Towards an Investigation of Lung Cancer Genes Using Multi omcis Approaches

Jihwan Lim and Inkyun Park

Supervisor: Prof. dr. Tim De Meyer, Prof. dr. Jo Vandesompele & Prof. dr. Wim Trypsteen

Counsellors: Louis Coussement & Menno Van Damme

Abstract. Modern omics-related study provides us enormous data from various techniques for better understanding into biological properties. Especially, combination of these different techniques, called multi-omics, leads deeper insights to specific biological study. This multi-omics approach was used to investigate lung cancer study in this report using four publicly available datasets: Microarray data, Infinium data, RNA-seq data, and ChIP-seq data.

Diverse insight toward molecular process of lung cancer could be explored with these four types of omics datasets. Statistically significant genes, overlapping results from different sources, were investigated, and visualized in this report as well

Keywords: Lung cancer, microarray, RNA sequencing, methylation profiling, ChIP sequencing, EGFR

1. Introduction

Top cancer responsible for the most deaths in United States is lung cancer, which is expected to produce 236,470 new patients and kill 130,180 patients in 2022. Also, patients with lung cancer more than 5 years show the lower survival rates (18.6 %) than other commonly occurring cancers, such as colorectal (64.5 %), breast (89.6 %), and prostate (98.2 %). On average, patients do not withstand more than one year after diagnosis of lung cancer (Nierengarten, 2022). Although there are lots of efforts in studying lung cancer due to these risks on clinical aspects, lung cancer is not fully understood yet. This is because of, for example, heterogeneity of tumor tissues; unpredictable mutation and inconsistent behavior of each cancer cell; or tendency to have resistant to chemotherapy agents eventually (Kim, 2016). With rise of sequencing technology and easiness of building -omics database, many methods using the genomic database are emerged to understand and treat lung cancer properly. In this paper, using open Gene Expression Omnibus (GEO) database, four different -omics technologies was combined to find out consistent results of lung cancer.

The transcriptomic aspect of lung carcinoma tissues is analyzed using microarray and RNA-seq data

finding differentially expressed genes which are also statistically significant. For epigenomic aspect of lung carcinoma tissues was analyzed using methylation array and ChIP-seq data. For this point, epidermal growth factor receptor (EGFR) mutated lung cancer was analyzed since EGFR mutation, about 31.6% of non-small cell lung cancer (NSCLC), is one of the mostly tested for targeted therapy (Kumari et al., 2019). EGFR is a trans-membrane glycoprotein regulates signaling pathway of cell proliferation (Kumari et al., 2019), which leads to tumor tissue with its mutation. Three of datasets including Microarray data, Infinium data, and RNA-seq data were integrated to further understanding of considerable genes and corresponding biological pathway. The impact of treatment toward EGFR positive lung cancer, could also be analyzed integration of three different omics approach.

1.1 Data

First dataset was used for differential analysis is microarray data of invasive lung cancer tissues and its adjacent normal tissues from 6 patients. RNA was extracted from dissected tissues, and it was profiled using Illuminia Technologies Human Genome U133 Plus 2.0 Array. Raw data was acquired from Gene Expression Omnibus database with accession number of GSE118370 (Xu et al., 2018).

Next dataset is RNA sequencing data from GSE40419. In this database, 87 cancer tissues and 77 adjacent normal tissues with various tumor stages, gender, and smoking status were deposited. From these, 3 samples with stage 3 tumor and its adjacent normal tissues were selected for differential expression analysis. Sequencing was performed using Illumina HiSeq 2000 and results in paired-end 101-bplong reads (Seo et al., 2012).

Methylation profiling data contains methylome of both healthy and tumor tissue from Norway patients. Since there are too many factors to be considered, only 3 mutated EGFR tumor tissue with stage 3 and wild type of both KRAS and TP53 genes and 3 normal tissues were selected which have same sentrix position with 3 EGFR mutated tumor tissues for analysis. These samples were profiled using Illumina HumanMethylation450 BeadChip (Bjaanaes et al., 2015).

Finally, ChIP-seq data contains 4 EGFR mutated lung cancer cell line PC9. 2 cancer samples are untreated. Other 2 samples are treated with erlotinib for 11 days. Even though, the study design of this data was looking into impact of treatment resistance tissue, we only looked into impact of treatment toward methylation peak. These samples were profiled using ChIP-seq with using H3K4me3 antibodies.

2. Methods

2.1 Microarray

Microarray data was first downloaded from the GEO database. All 6 patients with invasive lung cancer adenocarcinoma are selected for this analysis. Using rma function from affy package, raw data was preprocessed with three steps: background correction, quantile normalization and summarization. The effect examined of preprocessing was *arrayQualityMetrics* packages for raw, logtransformed and rma preprocessed data. Differential expression analysis is performed by limma package afterwards. Lastly, differential expression results were annotated with biological pathway in GO terms by gonna function.

2.2 RNA sequencing

3 patients with stage 3 lung adenocarcinoma were selected and data was acquired from GEO database too. To prepare raw data into compatible form for differential analysis, trimming and mapping of raw FASTQ files are performed in the HPC server, due to high computational and memory burden of preprocessing of big FASTQ files. Since sequencing quality score is usually bad at the end of reads, Trimmomatic cuts the end of reads based on quality score to improve overall quality of reads. Then, Illumina adapter sequences are also removed. Next, trimmed reads are mapped into human reference transcriptome by Kallisto, a pseudoalignment tool with rapid and accurate mapping, but without the need for alignment. Results of preprocessing are assessed by FastQC and summarized by MultiQC. After all steps, abundance files, results from Kallisto, are imported to R using tximport.

Differential gene expression analysis was implemented by *edgeR* packages. First, genes with low counts are filtered based on count-per-million of each reads. Next step was usually normalization; however, differential expression analysis was conducted thereafter as normalization is already done in *Kallisto*. Then, the data is fitted to the likelihood ratio tests from *edgeR* to find out differentially expressed genes. After differential analysis, significant genes are annotated with biological pathway in GO terms by *gonna* function as described above.

2.3 Methylation array

Methylation profiling data was generated by genome tilling array, Illumina HumanMethylation450 BeadChip. Methylation profiles of 164 lung tumor samples and 19 matched normal samples are determined with Illumina Infinium 450K array. The wateRmelon and lumi packages are used for analysis

of methylation data such as data preprocessing, quality control, and normalization. *limma* was used to identify differentially methylated positions. Gene set analysis was performed differentially methylated to get insight with related pathway using *goana* function.

2.4 ChIP sequencing

ChIP-seq data was generated by using Illumina HiSeq 2000 platform and H3K4me3 antibody. The non-small cell lung carcinoma (NSCLC) PC9 cell line was established for investigating the impact of H3K4 demethylase KDM5A protein which is related to resistance to cancer treatment. For understanding of this clinical purpose, EGFR mutated PC9 cell lines were treated with Erlotinib for 11 days and compared with untreated samples. There are 2 biological replicates for both treated and untreated PC9 cell lines. These datasets are firstly aligned with using bowtie2. 2 control sample bam files and 2 treated sample bam files were combined into control broadpeak file and treated broadpeak file respectively using macs2 after sorting and merging. These series of process for preprocessing data was done on HPC server and QC was preformed with multiqc before further analysis.

The *GenomicRanges* package was used to build input file of UCSC Genome Browser for further analysis using *broadpeak* file. *DiffBind* package was used to compare and analyze the regions that were differentially bind for each of treatment and untreated (control) samples. *DESeq2* and *edgeR* methods were used for getting the result of differential enrichment analysis.

3. Results

3.1 Microarray

Microarray data was preprocessed with *rma* function in *affy* packages. Background correction, quantile normalization and summarization were all conducted in one function. As shown in Figure 1, the effect of preprocessing is observed by seeing boxplot of the data. More quality control reports, and relevant codes can be found in appendix.

Figure 1. Boxplot of rma preprocessed microarray data, showing similar trends for all 12 samples.

Using *limma*, genes of tumor and adjacent normal samples were compared, and 4457 genes were found out to be differentially expressed. Table 1 shows list of top differentially expressed genes with fold change and p-value. Positive fold changes indicates that gene is highly expressed in the tumor tissue. MA plot in figure 2 also shows the results of *limma* differential expression analysis. Afterwards, differentially expressed genes were annotated with biological pathways in GO terms using gene set analysis function *gonna*. Top biological pathways with significant results are shown in table 2.

Table 1. Differentially expressed genes between tumor and adjacent normal tissues from microarray.

Gene Symbol	logFC	adj.P.Val
SPAAR	2.648723	6.10e-06
SLC6A4	6.115768	1.54e-05
RTKN2	4.058742	1.54e-05
TEK	3.012743	1.54e-05
SEMA6A	3.532686	1.54e-05

Figure 2. MA plot of differentially expressed genes between tumor and adjacent normal tissues. Genes with less than 0.05 adjusted p-values are depicted in red dots.

Table 2. Top 5 biological pathways from gene set analysis on microarray expression data.

GO Terms	Biological Pathway
GO:0007155	cell adhesion
GO:0009653	anatomical structure morphogenesis
GO:0016477	cell migration
GO:0048856	anatomical structure development
GO:0007275	multicellular organism development

3.2 RNA sequencing

Raw RNA-seq data was trimmed and mapped by *Trimmomatic* and *Kallisto* respectively. Higher mean quality scores and are observed after trimming. About 80% of sequences are aligned after pseudo alignment mapping by *Kallisto*. Then, differential expression analysis using *edgeR* found out 1296 genes and 1129

genes were down and up regulated respectively. A p-value and FDR distribution with peak around 0 show the analysis was performed in right manner. Table 3 shows top differentially expressed genes with high statistical meaning. Also, this can be found out in MA plot in figure 3 which shows down and up-regulated genes in red dots. More detailed results and codes for *edgeR* processing can be found in the appendix. Gene set analysis on differentially expressed gene was conducted and annotated with GO terms as shown in table 4.

Table 3. Differentially expressed genes between tumor and adjacent normal tissues from RNA-seq.

Gene Symbol	logFC	adj.P.Val
NR4A2	4.64032684	5.58E-22
TOP2A	-4.2623642	1.14E-19
SPP1	-7.1573626	3.14E-18
EGR3	3.89102764	1.00E-17
MMP12	-7.6385967	6.05E-15

Figure 3. MA plot of differentially expressed genes between tumor and adjacent normal tissues. Genes with less than 0.05 adjusted p-values are depicted in red dots.

Table 4. Top 5 biological pathways from gene set analysis on RNA sequencing data.

GO Terms	Biological Pathway
GO:0000278	mitotic cell cycle
GO:1903047	mitotic cell cycle process
GO:0007049	cell cycle
GO:0022402	cell cycle process
GO:0048856	anatomical structure development

3.3 Methylation

Whole genome methylation profiles of 3 lung cancer and 3 normal tissues were analyzed using wateRmelon, lumi, and limma. Firstly, NA values in M-value were removed. Then, data that had beta values with insufficient detect p-value which is over

0.05 was removed as well. After preprocess of datasets, t-test was performed to compare average methylation percentage (beta-value) between normal lung samples and tumor samples. The p-value from this t-test was about 0.7174 which means that differences between two groups are not significant. For further analysis and QC, beta values were normalized to remove external effects like technical variations then both normalized dataset and unnormalized dataset were transformed as Mehtylumi form. Linear model was statistically designed with contrast between cancer and normal tissue to compare both tissues with the threshold defined by Benjamini-Hochberg procedure. This linear model was fit using empirical Bayes method to investigate which genes were differentially expressed between normal and tumor tissue samples.

Total 10011 CpG probes were detected as significantly (FDR < 0.05) differentially methylated between two groups with 7754 down regulated methylation and 2237 upregulated methylation. This differential methylation of CpG site was tested using limma. After several process such as annotation of genes and choosing CpG probes in genic regions, 7435 CpG probes were remained as significantly (FDR < 0.05) differentially methylated probes. Genes related to the regions of transcription start sites (TSS) and 1st exons were selected for analysis since these regions were linked to transcriptional silencing in cancer by methylation (Brenet et al., 2011). Finally, gene set analysis with CpG regions were performed to get the information of related biological pathway. Top hits for GO Biological Process terms include anatomical structure development, multicellular organism development, system development, and anatomical structure morphogenesis as shown in table

Table 5. Differentially expressed genes between tumor and adjacent normal tissues from Infinium array data.

Gene	logFC	adj.P.Val
DPYS	-3.545936	0.0151440
KIAA0319	3.258170	0.0151440
GRM6	-3.428868	0.0182476
HOXD9	-3.559862	0.0200073
LOC100287834	3.652897	0.0200073

Table 6. Top 5 biological pathways from gene set analysis on Infinium array data.

GO Terms	Biological Pathway
GO:0048856	anatomical structure development
GO:0007275	multicellular organism
	development
GO:0048731	system development

GO Terms	Biological Pathway
GO:0032502	developmental process
GO:0007399	nervous system development

3.4 ChIP sequencing

2 untreated and 2 treated EGFR-mutated PC9 cell lines were analyzed using *GenomicRagnges* and *DiffBind*. Control *proadpeak* file and treated *broadpeak* file were respectively preprocessed and submitted to UCSC Genome Browser with right format for visualization. To perform differential enrichment analysis, *DiffBind* package was used.

After loading the file using dba function, count information of each (control and treated samples) could be identified using dba.count. With PCA plot and heatmap as shown in figure 4 and figure 5, close correlation between biological replicates could be identified. With this clustering of replicates, treatment is used as a factor and replicate is considered as block effect design contrast model. Statistically significantly differentially bound sites were analyzed using both DESeq2 and edgeR methods. After this step, both replicates showed closer clustering. Venn diagram showed that edgeR method identified 2 times more peaks than DESeq2 method. Untreated samples showed broader distribution of reads over all differentially bound site. Identified peaks from these analysis for each untreated and treated samples are generated as bed format respectively and submitted to UCSC Genome Browser to visualize significant peaks. The result of submission to UCSC Genome Browser of untreated sample bed file showed statistically significant peaks on CAECAM6, PECAM1, and DUSP6 gene regions as shown in figure 6. Whereas treated sample bed_file showed statistically significant peaks on NUPR1, OLR1, and NKAIN4 gene regions as shown in figure 7.

