

隐式相关私钥分解问题研究

郑梦策

中国科学技术大学 信息科学技术学院

2020年9月20日

报告提纲

● 引言

研究背景 研究问题 研究方法

② 隐式相关私钥分解攻击 两个实例情形 多个实例情形 验证实验

3 总结

报告提纲

● 引言

研究背景 研究问题 研究方法

② 隐式相关私钥分解攻击 两个实例情形 多个实例情形 验证实验

3 总结

RSA 密码算法

- ® RSA 算法的安全性基于大整数分解问题的困难性
- - 密钥生成算法
 - 加密算法
 - 解密算法

RSA 密码算法

- \circledast RSA 算法实例的参数: N、p、q、e、d 和 $\varphi(N)$
 - 模数为 N = pq, 其中 p 和 q 是相同比特长度的大素数
 - 公私钥对为 (e,d) 旦满足 $ed \equiv 1 \mod \varphi(N)$
 - 欧拉函数为 $\varphi(N) = (p-1)(q-1)$
 - 加密操作为 $c = m^e \mod N$, 解密操作为 $c^d \mod N$
- \circledast RSA 算法中的关键等式: $ed \equiv 1 \mod \varphi(N)$
 - 存在未知正整数 k 使得ed = k(N+1-p-q)+1成立
 - 针对求解该关键等式已提出许多攻击
 - 攻击中通常考虑使用较短的私钥

两类典型攻击

- ⊛ 部分私钥泄露攻击
 - 给定私钥比特的一小部分
 - 例如: $d = \bar{d} + d'$, 其中已知高位比特 \bar{d} 和未知低位比特 d'
 - 目标为恢复出完整的私钥 d
- ⊛ 隐式分解问题
 - 给定可输出素数因子隐式信息的谕言机
 - 例如: $N_1 = p_1q_1$ 和 $N_2 = p_2q_2$, 其中 p_1, p_2 有相同低位比特
 - 目标为找到 q₁, q₂ 且分解 N₁, N₂

研究问题

- ※ 假如攻击者已知私钥的隐式信息?
 - 给定隐式相关私钥的相同高位与低位比特的数目
 - 例如: $d_2 d_1 = d_{21}D$, 其中已知 D 和未知中间位比特 d_{21}
 - 目标为使用给定隐式关系分解 RSA 模数
- 新型研究情形主要出于理论研究兴趣
 - 揭示弱前提下的 RSA 密码算法的脆弱性
 - 延展并丰富 RSA 算法相关的密码分析工作
 - 不完美的随机性可能导致产生隐式相关私钥

隐式相关私钥分解问题

令 $(N_1,e_1,d_1),\ldots,(N_n,e_n,d_n)$ 为 n 对不同的 RSA 密钥对,其中 N_1,\ldots,N_n 为相同比特长度的模数且素数因子也是相同比特长度。给定隐式信息,即私钥 d_1,\ldots,d_n 中某些对应位置存在相同比特,在何种条件下可有效分解相应的 RSA 模数。

我们考虑全规模情形,即 $e_i \approx N$ 。假设 $d_i \approx N^\delta$ 满足隐式关系

$$d_j = d_i + d_{ji}D, \ 1 \le i < j \le n,$$

其中已知 D, 未知 d_{ji} 表示任意两个未知中间位比特的差异值, 且有 $D \approx N^{\gamma}$ 与 $|d_{ji}| \approx N^{\beta}$ 。

格方法

$$\mathcal{L} = \mathbb{Z}\mathbf{x}_1 + \dots + \mathbb{Z}\mathbf{x}_n = \left\{\sum_{i=1}^n a_i\mathbf{x}_i : a_i \in \mathbb{Z}\right\}$$

- * 格基向量: $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^n$
- \circledast 格基矩阵: $\mathbf{X} = (x_{ij})_{n \times n}$
- * 格行列式: $\det(\mathcal{L}) = |\det(\mathbf{X})|$
- \circledast 格的维数: $\dim(\mathcal{L}) = n$

