PART 1

```
import tensorflow as tf
from pathlib import Path
from PIL import Image

base_dir = Path.home() / "Desktop" / "data.set" / "indoorCVPR_09" / "Images"
train_txt = Path.home() / "Desktop" / "data.set" / "TrainImages.txt"
test_txt = Path.home() / "Desktop" / "data.set" / "TestImages.txt"
```

```
with open(train_txt, "r") as f:
    train_paths = [base_dir / line.strip() for line in f]

with open(test_txt, "r") as f:
    test_paths = [base_dir / line.strip() for line in f]

print(f"Toplam Train görüntü: {len(train_paths)}, Test görüntü:
{len(test_paths)}")
```

Output:

Toplam Train görüntü: 5360, Test görüntü: 1340

```
train_labels = [p.parent.name for p in train_paths]
test_labels = [p.parent.name for p in test_paths]
```

```
class_names = sorted(set(train_labels))
label_to_index = {name: idx for idx, name in enumerate(class_names)}

train_indices = [label_to_index[l] for l in train_labels]
test_indices = [label_to_index[l] for l in test_labels]

print("Sinif sayisi:", len(class_names))
```

Output:

Sınıf sayısı: 67

```
train_path_strs = [str(p) for p in train_paths]
test_path_strs = [str(p) for p in test_paths]
```

```
def deep_filter(path_strs, labels):
    valid_p, valid_l = [], []
    for p, l in zip(path_strs, labels):
        try:
            with Image.open(p) as img:
                img.load()
            valid_p.append(p)
            valid_l.append(l)
        except Exception:
            # bozuk dosya, atla
            pass
    return valid_p, valid_l
train_path_strs, train_indices = deep_filter(train_path_strs, train_indices)
test_path_strs, test_indices = deep_filter(test_path_strs, test_indices)
print(f"Filtre sonras1: Train={len(train_path_strs)},
Test={len(test_path_strs)}")
```

Filtre sonrası: Train=5360, Test=1340

```
IMG_SIZE = (224, 224)
BATCH_SIZE = 32

def load_and_preprocess(path, label):
    img = tf.io.read_file(path)
    img = tf.image.decode_image(img, channels=3, expand_animations=False)
    img.set_shape([None, None, 3])
    img = tf.image.resize(img, IMG_SIZE)
    img = img / 255.0
    return img, label
```

```
train_ds = (
    tf.data.Dataset.from_tensor_slices((train_path_strs, train_indices))
    .map(load_and_preprocess, num_parallel_calls=tf.data.AUTOTUNE)
    .shuffle(1000)
    .batch(BATCH_SIZE)
    .prefetch(tf.data.AUTOTUNE)
    .ignore_errors()  # Hatali örnekleri atla
)

test_ds = (
    tf.data.Dataset.from_tensor_slices((test_path_strs, test_indices))
    .map(load_and_preprocess, num_parallel_calls=tf.data.AUTOTUNE)
    .batch(BATCH_SIZE)
    .prefetch(tf.data.AUTOTUNE)
    .ignore_errors()  # Hatali örnekleri atla
)
```

```
from sklearn.model_selection import train_test_split

train_paths_split, val_paths_split, train_idx_split, val_idx_split =
    train_test_split(
        train_path_strs,
        train_indices,
        test_size=0.2,
        stratify=train_indices,
        random_state=42
)

val_ds = (
    tf.data.Dataset.from_tensor_slices((val_paths_split, val_idx_split))
        .map(load_and_preprocess, num_parallel_calls=tf.data.AUTOTUNE)
        .batch(BATCH_SIZE)
        .prefetch(tf.data.AUTOTUNE)
)
```

```
model = tf.keras.Sequential([
    tf.keras.layers.Conv2D(32, 3, activation='relu',
input_shape=(*IMG_SIZE,3)),
    tf.keras.layers.MaxPooling2D(),
    tf.keras.layers.Conv2D(64, 3, activation='relu'),
    tf.keras.layers.MaxPooling2D(),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dropout(0.5),
    tf.keras.layers.Dense(len(class_names), activation='softmax'),
])
model.compile(
    optimizer=tf.keras.optimizers.Adam(learning rate=1e-3),
    loss='sparse_categorical_crossentropy',
    metrics=['accuracy']
model.summary()
```

Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 222, 222, 32)	896
max_pooling2d (MaxPooling2D)	(None, 111, 111, 32)	0
conv2d_1 (Conv2D)	(None, 109, 109, 64)	18,496
max_pooling2d_1 (MaxPooling2D)	(None, 54, 54, 64)	0
flatten (Flatten)	(None, 186624)	0
dense (Dense)	(None, 128)	23,888,000
dropout (Dropout)	(None, 128)	0
dense_1 (Dense)	(None, 67)	8,643

```
...
Total params: 23,916,035 (91.23 MB)

...
Trainable params: 23,916,035 (91.23 MB)

...
Non-trainable params: 0 (0.00 B)
```

```
from tensorflow.keras.callbacks import EarlyStopping
es = EarlyStopping(monitor='val_loss', patience=1, restore_best_weights=True)
history = model.fit(
    train_ds,
    validation_data=val_ds,
    epochs=19,
    callbacks=[es]
)
```

```
168/168
                             34s 197ms/step - accuracy: 0.0166 - loss: 5.5112 - val_accuracy: 0.0373 - val_loss: 4.1356
Epoch 2/19
168/168
                            33s 193ms/step - accuracy: 0.0334 - loss: 4.1470 - val_accuracy: 0.1595 - val_loss: 3.9085
Epoch 3/19
168/168
                            33s 192ms/step - accuracy: 0.0734 - loss: 3.9216 - val_accuracy: 0.4272 - val_loss: 3.0766
Epoch 4/19
                            33s 194ms/step - accuracy: 0.1948 - loss: 3.2665 - val accuracy: 0.7789 - val loss: 1.8222
168/168
Epoch 5/19
168/168
                            37s 217ms/step - accuracy: 0.4058 - loss: 2.3488 - val_accuracy: 0.9123 - val_loss: 0.9143
Epoch 6/19
168/168
                            37s 220ms/step - accuracy: 0.5712 - loss: 1.5963 - val_accuracy: 0.9767 - val_loss: 0.3662
Epoch 7/19
                            38s 224ms/step - accuracy: 0.6604 - loss: 1.2298 - val_accuracy: 0.9860 - val_loss: 0.1859
168/168
Epoch 8/19
168/168
                            39s 230ms/step - accuracy: 0.7503 - loss: 0.8918 - val_accuracy: 0.9972 - val_loss: 0.1016
Epoch 9/19
                            39s 230ms/step - accuracy: 0.7864 - loss: 0.7689 - val_accuracy: 0.9972 - val_loss: 0.0544
168/168
Epoch 10/19
                            39s 231ms/step - accuracy: 0.8174 - loss: 0.6416 - val accuracy: 0.9981 - val loss: 0.0355
168/168
Epoch 11/19
168/168
                           39s 230ms/step - accuracy: 0.8382 - loss: 0.5753 - val_accuracy: 0.9972 - val_loss: 0.0321
Epoch 12/19
                            39s 229ms/step - accuracy: 0.8515 - loss: 0.5159 - val_accuracy: 0.9981 - val_loss: 0.0230
Epoch 13/19
                            38s 225ms/step - accuracy: 0.8813 - loss: 0.4542 - val accuracy: 0.9972 - val loss: 0.0172
168/168
Epoch 14/19
168/168
                            39s 227ms/step - accuracy: 0.8803 - loss: 0.4131 - val_accuracy: 0.9991 - val_loss: 0.0090
Epoch 15/19
168/168
                            38s 224ms/step - accuracy: 0.8935 - loss: 0.3862 - val_accuracy: 0.9991 - val_loss: 0.0102
```

```
import matplotlib.pyplot as plt
epochs = range(1, len(history.history['loss']) + 1)
plt.figure()
plt.plot(epochs, history.history['loss'], label='Train Loss')
plt.plot(epochs, history.history['val_loss'],label='Val Loss')
plt.title('Kayıp Değişimi')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.show()
plt.figure()
plt.plot(epochs, history.history['accuracy'], label='Train Acc')
plt.plot(epochs, history.history['val_accuracy'],label='Val Acc')
plt.title('Doğruluk Değişimi')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
```



```
# Orijinal dataset
orig_train = train_ds.unbatch()
orig_val = val_ds.unbatch()
input_shape = (*IMG_SIZE, 3)
                                # IMG_SIZE = (224,224)
num_classes = len(class_names)
histories = {}
for lr in [1e-2, 1e-3, 1e-4]:
    for bs in [32, 64]:
        train_ds_bs = (
            orig train
            .shuffle(1000)
            .batch(bs)
            .prefetch(tf.data.AUTOTUNE)
            .apply(tf.data.experimental.ignore_errors())
        val_ds_bs = (
            orig_val
            .batch(bs)
            .prefetch(tf.data.AUTOTUNE)
        model = tf.keras.Sequential([
            tf.keras.layers.Conv2D(32, 3, activation='relu',
