Bhoris Dhanjal

Calculus IV

Contents

1	Fun	ctions of several variables	1
	1.1	Examples of functions of several variables	1
	1.2	Non-existence of limit by 2 path test	1
	1.3	Existence of limit with ε, δ definition	2
	1.4	Continuity	3
	1.5	Polar Coordinates	4
		1.5.1 Limits in Polar coordinates	5
		1.5.2 Epsilon-delta with polar coordinates	5
	1.6	Algebra of limits	5
	1.7	General multivariate limit	6
	1.8	Iterated (Repeated) limits	8
	1.9	Limits in 3 variables	10
		1.9.1 Two path test for non-existence of limit	10
2	Diff	erentiation	12
	2.1	Partial derivatives	12
	2.2	Gradient	13
	2.3	Level curves	14
	2.4	Total derivative	14
	2.5	How to show not differentiable, maximizing directional derivative	14
	2.6	Lagrange mean value theorem in \mathbb{R}^n	16
	2.7	Sequences in \mathbb{R}^n	17
	2.8	Chain rule for vector value function	17
	2.9	Taylor series in two variables	17
	2.10		18
	2.11	Method of Lagrange multiplier	18
		2.11.1 Two constraints	19
	2.12	Limits and continuity of vector values function	20
		2.12.1 Algebra of limit for vector valued functions	21

CONTENTS	iii
3 Applications	23

Chapter 1

Functions of several variables

1.1 Examples of functions of several variables

$$f(x,y) = x + y \log x$$
 $f: \mathbb{R}^2 \to \mathbb{R}$ Scalar valued function $f(x,y) = (x^2y,\cos x,e^x - 9)$ $f: \mathbb{R}^2 \to \mathbb{R}^3$ Vector valued function

Clearly, $f: \mathbb{R} \to \mathbb{R}$ is a particular case of scalar valued function.

1.2 Non-existence of limit by 2 path test

For a function $f: \mathbb{R} \to \mathbb{R}$ the limit exists if limit value is the same along all possible paths, i.e. left hand and right hand limit are equivalent.

For a multivariate function the 2 path test can be used to show non existence of a limit.

Example 1.1. Show that $\lim_{(x,y)\to(0,0)} \frac{2xy^2}{x^2+y^2}$ doesn't exist.

Proof. Consider $x = my^2$ and let $y \to 0$, then

$$\lim_{y \to 0} f(my^2, y) = \lim_{y \to 0} \frac{2my^4}{(m^2 + 1)y^2} = \frac{2m}{1 + m^2}$$

Therefore, the limit value varies for different values of m.

Example 1.2. Show that $\lim_{(x,y)\to(0,0)} \frac{x+y}{x-y}$ doesn't exist.

Proof. Consider first along x axis (i.e. y = 0)

$$\lim_{x \to 0} \frac{x}{x} = 1$$

Consider now along y axis (i.e. x = 0)

$$\lim_{y \to 0} \frac{y}{-y} = -1$$

Since the limit is not path independent we can say the limit does not exist. \Box

Example 1.3. Show that $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4+y^2}$ doesn't exist.

Proof. Along x and y axis the limits are both zero. Consider instead the path $y = x^2$

$$\lim_{x \to 0} \frac{x^4}{2x^4} = \frac{1}{2}$$

Since the limit is not path independent it does not exist.

Example 1.4. Show that the $\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^2-2x}$ doesn't exist.

Proof. Along x, y axis the limit is 0. Consider the path $y = \sqrt{2x}$

$$\lim_{x \to 0} \frac{x^2}{x^2} = 1$$

Since the limit is not path independent it does not exist.

1.3 Existence of limit with ε, δ definition

Recall the single variable definition of a limit,

Definition 1.5 (Limit of a single valued function). For a function $f: \mathbb{R} \to \mathbb{R}$, $\lim_{x\to a} f(x) = L \iff \forall \varepsilon > 0, \exists \delta \text{ such that } 0 < |x-a| < \delta \implies |f(x)-L| < \varepsilon$

Definition 1.6 (Limit of a multivariate function). For a function $f: \mathbb{R}^2 \to \mathbb{R}$, $\lim_{(x,y)\to(a,b)} f(x) = L \iff \forall \varepsilon > 0, \exists \delta \text{ such that}$

$$0<||(x,y)-(a,b)||_2<\delta\implies|f(x,y)-L|<\varepsilon$$

, alternatively

$$\sqrt{(x-a)^2 + (x-b)^2} < \delta \implies |f(x,y) - L| < \varepsilon$$

Example 1.7. Show that $\lim_{(x,y)\to(0,0)} \frac{x-y}{1+x^2+y^2} = 0$

Proof. Let $\varepsilon > 0$, consider

$$|f(x,y) - L| = |f(x,y)| = \left| \frac{x - y}{1 + x^2 + y^2} \right|$$

= $\frac{|x - y|}{1 + x^2 + y^2}$

since $1 + x^2 + y^2 \ge 1$

$$\leq |x - y|$$

$$\leq |x| + |y|$$

$$\leq \sqrt{x^2 + y^2} + \sqrt{x^2 + y^2} = 2\sqrt{x^2 + y^2}$$

Therefore, if $2\sqrt{x^2+y^2}<\varepsilon \implies |f(x,y)-L|<\varepsilon$ so take $\delta=\varepsilon/2$.

Example 1.8 (H.W). Show that $\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^2} = 0$

Proof. Let $\varepsilon > 0$, consider

$$|f(x,y) - L| = \left| \frac{xy^2}{x^2 + y^2} - 0 \right| = \frac{|x|y^2}{x^2 + y^2}$$

$$= \frac{|x|}{\frac{x^2}{y^2} + 1}$$

$$\leq |x|$$

$$\leq \sqrt{x^2 + y^2} < \varepsilon \implies |f(x,y) - L| < \varepsilon$$

So we can just pick $\delta = \varepsilon$.

