PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:		(11) International Publication Number:	WO 94/14090	
G02B 3/02	A1	(43) International Publication Date:	23 June 1994 (23.06.94)	

(21) International Application Number: PC

PCT/US93/12203

(22) International Filing Date:

14 December 1993 (14.12.93)

(30) Priority Data:

07/991,061 07/996,549 15 December 1992 (15.12.92) US 24 December 1992 (24.12.92) US

(71) Applicant: GTE LABORATORIES INCORPORATED [US/US]; 1209 Orange Street, Wilmington, DE 19801 (US).

(72) Inventor: FOHL, Timothy; 681 South Street, Carlisle, MA 01741 (US).

(74) Agent: MONKS, Lawrence, E.; GTE Telecommunications Products and Services, 40 Sylvan Road - MS#31, Waltham, MA 02254 (US).

(81) Designated States: CA, JP, European parent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

(54) Title: WIDE ANGLE, NARROW BAND OPTICAL FILTER

(57) Abstract

The object of the invention is to provide an optical filtering system which can utilize wide angle optics and still maintain a very narrow pass band. A filtering system (100) is disclosed for receiving and bandpass filtering free space optical signals. The filtering system (100) includes a compound parabolic concentrator (110) with a small aperture for accepting the free space optical signals (115) and a larger aperture whereby the optical signal (115) exits. The compound parabolic concentrator (110) has a reflective coating on the inner surface to reflect incident optical signals (115) to produce a substantially collimated signal beam. The collimated signal is further passed through a narrow, bandpass filter (140) before detection by a photodetector device (150). In an alternative embodiment, a compound hyperbolic concentrator (310) is utilized to reflect the incident optical signals and produce a substantially collimated signal beam.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MIR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	ETU	Hungary	NO	Norway
BG	Bulgaria	Œ	Ireland	NZ	New Zealand
BJ	Benin	π	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Konya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
cs	Czechoslovakia	LU	Linembourg	TG	Togo
cz	Czech Republic	LV	Latvia	T.J	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FT	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Vict Nam
GA	Gebon		2		

WIDE ANGLE, NARROW BAND OPTICAL FILTER

Technical Field

The instant invention relates generally to optical filters and more particularly to apparatus which can be used to build optical systems with very narrow band transmission.

Background Art

- 10 Often it is desirable to block light or any other optical band radiation from reaching a detector with the exception of radiation within a specific wavelength band. Narrow band optical systems have been developed for a wide variety of applications for many years. The usual 15 objective is to isolate an optical signal of a specific wavelength in the presence of a large flux of noise i.e. optical radiation at other wavelengths. A better signal to noise ratio can be derived from the detector if the signal is within a narrow band of the optical spectrum. Noise is 20 caused by background light outside the band of the signal and such filters typically find use in wireless communication applications as described by Barry, et al. in "High-Speed Nondirective Optic Communication for Wireless Networks", IEEE Network Magazine, November 1991.
- In conventional filtering systems, the absorption of light at specific wavelengths is sometimes used as a means of filtering. However such filters are usually not capable of isolating a narrow passband, and they tend to be lossy at the desired band.
- In a further approach, filters composed of layers of thin dielectric films consisting of materials with widely differing refractive indices have been utilized. Such filters are known as interference filters and are capable of isolating quite narrow passbands with relatively high transmission at the desired band. Interference filters,

WO 94/14090 PCT/US93/12203

-2-

however, have the characteristic that the passband shifts as the angle the light ray makes with respect to the surface of the filter varies. This characteristic is a disadvantage in filtered optical systems which require wide angle reception again as described in Barry, et al., supra.

A filtering system which provides for wide angle reception is described by Martin and Fohl in U.S. Patent 5,124,859. Although this filter is a clear advance over the prior art, it can only operate at wavelengths for which suitable atomic transitions exist.

It is thus desirable to provide an optical filtering system that has a wide angle of acceptance but maintains the narrow passband of a interference filter normal to a well collimated beam. It is further desirable that such a filtering system be amenable to a simple and compact implementation.

