Automaty a Gramatiky

Poznámky z přednášek

Letní semestr2020/2021

Viktor Soukup, Lukáš Salak

Obsah

1 První přednáška

Poznámka (Chomského hierarchie): Automaty a gramatiky - dva způsoby popisu:

Turingovy stroje \leftrightarrow gramatiky Typu 0 lineárně omezené automaty \leftrightarrow kontextové gramatiky, monotónní gramatiky zásobníkové automaty \leftrightarrow bezkontextové gramatiky konečné automaty (DFA,NFA, λ NFA) \leftrightarrow regulární jazyky

Nejjednodušší jsou nejníž, turingův stroj je nejkomplikovanější. Každá gramatika odpovídá nějaké třídě automatů.

Proč to řešíme?

- zpracování přirozeného jazyka,
- překladače (lexikální, syntaktická analýza...),
- návrh, popis, verifikace hardware...
- hledání výskytu slova v textu (grep),
- verifikace systémů s konečně mnoha stavy

Příklad:

1. Návrh a verifikace integrovaných obvodů, např. Konečný automat modelující spínač on/off

2. Lexikální analýza, např. Konečný automat rozpoznávajíci slovo then

Definice (Deterministický konečný automat (DFA)): $A = (Q, \Sigma, \delta, q_0, F)$ sestává z:

- 1. konečné množiny stavů, zpravidla značíme Q
- 2. konečné neprázdné množiny vstupních symbolů (abecedy), znažíme Σ
- 3. **přechodové funkce** zobrazení $Q \times X \to Q$, značíme δ , která bude reprezentovaná hranami grafu
- 4. **počátečného stavu** $q_0 \in Q$, vede do něj šipka 'odnikud'

5. neprázdné **množiny koncových (přijímajících) stavů** (final states) $F \subseteq Q$, označených dvojitým kruhem či šipkou 'ven'.

Poznámka:

Pokud pro některou dvojici stavu a písmene není definovaný přechod, přidáme nový stav fail a přechodovou funkci doplníme na totální přidáním šipek do fail.

Pokud je množina F prázdná, přidáme do ní i Q nový stav final do kterého vedou jen přechody z něj samotného $\forall s \in \Sigma : \delta(final, s) = final$.

Příklad:

Automat A přijímající $L = x01y : x, y \in \{0, 0\} *.$

Automat
$$A = (\{q_0, q_1, q_2\}, 0, 1, \delta, q_0, q_1)$$

Reprezentujeme stavovým diagramem (grafem), pomocí tabulky nebo stavovým stromem

Definice (Abeceda, slova, jazyky): Mějme neprázdnou množinu symbolů Σ .

- Slovo je konečná (i prázdná) posloupnost symbolů $s \in \Sigma$, prázdné slovo se značí λ nebo ϵ
- Množinu všech slov v abecedě Σ značíme Σ^*
- $\bullet\,$ množinu všech neprádzných slov v abecedě značíme Σ^+
- jazyk $L \subseteq \Sigma^*$ je množina slov v abecedě Σ

Definice (Operace na Σ^*):

- 1. **zřetězení slov** u.v nebo uv
- 2. mocnina (počet opakování) $u^n(u^0 = \lambda, u^1 = u, u^{n+1} = u^n.u)$
- 3. délka slova $|u|(|\lambda|=0, |auto|=4)$
- 4. **počet výskytů** $s \in \Sigma$ ve slově u značíme $|u|_s(|zmrzlina|_z = 2)$.

Definice (Rozšířená přechodová funkce): Mějme přechodovou funkci $\delta: Q \times \Sigma \to Q$. Rozšířenou přechodovou funkci $\delta^*: Q \times \Sigma^* \to Q$ (tranzitivní uzávěr δ) definujeme induktivně:

- 1. $\delta^*(q,\lambda) = q$,
- 2. $\delta^*(q, wx) = \delta(\delta^*(q, w)x)$ pro $x \in \Sigma, w \in \Sigma^*$.

Poznámka: Pokud se v textu objeví δ aplikované na slova, míní se tím δ^* .

Definice (Jazyk rozpoznávaný (přijímaný, akceptovaný) konečným automatem): Jazykem rozpoznávaným konečným automatem $A = (Q, \Sigma, \delta, q_0, F)$ nazveme jazyk $L(A) = \{w : w \in \Sigma^* \& \delta^*(q_0, w) \in F\}$.

- Slovo w je přijímáno automatem A, právě když $w \in L(A)$.
- Jazyk L je rozpoznatelný konečným automatem, jestliže existuje konečný automat A takový, že L = L(A).
- \bullet Třídu jazyků rozpoznatelných konečnými automaty označíme \mathcal{F} , nazveme **regulární jazyky**.

Věta (Iterační (pumping) lemma pro regulární jazyky): Mějme regulární jazyk L. Pak existuje konstanta $n \in \mathbb{N}$ (závislá na L) tak, že každé $w \in L; |w| \geq n$ můžeme rozdělit na tři části, w = xyz, že:

- 1. $y \neq \lambda$
- $2. |xy| \leq n$
- 3. $\forall k \in \mathbb{N}_0$, slovo $xy^k z$ je také v L.

Důkaz:

- Mějme regulární jazyk L, pak existuje DFA A s n stavy, že L = L(A).
- Vezměme libovolné slovo $a_1 a_2 a_3 \dots a_m = w \in L$ délky $m \geq n, a_i \in \Sigma$.
- Definujeme: $\forall i p_i = \delta^*(q_0, a_1 a_2 \dots a_i)$. Platí $p_0 = q_0$.
- Máme $n+1p_i$ a n stavů, některý se opakuje, vezměme první takový, t. j. $(\exists i, j: 0 \leq i < jq leqn \& p_i = p_j)$.
- Definition $x = a_1 a_2 \dots a_i, y = a_{i+1} a_{i+2} \dots a_j, z = a_{j+1} a_{j+2} \dots a_m, t.j. w = xyz, y \neq \lambda, |xy| \leq n.$
- pak y^k můžeme opakovat libovolněkrát a vstup je také akceptovaný.

Příklad (Aplikace pumping lemmatu): TODO

2 Druhá přednáška

Definice (Kongruence): Mějme konečnou abecedu Σ a relaci ekvivalnece \sim na Σ^* (reflexivní, symetrická, tranzitivní). Potom:

- 1. ~ je pravá kongruence, jestliže $(\forall u, v, w \in \Sigma^*)$ $u \sim v \implies uw \sim vw$.
- 2. je konečného indexu, jestliže rozklad Σ^*/\sim má konečný počet tříd.
- 3. Třídu kongruence \sim obsahujíci slovo u značíme $[u]_{\sim}$, resp. [u].

Věta (Myhill-Nerodova Věta): Nechť L je jazyk nad konečnou abecedou Σ . Potom následujíci tvrzení jsou ekvivalentní:

- 1. L je rozpoznatelný konečným automatem,
- 2. \exists pravá kongruence \sim konečného indexu nad Σ^* tak, že L je sjednocením jistých tříd rozkladu Σ^*/\sim .

Důkaz:

- 1. ⇒ 2.; t.j. automat ⇒ pravá kongruence konečného indexu
 - definujeme $u \sim v \equiv \delta^*(q_0, u) = \delta^*(q_0, v)$.

- je to ekvivalnece (reflexivní, symetrická, tranzitivní)
- je to pravá kongruence (z definice δ^*)
- má konečný index (konečně mnoho stavů)

$$L = \{w | \delta^*(q_0, w) \in F\} = \bigcup_{q \in F} \{w | \delta^*(q_0, w) = q\} = \bigcup_{q \in F} [w | \delta^*(q_0, w) = q]_{\sim}.$$

- 2. \implies 1.; t.j. pravá kongruence konečného indexu \implies automat
 - \bullet abeceda automatu nazveme Σ
 - za stavy Q volíme třídy rozkladu Σ^*/\sim
 - počáteční stav $q_0 \equiv [\lambda]_{\sim}$
 - koncové stavy $F = \{c_1, \dots, c_n\}$, kde $L = \bigcup_{i=[1,n]} c_i$
 - přechodová funkce $\delta([u], x) = [ux]$ (je korektní z def. pravé kongruence).
 - L(A) = L

$$w \in L \Leftrightarrow w \in \bigcup_{i=[1,n]} c_i \Leftrightarrow w \in c_1 \vee \dots w \in c_n \Leftrightarrow [w] = c_1 \vee \dots [w] = c_n \Leftrightarrow [w] \in F \Leftrightarrow w \in L(A)$$

Příklad: Sestrojte automat přijímající jazyk

$$L = \{w | w \in a, b^* \& |w|_a = 3k + 2\},\$$

- t. j. obsahuje 3k + 2 symbolů a.
 - 1. $|u|_x$ značí počet symblů x ve slově u
 - 2. definujeme $u \sim v \equiv (|u|_a mod 3 = |v|_a mod 3)$
 - 3. třídy ekvivalence 0, 1, 2
 - 4. L odpovídá třídě 2
 - 5. a přechody do následujíci třídy
 - 6. b přechody zachovávajíci třídu

28. slide, doplniť obrázok

Příklad (Neregulární pumpovatelný jazyk): Ne-regulární jazyk, který lze pumpovat

Jazyk $L = \{u | u = a^+b^ic^i \lor u = b^ic^j\}$ není regulární (Myhill-Nerodova věta), ale vždy lze pumpovat první písmeno.

- 1. Předpokládejme, že L je regulární
- 2. \implies pak \exists pravá kongruence \sim_L konečného indexu m,L je sjednocení některých tříd Σ^*/\sim_L
- 3. vezmeme množinu slov $S = \{ab, abb, abbb, \dots, ab^{m+1}\}$
- 4. existují dvě slova $i \neq j$, která padnou do stejné třídy $i \neq j$ $ab^i \sim ab^j$ přidéma c^i $ab^i c^i$ $ab^j c^i$

přidáme
$$c^i$$
 $ab^ic^i \sim ab^jc^i$ \sim je kongruence spor $ab^ic^i \in L\&ab^jc^i \notin L$ s' L je sjednocení některých tříd Σ^*/\sim_L .

Definice (Dosažitelný stav): Mějme DFA $A = (Q, \Sigma, \delta, q_0, F)$ a $q \in Q$. Řekneme, že stav je dosažitelný, jestliže $\exists w \in \Sigma^* : \delta^*(q_0, w) = q$.

Příklad: Algoritmus na hledání dosažitelných stavů: DFS (důkaz asi není nutný)

Definice (Automatový homomorfismus): Nechť A_1,A_2 jsou DFA. Řekneme, že zobrazení $h:Q_1\to Q_2,Q_1$ na Q_2 je (automatovým) homomorfismem, jestliže:

$$h(q_{0_1}) = q_{0_2}$$
 'stejné' počáteční stavy $h(\delta_1(q,x)) = \delta_2(h(q),x)$ 'stejné' přechodové funkce $q \in F_1 \Leftrightarrow h(q) \in F_2$ 'stejné' koncové stavy.

Homomorfismus prostý a na nazývame isomorfismus.

Definice (Ekvivalence automatů): Dva konečné automaty A, B nad stejnou abecedou Σ jsou ekvivalentní, jestliže rozpoznávají stejný jazyk, t. j. L(A) = L(B).

