

1/12

FIG. 1

FIG. 2A

ATGAATCAATTAAATTGAAAATGTTAACAAAAATAAGGGGTGGGTATTACACCCCT
 1 60
 M N Q L I E N V N L Q K L R G G Y Y T P
 AAAGTTATTGCTGACTTTTATGTCATGGAGTATTCAAGATGACACAAAGAGTGTACTT
 61 120
 K V I A D F L C Q W S I Q D D T K S V L
 GAACCCAGTTGGAGATGGTAATTATTGAATCGGCAATACTTAGGTTCAAAGAACCTT
 121 180
 E P S C G D G N F I E S A I L R F K E L
 AGTATAGATAATGAACAACCTAAAGGAAGAATTACAGGAGTAGAGCTAATTGAAGAAGAA
 181 240
 S I D N E Q L K G R I T G V E L I E E E
 GCTTGAAAGTCAAAATCGAGCAAATGAGTTGGGGTTGATAAAAACCTAACATAGTAAT
 241 300
 A L K V Q N R A N E L G V D K N S I V N
 AGTGACTTCTTCAATTGTAAAGATAATAAGAATAAAAATTGATACTATTATTGGT
 301 360
 S D F F Q F V K D N K N K K F D T I I G
 AATCCACCATTCTAACAGATAACCAAAACTTCTGAAGAGCATCGTAGTATGCCATGGAA
 361 420
 N P P F I R Y Q N F P E E H R S I A M E
 ATGATGGAGGAACCTAGGTTAAAACCTAACAAATATCTGGTTCCATTCTA
 421 480
 M M E E L G L K P N K L T N I W V P F L
 GTGGTATCTGCTACATTACTTAATGAACAAGGAAAGATGGCTATGGTTACCGGCTGAA
 481 540
 V V S A T L L N E Q G K M A M V I P A E
 TTATTCAGGTAAGTATGCAGCAGAACAGAAATTTTTATCAAAGTTTCGATCGT
 541 600
 L F Q V K Y A A E T R I F L S K F F D R
 ATCACTATAATTACATTGAAAAACTGTTTGAAATATCCAACAGGAAGTTACTA
 601 660
 I T I I T F E K L V F E N I Q Q E V I L
 CTTCTTGTGAAAGAAAGTTAACAGGAAATTGGTTATTGAATGCGAGAAC
 661 720
 L L C E K K V N K G K G I R V I E C E N
 TTAGATGGATTAAATTCCATTGATTTTAGCTATAATGGTCAAATGTTAACCTATT
 721 780
 L D G L N S I D F V A I N G S N V K P I
 GAACACCGTACTGAAAAGTGGACAAAGTATTCTAACGAAGATGAAATACTTCTTTA
 781 840
 E H R T E K W T K Y F L N E D E I L L L
 CAGAGTTAACAGGAAGACAAACGCGTAAAAATTGTAATGACTATTAAAGACAGAAGTT
 841 900
 Q S L K E D K R V K N C N D Y F K T E V
 GGCTTAGTTACTGGACGAAACGAATTCTTATGATGAAAGAAAACCAAGTAAAAGAATGG
 901 960
 G L V T G R N E F F M M K E N Q V K E W
 AATCTAGAAGAATATAACATACCTGTTACAGGTAGGTCCAATCAGTAAAAGGTATAACA
 961 1020
 N L E E Y T I P V T G R S N Q L K G I T

