FreeDIC

一、秘钥验证

在【命令行】输入秘钥,然后点击【验证秘钥】,如果成功会显示"验证成功" 秘钥会保存在当前软件目录文件下DICKey.mat,最好不要删除,不然还需要输入验证。

MATLAB2019b runtime 下载地址:

https://ww2.mathworks.cn/products/compiler/matlab-runtime.html

二、前期处理

1、并行启动

【cores】设置并行计算核数,点击【Parallel】启动如果是<=1,则是关闭

2、选择计算区域

【选择计算区域】,对参考图片进行操作,选择 4 个角,形成矩形方框,方框内为计算区域。左击——选择点, "Enter"完成,并会最后显示方框。

3、标记非计算区域

前期处理时,不能选择【是否修正 DIC 结果】

标记规则:

左键——选择散点,只要最外边界包络不需要计算的部分即可,可以多选;

右键——撤销当前左键所选择的散点;

中键——结束全部散点选择,完成非计算区域的选择:

Enter——结束当次区域选择。

如下图所示,黄色为非计算区域。但大多数时候会有一些残余边角,可以进行【标记区膨胀】(注意:【Date】 打开 XY_UC. mat 文件),选择合适的【标记膨胀半径】。

4、如果只是针对参考区域中的指定目标点计算位移,则必须选择【指定点位移】,选择指定点

三、DIC 计算

1、参数选择

【检索半径】最大位移半径

【格子半径】计算子矩阵半径,窗口为(2xM+1)^2

【grid】计算网格点间隔

【StrainM】此项无用

【精度】可以选择计算精度,分3个档次

2、DIC 计算

2.1 当不确定检索半径时,可以选择【与估计检索半径】,然后点击【执行计算】,查看结果,反复选择合适的

2.2 当全部参数都设置好后,点击【执行计算】进行整个区域的计算,(注意必须要取消【预估检索半径】)会生成 Dx, Dy, ZNCC 三幅结果图,保存结果 DIC. mat

xy 表示坐标方向, ZNCC 是匹配系数, Grid 是原始计算结果, 没有 Grid 的是插值结果, 当存在非计算区域标记时, 最好不用用, 自己处理插值。

UCGrid 是非计算区域的标记矩阵。

四、后期处理

1、如果计算结果出现异常,或者预处理不能很好的标记非计算区域,可以采用后期处理进行修正。

【Date】选择 DIC. mat 结果和【是否修正 DIC 结果】,然后点击【标记非计算区】,操作逻辑和前期处理一样,针对计算匹配系数 ZNCC 进行操作裁剪。

预期结果如下图

2、计算应变

参数设置:

【平滑格子】平滑格子半径

【高斯方差】标准差, 高斯平滑

【Date】选择 DIC. mat 或者修正后的 Re_DIC. mat, 然后点击【Strain】,保存结果 DIC_Strain. mat。

3、拼接计算——暂时未开发。

附录——参数或注意事项

此版本为小应变,一般小于 0.15

- 1、Imgael 和 Images2 分别打开待计算变形前后的图片
- 2、图片必须是自己切割好感兴趣的区域,图片尺寸最好相等
- 3、Save 是结果保存的 path
- 4、检索半径为, 离测试点可能发生的最大位移
- 5、格子半径, Sub 计算格子大小, 比如 20 , 计算格子为 (2*20+1) =41
- 6、网格边长是初始计算的 grid, DIC 可以设置为 5 提高计算精度,但影响计算速度
- 7、修正半径: 当初始计算出现错误时,采用高斯平滑此参数为高斯平滑格子半径
- 8、预估检索半径,进行试算,看最大位移和格子半径设置是否合理,Accuracy 是精度设置,当前仅提供三个精度设置
 - 9、Postprocessing 是后期处理,对于原始数据,可能存在一些数据异常,需要平滑,同时计算 x-y-xy 应变
 - 10、文件夹中的两幅图片是示例,为 0-1y 轴位移图
 - 11、DIC. Dx\DIC. Dy 分别是 x, y 方向位移, Grid 是间隔网点的数值,其余的为 spline 插值结果
 - DIC. Dxx、DIC. Dyy、DIC. Dxy 分别是 x, y 方向应变和剪应变
 - 12、计算核数可自由调节,最大支持 16 核,在 parallel 设置数目

输出的 TXT 结果: [y, x(坐标), dy, dx(位移), ZNCC(0-1), ifBigStrain(0 小应变, 1 大应变)]

13、命令行对对已知的任何(MATLAB 可处理的数据)进行二次处理,需要注意的是,命令行的格式要求比一般严格,DIC 数据和计算应变后的结果数据结构可以通过"复原"来给出必要的提示。命令行可执行大部分 MATLAB 内置函数和自己编写的代码。