Problem Solving Techniques 문제해결

Jinkyu Lee

Dept. of Computer Science and Engineering, Sungkyunkwan University (SKKU)

Contents

- Chapter 6 Combinatorics
- 1. Basic Counting
- 2. Recurrence Relation
- 3. Binomial Coefficient
- 4. Recursion and Induction
- 5. Example 1 Fibonacci Sequence
- 6. Example 2 Binary Search

1. Basic Counting <1>

What is Combinatorics?

Math. Notion on Counting

Rule of Product

#Cases that A & B occur together

- If |A|=m, |B|=n → m*n
- Ex) #jackets: 5, #pants: 4, the no. ways to put on your clothes is 5*4=20

Rule of Sum

- #Cases that event A or B occurs
- If A & B are independent → m+n
- Ex) #jackets: 5, #pants: 4, If one of them is messed at the laundry, it is one of 5+4=9 clothes

1. Basic Counting <2>

#Elements in Union Sets

- $|A \cup B| = |A| + |B| |A \cap B|$
- Double counting problem exists!
- It is a slippery aspect of combinatorics
- → Make it difficult to solve problems via inclusion-exclusion

Permutation

- An arrangement of n items, where every item appears exactly once
- $n! = \prod_{i=1}^{n} i = n*(n-1)*(n-2)*...*2*1$
- ex) How many cases when arranging a,b,c items?
 - abc, acb, bac, bca, cab, cba => 6 cases
- cf) What if arranging a, b items of length-3 strings under the repetition?
 - $_{n}\prod_{r}=n^{r}$
 - aaa, aab, aba, abb, baa, bab, bba, bbb => 8 cases

2. Recurrence Relation

- Recurrence relations make it easy to count a variety of recursively defined structures
- The recursively defined structures
 - Tree, List, Divide-conquer algorithm, etc.

Recurrence

- An equation defined in terms of itself
- Any function can be represented by a recurrence
 - Polynomial function: $a_n = a_{n-1} + 1$, $a_1 = 1 \rightarrow a_n = n$
 - Exponential function: $a_n = 2a_{n-1}$, $a_1 = 2 \rightarrow a_n = 2^n$
 - Certain weird but interesting function (e.g., Factorial):

$$-a_n = na_{n-1}, a_1 = 1 \rightarrow a_n = n!$$

3. Binomial Coefficient <1>

The most important class of counting numbers

* $\binom{n}{k}$: #ways to choose k ones out of n things $\binom{n}{n}$

Examples

Committees – # of ways to form a k-member committee from n people?

Path Across a Grid – # of ways to travel from the upper-left corner of an n x m Grid to the lower-right corner walking down and to the right?

3. Binomial Coefficient <1>

Path Across a Grid – # of ways to travel from the upper-left corner of an n x m Grid to the lower-right corner walking down and to the right?

3. Binomial Coefficient <2>

Examples (Cont')

Coefficients of (a+b)ⁿ = (a+b)*(a+b)*...*(a+b)

 $_{n}C_{k}$

• What's the coefficient of a^kb^{n-k} term?

•
$$(a + b)^3 = 1a^3 + 3a^2b + 3ab^2 + 1b^3$$

• $(a + b)^3 = (a + b)(a + b)(a + b)$

3. Binomial Coefficient <3>

Computing the Binomial Coefficients

$$\left(\begin{array}{c} n \\ k \end{array}\right) = \frac{n!}{(n-k)!k!}$$

→ But!: Intermediate calculations (i.e., factorial) can easily cause arithmetic overflow!

Computing by Recurrence Relation

$$\left[\begin{array}{c} n \\ k \end{array}\right] = \left[\begin{array}{c} n-1 \\ k-1 \end{array}\right] + \left[\begin{array}{c} n-1 \\ k \end{array}\right]$$

Consider whether the nth element belongs the chosen k elements!

