The Transition from Physical to Abstract Taste: An fMRI Study on Sweet, Sour, and Salty

by Tran Cao Bang Trinh 陳高冰貞 (Annamarie)
Graduate Institute of Linguistics, NTU (TW)
1st year PhD Student

Motivation

Segmented brain Gray matter Sub-007 1st study Introduction:

This ice cream tastes **sweet**! (Physical) You're so **sweet**! (Abstract)

Introduction:

- Embodiment theory posits that abstract thought is grounded in concrete, sensorimotor experiences.
- Taste, while fundamentally a physical sensation, is frequently extended into the abstract domain (e.g., "sweet success," "bitter truth").
- This conceptual overlap suggests that abstract uses of taste may recruit similar neural mechanisms as literal, physical taste experiences.

Hypothesis:

- Abstract taste expressions will partially overlap with physical taste processing regions (e.g., insula, primary gustatory cortex).
- This overlap will be spatially reduced, and abstract taste will additionally recruit regions associated with semantic and conceptual processing.
- Connectivity between abstract-related areas and primary taste regions will reflect grounding in physical experience.

Participant

Best Pair (female)

- Dataset 1: sub-007 (68 kg, 24, F)
- Dataset 2: sub-072 (65.5 kg, 26, F)
 - *Same gender, age difference = 2 years, weight difference = 2.5 kg.*

Methodology

- 1st level analysis: Visual inspection across both group by best pair.
- Choosing a comparable pair from both group.
- Preprocessing data > 1st level analysis (SPM12).
- Visual inspection.
- 2. 2nd level analysis: Comparison across both group.
 - Adding comparable pairs (female, male, different ages).
 - Including all participants.

Source:

Taste Quality Representation in the Human Brain (2020)

A common neural code for representing imagined and inferred tastes (2023)

1st study:

onset	duration	trial_type	
5	20	sour	
25	5	wash	
45	20	neutral	
65	5	wash	
85	20	salty	
105	5	wash	
125	20	sweet	
145	5	wash	*8 runs
165	20	sour	o rano
185	5	wash	
205	20	salty	
225	5	wash	
245	20	neutral	
265	5	wash	
285	20	sweet	
305	5	wash	

1st study:

The brain **does not** have strongly segregated, stable topographic maps for basic tastes (sweet, salty, sour) at the group level, and even individual subjects showed inconsistent patterns across sessions.

2nd study:

2nd study:

Tatseimagine- Run1/4				Foodpicture-Run 1/4				
	onset	duration	trial_type	onset	duration	trial_type		
	6000	8000	water	4000	8000	salty		
	20000	8000	lemon	16000	8000	sour		
	34000	8000	sugar	28000	8000	sweet		
	48000	8000	lemon	40000	8000	sour		
	62000	8000	water	52000	8000	object		
	76000	8000	salt	64000	8000	sour		
	90000	8000	sugar	76000	8000	object		

2nd study:

- No brain region analysis for specific taste
- Inclusion of objects may affect the results for Food picture tasks.

Pipeline

Preprocessing pipeline: SPM

- Check Reg (Motion Correction)
- Realign & Reslice
- Slice timing
- Coregister T1 EPI
- Segmentation

Data downloading

Download with DataLad

Public datasets can be downloaded with DataLad or Git Annex from GitHub.

datalad install https://github.com/OpenNeuroDatasets/ds002995.git

Check out getting started with DataLad for more on how to use this download method.

Download with a shell script

A script is available to download with only curl. This may be useful if your download environment makes it difficult to install DataLad or Node.js.

Download shell script

Datalab

```
[PATH ...]
(base) MacBook-Pro-de-Annamarie:~ annamarie$ cd /Users/annamarie/ds004312
(base) MacBook-Pro-de-Annamarie:ds004312 annamarie$ datalad get sub-072
[get(ok): sub-072/ses-01/anat/sub-072 ses-01 T1w.nii.gz (file) [from s3-PUBLIC...]
get(ok): sub-072/ses-01/fmap/sub-072 ses-01 dir-PA epi.nii.gz (file) [from s3-PUBLIC...]
get(ok): sub-072/ses-01/func/sub-072_ses-01_task-foodpicture_run-01_bold.nii.gz (file) [from s3-PUBLIC...]
qet(ok): sub-072/ses-01/func/sub-072 ses-01 task-foodpicture run-02 bold.nii.gz (file) [from s3-PUBLIC...]
get(ok): sub-072/ses-01/func/sub-072 ses-01_task-foodpicture_run-03_bold.nii.gz (file) [from s3-PUBLIC...]
aet(ok): sub-072/ses-01/func/sub-072 ses-01 task-foodpicture run-04 bold.nii.az (file) [from s3-PUBLIC...]
qet(ok): sub-072/ses-01/func/sub-072 ses-01 task-tasteimagine run-01 bold.nii.gz (file) [from s3-PUBLIC...]
get(ok): sub-072/ses-01/func/sub-072 ses-01 task-tasteimagine run-02 bold.nii.gz (file) [from s3-PUBLIC...]
get(ok): sub-072/ses-01/func/sub-072_ses-01_task-tasteimagine_run-03_bold.nii.gz (file) [from s3-PUBLIC...]
qet(ok): sub-072/ses-01/func/sub-072 ses-01 task-tasteimagine run-04 bold.nii.gz (file) [from s3-PUBLIC...]
get(ok): sub-072 (directory)
action summary:
  aet (ok: 11)
(base) MacBook-Pro-de-Annamarie:ds004312 annamarie$
```

