

Optics

Sensors & devices

Signal processing & algorithms

COMPUTATIONAL METHODS FOR IMAGING (AND VISION)

LECTURE 3: VECTOR SPACES (HILBERT SPACE)

PROF. JOHN MURRAY-BRUCE

(SUPER FAST) REVIEW

VECTORS

VECTORS AND VECTOR SPACES

- Vector space is a set of objects (vectors, together with addition and scalar multiplication) that satisfy the following properties:
 - \blacktriangleright For all vectors **u**, **v**, **w** and scalars a, b
 - \mathbf{v} $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
 - u + (v + w) = (u + v) + w
 - There exists a zero vector **0**, such that $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$
 - For every **u** there exits a vector $-\mathbf{u}$, such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
 - $\mathbf{v} = \mathbf{v}$
 - $a(b\mathbf{u}) = (ab)\mathbf{u}$
 - $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$
 - $(a+b)\mathbf{u} = a\mathbf{u} + b\mathbf{u}$

VECTORS AND VECTOR SPACES

Vector space – is a set of objects (vectors, together with addition and scalar multiplication) that satisfy the following properties:

- For all vectors
 - $\mathbf{u} + \mathbf{v} = \mathbf{v} +$
 - $\mathbf{u} + (\mathbf{v} + \mathbf{w})$
 - There exists
 - ▶ For every **u**
 - $\mathbf{v} = \mathbf{v}$
 - $a(b\mathbf{u}) = (ab)$
 - $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$
 - $(a+b)\mathbf{u} = a\mathbf{u} + b\mathbf{u}$

Intuition: think of a vector as this little arrow.

VECTORSWHAT CAN WE MEASURE/ENCODE

Fundamentally, vectors encode magnitude and direction

Example: a 2D vector can be encoded as length, and an angle relative to some fixed direction.

- Norm: measures the "length" of a vector.
- Inner product: measures norm along with relative orientation.
 The "length" of one vector along the direction of another.

NORM FORMAL DEFINITION

- A norm is any function that maps each vector (of a vector space) to a scalar value, and satisfies the properties:
 - ▶ $\|\mathbf{u}\| \ge 0$
 - $\|\mathbf{u}\| = 0 \iff \mathbf{u} = \mathbf{0}$
 - $||a\mathbf{u}|| = |a|||\mathbf{u}||$

For a vector $\mathbf{u} \in \mathbb{R}^n$,

$$\|\mathbf{u}\| = \sqrt{\sum_{i=1}^n u_i^2}$$

 $\|u\| + \|v\| \ge \|u + v\|$ (triangle inequality!)

Matlab practice: Check that each of these identities are true for some choice of vectors and scalars

INNER PRODUCT FORMAL DEFINITION

- Inner product: is any function that maps any two vectors to a scalar number $\langle \mathbf{u}, \mathbf{v} \rangle$, such that the following properties hold:
 - $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$
 - $\langle \mathbf{u}, \mathbf{u} \rangle \ge 0$
 - $\langle \mathbf{u}, \mathbf{u} \rangle = 0 \iff \mathbf{u} = 0$
 - $\langle a\mathbf{u}, \mathbf{v} \rangle = a \langle \mathbf{u}, \mathbf{v} \rangle$

For two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, the standard inner product is

$$\langle \mathbf{u}, \mathbf{v} \rangle = \sum_{i=1}^{n} u_i v_i$$

Matlab practice: Verify each of these identities by using Matlab for some choice of vectors and scalars.

MATLAB

INNER PRODUCT

EXAMPLE: INNER PRODUCT IN \mathbb{R}^2

$$\langle \mathbf{u}, \mathbf{v} \rangle = u_0 v_0 + u_1 v_1$$

Matlab practice: Verify the given equation, i.e. that: $\langle \mathbf{u}, \mathbf{v} \rangle = \sqrt{(u_0^2 + u_1^2)(v_0^2 + v_1^2)\cos(\theta)}$,

MATLAB for a few 2D vectors

OUTLINE

- Vector spaces
 - Norm, Inner product
- Hilbert spaces

LEARNING GOALS

- Understand broader meaning of vectors
- Understand basic Hilbert spaces terminology
- Understand basic manipulation of vectors using Matlab

