

第六章

Amortized Analysis

提要

The state of the s

- 6.1 平摊分析基本原理
- 6.2 聚集方法
- 6.3 会计方法
- 6.4 势能方法
- 6.5 动态表平摊分析

参考资料

Chapter 17 Amortized Analysis

Pages 405 - 430

6.1 平摊分析基本原理

- · Amortized Analysis的基本思想
- Amortized Analysis 方法

关注一系列数据结构上操作的时间复杂度:

考虑操作序列: OP_1 , OP_2 , ..., OP_m

想确定这个操作序列可能花费的最长时间

一个可能的想法:考察每种操作 OP_i 的最坏情况时间复杂度 t_i ,

由此,上述操作序列可能的最长时间就是:

每种操作 OP_i 的最坏时间 t_i 之和

不一定足够精确!

操作之间实际上是相互关联的,不能假设它们是相互独立的!

例如:

- 普通栈操作及其时间代价
 - Push(S, x): 将对象x压入栈S
 - -Pop(S): 弹出升返回S的顶端元素
 - -两个操作的运行时间都是O(1)
 - 可把每个操作的实际代价视为1
 - -n个Push和Pop操作系列的总代价是n
 - -n个操作的实际运行时间为 $\theta(n)$

- 新的栈操作及其时间代价
 - Multipop(S, k):

去掉S的k个栈顶对象, 当|S|< k时弹出整个栈

-实现算法

Multipop(S, k)

- 1 While not STACK-EMPTY(S) and $k\neq 0$ Do
- 2 $\operatorname{Pop}(S)$;
- $3 \qquad k \leftarrow k-1.$
- Multipop(S, k)的实际代价(设Pop的代价为1)
 - Multipop的代价为min(/S/, k)

- ·初始栈为空的n个栈操作序列的分析
 - -n个栈操作序列由Push、Pop和Multipop组成
 - 粗略分析
 - 最坏情况下,每个操作都是Multipop
 - 栈的大小至多为n
 - · 每个Multipop的代价最坏是O(n)
 - 操作系列的最坏代价为 $T(n) = O(n^2)$

分析过于粗糙,不够精确!

原因: 只关注于操作, 忽略了数据结构!

Amortized Analysis的基本思想

平摊分析目的是分析给定 数据结构上的n个操作代价上界

对一个数据结构 执行一个操作序列:

有的代价很高有的代价一般有的代价很低

各个操作的平均代价?整个序列的代价是多少?

将总的代价平摊到 每个操作上

不涉及概率 异于平均分析 平摊代价

Amortized Analysis的基本思想

- · Aggregate Analysis 方法(每个操作的代价)
 - 确定n个操作的上界T(n), 每个操作平摊T(n)/n
- · Accounting方法(整个操作序列的代价)
 - -不同类型操作赋予不同的平摊代价
 - -某些操作在数据结构的特殊对象上"预付"代价
- · Potential方法(整个操作序列的代价)
 - 不同类型操作赋予不同的平摊代价
 - "预付"的代价作为整个数据结构的"能量"

6.2 Aggregate Analysis

- 聚集方法的原理
- 聚集方法的实例之一
- 聚集方法的实例之二

聚集方法的原理

目的是分析n个操作系列中 每个操作的复杂性上界

数据结构上共有n个 操作,最坏情况下:

操作1: Cost=t1

操作2: Cost=t₂

•

操作n: Cost=t_n

 $T(n) = \sum_{i=1}^{n} t_i$

平摊代价: T(n)/n

每个操作被赋予相同 代价,不管操作类型

聚集方法实例之一: 栈操作系列

- 普通栈操作及其时间代价
 - Push(S, x): 将对象x压入栈S
 - -Pop(S): 弹出并返回S的顶端元素
 - -两个操作的运行时间都是O(1)
 - 可把每个操作的实际代价视为1
 - -n个Push和Pop操作系列的总代价是n
 - -n个操作的实际运行时间为 $\theta(n)$

