Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-229. Вариант 34

- 1. Пусть $z=\sqrt{3}+i$. Вычислить значение $\sqrt[7]{z^3}$, для которого число $\frac{\sqrt[7]{z^3}}{\sqrt{3}+i}$ имеет аргумент $\frac{4\pi}{21}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(13-15i) + y(12+11i) = 49-349i \\ x(7+5i) + y(-15-6i) = -29+67i \end{cases}$$

- 3. Найти корни многочлена $2x^6 28x^4 140x^3 + 1698x^2 6940x + 8528$ и разложить его на множители над \mathbb{R} и \mathbb{C} , если известны корни $x_1 = -5 4i$, $x_2 = 2 + 3i$, $x_3 = 4$.
- 4. Даны 3 комплексных числа: 8-14i, -22+16i, -1+13i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1=2, z_2=-1+\sqrt{3}i$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+1-2i| < 3\\ |arg(z+5-2i)| < \frac{2\pi}{3} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (10, 0, 6), b = (3, -5, 1), c = (4, 4, 3). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(3,-3,-10) и плоскость P:14x-32y+4z+520=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(7,6,-5), $M_1(-2,13,12)$, $M_2(-18,-3,12)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -22x - y + 11z - 92 = 0 \\ -9x - 9y - z - 73 = 0 \end{cases}$$

$$L_2: \begin{cases} -13x + 8y + 12z + 1489 = 0 \\ -17y - 14z - 1233 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L_1 и L_2 .