input_shape=input_shape),
            tf.keras.layers.MaxPooling2D(),
            tf.keras.layers.Conv2D(64, 3, activation='relu'),
            tf.keras.layers.MaxPooling2D(),
            tf.keras.layers.Flatten(),
            tf.keras.layers.Dense(128, activation='relu'),
            tf.keras.layers.Dropout(0.5),
            tf.keras.layers.Dense(num_classes, activation='softmax'),
        ])
        model.compile(
            optimizer=tf.keras.optimizers.Adam(learning_rate=lr),
            loss='sparse_categorical_crossentropy',
            metrics=['accuracy']
        es = EarlyStopping(monitor='val_loss', patience=1,
restore_best_weights=True)
        hist = model.fit(
            train ds bs,
            validation_data=val_ds_bs,
            epochs=100,
            callbacks=[es],
```

```
verbose=2
histories[(lr, bs)] = hist.history
```

```
WARNING:tensorflow:From C:\Users\Can\AppData\local\Temp\ipykernel_22472\951591377.py:23: ignore_errors (
Instructions for updating:
Use 'tf.data.Dataset.ignore_errors' instead.
Epoch 1/100
168/168 - 395 - 229ms/step - accuracy: 0.0103 - loss: 5.8912 - val_accuracy: 0.0149 - val_loss: 4.2050
Epoch 1/100
168/168 - 375 - 223ms/step - accuracy: 0.0125 - loss: 4.2102 - val_accuracy: 0.0149 - val_loss: 4.2050
Epoch 1/100
84/84 - 335 - 388ms/step - accuracy: 0.0140 - loss: 10.8408 - val_accuracy: 0.0149 - val_loss: 4.2050
Epoch 2/100
84/84 - 325 - 379ms/step - accuracy: 0.0140 - loss: 10.8408 - val_accuracy: 0.0149 - val_loss: 4.2050
Epoch 3/100
84/84 - 325 - 379ms/step - accuracy: 0.0108 - loss: 4.2081 - val_accuracy: 0.0149 - val_loss: 4.2048
Epoch 3/100
84/84 - 325 - 379ms/step - accuracy: 0.0999 - loss: 4.2083 - val_accuracy: 0.0149 - val_loss: 4.2049
Epoch 3/100
168/168 - 395 - 230ms/step - accuracy: 0.0177 - loss: 4.5195 - val_accuracy: 0.0392 - val_loss: 4.1954
Epoch 3/100
168/168 - 385 - 228ms/step - accuracy: 0.0278 - loss: 4.1579 - val_accuracy: 0.0700 - val_loss: 4.0364
Epoch 3/100
168/168 - 385 - 228ms/step - accuracy: 0.0648 - loss: 3.9736 - val_accuracy: 0.2015 - val_loss: 3.5790
Epoch 4/100
168/168 - 385 - 228ms/step - accuracy: 0.0648 - loss: 3.9736 - val_accuracy: 0.4188 - val_loss: 2.7757
Epoch 5/100
168/168 - 385 - 227ms/step - accuracy: 0.2000 - loss: 3.1142 - val_accuracy: 0.6595 - val_loss: 1.9294
Epoch 6/100
                                                                                                                                    rs<u>\Can\AppData\\ocal\Temp\ipykernel_22472\951501377.py:23</u>: ignore_errors (from tensorflow.python.data.experimental.ops.error_ops) is deprecated and will
    168/168
    Epoch 6/100
168/168 - 39s - 231ms/step - accuracy: 0.2907 - loss: 2.6235 - val_accuracy: 0.8032 - val_loss: 1.3877
   Epoch 1/100
84/84 - 33s - 396ms/step - accuracy: 0.0121 - loss: 4.2190 - val_accuracy: 0.0159 - val_loss: 4.2046
Epoch 2/100
84/84 - 33s - 387ms/step - accuracy: 0.0132 - loss: 4.2049 - val_accuracy: 0.0149 - val_loss: 4.2047
```

```
for (lr, bs), h in histories.items():
    epochs = range(1, len(h['loss']) + 1)
    plt.figure(figsize=(10, 4))
    # Loss eğrisi
    plt.subplot(1, 2, 1)
    plt.plot(epochs, h['loss'], label='Train Loss')
    plt.plot(epochs, h['val_loss'],label='Val Loss')
    plt.title(f'Loss (lr={lr}, bs={bs})')
    plt.xlabel('Epoch')
    plt.ylabel('Loss')
    plt.legend()
    # Accuracy eğrisi
    plt.subplot(1, 2, 2)
    plt.plot(epochs, h['accuracy'], label='Train Acc')
    plt.plot(epochs, h['val_accuracy'],label='Val Acc')
    plt.title(f'Accuracy (lr={lr}, bs={bs})')
    plt.xlabel('Epoch')
    plt.ylabel('Accuracy')
    plt.legend()
    plt.tight_layout()
    plt.show()
```



```
import pandas as pd

records = []
for (lr, bs), h in histories.items():
    records.append({
        'learning_rate': lr,
        'batch_size': bs,
        'max_val_acc': max(h['val_accuracy']),
        'min_val_loss': min(h['val_loss'])
    })

df_results = pd.DataFrame(records).sort_values(
    by='max_val_acc', ascending=False
).reset_index(drop=True)

df_results
```

