Planche nº 32. Dimensions des espaces vectoriels

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Dans cette planche, la lettre \mathbb{K} désigne toujours un sous-corps de \mathbb{C} , comme \mathbb{Q} , \mathbb{R} ou \mathbb{C} .

Exercice n° 1: (**T)

E désigne l'espace vectoriel \mathbb{R}^4 (muni des opérations usuelles). On considère les vecteurs $e_1=(1,2,3,4),\ e_2=(1,1,1,3),\ e_3=(2,1,1,1),\ e_4=(-1,0,-1,2)$ et $e_5=(2,3,0,1).$ Soient alors $F=\mathrm{Vect}(e_1,e_2,e_3)$ et $G=\mathrm{Vect}(e_4,e_5).$ Quelles sont les dimensions de F, G, $F\cap G$ et F+G?

Exercice n° 2: (**IT)

Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \ge 2$. Soient H_1 et H_2 deux hyperplans de E. Déterminer $\dim_{\mathbb{K}} (H_1 \cap H_2)$. Interprétez le résultat quand n = 2 ou n = 3.

Exercice no 3: (**)

Soit E un K-espace vectoriel de dimension finie.

Soient f et q deux endomorphismes de E vérifiant E = Kerf + Kerq = Imf + Imq. Montrer que ces sommes sont directes.

Exercice $n^o 4 : (***I)$

Soit $E = \mathbb{R}_n[X]$, le \mathbb{R} -espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à \mathfrak{n} (\mathfrak{n} entier naturel donné). Soit ϕ l'application définie par : $\forall P \in E, \ \phi(P) = P(X+1) - P(X)$.

- 1) Vérifier que φ est un endomorphisme de E.
- 2) Déterminer $Ker \varphi$ et $Im \varphi$.

Exercice no 5: (**T)

Soient $(e_i)_{1 \leqslant i \leqslant 4}$ la base canonique de \mathbb{R}^4 et f l'endomorphisme de \mathbb{R}^4 défini par : $f(e_1) = 2e_1 + e_3$, $f(e_2) = -e_2 + e_4$, $f(e_3) = e_1 + 2e_3$ et $f(e_4) = e_2 - e_4$. Déterminer Kerf et Imf.

Exercice nº 6: (**)

Soit $f: \mathbb{C} \to \mathbb{C}$ où a est un nombre complexe donné non nul.

$$z \mapsto z + a\overline{z}$$

Montrer que f est un endomorphisme du \mathbb{R} -espace vectoriel \mathbb{C} . f est-il un endomorphisme du \mathbb{C} -espace vectoriel \mathbb{C} ? Déterminer le noyau et l'image de f.

Exercice nº 7: (**)

Soit $f \in \mathcal{L}(\mathbb{R}^2)$. Pour $(x, y) \in \mathbb{R}^2$, on pose f((x, y)) = (x', y').

- 1) Rappeler l'écriture générale de (x', y') en fonction de (x, y).
- 2) Si on pose z = x + iy et z' = x' + iy' (où $i^2 = -1$), montrer que : $\exists (a, b) \in \mathbb{C}^2 / \forall z \in \mathbb{C}, \ z' = az + b\overline{z}$.
- 3) Réciproquement, montrer que l'expression ci-dessus définit un unique endomorphisme de \mathbb{R}^2 (en clair, l'expression complexe d'un endomorphisme de \mathbb{R}^2 est $z'=az+b\overline{z}$).

Exercice nº 8: (**I)

Soient E et F deux \mathbb{K} -espaces vectoriels de dimensions finies sur \mathbb{K} et \mathfrak{u} et \mathfrak{v} deux applications linéaires de E dans F. Montrer que : $|\operatorname{rg}\mathfrak{u}-\operatorname{rg}\mathfrak{v}|\leqslant \operatorname{rg}(\mathfrak{u}+\mathfrak{v})\leqslant \operatorname{rg}\mathfrak{u}+\operatorname{rg}\mathfrak{v}$.

Exercice no 9: (***)

Soit E un \mathbb{K} -espace vectoriel de dimension finie \mathfrak{n} .

1) Soit $f \in \mathcal{L}(E)$ tel que Kerf = Imf. Montrer qu'il existe une base $(u_1, ..., u_p, v_1, ..., v_p)$ de E telle que :

$$\forall i \in [1, p], f(u_i) = 0 \text{ et } f(v_i) = u_i.$$

2) Montrer que, pour tout endomorphisme f de \mathbb{R}^2 , on a :

$$(\text{Kerf} = \text{Imf}) \Leftrightarrow (f^2 = 0 \text{ et } n = 2\text{rgf}) \Leftrightarrow (f^2 = 0 \text{ et } \exists q \in \mathcal{L}(E) / f \circ q + q \circ f = Id_E).$$

Exercice nº 10 : (***I) (Le théorème des noyaux itérés)

Soient E un \mathbb{K} -espace vectoriel et f un endomorphisme de E. Pour k entier naturel donné, on pose $N_k = \operatorname{Kerf}^k$ et $I_k = \operatorname{Imf}^k$ (avec la convention $f^0 = Id_E$).

- 1) Montrer que : $\forall k \in \mathbb{N}$, $(N_k \subset N_{k+1} \text{ et } I_{k+1} \subset I_k)$.
- 2) Montrer que : $(\forall k \in \mathbb{N}, (N_k = N_{k+1} \Rightarrow N_{k+1} = N_{k+2}).$
- 3) Trouver un exemple où, pour tout $k\in\mathbb{N},\,N_k\underset{\neq}{\subset}N_{k+1}.$

A partir d'ici, on suppose de plus que E est de dimension finie n.

- $\textbf{4) a) Montrer que}: \exists p \in \mathbb{N}/\ \forall k \in \mathbb{N},\ \bigg(k$
 - b) Montrer que $p \leq n$.
- 5) Montrer que si k < p, $I_k \supseteq I_{k+1}$ et si $k \geqslant p$, $I_k = I_{k+1}$.
- 6) Soit $d_k = \dim I_k$. Montrer que la suite $(d_k d_{k+1})_{k \in \mathbb{N}}$ est décroissante (en d'autres termes la suite des images itérées décroît de moins en moins vite ou aussi la suite des noyaux itérés croît de moins en moins vite).

Exercice no 11: (***I)

Soit E un K-espace vectoriel de dimension finie notée n. Soit u un endomorphisme de E.

On dit que u est nilpotent si et seulement si $\exists k \in \mathbb{N}^* / u^k = 0$ et on appelle alors indice de nilpotence de u le plus petit de ces entiers k (par exemple, le seul endomorphisme u, nilpotent d'indice 1 est 0).

- 1) Soit $\mathfrak u$ un endomorphisme nilpotent d'indice $\mathfrak p$. Montrer qu'il existe un vecteur $\mathfrak x_0$ de E tel que la famille $(\mathfrak x,\ \mathfrak u(\mathfrak x_0),...,\ \mathfrak u^{\mathfrak p-1}(\mathfrak x_0))$ soit libre.
- 2) Soit $\mathfrak u$ un endomorphisme nilpotent. Montrer que $\mathfrak u^n=0$.
- 3) On suppose dans cette question que u est nilpotent d'indice n exactement. Déterminer rgu (utiliser le n° 10).

Exercice no 12: (***I)

Soit E un \mathbb{K} -espace vectoriel de dimension quelconque sur \mathbb{K} et f un endomorphisme de E vérifiant $f^2-5f+6Id_E=0$. Montrer que $E=\mathrm{Ker}(f\text{-}2\mathrm{Id})\oplus\mathrm{Ker}(f-3\mathrm{Id})$.

Exercice nº 13: (**IT)

Soit $E = \mathbb{C}^{\mathbb{N}}$. Soient a, b et c trois nombres complexes tels que $a \neq 0$. Soit F l'ensemble des suites u vérifiant : $\forall n \in \mathbb{N}$, $au_{n+2} + bu_{n+1} + cu_n = 0$. Montrer que F est un sous-espace vectoriel de E de dimension E.

Exercice nº 14: (**I)

Soit z un nombre complexe non réel. Montrer que (1,z) est une base du \mathbb{R} -espace vectoriel \mathbb{C} .

Exercice nº 15: (**I)

Soit $n \in \mathbb{N}$. Soit $(P_k)_{0 \le k \le n}$ une famille de n+1 polynômes tels que $\forall k \in [0,n]$, $\deg(P_k) = k$. Montrer que la famille $(P_k)_{0 \le k \le n}$ est une base de $\mathbb{R}_n[X]$.

Exercice no 16: (**I)

Soit E un K-espace vectoriel de dimension finie n. Soit $f \in \mathcal{L}(E)$ tel que

$$\forall x \in E, \exists p_x \in \mathbb{N}^* / f^{p_x}(x) = 0.$$

Montrer que f est nilpotent.

Exercice no 17: (***I)

1) Soit E un K-espace vectoriel. Soit $f \in \mathcal{L}(E)$ tel que

$$\forall x \in E, \ \exists \lambda_x \in \mathbb{K}/\ f(x) = \lambda_x x.$$

Montrer que f est une homothétie.

2) Application. On suppose de plus que E est de dimension finie. Déterminer les endomorphismes f de E qui commutent avec tous les endomorphismes q de E.