In [1]: ▶

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')

In [2]: ▶

crime_data = pd.read_csv('cyber_crime.csv')

In [3]:

crime_data.head()

Out[3]:

	S. No	Category	State/UT	2016	2017	2018	Percentage Share of State/UT (2018)	Mid-Year Projected Population (in Lakhs) (2018)+	Rate of Total Cyber Crimes (2018)++
0	1	State	Andhra Pradesh	616	931	1207	4.4	520.3	2.3
1	2	State	Arunachal Pradesh	4	1	7	0.0	14.9	0.5
2	3	State	Assam	696	1120	2022	7.4	340.4	5.9
3	4	State	Bihar	309	433	374	1.4	1183.3	0.3
4	5	State	Chhattisgarh	90	171	139	0.5	284.7	0.5

In [4]: ▶

```
crime_data.tail()
```

Out[4]:

	S. No	Category	State/UT	2016	2017	2018	Percentage Share of State/UT (2018)	Mid-Year Projected Population (in Lakhs) (2018)+	Rate of Total Cyber Crimes (2018)++
34	34	Union Territory	Delhi UT	98	162	189	0.7	195.6	1.0
35	35	Union Territory	Lakshadweep	0	0	4	0.0	0.7	6.0
36	36	Union Territory	Puducherry	2	5	14	0.1	14.8	0.9
37	Union Territory	Union Territory	Total UT(s)	130	203	244	0.9	236.0	1.0
38	Total (All India)	Total (All India)	Total (All India)	12317	21796	27248	100.0	13233.8	2.1

In [5]: ▶

crime_data.shape

Out[5]:

(39, 9)

In [6]: ▶

crime_data.columns

Out[6]:

In [7]: ▶

```
crime_data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 39 entries, 0 to 38
Data columns (total 9 columns):
     Column
                                                        Non-Null Count Dty
#
pe
                                                        -----
- -
 0
     S. No
                                                        39 non-null
                                                                         obj
ect
 1
     Category
                                                        39 non-null
                                                                         obj
ect
 2
     State/UT
                                                        39 non-null
                                                                         obj
ect
 3
     2016
                                                        39 non-null
                                                                         int
64
 4
     2017
                                                        39 non-null
                                                                         int
64
                                                        39 non-null
 5
     2018
                                                                         int
64
 6
     Percentage Share of State/UT (2018)
                                                        39 non-null
                                                                         flo
at64
7
     Mid-Year Projected Population (in Lakhs) (2018)+ 39 non-null
                                                                         flo
at64
     Rate of Total Cyber Crimes (2018)++
                                                        39 non-null
                                                                         flo
8
at64
dtypes: float64(3), int64(3), object(3)
memory usage: 2.9+ KB
```

In [8]: ▶

crime_data.describe()

Out[8]:

	2016	2017	2018	Percentage Share of State/UT (2018)	Mid-Year Projected Population (in Lakhs) (2018)+	Rate of Total Cyber Crimes (2018)++
count	39.000000	39.000000	39.000000	39.000000	39.000000	39.000000
mean	947.461538	1676.615385	2096.000000	7.689744	1017.987179	1.689744
std	2724.974532	4832.658115	6065.161416	22.257391	2885.991893	1.811193
min	0.000000	0.000000	0.000000	0.000000	0.700000	0.000000
25%	9.500000	11.500000	24.500000	0.100000	18.300000	0.500000
50%	102.000000	176.000000	239.000000	0.900000	284.000000	1.000000
75%	439.500000	772.000000	886.500000	3.250000	663.850000	2.200000
max	12317.000000	21796.000000	27248.000000	100.000000	13233.800000	8.900000

```
In [9]:
                                                                                          M
crime_data.isnull().sum()
Out[9]:
S. No
                                                      0
Category
                                                       0
State/UT
                                                      0
2016
                                                      0
2017
                                                       0
2018
                                                      0
Percentage Share of State/UT (2018)
Mid-Year Projected Population (in Lakhs) (2018)+
                                                      0
Rate of Total Cyber Crimes (2018)++
                                                       0
dtype: int64
                                                                                          H
In [10]:
crime_data.nunique()
Out[10]:
S. No
                                                       39
Category
                                                       3
                                                       39
State/UT
2016
                                                       34
2017
                                                       35
2018
                                                       36
Percentage Share of State/UT (2018)
                                                       23
Mid-Year Projected Population (in Lakhs) (2018)+
                                                       38
Rate of Total Cyber Crimes (2018)++
                                                       23
dtype: int64
In [11]:
                                                                                          H
crime_data['Category'].unique()
Out[11]:
array(['State', 'Union Territory', 'Total (All India)'], dtype=object)
In [12]:
                                                                                          H
crime_data['Category'].value_counts()
Out[12]:
State
                      30
Union Territory
                       8
Total (All India)
                       1
Name: Category, dtype: int64
```

