Problem Set #1

Measure Theory, Jan Ertl Alex Weinberg

1

Solution 1. (1.3)

- 1. Suppose $A \in \mathbb{R}$ open. So $A \in \mathbb{G}_1$ by definition. Take $A^c \in \mathbb{R}$ which is closed by properties of open/closed sets.
 - $\Rightarrow A^c \not\in \mathcal{G}_1$ by definition of \mathcal{G}_1
 - \Rightarrow G1 not closed under complements. So G1 is not an algebra. \square
- 2. WTS: G2 algebra
 - $\bullet \ \emptyset \in \mathcal{G}_2 \\
 \Rightarrow \emptyset \in \mathcal{G}_2$
 - Suppose $A_j = \bigcup_{i=1}^{N_j} (a_i, b_i]$ So then $\bigcup_j^M A_j = \bigcup_j^M (\bigcup_{i=1}^{N_j} ((a_i, b_i]) \in \mathcal{G}_2$
 - Suppose $A_j = \bigcup_{i=1}^{N_j} (a_i, b_i]$ So then complement $(-\infty, a_1] \bigcup (b_n, \infty) \in \mathcal{G}_2$

So G2 is an algebra.

- 3. WTS: G3 sig-alg
 - $\emptyset \in \mathcal{G}_3$
 - Suppose $A_j = \bigcup_{i=1}^{N_j} ((a_i, b_i] \cup (-\infty, b] \cup (a, \infty))$ So then $\bigcup_j^{\infty} A_j = \bigcup_j^{\infty} (\bigcup_{i=1}^{\infty} ((a_i, b_i] \cup (-\infty, b] \cup (a, \infty))) \in \mathbb{G}_3$

So, G3 is a sigma algebra

Solution 2. (1.7) Suppose \mathcal{A} is an sigma algebra.

WTS:
$$\{\emptyset, X\} \subset \mathcal{A} \subset \mathcal{P}(X)$$

Pf: $\emptyset \in S$ for every S sigma algebra. Also, S must be closed under complements therefore $\emptyset^c = X \in S$. So the smallest possible sigma algebra is $\{\emptyset, X\}$. Also, suppose $A \in \mathcal{A}$ so $A \in \mathcal{P}(X)$ because $\mathcal{A} \subset X$ $\therefore \mathcal{A} \subset \mathcal{P}(X)$

Solution 3. (1.10)

- i) $\emptyset \in S_{\alpha}$ $\forall \alpha$ by definition of sig-alg. $\Rightarrow \emptyset \in \cap^{\alpha} S_{\alpha}$
- ii) suppose $A_1, \ldots \in \cap^{\alpha} S_{\alpha}$ this implies $A_1, \ldots \in S_{\alpha} \forall \alpha$ So the union of $A_i \in S_{\alpha}$ for every alpha.

So $\cup A_1, \ldots \in \cap^{\infty} S_{\alpha}$

Also, suppose $A \in \bigcap S_{\alpha}$ now we know that $A \in S_{\alpha} \quad \forall \alpha$ by definition of sigma-algebra. $A^{c} \in S_{\alpha} \quad \forall \alpha$ so, $A^{c} \in \bigcap S_{\alpha}$ Therefore intersection is a sigma algebra.

Solution 4. (1.17)

i) We know

$$\mu(A \cup B)) = \mu(A) + \mu(B)$$

if

$$A \cap B = \emptyset$$

. Now suppose $A \subset B$ and $B = A \cup U$. So,

$$\mu(A \cup U) = \mu(A) + \mu(U) \ge \mu(A)$$

because measure is valued on positive reals.

ii) We know,

$$\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i) - \mu(\cap_i A_i)$$

So,

$$\mu(\bigcup_{i=1}^{n} A_i) + \underbrace{\mu(\bigcap_{i=1}^{\infty} A_i)}_{>0} = \sum_{i=1}^{\infty} \mu(A_i)$$

Solution 5. (1.18)

WTS:

$$\lambda(A) = \mu(A \cap B)$$

Pf:

$$A.B \subset S \Rightarrow (A \cap B) \subset S. \Rightarrow \emptyset \cap B = \emptyset$$

So, i)

$$\lambda(\emptyset) = \mu(\emptyset) = 0$$

And because intersection is in S and,

$$\lambda(A) = \mu(A \cap B) \Rightarrow \lambda(\cup^{\infty} A_i) = \mu(\cup^{\infty} (A_i \cap B)) = \sum_{\lambda(A_i)}^{\infty} \underbrace{\mu(A_i \cap B)}_{\lambda(A_i)} = \sum_{\lambda(A_i)}^{\infty} \lambda(A_i)$$

