

C201 – Introdução à Engenharia - Computação

Lógica Formal

Prof. Guilherme Augusto Barucke Marcondes

Baseado nos livros: Fundamentos Matemáticos para a Ciência da Computação – Judith L. Gersting – Quinta Edição e Aprendendo Matemática Discreta com Exercícios – Menezes, Toscani e López – Volume 19

Proposição ou Declaração

Lógica formal → pode representar afirmações que fazemos.

Proposição ou Declaração → uma sentença falsa ou verdadeira.

- Dez é menor do que sete.
- Como está você?
- Ela é muito talentosa.
- Existe vida em outros planetas do universo.

Proposição ou Declaração

- Dez é menor do que sete.
 É uma proposição, pois é uma afirmação falsa.
- Como está você?
 Não é uma proposição. É uma pergunta (não é falsa e nem verdadeira).
- Ela é muito talentosa.
 Não é uma proposição. Ela não está especificada.
- Existe vida em outros planetas do universo.
 É uma proposição. Pode ser falsa ou verdadeira, mesmo eu não sabendo a resposta.

Permitem combinar frases simples: "e" / "ou".

"Elefantes são grandes."

"Guepardos são rápidos."

Elefantes são grandes e guepardos são rápidos.

"João é engenheiro."

"João não gosta de matemática."

João é engenheiro OU João não gosta de matemática.

Conjunção

A / B → proposições

A ^ B (lê-se A e B)

Tabela Verdade

Α	В	A^B
V	V	V
V	F	F
F	V	F
F	F	F

- → Se A é verdadeiro e B é verdadeiro → A ^ B é verdadeiro
- → Se A é verdadeiro e B é falso → A ^ B é falso
- → Se A é falso e B é verdadeiro → A ^ B é falso
- → Se A é falso e B é falso → A ^ B é falso

Disjunção

A / B → proposições

A v B (lê-se A ou B)

Α	В	AvB
V	V	V
V	F	V
F	V	V
F	F	F

- → Se A é verdadeiro ou B é verdadeiro → AvB é verdadeiro
- → Se A é verdadeiro ou B é falso → A v B é verdadeiro
- → Se A é falso e B é verdadeiro → A v B é verdadeiro
- → Se A é falso e B é falso → A v B é falso

Negação

A → proposição

A' (lê-se não A)

Pode-se encontrar também: ¬A e ~A

Α	A'
V	F
F	V

Condições

Necessária

Sem a proposição A, não acontece a proposição B.

Suficiente

A proposição A é suficiente para que a proposição B ocorra.

Necessária e Suficiente

A proposição A é necessária e já é suficiente para que a proposição B ocorra.

Condições - exemplos

Necessária

- É necessário jogar na Mega-Sena para ganhar.
- É necessário que um número seja divisível por 3 para ser divisível por 6.

Suficiente

- Se é um mamífero, então é animal.
- Se um número é divisível por 9, então ele é divisível por 3.

Necessária e Suficiente

- Se acertei seis números de uma aposta válida da Mega-Sena, então sou ganhador.
- Se um número é divisível por 2, então ele é par.

Condição

A / B → proposições

A → B (lê-se A implica B) – Se A, então B.A é condição suficiente para B.

Α	В	$A \rightarrow B$
V	V	V
V	F	F
F	V	V
F	F	V

→ Se A é verdadeiro, B tem que ser verdadeiro.

→ Se A é falso, B pode ser verdadeiro ou falso.

Bicondição

A / B → proposições

A ↔ B – equivale a (A → B) ^ (B → A) A é condição necessária e suficiente para B.

Α	В	A ↔ B
V	V	V
V	F	F
F	V	F
F	F	V

→ Se A é verdadeiro, B tem que ser verdadeiro.

→ Se A é falso, B tem que ser falso.

A' ^ B

$$A' \rightarrow B$$

Α	В	A^B	AvB	A→B
٧	٧	V	V	V
٧	F	F	V	F
F	٧	F	V	V
F	F	F	F	V

A' ^ B

A	В	A'	A' ^ B
٧	٧	F	F
٧	F	F	F
F	V	V	V
F	F	V	F

$$(A ^ B') \vee (A' ^ B)$$

A	В	A'	B'	A ^ B'	A' ^ B	(A ^ B') v (A' ^ B)
٧	V	F	F	F	F	F
V	F	F	V	V	F	V
F	V	V	F	F	V	V
F	F	V	V	F	F	F

$$A' \rightarrow B$$

Α	В	A'	A' → B
V	V	F	V
V	F	F	V
F	V	V	V
F	F	V	F

Tautologia → intrinsicamente verdadeira; é verdadeira independentemente dos valores lógicos atribuídos.

A∨B ←→ B∨A	A^B ←→ B^A
(A ∨ B) ∨ C ←→ A ∨ (B ∨ C)	(A ^ B) ^ C ←→ A ^ (B ^ C)
A v (B ^ C) ←→ (A v B) ^ (A v C)	A ^ (B ∨ C) ←→ (A ^ B) ∨ (A ^ C)
A∨F ←→ A	A ^ V ←→ A
A ∨ A' ←→ ∨	A ^ A' ←→ F

Leis de De Morgan

Prove!!!!!!

