PhD Application for The PhD Thesis "Decentralized Fog Computing Infrastructure Control"

Ali J. Fahs

Supervised by Professor Guillaume Pierre

Audition, 8th of June, 2017

Outline

- Personal Presentation
- Master Thesis
- 3 State-of-the-Art for Edge Clouding
- PhD Topic
- Project Perspective

Personal Presentation

- A double diploma student.
 - Engineering diploma in telecommunication and computer science -Lebanese University, Faculty of engineering (ULFG).
 - Master's degree in Informatics Grenoble (MoSIG) Parallel, Distributed Systems Track - Grenoble INP (Institut national polytechnique), Ensimag (École nationale supérieure d'informatique et de mathématiques appliquées de Grenoble) jointly with UGA (université grenoble alpes), IMAG (Informatique, mathématiques, mathématiques appliquées de Grenoble).
- Research interest: Distributed systems, Networking.
- Master's thesis "Distributed Approach for Cross-Layer Resource Allocation in Wireless Sensor Networks" Jointly between LIG (Laboratoire d'Informatique de Grenoble) and VERIMAG.

Overview

 IEEE802.15.4: Wireless sensor network standard.

Overview

- IEEE802.15.4: Wireless sensor network standard.
- Time-slotted channel hopping (TSCH), The Medium access layer control.

		Time Slot					
		0	1	2	3	4	
Channel Offset	0	Shared Slot				B>A	
	1		C>A				
	2		B>D		D>B E>C		
	3						

Overview

- IEEE802.15.4: Wireless sensor network standard.
- Time-slotted channel hopping (TSCH), The Medium access layer control.
- 6TiSCH: IPv6 over IEEE802.15.4e TSCH.

		Time Slot					
		0	1	2	3	4	
Channel Offset	0	Shared Slot				B>A	
	1		C>A				
	2		B>D		D>B E>C		
	3						

Challenges

• High collision rates in TSCH dedicated cells.

		Time Slot					
		0	1	2	3	4	
Channel Offset	0	Shared Slot				B>A	
	1		C>A				
	2		B>D		D>B E>C		
	3						

Cha

Challenges

- High collision rates in TSCH dedicated cells.
- Cause: no coordination between nodes.

		Time Slot					
		0	1	2	3	4	
Channel Offset	0	Shared Slot				B>A	
	1		C>A				
	2		B>D		D>B E>C		
	3						

Challenges

- High collision rates in TSCH dedicated cells.
- Cause: no coordination between nodes.
- Lack of central entity.

Proposed Mechanism

 Local mutual exclusion: every node passively learn the schedule of their neighbors.

Proposed Mechanism

- Local mutual exclusion: every node passively learn the schedule of their neighbors.
- Entirely local algorithm, no new messages were introduced.

Proposed Mechanism

- Local mutual exclusion: every node passively learn the schedule of their neighbors.
- Entirely local algorithm, no new messages were introduced.
- Result: 70% reduction in the colliding Tx cells.

Master thesis Results

• Paper to be submitted to conference WiMob 2017.

Cloud Infrastructure

• Pros: extremely flexible and powerful.

Cloud Infrastructure

- Pros: extremely flexible and powerful.
- Cons: Clouding disadvantages: latency, mobility, etc...

Cloud Infrastructure

- Pros: extremely flexible and powerful.
- Cons: Clouding disadvantages: latency, mobility, etc...

Edge clouds

 Idea: deploying cloud applications in the immediate end user proximity.

^{*}references: 1-Yi, Shanhe, Cheng Li, and Qun Li. "A survey of fog computing: concepts, applications and issues." Proceedings of the 2015 Workshop on Mobile Big Data. ACM. 2015.

²⁻ Van Kempen, Alexandre, et al. "MEC-ConPaaS: An experimental single-board based mobile edge cloud." IEEE Mobile Cloud.

