forecasting_AirPassengers

June 5, 2018

```
In [70]: # Load the relevant packages
         import math
         import pandas as pd
         import numpy as np
         import matplotlib.pylab as plt
         %matplotlib inline
         from matplotlib.pylab import rcParams
         from statsmodels.tsa.stattools import adfuller
         from statsmodels.tsa.stattools import acf, pacf
         from statsmodels.tsa.arima_model import ARIMA
         import statsmodels.api as sm
         rcParams['figure.figsize'] = 15, 6
In [2]: # Load the dataset
        dateparse = lambda dates: pd.datetime.strptime(dates, '%Y-%m')
        data = pd.read_csv('AirPassengers.csv', parse_dates=['Month'], index_col='Month',date_
        data.head()
Out[2]:
                    #Passengers
        Month
        1949-01-01
                            112
        1949-02-01
                            118
        1949-03-01
                            132
                            129
        1949-04-01
        1949-05-01
                            121
In [3]: # save the number of passengers in ts for ease of access
        ts = data['#Passengers']
        ts.head()
Out[3]: Month
        1949-01-01
                      112
        1949-02-01
                      118
        1949-03-01
                      132
        1949-04-01
                      129
        1949-05-01
                      121
        Name: #Passengers, dtype: int64
```

In [4]: # visualize the data plt.plot(ts)

Out[4]: [<matplotlib.lines.Line2D at 0x1c13ff0dd8>]

In [5]: # Function to test the stationarity of a time series def test_stationarity(timeseries): #Determing rolling statistics rolmean = timeseries.rolling(window=5).mean() rolstd = timeseries.rolling(window=12).std() #Plot rolling statistics: orig = plt.plot(timeseries, color='blue',label='Original') mean = plt.plot(rolmean, color='red', label='Rolling Mean') std = plt.plot(rolstd, color='black', label = 'Rolling Std') plt.legend(loc='best') plt.title('Rolling Mean & Standard Deviation') ${\tt plt.show(block=False)}$ #Perform Dickey-Fuller test: print('Results of Dickey-Fuller Test:') dftest = adfuller(timeseries, autolag='AIC') dfoutput = pd.Series(dftest[0:4], index=['Test Statistic','p-value','#Lags Used','] for key,value in dftest[4].items(): dfoutput['Critical Value (%s)'%key] = value print(dfoutput)

In [6]: # Test for stationarity
 test_stationarity(ts)

Results of Dickey-Fuller Test:	
Test Statistic	0.815369
p-value	0.991880
#Lags Used	13.000000
Number of Observations Used	130.000000
Critical Value (1%)	-3.481682
dtype: float64	
Test Statistic	0.815369
p-value	0.991880
#Lags Used	13.000000
Number of Observations Used	130.000000
Critical Value (1%)	-3.481682
Critical Value (5%)	-2.884042
dtype: float64	
Test Statistic	0.815369
p-value	0.991880
#Lags Used	13.000000
Number of Observations Used	130.000000
Critical Value (1%)	-3.481682
Critical Value (5%)	-2.884042
Critical Value (10%)	-2.578770

dtype: float64

Out[7]: [<matplotlib.lines.Line2D at 0x1c1e5b0be0>]

In this approach, we take average of 'k' consecutive values depending on the frequency of time series. Here we can take the average over the past 1 year, i.e. last 12 values. First compute the rolling mean:

Out[36]:		Passengers	RolMean	TSLog	${\tt DiffRolMean}$
	Month				
	1949-12-01	118	126.666667	4.770685	8.666667
	1950-01-01	115	126.916667	4.744932	11.916667
	1950-02-01	126	127.583333	4.836282	1.583333
	1950-03-01	141	128.333333	4.948760	-12.666667
	1950-04-01	135	128.833333	4.905275	-6.166667
	1950-05-01	125	129.166667	4.828314	4.166667
	1950-06-01	149	130.333333	5.003946	-18.666667
	1950-07-01	170	132.166667	5.135798	-37.833333
	1950-08-01	170	134.000000	5.135798	-36.000000
	1950-09-01	158	135.833333	5.062595	-22.166667
	1950-10-01	133	137.000000	4.890349	4.000000
	1950-11-01	114	137.833333	4.736198	23.833333
	1950-12-01	140	139.666667	4.941642	-0.333333

