Contents

Boolean Algebra

Section outline

- 🚺 Boolean Algebra
 - SOP from sets
 - Boolean expressions
 - Functional completeness
 - Distinct Boolean functions
 - Boolean expression manipulation
 - Exclusive OR
 - Series-parallel switching

circuits

- Shannon decomposition
- Functional completeness
- Classification of Some Boolean functions
- Defining \neg using f_1, f_2 and f_3
- Defining T and F using f_1, f_2, f_3 and f_5
- Defining g(p,q) with an odd number of Ts

В

Sum of products from sets

Regions

- \bigcirc $A \cap B \cap C$
- $a \cap B \cap \overline{C}$
- \bigcirc $A \cap \overline{B} \cap C$
- \bullet $\overline{A} \cap B \cap C$
- $\bullet A \cap \overline{B} \cap \overline{C}$
- A D •
- $\overline{A} \cap \overline{B} \cap C$

Selections

С

В

8

С

Sum of products from sets

Regions

- \bigcirc $A \cap B \cap C$
- \bigcirc $A \cap B \cap \overline{C}$
- \bigcirc $A \cap \overline{B} \cap C$
- \bigcirc $\overline{A} \cap B \cap C$
- \bullet $\overline{A} \cap B \cap \overline{C}$
- $\bigcirc \overline{A} \cap \overline{B} \cap C$

Selections

1, 2: $A \cap B$

Regions

- \bigcirc $A \cap B \cap C$
- \bigcirc $A \cap B \cap \overline{C}$
- \bullet $\overline{A} \cap B \cap C$
- 711121113
- $\overline{A} \cap \overline{B} \cap C$

$$(A \cap B \cap \underline{C}) \cup (A \cap B \cap \overline{C})$$

$$abc + ab\overline{c} = ab$$

Regions

- \bigcirc $A \cap B \cap C$
- \bigcirc $A \cap B \cap \overline{C}$
- \bullet $A \cap \overline{B} \cap C$
- $\underline{\bullet} \quad \overline{A} \cap B \cap C$
- 711B110
- $\overline{A} \cap \overline{B} \cap C$

- **1, 2:** *A* ∩ *B*
 - $(A \cap B \cap \underline{C}) \cup$
 - $(A \cap B \cap \overline{C})$ $abc + ab\overline{c} = ab$
- abo | ab
- 1, 2, 3, 5: A
 - $(A \cap B \cap \underline{C}) \cup$
 - $(A \cap \underline{B} \cap \overline{C}) \cup$
 - $(A \cap \overline{\underline{B}} \cap \underline{C}) \cup$
 - $(A \cap \overline{B} \cap C)$
 - $abc + ab\overline{c} + a\overline{b}c + a\overline{b}\overline{c}$

Regions

- \bigcirc $A \cap B \cap C$
- \bigcirc $A \cap B \cap \overline{C}$
- \bullet $A \cap \overline{B} \cap C$
- $\underline{\bullet} \quad \overline{A} \cap B \cap C$
- 7111B110
- $\overline{A} \cap \overline{B} \cap C$

$$(A \cap B \cap \underline{C}) \cup$$

$$(A \cap B \cap \overline{C})$$

$$abc + ab\overline{c} = ab$$

$$(A \cap B \cap C) \cup$$

$$(A \cap B \cap \overline{C}) \cup$$

$$(A \cap \overline{B} \cap C) \cup$$

$$(A \cap \overline{B} \cap \overline{C})$$

$$abc + ab\overline{c} + \overline{abc} + \overline{abc} +$$

Regions

- \bigcirc $A \cap B \cap C$
- \triangle $A \cap B \cap \overline{C}$
- \bullet $A \cap \overline{B} \cap C$
- \bullet $\overline{A} \cap B \cap C$
- 711B110
- $\overline{A} \cap \overline{B} \cap C$

- a I have an item from A
- a I don't have an item from A

- **1, 2:** $A \cap B$
 - $(A \cap B \cap \underline{C}) \cup$
 - $(A \cap B \cap \overline{C})$ $abc + ab\overline{c} = ab$
- 1, 2, 3, 5: A

$$(A \cap B \cap C) \cup$$

- $(A \cap B \cap \overline{C}) \cup$
- $(A \cap \overline{B} \cap C) \cup$
- $(A \cap \overline{B} \cap \overline{C})$
- $a\underline{b}c + ab\overline{c} + \underline{a}\overline{b}c +$

$$a\overline{b}\overline{c} = ab + a\overline{b} = a$$

Regions

- \bigcirc $A \cap B \cap C$
- \bigcirc $A \cap B \cap \overline{C}$
- \bigcirc $A \cap \overline{B} \cap C$
- \bigcirc $\overline{A} \cap B \cap C$

- \bullet $\overline{A} \cap B \cap \overline{C}$
- $\bigcirc \overline{A} \cap \overline{B} \cap C$
- $\overline{A} \cap \overline{B} \cap \overline{C}$

