Integrali

∼ by Watsu Curry

Integrali immediate

F(x)	£.(x)	- F(x)	f.(x)	F(x)	f'(x)
1	×	<u> </u>	lnixi	<u>zen, x</u> 1	cotg×
×	<u>x²</u>		e×	$-\frac{4}{1+x^2}$	arccotg x
xn	N+1 Xn+1 X2	$\sigma_{\mathbf{x}}$	ax Inx	- 1	arcsenx
senx	-co2x	(052x	tgx	$-\frac{1}{\sqrt{1-X^2}}$	arecos x
CO2 X	senx	(05 ² x)	arctgx	41-7	

Integrale composta

$$\int g'f(x) \cdot f'(x) dx = g(f(x)) + K$$

Integrale per parti

Integrale di frazioni

 $\int \frac{A(x)}{B(x)} dx$

4. Grado numeratore > grado denominatore

divisione tra polinomi

$$\frac{A(x)}{B_x} = \frac{A(x)}{B(x)} = \frac{A(x)}{B(x)} + \frac{B(x)}{B(x)}$$

2. Grado numeratore < grado denominatore

$$\cdot \int \frac{K}{0x+h} dx$$

$$\bullet \left\{ \frac{mx+n}{0x^2+bx+c} \right\} dx$$

(alcolare A

•
$$\Delta > 0$$
 $\int \frac{mx+n}{ax^2+bx+c} dx = \int \frac{A}{x-x_1} dx + \frac{B}{x-x_2} dx$

•
$$\nabla = 0$$

$$\int \frac{dx_3 + \rho x + G}{dx + U} dx = \int \frac{x - x^4}{U} dx + \frac{(x - x^4)^2}{U} dx$$

•
$$\Delta$$
 < 0 $\int \frac{mx+n}{ax^2+bx+c} dx = \frac{f'(x)}{[f(x)]^2+1} = \frac{arctan(f(x))+\kappa}{(f(x))^2+1} \rightarrow ricondurre adun arctan(f(x))$