Cloud Infrastructure

- Pros: extremely flexible and powerful.
- Cons: Clouding disadvantages: latency, mobility, etc...

Edge clouds

- Idea: deploying cloud applications in the immediate end user proximity.
- Results: better end to end latency and application interactivity, less long-distance traffic.

^{*}references: 1-Yi, Shanhe, Cheng Li, and Qun Li. "A survey of fog computing: concepts, applications and issues." Proceedings of the 2015 Workshop on Mobile Big Data. ACM, 2015.

²⁻ Van Kempen, Alexandre, et al. "MEC-ConPaaS: An experimental single-board based mobile edge cloud." IEEE Mobile Cloud.

Cloud Infrastructure

- Pros: extremely flexible and powerful.
- Cons: Clouding disadvantages: latency, mobility, etc...

Edge clouds

- Idea: deploying cloud applications in the immediate end user proximity.
- Results: better end to end latency and application interactivity, less long-distance traffic.
- Infrastructure based on single-board computers: small, cheap, can be deployed everywhere.

2- Van Kempen, Alexandre, et al. "MEC-ConPaaS: An experimental single-board based mobile edge cloud." IEEE Mobile Cloud.

^{*}references: 1-Yi, Shanhe, Cheng Li, and Qun Li. "A survey of fog computing: concepts, applications and issues." Proceedings of the 2015 Workshop on Mobile Big Data. ACM, 2015.

Challenges of Fog Computing

 Infrastructure based on very large numbers of unreliable and distributed servers.

Challenges of Fog Computing

- Infrastructure based on very large numbers of unreliable and distributed servers.
- But the control remains centralized.

Challenges of Fog Computing

- Infrastructure based on very large numbers of unreliable and distributed servers.
- But the control remains centralized.
- Drawbacks: unnecessary traffic, latency, robustness.

Challenges of Fog Computing

- Infrastructure based on very large numbers of unreliable and distributed servers.
- But the control remains centralized.
- Drawbacks: unnecessary traffic, latency, robustness.
- Application developers should not handle the complexity of application deployment, fault tolerance, reconfiguration, or elasticity.

Objectives

• Designing fully distributed control mechanisms: every compute node is also a control node.

^{*}references: Jelasity, Mrk, et al. "Gossip-based peer sampling." ACM Transactions on Computer Systems (TOCS) 25.3 (2007).

Objectives

- Designing fully distributed control mechanisms: every compute node is also a control node.
- Compare to centralized alternatives.

^{*}references: Jelasity, Mrk, et al. "Gossip-based peer sampling." ACM Transactions on Computer Systems (TOCS) 25.3 (2007).

Objectives

- Designing fully distributed control mechanisms: every compute node is also a control node.
- Compare to centralized alternatives.
- One interesting direction: gossip-based algorithms for the coordination of multiple schedulers.

^{*}references: Jelasity, Mrk, et al. "Gossip-based peer sampling." ACM Transactions on Computer Systems (TOCS) 25.3 (2007).

Project Perspective

ullet Edge clouds are very new \Longrightarrow opportunities for impact

Personal Perspective

Project Perspective

- ullet Edge clouds are very new \Longrightarrow opportunities for impact
- An H2020 project coordinated by Prof. Pierre will start soon on fog computing.

Personal Perspective

Project Perspective

- Edge clouds are very new ⇒ opportunities for impact
- An H2020 project coordinated by Prof. Pierre will start soon on fog computing.

Personal Perspective

• Spend 3 years of my life with a subject that I'm completely interested in, so I can reach my max potential.

Project Perspective

- Edge clouds are very new ⇒ opportunities for impact
- An H2020 project coordinated by Prof. Pierre will start soon on fog computing.

Personal Perspective

- Spend 3 years of my life with a subject that I'm completely interested in, so I can reach my max potential.
- The field of cloud and distributed systems is currently undergoing a revolution, and I want to be a part of this revolution.

Thanks for your attention! Questions?