杭州电子科技大学信息工程学院期末考试卷(A)卷

课程名称	高等数学(乙)	考试日期	2013年6		月 日	成绩	
考生姓名		任课教师姓					
学号(8 位)		班级			专业		

一、填空题(每小题3分,本题共30分):

- 1. 微分方程 $y^3y''+x(y')^4-y=0$ 的阶数是 2.
- 2. 设 $z = x^3 + y 2xy^2 + 1$,则 $\frac{\partial z}{\partial x}\Big|_{(1,0)} = _____3$
- 3. 交换积分次序 $\int_{1}^{2} dx \int_{0}^{x-1} f(x,y) dy = \int_{0}^{1} dy \int_{y+1}^{2} f(x,y) dx$ _.

- 7. 由方程 $xz^2 + y + z = 1$ 确定的隐函数 z = f(x, y) 的偏导数 $\frac{\partial z}{\partial x} = \underline{\qquad} -\frac{z^2}{2xz+1}$ ____.
- 8. 计算累次积分 $\int_0^1 dx \int_r^1 \cos y^2 dy = \frac{1}{2} \sin 1$ ______.

二、选择题(每题3分,共30分)

- 1. 若 y_1, y_2 是二阶齐次线性方程 y'' + P(x)y' + Q(x)y = 0 的两个特解,那么 $y = C_1y_1 + C_2y_2$ (其中 C_1, C_2 , 是任意常数) (**B**).
 - (A) 是该方程的通解 (B) 是该方程的解 (C) 是该方程的特解 (D) 不一定是该方程的解
- **2.** 函数 z = f(x, y) 在点 (x_0, y_0) 处具有偏导数是它在该点存在全微分的(**A**).
 - (A) 必要条件而非充分条件
- (B) 充分条件而非必要条件

(C) 充分条件

- (D) 既非充分条件也非必要条件
- 3. 计算积分 $\iint \sqrt{9-x^2-y^2} d\sigma$ (其中 $D: x^2+y^2 \le 9, x \ge 0, y \ge 0$) (A).
- (A) $\frac{9\pi}{2}$ (B) 9π (C) 18π (D) $\frac{9\pi}{4}$

- **4.** 已知级数 $\sum_{n=0}^{\infty} a_n$ 收敛,那么下面几个级数中发散的是(\mathbf{C}).
- (A) $\sum_{n=0}^{\infty} a_n$ (B) $\sum_{n=0}^{\infty} a_{n+100}$ (C) $\sum_{n=0}^{\infty} (a_n + 100)$ (D) $100 + \sum_{n=0}^{\infty} a_n$

- 5. 方程 $y''-4y'+4y=2e^{3x}$ 具有特解 (**D**).
 - (A) $y = (ax^2 + bx)e^{3x}$
- (B) $y = (ax + b)e^{3x}$
- (C) $v = axe^{3x}$
- (D) $y = ae^{3x}$
- **6.** 求解微分方程 $y'' + y' = e^y$ 时,应作变换(**B**).
- (A) $y' = e^y$ (B) y' = p(y) (C) y' = p(x) (D) $y' = e^x$
- 7. 已知 z = f(u, v) 有二阶连续偏导数,且 z = f(x + y, xy),那么下面式子中正确的是(**D**).
 - (A) $\frac{\partial^2 z}{\partial x^2} = f + yf$ (B) $\frac{\partial^2 z}{\partial x^2} = f + 2yf$;
 - (C) $\frac{\partial^2 z}{\partial r^2} = f_{11}^{"} + 2yf_{12}^{"} + yf_{22}^{"}$ (D) $\frac{\partial^2 z}{\partial r^2} = f_{11}^{"} + 2yf_{12}^{"} + y^2f_{22}^{"}$

- 8. 对于函数 $f(x,y) = x^2 2xy + 2y^2 + 2$,下面哪一项是正确的(C
 - (A) 有极大值 0
- (B) 有极大值 2
- (C) 有极小值 2
- (D) 无极值
- 9. 设 D 是由 x 轴, y 轴及 x = 1, y = 1 围成的区域,则 $I_1 = \iint_D xy d\sigma$, $I_2 = \iint_D x + y d\sigma$, $I_3 = \iint_D x^2 + y^2 d\sigma$

的大小顺序是(B

- $({\bf A}) \quad I_1 \geq I_2 \geq I_3 \qquad ({\bf B}) \quad I_2 \geq I_3 \geq I_1 \qquad ({\bf C}) \quad I_2 \geq I_1 \geq I_3 \qquad ({\bf D}) \quad I_1 \geq I_3 \geq I_2$

- **10.** 下面的几个幂级数中,哪一项不是 $\frac{1}{2-r}$ (1<x<2)的展开式(C).
 - $(A) \sum_{i=1}^{\infty} \frac{x^{n-1}}{2^n}$

 $(B) \sum_{n=0}^{\infty} (x-1)^{n-1}$

(C) $\sum_{n=0}^{\infty} \left(\frac{x}{2}\right)^n$

- (D) $\sum_{n=1}^{\infty} \frac{(x+1)^{n-1}}{3^n}$
- 三、判断题(每小题2分,本题共10分)
- 2. 已知 $y_1 = x^2$, $y_2 = 3$ 是方程 y'' + f(x)y' + g(x)y = 0 的两个特解,那么该方程的通解是

- 3. 一个二元函数如果在定义域上处处存在偏导数,那么该函数处处连续(×).

