# Universidade Federal do Maranhão Centro de Ciências Exatas e Tecnologias Engenharia da Computação

Bruno Feres de Souza

Disciplina: Linguagens Formais e Autômatos Código: EECP0020

22 de fevereiro de 2021

# Conteúdo programático

- Elementos de matemática discreta
- Conceitos básicos de linguagens
- Linguagens regulares e autômatos finitos
- Linguagens livres de contexto e autômatos de pilha
- Linguagens sensíveis ao contexto e Máquinas de Turing com fita limitada
- Linguagens recursivas e Máquinas de Turing com finta infinita
- Linguagens recursivamente enumeráveis

#### Sumário

- Contextualização
- Símbolos, cadeias e alfabetos
- Linguagens
- Hierarquia de Chomsky

#### Conceitos didáticos

- Segundo o dicinário Michaelis, linguagem pode ser definida como:
  - Faculdade que tem todo homem de comunicar seus pensamentos e sentimentos.
  - Conjunto de sinais falados, escritos ou gesticulados de que se serve o homem para exprimir esses pensamentos e sentimentos.
  - Faculdade inata de todo indivíduo de aprender e usar uma língua.
- Tais definições, embora nos deem uma noção intuitiva do conceito, não são precisas o suficiente para o estudo de linguagens formais.

# Definições básicas

- Símbolos, ou átomos, são as entidades básicas do estudo de linguagens. São consideradas unidades atômicas e indivisíveis, não importando sua representação visual particular.
  - São símbolos (dependendo do contexto): a, abc, if, 5, 32.
- Alfabetos são conjuntos finitos não-vazios de símbolos.
  - São alfabetos: {a, b, c, ..., z}, {abc, def, ghi}, {while, for, if, else}, {0, 1, 2, ..., 9}, {2, 4, 8, 16, 32, 64}
- Cadeias, ou palavras, são sequências finitas de símbolos de um alfabeto justapostos.
  - São cadeias: abc, abcdef, ifelse, 012, 16322.

# Definições básicas

- Geralmente, utilizam-se as sequintes convenções para representação:
  - Símbolos: letras minúsculas do início do alfabeto romano (a, b, c, ...).
  - Cadeias: letras minúsculas do final do alfabeto romano (r, s, x, w, ...) ou letras minúsculas do alfabeto grego  $(\alpha, \beta, \gamma, ...)$ .
  - Alfabetos: letras maiúsculas do alfabeto grego  $(\Sigma, \Gamma, \Delta, ...)$ .

- **Comprimento**: é a quantidade  $|\alpha|$  de símbolos da cadeia  $\alpha$ .
  - Sobre o alfabeto binário  $\Sigma = \{0,1\}$ , tem-se que  $|0| = 1, \ |01| = 2$  e |101| = 3.
- Cadeia elementar: é toda cadeia de comprimento 1.
  - Sobre o alfabeto binário  $\Sigma = \{0, 1\}$ , são cadeias unitárias 0 e 1.
- Cadeia vazia: é a cadeia  $\epsilon$  tal que  $|\epsilon| = 0$ .

- Concatenação: é a operação binária realizada sobre duas cadeias  $\alpha$  e  $\beta$  (elementares ou não) que resulta em uma nova cadeia  $\alpha\beta$  formada pela justaposição ordenada dos símbolos que compõem os seus operandos separadamente.
  - Sobre o alfabeto  $\Sigma = \{a, b, c, d\}$ , as seguintes contenações são válidas para as cadeias  $\alpha = abc$ ,  $\beta = dbaca$  e  $\sigma = a$ :  $\alpha\beta = abcdbaca$ ,  $\beta\alpha = dbacaabc$  e  $(\alpha\beta)\sigma = \alpha(\beta\sigma) = abcdbacaa$ .
  - A concatenação é uma operação associativa, mas não comutativa.
  - A cadeia vazia  $\epsilon$  é o elemento neutro em relação à operação de concatenação. Assim, tem-se que  $\alpha\epsilon = \epsilon\alpha = \alpha$  e  $|\alpha\epsilon| = |\epsilon\alpha| = |\alpha|$ .

