

FUNCTIONS ARE PROOFS! AN INTRODUCTION TO THE F* LANGUAGE

Mark Gritter
@markgritter
MinneBar 2022

SOFTWARE (STILL) SUCKS

Software is hard.

"Try very hard and think a lot" is a failed solution.

Even very smart people miss simple edge cases.

Minnebar 16

GOAL: HAVE THE COMPUTER CHECK MY BULLSHIT

There are lots of things I *think* are true about my programs.

What if I could tell the computer about them? And have it check if I'm correct?

(And, maybe, use them for optimization?)

Photo by No Revisions on Unsplash

F*: A PROOF-ORIENTED PROGRAMMING LANGUAGE

From Microsoft Research:

- "'F* (pronounced F star) is a general-purpose functional programming language with effects aimed at program verification."
- Sort of like a proof assistant, backed by an SMT solver.
- But compiles to real code! (OCaml, F#, C, WASM, assembly)
- Active work: verified implementations of TLS, cryptographic primitives, parsers

Home page: https://www.fstar-lang.org/

Source (+ wiki): https://github.com/FStarLang/FStar/

Online editor: https://www.fstar-lang.org/run.php

HELLO, WORLD

Minnebar 16

F* is a lot like OCaml.

If you're unsure what the syntax is, try OCaml first

```
let rec factorial (n:nat) : nat
= if n = 0 then 1
else op_Multiply n (factorial (n - 1))
```

REFINEMENT TYPES

You may be familiar with statically-typed programming languages.

- Basic types: string, int, bool, etc.
- Checked by the compiler
- Extend with typedefs, composite types, decorators, etc.

F* also has **Refinement types:** an existing type can be augmented with an expression that must be true.

REFINEMENT TYPES: EXAMPLES

A natural number is an integer greater than 0:

```
type nat = n:int\{n > 0\}
```

A nonempty list:

```
l:(list int) {length 1 > 0}
l:(list int) {Cons? 1}
```

A square number:

```
n:int{exists (a:int). op_Multiply a a = n}
```

Minnebar 16

TYPE-CHECKING IS MODEL CHECKING

How does F* type-check a function?

```
type odd = n:int{n % 2 = 1}

type even = n:int{n % 2 = 0}

let odd_plus_odd (a:odd b:odd) : even = a + b

let even_plus_odd (a:odd b:even) : even = a + b
```

TYPE-CHECKING IS MODEL CHECKING

TYPE-CHECKING IS... PROOF-CHECKING?

We need a couple more pieces:

- 1. Dependent types
- 2. The horrible pun also known as the Curry-Howard correspondence

THE FOUNDATIONAL PUN (HIGHLY FICTIONALIZED)

LOGIC: The Hypothetical Syllogism

If A implies B, and B implies C, then A implies C!

$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow B))$$

THE FOUNDATIONAL PUN (HIGHLY FICTIONALIZED)

LOGIC: The Hypothetical Syllogism

If A implies B, and B implies C, then A implies C!

$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow B))$$

COMPUTING: Composition

let compose f g x = f(g x)

$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow B)$$

THE FOUNDATIONAL PUN (HIGHLY

THIS IS THE HARDEST PART

(EXCEPT FOR ALL THE OTHER HARD PARTS)

A function is a constructive proof.

Most functions don't prove very interesting theorems.

```
let square (x:int) : int = op Multiply x x
```

has type

int \rightarrow int

or, in English, it says

If an integer exists, then an integer exists.

though the form that's maybe more useful is:

For all integers X, some integer exists.

HOW DO WE WRITE A MORE INTERESTING PROOF?

By expanding the language of types we can talk about!

Suppose we want to prove

For any prime X, there is some prime Y, and Y is strictly larger than X.

The corresponding theorem in the language of F^* is:

```
val larger_prime : (x:prime) -> (y:prime{y>x})
```

The refinement now refers to a previous argument; the jargon for this is dependent typing.

DEPENDENT TYPE EXAMPLES

From the F* standard library:

The index function only takes an index that is provably less than the length of the list!

```
val index: #a:Type -> l:list a
   -> i:nat{i < length l} -> Tot a
```

The **filter** function returns a list; every member of that list satisfies the predicate given.

```
val filter : #a: Type -> f:(a -> Tot bool)
    -> l: list a
    -> Tot (m:list a{forall x. memP x m ==> f x})
```

DEPENDENT TYPES: COMPLICATED EXAMPLE

From Advent Of Code 2021, day 21

```
type game_state = {
  player_1_score : (n:nat{n<max_score});
  player_1_position : board_position;
  player_2_score : (n:nat{n<max_score});
  player_2_position : board_position;
  turn : (n:nat{n = 1 \/ n = 2});
  // deterministic die cycles
  // between 1 and 100
  next_die : die_value;
  num_die_rolls: nat
}</pre>
```

```
let player 1 move (g:game state{g.turn=1 /\
g.player 1 score<1000}) :</pre>
  (h:game state{h.turn = 2 / 
   h.num die rolls = q.num die rolls + 3 /\
   h.player 2 score = g.player 2 score /\
   h.player 2 position = g.player 2 position}) =
  let d0 = g.next die in
  let d1 = advance die d0 in
  let d2 = advance die d1 in
  let next d = advance die d2 in
  let new p = advance position
g.player 1 position d0 d1 d2 in
  let new score = g.player 1 score + new p in
  { g with player 1 score=new score;
    player 1 position=new p;
    turn=2;
    next die=next d;
    num die rolls = 3 + g.num die rolls }
                                   @MARKGRITTER
```

Minnebar 16

SUGAR FOR PROOFS

Sometimes, we only care about the proposition, not the value. Or, we may not be able to fit the whole (checkable) proof in a return value.