	learning_rate	batch_size	max_val_acc	min_val_loss
0	0.0010	32	0.995336	0.074799
1	0.0010	64	0.987873	0.110327
2	0.0001	32	0.015858	4.204634
3	0.0001	64	0.015858	4.204595
4	0.0100	32	0.014925	4.204967
5	0.0100	64	0.014925	4.204752

```
best = df_results.iloc[0]
lr_best = best.learning_rate
bs_best = int(best.batch_size)
```

```
import numpy as np
best = df results.iloc[0]
lr_best = best.learning_rate
bs best = int(best.batch size)
# Train + val data set prep
full train = orig train.shuffle(1000) \
                       .batch(bs best) \
                       .prefetch(tf.data.AUTOTUNE)
val ds bs = orig val.batch(bs best) \
                     .prefetch(tf.data.AUTOTUNE)
model final = tf.keras.Sequential([
    tf.keras.layers.Conv2D(32, 3, activation='relu', input_shape=input_shape),
    tf.keras.layers.MaxPooling2D(),
    tf.keras.layers.Conv2D(64, 3, activation='relu'),
    tf.keras.layers.MaxPooling2D(),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dropout(0.5),
    tf.keras.layers.Dense(num_classes, activation='softmax'),
])
model final.compile(
    optimizer=tf.keras.optimizers.Adam(learning rate=lr best),
    loss='sparse_categorical_crossentropy',
    metrics=['accuracy']
es = EarlyStopping(monitor='val_loss', patience=1, restore_best_weights=True)
model final.fit(
    full_train,
    validation_data=val_ds_bs,
    epochs=50,
    callbacks=[es],
    verbose=2
orig_test = test_ds.unbatch()
test_ds_bs = orig_test.batch(bs_best) \
                       .prefetch(tf.data.AUTOTUNE)
for x_batch, y_batch in test_ds_bs.take(1):
   q_loss, q_acc = model_final.evaluate(x_batch, y_batch, verbose=2)
```

```
print(f"[Quick test] Loss: {q_loss:.4f}, Acc: {q_acc:.4f}")
    break

x_list, y_list = [], []
for x_batch, y_batch in test_ds_bs:
    x_list.append(x_batch.numpy())
    y_list.append(y_batch.numpy())

x_test = np.concatenate(x_list, axis=0)

y_test = np.concatenate(y_list, axis=0)

test_loss, test_acc = model_final.evaluate(x_test, y_test, verbose=2)

print(f"[Full test] Loss: {test_loss:.4f}, Acc: {test_acc:.4f}")
```

```
168/168 - 39s - 232ms/step - accuracy: 0.0164 - loss: 4.3620 - val accuracy: 0.0243 - val loss: 4.1875
168/168 - 38s - 228ms/step - accuracy: 0.0233 - loss: 4.1813 - val accuracy: 0.0364 - val loss: 4.1289
Epoch 3/50
168/168 - 38s - 228ms/step - accuracy: 0.0291 - loss: 4.1279 - val accuracy: 0.0644 - val loss: 4.0542
Epoch 4/50
168/168 - 38s - 226ms/step - accuracy: 0.0485 - loss: 4.0188 - val_accuracy: 0.1082 - val_loss: 3.7360
Epoch 5/50
168/168 - 38s - 228ms/step - accuracy: 0.0720 - loss: 3.8107 - val_accuracy: 0.2369 - val_loss: 3.3199
Epoch 6/50
168/168 - 38s - 228ms/step - accuracy: 0.1155 - loss: 3.5317 - val_accuracy: 0.3396 - val_loss: 2.8298
Epoch 7/50
168/168 - 38s - 228ms/step - accuracy: 0.1635 - loss: 3.2035 - val_accuracy: 0.5317 - val_loss: 2.2870
Epoch 8/50
168/168 - 38s - 228ms/step - accuracy: 0.2010 - loss: 2.9361 - val accuracy: 0.6213 - val loss: 1.8609
Epoch 9/50
168/168 - 38s - 226ms/step - accuracy: 0.2476 - loss: 2.6889 - val_accuracy: 0.7080 - val_loss: 1.5716
Epoch 10/50
168/168 - 38s - 227ms/step - accuracy: 0.2874 - loss: 2.4667 - val_accuracy: 0.7640 - val_loss: 1.2905
Epoch 11/50
168/168 - 38s - 227ms/step - accuracy: 0.3144 - loss: 2.3099 - val accuracy: 0.8116 - val loss: 1.1102
168/168 - 38s - 227ms/step - accuracy: 0.3299 - loss: 2.2352 - val_accuracy: 0.8451 - val_loss: 0.8902
Epoch 13/50
168/168 - 38s - 227ms/step - accuracy: 0.3600 - loss: 2.0915 - val accuracy: 0.8535 - val loss: 0.7493
1/1 - 0s - 83ms/step - accuracy: 0.0938 - loss: 4.8116
[Quick test] Loss: 4.8116, Acc: 0.0938
42/42 - 2s - 56ms/step - accuracy: 0.0828 - loss: 4.7315
[Full test] Loss: 4.7315, Acc: 0.0828
```

```
1/1 - 0s - 95ms/step - accuracy: 0.0938 - loss: 4.8116

[Quick test] Loss: 4.8116, Acc: 0.0938

42/42 - 2s - 57ms/step - accuracy: 0.0828 - loss: 4.7315

[Full test] Loss: 4.7315, Acc: 0.0828
```

```
1/1
                         0s 140ms/step
1/1
                         Øs 82ms/step
1/1
                         0s 84ms/step
                         0s 83ms/step
1/1
1/1
                         0s 79ms/step
1/1
                         0s 77ms/step
1/1
                         0s 72ms/step
                         0s 74ms/step
1/1
1/1
                         0s 83ms/step
1/1
                         0s 78ms/step
1/1
                         0s 71ms/step
1/1
                         0s 75ms/step
1/1
                         0s 77ms/step
1/1
                         0s 71ms/step
1/1
                         0s 77ms/step
1/1
                         0s 71ms/step
1/1
                         0s 74ms/step
                         0s 74ms/step
1/1
1/1
                         0s 73ms/step
1/1
                         Øs 73ms/step
1/1
                         0s 73ms/step
                         0s 71ms/step
1/1
                         0s 73ms/step
1/1
                         0s 77ms/step
1/1
1/1
                         0s 71ms/step
1/1
                         0s 73ms/step
1/1
                         Øs 75ms/step
1/1
                         0s 70ms/step
1/1
                         0s 99ms/step
```