Selections

- **1, 2:** $A \cap B$
 - $(A \cap B \cap C) \cup$
 - $(A \cap B \cap \overline{C})$
- $abc + ab\overline{c} = ab$
- 1, 2, 3, 5: A

$$(A \cap B \cap C) \cup$$

$$(A \cap B \cap \overline{C}) \cup$$

$$(A \cap \overline{B} \cap C) \cup$$

$$(A \cap \overline{B} \cap \overline{C})$$

$$abc + ab\overline{c} + \overline{abc} + \overline{abc} +$$

 $a\overline{b}\overline{c} = ab + a\overline{b} = a$

- a I have an item from A
- **a** I don't have an item from A

 $a\overline{b} + c$ I have an item from A but not from B or an item from C

- A literal is a variable (a) or its complement (a)
- A Boolean expression is a string built from literals and the Boolean operators without violating their arity
- Grouping with parentheses is permitted

4/17

 Such an expression is well formed or syntactically correct

- A literal is a variable (a) or its complement (a
- A Boolean expression is a string built from literals and the Boolean operators without violating their arity
- Grouping with parentheses is permitted

SCLD

- Such an expression is well formed or syntactically correct
- A fundamental product (FP) is a literal or a product of two or more literals arising from distinct variables

- A literal is a variable (a) or its complement (a)
- A Boolean expression is a string built from literals and the Boolean operators without violating their arity
- Grouping with parentheses is permitted

- A literal is a variable (a) or its complement (a)
- A Boolean expression is a string built from literals and the Boolean operators without violating their arity
- Grouping with parentheses is permitted

- Such an expression is well formed or syntactically correct
- A fundamental product (FP) is a literal or a product of two or more literals arising from distinct variables
- A FP involving all the variables is a minterm – atoms in the BL

- A literal is a variable (a) or its complement (a)
- A Boolean expression is a string built from literals and the Boolean operators without violating their arity
- Grouping with parentheses

- Such an expression is well formed or syntactically correct
- A fundamental product (FP) is a literal or a product of two or more literals arising from distinct variables
- A FP involving all the variables is a minterm – atoms in the BL
- A FP P₁ is contained or included in P₂ if P₂ has all the literals of P₁; then P₂ ⇒ P₁ (P₂ implies P₁)

- A literal is a variable (a) or its complement (a)
- A Boolean expression is a string built from literals and the Boolean operators without violating their arity
- Grouping with parentheses is permitted

- Such an expression is well formed or syntactically correct
- A fundamental product (FP) is a literal or a product of two or more literals arising from distinct variables
- A FP involving all the variables is a minterm – atoms in the BL
- A FP P₁ is contained or included in P₂ if P₂ has all the literals of P₁; then P₂ ⇒ P₁ (P₂ implies P₁)
- A sum of products (SOP) expression is FP or a sum of two or more FPs P_1, \ldots, P_n and $\forall i, j, P_i \not\Rightarrow P_i$

- A literal is a variable (a) or its complement (a)
- A Boolean expression is a string built from literals and the Boolean operators without violating their arity
- Grouping with parentheses is permitted

- Such an expression is well formed or syntactically correct
- A fundamental product (FP) is a literal or a product of two or more literals arising from distinct variables
- A FP involving all the variables is a minterm – atoms in the BL
- A FP P_1 is contained or included in P_2 if P_2 has all the literals of P_1 ; then $P_2 \Rightarrow P_1$ (P_2 implies P_1)
- A sum of products (SOP) expression is FP or a sum of two or more FPs P_1, \ldots, P_n and $\forall i, j, P_i \not\Rightarrow P_j$
- DeMorgan's laws, distributivity, commutativity, idempotence, involution may be used to transform a Boolean expression to SOP

May be derived from the Boolean lattice

- May be derived from the Boolean lattice
- OR is required to compute the joins on the elements

- May be derived from the Boolean lattice
- OR is required to compute the joins on the elements
- NOT and AND are required to compute the atoms from the proposition variables

X	y	\overline{X}	$x \cdot y$	x + y
0	0	1	0	0
0	1	1	0	1
1	0	0	0	1
1	1	0	1	1

- May be derived from the Boolean lattice
- OR is required to compute the joins on the elements
- NOT and AND are required to compute the atoms from the proposition variables

X	y	\overline{X}	$x \cdot y$	x + y
0	0	1	0	0
0	1	1	0	1
1	0	0	0	1
1	1	0	1	1

- May be derived from the Boolean lattice
- OR is required to compute the joins on the elements
- NOT and AND are required to compute the atoms from the proposition variables

Χ	У	\overline{x}	$x \cdot y$	x + y
0	0	1	0	0
0	1	1	0	1
1	0	0	0	1
1	1	0	1	1

NAND $\overline{x \cdot y}$

- May be derived from the Boolean lattice
- OR is required to compute the joins on the elements
- NOT and AND are required to compute the atoms from the proposition variables

X	У	\overline{X}	$x \cdot y$	x + y
0	0	1	0	0
0	1	1	0	1
1	0	0	0	1
1	1	0	1	1

NAND
$$\overline{x \cdot y}$$

NOR $\overline{x + y}$

- May be derived from the Boolean lattice
- OR is required to compute the joins on the elements
- NOT and AND are required to compute the atoms from the proposition variables

