

planetmath.org

Math for the people, by the people.

martingale convergence theorem

Canonical name MartingaleConvergenceTheorem

Date of creation 2013-03-22 18:33:47 Last modified on 2013-03-22 18:33:47

Owner gel (22282) Last modified by gel (22282)

Numerical id 5

Author gel (22282)
Entry type Theorem
Classification msc 60G46
Classification msc 60G44
Classification msc 60G42
Classification msc 60F15
Related topic Martingale

 $Related\ topic \\ Martingale Proof Of Kolmogorovs Strong Law For Square Integrable Variables$

Related topic MartingaleProofOfTheRadonNikodymTheorem

Related topic UpcrossingsAndDowncrossings

There are several convergence theorems for martingales, which follow from Doob's upcrossing lemma. The following says that any L^1 -bounded martingale X_n in discrete time converges almost surely. Note that almost-sure convergence (i.e. convergence with probability one) is quite strong, implying the weaker property of convergence in probability. Here, a martingale $(X_n)_{n\in\mathbb{N}}$ is understood to be defined with respect to a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$.

Theorem (Doob's Forward Convergence Theorem). Let $(X_n)_{n\in\mathbb{N}}$ be a martingale (or submartingale, or supermartingale) such that $\mathbb{E}[|X_n|]$ is bounded over all $n\in\mathbb{N}$. Then, with probability one, the limit $X_{\infty}=\lim_{n\to\infty}X_n$ exists and is finite.

The condition that X_n is L^1 -bounded is automatically satisfied in many cases. In particular, if X is a non-negative supermartingale then $\mathbb{E}[|X_n|] = \mathbb{E}[X_n] \leq \mathbb{E}[X_1]$ for all $n \geq 1$, so $\mathbb{E}[|X_n|]$ is bounded, giving the following corollary.

Corollary. Let $(X_n)_{n\in\mathbb{N}}$ be a non-negative martingale (or supermartingale). Then, with probability one, the limit $X_{\infty} = \lim_{n\to\infty} X_n$ exists and is finite.

As an example application of the martingale convergence theorem, it is easy to show that a standard random walk started started at 0 will visit every level with probability one.

Corollary. Let $(X_n)_{n\in\mathbb{N}}$ be a standard random walk. That is, $X_1=0$ and

$$\mathbb{P}(X_{n+1} = X_n + 1 \mid \mathcal{F}_n) = \mathbb{P}(X_{n+1} = X_n - 1 \mid \mathcal{F}_n) = 1/2.$$

Then, for every integer a, with probability one $X_n = a$ for some n.

Proof. Without loss of generality, suppose that $a \leq 0$. Let $T: \Omega \to \mathbb{N} \cup \{\infty\}$ be the first time n for which $X_n = a$. It is easy to see that the stopped process X_n^T defined by $X_n^T = X_{\min(n,T)}$ is a martingale and $X^T - a$ is nonnegative. Therefore, by the martingale convergence theorem, the limit $X_{\infty}^T = \lim_{n \to \infty} X_n^T$ exists and is finite (almost surely). In particular, $|X_{n+1}^T - X_n^T| = 1$ converges to 0 and must be less than 1 for large n. However, $|X_{n+1}^T - X_n^T| = 1$ whenever n < T, so we have $T < \infty$ and therefore $X_n = a$ for some n.