=> amex-encoded file

Shell script

```
1 #!/bin/sh
2 curl --create-dirs https://s3.amazonaws.com/openneuro.org/ds002995/CHANGES?versionId=kcth4K.Ji68clv8NJBhw4 LOWJIUBweh -o ds002995-1.0.1/CHANGES
3 curl --create-dirs https://s3.amazonaws.com/openneuro.org/ds002995/README?versionId=pd6tB8NAJWjmbrvA2mVcby5n zL Zk2n -o ds002995-1.0.1/README
4 curl --create-dirs https://s3.amazonaws.com/openneuro.org/ds002995/dataset_description.json?versionId=g6YfEuE4BTq04nhZIzxMjZBj2U9.t2af -o ds002995-1.0.1/dataset_description.json
5 curl --create-dirs https://s3.amazonaws.com/openneuro.org/ds002995/. README?versionId= I9pPUBNEubaYHCbv98wWPjigQPn2RfL -o ds002995-1.0.1/. README
6 curl --create-dirs https://s3.amazonaws.com/openneuro.org/ds002995/T1w.json?versionId=yb4FTs.yKyiK0r1dUZY0uJd.UJhvzg3r -o ds002995-1.0.1/T1w.json
  curl --create-dirs https://s3.amazonaws.com/openneuro.org/ds002995/dir-PA epi.json?versionId=yf0eZoTs3fpU izMDOcLmlZHtnTdLPtG -o ds002995-1.0.1/dir-PA epi.json
8 curl --create-dirs https://s3.amazonaws.com/openneuro.org/ds002995/participants.json?versionId=dPWt_WzP9uT0xZv01q3m022Zhp9FQiW -o ds002995-1.0.1/participants.json
9 curl --create-dirs https://s3.amazonaws.com/openneuro.org/ds002995/participants.tsv?versionId=WoLqUvkZh2ZZ8wxMadMFhnyxr0VE6r A -o ds002995-1.0.1/participants.tsv
10 curl --create-dirs https://s3.amazonaws.com/openneuro.org/ds002995/task-tastemap_bold.json?versionId=VEbvZFCLNdPhsnbAsTvXB0qJaJisU5mG -o ds002995-1.0.1/task-tastemap_bold.json
11 curl --create-dirs https://s3.amazonaws.com/openneuro.org/ds002995/task-tastemap events.ison?versionId=Qe1IbfxvFhWxVXQq9ZJsuQBFUprJBx7l -o ds002995-1.0.1/task-tastemap events.ison
12 curl --create-dirs https://s3.amazonaws.com/openneuro.org/ds002995/sub-007/ses-01/anat/sub-007_ses-01_T1w.nii.gz?versionId=HT7UVYG2yxqAyQjPuWM9XbIHBdFyybV3 -o
       ds002995-1.0.1/sub-007/ses-01/anat/sub-007 ses-01 T1w.nii.gz
13 curl --create-dirs https://s3.amazonaws.com/openneuro.org/ds002995/sub-007/ses-01/fmap/sub-007_ses-01_dir-PA_epi.nii.gz?versionId=d717IrCwNZSs5W.ZuiA2LJEX07dTJQ6R -o
       ds002995-1.0.1/sub-007/ses-01/fmap/sub-007 ses-01 dir-PA epi.nii.gz
14 curl --create-dirs https://s3.amazonaws.com/openneuro.org/ds002995/sub-007/ses-01/func/. sub-007_ses-01_task-tastemap_run-01_events.tsv?versionId=zyv_x2cosDkby4eos4zok.Synu8ShmcF
       -o ds002995-1.0.1/sub-007/ses-01/func/. sub-007 ses-01 task-tastemap run-01 events.tsv
15 curl --create-dirs https://s3.amazonaws.com/openneuro.org/ds002995/sub-007/ses-01/func/. sub-007_ses-01_task-tastemap_run-02_events.tsv?versionId=N8eVZhskDmKcujYJt0J8flkRMB95jROz
       -o ds002995-1.0.1/sub-007/ses-01/func/. sub-007 ses-01 task-tastemap run-02 events.tsv
16 curl --create-dirs https://s3.amazonaws.com/openneuro.org/ds002995/sub-007/ses-01/func/. sub-007 ses-01 task-tastemap_run-03 events.tsv?versionId=KKncroUkJ4CbBZ4e0isBIcChFSBvd7aM
       -o ds002995-1.0.1/sub-007/ses-01/func/, sub-007 ses-01 task-tastemap run-03 events.tsv
```

=> complicated

Cyberduck > Amazon S3

=> Path spec

Slice-timing

=> Check README, json file.