 Concatenação sucessiva: dada uma cadeia w, a concatenação sucessiva de w é definida indutivamente a partir da operação de concatenação binária, como segue:

$$w^0 = \epsilon$$
$$w^n = ww^{n-1}$$

onde n é o número de concatenações sucessivas.

- Por exemplo, seja a cadeia w = a, então:
  - $w^0 = \epsilon$
  - $w^1 = a$
  - $w^2 = aa$
  - $w^3 = aaa$
  - $\bullet$   $w^4 = aaaa$
  - $w^5 = aaaaa$

• Conjunto de todas as cadeias: seja  $\Sigma$  um alfabeto. O conjunto de todas as possíveis cadeias sobre  $\Sigma$  é chamado de  $\Sigma^*$ . Formalmente, tal conjunto é definido por

$$\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \dots = \bigcup_{i=0}^{\infty} \Sigma^i,$$

onde

 $\Sigma^0$  é a concatenação de todas as cadeias sobre  $\Sigma$  com comprimento 0  $\Sigma^1$  é a concatenação de todas as cadeias sobre  $\Sigma$  com comprimento 1  $\Sigma^2$  é a concatenação de todas as cadeias sobre  $\Sigma$  com comprimento 2  $\Sigma^3$  é a concatenação de todas as cadeias sobre  $\Sigma$  com comprimento 3

•••

• Como exemplo do **conjunto de todas as cadeias**, considere  $\Sigma = \{a,b,c\}$ . Então  $\Sigma^*$  é obtido pela união dos seguintes conjuntos:  $\Sigma^0 = \{\epsilon\}$   $\Sigma^1 = \{a,b,c\}$   $\Sigma^2 = \{aa,ab,ac,ba,bb,bc,ca,cb,cc\}$   $\Sigma^3 = \{aaa,aab,aac,aba,abb,abc,...,ccc\}$ 

Bruno Feres de Souza (UFMA-CCET-ECP)

• Uma linguagem formal é um conjunto, finito ou infinito, de cadeias de comprimento finito, formadas pela concatenação de elementos de um alfabeto finito e não-vazio.



Figura: Símbolo, alfabeto, cadeia e linguagem

• Como exemplo do esquema anterior, tem-se o seguinte diagrama:



Figura: Exemplo de Símbolo, alfabeto, cadeia e linguagem

 Uma linguagem formal é um conjunto, finito ou infinito, de cadeias de comprimento finito, formadas pela concatenação de elementos de um alfabeto finito e não-vazio.



Figura: Símbolo, alfabeto, cadeia e linguagem

• Como exemplo do esquema anterior, tem-se o seguinte diagrama:



Figura: Exemplo de Símbolo, alfabeto, cadeia e linguagem

# Definicão

- Como ilustração, tem-se as seguintes linguagens:
  - A linguagem de todas as cadeias que consistem em n valores 0 seguidos por *n* valores 1:  $\{\epsilon, 01, 0011, 000111, ...\}$ , n > 0.
  - O conjunto de cadeias de valores 0 e 1 com um número igual de cada um deles:  $\{\epsilon, 01, 10, 0011, 0101, 1001, \dots\}$ .
  - O conjunto de números binários cujo valor é um número primo: {10, 11, 101, 111, 1011, ... \}.
  - Ø, a linguagem vazia, é uma linguagem sobre qualquer alfabeto.
  - $\{\epsilon\}$ , a linguagem que consiste apenas na cadeia vazia, também é uma linguagem sobre qualquer alfabeto.
  - A língua portuguesa.
  - Qualquer linguagem de programação.

 Concatenação: a concatenação de duas linguagens X e Y, denotada por XY, corresponde ao conjunto de todas as cadeias obtidas pela concatenação de qualquer elemento de X com qualquer elemento de Y, ou seja:

$$XY = \{xy | x \in X, y \in Y\}$$

.

Como casos particulares, tem-se que:

$$L^0 = \{\epsilon\}$$

$$L^1 = L$$

• Como exemplo de **concatenação**, considere  $L = \{001, 10, 111\}$  e M = $\{\epsilon,001\}$ . Então,

$$LM = \{001, 10, 111, 001001, 10001, 111001\}$$

• Fechamento reflexivo e transitivo: o fechamento reflexivo e transitivo de uma linguagem L é denotado por  $L^*$  e representa o conjunto de cadeias que podem ser formadas tomando-se qualquer número de cadeias de L, possivelmente com repetições, e concatenando-se todas elas. Formalmente, tem-se que:

$$L^* = L^0 \cup L^1 \cup L^2 \cup \dots = \bigcup_{i=0}^{\infty} L^i$$

. . .

