

Reinforcement Learning applications for Energy Analytics and Markets

Tiago Sousa, Pierre Pinson

Work done as Postdoc researcher at DTU

Future Energy markets

Motivation

• We can design Energy markets as Reinforcement Learning

Outline

- Reinforcement Learning approach
 - Multi-Armed Bandit
- Test case and results
- Conclusions and next steps

Agent learns which arm returns the highest payoff

Real-world applications:

- Clinical trials
- Online Advertising
- Network routing

Agent

participant

Step n	Arm 1	Arm 2	Arm 3
1	1	0	0
2	0	1	0
3	1	0	0
4	0	0	1

actions a_n

Step $n \neq \text{time } t$

Agent

participant

Environment

Step n	Arm 1	Arm 2	Arm 3	Rev
1	1	0	0	1
2	0	1	0	C
3	1	0	0	C
4	0	0	1	1

Total reward

$$R_{Total} = \mathbb{E}(R_n) = \frac{1}{N} \sum R_n$$

$$a_n^* = \operatorname{argmax} R_{Total}$$

Agent

participant

Environment

Step n	Arm 1	Arm 2	Arm 3
1	1	0	0
2	0	1	0
3	1	0	0
4	0	0	1

State per step *n*

$$s_n = \sum E_n(j)R_n$$

$$s_n \leq E_{Target}$$
 Stopping condition

Example

Example

• This iterative process is an episode

We terminate when

$$s_n = E_{Target}$$

episode = time t

Translate as Algorithm

Algorithm for each episode:

```
Algorithm 1: RL Cycle for each episode E_{Target} \leftarrow \text{ random sample from } [\underline{E}_{Target}, \overline{E}_{Target}]; Initialize step n \leftarrow 1; while s_n \leq E_{Target} do Take action a_n \leftarrow Arm \ j (using policy strategy); Observe R_{Total} \leftarrow \mathbb{E}(R_n); Update s_n \leftarrow \sum E_n(a_n)R_n; n \leftarrow n+1; end
```


Translate as Algorithm

Algorithm for each episode:

Algorithm 1: RL Cycle for each episode

 $E_{Target} \leftarrow \text{random sample from } [\underline{E}_{Target}, \overline{E}_{Target}];$ Initialize step $n \leftarrow 1;$

while $s_n \leq E_{Target}$ do

Take action $a_n \leftarrow Arm \ j$ (using policy strategy);

Observe $R_{Total} \leftarrow \mathbb{E}(R_n)$;

Update $s_n \leftarrow \sum E_n(a_n)R_n$; $n \leftarrow n+1$;

end

How to differentiate between episodes?

Reward is a random variable

Bernoulli distribution

$$R_n(j) \sim \mathbf{B}(1, p_j)$$

For a large number of steps *n*:

$$R_n(j) \approx p_j$$

Step n	Arm 1
1	1
2	0
3	1
4	0

Environment

Reward
1
-
0
-

Reward is a random variable

Bernoulli distribution

$$R_n(j) \sim \mathrm{B}(1, p_j)$$

For a large number of steps *n*:

$$R_n(j) \approx p_j$$

Environment

Reward
1
1
0
-

Action-Value function

Estimator of p_j for every arm j

$$Q_n(j) = \frac{1}{N_j} \sum_{i} R_n(j) = \hat{p}_n(j)$$

Mathematical Formulation

```
Algorithm 2: Complete algorithm
 Initialize episodes e \in \mathbb{E}, steps n \in \mathbb{N}, actions a_n \in arms \mathbb{J};
 for each episode e do
      E_{Target} \leftarrow \text{random sample from } [\underline{E}_{Target}, \overline{E}_{Target}];
      Initialize step n \leftarrow 1;
      while s_n \leq E_{Target} do
           Take action a_n \leftarrow Arm \ j (using policy strategy);
           Observe R_{Total} \leftarrow \mathbb{E}(R_n);
          Update s_n \leftarrow \sum E_n(a_n)R_n;
           n \leftarrow n + 1;
           Update every Q_n(j) \leftarrow \mathbb{E}(R_n(j)) = \hat{p}_n(j);
      end
      Propagate to the next episode Q^{e+1}(j) \leftarrow \mathbb{E}(Q^e(j));
 end
```


Mathematical Formulation

Algorithm 2: Complete algorithm

```
Initialize episodes e \in \mathbb{E}, steps n \in \mathbb{N}, actions a_n \in arms \mathbb{J}; for each episode e do
```

```
E_{Target} \leftarrow \text{random sample from } [\underline{E}_{Target}, \overline{E}_{Target}];
Initialize step n \leftarrow 1;
```

while $s_n \leq E_{Target}$ do

Take action $a_n \leftarrow Arm \ j$ (using policy strategy);

Observe $R_{Total} \leftarrow \mathbb{E}(R_n)$;

Update
$$s_n \leftarrow \sum E_n(a_n)R_n$$
; $n \leftarrow n+1$;

Update every $Q_n(j) \leftarrow \mathbb{E}(R_n(j)) = \hat{p}_n(j)$;

end

Propagate to the next episode $Q^{e+1}(j) \leftarrow \mathbb{E}(Q^e(j))$;

ena

Experience replay as NN

- We start with batch of episodes with no propagation
- After, we compute the average Action-value for each arm j

More to say!!!

- How to adopt other propagation strategies between episodes
- Learning algorithms estimate the Action-Value function $Q_n(j)$
 - Random
 - $-\epsilon$ -greedy
 - Thompson Sampler
 - Upper Confidence Bound

Test case

- Case with 15 parterns *j*
- We used 100 episodes
 - $-E_{Target} = 15 \text{ kWh}$
- Learning algorithms:
 - Random
 - $-\epsilon$ -greedy
 - Thompson Sampler

Test case

Compare strategies

Epsilon-Greedy algorithm

Solution found on episode 91

$$-R_{Total} = 0.89$$

• However, there is **no guarantee** to reach always this reward value:

$$\overline{R}_{Total} = 0.67$$
 $epi \in [21, 100]$

Thompson Sampler algorithm

• We can also have 'bad' results even in the exploitation phase

Solution found on episode 91

$$R_{Total} = 0.41$$

Optimal solution

- We can compute the estimator Q_j^*
 - $-Q_j^* \approx p_j$
 - Calculate the mean Q_j^* for the last 10 episodes

Alternative approach

• In fact, we can retrieve the CDF of the R_{Total} for the 100 episodes

90% Percentile

- Filter the best episodes
- We can define an upper bound:

$$R_{Total} \geq 0.82$$

- We would then compute the estimator:
 - $-Q_j^* \approx p_j$

Conclusions and next steps

- We are able to learn the partners with high success probability $Q_j^* pprox p_j$
- Easy way to build a learning agent via the Q-value (Action-value) functions
- Code available in my GitHub repo (<u>link here</u>)

Next steps:

- -Estimate the Q_j^* using the CDF of the R_{Total}
- -Improve the Experience replay for the propagation
- -Assess the performance via a validation phase

Thanks for your attention!

Total reward performance

Algorithm	\overline{R}_{Total} $epi \in [1, 20]$	\overline{R}_{Total} $epi \in [21, 100]$
Random	0.49	0.47
<i>ε</i> -greedy	0.50	0.67

Empirical distribution function across 100 episodes

Optimal estimator Q(arm_j) per RL_agent

