

EXERCISE 11.4

Question 1:

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $\frac{x^2}{16} - \frac{y^2}{9} = 1$

Ans

The given equation is $\frac{x^2}{16} - \frac{y^2}{9} = 1$ or $\frac{x^2}{4^2} - \frac{y^2}{3^2} = 1$.

On comparing this equation with the standard equation of hyperbola i.e., $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, we obtain a = 4 and b = 3.

We know that $a^2 + b^2 = c^2$.

$$\therefore c^2 = 4^2 + 3^2 = 25$$

$$\Rightarrow c = 5$$

Therefore,

The coordinates of the foci are (±5, 0).

The coordinates of the vertices are $(\pm 4, 0)$.

Eccentricity,
$$e = \frac{c}{a} = \frac{5}{4}$$

Length of latus rectum =
$$\frac{2b^2}{a} = \frac{2 \times 9}{4} = \frac{9}{2}$$

Question 2:

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $\frac{y^2}{9} - \frac{x^2}{27} = 1$

The given equation is
$$\frac{y^2}{9} - \frac{x^2}{27} = 1$$
 or $\frac{y^2}{3^2} - \frac{x^2}{\left(\sqrt{27}\right)^2} = 1$.

On comparing this equation with the standard equation of hyperbola i.e., $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$, we obtain a=3 and $b=\sqrt{27}$.

We know that $a^2 + b^2 = c^2$.

$$\therefore c^2 = 3^2 + \left(\sqrt{27}\right)^2 = 9 + 27 = 36$$

$$\Rightarrow c = 6$$

Therefore,

The coordinates of the foci are $(0, \pm 6)$.

The coordinates of the vertices are $(0, \pm 3)$.

Eccentricity,
$$e = \frac{c}{a} = \frac{6}{3} = 2$$

Length of latus rectum
$$=$$
 $\frac{2b^2}{a} = \frac{2 \times 27}{3} = 18$

Question 3:

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $9y^2 - 4x^2 = 36$

Ans:

The given equation is $9y^2 - 4x^2 = 36$.

It can be written as

$$9y^2 - 4x^2 = 36$$

Or,
$$\frac{y^2}{4} - \frac{x^2}{9} = 1$$

Or,
$$\frac{y^2}{2^2} - \frac{x^2}{3^2} = 1$$
 ...(1)

On comparing equation (1) with the standard equation of hyperbola i.e., $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$, we

obtain a = 2 and b = 3.

We know that $a^2 + b^2 = c^2$.

$$c^2 = 4 + 9 = 13$$

$$\Rightarrow c = \sqrt{13}$$

Therefore,

The coordinates of the foci are $\left(0, \pm \sqrt{13}\right)$.

The coordinates of the vertices are $(0, \pm 2)$.

Eccentricity,
$$e = \frac{c}{a} = \frac{\sqrt{13}}{2}$$

Length of latus rectum =
$$\frac{2b^2}{a} = \frac{2 \times 9}{2} = 9$$

Question 4:

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $16x^2 - 9y^2 = 576$

The given equation is $16x^2 - 9y^2 = 576$.

It can be written as

$$16x^2 - 9y^2 = 576$$

$$\Rightarrow \frac{x^2}{36} - \frac{y^2}{64} = 1$$

$$\Rightarrow \frac{x^2}{6^2} - \frac{y^2}{8^2} = 1 \qquad \dots (1)$$

On comparing equation (1) with the standard equation of hyperbola i.e., $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, we

We know that $a^2 + b^2 = c^2$.

$$\therefore c^2 = 36 + 64 = 100$$
$$\Rightarrow c = 10$$

Therefore,

The coordinates of the foci are (±10, 0).

The coordinates of the vertices are $(\pm 6, 0)$.

Eccentricity,
$$e = \frac{c}{a} = \frac{10}{6} = \frac{5}{3}$$

Length of latus rectum =
$$\frac{2b^2}{a} = \frac{2 \times 64}{6} = \frac{64}{3}$$

Question 5:

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $5y^2 - 9x^2 = 36$

$$\Rightarrow \frac{y^2}{\left(\frac{36}{5}\right)} - \frac{x^2}{4} = 1$$

$$\Rightarrow \frac{y^2}{\left(\frac{6}{\sqrt{5}}\right)^2} - \frac{x^2}{2^2} = 1 \qquad \dots(1)$$

On comparing equation (1) with the standard equation of hyperbola i.e., $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$, we

obtain
$$a = \frac{6}{\sqrt{5}}$$
 and $b = 2$.

We know that
$$a^2 + b^2 = c^2$$
.

$$\therefore c^2 = \frac{36}{5} + 4 = \frac{56}{5}$$

$$\Rightarrow c = \sqrt{\frac{56}{5}} = \frac{2\sqrt{14}}{\sqrt{5}}$$

Therefore, the coordinates of the foci are $\left(0, \pm \frac{2\sqrt{14}}{\sqrt{5}}\right)$

The coordinates of the vertices are $\left(0, \pm \frac{6}{\sqrt{5}}\right)$.

