

Modelación de Sistemas Multiagentes con Gráficas Computacionales (TC2008B)

M1. Arranque de Proyecto

Profesor: Pedro Oscar Pérez Murueta

Rafael Hinojosa López - A01705777

Felipe Gabriel Yépez Villacreses - A01658002

Andrea Piñeiro Cavazos - A01705681

Campus Querétaro,

Martes 10 de noviembre de 2021

M1. Arranque de Proyecto

Conformación del Equipo:

Andrea Piñeiro Cavazos

Fortalezas:

- Comunicación con los miembros del equipo.
- Planeación.
- Responsabilidad y puntualidad.

Áreas de Oportunidad:

• Ser más organizada en cuanto a actividades y horarios específicos.

Expectativas del curso: Aprender acerca de sistemas multiagentes, como diseñarlos, desarrollarlos y aplicarlos para la resolución de problemas; así como ser capaz de modelar ese sistema en una herramienta como Unity, para poder visualizarlo gráficamente.

Felipe Gabriel Yépez Villacreses

Fortalezas:

- Pensamiento crítico
- Liderazgo
- Adaptabilidad

Áreas de oportunidad:

Puntualidad

Expectativas: Aprender más acerca del modelado de situaciones de la vida real mediante la interacción de agentes inteligentes y poder visualizar soluciones de manera gráfica ya que no genera tanto impacto generar una solución eficiente si no se puede representar de forma visual para que sea fácil su entendimiento.

Rafael Hinojosa López

Fortalezas:

- Planeación
- Comunicación
- Liderazgo

Áreas de Oportunidad:

• Cumplir tareas en los tiempos establecidos o antes.

Expectativas:

 Aprender y entender los temas del curso, así como ser capaz de aplicarlos para solucionar problemas de diversas áreas. De igual manera, quiero contribuir a dar una solución eficiente y útil para reducir los tiempos del tránsito vehícular y que esta beneficie y sirva a nuestro socio formador (IBM). Se buscará innovar para dar una solución que refleje el avance de la tecnología en años presentes y futuros para el mejoramiento del urbanismo en las calles y carreteras.

Lo que esperamos lograr:

- Buscar una solución eficiente al problema de tráfico vehicular que va en aumento hoy en día.
- Beneficiar a nuestro socio formador (IBM) a través de la solución.
- Modelar y visualizar una situación de la vida real de manera gráfica de la forma más eficiente posible reduciendo significativamente el tráfico al reemplazar el sistema de semáforos tradicional con uno cambiante que se adapte a las condiciones del entorno.
- Innovar para reflejar el avance de la tecnología en años presentes y futuros para el mejoramiento del urbanismo en las calles y carreteras.

Compromisos:

- Administrar nuestros tiempos correctamente.
- Involucrarnos como equipo y con el socio formador.
- Presentar una solución eficiente que reduzca significativamente el tráfico.
- Planificar actividades y asignar responsabilidades
- Mantener comunicación efectiva

Creación de herramientas de trabajo colaborativo:

Repositorio de GitHub: https://github.com/RafaelHinojosa/SistemasMultiagentes

Propuesta Formal del Reto:

Descripción del reto

El tráfico es un problema que va en aumento debido al incremento en población de las ciudades, esto a su vez aparte de hacer perder tiempo a las personas en el congestionamiento que se genera por los semáforos, hace perder dinero y genera mayor contaminación al tener que utilizar más gasolina en un número de automóviles incrementado. Para dar solución a este problema se ha intentado ampliar la infraestructura con la finalidad de dar más opciones de rutas a los usuarios y de esta manera aliviar el tráfico. También se ha restringido en ciertas ciudades la circulación por días dependiendo del último dígito de la placa de los automóviles a pesar de que no en todos sus casos de aplicación resultó ser una medida eficiente ya que los usuarios en lugar de utilizar transporte público, adquirió un mayor número de automóviles con la finalidad de poder circular todos los días posibles.

Una solución adicional a este problema requiere el uso de tecnología para mediante el conocimiento del entorno en tiempo real poder gestionar el sistema vial de semáforos y poder detectar y mitigar congestionamientos con la finalidad de que con el tiempo no

generen mayor congestión y por lo tanto aumento en contaminación, pérdida de tiempo y dinero.

Para la solución del reto se asume que cada calle será doble carril y de doble sentido, los únicos colores de semáforos que se utilizarán serán el verde y rojo. Todos los vehículos utilizarán las mismas magnitudes de aceleración, desaceleración para el frenado e irán a la máxima velocidad permitida de 60 km/h. Para visualizar la solución de congestión de tráfico se representará de forma gráfica el cruce de 2 calles, es decir de una intersección, en la que cada carro podrá tomar cualquier dirección aleatoriamente. Al representar una intersección existirán 4 semáforos, uno por cada entrada de carros a la misma y se asume que tan solo 1 de ellos podrá estar encendido a la vez.

Agentes involucrados

Automóviles

- Los automóviles serán capaces de avanzar por la calle en la que originalmente aparecieron, girar y llegar a otra pasando por alguna intersección de calles, así como detenerse y acelerar para lograr sus objetivos.
- La máxima velocidad de estos agentes será de 60 km/h.

