OpenGL + Qt Tutorial

Andreas Nicolai

andreas.nicolai@tu-dresden.de

Version 0.7.0, April 2020

Inhaltsverzeichnis

Einführung	1
Kernthemen	1
Plattformunterstützung und OpenGL-Version	
Grundlagen	2
1. Tutorial 01: OpenGL innerhalb eines QWindow	2
1.1. QWidget näher betrachtet	
1.2. Allgemeingültige Basisklasse für OpenGL-Render-Fenster	4
1.2.1. Initialisierung des OpenGL-Fensters	6
1.3. Implementierung eines konkreten Renderfensters	8
1.3.1. Shaderprogramme	8
1.3.2. Vertex-Buffer-Objekte (VBO) und Vertex-Array-Objekte (VBA)	11
1.3.3. Rendern	14
1.3.4. Resourcenfreigabe.	15
1.4. Das Hauptprogramm	15
2. Tutorial 02: Alternative: die Klasse QOpenGLWindow	16
2.1. Verwendung der Klasse	17
2.2. Die Implementierung der Klasse QOpenGLWindow	17
2.2.1. Constructor	18
2.2.2. Ereignisbehandlungsroutinen	
2.2.3. Initialisierung	19
2.3. Zeichnen mit Index-/Elementpuffern	20
2.3.1. Shaderprogramm.	20
2.3.2. Initialisierung von gemischten Vertex-Puffern	21
2.3.3. Element-/Indexpuffer	23
2.3.4. Attribute im gemischten Vertexarray	23
2.3.5. Freigabe der Puffer	24
2.3.6. Rendern	24
2.4. Zusammenfassung.	25
3. Tutorial 03: Renderfenster in einem QDialog eingebettet	26
3.1. Window Container Widgets	26
3.2. Interaktion und Synchronisation mit dem Zeichnen	27
3.2.1. Einmalige Änderungen: Farbwechsel auf Knopfdruck	27
3.2.2. Animierte Farbänderung	30
3.2.3. Zusammenfassung	31
4. Tutorial 04: Verwendung des QOpenGLWidget.	32
4.1. Was bietet das QOpenGLWidget	32
4.1.1. Anpassung der Vererbungshierarchie	
4.1.2. Initialisierung	34
4.1.3. Einbettung in ein anderes QWidget	35

4.	.2. Performance-Vergleich	35
4.	.3. Transparenz	36
	4.3.1. Mit QOpenGLWidget	36
	4.3.2. Mit QWindow-basierten OpenGL Renderfenstern	37
5. T	utorial 05: Maus- und Tastatureingaben	3 7
5.	.1. Überblick	38
5.	.2. Fenster-Basisklasse OpenGLWindow	39
5.	.3. Klasse SceneView - die konkrete Implementierung	40
	5.3.1. Klassendeklaration	40
	5.3.2. Das Aktualisierungskonzept	41
	5.3.3. Verwendung der Klasse <i>SceneView</i>	42
	5.3.4. Implementierung der Klasse <i>SceneView</i>	43
	5.3.5. OpenGL-Initialisierung	44
5.	.4. Tastatur- und Mauseingabe	45
	5.4.1. Der Tastatur- und Maus-Zustandsmanager	46
	5.4.2. Die Ereignisschleife und Tastatur-/Mausevents	48
	5.4.3. Auswertung der Eingabe und Anpassung der Kameraposition- und Ausrichtung	49
	5.4.4. Auf gedrückte Tasten reagieren	52
	.5. Shaderprogramme	
5.	.6. Transformationsmatrizen und Kamera	54
	5.6.1. Transformationen	54
	5.6.2. Aktualisierung der World2View Matrix.	55
5.	.7. Zeichenobjekte	57
	5.7.1. Effizientes Zeichnen großer Geometrien	57
	5.7.2. Verwaltung von Zeichenobjekten	58
	5.7.3. Zeichenobjekt #1: Gitterraster in X-Z Ebene	59
	5.7.4. Zeichenobjekt #2: Viele viele Boxen	65
5.	.8. Antialiasing	76
6. T	utorial 06: Fehlerbehandlung und und Profiling mit QOpenGLDebugLogger und	
QOı	penGLTimeMonitor	77
6.	.1. Fehlerbehandlung	77
	6.1.1. Exceptions und Qt	77
	6.1.2. Qt-MessageHandler	83
	6.1.3. QOpenGLDebugLogger	84
6.	.2. Profiling und Performance-Tuning	84
	6.2.1. GPU und CPU Profiling	86
7. T	utorial 07: Markieren/Auswählen von Flächen	87
7.	.1. Option 1: Strahlenverfolgung	87
	7.1.1. Erkennung von Mausklick-Ereignissen	89
	7.1.2. Finden von angeklickten Objekten	90
	7.1.3. Die pick-Implementierung.	92

7.1.4. Picking Performance 95
7.1.5. Einfärben ausgewählter Objekte
7.2. Option 2: Falschfarbenrendering 97
7.2.1. Optimierungsidee für quasi-statische Szenen
8. Texturen mit QOpenGLTexture 98
9. Tutorial 09: Shadowmaps/Mehrfach-Render-Passes und QOpenGLFramebufferObject 98
10. Tutorial 10: CMake als BuildSystem für Qt und OpenGL, und Deployment von Qt+OpenGL
Anwendungen 98
10.1. CMakeLists.txt für OpenGL-Anwendungen 98
10.1.1. Erstellung
10.1.2. Deployment

Einführung

Dieses Tutorial ist *kein* OpenGL Tutorial. Man sollte also OpenGL selbst schon ganz gut kennen. Natürlich kann man die hier vorgestellten Beispiele als Vorlage nehmen, aber es geht hier wirklich darum, die Qt-Klassen und vorbereitete Funktionalität zu verstehen und sinnvoll zu nutzen.

Diese Anleitung soll auch *nicht* zeigen, wie man mit Qt ein Spiel- oder eine Spieleengine schreibt. Es geht eher um technische Anwendungen, in denen *Animationen keine Rolle spielen*. Fokus liegt eher darauf, effizient und resourcenschonend (und damit Laptop-Akku-schonend) 3D Grafik zu verwenden.

Es gibt eine PDF-Version des Tutorials:

https://github.com/ghorwin/OpenGLWithQt-Tutorial/raw/master/docs/OpenGLQtTutorial.pdf

Die Quelltexte (und Inhalte dieses Tutorials) liegen auf github:

https://github.com/ghorwin/OpenGLWithQt-Tutorial

Fragen und Anregungen kann man in der Issues-Seite auf Githab eintragen, die kann man ja wie ein Diskussionsforum verwenden, nur dass die nie geschlossen werden :-)

https://github.com/ghorwin/OpenGLWithQt-Tutorial/issues

Kernthemen

In diesem Tutorial geht es primär um folgende Themen:

- Integration von OpenGL in eine Qt Widget Anwendung (es werden verschiedene Ansätze diskutiert), einschließlich Fehlerbehandlung
- Verwendung der Qt-Wrapper-Klassen als Ersatz für native OpenGL Aufrufe (die Dokumentation vieler OpenGL-Qt-Klassen ist bisweilen etwas dürftig)
- Implementierung von Keyboard- und Maussteuerung
- Rendering-on-Demand mit Fokus auf CAD/Virtual Design Anwendungen, d.h. batterieschonendes Rendern nur, wenn sich Camera oder Scene ändern

Letzteres wird auch dadurch erreicht, dass wirklich nur die 3D Scene gerendert wird, aber alle sonstigen Eingaben separat in klassischen Widgets erfolgen. Bei klassischen Ansätzen (z.B. unter Verwendung von 3D Engines) werden Dialoge, Eingabefelder, Datenelemente alle als Teil der 3D Szene umgesetzt, sodass bereits beim Tippen einer Zahl in ein Eingabefeld ständig neu gerendert werden muss. In Summe ergibt das eine sinnlose Energieverschwendung und Akkulaufzeitreduktion (nicht zu vergessen das nervige fönen des Laptop-Akkus).

Es wird eine hinreichend aktuelle Qt-Version vorausgesetzt, mindestens **Qt 5.4**. Bei meinem Ubuntu 18.04 System ist Qt 5.9 dabei, das dürfte also eine gute Basisversion für dieses Tutorial sein. Funktionen neuerer Qt Versionen betrachte ich nicht.

Qt enthält aus Kompatibilitätsgründen noch eine Reihe von OpenGL-Implementierungsklassen (im OpenGL Modul), welche alle mit QGL... beginnen. Diese sind veraltet und sollten in neuen Programmen nicht mehr verwendet werden. In aktuellen Qt Programmen sind die Hilfsklassen für OpenGL-Fenster im GUI-Modul enthalten.

Plattformunterstützung und OpenGL-Version

Das Tutorial addressiert Desktopanwendungen, d.h. *Linux*, *Windows* und *MacOS* Widgets-Anwendungen. Daher ist OpenGL ES (ES für Embedded Systems) kein Thema für dieses Tutorial. Das Wesentliche sollte aber übertragbar sein.

Hinsichtlich der OpenGL-Version wird Mac-bedingt Version 3.3 angepeilt. Hinsichtlich der Einbettung von OpenGL in Qt Widgets-Anwendungen spielt die OpenGL-Version eigentlich keine Rolle.

Im Rahmen dieses Tutorials wird für die Beispiele das Qt bzw. qmake Buildsystem verwendet. Das Thema Compilieren mit CMake und Deployment von OpenGL-basierten Anwendungen wird in einem speziellen Tutorial erklärt.

Grundlagen

Als Einstieg in OpenGL empfehle ich folgende (englischsprachige) Webseiten:

- https://learnopengl.com : ein gutes und aktuelles Tutorial mit guten Abbildungen und guter Mischung aus C++ und C, eine Lektüre der ersten paar Kapitel dieses Tutorials sollte eigentlich ausreichen, um alle in meinem Tutorial verwendeten OpenGL-Befehle und Techniken zu verstehen.
- http://antongerdelan.net/opengl: englisch, gute Illustrationen und Erklärungen zu einzelnen Themen
- http://www.opengl-tutorial.org : eher grundlegendes Tutorialset, C und GLUT werden verwendet

Mein Tutorial selbst basiert zum Teil auf folgenden Webtutorials:

• https://www.trentreed.net/blog/qt5-opengl-part-0-creating-a-window : in diesem Tutorial und den Forumkommentaren gibt es einige Anregungen, allerdings ist dies eher eine Dokumentation eigener Versuche grafisch optimale Effekte zu erziehlen. Es gibt durchaus interessante Anregungen. Manche Quelltextumsetzung sind nicht ganz optimal, daher mit Vorsicht als Vorlage für eigene Programme verwenden (Diese Kleinigkeiten, über die ich selber auch gestolpert bin, sind u.A. der Grund für dieses Tutorial).

1. Tutorial 01: OpenGL innerhalb eines QWindow

Das Ziel ist erstmal einfach: ein einfarbiges Dreieck mit OpenGL in einem QWindow zu zeichnen.

Das sieht dann so (noch ziemlich langweilig) aus, reicht aber aus, um mehrere Seiten Tutorialtext zu füllen :-)

Figure 1. Ausgabe: Tutorial_01 (Mac OS Screenshot)

Quelltext für dieses Tutorial liegt im github repo: Tutorial_01

.pro-Datei in Qt Creator öffnen und compilieren.

Das Tutorial selbst basiert zum einen auf dem Qt Beispiel "OpenGLWindow" und auf dem Tutorial https://learnopengl.com/Getting-started/Hello-Triangle.

Beim Rendern von OpenGL Inhalten mit Qt gibt es verschiedene Möglichkeiten. Hier soll zunächst ein QWindow verwendet werden, welches ein natives Fenster des jeweiligen Betriebssystems kapselt. Damit kann man also ziemlich direkt und plattformnah zeichnen.

1.1. QWidget näher betrachtet

Um ein QWidget zu verwenden, muss man die Klasse ableiten und sollte dann einige Funktionen implementieren. Eine minimalistische Klassendeklaration sähe z.B. so aus:

```
class OpenGLWindow : public QWindow {
    Q_OBJECT
public:
    explicit OpenGLWindow(QWindow *parent = 0);
    // ... other public members ...
protected:
    bool event(QEvent *event) Q_DECL_OVERRIDE;
    void exposeEvent(QExposeEvent *event) Q_DECL_OVERRIDE;
private:
    // ... private members ...
};
```


Das Makro Q_DECL_OVERRIDE wird zum Schlüsselwort override, wenn der Compiler dies unterstützt (C++11 erlaubt). Da das eigentlich bei Qt 5 vorausgesetzt werden kann, könnte man eigentlich immer gleich override schreiben.

Man kann entweder mit einem rasterbasierten QPainter zeichnen, oder eben mit OpenGL. Dies legt man am besten

im Constructor der Klasse fest, wie beispielsweise:

```
OpenGLWindow::OpenGLWindow (QWindow *parent) :
    QWindow(parent)
{
    setSurfaceType(QWindow::OpenGLSurface);
}
```

Durch Aufruf der Funktion setSurfaceType(QWindow::OpenGLSurface) legt man fest, dass man ein natives OpenGL-Window erstellen möchte.

Das Qt Framework sendet nun zwei für uns interessante Events:

- QEvent::UpdateRequest wir sollten das Widget neu zeichnen
- QEvent::Expose das Fenster (oder ein Teil davon) ist nun sichtbar und sollte aktualisiert werden

Für letzteres Event existiert eine überladene Funktion void exposeEvent(QExposeEvent *event), welche wir implementieren:

```
void OpenGLWindow::exposeEvent(QExposeEvent * /*event*/) {
    renderNow(); // simply redirect call to renderNow()
}
```

Wir leiten einfach die Anfrage an das Zeichnen des Bildes an eine Funktion weiter, die das macht (dazu kommen wir gleich).

In der Implementierung der generischen Ereignisbehandlungsfunktion event() picken wir uns nur das UpdateRequest-Ereignis heraus:

```
bool OpenGLWindow::event(QEvent *event) {
    switch (event->type()) {
        case QEvent::UpdateRequest:
            renderNow(); // now render the image
            return true;
        default:
            return QWindow::event(event);
    }
}
```

Damit wäre dann unsere Aufgabe klar - eine Funktion renderNow() zu implementieren, die mit OpenGL zeichnet.

1.2. Allgemeingültige Basisklasse für OpenGL-Render-Fenster

Die nachfolgend beschriebene Funktionalität kann man für beliebige OpenGL-Anwendungen nachnutzen, daher wird das ganze in Form einer abstrakten Basisklasse OpenGLWindow implementiert.

Wir erweitern die Klassendeklaration geringfügig:

```
class OpenGLWindow : public QWindow, protected QOpenGLFunctions {
   O OBJECT
public:
   explicit OpenGLWindow(QWindow *parent = 0);
    virtual void initialize() = 0;
   virtual void render() = 0;
public slots:
   void renderLater();
   void renderNow();
protected:
   bool event(QEvent *event) Q_DECL_OVERRIDE;
   void exposeEvent(QExposeEvent *event) Q_DECL_OVERRIDE;
    QOpenGLContext *m_context; // wraps the OpenGL context
};
```

Der Zugriff auf die nativen OpenGL Funktionen ist in Qt in der Klasse QOpenGLFunctions gekapselt. Diese kann entweder als Datenmember gehalten werden, oder eben wie oben gezeigt als Implementierung vererbt werden. Da es sich ja um ein OpenGLWindow handelt, fühlt sich das mit der Vererbung schon richtig an.

Es gibt zwei pur virtuelle Funktionen, initialize() und render(), ohne die kein OpenGL-Programm auskommt. Daher verlangen wir von Nutzern dieser Basisklasse, dass sie diese Funktionen bereitstellen (Inhalt wird später erläutert).

Neben der Funktion renderNow(), welche ja oben bereits aufgerufen wurde, und deren Aufgabe das sofortige OpenGL-Zeichnen ist, gibt es noch eine weitere Funktion renderLater(). Deren Aufgabe ist es letztlich, einen Neu-Zeichen-Aufruf passend zum Vertical-Sync anzufordern, was letztlich dem Absenden eines UpdateRequest-Ereignisses in die Anwendungs-Ereignis-Schleife entspricht. Das macht die Funktion requestUpdate():

```
void OpenGLWindow::renderLater() {
   // Schedule an UpdateRequest event in the event loop
   // that will be send with the next VSync.
   requestUpdate(); // call public slot requestUpdate()
}
```

Man kann sich strenggenommen die Funktion auch sparen, und direkt den Slot requestUpdate() aufrufen, aber die Benennung zeigt letztlich an, dass erst beim nächsten VSync gezeichnet wird.

Zur Synchronisation mit Bildwiederholraten kann man an dieser Stelle schon einmal zwei Dinge vorwegnehmen:

- · es wird doppelgepuffert gezeichnet
- Qt ist standardmäßig zu konfiguriert, dass das QEvent::UpdateRequest immer zu einem VSync gesendet wird. Es wird natürlich bei einer Bildwiederholfrequenz von 60Hz vorausgesetzt, dass die Zeit bis zum Umschalten des Zeichenpuffers nicht mehr als ~16 ms ist.

Die Variante mit dem Absenden des UpdateRequest in die Ereignisschleife hat den Vorteil, dass mehrere Aufrufe dieser Funktion (z.B. via Signal-Slot-Verbindung) innerhalb eines Sync-Zyklus (d.h. innerhalb von 16ms) letztlich zu einem Ereignis zusammengefasst werden, und so nur einmal je VSync gezeichnet wird. Wäre sonst ja auch eine Verschwendung von Rechenzeit.

Zuletzt sei noch auf die neuen private Membervariable m_context hingewiesen. Dieser Kontext kapselt letztlich den

nativen OpenGL Kontext, d.h. den Zustandsautomaten, der bei OpenGL verwendet wird. Obwohl dieser dynamisch erzeugt wird, brauchen wir keinen Destruktor, da wir über die QObject-Eltern-Beziehung auch automatisch m_context mit aufräumen.

Im Konstruktor initialisieren wir die Zeigervariable mit einem nullptr.

```
OpenGLWindow::OpenGLWindow(QWindow *parent) :
    QWindow(parent),
    m_context(nullptr)
{
    setSurfaceType(QWindow::OpenGLSurface);
}
```

1.2.1. Initialisierung des OpenGL-Fensters

Es gibt nun verschiedenen Möglichkeiten, das OpenGL-Zeichenfenster zu initialisieren. Man könnte das gleich im Konstruktor tun, wobei dann allerdings alle dafür benötigten Resourcen (auch eventuell Meshes/Texturen, ...) bereits initialisiert sein sollten. Für ein schnellen Anwendungsstart wäre das hinderlich. Besser ist es, dies später zu machen.

Man könnten nun eine eigene Initialisierungsfunktion implementieren, die der Nutzer der Klasse anfänglich aufruft. Oder man regelt dies beim allerersten Anzeigen des Fensters. Hier gibt es einiges an Spielraum und je nach Komplexität und Fehleranfälligkeit der Initialisierung ist die Variante mit einer expliziten Initialisierungsfunktion sicher gut.

