1. We need to find constant C20 and no 21 interger such that $iv = c \cdot iv$ for all no no

Simplify: $iv \cdot n \leq c \cdot iv$ in for all no no $iv \leq c$ The all no no

choose c = 1 to fet $iv \leq l$ To all no no

the inequality is valid for all values of n, so we can choose no=1

Since we have Found constant C21, no21 that make inequality true, then we have proven that in is O(th).

2. We need to find constant C70 and ho>1 integer such that $\frac{1}{g(n)} \leq C \cdot \frac{1}{g(n)}$ for all n>,no.

Simplify: given that f(n) is O(g(n)), then we can remvite $C \cdot \frac{1}{g(n)}$ as $C \cdot \frac{1}{g(n)}$ where k is a constant. $\frac{1}{g(n)} \leq C \cdot \frac{1}{g(n)}$ $(\frac{C}{k}-1)\frac{1}{g(n)} \geq O \cdot \frac{1}{g(n)}$ for all n>,no.

choose C = 2, $k \geq 1$. then we can get $\frac{1}{g(n)} \geq O$ for all n>,no.

the inequality is valid for all values of n, so we pick $n_0=1$

Since we have found constant C=2, no=1 that make inequality time, then we have proven that $\frac{1}{900}$ is O(760).

3. Assume that we is Oci). It not is Oci), there is a constant coo and nool such that wisc for all non.

Simply the inequality, then we can have $n \leq c-1$ for all $n \geq n_0$.

The inequality nect is valid only for values of n there are at most c-1, so this inequality can not be true for all values in larger than some constant non-Specifically. If we choose no citetino, then note that these values of a circ larger than or equal than no but they are not at most C.

Therefore, we have reached a controdiction as there're no constant values C>O and no? I such that N-15C for all nono. Consequently, Not is not Ocio.

5 The algorithm will never terminate.

Assuming value to is not in L.

Then the iteration starts at i=0, the beginning of the array. It will keep increasing the value of i by 2

Since to is not in L and loop through all even number position in L. Finally, i will be either nowhile in is

even) or n-1 cubile n is odd). Then, the value of i is reset to I and still satistical i<n. Then, i will be 1.3,5... and loop through every odd number position in L. Finally, i will be either not cubile n is even) or n while n is odd). Then i will still be reset to I and this algorithm will never terminate in any case.

6. The algorithm may not produce the correct output. For example, given the array L=[1,2,3,4], find(L,4,4) would return -1 rather than s.

\mathbf{n}	Linear Search	n	Quadratic Search	\mathbf{n}	Factorial Search
5	194	5	<u> </u>	7	1181300
10	122	10	363	8	8046700
100	₹1¢2	100	3462	9	36857500
1000	2689	1000	76015	10	148500600
10000	3602.	10000	6577391.	11	3819685200
100000	18604			12	50206406000