X	У	\overline{X}	$x \cdot y$	x + y
0	0	1	0	0
0	1	1	0	1
1	0	0	0	1
1	1	0	1	1

NAND
$$\overline{x \cdot y}$$

NOR $\overline{x + y}$
XOR,AND $x \oplus y, x \cdot y$

- May be derived from the Boolean lattice
- OR is required to compute the joins on the elements
- NOT and AND are required to compute the atoms from the proposition variables

X	У	\overline{X}	$x \cdot y$	x + y
0	0	1	0	0
0	1	1	0	1
1	0	0	0	1
1	1	0	1	1

NAND
$$\overline{x \cdot y}$$

NOR $\overline{x + y}$
XOR,AND $x \oplus y, x \cdot y$
MUX $s \cdot x + \overline{s} \cdot y$

- May be derived from the Boolean lattice
- OR is required to compute the joins on the elements
- NOT and AND are required to compute the atoms from the proposition variables

X	У	\overline{X}	$x \cdot y$	x + y
0	0	1	0	0
0	1	1	0	1
1	0	0	0	1
1	1	0	1	1

NAND
$$\overline{x \cdot y}$$

NOR $\overline{x + y}$
XOR,AND $x \oplus y, x \cdot y$
MUX $s \cdot x + \overline{s} \cdot y$

RAM Random access memory

- May be derived from the Boolean lattice
- OR is required to compute the joins on the elements
- NOT and AND are required to compute the atoms from the proposition variables

X	У	\overline{X}	$x \cdot y$	x + y
0	0	1	0	0
0	1	1	0	1
1	0	0	0	1
1	1	0	1	1

NAND
$$\overline{x \cdot y}$$

NOR $\overline{x + y}$
XOR,AND $x \oplus y, x \cdot y$

MUX $s \cdot x + \overline{s} \cdot v$

RAM Random access memory Minority Minority value among given inputs

6/17

•
$$E = x\overline{z} + \overline{y}z + xy\overline{z}$$

- $\bullet \ E = x\overline{z} + \overline{y}z + xy\overline{z}$
- *E* =?

- $\bullet \ E = x\overline{z} + \overline{y}z + xy\overline{z}$
- *E* =?

 A SOP expression where each FP is a minterm is said to be in disjunctive normal form (DNF)

- $\bullet \ E = x\overline{z} + \overline{y}z + xy\overline{z}$
- *E* =?

- A SOP expression where each FP is a minterm is said to be in disjunctive normal form (DNF)
 - The DNF of any SOP is unique (why?) cannonical SOP

$$\bullet \ E = x\overline{z} + \overline{y}z + xy\overline{z}$$

- A SOP expression where each FP is a minterm is said to be in disjunctive normal form (DNF)
- The DNF of any SOP is unique (why?)
 cannonical SOP
- An element x in a BL is maxterm if it has 1 as its only successor

•
$$E = x\overline{z} + \overline{y}z + xy\overline{z}$$

- A SOP expression where each FP is a minterm is said to be in disjunctive normal form (DNF)
- The DNF of any SOP is unique (why?)
 cannonical SOP
- An element x in a BL is maxterm if it has 1 as its only successor
- A maxterm is a sum of literals involving all the variables

•
$$E = x\overline{z} + \overline{y}z + xy\overline{z}$$

- $\bullet \ E = x\overline{z} + \overline{y}z + xy\overline{z}$
- *E* =?

- A SOP expression where each FP is a minterm is said to be in disjunctive normal form (DNF)
- The DNF of any SOP is unique (why?)
 cannonical SOP
- An element x in a BL is maxterm if it has 1 as its only successor
- A maxterm is a sum of literals involving all the variables
- Similar to SOP, product of sums (POS) may be defined

Boolean expressions

- $E = x\overline{z} + \overline{y}z + xy\overline{z}$
- *E* =?

- A SOP expression where each FP is a minterm is said to be in disjunctive normal form (DNF)
- The DNF of any SOP is unique (why?)
 cannonical SOP
- An element x in a BL is maxterm if it has 1 as its only successor
- A maxterm is a sum of literals involving all the variables
- Similar to SOP, product of sums (POS) may be defined
- A Boolean expression which is a product of maxterms is said to be in conjunctive normal form (CNF)

Boolean expressions

- $E = x\overline{z} + \overline{y}z + xy\overline{z}$
- E =?