FIG. 2B

1021	TTTACAGAAAATGATTTCATGAAATTCAATGGAACAAAAGGCAATTACCTATTTG F T E N D F H E N S M E Q K A I H L F L CCACCAGATGAAGATTTGAAAAGTTACCGATTGAGTGTCAAATTATATCAAGTATGGG	1080
1081	P P D E D F E K L P I E C O N Y I K Y G GAAGAAAAAGGCTTCATCAAGGCTATAAAACAGAATTAGAAAACGTTGGTATATAACT	1140
1141	E E K G F H Q G Y K T R I R K R W Y I T CCATCTAGATGGGTTCCAGATGCTTTGCTTAAGACAGGTTGATGGCTATCCAAAACTA	1200
1201	P S R W V P D A F A L R Q V D G Y P K L ATTTAAATGAAACCGACGCTTCTTACTGATAACAATTACATAGGGTTAGATTAAAGAA	1260
1261	I L N E T D A S S T D T I H R V R F K E GGTATAAAATGAAAAGTTAGCCGTAGTTCACTTTGAACTCACTCACTTTGCATCTCA	1320
1321	G I N E K L A V V S F L N S L T F A S S GAAATAACGGGGAGAAGTTATGGTGGTGTATGACATTGAAACCAACTGAAATTGGA	1380
1381	E I T G R S Y G G G V M T F E P T E I G GAAATCCTAATACCTTCTTGATAACTTACATTGATTTGATAAAATTGATGCCTTA	1440
1441	E I L I P S F D N L S I D F D K I D A L ATTGAGAAAAGGAGATTGAAAAAGTCCTGATATTGTTGATGAAGCTTACTTATAAAA	1500
1501	I R E K E I E K V L D I V D E A L L I K TATCATGGTTTAGTGAGAAAGAAGTAAACAGCTCGAGGGATATGGAAGAAACTTCT	1560
1561	Y H G F S E K E V K Q L R G I W K K L S CAGAGAAGAAACAATAGAACGAAGAAATAA (SEQ ID NO: 1)	1620
1621	Q R R N N R T K K * (SEQ ID NO: 2) 1650	

FIG. 3A

ATGCATATAAGTGAGTTAGTAGATAAAACAAAGCGCATAGAAGTACTTTTTAAAACCA
 1 M H I S E L V D K Y K A H R S T F L K P
 ACTTATAATGAAACTCAACTAAGGAATGATTATAGACCCACTTCTAAAATCTTAGGA
 61 T Y N E T Q L R N D F I D P L L K S L G
 TGGGATGTTGATAATACCAAAGGAAAAACACATATTCTAAGAGATGTCAAGAAGAA
 121 W D V D N T K G K T H I L R D V I Q E E
 TACATAGAAATAAAAGATGAGGAGACAAAGAAAAATCCAGATTATACTTCGTATAAAC
 181 Y I E I K D E E T K K N P D Y T L R I N
 GGTACGAGAAAAGCTGTTGAGAGGTTAAGAAAACCGTCTTTAATATTTGAAATCAGCT
 241 G T R K L F V E V K K P S F N I L K S A
 AAAGCAGCCTTCCAACAAAGAAGATATGGTGGAGTGCTAACCTGGTATTCAGTACTT
 301 K A A F Q T R R Y G W S A N L G I S V L
 ACAAAATTGAGCATCTAGTTATTATGATTGAGATATAACGCCTGACAAATCCGACAAT
 361 T N F E H L V I Y D C R Y T P D K S D N
 GAACATATTGCTAGATATAAGTTCTCTTACGAGGAATATGAAGAACATTTGATGAA
 421 E H I A R Y K V F S Y E E Y E E A F D E
 ATAAAGGATATAATTTCATATGAGTCAGCCAACTCAGGTGCTCTGGACGAAATGTTGAT
 481 I K D I I S Y E S A N S G A L D E M F D
 GTAAATACAAGAGTTGGTGAACCGTTGACGAGTATTTTACAGCAAATTGAGAATTGG
 541 V N T R V G E T F D E Y F L Q Q I E N W
 CGCGAAAAGCTAGCTAAACTGCAATTAAAAAACACCGAATTAGGTGAAGAGGACGTC
 601 R E K L A K T A I K N N T E L G E E D V
 AATTTATTGTCAAAGACTATTAAACAGAATTATTTCTTAGAGTTGTGAAGATAGA
 661 N F I V Q R L L N R I I F L R V C E D R
 ACCATTGAAAAATATGAAACAATTAAAGTATAAAAACATGAGGAATTAAAGATCTG
 721 T I E K Y E T I K S I K N Y E E L K D L
 TTCAAAAGCTGATAGGAAATTAAATTCAAGGTCTTTGACTTCATAGATGATACGCTC
 781 F O K S D R K F N S G L F D F I D D T L
 TTGCTTGAGGTTGAATTGATTCGAATGTATTGATAGAAATTAGTGTATTATTC
 841 L L E V E I D S N V L I E I F S D L Y F
 CCACAAAGCCCATAATGATTTCTGTTGTCGATCCAACAATTAAAGCCAGATATGAA
 901 P Q S P Y D F S V V D P T I L S Q I Y E
 CGTTTCTAGGTCAAGAAATAATTATAGAGTCAGGTGGTACATTACGAGTC
 961 R F L G Q E I I I E S G G T F H I T E S