Figure 4. PCA plot between treated and untreated PC9 cell lines

Figure 5. Heatmap between treated and untreated PC9 cell lines

Figure 6. Specific methylation peak for untreat PC9 cell lines

Figure 7. Specific methylation peak for treated PC9 cell lines

3.5 Data integration

The Results from microarray expression, RNA sequencing and methylation profiling were compared

to see commonly expressed genes. Firstly, microarray and RNA sequencing data was combined and plotted on scatter plot of fold change of significant genes in both analyses as shown in figure 8. Dots on the plot can be largely divided into four sections according to amount of fold change. Most of genes are same trend of fold change in both analyses, but very few of them show reverse trend of fold change. Total 420 genes were found to be common in both analysis and depicted on the plots. Next, all three analyses were compared together and showed that 112 genes were found to be significant in these three analyses. This is shown in figure 9.

Figure 8. Scatter plot of log fold change of microarray and RNA sequencing results. Genes that differentially expressed in both analyses are plotted. Data is priorly filtered with FDR > 0.05.

Figure 9. Venn diagram of overlapping differentially expressed (DE) and significant genes in three analyses.

4. Discussion

4.1 Data Integration

Differential expressed genes from microarray and RNA sequencing analyses were compared each other showing very similar trend of log fold change in both analyses. There are different aspects in both analyses, such as RNA extraction method, way of detecting RNA from array or flow cell, as well as different stages of tumor cells. Microarray data was earned from patients with invasive tumor tissue, showing biological pathways related to metastasis as shown in table 2. Differentially expressed genes in RNA sequencing are represented with biological pathways related to cell cycle as shown in table 4. This is because tumor samples were collected from patients with stage 3 lung cancer; Stage 3 cancer does not spread to other area yet. But stage 4 does (Patel, 2021). However, figure 8 shows very similar trend of log fold change despite these differences. There is a need for further investigation on genes that do not follow the trends. But they are expected to be genes involved in cell migration and metastasis.

Significant genes were compared also in three different analyses, microarray expression, RNA sequencing and methylation profiling. Through comparison, 112 genes are found out to be significant in these analyses. Top 4 significant genes are TGFBR3, LEPR, PHACTR1 and SOX17. All these genes have evidence of lung cancer related genes from the literature (Stelzer et al., 2016).

4.2 Methylation Data

Differential methylation analysis was performed for individual CpG sites for Infinium data. Among 10011 statistically significant (FDR < 0.05) CpG probes, there were three times downregulated methylated probes more than upregulated regions. This result means that methylation, leading to transcriptional silencing, decreased in tumor tissues. About 2998 statistically significant (FDR < 0.05) genes among 7455 annotated genes (only statistically significant) were related to TSS or 1st exon which are closely related to methylation. TSC22D4, PFKP, and DPYS were found as top 3 significant gene at promoter regions. We could find gene related to cancer, which is PKFP gene has role in metabolic reprogramming cancer cell such as lung or kidney. We could also know that methylation of this region is downregulated leading activation of this gene in tumor tissue with negative fold change value. DPYS gene has role in making protein which is important for pyrimidine metabolism, and it is highly expressed in lung or kidney. TSC22D4 is just a transcriptional regulator.

Gene set analysis was also performed to get insight about the biological pathway for specific CpG probes. Interestingly, lots of genes or pathway with methylation analysis are related to cell adhesion, and cell development or proliferation which are all closely related to cancer. Pathway related to cell proliferation or development pathway could be found with this analysis. Since tumor tissues mostly have problem with their continuous proliferation or development process, we could get more detailed insight with this

analysis. However, since only individual CpG probes were analyzed for this report, analyzing regional level of methylation would provide much better insight if we combined regional CpG study with individual probe study.

ChIP-seq data was used to analyze and visualize the methylated regions. We could compare what binding regions are present only in untreated sample or treated sample. We investigated some genes that are present in top rated regions of methylation. For untreated cells, we could find CEACAM6, PECAM1, and DUSP6 genes in methylated regions as significant result. For treated cells, NUPR1, OLR1, and NKAIN4 genes in methylated regions were found as significant result. Even though there are some significant methylation peaks on promoter regions like TNFRSF21 gene containing region related to cell death, we couldn't identify our targeted region of study. In other word, there was few peaks with genes from overlapping results of three other omics study.

5. Conclusion

In conclusion, lung cancer related genes were studied using multiple omics methodology in this paper. Biologically and statistically meaningful lung cancer genes were detected from microarray, RNA sequencing and methylation profiling in common. These findings are linked to ChIP sequencing, but there were not enough significant methylation peaks consistent to the findings. If there is ChIP sequencing data with consistent study design, comparing tumor tissues and its adjacent normal tissues, more clear and consistent results and discussions points can be made further.

6. Contribution

Microarray expression and RNA sequencing analysis were done by Inkyun Park. Methylation profiling and ChIP sequencing were done Jihwan Lim. Corresponding parts in the paper were written by Inkyun Park and Jihwan Lim respectively.

References

All gene information is from www.genecards.org

Bjaanaes, M. M., Fleischer, T., Halvorsen, A. R., Daunay, A., Busato, F., Solberg, S., Jørgensen, L., Kure, E., Edvardsen, H., Børresen-Dale, A.-L., Brustugun, O. T., Tost, J., Kristensen, V., & Helland, Å. (2015). Genome-wide DNA methylation analyses in lung adenocarcinomas: Association with EGFR, Kras and TP53 mutation status, gene expression and prognosis. Molecular

- Oncology, 10(2), 330–343. https://doi.org/10.1016/j.molonc.2015.10.021
- Brenet, F., Moh, M., Funk, P., Feierstein, E., Viale, A. J., Socci, N. D., & Scandura, J. M. (2011). DNA methylation of the first exon is tightly linked to transcriptional silencing. PLoS ONE, 6(1). https://doi.org/10.1371/journal.pone.0014524
- Eric S. Kim (2016). [Advances in Experimental Medicine and Biology] Lung Cancer and Personalized Medicine Volume 893 || Chemotherapy Resistance in Lung Cancer., 10.1007/978-3-319-24223-1 (Chapter 10), 189–209. doi:10.1007/978-3-319-24223-1 10
- Kumari, N., Singh, S., Haloi, D., Mishra, S. K., Krishnani, N., Nath, A., & Neyaz, Z. (2019). Epidermal growth factor receptor mutation frequency in squamous cell carcinoma and its diagnostic performance in cytological samples: A molecular and Immunohistochemical Study. World Journal of Oncology, 10(3), 142–150. https://doi.org/10.14740/wjon1204
- Nierengarten, M. B. (2022). Annual report to the nation on the status of cancer. *Cancer*, *129*(1), 8–8. https://doi.org/10.1002/cncr.34586
- Patel, J. D. (2021, November 11). Lung cancer nonsmall cell - stages. Cancer.Net. Retrieved December 23, 2022, from https://www.cancer.net/cancer-types/lung-cancernon-small-cell/stages

- Seo, J.-S., Ju, Y. S., Lee, W.-C., Shin, J.-Y., Lee, J. K., Bleazard, T., Lee, J., Jung, Y. J., Kim, J.-O., Shin, J.-Y., Yu, S.-B., Kim, J., Lee, E.-R., Kang, C.-H., Park, I.-K., Rhee, H., Lee, S.-H., Kim, J.-I., Kang, J.-H., & Kim, Y. T. (2012). The transcriptional landscape and mutational profile of lung adenocarcinoma. *Genome Research*, 22(11), 2109–2119. https://doi.org/10.1101/gr.145144.112
- Stelzer G, Rosen R, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Iny Stein T, Nudel R, Lieder I, Mazor Y, Kaplan S, Dahary, D, Warshawsky D, Guan Golan Y, Kohn A, Rappaport N, Safran M, and Lancet D.The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analysis, Current Protocols in Bioinformatics(2016), 54:1.30.1 1.30.33.doi: 10.1002 / cpbi.5. [PDF]
- Xu, L., Lu, C., Huang, Y., Zhou, J., Wang, X., Liu, C., Chen, J., & Le, H. (2018). SPINK1 promotes cell growth and metastasis of lung adenocarcinoma and acts as a novel prognostic biomarker. *BMB Reports*, 51(12), 648–653. https://doi.org/10.5483/bmbrep.2018.51.12.205
- Xu, L., Lu, C., Huang, Y., Zhou, J., Wang, X., Liu, C., Chen, J., & Le, H. (2018). SPINK1 promotes cell growth and metastasis of lung adenocarcinoma and acts as a novel prognostic biomarker. BMB Reports, 51(12), 648–653. https://doi.org/10.5483/bmbrep.2018.51.12.205

APPENDIX A

EXPRESSION ARRAY ANALYSIS

Expression array analysis R markdown codes are shown in appendix A

Data Analysis of Microarray Data of Tumour and Normal Lung Adenocarcinoma Tissues

Jihwan Lim & Inkyun Park

2022-12-23

Microarray data of lung cancer cells and adjacent normal cells from 6 patients are collected from GSE118370 database.

```
library(GEOquery)
library(affy)
library(arrayQualityMetrics)
library(limma)
library(biomaRt)
library(org.Hs.eg.db)
library(knitr)
```

1. Data Preparation

Using getGEO, we can download phenotype data of the microarray dataset.

```
# Get phenotype data from GSE118370
GSE118370 <- getGEO('GSE118370',GSEMatrix=TRUE)</pre>
## Found 1 file(s)
## GSE118370 series matrix.txt.gz
lung exp <- GSE118370[[1]]</pre>
# Check the downloaded data
head(lung exp@phenoData@data[["title"]])
## [1] "Invasive lung adenocarcinoma tissue of patient No.1"
## [2] "paired normal lung tissue of of patient No.1"
## [3] "paired normal lung tissue of of patient No.2"
## [4] "Invasive lung adenocarcinoma tissue of patient No.2"
## [5] "Invasive lung adenocarcinoma tissue of patient No.3"
## [6] "paired normal lung tissue of of patient No.3"
# Read filenames from local disk
filenames <- list.files("./data/", pattern="*.CEL")</pre>
filenames <- paste0("./data/", filenames)</pre>
# Call AffyBatch obejct from CEL files and phenotype data
lung_affybatch <- ReadAffy(filenames = filenames, phenoData=pData(lung_exp)</pre>
```

kable(head(pData(lung_exp)[,-c(3,4,5,7,10:20,22:31)]))

	title	geo_accessio n	typ e	source_name_ch 1	organism_ch 1	platform_i d
GSM332581 8	Invasive lung adenocarcinom a tissue of patient No.1	GSM3325818	RNA	Invasive lung adenocarcinoma tissue	Homo sapiens	GPL570
GSM332581 9	paired normal lung tissue of of patient No.1	GSM3325819	RNA	normal lung tissue	Homo sapiens	GPL570
GSM332582 0	paired normal lung tissue of of patient No.2	GSM3325820	RNA	normal lung tissue	Homo sapiens	GPL570
GSM332582 1	Invasive lung adenocarcinom a tissue of patient No.2	GSM3325821	RNA	Invasive lung adenocarcinoma tissue	Homo sapiens	GPL570
GSM332582 2	Invasive lung adenocarcinom a tissue of patient No.3	GSM3325822	RNA	Invasive lung adenocarcinoma tissue	Homo sapiens	GPL570
GSM332582 3	paired normal lung tissue of of patient No.3	GSM3325823	RNA	normal lung tissue	Homo sapiens	GPL570

2. Preprocessing

2.1 Before preprocessing

Do quality evaluation of raw data and log transformed data. Reports will be downloaded at local computer. We will show boxplotss and density plots to show the effect of preprocessing.


```
force = TRUE,
do.logtransform = TRUE)
```

The report will be written into directory 'report_log_transformed'.

2.2 Preprocessing

Do preprocessing using rma function, as well as background correction and quantile normalization.

```
lung_RMA <- affy::rma(lung_affybatch, background=TRUE, normalize=TRUE)
## Background correcting
## Normalizing
## Calculating Expression</pre>
```

Then, do quality evaluation on rma preprocessed data.

3. Differential Expression Analysis with RMA preprocessed data

Now, RMA preprocessed data will be used to analyze differential expression between two conditions.

First, we will look up data.

```
annot <- factor(substr(pData(lung_RMA)[,31], 0, nchar(pData(lung_RMA)[,31]
)-7))</pre>
```

3.1 Differential Expression by LIMMA

Using limma, differential expressed genes can be spotted.

```
design <- model.matrix(~ 0 + annot)
colnames(design) <- c("T", "N") #change colnames of design

# Fit genes on linear model
fit <- lmFit(lung_RMA, design)
cont.matrix <- makeContrasts(T-N, levels=design)

# Get estimated coefficients and standard error from fit
fit2 <- contrasts.fit(fit, cont.matrix)
# To estimate moderated variances
fit2 <- eBayes(fit2)</pre>
```

3.1.1 Differential Expression Analysis Results

```
# Extract DE genes
LIMMAout <- topTable(fit2,adjust="BH",number=nrow(exprs(lung_RMA)))
LIMMAout_sig <- LIMMAout[LIMMAout$adj.P.Val < 0.05, ]
LIMMAout_sig <- LIMMAout_sig[order(LIMMAout_sig$adj.P.Val),]
kable(head(LIMMAout_sig))
dim(LIMMAout_sig)</pre>
```

	logFC	AveExpr	t	P.Value	adj.P.Val	В
1557371_a_at	2.648723	6.013027	16.57061	0	6.10e-06	14.06004
1569608_x_at	3.446956	8.505440	14.35398	0	1.54e-05	12.49478
242009_at	6.115768	7.757118	14.21228	0	1.54e-05	12.38401
230469_at	4.058742	6.607292	13.91617	0	1.54e-05	12.14798
206702_at	3.012743	5.616195	13.57615	0	1.54e-05	11.86911
225660_at	3.532686	7.882041	13.41607	0	1.54e-05	11.73483
## [1] 4457	6					

3.1.2 Plots

There is two ways to check data is making sense. In volcano plot, we can look for high or down regulated genes with statistically significant meaning. In MA plot, we are expecting

horizontal distribution of points. Differentially expressed genes will be located top or botoom of the plot.