- A SOP expression where each FP is a minterm is said to be in disjunctive normal form (DNF)
- The DNF of any SOP is unique (why?)
 cannonical SOP
- An element x in a BL is maxterm if it has 1 as its only successor
- A maxterm is a sum of literals involving all the variables
- Similar to SOP, product of sums (POS) may be defined
- A Boolean expression which is a product of maxterms is said to be in conjunctive normal form (CNF)
- The CNF of any POS is unique (why?)cannonical POS

Acceptance for complements: $\overline{x} = 1$ iff x = 0

Acceptance for complements: $\overline{x} = 1$ iff x = 0

Acceptance for products: xy = 1 iff x = 1 and y = 1


```
Acceptance for complements: \overline{x} = 1 iff x = 0
```

Acceptance for products: xy = 1 iff x = 1 and y = 1

Acceptance for sums: u + v = 1 iff u = 1 or v = 1

Acceptance for complements: $\overline{x} = 1$ iff x = 0

Minterm expansion: sum of distinct minterms

Acceptance for products: xy = 1 iff x = 1 and y = 1

Acceptance for sums: u + v = 1 iff u = 1 or v = 1


```
Acceptance for complements: \overline{x} = 1 iff x = 0
```

Acceptance for products: xy = 1 iff x = 1 and y = 1

Acceptance for sums: u + v = 1 iff u = 1 or v = 1

Minterm expansion: sum of distinct minterms

Acceptance for complements: $\overline{x} = 1$ iff x = 0

Acceptance for products: xy = 1 iff x = 1 and y = 1

Acceptance for sums: u + v = 1 iff u = 1 or v = 1

Minterm expansion: sum of distinct minterms

Acceptance for minterm expansion:

 An acceptance for minterm expansion on truth assignment of variables happens due to acceptance of exactly one minterm

Acceptance for complements: $\overline{x} = 1$ iff x = 0

Acceptance for products: xy = 1 iff x = 1 and y = 1

Acceptance for sums: u + v = 1 iff u = 1 or v = 1

Minterm expansion: sum of distinct minterms

- An acceptance for minterm expansion on truth assignment of variables happens due to acceptance of exactly one minterm
- If m_i and m_j are two distinct minterms on variables x_1, \ldots, x_k

Acceptance for complements: $\overline{x} = 1$ iff x = 0

Acceptance for products: xy = 1 iff x = 1 and y = 1

Acceptance for sums: u + v = 1 iff u = 1 or v = 1Minterm expansion: sum of distinct minterms

Acceptance for minterm evacuation:

- An acceptance for minterm expansion on truth assignment of variables happens due to acceptance of exactly one minterm
- If m_i and m_j are two distinct minterms on variables x_1, \ldots, x_k
- Let m_i and m_j differ on x_p

Acceptance for complements: $\overline{x} = 1$ iff x = 0

Acceptance for products: xy = 1 iff x = 1 and y = 1

Acceptance for sums: u + v = 1 iff u = 1 or v = 1

Minterm expansion: sum of distinct minterms

- An acceptance for minterm expansion on truth assignment of variables happens due to acceptance of exactly one minterm
- If m_i and m_j are two distinct minterms on variables x_1, \ldots, x_k
- Let m_i and m_j differ on x_p
- Let x_p occur as literal x_{pi} in m_i and x_{pj} in m_j

Acceptance for complements: $\overline{x} = 1$ iff x = 0

Acceptance for products: xy = 1 iff x = 1 and y = 1

Acceptance for sums: u + v = 1 iff u = 1 or v = 1

Minterm expansion: sum of distinct minterms

- An acceptance for minterm expansion on truth assignment of variables happens due to acceptance of exactly one minterm
- If m_i and m_j are two distinct minterms on variables x_1, \ldots, x_k
- Let m_i and m_j differ on x_p
- Let x_p occur as literal x_{pi} in m_i and x_{pj} in m_j
- Then $x_{pi} = \overline{x_{pj}}$, so if m_i accepts then m_j doesn't accept and vice versa

Acceptance for complements: $\overline{x} = 1$ iff x = 0

Acceptance for products: xy = 1 iff x = 1 and y = 1

Acceptance for sums: u + v = 1 iff u = 1 or v = 1Minterm expansion: sum of distinct minterms

- An acceptance for minterm expansion on truth assignment of variables happens due to acceptance of exactly one minterm
- If m_i and m_j are two distinct minterms on variables x_1, \ldots, x_k
- Let m_i and m_j differ on x_p
- Let x_p occur as literal x_{pi} in m_i and x_{pj} in m_j
- Then $x_{pi} = \overline{x_{pj}}$, so if m_i accepts then m_j doesn't accept and vice versa
- This ensures that the minterm expansion is unique

By lattice:

• A Boolean lattice for a Boolean function of k variables has $n = 2^k$ atoms as minterms

- A Boolean lattice for a Boolean function of k variables has $n = 2^k$ atoms as minterms
- A Boolean lattice with n atoms has 2ⁿ elements by the Stone representation theorem

- A Boolean lattice for a Boolean function of k variables has $n = 2^k$ atoms as minterms
- A Boolean lattice with n atoms has 2ⁿ elements by the Stone representation theorem
- Each non-zero element has a unique representation in terms of the atoms (minterms)

- A Boolean lattice for a Boolean function of k variables has $n = 2^k$ atoms as minterms
- A Boolean lattice with n atoms has 2ⁿ elements by the Stone representation theorem
- Each non-zero element has a unique representation in terms of the atoms (minterms)
- Thus there are $2^n = 2^{2^k}$ distinct Boolean functions