Leis de De Morgan

A	В	A ^ B	(A ^ B)'	A'	B'	A'vB'
V	V	V	F	F	F	F
V	F	F	V	F	V	V
F	V	F	V	V	F	V
F	F	F	V	V	V	V

Leis de De Morgan – Exemplo Prático

Condição de aprovação – disciplinas T + P do Inatel

Proposição A → NPT ≥ 60

Proposição B → NPL ≥ 60

Aprovação	Não Aprovação
A ^B	(A ^ B)' → A' v B'
Prop. A \rightarrow NPT \geq 60 Prop. B \rightarrow NPL \geq 60	Prop. A' \rightarrow (NPT \geq 60)' \rightarrow NPT $<$ 60 Prop. B' \rightarrow (NPL \geq 60)' \rightarrow NPL $<$ 60
A ^ B → NPT≥60 e NPL≥60	A' v B' → NPT < 60 ou NPL < 60

Conectivos – Situações Reais

Um alarme tem dois sensores: um de presença (A) e outro de abertura de porta (B). Ele deve disparar se qualquer um dos dois for acionado. Qual a expressão lógica?

Conectivos – Situações Reais

Um alarme tem dois sensores: um de presença (A) e outro de abertura de porta (B). Ele deve disparar se qualquer um dos dois for acionado. Qual a expressão lógica?

Acionamento do Alarme → (A v B)

Em um teclado, se a tecla shift (A) estiver apertada no momento de apertar a tecla w (B), a letra w deve ser maiúscula. Qual a expressão lógica?

Conectivos – Situações Reais

Um alarme tem dois sensores: um de presença (A) e outro de abertura de porta (B). Ele deve disparar se qualquer um dos dois for acionado. Qual a expressão lógica?

Acionamento do Alarme → (A v B)

Em um teclado, se a tecla shift (A) estiver apertada no momento de apertar a tecla w (B), a letra w deve ser maiúscula. Qual a expressão lógica?

Letra W → (A ^ B)

<u>Conectivos – Situações Reais</u>

Em um teclado:

- se a tecla shift (A) estiver apertada no momento de apertar a tecla w
 (B), a letra w deve ser maiúscula;
- se a tecla Caps Lock (C) estiver ativada e a tecla w for apertada, a letra w deve ser maiúscula;
- a letra w não deve ser maiúscula se a tecla Caps Lock (C) estiver ativada, a tecla shift (A) estiver apertada e a tecla w (B) for apertada,;

Qual a expressão lógica?

<u>Conectivos – Situações Reais</u>

Em um teclado:

- se a tecla shift (A) estiver apertada no momento de apertar a tecla w
 (B), a letra w deve ser maiúscula;
- se a tecla Caps Lock (C) estiver ativada e a tecla w for apertada, a letra w deve ser maiúscula;
- a letra w não deve ser maiúscula se a tecla Caps Lock (C) estiver ativada, a tecla shift (A) estiver apertada e a tecla w (B) for apertada,;

Qual a expressão lógica?

Letra W → (A ^ B ^ C') v (A' ^ B ^ C)

Conectivos – Exercícios

A é V, B é F e C é V. Qual o valor lógico das expressões a seguir?

e.
$$(A' \rightarrow B) \land C$$
 f. $(B \leftrightarrow C') \lor A$

$$f. (B \leftrightarrow C') \lor A$$

Qual o valor lógico de cada uma das proposições a seguir?

a. 8 é par ou 6 é ímpar. b. 8 é par e 6 é ímpar. c. 8 é ímpar ou 6 é ímpar.

d. Se a for impar, então b é par. (considere a = 2 e b = 4)

e. Se a for par, então b é impar. (considere a =1 e b =4)

Conectivos – Exercícios

A é V, B é F e C é V. Qual o valor lógico das expressões a seguir?

e.
$$(A' \rightarrow B) \land C - (V' \rightarrow F) \land V - V$$

f.
$$(B \leftrightarrow C') \vee A - (F \leftrightarrow V') \vee V - V$$

Qual o valor lógico de cada uma das proposições a seguir?

a. 8 é par ou 6 é ímpar. b. 8 é par e 6 é ímpar. c. 8 é ímpar ou 6 é ímpar.

v F V

V ^ F F

F

d. Se a for impar, então b é par. (considere a = 2 e b = 4)

 $F \rightarrow V$

V

e. Se a for par, então b é ímpar. (considere a = 1 e b = 4)

 \rightarrow F

Tautologia / Contradição / Contingência

Tautologia

Independentemente dos valores lógicos das variáveis, é sempre V.

Exemplo: A v A'

Contradição

Independentemente dos valores lógicos das variáveis, é sempre F.

Exemplo: A ^ A'

Contingência

Quando uma expressão lógica tem valores V e F.

