Introduction to Reinforcement Learning

Subrahmanya Swamy Peruru

Paradigms of Machine Learning

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Supervised Learning fitting (4, 4)

Training

New

image

Unsupervised Learning (7,75) **Unlabeled Data Identify** patterns 23 NY

Reinforcement Learning

Learn by Trial and Error

- 1. Agent observes the state and takes action
- 2. Environment puts the agent in a new state &
- 3. Gives a reward based on the action taken

Paradigms of Machine Learning

- Supervised Learning
 - Fitting a function for the given labeled data (x,y)
 - $y \approx f(x)$
- Unsupervised Learning
 - Identifying patterns in unlabeled data
 - E.g. Clustering

- Reinforcement Learning
 - Learning sequential tasks through trial and error
 - Feedback through reward/penalty

RL Demonstrations

Deep RL MCTS

Pong game

Multi-arm Bandits

One State RL: Multi-arm Bandits

- Simplified version of RL problem: "Multi-arm Bandit" problem.
 - Only one state
 - Multiple actions (a.k.a. arms)
 - (A) Action set

- OLI
- 02
- az
- A reward distribution corresponding to each arm
 - \mathcal{R}_a Reward distrution for action a
 - $\mu_a = \mathbb{E}[\mathcal{R}_a]$ Expected reward for action a
- Applications: Recommendation systems, Ad placement, ...

" cognitive padiod'

Multi-arm Bandits" Reward Distributions μ_1

Problem:

- Reward distributions areunknown
- Given **T chances** to pull the arms
- Which arms should be pulled to maximize the total reward in those T rounds

Exploration Vs
Exploitation dilemma

ETC (Explore-Then-Commit)

1. Explore: Play each arm N times

- 2. Compute the sample average rewards $\bar{\mu}(a) = \frac{1}{N} \sum_{t=1}^{KN} R_t \, 1\{a_t = a\}$ for each arm $\underline{a \in \mathcal{A}}$
- 3. Commit: Play the arm with the highest sample average for the remaining T KN rounds
- μ^* Optimal arm's expected reward R_t Sample reward obtained in round t
- a_t Arm played in round t
- *T* Total number of rounds

K - Number of arms

Performance (ETC Vs Best possible reward): $T\mu^* - \sum_{t=1}^T \mathbb{E}[R_t]$

How much to Explore?
$$N \approx (\frac{T}{K})^{\frac{2}{3}}$$

ϵ -Greedy (Explore uniformly)

1. Play each arm once

- 2. In each round t:
 - Toss a coin with bias ϵ .
 - If it lands in head: Explore) Play any arm randomly
 - Else: Exploit Play the arm with the highest sample average so far

What
$$\epsilon$$
 to choose? $\epsilon \approx (\frac{K}{T})^{\frac{1}{3}}$

ÚCB (Upper Confidence Bound)

$$\gamma_{6}(a) = \frac{5+1}{2} = \frac{3}{4}$$

- **Optimism under UnCertainty**
- Play each arm once in the first *K* rounds

- For t > K:
 - Play the arm with the highest $UCB_t(a) = \overline{\mu_{t-1}}(a) +$

$$\begin{cases} N_{+}(a) = 2 \\ N_{+}(b) = 2 \\ N_{+}(c) = 1 \end{cases}$$

Based on the observed sample reward R_t , update $n_t(a_t)$ and $\overline{\mu}_t(a_t)$

$$n_t(a_t) = n_{t-1}(a_t) + 1$$

•
$$\overline{\mu_t}(a_t) = \frac{1}{n_t(a_t)} [(n_t(a_t) - 1) \overline{\mu_{t-1}}(a_t) + R_t]$$

$$a_{t} = a$$

Exploit

Exploit: High sample reward arms are favoured

Least played arms are favoured **Explore:**

Contextual Bandits – Multiple states

News article Recommendation systems

- Articles arms
- Like / Dislike Reward
- User State

Different users have different preferences to articles