s EMG Acquisition & co-contraction level online Computation Procedure

Armando Amerì

July 2022

Contents

1	Device	1
2	MATLAB & SIMULINK	2
3	ROS	3
4	Pictures	5
5	Code 5.1 ROS_init 5.2 Inizialization 5.3 Plot 5.4 Range 5.5 Computation	9 9 9 9 9
1	Device	
	1. Switch on the device.	
	2. The LED starts to blink.	
	3. Connect the Dongle (Bluetooth Receiver) to the laptop.	
	4. Launch the file 'Start_OYMotion_New.bat' \rightarrow 'New_gForceEMGArmband_0042\OTrain_v0.7.1'.	
	5. Wait for COM Enabling and save the COM number shown in the Termi (Figure 1) .	$_{ m inal}$
	6. Connect from OTrain Application (Figure 2).	
	7. Bracialet's LED stops to blink.	
	8. Close the Terminal and the Application.	

2 MATLAB & SIMULINK

- 1. Open the following files:
 - 'gForce_data_acquisition_ccOnline_ROS_v2_1.slx'
 - 'fnc_to_be_implemented.m'
- 2. enstablish a correct port connection between the simulink machine and the ROS master
- 3. in Matlab Command Window launch the command shown in 5.1 with the correct rosmaster ip
- 4. in 'gForce_data_acquisitionn_ccOnline_ROS_v2_1.slx' set the COM port saved in point Device.5 (Figure 3)
- 5. in 'gForce_data_acquisitionn_ccOnline_ROS_v2_1.slx' [Acquisition Data] (Figure 4) \rightarrow 'Bracialet' set the correct bracialet you are using
- 6. in 'gForce_data_acquisitionn_ccOnline_ROS_v2_1.slx' [Acquisition Data] \rightarrow 'Data Selection' set value to be evaluated: Raw data, rotation matrix, ...
- 7. in 'gForce_data_acquisitionn_ccOnline_ROS_v2_1.slx' [Acquisition Data] \rightarrow 'Acquisition Phase' set: Acquisition
- 8. in 'gForce_data_acquisitionn_ccOnline_ROS_v2_1.slx' [Parameter's Settings] set parameters (at the moment the only tested are 1000 Hz,8 bit,8ch)
- 9. in 'gForce_data_acquisitionn_ccOnline_ROS_v2_1.slx' set the Manual Switch 'up' and the Switch Button 'off' (Figures 5 and 6)
- 10. in 'gForce_data_acquisitionn_ccOnline_ROS_v2_1.slx' [ROS Communication] set to 'off' all the Radio Buttons (Figures 7)
- 11. in 'gForce_data_acquisitionn_ccOnline_ROS_v2_1.slx' Settings and for all block set the right sample time 1/f
- 12. in fnc_to_be_implemented.m run [Inizialization] section (see matlab_code 5.2)
- 13. run file 'gForce_data_acquisitionn_ccOnline_ROS_v2_1.slx'
- 14. The LED starts to blink (Data send)
- 15. Wait for initial peak in channels' scope
- 16. Start to move arm and hand to acquire data (move as in paper [1])
- 17. Stop file 'gForce_data_acquisitionn_ccOnline_ROS_v2_1.slx' (Please note: the bracialet continue to send data)
 - at this point let's make the bracialet stop sending data:

- 1. in 'gForce_data_acquisition_ccOnline_ROS_v2_1.slx'[Acquisition Data] set 'Acquisition Phase': Stop
- 2. run file 'gForce_data_acquisition_ccOnline_ROS_v2_1.slx'
- 3. Bracialet's LED stops to blink
- 4. Stop file 'gForce_data_acquisition_ccOnline_ROS_v2_1.slx'

Please Note: all datas acquired in this session at point 13 are saved on 'previousSession' workspace variable in order to avoid cancellation. continue...

- 1. in fnc_to_be_implemented.m [Plot] section take the range of data of the entire willing signal and of the stiffness phase (see matlab_code 5.3 and Fig. Acquisition_1)
- 2. in fnc_to_be_implemented.m [Range] section (see matlab_code 5.4) set the range selected in point 15, as descripted in the comment, so run the section
- 3. in fnc_to_be_implemented.m run [Computation] section
- 4. in 'gForce_data_acquisition_ccOnline_ROS_v2_1.slx' [Acquisition Data] set 'Acquisition Phase': Acquisition
- 5. in 'gForce_data_acquisitionn_ccOnline_ROS_v2_1.slx' set the Manual Switch 'down' and the Switch Button 'on' (Figures 5 and 6)
- 6. in 'gForce_data_acquisitionn_ccOnline_ROS_v2_1.slx' [ROS Communication] set to 'on' the required Radio Buttons (Figures 7)
- 7. run file 'gForce_data_acquisitionn_ccOnline_ROS_v2_1.slx' to acquire the cc level online

3 ROS

- 1. Switch on the device.
- 2. The LED starts to blink.
- 3. In Terminal 1 run the command "roslaunch ros_gforce calibration.launch"
- 4. In Terminal 2 run the command "rostopic echo -p /datas3 > \$PATH_OF_ROS_GFORCE/ros_gforce/csv/\$CSV_NAME.csv"
- 5. Start doing the calibration.
- 6. When the calibration is finished, close Terminal 1 and 2
- 7. In Terminal 1 run the command "rosrun ros_gforce import_file_x_plot.py \$CSV_NAME"

- 8. Select the 2 ranges [extreme_left_total_signal extreme_right_total_signal extreme_left_stiff extreme_right_stiff]
- 9. Close the figures and Terminal 1.
- 10. In Terminal 1 run the command "rosrun ros_gforce import_file_x_matrix_2.py $MATRIX_FILE_NAME$
- 11. In Terminal 1 run the command "rosrun ros_gforce emg_signal_processing_full _channel_notch_high_maslide_Online_Header_2.py $MATRIX_FILE_NAME$ "

4 Pictures

Figure 1: Device Connection

Figure 2: Device Connection

Figure 3: COM Port Setting

Figure 4: Acquisition Data Setting

Figure 5: EMG Manual Switch

Figure 6: cc Activation

Figure 7: ROS Communication

5 Code

5.1 ROS_init

```
1 rosinit ('192.168.17.128')
  5.2
      Inizialization
1 % Inizialization
_{2} M_{pinv} = zeros(2,8);
 k_{-}ext = 1;
k_{-}flex = 1;
      \operatorname{Plot}
  5.3
ı ‰ Plot
 % load ('calibration_New');
4 plot (out.emg_rms.Data)
5 A = out.emg_rms.Data';
  5.4 Range
1 % Range
 range = [79642;92017;89500;90100]; \%
      extreme_left_total_signal extreme_right_total_signal
      extreme_left_stiff extreme_right_stiff]
diff_range = range(2,1) - range(1,1);
  diff_range_2 = range(4,1) - range(3,1);
  5.5
      Computation
1 % Computation
  [M, U_Offline] = nnmf(A(:, range(1,1): range(2,1)), 2);
  plot (U_Offline')
  M_{-}pinv = pinv(M);
  s_ext = M(:,1);
  s_flex = M(:,2);
  u_{\text{ext}} = U_{\text{Offline}}(1,:);
  u_flex = U_Offline(2,:);
  k_{ext} = sum(u_{ext})/diff_{range_2};
  k_flex = sum(u_flex)/diff_range_2;
```