#volcano volcanoplot(fit2)

4. Annotation

To annotate genes with high fold change, we need annotation file of the microarray platform. There, we can find annotations for probe IDs.

```
# Call annotation file
annotation_MA <- read.table("GPL570-55999.txt", sep="\t", fill=TRUE,quote=
"",head=TRUE)

# Extract probe IDs
probe_ids <- rownames(LIMMAout_sig)
LIMMAout_sig$entrez_id <- NA

# Annotate probe IDs into entrez gene ID
for (i in probe_ids) {
   probe_id <- paste(c(rbind("^", i, "$")), collapse='')
   entrez_id <- annotation_MA[annotation_MA$ID == i,]$ENTREZ_GENE_ID
   LIMMAout_sig[i, ]$entrez_id <- entrez_id
}

LIMMAout_sig$entrez_id <- gsub("\\ .*","",LIMMAout_sig$entrez_id)
kable(head(LIMMAout_sig))</pre>
```

		AveExp		P.Val	adj.P.		entrez
	logFC	r	t	ue	Val	В	_id
1557371_a	2.6487	6.0130	16.570	0	6.10e-	14.060	158376
_at	23	27	61		06	04	
1569608_x	3.4469	8.5054	14.353	0	1.54e-	12.494	
_at	56	40	98		05	78	
242009_at	6.1157	7.7571	14.212	0	1.54e-	12.384	6532
	68	18	28		05	01	
230469_at	4.0587	6.6072	13.916	0	1.54e-	12.147	219790
_	42	92	17		05	98	
206702_at	3.0127	5.6161	13.576	0	1.54e-	11.869	7010
	43	95	15		05	11	
225660_at	3.5326	7.8820	13.416	0	1.54e-	11.734	57556
_	86	41	07		05	83	

Perform gene set analysis on differentially expressed genes. As **goana** only takes entrez gene id for the analysis, all genes IDs or symbols should be converted to entrez ID beforehand.

```
entrez_ids <- LIMMAout_sig$entrez_id

#subset for non duplicated and mapped genes
entrez_ids <- entrez_ids[!(duplicated(entrez_ids) | is.na(entrez_ids))]

goana_out <- goana(de=entrez_ids, species="Hs", trend=T)

goana_out <- goana_out[order(goana_out$P.DE, decreasing=FALSE),]
goana_out$FDR.DE <- p.adjust(goana_out$P.DE, method="BH")
topGOcpg <- topGO(goana_out, ontology="BP", number=Inf)
kable(head(topGOcpg, 10))</pre>
```

	Term	Ont	N	DE	P.DE	FDR.DE
GO:0007155	cell adhesion	BP	1510	360	0	0
GO:0009653	anatomical structure morphogenesis	BP	2746	546	0	0
GO:0016477	cell migration	ВР	1556	354	0	0
GO:0048856	anatomical structure development	ВР	5785	932	0	0
GO:0007275	multicellular organism development	ВР	4804	802	0	0
GO:0040011	locomotion	ВР	1925	404	0	0
GO:0032502	developmental process	BP	6355	996	0	0
GO:0032879	regulation of localization	ВР	2808	530	0	0
GO:0048731	system development	ВР	4345	737	0	0
GO:0048870	cell motility	BP	1750	373	0	0

5. Save Results

```
write.csv(LIMMAout_sig, "DEgenes_microarray.csv")
write.csv(topGOcpg, "GSA_microarray.csv")
```

APPENDIX B

RNA SEQUENCING ANALYSIS

RNA sequencing analysis R markdown codes are shown in appendix B

Data Analysis of RNA-seq Data of Tumour and Normal Lung Adenocarcinoma Tissues

Jihwan Lim & Inkyun Park

2022-12-23

RNA sequencing data of lung cancer cells and adjacent normal cells from 3 patients with stage 3 lung cancer are collected from GSE40419 database. Quality control and mapping to reference files using KALLISTO of raw FASTQ files are already done in the HPC.

```
# Load necessary packages
library(biomaRt)
library(tximport)
library(edgeR)
library(limma)
library(org.Hs.eg.db)
library(DESeq2)
library(knitr)
```

1. Data Preparation

Get gene ID from reference files to annotate gene ID on the sample data from KALLISTO

TXNAME	GENEID
ENST00000387314	ENSG00000210049
ENST00000389680	ENSG00000211459
ENST00000387342	ENSG00000210077

1.1 Load data

Load in sample data which is already mapped to genome.

```
## Get file locations
files <- list.files("kallisto_quant/")</pre>
files <- files[grep("abundance.tsv",files)]</pre>
samples <- unlist(strsplit(files,"_"))[c(1:length(files))*2-1]</pre>
files <- paste(rep("kallisto_quant/",length(files)),files,sep="")</pre>
names(files) <- samples</pre>
## Load RNAseg data
txi <- tximport(files, type = "kallisto", tx2gene = tx2geneGtf)</pre>
## Note: importing `abundance.h5` is typically faster than `abundance.tsv`
## reading in files with read_tsv
## 1 2 3 4 5 6
## summarizing abundance
## summarizing counts
## summarizing length
## Have a Look at the data
kable(head(txi$counts))
```

	ERR16451	ERR16452		ERR16460	ERR16460	ERR16461
	5	2	ERR164526	0	7	1
ENSG0000000000	500.8357	634.8906	899.17647	4743.917	6287.0130	2029.8513
3						
ENSG0000000000	0.0000	1.0000	26.00001	1.000	6.0000	0.0000
5						
ENSG0000000041	585.9435	719.6850	771.92814	1954.772	3419.8227	1888.0177
9						
ENSG0000000045	493.9299	733.8527	647.83964	1931.198	1827.7032	1016.4454
7						
ENSG0000000046	100.8412	139.0246	125.79970	980.007	1193.2568	627.2276
0						
ENSG0000000093	1137.0002	1308.0006	1191.9988	2559.999	957.0004	1565.9961
8			0			
<pre>dim(txi\$counts)</pre>						
"" [4] C2702						
## [1] 62703	6					

2. Statistical analysis

First, we check duplicated row of the data and make annotation for design.

```
## Check for duplicate rows
sum(duplicated(rownames(txi$counts)))
## [1] 0
dim(txi$abundance)
## [1] 62703 6
```

```
## Make annotation for design Later on
tissue <- factor(c("Tumor","Tumor","Normal","Normal","Normal"))</pre>
```

2.1 EdgeR

edgeR package is differential expression analysis with statistical models for RNA-seq data.

2.1.1 Preprocessing

As normalization factors are already calculated with tximport, we can next do filtering by cpm (counts-per-million). In filtering, we want to choose genes with certain expression at different 3 samples.

```
## Make tpm values compatible with edgeR
cts <- txi$counts
normMat <- txi$length

# Obtaining per-observation scaling factors for length, adjusted to avoid c
hanging the magnitude of the counts.
normMat <- normMat/exp(rowMeans(log(normMat)))
normCts <- cts/normMat

# Computing effective library sizes from scaled counts, to account for comp
osition biases between samples.
eff.lib <- calcNormFactors(normCts) * colSums(normCts)

# Combining effective library sizes with the length factors, and calculatin
g offsets for a log-link GLM.
normMat <- sweep(normMat, 2, eff.lib, "*")
normMat <- log(normMat)

kable(eff.lib)</pre>
```

```
X
ERR164515 22664941
ERR164522 27694706
ERR164526 26642912
ERR164600 70649076
ERR164607 51993236
ERR164611 49290962
```

```
# Creating a DGEList object for use in edgeR.
y <- DGEList(cts)
y <- scaleOffset(y, normMat)

# Estimate cpm threshold value and filter genes with low counts by cpm.
cutoff <- 3/(mean(y$samples$lib.size)/1000000)
keep <- rowSums(cpm(y)>cutoff) >= 3
y <- y[keep, ,keep.lib.sizes=FALSE]
summary(keep)</pre>
```

```
## Mode FALSE TRUE
## logical 30749 31954
```

Define design matrix based on our experimental design: find differentially expressed genes between tumor and adjacent normal tissues.

```
design <- model.matrix(~tissue)
rownames(design) <- colnames(y)
kable(design)</pre>
```

	(Intercept)	tissueTumor
ERR164515	1	1
ERR164522	1	1
ERR164526	1	1
ERR164600	1	0
ERR164607	1	0
ERR164611	1	0

Plot Multi-Dimensional Scaling plot (MDS) and Biological Coefficient of Variation (BCV).

```
label <- paste0(tissue, "_", colnames(y))
limma::plotMDS(y, labels = label)</pre>
```



```
y <- estimateDisp(y, design, robust=TRUE)
plotBCV(y)</pre>
```


2.1.2 Differential Expression Analysis using edgeR

Using edgeR packages, now we can find differentially expressed genes.

```
# Perform likelihood ratio tests:
fit <- glmFit(y, design)

# See goodness of the fit.
gof(fit, plot=TRUE)</pre>
```

qq-plot of residual deviances


```
lrt <- glmLRT(fit)
dt <- decideTestsDGE(lrt)
plotSmear(lrt, de.tags=rownames(y)[as.logical(dt)])</pre>
```



```
# Summary of up or down regulated genes.
summary(dt)
## tissueTumor
## Down 1296
```

```
## NotSig 29529
## Up 1129
```

We found out that 2425 genes are differentially expressed.

```
res_edger <- topTags(lrt, n="Inf", sort.by="logFC")

# p-value histogram
hist(res_edger$table$PValue,
    main="p-value histogram from edgeR analysis",
    xlab = "p-value")</pre>
```

p-value histogram from edgeR analysis


```
# FDR histogram
hist(res_edger$table$PValue,
    main="FDR histogram from edgeR analysis",
    xlab = "FDR")
```

FDR histogram from edgeR analysis

Select significantly expressed genes

res_edger_sig <- res_edger[res_edger\$table\$FDR < 0.05,]\$table
res_edger_sig <- res_edger_sig[order(res_edger_sig\$FDR),]
kable(head(res_edger_sig))</pre>

		logFC	logCPM	LR	PValue	FDR	
	ENSG00000153234	4.640327	6.833942	113.41945	0	0	
	ENSG00000131747	-4.262364	6.299861	101.50038	0	0	
	ENSG00000118785	-7.157363	8.013378	94.13553	0	0	
	ENSG00000179388	3.891028	5.553918	91.26761	0	0	
	ENSG00000262406	-7.638597	2.599256	78.16732	0	0	
	ENSG00000007908	5.754552	4.354936	76.99101	0	0	
s_	_edger_sig)						

dim(res_edger_sig
[1] 2425 5

2.1.3 Gene Set Analysis

Perform gene set analysis on differentially expressed genes.

```
# Change ensembl gene ID into entrez ID to be compatible with goana functio
n.
entrez_ids <- mapIds(org.Hs.eg.db,</pre>
                   keys=rownames(res_edger_sig),
                   column="ENTREZID",
                   kevtvpe="ENSEMBL")
## 'select()' returned 1:many mapping between keys and columns
# Add ensemble gene ID on results from edgeR
#df1$vector1<-vector1[match(df1$ID, names(vector1))]
res edger sig$entrezIDs <- entrez ids[match(rownames(res edger sig), names
(entrez_ids))]
#subset for non duplicated and mapped genes
entrez_ids <- entrez_ids[!(duplicated(entrez_ids) | is.na(entrez_ids))]</pre>
goana_out <- goana(de=entrez_ids, species="Hs", trend=T)</pre>
goana_out <- goana_out[order(goana_out$P.DE, decreasing=FALSE),]</pre>
goana_out$FDR.DE <- p.adjust(goana_out$P.DE, method="BH")</pre>
topGOcpg <- topGO(goana_out, ontology="BP", number=Inf)</pre>
kable(head(topGOcpg, 10))
```

	Term	Ont	N	DE	P.DE	FDR.DE
GO:0000278	mitotic cell cycle	ВР	898	170	0	0
GO:1903047	mitotic cell cycle process	ВР	744	149	0	0
GO:0007049	cell cycle	ВР	1760	265	0	0
GO:0022402	cell cycle process	ВР	1205	195	0	0
GO:0048856	anatomical structure development	ВР	5785	631	0	0
GO:0032502	developmental process	ВР	6355	676	0	0
GO:0007275	multicellular organism development	ВР	4804	538	0	0
GO:0050896	response to stimulus	ВР	9030	887	0	0
GO:0051301	cell division	ВР	622	116	0	0
GO:0000280	nuclear division	ВР	446	92	0	0
<pre>dim(topGOcpg)</pre>						
## [1] 15947	6					

3. Save Results

```
write.csv(res_edger_sig, "DEgenes_edger_RNAseq.csv")
write.csv(topGOcpg, "GSA_edger_RNAseq.csv")
```

APPENDIX C

INFINIUM ARRAY ANALYSIS

Infinium array analysis R markdown codes are shown in appendix C

Methylation Array Analysis

Jihwan Lim & Inkyun Park

2022-12-23

1. Methylation Array Analysis

A methylation array data set was analysed to assess methylation changes in tumor tissue versus normal lung tissue. The data was collected from lung cancer patients and normal people in Norway. DNA from patients and people were analysed with a Illumina Infinium HumanMethylation450 BeadChip.(GSE40419)

1.1 Load in necessary packages

```
library(tidyverse)
library(lumi)
library(wateRmelon)
library(ChAMPdata)
library(IlluminaHumanMethylation450kanno.ilmn12.hg19)
library(org.Hs.eg.db)
library(knitr)
```

1.2 Load annotation data

```
infinium_annotation <- t(read.table("./GSE66836_series_matrix.txt",sep="\t
",fill=T))
infinium_annotation <- data.frame(ID = rownames(infinium_annotation), infin
ium_annotation)
infinium_annotation[1,1] <- "ID"
colnames(infinium_annotation) <- infinium_annotation[1,]
infinium_annotation <- infinium_annotation[-1,]
rownames(infinium_annotation) <- 1:nrow(infinium_annotation)
kable(head(infinium_annotation[,c(2,3,9,10,12,13,14)]))</pre>
```

title	geo_accession	source_name_ch1	organism_ch1	characteristics_ch1	characteristics_ch2	characteristics_ch3
Sample1_Tumor	GSM1632880	lung adenocarcinoma	Homo sapiens	tissue: Tumor	Stage: 1	p53 status: NA
Sample2_Normal	GSM1632881	normal lung	Homo sapiens	tissue: Normal	Stage: NA	p53 status: NA
Sample3_Tumor	GSM1632882	lung adenocarcinoma	Homo sapiens	tissue: Tumor	Stage: 4	p53 status: NA
Sample4_Tumor	GSM1632883	lung adenocarcinoma	Homo sapiens	tissue: Tumor	Stage: 1	p53 status: Mutated
Sample5_Normal	GSM1632884	normal lung	Homo sapiens	tissue: Normal	Stage: NA	p53 status: NA
Sample6_Tumor	GSM1632885	lung adenocarcinoma	Homo sapiens	tissue: Tumor	Stage: 1	p53 status: WildType