Matlab > Slice-timing info

```
>> % Step 1: Define your SliceTiming (from your JSON)
SliceTiming = [ ...
    0.000, 1.845, 1.183, 0.517, 2.362, 1.697, 1.035, 0.370, ...
    2.215, 1.550, 0.887, 0.222, 2.068, 1.403, 0.738, 0.075, ...
    1.920, 1.255, 0.590, 2.435, 1.773, 1.107, 0.442, 2.287, ...
    1.625. 0.960. 0.295. 2.140. 1.477. 0.813. 0.147. 1.992. ...
    1.330, 0.665, 0.000, 1.845, 1.183, 0.517, 2.362, 1.697, ...
    1.035, 0.370, 2.215, 1.550, 0.887, 0.222, 2.068, 1.403, ...
    0.738, 0.075, 1.920, 1.255, 0.590, 2.435, 1.773, 1.107, ...
    0.442, 2.287, 1.625, 0.960, 0.295, 2.140, 1.477, 0.813, ...
    0.147, 1.992, 1.330, 0.665 ];
% Step 2: Compute slice acquisition order
[~, slice_order] = sort(SliceTiming);
% Step 3: Find reference slice (closest to 1.0s)
[~, ref slice] = min(abs(SliceTiming - 1.0));
% Step 4: Display results
fprintf('Slice acquisition order:\n');
disp(slice order);
fprintf('Reference slice (closest to 1s): %d\n', ref slice);
```

Matlab > Slice-timing info

Slice acqu Columns		ition ord hrough 1							15		
1	35	16	50	31	65	12	46	27	61	8	42
Columns	13	through	24								
23	57	4	38	19	53	34	68	15	49	30	64
Columns	25	through	36								
11	45	26	60	7	41	22	56	3	37	18	52
Columns	37	through	48								
33	67	14	48	29	63	10	44	25	59	6	40
Columns	49	through	60								
21	55	2	36	17	51	32	66	13	47	28	62
Columns	61	through	68								
9	43	24	58	5	39	20	54				
Reference	sli	ice (clos	sest	to 1s):	7						

Matlab > Slice-timing info

130 files 130 files 130 files 130 files 130 files
130 files 130 files 130 files 130 files
130 files 130 files 130 files 130 files
130 files 130 files 130 files
130 files 130 files
130 files
130 files
130 files
68
2.5
2.46323529411765
1x68 double
7
a a

No slice-timing info? Assume or skip?

Slice Order for Siemens Scanner with 58 Slices

Because:

Vendor: Siemens

Acquisition: 2D EPI

• Slices: 58 (even number)

No SliceTiming provided

Then according to **Siemens' standard interleaved rule** for **even number of slices**, the slice order is:

```
slice\_order = [2:2:58 \ 1:2:57];
```

Reference Slice

SPM needs you to pick a **reference slice** — usually the one acquired **closest to the middle of the TR**, to reduce temporal bias.

Cogister T1 EPI

No T2 image

T1 > EPI

Current Module: Coregister: Estimate Help on: Coregister: Estimate Reference Image ...01/func/arsub-007_ses-01_task-tastemap_run-01_bold.nii,1 .../ds002995/sub-007/ses-01/anat/sub-007_ses-01_T1w.nii,1 Source Image Other Images **Estimation Options** . Objective Function Normalised Mutual Information . Separation [4 2] . Tolerances 1x12 double . Histogram Smoothing $[7 \ 7]$

Missing brain image

Normalised Mutual Information Coregistration

X1 = 0.003*X -0.021*Y +0.583*Z +21.946

Y1 = 0.583*X -0.007*Y -0.003*Z -3.996

Z1 = -0.007*X -0.583*Y -0.021*Z +132.854

Normalised Mutual Information Coregistration

X1 = 0.003*X -0.021*Y +0.583*Z +21.946

Y1 = 0.583*X -0.007*Y -0.003*Z -3.996

Z1 = -0.007*X -0.583*Y -0.021*Z +132.854

Missing brain image

Normalised Mutual Information Coregistration

X1 = 0.003*X -0.021*Y +0.583*Z +21.946

Y1 = 0.583*X -0.007*Y -0.003*Z -3.996

Z1 = -0.007*X -0.583*Y -0.021*Z +132.854

Original Joint Histogram

..emap_run-01_bold.nii

Normalised Mutual Information Coregistration

X1 = 0.003*X -0.021*Y +0.583*Z +21.946

Y1 = 0.583*X -0.007*Y -0.003*Z -3.996

Z1 = -0.007*X -0.583*Y -0.021*Z +132.854

Two runs: Move T1 twice, or duplicate?