1.4 Continuity

Definition 1.9 (Continuity). A function $f : \mathbb{R}^2 \to \mathbb{R}$ is said to be continuous at a point (a,b) if $\forall \varepsilon > 0, \exists \delta > 0$ such that,

$$0 < ||(x,y) - (a,b)||_2 < \delta \implies |f(x,y) - f(a,b)| < \varepsilon$$

provided f(a,b) exists. Alternatively,

$$\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$$

Note that, we can show the function is discontinuous if

- 1. f(a,b) doesn't exist.
- 2. $\lim_{(x,y)\to(a,b)} f(x,y)$ doesn't exist.
- 3. Both exist but are not equal to each other.

Example 1.10. Show that the given function is continuous at (0,0) where,

$$f(x,y) = \begin{cases} xy\left(\frac{x^2 - y^2}{x^2 + y^2}\right) & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Proof. Here, f(0,0) = 0. Clearly we have that $|x^2 - y^2| \le |x^2 + y^2|$. Let $\varepsilon > 0$,

$$|f(x,y) - L| = \left| xy \frac{x^2 - y^2}{x^2 + y^2} - 0 \right|$$
$$= |x||y| \left| \frac{x^2 - y^2}{x^2 + y^2} \right|$$
$$\le |x||y|$$

$$\leq \sqrt{x^2 + y^2} \sqrt{x^2 + y^2} = x^2 + y^2$$

So when $x^2 + y^2 < \varepsilon \implies |f(x,y) = f(0,0)| < \varepsilon$ so we take $\delta = \sqrt{\varepsilon}$.

Example 1.11. Show that the given function is discontinuous at (0,0) where,

$$f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Proof. content...

1.5 Polar Coordinates

The polar coordinates r(the radial coordinate) and θ (the angular coordinate), are defined in terms of cartesian coordinates as below.

$$x = r\cos\theta, y = r\sin\theta$$
$$r = \sqrt{x^2 + y^2}, \theta = \arctan\left(\frac{y}{x}\right)$$

1.5.1 Limits in Polar coordinates

Use polar coordinates when you are over (0,0)

Example 1.12. Show that $\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2+y^2}$ doesn't exist.

Proof. Put $x = r \cos \theta$ and $y = r \sin \theta$

$$f(x,y) = \frac{2xy}{x^2 + y^2} \iff f(r,\theta) = \frac{2r^2 \cos \theta \sin \theta}{r^2} = 2\cos \theta \sin \theta$$
$$\lim_{r \to 0} f(r,\theta) = \lim_{r \to 0} 2\cos \theta \sin \theta = 2\cos \theta \sin \theta$$

Which depends on θ .

1.5.2 Epsilon-delta with polar coordinates

Definition 1.13. $\lim_{r\to 0} f(r,\theta) = L \iff \forall \varepsilon > 0 \exists \delta > 0 s.t.$

$$0 < |r| < \delta \implies |f(r,\theta) - L| < \varepsilon$$

Example 1.14. Show that $\lim_{(x,y)\to(0,0)} \frac{x^3}{x^2+y^2}$

Proof.

$$f(r,\theta) = \frac{r^3 \cos^3 \theta}{r^2} = r(\cos \theta)^3 \tag{1.1}$$

Let $\varepsilon > 0$, consider $|f(r,\theta) - L| = |r||\cos\theta|^3 \le |r|$. So we can set $\delta = \varepsilon$

Example 1.15. Find the domain and range of
$$g(x,y) = \sqrt{9 - x^2 - y^2}$$

Proof. The sqrt interior must be positive so take $x^2 + y^2 \le 9$, so its a circle of radius 3 centred at 0. So the domain is the circle. The range is $\{z \mid 0 \le z \le 3\} = [0,3]$

1.6 Algebra of limits

Let $f, g : \mathbb{R}^n \to \mathbb{R}, p \in \mathbb{R}^n$ and $k_1, k_2 \in \mathbb{R}$.

Theorem 1.16. If $\lim_{x\to p} f(x) = L_1, \lim_{x\to p} g(x) = L_2$, then

- $\lim_{x \to p} (k_1 f(x) + k_2 g(x)) = k_1 L_1 + k_2 L_2$
- $\bullet \lim_{x \to p} (f(x)g(x)) = L_1 L_2$

• For non-zero L_2 , $\lim_{x\to p} (f(x)/g(x)) = L_1/L_2$

Theorem 1.17. Let $f: \mathbb{R}^n \to \mathbb{R}$, $g: \mathbb{R}^n \to \mathbb{R}$ and $p \in \mathbb{R}^n$. If $\lim_{x \to p} f(x) = L_1$, and $\lim_{x \to p} g(x) = L_2$ then $\lim_{x \to p} [f(x) + g(x)] = L_1 + L_2$.

Proof. Let $\varepsilon > 0$.