	precision	recall	f1-score	support
airport_inside	0.20	0.05	0.08	20
artstudio	0.00	0.00	0.00	20
auditorium	0.00	0.00	0.00	18
bakery	0.04	0.05	0.05	19
bar	0.00	0.00	0.00	18
bathroom	0.08	0.22	0.11	18
bedroom	0.00	0.00	0.00	21
bookstore	0.00	0.00	0.00	20
bowling	0.08	0.20	0.11	20
buffet	0.22	0.20	0.21	20
casino	0.17	0.32	0.22	19
children_room	0.00	0.00	0.00	18
church_inside	0.14	0.11	0.12	19
classroom	0.00	0.00	0.00	18
cloister	0.07	0.05	0.06	20
closet	0.00	0.00	0.00	18
clothingstore	0.00	0.00	0.00	18
computerroom	0.07	0.06	0.06	18
concert_hall	0.16	0.25	0.19	20
corridor	0.10	0.05	0.06	21
deli	0.00	0.00	0.00	19
dentaloffice	0.00	0.00	0.00	21
dining_room	0.00	0.00	0.00	18
accuracy			0.08	1340
macro avg	0.08	0.08	0.08	1340
weighted avg	0.08	0.08	0.08	1340

```
for x_batch, y_batch in test_ds.take(1):
    print("x_batch shape:", x_batch.shape)
    print("y_batch shape:", y_batch.shape)
    print("Unique labels in this batch:", np.unique(y_batch.numpy()))
    break
labels = [int(y.numpy()) for x, y in test_ds.unbatch()]
labels = np.array(labels)
unique, counts = np.unique(labels, return counts=True)
print("\nClass distribution in test set:")
for cls, cnt in zip(unique, counts):
    print(f" {class_names[cls]:<15}: {cnt}")</pre>
fig, axes = plt.subplots(3, 3, figsize=(6, 6))
for ax, (img, lbl) in zip(axes.flatten(), test_ds.unbatch().take(9)):
    ax.imshow(img.numpy())
    ax.set_title(class_names[int(lbl.numpy())])
    ax.axis('off')
plt.tight_layout()
plt.show()
```

```
x batch shape: (32, 224, 224, 3)
y batch shape: (32,)
Unique labels in this batch: [ 4 9 14 17 18 21 27 29 30 32 33 35 36 37 39 40 42 44 45 49 50 52 55 63
65]
Class distribution in test set:
 airport inside: 20
 artstudio : 20
 auditorium : 18
 bakery
              : 19
 bar
 bathroom
             : 18
 bedroom
 bookstore
 bowling
 buffet
              : 20
 casino
 children_room : 18
 church_inside : 19
              : 18
 classroom
 cloister
              : 20
 closet
              : 18
 clothingstore : 18
 computerroom : 18
 concert_hall : 20
 videostore
              : 22
              : 21
 waitingroom
 warehouse
              : 21
 winecellar
```

