#### Course overview

- 1.Introduction to Linear Regression
- 2. Simple Linear Regression
- 3. Multiple Linear Regression
- 4. Evaluation of a Linear Regression Model
- 5. Practical Work

#### What is Linear Regression?

- Goal: predict real (continuous) valued outputs, by modeling how our observations that are associated with some features change as we change the values of theses features.
- Example: training set of housing prices



 Regression is about learning the relationship between X and y, and using it to predict the house price of new data



#### **Model Representation**

- $x^{(i)}$  denotes the "input" variables (house characteristics)
- y<sup>()</sup> denotes the "output" or target variable that we are trying to predict (price)
- A pair  $(x^{(i)}, y^{(i)})$  is called a training example
- A list of m training examples  $(x^{(i)}, y^{(i)})$ ; i=1,...,m—is called a training set



# 1.2 Simple/Univariate Linear Regression

# Simple Linear Regression: Model





- Which line is the best fit ?
- what should a good function  $h_{\theta}(x)$  minimize?
  - Sum error on all data points
  - Sum abs(error) on all data points
  - Sum error^2 on all data points

Sum error on all data points

Sum error = 0



Sum abs(error) on all data points

Sum abs(error) > 0



Sum error^2 on all data points

Sum error^2 > 0







 The Sum of Squared Errors (SSE) is also called Residual Sum of Squares (RSS)



$$SSE (\theta_0, \theta_1) =$$

$$(y^{(1)} - (\theta_0 + \theta_1 * x^{(1)}))^2 +$$

$$(y^{(2)} - (\theta_0 + \theta_1 * x^{(2)}))^2 +$$

$$\dots +$$

$$(y^{(m)} - (\theta_0 + \theta_1 * x^{(m)}))^2$$



- The green line is a better fit
- Let's see how to find the best line automatically

#### Simple Linear Regression: Cost function

• The best hypothesis  $h_{\theta}(x)$  is the one that minimizes the cost function



- 1/m means we determine the average
- 1/2m, the 2 makes the math a bit easier, and doesn't change the weights  $\theta$  we determine at all (i.e. half the smallest value is still the smallest value!)
- The learning algorithm should find  $\theta^* = (\theta_0^*, \theta_1^*)$  that minimizes this cost
- Several algorithms:
  - Gradient descent
  - Ordinary least square (OLS): Used in the linear regression in python (sklearn)

## Gradient Descent Algorithm: Intuition

• Let's assume that we have one parameter  $\theta$ , and that we want to minimize  $J(\theta)$ 

$$h_{\theta}(x) = \theta x$$

• GD starts by a random initial  $\theta$  and iteratively update it to get towards  $\theta^*$ .

In this case, the derivative (gradient)  $\partial J(\theta) / \partial \theta < 0$ .  $\theta^A - \alpha^* \partial J(\theta) / \partial \theta > \theta^A$   $\theta^A$  is moving to the right  $\theta$  is increasing



In this case, the derivative (gradient)  $\partial J(\theta) / \partial \theta > 0$ .  $\theta^B - \alpha^* \partial J(\theta) / \partial \theta < \theta^B$   $\theta^B$  is moving to the left  $\theta$  is decreasing

- a is called the learning rate or the step size
  - Too small
    - Take baby steps → Take too long to converge
  - Too large
    - Can overshoot the minimum → fail to converge

## Simple Linear regression with GD

Repeat until convergence :

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1) \overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}}{\overset{\widehat{\xi}_j}{\overset{\widehat{\xi}_j}}{\overset{\widehat{\xi}_j}}{\overset{\widehat{\xi}_j}}{\overset{\widehat{\xi}_j}}{\overset{\widehat{\xi}_j}}{\overset{\widehat{\xi}_j}}{\overset{\widehat{\xi}_j}}{\overset{\widehat{\xi}_j}}{\overset{\widehat{\xi}_j}}{\overset{\widehat{\xi}_j}}{\overset{\widehat{\xi}_j}}{\overset{\widehat{\xi}_j}}{\overset{\widehat{\xi}_j}}{\overset{\widehat{\xi}_j}}{\overset{\widehat{\xi}_j}}}{\overset{\widehat{\xi}_j}}{\overset{\widehat{\xi}_j}}}{\overset{\widehat{\xi}_j}}}{\overset{\widehat{\xi}_j}}}}}}}}}}}}}}}}}$$



If we calculate the derivatives, the expression becomes:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$x(x^{(i)}) - x^{(i)}(x^{(i)})$$

