Nonlinear Path Analysis with Optimal Scaling

Jan de Leeuw

Department of Data Theory FSW

University of Leiden

Paper presented at the NATO Advanced Research Workshop on Numerical Ecology. Station Marine de Roscoff, Brittany, France. June 3-11, 1986.

Path analysis: general idea [History)

abundance environmental gradients.

$$y = (3, x_1 + ... + \beta_m x_m + \epsilon)$$

$$\epsilon \perp (x_1, ..., x_m).$$

<u>Ur</u>:

abundance of expecies in
$$X_i$$
 - β_i and X_i + --- + β_i and X_i + ξ_i ξ_i (x_1, \dots, x_m) .

[parhaps some Bij are known to be zero]

Or :

$$y = (a_1x_1 + \cdots + (a_m)x_m + E),$$
 $x_m = x_{m_1}x_1 + \cdots + a_{m_1}x_{m-1} + x_{m-1} + \delta_m,$
 $x_{m-1} = x_{m_1}x_1 + \cdots + a_{m_1}x_{m-2} + \delta_{m-1}, \cdots$
 $x_{m-1} = x_{m_1}x_1 + \cdots + a_{m_1}x_{m-2} + \delta_{m-1}, \cdots$
 $x_{m-1} = x_{m_1}x_1 + \cdots + a_{m_1}x_{m-2} + \delta_{m-1}, \cdots$
 $x_{m-1} = x_{m_1}x_1 + \cdots + a_{m_1}x_{m-2} + \delta_{m-1}, \cdots$

 $\delta_{m} \perp (x_{1},...,x_{m-1})$

perhaps some of are known to be zero [or equal to each other].

First methodological point

Why introduce this structure (zero regression coeffs) (structure within the predictors)?

Answer.

The models are special, restricted case of models in which every variable in the system depends on all other variables. These very general models are not restrictive [M=X].

Reframed question

Why use restrictive models?

Answer. - Trude-off of bias and precision
- Curse of dimensionality.

Second methodological point

Are these structural models causal models?

Answer. ??

- (a) you can formulate them in causal language

 [X influences, explains, determines Y]
- (b) you can interpret them in causal language [the effect of X on Y is .74]
- (c) but this has nothing to do with

 (c) but this has nothing to do with

 (necessary connections

 productivity

 manipulation
- (d) Thus the word coursal is used in a colloquial, impresses, or in a statistical precise sense. These two uses must be kept struty separate. [DANGER]

Third methodoligical questions

What is nonlinear?

It is not

$$y = \phi(x_1, -1, x_m) + \epsilon$$

but it is

$$\begin{cases} y = \phi_1(x_1) + \cdots + \phi_m(x_m) + \epsilon \\ \phi_j \in \Phi_j \end{cases}$$

us in the previous lecture.

Perhaps quasilinear, semilinear 13 betrer.

	level	causes	direct causes	predecessors
Var 1	0	****	***	***
Var 2	0	****	***	****
Var 3	1 1	{1,2}	{1,2}	{1,2}
Var 4	1	{1}	{1}	{1,2}
Var 5	1 1	{2}	{2}	{1,2}
Var 6	2	{1,4}	{4}	{1,2,3,4,5}
Vær7	2	{1,4}	{4 }	{1,2,3,4,5}

Table 1: causal relations in Diagram 1

7

Example

- (a) where do you get your arrows from?
 - prior knowledge (theory)
 - time and space
- (b) (dicquial mierprektus.
 - 1/3 does not influence 1/6
 - V, in [hieros V6 through V4
- (c) Mignes definitions [qualitative]
 - graph theory

Table 1

exogeneous - endogneous

transitive - recursive

Quantitative translation

weak orthogonality

strong orthogonality

- (a) disturbances un correlated unto exogeneous fε3,ε4,ε5,ε6,ε3 1 fx1,κ2
 - (b) disturbances different levels un correlated Sq, e4, e5} 1 fe6, 673.

