# CSE 566 Spring 2023

#### **Locality Sensitive Hashing**

Instructor: Mingfu Shao

#### Sketching/Fingerprinting

• Extract a sketch/fingerprint of small size, that is "representative" of the original, large-scale data.



#### Locality Sensitive Hashing (LSH)

- If x and y are similar, then x' and y' are similar.
- If x and y are dissimilar, then x' and y' are dissimilar.



#### Formal Definition

- A set of hash functions  $\mathscr{F}$  is a *locality sensitive hash (LSH) family* for similarity measure  $s(\cdot, \cdot)$  if for any x and y we have  $\Pr_{f \in \mathscr{F}}(f(x) = f(y)) = s(x, y)$ .
- The randomness comes for picking f from  $\mathcal{F}$  uniformly at randomly.

#### Hamming Similarity

- Hamming distance between  $x, y \in \{0,1\}^n$  is defined as the number of locations where  $x_i \neq y_i$ ,  $d(x, y) = |\{i \mid x_i \neq y_i\}|$ .
- Hamming similarity: h(x, y) = 1 d(x, y)/n.

$$\chi = 0111011$$
  $f_2(\chi) = 1.$   
 $y = 1010101$   $f_2(\chi) = 0$ 

$$d(x,y)=5, h(x,y)=1-5/7=\frac{2}{7}$$

## LSH Family for Hamming Similarity

- Define  $\underline{\text{hash function}} f_i(x) = x_i$ ; define  $\mathcal{F} = \{f_1, f_2, \dots, f_n\}$ .
- Fact:  $\mathcal{F} = \{f_1, \dots, f_n\}$  is a LSH family for hamming similarity.
- **Proof**: to prove that  $\Pr_{f \in \mathscr{F}}(f(x) = f(y)) = h(x, y)$  for every two binary vectors  $x, y \in \{0,1\}^n$ .

$$X = 0111011$$
  $Pr(f(x) = f(y)) = \frac{n - d(x, y)}{n}$   
 $y = 1010101$   $= h(x, y)$ 

#### Jaccard Similarity

• The Jaccard similarity between two sets X and Y, where X and Y are subsets of U, is defined as

$$J(X, Y) = \frac{|X \cap Y|}{|X \cup Y|}$$

$$U = \{A, C, G, T, B\}$$

$$T : C < A < B < T < G$$

$$X$$

$$f_{\pi}(x) = C, f_{\pi}(y) = T.$$

#### LSH Family for Jaccard Similarity

- Let  $\pi$  be a permutation/order of U. Define function  $f_{\pi}(X)$  maps X to the smallest element in X, i.e.,  $f_{\pi}(X) = \arg\min_{x \in X} \pi(x)$ .
- Let  $\Pi$  be the set of all possible permutations over U. Define  $\mathscr{F} = \{f_{\pi} \mid \pi \in \Pi\}.$

$$|\pi| = |U|!$$

#### LSH Family for Jaccard Similarity

- Fact:  $\mathcal{F} = \{f_{\pi} \mid \pi \in \Pi\}$  is a LSH family for Jaccard similarity.
- **Proof**: to prove that  $\Pr_{\pi \in \Pi}(\underline{f_{\pi}(X)} = \underline{f_{\pi}(Y)}) = \underline{J(X,Y)}$  for every two sets  $X,Y \subset U$ .
  - For a fixed  $\pi$ ,  $f_{\pi}(X) = f_{\pi}(Y)$  iff  $f_{\pi}(X \cup Y) \in X \cap Y$ .
  - For each  $a \in X \cup Y$ ,  $\Pr(f_{\pi}(X \cup Y) = a) = 1/|X \cup Y|$ .

if 
$$m = f_{\pi}(x \cup Y) \in X \cap Y$$

$$\Rightarrow f_{\pi}(x) = m \cdot f_{\pi}(Y) = m$$

$$Y \left( f_{\pi}(x) = f_{\pi}(y) \right) = \frac{|X \cap Y|}{|X \cup Y|}$$

#### Angular Similarity

- $\theta(u, v)$ : the angle between vectors u and v, where  $u, v \in \mathbb{R}^d$ .
- Angular Similarity:  $1 \theta(u, v)/\pi$ .



## LSH Family for Angular Similarity

• Let  $r \in \mathbb{R}^d$  be a vector (aka hyperplane).

• Define function  $f_r(u)$ :  $u \in \mathbb{R}^d$ 

• 
$$f_r(u) = 1$$
, if  $u \cdot r \ge 0$ 

• 
$$f_r(u) = 0$$
, if  $u \cdot r < 0$ 

• Define  $\mathcal{F} = \{f_r \mid r \in \mathbb{R}^d\}.$ 



#### LSH Family for Angular Similarity

- Fact:  $\mathcal{F} = \{f_r \mid r \in \mathbb{R}^d\}$  is a LSH family for angular similarity.
- **Proof**: to prove that  $\Pr_{r \in \mathbb{R}^d}(\underline{f_r(u)} = f_r(v)) = \underline{1 \theta(u, v)}/\pi$  for every two vectors  $u, v \in \mathbb{R}^d$ .
  - The probability that a random hyperplane splits vectors u and v is  $\theta(u, v)/\pi$ , i.e.,  $\Pr_{r \in \mathbb{R}^d}(f_r(u) \neq f_r(v)) = \theta(u, v)/\pi$ .



## Sketching using LSH

- Approach: randomly pick k hash functions  $f_1, \dots, f_k$  from which transform x into  $sketch(x) := (f_1(x), f_2(x), \dots, f_k(x))$ .
  - Sketching (large) binary data x: pick k random positions of x, and transform x into a list of k numbers. ( random sampling)
  - Sketching (large) set X: pick k random orderings, and transform X into a list of k elements.
  - Sketching (long) vector u: pick k random hyperplanes, and transform u into a (binary) vector of size k. ( random projection)

#### Estimating Similarity

- Consider sketching x and y, with the same random functions:
  - $\underline{sketch}(x) := (f_1(x), f_2(x), \dots, f_k(x)) \in \{\Sigma_i\} = \mathbb{P}_r(\{\Sigma_i\}) \in \underline{sketch}(y) := (f_1(y), f_2(y), \dots, f_k(y))$
- Let  $Z_i$  be the random variable indicating if  $f_i(x) = f_i(y)$ . Is is  $X_i = f_i(y)$ .
- Let  $Z := (\sum_{i=1}^{k} Z_i)/k$  be the percentage of "hash-collisions".
- $\mathbb{E}(Z_i) = \Pr(Z_i = 1) = \Pr(f_i(x) = f_i(y)) = s(x, y).$
- $\mathbb{E}(Z) = \mathbb{E}(\sum_{i=1}^k Z_i)/k = s(x, y).$

#### Nearest Neighbor Search

- **Problem**: find the element in  $X = \{x_1, x_2, \dots, x_n\}$  that is nearest to the query q, i.e.,  $\arg\max_{x_i \in X} \overline{s(x_i, q)}$ .
- Search using LSH; assume  $\mathcal{F}$  is the LSH family for  $s(\cdot, \cdot)$ 
  - $\gamma$  Draw k functions from  $\mathcal{F}$ ;
  - Sketch each  $x_i$ ;  $sketch(x_i) := (f_1(x_i), f_2(x_i), \dots, f_k(x_i)) \in \mathbb{Z}^k$
  - Put  $x_i$  into the **bucket** labeled by  $sketch(x_i)$
  - Sketch q with the same functions:  $sketch(q) := (f_1(q), \dots, f_k(q))$
  - Only compare q with those in bucket sketch(q)
  - Repeat above procedure *t* times.