Théorie des Langages Formels Chapitre 1

Florence Levé

 ${\tt Florence.Leve@u-picardie.fr}$

Année 2017-2018

L'enseignement Introduction Mots Ensembles

Au sujet de l'unité d'enseignement

La théorie des langages formels est une des matières fondamentales de l'informatique.

- Objectifs de l'enseignement :
 - comprendre les concepts de base de la théorie des langages formels;
 - comprendre son rôle et son intérêt en informatique
 - savoir manipuler et utiliser langages, automates, grammaires.
- De nombreuses notions et approches de l'informatique vont être évoquées, notamment à travers les exemples :
 - algorithmique, complexité, preuve de programme, expressions régulières, . . .
- Pré-requis : connaissance minimale de la notion d'ensemble
- Modalités de contrôle des connaissances :
 - ▶ sup(E, (E+P)/2),
 - pas le droit aux documents.

Bibliographie

- Introduction à la calculabilité, P. Wolper, Dunod 2006 (3ème édition), chapitres 1 à 4.
- Théorie des automates (méthodes et exercices corrigés),
 P. Séébold, Vuibert 1999.
- Méthodes mathématiques pour l'informatique (4ème édition),
 J. Vélu, chapitres 21 et 22, Dunod 2005.
- Théorie des langages et des automates, J.-M. Autebert, Masson 1994 (deuxième partie, p41–67).
- Éléments de théorie des automates,
 J. Sakarovitch, Vuibert 2003 (chapitre 1, p55–232).
- Nombreux sites webs : n'hésitez pas à faire vos propres recherches.
- Ce cours est basé sur celui dispensé par Gwénaël Richomme jusqu'en 2009.

Qu'est-ce que les langages formels?

- Un langage formel = un ensemble de mots.
- Exemples
 - L'ensemble des mots définis dans un dictionnaire.
 - L'ensemble des phrases que l'on peut écrire en français.
 - Remarque : alphabet = lettres, espace et symboles de ponctuation, . . .
 - L'ensemble des programmes en langage JAVA.

Quelques problématiques

- Analyse lexicale : est-ce que mon programme utilise les mots de base du langage?
 - utilisation d'automates dans les compilateurs.
- Analyse syntaxique : est-ce que les mots/phrases de mon programme sont correctement construits?
 - utilisation de grammaires dans les compilateurs.
 - ▶ (problème : reconnaissance des langues naturelles)
- Est-ce que le programme fait ce que je veux?
 - ▶ indécidable.
 - preuve à la main dans de nombreux cas!
- Quels langages peuvent être reconnus par une machine?

enseignement Introduction Mots Ensembles

Quelques origines

Des besoins similaires dans 3 thématiques :

- Informatique :
 - ▶ Besoin de décrire de manière finie certains langages infinis
 - ▶ Premiers langages de programmation : algol, ...
 - Claude Shannon 1949 : description de protocoles de communication
- Logique :
 - ▶ Besoin de définir formellement le discours mathématique
 - Stephen Cole Kleene 1954 : montre qu'un langage est reconnaissable si et seulement s'il peut être engendré, à partir des lettres de l'alphabet, à l'aide des trois opérations union, produit et étoile.
- Linguistique
 - Besoin de décrire les langues naturelles
 - Début des années 50 : premières tentatives visant à utiliser l'ordinateur pour traduire un texte
 - Noam Chomsky 1956 : hiérarchie des langages.

enseignement Introduction Mots Ensemble

- {rationnels}
 - ► = {reconnaissables}
 - langages reconnus par un automate et/ou définis par une expression régulière.

- { algébriques}
 - langages définis par une grammaire ou reconnus par un automate à pile.

- $\subset \{ contextuels \}$
 - langages définis par une grammaire contextuelle.

- ⊂ {récursivement énumérables}
 - ▶ langages acceptables par une machine de Turing (permet d'étudier la décidabilité d'un problème).

