Rakneovning 9/9-'21, Analys A

Serier - Konvergens eller Divergens; Ean

1. Kolla att lim an =0, Annars divergent

nom

2. Alternerande -> Leibnitz £(-1)n, Om lingn=0 => konvergent

3. Integral kriteriet

4. jamfar med enklare serier (junf, krit I, I)

5. Rot- Kvokriteriet

$$K2.8.1f) \sum_{0}^{\infty} \left(\frac{1-k}{1+k}\right)^{k} = \sum_{0}^{\infty} \left(-1\right)^{k} \left(\frac{k-1}{k+1}\right)^{k}$$

$$= \sum_{0}^{\infty} \left(-1\right)^{k} \left(1-\frac{2}{k+1}\right)^{k}; \text{ Atterner and e serise}$$

$$\lim_{k \to \infty} \left(1-\frac{2}{k+1}\right)^{k} = \lim_{k \to \infty} \left(\frac{1-\frac{2}{k+1}}{1-\frac{2}{k+1}}\right)^{k+1} = \sum_{0}^{\infty} \left(-1\right)^{k}$$

". Serien ar divergent

8.2 k) $\sum_{k=1}^{\infty} \frac{\ln(1+k) - \ln k}{\sqrt{k}} = \sum_{k=1}^{\infty} \frac{\ln(1+k)}{\sqrt{k}}$ Mc Laurin: $\ln(1+k) = k + O(k^2)$

Tamfør med Zbk dar bk = LVR = Zbk Konvergeror

(Sex konvergent)

 $\lim_{k\to\infty} \frac{a_k}{b_k} = \lim_{k\to\infty} \ln(1+k), k\sqrt{k} =$

= $\lim_{k \to \infty} k \left[\frac{1}{k} + O\left(\frac{1}{k}\right) \right] = 1 \Rightarrow$

Eak är kouvergent enligt jämförelsekriterium II.

8.2 l) $\frac{\infty}{2} \frac{1}{\ln(k!)}$; $k! = 1.2.3...k < k^{k}$ $\frac{1}{\ln(k!)} < \frac{1}{\ln(k!)} < \frac{1}{\ln(k!)} < \frac{1}{\ln(k!)} < \frac{1}{\ln(k!)} > \frac{1}{\ln(k!)} >$

jamfor med Zbk dan bk= Llnk

jamfor med $\sum_{2}^{\infty}b_{k}$ dar $b_{k}=\frac{1}{k\ln k}$ $\sum_{2}^{\infty}b_{k}$ divergent eftersom $\int_{2}^{\infty}\frac{dx}{x\ln x}=\left[\ln\left(\ln x\right)\right]_{2}^{\infty}$ divergerar

" ax>bx => [Zax, divergerar enligt jamforelsekrit I.]

 $8.2 \text{ m} \qquad \sum_{k=1}^{\infty} \left(\ln k! \right)^{2}$

k!=1.2.3.4...k>2k-1

In(k!) > (k-1) /n2 => (In(k!))2 / (k-1)2(n2)2

 $(\ln(k!))^2 < (k-1)^2(\ln 2)^2$

Jamfor med \(\frac{2}{2}b_k \) \(\delta r \) \(b_k = \frac{1}{(k-1)^2(n2)^2} \)

 $\frac{2}{2}b_{k} = \frac{2}{2} (k-1)^{2}(\ln 2)^{2} = (\ln 2)^{2} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \text{ konvergent!}$

ax < bx => \(\frac{2}{2} \alpha_k \) konvergent enligt jämfärelsekrit. I

8.20) \(\frac{2}{2} \k \left(\ln k \right)^2 \)

Integral krit; $\int_{2}^{\infty} \frac{dx}{x(\ln x)^{2}} = \begin{cases} \ln x = u \\ \frac{dx}{x} = du \end{cases} = \int_{\ln 2}^{\infty} \frac{du}{u^{2}} = \begin{cases} \ln x = u \\ \frac{dx}{x} = du \end{cases}$

= [] = = Serien ar kouvergent

Lars Mobern