

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Complementos de Matemática I - 2023

Práctica 2 - Isomorfismos

1. Una propiedad \mathcal{P} se dice una *invariante* vía isomorfismo, si para todo grafo G que cumple la propiedad \mathcal{P} y todo grafo H isomorfo a G, se verifica que H tiene la propiedad \mathcal{P} .

Pruebe que las propiedades indicadas son invariantes (vía isomorfismo).

- a) Tener n vértices de grado k.
- b) Tener una arista (u, w) donde d(u) = i y d(w) = j.
- c) Ser conexo.
- d) Ser bipartito.
- 2. a) Pruebe que si G y H son isomorfos, entonces tienen la misma secuencia de grados.
 - b) ¿Es cierta la recíproca?
- 3. a) Dibuje todos los grafos simples etiquetados de cuatro vértices.
 - b) Dibuje todos los grafos simples no etiquetados de cuatro vértices.
 - c) Dibuje todos los grafos simples cúbicos (3-regulares) no etiquetados de n vértices, con $n \leq 8$.
- **4.** Para $n \ge 3$, el grafo rueda con n radios, denotado por W_n es el grafo formado por un ciclo de longitud n y un vértice adicional que es adyacente a los n vértices del ciclo.

¿Es alguno de estos grafos W_n isomorfo a un grafo completo? Si es así, determine todos los valores de $n \in \mathbb{N}$ para los cuales se verifica esta condición.

5. Para $n \ge 1$, el lattice booleano BL_n es el grafo cuyo conjunto de vértices es el conjunto de todos los subconjuntos de [n] y dos vértices X e Y son adyacentes si la diferencia simétrica $X\Delta Y$ tiene exactamente un elemento.

Pruebe que el lattice booleano BL_n es isomorfo al n-cubo Q_n para todo $n \ge 1$.

6. Demuestre que dos grafos G_1 y G_2 son isomorfos si y solo si sus vértices pueden ordenarse de manera que sus matrices de adyacencia sean iguales.

7. Para cada par de grafos, determine si los grafos son o no isomorfos.

a)

b)

c)

d)

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Complementos de Matemática I - 2023

8. a) Si G_1 y G_2 son grafos simples, demuestre que G_1 y G_2 son isomorfos si y sólo si $\overline{G_1}$ y $\overline{G_2}$ son isomorfos.

b) Determine si los grafos siguientes son isomorfos.

9. a) Sea G un grafo con n vértices. Si G es isomorfo a su propio complemento \overline{G} , ¿cuántas aristas debe tener G? (Un grafo con esta propiedad, se dice *autocomplementario*).

b) Pruebe que si G es autocomplementario, entonces G es conexo

c) Encuentre un ejemplo de grafo autocomplementario de cuatro vértices y otro de cinco vértices.

d) Si G es un grafo autocomplementario con n vértices, donde n>1, demuestre que n=4k o n=4k+1, para algún $k\in\mathbb{Z}^+$.

e) Si G es un ciclo simple de n vértices, demuestre que G es autocomplementario si y sólo si n=5.

10. Sea G un grafo simple. Pruebe que si θ es un automorfismo de G, entonces también lo es de \overline{G} .

11. a) Sea G un grafo. Muestre que la relación es similar a es una relación de equivalencia en V(G).

b) Las clases de equivalencia con respecto a la relación del ítem anterior se llaman *órbitas* del grafo. Determine las órbitas de los siguientes grafos.

12. Pruebe que si G es un grafo vértice-transitivo, entonces G es un grafo regular.

13. a) Pruebe que el grafo de línea del grafo completo K_5 es isomorfo al complemento del grafo de Petersen

b) Pruebe que el grafo de línea del grafo bipartito completo $K_{3,3}$ es autocomplementario.

14. Pruebe que el grafo estrella $K_{1,3}$ y el grafo rueda W_5 no son los grafos de línea de ningún grafo.

15. Sean n y k dos números naturales tal que n > 2k. El grafo de Kneser K(n,k) es el grafo cuyo conjunto de vértices es $\binom{[n]}{k}$, y dos vértices son adyacentes si su intersección es vacía.

a) Pruebe que $K(n,1) \cong K_n$, para cada $n \geqslant 3$.

b) Pruebe que K(n,2) es isomorfo al complemento del grafo de línea $L(K_n)$, para cada $n \ge 5$.