EWMA	${\tt DiffRolMean}$	TSLog	RolMean	Passengers	Out[37]:
					Month
118.000000	8.666667	4.770685	126.666667	118	1949-12-01
115.750000	11.916667	4.744932	126.916667	115	1950-01-01
122.846154	1.583333	4.836282	127.583333	126	1950-02-01
135.100000	-12.666667	4.948760	128.333333	141	1950-03-01
135.033058	-6.166667	4.905275	128.833333	135	1950-04-01

In [38]: newData.plot()

Out[38]: <matplotlib.axes._subplots.AxesSubplot at 0x1c1ee4a1d0>

In [41]: newTSLog = newData.apply(lambda x: x['Passengers']-x['EWMA'] if not math.isnan(x['Passengers']-x['EWMA'])

```
Out[41]: Month

1949-12-01 0.000000

1950-01-01 -0.750000

1950-02-01 3.153846

1950-03-01 5.900000

1950-04-01 -0.033058

Freq: MS, dtype: float64
```

```
In [42]: new_ts_log = np.log(newTSLog)
    plt.plot(new_ts_log)
```

/Volumes/MacHD01/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:1: RuntimeWarning """Entry point for launching an IPython kernel.

/Volumes/MacHD01/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:1: RuntimeWarning """Entry point for launching an IPython kernel.

Out[42]: [<matplotlib.lines.Line2D at 0x1c1f9b4be0>]

One of the most common methods of dealing with both trend and seasonality is differencing. In this technique, we take the difference of the observation at a particular instant with that at the previous instant.

In [45]: ts_log_diff.dropna(inplace=True)
 # Test for stationarity
 test_stationarity(ts_log_diff)

Results of Dickey-Fuller Test:								
Test Statistic -2.717131								
p-value	0.071121							
#Lags Used	14.000000							
Number of Observations Used 128.00								
Critical Value (1%)	-3.482501							
dtype: float64								
Test Statistic	-2.717131							
p-value	0.071121							
#Lags Used	14.000000							

```
Number of Observations Used 128.000000
Critical Value (1%)
                             -3.482501
Critical Value (5%)
                              -2.884398
dtype: float64
Test Statistic
                             -2.717131
p-value
                               0.071121
#Lags Used
                              14.000000
Number of Observations Used 128.000000
Critical Value (1%)
                              -3.482501
Critical Value (5%)
                              -2.884398
Critical Value (10%)
                             -2.578960
dtype: float64
  ARIMA
```

ARIMA Model Results

=======================================		======					
Dep. Variable:	D.#Passengers		No. Observations:		143		
Model:	ARIMA(2,	1, 0)	Log	Likelihood		-694.988	
Method:	cs	s-mle	S.D.	. of innovat	ions	31.199	
Date:	Tue, 05 Jun	2018	AIC			1397.975	
Time:	13:	40:22	BIC			1409.827	
Sample:	02-01	-1949	HQIC	C		1402.791	
	- 12-01	-1960					
		======					
	coef	std e	err	Z	P> z	[0.025	0.975]
const	2.4075	3.0	064	0.786	0.433	-3.597	8.412
ar.L1.D.#Passengers	0.3792	0.0	82	4.605	0.000	0.218	0.541
ar.L2.D.#Passengers	-0.2314	0.0	83	-2.777	0.006	-0.395	-0.068
		Roc	ots				

	Real	Imaginary	Modulus	Frequency
AR.1	0.8191	-1.9104j	2.0787	-0.1855
AR.2	0.8191	+1.9104j	2.0787	0.1855