Věta (Věta o ekvivalenci automatů): Existuje-li homomorfismus konečných automatů A_1 do A_2 , pak jsou A_1 a A_2 ekvivalentní.

Důkaz:

1. Pro libovolné slovo $w \in \Sigma^*$ konečnou iterací

$$h(\delta_1^*(q,w)) = \delta_2^*(h(q),w)$$

2. dále

$$w \in L(A_1) \Leftrightarrow \delta_1^*(q_{0_1}, w) \in F_1$$

$$\Leftrightarrow h(\delta_1^*(q_{0_1}, w)) \in F_2$$

$$\Leftrightarrow \delta_2^*(h(q_{0_1, w})) \in F_2$$

$$\Leftrightarrow \delta_2^*(q_{0_2}, w) \in F_2$$

$$\Leftrightarrow w \in L(A_2)$$

Definice (Ekvivalence stavů): Říkáme, že stavy $p,q\in Q$ konečného automatu A jsou ekvivalentní, pokud:

1. Pro všechna vstupní slova $w: \delta^*(p, w) \in F \Leftrightarrow \delta^*(q, w) \in F$.

Pokud dva stavy nejsou ekvivalentní, říkáme že jsou rozlišitelné.

Příklad: Ten example je na slide 36, najlepšie s tým obrázkom

Definice (Algoritmus hledání rozpoznatelných stavů v DFA): Následujíci algoritmus nalezne rozlišitelné stavy:

- 1. Základ: Pokud $p \in F$ (přijímajíci) a $q \notin F$, pak je dvojice $\{p, q\}$ rozlišitelná.
- 2. Indukce: Nechť $p, q \in Q, a \in \Sigma$ a o dvojici $r, s : r = \delta(p, a), s = \delta(q, a)$ víme, že jsou rozlišitelné. Pak i $\{p, q\}$ jsou rozlišitelné.
- 3. opakuj dokud \exists nová trojice $p, q \in Q, a \in \Sigma$.

Doplniť obrázky zo slidov, 37/38

Věta: Pokud dva stavy nejsou odlišeny předchodzím algoritmem, pak jsou tyto stavy ekvivalentní.

Důkaz: Korektnost algoritmu

- 1. Uvažujme špatné páry stavů, které jsou rozlišitelné a algoritmus je nerozlišil.
- 2. Vezměme z nich pár p,q rozlišitelný nejkratším slovem $w=a_1\dots a_n$.
- 3. Stavy $r = \delta(p, a_1), s = \delta(q, a_1)$ jsou rozlišitelné kratším slovem $a_2 \dots a_n$, takže pár není mezi špatnými.
- 4. Tedy jsou "vyškrtnuté" algoritmem.
- 5. Tedy v příštim kroku algoritmus rozliší i p, q.

Poznámka: Čas výpočtu je poylnomiální vzhledem k počtu stavů.

- 1. V jednom kole uvažujeme všechny páry, t.j. $O(n^2)$.
- 2. Kol je maximálně $O(n^2)$, protože pokud nepřidáme křížek, končíme.
- 3. Dohromady $O(n^4)$.

Algoritmus lze zrychlit na $O(n^2)$ pamatováním stavů, které závisí na páru $\{r,s\}$ a sledovaním těchto seznamů "zpátky".

Definice (Redukovaný DFA): Deterministický konečný automat je redukovaný, pokud

- 1. nemá dosažitelné stavy,
- 2. žádne dva stavy nejsou ekvivalentní.

Definice (Redukt): Konečný automat B je reduktem automatu A, jestliže:

- 1. B je redukovaný,
- 2. A a B jsou ekvivalentní

ADD PICS PLS (don't shout pls)

Věta (Algoritmus na nalezení reduktu DFA A):

- 1. Ze vstupního DFA A eliminujeme stavy nedosažitelné z počátečního stavu.
- 2. Najdeme rozklad zbylých stavů na třídy ekvivalence.
- 3. Konstruujeme DFA B na třídách ekvivalence jakožto stavech. Přechodová funkce B γ , mějme $S \in Q_B$. Pro libovolné $q \in S$ označíme T třídu ekvivalence $\delta(q,a)$ a definujeme $\gamma(S,a) = T$. Tato třída musí být stejná pro všechna $q \in S$.
- 4. Počáteční stav B je třída obsahujíci počáteční stav A.
- 5. Množina přijímajícich stavů B jsou bloky odpovídajíci přijímacím stavům A.

3 Třetí přednáška

Definice (Algoritmus na testování ekvivalnece regulárních jazyků): Ekvivalenci regulárních jazyků L,M testujeme následovně:

- 1. Najdeme $DFAA_L, A_M$ rozpoznávajíci $L(A_L) = L, L(A_M) = M, Q_L \cap Q_M = \emptyset.$
- 2. Vytvoříme DFA sjednocením stavů a přechodů $(Q_L \cup Q_M, \Sigma, \delta_L \cap \delta_M, q_L, F_L \cap F_M)$; zvolíme jeden z počátečních stavů.
- 3. Jazyky jsou ekvivalentní právě když počáteční stavy původních DFA jsou ekvivalentní.

[Nedeterministické konečné automaty (NFA)] Nedeterministický automat může být ve více stavech paralelně. Má schopnost 'uhodnout' něco o vstupu.

pridať obrázok zo slidov (61. slide)

Definice (NFA): Nedeterministický konečný automat (NFA) $A = (Q, \Sigma, \delta, S_0, F)$ sestává z:

- 1. konečné množiny stavů, zpravidla značíme Q,
- 2. konečné množiny vstupních symbolů, značíme Σ
- 3. přechodové funkce, zobrazení $\delta: Q \times \Sigma \to \mathcal{P}(Q)$ vracejíci podmnožinu Q.
- 4. množiny počátečních stavů $S_0 \subseteq Q$,
- 5. množiny koncových (přijímajícich) stavů $F \subseteq Q$.

Definice (Rozšířená přechodová funkce): Pro přechodovou funkci δ NFA je rozšířená přechodová funkce δ^*

 $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$ definovaná indukcí: start: $\delta^*(q, \lambda) = q$. ind. indukční krok:

$$\delta^*(q, wx) = \bigcup_{p \in \delta^*(q, w)} \delta(p, x)$$

t. j. množina stavů, do kterých se mohu dostat posloupností 'správně označených'

Definice (Jazyk přijímaný nedeterministickým konečným automatem): Mějme NFA $A = (Q, \Sigma, \delta, S_0, F)$, Pak

$$L(A) = \{w : (\exists q_0 \in S_0) \delta^*(q_0, w \cap F \neq \emptyset)\}\$$

je jazyk přijímaný automatem A.

Tedy L(A) je množina slov $w \in \Sigma^*$ takových, že $\delta^*(q_0, w)$ obsahuje alespoň jeden přijímajíci stav.

Algoritmus (Podmnožinová konstrukce): Podmnožinová konstrukce začíná s NFA $N = (Q_N, \Sigma, \delta_N, S_0, F_N)$. Cílem je popis deterministického DFA $D = (Q_D, \Sigma, \delta_D, S_0, F_D)$, pro který L(N) = L(D).

1. Q_D je množina podmnožin $Q_N, Q_D = \mathcal{P}(Q_N)$ (potenční množina).

Poznámka: Nedosažitelné stavy můžeme vynechat

- 2. Počáteční stav DFA je stav označený S_0 , t.j. prvek Q_D .
- 3. $F_D = \{S : S \in \mathcal{P}(Q_N) \& S \cap F_N \neq \emptyset\}$, tedy S obsahuje alespoň jeden přijímajíci stav N.

4. Pro každé $S \subseteq Q_N$ a každý vstupní symbol $a \in \Sigma$,

$$\delta_D(S, a) = \bigcup_{p \in S} \delta_N(p, a).$$

Věta (Převod NFA na DFA): Pro DFA $D = (Q_D, \Sigma, \delta_D, S_0, F_D)$ vytvořený podmnožinovou konstrukcí z NFA $N = (Q_N, \Sigma, \delta_N, q_0, F_N)$ platí L(N) = L(D).

Důkaz: Indukcí dokážeme, že $\delta_D^*(S_0,w)=\delta_N^*(q_0,w)$. Můžeme přidat ještě tzv. λ -přechod.

Definice (λ -přechod): Dovolíme přechody na λ , prázdné slovo, t.j. bez přečtení vstupního symbolu. **doplniť obrázok, 68. slide**

Definice (λ -uzávěr): Pro $q \in Q$ definujeme λ -uzávěr $\lambda CLOSE(q)$ rekurzivně:

- 1. Stav q je $\lambda CLOSE(q)$.
- 2. Je-li $p \in \lambda CLOSE(q)$ a $r \in \delta(p, \lambda)$, pak i $r \in \lambda CLOSE(q)$.

Pro $S \subseteq Q$ definujeme $\lambda CLOSE(S) = \bigcup_{q \in S} \lambda CLOSE(q)$.

Definice (Rozšířená přechodová funkce a jazyk přijímaný λ -NFA): Nechť $E = (Q, \Sigma, \delta, S_0, F)$ je λ -NFA. Rozšířenou přechodovou funkci δ^* definujeme následovně:

- 1. $\delta^*(q,\lambda) = \lambda CLOSE(q)$.
- 2. indukční krok: v = wa, kde $w \in \Sigma^*, a \in \Sigma$.

$$\delta^*(q, wa) = \lambda CLOSE\left(\bigcup_{p \in \delta^*(q, w)} \delta(p, a)\right)$$

Věta (Eliminace λ -přechodů): Jazyk L je rozpoznatelný λ -NFA právě když je L regulární.

Důkaz: Pro libovolný λ NFA $E=(Q_E, \Sigma, \delta_E, S_0, F_E)$ zkonstruujeme DFA $D=(Q_D, \Sigma, \delta_D, q_D, F_D)$ přijímajíci stejný jazyk jako E.

- 1. $Q_D \subseteq \mathcal{P}(Q_E), \forall S \subseteq Q_E : \lambda CLOSE(S) \in Q_D$. V Q_D může být i \emptyset .
- 2. $q_D = \lambda CLOSE(S_0)$.
- 3. $F_D = \{ S : S \in Q_D \& S \cap F_E \neq \emptyset \}.$
- 4. Pro $S \in Q_D, a \in \Sigma$ definujeme $\delta_D(S, a) = \lambda CLOSE(\bigcup_{n \in S} \delta(p, a))$.

Definice (Množinové operace nad jazyky): Mějme dva jazyky L, M. Definujeme následujíci operace:

1. binární sjednocení $L \cup M = \{w : w \in L \lor w \in M\}$

Poznámka: Příklad: jazyk obsahuje slova začínajíci a^i nebo tvaru $b^j c^j$.

2. průnik $L \cap M = \{w : w \in L \& w \in M\}$

Poznámka: Příklad: jazyk obsahuje slova sudé délky končíci na 'baa'.

- 3. rozdíl $L M = \{w : w \in L\&w \notin M\}$
- 4. doplněk (komplement) $\overline{L} = -L = \{w : w \in L\} = \sigma^* L$

Poznámka: Příklad: jazyk obsahuje slova nekončíci na 'a'.

