Assignment 7

HANDIN:

25.10.24

problem 1

Statement 1:

Disproven -> A maximum flow dose not define a unikumet minimum capacity cut because multiple cuts with the same capacity may exist.

Statement 2:

Prøven -> A minimum capacity cut uniquely defines the maximum flow value, as the total flow vannet exceed the cuts capacity.

problem 2

TOP sot $X: \{1, 2, 3, 4\}$ Hall cordition bottom set $Y: \{A, B, C, D\}$ Hall cordition $\{S = X\}$ $\{S = \{T\}, N(S) = \{A\} = \}$ $\{N(S) = 1 \ge |S| = 1$ $\{S = \{2\}, N(S) = \{B, C = \}, N(S) | = 1 \ge |S| = 1$ $\{S = \{3\}, N(S) = \{A\} = \}, N(S) | = 1 \ge |S| = 1$ $\{S = \{4\}, N(S) = \{C, D, B\}, |N(S) = 3 \ge |S| = 1$ largor subsets: $\{S = \{7, 2\}, N(S) = \{A, B, C\}, |N(S) = 3 \ge |S| = 2$

S= {3,43, N(S) = }A,B,C,D, |N(S)| = 4 ≥ 151 = 2

S= {7,2,3}, N(S) = {A,B,C}, |N(S)| = 3 ≥ 151 = 3

S = {7, 2,3,4},N(S) = {A,B,C,D}, |N(S)| = 4 ≥ 151 = 4

Hall condition holds for all subsets

=> a perfect matching exists

problem 3

* create a Source(V) and Sink(V)

add vertices for each device di, dz, -
and each cell tower (, , Cz, ...

* From source to each device, capacity is

From each device d, to nearby tower c capacity is I

From each tower c to sink t capacity
is N(tower limit)

-> Algorithm (ford-Fulkerson or Edmands-learne)
approach Chehs if every device can connect
with the given constraints.