Hier wird die Variante der Initialisierung-bei-erster-Verwendung genutzt (was nebenbei ja ein übliches Pattern bei Verwendung von Dialogen in Qt ist). Damit ist die Funktion renderNow() gefordert, die Initialisierung anzustoßen:

```
void OpenGLWindow::renderNow() {
   // only render if exposed
   if (!isExposed())
        return:
    bool needsInitialize = false;
    // initialize on first call
    if (m_context == nullptr) {
       m_context = new QOpenGLContext(this);
        m_context->setFormat(requestedFormat());
        m_context->create();
        needsInitialize = true;
    }
    m_context->makeCurrent(this);
    if (needsInitialize) {
        initializeOpenGLFunctions();
        initialize(); // call user code
    }
    render(); // call user code
    m_context->swapBuffers(this);
}
```

Die Funktion wird einmal von exposeEvent() und von event() aufgerufen. In beiden Fällen sollte nur gezeichnet werden, wenn das Fenster tatsächlich sichtbar ist. Daher wird über die Funtion is Exposed() zunächst geprüft, ob es überhaupt zu sehen ist. Wenn nicht, dann raus.

Jetzt kommt die oben angesprochene Initialisierung-bei-erster-Benutzung. Zuerst wird das QopenGLContext Objekt erstellt. Als nächstes werden verschiedene OpenGL-spezifische Anforderungen gesetzt, wobei die im QWindowgesetzten Formate an den QOpenGLContext übergeben werden.

> Die Funktion requestedFormat() liefert das für das QWindow eingestellte Format der Oberfläche (QSurfaceFormat zurück. Dieses enthält Einstellungen zu den Farb- und Tiefenpuffern, und auch zum Antialiasing des OpenGL-Renderes.

Zum Zeitpunkt der Initialisierung des OpenGL-Context muss also dieses Format bereits für das QWindow festgelegt worden sein, d.h. bevor das erste Mal show() für das OpenGLWindow aufgerufen wird.

Wenn man diese Fehlerquelle vermeiden will, muss man die Initialisierung unter Anforderung des gewünschten QSurfaceFormat tatsächlich in eine spezielle Funktion verschieben.

Mit dem Aufruf von m_context->create() wird der OpenGL Kontext (also Zustand) erstellt, wobei die vorab gesetzten Formatparameter verwendet werden.

Falls man später die Formatparameter ändern möchte (z.B. Antialiasing), so muss zunächst wieder das Format im Kontextobjekt neu gesetzt werden und danach create() neu aufgerufen werden. Dies löscht und ersetzt dann den vorherigen Kontext.

Nachdem der Kontext erzeugt wurde, stehen die wohl wichtigsten Funktionen makeCurrent() und swapBuffers() zur Verfügung.

Der Aufruf m context->makeCurrent(this) überträgt den Inhalt des Kontext-Objekts in den OpenGL-Zustand.

der Initialisierung besteht im Aufruf der Funktion OOpenGLFunctions::initializeOpenGLFunctions(). Hierbei werden letztlich die plattformspezifischen OpenGL-Bibliotheken dynamisch eingebunden und die Funktionszeiger auf die nativen OpenGL-Funktionen (glXXX...) geholt.

Zuletzt wird noch die Funktion initialize() mit nutzerspezifischen Initialisierungen aufgerufen.

Das eigentliche Rendern der 3D Szene muss der Anwender dann in der Funktion render() erledigen (dazu kommen wir gleich).

Am Ende tauschen wir noch mittels m_context->swapBuffers(this) den Fensterpuffer mit dem Renderpuffer aus.

Nachdem der Fensterpuffer aktualisiert wurde, kann das Fenster beliebig auf dem Bildschirm verschoben oder sogar minimiert werden, *ohne* dass wir neu rendern müssen. Dies gilt zumindest solange, bis wir anfangen, in der Szene mit Animationen zu arbeiten. Bei Anwendungen ohne Animationen ist es deshalb sinnvoll, nicht automaisch jeden Frame neu zu rendern, wie das bei Spieleengines wie Unity/Unreal/Irrlicht etc. gemacht wird.

Falls wir dennoch animieren wollen (und wenn es nur eine weiche Kamerafahrt wird), dann sollten wir am Ende der Funktion renderNow() die Funktion renderLater() aufrufen, und so beim nächsten VSync einen neuen Aufruf erhalten. Ach ja: wenn das Fenster versteckt ist (nicht exposed), dann würde natürlich die Funktion schnell verlassen werden, und die Funktion renderLater() wird nicht aufgerufen. Damit wäre dann die Animation gestoppt. Damit sie wieder losläuft, gibt es die implementierte Ereignisfunktion exposeEvent(), die das Rendering wieder anstößt.

Damit wäre die zentrale Basisklasse für OpenGL-Renderfenster fertig. Wir testen das jetzt mit dem ganz am Anfang erwähnten primitiven Dreiecksbeispiel.

1.3. Implementierung eines konkreten Renderfensters

Vor der Lektüre diese Abschnitts sollte man den Tutorialteil https://learnopengl.com/Getting-started/Hello-Triangle überflogen haben (oder sich zumindest soweit mit OpenGL auskennen).

Das konkrete Renderfenster heißt in diesem Beispiel TriangleWindow mit der Headerdatei TriangleWindow.h. Die Klassendeklaration ist recht kurz:

```
/* This is the window that shows the triangle.
   We derive from our OpenGLWindow base class and implement the
    virtual initialize() and render() functions.
class TriangleWindow : public OpenGLWindow {
public:
   TriangleWindow();
   ~TriangleWindow() Q_DECL_OVERRIDE;
   void initialize() Q_DECL_OVERRIDE;
   void render() Q_DECL_OVERRIDE;
private:
    // Wraps an OpenGL VertexArrayObject (VAO)
   QOpenGLVertexArrayObject m_vao;
   // Vertex buffer (only positions now).
   QOpenGLBuffer
                             m_vertexBufferObject;
    // Holds the compiled shader programs.
    QOpenGLShaderProgram
                             *m_program;
};
```

Interessant sind die privaten Membervariablen, die nachfolgend in der Implementierung der Klasse näher erläutert werden.

1.3.1. Shaderprogramme

Die Klasse QOpenGLShaderProgram kapselt ein Shaderprogramm und bietet verschiedene Bequemlichkeitsfunktionen,

die in nativen OpenGL-Aufrufe umgesetzt werden.

Zuerst wird das Objekt erstellt:

Funktion: TriangleWindow::initialize()

```
void TriangleWindow::initialize() {
   // this function is called once, when the window is first shown, i.e. when
   // the the window content is first rendereds
   // build and compile our shader program
   m_program = new QOpenGLShaderProgram();
```

Dies entspricht in etwa den folgenden OpenGL-Befehlen:

```
unsigned int shaderProgram;
shaderProgram = glCreateProgram();
```

Es gibt nun eine ganze Reihe von Möglichkeiten, Shaderprogramme hinzuzufügen. Für das einfache Dreieck brauchen wir nur ein Vertex-Shader und ein Fragment-Shaderprogramme. Die Implementierungen dieser Shader sind in zwei Dateien abgelegt:

Vertex-Shader: shader/pass_through.vert

```
#version 330 core
// vertex shader
// input: attribute named 'position' with 3 floats per vertex
layout (location = 0) in vec3 position;
void main() {
 gl_Position = vec4(position, 1.0);
```

Fragment-Shader: shaders/uniform_color.frag

```
#version 330 core
// fragment shader
out vec4 FragColor; // output: fertiger Farbwert als rgb-Wert
void main() {
  FragColor = vec4(0.8, 0.2, 0.1, 1);
```

Der Vertexshader schiebt die Vertexkoordinaten (als vec3) einfach als vec4 ohne jede Transformation raus. Und der Fragmentationshader gibt einfach nur die gleiche Farbe (dunkles Rot) aus.

Compilieren und Linken von Shaderprogrammen

Die nächsten Zeilen in der initialize() Funktion übersetzen die Shaderprogramme und linken die Programme:

Funktion: TriangleWindow::initialize(), fortgesetzt

Es gibt mehrere überladene Funktionen addShaderFromSourceFile() in der Klasse QOpenGLShaderProgram, hier wird die Variante mit Übernahme eines Dateinamens verwendet. Die Dateien sind in einer .qrc Resourcendatei referenziert und daher über die Resourcenpfade :/shaders/... angeben. Wichtig ist die Angabe des Typs des Shaderprogramms, hier QOpenGLShader::Vertex und QOpenGLShader::Fragment.

Erfolg oder Fehler wird über den Rückgabecode signalisiert. Das Thema Fehlerbehandlung wird aber in einem späteren Tutorial noch einmal aufgegriffen.

Letzter Schritt ist das Linken der Shaderprogramme, d.h. das Verknüpfen selbstdefinierter Variablen (Kommunikation zwischen Shaderprogrammen).

Die Funktionen der Klasse QopenGL-Shader Program kapseln letztlich OpenGL-Befehle der Art:

```
// create the shader
unsigned int vertexShader;
vertexShader = glCreateShader(GL_VERTEX_SHADER);
// pass shader program in C string
glShaderSource(vertexShader, 1, &vertexShaderSource, NULL);
// compile the shader
glCompileShader(vertexShader);
// check success of compilation
int success;
char infoLog[512];
glGetShaderiv(vertexShader, GL_COMPILE_STATUS, &success);
// print out an error if any
if (!success) {
    glGetShaderInfoLog(vertexShader, 512, NULL, infoLog);
    std::cout << "Vertex shader error:\n" << infoLog << std::endl;</pre>
}
// ... same for fragment shader
// attach shaders to shader program
glAttachShader(shaderProgram, vertexShader);
glAttachShader(shaderProgram, fragmentShader);
// and link
glLinkProgram(shaderProgram);
```

Verglichen damit ist die Qt Variante mit "etwas" weniger Tippaufwand verbunden.

