Actividad 3 Metodos Numericos

ROMMEL NICOLÁS ZAMBRANO GAONA

 $13~{\rm de~Agosto}~2021$

1. EJERCICIOS

1. Resuelva de forma gráfica y utilizando el Simplex el siguiente problema.

Maximizar
$$z = 3x_1 + 2x_2$$

Sujeto $2x_1 + x_2 \le 16$
 $2x_1 + 3x_2 \le 40$
 $3x_1 + x_2 \le 20$
 $x_1, x_2 \ge 0$

51,52,53= variables de holgura

Toblo Simplex

	7	XI	XZ	51	52	53	R
R1 ->	1	-3	-2	0	0	0	0
Rz ->	0	2	1	1	0	0	46
(3 ->	0	2	3	0	1	0	40
Ry ->	0	3	1	0	0	1	20

XI columna pivote variable mas negativa

16/2=8 40/2=20 2013=6.67 < Rengion Pluste

3 elemento pivole conventir ent Hultiplicamos por 1/3

Resolver paro la Fila

Noeva Hatriz

	1	0	-1	0	0	1	20.
1	0	0	(13)	1	0	-2/3	813
	0	0	113	0	1	-213	80/3
	0	1	1/3	0	0	1/3	20/3

El menor

Avanamente el mis regativo del mismo renglon

Nueva Halviz	
⊕ → 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	51 52 53 h Fly 114 0 30 112 112 0 42 XIAX2 50n (ero) 114 114 1 2 yel primer renglon 314 114 0 2 es positivo
$\begin{cases} E = 30 \\ x_1 = 2 \end{cases} \land x_2$	= 12 hespuesta en Z, XI, XZ
Resolución Metodo	Grafico
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Convertix Restricción en Igualdo 4 16
en ① $2 \times 1 + \times 2 = 16$ $\times 2 = 16$ $2 \times 1 = 8$	PL (8,0) PL (8,0)
en ② $2 \times 1 + 3 \times 2 = 40$ $\times 2 = 40 \times 2$ $2 \times 1 = 20$	P3 (0,40)3) P4 (20,0)
en (3) $3 \times 1 + \times 2 = 20$ $3 \times 1 = 20$ $\times 1 = 20/3$	
6 ra fico	R1 <p2 (810)<="" td=""></p2>
	R-2 <p, (20,0)<="" td=""></p,>
10	R34P6 (0)20)
R2 15 02 03 P3(0) 3	a Factible
01///////	18) 10 20 P4(20,0) ELCUAPARIA
\	

2. Escriba el problema dual de los siguientes problemas primales.

maximizar
$$z = -5_1 + 2x_2$$

sujeto $-x_1 + x_2 \le -2$
 $2x_1 + 3x_2 \le 5$
 $x_1, x_2 \ge 0$

Problema dual

Minimizar
$$Z_y = -2y_1 + 5y_2$$

$$A = \begin{pmatrix} -1 & 1 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 2 & 3 \end{pmatrix}^T$$

5 yeto a

-
$$91 + 292 \ge -5$$
 $91 + 392 \ge 2$
 $91,92 \ge 2$

minimizar
$$z = 6x_1 + 3x_2$$

sujeto $6x_13x_2 + x_3 \le 2$
 $3x_1 + 4x_2 + x_3 \le 5$
 $x_1, x_2, x_3 \ge 0$

Maximizar
$$Z_{y} = 2y_{1} + 5y_{2}$$

$$A = \begin{pmatrix} 6 & -3 & 1 \\ 3 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 6 & 3 \\ -3 & 4 \end{pmatrix}^{T}$$
Sujeto a
$$6y_{1} + 3y_{2} \ge 6$$

$$-3y_{1} + 4y_{2} \ge 3$$

$$4y_{1} + 4y_{2} \ge 0$$

$$y_{1}, y_{2} \le 0$$

3. Una compañía fabrica dos productos, A y B. Los ingresos unitarios son 2\$ y 3\$, respectivamente. Las disponibilidades diarias de dos materias primas, M_1 y M_2 utilizadas en la fabricación de los dos productos son de 8 y 18 unidades, respectivamente. Una unidad de A utiliza 2 unidades de M_1 y 2 unidades de M_2 , y una unidad de B utiliza 3 unidades de M_1 y 6 unidades de M_2 .