Solution 6. (1.20)

$$\mu(A_1) - \mu(\lim_{n \to \infty} (A_n))$$

$$= \mu(A_1 \bigcap_{n \to \infty} \lim_{n \to \infty} A_n)$$

$$= \mu(\lim_{n \to \infty} (A_1 \bigcap_{n \to \infty} A_n))$$

$$= \lim_{n \to \infty} \mu(A_1 \bigcap_{n \to \infty} A_n)$$

$$= \lim_{n \to \infty} \mu(A_1) - \mu(A_n)$$

$$= \mu(A_1) - \lim_{n \to \infty} \mu(A_n)$$

$$\therefore \mu(\lim_{n \to \infty} (A_n)) = \lim_{n \to \infty} \mu(A_n)$$

2

Solution 7. (2.10) We know from the countable subadditivity of the outer measure that

$$\mu^*(B) \le \mu^*(B \cap E) + \mu^*(B \cap E^c)$$

So the if \geq from the theorum holds, and \leq holds from definition of outer measure and it is equivalent to replace it with equality.

Solution 8. (2.14) **WTS:** $\sigma(\mathcal{O}) \subset \mathcal{M}$ From Caratheodory and construction of lebasque measure as a infinite ocllection of the form (a, b] and $(-\infty, a]$ we know

$$\sigma(\mathcal{A}) \subset \mathcal{M} \tag{1}$$

if
$$o \in \sigma(\mathcal{O})$$
 then $o \in \sigma(\mathcal{A})$ (2)

$$so, \quad o \in \mathcal{M}$$
 (3)

3

Solution 9. (3.1) Suppose
$$r = \bigcup_{n \in \mathbb{N}} r_i$$

So $\mu(\bigcup_{n \in \mathbb{N}} r_i) = \sum_{n \in \mathbb{N}} \mu(r_i)$
but by construction of lebesque measure, $\mu(r_i) = 0, \forall i$
So, $\mu(r) = \mu(\bigcup_{n \in \mathbb{N}} r_i) = 0$

Solution 10. (3.4)

Because the set of all measureable sets is a sigma-algebra, it is closed under complements. So those conditions provided each are complements of each other.

I'll show that the sets being measurable are all equivalent statements.

 $f^{-1}((-\infty, a))$ is measurable $\iff f^{-1}([a, \infty))$ is measurable (they are complements). **WTS:**

$$f^{-1}((-\infty, a)) \in \mathcal{M} \iff f^{-1}((-\infty, a]) \in \mathcal{M}$$

Left to Right: Suppose sets of the form $f^{-1}((-\infty, a]) \in \mathcal{M}$. Now, we construct a sequence of sets $E_{i,n} = f^{-1}((-\infty, a - \frac{1}{n}]) \in \mathcal{M}$. This countable union $\bigcup_{n=1}^{\infty} = f^{-1}((-\infty, a])$ is in \mathcal{M}

Right to Left: Suppose sets of the form $f^{-1}((-\infty, a)) \in \mathcal{M}$. Then their complements, sets of the form $f^{-1}([a, \infty))$ are also $in\mathcal{M}$. We can use a similar argument, employing sets of the form $f^{-1}([a+\frac{1}{n},\infty))$ to show that sets of the form $f^{-1}((a,\infty)) \in \mathcal{M}$. This shows that the complements of these sets, $f^{-1}((-\infty, a])$, are also elements of \mathcal{M}

Solution 11. (3.7) **WTS:**

- 1. f + g
- 2. $f \cdot g$
- 3. $\max(f, g)$
- 4. $\min(f,g)$
- 5. |f|

Pf:

- 1. Take F(f(x) + g(x)) = f(x) + g(x). So F is cont. and (part 4) measurable. So, f + g is measurable.
- 2. Take F(f(x) + g(x)) = f(x)g(x). So F is cont. and (part 4) measurable. So, $f \cdot g$ is measurable.
- 3. As f and g are measurable functions on (X, \mathcal{M}) , $\forall a \in \mathbb{R}, \{x \in X : f(x) < a\} \in \mathcal{M} \text{ and } \{x \in X : g(x) < a\} \in \mathcal{M}.$ So,

$$\{x \in X : \max(f(x), g(x)) < a\} = \{x \in X : f(x) < a\} \cap \{x \in X : g(x) < a\}$$

- . \mathcal{M} is closed under countable intersections, therefore, $\{x \in X : \max(f(x), g(x)) < a\} \in \mathcal{M}$, so that $\max(f(x), g(x))$ is measurable.
- 4. $\{x \in X : \min(f(x), g(x)) > a\} = \{x \in X : f(x) > a\} \cap \{x \in X : g(x) > a\}$. \mathcal{M} is closed under countable intersections, So, $\{x \in X : \min(f(x), g(x)) > a\} \in \mathcal{M}$, so that $\min(f(x), g(x))$ is measurable. Basically the same proof as above.
- 5. Because $\{x \in X : |f(x)| > a\} = \{x \in X : f(x) < -a\} \cup \{x \in X : f(x) > a\}$. Both of these sets are in \mathcal{M} . \mathcal{M} is closed under countable unions, therefore, $\{x \in X : |f(x)| > a\} \in \mathcal{M}$, so that |f(x)| is measurable.

