CSC301 Assignment #2
Baheem Ferrell

Note: Please submit your work either as a PDF file. No other formats will be accepted.

Problem 3.1 a

Given the grammar G6:

G6:

```
<exp>* ::= <exp + <mulexp> | <mulexp> <mulexp> ::= <mulexp> * <rootexp> | <rootexp> <rootexp> ::= ( <exp> ) | a | b | c
```

Add subtraction and division operators (- and /) with the customary precedence and associativity to the grammar.

```
<mulexp> ::= <mulexp> * <rootexp> | <rootexp> <divexp> ::= <divexp> / <rootexp> | <rootexp> <rootexp> ::= ( <exp> ) | a | b | c
```

both the addition and subtraction have same precedence and left to right associativity. both multiplication and division have same precedence and left to right associativity.

Problem 3.3 b

Show that the following grammar is ambiguous:

```
<person>* :: = <woman> | <man> <woman> ::= wilma | betty | <empty> <man> ::= fred |
barney | <empty>
```

Problem 3.3b can be answered with parse trees, so same process as for assignment #1. If you draw the trees by hand, take a clear picture or visit http://ironcreek.net/syntaxtree/ to generate the parse tree and attach that, too.

The string leading to ambiguity is <empty>, this can be derived in two ways as

So this makes the given grammar ambiguous

Problem 3.4b

Give an unambiguous grammar for the same language generated by the grammar in problem 3.3 b.

The unambiguos grammar for 3.3 b is as follows <person> ::= wilma | betty | fred | barney | <empty>