格基约化算法

$$|\mathbf{v}_1|,\ldots,|\mathbf{v}_\ell| \leq 2^{\frac{n(n-1)}{4(n+1-\ell)}} \det(\mathcal{L})^{\frac{1}{(n+1-\ell)}}$$

- ⊗ LLL 算法于 1982 年由 Lenstra, Lenstra 和 Lovász 提出
- ⑧ 可在多项式时间内输出格中近似短向量
- ※ 其它优化目标的格基约化算法: L² 算法, BKZ 算法
- ⊛ 格基约化算法可应用于公钥密码分析

格基约化算法

格分析技术

- ⊛ 格分析技术于 1996 年由 Coppersmith 提出
- 将密码分析归约到求解多项式模方程
- 令求解方程来自密码算法的数学原理
- ◈ 方程的解与秘密信息(如私钥)相关联
- ⊗ 恢复出秘密信息从而成功攻破密码算法

格分析技术

$$f(x) = x + a$$
, $f(x_0) \equiv 0 \mod b \implies g(x) = 0$, $|x_0| \le X$

- ① 函数集合:构造解均为 $x_0 \mod b^m$ 的 $f_1(x), \ldots, f_n(x)$
- ② 格基矩阵: $f_1(xX), \ldots, f_n(xX)$ 的系数向量作为格基向量
- $oldsymbol{3}$ 格基约化:应用格基约化算法计算出符合条件的 g(xX)
- 4 方程求解:应用 Gröbner 基方法求解一般整方程 g(x)

格分析技术

	1	x	x^2	x^3	x^4	x^5	x^6
f_1	b^6						
f_2	ab^5	b^5X					
f_3	a^2b^4	$2ab^4X$	b^4X^2				
f_4	a^3b^3	$3a^2b^3X$	$3ab^3X^2$	b^3X^3			
f_5	*	*	*	*	b^2X^4		
f_6	*	*	*	*	*	bX^5	
f_7	*	*	*	*	*	*	X^6

报告提纲

0 引言

研究背景 研究问题 研究方法

隐式相关私钥分解攻击 两个实例情形 多个实例情形 验证实验

3 总结

具体情形

- \circledast 给定 (N_1,e_1,d_1) 和 (N_2,e_2,d_2) 以及隐式相关私钥 d_1,d_2
 - N_1, N_2 的比特长度相同,表示为 $\log_2 N$
 - $e_1 \approx e_2 \approx N$,即公钥与模数比特长度相近
 - $d_1 pprox d_2 pprox N^\delta$ 满足 $d_2 = d_1 + d_{21}D$, $|d_{21}| pprox N^\beta$ 、 $D pprox N^\gamma$
- ※ 采用基于高斯启发式的分裂技巧
 - 构造由格基矩阵 $\begin{bmatrix} a_0 & e_1 \\ 0 & N_1 \end{bmatrix}$ 生成的 2 维格
 - $d_1 = a_1c_1 + a_2c_2$, 其中已知 a_1, a_2 和未知 c_1, c_2
 - $|a_1| \approx |a_2| \approx N^{\frac{1}{4}} \coprod |c_1| \approx |c_2| \approx N^{\delta \frac{1}{4}}$

- * 结合 $d_1 = a_1c_1 + a_2c_2$ 和给定隐式关系 $d_2 = d_1 + d_{21}D$
 - $d_2 = a_1c_1 + a_2c_2 + d_{21}D$, 其中未知变量 c_1, c_2, d_{21}
 - 将 d_2 代入 RSA 关键等式 $e_2d_2 = k_2(N_2 + 1 p_2 q_2) + 1$
 - $e_2(a_1c_1 + a_2c_2 + d_{21}D) k_2(N_2 + 1 p_2 q_2) 1 = 0$
- 求解含有 4 个变量的多项式函数 f
 - $f(x, y, z, w) := x(y N_2 1) + e_2 a_1 z + e_2 Dw 1 \mod e_2 a_2$
 - 未知变量: $x = k_2$, $y = p_2 + q_2$, $z = c_1$ 与 $w = d_{21}$
 - 应用线性化技巧令 u := xy 1
 - $f(x, z, w, u) := u (N_2 + 1)x + e_2a_1z + e_2Dw \mod e_2a_2$
 - $f^*(x, y, z, w) = x(y N_2 1) + e_2 a_1 z + e_2 a_2 w 1 \mod e_2 D$

