Lecture 8

Wednesday, April 19, 2017 3:18 PM

Set Balancing

Input: Sets S,, Sz, ..., Sm [[n]

Output: T: [n] -> {-1,1} / {red, blue}

Objective: - Find a signing which is as balanced as
possible

Formally, minimize Max $\sum_{i=1}^{\infty} \sigma(i)$

Quantity is called the Discrepancy of the Set-syst.

- This lecture we will work with the case when any element is in all most d-sets
 - · Casting as an Integer Program:

Z 5 € 7 , + i=1-· ~ (25) >-T , +1=1,..., m

5j € {-1,1} -1 < 0; < 1

-> What is the value of T? T=0 when 5=0 Algorithm Maintain a coll of "safe" sets, A = 0

Maintain a coll of "set" vars, I int of

Maintain a coll of "set" vars, I int // Ultimately I = (n)

Define a "surplus" vector S & R, a coor for every set, S init all-zeros. -> Consider LP (A,I): { x € [1,1] : > Else If: For some set Si, [SiNI] & d (Case B) then $A = A \cup i$ We prodain this set is safe. Why? , Z x; + Z = 0

Diesiri jesiri

and since LHS is integer,
$$\leq d-1$$

Ultimately, $j \in Si$ I will get some J_s' ;

but $|\sum_{j \in S_i \setminus I} |\sum_{j \in S_i \setminus I} |\sum_{j$

But each col. has \le d ones (Problem assumption
But each col. has \le d ones (Problem assumption Since #rows \geq # cols, Some row i has \le d ones
ie. S; I (d =) Coss (B) occurs
Claim: At the ond we have a (2d-1). balance coloning / signing.
Pf:-The blue stuff above proves this for
Pf:-The blue stuff above proves this for safe sets - For un-safe sets, in-fact, we have perfect balance
Note: This is not a standard Appe Algo.
We dian i compare entreives with the
"best-possible" balance. Rather we proved that ANY set-system with each element in at most
Note: This is not a standard Appx Algo. We didn't compare ourselves with the "best-possible" balance. Rather we proved that ANY set-system with each element in at most d-sets has a (2d-1)-balancel coloning. It turns out that the an of whether there
It turns out that the q' of whether there is a coloning with "perfect balance" i.e., whether $\exists \sigma : [n] \rightarrow \S-1,13$ st.