

Processos estocásticos

Disciplina ofertada pelo DECAT/UFS

Código: ESTAT0077

Nível: Graduação Carga horária: 60h

Período: 2020.2

Professor responsável e ministrante: Luiz Henrique Dore

Aula 15: Exercícios de fixação

Exercício 1. [1, p. 143] Seja $\{X_n, n=0,1,\cdots\}$ uma cadeia de Markov com espaço de estados $S_{X_n} = \{0,1\}$ e matriz de transição

$$\mathbf{P} = \begin{array}{c} 0 & 1 \\ 1 \begin{bmatrix} 1/2 & 1/2 \\ p & 1-p \end{bmatrix}, \end{array}$$

onde $0 \le p \le 1$.

- a) Suponha que p = 1 e que $X_0 = 0$. Calcule Calcule $E[X_2]$.
- b) Suponha que p=1/2 e que $P[X_0=0]=[X_0=1]=1/2$. Defina o processo estocástico $\{Y(t), t \geq 0\}$ como $Y(t)=tX_{[t]}$, onde [t] é a parte inteira de t.
 - i) Calcule $C_Y(t, t+1)$.
 - ii) O processo $\{Y(t), t \ge 0\}$ é estacionário no sentido amplo? Justifique.
 - iii) Calcule $\lim_{n\to\infty} P[X_n=0].$

Exercício 2. [1, p. 143] Considere uma cadeia de Markov $\{X_n, n = 0, 1, \dots\}$ tendo dois estados 0 e 1. Em cada passo, o processo se move do estado 0 para o estado 1 com probabilidade $p \in (0, 1)$, ou do estado 1 para o estado 0 com probabilidade 1 - p.

- a) Calcule $p_{1,1}^{(10)}$.
- b) Suponha que $X_0 = 0$. Calcule a função de autocorrelação $R_X(1, 13)$.

Exercício 3. [1, p. 144] A matriz de transição \boldsymbol{P} de uma cadeia de Markov, cujo espaço de estados é $\{0,1\}$, é dada por

$$\boldsymbol{P} = \begin{array}{cc} 0 & 1\\ 1 & \begin{bmatrix} 1/2 & 1/2\\ 0 & 1 \end{bmatrix}, \end{array}$$

Calcule $E[X_2]$, supondo que $P[X_0 = 0] = 1/3$.

Exercício 4. [1, p. 144] Seja $\{X_n, n=1,2,\cdots\}$, o processo estocástico definido como $X_n = \sum_{k=1}^n Y_k$, onde Y_1, Y_2, \cdots são variáveis aleatórias independentes e identicamente distribuídas de acordo com uma Bernoulli com parâmetro p=1/3. Então, o processo estocástico $\{X_n, n=1,2,\cdots\}$ é uma cadeia de Markov (ver exemplo 8). Calcule $p_{0.2}^{(3)}$.

Exercício 5. [1, p. 144] Seja $\{X_n, n = 1, 2, \dots\}$, um passeio aleatório tal que

$$p_{i,i+1} = \frac{2}{3}$$
 e $p_{i,i-1} = \frac{1}{3}$, $\forall i \in \{\dots, -2, -1, 0, 1, 2, \dots\}$.

Calcule $E[X_2|X_0=0]$.

Exercício 6. [1, p. 144] Seja $\{X_n, n=0,1,\cdots\}$ uma cadeia de Markov com espaço de estados $S_{X_n}=\{0,1\}$ e matriz de transição

$$\boldsymbol{P} = \begin{array}{c} 0 & 1 \\ 0 & \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \end{array}$$

- a) Calcule $C_X(t_1, t_2)$ em $t_1 = 0$ e $t_2 = 1$, supondo que $P[X_0 = 0] = P[X_0 = 1] = 1/2$.
- b) Encontre $\lim_{n\to\infty} P[X_n=0|X_0=0]$.

