GaAs-IR-Lumineszenzdioden GaAs Infrared Emitters Lead (Pb) Free Product - RoHS Compliant

SFH 415

Wesentliche Merkmale

- · GaAs-LED mit sehr hohem Wirkungsgrad
- Hohe Zuverlässigkeit
- Gute spektrale Anpassung an Si-Fotoempfänger
- SFH 415: Gehäusegleich mit SFH 300, SFH 203

Anwendungen

- IR-Fernsteuerung von Fernseh- und Rundfunkgeräten, Videorecordern, Lichtdimmern
- Gerätefernsteuerungen für Gleich- und Wechsellichtbetrieb
- Sensorik
- Diskrete Lichtschranken

Features

- Very highly efficient GaAs-LED
- High reliability
- · Spectral match with silicon photodetectors
- SFH 415: Same package as SFH 300, SFH 203

Applications

- IR remote control of hi-fi and TV-sets, video tape recorders, dimmers
- Remote control for steady and varying intensity
- Sensor technology
- Discrete interrupters

Typ Type	Bestellnummer Ordering Code	Strahlstärkegruppierung ¹⁾ ($I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms) Radiant Intensity Grouping ¹⁾ $I_{\rm e}$ (mW/sr)
SFH 415	Q62702-P0296	> 25
SFH 415-U	Q62702-P1137	> 40

 $^{^{1)}}$ gemessen bei einem Raumwinkel Ω = 0.01 sr / measured at a solid angle of Ω = 0.01 sr

Grenzwerte ($T_{\rm A}$ = 25 $^{\circ}$ C) Maximum Ratings

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Betriebs- und Lagertemperatur Operating and storage temperature range	$T_{\rm op}$; $T_{\rm stg}$	- 40 + 100	°C
Sperrspannung Reverse voltage	V_{R}	5	V
Durchlassstrom Forward current	I_{F}	100	mA
Stoßstrom, $t_p = 10 \mu s$, $D = 0$ Surge current	I_{FSM}	3	A
Verlustleistung Power dissipation	P_{tot}	165	mW
Wärmewiderstand Thermal resistance	R_{thJA}	450	K/W

Kennwerte ($T_A = 25 \, ^{\circ}$ C) Characteristics

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Wellenlänge der Strahlung Wavelength at peak emission $I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms	λ_{peak}	950	nm
Spektrale Bandbreite bei 50% von $I_{\rm max}$ Spectral bandwidth at 50% of $I_{\rm max}$ $I_{\rm F}$ = 100 mA	Δλ	55	nm
Abstrahlwinkel Half angle SFH 415	φ	± 17	Grad
Aktive Chipfläche Active chip area	A	0.09	mm ²
Abmessungen der aktiven Chipfläche Dimensions of the active chip area	$L \times B$ $L \times W$	0.3 × 0.3	mm
Abstand Chipoberfläche bis Linsenscheitel Distance chip front to lens top SFH 415	Н	4.24.8	mm

2006-01-16 2

Kennwerte (T_A = 25 ° C) Characteristics (cont'd)

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Schaltzeiten, $\rm I_e$ von 10% auf 90% und von 90% auf 10%, bei $I_{\rm F}$ = 100 mA, $R_{\rm L}$ = 50 Ω Switching times, $\rm I_e$ from 10% to 90% and from 90% to 10%, $I_{\rm F}$ = 100 mA, $R_{\rm L}$ = 50 Ω	t_{r},t_{f}	0.5	μs
Kapazität Capacitance $V_{\rm R}$ = 0 V, f = 1 MHz	Co	25	pF
Durchlassspannung Forward voltage $I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms $I_{\rm F}$ = 1 A, $t_{\rm p}$ = 100 μ s	$V_{F} \ V_{F}$	1.3 (≤1.5) 2.3 (≤2.8)	V V
Sperrstrom Reverse current $V_{\rm R} = 5 {\rm V}$	I_{R}	0.01 (≤1)	μΑ
Gesamtstrahlungsfluss Total radiant flux $I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms	$\Phi_{\! m e}$	22	mW
Temperaturkoeffizient von $I_{\rm e}$ bzw. $\Phi_{\rm e}$, $I_{\rm F}$ = 100 mA Temperature coefficient of $I_{\rm e}$ or $\Phi_{\rm e}$, $I_{\rm F}$ = 100 mA	TC _I	- 0.5	%/K
Temperaturkoeffizient von $V_{\rm F},I_{\rm F}$ = 100 mA Temperature coefficient of $V_{\rm F},I_{\rm F}$ = 100 mA	TC_{V}	-2	mV/K
Temperaturkoeffizient von λ , $I_{\rm F}$ = 100 mA Temperature coefficient of λ , $I_{\rm F}$ = 100 mA	TC_{λ}	+ 0.3	nm/K

2006-01-16 3

Gruppierung der Strahlstärke I_e in Achsrichtung

gemessen bei einem Raumwinkel Ω = 0.01 sr

Grouping of Radiant Intensity I_e in Axial Direction

at a solid angle of $\Omega = 0.01$ sr

Bezeichnung Parameter	Symbol	Wert Value			Einheit Unit
		SFH 415	SFH 415-T ¹⁾	SFH 415-U	
Strahlstärke Radiant intensity $I_{\rm F} = 100 \text{ mA},$ $t_{\rm p} = 20 \text{ ms}$	$I_{ m e \; min}$ $I_{ m e \; max}$	25 -	25 50	40 -	mW/sr mW/sr
Strahlstärke Radiant intensity $I_{\rm F} = 1 \text{ A},$ $t_{\rm p} = 100 \mu\text{s}$	I _{e typ.}	_	350	450	mW/sr

¹⁾ SFH 415-T kann nicht einzeln bestellt werden. / SFH 415-T can not be ordered separately.

2006-01-16

Relative Spectral Emission $I_{rel} = f(\lambda)$

Forward Current

 $I_{\rm F} = f(V_{\rm F})$, single pulse, $t_{\rm p} = 20~\mu{\rm s}$

Permissible Pulse Handling Capability $I_{\rm F}$ = $f(\tau)$, $T_{\rm A}$ = 25 $^{\circ}$ C duty cycle D = parameter

Radiant Intensity $\frac{I_{e}}{I_{e} 100 \text{ mA}} = f(I_{F})$

Single pulse, $t_p = 20 \mu s$

Max. Permissible Forward Current $I_{\rm F} = f\left(T_{\rm A}\right)$

Radiation Characteristics,

5

 $I_{rel} = f(\varphi)$

2006-01-16

Maßzeichnung Package Outlines

Maße werden wie folgt angegeben: mm (inch) / Dimensions are specified as follows: mm (inch).

Empfohlenes Lötpaddesign Recommended Solder Pad

Wellenlöten (TTW) TTW Soldering

Maße werden wie folgt angegeben: mm (inch) / Dimensions are specified as follows: mm (inch).

2006-01-16 6

Lötbedingungen Soldering Conditions Wellenlöten (TTW) TTW Soldering

(nach CECC 00802) (acc. to CECC 00802)

Published by OSRAM Opto Semiconductors GmbH Wernerwerkstrasse 2, D-93049 Regensburg www.osram-os.com

© All Rights Reserved.

The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances. For information on the types in question please contact our Sales Organization.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Components used in life-support devices or systems must be expressly authorized for such purpose! Critical components ¹, may only be used in life-support devices or systems ² with the express written approval of OSRAM OS. ¹ A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system. ² Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered.

2006-01-16