By lattice:

- A Boolean lattice for a Boolean function of k variables has $n = 2^k$ atoms as minterms
- A Boolean lattice with n atoms has 2ⁿ elements by the Stone representation theorem
- Each non-zero element has a unique representation in terms of the atoms (minterms)
- Thus there are $2^n = 2^{2^k}$ distinct Boolean functions

By lattice:

- A Boolean lattice for a Boolean function of k variables has $n = 2^k$ atoms as minterms
- A Boolean lattice with n atoms has 2ⁿ elements by the Stone representation theorem
- Each non-zero element has a unique representation in terms of the atoms (minterms)
- Thus there are $2^n = 2^{2^k}$ distinct Boolean functions

By minterm expansion:

• A Boolean function on k variables has $n = 2^k$ possible minterms

By lattice:

- A Boolean lattice for a Boolean function of k variables has $n = 2^k$ atoms as minterms
- A Boolean lattice with n atoms has 2ⁿ elements by the Stone representation theorem
- Each non-zero element has a unique representation in terms of the atoms (minterms)
- Thus there are $2^n = 2^{2^k}$ distinct Boolean functions

- A Boolean function on k variables has $n = 2^k$ possible minterms
- A minterm expansion results in a unique acceptance

By lattice:

- A Boolean lattice for a Boolean function of k variables has $n = 2^k$ atoms as minterms
- A Boolean lattice with n atoms has 2ⁿ elements by the Stone representation theorem
- Each non-zero element has a unique representation in terms of the atoms (minterms)
- Thus there are $2^n = 2^{2^k}$ distinct Boolean functions

- A Boolean function on k variables has n = 2^k possible minterms
- A minterm expansion results in a unique acceptance
- The minterms may be chosen in $\sum\limits_{k=0}^{k=n} \binom{n}{k} = 2^n = 2^{2^k}$ ways

By lattice:

- A Boolean lattice for a Boolean function of k variables has $n = 2^k$ atoms as minterms
- A Boolean lattice with n atoms has 2ⁿ elements by the Stone representation theorem
- Each non-zero element has a unique representation in terms of the atoms (minterms)
- Thus there are $2^n = 2^{2^k}$ distinct Boolean functions

- A Boolean function on k variables has $n = 2^k$ possible minterms
- A minterm expansion results in a unique acceptance
- The minterms may be chosen in $\sum\limits_{k=0}^{k=n} \binom{n}{k} = 2^n = 2^{2^k}$ ways
- Each choice denotes a distinct Boolean function

Boolean expression manipulation

- $(x+y)(\overline{x}+z)(y+z) = (x+y)(\overline{x}+z)$
- $T = (x + y)\overline{[\overline{x}(\overline{y} + \overline{z})]} + \overline{x} \overline{y} + \overline{x} \overline{z}$
- $xy + \overline{x} \ \overline{y} + yz = xy + \overline{x} \ \overline{y} + \overline{x}z$

• $a \oplus b = b \oplus a$

- $a \oplus b = b \oplus a$
- $\bullet (a \oplus b) \oplus c = a \oplus (b \oplus c) = a \oplus b \oplus c$

- $a \oplus b = b \oplus a$
- $(a \oplus b) \oplus c = a \oplus (b \oplus c) = a \oplus b \oplus c$
- $a(b \oplus c) = (ab) \oplus (ac)$

- $a \oplus b = b \oplus a$
- $(a \oplus b) \oplus c = a \oplus (b \oplus c) = a \oplus b \oplus c$
- $a(b \oplus c) = (ab) \oplus (ac)$

• if
$$a \oplus b = c$$
 then
$$\begin{cases} a \oplus c = b \\ b \oplus c = a \\ a \oplus b \oplus c = 0 \end{cases}$$

• A transmission device may be treated as a gate (pass or block)

- A transmission device may be treated as a gate (pass or block)
- MOS transistor, relay, pneumatic valve

- A transmission device may be treated as a gate (pass or block)
- MOS transistor, relay, pneumatic valve
- Normally closed (primed: \overline{x}) or normally open (unprimed: x)

- A transmission device may be treated as a gate (pass or block)
- MOS transistor, relay, pneumatic valve
- Normally closed (primed: \overline{x}) or normally open (unprimed: x)
- Series connection denoted by AND

- A transmission device may be treated as a gate (pass or block)
- MOS transistor, relay, pneumatic valve
- Normally closed (primed: \overline{x}) or normally open (unprimed: x)
- Series connection denoted by AND
- Parallel connection denoted by OR

- A transmission device may be treated as a gate (pass or block)
- MOS transistor, relay, pneumatic valve
- Normally closed (primed: \overline{x}) or normally open (unprimed: x)
- Series connection denoted by AND
- Parallel connection denoted by OR
- $T = x\overline{y} + (\overline{x} + y)z = x\overline{y} + \overline{x}\overline{y}z = x\overline{y} + z$

