光学突击

2019年6月23日 17:54 Log Creative

Lecture 1

光波的表示与性质

1.Maxwell 方程组

$$\begin{cases} \nabla \cdot \vec{D} = 0 \\ \nabla \cdot \vec{B} = 0 \end{cases}$$
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
$$\nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial t}$$

$$\nabla^2 \vec{E} - \mu_0 \varepsilon \frac{\partial^2 \vec{E}}{\partial^2 t} = 0$$

介质中的光速

$$v = \frac{1}{\sqrt{\mu \varepsilon}}, \ n = \frac{c}{v} = \sqrt{\varepsilon_r}$$

2.平面波解

$$E = E_0 \exp \Phi = E_0 \exp i \left(\vec{k} \cdot \vec{r} - \omega t \right)$$
 $v = \nu \lambda = \frac{\lambda}{T} = \frac{\omega}{k}$

3.波前函数

	平面波	球面波(发散与会聚采用 $\rho \ll z$)	柱面波
立体	$\tilde{U}(x, y, z) = E_0 e^{ik(\cos\alpha \cdot x + \cos\beta \cdot y + \cos\gamma \cdot z)}$	$U = \frac{E_0}{r} e^{i(\vec{k} \cdot \vec{r} - \omega t)}$	$U = \frac{E_0}{\sqrt{r}} e^{i(\vec{k}\cdot\vec{r} - \omega t)}$
		发散 $U = \frac{E_0}{r} e^{ik\sqrt{(x-x_1)^2 + (y-y_1)^2 + z^2}}$	
		会聚 $U = \frac{E_0}{r} e^{-ik\sqrt{(x-x_1)^2 + (y-y_1)^2 + z^2}}$	
平面	$\tilde{U}(x,y) = E_0 e^{ik(\cos\alpha \cdot x + \cos\beta \cdot y)}$	$U = \frac{E_0}{z_1} e^{ikz_1} e^{\frac{ik}{2z_1} [(x-x_1)^2 + (y-y_1)^2]}$	
		发散 $U = \frac{E_0}{z_1} e^{ikz_1} e^{\frac{ik}{2z_1} [(x-x_1)^2 + (y-y_1)^2]}$	
		会聚 $U = \frac{E_0}{z_1} e^{-ikz_1} e^{-\frac{ik}{2z_1} [(x-x_1)^2 + (y-y_1)^2]}$	

 \leftarrow

4.宏观速度

相速度	群速度	
等位相面的传输速度	多色光合成波包的传输速度	
$v_p = \frac{dz}{dt} = \frac{\omega}{k} = \frac{\frac{2\pi c}{\lambda}}{\frac{2\pi n_p}{\lambda}} = \frac{c}{n_p}$	$v_g = \frac{z}{t} = \frac{d\omega}{dk} = \frac{c}{n + \omega \frac{dn}{d\omega}} = \frac{c}{n - \lambda_0 \frac{dn}{d\lambda_0}}$	

Lecture 2

光在介质中的传输

5.吸收

$$\tilde{n}=n+\mathrm{i}\kappa$$

$$I = |\mathbf{E}|^2 = \left| E_0 e^{i(\mathbf{k}z - \omega t)} \right|^2 = \left| E_0 e^{i\left(\frac{\omega}{v}z - \omega t\right)} \right|^2 = \left| E_0 e^{i\left(\frac{\omega}{c}z - \omega t\right)} \right|^2 = I_0 e^{-\frac{2\kappa\omega}{c}z}$$

吸收因子
$$\alpha = 2\frac{\kappa\omega}{c} = \frac{4\pi k}{\lambda}$$

折射率

$$n = \sqrt{\varepsilon_r \mu_r} = \sqrt{\varepsilon_r (1 + \chi_{\rm m})} \approx \sqrt{\varepsilon_r}$$

单一本征频率情形

$$\begin{split} \varepsilon_r &= \varepsilon_1 + \mathrm{i} \varepsilon_2 \\ \varepsilon_1 &= n^2 - \kappa^2 \\ \varepsilon_2 &= 2n\kappa \end{split}$$

$$n &= \frac{1}{\sqrt{2}} \sqrt{\sqrt{\varepsilon_1^2 + \varepsilon_2^2} + \varepsilon_1}$$

$$\kappa &= \frac{1}{\sqrt{2}} \sqrt{\sqrt{\varepsilon_1^2 + \varepsilon_2^2} - \varepsilon_1}$$

