Questions: The scalar product

Ritwik Anand

Summary

A selection of questions for the study guide on the scalar product

Before attempting these questions, it is highly recommended that you read Guide: The scalar product, as well as Guide: Introduction to quadratic equations.

Q1

Find the scalar product of ${\bf a}$ and ${\bf b}$.

1.1.
$$\mathbf{a} = \begin{pmatrix} 6 \\ 3 \\ 4 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}$

1.2.
$$\mathbf{a} = \begin{pmatrix} 10 \\ -7 \\ 4 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 3 \\ -5 \\ 13 \end{pmatrix}$

1.3.
$$\mathbf{a} = \begin{pmatrix} -44 \\ -12 \\ 3 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 61 \\ -25 \\ 93 \end{pmatrix}$

1.4.
$$\mathbf{a} = \begin{pmatrix} 54 \\ 38 \\ 0 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 32 \\ -55 \\ 13 \end{pmatrix}$

1.5.
$$\mathbf{a} = 2\mathbf{i} + 7\mathbf{j} + \mathbf{k}$$
 and $\mathbf{b} = 6\mathbf{i} + 4\mathbf{j} + 8\mathbf{k}$

1.6.
$$a = -3i + 10j - 8k$$
 and $b = i - 12j + 9k$

1.7.
$$a = 17j + 23k$$
 and $b = 6i - 23j - 8k$

1.8.
$$\mathbf{a} = \mathbf{i}$$
 and $\mathbf{b} = \mathbf{j}$.

What can you say about the result of 1.8.? Can you deduce similar conclusions for the scalar product of different combinations of the vectors i, j, k?

Q2

Using the geometric definition of the scalar products, find the smallest angle θ in between a and b in degrees. If your answer is not a whole number, give your answer to an accuracy of one decimal place.

2.1.
$$\mathbf{a} = \begin{pmatrix} -5\\2\\-3 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 2\\-2\\11 \end{pmatrix}$

2.2.
$$\mathbf{a} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$

2.3.
$$\mathbf{a} = \begin{pmatrix} -8\\1\\-4 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} -1\\-5\\7 \end{pmatrix}$

2.4.
$$\mathbf{a} = \begin{pmatrix} 1.2 \\ -1.4 \\ -3.1 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} -5.4 \\ 9.7 \\ -7.5 \end{pmatrix}$

2.5.
$$\mathbf{a} = \begin{pmatrix} 45 \\ 65 \\ 54 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} -19 \\ -58 \\ 71 \end{pmatrix}$

2.6.
$$\mathbf{a} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

2.7.
$$\mathbf{a} = \begin{pmatrix} -1 \\ -2 \\ 3 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 4 \\ -5 \\ 6 \end{pmatrix}$

2.8.
$$\mathbf{a} = \begin{pmatrix} -17 \\ 3 \\ 8 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 12 \\ -19 \\ -16 \end{pmatrix}$

Q3

Find the value(s) of λ for which a and b are perpendicular.

3.1.
$$\mathbf{a} = \begin{pmatrix} 2 \\ 4 \\ 7 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 1 \\ \lambda \\ -2 \end{pmatrix}$

3.2.
$$\mathbf{a} = \begin{pmatrix} 0 \\ 1 \\ \lambda \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

3.3.
$$\mathbf{a} = \begin{pmatrix} 9 \\ -2 \\ 11 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} \lambda \\ -\lambda \\ 3 \end{pmatrix}$

3.4.
$$\mathbf{a} = \begin{pmatrix} \lambda \\ 6 \\ 1 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} \lambda \\ \lambda \\ 8 \end{pmatrix}$

3.5.
$$\mathbf{a} = \begin{pmatrix} -2\lambda^2 \\ 4 \\ 14 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 3 \\ 2\lambda \\ 1 \end{pmatrix}$

3.6.
$$\mathbf{a} = \begin{pmatrix} -5\\9\\2\lambda \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} \lambda\\-2\\\lambda \end{pmatrix}$

3.7.
$$\mathbf{a} = \begin{pmatrix} -7\\4\\2\lambda \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 2\lambda\\1\\6\lambda \end{pmatrix}$

3.8.
$$\mathbf{a} = \begin{pmatrix} -25 \\ -\lambda^2 \\ -2 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 3\lambda \\ -11 \\ 7 \end{pmatrix}$

After attempting the questions above, please click this link to find the answers.