	0
count	143.000000
mean	0.016841
std	31.309377
min	-95.399565
25%	-18.811532
50%	-4.459782

```
74.096243
max
In [57]: model = ARIMA(ts, order=(0,1,2))
       model_fit = model.fit(disp=0)
       print(model_fit.summary())
       # plot residual errors
       residuals = pd.DataFrame(model_fit.resid)
       residuals.plot()
       plt.show()
       residuals.plot(kind='kde')
       plt.show()
       print(residuals.describe())
                         ARIMA Model Results
_____
Dep. Variable:
                    D. #Passengers No. Observations:
Model:
                   ARIMA(0, 1, 2) Log Likelihood
                          css-mle S.D. of innovations
Method:
                 Tue, 05 Jun 2018 AIC
Date:
Time:
                         13:40:43 BIC
Sample:
                       02-01-1949 HQIC
```

75%

21.848521

	- 12-01	.–1960 .–––––				
	coef	std err	z	P> z	[0.025	0.975]
const	2.4329	2.850	0.854	0.395	-3.154	8.020
ma.L1.D.#Passengers	0.3736	0.097	3.860	0.000	0.184	0.563
ma.L2.D.#Passengers	-0.2830	0.156	-1.819	0.071	-0.588	0.022
		Roots				
					========	

143

-695.193

1398.386

1410.237

1403.201

31.214

Real Imaginary Modulus Frequency MA.1 -1.3322 +0.0000j 1.3322 0.5000 MA.2 +0.0000j 0.0000 2.6520 2.6520

0 143.000000 count 0.015679 mean 31.326445 std min -93.526112 25% -19.559210 50% -0.301836 22.958166 75% max79.616546

```
# plot residual errors
residuals = pd.DataFrame(model_fit.resid)
residuals.plot()
plt.show()
residuals.plot(kind='kde')
plt.show()
print(residuals.describe())
```

ARIMA Model Results

Dep. Variable: D.#Passengers No. Observations: 143
Model: ARIMA(2, 1, 2) Log Likelihood -666.022
Method: css-mle S.D. of innovations 24.715
Date: Tue, 05 Jun 2018 AIC 1344.043

Time: 13:51:13 BIC 1361.820 Sample: 02-01-1949 HQIC 1351.267

- 12-01-1960

______ Γ0.025 coef std err Z P>|z| 0.975] 2.5310 0.708 0.000 1.143 3.919 const 3.573 49.929 ar.L1.D.#Passengers 1.6477 0.033 0.000 1.583 1.712 0.033 -27.877 0.000 ar.L2.D.#Passengers -0.9094 -0.973 -0.8450.065 -29.475-1.783ma.L1.D.#Passengers -1.9098 0.000 -2.0370.9996 14.790 1.132 ma.L2.D.#Passengers 0.068 0.000 0.867

Roots

	Real	Imaginary	Modulus	Frequency
AR.1	0.9060	-0.5281j	1.0487	-0.0840
AR.2	0.9060	+0.5281j	1.0487	0.0840
MA.1	0.9552	-0.2965j	1.0002	-0.0479
MA.2	0.9552	+0.2965j	1.0002	0.0479

0 143.000000 count 0.371723 mean 25.142955 std -61.345169 \min 25% -15.612496 50% -2.309301 75% 17.612061 max79.639519

results = mod.fit()
print(results.summary().tables[1])
results.plot_diagnostics(figsize=(15, 12))
plt.show()

=======			========	========	========	========
	coef	std err	z	P> z	[0.025	0.975]
ar.L1	1.6917	0.021	82.361	0.000	1.651	1.732
ar.L2	-0.9654	0.018	-54.946	0.000	-1.000	-0.931
ma.L1	-1.8617	0.051	-36.159	0.000	-1.963	-1.761
ma.L2	1.0135	0.054	18.654	0.000	0.907	1.120
sigma2	664.6345	85.215	7.799	0.000	497.616	831.653

plt.legend()
plt.show()

In []: