Algèbre II Clément Chivet

TD4: Extensions séparables et Corps finis

16/10/2023

Exercice 1 : Extensions finie non normale ni séparable

Montrer que l'extension $\mathbb{F}_2(t^{1/6})/\mathbb{F}_2(t)$ n'est ni séparable ni normale.

Exercice 2:

Soit $K = \mathbb{Q}(\sqrt{5})$ et $L = \mathbb{Q}(\sqrt{1+\sqrt{5}})$. Montrer que les extensions $\mathbb{Q} \subset K$ et $K \subset L$ sont normales, mais que $\mathbb{Q} \subset L$ ne l'est pas. Quelle est sa clôture normale dans \mathbb{Q} ?

Exercice 3 : Polynômes purement inséparables

Soit K un corps de caractéristique p > 0, $f \in K[X]$ est dit purement inséparable si il a exactement une seule racine dans la clôture algébrique \overline{K} .

- **1.** Soit $h \in K[X]$ un polynôme unitaire irréductibe purement inséparable. Montrer qu'il existe $n \in \mathbb{N}, c \in K$ tel que $h(X) = X^{p^n} c$.
- **2.** Soit $f \in K[X]$ un polynôme purement inséparable unitaire. Montrer que $f(X) = (X^{p^n} c)^m$ pour certains $n, m \in \mathbb{N}, c \in K$.

Soit L/K une extension. On dit que $\alpha \in L$ est purement inséparable si son polynôme minimal est purement inséparable, et que l'extension l'est si cette propriété est vraie pour tous les $\alpha \in L$.

- **3.** Montrer que L/K est purement inséparable ssi pour tout $x \in L$, il existe $n \in \mathbb{N}$ tel que $x^{p^n} \in K$.
- **4.** Montrer que l'extension $\mathbb{F}(t)/\mathbb{F}(t^p)$ est purement inséparable.

Exercice 4: Extensions purement inséparables

Soit K un corps de caractéristique p > 0, et \overline{K} une clôture algébrique de K. On note $K^s = \{x \in \overline{K}, x \text{ est séparable sur } K\}$.

- 1. Rappeler pourquoi K^s est bien un corps.
- **2.** Soit L/K une extension algébrique. On note $L_s = K^s \cap L$.
 - a. Montrer que si $\beta \in L$ est séparable sur L_s , alors $\beta \in L_s$.
 - b. Montrer que L/L_s est purement inséparable.
- c. Montrer le fait général : une extension algébrique L'/K est purement inséparable si et seulement si il n'existe qu'un seul K-morphisme de $L' \to \overline{K}$.
- d. Montrer que $[L:L_s]_s=1$ et que $[L_s:K]=[L:K]_s$. En particulier, en déduire que le degré séparable divise le degré.
- e. On note alors $[L:K]_i := [L:L_s]$ le degré d'inséparabilité. Montrer que ce degré est multiplicatif et que c'est une puissance de p. On note L^{rad} le sous-corps de L constitué de tous les éléments $x \in L$ tels qu'il existe $r \in \mathbb{N}$ avec $x^{p^r} \in K$.
 - 3. Montrer que \overline{K} est une extension séparable de $\overline{K}^{\mathrm{rad}}$.

Exercice 5:

Soit K un corps de caractéristique p, et soit $a \in K$. On pose $P(X) = X^p - X - a$ et on note L un corps de décomposition de P sur K.

- **1.** Si x est une racine de P dans L, montrer que les racines de P sont $x, x+1, \ldots, x+p-1$.
- **2.** Montrer que P est soit scindé soit irréductible sur K[X].
- **3.** Dans le cas où P n'a pas de racine dans K, montrer que [L:K] = p et que $Gal(L/K) \simeq \mathbb{Z}/p\mathbb{Z}$.

Algèbre II Clément Chivet

Exercice 6:

Soient K et K' des sous-corps d'un corps L, tels que les extensions L/K et L/K' soient normales. Montrer que $L/(K \cap K')$ est normale.

