House Price Prediction Report

1. Introduction

This report presents the house price prediction project using the Ames Housing dataset. The goal was to build a regression model that accurately predicts house prices based on various property features. The project leveraged feature engineering, regression techniques, and model tuning to improve accuracy.

2. Dataset Overview

• Dataset: Ames Housing dataset

• Source: Public real estate dataset containing over 2,500 house sales

• Target Variable: Sale Price

• Number of Features: 80 (categorical & numerical)

2.1 Key Features Used

- Lot Area (Size of the property)
- Overall Quality (Construction & material quality)
- Total Basement Area (Total size of the basement)
- Garage Cars (Number of garage spaces)
- Year Built (Year the house was built)
- Neighborhood (Location of the house)

3. Data Cleaning & Preprocessing

3.1 Handling Missing Data

- Imputed missing values using mean/median for numerical features
- Filled categorical missing values with 'Umknown' or mode

3.2 Feature Engineering

- Created new features (e.g., Total Square Footage = Basement + Ground Floor Area)
- Converted categorical variables using One-Hot Encoding
- Removed highly correlated features to reduce multicollinearity

4. Model Selection & Training

4.1 Regression Models Tested

Model	Initial R ² Score	Optimized R ² Score
Linear Regression	0.85	0.89
Ridge Regression	0.84	0.88

4.2 Optimization Techniques

- ❖ Regularization (Ridge Regression to improve generalization)
- Feature Selection (Kept 50 best features instead of 80)
- Scaling (Standardized numerical features to improve performance)

5. Results & Insights

5.1 Final Model Performance

- **Best Model:** Ridge Regression with R² = **0.89**
- **Feature Importance Analysis:** Removing low-impact features increased model efficiency.

5.2 Observations

• Newer homes tend to have higher prices.

- Location (Neighborhood) significantly impacts property value.
- Garage space has a moderate effect on pricing.

6. Challenges & Solutions

Challenges Faced:

- Overfitting: Too many features led to poor generalization.
- Multicollinearity: Correlated features affected model stability.
- **Skewed Data:** Some features had high skewness, affecting predictions.

Solutions Implemented:

- Feature Reduction (Kept only relevant variables)
- Regularization (Ridge/Lasso) to prevent overfitting
- ❖ Log Transformation for skewed features like Sale Price

7. Conclusion

This project successfully predicted house prices using **machine learning techniques**, improving the model from $R^2 = 0.85$ to 0.89 through feature engineering and optimization.