Zeit-Diskretisierung von Gradientenflüssen

1 Approximierte Gradientenflüsse

Betrachte

$$\frac{dX}{dt} = -\operatorname{grad} E(X), \qquad X(0) = X^0 \tag{1.1}$$

für $X(t) \in \mathbb{R}^k$ für festes $t \in [0, \infty)$ und ein Energie-Funktional $E: \mathbb{R}^k \to \mathbb{R}$.

Definition 1.1. Der approximierte Gradientenfluss (X_{τ}) mit Anfangswert X^0 für das Energie-Funktional E in einem metrischen Raum wird folgendermaßen konstruiert:

Sei $\tau > 0$ die zeitliche Schrittweite, $n \in \mathbb{N}_0$, dann ist die Folge $(X_{\tau}^n)_{n \geq 0}$ gegeben durch: $X_{\tau}^0 := X^0$,

 X_{τ}^{n+1} ist ein Minimierer des Minimerungsproblems

$$\min_{X} \left[E(X) + \frac{\operatorname{dist}(X_{\tau}^{n}, X)^{2}}{2\tau} \right]$$
 (1.2)

Dann sei X_{τ} auf \mathbb{R}^k_+ als stückweise konstante Funktion mit Wert $X_{\tau}(t) = X_{\tau}^n$ für $t \in [n\tau, (n+1)\tau)$ definiert.

Sei $\|\cdot\|$ die euklidische Norm, $E(X) \geq C$, $E(X^0) \leq \infty$ und $(X_{\tau}^n)_{n \in \mathbb{N}_0}$ wie in Definition (1.1). Dann sind folgende Aussagen erfüllt:

Lemma 1.2 (Energy estimate).

$$\sup_{n>0} E(X_{\tau}^n) \le E(X^0)$$

Lemma 1.3 (Total square distance estimate).

$$\sum_{n \ge 0} \|X_{\tau}^n - X_{\tau}^{n+1}\|^2 \le 2\tau (E(X^0) - \inf_X E(X))$$

Lemma 1.4 (Hölder 1/2-Abschätzung für X_{τ}).

 $F\ddot{u}r \ s < t \ qilt$:

$$||X_{\tau}(s) - X_{\tau}(t)||^{2} \le \left[\frac{t-s}{\tau} + 1\right] \sum_{\frac{s}{\tau} \le n \le \frac{t}{\tau}} ||X_{\tau}^{n} - X_{\tau}^{n+1}||^{2} \le 2(E(X^{0}) - \inf_{X} E(X))[(t-s) + \tau].$$

Corollar 1.5. Sei $E \in \mathcal{C}^1$. $X_{\tau}^m, X_{\tau}^{m+1} \subset (X_{\tau}^n)_{n \geq 0}$ erfüllen für $\omega \in \mathbb{R}^k$:

$$-\operatorname{grad} E(X_{\tau}^{m+1}) \cdot \omega = \frac{X_{\tau}^{m} - X_{\tau}^{m+1}}{\tau} \cdot \omega \tag{1.3}$$

2 Der approximierte Gradientenfluss der linearen Fokker-Planck-Gleichung

Definition 2.1. Die lineare Fokker-Planck-Gleichung mit Potential $V(x) \in \mathcal{C}^2(\mathbb{R}^k), \mathbb{R}^k \to [0, \infty), \text{ und Anfangswert } \rho_0 \in P_{ac}(\mathbb{R}^k) \text{ ist gegeben durch:}$

$$\frac{\partial \rho(x,t)}{\partial t} = \Delta \rho(x,t) + \nabla \cdot (\rho(x,t)\nabla V(x)),$$

$$\rho(x,0) = \rho_0(x).$$
(2.1)

Sei T > 0. $\rho(\cdot, t) \in P_{ac}(\mathbb{R}^k)$ erfüllt die (LFP) im schwachen Sinne, falls für alle $\psi \in \mathcal{C}_c^{\infty}(\mathbb{R}^k)$ gilt:

$$\int_{\mathbb{R}^k} \int_0^T (\rho \Delta \psi + \rho \nabla V \cdot \nabla \psi - \rho \psi_t) dt dx = \int \rho_0 \psi(x, 0) dx$$

Definition 2.2. Für eine Wahrscheinlichkeitsdichte $\rho(x) \in P_{ac}(\mathbb{R}^k)$ und ein Potential $V(x) \in L^1(\mathbb{R}^k)$ sei das **Freie Energie Funktional** $E(\rho)$ gegeben durch:

$$E(\rho) := \int_{\mathbb{R}^k} \rho \log \rho \, dx + \int_{\mathbb{R}^k} \rho V dx \tag{2.2}$$

Theorem 2.3. Sei $V(x) \in \mathcal{C}^2(\mathbb{R}^k)$ ein Potential, sodass $V(x) = O(|x|^2)$ für $x \to \infty$. Sei $\rho_0 \in P_{ac}(\mathbb{R}^k)$ derart, dass für das Freie Energie Funktional gilt $E(\rho_0) < \infty$. Sei $\tau > 0$.

Sei außerdem $\rho_{\tau}(x,t)$ der (Def. 1.1) approximierte Gradientenfluss für $E(\rho)$ bzgl. der quadratischen Wassersteinmetrik. Dann gilt:

$$\rho_{\tau}(x,t) \rightharpoonup \rho(x,t) \text{ in } L^{1}(\mathbb{R}^{k}) \text{ für } \tau \to 0,$$

wobei $\rho(x,t) \in C^{\infty}(\mathbb{R}^k \times (0,\infty))$ die eindeutige Lösung der linearen Fokker-Planck-Gleichung mit Anfangswert ρ_0 ist.