1、特点

- 双通道 8bit, 100MSPS ADC
- 低功耗,在100MSPS下,单通道功耗为90mW
- 片内的基准和采样保持电路
- 每个通道有 475MHz 的模拟带宽
- SNR=47dB@41MHz
- 每个通道有 1Vp-p 的模拟输入范围
- 单电源电压,标准为3V,可以接受2.7V~3.6V
- 每个通道可单独工作
- 2的补码和偏移2进制输出
- 输出数据对齐模式

2、产品概述

MXT2088 是一款双通道 8 位数据转换器它拥有片内的采样保持电路,并进行了设计优化,使其成本更低,功耗更低,尺寸更小并且更易于使用。这款产品在 100MSPS 的转换速率下,在其整个输入范围内拥有优秀的动态性能。每个通道都可以独立的工作。这款 ADC 需要 1 个 3V 的电源(可以接受 2.7V~3.6V 的电压范围)和一个基准时钟。对大部分应用来说,这款 ADC 并不需要外在的基准或者驱动电路。它的数字输出分为两种模式 TTL/CMOS,一个单独的输出电源管脚来提供两种输出电平 3.3V 或者 2.5V。时钟输入是 TTL/CMOS 兼容的,8bit 的数字输出可以工作在 3V(2.5V~3.6V)的电源电压。用户功能选项可以对待机模式,数据格式,数据时序进行控制。在待机模式下,数字输出置为高阻态。MXT2088 是用先进的 CMOS 工艺实现,封装形式为 48 管脚的 LQFP 封装(7*7mm,1.4mm),可以工作在工业温度范围内(-40°C~+85°C)。

图 1 MXT2088 结构示意图

3、特点和参数

如无特殊说明,表 1 中的特性参数值均在以下条件下测得: VDD = VD = 3V,差分输入;除非有特殊说明,否则全为内部基准。全温度范围为工业级的-40°C~+85°C。

表 1 器件特性参数

参数	温度	100MSPS	80MSPS	40MSPS	单位
		最小 典型 最大	最小 典型 最大	最小 典型 最大	
精度		8	8	8	Bits
直流特性					
微分非线性	25°C	±0.6 +1.3	±0.6 +1.3	±0.6 +1.3	LSB
	全	+1.5	+1.5	+1.5	LSB
积分非线性	25°C	±0.6 +1	±0.6 +1	±0.6 +1	LSB
	全	+1.5	+1.5	+1.5	LSB
无失码	25℃	Guaranteed	Guaranteed	Guaranteed	
增益误差	25℃	-6 ±2.5 +6	-6 <u>±2.5</u> +6	-6 ±2.5 +6	%FS
	25°C	-8 +8	-8 +8	-8 +8	%FS
增益温度系数 1	全	80	80	80	ppm/°C
增益匹配	25°C	±1.5	±1.5	±1.5	%Fs
电压匹配	25°C	±15	±15	±15	mV
模拟输入					
输入电压范围	25°C	±500	±500	±500	mV_{p-p}
共模输入范围	25°C	±200	±200	±200	mV
输入失调电压	25°C	-35 ±10 +35	-35 ±10 +35	-35 ±10 +35	mV
	全	±40	<u>±</u> 40	±40	mV
基准电压	全	1.14 1.18 1.22	1.14 1.18 1.22	1.14 1.18 1.22	V
基准温度系数	全	±100	±100	±100	ppm/°C
输入电阻	25°C	7 10 13	7 10 13	7 10 13	$k\Omega$
	全	5 16	5 16	5 16	$k\Omega$
输入电容	25°C	2	2	2	pF
模拟输入带宽	25°C	475	475	475	MHz