Main results under strong orthogonally

(1) Causal mer preka him

(Given the direct causes a variable is independent of its other predecessors

(b) Calculus of path coefficients

r₂₆ = r₁₂β₁₄β₆₄

r₃₄ = β₄₁β₃₁ + β₄₁r₁₂β₂₃

ML = LS

ML = LS

(c) ML = LS

(b)

Classes of models

- 1) Recursive models cond. independence
 - Saturated recursive models
 block recursive models
 - causal chains
 - multiple regression

y: Ax + By + &
exogeneous

Strong orthogonality = weath orthogonality

- nonsaturated recursive models

 [hs 1]. Strong + weak
- (2) Nonrecursive models

 weak > Sakurated

 (no path calculus

 no cond. in de pondence

I no level a scignment

numerical ecology

$$\Gamma(x_{1},y) = \beta_{1} + \beta_{2}\Gamma_{12} + \beta_{3}\Gamma_{13}$$
 $\Gamma(x_{2},y) = \beta_{1}\Gamma_{12} + \beta_{2} + \beta_{3}\Gamma_{23}$
 $\Gamma(x_{2},y) = \beta_{1}\Gamma_{12} + \beta_{2} + \beta_{3}\Gamma_{23}$
 $\Gamma(x_{2},y) = \beta_{1}\Gamma_{12} + \beta_{2}\Gamma_{12} + \beta_{3}\Gamma_{23}$

. .

Computation

```
Recursive models
```

LS [projection] [on direct causes]

Donrecursive moulls

[Weah orth: LS]

strong or other: ??

Example from L. S.L.

C: Unlorophyll
S: Salinity
T: Temperature.

Alternative models: fit

Latent variables

- (a) to extent the notion of a path model (and make it cover other existing techniques)
- (1) to model the idea of measurement error or of indicators

Examples in figure.

General example: LISRÉL (Jireskog)

E QS (Bentle) $\chi = A\gamma + B\chi + \zeta$ = errors in equations $x = C\chi + \varepsilon$ errors in variables. $y = D\gamma + \delta$

Generalizes to more factors

18

Linear dynamic systems (*)

$$\chi_{b} = \frac{F}{\chi_{b-1}} + G\chi_{b} + \epsilon_{b}$$

$$\chi_{b} = \frac{F}{\chi_{b}} + \xi_{b}$$

$$\chi_{b} = \frac{F}{\chi_{b}} + \xi_{b}$$

$$\chi_{b} = \frac{F}{\chi_{b}} + \frac{F}{\chi_{b}} + \frac{F}{\chi_{b}}$$

$$\chi_{b} = \frac$$

- General AR model
- _ Kalman filter
- Also space
- Pilso non stationary

PATIPLIS the most original part Take an arrest diagram Step 1: Franslate it into regressions [linear structural. Sky z: apatu: 5.7 Translate tixe into a less function Sty 3: Slepu: Minmik. (a) path. aefficients (b) latest vanishes, tempformations, errors.

Example MIMIC from (6)

1050-245-245 2H

loss = || [20]xj - 5 - 812 + [] || yk - es - Ek||2

weak: $SI(x_1,x_2,x_3)$ $JI(x_1,x_2,x_3)$

Perhaps transform. Als algorithm

	weights	weights metric		weights nonmetric		explained variances metric nonmetric	
WC	82	.10	96	20			
BS	06	.11	56	.39			
CM	.13	.21	14	33			
LR	02	.56	.28	.12			
FT	.72	24	.22	15			
CH	29	.10	71	.43			
S1	79	09	89	.22	.39	.21	
S 2	.04	79	.30	87	.36	.21	
S 3	85	35	88	16	.22	.16	
S4	95	10	99	.21	.13	.04	
S 5	97	06	99	.22	.08	.04	
S 6	91	13	95	.19	.21	.10	
\$7	93	48	98	.01	.07	.04	
\$8	77	11	85	.00	.43	.27	
S 9	36	.52	.74	48	.53	.32	
\$10	.18	.88	.07	.90	.25	.16	
S10	.52	.71	.48	.71	.36	.18	
S11 S12	.53	.53	.57	.54	.54	.31	

Table 2: hunting spider data: metric and nonmetric MIMIC analysis

The important thing in PATHALS

- scaling of vanishes, including latent variables
- latent variables are like other womables, hur with a very low measurement level

Inskad of

linear latest

linear memotonic polynomial letent

Example Hunting specker data

[and earlier SPECIE

Diagram 8a: hunting spider example transformations of environmental variables

Diagram 8b: hunting spider example transformations of abundance variables