FIG. 3B

CCAGAAGTTGCGCGTCCAATGGTGTTCACCTCCAAAATTATCGTCGAACAGATA
 1021 P E V A A S N G V V P T P K I I V E Q I
 GTGAAAGACACTTAACGCCCTACGGAAGCAAAAATTAAATGAGCTATGTAACCTA
 1081 V K D T L T P L T E G K K F N E L C N L
 AAAATAGCAGATATATGTTGTGGATCAGGAACCTTCCTAATTCAAGTTATGACTTCA
 1141 K I A D I C C G S G T F L I S S Y D F L
 GTAGAGAAAAGTAATGGAAAAGATAATAGAAGAGAACATCGATGATTAGATTAGTATAT
 1201 V E K V M E K I I E E N I D D S D L V Y
 GAAACTGAAGAAGGGCTAATTTGACACTAAAGCAAAAAGAAATATCTGGAGAATAAT
 1261 E T E E G L I L T L K A K R N I L E N N
 TTGTTTGGTGTGATGTTAACATCCACGCTGTTGAAGTAGCTGAGTTAGCTTATTATTAA
 1321 L F G V D V N P Y A V E V A E F S L L
 AAGCTATTAGAAGGTGAGAATGAGGCATCGGTTAACATTACGAGCATGAGGAT
 1381 K L L E G E N E A S V N N F I H E H E D
 AAAATATTACCGGATTAAACATCTATTAAATGTGGAAACAGCTTAGTAGATAATAAG
 1441 K I L P D L T S I I K C G N S L V D N K
 TTTTTGAATTATGCCAGAACATCGTTAGAGGACGATGAAATCTTATTAAAGGCTAACCA
 1501 F F E F M P E S L E D D E I L F K A N P
 TTTGAATGGGAAGAGGAGTTCCAGATATTATGGCAAATGGCTTGTGATGCTATTATA
 1561 F E W E E E F P D I M A N G G F D A I I
 GGAAATCCACCTATGTCGAATACAGAACATGAAAAATAAGTCCTGAGGAATTGAA
 1621 G N P P Y V R I Q N M K K Y S P E E I E
 TATTATCAATCAAAGACTCTGAATATACTGTTGCAAAAAAGAACAGTTGACAAGTAT
 1681 Y Y Q S K D S E Y T V A K K E T V D K Y
 TTTTATTATTGAGAGAGCTTAATATTACTCAATCCTACTGGGCTGTTGGGTTATATA
 1741 F L F I E R A L I L L N P T G L L G Y I
 ATACCGCATAAATTCTTATTACAAAGGTGGTAAGGAACATAAGAAAGTTCATAGCTGAA
 1801 I P H K F F I T K G G K E L R K F I A E
 AAACATCAAATCAAATTATAAATTGGTGTACACAGGTCTTCAGGAAGAGCG
 1861 K H Q I S K I I N F G V T Q V F P G R A
 ACATATACGGCTATTTAATTATCCAAGCAAATAATGGCACAGTTCAAGTATAAGAAA
 1921 T Y T A I L I I Q O A N K M A Q F K Y K K
 GTAAGTAATATCAGCAGAACCCCTAGATTCTGAAGAAAATACGTGTGTTATAGCTCA
 1981 V S N I S A E T L D S E E N T C V Y S S

