Agent-based modeling workshop

Matias Quintana 2022-03-24

Disclaimer

- All content here is my personal understanding.
- Main intention is to open up the floor for discussion and trade concepts and ideas.
- Some code here is still under development so be patient and donate some coffee if you can. Nespresso red pods are suggested but Kopi O Kosong Peng does the job (UTown >>> Techno Edge).

Agent-based modeling (ABM)

 Agent = Computational mechanism that exhibits a high degree of autonomy, performing actions in its environment based on information (sensors, feedback) received from the environment.

Agent-based modeling (ABM)

- Agent = Computational mechanism that exhibits a high degree of autonomy, performing actions in its environment based on information (sensors, feedback) received from the environment.
 - Obvious "agent" for us?

Agent-based modeling (ABM)

- Agent = Computational mechanism that exhibits a high degree of autonomy, performing actions in its environment based on information (sensors, feedback) received from the environment.
 - Obvious "agent" for us?

Agent-based modeling (ABM)

- Agent = Computational mechanism that exhibits a high degree of autonomy, performing actions in its environment based on information (sensors, feedback) received from the environment.
 - Obvious "agent" for us?

But what for? How are they useful?

Agent-based modeling (ABM)

- Agent = Computational mechanism that exhibits a high degree of autonomy, performing actions in its environment based on information (sensors, feedback) received from the environment.
 - Obvious "agent" for us?

- But what for? How are they useful?
 - Helps us understand the effect of "multiple agents" interacting with each other and with their environment.

Examples

Simulate occupancy for HVAC design and sizing. (space-based approach)

Impact of aggregated occupant behavior in a space of a certain category.

Erickson, V. L., Lin, Y., Kamthe, A., Brahme, R., Surana, A., Cerpa, A. E., Sohn, M. D., & Narayanan, S. (2009). Energy efficient building environment control strategies using real-time occupancy measurements. BUILDSYS 2009 - Proceedings of the 1st ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, Held in Conjunction with ACM SenSys 2009, 19–24. https://doi.org/10.1145/1810279.1810284

Li, Z., Heo, Y., & Augenbroe, G. (2009). HVAC DESIGN INFORMED BY ORGANIZATIONAL SIMULATION Georgia Institute Of Technology, Atlanta, United States. *Ashrae Standard*, 2198–2203.

Mosteiro-Romero, M., Hischier, I., Fonseca, J. A., & Schlueter, A. (2020). A novel population-based occupancy modeling approach for district-scale simulations compared to standard-based methods. *Building and Environment*, *181*, 107084. https://doi.org/10.1016/j.buildenv.2020.107084

Happle, G., Fonseca, J. A., & Schlueter, A. (2018). A review on occupant behavior in urban building energy models. Energy and Buildings, 174, 276–292. https://doi.org/10.1016/j.enbuild.2018.06.030

Examples

Simulate occupancy at the urban-level for energy demand (person-based approach)

Impact of the presence of a specific person in a certain space

Erickson, V. L., Lin, Y., Kamthe, A., Brahme, R., Surana, A., Cerpa, A. E., Sohn, M. D., & Narayanan, S. (2009). Energy efficient building environment control strategies using real-time occupancy measurements. *BUILDSYS* 2009 - *Proceedings of the 1st ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, Held in Conjunction with ACM SenSys* 2009, 19–24. https://doi.org/10.1145/1810279.1810284

Li, Z., Heo, Y., & Augenbroe, G. (2009). HVAC DESIGN INFORMED BY ORGANIZATIONAL SIMULATION Georgia Institute Of Technology, Atlanta, United States. *Ashrae Standard*, 2198–2203.

Mosteiro-Romero, M., Hischier, I., Fonseca, J. A., & Schlueter, A. (2020). A novel population-based occupancy modeling approach for district-scale simulations compared to standard-based methods. *Building and Environment*, 181, 107084. https://doi.org/10.1016/j.buildenv.2020.107084

Reinforcement Learning (RL)

 Framework where an agent learns to perform actions in an environment (that has states) so as to maximize a reward.

- Main components
 - Environment (problem to be solved)
 - Agent (entity that learns an algorithm)

Reinforcement Learning (RL)

How exactly does it work?

Reinforcement Learning (RL)

How exactly does it work?

Reinforcement Learning (RL)

How exactly does it work?

ABM vs RL

ABM vs RL

ABM vs RL

OpenAl gym

Open source interface to reinforcement learning tasks.

The gym library provides an easy-to-use suite of reinforcement learning tasks.

OpenAl gym

Open source interface to reinforcement learning tasks.

The gym library provides an easy-to-use suite of reinforcement learning tasks.

OpenAl gym

RL it's pretty damn cool:

- RL is very general, encompassing all problems that involve making a sequence of decisions
- RL algorithms have started to achieve good results in many difficult environments.

BUT! Research slowed down because ...

- There's a need for better benchmarks
- Lack of standardization of environments used in publications

Here is where "gym" comes into play

Overall structure of an openAl gym project

```
import gym
from gym import spaces
class CustomEnv(gym.Env):
 """Custom Environment that follows gvm interface"""
 metadata = {'render.modes': ['human']}
 def __init__(self, arg1, arg2, ...):
   super(CustomEnv, self).__init__() # Define action and observation space
   # They must be gym.spaces objects # Example when using discrete actions:
   self.action_space = spaces.Discrete(N_DISCRETE_ACTIONS) # Example for using image as input:
   self.observation_space = spaces.Box(low=0, high=255, shape=
                    (HEIGHT, WIDTH, N CHANNELS), dtype=np.uint8)
 def step(self, action):
   # Execute one time step within the environment
    ... def reset(self):
   # Reset the state of the environment to an initial state
    ... def render(self, mode='human', close=False):
   # Render the environment to the screen
```

Hands on!

