YakutinFD 11102024-183129

Дана частотная характеристика модуля коэффициента отражения (см. рисунок 1) от входа цепи согласования (слева) с действительным импедансом R (подключённым справа). (Измерения проведены с помощью генератора с внутренним импедансом 50 Ом).

Рисунок 1 – Частотная характеристика модуля коэффициента отражения

Какой из предложенных рисунке 2 ситуаций соответствует эта частотная характеристика?

Рисунок 2 – Различные реализации Г-образной цепи согласования

Варианты ОТВЕТА: 1) a 2) b 3) c 4) d

Даны значения s-параметров на некоторой частоте:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.4	0.568	150.0	4.012	63.6	0.066	57.4	0.256	-46.9

Требуется выбрать согласованный аттенюатор с *минимальным* затуханием, подключения которого будет *достаточно*, чтобы обеспечить безусловную устойчивость всего устройства на этой частоте.

Варианты ОТВЕТА:

- 1) аттенюатор с затуханием 1.8 дБ, подключённый к плечу 1;
- 2) аттенюатор с затуханием 0.9 дБ, подключённый к плечу 1;
- 3) аттенюатор с затуханием 1.3 дБ, подключённый к плечу 2;
- 4) аттенюатор с затуханием 0.0 дБ, подключённый к плечу 2.

Дано значение коэффициента отражения от входа реактивной цепи коррекции $s_{11}=0.26\text{-}0.1\mathrm{i}$.

Найти модуль (в д \overline{B}) коэффициента передачи s_{21} .

Варианты ОТВЕТА:

- 1) -0.9 дБ
- 2) -0.7 дБ
- 3) -1.9 дБ
- 4) -0.4 дБ

Дано значение коэффициента передачи диссипативной цепи коррекции, выполненной в виде цепи постоянного входного сопротивления 50 Ом: $s_{21} = -3.4~$ дБ.

Ко входу этой цепи подключён генератор с внутренним сопротивлением $50~{\rm Om}$ и доступной мощностью $10.8~{\rm дБм}$.

Какая мощность рассеивается внутри цепи коррекции?

Варианты ОТВЕТА:

- 1) 6.5 mBT
- 2) 5.5 MBT
- 3) 4.9 мВт
- 4) 1.1 мВт

Даны значения ѕ-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.458	-126.8	27.453	105.6	0.022	55.5	0.461	-58.8
2.1	0.458	-163.7	13.813	82.1	0.034	57.7	0.271	-79.4
3.2	0.474	177.9	9.002	68.2	0.048	57.5	0.227	-98.8
4.3	0.490	165.1	6.664	56.6	0.063	55.2	0.211	-110.5
5.4	0.498	155.4	5.213	45.9	0.078	51.7	0.191	-121.1
6.5	0.514	143.5	4.342	35.0	0.094	45.3	0.171	-138.2
8.6	0.597	125.7	3.137	14.6	0.122	33.5	0.142	154.5

Выбрать Γ -образный четырёхполюсник (см. рисунок 3), который может обеспечить согласование со стороны плеча 1 на частоте 3.2 $\Gamma\Gamma$ ц.

Рисунок 3 — Различные реализации Г-образного четырёхполюсника

Варианты ОТВЕТА:

1) A 2) B 3) C 4) D

Найти неравномерность усиления в полосе, ограниченной частотами $f_{\text{\tiny H}}=3.6~\Gamma\Gamma$ ц и $f_{\text{\tiny B}}=4.0~\Gamma\Gamma$ ц, используя рисунок 4.

Рисунок 4 – Частотная характеристика усиления

Варианты ОТВЕТА:

1) 0.6 дБ 2) 0.6 дБ 3) 1.2 дБ 4) 0.6 дБ