Some of basic problems in Mathematical Analysis

Question 1

Assume that every $\ f_k(x)$ is continuous on $\ [a,b]$ $\ (k=0,1,2,\cdots)$.

Is
$$\sum_{k=0}^{\infty} f_k(x)$$
 continuous on $[a,b]$?

Everybody knows: $f \& g : \text{conti} \text{ on } [a,b] \Rightarrow f+g : \text{conti} \text{ on } [a,b]$

Thus by Mathematical Induction, we conclude that

if
$$f_0, f_1, f_2, \dots, f_n$$
 are all conti on $[a, b]$, then $\sum_{k=0}^n f_k$ is conti on $[a, b]$

 \odot What about if $\sum_{k=0}^n f_k$ (finite sum) is replaced by $\sum_{k=0}^\infty f_k$ (infinite sum) ?

Ans (to Question 1) is No in general.

Example 1.

Obviously, $1, x, x^2, \dots, x^n, \dots$ are all conti on [0,1]

But

$$f(x) \stackrel{\text{let}}{=} 1 + x + x^2 + \dots + x^n + \dots = \sum_{k=0}^{\infty} x^k : \text{conti on } [0,1), \text{ and } not \text{ conti at } x = 1$$

In fact,
$$f(x) = \frac{1}{1-x}$$
 for $0 \le x < 1$ [so $f(x)$ is conti on [0,1)]

& f(x) is not continuous at x = 1 because $f(1) = \infty$ (i.e., f(1) is not a finite value)

Example 2.

Obviously,
$$x, \frac{x^2}{2}, \frac{x^3}{3}, \dots, \frac{x^n}{n}, \dots$$
 are all conti on $[0,1]$

Is
$$f(x) := \sum_{k=1}^{\infty} \frac{x^k}{k}$$
 conti on [0, 1]?

Ans is No

Note that
$$f'(x) = \left(\sum_{k=1}^{\infty} \frac{x^k}{k}\right)' = \sum_{k=1}^{\infty} x^{k-1} = 1 + x + x^2 + \dots + x^n + \dots = \frac{1}{1-x}$$
 for $0 \le x < 1$

Taking $\int_0^x () dt$ gives

$$f(x) = \ln \frac{1}{1-x} = -\ln(1-x)$$
 for $0 \le x < 1$

But f(x) is not conti at x=1 because $f(1)=\sum_{k=1}^{\infty}\frac{1}{k}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}+\cdots$

Example 3. Is $f(x) := \sum_{k=1}^{\infty} \frac{x^k}{k^2}$ conti on [0, 1]?

Ans is Yes: An evidence: $f(1) = \sum_{k=1}^{\infty} \frac{1}{k^2} \left(= \frac{\pi^2}{6} \right)$: converges $(p - \exists \div \text{ 판정법})$

How can we prove that $f(x) := \sum_{k=1}^{\infty} \frac{x^k}{k^2}$ is conti on [0, 1]?

A natural approach: $f'(x) = \left(\sum_{k=1}^{\infty} \frac{x^k}{k^2}\right)' = \sum_{k=1}^{\infty} \frac{x^{k-1}}{k} = \frac{1}{x} \sum_{k=1}^{\infty} \frac{x^k}{k} = -\frac{\ln(1-x)}{x}$ for 0 < x < 1

Notice that $\lim_{x \to 0^+} \frac{-\ln(1-x)}{x} = \lim_{x \to 0^+} \frac{1}{1-x} = 1 \text{ (exists)}$. Thus, we may write

$$f'(x) = -\frac{\ln(1-x)}{x}$$
 for $0 \le x < 1$

Taking $\int_0^x () dt$ gives $f(x) = -\int_0^x \frac{\ln(1-t)}{t} dt = ??$ (impossible to find a closed form)

This approach [for finding a simple closed form of f(x)] is **not** good for our goal.

Do you have any good idea? (will be back shortly later)

Question 2 (not easy): Is there a continuous function $\,f:[0,1] \to \mathbb{R}\,$ such that

f is nowhere differentiable on $\left[0,1\right]$?

Expect (roughly): In geometrical viewpoint, we may guess there is no such a function

Ans (to Question 2) is unexpectedly Yes (settled by Van der Waerden, Bolzano(1830), Weierstrass)

Example [famous].
$$f(x) = \sum_{n=0}^{\infty} \frac{1}{2^n} \cos(5^n \pi x) \quad \text{or} \quad \sum_{n=0}^{\infty} \frac{1}{2^n} \sin(5^n \pi x)$$

Question 3 Is there a function $f: \mathbb{R} \to [0,1]$ for which f is discontinuous at every rational number & continuous at every irrational number?

Ans: Yes

To construct such kind of functions, we need the following important result in Analysis

Good Series Theorem (it is a corollary of the famous **Weierstrass M-test**: see below) Suppose that

(i) every
$$f_k(x)(k=0,1,2,\cdots)$$
 is conti on the interval I

(ii)
$$|f_k(x)| \le M_k$$
 for all $x \in I$ (note: M_k is independent of $x \in I$)

(iii)
$$\sum_{k=0}^{\infty} M_k$$
: converges (or, equivalently, $\sum_{k=0}^{\infty} M_k < \infty$)

Then
$$\sum_{k=0}^{\infty} f_k(x)$$
 is conti on I

Cf: Continuity is a local property (later)

$$f \quad \text{is conti on} \quad I \quad \stackrel{\text{def}}{\Leftrightarrow} \quad f \quad \text{is conti at each point} \quad x_0 \in I$$

