电子技术基础

计算机与通信工程学院

柏禄一

Email: blovdew@126.com

综合楼1225

本课程的性质和任务

• 性质

电子技术基础是电子信息、通信工程、计算机科学与技术、物联网工程等专业在电子技术方面入门性质的专业基础课

任务

本课程的任务是使学生获得电子技术方面的基本理论、基础知识和基本技能,培养学生分析问题和解决问题的能力,为深入学习专业课打下良好的基础。

如何学好这门课

- 电子技术基础是一门全新的课程,任何同学只要认真的下点功夫就一定能学好。
- 数字部分比模拟部分好学。
- 重视习题。
- 重视实验课。实验培养动手能力,同时有助于理论的深化,希望大家加强重视。

教材

康华光: 电子技术基础(第六版) 高等教育出版社,2014.1

考试成绩

• 平时成绩

(书面作业、实验、出勤)

• 期末考试

第1章 数字逻辑概论

- 1.1 数字信号与数字电路
- 1.2 数制
- 1.3 二进制数的算术运算
- 1.4 二进制代码
- 1.5 二值逻辑变量与基本逻辑
- 1.6 逻辑函数及其表示方法

1.1 数字信号与数字电路

- ◆数字量和模拟量
 - -数字量:时间上、数量上都离散的物理量
 - -数字信号:表示数字量的信号
 - -数字电路:工作在数字信号下的电子电路

- -模拟量:时间连续或数值连续的物理量
- -模拟信号:表示模拟量的信号
- -模拟电路:工作在模拟信号下的电子电路

◆电子电路的分类: 根据功能: 模拟电路和数字电路

◆数字电路的分类: 根据电路的结构特点: 组合逻辑电路和时序逻辑电路 ◆数字电路的分类:

根据集成度:

小规模(SSI)、中规模(MSI)、大规模(LSI)、 超大规模(VLSI)、甚大规模(ULSI)集成电路

分类	门的个数	典型集成电路	
小规模	最多12个	逻辑门、触发器	
中规模	12-99	计数器、加法器	
大规模	100-9999	小型存储器、门阵列	
超大规模	10000-99999	大型存储器、微处理器	
甚大规模	106以上	可编程逻辑器件、多功能专用集成电路	

◆数字信号的描述方法:

●二值数字逻辑和逻辑电平 用0、1两种值表示,即二值数字逻辑

在电路中,用高、低电平分别表示逻辑1和逻辑0两种状态

电压	二值逻辑	电平
3.5-5V	1	H(高电平)
0-1.5V	0	L (低电平)

- ◆数字信号的描述方法:
- ●数字波形: 是信号逻辑电平对时间的图形 表示
- (a) 用逻辑电平描述的数字波形
- (b) 数字波形的常规表示

•(1)数字波形的两种类型:

- •*非归零型:如果一个时间拍内用高电平代表1,低电平代表0
- •*归零型:如果在一个时间拍内有脉冲代表1,无脉冲代表0
- •一定的时间间隔T, 称为1位 (bit), 或者一拍。
- •比特率 ------ 每秒钟转输数据的位数

(2)周期性和非周期性

占空比 *Q* ----- 表示脉冲宽度占整个周期的百分比

$$q(\%) = \frac{t_{\rm w}}{T} \times 100\%$$

例1.1.1 某通信系统每秒钟传输1544000位(1.544兆位)数据,求每位数据的时间。

解:按题意,每位数据的时间为

$$\left[\frac{1.544 \times 10^6}{1s}\right]^{-1} = 647.67 \times 10^{-9} s = 648 ns$$

例1.1.2 设周期性数字波形的高电平持续6ms, 低电平持续10ms, 求占空比q。

解: 因数字波形的脉冲宽度 t_w =6ms, 周期T=6ms+10ms=16ms。

$$q = \frac{6\text{ms}}{16\text{ms}} \times 100\% = 37.5\%$$

(3)实际脉冲波形及主要参数

理想脉冲波形 非理想脉冲波形

几个主要参数:

周期 (T) ---- 表示两个相邻脉冲之间的时间间隔脉冲宽度 (t_w) ---- 脉冲幅值的50%的两个时间所跨越的时间占空比 Q ----- 表示脉冲宽度占整个周期的百分比上升时间 t_r 和下降时间 t_r ---- 从脉冲幅值的10%到90%上升下降所经历的时间 (典型值ns)

1.2 数制

用数字量表示物理量的大小时,仅用一位数码往往不够用,通常要用多位

- 一、数制:多位数码中每一位的构成方法以及从低位到高位的进位规则
- · 十进制 Decimal system (逢十进一)
- 二进制 Binary system (逢二进一)
- · 八进制 Octal system (逢八进一)
- · 十六进制 Hexadecimal system (逢十六进一)

十进制 Decimal system(逢十进一)

码: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

基: 10

权: 10ⁱ

表达式: $D = \sum k_i \times 10^i$

$$(4587.29)_{10} = 4 \times 10^{3} + 5 \times 10^{2} + 8 \times 10^{1} + 7 \times 10^{0} + 2 \times 10^{-1} + 9 \times 10^{-2}$$

$$(143.75)_{10} = 1 \times 10^2 + 4 \times 10^1 + 3 \times 10^0 + 7 \times 10^{-1} + 5 \times 10^{-2}$$

• 二进制 Binary system(逢二进一)

