SCOOT - Split, Cycle & Offset Optimization Technique

Author: Ian Day (Siemens AG,

Traffic Control Systems Division)

Presentation to: Transportation Research Board,

TRB Committee A3A18 Traffic Signal Systems

TRB Mid-Year Meeting and

Adaptive Traffic Signal Control Workshop, July 12-14, 1998

All enquiries to: Ron Whitelock

Eagle Traffic Control Systems, 8004 Cameron Road

Austin, Texas 78754

Phone: 1 512 837 8392, Fax: 1 512 837 0196

E-mail: whitelockr@eagletcs.com

SCOOT Version 3.1

The most effective traffic adaptive control system in the world today.

Presentation Contents - SCOOT

- System Architecture
- Data requirements
- Communication Requirements
- Control Variables
- Data Sampling, Filtering and Smoothing
- Phasing flexibility
- Measures of Effectiveness
- Transit and Fire Priority
- Special Features for Oversaturated Conditions
- Additional Features

SCOOT TERMINOLOGY

- Area
- Region
- Node
- Stage
- Link
- Detector

The performance of SCOOT over time

System Architecture

- Second by second system, with timing algorithms in central processor
- Local controller deals with clearance and minimums
- Local vehicle actuation determined by traffic engineering priorities
- Heirarchical transmission system with flexibility to suit local traffic control needs

SCOOT - Schematic Overview

SCOOT Systems around the World

SCOOT - Where will it work?

- SCOOT works on both Arterial Streets and Grid Networks
 - Arterial streets examples
 - » Toronto Lake Shore Boulevard
 - » London Cromwell Road
 - » Oxnard, Ca
 - » Sao Paulo Rio Branco
 - Networks examples
 - » Toronto CBD
 - » Dubai
 - » London West End
 - » Madrid Central area
- SCOOT works on networks from <10 intersections to >1000
 - Cambridge (UK) 9 nodes initially
 - Sao Paulo (Brazil) >1000 nodes

Data Transmission Network

Central Office Network

SCOOT - Hardware requirements

- Central Computer
 - DEC Alpha workstation(s), running OpenVMS
- Operator workstations
 - Dedicated network possible
 - Interface to existing network / workstations possible
- Data transmission
 - Copper cable, fiber optic, or combinations
- On-street equipment
 - No need to replace existing on-street hardware!
 - Implementation of SCOOT can be achieved by:-
 - » Controller firmare upgrade, or
 - » Addition of dedicated comm unit

Data Requirements

- Detection on every link for which full optimization required
- Detectors generally located at upstream end of link
- Connection to central computer achieved via upstream intersection
- Links with no detection run fixed length or can have data derived from upstream links
 - Fixed length phases can be varied by time of day

Positioning SCOOT detector loops

Upstream loop for turning movement

Downstream loop for turning movement

Communication

- Dedicated multi-drop transmission lines to outstations
- Second by second comms to and from outstation
- Typically six to eight intersections / drop @ 1200 Baud

Control Variables

- modelling uses measured vehicle demand (occupancy) and calculated queue length
- optimization uses demand (flow profiles) and calculated delay/saturation
- approach is to make small, regular changes to timings to minimize transients
- seven primary validation parameters (to correlate internal traffic model with the real world)
- dozens of parameters to allow the traffic engineer to tune system performance
 - a full library of default values is provided
 - these are changeable by time-of-day, or manually

Validation parameters

- Basic Validation
 - Journey Time
 - Saturation Occupancy
 - Maximum Queue
 - Start Lag at Beginning of Green
 - End Lag at the End of Green
 - Main Downstream Link
 - Default Offset

- Fine Tuning
 - Split weighting
 - Offset weighting
 - Fixed or biased offsets
 - Congestion offset
 - Gating (action at a distance)
 - On-line saturation occupancy

Traffic Engineering parameters (examples)

- REGION level
 - Fast Down flag
 - Max / Min cycle Time
 - Cycle Trend Flag
- NODE level
 - Force Double Cycle
 - Offset authorities
 - Split Authorities
 - Switch Split / Offset optimizers on / off
 - Specify translation array
 - Specify saturation thresholds

- "STAGE" level
 - Default stage lengths
 - Max / Min stage lengths
- LINK level
 - Congestion importance
 - Congestion offset
 - Congestion weighting
 - Congestion link definition
 - » importance
 - » weighting

Data Sampling, Filtering and Smoothing

- Detection based on vehicle occupancy
- Detector is typically a loop, with length 2m in direction of travel
- Sampling rate is 0.25s
- Algorithm processes raw data into LPUs based on linear discounting
- Demand profile for each link is built up in four second increments
- Controller phase replies used to enhance modelling

Generation of SCOOT Demand Profile

SPLIT OPTIMIZER

- Aim
 - Equalise saturation + congestion
 - Considering one stage at a time
- Method
 - All upstream and filter links at a node
 - Link merit values for advance, stay and retard
 - Move stage change time by -4, 0, +4
 - Revert to permanent change of -1, 0,+1
 - (Standard values for adjustment quoted may be varied by the user)

SPLIT OPTIMIZER

- Frequency
 - Once per stage change
 - 5 seconds before stage change time
- Constraints
 - Minimum and maximum stage lengths
 - Fixed length stages
 - Split weighting
- Feedback
 - Adjust optimiser for stages which do not appear

OFFSET OPTIMIZER

- Aim
 - Minimise delay and stops + congestion
 - Considering one node at a time
- Method
 - Each upstream and downstream normal link
 - Link performance index for advance, stay and retard
 - Minimise sum of Pl's for all the links
 - Move stage change time by -4, 0, +4