• Como exercício de **fechamento reflexivo e transitivo**, seja L o conjunto de todas as cadeias de 0. Pede-se então que se calcule  $L^*$ .

- A operação de fechamento reflexivo e transitivo pode ser aplicada a um alfabeto Σ. Nesse caso, Σ\* segue a mesma definição do conjunto de todas as cadeias visto anteriormente.
- Como uma linguagem qualquer L é um conjunto de cadeias sobre um alfabeto  $\Sigma$  e  $\Sigma^*$  designa o conjunto de todas as cadeias sobre  $\Sigma$ , então tem-se que  $L \subset \Sigma^*$ .

- Em relação à operação de fechamento reflexivo e transitivo pode-se fazer as seguintes observações:
  - Ø é o conjunto constituído por zero cadeias e corresponde à menor linguagem que se pode definir sobre um alfabeto  $\Sigma$  qualquer.
  - $\Sigma^*$  é o conjunto de todas as cadeias possíveis de serem construídas sobre  $\Sigma$  e corresponde à maior de todas as linguagens que pode ser definida sobre  $\Sigma$ .
  - ullet 2 $^{\Sigma^*}$  é o conjunto de todos os subconjuntos possíveis de serem obtidos a partir de  $\Sigma^*$ , e corresponde ao conjunto formado por todas as possíveis linguagens que podem ser definidas sobre  $\Sigma$ . Note-se que  $\varnothing \in 2^{\Sigma^*}$ , e também que  $\Sigma^* \in 2^{\Sigma^*}$ .

- Em relação à operação de fechamento reflexivo e transitivo, tem-se exemplo que segue. Seja  $\Sigma = \{a, b, c\}$  e P o conjunto formado pela única propriedade "todas as cadeias são iniciadas com o símbolo a". Então:
  - A linguagem  $L_0 = \emptyset$  é a menor linguagem que pode ser definida sobre Σ.
  - A linguagem  $L_1 = \{a, ab, ac, abc, acb\}$  é finita e observa P.
  - A linguagem  $L_2 = \{a\}\{a\}^*\{b\}^*\{c\}^*$  é infinita e observa P.
  - A linguagem  $L_3 = \{a\}\{a, b, c\}^*$  é infinita, observa P e, dentre todas as que observam P, trata-se da maior linguagem, pois não existe nenhuma outra cadeia sem  $\Sigma^*$  que satisfaça a P e não pertença a  $L_3$ .
  - $L_0 \subseteq \Sigma^*$ ,  $L_1 \subseteq \Sigma^*$ ,  $L_2 \subseteq \Sigma^*$ ,  $L_3 \subseteq \Sigma^*$ .
  - $L_0 \in 2^{\Sigma^*}$ ,  $L_1 \in 2^{\Sigma^*}$ ,  $L_2 \in 2^{\Sigma^*}$ ,  $L_3 \in 2^{\Sigma^*}$
  - Além de  $L_0$ ,  $L_1$ ,  $L_2$  e  $L_3$ , existem inúmeras outras linguagens que podem ser definidas sobre  $\Sigma$ .

• Fechamento transitivo: o fechamento transitivo de um alfabeto  $\Sigma$ . denotado por  $\Sigma^+$ , é definido de maneira análoga ao fechamento reflexivo e transitivo, diferindo deste apenas por não incluir o conjunto  $\Sigma_0$ :

$$\Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \dots = \bigcup_{i=1}^\infty \Sigma^i$$

- Como exemplo de **fechamento transitivo**, considere  $\Sigma = \{n, (,), +, *, -, /\}$ . Neste caso:
  - $\Sigma^* = \{\epsilon, n, n+n, -n\}, */, n(), n-(n*n), ...\}$
  - $\Sigma^+ = \{n, n+n, -n\}, */, n()\}, n-(n*n), ...\}$
  - $\Sigma^+ = \Sigma^* \{\epsilon\}$ , pois  $\epsilon \notin \Sigma$ .

