الجامعة المصرية للتعلم الإلكتروني الأهلية

GEN206 Discrete Mathematics

Section01

Faculty of Information Technology Egyptian E-Learning University

Fall 2021-2022

- 2. Which of these are propositions? What are the truth values of those that are propositions?
 - a) Do not pass go.
 - **b)** What time is it?
 - **c)** There are no black flies in Maine.
 - **d**) 4 + x = 5.
 - e) The moon is made of green cheese.
 - **f**) $2^n \ge 100$.

A: not a proposition

B: not a proposition

C: proposition, false

D: not a proposition

E: proposition, false

F: not a proposition

- 5. What is the negation of each of these propositions?
 - a) Mei has an MP3 player.
 - **b**) There is no pollution in New Jersey.
 - c) 2+1=3.
 - d) The summer in Maine is hot and sunny.

- (a) Mei does not have an MP3 player.
- (b) There is pollution in New Jersey
- (c) $2 + 1 \neq 3$
- (d) The summer in Maine is not (hot and sunny).

10. Let p and q be the propositions

p: I bought a lottery ticket this week.

q: I won the million dollar jackpot.

Express each of these propositions as an English sentence.

b)
$$p \vee q$$

b)
$$p \vee q$$
 c) $p \rightarrow q$

e)
$$p \leftrightarrow q$$

d)
$$p \wedge q$$
 e) $p \leftrightarrow q$ **f**) $\neg p \rightarrow \neg q$

$$\mathbf{g}$$
) $\neg p \land \neg q$

g)
$$\neg p \wedge \neg q$$
 h) $\neg p \vee (p \wedge q)$

- (a) I did not buy a lottery ticket this week.
- (b) I bought a lottery ticket this week or I won the million dollar jackpot.
- (c) If I bought a lottery ticket this week, then I won the million dollar jackpot.
- (d) I bought a lottery ticket this week and I won the million dollar jackpot.
- (e) I bought a lottery ticket this week if and only if I won the million dollar jackpot.
- (f) If I did not buy a lottery ticket this week, then I did not win the million dollar jackpot.
- (g) I did not buy a lottery ticket this week and I did not win the million dollar jackpot.
- (h) I did not buy a lottery ticket this week or, I bought a lottery ticket this week and won the million dollar jackpot.

15. Let p and q be the propositions

p: You drive over 65 miles per hour.

q: You get a speeding ticket.

Write these propositions using p and q and logical connectives (including negations).

- a) You do not drive over 65 miles per hour.
- b) You drive over 65 miles per hour, but you do not get a speeding ticket.
- c) You will get a speeding ticket if you drive over 65 miles per hour.
- d) If you do not drive over 65 miles per hour, then you will not get a speeding ticket.
- e) Driving over 65 miles per hour is sufficient for getting a speeding ticket.
- f) You get a speeding ticket, but you do not drive over 65 miles per hour.
- g) Whenever you get a speeding ticket, you are driving over 65 miles per hour.

- (a) ¬p
- (b) p ∧ ¬q
- (c) $p \rightarrow q$
- (d) $\neg p \rightarrow \neg q$
- (e) $p \rightarrow q$
- (f) q ∧ ¬p
- (g) $q \rightarrow p$

Construct a truth table for each of these compound propositions.

- a) $p \oplus p$
- **f**) $(p \oplus q) \land (p \oplus \neg q)$
- **d**) $(p \rightarrow q) \land (\neg p \rightarrow q)$

a) $p \oplus p$

a)

Р	$P \oplus P$
Т	F
F	F

f)
$$(p \oplus q) \land (p \oplus \neg q)$$

f)

Р	Q	\sim Q	$(P \oplus Q)$	$(P \oplus \sim Q)$	$(P \oplus Q) \wedge (P \oplus \sim Q)$
Т	Т	F	F	Т	F
Т	F	Т	Т	F	F
F	Т	F	Т	F	F
F	F	Т	F	Т	F

d)
$$(p \rightarrow q) \land (\neg p \rightarrow q)$$

d)

P	Q	\sim P	$(P \Rightarrow Q)$	$(\sim P \Rightarrow Q)$	$(P \Rightarrow Q) \land (\sim P \Rightarrow Q)$
T	Т	F	Т	Т	Т
T	F	F	F	Т	F
F	Т	Т	Т	Т	T
F	F	Т	Т	F	F

44. Find the output of each of these combinatorial circuits.

46. Construct a combinatorial circuit using inverters, OR gates, and AND gates that produces the output $(p \land \neg r) \lor (\neg q \land r)$ from input bits p, q, and r.

Thank You

