COMP3161/9164

Concepts of Programming Languages
FINAL EXAM
Term 3, 2022

- Total Number of **Parts**: 4
- Total Number of marks: 100
- All parts are of equal value.
- Answer all questions.
- Excessively verbose answers may lose marks
- Failure to make the declaration or making a false declaration results in a 100% mark penalty.
- Ensure you are the person listed on the declaration.
- All questions must be attempted **individually** without assistance from anyone else.
- You must save your exam paper using the button below before time runs out.
- Late submissions will not be accepted.
- You may save multiple times before the deadline. Only your final submission will be considered.

Declaration

☐ I, Mr Wang, William (William Wang) (5286124), declare that these answers are **entirely my own**, and that I did not complete this exam with assistance from anyone else.

Part A (25 marks)

Consider the following inductive definition of a toy language L, where programs can perform arithmetic computations, and send/receive numbers over the network. We assume a language A**rith** of arithmetic expressions, the details of which are unimportant here. Arithmetic expressions are *open*, in the sense that they may contain variables; for example, we would expect x + 1 **Arith** to hold.

$$\begin{split} \frac{x \; \textbf{String} \quad e \; \textbf{Arith} \quad p \; \textbf{L}}{\text{let} \; x := e \; \text{in} \; p \; \textbf{L}}(a) & \qquad \frac{e \; \textbf{Arith} \quad p \; \textbf{L}}{\text{send(e)}. \; p \; \textbf{L}}(b) \\ \\ \frac{x \; \textbf{String} \quad p \; \textbf{L}}{\text{receive(x)}. \; p \; \textbf{L}}(c) & \qquad \frac{e \; \textbf{Arith}}{\text{return e} \; \textbf{L}}(d) \end{split}$$

Here is its small-step semantics. We assume a standard big-step semantics \downarrow for arithmetic expressions, which means that we treat arithmetic expressions as if their evaluation takes a single step.

$$\frac{e \Downarrow v}{\text{let } x := e \text{ in } p \mapsto p[x := v]} (1) \qquad \frac{e \Downarrow v}{\text{send(e). } p \mapsto p} (2)$$

$$\frac{v \in \mathbb{Z}}{\text{receive(x). } p \mapsto p[x := v]} (3) \qquad \frac{e \Downarrow v \quad e \neq v}{\text{return } e \mapsto \text{return } v} (4)$$

The final states of the small-step semantics are the expressions the form return v where $v \in \mathbb{Z}$.

Time Remaining 2h 9m 43s

2. Give an intuition for why this language should not be confluent. 3. (4 marks) Rules (1) and (3) of the above semantics uses substitution, but we never defined substitution. Give a recursive definition of substitution. The x in let x := e in p binds into p but not into e, and the x in receive(x). e binds into p. It suffices to define substitution of a single name for a natural number. You can assume that a suitable definition of substitution for arithmetic expressions already exists. 4. (2 Marks) Do we need the side-condition e ≠ v in rule (4)? What happens if we drop it? 5. (6 marks) The semantics above is a substitution semantics. Give an equivalent small-step environment semantics for this language. To write an inference rule with premises, you can write the rule ABB ax, B → c. You may assume the existence of a big-step environment semantics for arithmetic expressions, without giving its definition. 6. (3 Marks) Does the above semantics have any stuck states? And does your answer depend on the semantics of Arith in any way? Motivate.
3. (4 marks) Rules (1) and (3) of the above semantics uses substitution, but we never defined substitution. Give a recursive definition of substitution. The x in let x := e in p binds into p but not into e, and the x in receive(x), e binds into p. It suffices to define substitution of a single name for a natural number. You can assume that a suitable definition of substitution for arithmetic expressions already exists. 4. (2 Marks) Do we need the side-condition e ≠ v in rule (4)? What happens if we drop it? 5. (6 marks) The semantics above is a substitution semantics. Give an equivalent small-step environment semantics for this language. To write an inference rule with premises, you can write the rule A/C as A, B + c. You may assume the existence of a big-step environment semantics for arithmetic expressions, without giving its definition. 6. (3 Marks) Does the above semantics have any stuck states? And does your answer depend on the semantics of Arith
recursive definition of substitution. The x in let x := e in p binds into p but not into e, and the x in receive(x), e binds into p. It suffices to define substitution of a single name for a natural number. You can assume that a suitable definition of substitution for arithmetic expressions already exists. 4. (2 Marks) Do we need the side-condition e ≠ v in rule (4)? What happens if we drop it? 5. (6 marks) The semantics above is a substitution semantics. Give an equivalent small-step environment semantics for this language. To write an inference rule with premises, you can write the rule A B C as A, B ⊢ c. You may assume the existence of a big-step environment semantics for arithmetic expressions, without giving its definition. 6. (3 Marks) Does the above semantics have any stuck states? And does your answer depend on the semantics of Arith
5. (6 marks) The semantics above is a substitution semantics. Give an equivalent small-step environment semantics for this language. To write an inference rule with premises, you can write the rule $\frac{A}{C}$ as A, B \vdash C. You may assume the existence of a big-step environment semantics for arithmetic expressions, without giving its definition 6. (3 Marks) Does the above semantics have any stuck states? And does your answer depend on the semantics of Arith
5. (6 marks) The semantics above is a substitution semantics. Give an equivalent small-step environment semantics for this language. To write an inference rule with premises, you can write the rule $\frac{A}{C}$ as A, B \vdash C. You may assume the existence of a big-step environment semantics for arithmetic expressions, without giving its definition 6. (3 Marks) Does the above semantics have any stuck states? And does your answer depend on the semantics of Arith
this language. To write an inference rule with premises, you can write the rule $\frac{A-B}{C}$ as A, B \vdash C. You may assume the existence of a big-step environment semantics for arithmetic expressions, without giving its definition 6. (3 Marks) Does the above semantics have any stuck states? And does your answer depend on the semantics of Arith
this language. To write an inference rule with premises, you can write the rule $\frac{A-B}{C}$ as A, B \vdash C. You may assume the existence of a big-step environment semantics for arithmetic expressions, without giving its definition 6. (3 Marks) Does the above semantics have any stuck states? And does your answer depend on the semantics of Arith
7. (3 Marks) The final states of the above semantics gives the return value of an execution. We may also be interested in which messages were sent out during execution. How would you modify the above semantics so that the final state contains that information? You do not need to actually construct such a semantics explaining your idea suffices.
Part B (25 marks) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

