PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

A61K 38/02, 38/17, 39/395

(11) International Publication Number: WO 97/26000

(43) International Publication Date: 24 July 1997 (24.07.97)

(21) International Application Number:

PCT/US97/00668

(22) International Filing Date:

16 January 1997 (16.01.97)

(30) Priority Data:

08/587,334 08/641,473 16 January 1996 (16.01.96)

1 May 1996 (01.05.96)

US US

(71) Applicants: THE TRUSTEES OF COLUMBIA UNIVERISTY IN THE CITY OF NEW YORK [US/US]; West 116th Street and Broadway, New York, NY 10027 (US). BIO-GEN, INCORPORATED [US/US]; 14 Cambridge Center, Cambridge, MA 02142 (US).

(72) Inventors: YELLIN, Michael, J.; 2736 Independence Avenue, Riverdale, NY 10463 (US). LEDERMAN, Seth; Apartment 8C, 533 West 112th Street, New York, NY 10025 (US). CHESS, Leonard; 81 Green Acres Avenue, Scarsdale, NY 10538 (US). KARPUSAS, Mihail, N.; 175 Poplar Street #2, Roslindale, MA 02131 (US). THOMAS, David, W.; 9 Upland Road, Wellesley, MA 02181 (US).

(74) Agent: WHITE, John, P.; Cooper & Dunham L.L.P., 1185 Avenue of the Americas, New York, NY 10036 (US). (81) Designated States: AU, CA, JP, MX, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: THERAPEUTIC APPLICATIONS OF T-BAM (CD40L) TECHNOLOGY TO TREAT INFLAMMATORY KIDNEY DISEASES

(57) Abstract

Activation by CD40 ligand of renal cells bearing CD40 on the cell surface is inhibited, both in vivo and ex vivo, with an agent capable of inhibiting interaction between CD40 ligand and CD40 on the cells. Inflammatory kidney diseases are treated.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
ΑU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
ВЈ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Кепуа	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	S1	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	i.U	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

THERAPEUTIC APPLICATIONS OF T-BAM (CD40L) TECHNOLOGY TO TREAT INFLAMMATORY KIDNEY DISEASES

This application claims the priority of U.S. Serial No. 08/641,473, filed May 1, 1996 and U.S. Serial No. 08/587,334, filed January 16, 1996, the contents of which are hereby incorporated by reference.

The invention disclosed herein was made with Government support under NIH Grant Nos. K08-AR-01904, R01-CA55713, R01-AI-28367, R01-AI-14969, HL21006, HL42833, HL50629, and R01-AI-14969 from the Department of Health and Human Services. Accordingly, the U.S. Government has certain rights in this invention.

Throughout this application, various references are referred to within parentheses. Disclosures of these publications in their entireties are hereby incorporated by reference into this application to more fully describe the state of the art to which this invention pertains. Full bibliographic citation for these references may be found in the text.

Background of the Invention

5

10

15

30

35

Immune complex deposition is known to play important roles in mediating the immunopathogenesis of a variety of including the glomerulonephritis renal diseases, associated with systemic lupus erythematosus. infiltrating renal interstitial leukocytes, predominately T cells and monocytes, are often seen in lupus nephritis and other inflammatory renal diseases. The precise role of infiltrating T cells in the inflammatory renal process ultimately may result in renal scarring and endorgan damage is currently unknown. It is of interest that the extent of mononuclear cell infiltrate correlates with progression to renal failure. Some evidence

-2-

suggests that interstitial T cells play direct immunopathogenic roles in the initiation and/or propagation of inflammatory renal diseases, including lupus nephritis.

5

10

15

20

CD40 is a cell surface molecule expressed on a variety of cells and interacts with a 30-33 kDa activation-induced CD4+ T cell counterreceptor termed CD40L. CD40L-CD40 interactions have been extensively studied in T cell-B cell interactions and are essential for T cell dependent B cell differentiation and IgG, IgA and IgE production. CD40 is also expressed on monocytes, dendritic cells, epithelial cells, endothelial cells and fibroblasts. CD40 expression on these cells is upregulated in vitro by cytokines, most notably IFN-y. In vivo studies have demonstrated markedly upregulated CD40 expression in inflammatory sites, such as rheumatoid arthritis synovial membrane or psoriatic plaques. In vitro studies utilizing anti-CD40 mAb or CD40L+ cells demonstrate that CD40 is functionally expressed on monocytes, dendritic cells, epithelial cells, endothelial cells and fibroblasts.

Earlier disclosure of treating idiopathic autoimmune 25 including diseases, drug-induced lupus, such International Patent Publication No. WO 93/09812 (published May 27, 1993) was based on the finding that CD40 is expressed on the surface of B cells. initiation point of lupus is the deposition 30 autoantibodies in the kidney, which then attracts cells involved in destruction of kidney tissue. The finding, discussed below, that CD40 is expressed on kidney tubule cells provides the basis for treating inflammatory kidney diseases having initiation points other than autoantibody 35 deposition.

-3-

Summary of the Invention

This invention provides a method of inhibiting activation by CD40 ligand of renal cells bearing CD40 on the surface of the cells, comprising contacting the cells with an agent capable of inhibiting interaction between CD40 ligand and CD40 on the cells, the agent being present in an amount effective to inhibit activation of the cells.

This invention provides a method of inhibiting activation by CD40 ligand of renal cells bearing CD40 on the surface of the cells, in a subject, comprising administering to the subject an agent capable of inhibiting interaction between CD40 ligand and CD40 on the cells, the agent being present in an amount effective to inhibit activation of the cells in the subject.

This invention provides a method of treating, in a subject, an inflammatory kidney disease, comprising administering to the subject an agent capable of inhibiting interaction between CD40 ligand and CD40 on the cells, the agent being present in an amount effective to inhibit activation of the cells in the subject and thereby treat the inflammatory kidney disease.

20

Description of the Figures

Figures 1A-Y: Atomic coordinates of crystal structure of soluble extracellular fragment of human CD40L containing residues Gly116-Leu261 (in Brookhaven Protein Data Bank format). (SEQ ID NO:1).

Figures 2A-C: Expression of CD40 in normal kidney. 10 Shown are frozen sections of normal kidney stained with control mouse IgG (Figure 2A, magnification 25x) or anti-CD40 mAb G28.5 (Figures 2B and 2C, magnification 40x). Distal tubules and interstitial 15 capillaries express CD40 while proximal tubules are CD40 (Figure 2B). Glomerular cells and epithelial cells of Bowmans capsule express CD40 (Figure 2C).

20 Figures 3A-C: Expression of CD40 in diffuse proliferative lupus nephritis. Shown are frozen sections of a kidney biopsy from a patient with Class IV lupus nephritis stained with control mouse IgG (Figure 3A, 25 magnification 25x) or anti-CD40 mAb G28.5 (Figures 3B and 3C, magnification 40x). Figure 3B shows intense CD40 staining of distal and proximal tubules. Figure 3C shows increased and diffuse CD40 30 expression in the glomerulus. Figure 3C also shows that the epithelial derived crescent is CD40+.

Figure 4A: CD40L expression on interstitial mononuclear cells in class IV lupus glomerulonephritis. Shown is a frozen section obtained from a renal biopsy

specimen stained with anti-CD40L mAb 5c8. Bound antibody was visualized with the Vectastain ABC Elite kit followed by the chromogen 3-amino-9-ethylcarbazole (Vector Laboratories). The tissue was counterstained with Mayer's hematoxylin (Sigma). CD40L immunoreactivity is noted as staining of mononuclear cells.

10 Figure 4B:

Isotype control staining of interstitial in class IV mononuclear cells Shown is a frozen glomerulonephritis. section obtained from the same patient studied in Figure 4A and stained with an IgG2a isotype control mAb. Bound antibody was visualized with the Vectastain ABC Elite kit followed by the chromogen 3amino-9-ethylcarbazole (Vector tissue was The Laboratories). counterstained with Mayer's hematoxylin (Sigma). Note the lack of immunoreactivity (staining).

20

25

15

Figure 5:

interstitial expression on CD40L cells in class IV mononuclear glomerulonephritis. Shown is a frozen section obtained from a renal biopsy specimen stained with anti-CD40L mAb 5c8. obtained was This specimen different patient than shown in Figure 4A. Bound antibody was visualized with the Vectastain ABC Elite kit followed by the chromogen 3-amino-9-ethylcarbazole (Vector Laboratories). The tissue was counterstained with Mayer's hematoxylin (Sigma). CD40L immunoreactivity is noted staining of mononuclear as

30

35

Staining with an isotype control mAb was negative (not shown).

Figure 6:

Renal CD40 expression in focal segmental glomerulosclerosis (FSGS). Shown is a frozen section obtained from a renal biopsy specimen stained with anti-CD40 mAb G28.5. Bound antibody was visualized with the Vectastain ABC Elite kit followed by the chromogen 3-amino-9-ethylcarbazole (Vector Laboratories). The tissue was counterstained with Mayer's hematoxylin (Sigma). Note the intense CD40 staining. Staining with an isotype control mAb was negative (not shown).

15

20

25

10

5

Figure 7:

CD40L expression on interstitial mononuclear cells in focal segmental glomerulosclerosis. Shown is a frozen section obtained from the same patient as studied in Figure 6 stained with anti-CD40L mAb 5c8. Bound antibody visualized with the Vectastain ABC Elite kit followed by the chromogen 3-amino-9ethylcarbazole (Vector Laboratories). tissue was counterstained with Mayer's (Sigma). hematoxylin CD40L immunoreactivity is noted as staining of mononuclear cells. Staining with isotype control mAb was negative (not shown).

30

35

Figure 8:

Renal CD40 expression in IgA nephropathy. Shown is a frozen section obtained from a renal biopsy specimen stained with anti-CD40 mAb G28.5. Bound antibody was visualized with the Vectastain ABC Elite

negative (not shown).

kit followed by the chromogen 3-amino-9-ethylcarbazole (Vector Laboratories). The tissue was counterstained with Mayer's hematoxylin (Sigma). Note the intense CD40 staining. Staining with an isotype control mAb was negative (not shown).

Figure 9:

interstitial expression on CD40L mononuclear cells in IgA nephropathy. Shown is a frozen section obtained from the same patient as studied in Figure 8 stained with anti-CD40L mAb 5c8. with the visualized antibody was Vectastain ABC Elite kit followed by the chromogen 3-amino-9-ethylcarbazole (Vector tissue The Laboratories). counterstained with Mayer's hematoxylin (Sigma). CD40L immunoreactivity is noted mononuclear cells. staining of as Staining with as isotype control mAb was

15

10

5

20

WO 97/26000

-8-

PCT/US97/00668

Detailed Description

5

10

15

20

25

This invention provides a method of inhibiting activation by CD40 ligand of renal cells bearing CD40 on the cell surface, comprising contacting the cells with an agent capable of inhibiting interaction between CD40 ligand and CD40 on the cells, the agent being present in an amount effective to inhibit activation of the cells. embodiment of this invention the agent is capable of inhibiting any interaction between CD40 ligand and CD40. "Interaction between CD40 ligand and CD40 on the cells" refers to one or more aspects, functional or structural, of a CD40-CD40 ligand interrelationship. Therefore, in one embodiment, an agent which inhibits interaction may competitively bind to CD40 ligand in such a way to block or diminish the binding of CD40 ligand to cellular CD40. In another embodiment an agent which inhibits interaction may associate with CD40 or CD40 ligand in a manner which does not inhibit binding of CD40 ligand to cellular CD40, but which influences the cellular response to the CD40 ligation, such as by altering the turnover rate of the cellular CD40 or the CD40-agent complex, by altering binding kinetics of CD40 with CD40 ligand, or by altering the rate or extent of cellular activation in response to CD40 ligation.

In specific embodiments the CD40-bearing renal cells are selected from the group consisting of glomerular endothelial cells, mesangial cells, distal tubule cells, proximal tubule cells, parietal epithelial cells, visceral epithelial cells, cells of a Henle loop or limb thereof, and interstitial inflammatory cells. In a more specific embodiment the parietal epithelial cells are crescent parietal epithelial cells.

35

30

In an embodiment of this invention the agent inhibits binding of CD40 ligand to CD40 on the cells.

In an embodiment of this invention the agent is a protein.

In another embodiment of this invention the agent is a nonprotein. As used herein the term nonprotein includes any and all compounds or agents which encompass elements other than simple or conjugated polypeptide chains. This includes elements such as amino acids having non-peptide linkages; nonprotein amino acids such as β , γ , or δ amino in D configuration, or acids, acids amino 10 including homocysteine, acids nonprotein amino homoserine, citrulline, ornithine, y-aminobutyric acid, acid, or β -cyanoalanine; canavanine, djenkolic polysaccharides, or carbohydrate monosaccharides, moieties; fatty acids or lipid moieties; nucleotide 15 moieties, mineral moieties; or other nonprotein elements.

specific embodiment the protein comprises antibody or portion thereof capable of inhibiting 20 interaction between CD40 ligand and CD40 on the cells. The antibody is a monoclonal or polyclonal antibody. a more specific embodiment the monoclonal specifically binds to the epitope to which monoclonal antibody 5c8 (ATCC Accession No. HB 10916) specifically 25 An example of such a monoclonal antibody is binds. monoclonal antibody 5c8 (ATCC Accession No. HB 10916). In another embodiment, the antibody specifically binds to One example of an anti-CD40 antibody is the monoclonal mouse anti-human CD40, available from Genzyme 30 Customer Service (Product 80-3702-01, Cambridge, MA). other embodiments the monoclonal antibody is a chimeric antibody, a primatized antibody, a humanized antibody, or an antibody which includes a CDR region from a first human and an antibody scaffold from a second human. 35

The meaning of "chimeric", "primatized" and "humanized"

-10-

antibody and methods of producing them are well known to those of skill in the art. See, for example, PCT International Publication No. WO 90/07861, published July 26, 1990 (Queen, et al.); and Queen, et al. Proc. Nat'l Acad. Sci.-USA (1989) 86: 10029). Methods of making primatized antibodies are disclosed, for example, in PCT International publication No. WO/02108, corresponding to International Application No. PCT/US92/06194 (Idec Pharmaceuticals); and in Newman, et al., Biotechnology (1992) 10:1455-1460, which are hereby incorporated by reference into this application.

5

10

Generally, a humanized antibody is an antibody comprising one or more complementarity determining regions (CDRs) of 15 a non-human antibody functionally joined to human framework region segments. Additional associated with the non-human antibody can optionally be Typically, at least one heavy chain or one present. light chain comprises non-human CDRs. Typically, the 20 non-human CDRs are mouse CDRs. Generally, a primatized antibody comprising one or antibody is an complementarity determining regions (CDRs) of an antibody of a species other than a non-human primate, functionally joined to framework region segments of a non-human primate. Additional residues associated with the species 25 from which the CDR is derived can optionally be present. Typically, at least one heavy chain or one light chain comprises CDRs of the species which is not a nonhuman primate. Typically, the CDRs are human CDRs. Generally, 30 a chimeric antibody is an antibody whose light and/or heavy chains contain regions from different species. example one or more variable (V) region segments of one species may be joined to one or more constant (C) region segments of another species. Typically, a chimeric antibody contains variable region segments of a mouse 35 joined to human constant region segments, although other mammalian species may be used.

Monoclonal antibody 5c8 is produced by a hybridoma cell which was deposited on November 14, 1991 with the American Type Culture Collection (ATCC), 12301 Parklawn Drive, Rockville, Maryland 20852, U.S.A. under the provisions of the Budapest Treaty for the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure. The hybridoma was accorded ATCC Accession Number HB 10916.

5

30

35

- In a specific embodiment the portion of the antibody comprises a complementarity determining region or variable region of a light or heavy chain. In another specific embodiment the portion of the antibody comprises a complementarity determining region or a variable region. In another specific embodiment the portion of the antibody comprises a Fab or a single chain antibody. A single chain antibody is made up of variable regions linked by protein spacers in a single protein chain.
- In another embodiment the protein comprises soluble extracellular region of CD40 ligand, or portion thereof, or variant thereof, capable of inhibiting any interaction between CD40 ligand and CD40 on the cells; or soluble extracellular region of CD40, or portion thereof, or variant thereof, capable of inhibiting any interaction between CD40 ligand and CD40 on the cells. In a specific embodiment the soluble extracellular region of CD40 ligand or CD40 is a monomer. In another embodiment the soluble extracellular region of CD40 is an oligomer.

Variants can differ from naturally occurring CD40 or CD40 ligand in amino acid sequence or in ways that do not involve sequence, or both. Variants in amino acid sequence are produced when one or more amino acids in naturally occurring CD40 or CD40 ligand is substituted with a different natural amino acid, an amino acid derivative or non-native amino acid. Particularly

-12-

preferred variants include naturally occurring CD40 or or biologically active fragments ligand, naturally occurring CD40 or CD40 ligand, whose sequences differ from the wild type sequence by one or more conservative amino acid substitutions, which typically have minimal influence on the secondary structure and hydrophobic nature of the protein or peptide. Variants may also have sequences which differ by one or more nonconservative amino acid substitutions, deletions or insertions which do not abolish the CD40 or CD40 ligand biological activity. Conservative substitutions typically include the substitution of one amino acid for another with similar characteristics such as substitutions within the following groups: valine, glycine; glycine, alanine; valine, isoleucine; aspartic acid, glutamic asparagine, glutamine; serine, threonine; lysine, arginine; and phenylalanine, tyrosine. The non-polar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan and methionine. polar neutral amino acids include glycine, threonine, cysteine, tyrosine, asparagine and glutamine. The positively charged (basic) amino acids arginine, lysine and histidine. The negatively charged (acidic) amino acids include aspartic acid and glutamic acid.

Other conservative substitutions can be taken from Table 1, and yet others are described by Dayhoff in the Atlas of Protein Sequence and Structure (1988).

5

10

15

20

25

10

Table 1: Conservative Amino Acid Replacements

For Amino Acid	Code	Replace with any of
Alanine	A	D-Ala, Gly,beta-ALa, L-Cys,D- Cys
Arginine	R	D-Arg, Lys, homo-Arg, D-homo-Arg, Met, D-Met, Ile, D-Ile, Orn, D-Orn
Asparagine	N	D-Asn, Asp, D-Asp, Glu, D-Glu, Gln, D-Gln
Aspartic Acid	D	D-Asp, D-Asn, Asn, Glu, D-Glu, Gln, D-Gln
Cysteine	С	D-Cys, S-Me-Cys, Met, D-Met, Thr, D-Thr
Glutamine	Q	D-Gln, Asn, D-Asn, Glu, D-Glu, Asp, D-Asp
Glutamic Acid	E	D-Glu, D-Asp, Asp, Asn, D-Asn, Gln, D-Gln
Glycine	G	Ala, D-Ala, Pro, D-Pro, Beta- Ala, Acp
Isoleucine	I	D-Ile, Val, D-Val, Leu, D-Leu, Met, D-Met
Leucine	L	D-Leu, Val, D-Val, Met, D-Met
Lysine	K	D-Lys, Arg, D-Arg, homo-Arg, D-homo-Arg, Met, D-Met, Ile, D-Ile, Orn, D-Orn
Methionine	М	D-Met, S-Me-Cys, Ile, D-Ile, Leu, D-Leu, Val, D-Val, Norleu
Phenylalanine	F	D-Phe,Tyr, D-Thr,L-Dopa,His,D-His, Trp, D-Trp, Trans 3,4 or 5-phenylproline, cis 3,4 or 5 phenylproline
Proline	P	D-Pro, L-I-thioazolidine-4-carboxylic acid, D- or L-1-oxazolidine-4-carboxylic acid

15

Serine	S	D-Ser, Thr, D-Thr, allo-Thr,
		Met, D-Met, Met(O), D-Met(O),
		Val, D-Val
Threonine	T	D-Thr, Ser, D-Ser, allo-Thr,
		Met, D-Met, Met(O) D-Met(O),
		Val, D-Val
Tyrosine	Y	D-Tyr, Phe, D-Phe, L-Dopa,
		His, D-His
Valine	v	D-Val, Leu, D-Leu, Ile, D-Ile,
		Met, D-Met

10

15

Other variants within the invention are those with modifications which increase peptide stability. Such variants may contain, for example, one or more non-peptide bonds (which replace the peptide bonds) in the peptide sequence. Also included are: variants that include residues other than naturally occurring L-amino acids, such as D-amino acids or non-naturally occurring or synthetic amino acids such as beta or gamma amino acids and cyclic variants. Incorporation of D- instead of L-amino acids into the polypeptide may increase its resistance to proteases. See, e.g., U.S. Patent 5,219,990.

The peptides of this invention may also be modified by various changes such as insertions, deletions and substitutions, either conservative or nonconservative where such changes might provide for certain advantages in their use.

In other embodiments, variants with amino acid substitutions which are less conservative may also result in desired derivatives, e.g., by causing changes in charge, conformation and other biological properties. Such substitutions would include for example, substitution of hydrophilic residue for a hydrophobic

-15-

residue, substitution of a cysteine or proline for another residue, substitution of a residue having a small side chain for a residue having a bulky side chain or substitution of a residue having a net positive charge for a residue having a net negative charge. When the result of a given substitution cannot be predicted with certainty, the derivatives may be readily assayed according to the methods disclosed herein to determine the presence or absence of the desired characteristics.

10

15

20

25

5

Variants within the scope of the invention include proteins and peptides with amino acid sequences having at least eighty percent homology with the extracellular region of CD40 or the extracellular region of CD40 ligand. More preferably the sequence homology is at least ninety percent, or at least ninety-five percent.

Just as it is possible to replace substituents of the scaffold, it is also possible to substitute functional groups which decorate the scaffold with characterized by similar features. These substitutions will initially be conservative, i.e., the replacement group will have approximately the same size, shape, hydrophobicity and charge as the original group. Nonsequence modifications may include, for example, in vivo or in vitro chemical derivatization of portions of naturally occurring CD40 or CD40 ligand, as well as changes in acetylation, methylation, phosphorylation, carboxylation or glycolsylation.

30

35

In a further embodiment the protein, including the extracellular region of CD40 ligand and CD40, is modified by chemical modifications in which activity is preserved. For example, the proteins may be amidated, sulfated, singly or multiply halogenated, alkylated, carboxylated, or phosphorylated. The protein may also be singly or multiply acylated, such as with an acetyl group, with a

10

15

20

30

35

farnesyl moiety, or with a fatty acid, which may be saturated, monounsaturated or polyunsaturated. The fatty acid may also be singly or multiply fluorinated. The invention also includes methionine analogs of the for example the methionine sulfone and protein, The invention also methionine sulfoxide analogs. includes salts of the proteins, such as ammonium salts, including alkyl or aryl ammonium salts, sulfate, hydrogen sulfate, phosphate, hydrogen phosphate, dihydrogen phosphate, thiosulfate, carbonate, bicarbonate, benzoate, sulfonate, thiosulfonate, mesylate, ethyl sulfonate and benzensulfonate salts.

The soluble, monomeric CD40-L protein can comprise all or part of the extracellular region of CD40-L. The extracellular region of CD40-L contains the domain that binds to CD40. Thus, soluble CD40-L can inhibit the interaction between CD40L and the CD40-bearing cell. This invention contemplates that sCD40-L may constitute the entire extracellular region of CD40-L, or a fragment or derivative containing the domain that binds to CD40.

Soluble CD40 protein (sCD40) comprises the extracellular region of CD40. sCD40 inhibits the interaction between CD40L and CD40-bearing cells. sCD40 may be in monomeric or oligomeric form.

In another embodiment of this invention the protein comprising soluble extracellular region of CD40 or portion thereof further comprises an Fc region fused to the extracellular region of CD40 or portion thereof. In a specific embodiment the Fc region is capable of binding to protein A or protein G. In another embodiment the Fc region comprises IgG, IgG₁, IgG₂, IgG₃, IgG₄, IgA, IgA₁, IgA₂, IgM, IgD, or IgE.

The soluble CD40/Fc fusion protein can be prepared using

-17-

conventional techniques of enzymes cutting and ligation of fragments from desired sequences. Suitable Fc regions for the fusion protein are Fc regions that can bind to protein A or protein G, or that are capable of recognition by an antibody that can be used in purification or detection of a fusion protein comprising the Fc region. For example, the Fc region may include the Fc region of human IgG₁ or murine IgG₁. This invention also provides a nucleic acid molecule which encodes the CD40/Fc fusion protein.

The method of creating soluble forms of membrane molecules by recombinant means, in which sequences encoding the transmembrane and cytoplasmic domains are deleted, is well known. See generally Hammonds et al., U.S. Patent No. 5,057,417. In addition, methods of preparing sCD40 and CD40/Fc fusion protein are well-known. See, e.g., PCT International Publication No. WO 93/08207; Fanslow et al., "Soluble Forms of CD40 Inhibit Biologic Responses of Human B Cells, "J. Immunol., vol. 149, pp.655-60 (July 1992).

In an embodiment of this invention, the agent is selected by a screening method.

25

30

35

20

5

10

15

In a specific embodiment the agent is selected by a screening method, which comprises isolating a sample of cells; culturing the sample under conditions permitting activation of CD40-bearing cells; contacting the sample with cells expressing a protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession no. HB 10916, or with a protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession no. HB 10916, effective to activate the CD40-bearing cells; contacting the sample with an amount of the agent effective to inhibit activation of the CD40-

bearing cells if the agent is capable of inhibiting activation of the CD40-bearing cells; and determining whether the cells expressing the protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession no. HB 10916, or with the protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession no. HB 10916, activate the CD40-bearing cells in the presence of the agent. The cell sample may be isolated from diverse tissues, including cell lines in culture or cells isolated from an animal, such as dispersed cells from a solid tissue, cells derived from a bone marrow biopsy, or cells isolated from a body fluid such as blood or lymphatic fluid.

5

10

15

20

25

30

35

In another specific embodiment the agent (molecule) is selected based on a three-dimensional structure of soluble extracellular region of CD40 ligand or portion thereof capable of inhibiting interaction between CD40 ligand and CD40 on the cells. The agent may be selected from a library of known agents, modified from a known agent based on the three-dimensional structure, designed and synthesized de novo based on the threedimensional structure. In specific embodiments the agent (molecule) is designed by structure optimization of a lead inhibitory agent based on a three-dimensional structure of a complex of the soluble extracellular region of CD40 ligand or portion thereof with the lead inhibitory agent. A lead inhibitory agent is a molecule which has been identified which, when it is contacted with CD40 ligand, binds to and complexes with the soluble extracellular region of CD40 ligand, CD40, or portion thereof, thereby decreasing the ability of the complexed or bound CD40 ligand or CD40 ligand portion to activate CD40-bearing cells. In another embodiment, a lead inhibitory agent may act by interacting with either the

10

15

20

extracellular region of CD40 ligand, CD40, or tertiary complex with both a portion of CD40 ligand and CD40, decreasing the ability of the complexed CD40 ligand-CD40 to activate the CD40-bearing cells. In the methods of the invention, the CD40 ligand may be either soluble or bound to cells such as activated T cells, and may be either full length native CD40 ligand or portions Decreased ability to activate CD40-bearing thereof. cells may be measured in different ways. One way it may be measured is by showing that CD40 ligand, in the presence of inhibitor, causes a lesser degree activation of CD40-bearing cells, as compared treatment of the cells with a similar amount of CD40 ligand without inhibitor under similar conditions. Decreased ability to activate CD40-bearing cells may also be indicated by a higher concentration of inhibitor-CD40 ligand complex being required to produce a similar degree of activation of CD40-bearing cells under similar conditions, as compared to unbound CD40 ligand. At the extreme, the inhibitor-contacted CD40 ligand may be unable to activate CD40-bearing cells at concentrations and under conditions which allow activation of these cells by unbound CD40 ligand or a given portion thereof.

- The agent (molecule) can be selected by a computational screening method using the crystal structure of a soluble fragment of the extracellular domain of human CD40L containing residues Gly116-Leu261 (sCD40L(116-261)).
- The crystal structure to be used with the screening method has been determined at 2 Å resolution by the method of molecular replacement. In brief, a soluble fragment of the extracellular domain of human CD40 ligand containing amino acid residues Gly 116 to the c-terminal residue Leu 261 was first produced in soluble form, then purified and crystallized. The crystals were used to collect diffraction data. Molecular replacement and

15

20

25

30

35

refinement were done with the XPLOR program package and QUANTA (Molecular Simulations, Inc.) Software. particular, a 3-dimensional model of human sCD40L was constructed using the murine CD40L model using QUANTA protein homology modeling software. This model was used as a probe for crystallographic analysis calculations and This method of determining the refined using XPLOR. crystal structure of sCD40L is described in more detail in Karpusas et al., "2 Å crystal structure of an extracellular fragment of human CD40 ligand," Structure The atomic coordinates (October 1995) 3(10):1031-1039. of sCD40L(116-261) are provided in Figures 1A-Y. selecting agent an screening method for structure design and iterative drug computational optimization, as described below.

inhibitor selected may be an The agent computational drug design. Using this method, the sCD40L crystal structure coordinates are used as an input for a computer program, such as DOCK, which outputs a list of molecular structures that are expected to bind to CD40L. Use of such computer programs is well-known. Kuntz, "Structure-Based Strategies for drug design and discovery," <u>Science</u>, vol. 257, p. 1078 (1992). structures can then be screened molecular biochemical assays for CD40L binding. Competition-type biochemical assays, which are well known, can be used. See, e.g., Bajorath et al., "Identification of residues of CD40 and its ligand which are critical for the receptorligand interaction," Biochemistry, 34, p. 1833 (1995). The structures that are found to bind to CD40L can thus be used as agents for the present invention. The agent may also be a modified or designed molecule, determined by interactive cycles of structure optimization. this approach, a small molecule inhibitor of CD40L found using the above computational approach or other approach can be co-crystallized with sCD40L and the crystal

10

15

structure of the complex solved by molecular replacement. The information revealed through molecular replacement can be used to optimize the structure of the inhibitors by clarifying how the molecules interact with CD40L. The molecule may be modified to improve its physiochemical properties, including specificity and affinity for CD40L.

In an embodiment of this invention the agent is a small molecule. As used herein a small molecule is a compound having a molecular weight between 20 Da and 1×10^6 Da, preferably from 50 Da to 2 kDa.

This invention also provides a method of inhibiting activation by CD40 ligand of renal cells bearing CD40 on the surface of the cells, in a subject, comprising administering to the subject an agent capable of inhibiting interaction between CD40 ligand and CD40 on the cells, the agent being present in an amount effective to inhibit activation of the cells in the subject.

20

25

In specific embodiments the CD40-bearing renal cells are selected from the group consisting of glomerular endothelial cells, mesangial cells, distal tubules, proximal tubules, parietal epithelial cells, visceral epithelial cells, cells of a Henle loop or limb thereof, and interstitial inflammatory cells. In a more specific embodiment the parietal epithelial cells are crescent parietal epithelial cells.

In an embodiment of this invention the agent inhibits binding of CD40 ligand to CD40 on the cells.

In an embodiment of this invention the agent is a protein. In another embodiment of this invention the agent is a nonprotein.

In a specific embodiment the protein comprises ar

-22-

antibody or portion thereof capable of inhibiting any interaction between CD40 ligand and CD40 on the cells. The antibody is a monoclonal or polyclonal antibody. In a more specific embodiment the monoclonal antibody specifically binds to the epitope to which monoclonal antibody 5c8 (ATCC Accession No. HB 10916) specifically binds. An example of such a monoclonal antibody is monoclonal antibody 5c8 (ATCC Accession No. HB 10916). In other embodiments the monoclonal antibody is a chimeric antibody or a humanized antibody.

In a specific embodiment the portion of the antibody comprises a complementarity determining region or variable region of a light or heavy chain. In another specific embodiment the portion of the antibody comprises a complementarity determining region or a variable region. In another specific embodiment the portion of the antibody comprises a Fab or a single chain antibody.

In another embodiment the protein comprises soluble extracellular region of CD40 ligand or portion thereof capable of inhibiting any interaction between CD40 ligand and CD40 on the cells; or soluble extracellular region of CD40 or portion thereof capable of inhibiting any interaction between CD40 ligand and CD40 on the cells. In a specific embodiment the soluble extracellular region of CD40 ligand or CD40 is a monomer. In another embodiment the soluble extracellular region of CD40 is an oligomer.

30

35

10

15

In another embodiment of this invention the protein comprising soluble extracellular region of CD40 or portion thereof further comprises an Fc region fused to the extracellular region of CD40 or portion thereof. In a specific embodiment the Fc region is capable of binding to protein A or protein G. In another specific embodiment the Fc region comprises IgG, IgG, IgG, IgG,

IgG, IgA, IgA, IgA, IgA, IgM, IgD, or IgE.

The subject which can be treated by the above-described methods is an animal. Preferably the animal is a mammal. Examples of mammals which may be treated include, but are not limited to, humans, non-human primates, rodents (including rats, mice, hamsters and guinea pigs) cow, horse, sheep, goat, pig, dog and cat.

In an embodiment of this invention, the agent is selected by a screening method.

In a specific embodiment the agent is selected by a screening method, which comprises isolating a sample of 15 cells; culturing the sample under conditions permitting activation of CD40-bearing cells; contacting the sample with cells expressing a protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession no. HB 10916, or with a 20 protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession no. HB 10916, effective to activate the CD40bearing cells; contacting the sample with an amount of the agent effective to inhibit activation of the CD40-25 bearing cells if the agent is capable of inhibiting activation of the CD40-bearing cells; and determining whether the cells expressing the protein which specifically recognized by monoclonal antibody produced by the hybridoma having ATCC Accession no. HB 30 10916, or with the protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession no. HB 10916, activate the CD40-bearing cells in the presence of the agent. sample may be isolated from diverse tissues, 35 including cell lines in culture or cells isolated from an animal, such as dispersed cells from a solid tissue, cells derived from a bone marrow biopsy, or cells

isolated from a body fluid such as blood or lymphatic fluid.

In another specific embodiment the molecule (agent) is selected based on a three-dimensional structure of 5 soluble extracellular region of CD40 ligand or portion thereof capable of inhibiting any interaction between CD40 ligand and CD40 on the cells. The molecule may be selected from a library of known molecules, modified from molecule based on the three-dimensional known 10 structure, or designed and synthesized de novo based on In specific embodiments the three-dimensional structure. agent or molecule designed by structure is optimization of a lead inhibitory agent based on a threedimensional structure of a complex of the soluble 15 extracellular region of CD40 ligand or portion thereof with the lead inhibitory agent.

Method of Treatment

20

25

30

35

This invention provides a method of treating, in a subject, an inflammatory kidney disease, comprising the above-described method of inhibiting activation by CD40 ligand of renal cells bearing CD40 on the surface of the cells, which comprises administering to the subject an agent capable of inhibiting interaction between CD40 ligand and CD40 on the cells, the agent being present in an amount effective to inhibit activation of the cells in the subject, thereby treating the inflammatory kidney disease.

The inflammatory kidney disease may be one which is initiated by autoantibody deposition in kidney, or one which is not initiated by autoantibody deposition in kidney. Many kidney diseases for which the methods of the invention are useful include ones which have multifactorial etiology.

10

15

20

25

30

In an embodiment of this invention the kidney disease is from the group consisting of: membranous selected glomerulonephritis, minimal change disease/acute tubular necrosis; pauci-immune glomerulonephritis; segmental glomerulosclerosis; interstitial nephritis: antitissue antibody-induced glomerular injury, such as anti-basement membrane antibody disease; circulating immune-complex disease; glomerulopathies associated with multisystem diseases; drug-induced glomerular disease; transplant rejection; rapidly progressive glomerulonephritis; and post-streptococcal glomerulonephritis. Circulating immune-complex diseases include infective endocarditis, leprosy, syphilis, hepatitis B, malaria, and diseases of endogenous antigens such as DNA, thyroglobulin, autologous immunoglobulins, erythrocyte stroma, renal tubule antigens, and tumorspecific or tumor-associated antiqens. Glomerulopathies associated with multisystem diseases include diabetic nephropathy, systemic lupus erythematosus, Goodpasture's disease, vasculitis, multiple myeloma, Waldenström's macroglobulinemia, and amyloidosis. In specific embodiments the vasculitis is Henoch-Schönlein purpura, polyarteritis nodosa (sometimes called polyarteritis), Wegener's granulomatosis, cryoglobulinemia (sometimes called cryoimmunoglobulinemia). The kidney disease may also be one which affects the renal tubules, such as toxins, neoplasias, hypersensitivity nephropathy, Sjögren's syndrome, and AIDS. In a specific embodiment the pauci-immune glomerulonephritis is ANCA+ pauci-immune glomerulonephritis, or Wegener's granulomatosis. In another specific embodiment the interstitial nephritis is drug-induced interstitial nephritis.

The compounds of this invention may be administered in any manner which is medically acceptable. This may include injections, by parenteral routes such as intravenous, intravascular, intraarterial, subcutaneous,

-26-

intramuscular, intratumor, intraperitoneal, intraventricular, intraepidural, or others as well as oral, nasal, ophthalmic, rectal, topical, or inhaled. Sustained release administration is also specifically included in the invention, by such means as depot injections of erodible implants directly applied during surgery.

10

15

20

25

30

35

The compounds are administered at any dose per body weight and any dosage frequency which is medically Acceptable dosage includes a range of acceptable. between about 0.01 and 200 mg/kg subject body weight. A preferred dosage range is between about 0.1 and 50 mg/kg. Particularly preferred is a dose of between about 1 and The dosage is repeated at intervals ranging from each day to every other month. One preferred dosing regimen is to administer a compound of the invention daily for the first three days of treatment, after which the compound is administered every 3 weeks, with each administration being intravenously at 5 or 10 mg/kg body Another preferred regime is to administer a weight. compound of the invention daily intravenously at 5 mg/kg body weight for the first three days of treatment, after which the compound is administered subcutaneously or intramuscularly every week at 10 mg per subject. Another preferred regime is to administer a single dose of the compound of the invention parenterally at 20 mg/kg body weight, followed by administration of the compound subcutaneously or intramuscularly every week at 10 mg per subject.

The compounds of the invention may be administered as a single dosage for certain indications such as preventing immune response to an antigen to which a subject is exposed for a brief time, such as an exogenous antigen administered on a single day of treatment. Examples of such an antigen would include coadministration of a

compound of the invention along with a gene therapy vector, or a therapeutic agent such as an antigenic pharmaceutical or a blood product. In indications where antigen is chronically present, such as in controlling immune reaction to transplanted tissue or to chronically administered antigenic pharmaceuticals, the compounds of the invention are administered at intervals for as long a time as medically indicated, ranging from days or weeks to the life of the subject.

10

15

5

Inflammatory responses are characterized by redness, swelling, heat and pain, as consequences of capillary dilation with edema and migration of phagocytic leukocytes. Inflammation is further defined by Gallin (Chapter 26, Fundamental Immunology, 2d Ed., Raven Press, New York, 1989, pp. 721-733), which is herein incorporated by reference.

This invention will be better understood from the 20 Experimental Details which follow. However, one skilled in the art will readily appreciate that the specific methods and results discussed are merely illustrative of the invention as described more fully in the claims which follow thereafter.

25

30

Experimental Details

CD40 expression in normal kidney and in renal biopsy specimens obtained from patients with systemic lupus erythematosus and other kidney diseases was examined.

Patients and Methods

Immunohistochemistry

35

Immunohistochemical analyses of frozen sections were performed with a Vectastain Elite Kit (Vector,

PCT/US97/00668

5

10

Burlingame, CA) as previously described. Briefly, the tissue was first blocked with PBS containing horse serum and 1% BSA and additional blocking was obtained utilizing an Avidin/Biotin Blocking Kit also purchased from Vector. The sections were then stained with 1:1000 dilutions of anti-CD40 mAb G28.5 or an isotype control mAb in PBS followed by biotinylated horse anti-mouse IgG. Endogenous peroxidase activity was blocked with 1:400 dilution of $\rm H_2O_2$. Bound antibody was visualized with the Vectastain ABC reagent followed by the chromogen 3-amino-9-ethylcarbazole (Vector Laboratories). The tissue was counterstained with Mayer's hematoxylin (Sigma).

Staining was evaluated visually. In the following tables
"0" indicates no staining; 1+ indicates minimal staining;
2+ indicates moderate staining; and 3+ indicates intense
staining.

Results

20

25

30

35

Analysis of CD40 expression in normal kidney

Initial studies of renal CD40 expression were prompted by the observation that CD40 is normally expressed on endothelial cells in a variety of tissues. Consistent with this finding, it was found that renal interstitial capillaries and larger vessels express CD40. CD40 was also found to be expressed on other renal parenchymal cells, such as glomerular endothelial cells, glomerular mesangial cells and parietal epithelial cells of Bowman's Glomerular visceral epithelial cells do not capsule. express CD40. Distal tubules are strongly immunoreactive for CD40 and staining was most intense along the basolateral membrane. In contrast, proximal tubules are not immunoreactive with anti-CD40 mAb. An isotype control mAb did not stain renal specimens. immunoreactivity noted with anti-CD40 mAb G28.5 is most

-29-

likely specific and does not represent cross-reactivity because similar staining was noted with an additional anti-CD40 mAb. Thus it is concluded that renal parenchymal cells differentially express CD40.

5

30

35

Analysis of renal CD40 expression in systemic lupus erythematosus

Whether renal CD40 expression is upregulated in lupus glomerulonephritis was analyzed. Frozen sections obtained from patient biopsy specimens were stained with anti-CD40 mAb G28.5 or an isotype control mAb.

15 Renal CD40 expression in systemic lupus erythematosus was analyzed. Patients with Class III and IV lupus nephritis tended to have increased CD40 expression on glomerular endothelial cells, mesangial cells and distal tubules. In addition, proximal tubules are CD40+ in patients with 20 Class III and IV lupus nephritis. Also, there is striking CD40 expression on parietal epithelial cells in patients with crescent formation. CD40 is also present on interstitial inflammatory cells. The distribution and intensity of renal CD40 expression in patients with pure 25 Class V disease was similar to that seen in normal kidney.

Whether renal CD40 upregulation was unique to systemic lupus erythematosus was investigated. To do so, CD40 expression was investigated in patients with the following renal diseases: membranous glomerulonephritis, minimal change disease/acute tubular necrosis, ANCA+ pauci-immune glomerulonephritis, focal segmental glomerulosclerosis and IgA nephropathy. Proximal tubule CD40 expression was upregulated in ANCA+ pauci-immune glomerulonephritis, focal segmental glomerulosclerosis and IgA nephropathy. In contrast, there was little

proximal tubule CD40 immunoreactivity in membranous glomerulonephritis or minimal change disease/acute tubular necrosis. Crescent parietal epithelial cells in IgA nephropathy are also striking CD40+. Interstitial inflammatory cells, when present, also express CD40. These findings demonstrate that CD40 expression is upregulated in a variety of inflammatory renal diseases. Moreover, these studies indicate that CD40L mediated interactions with renal parenchymal cells play roles in normal renal physiology and augment inflammatory responses in renal diseases.

5

10

Table 2: CD40 Expression In Normal Kidney

Table 3: CD40 Expression In SLE Glomerulonephritis

Distal		2+	3+	2+	3+	2+	3+	3+	3+	3+	3+	3+	3+	3+	3+	2+	2	2+	1+
Proximal		-	2+	1+	2-3+	1+	2+	2-3+	3+	2+	3+	1+	1-2+	2+	3+	0	+1	ŀ	1+
Leukocytes		0	3+	1+	3+	1+	2+	2+	3+	3+	2+	3+	3+	1+	3+	1+	-	No leuk	1+
Cap EC		2+	1+	1+	1+	1+	+ [1+	1+	1+	2+	3+	2+	2+	2+	2+	+1	+	1+
WHO Class		IIb	III	V/III	V/VI-III	ΛΙ	VI	IV	ΛI	VI	VI	IV	V/VI	IV/V	IV/VI	Λ	Λ	Λ	^
Patient		KC95-94	KC95-277	KC95-286	KC94-78	KC95-308	KC94-269	K94-165	K94-59	K95-089	K94-6	K94-12	K95-090	K95-003	KC95-264	K95-7	KC95-195	K94-142	K95-12
	WHO Class Cap EC Leukocytes Proximal	WHO Class Cap EC Leukocytes Proximal	WHO Class Cap EC Leukocytes Proximal IIb 2+ 0 -	WHO Class Cap EC Leukocytes Proximal IIb 2+ 0 - III 1+ 3+ 2+	WHO Class Cap EC Leukocytes Proximal IIb 2+ 0 - III 1+ 3+ 2+ III/V 1+ 1+ 1+	WHO Class Cap EC Leukocytes Proximal IIb 2+ 0 - III 1+ 3+ 2+ III/V 1+ 1+ 1+ III-IV/V 1+ 3+ 2-3+	WHO Class Cap EC Leukocytes Proximal IIb 2+ 0 - 2+ III 1+ 3+ 2+ 1+ III/V 1+ 1+ 1+ 1+ IV 1+ 1+ 1+ 1+	WHO Class Cap EC Leukocytes Proximal IIb 2+ 0 - - III 1+ 3+ 2+ III/V 1+ 1+ 1+ IV 1+ 3+ 2-3+ IV 1+ 1+ IV 1+ 2+	WHO Class Cap EC Leukocytes Proximal IIIb 2+ 0 - 2+ 1 III 1+ 3+ 2+ 1+	WHO Class Cap EC Leukocytes Proximal IIIb 2+ 0 - III 1+ 3+ 2+ III/V 1+ 1+ 1+ III-IV/V 1+ 3+ 2-3+ IV 1+ 1+ 1+ IV 1+ 2+ 2+ IV 1+ 2+ 2-3+ IV 1+ 3+ 2-3+ IV 1+ 3+ 3+	WHO Class Cap EC Leukocytes Proximal IIIb 2+ 0 - III 1+ 2+ 2+ III/V 1+ 1+ 1+ III/V 1+ 1+ 1+ IV 1+ 2+ 2-3+ IV 1+ 2+ 2+ IV 1+ 2+ 2-3+ IV 1+ 3+ 2-3+ IV 1+ 3+ 2-3+ IV 1+ 3+ 3+ IV 1+ 3+ 3+ IV 1+ 3+ 3+	WHO Class Cap EC Leukocytes Proximal IIb 2+ 0 - III 1+ 2+ 2+ III/V 1+ 1+ 1+ III-IV/V 1+ 3+ 2-3+ IV 1+ 2+ 2+ IV 1+ 2+ 2+ IV 1+ 3+ 3+ IV 1+ 3+ 2-3+ IV 1+ 2+ 2-3+ IV 1+ 3+ 2+ IV 1+ 3+ 2+ IV 1+ 3+ 2+ IV 1+ 3+ 2+ IV 1+ 3+ 3+	WHO Class Cap EC Leukocytes Proximal IIb 2+ 0 - III 1+ 2+ 2+ III/V 1+ 1+ 1+ III-IV/V 1+ 1+ 1+ IV 1+ 2+ 2+ IV 1+ 2+ 2+ IV 1+ 3+ 3+ IV 1+ 3+ 2+ IV 1+ 3+ 2+ IV 1+ 3+ 3+ IV 1+ 3+ 3+ IV 1+ 3+ 3+ IV 2+ 3+ 3+ IV 2+ 3+ 3+ IV 3+ 3+ 3+	WHO Class Cap EC Leukocytes Proximal IIIb 2+ 0 - III 1+ 3+ 2+ III/V 1+ 1+ 1+ III-IV/V 1+ 1+ 1+ IV 1+ 2+ 2+ IV 1+ 3+ 2+ IV 1+ 3+ 2+ IV 1+ 3+ 2+ IV 1+ 3+ 3+ IV 2+ 2+ 3+ IV 3+ 3+ 1+ IV 3+ 1+ 1+	WHO Class Cap EC Leukocytes Proximal IIb 2+ 0 - III 1+ 3+ 2+ III/V 1+ 1+ 1+ III-IV/V 1+ 1+ 1+ IV 1+ 2+ 2-3+ IV 1+ 2+ 2-3+ IV 1+ 3+ 3+ IV 1+ 3+ 2+ IV 1+ 3+ 3+ IV 1+ 3+ 3+ IV 2+ 3+ 1+ IV 3+ 3+ 1+ IV 3+ 3+ 1+ IV 3+ 3+ 1+ IV/V 2+ 3+ 1-2+ IV/V 2+ 3+ 1-2+	WHO Class Cap EC Leukocytes Proximal IIb 2+ 0 - III 1+ 3+ 2+ III/V 1+ 1+ 1+ III-IV/V 1+ 1+ 1+ IV 1+ 2+ 2-3+ IV 1+ 2+ 2+ IV 1+ 3+ 2+ IV 1+ 3+ 2+ IV 1+ 3+ 2+ IV 1+ 3+ 2+ IV 2+ 2+ 3+ IV 3+ 3+ 1+ IV/V 2+ 3+ 1+ IV/V 2+ 3+ 1-2+ IV/V 2+ 3+ 1-2+	WHO Class Cap EC Leukocytes Proximal IIb 2+ 0 - III 1+ 2+ 2+ III/V 1+ 1+ 1+ III-IV/V 1+ 1+ 1+ IIV 1+ 2+ 2-3+ IV 1+ 2+ 2+ IV 1+ 3+ 2+ IV 1+ 3+ 2+ IV 1+ 3+ 2+ IV 2+ 2+ 3+ IV 2+ 3+ 1+ IV 2+ 3+ 1+ IV/V 2+ 3+ 1-2+ IV/V 2+ 3+ 1-2+ IV/V 2+ 3+ 1-2+ IV/V 2+ 3+ 3+ IV/V 2+ 3+ 3+ IV/V 2+ 3+ 3+ IV/V 2+ 3+ 3+ <tr< td=""><td>MHO Class Cap EC Leukocytes Proximal IIb 2+ 0 - III 1+ 2+ 2+ III/V 1+ 1+ 1+ III-IV/V 1+ 1+ 1+ IV 1+ 2+ 2-3+ IV 1+ 2+ 2+ IV 1+ 3+ 2+ IV 1+ 3+ 3+ IV 1+ 3+ 2+ IV 1+ 3+ 1+ IV 2+ 2+ 3+ IV 3+ 3+ 1+ IV 2+ 3+ 1+ IV/V 2+ 3+ 1+ IV/V 2+ 3+ 2+ IV/V 2+ 3+ 3+ IV/V 2+ 3+ 3+ IV/V 2+ 3+ 3+ IV/V 2+ 3+ 3+</td><td>WHO Class Cap EC Leukocytes Proximal IIb 2+ 0 - III 1+ 3+ 2+ III 1+ 1+ 1+ 1+ III-IV/V 1+ 1+ 1+ IV 1+ 2+ 2-3+ IV 1+ 2+ 2+ IV 1+ 3+ 3+ IV 1+ 3+ 2-3+ IV 1+ 3+ 2+ IV 1+ 3+ 3+ IV 2+ 3+ 1+ IV 2+ 3+ 1+ IV/V 2+ 3+ 1-2+ IV/V 2+ 3+ 1-2+ IV/V 2+ 3+ 3+ V 2+ 1+ 0 V 4 1+ 0</td></tr<>	MHO Class Cap EC Leukocytes Proximal IIb 2+ 0 - III 1+ 2+ 2+ III/V 1+ 1+ 1+ III-IV/V 1+ 1+ 1+ IV 1+ 2+ 2-3+ IV 1+ 2+ 2+ IV 1+ 3+ 2+ IV 1+ 3+ 3+ IV 1+ 3+ 2+ IV 1+ 3+ 1+ IV 2+ 2+ 3+ IV 3+ 3+ 1+ IV 2+ 3+ 1+ IV/V 2+ 3+ 1+ IV/V 2+ 3+ 2+ IV/V 2+ 3+ 3+ IV/V 2+ 3+ 3+ IV/V 2+ 3+ 3+ IV/V 2+ 3+ 3+	WHO Class Cap EC Leukocytes Proximal IIb 2+ 0 - III 1+ 3+ 2+ III 1+ 1+ 1+ 1+ III-IV/V 1+ 1+ 1+ IV 1+ 2+ 2-3+ IV 1+ 2+ 2+ IV 1+ 3+ 3+ IV 1+ 3+ 2-3+ IV 1+ 3+ 2+ IV 1+ 3+ 3+ IV 2+ 3+ 1+ IV 2+ 3+ 1+ IV/V 2+ 3+ 1-2+ IV/V 2+ 3+ 1-2+ IV/V 2+ 3+ 3+ V 2+ 1+ 0 V 4 1+ 0

Table 4: CD40 Expression In SLE Glomerulonephritis

Glomerular Expression

		T	7	T	-	т—			_				,				
	PEC		+1	1+	1+	1+	1+	3+	3+	+!	sclero	1+	3+ (cresc)	0	+-1	- (par 1+)	0(par 1+)
	VEC		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Expression	Mesangial		1+	3+	2+	3+	2-3+	3+	2+	3+	0	+	3+	1+	+1	1	1
Glomerular	EC		0	3+	2+	3+	1+	.3+	3+	3+	+ [2+	3+	+ +	1	0	0
	WHO Class		III	III-IV/V	ΛI	IV	IV	IV	IV	IV	IV/V	IV/V	IV/V	Λ	Λ	Λ	Λ
	Patient		KC95-277	KC94-78	KC95-308	KC94-269	K94-165	K94-59	K95-089	K94-12	K95-090	K95-003	KC95-264	K95-7	KC95-195	K94-142	K95-12

Table 5: CD40 Expression In Non-SLE Glomerulonephritis

Glomerular Expression

	 - 1				
PEC	1+	1+			2+
VEC	0	0	0	0	0
Mesangial	1+	+1	1	+1	2+
EC	0	0	1	0	1+
Renal Disease	Membranous	MC/ATN	Pauci-immune	FSGS	IgA
Patient	KC95-310	KC95-299	KC95-312	KC95-280	KC94-282

Table 6: CD40 Expression In Non-SLE Glomerulonephritis

		Inter	ınterstitium	Tubules	les
Ren	Renal Disease	Cap EC	Leukocytes	Proximal	Distal
Ä	Membranous	1+	+1	1+	2+
	MC/ATN	+1	2+	0	1+
Pa	Pauci-immune	1+	3+	2+	3+
	FSGS	1+	3+	2+	3+
	IgA	1+	3+	2+	3+

Analysis of renal CD40-ligand expression in inflammatory renal diseases

In situ CD40L expression was studied in renal biopsy specimens from patients with SLE GN (n=18), as well as in normal kidney and biopsy specimens from patients with IgA nephropathy, focal segmental glomerulosclerosis, minimal change disease, idiopathic membranous GN and ANCA pauciimmune GN. Immunohistochemical studies were performed on frozen sections utilizing anti-CD40L mAb 5C8 or controls mAbs. Upregulation of CD40L expression is observed in class IV lupus glomerulonephritis (Figures 4A, 4B and 5), focal segmental glomerulosclerosis (Figure 7) and Iga nephropathy (Figure 9). CD40L expression is noted as dim, discrete staining of some infiltrating mononuclear cells. These results provide further evidence that CD40L mediated signals play a role in the immunopathogenesis of inflammatory glomerular or tubulointerstitial diseases by interacting with CD40 target cells in the kidney.