 F^* has the type unit which has only a single element, written ().

You can still refine unit with a dependent type, for example:

$$unit{a + b = b + a}$$

So, we can write the commutative property of addition as

val commutes (a:int)
$$\rightarrow$$
 (b:int) \rightarrow unit{a + b = b + a}

SUGAR FOR PROOFS

```
val commutes (a:int) \rightarrow (b:int) \rightarrow unit{a + b = b + a}
```

The idiomatic way to write this is

```
val commutes (a:int) (b:int) : Lemma (a + b = b + a)
```

Or, to prove it, we just have to ask the SMT solver for help; just return unit (because that's the only value of the return type!)

Minnebar 16

INDUCTIVE PROOFS

Because proofs are "just" functions, we can do all the normal things a functional language provides:

- •Take them as arguments
- Call them when we need their results
- Build higher-order proofs
- •Recursively have the proof call itself (aka, induction!)

INDUCTION

What's you favorite inductive proof? (Audience participation here!)

Here's an example from the standard library:

```
(** [for_all f l] returns [true] if, and only if, for all elements [x]
appearing in [l], [f x] holds.
let rec for_all_mem
   (#a: Type)
   (f: (a -> Tot bool))
   (l: list a)
: Lemma
   (for_all f l <==> (forall x . memP x l ==> f x))
= match l with
   | [] -> ()
   | _ :: q -> for_all_mem f q
```

Minnebar 16

BUT THAT'S NOT ALL!

F* also checks the *behavior* of a function, its "computation type", which may include pre- and post-conditions

- Tot functions must always terminate and are also Pure, no side effects
- GTot (ghost total) functions are total functions that do not compute anything; these are used for Lemma
- Dv (divergent) functions are total functions have no side effect
- ML functions may do I/O (and also fail to terminate)

Sometimes you have to give a hint to help F* prove that your function terminates; the tutorial covers this.

MORE

Difference between Boolean operators and Boolean predicates, = vs == vs

Reasoning about imperative programs (the **State** effect)

Universes

Custom effects and Dijkstra monads

Tactics and Metaprogramming: automating proofs and generating code

Low*: a subset of F* (plus libraries) that compiles to C

Steel: a language for concurrent programming built on F^*

WHY SHOULD YOU CARE?

You might be a PL geek.

You could benefit from learning about a different approach.

• "Proving a program, or even just writing down a specification for it, forces you to think about aspects of your program that you may never have considered before."

You want to prove something?

Other proof assistants might be more friendly and mature.

You need to write high-assurance software...

- Modelling languages like TLA+ or Alloy are probably easier to get started with (but don't generate code!)
- F* is very much a research language.
- Maybe investigate Dafny and Liquid Haskell

F* RESOURCES

New tutorial under construction: http://www.fstar-lang.org/tutorial/

Hidden old tutorial which is more complete but less interactive:

https://fstar-lang.org/tutorial/tutorial.html

Tactics tutorial: https://people.csail.mit.edu/cpitcla/fstar.js/TacticsTutorial.html

Project Everest Slack (invite-only?)

My Advent-of-Code in F* repository: https://github.com/mgritter/aoc-fstar

- I wrote some notes on features missing from the tutorial: https://github.com/mgritter/aoc-fstar/blob/main/doc/FeaturesForTheCompleteNoob.md
- Video series on YouTube: https://www.youtube.com/playlist?list=PLVoZsDupSnwHtYDM4VCMG-HD4CGHOoHOP

The Little Typer! (for an introduction to dependent types)

ABOUT ME

Currently at Akita Software, working on the completely opposite approach: bottom-up, no-code inference of API behavior.

Previously

Vault team at HashiCorp, co-founder Tintri

Get in touch

Twitter: markgritter

Email: mgritter@gmail.com

GitHub: mgritter

Minnebar 16

PRACTICAL F* TIPS AND TRICKS

When stuck:

- Type ascription operator <:</p>
- assert() a lot
- assume() what you need and come back later (if it works)
- Dump out everything F* knows about the current types with one weird trick:

```
assert_by_tactic True (fun () -> dump "here")
```

- Check you haven't swapped $/ \setminus$ and $\setminus /$.
- Give S3 more time with -rlimit (sometimes works)
- Let F* unroll recursive definitions more with -fuel (hardly ever works)