6/12

FIG. 3C

GAAAAGTATAATTCTGACCCTTGATATTTTATCTCCTGAAACAGAAGCTGTTTACT
 2041 E K Y N S D P W I F L S P E T E A V F T 2100
 AAATTACAGAACGCTCAATTGAGAAACTGGAGAAATCACTGATATAAGTAGGACTA
 2101 K F T E A Q F E K L G E I T D I S V G L 2160
 CAAACAAGCGCTGATAAAATATATTTTATTCTGAAAATGAAACTTCAGATACATAT
 2161 Q T S A D K I Y I F I P E N E T S D T Y 2220
 ATATTAATTATAAAGGGAAAAGATATGAAATAGAAAAATCTATATGTTGCCAGCTATC
 2221 I F N Y K G K R Y E I E K S I C C P A I 2280
 TATGACTTATCTTTGGTCTTTGAAAGCATTAGGGAAATGCACAAATGATATTCCCT
 2281 Y D L S F G S F E S I Q G N A Q M I F P 2340
 TATGAAATCAGAGATGAAGAACATATCTACTAGAGGAAGAACGCTGAAAATGATTAT
 2341 Y E I R D E E A Y L L E E E T L E N D Y 2400
 CCTCTTGCTTGAATTATTGAATGAGTTAAAGAACGCTCTGAAAAAGAACGTTACAA
 2401 P L A W N Y L N E F K E A L E K R S L Q 2460
 GGCGTAATCCGAAATGGTATCAATATGGTCGGTCCCAAAGTTATCAAATTCATGAT
 2461 G R N P K W Y Q Y G R S Q S L S K F H D 2520
 AAAGAAAAACTGATATGGACCGTACTTGCTACGAAACCCCGTATGTACTTGATAGGAAT
 2521 K E K L I W T V L A T K P P Y V L D R N 2580
 AACCTGTTATTTACTGGTGGTGGAAACGGACCGTATTATGGTTAATTAACCAATCTATT
 2581 N L L F T G G G N G P Y Y G L I N Q S I 2640
 TACTCTTGCATTATTTTAGGTATTCTTCACATCCTGTAATAGAAAGTATGGAAAA
 2641 Y S L H Y F L G I L S H P V I E S M V K 2700
 GCAAGGGCCAGTGAATTAGGGGATCATATTATTCTCATGGAAAACAATTATTGAGAAA
 2701 A R A S E F R G S Y Y S H G K Q F I E K 2760
 ATCCCATTAGAAAGATTGATTTGATGATCAAGATGAGGTAGACAAATATAATACGGTG
 2761 I P I R K I D F D D Q D E V D K Y N T V 2820
 GTCACAACAGTAGAAAAATTAACTACCGATAGAATTAAAGTGAGAGCAATGGA
 2821 V T T V E K L I I T T D R I K S E S N G 2880
 CCCCGGAGGAGAATGTTAGAAGAAGGTTAGATGCTTGTCTAATCAACTTATCCAGGTT
 2881 P R R R M L R R R L D A L S N Q L I Q V 2940
 ATTAAATGAACTTATAATATCAGTGACGAAGAATATACGACAGTTGAATGATGAAATG
 2941 I N E L Y N I S D E E Y T T V L N D E M 3000
 TTGACAGCGGCGTTAGGAGAAGAAAAATGA (SEQ ID NO: 3)
 3001 L T A A L G E E K * (SEQ ID NO: 4) 3030

