Introduction to Representation Theory: Math 18.712 Caitlin Beecham

[1.20] Let V be a nonzero finite dimensional representation of an algebra A. Show that it has an irreducible subrepresentation. Then show by example that this does not always hold for infinite dimensional representations.

Either V is irreducible or it is not. If not, then it has some proper non-trivial subrepresentation V_1 of dimension $dim(V_1) < dim(V)$. We continue in this fashion finding subrepresentations

$$V_i \subseteq V_{i-1} \subseteq V_1 \subseteq V$$

until V_i is irreducible which we know is possible for the following reason. We note that any representation of dimension 1 is irreducible and indeed the dimension decreases by at least one at each step, or written precisely that $dim(V_i) \leq dim(V_{i-1}) - 1$, meaning that $1 \leq dim(V_i) \leq dim(V) - i$. So, indeed provided that dim(V) > 0 this process will make sense and terminate since $1 \leq dim(V) - i$ means that $i \leq dim(V) - 1 < \infty$.

[1.21] Problem 1.21. Let A be an algebra over a field k. The center Z(A) of A is the set of all elements $z \in A$ which commute with all elements of A. For example, if A is commutative then Z(A) = A.

(a) Show that if V is an irreducible finite dimensional representation of A then any element $z \in Z(A)$ acts in V by multiplication by some scalar $\chi_V \in k$. Show that $\chi_V : Z(A) \to k$ is a homomorphism. It is called the central character of V.

This makes intuitive sense since the center of the $GL_n(\mathbb{R})$ for instance is the set of scalar multiples of the identity. Now I provide a formal proof.

First, I note that we also need the field k to be algebraically closed otherwise taking $A = \mathbb{C}$ (as an \mathbb{R} -algebra) we note that Z(A) = A. Then, one notes that V = A is a 2-dimensional representation over $k = \mathbb{R}$ (not algebraically closed). Indeed, taking the regular representation and the element $g = 1 + i = (1, 1) \in Z(A)$, we note that g acts on an element $v = (a, b) \in V$ by

$$(a,b) \mapsto^g (a-b,a+b),$$

and clearly taking (a, b) = (0, 1) we see that

$$(a-b, a+b) = (-1, 1) \neq \lambda(0, 1)$$

for any $\lambda \in k = \mathbb{R}$.

However, assuming that k is algebraically closed, we proceed to prove the statement. Indeed, we cite Corollary 1.17, noting that for any $z \in Z(A)$ we have that $\rho(z)$ is an intertwining operator within $\rho(A)$ since for any $a \in A$ to verify $\rho(z)$ is an intertwining operator we need to show that

$$(\rho(z))(\rho(a)v)) = \rho(a)(\rho(z))(v),$$

for all $v \in V$ and all $a \in A$.

Indeed, we note that

$$(\rho(z))(\rho(a)v)) = \rho(za)v = \rho(az)v = \rho(a)\rho(z)v.$$

Then Corollary 1.17 gives the result.

(b) Show that if V is an indecomposable finite dimensional representation of A then for any $z \in Z(A)$ the operator $\rho(z)$ by which z acts in V has only one eigenvalue $\chi_V(z)$, equal to the scalar by which z acts on some irreducible subrepresentation of V. Thus $\chi_V: Z(A) \to k$ is a homomorphism, which is again called the central character of V.

First, I show that if ρ has an eigenvalue then it is unique and then I will show at the end that it has an eigenvalue, which is clearly true by virtue of k being algebraically closed.

Suppose there exist ρ_1, ρ_2 such that

$$\rho(z)v_1 = \lambda_1 v_1$$

and

$$\rho(z)v_2 = \lambda_2 v_2$$

for some $\lambda_1, \lambda_2 \in k$ and $v_1, v_2 \in V$ with $v_1, v_2 \neq 0$.

Now, for this fixed $z \in A$ let $W = \{v \in V : \rho(z)v = \lambda_1 v\}$. This is a vector subspace.

I would like to show that W is a subrepresentation, namely that for all $w \in W$ and all $a \in A$ we have that $\rho(a)w \in W$.

Assume not. Assume that there exists $w \in W$ such that $\rho(a)w \notin W$ meaning that

$$\rho(z)(\rho(a)w) \neq \lambda_1(\rho(a)w).$$

Then note that $a = z^{-1}az$ where $z \in Z(A)$ is the same fixed z from above.

So, $\rho(a) = \rho(z^{-1}az)$ meaning that

$$\rho(a)w = \rho(z^{-1}az)w.$$

Now multiplying on both sides by $\rho(z)$ we get

$$\rho(z)\rho(a)w = \rho(z)\rho(z^{-1}az)w$$

which means that

$$\rho(z)\rho(a)w = \rho(z)\rho(z^{-1}a)\rho(z)w = \rho(z)\rho(z^{-1}a)\lambda_1w = \rho(zz^{-1})\rho(a)\lambda_1w$$
$$= \lambda_1\rho(e)\rho(a)w = \lambda_1\rho(a)w.$$

We now have a contradiction since the above implies that

$$\rho(z)(\rho(a)w) = \lambda_1(\rho(a)w),$$

which means by definition that $\rho(a)w \in W$. So, indeed W is a subrepresentation.

Now, either W is irreducible or it is not. If not, then as shown in Exercise 1.20, we know that it contains some irreducible representation W'. Now, indeed we have shown that for any $z \in V$ one has that $\rho(z)$ has only one eigenvalue equal to the scalar by which z acts on W'.

Finally, we show that $\rho(z)$ actually has an eigenvalue $\lambda \in k$. Since k is algebraically closed, indeed it does since all roots of the characteristic polynomial belong to k.

