Motivation

Malicious Linux Binaries: A Landscape

<u>Lucas Galante</u>, Marcus Botacin, André Grégio, Paulo Lício de Geus

SBSEG 2018

Agenda

Motivation

- Motivation
 - Motivation
- 2 Dataset Description
 - Dataset Description
- Methodology
 - Methodology
- 4 Analysis
 - Static Analysis
 - Dynamic Analysis
- Case Studies
 - Case Studies
- 6 Conclusion
 - Conclusion

Agenda

•0

- Motivation
- Motivation
- - Dataset Description
- - Methodology
- - Static Analysis
 - Dynamic Analysis
- - Case Studies
- - Conclusion

Are there Linux malware?

Figure: Erebus ransomware attacks South Korean internet provider.

Dataset Description

Motivation

Agenda

- Motivation
 - Motivation
- 2 Dataset Description
 - Dataset Description
- Methodology
 - Methodology
- 4 Analysis
 - Static Analysis
 - Dynamic Analysis
- Case Studies
 - Case Studies
- Canalysian
 - Conclusion

Motivation

Binaries Architectures

Figure: ELF binary samples distributed by architectures.

Dataset Description oo Methodology Analysis Case Studies Conclusion oo ooo ooo ooo ooo

Methodology

Agenda

Motivation

- Motivation
 - Motivation
- 2 Dataset Descriptio
 - Dataset Description
- Methodology
 - Methodology
- 4 Analysis
 - Static Analysis
 - Dynamic Analysis
- Case Studie
 - Case Studies
- Conclusion
 - Conclusion

Motivation oo Methodology

Analysis Techniques

Table: Adopted strategy to handle evasive samples.

Technique	Tool	Evasion	Countermeasure	
	objdump			
Static analysis	file	obfuscation	Dynamic analysis	
	strings			
Dynamic analysis	Itrace	Static compilation	ptrace step-by-step	
	ptrace	<i>ptrace</i> check	binary patching	
	strace	Long sleep	$LD_{-}PRELOAD$	
	$LD_{-}PRELOAD$	Injection blocking	Kernel hooks	

Case Studies Conclusion Dataset Description Methodology Analysis •000000000000000

Static Analysis

Agenda

Motivation

- - Motivation
- - Dataset Description
- - Methodology
- Analysis
 - Static Analysis
 - Dynamic Analysis
- - Case Studies
- - Conclusion

 Case Studies

Conclusion

Motivation
oo
Static Analysis

Malware Behavior Taxonomy

Table: Identified invoked system calls.

Network	Evasion	Environment	Removal	Timing	Memory	Modularity
socket	fork	gettimeofday	unlink	time	mmap	execve
connect	kill	access	rmdir	wait	munmap	fork
poll	ptrace	uname	kill	nanosleep	mprotect	clone
select		ioctl				exit
getsockname						getppid

Motivation
oo
Static Analysis

Objdump

Figure: Percentage of malware that failed to dissasembly.

Motivation
oo
Static Analysis

Static Functions

Figure: Malware behavior prevalence by malware architectures.

Static Analysis

Motivation

Network Strings

Figure: Network-Related Strings. Rate of samples with network related strings.

Motivation
oo
Static Analysis

Packer

Figure: Rate of UPX-packed samples. Few samples are packed.

Motivation

OO

Static Analysis

AV Labels

Figure: AV labels according Kaspersky AV. We observe a prevalence of exploits

Motivation
oo
Static Analysis

Clusters

Figure: Samples variants clustering. Smaller clusters are prevalent.

 Dataset Description
 Methodology
 Analysis
 Case Studies
 Conclusion

 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0
 ○0

Dynamic Analysis

Motivation

Agenda

- Motivation
 - Motivation
- 2 Dataset Descriptio
 - Dataset Description
- Methodology
- MethodologyAnalysis
 - Static Analysis
 - Dynamic Analysis
- Case Studies
 - Case Studies
- Conclusion
 - Conclusion

Timeout Signals

Figure: Observed Signals during execution.

Behavior

Figure: Malware behavior prevalence.

Motivation

Acessed Files

Figure: Accessed files and directories.

Dynamic Analysis

Motivation

O Operations

Figure: I/O operations. Most samples do not present direct user interaction.

Dynamic Analysis

Evasion

Figure: Evasion Techniques. Samples present diversified evasion methods.

Motivation

Network

Figure: Identified network usage. Scanners dominate unique IP rate.

Dynamic Analysis

Motivation

Domains

Figure: TLD distribution. Global domains are prevalent. Local domains are present due to scanners enumeration.

Agenda

Motivation

- Motivation
 - Motivation
- Dataset Description
 - Dataset Description
- Methodology
 - Methodology
- Analysis
 - Static Analysis
 - Dynamic Analysis
- Case Studies
 - Case Studies
- 6 Conclusion
 - Conclusion

SSH Backdoor

Figure: Execution flow of backdoor malware with SSH injection.

SSH Backdoor

Listing 1: Backdoor sample in action. It drops attacker key into the system, thus granting remote access.

```
1 malloc(381) = 0x2083c60
2 strlen("PPK\016QPB\003bbbba\020mYB'\022Z@\021
        fbbbgbrba"...)
3 strcat("", "ssh-rsa AAAAB3NzaC1yc2EAAAADAQAB"...)
```

Erebus

Figure: Execution flow of Erebus ransomware.

Erebus

Listing 2: Erebus Execution. It connects to runtime-generated IP addresses and to TOR-based hidden services and onion domains.

- 1 | strncmp(""----BEGIN PUBLIC KEY----\\nMII"..., " null", 4)
- 2 | strncmp("3,"tg":"216.126.224.128\\/24","bu"..., "null", 4)
- 4 strncmp(""qzjordhlw5mqhcn7.onion.to","qzj"..., "true", 4)

Conclusion

Agenda

Motivation

- Motivation
 - Motivation
- 2 Dataset Description
 - Dataset Description
- Methodology
 - Methodology
- Analysis
 - Static Analysis
 - Dynamic Analysis
- Case Studie
 - Case Studies
- 6 Conclusion
 - Conclusion

Case Studies

Motivation 00 Conclusion

Conclusion

- The threat of Linux malware is real.
- Ability to infect multiple systems.
- High use of network.
- Diverse evasion techniques.

Motivation 00 Conclusion

Questions, Critics and Sugestions.

Contact

• galante@lasca.ic.unicamp.br

Complete version

• https://github.com/marcusbotacin/Linux.Malware