Exercice 7: Corps finis

Soit p un nombre premier.

- 1. Rappeler pourquoi deux corps finis de même cardinal sont isomorphes.
- **2.** Soient $n, n' \in \mathbb{N}$ tels que n' soit un multiple de n. Justifier l'écriture $\mathbb{F}_{p^n} \subset \mathbb{F}_{n^{n'}}$.
- **3.** Réciproquement, montrer que si \mathbb{F}_{p^n} s'identifie à un sous-corps de $\mathbb{F}_{p^{n'}}$ alors n divise n'.
- 4. Montrer qu'un corps fini n'est jamais algébriquement clos.
- 5. Déterminer les corps de cardinal 4, 8, 16 et 9.

Exercice 8: Un isomorphisme

Montrer que les anneaux $\mathbb{F}_3[X]/(X^2+X+2)$ et $\mathbb{F}_3[X]/(X^2+2X+2)$ sont isomorphes et exhiber un isomorphisme explicite.

Exercice 9 : Clôture algébrique de \mathbb{F}_p

Soit p un nombre premier et $q := p^n, n \ge 1$.

- 1. Soit $\overline{\mathbb{F}}_p$ une clôture algébrique de \mathbb{F}_p . Montrer que si $x \in \overline{\mathbb{F}}_p$, $x \neq 0$, alors x est une racine de l'unité.
- **2.** Montrer que $\mathbb{F}_q \subset \mathbb{F}_{p^{n!}}$.
- **3.** Montrer que $K := \bigcup_{n \ge 1} \mathbb{F}_{p^{n!}}$ est naturellement muni d'une structure de corps. Conclure que K est une clôture algébrique de \mathbb{F}_p et même de tout corps fini de caractéristique p.

Exercice 10 : Polynômes irréductibles sur \mathbb{F}_q

Pour $n \in \mathbb{N}^*$, on note A(n,q) l'ensemble des polynômes unitaires de degré n irréductibles sur \mathbb{F}_q et $I(n,q) = \sharp A(n,q)$. On note μ la fonction de Möbius. Soit $n \ge 1$.

- **1.** Soit d un diviseur de n et $P \in A(d,q)$. Montrer que P divise $X^{q^n} X$.
- **2.** Soit P un facteur irréductible (unitaire) de $X^{q^n} X$. Montrer que deg P divise n.
- 3. Déduire des questions précédentes que $\sum_{d|n} dI(d,q) = q^n$. Montrer qu'on a

$$I(n,q) = \frac{1}{n} \sum_{d|n} \mu(\frac{n}{d}) q^d. \tag{1}$$

Exercice 11 : Irréductibilité des polynômes cyclotomiques sur les corps finis

Soit p un nombre premier, $n \in \mathbb{N}^*$, et $q := p^n$. On considère une extension finie $\mathbb{F}_p \subset K$. Soit $\alpha \in K$. On note π_{α} le polynôme minimal de α sur \mathbb{F}_p et $d = deg(\pi_{\alpha})$.

- **1.** Montrer que $\{r \in \mathbb{Z}, \alpha^{p^r} = \alpha\} = d\mathbb{Z}$. En déduire que le degré du polynôme minimal de α sur \mathbb{F}_p est égal à l'ordre de p dans $(\mathbb{Z}/od(\alpha)\mathbb{Z})^*$, où $od(\alpha)$ désigne l'ordre de α dans le groupe multiplicatif K^* .
 - **2.** Montrer que $\pi_{\alpha} = (X \alpha)(X \alpha^p) \cdots (X \alpha^{p^{d-1}})$.
 - 3. Montrer que

$$p^n = \sum_{d|n} dI(d, p) \tag{2}$$

(avec les notations de l'exercice précédent). En déduire que pour tout $n \ge 1$ il existe un polynôme de degré n irréductible sur \mathbb{F}_p et donc l'existence d'un corps fini cardinal p^n pour tout $n \ge 1$.