Good Series Theorem-L (Localization of the above theorem)

Suppose that

(i) every
$$f_k(x)$$
 is conti at the point $x_0 \in I$ $(k = 0, 1, 2, \cdots)$

(ii)
$$\mid f_k(x)\mid \, \leq M_k \quad \text{ for all } \ x\in I \quad \text{ (note: } M_k \ \text{ is independent of } \ x\in I \text{)}$$

(iii)
$$\sum_{k=0}^{\infty} M_k$$
 : converges (or, equivalently, $\sum_{k=0}^{\infty} M_k < \infty$)

Then
$$\sum_{k=0}^{\infty} f_k(x)$$
 is conti at $x_0 \in I$

Weierstrass M- test (A sufficient condition for the uniform convergence of Series of functions)

If
$$\mid f_k(x) \mid \leq M_k$$
 for all $x \in I \; (k=0,1,2,\cdots)$ (note M_k is indep of $x \in I$)

&
$$\sum_{k=0}^{\infty} M_k$$
: converges (or, equivalently, $\sum_{k=0}^{\infty} M_k < \infty$)

Then
$$\sum_{k=0}^{\infty} f_k(x)$$
 converges *uniformly* on I

Construction of a function $f: \mathbb{R} \to [0,1]$ s.t. $\begin{cases} f \text{ is discontinuous at every rational number} \\ f \text{ is continuous at every irrational number} \end{cases}$

Let $r_1, r_2, \dots, r_n, \dots$ be an enumeration of the rational numbers & let

$$f_k(x) = \begin{cases} 1 & \text{if } x \ge r_k \\ 0 & \text{if } x < r_k \end{cases} \quad (k = 1, 2, \cdots)$$

It is clear that each $f_k(x)$ is conti at every point except r_k

Now we define
$$f(x) = \sum_{k=1}^{\infty} 2^{-k} f_k(x)$$

Claim:

- ① f(x) is continuous at every irrational number
- ② f(x) is discontinuous at every rational number
- 4 f(x) is \uparrow (increasing) on \mathbb{R}

Pf.

③
$$0 \le f(x) = \sum_{k=1}^{\infty} 2^{-k} f_k(x) = \sum_{k=1}^{\infty} 2^{-k} | f_k(x) | \le \sum_{k=1}^{\infty} 2^{-k} = 1$$

4

$$x \ge y \qquad \Rightarrow \qquad f_k(x) \ge f_k(y) \quad (\because f_k \text{ is } \uparrow)$$

$$\Rightarrow \qquad 2^{-k} f_k(x) \ge 2^{-k} f_k(y)$$

$$\Rightarrow \qquad \sum_{k=1}^{\infty} 2^{-k} f_k(x) \ge \sum_{k=1}^{\infty} 2^{-k} f_k(y)$$

$$\therefore \qquad f(x) \ge f(y)$$

 \therefore f(x) is \uparrow (increasing)

① Choose an arbitrary irrational number x_0 and fix it.

We will show that f(x) is continuous at x_0

Note that every $2^{-k} f_k(x)$ is continuous at x_0 .

We have seen that

$$|2^{-k}f_k(x)| \le 2^{-k} \quad \forall x \in \mathbb{R} \quad \& \sum_{k=1}^{\infty} 2^{-k} : \text{converges (in fact, } \sum_{k=1}^{\infty} 2^{-k} = 1 < \infty)$$

Therefore by Good Series Theorem-L,

$$\sum_{k=1}^{\infty} 2^{-k} f_k(x) \quad \text{is conti at} \quad x_0$$

We will show that f(x) is **not** continuous at r_m

Write
$$f(x) = \frac{1}{2^m} f_m(x) + \sum_{k=-m}^{\infty} \frac{1}{2^k} f_k(x)$$

Recall that each $\frac{1}{2^k} f_k(x)$ is conti at every point x if $x \neq r_k$

& disconti at
$$x = r_k$$

Thus if $k \neq m$, then $\frac{1}{2^k} f_k(x)$ is contiat r_m

So $\sum_{k\neq m}^{\infty} \frac{1}{2^k} f_k(x)$ is conti at the point r_m (by Good Series Theorem-L)

& clearly
$$\frac{1}{2^m} f_m(x)$$
 is disconti at r_m

If f(x) is conti at r_m , then $f(x) - \sum_{k \neq m}^{\infty} \frac{1}{2^k} f_k(x)$ should be conti at r_m .

Then $\frac{1}{2^m} f_m(x)$ is contiat r_m . This is a contradiction.

Therefore, f(x) is not continuous at r_m

Return to Example 3: Prove $f(x) = \sum_{k=1}^{\infty} \frac{x^k}{k^2}$ is conti on [0, 1]

Pf. Every $\frac{x^k}{k^2}$ $(k \ge 1)$ is continuous on [0, 1]. Also

$$\sum_{k=1}^{\infty} \left| \frac{x^k}{k^2} \right| \le \sum_{k=1}^{\infty} \frac{1}{k^2} \text{ for } \forall x \in [0, 1] \quad \& \quad \sum_{k=1}^{\infty} \frac{1}{k^2} \text{ converges}$$

Thus by **Good Series Theorem** (or, Weierstrass M-test), $f(x) = \sum_{k=1}^{\infty} \frac{x^k}{k^2}$ is conti on [0,1]

Ex. Show that
$$\sum_{n=0}^{\infty} \frac{1}{2^n} \cos(5^n \pi x)$$
 is continuous on $\mathbb R$