## CS310 Automata Theory – 2016-2017

### Nutan Limaye

Indian Institute of Technology, Bombay nutan@cse.iitb.ac.in

Lecture 22: Turing machines, computability

March 09, 2017

Introduction to Turing machines

What are Turing machines? Informal and formal definitions.

Introduction to Turing machines

What are Turing machines? Informal and formal definitions.

Examples.  $\{a^n b^n \mid n \ge 0\}, \{w \# w \mid w \in \{a, b\}^*\}.$ 

Introduction to Turing machines

What are Turing machines? Informal and formal definitions.

Examples. 
$$\{a^n b^n \mid n \ge 0\}, \{w \# w \mid w \in \{a, b\}^*\}.$$

Homework:  $\{a^{2^n} \mid n \ge 0\}$ .

Introduction to Turing machines

What are Turing machines? Informal and formal definitions.

Examples. 
$$\{a^n b^n \mid n \ge 0\}, \{w \# w \mid w \in \{a, b\}^*\}.$$

Homework:  $\{a^{2^n} \mid n \ge 0\}$ .

Configurations of a Turing machine.

## Introduction to Turing machines

What are Turing machines? Informal and formal definitions.

Examples. 
$$\{a^n b^n \mid n \ge 0\}, \{w \# w \mid w \in \{a, b\}^*\}.$$

Homework:  $\{a^{2^n} \mid n \ge 0\}$ .

Configurations of a Turing machine.

Turing recognizable and Turing decidable languages.

# Turing machines

What is a Turing machine? (Informal description.)

## Turing machines

What is a Turing machine? (Informal description.)



Read and write on the input tape. Head moves left/right.

The tape is infinite.

A special symbol & to indicate blank cells.

Initially all cells blank except the part where the input is written.

Special states for accepting and rejecting.

# Example

$$L_{a,b}=\left\{a^nb^n\mid n\geq 0\right\}.$$



### Formal definition

### **Definition**

A Turing machine (TM) is given by  $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$ 

Q: set of states  $\Sigma$ : input alphabet

 $q_0$ : start state  $\Gamma$ : tape alphabet,  $\Sigma \subseteq \Gamma$ , &  $\in \Gamma$ 

 $q_{acc}$ : accept state  $q_{rej}$ : reject state

 $\delta \subseteq Q \times \Gamma \times Q \times \Gamma \times \{L, R, S\}.$ 

### Formal definition

### Definition

A Turing machine (TM) is given by  $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$ 

Q: set of states  $\Sigma$ : input alphabet

 $q_0$ : start state  $\Gamma$ : tape alphabet,  $\Sigma \subseteq \Gamma$ , &  $\in \Gamma$ 

 $q_{acc}$ : accept state  $q_{rej}$ : reject state

 $\delta \subseteq Q \times \Gamma \times Q \times \Gamma \times \{L, R, S\}.$ 

## Understanding $\delta$

For a  $q \in Q$ ,  $a \in \Gamma$  if  $\delta(q, a) = (p, b, L)$ , then p is the new state of the machine,

b is the letter with which a gets overwritten,

the head moves to the left of the current position.

# Turing machine for a non-context free language

Example

# Turing machine for a non-context free language

### Example

$$\mathsf{EQ} = \{ w \cdot \# \cdot w \mid w \in \Sigma^* \}.$$

Give a full description of a Turing machine for the above language.

# Configuration

### **Definition**

The configuration of a TM  $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$  is given by

$$\Gamma^* \times Q \times \Gamma^*$$

Let  $u, v \in \Gamma^*$ ,  $a, b, c \in \Gamma$  and  $q, q' \in Q$ .

Suppose  $(q', c, L) \in \delta(q, b)$  is a transition in M, then starting from  $u \cdot a \cdot q \cdot b \cdot v$  in one step we get  $u \cdot q' \cdot a \cdot c \cdot v$ .

# Configuration

### **Definition**

The configuration of a TM  $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$  is given by

$$\Gamma^* \times Q \times \Gamma^*$$

Let  $u, v \in \Gamma^*$ ,  $a, b, c \in \Gamma$  and  $q, q' \in Q$ .

Suppose  $(q', c, L) \in \delta(q, b)$  is a transition in M, then starting from  $u \cdot a \cdot q \cdot b \cdot v$  in one step we get  $u \cdot q' \cdot a \cdot c \cdot v$ .

We say that  $u \cdot a \cdot q \cdot b \cdot v$  yields  $u \cdot q' \cdot a \cdot c \cdot v$ .

