

Materials Genome Foundation

Zi-Kui Liu

https://materialsgenomefoundation.org/

Thank you for participating at the MGF Workshop

Please respond to a survey that will be emailed to you

CALPHAD

- Model properties of individual phases
 - Gibbs energy: $G_m^{\alpha}(T, P, x_i, \xi_i)$ and its 1st and 2nd derivatives
 - Atomic mobility: $M_k^{\alpha}(T, P, x_i, \xi_i)$ and tracer/intrinsic/chemical diffusivity
 - Other properties
 - Interfaces between phases?
- Community: <u>www.calphad.org</u>
 - Annual conference: Gordon conference style since 1973, Plan decade-ahead
 - CALPHAD, Inc.: Private foundation since 1975, Scholarships and awards
 - CALPHAD Journal since 1977
- Tools and databases: CALPHAD, Vol. 26 (2)
 - Commercial: ThermoCalc, Factsage, ComputTherm/Pandat, JMatPro, Matcalc
 - Open Source: OpenCALPHAD, Thermochimica, PyCalphad/ESPEI (High throughput CALPHAD modeling with uncertainty quantification)

MGF Actions

- Open-Source Ecosystem for Materials Science (OSEMatS)
 - Connect and promote community tools and databases: ASCENDS
 - Build OSEMatS as a Cloud Native Computing Foundation (CNCF) for materials science
- Provide the cloud-based services for your workshops

Additional links for ASCENDS

- https://github.com/ornlpmcp/ASCENDS
- https://github.com/materialsgenomefoundation/2021-workshop-material
- https://www.energy.gov/eere/vehicles/downloads/accelerated-design-alumina-forming-high-temperature-austenitic-alloys
- https://www.energy.gov/eere/vehicles/downloads/machine-learning-and-supercomputing-predict-corrosionoxidation-high-0
- https://www.sciencedirect.com/science/article/abs/pii/S0927025621 007187
- https://www.nature.com/articles/s41529-021-00188-z

Future MGF Workshops

- October 4, 2022 as part of <u>The Structure and Thermodynamics of Oxides/carbides/nitrides/borides (STOHT2) conference</u>
- March 18-19, 2023 adjacent to the <u>TMS 2023 Annual Meeting</u>
- New tools may be added, including
 - Precipitation simulations, kinetics: https://kawin.org/
 - DFT Tool Kit for free energy: https://www.dfttk.org
 - Machine learning: SIPFENN https://phaseslab.com/sipfenn
 - Materials Property Descriptor Database: https://phaseslab.com/mpdd, https://phaseslab.com/mpdd, https://phaseslab.com/
 - Compiled experimental data
 - https://phaseslab.com/ultera, for HEA refractory alloys
 - https://github.com/PhasesResearchLab/ESPEI-datasets, ESPEI examples