Věta (de Morganova pravidla): 1. $L \cap M = \overline{\overline{L} \cup \overline{M}}$

- 2. $L \cup M = \overline{\overline{L} \cap \overline{M}}$
- 3. $L M = L \cap \overline{M}$

Věta (Uzavřenost na množinové operace): *Mějme regulární jazyky L, M. Pak jsou následujíci jazyky také regulární:*

- 1. sjednocení $L \cup M$
- 2. $průnik L \cap M$
- 3. rozdil L M
- 4. doplněk $\overline{L} = \Sigma^* L$.

Důkaz:

- 1. Pokud δ není pro některé dvojice q,a definovaná, přidáme nový nepřijímajíci stav q_n a do něj přechod pro vše dříve nedefinované plus $\forall a \in \Sigma \cup \lambda : \delta(q_n,x) = q_n$.
- 2. Pak stačí prohodit koncové a nekoncové stavy přijímajíciho deterministického FA $F=Q_A-F_A$.
- 3. pro rozdíl doplníme funkci δ na totální.
- 4. Zkonstruujeme součinový automat,

$$Q = (Q_1 \times Q_2, \Sigma, \delta((p_1, p_2), x) = (\delta_1(p_1, x), \delta_2, x)), (q_{0_1}, q_{0_2}, F)$$

- 5. průnik: $F = F_1 \times F_2$
- 6. sjednocení: $F = (F_1 \times Q_2) \cup (Q_1 \times F_2)$
- 7. rozdíl: $F = F_1 \times (Q_2 F_2)$.

Definice (Řetězcové operace nad jazyky):

- 1. zřetězení jazyků ... $L.M = \{uv : u \in L\&v \in M\}, L.x = L.x$ a x.L = x.L pro $x \in \Sigma$
- 2. mocniny jazyka ... $L^0 = \lambda$, $L^{i+1} = L^i L$
- 3. pozitivní iterace ... $L^+ = L^1 \cup L^2 \cdots \bigcup_{i \geq 1} L^i$
- 4. obecná iterace ... $L^* = L^0 \cup L^1 \cup \dots = \bigcup_{i \geq 0} L^i,$ tedy $L^* = L^+ \cup \lambda$
- 5. otočení jazyka ... $L^R = \{u^R : u \in L\}$
- 6. levý kvocient L podle M ... M $L = \{u : uv \in L\&u \in M\}$

- 7. levá derivace L podle w ... $\partial_w L = \{w\}$
- 8. pravý kvocient L podle M ... $L/M = \{u : uv \in L\&v \in M\}$
- 9. pravá derivace L podle w ... $\partial_w^R L = L/\{w\}$.

Věta: Jsou-li L, M regulární jazyky, je regulární i L.M, L^* , L^+ , L^R , M LaL/M.

Věta: Jsou-li L,M regulární jazyky, je regulární i L.M.

Důkaz: Vezmeme DFA $A_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, pak $A_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ tak, že $L=L(A_1)$ a $M=L(A_2)$.

Definujeme Nedeterministický automat $B = (Q \cup q_0, \Sigma, \delta, q_0, F_2)$ kde:

 $Q=Q_1\cup Q_2$ předpokládáme různá jména stavů, jinak přejmenujeme, končíme až po přečtení slova z L_2

Pak $L(B) = L(A_1).L(A_2).$

I have zero idea how this should be formatted properly, pls fix later. - 3O11

4 Čtvrtá přednáška

Věta (Lemma (L^*, L^+)): Je-li L regulární jazyk, je regulární i L^*, L^+ .

- 1. Idea: Opakovaný výpočet automatu $A = (Q, \Sigma, \delta, q_0, F)$
- 2. Realizace: nedeterministické rozhodnutí, zda pokračovat nebo restart
- 3. speciální stav pro příjem $\lambda \in L^0$ (pro L^+ vynecháme či $\notin F$).

Důkaz: Vezmeme DFA $A=(Q,\Sigma,\delta,q_0,F)$ tak, že L=L(A). Definujeme NFA automat $B=(Q\cup q_B,\Sigma,\delta_B,q_B,F\cup q_B)$, kde:

 $\delta_B(q_B,\lambda)=q_0$ nový stav q_B pro příjem λ přejdeme do q_0

$$\delta_B(q_B, x) = \emptyset \text{ pro } x \in \Sigma$$

 $\delta_B(q,x) = \delta(q,x)$ pokud $q \in Q \& \delta(q,x) \notin F$ uvnitř A

 $=\delta(q,x), q_0$ pokud $q \in Q \& \delta(q,x) \in F$ možný restart

Pak
$$L(B) = L(A)^*(q_B \in F_B), L(B) = L(A^+)(q_B \notin F_B).$$

Věta (Lemma(L^R)): Je-li L regulární jazyk, je regulární i L^R .

- 1. Zřejmě $(L^R)^R = L$ a tedy stačí ukázat jeden směr.
- 2. idea: obrátíme šipky ve stavovém diagramu; nedeterministický FA

Věta (Lemma $(M \setminus LaL/M)$): Jsou-li L, M regulární jazyky, je regulární i $M \setminus L$ a M/L.

1. $idea: A_L$ budeme startovat ve stavech, do kterých se lze dostat slovem M.

Důkaz:

- 1. $v \in M \setminus L$
- $2. \Leftrightarrow (\exists u \in M)uv \in L$
- 3. $\Leftrightarrow (\exists u \in M, \exists q \in Q) \delta(q_0, u) \& \delta(q, v) \in F$
- $4. \Leftrightarrow \exists q \in S_0 \& \delta(q, v) \in F$
- $5. \Leftrightarrow v \in L(B)$

Vezmeme DFA $A = (Q, \Sigma, \delta, q_0, F)$ tak, že L = L(A).

TO DOOT, nestihol som

Definice (Regulární výrazy): Regulární výrazy (RV) jsou:

- 1. algebraický popis jazyků
- 2. deklarativním způsobem, jak vyjádřit slova, která chceme přijímat.
- 3. Schopné definovat všechny a pouze regulární jazyky.
- 4. Můžeme je brát jako programovací jazyk, uživatelsky přívětivý popis konečného automatu
- 5. Syntaktická analýza potřebuje silnější nástroj, bezkontextové gramatiky, budou následovat

Regulární výrazy $\alpha, \beta \in RegE(\Sigma)$ nad konečnou neprázdnou abecedou $\Sigma = \{x_1, x_2, \dots, x_n\}$ a jejich hodnota $L(\alpha)$ jsou definovány induktivně:

TO DOOT, je tam tabuľka na ktorú pri tejto rýchlosti nemám čas prepísať správne, slide 70.

Definice (Priorita): Nejvyšší prioritu má iterace *, nižší konkatenace(zřetězení), nejnižší sjednocení +

Věta (Kleeneho věta (varianta)): Každý jazyk reprezentovaný konečným automatem lze zapsat jako regulární výraz.

Každý jazyk popsaný regulárním výrazem můžeme zapsat jako $\lambda - NFA$ (a tedy i DFA).

Důkaz: Převod RegE výrazu na $\lambda - NFA$ automat.

Důkaz indukcí dle struktury R. Základ:

V každém kroku zkonstruujeme $\lambda-NFAE$ rozpoznávající stejný jazyk L(R)=L(E) se třemi dalšími vlastnostmi:

- 1. Právě jeden přijímající stav,
- 2. Žádné hrany do počátečního stavu,
- 3. Žádné hrany z koncového stavu.

Asi je nutné doplniť obrázok, keďže aj na prednáške to bolo popísané obrázkom (slide 72) $\hfill\Box$

Definice (Regulární výraz z DFA): Mějme DFA $AQ_A = \{1, ..., n\}$ o n stavech.

Nechť $R^{(k)}_{ij}$ je regulární výraz, $L(R^{(k)}_{ij}) = \{w : \delta^*_{\leq k}(i, w) = j\}$ množina slov převádějících stav i do stavu j a A cestou, která neobsahuje stav s vyšším indexem než k.

Budeme rekurivně konstruovat $R^{(k)}_{ij}$ pro $k = 0, \ldots, n$.

 $k = 0, i \neq j : R^{(0)}_{ij} = \mathbf{a_1} + \mathbf{a_2} + \dots + \mathbf{a_m}$, kde a_1, \dots, a_m jsou symboly označující hrany i do j (nebo $R^{(0)}_{ij} = \emptyset$ nebo $R^{(0)}_{ij} = \mathbf{a}$ pro m = 0, 1).

 $k=0, i=j: \text{smyčky}, R^{(0)}_{ij}=\lambda+\mathbf{a_1}+\mathbf{a_2}+\cdots+\mathbf{a_m}, \text{ kde } a_1, a_2, \ldots a_m \text{ jsou symboly na smyčkách v } i.$

Důkaz: TODOOT, celý slide je závislý na obrázku ... 75slide

Poznámka (Shrnutí převodu mezi reprezentacemi regulárních jazyků): TODOO, takisto obrázok Převod NFA na DFA

- 1. λ uzávěr v $O(n^3)$ prohledává n stavů násobeno n^2 hran pro λ přechody.
- 2. Podmnožinová konstrukce, DFA s až 2^n stavy. Pro každý stav, $O(n^3)$ času na výpočet přechodové funkce.

Převod DFA na NFA

1. Přidat množinové závorky k přechodové funkci a přechody pro λ u λ -NFA.

Převod automatu DFA na RegE regulární výraz

1. $O(n^34^n)$

RegE výraz na automat

1. V čase O(n) vytvoříme λ -NFA.

Definice (Substituce jazyků): Mějme konečnou abecedu Σ . Pro každé $x \in \Sigma$ budiž $\sigma(x)$ jazyk v nějaké abecedě Y_X . Dále položíme:

- 1. $\sigma(\lambda) = \lambda$
- 2. $\sigma(u.v) = \sigma(u).\sigma(v)$

Zobrazení $\sigma:\Sigma\to P(Y^*),$ kde $Y=\bigcup_{x\in\Sigma}Y_X$ se nazývá substituce. $\sigma(L)=\bigcup_{w\in L}\sigma(w)$

nevypouštějíci substituce je substituce, kde žádné $\sigma(x)$ neobsahuje λ .

Definice (Homomorfismus (jazyků), inverzní homomorfismus): homomorfizmus h je speciální případ subsittuce, kde obraz je vždy jen jednoslovný jazyk (vynecháváme u něj závorky), t.j. $(\forall x \in \Sigma)h(x) = w_x$.

Pokud $\forall x: w_x \neq \lambda$, jde o nevypouštějíci homomorfizmus.

Inverzní homomorfizmus $h^{-1}(L) = \{w : h(w) \in L\}.$

Věta (Uzavřenost na homomorfismus): *Je-li jazyk* $Li \forall x \in \Sigma$ *jazyk* $\sigma(x), h(x)$ *regulární*, *pak je regulární* $i \sigma(L), h(L)$.

Důkaz: Strukturální indukcí "probubláváním" algebraickým popisem jazyka o základních, sjednocení, zřetězení a iterace. Tvrzení: $\sigma(L(E)) = L(\underline{\sigma}(E))$. $\sigma(\lambda) = \lambda$, $\sigma(\emptyset) = \emptyset$, $\sigma(x) = \underline{\sigma}(x)$, $\sigma(L(\alpha + \beta)) = L(\underline{\sigma}(\alpha) + \underline{\sigma}(\beta))$ atd.

