1. Súlyfüggvények

1.1. Definíció: Súlyfüggvény

Legyen (X,Ω,μ) mértéktér, $f\in L^+$ egy adott függvény. Ekkor a

$$\mu_f: \Omega \to [0, +\infty], \qquad \mu_f(A) \coloneqq \int_A f \, \mathrm{d}\mu \coloneqq \int f \cdot \chi_A \, \mathrm{d}\mu$$

leképezést súlyfüggvénynek nevezzük.

Megjegyzések:

i) Speciálisan az A=X esetben

$$\mu_f(X) = \int_X f \, \mathrm{d}\mu = \int f \cdot \chi_X \, \mathrm{d}\mu = \int f \, \mathrm{d}\mu.$$

ii) Amennyiben az $A\in\Omega$ halmaz nullamértékű, akkor

$$f \cdot \chi_A = 0 \ \mu$$
-m.m. $\Longrightarrow \mu_f(A) = \int f \cdot \chi_A \, \mathrm{d}\mu = 0.$

1.2. Állítás

Legyen (X,Ω,μ) mértéktér, $f\in L^+.$ Ekkor a μ_f súlyfüggvény mérték.

Bizonyítás. A μ_f függvényről az alábbiak mondhatóak el.

- 1. Nemnegatív, ugyanis az integrál monoton és $f \cdot \chi_A \in L_0^+$ $(A \in \Omega)$.
- 2. Eltűnik Ø-ban, hiszen

$$\mu_f(\emptyset) = \int f \cdot \chi_\emptyset \, \mathrm{d}\mu = \int \chi_\emptyset \, \mathrm{d}\mu = \mu(\emptyset) = 0.$$

3. Szigma-additív, mert bármely $A_n \in \Omega \ (n \in \mathbb{N})$ páronként diszjunkt halmazsorozat esetén

$$A \coloneqq \bigcup_{n=0}^{\infty} A_n \qquad \Longrightarrow \qquad f \cdot \chi_A = \sum_{n=0}^{\infty} f \cdot \chi_{A_n}.$$

Innen a Beppo Levi-tétel sorokra vonatkozó alakjából

$$\mu_f(A) = \int \sum_{n=0}^{\infty} f \cdot \chi_{A_n} \, \mathrm{d}\mu = \sum_{n=0}^{\infty} \int f \cdot \chi_{A_n} \, \mathrm{d}\mu = \sum_{n=0}^{\infty} \mu_f(A_n).$$

Tovább
á μ_f az Ω szigma-algebrán van értelmezve, tehá
t μ_f valóban mérték.