So, indeed we have shown the desired result where λ which exists as argued above is an eigenvalue and we take $W_0 = \{w \in V : \rho(z)v = \lambda z\}$. Either W_0 is irreducible or it is not. If not we follow the same procedure above Equation we find W_i irreducible such that $\rho(z)w = \lambda w$ for all $w \in W_i$.

(c) Does $\rho(z)$ in (b) have to be a scalar operator?

No, it does not. For instance, take $A = \mathbb{Z}/2\mathbb{Z}a + \mathbb{Z}/2\mathbb{Z}b$ as a $\mathbb{Z}/2\mathbb{Z}$ algebra where a, b are indeterminants and we declare ab = ba and that $\overline{0} = 0a + 0b$. Then, define $\rho : A \to GL(\mathbb{R}^2)$ by

$$\rho(0) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

$$\rho(1a+0b) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

and

$$\rho(1a+1b) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

Since A is commutative one has that Z(A) = A. So, let z = 1a + 1b. We see that

$$\rho(1a+1b) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

is not a scalar operator since

$$\rho(1a+1b)(1,1)^T = (0,1)^T$$

but

$$(1,1)^T \neq c(0,1)^T$$

for any $c \in \mathbb{Z}/2\mathbb{Z}$.

I provide another slightly different example in which A is an algebra over an infinite field. Namely, take $A = \mathbb{Q} + \mathbb{Q}x$ where x is an indeterminant and we stipulate that $x^2 = 0$. (So really this is just the ring $\mathbb{Q}[x]/(x^2)$).

Then, let $\rho: A \to GL(\mathbb{R}^2)$ be defined by

$$\rho(a+bx) = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}.$$

Indeed, we see that

$$\rho((a+bx)(c+dx)) = \rho(ac + (ad + bc)x)$$

$$= \begin{pmatrix} ac & ad + bc \\ 0 & ac \end{pmatrix}$$

$$= \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \begin{pmatrix} c & d \\ 0 & c \end{pmatrix}$$

$$= \rho(a+bx)\rho(c+dx),$$

which shows that ρ is a homomorphism of algebras.

However, $\rho(1+x)$ is not a scalar operator since in fact, similar to before, we obtain

$$\rho(1+x) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

and again

$$\rho(1+x)(0,1)^T = (1,1)^T \neq \alpha(0,1)^T$$

for any $\alpha \in \mathbb{Q}$.

Now, say we require k to be algebraically closed and ask whether one can still find a counterexample. Indeed we can. Take $A = \mathbb{C}[x]/(x^n)$ as a \mathbb{C} algebra and let $\rho : \mathbb{C}[x]/(x^n) \to \mathbb{C}^n$ be defined by

$$\rho(x) = J(2, n).$$

First, I verify that ρ is a homomorhism of algebras. Namely, I note

$$\begin{split} \rho((a+bi)(c+di)) &= \rho(ac-bd+(ad+bc)i) \\ &= \begin{pmatrix} (ac-bd) & (ad+bc) \\ -(ad+bc) & (ac-bd) \end{pmatrix} \\ &= \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \begin{pmatrix} c & d \\ -d & c \end{pmatrix} \end{split}$$

Once again $Z(\mathbb{C}) = \mathbb{C}$. Take z = i. Then,

$$\rho(i) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

and note that

$$\rho(i)(1,0)^T = (0,-1)^T \neq \alpha(1,0)^T$$

for any $\alpha \in \mathbb{C}$.

We must also verify however that ρ , \mathbb{C}^2 is an indecomposable representation.

It suffices to show that it is irreducible, which it is. Otherwise, there would exist some non-trivial proper subrepresentation $W \subseteq V$, which must be of dimension dim(W) = 1 since dim(V) = 2. So, it must be of the form W = span(w) such that

$$\rho(a+bi)w \in W$$

for all $a, b \in \mathbb{R}$, meaning that

$$\rho(a+bi)w = (\alpha+\beta i)w$$

for some $\alpha, \beta \in \mathbb{R}$. Then, writing $w = (w_1, w_2)^T$ for some $w_1, w_2 \in \mathbb{C}$ gives

$$\rho(a+bi)(w_1, w_2)^T = (\alpha + \beta i)(w_1, w_2)^T$$

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix} (w_1, w_2)^T = (\alpha + \beta i)(w_1, w_2)^T$$

$$\begin{pmatrix} aw_1 + bw_2 \\ -bw_1 + aw_2 \end{pmatrix} = \begin{pmatrix} (\alpha + \beta i)w_1 \\ (\alpha + \beta i)w_2 \end{pmatrix}^T$$

which means that

$$aw_1 + bw_2 = \alpha w_1 + \beta i w_2$$

and

$$-bw_1 + aw_2 = \alpha w_2 + \beta i w_2.$$

The above statement must hold for all $a, b \in \mathbb{R}$ so take (a, b) = (0, 1) meaning a + bi = i). If (a, b) = (a, 0) then

$$\rho(i) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

and indeed the eigenvalues of $\rho(i)$ are the roots of x^2+1 which are $\lambda_1=i$ and $\lambda_2=-i$ with corresponding eigenvectors $v_1=(-i,1)^T$ and $v_2=(i,1)^T$, which we note form a basis for \mathbb{C}^2 . If ρ is reducible, that would require some non-trivial stable subspace $U\subseteq V$, which would need to be one-dimensional. Then, the requirement that dim(U)=1 implies that U=Span(u) for some $u\in V$.