TODOOT, 84 slide
$$\Box$$

Definice (Inverzní homomorfismus): Nechť h je homomorfizmus abecedy Σ do slov nad abecedou T. Pak $h^{-1}(L)$, 'h inverze L' je množina řetězců

$$h^{-1}(L) = \{w : w \in \Sigma^*; h(w) \in L\}.$$

Věta: Je-li h homomorfizmus abecedy Σ do abecedy T a L je regulární jazyk abecedy T, pak $h^{-1}(L)$ je také regulární jazyk.

Důkaz: Mějme DFA $A = (Q, T, \delta, q_0, F)$ pro L. Konstruujeme DFA pro $h^{-1}(L)$.

- 1. Definujeme $B(Q, \Sigma, \gamma, q_0, F)$ kde $\gamma(qq, a) = \delta^*(q, h(a))(\delta^*$ operace na řetězcích).
- 2. Indukcí dle |w|, $\gamma^*(q_0, w) = \delta^*(q_0, h(w))$.
- 3. Proto B přijíma právě řetězce $w \in h^{-1}(L)$.

5 Pátá přednáška

Příklad: Nechť $A=(Q,\Sigma,\delta,q_0,F)$ je DFA. Definujeme jazyk $L=\{w\in\Sigma^*;\delta^*(q_0,w)\in F\}$ a pro každý stav $q\in Q$ existuje prefix x_q slova w tak, že $\delta^*(q_0,x_q)=q$.

Tento jazyk L je regulární.

- 1. M označme M = L(A).
- 2. T definujeme novou abecedu T trojic $\{[paq]; p, q \in Q, a \in \Sigma, \delta(p, a) = q\}$.
- 3. h definujeme homomorfizmus $(\forall p, q, a)h([paq]) = a$.
- 4. L_1 Jazyk $L_=h^{-1}(M)$ je regulární, protože M je regulární (DFA inverzní homomorfizmus).
- 5. $h^{-1}(101)$ obsahuje $2^3 = 8$ řetězců, např.

$$[p1p][q0q][p1p] \in [p1p], [q1q][p0q], [q0q][p1p], [q1q].$$

 L_2 Vynutíme začátek q_0 . Definujeme:

$$E_1 = \bigcup_{a \in \Sigma, q \in Q} [q_0 a q] =$$

$$E_1 = [q_0 a_1 q_0], [q_0 a_2 q_1], \dots, [q_0 a_m q_n]$$

Pak
$$L_2 = L_1 \cap L(E_1, T^*)$$
.

 L_3 Vynutíme stejné sousedíci stavy. Definujeme ne-odpovídajíci dvojice:

$$E_2 = \bigcup_{q \neq r, p, q, r, s \in Q, a, b \in \Sigma} [paq][rbs].$$

Definujeme
$$L_3 = L_2 - L(T^*.E_2.T^*).$$

Končí v přijímajícím stavu, protože jsme začali v jazyku M přijímaném DFA A.

 L_4 Všechny stavy. $\forall q \in Q$ definujeme E_q jako regulární výraz sjednocení všech symbolů T takových, že q není ani na první, ani na poslední pozici. Odečteme $L(E_q^*)$ od $L_3.L_4 = L_3 - \bigcup_{q \in Q} E_q^*$.

L Odstráníme stavy, necháme symboly. $L = h(L_4)$, tedy L je regulární.

Věta: Lze algoritmicky rozhodnou, zda jazyk přijímaný $DFA, NFA, \lambda - NFA$ je prázdný. Jazyk je prázdný právě když žádny z koncových stavů není dosažitelný. Dosažitelnost lze testovat $O(n^2)$.

Věta: Pro daný řetězec w: |w| = n a regulární jazyk L lze algoritmicky rozhodnout, zda je $w \in L$.

Důkaz:

- 1. DFA: Spusť automat, pokud |w| = n, při dobré reprezentaci a konstantním čase přechodu O(n).
- 2. NFA o s stavech: čas $O(ns^2)$. Každý vstupní symbol aplikujeme na všechny
- 3. DOPLNIT, NESTIHAM

Definice (Algebraický popis jazyků): Pro konečnou neprázdnou abecedu Σ označme $RJ(\Sigma)$ nejmenší třídu jazyků, která:

1. obsahuje prázdný jazyk ∅,

2. pro každé ...

3. NESTIHAM

Věta (Kleene): NESTIHAM Aight, please fill this in later.

Dvousměrné (dvoucestné) konečné automaty Konečný automat provádí následující činnosti:

- 1. přečte písmeno
- 2. změní stav vnitřní jednotky
- 3. posune čtecí hlavu doprava

Čtecí hlava se nesmí vracet.

Definice (Dvousměrný konečný automat): Dvousměrným (dvoucestným) konečným automatem nazýváme pětici $A = (Q, \Sigma, \delta, q_0, F)$, kde

- 1. Q je konečná množina stavů,
- 2. Σ je konečná množina vstupních symbolů přechodové funkce δ je zobrazení $Q \times \Sigma \to Q \times -1, 1$ rozšířené o pohyb hlavy
- 3. $q_0 \in Q$ počáteční stav,
- 4. množina přijímajícich stavů $F \subseteq Q$.

Poznámka: Je deterministický, nedeterministický zavádět nebudeme.

Poznámka: Nulový pohyb hlavy lze, jen trochu zkomplikuje důkaz dále.

Definice: Slovo w je přijato dvousměrným konečným automatem, pokud:

- 1. výpočet začal na prvním písmenu slova w vlevo v počátečním stavu,
- 2. čtecí hlava poprvé opustila slovo w vpravo v některém přijímajícim stavu,
- 3. mimo čtené slovo není výpočet definován (výpočet zde končí a slovo není přijato).

Poznámka: 1. Ke slovům si můžeme přidat speciální koncové znaky $\# \notin \Sigma$

- 2. funkce $\partial_{\#}$ odstrání #zleva, $\partial_{\#}^{R}$ zprava.
- 3. Je-li $L(A) = \#w\#|w\in L\subseteq \Sigma^*$ regulární, potom i L je regulární
- 4. $L = \partial_{\#} ... DOPLNIT$

NESTIHOL SOM

Věta: Jazyky přijímané dvousměrným konečným automatem jsou právě regulární jazyky.

 $\mathbf{D}\mathbf{u}\mathbf{k}\mathbf{a}\mathbf{z}$: konečný automat \rightarrow dvousměrný automat

Věta: Algoritmus: Funkce f_u popisujíci výpočet 2DFA nad slovem u

Definujeme funkci $f_u: Q \cup q_0^{\mid} \to Q \cup 0$

1. $f_u(q_0^{\dagger})$ popisuje v jakém stavu poprvé odejdeme vpravo, pokud začneme výpočet vlevo v počátečním stavu q_0 ,

- 2. $f_u(p): p \in Q$ v jakém stavu opět odejdeme vpravo, pokud začneme výpočet vpravo v p,
- 3. symbol 0 značí, že daná situace nenastane (odejdeme vlevo nebo cyklus)
- 4. Definujeme ekvivalenci slov následovně: $u \sim w \Leftrightarrow_d eff_u = f_w$

Poznámka: t.j. slova jsou ekvivalentní, pokud mají stejné 'výpočtové' funkce

Regulárnost 2DFA

NESTIHOL SOM

Důkaz:

- 1. Potřebujeme převést návraty na lineární výpočet
- 2. Zajímají nás jen přijímajíci výpočty
- 3. Díváme se na řezy mezi symboly (v jakém stavu přechází na další políčko)

Pozorování:

- 1. stavy se v přechodu řezu střídají (doprava, doleva)
- 2. první stav jde doprava, poslední také doprava
- 3. v deterministických přijímajících výpočtech nejsou cykly
- 4. první a poslední řez obsahují jediný stav

Formální převod 2DFA na NFA

Nechť $A=(Q,\Sigma,\delta,q_0,F)$ je dvousměrný (deterministický) konečný automat. Definujeme ekvivalentní nedeterministický automat $B=(Q^{|},\Sigma,\delta^{|},(q_0),F^{|})$, kde:

- 1. Q^{\dagger} jsou všechny korektní přechodové posloupnosti
 - (a) posloupnosti stavů $(q^1, \dots, q^k) : q^i \in Q$
 - (b) délka posloupnosti je lichá (k = 2m + 1)
 - (c) žádný stav se neopakuje na liché ani sudé pozici $(\forall i \neq j)(q^{2i} \neq q^{2j})\&(\forall i \neq j)(q^{2i+1} \neq q^{2j+1})$
- 2. $F^{\mid} = (q) | q \in F$ posloupnosti délky 1
- 3. $\delta^{|}(c,a) = \{d|d \in Q^{|}\&c \rightarrow^a d \text{ je lokálně konzistentní přechod pro a }\}$
 - (a) existuje bijekce : $h: c_{odd} \cup d_{even} \rightarrow c_{even} \cup d_{odd}$, tak, že:
 - (b) pro $h(q) \in c_{even}$ je $(h(q), -1) = \delta(q, a)$
 - (c) pro $h(q) \in d_{odd}$ je $(h(q), +1) = \delta(q, a)$

Automaty s výstupem (motivace)

- 1. Dosud jediná zpráva z automatu: 'Jsme v přijímajícim stavu'.
- 2. Můžeme z FA získat více informací? Můžeme ... NESTIHAM

Definice (Mooreův stroj): NESTIHOL SOM

Příklad (Mooreův stroj pro tenis): Mooreův stroj pro počítaní tenisového skóre.

- 1. Vstupní abeceda: ID hráče, který uhrál bod
- 2. Výstupní abeceda & stavy: skóre (t. j. $Q = Y, \mu(q) = q$

Doplniť obrázok z prednášok (98. slide)

Definice (Mealyho stroj): Mealyho (sekvenčním) strojem nazýváme šestici $A = (Q, \Sigma, Y, \delta, \lambda_M, q_0)$, resp. pětici $A = (Q, \Sigma, Y, \delta, \lambda_M)$, kde

- 1. Q je konečná neprázdná množina stavů
- 2. Σ je konečná neprázdná množina symbolů (vstupní abeceda)
- 3. Y je konečná neprázdná množina symbolů (výstupní abeceda)
- 4. **NESTIHAM**

TU BOL TIEZ NEJAKY TEXT ESTE

Příklad (Mealyho stroj): Mealyho stroj - automat, který dělí vstupní slovo v binárním tvaru číslem 8 (celočíselně).

- 1. Posun o tři bity doprava
- 2. potřebujeme si pamatovat poslední trojici bitů
- 3. vlastně tříbitová dynamická paměť

I když nevíme, kde automat startuje, po třech symbolech začne počítat správně.

Věta (Převod Mealyho stroje na Mooreův): Pro každý Mealyho stroj existuje Mooreův stroj převádějící každé vstupní slovo na stejné výstupní slovo.

Důkaz: Sestrojme Mooreův stroj B tak, aby $\forall q, w$ **NESTIHOL SOM :**)

6 Šestá přednáška

Definice (Palindromy): Palindrom je řetězec w stejný při čtení zepředu i zezadu, tj. $w = w^R$.

Věta: Jazyk $L_{pal} = w : w = w^R, w \in \Sigma^*$ není regulární.

Důkaz: Sporem. Předpokládejme L_{pal} je regulární, nechť n je konstatnta z pumping lemma, uvažujme slovo $w = 0^n 10^n$.

Z pumping lemmatu lze rozložit $w=xyz,\,y$ obsahuje jednu alebo více z prvních n nul. Tedy xz má být v L_{pal} ale není, t.j. není regulární.