- 1. Clone the github repository https://github.com/buds-lab/abm-demo
- 2. Install the environments
 - a. conda env create --file environment.yaml
 - b. pip install -r requirements.txt
- 3. Let's just launch the environment doing some random actions. From openai-gym/ Let's run cartpole_example_1.py
- 4. Now let's observe the environment's state at each time step, still with random actions though. From openai-gym/ Let's run cartpole_example_2.py
- But we want to LEARN! From openai-gym/ Let's run cartpole_example_3.py

Cool learning and all, but what about the more traditional ABM? What about CitySim? MATSim?

Cool learning and all, but what about the more traditional ABM? What about CitySim? MATSim?

Overall structure of an openAl gym project

```
import gym
from gym import spaces
class CustomEnv(gym.Env):
 """Custom Environment that follows gvm interface"""
 metadata = {'render.modes': ['human']}
 def __init__(self, arg1, arg2, ...):
   super(CustomEnv, self).__init__() # Define action and observation space
   # They must be gym.spaces objects # Example when using discrete actions:
   self.action_space = spaces.Discrete(N_DISCRETE_ACTIONS) # Example for using image as input:
   self.observation_space = spaces.Box(low=0, high=255, shape=
                   (HEIGHT, WIDTH, N_CHANNELS), dtype=np.uint8)
 def step(self, action):
   # Execute one time step within the environment
    ... def reset(self):
   # Reset the state of the environment to an initial state
    ... def render(self, mode='human', close=False):
   # Render the environment to the screen
```

Overall structure of an openAl gym project

```
import gym
from gym import spaces
class CustomEnv(gym.Env):
 """Custom Environment that follows gvm interface"""
 metadata = {'render.modes': ['human']}
 def __init__(self, arg1, arg2, ...):
   super(CustomEnv, self). init () # Define action and observation space
   # They must be gym.spaces objects # Example when using discrete actions:
   self.action space = spaces.Discrete(N_DISCRETE_ACTIONS) # Example for using image as input:
   self.observation_space = spaces.Box(low=0, high=255, shape=
                   (HEIGHT, WIDTH, N_CHANNELS), dtype=np.uint8)
 def step(self, action):
                                                  We can simply define "agents"
   # Execute one time step within the environment
                                                  (without learning) to perform
    ... def reset(self):
   # Reset the state of the environment to an initial state
        def render(self, mode='human', close=False):actions at each step of the
   # Render the environment to the screen
                                                 simulation
```


Gym environments are becoming more popular for standardised benchmarking in the built environment

- CityLearn
- GridLearn
- Gym-Eplus

"Need for more benchmarking of control algorithms"

So what is ComfortLearn?

So what is ComfortLearn?

Agent-based occupants from real occupant longitudinal data

n zones

So what is ComfortLearn?

RL agent that learns set-points and occupant allocation in different zones

Agent-based occupants from real occupant longitudinal data

n zones

Hands on (again!)!

- From the same github repository go to comfortlearn/
- 2. The overall structure of this ABM using a gym environment is

```
# main file
import ...
# load zone(s) energy model or historical data from config files
###
# instantiate actual environment
env = ComfortLearn(**env_params)
observations_spaces, actions_spaces = env.get_state_action_spaces()
# load agent stuff, as of now it's a big TODO though
###
# start simulation
state = env.reset()
done = False
actions = agent_select action(state)
while not done:
   next state, reward, done = env.step(actions)
   action_next = agent.select_action(next_state)
    action = action next
```

Hands on (again!)!

- From the same github repository go to comfortlearn/
- 2. The overall structure of this ABM using a gym environment is

```
# main file
import ...
# load zone(s) energy model or historical data from config files
###
# instantiate actual environment
env = ComfortLearn(**env_params)
observations_spaces, actions_spaces = env.get_state_action_spaces()
# load agent stuff, as of now it's a big TODO though
###
# start simulation
state = env.reset()
done = False
actions = agent.select action(state)
while not done:
    next state, reward, done = env.step(actions)
   action_next = agent.select_action(next_state)
    action = action next
```

```
# comfortlearn file
import ...
class ComfortLearn(gym.Env):
   def init (args):
        # load states and actions for each zone
        # create occupants objects and load their data, this will be ABM!
        # create zone objects and load their data
   def step(self, actions):
        # where the magic happens! How does the environment changes at every time step?
        # right now, the environment just evolves based on historical data, meaning we just read
        # the next row in the dataframe
      return states, reward, done
   def reset(self):
        # let's take it from the top, shall we?
       # we restart values and conditions to the very beginning
   # auxiliary, getters, and setters functions are also used
```

Hands on (again!)!

- From the same github repository go to comfortlearn/
- 2. The overall structure of this ABM using a gym environment is
- 3. So, let's run:

```
python main.py configs/baseline_tolerance_week.yaml
```


OpenAl gyms are very versatile and a good (and promising!) option for agent-based with or without RL!

OpenAl gyms are very versatile and a good (and promising!) option for agent-based with or without RL!

(and also Vim and working in the terminal is extremely cool)