We denote it by  $u \cdot a \cdot q \cdot b \cdot v \mapsto u \cdot q' \cdot a \cdot c \cdot v$ .

# Special configurations

### Start configuration

We assume that the head is on the left of the input in the beginning. Therefore,  $q_0 \cdot w$  is the start configuration.

## Accepting configuration

Any configulation that contains  $q_{acc}$  is an accepting configuration.

## Rejecting configuration

Any configulation that contains  $q_{rej}$  is a rejecting configuration.

Halting configurations: if a configuration is accepting or rejecting then it is called a halting configuration.

A TM may not halt!

## Acceptance by a TM

A TM M is said to accept a word  $w \in \Sigma^*$  if there exists a sequence of configurations  $C_0, C_1, \ldots, C_k$  such that

 $C_0$  is a start configuration,

$$C_i \mapsto C_{i+1}$$
 for all  $0 \le i \le k-1$ ,

 $C_k$  is an accepting configuration.

## Acceptance by a TM

A TM M is said to accept a word  $w \in \Sigma^*$  if there exists a sequence of configurations  $C_0, C_1, \ldots, C_k$  such that

 $C_0$  is a start configuration,

$$C_i \mapsto C_{i+1}$$
 for all  $0 \le i \le k-1$ ,

 $C_k$  is an accepting configuration.

The notion of rejection by TM is not as straightforward!

### **Definition**

A language L is said to be Turing recognizable if there is a Turing machine M such that

#### Definition

A language L is said to be Turing recognizable if there is a Turing machine M such that  $\forall w \in L$ , M reaches an accepting configuration on w.

### Definition

A language L is said to be Turing recognizable if there is a Turing machine M such that  $\forall w \in L$ , M reaches an accepting configuration on w.

We say that M recognizes L.

### **Definition**

A language L is said to be Turing recognizable if there is a Turing machine M such that  $\forall w \in L$ , M reaches an accepting configuration on w.

We say that M recognizes L.

For words not in L

### Definition

A language L is said to be Turing recognizable if there is a Turing machine M such that  $\forall w \in L$ , M reaches an accepting configuration on w.

We say that M recognizes L.

For words not in L

the machine may run forever,

or may reach  $q_{rej}$ ,

both are valid outcomes,

and the machine is allowed to do either of the two.

### Definition

A language L is said to be Turing decidable if there is a Turing machine M such that

### **Definition**

A language L is said to be Turing decidable if there is a Turing machine M such that

 $\forall w \in L$ , M reaches the accepting configuration on w.

### Definition

A language L is said to be Turing decidable if there is a Turing machine M such that

 $\forall w \in L$ , M reaches the accepting configuration on w.

 $\forall w \notin L$ , M reaches the rejecting configuration on w.

### Definition

A language L is said to be Turing decidable if there is a Turing machine M such that

 $\forall w \in L$ , M reaches the accepting configuration on w.

 $\forall w \notin L$ , M reaches the rejecting configuration on w.

We say that M decides L.

### **Definition**

A language L is said to be Turing decidable if there is a Turing machine M such that

 $\forall w \in L$ , M reaches the accepting configuration on w.

 $\forall w \notin L$ , M reaches the rejecting configuration on w.

We say that M decides L.

If a language L is Turing decidable then

### **Definition**

A language L is said to be Turing decidable if there is a Turing machine M such that

 $\forall w \in L$ , M reaches the accepting configuration on w.

 $\forall w \notin L$ , M reaches the rejecting configuration on w.

We say that M decides L.

If a language L is Turing decidable then the TM deciding L always halts.

### **Definition**

A language L is said to be Turing decidable if there is a Turing machine M such that

 $\forall w \in L$ , M reaches the accepting configuration on w.

 $\forall w \notin L$ , M reaches the rejecting configuration on w.

We say that M decides L.

If a language L is Turing decidable then the TM deciding L always halts.

L is also Turing recognizable.

### Definition

A language L is said to be Turing decidable if there is a Turing machine M such that

 $\forall w \in L$ , M reaches the accepting configuration on w.

 $\forall w \notin L$ , M reaches the rejecting configuration on w.

We say that M decides L.

If a language L is Turing decidable then the TM deciding L always halts.

L is also Turing recognizable.

Turing decidable languages form a subclass of Turing recognizable languages.

#### Theorem

A language L is Turing decidable if and only if L and  $\overline{L}$  are both Turing recognizable.

#### Theorem

A language L is Turing decidable if and only if L and L are both Turing recognizable.

## Proof.

 $(\Rightarrow)$ 

#### **Theorem**

A language L is Turing decidable if and only if L and  $\overline{L}$  are both Turing recognizable.