Then there exists $\delta_1 > 0$ such that

$$x \in B^*(p, \delta_1) \implies |f(x) - L_1| < \varepsilon/2$$

also there exists $\delta_2 > 0$ such that

$$x \in B^*(p, \delta_2) \implies |g(x) - L_2| < \varepsilon/2$$

Define $\delta = \min \delta_1, \delta_2$. Then $\delta > 0$ and $\delta \leq \delta_1, \delta \leq \delta_2$. So we have

$$x \in B^*(p,\delta) \implies |f(x) - L_1| < \varepsilon/2 \text{ and } |g(x) - L_2| < \varepsilon/2$$

Consider that $|[f(x) + g(x)] - [L_1 + L_2]| < \varepsilon/2 + \varepsilon/2$ if $x \in B^*(p, \delta)$. Thus $\forall \varepsilon > 0$ there exists $\delta > 0$ such that

$$x \in B^*(p,\delta) \implies |[f(x) + g(x)] - [L_1 + L_2]| < \varepsilon$$
Hence, $\lim_{x \to p} [f(x) + g(x)] = L_1 + L_2 = \lim_{x \to p} f(x) + \lim_{x \to p} g(x)$

1.7 General multivariate limit

Theorem 1.18 (Limit of a function $f : \mathbb{R}^n \to \mathbb{R}$). For a function $f : \mathbb{R}^n \to \mathbb{R}$, $\lim_{x\to a} f(x) = L$ if and only if $\forall \varepsilon > 0$ there exists $\delta > 0$ such that

$$0 < ||x - a||_n < \delta \implies |f(x) - L| < \varepsilon$$

Definition 1.19 (ε - neighbourhood). $B(a, \varepsilon)$ open ball of radius ε around α .

$$0 \le ||x - a||_n < \varepsilon$$

Definition 1.20 (Deleted ε neighbourhood). $B(a, \varepsilon) - \{a\}$

Definition 1.21 (Alternate definition of a limit). For a function $f : \mathbb{R}^n \to \mathbb{R}$, $\lim_{x\to a} f(x) = L$ if and only if $\forall \varepsilon > 0$ there exists $\delta > 0$ such that

$$x \in B^*(a, \delta) \implies |f(x) - L| < \varepsilon$$

Definition 1.22 (Bounded function). Let E be a non-empty subset of \mathbb{R}^n . The function $f: E \to \mathbb{R}$ is said to be bounded in some δ -neighbourhood of point $p \in \mathbb{R}^n$ if there exists M > 0 in \mathbb{R} such that

$$|f(x)| \le M \forall x \in B(p, \delta)$$

Theorem 1.23 (Relation between bounded function and limit of a function in \mathbb{R}^n). Let $f: \mathbb{R}^n \to \mathbb{R}$ and $p \in \mathbb{R}^n$. Let f(p) be defined. If $\lim_{x\to p} f(x)$ exists then f is bounded in some neighbourhood of point p.

Proof. As $\lim_{x\to p} f(x)$ exists, let $\lim_{x\to p} f(x) = L \in \mathbb{R}$. Then for $\varepsilon = 1 > 0$ there exists $\delta > 0$ such that

$$x \in B^*(p, \delta) \implies |f(x) - L| < \varepsilon = 1$$

Consider $|f(x)| = |(f(x)-L)+L| \le |f(x)-L|+|L|$ so we have |f(x)| < 1+|L| for $x \in B^*(p,\delta)$. Define $M = \max\{|f(p)|, 1+|L|\}$. Then $M > 0, M \ge |f(p)|, M \ge 1+|L|$. Thus in any case we have $|f(x)| \le M \forall x \in B(p,\delta)$. \square

The converse of 1.23 isn't true.

Example 1.24.

$$f(x,y) = \frac{xy}{x^2 + y^2}$$
, for non zero and equal to 0 for 0

Theorem 1.25 (Uniqueness of limit in \mathbb{R}^n). Let $f: \mathbb{R}^n \to \mathbb{R}$ and $p \in \mathbb{R}^n$. If $\lim_{x \to p} f(x)$ exists then it is unique.

Proof. Assume $\lim_{x\to p} f(x)$ is not unique and let it have two limits L_1, L_2 . Take $\varepsilon = \frac{1}{2}|L_1 - L_2|$.

Then we have the following,

$$\begin{cases} x \in B^*(p, \delta_1) \implies |f(x) - L_1| < \varepsilon \\ x \in B^*(p, \delta_2) \implies |f(x) - L_2| < \varepsilon \end{cases}$$

Chose $\delta = \min\{\delta_1, \delta_2\}$. Then $\delta > 0$ and $\delta \leq \delta_1, \delta \leq \delta_2$.

So $x \in B^*(p, \delta) \implies |f(x) - L_1| < \varepsilon \text{ and } |f(x) - L_2| < \varepsilon.$

Consider that $|L_1-L_2| = |f(x)-L_2-f(x)-L_1| \le |f(x)-L_2|+|f(x)-L_1|$ so $|L_1-L_2| < \varepsilon + \varepsilon$ so we have $|L_1-L_2| < |L_1-L_2|$ a contradiction, so our initial assumption is wrong and limit must be unique if it exists.

Theorem 1.26. If function $f: \mathbb{R}^n \to \mathbb{R}$ is continuous at $p \in \mathbb{R}^n$ then |f| is continuous at p.

Proof. Let $\varepsilon > 0$. Then as f is continuous at p we know the following.

$$\exists \delta > 0 s.t. x \in B(p, \delta) \implies |f(x) - f(p)| < \varepsilon$$

Then consider the fact that,

$$||f(x)| - |f(p)|| \le |f(x) - f(p)| < \varepsilon$$

So just use the same epsilon for the continuity for the absolute valued function.

