Probabilistic generative models

Multimodal Large Language Models (M-LLMs)

https://tinyurl.com/5y3rkcvr

Dossier: https://tinyurl.com/hzwx77ss

Objectives of the Session

- Understand the fundamental principles of Multimodal Large Language Models (M-LLMs).
- Explore the neural network architectures suited for multimodal integration.
- Apply M-LLMs to concrete tasks involving multiple data types.

Definition and Importance of M-LLMs

- Introduction to Multimodality
 - Text
 - Natural language processing and comprehension.
 - Examples: sentiment analysis, text generation.
 - Images
 - Computer vision and image understanding.
 - Examples: object detection, image classification.
 - Audio
 - Speech recognition and sound analysis.
 - Examples: voice commands, audio transcription.

Definition and Importance of M-LLMs

- Importance in holistic understanding of context and data.
 - Integrating Multiple Modalities
 - Provides a more comprehensive understanding of contexts by combining insights from various forms of data.
 - Enhances the model's ability to interpret and generate complex, context-rich information.
 - Permit Real-World Applications
 - Enhanced user experiences
 - Improved accuracy in decision-making systems across industries.

Applications of M-LLMs

- Image Captioning
 - Generating descriptive text from images.
 - Applications: Assistive technologies, content creation.
- Voice Synthesis
 - Creating natural-sounding speech from text input.
 - Applications: Virtual assistants, audiobooks.
- Video Analysis
 - Understanding and annotating video content.
 - Applications: Security, autonomous vehicles.

Successful Case Studies

OpenAl CLIP

- Combines vision and language understanding.
- Capable of zero-shot classification of images based on textual descriptions.

Google Brain

- Advances in multimodal learning and applications.
- Integration of text, images, and video data to improve search and annotation systems.

OpenAl GPT-4o

- Next-generation model leveraging large-scale multimodal data.
- Enhanced capabilities in language understanding, image recognition, and context integration.

Impact on Various Industries

Healthcare

 Multimodal diagnostics combining medical images, patient records, and genetic data.

Entertainment

 Al-generated multimodal content, enhanced media experiences.

E-commerce

• Improved product recommendations by integrating images, descriptions, and reviews.

Neural Network Architectures for M-LLMs

- Introduction to Basic Architectures
 - Convolutional Neural Networks (CNNs)
 - Specialized for processing grid-like data such as images.
 - Features: Local connectivity, weight sharing, and pooling operations.
 - Applications: Image classification, object detection.
 - Recurrent Neural Networks (RNNs)
 - Designed for sequence data processing such as text and audio.
 - Features: Temporal dynamics, memory through hidden states.
 - Applications: Language modeling, speech recognition.

Transformers

- Utilizes self-attention mechanisms for all types of data.
- Features: Parallel processing, scalability, contextual learning.
- Applications: Text generation (e.g., GPT), multimodal tasks.

Output

Neural Network Architectures for M-LLMs

Adaptation for Multimodal Processing

- Combining Multiple Architectures
 - Integration of CNNs for visual data and RNNs/Transformers for sequential data.
 - Example: Visual input processed by CNNs, converted into sequential tokens for Transformer processing.

Feature Fusion Techniques

- Techniques such as concatenation, attention layers, and cross-modal interactions to merge insights from different data types.
- Example: Attention layers that weight the importance of different modalities in context-sensitive tasks.

End-to-End Multimodal Models

- Unified models that seamlessly process and integrate various data types.
- Example: Transformers capable of directly ingesting text, images, and audio, enabling comprehensive contextual understanding.

Multimodal Fusion

Feature Fusion Techniques

- Concatenation
 - Simple but effective technique where features from different modalities are combined to form a single feature vector.
 - Example: Combining text embeddings from a Transformer with image embeddings from a CNN.

Multimodal Fusion

- Feature Fusion Techniques
 - Multi-Head Attention
 - An advanced technique that assigns different weights to different parts of the input based on their relevance in the context.
 - Allows the model to focus on multiple aspects of the data, improving interpretability and performance.
 - Example: Attention heads that simultaneously process visual features and textual context.

