Oblivious (Un)Learning of Extremely Randomized Trees

Sofiane Azogagh, Zelma Aubin Birba, Marc-Olivier Killijian, Sébastien Gambs azogagh.sofiane@uqam.ca

Context

Extremely Randomized Trees (ERTs)

A forest \mathcal{F} of ERTs is defined by several binary trees \mathcal{T}_i such as $\mathcal{T}_i = \{\mathcal{N}_i\}_{i=1}^{2^{d+1}} \cup \{\mathcal{L}_i\}_{i=1}^{2^d}$

where \mathcal{N}_i are the internal nodes, \mathcal{L}_i the leaves and d is the depth of \mathcal{T}_i . Each **internal node** \mathcal{N}_i contains a threshold θ_i and a feature index I_i randomly sampled; more formally:

$$\forall i \in \{1,...,2^{d+1}\}, \mathcal{N}_i = (\theta_i, I_i) \stackrel{\$}{\leftarrow} \mathbb{Z}_N^2$$

Each leaf \mathcal{L}_i stores the class counts c_k of the training samples that reached it; more formally:

$$\forall i \in \{1,...,2^d\}, \mathcal{L}_i = (|c_0|,...,|c_{\ell}-1|)$$

where ℓ is the number of possible classes.

Oblivious Operations

The tfhe-rs[1] library implements the TFHE scheme which allows to manipulate encryptions of integers from \mathbb{Z}_p . We built **RevoLUT[2]** on it to support oblivious manipulation of encrypted arrays of up to p elements.

Basic operations

RevoLUT operations

Experimental results

Fig. 1: Training time and accuracies across various forest sizes \mathcal{F} (i.e 8, 16, 32 and 64) and different datasets.

Key takeaways

- We provide the first homomorphic learning algorithm on ERTs, which also supports oblivious unlearning.
- ERTs provide competitive accuracy and even improve it under certain conditions that favor the occurence of counter overflow.

This work explores privacy-preserving Machine Learning as a Service where a Client sends sensitive data to a Cloud provider (e.g AWS, Google Cloud etc..) to train a model. Alongside the data, the Client also sends an encrypted request Q, indicating whether the operation is **Training** or Unlearning. Using Fully Homomorphic Encryption (FHE), the Cloud can process the request directly on encrypted data, preserving both the privacy of the data and the nature of the operation.

Our protocol

The server generates a forest with a predefined number of trees. Each tree is a binary tree of a predefined common depth d, with features and samples randomly selected among all the features and their potential values in the dataset.

For each sample $S = (F_0, ..., F_n, C)$, the following operations are executed

1. Compile

At each node \mathcal{N}_i , the corresponding sample feature F_{I_i} is blindly compared to the node's feature threshold θ_i to produce an encrypted comparison result.

2. Traverse

At each level of the tree, the encrypted comparison result of the reached node is used to select the left or right child in the following level until a leaf is reached.

3. <u>Update</u>

In the blindly reached leaf, we blindly update the counter corresponding to the label C of the sample. The counter gets incremented or **decremented**, based on whether the request Q is for learning or unlearning. If a counter gets larger than p, an **overflow** phenomenon occurs (see Fig. 2).

Fig. 2: Accuracy of different forest \mathscr{F} during training on two datasets and their respective PCA projections to illustrate the class separability.

References

- [1] Zama. TFHE-rs: A Pure Rust Implementation of the TFHE Scheme for Boolean and Integer Arithmetics Over Encrypted Data. 2022
- [2] S. Azogagh, Z. A. Birba, M.-O. Killijian, F. Larose-Gervais, and S. Gambs. RevoLUT: Rust efficient versatile oblivious look-up-tables. 2025

Fig. 2 : Accuracy of different forest \mathcal{F} during training on two datasets and their respective PCA projections to illustrate the class separability.

