Solutions to Part 7 Exercises

1. Derive equations for the transconductance and output resistance of a MOSFET in the linear region of operation.

$$I_{D} = \beta \left[(V_{GS} - V_{T})V_{DS} - \frac{V_{DS}^{2}}{2} \right]$$

$$g_{m} = \frac{\Delta I_{D}}{\Delta V_{GS}} \bigg|_{V_{DS} = const.} = \beta \times V_{DS}$$

$$g_{ds} = \frac{\Delta I_{D}}{\Delta V_{DS}} \bigg|_{V_{GS} = const.} = \beta \times (V_{GS} - V_{T} - V_{DS})$$

$$r_{dS} = \frac{1}{g_{ds}}$$

2. The figure shows a differential amplifier. Assuming that the amplifier feeds into a very large load resistance, show that the differential gain is given by $g_m \times r_{ds2} // r_{ds4}$ and the common mode is (ideally) zero. The technique is shown in part 5- this derivation is much easier!

MOSFET Differential Amplifier $I_D \sim V_{GS}^2$ $i_1 = i_2$ $i_2 = i_3$ Over 1st half of sine wave, i_1 increases, hence so does i_3 i_4 reduces, hence $i_{out} = i_4 - i_3$ $i_{s1} = -i_{s2}$ So forms an ac ground

