Theorems and Definitions

- 1. Prime Number: A positive $n \in \mathbb{Z}$ such that n > 1 is prime if its only divisors are 1 and n.
- 2. Fundamental Theorem of Arithmetic: Suppose $n \in \mathbb{Z} > 1$. Then
 - (a) $\exists \alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{N}$ and primes p_1, p_2, \dots, p_n such that $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_n^{\alpha_n}$, or $n = \prod_{i=1}^n p_i^{\alpha_i}$.
 - (b) The expression $\prod_{i=1}^{n} p_i^{\alpha_i}$ is unique up to permutation of the primes.
 - (c) Lemma: Suppose p is prime and $a, b \in \mathbb{Z}$.
 - i. If $p \nmid a$, then p and a are relatively prime.
 - ii. If $p \mid ab$, then $p \mid a \text{ xor } p \mid b$.
 - (d) Corollary: If p is prime and divides a_1, a_2, \ldots, a_n , then $p|a_i$ for some $i \in \{1, 2, \ldots, n\}$.
 - (e) Corollary: If m is not a perfect square, then $\sqrt{m} \notin \mathbb{Q}$.
- 3. Exact Division: If $p^{\alpha} \mid n$ and $p^{\alpha+1} \nmid n$, then p^{α} exactly divides n, noted as $p^{\alpha} \mid n$.
- 4. Theorem: Suppose a_1, a_2, \ldots, a_k are pairwise relatively prime and are greater than 0. If $a_1 a_2 \ldots a_k = x^m$ for some $x \in \mathbb{N}$ and $m \geq 2$, then $\exists x_i \in \mathbb{N}$ such that $a_i = x_i^m$ for all i.
- 5. Theorem: There are infinitely many primes.
- 6. Prime Number Theorem: Let $\pi(x)$ denote the number of primes such that $p_i \leq x$. We have that
 - (a) $\lim_{x\to\infty} \pi(x) = \infty$
 - (b) $\pi(x) < x \text{ for } x \ge 2.$

We can also define the logarithmic integral as $\mathcal{L}_i(x) = \int_2^x \frac{1}{\log t} dt$. Then

$$\lim_{x \to \infty} \frac{\mathcal{L}_i}{\pi(x)} = \lim_{x \to \infty} \frac{\frac{x}{\log x}}{\pi(x)} = 1$$