Introduction to Machine Learning - Generative Approach

The 8th KIAS CAC Summer School 2017. 7. 30 (Fri.)

Yung-Kyun Noh

Seoul National University

<u>Overview</u>

- Motivation from the classification perspective
- Independence and model complexity
- How to incorporate independency while the model structure is kept intact as much as possible
- Directed graphical model and undirected graphical model

Probabilistic Assumption and Bayes Classification

Bayes classification produces theoretical minimum error

Generative Model

- Generative method for classification
 - Perform the Bayes classification
 - But we now use model instead of true underlying distribution

 Bayes classification now uses model with estimated parameters, which is not true density, but is now considered as true density.

When do Algorithms Malfunction?

Generalization and Overfitting

Complexity of Algorithms

- Statistical learning theory for classification
 - with probability at least 1δ
 - h: VC-dimension, n: number of data
 - -R(g): true risk of function g, $R_n(g)$: empirical risk of function g

$$R(g) \le R_n(g) + 2\sqrt{2\frac{h\log(2en/h) + \log(2/\delta)}{n}}$$

- Linear classifier
 - VC-dim = dimensionality + 1
- Generative model
 - Number of parameters

Model + Estimated Parameters

Ex. Gaussian model

$$\widehat{p}_1(\mathbf{x}_p) \ge \widehat{p}_2(\mathbf{x}_p) \to y_p = 1$$

 $\widehat{p}_1(\mathbf{x}_p) < \widehat{p}_2(\mathbf{x}_p) \to y_p = 2$

Model + Estimated Parameters

Ex. Gaussian model

$$\widehat{p}(\mathbf{x}) = \mathcal{N}(\widehat{\mu}, \widehat{\Sigma}) \qquad \mathbf{x}, \widehat{\mu} \in \mathbb{R}^D, \ \widehat{\Sigma} \in \mathbb{R}^{D \times D}$$

$$= \frac{1}{\sqrt{2\pi^D} |\widehat{\Sigma}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2} (\mathbf{x} - \widehat{\mu})^{\top} \widehat{\Sigma}^{-1} (\mathbf{x} - \widehat{\mu})^{\top}\right)$$

Unbiased estimators

$$\widehat{\mu} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i} \qquad \widehat{\Sigma} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{i} - \widehat{\mu}) (\mathbf{x}_{i} - \widehat{\mu})^{\top}$$

Unbiased Estimation

Consistency

Theory: Cramer-Rao bound

Minimum variance of covariance estimator: σ^2/n

Covariance Estimation

In high-dimensional space

$$\Sigma_{D imes D} = \left(egin{array}{ccccc} \sigma_{1}^{2} & \sigma_{12} & \sigma_{13} & \dots & \sigma_{1D} \\ \sigma_{21} & \sigma_{2}^{2} & & & dots \\ dots & & \ddots & & dots \\ dots & & \ddots & & \sigma_{ij} \end{array} \right)$$

(D + 1)D/2 number of parameters for covariances

Number of Parameters

• D = 1000

– Number of parameters of a Gaussian:

1000 + 1001*(1000)/2 = 501,500

<u>Independence</u>

•
$$p(\mathbf{x}) = p_1(\mathbf{x}_1)p_2(\mathbf{x}_2)$$

 $\mathbf{x} \in \mathbb{R}^D, \mathbf{x}_1 \in \mathbb{R}^{D_1}, \mathbf{x}_2 \in \mathbb{R}^{D_2}$ $D = D_1 + D_2$

- $D_1 = 500$, $D_2 = 500$
 - Number of parameters

$$500 + 501*(500)/2 + 500 + 501*(500)/2$$

= 251,500

 Incorporating one independence can reduce the number of parameters into half.

Naïve Bayes As An Extreme Case

Naïve Bayes

$$p(\mathbf{x}) = \prod_{d=1}^{D} p_d(x_d)$$

= $p_1(x_1)p_2(x_2) \dots p_D(x_D)$

- Simply ignore every correlation and dependencies between variables
- True decomposition:

$$p(\mathbf{x}) = p(x_1)p(x_2|x_1)p(x_3|x_1, x_2) \dots p(x_D|x_1, \dots, x_{D-1})$$

Graphical Models

 We utilize probabilities that are represented by the graph structure. (directed & undirected)

Use probabilisic *independencies* and *conditional independencies* that can be captured by graph structure

Causality Graph

Directed Acyclic Graph (DAG)

Question?

