Vinay Verma CS 4391.002

Ranran Feng

11 May 2025

Term Project Report: Scene Recognition

1. Project Overview

The goal of this project was to implement basic scene understanding using image processing, feature extraction, clustering, and classification methods. I was provided two sets of images (Train and Test) across four categories: bedroom, desert, landscape, and rainforest.

I experimented with multiple classification methods, including:

- Raw pixel representation
- SIFT feature extraction
- Histogram of grayscale intensities
- Convolutional Neural Networks (CNN), including a Transfer Learning approach using MobileNetV2.

2. Implementation Details

2.1 Preprocessing

- All images were converted to grayscale.
- Brightness adjustment was performed:
 - o If average brightness < 0.4, brightness was increased.
 - o If average brightness > 0.6, brightness was reduced.
- Each image was resized to:
 - o 50×50 for Pixel, SIFT, and Histogram methods
 - \circ 200×200 for CNN models

2.2 Feature Extraction

- SIFT features were extracted using OpenCV, and feature vectors were averaged for each image.
- Histograms (32-bin grayscale) were computed and normalized.

2.3 Classification Methods

- Nearest Neighbor Classifier (k=1) was used for:
 - \circ Pixel values (50×50)
 - SIFT features
 - o Histogram features
- CNN (Transfer Learning) was implemented:
 - Base model: MobileNetV2 pretrained on ImageNet.
 - Custom classification head added.
 - o Grayscale images were adapted by replicating the single channel to 3 channels.

3. Results

Classifier	Accuracy	False Positive Rate	False Negative Rate
Pixel (50x50) + NN	38.00%	62.00%	62.00%
SIFT Features + NN	48.00%	52.00%	52.00%
Histogram Features + NN	51.50%	48.50%	48.50%
Transfer Learning CNN (MobileNetV2)	77.00%	23.00%	23.00%

4. Discussion and Analysis

4.1 Performance Comparison

- Histogram + Nearest Neighbor performed best among traditional methods, achieving 51.5% accuracy.
- SIFT features improved upon direct pixel comparison but did not outperform histograms.
- Transfer Learning with MobileNetV2 achieved 77.0% accuracy, a substantial improvement over all previous methods.

4.2 Why Transfer Learning Worked Better

• MobileNetV2 was pretrained on millions of images and learned general-purpose features.

- Even though our dataset was small, MobileNetV2 was able to transfer its feature extraction ability effectively.
- This allowed the CNN model to avoid overfitting and generalize well, unlike our earlier simple CNN which overfit rapidly.

4.3 Factors Affecting Accuracy

- Small dataset size made it difficult for CNNs trained from scratch to generalize.
- Grayscale images limited the amount of information compared to full RGB images.
- Scene similarities between categories (e.g., landscape and rainforest) increased confusion rates in simpler classifiers.

5. Conclusion

In this project, we successfully implemented multiple scene classification approaches. All models achieved more than the required 25% classification accuracy, with the best performance achieved using Transfer Learning via MobileNetV2, reaching 77% test accuracy.

The project highlights the importance of feature selection and the power of transfer learning when working with small datasets.