

UNIVERSITY OF MORATUWA

FACULTY OF ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

BSc Engineering Honours Degree Semester 4 Examination (2020 Intake)

CS 3063 THEORY OF COMPUTING

Time allowed: 2 Hours July 2023

ADDITIONAL MATERIAL: None

INSTRUCTIONS TO CANDIDATES:

- 1. This paper consists of **5** questions in **6** pages, including this page.
- 2. Answer **ALL** questions.
- 3. The maximum attainable mark for each question/part is given in brackets.
- 4. This examination accounts for 70% of the module assessment.
- 5. This is a closed book examination.

NB: It is an offence to be in possession of unauthorized material during the examination.

- 6. Only calculators approved and labeled by the Faculty of Engineering are permitted.
- 7. Assume reasonable values for any data not given in or with the examination paper. Clearly state such assumptions made on the script.
- 8. In case of any doubt as to the interpretation of the wording of a question, make suitable assumptions and clearly state them on the script.
- 9. This paper should be answered only in English.
- 10. Abbreviations and Notations
 - DFA Deterministic Finite Automaton
 - NFA Non-deterministic Finite Automaton
 - NFA- Λ Non-deterministic Finite Automaton with Λ -transitions
 - CFG Context-free Grammar
 - CFL Context-free Language
 - PDA Push-Down Automaton
 - TM Turing Machine
 - In a CFG, non-terminals are denoted by upper-case letters and terminals are denoted by lower-case letters and/or digits; non-terminal S is usually the start symbol and Λ represents the null string
 - A DFA or NFA is defined as a 5-tuple $(Q, \Sigma, q_0, A, \delta)$, where each component has the usual meaning.
 - A PDA is expressed as a 7-tuple $(Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$ where each component has the usual meaning.

Question 1 [20 marks]

In this question, there are 10 statements, (a) - (j); for each, you have to state whether it is either **True** or **False**. A correct choice will result in 2 marks and an incorrect choice will have a penalty of -1 mark. If not answered, it will result in 0 marks (no penalty). The minimum total marks possible for Q1 is 0.

- (a) A string w is accepted by an NFA if all paths corresponding to w lead to an accepting state.
- (b) A finite automaton can accept a null string only if it is an NFA.
- (c) Two finite automata are not equivalent if the number of states in them are not equal.
- (d) The regular expression 0(10)*(10|1) | 1(01)*(01|0) generates the alternating sequence of 0's and 1's.
- (e) If a Mealy machine has *p* number of states and *q* number of distinct (unique) output symbols, then the maximum number of possible states in the equivalent Moore machine is *pq*.
- (f) The CFG S \rightarrow aS | bS | a | b corresponds to the regular expression $(a \mid b)^*$.
- (g) CFLs and regular languages are both closed under the union operation.
- (h) The language $L=\{a^nb^n\mid n\geq 1\}$ can be accepted by a PDA based on both empty stack and by final state.
- (i) We can construct a Turing machine to solve any NP-Complete problem.
- (j) For some non-deterministic Turing machines, an equivalent deterministic Turing machine cannot be found.

Question 2 [20 marks]

(a) Construct a DFA that accepts strings over the 4-symbol alphabet ∑={R, 0, 1, 2} and keeps a running count of the sum of the numerical input symbols it reads, modulo 3. When it receives the R symbol as input, it resets the count to 0. The DFA accepts if the sum is 0 modulo 3 (in other words, if the sum is a multiple of 3). Show the transition diagram of the DFA.

[6 marks]

(b) (i) State the pumping lemma for regular languages.

[2 marks]

(ii) Use the pumping lemma to show that the language of palindromes over $\{0,1\}$ is not regular.

[6 marks]

- (c) Consider the language of all strings containing at least two 0's, where the alphabet is $\{0,1\}$
 - (i) Find a regular expression for the above language.

[2 marks]

(ii) Show a DFA that recognizes the language.

[4 marks]

Question 3 [20 marks]

(a) Consider the DFA, $M_1 = (\{1, 2, 3, 4, 5, 6, 7\}, \{a, b\}, 1, \{2, 6\}, \delta)$, whose δ is specified below.

Current	Next State		Current	Next State	
State	Input a	Input b	State	Input a	Input b
1	2	3	5	6	7
2	4	5	6	4	5
3	6	7	7	6	7
4	4	5			

(i) Identify the *equivalence classes* of the given set of states. Show your work.

