Лабораторная работа 2.1.4 Определение теплоемкости твердых тел Выполнил Жданов Елисей Б01-205

1 Цель работы:

- 1) Прямое измерение кривых нагревания и охлаждения пустого калориметра и системы «калориметр + твердое тело»
- 2) Определение коэффициента теплоотдачи стенок калориметра
- 3) Определение теплоемкости пустого калориметра и удельной теплоемкости твердого тела

2 Оборудование:

Калориметр с нагревателем и термометром сопротивления

Вольтметр в режиме омметра, измеритель температуры

Источник питания, амперметр и вольтметр для измерения мощности нагревателя

Компьютерная программа АКИП

3 Теоретическая справка

Существует несколько способов расчета параметров данной термодинамической системы

Рассмотрю сначала интергральный метод. Он заключается в получении зависимости T(t) путем интегрирования дифференциального уравнения теплообмена

$$CdT_{cool} = -\lambda [T_{cool} - T_k]dt$$

Откуда

$$n\frac{T_{cool} - T_k}{T - T_k} = \frac{-\lambda}{C}t$$

Это уравнение имеет линейный вид в логарифмических координатах, из которых с легкостью находится $\frac{\lambda}{C}$

Записав похожее уравнение для нагрева, получу

$$T_{heat}(t) = \frac{P}{\lambda} \left(1 - e^{\frac{-\lambda}{C}t} \right) + T_k$$

По коэффициентам для соответствующих уравнений прямых $\frac{\lambda}{C}$ и $\frac{P}{\lambda}$ находятся λ и С.

Интегральный метод дает хорошие результаты только при небольших колебаниях комнатной температуры, в противном случае более оправданным будет дифференциальные методы

Один из них заключается в рассмотрении удобной точки при $T = T_{\text{комн}}$.

$$C = \frac{P}{(dT/dt)_{T=T_{\text{KOMH}}}}$$

Другой метод заключается в нахождении производной в 2-х точках нагрева-охлаждения с одинаковой температурой. Тогда

$$\lambda = \frac{P}{(T - T_{k2})\left(1 - \frac{A}{B}\right) + T_{k2} - T_{k1}}$$

$$C = \frac{P}{A - B + A \frac{T_{k1} - T_{k2}}{T - T_{k1}}}$$

Где
$$A = \left(\frac{dT}{dt}\right)_{heat}$$
 и $B = \left(\frac{dT}{dt}\right)_{cool}$

4 Экспериментальная установка

Система реостатов на рисунке позволяет установить нужную силу тока в цепи нагревателя. По амперметру и вольтметру определяется мощность, выделяемая в нагревателе. Величина сопротивления термометра измеряется мостом постоянного тока.

5 Измерения

Зафиксирую напряжение и ток, подаваемые на нагреватель

U = 27.26 Вольт

I = 0.2268 Ампер

$$P = UI = (6.182 \pm 0.005)$$
BT

Запишу массы всех конусов для расчета удельный теплоемкости

	т, гр	
Латунь	(875.5 ± 0.1)	
Железо	(815.1 ± 0.1)	
Алюминий	(294.2 ± 0.1)	

Проверю, что подаваемая мощность не будет меняться с течением эксперимента Подготовлю ПО и включу замеры.

Буду протирать латунный конус тчательно, чтобы избежать попадания водяного пара в установку и, как слудствие, изменения итоговой теплоемкости.

В результате успел провести два замера на нагрев и охлаждение пустого калориметра, один замер алюминиевого конуса и замер на нагрев железного конуса.

5.1 Журнал наблюдений

14:32 - конус из латуни холодный положили

14:38 - конус из латуни вынули

14:44 - включили GPS-72

15:13 - выключили GPS-72

15:20 - конус из латуни холодный положили

- 15:23 температура начала расти
- 15:26 конус из латуни вынули
- 15:29 включили GPS-72
- 15:47 выключили GPS-72
- 15:54 конус из латуни холодный положили
- 15:57 температура начала расти
- 16:00 конус из латуни вынули и вставили алюминиевый конус
- 16:05 включили GPS-72
- 16:24 выключили GPS-72
- 16:35 конус из алюминия вынули и вставили латунь холодный конус
- 16:38 вынули латунь и вставили железный конус
- 16:41 включили GPS-72

6 Обработка

Загружу полученные файлы на пк и приступлю к обработке

Обрежу лишние данные и преобразую измерения в требуемый вид.