	1				I						<u> </u>
转换特性											
最大转换速率	25°C	100			80			40			MSPS
最小转换速率	25°C			1			1			1	MSPS
高电平脉宽	25°C	4.3		1000	5	1	000	8		1000	ns
低电平脉宽	25°C	4.3		1000	5	1	000	8		1000	ns
孔径延迟	25°C		0			0			0		ns
孔径抖动	25°C		5			5			5		ps rms
输出有效时间 ²	25°C	3.0			3.0			3.0		ns	
输出传输延迟 ²	25°C		4.5			4.5			4.5		ns
数字输入											
数字'1'时电压	25°C	2.0			2.0			2.0			V
数字'0'时电压	25°C			0.8			0.8			0.8	V
数字'1'时电流	25°C			±1			±1			±1	uA
数字'0'时电流	25°C			±1			±1			±1	uA
输入电容	25°C		2.0			2.0			2.0		pF
数字输出 ³											
数字'1'时电压	25°C	2.45			2.45			2.45			V
数字'0'时电压	25°C			0.05			0.05			0.05	V
能耗											
功耗 4	25°C		180	218		171	218		156	218	mW
待机功耗 ^{4, 5}	25°C		6	11		6	11		6	11	mW
电源抑制比	25°C		8	20		8	20		8	20	mV/V
动态特性 6											
瞬态响应	25°C		2			2			2		ns
过载恢复时间	25°C		2			2			2		ns
信噪比(SNR)											
F _{in} =10.3MHz	25°C		47.5			47.5	5	44	47.5		dB
F _{in} =26MHz	25°C		47.5		44	47					dB
F _{in} =41MHz	25°C	44	47								dB

								,
信噪失真比								
(SINAD)								
F _{in} =10.3MHz	25°C		47		47	44	47	dB
F _{in} =26MHz	25°C		47	44	47			dB
F _{in} =41MHz	25°C	44	47		47			dB
有效位数								
F _{in} =10.3MHz	25°C		7.5		7.5	7.0	7.5	Bits
F _{in} =26MHz	25°C		7.5	7.0	7.5			Bits
F _{in} =41MHz	25°C	7	7.5		7.5			Bits
2次谐波失真								
F _{in} =10.3MHz	25°C		70		70	55	70	dB
F _{in} =26MHz	25°C		70	55	70			dB
F _{in} =41MHz	25°C	55	70		70			dB
3 次谐波失真								
F _{in} =10.3MHz	25°C		60		60	55	60	dB
F _{in} =26MHz	25°C		60	55	60			dB
F _{in} =41MHz	25°C	52	60		60			dB
双信道交调								
(IMD)	25°C		60		60		60	dB
F _{in} =10.3MHz								

- 注释: (1) 增益误差和增益温度系数只是基于 ADC 的测试(用内部的 1.18V 基准电压)。
- (2) tv 和 tpd 是通过测试从时钟输入为 1.5V 到数字输出为 10%或 90%的时间。测试期间,数字输出负载为小于 10pF 的交流负载或者小于 ±40uA 的直流电流。
 - (3) 数字电源电流的测试是基于 3V 的电压,负载小于 10pF。
 - (4) 功耗的测试是在如下条件下: fs=100MSPS,模拟输入为-0.7dBFS,两个通道都工作。
 - (5) 待机功耗是在有时钟输入的情况下测试的。
 - (6) SNR/谐波的测试都是在-0.7dBFS 的模拟输入电压下进行的(相对于 1V 满幅输入范围)。
- (在指定的工作条件下,所有的最小/最大值是有保证的。典型性能指标是在理论工作电压和 T_A =25 ℃的条件下测试得到的。)

4、产品描述

● 时钟特性

图 2 正常工作模式,相同的时钟,(s1=1,s2=0),通道时序图

图 3 正常工作模式,两个时钟, (s1=1,s2=0)通道时序图

图 4 数据对齐模式,两个时钟,(s1=1.s2=1)通道时序图

● 工作原理

MXT2088 是一款应用开关电容电路的每级一位的流水线结构。这些级提供了高五位的转换同时驱动了后面 3 位的 flash。每级都提供了足够的冗余位和误差校正来补偿比较器的精确度。输入缓冲器是差分的可接受多种输入模式:交流,直流,差分转单端模式。输出级对齐数据,进行误差校正并把数据传输到输出驱动级。输出驱动级是有一个独立的电源供电,可以提供合适的输出摆幅。两条通道之间的性能没有明显差异。

● 使用 MXT2088

使用 MXT2088 时必须有良好的高速设计经验。为了使性能最优,去耦电容必须放置的离芯片越近越好,减小芯片管脚和电容(MXT2088 评估版采用 0603 表面贴电容)之间由于互联线以及通孔造成的电感。推荐放置 0.1uF 的电容在电源和地线上,用来进行高频滤波,1 个 10uF 的电容进行低频滤波。VREFIN 管脚也需要 0.1uF 的去耦电容。推荐采用独立的电源层和公共的地层。数据输出线尽量短(<1 英寸),减小转换时引入的片上噪声。

