domenica 24 dicembre 2023 13:23

Home

Macchine a stati finiti

Sono un mix tra circuiti combinatori e circuiti sequenziali con ad esempio i flip-flop Possono essere alla-moore o alla-mealy

Alla-moore significa che l'output non si collega all'input(x)

Alla-mealy è quando la y invece si collega anche alla x

Per progettarli li dividiamo in 3 step!

1.diagramma di stato
Noi disegniamo i vari step del
circuito specificando input e
output

Nel caso di alla-mealy noi rappresenteremo gli stati così

Dove abbiamo i/o specificati in ogni arco fatto

Invece in alla-more non rappresenteremo gli output negli archi, bensì ogni stato sarà un output differente

Ovviamente ci sarà uno stato in più rispetto a alla-mealy che rappresenta output 1

14/02/24, 21:36 OneNote

RICORDA CHE OGNI 2 STATI ABBIAMO 1 FLIP-FLOP Quindi così ne avremo 3

2.tabella di stato
Dove scriviamo le varie
casistiche quando ci troviamo
in un determinato stato
Prendendo ad esempio

S0=(0,0)

S1=(0,1)

S2=(1,0)

S3=(1,1)

Q1 e q2 rappresentano gli stati e la x l'input, ovvero dove andrà a finire lo stato E le d lo stato successivo E la y cosa stamperà il circuito in quella fase.

Un esempio di tabella di verità in alla-moore eccola qui:

Con q1 e q2 che sono nell's4 avremo 2 volte 1 perché teniamo conto delle uscite, Invece con alla-mealy teniamo conto degli output degli archi

In alla-mealy un esempio a caso sarebbe tipo:

Q_1	Q_2	\boldsymbol{x}	D_1	D_2	y
0	0	0	0	1	0
0	0	1	0	0	0
0	1	0	0	1	0
0	1	1	1	0	0
1	0	0	1	1	0
1	0	1	0	0	0
1	1	0	0	1	0
1	1	1	1	0	1

3.
Noi prendiamo le variabili dipendenti, ovvero d1, d2 e y E le confrontiamo con quelle indipendenti, q1, q2 e x Facendo karnaugh

Nel caso di alla-moore Quando facciamo la y le x non le consideriamo

Quando abbiamo uno stato che non viene preso in considerazione, ad esempio s4 in alla-moore possiamo mettere degli * che sfrutteremo a nostro piacimento per il karnaugh

14/02/24, 21:36 OneNote

Poi si disegna il circuito prendendo le varie formule dei karnaugh(a penna)