Для используемой 1 установки формула преобразования сопротивления в температуру

$$T(R_T) = 14.37798 \cdot R_T + 39.35514$$

Построю суммарный график для определения необходимых временных интервалов

Добавлю усреднение скользящей средней по 1000 значениям для комнатной температуры. Как видно, оно довольно хорошо описывает среднюю температуру в любой момент времени.

6.1 Интегральный метод

Рассмотрю промежутки охлаждения

Охлаждение пустого калориметра 1

Охлаждение пустого калориметра 2

Охлаждение калориметра с алюминием

Как видно, начальный момент достаточно отделен от момента отключения нагрева, поскольку отклонение от аппроксимирующей прямой при меньшем времени укладывается в пределы разброса остальных точек

Найду угловые коэффициенты прямых для каждой установки по МНК.

$$a = \frac{n \sum_{i=1}^{n} N_{i} v_{i} - \left(\sum_{i=1}^{n} N_{i}\right) \left(\sum_{i=1}^{n} v_{i}\right)}{n \sum_{i=1}^{n} N_{i}^{2} - \left(\sum_{i=1}^{n} N_{i}\right)^{2}}$$
$$b = \frac{\sum_{i=1}^{n} v_{i} - a \sum_{i=1}^{n} N_{i}}{n}$$

Также рассчитаю их погрешности

$$S_a^2 = \frac{\sum_{i=1}^n N_i^2}{n \sum_{i=1}^n N_i^2 - \left(\sum_{i=1}^n N_i\right)^2} \cdot \frac{\sum_{i=1}^n (\nu_i - b - a \cdot N_i)^2}{n - 2}$$

Результат приведу в таблице ниже

Построю также графики нагрева калориметра от времени.

Начало графиков соответствует моменту времени пересечения графиком температуры внутри калориметра усреднения для комнатной температуры

Нагрев пустого калориметра 1

Нагрев пустого калориметра 2

Нагрев калориметра с алюминием

Составляю таблицу

	$\frac{P}{\lambda}$	$\frac{\lambda}{C}$	C, $\frac{\mathcal{I}_{\mathcal{K}}}{K}$	$\lambda, \frac{B_T}{K}$
Пустой 1	(17.184 ± 0.015)	$(0.0005162 \pm 0.0000012)$	(697 ± 3)	(0.3598 ± 0.0006)
Пустой 2	(18.432 ± 0.004)	$(0.0005027 \pm 0.0000014)$	(667 ± 3)	(0.3354 ± 0.0003)
Алюминий	(22.173 ± 0.006)	$(0.0002932 \pm 0.0000007)$	(951 ± 3)	(0.2788 ± 0.0003)

Относительные погрешности λ и C определяются суммой относительных погрешностей компонент.

6.2 Дифференциальный метод пересечения комнатной температуры

Теперь построю графики зависимости T(t) около средней комнатной температуры

С помощью стандартных формул МНК получу коэффициент наклона графиков, а по нему теплоемкости

	$\frac{P}{C}$	$C, \frac{\pi}{K}$
Пустой 1	(0.00832 ± 0.00021)	(740 ± 20)
Пустой 2	(0.00924 ± 0.00034)	(670 ± 30)
Алюминий	(0.0064 ± 0.00023)	(970 ± 40)
Железо	(0.00638 ± 0.00012)	(970 ± 20)

Как видно, дифференциальный метод сопряжен с неточностями, и даже в первых двух идентичных(с точки зрения проведения) экспериментов дает довольно сильно отличающиеся значения.

Тем не менее, точность метода достаточна для принятия замеров достоверными

6.3 Дифференциальный метод изотерм

Приведу сначала графики зависимости T(t) для температур, близких к 304 K у пустого калориметра и 303 K у алюминия

Рис. 7: Алюминий

Найду с помощью МНК коэффициенты А и В наклона графиков

	A	В	T_{k1} , K	T_{k2} , K
Пустой 1	(0.00569 ± 0.00021)	(-0.003272 ± 0.000038)	297.49	297.61
Пустой 2	(0.00610 ± 0.00013)	(-0.002852 ± 0.000042)	298.08	298.13
Алюминий	(0.00488 ± 0.00013)	(-0.001366 ± 0.000018)	298.45	298.53

