Definition: Natural Transformation

Definition: Natural Transformation

A natural transformation provides a way to transform one Functor into another while respecting the internal structure of the categories involved.

Formal Definition

Let $F,G:\mathcal{C}\to\mathcal{D}$ be two functors between categories \mathcal{C} and \mathcal{D} . A natural transformation $\eta:F\Rightarrow G$ consists of:

• For each object X in \mathcal{C} , a Morphism $\eta_X : F(X) \to G(X)$ in \mathcal{D}

Such that for every morphism $f: X \to Y$ in \mathcal{C} , the following diagram commutes:

That is, $\eta_Y \circ F(f) = G(f) \circ \eta_X$.

Components and Naturality

- Each morphism η_X is called a **component** of the natural transformation
- The commutativity condition is called the **naturality condition**
- When this condition holds, we say that η is **natural in X**

Special Cases

- 1. Natural Isomorphism: A natural transformation where every component η_X is an isomorphism
- 2. **Identity Natural Transformation**: For any functor F, the identity transformation id_F has components $(\mathrm{id}_F)_X = \mathrm{id}_{F(X)}$

Composition

Natural transformations can be composed: - Vertical Composition: If $\eta: F \Rightarrow G$ and $\mu: G \Rightarrow H$, then $\mu \circ \eta: F \Rightarrow H$ - Horizontal Composition: Natural transformations can also be composed with functors

Dependency Graph

Local dependency graph