

CoreGPIO v3.0 Handbook

Table of Contents

	Introduction	5
	Core Overview	
	Key Features	
	Supported Families	
	Core Version	
	Supported Interfaces	
	Device Utilization and Performance	
	Functional Block Diagram	7
		_
1	Tool Flows	
	SmartDesign	9
2	Interface Description	
	Generics	11
	Ports	12
3	Register Map	. 13
	Overview	13
	Configuration Registers	15
	Interrupt Registers	15
	Input Registers	15
	Output Registers	16
4	Testbench Operation and Modification	. 17
Α	Product Support	. 19
	Customer Service	19
	Actel Customer Technical Support Center	19
	Actel Technical Support	19
	Website	
	Contacting the Customer Technical Support Center	
	Index	21

Introduction

Core Overview

Core GPIO provides an Advanced Peripheral Bus (APB) register-based interface to up to 32 general purpose inputs and 32 general purpose outputs. The input logic contains a simple three-stage synchronization circuit, and the output is also set synchronously. Each bit can be set to either fixed configuration or register-based configuration via top-level parameters, including input type, interrupt type / enable, and output enable.

Key Features

CoreGPIO v3.0 has the following key features:

- AMBA 2 APB support, forward compatibility with AMBA 3 APB
- 8-, 16-, or 32-bit APB data width
- 1 to 32 bits of I/O, for all APB-width configurations
- Fixed or configurable interrupt generation
 - Negative edge
 - Positive edge
 - Both edges
 - Level High
 - Level Low
- Parameter-configurable for single-interrupt signal or up to 32-bit-wide interrupt bus
- Fixed or configurable I/O type (input, output, or both)
- Configurable output enable (internal or external implementation)

Supported Families

Currently all devices in the following families will be supported:

- IGLOO[®]
- IGLOOe
- IGLOO nano
- IGLOO PLUS
- ProASIC[®]3
- ProASIC3 nano
- ProASIC3L
- Fusion
- ProASIC^{PLUS®}
- Axcelerator[®]
- RTAX-S

Core Version

This handbook applies to CoreGPIO v3.0.

Introduction CoreGPIO v3.0

Supported Interfaces

CoreGPIO is available with the APB slave interface and must be connected to an APB master interface. Actel recommends that you use SmartDesign in the Libero[®] Integrated Design Environment (IDE) Project Manager to instantiate, configure, connect and generate CoreGPIO in a processor-based system, using ARM[®] CortexTM-M1, Core8051s, or CoreABC.

Device Utilization and Performance

A summary of utilization and performance data is shown in Table 1 and Table 2.

Table 1 • CoreGPIO Utilization and Performance Data (minimum configuration)

		Tiles		Utilizati	on	Performance
Family	Sequential	Combinatorial	Total	Device	Total	(MHz)
IGLOO/e/PLUS	128	332	460	AGL600V5	3%	79
ProASIC3/E/L	128	332	460	A3P600	3%	154
Fusion	128	332	460	AFS600	3%	154
ProASIC ^{PLUS}	128	443	571	APA150	9%	78
Axcelerator	128	173	301	AX250	7%	233
RTAX-S	128	173	301	RTAX250S	7%	176

Notes:

- 1. Data in this table were achieved using typical synthesis and layout settings.
- 2. Minimum configuration consists of the following parameter values: IO_NUM = 8, APB_WIDTH = 8, OE_TYPE = 0, INT_BUS = 0, FIXED_CONFIG_(0...7) = 1, IO_TYPE_(0...7) = 0, IO_INT_TYPE_(0...7) = 7.

Table 2 • CoreGPIO Utilization and Performance Data (maximum configuration)

		Tiles	Utilizati			
Family	Sequential	Combinatorial	Total	Device	Total	Performance
IGLOO/e/PLUS	512	1,297	1,809	AGL600V5	13%	79
ProASIC3/E/L	512	1,297	1,809	A3P600	13%	153
Fusion	512	1,297	1,809	AFS600	13%	153
ProASIC ^{PLUS}	512	1,743	2,255	APA150	36%	78
Axcelerator	512	662	1,174	AX250	27%	229
RTAX-S	512	662	1,174	RTAX250S	27%	173

Notes:

- 1. Data in this table were achieved using typical synthesis and layout settings.
- 2. Maximum configuration consists of the following parameter values: IO_NUM = 32, APB_WIDTH = 8, OE_TYPE = 1, INT_BUS = 1, FIXED_CONFIG_(0...31) = 0.