What is the difference between two graphs?

D-Separations

Causal path

$$X_2 \perp \!\!\! \perp X_3 | X_1$$

Common cause

$$X_1 \perp \!\!\! \perp X_2$$

$$X_1 \not\perp \!\!\! \perp X_2 | X_3$$

Common effect

 X_3

Want to get a good reference letter?

D: Difficulty

I: Intelligence

G: Grade

S: *SAT*

L: Reference Letter

$$I \perp \!\!\! \perp L|G$$

$$G \perp \!\!\! \perp S|I$$

$$D \perp \!\!\! \perp I$$

$$D \not\perp \!\!\!\perp I|G$$

Infant Rearing

Bayes Ball Theorem

Markov Random Field

Undirected Graph

If there is a direct edge between X_i and X_j :

$$X_i \not\perp \!\!\! \perp X_j | X_{\setminus i,j}$$

If there is no direct edge between X_i and X_i :

$$X_i \perp \!\!\!\perp X_j | X_{i,j}$$

$$X_1 \not\perp \!\!\! \perp X_3 | X_2, X_4, X_5$$

 $X_1 \perp \!\!\! \perp X_5 | X_3$

Joint Distribution

Product of functions on cliques

$$P(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}) = \frac{1}{Z} \psi_{1,2}(X_{1}, X_{2}) \psi_{1,3}(X_{1}, X_{3}) \psi_{3,4,5}(X_{3}, X_{4}, X_{5})$$

$$\left(Z = \sum_{X_{1}, X_{2}, X_{3}, X_{4}, X_{5}} \psi_{1,2}(X_{1}, X_{2}) \psi_{1,3}(X_{1}, X_{3}) \psi_{3,4,5}(X_{3}, X_{4}, X_{5})\right)$$

The set of distributions satisfying MRF conditions (Markov random field)

= The set of distributions decomposed by cliques (Gibbs random field)

(Hammersley-Clifford Theorem)

More Fancy Models

Latent Variable Model

Filtering

Topic Models

Topics

gene 0.04 dna 0.02 genetic 0.01

life 0.02 evolve 0.01 organism 0.01

brain 0.04 neuron 0.02 nerve 0.01

data 0.02 number 0.02 computer 0.01

Documents

Topic proportions and assignments

$$p(\beta_{1:K}, \theta_{1:D}, z_{1:D}, w_{1:D}) = \prod_{i=1}^{K} p(\beta_i) \prod_{d=1}^{D} p(\theta_d) \left(\prod_{n=1}^{N} p(z_{d,n} | \theta_d) p(w_{d,n} | \beta_{1:K}, z_{d,n}) \right)$$

Topic Models

NIPS 2012 papers

(in nicer format than this) maintained by @karpathy source code on github

> Below every paper are TOP 100 most-occurring words in that paper and their color is based on LDA topic model with k = 7. (It looks like 0 = theory, 1 = reinforcement learning, 2 = graphical models, 3 = deep learning/vision, 4 = optimization, 5 = neuroscience, 6 = embeddings etc.)

Toggle LDA topics to sort by: TOPIC0 TOPIC1 TOPIC2 TOPIC5 TOPIC3 TOPIC6

Discriminatively Trained Sparse Code Gradients for Contour Detection

Ren Xiaofeng, Liefeng Bo

[pdf] [bibtex] [supplementary] [rank by tf-idf similarity to this] [abstract]

[set, algorithm, including] [average, approach, benchmark, evaluation] [comparing, normal, hierarchical] [contour, gpb, local, detection, depth, scg, color, image, oriented, matching, contrast, object, grayscale, precision, recognition, transform, work, learned, pooling, pixel, representation, double, global, learn, accuracy, scale, level, segmentation, figure, feature, nyu, globalization, scene, training, rich, single, automatically, apply, discriminative, codewords, ieee, half, directly, unsupervised, higher, chromaticity] [sparse, dictionary, gradient, pursuit, size, spectral, analysis, edge, step, sparsity] [power, coding, surface, natural] [code, learning, linear, data, orthogonal, dataset, svm, large, better, table, well, datasets

Deep Learning of Invariant Features via Simulated Fixations in Video

Will Zou, Andrew Ng, Shenghuo Zhu, Kai Yu

[pdf] [bibtex] [supplementary] [rank by tf-idf similarity to this] [abstract]

