NDA: Time Series Analysis Part 2: problem-oriented approach

Lionel Tabourier

LIP6 - CNRS and Sobonne University

first_name.last_name@lip6.fr

January 2021

Summary of Part 1

About the classic approach

- pre-processing (transformation etc)
- decomposition/modeling
 - model for trend
 - model for seasonal component
 - ARMA model of residuals
- $\bullet \ \, \text{post-processing} \to \text{model for the whole process} \\$

summarized description of a time series

Advantages and drawbacks

- powerful ⇒ understanding, allows prediction, test, . . .
- but heavy procedure, can be difficult to achieve

Now we look at time series data as (quasi) standard data

Summary of Part 1

About the classic approach

- pre-processing (transformation etc)
- decomposition/modeling
 - model for trend
 - model for seasonal component
 - ARMA model of residuals
- post-processing → model for the whole process

summarized description of a time series

Advantages and drawbacks

- powerful ⇒ understanding, allows prediction, test, . . .
- but heavy procedure, can be difficult to achieve

Now we look at time series data as (quasi) standard data

Summary of Part 1

About the classic approach

- pre-processing (transformation etc)
- decomposition/modeling
 - model for trend
 - model for seasonal component
 - ARMA model of residuals
- post-processing → model for the whole process

summarized description of a time series

Advantages and drawbacks

- powerful ⇒ understanding, allows prediction, test, . . .
- but heavy procedure, can be difficult to achieve

Now we look at time series data as (quasi) standard data

A problem-oriented approach

Alternative approach problem-oriented: a specific question to solve \Rightarrow suited techniques regression, classification, hypothesis testing, clustering...

here: investigate a TSA problem and its resolution

The problem to solve

Provide resources in a local WiFi network (mall, university, ...)

- forecast the daily demand on the network
- plan and adapt the service in consequence
- raise an alert of exceptionally high demand

Data available

data traffic usage per application during 4 months

A problem-oriented approach

Alternative approach problem-oriented: a specific question to solve \Rightarrow suited techniques regression, classification, hypothesis testing, clustering...

here: investigate a TSA problem and its resolution

The problem to solve

Provide resources in a local WiFi network (mall, university, ...)

- forecast the daily demand on the network
- plan and adapt the service in consequence
- raise an alert of exceptionally high demand

Data available

data traffic usage per application during 4 months

A problem-oriented approach

Alternative approach problem-oriented: a specific question to solve ⇒ suited techniques regression, classification, hypothesis testing, clustering...

here: investigate a TSA problem and its resolution

The problem to solve

Provide resources in a local WiFi network (mall, university, ...)

- forecast the daily demand on the network
- plan and adapt the service in consequence
- raise an alert of exceptionally high demand

Data available

data traffic usage per application during 4 months

Approach chosen

Lim at al. - Characterizing and predicting mobile application usage

- create classes of usage profiles for each application
 - → clustering of past data
- analyze streaming data to attribute a class
 - → classification of incoming data

Not a unique solution ightarrow need evaluation and comparison

Approach chosen

Lim at al. - Characterizing and predicting mobile application usage

- create classes of usage profiles for each application
 - \rightarrow clustering of past data
- analyze streaming data to attribute a class
 - → classification of incoming data

Not a unique solution → need evaluation and comparison

Agglomerative hierarchical clustering

cf. course on Clustering

UPGMA method (Unweighted Pair Group Method with Arithmetic Mean)

- initialization: each profile is one class
- compute the distances d(i,j) between pairs
- 1. find the lowest distance pair, group them in one class
- 2. recompute distances by arithmetic mean:

$$d(A, B) = \frac{1}{|A| \cdot |B|} \sum_{i \in A} \sum_{j \in B} d(i, j)$$

iterate 1 and 2 until having one class

Definition of the distance

Need appropriate notion of distance for time series euclidean distance inappropriate

$$d(S_1, S_2) = \sum_t |S_1(t) - S_2(t)|$$

Definition of the distance

Need appropriate notion of distance for time series dynamic time warping

 $d(S_1, S_2) = \sum_t |S_1(t) - S_2(t')|$ s.t. $S_2(t')$ is the *best* match for $S_1(t)$

Criterion to decide the clusters

Several options depending on the application:

