Asignatura Señales y Sistemas

Ejercicios propuestos para el tema de 'sistemas'

Asunción Moreno y Olga Muñoz

Septiembre 2019

Propiedades de sistemas

1. Determine si los siguientes sistemas son lineales, invariantes, causales y/o estables

a)
$$y[n] = \sum_{k=0}^{\infty} x[k-n]$$

b)
$$y(t) = \int_{-\infty}^{2t} x(\tau) d\tau$$

c)
$$y[n] = nlog(x[n])$$

d)
$$y[n] = x[3n]u[-n] + x[n]u[n]$$

e)
$$y(t) = x(t)\cos(2\pi t + \emptyset)$$

Cálculo de la respuesta impulsional

2. Compruebe que los siguientes sistemas definidos por su relación entrada-salida son lineales e invariantes. Calcule la respuesta impulsional $h(t) = T[\delta(t)]$:

a) amplificador:
$$y[n] = Cx[n]$$

b) retardador (
$$n_0>0$$
): $y[n] = x[n-n_0]$

c) acumulador
$$y[n] = \sum_{k=-\infty}^{n} x[k] = x[n] + y[n-1]$$
 (con y(t)=0 \forall t<0 sistema en reposo)

d) integrador
$$y(t) = \int_{0}^{t} x(\tau)d\tau$$

e) promediador
$$y[n] = \frac{1}{N} \sum_{k=n-N+1}^{n} x[k]$$

f) reverberador
$$y[n] = x[n] - ay[n-1]$$
 (con y[n]=0 \forall n<0 sistema en reposo)

g)
$$y(t) = \int_{t-4}^{t+8} e^{-(t-\tau)} x(\tau - 1) d\tau$$

h)
$$y(t) = \int_{0}^{t} (e^{-3(t-\tau)} + e^{-5(t-\tau)})x(\tau - 2)d\tau$$

i)
$$y[n] = \sum_{k=-\infty}^{n} a^{-(n-k)} x[k-2]$$

Convolución de señales discretas

3. Dados los sistemas LI caracterizados por las respuestas impulsionales

h1[n]= u[n]	
$h2[n]=\delta[n]-\delta[n-1]$	
h3[n]=p ₆ [n]	

- a) Para cada sistema, calcule la salida cuando a la entrada se aplica x1[n]=p₆[n]
- b) Para cada sistema, calcule la salida cuando a la entrada se aplica x2[n]=u[n]
- c) Determine la causalidad y estabilidad de los tres sistemas
- d) Dibuje las salidas obtenidas.
- e) Como Ud sabe, si una secuencia tiene duración N puntos y otra M puntos, su convolución tiene N+M-1 puntos. Determine en la convolución de las dos señales de duración finita x1[n]*h2[n] la relación entre las muestras de inicio y final de las mismas con las de la secuencia resultante de la convolución, así como las relaciones de la duración.
- 4. Dada la siguiente señal $x[n]=cos(5\pi/3 n)$,
 - a) Justifique que la señal x[n] es periódica y puede escribirse como $x[n] = \sum_{k=-\infty}^{\infty} x_b [n-kL]$, indicando el valor de L y los valores de la secuencia $x_b[n]$. Nota, recuerde que $\cos(\pi/3)=1/2$.
 - b) Si la señal x[n] pasa por un sistema lineal e invariante, definido por su respuesta impulsional h[n], obteniéndose y[n], exprese y[n] en función de $x_b[n]$, h[n] y L.
 - c) Calcule la convolución de $y_b[n] = x_b[n] * p_L[n]$, siendo $p_L[n]$ un pulso rectangular de L muestras con L el valor obtenido en el apartado a). Se recomienda hacer la convolución a partir de los <u>valores</u> de las dos secuencias $x_b[n]$ y $p_L[n]$.
 - d) Indique cuál será la secuencia $y[n] = x[n] * p_L[n]$ (calculando todos sus <u>valores</u>) haciendo uso de la convolución obtenida en el apartado anterior y del resultado del apartado b).
- 5. Sea el sistema de la figura con:

$$s[n] = \sum_{k=-\infty}^{\infty} p_4[n-k8] - p_4[n-4-k8]$$

Recuerde $p_L[n] = \sum_{m=0}^{L-1} \delta[n-m]$

Se pide:

- a) Encuentre y[n] y compruebe las propiedades de linealidad, invariancia, estabilidad y causalidad del sistema.
- b) Dibuje s[n], ¿se trata de una señal de energía finita (EF) o de potencia media finita (PMF)? Calcule la Energía y la Potencia Media.
- c) Calcule y dibuje la salida para $h[n] = p_4[n+1]$ y $x[n] = p_8[n]$

Convolución de señales analógicas

6. Para realizar la siguiente convolución $y(t) = x(t) * h(t) = \Delta(t+1) * e^{-3t}u(t)$

Indique claramente las integrales que tiene que resolver y los valores de t en los que son válidas. Dibuje las señales x(t) y h(t). Dibuje aproximadamente y(t).

7. Supongamos que tenemos un alisador analógico con la siguiente relación entrada-salida.

$$x(t) \longrightarrow T \qquad y(t) = T\left[x(t)\right] = \frac{1}{T} \int_{t-\frac{T}{2}}^{t+\frac{T}{2}} x(\tau) d\tau$$

- a) ¿Es el sistema lineal e invariante? Si es así, ¿cuál su respuesta impulsional h(t)?
- b) ¿Es el sistema causal?
- c) Partiendo de los ejemplos vistos en las clases de teoría calcule y dibuje la salida del sistema

y(t) cuando la entrada es el pulso rectangular
$$x(t) = \Pi\left(\frac{t}{T_1}\right)$$
, suponiendo que $T \ge T_1$.

¿Cómo sería el resultado si $T \le T_1$?

- d) La salida y(t) calculada es evidentemente la convolución x(t)*h(t). Observe que la forma de y(t) depende de T y T₁, e indique la relación de estas dos duraciones en la señal de salida.
- e) Demuestre que la salida del sistema y(t), cuando la entrada es una sinusoide de periodo T1,

$$x(t) = A\cos\left(\frac{2\pi}{T_1}t\right)$$
, es

$$y(t) = A \frac{T_1}{\pi T} \sin\left(\frac{\pi T}{T_1}\right) \cos\left(\frac{2\pi}{T_1}t\right)$$

f) ¿Qué condición debe cumplirse entre T_1 y T_2 en el caso anterior para que la salida sea nula, y(t)=0?

Propiedades de la convolución

8. Sabiendo que $y(t)=x(t)^*h(t)$ o bien $y[n]=x[n]^*h[n]$, determine si cada una de las siguientes relaciones es verdadera o falsa

- a) $x(t-t_0) * h(t-t_0) = y(t-t_0)$
- d) x(at) * h(at) = y(at)
- c) $x(t) * h(t) * \delta(1-t) = y(t-1)$
- d) x[-n] * h[-n] = y[-n]
- e) $x[n] * h[n] * \delta[-n] = y[-n]$
- f) $x[n] * h[n] * \delta[1-n] = y[n-1]$

9. Sea una señal x[n] que se aplica a dos sistemas lineales e invariantes en cascada con respuestas impulsionales h1[n] y h2[n] con

$$x[n] = \delta[n] - a\delta[n-1]$$

$$h1[n] = sen 8n$$

$$h2[n] = a^{n}u[n]$$

Hallar la salida y[n]=x[n]*h1[n]*h2[n]

Nota: utilice las propiedades asociativa y conmutativa de la convolución para realizar las convoluciones en el orden más simple posible.

Propiedades de sistemas LI mediante su respuesta impulsional

- 10. En el ejercicio 2 ha hallado la respuesta impulsional de varios sistemas LIT.
 - a) Determine los sistemas que son causales
 - b) Determine los sistemas que son estables

Sistemas definidos por ecuaciones en diferencias

11. Dado el sistema de la figura

Figura

- a) Obtenga la relación entrada-salida
- b) Determine los valores de a para los que el sistema es estable
- c) Obtenga la respuesta impulsional y dibújela.
- d) Se conecta en serie a este sistema otro de respuesta impulsional $h_I[n]$ $\begin{cases} 1 & \text{, para } n=0 \\ -a & \text{, para } n=2 \\ 0 & \text{, otros} \end{cases}$

¿Cómo se comporta el sistema global?. Justifique la respuesta