CP205: COMMUNICATION PRINCIPLES & APPLICATIONS

CREDITS = 3 (L=3, T=0, P=0)

Course Objective: To prepare students with fundamentals of analog and digital communication for computer networks

Teaching and Assessment Scheme:

Teaching Scheme Cred				Assessment Scheme				
				Theory		Practical		Total
L	T	P	C					Marks
				ESE	CE	ESE	CE	100
3	0	0	3	70	30	0	0	100

Course Contents:

Unit No.	Topics	Teaching Hours
1	Signals and Spectra: Introduction to electronics communication; Elements of communication systems; Types of communication systems; Signal classification; Periodic Analog Signals; Digital Signals; The Electromagnetic spectrum; Signal classification; Fourier series and Fourier transform; Signal transmission; filtering and convolution.	08
2	Modulations and Demodulation: Amplitude; frequency and phase modulation and demodulation; double-sideband modulation and demodulation; Single sideband modulation and demodulation; Modulation index and percentage of modulation; Power of modulated signal; Frequency spectra of modulated signals; AM/FM transmitter and receiver; Frequency division multiplexing; Frequency division duplex (FDD).	10
3	<u>Digital Transmission and Modulation:</u> Sampling and reconstruction; Quantization; A/D and D/A Converters; Pulse amplitude modulation; Pulse code modulation; Time-division multiplexing; time division duplex(TDD) Line codes –NRZ; RZ; Bipolar; ASK; FSK; PSK; QPSK and other M-ary techniques.	10
4	<u>Data Transmission and Transmission Media:</u> Parallel and Serial Transmission; Synchronous and Asynchronous Transmission; Modems; Switching; channel Capacity; Guided Media: Twisted pair cable, fiber optic cable; Unguided Media: wireless.	03
5	Networking Devices: Repeaters; hub; bridges; switches; routers; gateway.	03

Unit No.	Topics	Teaching Hours
6	<u>Information Theory and Coding</u> : Introduction of random variables; information content; Entropy; source coding – Hauffman and arithmetic coding; Lemple-Ziv code; Channel coding-linear block code.	09
7	Case Studies of Communication Systems:	03
		45
	Total	

List of References:

- 1. Frenzel. "Communication electronics, principles and applications", Tata Mc-Graw Hill
- 2. Taub H. and Shilling D. L, "Principles of Communication Systems", Tata Mc-Graw Hill
- 3. H P Hsu, "Analog and Digital Communications", Tata Mc-Graw Hill
- 4. Haykin S. S., "An Introduction to Analog and Digital Communication Systems", Wiley Eastern
- 5. Lathi B. P., "Communication Systems", John Wiley
- 6. Behrouz A Forouzan, "Data Communications and Networking", Tata Mc-Graw Hill
- 7. William Stallings, "Data and Computer Communications", Pearson Education

Course Outcomes (COs):

At the end of this course students will be able to

- 1. Understand the basic concept of electronic communication systems
- 2. Illustrate time domain and frequency domain representation of signals
- 3. Justify the need of different types of modulation techniques for given applications
- 4. Choose appropriate transmission media for a given application
- 5. Construct appropriate source code and channel code in digital communication
- 6. Identify hardware and bandwidth requirements for given electronics communication systems.