Optimizing Predictions for House Prices using Particle Swarm Optimization

1st Semester of 2024-2025

First Author		Second Author	
emano:	il-bogdan.protopopescu@s.unibuc.ro	elias.milosi@s.unibuc.ro	
	Abstract	models.	040
001	This project explores the use of ensemble learn-	Evaluating and comparing the performance of	041
002	ing combined with Particle Swarm Optimiza-	the ensemble with and without PSO optimiza-	042
003	tion (PSO) to predict house prices for the Kag-	tion.	043
004	gle competition "House Prices - Advanced Re-	tion.	0-10
005	gression Techniques." We used three regression	This approach was chosen to explore how meta-	044
006 007	models: Random Forest, SVR, and KNeighbors, to generate predictions and subsequently	heuristic optimization can enhance ensemble learn-	045
008	applied PSO to optimize the aggregation of	ing, a popular method in predictive modeling.	046
009	these predictions. Without PSO, our submis-	mg, a popular meanor in predictive modeling.	0.10
010	sion achieved a Kaggle score of 0.22084. After	2 Approach	047
011	incorporating PSO, the score improved signifi-	pp. v	
012	cantly to 0.14690, demonstrating the effective-	GitHub	048
013	ness of this approach.		
	1 Introduction	2.1 Dataset and Preprocessing	049
014	1 Introduction	We used the Kaggle dataset "House Prices - Ad-	050
015	The prediction of house prices is a classical regres-	vanced Regression Techniques," which includes	051
016	sion problem with practical applications in real es-	various numerical and categorical features. The	052
017	tate and finance. The Kaggle competition "House	preprocessing steps involved:	053
018	Prices - Advanced Regression Techniques" pro-	preprocessing steps inverveus	
019	vides a comprehensive dataset for this purpose.	• Removing unnecessary columns (e.g., IDs)	054
020	Previous studies have demonstrated the effective-	and handling missing values by filling them	055
021	ness of ensemble methods in real estate price pre-	with medians.	056
022	diction, with Random Forest and Gradient Boosting		
023	being particularly popular due to their robustness	 Encoding categorical features using one-hot 	057
024	Breiman (2001); Friedman (2001). Furthermore,	encoding.	058
025	Particle Swarm Optimization (PSO) has been suc-		
026	cessfully applied to optimize ensemble weights in	 Standardizing numerical features using 	059
027	regression tasks Kennedy and Eberhart (1995).	StandardScaler.	060
028	The development of this project involved a col-	44 B 1 W 11	
029	laborative effort during two meetings, where both	2.2 Regression Models	061
030	authors contributed equally to the design, imple-	The following models were used to generate base	062
031	mentation, and evaluation of the proposed method.	predictions:	063
032	This project aims to optimize ensemble predic-		
033	tions using PSO to improve predictive performance.	• Random Forest: An ensemble method using	064
034	Our contributions include:	decision trees, trained with 100 estimators.	065
007	our contributions menute.	-	
035	• Implementing three regression models: Ran-	• SVR: A Support Vector Regressor with an	066
036	dom Forest, SVR, and KNeighbors, to gener-	RBF kernel, tuned for optimal C and gamma	067
037	ate initial predictions.	values.	068

• KNeighbors: A K-nearest neighbors regres-

sor with 7 neighbors.

069

070

• Applying PSO to determine the optimal

039

weights for combining predictions from these

071	2.3 PSO Optimization	References
072	PSO was used to optimize the weights of the predic-	Leo Breiman. 2001. Random forests. Machine learning,
073	tions from the three models. The objective function	45(1):5–32.
074	minimized the Mean Squared Error (MSE) on the training data. PSO parameters included:	Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting machine. <i>Annals of statistics</i> , pages 1189–1232.
075		
076	• Swarm size: 100 particles	James Kennedy and Russell Eberhart. 1995. Particle
077	• Iterations: 200 swarm optimization. In International Conference	swarm optimization. In <i>Proceedings of ICNN'95-International Conference on Neural Networks</i> , vol-
078		ume 4, pages 1942–1948. IEEE.
079	2.4 Evaluation	
080	The ensemble prediction without PSO was com-	
081	puted as the mean of individual model predictions.	
082	The optimized ensemble combined predictions us-	
083	ing weights determined by PSO. Performance was	
084	evaluated using the Kaggle scoring metric.	
085	3 Results	
086	• Without PSO: The ensemble achieved a score	
087	of 0.22084 on Kaggle.	
088	• With PSO: The optimized ensemble achieved	
089	a significantly improved score of 0.14690.	
090	The results demonstrate the advantage of using	
091	PSO for optimizing ensemble models in regression	
092	tasks.	
093	4 Limitations	
094	While the PSO-enhanced ensemble improved per-	
095	formance, some limitations were noted:	
096	• Model Diversity: The models used had vary-	

ing performances, with Random Forest domi-

• Hyperparameter Sensitivity: PSO results were sensitive to parameter tuning (e.g.,

This project demonstrated the effectiveness of PSO

in improving ensemble predictions for house price

• Explore other optimization methods (e.g., ge-

• Experiment with additional regression models

nating the ensemble.

swarm size, iteration count).

Conclusions and Future Work

estimation. In future work, we aim to:

netic algorithms).

to increase diversity.