柯西公式

$$n(\lambda) = A + \frac{B}{\lambda^2} + \frac{C}{\lambda^4} + \cdots$$

Lecture 3

反射&折射(透射)

6.Snell's Law

$$\theta_1' = \theta_1$$

$$\frac{\sin \theta_2}{\sin \theta_1} = \frac{v_2}{v_1} = \frac{n_1}{n_2}$$

(对角的邂逅)

7.Fresnel's Formula

E为s态、H为p态

$$r_{s} = \frac{E_{1s}'}{E_{1s}} = \frac{n_{1}\cos\theta_{1} - n_{2}\cos\theta_{2}}{n_{1}\cos\theta_{1} + n_{2}\cos\theta_{2}} = \frac{\sin(\theta_{2} - \theta_{1})}{\sin(\theta_{1} + \theta_{2})}$$

$$t_{s} = \frac{E_{2s}}{E_{1s}} = \frac{2n_{1}\cos\theta_{1}}{n_{1}\cos\theta_{1} + n_{2}\cos\theta_{2}} = \frac{2\cos\theta_{1}\sin\theta_{2}}{\sin(\theta_{1} + \theta_{2})}$$

E为p态、H为s态

$$\begin{split} r_p &= \frac{E_{1p}'}{E_{1p}} = \frac{n_2 \cos \theta_1 - n_1 \cos \theta_2}{n_2 \cos \theta_1 + n_1 \cos \theta_2} = \frac{\tan (\theta_1 - \theta_2)}{\tan(\theta_1 + \theta_2)} \\ t_p &= \frac{E_{2p}}{E_{1p}} = \frac{2n_2 \cos \theta_1}{n_2 \cos \theta_1 + n_1 \cos \theta_2} = \frac{2 \cos \theta_1 \sin \theta_2}{\sin(\theta_1 + \theta_2) \cos(\theta_1 - \theta_2)} \end{split}$$

方位角

$$r_s = \frac{n_1 - n_2}{n_2 + n_1} = -r_p$$

$$t_s = \frac{2n_1}{n_2 + n_1} = t_p$$

8.反射率与透过率

	振幅	光强	光功率($\mathcal{R}_{p,s} + \mathcal{T}_{p,s} = 1$)	*线偏振光
反射率	r_s, r_p	$R_P = r_p^2, \ R_S = r_s^2$	$\mathcal{R}_p = R_p, \mathcal{R}_s = R_s$	$\mathcal{R} = \mathcal{R}_s \sin^2 \alpha + \mathcal{R}_p \cos^2 \alpha$
透射率	t_s, t_p	$T_p = \frac{n_2}{n_1} t_p^2, T_s = \frac{n_2}{n_1} t_s^2$	$\mathcal{T}_p = \frac{\cos \theta_2}{\cos \theta_1} T_p, \mathcal{T}_s = \frac{\cos \theta_2}{\cos \theta_1} T_s$	$\mathcal{F} = \mathcal{T}_s \sin^2 \alpha + \mathcal{T}_p \cos^2 \alpha$

9.特殊角

9.1 Brewster Angle

$$\tan \theta_b = \frac{n_2}{n_1}$$

9.2 全反射临界角

$$\sin \theta_c = \frac{n_2}{n_1}$$

10.半波损失

- 光疏 →光密,正入射和掠入射**均有**半波损失
- 光密 →光疏,正入射无半波损失
- 任何情况下,掠入射有半波损失

<掠入射>

Lecture 4

干涉

11.干涉条件

$$\begin{split} E(P,t) &= E_1(P,t) + E_2(P,t) \\ I &= I_1 + I_2 + 2\sqrt{I_1I_2}\cos\theta\cos\delta\,, \ \delta = k_1r_1 - k_2r_2 - (\omega_1 - \omega_2)t + (\varphi_1 - \varphi_2) \end{split}$$

衬比度

$$\gamma = \frac{I_{max} - I_{min}}{I_{max} + I_{min}} = \frac{2\sqrt{I_1 I_2}}{I_1 + I_2} = \frac{\sqrt{m}}{m+1}(1 + \cos \alpha), \ I_2 = mI_1$$