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \qquad \theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$$

- $\circ\quad$  The cost function is no longer changing by more than  $\epsilon.$
- The number of iterations is reached
- Go further

#### Ordinary Least Square Algorithm

• The Ordinary least square (OLS) approach chooses  $\theta_0$ ,  $\theta_1$ to minimize SSE

$$SSE = \sum_{i=1}^{m} (y^{(i)} - \theta_0 - \theta_1 * x^{(i)})^2$$

- In this method, we will minimize SSE by explicitly taking its derivatives with respect to the  $\theta_0$ ,  $\theta_1$ , and setting them to zero.
- The minimizing values can be shown to be:

$$\widehat{\theta}_1 = \frac{\sum_{i=1}^m (x^{(i)} - \bar{x}) (y^{(i)} - \bar{y})}{\sum_{i=1}^m (x^{(i)} - \bar{x})^2}$$

$$\widehat{\theta}_0 = \overline{y} - \widehat{\theta}_1 * \overline{x}$$

• Where  $\bar{y} = \frac{1}{m} \sum_{i=1}^m y^{(i)}$  ,  $\bar{x} = \frac{1}{m} \sum_{i=1}^m x^{(i)}$  are the sample means

# SSE is not perfect

Which fit has larger SSE?



■ Larger SSE doesn't necessarily mean worst fit → Need an other metric

#### R<sup>2</sup> Statistic

- R<sup>2</sup> Answers the questions: "how much of variability in the output (y) is explained by the change in the input (x)"
- To calculate R<sup>2</sup>, we use the formula:

$$R^{2} = \frac{TSS - SSE}{TSS} = 1 - \frac{SSE}{TSS}$$

$$TSS = \sum_{i=1}^{m} (y^{(i)} - \bar{y})^{2}$$

- An R<sup>2</sup> statistic that is close to 1 indicates that a large proportion of the variability in the response has been explained by the regression.
- A number near 0 indicates that the regression did not explain much of the variability in the response

# 1.2 Multivariate Linear Regression

#### Multiple Linear Regression

- In simple linear regression, we use one feature x to predict (y)
- In multiple linear regression, we have multiple features  $X=(x_1,x_2,...,x_n)$



- X<sup>(i)</sup> is an n-dimensional feature vector
- $X^{(1)} = (200, 2010, 2, ....)^T$  the feature vector of the first training example.
- $x_i^{(i)}$  is the value of feature j in the  $i^{th}$  training example.  $x_2^{(1)} = 2010$

#### Multiple Linear Regression

- In simple linear regression,  $h_{\theta}(x) = \theta_0 + \theta_1 x$
- In multiple linear regression,  $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$
- For convenience of notation, define  $x_0 = 1$   $(x_0^{(i)} = 1)$

$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Rewrite in matrix notation

#### Multiple Linear Regression

Cost function:

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Simple Linear Regression, n=1

Repeat 
$$\left\{ \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \right.$$
 
$$\left. \underbrace{\frac{\partial}{\partial \theta_0} J(\theta)}_{i=1} \right.$$
  $\left. \theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)} \right.$  (simultaneously update  $\theta_0, \theta_1$ )  $\left. \right\}$ 

Multiple Linear Regression, n>1

Repeat 
$$\left\{ \begin{array}{ll} \theta_{j} := \theta_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)} \\ \\ \left\{ \begin{array}{ll} \text{(simultaneously update } \theta_{j} \text{ for } \\ j = 0, \ldots, n \end{array} \right. \end{array} \right.$$

$$\left\{ \begin{array}{ll} \theta_{0} := \theta_{0} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{0}^{(i)} \\ \\ \theta_{1} := \theta_{1} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{1}^{(i)} \\ \\ \theta_{2} := \theta_{2} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{2}^{(i)} \\ \\ \dots \end{array} \right.$$

#### OLS for multiple features

Cost function with matrix notations:

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 = \frac{1}{2m} (X\theta - y)^T (X\theta - y)$$

Where

$$X = \begin{bmatrix} -(x^{(1)})^T - \\ -(x^{(2)})^T - \\ \vdots \\ -(x^{(m)})^T - \end{bmatrix} \qquad y = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{bmatrix}$$

• Derivatives with respect to  $\theta$   $\nabla_{\theta}J(\theta) = X^TX\theta - X^Ty$ 