10

15

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANTS: Yellin, Michael J.

Lederman, Seth Chess, Leonard Karpusas, Mihail N. Thomas, David W.

(ii) TITLE OF INVENTION: THERAPEUTIC APPLICATIONS OF T-BAM

(CD40-L) TECHNOLOGY TO TREAT

INFLAMMATORY KIDNEY DISEASES

- (iii) NUMBER OF SEQUENCES: 1
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Cooper & Dunham LLP
 - (B) STREET: 1185 Avenue of the Americas
 - (C) CITY: New York
 - (D) STATE: New York
 - (E) COUNTRY: USA
 - (F) ZIP: 10036
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: Not Yet Known
 - (B) FILING DATE: Herewith
 - (C) CLASSIFICATION:
- (vii) PREVIOUS APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/587,334
 - (B) FILING DATE: 16-JAN-1996
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: White Esq., John P.
 - (B) REGISTRATION NUMBER: 28,678
 - (C) REFERENCE/DOCKET NUMBER: 48558-B
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (212)278 0400
 - (B) TELEFAX: (212)391 0525
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 146 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein

(iii) HYPOTHETICAL: NO

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
- Gly Asp Gln Asn Pro Gln Ile Ala Ala His Val Ile Ser Glu Ala Ser
 1 5 10 15
- Ser Lys Thr Thr Ser Val Leu Gln Trp Ala Glu Lys Gly Tyr Tyr Thr 20 25 30
- Met Ser Asn Asn Leu Val Thr Leu Glu Asn Gly Lys Gln Leu Thr Val 35 40 45
- Lys Arg Gln Gly Leu Tyr Tyr Ile Tyr Ala Gln Val Thr Phe Cys Ser 50 55 60
- Asn Arg Glu Ala Ser Ser Gln Ala Pro Phe Ile Ala Ser Leu Cys Leu 65 70 75 80
- Lys Ser Pro Gly Arg Phe Glu Arg Ile Leu Leu Arg Ala Ala Asn Thr 85 90 95
- His Ser Ser Ala Lys Pro Cys Gly Gln Gln Ser Ile His Leu Gly Gly 100 105 110
- Val Phe Glu Leu Gln Pro Gly Ala Ser Val Phe Val Asn Val Thr Asp 115 120 125
- Pro Ser Gln Val Ser His Gly Thr Gly Phe Thr Ser Phe Gly Leu Leu 130 135 140

Lys Leu 145 WO 97/26000

What is claimed is:

1. A method of inhibiting activation by CD40 ligand of renal cells bearing CD40 on the surface of the cells, comprising contacting the cells with an agent capable of inhibiting interaction between CD40 ligand and CD40 on the cells, the agent being present in an amount effective to inhibit activation of the cells.

10

15

- 2. The method of claim 1, wherein the CD40-bearing renal cells are selected from the group consisting of glomerular endothelial cells, mesangial cells, distal tubule cells, proximal tubule cells, parietal epithelial cells, visceral epithelial cells, cells of a Henle limb, and interstitial inflammatory cells.
- 3. The method of claim 2, wherein the parietal epithelial cells are crescent parietal epithelial cells.
 - 4. The method of claim 1, wherein the agent inhibits binding of CD40 ligand to CD40 on the cells.

25

- 5. The method of claim 1, wherein the agent is a protein.
- 6. The method of claim 5, wherein the protein comprises an antibody or portion thereof.
 - 7. The method of claim 6, wherein the antibody is a monoclonal antibody.
- 35 8. The method of claim 7, wherein the monoclonal antibody specifically binds to the epitope to which monoclonal antibody 5c8 (ATCC Accession No. HB

PCT/US97/00668

15

10916) specifically binds.

- 9. The method of claim 8, wherein the monoclonal antibody is monoclonal antibody 5c8 (ATCC Accession No. HB 10916).
 - 10. The method of claim 7, wherein the monoclonal antibody specifically binds to CD40.
- 10 11. The method of claim 10, wherein the antibody is humanized, chimeric, or primatized.
 - 12. The method of claim 7, wherein the monoclonal antibody is a chimeric antibody.
 - 13. The method of claim 7, wherein the monoclonal antibody is a humanized antibody.
- 14. The method of claim 6, wherein the portion of the 20 antibody comprises a complementarity determining region or variable region of a light or heavy chain.
- 15. The method of claim 6, wherein the portion of the antibody comprises a complementarity determining region or a variable region.
 - 16. The method of claim 15, wherein the portion of the antibody comprises a Fab or a single chain antibody.
- 30 17. The method of claim 5, wherein the protein comprises soluble extracellular region of CD40 ligand, or variant thereof including conservative substituents, or portion thereof; or soluble extracellular region of CD40, or variant thereof including conservative substituents, or portion thereof.
 - 18. The method of claim 17, wherein the soluble

-41-

extracellular region of CD40 ligand or CD40 is a monomer.

- 19. The method of claim 17, wherein the soluble extracellular region of CD40 is an oligomer.
 - 20. The method of claim 17, wherein the protein comprising soluble extracellular region of CD40 or portion thereof or CD40 ligand or portion thereof further comprises an Fc region fused to the extracellular region of CD40 or portion thereof or CD40 ligand or portion thereof.
- 21. The method of claim 20, wherein the Fc region is capable of binding to protein A or protein G.
 - 22. The method of claim 21, wherein the Fc region comprises IgG, IgA, IgM, IgD, or IgE, or subclasses thereof.

20

10

- 23. The method of claim 22, wherein: the IgG is IgG₁, IgG₂, IgG₃, or IgG₄; or the IgA is IgA₁ or IgA₂.
- 25 24. The method of claim 1, wherein the agent is nonprotein.
 - 25. The method of claim 1, wherein the agent is selected from a library of known agents.

30

- 26. The method of claim 1, wherein the agent is modified from a known agent.
- 27. The method of claim 26, wherein the modified agent is designed by structure optimization of a lead inhibitory agent based on a three-dimensional structure of a complex of soluble extracellular

-42-

region of CD40 ligand or portion thereof with the lead inhibitory agent.

5 28. The method of claim 1, wherein the agent is selected by a screening method, which comprises:

isolating a sample of cells;

culturing the sample under conditions permitting activation of CD40-bearing cells;

contacting the sample with cells expressing a protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession No. HB 10916, or with a protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession No. HB 10916, effective to activate the CD40-bearing cells;

contacting the sample with an amount of the agent effective to inhibit activation of the CD40-bearing cells if the agent is capable of inhibiting activation of the CD40-bearing cells; and

determining whether the cells expressing the protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession No. HB 10916, or with the protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession No. HB 10916, activate the CD40-bearing cells in the presence of the agent.

35

30

15

20

25

29. The method of claim 28, wherein the agent is

WO 97/26000

selected from a library of known agents.

30. The method of claim 29, wherein the known agents are nonprotein agents.

5

10

- 31. A method of inhibiting activation by CD40 ligand of renal cells bearing CD40 on the surface of the cells, in a subject, comprising administering to the subject an agent capable of inhibiting interaction between CD40 ligand and CD40 on the cells, the agent being present in an amount effective to inhibit activation of the cells in the subject.
- 32. The method of claim 31, wherein the CD40-bearing renal cells are selected from the group consisting of glomerular endothelial cells, mesangial cells, distal tubule cells, proximal tubule cells, parietal epithelial cells, visceral epithelial cells, cells of a Henle limb, and interstitial inflammatory cells.
 - 33. The method of claim 32, wherein the parietal epithelial cells are crescent parietal epithelial cells.

25

- 34. The method of claim 31, wherein the agent inhibits binding of CD40 ligand to CD40 on the cells.
- 35. The method of claim 31, wherein the agent is a protein.
 - 36. The method of claim 35, wherein the protein comprises an antibody or portion thereof.
- 35 37. The method of claim 36, wherein the antibody is a monoclonal antibody.

-44-

38. The method of claim 37, wherein the monoclonal antibody specifically binds to the epitope to which monoclonal antibody 5c8 (ATCC Accession No. HB 10916) specifically binds.

5

- 39. The method of claim 38, wherein the agent is monoclonal antibody 5c8 (ATCC Accession No. HE 10916).
- 10 40. The method of claim 37, wherein the monoclonal antibody specifically binds to CD40.
 - 41. The method of claim 40, wherein the antibody is humanized, chimeric, or primatized.

15

- 42. The method of claim 37, wherein the monoclonal antibody is a chimeric antibody.
- 43. The method of claim 37, wherein the monoclonal antibody is a humanized antibody.
 - 44. The method of claim 36, wherein the portion of the antibody comprises a complementarity determining region or variable region of a light or heavy chain.

25

- 45. The method of claim 36, wherein the portion of the antibody comprises a complementarity determining region or a variable region.
- 30 46. The method of claim 45, wherein the portion of the antibody comprises a Fab or a single chain antibody.
 - 47. The method of claim 31, wherein the subject is a mammal.

35

48. The method of claim 47, wherein the mammal is a rodent.

-45-

- 49. The method of claim 47, wherein the mammal is a human.
- 50. The method of claim 31, wherein the protein comprises soluble extracellular region of CD40 ligand, or variant thereof including conservative substituents, or portion thereof; or soluble extracellular region of CD40, or variant thereof including conservative substituents, or portion thereof.
 - 51. The method of claim 50, wherein the soluble extracellular region of CD40 ligand or CD40 is a monomer.
 - 52. The method of claim 50, wherein the soluble extracellular region of CD40 is an oligomer.

15

25

35

- 53. The method of claim 50, wherein the protein comprising soluble extracellular region of CD40 or portion thereof or CD40 ligand or portion thereof further comprises an Fc region fused to the extracellular region of CD40 or portion thereof or CD40 ligand or portion thereof.
 - 54. The method of claim 53, wherein the Fc region is capable of binding to protein A or protein G.
- 55. The method of claim 53, wherein the Fc region comprises IgG, IgA, IgM, IgD, or IgE, or subclasses thereof.
 - 56. The method of claim 55, wherein:

 the IgG is IgG₁, IgG₂, IgG₃, or IgG₄; or

 the IgA is IgA₁ or IgA₂.
 - 57. The method of claim 31, wherein the agent is

nonprotein.

58. The method of claim 57, wherein the agent is a small molecule.

5

- 59. The method of claim 31, wherein the agent is selected from a library of known agents.
- 60. The method of claim 31, wherein the agent is modified from a known agent.
 - 61. The method of claim 60, wherein the modified agent is designed by structure optimization of a lead inhibitor based on a three-dimensional structure of a complex of soluble extracellular region of CD40 ligand or portion thereof with the lead inhibitor.
 - 62. The method of claim 31, wherein the agent is selected by a screening method, which comprises:

20

15

isolating a sample of cells;

culturing the sample under conditions permitting activation of CD40-bearing cells;

25

30

contacting the sample with cells expressing a protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession No. HB 10916, or with a protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession No. HB 10916, effective to activate the CD40-bearing cells;

contacting the sample with an amount of the agent effective to inhibit activation of the CD40-bearing cells if the agent is capable of inhibiting

activation of the CD40-bearing cells; and

determining whether the cells expressing the protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession No. HB 10916, or with the protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession No. HB 10916, activate the CD40-bearing cells in the presence of the agent.

- 63. The method of claim 62, wherein the agent is selected from a library of known agents.
- 15 64. The method of claim 63, wherein the known agents are nonprotein agents.
- 65. A method of treating, in a subject, an inflammatory kidney disease, comprising inhibiting activation by CD40 ligand of renal cells bearing CD40 on the surface of the cells, according to the method of claim 31.
- 66. The method of claim 65, wherein the inflammatory kidney disease is not initiated by autoantibody deposition in kidney.
 - 67. The method of claim 65, wherein the kidney disease is selected from the group consisting of:
- membranous glomerulonephritis;
 minimal change disease/acute tubular necrosis;
 pauci-immune glomerulonephritis;
 focal segmental glomerulosclerosis;
 interstitial nephritis;
- antitissue antibody-induced glomerular injury; circulating immune-complex disease; a glomerulopathy associated with a multisystem

PCT/US97/00668

disease;

drug-induced glomerular disease; renal transplant rejection; rapidly progressive glomerulonephritis; and post-streptococcal glomerulonephritis.

68. The method of claim 67, wherein the antitissue antibody-induced glomerular injury is anti-basement membrane antibody disease.

10

20

25

5

69. The method of claim 67, wherein the circulating immune-complex disease is selected from the group consisting of:

infective endocarditis;

15

leprosy;
syphilis;

hepatitis B;

malaria; and

a disease associated with an endogenous antigen.

- 70. The method of claim 69, wherein the endogenous antigen is DNA, thyroglobulin, an autologous immunoglobulin, erythrocyte stroma, a renal tubule antigen, a tumor-specific antigen, or a tumor-associated antigen.
- 71. The method of claim 67 wherein the glomerulopathy associated with a multisystem disease is selected from the group consisting of:

diabetic nephropathy;
systemic lupus erythematosus;
Goodpasture's disease;
vasculitis;

multiple myeloma;

Waldenström's macroglobulinemia; and
amyloidosis.

-49-

72. The method of claim 71, wherein the vasculitis is selected from the group consisting of:

Henoch-Schönlein purpura;

polyarteritis nodosa;

Wegener's granulomatosis; and
cryoglobulinemia.

- 73. The method of claim 67, wherein the pauci-immune glomerulonephritis is ANCA+ pauci-immune glomerulonephritis, or Wegener's granulomatosis.
 - 74. The method of claim 67, wherein the interstitial nephritis is drug-induced interstitial nephritis.
- 15 75. The method of claim 65 wherein the kidney disease affects renal tubules.
- 76. The method of claim 75, wherein the kidney disease which affects renal tubules is selected from the group consisting of:

a kidney disease associated with a toxin;
a neoplasia;
hypersensitivity nephropathy;

Sjögren's syndrome; and

25 AIDS.

5

1/31

FIGURE 1A

REM'RKS	A TO	MTC C	CORD:	INATES	OF CD401 CRYSTAL STRUCTURE IN PDB FORMAT	
CRYST		.170		170	90.460 90.00 90.00 120.00 R3	
ATOM	1	N	GLY	116	-7.954 -16.144 22.488 1.32 64 Ti	
ATOM	2	HT1		116	-7.087 -15.852 21.964 1.00 15.00	$\tilde{}$
ATOM	3	HT2		116		À
ATOM	4	HT3		116		À
ATOM	5	CA	GLY	116		Ą
ATOM	6	c	GLY	116	5 000 35 623	Ä
	7	0	GLY	116		À
ATOM	8	N	ASP	117		A
ATOM	9	H	ASP	117		۸
ATOM ATOM	10	ĊA.	ASP	117	2004	A
ATOM	11	CB	ASP	117		A
ATOM	12	CG	ASP	117		Ą
ATOM	13	OD1		117	-6.518 -15.163	A
ATOM	14	OD2		117		A
ATOM	15	C	ASP	117		Α
ATOM	16	0	ASP	117	-5.651 -13.585 25.184 1.00 63.31 -6.039 -12.427 25.145 1.00 63.35	A
ATOM	17	N	GLN	118		A
ATOM	18	Н	GLN	118	-4.713 -14.090 24.379 1.00 62.72 -4.450 -15.040 24.541 1.00 15.00	A
ATOM	19	CA	GLN	118	2.00 15.00	A
ATOM	20	CB	GLN	118	-4.097 -13.313 23.281 1.00 61.79 -2.918 -14.117 22.687 1.00 62.46	A
ATOM	21	CG	GLN	118	-3.047 -15.659 22.562 1.00 62.95	A
ATOM	22	CD	GLN	118	-4.277 -16.118 21.790 1.00 63.26	A
ATOM	23	OE1	GLN	118	-5.396 -16.000 22.277 1.00 63.43	A
ATOM	24	NE2	GLN	118	-4.044 -16.665 20.601 1.00 63.42	A
ATOM	25	HE21		118	-4.836 -16.715 19.975 1.00 15.00	A
ATOM	26			118	-3.151 -16.995 20.298 1.00 15.00	À
ATOM	27	C	GLN	118	-4.999 -12.841 22.128 1.00 60.59	A
ATOM	28	0	GLN	118	-4.887 -13.379 21.052 1.00 60.79	A
ATOM	29	Ň	ASN	119	-5.912 -11.901 22.445 1.00 58.61	A
ATOM	30	H	ASN	119	-5.917 -11.600 23.389 1.00 15.00	A A
ATOM	31	CA	ASN	119	-6.689 -11.222 21.386 1.00 56.39	À
ATOM	32	CB	ASN	119	-7.947 -11.982 20.936 1.00 56.95	Â
ATOM	33	CG	ASN	119	-7.652 -13.352 20.375 1.00 57.45	Ä
ATOM	34	OD1	ASN	119	-7.941 -14.303 21.084 1.00 58.50	A
ATOM	35	ND2	ASN	119	-7.005 -13.431 19.241 1.00 58.58	A
ATOM	36	HD21	ASN	119	-6.843 -12.617 18.646 1.00 15.00	Ä
ATOM	37	HD22	ASN	119	-6.740 -14.221 18.684 1.00 15.00	A
ATOM	3 B	С	ASN	119	-7.053 -9.724 21.571 1.00 53.62	A
ATCM	39	0	ASN	119	-6.746 -8.933 20.694 1.00 56.55	Α
ATOM	40	N	PRO	120	-7.737 -9.288 22.698 1.00 50.17	A
ATOM	41	CD	PRO	120	-8.151 -10.129 23.810 1.00 51.90	Ą
ATOM	42	CA	PRO	120	-8.402 -7.945 22.818 1.00 48.19	Α
ATOM	43	CB	PRO	120	-9.191 -8.008 24.117 1.00 47.42	Α
ATOM	44	CG	PRO	120	-9.444 -9.493 24.321 1.00 51.93	A
ATOM	45	С	PRU	125	-7. 75 0 -6. 524 22.657 1.00 4 5.59	Α
ATOM	46	C	PRO	120	-8.187 -5.516 23.225 1.00 45.37	Α
ATOM	47	N	GLN	121	-6.789 -6.458 21.721 1.00 38.52	Α
ATOM	48	H	GLN	121	-6.287 -7.304 21.505 1.00 15.00	Α
ATOM	49	CA	GLN	121	-6.733 -5.359 20.753 1.00 29.14	Α
ATOM	50	CB	GLN	121	-5.454 -5.735 19.971 1.00 26.30	A
ATOM	51	CG	GLN	121	-5.128 -4.943 18.710 1.00 26.84	A
ATOM	52	CD	GLN	121	-4.923 -3.460 18.949 1.00 27.26	Α
ATOM	53	OEI		121	-5.822 -2.668 18.709 1.00 28.66	Α
MOTA	54		GLN	121	-3.717 -3.100 19.341 1.00 33.90	Α
ATOM ATOM			GLN	121	2.883 -3.614 19.564 1.00 15.00	A
ATOM	56 57		GLN	121 121	-3.442 -2.138 19.204 1.00 15.00	A
ATOM	57 58	0	GLN GLN	121	-8.065 -5.218 19.903 1.00 26.33 -8.905 -6.097 19.834 1.00 21.41	A
ATOM	59	Ň	ILE	122		A
77.4	- J				-8.288 -4.051 19.272 1.00 21.21	A

2/31

FIGURE 1B

ATOM	60	H ILE		-7.600	-3.320	19.337		
							- · - · · - · ·	
ATOM	51	CA ILE	122	- 9 . 383		18.295	1.00 20.90	Ė.
ATOM	52	CB ILE	122	-10.238	-2.629	18.39€		Ä.
		CG2 ILE	122	-11.275				
ATOM	63					17.272	1.00 21.61	Ä
ATOM	64	CG1 ILE	122	-11.076	-2.744	19.668	1.00 24.13	Ä
ATOM	65	CD1 ILE	122	-11.751	-1.440	20.073	1.00 23.04	Ä
ATOM	66	C ILE	122	-8.833		16.895	1.00 18.96	Ä
ATOM	67	O ILE	122	-8.135	-3.243	16.379	1.00 17.93	A
ATOM	68	N ALA	123	-9.159	-5.240	16.283	1.00 14.72	À
					-			~
ATOM	69	H ALA	123	- 9 . 599		16.805	1,00 15.00	A
ATOM	70	CA ALA	123	-8.656	-5.401	14.917	1.00 14.29	Ä
ATOM	71	CB ALA	123	-7. 17 6		14.903	1.00 12.83	Ä
ATOM	72	C ALA	123	-9.483		13.985	1.00 15.66	À
ATOM	73	O ALA	123	-10.170	-7.261	14.323	1.00 13.58	À
ATOM	74	N ALA	124	-9.388		12.724	1.00 13.45	Ä
ATOM	75	H ALA	124	-8.894		12.456	1.00 15.00	A
ATOM	76	CA ALA	124	-10.087	-6.920	11.836	1.00 14.55	A
ATOM	77	CB ALA	124	-11.486	-6. 36 8	11.446	1.00 11.37	A
ATOM	78	C ALA	124	-9.271	_	10.563	1.00 13.54	A
ATOM	79	O ALA	124	-8.501	-6.274	10.129	1.00 16.29	A
ATOM	80	N HIS	125	-9.544	-8.248	9.937	1.00 11.49	A
ATOM	81	H HIS	125	-10.100	-8.900	10.426	1.00 15.00	A
ATOM	82	CA HIS	125	-9.100	-8.524	8.590	1.00 11.51	A
ATOM	83	CB HIS	125	-7.605	-8.908	8.614	1.00 11.43	A
ATOM	84	CG HIS	125	-7.119	-9.116	7.205	1.00 7.41	Α
ATOM	85	ND1 HIS	125	-6.750	-8.130	6 121	1.00 6.60	Α
ATOM	86	HD1 HIS	125	-6.708	-7.168	6.621	1.00 15.00	A
		-						
ATOM	87	CD2 HIS	125	-7.075	-10. 29 1	6.456	1.00 12.36	A
ATOM	88	NE2 HIS	125	-6.670	-9.971	5.234	1.00 6.20	A
ATOM	89	CE1 HIS	125	-6.462	-8.646	5.211	1.00 4.48	A
ATOM	90	C HIS	125	-10.024	-9.570	7.931	1.00 12.63	A
ATOM	91	O HIS	125	-10.324	-10.650	8.383	1.00 13.14	Α
ATOM	92	N VAL	126	-10.550	-9.129	6.806	1.00 15.65	A
MOTA	93	H VAL	126	-10.169	-8.286	6.428	1.00 15.00	A
ATOM	94	CA VAL	126	-11.743	-9.717	6.201	1.00 14.38	A
ATOM	95	CB VAL	126	-12.877	-8.808	6.675	1.00 13.37	A
ATOM	96	CG1 VAL	126	-13.794	-9.722	7.379	1.00 12.60	A
MOTA	97	CG2 VAL	126	-13.449	-7.663	5.814	1.00 9.61	A
ATOM	98	C VAL	126	-11.502	-9.971	4.685	1.00 16.03	A
			126					
ATOM	99			-10.684	-9.297	4.074	1.00 16.42	À
ATOM	100	N ILE	127	-12.118	-11.013	4.136	1.00 15.99	A
ATOM	101	H ILE	127	-12.807	-11.481	4.691	1.00 15.00	Α
ATOM	102	CA ILE	127	-11.651	-11.532			
						2.831	1.00 14.86	A
ATOM	103	CB ILE	127	-11.414	-13.051	3.002	1.00 17.56	A
MCTA	104	CG2 ILE	127	-11.716	-13.910	1.765	1.00 17.17	Å
ATOM	105	CG1 ILE	127		-13.316	3.399	1.00 16.47	A
ATOM	106	CD1 ILE	127		-12.992	4.864	1.00 19.64	A
ATOM	107	C ILE	127	-12.691	-11.269	1.765	1.00 18.96	A
ATOM	108	O ILE	127	-13.898	-11.391	2.016	1.00 20.01	A
ATOM	109	N SER	128	-12.229	-10. 88 2	0.581	1.00 17.54	A
MOTA	110	H SER	128	-11.232	-10.871	0.382	1.00 15.00	A
ATOM	111	CA SER	128		-10.667	-0.437	1.00 15.55	Α
ATOM								
	112	CB SER	128	-12.664	-10.130	-1.706	1.00 18.16	Α
ATOM	113	OG SER	128	-12.205	-11.207	-2.574	1.00 19.90	A
ATOM	114	HG SER	128	-11.832	-11.931	-2.029	1.00 15.00	A
ATOM								
	115 116	C SER	128	-14.295		-0.792	1.00 13.62	A
ATOM	0	C SER	128	-14.052		-0. B 32	1.00 8.98	Ä
ATOM	117	N GLU	129	-15.492	-11.246	-1.027	1.00 13.36	Ä
ATOM	118	H SLU	129	-15.661	-10.257	-0.937		
							1.00 15.00	À
ATOM	119	CA GLU	129	-16.379	-12.024	-1.840	1.00 17.20	A