 \otimes

2. (6 i exi	narks) Provide the most general type for each of the following MinHS programs, if it exists. If it does not st, briefly explain why not. 1. (InL True, False)
	2 modern for the first state of
	2. $\operatorname{recfun} f x = x f$
	3. recfun f x = case x of (InL y) \rightarrow y; (InR z) \rightarrow z
	marks) Use the Curry-Howard isomorphism to provide a MinHS or Haskell program (if it exists) that stitutes a proof for each of the following logical propositions. If no such program exists, briefly explain when the stitutes are proof for each of the following logical propositions.
ПОС	$1. (A \lor A) \to A$
	$2. (A \to B) \to A \to B$
	$3.((A \rightarrow False) \rightarrow False) \rightarrow A$
4. (5 1	marks) Using rec, Int, \times , + and 1, write a type that encodes the following rose tree datatype:
	datatype Tree = Leaf Int
	Node [Tree]
strı	call that [a] is Haskell notation for the type of lists with element type a. Your type should have a similar acture to the original Tree type. (Hence answering Int is not accepted, even though Int is technically morphic to Tree).
5. (4 1	marks) Write a MinHS expression that has the following type:
	$\exists S. \ S \times (S \to Int) \times ((S \times S) \to S)$
Ве	explicit about any packing and unpacking of existential types.
Dow4 ((25 montra)
Part (C (25 marks)
1. (2 1	narks) Is every unityped language type safe? Explain your reasoning.
	marks) Alice maintains a programming language. Her users got sick of explicitly converting ints to floats a s, so she added subtyping with the ordering $Int \le Float$. But her users, ever a quarrelsome bunch, are now
÷ →	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Time Remaining 2h 9m 43s
	Save

extract :: m a \rightarrow a
extend :: $(m a \rightarrow b) \rightarrow m a \rightarrow m b$
An example instance of this type class is infinite lists (aka Streams), defined as follows:
datatype Stream a = SCons a (Stream a)
instance Comonad Stream where
extract (SCons x xs) = x
extend $f(SCons x xs) = SCons (f(SCons x xs)) (extend f xs)$
1. What is a type class dictionary? What would the dictionary for this type class look like?
2. There is no instance of Comonad for the Maybe type constructor, if we require that all methods are total.
data Maybe a = Nothing Just a
Why not? <i>Hint</i> : how would you define extract?
If we remove the Nothing constructor and only keep Just, we can define an instance. Show how.
4. (6 marks) Give an example of a <i>covariant</i> , <i>contravariant</i> and <i>invariant</i> type constructor.
5. (3 marks) Assume that A is a subtype of B. What, if any, is the subtype relationship between $A \rightarrow A \rightarrow A$ and $A \rightarrow B \rightarrow B$? If there is a subtyping relationship, provide <i>either</i> a subtyping derivation for it or a conversion function in terms of this assumed coercion function:
coerce : $A \rightarrow B$
Part D (25 marks)
1. (6 marks) For each of the following properties, determine whether it is a <i>safety</i> or <i>liveness</i> property, or some
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Save

3. (10 marks) Consider the type class Comonad, a cousin of Monad defined as follows:

class Comonad m where

I .		
2. (6 marks) In the following prop	gram, the shared variables y	and z are initially 0. x is a local variable of process P.
	Process P	Process Q
	var x;	y := 1;
	x := y + z;	z := 2;
1. Assume each instruction	is executed atomically. Wha	at are the possible final values of x?
2. In reality, the program al	bove may yield a final state v	where $x = 2$. Why?
3 What is the <i>limited critic</i>	cal reference restriction, and	how does it apply to the above discrepancy?
5. What is the timiled crime	an reference restriction, and	now does it upply to the doore discrepancy.
tryLock(l) will attempt to clair	m the lock 1; if successful, re-	nentations will have a tryLock function. The invocation turn true. If we failed to claim the lock, return false. ed if another process currently holds the lock.
	while (true	
	· ·	ical section) yLock(l));
	(critical s	
	release(1));
	}	
	Iotivate your answer, and exp	rrently, using the same shared lock l. Is this a solution to plain any further assumptions about the behaviour of
		etional Memory (STM) approach to critical sections. concurrency control model. Why?
2. Does STM satisfy the sta	arvation-freedom liveness pr	operty? Why or why not?
3. How can the type system	n he used to ensure that STM	transactions are only performed inside an atomic block?
3. How can the type system	n be used to ensure that STM	transactions are only performed inside an atomic block?
3. How can the type system	n be used to ensure that STM	transactions are only performed inside an atomic block?
3. How can the type system	END OF E	XAM