ADAM : A Method for Stochastic Optimization in ICLR 2015 By Diederik P. Kingma Jimmy Lei Ba

Anshika Chaurasia Razat Shanker

EE18MTECH11017 EE18MTECH11016

4 Mar 2019

Motivation

- Learning rate affect model performance.
- We want cost function sensitive to some directions in parameter space and insensitive to others

Related Work

AdaGrad

Learning rate scaled by inverse of square of sum of all the previous squared values of the gradient

```
while \theta_t not converged do  t \leftarrow t+1 \\ g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1}) \text{ (get gradients w.r.t. stochastic objective at timestep t)}   v_t \leftarrow v_{t-1} + g_t^2 \text{ (update biased second moment estimate )}   \theta_t \leftarrow \theta_{t-1} - \frac{\alpha}{\sqrt{v_t + \epsilon}} \odot g_t(updateParameter)  end while  \mathbf{return} \ \theta_t \text{ (resulting parameter)}
```

Related Work

RMSprop

Uses an exponentially weighted moving average to discard history from the extreme past

while
$$\theta_t$$
 not converged do $t \leftarrow t+1$ $g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1})$ (get gradients w.r.t. stochastic objective at timestep t) $v_t \leftarrow \beta_1 v_{t-1} + (1-\beta_1) g_t^2$ (update biased second moment estimate) $\theta_t \leftarrow \theta_{t-1} - \frac{\alpha}{\sqrt{v_t + \epsilon}} \odot g_t(updateParameter)$ end while return θ_t (resulting parameter)

Proposed Work

ADAM

- It is a combination of RMSprop and SGD with momentum.
- It uses the squared gradients to scale the learning rate like RMSprop
- It takes advantage of momentum by using moving average of the gradient like SGD with momentum

Algorithm

```
g_t^2 indicates the element wise square g_t \odot g_t \beta_1 = 0.9, \beta_2 = 0.999 and \epsilon = 10^{-8} Require: \alpha: Stepsize Require: \beta_1, \beta_2 \in [0,1): Exponential decay rates for the moment estimates Require: f(\theta): Stochastic objective function with parameters \theta Require: \theta_0: Initial Parameter vector m_0 \leftarrow 0 (Initialize 1^{st} moment vector) v_0 \leftarrow 0 (Initialize 2^{nd} moment vector) t \leftarrow 0 (initialize timestep)
```

Algorithm

```
while \theta_t not converged do
         t \leftarrow t + 1
         g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1}) (get gradients w.r.t. stochastic objective at
         timestep t)
         m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t (update biased first moment
         estimate )
         v_t \leftarrow \beta_2 . v_{t-1} + (1 - \beta_2) . g_t^2 (update biased second
         moment estimate )
         m_t' \leftarrow m_t/(1-\beta_1^t) (compute bias-corrected first
         moment estimate )
         v_t' \leftarrow v_t/(1-\beta_2^t) (compute bias-corrected second raw
         moment estimate )
         \theta_t \leftarrow \theta_{t-1} - \alpha . m'_t / (\sqrt{v'_t} + \epsilon) (update parameters)
end while
return \theta_t ( resulting parameter)
```

Experiment

```
00000000000000000
   11/711/1
22772222712222912242
 333333333333333
  4444444444444
6666666666666666666
    1771177)
  8888818848888
```

Fig: MNIST Dataset

Results

Fig : Multilayer Neural Network on MNIST images

Why are neural networks non - convex ?

- composition of convex function is not convex
- Neural Networks are universal function approximators
- Convex functions can't approximate non convex functions

Local Optimization of non convex functions

References

- [1] Duchi, John, Elad Hazan, and Yoram Singer. "Adaptive subgradient methods for online learning and stochastic optimization." Journal of Machine Learning Research 12.Jul (2011): 2121-2159.
- [2] Sutskever, I., Martens, J., Dahl, G. E., Hinton, G. E. (2013). On the importance of initialization and momentum in deep learning. ICML (3), 28(1139-1147), 5.
- [3] Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic optimization." arXiv preprint arXiv:1412.6980 (2014).