FIGURE 1C

ATOM		C 3	SLU	129	-17.052	-13.117	-1.021		.
ATOM		CG	320	129	= . IJ > ∠	-12.694	-3.036	1 00 17 92	ž.
ATOM	122	\Box	GLU	129	-18.781	-13.951	0.376	1.00 21.98	A
						-13.932	0.368		
ATOM	123	SEL	GLU	129				1.00 30.23	Ä
ATOM	124	OE2	GLU	129	-18.150	-14.938	0.734	1.00 33.11	÷
	125	C	GLU	129	- 17 371	-11.409	-2.809	1.00 17.71	Ä
MOTA									
ATOM	126	0	GLU	129		-10.389		1.00 21.59	÷
ATOM	127	N	ALA	130	-17.550	-12.145	-3.914	1.00 20.52	Ä
ATOM	128	H	ALA	130		-13.057		1.00 15.00	À
ATOM	129	CA	ALA	130	-18.379	-11.649	-5.019	1.00 23.36	À
ATOM	130	СВ	ALA	130	-18.424	-12.633	-6.208	1.00 19.66	÷
ATOM	131	C	ALA	130	-19.811	-11.298	-4.570	1.00 26.86	À
ATOM	132	0	ALA	130	-20.519	-12.022	-3.869	1.00 29.40	Ä
		N	SER	131	-20.198	-10.086	-4.968	1.00 21.70	A
ATOM	133								
ATOM	134	H	SER	131	-19.515	-9. 48 1	-5.410	1.00 15.00	A
ATOM	135	CA	SER	131	-21.592	-9.782	-4.732	1.00 20.04	A
ATOM	136	CB	SER	131	-21.829	-8.266	-4.787	1.00 20.65	A
ATOM	137	OG	SER	131	-23.182	-8.001	-4.435	1.00 15.24	A
ATOM	138	HG	SER	131	-23.329	-7.069	-4.559	1.00 15.00	A
ATOM	139	C	SER	131	-22.546	-10.501	-5.668	1.00 17.15	A
ATOM	140	0	SER	131	-22.236	-10.853	-6.786	1.00 14.30	A
ATOM	141	N	SER	132		-10.731	-5.187	1.00 20.15	A
ATOM	142	Н	SER	132	-23.967	-10.586	-4.209	1.00 15.00	А
ATOM	143	CA	SER	132	-24.674	-11.250	-6.218	1.00 21.62	A
						•		_	
ATOM	144	CB	SER	132	-25. 26 6	-12.616	-5.893	1.00 16.00	Α
ATOM	145	OG	SER	132	-26.203	-12.324	-4.894	1.00 23.84	A
ATOM	146	HG	SER	132	-26.016	-12.944	-4.179	1.00 15.00	A
MOTA	147	\subset	SER	132	-25.727	-10.268	-6.671	1.00 20.07	A
ATOM	148	0	SER	132	-26.535	-10.544	-7.547	1.00 20.27	A
MCTA	149	N	LYS	133	-25. 6 06	-9.063	-6.118	1.00 21.87	A
ATOM	150	H	LYS	133	-24.904	-8.969	-5.397	1.00 15.00	A
ATOM	151	CA	LYS	133	-26.406	-7.916	-6.517	1.00 19.23	A
ATOM	152	CB	LYS	133	-27.024	-7.309	-5.256	1.00 23.08	A
ATOM	153	CG	LYS	133	-27.684	-B.364	-4.354	1.00 21.07	A
								_	
ATOM	154	CD	LYS	133	-29.174	-8.110	-4.320	1.00 27.36	A
ATOM	155	CE	LYS	133	-29.939	-7.884	-5.670	1.00 30.56	A
ATOM	156	NZ	LYS	133	-31.323	-7.515	-5.345	1.00 21.56	A
ATOM	157	HZ1	LYS	133	-31.862	-7.351	-6.218	1.00 15.00	A
ATOM	158	HZ2	LYS	133	-31.753	-8.299	-4.811	1.00 15. 0 0	A
ATOM	159	HZ3	LYS	133	-31.333	-6.654	-4.760	1.00 15.00	A
ATOM	160	C	LYS	133	-25.579	-6.876	-7.194	1.00 20.10	A
ATOM	161	0	LYS	133	-24.378	-6.801	-7.007	1.00 17.94	A
ATOM	162	N	THR	134	-26.260	-6.052	-7.983	1.00 22.95	A
ATOM	163	Н	THR	134	- 27.275	-6.130	-8.036	1.00 15.00	A
ATOM	164	CA	THR	134	-25.556	-4.879	-8.561	1.00 27.89	Α
	165			134					
ATOM		CB	THR		-26.498	-4.274	-9.592	1.00 24.59	Ä
ATOM	166	OG1	THR	134	-26.540	-5.037	-10.792	1.00 24.32	А
ATOM	157	HG1	THR	134	-26.232	-4.411	-11.456	1.00 15.00	Α
MCTA	:58	CG2	THR	134	-26.044	-2.897	-9.968	1.00 22.97	A
ATOM	169	\subset	THR	134	-24.987	-3.798	-7.559	1.00 32.51	A
ATOM	170	၁	THR	134	-25.658	-3.461	-6. 6 03		
	10							1.00 38.43	A
ATOM	:~:	N	THR	135	-23.717	-3.352	-7.690	1.00 35.98	À
ATOM	172	H	THR	135	-23.292	-3.555	-8.585	1.00 15.00	A
		CA	THR	135	-22.964				
ATOM	: T3					-3.469	-6.386	1.00 36.02	A
ATCM	:-;	CB	THR	135	-21.575	-4.276	-6.534	1.00 36.01	A
ATOM	175	231	THR	135	-21.645	-5. 38 8	-7.488	1.00 30.60	A
	ءَ جَ أَ	HGI	THR	135	-22.255	-6.094			
ATOM	- : -						-7.312	1.00 15.00	Ä
ATOM		CSI	THR	135	-20.866	-4.776	-5.264	1.00 35.55	A
ATOM	:-ŝ	_	THR	135	-22.949	-2.266	-5.404	1.00 30.25	Ä
77011		5	THR	135					~
ATOM	175	~	ĸ	* 3 °	+23,541	-2.348	-4.331	1.00 28.35	Ä

FIGURE 1D

		N	SER	136	-22.294	-1.146	-5.776	1,00 23,29	
ACOM	180		325						À
ATOM	181	∺	SER	136	- 22.628	-0.357	-5.463	1,00 15,00	A
ATOM	182	CA	SER	136	-20.857	-1.051	-6.143	1.00 18.00	Ä
		CB	SER	136	-20.560	0.187	-6.965		Ä
ATOM	163	<u>_</u>							.~
ATOM	184	೦೦	SER	13€	-20.624	1.261	-6.043	1.00 38.21	Ä
ATOM	185	HG	SER	136	-19.815	1.793	-6.008	1.00 15.00	à
	186	C	SER	13€	-19.553	-1.090	-4.958	1.00 21.77	
ATOM	100					-1.030	-4.335		À
ATOM	187	0	SER	13€	-18.630	-1.096	-5.080	1.00 21.94	À
ATOM	188	N	VAL	137	-20.452	-1.227	-3.752	1.00 24.03	Ä
	189	H	VAL	137	-21.440	-1.063	-3.705	1.00 15.00	À
ATOM	103								^
ATOM	190	CA	VAL	137	-19.699	-1.632	-2.570	1.00 19.65	A
ATOM	191	CB	VAL	137	-20.218	-1.010	-1.248	1.00 21.14	À
ATOM	192	CG1	VAL	137	-20.419	-1.907	-C.058	1.00 18.16	À
ATOM	193	CG2	VAL	137	-21.322	-0.026	-1.442	1.00 13.49	A
	104	C	VAL	137	-19.370	-3.116	-2.473	1.00 17.15	A
ATOM	194	_							
ATOM	195	0	VAL	137	-20.209	-3. 96 9	-2.593	1.00 16.69	A
ATOM	196	N	LEU	138	-18.077	-3.344	-2.271	1.00 15.84	A
ATOM	197	H	LEU	138	-17.502	-2.528	-2.246	1.00 15.00	A
ATOM	198	CA	LEU	138	-17.507	-4.667	-1.938	1.00 18.21	A
		CD		1 2 0	-15.962	4 530		1 00 13 60	*
ATOM	199	CB	LEU	138	-13.362	-4.530	-1.791	1.00 13.60	A
ATOM	200	CG	LEU	138	-15.273	-3.854	-2.998	1.00 16.09	A
ATOM	201	CD1	LEU	138	-15.923	-4.379	-4.300	1.00 20.35	A
ATOM	202	CD 2	LEU	138	-13.710	-3.936	-2.982	1.00 12.34	Α
ATOM	203	C	LEU	138	-18.170	-5. 48 0	-0.772	1.00 16.29	A
					30 400	4 007	0 201	1.00 12.97	N .
ATOM	204	0	LEU	138	-18.498	-4.986	0.301	1.00 12.97	A
ATOM	205	N	GLN	139	-18.345	-6.768	-1.035	1.00 13.04	A
ATOM	206	H	GLN	139	-18.052	-7. 078	-1.960	1.00 15.00	Α
ATOM	207	CA	GLN	139	-18.757	-7.658	0.013	1.00 15.32	A
								-	
ATOM	208	CB	GLN	139	-19.847	-8.678	-0.481	1.00 13.99	A
	200						1 117	1 00 10 BE	А
MCTA	209	CG	GLN	139	-21.068	-7.960	-1.113	1.00 20.85	^
ATOM	210	CD	GLN	139	-21.872	-7.022	-0.193	1.00 22.04	À
ATOM	211	OE1	GLN	139	-22.343	-7.439	0.878	1.00 25.45	A
ATOM	212	NEC	GLN	139	-21.963	-5.739	-0.618	1.00 17.74	Α
ATOM	213	HE21	GLN	139	-22.697	-5.181	-0.206	1.00 15.00	A
		HE22	CT NI	139	-21.460	-5.326	-1.374	1.00 15.00	À
ATOM									^
ATOM	215	C	GLN	139	-17.527	-8.383	0.541	1.00 14.26	A
ATOM	216	0	GLN	139	-16.554	-8. 64 0	-0.144	1.00 14.40	Α
MOTA	217	N	TRP	140	-17.647	-8.7 8 0	1.805	1.00 12.80	Α
ATOM	218	H	TRP	140	-18.433	-8.447	2.297	1.00 15.00	Α
ATOM	219	CA	TRP	140	-16.542	-9.500	2.463	1.00 14.03	À
ATOM	220	CB	TRP	140	-15.813	-8.623	3.483	1.00 14.18	A
ATOM	221	CG	TRP	140	-15.467	-7.291	2.823	1.00 8.44	A
ATOM	222	CD2	TRP	140	-14.379	-6.966	1.941	1.00 9.01	A
ATOM	223	CE2	TRP	140	-14.549	-5.625	1.482	1.00 B.40	A
MCTA	224	CE3	TRP	140	.13.215	-7.688	1 581	1.00 10.14	A
MCTA	225	CD1	TRP	140	-16.225	-6.137	2.863	1.00 11.29	A
ATOM	226	NE1	TRP	140		-5.150	2.077	1.00 14.27	Α
ATOM	227	HEl	TRP	14C	-16.121	-4.268	2.010	1.00 15.00	A
			TRP	140	-13.640	-5.009	0.590		
ATOM	228			140				1.00 8.16	A
ATOM	229	CZ3	TRP	140	-12.292	-7.069	0.713	1.00 13.90	÷
ATOM	230	CH2	TRP	140	-12.497	-5.749	0.215	1.00 12.11	À
ATOM	231	\subseteq	TRP	140	-17.015	-10.701	3.170	1.00 14.34	A
ATOM	232	2	TRP	140	-18.193	-10.862	3.392	1.00 16.00	A
ATOM	233	N	ALA	141		-11.528	3.558	1.00 14.80	A
ATOM	234	Ξ	ALA	141	-15.133	-11.377	3.294	1.00 15.00	Ä
ATOM	235	25	ALA	141		-12.617	4.394	1.00 15.27	Ä
ATOM	234	CE	<u>^-</u>	141		-13.920	3.583	1.00 16.97	Ä
	= -	~-	~~~						
ATOM	237	-	ALA	141	-15.585	-12.761	5.607	1.00 15.90	A
ATOM	239	2	٨ش٨	141	. 14 453	-12.338	5.550	1.00 14.25	Ä
		_							^
ATOM	239	::	320	141	-16.068	-13.366	5.688	1.00 19.74	À

FIGURE 1E

					-17.055	-13.574	€.€55		. 5 . 5 . 5	÷
ATOM	240	H	320	142						
	~	CA	3 2 0	142	-15.149	-13.759	7.731	1.01 1	15 93	÷
ATOM	241							1.00 1		
MCTA	242	C B	310	142	-15.794	-13.910	9.117		11.75	Α.
<u>~</u> . √1″.						-12.456	9.647	1.00 2	14 . 15	À.
ATOM	243	CG	GLU	142	-15.716	2 .456				
					-15.749	-12.087	10.711	1.00 1	6.51	à
ATOM	244	CD	GLU	142						
	245		GLU	142	-17.908	-11.888	10.361	1.00 3	34 72	Ä
ATOM	245	OE1	بالمان	142						• • • • • • • • • • • • • • • • • • • •
	246	OE2	GLU	142	-16.404	-11.984	11.886	1.00 3	30.07	À
ATOM	246	UEZ								
N TOM	247	\subset	GLU	142	-14.200	-14.797	7.193	1.00 3	33.25	۸
ATOM	24/	_				34 340	C 727			
ATOM	248	0	GLU	142	-13.156	-14.349	6.737	1.00 4	1.84	~
					- 4 577	-16.080	7.084	1.00 3	34.17	Ä
MCTA	249	N	LYS	143	- 14 - 9 / /	-19.000	7.004			
		.,	LYS	143	-15.432	-16.384	7.492	1.00 1	15.00	A
ATOM	250	Н	_13	143						
	251	CA	LYS	143	-13.882	-16.854	5.980	1.00 3	35.31	À
MOTA							4 (0)		7	
ATOM	252	CB	LYS	143	-14.673	-16.603	4.681	1.00 3	37.64	Ä
					14 300	-17.505	3.531	1.00 4	. 7 7 7	A
ATOM	253	CG	LYS	143	-14.300					
			1 40	143	-15.022	-17.284	2.202	1.00 5	50.37	٨
ATOM	254	CD	LYS	143						
	255	CE	LYS	143	-14.686	-16.047	1.357	1.00 4	19.23	A
ATOM	255	CE.	-13							
MOTA	256	NZ	LYS	143	-15.632	-16.097	0.221	1.00 5	1.6/	A
					15 777	35 445	-0.534	1.00 1	5 00	À
ATOM	257	HZ1	LY5	143	-15.33	-15.445	-0.554	1.00	.5.00	^
					-15 680	-17.061	-0.177	1.00 1	5 00	A
ATOM	258	HZ2	T 12 2	143						
	350	HZ3	t VC	143	-16 564-	15.833	0.585	1.00 1	.5.00	А
ATOM	259	742								
ATOM	260	С	LYS	143	-12.330	-16.979	5.637	1.00 3	12.80	A
ATOM							5.276	1 00 2	5.64	A
ATOM	261	O	LYS	143	-11.831	-18.041	5.2/6	1.00 3	3.04	
					-11.522	-15.923	5.637	1.00 2	8.26	A
MOTA	262	N	GLY	144						
	262	H	GLY	144	-11 718	-14.995	5. 9 10	1.00 1	.5.00	A
MOTA	263	n.		144						
N TOM	264	CA	GLY	144	-10.243	-16.458	5.194	1.00 3	12.94	Α
ATOM							C 300	1.00 2	0 02	A
ATOM	265	C	GLY	144	-9.1/8	-16.862	6.180	1.00 2		
				2 4 4	-9.345	-17.454	7.205	1.00 2	4 67	A
ATOM	266	0	GLY	144	- 9.343					
	2 - 7	N.T	TYR	145	-8.069	-16.270	5.815	1.00 2	26.37	À
ATOM	267	N		147						
ATOM	268	H	TYR	145	-8.160	-15.729	4.966	1.00 1	5.00	A
A LON							c 222	1.00 2	7 61	A
ATOM	269	CA	TYR	145	- /.02/	-16.002	6. 77 7	1.00 2	. / . 6 1	
					= 700	-15.877	5.947	1.00 3	37.54	A
ATOM	270	CB	TYR	145	-5.708	-15.6//				
	~ ~ .	ÇG	TYR	145	-5.962	-15.774	4.456	1.00 5	50.95	A
MCTA	271		- 1 K							
ATOM	272	CD1	TYR	145	-5.682	-14.633	3.706	1.00 5	3.22	Α
ATOM	2 / 2						2 460	1.00 €	n 20	A
ATOM	273	CE1	TYR	145	-6.313	-14.377	2.468			^
				145	-6.591	-16.847	3.791	1.00 5	3 11	A
ATOM	274	CD2	TYR	145						
	275	CE2	TYR	145	-7 207	-16.699	2.551	1.00	6.30	À
ATOM	2/3									A
ATOM	276	CZ	TYR	145	-7.162	-15.430	1.873	1.00 6	3 I - I Z	^
					7 617	-15.119	0.665	1.00 6	:2 63	A
MCTA	277	OH	TYR	145	-7.812	- 73 - 773	0.005			
	270	* * * * *	TYR	:45	-8 575	-15. 686	0.401	1.00	15.00	A
MOTA	278	HH	. IR							
ATOM	279	\subset	TYR	145	-7.532	-14.762	7.620	1.00 2	22.41	A
					7 000		7 650	1.00	22 68	A
ATOM	280	С	TYR	145	-7,000	-13.677	7.650	_		
					-8.731	-14.884	B.196	1.00	20 39	A
ATOM	281	N	TYR	146	- 6 . 7 3 4					
ATOM	282	H	TYR	146	- 8 935	-15.824	8.509	1.00	15.00	A
ATON	202								20 40	A
MCTA	283	CA	TYR	146	- 9 423	-13.700	8.725	1.00		
					-10.886	-13.673	B.306	1.00	22 53	A
ATOM	284	CB	TYR	146						
		CG	TYR	146	7 . ^	-14.460	9.286	1.00	23.02	A
ATOM	285									
ATOM	286	CD1	TYR	146	-11.635	-15.873	9.236	1.00	26.99	A
								1.00	25 44	A
ATOM	287	CE1	TYR	146	- 12 . 254	-16.623	10.239			
						-13.766	10.236	1.00	23 45	Ä
ATOM	288	CD2	TYR	146						
				146	7 - 50	-14.520	11.205	1.00	26.81	A
ATOM	289	CE2								
ATOM	290	CZ	TYR	146	-13.007	7 -15.937	11.204	1.00		A
								1.00		A
ATOM	291	OH	TYR	146	- 23.64	7 -16.689	12.170			^
				14€	יים רי.	-17.080	12.676	1.00	15.00	A
ATOM	292	HH	TYR							
	293	C	TYR	146	-9.29	-13.419	10.219	1.00	18.79	÷
ATOM		_								•
ATOM	294	2	TYE	144	- B . 904	-14.232	11.012	1.00		~
		-				5 -12.169	10.556	1.00	7 54	Ä
ATOM	295	C N	THE	147				2.00		
	296	Η	THR	147	. 4 97	3 -11.607	9.830	1.00	15.00	Ä
ATOM				• 7	J. J.					Ä
ATOM	297	CA	THR	::7	- 9.43	2 -11.764	11.948	1.00	14.00	
								1.00	13 66	Ä
ATOM	295	CB	THR	147	- 5.10.	2 -10.875	12.182			
				147	_ = c • •	2 -11.505	11.856	1.00	12.56	Ä
ATOM	299	03:		٠ ٦	- 5.9.		00			•

FIGURE 1F

ATOM	300 HG	THR	147					
				-5.934	-11.999	10.980		
ATOM	301 033		14~	-8.025	-10.236	13.554	1121 7.55	
ATOM	302 0	THR	147		-10.925	12.253	1,00 15.60	
ATOM	3 5 3 5	THR	147					
					-10.074	11.496	1,00 16,39	
ATOM	304 N	MET	148	-11.144	-11.139	13.412	1.00 20.67	
MOTA	305 H	MET	148	-10 B38	-11.988	13.828	1.00 15.00	
ATOM	306 CA	MET	148	17.000	12.300			
					-10.311	14.110	1.00 19.71	
ATOM	307 CB	MET	148	-13.546	-10.702	13.705	1.00 17.89	
ATOM	306 CG	MET	148	-14.541	-9.580	14.019		
ATOM	309 SD	MET	148	-14.492				
					-B.149	12.952	1.00 14.69	
ATOM	310 CE	MET	148		-8. 9 28	11.333	1.00 10.10	
ATOM	311 0	MET	148	-11.915	-10.282	15.639	1.00 21.49	
ATOM	312 0	MET	148	-12.594		16.436		•
		SER					1.00 12.98	
ATOM			149	-10.955	-9.412	16.055	1.00 20.58	
ATOM	314 H	SER	149	-10.516	-8.786	15.406	1.00 15.00	,
ATOM	315 CA	SER	149	-10.388	-9.698	17.419	1.00 19.11	
ATOM	316 CB	SER	149	-9.174	-8.860	17.792		•
							1.00 12.17	,
ATOM	317 OG	SER	149	-9.540	-7.513	17.975	1.00 14.10	,
ATOM	318 HG	SER	149	-9.571	-7.487	18.934	1.00 15.00	;
ATOM	319 C	SER	149	-11.203	-9.844	18.727	1.00 22.19	
ATOM	320 O	SER						F
			149	-10.728		19.772	1.00 22.95	۾ ج
ATOM	321 N	ASN	150	-12.456	-9.322	18.631	1.00 22.71	۶
ATOM	322 H	ASN	150	-12.782	-9.247	17. 68 8	1.00 15.00	A
ATOM	323 CA	ASN	150	-13.361	-9.236	19.764		
ATOM	324 CB	ASN					1.00 20.32	Ä
			150	-12.734	-8.446	20.955	1.00 21.56	A
ATOM	325 CG	ASN	150	-12.343	-6. 962	20.706	1.00 20.71	A
ATOM	326 OD1	ASN	150	-13.059	-6.187	20.119	1.00 17.81	A
MCTA	327 ND2	ASN	150	-11.222	-6.485	21.271		
ATOM	328 HD21						1.00 23.86	A
			150	-11.035	-5.521	21.092	1.00 15.00	A
ATOM	329 HD22	ASN	150	-10.670	-7.109	21.821	1.00 15.00	A
ATOM	330 C	ASN	150	-14.644	-8.657	19.256	1.00 20.60	A
ATOM	33: 0	ASN	150	-14.718	-8.130			
						18.148	1.00 20.56	A
MCTA	332 N	ASN	151	-15.637	-8.713	20.149	1.00 23.49	À
ATOM	333 H	ASN	151	-15.455	-9.124	21.038	1.00 15.00	A
ATOM	334 CA	ASN	151	-16.974	-8.080	19.823	1.00 24.71	A
ATOM	335 CB	ASN	151	-18.130				
ATOM				-10.130	-8.645	20.712	1.00 28.30	A
	336 CG	ASN	151	-17.959	-8.271	22.173	1.00 33.23	A
ATOM		ASN	151	-17.075	-7.562	22.606	1.00 39.79	Α
ATOM	338 ND2	ASN	151	-18.782	-8.838	23.011	1.00 38.32	A
ATOM	339 HD21		151	-18.553	-8.524	23.928	1.00 15.00	•
ATOM	340 HD22							A
			151	-19.495	-9.465	22.733	1.00 15.00	Ä
ATOM	341 C	ASN	151	-17.172	-6.531	19.645	1.00 22.53	Α
MOTA	342 0	ASN	151	-18.254	-6.048	19.374	1.00 21.32	A
ATCM	343 N	LEU	152	-16.066	-5.762	19.859	1.00 23.00	
ATOM	344 H	LEU	152					A
				-15.24/	-6.289	20.070	1.00 15.00	Ä
ATOM	345 CA	LEU	152	-15.924	-4.335	19.525	1.00 18.87	A
ATOM	346 CB	LEU	152	-14.830	-3. 7 00	20.325	1.00 21.77	A
ATOM	347 CG	LEU	152	-14.981	-3. 99 9	21.806	1.00 24.80	
MOTA		LEU	152	-16.390				À
MCTA				- 10.390	-3.645	22.316	1.00 22.82	A
		LEU	152	-13.847	-3.256	22.556	1.00 23.56	Ä
ATOM	350 C	LEU	152	-15.565	-3.993	18.094	1.00 17.34	A
ATOM	351 0	LEU	152	-15.590	-2.840	17.708	1.00 13.39	Ä
ATOM	352 N	VAL	153	-15.267	-5.054			
ATOM						17.309	1.00 18.65	À
		VAL	153	-15.156	-5. 96 2	17.716	1.00 15.00	ř
ATOM	354 CA	VAL	153	-15.439	-4.910	15.849	1.00 16.81	2.
ATOM	355 CB	VAL	153	-14.138	-5.021	14.980	1.00 15.33	Ä
ATOM	356 CG1	VAL	153	-12.908	-5.718	15.562		~ ~
ATOM	357 002	VAL	153				1.00 21.22	À
				-13.775	-3.757	14.287	1.00 16.95	÷
ATOM	358 0	VAL	153	-16.405	-5.964	15.301	1.00 13.48	Ä
ATOM	359 C	VAL	153	-16.363	-7.116	15.647	1.00 13.06	Ä
						· - •	-	

7/31

FIGURE 1G

ATOM	3 6 0		THE	154	-17.207	-5.546	14.358	1.00 10 04	Á
ATOM		Ξ	THE	154	-17.313	-4.568		1.11 15.11	
							14.215	1.00 15.00	<u>.</u>
ATOM		CA	THR	∴ 54	-17.903	-6.600	13.615	1.00 16.26	÷
ATOM	363	CE	THE	154	-19.366	-6 7 4 7	14.157	1.00 15.51	2 ,
ATOM		231	THR	154	-19.995	-5.459			
							14.205	1.00 19.31	A
ATOM		HG1	THR	154	-20.577	-5.508	14.949	1.00 15.00	Ä
ATOM	366	CG2	THR	154	-19.502	-7.288	15.571	1.00 21.61	Ä
MOTA		0	THR	154	-17.997	-6.252	12.107	1.00 15.11	· À
ATOM	368 (9	THR	154	-17.992	-5.110	11.605	1.00 16.55	Ä
ATOM		N.	LEU	155	-18.101	-7.324	11.357	1.00 16.77	\sim
									À
MOTA		∺	LEU	155	-18.056	-8.202	11.791	1.00 15.00	à
ATOM	371 (CA	LEU	155	-18.514	-7.198	9.967	1.00 17.10	÷
ATOM	372	2 3	LEU	155	-17.829	-8.353	9.204		
								1.00 20.04	Ä
ATOM		EG.	LEU	155	-17.524	-8.428	7.692	1.00 20.81	÷
ATOM	374 (ID1	LEU	155	-17.822	-7.159	6.908	1.00 17.03	Ä
ATOM	375	D 2	LEU	155	-17.912	-9.810	7.139	1.00 12.42	
									À
ATOM		-	LEU	1 5 5	-20.055	-7.187	9.904	1.00 20.71	A
ATOM	377 ()	LEU	155	-20.712	-8.163	10.217	1.00 18.01	Ä
ATOM	378 N	1	GLU	15€	-20.593	-5.995	9.561	1.00 19.51	
									Ä
ATOM		i	GLU	156	-19.959	-5.230	9.440	1.00 15.00	A
ATOM	380 0	CA	GLU	156	-22.036	-5.888	9.413	1.00 21.95	A
ATOM	381 0		GLU	156	-22.641	-4.631	10.033		
								1.00 18.95	A
ATOM			GLU	156	-22.098	-4.412	11.436	1.00 27.68	A
ATOM	383 (ID .	GLU	156	-22.721	-5.194	12.587	1.00 31.62	A
ATOM	384 0		GLU	156	-23.347	-6.248			
					_		12.367	1.00 33.40	A
ATOM			GLU	156	-22.532	-4.721	13.724	1.00 35.00	Α
ATOM	386	:	GLU	156	-22.457	-5.966	7.964	1.00 25.36	А
ATOM	387		GLU	156	-21.958	-5.298			
							7.077	1.00 22.70	À
ATOM	388 N		ASN	157	-23.437	-6.808	7.696	1.00 30.92	Α
ATOM	389 H	i	ASN	157	-23.594	-7.590	8.300	1.00 15.00	A
ATOM			ASN	157	-23.804				
						-6.620	6.300	1.00 33.31	Α
ATOM			ASN	157	-23.856	-7.970	5.614	1.00 31.69	Α
MCTA	392 0	:3	ASN	157	-23.669	-7.693	4.168	1.00 27.70	A
ATOM			ASN	157					
					-23.397	-6.593	3.810	1.00 25.89	A
MCTA			ASN	157	-23.893	-B.640	3.275	1.00 41.69	À
ATOM	395 HD	21	ASN	:57	-24.069	-9.603	3.467	1.00 15.00	A
ATOM		22		157	-23.745	-8.295			
							2.340	1.00 15.00	A
ATOM	397 0		ASN	157	- 24 . 988	-5.658	6.118	1.00 35.08	A
ATOM	398 0)	ASN	157	-26.107	-5.949	6.499	1.00 37.06	A
MOTA	399 N	•	GLY	156	-24.746	-4.443	5.560		
ATOM								1.00 40.03	Ä
	400 H		GLY	15ê	-25.601	-3.952	5.429	1.00 15.00	À
ATOM	401 C	A	GLY	158	-23.422	-3.887	5.121	1.00 38.11	А
ATOM	402 0	•	GLY	158	-23 062	-3.720	3.617	1.00 37.48	
ATOM	403 3		GLY	158					A
					-23.890	-3.108	2. 9 50	1.00 41.11	A
ATOM	404 N	;	LYS	159	21 867	-4.220	3.135	1.00 32.75	A
ATOM	405 H	i	LYS	159	-21 904	-4.134	2.130	1.00 15.00	
MCTA			LYS	159	-20 828				À
						-4.928	3.962	1.00 27.83	A
ATOM			LYS	159	-20.317	-6.122	3.217	1.00 28.17	A
ATOM	408 0	:3	LYS	159	-15 734	-7.168	4.069	1.00 20.48	•
ATOM			LYS	159	-20.533				Ä
						-B.426	4.192	1.00 29.61	Ä
MCTA	410 0		LYS	159	-20.577	-9.191	2. B 69	1.00 40.41	A
ATOM	411 N	Z	LYS	159	-20.796	-10 663	2.986	1.00 40.88	
ATOM			LYS	159					A
			_::		-20.739		2.035	1.00 15.00	Ä
MCTA	413 H	22	LYS	159	-20.070	-11.087	3.600	1.00 15.00	
ATOM	414 8	22	LYS	155		-10.848	3.389	1.00 15.00	7.7.7
ATOM	415		LYS	159					^
	1				-19.688	-4.065	4.463	1.00 26.08	Ä
ATOM	416 0		LYS	159	-19.023	-3.369	3.696	1.00 28.01	.
ATOM	416 0	:	SIN	160	-19.683	-3.990	5.807	1.00 18.90	Ä
ATOM	419 9	:	51.1	160	-20.211				
		·	··			-4.674	6.3.9	1.00 15.00	Ä
ATOM	419 0	ΪÀ	GUN	140	-18.922	-2.939	6.464	1.00 13.89	÷

