```
Database :
                                                                           Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 45 summaries
                                                                                                                                                     Minimum DB seq length: 0
Maximum DB seq length: 200000000
                                                                                                                                                                                                          Total number of hits satisfying chosen parameters:
                                                                                                                                                                                                                                                      Searched:
                                                                                                                                                                                                                                                                                                       Scoring table:
                                                                                                                                                                                                                                                                                                                                                  Sequence:
                                                                                                                                                                                                                                                                                                                                                               Title:
Perfect score:
                                                                                                                                                                                                                                                                                                                                                                                                                                                              Run on:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            OM protein - protein search, using sw model
                                                                                                                                                                                                                                                                                                                                                                                                              March 3, 2005, 13:50:51; Search time 170 Seconds (without alignments)
45:183 Million cell updates/sec
UniProt_03:*
1: uniprot_sprot:*
2: uniprot_trembl:*
                                                                                                                                                                                                                                                                                BLOSUM62
Gapop 10.0 , Gapext 0.5
                                                                                                                                                                                                                                             1612378 seqs, 512079187 residues
                                                                                                                                                                                                                                                                                                                                                                   US-10-018-964-3_COPY_1_15
87
                                                                                                                                                                                                                                                                                                                                              1 YSGPPSGARRRNCYE 15
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.
                                                                                                                                                                                                               1612378
```

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

S
C
3
7
5
54
~
iri
22
03

Result	Score	Query Match	Length	B	ID	Description
р!	87	100.0	319	<u>- i</u>	муор нимал	P15172 homo sapien
2	87	100.0	320	N	N	1 homo
س	84	96.6	150	N	077799	9 000 0
4	84	96.6	318	N	Q7Y882	800
ហ	84	٠	319	μ.	MYOD_PIG	8 118
ø,	, 84	96.6	319	μ.	MYOD_SHEEP	. ovis
7	63	72.4	318	ш	MYOD_MOUSE	11.128 11
ω		72.4	318	,_	MYOD_RAT	ratt
ø	63	72.4	318	N	Q8C6B1	
10	60	69.0	297	ᆫ	MYOD_COTJA	
11	60		297	N	Q6DV59	
12	60	69.0	298	ب	MYOD_CHICK	yallus gal
13	57	•	289	μ	MYOD_XENLA	.enopu
14	57	•	289	N	Q8AVZ0	senopus
15	50	•	172	Ŋ	Q75V41	physcomi
16	50	57.5	417	N	Q75V42	
17	49.5	•	288	N	Q7T109	Q7t109 kenopus tro
18	4.8	•	652	N	Q8WSW9	9 dugesia
19	48	٠	652	N	QBWSX0	duge
20	47	•	271	-ب	FRA1_HUMAN	homo sap
21	47	•	273	۲	FRA1_MOUSE	1949
22	47	54.0	273	N	Q7TMU4	
23	47	54.0	275	-4	FRA1_RAT	P10158 rattus norv
24	47	•	652	N	Q8WSX1	cugesia
25	47	54.0	2340	N	Q7RRD0	plasmod
26	46	•	932	N	Q9U966	
27	45.5	•	313	N	Q7XE93	oryza sa
28	45	•	120	N	Q9ZWY5	5 bacter
29	<u>4</u> Մ	•	139	N	Q6ZAR3	
30	45	•	1184	۲	DP3A_MYCBO	mycoba
31	4.	51.7	1184	۳	DP3A_MYCTU	P63977 mycobacteri
					•	

