

Final Project Presentation Modeling of a Francis Turbine

Authors: Anastasia Candelaria, Amneh Jaber, Basanta Rijal, Nikhil Tiwari, and Richard Aipperspach.

Introductions

- Anastasia Candelaria ME Graduate Student
- Amneh Jaber ME Graduate Student
- Basanta Rijal ME Graduate Student
- Nikhil Tiwari ME Graduate Student
- Richard Aipperspach ME Undergraduate Student

Agenda

- Francis Turbine Richard
- Problem Description Richard
- Geometry Anastasia
- Named Selections Anastasia
- Interfaces Anastasia
- Pre-Processing
 - Mesh Nikhil
 - Set-up
 - Solver Set-up Basanta
 - Turbo Mode Amneh
- Post Processing
 - Model validation Amneh
 - Results
 - Primary Amneh
 - Mass Inlet Study Richard
 - Pressure Outlet Study Richard
 - Conclusion Basanta

Francis Turbine Background

- Developed by James Bichens Francis [1855]
- Flow enter radial direction and exits axially
- Each turbine designed for a certain set of site conditions
- 90-95% efficient
- Range from 3 to 600 m head
- Most efficient 100 to 300 m head
- Flow rate is the limiting factor
- GE has 800MW turbine with diameter of 10 meters and 450 tons

https://www.sciencedirect.com/topics/engineering/francis-turbines

http://www.pewclimate.org/technology/factsheet/hydropower

Francis Turbine Main Features

- Spiral casing decreasing diameter to maintain flow
- Stay vanes remove swirl from water and makes the flow more linear
- Guide vanes maintain the angle of attack of water
- Runner blades stationary blades that rotate the direction of water to rotate turbine
- Draft tube tube to discharge water

Francis Turbine

https://theconstructor.org/practical-guide/francis-turbines-components-application/2900

Problem Description

Main Objectives

- 1. Ensure mesh is independent and solution is truly converged and accurate
- 2. Validate model against data
- 3. Examine the effects of variation in mass flow and pressure

Problem Description

Cavitation – formation of empty space or cavities in liquid in area of low pressure, generally around rotor blades

- Avoid cavitation by maintaining flow throughout turbine
- Avoid bubbles and swirling
- Maintain min and max design pressures: validate model

Type of turbine	Maximum head (percent)	Minimum head (percent)
Francis	125	65
Propeller – fixed blade turbine	110	90
Propeller – Adjustable blade turbine	125	65

http://ahec.org.in/links/revised_standard/3.1%20turbine%20and%20governing.pdf

Geometry

- Optimized Geometry
 - Provided from previous study for proper validation
 - Inlet: 0.57m
 - Outlet: 1m
 - Draft Tube: 3m
 - Spiral Case: 1m
 - Made of multiple parts
 - 68% Guide Vane Opening
 - 3D Scanned
 - Accuracy 0.38mm

Named Selection: Components

- Hub (Rotating Part)
 - Runner
 - Rotationary Blades
- Stationary 1
 - Guide Vanes
 - Spiral Casing
 - Inlet
- Stationary 2
 - Draft Tube
 - Outlet

Interfaces

- 20 Overall Interfaces, between each individual part of the turbine.
- 14 Interfaces in Hub, others in Stationary components.

Pre-Processing: Mesh

- Mesh
 - Generation
 - Convergence

Pre-Processing: Solver Setup

Francis Turbine (Fluid CFX Analysis) - Simulation Settings						
Flow Analysis	Analysis Type	Steady State				
	Impeller	Rotationary Part Checked				
	Vane	Inlet and Outlet Checked				
Interface		Interfaces Checked				
Solver	Solution Units		[kg], [m], [s], [K], [rad], [sr]			
	Solver Control Equa	Basic Settings	Advection Scheme	High Resolution		
			Turbelence Numerics	High Resolution		
			Convergence Control	Min Iteration	1	
				Max Iterations	400	
			Fluid Timescale Control	Timescale Control	Auto Timescale	
				Length Scale Option	Conservative	
				Time Scale Factor	1	
			Convergence Criteria	Residual Type	RMS	
				Residual Target	1.00E-03	
		Equation Class Settings	Continuity / Momentum / Turbulence Eddy Dissipation			
		Advanced Options	Global Dynamic Model Control			
Materials	Standard Water (No Changes in Basic Seetings or Material Properties)					

Pre-Processing: Turbo Mode Setup

- Problem: Steady State Turbulent Flow
- Machine Type: Axial Turbine
- Define Rotating and Stationary Parts
 - Rotating: -1000 rpm
 - Passages/Alignment: 15/15/15

$$f = 60Hz V = 35m/s$$

$$rpm_{real} = \frac{60 \times V}{\pi \times D} = 1318$$

$$Z_P = \frac{f \times 50}{rpm} = 2.27 \sim 3$$

$$rpm_{corrected} = \frac{f \times 50}{Z_P} = 1000$$

Pre-Processing: Turbo Mode Setup

- Materials
 - Standard Water
- Turbulence
 - Shear Stress Transport (SST)
- Boundary Conditions
 - Inlet: Mass Flow 1460 kg/s
 - Outlet: 1.068 atm (0 atm reference pressure)

Post-Processing: Model Validation

 Model validates against experimental inlet conditions and the study's simulated outlet conditions.

	Experimental Inlet Velocity (m/s)	Experimental Inlet Pressure Total - (kPa)	Outlet Velocity (m/s)	Outlet Pressure Gauge - (kPa)
Study Results	5.6	407.95	2.51818	6.85
Validated Results (Propped at Max.)	5.755	437.415	2.61262	6.85
Error (%)	2.77	7.22	3.75	0.00

Post-Processing: Model Validation

- Model validates flow near guide vanes.
 - 18 m/s max
 - 2 m/s min

Results: Primary Case

Model shows optimal flow near guide vanes

 Model shows optimal flow through the draft tube with no swirling.

Results: Primary Case

Results: Mass Inlet Study

Study 1

- Increased rate by 500 kg/s
- Generated faster velocity through the turbine

Study 2

- Decreased rate by 500 kg/s
- Generates slower velocity through the turbine
- Creates a swirling effect on the exit of the runner

Results: Mass Inlet Study

Study 1

- Generates faster velocity through the draft tube
- Increases the outlet velocity
- Decreases outlet pressure

Study 2

- Generates slower velocity through the draft tube, more linear profile
- Less impact on pressure gradient, closer to original outlet pressure, but still less

Results: Pressure Variation Study

Study 1

- Increased head of 3 meters
- Very little change in flow

Study 2

- Increased head of 6 meters
- Increased turbulence
- Increased eddies
- Increased swirl
- Non-uniform flow observed

Velocity & Streamline at 6m and 3m head of water

Results: Pressure Variation Study

Draft tube results

- At 6 meters of head
 - Velocity erratic
 - Pressure erratic
- At 3 meters of head
 - Still smooth flow observed

Results

- At 6 meters of head
 - Velocity erratic
 - Pressure erratic

Conclusions

Goals Achieved

- Develop a grid independent Francis Turbine model.
- Validate model using previous experimental results.
 - Maintain min and max design pressures
 - Maintain boundary inlet and outlet conditions
- Explore effects of varying mass inlet and outlet pressures
 - Avoid cavitation by maintaining flow throughout turbine
 - Avoid bubbles and swirling
 - Decrease mass inlet increases cavitation and vorticities greatly
 - Increasing mass inlet increases cavitation and vorticities slightly
 - Increasing outlet pressure increases cavitation and vorticities greatly

Questions?

