HOARE LOGIC

HOARE LOGIC INTRODUCTION

- Since finding the exact wp or sp for while-loops is difficult, we will use an over-approximation in the form of an Inductive Invariant which preserves soundness.
 - Much of the rest of the course (and majority of research in verification) deals with how to handle the verification problem for loops/loop-like constructs!
- Hoare Logic is a program logic/verification strategy which can be directly used to prove the validity of Hoare Triples.
 - Also provides a framework for specifying and verifying Inductive Loop Invariants.

DEFINITION

- Given sets of states P and Q, a program c satisfies the specification $\{P\}$ c $\{Q\}$ if:
 - $\forall \sigma. \ \sigma \in P \land (\sigma, c) \hookrightarrow^* (\sigma', skip) \Rightarrow \sigma' \in Q$
- Using FOL formulae P and Q to express sets of states, we can now use the symbolic semantics $\rho(c)$:
 - $\forall V.P \land \rho(c) \rightarrow Q[V'/V]$
- Hoare Logic is a program logic/proof system to directly prove the validity of Hoare Triples.
- We will study it in two forms:
 - A set of inference rules to write pen-and-paper proofs
 - A procedure to generate verification conditions (VCs) in FOL

RELATION WITH WP AND SP

- How are Hoare Triples, Weakest Pre-condition and Strongest Postcondition related with each other?
 - $\{wp(P, c)\}\ c\ \{P\}$
 - $\{P\}$ c $\{sp(P, c)\}$
- Prove this from the definitions!

INFERENCE RULES FORMAT

Key Idea: Use the validity of Hoare triples for smaller statements to establish validity for compound statements

INFERENCE RULES PRIMITIVE STATEMENTS

 ${P[e/x]} x := e {P}$

[R-ASSIGN]

 $\{ \forall x . P \} x := havoc \{ P \}$

[R-HAVOC]

 $\{Q \rightarrow P\}$ assume(Q) $\{P\}$

[R-ASSUME]

 $\{Q \land P\}$ assert(Q) $\{P\}$

[R-ASSERT]

EXAMPLES

- Which of the following are true?
 - $\{y = 10\} x := 10 \{y = x\}$
 - $\{x = n 1\} \ x := x + 1 \ \{x = n\}$
 - $\{y = x\}$ y := 2 $\{y = x\}$
 - $\{z = 10\}\ y := 2\ \{z = 10\}$
 - $\{y = 10\}\ y := x \{y = x\}$
- The last Hoare triple is valid, but we cannot prove it using [R-ASSIGN].
 - According to [R-ASSIGN], we have $\{y = x[x/y]\}\ y := x \ \{y = x\}$. Hence, $\{x = x\}\ y := x \ \{y = x\}$, which simplifies to $\{true\}\ y := x \ \{y = x\}$. Notice that $y = 10 \Rightarrow true$.

$$\{P'\}$$
 c $\{Q\}$ $P \Rightarrow P'$ [R-STRENGTHEN-PRE] $\{P\}$ c $\{Q\}$

$$\{P'\}$$
 c $\{Q\}$ $P \Rightarrow P'$ [R-STRENGTHEN-PRE] $\{P\}$ c $\{Q\}$

$$\{P'\} \subset \{Q\} \qquad P \Rightarrow P'$$

 $\{P\}$ c $\{Q\}$

[R-STRENGTHEN-PRE]

$$\{P'\}$$
 c $\{Q\}$ $P \Rightarrow P'$ [R-STRENGTHEN-PRE] $\{P\}$ c $\{Q\}$

$$\{P'\}$$
 c $\{Q\}$ $P \Rightarrow P'$ [R-STRENGTHEN-PRE] $\{P\}$ c $\{Q\}$

$$\{true\} \ y := x \ \{y = x\} \qquad y = 10 \Rightarrow true$$

$${y = 10} y := x {y = x}$$

POST-CONDITION WEAKENING

$$\{P\} \ \mathsf{c} \ \{Q'\} \qquad Q' \Rightarrow Q$$

$$\{P\} \ \mathsf{c} \ \{Q\}$$
[R-WE

[R-WEAKEN-POST]

POST-CONDITION WEAKENING

$$\{P\} \subset \{Q'\} \qquad Q' \Rightarrow Q$$

$$\{P\} \subset \{Q\}$$

[R-WEAKEN-POST]

POST-CONDITION WEAKENING

$$\{P\} \ \mathsf{c} \ \{Q'\} \qquad Q' \Rightarrow Q$$

$$\{P\} \ \mathsf{c} \ \{Q\}$$

[R-WEAKEN-POST]

INFERENCE RULES COMPOUND STATEMENTS

$$\{P\}\ \mathbf{c}_1\ \{R\}\ \{R\}\ \mathbf{c}_2\ \{Q\}$$

 $\{P\}\ c_1; c_2\ \{Q\}$

[R-SEQ]

INFERENCE RULES COMPOUND STATEMENTS

$$\{P\}\ \, \mathbf{c}_1\ \, \{R\}\ \, \{R\}\ \, \mathbf{c}_2\ \, \{Q\}$$

[R-SEQ]

$$\{P \wedge F\} \ \mathbf{c}_1 \ \{Q\} \qquad \{P \wedge \neg F\} \ \mathbf{c}_2 \ \{Q\}$$

[R-IF-THEN-ELSE]

 $\{P\}$ if (F) then c_1 else c_2 $\{Q\}$

INFERENCE RULES COMPOUND STATEMENTS

$$\{P\}\ \, \mathsf{c}_1\ \, \{R\}\ \, \, \{R\}\ \, \mathsf{c}_2\ \, \{Q\}$$

[R-SEQ]

$$\{P \wedge F\} \ \mathbf{c}_1 \ \{Q\} \qquad \{P \wedge \neg F\} \ \mathbf{c}_2 \ \{Q\}$$

[R-IF-THEN-ELSE]

 $\{P\}$ if (F) then c_1 else c_2 $\{Q\}$

Prove This!

SEQUENCING EXAMPLE

$$\{P\}\ \mathbf{c}_1\ \{R\}\ \{R\}\ \mathbf{c}_2\ \{Q\}$$

 $\{P\}\ c_1; c_2\ \{Q\}$

[R-SEQ]

$$\{true\} \ x := 2 \ \{x = 2\}$$

$$\{true\} \ x := 2 \ \{x = 2\}$$
 $\{x = 2\} \ y := x \ \{y = 2 \land x = 2\}$

$$\{true\} \ x := 2; \ y := x \ \{y = 2 \land x = 2\}$$

IF-THEN-ELSE EXAMPLE

$$\{P \wedge F\} \ \mathbf{c}_1 \ \{Q\} \qquad \{P \wedge \neg F\} \ \mathbf{c}_2 \ \{Q\}$$

[R-IF-THEN-ELSE]

$$\{P\}$$
 if (F) then c_1 else c_2 $\{Q\}$

$$\{x \ge 0\}$$
 $y := x \{y \ge 0\}$ $x > 0 \Rightarrow x \ge 0$

$$\{x > 0\} \ y := x \ \{y \ge 0\}$$

$$\{x \le 0\} \ y := -x \ \{y \ge 0\}$$

 $\{true\}\ \text{if } (x > 0)\ \text{then } y := x \ \text{else } y := -x\{y \ge 0\}$