12.分波前干涉

$$\Delta x = \frac{\lambda}{\sin \theta_1 + \sin \theta_2}, \quad k = \frac{1}{\Delta x}$$
$$\Delta x = \frac{\lambda D}{d}$$

空间相干性

光源临界宽度 $b_{max} = \frac{\lambda}{\beta}$

横向相干长度 $d_{max} = \frac{\lambda}{\theta}$

条纹间距 $\Delta x = \frac{\lambda}{\alpha}$

$$\boldsymbol{\lambda} = \boldsymbol{b_{max}} \boldsymbol{\cdot} \boldsymbol{\beta} = d_{max} \boldsymbol{\cdot} \boldsymbol{\theta} = \Delta x \boldsymbol{\cdot} \boldsymbol{\alpha}$$

时间相干性

$$\tau_0 \bullet \Delta \nu = 1, \ L_0 \bullet \frac{\Delta \lambda}{\lambda} = \lambda$$

$$n_1 < n_2$$

 $\theta_1 < \theta_b$

 $\theta_{\rm l} > \theta_{\rm b}$

 n_2 n_1

 $\theta_{\rm l} < \theta_{\rm b}$

$$n_1 > n_2$$

 $\theta_b < \theta_1 < \theta_c$

13.分振幅干涉

13.1 等倾干涉

$$\Delta = 2nh\cos i + \frac{\lambda}{2} = N\lambda, \ \delta = \frac{2\pi}{\lambda}\Delta$$

条纹间距

$$e_{\rm N} = \frac{f}{2} \sqrt{\frac{n\lambda}{mh}}$$

13.2 Michelson

环越往外越密

13.3 等厚干涉

$$\Delta = 2nh + \frac{\lambda}{2}$$

条纹间距

$$h = \frac{\lambda}{2n\theta}$$

$$\Delta = 2nh + \frac{\lambda}{2}$$

几何关系推半径,要用近似等(忽略高阶小量)。

环越往外越密

精细度系数

$$F = \frac{4R}{\left(1 - R\right)^2}$$

单界面反射率

$$R = \left(\frac{n - n_0}{n + n_0}\right)^2$$

反射强度(思路:等比数列)

$$I_R = \frac{F \sin^2 \frac{\delta}{2}}{1 + F \sin^2 \frac{\delta}{2}} I_0, \quad \gamma = 1$$

$$I_T = \frac{1}{1 + F \sin^2 \frac{\delta}{2}} I_0, \quad \gamma = \frac{F}{2 + F} = \frac{2R}{1 + R^2}$$

法布里-玻罗

$$\Delta\theta = \frac{\lambda}{2\pi n h \sin \theta} \frac{1 - R}{\sqrt{R}}$$

$$\Delta \lambda = \frac{\lambda}{m\pi} \frac{1 - R}{\sqrt{R}}$$

$$R_c = \frac{\lambda}{\Delta \lambda}$$

15.薄膜干涉

反射率

$$R = \frac{\left(n_0 - n_2\right)^2 \cos^2 \frac{\delta}{2} + \left(\frac{n_0 n_2}{n_1} - n_1\right)^2 \sin^2 \frac{\delta}{2}}{\left(n_0 + n_2\right)^2 \cos^2 \frac{\delta}{2} + \left(\frac{n_0 n_2}{n_1} + n_1\right)^2 \sin^2 \frac{\delta}{2}}$$

$$\bullet \quad \sin\frac{\delta}{2} = 0, \ R = R_0$$

既不增透也不增反

•
$$\cos \frac{\delta}{2} = 0$$

$$R = \left(\frac{n_0 n_2 - n_1^2}{n_0 n_2 + n_1^2}\right)^2, \quad R = 0, n_1 = \sqrt{n_0 n_2}$$