•	•	• •
######################################	RESULT AC DE RAN MARIE RAN MARI	
MEDLINE-2142399; MCKINES-2142399; MCKINES-2142399; MCKINES-2142399; MCKINES-2142399; MCKINES-21A2399; MCKINES-21A2399; MCKINES-21A2399; MCKINES-21A2399; MCKINES-21A2399; Induces fibro muscle-specif twist protein domains of bo	MYOD HUMAN MYOD HUMAN P15172; 01-APR-1990 (Rel. 1 01-NOV-1991 (Rel. 2 05-JUL-2004 (Rel. 4 MYODLBR determinat Name=MYOD1; Synonym Homo sapiens (Human Eukaryota; Mecazoa; Mammalla; Eutheria; MCBI TaxID=9606; [1] Fearson-White S.H.; "Human MyOD: CDNA an Nucleic Acids Res. [2] SEQUENCE OF 53-319 SEQUENCE OF 53-319 TISSUE-Skeletal muss MEDLINE-90059900; PBraun T.; Bober E.; Arnold H.H.; "Differential expretected by S.3 19 THOUSE SECUENCE OF S.3 319 THOUSE	
	HUMAN S HUMAN S HUMAN S Human S Human Rel Human Rel	4 A A A A A A A A A A A A A A A A A A A
	MAN STANDARD 1990 (Rel. 14, C 1991 (Rel. 20, L 1991 (Rel. 20, L 2004 (Rel. 44, L 2004 (Rel. 40, L 2004 (Rel. 20, L 2004 (Rel.	0 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 6 0 0 0 0
ISW ABOUT ACETYLATION AND DEACET LINE-21423399; PubMed-11532390; nsey T.A. Zhang C.L. Olson E. Tong C.L. Olson E. Tong C.L. Olson E. C. Opin. Genet. Dev. 11:497-504(FUNCTION: Involved in muscle di Induces fibroblasts to differen muscle-specific promoters. Interaction muscle-specific promoters in transcried in the protein. This interaction domains of both proteins (By si SUBUNIT: Efficient DNA binding bHLH protein. Seems to form act SUBCELULAR LOCATION: Nuclear. PTM: Acetylated by a complex coacetylation by SERT1 inhibit similarity: Contains 1 basic heseacetylation by SERT1 inhibit similarity: Contains 1 basic heseacetylation by SERT1 inhibit similarity: Contains 1 basic heseacetylation by sirst institute of Bio European Bioinformatics Institutions a fied and this statement is not ties requires a license agreemeend an email to license@isb-sib	T 1 MYOD HUMAN STANDARD; PR P15172; 01-APR-1990 (Rel. 14, Created) 01-APR-1990 (Rel. 20, Last seque 05-JUL-2004 (Rel. 44, Last annot Myoblast determination protein 1 Name=MYOD1; Synonyms=MYF3, MYOD; HOMO saplens (Human). Enkaryota; Metazoa; Chordata; Cr Mammalia; Eutheria; Primates; Ca MCBL_TAXID=9606; [1]	128 257 278 287 288 568 568 949 1039 1039 1534 153
AND Description of the muter of the muter of the community of the communit	st sear search s	0000000000000000
TION AND DEACETYLATION bMedal1533390, DOI=10. C.L., Olson B.N., C.L., Olson B.N., ev. 11:497-504 (2001). ev. 11:40	T; nce ania (M) ino 1991 penk penic	Q05400 Q7Q307 Q7ZUG9 MF25, XENLA Q6GN48 Q84W52 Q9LPB9 Q9AP5 Q8PAY6 Q8PAY6 Q6LHG2 Q8CH492 Q8CH492 Q8CH492 Q8CH492 Q8CH493 5
ATION. I=10.1016/S0 ling HATs an erentiation ate into myol cts with and crobably involarity). quires dimere heterodimes the function its function its function x-loop-helix tiproduces formatics at There are long as its such as its function at tiproduces formatics at There are long as its such as its ground the function at the produces of the produces at the produ	319 AA. update) n update) ogenic facto: ogenic facto: hini; Homini hini; Homini hini; Kotz & acid sequence). determinatic determinatic	400 307 UG9 W52 W52 975 975 975 AY6 AY6 448 435 448 435
HATS and HDACs."; HATS and HDACs."; Liation (myogenic factor). Into myoblasts. Activates When the basic Ly), Be dimerization with another Ly involves the basic Ly). Be EP300 and PCAF: The Larget genes. Coversly, its Lunction (By similarity). Ly-helix (bHLH) domain. Produced through a collaboration produced through a foliation on its and the EMBL outstation lere are no restrictions on its and for commercial http://www.isb-sib.ch/announce/	r 3) (Myf-3). a; Euteleostomi; ae; Homo. s., Grzeschik KH., n genes in muscle roducts.";	Q05400 streptomyce Q7q307 anopheles g Q7zug9 brachydanio P16076 xenopus lae Q6gn48 xenopus lae Q84w52 arabidopsis Q91fb9 arabidopsis Q9a9j5 caulobacter Q8pay6 xanthomonas Q61hg2 photobacter Q8mm82 caenorhabdi Q8gj49 chlorobium Q8gj49 chlorobium Q8gj49 chlorobium

```
CC
CRMEL; X17650; CAA35640.1; -.
DR EMBL; X17650; CAA35640.1; -.
DR HSSP; P10085; P108; P10085; P108; P10085; P108; P10085; P108; P10085; P108; P109; P108; P108;
```