→ For the nth element, consider two cases:

Case 1: the element belongs to the chosen k elements

Case 2: the element is not in the chosen k elements

3. Binomial Coefficient <4>

Computing by Recurrence Relation – Example

A given set {1, 2, 3, 4}; n=4, k = 2, no repetition

$$\begin{bmatrix} 4 \\ 2 \end{bmatrix} = \{12, 13, 14, 23, 24, 34\} = 6$$

- For the specific element '1'
 - ① Case 1: '1' belongs to the chosen two elements
 - → Need to choose one element from {2, 3, 4}!

$$\begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

- ② Case 2: '1' does not belong to the chosen set
- → Need to choose two elements from {2, 3, 4}!

$$\left[\begin{array}{c} 3 \\ 2 \end{array}\right]$$

Therefore, #all the possibilities becomes ① + ②

$$\left[\begin{array}{c} n \\ k \end{array}\right] = \left[\begin{array}{c} n-1 \\ k-1 \end{array}\right] + \left[\begin{array}{c} n-1 \\ k \end{array}\right]$$

3. Binomial Coefficient <5>

- As to Recurrence relations,
 - The initial condition (term) is essential!
- The best way to evaluate
- The best way to evaluate

 → build a Table of all possible values! $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$

```
long binomial_coefficient(n,m)
    int i, j;
    long bc[MAXN][MAXN];
   for (i=0; i<=n; i++) bc[i][0] = 1;
    for (j=0; j<=n; j++) bc[j][j] = 1;
    for (i=1; i<=n; i++)
        for (j=1; j<i; j++)
            bc[i][j] = bc[i-1][j-1] + bc[i-1][j];
    return( bc[n][m] );
```

3. Binomial Coefficient <6>

❖ Binomial coefficient table for n=4, m=2


```
bc[2][1] = bc[1][0]+bc[1][1]
bc[3][1] = bc[2][0]+bc[2][1]
bc[3][2] = bc[2][1]+bc[2][2]
bc[4][1] = bc[3][0]+bc[3][1]
bc[4][2] = bc[3][1]+bc[3][2]
bc[4][3] = bc[3][2]+bc[3][3]
```

main func.

```
int main(void)
{
   int a, b;

   while (1) {
      scanf("%d %d",&a,&b);
      printf("%d\n",binomial_coefficient(a,b));
   }
   return 0;
}
```

4. Recursion

- Recursion (and Induction)
 - Math. Induction provides a tool to solve Recurrences
 - Math. Induction is implemented by Recursion
 - Thus, Recursion is the way of solving Recurrences

$$T_n = 2T_{n-1} + 1, T_0 = 0$$

n	0	1	2	3	4	5	6	7	
T _n	0	1	3	7	15	31	63	127	

As n increase, T_n increases roughly double.

Assume $T_n = 2^n - 1!$

Solution by Math. Induction!

- Check the validity at n=0: $T_0 = 2^0 1 = 0$
- Assume the validity for T_n: T_n= 2ⁿ 1
- After that, check the validity for T_{n+1}:

$$T_{n+1} = 2T_n + 1 = 2(2^n - 1) + 1 = 2^{n+1} - 1$$

5. Example – Fibonacci Numbers <1>

Fibonacci numbers are defined by

```
• F_0 = 0

• F_1 = 1

• F_n = F_{n-1} + F_{n-2} for n \ge 2
```

Pseudo-code

```
Fibonacci (n)

if (n=0) then return (0)

else

if (n=1)

then return (1)

else

return (Fibonacci(n-1) + Fibonacci(n-2))
```

5. Example – Fibonacci Numbers <2>

& C Source Code

```
int main(void)
        int input num=0;
        int i;
        while (1){
            printf("Enter the number: ");
            scanf("%d", &input num);
            if (input num == 0)
                break;
            printf("result by recursion: ");
            for(i = 0; i <= input num; i++)</pre>
                printf( "%d ", fibonacci recursion( i ) );
            printf("\n\n");
        }
        return 0;
}
int fibonacci recursion(int num)
        if(num < 2) //f(0)=0, f(1)=1
                return num;
        return fibonacci recursion(num - 1) + fibonacci recursion(num - 2); //
                                                                                         f(n) = f(n-1) + f(n-2)
}
```

6. Example – Binary Search <1>

- We want to find an integer X out of n integers.
 - n integers are sorted in ascending order
 - We use Binary search in terms of Recursion.
 - Consider initial condition and recursive structure!

6. Example – Binary Search <2>

Think about Recursive Structure!

```
    B_SEARCH(A, x, 0, n-1); left=0, right=n-1, mid = (n-1)/2
    If A[mid] > x, call B_SEARCH(A, x, 0, mid-1)
    If A[mid] < x, call B_SEARCH(A, x, mid+1, n-1)</li>
    If A[mid] == x, return(mid)
```

```
int B_SEARCH (A[ ], x, left, right) {
    int mid:
    If (left <= right) {</pre>
        mid = (left + right) / 2;
        if (x < A[mid])
              B_SEARCH (A[], x, left, mid-1);
        else if (x > A[mid])
              B_SEARCH (A[], X, mid+1, right);
        else
              return (mid);
```