Functional Block Diagram

Figure 1 illustrates a single-bit block diagram (this is replicated up to 32 times, depending on the number of I/Os).

Figure 1 • Single I/O Bit Block Diagram for CoreGPIO

1 - Tool Flows

SmartDesign

Configuration

CoreGPIO, available from the Libero IDE web repository, can be seen and downloaded to your local vault via the SmartDesign IP catalog. For information on using SmartDesign to instantiate, configure, connect, and generate cores, refer to the Libero IDE Online Help.

Figure 1-1 shows the CoreGPIO configuration window, as well as cross-references to the corresponding top-level parameters.

Figure 1-1 • CoreGPIO Configuration Window

Tool Flows CoreGPIO v3.0

Simulation Flows

To run simulations, select the user testbench in SmartDesign through the CoreGPIO IP configuration GUI. Generate the design in SmartDesign. The appropriate testbench files are now installed.

To run the testbenches, set the design root to the CoreGPIO instance in the Libero IDE Design Explorer and click the Simulation icon in the Project Flow tab. This invokes ModelSim[®] and automatically runs the simulation.

Synthesis in Libero IDE

To run Synthesis on the core with parameters set in SmartDesign, set the design root to the SmartDesign design (wrapper) and click the **Synthesis** icon in the Project Manager. The Synthesis window appears, displaying the Synplicity[®] project. To perform synthesis, click the **Run** icon.

Place-and-Route in Libero IDE

After setting the design root appropriately and running Synthesis, click the **Layout** icon in the Project Manager to invoke Designer. CoreGPIO requires no special place-and-route settings.

2 – Interface Description

Generics

Table 2-1 gives descriptions for the CoreGPIO generics.

Table 2-1 • CoreGPIO Generics

Parameter	Values	Default Value	Description
FAMILY	0–99	17	Will be set automatically to the device family selected in Libero IDE.
			11 – Axcelerator
			12 – RTAX-S
			14 – ProASIC
			15 – ProASIC3
			16 – ProASIC3E
			17 – Fusion
			20 – IGLOO
			21 – IGLOOe
			22 – ProASIC3L
			23 – IGLOOPLUS
APB_WIDTH	8, 16, 32	32	APB data width
IO_NUM	1–32	32	Number of GPIOs
OE_TYPE	0 or 1	0	If 0, output buffering is implemented outside CoreGPIO. The user is responsible for instantiating tristate buffers outside of the core.
			If 1, output buffering (if enabled) is implemented inside the core. When GPIO_OE[i] is 0, GPIO_OUT is high impedance (Z).
FIXED_CONFIG_x	0 or 1	0	If 0, configuration for bit x (0-31) is set via APB-accessible register CONFIG_ x (see the "Register Map" section on page 13).
			If 1, configuration for bit x (0-31) is set via "IO_INT_TYPE_x" (described below) and "IO_TYPE_x" on page 12.
IO_INT_TYPE_x	0–5	0	Interrupt types selected according to the following scheme:
			0 – Level High
			1 – Level Low
			2 – Edge Positive
			3 – Edge Negative
			4 – Edge Both
			5 – Disabled
			Note that selecting one type will synthesize out logic for other types. For example, Level High will remove and/xor gates for edge detect.

Interface Description CoreGPIO v3.0

Table 2-1 • CoreGPIO Generics (continued)

IO_TYPE_x	0–2	0	If 0, bit x is of type input only. Output logic will be synthesized out. If 1, bit x is of type output only. Input logic will be synthesized out. If 2, bit x is of type input and output (both).
IO_VAL_x	0 or 1	0	Sets the output at reset for GPIO bit x.
INT_BUS	0 or 1	0	If 0, the INT_OR output is fixed at 0 (unused). If 1, the INT_OR output is set if any of the INT signals are set (OR operation).

Ports

Table 2-2 outlines the top-level signals for CoreGPIO.