- predefined number of clusters
- distance threshold Δ between clusters

here: we want homogeneous clusters \Rightarrow threshold parameter Δ to set experimentally

Criterion to decide the clusters

Several options depending on the application:

- predefined number of clusters
- distance threshold Δ between clusters

here: we want homogeneous clusters \Rightarrow threshold parameter Δ to set experimentally

Computational complexity

- for each distance computation using DTW:
 ts of size n, for each point n comparisons ⇒ O(n²)
- UPGMA with S profiles: simple implementations in O(S³), most efficient in O(S²)

→ heavy computational costs manageable because offline processing (and small dataset)

Computational complexity

- for each distance computation using DTW:
 ts of size n, for each point n comparisons ⇒ O(n²)
- UPGMA with S profiles: simple implementations in O(S³), most efficient in O(S²)

 $\begin{tabular}{ll} \rightarrow heavy computational costs \\ manageable because offline processing (and small dataset) \\ \end{tabular}$

cf. course on Classification

K-nearest neighbors: context

- Each data point is located in a space of features
- Each data point has a class (ex: red triangles, blue squares)

K-nearest neighbors: principle

- For a new unlabeled data point (ex: green circle): compute its distance to all labeled data points
- Prediction = dominant class among its k nearest neighbors

cf. course on Classification

K-nearest neighbors: context

- Each data point is located in a space of features
- Each data point has a class (ex: red triangles, blue squares)

K-nearest neighbors: principle

- For a new unlabeled data point (ex: green circle): compute its distance to all labeled data points
- Prediction = dominant class among its k nearest neighbors

Here

simple: DTW distance to all existing data points \rightarrow what is the class of the closest profile? (k=1)

Computational complexity

- for each distance computation using DTW: ts of size n, for each point n comparisons $\Rightarrow O(n^2)$
- comparisons with S profiles:O(S)

computational costs relatively light but must be done in streaming

Here

simple: DTW distance to all existing data points \rightarrow what is the class of the closest profile? (k=1)

Computational complexity

- for each distance computation using DTW:
 ts of size n, for each point n comparisons ⇒ O(n²)
- comparisons with S profiles:O(S)

computational costs relatively light but must be done in streaming

Here

simple: DTW distance to all existing data points \rightarrow what is the class of the closest profile? (k=1)

Computational complexity

- for each distance computation using DTW:
 ts of size n, for each point n comparisons ⇒ O(n²)
- comparisons with S profiles:O(S)

computational costs relatively light but must be done in streaming

Quality evaluation

Classification task

- observe data during part of the day to classify

→ here we compute prediction accuracy proportion of accurate classifications

What about the practical efficiency?

Quality evaluation

Classification task

- observe data during part of the day to classify
- → possible misclassifications

prediction accuracy (as a function of learning duration)

What about the practical efficiency?

Quality evaluation

Classification task

- observe data during part of the day to classify
- ⇒ possible misclassifications

prediction accuracy (as a function of learning duration)

What about the practical efficiency?

Discussion

Complete workflow

- acquire data
- offline processing: clustering (classes definition)
- streaming processing: on-the-fly classification
- evaluation of classification

Choices

- choice of resolution
- methods (of clustering, of classification)
- implementation details: (distance, threshold Δ, \ldots)

under practical constraints \rightarrow computational demand, ...

TS analysis is also a craft: choices guided by knowledge of the methods and data important to identify why something works or not...

Discussion

Complete workflow

- acquire data
- offline processing: clustering (classes definition)
- streaming processing: on-the-fly classification
- evaluation of classification

Choices

- choice of resolution
- methods (of clustering, of classification)
- implementation details: (distance, threshold Δ, ...)

 $under \ \textbf{practical constraints} \rightarrow \textbf{computational demand}, \dots$

TS analysis is also a craft: choices guided by knowledge of the methods and data important to identify why something works or not...

Discussion

Complete workflow

- acquire data
- offline processing: clustering (classes definition)
- streaming processing: on-the-fly classification
- evaluation of classification

Choices

- choice of resolution
- methods (of clustering, of classification)
- implementation details: (distance, threshold Δ, ...)

under practical constraints \rightarrow computational demand, ...

TS analysis is also a craft: choices guided by knowledge of the methods and data important to identify why something works or not...