

Quantization – Cuantificación

INTEGRACIÓN DE ML EN EMBEBIDOS Y **EDGE COMPUTING**

Contenido

- 1. Costos de operaciones
- 2. Cuantificación
- 3. Cuantificación basada en K-means

Vigilada Mineducació

Somos Innovación Tecnológica con Sentido Humano

Costos de Operaciones con bits

Operation	Energy [pJ]	
8 bit int ADD	0.03	30 ×
32 bit int ADD	0.1	
16 bit float ADD	0.4	
32 bit float ADD	0.9	
8 bit int MULT	0.2	16 ×
32 bit int MULT	3.1	
16 bit float MULT	1.1	
32 bit float MULT	3.7	
Rough Energy Cost For Vario		1 10 100 100 00 ×+

Vigilada Mineducaci

Sentido Humano

Unsigned Integer

• *n*-bit Range: [0,2ⁿ-1]

Signed Integer

- Sign-Magnitude Representation
 - *n*-bit Range: [-2ⁿ⁻¹-1, 2ⁿ⁻¹-1]
 - Both 000...00 and 100...00

represent 0

Two's Complement Representation

- *n*-bit Range:
- 000...00 represents 0
- 100...00 represents -2ⁿ⁻¹

Enteros

Sign Bit

Vigilada Mineducació

Fixed-Point Number

Integer . Fraction

"Decimal" Point

$$-2^{3}+2^{2}+2^{1}+2^{0}+2^{-1}+2^{-2}+2^{-3}+2^{-4}=3.0625$$

$$(-2^7+2^6+2^5+2^4+2^3+2^2+2^1+2^0) \times 2^{-4} = 49 \times 0.0625 = 3.0625$$

Vigilada Mineducaci

Somos Innovación Tecnológica con Sentido

Sentido Humano

Floating-Point Number

23 22 21 20 2-1 2-2 2-3 2-4

Sign 8 bit Exponent

23 bit Fraction

$$0.265625 = 1.0625 \times 2^{-2} = (1 + 0.0625) \times 2^{125-127}$$

Floating-Point Number

Exponent Width → Range; Fraction Width → Precision

IEEE 754 Single Precision 32-bit Float (IEEE FP32)

IEEE 754 Half Precision 16-bit Float (IEEE FP16)

Google Brain Float (BF16)

Exponent (bits)	Fraction (bits)	Total (bits)
8	23	32
5	10	16
8	7	16

Floating-Point Number

Exponent Width → Range; Fraction Width → Precision

IEEE 754 Single Precision 32-bit Float (IEEE FP32)

IEEE 754 Half Precision 16-bit Float (IEEE FP16)

Google Brain Float (BF16)

Exponent (bits)	Fraction (bits)	Total (bits)
8	23	32
5	10	16
8	7	16

Contenido

- 1. Costos de operaciones
- 2. Cuantificación
- 3. Cuantificación basada en K-means

Vigilada Mineducació

Somos Innovación Tecnológica con Sentido Humano

Que es cuantificación?

La cuantificación es el proceso de restringir una entrada desde un conjunto continuo o con valores grandes a un conjunto discreto.

Continuous Signal — Quantized Signal

Original Image

16-Color Image

Images are in the public domain.

"Palettization"

Neural Network Quantization

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

3	0	2	1	3:	2.00
1	1	0	თ	2:	1.50
0	3	1	0	1:	0.00
3	1	2	2	0:	-1.00

1	0	1	1
1	0	0	1
0	1	1	0
1	1	1	1

K-Means-based Quantization

Linear Quantization

Binary/Ternary Quantization

Almacenamiento
Calculo

Pesos de punto flotante	Pesos Enteros; Libro de código de punto flotante		Pesos binarios/ternarios (- 1,0,+1)
Aritmética de punto flotante	Aritmética de punto flotante	Aritmética Entera	Operaciones de bits

Vigilada Mineducaciór

Contenido

- 1. Costos de operaciones
- 2. Cuantificación
- 3. Cuantificación basada en K-means

Weight Quantization

weights (32-bit float)

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

K-means Weight Quantization

storage

$$32 \text{ bit} \times 16$$

= 512 \text{ bit} = 64 \text{ B}

$$\frac{2 \text{ bit} \times 16}{= 32 \text{ bit} = 4 \text{ B}} + \frac{32 \text{ bit} \times 4}{= 128 \text{ bit} = 16 \text{ B}} = 20 \text{ B}$$