GAUSSIAN DENSITY FUNCTION

Gaussian Random Variable

$$p(\mathbf{x}) = \frac{1}{\sqrt{2\pi^D} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu)^{\top} \Sigma^{-1}(\mathbf{x} - \mu)\right)$$

$$\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_D \end{pmatrix} \in \mathbb{R}^D$$

$$Principal \ axes \ are \ the \ eigenvector \ directions \ of \ \Sigma$$

$$\Sigma \ \mathbf{u}_i = \lambda_i \mathbf{u}_i$$

$$\Sigma \mathbf{u}_i = \lambda_i \mathbf{u}_i$$

Gaussian Random Variable - Projection

$$p(\mathbf{x}) = \frac{1}{\sqrt{2\pi^D} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu)^{\top} \Sigma^{-1}(\mathbf{x} - \mu)\right)$$

Projection to any direction is Gaussian.

$$\mu' = \mathbf{w}^{\top} \mu$$

$$\Sigma' = \mathbf{w}^{\top} \Sigma \mathbf{w}$$

Gaussian Random Variable - Marginal

$$p(\mathbf{x}) = \frac{1}{\sqrt{2\pi^D} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu)^{\top} \Sigma^{-1}(\mathbf{x} - \mu)\right)$$
$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_a \\ \mathbf{x}_b \end{pmatrix} \quad \mathbf{x}_a \in \mathbb{R}^{D_a} \quad \mu = \begin{pmatrix} \mu_a \\ \mu_b \end{pmatrix} \quad \Sigma = \begin{pmatrix} \Sigma_a & \Sigma_{ab} \\ \Sigma_{ba} & \Sigma_b \end{pmatrix}$$

Gaussian Random Variable - Conditional

$$p(\mathbf{x}) = \frac{1}{\sqrt{2\pi^D} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu)^{\top} \Sigma^{-1}(\mathbf{x} - \mu)\right)$$

$$\mathbf{x} = egin{pmatrix} \mathbf{x}_a \ \mathbf{x}_b \end{pmatrix} \quad \mathbf{x}_a \in \mathbb{R}^{D_a} \ \mathbf{x}_b \in \mathbb{R}^{D_b}$$

$$p(\mathbf{x}_a|\mathbf{x}_b) = \mathcal{N}(\mu_{a|b}, \Sigma_{a|b})$$

$$\begin{cases} \mu_{a|b} = \mu_a + \Sigma_{ab} \Sigma_b^{-1} (\mathbf{x}_b - \mu_b) \\ \Sigma_{a|b} = \Sigma_a - \Sigma_{ab} \Sigma_b^{-1} \Sigma_{ba} \end{cases}$$

KALMAN FILTER

Filtering

 Hidden Markov Models (HMM) /Linear Dynamical Systems (LDS)

$$p(y_1, \dots, y_K, x_1, \dots, x_K) = p(x_1)p(y_1|x_1) \prod_{t=1}^{K-1} p(x_{t+1}|x_t)p(y_t|x_t)$$

HMM

$$p(x_1 = j) = \pi_j$$
$$p(x_{t+1}|x_t) = T_{ij}$$
$$p(y_t|x_t) = A_j(y)$$

LDS

$$x_{t+1} = Ax_t + Gw_t \quad w_t \sim \mathcal{N}(0, Q)$$
$$y_t = Cx_t + v_t \qquad v_t \sim \mathcal{N}(0, R)$$

$$x_{t+1} = Ax_t + Gw_t$$

$$w_t \sim \mathcal{N}(0, Q)$$

$$y_t = Cx_t + v_t$$

$$v_t \sim \mathcal{N}(0, R)$$

"Conditional marginalization" Marginalization from the left

Unconstrained distribution

$$\xrightarrow{x_0} \xrightarrow{A} \xrightarrow{x_1} \xrightarrow{A} \xrightarrow{x_2} \dots \xrightarrow{x_T}$$

$$\mu_{t+1} = 0$$

$$\Sigma_{t+1} = \mathbb{E}[x_{t+1}x_{t+1}^{\top}] = \mathbb{E}[(Ax_t + Gw_t)(Ax_t + Gw_t)^{\top}]$$

$$= A\mathbb{E}[x_tx_t^{\top}]A^{\top} + G\mathbb{E}[w_tw_t^{\top}]G^{\top}$$

$$= A\Sigma_tA^{\top} + GQG^{\top}$$
Also, for join

Also, for joint density if necessary

$$\mathbb{E}[x_t x_{t+1}^\top] = \Sigma_t A^\top$$

Unconstrained distribution

$$\begin{pmatrix}
\mu_0 \\
\mu_1 \\
\mu_{y_0}
\end{pmatrix}$$

$$\begin{pmatrix} \Sigma_0 & \Sigma_{01} & \Sigma_{0y_0} \\ \Sigma_{10} & \Sigma_1 & \Sigma_{1y_0} \\ \Sigma_{y_00} & \Sigma_{y_01} & \Sigma_{y_0} \end{pmatrix}$$

