Chapitre 25

Comparaison locale des fonctions

25 Comparaison locale des fonctions	
25.6 Caractérisation séquentielle	
25.14Existence, unicité et expression du développement de Taylor de f	
25.20Formule de Taylor avec reste intégral de l'ordre n au point a	
25.22Formule de Taylor-Lagrange à l'ordre n au point a évaluée en b - Hors Programme	
25.27 Formule de Taylor-Young à l'ordre n au point x_0	
25.28Développement limité de l'exponentielle	
25.29Développement limité du logarithme	
25.30Développement limité de cosinus et sinus	
25.40Unicité du DL	
25.41DL de fonctions paires ou impaires	

25.6 Caractérisation séquentielle

Théorème 25.6

Soit f et g deux fonctions sur X et $a \in \overline{X}$. Alors :

- 1. $f =_a O(g)$ si et seulement si pour toute suite $(u_n) \xrightarrow[n \to +\infty]{} a$ à valeurs dans X, alors $f(u_n) = O(g(u_n))$.
- 2. $f =_a o(g)$ si et seulement si pour toute suite $(u_n) \underset{n \to +\infty}{\longrightarrow} a$ à valeurs dans X, alors $f(u_n) = o(g(u_n))$.

1.

 $f =_a O(g)$ ssi il existe h bornée au voisinage de a tel que $f = g \cdot h$ ssi Pour toute suite $(u_n) \in X^{\mathbb{N}}$ avec $u_n \to a$, $f(u_n) = g(u_n) \times w_n$ où (w_n) est une suite bornée. $\implies w_n = h(u_n)$ ssi bornée \iff Par l'absurde avec (25.5). ssi Pour toute suite $(u_n) \in X^{\mathbb{N}}$ avec $u_n \to a$, $f(u_n) = O(g(u_n))$.

2. On utilise la caractérisation séquentielle de la limite (nulle).

25.14 Existence, unicité et expression du développement de Taylor de f

Théorème 25.14

Soit f une fonction n fois dérivable en x_0 . Alors le développement de Taylor de f en x_0 à l'ordre n existe et est unique. Il est donné explicitement par :

$$\forall x \in \mathbb{R}, P(x) = \sum_{k=0}^{n} \frac{(x - x_0)^k}{k!} f^{(k)}(x_0)$$

RAS, cf. (16.56)

25.20 Formule de Taylor avec reste intégral de l'ordre n au point a

Théorème 25.20

Soit a < b et $f: [a, b] \to \mathbb{R}$ une fonction de classe $\mathcal{C}^{n+1}([a, b])$ Alors :

$$\forall x \in [a, b], f(x) = \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) + \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$$

On raisonne par récurrence sur $n \in \mathbb{N}$.

— On suppose $f \in \mathcal{C}^1([a,b],\mathbb{R})$. On a:

$$\forall x \in [a, b], \sum_{k=0}^{0} \frac{(x-a)^k}{k!} f^{(k)}(a) + \int_a^x \frac{(x-t)^0}{0!} f'(t) dt = f(a) + \int_a^x f'(t) dt$$
$$= f(x)$$

— On suppose le résultat vrai pour $n \in \mathbb{N}$.

Soit $f \in \mathcal{C}^{n+2}([a,b],\mathbb{R})$. En particulier, $f \in \mathcal{C}^{n+1}([a,b],\mathbb{R})$. On a:

$$\forall x \in [a, b], f(x) = \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) + \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$$

$$= \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) + \left[-\frac{(x-t)^{n+1}}{(n+1)!} f^{(n+1)}(t) \right]_a^x + \int_a^x \frac{(x-t)^{n+1}}{(n+1)!} f^{(n+2)}(t) dt$$

$$(IPP) = \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) + \int_a^x \frac{(x-t)^{n+1}}{(n+1)!} f^{(n+2)}(t) dt$$

25.22 Formule de Taylor-Lagrange à l'ordre n au point a évaluée en b - Hors Programme

Théorème 25.22

Soit a < b deux réels et $f : [a,b] \to \mathbb{R}$ une fonction de classe \mathcal{C}^n sur [a,b] et n+1 dérivable sur]a,b[. Alors :

$$\exists c \in]a, b[, f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^k + \frac{(b-a)^{n+1}}{(n+1)!} f^{(n+1)}(c)$$

On introduit:

$$g:[a,b]\to\mathbb{R};x\mapsto\sum_{k=0}^n\frac{f^{(k)}(x)}{k!}(b-x)^k+\frac{(b-x)^{n+1}}{(n+1)!}f^{(n+1)}(x) \text{ avec } A\in\mathbb{R}$$

On remarque que g(b) = f(b).