2020年9月20日

函数集合

定义多项式函数 $g_{[i,j,k,l_1,l_2]}$, 其中 $s \in \mathbb{Z}_+$ 和 $i,j,k,l_1,l_2 \in \mathbb{N}$

$$g_{[i,j,k,l_1,l_2]}(x,y,z,w,u) := x^i y^j z^{l_1} w^{l_2} \bar{f}^k(x,z,w,u) E^{s-k}, \ E = e_2 a_2$$

构造多项式函数集合 $\mathcal{G} := \mathcal{G}_1 \cup \mathcal{G}_2$, $0 \le \tau \le 1$ 为待优化参数

$$\mathcal{G}_{1} := \{g_{[i,0,k,l_{1},l_{2}]}(x,y,z,w,u) : k = 0, \dots, s; i = 0, \dots, s - k;$$

$$l_{1} = 0, \dots, s - k - i; l_{2} = 0, \dots, s - k - i - l_{1}.\}$$

$$\mathcal{G}_{2} := \{g_{[0,j,k,l_{1}-l_{2},l_{2}-k]}(x,y,z,w,u) : l_{1} = 0, \dots, s; j = 1, \dots, \tau l_{1};$$

$$l_{2} = 0, \dots, l_{1}; k = 0, \dots, l_{2}.\}$$

方程共同解为 $(k_2, p_2 + q_2, c_1, d_{21}, k_2(p_2 + q_2) - 1)$ 模 E^s

格基矩阵

- \circledast $g_{[i,j,k,l_1,l_2]}(xX,yY,zZ,wW,uU)$ 的系数向量生成格基矩阵
 - X, Y, Z, W 与 U 代表未知变量的上界
 - 格基矩阵可保证是方阵且下三角的
- \circledast 例如: s=1, $\tau=1$ 且 $C:=-(N_2+1)$ 时的格基矩阵

	1	x	z	yz	\overline{w}	yw	u	yu
$g_{[0,0,0,0,0]}$	E							
$g_{[1,0,0,0,0]}$		EX						
$g_{[0,0,0,1,0]}$			EZ					
$g_{[0,1,0,1,0]}$				EYZ				
$g_{[0,0,0,0,1]}$					EW			
$g_{[0,1,0,0,1]}$						EYW		
$g_{[0,0,1,0,0]}$		CX	e_2a_1Z		e_2DW		U	
$g_{[0,1,1,0,0]}$	C			e_2a_1YZ		e_2DYW	CU	YU

格行列式

- ❀ det(ℒ) 为格基矩阵对角线项的乘积
 - \mathcal{G}_1 中的对角线项为 $X^iZ^{l_1}W^{l_2}U^kE^{s-k}$
 - \mathcal{G}_2 中的对角线项为 $Y^j Z^{l_1-l_2} W^{l_2-k} U^k E^{s-k}$
- \circledast s_x , s_y , s_z , s_w , s_u , s_E 为格基矩阵对角线项的计数总和
 - $s_x = \frac{1}{120}s^5$, $s_y = \frac{\tau^2}{20}s^5$
 - $s_z = s_w = s_u = \frac{1+4\tau}{120} s^5$
 - $s_E = \frac{4+11\tau}{120} s^5$

