3 Relación de Existencia Triangular

Para un triángulo con lados de longitud $a,\,b,\,{\bf y}\,c,$ la relación de existencia triangular se expresa como:

$$b-c < a < b+c, \quad a-c < b < a+c, \quad a-b < c < a+b$$

11.5 Combinatoria

11.5.1 Permutaciones

El número de permutaciones de n objetos distintos tomados de a r a la vez (sin repetición) se denota como P(n,r) y se calcula mediante:

$$P(n,r) = \frac{n!}{(n-r)!}$$

11.5.2 Combinaciones

El número de combinaciones de n objetos distintos tomados de a r a la vez (sin repetición) se denota como C(n,r) o $\binom{n}{r}$ y se calcula mediante:

$$C(n,r) = \binom{n}{r} = \frac{n!}{r!(n-r)!}$$

11.5.3 Permutaciones con Repetición

El número de permutaciones de n objetos tomando en cuenta repeticiones se denota como $P_{\text{rep}}(n; n_1, n_2, \dots, n_k)$ y se calcula mediante:

$$P_{\text{rep}}(n; n_1, n_2, \dots, n_k) = \frac{n!}{n_1! n_2! \cdots n_k!}$$

11.5.4 Combinaciones con Repetición

El número de combinaciones de n objetos tomando en cuenta repeticiones se denota como $C_{\text{rep}}(n; n_1, n_2, \dots, n_k)$ y se calcula mediante:

$$C_{\text{rep}}(n; n_1, n_2, \dots, n_k) = \binom{n+k-1}{n} = \binom{n+k-1}{k-1}$$

11.5.5 Números de Catalan

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

Los números de Catalan también pueden calcularse utilizando la siguiente fórmula recursiva:

$$C_0 = 1$$

$$C_{n+1} = \frac{4n+2}{n+2}C_n$$

Usos:

- Cat(n) cuenta el número de árboles binarios distintos con n vértices.
- Cat(n) cuenta el número de expresiones que contienen n pares de paréntesis correctamente emparejados.
- Cat(n) cuenta el número de formas diferentes en que se pueden colocar n+1 factores entre paréntesis, por ejemplo, para n=3 y 3+1=4 factores: a,b,c,d, tenemos: (ab)(cd),a(b(cd)),((ab)c)d y a((bc)d).

95

- Los números de Catalan cuentan la cantidad de caminos no cruzados en una rejilla $n \times n$ que se pueden trazar desde una esquina de un cuadrado o rectángulo a la esquina opuesta, moviéndose solo hacia arriba y hacia la derecha.
- Los números de Catalan representan el número de árboles binarios completos con n+1 hojas.
- Cat(n) cuenta el número de formas en que se puede triangular un poligono convexo de n+2 lados. Otra forma de decirlo es como la cantidad de formas de dividir un polígono convexo en triángulos utilizando diagonales no cruzadas.

11.5.6 Estrellas y barras

Número de soluciones de la ecuación $x_1 + x_2 + \cdots + x_k = n$.

• Con $x_i \ge 0$: $\binom{n+k-1}{n}$

• Con $x_i \ge 1$: $\binom{n-1}{k-1}$

Número de sumas de enteros con límite inferior:

Esto se puede extender fácilmente a sumas de enteros con diferentes límites inferiores. Es decir, queremos contar el número de soluciones para la ecuación:

$$x_1 + x_2 + \cdots + x_k = n$$

 $con x_i \geq a_i$.

Después de sustituir $x'_i := x_i - a_i$ recibimos la ecuación modificada:

$$(x'_1 + a_i) + (x'_2 + a_i) + \dots + (x'_k + a_k) = n$$

$$\Leftrightarrow x'_1 + x'_2 + \dots + x'_k = n - a_1 - a_2 - \dots - a_k$$

con $x_i' \ge 0$. Así que hemos reducido el problema al caso más simple con $x_i' \ge 0$ y nuevamente podemos aplicar el teorema de estrellas y barras.

11.6 DP Optimization Theory

Name	Original Recurrence	Sufficient Condition	From	То
CH 1	$dp[i] = min_{j < i} \{dp[j] + b[j] *$	$b[j] \ge b[j+1]$ Option-	$O(n^2)$	O(n)
	a[i]	ally $a[i] \le a[i+1]$		
CH 2	$dp[i][j] = min_{k < j} \{dp[i -]$	$b[k] \ge b[k+1]$ Option-	$O(kn^2)$	O(kn)
	[1][k] + b[k] * a[j]	ally $a[j] \le a[j+1]$		
D&Q	$dp[i][j] = min_{k < j} \{ dp[i -]$	$A[i][j] \le A[i][j+1]$	$O(kn^2)$	$O(kn\log n)$
	1][k] + C[k][j]			
Knuth	dp[i][j] =	$A[i, j-1] \le A[i, j] \le$	$O(n^3)$	$O(n^2)$
	$min_{i < k < j} \{dp[i][k] +$	A[i+1,j]		
	$dp[k][j]\} + C[i][j]$			

Notes:

- A[i][j] the smallest k that gives the optimal answer, for example in dp[i][j] = dp[i-1][k] + C[k][j]
- C[i][j] some given cost function
- We can generalize a bit in the following way $dp[i] = \min_{j < i} \{F[j] + b[j] * a[i]\}$, where F[j] is computed from dp[j] in constant time