Note that $u \in \{v_1, v_2\}$. Otherwise, if $u = c_1 u_1 + c_2 u_2 = ((-c_1 + c_2)i, c_1 + c_2)^T$ for some $c_1, c_2 \in \mathbb{C}$ with $c_1, c_2 \neq 0$, then

$$\begin{split} \rho(i)(u) &= \rho(i)(((-c_1+c_2)i,c_1+c_2)^T) \\ &= c_1(\rho(i)(u_1)) + c_2(\rho(i)(u_2)) \\ &= c_1\lambda_1u_1 + c_2\lambda_2v_2 \\ &= c_1(i(-i,1)^T) + c_2(-i(i,1)^T) \\ &= c_1(1,i)^T + c_2(1,-i)^T \\ &= (c_1+c_2,(c_1-c_2)i)^T. \end{split}$$

If span(U) is stable under the action of A, then that would imply that

$$\begin{pmatrix} c_1 + c_2 \\ (c_1 - c_2)i \end{pmatrix} \in Span\left(\begin{pmatrix} (-c_1 + c_2)i \\ c_1 + c_2 \end{pmatrix}\right)$$

meaning that

$$\begin{pmatrix} c_1 + c_2 \\ (c_1 - c_2)i \end{pmatrix} = \begin{pmatrix} d(-c_1 + c_2)i \\ d(c_1 + c_2) \end{pmatrix}$$

for some $d \in \mathbb{C}$.

Then, that implies that

$$c_1 + c_2 = di(-c_1 + c_2) \tag{1}$$

$$c_1 - c_2 = -di(c_1 + c_2). (2)$$

Then, adding the above equations gives

$$2c_1 = -2c_1di$$

implying that $c_1 = 0$, which cannot happen by assumption, or that 1 = -di meaning that d = i. Now, substituting back into our original pair of equations 1 and 2 gives

$$c_1 + c_2 = c_1 - c_2$$
$$c_1 - c_2 = c_1 + c_2$$

which then implies that $c_2 = -c_2$ or that $c_2 = 0$, which contradicts our assumption that $u = c_1v_1 + c_2v_2$ with $c_1, c_2 \neq 0$.

Thus, $U = Span(v_1)$ or $U = Span(v_2)$. However, neither subspace is stable under the action of A. Namely, take a + bi = 2 + i. Then,

$$\rho(2+i) = \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$$

so that

$$\rho(2+i)v_1 = \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix} v_1$$
$$= \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix} (-i, 1)^T$$
$$= \begin{pmatrix} 1 - 2i \\ 2 - i \end{pmatrix}$$

Now, if we were to have $\rho(2+i)w_1 \in W_1$ we would need $r+si \in \mathbb{C}$ such that

$$1 - 2i = -i(r + si)$$

and

$$2 - i = r + si$$

which means we would have r=2 and s=-1 implying that

$$1 - 2i = -i(2 - i) = -2i + i^2 = -2i - 1,$$

which is a contradiction. So, indeed we see that this representation is in fact irreducible and consequently also indecomposable, which means this is a counterexample. So, even if we require the field k to be algebraically closed, $\rho(z)$ is not necessarily a scalar operator.

[1.22]

Let A be an associative algebra, and V a representation of A. By $End_A(V)$ one denotes the algebra of all homomorphisms of representations $V \to V$. Show that $End_A(A) = A^{op}$, the algebra A with opposite multiplication. I assume that $\rho(a)(b) = ab$ for all $a, b \in A$ is the regular representation.

We want to construct a bijection between $\{\psi \in GL(A) : \psi(\rho(a)b)\} = \rho(a)\psi(b)\forall a,b \in A\}$ (Condition (*)) and A. Let's try

$$\tau: \langle A, \cdot_{op} \rangle \to GL(A)$$
$$\tau: a \mapsto \rho(a)$$

for each $a \in A$. Now, is this a homomorphism of algebras? Yes, namely we have that $\tau(c_1a+c_1b)=\rho(c_1a+c_2b)=c_1\rho(a)+c_2\rho(b)$. Also, note that $\rho(a)$ satisfies Condition (*) since $(\rho(\rho(a)b))(c)=\rho(ab)(c)=(ab)*c=a*(bc)=a*\rho(b)(c)=\rho(a)(\rho(b)(c))$. Also, we have that for all $c \in A$ that $\tau(ab)(c)=\rho(ab)(c)=(ab)*(c)=\rho(a)(\rho(b)(c))=\tau(a)(\tau(b)c)$. Now since multiplication in the endomorphism ring of two endomorphisms f,g is defined by (f*g)(c)=g(f(c)) we have that $\tau(ab)=\tau(b)*\tau(a)$ proving the claim.

[1.23]

Prove the following "Infinite dimensional Schur's lemma" (due to Dixmier): Let A be an algebra over \mathbb{C} and V be an irreducible representation of A with at most countable basis. Then any homomorphism of representations $\phi: V \to V$ is a scalar operator.

First, I show that D is at most countable dimensional. To do so, I exhibit a countable spanning set of an even larger space namely End(V).

Namely, if $\{w_n\}_{n\in\mathbb{N}}$ is a countable basis for V (we may assume the basis is countably infinite since if it is finite there is nothing to show). Then consider the set $S=\cup_{i\in\mathbb{N}}\cup_{j\in\mathbb{N}}f^i_j$ where $f^i_j\in End(V)$ is the endomorphism defined by $f^i_j:v_i\mapsto v_j$ and $f^i_j:v_k\mapsto 0$ if $k\neq i$. Then, note that any endomorphism $g:V\to V$ is defined by $g(v_i)$ for each $i\in\mathbb{N}$ and since v_i spans V one has that $g(v_i)=\sum_{j\in\mathbb{N}}a^i_jv_j$ and thus $g=\sum_{i\in\mathbb{N}}\sum_{j\in\mathbb{N}}a^i_jf^i_j$. Thus since $|S|=|\cup_{n\in\mathbb{N}}\mathbb{N}|=|\mathbb{N}|$ one has that $dim(End(V))\leq |\mathbb{N}|$ and since $End_A(V)\subseteq End(V)$ the claim follows.

