

Block ciphers

The AES block cipher

The AES process

• 1997: NIST publishes request for proposal

• 1998: 15 submissions. Five claimed attacks.

1999: NIST chooses 5 finalists

• 2000: NIST chooses Rijndael as AES (designed in Belgium)

Key sizes: 128, 192, 256 bits. Block size: 128 bits

AES is a Subs-Perm network (not Feistel)

AES-128 schematic

The round function

• ByteSub: a 1 byte S-box. 256 byte table (easily computable)

• ShiftRows:

• MixColumns:

Code size/performance tradeoff

	Code size	Performance
Pre-compute round functions (24KB or 4KB)	largest	fastest: table lookups and xors
Pre-compute S-box only (256 bytes)	smaller	slower
No pre-computation	smallest	slowest

Example: Javascript AES

AES in the browser:

Then encrypt using tables

pre-compute tables

AES in hardware

AES instructions in Intel Westmere:

- aesenc, aesenclast: do one round of AES
 128-bit registers: xmm1=state, xmm2=round key
 aesenc xmm1, xmm2; puts result in xmm1
- aeskeygenassist: performs AES key expansion
- Claim 14 x speed-up over OpenSSL on same hardware

Similar instructions on AMD Bulldozer

Attacks

Best key recovery attack:

four times better than ex. search [BKR'11]

Related key attack on AES-256: [BK'09]

Given 2^{99} inp/out pairs from **four related keys** in AES-256 can recover keys in time $\approx 2^{99}$

End of Segment