1.3 select data

1.3.1 Get specific data that we target

```
# Pick necessary colums for choosing
annot <- infinium_annotation[c("!Sample_title","!Sample_geo_accession", "!
Sample_characteristics_ch1", "!Sample_characteristics_ch2", "!Sample_chara
cteristics_ch3", "!Sample_characteristics_ch4", "!Sample_characteristics_c
h5", "!Sample_source_name_ch1", "!Sample_description1", "!Sample_descripti
on2")]

# Change the name of elements to do remove unnecessary data
annot$`!Sample_characteristics_ch1` <- gsub('tissue: ','', annot$`!Sample_
characteristics_ch1`)
annot$`!Sample_description2` <- gsub('Sentrix_Position: ','', annot$`!Samp
le_description2`)
annot$`!Sample_description1` <- gsub('Sentrix_ID: ','', annot$`!Sample_des
cription1`)
kable(head(annot, 10))</pre>
```

title	geo_a ccessio n	characte ristics_ch 1	characte ristics_ch 2	characte ristics_ch 3	characte ristics_ch 4	characte ristics_ch 5	source_ name_c h1	descri ption 1	descri ption 2
Sample1 _Tumor	GSM1 63288 0	Tumor	Stage: 1	p53 status: NA	egfr status: NA	kras status: WildType	lung adenoca rcinoma	5775 2780 68	R01C 01
Sample2 _Normal	GSM1 63288 1	Normal	Stage: NA	p53 status: NA	egfr status: NA	kras status: NA	normal lung	5808 9220 89	R03C 02
Sample3 _Tumor	GSM1 63288 2	Tumor	Stage: 4	p53 status: NA	egfr status: WildType	kras status: WildType	lung adenoca rcinoma	5808 9220 89	R01C 01
Sample4 _Tumor	GSM1 63288 3	Tumor	Stage: 1	p53 status: Mutated	egfr status: WildType	kras status: WildType	lung adenoca rcinoma	5775 2780 68	R06C 01
Sample5 _Normal	GSM1 63288 4	Normal	Stage: NA	p53 status: NA	egfr status: NA	kras status: NA	normal lung	5775 2780 17	R06C 02
Sample6 _Tumor	GSM1 63288 5	Tumor	Stage: 1	p53 status: WildType	egfr status: Mutated	kras status: WildType	lung adenoca rcinoma	5775 2780 17	R05C 02
Sample7 _Tumor	GSM1 63288 6	Tumor	Stage: 5	p53 status: WildType	egfr status: WildType	kras status: Mutated	lung adenoca rcinoma	5808 9220 89	R06C 02
Sample8 _Tumor	GSM1 63288 7	Tumor	Stage: 1	p53 status: Mutated	egfr status: WildType	kras status: Mutated	lung adenoca rcinoma	5808 9220 86	R04C 02
Sample9 _Tumor	GSM1 63288 8	Tumor	Stage: 1	p53 status: WildType	egfr status: WildType	kras status: Mutated	lung adenoca rcinoma	5775 2780 04	R03C 01
Sample1 0_Tumo r	GSM1 63288 9	Tumor	Stage: 3	p53 status: WildType	egfr status: WildType	kras status: NA	lung adenoca rcinoma	5775 2780 17	R02C 02

```
# Pick necessary columns for choosing
annot_sel <- infinium_annotation[c("!Sample_title","!Sample_geo_accession"</pre>
, "!Sample_characteristics_ch1", "!Sample_characteristics_ch2", "!Sample_c
haracteristics_ch3", "!Sample_characteristics_ch4", "!Sample_characteristi
cs_ch5", "!Sample_source_name_ch1", "!Sample_description1", "!Sample_descr
iption2")]
# Change the name of elements to do remove unnecessary data
annot sel$`!Sample characteristics ch1` <- gsub('tissue: ','', annot sel$`</pre>
!Sample characteristics ch1`)
annot_sel$`!Sample_description2` <- gsub('Sentrix_Position: ','', annot_se</pre>
1$`!Sample description2`)
annot_sel$`!Sample_description1` <- gsub('Sentrix_ID: ','', annot_sel$`!Sa</pre>
mple_description1`)
colnames(annot_sel) <- c("Sample_title", "Geo_accession", "Tissue", "Stage",</pre>
 "p53_status", "EGFR_status", "KRAS_status", "character", "Sentrix_ID", "Sen
trix_Position")
annot_sel$Stage <- gsub("Stage: ", "", annot_sel$Stage)</pre>
annot_sel$p53_status <- gsub("p53 status: ", "", annot_sel$p53_status)
annot_sel$EGFR_status <- gsub("egfr status: ", "", annot_sel$EGFR_status)
annot_sel$KRAS_status <- gsub("kras status: ", "", annot_sel$KRAS_status)</pre>
kable(head(annot sel, 10))
```

Sample_ti tle	Geo_ac cession	Tiss ue	St age	p53_s tatus	EGFR_ status	KRAS_ status	charact er	Sentri x ID	Sentrix_ Position
Sample1_ Tumor	GSM16 32880	Tu mor	1	NA	NA	WildT ype	lung adenocarc inoma	57752 78068	R01C01
Sample2_ Normal	GSM16 32881	Nor mal	N A	NA	NA	NA	normal lung	58089 22089	R03C02
Sample3_ Tumor	GSM16 32882	Tu mor	4	NA	WildTy pe	WildT ype	lung adenocarc inoma	58089 22089	R01C01
Sample4_ Tumor	GSM16 32883	Tu mor	1	Muta ted	WildTy pe	WildT ype	lung adenocarc inoma	57752 78068	R06C01
Sample5_ Normal	GSM16 32884	Nor mal	N A	NA	NA	NA	normal lung	57752 78017	R06C02
Sample6_ Tumor	GSM16 32885	Tu mor	1	WildT ype	Mutat ed	WildT ype	lung adenocarc inoma	57752 78017	R05C02
Sample7_ Tumor	GSM16 32886	Tu mor	5	WildT ype	WildTy pe	Mutat ed	lung adenocarc inoma	58089 22089	R06C02
Sample8_ Tumor	GSM16 32887	Tu mor	1	Muta ted	WildTy pe	Mutat ed	lung adenocarc inoma	58089 22086	R04C02
Sample9_ Tumor	GSM16 32888	Tu mor	1	WildT ype	WildTy pe	Mutat ed	lung adenocarc inoma	57752 78004	R03C01

Sample_ti	Geo_ac	Tiss	St	p53_s	EGFR_	KRAS_	charact	Sentri	Sentrix_
tle	cession	ue	age	tatus	status	status	er	x_ID	Position
Sample10	GSM16	Tu	3	WildT	WildTy	NA	lung	57752	R02C02
_Tumor	32889	mor		ype	pe		adenocarc	78017	
							inoma		

1.3.2 filtration for annotation

```
des1 <- annot$`!Sample_geo_accession`
des2 <- annot$`!Sample_description1`
des3 <- annot$`!Sample_description2`

# how sample name Looks Like
des_final <- paste(des1,des2,des3,sep = "_")
annot$marker <- des_final
annot_sel$marker <- des_final</pre>
```

1.3.3 Get annoation of stage 3 tumor samples with mutated EGFR

```
Tumor <- annot_sel[grep("Mutated", annot_sel$EGFR_status),]
Tumor <- Tumor[grep("WildType", Tumor$p53_status),]
Tumor <- Tumor[grep("WildType", Tumor$KRAS_status),]
Tumor3 <- Tumor[grep(3 ,Tumor$Stage),]
kable(Tumor3)</pre>
```

		Geo_	Т	S	р5	EGF	KRA			Sentri	
	Sampl	accessi	issu	tag	3_sta	R_stat	S_stat	char	Sen	x_Positi	
	e_title	on	е	е	tus	us	us	acter	trix_ID	on	marker
2	Sampl	GSM	Т	3	Wil	Mut	Wil	lung	577	R03C	GSM1632902_
3	e23_Tum	163290	um		dType	ated	dType	adenoc	52780	01	5775278068_R0
	or	2	or					arcino	68		3C01
								ma			
4	Sampl	GSM	Т	3	Wil	Mut	Wil	lung	577	R04C	GSM1632927_
8	e48_Tum	163292	um		dType	ated	dType	adenoc	52780	02	5775278004_R0
	or	7	or					arcino	04		4C02
								ma			
1	Sampl	GSM	Т	3	Wil	Mut	Wil	lung	577	R02C	GSM1633016_
37	e137_Tu	163301	um		dType	ated	dType	adenoc	52780	02	5775278003_R0
	mor	6	or					arcino	03		2C02
								ma			

1.3.4 Get annotation of normal samples

```
Normal <- annot_sel[grep("Normal", annot_sel$Tissue),]
# Find normal samples that have same Sentrix position with tumor 3
Normal <- Normal[Normal$Sentrix_Position %in% Tumor3$Sentrix_Position,]
kable(Normal)</pre>
```

		Geo_		S	р5	EGF	KRA	ch		Sentri	
	Sample	accessi	Ti	tag	3_sta	R_stat	S_stat	aract	Sen	x_Positi	
	_title	on	ssue	е	tus	us	us	er	trix_ID	on	marker
9	Sample	GSM	N	N	NA	NA	NA	no	577	R02C	GSM1632975_
6	96_Norm	163297	orm	Α				rmal	54460	02	5775446011_R02
	al	5	al					lung	11		C02

		Geo_		S	р5	EGF	KRA	ch		Sentri	
	Sample	accessi	Ti	tag	3_sta	R_stat	S_stat	aract	Sen	x_Positi	
	_title	on	ssue	е	tus	us	us	er	trix_ID	on	marker
1	Sample	GSM	N	N	NA	NA	NA	no	577	R04C	GSM1632987_
08	108_Nor	163298	orm	Α				rmal	54460	02	5775446011_R04
	mal	7	al					lung	11		C02
1	Sample	GSM	Ν	Ν	NA	NA	NA	no	577	R02C	GSM1632991_
12	112_Nor	163299	orm	Α				rmal	52780	02	5775278030_R02
	mal	1	al					lung	30		C02
1	Sample	GSM	N	Ν	NA	NA	NA	no	577	R03C	GSM1632998_
19	119_Nor	163299	orm	Α				rmal	52780	01	5775278034_R03
	mal	8	al					lung	34		C01
1	Sample	GSM	Ν	Ν	NA	NA	NA	no	577	R04C	GSM1633057_
78	178_Nor	163305	orm	Α				rmal	52780	02	5775278003_R04
	mal	7	al					lung	03		C02

we have 19 normal samples and 164 tumor samples. Since there are lots of factors to be considered like stage, mutation of EGFR, KRAS, or TP53 genes, etc, we decided to use stage 3 with mutated EGFR samples (WT with KRAS and TP53 genes) for tumor samples. This can be further related to RNA-seq data which has stage 3 tumor tissue. Then we randomly chose 3 normal samples which have same sentrix position among 5 of samples.

1.4 Load the Infinium data

```
# Load EPIC data
infdata <- readEPIC("./data/")
# Since there are 183 samples in raw file, we just made a new folder that on
ly contains that we only chose before</pre>
```

1.5 Take new annotation table that only contain necessary data

```
# we already make marker column
annot <- annot %>% filter(annot$marker %in% sampleNames(infdata))
```

1.6 Have a look at the data and annotation

```
print(infdata)
##
## Object Information:
## MethyLumiSet (storageMode: lockedEnvironment)
## assayData: 485577 features, 6 samples
    element names: betas, methylated, methylated.N, NBeads, pvals, unmethy
lated, unmethylated.N
## protocolData: none
## phenoData
##
    sampleNames: GSM1632902_5775278068_R03C01
      GSM1632927_5775278004_R04C02 ... GSM1633016_5775278003_R02C02 (6
##
##
      total)
    varLabels: barcode
##
    varMetadata: labelDescription
## featureData
    featureNames: cg00000029 cg00000108 ... rs9839873 (485577 total)
##
    fvarLabels: Probe ID DESIGN COLOR CHANNEL
##
    fvarMetadata: labelDescription
## experimentData: use 'experimentData(object)'
## Annotation: IlluminaHumanMethylation450k
## Major Operation History:
```

	geo	chara	chara	chara	chara	chara	sourc	de	de	
	_acce	cteristic	cteristic	cteristic	cteristic	cteristic	e_nam	script	script	
title	ssion	s_ch1	s_ch2	s_ch3	s_ch4	s_ch5	e_ch1	ion1	ion2	marker
Samp	GS	Tumo	Stage	p53	egfr	kras	lung	57	R0	GSM163290
le23_Tu	M163	r	: 3	status:	status:	status:	adenoc	7527	3C01	2_577527806
mor	2902			WildTyp	Mutate	WildTyp	arcino	8068		8_R03C01
				e	d	е	ma			
Samp	GS	Tumo	Stage	p53	egfr	kras	lung	57	R0	GSM163292
le48_Tu	M163	r	: 3	status:	status:	status:	adenoc	7527	4C02	7_577527800
mor	2927			WildTyp	Mutate	WildTyp	arcino	8004		4_R04C02
				е	d	е	ma			
Samp	GS	Norm	Stage	p53	egfr	kras	norm	57	R0	GSM163297
le96_No	M163	al	: NA	status:	status:	status:	al lung	7544	2C02	5_577544601
rmal	2975			NA	NA	NA		6011		1_R02C02
Samp	GS	Norm	Stage	p53	egfr	kras	norm	57	R0	GSM163298
le108_N	M163	al	: NA	status:	status:	status:	al lung	7544	4C02	7_577544601
ormal	2987			NA	NA	NA		6011		1_R04C02
Samp	GS	Norm	Stage	p53	egfr	kras	norm	57	R0	GSM163299
le119_N	M163	al	: NA	status:	status:	status:	al lung	7527	3C01	8_577527803
ormal	2998			NA	NA	NA		8034		4_R03C01
Samp	GS	Tumo	Stage	p53	egfr	kras	lung	57	R0	GSM163301
le137 T	M163	r	: 3	status:	status:	status:	adenoc	7527	2C02	6 577527800
umor	3016			WildTyp	Mutate	WildTyp	arcino	8003		3_R02C02
				e	d	е	ma			
kable(s	um(is.	na(expi	rs(infd	ata))))						
•	•	` '	•	,,,,						

x 48986

betas function retrieve beta value (=methylation percentage) kable(head(betas(infdata)))