6.1 Formální (generativní) gramatiky, bezkontextové gramatiky

Definice: Formální (generativní) gramatika je G = (V, T, P, S) složena z

- 1. konečné množiny **neterminálů** (variables) V,
- 2. neprázdné konečné množiny **terminálních symbolů (terminálů)** T,
- 3. počáteční symbol $S \in V$,

4. konečné množiny **pravidel (produkcí)** P reprezentující rekurzivní definici jazyka. Každé pravidlo má tvar

$$\beta A_{\gamma} \to A \in V, \beta, \gamma, \omega \in (V \cup B)^*$$

t. j. levá strana obsahuje aspoň jeden neterminální symbol.

Definice (Bezkontextová gramatika (CFG)): je G = (V, T, P, S) gramatika, obsahující pouze pravidla tvaru

$$A \to \omega, A \in V, \omega \in (V \cup T)^*$$

Definice (Chomského hierarchie): CHOMSKÉHO HIERARCHIE, DOPLNIT, 112/113

Definice (Derivace \Rightarrow^*): Mějme gramatiku G = (V, T, P, S).

1. Říkáme, že α se **přímo přepíše** na ω (píšeme $\alpha \Rightarrow_G \omega$ nebo $\alpha \Rightarrow \omega$) jestliže

$$\exists \beta, \gamma, \eta, \nu \in (V \cup T)^* : \alpha = \eta \beta \nu, \omega = \eta \gamma \nu \& (\beta \to \gamma) \in P$$

2. Říkáme, že α se přepíše na ω (píšeme $\alpha \Rightarrow^* \omega$) jestliže

$$\exists \beta_1, \dots \beta_n \in (V \cup T)^* : \alpha = \beta_1 \Rightarrow \beta_2 \Rightarrow \dots \Rightarrow \beta_n = \omega$$

- t. j. $\alpha \Rightarrow^* \alpha$.
- 3. posloupnost β_1, \dots, β_n nazýváme derivací (odvození)
- 4. pokud $\forall i \neq j: \beta_i \neq \beta_j$, hovoříme o minimálním odvození

Definice (Jazyk generovaný gramatikou G): Jazyk L(G) gramatiky G = (V, T, P, S) je množina terminálních řetězců, pro které existuje derivace ze startovního symbolu

$$L(G) = \{ w \in T^* | S \Rightarrow_G^* w \}$$

Jazyk neterminálu $A \in V$ definujeme $L(A) = \{w \in T^* | A \Rightarrow_G^* w\}.$

Definice (Gramatika typu 3, pravá lineární): Gramatika G je **pravá lineární, t.j. Typu 3** pokud obsahuje pouze pravidla tvaru

$$A \to wB, A \to w, A, B \in V, w \in T^*.$$

Příklad:

1.
$$P = \{S \to 0S, 1A | \lambda, A \to 0A | 1B, B \to 0B | 1S \}$$

2.
$$S \Rightarrow 0S \Rightarrow 01A \Rightarrow 011B \Rightarrow 0110B \Rightarrow 01101S \Rightarrow 01101$$

Věta: $L \in RE \Rightarrow L \in \mathcal{L}_3$

Pro každý jazyk rozpornávaný konečným automatem existuje gramatika typu 3, která ho generuje.

Důkaz:

- 1. L = L(A) pro deterministický konečný automat A.
- 2. definujeme gramatiku $G=(Q,\Sigma,P,q_0)$, kde pravidla P mají tvar

$$p \to aq$$
 když $\delta(p,a) = q$

$$p \to \lambda$$
když $p \in F$

- 3. je L(A) = L(G)?
 - (a) $\lambda \in L(A) \Leftrightarrow q_0 \in F \Leftrightarrow (q_0 \to \lambda) \in P \Leftrightarrow \lambda \in L(G)$
 - (b) $a_1 \dots a_n \in L(A) \Leftrightarrow \exists q_0, \dots q_n \in Q : \delta(q_i, a_{i+1}) = q_{i+1}, q_n \in F \Leftrightarrow (q_0 \implies a_1 q_1 \implies \dots a_1 \dots a_n q_n \implies a_1, \dots a_n)$ je derivace pro $a_1, \dots a_n \Leftrightarrow a_1, \dots a_n \in L(G)$

Příprava převodu gramatiky typu 3 na forall

- 1. Opačný směr
 - (a) pravidla $A \rightarrow aB$ kódujeme do přechodové funkce
 - (b) pravidla $A \to \lambda$ určují koncové stavy
 - (c) pravidla $A \to a_1, \dots a_n B, A \to a_1, \dots a_n$ s více neterminály rozepíšeme
 - i. zavedeme nové neterminály $Y_2, \ldots, Y_n, Z_1, \ldots, Z_N$
 - ii. vytvoříme pravidla $A \to a_1 Y_2, Y_2 \to a_2 Y_3, \dots Y_n \to a_n B$
 - iii. resp. $Z \to a_1 Z_1, Z_1 \to a_2 Z_2, \dots, Z_{n-1} \to a_n Z_n, Z_n \to \lambda$
 - (d) pravidla $A \to B$ obpovídají λ přechodům
 - i. zbavíme se jich tranzitivním uzávěrem
 - ii. nebo musíme tranzitívně uzavřít $S \to B$ pro hledání $S \to \lambda$.

Věta: Ke každé gramatice typu 3 existuje gramatika typu 3, která generuje stejný jazyk a obsahuje pouze pravidla ve tvaru: $A \to aB, A \to \lambda, A, B \in V, a \in T$.

Důkaz: Pro gramatiku G = (V, T, S, P) definujeme $G^{\mid} = (V^{\mid}, T, S, P^{\mid})$, kde pro každé pravidlo zavedeme dostatečný počet nových neterminálů $Y_2, \ldots, Y_n, Z_1, \ldots, Z_n$ a definujeme

Věta $(\lambda - NFA)$ pro gramatiku typu 3 rozpoznávajíci stejný jazyk): *Pro každý jazyk L generovaný gramatikou typu 3 existuje* $\lambda - NFA$ *rozpoznávajíci L.*

Důkaz:

- 1. Vezmeme G=(V,T,P,S) obsaující jen pravidla tvaru $A\to aB,A\to \lambda,\ A,B\in V,a\in T$ generující L (předchozí lemma)
- 2. definujeme nedeterministický $\lambda NFA A = (V, T, \delta, S, F)$ kde :
 - (a) $F = \{A | (A \rightarrow \lambda) \in P\}$
 - (b) $\delta(A, a) = \{B | (A \rightarrow aB) \in P\}$
- 3. L(G) = L(A)

Důkaz: DOPLNIT, 122

(a) **DOPLNIT**, **121**

Definice (Levé (a pravé) lineární gramatiky): Gramatiky typu 3 nazýváme také **pravé lineární** (neterminál je vždy vpravo).

Gramatika G je levá lineární, jestliže má pouze pravidla tvaru $A \to Bw, A \to w, A, B \in V, w \in T^*$.

Věta: Jazyky generované levou lineární gramatikou jsou právě regulární jazyky.

Definice (Lineární gramatika, jazyk): Gramatika je lineární, jestliže má pouze pravidla tvaru $A \to uBw, A \to w, A, B \in V, u, w \in T^*$ (na pravé straně vždy maxiálne jeden neterminál).

Lineární jazyky jsou právě jazyky generované lineárnimi gramatikami.

- 1. Zřejmě platí: regulární jazyky ⊆ lineární jazyky,
- 2. Jde o vlastní podmnožinu ⊊.

Příklad (Lineární, neregulární jazyk): Jazyk $L = \{0^n 1^n | n \ge 1\}$ není regulární jazyk, ale je lineární, generovaný gramatikou s pravidly $S \to 0S1 | 01$.

Definice (Bezkontextová gramatika): Bezkontextová gramatika je gramatika, kde všechna pravidla jsou tvaru $A \to \omega, \omega \in (V \cup T)^*$

CFG pro jednoduché výrazy

- 1. $E \rightarrow I$
- $2. E \rightarrow E + E$
- 3. $E \rightarrow E * E$
- 4. $E \rightarrow (E)$
- 5. $I \rightarrow a$
- 6. $I \rightarrow b$
- 7. $I \rightarrow Ia$
- 8. $I \rightarrow Ib$
- 9. $I \rightarrow I0$
- 10. $I \rightarrow I1$

Pravidla 1 až 4 definují výraz.

Pravidla 5 až 10 definují identifikátor I odpovídajíci regulárnímu výrazu $(a + b)(a + b + 0 + 1)^*$.

Definice (Derivační strom): Mějme gramatiku G = (V, T, P, S). Derivační strom pro G je strom, kde

- 1. Kořen (kreslíme nahoře) je označen startovním symbolem S,
- 2. každý vnitřní uzel je ohodnocen neterminálem V.
- 3. Každý uzel je ohodnocen prvkem $\in V \cup T \cup \lambda$.
- 4. Je-li uzel ohodnocen λ , je jediným dítětem svého rodiče.
- 5. Je-lin A ohodnocení vrcholu a jeho děti zleva pořadě jsou ohodnoceny X_1, \ldots, X_k , pak $(A \to X_1, \ldots, X_k) \in P$ je pravidlo gramatiky.

Definice (Strom dáva slovo (yield)): Říkáme, že derivační strom dáva slovo w (yield), jestliže w je slovo složené z ohodnocení listů bráno zleva doprava.

Definice (Levá a pravá derivace): 1. Levá derivace (leftmost) \Rightarrow_{lm} , \Rightarrow_{lm}^* v každém kroku přepisuje nejlevější neterminál.

2. Pravá derivace (rightmost) $\Rightarrow_{rm}, \Rightarrow_{rm}^*$ v každém kroku přepisuje nejpravější neterminál.

Věta: Pro danou gramatiku G = (V, T, P, S) a $w \in T^*$ jsou následujíci tvrzení ekvivalentní:

- 1. $A \Rightarrow^* w$.
- 2. $A \Rightarrow_{lm}^* w$.
- $\beta. A \Rightarrow_{rm}^* w.$
- 4. Existuje derivační strom s kořenem A dávajíci slovo w.

Věta: Mějme CFGG = (V, T, P, S) a derivační strom s kořenem A dávající slovo $w \in T^*$. Pak existuje levá derivace $A \Rightarrow_{lm}^* w \ v \ G$.

Tvrzení (Příprava důkazu, "obalení derivace"): Mějme následující derivaci:

$$E \Rightarrow I \Rightarrow Ib \rightarrow ab$$
.

Důkaz: Pro libovolná slova $\alpha, \beta \in (V \cup T)^*$ je také derivace:

$$\alpha E\beta \Rightarrow \alpha I\beta \Rightarrow \alpha Ib\beta \Rightarrow \alpha ab\beta.$$

Důkaz: \exists derivační strom, pak \exists levá derivace \Rightarrow_{lm}

Indukcí podle výšky stromu:

- 1. Základ: výška 1: Kořen A s dětmi dávajícimi w. Je to derivační strom, proto $A \to w$ je pravidlo $\in P$, tedy $A \Rightarrow_{lm} w$ v jednom kroku.
- 2. Indukce: výška n > 1. Kořen A s dětmi X_1, X_2, \ldots, X_k .
 - (a) Je-li $X_i \in T$, definujeme $w_i \equiv X_i$.
 - (b) Je-li $X_i \in V$, z indukčního předpokladu $X_i \Rightarrow_{lm}^* w_i$.

