1 Study Group

Lakshya Nagal, SID: 3037935253

2 Course Policies

- (a) Midterm 1: Monday, 2/26/2024, 7:00 PM 9:00 PM
 - Midterm 2: Tuesday, 4/2/2024, 7:00 PM 9:00 PM
 - Final: Friday, 5/10/2024, 7:00 PM 10:00 PM (Group 20)
- (b) It is recommended that homework be finished by 10:00 PM.
- (c) Nothing, since there are no exeptions after the deadline of 11:59 PM; however, you may use one of your two drops.
- (d) Ed is the primary source of communication between students and staff.
- (e) I have read and understood the course syllabus and policies.

3 Understanding Academic Dishonesty

- (a) Not okay.
- (b) Not okay.
- (c) Not okay.
- (d) Okay.

4 Math Potpourri

(a) Simplify the following expressions into a single logarithm (i.e. in the form $\log_a(b)$:

(i)

$$\frac{\ln(x)}{\ln(y)} = \frac{\log_e(x)}{\log_e(y)} = \boxed{\log_y(x)}$$

(ii)

$$\ln(x) + \ln(y) = \boxed{\ln(x \cdot y)}$$

(iii)

$$\ln(x) - \ln(y) = \left[\ln\left(\frac{x}{y}\right) \right]$$

(iv)

$$170 \ln(x) = \boxed{\ln(x^{170})}$$

(b) Give a simple proof for each of the following identities:

(a)

$$x^{\log_{\frac{1}{x}}(y)} = \frac{1}{\frac{1}{x^{\log_{\frac{1}{x}}(y)}}}$$
$$= \frac{1}{\left(\frac{1}{x}\right)^{\log_{\frac{1}{x}}(y)}}$$
$$= \frac{1}{y}$$

(b)

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + (n-1) + n$$

$$= (1+n) + (2 + (n-1)) + (3 + (n-2)) + \dots$$

$$= (n+1) + (n+1) + (n+1) + \dots$$

$$= (n+1) \cdot \left(\frac{n}{2}\right)$$

$$= \frac{n(n+1)}{2}$$

(c)

If
$$r = 1$$
 then...
$$\sum_{k=0}^{n} ar^{k} = \sum_{k=0}^{n} a = a \sum_{k=0}^{n} 1 = a \cdot (n+1)$$
If $r \neq 1$ then...
$$\text{Let } x_{n} = \sum_{k=0}^{n} ar^{k}$$

$$x_{n} = ar^{0} + ar^{1} + ar^{2} + \dots + ar^{n}$$
Multiply both sides by r

$$rx_{n} = ar^{1} + ar^{2} + ar^{3} + \dots + ar^{n+1}$$

$$x_{n} - rx_{n} = ar^{0} - ar^{n+1}$$

$$x_{n}(1 - r) = a(1 - r^{n+1})$$

$$\sum_{k=0}^{n} ar^{k} = \frac{a(1 - r^{n+1})}{1 - r}$$

5 Recurrence Relations

(a)
$$T(n) = 2T(n/3) + 5n$$

$$\sum_{k=0}^{\log_3 n} 2^k \cdot \frac{5n}{3^k} = 5n \sum_{k=0}^{\log_3 n} \left(\frac{2}{3}\right)^k \le \sum_{k=0}^{\infty} \left(\frac{2}{3}\right)^k$$

$$= 5n \left[\left(\frac{2}{3}\right)^0 + \left(\frac{2}{3}\right)^1 + \left(\frac{2}{3}\right)^2 + \cdots\right]$$

$$= 5n \left[\frac{1}{1 - \frac{2}{3}}\right]$$

$$= 15n$$

$$= \Theta(n)$$

(b)
$$T(n) = 169T(n/170) + \Theta(n)$$

There are 169 branches for every node. At the k^{th} level we do $\frac{169^k n}{170^k}$ work and there are $\log_{170} n$ levels in the tree.

$$\sum_{k=0}^{\log_{170} n} \frac{169^k n}{170^k} = n \left[\sum_{k=0}^{\log_{170} n} \left(\frac{169}{170} \right)^k \right] \le n \left[\sum_{k=0}^{\infty} \left(\frac{169}{170} \right)^k \right]$$

$$= n \left[\left(\frac{169}{170} \right)^0 + \left(\frac{169}{170} \right)^1 + \left(\frac{169}{170} \right)^2 + \cdots \right]$$

$$= n \left[\frac{1}{1 - \frac{169}{170}} \right]$$

$$= \left[\Theta(n) \right]$$

(c) An algorithm A takes $\Theta(n^2)$ time to partition the input into 5 sub-problems of size n/5. Describe the recurrence relation for the run-time T(n) of \mathcal{A} and find its asymptotic order of growth.

