Google Apps Play Store

DAO2702 Positive Vibes

Introduction to Mobile Application Industry

Growing market, projected to be 188.9billion

Team Positive Vibe

Key Players

84% market share

15% market share

Entering Google play market

Reasons:

Cheaper (\$25 compared to \$99)

Bigger Market

Goals & Vision

Customer Satisfaction

Analysis of Data

10,000 sample dataset

Definition of Business Problem

How can create a high-rating application on Google Play?

Data Obtained with the following 12 attributes

Category	Туре
Reviews	Content Rating
Size	Genres
Installs	Last Updated Version
Price	Current Version
Rating	Android Version

Modelling Methodologies

Multiple Linear Regression Model

Variable	Relationship	Variable Type	Conversion
Y: Rating	Independent Var	Numerical	N.A.
X1: Category	Dependent Variable	Categorical	N.A.
X2: Reviews		Numerical	N.A.
X3: Size		Numerical	N.A.
X4: Installs		Categorical	Numerical
X5: Price		Numerical	Binary (Categorical)

- Hypothesis Testing for Statistical Significance
- Data Visualisation and Estimating Parameters
- Error Minimization and Confidence Intervals

Modelling Assumptions

Independency of Variables

 Based on Independency, ability to remove outliers in each variable's set of data

 Based on removing outliers, ability to model Normal Distribution by Central Limit Theorem

Overview of Data Analysis

- Data Manipulation and Simplification → Darren
- Visualisation of Data: Outliers and Relationship → Su Min
- Simple Linear Regression → Stephenie
- Transformation of Variables → Jun Hyoung
- Multiple Linear Regression and Interactions → Jun Hyoung
- Parameter Estimation through Error Minimization → Kai Xuan
- Evaluation of Confidence Intervals (Limitation) → Kai Xuan
- ullet Interpretation of Results and Solutions for Business Problem o Heng Rui

Data Manipulation: Removing Unwanted Data

Removing Unnecessary Columns

Variables	Reasons:
Туре	Binary Variable for Price
Content Rating	General App for All
Genres	Elaboration of Category
Last Updated Ver	Only available if Application is launched in the first place.
Current Ver	launoneu in the mst place.
Android Ver	

- Removing any rows with NaN
- Conversion of all numerical data types to floats and categorical data types to objects

Data Manipulation: General Descriptive Statistics

Variable	Mean	S.D.	Category Counts	Distribution
Rating	4.17	0.544	N.A.	Requires Data
Category	N.A.	N.A.	33	Visualisation
Reviews	2.95 x 10^5	1.86 x 10^6	N.A.	
Size	2.29 x 10^7	2.34 x 10^7	N.A.	
Installs	8.41 x 10^6	5.01 x 10^7	19	
Price	1.12	17.4	N.A.	

- We first conduct data visualization for each X-variable and Y-variable individually
- Determine the range of each variable's data with low-frequency counts
- Find out the outliers
- See distribution and confidence interval by sample analogue

Distribution of Individual Variables (Y-variable)

Distribution of Individual Variables (Categorical X-variables)

Distribution of Individual Variables (Numerical X-variables)

Descriptive Measures:

- Estimate the percentiles at which we obtain about 95% of our data
- Remaining 5% of our data → outliers due to the low-frequency counts

- Scatter plot with histograms → numerical variables
- Side by side boxplots → categorical variables
- See relationships between 2 variables

Identifying Outliers

- To reduce the spread of data and model distribution symmetrically about central tendency
- "Reviews" and "Price" had the greatest range of outliers
- We could not drop the upper range of "Reviews" and upper range of "Price" simultaneously
- Applications that had high numbers of reviews were mostly of low prices, vice versa

Choice of Removal of Outliers

- Drop the upper range of "Reviews"
- Exclude Reviews that are more than 1 million to remove the majority outliers → Introduce new applications which could not possibly reach a high number of reviews over a short period of time
- Split the "Price" data into 2 categories → Cheaper applications below \$4.99 Vs Expensive applications above \$4.99