## Proof.

 $(\Rightarrow)$ 

If L is Turing decidable then L is also Turing recognizable

#### **Theorem**

A language L is Turing decidable if and only if L and L are both Turing recognizable.

## Proof.

 $(\Rightarrow)$ 

If L is Turing decidable then L is also Turing recognizable (as we just saw).

#### **Theorem**

A language L is Turing decidable if and only if L and  $\overline{L}$  are both Turing recognizable.

## Proof.

 $(\Rightarrow)$ 

If L is Turing decidable then L is also Turing recognizable (as we just saw). If L is Turing decidable, then  $\overline{L}$  is also Turing decidable.

#### **Theorem**

A language L is Turing decidable if and only if L and  $\overline{L}$  are both Turing recognizable.

### Proof.

 $(\Rightarrow)$ 

If L is Turing decidable then L is also Turing recognizable (as we just saw).

If L is Turing decidable, then  $\overline{L}$  is also Turing decidable.

Therefore,  $\overline{L}$  is also Turing recognizable.

#### **Theorem**

A language L is Turing decidable if and only if L and  $\overline{L}$  are both Turing recognizable.

#### Proof.

 $(\Rightarrow)$ 

If L is Turing decidable then L is also Turing recognizable (as we just saw).

If L is Turing decidable, then  $\overline{L}$  is also Turing decidable.

Therefore,  $\overline{L}$  is also Turing recognizable.

 $(\Leftarrow)$ 

Let  $M_1$ ,  $M_2$  be two TMs recognizing L,  $\overline{L}$ , respectively.

#### **Theorem**

A language L is Turing decidable if and only if L and  $\overline{L}$  are both Turing recognizable.

#### Proof.

 $(\Rightarrow)$ 

If L is Turing decidable then L is also Turing recognizable (as we just saw).

If L is Turing decidable, then  $\overline{L}$  is also Turing decidable.

Therefore,  $\overline{L}$  is also Turing recognizable.

 $(\Leftarrow)$ 

Let  $M_1, M_2$  be two TMs recognizing  $L, \overline{L}$ , respectively.

We wish to come up with a TM M that will decide L.

#### **Theorem**

A language L is Turing decidable if and only if L and  $\overline{L}$  are both Turing recognizable.

#### Proof.

 $(\Rightarrow)$ 

If L is Turing decidable then L is also Turing recognizable (as we just saw).

If L is Turing decidable, then  $\overline{L}$  is also Turing decidable.

Therefore,  $\overline{L}$  is also Turing recognizable.

 $(\Leftarrow)$ 

Let  $M_1, M_2$  be two TMs recognizing  $L, \overline{L}$ , respectively.

We wish to come up with a TM M that will decide L.

Idea: on input w run both  $M_1, M_2$ 

#### **Theorem**

A language L is Turing decidable if and only if L and  $\overline{L}$  are both Turing recognizable.

#### Proof.

 $(\Rightarrow)$ 

If L is Turing decidable then L is also Turing recognizable (as we just saw).

If L is Turing decidable, then  $\overline{L}$  is also Turing decidable.

Therefore,  $\overline{L}$  is also Turing recognizable.

 $(\Leftarrow)$ 

Let  $M_1$ ,  $M_2$  be two TMs recognizing L,  $\overline{L}$ , respectively.

We wish to come up with a TM M that will decide L.

Idea: on input w run both  $M_1, M_2$ , if  $M_1$  reaches accepting configuration then accept

#### **Theorem**

A language L is Turing decidable if and only if L and  $\overline{L}$  are both Turing recognizable.

#### Proof.

 $(\Rightarrow)$ 

If L is Turing decidable then L is also Turing recognizable (as we just saw).

If L is Turing decidable, then  $\overline{L}$  is also Turing decidable.

Therefore,  $\overline{L}$  is also Turing recognizable.

 $(\Leftarrow)$ 

Let  $M_1$ ,  $M_2$  be two TMs recognizing L,  $\overline{L}$ , respectively.

We wish to come up with a TM M that will decide L.

Idea: on input w run both  $M_1, M_2$ , if  $M_1$  reaches accepting configuration then accept.

Else  $M_2$  will reach the accepting configuraion. In that case, reject.