kitchen

videostore

operating_room

restaurant_kitchen

videostore

kindergarden

PART 2

```
from tensorflow.keras import layers

data_augmentation = tf.keras.Sequential([
    layers.RandomFlip('horizontal'),
    layers.RandomRotation(0.1),
    layers.RandomZoom(0.2),
    layers.RandomContrast(0.2),
], name='data_augmentation')
```

```
from tensorflow.keras import layers, models, callbacks
from tensorflow.keras.applications import VGG16, vgg16
base_model = VGG16(
    input_shape=(*IMG_SIZE, 3),
    include_top=False,
    weights='imagenet',
    pooling='avg'
base model.trainable = False
inputs = layers.Input(shape=(*IMG_SIZE, 3), dtype=tf.float32)
x = vgg16.preprocess_input(inputs * 255.0)
x = base_model(x, training=False)
x = layers.Dense(256, activation='relu')(x)
x = layers.Dropout(0.3)(x)
outputs = layers.Dense(num_classes, activation='softmax')(x)
model_tl = models.Model(inputs, outputs, name='VGG16_head')
# Compile & summary
model tl.compile(
    optimizer=tf.keras.optimizers.Adam(learning_rate=1e-3),
    loss='sparse_categorical_crossentropy',
    metrics=['accuracy']
model_tl.summary()
# Head-only eğitimi
es_head = callbacks.EarlyStopping(monitor='val_loss', patience=1,
restore_best_weights=True)
history head = model tl.fit(
    train_ds_tl,
    validation_data=val_ds_tl,
    epochs=10,
    callbacks=[es head],
    verbose=2
```

Model: "VGG16_head"

Layer (type)	Output Shape	Param #	Connected to
input_layer_10 (InputLayer)	(None, 224, 224, 3)	0	-
multiply (Multiply)	(None, 224, 224, 3)	0	input_layer_10[0
get_item (GetItem)	(None, 224, 224)	0	multiply[0][0]
get_item_1 (GetItem)	(None, 224, 224)	0	multiply[⊘][⊘]
get_item_2 (GetItem)	(None, 224, 224)	0	multiply[⊘][⊘]
stack (Stack)	(None, 224, 224, 3)	Ø	get_item[0][0], get_item_1[0][0], get_item_2[0][0]
add (Add)	(None, 224, 224, 3)	0	stack[0][0]
vgg16 (Functional)	(None, 512)	14,714,688	add[0][0]
dense_16 (Dense)	(None, 256)	131,328	vgg16[0][0]
dropout_8 (Dropout)	(None, 256)	0	dense_16[0][0]
dense_17 (Dense)	(None, 67)	17,219	dropout_8[0][0]

```
Total params: 14,863,235 (56.70 MB)
```

Trainable params: 148,547 (580.26 KB)

