AMENDMENTS TO THE CLAIMS

1. (previously amended) An airspring (10) comprising a flexible cylindrical sleeve (14) secured at opposing ends, and first and second retainers (12, 26), the sleeve being secured at a first end to one of the retainers (12 or 26), and at the opposing end to other retainer (26 or 12), the improvement being characterized by:

one of the retainers (26) having an integrally formed bumper-contact surface (52) within the sleeve (14) for axial movement into the sleeve (14), for contact with the other retainer (12), and for absorbing and transmitting forces generated from such contact, the bumper contact surface (52) being centrally located on the surface of the retainer (26) which extends into the sleeve (14) during axial movement into the sleeve (14).

- 2. (currently amended) An airspring (10) in accordance with claim 1 wherein the retainer (26) having an-the integrally formed bumper-contact surface (52) is comprised of support ribs (34, 40, 42, 44, 48).
- 3. (original) An airspring (10) in accordance with claim 2 wherein the support ribs are substantially radially extending (42, 48).
- 4. (original) An airspring (10) in accordance with claim 2 wherein the support ribs are a series of concentrically disposed ribs (34, 40, 44).
- 5. (currently amended) An airspring (10) in accordance with claim 1 wherein the retainer (26) having an the integrally formed bumper-contact surface (52) is defined by a first axially outer surface (52) which extends into the airspring sleeve (14) and a second axially outer surface (50) which extends into the airspring sleeve (14), the axially outermost of the two surfaces being the bumper-contact surface (52) and the axial difference between the two surfaces being greater than zero to separate the two surfaces by a dimension (b).
- 6. (currently amended) An airspring (10) in accordance with claim 5 wherein the retainer (26) having an-the integrally formed bumper-contact surface (52) has an axial height (H) as measured from the axially outer most surface (52) to the axially innermost surface, and the surface-separation dimension (b) is 20 to 80% of the retainer height (H).

- 7. (currently amended) An airspring (10) in accordance with claim 1 wherein the airspring (10) further comprises a piston (28) and the flexible sleeve (14) is comprised of a bead ring (24) at one end, the bead ring (24) being secured between the retainer (26) having an-the integrally formed bumper-contact surface (52) and the piston (28).
- 8. (currently amended) An airspring (10) in accordance with claim 1 wherein the retainer (26) having an—the integrally formed bumper-contact surface (52) is formed from a thermoplastic material having a tensile strength in the range of 1965 to 3165 kg/cm² (28,000 to 45,000 psi), and a flex strength in the range of 2810 to 4220 kg/cm² (40,000 to 60,000 psi).
- 9. (original) An airspring (10) in accordance with claim 8 wherein the retainer (26) is formed from a material selected from the following group: fiberglass reinforced nylon, long fiber reinforced thermoplastic, and short fiber reinforced thermoplastic.

10. (cancel)

11. (previously added) An airspring (10) comprising a flexible cylindrical sleeve (14) secured at opposing ends, and first and second retainers (12, 26), the sleeve being secured at a first end to one of the retainers (12 or 26), and at the opposing end to other retainer (26 or 12), the improvement being characterized by:

one of the retainers (26) having an integrally formed bumper-contact surface (52) within the sleeve (14) for axial movement into the sleeve (14), for contact with the other retainer (12), and for absorbing and transmitting forces generated from such contact, the retainer comprising two concentrically disposed ribs connected by radially extending ribs.

- 12. (previously added) An airspring (10) in accordance with claim 11 wherein the retainer has more than two concentrically disposed ribs.
- 13. (currently amended) An airspring (10) in accordance with claim 11 wherein the retainer (26) having the an-integrally formed bumper-contact surface (52) is defined by a first axially outer surface (52) which extends into the airspring sleeve (14) and a second axially outer surface (50) which extends into the airspring sleeve (14), the axially outermost of the two surfaces being

the bumper-contact surface (52) and the axial difference between the two surfaces being greater than zero to separate the two surfaces by a dimension (b).

- 14. (currently amended) An airspring (10) in accordance with claim 5 13 wherein the retainer (26) having an-the integrally formed bumper-contact surface (52) has an axial height (H) as measured from the axially outer most surface (52) to the axially innermost surface, and the surface-separation dimension (b) is 20 to 80% of the retainer height (H).
- 15. (currently amended) The airspring of claim 11 wherein the bumper-contact surface (52) is radially inward, relative to a radial center of the airspring (1), of the secured ends of the elastomeric sleeve (14) secured by the retainer (26) having the integrally formed bumper-contact surface (52).

The above amendments are supported by the original specification.