On choisit A de telle sorte que g(a) = f(b).

On pose:

$$A = \frac{-(n+1!)}{(b-a)^{n+1}} \left[-\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^{k} + f(b) \right]$$

Par hypothèse, $g \in \mathcal{C}^0([a,b],\mathbb{R}) \cap \mathcal{D}^1([a,b[,\mathbb{R}).$

D'après le théorème de Rolle, on choisit $c \in]a,b[$ tel que g'(c)=0.

Or:

$$\forall x \in]a, b[, g'(x) = \sum_{k=0}^{n} \frac{f^{(k+1)}(x)}{k!} (b-x)^k - \sum_{k=1}^{n} \frac{f^{(k)}(x)}{(k-1)!} (b-x)^{k-1} - A \frac{(b-x)^n}{n!}$$
$$= \frac{f^{(n+1)}(x)}{n!} (b-x)^n - A \frac{(b-x)^n}{n!}$$

En particulier:

$$\frac{A(b-c)^n}{n!} = \frac{f^{(n+1)}(c)}{n!}(b-c)^n$$

Or $c \neq b$ donc $A = f^{(n+1)}(c)$.

On conclut avec f(b) = g(a).

25.27 Formule de Taylor-Young à l'ordre n au point x_0

Théorème 25.27

Soit I un intervalle ouvert de \mathbb{R} , $x_0 \in I$ et $f: I \to \mathbb{R}$ une fonction de classe C^n au voisinage de x_0 . Alors au voisinage de x_0 , on a :

$$f(x) =_{x \to x_0} \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n)$$

On a $f \in \mathcal{C}^n(I, \mathbb{R}) = \mathcal{C}^{(n-n+1)}(I, \mathbb{R})$.

D'après la formule de Taylor :

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \int_{x_0}^x \frac{(x - t)^{n-1}}{(n-1)!} f^{(n)}(t) dt$$

 $Montrons\ que:$

$$\int_{x_0}^x \frac{(x-t)^{n-1}}{(n-1)!} f^{(n)}(t) dt =_{x \to x_0} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n + o((x-x_0)^n)$$

On a:

$$\int_{x_0}^{x} \frac{(x-t)^{n-1}}{(n-1)!} f^{(n)}(t) dt - \frac{f^{(n)}(x_0)(x-x_0)^n}{n!} = \int_{x_0}^{x} \frac{(x-t)^{n-1}}{(n-1)!} f^{(n)}(t) dt - \int_{x_0}^{x} \frac{(x-t)^{n-1}}{(n-1)!} f^{(n)}(x_0) dt$$
$$= \int_{x_0}^{x} \frac{(x-t)^{n-1}}{(n-1)!} [f^{(n)}(t) - f^{(n)}(x_0)] dt$$

Soit $\varepsilon > 0$, on choisit $v \in \mathcal{V}(x_0)$ tel que :

$$\forall x \in v, |f^{(n)}(x) - f^{(n)}(x_0)| \le \varepsilon$$

car $f^{(n)} \in \mathcal{C}^0(I, \mathbb{R})$.

Soit $x \in \mathcal{V}, x > x_0$. On a :

$$\left| \int_{x_0}^x \frac{(x-t)^{n-1}}{(n-1)!} [f^{(n)}(t) - f^{(n)}(x_0)] dt \right| \le \int_{x_0}^x \frac{(x-t)^{n-1}}{(n-1)!} |f^{(n)}(t) - f^{(n)}(x_0)| dt$$

$$\le \varepsilon \int_{x_0}^x \frac{(x-t)^{n-1}}{(n-1)!} dt$$

$$\le \frac{\varepsilon}{(n-1)!} \int_{x_0}^x (x-t)^{n-1} dt$$

$$= \frac{\varepsilon (x-x_0)^n}{n!}$$

Le résultat reste vrai (au signe près) pour $x \leq x_0$. Par définition (avec les ε), on a le résultat souhaité.