四、计算下列各题(每小题6分,本题共24分)

1. 求微分方程 y'' - 2y' = 4 满足 y(0) = y'(0) = 0 的特解.

解:特征方程为: $r^2 - 2r = 0$, 特征根 $r_1 = 0, r_2 = 2$

齐次方程通解为:
$$y_1 = C_1 + C_2 e^{2x}$$
 (得 2 分)

设y''-2y'=4的特解是 $y_2=ax$,代入方程得

$$a = -2, y_2 = -2x$$

所以非齐次方程的通解为: $y = y_1 + y_2 = C_1 + C_2 e^{2x} - 2x$ (得2分)

$$y(0) = C_1 + C_2 = 0, y'(0) = 2C_2 - 2 = 0$$

所以
$$C_2 = 1, C_1 = -1$$
,特解为 $y = e^{2x} - 2x - 1$. (得 2 分)

2. 函数
$$f(x,y) = \begin{cases} \frac{y^3}{x^2 + y^2} & x^2 + y^2 \neq 0 \\ 0 & x^2 + y^2 = 0 \end{cases}$$
 在(0,0)点处的偏导数 $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ 及 $\lim_{(x,y)\to(0,0)} f(x,y)$.

解:
$$\frac{\partial f}{\partial x} = \lim_{\Delta x \to 0} \frac{f(\Delta x, 0) - f(0, 0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\frac{0}{\Delta x^2 + 0} - 0}{\Delta x} = 0$$
 (得 2 分)

$$\frac{\partial f}{\partial v} = \lim_{\Delta y \to 0} \frac{f(0, \Delta y) - f(0, 0)}{\Delta v} = \lim_{\Delta y \to 0} \frac{\frac{\Delta y^3}{0 + \Delta y^2} - 0}{\Delta v} = 1$$
 (\(\frac{2}{2}\frac{\Delta}{1}\))

$$\lim_{(x,y)\to(0,0)} |f(x,y)| = \lim_{(x,y)\to(0,0)} \left| \frac{y^3}{x^2 + y^2} \right| \le \lim_{(x,y)\to(0,0)} \left| \frac{y^3}{y^2} \right| = \lim_{(x,y)\to(0,0)} |y| = 0$$

所以
$$\lim_{(x,y)\to(0,0)} f(x,y) = 0.$$
 (得 2 分)

3. 计算二重积分 $\iint_D e^{\sqrt{x^2+y^2}} d\sigma$, 其中 $D:1 \le x^2+y^2 \le 4$.

$$\mathbf{M}$$
: $D: 0 \le \theta \le 2\pi, 1 \le \rho \le 2$ (得 2 分)

$$\iint_{\mathbb{R}} e^{\sqrt{x^2 + y^2}} d\sigma = \int_0^{2\pi} d\theta \int_1^2 \rho e^{\rho} d\rho \tag{4.2}$$

$$= \int_0^{2\pi} (\rho - 1)e^{\rho} \left| \frac{1}{1} d\theta \right| = \int_0^{2\pi} e^2 d\theta = 2\pi e^2$$
 (74)

五、证明题(6分)

证明:
$$\int_{-1}^{1} dx \int_{0}^{\sqrt{1-x^2}} f(\sqrt{x^2+y^2}) dy = \pi \int_{0}^{1} x f(x) dx.$$

证: $D: -1 \le x \le 1, 0 \le y \le \sqrt{1-x^2}$, 用极坐标得 $D: 0 \le \theta \le \pi, 0 \le \rho \le 1$, (得 2 分)

所以

$$\int_{-1}^{1} dx \int_{0}^{\sqrt{1-x^2}} f(\sqrt{x^2 + y^2}) dy = \int_{0}^{\pi} d\theta \int_{0}^{1} \rho f(\rho) d\rho$$
 (7.4)

$$=\pi \int_0^1 \rho f(\rho) d\rho = \pi \int_0^1 x f(x) dx \qquad (\text{β 2 β})$$

4. 求幂级数 $\sum_{n=1}^{\infty} \frac{x^n}{n}$ 的收敛域及和函数.

Fig.
$$\exists \lim_{n \to \infty} \frac{|u_{n+1}|}{|u_n|} = \lim_{n \to \infty} \frac{\left|\frac{x^{n+1}}{n+1}\right|}{\left|\frac{x^n}{n}\right|} = \lim_{n \to \infty} |x| \left|\frac{n}{n+1}\right| = |x| < 1$$

得收敛区间: -1 < x < 1 (得 2 分)

x = 1 时,原级数 $\sum_{n=1}^{\infty} \frac{x^n}{n} = \sum_{n=1}^{\infty} \frac{1}{n}$ 是发散的; x = -1 时,原级数 $\sum_{n=1}^{\infty} \frac{x^n}{n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ 是收敛的;

所以收敛域是 $-1 \le x < 1$; (得1分)

设
$$f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n}$$
,那么 $f'(x) = \sum_{n=1}^{\infty} \left(\frac{x^n}{n}\right)' = \sum_{n=1}^{\infty} x^{n-1} = \frac{1}{1-x}$, (得 2 分)

所以 $f(x) = \int \frac{1}{1-x} dx = -\ln(1-x) + C$

又因为f(0) = 0,所以C = 0,和函数 $f(x) = -\ln(1-x), x \in [-1,1)$ (得 1 分)