1.3.2. Vertex-Buffer-Objekte (VBO) und Vertex-Array-Objekte (VBA)

Nachdem das Shaderprogramm fertig ist, erstellen wir zunächst ein Vertexpufferobjekt mit den Koordinaten des Dreiecks. Danach werden dann die Zuordnungen der Vertexdaten zu Attributen festgelegt. Und damit man diese Zuordnungen nicht immer wieder neu machen muss, merkt man sich diese in einem VertexArrayObject (VBA). Auf den ersten Blick ist das alles ganz schön kompliziert, daher machen wir das am Besten am Beispiel.

Vertexpufferobjekte (engl. Vertex Buffer Objects (VBO)) beinhalten letztlich die Daten, die an den Vertex-Shader gesendet werden. Aus Sicht von OpenGL müssen diese Objekte erst erstellt werden, dann gebunden werden (d.h. nachfolgende OpenGL-Befehle beziehen sich auf den Puffer), und dann wieder freigegeben werden.

Funktion: TriangleWindow::initialize(), fortgesetzt

```
float vertices[] = {
        -0.5f, -0.5f, 0.0f,
        0.5f, -0.5f, 0.0f,
        0.0f, 0.5f, 0.0f
};

// create a new buffer for the vertices
m_vertexBufferObject = QOpenGLBuffer(QOpenGLBuffer::VertexBuffer); // VBO
m_vertexBufferObject.create(); // create underlying OpenGL object
m_vertexBufferObject.setUsagePattern(QOpenGLBuffer::StaticDraw); // must be called before allocate

m_vertexBufferObject.bind(); // set it active in the context, so that we can write to it
// int bufSize = sizeof(vertices) = 9 * sizeof(float) = 9*4 = 36 bytes
m_vertexBufferObject.allocate(vertices, sizeof(vertices)); // copy data into buffer
```

Im obigen Quelltext wird zunächst ein statisches Array mit 9 floats (3 x 3 Vektoren) definiert. Z-Koordinate ist jeweils 0. Nun erstellen wir ein neues VertexBufferObject vom Typ QOpenGLBuffer::VertexBuffer. Der Aufruf von create() erstellt das Objekt selbst und entspricht in etwa dem OpenGL-Aufruf:

```
unsigned int VBO;
glGenBuffers(1, &VBO);
```

Dann wird dem QOpenGLBuffer-Pufferobjekt noch die geplante Zugriffsart via setUsagePattern() mitgeteilt. Dies führt keinen OpenGL Aufruf aus, sondern es wird sich dieses Attribute für später gemerkt.

Mit dem Aufruf von bind() wird dieses VBO als Aktiv im OpenGL-Kontext gesetzt, d.h. nachfolgende Funktionsaufrufe mit Bezug auf VBOs beziehen sich auf unser erstelltes VBO. Dies entspricht dem OpenGL-Aufruf:

```
glBindBuffer(GL_ARRAY_BUFFER, VBO);
```

Zuletzt werden die Daten im Aufruf von allocate() in den Puffer kopiert. Dies entspricht in etwa einem memcpy-Befehl, d.h. Quelladresse des Puffers wird übergeben und Länge in Bytes as zweites Argument. In diesem Fall sind es 9 floats, d.h. 9*4=36 Bytes. Dies entspricht dem OpenGL-Befehl:

```
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
```

Hier wird der vorab gesetzte Verwendungstyp (usagePattern) verwendet. Deshalb ist es wichtig, setUsagePattern() immer vor allocate() aufzurufen.

Der Puffer ist nun gebunden und man könnte nun die Vertex-Daten mit den Eingangsparametern im Shaderprogramm verknüpfen. Da wir dies nicht jedesmal vorm Zeichnen erneut machen wollen, verwenden wir ein VertexArrayObject (VBA), welches letztlich so etwas wie ein Container für derartige Verknüpfungen darstellt. Man kann sich so ein VBA wie eine Aufzeichnung der nachfolgenden Verknüpfungsbefehle vorstellen, wobei der jeweils aktive Vertexpuffer und die verknüpften Variablen kollektiv gespeichert werden. Später beim eigentlichen Zeichnen muss man nur noch das VBA einbinden, welches unter der Haube dann alle aufgezeichneten Verknüpfungen abspielt und so den OpenGL-Zustand entsprechend wiederherstellt.

Konkret sieht das so aus:

Funktion: TriangleWindow::initialize(), fortgesetzt

```
// Initialize the Vertex Array Object (VAO) to record and remember subsequent attribute assocations with
   // generated vertex buffer(s)
   m_vao.create(); // create underlying OpenGL object
   m_vao.bind(); // sets the Vertex Array Object current to the OpenGL context so it monitors attribute assignments
   // now all following enableAttributeArray(), disableAttributeArray() and setAttributeBuffer() calls are
   // "recorded" in the currently bound VBA.
   // Enable attribute array at layout location 0
   m_program->enableAttributeArray(0);
   m_program->setAttributeBuffer(0, GL_FLOAT, 0, 3);
   // This maps the data we have set in the VBO to the "position" attribute.
   // 0 - offset - means the "position" data starts at the begin of the memory array
   // 3 - size of each vertex (=vec3) - means that each position-tuple has the size of 3 floats (those are the 3
coordinates,
          mind: this is the size of GL_FLOAT, not the size in bytes!
```

Zunächst wir das Vertex-Array-Objekt erstellt und eingebunden. Danach werden alle folgenden Aufrufe von enableAttributeArray() und setAttributeBuffer() vermerkt.

Der Befehl enableAttributeArray(0) aktiviert ein Attribut (bzw. Variable) im Vertex-Puffer, welches im Shaderprogramm dann mit dem layout-Index 0 angesprochen werden kann. Im Vertex-Shader dieses Beispiels (siehe oben) ist das der position Vektor.

Mit setAttributeBuffer() wird nun definiert, wo im Vertex-Buffer die Daten zu finden sind, d.h. Datentyp, Anzahl (hier 3 floats entsprechend den 3 Koordinaten) und dem Startoffset (hier 0).

Diese beiden Aufrufe entsprechen den OpenGL-Aufrufen:

```
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);
```

Damit sind alle Daten initialisiert, und die Pufferobjekte können freigegeben werden:

Funktion: TriangleWindow::initialize(), fortgesetzt

```
// Release (unbind) all
   m_vertexBufferObject.release();
   m_vao.release(); // not really necessary, but done for completeness
}
```

Dies entspricht den OpenGL-Aufrufen:

```
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(∅);
```

Man sieht also, dass die Qt-Klassen letztlich die nativen OpenGL-Funktionsaufrufe (mitunter ziemlich direkt) kapseln.

Die Qt API fühlt sich hier nicht ganz glücklich gewählt an. Aufrufe wie m_programm>enableAttributeArray(0) sugggerieren, dass hier tatsächlich Objekteigenschaften geändert werden, dabei wird tatsächlich mit dem OpenGL-Zustandsautomaten gearbeitet. Entsprechend ist bei etlichen Befehlen die Reihenfolge der Aufrufe wichtig, obgleich es bei individuell setzbaren Attributen eines Objekts eigentlich egal sein sollte, welches Attribut man zuerst setzt. Daher habe ich oben im Tutorial auch noch einmal explizit die dahinterliegenden OpenGL-Befehle angegeben.

Es ist daher empfehlenswert, dass man die Qt API nochmal in eigene Klassen einpackt, und dann eine entsprechend schlange und fehlerunanfällige API entwirft.

1.3.3. Rendern

Das eigentliche Render erfolgt in der Funktion render(), die als rein virtuelle Funktion von der Basisklasse OpenGLWindow aufgerufen wird. Die Basisklasse prüft ja auch, ob Rendern überhaupt notwendig ist, und setzt den aktuellen OpenGL Context. Dadurch kann man in dieser Funktion direkt losrendern.

Die Implementierung ist (noch) recht selbsterklärend:

Funktion: TriangleWindow::render()

```
void TriangleWindow::render() {
   // this function is called for every frame to be rendered on screen
   const qreal retinaScale = devicePixelRatio(); // needed for Macs with retina display
   glViewport(0, 0, width() * retinaScale, height() * retinaScale);
   // set the background color = clear color
   glClearColor(0.1f, 0.1f, 0.2f, 1.0f);
   glClear(GL_COLOR_BUFFER_BIT);
   // use our shader program
   m_program->bind();
   // bind the vertex array object, which in turn binds the vertex buffer object and
   \ensuremath{//} sets the attribute buffer in the OpenGL context
   m_vao.bind();
   // now draw the triangles:
   // - GL_TRIANGLES - draw individual triangles
   // - 0 index of first triangle to draw
   // - 3 number of vertices to process
   glDrawArrays(GL_TRIANGLES, 0, 3);
   // finally release VAO again (not really necessary, just for completeness)
   m_vao.release();
}
```

Die ersten drei <code>glXXX</code> Befehle sind native OpenGL-Aufrufe, und sollten eigentlich in dieser Art mehr oder weniger immer auftauchen. Die Anpassung des ViewPort (<code>glViewport(...)</code>) ist für resize-Operationen notwendig, das Löschen des Color Buffers (<code>glClear(...)</code>) auch (später werden in diesem Aufruf noch andere Puffer gelöscht werden). Die Funktion <code>devicePixelRatio()</code> ist für Bildschirme mit angepasster Skalierung interessant (vornehmlich für Macs mit Retina-Display).

Solange sich die Hintergrundfarbe (clear-color) nicht ändert, könnte man diesen Aufruf auch in die Initialisierung verschieben.

Danach kommt der interessante Teil. Es wird das Shader-Programm gebunden (m_programm->bind()) und danach das Vertex Array Objekt (VAO) (m_vao.bind()). Letzteres sorgt dafür, dass im OpenGL-Kontext auch das Vertex-Buffer-

Objekt und die Attributzuordnung gesetzt werden. Damit kann dann einfach gezeichnet werden, wofür mit glDrawArrays(...) wieder ein nativer OpenGL-Befehl zum Einsatz kommt.