Then, assume that ϕ is not a scalar and as the hint suggests I show that $\mathbb{C}(\phi)$ is a transcendental extension of $\mathbb{C}id \subseteq D$. Otherwise it is algebraic meaning that there exists $p(x) = \sum_{i=0}^{n} (a_i i d) x^i$ such that $p(\phi) = 0$. However, since \mathbb{C} is alebgraically closed we know that p(x) splits into linear factors $p(x) = \prod_{i=0}^{n} (x - \lambda_i i d)$ meaning that $\phi = \lambda_i i d$ for some $i \in [0:n]$, a contradiction. Thus, $\mathbb{C}(\phi)$ is a transcendental extension and is thus uncountably infinite dimensional as vector space over \mathbb{C} . However, that provides a contradiction as $\mathbb{C}(\phi) \subseteq D$ which is at most countable dimensional. Thus, ϕ is a scalar operator.

[1.24]

Let $A = k[x_1, ..., x_n]$ and $I \neq A$ be any ideal in A containing all homogenous polynomials of degree $\geq N$. Show that A/I is an indecomposable representation of A.

Note that $1+I\in A/I$ is cyclic and in particular $\rho(A)(1+I)=A/I$ meaning that A/I is not decomposable since if it were of the form $A/I=V\oplus W$ with V,W non-empty subrepresentations meaning that $\rho(a)V\subseteq V$ and $\rho(a)W\subseteq W$. Now, without loss of generality one has that $1+I\in V$ and then however since $W\neq\emptyset$ there exists $f+I\in W$ and then $\rho(f)(1+I)=f+I\in W$, a contradiction since $1+I\in V$.

[1.25]

Let $V \neq 0$ be a representation of A. We say that a vector $v \in V$ is cyclic if it generates V, i.e., Av = V. A representation admitting a cyclic vector is said to be cyclic. Show that

(a) V is irreducible if and only if all nonzero vectors of V are cyclic.

If all nonzero $v \in V$ are cyclic, then V is irreducible. otherwise, if there existed a subrepresentation W with $0 \subsetneq W \subsetneq V$, then taking any $w \in W$ we have that $\{\rho(a)w : a \in A\} = V \supsetneq W$ a contradiction to W a subrepresentation. Now, to show the converse we show that if some non-zero

vector $v \in V$ is NOT cyclic then, V is reducible. In particular, if one has such v let W = Av and note that W is closed under the action of A and is thus a subrepresentation. Since $Av \neq V$ and $v \neq 0$ implying $Av \neq 0$ we have that $0 \neq W \subseteq V$ is a subrepresentation.

(b) V is cyclic if and only if it is isomorphic to A/I, where I is a left ideal in A.

Define the map $\psi_v: A \to V$ by $\psi_v(a) = \rho(a)(v)$. Note that by the Ring Isomorphsm Theorem we have that $Im(\psi_v) \cong A/ker(\psi_v)$. Since $Im(\psi_v) = V$ and since $ker(\psi_v)$ is an ideal by definition of a ring isomorphism we have that $V \cong A/I$ where $I = ker(\psi_v)$ if V is cyclic. Now, if $V \cong A/I$, then

(c) Give an example of an indecomposable representation which is not cyclic.

Note that one has an obvious isomorphism $\phi: A^* \to \mathbb{R}^3$ given by $\phi(f) = (f(1), f(x), f(y))^T$. Then, by definition of ρ one can write

$$\rho(1) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

$$\rho(x) = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

and

$$\rho(y) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

Note that A^* is not cyclic since if one did have a generator f with $\phi(f) = (f(1), f(x), f(y))^T$ then of course one would need $(f(1), f(x), f(y))^T \neq (0, 0, 0)^T$, and then one has that $\rho(1)(\phi(f)) = (f(1), f(x), f(y))^T$, $\rho(x)(\phi(f)) = (f(x), 0, 0)^T$, and $\rho(y)(\phi(f)) = (f(y), 0, 0)^T$. Also, note that $A = \{k_1 + k_2x + k_3y : k_i \in k \forall i \in [3]\}$. Thus,

$$\{\rho(a): a \in A\} = \{ \begin{pmatrix} k_1 & 0 & 0 \\ k_2 & k_1 & 0 \\ k_3 & 0 & k_1 \end{pmatrix} : k_i \in k \forall i \in [3] \}.$$

In order for A^* to be cyclic we would need $f \in A^*$ such that $\rho(A)f = A^*$. Now, if one had such f then certainly $f \not\equiv 0$. If f(1) = 0 then note that $(1,0,0)^T \not\in \rho(A)f$ and thus f is not a cyclic vector. Now, if another $v = (f(1), f(x), f(y))^T$ with $f(0) \not\equiv 0$ is a generator then note

$$\{\rho(a)f:a\in A\}=\{\begin{pmatrix}k_1&0&0\\k_2&k_1&0\\k_3&0&k_1\end{pmatrix}\begin{pmatrix}f(1)\\f(x)\\f(y)\end{pmatrix}:k_i\in k\forall i\in[3]\}=\{\begin{pmatrix}k_1f(1)\\k_2f(1)+k_1f(x)\\k_3f(1)+k_1f(y)\end{pmatrix}:k_i\in k\forall i\in[3]\}.$$