Eccentricity,
$$e = \frac{c}{a} = \frac{\left(\frac{2\sqrt{14}}{\sqrt{5}}\right)}{\left(\frac{6}{\sqrt{5}}\right)} = \frac{\sqrt{14}}{3}$$

Length of latus rectum
$$=$$
 $\frac{2b^2}{a} = \frac{2 \times 4}{\left(\frac{6}{\sqrt{5}}\right)} = \frac{4\sqrt{5}}{3}$

Question 6:

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $49y^2 - 16x^2 = 784$

The given equation is $49y^2 - 16x^2 = 784$.

It can be written as $49y^2 - 16x^2 = 784$

Or,
$$\frac{y^2}{16} - \frac{x^2}{49} = 1$$

Or,
$$\frac{y^2}{4^2} - \frac{x^2}{7^2} = 1$$
 ...(1)

On comparing equation (1) with the standard equation of hyperbola i.e., $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$, we obtain a = 4 and b = 7.

We know that $a^2 + b^2 = c^2$.

$$\therefore c^2 = 16 + 49 = 65$$
$$\Rightarrow c = \sqrt{65}$$

Therefore,

The coordinates of the foci are $(0, \pm \sqrt{65})$.

The coordinates of the vertices are $(0, \pm 4)$.

Eccentricity,
$$e = \frac{c}{a} = \frac{\sqrt{65}}{4}$$

Length of latus rectum =
$$\frac{2b^2}{a} = \frac{2 \times 49}{4} = \frac{49}{2}$$

Question 7:

Find the equation of the hyperbola satisfying the give conditions: Vertices $(\pm 2, 0)$, foci $(\pm 3, 0)$

Ans:

Vertices (±2, 0), foci (±3, 0)

Here, the vertices are on the x-axis.

Therefore, the equation of the hyperbola is of the form $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$.

Since the vertices are $(\pm 2, 0)$, a = 2.

Since the foci are $(\pm 3, 0)$, c = 3.

We know that $a^2 + b^2 = c^2$.

$$\therefore 2^2 + b^2 = 3^2$$

$$b^2 = 9 - 4 = 5$$

Thus, the equation of the hyperbola is $\frac{x^2}{4} - \frac{y^2}{5} = 1$.

Question 8:

Find the equation of the hyperbola satisfying the give conditions: Vertices $(0, \pm 5)$, foci $(0, \pm 8)$

Vertices (0, ±5), foci (0, ±8)

Here, the vertices are on the y-axis.

Therefore, the equation of the hyperbola is of the form $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$.

Since the vertices are $(0, \pm 5)$, a = 5.

Since the foci are $(0, \pm 8)$, c = 8.

We know that $a^2 + b^2 = c^2$.

$$\therefore 5^2 + b^2 = 8^2$$

$$b^2 = 64 - 25 = 39$$

Thus, the equation of the hyperbola is $\frac{y^2}{25} - \frac{x^2}{39} = 1$.

Question 9:

Find the equation of the hyperbola satisfying the give conditions: Vertices $(0, \pm 5)$, foci $(0, \pm 8)$

Ans:

Vertices (0, ±5), foci (0, ±8)

Here, the vertices are on the y-axis.

Therefore, the equation of the hyperbola is of the form $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$.

Since the vertices are $(0, \pm 5)$, a = 5.

Since the foci are $(0, \pm 8)$, c = 8.

We know that $a^2 + b^2 = c^2$.

$$\therefore 5^2 + b^2 = 8^2$$

$$b^2 = 64 - 25 = 39$$

Thus, the equation of the hyperbola is $\frac{y^2}{25} - \frac{x^2}{39} = 1$.

Question 10:

Find the equation of the hyperbola satisfying the give conditions: Foci $(\pm 5, 0)$, the transverse axis is of length 8.

Foci (±5, 0), the transverse axis is of length 8.

Here, the foci are on the x-axis.

Therefore, the equation of the hyperbola is of the form $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$.

Since the foci are $(\pm 5, 0)$, c = 5.

Since the length of the transverse axis is 8, $2a = 8 \square a = 4$.

We know that $a^2 + b^2 = c^2$.

$$4^2 + b^2 = 5^2$$

$$b^2 = 25 - 16 = 9$$

Thus, the equation of the hyperbola is $\frac{x^2}{16} - \frac{y^2}{9} = 1$.

Question 11:

Find the equation of the hyperbola satisfying the give conditions: Foci $(0, \pm 13)$, the conjugate axis is of length 24.

Ans:

Foci $(0, \pm 13)$, the conjugate axis is of length 24.

Here, the foci are on the y-axis.

Therefore, the equation of the hyperbola is of the form $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$.

Since the foci are $(0, \pm 13), c = 13$.

Since the length of the conjugate axis is 24, $2b = 24 \square b = 12$.

We know that $a^2 + b^2 = c^2$.

$$a^2 + 12^2 = 13^2$$

$$a^2 = 169 - 144 = 25$$

Thus, the equation of the hyperbola is $\frac{y^2}{25} - \frac{x^2}{144} = 1$.