By setting them to zero  $\theta = (X^T X)^{-1} X^T y$ 

#### When to use OLS or GD?

The following is a comparison of GD and the OLS (normal equation):

| Gradient Descent           | OLS (Normal Equation)                                |
|----------------------------|------------------------------------------------------|
| Need to choose alpha       | No need to choose alpha                              |
| Needs feature scaling      | No need for feature scaling                          |
| Needs many iterations      | No need to iterate                                   |
| O(kn²)                     | O(n³), need to calculate inverse of X <sup>T</sup> X |
| Works well when n is large | Slow if n is very large                              |

- n=10<sup>4</sup>-10<sup>5</sup> is usually the threshold of choosing GD over OLS
- Feature scaling helps converting the features to the same scale.
- For example, if  $x_i$  represents housing prices with a range of 100 to 2000 and a mean value of 1000, then,

$$x_{i} = \frac{price - 1000}{2000 - 100}$$

#### **Polynomial Regression**

 Polynomial regression is a particular case of multiple regression where the features are powers of one single feature x



General model:

$$y = \theta_0 + \theta_1 x + \theta_2 x^2 \theta_1 x + \dots + \theta_p x^p + \varepsilon$$

# 1.3 Assessing Performance

#### Assessing Performance

- This is about knowing how well the model will generalize to unseen data.
- One of the most used methods is splitting the data into train/test sets.

|                 | Size | Price |
|-----------------|------|-------|
| %               | 2104 | 400   |
| . 70            | 1600 | 330   |
| set – 70%       | 2400 | 369   |
| S S             | 1416 | 232   |
| Training        | 3000 | 540   |
| Ta              | 1985 | 300   |
|                 | 1534 | 315   |
| ° et            | 1427 | 199   |
| Test set<br>30% | 1380 | 212   |
| <b>T</b>        | 1494 | 243   |



- Learn  $\theta$  from training data (minimizing training error  $J_{train}(\theta)$ )
- Compute test error  $J_{test}(\theta) = \frac{1}{2mtest} \sum_{i}^{m_{test}} (h_{\theta}(x^{(i)}) y^{(i)})^2$

# Training error vs. model complexity

Let's take polynomial regression as an example



# Training error vs. model complexity

Training error decreases with increasing model complexity



# Testing error vs. model complexity

Test error can be used as an approximation of the generalization error





#### Bias – Variance tradeoff

#### **Model Complexity**



#### High bias model

The model does not capture enough
The structure of the training set

Parameters tend to be small





#### High variance model

The model is too specific to the structure Of the training set

Parameters tend to be very large



#### Bias – Variance tradeoff



# 1.4 Regularization

#### Regularization

- It's about finding balance between:
  - How well the model fits the data
  - The magnitude of coefficients
- This is achieved by incorporating a penalty on weights  $\theta$  in the cost function
- Ridge Regression (L<sub>2</sub> regularization)

$$J(\theta) = \frac{1}{2m} \left[ \sum_{i=0}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} (\theta_j)^2 \right]$$

Lasso Regression (L<sub>1</sub> regularization)

$$J(\theta) = \frac{1}{2m} \left[ \sum_{i=0}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} |\theta_j| \right]$$

- λ is the regularization parameter:
  - $\circ$  Ridge: Encourages small weights  $\theta$  but not exactly 0
  - Lasso: "Shrink" some weights θ exactly to 0

#### **GD** with Regularization

Reminder of the L2 regularization cost function:

$$J(\theta) = \frac{1}{2m} \left[ \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

- Previously:  $\theta_0:=\theta_0-\alpha\frac{1}{m}\sum_{i=1}^m(h_\theta(x^{(i)})-y^{(i)})x_0^{(i)}$   $\theta_j:=\theta_j-\alpha \quad \frac{1}{m}\sum_{i=1}^m(h_\theta(x^{(i)})-y^{(i)})x_j^{(i)}$
- With regularization:  $\theta_j:=\theta_j(1-lpharac{\lambda}{m})-lpharac{1}{m}\sum\limits_{i=1}^m(h_{ heta}(x^{(i)})-y^{(i)})x_j^{(i)}$
- $\bullet$   $\alpha$ ,  $\lambda$  are learning parameters to choose manually
- In practice:  $(1 \alpha \lambda/m)$  is between 0.99 and 0.95

#### Other Linear Regression Models

- Number of visiting customers to a website
- Product demand, inventory, failure, ...
- Stock pricing
- Insurance claims severity

"Remember that all models are wrong; the practical question is how wrong do they have to be **to not be useful.**"

George Box, 1987