- 当 n1=n0 或 n1=n2 时,相当于不镀膜
- 当 n0<n1<n2 时,R<R0,具有增透作用
- 当 n0<n1>n2 时,R>R0,具有增反作用

附加 利用等效界面和等效折射率的概念可将多层膜转换成单层膜处理

$$n_e = \frac{n_1^2}{n_2}$$

$$R_{2N} = \left(\frac{n_a - n_g \left(\frac{n_H}{n_L}\right)^{2N}}{n_a + n_g \left(\frac{n_H}{n_L}\right)^{2N}}\right)^2 = \left(\frac{\frac{n_a}{n_g} - \left(\frac{n_H}{n_L}\right)^{2N}}{\frac{n_a}{n_g} + \left(\frac{n_H}{n_L}\right)^{2N}}\right)^2 \Rightarrow 1$$

Lecture 5

衍射

衍射引论

傍轴条件:

倾斜因子 $\frac{1}{2}(\cos\theta_0 + \cos\theta) \approx 1$

球面次波函数 $\frac{1}{r}e^{\mathrm{i}kr} \approx \frac{1}{r_0}e^{\mathrm{i}kr}$

$$\widetilde{U}(P) = \frac{-\mathrm{i}}{\lambda r_0} \iint_{(\Sigma_0)} \widetilde{U_0}(Q) e^{\mathrm{i}kr} dS$$

菲涅尔衍射	单缝夫琅禾费衍	圆孔夫琅禾费衍射	一维矩孔的夫琅禾费衍	多缝夫琅禾费衍射
	射		 射 	
$\frac{1}{R} + \frac{1}{b} = k \frac{\lambda}{\rho^2}$	$I(\theta) = I_0 \left(\frac{\sin \alpha}{\alpha}\right)^2$	$I(\theta) = I_0 \left(\frac{2J_1(x)}{x}\right)^2$	$I(\theta) = i_0 \left(\frac{\sin \alpha}{\alpha}\right)^2 \left(\frac{\sin \beta}{\beta}\right)^2$	$I(\theta) = i_0 \left(\frac{\sin \alpha}{\alpha}\right)^2 \left(\frac{\sin N\beta}{\sin \beta}\right)^2$
$\rho_1 = \sqrt{\frac{Rb\lambda}{R+b}}$	半角宽度	$x = \frac{2\pi a \sin \theta}{\lambda}$	$\alpha = \frac{\pi a \sin \theta}{\lambda}$	主极大与光栅方程
	$\Delta\theta_0 = \frac{\lambda}{a}$	$=\frac{\pi D\sin\theta}{\lambda}$	$\beta = \frac{\pi b \sin \theta}{\lambda}$	$\beta = m\pi \Rightarrow \sin \theta = \frac{m\lambda}{d}$
		Airy Disk		
		$I_0 = \left(\frac{\pi a^2}{\lambda f}\right)^2 A^2$		
$\rho_k = \sqrt{k}\rho_1$		$x_0 = 1.22\pi \Rightarrow \Delta\theta_0$ $\approx \frac{1.22\lambda}{D}$	$\Delta\theta_k = \frac{\lambda}{D\cos\theta_k}$	

矢量图解?

Rayleigh criterion(可分辨)

$$\delta\theta > \Delta\theta_0 \approx \frac{d}{f}$$

$$M = \frac{f_0}{f_e}$$

最小分辨角

$$\delta\theta_{
m m} pprox rac{1.22\lambda}{D_{
m o}}$$

有效放大率

$$M_{\rm eff} = \frac{\delta \theta_{\rm e}}{\delta \theta_{\rm m}} = \frac{D_o}{D_e}$$

显微镜可分辨的最小线度

$$\delta y_{\rm m} \approx 0.61 \frac{\lambda_0}{n_0 \sin u_0} = 0.61 \frac{\lambda_0}{\rm N.\,A.}$$

N.A. numerical aperture

$$D_{\theta} = \frac{\delta \theta}{\delta \lambda} = \frac{k}{d \cos \theta_k}$$

衍射巴比涅原理(Babinet Principle)

透光率互补

$$\tilde{\boldsymbol{U}}_{\boldsymbol{a}}(P) + \tilde{\boldsymbol{U}}_{\boldsymbol{b}}(P) = \tilde{\boldsymbol{U}}_{\boldsymbol{0}}(P)$$

半波带法

 $\frac{\lambda}{n}$ 片波晶片厚度

$$d_m = \frac{\lambda}{n\Delta n}$$

$$\Delta\theta_k = \frac{\lambda}{Nd\cos\theta_k}$$