● 时钟输入

任何一款高速 ADC 都对用户提供的采样时钟非常敏感。一个采样保持电路本质上是一个混合器。任何噪声, 失真或者抖动会和信号融合在一起然后被输出。因为上述原因,MXT2088 的时钟输入需要仔细的设计,用户需要仔细考虑时钟源。时钟输入是 TTL 和 CMOS 兼容的。

● 数据输出

为了实现低功耗,数据输出是 TTL/CMOS 兼容。在待机模式下,输出驱动级被置于高阻态。有一个数据输出格式选项,这样就提供了 2 的补码(置高),偏移 2 进制格式(置低)。

● 模拟输入

MXT2088 的模拟输入端是一个差分 buffer。为了得到最好的动态特性,Ain+和 Ain-端的阻抗最好一样。MXT2088 的模拟输入级在设计时需要考虑输入过载对其造成的影响。一般的输入范围是 1Vp-p,中间电平为 VD*0.3。

● 电压基准

在芯片內部有一个稳定而且精准的 1.18V 基准电压。在正常工作模式下,可以将管脚 5,7 和 6 连在一起,这样就可以使用內部的基准。MXT2088 的输入范围可以通过调整基准电压进行改变。当基准电压变化±5%时性能不会受到影响。模拟输入范围会随着基准电压的变化而变化。

时序

MXT2088 可以提供 4 个流水级的数据延迟输出。数据输出在时钟上升沿的一个传输延迟后准备好。数据输出的 线的长度和负载应尽可能下,这样可以减小瞬变,这种瞬变会影响转换器的动态特性。MXT2088 的最小转换速率是 1MSPS。 当转换速率低于 1MSPS 时,性能会降低。待机模式的恢复时间是 15 个时钟周期。

● 用户功能选项

有两个管脚 S1, S2 可以用来提供工作模式的选择。这些模式可以使两条通道都处于待机模式(除了基准源),或者只使 B 通道处于待机模式。两种模式都会使输出级以及时钟输入置于高阻态。

其它的模式可以使 B 通道的输出延迟半个周期。例如,如果给 MXT2088 加入两个反相的时钟,打开数据对齐模式,可以使两个通道的数据同时输出。如果相同的时钟加入两个通道,通道 B 的数据会有 180°的相位差。如果同样的时钟加入两个通道,数据对齐模式关闭,两个通道会同时输出。

S1 **S**2 封装形式 0 0 A, B 通道都处于待机模式 0 1 只有 B 通道处于待机模式 1 0 正常工作模式(数据对齐关闭) 1 数据对齐模式(clock A 的上升沿 两个通道的数据都已准备好,通 道 B 的数据被延迟半个周期)

表 2 用户功能选项

● 管脚描述

MXT2088 采用 LQFP48 封装,管脚排列顺序如图 5 所示。

图 5 MXT2088 管脚排列顺序

MXT2088 详细功能描述见下表:

表 3 管脚描述

序数	管脚名称	管脚描述			
1,12,16,27,29	GND	地			
32,34,45	GND	75			
2	AINA	通道 A 的模拟输入			
3	AINB	通道 A 的模拟输入			
4	DFS	数据输出模式选择: (低电平表示偏移二进制码			
4	DFS	高电平表示 2 的补码)			
5	REFINA	通道 A 的基准电压			
6	REFOUT	内部基准电压			
7	REFINB	通道 B 的基准电压			
8	S1	用户功能选项			
9	S2	用户功能选项			
10	BINB	通道 B 的模拟输入			
11	BINA	通道 B 的模拟输入			
13,30,31,48	VD	模拟部分的电源(3V)			
14	ENCB	通道 B 的时钟输入			
15,28,33,46	VDD	数字部分的电源(3V)			
17-24	D7B-D0B	通道 B 的数字输出			
25,26,35,36	NC	空管脚			
37-44	D0A-D7A	通道 A 的数字输出			
47	ENCA	通道 A 的时钟			

● 封装尺寸

器件采用 48 引线 LQFP 封装,外壳外形及尺寸如图 6 所示。

48-Lead LQFP (ST-48)

单位: 英寸(毫米)

图 6 外壳外形及尺寸示意图