Levou derivaci konstruujeme induktivně pro $i=1,\ldots,k$ složíme $A\Rightarrow_{lm}^* w_1w_2\ldots w_iX_{i+1}X_{i+2}\ldots X_k$.

- (a) Pro $X_i \in T$ jen zavedeme čítač i + +.
- (b) Pro $X_i \in V$ přepíšeme derivaci: $X_i \Rightarrow_{lm} \alpha_1 \Rightarrow_{lm} \alpha_2 \cdots \Rightarrow_{lm} w_i na$

$$w_1 w_2 \dots w_{i-1} X_i X_{i+1} X_{i+2} \dots X_k \Rightarrow_{lm}$$

$$w_1w_2 \dots w_{i-1}\alpha_1 X_{i+1} X_{i+2} \dots X_k \Rightarrow_{lm}$$

$$\Rightarrow_{lm} w_1w_2 \dots w_{i-1}w_iX_{i+1}X_{i+2}\dots X_k$$

Pro i = k dostaneme levou derivaci $w \in A$.

7 Sedmá přednáška

7.1 Zásobníkový automat

Zásobníkové automaty jsou rozšířením $\lambda-NFA$ nedeterministických konečných automatů s λ přechody. Přidanou věcí je zásobníku Ze zásobníku můžeme číst, přidávat na vrch a odebírat z vrchu zásobníku znak $\in \Gamma$.

Může si pamatovat neomezené množství informace.

Zásobníkové automaty definují bezkontextové jazyky.

Deterministické zásobníkové automaty přijímají jen vlastní podmnožinu bezkontextových jazyků.

Definice (Zásobníkový automat): (PDA) je $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, kde

- 1. Q konečná množina stavů,
- 2. Σ neprázdná konečná množina vstupních symbolů,
- 3. Γ neprázdná konečná zásobníková abeceda,
- 4. δ přechodová funkce : $Q \times (\Sigma \cup \lambda) \times \Gamma \to P(F_{IN}(Q \times \Gamma^*))$, $\delta(p, a, X) \ni (q, \gamma)$ kde q je nový stav a γ je řetězec zásobníkových symbolů, který nahradí X na vrcholu zásobníku,
- 5. $q_0 \in Q$ počáteční stav
- 6. $Z_0 \in \Gamma$ počáteční zásobníkový symbol. Víc na začátku zásobníku není.
- 7. F množina přijímajícich (koncových) stavů; může být nedefinovaná.

V jednom časovém kroku zásobníkový automat:

- 1. Přečte na vstupu žádný nebo jeden symbol (λ přechody pro prázdný vstup.)
- 2. Přejde do nového stavu.
- 3. Nahradí symbol na vrchu zásobníku libovolným řetězcem (λ odpovídá samotnému pop, jinak následuje push jednoho nebo více symbolů).

Příklad (Zásobníkový automat pro jazyk: $L_{wwr} = ww^R : w \in (0+1)^*$): PDA přijímající L_{wwr} :

- 1. Start q_0 reprezentuje odhad, že ještě nejsme uprostřed.
- 2. V každém kroku nedeterministicky hádáme:
 - (a) Zůstat q_0 (ještě nejsme uprostřed)
 - (b) Přejít λ přechodem do q_1 (už jsme viděli střed).
- 3. V q_0 přečte vstupní symbol a dá (push) ho na zásobník
- 4. V q_1 srovná vstupní symbol s vrcholem zásobníku. Pokud se shodují, přečte vstupní symbol a umaže (pop) vrchol zásobníku
- 5. Když vyprázdníme zásobník, přijmeme vstup, který jsme doteď přečetli.

Příklad (PDA pro L_{wwr}): TO DO, (slide 143, example 7.2)

Definice (Přechodový diagram pro zásobníkový automat): Přechodový diagram pro zásobníkový automat obsahuje:

1. Uzly, které odpovídají stavům PDA.

- 2. Šipka 'odnikud' ukazuje počáteční stav, dvojité kruhy označují přijímající stavy.
- 3. Hrana odpovídá přechodu PDA. Hrana označená $a, X \to \alpha$ ze stavu p do q znamená $\delta(p, a, X) \ni (q, \alpha)$
- 4. Konvence je, že počáteční symbol zásobníku značíme Z_0 .

Definice (Notace zásobníkových automatů):

a, b, c, *, +, 1, (,) symboly vstupní abecedy

p, q, r stavy

u, v, w, x, y, z řetězce vstupní abecedy X, Y, E, I, S zásobníkové symboly

 α, β, γ řetězce zásobníkových symbolů

Definice (Situace zásobníkového automatu): Situaci zásobníkového automatu reprezentujeme trojicí (q, w, γ) , kde

- 1. q je stav,
- $2. \ w$ je zbývající vstup a
- 3. γ je obsah zásobníku (vrch zásobníku je vlevo).

Situaci značíme zkratkou (ID) z anglického instantaneousdescription.

Definice (\vdash , \vdash * posloupnosti situací): Mějme PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$. Definujeme \vdash_P nebo \vdash následovně:

1. Nechť $\delta(p, a, X) \ni (q, \alpha), p, q \in Q, a \in (\Sigma \cup \lambda), X \in \Gamma, \alpha \in \Gamma^*$.

$$\forall w \in \Sigma^*, \beta \in \Gamma^* : (p, aw, X\beta) \vdash (q, w, \alpha\beta).$$

- 2. Symboly \vdash_P^* a \vdash^* používáme na označení nuly a více kroků zásobníkového automatu, t. j.
 - (a) $I \vdash^* I$ pro každou situaci I
 - (b) $I \vdash^* J$ pokud existuje situace $K : I \vdash K \& K \vdash^* J$.
- 3. Čteme $I \vdash^* J$ situace I vede na situaci J, $I \vdash J$ situace I bezprostředně vede na situaci J.

Definice (Jazyk přijímaný koncovým stavem, prázdným zásobníkem): Mějme zásobníkový automat $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$. Pak L(P) je:

$$L(P) = \{w : (q_0, w, Z_0) \vdash_P^* (q, \lambda, \alpha) \text{ pro nějaké } q \in F \text{ a libovolný řetězec } \alpha \in \Gamma^*; w \in \Sigma^* \}$$

jazyk akceptovaný prázdným zásobníkem N(P) definujeme:

$$L(P) = \{w : (q_0, w, Z_0) \vdash_P^* (q, \lambda, \lambda) \text{ pro nějaké } q \in Q ; w \in \Sigma^* \}$$

Příklad: Zásobníkový automat z předchozího příkladu akceptuje L_{wwr} koncovým stavem.

Příklad: $P' \equiv P$ z předchozího příkladu, jen změníme instrukci, aby umazala poslední symbol $\delta(q_1, \lambda, Z_0) = (q_2, Z_0)$ nahradíme $\delta(q_1, \lambda, Z_0) = (q_2, \lambda)$

$$\operatorname{nynf} L(P') = N(P') = L_{wwr}.$$

Příklad (If-else přijímané prázdným zásobníkem): TO DO, 7.5, 149 slide

Příklad (Přijímaní koncovým stavem): TO DO, 7.6, 149 slide

Věta (Nečtený vstup a dno zásobníku P neovlivní výpočet): Mějme $PDAP = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ a $(p, x, \alpha) \vdash_P^* (q, y, \beta)$. Potom pro libovolné slovo $w \in \Sigma^*$ a $\gamma \in \Gamma^*$ platí : $(q, xw, \alpha\gamma) \vdash_P^* (q, yw, \beta\gamma)$. Speciálně pro $\gamma = \lambda$ a/nebo $w = \lambda$.

Důkaz: Indukcí podle počtu situací mezi $(p, xw, \alpha\gamma)$ a $(q, yw, \beta\gamma)$. Každý krok $(p, x, \alpha) \vdash_P^* (q, y, \beta)$ je určen bez w a/nebo γ . Proto je možný i se symboly na konci vstupu / dně zásobníku.

Poznámka:

Pro
$$PDAP = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F), (p, xw, \alpha) \vdash_P^* (q, yw, \beta) : (p, x, \alpha) \vdash_P^* (q, y, \beta).$$

Pro zásobník ale obdoba neplatí. PDA může zásobníkové symboly γ použít a zase je tam naskládat (push). $L = 0^i 1^i 0^j 1^j$, situace $(p, 0^{i-j} 1^i 0^j 1^j, 0^j Z_0) \vdash^* (q, 1^j, 0^j Z_0)$, mezitím vyčistíme zásobník k Z_0

Věta (Od přijímajíciho stavu k prázdneému zásobníku): *Mějme* $L = L(P_F)$ pro nějaký PDA. $P_F = (Q, \Sigma, \Gamma, \delta_F, q_0, Z_0, F)$. Pak existuje PDAP_N takový, že $L = L(P_N)$.

Důkaz: Nechť $P_N = (Q \cup p_0, p, \Sigma, \Gamma \cup X_0, \delta_N, p_0, X_0), kde$:

- 1. $\delta_N(p_0, \lambda, X_0) = (q, Z_0 X_0)$ start,
- 2. $\forall (q \in Q, a \in \Sigma \cup \lambda, Y \in \Gamma) : \delta_N(q, a, Y) = \delta_F(q, a, Y)$ simulujeme
- 3. $\forall (q \in F, Y \in \Gamma \cup X_0), \delta_N(q, \lambda, Y) \ni (p, \lambda) \text{ přijmout pokud } P_F \text{ přijíma,}$
- 4. $\forall (Y \in \Gamma \cup X_0), \delta_N(p, \lambda, Y) = (p, \lambda) \ vyprázdníme zásobník.$

$$Pak \ w \in N(P_N) \Leftrightarrow w \in L(P_F).$$

Věta (Od prázdného zásobníku ke koncovému stavu): $Pokud\ L = N(P_N)$ pro nějaký $PDA\ P_N = (Q, \Sigma, \Gamma, \delta_N, q_0, Z_0)$, pak existuje $PDA\ P_F : L = L(P_F)$. Důkaz:

$$P_F = (Q \cup \{p_0, p_f\}, \Sigma, \Gamma \cup \{X_0\}, \delta_F, p_0, X_0, p_f)$$

 $kde \, \delta_F \, je$:

- 1. $\delta_F(p_0, \lambda, X_0) = (q_0, Z_0 X_0) \text{ start}$
- 2. $\forall (q \in Q, a \in \Sigma \cup \lambda, Y \in \Gamma), \delta_F(q, a, Y) = \delta_N(q, a, Y).$
- 3. Navíc, $\delta_F(q, \lambda, X_0) \ni (p_f, \lambda) \forall q \in Q$.

Chceme ukázat, že $w \in L(P_N) \Leftrightarrow w \in L(P_F)$.

- 1. (if) P_F přijíma následovně: $(p_0, w, X_0) \vdash_{P_F} (q_0, w, Z_0 X_0) \vdash_{P_F = N_F}^* (q, \lambda, X_0) \vdash_{P_F} (p_f, \lambda, \lambda)$.
- 2. (only if) Do p_f nelze dojít jinak než předchozím bodem.

