

EMO 2021: International Conference on Evolutionary Multi-Criterion Optimization

On the Interaction between Distance Functions and Clustering Criteria in Multi-objective Clustering

Adán José-García & Julia Handl March 28-31, 2021

Table of contents

- 1. Introduction
- 2. Background
- 3. Multi-criterion versus multi-view clustering
- 4. Experimental Setup
- 5. Findings and Results
- 6. Discussion and Conclusions

Introduction

Introduction

Multi-criterion algorithms for clustering have gained traction due to their ability to cater to diverse cluster properties.

Illustration of three different cluster types: (a) compact cluster, (b) elongated cluster, and (c) arbitrarily-shaped cluster.

Background

Background: Compactness-based distance functions

The Euclidean distance

$$d_{\mathrm{EUC}}(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^{l} (x_i - y_i)^2}$$

where $\mathbf{x}, \mathbf{y} \in \mathbf{X}$ and x_i , y_i are the i-th coordinates of \mathbf{x} and \mathbf{y} .

Illustration of the Minkowski distance

Background: A connectivity-based distance function

The maximum edge distance (MED) is defined over the Minimum Spanning Tree (MST) of the graph representing the original pair-wise dissimilarities in a given dataset.

$$d_{\mathsf{MED}}(i,j) = \max\{e \in E_{P_{ij}}\}\tag{1}$$

where

- P_{ij} is the component of the MST that represents the path between data points i and j,
- $E_{P_{ij}}$ is the set of edges in P_{ij} , and
- e are the elements in $E_{P_{ij}}$.

Illustration of the MED distance.

Background: The effect of different distance functions

The effect of different distances. (top) Original data; (centre) Embedding of the associated Euclidean distance; (bottom) Embedding of the MED distance.

Multi-criterion versus multi-view

clustering

Multi-criterion versus multi-view clustering

Multi-objective clustering approaches: (a) multi-criterion clustering, and (b) multi-view clustering.

A multi-criterion clustering algorithm: Δ-MOCK

 Δ -MOCK is a multi-criterion evolutionary algorithm with the following main characteristics [1]:

- uses a Pareto-based optimiser (NSGA-II).
- uses a flexible representation (the locus-based adjacency scheme).
- makes no prior assumptions on the cluster number.
- formulates multi-objective clustering as a bi-objective problem.

A multi-criterion clustering algorithm: △-MOCK

Δ -MOCK's clustering criteria:

• The criterion of compactness is defined as:

$$Var(\mathbf{C}) = \frac{1}{N} \sum_{k=1}^{K} \sum_{i \in c_k} d(i, \mu_k)^2$$
 (2)

where N is the number of data points, K is the number of clusters, c_k and μ_k are the partition and the centroid of cluster k, respectively.

• The criterion of connectivity is defined as:

$$Conn(\mathbf{C}) = \sum_{i=1}^{N} \sum_{l=1}^{L} \rho(i, l)$$
(3)

where L is a parameter specifying the size of the neighbourhood, and $\rho(i, l) = \frac{1}{l}$ is a penalty term incurred for $l \leq L$.

A multi-view clustering algorithm: MVMC

MVMC is a multi-view clustering approach with the following main characteristics [3]:

- uses a decomposition-based optimiser (MOEA/D [4]).
- achieves scalability with respect to the number of views through the use of a many-objective optimiser.
- uses a prototype-based representation.
- requires the desired number of clusters as input.
- focuses on a single clustering criterion but aims to optimise this with respect to every data view.

A multi-view clustering algorithm: MVMC

Let $\{D_1, \ldots, D_M\}$ denote the M dissimilarity matrices, which represent the different data views and are each considered by a separate objective.

