数字电子技	上十十二
数子电丁だ	又个基础

选择题

1	低密度可编程逻辑器件(PLD)通常集成规模小于门。				
1	(a) 100	(b) 1000	(c) 10000	(d) 100000	
	低密度可编	程器件的代表是_	o		
	(a) PLA	(b) PAL	(c) GAL	(d) E^2 PROM	
	高密度可编	程逻辑器件通常集	《成规模大于_		
	(a) 100	(b) 1000	(c) 10000	(d) 100000	
	在系统可编	是指:对位于	的可编	程逻辑器件进行编程。	
	(a) 用户电路	f板 (b) 特制的电	电路板 (c) 编和	涅器 (d) 专用编程器	
	以下可编程	逻辑器件中,集	成密度最高的	勺是。	
	(a) PAL	(b) GAL	(c) CPLD	(d) FPGA	
	CPLD 比较知	适合用在以	的数字系	统。	
	(a) 复杂	(b) 组合电路为E	È (c) 时序为	n主 (d) 较简单	
	EDGA 比较i	活会田在以	的粉字系	统	

- (a) 复杂 (b) 控制为主 (c) 时序为主 (d) 较简单

高密度可编程逻辑器件中具有硬件加密功能的器件是_

- (a) HDPLD 和 FPGA (b) GAL (c)CPLD (d) FPGA

填空题

逻辑功能从厂家生产出来后都是不变的逻辑器件称为标准逻辑器件。 PLA、PAL 和 GAL 这一类半定制芯片称为"^{低密度可编程}逻辑器件。

- (13) PAL 是一种阵列型的低密度可编程逻辑器件,它的与阵列是<u>可编程</u>的, 它的或阵列是 ^{固定} 的。
 - (14) GAL 与 PAL 的最大区别是:它的每一个输出端上都有一个OLMC。
 - (15) GAL 采用电可擦除技术,因此无需紫外线照射即可随时进行修改逻辑

 - (17) 具有硬件加密功能的高密度可编程逻辑器件是_____。
 - (18) 基于 SRAM 结构的高密度可编程逻辑器件是_____。
 - (19) 一旦断电,就会丢失所有的逻辑功能的高密度可编程逻辑器件

是_____。

作业

5.1 用 PLA 实现以下逻辑函数,要求画出编程后的阵列图。

$$Y_2 = A \overline{B} C + \overline{A} B + AB \overline{C} + \overline{A} B + AB \overline{C} + \overline{A} B + \overline{A} B \overline{C} + \overline{A} B$$

$$Y_1 = \overline{A} + B\overline{C} + B\overline{C}$$

$$Y_0 = A\overline{B} + \overline{A}\overline{C}$$

页 返回

数字电子技术基础

5.2 用一片 PAL 实现以下逻辑函数,要求画出编程后的阵列图。

$$Y_2 = A \overline{B} \overline{C} + A B \overline{C} +$$

$$Y_1 = A \overline{BC} + \overline{C}$$

$$Y_0 = \overline{A} \, \overline{B} \, C + \overline{A} \, B \, \overline{C} \, \psi$$

[解] 先将逻辑函数变换成与或表达式

$$Y_{2} = A\overline{B}\overline{C} + AB\overline{C}$$

$$Y_{1} = A\overline{B}\overline{C} = A\overline{B} + A\overline{C}^{\circ}$$

$$Y_{0} = A\overline{B}C + AB\overline{C}$$

5.4 试写出图题5.4中两个触 发器的输入J1、K1、J2、K2 以及输出Y的逻辑关系式,确 定触发器的时钟CP1和CP2与 外部时钟信号CP的关系。分 别在X为0、1两种情况下,画 出各触发器在CP信号作用下 的Q1和Q2波形(假设初态全 为0),分析两个触发器状态 的变化规律,说明电路的功 能

上页 下页 返回

$$J_{1} = K_{1} = 1$$

$$J_{2} = K_{2} = \overline{XQ_{1}}^{n} + X\overline{Q_{1}}^{n} = X \oplus Q_{1}^{n}$$

$$Y = X\overline{Q_{1}}^{n}\overline{Q_{2}}^{n} + \overline{XQ_{1}}^{n}Q_{2}^{n}$$

当X=0时

$$J_2 = K_2 = Q_1^n$$
$$Y = Q_1^n Q_2^n$$

$Q_2^nQ_1^n$	$Q_2^{n+1}Q_1^{n+1}$
00	01
01	10
10	11
11	00

当X=1时

$$J_2 = K_2 = \overline{Q_1}^n$$
$$Y = \overline{Q_1}^n \overline{Q_2}^n$$

$Q_2^nQ_1^n$	$Q_2^{n+1}Q_1^{n+1}$
00	11
01	00
10	01
11	10

Y为进位或者借位 位。

5.5 用LUT实现以下逻辑函数:

$$L = \overline{A_2} \overline{A_1} A_0 + \overline{A_2} A_1 \overline{A_0}$$

上页 下页 返回