1.8 Iterated (Repeated) limits

Let $(a,b) \in E$ and $f: E \to \mathbb{R}$ be a function where $E \subseteq \mathbb{R}^2$,

- 1. Suppose there exists $\delta > 0$ such that $\forall x$ with $0 < |x a| < \delta$, we have $\lim_{y \to b} f(x, y)$ exists. Define a new function $g : \mathbb{R} \to \mathbb{R}$ as $g(x) = \lim_{y \to b} f(x, y)$. If $\lim_{x \to a} g(x)$ exists then this limit is called **iterated limit** which is given by $\lim_{x \to a} g(x) = \lim_{x \to a} \lim_{y \to b} f(x, y)$.
- 2. Suppose there exists $\delta > 0$ such that $\forall y$ with $0 < |y b| < \delta$, we have $\lim_{x \to a} f(x, y)$ exists

Theorem 1.27. Existence of double limit does not imply existence of iterated limit

Proof. Consider $f: \mathbb{R}^2 \to \mathbb{R}$ defined as,

$$f(x,y) = \begin{cases} x \sin\left(\frac{1}{y}\right) & y \neq 0\\ 0 & y = 0 \end{cases}$$

We show that $\lim_{(x,y)\to(0,0)}f(x,y)=0$ i.e. double limit exists. Let $\varepsilon>0$. Consider then

$$|f(x,y) - L| = |x\sin(1/y) - 0| = |x| |\sin(1/y)| \le |x|$$

$$\le \sqrt{x^2}$$

$$\le \sqrt{x^2 + y^2}$$

so $\sqrt{x^2+y^2}<\varepsilon \implies |f(x,y)-L|<\varepsilon$. So choose $\delta=\varepsilon$. We will now check its iterated limit.

$$\lim_{x} \lim_{y} f(x, y) = \lim_{x \to 0} \left[\lim_{y \to 0} x \sin \frac{1}{y} \right]$$
$$= \lim_{x \to 0} x \left[\lim_{y \to 0} \sin \frac{1}{y} \right]$$

The limit inside doesn't exist.

Claim that $\lim_y \phi(y) = \lim_y \sin 1/y$ doesn't exist, Take $a_n = \frac{1}{(4n+1)\pi/2}, b_n = \frac{1}{(4n-1)\pi/2}$. The sequences converge to zero but their sequences $\phi a_n, \phi b_n$ dont converge to the same limit.

Example 1.28 (Both iterated limits exist but double limit doesn't exist). consider $f : \mathbb{R}^2 \to \mathbb{R}$, defined as

$$f(x,y) = \begin{cases} \frac{x^2}{x^2 + y^2 - x} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Proof. Begin with two part test to show that the double limit does not exist. Consider first the path x = y the limit is 0,

$$\lim_{(x,y)\to(0,0)} \frac{y^2}{y^2 + y^2 - y} = \lim_{(x,y)\to(0,0)} \frac{y}{2y - 1} = 0$$

Then consider the path $x = y^2$

$$\lim_{(x,y)\to(0,0)} \frac{y^4}{y^4 + y^2 - y^2} = \lim_{(x,y)\to(0,0)} \frac{y^4}{y^4} = 1$$

So double limit does not exist.

Now consider the iterated limits,

$$\lim_{x \to 0} \lim_{y \to 0} f(x, y) = \lim_{x \to 0} \left[\lim_{y \to 0} \frac{x^2}{x^2 + y^2 - x} \right]$$
$$= \lim_{x \to 0} \frac{x^2}{x^2 - x} = 0$$

Now consider

$$\lim_{y \to 0} \lim_{x \to 0} = \lim_{y \to 0} \frac{0}{y^2} = 0$$

Example 1.29 (Both iterated limits exist (not equal) but double limit doesn't exist). Consider $f: \mathbb{R}^2 \to \mathbb{R}$ definde as,

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Proof. First show that the double limit does not exist.

Consider the bath x = 0 the limit is equal to 1. Consider the path x = y we will have the limit equal to 0.

Consider now the iterated limits,

$$\lim_{x \to 0} \lim_{y \to 0} \frac{x^2 - y^2}{x^2 + y^2} = \lim_{x \to 0} 1 = 1$$

And now the other direction,

$$\lim_{y \to 0} \lim_{x \to 0} \frac{x^2 - y^2}{x^2 + y^2} = \lim_{y \to 0} -1 = -1$$

Theorem 1.30. Suppose $\lim_{(x,y)\to(a,b)} f(x,y)$ exists and is equal to L. If both iterated limits exist then, the iterated limits are both equal to L.

Proof. Since

$$\lim_{(x,y)\to(a,b)} f(x,y) = L, \forall \varepsilon > 0$$

we know there exists $\delta > 0$ such that if $|x - a| < \delta$ and $|y - b| < \delta$ then

$$|f(x,y) - L| < \varepsilon$$

Let
$$L_a(y) = \lim_{x \to a} f(x, y)$$

Then with $|y - b| < \delta$

1.9 Limits in 3 variables

1.9.1 Two path test for non-existence of limit

Two path can be used for non-existence of a limit in 3 variables. However a single equation is not enough to define a path in \mathbb{R}^3 two Cartesian equations are required for a path in \mathbb{R}^3 .

Example 1.31. Show that

$$\lim_{(x,y,z)\to(0,0,0)} \frac{x^2 + y^2 - z^2}{x^2 + y^2 + z^2}$$

Proof. Take y = x, z = x then

$$\lim_{x \to 0} \frac{x^2}{3x^2} = \frac{1}{3}$$

Take other path y = x, z = 0

$$\lim_{x \to 0} \frac{2x^2}{2x^2} = 1$$

Definition 1.32 (Limit of a function $\mathbb{R}^3 \to \mathbb{R}$). For a function $f: \mathbb{R}^3 \to \mathbb{R}$, $\lim_{(x,y,z)\to(a,b,c)} f(x,y,z) = L$ if and only if $\forall \varepsilon > 0, \exists \delta > 0$ such that

$$0 < ||(x,y,z) - (a,b,c)||_3 < \delta \implies |f(x,y,z) - L| < \varepsilon$$

i.e.

$$0 < \sqrt{(x-a)^2 + (y-b)^2 (z-c)^2} < \delta \implies |f(x,y,z) - L| < \varepsilon$$

Definition 1.33 (Continuity of a function $\mathbb{R}^3 \to \mathbb{R}$). Replace L with f(a,b,c).

