CSE 15 Discrete Mathematics

Lecture 9 – Functions (2)

Announcements

- ▶ HW #4 out
 - Due **5pm** 10/3 (Wed) with 1 extra day of re-submission.
- Midterm #1 on 10/9 (Tuesday)
- Reading assignment
 - Ch. 2.4-2.6 of textbook

Surjections

Definition: A function f from A to B is called *onto* or surjective, if and only if for every element $b \in B$ there is an element $a \in A$ with f(a) = b. A function f is called a surjection if it is onto.

 $\forall y \exists x (f(x) = y)$, where x is in the domain and y is the codomain

Example

- ▶ Is f(x)=x² from the set of integers to the set of integers onto?
 - No: For what value of x do we have f(x)=-1?
- Is f(x)=x+1 from the set of integers to the set of integers onto?
 - It is onto, as for each integer y there is an integer x such that f(x)=y.
 - To see this, f(x)=y iff x+1=y, which holds if and only if x=y-1.

Bijections

Definition: A function f is a *one-to-one* correspondence, or a bijection, if it is both one-to-one and onto (surjective and injective).

Examples

© The McGraw-Hill Companies, Inc. all rights reserved.

Identity function

$$\iota_A: A \to A, \quad \iota_A(x) = x, \forall x \in A$$

It is one-to-one and onto.

Showing that f is one-to-one or onto

Suppose that $f: A \to B$.

To show that f is injective Show that if f(x) = f(y) for arbitrary $x, y \in A$ with $x \neq y$, then x = y.

To show that f is not injective Find particular elements $x, y \in A$ such that $x \neq y$ and f(x) = f(y).

To show that f is surjective Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that f(x) = y.

To show that f is not surjective Find a particular $y \in B$ such that $f(x) \neq y$ for all $x \in A$.

Showing that f is one-to-one or onto

Example 1: Let f be the function from $\{a,b,c,d\}$ to $\{1,2,3\}$ defined by f(a) = 3, f(b) = 2, f(c) = 1, and f(d) = 3. Is f an onto function?

Solution: Yes, *f* is onto since all three elements of the codomain are images of elements in the domain.

If the codomain were changed to $\{1,2,3,4\}$, f would not be onto.

Inverse Functions

Definition: Let f be a bijection from A to B. Then the inverse of f, denoted f^{-1} , is the function from B to A defined as $f^{-1}(y) = x$ iff f(x) = y No inverse exists unless f is a bijection. Why?

Inverse Functions

Questions

Example 1: Let f be the function from $\{a,b,c\}$ to $\{1,2,3\}$ such that f(a) = 2, f(b) = 3, and f(c) = 1. Is f invertible and if so what is its inverse?

Solution: The function f is invertible because it is a one-to-one correspondence. The inverse function f^1 reverses the correspondence given by f, so $f^1(1) = c$, $f^1(2) = a$, and $f^1(3) = b$.

Questions

Example 2: Let $f: \mathbf{Z} \to \mathbf{Z}$ be such that f(x) = x + 1. Is f invertible, and if so, what is its inverse?

Solution: The function f is invertible because it is a one-to-one correspondence. The inverse function f^{-1} reverses the correspondence so $f^{-1}(y) = y - 1$.

Questions

Example 3: Let $f: \mathbf{R} \to \mathbf{R}$ be such that $f(x) = x^2$. Is f invertible, and if so, what is its inverse?

Solution: The function *f* is not invertible because it is not one-to-one .

Example

- Sometimes we restrict the domain or the codomain of a function or both, to have an invertible function.
- The function $f(x)=x^2$, from R^+ to R^+ is
 - one-to-one : If f(x)=f(y), then $x^2=y^2$, then x+y=0 or x-y=0, so x=-y or x=y.
 - onto: y= x², every non-negative real number has a square root.
 - inverse function:

$$f^{-1}(y) = \sqrt{y}$$

Composition

▶ **Definition**: Let $f: B \to C$, $g: A \to B$. The composition of f with g, denoted $f \circ g$ is the function from A to C defined by $f \circ g(x) = f(g(x))$

Composition

Composition

Example 1: If
$$f(x)=x^2$$
 and $g(x)=2x+1$, then $f(g(x))=(2x+1)^2$

and
$$g(f(x)) = 2x^2 + 1$$

Composition Questions

Example 2: Let g be the function from the set $\{a,b,c\}$ to itself such that g(a) = b, g(b) = c, and g(c) = a. Let f be the function from the set $\{a,b,c\}$ to the set $\{1,2,3\}$ such that f(a) = 3, f(b) = 2, and f(c) = 1.

What is the composition of f and g, and what is the composition of g and f.