OFFSET OPTIMIZER

- Frequency
 - Once per region cycle time
 - During nominated stage
- Constraints
 - Offset weighting
 - Fixed and biased offsets
- Feedback
 - No account of stage demands

CYCLE OPTIMIZER

- Aim
 - Minimise delay
 - Considering one region at a time
- Method
 - Minimum practical cycle time for each node at 90% normal saturation or 80% target saturation
 - Consider range from maximum MPCY to maximum region cycle time
 - Consider double cycling if possible
 - No preset critical node

CYCLE OPTIMIZER

- Frequency
 - Usually every 5 minutes
 - Every 2.5 minutes when cycle rising
 - Every 2.5 minutes when cycle is falling (if required)
- Constraints
 - Maximum region cycle time
 - MPCY's of nodes
 - Minimum node cycle time
 - Forced single cycle or forced double cycle (if possible)
- Feedback
 - Stage demands taken into account

Phasing Flexibility - SCOOT to Dual Ring NEMA Controller translation

Measures of effectiveness

- Optimization targetted in general at minimising delay
 - User specifies relative importance of stops and delay
- Split at a node balances degree of saturation on adjacent links
 - subject to weighting parameters from the local traffic engineer
- Offset determined by node performance index
 - choose best offset to minimise stops and delays on all adjacent links
- Cycle time maintains all links at no more than 90% saturation

MOE s

- Data from SCOOT to demonstrate how it is achieving the above targets?
- "Event Driven messages" from SCOOT M02 / M03 / M04
 - 02 = link
 - > 03 = node
 - > 04 = region
 - Stops (vehicle.stops / hour)
 - Delay (vehicle.hour / hour)
 - Flow (vehicle / hour)
 - Congestion (intervals / hour)
- All this data can be processed by ASTRID

ASTRID with SCOOT

- Historic database of key link and detector based values generated by SCOOT
- The SCOOT model provides the input data for ASTRID using standard messages
- SCOOT flows, stops, delays, congestion, percentage saturation, detector flows and occupancy, phase lengths and journey times
- The ASTRID software package is available as a fully integrated element within the SCOOT central processor, or on a stand-alone workstation
- Improved performance in the event of detector failure
 - SCOOT Version 3.1 accepts default link profiles from ASTRID

ASTRID DATABASE

Transit Priority

- Transit priority is a standard feature within SCOOT V3.1
- Dealt with by optimizing the priority provision
 - Extensions to running stage
 - Recall on minima via normal stage sequence to bus stage
 - Recovery to previous offset as quickly as possible
 - AVL and loop detection

Fire Priority

- Fire priority is a standard feature within the SCOOT system
- Optimization suspended during absolute priority, but modelling continues
 - Fast recovery to normal conditions at end of priority period
- V4.2 (available early '99) will have recovery algorithms (not the same as bus priority)

Special Features for Oversaturated Conditions

- Congestion importance factors / congestion offset per link
- Congestion links with congestion importance factors
- Gating
- Variable Node Based Target Saturation for cycle time optimisation

Congestion Importance Factors / Congestion Offset

- Congestion Importance Factor is specified for each link
 - Used to influence Split calculations in favour of the link, when congestion is detected
- Congestion Offset is a fixed offset, specified by the Traffic Engineer, to be used in congested conditions
 - Congestion Weighting Factor allows the engineer to specify the importance of achieving the Congestion Offset

Congestion offset - example of use

Congestion Offset between junctions is set so that detector A is unoccupied when Link B receives green

Congestion Link Facility

Link C - minor side road

Not very important if Detector A is blocked
Important to avoid blocking detector B

Specify link B as 'congestion link' for link A

THEN

Detector B supplies link A with congestion information Congestion (blocking) of detector B influences the signal settings at Junction 1

Gating - Action at a distance

Upstream Gating

Downstream Gating

Variable Node Based Target Saturation

- Cycle Optimzer normally uses 90% as its target saturation level
 - (80% when "Trend Flag" set, to give more rapid response)
- Node based target saturation levels may be set by Engineer
 - Low threshold value will produce early increase in cycle time
 - High threshold value will allow early drop in cycle time at end of peak period

Other Features

- SOFT (on-line calibration of sat. flow)
- Use of alternative existing detection (although some reduced efficiency results)
- Variable authorities (i.e. variable bounds on optimiser decisions)
- Flared approaches (V4.2)

ON-LINE SATURATION OCCUPANCY

Predict saturation flow every cycle:

- Queue > 4 vehicles
- Mandatory detector not faulty
- Mandatory detector not blocked > 8 secs

Monitor vehicle behavior

- upstream detector

Convert saturation flow to saturation occupancy on CALIBRATION CYCLES

- Queue > 4 vehicles
- Well defined end of queue clear
- No maximum queue

Downstream detector (mandatory)

Downstream detector (mandatory)

Upstream

detector

Downstream detector (optional)

Predicts saturation occupancy every cycle

ON-LINE SATURATION OCCUPANCY

Good results in normal traffic conditions

Can be used on approximately 50% of links Depends on :-

- Detector location
- Short links
- Exit Blocking.
- Maximum Queues

<u>USES</u>

- * Reduce time for initial validation
- Respond automatically to changes in saturation flow, e.g. parked vehicles

Flared approaches under SCOOT

SCOOT Version 3.1

The most effective traffic adaptive control system in the world today.