1. Recherche de motif dans un texte

Texte en entrée :

1. Recherche de motif dans un texte

1. Recherche de motif dans un texte

- Applications de la recherche de mots/motifs
 - ▶ Recherche dans un index
 - index d'un fichier;
 - index du web.
 - ► Recherche de virus
 - fichier : un mot (une suite) de 0 et de 1.
 - virus : un mot (ou un ensemble de mots)
 - base des signatures : un gros automate (version simplifiée)

Quelques utilisations Exemple 2. Compilation

- Génération de compilateurs (et donc de nouveaux langages informatiques)
 - Automates : analyse lexicale;
 - Grammaires : analyse syntaxique.
 - ▶ Remarque : la science de la compilation fait appel à des techniques supplémentaires : transformation de code, contrôle de type, ...)

Quelques utilisations 3. REGEXP (REGular EXPressions)

- Expressions régulières
- Utilisées par les mécanismes de recherche/remplacement
 - éditeurs de texte : JEdit, emacs
 - Recherche dans des dictionnaires en ligne : dictionnaire de l'académie française (essayer par exemple ^a[a-z]*iste)
 - commandes de base unix : ls, grep, sed, . . .
 - ▶ inclus dans des langages de script : perl, javascript, . . .

4. Liens avec d'autres domaines

Les langages formels apparaissent ou sont liés à de nombreux domaines, de l'informatique ou non :

- réseaux, systèmes d'exploitation, logiciels (compilation, traduction, vérification),
- modélisation, présentation de protocoles, algorithmes
- calculabilité, complexité, logique,
- combinatoire des mots, dynamique symbolique, théorie des nombres,
- linguistique (traitement de la langue naturelle),
- électronique,
- bioinformatique (séquençage du génome),
- imagerie (analyse d'images),
- . . .

Le plan du cours

Un langage est un ensemble de mots. Pour étudier les langages, le plan du cours sera le suivant :

- Définitions, mots, langages, langages rationnels
- Automates et langages reconnaissables
 - définitions, fonctionnement d'un automate
 - équivalence avec langages rationnels
 - déterminisme
 - minimalité
- Langages non reconnaissable
- Grammaires

Lettres et alphabets

Un langage est un ensemble de mots. Un mot est écrit avec des lettres appartenant à un alphabet.

- Lettre : symboles.
- Alphabet : ensemble fini non vide de lettres.

Exemples

- 1. Alphabet latin, grec, ...
- 2. Chiffres: $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, \}$
- 3. Caractères ASCII, UNICODE, ...
- 4. Parties de ces alphabets : $\{a, b\}$, $\{0, 1\}$

Attention : les symboles doivent être non ambigüs!

```
\{a, b, ab\},\ \{ab, a, ba\} ne sont pas des alphabets.
```

Lettres grecques courantes

lettre	minuscule	majuscule
alpha	α	
beta	β	
gamma	γ	Г
delta	δ	Δ
epsilon	ε	
phi	ϕ	Ф
psi	ψ	Ψ
rho	ρ	
mu	μ	
nu	ν	
psi rho mu	$egin{pmatrix} ho \ \mu \end{matrix}$	-

Mots

- Mot : suite de lettres.
 - ▶ Notation : les lettres sont accolées.
 - Exemples: bonjour, abaababaab, 0110101, ...
 - ▶ Formellement, $a_1 ldots a_n$ est le mot constitué dans l'*ordre* des lettres a_1 puis a_2 puis $\ldots a_n$.
 - On ne tient pas compte de la signification éventuelle.
- Mot vide : suite vide de lettres : ε .

