Multi-Media

RGB (Red Green Blue)

```
RGB (252, 178, 92) = Orange

#ff0000 = Red

#00ff00 = Green

#0000ff = Blue

#ffff00 = Yellow

#000000 = Black

#00bc00 = Green
```

CMYK (Cyan Magenta Yellow Key)

```
C: 100% M: 0% Y: 0% K: 0% = Cyan

C: 0% M: 100% Y: 100% K: 0% = Red

C: 100% M: 100% Y: 0% K: 0% = Blue

C: 100% M: 100% Y: 100% K: 0% = Black

C: 0% M: 0% Y: 0% K: 100% = Black
```

- R = Rastergrafik
- V = Vektorgrafik

Format	Browser unterstützt	Grafiktyp	a-Kanal	Transparenzfarbe	Geeignet für
JPG	Ja	R	Nein	Nein	Bilder, verlustfreie Komprimierung
GIF	Ja	R	Nein	Ja	Grafik, Bildcompositing, Animation
PNG	Ja	R	Ja	Nein	Bilder, 2D-Grafik
TIF	Nein	R	Ja	Nein	Bilder für Archivierung, Verlustlos
BMP	Ja	R	Nein	Nein	Bilder, kein bevorzugtes Format
WEBP	Ja	R	Ja	Nein	Bilder, Animationen
SVG	Ja	V	n.a.	n.a.	2D-Grafik

RGB, CMYK, HEX-Darstellung von RGB und CMYK

YCrCb Nur Umrechnung RGB zu Y (Luminanz)

```
Y = 0.299 * R + 0.587 * G + 0.114 * B
```

Verständnisfragen

- Alphakanal → Transparenzkanal (z. B. in PNG)
- GIF-Format
 - o Farbtabelle: Nur 256 Farben
 - o Transparenzfarbe: Nur eine Farbe kann transparent sein

C: 0% M: 46% Y: 38% K: 22% = Pink-Red

DPI (dots per inch) -> Drucker

- dpi = Anzahl Farbpunkte pro 2.54cm Breite.
- 1 Inch = 1 Zoll = 2.54cm
- Formel: px / dpi = x cm

PPI (pixel per inch) -> Bildschirm

- ppi = Anzahl Pixel pro 2.54cm Breite.
- Formel: x = D / sqrt(a^2 + b^2)
 - Horizontale Pixel = a × x × ppi
 - Vertikale Pixel = b × x × ppi

Speicherbedarf RGB (1B/Kanal)

Bsp. 1000x600 Pixel: $1000 \times 600 \times 3 = 1'800'000$ Byte

- Formel HD (x) Seitenverhältnis (a:b) :
 - o x / a * b = y Pixel/Bildzeile
 - x * y * 3 = z Byte/Bild
 - Speicherbedarf bei v-min-Video (60 * v) mit 25 Bilder/s (s):
 - z * s * 60 * v = w Byte auf Speichermedium.

Bildformate

- o Animation: Unterstützt einfache Animationen
- Rastergrafik vs. Vektorgrafik
 - o Rastergrafik: Pixelbasiert (Fotos, JPG, PNG)
 - Vektorgrafik: Mathematisch beschrieben (SVG, AI) → Skalierbar ohne Qualitätsverlust

Analog-Digital-Umwandlung

- 1. Sampling → Zeitdiskretisierung (z. B. 44.1 kHz für Audio)
- 2. Quantisierung → Wertdiskretisierung (Bit-Tiefe)
- 3. Kodierung → Speicherung als Binärdaten

Videonormen

Norm	Auflösung	Bildmodus
HD 720p	1280x720	Progressiv
Full HD 1080p	1920x1080	Progressiv

Speicherplatzberechnung bei Bildern/Videos

Bildspeicherplatz (unkomprimiert): Speicher (Bytes) = Breite × Höhe × Farbtiefe (in Byte)

Videospeicherplatz: Gesamtgröße = Bildgröße × FPS × Dauer (Sekunden)

Codes vs. Container

• Codecs → Komprimieren & dekomprimieren Daten (z. B. H.264, VP9)

• Container → Verpackt Video, Audio, Untertitel (z. B. MP4, MKV, AVI)

Verlustbehaftete Komprimierung

- Farbreduktion → Weniger Farben (GIF, PNG)
- Auflösungsreduktion → Pixelanzahl verringern
- Subsampling (Farbinformationen reduzieren)
 - o 4:4:4 → Keine Reduktion
 - o 4:2:2 → Horizontale Farbinformation halbiert
 - o 4:1:1 → Noch stärkere Reduktion
 - o 4:2:0 → Horizontale & vertikale Reduktion

Subsampling-Berechnung

Ersparnis = 100% - (Datenmenge mit Subsampling / Originaldatenmenge × 100%)

JPG Blockartefakte

- Durch DCT entstehen 8×8-Pixelblöcke
- Starke Komprimierung → Sichtbare Blockartefakte

Intraframe vs. Interframe-Komprimierung

- Intraframe (innerhalb eines Bildes)

 Komprimierung jedes Einzelbildes
- Interframe (über mehrere Bilder hinweg) → Komprimiert durch Vergleich mit vorherigen/nächsten Bildern

GOP (Group of Pictures) Sequenz

- I-Frame (Intra-Frame): Vollständiges Bild
- P-Frame (Prädiktiv-Frame): Speichert nur Änderungen zum letzten Bild
- B-Frame (Bidirektional-Frame): Speichert Unterschiede zu vorherigen & nächsten Bildern
- Beispiel: GOP25 → Alle 25 Bilder enthält ein vollständiges I-Frame