\sim		
COLLDG	$\mathbf{D}\mathbf{D}$	
COURS	$D_{\mathbf{L}}$	MATHÉMATIQUES

$\begin{array}{c} \text{TOME X} \\ \textbf{INFORMATIQUE} \end{array}$

Mathématiques générales ${\it France} \sim 2024$ ${\it Écrit~et~r\'ealis\'e~par}$ Louis Lascaud

Table des matières

1	Analyse numérique				
	1.1 Résolution de systèmes linéaires	5			
2	Exercices	7			

Table des matières

Chapitre 1

Analyse numérique

1.1 Résolution de systèmes linéaires

Théorème

Soit A une matrice de taille $m \times n$. L'équation Ax = b admet au moins une solution si et seulement si b est orthogonal à $Ker(A^*)$.

Chapitre 2

Exercices

Difficulté des exercices :

- $\bullet \circ \circ \circ \circ$ Question de cours, application directe, exercice purement calculatoire sans réelle difficulté technique
- • • • Exercice relativement difficile et dont la résolution appelle à une réflexion plus importante à cause d'obstacles techniques ou conceptuels, qui cependant devraient être à la portée de la plupart des étudiants bien entraînés
- ••••• La résolution de l'exercice requiert un raisonnement et des connaissances extrêmement avancés, dépassant les attentes du prérequis. Il est presque impossible de le mener à terme sans indication. Bien qu'exigibles à très peu d'endroits, ces exercices sont très intéressants et présentent souvent des résultats forts.

Appendice

Bibliographie

 $[1] \ \it{Titre du livre}, Auteur du livre, date, maison d'édition$

12 Bibliographie

Table des figures

Table des figures

Liste des tableaux