Exercício 7. [1, p. 144] Seja $\{X_n, n=1,2,\cdots\}$, o processo estocástico definido como $X_n = \sum_{k=1}^n Y_k$, onde Y_1, Y_2, \cdots são variáveis aleatórias independentes e identicamente distribuídas de acordo com uma Poisson com parâmetro $\lambda = 1$. Então, o processo estocástico $\{X_n, n=1,2,\cdots\}$ é uma cadeia de Markov (ver exemplo 8). Calcule $p_{1,3}^{(4)}$.

Exercício 8. [1, p. 144] O fluxo de um certo rio pode se encontrar em um dos três estados seguintes:

0: fluxo baixo;

1: fluxo médio;

2: fluxo alto.

Suponha que o processo estocástico $\{X_n, n = 1, 2, \dots\}$, onde X_n representa o estado do fluxo do rio no n-ésimo dia, é uma cadeia de Markov. Além disso, suponha que a probabilidade estimada de que o fluxo se mova do estado i para o estado j em um dia é dada pela fórmula

$$p_{i,j} = \frac{1}{2} - |i - j|\theta_i,$$

onde $0 < \theta_i < 1$, para cada $i, j \in \{0, 1, 2\}$.

- a) Calcule a probabilidade de que o fluxo do rio se mova do estado 0 para o estado 1 em um dia.
- b) Qual é a probabilidade de que o fluxo do rio se mova do estado 0 para o estado 2 em dois dias.

Exercício 9. [1, p. 145] Uma máquina é constituída por dois componentes, os quais operam de maneira independente um do outro. O tempo de vida T_i (em dias) do componente i segue uma distribuição exponencial com parâmetro λ_i , i = 1, 2. Suponha que os dois componentes são postos em paralelo e que $\lambda_1 = \lambda_2 = \ln(2)$. Quando a máquina quebra, os dois componentes são substituídos por componentes novos no início do dia seguinte. Seja X_n o número de componentes operando no fim do n-ésimo dia.

- a) Mostre que $\{X_n, n = 0, 1, \dots\}$ é uma cadeia de Markov.
- b) Calcule a matriz de transição de $\{X_n, n = 0, 1, \dots\}$.

Exercício 10. [1, p. 145] Seja $\{X_n, n = 0, 1, \dots\}$ uma cadeia de Markov com espaço de estados $S_{X_n} = \{0, 1, 2, 3, 4\}$ e matriz de transição

$$\mathbf{P} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0, 5 & 0, 2 & 0, 3 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 3 & 0 & 0 & 0 & 1 \\ 4 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}.$$

- a) Calcule a probabilidade de que o processo se moverá do estado 1 para o estado 2 em quatro passos.
- b) Suponha que $X_0 = 1$. Seja N_1 a quantidade de vezes que o estado 1 será visitado, incluindo a visita no tempo inicial. Calcule $E[N_1]$.

Exercício 11. [1, p. 145] Seja $\{X_n, n = 0, 1, \dots\}$ uma cadeia de Markov com espaço de estados $S_{X_n} = \{0, 1, 2, 3\}$ e matriz de transição

$$\mathbf{P} = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 1/2 & 1/2 & 0 & 0 \\ 1/2 & 1/4 & 1/4 & 0 \\ 2 & 0 & 0 & 1/4 & 3/4 \\ 3 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

Assumindo que $X_0 = 1$, calcule a probabilidade de que o estado 0 será visitado antes do estado 3.

Exercício 12. [1, p. 146] Uma cadeia de Markov tem as seguintes probabilidades de transição:

$$p_{0,0} = 1;$$

 $p_{i,i} = p = 1 - p_{i,i-1}$ para cada $i \in \{1, 2, 3, \dots\}.$

Calcule a probabilidade $\rho_{i,0}^{(n)}$ de que a cadeia se moverá do estado i para o estado 0, pela primeira vez, após exatamente n transições, para cada $i \in \{1, 2, \dots\}$.

Referências

[1] M. Lefebvre, Applied stochastic processes, Springer, New York, NY, EUA, 2007.