Dieser Teil des Programms sähe in nativem OpenGL-Code so aus:

```
glUseProgram(shaderProgram);
glBindVertexArray(VAO);
glDrawArrays(GL_TRIANGLES, 0, 3);
glBindVertexArray(0);
```

Ist also ziemlich ähnlich.

1.3.4. Resourcenfreigabe

Bleibt noch das Aufräumen der reservierten Resourcen im Destructor.

```
TriangleWindow::~TriangleWindow() {
   // resource cleanup
   // since we release resources related to an OpenGL context,
   // we make this context current before cleaning up our resources
   m_context->makeCurrent(this);
   m_vao.destroy();
   m_vertexBufferObject.destroy();
   delete m_program;
}
```

Da einige Resourcen dem OpenGL-Kontext des aktuellen Fenster gehören, sollte man vorher den OpenGL-Kontext "aktuell" setzen (m_context->makeCurrent(this);), damit diese Resourcen sicher freigegeben werden können.

Damit wäre dann die Implementierung des TriangleWindow komplett.

1.4. Das Hauptprogramm

Das TriangleWindow kann jetzt eigentlich direkt als Top-Level-Fenster verwendet werden. Allerdings ist zu beachten, dass vor dem ersten Anzeigen (und damit vor der OpenGL-Initialisierung und Erstellung des OpenGL-Kontext) die Oberflächeneigenschaften (QSurfaceFormat) zu setzen sind:

```
int main(int argc, char **argv) {
    QGuiApplication app(argc, argv);

    // Set OpenGL Version information
    QSurfaceFormat format;
    format.setRenderableType(QSurfaceFormat::OpenGL);
    format.setProfile(QSurfaceFormat::CoreProfile);
    format.setVersion(3,3);

    TriangleWindow window;
    // Note: The format must be set before show() is called.
    window.setFormat(format);
    window.resize(640, 480);
    window.show();

    return app.exec();
}
```

Das wäre dann erstmal eine Grundlage, auf der man aufbauen kann. Interessanterweise bietet Qt selbst eine Klasse an, die unserer OpenGLWindow-Klasse nicht unähnlich ist. Diese schauen wir uns in *Tutorial 02* an.

2. Tutorial 02: Alternative: die Klasse QOpenGLWindow

Wer mit der Funktionalität des OpenGLWindows aus *Tutorial 01* zufrieden ist, kann gleich mit *Tutorial 03* weitermachen.

In diesem Teil schauen wir uns die Klasse QOpenGLWindow an. Mit Hilfe dieser Klasse (die letztlich die Klasse OpenGLWindow aus dem *Tutorial 01* ersetzt) erstellen wir ein leicht modifiziertes Zeichenprogramm (2 Dreiecke, welche ein buntes Rechteck ergeben und via Element-Index-Puffer gezeichnet werden).

Figure 2. Ausgabe: Tutorial_02 (Linux/Ubuntu Screenshot)

Quelltext für dieses Tutorial liegt im github repo: Tutorial_02

Zuerst schauen wir an, was die Klasse OpenGLWindow unter der Haube macht.

2.1. Verwendung der Klasse

Eine interessante Eigenschaft des QOpenGLWindow ist die Möglichkeit, nur einen Teil des Fensters neu zu zeichnen. Das wird über die UpdateBehavior-Eigenschaft gesteuert. Interessant ist das eigentlich nur, wenn man mittels rasterbasiertem QPainter Teile des Bildes aktualisieren möchte. Es gibt 3 Varianten:

- QOpenGLWindow::NoPartialUpdate das gesamte Bild wird jedes Mal neu gezeichnet (es wird kein zusätzlicher Framebuffer erzeugt und verwendet)
- QOpenGLWindow::PartialUpdateBlit man zeichnet nur einen Teil des Bildes neu, und das in einem zusätzlichen, automatisch erstellten Framebuffer. Nach Ende des Zeichnens wird einfach der neu gezeichnete Teil in den eigentlichen Framebuffer kopiert.
- QOpenGLWindow::PartialUpdateBlend im Prinzip wie die 2. Varianten, nur dass diesmal der Inhalt nicht kopiert, sondern überblendet wird.

Ob man die 2. oder 3. Funktion braucht, hängt sicher von der Anwendung ab. Für viele OpenGL-Anwendungen wird das vielleicht nicht notwendig sein, daher schauen wir uns hier mal Variante mit QOpenGLWindow::NoPartialUpdate an.

Die Klasse QOpenGLWindow bietet 5 interessante virtuelle Funktionen an:

```
virtual void initializeGL();
                                       // initialization stuff
virtual void paintGL();
                                       // actual painting
                                // not needed for NoPartialUpdate
// not needed for NoPartialUpdate
virtual void paintOverGL();
virtual void paintUnderGL();
virtual void resizeGL(int w, int h); // to update anything related to view port
                                         // size (projection matrix etc.)
```

Die Funktion initialize(L() macht eigentlich das Gleiche, wie in Tutorial 01 die Funktion initialize().

Die Funktion paintGL() macht das Gleiche, wie in Tutorial 01 die Funktion render(), d.h. hier wird das Bild mit OpenGL gezeichnet.

Die Funktionen paintOverGL() und paintUnderGL() werden im Modus QOpenGLWindow::NoPartialUpdate nicht benötigt.

Letztlich ist die Funktion resizeGL(int w, int h) nur eine Bequemlichkeitsfunktion, aufgerufen aus der event() Funktion für das QEvent::ResizeEvent. Hier kann man z.B. die Projektionsmatrix an den neuen Viewport anpassen oder sonstige Größenanpassungen vornehmen.

2.2. Die Implementierung der Klasse QOpenGLWindow

Um die Gemeinsamkeiten und Unterschiede zur OpenGLWindow-Klasse aus Tutorial 01 zu verstehen, schauen wir uns mal die Klassenimplementierung an. Die Quelltextschnipsel stammen aus der Qt Version 5.14, sollten aber im Vergleich zu vorherigen Versionen nicht groß verändert sein.

Wichtigster Unterschied ist schon die Vererbungshierarchie. QOpenGLWindow leitet von QOpenGLPaintDevice ab, welches hardwarebeschleunigtes Zeichnen mit dem rasterbasierten QPainter erlaubt. Allerdings gibt es einen kleinen Haken. Zitat aus dem Handbuch:

Antialiasing in the OpenGL paint engine is done using multisampling. Most hardware require significantly more memory to do multisampling and the resulting quality is not on par with the quality of the software paint engine. The OpenGL paint engine's strength lies in its performance, not its visual rendering quality.

— Qt Documentation 5.9 zu QOpenGLPaintDevice

Das hat insofern Auswirkung auf das Gesamterscheinungsbild der Anwendung, wenn im OpenGL Fenster verwaschene Widgets oder Kontrollen gezeichnet werden, daneben aber klassische Widgets mit scharfen Kanten. Man kennt das Problem vielleicht von den verwaschenen Fenstern in Windows 10, wenn dort die Anwendungen letztlich in einen Pixelpuffer zeichnen, welcher dann als Textur in einer 3D Oberfläche interpoliert gerendert wird. Sieht meiner Meinung nach doof aus:-)

Hilfreich kann das dennoch sein, wenn man existierende Zeichenfunktionalität (basierend auf QPainter) in einem OpenGL-Widget verwenden möchte. Falls man die Funktionalität nicht braucht, bringt das PaintDevice und die dafür benötigte Funktionalität etwas unnützen Overhead (vor allem Speicherverbrauch) mit sich.

Schauen wir uns nun die Gemeinsamkeiten an.

2.2.1. Constructor

Der Konstruktor sieht erstmal fast genauso aus, wie der unserer OpenGLWindow-Klasse. abgesehen davon, dass die Argumente in die private Pimpl-Klasse weitergeleitet werden.

```
QOpenGLWindow::QOpenGLWindow(QOpenGLWindow::UpdateBehavior updateBehavior, QWindow *parent)
    : QPaintDeviceWindow(*(new QOpenGLWindowPrivate(nullptr, updateBehavior)), parent)
{
    setSurfaceType(QSurface::OpenGLSurface);
}
```

2.2.2. Ereignisbehandlungsroutinen

Interessanter sind schon die Ereignisbehandlungsroutinen:

```
void QOpenGLWindow::paintEvent(QPaintEvent * /*event*/ ) {
    paintGL();
}

void QOpenGLWindow::resizeEvent(QResizeEvent * /*event*/ ) {
    Q_D(QOpenGLWindow);
    d->initialize();
    resizeGL(width(), height());
}
```

Das paintEvent() wird einfach an die vom Nutzer zu implementierende Funktion paintGL() weitergereicht. Insofern analog zu der Ereignisbehandlung im OpenGLWidget, welches auf QEvent::UpdateRequest wartet. Allerdings sind auf dem Weg bis zum Aufruf der paintEvent() Funktion etliche Zwischenschritte implementiert, bis zum Erzeugen des QPaintEvent-Objekts, welches gar nicht benötigt wird. Der Aufwand wird deutlich, wenn man sich die Aufrufkette anschaut:

```
QPaintDeviceWindow::event(QEvent *event) // waits for QEvent::UpdateRequest
QPaintDeviceWindowPrivate::handleUpdateEvent()
QPaintDeviceWindowPrivate::doFlush() // calls QPaintDeviceWindowPrivate::paint()
    bool paint(const QRegion &region)
        Q_Q(QPaintDeviceWindow);
        QRegion toPaint = region & dirtyRegion;
        if (toPaint.isEmpty())
           return false;
        // Clear the region now. The overridden functions may call update().
       dirtyRegion -= toPaint;
        beginPaint(toPaint); // here we call QOpenGLWindowPrivate::beginPaint()
        QPaintEvent paintEvent(toPaint);
        q->paintEvent(&paintEvent); // here we call QOpenGLWindowPrivate::paintEvent()
        endPaint(); // here we call QOpenGLWindowPrivate::endPaint()
       return true;
   }
```

Alternativ wird paintGL() noch aus der Ereignisbehandlungsroutine QPaintDeviceWindow::exposeEvent() aufgerufen, wobei dort direkt QPaintDeviceWindowPrivate::doFlush() gerufen wird. Die Funktionen beginPaint() und endPaint() kümmern sich um den temporären Framebuffer, in dem beim UpdateBehavior QOpenGLWindow::PartialUpdateBlit und QOpenGLWindow::PartialUpdateBlend gerendert wird. Ohne diese Modi passiert in der Funktion sehr wenig.