Multi-Head Attention Formula

$$ext{MultiHead}(Q,K,V) = ext{Concat}(h_1,\ldots,h_h)W^0$$
 where $h_i = ext{Attention}(QW_i^Q,KW_i^K,VW_i^V)$

Each head h_i is the attention function of **Query**, **Key and Value** with trainable parameters (W_i^Q, W_i^K, W_i^V)

Practical Example

- In-depth study of a real M-LLM architecture : OpenAl CLIP
 - Overview
 - CLIP stands for Contrastive Language—Image Pre-training.
 - Developed by OpenAI to understand visual and linguistic concepts simultaneously.
 - Key Features
 - Zero-Shot Learning:
 - Capable of recognizing objects in images based on textual descriptions without additional training.
 - Multimodal Learning:
 - Integrates visual and textual data to create a unified understanding.
 - Architecture Components
 - Image Encoder (CNN/ResNet)
 - Converts images into feature vectors.
 - Text Encoder (Transformer)
 - Converts text descriptions into embeddings.
 - Contrastive Learning Objective
 - Aligns images and corresponding text embeddings in a shared multimodal space.

(1) Contrastive pre-training

Practical Example

- Practical Benefits
 - Enhanced Search Capability
 - Type a description to find relevant images.
 - Content Generation
 - Automatically generate captions for images.
 - Cross-Modal Understanding
 - Powerful applications in Al-driven multimedia analysis and generation.

Sprucing Up Instant Ramen

Preprocessing Multimodal Data

- Preprocessing techniques for each modality
 - Text Data
 - **Tokenization**: Breaking down text into words, subwords, or characters.
 - Tools: NLTK, Spacy, BERT Tokenizer.
 - Example: "The quick brown fox" -> ["The", "quick", "brown", "fox"]
 - Embedding: Converting tokens into vectors.
 - Methods: Word2Vec, GloVe, BERT embeddings.
 - Purpose: Capture semantic meaning of text.
 - **Cleaning**: Removing unwanted characters, stop words, and noise.
 - Techniques: Lowercasing, removing punctuation, stemming/lemmatization.

Preprocessing Multimodal Data

- Preprocessing techniques for each modality
 - Image Data
 - **Resizing**: Scaling images to a consistent size.
 - •Tools: OpenCV, PIL.
 - •Example: Reshape all images to 224x224 pixels for model input.
 - •Normalization: Scaling pixel values to a standard range (e.g., [0, 1] or [-1, 1]).
 - Purpose: Ensure consistency across different images.
 - Technique: (pixel_value mean) / standard_deviation
 - Data Augmentation: Enhancing dataset diversity with transformations.
 - Methods: Rotation, flipping, cropping, color adjustments.
 - Tools: TensorFlow's ImageDataGenerator, Albumentations.

Preprocessing Multimodal Data

- Preprocessing techniques for each modality
 - Audio Data
 - **Resampling**: Standardizing audio sample rates.
 - Tools: Librosa, PyDub.
 - Example: Resample all audio clips to 16kHz.
 - Feature Extraction: Converting raw audio to feature representation.
 - Methods: Mel-frequency cepstral coefficients (MFCCs), spectrograms.
 - Purpose: Capture essential audio characteristics for the model.
 - Noise Reduction: Filtering out background noise.
 - Techniques: Spectral subtraction, wavelet denoising.
 - Tools: Audacity, noise-reduction libraries in Python.

Preprocessing Multimodal Data

- Data normalization and standardization.
 - Importance of Normalization and Standardization
 - Consistent Data Range: Helps in achieving uniformity across different datasets.
 - Improved Model Performance: Models train faster and more effectively on normalized and standardized data.
 - Reduced Bias and Variance: Mitigates the effect of outliers and scales features more appropriately.

Normalization

- Definition: Scaling data to a range of [0, 1] or [-1, 1].
- Applications: Ideal for image data and scenarios where feature scales vary drastically.

Standardization

- Definition: Scaling data to zero mean and unit variance.
- Applications: Suitable for many machine learning models which assume data is centered around zero.

Practical Example

- Image Data Normalization:
 - Transforming pixel values: (pixel_value / 255.0) to scale between 0 and 1.
- Text Data Standardization:
 - Standardizing word embeddings: Center vectors by subtracting the mean embedding.

Normalized Value =
$$\frac{(X - \min)}{(\max - \min)}$$

Standardized Value =
$$\frac{(X - \mu)}{\sigma}$$

- Methods for preparing multimodal datasets.
 - **Data Collection:** Ensuring diversity and relevance in text, image, and audio sources.
 - Data Annotation: Techniques for labeling multimodal data (manual, semi-supervised, automated).
 - **Data Synchronization:** Aligning data across different modalities (e.g., timestamps for video and audio tracks).
 - Dataset Splitting: Considerations for training, validation, and test sets in multimodal contexts.

