<u>Phase 2 - Report</u> Arnav Gupta, 200968030, Batch 3

Literature Review:

S.No	Title	Author	Date of	Publisher	Models	Pros/Cons
1	FAKEDETECTOR: Effective	Jiawei	Publishing 10 Aug	https://ar	implemented 1) Deep Diffusive	Pros:
	Fake News Detection with	Zhang,	2019	xiv.org/	Unit Model	To learn the
	Deep Diffusive Neural				2) RNN	latent
	Network	Bowen			3) SVM	representations of
		Dong,				the textual input
		Philip S.				To model the
		Yu				correlation among
						news articles,
						creators and subjects
						Subjects
						Cons:
						Less effective on
						noisier datasets with overlapping
						classes
2	Fake news detection in social media	Kelly Stahl	15 May 2018	https://w	 Naïve Bayes Classifier 	Pros: To compute the
	Social illeula	Starii	2016	ww.csusta n.edu/	2) SVM	likelihood of a
				<u></u>	_, _,	certain outcome
						by using past
						knowledge of it
						Fast and a highly
						accessible
						technique
						Cons:
						Training time with
						SVMs can be high
						Less effective on
						noisier datasets
						with overlapping
						classes
	l	<u> </u>	<u> </u>			<u> </u>

3	Fake News Detection Using Machine Learning approaches: A systematic Review	Syed Ishfaq Manzoor, Dr Jimmy Singla, Nikita	23-25 April 2019	IEEE Xplore Part Number: CFP19J32- ART	1) Naïve Bayes 2) Decision trees 3) SVM 4) Neural Networks 5) Random Forest 6) XG Boost.	Pros: Content cues which include lexical and semantic level of analysis were implemented by the authors Classification of falsified and fabricated news items Cons: Everchanging characteristics and features of fake news in social media networks is posing a challenge in categorization of fake news
4	Fake News detection Using Machine Learning	Jasmine Shaikh, Rupali Patil	19 March 2021	https://ie eexplore.i eee.org/x pl/conho me/93787 00/procee ding	1) SVM 2) Passive Aggressive Classifier (PAC)	Pros: SVM chooses best hyperplane (straight line) considering maximum margin between support vectors for nonlinear data Passive Aggressive Classifier is easy to use and work fast Cons: PAC does not provide high accuracy The algorithm remains passive for a correct classification outcome, and it turns aggressive if

5	Fake News Detection Using Machine Learning Ensemble Methods	M. Irfan Uddin	17 Oct 2020	https://w ww.hinda wi.com/jo urnals/co mplexity/ 2020/888 5861/	1) Logistic Regression 2) KNN 3) Ensemble Learners	it is an incorrect classification, updating and adjusting Pros: Logistic Regression provides the intuitive equation to classify problems into binary or multiple classes
						With Ensemble Learners, a number of models can be trained on different set of parameters to create multiple decision boundaries on randomly chosen data points as training data
						Cons: In KNN, accuracy depends on the quality of the data. Amount of data should also be large.
6	Fake news detection based on news content and social contexts: a transformer-based approach	Shaina Raza, Chen Ding	30 January 2022	https://lin k.springer .com/artic le/10.100 7/s41060- 021- 00302-z	Bidirectional and AutoRegressive Transformer (BART) model	Pros: BART model combines the unique features (bidirectional and autoregressive) of both text generation and temporal modelling, which we require to meet our goals

7	Fake News Detection on the Web: An LSTM-based Approach	Piyush Vyas, Jun Liu, Omar El- Gayar	August 2021	https://ai sel.aisnet. org/	Long Short Term Memory (LSTM)	Cons: Limitation on the input sequence length Pros: Overcomes the long-term dependency problem Cons: Prone to overfitting
8	Fake News Detection: A long way to go	Sunidhi Sharma, Prof. Dilip Kumar Sharma	November 2019	https://w ww.resea rchgate.n et/publica tion/3399 75451 Fa ke News Detection A long way to g	Recurrent Neural Networks	Pros: RNN remembers each and every information through time Cons: Computation is slow
9	Analysis of Classifiers for Fake News Detection	Vasu Agarwala, H.Parvee n Sultanaa, SrijanMal Hotraa, AmitrajitS Arkar	2019	https://pd f.scienced irectasset s.com/ www.scie ncedirect. com	1) Logistic Regression 2) Linear SVM	Pros: Easier and faster binary classifications Cons: Data is erratic and this means that any type of prediction model can have anomalies and can make mistakes
10	Localization of Fake News Detection via Multitask Transfer Learning	Jan Christian Blaise Cruz,	16 May 2020	https://ac lantholog y.org/202 0.lrec- 1.316.pdf	1) Siamese Neural Network 2) Deep Bidirectional Representations (BERT)	Pros: Siamese network could then be trained to differentiate between classes in order to

Julianne			perform
Agatha			classification
Tan,			
			BERT, allows the
Charibet	h		model to
Cheng			compute
			weighted
			importance for
			each token in a
			sequence,
			effectively
			pinpointing
			context reference
			Generative Pre-
			Trained
			Transformers
			(GPT), uses
			encoders
			decoders
			accoucts
		1	

Basic Conclusions Derived:

- 1) SVM is commonly used in fake news detection because it's a good text classifier, combined with other python libraries would give us good accuracy and output.
- 2) Logistic Regression and SVM give good accuracy for the fake/real classification task.
- 3) LSTM, long-term memory makes it powerful to do forecasting or detecting.