2.2.3. Initialisierung

Interessant ist noch der Initialisierungsaufruf, der in der resizeEvent() Ereignisbehandlungsroutine steckt.

```
void QOpenGLWindowPrivate::initialize()
{
   Q_Q(QOpenGLWindow);
    if (context)
       return:
    if (!q->handle())
        qWarning("Attempted to initialize QOpenGLWindow without a platform window");
    context.reset(new QOpenGLContext);
    context->setShareContext(shareContext);
    context->setFormat(q->requestedFormat());
    if (!context->create())
        qWarning("QOpenGLWindow::beginPaint: Failed to create context");
    if (!context->makeCurrent(q))
        qWarning("QOpenGLWindow::beginPaint: Failed to make context current");
    paintDevice.reset(new QOpenGLWindowPaintDevice(q));
    if (updateBehavior == QOpenGLWindow::PartialUpdateBlit)
        hasFboBlit = QOpenGLFramebufferObject::hasOpenGLFramebufferBlit();
    q->initializeGL();
}
```

Eigentlich sieht die Funktion fast genauso wie der Initialisierungsteil der Funktion OpenGLWindow::renderNow() aus *Tutorial 01* aus. Abgesehen natürlich davon, dass noch ein QOpenGLWindowPaintDevice erzeugt wird.

2.3. Zeichnen mit Index-/Elementpuffern

Als Erweiterung zum *Tutorial 01* soll im Anwendungsbeispiel für QOpenGLWindow ein Indexpuffer verwendet werden. Zwei Erweiterungen werden vorgestellt:

- interleaved Vertex-Puffer (d.h. Koordinaten und Farben zusammen in einem Puffer)
- indexbasiertes Elementzeichnen (und den dafür benötigten Elementpuffer)

Die Implementierung des RectangleWindow ist zunächst mal fast identisch zum TriangleWindow aus Tutorial 01:

RectangleWindow.h

```
/* This is the window that shows the two triangles to form a rectangle.
    We derive from our QOpenGLWindow base class and implement the
    virtual initializeGL() and paintGL() functions.
class RectangleWindow : public QOpenGLWindow {
public:
    RectangleWindow();
   virtual ~RectangleWindow() Q_DECL_OVERRIDE;
   void initializeGL() Q_DECL_OVERRIDE;
   void paintGL() Q_DECL_OVERRIDE;
private:
   // Wraps an OpenGL VertexArrayObject (VAO)
   QOpenGLVertexArrayObject m_vao;
   //\ \mbox{Vertex buffer (positions and colors, interleaved storage mode)}.
                             m_vertexBufferObject;
   QOpenGLBuffer
    // Index buffer to draw two rectangles
   QOpenGLBuffer
                             m_indexBufferObject;
    // Holds the compiled shader programs.
   QOpenGLShaderProgram
                         *m_program;
};
```

Die wesentlichsten Erweiterungen sind:

- die Klasse erbt von QOpenGLWindow
- die Initialisierung erfolgt in der Funktion initializeGL() (vormals TriangleWindow::initialize())
- das Rendern erfolgt in der Funktion paintGL() (vormals TriangleWindow::render())
- es gibt eine neue Variable vom Typ QOpenGLBuffer, welche wir für den Indexpuffer verwenden.

2.3.1. Shaderprogramm

Die Initialisierung beginnt wie in *Tutorial 01* unverändert mit dem Erstellen und Compilieren des Shaderprogramms. Da diesmal Farben verwendet werden, müssen beide Shaderprogramme angepasst werden:

Vertexshader "shaders/pass_through.vert"

```
#version 330 core
// vertex shader
// input: attribute named 'position' with 3 floats per vertex
layout (location = 0) in vec3 position;
layout (location = 1) in vec3 color;
out vec4 fragColor;
void main() {
  gl_Position = vec4(position, 1.0);
  fragColor = vec4(color, 1.0);
```

Es gibt nun zwei Vertex-Attribute:

- layout location 0 = Position (als vec3 Koordinate)
- layout location 1 = Farbe (auch als vec3, rgb Farbwerte je im Bereich 0..1)

Der Farbwert eines Vertex wird als Ausgabevariable fragColor einfach als vec4 weitergereicht und kommt dann, bereits fertig interpoliert, als fragColor im Fragmentshader an. Dort wird er unverändert ausgegeben.

Fragmentshader "shaders/simple.frag"

```
#version 330 core
// fragment shader
in vec4 fragColor; // input: interpolated color as rgba-value
out vec4 finalColor; // output: final color value as rgba-value
void main() {
  finalColor = fragColor;
```

Das Laden, Compilieren und Linken der Shader im Shaderprogramm wird genauso wie in Tutorial 01 gemacht.

2.3.2. Initialisierung von gemischten Vertex-Puffern

Als nächstes der Vertex-Buffer erstellt. Diesmal werden nicht nur Koordinaten in den Buffer geschrieben, sondern auch Farben, und zwar abwechselnd (=interleaved) (siehe https://learnopengl.com/Getting-started/Hello-Triangle für eine Erläuterung).

Es wird ein Rechteck gezeichnet, und zwar durch zwei Dreiecke. Dafür brauchen wir 4 Punkte. Der Vertexpuffer-Speicherblock soll am Ende so aussehen: p0c0|p1c1|p2c2|p3c3, wobei p für eine Position (vec3) und c für eine Farbe (vec3) steht. Die Daten werden zunächst in statischen Arrays separat definiert.

Die noch getrennten Daten werden jetzt in einen gemeinsamen Speicherbereich kopiert.

```
// create buffer for 2 interleaved attributes: position and color, 4 vertices, 3 floats each
std::vector<float> vertexBufferData(2*4*3);
// create new data buffer - the following memory copy stuff should
// be placed in some convenience class in later tutorials
// copy data in interleaved mode with pattern p0c0|p1c1|p2c2|p3c3
float * buf = vertexBufferData.data();
for (int v=0; v<4; ++v, buf += 6) {
    // coordinates
   buf[0] = vertices[3*v];
   buf[1] = vertices[3*v+1];
   buf[2] = vertices[3*v+2];
   // colors
   buf[3] = vertexColors[v].redF();
   buf[4] = vertexColors[v].greenF();
   buf[5] = vertexColors[v].blueF();
}
```

Es gibt sicher viele andere Varianten, die Daten in der gewünschten Reihenfolge in den Speicherblock zu kopieren.

Es fällt vielleicht auf, dass der gemeinsame Pufferspeicher in einem lokal erstellen std::vector liegt. Das wirft die Frage nach der (benötigten) Lebensdauer für diese Pufferspeicher auf.

```
// create a new buffer for the vertices and colors, interleaved storage
m_vertexBufferObject = QOpenGLBuffer(QOpenGLBuffer::VertexBuffer);
m_vertexBufferObject.create();
m_vertexBufferObject.setUsagePattern(QOpenGLBuffer::StaticDraw);
m_vertexBufferObject.bind();

// now copy buffer data over: first argument pointer to data, second argument: size in bytes
m_vertexBufferObject.allocate(vertexBufferData.data(), vertexBufferData.size()*sizeof(float) );
```

Im letzten Aufruf wird der Pufferspeicher tatsächlich *kopiert*. Der Aufruf zu allocate() ist sowohl Speicherreservierung im OpenGL-Puffer, als auch Kopieren der Daten (wie mit memcpy).

Danach wird der Vector vertexBufferData nicht mehr benötigt, oder könnte sogar für weitere Puffer verwendet und verändert werden.

2.3.3. Element-/Indexpuffer

In ähnlicher Weise wird nun der Elementpuffer erstellt, allerdings gibt es eine OpenGL-Besonderheit zu beachten:

Das *Vertex Array Object* verwaltet nicht nur die Attribute, sondern auch gebundene Puffer. Daher muss das VAO *vor* dem Elementpuffer gebunden werden, um dann den Zustand korrekt zu speichern.

Deshalb wird nun zuerst das VAO erstellt und gebunden (kann man auch ganz am Anfang machen)

```
// create and bind Vertex Array Object - must be bound *before* the element buffer is bound,
// because the VAO remembers and manages element buffers as well
m_vao.create();
m_vao.bind();
```

und dann erst der Elementpuffer erzeugt:

Qt (und auch OpenGL) unterscheidet nicht zwischen Pufferobjekten für verschiedene Aufgaben. Erst beim Binden des Puffers an den OpenGL Kontext (beispielsweise durch den Aufruf glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO)) wird die Verwendung des Puffers festgelegt.

In Qt muss man die Art des Puffers als Construktor-Argument übergeben, wobei QOpenGLBuffer::VertexBuffer der Standard ist. Für den Index-/Elementpuffer muss man QOpenGLBuffer::IndexBuffer übergeben. Der eigentliche Pufferinhalt wird wieder beim Aufruf von allocate() kopiert.

2.3.4. Attribute im gemischten Vertexarray

Bei der Verwendung gemischter Vertexarrays (mehrer Attribute je Vertex) muss man dem Shaderprogramm die Speicherstruktur und die Abbildung der Attribute angeben (zur Erläuterung siehe wiederum Hello-Triangle Tutorial).