Solution 12. (3.14) **WTS:**

$$\forall \epsilon > 0, \exists N = N(\epsilon) \text{ such that } n \geq N \implies |f(x) - s_n(x)| < \epsilon, \forall x \in X$$

Let $\epsilon > 0$. Suppose f(x) < M. Pick N > M in the naturals. Then $f(x) < N \quad \forall x$ and $x \notin E_{\infty}^{N}$. We also see that there exists N_1 such that

$$N_1 > N$$
 and $\frac{1}{2^{N_1}} < \epsilon$

Now, it follows that for $n > N_1$,

$$\forall x \in X, x \in E_i^n$$
 for some index $0 \le i \le N_1, i \in \mathbb{N}$

Then $f(x) \in \left[\frac{i-1}{2^n}, \frac{i}{2^n}\right)$ and our simple function in this interval is $s_n(x) = \frac{i-1}{2^n}$ But because we chose this N_1 so that it works for every single $x \in X$, and so $|f(x) - s_n(x)| < \frac{1}{2^n} < \frac{1}{2^{N^2}} < \epsilon$ we have uniform convergence.

Solution 13. (4.13)

WTS: $f \in \mathcal{L}^1(\mu, E)$

Which is to say,

WTS: $\int_E f^+ d\mu$ finite WTS: $\int_E f^- d\mu$ finite

We are given $||f|| = f^{+} + f^{-}$.

 $0 \le f^+$ and $0 \le f^-$ from the definition

Because ||f|| < M on E, then $0 \le f^+ < M$ and $0 \le f^- < M$ on E.

Because $\mu(E) < \infty$, we have that,

$$\int_{E} f^{+} d\mu < M\mu(E) < \infty$$
$$\int_{E} f^{-} d\mu < M\mu(E) < \infty$$

This is what we needed.

$$\therefore f \in \mathcal{L}^1(\mu, E).$$

Solution 14. (4.14)

Contrapositive is easier to show.

Suppose there exists a measurable set $\hat{E} \subset E$ such that f is infinite on \hat{E} . WLOG: $f = +\infty$

$$\infty = \int_{\hat{E}} f d\mu \le \int_{E} f d\mu \le \int_{E} ||f|| d\mu$$

But this implies that $f \notin \mathcal{L}^1(\mu, E)$. Contradiction so our statement is true.

Solution 15. (4.15) Suppose $f, g \in \mathcal{L}^1(\mu, E)$.

Define the set of simple functions $B(f) = \{s : 0 \le s \le f, s \text{ simple, measurable}\}.$

Suppose WLOG $f \leq g$. If follows that $f^+ \leq g^+$ and $f^- \geq g^-$.

So we have that $B(f^+) \subset B(g^+)$ and $B(g^-) \subset B(f^-)$

Which gives us that $\int_E f^+ d\mu \leq \int_E g^+ d\mu$ and $\int_E f^- d\mu \geq \int_E g^- d\mu$. From definition of the lebesque integral we know,

$$\int_E f d\mu = \int_E f^+ d\mu - \int_E f^- d\mu \le \int_E g^+ d\mu - \int_E g^- d\mu = \int_E g d\mu$$

So,

$$\int_E f d\mu \leq \int_E g d\mu$$

Solution 16. (4.16)

Suppose that $f \in \mathcal{L}(E, \mu)$.

So, $\int_E f^+ d\mu < \infty$, $\int_E f^- d\mu < \infty$.

As $A \subset E$,

 $\int_A f^+ d\mu < \infty \text{ and } \int_A f^- d\mu < \infty.$ So, $f \in \mathcal{L}(A, \mu)$.

Solution 17. (4.21) From above, $\lambda() = \int f d\mu$ is a measure on \mathcal{M} . Therefore,

$$\lambda(A) = \lambda(A \setminus B) + \lambda(A \cap B) = \lambda(A \setminus B) + \lambda(B)$$

So,

$$\int_A f d\mu = \int_{A\backslash B} f d\mu + \int_B f d\mu = \int_B f d\mu$$