

mainz

Institute for Spatial Information and Surveying Technology Mainz University of Applied Sciences

Integrating complex archaeological datasets from the Neolithic in a web-based GIS

Content

- 1. Motivation
- 2. Earlier Research
- 3. Archaeological Background
- 4. Potential Frameworks
- 5. Implementation
- 6. Outlook and Conclusion

1. Motivation

- Projects have generated heterogeneous datasets of the West-Central European Neolithic
- Complex project-specific data models
- (Spatial) access on data for further analysis
- ⇒ Prototypical problems that lack general solution

Main goal: Integration into an open, extensible WebGIS

1. Motivation

Web GIS vs. complex data models

mainz

2. Earlier Research

Web based archaeological information systems

CAA 2001

- Breaking Down National Barriers: ARENA A Portal to European Heritage Information (Dam et al., 2001)
- Developing an Information System for Archaeological Site and Monuments Data Model and Construction (Haskiya, 2001)
- The Archaeological Map of Egypt. Archaeological Heritage Resource Management System (Seleh at al., 2001)

CAA 2006

- Using a GIS-based Database as a Platform for Cultural Heritage Management of Sites and Monuments in Norway (Berg, 2006)
- Towards a Web-based Environment for Italian Prehistory and Protohistory (Mantegary et al., 2006)

CAA 2007

- A Virtual Research Environment (VRE) for Archaeological Data Management, Visualization and Documentation (Meyer et al., 2007)
- Thinking Outside the Search Box. The Common Information Environment and Archaeobrowser (Jeffrey et al., 2007)
- A Web-GIS Approach to Cultural Resources Management in Crete (Sarris et al., 2007)

CAA 2008

- Free and Open Source WebGIS Solutions for the PO-BASyN Project (Mantegari et al., 2008)
- Heurist. A Web 2.0 Approach to Integrating Research, Teaching and Web Publishing (Johnson, 2008)

CAA 2010

- The Integrated Archaeological Management System in Cascais Portugal. From Management to Public Access (Almeida et al., 2010)
- Spatial Data Infrastructures and Archaeological Excavation Data. SILEX the SDI of the Neolithic Flint Mine of Casa Montero (Fraguas et al., 2010)

CAA 2012

 SEAD. The Strategic Environmental Archaeology Database, Inter-linking Multiproxy Environmental Data with Archaeological Investigations and Ecology (Buckland, 2012)

2. Earlier Research

Common issues of prior projects

- Organizational
 - Temporary limited project-funding
 - Problematic migration into institutional environment
 - Absence of community
- Technical
 - Non-openness
 - Closed systems without interfaces
 - Non standard based
 - Restricted licensing
 - Rapid technological progress

Origin of heterogeneous archaeological datasets:

- RGZM research initiatives
 - MK Projekt
 - nlDynamics
- Various theses
- Offical state crm databases

Spatial extent:

- Central & southwest Germany
- Northern France

n = 2234

Temporal extent:

- Early middle neolithic
- Focus on Linear Band Pottery and Michelsberg Culture

Gronenborn 2011

Domain specific data concepts

- Various complexity levels
 - Based on prior research focus
- Numerical vs. descriptive

3			
4	Pit(s)	one pit	1
5		more than one pit	2
6		possibly one or more pits	3
7	Ditch(es)	one ditch	1
8		more than one ditch	2
9		possible one or more ditches	3

Ref.: Dataset Fetsch

Representation of spatial dimension:

"incompatible" accuracy levels

3	coordinate quality	Does not apply (e.g. secondary findspot)	0
4		Taken from literature / official state archive	1
5		More than one point (area) - interpolated	2
6		About - value	3
7		Defined after distinct value (e.g. field name)	4
8		Coordinates unknown / set to district	5

Ref.: Dataset Fetsch

VS

12	coordinate quality	exact (not checked if precise values were available in literature; In Neckarland defined myself or set after the cartographic mapping of collector)	1
13		Defined after other information / accuracy ~300m	2
14		About - value	3
15		only district / subdistrict	4

Ref.: Dataset Strien

Representation of temporal concepts:

- Depending on archaeological phase
 - Varying isochronic complexity levels
 - E.g. LBK / Michelsberg Culture

Descriptions of uncertainty (interpretations)

2	Michelsberg Culture	
3		
4	possibly MC	yes=1 / no=0
5	perhaps MC	yes=1 / no=0
6	MC	yes=1 / no=0
7	indifferent	yes=1 / no=0
8	earliest MC	yes=1 / no=0
9	middle MC	yes=1 / no=0

Ref.: Dataset Fetsch

Major objectives

- Find a generic framework
- Deploy the framework in a prototypical use case
- Provide a pattern for similar projects

http://www.metaltoad.com/sites/default/files/deploy-button.jpg

http://www.metaltoad.com/sites/default/files/deploy-button.jpg

Main requirements (functional):

- IM(A)P
 - Input
 - Management
 - (Analysis)
 - Presentation
- Flexible data model
- Spatial & temporal reference models
- Role based data management
- Standardized interfaces (including metadata)

Important aspects for evaluation

- Defined requirements (functional)
- Non-functional
 - Community
 - ISO/IEC 25000

http://www.autism-community.com/wp-content/uploads/2010/07/community.jpg

http://www.iso.org/iso/2012_iso-logo_print.png

At a glance

	Heurist	GeoNode	leritage inventory & management system
Primary audience	Researchers	General public	Public authorities
Data focus	Knowledge management	Spatial data management	Cultural heritage inventory
System type	Single instance / Framework	Framework	Framework
Key feature	Knowledge representation	Collaboration	Data modelling

Major development efforts

Heurist

 Not primarily a framework with open interfaces

GeoNode

Increase complexity of data model

Arches

Role based data management

Deploying Arches in a prototypical use case

- Installing the software
- Adapting data model(s), vocabularies and GUI
- Mapping legacy data
- Import

Data model (the Arches graphs)

- Identify graphs / Resource Type
 - ARCHAEOLOGICAL HERITAGE (SITE).E27
- Identify entities in graph
- Extend graph
 - Certainty (period)
 - Certainty (find / feature)
 - Quantity (finds / features)
 - Investigation Type

Data model (the Arches graphs)

- Identify graphs / Resource Type
 - ARCHAEOLOGICAL HERITAGE (SITE).E27
- Identify entities in graph

Controlled vocabularies (Authority Files)

- Define terms for all entities
- Global vocabularies
 - are interoperable with other datasets
 - might be too general / detailed for a project
- Project specific vocabularies
 - Linking to SKOS concepts should be feasible

A generic approach

- Predefined input format
- Mapping (configuration file incl. editing tool)
- Generic transformation script

A generic approach

6. Outlook & Conclusion

Arches

- Flexible data model
 - Adaptable to any use case
 - Built on CIDOC standard
- Controlled vocabularies
 - Specific thesauruses can be defined
 - Linking to SKOS concepts planned
- Interoperable interfaces
 - OGC: Extendable via GeoServer
 - Linked Open Data: Long term vision
- Role based data management
 - Arches plans user management
 - i3mainz plans extension on data level

Thanks for your attention!

Contact:

bruhn@fh-mainz.de engel@fh-mainz.de kohr@fh-mainz.de