النمربن 1: (8ن)

موضوع هذا التمرين هو حساب نهاية متتالية بطريقتين مختلفتي

$$\begin{cases} U_0=1 \ U_{n+1}=rac{U_n}{2+U_n^2}; & n\in\mathbb{N} \end{cases}$$
 : نعتبر المتتالية (U_n) المعرفة بما يلي (U_n)

 $.(orall n \in \mathbb{N}): 0 < U_n < 1:$ بين بائترجع أن-I

$$.(orall n \in \mathbb{N}): 0 < U_n < \left(rac{1}{2}
ight)^n$$
: ثم استنتج أن $u \in \mathbb{N}: 0 < U_{n+1} < rac{1}{2}$ بين أن $u \in \mathbb{N}: 0 < U_{n+1} < rac{1}{2}$ بين أن

 (U_n) استنتج نهایة المتتالیة [3]

$$f(x) = \frac{x}{2+x^2}$$
: بنعتبر f الدالة المعرفة على \mathbb{R} ب

f ضع جدول تغیرات f

 $f(I) \subset I$ نعتبر المجال I = [0,1] بين أن

ين أن المتتالية (U_n) متقارية.

 (U_n) حل في $\mathbb R$ المعادلة f(x)=x ثم استنتج نهاية المتتالية 4

النمرين 2: (8ن)

نعتبر f الدالة المعرفة على \mathbb{R} ب \mathbb{R} بندناها في $f(x)=\sqrt{x^2+1}+rac{4}{\sqrt{x^2+1}}$ نعتبر f الدالة المعرفة على المعرفة المعرفة المعرفة على المعرفة ال $(O; \overrightarrow{i}; \overrightarrow{j})$ معلم متعامد ممنظم مباشر

بين أن f دالة زوجية. $\lim_{x\to +\infty} f(x)$ أحسب أ-2.1

$$\mathbb{R}$$
 یکن آن $f'(x)=rac{x(x^2-3)}{\sqrt{(x^2+1)^3}}$ ککل $f'(x)=rac{x(x^2-3)}{\sqrt{(x^2+1)^3}}$

f أعط جدول تغيرات -2.2

$$\mathbb{R}$$
 بین آن $f''(x)=rac{3(3x^2-1)}{\sqrt{(x^2+1)^5}}$ لکل x من -1.3

. يقبل نقطتي انعطاف يتم تحديد أفصول كل منهما-2.3

بين أن $\lim_{x \to +\infty} (f(x) - x) = 0$ ثم أو ل النتيجة هندسيا.

 (C_f) انشيء |5|

النمربن 3: (كن)

حدد الدوال الأصلية للدوال التالية :

$$k(x) = \frac{4x+1}{2\sqrt{2x^2+x+2}}$$
 : $g(x) = -\frac{1}{x^2} + \frac{1}{2\sqrt{x}}$: $f(x) = x^2 + x + 1$

$$h(x) = 12x(x^2 + 1)^5$$

النمربن 1: (8ن)

موضوع هذا التمرين هو حساب نهاية متتالية بطريقتين مختلفتي

$$\begin{cases} U_0=1 \ U_{n+1}=rac{U_n}{2+U_n^2}; & n\in\mathbb{N} \end{cases}$$
 : نعتبر المتتالية (U_n) المعرفة بما يلي (U_n)

 $.(orall n \in \mathbb{N}): 0 < U_n < 1:$ بين بائترجع أن-I

$$.(orall n \in \mathbb{N}): 0 < U_n < \left(rac{1}{2}
ight)^n$$
: ثم استنتج أن $u \in \mathbb{N}: 0 < U_{n+1} < rac{1}{2}$ بين أن $u \in \mathbb{N}: 0 < U_{n+1} < rac{1}{2}$ بين أن

 (U_n) استنتج نهایة المتتالیة [3]

$$f(x) = \frac{x}{2+x^2}$$
: بنعتبر f الدالة المعرفة على \mathbb{R} ب

f ضع جدول تغیرات f

 $f(I) \subset I$ نعتبر المجال I = [0,1] بين أن

ين أن المتتالية (U_n) متقارية.

 (U_n) حل في $\mathbb R$ المعادلة f(x)=x ثم استنتج نهاية المتتالية 4

النمرين 2: (8ن)

نعتبر f الدالة المعرفة على \mathbb{R} ب \mathbb{R} بندناها في $f(x)=\sqrt{x^2+1}+rac{4}{\sqrt{x^2+1}}$ نعتبر f الدالة المعرفة على المعرفة المعرفة المعرفة على المعرفة ال $(O; \overrightarrow{i}; \overrightarrow{j})$ معلم متعامد ممنظم مباشر

بين أن f دالة زوجية. $\lim_{x\to +\infty} f(x)$ أحسب أ-2.1

$$\mathbb{R}$$
 یکن آن $f'(x)=rac{x(x^2-3)}{\sqrt{(x^2+1)^3}}$ ککل $f'(x)=rac{x(x^2-3)}{\sqrt{(x^2+1)^3}}$

f أعط جدول تغيرات -2.2

$$\mathbb{R}$$
 بین آن $f''(x)=rac{3(3x^2-1)}{\sqrt{(x^2+1)^5}}$ لکل x من -1.3

. يقبل نقطتي انعطاف يتم تحديد أفصول كل منهما-2.3

بين أن $\lim_{x \to +\infty} (f(x) - x) = 0$ ثم أو ل النتيجة هندسيا.

 (C_f) انشيء |5|

النمربن 3: (كن)

حدد الدوال الأصلية للدوال التالية :

$$k(x) = \frac{4x+1}{2\sqrt{2x^2+x+2}}$$
 : $g(x) = -\frac{1}{x^2} + \frac{1}{2\sqrt{x}}$: $f(x) = x^2 + x + 1$

$$h(x) = 12x(x^2 + 1)^5$$