- 初始栈为空的11个栈操作序列的分析
 - -n个栈操作序列由Push、Pop和Multipop组成
 - 粗略分析
 - 最坏情况下,每个操作都是Multipop
 - · 每个Multipop的代价最坏是O(n)
 - 操作系列的最坏代价为 $T(n) = O(n^2)$
 - 平摊代价为T(n)/n = O(n)-

- 精细分析

- 一个对象在每次被压入栈后至多被弹出一次
- ·在非空栈上调用Pop的次数(包括在Multipop内的调用) 至多为Push执行的次数,即至多为n
- 最坏情况下操作序列的代价为 $T(n) \le 2n = O(n)$
- 平摊代价=T(n)/n=O(1)

n-1个push 1个multipop

分析太粗糙

聚集方法实例之二: 二进制计数器

• 问题定义:由0开始计数的k位二进制计数器

输入: k位二进制变量x, 初始值为0

输出: $x+1 \mod 2^k$

数据结构:

A[0..k-1]作为计数器,存储x

x的最低位在A[0]中,最高位在A[k-1]中

$$x = \sum_{i=0}^{k-1} A[i] \cdot 2^{i}$$

• 计数器加1算法

```
输入: A[0..k-1], 存储二进制数x
输出: A[0..k-1], 存储二进制数x+1 mod 2^k
INCREMENT(A)
```

- $1 \quad i \leftarrow 0$
- 2 while i < k and A[i] = 1 Do
- $A[i] \leftarrow 0;$
- 4 $i \leftarrow i+1;$
- 5 If i < length[A] Then $A[i] \leftarrow 1$

· 初始为零的计数器上n个INCREMENT操作分析

Cou Valu	nter ie								每个操作 Cost
N	A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	
0	0	0	0	0	0	0	0	0	
1	0	0	0	0	0	0	0	1	1
2 3	0	0	0	0	0	0	1	0	2
3	0	0	0	0	0	0	1	1	1
4 5	0	0	0	0	0	1	0	0	3
	0	0	0	0	0	1	0	1	1
6	0	0	0	0	0	1	1	0	2
7	0	0	0	0	0	1	1	1	1
8	0	0	0	0	1	0	0	0	4
9	0	0	0	0	1	0	0	1	1
10	0	0	0	0	1	0	1	0	2
11	0	0	0	0	1	0	1	1	1
12	0	0	0	0	1	1	0	0	3
13	0	0	0	0	1	1	0	1	1
14	0	0	0	0	1	1	1	0	2
15	0	0	0	0	1	1	1	1	1
16	0	0	0	1	0	0	0	0	5

- 粗略分析
 - · 每个Increment的时间代价最多O(k)
 - n个Increment序列的时间代价最多O(kn)
 - *n*个Increment平摊代价为O(k)
 - 例如上例中: k*n=8*16=128
- 精细分析

操作Cost = O(发生改变的位数)

	Counter Total Value Cost									
(N	A[7] 0	A[6] 0	A[5] 0	A[4] 0	A[3] 0	A[2] 0	A[1] 0	A[0] 0	0
	1 2 3	$\begin{array}{c} 0 \\ 0 \\ \end{array}$	$\begin{array}{c} 0 \\ 0 \\ \end{array}$	$\begin{array}{c} 0 \\ 0 \\ \end{array}$	$0 \\ 0$	$0 \\ 0$	0	0	$\begin{array}{c} 1 \\ 0 \end{array}$	1 3
2	3 4 5	0	$\begin{array}{c} 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 0 \end{array}$	0	$\begin{array}{c} 0 \\ 0 \\ \end{array}$	0 1	0	$\begin{array}{c} 1 \\ 0 \\ 1 \end{array}$	4 7
(5 7	$\begin{array}{c} 0 \\ 0 \\ 0 \end{array}$	$egin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	$\begin{array}{c} 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 0 \end{array}$	1 1 1	1 1	$0 \\ 1$	8 10 11
8	8	$\begin{array}{c} 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 0 \end{array}$	0	1	$0 \\ 0$	$0 \\ 0$	0	15 16
]	10 11	$\stackrel{\circ}{0}$	$\stackrel{\circ}{0}$	$0 \\ 0$	$\stackrel{\circ}{0}$	1 1	$\stackrel{\circ}{0}$	1 1	0	18 19
]	12 13	0	0	0	0	1 1	1 1	0	0	22 23
]	14 15	$\begin{array}{c} 0 \\ 0 \\ \end{array}$	$\begin{array}{c} 0 \\ 0 \\ \end{array}$	$\begin{array}{c} 0 \\ 0 \\ \end{array}$	0	1	1	1	0	25 26
	16	0	0	0	1	0	0	0	0	31

•精细分析

- · A[0]每次操作发生一次改变, 总次数为n
- · A[1]每两次操作发生一次改变, 总次数为n/2
- · A[2]每四次操作发生一次改变, 总次数为n/4
- 一般地
 - 对于i=0, 1,, lgn, A[i]改变次数为n/2i
 - ·对于i>lgn, A[i]不发生改变 (因为n个操作结果为n, 仅涉及A[0]至A[lgn]位)
- $T(n) \le \sum_{0 \le i \le \lg n} n/2^i < n \sum_{0 \le i \le \infty} 1/2^i = O(n)$
- · 每个Increment操作的平摊代价为O(1)

6.3 The Accounting Method

- · Accounting方法的原理
- · Accounting方法的实例之一
- · Accoutning方法的实例之二

Accounting方法的原理

• Accounting 方法

- 目的是分析n个操作序列的复杂性上界, 一个操作序列 中有不同类型的操作, 不同类型操作的代价各不相同
- 于是我们为每种操作分配不同的平摊代价
 - 平摊代价可能比实际代价大,也可能比实际代价小
 - •如果平摊代价比实际代价高:一部分用于支付实际代价,多 余部分作为Credit附加在数据结构的具体数据对象上
 - · 当一个操作的平摊代价比实际代价低时: Credit用来补充支付实际代价
- 平摊代价的选择规则:
 - 设 α_i 和 c_i 是操作i的平摊代价和实际代价

数据结构中存储的Credit在任何时候都必须非负,即 $\sum_{1 < i < n} \alpha_i - \sum_{1 < i < n} C_i \ge 0$ 永远成立

栈操作序列的分析

- 各栈操作的实际代价
 - Cost(PUSH) = 1
 - Cost(POP) = 1
 - $\text{Cost}(\text{MULTIPOP}) = \min\{k, s\}$
- 各栈操作的平摊代价
 - Cost(PUSH)=2
 - ·一个1用来支付PUSH的开销,
 - 另一个1存储在压入栈的元素上, 预支POP的开销
 - $\operatorname{Cost}(\operatorname{POP}) = 0$
 - Cost(MULTIPOP)=0
- 平摊代价满足
 - $-\sum_{1\leq i\leq n}\alpha_i$ $-\sum_{1\leq i\leq n}c_i\geq 0$ 对于任意n个操作序列都成立。因为栈中的元素个数 ≥ 0
- n个栈操作序列的总平摊代价
 - -O(n)

二进制计数器Increment操作序列分析

- Increment操作的平摊代价
 - 每次一位被置1时, 付2美元
 - 1美元用于置1的开销
 - 1美元存储在该"1"位上,用于支付其被置0时的开销
 - 置0操作无需再付款
 - Cost(Increment)=2
- 平摊代价满足
 - $-\sum_{1 \leq i \leq n} \alpha_i \geq \sum_{1 \leq i \leq n} c_i$ 对于任意n个操作序列都成立
 - 即:任何时刻,计数器上的Credit非负
- · n个Increment操作序列的总平摊代价
 - -O(n)

· 初始为零的计数器上n个INCREMENT操作分析

Cou Valu	inter ue								F个操作 Cost
N	A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1] A[0])]	
0	0	0	0	0	0	0	0)	
1	0	0	0	0	0	0	0 1	. 1	1
2 3	0	0	0	0	0	0	1 1 0	0	2
	0	0	0	0	0	0	1 1 1	1	1
4	0	0	0	0	0	1 1	l 0 0 0	0	3
4 5	0	0	0	0	0	1 1	l 0 0 1	1	1
6	0	0	0	0	0	1 1	1 1 0	0	2
7	0	0	0	0	0	1 1	l 111	1	1
8	0	0	0	0	1 1	0 ($0 \ 0 \ 0$	0	4
9	0	0	0	0	1 1	0 (0 0 1	1	1
10	0	0	0	0	1 1	0 (0 1 1 0	0	2
11	0	0	0	0	1 1	0 (0 1 1 1	1	1
12	0	0	0	0	1 1	1 1	1000	0	3
13	0	0	0	0	1 1	1 1	1 0 0 1	1	1
14	0	0	0	0	1 1	$\lfloor 1 \rfloor$	1 1 1 0	0	2
15	0	0	0	0	1 1	1	1 1 1 1		1
16	0	0	0	1 1	0 () 0 (0 0 0	0	5

6.4 The Potential Method

- · Potential 方法的原理
- · Potential 方法的实例之一
- · Potential 方法的实例之二

Potential方法的原理

• Potential 方法

- 目的是分析n个操作系列的复杂性上界
- 在会计方法中,如果操作的平摊代价比实际代价大, 我们将余额与数据结构的数据对象相关联
- Potential方法把Credit余额与整个数据结构关联,所有这样的余额之和,构成数据结构的势能
 - 如果操作的平摊代价大于操作的实际代价, 势能增加
 - 如果操作的平摊代价小于操作的实际代价,要用数据结构的势能来支付实际代价,势能减少

• 数据结构势能的定义

- -考虑在初始数据结构 D_0 上执行n个操作
- 对于操作i
 - 操作i的实际代价为 c_i
 - 操作i将数据结构 D_{i-1} 变为 D_i
 - 数据结构 D_i 的势能是一个实数 $\phi(D_i)$, ϕ 是一个正函数
 - 操作i的平摊代价: $\alpha_i = c_i + \phi(D_i) \phi(D_{i-1})$
- -n个操作的总平摊代价

$$\sum_{i=1}^{n} \alpha_i = \sum_{i=1}^{n} (c_i + \phi(D_i) - \phi(D_{i-1}))$$

$$= \sum_{i=1}^{n} c_i + \phi(D_n) - \phi(D_0)$$

总平摊代价必须是 总实际代价的上界 $\sum_{i=1}^{n}\alpha_{i}\geq\sum_{i=1}^{n}c_{i}$

- 关键是∅的定义
 - 保证 $\phi(D_n) \ge \phi(D_0)$, 使总平摊代价是总实际代价的上界
 - 如果对于所有i, $\phi(D_i) \ge \phi(D_0)$, 可以保证 $\phi(D_n) \ge \phi(D_0)$
 - 实际可以定义 $\phi(D_0) = 0$, $\phi(D_i) \ge 0$ (由具体问题确定)

栈操作序列的分析

- 栈的势能定义
 - $-\phi(D_m)$ 定义为栈 D_m 中对象的个数,于是
 - $\phi(D_0) = 0$, D_0 是空栈
 - $\phi(D_i) \ge 0 = \phi(D_0)$, 因为栈中对象个数不会小于0
 - n个操作的总平摊代价是实际代价的上界
 - 栈操作的平摊代价(设栈 D_{i-1} 中具有s个对象)
 - PUSH: $\alpha_i = c_i + \phi(D_i) \phi(D_{i-1}) = 1 + (s+1) s = 2$
 - POP: $\alpha_i = c_i + \phi(D_i) \phi(D_{i-1}) = 1 + (s-1) s = 0$
 - MULTIPOP(S, k): $i \xi k' = min(k,s)$ $\alpha_i = c_i + \phi(D_i) - \phi(D_{i-1}) = k' + (s-k') - s = k' - k' = 0$
 - -n个栈操作序列的平摊代价是O(n)

