UBC Physics 102

Rik Blok

Lecture 2

UBC Physics 102: Lecture 2, July 3, 2003 - p. 1/14

Radioactivity [Text: Sect. 42-3]

- Definition: Radioactivity
- Decay of an unstable nucleus.
- Discussion: 3 common types of decay

Mass	heavy	light	very light
Charge	+2	-1	none
Particle emitted	4 He (2 p + 2 n)	electron	photon
Type	lpha (alpha)	β (beta)	γ (gamma)

UBC Physics 102: Lecture 2, July 3, 2003 - p. 3/14

Outline

- Radioactivity
 - Alpha decay
 - Beta decay
- Gamma decay
- Rate of decay
- Half-life
- Radioactive dating Activity

UBC Physics 102: Lecture 2, July 3, 2003 - p. 2/14

Alpha decay [Text: Sect. 42-4]

Definition: \(\alpha \) decay

$${}_{Z}^{A}X \to {}_{Z-2}^{A-4}X' + {}_{2}^{4}$$
 He

- $\alpha = \frac{4}{2} \text{He}$ (helium nucleus).
- Mass (A) and charge (Z) conserved.
- Example: Smoke detectors

$$^{241}_{95}\mathrm{Am} \to ^{237}_{93}\mathrm{Np} + ^{4}_{2}\mathrm{He}$$

- Emitted $\boldsymbol{\alpha}$ particle used to generate current between two plates.
- Smoke interrupts current to trip alarm.

UBC Physics 102: Lecture 2, July 3, 2003 - p. 4/14

Beta decay [Text: Sect. 42-5]

• Definition: β decay

$${}_Z^AX \rightarrow {}_{Z+1}^AX' + e^-(+ \text{ neutrino})$$

- $\beta = e^-$ (electron).
- Mass (A) and charge (Z) conserved.
- Electron comes from nucleus, not orbit.
- Produced by decay of neutron:

$$n \to p^+ + e^- (+ \text{ neutrino})$$

<u>ys102/lecture/</u>
UBC Physics 102: Lecture 2, JJly 3, 2003 – p. 5/14

Rate of decay [Text: Sect. 42-8]

Derivation: Radioactive decay law

- Radioactive decay is unpredictable, quantum process.
- Average rate of decay is proportional to amount present,

$$\frac{dN}{dt} = -\lambda N.$$

- $\,\bullet\,$ $\,\lambda$ (lambda) is proportionality constant that sets rate.
- Can integrate to find how much material remains after time t,

$$N(t) = N_0 e^{-\lambda t}.$$

UBC Physics 102: Lecture 2, July 3, 2003 - p. 7/14

Gamma decay [Text: Sect. 42-6]

• Definition: Excited state

- \bullet Nucleus with surplus energy (often result of α or β decay).
- Denoted by *, as in ${}_Z^AX*$.
- **Definition:** γ *decay*

$${}^A_ZX* \to ^A_ZX + \gamma$$

- Produces photon (\gamma\ particle).
- Mass (A) and charge (Z) conserved.
- Interactive Quiz: PRS 02a

:://www.zoology.ubc.ca/"rikblok/phys102/lecture/

UBC Physics 102: Lecture 2, July 3, 2003 - p. 6/14

Half-life [Text: Sect. 42-8]

- ullet Derivation: Half-life, $T_{1/2}$
- The time it takes for half the original amount of isotope to decay. Is solution to

$$\frac{N_0}{2} = N_0 e^{-\lambda T_{1/2}}.$$

- Interactive Quiz: PRS 02b
- Definition: Half-life, $T_{
 m 1/2}$

$$T_{1/2} = \frac{\ln 2}{\lambda}$$

http://www.zoology.ubc.ca/~rikblok/phys102/lecture.

UBC Physics 102: Lecture 2, July 3, 2003 - p. 8/14

Activity [Text: Sect. 42-8]

- **Definition:** Activity, $\left| \frac{dN}{dt} \right|$
- Rate of decay, or number of decays per second of a sample.

$$\left| \frac{dN}{dt} \right| = \lambda N.$$

Example:

 $^{31}{\rm Si}$ has a half-life of of $2.62~{\rm hr}$. What will the activity of a $1~{\rm g}$ sample be after 1 week?

UBC Physics 102: Lecture 2, July 3, 2003 - p. 9/14

Activity, contd

Solution: contd

- Finally, need to find number of particles, No.
- Use atomic mass, 1 particle = 31 u,

$$N_0 = 10^{-3} \text{ kg} \times \frac{1 \text{ u}}{1.66 \times 10^{-27} \text{ kg}} \times \frac{1 \text{ particle}}{31 \text{ u}}$$

= 1.94×10²² particles.

So activity is

$$\frac{dN}{dt} = \lambda N_0 e^{-\lambda t}$$

$$= (0.265 \text{ hr}^{-1})(1.94 \times 10^{22} \text{ part.}) e^{-(0.265 \text{ hr}^{-1})(168 \text{ hr})}$$

238 particles/hr. \square

 \parallel

UBC Prysics 102: Lecture 2, July 3, 2003 - p. 11/14

Activity, contd

Solution:

• We know $\left|N(t)=N_0e^{-\lambda t}\right|$. Then

$$\left| \frac{dN}{dt} \right| = \lambda N_0 e^{-\lambda t}.$$

- Need to calculate N_0 , λ , and t. First, t (in hours) is $t=1 \ {
 m wk}=168 \ {
 m hr}$.
- Now, use half-life, $\left|T_{1/2} = \frac{\ln 2}{\lambda}\right|$ to get λ ,

$$\lambda = \frac{\ln 2}{T_{1/2}} = \frac{0.693}{2.62 \text{ hr}}$$
$$= 0.265 \text{ hr}^{-1}.$$

UBC Physics 102: Lecture 2, July 3, 2003 - p. 10/14

Radioactive dating [Text: Sect. 42-10]

Discussion: Carbon dating

- Unstable ¹⁴C isotope occurs naturally.
- About $1.3{\times}10^{-10}\%$ of carbon in the environment is $^{14}{\rm C}$.
- Absorbed during life (eating, breathing, etc.).
- No longer absorbed after death so $^{14}\mathrm{C}$ decays.
- Can estimate how long ago specimen died by using $N(t)=N_0e^{-\lambda t}$ to determine time needed to get N down to current value,

$$t = \frac{1}{\lambda} \ln \frac{N_0}{N}.$$

• Need to know λ , N_0 , and current N.

UBC Physics 102: Lecture 2, July 3, 2003 - p. 12/14