Example 1.34. Show that

$$\lim_{(x,y,z)\to(1,2,3)} 4x + 2y + z = 11$$

using epsilon delta

Proof. Let $\varepsilon > 0$ consider.

$$\begin{split} |f(x,y,z)-L| &= |4x+2y+z-11| \\ &= |(4x-4)+(2y-4)+(z-3)| \\ &\leq 4|x-1|+2|y-2|+|z-3| \\ &\leq 4\sqrt{(x-1)^2}+2\sqrt{(y-2)^2}+\sqrt{(z-3)^2} \\ &\leq 7\sqrt{(x-1)^2+(y-2)^2+(z-3)^3} \end{split}$$

So take $\delta = \varepsilon/7$

Example 1.35. Evaluate $\lim_{(x,y)\to(3,3)} \frac{x^2+xy-2y^2}{x^2-y^2}$

Proof. Factorize (x-y) on numerator and denominator then just plug and chug. \Box

Chapter 2

Differentiation

2.1 Partial derivatives

Partial derivates are defined as derivatives of a function of multiple variables when all but the variable of interest are held fixed during the differentiation. For a function f in n variables x_1, x_2, \ldots, x_n we can define the m^{th} partial derivative as,

$$f_{x_m} = \frac{\partial f}{\partial x_m} = \lim_{h \to 0} \frac{f(x_1, \dots, x_m + h, \dots, x_n) - f(x_1, \dots, x_m, \dots, x_n)}{h}$$

Partial derivatives can be taken with respect to multiple variables and are denoted as follows,

$$\frac{\partial^2 f}{\partial x^2} = f_{xx}$$
$$\frac{\partial^2 f}{\partial x \partial y} = f_{xy}$$
$$\frac{\partial^3 f}{\partial x^2 \partial y} = f_{xxy}$$

Lemma 2.1. Existence of partial derivatives f(x,y) at a point (a,b) does not imply continuity of f at that point.

Definition 2.2 (Directional derivatives). Consider he function $f : \mathbb{R}^2 \to \mathbb{R}$ the direction derivative of f(x,y) along unit vector $u = u_1i + u_2j$ at p = (a,b) is

$$D_u f(p) = \lim_{s \to 0} \frac{f(a + su_1, b + su_2) - f(a, b)}{s}$$

2.2. GRADIENT

13

DD along u = i is partial derivative w.r.t x similar for u = j.

Corollary 2.3. Existence of directional derivative of f(x,y) at a point $P \implies Existence$ of partial derivative of f(x,y) at point P. But converse need not be true.

Theorem 2.4 (Mixed partial derivatives are equal if they are continuous). $E \subseteq \mathbb{R}^2$ Let f_x, f_y, f_{xy}, f_{yx} exist. If f_{xy}, f_{yx} are continuous at (a,b) then $f_{xy}(a,b) = f_{yx}(a,b)$

Example 2.5. Find unit vector normal to level curve $x^2 + y^2 = a^2$ at point $P = \left(\frac{a}{\sqrt{2}}, \frac{a}{\sqrt{2}}\right)$

2.2 Gradient

Definition 2.6 (Gradient). For $f: \mathbb{R}^3 \to \mathbb{R}$

$$\nabla f = \frac{\partial f}{\partial x}i + \frac{\partial f}{\partial y}j + \frac{\partial f}{\partial z}k = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$$

Example 2.7. If $f(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$ find ∇f_p where $p = (\sqrt{2}, \sqrt{2}, -3)$

Proof.

$$f_x = \frac{-x}{(x^2 + y^2 + z^2)^{3/2}}$$

Example 2.8. Find ∇f at $p = (0, \pi/2)$ if $f(x, y) = \sin(xy)$ and its norm at p.

Theorem 2.9 (Chain rule for two variables). If w = f(x, y) has continuous p.d. f_x, f_y and if x = x(t), y = y(t) are differentiable functions of t then the composite function $w \circ f(x(t), y(t))$ is a differentiable function of t and

$$\frac{df}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

Example 2.10. If $u = x^2 + y^2$ and $x = at^2$ and y = 2at find $\frac{du}{dt}$

Proof.

$$\frac{du}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

Consider the two partial derivatives first,

$$f_x = 2x, f_y = 2y$$

Now $\frac{dx}{dt} = 2at$, $\frac{dy}{dt} = 2a$ So we have $\frac{du}{dt} = 2x(2at) + 2y(2a) = 4a^2(t^3 + 2t)$

2.3 Level curves

Definition 2.11. The level curves of a function f of two variables are curves with equations f(x,y) = k where k is a constant (in the range of f).

Theorem 2.12. The vector $\nabla f(x,y)$ is normal (perpendicular to tangent) to level curve of f.

2.4 Total derivative

Definition 2.13 (Total derivative). A function $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable at point $a = (a_1, a_2)$ if $\exists \alpha = (\alpha_1, \alpha_2)$ such that,

$$\lim_{h \to 0} \frac{|f(a+h) - f(a) - \alpha h|}{||h||} = 0$$

$$i.e., \lim_{(h_1, h_1) \to (0, 0)} \frac{|f(a_1 + h_1, a_2 + h_2) - f(a_1, a_2) - (\alpha_1, \alpha_2) \cdot (h_1, h_2)|}{\sqrt{h_1^2 + h_2^2}} = 0$$

Corollary 2.14. If a function is differentiable then directional derivative along any unit vector exists.

