Введение

1. Аналитическая часть

1.1. Проектирование общей структуры комплекса

В ходе разработки была составлена схема комплекса. Схема приведена на рис. 1. Функционал каждой компоненты описан в таблице 1.

Рис. 1: Схема комплекса

Таблица 1: Описание элементов схемы на рис. 1

Название сервиса	Функционал сервиса	
Логика	Реализация пользовательского интерфейса в виде	
	API либо веб-страницы	
Бекенд данных	Инкапсуляция доступа к БД	
Сессия 1N	Аутентификация и авторизация пользователей	
Балансировщик 1N	Отслеживание состояния вычислителей, выдача	
	им новых задач, сбор результатов выполнения	
	задач	
Фронтенд П,В	Проверка прав пользователей на доступ к	
	предоставляемому API	

1.2. Проектирование базы данных

Определение требований к структуре БД

БД должна осуществлять функцию коммуникации между отдельными узлами сети. Это накладывает следующие требования на её структуру:

Рис. 2: ER-диаграмма сущностей в базе данных

- Чтобы по возможности уменьшить степень дублирования похожих описаний задач, в отдельную сущность должны быть вынесены "черты" задач (traits). Чертой, к примеру, является требование задачи к вычислителю иметь окружение "Cuda v4.0" или ".net 3.5".
- Чтобы позволить отслеживать состояние всех подзадач задачи, запущенной с дублированием вычислений, в отдельную сущность должны быть вынесены "подзадачи", наследующие все атрибуты родительской задачи и хранящие данные, относящиеся непосредственно к ходу вычислений (на каком вычислителе производятся вычисления, результат вычислений и т д).
- Чтобы комплекс имел возможность выбора подходящего вычислительного узла для задачи, вычислительным узлам (Agents) должны соответствовать такие же наборы "черт", как и диспетчеризуемой в данный момент задаче.

ER-диаграмма

С учётом вышеописанных ограничений на структуру, отношения сущностей в базе данных можно представить в виде ER-диаграммы на рис. 2.

Таблица полей и типов данных

Атрибуты отдельных сущностей в базе данных хранятся в полях типов, описанных в таблице 2. Каждой сущности соответствует отдельная таблица. Запись вида "Т?" в столбце "Тип" означает, что значение необязательно. Обязательные поля-идентификаторы не указаны в таблице.

Таблица 2: Типы полей таблиц

Таблица	Поле	Тип	Описание
Subtask	AgentUsed	UID?	Использованный узел
		Scheduled, In process	
		Terminated, N/A	
	Status	Completed	Статус задачи
	ResultFile	string?	Имя архива с
			результатами
Task	ConfigFile	string	Имя
			конфигурационного
			файла
Agent	_	-	_
Trait	Name	string	Имя черты
	Version	string	Версия черты

1.3. Проектирование АРІ отдельных сервисов

Сервер БД

REST API, полное отражение структуры БД на набор эндпойнтов-объектов (/agents/id, /traits/id, tasks/id и т д)

Балансировщик

Функционал	Endpoint	Хедеры-параметры
Получение новой задачи	GET /newtask	AgentID
Выдача результатов расчёта	POST /result	AgentID, SubtaskID,
		Status, Body
Оповещение о статусе работы	POST /heartbeat	AgentID

Фронтенд вычлительных узлов

Дублирует эндпойнты балансировщика; добавлены функции:

- Регистрация нового узла в сети
- Подключение зарегистрированного узла к сети

Запросы на эндпойнты балансировщика проходят проверку безопасности и уходят к балансировщику(ам), запросы на регистрацию/подключение идут сразу к серверу сессии.

Сервер сессии

Отвечает за аутентификацию пользователей на обоих фронтендах. В случае несоответствия ключей безопасности ожидаемым запрос не пропускается "внутрь" комплекса. Внутри комплекса - "доверенная" область, проверок безопасности нет.

Сервер логики

Должен обеспечивать функционал:

- Регистрация нового пользователя
- Вход пользователя в свой аккаунт
- Постановка новой задачи на выполнение
- Просмотр статусов поставленных задач
- Для выполненых задач получение результатов в виде архива

Пользовательский фронтенд

Дублирует эндпойнты сервера логики, проверяя ключи перед перенаправлением запроса на сервер логики.