Correction de l'exercice 1. Diagramme potentiel-pH du Fer.

1.

III	Fe ³⁺	Fe(OH) ₃
II	Fe ²⁺	Fe(OH) ₂
0	Fe	

2.

3. frontières non rédox

• Il faut calculer le pH d'apparition de Fe(OH)_{3(S)}:

Réaction :
$$Fe(OH)_3 = Fe^{3+} + 3OH^-$$

A l'équilibre chimique $Fe^{3+}OH^{-} = K$

A l'équilibre chimique,
$$\left[\text{Fe}^{3+}\right]\text{OH}^{-}\right]^3 = K_{s,1}$$

Donc $\left[\text{Fe}^{3+}\right]\frac{K_e^3}{\left[\text{H}^+\right]^3} = K_{s,1}$

$$[H^+]^{\circ}$$

Or, $[Fe^{3+}] = [Fe^{2+}] = 10^{-2} \text{ mol.} L^{-1}$, $KSI = 10^{-38}$, $k_e = 10^{-14} \text{ Donc } \mathbf{pH_1} = \mathbf{2}$

• Il faut calculer le pH d'apparition de $Fe(OH)_{2(S)}$. On aura de la même manière :

Réaction :
$$Fe(OH)_2 = Fe^{2+} + 2OH^{-}$$

A l'équilibre chimique,
$$\left[\text{Fe}^{2+} \right] \text{OH}^{-} \right]^2 = K_{s,2}$$

Donc
$$\left[\text{Fe}^{2+} \right] \frac{K_e^2}{\left[\text{H}^+ \right]^2} = K_{s,2}$$

Or,
$$[Fe^{2+}] = 10^{-2} \text{ mol.} L^{-1}$$
, $KS2 = 10^{-15.1}$, $k_e = 10^{-14} \text{ Donc } \mathbf{pH_2} = 7.45$

frontières rédox

Cette fois-ci, on doit étudier successivement les deux couples rédox : Fe²⁺/Fe et Fe³⁺/Fe²⁺

On calcule donc, suivant le domaine de pH:

$pH \le 2$:

On a les espèces Fe, Fe²⁺, Fe³⁺

• Frontière Fe²⁺ / Fe:

$$Fe^{2+} + 2e^{-} = Fe$$

 $E = E_1^0 + 0.03 \log [Fe^{2+}]$

 $E = E_1^0 + 0.03 \log \left[\text{Fe}^{2+} \right]$ Or, $[Fe^{2+}] = 10^{-2} \text{ mol.} L^{-1}$, $E^{\circ}I = -0.44V \text{ Donc } E = -0.5V$

• *Frontière* Fe³⁺ / Fe²⁺

$$Fe^{3+} + e^{-} = Fe^{2+}$$

$$E = E_2^0 + 0.06 \log \frac{Fe^{3+}}{Fe^{2+}}$$

 $E = E_2^0 + 0.06 \log \frac{\left| \text{Fe}^{3+} \right|}{\left| \text{Fe}^{2+} \right|}$ Or, $[Fe^{2+}] = [Fe^{3+}] = 10^{-2} \text{ mol.} L^{-1}$, $E^{\circ}2 = 0.77V \text{ Donc } \mathbf{E} = \mathbf{0.77V}$

② $2 \le pH \le 7.45$:

• Frontière Fe(OH)₃/Fe²⁺

$$E = E_2^0 + 0.06 \log \frac{\text{Fe}^{3+}}{\text{Fe}^{2+}}$$

Avec $[Fe^{2+}] = 10^{-2} \text{ mol.} L^{-1}$, $E^{\circ}2 = 0.77V \text{ et } [Fe^{3+}]OH^{-}]^{3} = K_{s,1}$

$$[Fe^{3+}] = \frac{K_{s,1}[H^+]^3}{K_e^3}$$
. Donc $E = 1.13 - 0.18pH$

(I) $pH \ge 7.45$:

On a les espèces Fe, Fe(OH), Fe(OH), (majoritairement)

• Frontière : Fe(OH), / Fe :

On a
$$E = E_1^0 + 0.03 \log \left[\text{Fe}^{2+} \right]$$

Avec,
$$E^{\circ}l = -0.44V$$
, $\left[\text{Fe}^{2+} \right] \text{OH}^{-} \right]^{2} = K_{s,2}$ et $\left[\text{Fe}^{2+} \right] = \frac{K_{s,2} \left[\text{H}^{+} \right]^{2}}{K_{e}^{2}}$

Donc
$$E = -0.053 - 0.06$$
pH

$$\begin{array}{c|c}
E \\
Fe^{3+} & Fe(OH)_3 \\
\hline
Fe^{2+} & Fe(OH)_2 & pH
\end{array}$$

Frontière: $Fe(OH)_3 / Fe(OH)_2$:

On a
$$E = E_2^0 + 0.06 \log \frac{|Fe^{3+}|}{|Fe^{2+}|} \text{ et } [Fe^{2+}] = \frac{K_{s,2}}{[OH^-]^2}, [Fe^{3+}] = \frac{K_{s,1}}{[OH^-]^3}$$

 $E^2 = 0.77V \text{ donc } \mathbf{E} = \mathbf{0.236} - \mathbf{0.06pH}$

On a donc le diagramme final:

Correction de l'exercice 2. Diagramme potentiel-pH du Ni.

1.

IV	NiO ₂	
II	Ni ²⁺	Ni(OH) ₂
0	Ni	

2.

Frontière non rédox Ni²⁺/Ni(OH)₂

$$10^{-13}$$
= [HO⁻]² soit [HO⁻]=3,16 10^{-7}

$$[H^{+}]=10^{-14}/[HO^{-}]$$
 à 25°C soit $[H^{+}]=3.16\ 10^{-8}$; **pH= 7,5.**

Frontières rédox

si pH \leq 7,5 On a les espèces Ni, Ni²⁺ et NiO₂

frontière entre Ni et Ni²⁺;

$$Ni = Ni^{2+} + 2e^{-}$$

E=
$$-0.25 + 0.06/2 \log [Ni^{2+}] = -0.25 + 0.03 \log 0.001 = 0.34 V$$

<u>frontière</u> NiO₂/Ni²⁺:

$$NiO_2(s) + 4H^+ + 2e^- = Ni^{2+} + 2H_2O$$

$$E=1,59+0,03 \log([H^+]^4 / [Ni^{2+}]) \text{ avec } [Ni^{2+}]=0,001 \text{ mol/L}$$

$$E = 1,59 + 0,03 \log 10^3 - 0,03*4 \text{ pH} = \frac{1,68 - 0,12 \text{ pH}}{1,000}$$

si pH \geq 7,5 On a les espèces Ni, Ni (OH)₂ et NiO₂

frontière entre Ni et Ni(OH)₂

$$[Ni^{2+}] = 10^{-16} / [HO^{-}]^{2}$$

$$E = -0.25 + 0.03 \log (10^{-16} / [HO^{-}]^{2})$$

$$E=-0.25+0.03 \log (10^{-16}/10^{-28}*[H^+]^2)$$

frontière NiO₂/Ni (OH)₂:

$$NiO_2(s) + 4H^+ + 2e^- = Ni^{2+} + 2H_2O$$

$$E = 1.59 + 0.03 \log([H^+]^4 / [Ni^{2+}])$$

produit de solubilité : $10^{-16} = [Ni^{2+}][OH^-]^2$

avec
$$[Ni^{2+}] = 10^{-16} / [OH^-]^2 = 10^{-16} / 10^{-28} * [H^+]^2 = 10^{12} * [H^+]^2$$

E= 1,59 + 0,03
$$\log([H^{+}]^{2} / 10^{12}) = 1,23 - 0,06 \text{ pH}.$$

3.