If $g \in \rho(A)f$ for arbitrary $g \in A^*$ then note that $k_1 = g(1)/f(1)$ meaning that $k_2 = (g(x) - g(1)/f(1)f(x))/f(1)$ and $k_3 = (g(y) - g(1)/f(1)f(y))/f(1)$ which I think would show that A^* is cyclic simply taking $f \in A^*$ to be $f: 1 \mapsto 1$, $f: x \mapsto 0$, $f: y \mapsto 0$ then for any $g \in A^*$ we simply take $k_1 = g(1), k_2 = g(x), k_3 = g(y)$. I may need to come back and review this. However, for now I'll think of another example. Let

$$M = \{ M_{a,b,c} := \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix} : a,b,c \in \mathbb{R} \}$$

Note that M is an algebra since M is closed under matrix multiplication. Also, note that if one takes the representation $V = \mathbb{R}^3$ with $\rho(M)v = Mv$ then one notes that V is indecomposable since otherwise

it has the form $V = U \oplus W$ with U irreducible. Now, without loss of generality dim(U) = 1. One wishes to find all 1-dimensional subrepresentations of V which would be of the form $U = \{k(x, y, z)^T : k \in \mathbb{R}\}$ for some fixed $(x, y, z)^T \in \mathbb{R}^3$ which would imply that

$$\left\{ \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix} \right\} \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \left\{ \begin{pmatrix} \lambda x \\ \lambda y \\ \lambda z \end{pmatrix} \right\}$$

for all $a, b, c \in \mathbb{R}$ meaning

$$\left\{ \begin{pmatrix} ay + bz \\ cz \\ 0 \end{pmatrix} = \left\{ \begin{pmatrix} \lambda_{a,b,c}x \\ \lambda_{a,b,c}y \\ \lambda_{a,b,c}z \end{pmatrix} \right\}$$

meaning $\lambda_{a,b,c}z=0$ which implies that $\lambda_{a,b,c}=0$ or z=0. First I handle the case in which $z\neq 0$ which implies that $\lambda_{a,b,c}=0$ which implies that cz=0 meaning c=0, a contradiction since the above equation in fixed (x,y,z) but varied $\lambda_{a,b,c}$ must hold for all $a,b,c\in\mathbb{R}$.

If z=0 we have that $cz=\lambda_{a,b,c}y=0$ and also as long as $x\neq 0$ we have $\lambda_{a,b,c}=\frac{ay}{x}$ and thus $M(x,y,0)^T=(\frac{ay}{x}x,\frac{ay}{x}y,0)^T=(ay,cz,0)^T=(ay,0,0)^T$ which implies that $\frac{ay}{x}y=0$ meaning $y^2=0$ meaning y=0 (since $\mathbb R$ has no zero divisors) since this holds for all $a\in\mathbb R$ (provided z=0) which then means that $(x,y,z)^T=(x,0,0)^T$ with $x\neq 0$. Indeed this is an irreducible subrepresentation. However, V does not decompose as $U\oplus W$ since $M_{1,1,1}(0,1,0)^T=(1,0,0)^T\in U$ but $(0,1,0)^T\notin U$. Finally, note that $V=\mathbb R^3$ is not cyclic since $(0,0,1)^T\in V$ but $(0,0,1)^T\neq M_{a,b,c}(x,y,z)^T$ for all $a,b,c,x,y,z\in\mathbb R$.

1.26

Let A be the Weyl algebra, generated by two elements x, y with the relation

$$yx - xy - 1 = 0.$$

(a) If chark = 0, what are the finite dimensional representations of A? What are the two-sided ideals in A?

If char(k) = 0 then there are no finite-dimensional representations of A since yx - xy - 1 = 0 implies that $\chi(\rho(yx) - \rho(xy) - I) = \chi(\rho(yx)) - \chi(\rho(xy)) - \chi(I) = -\chi(I) = 0$ implies that $\chi(I) = dim(V) = 0$ meaning dim(V) = 0 meaning that V = 0.

For the second part, consider a non-zero ideal $I \subseteq A$, meaning there exists $p(x,y) \in I$.

Otherwise, p(x,y) is of course a sum of terms $p(x,y) = \sum_{i=0}^{N} a_i \prod_{j=0}^{n_i} x^{r_j^i} y^{s_j^i} =: \sum_{i=0}^{N} t_i(x,y)$ where $r_j^i, s_j^i \in \{0,1\}$ and $r_j^i \neq s_j^i$. I claim that we may write p(x,y) in the form $p(x,y) = \sum_{i=0}^{M} b_i y^{s_i} x^{r_i}$. I prove so by induction on the quantity $M := \max_{i \in [0:N]} (w(t_i(x,y)))$ where $w(t_i(x,y)) := \sum_{i=0}^{N} t_i(x,y)$ is $t_i = t_i(x,y)$.