8/31

FIGURE 1H

ATOM	420	CB G	ELN 16		9.778	-1.694	6.611		16.75	
								<u> </u>		Ä
ATOM	421	CG G	ILN 16	:0 -2	0.881	-1.895	7.633	1.00	18.34	÷
ATOM	422		ILN 16	• • •	2.133	-1.166	7.193		23.97	Ä
ATOM	423	OE1 G	LN 16	C - 2	3.088	-0.970	7.893	1.00	31.15	÷.
			LN 16		2.257	-0.771				•
ATOM	424						5.948	1.00	28.16	A
ATOM	425	HE21 G	ILN 16	.a - 2	3.194	-0.420	5.928	1.00	15.00	À
		HE22 G			1.624	-0.780				
MCTA							5.186		15.00	Ä
ATOM	427	C G	LN 16	0 -1	8.313	-3.309	7.777	1.00	12.67	À
	428		LN 16	n -:	8.838	-4.151				
ATOM							8.498		14.78	Ä
ATOM	429	N L	EU 16	1 .1	7.187	-2.637	8.085	1.00	11.22	À
	430	H L	EU 16	1 - 1	6.767	-2.124	7.340			
ATOM									15.00	÷
ATOM	431	CA L	EU 16	1 -1	6.583	-2.870	9.405	1.00	9.71	A
ATOM	432	CB L	EU 16	1 - 1	5. 05 2	-2. 93 9	9.390	1.00	4.67	
										÷
ATOM	433	CG L	EU 16	1 -1	4.438	-4.060	8.559	1.00	7.3C	À
ATOM	434	CD1 L	EU 16	1 -1	4.511	-5.447	9.207	1 00	10.80	A
MOTA	435	CD2 L	EU 16	1 -1.	2.964	-3. 794	8.389	1.00	5.48	A
ATOM	436	C L	EU 16	1 - 1	7.082	-1.836	10.412	1 00	10.17	Α
ATOM	437	O L	EU 16	1 -1	6.826	-0.657	10.341	1.00	13.36	A
ATOM	43B	N T	HR 16	2 -1	7.848	-2.338	11.375	1.00	16.94	A
ATOM	439	H T	HR 16	2 -11	8.153	-3.279	11.251	1.00	15.00	Α
ATOM	440	CA T	HR 16	2 -19	8.317	-1.480	12.493	1.00	16.14	Α
ATOM	441		HR 16		9.807	-1.769	12.640	1.00	13.33	A
ATOM	442	OG1 T	HR 16	2 - 20	0.339	-1.707	11.308	1.00	16.73	A
ATOM	443		HR 16		1.211	-1.254				
AIOM							11.343		15.00	А
ATOM	444	CG2 T	HR 16	2 - 20	0.553	-0.832	13.562	1.00	15.01	A
ATOM	445		HR 16	2 - 1 *	7.531	-1.547		1.00		
							13.842			A
ATOM	446	0 T	HR 16	2 - 1	7.358	-2.587	14.449	1.00	20.21	Α
ATOM	447	N V	AL 16	3 -16	5.994	-0.437	14.282	1.00	14.22	A
ATOM	448	H V	AL 16	- 1 (6.859	0.243	13.567	1.00	15.00	A
ATOM	449	CA V	AL 16	3 -16	5.326	-0.358	15.586	1.00	15 72	A
ATOM	450	CB V	AL 16	3 - 1:	5.038	0.426	15.428	1.00	11.82	A
ATOM	451	CG1 V	AL 16	3 -19	5.191	1.944	15.368	1.00	9.87	Α
ATOM	452		AL 16		.229	-0.124	14.245	1.00	18.88	A
ATOM	453	c v	AL 16	3 - 1.1	7.193	0.283	16.706	1.00	17.93	Α
ATOM	454		AL 16							
					3.001	1.180	16.453	1.00		A
ATOM	455	N L	YS 16	4 - 1 '	7.037	-0.232	17.925	1.00	15.44	A
ATOM	456	H L	YS 16	۵	5.254	-0.858	18.020	1.00	15 00	A
ATOM	457		YS 16	9	7.856	0.138	19.109	1.00	17.33	A
MCTA	458	CB L	YS 16	4 -18	3.351	-1.150	19.807	1.00	19 58	A
ATOM	459		YS 16		9.214	-1.885	18.759	1.00	23.56	A
ATOM	460	CD L	YS 16	4 - 19	9.417	-3.410	18.851	1.00	28.85	A
ATOM	461		YS 16	4 - 2/	0.039	-4.047	17.554	1.00		
										A
ATOM	462		YS 16		9.428	-3.681	16.227	1.00	18. 9 8	Α
ATOM	463	HZ1 L	YS 16	4 - • •	9.195	-2.667	16.222	1.00	15 00	Α
ATOM	464	HZ2 L					16.092	1.00	15.00	A
MOTA	465	HZ3 I	YS 16	4 - 2 (C. 284	-3.888	15.445	1.00	15.00	A
ATOM	466		YS 16	A	7.193					
				• •	9 3	1.099	20.056	1.00	15.14	A
MOTA	467	0 1	YS 16	4 :	7.712	1.588	21.048	1.00	17.72	A
ATOM	468	N A	RG 16		5.992	1.428				
							19.621	1.00		A
ATOM	469		RG 16	5 -1:	5.550	0.838	18.932	1.00	15.00	A
ATOM	470	CA A	RG 16	5 - 1 :	5.184	2.415	20.325	1.00	20 18	Α
MOTA	471		RG 16		3.985	1.806	21.049	1.00		A
MOTA	472	CG A	RG 16	5 - 14	4.363	0.833	22.126	1.00	29.54	A
ATOM	473		RG 16	ξ	3.274					
						1.077	23.145	1.00		A
ATOM	474	NE A	JRG 15	⇒ -1,	3.719	1.998	24.186	1.00	43.41	Ä
ATOM	475	HE A	JRG 16	5	4.331	1.671	24.908	1.00		
	47é			_						
ATOM			JRG 16		3.190	3.250	24.362	1.00	44.06	A
ATOM	477	NHI A	JRS 16	5 -1	3.406	3.765	25.562	1.00	41.25	À
ATOM		HH11 A			3.054					
						4.683	25.763	1.00		ム
ATOM	ئے د	HH12 A	JRG 16	5 ·:	3.919	3.249	26.250	1.00	15.00	Ä

FIGURE 1I

ATOM	480	NH2	ARG	165	-12.485	3.946	23.425	1,00 31,65	.5
MCTA	431	HH21		165					.~
					-12.133	4.960	23.623	-1,00 15,00	À
ATOM	482	HH22	ARG	1 5 5	-12.322	3.527	22.530	1.00 15.00	À
ATOM	483	С	ARG	165	-14.608	3.554	19.510		
			ARG						Ä
ATOM	484	С		165	-14.018	3.450	18,441	1,00 18,26	À
ATOM	485	N	GLN	166	-14.763	4.687	20.151	1.00 17.43	Ä
ATOM	486	Н	GLN	166	-15.263	4.614	21.007		
								1.00 15.00	A
ATOM	487	CA	GLN	166	-14.138	5.911	19.698	1.00 19.00	A
ATOM	488	CB	GLN	155	-14.613	7.021	20.610	1.00 23.79	
ATOM	489	CG	GLN	166	-14.067				• •
						8.409	20.386	1.00 34.06	Ä
ATOM	490	CD	GLN	166	-15.178	9.399	20.659	1.00 45.91	À
ATOM	491	OE1	GLN	166	-15.102	10.492	20.135	1.00 53.64	Ä
ATOM	492		GLN	166					
					-16.202	9.046	21.418	1.00 44.10	À
ATOM		HE21		166	-16.906	9.765	21.443	1.00 15.00	A
ATOM	494	HE22	GLN	166	-16.577	8.287	21.935	1.00 15.00	
ATOM	495								À
		C	GLN	166	-12.649	5.881	19.644	1.00 17.48	A
ATOM	496	0	GLN	166	-12.029	5.378	20.561	1.00 18.13	A
ATOM	497	N	GLY	167	-12.160	6.478	18.565		
								1.00 14.83	A
ATOM	498	H	GLY	167	-12.750	6.836	17.850	1.00 15.00	A
ATOM	499	CA	GLY	167	-10.728	6.711	18.557	1.00 16.28	A
ATOM	500	С	GLY	167	-10.044	6.685			
							17.204	1.00 16.48	A
ATOM	501	0	GLY	167	-10.674	6. 6 01	16.162	1.00 19.19	A
ATOM	502	N	LEU	168	-8.720	6.735	17.209	1.00 17.06	A
ATOM	503	Н	LEU	168	-8.311				
						6.890	18.120	1.00 15.00	A
ATOM	504	CA	LEU	168	-7. 92 5	6. 62 5	15.992	1.00 16.60	A
ATOM	505	CB	LEU	168	-6. 60 0	7.343	16.289	1.00 21.87	A
ATOM	506	CG	LEU	168	-6.247				
						8.745	15.716	1.00 22.69	A
ATOM	507	CD1	LEU	168	-5.119	9.410	16.539	1.00 21.20	A
ATOM	508	CD2	LEU	168	-7.436	9.617	15.361	1.00 18.38	
ATOM	509	C	LEU						A
				168	-7.686	5.136	15.604	1.00 14.84	A
ATOM	510	0	LEU	168	-7.282	4.278	16.392	1.00 15.89	A
MCTA	511	N	TYR	169	-7.943	4.873	14.300		
ATOM									À
	512	H	TYR	169	-8.313	5. 65 9	13.807	1.00 15.00	A
ATOM	513	CA	TYR	169	-7.683	3.572	13.656	1.00 5.27	A
ATOM	514	CB	TYR	169	-8.9 8 9	3.014	13.230		
ATOM	515							_	A
		CG	TYR	169	-9.857	2. 62 0	14.423	1.00 6.94	À
ATOM	516	CD1	TYR	169	-10.524	3.598	15.168	1.00 7.40	A
ATOM	517	CE1	TYR	169	-11.390	3.193	16.218		
ATOM	518							1.00 7.77	A
		CD2	TYR	169	-10.016	1.255	14.744	1.00 8.89	À
ATOM	519	CE2	TYR	169	-10.850	0.841	15.804	1.00 9.40	A
ATOM	520	CZ	TYR	169	-11.563	1.827	16.534		
ATOM								1.00 10.39	Ä
	521	ОН	TYR	169	-12.443	1.410	17.534	1.00 7.99	A
ATOM	522	HH	TYR	169	-13.009	2.117	17.800	1.00 15.00	A
ATOM	523	C	TYR	169	-6.810	3.642	12.390		
ATOM	524	Õ						1.00 6.72	A
		_	TYR	169	-6.917	4.498	11.557	1.00 9.12	A
ATOM	525	N	TYR	170	-5. 89 9	2.722	12.228	1.00 9.53	À
ATOM	526	Н	TYR	170	-5.806	2.081			
ATOM							12.986	1.00 15.00	A
	527	CA	TYR	170	-5.313	2.511	10.899	1.00 10.01	Ä
ATOM	528	CB	TYR	170	-3. 9 67	1.797	11.044	1.00 7.46	Ä
ATOM	529	CG	TYR	170	-3.259	1.636	9.679		
	530							1.00 13.45	- A
ATOM	330	CD1	TYR	170	-2.680	2.766	9.052	1.00 12.66	A
ATOM	531	CEl	TYR	170	-2.213	2.658	7.738	1.00 10.18	Ä
MCTA	532	CD2	TYR	170	-3.304	C.385			
ATOM		-52					9.057	1.00 10.90	Ä
	533	CEI	TYR	:70	-2.891	0.303	7.730	1.00 8.68	Ä
ATOM	534	CZ	TYR	:70	- 2.331	1.419	7.124	1.00 9.97	Ä
ATOM	535	OH.	TYR	170	-1.774	1.286			
ATOM							5.859	1.00 17.50	÷
	536	HH	TYR	170	-1.886	0.404	5.514	1.00 15.00	2 .
ATOM	537	0	TYR	170	-6.279	1.€10	10.073	1.00 10.40	À
ATOM	538	С	TYR	170	-6. 67 9	0.500			
MCTA	539	Ň					10.421	1.00 12.52	÷
A. J.	239	٧.	:LE	:71	-5.704	2.174	8.968	1.00 12.16	Ä

10/31

FIGURE 1J

MCTA	540	Η			-6 475	3.135	8.808		
				<u> </u>					
ATOM	541	ΞÀ	ILΕ		-7.608	1.430	8.136	1.00 9.37	÷
MCTA	542	CB	ΞLΞ	171	- 9 . 070	1.990	8.317	1.00 9.37	<u>:</u>
ATOM	543		ILΕ		-9.326	3.501	ŝ. € 77		
ATOM	544	CG1	ILE	171	-10.046	1.564	7.214	1.00 13.33	Ä
ATOM			ILE	171	-10.647	0.250	7.619	1.00 17.53	
	545								À
ATOM	546	C	ILE	171	-7.074	1.234	6.694	1.00 9.34	Ä
	547		ILE	171	-6.453	2.088			
ATOM							6.082		A
ATOM	548	N	TYR	172	-7.286	0.005	6.216	1.00 11.07	÷
ATOM	549	H	TYR	172	-7.609	-0.624	6.786	1.00 15.00	Ä
ATOM	55 0		TYR	172	-6.708	-0.378	4.922	1.00 15.60	Ä
ATOM	551	CB	TYR	172	-5.332	-1.082	5.037	1.00 14.32	Ä
ATOM	552	CG	TYR	172	-5. 38 9	-2.397	5.796	1.00 9.21	
									Ä
ATOM	55 3	CD1	TYR	172	-5.342	-2.402	7.216	1.00 12.52	Ä
ATOM	554	CE1	TYR	172	-5.607	-3.620	7.901	1.00 10.88	À
ATOM	55 5	CD2	TYR	172	- 5 . 565	-3.586	5. 05 0	1.00 12.66	A
ATOM	556	CE2	TYR	172	-5.829	-4.800	5.740	1.00 15.83	Α
	557	CZ	TYR	172	-5.822	-4.808	7.164		
ATOM								1.00 11.94	À
ATOM	558	OH	TYR	172	-5.995	-6.002	7.820	1.00 12.17	Α
ATOM	559	HH	TYR	172	-6.433	-5.843	8.657	1.00 15.00	A
ATOM	560	C	TYR	172	-7.605	-1.276	4.106	1.00 16.85	A
ATOM	561	0	TYR	172	-8.346	-2.057	4.692	1.00 14.06	A
MCTA	562	N	ALA	173	-7.448	-1.141	2.776		
								1.00 16.29	Α
ATOM	563	Н	ALA	173	-6.751	-0. 49 0	2.503	1.00 15.00	Α
ATOM	564	CA	ALA	173	-7.940	-2.152	1.836	1.00 15.11	À
ATOM	5 65	CB	ALA	173	-9. 30 0	-1.725	1.292	1.00 12.08	A
ATOM	566	С	ALA.	173	-7.007	-2.537	0.653	1.00 15.86	A
ATOM	567	0	ALA	173	-6.147	-1.806	0.191	1.00 14.20	A
MOTA	568	N	GLN	174	-7.244	-3.714	0.109	1.00 16.56	A
ATOM	569	Н	GLN	174	-7.774	-4.389	0.620	1.00 15.00	A
ATOM	570			174	-6.470				
		CA	GLN			-4.119	-1.070	1.00 19.25	Ä
ATOM	571	CB	GLN	174	-5. 58 2	-5. 292	-0.832	1.00 21.99	A
ATOM	572	CG	GLN	174	-4.205	-4.727	-1.030	1.00 30.99	A
ATOM	573	CD	GLN	174	-3.174	-5.845	-0. 97 9	1.00 34.25	Ä
ATOM	574	OE1	GLN	174	-2.308	-5. 89 9	-0.105	1.00 32.91	A
ATOM	575	NFO	GLN	:74	-3. 26 8	-6.699	-2.014	1.00 31.50	A
MCTA			GLN	174	-2.668	-7.487	-1.970	1.00 15.00	À
ATOM	577	HE22	GLN	174	-3.973	-6.621	-2.714	1.00 15.00	Ä
ATOM	578	2	GLN	174	-7.413	-4.644	-2.114		
								1.00 19.20	À
MOTA	579	0	GLN	:74	-8.285	-5.434	-1. 88 0	1.00 20.03	A
ATOM	580	N	VAL	:75	-7.291	-4.107	-3.301	1.00 19.28	A
ATOM	581	H	VAL	:75	-€.594				
						-3.401	-3.400	1.00 15.00	A
ATOM	582	CA	VAL	175	-8.247	-4.500	-4.323	1.00 22.43	A
MOTA	583	CB	VAL	175	-9.319	-3.409	-4.644	1.00 21.41	A
				:75					- ;
ATCM	584	CG1	VAL		-15.146	-2. 83 0	-3.495	1.00 20.17	Ä
MOTA	585	CG2	VAL	: 75	-10.268	-4.061	-5.639	1.00 22.88	À
ATOM	586	С	VAL	175	7.508	-4.859	-5. 6 15	1.00 24.56	A
ATOM	587	0	VAL	175	-€.928	-3. 997	-6.301	1.00 23.28	Α
ATOM	588	N	THR	:76	· 7 56 3	-6.180	-5.879	1.00 25.40	A
ATOM	589	Н	THR	176	- 994	-6.850			
							-5.250	1.00 15.00	Α
ATOM	590	CA	THR	176	-7.086	-6.501	-7.222	1.00 24.46	Ä
ATOM	591	CB	THR	:76	-5.844	-7.454	-7.256	1.00 24.78	A
	200								
ATOM	592	ogi	THR	176	-5.948	-8.650	-8.028	1.00 20.31	Ä
ATOM	593	H31	THR	. 176	-5.250	-9.253	-7.796	1.00 15.00	7 7
ATOM	594	232	THR	176	··· 5.329	-7.711	-5.867	1.00 17.37	•
									· ·
ATOM	595	Ξ.	THR	176	- 5.178	-6. 7 00	-8.272	1.00 25.44	Ä
ATOM	596	0	THR	176	- 9 . 326	-7.043	-7.995	1.00 26.86	÷
ATOM	597	Ñ	PHE	176 177	-7.855	-6.341	-9.506		÷ ;
									^
MCTA	59E		PHE	177	-6. 9 20	-6.083	- 9. 7 32	1.00 15.00	÷
ATOM	599	CA	PHE	: 77	- E . 939	-6.511	-10.479	1.00 22.70	Ä
				_					• •

11/31

FIGURE 1K

ATOM	600 C B	PHE		-5.746	-5.194 -10.599	1.55 20.90	÷
		PHE	<u> </u>	-8.813	-4.034 -10.927		Ä
ATOM	601 C G						
ATOM	602 CD3	PHE	177	-8.771	-3.548 -12.253		Ä
ATOM	603 CD2	PHE	277	-8.011	-3.422 -9.920	1.00 21.57	A
			- - 7 -	-8.041	-2.387 -12.550		÷
ATOM	504 CE						
ATOM	605 CE	PHE	177	-7.289	-2.247 -10.204	1.00 20.44	Ä
ATOM	606 CZ	PHE	177	-7.376	-1.713 -11.500	1.00 22.79	A
			277	-8.381	-6.949 -11.800		A
ATOM	607 C	PHE	-				
MCTA	608 C	PHE	177	-7.219	-6. 69 5 -1 2.072	1.00 21.60	Ä
	609 N	CYS	178	-9.210	-7,555 -12.625	1.00 24.52	Ä
ATOM				-10.146	-7.797 -12.370		Ä
ATOM	610 H	CYS	178				
ATOM	611 CA	CYS	178	-8. 59 9	-7.8 4 9 - 13. 94 2	1.00 29 77	Ä
ATOM	612 CB	CY5	178	-8.501	-9.365 -14.214	1.00 32.06	À
			178	-7.685	-9.731 -15.792		A
ATOM	613 SG	CYS					
ATOM	614 C	CYS	178	-9.323	-7.146 -15.088		Ä
ATOM	615 0	CYS	178	-10.534	-7.247 -15.185	1.00 27.54	À
		SER	179	-8.589	-6.393 -15.910	1.00 28.86	A
ATOM	616 N						
ATOM	617 H	SER	179	-7.608	-6.271 - 15. 7 54		A
ATOM	618 CA	SER	179	-9.374	-5.454 -16.704	1.00 29.01	Α
	619 CB	SER	179	-9.379	-4.118 -16.020	1.00 30.82	А
MOTA							
ATOM	620 OG	SER	179	-10. 6 15	-3.492 -16.319		Α
ATOM	621 HG	SER	179	-10.725	-2.812 -15.667	1.00 15.00	A
	622 C	SER	179	-9.063	-5.196 -18.165	1.00 31.16	A
ATOM							
MOTA	623 0	SER	179	-7.931	-4.953 -18.537		A
ATOM	624 N	ASN	180	-10.083	-5.255 -19.042	1.00 35.32	A
ATOM	625 H	ASN	180	-10.966	-5.700 -18.834	1.00 15.00	A
	626 CA	ASN	180	-9. 78 2	-4.725 -20.366		А
ATOM					_		
ATOM	627 CB	ASN	180	-10.205	-5. 554 -21.589		A
ATOM	628 CG	ASN	180	-9. 65 0	-4.980 -22.896	1.00 37.12	Α.
ATOM		ASN	180	-10.058	-3.947 -23.356	1.00 40.66	A
							A
ATOM		ASN	180	-8.619	-5.536 -23. 45 6		
ATOM	631 HD21	ASN	180	-8.343	-6.475 -23.306	1.00 15.00	A
ATOM	632 HD22	ASN	190	-8.153	-4.891 -24.065	1.00 15.00	Α
	633 C	ASN	180	-10.197	-3.331 -20.588	1.00 36.96	А
ATOM							A
MCTA	634 O	ASN	180	-11.314	-2.894 -20.433		
ATOM	635 N	ARG	181	-9.147	-2.699 -21.068	1.00 41.95	A
ATOM	636 H	ARG	181	-8. 36 3	-3.318 -21.141	1.00 15.00	A
ATOM	637 CA	ARG	181	-8.997	-1.313 -21.489		A
MOTA	638 CB	ARG	181	-7.563	-1.279 -22.026		A
MOTA	639 CG	ARG	181	-6.348	-1.638 -21.101	1.00 45.11	A
ATOM	640 CD	ARG	181	-6.235	-2.853 -20.134	1.00 40.68	A
		ARG	181	-5.064	-2.772 -19.271		A
ATOM	641 NE						
ATOM	642 HE	ARG	181	-4.991	-2.058 -18.578	1.00 15.00	A
ATOM	643 CZ	ARG	181	-4.024	-3.611 -19.432	1.00 49.77	A
ATOM	644 NH		181	-2.886	-3.414 -18.790	1.00 54.33	A
MCTA	645 HH1:		181	-2.113	-4.032 -18.918		A
ATOM	646 HH13	2 ARG	181	-2.807	-2.642 -18.161	1.00 15.00	A
ATOM	647 NH	ARG	181	-4.085	-4.641 -20.247	1.00 54.26	A
		ARG	181	-3.286	-5.230 -20.354		A
MOTA							
ATOM	649 HH23	2 ARG	181	-4.918	-4.833 -20.761		A
ATOM	650 C	ARG	181	-10.049	-0.866 -22.499	1.00 47.10	Ä
MCTA	651 0	ARG	181	-10. 97 9	-0.112 -22.227		A
				-9.895	-1.447 -23.690		A
ATOM	652 N	GLU	182				
ATOM	653 H	GLU	152	-9.201	-2.166 - 23. 7 75		À
MCTA	654 CA	31 0	182	-10.976	-1.385 -24.676	1.00 52.41	A
ATOM		320	182	-10.437	-2.020 -25.970		Ä
MCTA	656 00	GLU	132	-10.932	-1.418 -27.295		A
ATOM	657 CD	SLU	182	-10.758	0.116 -27.327	1.00 70.54	A
ATOM	658 CE		182	-9.613	0.586 -27.442		A
ATOM				-11.778	0.830 -27.244		Ä
A.OM	65° CE	2 SLU	182	//8	0.030 -21.244	1.00 72.46	\sim