Constrained distribution

Marginalizing x_0

$$\left(\begin{array}{c} \mu_1 \\ \mu_{y_0} \end{array}\right)$$

$$\left(\begin{array}{ccc} \Sigma_1 & \Sigma_{1y_0} \\ \Sigma_{y_01} & \Sigma_{y_0} \end{array}\right)$$

$$\begin{pmatrix} \mu_1 \\ \mu_{y_0} \end{pmatrix}$$

$$\begin{pmatrix} \Sigma_1 & \Sigma_{1y_0} \\ \Sigma_{y_01} & \Sigma_{y_0} \end{pmatrix}$$

$$= \mu_1 + \sum_{1y_0} \sum_{y_0}^{-1} (y_0 - \mu_{y_0})$$

$$= \Sigma_{1|0} = \sum_{x_1|y_0} \sum_{y_0}^{-1} \sum_{y_0} \sum_{y_0}^{-1} \sum_{y_0}$$

Same

$$\Sigma_{1|0} = \Sigma_{x_1|y_0}$$

$$= \Sigma_1 + \Sigma_{1y_0} \Sigma_{y_0}^{-1} \Sigma_{y_0 1}$$

 Σ_{y_0} and Σ_1 are from unconstrained distribution. What matters is Σ_{1y_0} .

Marginalizing
$$x_1, \dots x_{T-1}$$

$$\left(egin{array}{c} \mu_{T} \ \mu_{y_0} \end{array}
ight)$$

$$\left(\begin{array}{cc} \Sigma_T & \Sigma_{Ty_0} \\ \Sigma_{y_0T} & \Sigma_{y_0} \end{array}\right)$$

$$\mu_{T|0} = \mu_T + \sum_{Ty_0} \sum_{y_0}^{-1} (y_0 - \mu_{y_0})$$

$$\sum_{T|0} = \sum_T - \sum_{Ty_0} \sum_{y_0}^{-1} \sum_{y_0} T$$

Filtering

$$\widehat{x}_{t|t} = \mathbb{E}[x_t|y_0, \dots, y_t]$$

$$P_{t|t} = \mathbb{E}[(x_t - \widehat{x}_{t|t})(x_t - \widehat{x}_{t|t})^\top | y_0, \dots, y_t]$$

"Conditional marginalization" Marginalization from the left

$$\widehat{x}_{t|t} \& P_{t|t} \longrightarrow \widehat{x}_{t+1|t+1} \& P_{t+1|t+1}$$

Why filtering? Once we know $\hat{x}_{t|t} \& P_{t|t}$, we don't have to know (or keep) y_0, \ldots, y_t .

Time update

$$p(x_t|y_0,\ldots,y_t) \to p(x_{t+1}|y_0,\ldots,y_t)$$

Measurement update

$$p(x_{t+1}|y_0,\ldots,y_t)\to p(x_{t+1}|y_0,\ldots,y_t,y_{t+1})$$

Time update

$$\widehat{x}_{t+1|t} = A\widehat{x}_{t|t} P_{t+1|t} = \mathbb{E}[(x_{t+1} - \widehat{x}_{t+1|t})(x_{t+1} - \widehat{x}_{t+1|t})^{\top} | y_0, \dots, y_t] = \mathbb{E}[(Ax_t + Gw_t - A\widehat{x}_{t|t})(Ax_t + Gw_t - A\widehat{x}_{t|t})^{\top} | y_0, \dots, y_t] = AP_{t|t}A^{\top} + GQG^{\top}$$

$$\mathbb{E}[y_{t+1}|y_0,\dots,y_t] = \mathbb{E}[Cx_{t+1} + v_{t+1}|y_0,\dots,y_t] = C\widehat{x}_{t+1|t}$$