Solution: The composition $f \circ g$ is defined by

$$f \circ g(a) = f(g(a)) = f(b) = 2.$$

 $f \circ g(b) = f(g(b)) = f(c) = 1.$
 $f \circ g(c) = f(g(c)) = f(a) = 3.$

Note that *g* ∘ *f* is not defined, because the range of *f* is not a subset of the domain of *g*.

Composition Questions

Example 2: Let f and g be functions from the set of integers to the set of integers defined by f(x) = 2x + 3 and g(x) = 3x + 2.

What is the composition of f and g, and also the composition of g and f?

Solution:

$$f \circ g(x) = f(g(x)) = f(3x + 2) = 2(3x + 2) + 3 = 6x + 7$$

 $g \circ f(x) = g(f(x)) = g(2x + 3) = 3(2x + 3) + 2 = 6x + 11$

- Note that $f \circ g$ and $g \circ f$ are defined in this example, but they are not equal.
- The commutative law does not hold for composition of functions.

f and f-1

- ▶ f and f⁻¹ form an identity function in any order.
- ▶ Let $f: A \rightarrow B$ with f(a)=b.
- Suppose f is one-to-one correspondence from A to B.
- ▶ Then f⁻¹ is one-to-one correspondence from B to A.
- The inverse function reverses the correspondence of f, so $f^{-1}(b)=a$ when f(a)=b, and f(a)=b when $f^{-1}(b)=a$.
- $(f^{-1} \circ f)(a) = f^{-1}(f(a)) = f^{-1}(b) = a$, and
- $(f \circ f^{-1})(b)=f(f^{-1})(b))=f(a)=b.$

$$f^{-1} \circ f = \iota_A, f \circ f^{-1} = \iota_B; \ \iota_A, \iota_B$$
 are identity functions for A and B $(f^{-1})^{-1} = f$

Graphs of Functions

Let f be a function from the set A to the set B. The graph of the function f is the set of ordered pairs $\{(a,b) \mid a \in A \text{ and } f(a) = b\}$.

Graph of f(n) = 2n + 1from Z to Z

Graph of $f(x) = x^2$ from Z to Z

Some Important Functions

▶ The *floor* function, denoted

$$f(x) = \lfloor x \rfloor$$

is the largest integer less than or equal to x.

The ceiling function, denoted

$$f(x) = \lceil x \rceil$$

is the smallest integer greater than or equal to x.

Examples:
$$\lceil 3.5 \rceil = 4$$
 $\lfloor 3.5 \rfloor = 3$ $\lceil -1.5 \rceil = -1$ $\lceil -1.5 \rceil = -2$

Floor and Ceiling Functions

TABLE 1 Useful Properties of the Floor and Ceiling Functions.

(n is an integer, x is a real number)

(1a)
$$\lfloor x \rfloor = n$$
 if and only if $n \le x < n + 1$

(1b)
$$\lceil x \rceil = n$$
 if and only if $n - 1 < x \le n$

(1c)
$$\lfloor x \rfloor = n$$
 if and only if $x - 1 < n \le x$

(1d)
$$\lceil x \rceil = n$$
 if and only if $x \le n < x + 1$

$$(2) \quad x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$$

$$(3a) \quad \lfloor -x \rfloor = -\lceil x \rceil$$

(3b)
$$\lceil -x \rceil = -\lfloor x \rfloor$$

$$(4a) \quad \lfloor x + n \rfloor = \lfloor x \rfloor + n$$

$$(4b) \quad \lceil x + n \rceil = \lceil x \rceil + n$$

Proving Properties of Functions

Example: Prove that if x is a real number, then

$$[2x] = [x] + [x + 1/2]$$

Solution: Let $x = n + \varepsilon$, where n is an integer and $0 \le \varepsilon < 1$.

Case 1: $\varepsilon < \frac{1}{2}$

- $2x = 2n + 2\varepsilon$ and |2x| = 2n, since $0 \le 2\varepsilon < 1$.
- [x+1/2] = n, since $x + \frac{1}{2} = n + (1/2 + \varepsilon)$ and $0 \le \frac{1}{2} + \varepsilon < 1$.
- Hence, |2x| = 2n and |x| + |x + 1/2| = n + n = 2n.

Case 2: $\epsilon \geq \frac{1}{2}$

- $2x = 2n + 2\varepsilon = (2n + 1) + (2\varepsilon 1)$ and [2x] = 2n + 1, since $0 \le 2\varepsilon 1 < 1$.
- [x+1/2] = [n+(1/2+ε)] = [n+1+(ε-1/2)] = n+1 since $0 \le ε 1/2 < 1$.
- Hence, [2x] = 2n + 1 and [x] + [x + 1/2] = n + (n + 1) = 2n + 1.