Attention! Ne pas confondre le mot vide ε avec l'ensemble vide \emptyset

La concaténation

- Définition: la concaténation de deux mots u et v est le mot obtenu en mettant bout à bout dans l'ordre les lettres de u puis les lettres de b.
- Notation: uv ou u.v
- La concaténation est aussi appelée produit de concaténation
- Exemple : (aabac).(dab) vaut aabacdab
- Formellement, si $\left\{\begin{array}{l} n\geq 0 \text{ et } p\geq 0 \text{ sont deux entiers,} \\ a_1,\ldots,a_n,\ b_1,\ldots,b_p \text{ sont des lettres,} \end{array}\right.$ alors

$$(a_1 \ldots a_n).(b_1 \ldots b_p) = a_1 \ldots a_n b_1 \ldots b_p$$

La concaténation

- Définition: la concaténation de deux mots u et v est le mot obtenu en mettant bout à bout dans l'ordre les lettres de u puis les lettres de b.
- Notation: uv ou u.v
- La concaténation est aussi appelée produit de concaténation
- Exemple : (aabac).(dab) vaut aabacdab
- Formellement, si $\begin{cases} n \geq 0 \text{ et } p \geq 0 \text{ sont deux entiers,} \\ a_1, \dots, a_n, b_1, \dots, b_p \text{ sont des lettres,} \end{cases}$ alors

$$(a_1 \ldots a_n).(b_1 \ldots b_p) = a_1 \ldots a_n b_1 \ldots b_p$$

La concaténation

- Définition: la concaténation de deux mots u et v est le mot obtenu en mettant bout à bout dans l'ordre les lettres de u puis les lettres de b.
- Notation: uv ou u.v
- La concaténation est aussi appelée produit de concaténation
- Exemple : (aabac).(dab) vaut aabacdab
- Formellement, si $\begin{cases} n \geq 0 \text{ et } p \geq 0 \text{ sont deux entiers,} \\ a_1, \dots, a_n, b_1, \dots, b_p \text{ sont des lettres,} \end{cases}$ alors

$$(a_1 \ldots a_n).(b_1 \ldots b_p) = a_1 \ldots a_n b_1 \ldots b_p$$

Monoïde

- Propriétés de la concaténation :
 - $u\varepsilon = u = \varepsilon u$ (uv)w = u(vw)
- (uv)w = u(vw)
- Propriété : l'ensemble des mots muni de la concaténation forme un monoïde.
- Monoïde : ensemble muni d'une opération interne associative possédant un élément neutre.
- Autres exemples de monoïdes : $(\mathbb{N},+)$, (\mathbb{N}^+,\times)
- L'ensemble des mots définis sur un alphabet A se note A*

Monoïde libre

Propriété fondamentale :
 Tout mot se décompose de manière unique sur les lettres.

$$a_1 \dots a_n = b_1 \dots b_p$$
 implique
$$\left\{ egin{array}{l} n = p \\ ext{et } a_i = b_i ext{ pour tout } 1 \leq i \leq n. \end{array}
ight.$$

• Le monoïde A^* est dit libre (de base A).

Longueur

- Longueur d'un mot : nombre de lettres qui le composent.
- Notation : |u| est la longueur de u.
- Exemple : |abaab| = 5
- Propriétés :
 - $\bullet \ |\varepsilon| = 0$
 - |uv| = |u| + |v|

Longueur

- Longueur d'un mot : nombre de lettres qui le composent.
- Notation : |u| est la longueur de u.
- Exemple : |abaab| = 5
- Propriétés :
 - $|\varepsilon| = 0$
 - |uv| = |u| + |v|

Longueur

- Longueur d'un mot : nombre de lettres qui le composent.
- Notation : |u| est la longueur de u.
- Exemple : |abaab| = 5
- Propriétés :
 - $|\varepsilon|=0$
 - |uv| = |u| + |v|

Nombre d'occurrences

- $|u|_a$: nombre d'occurrences de la lettre a dans un mot u
- Exemple : $|abaab|_a = 3$
- Propriétés :
 - $|\varepsilon|_a=0$
 - $|uv|_a = |u|_a + |v|_a$
 - $\blacktriangleright |u| = \sum_{a \in A} |u|_a$