Exemplo: A ^ B

Indique se é tautologia, contradição ou contingência

$$(A \land B) \rightarrow (A \lor B)$$

$$(A \rightarrow (A' \rightarrow B))'$$

Α	В	A^B	AvB	$A \rightarrow B$	A ↔ B
V	V	V	V	V	V
V	F	F	V	F	F
F	V	F	V	V	F
F	F	F	F	V	V

Indique se é tautologia, contradição ou contingência (A v B')'

Α	В	B'	A v B'	(A v B')'
V	V	F	V	F
V	F	V	V	F
F	V	F	F	V
F	F	V	V	F

contingência

Indique se é tautologia, contradição ou contingência

$$(A \land B) \rightarrow (A \lor B)$$

Α	В	A ^ B	AvB	$(A ^ B) \rightarrow (A \vee B)$
V	V	V	V	V
V	F	F	V	V
F	V	F	V	V
F	F	F	F	V

tautologia

Indique se é tautologia, contradição ou contingência

$$(A \rightarrow (A' \rightarrow B))'$$

Α	В	A'	(A' → B)	$A \rightarrow (A' \rightarrow B)$	(A → (A' → B))'
V	V	F	V	V	F
V	F	F	V	V	F
F	V	V	V	V	F
F	F	V	F	V	F

contradição

Teorema

Proposição do tipo

Que é sempre verdadeira (tautologia)

$$p => q$$

Precisa demonstrar que é verdadeiro!!!!

Teorema

Hipótese – assumida como verdadeira.

Tese – provar que é verdadeira.

Exemplo

 $oldsymbol{0}$ é o único elemento neutro da adição em N.

Hipótese — se $\mathbf{0}$ é elemento neutro da adição em N, Tese — então $\mathbf{0}$ é o único elemento neutro da adição em N.

Prova Direta – $p \rightarrow q$

a soma de dois números pares é um número par

Hipótese ← se **n** e **m** são dois números pares quaisquer, Tese ← então **n** + **m** é um número par.

$$n = 2s$$

$$m = 2r$$

$$m = 2r$$
 $res \in N$

$$n + m = 2s + 2r = 2 (s + r)$$

$$(s + r) \in N$$
, $logo n + m \acute{e} par$.

Prova por Contraposição - p → q ⇔ ¬q → ¬p

Hipótese
$$\leftarrow$$
 se $n! > (n + 1)$,
Tese \leftarrow então $n > 2$. $(n \in N)$

$$n! > (n+1) \rightarrow n > 2$$

 $n \le 2 \rightarrow n! \le (n+1)$ Inverte hipótese e tese.

$$n=0$$
 \rightarrow $n!=1 \le (n+1)=1$ Verdadeiro
 $n=1$ \rightarrow $n!=1 \le (n+1)=2$ Verdadeiro
 $n=2$ \rightarrow $n!=2 \le (n+1)=3$ Verdadeiro

Prova por Absurdo - p \rightarrow q \Leftrightarrow (p $\land \neg q$) \rightarrow F

 $oldsymbol{0}$ é o único elemento neutro da adição em N.

Hipótese — se $\mathbf{0}$ é elemento neutro da adição em N, Tese — então $\mathbf{0}$ é o único elemento neutro da adição em N.

Suponha $\mathbf{0}$ é elemento neutro da adição em N e Hipótese $\mathbf{0}$ não é o único elemento neutro da adição em N. Negação da tese

 $e \neq 0$ elemento neutro da adição em Nse 0 é elemento neutro, n = 0 + n = n + 0 para qualquer $n \in N$ se n = e, e = 0 + e = e + 0se n = 0, 0 = 0 + e = e + 0logo e = 0, o que é uma contradição, pois assumiu-se $e \neq 0$

Prova por Indução Matemática

Seja uma propriedade *P.* Ela vale para todo *n* inteiro positivo se:

Duas
Hipóteses
$$P(1) \text{ é verdade}$$

$$P(k) \text{ é verdade} \rightarrow P(k+1) \text{ é verdade}$$

Prove que a soma de todos os números ímpares até 2n - 1 (n é um inteiro) é igual a n^2 .

Ou seja:

$$1 + 3 + 5 + ... + (2n - 1) = n^2$$

Prova por Indução Matemática (cont.)

P(1):
$$n = 1 \implies 1 = 1^2$$

P(k): $1 + 3 + 5 + ... + (2k - 1) = k^2$
 $1 + 3 + 5 + ... + (2k - 1) + [2(k + 1) - 1] = (k + 1)^2$
 $= (k + 1)^2$
 $= k^2 + [2(k + 1) - 1] = (k^2 + 2k + 2 - 1) = (k^2 + 2k + 1) = (k + 1)^2$

Demonstração - Exemplos

1. A soma de dois números ímpares é um número par.

2.
$$n! > (n+3) \rightarrow n > 3$$

3. 1 é o único elemento neutro na multiplicação em N.

C201 – Introdução à Engenharia - Computação

Lógica Formal

Prof. Guilherme Augusto Barucke Marcondes

Baseado nos livros: Fundamentos Matemáticos para a Ciência da Computação – Judith L. Gersting – Quinta Edição e Aprendendo Matemática Discreta com Exercícios – Menezes, Toscani e López – Volume 19