In [13]:

crime_data.corr()

Out[13]:

	2016	2017	2018	Percentage Share of State/UT (2018)	Mid-Year Projected Population (in Lakhs) (2018)+	Rate of Total Cyber Crimes (2018)++
2016	1.00000	0.998590	0.993830	0.993860	0.992970	0.136820
2017	0.99859	1.000000	0.998014	0.998030	0.991394	0.164416
2018	0.99383	0.998014	1.000000	0.999999	0.986735	0.200750
Percentage Share of State/UT (2018)	0.99386	0.998030	0.999999	1.000000	0.986789	0.200419
Mid-Year Projected Population (in Lakhs) (2018)+	0.99297	0.991394	0.986735	0.986789	1.000000	0.077051
Rate of Total Cyber Crimes (2018)++	0.13682	0.164416	0.200750	0.200419	0.077051	1.000000

In [14]:

crime_data.corr().style.background_gradient(cmap = 'coolwarm')

Out[14]:

	2016	2017	2018	Percentage Share of State/UT (2018)	Mid-Year Projected Population (in Lakhs) (2018)+	Rate of Total Cyber Crimes (2018)++
2016	1.000000	0.998590	0.993830	0.993860	0.992970	0.136820
2017	0.998590	1.000000	0.998014	0.998030	0.991394	0.164416
2018	0.993830	0.998014	1.000000	0.999999	0.986735	0.200750
Percentage Share of State/UT (2018)	0.993860	0.998030	0.999999	1.000000	0.986789	0.200419
Mid-Year Projected Population (in Lakhs) (2018)+	0.992970	0.991394	0.986735	0.986789	1.000000	0.077051
Rate of Total Cyber Crimes (2018)++	0.136820	0.164416	0.200750	0.200419	0.077051	1.000000

In [38]:

crime_data = crime_data.drop(labels=[33, 34], axis=0)

In [39]: ▶

```
plt.figure(figsize=(15,6))
sns.barplot(x = 'Category', y = '2016', data = crime_data, palette='hls')
plt.xticks(rotation = 90)
plt.show()
```



```
In [42]: ▶
```

```
plt.figure(figsize=(15,6))
sns.barplot(x = 'State/UT', y = '2016', data = crime_data,palette='hls')
plt.xticks(rotation = 90)
plt.show()
```


In [43]: ▶

```
plt.figure(figsize=(15,6))
sns.barplot(x = 'Category', y = '2017', data = crime_data, palette='hls')
plt.xticks(rotation = 90)
plt.show()
```



```
In [44]: ▶
```

```
plt.figure(figsize=(15,6))
sns.barplot(x = 'State/UT', y = '2017', data = crime_data,palette='hls')
plt.xticks(rotation = 90)
plt.show()
```



```
In [45]:
```

```
plt.figure(figsize=(15,6))
sns.barplot(x = 'Category', y = '2018', data = crime_data, palette='hls')
plt.xticks(rotation = 90)
plt.show()
```



```
In [46]: ▶
```

```
plt.figure(figsize=(15,6))
sns.barplot(x = 'State/UT', y = '2018', data = crime_data,palette='hls')
plt.xticks(rotation = 90)
plt.show()
```



```
In [47]: ▶
```

In [48]: ▶

```
crime_data.head()
```

Out[48]:

State/UT	2016	2017	2018	Percentage_share	Projected_population	Rate_cyber_crime_2018
Andhra Pradesh	616	931	1207	4.4	520.3	2.3
Arunachal Pradesh	4	1	7	0.0	14.9	0.5
Assam	696	1120	2022	7.4	340.4	5.9
Bihar	309	433	374	1.4	1183.3	0.3
Chhattisgarh	90	171	139	0.5	284.7	0.5
4						•

In [49]: ▶

In [50]: ▶

In [51]: ▶


```
In [52]: ▶
```


In [53]: ▶


```
In [54]: ▶
```



```
In [55]:
```

```
crime_data['Total'] = crime_data['2016'] + crime_data['2017'] + crime_data['2018']
```

```
In [110]:
```

```
crime_data_new = crime_data[['2016', '2017', '2018']]
```

```
In [111]:
```

```
crime_data_new.head()
```