方程求解

- \circledast 应用求解条件 $\det(\mathcal{L}) < R^m$, 其中 $R = E^s$
 - $X^{s_x}Y^{s_y}Z^{s_z}W^{s_w}U^{s_u}E^{s_E} < R^m$
 - 格维数为 $m = \frac{1+3\tau}{24}s^4$
 - $X^{s_x}Y^{s_y}Z^{s_z}W^{s_w}U^{s_u}E^{s_E} < E^{\frac{1+3\tau}{24}s^5}$
- ⊛ 代入所有参数并简化后可得基本求解条件
 - $\frac{1}{120} \cdot \xi_x + \frac{\tau^2}{20} \cdot \xi_y + \frac{1+4\tau}{120} \cdot (\xi_z + \xi_w + \xi_u) + \frac{4+11\tau}{120} \cdot \xi_E < \frac{1+3\tau}{24} \cdot \xi_E$
 - ξ_x , ξ_y , ξ_z , ξ_w , ξ_u 与 ξ_E 为解上界与模数的指数表达式
 - $\xi_x + 6\tau^2 \xi_y + (1 + 4\tau)(\xi_z + \xi_w + \xi_u \xi_E) < 0$

分析结果(一)

对于 $f(x, y, z, w) := x(y - N_2 - 1) + e_2 a_1 z + e_2 Dw - 1 \mod e_2 a_2$

$$\xi_x = \delta, \ \xi_y = \frac{1}{2}, \ \xi_z = \delta - \frac{1}{4}, \ \xi_w = \beta, \ \xi_u = \delta + \frac{1}{2}, \ \xi_E = \frac{5}{4}$$

则可推出

$$\delta < \frac{(1-\beta)(1+4\tau) - 3\tau^2}{3+8\tau}$$

当优化参数取 $\tau = (\sqrt{177 - 96\beta} - 9)/24$ 时,代入则有不安全界

$$\delta < \frac{25 - 16\beta - \sqrt{177 - 96\beta}}{32}$$

分析结果(二)

对于 $f^*(x, y, z, w) = x(y - N_2 - 1) + e_2 a_1 z + e_2 a_2 w - 1 \mod e_2 D$

$$\xi_x = \delta, \ \xi_y = \frac{1}{2}, \ \xi_z = \xi_w = \delta - \frac{1}{4}, \ \xi_u = \delta + \frac{1}{2}, \ \xi_E = 1 + \gamma$$

则可推出

$$\delta < \frac{(1+\gamma)(1+4\tau) - 3\tau^2}{4+12\tau}$$

当优化参数取 $\tau = (\sqrt{\gamma + 2} - 1)/3$ 时,代入则有不安全界

$$\delta < \frac{2\gamma + 3 - \sqrt{\gamma + 2}}{6}$$

隐式相关私钥分解攻击

令 $N_1 = p_1 q_1$ 与 $N_2 = p_2 q_2$ 为两个比特长度相同的 RSA 模数,其中 p_1, q_1, p_2, q_2 是相同比特长度的大素数。 $(e_1, d_1), (e_2, d_2)$ 为满足下式的加解密指数对:

$$e_1 d_1 \equiv 1 \mod (p_1 - 1)(q_1 - 1),$$

 $e_2 d_2 \equiv 1 \mod (p_2 - 1)(q_2 - 1)$

假设 $e_1 \approx e_2 \approx N, \ d_1 \approx d_2 \approx N^{\delta}$, 其中 N 记为与 $N_1, \ N_2$ 比特长度相同的整数。给定 $d_2 = d_1 + d_{21}D$ 且 $|d_{21}| \approx N^{\beta}, \ D \approx N^{\gamma}$ 。那么满足以下条件时,模数 $N_1, \ N_2$ 可在多项式时间内被分解。

$$\delta < \frac{25-16\beta-\sqrt{177-96\beta}}{32} \quad \vec{\mathbf{gL}} \quad \delta < \frac{2\gamma+3-\sqrt{\gamma+2}}{6}.$$

