ALGEBRA LINIOWA 2

dr Joanna Jureczko

Politechnika Wrocławska Wydział Elektroniki Katedra Telekomunikacji i Teleinformatyki

Niniejsza prezentacja stanowi jedynie skrypt do wykładu.

Wykład będzie wzbogacony o dodatkowe informacje, tj. dowody wybranych twierdzeń przykłady, wskazówwki do zadań itp. Dodatkowe informacje dotyczące programu znajdują się w

Karcie Przedmiotu.

WYKŁAD 7

Przekształcenia liniowe Reprezentacja macierzowa odwzorowań liniowych

Przekształcenia liniowe

Niech V i V' będą przestrzeniami liniowymi nad tym samym ciałem \mathbb{K} . Funkcję $\varphi\colon V\to V'$ nazywamy **przekształceniem**

liniowym, jeśli spełnione są warunki:
1)
$$\forall_{v,w \in V} \quad \varphi(v+w) = \varphi(v) + \varphi(w);$$

2) $\forall_{a \in \mathbb{K}} \forall_{v \in V} \quad \varphi(a \cdot v) = a \cdot \varphi(v).$

Warunki 1) i 2) są równoważne warunkowi

3)
$$\forall_{v,w \in V} \forall_{a,b \in \mathbb{K}} \quad \varphi(av + bw) = a\varphi(v) + b\varphi(w).$$

Przekształcenie liniowe jest homomorfizmem przestrzeni

Iniowych. Wyróżniamy następujące typy homomorfizmów:

- a) monomorfizm = homomorfizm różnowartościowy
- b) epimorfizm = homomorfizm, który jest "na"

c) izomorfizm = homomorfizm wzajemnie jednoznaczny d) endomorfizm = homomorfizm w siebie czyli $\varphi: V \to V$ e) automorfizm = endomorfizm wzajemnie jednoznaczny.

Wprowadzamy oznaczenia

L(V, V') - zbiór wszystkich przekształceń liniowych przestrzeni

V w przestrzeń V'.

End(V) - zbiór wszystkich endomorfizmów przestrzeni V.

Aut(V) - zbiór wszystkich automorfizmów przestrzeni V.

Mówimy, że przestrzenie liniowe V i V' są izomorficzne, jeśli

istnieje izomorfizm $\varphi \colon V \to V'$. Piszemy wtedy $V \cong V'$.

Uwaga: Każda n-wymiarowa przestrzeń liniowa nad ciałem \mathbb{K}

jest izomorficzna z przestrzenią \mathbb{K}^n .

Niech V i V' będą przestrzeniami liniowymi nad tym samym ciałem \mathbb{K} i niech $(v_t)_{t\in\mathcal{T}}$ będzie bazą przestrzeni V. Dla

dowolnego układu $(v'_t)_{t \in T}$ przestrzeni V' istnieje dokładnie jedno przekształcenie liniowe $\varphi: V \to V'$ takie, że $\varphi(v_t) = v_t'$,

dla każdego $t \in T$. Przekształcenie to jest izomorfizmem wtedy

Uwaga: Gdy *V* i *V'* są przestrzeniami skończenie wymiarowymi, to T jest zbiorem skończonym.

i tylko wtedy, gdy $(v'_t)_{t\in\mathcal{T}}$ jest bazą przestrzeni V'.

 $\varphi \colon V \to V'$ jest przekształceniem liniowym, to $\varphi(\mathbb{O}) = \mathbb{O}'$.

Jeśli \mathbb{O} i \mathbb{O}' są wektorami zerowymi odpowiednio V i V' oraz

Niech V i V' będą przestrzeniami liniowymi nad tym samym ciałem \mathbb{K} i niech $(v_1,...,v_n) \in V$ oraz $(v_1',...,v_n') \in V'$. Wtedy

następujące warunki są równoważne

2) $\forall a_1,...,a_n \in \mathbb{K} (a_1v_1 + ... + a_nv_n = 0 \Rightarrow a_1v_1' + ... + a_nv_n' = 0')$

 $\varphi(v_t) = v'_t$, dla każdego t = 1, ..., n;

ciałem
$$\mathbb{K}$$
 i niech $(v_1,...,v_n) \in V$ oraz $(v_1',...,v_n') \in V'$. Wtedy następujące warunki są równoważne
1) istnieje przekształcenie liniowe $\varphi \colon V \to V'$ takie, że

REPREZENTACJA MACIERZOWA PRZEKSZTAŁCENIA LINIOWEGO

Niech $\mathcal{B} = (v_1, ..., v_n)$ i $\mathcal{C} = (w_1, ..., w_m)$ beda odpowiednio bazami przestrzeni liniowych V i V' i niech $\varphi \in L(V, V')$.

Macierza przekształcenia φ w bazach $\mathscr{B}(\varphi)$ oraz \mathscr{C}

nazywamy macierz $M_{\mathscr{B}\mathscr{C}}(\varphi)$ wymiaru $m \times n$, której elementy $a_{ii} \in \mathbb{K}$ są określone przez równości $\varphi(v_i) = a_{1i}w_1 + ... + a_{mi}w_m, (j = 1, ..., n).$

Uwaga: Zamiast $M_{\mathscr{B}\mathscr{B}}(\varphi)$ piszemy $M_{\mathscr{B}}(\varphi)$. Jeśli \mathscr{B},\mathscr{C} są bazami kanonicznymi to piszemy $M(\varphi)$ zamiast $M_{\mathscr{B}\mathscr{C}}(\varphi)$. Niech $\mathscr{B} = (v_1, ..., v_n)$ i $\mathscr{C} = (w_1, ..., w_m)$ beda odpowiednio bazami przestrzeni liniowych V i V' i niech $M_{\mathscr{B}\mathscr{C}}(\varphi)$ będzie

bazami przestrzeni liniowych
$$V$$
 i V' i niech $M_{\mathscr{B}\mathscr{C}}(\varphi)$ będzie macierzą przekształcenia liniowego $\varphi: V \to V'$. Dla dowolnego wektora $v = x_1v_1 + ... + x_nv_n \in V$ współrzędne $y_1, ..., y_m$ w bazie

$$\left[\begin{array}{c} y_1 \\ \vdots \\ y_m \end{array}\right] = M_{\mathscr{B}\mathscr{C}}(\varphi) \left[\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right].$$

 \mathscr{C} jego obrazu $\varphi(v)$ wyrażają się wzorem

Niech $\mathscr{B} = (v_1, ..., v_n), \mathscr{C} = (w_1, ..., w_n)$ i $\mathscr{D} = (u_1, ..., u_m)$ beda odpowiednio bazami przestrzeni liniowych V, V' i V" i niech $\varphi \in L(V, V')$ i $\psi \in L(V', V'')$. Zachodzi wtedy równość

odpowiednio bazami przestrzeni liniowych
$$V,V'$$
 i V'' i niech $\varphi\in L(V,V')$ i $\psi\in L(V',V'')$. Zachodzi wtedy równość

 $M_{\mathscr{R}\mathscr{D}}(\psi \circ \varphi) = M_{\mathscr{C}\mathscr{D}}(\psi) \cdot M_{\mathscr{R}\mathscr{C}}(\varphi)$