Out[111]:

	2016	2017	2018
0	616	931	1207
1	4	1	7
2	696	1120	2022
3	309	433	374
4	90	171	139

```
H
In [112]:
crime_data_new = crime_data_new.transpose()
In [113]:
                                                                                            H
crime_data_new.head()
Out[113]:
         0 1
                 2
                     3
                                      7
                                         8
                                             9 ... 22
                                                       23
                                                                     26
                                                                          27
                                                                              28
                             5
                                 6
                                                            24 25
2016
               696
                   309
                        90
                            31
                               362 401
                                        31
                                            28
                                                      144
                                                           593
                                                                   2639
                                                                             478
                                            63 ...
2017
       931 1 1120 433 171
                           13 458 504 56
                                                   1
                                                     228
                                                          1209
                                                                 7 4971
                                                                             568
2018 1207 7 2022 374 139 29 702 418 69 73 ... 1 295 1205 20 6280
                                                                        171 335
3 rows × 32 columns
In [114]:
                                                                                            H
crime_data_new = crime_data_new.reset_index()
In [115]:
                                                                                            M
crime_data_new = crime_data_new.rename(columns = {'index':'year'})
In [117]:
                                                                                            H
crime_data_new.columns
Out[117]:
Index(['year',
                0,
                            1,
                                      2,
                                               3,
                                                      4,
                                                                5,
                                                                         6,
7,
                             10,
            8,
                    9,
                                              12,
                                                               14,
                                                                        15,
                                     11,
                                                       13,
16,
                             19,
                                     20,
                                              21,
                                                                        24,
           17,
                    18,
                                                       22,
                                                               23,
25,
           26,
                    27,
                             28,
                                     30,
                                                       32],
                                              31,
      dtype='object')
In [118]:
                                                                                            M
cols = [0,
            1,
                     2,
                              3,
                                      4,
                                               5,
                                                        6,
                                                               7,
                                                                   8,
                                                                         9,
                 11,
                                                   15,
                                                            16,
        10,
                         12,
                                  13,
                                           14,
                                                                17,
                                                                          18,
                 20,
                                           23,
                                                    24,
                                                            25,
           26,
                                     30,
                    27,
                             28,
                                              31,
                                                       32]
In [119]:
                                                                                            M
crime_data_new['total'] = crime_data_new[cols].sum(axis=1)
```

In [123]:


```
In [124]:
```



```
In [125]:
                                                                                         M
crime_data.columns
Out[125]:
Index(['S. No', 'Category', 'State/UT', '2016', '2017', '2018',
       'Percentage_share', 'Projected_population', 'Rate_cyber_crime_201
8',
       'Total'],
      dtype='object')
In [126]:
                                                                                         M
x = crime_data.drop(['S. No', 'Category', 'State/UT', 'Percentage_share',
                      'Projected_population', 'Rate_cyber_crime_2018',
                      'Total'], axis = 1)
y = crime_data['Total']
In [127]:
                                                                                         H
x.shape
Out[127]:
(32, 3)
                                                                                         H
In [128]:
y.shape
Out[128]:
(32,)
In [148]:
                                                                                         H
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size = 0.2)
In [145]:
from sklearn.tree import DecisionTreeRegressor
In [149]:
regressor = DecisionTreeRegressor(max_depth=6)
regressor.fit(X_train, y_train)
Out[149]:
DecisionTreeRegressor(max_depth=6)
```

```
In [150]:
print("Training Accuracy :", regressor.score(X_train, y_train))
print("Testing Accuracy :", regressor.score(X_test, y_test))
Training Accuracy : 0.9999918891849268
Testing Accuracy: 0.9392823987099106
In [151]:
                                                                                                  H
from sklearn.ensemble import RandomForestRegressor
In [152]:
rf_regressor = RandomForestRegressor(n_estimators = 100, random_state = 0)
rf_regressor.fit(X_train, y_train)
Out[152]:
RandomForestRegressor(random_state=0)
In [153]:
                                                                                                  H
print("Training Accuracy :", rf_regressor.score(X_train, y_train))
print("Testing Accuracy :", rf_regressor.score(X_test, y_test))
```

Training Accuracy: 0.9816148535801777 Testing Accuracy: 0.8879297307015475