Lecture 13 Quotient groups and humamorphisms

· Equivalence relation: a relation ~ on a set X which is reflexive: a ~ a

symmetrie: a~b =>b~a

transitive: a ~ b and b ~ c => a ~ c.

- · Partition: A collection _ 52 of subsets of X which are pairwise disjoint and whose union is all of X.
- Proposition: let G be a group, $H \leq G$ a subgroup. Define a relation by $a \sim b \Leftrightarrow a'b \in H$. Then $a \sim b$ is an equivalence relation and the equivalence Classes are the left cosets $a \sim b = a \sim b$
 - Proof: Reflexive: a~a = a = a = th. But a = e = th

 since It is a subgroup.

 Symmetric a~b mens a = b = H. Then (a = b) = b = f = th

 so b~a

 Transitive a~b and b~c mean a = b = H and b = th

Proposition 2.5.3 says a beH iff beat 50 [a] { b | a~b} = { b | a | b | H} = { b | b | a | B

then (a-16)(b-1c) = a'c = H, so a~c.

Notation: We denote by G/H = {aH | a ∈ G} the set of left cosets of H in G.

There is a natural surjective function $\pi: G \rightarrow G/H$ $\pi(a) = aH$.

We would like to make G/H into a group in such a way that or becomes a humornarphism. This is only possible if H is a normal subgroup of G.

Let $N \leq G$ be a normal subgroup of G. We use the notation $N \leq G$ to indicate that N is normal.

To define a product on $G/N = 9aN \mid a \in G3$, we would like to define (aN)(bN) = (ab)N, but we need to check this is well defined, that it does not depend on how me represent a cuset as aN for some $a \in G$:

Proof of mell-defined ness: let a, a' be elements of the same asset, so aN = a'N, and ut b,b' be snew that bN = b'N.

We want check that (ab)N = (a'b')N.

We can write a = a'n, and $b = b'n_z$ for some $n_1, n_z \in N$.

Then $ab = a'n_1b'n_z = a'b'(b')^{-1}n_1b'n_z$ $= (a'b')((b')^{-1}n_1b')n_z$ but $(b')^{-1}n_1b' \in N$ because N is normal:

(Normal means $gng^{-1} \in N$ for $n \in N$ and $g \in G$; apply with g = b')

So $n = ((b')^{-1}n_1b')n_z \in N$, and $ab = a'b'n \in (a'b')N$.

Therefore $ab \sim a'b'$ and $abN \geq (a'b')N$.

Theorem let $N \triangleleft G$ be a normal subgroup. Then (aN)(bN)=(ab)N makes G/N into a group. $\pi:G \rightarrow G/N$ $\pi(a)=aN$ is a homomorphism, and $\ker(\pi)=N$.

 $\pi(a)\pi(b) = (aN)(bN) = (ab)NS$ $\ker(\pi) = \{a \in G \mid \pi(a) = N \} = \{a \mid aN = N \} = \{a \mid a \in N \} = N$

Remark: The buary operation (aN)(bN)=(ab)N is the only possible one that could make $\pi: G \to G/N$ $\pi(a)=aN$ into a group homomorphism.

We call G/N the quotient group of G by N, and read it "G mod N! We call T: G-> G/N the quotient homomorphism.

Example $\langle n \rangle = n\mathbb{Z} \subseteq \mathbb{Z}$ is a subgrap. It is normal because \mathbb{Z} is abelian. Then $\mathbb{Z}/\langle n \rangle = \frac{1}{2} [k]_n | k \in \mathbb{Z}_3^2$, where $[k]_n = \frac{1}{2} k + \frac{1}{2} n | q \in \mathbb{Z}_3^2$ is the congruence does of k mod n. So $\mathbb{Z}/\langle n \rangle \cong \mathbb{Z}_n$, and $\pi \colon \mathbb{Z} \to \mathbb{Z}_n$ is the questent homomorphism. $k \mapsto [k]_n$

Example $\mathbb{Z} \subseteq \mathbb{R}$ is a subgroup, wormal since \mathbb{R} is a below. We can thus form \mathbb{R}/\mathbb{Z} . How should me think about this.