$$\mathbb{E}[(y_{t+1} - \widehat{y}_{t+1|t})(y_{t+1} - \widehat{y}_{t+1|t})^{\top} | y_0, \dots, y_t]$$

$$= \mathbb{E}[(Cx_{t+1} + v_{t+1} - C\widehat{x}_{t+1|t})(Cx_{t+1} + v_{t+1} - C\widehat{x}_{t+1|t})^{\top} | y_0, \dots, y_t]$$

$$= CP_{t+1|t}C^T + R$$

Also,

$$\mathbb{E}[(y_{t+1} - \widehat{y}_{t+1|t})(x_{t+1} - \widehat{x}_{t+1|t})^{\top} | y_0, \dots, y_t]$$

$$= \mathbb{E}[(Cx_{t+1} + v_{t+1} - C\widehat{x}_{t+1|t})(x_{t+1} - \widehat{x}_{t+1|t})^{\top} | y_0, \dots, y_t]$$

$$= CP_{t+1|t}$$

Joint:

$$p(x_{t+1}, y_{t+1} | y_0, \dots, y_t) = \mathcal{N}\left(\begin{pmatrix} \widehat{x}_{t+1|t} \\ C\widehat{x}_{t+1|t} \end{pmatrix}, \begin{pmatrix} P_{t+1|t} & P_{t+1|t}C^{\top} \\ CP_{t+1|t} & CP_{t+1|t}C^{\top} + R \end{pmatrix}\right)$$

Measurement update (Conditional density)

$$p(x_{t+1}|y_0,\ldots,y_{t+1}) = \mathcal{N}(\widehat{x}_{t+1|t+1},P_{t+1|t+1})$$

$$\begin{cases}
\widehat{x}_{t+1|t+1} = \widehat{x}_{t+1|t} + P_{t+1|t} C^{\top} (CP_{t+1|t} C^{\top} + R)^{-1} (y_{t+1} - C\widehat{x}_{t+1|t}) \\
P_{t+1|t+1} = P_{t+1|t} - P_{t+1|t} C^{\top} (CP_{t+1|t} C^{\top} + R)^{-1} CP_{t+1|t}
\end{cases}$$

• Sum - ups

$$\widehat{x}_{t+1|t} = A\widehat{x}_{t|t}$$

$$P_{t+1|t} = AP_{t|t}A^{\top} + GQG^{\top}$$

$$\widehat{x}_{t+1|t+1} = \widehat{x}_{t+1|t} + P_{t+1|t}C^{\top}(CP_{t+1|t}C^{\top} + R)^{-1}(y_{t+1} - C\widehat{x}_{t+1|t})$$

$$P_{t+1|t+1} = P_{t+1|t} - P_{t+1|t}C^{\top}(CP_{t+1|t}C^{\top} + R)^{-1}CP_{t+1|t}$$

With different notation,

$$K_{t+1} \equiv P_{t+1|t} C^{\top} (C P_{t+1|t} C^{\top} + R)^{-1}$$
$$\widehat{x}_{t+1|t+1} = \widehat{x}_{t+1|t} + K_{t+1} (y_{t+1} - C \widehat{x}_{t+1|t})$$

Alternative form of K_{t+1}

$$K_{t+1} = P_{t+1|t}C^{\top}(CP_{t+1|t}C^{\top} + R)^{-1}$$

$$= (P_{t+1|t}^{-1} + C^{\top}RC)^{-1}C^{\top}R^{-1}$$

$$= (P_{t+1|t} + P_{t+1|t}C^{\top}(CP_{t+1|t}C^{\top} + R)^{-1}CP_{t+1|t})C^{\top}R^{-1}$$

$$= P_{t+1|t+1}C^{\top}R^{-1}$$

<u>Independency</u>

Correlation and Independency

$$p(\mathbf{x}_a, \mathbf{x}_b) = p(\mathbf{x}_a)p(\mathbf{x}_b)$$

Independency in Gaussian means no correlation

Naïve Bayes? Mixture of Gaussian?

Conditional Independency

$$p(\mathbf{x}_a, \mathbf{x}_b) = p(\mathbf{x}_a)p(\mathbf{x}_b)$$
vs.
$$p(\mathbf{x}_a, \mathbf{x}_b | \mathbf{x}_c) = p(\mathbf{x}_a | \mathbf{x}_c)p(\mathbf{x}_b | \mathbf{x}_c)$$

Factorization of a (large) joint pdf

 For given data, make a model for each decomposed probability, then estimate parameters separately.

