Zadanie 1

a) Use R to find the critical value that you would use for a two-tailed t signicance test with $\alpha = 0.05$ and 10 degrees of freedom. Call this value tc.

$$tc = qt(0.975, 10)$$

Tc wynosi 2.228139.

b) Use R to find the critical value that you would use for an F significance test with α = 0.05, one degree of freedom in the numerator and 10 degrees of freedom in the denominator. Call this value Fc.

$$Fc = qf(1 - 0.05, 1, 10)$$

Fc wynosi 4.964603.

c) Verify that the square of tc is Fc

```
tc * tc
```

tc podniesione do kwadratu jest równe Fc.

Zadanie 2

Dana tabelka ANOVA:

	df	ss
Model	1	100
Error	20	400

a) How many observations do you have in your file?

Korzystając ze wzoru dfE = n - 2, otrzymujemy n = 22, co oznacza, że posiadamy 22 obserwacje.

b) Calculate the estimate of σ .

Skorzystam ze wzoru: $s^2 = SSE/dfE$, gdzie: s^2 - estymator σ^2

Otrzymuję: $s^2 = 400/20 => s \approx 4,4721$

c) Test if β 1 is equal to zero. (Give the test statistic with the numbers of degrees of freedom and the conclusion).

Testujemy $H_0: eta_1 = 0 \ vs \ H_1: eta_1
eq 0$

Liczymy statystykę testową F ze stopniami swobody 1 i 20: F = MSM/MSE

$$F = rac{SSM/dfM}{SSE/dfE} = rac{100}{400/20} = 5$$

Liczymy Fc:

$$Fc = qf(1 - 0.05, 1, 20)$$

Fc wyniosło 4.3512, co jest mniejsze od F, więc możemy odrzucić: $H_0: eta_1=0$

d) What proportion of the variation of the response variable is explained by your model?

Skorzystamy ze wzoru na współczynnik determinacji, który mówi, jaka część całkowitej zmienności w wektorze Y stanowi zmienność wyjaśniona przez model:

$$R^2 = SSM/SST, \ gdzie: \ SST = SSM + SSE$$

 $R^2 = 100/500 = 0.2$

Wynika z tego, że 20% zmienności w wektorze Y stanowi zmienność wyjaśniona przez model.

e) What is the sample correlation coefficient between your response and explanatory variables?

Skorzystam z faktu, że obliczony wcześniej współczynnik determinacji jest tożsamy z kwadratem próbkowej korelacji Pearsona pomiędzy zmiennymi zależną i niezależną. Wynika z tego, że korelacja wynosi: $\pm \sqrt{0.2}$