MVMC uses the within-cluster scatter as the optimisation criterion. Let \mathbf{C}^r and \mathbf{w}^r be the partition and weight vector corresponding to the r-th subproblem. The m-th objective of the r-th subproblem is computed as:

$$f_m(\mathbf{C}^r) = \sum_{\mathbf{c}_k \in \mathbf{C}^r} \sum_{i,j \in \mathbf{c}_k} d_m(i,j) , \qquad (4)$$

where

- \mathbf{C}^r is a consensus clustering solution.
- $d_m(\cdot)$ is the dissimilarity between two points as defined in D_m .

Experimental Setup

Experimental Setup

Illustration of the diversity of properties covered by our test datasets.

Experimental Setup

Performance Assessment:

- The Adjusted Rand Index (ARI) is used to assess the clustering performance [2].
- ARI is defined in the range [~0,1]; the larger the value, the better the correspondence between the obtained and the true partition.
- ullet Each run of MVMC and $\Delta ext{-MOCK}$ produces a set of partitions. From this set, the best solution in terms of ARI is selected.

Reference Methods:

- Single-objective algorithms: *k*-means and Single-Link (SL).
- A MVMC_{WGS} version that minimises the within-cluster scatter.
- A MVMC_{SIL} version that optimises the Silhouette Width [5].

Findings and Results

Findings: Empirical Results

Table 1: ARI values obtained by the different clustering algorithms k-means, SL, δ -MOCK, and MVMC. The best ARI value scored for each dataset has been shaded and highlighted in bold and, additionally, the statistically best (α = 0.05) results are highlighted in boldface.

Dataset	N	D	K	k-means▲	k-means♥	SL▲	SL▼	Δ -MOCK	$MVMC_{SIL}^{\blacktriangle\blacktriangledown}$	$MVMC_{WGS}^{\blacktriangle \blacktriangledown}$
Orange	400	2	2	1.000 ± 0.00	1.000 ± 0.00	1.000	1.000	1.000 ± 0.00	1.000 ± 0.00	1.000 ± 0.00
Data_4_3	400	3	4	1.000 ± 0.00	1.000 ± 0.00	1.000	1.000	1.000 ± 0.00	1.000 ± 0.00	1.000 ± 0.00
Data_6_2	300	2	6	1.000 ± 0.00	1.000 ± 0.00	1.000	1.000	1.000 ± 0.00	1.000 ± 0.00	$1.000\!\pm\!0.00$
R15	600	2	15	0.966 ± 0.05	0.975 ± 0.00	0.548	0.751	0.992 ± 0.00	0.992 ± 0.00	0.993 ± 0.00
Twenty	1000	2	20	0.966 ± 0.04	1.000 ± 0.00	1.000	1.000	1.000 ± 0.00	1.000 ± 0.00	$1.000\!\pm\!0.00$
TwoDiamonds	800	2	2	1.000 ± 0.00	0.895±0.01	0.000	0.000	0.999±0.00	0.999±0.00	$1.000 \!\pm\! 0.00$
Square1	1000	2	4	0.973 ± 0.00	0.906 ± 0.01	0.000	0.000	0.946 ± 0.18	0.978 ± 0.00	0.979 ± 0.00
Size5	1000	2	4	0.920 ± 0.00	0.739 ± 0.01	0.025	0.015	0.961 ± 0.01	0.970 ± 0.00	0.962 ± 0.00
Data_5_2	250	2	5	0.870 ± 0.01	0.750 ± 0.02	0.189	0.394	0.916 ± 0.02	0.946 ± 0.04	$0.930 {\pm} 0.02$
Data_9_2	900	2	9	$0.831 {\pm} 0.00$	0.506 ± 0.03	0.000	0.000	0.748 ± 0.01	0.826 ± 0.01	$0.838 {\pm} 0.01$
Part2	417	2	2	0.265±0.00	1.000 ± 0.00	1.000	1.000	1.000 ± 0.00	1.000 ± 0.00	1.000±0.00
Inside	600	2	2	0.008 ± 0.01	1.000 ± 0.00	1.000	1.000	1.000 ± 0.00	1.000 ± 0.00	$1.000\!\pm\!0.00$
Spirals	1000	2	2	0.074 ± 0.00	1.000 ± 0.00	1.000	1.000	1.000 ± 0.00	1.000 ± 0.00	1.000 ± 0.00
Ringauss	2000	2	3	0.252 ± 0.00	0.963 ± 0.02	0.001	0.001	0.473 ± 0.02	0.971 ± 0.00	0.972 ± 0.00
Multidist	3012	2	11	0.532 ± 0.03	$0.991 {\pm} 0.00$	0.805	0.805	0.764 ± 0.02	0.967 ± 0.06	$0.984 \!\pm\! 0.04$
Flame	240	2	2	0.462±0.02	0.910±0.05	0.013	0.013	0.963 ± 0.01	0.935±0.03	0.967±0.00
Flamesize5	240	2	6	0.926 ± 0.01	$0.824{\pm}0.00$	0.489	0.657	0.971 ± 0.01	$0.948 {\pm} 0.01$	0.976 ± 0.00
Spiralsizes5	2000	2	6	0.659 ± 0.00	0.833 ± 0.02	0.555	0.782	$0.987 {\pm} 0.00$	0.974 ± 0.04	0.980 ± 0.02
Spiralsdata52	562	2	8	0.342 ± 0.00	0.934 ± 0.01	0.772	0.808	0.735 ± 0.03	0.948 ± 0.00	0.960 ± 0.01
Spiralsdata92	1212	2	12	0.610 ± 0.02	0.623 ± 0.02	0.128	0.130	0.677±0.02	0.750 ± 0.12	0.878 ± 0.01