Věta (L(CFG), L(PDA), N(PDA)): Následující tvrzení jsou ekvivalentní:

- 1. Jazyk L je bezkontextový, t.j. generovaný CFG,
- 2. Jazyk L je přijímaný nějakým zásobníkovým automatem koncovým stavem.
- 3. Jazyk L je přijímaný nějakým zásobníkovým automatem prázdným zásobníkem.

Důkaz: TO DO, doplniť graf z 153 (theorem 7.1)

Algoritmus (Konstrukce PDA z CFGG): Mějme CFG gramatiku G = (V, T, P, S). Konstruujeme $PDAP = (q, T, V \cup T, \delta, q, S)$.

- 1. Pro neterminály $A \in V, \delta(q, \lambda, A) = (q, \beta) : A \to \beta$ je pravidlo G.
- 2. Pro každý terminál $a \in T, \delta(q, a, a) = (q, \lambda)$.

Příklad (Konverze gramatiky): TODO, strana 154, example 7.7

Věta (Přijímání prázdným zásobníkem ze CFG): Pro PDA P konstruovaný z CFG G algoritmem výše $je\ N(P) = L(G)$.

Důkaz:

- 1. Levá derivace: $E \Rightarrow E * E \Rightarrow I * E \Rightarrow a * E \Rightarrow a * I \Rightarrow a * b$
- 2. Posloupnost situací: $(q, a*b, E) \vdash (q, a*b, E*E) \vdash (q, a*b, I*E) \vdash (q, a*b, a*E) \vdash (q, *b, *E) \vdash (q, b, E) \vdash (q, b, b) \vdash (q, b, b) \vdash (q, b, \lambda).$

Pozorování:

- 1. Kroky derivace simuluje $PDA\lambda$ přepisy zásobníku
- 2. odmazávaný vstup u PDA v derivaci zůstává až do konce
- 3. až *PDA* vymaže terminály, pokračuje v přepisech.

$$w \in N(P) \Leftarrow w \in L(G)$$

Nechť $w \in L(G)$, w má levou derivaci $S = \gamma_1, \Rightarrow_{Im} \gamma_2 \Rightarrow \cdots \Rightarrow \gamma_n = w$.

Indukcí podle i dokážeme $(q, w, S) \vdash_P^* (q, v_i, \alpha_i) : \gamma_i = u_i \alpha_i$ je levá sentenciální forma a $u_i v_i = w$.

8 Osmá přednáška

Příklad: Gramatika G = (S, L, R, (,), P, S):

- 1. $S \to LR|SS|LA$
- 2. $A \rightarrow SR$
- 3. $L \rightarrow ($
- $4. R \rightarrow)$

$$S \Rightarrow LR \Rightarrow (R \Rightarrow ()$$

$$S \Rightarrow SS \Rightarrow LRS \Rightarrow (RS \Rightarrow ()S \Rightarrow ()LR \Rightarrow ()(R \Rightarrow ()()$$

$$S \Rightarrow LA \Rightarrow (A \Rightarrow (SR \Rightarrow (LRR \Rightarrow ((RR \Rightarrow (()R \Rightarrow (())R \Rightarrow ()()R \Rightarrow$$

Příklad: Gramatika pro zjednodušené aritmetické výrazy $I \rightarrow a|b|Ia|Ib|I0|I1$

- 1. $F \rightarrow I|(E)$
- 2. $T \to F|T * F$
- 3. $E \rightarrow T|E+T$

$$E \Rightarrow T \Rightarrow T * F \Rightarrow F * F \Rightarrow I * F \Rightarrow a * F \Rightarrow a * I \Rightarrow a * Ib \Rightarrow a * bb$$

Příklad: CYK Algoritmus

Gramatika G = (S, A, L, R, (,), P, S)

- 1. $S \to LR|SS|LA$
- 2. $A \rightarrow SR$
- 3. $L \rightarrow ($
- $4. R \rightarrow)$

Tabulku vyplňujeme odspodu

DOPLNIT TABULKU (pripnuta fotka na discorde)

Věta: Algoritmus CYK (Cocke-Younger-Kasami) v čase $O(n^3)$

- 1. Mějme gramatiku v ChNF G = (V, T, P, S) pro jazyk L a slovo $w = a_1 a_2 \dots a_n \in T^*$
- 2. Vytvořme trojúhelníkovou tabulku:
 - (a) horizontální osa w,
 - (b) X_{ij} jsou množiny neterminálů A takových, že $A \Rightarrow^* a_i a_{i+1} \dots a_j$.
 - (c) Základ: $X_{ii} = A; A \rightarrow a_i \in P$
 - (d) Indukce: $X_{ij} = A \rightarrow BC; B \in X_{ik}, C \in X_{k+1,j}$
- 3. Vyplňujeme tabulku zdola nahoru
- 4. Pokud $S \in X_{1,n}$, potom $w \in L(G)$.

Definice: Chomskeho normální forma

Chomského normálni forma: všechna pravidla tvaru $A \to BC$ nebo $A \to a, A, B, C$ jsou neterminály, a terminál

Každý bezkontextový jazyk (kromě slova λ) je generovaný gramatikou v Chomského normálním tvaru. Postupně provedeme zjednodušení gramatiky, nejdřív:

1. nestihol som (+-163 slide)

Definice: zbytečný, užitečný, generující, dosažitelný symbol

- 1. Symbol X je užitečný v gramatice G = (V, T, P, S) pokud existuje derivace tvaru $S \Rightarrow^* \alpha X \beta \Rightarrow^* w$, kde $w \in T^*, X \in (V \cup T), \alpha, \beta \in (V \cup T)^*$.
- 2. Pokud X není užitečný, říkáme, že je zbytečný.
- 3. X je generující pokud $X \Rightarrow^* w$ pro nějaké slovo $w \in T^*$. Vždy $w \Rightarrow^* w$ v nula krocích.
- 4. X je dosažitelný, pokud $S \Rightarrow^* \alpha X \beta$ pro nějaká $\alpha, \beta \in (V \cup T)^*$

Věta: NechG = (V, T, P, S) je CFG, předpokládejme $L(G) = \emptyset$ Zkonstruujeme $G_1 = (V_1, T_1, P_1, S)$ následově:

1. Eliminujeme ne-generující symboly a pravidla je obsahující

2. poté eliminujeme všechny symboly které jsou nedosažitelné.

Pak G_1 nemá zbytečné symboly a $L(G_1) = L(G)$.

Věta: Algoritmus : Generující symboly

Základ: Každý $a \in T$ je generující.

Indukce: \forall pravidlo $A \rightarrow \alpha$,: \forall symbol $\in \alpha$ je generující. Pak i A je generující. Včetně $A \rightarrow \lambda$.

Věta: Algoritmus : Dosažitelné symboly

Základ: S je dosažitelný.

Indukce: Je-li A dosažitelný, pro všechna pravidla $A \to \alpha$ jsou všechny symboly v α dosažitelné.

Věta: Výše uvedené algoritmy najdou právě všechny generující / dosažitelné symboly.

Definice: Nulovatelný neterminál

Neterminál A je nulovatelný, pokud $A \Rightarrow^* \lambda$.

Pro nulovatelné neterminály na pravé strané pravidla $B \to CAD$, vytvoříme dvě verze pravidla: s a bez nulovatelného terminálu.

Definice: Algoritmus: Nalezení nulovatelných symbolů v G

Základ: Pokud $A \to \lambda$ je pravidlo G, pak A je nulovatelné.

Indukce: Pokud $B \to C_1 \dots C_k$, kde jsou všechna C_i nulovatelná, je i B nulovatelné. (terminály nejsou nulovatelné nikdy).

Definice: Algoritmus: Konstrukce gramatiky bez λ -pravidel z G

- 1. Najdi nulovatelné symboly
- 2. Pro každé ... Nestihol som pretože borka nahodila rychlost jak ježek na principoch

Definice: Jednotkové pravidlo

Jednotkové pravidlo je $A \to B \in P$, kde A, B jsou oba neterminály.

Definice: Jednotkový pár

nestihol som:)

Definice: Algoritmus: Nalezení jednotkových párů

Základ: (A, A) pro každý $A \in V$ je jednotkový pár.

Indukce: Je-li (A, B) jednotkový pár a $(B \to C) \in P$, pak (A, C) je jednotkový pár.

Definice: Nejaký ďalší algoritmus ktorý som nestihol

Věta: Gramatika v normálním tvaru, redukovaná

Mějme bezkontextovou gramatiku $G, L(G) - \lambda \neq \emptyset$. Pak existuje $CFGG_1 : L(G_1) = L(G) - \lambda \& G_1$ neobsahuje λ -pravidla ani zbytečné symboly. Gramatika G_1 se nazývá redukovaná. **Důkaz:** Idea důkazu:

- 1. Začneme eliminací λ -pravidel
- 2. Eliminujeme ... :)))))))))))))))))))))))))

9 Devátá přednáška

Definice: Chomského normální tvar

O bezkontextové gramatice G=(V,T,P,S) bez zbytečných symbolů kde jsou všechna pravidla v jednou ze dvou tvarů

- 1. $ABC, A, B, C \in V$,
- $A \rightarrow a, A \in V, a \in T$

říkáme, že je v Chomského normálním tvaru (ChNF).

Potřebujeme dva další kroky:

- 1. pravé strany délky 2 a více předělat na samé neterminály
- 2. rozdělit pravé strany délky 3 a více neterminálů na více pravidel

Poznámka: neterminály:

- 1. pro každý terminál a vytvoříme nový neterminál, řekněme A.
- 2. přidáme pravidlo $A \rightarrow a$,
- 3. použijeme A místo a na pravé straně pravidel délky 2 a více.

Poznámka:

Věta: Gramatika v normálním tvaru, redukovaná

Mějme bezkontextovou gramatiku $G, L(G) - \lambda \neq \emptyset$. Pak existuje $CFGG_1 : L(G_1) = L(G) - \lambda$ a G_1 neobsahuje λ -pravidla, jednotková pravidla ani zbytečné symboly. Gramatika G_1 se nazývá redukovaná. **Důkaz:**

- 1. Začneme eliminací λ -pravidel
- 2. Eliminujeme jednotková pravidla. Tím nepřidáme λ-pravidla.
- 3. Eliminujeme zbytečné symboly. Tím nepřidáme žádná pravidla.

Věta: ChNF

Mějme bezkontextovou gramatiku $G, L(G) - \lambda \neq \emptyset$. Pak existuje CFGG₁ v ChNF taková, že $L(G_1) = L(G) - \lambda$

Příklad: DOPLNIT Z DISCORDU 8.10

Věta: Velikost derivačního stromu gramatiky v CNF

Mějme derivační strom podle gramatiky G=(V,T,P,S) v ChNF, který dáva slovo w. Je-li délka nejdelší cesty n, pak $|w| \leq 2^{n-1}$. **Důkaz:**

Indukcí dle n,

- 1. $|a| = 1 = 2^0$
- 2. $2^{n-2} + 2^{n-2} = 2^{n-1}$.

Poznámka: Mějme derivační strom podle gramatiky G = (V, T, P, S) v ChNF, který dáva slovo $w, |w| > p = 2^{n-1}$. Pak ve stromě existuje cesta delší než n.

Věta: Lemma o vkládání (pumping) pro bezkontextové jazyky

Mějme bezkontextový jazyk L. Pak $\exists n \in \mathbb{N} : \forall z \in L, |z| > n : z = uvwxy :$

- 1. $|vwx| \leq n$
- 2. $vx \neq \lambda$
- 3. $\forall i \geq 0, uv^i w x^i y \in L$.