Nombre d'occurrences

- $|u|_a$: nombre d'occurrences de la lettre a dans un mot u
- Exemple : $|abaab|_a = 3$
- Propriétés :
 - $|\varepsilon|_a=0$
 - $|uv|_a = |u|_a + |v|_a$
 - $\blacktriangleright |u| = \sum_{a \in A} |u|_a$

Nombre d'occurrences

- $|u|_a$: nombre d'occurrences de la lettre a dans un mot u
- Exemple : $|abaab|_a = 3$
- Propriétés :
 - $|\varepsilon|_a=0$
 - $|uv|_a = |u|_a + |v|_a$
 - $\blacktriangleright |u| = \sum_{a \in A} |u|_a$

Un peu de vocabulaire

- Facteur : u = pvs
- Préfixe (facteur gauche) : dans l'exemple précédent, p, pv, sont des préfixes de u.
- Suffixe (facteur droit) : dans l'exemple précédent, s, vs sont des suffixes de u.
- Exemple : Facteurs, préfixes et suffixes du mot abaab?

Ensembles

- Un ensemble est caractérisé par la notion d'appartenance
 - ▶ pour un ensemble E, tout objet x appartient ou non à E.
 - x ∈ E : x appartient à E
 (on dit aussi que x est dans E);
 - $\triangleright x \notin E : x \text{ n'appartient pas à } E.$

Définitions d'ensemble

- Par extension : en précisant les valeurs de l'ensemble entre accolades (valeurs séparées par des virgules).
 - Exemple : $E = \{a, c, f\}$
- Par compréhension, en précisant la propriété que vérifient les élements de l'ensemble.
 - ► Ensemble des entiers pairs =

$$\{x \in \mathbb{N} \mid x \bmod 2 = 0\}$$

► Ensemble des mots sur A de longueur paire =

$$\{x \in A^* \mid |x| \mod 2 = 0\}$$

Égalité

- Deux ensembles sont égaux si les éléments de l'un appartiennent à l'autre et réciproquement.
- En d'autres termes E = F
 - si pour tout x dans E, x appartient à F et pour tout x dans F, x appartient à E
 - (avec les notations de la logique) $(\forall x \in E, x \in F)$ et $(\forall x \in F, x \in E)$
- Exemples, avec a, b et c trois lettres différentes :
 - $\{ab, ac, a, b\} = \{a, ab, b, ac\}$
 - $\{a, bc\} = \{a, a, bc, a, bc, a\}$

Attention

- ightharpoonup $\{ab, ac, a, b\} \neq \{ab, ac\}$
- \blacktriangleright {ab, ac, b} \neq {ab, ac, a}

Notation de la logique

- Très utile pour synthétiser des idées/présentations!
- Un langage à apprendre!
- ∃ il existe
- ⇒ implique : dire qu'une propriété p implique une propriété q signifie que si la propriété est vérifiée alors la propriété q l'est aussi
- $(p \Rightarrow q)$ est aussi une propriété (vraie si p est fausse)
- est équivalent à : dire qu'une propriété p équivaut à une propriété q signifie que p et q sont simultanément vraie ou simultanément fausse.

Inclusion

- Un ensemble E est dit inclus dans un ensemble F si tout élément de E appartient à F ($\forall x \in E, x \in F$).
 - ▶ Notation : $E \subseteq F$
- Un ensemble E est dit strictement inclus dans un ensemble F si E ⊆ F et E ≠ F.
 - ▶ Notation : $E \subset F$
- Exemples :

 - ► {ab, ac, a, b} ⊄ {ab, ac}
- Propriété importante :

$$X \subseteq Y$$
 et $Y \subseteq X \Leftrightarrow X = Y$

Ensemble vide

- L'ensemble constitué d'aucun élément.
- Notation : ∅.
- Exercice
 - ightharpoonup arepsilon :
 - le mot vide
 - d'ici à la fin de ce cours, l'expression rationnelle désignant l'ensemble $\{\varepsilon\}$
 - ▶ ∅ : l'ensemble vide
 - $\{\varepsilon\}$: l'ensemble ayant comme seul élément le mot vide.
 - \blacktriangleright { \emptyset } : l'ensemble ayant comme seul élément l'ensemble vide.