FIGURE 1L

ATOM	660 C	310	152	-12.388			
ATOM	561 0	310	162		-1.934 -24.304		7
				-13.379	-1.492 -24.862		
MCTA	662 N	ALA	183	-12.505	-2.877 -23.335	1.00 52.34	;
ATOM	663 H	هنه	183	-11.676	-3.173 -22.865		,
ATOM	664 CA	ALA A	183	-13.867	-3.258 -22.899		
ATOM	665 CE	ALA 6	183	-13.855	-4.721 -22.447	1.00 45.02	,
ATOM	666 C	ALA	183	-14.562			÷
ATOM	667 0	ALA	183	-15.712			A
					-1.945 -21.990		Ä
ATOM	668 N	SER	184	-13.773	-1.888 -20.878	1.00 52.95	A
ATOM	669 H	SER	184	-12.826	-2.172 -20.991	1.00 15.00	A
ATOM	670 CA	SER	184	-14.228	-1.043 -19.729	1.00 56.78	Ä
MOTA	671 CE	SER	184	-13.384	-1.397 -18.481	1.00 53.58	A.
ATOM	672 00	SER	184	-13.975	-2.448 -17.721	1.00 47.46	
ATOM	673 HG		184	-13.291	-3.019 -17.388		Ä
ATOM	674 C	SER	184	-14.183		1.00 15.00	A
ATOM					0.517 -19.880	1.00 59.95	Ä
		SER	184	-13.913	1.297 -18.964	1.00 65.25	A
ATOM	676 N	SER	185	-14.324	0.995 -21.131	1.00 60.08	A
ATOM	677 H	SER	185	-14.623	0.345 -21.831	1.00 15.00	Α
ATOM	678 CA	SER	185	-13.825	2.375 -21.391	1.00 60.12	A
ATOM	679 CB	SER	185	-13.522	2.640 -22.869	1.00 60.49	
ATOM	680 OG		185	-12.243	2.098 -23.242	1.00 59.80	A
ATOM	681 HG		185	-12.158			A
ATOM	682 C				1.234 -22.833	1.00 15.00	A
		SER	185	-14.580	3.589 -20.885	1.00 59.59	A
ATOM	683 0	SER	185	-15.437	4.159 -21.543	1.00 60.08	A
ATOM	684 N	GLN	186	-14.200	3.990 -19.670	1.00 57.71	Α
ATOM	685 H	GLN	186	-13.601	3.376 -19.153	1.00 15.00	А
ATOM	686 CA	GLN	186	-15.121	4.936 -18.993	1.00 57.00	A
ATOM	687 CB	GLN	186	-16.094	4.062 -18.175	1.00 58.66	A
ATOM	688 CG	GLN	186	-15.355	3.354 -17.050	1.00 59.69	
ATOM	689 CD	GLN	186	-16.369			A
ATOM	590 OE		186			1.00 59.92	A
				-17.270	3.513 -15.687	1.00 59.81	A
ATOM	691 NE		186	-16.249	1.503 -15.787	1.00 59.63	А
ATOM	692 HE2		186	-15.492	0.948 -16.113	1.00 15.00	Α
ATOM	693 HE2	2 GLN	186	-16.950	1.119 -15.168	1.00 15.00	A
ATOM	694 C	GLN	186	-14.758	6.290 -18.221	1.00 54.36	A
ATOM	695 0	GLN	186	-15.596	7.198 -18.298	1.00 53.98	Ä
ATOM	696 N	ALA	187	-13.566	6.424 -17.511	1.00 50.35	
ATOM	697 H	ALA	187	-13.476	7.274 -16.970		A
ATOM	698 CA	ALA	187	-12.388		1.00 15.00	A
ATOM	699 CB	ALA	187		5.599 -17.832	1.00 43.26	Α
ATOM				-11.546	6.284 -18.918	1.00 38.95	A
	700 C	ALA	187	-11.456	4.882 -16.849	1.00 40.48	A
ATOM	701 0	ALA	187	-10.887	3.875 -17.295	1.00 43.24	A
MCTA	702 N	PRO	188	-11.210	5.383 -15.594	1.00 38.66	A
ATOM	703 CD	PRO	189	-11.543	6.687 -15.000	1.00 38.15	A
ATOM	704 CA	PRO	188	-10.220	4.665 -14.751	1.00 35.94	A
MCTA	705 CB	PRO	188	-9. 39 5	5.813 -14.150	1.00 33.99	
ATOM	706 CG	PRO	188	-10.377	7.000 -14.036	1.00 32.69	À
MOTA	707 C	PRO	188	-10.840			A
ATOM	708 0	PRO			3.783 -13.683	1.00 33.66	A
ATOM			188	-11.885	4.062 -13.140	1.00 33.41	A
	709 N	PHE	189	-10.147	2.695 -13.346	1.00 28.66	Α
ATOM	710 H	PHE	189	-9.260	2.508 -13.748	1.00 15.00	A
ATOM	711 CA	PHE	189	-10.721	2.013 -12.171	1.00 26.71	A
ATOM	712 CB	PHE	189	-10.122	0.601 -12.034	1.00 26.21	A
ATOM	713 EG	PHE	189	-10.671	-0.189 -10.849	1.00 22.92	Ä
ATOM	714 00		189	-10.126	0.005 -9.566	1.00 22.32	
MCTA	715 00		189	-11.687	-1.165 -11.064		À
ATOM	TIE CE	: PHE	189	-10.590	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.00 21.88	A
ATOM	TIT CE				-0.815 -8.522	1.00 19.12	A
ATOM	719 00		169	-12.124	-1.955 -10.011	1.00 21.13	Α
		PHE	189	-11.571	-1.806 -8.736	1.00 18.44	A
MCTA	719 0	PHE	199	-10.445	2.815 -10.909	1.00 27.14	Ä

FIGURE 1M

ATOM		Ĵ	PHE	189	-9.308	3.244	-10.706	1.00 26 70	.
	- 4 -	N	ΪΞĒ	191	-11.465	2.964	-10.071	1:00 24 71	Ä.
ATOM	721		:_£	190	-12.408	2.786	-10.388	1.00 15.00	2
ATOM	722	Η			-11.193	3.626	-8.788	1.00 24.03	
ATOM	723	CA	ILE	190	-11.316			1.00 16.86	A A
ATOM	724	CE	ΞΞE	192		5.242	-8.743		Ä
ATOM	725	CG2	ILE	190	-11.892	5.979	-9.997		Ţ
ATOM	726	CGI	ILE	190	-11.801	5.888	-7.424	1.00 22.54	Ä
ATOM	727	CD1	ILE	190	-12.819	7.012	-7.645	1,00 28.56	à
ATOM	728	\subseteq	ILE	190	-11.844	2.812	-7.656	1.00 21 97	à
ATOM	729	0	ILE	190	-12.891	2.197	-7.801	1.00 16.30	÷
ATOM	730	N	ALA	191	-11.026	2.700	-6.590	1.00 17.21	A
	731	H	ALA	191	-10.124	3.124	-6. 6 62	1.00 15.00	Ä
ATOM		.: CA	ALA	191	-11.501	2.195	-5.321	1.00 15.20	À
ATOM	732	CB	ALA	191	-10.730	0.928	-4.968	1.00 14.79	Ä
MOTA	733				-11.439	3.230	-4.206	1.00 17.11	Ä
ATOM	734	C	ALA	191			-4.052	1.00 14.04	Ä
ATOM	735	C	ALA	191	-10.467	3.961			7.
ATOM	736	N	SER	192	-12.511	3.245	-3.433		Ä
ATOM	737	Н	SER	192	-13.277	2.694	-3.804	1.00 15.00	
ATOM	738	CA	SER	192	-12.725	4.289	-2.423	1.00 16.69	À
ATOM	739	CB	SER	192	-13.931	5.144	-2.803	1.00 14.83	A
ATOM	740	OG	SER	192	-13.556	5.828	-3. 994	1.00 21.23	À
ATOM	741	HG	SER	192	-14.367	5.966	-4.520	1.00 15.00	A
	742	C	SER	192	-12.980	3.682	-1.069	1.00 17.77	A
ATOM			SER	192	-13.753	2.738	-0.947	1.00 20.76	A
ATOM	743	0	LEU	193	-12.285	4.209	-0.038	1.00 15.56	A
ATOM	744	N			-11.681	4.959	-0.280	1.00 15.00	À
ATOM	745	H	LEU	193			1.366	1.00 13.27	A
ATOM	746	CA	LEU	193	-12.510	3.761		1.00 12.74	
ATOM	747	CB	LEU	193	-11.195	3.825	2.217		
ATOM	748	CG	LEU	193	-11.051	3.141	3.604	1.00 14.37	À
ATOM	749	CD1	LEU	193	-12.272	2.354	4.116	1.00 14.67	À
ATOM	75C	CD2	LEU	193	-10.274	3.986	4.622	1.00 12.64	A
ATOM	751	Ξ	LEU	193	-13.497	4.748	1.911	1.00 11.22	Α
ATOM	752	Ċ	LEU	193	-13.188	5.912	1.903	1.00 12.22	Ä
ATOM	753	N	CYS	194	-14.652	4.326	2.310	1.00 13.66	A
ATOM	754	H	CYS	194	-14.828	3.347	2.276	1.00 15.00	A
ATOM	755	CA	CYS	194	-15.595	5.360	2.713	1.00 14.84	Ä
	756	CB	CYS	194	-16.915	5.409	1.918	1.00 17.58	À
ATOM	750		CYS	194	-16.623	5.417	0.165	1.00 16.33	Ä
ATOM		S G		194	-16.046	5.163	4.137	1.00 12.81	A
ATOM	758	Ξ.	CYS			4.072	4.655	1.00 10.34	A
ATOM	759	0	CYS	194	-15.983		4.697	1.00 14.32	Ä
ATOM	760	N	LEU	195	-16.557	6.254			Â
ATOM	761	H	LEU	195	-16.541	7.088	4.154	1.00 15.00	
ATOM	762	CA	LEU	195	-17.039	6.291	6.076	1.00 14.89	A
ATOM	763	CB	LEU	195	-16.195	7. 37 2	6.789	1.00 15.56	A
MCTA	764	CG	LEU	:95	-16.571	7.680	8.242		Õ
MCTA	765	CD:	LEU	195	-15.932	8.967	8.762	1.00 13.72	À
ATOM	766	CD2		195	- 16.463	6.448	9.254	1.00 17.25	Ä
ATOM	757	5	LEU	195	-18.546	6.544	6.209	1.00 13.54	A
ATOM	768	Ö	LEU	195	-19.038	7.521	5.705	1.00 14.56	Ä
ATOM	769	N	LYS	196	-19.238	5.667	6. 9 05	1.00 16.36	À
	770	H	LYS	196	-18.719	4.875	7.197	1.00 15.00	A
ATOM			115		-20.577	5.972	7.405	1.00 21.01	À
ATOM	771	CA	LYS	196				1.00 22.66	Ä
ATOM	772	CB	LYS	196	-21.475 -22.953	4.726	7.146 7.590	1.00 22.86	Ţ,
ATOM	3	: 5	LYS	196		4.839			3: 3:
ATCM	;	22	LYS	194	-23.364	4.915	9.104	1.00 40.25	
ATOM	775 776	ΩE	148	196	-23.189	3.694	10.060	1.00 43.56	÷
ATOM	776	NO	LYS	196	-23.004	4.158	11.453	1.00 44.46	Ä
ATOM		HZ:	LYS	19€	-12.182	4.795	11.467	1.00 15.00	
ATOM	<u>-</u>	HZ		:9€	-23.847	4.665	11.778	1.00 15.00	À
ATOM			EYS		-12.807	3.334	12.066	1.00 15.00	Ä

14/31

FIGURE 1N

ATOM	780	~	1 Y S	196	-20.478	6. 29 0	2 2 2 2		
	781		Eys				8.899		,
ATOM				196	-20.194	5,434			,
ATOM	782		SER	197	-20.664	7.534	9,272	1:01 11:63	:
ATOM	783	H	5ER	197	-20.891	5.24			
ATOM	784	CA	SER	<u>:</u> 9-	-20.752	7.701			-
	795		SER	197				1.00 24.87	
ATOM					-15.898	8.878	11.207	1.00 25.62	<i>-</i>
ATOM	786		SER	197	-19.563	8.687	12.588	1,00 32,22	;
ATOM	767	жG	SER	197	-18.795	8.110	12.611	1.00 15.50	
ATOM	788	C	SER	197	-22.216				-
						7.810	11.218	1.00 26.33	-
ATOM	789		SER	197	-23.078	8.303	10.497	1.00 26.57	÷
MOTA	790	N	PRO	198	-22.534	7.274	12.407	1.00 25.77	-
ATOM	791	CD	PRO	198	-21.649	6.526	13.301	1.00 32,92	
ATOM	792	CA	PRC	198	-23.919	7.381			÷
	793	CB					12.913	1.00 26.73	Ä
ATOM			PRO	198	-23.784	6.789	14.318	1.00 32.89	À
ATOM	794	CG	PRO	198	-22.289	6.726	14.659	1.00 33.55	Ä
ATOM	795	C	PRO	198	-24.591	8.789	12.847	1.00 26.60	
ATOM	796	0	PRO	198	-24.035	9.817			À
ATOM	797	N					13.242	1.00 20.20	À
			GLY	199	- 25 . 729	8.773	12.119	1.00 25.75	A
ATOM	798	H	GLY	199	-26.170	7.857	12.057	1.00 15.00	A
ATOM	799	CA	GLY	199	-26.486	10.003	11.790	1.00 26.91	A
ATOM	800	C	GLY	199	-25.821				
		_				10.971	10.816	1.00 28.98	A
ATOM	801	0	GLY	199	-26.084	12.151	10.797	1.00 31.05	A
ATOM	802	N	ARG	200	-24.898	10.464	10.001	1.00 30.15	À
ATOM	803	H	ARG	200	-24.629	9.519	10.165	1.00 15.00	
ATOM	804	CA	ARG	200	-24.140				A
ATOM	805					11.384	9.166	1.00 28.98	A
		CB	ARG	200	-22.749	11.590	9.783	1.00 33.16	A
ATOM	806	CG	ARG	200	-22.739	12.290	11.162	1.00 38.34	A
ATOM	807	CD	ARG	200	-21.327	12.530	11.705	1.00 42.14	Ā
ATOM	808	NΞ	ARG	200	-21.292				
ATOM	809	HE				12.875	13.131	1.00 43.64	Ä
			ARG	200	-21.327	13.831	13.424	1.00 15.00	Ä
ATOM	910	CZ	ARG	200	-21.138	11.896	14.051	1.00 46.40	À
ATOM	811	NH1	ARG	200	-21.219	10.603	13.733	1.00 46.31	Ä
ATOM	812	HHll	ARG	200	-11.104	9.910			
ATOM		HH12			21.104		14.445	1.00 15.00	A
				200	-21.394	10.320	12.789	1.00 15.00	Å
ATOM	814		ARG	200	- 20.901	12.226	15.311	1.00 46,65	A
ATOM	815	HH21	ARG	200	-20.847	13.193	15.566	1.00 15.00	A
ATOM	816	HH22	ARG	200	-20.785	11.510	16.002		
ATOM	817	2	ARG	200	-24.084			1.00 15.00	A
ATOM					-24.004	10.967	7.710	1.00 27.77	Ä
	818	C	ARG	200	-24.264	9.791	7.449	1.00 28.21	Ä
ATOM	819	N	PHE	201	-23.853	11.926	6.792	1.00 30.83	A
ATOM	820	H	PHE	201	-23.513	12.821	7.126	1.00 15.00	
ATOM	821	CA	PHE	201	-24.016				A
MCTA	922	C3				11.708	5.339	1.00 34.17	A
			PHE	201	-23.851	12.996	4.572	1.00 31.58	À
ATOM	823	CG	PHE	201	-25.154	13.730	4.614	1.00 34.85	Α
MCTA	524	CD1		201	-25.174	15.062			_
MCTA	825	CD2	PHE	201	-26.335	13.081	4.190		À
ATOM	826	CEl	PHE	201				1.00 37.89	Ä
ATOM					-26.397	15.749	5.182	1.00 36.91	A
	827	CE2	PHE	201	-27.566	13.762	4.280	1.00 38.98	Ä
MOTA	828	CZ	PHE	201	- 27 . 572	15.0€5	4.815	1.00 37.61	A
ATOM	829	С	PHE	201	-23.277	10.605	4.545		
ATOM	83 0	Ĉ	PHE	201	-23.853			1.00 39.40	Ä
ATOM	831		cni.			10.034	3.604	1.00 45.71	A
		N	SLU	200	-22.031	10.316	5.034	1.00 35.75	A
MCTA	832	Η	GLU	202	-21.878	10.753	5.925	1.00 15.00	
ATOM	833	ΞA	SLU	202	-20. 9 64	9.564	4.318	1.00 34.52	
ATOM	334	ΞB	320	202	-21.295	3.540			÷
ATOM	835	23	320	3.5.5	* 4 4 . 4 7 3		3.234	1.00 33.66	÷
			J	252	-21.924	7.245	3.713	1.00 40.61	Ä
ATOM	834	22	320	200	-22.647	6. 5 05	2.561	1.00 46.12	Ä
ATOM	£ 3 ~	CEL	510	202	-23.461	5.613	2.886	1.00 45.89	
ATOM	8 3 8	CEC	3 1 0	202	-22.417	6.814	1.370		÷
ATCM	839	Ĉ	310	201				1.00 45.63	÷
		-	-		-19.924	10.450	3.71-	1.00 29.99	÷

FIGURE 10

		GLU	202	-20,137	11.567	3.300	1,00 30 76	÷
ATOM	540 0				9.897		,1,01 26.88	÷
ATOM	341 N	AR G	203	-15.728			1.00 18.00	Ä
ATOM	842 H	ARG	203	-18.690	8.998	4.285	1.00 15.50	-
		ARG	203	-17.539	10.603	3.358	1.00 21.85	÷
ATOM			223	-16.819	11.410	4.457	1.00 27.07	÷
MCTA	844 CB	ARG					1.00 37.32	ÄÄÄ
MCTA	845 CG	ARG	203	-17.681	12.187	5.467	± , 00 ± .52	
	846 CD	ARG	203	-16.894	13.213	6.339	1.00 48.09	À
ATOM				-15.911	12.667	7.308	1.00 56.90	Ä
ATOM	847 NE	ARG	203				1.00 15.00	Ä.
ATOM	846 HE	ARG	203	-16.240	12.433	8.223		Ţ.
	849 CZ	ARG	203	-14.572	12.475	7.001	1,00 66.77	À
MOTA			203	-13.702	12.002	7.911	1.00 68.44	A
ATOM		ARG				7.666	1.00 15.00	Ä
ATOM	851 HH11	ARG	203	-12.745	11.829		1.00 15.00	
ATOM	852 HH12	ARG	203	-14.016	11.822	8.845	1.00 15.00	÷.
		ARG	203	-14.084	12.716	5.766	1.00 67.68	À
ATOM					13.108	5.060	1.00 15.00	À
ATOM	854 HH21	ARG	203	-14.670				À
ATOM	855 HH22	ARG	203	-13.143	12.499	5.544	1.00 15.00	
	856 C	ARG	203	-16.517	9. 63 3	2.678	1.00 17.71	A
ATOM				-16.375	8.418	2.931	1.00 7.69	A
ATOM	857 O	ARG	203				1.00 14.42	A
ATOM	858 N	ILE	204	-15.789	10.253	1.791		
ATOM	859 H	ILE	204	-15.915	11.228	1.561	1.00 15.00	A
			204	-14.662	9.482	1.353	1.00 18.32	Ä
MOTA	B60 CA	ILE				-0.231	1.00 24.52	Ä
ATOM	861 CB	ILE	204	-14.520	9.392			
ATOM	862 CG2	ILE	204	-15.820	9.529	-1.069	1.00 21.85	A
		ILE	204	-13.439	10.195	-0. 94 9	1.00 26.35	A
ATOM				-13.992	11.231	-1.961	1.00 36.33	Α
ATOM	864 CD1		204			_	1.00 16.58	A
ATOM	865 C	ILE	204	-13.387	9.819	2.153		
ATOM	866 C	ILE	204	-13.070	10.956	2.457	1.00 18.63	A
	-	LEU	205	-12.718	8.725	2.571	1.00 13.32	Ä
ATOM	• -			-13.142	7.853	2.321	1.00 15.00	A
ATOM	a6a H	LEU	205				1.00 10.01	A
ATOM	869 CA	LEU	205	-11.467	8.829	3.322		
MCTA	870 CB	LEU	205	-11.440	7.688	4.382	1,00 6.66	À
		LEU	205	-12.571	7.727	5.441	1.00 7.99	A
ATOM	871 CS				9.088	6.089	1.00 8.78	Ä
ATOM	872 CD1	LEU	205	-12.722			- · ·	A
ATOM	873 CD2	LEU	205	-12.419	6.720	6.582		
ATOM	874 C	LEU	205	-10.268	8.811	2.377	1.00 9.75	A
		LEU	205	-9.416	9.655	2.320	1.00 10.25	A
ATOM					7.769	1.562	1.00 10.28	A
ATOM	876 N	LEU	206	-10.252			1.00 15.00	Α
ATOM	877 H	LEU	206	-10.991	7.119	1.684		
ATOM	878 CA	LEU	206	-9.166	7.555	0.610	1.00 10.02	A
		LEU	206	-8.249	6.384	0.990	1.00 11.94	A
ATOM	-				6.527	1.859	1.00 14.40	A
ATOM	880 CG	LEU	206	-7.001				A
ATOM	881 CD:	LEU	206	-7.094	5.595	3.074	1.00 14.49	
ATOM		LEU	206	-€. 53 1	7.958	2.151	1.00 8.78	A
			206	9.756	7.071	-0.697	1.00 11.91	Α
MCTA	883 €	LEU					1.00 10.67	A
ATOM	884 C	LEU	20€	-10.792	6.406			
ATOM	855 N	ARG	207	- 9 . 005	7.428	-1.720	1.00 B.06	A
ATOM	886 H	ARG	207	-8.196	7.992	-1.553	1.00 15.00	Ä
		ARG	207	-9.309	6.823	-2.992	1.00 10.45	A
ATOM	BBT CA				7.790	-3.904	1.00 8.71	Ä
ATOM	999 CB	ARG	207	- 9.974				
ATOM	589 CG	ARG	207	-11.258	8.270	-3.357	1.00 15.68	A
ATOM	890 CD	ARG	207	-11.652	9.459	-4.163	1.00 22.25	Α
			207	-12.670	9.192	-5.171	1.00 29.59	A
ATOM	891 NE	ARG					1.00 15.00	Ä
ATOM	892 HE	ARG	207	-13.115	8.300	-5.249		
ATOM	993 CC	ARG	2:7	-13.063	10.272	-5.919	1.00 40.09	Ä
ATCM	994 NH		1:-	-12.482	11.498	-5.813	1.00 36.32	Ä
A . C.			257	-12.813	12.246	-6.391	1.00 15.00	Ä
ATOM	895 HHI		- 0 -			-5.1€5	1.00 15.00	÷
ATOM	see HH1		207	-11.737	11.651			Ä
ATOM	8.97 NH	2 ARG	207	-14.067	10.111	-6.773	1.00 40.86	
ATOM		: ARS	257	14 392	10.877	-7.329	1.00 15.00	Ä
	252		207	-14.498	9.207	-6.853	1.00 15.00	Ä
ATOM	ess HHI	- W4		-7.470	- · - -			

16/31

FIGURE 1P

. =014	900	~	ARG	207	- B . 044	6.456	-3.741		À
ATOM		_							
ATOM	901	Ĉ	ARG	207	-7,053	7.150	-3.787	1.00 15.55	<i>.</i>
ATOM	902		هنته	208	-5.096	5.359	-4.465	- 1.00 17.0 4	÷
ATOM	903	Ξ	خشخ	206	-2.875	4.758	-4.355	1.00 15.00	÷
	904	CA	منتم	205	-7.025	5.128	-5.465	1.00 17.00	Ä
ATOM									À
MOTA	905	CВ	ALA	206	-6.052	4.020	-5.072	1.00 14.69	
ATOM	906	C	ALA	208	-7.544	4.830	-6.854	1.00 20.46	· A
ATOM	907	0	ALA	208	-8.438	4.020	-7.057	1.00 11.89	À
		N	ALLA	209	-6.986	5.58€	-7.808	1.00 26.22	Ä
MOTA	908								
ATOM	909	H	ALA	209	-6.280	6.235	-7.533	1.00 15.00	À
ATOM	910	CA	ALA	209	-7.253	5.208	-9.196	1.00 28.0€	Ā
ATOM	911	CB	ALA	209	-7.702	6.380	-10.069	1.00 27.10	À
	912	С	ALA	209	-6.075	4.461	-9.832	1.00 32.54	Ä
ATOM								1.00 33.00	Ä
ATOM	913	0	ALA	209	-4.895	4.726	-9.593		
ATOM	914	N	ASN	210	-6.502	3.491	-10.634	1.00 32.11	÷
ATOM	915	H	ASN	210	-7.466	3.249	-10.531	1.00 15.00	A
	916	CA	ASN	210	-5.674		-11.662	1.00 36.00	A
ATOM								1.00 39.53	A
ATOM	917	CB	ASN	210	-5.366		-11.355		
ATOM	918	CG	ASN	210	-4.463	1.366	-10.154	1.00 42.59	A
ATOM	919	OD1	ASN	210	-4.285	2.273	-9.342	1.00 39.26	À
ATOM	920		ASN	210	-3.951	0 165	-10.055	1.00 41.77	Α
							-10.817	1.00 15.00	A
ATOM	921			210	-3.990				
MCTA	922	HD22	ASN	210	-3.364	-0.0Bl	-9.279	1.00 15.00	A
ATOM	923	C	ASN	210	-6.299	2.931	-13.043	1.00 36.95	A
ATOM	924	0	ASN	210	-7.492	2.752	-13.259	1.00 36.93	A
					-5.447		-14.013	1.00 37.83	A
ATOM	925	N	THR	211					
ATOM	926	H	THR	211	-4.484		-13.821	1.00 15.00	A
ATOM	927	CA	THR	211	-6.119	3.224	-15.314	1.00 41.27	A
ATOM	928	CB	THR	211	-5.325	4.158	-16.268	1.00 44.53	Ä
	929	OG1	THR	211	-6.076		-17.438	1.00 49.34	Α
ATOM									
ATOM	930	HG1	THR	211	-€.032		-17.508	1.00 15.00	À
MCTA	931	CG2	THR	211	-3.926	3.604	-16.581	1.00 46.08	A
ATOM	932	С	THR	211	-6.434	1.833	-15.878	1.00 39.17	A
ATOM	933	Ö	THR	211	-5.822		-15.475	1.00 36.48	Α
							-16.789	1.00 37.14	Ä
ATOM	934	N	HIS	212	-7.416				
ATOM	935	H	HIS	212	-8.106	2.438	-16.878	1.00 15.00	A
MOTA	936	CA	HIS	212	-7.294	0.454	-17.529	1.00 33.23	A
ATOM	937	СВ	HIS	212	-8. 68 0	-0.012	-18.082	1.00 27.73	Ä
		CG	HIS	212	-9.856		-17.111	1.00 24.58	A
ATOM	938							1.00 24.59	A
ATOM	939		HIS	212	-10.862		-17.161	_	
ATOM	940	HD1	HIS	212	-11.000	-	-17.794	1.00 15.00	A
MCTA	941	CD2	HIS	212	-10.049	-0.723	-15.985	1.00 20.65	A
ATOM	942	NF2	HIS	212	-11.154	-0.265	-15.383	1.00 24.01	Α
	943		HIS	2:2	-11.665		-16.092	1.00 17.59	A
ATOM									Ä
ATOM	944	\subset		212				1.00 38.31	
MOTA	945	0	HIS	212	-5.363		-18.923	1.00 33.92	Α
ATOM	946	N	SER	213	-6.444	1.737	-19.443	1.00 46.63	Α
ATOM	947		SER	213	-7.156		-19.055	1.00 15.00	A
	-						-20.675	1.00 53.91	A
ATOM	948	CA	SER	213	-5.705				
ATOM	949	CB	SER	213	-4.272		-20.400	1.00 52.61	Α
ATOM	950	OG	SER	213	-3.266	1.697	-20.547	1.00 53.97	Α
ATOM	951	HG	SER	213	-3. 3 63		-19.823	1.00 15.00	A
ATOM	952		SER	213	-5.844		-22.097	1.00 60.03	А
								1.00 61.19	
ATOM	953		SER	213	5.005		-22.682		Ä
ATOM	954	::	SER	214	-7.043		-22.686	1.00 64.96	À
ATOM	985		SEP	214	-7.705	2.322	-22.146	1.00 15.00	Ä
ATOM	956		SER	214	-7. 46 3	1.456	-24.094	1.00 69.62	Ä
ATOM	957		SER	214	8.727		-24.495	1.00 67.82	Ā
A CON				~ ~ 7					
ATOM	959		SEF	214	-9.563		-23.336	1.00 67.64	Ä
ATOM	959	H.G	SER	214	-10.468	2.398	-23.623	1.00 15.00	Ä