А также среднюю комнатную температуру на момент замера

Рассчитаю по теоретическим формулам теплоемкость и коэффициент теплопроводности

	$\lambda, \frac{\mathrm{Br}}{K}$	C, $\frac{\mathcal{I}_{\mathcal{K}}}{K}$
Пустой 1	(0.350 ± 0.016)	(690 ± 20)
Пустой 2	(0.334 ± 0.009)	(691 ± 13)
Алюминий	(0.300 ± 0.010)	(990 ± 20)

6.4 Сведение в таблицу

Ниже сведу все полученные данные в единую таблицу и произведу усреднение из расчета указанных погрешностей величин

	Интегральный	Дифференциальный	II Дифференциальный
Калориметр 1; С, $\frac{Дж}{K}$	(697 ± 3)	(740 ± 20)	(690 ± 20)
$\lambda, \frac{BT}{K}$	(0.3598 ± 0.0006)		(0.350 ± 0.016)
Калориметр 2; С, $\frac{Дж}{K}$	(667 ± 3)	(670 ± 30)	(691 ± 13)
$\lambda, \frac{BT}{K}$	(0.3354 ± 0.0003)		(0.334 ± 0.009)
Калориметр ср.; С, $\frac{Дж}{K}$	(682 ± 3)	(710 ± 30)	(691 ± 17)
$\lambda, \frac{BT}{K}$	(0.3476 ± 0.0005)		(0.342 ± 0.0013)
Cal+Алюминий; С, $\frac{Дж}{K}$	(951 ± 3)	(970 ± 40)	(990 ± 20)
$\lambda, \frac{BT}{K}$	(0.2788 ± 0.0003)		(0.300 ± 0.010)
Алюминий; С, $\frac{Дж}{K}$	(269 ± 6)	(260 ± 70)	(300 ± 40)
Cal + Железо; С, $\frac{Дж}{K}$		(970 ± 20)	
Железо; С, $\frac{Дж}{K}$		(260 ± 50)	

Усредню результаты всех методик, среднее значение вычислю средним арифметическим величин, предполагая равную достоверность всех экспериментов.

Погрешность вычислю таким образом

$$\sigma_x = \sqrt{\sigma_{\text{crat}}^2 + \text{CP.AP}(\Pi \text{O} \Gamma \text{P}_i)^2}$$

И пересчитаю темлоемкости металлов в удельные, пользуясь таблицей масс

	C, $\frac{\Pi x}{K}$	c, $\frac{\mathcal{L}_{K\Gamma}}{K\Gamma \cdot K}$	$\lambda, \frac{BT}{K}$
Калориметр	(694 ± 19)	-	(0.345 ± 0.004)
Алюминий	(280 ± 40)	(950 ± 140)	(0.289 ± 0.011)
Железо	(260 ± 50)	(320 ± 60)	-

Дифференциальные методы сопряжены с большой погрешностью, приведу также таблицу, получаемую только интегральным методом.

	C, $\frac{\mathcal{I}_{\mathcal{K}}}{K}$	$\mathbf{c}, \frac{\mathbf{\chi}}{\mathbf{k}\mathbf{r}\cdot\mathbf{K}}$	$\lambda, \frac{B_T}{K}$
Калориметр	(682 ± 3)	-	(0.3476 ± 0.0005)
Алюминий	(269 ± 6)	(910 ± 20)	(0.2788 ± 0.0003)

7 Вывод

В процессе работы было исследовано 2 дифференциальных и 1 интегральный метод. В результате были получены всевозможные значения теплоемкостей и коэффициента теплоотдачи стенок. По вычисленным значениям можно сказать, что интегральный метод значительно точнее дифференциальных при малых колебаниях комнатной температуры. При больших колебаниях передача тепла будет происходить нестационарно, и все методы могут давать значительно отличные от реальности результаты.

Удельная теплоемкость алюминия близка к табличному значению. Для железа она отличается довольно сильно. Могу предположить, что поскольку железо замерялось дифференциальным методом, и в самом конце работы, при пересечении комнатной температуры не успело установиться равновесное состояние. Это объясняет заниженность значения.

Поскольку было проведено прямое измерение кривых нагревания и охлаждения калориметра с телами внутри, определен коэффициент теплоотдачи стенок и теплоемкости калориметра и металлов конусов, буду считать цель работы выполненной.

8 Ресурсы

Расчет по МНК: метод-наименьших-квадратов.рф