	GSM1632902 _5775278068_ R03C01	GSM1632927 _5775278004_ R04C02	GSM1632975 _5775446011_ R02C02	GSM1632987 _5775446011_ R04C02	GSM1632998 _5775278034_ R03C01	GSM1633016 _5775278003_ R02C02
cg0 0000 029	0.5834395	0.3879270	0.1474793	0.1805667	0.2389768	0.3032751
cg0 0000 108	0.7193320	0.6988593	0.8464406	0.8155882	0.8060476	0.7933194

	GSM1632902 _5775278068_ R03C01	GSM1632927 _5775278004_ R04C02	GSM1632975 _5775446011_ R02C02	GSM1632987 _5775446011_ R04C02	GSM1632998 _5775278034_ R03C01	GSM1633016 _5775278003_ R02C02
cg0 0000 109	0.6011765	0.5210166	0.6682365	0.7194737	0.6942356	0.6163934
cg0 0000 165	NA	0.4775758	0.2771689	0.2511721	0.2824829	0.2448394
cg0 0000 236	0.4795918	0.5409836	0.7345242	0.6801454	0.6786818	0.6773387
cg0 0000 289	0.2607973	0.3133245	0.4355576	0.3461876	0.3754845	0.3498205

exprs function retrieve M-value

kable(head(exprs(infdata)))

	GSM1632902 _5775278068_	GSM1632927 _5775278004_	GSM1632975 _5775446011_	GSM1632987 _5775446011_	GSM1632998 _5775278034_	GSM1633016 _5775278003_
	R03C01	R04C02	R02C02	R04C02	R03C01	R02C02
cg0 0000 029	0.4860570	-0.6579185	-2.5312223	-2.182095	-1.671070	-1.1999622
cg0 0000 108	1.3577935	1.2145644	2.4626122	2.144910	2.055163	1.9404990
cg0 0000 109	0.5920380	0.1213538	1.0102038	1.358806	1.183005	0.6842241
cg0 0000 165	NA	-0.1294922	-1.3828928	-1.575958	-1.344850	-1.6249474
cg0 0000 236	-0.1178365	0.2370392	1.4682295	1.088427	1.078732	1.0698567
cg0 0000 289	-1.5030408	-1.1319707	-0.3739629	-0.917323	-0.733984	-0.8942232

1.7 Preprocessing the data

Remove all NA value both in M-value and Methylation percentage
infdata <- infdata[rowSums(is.na(exprs(infdata))) == 0,]
kable(head(exprs(infdata)))</pre>

	GSM1632902 _5775278068_ R03C01	GSM1632927 _5775278004_ R04C02	GSM1632975 _5775446011_ R02C02	GSM1632987 _5775446011_ R04C02	GSM1632998 _5775278034_ R03C01	GSM1633016 _5775278003_ R02C02
cg0 0000 029	0.4860570	-0.6579185	-2.5312223	-2.1820946	-1.6710701	-1.1999622
cg0 0000 108	1.3577935	1.2145644	2.4626122	2.1449103	2.0551629	1.9404990

	GSM1632902 _5775278068_ R03C01	GSM1632927 _5775278004_ R04C02	GSM1632975 _5775446011_ R02C02	GSM1632987 _5775446011_ R04C02	GSM1632998 _5775278034_ R03C01	GSM1633016 _5775278003_ R02C02
cg0 0000 109	0.5920380	0.1213538	1.0102038	1.3588058	1.1830048	0.6842241
cg0 0000 236	-0.1178365	0.2370392	1.4682295	1.0884269	1.0787324	1.0698567
cg0 0000 289	-1.5030408	-1.1319707	-0.3739629	-0.9173230	-0.7339840	-0.8942232
cg0 0000 292	1.7440042	1.4999111	0.6158344	0.6148945	0.6081127	1.7850728

1.8 Explore preprocessed data

kable(head(exprs(infdata)))

	GSM1632902 _5775278068_ R03C01	GSM1632927 _5775278004_ R04C02	GSM1632975 _5775446011_ R02C02	GSM1632987 _5775446011_ R04C02	GSM1632998 _5775278034_ R03C01	GSM1633016 _5775278003_ R02C02
cg0 0000 029	0.4860570	-0.6579185	-2.5312223	-2.1820946	-1.6710701	-1.1999622
cg0 0000 108	1.3577935	1.2145644	2.4626122	2.1449103	2.0551629	1.9404990
cg0 0000 109	0.5920380	0.1213538	1.0102038	1.3588058	1.1830048	0.6842241
cg0 0000 236	-0.1178365	0.2370392	1.4682295	1.0884269	1.0787324	1.0698567
cg0 0000 289	-1.5030408	-1.1319707	-0.3739629	-0.9173230	-0.7339840	-0.8942232
cg0 0000 292	1.7440042	1.4999111	0.6158344	0.6148945	0.6081127	1.7850728

1.9 Change samplNAMES to somthing more comprehensible

sampleNames(infdata) <- paste(annot[,2], annot[,3], sep = "_")</pre>

1.10 Remove probes for which calling p-value insufficient

infdata_filt <- pfilter(infdata)</pre>

0 samples having 1 % of sites with a detection p-value greater than 0.05
were removed

Samples removed:

1675 sites were removed as beadcount <3 in 5 % of samples

0 sites having 1 % of samples with a detection p-value greater than 0.05
were removed

boxplot(betas(infdata_filt), las=2)


```
control <- (infdata_filt[,grep("Normal",annot[,3])])</pre>
cancer <- (infdata_filt[,grep("Tumor",annot[,3])])</pre>
meth_mean_CAF <- rep(0,ncol(cancer))</pre>
meth_mean_NAF <- rep(0,ncol(control))</pre>
for (i in 1:ncol(cancer)){
  meth_mean_CAF[i] <- mean(betas(cancer[,i]))</pre>
}
for (i in 1:ncol(control)){
  meth_mean_NAF[i] <- mean(betas(control[,i]))</pre>
}
meth_mean_CAF
## [1] 0.4616373 0.4738240 0.4737487
meth_mean_NAF
## [1] 0.4585227 0.4732641 0.4703541
t_test_res <- t.test(meth_mean_NAF, meth_mean_CAF, var.equal = F)</pre>
t_test_res
##
##
    Welch Two Sample t-test
##
## data: meth_mean_NAF and meth_mean_CAF
```

```
## t = -0.38885, df = 3.9549, p-value = 0.7174
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.01925677 0.01454405
## sample estimates:
## mean of x mean of y
## 0.4673803 0.4697367
```

1.12 Normalization and QC

```
infdata norm <- dasen(infdata filt)</pre>
head(infdata norm)
##
## Object Information:
## MethyLumiSet (storageMode: lockedEnvironment)
## assayData: 6 features, 6 samples
     element names: betas, methylated, methylated.N, NBeads, pvals, unmethy
lated, unmethylated.N
## protocolData: none
## phenoData
     sampleNames: GSM1632902_Tumor GSM1632927_Tumor ... GSM1633016_Tumor
##
##
       (6 total)
##
     varLabels: barcode
##
     varMetadata: labelDescription
## featureData
    featureNames: cg00000029 cg00000108 ... cg00000292 (6 total)
##
     fvarLabels: Probe ID DESIGN COLOR CHANNEL
     fvarMetadata: labelDescription
##
## experimentData: use 'experimentData(object)'
## Annotation: IlluminaHumanMethylation450k
## Major Operation History:
              submitted
                                   finished
## 1 2022-12-23 21:12:43 2022-12-23 21:12:54
## 2 2022-12-23 21:12:43 2022-12-23 21:12:54
## 3 2022-12-23 21:12:58 2022-12-23 21:12:59
## 4 2022-12-23 21:13:00 2022-12-23 21:13:01
## 5 2022-12-23 21:13:03 2022-12-23 21:13:04
## 6 2022-12-23 21:13:04 2022-12-23 21:13:04
## 7 2022-12-23 21:13:09 2022-12-23 21:13:16
## 8 2022-12-23 21:13:16 2022-12-23 21:13:16
## 1 NChannelSetToMethyLumiSet2(NChannelSet = dats, parallel = parallel,
## 2
                                                     n = n, oob = oob)
## 3
                                            Subset of 485577 features.
## 4
                                            Subset of 451221 features.
## 5
                                                  Subset of 6 samples.
## 6
                                            Subset of 449546 features.
## 7
                              Normalized with dasen method (wateRmelon)
## 8
                                                 Subset of 6 features.
```

1.12.1 Mkake methylumi objects to check density and color bias adjustment

```
infdataM_norm <- as(infdata_norm, "MethyLumiM")
infdataM <- as(infdata_filt, "MethyLumiM")</pre>
```

1.12.2 Make QC plot

```
par(mfrow = c(2,2))
plotColorBias1D(infdataM, channel="both", main="before")
plotColorBias1D(infdataM_norm, channel="both", main="after")
density(infdataM, xlab="M-value", main="before", legend =F)
density(infdataM_norm, xlab="M-value", main="after", legend = F)
```


ntensity of both methylated and unmethylntensity of both methylated and unmethyl

1.13 Differential expression analysis

```
# Define design matrix
des <- factor(as.character(annot[,3]))
design <- model.matrix(~0 + des)
colnames(design) <- c("Tumor", "Normal")
fit <- lmFit(infdataM_norm, design)

# Fitting the model
cont.matrix <- makeContrasts(NvsS=Tumor-Normal,levels=design)
fit2 <- contrasts.fit(fit, cont.matrix)
fit2 <- eBayes(fit2)

# Getting top genes
kable(topTable(fit2, coef=1, adjust="BH"))</pre>
```

	Probe_I	DESI	COLOR_CH		AveEx		P.Va	adj.P.	
	D	GN	ANNEL	logFC	pr	t	lue	Val	В
cg0517	cg0517	1	Grn	-	-	-	1e-	0.0151	7.142
5020	5020			3.88242	1.65782	17.0201	07	440	509
				0	63	7			
cg0699	cg0699	II	Both	-	-	-	1e-	0.0151	6.882
5503	5503			3.95819	0.84587	16.0454	07	440	800
				6	39	7			
cg1590	cg1590	1	Red	-	-	-	1e-	0.0151	6.726
8367	8367			3.96104	1.98220	15.5134	07	440	487
				5	82	2			
cg1030	cg1030	1	Red	-	-	-	2e-	0.0151	6.567
3487	3487			3.54593	2.08926	15.0032	07	440	617
				6	12	6			
cg0826	cg0826	П	Both	3.533	2.1404	14.73	2e-	0.0151	6.478
9402	9402			199	689	035	07	440	455
cg0244	cg0244	1	Red	3.349	4.4181	14.72	2e-	0.0151	6.476
3967	3967			599	254	578	07	440	936
cg1842	cg1842	1	Grn	3.258	-	14.58	2e-	0.0151	6.431
8180	8180	•	O	170	1.76524	903	07	440	088
				_	52				
cg1327	cg1327	1	Red	_	_	_	3e-	0.0182	6.218
9673	9673	•	neu	3.03130	1.98266	13.9842	07	476	655
				8	69	6	-		
cg0058	cg0058	1	Red	_	_	_	4e-	0.0182	6.164
2971	2971	'	Neu	3.42886	1.90901	13.8363	07	476	196
				8	09	6	-		
cg1323	cg1323	II	Both	_	_	_	5e-	0.0185	6.010
2075	2075	"	DOTT	4.07910	1.18247	13.4328	07	934	307
20,3	_0,0			1	78	6	0,	35 +	507
						-			

results <- decideTests(fit2)
vennDiagram(results)</pre>


```
summary(results)

## NvsS

## Down 7754

## NotSig 439535

## Up 2257
```

1.14 DE results

LIMMAout <- topTable(fit2, adjust="BH", number=nrow(exprs(infdataM)))
kable(head(LIMMAout, 10))</pre>

	Probe_I D	DESI GN	COLOR_CH ANNEL	logFC	AveEx pr	t	P.Va lue	adj.P. Val	В
cg0517 5020	cg0517 5020	I	Grn	3.88242 0	1.65782 63	17.0201 7	1e- 07	0.0151 440	7.142 509
cg0699 5503	cg0699 5503	II	Both	3.95819 6	0.84587 39	- 16.0454 7	1e- 07	0.0151 440	6.882 008
cg1590 8367	cg1590 8367	I	Red	3.96104 5	1.98220 82	15.5134 2	1e- 07	0.0151 440	6.726 487
cg1030 3487	cg1030 3487	I	Red	3.54593 6	2.08926 12	15.0032 6	2e- 07	0.0151 440	6.567 617
cg0826 9402	cg0826 9402	II	Both	3.533 199	2.1404 689	14.73 035	2e- 07	0.0151 440	6.478 455
cg0244 3967	cg0244 3967	1	Red	3.349 599	4.4181 254	14.72 578	2e- 07	0.0151 440	6.476 936
cg1842 8180	cg1842 8180	I	Grn	3.258 170	1.76524 52	14.58 903	2e- 07	0.0151 440	6.431 088
cg1327 9673	cg1327 9673	I	Red	3.03130 8	1.98266 69	- 13.9842 6	3e- 07	0.0182 476	6.218 655
cg0058 2971	cg0058 2971	I	Red	3.42886 8	1.90901 09	13.8363 6	4e- 07	0.0182 476	6.164 196
cg1323 2075	cg1323 2075	II	Both	4.07910 1	- 1.18247 78	- 13.4328 6	5e- 07	0.0185 934	6.010 307

1.14.1 Volcano plot

There is few signifcant genes with threshold 0.05, so 0.15 is used inst
ead
volcanoplot(fit2, col = as.factor(LIMMAout\$adj.P.Val < 0.15), style = "p-va
lue")</pre>

1.14.2 MA plot

```
plot(LIMMAout$AveExpr, LIMMAout$logFC,
    col = as.factor(LIMMAout$adj.P.Val < 0.05), pch = 20, cex = 0.50,
    xlab = "Average Intensities", ylab = "logFC")</pre>
```