- A transmission device may be treated as a gate (pass or block)
- MOS transistor, relay, pneumatic valve
- Normally closed (primed: \overline{x}) or normally open (unprimed: x)
- Series connection denoted by AND
- Parallel connection denoted by OR
- $T = x\overline{y} + (\overline{x} + y)z = x\overline{y} + \overline{x}\overline{y}z = x\overline{y} + z$
- CMOS NAND, NOR

Shannon decomposition

•
$$f(x_1, x_2, ..., x_n) = x_1 \cdot f(1, x_2, ..., x_n) + \overline{x_1} \cdot f(0, x_2, ..., x_n)$$

Shannon decomposition

•
$$f(x_1, x_2, ..., x_n) = x_1 \cdot f(1, x_2, ..., x_n) + \overline{x_1} \cdot f(0, x_2, ..., x_n)$$

•
$$f(x_1, x_2, ..., x_n) = (\overline{x_1} + f(1, x_2, ..., x_n)) \cdot (x_1 + f(0, x_2, ..., x_n))$$

Shannon decomposition

- $f(x_1, x_2, ..., x_n) = x_1 \cdot f(1, x_2, ..., x_n) + \overline{x_1} \cdot f(0, x_2, ..., x_n)$
- $f(x_1, x_2, ..., x_n) = (\overline{x_1} + f(1, x_2, ..., x_n)) \cdot (x_1 + f(0, x_2, ..., x_n))$
- Multiplexer realisation by Shannon decomposition or Shannon expansion

Shannon decomposition

- $f(x_1, x_2, ..., x_n) = x_1 \cdot f(1, x_2, ..., x_n) + \overline{x_1} \cdot f(0, x_2, ..., x_n)$
- $f(x_1, x_2, ..., x_n) = (\overline{x_1} + f(1, x_2, ..., x_n)) \cdot (x_1 + f(0, x_2, ..., x_n))$
- Multiplexer realisation by Shannon decomposition or Shannon expansion
- Repeated application to obtain CNF or DNF of a given Boolean function

Treated in Emil Post's functional completeness theorem

- Treated in Emil Post's functional completeness theorem
- Expressed in terms of five classes of Boolean functions

- Treated in Emil Post's functional completeness theorem
- Expressed in terms of five classes of Boolean functions T: **T-preserving** f(T, T, ..., T) = T

- Treated in Emil Post's functional completeness theorem
- Expressed in terms of five classes of Boolean functions

```
T: T-preserving f(T, T, ..., T) = T
F: F-preserving f(F, F, ..., F) = F
```


- Treated in Emil Post's functional completeness theorem
- Expressed in terms of five classes of Boolean functions

T: T-preserving
$$f(T, T, ..., T) = T$$

F: F-preserving $f(F, F, ..., F) = F$
L: counting $f(z_1, z_2, ..., x_p, ..., z_n) \neq f(z'_1, z'_2, ..., y_p, ..., z'_n)$ if $x_p \neq y_p$ and $z_i = z'_i$ if position- i isn't dummy position- i is dummy if $f(z_1, ..., z_i, ..., z_n) = f(z_1, ..., \neg z_i, ..., z_n)$ i.e. f is invariant to changes in a dummy position

- Treated in Emil Post's functional completeness theorem
- Expressed in terms of five classes of Boolean functions

T: T-preserving
$$f(T, T, ..., T) = T$$

F: F-preserving $f(F, F, ..., F) = F$

L: counting $f(z_1, z_2, ..., x_p, ..., z_n) \neq f(z'_1, z'_2, ..., y_p, ..., z'_n)$ if $x_p \neq y_p$ and $z_i = z'_i$ if position- i isn't dummy position- i is dummy if $f(z_1, ..., z_i, ..., z_n) = f(z_1, ..., \neg z_i, ..., z_n)$ i.e. f is invariant to changes in a dummy position

M: monotonic let $X = \langle x_1, x_2, ..., x_n \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$, then $X < Y \Rightarrow f(X) < f(Y)$ where

- Treated in Emil Post's functional completeness theorem
- Expressed in terms of five classes of Boolean functions

T: T-preserving
$$f(T,T,...,T)=T$$

F: F-preserving $f(F,F,...,F)=F$

L: counting $f(z_1,z_2,...,x_p,...,z_n)\neq f(z_1',z_2',...,y_p,...,z_n')$ if $x_p\neq y_p$ and $z_i=z_i'$ if position- i isn't dummy position- i is dummy if $f(z_1,...,z_i,...,z_n)=f(z_1,...,\neg z_i,...,z_n)$ i.e. f is invariant to changes in a dummy position

M: monotonic let $X=\langle x_1,x_2,...,x_n\rangle$ and $Y=\langle y_1,y_2,...,y_n\rangle$, then $X\leq Y\Rightarrow f(X)\leq f(Y)$, where $X\leq Y\equiv \forall ix_i\leq y_i$, and $F\leq T$

S: self-dual $f(x_1,x_2,...,x_n)=\neg f(\neg x_1,\neg x_2,...,\neg x_n)$

- Treated in Emil Post's functional completeness theorem
- Expressed in terms of five classes of Boolean functions

