

CSCI 3104 Algorithms

Fall 2015 Lecture 17 (Oct 5)

Announcements

- → Homework I & 2 & 3, midterm exam I
 - pick up graded work
 - check grades at moodle

- ♦ Homework 4
 - posted at moodle
 - due at I I am, Wed Oct 7

Midterm Exam I

- \mathbf{Q} 1:4 x 5 points
- \mathbf{Q} 2:4 x 10 points
- \mathbf{Q} 3:4 x 10 points
- → Median = 82
- ♦ Mean = 81.7
- **♦** Stdev = 10.7
- \star Max = 100

Problem I

- ♦ In each of the following situations, indicate whether f = O(g) or $f = \Omega(g)$, or both (in which case $f = \Theta(g)$). Briefly explain why.
 - \bullet definitions of O(), Ω (), Θ ()
 - exponential, polynomial, logarithm
 - ♦ lower order terms, leading coefficient

Problem I (cnt'd)

- ♦ In each of the following situations, indicate whether f = O(g) or f = Ω(g), or both (in which case f = Θ(g)). Briefly explain why.
 - (a) f(n) = $6n^6+9n^3-300n$, g(n) = $3n^6+6n^2+900n$
 - $(b) f(n) = 7log(n^7) + 6n^{10}$
 - $+ g(n) = 5^{n/3} + 7n \log (10n + 5)$
 - (c) f(n) = $3n^3 + (n+2)!$, g(n) = $(n+5)^3 + 100n^5$
 - \bigstar (d) f(n) = 7(n+2) log n + (7/2)ⁿ, g(n) = n¹⁰

Problem 2

- Provide a brief answer for each of the following questions.
 - ♦ (a) Show the key steps of finding the greatest common divisor of 105 and 595 using Euclid's algorithm.
 - \Rightarrow gcd (595, 105) = gcd (105, 70)
 - \Rightarrow = gcd (70, 35) = gcd (35, 0) = 35

Problem 2 (cnt'd)

- Provide a brief answer for each of the following questions.
 - ♦ (b) In cryptography, what is the key difference between private-key schemes (e.g., one-time pad) and public-key schemes (e.g., RSA)?
 - private-key schemes: need prearrangement of private key by both parties (Alice, Bob)
 - public-key schemes: no prearrangement needed, only recipient (Bob) has private key

Problem 2 (cnt'd)

- Provide a brief answer for each of the following questions.
 - ♦ (c) If an algorithm solves a problem of size n by dividing it into 8 subproblems of size n/2, recursively solving each subproblem, and then combining the solutions in O(n²) time, what is the time complexity of this algorithm?

$$T(n) = 8T(n/2) + O(n^2)$$

$$\Rightarrow$$
 a = 8, b = 2, d = 2 ==> $O(n^3)$

Problem 2 (cnt'd)

- Provide a brief answer for each of the following questions.
 - ♦ (d) Given a graph G = (V, E), what are the time complexities of constructing its reverse graph using adjacency matrix and adjacency list, respectively?
 - → adjacency matrix: O(|V| x |V|)
 - ↑ adjacency list: O(|V| + |E|)

Graph Representation Examples

- Given the following directed graph,
- ♦ (a) What is the size of the adjacency matrix? Draw the adjacency list for vertex e.

♦ adjacency matrix: 9 x 9

♦ (b) Draw the DFS forest, breaking ties alphabetically.

♦ draw the forest

$$+ a => c, a => e$$

$$+g => k$$

$$+ k => d$$

(c) Draw the BFS tree with starting vertex g, breaking ties alphabetically.

- ♦ draw the tree
- **♦** g
- \Rightarrow g => e, g=> k
- + e => f, e => h, k => d
- **♦**f => c

♦ (d) Show the result of topological sort (linearization) of the graph.

- ♦ linear ordering
- **♦** {b, g, k, d, e, f, c}
- → a before e
- ♦ h after e

