ECO208

R and RStudio

Week 11 | December 9, 2022

Happy Friday class!

Please take this class survey. We will use it as data for our class today.

稿日: 昨日 (最終	終編集: 11:28)	
ECO208 E and ESSaulio Vent 111 Steamber 9, 2022	W11.pdf PDF	Week 11 Econ Class Survey Google フォーム
	chiba11.csv カンマ区切り	

World Cup Shootout Penalties Scored

World Cups since 1982

196 goals

World Cup Shootout Penalty Conversion

World Cups since 1982

10/10 100% 16/17 94.1% 32/37 86.5%	8/8 8/8 100% 100% 6/13 4/5 46.2% 80% 17/30 7/14 56.7% 50%	100%	4/4 100% 2/2 100% 7/10 70%	5/5 100% 4/6 66.7% 12/18 66.7%	8/8 100% 17/23 73.9% 29/38 76.3%

World Cup Shootout Penalty Placement World Cups since 1982

10 3.9% 17 6.6% 37 14.5%	8 3.1% 13 5.1%	8 3.1% 5 2%	2 0.8%	5 2% 6 2.3%	8 3.1% 23 9%

Last week...

今日は一緒にRStudioでゼロから 重回帰分析をやりましょう

Part 1: Download data

- わかりやすいところに Week11 フォルダーを作る (デスクトップとか)
- クラスサイトから class csv ファイルを Week11 フォル ダーにダウンロード

Part 2: R Setup

- Rを立ち上げる
- Working directoryを Week11 にセットする

こうなるはず:

新しいR Scriptファイルを作る

Part 3: Get the data into R

```
# import data
class <- read.csv("class.csv")</pre>
```

データの確認

```
summary(class)
str(class)
```

- ここで数的 (int,float)ではない値 (chrなど) に注意
- 場合によっては統計的に関係のないカラムを削除してからも う一度読み込む

このセッションにデータをattachする

attach(class)

Part 4: Initial data inspection

plotでデータをinspectする

plot(class)

データのカラムが多ければこのようにsubsetする

```
class[c("koma","study","happiness")]
```

plotにも使える

```
plot(class[c("koma","study","happiness")])
```

変数にしてからplotに入れるのもあり

```
class_mini <- class[c("koma","study","happiness")])
plot(class_mini)</pre>
```

ggpairs()

変数間の関係を1つの図で可視化するスーパー関数

ggpairsを使うにはGGallyパッケージが必要

install.packages("GGally")

使うときはlibraryを取り込む

library(GGally)

ggpairs(class)

カラムが多ければ選べばいい:

ggpairs(class, columns = c("study","work","happiness","grade"))

色々試して、説明変数、目的変数を決める

Part 5: ではモデルを作ろう

一つの手段としてはとりあえず全部入れてみる

```
model <- lm(happiness ~ .,class)
summary(model)</pre>
```

Part 6: 変数選択

ではどの変数を使えば、最も良いモデルが作れる?

```
chiba11.csv
Residuals:
                                                                   class.csv
    Min
              10 Median
-1.03330 -0.23403 -0.03484 0.30832 1.32881
                                                     *が付いてるといい!
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)
             4.014853
                       0.452184
                                 8.879 8.10e-13 ***
            -0.068594
                       0.007566
                                -9.066 3.80e-13
                                -6.080 7.06e-08
minutes
            -0.058808
                       0.009673
                                 9.590 4.58e-14
area
             0.122917
                       0.012817
floorinaない
           -0.357973
                      0.161942
                               -2.211
                                        0.0306
konroない
            0.294918
                      0.156907
                                 1.880
                                        0.0647
senmen
            -0.092264
                       0.141655 -0.651
                                         0.5171
autolock
             0.317114
                       0.190681
                                 1.663
                                         0.1011
aircon
             0.166318
                       0.199164
                                 0.835
                                         0.4067
bath_toilet -0.268485
                       0.151838 -1.768
                                         0.0817
                       0.160486
                                 0.311
parking
             0.049833
                                         0.7572
                       0.133322 -1.686
corner
            -0.224767
                                         0.0966
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.4799 on 65 degrees of freedom
Multiple R-squared: 0.9108,
                             Adjusted R-squared: 0.8958
F-statistic: 60.37 on 11 and 65 DF, p-value: < 2.2e-16
```

P値が一番高い変数を一つずつ消していくといいかも。

モデルを作り直す

model <- lm(happiness ~ work + study + hobby + exercise , class)
summary(model)</pre>

色んな組み合わせで最適な結果が出るまで繰り返す! 🔓

In a nutshell... (手短に)

重回帰分析はAdjusted R-Squaredを使うように! 🡈

変数を自動的に選択できる方法もある。

step(model)

この中で一番AICが低いモデルを選ぶ