- Multimodal Data Integration Techniques
 - Early Integration: Combining features at an early stage (data level).
 - Intermediate Integration: Fusion occurs at the feature extraction level.
 - Late Integration: Features are blended after independent processing.
 - **Hybrid Approaches:** Combining two or more integration strategies for robustness.

- Loss (objective) strategies suited for M-LLMs.
 - Cross-entropy Loss: Common for classification tasks in multimodal setups.
 - Contrastive Loss: Useful for tasks where models learn from pairs of similar and dissimilar data points.
 - **Triplet Loss:** Extends contrastive loss by comparing an anchor to both positive and negative examples.
 - Custom Loss Functions: Designing loss functions that can handle the peculiarities of multimodal data (e.g., balancing the influence of different modalities).

$$H(P^*|P) = -\sum_{i} P^*(i) \log P(i)$$
TRUE CLASS
DISTIRBUTION

PREDICTED CLASS
DISTIRBUTION

$$\mathcal{L}_q = -\log \frac{\exp(q \cdot k_+ / \tau)}{\sum_{i=0}^K \exp(q \cdot k_i / \tau)}$$

$$\mathcal{L} = max(d(a,p) - d(a,n) + margin, 0)$$

- Optimization Techniques for M-LLMs
 - **Gradient Descent Variants:** Adaptive techniques like Adam, RMSprop for handling multimodal data efficiently.
 - **Regularization:** Methods like dropout, L2 regularization to prevent overfitting on multimodal data.
 - Learning Rate Schedules: Importance of adaptive learning rates in training M-LLMs.
 - **Early Stopping:** Monitoring validation loss to prevent overtraining.

- Common issues:
 - Brief introduction to the complexity of multimodal data training.
 - **Data Imbalance:** Different quantities or quality of data across modalities.
 - **Data Corruption:** Errors in data collection or transfer that affect model performance.
 - **Noise:** Unwanted alterations in data (e.g., background noise in audio data, visual artifacts in image data).
 - Missing Modalities: Occasionally, one or more modalities may be missing or incomplete.

- Addressing Data Imbalance in M-LLMs.
 - Resampling Techniques: Oversampling minority modalities or undersampling majority modalities.
 - **Synthetic Data Generation:** Using techniques like SMOTE for modalities where data is scarce.
 - Weighted Loss Functions: Assigning higher weights to underrepresented modalities during training.

- Mitigating Data Corruption and Noise
 - Data Cleaning Techniques: Identifying and correcting corrupt data entries.
 - **Noise Filtering:** Applying filters or preprocessing techniques to reduce noise without losing critical data (e.g., Fourier transforms for audio).
 - Robust Training Approaches: Training models to be less sensitive to noise and corruption (e.g., using noise-injection during training).

- Strategies for Missing Modalities in M-LLMs
 - Imputation Techniques: Estimating missing modalities using statistical methods or predictive models.
 - Flexible Architectures: Designing models that can handle occasional missing data without performance degradation.
 - **Dynamic Adjustments:** Online learning techniques to adapt to data with varying modal availability.

Mini-project: Text-Image Integration

- Overview of the Text-Image Integration Mini-Project
 - Project Goal: To develop a basic M-LLM that integrates text and image data to perform tasks such as image captioning or textual description-based image retrieval.
 - Expected Outcome: Understand the process of M-LLM creation from data handling to model evaluation.

.

Mini-project: Text-Image Integration

- Data Handling for Text-Image Integration
 - Data Loading:
 - Sources for text and image data.
 - Using data loaders in TensorFlow/Keras or PyTorch.
 - Preprocessing Techniques:
 - Image preprocessing: resizing, normalization.
 - Text preprocessing: tokenization, vectorization.
 - Importance of aligning text and image data pairs accurately.

•

Mini-project: Text-Image Integration

- Constructing the Model
 - Architecture Overview:
 - Image Branch: Utilize Convolutional Neural Networks (CNNs).
 - Text Branch: Employ Recurrent Neural Networks (RNNs) or Transformers.
 - Fusion Technique: Concatenation of last hidden layers from both branches.
 - Configuring the model in TensorFlow/Keras or PyTorch:
 - Code snippets for model architecture.
 - Tips for effective merging of modalities.