1.15 Functional annotation of limma results

1.15.1 Load annotation and sort alphabetically on probe name

data("probe.features")
annotation_MA <- probe.features
kable(head(annotation_MA))</pre>

	C H R	M APIN FO	S tra nd	T yp e	g ene	fe atur e	c gi	fe at.c gi	UCSC_Cp G_Islands_ Name	D HS	E nha ncer	Pha ntom	Pro be_S NPs	Prob e_SNPs _10
cg0 0000 029	6	53 4681 12	F	I	R BL2	T SS1 500	s hor e	T SS15 00- shor e	chr16:53 468284- 53469209	T RU E	N A			
cg0 0000 108	3	37 4592 06	F	1	C 3orf 35	B ody	o pen sea	B ody- ope nsea		A N	A N		rs9 8577 74	
cg0 0000 109	3	17 1916 037	F	1	F ND C3B	B ody	o pen sea	B ody- ope nsea		A	A A	low- CpG:1 73398 671- 17339 8760	rs9 8644 92	
cg0 0000 165	1	91 1946 74	R	1		I GR	s hor e	IG R-	chr1:911 90489- 91192804	A N	T RUE			

	С	М	S	Т		fe		fe	UCSC_Cp		Е		Pro	Prob
	Н	APIN	tra	уp	g	atur	С	at.c	G_Islands_	D	nha	Pha	be_S	e_SNPs
	R	FO	nd	е	ene	e	gi	gi	Name	HS	ncer	ntom	NPs	_10
								shor						
								e						
cg0	8	42	R	- 1	V	3'	0	3′		Ν	N			
0000		2632		1	DAC	UTR	pen	UTR		Α	Α			
236		94			3		sea	-						
								ope						
								nsea						
cg0	1	69	F	1	Α	3′	S	3′	chr14:69	Ν	N			
0000	4	3411		1	CTN	UTR	hor	UTR	341427-	Α	Α			
289		39			1		e	-	69341820					
								shor						
								e						
								,	/					

annotation_MA <- annotation_MA[sort(rownames(annotation_MA),index.return =
 T)\$ix,]</pre>

1.15.2 Check if all probes are present in both sets

```
dim(LIMMAout)
## [1] 449546 9
sum(LIMMAout$Probe_ID%in%rownames(annotation_MA))
## [1] 449546
sum(rownames(annotation_MA)%in%LIMMAout$Probe_ID)
## [1] 449546
# Also check the reverse so no duplicate rows are present in annotation
```

1.15.3 Since more probes are present in the annotation file, remove unnecessary probes

annotation_MA <- annotation_MA[rownames(annotation_MA)%in%LIMMAout\$Probe_I
D,]</pre>

1.15.4 Sort LIMMA output alphabetically on probe name

LIMMAout_sorted <- LIMMAout[sort(LIMMAout\$Probe_ID,index.return=T)\$ix,]</pre>

1.15.5 Add gene names to LIMMA output

```
LIMMAout_sorted$Gene <- annotation_MA$gene
LIMMAout_sorted$Feature <- annotation_MA$feature
LIMMAout_sorted$Chrom <- annotation_MA$CHR
LIMMAout_sorted$Pos <- annotation_MA$MAPINFO
LIMMAout_sorted$Chrom <- as.character(LIMMAout_sorted$Chrom)
LIMMAout_sorted$Gene <- as.character(LIMMAout_sorted$Gene)
LIMMAout_sorted$Feature <- as.character(LIMMAout_sorted$Feature)
```

1.16 Quantification of absolute methylation differences

1.16.1 Add gene names to LIMMA output

```
LIMMAout_sorted$Tumor_meth <- rowMeans(betas(infdata)[rownames(infdata)%in</pre>
%
                                                    LIMMAout sorted$Probe I
D,annot$`!Sample characteristics ch1`=="Tumor"])
LIMMAout_sorted$Control_meth <- rowMeans(betas(infdata)[rownames(infdata)%</pre>
in%
                                                      LIMMAout sorted$Probe
ID,annot$`!Sample characteristics ch1`=="Normal"])
LIMMAout sorted$Abs diff meth <- abs(rowMeans(betas(infdata)[rownames(infd
ata)%in%
                                                           LIMMAout_sorted$P
robe_ID,annot$`!Sample_characteristics_ch1`=="Tumor"]) -
                                    rowMeans(betas(infdata)[rownames(infdat
a)
                                                           %in%LIMMAout sort
ed$Probe_ID, annot$`!Sample_characteristics_ch1`=="Normal"]))
```

1.17 Resort results

```
LIMMAout_annot <- LIMMAout_sorted[sort(LIMMAout_sorted$P.Value,index.retur n=T)$ix, c(1,12,13,10,11,4,7,8,5,14,15,16)]
# Sort on p-values to prevent errors in sorting due to equal FDR values
```

1.18 Interpretation results

1.18.1 Select CpGs in genic regions

```
sum(LIMMAout_annot$adj.P.Val<0.05)

## [1] 10011

sum(LIMMAout_annot$adj.P.Val[LIMMAout_annot$Gene!=""]<0.05)

## [1] 7435

LIMMAout_annot_gene <- LIMMAout_annot[LIMMAout_annot$Gene!="",]</pre>
```

1.18.2 Check genic results

 $kable(head(LIMMAout_annot_gene[c(4,5,6,8,10,11,12)]))$

		Featur		adj.P.Va	Tumor_me	Control_me	Abs_diff_me
	Gene	e	logFC	1	th	th	th
cg051750	TSC22D	Body	=	0.01514	0.5941010	0.0560259	0.5380751
20	4		3.882420	4			
cg069955	PFKP	3'UTR	-	0.01514	0.6847462	0.1055248	0.5792214
03			3.958196	4			
cg159083	TSC22D	Body	-	0.01514	0.5185570	0.0523593	0.4661977
67	4		3.961045	4			
cg103034	DPYS	1stExo	-	0.01514	0.4638851	0.0580843	0.4058008
87		n	3.545936	4			

```
Abs\_diff\_me
                                          adj.P.Va
                       Featur
                                                    Tumor_me
                                                                Control_me
              Gene
                                  logFC
  cg082694
              HLA-
                                          0.01514
                                                                              0.3329707
                                3.53319
                                                    0.6052022
                                                                 0.9381730
                       Body
02
            DRB1
                                          0.01514
  cg024439
              TLL2
                                3.34959
                                                    0.9031419
                                                                 0.9822053
                                                                              0.0790634
                       Body
 67
                                     9
topgenes_genic <- unique(LIMMAout_annot_gene$Gene[1:10])</pre>
for (i in 1:length(topgenes_genic)){
  LIMMAout_subset <- LIMMAout_annot_gene[(LIMMAout_annot_gene$Gene==topgen
es genic [i]) &
                                             (LIMMAout_annot_gene$adj.P.Val<0.05
) &
                                             (abs(LIMMAout_annot_gene$logFC)>2),
  kable(LIMMAout_subset[sort(LIMMAout_subset$Pos,index.return=T)$ix,c (4,5)
,6,8,10,11,12)])
  }
```

1.18.3 Select CpGs in promoter regions

```
LIMMAout_annot_prom <- LIMMAout_annot_gene[grepl("TSS",LIMMAout_annot_gene
$Feature) | (LIMMAout_annot_gene$Feature=="1stExon"),]
kable(head(LIMMAout_annot_prom))</pre>
```

	Chro			Featur		P.Val		AveExp
Probe_ID	m	Pos	Gene	е	logFC	ue	adj.P.Val	r
cg103034 87	8	1054790 58	DPYS	1stExo n	- 3.545936	2e-07	0.01514 40	2.089261
cg184281 80	6	2464649 2	KIAA0319	TSS15 00	3.2581 70	2e-07	0.01514 40	- 1.765245
cg005829 71	5	1784221 28	GRM6	TSS20 0	- 3.428868	4e-07	0.01824 76	- 1.909011
cg226746 99	2	1769879 18	HOXD9	1stExo n	- 3.559862	7e-07	0.02000 73	- 1.859010
cg109898 62	7	6280933 1	LOC100287 834	TSS20 0	3.6528 97	9e-07	0.02000 73	2.9784 05
cg257746 43	11	627175	SCT	TSS20 0	- 3.379502	9e-07	0.02000 73	- 0.814335

Look for multiple CpG in promoter regions undergoing similar methylation differences

1.19 Gene Set Analysis

Goana uses Entrez gene identifiers, we used to convert our gene symbols to entrez ids. For thus purpose we use the org. Hs. eg. db package.

```
LIMMAout_filtered <- LIMMAout_annot[LIMMAout_annot$adj.P.Val < 0.05,]
EntrezIDs <- mapIds(org.Hs.eg.db, LIMMAout_filtered$Gene, "ENTREZID", "SYMB OL")
## 'select()' returned 1:many mapping between keys and columns</pre>
```

1.19.1 subset for non duplicated and mapped genes

```
EntrezIDs <- EntrezIDs[!(duplicated(EntrezIDs) | is.na(EntrezIDs))]
kable(t(head(EntrezIDs)))</pre>
```

TSC22D4	PFKP	DPYS	HLA-DRB1	TLL2	KIAA0319
81628	5214	1807	3123	7093	9856

1.19.2 Make table for comaprison with other methods

LIMMAout_filtered\$EntrezIDs <- EntrezIDs[match(LIMMAout_filtered\$Gene, nam
es(EntrezIDs))]</pre>

1.19.3 Overexpression analysis with goana

```
goanaOUT <- goana(de=unlist(EntrezIDs), species = "Hs", trend = T)</pre>
```

1.19.4 FDR multiple

```
goanaOUT <- goanaOUT[order(goanaOUT$P.DE, decreasing = F),]
goanaOUT$FDR.DE <- p.adjust(goanaOUT$P.DE, method = "BH")

topGOcpg <- topGO(goanaOUT, ontology = "BP", number = 50)
kable(head(topGOcpg))</pre>
```

	Term	Ont	N	DE	P.DE	FDR.DE		
GO:0048856	anatomical structure development	BP	5785	1493	0	0		
GO:0007275	multicellular organism development	BP	4804	1304	0	0		
GO:0048731	system development	BP	4345	1209	0	0		
GO:0032502	developmental process	BP	6355	1574	0	0		
GO:0007399	nervous system development	BP	2408	758	0	0		
GO:0009653	anatomical structure morphogenesis	BP	2746	831	0	0		
<pre>kable(head(topGOcpg[order(topGOcpg\$N),]))</pre>								

	Term	Ont	N	DE	P.DE	FDR.DE
GO:0007610	behavior	ВР	606	227	0	0
GO:0048598	embryonic morphogenesis	ВР	607	232	0	0
GO:0048812	neuron projection morphogenesis	ВР	620	226	0	0

	Term	Ont	Ν	DE	P.DE	FDR.DE
GO:0120039	plasma membrane bounded cell projection morphogenesis	ВР	635	231	0	0
GO:0048858	cell projection morphogenesis	ВР	639	231	0	0
GO:0032990	cell part morphogenesis	ВР	658	233	0	0

1.20 Write data for comaprison of results

```
write.table(unlist(EntrezIDs), sep = "\t", file = "EntrezIDs_CpG_results.tx
t")

CpG_GSA_res <- topGO(goanaOUT, ontology = "BP", number = 100)
write.table(CpG_GSA_res, sep="\t", file = "CpG_GSA_results.txt")</pre>
```

APPENDIX D

ChIP SEQUENCING ANALYSIS

ChIP sequencing analysis R markdown codes are shown in appendix D

Chip-seq Analysis

Jihwan Lim & Inkyun Park

2022-12-23

1. Chip_seq Analysis

1.1 General info

Read length: 40bp.

Single/paired end sequencing: single end sequencing.

Started from fastq files provided by encode.

Platform used: Illumina HiSeq 2000.

GSE148461

1.2 Load in necessary packages

```
library(DiffBind)
library(tidyverse)
library(GenomicRanges)
library(org.Hs.eg.db)
library(TxDb.Hsapiens.UCSC.hg38.knownGene)
library(AnnotationDbi)
library(knitr)
```

1.3 Read broadPeak

```
# combined broadpeak file for combine of two untreated PC9 cell samples
d0 <- read.table("./H3K4me3_contorl_peaks.broadPeak", header=F,skip=1)
colnames(d0) <-c("seqnames","start","end","id","score","strand","enrichmen
t","log10p","log10q")

# combined broadpeak file for combine of two treated with Erlotinib for 11
days PC9 cell samples
d11 <- read.table("./H3K4me3_treat_peaks.broadPeak", header=F,skip=1)
colnames(d11) <-c("seqnames","start","end","id","score","strand","enrichme
nt","log10p","log10q")</pre>
```

1.3.1 add "chr" before chromosome ID (1 -> chr1)

```
d0$seqnames = paste("chr", d0$seqnames, sep ="")
d11$seqnames <- paste("chr", d11$seqnames, sep ="")</pre>
```