FIGURE 1Q

ATOM	960	-	SER	214	-6.518	1.587	-25.300	1,00 71,15	À
MOTA	9€1	С	SER	214	-6.102	2.653		1.00 73.45	<u>.</u>
ATOM	962	N	منتد	215	-5.175		-25.859	1.00 73.38	,
									_
MOTA	963	H	منت	215	-5. 45 6	0.596		1.00 15.00	Ä
ATOM	964	CA	Air	215	-6.858		- 25 . 753	1.00 72.62	4
ATOM	965	CB	ALA	215	-7.199	-1.505	-27.138	1.00 73.08	Ä
ATOM	966	C	ALA	215	-€.331	-2.148		1.00 72.11	Ä
	967	Ö	Aŭ.A	215	-7.620				
ATOM					_		-25.069	1.00 72.74	Ä
ATOM	968	N	LYS	216	-5.153	-2.076	-24.28 <i>2</i>	1.00 70.17	À
ATOM	969	H	LYS	216	-4. 74 7	-1.165	-24.199	1.00 15.00	Ä
ATOM	970	CA	LYS	216	-4.482	-3.256	-23.626	1.00 67.38	ċ
ATOM	971	CB	LYS	216	-3.458		-22.648	1.00 65.30	
			LYS						À
ATOM	972	CG		216	-2.217		-23.321	1.00 66.86	A
ATOM	97 3	CD	LYS	216	-1.419	-3.149	-24.134	1.00 68.81	Ä
MOTA	974	CE	LYS	216	-0.082	-2.674	-24.740	1.00 67.51	À
ATOM	975	NZ	LYS	216	0.483	-3 772	-25.598	1.00 67.80	Ä
ATOM	976	HZ1	LYS	216	0.620		-25.041	1.00 15.00	Ä
ATOM	977		LYS	216	-0.168		-26.385	1.00 15.00	À
MOTA	978	HZ3	LYS	216	1.401	-3.406	-25.973	1.00 15.00	A
ATOM	979	С	LYS	216	-5.321	-4.441	-22.993	1.00 66.99	A
ATOM	980	0	LYS	216	-6.462		-22.575	1.00 69.90	A
ATOM	981	N	PRO	217	-4.835		-22.952	1.00 65.06	
									Ā
ATOM	982	CD	PRO	217	-3.525		-23.308	1.00 67.91	A
ATOM	983	CA	PRO	217	-5.792		-22.626	1.00 62.80	A
ATOM	984	CB	PRO	217	-5.285	-8.004	-23.464	1.00 64.33	Α
ATOM	985	CG	PRO	217	-3.755		-23.338	1.00 69.63	A
ATOM	986	c	PRO	217	-5.837		-21.150	1.00 59.77	
									Ą
ATOM	987	0	PRO	217	-4.747		-20.589	1.00 58.81	Α
ATOM	988	N	CYS	218	-7.115		-20.627	1.00 55.45	Α
ATOM	989	H	CYS	218	-7.874	-7.287	-21.233	1.00 15.00	A
MOTA	990	CA	CYS	218	-7.433		-19.210	1.00 46.55	А
MCTA	991	CB	CYS	218	-8.105		-19.079	1.00 44.69	Ä
ATOM	992	SG	CYS	218	-8.855				
							-17.460	1.00 43.11	A
ATOM	993	C	CYS	218	-6.265		-18.263	1.00 43.24	A
ATOM	994	0	CYS	218	-5.720	-9.026	-17. 9 59	1.00 44.68	A
ATOM	995	N	GLY	219	-5. 85 3	-6.820	-17.876	1.00 40.28	Α
ATOM	996	H	GLY	219	-6.328		-18.059	1.00 15.00	А
ATOM	997	CA	GLY	219	-4.659		-17.070	1.00 36.27	A
ATOM		C	GLY	219					
	998				-5.017		-15.643	1.00 33.86	A
ATOM	999	0	GLY	219	-5.906	-6.452	-15.097	1.00 34.90	A
MOTA	1000	N	GLN	220	-4.313	-7.996	-15.023	1.00 33.15	A
ATOM	1001	H	GLN	220	-3. 83 5	-8.684	-15.580	1.00 15.00	A
ATOM	1002	CA	GLN	220	-4 448	-7. 92 9	-13.578	1.00 29.92	A
ATOM	1003	CB	GLN	220	-4.298		-12.936	1.00 27.81	A
ATOM	1004	CG	GLN	220	-5.380				
							-11.883	1.00 30.94	A
ATOM	1005	$\Box \Box$	GLN	220		-10.631		1.00 36.37	A
ATOM	1005	QE1	GLN	220	-4.215	-10.969	-10.661	1.00 38.47	A
MOTA	1007	NE2	GLN	220	-6.425	-11.296	-10.977	1.00 37.61	À
ATOM	1008			22C			-10.667	1.00 15.00	A
ATOM	1009	HE22		220	-7.373		-11.200		
								1.00 15.00	A
MOTA	1010	Ξ	GLN	220	-3. 66 6		-12.859	1.00 27.48	A
ATOM	1011	0	GLN	225	-2.4€1	-6.694	-12.999	1.00 27.61	Ā
ATOM	1013	N	GLN	221	-4.438	-6. 04 0	-12.110	1.00 25.10	÷
ATOM	1013	H	SLN	22:	-5.433		-12.143	1.00 15.00	÷
ATOM	1214	ΞA	ELN	221	-3.903	-4.929	-11.387	1.00 22.41	7
ATOM		CE	52.		-4.077				
	1015 1016		J	221 221		-3.528	-11.949	1.00 22.12	A
ATOM	5	23	GLN	4	-3.284		-13.163	1.00 32.16	Ä
MCTA	1217	22	GLN	221	-3.795	-1.637	-13.405	1.00 34.69	Ä
ATOM	1018	CEL	2TN	221	-3.746	-0.763	-12.558	1.00 42.12	Ä
ATOM	1019	NEC	321:	2 2:	-4.548		-14.398	1.00 34.93	<u>.</u>
		_							

18/31

FIGURE 1R

ATOM	1020	HE2	: GLN	221	-4.981	-2 -=-	-15.042		
MCTA	1021	HED		221	-4.944	-0.551	-14.575		<u>:</u>
ATOM	1022	C	GLN	221	-4.227	-4.913	-9.948	1.00 19 54	
ATOM	1023	Ŝ	SLN	221	-5.300	-5.381	-9.611		-
ATOM	1324	N	SER	222	-3.374	-4.330		1.00 15 10	À.
ATOM	1025	H	SER	222	-2.442		-9.123		À
	1026	CA	SER			-4.098	-9.441	1.00 15.00	Ä
ATOM				222	-3.851	-4.120	-7.752	1.00 19.45	Ä
ATOM	1027	CB	SER	222	-3.104	-4.947	-6.691		Ä
ATOM	1025	೦೦	SER	222	-3.096	-€.339	-7.053	1.00 24.64	=
ATOM	1029	нG	SER	222	-2.651	-6.336	-7.904		÷
ATOM	1030	C	SER	222	-3.731	-2.688	-7.330	1.00 24.09	÷
ATOM	1031	0	SER	222	-2.992	-1.929	-7.944	1.00 29.41	A
ATOM	1032	N	ILE	223	-4.534	-2.386	-6.283	1.00 22.81	Ä
ATOM	1033	H	ILE	223	-5.172	-3.127	-6.074	1.00 15.00	Ä
ATOM	1034	CA	ILE	223	-4.567	-1.122	-5.530	1.00 21.06	À
MOTA	1035	CB	ILE	223	-5.970	-0.490	-5.852	1.00 19.67	Ä
ATOM	1036	CG2	ILE	223	-6.564	0.315	-4.673	1.00 16.59	Ä
ATOM	1037	CG1	ILE	223	-5.911	0.278	-7.188	1.00 15.22	Ä
ATOM	1038	CD1	ILE	223	-7.229	0.868	-7.709	1.00 20.54	Ä
ATOM	1039	C	ILE	223	-4.367	-1.446	-4.007	1.00 21.62	A
ATOM	1040	0	ILE	223	-5.098	-2.269	-3.444	1.00 19.58	A
ATOM	1041	N	HIS	224	-3.429	-0.767	-3.340	1.00 19.73	
ATOM	1042	H	HIS	224	-2.794	-0.230	-3.899		Ą
ATOM	1043	CA	HIS	224	-3.497			1.00 15.00	A
ATOM	1044	CB	HIS			-0.671	-1.858	1.00 16.45	A
ATOM	1045	CG	HIS	224	-2.164	-1.183	-1.227	1.00 18.74	A
ATOM				224	-2.182	-1.442	0.296	1.00 14.92	Α
	1046		HIS	224	-2.479	-2.628	0.582	1.00 15.33	A
ATOM	1047		HIS	224	-2.667	-3.515	0. 50 5	1.00 15.00	Ä
ATOM	1048		HIS	224	-1.964	-0.524	1.310	1.00 13.79	Ä
ATOM	1049		HIS	224	-2.137	-1.127	2.517	1.00 10.52	Α
MCTA	1050		HIS	224	-2.458	-2.411	2.232	1.00 11.70	À
MOTA	1051	С	HIS	224	-3.914	0. 699	-1.284	1.00 15.18	A
ATOM	1052	0	HIS	224	-3.338	1.732	-1.520	1.00 14.36	A
ATOM	1053	N	LEU	225	-4.970	0.673	-0.468	1.00 16.85	A
MOTA	1054	Н	LEU	225	-5.317	-0.238	-0.252	1.00 15.00	À
ATOM	1055	CA	LEU	225	-5.395	1.885	0.256	1.00 15.55	Ä
ATOM	1056	CB	LEU	225	-6.927	2.082	0.208	1.00 17.15	A
ATOM	1057	CG	LEU	225	-7.495	2.456	-1.154	1.00 18.03	À
ATOM	1058	CD1	LEU	225	-6.792	3.659	-1.774	1.00 19.34	À
MOTA	1059	CD2	LEU	225	-8.994	2.659	-1.098	1.00 13.66	Ä
ATOM	1060	C	LEU	225	-5.074	1.758	1.739	1.00 14.77	Ä
ATOM	1061	0	LEU	225	-5.347	0.726	2.345	1.00 12.20	Ä
ATOM	1062	N	GLY	226	-4.544	2.829	2.344	1.00 18.04	Â
ATOM	1063	Н	GLY	226	-4.218	3.616	1.813	1.00 15.00	A
ATOM	1064	CA	GLY	226	-4.541		3.841		_
MCTA	1065	Ċ	GLY	226	-4.193	4.171	4.544		Ą
ATOM	1066	Ö	GLY	226	-3.389	4.906		1.00 17.08	À
ATOM	1067	N	GLY	227	-4.781		4.055	1.00 13.75	À
ATOM	1068	Н	GLY	227		4.457	5.725	1.00 16.30	A
ATOM	1069	CA			-5.434	3.771	6.036	1.00 15.00	Ä
			GLY	227	-4.379	5.649	6.490	1.00 8.52	A
ATOM	1070	<u> </u>	GLY	227	-4.935	5.631	7.959	1.00 12.75	A
ATOM	1071	C .	GLY	227	-5.651	4.748	8.466	1.00 10.57	A
ATOM	1072	N	VAL	228	-4.588	6. 69 8	8.675	1.00 9.23	Ä
ATOM	1073	H	VAL	228	-4.040	7. 39 8	8.222	1.00 15.00	A
ATOM	1074	25	VAL	229	-5.110	6.818	10.067	1.00 11.74	÷
ATOM	1075	CΞ	VAL	228	-4.085	7.320	11.144	1.00 14.30	À
MOTA	1076	231	VAL	228	-2.830	6.445	11.333	1.00 10.73	 A
ATOM	1077	C2 5	VAL	228	-4.789	7.565	12.479	1.00 17.07	÷
ATOM	1078	2	VAL	228	-6.238	7.803	10.098	1.00 9.03	Ä
ATOM	1079	0	VAL	228	-6.089	8.937	9.645	1.00 12.01	

19/31

FIGURE 1S

MCTA	1080	N	PHE	229	-7.347	7.299	10.640		
								1,00 9 66	-
ATOM	1081	Η	PHE	229	-7.329		10.922	1.00 15.00	<u>:</u>
ATOM	1082	CA	PHE	229	-8.566	5.106	10.772	1.00 11.15	2
MCTA	1083	CE	PHE	229	-9.578	7.687	9.686		
									-
ATOM	1084	CG	PHE	229	-9.063	7.912	5.233	1.00 5.40	
ATOM	1085	CD:	PHE	229	-9.140	9.196	7.649	1.00 10.03	2
ATOM	1086	CD2	PHE	229	-9.433	6.883	7.517		
									;
ATOM	1057	CE:	PHE	229	-8.512	9.443	6.395	1,00 5,18	
ATOM	1098	CE2	PHE	229	-7.771	7.128	6.282	1.00 4.26	-
MCTA	1089	CZ	PHE	229	-7.813	8.424	5.731	1.00 5.71	
ATOM	1090	c	PHE	229	-9.202				
						8.014	12.197		A
ATOM	1091	C	PHE	229	-9.116	7.000	12.870		÷
ATOM	1092	N	GLU	230	-9.863	9.064	12.672	1.00 17.93	Ä
ATOM	1093	H	GLU	230	-9.912	9.892	12.113	1.00 15.00	
									Ä
ATOM	1094	CA	GLU	230	-10.856	8.944	13.770	1.00 18.08	Ä
MOTA	1095	CB	GLU	23 C	-11.218	10.303	14.393	1.00 16.17	À
ATOM	1096	CG	GLU	230	-11.068	10.090	15.889	1.00 27.69	À
ATOM	1097	CD	GLU	230	-12.314				
						10.091	16.805	1.00 33.06	Ä
ATOM	1098		GLU	230	-13.355	10.707	16.552	1.00 38.26	A
ATOM	1099	OE2	GLU	230	-12.218	9.477	17.863	1.00 38.14	A
ATOM	1100	C	GLU	230	-12.225	8.268	13.453	1.00 18.70	
									Α
ATOM	1101	0	GLU	230	-12.967	ε.519	12.492	1.00 21.58	A
ATOM	1102	N	LEU	231	-12.542	7.334	14.361	1.00 13.79	A
ATOM	1103	H	LEU	231	-11.840	7.125	15.015	1.00 15.00	A
ATOM	1104	CA	LEU	231	-13.885	6.836			
							14.330	1.00 13.52	A
MOTA	1105	CB	LEU	231	-13.954	5.378	14.002	1.00 13.90	A
ATOM	1105	CG	LEU	231	-13. 19 9	5.064	12.725	1.00 15.44	À
ATOM	1107	CD1	LEU	231	-13.781		11.436	1.00 10.24	A
ATOM	1108		LEU	231	-12.970				
						3.569	12.769	1.00 11.74	A
ATOM	1109	\subset	LEU	231	-14.638	7.074	15.591	1.00 14.88	А
MOTA	1110	0	LEU	231	-14.145	6.912	16.692	1.00 12.46	A
ATOM	1111	N	GLN	232	-15.891	7.411	15.350	1.00 19.40	A
ATOM	1112	H	GLN						
				232	-16.107	7.560	14.394	1.00 15.00	A
ATOM	1113	CA	GLN	232	-16.920	7.509	16.389	1.00 21.07	А
ATOM	1114	CB	GLN	232	-18.132	8.234	15.804	1.00 23.55	À
ATOM	1115	CG	GLN	232	-17.792	9.709	15.687	1.00 28.60	A
ATOM	1116	CD	GLN	232	17.625				
						10.200	17.102	1.00 33.66	A
ATOM	1117		GLN	232	-18.623	10.472	17. 74 2	1.00 38.08	A
ATOM	1118		GLN	232	-16.380	10.254	17.596	1.00 33.41	A
ATOM	1119	HE21	GLN	232	-15.596	10.186	16.972	1.00 15.00	A
ATOM		HE22		232	-16.357				
						10.470	18.576	1.00 15.00	Α
ATOM	1121	C	SLN	232	-17.402	6.148	16.851	1.00 21.86	A
ATOM	1122	Ç	GLN	232	-17 368	5.218	16.052	1.00 21.58	A
ATOM	1123	N	PRO	233	-17.906	6.013	18.115	1.00 22.31	A
ATOM	1124	CD	PRC	233	-17.962		19.168		
	1125								Ä
ATOM		CA	PRC	233	-18.570	4.747	18.442	1.00 21.21	À
MOTA	1126	CB	PRC	233	-19.013	4.987	19.866	1.00 23.88	A
MCTA	1127	CG	PRO	233	-18.661	6.404	20.339	1.00 20.95	A
ATOM	1128	C	PRO	233	-19.667	4.417	17.434		
	1129	Š					47.434	1.00 23.66	Α
ATOM	29		PRO	233	-20.275	5. 3 19	16.875	1.00 26.89	À
MOTA	1130	N	SLY	234	-19.731	3.140	17.059	1.00 22.77	A
MOTA	1131	H	SLY	234	-19.082	2.466	17.417	1.00 15.00	
MCTA	1130 1131 1122 1133 1134	CA	GLY	234	-20.766	2.767	16.072		A
ATOM		-	;					1.00 19.45	÷
		<u>-</u>	GLY	234	-20.545	3.241	14.625	1.00 19.67	
ATOM		-	32%	234	-21.299	2.980	13.715	1.00 23.81	÷
ATCM		::	À	235	-19.405	3.926	14.368	1.00 18.89	•
ATCM	1134	Η	ALA	.235	-19.096	4.485	15.135		~
ATOM	1136	CA	7-7	- 				1.00 15.05	Ä
	د ـ ـ ـ			235	-18.431	3.515	13.296	1.00 22.17	À
ATOM	1139	23	٨٠٨	235	-18.193	2.042	13.039	1.00 6.65	Ä
ATOM	1139	-	<u>~_~</u>	235	18.540	4.160	11.993	1.00 21.96	Ä
					-				~

20/31

FIGURE 1T

ATOM	1141	_	À	235	-18.486	5.385			•
	1141	::	SER	236					
ATOM					-18.699	3.498	10.787		÷.
ATOM	1142	Η	SER	236	-18.824	4.326	10.254	1 77 15 11	:
ATOM	1143	CA	SER	23€	-18.630	2.227	9.961		
								- · · · · · · · · · · · · · · · · · · ·	.¬
MOTA	1144	CB	SER	236	-19.905	1.576	9.160	1,00 14,96	÷
ATOM	1145	CG	SER	236	-20.662	0.908	9.533	1 00 00 35	· .
		HG							
MCTA	1146		SER	23€	-21.599	0.910	9.647	1.00 15.00	÷
MCTA	1147	C	SER	236	-17.794	2.538	8.714	1.00 13.65	Ä
ATOM	1148	0	SER	236	-17.939	3.614	8.131	1.00 16.29	À
ATOM	1149	N	VAL	237	-16.986	1.567	8.286	1.00 14.95	A
ATOM	1150	Ħ	VAL	237	-16.764	0.823	9.949	1.00 15.00	À
MOTA	1151	CA	VAL	237	-16.201	1.802	7.077	1.00 11.42	à
ATOM	1152	CB	VAL	237	-14.681	2.004	7.284	1.00 12.49	À
ATOM	1153	CG1	VAL	237	-14.113	0.726	7.939	1.00 13.10	À
ATOM	1154	CG2	VAL	237	-14.254	3.396			
							7.846	1.00 10.27	÷
ATOM	1155	C	VAL	237	-16.468	0.746	6.035	1.00 8.76	Ä
ATOM	1156	0	VAL	237	-16.827	-0. 36 3	6.341	1.00 12.84	À
ATOM	1157		PHE	238					
		N			-16.354	1.158	4.773	1.00 12.45	A
ATOM	1158	H	PHE	238	-16.139	2.128	4.652	1.00 15.00	À
MOTA	1159	CA	PHE	238	-16.521	0.213	3.653	1.00 11.21	À
ATOM	1160	CB	PHE	238	-18.013	0.137	3.322	1.00 13.00	A
ATOM	1161	CG	PHE	238	-18.634	1.468	2.899	1.00 12.17	A
ATOM	1162	CD1	PHE	236	-18.763	1.812	1.518	1.00 12.94	A
ATOM	1163	CD2	PHE	238	-19.135	2.332	3.887	1.00 10.55	A
MOTA	1164	CEl	PHE	238	-19.407	3.010	1.092	1.00 14.01	A
ATOM	1165	CE2	PHE	238	-19.786	3.504	3.470	1.00 12.74	
									A
ATOM	1166	C∠	PHE	238	-19.917	3.836	2.100	1.00 13.17	A
MOTA	1167	С	PHE	238	-15.725	0.582	2.379	1.00 11.20	A
ATOM	1168	C	PHE	238	-15.137	1.638	2.267	1.00 8.73	
								_	A
ATOM	1159	N	VAL	239	-15.726	-0.300	1.383	1.00 14.34	A
MOTA	1170	Η	VAL	239	-16.187	-1.170	1.523	1.00 15.00	Ä
ATOM	1171	CA	VAL	239	-14.982				
						0.027	0.154	1.00 14.65	A
MOTA	1172	CB	VAL	239	-13.900	-1.043	-0.162	1.00 14.09	À
ATOM	1173	CG1	VAL	239	-13.004	-1.318	1.038	1.00 14.55	A
MOTA	1174	CG2	VAL	239					
	/ -				-13.064	-0.594	-1.361	1.00 14.74	À
ATOM	1175	C	VAL	239	-15.930	0.081	-1.043	1.00 18.32	A
MOTA	1176	0	VAL	239	-16.558	-0.903	-1.369	1.00 18.99	A
	1177								
MOTA		N	ASN	240	-16.000	1.207	-1.707	1.00 19.26	A
ATOM	1178	H	ASN	240	-15.420	1.947	-1.383	1.00 15.00	A
ATCM	1179	CA	ASN	240	-16.613	1.355	-3.031	1.00 21.66	A
MCTA	1180	CB	ASN						
				240	-16.850	2.856	-3.095	1.00 24.58	Ä
MOTA	1181	CG	ASN	240	-18.167	3.0 7 7	-3.708	1.00 29.09	A
ATOM	1182	001	ASN	24C	-18 948	2.123	-3.740	1.00 35.44	A
ATOM	1183		ASN	240	-18.293	4.331	-4.166	1.00 34.71	A
MCTA	1184	HD21	ASN	24 C	-19.149	4.489	-4.657	1.00 15.00	Ä
MCTA	1155	C	ASN	240	-15.6 6 9	0. 95 0	-4.184	1.00 20.95	Ä
	1166								
MOTA		C	ASN	24 C	-14.473	1.128	-4.058	1.00 20.99	A
MOTA	1167	N	VAL	241	-16.1 8 9	0.383	-5.275	1.00 21.52	A
ATOM	1188	Н	VAL	241	-17.182	0.230	-5.295	1.00 15.00	Ä
	1100								
MCTA	1189	CA	VAL	241	-15.387	0.439	-6.516	1.00 20.56	Ä
ATOM	1190	23	VAL	24:	-14.581	-0. 85 0	-6.849	1.00 18.02	A
ATOM	1191	CG:	VAL	241	-15.501	-2.058	-7.063	1.00 15.06	
									A
ATOM	1191	002	VAL	241	-13.597	-1.259	-5.764	1.00 20.05	Ä
MOTA	1193	-	VAL	241	-15.253	5.758	-7.741	1.00 18.88	Å
ATIM	1194	-		241	-17.441	0.500	-7.819		
	1198	.;							÷
MCTA	7 -		THE	242	-15.541	1.162	-8.752	1.00 21.24	Ä
ATOM	1194	Ξ.	THE	242	-14.704	1.653	-8.486	1.00 15.00	Ä
ATCM	1197	25	THE	242	-15.246		-10.031		
									,
ATOM	1195	T5	THR	242	-15.342		-10.981	1.00 15.80	À
ATOM	1199	231	THE	2 % 2	-14.035	1.663	-10.953	1.00 17.72	À
						= 1 = = =			<i>r</i> >

21/31

FIGURE 1U

ATOM	1200	H31	THE	242	-13 72:	1 1.94	s <u>.</u>		
ATCM	::::	232		242	-15.13	3 -3:			
ATOM	1202		THR	242	-16 75				
ATOM	1203		THE	242	-17.84	. 0.41			÷
ATOM	1204	Ñ	ASF	243			10.718	1.00 21.26 1.00 21.56 1.00 21.26	-
					-15.923		-10.718	1,00 10.55	÷
ATOM	1205	H	ASP	243	-15.05	-0.580	-10.221	1,20 15,00	÷.
MOTA	1206	CA	ASP	243	-16.092		7 -11.628	1.00 21.29	A
ATOM	1207	CB	ASP	243	-14.905	-2.12 <i>6</i>	-12.594	1.00 22.05	÷
ATOM	1205	CG	ASP	243	-14.932	-0.954	-13.492	1,00 25,23	:
ATOM	1209	ODl	ASP	243	-14.314		13.115	1.00 26.43	
ATOM	1210	OD2	ASP	243	-15.588		-14.535	1.00 33.00	
ATOM	1211	C	ASP	243	-16.123		-10.923	1.00 20.35	
ATOM	1212	0	ASP	243	-15.148		-10.967	1.00 20.43	
MOTA	1213	N	PRO	244	-17.204		-10.154		Ä
ATOM	1214	CD	PRO	244	-18.481		-10.071		A
ATOM	1215	CA	PRO	244				1.00 16.83	Ä
ATOM	1216				-17.120			1.00 19.13	À
		CB	PRO	244	-18.293			1.00 15.33	Ä
ATOM	1217	CC	PRO	244	-18.890	_		1.00 15.21	À
ATOM	1218	C	PRO	244	-16.975		-9. 974	1.00 19.29	À
ATOM	1219	C	PRO	244	-16.194		-9.548	1.00 23.48	A
ATOM	1220	N	SER	245	-17.581	-6.163	-11.150	1.00 22.60	A
ATOM	1221	H	SER	245	-18.220	-5. 45 9	-11.473	1.00 15.00	A
MOTA	1222	CA	SER	245	-17.414	-7.429	-11.942	1.00 25.50	A
ATOM	1223	CB	SER	245	-18.256		-13.234	1.00 21.36	A
ATOM	1224	O G	SER	245	-19.667		-12.981	1.00 38.26	Â
MCTA	1225	HG	SER	245	-19.848		-12.038	1.00 15.00	
ATOM	1226	C	SER	245	-15.955		-12.328		A
MCTA	1227	Ö	SER	245	-15.477		-12.528	1.00 24.14	A
ATOM	1228	N	GLN	246				1.00 24.84	À
ATOM	1229	н	GLN		-15.177		-12.385	1.00 28.52	À
ATOM	1230	CA		246	-15.638	-5.804	-12.265	1.00 15.00	A
			GLN	246	-13.743		-12.590	1.00 26.45	A
ATOM	1231	CB	GLN.	246	-13.144		-13.233	1.00 29.90	Ä
MCTA	1232	CG	GLN	246	-13.403		-14.758	1.00 26.84	À
MOTA	1233	CD	GLN	246	-14.862		-15.129	1.00 21.60	À
ATOM	1234	OE1	GLN	246	-15. 5 38	-4.503	-14.616	1.00 24.20	A
ATOM	1235	NE 2	GLN	246	-15.334	-6.234	-15.975	1.00 26.15	Ä
ATOM	1236			246	-14.763		-16.423	1.00 15.00	À
ATOM	1237	HE22	GLN	246	-16.320		-16.084	1.00 15.00	A
ATOM	1238	0	GLN	246	-12.936		-11.363	1.00 27.14	Â
MOTA	1239	С	GLN	246	-11.721		-11.454	1.00 25.73	Ä
ATOM	1240	N	VAL	247	-13.615		-10.196	1.00 23.70	
ATOM	1241	H	VAL	247	-14.600	-7.594		1.00 15.00	Ä
ATOM	1242	CA	VAL	247	-12.718	-7.569	-9.097	·	A
ATOM	1243	CB	VAL	247	-13.156	-6.814		1.00 21.91	Ä
ATOM	1244		VAL	247	-14.027		-7. 85 9	1.00 21.59	A
ATOM	1245	CG2		247		-7.616	-6.962	1.00 24.52	À
ATOM	1246	0	VAL		-13.680	-5.409	-8.167	1.00 21.€1	À
ATOM	1247	Ö		247	-12.258	-8.998	-8.910	1.00 21.55	ż
ATOM	1245		VAL	247	-12.946	-9.912	9.251	1.00 19.53	À
		N	SER	248	-11.000	-9.152	-8.444	1.00 21.31	Ä
ATOM	1245	H	SER	248	-10.558	-8.342	-8.070	1.00 15.00	Ä
ATOM	1250	CA	SER	248	-10.414	-10.499	-8.327	1.00 21.97	À
ATOM	1251	CB	SER	248	-8. 93 9	-10.571	-8.828	1.00 23.61	À
ATOM	1251	CG	SER.	248	-8.860	-9.952	-10.129	1.00 20,21	Ä
ATOM	1253	#G	SER	248	-9.752	-10.027	-10.496	1.00 15.00	Ä
ATIM	1254	Ţ	SER	148	-10.538	-11,076	-6.946	1.00 19.28	Ę
ATOM	1255	0	SER	248	-10.046	-10.409	-6.052	1.00 20.64	=
ATOM	1155	N	HIS	249	-11.269	-12.204	-6.814	1.00 18.72	£ .
ATOM	1288	Ξ	H15	249	-11.284	-12.753	-7.674	1.00 18.00	. Y
ATOM	1256	ΞÀ	H:S	249	-11.640	-12.673	-5.478		
ATOM	1259	23	HIS	249		-13.152	-5.484		÷
	-			- • •		25 شاد و د ا	J . 4 0 4	1.00 13.15	÷.