7/12

FIG. 4

8/12

FIG. 5

9/12

FIG. 6

10/12

FIG. 7

M 1 2 3 4 5 6 7 8 9 10 11 12

125

25

62

48

33

25

17

7

← AcuI
 $\Delta(520-1000)$

#1 #2 #3 #4 #5 #6

11/12

FIG. 8

NEW SHEET

12/12

FIG. 9

Protein		VIII	VI	V	IV	X	I	II	III
	Motif X					Motif I		Motif II	Motif III
AccI (N6)	30	A <u>TTT</u> Tpflayaa <u>W</u> kWI			55	=1=> <u>C</u> A—	77	nikRAPE <u>D</u>	93 eYfd <u>D</u> enV
BanIII	16	ab <u>TTT</u> tdgId <u>L</u> akrL			49	g <u>DP</u> sc <u>cde</u> ll <u>ls</u> L	69	fnnid <u>N</u> KE	87 kpe <u>ea</u> d <u>R</u> Ln
BsuBI	26	CC <u>TTT</u> ssis <u>sf</u> Mac <u>GF</u>			52	VL <u>DG</u> ac <u>lgs</u> LtsAF	79	dlh <u>l</u> EDD	98 al <u>tk</u> o <i>rel</i>
CviBIII	26	u <u>TTT</u> ptk <u>re</u> kdy <u>fg</u> Ft			53	EL <u>PP</u> sc <u>cde</u> l <u>sec</u>	75	siKG <u>Y</u> ED	100 s <i>ne</i> D <u>LL</u> WLW
Eco57I	14	TT <u>TTT</u> q <u>m</u> kr <u>dy</u> WtKwV			39	EL <u>PP</u> sc <u>cde</u> v <u>fg</u> AI	65	cf <u>el</u> PD <u>E</u>	90 kte <u>gu</u> e <u>V</u> V
HincII	10	GT <u>TTT</u> t <u>h</u> kvX <u>W</u> g <u>l</u> uM			34	EL <u>PP</u> ss <u>ss</u> cv <u>fg</u> ld <u>L</u>	55	nlt <u>s</u> Y <u>ED</u>	71 l <i>ns</i> S <u>l</u> ts
PaeR7I	*	-10	ca <u>TTT</u> rs <u>se</u> v <u>fg</u> df <u>l</u> la		22	EL <u>PP</u> sc <u>cde</u> u <u>fg</u> lPI	83	Krc <u>eo</u> S <u>am</u>	100 qsg <u>gr</u> u <u>ll</u> la
PstI	36	u <u>TTT</u> Ms <u>ss</u> av <u>se</u> l <u>l</u> an <u>PF</u>			61	VL <u>DAG</u> ac <u>vs</u> Lts <u>af</u>	110	kiRA <u>PE</u> FE	124 k <i>es</i> D <u>ll</u> l <i>ga</i>
TaqI	19	cr <u>TTT</u> pe <u>el</u> v <u>fg</u> fv <u>sa</u>			43	VL <u>LE</u> pac <u>ch</u> u <u>fg</u> lAF	66	Rf <u>vc</u> G <u>ED</u>	85 g <u>pl</u> ad <u>ll</u> WLW
TthHB8I	17	cr <u>TTT</u> p <u>og</u> v <u>fr</u> Fv <u>vl</u> a			41	VL <u>LE</u> pac <u>ch</u> u <u>fg</u> lAF	64	Rf <u>vc</u> G <u>ED</u>	83 g <u>va</u> ad <u>ll</u> WLW
VspI	116	EV <u>TTT</u> ke <u>la</u> ad <u>fd</u> YL			141	F <u>c</u> cc <u>ct</u> On <u>mea</u>	181	dev <u>a</u> l <u>RS</u>	195 k <i>ekr</i> u <u>ll</u> sa
EcoRI	50	Prv <u>sn</u> FF <u>k</u> Y <u>f</u> av <u>n</u> fdn <u>L</u>			79	nkEG <u>F</u> ss <u>se</u> akn <u>GF</u>	104	Klv <u>vf</u> d <u>DIS</u>	123 sesi <u>D</u> LLkk
COMtase	41	nvgdakggIM <u>d</u> aV <u>I</u> re <u>Y</u>			62	V <u>LE</u> L <u>Gay</u> c <u>Gys</u> avr <u>M</u>	85	Rll <u>t</u> MEMNN	117 gaS <u>q</u> D <u>LI</u> p <u>q</u>
HhaI (C5)	298	G <u>NSV</u> vin <u>V</u> q <u>y</u> ay <u>in</u> g			14	F <u>ID</u> l <u>ra</u> G <u>lg</u> Fr <u>l</u> AL	35	cv <u>syn</u> E <u>WD</u>	56 kpe <u>GD</u> It <u>qv</u>