Implémentation d'ensemble

- Tableaux pour ensembles finis, voire tableaux triés Mais il peut y avoir plus efficace : arbres, . . .
- Automates
- . . .

Opérations ensemblistes

- Union. $X \cup Y = \{x \mid x \in X \text{ ou } x \in Y\}.$
- Intersection. $X \cap Y = \{x \mid x \in X \text{ et } x \in Y\}.$
- Complémentation. $X \setminus Y = \{x \mid x \in X \text{ et } x \notin Y\} \quad (= X \setminus (X \cap Y)).$
- Diagramme de Venn :

- $X \cup \emptyset = X$,
- $X \cap \emptyset = \emptyset$.
- $X \setminus \emptyset = X$,
- $\bullet \emptyset \setminus X = \emptyset.$
- $\bullet X \cup X = X$
- $X \cap X = X$,
- $X \setminus X = \emptyset$.

- $X \cup \emptyset = X$.
- $X \cap \emptyset = \emptyset$,
- $\bullet \ X\setminus\emptyset=X,$
- $\emptyset \setminus X = \emptyset$.
- $\bullet X \cup X = X$,
- $X \cap X = X$,
- $X \setminus X = \emptyset$.

- $X \cup \emptyset = X$.
- $X \cap \emptyset = \emptyset$,
- \bullet $X \setminus \emptyset = X$,
- $\emptyset \setminus X = \emptyset$.
- $\bullet X \cup X = X$
- $X \cap X = X$,
- $X \setminus X = \emptyset$.

- $X \cup \emptyset = X$.
- $X \cap \emptyset = \emptyset$,
- $X \setminus \emptyset = X$,
- $\emptyset \setminus X = \emptyset$.
- $\bullet X \cup X = X$
- $X \cap X = X$,
- $X \setminus X = \emptyset$.

- $X \cup \emptyset = X$.
- $X \cap \emptyset = \emptyset$,
- $X \setminus \emptyset = X$,
- $\emptyset \setminus X = \emptyset$.
- $\bullet X \cup X = X$
- $X \cap X = X$,
- $X \setminus X = \emptyset$.

- $X \cup \emptyset = X$.
- $X \cap \emptyset = \emptyset$,
- $X \setminus \emptyset = X$,
- $\emptyset \setminus X = \emptyset$.
- $\bullet X \cup X = X$
- $X \cap X = X$,
- $X \setminus X = \emptyset$.

- $X \cup \emptyset = X$.
- $X \cap \emptyset = \emptyset$,
- $X \setminus \emptyset = X$,
- $\emptyset \setminus X = \emptyset$.
- $X \cup X = X$.
- $X \cap X = X$,
- $X \setminus X = \emptyset$.

- (commutativité) $\begin{cases} X \cup Y = Y \cup X, \\ X \cap Y = Y \cap X. \end{cases}$
- Attention! $X \setminus Y$ n'est pas nécessairement égal à $Y \setminus X$
- Exemple $X = \{a\}, Y = \{b\}.$
 - $\qquad \qquad X \setminus Y = X = \{a\},$
 - $Y \setminus X = Y = \{b\}.$

- (associativité) $\begin{cases} X \cup (Y \cup Z) = (X \cup Y) \cup Z, \\ X \cap (Y \cap Z) = (X \cap Y) \cap Z. \end{cases}$
- On peut donc enlever les parenthèses
- Attention! on peut avoir $X \setminus (Y \setminus Z) \neq (X \setminus Y) \setminus Z$. Exemple: $X = \{a, b\}, Y = \{a\}, Z = \{a\}$: • $X \setminus (Y \setminus Z) = X$, • $(X \setminus Y) \setminus Z = \{b\}$