码: 0,1

基: 2

权: 2ⁱ

表达式: $D = \sum k_i \times 2^i$

$$(1010110)_{B} = 1 \times 2^{6} + 0 \times 2^{5} + 1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} = (86)_{D}$$

$$(101.11)_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2} = (5.75)_{10}$$

• 八进制 (逢八进一)

码: 0, 1, 2, 3, 4, 5, 6, 7

基: 8

权: 8ⁱ

表达式: $D = \sum k_i \times 8^i$

$$(74.5)_8 = 7 \times 8^1 + 4 \times 8^0 + 5 \times 8^{-1} = (60.625)_{10}$$

· 十六进制 Hexadecimal(逢十六进一)

码: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B,

C, D, E, F

基: 16

权: 16ⁱ

表达式: $D = \sum k_i \times 16^i$

例如 $(A6.C)_{H} = 10 \times 16^{1} + 6 \times 16^{0} + 12 \times 16^{-1}$

$$(2A.7F)_{16} = 2 \times 16^{1} + 10 \times 16^{0} + 7 \times 16^{-1} + 15 \times 16^{-2} = (42.4960937)_{10}$$

二、数制转换

二-十进制

1、十一二转换

整数:除2求余

		余数	
2	173	1	最低位
2	86	0	
2	43	1	/ 1 / / / / / / / / / / / / / / / / / /
2	21	1	读数
2	10	0	頻 顺
2	5_	1	序
2	2	0	
2	1	1	最高位
	0		
故	(173)	$_{10} = (1010$	01101) ₂

小数:乘2取整

$$\begin{array}{c|cccc}
0.8125 & 0.2500 \\
\times & 2 & \times & 2 \\
\hline
1.6250 & 0.5000 \\
0.6250 & 0.5000 \\
\times & 2 & \times & 2 \\
\hline
1.2500 & 1.0000
\end{array}$$

故
$$(0.8125)_{10} = (0.1101)_2$$

例1.2.2 将十进制数(37)_D转换为二进制数。

解:根据上述原理,可将(37)p按如下的步骤转换为二进制数

由上得 (37)_D=(100101)_B

当十进制数较大时,有什么方法使转换过程简化?

将十进制数和与其相当的2的幂项对比

例1.2.3 将(133)D转换为二进制数

解: 由于27为128, 而133-128=5=22+20,

所以对应二进制数 $b_7=1$, $b_2=1$, $b_0=1$,其余各系数均为0,

所以,得

 $(133)_D = (10000101)_B$

例 将十进制小数(0.39)_D转换成二进制数,要求精度达到1%

解 由于精度要求达到1%,需要精确到二进制小数7位,

即1/27=1/128。

$$0.39 \times 2 = 0.78$$
 $b_{-1} = 0$ $0.24 \times 2 = 0.48$ $b_{-5} = 0$
 $0.78 \times 2 = 1.56$ $b_{-2} = 1$ $0.48 \times 2 = 0.96$ $b_{-6} = 0$
 $0.56 \times 2 = 1.12$ $b_{-3} = 1$ $0.96 \times 2 = 1.92$ $b_{-7} = 1$
 $0.12 \times 2 = 0.24$ $b_{-4} = 0$ $0.92 \times 2 = 1.84$ $b_{-8} = 1$

计算时要多算1位,然后考虑"4舍5入"。 $b_{-8}=1$ 产生进位。

$$(0.39)_D = (0.0110010)_B$$

2、二—十转换

展开,各项数值按十进制相加例如:

$$(1011.01)_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2}$$
$$= (11.25)_{10}$$

- 二-八进制
 - 1、二进制转换为八进制

例:二进制: 110011101.001

二一八进制: 110 011 101.001

八进制: 6 3 5. 1

 $[110011101.001]_2 = [635.1]_8$

2、八进制转换为二进制

例: 八进制: 3 4 5. 1

八一二进制: 011 100 101.001

二进制: 011100101.001

 $[345.1]_8 = [011100101.001]_2$

- 二-十六进制
 - 1、二进制转换为十六进制

例: 二进制: 01011110.10110010

二—十六进制: 0101 1110.1011 0010

十六进制: 5 E. B 2

 $[01011110 .10110010]_2 = [5E.B2]_{16}$

2、十六进制转换为二进制

例: 十六进制: 8 F A. C 6

十六—二进制: 1000 1111 1010.1100 0110

二进制: 100011111010.11000110

 $[8FA.C6]_{16} = [10001111110 \ 10.11000110 \]_2$

表 1.2.1 几种数制之间的关系对照表

十进制数	二进制数	八进制数	十六进制数
0	0 0 0 0 0	0	0
1	0 0 0 0 1	1	1
2	0 0 0 1 0	2	2
3	0 0 0 1 1	3	3
4	0 0 1 0 0	4	.4
5	0 0 1 0 1	5	5
6	0 0 1 1 0	6	6
7	00111	7	7
8	0 1 0 0 0	10	8
9	0 1 0 0 1	11	9
10	0 1 0 1 0	12	A
11	0 1 0 1 1	13	В
12	0 1 1 0 0	14	C
13	0 1 1 0 1	15	D
14	0 1 1 1 0	16	E
15	01111	17	F
16	10000	20	10
17	10001	21	11
18	10010	22	12
19	10011	23	13
20	10100	24	14