Disclosure of the Invention

20 The above and other objects and advantages are achieved in one aspect of the invention using a compound parabolic concentrator for reception of free space optical signals preferably in the infrared band of the electromagnetic spectrum. The compound parabolic concentrator has 25 a first aperture for accepting the free space optical signals. The angle of acceptance of the free space optical signals is defined by this aperture. The received optical signals pass through the compound parabolic concentrator causing them to be substantially collimated. The optical 30 signals exit the compound parabolic concentrator at a second aperture of the device which is larger than the first before they are input to an interference filter for bandpass filtering of the signals. The filtered signal may be concentrated using a second compound parabolic 35 concentrator before being presented to a photodetector for converting the optical signal to an electrical signal.

WO 94/14090' PCT/US93/12203

-3-

Other types of filters can be based on holographs or gratings, but these are not as efficient in that they lose resolution if the angle of light varies over a wide angle.

In another embodiment of the invention, a hyperbolic concentrator is utilized for receiving and collimating the free space optical signal.

Brief Description of the Drawings

FIG. 1 is a cross sectional view of a filter system utilized in receiving free space optical signals in accordance with one embodiment of the instant invention.

FIG. 2 is a graph of a transmission-angle curve for a compound parabolic concentrator.

FIG. 3 is a cross sectional view of a filter system

15 utilized in receiving free space optical signals in accordance with one embodiment of the instant invention and using a second compound parabolic concentrator for concentrating the input signal to a photodetector.

Best Mode for Carrying Out the Invention

One embodiment of the invention is depicted in FIG. 1 which is a cross section of the instant filtering system 100 for receiving free space optical signals, preferably in the infrared band of the electromagnetic spectrum.

However, other optical signals for example signals in the the visible and ultraviolet spectrum are within the scope of the invention. In this embodiment radiation, both the signal and background noise enters the device as rays through the small end of a compound parabolic concentrator 110. A compound parabolic concentrator consists of a reflective surface defined by sweeping a parabola around a line or axis in space. Similarly, a compound hyperbolic concentrator is defined by sweeping a hyperbola around a

line or axis in space. The surfaces so defined have a

WO 94/14090 PCT/US93/12203

-4-.

small aperture for accepting the free space optical signal and a larger aperture for the exiting signal which has been substantially collimated by the geometry of the device. The details of the geometry of these concentrators and other types which use combinations of refraction and reflection are given in High Collection Nonimaging Optics by Welford and Winston. The essential feature of all these devices is that they exchange decreased angular spread of the beam for enlarged beam cross section. Used in the opposite sense these devices exchange smaller beam size for larger spread angles - hence the term concentrators.

As shown in FIG. 1, an input optical signal 115 enters the compound parabolic concentrator through the small aperture and is reflected off the internal side walls of the device. As a result of the reflection of the optical signal 115, the signal exits the compound parabolic concentrator at the large aperture substantially collimated before passing to photodetector 150. For a concentrator with a small aperture of area H for receiving a free space optical signal at a maximum angle A and a large aperture K for exiting the signal at a maximum exit angle of B, the product of H x A is substantially equal to the product of K x B. Optical signal Interference filter 140 is of conventional design, and is known by those skilled in the art.

The behavior of an interference filter 140 as the optical rays enter the filter away from the normal is described in Optical Filters and Coatings by Corion Corporation of Hopkinton, Massachusetts (October 1988). Consequently, an estimate of the effective band pass of the filtering 100 system can be derived. With a very narrow passband for the interference filter 140, the system passband will be given by the shift in transmission wavelength at the maximum angle of the cone of rays, B. The percentage shift in pass wavelength is given by:

10

15

20

25

30

Percentage wavelength shift = $100(n_s^2 - sin^2 B)^{0.5}$

where n_s is an average value of the index of refraction of the interference filter 140, and B is the angle between the beam and the normal to the plane of the filter. As an example, with the average index as 2.0 and an acceptance angle of 10 degrees, the shift is approximately 0.4 percent. With the pass and of the filter centered at 800 nm, the pass band of the system is approximately 3.2 nm. Accordingly, a filterial system with an arbitrarily wide viewing angle can be shown to have a passband only a few nanometers wide.

15 FIG. 2 is a transmission-angle curve for a compound parabolic concentrator with an angle of exit of B. In this example an exit angle of sixteen degrees is the maximum exit angle. The compound parabolic concentrator comes close to being an ideal concentrator, and has the advantages of being a very practical design and easy to make for all wavelengths since it depends on reflection rather than refraction.