- (associativité) $\begin{cases} X \cup (Y \cup Z) = (X \cup Y) \cup Z, \\ X \cap (Y \cap Z) = (X \cap Y) \cap Z. \end{cases}$
- On peut donc enlever les parenthèses
- Attention! on peut avoir $X \setminus (Y \setminus Z) \neq (X \setminus Y) \setminus Z$. Exemple: $X = \{a, b\}, Y = \{a\}, Z = \{a\}:$ • $X \setminus (Y \setminus Z) = X$, • $(X \setminus Y) \setminus Z = \{b\}$

- (associativité) $\begin{cases} X \cup (Y \cup Z) = (X \cup Y) \cup Z, \\ X \cap (Y \cap Z) = (X \cap Y) \cap Z. \end{cases}$
- On peut donc enlever les parenthèses
- Attention! on peut avoir $X \setminus (Y \setminus Z) \neq (X \setminus Y) \setminus Z$. Exemple: $X = \{a, b\}, Y = \{a\}, Z = \{a\}$:
 - $X \setminus (Y \setminus Z) = X,$
 - $(X \setminus Y) \setminus Z = \{b\}$

- (distributivité) $\begin{cases} X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z), \\ X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z). \end{cases}$
- Lois de de Morgan :

$$\begin{cases} X \setminus (Y \cap Z) = (X \setminus Y) \cup (X \setminus Z), \\ X \setminus (Y \cup Z) = (X \setminus Y) \cap (X \setminus Z). \end{cases}$$

• (distributivité)
$$\begin{cases} X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z), \\ X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z). \end{cases}$$

• Lois de de Morgan :

$$\begin{cases} X \setminus (Y \cap Z) = (X \setminus Y) \cup (X \setminus Z), \\ X \setminus (Y \cup Z) = (X \setminus Y) \cap (X \setminus Z). \end{cases}$$

Produit cartésien

- Le produit cartésien sera utile pour définir les transitions possibles d'un automate.
- Soient E_1, \ldots, E_n des ensembles, le produit cartésien de ces ensembles est égal à l'ensemble des n-uplets (x_1, \ldots, x_n) tels que $x_i \in E_i$ pour chaque $i, 1 \le i \le n$:

$$E_1 \times E_2 \times \ldots \times E_n = \{(x_1, \ldots, x_n) \mid x_i \in E_i, 1 \leq i \leq n\}$$

- Exemple : $\{a, b\} \times \{ab, ba, c\} = \{(a, ab), (a, ba), (a, c), (b, ab), (b, ba), (b, c)\}$
- Exemple : $\{1,2\} \times \{a,b\} \times \{2,3\} = \{(1,a,2),(1,a,3),(1,b,2),(1,b,3),(2,a,2),(2,a,3),(2,b,2),(2,b,3)\}$

Produit cartésien

- Le produit cartésien sera utile pour définir les transitions possibles d'un automate.
- Soient E_1, \ldots, E_n des ensembles, le produit cartésien de ces ensembles est égal à l'ensemble des n-uplets (x_1, \ldots, x_n) tels que $x_i \in E_i$ pour chaque $i, 1 \le i \le n$:

$$E_1 \times E_2 \times \ldots \times E_n = \{(x_1, \ldots, x_n) \mid x_i \in E_i, 1 \leq i \leq n\}$$

- Exemple : $\{a, b\} \times \{ab, ba, c\} = \{(a, ab), (a, ba), (a, c), (b, ab), (b, ba), (b, c)\}$
- Exemple : $\{1,2\} \times \{a,b\} \times \{2,3\} = (1,a,2), (1,a,3), (1,b,2), (1,b,3), (2,a,2), (2,a,3), (2,b,2), (2,b,3)\}$