 $w(t_i(x,y)) := \sum_{j \in [1:n_i]: s_j^i = 1 \text{ and } r_l^i = 1 \text{ for some } l < j} |\{l < j : r_l^i = 1\}| \text{ i.e. the sum over all } y's \text{ that appear not grouped to the left in the } ith \text{ term or the number of } x's \text{ that appear before them. Note for clarity that } M \text{ is a function of our expression of } p(x,y). \text{ Indeed } p(x,y) \text{ is not changing throughout the proof below. So, in our base case where } M = 0 \text{ there is nothing to prove. So, we may assume that } M \geq 1.$ Then, we note that $p(x,y) = \sum_{i \in [0:N]:w(t_i(x,y))=0} t_i(x,y) + \sum_{i \in [0:N]:w(t_i(x,y))\neq 0} t_i(x,y). \text{ Now, note that for each } i \in [0:N] \text{ such that } w(t_i(x,y)) \neq 0 \text{ we know that } t_i(x,y) = a_i y^{d_i} x^{e_i} xys_i(x,y) \text{ where } s_i(x,y) = \prod_{k \in [0:N]:w(t_i(x,y))\neq 0} a_i y^{d_i} x^{e_i} xys_i(x,y), \text{ but now note that } a_i y^{d_i} x^{e_i} xys_i(x,y) = a_i y^{d_i} x^{e_i} yxs_i(x,y) - a_i y^{d_i} x^{e_i} s_i(x,y) \text{ and that } w(t_i(x,y)) \neq 0 \text{ and that } w(t_i(x,y)) = a_i y^{d_i} x^{e_i} s_i(x,y) \text{ and that } w(t_i(x,y)) = a_i y^{d_i} x^{e_i} s_i(x,y) \text{ and that } w(t_i(x,y)) = a_i y^{d_i} x^{e_i} s_i(x,y) \text{ and that } w(t_i(x,y)) = a_i y^{d_i} x^{e_i} s_i(x,y) \text{ and that } w(t_i(x,y)) = a_i y^{d_i} x^{e_i} s_i(x,y) \text{ and that } w(t_i(x,y)) = a_i y^{d_i} x^{e_i} s_i(x,y) \text{ and that } w(t_i(x,y)) = a_i y^{d_i} x^{e_i} s_i(x,y) \text{ and that } w(t_i(x,y)) = a_i y^{d_i} x^{e_i} s_i(x,y) \text{ and that } w(t_i(x,y)) = a_i y^{d_i} x^{e_i} s_i(x,y) \text{ and that } w(t_i(x,y)) = a_i y^{d_i} x^{e_i} s_i(x,y) \text{ and that } w(t_i(x,y)) = a_i y^{d_i} x^{e_i} s_i(x,y) \text{ and that } w(t_i(x,y)) = a_i y^{d_i} x^{e_i} s_i(x,y) \text{ and that } w(t_i(x,y)) = a_i y^{d_i} x^{e_i} s_i(x,y) \text{ and that } w(t_i(x,y)) = a_i y^{d_i} x^{e_i} s_i(x,y) \text{ and that } w(t_i(x,y)) = a_i y^{d_i} x^{e_i} s_i(x,y) \text{ and that } w(t_i(x,y)) = a_i y^{d_i} x^{e_i} s_i(x,y) \text{ and } t_i(x,y) = a_i y^{d_i} x^{e_i} s_i(x,y) \text{ and } t_i(x,y) = a_i y^{d_i} x^{e_i} s_i(x,y) \text{ and } t_i(x,y) = a_i y^{d_i} x^{e_i} s_i(x,y) \text{ and } t_i(x,y) = a_i y^{d_i} x^$

 $w(a_iy^{d_i}x^{e_i}yxs_i(x,y)) = w(a_iy^{d_i}x^{e_i}xys_i(x,y)) - 1$ and $w(a_iy^{d_i}x^{e_i}s_i(x,y)) \le w(a_iy^{d_i}x^{e_i}xys_i(x,y)) - 1$. Thus, for our new expression we have

$$\begin{split} M\Big(\sum_{i\in[0:N]:w(t_i(x,y))=0} t_i(x,y) + \sum_{i\in[0:N]:w(t_i(x,y))\neq 0} (a_iy^{d_i}x^{e_i}yxs_i(x,y) - a_iy^{d_i}x^{e_i}s_i(x,y))\Big) \\ &= M\Big(\sum_{i\in[0:N]:w(t_i(x,y))=0} t_i(x,y) + \sum_{i\in[0:N]:w(t_i(x,y))\neq 0} t_i(x,y)\Big) - 1. \end{split}$$

So, indeed we have shown by induction that we may write p(x,y) in the form $p(x,y) = \sum_{i=0}^{M} b_i y^{s_i} x^{r_i}$. Now, letting $p_0(x,y) = \sum_{i=0}^{M} b_i y^{s_i} x^{r_i}$ (Note here when we write p(x,y) we mean using the exact formal expression specified) iterate the following process.

Then, note that $xp(x,y) \in I$ and $-p(x,y)x \in I$. Let P(x,y) = xp(x,y) - p(x,y)x. I claim firstly that we can write $P(x,y) = \sum_{i=0}^{M'} B_i y^{s'_i} x^{r'_i} = \sum_{i=0}^{M'} S_i(x,y)$ and that $\max\{s'_i : i \in [0:M']\} < \max\{s_i : i \in [0:M']\}$ (i.e. the max power of y appearing in any term goes down by at least 1) meaning that after finitely iterations of the process one obtains a polynomial solely in x.

I show this by looking term by term. Consider the term $S_i(x,y) = b_i y^{s_i} x^{r_i}$. Either $s_i = 0$ in which case $xS_i(x,y) - S_i(x,y)x = 0$. Otherwise if $s_i \neq 0$ then note that $xb_i y^{s_i} x^{r_i} - b_i y^{s_i} x^{r_i} x = b_i x y^{s_i} x^{r_i} - b_i y^{s_i-1} y x x^{r_i} = b_i x y^{s_i} x^{r_i} - b_i y^{s_i-1} x^{r_i} = b_i x y^{s_i} x^{r_i} - b_i y^{s_i-1} x^{r_i} - b_i y^$

$$xp(x,y) - p(x,y)x = 0 + \sum_{i \in [0:M']: s_i \neq 0} (-b_i y^{s_i - 1} x^{r_i} - s_i b_i y^{s_i - 1} x^{r_i})$$

concluding the proof that $\max\{s_i': i \in [0:M']\} < \max\{s_i: i \in [0:M]\}$ and also, since we assumed that $p(x,y) \notin k[x]$ to start with that means that $xp(x,y) - p(x,y)x \neq 0$, concluding the proof.