OBRAZOK 8.2 Důkaz:

náznak důkazu:vezmeme derivační strom pro z najdeme nejdelší cestu na ní dva stejné neterminály tyto neterminály určí dva podstromy. podstromy definují rozklad slova nyní můžeme větší podstrom posunout (i > 1) nebo nahradit menším podstromem (i = 0)

Důkaz:

- **4.** vezmeme gramatiku v ChNF (pro $L = \lambda$ a \emptyset zvolíme n = 1)
- 2. Nechť |V| = k; $n = 2^k$.
- 3. Pro $z \in L, |z| > 2^k$ má v derivačním stromu z cestu delší než k.
- 4. vezmeme nejdelší cestu; terminál kam vede označíme t.
- 5. ASpoň dva z posledních (k+1) neterminálů na cestě do t jsou stejné
- 6. vezmeme dvojici A^1, A^2 nejblíže k t (určuje podstromy T^1, T^2)
- 7. cesta z A^1 do t je nejdelší v podstromu T^1 a má délku maximálně (k+1) (tedy slovo dané stromem T^1 není delší než 2^k (tedy $|vwx| \le n$))
- 8. z A^1 vedou vě cesty (ChNF), jedna do T^2 , druhá do zbytku wx (ChNF je nevyouštějící, tedy $vx \neq \lambda$)
- 9. derivace slova $(A^1 \Rightarrow^* vA^2x, A^2 \Rightarrow^* w)$; $S \Rightarrow^* uA^1y \Rightarrow^* uvA^2xy \Rightarrow^* uvwxy$
- 10. posuneme-li A^2 do $A^1 \to S \Rightarrow^* uA^2y \Rightarrow^* uwy$
- 11. posuneme-li A^1 do A^2 (i=2,3,...) righarrow $S \Rightarrow^* uA^1y \Rightarrow^* uvA^1xy \Rightarrow^* uvvA^2xxy \Rightarrow^* uvvwxxy$.

Definice: Deterministický zásobníkový automat (DPDFA)

Zásobníkový automat $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ je deterministický PDA právě když platí:

- 1. $\delta(q, a, X)$ je nejvýše jednoprvková $\forall (q, a, X) \in Q \times (\Sigma \cup \lambda) \times \Gamma$.
- 2. Je-li $\delta(q, a, X)$ neprázdná pro nějaké $a \in \Sigma$, pak $\delta(q, \lambda, X)$ musí být prázdná.

Věta:

$$RL \subsetneq L(P_{DPDA}) \subsetneq L(P_{PDA}) = CFL = N(P_{PDA}) \supsetneq N(P_{DPDA})$$

Nechť L je regulární jazyk, pak L = L(P) pro nějaký DPDAP. **Důkaz:** DPDA může simulovat deterministický konečný automat a ignorovat zásobník (nechat tam Z_0).

Poznámka: Jazyk L_{wcwr} je přijímaný DPDA ale není regulární.

Důkaz neregularity z pumping lemmatu na slovo $0^n c 0^n$.

10 Desátá přednáška

10.1 Uzávěrová vlastnosti

Věta: CFL uzavřené na sjednocení, konkatenaci, uzávěr, reverzi

CFL jsou uzavřené na sjednocení, konkatenaci, iteraci (*), pozitivní iteraci (+), homomorfismus, zrcadlový obraz w^R . $\mathbf{D}\mathbf{\hat{u}kaz}$:

- Sjednocení:
 - pokud $V_1 \cap V_2 \neq \emptyset$ přejmenujeme neterminály,
 - přidáme nový symbol S_{new} a pravidlo $S_{new} \rightarrow S_1|S_2$.
- Zřetězení L₁.L₂

$$-S_{new} \rightarrow S_1 S_2 \ (pro \ V_1 \cap V_2 = \emptyset, \ jinak \ přejmenujeme)$$

- iterace $L* = \bigcup_{i>0} L^i$
 - $-S_{new} \rightarrow SS_{new}|\lambda$
- pozitivní iterace $L^+ = \bigcup_{i \neq j} L^i$
 - $-S_{new} \rightarrow SS_{new}|S$
- $zrcadlov\acute{y} obraz L^R = \{w^R | w \in L\}$
 - $-X \rightarrow \omega^R$ obrátíme pravou stranu pravidel.

Příklad: • Jazyk $L = \{0^n 1^n 2^n | n \ge 1\} = \{0^n 1^n 2^i | n, i \ge 1\} \cap \{0^i 1^n 2^n | n, i \ge 1\}$ není CFL, i když oba členy průniku jsou bezkontextové, dokonce deterministické bezkontextové.

$$\{0^{n}1^{n}2^{i}|n, i \ge 1\} \to \{S \to AC, A \to 0A1|01, C \to 2C|2\}$$
$$\{0^{i}1^{n}2^{n}|n, i \ge 1\} \to \{S \to AB, A \to 0A|0, B \to 1B2|12\}$$

průnik není CFL z pumping lemmatu.
 paralelní běh dvou zásobníkových automatů

- řídící jednotky umíme spojit (viz konečné automaty)
- čtení umíme spojit (jeden automat může čekat)
- bohužel dva zásobníky nelze obecně spojit do jednoho

dva neomezené zásobníky \rightarrow Turingův stroj, rekurzivně spočetné jazyky \mathcal{L}_0

Věta: CFL i DCFL jsou uzavřené na průnik s regulárním jazykem

- Mějme L bezkontextový jazyk a R regulární jazyk. $Pak L \cap R$ je bezkontextový jazyk.
- Mějme L deterministický CFL a R regulární jazyk.
 Pak L ∩ R je deterministický CFL.

Důkaz:

• zásobníkový a konečný automat můžeme spojit

$$- FA A_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$

- PDA přijímaný stavem
$$M_1 = (Q_2, \Sigma, \Gamma, \delta_2, q_2, Z_0, F_2)$$

• nový automat
$$M = (Q_1 \times Q_2, \Sigma, \Gamma, \delta, (q_1, q_2), Z_0, F_1 \times F_2)$$

$$-((r,s),\alpha) \in \delta((p,q),a,Z)$$
 právě když

$$-a \neq \lambda : r = \delta_1(p, a) \& (s, \alpha) \in \delta_2(q, a, Z)$$
 ... automaty čtou vstup, PDA mění zásobník, FA stojí.

$$-a = \lambda : (s, \alpha) \in \delta_2(q, \lambda, Z)$$

$$-r=p$$

•
$$z\check{r}ejm\check{e}\ L(M) = L(A_1) \cap L(M_2)$$

- paralelní běh automatů.

Příklad: Substituce

Mějme gramatiku $G=(E,a,+,(,),E\to E+E|(E)|a,E)$. Mějme substituci:

•
$$\sigma(a) = L(G_a), G_a = (I, a, b, 0, 1, I \to I0|I1|Ia|Ib|a|b, I),$$

•
$$\sigma(+) = -, \times, :, div, mod,$$

•
$$\sigma(() = (,$$

•
$$\sigma()) =).$$

•
$$(a+a)+a \in L(G)$$

•
$$(a001 - bba) * b_1 \in \sigma((a+a) + a) \subset \sigma(L(G)),$$

• v
$$\sigma(a)$$
 chybí + pro ukázku, že $(a+a) + a \notin \sigma(L(G))$.

Co se stane, když změníme definici:

•
$$\sigma(() = (, [,$$

• $\sigma()) =),]?$

Příklad: Homomorfismus

Mějme gramatiku $G = (E, a, +, (,), E \rightarrow E + E|(E)|a, E)$. Mějme homomorfismus:

- $h(a) = \lambda$
- $h(+) = \lambda$
- h(() = left
- h()) = right
- h((a+a)+a) = leftright,
- $h^{-1}(leftright) \ni (a++)a$.

Věta: CFL jsou uzavřené na substituci

Mějme CFL jazyk L nad Σ a substituci σ na Σ takovou, že $\sigma(a)$ je CFL $\forall a \in \Sigma$. Pak je i $\sigma(L)$ CFL (bezkontextový). **Důkaz:**

- Idea: listy v derivačním stromu generují další stromy,
- Přejmenujeme neterminály na jednoznačné všude v $G = (V, \Sigma, P, S), G_a = (V_a, T_a, P_a, S_a), a \in \Sigma$.
- Vytvoříme novou gramatiku G = (V', T', P', S) pro $\sigma(L)$:
 - $-V' = V \cup \bigcup_{a \in \Sigma} V_a,$
- T'

Příklad: Substituce

Věta: CFL jsou uzavřené na inverzní homomorfismus

 $M\check{e}jme\ CFL\ jazyk\ L\ a\ homomorfismus\ h.\ Pak\ h^{-1}(L)\ je\ bezkontextový\ jazyk.\ Je-li\ TODO\ \textit{Důkaz:}$

- pro L máme PDA $M = (Q, \Sigma, \delta, q_0, Z_0, F)$ (koncovým stavem)
- $h: T \to \Sigma^*$
- definujeme PDA $M' = (Q', T, \Gamma, \delta', [q_0, \lambda], Z_0, F \times \lambda), kde$

DOPLNIT, slide 196

Pro deterministický PDA M je i M' deterministický.

197

Důkaz: Důkaz sporem

 \bullet Nechť L je bezkontextový jazyk

• $L_1=\{01^j2^k3^l|j,k,l\geq 0\}$ je regulární Jazyk $-S\to 0B, B\to 1B|C,C\to 2C|D,D\to 3D|\lambda$

• $L \cap L_1 = 01^i 2^i 3^i | i \ge 0$ není bezkontextový \implies spor

Věta: Rozdíl s regulárním jazykem

Mějme bezkontextový jazyk L a regulární jazyk R. Pak:

• L-R je CFL.

 $D\mathring{u}kaz: L-R=L\cap R, \overline{R}$ je regulární.

Věta: CFL nejsou uzavřené na doplněk ani rozdíl

Mějme bezkontextové jazyky L, L_1, L_2 , regulární jazyk R. Pak:

• \overline{L} nemusí být CFL. . . . $L_1 \cap L_2 = \overline{L_1} TODO$

10.2 Uzávěrové vlastnosti deterministických CFL

- Rozumné programovací jazyky jsou deterministické CFL.
- Deterministické bezkontextové jazyky
 - nejsou uzavřené na průnik
 - jsou uzavřené na průnik s regulárním jazykem
 - jsou uzavřené na inverzní homomorfismus

Věta: Doplněk deterministického CFL je opět deterministický CFL. Důkaz:

- idea: prohodíme koncové a nekoncové stavy
- nedefinované kroky ošetříme 'podložkou' na zásobníku
- cyklus odhalíme pomocí čítače
- až po přečtení slova prochádzí koncové a nekoncové stavy (stačí si pamatovat, zda prošel koncovým stavem.)

Uzávěrové vlastnosti v kostce - doplnit tabulku (202/255-274)

Poznámka: Ne-uzavřenost deterministických CFL **Důkaz:** Vzhledem k uzavřenosti DCFL na doplněk by byl DCFL i $\overline{L} \cap a * b * c * = a^i b^j c^k | i = j = k$, o kterém víme, že není CFL (pumping lemma)

DCFL nejsou uzavřené na homomorfismus (201/255-274)

11 Jedenástá přednáška

The End