The above achieves the objects of the invention. However, it does this at the cost of reducing the signal as well as the noise. The signal attenuation can be counteracted by increasing the surface area of the ends of the fibers and the detector. In some applications where there are limits on detector area for example because of frequency response requirements or cost, a second compound parabolic concentrator 310 can be utilized between the interference filter and the detector to concentrate the optical rays on photodetector 150 as shown in FIG. 3. The second compound parabolic concentrator is used in a configuration which is opposite the first compound parabolic concentrator. The rays from filter 140 enter the compound parabolic concentrator 310 substantially

25

30

WO 94/14090 PCT/US93/12203

-6-

collimated and are focused through reflection off the side walls of the device onto photodetector 150. Concentration increases the angle of the rays relative to the optical axis of the system. The product of this angle and the area through which the bundle of rays flow, called the etendue, is constant. However, the detector typically accepts energy over a wide angle with the spread angle emerging from the filter being small in comparison. Thus even in systems where detector area is a limiting factor on signal level, the instant filtering system allows high rejection of background noise without sacrificing much signal.

while there has been shown and described what is at present considered the preferred embodiment of the invention it will be obvious to those skilled in the art that various changes and modifications may be made therein without departing from the invention as defined by the appended claims.

20

25

30

Claims:

5

10

i.	A	filtering	syste	em i	for	recei	iving	а	free	space	optical
signa	1	separated	from	bad	ckgr	round	optio	al	nois	se comp	rising:

- a compound hyperbolic concentrator means having a first aperture of area H for for receiving said optical signal at a maximum angle A and passing said free space optical signal therethrough, exiting at a second aperture of area K with a maximum exit angle of B;
 - an filter means coupled to said compound parabolic concentrator means for rejecting said background optical noise and transmitting said optical signal exiting from said compound parabolic concentrator means;
 - a photodetector means for detecting said transmitted optical signal of the filter means.

20

15

25

30

SUBSTITUTE SHEET (RULE 26)

FIG. 2

SUBSTITUTE SHEET (RULE 26)

FIG. 3

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

Incrnational application No. PCT/US93/12203

A. CLASSIFICATION OF SUBJECT MATTER					
IPC(5) :GO2B 3/02 US CL :359/708, 712, 738					
According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELDS SEARCHED					
Minimum documentation searched (classification system follow	ed by classification symbols)				
U.S. : 359/708, 712, 738, 709, 739					
Documentation searched other than minimum documentation to t	he extent that such documents are included in the fields searched				
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)				
C. DOCUMENTS CONSIDERED TO BE RELEVANT					
Category* Citation of document, with indication, where	appropriate, of the relevant passages Relevant to claim No.				
X Ruda, Mitchell C., "How and w	then to use a nonimaging 1				
concentrator," SPIE, August, 198	3, Int. Conf. Hew Imaging				
concentrators, pp. 51-58, see Fig	gs. 6 and 7.				
4					
Further documents are listed in the continuation of Box (C. See patent family annex.				
Special estagories of cited documents:	"I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the				
"A" document defining the general state of the ert which is not considered to be part of particular relevance	principle or theory underlying the investion				
*B' cartier document published on or after the international filing date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step				
"L" document which may throw doubts on priority chain(s) or which is cited to establish the publication date of another citation or other	when the document is taken alone				
special reason (as specified) *O* document referring to an oral disclosure, use, exhibition or other	"Y" document of particular relevance; the claimed invention cannot be considered to involve as inventive step when the document is				
ments.	combined with one or more other such documents, such combination being obvious to a person skilled in the art				
P document published prior to the international filing date but later then the priority date claimed	"A" document member of the same patent family				
Date of the actual completion of the international search	Date of mailing of the international search report				
18 February 1994	24 FEB 1994				
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks	Authorized officer				
Box PCT Washington, D.C. 20231	IN THOMAS ROBBINS Smille				
Facsimile No. NOT APPLICABLE	Telephone No. (703) 305-3792				

Form PCT/ISA/210 (second sheet)(July 1992)*

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

'☑ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.