Recall the group $U = \{z \in C \mid |z| = 1\}$ of unit complex numbers. any $z \in U$ is of the form $z = e^{i\theta}$ for some $\theta \in \mathbb{R}$. Thre is a homomorphism $\varphi \colon \mathbb{R} \to U$ $\varphi(t) = e^{2\pi i t}$ $\varphi(s+t) = e^{2\pi i(s+t)} = e^{2\pi i s} e^{2\pi i t} = \varphi(s) \varphi(t)$. This homomorphism is surjective, and its kernel is $\ker(\varphi) = \{t \in \mathbb{R} \mid e^{2\pi i t} = 1\} = \{t \in \mathbb{R} \mid 2\pi i t = 2\pi i k \text{ for } k \in \mathbb{Z}\}$ $= \mathbb{Z}$.

On the other hand, $\pi: \mathbb{R} \to \mathbb{R}/\mathbb{Z}$ is another surjective homomorphin whose kernel is \mathbb{Z} .

In fact, \mathbb{R}/\mathbb{Z} is isomorphic to \mathbb{U} :
Define $\varphi: \mathbb{R}/\mathbb{Z} \to \mathbb{U}$ $\varphi(t+\mathbb{Z}) = e^{2\pi i t}$

Well-defined? If t+Z=t+Z then t'=t+n, $n\in Z$. so $e^{2\pi i t'}=e^{2\pi i t}e^{2\pi i n}=e^{2\pi i t}\cdot 1=e^{2\pi i t}$, so yes.

Homomorphin? $\overline{\varphi}((s+2)+(t+2))=\overline{\varphi}((s+t)+2)=e^{2\pi i s}e^{2\pi i s$

Surjective? Yes since each $z \in U$ is $e^{2\pi i t}$ for sme $t \in \mathbb{R}$. Injective? If $\nabla(s+2) = \nabla(t+2)$, then $e^{2\pi i s} = e^{2\pi i t}$ then $e^{2\pi i (s-t)} = 1$, so $s-t \in \mathbb{Z}$. Then s+Z=t+Z, so s and t represent the same element of \mathbb{R}/\mathbb{Z} . So $\mathbb{Q}: \mathbb{R}/\mathbb{Z} \to U$ is an isomorphism.

Observe that among $R \to U$ me have the relation $\pi \downarrow f_{\varphi} = \varphi$ R/Z

We can generalize the example $R/Z \cong U = \frac{3}{6}e^{2\pi it}/t \in \mathbb{R}^{\frac{7}{5}}$ as follows:

Theorem 2.7.6: (et $\varphi:G \rightarrow \overline{G}$ be a surjective homomorphism g groups. (et $N = \ker(\varphi)$. (et G/N be the quotient group, and let $\pi:G \rightarrow G/N$ be the quotient homomorphism. Then: \overline{G} is isomorphic to G/N.

More precisely, there is a unique isomorphism $\varphi:G/N \rightarrow \overline{G}$ satisfying $\varphi\circ\pi=\varphi$; G G G G G

Proof: Want to define $\tilde{\varphi}: G/N \rightarrow G$ by $\tilde{\varphi}(aN) = \varphi(a)$ Need to show this is well defined: $aN = a'N \implies a' = an$ for sme $n \in N$ $\Rightarrow \varphi(a') = \varphi(an) = \varphi(a)\varphi(u) = \varphi(a)e = \varphi(a)$ so $\tilde{\varphi}(aN) = \varphi(a) = \varphi(a') = \tilde{\varphi}(a'N)$,

and the definition is consistent.

Homomorphism? $\tilde{\varphi}((aN|bN)) = \tilde{\varphi}((ab)N) = \varphi(ab)$ $= \varphi(a)(\varphi(b) = \tilde{\varphi}(aN)\tilde{\varphi}(bN)$ Kes!

Surjective? If $g \in \overline{G}$, $g = \varphi(a)$ for some $a \in G$ since φ is surjective, so $g = \widetilde{\varphi}(\alpha N)$ as well, so $g \in \mathbb{R}$.

Injective? Recall homomorphism is injective iff kernel is trivial. $g \in \mathbb{R}$ $g \in$

Lastly we check $\widehat{\varphi} \circ \pi^{2} \cdot (\widehat{\varphi} \circ \pi)(a) = \widehat{\varphi}(\pi(a))$ $= \widehat{\varphi}(aN) = \varphi(a), \text{ so Kes.} ! \varpi$

this theorem says that there is an intimate connection between quotient groups and surjective homomorphisms.