READING

- IIP Appendix A
- FSP 2.1 2.4

IMPORTANT

CAUCHY-SCHWARZ INEQUALITY

MATLAB

CAUCHY-SCHWARZ INEQUALITY

lacktriangle For any vectors f u and f v, belonging to some vector space then:

$$\langle \mathbf{u}, \mathbf{v} \rangle \leq \|\mathbf{u}\| \|\mathbf{v}\|$$

- Proof (intuition):
 - **1.** Let \mathbf{v}' be a unit vector, i.e. $\mathbf{v}' = \frac{\mathbf{v}}{\|\mathbf{v}\|}$, and consider $\langle \mathbf{u}, \mathbf{v}' \rangle$.
 - **2.** The inner product $\langle \mathbf{u}, \mathbf{v}' \rangle$ is the "length" of \mathbf{u} along \mathbf{v}' .
 - **3.** Geometrical reasoning (see picture), implies that the length of \mathbf{u} along \mathbf{v}' must be smaller than or equal to $\|\mathbf{u}\|$ (i.e. the length of $\|\mathbf{u}\|$).
 - **4.** Thus $\langle \mathbf{u}, \mathbf{v}' \rangle \leq ||\mathbf{u}||$.
 - **5.** Complete the proof, by putting $\mathbf{v}' = \frac{\mathbf{v}}{\|\mathbf{v}\|}$ into $\langle \mathbf{u}, \mathbf{v}' \rangle \leq \|\mathbf{u}\|$ and rearranging.

SUBSPACE
SPAN
LINEAR INDEPENDENCE
ORTHOGONALITY

SUBSPACE

SPAN

LINEAR INDEPENDENCE

ORTHOGONALITY

USEFUL DEFINITIONS

Definition (Subspace): A nonempty subset S of a vector space V is a subspace when it is **closed** under the operations of **vector** addition and scalar multiplication.

Example: Let us consider a 3D vector space: $\mathcal{V} = \mathbb{R}^3$.

 $\mathcal S$ is a subspace of $\mathcal V$.

The vector
$$\mathbf{w} = \begin{bmatrix} 2 \\ 3 \\ 6 \end{bmatrix} \in \mathbb{R}^3$$

The vector
$$\mathbf{v} = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}$$
 is lives in \mathcal{S}

In fact, any **vector whose last entry is zero** is in S.

Closed? - wait, but, what is that? :-/

- if we **add** any two such **vectors** that belong in S the result is a vector that is also in S
- If we multiply such a vector by a scalar (say 0.5 or 1000), the result is a vector that also lives in S

QUESTION: CAN YOU GIVE OTHER EXAMPLES OF VECTORS IN S?

SUBSPACE SPAN

LINEAR INDEPENDENCE ORTHOGONALITY

USEFUL DEFINITIONS

Definition (Span): The span of a set of vectors S is the set of all **finite linear combinations of vectors** in S:

$$\operatorname{span}(\mathcal{S}) = \left\{ \sum_{i=1}^{n} \alpha_{i} \mathbf{u}_{i} : \alpha_{i} \in \mathbb{R}, \mathbf{u}_{i} \in \mathcal{S}, \text{ and } n \in \mathbb{N} \right\}$$

- The span(S) is **always a subspace** (by definition).
- Different sets can have the same span.

EXAMPLE: COMPUTING SPANS

Write down the span of the following sets of vectors

1.
$$\mathcal{S}_1 = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$

Answer: $\operatorname{span}(\mathcal{S}_1) = \left\{ \alpha_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} : \alpha_1, \alpha_2 \in \mathbb{R} \right\}$

$$\mathbf{2.} \quad \mathcal{S}_2 = \left\{ \begin{bmatrix} x \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ y \end{bmatrix} \right\}$$

✓ Answer: span(
$$\mathcal{S}_2$$
) = $\left\{ \alpha_1 \begin{bmatrix} x \\ 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 \\ y \end{bmatrix} : \alpha_1, \alpha_2 \in \mathbb{R} \right\}$

 \checkmark In fact the span of \mathcal{S}_2 is the same as the span of \mathcal{S}_1

3.
$$S_3 = \left\{ \begin{bmatrix} x \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ y \\ 0 \end{bmatrix} \right\}$$
 and additional comments?

$$\mathbf{4.} \quad \mathcal{S}_4 = \left\{ \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}, \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} \right\}$$

SUBSPACE SPAN

LINEAR INDEPENDENCE

ORTHOGONALITY

MATLAB

- **Definition (Linear independence):** A set of vectors $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n\}$ is **linearly independent** when $\sum_{i=1}^n \alpha_i \mathbf{u}_i = \mathbf{0}$ if and only if $\alpha_i = 0$ for all i.
 - Otherwise the set is linearly dependent.