具体情形

- \circledast 多个 RSA 实例 $(N_i, e_i, d_i), 1 \le i \le n$
 - $d_j = d_i + d_{ji}D$, $1 \le i < j \le n$
 - ullet $e_ipprox N$, $d_ipprox N^\delta$
 - $D pprox N^{\gamma}$, $|d_{ji}| pprox N^{\beta}$
- ※ 采用基于高斯启发式的分裂技巧
 - $d_1 = a_1c_1 + a_2c_2 + \cdots + a_{2n-1}c_{2n-1}$, 其中已知 a_i 和未知 c_i

$$\bullet \begin{bmatrix} a_0 & 0 & \cdots & 0 & e_2 & \cdots & e_n \\ 0 & b_0 & \cdots & 0 & e_2 D & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & b_0 & 0 & \cdots & e_n D \\ 0 & 0 & \cdots & 0 & N_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots & N_n \end{bmatrix}$$

模方程

将私钥 d_1 的表达式代入 RSA 算法关键等式中可推出模方程:

$$x(y - N_1 - 1) + e_1 a_1 z_1 + \dots + e_1 a_{\hat{n}} z_{\hat{n}} - 1 \mod e_1 a_{\hat{n}+1}$$

解为
$$(k_1, p_1 + q_1, c_1, \dots, c_{\hat{n}})$$
, 记 $\hat{n} = 2n - 2$ 。

令 u = xy - 1 则有线性模方程

$$f_{\hat{n}}(x, z_1, \dots, z_{\hat{n}}, u) = u - (N_1 + 1)x + e_1 a_1 z_1 + \dots + e_1 a_{\hat{n}} z_{\hat{n}} \mod e_1 a_{\hat{n}+1}$$

解上界分别为

$$X = N^{\delta}, Y = N^{\frac{1}{2}}, Z_i = N^{\frac{2n\delta + 2(n-1)\beta - n + 1}{2(2n-1)}}, U = N^{\delta + \frac{1}{2}}$$

隐式相关私钥分解攻击

根据基本条件 $\det(\mathcal{L}) < R^m$ 且考虑指数上的关系有

$$2\xi_x + (\hat{n}+1)(\hat{n}+2)\tau^2\xi_y + 2(1+(\hat{n}+2)\tau)(\hat{n}\xi_{z_i} + \xi_u - \xi_E) < 0$$

代入解上界与模数的指数表达式后可得

$$\delta < \frac{(2n\tau+1)(n-2(n-1)\beta) - n(2n-1)\tau^2}{2(2n^2\tau+n+1)}$$

选取特定优化参数 7 后,不安全界为

$$\delta < \frac{2n^3 + 2n^2 + n - 1 - 4n^2(n-1)\beta}{4n^3} - \frac{\sqrt{(2n-1)(6n^3 + 3n^2 - 1 - 8n^2(n-1)\beta)}}{4n^3}$$

实验结果

特定参数设定时,两个实例情形攻击的理论与实验结果对比:

	γ	β	δ_{∞}	δ_e	s	au	m
结果 (一)	0.117	0.038	0.350	0.312	6	0.167	225
结果 (一)	0.078	0.092	0.330	0.296	5	0.200	136
结果 (一)	0.023	0.195	0.290	0.274	7	0.143	351
结果 (二)	0.156	0.061	0.307	0.282	5	0.200	136
结果 (二)	0.131	0.101	0.300	0.278	6	0.167	225
结果 (二)	0.117	0.093	0.296	0.272	6	0.167	225

报告提纲

0 引言

研究背景 研究问题 研究方法

② 隐式相关私钥分解攻击 两个实例情形 多个实例情形 验证实验

3 总结

总结

- ※ 关注隐式相关私钥分解问题
 - 存在私钥隐式关系时如何分解 RSA 模数
 - 应用格方法与特定技巧求解多项式模方程
 - 提出隐式相关私钥分解攻击
 - 进行计算机模拟实验验证攻击的正确性与有效性
- 进一步提升与后续工作
 - 更为有效的格构造方式
 - 对一般规模公钥的通用攻击

谢谢!