7: T-preserving
$$f(T, T, ..., T) = T$$

F: F-preserving $f(F, F, ..., F) = F$
L: counting $f(z_1, z_2, ..., x_p, ..., z_n) \neq f(z'_1, z'_2, ..., y_p, ..., z'_n)$ if $x_p \neq y_p$ and $z_i = z'_i$ if position- i isn't dummy position- i is dummy if $f(z_1, ..., z_i, ..., z_n) = f(z_1, ..., \neg z_i, ..., z_n)$ i.e. f is invariant to changes in a dummy position **M: monotonic** let $X = \langle x_1, x_2, ..., x_n \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$,

M: monotonic let
$$X = \langle x_1, x_2, \dots, x_n \rangle$$
 and $Y = \langle y_1, y_2, \dots, y_n \rangle$, then $X \leq Y \Rightarrow f(X) \leq f(Y)$, where $X \leq Y \equiv \forall i x_i \leq y_i$, and $F \leq T$

S: self-dual
$$f(x_1, x_2, ..., x_n) = \neg f(\neg x_1, \neg x_2, ..., \neg x_n)$$

• A set \mathbb{F} of Boolean connectives is functionally complete if and only if for each of the five defined classes, there is a member of \mathbb{F} which does not belong to that class

Classification of Some Boolean functions

X	<i>y</i>	T	F	¬2	\land	\ \	\rightarrow	\oplus	\leftrightarrow	↑	$ \downarrow $	[x,	<i>s</i> , <i>y</i>]	∉
0	0	1	0	1	0	0	1	0	1	1	1	0	0	
0	1	1	0	0	0	1	1	1	0	1	0	0	1	
1	0	1	0	1	0	1	0	1	0	1	0	1	0	
_1	1	1	0	0	1	1	1	0	1	0	0	1	1	
-	T		Х	Х	1	1	1	X	1	X	X		✓	<i>f</i> ₁
F	=	Х	1	Х	1	1	Х	1	Х	Х	Х	1		<i>f</i> ₂
	_	1	1	1	X	X	Х	1	1	Х	Х	Х		<i>f</i> ₃
М		1	1	Х	1	1	Х	X	Х	Х	X	Х		<i>f</i> ₄
S														

Classification of Some Boolean functions

X	y	<i>T</i>	F	72	\wedge	V	\rightarrow	\oplus	\leftrightarrow	↑	$ \downarrow $	[x,	s, y	∉
0	0	1	0	1	0	0	1	0	1	1	1	0	0	
0	1	1	0	0	0	1	1	1	0	1	0	0	1	
1	0	1	0	1	0	1	0	1	0	1	0	1	0	
1	1	1	0	0	1	1	1	0	1	0	0	1	1	
	Γ	1	X	X	1	1	1	X	1	Х	X		✓	<i>f</i> ₁
F	=	X	1	Х	1	1	Х	1	Х	Х	Х		✓	<i>f</i> ₂
	L		1	1	Х	X	Х	1	1	Х	Х	Х		<i>f</i> ₃
N	М		1	Х	1	1	Х	X	Х	Х	X	X		<i>f</i> ₄
S			Х		X	X	Х	Х	Х	X	X	Х		

- By FCT, $\mathbb{F}_1 = \{\uparrow\}$ and $\mathbb{F}_2 = \{\downarrow\}$ are both functionally complete
- $\mathbb{F}_3 = \{[x, s, y], T, F\}$ is also functionally complete (why?)
- What are some other functionally complete sets of functions?
- All rows of a counting (L class) function have the same parity (disregarding the dummy columns)

• Let $f_i^{\star}(p) = f_i(x_1, x_2, \dots, x_n)|_{x_1 = x_2 = \dots = x_n = p}, i \in \{1, 2\}$

- Let $f_i^{\star}(p) = f_i(x_1, x_2, \dots, x_n)|_{x_1 = x_2 = \dots = x_n = p}, i \in \{1, 2\}$
- Since f_1 is not T-preserving, $f_1(T) = F$, similarly $f_2(F) = T$ as f_2 is not F-preserving, leading to the following incomplete truth table

$$\begin{array}{c|cccc}
p & f_1^*(p) & f_2^*(p) \\
\hline
T & F & ? \\
F & ? & T
\end{array}$$

- Let $f_i^*(p) = f_i(x_1, x_2, \dots, x_n)|_{x_1 = x_2 = \dots = x_n = p}, i \in \{1, 2\}$
- Since f_1 is not T-preserving, $f_1(T) = F$, similarly $f_2(F) = T$ as f_2 is not F-preserving, leading to the following incomplete truth table

$$\begin{array}{c|cccc}
p & f_1^*(p) & f_2^*(p) \\
\hline
T & F & ? \\
F & ? & T
\end{array}$$