Stephenie

Simple Linear Regression

X1	Category
X2	Reviews
Х3	Size
X4	Installs
X5	Price

Statistically significant

Determine the linear relationship

X1

Category

- Business
- Entertainment
- Food and Drink
- Map and Navigation |
- Medical
- Travel
- News and Magazine
- Dating

- Lifestyle
- Sports
- Comics
- Photography
- Communication
- Family
- Video Players
- Auto and vehicles

20 out of 33 categories are statistically significant and have an impact on Rating

X2 X3 X4	Reviews Size Installs	The p-values are around 0
	X2, X3, X4 have an impact on Rating	These variables are statistically significant

3 5	Price
------------	-------

The p-value is 0.085 (>0.05)

Prices were split into above and below \$4.99

Change from numerical variable \rightarrow Binary variable either Free (i.e. Price = 0) or Paid (i.e. Price > 0)

The results show that there is statistical significance between Price as a binary variable against Rating

- Using multiple linear regression to plot the relationship between Y (Rating) and all the X variables
- Several transformations and interactions to note

Transformation:

- Reviews better suit a model of square root function with Ratings
- Logarithmic transformation of Size better suits the function between Size and Rating
- Installs better suits a model of a quadratic function with Ratings

Interaction (By Research):

- Relationship between rating and reviews
- Relationship between price and installs

(Might still have other interactions to consider)

	R ²	Adjusted R²	AIC	BIC
Values	0.082	0.073	1.173e+04	1,221e+04

- Values suggest that there are very weak relationship between the x variables and rating
- Suggests that none of these x variables affect rating, but possibly some other factor

	OLS Regres	sion Results	
=======================================			
Dep. Variable:	Rating	R-squared:	0.082
Model:	OLS	Adj. R-squared:	0.073
Method:	Least Squares	F-statistic:	9.486
Date:	Wed, 21 Nov 2018	Prob (F-statistic):	1.93e-91
Time:	09:20:34	Log-Likelihood:	-5793.4
No. Observations:	7390	AIC:	1.173e+04
Df Residuals:	7320	BIC:	1.221e+04
Df Model:	69		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	4.2959	0.119	35.991	0.000	4.062	4.530
Category[T.AUTO_AND_VEHICLES]	-0.2709	0.112	-2.408	0.016	-0.491	-0.050
Category[T.BUSINESS]	-0.2945	0.090	-3.269	0.001	-0.471	-0.118
Category[T.COMMUNICATION]	-0.3635	0.095	-3.843	0.000	-0.549	-0.178
Category[T.DATING]	-0.4648	0.095	-4.880	0.000	-0.651	-0.278
Category[T.FAMILY]	-0.1902	0.083	-2.298	0.022	-0.352	-0.028
Category[T.FINANCE]	-0.2981	0.090	-3.330	0.001	-0.474	-0.123
Category[T.FOOD_AND_DRINK]	-0.2954	0.111	-2.659	0.008	-0.513	-0.078
Category[T.GAME]	-0.1998	0.086	-2.336	0.020	-0.368	-0.032
Category[T.HEALTH_AND_FITNESS]	-0.2949	0.094	-3.151	0.002	-0.478	-0.111
Category[T.LIFESTYLE]	-0.2869	0.089	-3.223	0.001	-0.461	-0.112
Category[T.MAPS_AND_NAVIGATION]	-0.4756	0.107	-4.462	0.000	-0.684	-0.267
Category[T.MEDICAL]	-0.2653	0.088	-3.013	0.003	-0.438	-0.093
Category[T.NEWS_AND_MAGAZINES]	-0.2208	0.095	-2.327	0.020	-0.407	-0.035
Category[T.PHOTOGRAPHY]	-0.3293	0.094	-3.486	0.000	-0.514	-0.144
Category[T.PRODUCTIVITY]	-0.2983	0.092	-3.244	0.001	-0.479	-0.118
Category[T.TOOLS]	-0.4144	0.085	-4.879	0.000	-0.581	-0.248
Category[T.TRAVEL_AND_LOCAL]	-0.4100	0.096	-4.253	0.000	-0.599	-0.221
Category[T.VIDEO_PLAYERS]	-0.4203	0.102	-4.119	0.000	-0.620	-0.220
Category[T.MEDICAL]:np.power(Reviews, 0.5)	0.0019	0.001	2.483	0.013	0.000	0.003
np.power(Installs, 2)	-0.0014	0.000	-7.392	0.000	-0.002	-0.001
Priceb[T.Paid]:np.power(Installs, 2)	0.0021	0.001	3.114	0.002	0.001	0.003