Die Syntax von QOpenGLShaderProgram::setAttributeBuffer entspricht im wesentlichen dem nativen OpenGL-Aufruf glVertexAttribPointer:

```
// stride = number of bytes for one vertex (with all its attributes) = 3+3 floats = 6*4 = 24 Bytes
int stride = 6*sizeof(float);

// layout location 0 - vec3 with coordinates
m_program->enableAttributeArray(0);
m_program->setAttributeBuffer(0, GL_FLOAT, 0, 3, stride);

// layout location 1 - vec3 with colors
m_program->enableAttributeArray(1);
int colorOffset = 3*sizeof(float);
m_program->setAttributeBuffer(1, GL_FLOAT, colorOffset, 3, stride);
```

Wie gesagt, für die korrekte Komposition des VAO es ist lediglich die Reihenfolge des Bindens und der setAttributeBuffer()-Aufrufe wichtig. Man könnte also auch die Puffer erst erstellen und befüllen und zum Schluss die folgenden Aufrufe in der geforderten Reihenfolge schreiben:


```
m_vao.bind(); // VAO binden
// Puffer binden und Daten kopieren
m_vertexBufferObject.bind();
m_vertexBufferObject.allocate(vertexBufferData.data(), vertexBufferData.size()*sizeof(float) );
m_indexBufferObject.bind();
m_indexBufferObject.allocate(indices, sizeof(indices) );
// Attribute setzen
m_program->setAttributeBuffer(...)
```

In ähnlicher Art und Weise werden Bufferdaten auch aktualisiert (wird noch in einem späteren Tutorial besprochen).

2.3.5. Freigabe der Puffer

Bei der Freigabe der Puffer ist die Reihenfolge wichtig. Damit sich das VAO den Zustand des eingebundenden Elementpuffers merkt, darf man diesen *nicht vor* Freigabe des VAO freigeben. Am Besten man gibt nur Vertexbuffer und VAO frei, und auch das nur, wenn es notwendig ist. Es wird im Beispiel auch nur der Vollständigkeithalber gemacht.

```
// Release (unbind) all
m_vertexBufferObject.release();
m_vao.release();
```


Explizites Freigeben von VBO oder VAO ist eigentlich nur notwendig, wenn man mit verschiedenen VAOs arbeitet und/oder verschiedenen Shadern. Dann sollte man auf Zustand im aktuellen OpenGL-Kontext achten und bewusst OpenGL-Objekte einbinden und freigeben.

2.3.6. Rendern

Das eigentliche Zeichnen erfolgt in der paintGL() Funktion, welche fast genauso aussieht wie die TriangleWindow::render() Funktion aus *Tutorial 01*.

```
void RectangleWindow::paintGL() {
   // set the background color = clear color
   glClearColor(0.1f, 0.1f, 0.2f, 1.0f);
   glClear(GL_COLOR_BUFFER_BIT);
   // use our shader program
   m_program->bind();
   // bind the vertex array object, which in turn binds the vertex buffer object and
   // sets the attribute buffer in the OpenGL context
   // For old Intel drivers you may need to explicitely re-bind the index buffer, because
   // these drivers do not remember the binding-state of the index/element-buffer in the VAO
   // m_indexBufferObject.bind();
   // now draw the two triangles via index drawing
   // - GL_TRIANGLES - draw individual triangles via elements
   glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, nullptr);
   // finally release VAO again (not really necessary, just for completeness)
   m_vao.release();
}
```

Das Anpassen des Viewports (OpenGL-Aufruf qlViewport()) kann entfallen, da das bereits in der Basisklasse gemacht wurde.

Dann folgen eigentlich die üblichen 4 Schritte:

- 1. Shaderprogramm binden
- 2. Vertex Array Objekt binden (und damit Binden des Vertex- und Elementpuffers, und setzen der Attribut-Zeiger)
- 3. Rendern, diesmal mit glDrawElements statt glDrawArrays, und
- 4. freigeben des VAO (damit danach weitere Objekte gezeichnet werden können).

Bei einigen älteren Intel-Treibern wurde der Zustand des eingebundenen Elementpuffers noch nicht korrekt im VAO gespeichert und wiederhergestellt. Daher musste man den Index-/Elementpuffer vor dem Zeichnen immer nochmal explizit einbinden (siehe auskommentierter Quelltext).

Bei aktuellen Treibern scheint das aber kein Problem mehr zu sein (zumindest nicht unter Ubuntu).

2.4. Zusammenfassung

Das QOpenGLWindow ist im Modus QOpenGLWindow::NoPartialUpdate eigentlich vergleichbar mit unserem minimalistischen OpenGLWindow aus Tutorial 01. Etwas Overhead ist vorhanden, allerdings sollte der in realen Anwendungen keine Rolle spielen. Es spricht also eigentlich nichts dagegen, direkt mit dem QOpenGLWindow anzufangen.

Für spätere Erweiterungen (Maus- und Tastatureingabebehandlung) ist dennoch eine von Q0penGLWindow abgeleitete Klasse nötig. Wenn man also die zusätzlichen Funktionen (QPainter-Zeichnen, Buffer-Blenden etc.) von QOpenGLWindow nicht braucht, kann man auch mit dem schlanken OpenGLWindow aus Tutorial 01 weitermachen.

Wie man nun ein solches QWindow-basiertes (natives) OpenGL-Fenster in eine Widgets-Anwendung integriert bekommt, beschreibt Tutorial 03.

3. Tutorial 03: Renderfenster in einem QDialog eingebettet

In diesem Teil des Tutorials geht es darum, ein QWindow-basiertes OpenGL-Renderfenster (siehe *Tutorial 01* und 02), in eine QWidgets-Anwendung einzubetten.

Der erste Teil des Tutorials beschäftigt sich allein mit der Einbettung (und ist recht kurz). Damit das Tutorial aber noch etwas interessanter wird, gibt es im 2. Abschnitt noch zwei Interaktionsvarianten mit und ohne Animation.

Man könnte auch die Bequemlichkeitsklasse QOpenGLWidget verwenden. In *Tutorial 04* schauen wir uns an, wie diese Klasse intern funktioniert und ob es ggfs. Performancenachteile geben könnte, wenn man diese Klasse verwendet.

Figure 3. Tutorial_03 (Windows 10 Screenshot)

Quelltext für dieses Tutorial liegt im github repo: Tutorial_03

3.1. Window Container Widgets

Die Funktion QWidget::createWindowContainer erstellt ein QWidget, welches das als Argument übergebene QWindow einbettet. So einfach kann's sein:

TestDialog.cpp:Konstruktor

```
// *** create OpenGL window

QSurfaceFormat format;
format.setRenderableType(QSurfaceFormat::OpenGL);
format.setProfile(QSurfaceFormat::CoreProfile);
format.setVersion(3,3);

m_rectangleWindow = new RectangleWindow;
m_rectangleWindow->setFormat(format);

// *** create window container widget

QWidget *container = QWidget::createWindowContainer(m_rectangleWindow);
container->setMinimumSize(QSize(600,400));
```

m_rectangleWindow ist ein Zeiger auf die aus Tutorial 02 bekannte RectangleWindow Klasse. Das so erstellte Container-

Widget muss natürlich noch in ein Layout gesteckt werden. Aber mehr ist eigentlich nicht zu tun.

3.2. Interaktion und Synchronisation mit dem Zeichnen

Grundsätzlich ist folgende Aktualisierungslogik anzustreben:

```
OpenGL zeichnet Bild

<Anwendung wartet in Ereignis-Schleife>

Ein Event wird abgearbeitet, ändert für die Darstellung relevante Daten. Registriert ein "UpdateRequest" in der Ereignisschleife.

<Anwendung wartet in Ereignis-Schleife>

Ein Event wird abgearbeitet, ändert für die Darstellung relevante Daten. Registriert ein "UpdateRequest" in der Ereignisschleife. Dieses wird mit dem bereits existierenden "UpdateRequest" verschmolzen.

Passend zum VSync wird das UpdateRequest-Event verschickt, was zum OpenGL Rendern führt. Und wieder von vorne...
```

D.h., das potenziell zeitaufwändige Aktualisieren der Puffer und Zeichendaten erfolgt stets dann, wenn noch auf den nächsten VSync gewartet wird. So hat man ca. 16 ms Zeit (by üblichen 60 FPS), alles Notwendige zu erledigen.

3.2.1. Einmalige Änderungen: Farbwechsel auf Knopfdruck

Eine typische Anwendung, vor allem in technischen Anwendungen (d.h. nicht in Spielen), ist die diskrete Änderung der 3D Szene, sei es durch eine Kamerabewegung, Auswahl und Hervorhebung einzelner Elemente, oder Transformation der dargestellten Geometrie. Innerhalb des Qt Frameworks wird also zunächst ein Ereignis (OnClick, Maus- oder Tastatureingabe, ...) in die Ereignisschleife gelangen und dort abgearbeitet werden.

Ein Beispiel ist der "Change Color" Button im Dialog im Tutorial 03. Es gibt eine OnClick-Ereignisbehandlungsroutine:

TestDialog.cpp:TestDialog::onChangeColors()

Die Membervariable m_vertexColors wird mit zufälligen Farbwerten befüllt. Dann wird die Funktion updateScene() aufgerufen.

Zum Verständnis kann man noch einmal die geänderte Klassendeklaration von RectangleWindow anschauen:

RectangleWindow.h

Der im *Tutorial 02* noch als temporärer lokaler Speicherbereich verwendete Vector m_vertexBufferData ist jetzt eine Membervariable. Die zu verwendenden Farben sind in dem öffentlichen Vector m_vertexColors abgelegt.

Der Quelltext in diesem Tutorial-Beispiel ist natürlich sehr fehleranfällig und unsicher. Darauf kommt es aber nicht an und die notwendigen Fehlerprüfungen wurden der Übersichtlichkeit wegen weggelassen.