Findings: Empirical Results

Comparison of the EAFs computed from the PFAs obtained from all independent execution of (a) MVMC and (b) Δ -MOCK approaches.

Findings: Mathematical Analysis

We analyse Δ -MOCK's objectives in order to understand the similarities and differences between Δ -MOCK and MVMC.

- The similarity in the first objective is straightforward as both algorithms optimise a compactness-based criterion.
- The Δ -MOCK's second objective can be reformulated as a minimisation problem over a non-metric dissimilarity measure d(i,j) = 1 s(i,j) as:

min
$$Conn^{d}(\mathbf{C}) = min \sum_{k=1}^{K} \sum_{i \in c_{k}} \sum_{j \in c_{k} \setminus i} d(i,j) - \sum_{k=1}^{K} |c_{k}| (|c_{k}| - 1)$$
 (5)

Discussion and Conclusions

Summary '

Our work makes the following main contributions in the context of evolutionary multi-objective clustering:

- For Δ-MOCK: Mathematically, the underlying multi-criterion optimisation problem remains equivalent, but the reformulation explicitly highlights the parallels to a multi-view approach.
- For MVMC: Empirically, competitive results to multi-criterion clustering can be obtained when a multi-view algorithm is used with an appropriate pair of distance measures.
- In general: We showed that the suitable choice of a distance function overcomes the common limitations of prototype-based encodings and compactness-based criteria.

Summary

Get the datasets and source code of this study from

https://mvc-repository.github.io/

References i

M. Garza-Fabre, J. Handl, and J. Knowles.

An Improved and More Scalable Evolutionary Approach to Multiobjective Clustering.

IEEE Transactions on Evolutionary Computation, 22(4):515–535, 2018.

L. Hubert and P. Arabie.

Comparing Partitions.

Journal of Classification, 2(1):193-218, 1985.

A. Jose-Garcia, J. Handl, W. Gomez-Flores, and M. Garza-Fabre. **An evolutionary many-objective approach to multiview**

clustering using feature and relational data.

Applied Soft Computing (under review), 2021.

References ii

Qingfu Zhang and Hui Li.

MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition.

IEEE Transactions on Evolutionary Computation, 11(6):712–731, 2007.

P. J. Rousseeuw.

Silhouettes: A graphical aid to the interpretation and validation of cluster analysis.

Journal of Computational and Applied Mathematics, 20:53-65, 1987.