072_foodpicture_slicetiming.mat

072_realign_est&reslice_foodpicture.mat 072_realign_est&reslice_tasteimagine.mat 072_tatseimagine_slicetiming.mat

I moved on...

Statistical analysis: Design

1st level analysis

Something's off....

Current Module: fMRI model sp	pecification
Help on: fMRI model specifi	cation
Directory	/Users/annamarie/1stlevel/ds002995/sub-007/results
Timing parameters	
. Units for design	Seconds
. Interscan interval	2.5
. Microtime resolution	68
. Microtime onset	7
Data & Design	
. Subject/Session	
Scans	130 files
Conditions	
Multiple conditions	arie/1stlevel/ds002995/sub-007/ses-01/func/Run1.mat
Regressors	
Multiple regressors	unc/rp_sub-007_ses-01_task-tastemap_run-01_bold.txt
High-pass filter	128
. Subject/Session	
Scans	130 files
Conditions	
Multiple conditions	arie/1stlevel/ds002995/sub-007/ses-01/func/Run2.mat
Regressors	
Multiple regressors	unc/rp_sub-007_ses-01_task-tastemap_run-02_bold.txt

 $\mathsf{(gray} \to \beta \ \mathsf{not} \ \mathsf{uniquely} \ \mathsf{specified})$ parameter estimability

Design description...

Basis functions: hrf Number of sessions: 8 Trials per session: 4 4 4 4 4 4 4 4 Interscan interval: 2.50 [s] High pass Filter: [min] Cutoff: 128 [s] Global calculation: mean voxel value Grand mean scaling: session specific Global normalisation: None

1st study:

onset	duration	trial_type	
5	20	sour	
25	5	wash	
45	20	neutral	
65	5	wash	
85	20	salty	
105	5	wash	
125	20	sweet	
145	5	wash	*8 runs
165	20	sour	o ramo
185	5	wash	
205	20	salty	
225	5	wash	
245	20	neutral	
265	5	wash	
285	20	sweet	
305	5	wash	

1st level analysis

Checking .mat

```
>> load('Run1.mat')
>> whos
                                                    Attributes
  Name
                  Size
                                   Bytes
                                          Class
                  1x54
                                          char
                                     108
  ans
  durations
                  4x1
                                          cell
                                     480
                  1x4
                                     458
                                          cell
  names
                  4x1
                                     480
                                          cell
  onsets
```

1st level analysis

Doing .mat again manually

```
>> names = {'sour', 'neutral', 'salty', 'sweet'};
onsets = {
   [5, 165], % sour
   [45, 245], % neutral
   [85, 205], % salty
   [125, 285] % sweet
};
durations = {
   [20, 20],
            % sour
            % neutral
   [20, 20],
   [20, 20], % salty
   [20, 20]
            % sweet
};
```

>> save('Run1.mat', 'names', 'onsets', 'durations')

1st level analysis

Nothing changed

Help on: fMRI model specific	eation
Directory	/Users/annamarie/1stlevel/ds002995/sub-007/results
Timing parameters	
Units for design	Seconds
Interscan interval	2.5
Microtime resolution	68
Microtime onset	7
Oata & Design	
Subject/Session	
. Scans	130 files
. Conditions	
. Multiple conditions	arie/1stlevel/ds002995/sub-007/ses-01/func/Run1.mat
. Regressors	
. Multiple regressors	unc/rp_sub-007_ses-01_task-tastemap_run-01_bold.txt
. High-pass filter	128
Subject/Session	
. Scans	130 files
. Conditions	122 1125
. Multiple conditions	arie/1stlevel/ds002995/sub-007/ses-01/func/Run2.mat
. Regressors	mails, 1919-19, 300-2006, 3db 007/000 01/1dillo/1ldille/illdi
Multiple regressors	unc/rp sub-007 ses-01 task-tastemap run-02 bold.txt

Statistical analysis: Design

Design description...

Basis functions: hrf Number of sessions: 8 Trials per session: 4 4 4 4 4 4 4 Interscan interval: 2.50 {§ High pass Filter: [min] Cutoff: 128 {§ Global calculation: mean voxel value Grand mean scaling: session specific

Global normalisation: None

Future Direction

- Manually input conditions
- Checks if smoothing/additional steps needed before model specification
- 1st level > 2nd level analysis
- Move beyond visual inspection.
- Make a T shirt with sweet contrast