Non-trainable params: 14,714,688 (56.13 MB)

```
168/168 - 732s - 4s/step - accuracy: 0.0927 - loss: 4.3246 - val_accuracy: 0.3032 - val_loss: 2.8420
Epoch 2/10
168/168 - 629s - 4s/step - accuracy: 0.2237 - loss: 3.1177 - val_accuracy: 0.4711 - val_loss: 1.9486
Epoch 3/10
168/168 - 629s - 4s/step - accuracy: 0.3411 - loss: 2.5439 - val_accuracy: 0.5485 - val_loss: 1.6511
Epoch 4/10
168/168 - 620s - 4s/step - accuracy: 0.3999 - loss: 2.2526 - val_accuracy: 0.6157 - val_loss: 1.3828
Epoch 5/10
168/168 - 618s - 4s/step - accuracy: 0.4314 - loss: 2.0985 - val_accuracy: 0.6642 - val_loss: 1.2001
Epoch 6/10
168/168 - 618s - 4s/step - accuracy: 0.4676 - loss: 1.9602 - val_accuracy: 0.6726 - val_loss: 1.1009
Epoch 7/10
168/168 - 621s - 4s/step - accuracy: 0.4891 - loss: 1.8256 - val_accuracy: 0.6884 - val_loss: 1.0748
Epoch 8/10
168/168 - 617s - 4s/step - accuracy: 0.5132 - loss: 1.7241 - val accuracy: 0.6959 - val loss: 1.0362
Epoch 9/10
168/168 - 618s - 4s/step - accuracy: 0.5329 - loss: 1.6638 - val_accuracy: 0.7090 - val_loss: 0.9615
Epoch 10/10
168/168 - 619s - 4s/step - accuracy: 0.5436 - loss: 1.5983 - val_accuracy: 0.7211 - val_loss: 0.9389
```

```
from tensorflow.keras import callbacks
# Base modelin tümünü aç sonra baştan birkaç bloğu freeze et
base_model.trainable = True
for layer in base model.layers:
    layer.trainable = layer.name.startswith("block5_")
model_tl.compile(
    optimizer=tf.keras.optimizers.Adam(learning rate=1e-5),
    loss='sparse_categorical_crossentropy',
    metrics=['accuracy']
# Fine-tune
es_ft = callbacks.EarlyStopping(
    monitor='val_loss', patience=2, restore_best_weights=True
history_finetune = model_tl.fit(
    train_ds_tl,
    validation_data=val_ds_tl,
    epochs=10,
    callbacks=[es ft],
    verbose=2
```

```
168/168 - 725s - 4s/step - accuracy: 0.4130 - loss: 2.2329 - val_accuracy: 0.6744 - val_loss: 1.0976
Epoch 2/10
168/168 - 711s - 4s/step - accuracy: 0.5350 - loss: 1.6432 - val_accuracy: 0.7201 - val_loss: 0.9582
Epoch 3/10
168/168 - 721s - 4s/step - accuracy: 0.5645 - loss: 1.5127 - val_accuracy: 0.7519 - val_loss: 0.8562
Epoch 4/10
168/168 - 692s - 4s/step - accuracy: 0.5930 - loss: 1.4119 - val accuracy: 0.7659 - val loss: 0.8019
Epoch 5/10
168/168 - 28007s - 167s/step - accuracy: 0.5997 - loss: 1.3588 - val_accuracy: 0.7780 - val_loss: 0.7441
Epoch 6/10
168/168 - 762s - 5s/step - accuracy: 0.6246 - loss: 1.3002 - val accuracy: 0.7920 - val loss: 0.7066
Epoch 7/10
168/168 - 717s - 4s/step - accuracy: 0.6300 - loss: 1.2505 - val_accuracy: 0.8032 - val_loss: 0.6748
Epoch 8/10
168/168 - 710s - 4s/step - accuracy: 0.6462 - loss: 1.1777 - val_accuracy: 0.8116 - val_loss: 0.6161
Epoch 9/10
168/168 - 707s - 4s/step - accuracy: 0.6662 - loss: 1.1305 - val accuracy: 0.8134 - val loss: 0.6159
Epoch 10/10
168/168 - 710s - 4s/step - accuracy: 0.6637 - loss: 1.0922 - val accuracy: 0.8274 - val loss: 0.5687
```

```
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay,
classification_report
# Test setini unbatch batch ile hazırla
orig_test = test_ds.unbatch()
test_ds_tl = orig_test.batch(bs_best).prefetch(tf.data.AUTOTUNE)
xb, yb = next(iter(test_ds_tl))
q_loss, q_acc = model_tl.evaluate(xb, yb, verbose=2)
print(f"[Quick TL eval] Loss: {q_loss:.4f}, Acc: {q_acc:.4f}")
x_list, y_list = [], []
for xb, yb in test_ds_tl:
    x_list.append(xb.numpy())
    y_list.append(yb.numpy())
x_test = np.concatenate(x_list, axis=0)
y_test = np.concatenate(y_list, axis=0)
test_loss, test_acc = model_tl.evaluate(x_test, y_test, verbose=2)
print(f"[Full TL eval] Loss: {test_loss:.4f}, Acc: {test_acc:.4f}")
# Confusion Matrix
y_pred = np.argmax(model_tl.predict(x_test), axis=1)
cm = confusion_matrix(y_test, y_pred)
disp = ConfusionMatrixDisplay(cm, display_labels=class_names)
disp.plot(cmap='Blues', xticks_rotation='vertical')
plt.title("Test Set Confusion Matrix - Fine-Tune")
plt.show()
# Classification Report
print(classification_report(y_test, y_pred, target_names=class_names))
```

```
1/1 - 3s - 3s/step - accuracy: 0.5312 - loss: 1.6342

[Quick TL eval] Loss: 1.6342, Acc: 0.5312

42/42 - 116s - 3s/step - accuracy: 0.6187 - loss: 1.4531

[Full TL eval] Loss: 1.4531, Acc: 0.6187

42/42 - 130s 3s/step
```