Question: Is the set
$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}$$
 linearly independent?

- Infinite sets (infinite collection of vectors):
 - > an **infinite set** is linearly independent, if every finite subset is linearly independent.

MATLAB

EXAMPLES

Classify each of these sets as linearly independent or linearly dependent

A.
$$\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$

B.
$$\left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} \right\}$$

$$\mathsf{C.} \left\{ \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}, \begin{bmatrix} 4 \\ 0 \\ 8 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ 5 \end{bmatrix} \right\}$$

SUBSPACE SPAN

LINEAR INDEPENDENCE

ORTHOGONALITY

MATLAB

USEFUL DEFINITIONS ORTHOGONALITY

- Vectors \mathbf{u} and \mathbf{v} are orthogonal when $\langle \mathbf{u}, \mathbf{v} \rangle = 0$
 - Again, think of the little arrows

- We will write this as $\mathbf{u} \perp \mathbf{v}$
- Orthogonality can be extended to subspaces (collection of vectors) as well

USEFUL DEFINITIONS ORTHOGONALITY

- The set of vectors \mathcal{S} are orthogonal if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$ for every $\mathbf{u}, \mathbf{v} \in \mathcal{S}$.
- ▶ Orthonormal set S: is orthogonal, and $\langle \mathbf{u}, \mathbf{u} \rangle = 1$ for every $\mathbf{u} \in S$.
- A <u>vector</u> \mathbf{u} is orthogonal to the <u>set of vectors</u> \mathcal{S} , if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$ for every $\mathbf{v} \in \mathcal{S}$. Written as $\mathbf{u} \perp \mathcal{S}$.
- Two sets of vectors \mathcal{S}_0 and \mathcal{S}_1 are orthogonal when every vector in \mathcal{S}_0 is orthogonal to every vector in \mathcal{S}_1 .

USEFUL DEFINITIONS ORTHOGONALITY

• \mathcal{S}^{\perp} is the **orthogonal complement** of a subspace \mathcal{S} , of a vector space \mathcal{V} , i.e. the set $\mathcal{S}^{\perp} = \{\mathbf{u} \in \mathcal{V} : \mathbf{u} \perp \mathcal{S}\}$.

USEFUL DEFINITIONS ORTHOGONALITY

• \mathcal{S}^{\perp} is the **orthogonal complement** of a subspace \mathcal{S} , of a vector space \mathcal{V} , i.e. the set $\mathcal{S}^{\perp} = \{\mathbf{u} \in \mathcal{V} : \mathbf{u} \perp \mathcal{S}\}.$

Example: Let us consider a 3D vector space: $\mathcal{V} = \mathbb{R}^3$.

And the vector
$$\mathbf{w} = \begin{bmatrix} 2 \\ 3 \\ 6 \end{bmatrix} \in \mathbb{R}^3$$

The vector
$$\mathbf{v} = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}$$
 is lives in \mathcal{S} ,

while vector
$$\mathbf{u} = \begin{bmatrix} 0 \\ 0 \\ 6 \end{bmatrix}$$
 lives in S^{\perp} , i.e.

orthogonal complement of \mathcal{S} .

RECAP

Subspace: is a subset of a vector space that is closed under addition and scalar multiplication

Span: is the set of all finite linear combinations of vectors of a vector space.

Linear independence: if any vector in the set can be written as a linear combination of the remaining vectors the set is said to be linearly dependent.

Orthogonal: two vectors are orthogonal if their inner product is zero. That is,

$$\langle \mathbf{u}, \mathbf{v} \rangle = 0$$

VECTORS

MATLAB PRACTICE 1

MATLAB CHECKLIST

- Creating vectors
- Manipulating vectors
 - Scalar multiplication
 - Vector addition
 - Indexing
 - Inner products and Norms
- Checking linear independence
 - Check rank or determinant of matrix representation of the set of vectors
 - Can also look at reduced row echelon form of matrix representation of the vectors

WHAT WE COVERED TODAY

- Vectors and Vector spaces
 - Norms
 - Inner products
- Hilbert space
- Matlab
 - Manipulating vectors

SEE YOU NEXT TIME!

HILBERT SPACE & LINEAR OPERATORS