Protein	Motif IV	Motif V	Motif VI	Motif VII
	←4→	○ D ○	←S→	←E→
AccI (N6)	117 DP EPICNPPFffhdydn	154 N Xt I lkKsW-hQfSqmPrcaxL <i>l</i> se <i>L</i>	190 D Yt I likskt J rh <i>h</i>	
BanIII	132 V P I lANP P PFVrtgvlga	166 D Y I harlva- M t I glq G el I ovtsn <i>K</i>	202 R qflaenyd <i>T</i> le <i>m</i>	
BsuBI	137 T ha <i>n</i> NP <i>P</i> KKiksn <i>K</i>	168 M as <i>s</i> ar <i>v</i> al <i>t</i> -d <i>l</i> l <i>s</i> d <i>g</i> ee <i>l</i> er <i>s</i> rg <i>c</i>	204 F R <i>q</i> h <i>h</i> inkts <i>x</i> kh <i>h</i>	
CviBIII	113 D EP I V C NPP <i>F</i> Vvprsgy <i>K</i>	141 M IV <i>V</i> sl <i>y</i> K <i>c</i> h <i>t</i> e <i>h</i> I K <i>g</i> i <i>c</i> h <i>l</i> I D <i>st</i> ig	178 F uk <i>l</i> it <i>l</i> ld <i>s</i> f <i>el</i>	
Eco57I	110 D EP I V C NPP <i>F</i> Yqfle <i>R</i>	149 A IV <i>p</i> vp <i>l</i> ss <i>-a</i> ll <i>g</i> o <i>q</i> kg <i>M</i> g o <i>q</i> g <i>M</i>	185 l ns <i>y</i> ghvc <i>sk</i> iv <i>Y</i>	
HincII	85 D EP I V C NPP <i>F</i> Vwkn <i>l</i> se <i>R</i>	123 D Y <i>V</i> l <i>l</i> ik <i>s</i> l <i>-l</i> cl <i>g</i> o <i>q</i> g <i>M</i> g o <i>q</i> g <i>M</i>	159 F uk <i>l</i> lin <i>g</i> ns <i>F</i> ek <i>l</i>	
PaeR7I	114 D EP I V C NPP <i>F</i> Vrp <i>b</i> el <i>p</i> ia	149 D IV <i>p</i> ip <i>l</i> er <i>s</i> ta <i>-l</i> sa <i>co</i> ng <i>l</i> gi <i>C</i> dr <i>W</i>	185 l ns <i>y</i> va <i>er</i> fh <i>k</i> kv <i>Y</i>	
PstI	146 D EP I V C NPP <i>F</i> l <i>a</i> ia <i>ka</i> g <i>R</i>	177 N IV <i>s</i> ar <i>v</i> al <i>a</i> - q o <i>q</i> g <i>g</i> ev <i>h</i> av <i>l</i> er <i>W</i>	213 F uk <i>l</i> q <i>l</i> de <i>c</i> sc <i>g</i> an <i>l</i>	
TagI	99 D EP I V C NPP <i>F</i> g <i>iv</i> geas <i>K</i>	141 M IV <i>s</i> de <i>k</i> ey <i>-r</i> l <i>l</i> ko <i>q</i> gv <i>l</i> iv <i>V</i> W <i>l</i> at <i>W</i>	177 D ref <i>l</i> are <i>g</i> ek <i>ts</i> v <i>Y</i>	