3.2 x smaller

Assume N-bit quantization, and #parameters = $M >> 2^{N}$.

reconstructed weights (32-bit float)

2.00	-1.00	1.50	0.00
0.00	0.00	-1.00	2.00
-1.00	2.00	0.00	-1.00
2.00	0.00	1.50	1.50

quantization error

0.09	0.02	-0.02	0.09
0.05	-0.14	-0.08	0.12
0.09	-0.08	0	-0.03
-0.13	0	0.03	-0.01

K-means Weight Quantization

Accuracy vs. compression rate for AlexNet on ImageNet dataset

Pruning + Quantization
 Pruning Only
 Quantization Only

Model Size Ratio after Compression

Vigilada Mineducac

K-means Weight Quantization

Cuantos bits se necesitan?

FC layers

Huffman Coding

Resumen de Deep Compression

K-means-based Weight Quantization

Los pesos son descomprimidos usando una lookup table (por ejemplo codebook) durante la inferencia. La cuantificación de pesos basada en K-Means sólo ahorra costes de almacenamiento de un modelo de red neuronal.

- Todo el computo y accesos de memoria son aun de punto flotante.

Somos Innovación Tecnológica con Senido

Contenido

- 1. Costos de operaciones
- 2. Cuantificación
- 3. Cuantificación basada en K-means
- 4. Post-training quantization

Post-training Quantization

- $|r|_{\max} = |W|_{\max}$
- Usando una sola escala S para todos los pesos del tensor (Per-Tensor Quantization)
 Funciona bien para modelos grandes.
 El acierto cae para modelos pequeños.
- Falla en casos como
 Diferencias muy grandes (mas de 100x) en los rangos de los pesos para diferentes canales de salida pesos atípicos.
- Solución: Per-channel Quantization

Post-training Quantization

ic

Per-Channel Quantization

$$|r|_{\text{max}} = 2.09$$

$$S_0 = 2.09$$

$$|r|_{\text{max}} = 2.12$$

$$S_1 = 2.12$$

$$|r|_{\text{max}} = 1.92$$

$$S_2 = 1.92$$

$$|r|_{\text{max}} = 1.87$$

$$S_3 = 1.87$$

1	0	1	0
0	0	-1	1
0	1	0	-1
1	0	1	1

2	.09	0	2.09	0
	0	0	-2.12	2.12
	0	1.92	0	-1.92
1	.87	0	1.87	1.87

Quantized

Reconstructed

$$\|\mathbf{W} - \mathbf{S} \odot \mathbf{q}_{\mathbf{W}}\|_F = 2.08$$

Per-Tensor Quantization

$$|r|_{\text{max}} = 2.12$$

$$S = \frac{|r|_{\text{max}}}{q_{\text{max}}} = \frac{2.12}{2^{2-1} - 1} = 2.12$$

1	0	1	0
0	0	-1	1
0	1	0	0
1	0	1	1

	2.12	0	2.12	0
	0	0	-2.12	2.12
	0	2.12	0	0
	2.12	0	2.12	2.12

Quantized

Reconstructed

$$\|\mathbf{W} - S\mathbf{q}_{\mathbf{W}}\|_F = 2.28$$

Somos Innovación Tecnológica con Sentido Humano

Cuantificación de rango dinámico

Contenido

- 1. Costos de operaciones
- 2. Cuantificación
- 3. Cuantificación basada en K-means
- 4. Post-training quantization
- 5. Quantization-Aware Training

Quantization-Aware Training

Entrenar el modelo considerando la cuantificacion.

- Minimizar la perdida del acierto, especialmente cuantificaciones agresivas con 4 bits o menos.
- Usalmente, fine-tuning sobre un modelo pre-entrenado con punto flotante prove un major acierto que entrenando desde cero.

Quantization-Aware Training

- Una copia precisa de los pesos se mantiene durante el entrenamiento.
- Los pequeños gradientes son acumulados sin pérdida de precisión.
- Una vez el modelo es entrenado, solo los pesos cuantificados son usados para la inferencia.

Vigilada Mineducació

Quantization-Aware Training

- Una copia precisa de los pesos se mantiene durante el entrenamiento.
- · Los pequeños gradientes son acumulados sin pérdida de precisión.
- Una vez el modelo es entrenado, solo los pesos cuantificados son usados para la inferencia.

Bibliografía

Han, Efficient Deep Learning - Lecture 5, Quantization.

1 Gracias!