	precision	recall	f1-score	support
airport_inside	0.45	0.45	0.45	20
artstudio	0.40	0.50	0.44	20
auditorium	0.56	0.56	0.56	18
bakery	0.47	0.42	0.44	19
bar	0.45	0.28	0.34	18
bathroom	0.47	0.94	0.63	18
bedroom	0.71	0.57	0.63	21
bookstore	0.50	0.75	0.60	20
bowling	0.85	0.85	0.85	20
buffet	0.77	0.85	0.81	20
casino	0.90	0.95	0.92	19
children_room	0.42	0.44	0.43	18
church_inside	0.65	0.68	0.67	19
classroom	0.67	0.56	0.61	18
cloister	0.76	0.95	0.84	20
closet	0.92	0.67	0.77	18
clothingstore	0.73	0.44	0.55	18
computerroom	0.62	0.56	0.59	18
concert hall	0.78	0.90	0.84	20
corridor	0.61	0.52	0.56	21
deli	0.23	0.16	0.19	19
dentaloffice	0.74	0.67	0.70	21
dining room	0.44	0.39	0.41	18
accuracy			0.62	1340
macro avg	0.63	0.62	0.61	1340
weighted avg	0.63	0.62	0.61	1340

```
from IPython.display import display, FileLink
records = []
for (lr, bs), h in histories.items():
    records.append({
        'learning_rate': lr,
        'batch_size': bs,
        'max_val_acc': max(h['val_accuracy']),
        'min_val_loss': min(h['val_loss'])
    })
df_results = pd.DataFrame(records).sort_values(
    by='max_val_acc', ascending=False
).reset_index(drop=True)
part1_val_acc = df_results.loc[0, 'max_val_acc']
part1_val_loss = df_results.loc[0, 'min_val_loss']
head_val_acc = max(history_head.history['val_accuracy'])
head_val_loss = min(history_head.history['val_loss'])
ft_val_acc = max(history_finetune.history['val_accuracy'])
ft_val_loss = min(history_finetune.history['val_loss'])
df_cmp = pd.DataFrame([
    {'Method': 'Part 1 CNN', 'Val Accuracy': part1_val_acc, 'Val Loss':
part1_val_loss},
    {'Method': 'VGG16 Head-only', 'Val Accuracy': head_val_acc, 'Val Loss':
head_val_loss},
   {'Method': 'VGG16 Fine-tune', 'Val Accuracy': ft_val_acc, 'Val Loss':
ft_val_loss},
1)
display(df_cmp)
df cmp.to csv('validation comparison.csv', index=False)
display(FileLink('validation_comparison.csv'))
```

	Method	Val Accuracy	Val Loss
0	Part 1 CNN	0.995336	0.074799
1	VGG16 Head-only	0.721082	0.938893
2	VGG16 Fine-tune	0.827425	0.568702

```
plt.figure()
plt.bar(df_cmp['Method'], df_cmp['Val Accuracy'])
plt.ylabel('Validation Accuracy')
plt.xticks(rotation=45, ha='right')
plt.title('Validation Accuracy Comparison')
plt.tight_layout()
plt.show()

plt.figure()
plt.bar(df_cmp['Method'], df_cmp['Val Loss'])
plt.ylabel('Validation Loss')
plt.xticks(rotation=45, ha='right')
plt.title('Validation Loss Comparison')
plt.tight_layout()
plt.show()
```



```
epochs_head = range(1, len(history_head.history['val_accuracy']) + 1)
          = range(1, len(history_finetune.history['val_accuracy']) + 1)
epochs_ft
plt.figure()
plt.plot(epochs_head, history_head.history['val_accuracy'], label='Head-only
Val Acc')
plt.plot(epochs_ft, history_finetune.history['val_accuracy'], label='Fine-
tune Val Acc')
plt.xlabel('Epoch'); plt.ylabel('Validation Accuracy')
plt.legend(); plt.title('Validation Accuracy Curves')
plt.tight_layout(); plt.show()
plt.figure()
plt.plot(epochs_head, history_head.history['val_loss'], label='Head-only Val
Loss')
plt.plot(epochs_ft, history_finetune.history['val_loss'], label='Fine-tune
Val Loss')
plt.xlabel('Epoch'); plt.ylabel('Validation Loss')
plt.legend(); plt.title('Validation Loss Curves')
plt.tight_layout(); plt.show()
```

Validation Accuracy Curves