Question 12:

Find the equation of the hyperbola satisfying the give conditions: Foci $(\pm 3\sqrt{5},\ 0)$, the latus rectum is of length 8.

Foci $\left(\pm 3\sqrt{5},\ 0\right)$, the latus rectum is of length 8.

Here, the foci are on the x-axis.

Therefore, the equation of the hyperbola is of the form $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$.

Since the foci are $\left(\pm 3\sqrt{5},\ 0\right)$, $c=\pm 3\sqrt{5}$.

Length of latus rectum = 8

$$\Rightarrow \frac{2b^2}{a} = 8$$

$$\Rightarrow b^2 = 4a$$

We know that $a^2 + b^2 = c^2$.

$$a^2 + 4a = 45$$

$$a^2 + 4a - 45 = 0$$

$$a^2 + 9a - 5a - 45 = 0$$

$$(a + 9) (a - 5) = 0$$

$$a = -9, 5$$

Since a is non-negative, a = 5.

$$b^2 = 4a = 4 \times 5 = 20$$

Thus, the equation of the hyperbola is $\frac{x^2}{25} - \frac{y^2}{20} = 1$.

Question 13:

Find the equation of the hyperbola satisfying the give conditions: Foci (± 4 , 0), the latus rectum is of length 12

Foci (±4, 0), the latus rectum is of length 12.

Here, the foci are on the x-axis.

Therefore, the equation of the hyperbola is of the form $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$.

Since the foci are $(\pm 4, 0)$, c = 4.

Length of latus rectum = 12

$$\Rightarrow \frac{2b^2}{a} = 12$$

$$\Rightarrow b^2 = 6a$$

We know that $a^2 + b^2 = c^2$.

$$a^2 + 6a = 16$$

$$a^2 + 6a - 16 = 0$$

$$a^2 + 8a - 2a - 16 = 0$$

$$(a + 8) (a - 2) = 0$$

$$a = -8, 2$$

Since a is non-negative, a = 2.

$$b^2 = 6a = 6 \times 2 = 12$$

Thus, the equation of the hyperbola is $\frac{x^2}{4} - \frac{y^2}{12} = 1$.

Question 14:

Find the equation of the hyperbola satisfying the give conditions: Vertices (±7, 0), $e = \frac{4}{3}$

Vertices (
$$\pm 7, 0$$
), $e = \frac{4}{3}$

Here, the vertices are on the x-axis.

Therefore, the equation of the hyperbola is of the form $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$.

Since the vertices are $(\pm 7, 0)$, a = 7.

It is given that $e = \frac{4}{3}$

$$\therefore \frac{c}{a} = \frac{4}{3} \qquad \left[e = \frac{c}{a} \right]$$

$$e = \frac{c}{a}$$

$$\Rightarrow \frac{c}{7} = \frac{4}{3}$$

$$\Rightarrow c = \frac{28}{3}$$

We know that $a^2 + b^2 = c^2$.

$$\therefore 7^2 + b^2 = \left(\frac{28}{3}\right)^2$$

$$\Rightarrow b^2 = \frac{784}{9} - 49$$

$$\Rightarrow b^2 = \frac{784 - 441}{9} = \frac{343}{9}$$

Thus, the equation of the hyperbola is $\frac{x^2}{49} - \frac{9y^2}{343} = 1$.

Find the equation of the hyperbola satisfying the give conditions: Foci $\left(0,\pm\sqrt{10}\right)$, passing

Foci
$$\left(0, \pm \sqrt{10}\right)$$
, passing through (2, 3)

Here, the foci are on the y-axis.

Therefore, the equation of the hyperbola is of the form $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$.

Since the foci are $\left(0, \pm \sqrt{10}\right)$, $c = \sqrt{10}$.

We know that $a^2 + b^2 = c^2$.

$$a^2 + b^2 = 10$$

$$b^2 = 10 - a^2 \dots (1)$$

Since the hyperbola passes through point (2, 3),

$$\frac{9}{a^2} - \frac{4}{b^2} = 1$$
 ...(2)

From equations (1) and (2), we obtain

$$\frac{9}{a^2} - \frac{4}{(10 - a^2)} = 1$$

$$\Rightarrow 9(10 - a^2) - 4a^2 = a^2(10 - a^2)$$

$$\Rightarrow 90 - 9a^2 - 4a^2 = 10a^2 - a^4$$

$$\Rightarrow a^4 - 23a^2 + 90 = 0$$

$$\Rightarrow a^4 - 18a^2 - 5a^2 + 90 = 0$$

$$\Rightarrow a^2(a^2 - 18) - 5(a^2 - 18) = 0$$

$$\Rightarrow (a^2 - 18)(a^2 - 5) = 0$$

$$\Rightarrow a^2 = 18 \text{ or } 5$$

In hyperbola, c > a, i.e., $c^2 > a^2$

$$a^2 = 5$$

$$b^2 = 10 - a^2 = 10 - 5 = 5$$

Thus, the equation of the hyperbola is $\frac{y^2}{5} - \frac{x^2}{5} = 1$.

******* END ******