二进制计数器操作序列分析

- 计数器的势能定义
 - $-\phi(D_m)$ 定义为第m个操作后计数器中1的个数 b_m
 - $\phi(D_0) = 0$, 0的计数中不包含"1"
 - $\phi(D_i) \ge 0 = \phi(D_0)$, 因为计数器中1的个数不会小于0
 - 于是, n个操作的总平摊代价是实际代价的上界
 - INCREMENT操作的平摊代价
 - 第i个INCREMENT操作把 t_i 个位置成0,实际代价为 $c_i \leq t_i+1$
 - 计算操作i的平摊代价 $\alpha_i = c_i + \phi(D_i) \phi(D_{i-1})$
 - If $b_i = 0$, 操作i把所有k位置0, 所以 $b_{i-1} = k$, $t_i = k$
 - If $b_i > 0$, $M b_i = b_{i-1} t_i + 1$
 - 于 是 $b_i \le b_{i-1} t_i + 1$ $\phi(D_i) \phi(D_{i-1}) = b_i b_{i-1} \le b_{i-1} t_i + 1 b_{i-1} = 1 t_i$
 - 平 摊 代 价 $\alpha_i = c_i + \phi(D_i) \phi(D_{i-1}) \le (t_i + 1) + (1 t_i) = 2$
 - -n个操作序列的总平摊代价是O(n)

6.5 动态表性能平摊分析

- 动态表的概念
- 动态表的扩张与收缩
- 仅含扩张操作的动态表平摊分析
- 一般的动态表平摊分析

动态表—基本概念

- 动态表
- 动态表支持的操作
 - · TABLE-INSERT:将某一元素插入表中
 - · TABLE-DELETE:将一个元素从表中删除
- 数据结构:用一个(一组)数组来实现动态表
- · 非空表T的装载因子 $\alpha(T)$
 - $\alpha(T) = T$ 存储的对象数/表大小
 - · 如果动态表的装载因子以一个常数为下界,则表中未 使用的空间就始终不会超过整个空间的一个常数部分
 - 空表的大小为0,装载因子为1

动态表—基本概念

- 虽然插入和删除操作可能会引起表的扩张和收缩, 从而具有较高的实际代价
- · 但是, 利用平摊分析能够证明, 插入和删除操作的 平摊代价为O(1)
- · 同时保证动态表中未用的空间始终不超过整个空间的一部分。

动态表的表示

设T表示一个动态表:

- table[T]是一个指向表示表的存储块的指针
- -num[T]表T中的数据项个数
- size[T]是T的大小
- 开始时, num[T]=size[T]=0

```
HITWH SE
```

数据插入算法

```
算法: TABLE—INSERT(T, x)
                                            /*复杂的插入操作*/
                                             /*开销为常数*/
       If size[T]=0 Then
           萩取一个大小为1的表 table[T];
           size[T] \leftarrow 1;
       If num[T]=size[T] Then
                                           /*开销取决于size[T]*/
           获取一个大小为 2 \times \text{size}[T] 的新表new-table;
           将 table[T]中元素插入new-table; /*简单插入操作*/
6
           释放 table [T];
           table [T] \leftarrow new-table;
9
           size[T] \leftarrow 2 \times size[T];
10
        将 x插入table[T];
11
        \operatorname{num}[T] \leftarrow \operatorname{num}[T] + 1
```


动态表的扩张

- 插入一个数组元素时,完成的操作包括
 - 分配一个比原表包含更多的槽的新表
 - 再将原表中的各项复制到新表中去
- 常用的启发式技术是分配一个比原表大一倍的新表,
 - 只对表执行插入操作,则表的装载因子总是至少为1/2
 - 浪费掉的空间就始终不会超过表总空间的一半

聚集分析-粗略分析

- 考察第i次操作的代价C;
 - 如果*i*=1, *C_i*=1;
 - ω # $num[T] < size[T], C_i=1;$
 - $\omega * num[T] = size[T], C_i=i;$
- 共有n次操作
 - 最坏情况下,每次都按照扩张操作计量,总的代价上界为n²
- 这个界不精确
 - n次TABLE—INSERT操作并不常常包括扩张表的代价
 - · 仅当i-1为2的整数幂时第i次操作才会引起一次表的扩张

聚集分析-精细分析

- 第i次操作的代价 C_i
 - 如果 $i-1=2^{m}$ $C_{i}=i$; 否则 $C_{i}=1$
- 一 n 大 TABLE—INSERT操作的总代价为 $\sum_{i=1}^{n} c_i \le n + \sum_{i=0}^{\lfloor \lg n \rfloor} 2^j < n + 2n = 3n$
- ★每一操作的平摊代价为3n/n=3