TthHB8I	97 D EP I V C NPP <i>F</i> g <i>iv</i> geas <i>K</i>	139 N IV <i>s</i> ar <i>g</i> ie <i>k</i> sw <i>-r</i> l <i>l</i> Re <i>g</i> ct <i>l</i> ev <i>V</i> W <i>l</i> at <i>W</i>	175 l ns <i>f</i> lare <i>g</i> rt <i>ev</i> vv	
VspI	211 D EP I V C NPP <i>F</i> g <i>kl</i> pk <i>kd</i>	265 I l <i>q</i> da <i>l</i> F <i>n</i> ias <i>y</i> es <i>V</i> l <i>l</i> an <i>q</i> l <i>val</i> d	310 l uk <i>ccpdg</i> qh <i>ati</i> v	
EcoRI	133 s <i>D</i> i <i>V</i> V <i>t</i> N <i>PPP</i> S <i>lf</i> rey <i>ld</i>	175 N l <i>I</i> ken <i>ki</i> lv <i>g</i> h <i>l</i> g <i>R</i> - <i>G</i> v <i>sg</i> F IV <i>P</i> eh <i>Ye</i>	208 a Rids <i>gn</i> ri <i>I</i> sp <i>nn</i>	
COMtase	135 l <i>D</i> MV <i>V</i> l <i>D</i> hw <i>k</i> ---	147 y <i>l</i> p <i>dt</i> l l <i>l</i> ek <i>cg</i> ll <i>r</i> K - <i>G</i> t <i>V</i> l <i>l</i> A D <i>W</i> V <i>v</i> p	183 V R <i>g</i> ss <i>s</i> fe <i>ch</i> Y ss <i>V</i>	
HhaI (C5)	72 h <i>I</i> l <i>c</i> a <i>q</i> g <i>F</i> PC <i>O</i> A <i>f</i> is <i>q</i> k	99 L l <i>f</i> fd <i>l</i> - <i>a</i> R i <i>V</i> - <i>re</i> K - P k <i>V</i> V <i>M</i> E N <i>V</i> k <i>n</i> F	136 V K <i>n</i> l <i>M</i> e <i>l</i> D <i>y</i> s <i>F</i> h <i>ak</i> <i>V</i>	

Protein	Motif VIII	MW	Target	Swissprot Accession Number
	>			
AccI (N6)	209 eenVfddal	540 aa	GTMKAC	P225201
BanIII	220 dtdgpsaav	580 aa	ATCGAT	P22772
BsuBI	223 rdkhfkdde	501 aa	CTGCAG	P33563
CvibIII	194 dkhdfcdtn	377 aa	TTCGA	P10835
EcoS7I	202 keiWfpedtl	540 aa	CTGAAG	P25240
HincII	177 eskVphgvs	502 aa	GTIVRAC	P17744
PaeR7I	203 dtpafhsdv	531 aa	GTCGAC	P05103
PstI	232 rkafkqasd	507 aa	CTGCAG	P00474
TaqI	192 lgeVppqkk	421 aa	TTCGA	P14385
TthHB8I	190 lgeVppgrk	428 aa	TTCGA	P25749
VspI	333 sqrphekn	408 aa	ATTAAAT	Q03055
EcoRI	228 nldVfirhk	325 aa	GAATTC	P00472
COMtase				
HhaI (C5)	161 QkReRivmi	221 aa	catechol	P22734
		327 aa	GGCC	P05102