Corollary 2.15. If function is differentiable then $D_u f(a) = \langle \nabla f_a, u \rangle$

Corollary 2.16. If $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable at $a \in \mathbb{R}^2$ then it is continuous at a.

2.5 How to show not differentiable, maximizing directional derivative

Example 2.17. If $x = e^u \cos v$, $y = e^u \sin v$ then prove that

$$y\frac{\partial z}{\partial u} + x\frac{\partial z}{\partial v} = e^{2u}\frac{dz}{???}$$

Example 2.18. Find D.D. of $\phi = xy^2 + yz^3$ at (2, -1, 1) in direction of i + 2j + 2k. Also find direction and magnitude of greater D.D. at that point.

Proof. Find $(\nabla \phi)=i-3j-3k$.

Then
$$(D_u \phi)_p = (\nabla \phi)_p \hat{u} = (i - 3j - 3k) \cdot (i/3 + 2j/3 + 2k/3) = -\frac{11}{3}$$

Greatest D.D. is normal to the curve and its magnitude is norm of the gradient. $||(\nabla \phi)_p|| = \sqrt{19}$

2.5. HOW TO SHOW NOT DIFFERENTIABLE, MAXIMIZING DIRECTIONAL DERIVATIVE 15

Example 2.19. Find acute angle between surfaces at (2, -1, 2), $x^2+y^2+z^2=9$ and $z=x^2+y^2+3$

Proof. Acute angle between the surfaces is equal to the acute angles between its normals.

$$f = x^2 + y^2 + z^2, g = x^2 + y^2 - z$$

$$(\nabla f)_p = 4i - 2j + 4k = u$$
$$(\nabla g)_p = 4i - 2j - k = v$$

We require the angle between u, v so,

$$\cos \theta = \frac{u \cdot v}{||u||||v||} = \frac{(4i - 2j + 4k) \cdot (4i - 2j - k)}{\sqrt{16 + 4 + 16}\sqrt{16 + 4 + 1}}$$
$$= \frac{16 + 4 - 4}{\sqrt{36}\sqrt{21}}$$
$$= \frac{16}{6\sqrt{21}}$$
$$= \frac{8}{3\sqrt{21}}$$

So
$$\theta = \arccos\left(\frac{8}{3\sqrt{21}}\right)$$

To find the eq. of the line/tangent to the curve find its gradient and dot product with p and equate to zero. that gives you equation of tangent line/tangent.

Equation of line L through A parallel to \overline{V} . As $L||\overline{V}|$ we have $\overline{AB}||\overline{V}|$

$$(x-a_1)i + (y-a_2)j + (z-a_3)k||v_1i + v_2j + v_3j|$$

so we get

$$t = \frac{x - a_1}{v_1} = \frac{y - a_2}{v_2} = \frac{z - a_3}{v_3}$$

In view of this equation of normal at p is

$$\frac{x - x_0}{(f_x)p} = \frac{y - y_0}{(f_y)p} = \frac{z - z_0}{(f_z)_p}$$

Example 2.20. Find the equation of tangent plane and normal line to surface f(x, y, z) = f(p) at p = (1, 2, 3)???

Proof. Equation of tangent is

Equation of normal line at p is given by

$$\frac{x-1}{-24} = \frac{y-2}{-1} = \frac{z-3}{1}$$

2.6 Lagrange mean value theorem in \mathbb{R}^n

Theorem 2.21. Let E be an open set in \mathbb{R}^n . Let $f: E \to \mathbb{R}$ be differentiable. If $a, b \in E$ then $\exists \theta \in (0, 1)$ such that,

$$f(b) - f(a) = \langle \nabla f(a + \theta(b - a)), (b - a) \rangle$$

Proof. Consider a unit vector $u = \frac{b-a}{||b-a||}$ let $||b-a|| = r \in \mathbb{R}$.

Then we have $||b-a|| = r \in \mathbb{R}$.

Define a function $g:[0,r]\to\mathbb{R}$ as $g(t)=f(a+tu), \forall t\in[0,r].$

Then g is continuous on [0, r] and differentiable on (0, r). Applying LMVT (in \mathbb{R}) to this function g.

Therefore, there exists $c \in (0, r)$ such that

$$g'(c) = \frac{g(r) - g(0)}{r - 0}$$

$$\lim_{h \to 0} \frac{content...}{den} =$$

$$\vdots$$

$$D_u f(a + cu) = \frac{1}{r} (f(b) - f(a))$$

$$\langle \nabla f(a + cu), u \rangle = \frac{1}{r} (f(b) - f(a))$$

Let $\theta = \frac{c}{r}$ so $\theta \in (0,1)$

$$\frac{1}{r}(f(b) - f(a)) = \langle \nabla f\left(a + c\left(\frac{b - a}{r}\right)\right), \frac{b - a}{r}\rangle$$

Since $\langle u, \alpha v \rangle = \overline{\alpha} \langle u, v \rangle$ So we get the 1/r out and cancel from both sides giving the desired result.