Table 2-2 • CoreGPIO Ports

Name	Туре	Description
		APB Bus Signals
PCLK	Input	APB System Clock – Reference clock for all internal logic
PRESETN	Input	APB active low asynchronous reset
PWDATA [APB_WIDTH-1:0]	Input	APB write data
PRDATA [APB_WIDTH-1:0]	Output	APB read data
PADDR[7:0]	Input	APB address bus.
PENABLE	Input	APB strobe – Indicates the second cycle of an APB transfer.
PSEL	Input	APB slave select
PWRITE	Input	APB write/read select signal
PREADY	Output	APB 3 ready signal for future APB 3 compliance; tied internally High
PSLVERR	Output	APB 3 transfer error signal for future APB 3 compliance; tied internally Low
		GPIO Signals
GPIO_IN [IO_NUM-1:0]	Input	GPIO input
GPIO_OUT[IO_NUM-1:0]	Output	GPIO output
GPIO_OE[IO_NUM-1:0]	Output	GPIO output enable
INT[IO_NUM-1:0]	Output	Interrupt mask; can be connected directly to processor (for example, Cortex-M1).
INT_OR	Output	Provides an OR'ed version (single wire) of the interrupt mask provided on INT[IO_NUM-1:0].

Note: Unless otherwise noted, all of the signals above are active High.

3 – Register Map

Overview

Table 3-1 through Table 3-3 on page 14 describe the CoreGPIO Register map.

Table 3-1 • CoreGPIO Register Address Map (APB_WIDTH = 8)

PADDR[7:0]	Туре	Reset Value (hex)	Brief Description
0x00-0x7C	R/W	0x00	8-bit configuration registers for all 32 bits; 1 register per bit.
(0x00, 0x04, 0x08,, 0x7C)			
0x80	W	0x00	Interrupt clear register 1 (bits 7:0)
0x84	W	0x00	Interrupt clear register 2 (bits 15:8)
0x88	W	0x00	Interrupt clear register 3 (bits 23:16)
0x8C	W	0x00	Interrupt clear register 4 (bits 31:24)
0x90	R	0x00	Input register 1 (bits 7:0)
0x94	R	0x00	Input register 2 (bits 15:8)
0x98	R	0x00	Input register 3 (bits 23:16)
0x9C	R	0x00	Input register 4 (bits 31:24)
0xA0	R/W	0x00	Output register 1 (bits 7:0)
0xA4	R/W	0x00	Output register 2 (bits 15:8)
0xA8	R/W	0x00	Output register 3 (bits 23:16)
0xAC	R/W	0x00	Output register 4 (bits 31:24)

Notes:

- 1. Values shown in hexadecimal format; type designations: R = read only; R/W = read/write.
- 2. Lower 2 bits of PADDR are unconnected inside CoreGPIO.

Register Map CoreGPIO v3.0

Table 3-2 • CoreGPIO Register Address Map (APB_WIDTH = 16)

PADDR[7:0]	Туре	Reset Value (hex)	Brief Description
0x00-0x7C (0x00, 0x04, 0x08,, 0x7C)	R/W	0x00	8-bit configuration registers for all 32 bits; 1 register per bit.
0x80	W	0x00	Interrupt clear register 1 (bits 15:0)
0x84	W	0x00	Interrupt clear register 2 (1bits 31:16)
0x90	R	0x00	Input register 1 (bits 15:0)
0x94	R	0x00	Input register 2 (bits 31:16)
0xA0	R/W	0x00	Output register 1 (bits 15:0)
0xA4	R/W	0x00	Output register 2 (bits 31:16)

Notes:

- 1. Values shown in hexadecimal format; type designations: R = read only; R/W = read/write.
- 2. Lower 2 bits of PADDR are unconnected inside CoreGPIO.

Table 3-3 • CoreGPIO Register Address Map (APB_WIDTH = 32)

PADDR[7:0]	Туре	Reset Value (hex)	Brief Description
0x00-0x7C	R/W	0x00	8-bit configuration registers for all 32 bits; 1 register per bit.
(0x00, 0x04, 0x08,, 0x7C)			
0x80	W	0x00	Interrupt clear register 1 (bits 31:0)
0x90	R	0x00	Input register 1 (bits 31:0)
0xA0	R/W	0x00	Output register 1 (bits 31:0)

Notes:

- 1. Values shown in hexadecimal format; type designations: R = read only; R/W = read/write.
- 2. Lower 2 bits of PADDR are unconnected inside CoreGPIO.

