

Séries Entières & EDO

Rappels:

•	des	séries	entières	sont	m	Cas	particulier	ole
	Série	de	fonction,	de	le	Lorme:		

DVG CVG incertitude

(3) [Thm: la série entière
$$Z a_n g^n$$
 converge monnalement sur tout ensemble $K \subseteq D(o_1 R)$ fermé et bonné.

Ainsi:
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}{2}$

On a Convergence mormale donc en peut intègre à l'intérieure de J-1,1[, terme - a - terme: $\int_{-\infty}^{\infty} \ln \left(1 + n^2 \right) \int_{-\infty}^{\infty} = \sum_{m=n}^{\infty}$ $\int_{0}^{\infty} (-1)^{m} \frac{a^{2m}}{n} dx$ => calculs ... $\Rightarrow \frac{1}{2} \left(\frac{1}{1+x^2} \right) - \frac{1}{2} \left(\frac{1}{2} + \frac{1$ $\| u_m(\beta)\|_{\infty,(-n,1)} = \frac{1}{m(2n+n)}$ (3) $\frac{1}{2}$ $\frac{1}$ → CUG monmale sur [-1, 1]. S(x1 est continue sur [-1,1) $\Rightarrow S(1) = \lim_{x \to 1} S(x) = \lim_{x \to 1} \left(x \ln \left(1 + x^2 \right) - 2x + 2 \operatorname{Anctan} x \right)$ $= \ln(2) - 2 + \frac{71}{2}$ $= \sum_{m=1}^{+\infty} \frac{(2n+1)^{m+1}}{m(2n+1)}$ $+ \frac{1}{2} + \frac{$ D'04