25.28 Développement limité de l'exponentielle

Propostion 25.28

La formule de Taylor-Young à l'ordre n en 0 de l'exponentielle donne l'égalité suivante au voisinage de 0:

$$e^x =_{x \to 0} \sum_{k=0}^{n} \frac{x^k}{k!} + o(x^n)$$

$$f = \exp \in \mathcal{C}^n(\mathbb{R}, \mathbb{R}) \text{ et } \forall x \in \mathbb{N}, f^{(k)}(0) = e^0 = 1$$

25.29 Développement limité du logarithme

Propostion 25.29

La formule de Taylor-Young à l'ordre n en 0 de $x\mapsto \ln(1+x)$ donne l'égalité suivante au voisinage de 1 :

$$\ln(1+x) =_{x\to 0} \sum_{k=1}^{n} \frac{(-1)^{k-1} x^k}{k} + o(x^n)$$

 $f: x \mapsto \ln(1+x) \in \mathcal{C}^n(]-1, \infty[, \mathbb{R}).$

$$\forall x > -1, f'(x) = \frac{1}{1+x}$$

$$\forall k \in \mathbb{N}, \forall x > -1, f^{(k+1)}(x) = \frac{(-1)^k k!}{(1+x)^{k+1}}$$

$$f^{(k+1)}(0) = (-1)^k k!$$

Donc, d'après Taylor-Young :

$$f(x) =_{x \to 0} \sum_{k=1}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + o(x^{n})$$

$$=_{x \to 0} \sum_{k=1}^{n} \frac{(-1)^{k-1} (k-1)!}{k!} x^{k} + o(x^{n})$$

$$=_{x \to 0} \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} x^{k} + o(x^{n})$$

25.30 Développement limité de cosinus et sinus

Propostion 25.30

La formule de Taylor-Young à l'ordre 2n + 2 pour le sinus et à l'ordre 2n + 1 pour le cosinus en 0 donne les égalités suivantes au voisinage de 0:

$$\sin x =_{x \to 0} \sum_{k=0}^{n} \frac{(-1)^k x^{2k+1}}{(2k+1)!} + o(x^{2n+2}) \quad \text{ et } \quad \cos x =_{x \to 0} \sum_{k=0}^{n} \frac{(-1)^k x^{2k}}{(2k)!} + o(x^{2n+1})$$

 $\sin \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$

$$\begin{cases} \sin^{(2k)}(0) = 0\\ \sin^{(2k+1)}(0) = 1\\ \sin^{(4k+3)}(0) = -1 \end{cases}$$

Donc:

$$\sin x =_{x \to 0} \sum_{k=0}^{2n+2} \frac{\sin^{(k)}(0)}{k!} x^k + o(x^{2n+2})$$
$$= \sum_{i=0}^{n} \frac{(-1)^i}{(2i+1)!} x^{2i+1} + o(x^{2n+2})$$

Idem pour cos.

25.40 Unicité du DL

Théorème 25.40

Si f admet un développement limité à l'ordre n au voisinage de x_0 , alors ce développement est unique.

On suppose que:

$$f(x) =_{x \to x_0} \sum_{k=0}^{n} a_k (x - x_0)^k + o((x - x_0)^n)$$
$$=_{x \to x_0} \sum_{k=0}^{n} b_k (x - x_0)^k + o((x - x_0)^n)$$

On suppose par l'absurde que les développements sont différents.

On note $p = \min(k \mid a_k \neq b_k)$.

Or:

$$\sum_{k=0}^{n} a_k (x - x_0)^k =_{x \to x_0} \sum_{k=0}^{n} b_k (x - x_0)^k + o((x - x_0)^n)$$

Donc:

$$\sum_{k=p}^{n} a_k (x - x_0)^k =_{x \to x_0} + o((x - x_0)^n)$$

$$\operatorname{donc} a_p (x - x_0)^p + \sum_{k=p+1}^{n} a_k (x - x_0)^k =_{x \to x_0} b_p (x - x_0)^p + \sum_{k=p+1}^{n} b_k (x - x_0)^k + o((x - x_0)^n)$$

$$\operatorname{donc} a_p (x - x_0)^p =_{x \to x_0} b_p (x - x_0)^p + o((x - x_0)^n)$$

$$\operatorname{donc} a_p = b_p + o(1)$$

Absurde car $a_p \neq b_p$.

25.41 DL de fonctions paires ou impaires

Propostion 25.41

Soit f une fonction admettant un DL à l'ordre n au voisinage de 0. Alors :

- si f est paire, son DL n'est constitué que de monômes de degré pair.
- si f est impaire, son DL n'est constitué que de monômes de degré impair.
- On suppose f paire et:

$$f(x) =_{x\to 0} \sum_{k=0}^{n} a_k x^k + o(x^n)$$

Donc:

$$f(-x) =_{x \to 0} \sum_{k=0}^{n} a_k (-1)^k x^k + o(x^n)$$

Par unicité du DL :

$$\forall k \in [0, n], a_k = (-1)^k a_k$$

Donc pour k impair :

$$a_k = 0$$

— Même raisonnement pour f impaire.