Math 415 - Lecture 9

Vector spaces and subspaces

Monday September 14th 2015

Textbook: Chapter 2.1.

Example 1. Use the Gauss Jordan method to compute the inverse of

$$\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix}$$

Solution.

Failure: the reduced row echelon form of A will not be I, so A has no inverse!

Practice Problems. Find the inverse of A:

$$\bullet \ \ A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

•
$$A = \begin{bmatrix} 1 & 1 & -2 \\ 1 & -2 & 1 \\ -2 & 1 & 1 \end{bmatrix}$$
. Hint: What is $A \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$?

$$\bullet \ \ A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}.$$

$$\bullet \ A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 4 & 5 & 6 & 0 \\ 6 & 7 & 8 & 0 \\ 9 & 0 & 1 & 0 \end{bmatrix}.$$

$$\bullet \ A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}.$$

1 Vector Spaces and Subspaces

- The most important property of column vectors in \mathbb{R}^n is that you can take *linear combinations* of them.
- There are many mathematical objects X, Y, ... for which a linear combination cX + dY make sense, and have the usual properties of linear combination in \mathbb{R}^n
- We are going to define a *vector space* in general as a collection of objects for which linear combinations make sense. The objects of such a set are called vectors.

Definition. A vector space is a non-empty set V of objects, called *vectors*, for which linear combinations make sense. More precisely: on V there are defined two operations, called *addition* and *multiplication* by scalars (real numbers), subject to the ten axioms below. The axioms must hold for all u, v, and w in V and for all scalars c and d.

- 1. $\mathbf{u} + \mathbf{v}$ is in V. (V is "closed under addition".)
- $2. \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}.$
- 3. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$.
- 4. There is a vector (called the zero vector) $\mathbf{0}$ in V such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
- 5. For each **u** in V, there is a vector $-\mathbf{u}$ in V satisfying $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- 6. $c\mathbf{u}$ is in V. (V is "closed under scalar multiplication".)
- 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$.
- 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$.
- 9. $(cd)\mathbf{u} = c(d\mathbf{u})$.
- 10. $1\mathbf{u} = \mathbf{u}$.

2 Vector Space Examples

Example 2. Let $M_{2x2}=\left\{\begin{bmatrix} a & b \\ c & d\end{bmatrix}: a,b,c,d\in\mathbb{R}\right\}$. This is a vector space.

In this context, note that the ${\bf 0}$ vector is

Addition:	

Remarks

- We can take instead of matrices of size 2×2 matrices of any shape: you can check that the set $M_{m \times n}$ of $m \times n$ matrices is also a vector space, in the same way as we indicated above.
- Confusing: in the vector space $M_{2\times 2}$ the vectors are in fact 2×2 matrices!
- In the definition of the vector space $M_{2\times 2}$ the multiplication of matrices plays no role; matrix multiplication will show up when we study the connections between vector spaces.
- a "vector" $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ behaves very much like a column vector $\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$. A fancy person would say that the vector spaces $M_{2\times 2}$ and \mathbb{R}^4 are isomorphic.

Example 3. Let $n \geq 0$ be an integer and let

 \mathbf{P}_n = the set of all polynomials of degree at most n.

Members of \mathbf{P}_n have the form

$$\mathbf{p}(t) =$$

where a_0, a_1, \ldots, a_n are real numbers and t is a real variable.

The set \mathbf{P}_n is a vector space. We will just verify 3 out of the 10 axioms here.

Let
$$\mathbf{p}(t) = a_0 + a_1 t + \dots + a_n t^n$$
 and $\mathbf{q}(t) = b_0 + b_1 t + \dots + b_n t^n$. Let c be a scalar.

Axiom 1:

The polynomial $\mathbf{p} + \mathbf{q}$ is defined as follows: $(\mathbf{p} + \mathbf{q})(t) = \mathbf{p}(t) + \mathbf{q}(t)$. Therefore,

$$(\mathbf{p} + \mathbf{q}) (t) = \mathbf{p}(t) + \mathbf{q}(t)$$

$$= (\underline{} + \underline{} + \underline$$

which is also a _____ of degree at most ____. So $\mathbf{p} + \mathbf{q}$ is in \mathbf{P}_n .

Axiom 4:

$$\mathbf{0} = 0 + 0t + \dots + 0t^n$$

is the zero vector in \mathbf{P}_n .

$$(\mathbf{p} + \mathbf{0})(t) = \mathbf{p}(t) + \mathbf{0}$$

and so $\mathbf{p} + \mathbf{0} = \mathbf{p}$.

Axiom 6:

$$(c\mathbf{p})(t) = c\mathbf{p}(t) = (\dots) + (\dots) t + \dots + (\dots) t^n$$

which is in \mathbf{P}_n .

The other 7 axioms also hold, so P_n is a vector space.

3 Subspaces

Vector spaces may be formed from subsets of other vector spaces. These are called **subspaces**.

Definition. A *subspace* of a vector space V is a subset H of V that satisfies 3 properties:

- The zero vector (of V) belongs to H.
- If \mathbf{u}, \mathbf{v} both belong to H also the sum $\mathbf{u} + \mathbf{v}$ belongs to H. (H is *closed* under vector addition).
- If \mathbf{u} is in H and c is any scalar also $c\mathbf{u}$ belongs to H. (H is closed under scalar multiplication.)

Note that if the subset H satisfies these three properties, then H itself is a vector space.

Example 4.
$$Z = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$$
 is a subspace of \mathbb{R}^2 . Why?

Solution.

Example 5. $H = span \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$ is a subspace of \mathbb{R}^2 . Why? Solution.	
Example 6. Let $H = \left\{ \begin{bmatrix} a \\ 0 \\ b \end{bmatrix} : a, b \in \mathbb{R} \right\}$. Show that H is a subspace of \mathbb{R}^3 .	

Remark. Vectors (a, 0, b) look and act like the points (a, b) in \mathbb{R}^2 . But they are **not** the same!

Example 7. Is $H = \left\{ \begin{bmatrix} x \\ x+1 \end{bmatrix} : x \in \mathbb{R} \right\}$ a subspace of \mathbb{R}^2 ? (i.e. does H satisfy the properties of a subspace?)

Solution.

Problem 8. Find as many subspaces in \mathbb{R}^2 as you can.

Think of this at home.

Example 9. Is one of the following a subspace of \mathbb{R}^2 ?

Example 10. Is this a subspace of \mathbb{R}^3 ?