Configuration Registers

There are up to 32 8-bit configuration registers (depending on the IO_NUM parameter). Table 3-4 describes the CoreGPIO configuration register operation.

Table 3-4 • Per-bit Configuration Register

Bits	Name	Function			
7:5	INTTYPE	Sets the interrupt type for this particular bit:			
		000 – Level High			
		001 – Level Low			
		010 – Edge Positive			
		011 – Edge Negative			
		100 – Edge Both			
		101 to 111 – Invalid			
4	Reserved	Unused			
3	INTENABLE	Interrupt enable for this particular bit			
		1 – Enable interrupt generation			
		0 – Disable interrupt generation			
2	OUTBUFF	Sets the output enable for this particular bit, whether via the GPIO_OE signal or implemented internally (see parameter "OE_TYPE" on page 11).			
		1 – Enables output			
		0 – Disables output			
1	INREG	Input register enable			
		1 – Enables input register for this particular bit			
		0 – Disables input register for this particular bit			
0	OUTREG	Output register enable			
		1 – Enables output functionality for this particular bit			
		0 – Disables output functionality for this particular bit			

Interrupt Registers

These are per-bit interrupt clear registers. Writing a 1 to any bit clears the interrupt bit register of the corresponding GPIO bit.

In 32-bit mode, all 32 interrupt bits are in a single 32-bit register located at address 0x80.

In 16-bit mode, 32 interrupt bits are split into two 16-bit registers located at addresses 0x80 and 0x84.

In 8-bit mode, 32 interrupt bits are split into four 8-bit registers located at addresses 0x80, 0x84, 0x88, and 0x8C.

Input Registers

Read-only for input configured ports. Disabling a bit in this register with the CONFIG_X[1] (INREG) bit will force the bit to 0 via a MUX, while keeping the incoming current value in the register.

In 32-bit mode, all 32 input bits are in a single 32-bit register located at address 0x90.

In 16-bit mode, 32 input bits are split into two 16-bit registers located at addresses 0x90 and 0x94. In 8-bit mode, 32 input bits are split into four 8-bit registers located at addresses 0x90, 0x94, 0x98, and 0x9C.

Register Map CoreGPIO v3.0

Output Registers

The output registers are writeable/readable for output configured ports, and are logical "don't cares" for input configured ports. Disabling a bit in this register with the CONFIG_X[0] (OUTREG) bit will force the bit to 0 via a MUX, while keeping the previously written value in the output register.

In 32-bit mode, all 32 output bits are in a single 32-bit register located at address 0xA0.

In 16-bit mode, 32 output bits are split into two 16-bit registers located at addresses 0xA0 and 0xA4

In 8-bit mode, 32 output bits are split into four 8-bit registers located at addresses 0xA0, 0xA4, 0xA8, and 0xAC.

4 - Testbench Operation and Modification

An example user testbench is included with CoreGPIO for both VHDL and Verilog. The testbench is provided as an obfuscated bus functional model (BFM), connected as shown in Figure 4-1 to a CoreGPIO block. You can examine and change the testbench by modifying the *.bfm file and generating a *.vec APB master vector file, as shown in Figure 4-1.

Figure 4-1 • CoreGPIO User Testbench Block Diagram

The user testbench instantiates an Actel DirectCore AMBA BFM module to emulate an APB master that controls the operation of CoreGPIO via reads and writes to access internal registers. A BFM ASCII script source file with comments is included in the directory cproj>Isimulation, where cproj>represents the path to your Libero IDE project.

The BFM source file, coregpio_usertb_apb_master.bfm, controls the APB master processor. This BFM source file is automatically recompiled each time the simulation is invoked from Libero IDE by the bfmtovec.exe executable, if running on a Windows® platform, or by the bfmtovec.lin executable, if running on a Linux platform. The coregpio_usertb_apb_master.vec vector file, created by the bfmtovec executable, is read in by the BFM module for simulation in ModelSim.

You can alter the BFM script, if desired. Refer to the Actel *DirectCore AMBA BFM User's Guide* for more information.

A - Product Support

Actel backs its products with various support services including Customer Service, a Customer Technical Support Center, a web site, an FTP site, electronic mail, and worldwide sales offices. This appendix contains information about contacting Actel and using these support services.