 Complementação: a complementação de uma linguagem X sobre um alfabeto Σ é definida como:

$$\overline{X} = \Sigma^* - X$$

• Por exemplo, considere a linguagem X de cadeias de valores 0 e 1 com um número igual de cada um deles:  $\{\epsilon,01,10,0011,0101,1001,...\}$ . Então:

$$\overline{X} = \{001, 110, 01011, 00101, 11001, ...\},\$$

representando todas as cadeias de valores 0 e 1 com número diferente de cada um deles.

• **Reversão**: diz-se que uma linguagem  $L_1$  é o reverso de uma linguagem  $L_2$ , denotando-se o fato por  $L_1 = L_2^R$  (ou  $L_2 = L_1^R$ ), quando as sentenças de  $L_1$  corresponderem ao reverso das sentenças de  $L_2$ . Formalmente:

$$L_1 = L_2^R = \{x^R | x \in L_2\}$$

• Por exemplo, seja  $L_2 = \{\epsilon, a, ab, abc\}$ . Então,  $L_1 = L_2^R = \{\epsilon, a, ba, cba\}$ .

 Prefixo (sufixo) próprio: diz-se que uma linguagem exibe a propriedade do prefixo (sufixo) próprio sempre que não houver nenhuma cadeia a ela pertencente que seja prefixo (sufixo) próprio de outra cadeia dessa mesma linguagem. Formalmente:

Prefixo próprio: não existe  $\alpha \in L | \beta \neq \epsilon, \alpha\beta \in L$ 

Sufixo próprio: não existe  $\alpha \in L | \beta \neq \epsilon, \beta \alpha \in L$ 

 Como exemplo de prefixo (sufixo) próprio, considere as seguintes linguagens:

$$L_1=\{a^ib^i|i\geq 1\}=\{ab,aabb,aaabbb,...\}$$
  $L_2=\{ab^i|i\geq 1\}=\{ab,abb,abbb,abbbb...\}$ 

• Neste exemplo, a linguagem  $L_1$  exibe a propriedade do prefixo próprio, ao passo que a linguagem  $L_2$  não a exibe. A propriedade do sufixo próprio é exibida por ambas as linguagens.

• **Quociente**: o quociente de uma linguagem  $L_1$  por uma outra linguagem  $L_2$ , denotado por  $L_1/L_2$ , como sendo a linguagem:

$$L_1/L_2 = \{x | xy \in L_1, y \in L_2\}$$

• Por exemplo, considere as linguagens  $L = \{a, aab, baa\}$  e  $A = \{a\}$ . Então,  $L/A = \{\epsilon, ba\}$ .

• Como exercício de quociente, considere as linguagens seguintes:

$$L_{1} = \{a^{i}b|i \geq 0\}$$

$$L_{2} = \{a^{i}bc^{i}|i \geq 0\}$$

$$L_{3} = \{b\}$$

$$L_{4} = \{a^{i}b|i \geq 1\}$$

$$L_{5} = \{bc^{i}|i \geq 0\}$$

$$L_{6} = \{c^{i}b|i \geq 0\}$$

$$L_{7} = \{a^{i}|i \geq 0\}$$

- Responda os itens abaixo:
  - $L_1/L_3 = ?$
  - $L_1/L_4 = ?$
  - $L_5/L_7 = ?$
  - $L_2/L_6 = ?$

• Substituição: uma substituição s é uma função que mapeia cada elemento de um alfabeto  $\Sigma_1$  em linguagens sobre um alfabeto  $\Sigma_2$ . Formalmente, tem-se que:

$$s:\Sigma_1\to 2^{\Sigma_2^*}$$

• Por exemplo, considerando os alfabetos  $\Sigma_1 = \{a, b, c\}$  e  $\Sigma_2 = \{x, y, z\}$ , tem-se a seguinte substituição:

$$s(a) = \{x\}$$
  

$$s(b) = \{y, yy\}$$
  

$$s(c) = \{z, zz, zzz\}$$

Uma substituição s pode ser aplicada também sobre uma cadeia w.
 Neste caso, a operação s(w) é definida indutivamente:

$$s(\epsilon) = \epsilon$$
  
 $s(a\alpha) = s(a)s(\alpha), a \in \Sigma_1, \alpha \in \Sigma_1^*$ 

• Por exemplo, supondo a cadeia w = abc, tem-se que:

$$s(abc) = s(a)s(bc) = s(a)s(b)s(b) = \{xyz, xyzz, xyzz, xyyz, xyyzz, xyyzzz, xyzzz, xyz$$