1		Producto A	Producto B	Disponibilidad	
	M	2	3	8	
	Ingreso Por Unidad	2	3	18	
Identifican	ción de Vari	ables			
XT=L	rúmero de	producto A			
X2= n	rúmero de	productos B			

 \blacksquare Determine los precios duales de M1 y M2 y sus intervalos de factibilidad.

• Suponga que pueden adquirirse 4 unidades más de M1 al costo de 30 centavos por unidad. ¿Recomendaría la compra adicional?

Tengamos encuento que MI volar de unidad
es de 1\$ para la compra adicional serio
4\$ (0,30\$) = 1,211

Dado así, es recompendade comprar ol comprar la 4
unidades nos da 13,20\$

• ¿Cuánto es lo máximo que la compañía debe pagar por unidad de M2?

El precro en 1/2 dio 0# así que es innecesario para la compania agregar.

• Si la disponibilidad de M2 se incrementa en 5 unidades, determine el ingreso óptimo asociado.

Si se inciementa la 5 unidades para el presio de 12 nos daria un resultado optimo. 2=8 restricción invesesario

4. Plantee el siguiente problema y resuélvalo utilizando un software de programación lineal. Una refinería fabrica dos tipos de combustible para avión, F₁ y F₂, mezclando cuatro tipos de gasolina, A, B, C y D. El combustible F₁ incluye las gasolinas A, B, C y D en la proporción 1 : 1 : 2 : 4, y el combustible F₂ incluye la proporción 2 : 2 : 1 : 3. Los límites de abasto de A, B, C y D son 1000, 1200, 900 y 1500 barriles/día, respectivamente. Los costos por barril de las gasolinas A, B, C y D son \$ 120, \$ 90, \$ 100 y \$ 150, respectivamente. Las combustibles F₁ y F₂ se venden a \$ 200 y \$ 250 por barril, respectivamente. La demanda mínima de F₁ y F₂ es de 200 y 400 barriles/día, respectivamente.

	GA	GB	GC	GD
P. Combustible F1	1	1	2	4
P. Combustible F2	2	2	1	3
Costo por barril	120	90	100	150
Límite de abasto	1000	1200	900	1500

	Combustible F1	Combustible F2
Precio	200	250
Demanda mínima	200	400

Variables de desicion

 $X_{1,1}$ Barriles de gasolina A utilizada en la produccion produccion diaria del combustible F_1

 $X_{1,2}$ Barriles de gasolina B utilizada en la produccion produccion diaria del combustible F_1

 $X_{1,3}$ Barriles de gasolina C utilizada en la produccion produccion diaria del combustible F_1

 $X_{1,4}$ Barriles de gasolina D utilizada en la produccion produccion diaria del combustible F_1

 $X_{2,1}$ Barriles de gasolina A utilizada en la produccion produccion diaria del combustible F_1

 $X_{2,2}$ Barriles de gasolina B utilizada en la produccion produccion diaria del combustible F_2

 $X_{2,3}$ Barriles de gasolina C utilizada en la produccion produccion diaria del combustible F_3

 $X_{2,4}$ Barriles de gasolina D utilizada en la produccion produccion diaria del combustible F_4

Funcion Objetiva y restricciones

Minimizar

$$z = 120(x_{1,1} + x_{2,1}) + 90(x_{1,2} + x_{2,2}) + 100(x_{1,3} + x_{2,3}) + 150(x_{1,4} + x_{2,4})$$
sujeto a

$$0,125x_{1,1} + 0,125x_{1,2} + 0,25x_{1,3} + 0,5_{1,4} \ge 200$$

$$0,25x_{2,1} + 0,25x_{2,2} + 0,125x_{2,3} + 0,375_{2,4} \ge 400$$

$$x_{1,1} + x_{2,1} \le 1000$$

$$x_{1,2} + x_{2,2} \le 1200$$

$$x_{1,3} + x_{2,3} \le 900$$

$$x_{1,4} + x_{2,4} \le 1500$$

Software de programaci on lineal.

■ Excel Solver