Naïve Bayes for Classification

$$P(X,Y) = P(Y)P(X_1|Y) \dots P(X_D|Y)$$

Find all maximal cliques:

Potential functions on cliques

$$\Psi_1(X_1), \Psi_2(X_2), \dots$$
 (X_I, X_2, \dots : maximal cliques)

$$P(X) = \frac{1}{Z}\Psi_1(X_1)\Psi_2(X_2)\cdots\Psi_C(X_C)$$

$$\begin{cases} Z = \sum_{X_1, X_2, \cdots, X_D} \Psi_1(X_1) \cdots \Psi_C(X_C) & \textit{Discrete} \\ Z = \int_{X_1, X_2, \cdots, X_D} \Psi_1(X_1) \cdots \Psi_C(X_C) dX_1 \cdots X_C \\ & Continuous \end{cases}$$

Partition function

$$Z = \sum_{X_1, X_2, X_3, X_4} \Psi_{X_1, X_2, X_3}(X_1, X_2, X_3) \Phi_{X_3, X_4}(X_3, X_4)$$

$$= \Psi_{X_1, X_2, X_3}(1, 1, 1) \Phi_{X_3, X_4}(1, 1) + \Psi_{X_1, X_2, X_3}(1, 1, 1) \Phi_{X_3, X_4}(1, 0) + \dots$$

$$= 2 \cdot 1 + 2 \cdot 0 + \dots = 2 + 3 + 2 + 3 = 10$$

$$\text{Ex.} \quad P(1, 0, 0, 0) = \frac{1}{Z} \Psi_{X_1, X_2, X_3}(1, 0, 0) \Phi_{X_3, X_4}(0, 0) = \frac{1}{10} \cdot 1 \cdot 3 = \frac{3}{10}$$

Estimating Parameters

2-cliques

$$X_1 X_2 X_3$$
 $1 \ 1 \ 1 = \Psi_{1,1},$
 $1 \ 1 \ 0 = \Psi_{1,1},$
 $1 \ 0 \ 1$
 $1 \ 0 \ 0$
 $0 \ 1 \ 1$
 $0 \ 1 \ 0$
 $0 \ 0 \ 1$

12 parameters

$$\Psi_{X_1,X_2,X_3}$$
: 8 Φ_{X_3,X_4} : 4

Without graphical model: <u>15 parameters</u> $(2^4 - 1)$

$$X_1 X_2 X_3 X_4$$
 $1 \ 1 \ 1 \ 1 = P(1, 1, 1, 1)$
 $1 \ 1 \ 1 \ 0 = P(1, 1, 1, 0)$
 $1 \ 1 \ 0 \ 1$

Conditional Independency

Conditional Independency

2-cliques

$$X_1 X_2 X_3$$
 $X_1 X_2 X_3 X_4$
 $1 1 1 = \Psi_{1,1}$ $1 1 1 1 = \Psi_{1,0}$
 $1 1 1 1 0 = \Psi_{1,0}$
 $1 1 1 1 0 = \Psi_{0,1}$
 $1 0 1 1 = \Psi_{0,0}$
 $1 0 1 0 = \Psi_{0,0}$

$$X_3 X_4$$
 0 1 1 0 = $\Psi_{0,1} \Phi_0$
1 1 = Φ_1 0 0 1 1 = $\Psi_{0,0} \Phi_1$
1 0 = Φ_0 0 0 1 0 = $\Psi_{0,0} \Phi_0$

$$X_1 X_2 X_3$$
 $X_1 X_2 X_3 X_4$
 $1 1 1 = \Psi_{1,1}$ $1 1 1 = \Psi_{1,1} \Phi_1$
 $1 0 1 = \Psi_{1,0}$ $1 1 1 0 = \Psi_{1,1} \Phi_0$
 $0 1 1 = \Psi_{0,1}$ $1 0 1 1 = \Psi_{1,0} \Phi_1$
 $0 0 1 = \Psi_{0,0}$ $1 0 1 0 = \Psi_{1,0} \Phi_0$
 $0 1 1 1 = \Psi_{0,1} \Phi_1$
 $0 1 1 0 = \Psi_{0,1} \Phi_0$
 $1 1 1 = \Psi_{0,1} \Phi_1$
 $0 1 1 1 = \Psi_{0,1} \Phi_1$
 $0 1 1 1 = \Psi_{0,1} \Phi_0$

$$P(X_4 = 1 | X_1 = 0, X_2 = 1) = ?$$

 $P(X_4 = 1 | X_1 = 0, X_2 = 0) = ?$
 $P(X_4 = 1) = ?$

All answers are the same:

$$\frac{\Phi_1}{\Phi_1 + \Phi_0}$$

Marginalization

$$P(X_1, X_2, X_3) = P(X_1)P(X_2|X_1)P(X_3|X_2)$$

$$P(X_1, X_3) = \int P(X_1, X_2, X_3) dX_2$$

Any good property like

$$P(X_1, X_3) = P(X_1)P(X_3)$$
?