• If $f_1^{\star}(F) = T$ or $f_2^{\star}(T) = F$, \neg is immediately realised

- Let $f_i^\star(p) = f_i(x_1, x_2, \dots, x_n)|_{x_1 = x_2 = \dots = x_n = p}, i \in \{1, 2\}$
- Since f_1 is not T-preserving, $f_1(T) = F$, similarly $f_2(F) = T$ as f_2 is not F-preserving, leading to the following incomplete truth table

$$\begin{array}{c|cccc}
p & f_1^*(p) & f_2^*(p) \\
\hline
T & F & ? \\
F & ? & T
\end{array}$$

- If $f_1^*(F) = T$ or $f_2^*(T) = F$, \neg is immediately realised
- ullet Otherwise, the truth table below must realise F and T (but not \neg)

$$\begin{array}{c|ccc} p & f_1^{\star}(p) & f_2^{\star}(p) \\ \hline T & F & T \\ F & F & T \end{array} \text{ so } f_1^{\star}(_) = F, f_2^{\star}(_) = T$$

- Let $f_i^*(p) = f_i(x_1, x_2, \dots, x_n)|_{x_1 = x_2 = \dots = x_n = p}, i \in \{1, 2\}$
- Since f_1 is not T-preserving, $f_1(\bar{T}) = F$, similarly $f_2(F) = T$ as f_2 is not F-preserving, leading to the following incomplete truth table

$$\begin{array}{c|cccc} p & f_1^*(p) & f_2^*(p) \\ \hline T & F & ? \\ F & ? & T \\ \end{array}$$

- If $f_1^{\star}(F) = T$ or $f_2^{\star}(T) = F$, \neg is immediately realised
- Otherwise, the truth table below must realise F and T (but not \neg)

$$\begin{array}{c|ccc} p & f_1^{\star}(p) & f_2^{\star}(p) \\ \hline T & F & T \\ F & F & T \end{array} \text{ so } f_1^{\star}(_) = F, f_2^{\star}(_) = T$$

Now, since f₃ is non-monotonic, it will have two rows

<i>X</i> ₁	<i>X</i> ₂	 X_k	 Xn	f_3	_	
<i>Z</i> ₁	<i>Z</i> ₂	 F	 Zn	T	leading to	
<i>Z</i> ₁	z_2	 Τ	 Zn	F		

$p(=x_k)$	$f_3'(p)$
F	T
T	F

where $z_i = F = f_1^*(\cdot)$ or $z_i = T = f_2^*(\cdot)$, $i \neq k$

Since f₅ isn't self complementing its truth table should have rows

• Since f₅ isn't self complementing its truth table should have rows

• In the top row, if $z_i = T$, replace it by p, otherwise with $\neg p = f_3'(p)$

Since f₅ isn't self complementing its truth table should have rows

- In the top row, if $z_i = T$, replace it by p, otherwise with $\neg p = f_3'(p)$
- Note that $\neg z_i = f_3'(z_i)$, the output (f_5') is constant, either T or F

• Since f₅ isn't self complementing its truth table should have rows

- In the top row, if $z_i = T$, replace it by p, otherwise with $\neg p = f_3'(p)$
- Note that $\neg z_i = f_3'(z_i)$, the output (f_5') is constant, either T or F
- The other constant truth value may be obtained as $f_3'(f_5')$

• Since f₅ isn't self complementing its truth table should have rows

- In the top row, if $z_i = T$, replace it by p, otherwise with $\neg p = f_3'(p)$
- Note that $\neg z_i = f_3'(z_i)$, the output (f_5') is constant, either T or F
- The other constant truth value may be obtained as $f_3'(f_5')$
- Thus, both T and F may be generated using f_1 , f_2 , f_3 and f_5

Defining g(p, q) with an odd number of Ts

- f_4 is not counting, so its TT will have (at least) two inputs $\langle x_1, \ldots, x_n \rangle$ and $\langle y_1, \ldots, y_n \rangle$ st
 - $f_4(u_1,\ldots,u_i,\ldots,u_n)=f_4(u_1,\ldots,\neg u_i,\ldots,u_n)$ as f_4 is not counting • $f_4(v_1,\ldots,v_i,\ldots,v_n)\neq f_4(v_1,\ldots,\neg v_i,\ldots,v_n)$ position-i isn't dummy
- Parity of Ts in the pairs of rows will be different, these rows will be used to define g(p,q)
- The four rows and also the column reduction scheme $(i \neq j)$, z_1, z_2 are either T or F

All TTs with odd number of Ts can now be generated by enumerating the symbolic TT

g	p	q	g_1	g_2	<i>g</i> ₃	g_4	g	p	q	g 5	g_6	g 7	<i>g</i> 8
	T	T	T	T	F	F	<i>Z</i> ₂	T	T	T	F	T	F
Z ₁	T	F	<i>T</i>	Τ	F	F	$\neg z_2$	T	F	F	Τ	F	Τ
<i>z</i> ₂	F	T	T	F	Τ	F	Z ₁	F	T	T	Τ	F	F
$\neg z_2$	F	F	F	Τ	F	Τ	<i>Z</i> ₁	F	F	T	Τ	F	F
Comn	V	\leftarrow	+	\downarrow				\rightarrow	↑	Λ	/		

Each g_i with T, F and complementation, as required, is functionally complete