- Lot of extreme P values
- Filtered those with P values less than 0.5

CHOMOTY T. TOOLS LED. DOMES DESCRIPTION T. 5.1	9,8900	0.751	7+495	1.941	79.0
Extegry(T.TMNES_AND_LOCKL):sp.powr(SeriesK, S.S)	0.9804	0.001	6,431	61527	-9.6
Category(T.TIDEE_PLATERS):ng.power(Reviews, 0.5)	9-12x-01	0.001	0.140	0.001	-9.4
Extension (T. Homosom Ing. power New Jews. 0.5) E. 102	9,4400	6.001	0.156	8,874	-5,6
ng-log(fice)	5.0001	0.004	1.493	9,136	-9.0
N.EDS sp.gomer(liminile, 2) v2-001	-0.0014	8,900	-7.392	6.000	-0.0
Friesbit.Feidling.power(Installs, I)	9,890	5-861	3,116	0.002	9.3

Covariance Type:

- Estimation of parameters by coercing a 95% significant data range through sample analogue method and through observation from data visualisation may be ineffective
- Evaluate our Confidence Intervals (CI) of our x-variable data through Error
 Minimisation method

Error-Minimisation Model: $Y_i = \mu + \epsilon_i$

where i = application index in the sample, and <math>i = 1, 2, ..., 7390

 μ = population parameter to represent averages of various variables

(i.e. reviews, size, installs, price)

 ϵ = application i's error, the deviation from the average

Error-Minimisation Method

Obtain best error-minimising mean values

Calculate **Confidence Intervals** (CI): how much set of data covers best mean value of each variable

Determine **coverage probability** of each variable set of data amongst all outliers

Coverage Probability

Variable	Best New Mean	Coverage Probability of Data (given best mean value)
Reviews	51,759.9484	0.9467
Size	21,633,404.1819	0.9497
Installs	9.7393	0.9561
Price	1.1910	0.9515
Rating	4.1620	Not Needed

Statistical Significance

- At 95% confidence level, all variables are statistically significant
- Reject null hypothesis and conclude that all variables have a relationship with Rating

Limitations to Modelling Assumptions

- Since we have removed Reviews that are above 1 million, associated values of other x-variables might be in the original calculated confidence intervals of the other x-variables
- Old confidence intervals will have many missing data points
- Calculate coverage probabilities to ensure that our sample data is significant at 95% confidence level
- Hypothesis testing will be based on new set data and its associated confidence intervals

Hypothesis Testing

Variable 1	Variable 2	Correlation Coefficient
Reviews	Size	0.2349556
Reviews	Installs	0.50302441
Reviews	Price	-0.02429811
Size	Installs	0.27068609
Size	Price	-0.0242148
Price	Installs	-0.05762671

Summary Table of Final Regression Model

The combination of factors to give highest Rating:

Variable Mix	p-value	Top Ranked Coefficients
Price [Paid]	0.002	0.0021
Category: Medical with Reviews	0.013	0.0019

Positive Vibe High Rating App:

Thank You