Customer Service

Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update information, order status, and authorization.

From Northeast and North Central U.S.A., call 650.318.4480

From Southeast and Southwest U.S.A., call 650. 318.4480

From South Central U.S.A., call 650.318.4434

From Northwest U.S.A., call 650.318.4434

From Canada, call 650.318.4480

From Europe, call 650.318.4252 or +44 (0) 1276 401 500

From Japan, call **650.318.4743**

From the rest of the world, call 650.318.4743

Fax, from anywhere in the world 650.318.8044

Actel Customer Technical Support Center

Actel staffs its Customer Technical Support Center with highly skilled engineers who can help answer your hardware, software, and design questions. The Customer Technical Support Center spends a great deal of time creating application notes and answers to FAQs. So, before you contact us, please visit our online resources. It is very likely we have already answered your questions.

Actel Technical Support

Visit the Actel Customer Support website (www.actel.com/support/search/default.aspx) for more information and support. Many answers available on the searchable web resource include diagrams, illustrations, and links to other resources on the Actel web site.

Website

You can browse a variety of technical and non-technical information on Actel's home page, at www.actel.com.

Contacting the Customer Technical Support Center

Highly skilled engineers staff the Technical Support Center from 7:00 a.m. to 6:00 p.m., Pacific Time, Monday through Friday. Several ways of contacting the Center follow:

Email

You can communicate your technical questions to our email address and receive answers back by email, fax, or phone. Also, if you have design problems, you can email your design files to receive assistance. We constantly monitor the email account throughout the day. When sending your request to us, please be sure to include your full name, company name, and your contact information for efficient processing of your request.

Product Support CoreGPIO v3.0

The technical support email address is tech@actel.com.

Phone

Our Technical Support Center answers all calls. The center retrieves information, such as your name, company name, phone number and your question, and then issues a case number. The Center then forwards the information to a queue where the first available application engineer receives the data and returns your call. The phone hours are from 7:00 a.m. to 6:00 p.m., Pacific Time, Monday through Friday. The Technical Support numbers are:

650.318.4460 800.262.1060

Customers needing assistance outside the US time zones can either contact technical support via email (tech@actel.com) or contact a local sales office. Sales office listings can be found at www.actel.com/company/contact/default.aspx.

Index

A Actel electronic mail 19 telephone 20 web-based technical support 19 website 19
<i>B</i> block diagram 7
configuration registers 15 contacting Actel customer service 19 electronic mail 19 telephone 20 web-based technical support 19 core overview 5 customer service 19
<i>F</i> families supported 5
G generics description 11
/ interface supported 6
K key features 5
<i>L</i> Libero IDE 10
place-and-route 10 ports 12 product support 20 customer service 19 electronic mail 19 technical support 19 telephone 20 website 19
R register configuration 15

```
input 15
  interrupt 15
  output 16
register map 13
S
signals
  description 12
simulation flows 10
SmartDesign
  configuration 9
synthesis 10
T
technical support 19
testbench 17
utilization figures 6
W
web-based technical support 19
```

Actel, IGLOO, Actel Fusion, ProASIC, Libero, Pigeon Point and the associated logos are trademarks or registered trademarks of Actel Corporation. All other trademarks and service marks are the property of their respective owners.

Actel is the leader in low-power and mixed-signal FPGAs and offers the most comprehensive portfolio of system and power management solutions. Power Matters. Learn more at www.actel.com.

Actel Corporation

2061 Stierlin Court Mountain View, CA 94043-4655 USA **Phone** 650.318.4200 **Fax** 650.318.4600

Actel Europe Ltd.

River Court, Meadows Business Park Station Approach, Blackwater Camberley Surrey GU17 9AB United Kingdom

Phone +44 (0) 1276 609 300 **Fax** +44 (0) 1276 607 540

Actel Japan

EXOS Ebisu Buillding 4F 1-24-14 Ebisu Shibuya-ku Tokyo 150 Japan

Phone +81.03.3445.7671 **Fax** +81.03.3445.7668 http://jp.actel.com

Actel Hong Kong

Room 2107, China Resources Building 26 Harbour Road Wanchai, Hong Kong

Phone +852 2185 6460 **Fax** +852 2185 6488

www.actel.com.cn