1.3.2 Adjust strand data

chr1

6048

89

6057

70 k_11

```
d0$strand <-as.factor("*")
d11$strand <-as.factor("*")
kable(head(d0, 10))</pre>
```

seqnam				scor	stran	enrichme		
es	start	end	id	е	d	nt	log10p	log10q
chr1	18142	18175	H3K4me3_contorl_peak	62	*	5.15813	9.18287	6.25897
	0	5	_2					
chr1	19848	20061	H3K4me3_contorl_peak	190	*	38.29220	194.7630	190.8760
	1	7	_3	8			0	0
chr1	35475	35541	H3K4me3_contorl_peak	38	*	4.21594	6.78472	3.89280
	1	5	_4					
chr1	35875	35999	H3K4me3_contorl_peak	159	*	7.56905	18.98120	15.98590
	7	5	_5					
chr1	37668	37739	H3K4me3_contorl_peak	63	*	4.80952	9.23648	6.31199
	7	1	_6					
chr1	40704	40739	H3K4me3_contorl_peak	25	*	3.81579	5.43755	2.56516
	5	7	_7					
chr1	58739	58902	H3K4me3_contorl_peak	205	*	9.05075	23.61080	20.59730
	2	7	_8					
chr1	60483	60573	H3K4me3_contorl_peak	151	*	7.76668	18.14830	15.15310
	6	0	_9					
chr1	64298	64324	H3K4me3_contorl_peak	29	*	3.88787	5.85650	2.98114
	2	0	_10					
chr1	77766	78041	H3K4me3_contorl_peak	138	*	27.70330	142.4270	138.9920
	0	0	_11	9			0	0
kable(head(d1	1, <mark>10</mark>))					

seqnam				sco	stra	enrichm		
es	start	end	id	re	nd	ent	log10p	log10q
chr1	9652	9712	H3K4me3_treat_pea	29	*	3.96970	5.7714	2.9286
	8	2	k_2				7	2
chr1	1814	1817	H3K4me3_treat_pea	40	*	4.76600	6.9158	4.0301
	53	34	k_3				5	3
chr1	1846	1849	H3K4me3_treat_pea	15	*	3.65121	4.3887	1.5892
	11	76	k_4				4	7
chr1	1983	2006	H3K4me3_treat_pea	819	*	20.26400	85.509	81.909
	90	87	k_5				30	40
chr1	2734	2737	H3K4me3_treat_pea	18	*	3.08217	4.6562	1.8470
	41	76	k_6				4	7
chr1	3547	3554	H3K4me3_treat_pea	27	*	4.18457	5.6248	2.7862
	48	19	k_7				8	5
chr1	3585	3600	H3K4me3_treat_pea	105	*	6.75973	13.487	10.511
	16	50	k_8				30	50
chr1	3766	3773	H3K4me3_treat_pea	75	*	6.03396	10.483	7.5327
	76	66	k_9				80	4
chr1	5872	5894	H3K4me3_treat_pea	126	*	7.48809	15.620	12.635
	50	64	k_10				90	80

91

6.46389

12.082

60

9.1244

H3K4me3_treat_pea

1.4 Analysis

1.4.1 Make GRanges object

```
bed0 <- with(d0, GRanges(seqnames, IRanges(start, end), strand, score, re
fseq=id))
bed11 <- with(d11, GRanges(seqnames, IRanges(start, end), strand, score, re
fseq=id))
kable(head(bed0,10))</pre>
```

seqnames	start	end	width	strand	score	refseq
chr1	181420	181755	336	*	62	H3K4me3_contorl_peak_2
chr1	198481	200617	2137	*	1908	H3K4me3_contorl_peak_3
chr1	354751	355415	665	*	38	H3K4me3_contorl_peak_4
chr1	358757	359995	1239	*	159	H3K4me3_contorl_peak_5
chr1	376687	377391	705	*	63	H3K4me3_contorl_peak_6
chr1	407045	407397	353	*	25	H3K4me3_contorl_peak_7
chr1	587392	589027	1636	*	205	H3K4me3_contorl_peak_8
chr1	604836	605730	895	*	151	H3K4me3_contorl_peak_9
chr1	642982	643240	259	*	29	H3K4me3_contorl_peak_10
chr1	777660	780410	2751	*	1389	H3K4me3_contorl_peak_11
kable(head(bed11, 10))						

seqnames	start	end	width	strand	score	refseq
chr1	96528	97122	595	*	29	H3K4me3_treat_peak_2
chr1	181453	181734	282	*	40	H3K4me3_treat_peak_3
chr1	184611	184976	366	*	15	H3K4me3_treat_peak_4
chr1	198390	200687	2298	*	819	H3K4me3_treat_peak_5
chr1	273441	273776	336	*	18	H3K4me3_treat_peak_6
chr1	354748	355419	672	*	27	H3K4me3_treat_peak_7
chr1	358516	360050	1535	*	105	H3K4me3_treat_peak_8
chr1	376676	377366	691	*	75	H3K4me3_treat_peak_9
chr1	587250	589464	2215	*	126	H3K4me3_treat_peak_10
chr1	604889	605770	882	*	91	H3K4me3_treat_peak_11

1.4.2 Extract gene data

```
hg38 <- genes(TxDb.Hsapiens.UCSC.hg38.knownGene)</pre>
```

1.4.3 Make overlap

```
ranges0 <- subsetByOverlaps(hg38,bed0, ignore.strand = T)
ranges11 <- subsetByOverlaps(hg38,bed11, ignore.strand = T)</pre>
```

1.4.4 Get gene annotation

```
symbols0 <- unique(ranges0@elementMetadata$gene_id)
bed_c <- AnnotationDbi::select(org.Hs.eg.db, symbols0, c('SYMBOL', 'GENENAM
E'))

symbols11 <- unique(ranges11@elementMetadata$gene_id)
bed_t <- AnnotationDbi::select(org.Hs.eg.db, symbols11, c('SYMBOL', 'GENENAME'))</pre>
```

1.4.5 Search for genes of interest

```
colnames(bed_c) <- c("Entrez_ID", "Gene_Symbol", "Gene_Name")
colnames(bed_t) <- c("Entrez_ID", "Gene_Symbol", "Gene_Name")
kable(head(bed_c[grepl("CDH", bed_c$Gene_Symbol),], 10))</pre>
```

	Entrez_ID	Gene_Symbol	Gene_Name
4	1000	CDH2	cadherin 2
18	1001	CDH3	cadherin 3
432	1004	CDH6	cadherin 6
479	1005	CDH7	cadherin 7
863	1006	CDH8	cadherin 8
957	1008	CDH10	cadherin 10
1130	1010	CDH12	cadherin 12
1160	1012	CDH13	cadherin 13
1172	1013	CDH15	cadherin 15
1207	1016	CDH18	cadherin 18
		CDH18	

kable(head(bed_t[grepl("CDH",bed_t\$Gene_Symbol),], 10))

	Entrez_ID	Gene_Symbol	Gene_Name
4	1000	CDH2	cadherin 2
18	1001	CDH3	cadherin 3
398	1003	CDH5	cadherin 5
446	1004	CDH6	cadherin 6
496	1005	CDH7	cadherin 7
894	1006	CDH8	cadherin 8
995	1008	CDH10	cadherin 10
1181	1010	CDH12	cadherin 12
1215	1012	CDH13	cadherin 13
1227	1013	CDH15	cadherin 15

1.4.6 Save results

```
write.table(bed_c,file="ChIPgenes_c.txt",col.names = T,row.names = F,quo
te = F, sep="\t")
```

1.5 Visualization

1.5.1 Remove the unusual chromosome names

```
subset_c <- d0[d0$seqnames %in% paste0("chr", c(1:21, "X", "Y")),]
subset_t <- d11[d11$seqnames %in% paste0("chr", c(1:21, "X", "Y")),]</pre>
```

1.5.2 Turn the strand information back into "."

```
subset_c$strand <- "."
subset_t$strand <- "."</pre>
```

1.5.3 Write to visualization file

```
## Write to visualization file
write('track type=broadPeak visibility=3 db=hg38 name="H3k4me" description=
"H3k4me enrichment"', file = "H3k4me3c_track.broadPeak")
write.table(subset_c, file = "H3k4me3c_track.broadPeak", append=T, sep = "\
t", quote =F, row.names=F, col.names=F)

write('track type=broadPeak visibility=3 db=hg38 name="H3k4me" description=
"H3k4me enrichment"', file = "H3k4me3t_track.broadPeak")
write.table(subset_t, file = "H3k4me3t_track.broadPeak", append=T, sep = "\
t", quote =F, row.names=F, col.names=F)
```

1.6 Differential enrichment analysis

Comparing the peaks identified by each of the treatment against each other. We can analyze what binding regions are present in control samples, but treated samples in PC9 cell lines (and vice versa)

1.6.1 Reading in Peaksets

```
PC9 <- dba(sampleSheet="./PC9.csv")

## SRR11523573   EGFR-mutant control 1 macs

## SRR11523574   EGFR-mutant control 2 macs

## SRR11523575   EGFR-mutant Erlotinib 1 macs

## SRR11523576   EGFR-mutant Erlotinib 2 macs

dbObj <- dba(PC9)
dbObj

## 4 Samples, 40513 sites in matrix (53895 total):

## ID Condition Treatment Replicate Intervals

## 1 SRR11523573 EGFR-mutant control 1 34849
```

```
## 2 SRR11523574 EGFR-mutant control 2 29996
## 3 SRR11523575 EGFR-mutant Erlotinib 1 48111
## 4 SRR11523576 EGFR-mutant Erlotinib 2 46695
```

1.6.2 Affinity binding matrix

Compute count information for each of the peak/regions

```
dbObj <- dba.count(dbObj, bUseSummarizeOverlaps=T)</pre>
## Computing summits...
## Re-centering peaks...
 db0bj
## 4 Samples, 34710 sites in matrix:
                  Condition Treatment Replicate
                                                    Reads FRiP
## 1 SRR11523573 EGFR-mutant
                               control
                                               1 21466626 0.31
## 2 SRR11523574 EGFR-mutant
                                               2 21760854 0.23
                               control
## 3 SRR11523575 EGFR-mutant Erlotinib
                                               1 20643452 0.22
## 4 SRR11523576 EGFR-mutant Erlotinib
                                               2 22949860 0.20
```

1.6.3 Explortry data analysis

```
# PCA pLot
dba.plotPCA(dbObj, attributes=DBA_TREATMENT, label=DBA_ID)
```

PCA: Treatment

Plot correlation heatmap plot(dbObj)

1.6.4 Establishing a contrast

dbObj <- dba.contrast(dbObj,minMembers = 2, categories=DBA_TREATMENT, des
ign = F, block=DBA_REPLICATE)</pre>

1.6.5 Perform the differential enrichment analysis

Perform both DESeq2 and edgeR method for analysis
db0bj <- dba.analyze(db0bj, method=DBA_ALL_METHODS,bGreylist = F)
kable(dba.show(db0bj, bContrast=T))</pre>

Group	Samples	Group2	Samples2	Block1	Blk1Samps	Block2
control	2	Erlotinib	2	1	2	2

 Blk2Samps
 DB.edgeR
 DB.edgeR.block
 DB.DESeq2
 DB.DESeq2.block

 2
 24853
 24797
 10594
 8794

PCA Plot with regions identified as significant with under 0.05 FDR by using DESeq2

dba.plotPCA(dbObj, contrast=1, method=DBA_DESEQ2, attributes=DBA_TREATMENT
, label=DBA_ID, th = 0.05)

PCA: Treatment

Visualizing the results

###

dba.plotVenn(dbObj,contrast=1,method=DBA_ALL_METHODS)

Generating report-based DBA object...

Binding Site Overlaps

control vs. Erlotinib:DB:All

MA PLot
dba.plotMA(dbObj, method=DBA_DESEQ2)

control vs. Erlotinib (10594 FDR < 0.050)

dba.plotMA(dbObj, bXY=TRUE)

control vs. Erlotinib (10594 FDR < 0.050)

pvals <- dba.plotBox(dbObj)</pre>

control vs. Erlotinib

- + indicates sites with increased affinity in control
- indicates sites with increased affinity in Erlotinib

Extract results

#Extract full results from DESeq2

res_deseq <- dba.report(db0bj, method=DBA_DESEQ2, contrast = 1, th=1)
kable(head(res_deseq ,10))</pre>

seqnam			wid	stra		Conc_c	Conc_E		p.val	
es	start	end	th	nd	Conc	trl	rlo	Fold	ue	FDR
19	4175548	4175588	401	*	6.8111	7.7952	1.3045	6.4906	0	0e+
	8	8			71	16	59	57		00
16	2853833	2853873	401	*	5.6237	2.3241	6.5485	-	0	0e+
	6	6			28	53	41	4.224388		00
17	6438604	6438644	401	*	5.7610	6.6293	3.2418	3.3874	0	0e+
	3	3			23	57	82	74		00
2	4307382	4307422	401	*	6.8649	7.5851	5.3610	2.2241	0	0e+
	8	8			33	29	12	17		00
12	8935177	8935217	401	*	8.2067	8.7899	7.2120	1.5779	0	0e+
	7	7			52	48	40	08		00
1	2346565	2346569	401	*	7.4995	8.1079	6.4269	1.6810	0	2e-
	02	02			85	83	03	80		07
4	1154419	1154459	401	*	5.2349	6.1763	1.5829	4.5934	0	2e-
	4	4			13	56	40	16		07
12	1017180	1017220	401	*	6.4512	4.9854	7.1631	-	0	2e-
	8	8			71	63	77	2.177713		07
20	6325428	6325468	401	*	5.2408	1.3339	6.1919	-	0	3e-
	5	5			87	67	79	4.858012		07
7	2324722	2324762	401	*	5.5811	3.5301	6.3956	-	0	4e-
	2	2			91	47	92	2.865545		07

Add chr bbefore chromosome ID
diff_data <- as.data.frame(res_deseq)</pre>

###

```
diff_data$seqnames <- paste("chr", diff_data$seqnames, sep ="")
res_deseq@seqnames <- Rle(diff_data$seqnames)

# Write to file
out <- as.data.frame(res_deseq)
write.table(out, file="./Control_vs_Erlotinib_deseq2.txt", sep="\t", quote
=F, row.names=F)</pre>
```

1.6.6 Extract bed files for further down stream analysis (Visualization)

```
# Create bed files for each keeping only significant peaks (p < 0.05)

Control_enrich <- out %>%
  filter(FDR < 0.05 & Fold > 0) %>%
  dplyr::select(seqnames, start, end)

kable(head(Control_enrich ,10))
```

	seqnames	start	end	
15837	chr19	41755488	41755888	-
13586	chr17	64386043	64386443	
17190	chr2	43073828	43074228	
7658	chr12	89351777	89352177	
3149	chr1	234656502	234656902	
23822	chr4	11544194	11544594	
5607	chr11	65214062	65214462	
26454	chr5	142324370	142324770	
14684	chr19	1748286	1748686	
3834	chr10	47407337	47407737	
<pre>Control_enrich <- Control_enrich[Control_enrich\$seqnames %in% paste0("chr ", c(1:21, "X", "Y")),] # Write to file write.table(Control_enrich, file="./Control_enriched.bed", sep="\t", quote =F, row.names=F, col.names=F)</pre>				
<pre>Erlotinib_enrich <- out %>% filter(FDR < 0.05 & Fold < 0) %>% dplyr::select(seqnames, start, end)</pre>				
<pre>kable(head(Erlotinib_enrich, 10))</pre>				

	seqnames	start	end
11680	chr16	28538336	28538736
6686	chr12	10171808	10172208
20267	chr20	63254285	63254685
29152	chr7	23247222	23247622
16479	chr19	53962010	53962410

	seqnames	start	end
28978	chr7	6536521	6536921
25422	chr5	31854843	31855243
6661	chr12	8662226	8662626
19752	chr20	35263653	35264053
33733	chrKI270728.1	1791370	1791770

```
Erlotinib_enrich <- Erlotinib_enrich[Erlotinib_enrich$seqnames %in% paste
0("chr", c(1:21, "X", "Y")),]
# Write to file
write.table(Erlotinib_enrich, file="./Erlotinib_enriched.bed", sep="\t", q
uote=F, row.names=F, col.names=F)</pre>
```