Produit cartésien

- Le produit cartésien sera utile pour définir les transitions possibles d'un automate.
- Soient E_1, \ldots, E_n des ensembles, le produit cartésien de ces ensembles est égal à l'ensemble des n-uplets (x_1, \ldots, x_n) tels que $x_i \in E_i$ pour chaque $i, 1 \le i \le n$:

$$E_1 \times E_2 \times \ldots \times E_n = \{(x_1, \ldots, x_n) \mid x_i \in E_i, 1 \leq i \leq n\}$$

- Exemple : $\{a, b\} \times \{ab, ba, c\} = \{(a, ab), (a, ba), (a, c), (b, ab), (b, ba), (b, c)\}$
- Exemple : $\{1,2\} \times \{a,b\} \times \{2,3\} = \{(1,a,2),(1,a,3),(1,b,2),(1,b,3),(2,a,2),(2,a,3),(2,b,2),(2,b,3)\}$

- cardinal d'un ensemble fini = son nombre d'éléments.
- Notation : Card(E) ou #E
- Exemple :
 - $Card({a,b}) = 2$
 - $Card({ab, ba, c}) = 3$
 - $Card({a,b} \times {ab,ba,c}) = 6.$
 - $Card(\{1,2\} \times \{a,b\} \times \{2,3\}) = 8$
- Pour E_1, E_2, \ldots, E_n (n ≥ 1) des ensembles finis,

$$Card(E_1 \times E_2 \times ... \times E_n) = Card(E_1) \times Card(E_2) \times ... \times Card(E_n)$$

- cardinal d'un ensemble fini = son nombre d'éléments.
- Notation : Card(E) ou #E
- Exemple :
 - $Card({a,b}) = 2$
 - $Card({ab, ba, c}) = 3$
 - $Card({a,b} \times {ab,ba,c}) = 6.$
 - $Card(\{1,2\} \times \{a,b\} \times \{2,3\}) = 8$
- Pour E_1, E_2, \ldots, E_n (n ≥ 1) des ensembles finis,

$$Card(E_1 \times E_2 \times ... \times E_n) = Card(E_1) \times Card(E_2) \times ... \times Card(E_n)$$

- cardinal d'un ensemble fini = son nombre d'éléments.
- Notation : Card(E) ou #E
- Exemple :
 - $Card({a,b}) = 2$
 - $Card({ab, ba, c}) = 3$
 - $Card({a,b} \times {ab,ba,c}) = 6.$
 - $Card(\{1,2\} \times \{a,b\} \times \{2,3\}) = 8$
- Pour E_1, E_2, \ldots, E_n (n ≥ 1) des ensembles finis,

$$Card(E_1 \times E_2 \times ... \times E_n) = Card(E_1) \times Card(E_2) \times ... \times Card(E_n)$$

- cardinal d'un ensemble fini = son nombre d'éléments.
- Notation : Card(E) ou #E
- Exemple :
 - $Card({a,b}) = 2$
 - $Card({ab, ba, c}) = 3$
 - $Card({a,b} \times {ab,ba,c}) = 6.$
 - $Card(\{1,2\} \times \{a,b\} \times \{2,3\}) = 8$
- Pour E_1, E_2, \ldots, E_n (n ≥ 1) des ensembles finis,

$$Card(E_1 \times E_2 \times ... \times E_n) = Card(E_1) \times Card(E_2) \times ... \times Card(E_n)$$

- cardinal d'un ensemble fini = son nombre d'éléments.
- Notation : Card(E) ou #E
- Exemple :
 - $Card({a,b}) = 2$
 - $Card({ab, ba, c}) = 3$
 - $Card({a,b} \times {ab,ba,c}) = 6.$
 - $Card(\{1,2\} \times \{a,b\} \times \{2,3\}) = 8$
- Pour E_1, E_2, \ldots, E_n (n ≥ 1) des ensembles finis,

$$\mathit{Card}(E_1 \times E_2 \times \ldots \times E_n) = \mathit{Card}(E_1) \times \mathit{Card}(E_2) \times \ldots \times \mathit{Card}(E_n)$$