System Dynamics Homework 4

November 28, 2023

First Last

```
[1]: import sympy as sp
import control as ct
import matplotlib.pyplot as plt
import numpy as np
from scipy.integrate import odeint

# Use whichever pertains to your set-up
# plt.style.use('maroon_ipynb.mplstyle')
# plt.style.use('../maroon_ipynb.mplstyle')
```

Contents

1	\mathbf{Pro}	oblem 1
	1.1	Given
	1.2	Find
	1.3	Solution
2	Pro	oblem 2
	2.1	Given
	2.2	Find
	2.3	Solution
		2.3.1 Part A
		2.3.2 Part B
3	Pro	oblem 3
	3.1	Given
	3.2	Find
	3.3	Solution
		3.3.1 Part A
		3.3.2 Part B
		3.3.3 Part C
		3 3 4 Part D

1 Problem 1

1.1 Given

1.2 Find

Find the transfer function $\frac{Y(s)}{F(s)}$ for the block diagram.

1.3 Solution

The solution can be determined using two different methods. The first is an algebraic solution where B is the expression after the first block seen above. The second can be determined using the feedback and series functions.

[]:

2 Problem 2

2.1 Given

$$L = 500 \, mH, \ C = 100 \, \mu F, \ R = 300 \, \Omega$$

$$v_1 = 5e^{-t}\sin(6t)\,V,\ v_2 = 10\sin(t)\,V$$

All initial conditions are zero.

2.2 Find

- a. The system of ODE's (should be two equations if using mesh currents).
- b. Solve the system for i_1 , i_2 , and i_3 as seen the figure above. Use any method to find the result and plot up to 6 seconds.

2.3 Solution

2.3.1 Part A

[]:

2.3.2 Part B

[]:

3 Problem 3

3.1 Given

The system shown below is designed to lift the mass with a stiff chain.

$$\begin{split} K_T &= 0.01 \, \frac{Nm}{A}, \ R_1 = 0.5 \, \Omega, \ L_1 = 0.002 \, H \\ I_1 &= 9 \cdot 10^{-5} \, kg \, m^2, \ I_2 = 4 \cdot 10^{-5} \, kg \, m^2, \ I_3 = 1 \cdot 10^{-5} \, kg \, m^2, \ I_4 = 25 \cdot 10^{-5} \, kg \, m^2 \\ r_1 &= 7.62 \, cm, \ r_2 = 60.96 \, cm, \ r_3 = 2.2 \, cm, \ r_4 = 13 \, cm \\ k_1 &= 500 \, N/m, \ m_1 = 220 \, kg, \ \theta_{m1} = 70^\circ \\ V_{in} &= 285 \, V \end{split}$$

```
# The sp.S() function ensures that there is no floating point error
sub_values = [
    (KT, sp.S('0.01')),
    (R1, sp.S('0.5')),
    (L1, sp.S('0.002')),
    (I1, sp.S('9e-5')),
    (I2, sp.S('4e-5')),
    (I3, sp.S('1e-5')),
    (I4, sp.S('25e-5')),
    (r1, sp.S('0.0762')),
    (r2, sp.S('0.0762')*8),
    (r3, sp.S('0.022')),
    (r4, sp.S('0.13')),
    (k1, 500),
    (m1, 220),
    (thm1, sp.rad(70))
]
Vin_lamb = lambda t_: 285
```

3.2 Find

Create a model to determine if the motor is strong enough by finding the following:

- a. Determine the equivalent inertia (I_{eq}) of the gear train involving I_1 , I_2 , I_3 , and I_4 as seen by the output shaft 1 of the motor.
- b. Find the governing ODE's of the system.
- c. Solve for and plot $x_1(t)$, $\theta_1(t)$, $\omega_1(t)$, and i(t) up to 20 seconds.
- d. Comment on the results. Is the motor able to raise the mass?

3.3 Solution

3.3.1 Part A

Use the concept of velocity ratios to relate everything back to ω_1 .

[]:

3.3.2 Part B

[]:

3.3.3 Part C

The best way to solve this is to put it in the state variable form.

3.3.4 Part D

type answer here