Mini-project: Text-Image Integration

- Model Training and Optimization
 - Setting up the training loop: defining epochs, batch size, and learning rate.
 - Selection of loss function and optimizers suited for multimodal learning.
 - Monitoring training progress through callbacks or custom logging metrics.

•

Mini-project: Text-Image Integration

- Model Evaluation and Result Visualization
 - Evaluation Metrics:
 - Accuracy, precision, and recall for alignment assessment.
 - Custom metrics (if any) tailored for specific project goals.
 - Visualization Techniques:
 - Plotting loss and accuracy curves.
 - Visualization of image inputs with corresponding textual outputs.
 - Discussion on results interpretation and potential areas of improvement.

•

Critical Analysis of M-LLMs

- Critical Analysis of Multimodal Language Models
 - Introduction to the critical analysis section.
 - Objective: To appraise the capabilities, recognize the limitations, and ponder on

Critical Analysis of M-LLMs

- Potential Advantages of M-LLMs
 - Enhanced Accuracy and Performance: Improved results in complex tasks involving multiple data types.
 - Better Context Understanding: Ability to integrate contextual information from multiple sources leading to richer interpretations.
 - Wider Applicability: Extensive use across various industries including healthcare, automotive, entertainment, and more.
 - Innovative Applications: Potential for new applications such as emotion recognition, advanced human-computer interaction, etc.

Critical Analysis of M-LLMs

- Challenges and Limitations
 - Complexity in Training and Maintenance: High computational cost and technical complexity.
 - Data Requirements: Massive amounts of diverse, annotated multimodal data needed.
 - Integration Challenges: Effective fusion of different modal types remains technically demanding.
 - **Generalization Issues:** Difficulty in generalizing the learning across different tasks or datasets.

.

Critical Analysis of M-LLMs

- Looking Ahead: The Future of M-LLMs
 - Advancements in Algorithms: Innovations that may overcome current limitations.
 - Increased Efficiency: Research focused on reducing computational demands and simplifying architectures.
 - **Expansion of Use Cases:** Exploration into less traditional fields and novel applications.
 - Improving Generalizability: Techniques that might boost the model's ability to generalize better across diverse scenarios.

.

Critical Analysis of M-LLMs

- Ethical Considerations in Using M-LLMs
 - **Bias and Fairness:** Risks of inheriting or amplifying biases present in training data.
 - **Privacy Concerns:** Challenges relating to gathering and handling multimodal data responsibly.
 - Transparency and Explainability: Difficulty in understanding decision-making processes of complex models.
 - Accountability: Ensuring responsible use and preventing misuse of technology in sensitive applications.

Toxicity

Harmful or discriminatory language or content

Hallucination

Factually incorrect content

Legal Aspects

Data Protection, Intellectual Property, and the EU AI Act

•

- Emerging Research and Future Prospects in Multimodal Language Models
 - Unexplored Modalities:
 - Exploration into Additional Senses: Research aimed at integrating less common modalities like smell or tactile sensations into M-LLMs.
 - Multisensory Integration: Challenges and opportunities in creating true multisensory human-computer interaction models.
 - Advanced Fusion Techniques:
 - **Dynamic Adaptive Fusion:** Developing methodologies that adaptively select fusion techniques based on the task and data characteristics.
 - Context-Aware Fusion: Models that dynamically adjust their processing based on contextual understanding of the environment or situation.

- Emerging Research and Future Prospects in Multimodal Language Models
 - Robustness and Generality:
 - Cross-Domain Functionality: Enhancing the ability of M-LLMs to function effectively across varying domains without extensive retraining.
 - Anti-Fragile Systems: Systems that not only resist but also grow from noise, errors, and attacks.

- Emerging Research and Future Prospects in Multimodal Language Models
 - Ethical AI and Bias Mitigation:
 - **Debiasing Techniques:** Innovative approaches to automatically detect and mitigate bias in training data and model outputs.
 - Transparent AI: Efforts towards making multimodal models more explainable and understandable to users.
 - Efficiency and Green AI:
 - **Model Compression:** Strategies for reducing the footprint of M-LLMs to make them more energy-efficient and viable for deployment on edge devices.
 - Energy-Efficient Training Techniques: Research focused on developing training protocols that consume less energy.