Semáforos

- Los semáforos tendrán 2 estados representados por colores: rojo y verde.
- El cambio del estado (color) será determinado por tiempos establecidos por el equipo, basados en tiempos reales de semáforos físicos, así como por el número de carros que tengan en sus carriles.

Relaciones entre Agentes

Automóviles y Semáforos

La acción de los automóviles dependerá estrictamente del color del semáforo en ese momento. Deberán detenerse si el color es rojo y avanzar sólo cuando esté en verde el semáforo frente a ellos. El efecto físico que tendrán los semáforos sobre los automóviles será la desaceleración, aceleración y movimiento de los automóviles según el color del semáforo.

Entre Automóviles

Un automóvil deberá detenerse si hay otro automóvil que se encuentre parado por delante de él, y solo podrá avanzar cuando el automóvil de enfrente comience a avanzar; esto para evitar choques entre los automóviles. El efecto físico que tendrá un automóvil en otro, será también la desaceleración, aceleración y movimiento dependiendo de las posiciones de los otros automóviles.

Diagrama de Clases

- Clase del Automóvil
- Clase del Semáforo
- Modelo de simulación de intersección
- https://app.diagrams.net/#G1EFU0eT7KHqOnBlhs1rXBkUwLr56CrtyW

Diagrama de Protocolo de Interacción

https://app.diagrams.net/#G11H0rWeXceuqLpdk_Q_VgfCHcdVtZakzl

Plan de trabajo:

■ Copia de Gantt.xlsx

NOMBRE DE LA TAREA	FECHA INICIO	DÍA DEL MES*	FECHA FIN	DÍAS DE TRABAJO ESTIMADOS	DÍAS COMPLETADOS	DÍAS FALTANTES	MIEMBRO DEL EQUIPO	PORCENTAJE COMPLETADO
Gráficas Computacionales								
Creación de Proyecto de Unity	11/17	17	11/17	1	1	0	Felipe	100%
Creación de los agentes automóviles	11/17	17	11/17	1	1	0	Todos	100%
Creación de los agentes semáforos	11/19	19	11/19	1	0	1	Todos	0%
Creación de las intersecciones y escena final	11/19	19	11/24	6	6	0	Todos	100%
Programación de agentes								
Creación del Jupyter Notebook	11/17	17	11/17	1	1	0	Andrea	100%
Clase de los Agentes automóviles	11/17	17	11/22	6	1.8	4	Andrea	30%
Clase de los Agentes semáforos	11/19	19	11/25	7	0	7	Todos	0%
Clase del modelo	11/17	17	11/27	11	5.5	6	Todos	50%
Animación/graficación de los automóviles	11/18	18	11/27	10	3	7	Todos	30%
Animación/graficación de los semáforos	11/19	19	11/27	9	0	9	Todos	0%
Requisitos MVP	11/19	19	11/23	5	1.5	4	Todos	30%
Requisitos Plus	11/23	23	11/27	5	0.25	5	Todos	5%
Creación del algoritmo MVP	11/19	19	11/23	5	0.5	5	Todos	10%
Creación del algoritmo Plus	11/23	23	11/27	5	0.25	5	Todos	5%
Integración de Unity y Python								
Implementar funciones MVP para los agentes	11/25	25	12/1	7	0	7	Todos	0%
Implementar funciones Plus para los agentes	11/27	27	12/1	5	0	5	Todos	0%
Colocar cámars en puntos estratégicos para observar	11/27	27	12/1	5	0	5	Todos	0%
Avances del Proyecto								
Diagrama de Protocolos	11/11	11	11/17	7	1.4	6	Todos	20%
Diagrama de Clases	11/11	11	11/18	8	5.6	2	Todos	70%
Avance 1 - Arranque del Proyecto	11/11	11	11/18	8	6.4	2	Todos	80%
Avance 2	11/18	18	11/25	8	0	8	Todos	0%
Entrega Final - Movilidad Urbana	11/25	25	12/2	8	0	8	Todos	0%

Algoritmo:

Especificaciones de la solución:

- Los automóviles aparecerán en un carril aleatorio
- Solo un semáforo estará encendido a la vez
- Los semáforos tendrán un tiempo máximo de actividad.
- Los semáforos tendrán un tiempo máximo de inactividad.
- La activación del semáforo estará determinada por su número de carros y su tiempo que lleva inactivo.
- Cada semáforo podrá tener la oportunidad de activarse antes o justo después de que todos los demás semáforos hayan sido activados.
- El arranque de los vehículos es paralelo; es decir, en el mismo instante, para no tener pérdidas de tiempo

MVP:

- Los automóviles aparecerán en una intersección aleatoria
- Los automóviles aparecerán en un carril de los 8 posibles aleatoriamente
- Con base en el carril, escogemos su destino

Plus:

- Con base en el número de automóviles que hay por carril, el automóvil escoge su carril
- El cambio de carril se checa con los vecinos de la misma intersección
- Plus: cambiar de carril en la intersección

Aprendizajes

- Entender qué son los agentes inteligentes
- Modelado de agentes utilizando framework de Mesa dentro de Python
- Interacción entre agentes
- Formas de comunicación entre agentes
- Teoría de juegos y coaliciones
- Introducción a iluminación, texturas y shaders
- Matemáticas vectoriales para movimiento, iluminación y funcionamiento de Unity.