Now, I claim that for arbitrary $P(x) \in k[x]$ note that for sufficiently large $K \in \mathbb{N}$ one has that $yP(x)-P(x)y \in K$. We consider yx^n-x^ny for $n \in \mathbb{N}_0$. If n=0 then $yx^n-x^ny=0$. If n=1 then $yx^n-x^ny=1$. Now, note that for any $n \in \mathbb{N}_{\geq 2}$ one has $yx^n-x^ny=yx^n-x^{n-1}xy=yx^n-x^{n-1}xy=yx^n-x^{n-1}yx+x^{n-1}=yx^n-x^{n-2}yxx+2x^{n-1}=yx^n-xyx^{n-1}+\sum_{i=0}^n x^{n-1}=yx^n-xyx^{n-1}+\sum_{i=0}^n x^{n-1}=(yx-xy)x^{n-1}+\sum_{i=2}^n x^{n-1}=nx^{n-1}$. Thus, one has that $yP(x)-P(x)y=\frac{d}{dx}P(x)$. Now, clearly if $P(x)=A_Nx^N+Q(x)$ where $deg(Q)\leq N-1$ then $\frac{d^N}{dx^N}P(x)=N!A_N$. Thus, $\frac{1}{N!A_N}\frac{d^N}{dx^N}P(x)=1$, meaning that if one denote $Q(P(X))=yP(x)-P(x)y=:Q_1(P(x))$ and $Q_n(P(x))=Q(Q_{n-1}(P(x)))$ then since $\frac{d^N}{dx^N}P(x)=Q_N(P(X))\in I$ one has that $1=\frac{1}{N!A_N}\frac{d^N}{dx^N}P(x)\in I$ meaning that I=A. Thus the only non-zero two-sided ideal of A is I=A.

(b) Suppose for the rest of the problem that char k = p. What is the center of A?

Note that as above $yx^p - x^py = px^{p-1} = 0$ which implies $yx^p = x^py$. Also, clearly $xx^p = x^px$ which implies that $x^p \in Z(A)$. Now, note that there is something close to symmetry between x, y in the given relation. Namely, one has that (x, y) = (a, b) satisfy the relation ba - ab - 1 = 0 and so does (y, -x) = (a, b). So, as shown throughout part (a) one has for a, b satisfying the given relation that $ba^p - a^pb = pa^{p-1} = 0$ meaning for (a, b) = (y, -x) one has that $(-x)y^p - y^p(-x) = py^{p-1} = 0$ meaning that $xy^p = y^px$ and of course $yy^p = y^py$ implying that $y^p \in Z(A)$.

(c) Find all irreducible finite dimensional representations of A.

Note that since $\rho(x^p)$ (which I simply denote by x^p when the use is clear from context) is an intertwining operator we know that it is a scalar operator and likewise for $\rho(y^p)$. Thus one has that $\rho(A)v = span\{x^iy^jv:i,j\in[0:p-1]\}$ and since $y^jv\in span(v)$ one has that $\rho(A)=span\{x^iv:i\in[0:p-1]\}$. Then, y part (a) of Question 1.25 we know that every non-zero $v\in V$ is cyclic meaning that Av=V for the v meaning that $V=span\{x^iv:i\in[0:p-1]\}$. Finally note that $\{x^iv:i\in[0:p-1]\}$ is a linear independent set since otherwise $dim(V)=dim(span\{x^iv:i\in[0:p-1]\})< p$ which provides a contradiction since then $\chi(I)< p$ meaning $\chi(I)\notin \mathbb{Z}p$ unless $\chi(I)=0$ contradicting $0=\chi(xy)-\chi(yx)=\chi(I)$ since $V\neq 0$.

[1.27]

Let q be a nonzero complex number, and A be the q-Weyl algebra over \mathbb{C} generated by $x^{\pm 1}$ and $y^{\pm 1}$ with defining relations $xx^{-1} = x^{-1}x = 1$, $yy^{-1} = y^{-1}y = 1$, and xy = qyx.

(a) What is the center of A for different q? If q is not a root of unity, what are the two-sided ideals in A?

Note that $c \in Z(A)$ if and only if xc = cx and yc = cy. Clearly if q = 1 then A is abelian meaning that Z(A) = A. Now say that $q^n = 1$ and $q^s \neq 1$ for $0 \leq s < n$ for some $n \in \mathbb{N}$. We see that if $c = \prod_{i=0}^r x^{s_i} y^{t_i}$ is a monomial in x, y with $s_i, t_i \in \mathbb{N}_{\geq 0}$ for each $i \in [0:r]$ then note that $c \in Z(A)$ implies that xc = cx implying that $n \mid \sum_{i \in [0:r]} t_i$ and then yc = cy implies that $n \mid \sum_{i \in [0:r]} t_i$. Thus, $Z(A) = \langle \prod_{i=0}^r x^{s_i} y^{t_i} : r \in \mathbb{N}, s_i, t_i \in \mathbb{N}_{\geq 0}, n \mid \sum_{i=0}^r t_i, n \mid \sum_{i=0}^r s_i \rangle$. (Here $\langle \rangle$ means algebra generation meaning finite linear combinations of these terms).

(b) For which q does this algebra have finite dimensional representations?