[5 marks]

(ii) Show the transition diagram of the equivalent *minimum-state* DFA.

[2 marks]

(b) Suppose the NFA, $M_2 = (\{1,2,3\}, \{a,b\}, 1, \{3\}, \delta)$ is given, where the transitions are specified as follows.

Current State	Next State(s)		
Current State	Input a	Input b	
1	1, 2	1	
2		3	
3	3	3	

Obtain the DFA equivalent to the given NFA. Show your work and the transition diagram of the DFA.

[4 marks]

(c) Suppose the NFA- Λ , M₃ = ({1,2,3,4,5}, {a, b}, 1, {1}, δ) is given, where the transitions are specified as follows.

Cumuent State	Next State(s)			
Current State	Input a	Input b	Input ∧	
1	2			
2	5	3		
3	4		1	
4		3		
5			1	

Obtain an NFA accepting the same language as the given NFA- Λ . Show your work and the transition diagram of the NFA.

[4 marks]

(d) Suppose $M_4 = (Q, \Sigma, q_0, A, \delta)$ is an NFA- Λ recognizing the language L. Let M_5 be the NFA- Λ obtained from M_4 by adding Λ -transitions from each element of A to q_0 . Describe $L(M_5)$, the language recognized by M_5 , in terms of L.

[5 marks]

Question 4 [20 marks]

- (a) Describe what language is generated by each of the CFGs indicated by the following productions where $\{a, b\}$ are terminals and S is the non-terminal start symbol:
 - (i). $S \rightarrow aSa \mid bSb \mid \Lambda$
 - (ii). $S \rightarrow aSb \mid bSa \mid \Lambda$

 $[2\times2=4 \text{ marks}]$

(b) Construct a CFG that generates the language $L = \{a^i b^j c^k \mid i = j + k\},\$

[4 marks]

(c) Is the CFG given below ambiguous? Justify your answer.

$$S \rightarrow ABA$$

$$A \rightarrow aA \mid \Lambda$$

$$B \rightarrow bB \mid \Lambda$$

[4 marks]

(d) Consider the transition table below for a PDA with initial state q_0 and accepting state q_2 .

Move Number	State	Input	Stack symbol	Move(s)
1	\mathbf{q}_0	а	Z_0	(q_0, XZ_0)
2	\mathbf{q}_0	b	Z_0	(q_0, XZ_0)
3	\mathbf{q}_0	а	X	(q_0, XX)
4	q_0	b	X	(q ₀ , XX)
5	q_0	С	X	(q_1, X)
6	\mathbf{q}_0	c	Z_0	(q_1, Z_0)
7	q ₁	а	X	(q_1, Λ)
8	q ₁	b	X	(q_1, Λ)
9	q ₁	Λ	Z_0	(q_2, Z_0)
(all other combinations)				None

Describe the language that is accepted by this PDA.

[4 marks]

(e) Show that if there strings x and y in the language L so that x is a prefix of y and $x \neq y$, then no deterministic PDA can accept L by empty stack.

[4 marks]

Question 5 [20 marks]

(a) Construct a Turing machine (TM) called **Insert**(σ) which changes the tape contents from $y\underline{z}$ to $y\underline{\sigma}z$ by inserting the symbol σ . Here $y \in (\Sigma \cup \{\Delta\})^*$, $\sigma \in \Sigma \cup \{\Delta\}$, and $z \in \Sigma^*$. You may assume that $\Sigma = \{a, b\}$ and that the initial configuration of the TM is $(q_0, y\underline{z})$, i.e., you need to start processing from the start of z. The final configuration of the TM should be $(h_a, y\underline{\sigma}z)$.

Describe how it works and show its transition diagram.

[7 marks]

(b) Consider the TM whose transition function is shown below.

Describe the language accepted by this TM.

[4 marks]

(c) Suppose T is a TM accepting a language L. Describe how you would modify T to obtain another TM accepting L that never halts in the reject state h_r . You may ignore the case where T can end up in h_r while trying to move its head off the left end of the tape.

[5 marks]

(d) We discussed the Post Correspondence Problem (PCP). Consider the correspondence system described by the following set of dominos.

100	101	110
10	01	1010

Does the above have a solution (a match)? If yes, show the answer. If no, explain why.

[4 marks]

----- End of Paper -----