Boxels Theorem $f:(E_{r},d_{r})_{r>k}\longrightarrow (\widetilde{E}_{r},\widetilde{d}_{r})_{r>k}$ soluitable compatibility conditions ightarrow Mebs between spectral sequences: eg: 1) $F \longrightarrow E \xrightarrow{\text{T}} B$ $\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad$ maps between the New SS E_2 page onwards and the map $E_{\infty}(\tilde{\pi}) \longrightarrow E_{\infty}(\pi)$ $G_r(H^*(E)) \cong A_{p+q} \longrightarrow A_{p+q-1} \longrightarrow A_{p+q-1} \longrightarrow A_{p+q-1}$ + kg = + * 2) If $f_i : E_r \longrightarrow \widetilde{E_r}$ is an isomorphism for $r \ge m$, $E_i \widetilde{E}_i$ diest quadrant map then objects computed by E_i , $\widetilde{E_r}$ are isomorphic if f_{oo} comes from a global map. Comparison Theorem: $E_2 = E_2^{\flat,0} \otimes E_2^{\circ,\gamma}, E_2^{\flat,\gamma} = E_2^{\flat,0} \otimes E_2^{\circ,\gamma}.$ Let Er, E. be achomologically graded first quadrant SS with Summe $f_x : E_x \longrightarrow E_x$ such that 1) $f_2^{pq} = f_2^{p,o} \otimes f_2^{o,o}$ with $f_2^{o,o}$ is smoothing $\forall g$ 2) for is an womorphism 4 p.g. Then fire is an womorphism tog. Pay: Assume $f_2^{p,q}$ is an asomorphism for $p \le n$ $\Rightarrow f_1^{p,q} \text{ is an injective for } n-r+1 \text{ and } f_1^{p,q} \text{ is anjective for } n-r+1$ Now clook at the transpession: $E_{n+1}^{\circ,n} \xrightarrow{d_{n+1}} E_{n+1}^{n+1,\circ}$ there $f_{n+1}^{\circ,n}$ is still an isomorphism Use five demma chere run, to get from its an iso. \widetilde{E}_{n+1} $\xrightarrow{\widetilde{a}_{n+1}}$ \widetilde{E}_{n+1} $\xrightarrow{\widetilde{c}_{n+1}}$ $\xrightarrow{$ Next look set fin. Use your best argument skills here to conclude finis an iso. And keep backtracking.

Del: A - readed was at limite they has simple without a remarker of	he: 1 < 1 × · 1
Def: A graded sing of finite offee has simple system of generators a	1. (61 - 2 1) (44-1)
A has a R-module days of dixion di i, < 12< m < ix \ (i, mix)	
eg: \(\(\eta_1, \ldots \eta_n\), \(\frac{1}{2} \frac{1}{2}\)	
51h (0 1) 1+ 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	' 10 A
The (Borel): Let E be a cohomological first quadrant multiplicative SS such	Thou
a) $E_2 = E_2$ ωE_2 as stript	
(p,q)=(0,0)	
9 $E_2^{0,*}$ chas a simple system of transpersive generators $<$. Then $E_2^{0,*}$ is a cholynomial algebra on any lift of $d(x_i)$.	
Then E2 is a cholynomial absolved on any lift of d(d).	
g_{i-1} $H^*(SO(n); F_2)$ has simple system of generators. Show these are transgressives.	
$h^{*}(u(h); \mathbb{Z}) = \wedge (\chi_{1} \chi_{2} \dots \chi_{n})$	
$\Rightarrow H^*(\mathrm{GSo}(n); F_2) = F_2[\omega_2 \omega_n] \omega_i = i$	
$H^{\star}(\beta u(n)_{j}z) = \mathbb{Z}\left[c_{1}\cdots c_{n}\right] c_{i} =2i$	
Converse: $F \rightarrow * \rightarrow 8$ fibration with $\pi_r(B) = 0$ and $H^*(B;R) = R[x_1 \dots x_R]$ then $H^*(F)$	(R) supports a simple
system of hansgressive generators	
Roof: Invoke the Eikelberg Moore SS:	
H*(F,R) = Tor H*(B;R) (R,R) = 1 (y, y2,, yk) y2 = (1,	la:l)
y: gives an element	
in H ¹⁴²¹⁻¹ (FjR) y ₃	
in H ^{Ril-1} (F;R) y. which will be a basis as a R-module.	
Why transgressive?	
wy wanterwood	
Continue Olean not able to 083 xx 53 herouse the compation of 4t (853) and	not hamalessine
Caution: Does not apply to $28^3 \rightarrow \times -38^3$ because the generators of $H^*(28^3)$ are	no yungusive
P / 1/1 (2) 1 (1) 2:0 [5/7;14]	
Proof: Let $[\beta_i] = d_{Ril+1}(\mathcal{X}_i)$ $\beta_i \in \mathcal{E}_2^{0, \mathcal{X}_i +1}$	
Consider $(\tilde{E}_r, \tilde{d}_r)$ with $\tilde{E}_2^{**} = \tilde{E}_2^{0, *} \otimes R[\beta_1, \beta_2,]$	
Differentials defined as follows:	
d _{reit+1} ((i) = Bi extended by multiplication	

