Roll Number:	Name:
Thapar Institute of	Engineering and Technology, Patiala
Department of Election	ronics and Communication Engineering
END SI	EMESTER EXAMINATION
B. E. (2 nd -Year):	Course Code: UEC404
(ENC & ECE)	Course Name: Signals & Systems
Date: 06-06-2022	Time: 11:15-1:15 PM
Time: 2 Hours, M. Marks: 25	Name of Faculty: Dr. Kulbir Singh, Dr Amit
	Kumar Kohli, Dr. Sanjay Kumar, Dr. Bharat
	Garg, Dr. Pravindra Kumar

Note: Attempt all five questions. All questions carry equal marks. Assume missing data, if any, suitably.

Q.1	Determine the z-transform of the following signal	. 5
	$x[n] = \alpha^n u[n] + \beta^n u[n-1]$	
Q.2 _,	Consider $X[z] = \frac{1}{1-az^{-1}}$ with $ z > a $	5
	Obtain $x[n]$ by using the power-series by long division process. Also determine $x[n]$ for $ z < a $.	
Q.3	Let us consider the signal $x[n] = \left(\frac{1}{3}\right)^n sin\left[\frac{\pi}{4}n\right]u[n]$.	5
	Obtain the z-transform $X[z]$ of this signal $x[n]$. Draw the pole-zero diagram and ROC for $X[z]$.	
Q.4	A finite duration sequence of length, L, is given as $x[n] = \begin{cases} 1 & for & 0 \leq n \leq L-1 \\ 0 & otherwise \end{cases}$	5
n .	Determine the N-point DFT of this sequence for $N \ge L$. Consider $L=10$ and $N=100$ for plotting the magnitude and phase of this N-point DFT.	
Q.5	Plot the following for Radix-2: a) Basic butterfly computation in the decimation-in-time FFT algorithm b) Basic butterfly computation in the decimation-in-frequency FFT algorithm	2.5 2.5