会计方法

- · 每次执行TABLE—INSERT平摊代价为3
 - 1支付第10步中的基本插入操作的实际代价
 - 1作为自身的存款
 - 1存入表中第一个没有存款的数据上
- · 当发生表的扩张时,数据复制的代价由数据上的存款来 支付
- 任何时候, 存款总和非负
- · 初始为空的表上n次TABLE-INSERT操作的平摊代价总和 为3n

势能法分析

势怎么定义才能使得表满发生扩张时势能能支付扩张的代价?

- 如果势能函数满足
 - 刚扩充完, $\phi(T)=0$
 - 表满时 $\phi(T)$ =size(T)
- 定义 $\phi(T)=2*num[T]$ -size[T]
 - 由于 num[T]≥size[T]/2,故 $\phi(T)$ ≥0
 - 因此, n次TABLE-INSERT操作的总的平摊代价是总的实际代价的一个上界
- · 第i次操作的平摊代价
 - 如果未发生扩张, $\alpha_i=3$

Why???

- 如果发生扩张, α_i =3
- · 初始为空的表上n次插入操作的代价的上界为3n

32 Table-Insertions

HITWH SE

动态表的扩张与收缩

- Table-Delete: 将指定的数据对象从表中删除
- 表的收缩: 当动态表的装载因子很小时,对表进行收缩理想情况下,我们希望:
 - 表具有一定的丰满度
 - 表的操作序列的复杂度是线性的
- 表的收缩策略
 - 表的装载因子小于1/2时, 收缩表为原表的一半
 - $-n=2^k$,考察下面的一个长度为n的操作序列:
 - 前n/2个操作是插入,后跟IDDIIDDII...
 - 每次扩张和收缩的代价为O(n), 共有O(n)扩张或收缩
 - 总代价为 $O(n^2)$,而每一次操作的平摊代价为O(n)--每个操作的平摊代价太高

动态表的扩张与收缩

- 改进的收缩策略(允许装载因子低于1/2)
 - 满表中插入数据项时,将表扩大一倍
 - 删除数据项引起表不足1/4满时,将表缩小为原表的一半
 - 扩张和收缩过程都使得表的装载因子变为1/2
 - 表的装载因子的下界是1/4

动态表上n次(插入、删除)操作的代价分析

势能函数的定义

- 操作序列过程,势能总是非负的
 - -保证一系列操作的总平摊代价即为其实际代价的一个上界
- 表的扩张和收缩过程要消耗大量的势
- 势能函数应满足
 - num(T)=size(T)/2时, 势最小
 - 当num(T)减小时,势增加直到收缩
 - 5num(T) 增加时,势增加直到扩充
- 势能函数特征的细化
 - 当装载因子为1/2时,势为0
 - 装载因子为1时,有num[T]=size[T],即 $\phi(T)=num[T]$ 。这样当因插入一项而引起一次扩张时,就可用势来支付其代价
 - 当装载因子为1/4时, $size[T]=4\cdot num[T]$ 。即 $\phi(T)=num[T]$ 。因而当删除某项引起一次收缩时就可用势来支付其代价

$$\Phi(T) = \begin{cases} 2 \cdot num[T] - size[T] & \alpha(T) \ge 1/2 \\ size[T]/2 - num[T] & \alpha(T) < 1/2 \end{cases}$$

平摊代价的计算

- 第i次操作的平摊代价: $\alpha_i = c_i + \phi(T_i) \phi(T_i-1)$
 - 第i次操作是TABLE—INSERT: 未扩张 $\alpha_i \leq 3$
 - 第i次操作是TABLE—INSERT: 扩张 α_i ≤3
 - 第i次操作是TABLE—DELETE: 未收缩 $\alpha_i \leq 3$
 - 第i次操作是TABLE—DELETE: 收缩 α_i ≤3
- 动态表上的n个操作的实际时间为O(n)

52次操作: Table-Insertion与Table-Deletion混合