Marginalization

Marginalization

$$P(X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_D) =$$

$$P(X_1) \dots P(X_{i-1}) P(X_{i+1} | X_1, \dots, X_{i-1}) \dots P(X_D | X_1, \dots, X_{i-1})$$

Introducing Latent Variables

 Issue: how can a model be simplified as much as possible, while the flexibility is kept enough to incorporate the true dependency.

Expectation-Maximization Algorithm

- Parameter estimation with latent variables
 - We don't have data for latent variables
- E-step:
 - Data for latent variables are obtained from expectation with current parameter values.
- M-step:
 - With expected latent variables, parameters are obtained by maximizing the likelihood.
- E-step and M-step are repeated back and forth until the likelihood converges.

Expectation-Maximization Algorithm

Gaussian mixture model

Parameters:
$$\pi_k, \mu_k, \Sigma_k$$
 for $k = 1, \dots, K$
Unknown variables: $z_i = \begin{pmatrix} z_{i1} \\ \vdots \\ z_{iK} \end{pmatrix}$ for $i = 1, \dots, N$

We are given \mathbf{x}_i for $i = 1, \dots, N$

E-step: Distribution of \mathbf{z}_i (Responsibilities)

$$\gamma(z_{ik}) = \frac{\pi_k \mathcal{N}(\mathbf{x}_i | \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_i | \mu_j, \Sigma_j)}$$

using current parameters π_k, μ_k, Σ_k

Expectation-Maximization Algorithm

M-step: Estimate parameters.

$$\begin{cases} \mu_k = \frac{1}{N_k} \sum_{i=1}^N \gamma(z_{ik}) \ \mathbf{x}_i \\ \Sigma_k = \frac{1}{N_k} \sum_{i=1}^N \gamma(z_{ik}) (\mathbf{x}_i - \mu_k) (\mathbf{x}_i - \mu_k)^\top \\ \pi_k = \frac{N_k}{N} \\ \text{for } N_k = \sum_{i=1}^N \gamma(z_{ik}) \end{cases}$$
 Iterate until $\ln p(X|\pi,\mu,\Sigma) = \sum_{i=1}^N \ln \left(\sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_i|\mu_k,\Sigma_k) \right)$ converges.

Gaussian Mixture Model With EM

Sampling and EM Algorithm

$$\begin{split} \theta_{new} &= \arg\max_{\theta} Q(\theta, \theta^{old}) \\ Q(\theta, \theta^{old}) &= \int p(Z|X, \theta^{old}) \ln p(Z, X|\theta) dZ \\ &\quad \text{cf) } Q(\theta) = \ln p(X|\widehat{Z}, \theta), \quad \widehat{Z} = \int Z \cdot p(Z|X, \theta^{old}) dZ \end{split}$$

Sampling:

$$Q(\theta, \theta^{old}) \simeq \frac{1}{L} \sum_{l=1}^{L} \ln p(Z^{(l)}, X | \theta) \qquad Z^{(l)} \sim p(Z | X, \theta^{old})$$

Sampling and EM Algorithm (IP Algorithm)

• Imputation-Posterior (IP) algorithm ← more Bayesian

- I-Step
$$p(Z|X) = \int p(Z|\theta,X)p(\theta|X)d\theta$$

- $\theta^{(l)}$ are sampled from current estimate for $p(\theta|X)$ then $Z^{(l)}$ are sampled from each $p(Z|\theta^{(l)})$
- P-step

$$p(\theta|X) = \int p(\theta|Z, X)p(Z|X)dZ$$
$$\simeq \frac{1}{L} \sum_{l=1}^{L} p(\theta|Z^{(l)}, X)$$

ANY QUESTIONS?

THANK YOU

Yung-Kyun Noh nohyung@snu.ac.kr