 A definição da substituição s pode ainda ser estendida para aplicá-la a uma linguagem L da seguinte forma:

$$s(L) = \{y | y = s(x) \text{ para } x \in L\},$$

• Por exemplo, para a linguagem  $L = \{a^i b^i c^i | i \ge 1\}$ , definida sobre o alfabeto  $\Sigma_1 = \{a, b, c\}$ , tem-se que:

$$s(L) = \{x^i y^j z^k \mid i \ge 1, i \le j \le 2i, i \le k \le 3i\}$$

# Implementação

- Na implementação de uma linguagem de programação, devem-se observar duas questões importantes:
  - Como especificar de forma finita linguagens (eventualmente) infinitas?
  - Como identificar as sentenças de uma linguagem, descartando as demais cadeias?

#### Implementação

- Há três métodos mais empregados para a representação finita de linguagens:
  - Gramáticas: correspondem a especificações finitas de dispositivos de geração de cadeias. Um dispositivo desse tipo deve ser capaz de gerar toda e qualquer cadeia pertencente à linguagem definida pela gramática, e nada mais.
  - Reconhecedores: correspondem a especificações finitas de dispositivos de aceitação de cadeias. Um dispositivo desse tipo deverá aceitar toda e qualquer cadeia pertencente à linguagem por ele definido, e rejeitar todas as cadeias nãopertencentes à linguagem.
  - **Enumerações**: relacionam, de forma explícita e exaustiva, todas as cadeias pertencentes à particular linguagem a ser especificada.

# Contextualização

- O estudo sistemático das linguagens formais teve um forte impulso no final da década de 1950, quando o linguista Noam Chomsky publicou dois artigos apresentando o resultado de suas pesquisas relativas à classificação hierárquica das linguagens.
- Como teórico e estudioso das linguagens naturais, Chomsky se dedicava à pesquisa de modelos que permitissem a formalização de tais linguagens. Porém, seu trabalho chamou a atenção de especialistas de outras áreas, em particular os da área de computação, que viam, para suas teorias, grande aplicabilidade para a formalização e o estudo sistemático de linguagens artificiais, especialmente as de programação.

# Definicão

- A classificação das linguagens proposta por Chomsky é conhecida como Hierarquia de Chomsky.
- Seu principal mérito é agrupar as linguagens em classesde complexidade relativa, de tal forma que seja possível antecipar as propriedades fundamentais exibidas por uma determinada linguagem e vislumbrar os modelos de implementação mais adequados a sua realização.

• De acordo com restrições aplicadas ao formato das produções  $\alpha \to \beta$  das gramáticas, Chomsky definiu a seguinte hierarquia para as linguagens geradas:



Figura: Hierarquia de Chomsky

#### Conclusão

 A associação entre linguagens, gramáticas e reconhecedores é destacada na tabela abaixo:

| Tipo | Classe de<br>linguagens       | Modelo de<br>gramática          | Modelo de<br>reconhecedor              |
|------|-------------------------------|---------------------------------|----------------------------------------|
| 0    | Recursivamente<br>enumeráveis | Irrestrita                      | Máquina de Turing                      |
| 1    | Sensíveis ao contexto         | Sensível ao contexto            | Máquina de Turing<br>com fita limitada |
| 2    | Livres de<br>contexto         | Livre de<br>contexto            | Autômato de pilha                      |
| 3    | Regulares                     | Linear (direita<br>ou esquerda) | Autômato finito                        |

Figura: Linguagens, gramáticas e reconhecedores

# Bibliografia

- RAMOS, Marcus V. M. Linguagens formais: teoria, modelagem e implementação. 1ª ed. Porto Alegre: Bookman, 2009.
  - Capítulo 2.

#### Dúvidas?