FIGURE 1V

ATOM	1260	23	H15	249	-13.919	-11.915	5 55 -		
				442			-5.551		. - .
ATOM	1261	ND:	HIS	249	-14.137	` -11.12F	-4.486	1.00 13 47	<u>:</u>
		HD:	HIS	249					
ATOM	1261				-13.720		-3.611		
ATOM	1263	222	HIS	249	- 14 . 662	-11,414	-6.610		•
ATOM	1264	NE2	HI5	249	-15.317	-10.347	-ć. <u>.</u> 34	1,00 15.51	÷
	1255	CEL	HIS	249	-15.018			1.00 12.36	Ä
ATOM				247			-4.821		_
MOTA	1266	0	HIS	249	-10.701	-13.683	-4.858	1.00 23.59	÷
		-							^
ATOM	1267		HIS	249	-11.103	-14.729	-4.359	1.00 21,98	Ä
ATOM	1268	N	GLY	250	-9. 39 8	-13.258	4 070		Ä
ALOM							-4.878	1.00 29.10	^
ATOM	1269	H	GLY	250	-9.252	-12.351	-5.253	1.00 15.00	Ä
				250	9 410				
ATOM	1270	CA	GLY	250	-8.410	-14.041	-4.115	1.00 24.27	5 A
MOTA	1271	_	GLY	250	-8.336	-15.372	-4.743	1.00 25.93	•
		_							
ATOM	1272	0	GLY	250	-5.940	-15.520	-5.795	1.00 29.26	À
ATOM	1273	N	THR	251	-7.594	-16.302	-4.127		
								1.00 22.38	Ä
ATOM	1274	H	THR	251	-7.485	-17.038	-4.804	1.00 15.00	À
		C 3	77117						
ATOM	1275	CA	THR	251	-/	-16.139	-2.725	1.00 21.12	À
ATOM	1276	CB	THR	251	-6.988	-17.525	-1.933	1.00 24.76	Ä
ATOM	1277	0G1	THR	251	-5.877	-17.641	-0.981	1.00 22.90	Ä
MOTA	1278	HGI	THR	251	-6.063	-18.366	-0.381	1.00 15.00	Ä
ATOM	1279	CG2	THR	251	-6. 96 8	-18.722	-2.890	1.00 22.77	A
TOM	1280	С	THR	251	5 053	15 150	2 472		
ATOM		_			-5.952	-15.158	-2.473	1.00 17.96	Ä
ATOM	1281	0	THR	251	-4.969	-15.043	-3.213	1.00 12.30	À
ATOM	1282	N	GLY	252	-6.241	-14.367	-1.419	1.00 16.85	A
ATOM	1283	Н	GLY	252	-7 093	-14.432	-0.862	1.00 15.00	Ä
ATOM	1284	CA	GLY	252	-5.277	-13.375	-0.928	1.00 13.16	Ä
ATOM	1285	С	GLY	252	-5.357	12 050			
							-1.670	1.00 15.51	Ä
ATOM	1286	0	GLY	252	-4.580	-11.168	-1.439	1.00 15.18	Ä
	1287								
ATOM		N	PHE	253	-6.189	-12.063	-2.744	1.00 16.66	À
MOTA	1288	H	PHE	253	-6. 86 8	-12.805	-2.761	1.00 15.00	A
MCTA	1289	CA	PHE	253	-6.110	-10.892	-3.651	1.00 15.77	Ä
ATOM	1290	CB	PHE	253	-6.649	-11.216	-5.100		-
					-0.043			1.00 17.11	Ā
ATOM	1191	CG	PHE	253	-5.595	-11.840	-5.994	1.00 11.82	A
ATOM	1292	CD1	PHE	253	-4.385	-11.175	-6.231	1.00 13.69	A
ATOM	1293	CD2	PHE	253	-5.845	-13.089	-6.558	1.00 18.59	À
ATOM	1294	CEl	PHE	253	- 3 . 3 6 4	-11.771	-6.993	1.00 14.39	À
ATOM	1295	CE2	PHE	253	-4.840	-13.680	-7.363	1.00 21.37	Ä
ATOM	1296	CZ	PHE	253	-3.612	-13.014	-7. 5 62	1.00 15.72	À
ATOM	1297	2	PHE	253	-6.740	-9.599			Ä
							-3.147	1.00 13.88	
ATOM	1298	С	PHE	253	-6.347	-8.477	-3.453	1.00 14.27	Ä
	1299		TILD						
MCTA		N	THR	254	-7.865	-9.837	-2.502	1.00 14.00	À
MCTA	1300	H	THR	254	-0.079	-10.748	-2.124	1.00 15.00	Ä
ATOM	1301	CA	THR	254	-8.741	-8.681	-2.185	1.00 14.09	A
MCTA	1302	CB	THR	254	- 9 . 908	-8.469	-3.201	1.00 11.66	A
ATOM	1303	031	THR	254	-9.414	-8.325	-4.536	1.00 13.08	A
ATOM	1304	HG1	THR	254	_ S 0 2 4	0 054	4 000	1.00 15.00	
					9.020			1.00 15.00	^
ATOM	1305	CG2	THR	254	-10.882	-7.321	-2.885	1.00 13.78	Ä
ATOM	1306	2	THR	254	- 5.270				
		_				- B . 779	-0.738	1.00 12.36	Ä
ATOM	1307	0	THR	254	- 9 . 906	-9. 69 5	-0.240	1 00 14.54	A
ATOM	1308	N	SER	255	-9.007	-7.683	-0.027	1.00 13.42	Ä
ATOM	1309	H	SER	255	-8.425	-7.021	-0.490	1.00 15.00	÷
ATOM	1310	CA	SER	255	-9.032	-7.725	1.431	1.00 7.59	Ä
ATOM		CB.	SER	255	-7.793		1.976		
						-8.466		1.00 6.39	Α.
MOTA	1311 1112	00	SER	255	-6.704	-7.560	2.041	1.00 9.69	÷
1.704				255					
ATOM	1313	НЭ	SER	255	+5.920	-B.C31	1.741	1.00 15.00	À
ATOM	1314	-	SER	255	-9.248	-6.341	2.085		÷
		-						1.00 10.05	
ATCM	1318	-	SEF	255	-9.191	-5. 254	1.492	1.00 15.21	÷
ATOM	1316	::	PHE	25€	-9.653	-6.385	3.369		•
		••							Ä
ATOM	1317	Ξ	PHE	25 é	-9.700	-7.323	3.733	1.00 15.00	÷
ATOM	1318	ΞÀ	PHE	256	-10.114				
	=					-5.168	4.035	1.00 7.54	÷
ATOM	1319	ΞΞ	PHE	256	11 605	-5.009	3.679	1,00 11,65	Ä
-									· ·

FIGURE 1W

		CG	PHE	. 255	-12.376				
MOTA	1320					-3.524	4.235		<u>.</u>
ATCM	1321	==:	PHE	156	-11.766	-2.570	4.533		:
ATOM	1322	ZZ 2	PHE	256	-13,756	-3.976	4.327	1	ż.
ATOM	1323	CE:	PHE	256	-12.503	-1.490	5.234	1.00 11.49	Ä
ATOM	1324	CE2	PHE	256	-14.514	-2.849	4.734	1.00 6.86	÷.
	1325	CZ	PHE	256	-13.862	-i.657	5.211	1.00 9.27	Ä
MCTA	-242					- 1.057			_
ATOM	1326	C	PHE	256	- 9 . 9 3 3	-5.268	5.560	1.00 11.92	A
ATOM	1327	\circ	PHE	25€	-10.195	-6.2 9 0	6.177	1.00 9.43	5. 5.
ATOM	1328	N	GLY	257	-9.420	-4.207	6.169	1.00 10.57	
								1.00 10.1	^
ATOM	1329	Η	GLY	257	-9.217	-3. 36 5	5.653	1.00 15.00	÷
	1330	CA	GLY	257	-9.368	-4.406	7.612		
MOTA									À
ATOM	1331	0	GLY	257	-8.965	-3.122	8.287	1.00 11.14	÷
	, , , , ,	0	GLY	257	-8.916	2 060		. 00 10 2:	
ATOM	1332					-2.068	7.679	1.00 10.81	Ä
ATOM	1333	N	LEU	258	-8. 68 8	-3.277	9.565	1.00 12.61	Ä
ATOM	1334	H	LEU	258	-8.776	-4.204	9.943	1.00 15.00	Ä
ATOM	1335	CA	LEU	258	-8.434	-2.098	10.426	1.00 14.72	À
ATOM	1336	CB	LEU	258	-9.751	-1.212	10.704	1.00 14.67	Ä
ATOM	1337	CG	LEU	258	-10.991	-1.863	11.379	1.00 18.02	À
ATOM	1338	CD1	LEU	258	-12.317	-1.125	11.094	1.00 15.05	A
		CDG	TEIT	750					
ATOM	1339		LEU	258	-10.743	-2.047	12.905	1.00 15.42	A
ATOM	1340	С	LEU	258	-7.737	-2.525	11.709	1.00 11.84	Ä
MOTA	1341	0	LEU	258	-7.851	-3. 69 0	12.096	1.00 7.91	A
ATOM	1342	N	LEU	259	-7.058	-1.537	12.343	1.00 11.64	À
ATOM	1343	H	LEU	259	-6.883	-0. 68 5	11.844	1.00 15.00	A
	- 344	CA	LEU	259					
ATOM	1344	LA			-6.581	-1.780	13.714	1.00 9.53	Ä
ATOM	1345	CB	LEU	259	-5. 15 5	-2.417	13.831	1.00 7.40	A
ATOM	1346	CG	LEU	259	-4.194	-1.621	12.931	1.00 11.40	A
MOTA	1347	CD:	LEU	259	-3. 35 5	-2.412	11.926	1.00 7.83	À
ATOM	1348	202	LEU	259	-3.379	-0.670	13.808	1.00 13.30	A
ATOM	1349	C	LEU	259	-6.652	-0.497	14.531	1.00 10.40	A
ATOM	1350	0	LEU	259	-6.202	0.556	14.082	1.00 9.73	A
MCTA	1351	N	LYS	260	-7.193				
						-0.629	15.762	1.00 12.00	À
ATOM	1352	H	LYS	260	- 7.395	-1.553	16.115	1.00 15.00	A
MCTA	135 3	CA	LYS	260	-7.069	0.521	16.693	1.00 13.51	A
ATOM	1354	CB	LYS	260	-8.014	0.312	17.885	1.00 13.49	Ä
ATOM	1355	23	LYS	260	-8.378	1.656	18.521	1.00 17.16	A
ATOM	1356	CD	LYS	260	-9.435	1.456	19.596	1.00 12.01	Α
ATOM	1357	CE	LY5	260	-10.151	2.681	20.121	1.00 11.41	A
ATOM	1358	NZ	LYS	260	-5.175	3.595	20.697	1.00 13.33	A
MCTA	1359	HZl	<u> - Y</u> 5	260	-8.534	3.932	19.954	1.00 15.00	A
ATOM	1360	HZ2	LY 5	260	-5.693	4.404	21.095	1.00 15.00	A
ATOM	1361	HZ3	LYS	260	-8.638	3.136	21.458	1.00 15.00	Α
ATOM	1362	C	LYS	260	-5.648	0. 9 21	17.125	1.00 16.54	A
ATOM	1363	0	LYS	260	-4.828	0.112	17.481	1.00 15.61	Α
MOTA	1364	N	LEU	261	-5.353	7 100	17.015	1.00 14.78	
									Ä
MCTA	1365	H	LEU	261	-6.D 8 9	2.838	16.856	1.00 15.00	À
MCTA	1366	CB	LEU	261	-3.705	4.005	17.185	1.00 19.53	
									A
MCTA	1367	ĊG	LEU	261	-3.177	4.309	15.787	1.00 16.82	Ä
MCTA	1365	~~ -	LEU	261		5.779	15.767		
					-3.010			1.00 12.45	A
ATOM	1369	CD2	LEU	261	-4.010	3.906	14.577	1.00 18.20	A
ATOM	1370	2	LEU	261	-4.243	2.667	19.225	1.00 20.80	À
ATOM	1371	CCT:	LEU	261	-5.363	2.741	19.746	1.00 22.59	À
ATOM	1372	CCTI	LEU	261	-3.221	2.696	19.913	1.00 26.97	÷
MCTA	1373	ΞA	LEU	261	-4.122	2.604	17.684		
					- 4			1.00 18.13	÷
ATOM	1374	-	HOH	50:	-20.040	9.837	7.596	1.00 15.23	×
ATOM	:375	H.1	нон	501	-19.411	10.547	7.803		
				30.				1.00 10.00	₩
ATOM	1376	H2	HCH	501	-19.615	9.317	6.900	1.00 10.00	¥
ATOM	1377	5	нон	502	- 9.727		10.743		
						11.545		1.00 10.94	¥
ATOM	1378	H.1	HCH	502	-10.039	11.934	9.919	1.00 15.00	×
ATOM	1379	H.2	нон	\$ 3 3					
n		·	5. - 5		-10.233	12.125	11.315	1.00 15.00	₩

FIGURE 1X

W	• 200	_		c					
ATOM	1380	2	HOH	503	-8.158			1,00 30,64	₩
ATOM	1381	H1	HOH	503	-8.719	12.529	13.277		
ATOM	1382	H2	HOH	503	-8.700				^
									*
ATOM	:3	0	HOH	504	-16.772	8.440	12.789	1.00 10.00	×
MCTA	1384	H1	HOH	504	-17.194	9.259		1.00 10.00	
									•
ATOM	1385	H2	HOH	504	-15.921	9.763	12.582	1.00 10.00	~
ATOM	1386	\circ	HOH	505	-25.173	7.297	7.925	1.00 47.03	
ATOM	1387	H1	нон	505	-24.690			1.00 47.03	₩.
							8.239	1.00 10.00	₩.
ATOM	1388	H2	HOH	505	-25.990	7.684	7.583	1.00 10.00	¥
ATOM	1389	О	нон	506	-23.612	14.948		2 00 26	
								1.00 36.14	W
ATOM	1390	Hl	нон	506	-24.160		13.605	1.00 10.00	~
ATOM	1391	H2	HOH	506	-23.282	15.191	14.748	1.00 10.00	W
ATOM	1392	С	HOH	507	-17.329			2.00 20.00	
								1.00 34.02	W
ATOM	1393	0	HOH	508	-18.687	-7.253	-3.843	1.00 63.14	₩
ATOM	1394	0	HOH	509	-7.157	11.327	3.239	1.00 22.26	
									₩.
ATOM	1395	0	HOH	510	-19.322		-2.227	1.00 37.69	W
ATOM	1396	0	нон	511	-14.645	-7. 7 11	-1.931	1.00 26.48	W
ATOM	1397	0	HOH	512	-18.377		12.556		
								1.00 24.86	W
ATOM	1398	0	HOH	513	0.030	0. 04 B	-13.455	1.00 26.05	₩
ATOM	1399	0	нон	514	-8.938	5.945	22.862	1.00 34.39	W
ATOM	1400	0	нон	515	-29.446	-4.922			
							-7.247	1.00 41.61	W
MOTA	1401	0	HOH	516	-12.982	10.220	10.038	1.00 47.16	W
ATOM	1402	0	HOH	517	-21.797	-9.377	7.242	1.00 60.65	W
ATOM	1403				-7.867				
		0	нон	518		8.165	19.484	1.00 40.46	W
ATOM	1404	၁	HOH	520	-15.588	-14.701	14.628	1.00 63.80	W
ATOM	1405	0	HOH	521	-21.844	7.778	20.415	1.00 35.72	
ATOM									₩
	1406	0	HOH	522	-6. 55 5	-3.308	-15.790	1.00 33.63	W
ATOM	1407	0	HOH	523	-9.046	-13.476	-8.051	1.00 44.08	W
ATOM	1408	0	HOH	524	-17.413	-9.311	17.071		
								1.00 34.06	W
ATOM	1409	0	нон	525	-23.838	4.781	19.B84	1.00 37.99	W
ATOM	1410	C	HOH	526	-26.323	15.525	10.379	1.00 72.49	W
ATOM	1411	0	нон	527		-13.749			
								1.00 43.99	W
ATOM	1412	0	HOH	528	-0.470	2.513	17.943	1.00 63.68	W
ATOM	1413	0	HOH	529	-5. 58 0	-12.778	-14.864	1.00 47.52	W
MCTA	1414	0	HOH	530	-2.641	7.004			
							2.495	1.00 18.07	W
ATOM	1415	0	HOH	531	-6.472		0.156	1.00 24.96	W
ATOM	1416	0	HOH	532	-10. 36 3	-16.426	-0.360	1.00 63.56	W
ATOM	1417	Ö	нон	533	-1.378				
							-13.053	1.00 67.67	W
ATOM	1418	0	нон	534	-4.774	9.073	-0.651	1.00 23.36	W
MOTA	1419	0	HOH	535	-18.917	-13.857	6.913	1.00 32.28	W
ATOM	1420	0	НОН	536	-23.062				
						3.270	0.454	1.00 52.03	W
ATOM	1421	0	HOH	537	-25.906	9.022	16.986	1.00 44.75	W
ATOM	1422	О	HOH	538	-21.729	16.972	17.027	1.00 53.12	W
ATOM	1423	0	HOH	539	-9.084	11.806			
							17.034	1.00 70.90	W
MCTA	1424	\circ	HOH	54 C	-10.938	-13.296	15.207	1.00 35.65	W
ATOM	1425	С	нон	541	-6.068	13.255	17.989	1.00 67.36	W
ATOM	1426	0	нон	542	-20.593				
						-11.039	-9.003	1.00 96.30	W
MOTA	1427	0	HOH	543	-15.926	13.397	1.269	1.00 35.72	W
ATOM	1428	C	нон	544	-24.591	-7.285	-2.353	1.00 43.42	W
ATOM	1429	o	нон	545	-25.859				
							-15.747	1.00 53.56	W
MOTA	1430	С	HOH	546	-23.074	-1.533	11.026	1.00 56.44	W
ATOM	1431	0	HOH	548	-8.941	-12.649	-12.394	1.00 64.34	W
ATOM	1432	_	нон	549					
		_			-14.150		-12.250	1.00 41.38	W
MOTA	1433	_	нон	550	-14.274	-0. 61 3	18.441	1.00 56.17	₩
ATOM	1434	Ĵ	HOH	551	-12.241	-19.609	8.637	1.00 80.90	W
ATOM	1435	_	HOH	552					
		_			-10.316	15.578	10.166	1.00 39.58	W
MCTA	1436	=	HOH	553	-15.367	10.941	14.659	1.00 40.40	W
ATOM	1437	С	нон	554	-2.322	1.830	-5.294	1.00 33.65	W
ATOM	1438	~							
		00000000	нон	555	-22.393	-14.875	-4.217	1.00 52.40	₩
ATOM	1439	C	HOH	556	-22.120	14.279	7.189	1.00 38.55	W

WO 97/26000 PCT/US97/00668

25/31

FIGURE 1Y

MCTA	1440	5	HOH	557	-28. 53 3		9.560	1,00 37,40	~
ATOM	1441	0	HOH	556	-5.554		13.191	1.00 88.88	~
ATOM	1442	C	HOH	559	-22.996	12.522	1.162	1.00 63 77	
ATOM	1443	0	HOH	560	-13.764	2.268		1.00 27.47	₩.
MCTA	1444	C	HOH	561	-15.556	7.750	-5.628	1.00 75.88	•
ATOM	1445	0	HOH	562	-1.970	-15.363	-17.719	1.00 76.30	₩.
ATOM	1446	0	нон	563	-18.939	-0.335	-13.842	1.00 48.39	₩
ATOM	1447	0	HOH	564	-12.619	14.760	-6.974	1.00100.59	×
ATOM	1448	С	HOH	565	-9.491	18.046	13.682	1.00 87.45	×
ATOM	1449	0	HOH	566	-11.655	-11.140	22.481	1.00 28.85	×
ATOM	1450	С	нон	567	-24.072	-3.264	-0.332	1.00 35.13	'n
ATOM	1451	0	HOH	568	-27.455	0.119	-7.117	1.00 71.57	~
ATOM	1452	Ö	нон	569	-14.604	3.516	-6.119	1.00 59.45	W
ATOM	1453	ō	нон	570	-2.635		-16.973	1.00 59.09	¥
ATOM	1454	ō	нон	571	-18.841	4.066	-7.543	1.00 34.10	W
ATOM	1455	ō	нон	572	-24.996	1.301	17.953	1.00 70.45	W
ATOM	1456	Ö	нон	573	-14.666	16.471	B.995	1.00 62.77	W
ATOM	1457	ō	нон	574	-14.786	1.426	10.949	1.00 82.68	¥
ATOM	1458	ō	нон	575		-14.717	-4.352	1.00 29.09	W
ATOM	1459	ō	нон	576	-16.273-		6.109	1.00104.64	W
ATOM	1460	Ō	НОН	577	-25.471	-0.127	-2.510	1.00 62.74	W
ATOM	1461	ō	НОН	578	-7.334	-17.173	19.514	1.00 89.62	W
ATOM	1462	Ö	НОН	579	-21.060	14.259	19.996	1.00 69.59	W
ATOM	1463	0	НОН	580	-19.286	4.057	-12.816	1.00 60.37	W
ATOM	1464	Ō	нон	581	- 22 . 445	-15.840	0.317	1.00 58.24	W
ATOM	1465	0	нон	582	-22.434	-10.539	12.489	1.00 70.25	w
ATOM	1466	ō	нон	583	-21.327	3.668	-2.500	1.00 39.32	W
ATOM	1467	Ċ	нон	584	-25.325	5.247	16.919	1.00 41.31	W
ATOM	1468	С	нон	585	-24.945	-10.718	-2.375	1.00 38.85	W
ATOM	1469	С	нон	586	-24.342	-13.003	1.927	1.00 70.58	W
MCTA	1470	С	НОН	587	-18.020	11.871	11.358	1.00 64.47	W
ATOM	1471	0	нон	588	-27.135	6.965	13.151	1.00 53.96	W
MOTA	1472	0	нон	589	-14.982	-16.230	-2.494	1.00 30.24	W
ATOM	1473	C	НОН	590	-5.646	14.418	-2.232	1.00 41.78	W
ATOM	1474	Ċ	нон	591	- 2.745	-0.153	-17.104	1.00 55.19	W
ATOM	1475	C	нон	592	- 3.397	-7.012	22.477	1.00 59.46	₩
ATOM	1476	ō	нон	593	-32.916	-4.705	-4.143	1.00 51.88	W
ATOM	1477	Ö	нон	594	-10.913	-18.855	-3.503	1.00 42.29	w
ATOM	1478	Ō	нон	595	-24.157	1.821	-6.165	1.00 47.43	W
END	•								

FIGURE 4A

FIGURE 4B

FIGURE 5

FIGURE 6

FIGURE 7

FIGURE 8

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/00668

IPC(6)	SSIFICATION OF SUBJECT MATTER: A61K 38/02, 38/17; 39/395	
	:424/130.1, 133.1, 141.1, 144.1, , 154.1, 173.1; 514/2, 8 to International Patent Classification (IPC) or to both national classification and IPC	
	LDS SEARCHED	
	ocumentation searched (classification system followed by classification symbols)	
U. 3 . :	424/130.1, 133.1, 141.1, 144.1, , 154.1, 173.1; 514/2, 8	
Documentat	ion searched other than minimum documentation to the extent that such documents are included	d in the fields searched
APS, DIA	lata base consulted during the international search (name of data base and, where practicable ALOG, BIOSIS, CA, EMBASE, MEDLINE, WPI erms: 5c8, cd40L, cd40 ligand, kidney, renal	e, search terms used)
C. DOC	UMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X Y	WO 93/09812 A1 (THE TRUSTEES OF COLUMBIA UNIESTIY IN THE CITY OF NEW YORK) 27 MAY 1993, see entire document.	
		24-30, 58-64
X Y	Kidney International, Volume 48, issued 1995, Biancone et al., "Inhibition of the CD40-CD40 ligand pathway prevents murine membranous glomerulonephritis", pages 458-468, see entire document.	1-23, 31-57, 65-76 24-30, 58-64
Y	Structure, Volume 3, issued 15 October 1995, Karpusas et al., "2 A crystal structure of an extracellular fragment of human CD40 ligand", pages 1031-1039, see entire document.	
X Further	or documents are listed in the continuation of Box C. See patent family annex.	
'A' docu to be	cal categories of cited documents: "T" later document published after the integrated date and not in conflict with the applied of particular relevance. "T" later document published after the integrated date and not in conflict with the applied principle or theory underlying the investment of particular relevance.	ation but cited to understand the ention
L* docu	er document published on or after the international filing date "X" document of particular relevance; the considered novel or cannot be consider when the document is taken alone to establish the publication date of another citation or other all treason (as appecified).	red to involve an inventive step
O" docu	unness referring to an oral disclosure, use, exhibition or other combined with one or more other such being obvious to a person skilled in the	step when the document is document is
the p	ment published prior to the international filing date but later than "&" document member of the same patent priority date claimed	
OI MAY 19	Date of mailing of the international search 997 02 JUN 1997	rch report
Commissione Box PCT Washington, acsimile No.	isling address of the ISA/US or of Patents and Trademarks D.C. 20231 Authorized officer PhilLip GAMBEL	Collins

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US97/00668

		Relevant to claim No
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to Claim No
Ý	Science, Volume 257, issued 21 August 1992, Kuntz et al., "Structure-Based Strategies for Drug Design and Discovery", pages 1078-1082, see entire document.	1-76