1.6.7 Explore data separately

```
bed_control <- with(Control_enrich, GRanges(seqnames, IRanges(start, end)</pre>
))
bed_treat <- with(Erlotinib_enrich, GRanges(seqnames, IRanges(start, end)))</pre>
 ranges control <- subsetByOverlaps(hg38,bed control, ignore.strand = T)</pre>
ranges treat <- subsetByOverlaps(hg38,bed treat, ignore.strand = T)</pre>
 symbols_control <- unique(ranges_control@elementMetadata$gene_id)</pre>
bed_control <- AnnotationDbi::select(org.Hs.eg.db, symbols_control, c('SYM</pre>
BOL', 'GENENAME'))
## 'select()' returned 1:1 mapping between keys and columns
 symbols treat <- unique(ranges treat@elementMetadata$gene id)</pre>
bed treat <- AnnotationDbi::select(org.Hs.eg.db, symbols treat, c('SYMBOL'</pre>
, 'GENENAME'))
## 'select()' returned 1:1 mapping between keys and columns
  colnames(bed_control) <- c("Entrez_ID", "Gene_Symbol", "Gene_Name")</pre>
colnames(bed_treat) <- c("Entrez_ID", "Gene_Symbol", "Gene_Name")</pre>
kable(head(bed_control, 10))
```

Entrez_ID	Gene_Symbol	Gene_Name
1	A1BG	alpha-1-B glycoprotein
100009676	ZBTB11-AS1	ZBTB11 antisense RNA 1
100093630	SNHG8	small nucleolar RNA host gene 8
100101440	PMS2P7	PMS1 homolog 2, mismatch repair system component pseudogene 7
100113386	UCKL1-AS1	UCKL1 antisense RNA 1
100113407	TMEM170B	transmembrane protein 170B
100126348	MIR760	microRNA 760
100128055	SMARCA5-AS1	SMARCA5 antisense RNA 1
100128191	TMPO-AS1	TMPO antisense RNA 1

Entrez_ID	Gene_Symbol	Gene_Name		
100128398	LOC100128398	uncharacterized LOC100128398		
kable(head(bed_treat, 10))				

Entrez_ID	Gene_Symbol	Gene_Name
1000	CDH2	cadherin 2
10001	MED6	mediator complex subunit 6
10006	ABI1	abl interactor 1
100126791	EGOT	eosinophil granule ontogeny transcript
100128076	LOC100128076	protein tyrosine phosphatase receptor type H pseudogene
100128590	SLC8A1-AS1	SLC8A1 antisense RNA 1
100128782	ERCC6L2-AS1	ERCC6L2 antisense RNA 1
100128885	LOC100128885	uncharacterized LOC100128885
100128905	LINC01960	long intergenic non-protein coding RNA 1960
100129075	KTN1-AS1	KTN1 antisense RNA 1

1.7 Find significant genes from each contorl and treatemnt ovelapping with other results

```
overlap <- read.csv("./overlap_gene.csv")
find_control <- bed_control[bed_control$Gene_Symbol %in% overlap$x,]
find_treat <- bed_treat[bed_treat$Gene_Symbol %in% overlap$x,]
kable(head(find_control))</pre>
```

	Entrez_ID	Gene_Symbol	Gene_Name
1084	2013	EMP2	epithelial membrane protein 2
1219	22998	LIMCH1	LIM and calponin homology domains 1
1308	23242	COBL	cordon-bleu WH2 repeat protein
1402	23645	PPP1R15A	protein phosphatase 1 regulatory subunit 15A
1588	27242	TNFRSF21	TNF receptor superfamily member 21
1855	347735	SERINC2	serine incorporator 2
kabl	e(head(find	d_treat))	

	Entrez_ID	Gene_Symbol	Gene_Name
944	154810	AMOTL1	angiomotin like 1
1072	2070	EYA4	EYA transcriptional coactivator and phosphatase 4
1160	22998	LIMCH1	LIM and calponin homology domains 1
1328	26153	KIF26A	kinesin family member 26A
1364	27242	TNFRSF21	TNF receptor superfamily member 21
1391	283209	PGM2L1	phosphoglucomutase 2 like 1

APPENDIX E

RESULTS INTEGRATION

Results integration R markdown codes are shown in appendix E

Result Comparison

Jihwan Lim & Inkyun Park

2022-12-23

1. Comparison of Microarray Data and RNAseq Data

1.1 Data Preparation

		AveExp	P.Val		adj.P.		entrez	
X	logFC	r	t	ue	Val	В	_id	
1557371_a	2.6487	6.0130	16.570	0	6.10e-	14.060	158376	
_at	23	27	61		06	04		
1569608_x	3.4469	8.5054	14.353	0	1.54e-	12.494	NA	
_at	56	40	98		05	78		
242009_at	6.1157	7.7571	14.212	0	1.54e-	12.384	6532	
	68	18	28		05	01		
230469_at	4.0587	6.6072	13.916	0	1.54e-	12.147	219790	
	42	92	17		05	98		
206702_at	3.0127	5.6161	13.576	0	1.54e-	11.869	7010	
_	43	95	15		05	11		
225660_at	3.5326	7.8820	13.416	0	1.54e-	11.734	57556	
_	86	41	07		05	83		

kable(head(DEgenes_RNAseq))

Χ	logFC	logCPM	LR	PValue	FDR	entrezIDs
ENSG00000185686	-12.810472	3.5336159	22.92416	1.70e-06	0.0001726	NA
ENSG00000060718	-10.247213	6.3031616	30.16906	0.00e+00	0.0000084	NA
ENSG00000286037	-10.104493	0.8760820	22.00106	2.70e-06	0.0002524	NA
ENSG00000164093	-9.753728	0.8633366	17.10830	3.53e-05	0.0017767	NA
ENSG00000257342	-9.466246	0.2626271	31.72162	0.00e+00	0.0000043	NA
ENSG00000219159	-9.384153	0.2720294	18.22322	1.96e-05	0.0011756	NA

```
# Make all gene names to entrez IDs to compare each other
library("org.Hs.eg.db")

DEgenes_microarray <-
DEgenes_microarray[!duplicated(DEgenes_microarray$entrez_id), ]
entrez_ids_microarray <- na.omit(DEgenes_microarray$entrez_id)
entrez ids RNAseq <- na.omit(DEgenes RNAseq$entrezIDs)</pre>
```

In microarray and RNAseq, we found out 420 genes are statistically significant differential expressed genes. This founding will be further investigated by scatterplot of logFC betwen microarray and RNAseq.

```
# Compare genes
common_genes_MvR <- intersect(entrez_ids_microarray, entrez_ids_RNAseq)
head(common_genes_MvR)
## [1] "219790" "2823" "8436" "104" "2869" "51208"
length(common_genes_MvR)
## [1] 420</pre>
```

1.2 Visualization

Here, we will see trends of DE genes in common.

2. Comparison of Microarray Data, RNAseq Data and Infinum Data

2.1 Data Preparation

```
DEgenes_methylation <- read.csv("DEgenes_methylation.csv", sep=",")</pre>
entrez_ids_infinum <- na.omit(DEgenes_methylation$EntrezIDs)</pre>
common_genes_MvRvI <- Reduce(intersect, list(entrez_ids_microarray,</pre>
                      entrez ids infinum,
                      entrez_ids_RNAseq))
common_genes_MvI <- intersect(entrez_ids_microarray, entrez_ids_infinum)</pre>
common_genes_RvI <- intersect(entrez_ids_RNAseq, entrez_ids_infinum)</pre>
# Gene symbol of common genes in three analysis
sig_gene_symbol <- AnnotationDbi::select(org.Hs.eg.db,</pre>
                                    common_genes_MvRvI,
                                    "SYMBOL",
                                    "ENTREZID")
## 'select()' returned 1:1 mapping between keys and columns
 sig_gene_symbol$SYMBOL
                      "GRK5"
                                    "CLDN18"
##
     [1] "RTKN2"
                                                 "CCBE1"
                                                               "SASH1"
                      "FAM107A"
                                    "SVEP1"
    [6] "TNNC1"
                                                 "SLIT2"
                                                               "ACSS3"
##
## [11] "ADRA1A"
                       "T0X3"
                                    "FAM189A2"
                                                 "SH3GL3"
                                                               "AKAP12"
## [16] "TGFBR3"
                      "TACC1"
                                    "DNAH14"
                                                 "ACADL"
                                                               "CD01"
```

```
##
    [21] "ITGA8"
                       "GRIA1"
                                    "LIMCH1"
                                                  "ITPRIP"
                                                               "LEPR"
##
    [26] "GATA6"
                      "AHNAK"
                                    "AMOTL1"
                                                 "PHACTR1"
                                                               "S0X17"
    [31] "CP"
                      "EMP2"
                                    "LTBP4"
                                                 "SEMA5A"
                                                              "HSPB6"
    [36] "TTC28"
                       "SLIT3"
                                    "ID3"
                                                 "SULF1"
                                                               "MYH10"
    [41] "ADAMTS8"
                       "MCC"
                                    "ADAM12"
                                                 "FXYD1"
                                                               "EBF1"
##
    [46] "SPN"
                      "NET1"
                                    "TNXB"
##
                                                 "KIF26B"
                                                              "ROR1"
                                    "ZFP36L2"
    [51] "TRAF4"
                       "AFF3"
                                                               "GALNT13"
                                                 "MGAT3"
##
                                                 "DES"
                                                              "KIF26A"
##
    [56] "DLC1"
                      "EFEMP1"
                                    "ETV1"
    [61] "HBEGF"
                      "RAPGEF3"
                                    "MAMDC2"
                                                  "HYAL1"
                                                               "NCKAP5"
##
    [66] "BDNF"
                                    "DLL1"
                                                               "SERINC2"
##
                      "C14orf132"
                                                  "CLDN11"
    [71] "UBASH3B"
                                    "CDH3"
                                                  "AQP4"
                                                               "ST6GALNAC5"
                       "SLC22A3"
##
    [76] "CRIM1"
                      "AGAP11"
                                    "ID4"
                                                 "DPP6"
                                                               "PHACTR2"
##
    [81] "FBLN5"
                      "CLU"
                                    "CYBRD1"
                                                 "PTGER4"
                                                               "TNFRSF21"
##
    [86] "LIFR"
                      "LATS2"
                                    "NFIA"
                                                 "FRAS1"
                                                              "NEDD9"
##
##
    [91] "MBP"
                      "EYA4"
                                    "DCN"
                                                 "PGM2L1"
                                                              "BDH1"
                                                 "PPP1R15A"
                       "GAB2"
                                    "CADM1"
   [96] "PTPRN2"
                                                               "C11orf80"
                                                               "COBL"
## [101] "SALL4"
                       "CLDN3"
                                    "NAALAD2"
                                                  "LAMP3"
## [106] "THBD"
                                    "S0CS2"
                       "AOX1"
                                                 "SNX25"
                                                               "LYPD1"
## [111] "CD59"
                      "NHSL1"
```

2.2 Top 4 genes in three analyses

```
sigsigMA <- DEgenes_microarray[which(DEgenes_microarray$entrez_id %in% si</pre>
g_gene_symbol$ENTREZID), ]
sigsigRNA <- DEgenes RNAseq[which(DEgenes RNAseq$entrezIDs %in% sig gene s</pre>
ymbol$ENTREZID), ]
sigsigInf <- DEgenes_methylation[which(DEgenes_methylation$EntrezIDs %in%</pre>
sig gene symbol$ENTREZID), ]
sigsigMA <- sigsigMA[order(sigsigMA$adj.P.Val),]</pre>
sigsigRNA <- sigsigRNA[order(sigsigRNA$FDR),]</pre>
sigsigInf <- sigsigInf[order(sigsigInf$adj.P.Val),]</pre>
topgenes <- 30
sigsig_MvRvI <- Reduce(intersect, list(head(sigsigMA$entrez_id, topgenes),</pre>
                      head(sigsigRNA$entrezIDs, topgenes),
                      head(sigsigInf$EntrezIDs, topgenes)))
mapIds(org.Hs.eg.db, sigsig_MvRvI, "SYMBOL", "ENTREZID")
## 'select()' returned 1:1 mapping between keys and columns
##
       7049
                  3953
                          221692
                                     64321
    "TGFBR3"
                "LEPR" "PHACTR1"
                                    "S0X17"
##
```

2.3 Visualization

DE genes from Infinum

2.4 GSA for common genes in 3 techniques

```
library(org.Hs.eg.db)
library(AnnotationDbi)
library(edgeR)

## Loading required package: limma

##
## Attaching package: 'limma'

## The following object is masked from 'package:BiocGenerics':

##
## plotMA

goana_out <- goana(de=common_genes_MvRvI, species="Hs", trend=T)

goana_out <- goana_out[order(goana_out$P.DE, decreasing=FALSE),]
goana_out$FDR.DE <- p.adjust(goana_out$P.DE, method="BH")
topGOcpg <- topGO(goana_out, ontology="BP", number=Inf)
kable(head(topGOcpg, 10))</pre>
```

	Term	Ont	N	DE	P.DE	FDR.DE
GO:0009653	anatomical structure morphogenesis	ВР	2746	41	0	3.1e-06
GO:0048731	system development	ВР	4345	53	0	3.1e-06
GO:0051239	regulation of multicellular organismal process	ВР	2767	41	0	3.1e-06
GO:0007275	multicellular organism development	ВР	4804	56	0	3.1e-06
GO:0048856	anatomical structure development	ВР	5785	62	0	3.9e-06
GO:0040007	growth	ВР	947	23	0	3.9e-06
GO:0032501	multicellular organismal process	ВР	7480	72	0	3.9e-06
GO:0032502	developmental process	ВР	6355	65	0	5.1e-06
GO:0042221	response to chemical	ВР	4410	52	0	5.9e-06
GO:0032879	regulation of localization	BP	2808	40	0	5.9e-06