Giving the recurrence relation $\Rightarrow T(n) = 3T(n/5) + \Theta(n^2)$ Level 1: n^2 work, Level 2: $3\frac{n^2}{5}$ work, Level 3: $9\frac{n^2}{25}$ work, ...

$$\sum_{k=0}^{\log_5(n)} \frac{3^k n^2}{5^k} = n^2 \sum_{k=0}^{\log_5(n)} \left(\frac{3}{5}\right)^k \le n^2 \sum_{k=0}^{\infty} \left(\frac{3}{5}\right)^k$$

$$= n^2 \left[\left(\frac{3}{5}\right)^0 + \left(\frac{3}{5}\right)^1 + \left(\frac{3}{5}\right)^2 + \dots \right]$$

$$= n^2 \left[\frac{1}{1 - \frac{3}{5}} \right]$$

$$= \left[\Theta\left(n^2\right) \right]$$

(d) $T(n) = 6T(n/6) + \Theta(n)$

At level k^{th} level we are doing $\frac{6^k n}{6^k}$ work and there are $\log_6 n$ levels...

$$\sum_{k=0}^{\log_6 n} \left(\frac{\cancel{g}^{k} n}{\cancel{g}^{k}} \right) = n \sum_{k=0}^{\log_6 n} 1$$
$$= n \log_6(n)$$
$$= \Theta(n \log n)$$

(e)
$$T(n) = T(3n/5) + T(4n/5)$$
 (We have $T(1) = 1$)

We can try finding an upper and lower bound for T(n):

UPPER:
$$T(n) \le 2T(4n/5)$$

LOWER: $T(n) \ge 2T(3n/5)$

We can use Masters Theorem to solve the two realtions..

UPPER:
$$a = 2, b = \frac{5}{4}, d = 0$$

 $\log_{\frac{5}{4}} 2 > d = 0$
 $\therefore \mathcal{O}(n^{\log_{\frac{5}{4}} 2}) \approx \mathcal{O}(n^{3.11})$
LOWER: $a = 2, b = \frac{5}{3}, d = 0$
 $\log_{\frac{5}{3}} 2 > d = 0$
 $\therefore \Omega(n^{\log_{\frac{5}{3}} 2}) \approx \Omega(n^{1.36})$

$$T(n) = an^b, T(1) = 1$$

 $T(1) = a1^b = a = 1$

Plug in $n = an^b$ into T(n) with a = 1

$$n^{b} = \left(\frac{3n}{5}\right)^{b} + \left(\frac{4n}{5}\right)^{b}$$

$$n^{b} = \left(\frac{3^{b}}{5^{b}}\right)n^{b} + \left(\frac{4^{b}}{5^{b}}\right)n^{b}$$

$$1 = \frac{3^{b} + 4^{b}}{5^{b}}$$

$$5^{b} = 3^{b} + 4^{b}$$

$$b = 2, \text{ since } 9 + 16 = 25$$

$$\boxed{\Theta(n^{2})}$$

6 In Between Functions

(a) Try setting f(n) to a polynomial of degree d, where d is a very large constant. So $f(n) = a_0 + a_1 n + a_2 n^2 + \cdots + a_d n^d$. For which values of k (if any) does f fail to satisfy (1)?

Since the last term dominates, in order for (1) to not be satisfied then $d \ge k$, and/or a would have to a large value such that $a_d n^d \ge n^k$.

(b) Now try setting f(n) to a^n , for some constant a > 1 that's as small as possible while still satisfying (1) (e.g. 1.000001). For which values of c (if any) does f fail to satisfy (2)?

$$f(n) = a^n, a > 1$$
Let $a = 2^b \Rightarrow b = log_2(a), f(n) = 2^{bn}$

$$2^{bn} \ge 2^{cn}$$

$$b \ge c$$

$$log_2(a) \ge c$$

In order for (2) to not be satisfied, $b = log_2(a)$ would have to be greater than c.

(c) Find a function D(n) such that setting f(n) = O(nD(n)) satisfies both (1) and (2). Give a proof that your answer satisfies both.

$$f(n) = O(n^{\log n})$$

$$n^{\log n} < 2^{cn}$$

$$n^{\log n} > n^k$$

$$\log(n^{\log n}) < \log(2^{cn})$$

$$\log n \log n < cn \log 2$$

$$\log^2 n < cn \log 2$$
 (ii)

Let D(n) = log(n)

Since $\log n$ is greater than any constant k, (i) satisfies (1). Similarly $\log^2 n$ is less than $cn \log 2$ (ii) satisfying (2).