*k*-tape Turing machines

*k*-tape Turing machines

 $\label{thm:condition} \mbox{Usual TM} + \mbox{Multiples tapes} + \mbox{independent tape-head for each tape}.$ 

#### *k*-tape Turing machines

 $\label{thm:condition} \mbox{Usual TM} + \mbox{Multiples tapes} + \mbox{independent tape-head for each tape}.$ 

$$\delta \subseteq Q \times \Gamma^k \times Q \times \Gamma^k \times \{L, R, S\}^k.$$

### k-tape Turing machines

 $\label{thm:condition} \mbox{Usual TM} + \mbox{Multiples tapes} + \mbox{independent tape-head for each tape}.$ 

$$\delta \subseteq Q \times \Gamma^k \times Q \times \Gamma^k \times \{L, R, S\}^k.$$

### Example

### k-tape Turing machines

Usual  $\mathsf{TM} + \mathsf{Multiples}$  tapes + independent tape-head for each tape.

$$\delta \subseteq Q \times \Gamma^k \times Q \times \Gamma^k \times \{L, R, S\}^k.$$

### Example

Given:  $1^n$  on the input tape

#### k-tape Turing machines

Usual  $\mathsf{TM} + \mathsf{Multiples}$  tapes + independent tape-head for each tape.

$$\delta \subseteq Q \times \Gamma^k \times Q \times \Gamma^k \times \{L, R, S\}^k.$$

### Example

Given:  $1^n$  on the input tape

Output:  $1^{n^2}$  on the same tape.

### k-tape Turing machines

 $\label{thm:continuous} \mbox{Usual TM} + \mbox{Multiples tapes} + \mbox{independent tape-head for each tape}.$ 

$$\delta \subseteq Q \times \Gamma^k \times Q \times \Gamma^k \times \{L, R, S\}^k.$$

### Example

Given:  $1^n$  on the input tape

Output:  $1^{n^2}$  on the same tape.

Are k-tape TMs more powerful than 1-tape TMs?

### k-tape Turing machines

 $\label{thm:condition} \mbox{Usual TM} + \mbox{Multiples tapes} + \mbox{independent tape-head for each tape}.$ 

$$\delta \subseteq Q \times \Gamma^k \times Q \times \Gamma^k \times \{L, R, S\}^k.$$

### Example

Given:  $1^n$  on the input tape

Output:  $1^{n^2}$  on the same tape.

Are k-tape TMs more powerful than 1-tape TMs?

#### **Theorem**

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

#### Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

#### Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

#### Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

#### Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.



#### Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.





#### **Theorem**

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Proof sketch:





Let  $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej},)$  be the k-tape Turing machine.

#### **Theorem**

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Proof sketch:





Let  $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej},)$  be the k-tape Turing machine. Let  $M' = (Q', \Sigma, \Gamma', \delta', q_0, q_{acc}, q_{rej})$  be such that

#### **Theorem**

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Proof sketch:





Let  $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej},)$  be the k-tape Turing machine. Let  $M' = (Q', \Sigma, \Gamma', \delta', q_0, q_{acc}, q_{rej})$  be such that,  $\overline{\Gamma} = \{\overline{a} \mid a \in \Gamma\}$ 

#### **Theorem**

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Proof sketch:





Let  $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej},)$  be the k-tape Turing machine. Let  $M' = (Q', \Sigma, \Gamma', \delta', q_0, q_{acc}, q_{rej})$  be such that,  $\overline{\Gamma} = \{\overline{a} \mid a \in \Gamma\}, \ \Gamma = \Gamma \cup \overline{\Gamma} \cup \{\#\}.$ 

#### **Theorem**

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Proof sketch:





Let  $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$  be the k-tape Turing machine.

Let 
$$M' = (Q', \Sigma, \Gamma', \delta', q_0, q_{acc}, q_{rej})$$
 be such that,

$$\overline{\Gamma} = {\overline{a} \mid a \in \Gamma}, \ \Gamma = \Gamma \cup \overline{\Gamma} \cup {\#}.$$

 $\overline{\Gamma}$  symbols used to denote tape head positions.



#### Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

#### Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

#### Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.



#### Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.



#### Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.



#### Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Proof sketch:





To simulate 1 step of M

#### **Theorem**

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Proof sketch:



To simulate 1 step of M, M' works follows:

reads the tape left to right once, remembeing the marked symbols in its states

#### **Theorem**

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Proof sketch:



To simulate 1 step of M, M' works follows:

reads the tape left to right once, remembeing the marked symbols in its states,

uses  $\delta$  to determine the next state

#### **Theorem**

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Proof sketch:





reads the tape left to right once, remembeing the marked symbols in its states,

uses  $\delta$  to determine the next state,

sweeps the input left to right again

#### **Theorem**

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Proof sketch:





To simulate 1 step of M, M' works follows:

reads the tape left to right once, remembeing the marked symbols in its states,

uses  $\delta$  to determine the next state,

sweeps the input left to right again to update marked symbols.