

Universidade do Minho

Escola de Engenharia Departamento de Informática

> Mestrado Integrado em Engenharia Informática Mestrado em Engenharia Informática Agentes Inteligentes 2020/2021

Filipe Gonçalves, Paulo Novais, César Analide

Agentes Inteligentes @ 2020/2021

- Paulo Novais pjon@di.uminho.pt
- César Analide <u>analide@di.uminho.pt</u>
- Filipe Gonçalves <u>fgoncalves@algoritmi.uminho.pt</u>

- Departamento de Informática Escola de Engenharia Universidade do Minho
- ISLab (Synthetic Intelligence Lab)
- Centro ALGORITMI
 Universidade do Minho

Agent UML

Agentes Inteligentes @ 2020/2021

Unified Modeling Language (UML) applied in object-oriented software modeling (adopted by OMG in November 1997)

AUML: UML Variations and Extensions for Agent Activity Modelling

- FIPA (www.fipa.org)
- OMG_AUML Agent Group
- Interaction Protocol Representation for Agents

AUML - Agent UML

- The goal of AUML is to develop a formal specification of agent interaction protocols (AIP).
- UML sequence diagram adaptation to model agent interactions
- This was followed by the adaptation of other diagrams

UML Representation Extensions:

- "Packages"
- Templates
- Sequence Diagrams
- Collaboration Diagrams
- Activity Diagrams
- State Diagrams
- Class and Object Diagram

AUML – Agent UML

AUML models application:

- Agent Interaction Protocols (AIP) Specification
- More detailed specification of the invocation of shares
- Package Extension
- Deployment Diagram Extension

AUML takes a layered approach to protocols:

- Level 1: Represents the general protocol (tempaltes, modeling diagrams)
- Level 2: Represent agent interactions (sequence, collaboration, activity diagrams)
- Level 3: Represent internal agent processing (activity diagrams and statecharts)

General Diagram Structure

Message Transmission

Agent States

Templates Modeling

 Applied to create reusable patterns for concrete protocol instances

The protocol can be treated as a pattern that can be customized for other problem domains

Indicates that the protocol

can be used as a template to create other protocols

Packages Modeling

Level 2 Layer – Interaction

Sequence Diagram

- Defines the behaviour of object groups
- Basic interactions between objects at method invocation level
- In AUML, they enable demonstration of interactions / communications between System Agents

Activity Diagram

- Applied to represent the activities associated to a protocal or to an agent's activity
- Useful to plan complex interaction protocols that involve parallel processing

Activity Diagram

Collaboration/Communication Diagram

- Similar to sequence diagram
- Presents a clear and understandable representation of the system
- Sequence of interactions are numbered on the collaboration diagram

Class Diagram

Class Diagrams are used to model the problem's dominion and agent-class implementation

Class Diagram

Level 3 Layer – Internal Process

Level 3: Agent's Internal Process

Statecharts

- The internal processing of a single agent can be expressed as statecharts
- Statecharts specify order processing behaviour for the different agents

Statecharts

Agentes Inteligentes @ 2020/2021

Conclusions

UML extension mechanisms provide formalisms to specify Agents interaction to several levels:

- Specify protocols as a whole
- Express interaction patterns between Agents
- Express the internal behaviour of an Agent
- Formalization of Agents requirements and APIs important for the development & implementation of Multi-agent Systems

Agentes Inteligentes @ 2020/2021

Software Requirements:

- Download and install Visual Paradigm Community Edition
 - https://www.visual-paradigm.com/download/community.jsp

Review:

- AUML Manual: http://www.jamesodell.com/ExtendingUML.pdf
- o Buyer-Seller.vpp project presenting the AUML diagrams regarding the first Buyer-Seller JADE exercise.

Exercise:

- Develop the following AUML diagrams to represent the previous exercise, Taxi System:
 - Collaboration Diagram
 - Activity Diagram
 - Class Diagram

Universidade do Minho

Escola de Engenharia Departamento de Informática

> Mestrado Integrado em Engenharia Informática Mestrado em Engenharia Informática Agentes Inteligentes 2020/2021

Filipe Gonçalves, Paulo Novais, César Analide