CV5100 – MUDE

Modeling, Uncertainty, and Data for Engineers Ch2 – Modelling Concepts

Course instructors:

Prof. Phanisri Pradeep Pratapa Prof. Prakash Singh Badal Prof. Sudheendra Herkal

Department of Civil Engineering

Indian Institute of Technology Madras

1 August 2025

Numerical Modelling, Linear Algebra, Optimization

Week	Lecture/ Practical	Topic
	1	Course overview and Introduction to modelling - classification
1	2	Modelling concepts – Choosing a model, validation, performance
	3	Numerical Modelling – DE, FDM, Taylor series
	4	Practical
	5	Numerical Modelling – Numerical integration
2	6	Numerical Modelling – IVP/BVP for ODE
	7	Numerical Modelling – BVP for ODE numerical methods (accuracy, stability)
	8	Practical
3	9	Numerical Modelling – PDE basics and PDE types, Nabla and Laplacian operations
	10	Numerical Modelling – FEM
	11	Linear Algebra – Vector spaces, span, linear dependence
	12	Practical
4	13	Linear Algebra – Basis, dimension, examples, tensor vs. matrix
	14	Linear Algebra – System of linear equations, matrix form, solution approach - direct
	15	Linear Algebra – Matrix equations, solution approach - iterative
	16	Practical
	17	Linear Algebra – Eigenvalue problem, solution approaches
5	18	Linear Algebra – Complexity and scaling
	19	Optimization – Classification and types of problems
	20	Practical
	21	Optimization – Mathematical formulations and key concepts
6	22	Optimization – Gradient and non-gradient approaches
	23	Optimization – Gradient and non-gradient approaches
	24	Practical

Outline

- Model classification
- Model decisions
- Verificatio vs. Validation
- Goodness of Fit (later..)

https://mude.citg.tudelft.nl/book/2024/modelling/overview.html

What is *Modeling & Simulation*?

Models: Used to understand/explain/predict something

 Theoretical, Mathematical, Numerical, Computational, Statistical, Phenomenological, ...

Simulation: Re-creating a system, (or) a process, (or) a phenomenon, (or) a problem by using a model.

e. g. A computer simulation of a car crash is based on the mathematical model that is used to represent the structural behavior of the chassis.

Examples of Modeling & Simulation

Weather forecast

Financial Engineering

Atomic/Molecular interactions

Thermal analysis ————

Structural analysis

Model Classification

- Conceptual Models high level abstraction
 - e.g. Visual representation of a framework, graphical or causal loop diagrams
- **Mechanistic Models** first principle based, mathematical
 - o e.g. Newton's laws, elastic spring model
- Phenomenological Models experimental observations + mathematical/mechanics
 - \circ e.g. drag force formula using drag coefficient $F_D = \frac{1}{2} \rho v^2 C_D A$
- Data-based Only based on observed data
 - o e.g. Forces on a wall due to waves

Model – Trade offs

- Affordability and accuracy: cheap and functional models, but with a limited scope. i.e., potentially lacking
 in complexity
- Accuracy and complexity: very realistic models, but prohibitively expensive. i.e., not affordable
- Complexity and affordability: the unicorn icon might speak for itself difficult to achieve! i.e., its almost
 impossible to get an amazing model on a budget, that also accurately shows us what we need!

Model decisions

Dynamic vs. Static models

- Dynamic equilibrium equation

Linear vs. Non-linear models

- Superposition; Initial conditions

 Time-invariant vs. Timevariant models

- Life cycle behavior; Climate change; Temporary structures

Deterministic vs.
 Stochastic models

 Concrete cube strength; Steel elastic modulus; Dimension measurement

Verification vs. Validation

- Verification is the process of checking whether the model is correctly implemented with respect to the original conceptual model. It should answer the question: Have we built the model right?
- e.g. You want to model a truss structure. You model it as a 2D (plane) truss. Verify the accuracy. How? By checking for errors in calculations (or) using alternative methods to arrive at the same solution values, for the 2D truss that you modeled.

- Validation is the process of testing the ability of the model in answering the research questions as best as possible. It should answer the question: Have we built the right model?
- e.g. You want to model a truss structure. You realize that the structure needs a 3D model and the 2D model is not correct representation (for example, if you consider lateral restraint or buckling effects). This needs a fundamental change in the model so that you use the "right model".

Which of the two models is valid?

Consider two models for some real structure.

Depends on the aspect of interest? (e.g. natural frequency, deformations)