Example 2.22. Find $\theta \in (0,1)$ in MVT for the function $f: \mathbb{R}^3 \to \mathbb{R}$ defined as

$$f(x, y, z) = xy + yz + zx$$

take
$$a = (0,0,0), b = (2,1,1)$$

Proof.

$$f(b) - f(a) = \langle \nabla f(a + \theta(b - a)), (b - a) \rangle$$

$$f(2, 1, 1) - f(0, 0, 0) = \langle \nabla f(\theta(2, 1, 1)), (2, 1, 1) \rangle$$

$$5 = \langle \nabla f(2\theta, \theta, \theta), (2, 1, 1) \rangle$$

Gradient is given as $\nabla f = (y+z)i + (x+z)j + (x+y)k$

$$5=\langle (2\theta,3\theta,3\theta),(2,1,1)\rangle$$

$$5 = 4\theta + 3\theta + 3\theta$$

$$\theta = \frac{1}{2}$$

2.7 Sequences in \mathbb{R}^n

Theorem 2.23 (Sequential definition of limit). Prove that $f: \mathbb{R}^n \to \mathbb{R}$ has limit l as $x \to p$ iff for every sequence $\{x_k\} \in \mathbb{R}^n$ conversing to p, sequence $\{f(x_k)\}$ converges to l.

Theorem 2.24. $f: \mathbb{R}^n \to \mathbb{R}$ is continuous at p iff for every sequence $\{x_k\} \in \mathbb{R}^n$ converging to p the sequence $\{f(x_k)\}$ converges to f(p).

2.8 Chain rule for vector value function

2.9 Taylor series in two variables

Theorem 2.25. $g(t) = f(a_1, a_2) - t \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y} \right) f(a_1, a_2) + ???$

Example 2.26. $f(x,y) = \sin xy + \log(x+y)$ about the point (1,0)

Proof.

$$f(1+h,0+k) = f(1,0) + \left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)f(1,0) + \left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^2f(0,1)$$

Ш

2.10 Second order partial derivative test

https://en.wikipedia.org/wiki/Second_partial_derivative_test Let $f_x(a,b) = 0, f_y(a,b) = 0$ for twice differentiable functions.

Example 2.27. A rectangular box without a top with a volume 108cubic units is to constructed from a sheet of metal. Find the dimensions of the bo if least amount of material is to be used in its manufacturing.

Proof. Let the dimensions be x, y, z. Volume is = xyz. So $z = \frac{108}{xy}$. So to minimize surface area S = xy + 2xz + 2yz. Sub z

$$S = 214\left(\frac{1}{y} + \frac{1}{x}\right) + xy$$

$$f_x = -216/x^2 + y$$

$$f_y = -216/y^2 + x$$

$$f_{xx} = 432/x^3$$

$$f_{yy} = 432/y^3$$

$$f_{xy} = 1$$

To get stationary points of f solve $f_x=0$ and $f_y=0$ $f_x=0 \implies y=216/x^2 \implies y=216/216^2y^4$ $f_y=0 \implies x=216/y^2 \implies y^3=216 \implies y=6, x=6$ So here A=2, B=1, C=2 so $AC-B^2=3>0$ and A>0 so f(x,y) has minimum at (6,6) also z=108/xy=3 dimensions are then $6\times 6\times 3$. \square

Example 2.28. Find shortest distance from (1,0,-2) to the plane x + 2y + z = 4.

Proof. The distance from any point to (1,0,-2) is $d=\sqrt{(x-1)^2+y^2+(z+2)^2}$ if it lies on that plane then z=4-x-2y so the distance is instead $d=\sqrt{(x-1)^2+y^2+(4-x-2y+2)^2}$

2.11 Method of Lagrange multiplier

To find maximum and minimum values of f(x, y, z) subject to constraint g(x, y, z) = k.

• Find all values of x, y, z and λ such that $\nabla f(x, y, z) = \lambda \nabla g(x, yz)$ and g(x, y, z) = k

If we write the vector equation $\nabla = \lambda \nabla g$ in terms of its components.

$$f_x = \lambda g_x, f_y = \lambda g_y, f_z = \lambda g_z, g(x, y, z) = k$$

Example 2.29. 2xz + 2yz + xy = 12

$$xyz = \lambda(2xz + xy)$$

$$xyz = \lambda(2yz + xy)$$

$$xyz = \lambda(2xz + 2yz)$$

$$xz = yz, 2xz = xy \text{ and } x = y \text{ } y = 2z \text{ so } x = y = 2z \text{ so we get } 4z^2 + 4z^2 + 4z^2 = 12 \text{ so we have } z = 1, x = 2, y = 2$$

Example 2.30. find extreme values for $f(x,y) = x^2 + 2y^2$ on circle $x^2 + y^2 = 1$

Proof. $g(x,y)=x^2+y^2=1$ solve the equations $\nabla f=\lambda \nabla g$ and g(x,y)=1 which can be written as

$$f_x = \lambda g_x, f_y = \lambda g_y, g(x, y) = 1$$

$$2x = 2x\lambda$$
$$4y = 2y\lambda$$
$$x^2 + y^2 = 1$$

x cannot be cancelled in the top cause we dont know if its non zero. We get either x=0 or $\lambda=1$ from eq. 1. So if $x=0,y=\pm 1$ so we got (0,1),(0,-1) but if $\lambda=1$ then y=0 and we get $x=\pm 1$ so f has possible extreme vaues at (0,1),(0,-1),(1,0),(-1,0).

Compute value of f at each of these points and the maximum among them is the maximum which is $f((0,\pm 1))=2$ and minimum at $f((\pm 1,0))=1$. \square

2.11.1 Two constraints

If we have two constraints g(x, y, z), h(x, y, z) we consider

$$\nabla f(x_0, y_0, z_0) = \lambda \nabla g(x_0, y_0, z_0) + \mu \nabla h(x_0, y_0, z_0)$$

Example 2.31. f(x, y, z) = x + 2y + 3z subject to constraints

2.12 Limits and continuity of vector values function

Definition 2.32. A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is called a vector function.

