Laboratório 3

Números e Displays

Este é um exercício para projetos de circuitos combinatórios que podem executar conversão de números binários em decimal e adição em números BCD (*binary-coded-decimal*).

Parte I

Desejamos mostrar no display de 7 segmentos HEX3 até HEX0 os valores das chaves SW_{15-0} . Mostre os valores representados pelas chaves SW_{15-12} , SW_{11-8} , SW_{7-4} e SW_{3-0} nos displays HEX3, HEX2, HEX1 e HEX0, respectivamente. Seu circuito deve ser capaz de mostrar os dígitos de 0 a 9, e deve tratar as entradas de 1010 a 1111 como estados de don't-care.

- 1. Crie um novo projeto Quartus II para este circuito.
- 2. Escreva um arquivo VHDL que execute a funcionalidade necessária.
- 3. Compile e teste o circuito.

Parte II

Você deve projetar um circuito que converte um número binário de quatro bits $V=v_3v_2v_1v_0$ em seu decimal equivalente $D=d_1d_0$. A Tabela 1 mostra a saída necessária. Um projeto parcial deste circuito é mostrado na Figura 1. Ele inclui um comparador que checa quando o valor de V é maior que 9, e usa a saída deste comparador para controlar os displays de 7 segmentos. Você deve completar o projeto deste circuito criando uma entidade em VHDL que inclua o comparador, multiplexadores, o circuito A o circuito B e o decodificador de 7 segmentos. O objetivo deste exercício é usar simples atribuições em VHDL para especificar a função lógica utilizando expressões Booleanas. Assim sendo, seu código VHDL não deve incluir nenhuma cláusula de IF-ELSE, CASE, ou expressões similares, **salvo aquelas utilizadas para a realização da parte I**.

Binary value	Decimal digits	
0000	0	0
0001	0	1
0010	0	2
1001	0	9
1010	1	0
1011	1	1
1100	1	2
1101	1	3
1110	1	4
1111	1	5

Tabela 1. Valores de Conversão Binária para Decimal.

Execute os seguintes passos:

- 1. Crie um novo projeto Quartus II para esta entidade.
- 2. Inclua o circuito B da Figura 1 bem como o decodificador de 7 segmentos. Use como entrada e saída do seu código as chaves SW_{3-0} para representar o número V, e os displays HEX1 e HEX0 para mostrar os dígitos decimais d_1 e d_0 .
- 3. Compile e teste o circuito.

4. Apresente esta parte para o professor.

Figura 1: Projeto parcial do circuito de conversão binário para decimal.