Entendimiento Del Daño Por Componentes: Skin dependiente de Tasa, de Esfuerzos y Skin Mecánico

Presentado por:
Oveimar Santamaria Torres, Msc

Dirigido por: Sergio H. Lopera, Ph.D

Universidad Nacional de Colombia Sede Medellin Facultad de Minas

¿ Que es?

Análisis por componentes

¿ Que es?

Análisis por componentes

= Identificación

¿ Que es?

Análisis por componentes

= Identificación + Cuantificación

¿ Para que?

¿ Para que?

¿ Para que?

-CONCEPTO FÍSICO: Problema

-CONCEPTO FÍSICO: Problema

-CONCEPTO TEÓRICO:

(W. Renpu, 2011) "Well Completion Formation Damage Evaluation," in *Advanced Well Completion Engineering*, pp. 364–416.

-CONCEPTO TEÓRICO:

(W. Renpu, 2011) "Well Completion Formation Damage Evaluation," in *Advanced Well Completion Engineering*, pp. 364–416.

-CONCEPTO FÍSICO: Factores determinantes en el skin por esfuerzos

-CONCEPTO FÍSICO: Factores determinantes en el skin por esfuerzos

(B) Medio no-continuo: Escala de área de drenaje del pozo.

-CONCEPTO FÍSICO: Factores determinantes en el skin por tasa

-Skin por esfuerzos: Mediciones experimentales del modulo de permeabilidad

-IMPACTO EN LOS CAMPOS DE COLOMBIA: Skin por esfuerzos

-Skin por esfuerzos: El concepto de Unidades Hidráulicas

- ${}^{\bullet}\text{A}$ hydraulic unit is a specific volume of reservoir it's controlled by geology and petrophysic characteristics .
- •These are governed by both depositional process (it determine the grain size) and diagenetic process (it determine the matrix type and cement).
- •These can be determined by the logging of permeability and porosity.

-Skin por esfuerzos: El concepto de Unidades Hidráulicas

" tortuosity coeficient, τ, Kozeny constant"

Straight capillary tubes

$$\tau = \left(\frac{La}{L}\right)^2$$

$$q = \left(\frac{n \prod r^4}{8\mu}\right) \frac{\Delta p}{L}$$

Tortuous capillary tubes

$$\tau = \left(\frac{La}{L}\right)^2$$

$$q = \left(\frac{n \prod r^4}{8\mu}\right) \frac{\Delta p}{L\sqrt{\tau}}$$

•The Flow Zone Indicator (FZI) is a that brings together parameter geology and petrophysc attributes that are related with mineralogy and texture at facies.

$$k = \underbrace{\frac{1}{2\tau S_{vgr}^{2}}}_{quad order} \underbrace{\frac{\varphi^{3}}{(1-\varphi)^{2}}}_{quad order}$$

Hagen-Poiseuille's Law Darcy's Law

$$k = \underbrace{\frac{1}{\left(F_{s}\right)S_{vgr}^{2}}}_{\varphi gr} \underbrace{\frac{\varphi^{3}}{\left(1-\varphi\right)^{2}}}_{\varphi gr}$$

Kz is a variable. It reflects the effects of grain shape, grain size, pore shape, tortuosity. Constant within a given unit.

"Reservoir quality index, RQI"

 $Log(RQI) = Log(\phi_{\tau}) + Log(FZ)$

-Skin por esfuerzos: Relación entre el modulo de permeabilidad y las UH

-IMPACTO EN LOS CAMPOS DE COLOMBIA: Skin por tasa

- □ Llanos orientales -livianos
- △ Catatumbo
- * Llanos orientales -pesados
- **x** Valle medio del magdalena
- Valle superior del magdalena
- + Putumayo

-INTRODUCCIÓN AL MODELAMIENTO: Modelo desarrollado

-Modelo desarrollado: Diagrama de flujo

-Modelo desarrollado: Producto tecnológico

-INTRODUCCIÓN AL MODELAMIENTO: Análisis de caso -Caso uno:

Remeabilided (mD)

	uiio.	
Propiedad	Valor	
Tope del Intervalo productor (TVD - pies)	17823	
Espesor total (pies)	260	
Espesor Cañoneado (pies)	179	
Temperatura (°F)	248	
Gravedad API	40.8	
Radio del pozo (pies)	0.354	
Presión Asterisco (lpc)	6620	
Presión Promedia (lpc)	6508	
Porosidad (%)	4	
Permeabilidad (mD)	5.38	
Viscosidad del gas (cp)	0.0212	
Tasa de gas (MMscfd)	48.9	
Tasa de aceite (bopd)	4914	
Presión de Rocío (lpc)	5365.73	
Daño total	18	

UH	FZI(µm)	Espesor (ft)	γ (1/psi)	β (1/ft)
UH1	3.81	72.4	2.16E-04	6.083E+09
UH2	6.95	45.3	1.20E-04	2.916E+11
UH3	10.09	67.9	8.28E-05	1.368E+12
UH4	16.38	74.6	5.14E-05	1.108E+13

	Prop	iedad	Val	or	Porosidad	Permeabilidad
Tope del li	ntervalo pr	oductor (TVD - pi	es) 137	02 .	2 4 6 8 6	10° 0°
Espesor to	otal (pies)		50.	3 3 -		
Espesor C	añoneado	(pies)	38	0		
Temperatu	ıra (°F)		22.	3 1.375		\
Gravedad	API		44.	8		/
Radio del _l	pozo (pies,		0.70	08	†	1
Presión As	sterisco (lp	oc)	6426	5.8 👼		\
Presión Pr	omedia (Ip	c)	637	7 5		\
Porosidad	(%)		4.4	<u>ا</u> ت		1
Permeabili	idad (mD)		19.	6		/
Viscosidad	del gas (d	:p)	0.02	12		
Tasa de ga	as (MMsc	fd)	12.	19 🗓		$+ \rightarrow$
Tasa de ad	ceite (bop	d)	190)7 P	Í	
Presión de	Rocío (lp	c)	5359	.53	†	†
Daño tota	I		11	77 Profundidad	7	\rightarrow
100				(£)	4	
				4	*	
					\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
<u>a</u> 10		* /6		1.405		
9		8)	
i da						/
<u> </u>	/			4		
Permeabilidad		/ •)	
0,1	_'//	· –	—UH1_FZI=1.	.44		
a	-7		—UH2_FZI=2.			
		_	—UH3_FZI=3.	.79		
0,01		5	10		√	,
0		o Porosid	10 ad	13		
	UH		spesor (ft)	γ (1/psi)	β (1/	ft)
	UH1	1.44	311	7.03E-04	4.77E	+11

-INTRODUCCIÓN AL MODELAMIENTO: Análisis de casos

-Caso uno:

	De la metodología		De Prue	De Pruebas de presión	
	Valor	Porcentaje	Valor	Porcentaje	
Daño total	16	100%	18	100%	
Daño por tasa	11.4	71%	18	100%	
Daño por esfuerzo	0.65	4%	N/A	N/A	
Pseudo-daño	0.2	1%	N/A	N/A	
Daño mecánico	3.7	23%	N/A	N/A	

-Caso dos:

	De la metodología		De Pruebas de presión	
	Valor	Porcentaje	Valor	Porcentaje
Daño total	108.6	100%	118	100%
Daño por tasa	23.9	22%	N/A	N/A
Daño por esfuerzo	5.04	5%	8.3	7%
Pseudo-daño	0.2	0%	N/A	N/A
Daño mecánico	79.46	73%	110	93%
Módulo de permeabilidad	7.855E-04	N/A	8.52E-04	N/A

UNIVERSIDAD NACIONAL DE COLOMBIA

penetración parcial

Pseudo-daño total

Pseudo-daño por la forma

> Pseudo-daño por cañoneo

-INTRODUCCIÓN AL MODELAMIENTO: Análisis de caso uno

Risk level to skin by effective stress

Risk level to skin by Non-Darcy flow

-Potencial de la herramienta: Análisis por sector de campo

-Potencial de la herramienta: Análisis prospectivo del daño

-OTROS RESULTADOS: Clasificación por nivel de impactos – 20 campos

GRACIAS...