Definition 2.33 (Limit of vector valued function). Let S be a non empty open subset of \mathbb{R}^n . Let $f: S \to \mathbb{R}^m$ be a vector field. Let $a \in S$.

Then an element $\ell \in \mathbb{R}^m$ is said to be the limit of f at x = a if for a given $\varepsilon > 0$ there exists $\delta > 0$ such that

$$||x-a||_n < \delta \implies ||f(x)-\ell||_m < \varepsilon$$

and we write

$$\lim_{x \to a} f(x) = \ell$$

Example 2.34. Let $f: \mathbb{R}^2 \to \mathbb{R}^3$ given by $f(x,y) = (x^2, y^2, xy)$. Find $\lim_{(x,y)\to(0,0)} f(x,y)$

Proof. Let $\varepsilon > 0$

Theorem 2.35 (Relation between limit of ector field and limit of component functions). Let S be non empty open subset of \mathbb{R}^n . Let $f: S \to \mathbb{R}^m$ be a vector field given by

$$f(x) = (f_1(x), f_2(x), \dots, f_m(x))$$

Let $\ell = (\ell_1, \ell_2, \dots, \ell_m) \in \mathbb{R}^m$. The limit at f at x = a is ℓ iff the limit of the coordinates is,

Proof. Suppose $\lim_{x\to a} f(x) = \ell$ Let $\varepsilon > 0, \exists \delta > 0$ such that

$$||x-a||_n < \delta \implies ||f(x)-\ell||_m < \varepsilon$$

$$||f(x) - \ell||_m = \sqrt{\sum_{i=1}^m (f_i(x) - \ell_i)^2} < \varepsilon$$

But we have,

$$|f_i(x) - \ell_i| = \sqrt{(f_i(x) - \ell_i)^2} \le \sqrt{\sum_{i=1}^m (f_i(x) - \ell_i)^2} < \varepsilon$$

Thus,

$$||x-a||_n < \delta \implies |f_i(x) - \ell_i| < \varepsilon$$

Definition 2.36 (Continuity of vector field). Let S be a non empty open subset of \mathbb{R}^n . Let $f: S \to \mathbb{R}^m$ be a vector field. Let $a \in S$, then f is said to be continuous at a if given $\varepsilon > 0$ there exists $\delta > 0$ such that

$$||x-a||_n < \delta \implies ||f(x)-f(a)||_p$$

2.12.1 Algebra of limit for vector valued functions

Let $\alpha, \beta \in \mathbb{R}$ and $f, g : \mathbb{R}^n \to \mathbb{R}^m$ and $L, M \in \mathbb{R}^m, p \in \mathbb{R}^n$ If $\lim_{x \to p} f(x) = L$, $\lim_{x \to p} g(x) = M$ then

$$\lim_{x \to p} [\alpha f(x) + \beta(x)] = \alpha L + \beta M$$

Proof. content...

Theorem 2.37 (Continuity). content...

Definition 2.38 (Differentiability of vector valued functions). content...

Definition 2.39 (Jacobian). Let $f: S \subset \mathbb{R}^n \to \mathbb{R}^m$ be a vector valued function given by.

$$f \equiv (f_1, f_2, \dots, f_m)$$

Let $a \in S$ and $\frac{\partial f_i}{\partial x_i}(a)$ exist for $i = 1, 2, \dots, n$ then

$$Jf(a) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(a) & \frac{\partial f_1}{\partial x_2}(a) & \dots & \frac{\partial f_1}{\partial x_n}(a) \end{bmatrix}$$

denoted as $\frac{\partial(f_1, f_2, \dots f_m)}{\partial(x_1, x_2, \dots, x_n)}$

Example 2.40. Find jacobian for $f(x,y) = (2x^2 + 3y, 4x - 2y, x^3 + y^3)$ at (1,-1)

Proof.

$$\begin{bmatrix} 4 & 3 \\ 4 & -2 \\ 3 & 3 \end{bmatrix}$$

Theorem 2.41 (Important). If $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $p \in \mathbb{R}^n$ is defined by its Jacobian f at p

2.12. LIMITS AND CONTINUITY OF VECTOR VALUES FUNCTION22

Proof. As f is differentiate there exists a linear map $T: \mathbb{R}^n \to \mathbb{R}^m$ such that

$$\lim_{h \to 0} \frac{||f(p+h) - f(p) - T(h)||_m}{||h||_n} = 0$$

Where $T(h) = D(f(p)) \cdot h$ put $h = te_j$ where $t \in \mathbb{R}$ We get,

$$\lim_{t \to 0} \frac{||f(p + te_j) - f(p) - tT(e_j)||_m}{|t|} = 0$$

$$\lim_{t \to 0} \left| \left| \frac{f(p + te_j) - f(p)}{t} - T(e_j) \right| \right|$$

$$T(e_j) = D_{e_j} f(p)$$

So partial derivatives exist

Now
$$D_{e_j} f(p) = \frac{\partial f(p)}{\partial x_j}$$

So $T(e_j) = \left(\frac{\partial f_1(p)}{\partial x_j}, \cdots, \frac{\partial f_m(p)}{\partial x_j}\right)$
 $T(e_j) = a_{1j}e_1^n + a_{2j}e_2^n + \cdots + a_{mj}e_m^n$

Definition 2.42 (Hessian matrix). For $f: \mathbb{R}^n \to \mathbb{R}$

$$H(f) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \end{bmatrix}$$

Example 2.43. Find hessian for $f(x, y, z) = x^2 + 2xyz + y^2z$

Theorem 2.44 (IMPORTANT Differentiability implies continuity for vector fields). *content...*

Chapter 3

Applications