VLSI Circuit Design Lab 1

Yu-Chi Chu

Problem 1 - Pass Transistor and 2-1 MUX

(a) schematic

Fig 1_1 NMOS pass transistor

Fig 1_2 PMOS pass transistor

Fig 1_3 Transmission gate

(b) waveform

Fig 1_4 NMOS pass transistor

Fig 1_5 PMOS pass transistor

Fig 1_6 Transmission gate

(c) Explain

- NMOS Pass Transistor: When Clk=1 (clock high), the NMOS transistor is ON (conducting), and Vo (output voltage) is equal to Vin (input voltage). However, due to the NMOS transistor's characteristic of passing a "strong 0" but a "degraded 1," the output voltage Vo will not reach Vdd (supply voltage) completely. When Clk=0 (clock low), the NMOS transistor is OFF (non-conducting), and Vo is equal to ground (gnd=0).
- PMOS Pass Transistor: When Clk=0 (clock low), the PMOS transistor is ON (conducting), and Vo (output voltage) is equal to Vin (input voltage). However, due to the PMOS transistor's characteristic of passing a "strong 1" but a "degraded 0," the output voltage Vo will not reach ground (gnd=0) completely. When Clk=1 (clock high), the PMOS transistor is OFF (non-conducting), and Vo is equal to Vdd (supply voltage).
- Transmission Gate: When Clk=1 (clock high), both the NMOS and PMOS transistors in the transmission gate are ON (conducting), and Vo (output voltage) is equal to Vin (input voltage). Because the transmission gate combines the advantages of both NMOS and PMOS transistors (passing both "strong 0" and "strong 1"), the output voltage Vo can reach both Vdd (supply voltage) and ground (gnd=0) completely. When Clk=0 (clock low), both transistors are OFF (nonconducting), and Vo is equal to 0.

Because the transmission gate possesses the characteristics of passing both "strong 0" and "strong 1," it provides better performance compared to using a single MOS transistor and is therefore more widely used.

(d) schematic

Fig 1_7 Transmission gate multiplexer

(e) waveform

Fig 1_8 Transmission gate multiplexer

(f) layout

Fig 1_9 Transmission gate multiplexer layout

Fig 1_10 Transmission gate multiplexer DRC

Fig 1_11 Transmission gate multiplexer LVS

(g)PEX waveform

Fig 1_12 Transmission gate multiplexer PEX waveform

Problem 2 - D Latch and D Flip-Flop

(a) schematic

Fig 2_1 D latch

Fig 2_2 D Flip-Flop

(b) waveform

Fig 2_3 D latch

Fig 2_4 D Flip-Flop

(c) layout

Fig 2_5 D latch layout

Fig 2_6 D latch DRC

Fig 2_7 D latch LVS

Fig 2_8 D Flip-Flop layout

Fig 2_9 D Flip-Flop DRC

Fig 2_10 D Flip-Flop LVS

(d) PEX waveform

Fig 2_11 D latch PEX waveform

Fig 2_12 D Flip-Flop PEX waveform

Problem 3 – Combinational logic design

(a) schematic

Fig 3_1 Function 1

 $Fig \ 3_2 \ \textit{Function} \ 2$

(b) waveform

Fig 3_3 Function 1

Fig 3_4 Function 2

(c) layout

Fig 3_5 Function 1 layout

Fig 3_6 Function 1 DRC

Fig 3_7 Function 1 LVS

Fig 3_8 Function 2 layout

Fig 3_9 Function 2 DRC

Fig 3_10 Function 2 LVS

(d)PEX waveform

Fig 3_11 Function 1 PEX waveform

Fig 3_12 Function 2 PEX waveform