Note that if there exists a finite dimensional representation then since xy = qyx one has that $det(xy) = q^{dim(V)}(det(yx)) = q^{dim(V)}det(xy)$ meaning that $q^{dim(V)} = 1$ or that q is a root of unity of order ord(q) such that $ord(q) \mid dim(V)$, meaning it is necessary that q be a root of unity. Indeed we show in part (c) we show that the condition that q be a root of unity is also sufficient.

(c) Find all finite dimensional irreducible representations of A for such q.

Say that q is an nth root of unity. Now, I claim that of $v \in V$ is an eigenvector of x then $\{v, yv, y^2v, y^3v, \ldots, y^{n-1}v\}$ is a basis for V. Note that by Problem 1.25 (a) one has that v is cyclic meaning that $\{x^iy^jv:i,j\in\mathbb{Z}\}$ is a spanning set, but note that $x^iy^jv=q^{ij}y^jx^iv=q^{ij}\lambda^iy^jv$ (where $xv=\lambda v$) meaning since $\lambda\neq 0$ (by the fact that $\rho(x)$ is invertible) that $\{y^iv:i\in\mathbb{Z}\}$ is a spanning set but since any $a\in Z(A)$ acts as a scalar we have that $\{y^iv:i\in[0:n-1]\}$ is a spanning set since if $i\notin[0:n-1]$ one has that if i=ni'+i''' (where $i'''\in[0:n-1]$ and $i'\in\mathbb{Z}$) one has that $y^iv=y^{ni'+i'''}v=y^{ni'}y^{i'''}v=\alpha y^{i'''}v$ since $y^{ni'}\in Z(A)$ implies $y^{ni'}$ acts as a scalar. Finally, I claim that $\{v,yv,y^2v,y^3v,\ldots,y^{n-1}v\}$ is a linearly independent set. Otherwise $dim(V)=dim(span\{v,yv,y^2v,y^3v,\ldots,y^{n-1}v\})< ord(q)$ a contradiction to the observation in part (b) that $ord(q)\mid dim(V)$.

[1.33]

Show that the algebra P_Q is generated by p_i for $i \in I$ and a_h for $h \in E$ with the defining relations:

- $p_i^2 = p_i, p_i p_j = 0 \text{ for } i \neq j,$
- $a_h p_{h'} = a_h$, $a_h p_j = 0$ for $j \neq h'$,
- $p_{h''}a_h = a_h$, $p_i a_h = 0$ for $i \neq h''$.

Note that an oriented path is a sequence of edges and vertices $v_1e_1v_2e_2...e_{n-1}v_n$ such that $e_{i-1} = \overrightarrow{v_{i-1}v_i}$. Indeed, conditions (2) and (3) in the problem are guaranteeing exactly that and condition (1) is simply mandating one delete any vertex listed more than once in a row.

Optional: TODO later.

Definition [1.37] Let (V_i, x_h) and (W_i, y_h) be representations of the quiver Q. A homomorphism $\phi: (V_i) \to (W_i)$ of quiver representations is a collection of maps $\phi_i: V_i \to W_i$ such that $y_h \circ \phi_{h'} = \phi_{h''} \circ x_h$ for all $h \in E$.

[1.38] Let A be a \mathbb{Z}_+ -graded algebra, i.e., $A = \bigoplus_{n \geq 0} A[n]$, and $A[n] \cdot A[m] \subseteq A[n+m]$. If A[n] is finite dimensional, it is useful to consider the Hilbert series $h_A(t) = \sum dim A[n]t^n$)the generating function of dimensions of A[n]). Often, this series converges to a rational function, and the answer is written in the form of such function. For example, if A = k[x] and $deg(x^n) = n$ then

$$h_A(t) = 1 + t + t^2 + \dots + t^n + \dots = \frac{1}{1 - t}.$$

Find the Hilbert series of:

(a) $A = k[x_1, ..., x_m]$ (where the grading is by degree of polynomials);

Note that $dim(A[n]) = \frac{m^n}{n!}$ since $m^n = |\{(j_1, j_2, \dots, j_m) : j_i \in \mathbb{N}_{\geq 0} \text{ and } \sum_{i=1}^m j_i = n\}|$ and thus $h_A(t) = \sum_{n=0}^{\infty} \frac{m^n}{n!} t^n$.

(b) $A = k\langle x_1, \dots, x_m \rangle$ (the grading is by length of words);

Note that $dim(A[n]) = m^n$ since $m^n = |\{x_{i_1}x_{i_2}\dots x_{i_n} \text{ such that } i_n \in [1:m]\}|$ meaning that $h_A(t) = \sum_{n=0}^{\infty} m^n t^n$.

(c) A is the exterior (=Grassmann) algebra $\wedge_k[x_1,\ldots,x_m]$, generated over some field k by x_1,\ldots,x_m with the defining relations $x_ix_j+x_jx_i=0$ and $x_i^2=0$ for all i,j (the grading is by degree).

Note that $dim(A[n]) = {m \choose n} = \frac{m!}{(m-n)!n!}$ meaning that $h_A(t) = \sum_{n=0}^{\infty} \frac{m!}{(m-n)!n!} t^n = \sum_{n=0}^{m} \frac{m!}{(m-n)!n!} t^n$.

(d) A is the path algebra P_Q of a quiver Q (the grading is defined by $deg(p_i) = 0, deg(a_h) = 1$).

Note that if M_Q is the adjacency matrix of Q (note it may not by symmetric) then $dim(A[n]) = f(M_Q^n)$ where $f(M_Q^n) = \sum_{i=0}^{|V|} \sum_{j=0}^{|V|} (M_Q^n)_j^i$.