Die Vertexfarben werden im Konstruktor mittels C++11 Initialisierungsliste initialisiert:

RectangleWindow.cpp: Konstruktor

Die OpenGL-Initialisierung ist minimal verändert:

```
// resize buffer for 2 interleaved attributes: position and color, 4 vertices, 3 floats each
m_vertexBufferData.resize(2*4*3);
// create new data buffer - the following memory copy stuff should
// be placed in some convenience class in later tutorials
// copy data in interleaved mode with pattern p0c0|p1c1|p2c2|p3c3
float * buf = m_vertexBufferData.data();
for (int v=0; v<4; ++v, buf += 6) {
    // coordinates
   buf[0] = vertices[3*v];
   buf[1] = vertices[3*v+1];
   buf[2] = vertices[3*v+2];
   // colors
   buf[3] = m_vertexColors[v].redF();
   buf[4] = m_vertexColors[v].greenF();
   buf[5] = m_vertexColors[v].blueF();
}
. . . .
```

Der Vertex-Puffer wird auf die richtige Größe gebracht (und bleibt so), und wird dann wie bisher belegt, wobei diesmal die Farben aus der Membervariable m_vertexColors kommen. Sonst ändert sich nichts.

Wenn jetzt in der Ereignisbehandlungsroutine der "Change Color" Schaltfläche die Farben in m_vertexColors geändert werden, hat das keinerlei Einfluss auf das OpenGL-Zeichnen. Die neuen Werte müssen erst in den OpenGL-Vertexpuffer kopiert werden.

Das passiert in der Funktion updateScene() (hätte auch updateColors() heißen können):

RectangleWindow.cpp:updateScene()

```
void RectangleWindow::updateScene() {
   // for now we only update colors
   // first update our vertex buffer memory, but only those locations that are actually changed
   float * buf = m_vertexBufferData.data();
   for (int v=0; v<4; ++v, buf += 6) {
       // colors
       buf[3] = m_vertexColors[v].redF();
       buf[4] = m_vertexColors[v].greenF();
       buf[5] = m_vertexColors[v].blueF();
   }
   // make this OpenGL context current
   makeCurrent();
   // bind the vertex buffer
   m_vertexBufferObject.bind();
   // now copy buffer data over: first argument pointer to data, second argument: size in bytes
   \verb|m_vertexBufferData.data|(), \verb|m_vertexBufferData.size()*sizeof(float)|| );
   // and request an update
   update();
}
```

Erst wird der Puffer aktualisiert. Aber anstelle diesen komplett neu aufzubauen (und eventuell noch

Speicherbereiche neu zu reservieren), verändern wir einfach nur die Farbwerte.

Danach muss der OpenGL-Vertexpuffer die Daten bekommen. Damit der OpenGL-Context stimmt, wird QOpenGLWindow::makeCurrent() aufgerufen. Dann wird der Vertexpuffer eingebunden und schließlich die Daten kopiert.

Ganz zuletzt wird QPaintDeviceWindow::update() aufgerufen (QOpenGLWindow ist durch Vererbung auch ein QPaintDeviceWindow). Dies hängt letztlich ein QEvent::UpdateRequest an die Ereignisliste an, wodurch beim nächsten VSync neu gezeichnet wird.

Man kann mal eine Test-Debug-Ausgabe in die Zeichenroutine einfügen. Wenn man nun in der OnClick-Ereignisbehandlungsroutine die Funktion updateScene() mehrfach aufruft, wird dennoch stets nur einmal je VSync gezeichnet.

3.2.2. Animierte Farbänderung

Anstelle neue Farben sofort zu setzen, kann man diese auch animiert verändern, d.h. in jedem Frame nur ein Stück von der Ursprungsfarbe zur Zielfarbe gehen.

Man benötigt zusätzliche Membervariablen und zwei neue Funktionen:

RectangleWindow.h

```
class RectangleWindow : public QOpenGLWindow {
public:
   void animateColorsTo(const std::vector<QColor> & toColors);
private:
   // modifies the scene a bit and call updateScene() afterwards
   // when already in the final state, doesn't do anything
   void animate();
   // Stores the target colors that we animate towards
   // Stores the target colors that we animate from
   std::vector<QColor>
                           m_fromColors;
   // number of frames used for the animation
   unsigned int
                           m_frameCount;
};
```

Die Funktion animateColorsTo() wird wieder durch eine Schaltfläche angestoßen. Die Implementierung überträgt nur die Daten in die Membervariablen und ruft animate() auf:

RectangleWindow.cpp:animateColorsTo()

```
void RectangleWindow::animateColorsTo(const std::vector<QColor> & toColors) {
   // current colors are set to "fromColors", toColors are store in m_toColors and
   // animation counter is reset
   m_fromColors = m_vertexColors;
   m_toColors = toColors;
   m_frameCount = 0;
   animate():
}
```

Die Variable m_frameCount zählt die animierten Frames seit Beginn der Animation. In der Funktion animate() wird dann zwischen den Anfangsfarbwerten m_fromColors und Zielfarbwerten m_toColors linear (im HSV Farbraum) interpoliert:

RectangleWindow.cpp:animate()

```
void RectangleWindow::animate() {
   const unsigned int FRAMECOUNT = 120;
   // if already at framecount end, stop
   if (++m_frameCount > FRAMECOUNT)
       return; // this will also stop the frame rendering
   // undate the colors
   double alpha = double(m_frameCount)/FRAMECOUNT;
   // linear blending in HSV space will probably look "interesting", but it's simple
   for (unsigned int i=0; i<m_vertexColors.size(); ++i) {</pre>
       double fromH, fromS, fromV;
       m_fromColors[i].getHsvF(&fromH, &fromS, &fromV);
       double toH, toS, toV;
       m_toColors[i].getHsvF(&toH, &toS, &toV);
       m_vertexColors[i] = QColor::fromHsvF( toH*alpha + fromH*(1-alpha),
                                              toS*alpha + fromS*(1-alpha),
                                              toV*alpha + fromV*(1-alpha));
   }
    updateScene();
}
```

Wichtig ist die Abfrage nach dem Überschreiten der Animationslänge (Anzahl von Frames). Sobald das Animationsende erreicht ist, wird die Funktion sofort verlassen und es finden keine weiteren Farbanpassungen und, was vielleicht wichtiger ist, keine weiteren UpdateRequest-Events statt. Dann wartet die Anwendung wieder einfach auf Nutzerinteraktion und verbraucht keine Resourcen.

Diese Art der Animation ist gekoppelt an tatsächlich gezeichnete Frames. Wenn das Fenster im Hintergrund ist (d.h. nicht exposed) wird die Ausführung des UpdateRequest-Events ausgesetzt, bis das Fenster wieder sichtbar ist. Damit wartet auch die Animation.

3.2.3. Zusammenfassung

Die Einbettung eines QWindow in eine Widgets-Anwendung ist dank Widget-Container denkbar einfach. Und was das Zusammenspiel zwischen normalen QWidget-basierten Eingabeereignissen und der Aktualisierung der OpenGL- Ausgabe (synchron zur Bildwiederholfrequenz) betrifft, so sind die beiden Farbanpassungsvarianten in diesem Tutorial Beispiele, wie man das machen kann.

4. Tutorial 04: Verwendung des QOpenGLWidget

In Tutorialteil wird das QOpenGLWidget anstelle des QOpenGLWindow verwendet. Das Programm macht das Gleiche wie in *Tutorial 03* (nur etwas langsamer :-), aber dazu kommen wir gleich).

Damit der Screenshot nicht ganz genauso wie im letzten Tutorial aussieht, habe ich mal einen halbdurchsichtigen Hintergrund eingeschaltet - das geht aber mit dem bisherigen Implementierungsvarianten auch (siehe letzter Teil des Tutorials).

Figure 4. Tutorial_04 (Linux Screenshot, mit Transparenz)

Quelltext für dieses Tutorial liegt im github repo: Tutorial_04

4.1. Was bietet das QOpenGLWidget

Von den ganzen Qt OpenGL-Klassen ist das QOpenGLWidget die mit Abstand am besten dokumentierte Klasse. Es gibt ein paar interessante Details in der Dokumentation, hier ein paar Zitate:

All rendering happens into an OpenGL framebuffer object.

..

Due to being backed by a framebuffer object, the behavior of QOpenGLWidget is very similar to QOpenGLWindow with the update behavior set to PartialUpdateBlit or PartialUpdateBlend. This means that the contents are preserved between paintGL() calls so that incremental rendering is possible.

...

Note: Most applications do not need incremental rendering because they will render everything in the view on every paint call.

Und vielleicht am Interessantesten:

Adding a QOpenGLWidget into a window turns on OpenGL-based compositing for the entire window. In some special cases this may not be ideal, and the old QGLWidget-style behavior with a separate, native child window is desired. Desktop applications that understand the limitations of this approach (for example when it comes to overlaps, transparency, scroll views and MDI areas), can use QOpenGLWindow QWidget::createWindowContainer(). This is a modern alternative to QGLWidget and is faster than QOpenGLWidget due to the lack of the additional composition step. It is strongly recommended to limit the usage of this approach to cases where there is no other choice. Note that this option is not suitable for most embedded and mobile platforms, and it is known to have issues on certain desktop platforms (e.g. macOS) too. The stable, cross-platform solution is always QOpenGLWidget.

— Qt Documentation (5.9)

Grundlegend: Ein OpenGL bild wird beim QOpenGLWidget immer erst in einen Buffer gerendert, und dann entsprechend der Zusammensetzungsregeln (Compositing) auf den Bildschirm gezeichnet. Das dauert natürlich entsprechend länger als direktes Zeichnen (siehe Performance-Test unten).

Der wesentliche Vorteil des gepufferten Zeichnens ist die Möglichkeit des inkrementellen Renderns. Ob man das braucht, hängt wesentlich von der eigentlichen Anwendung ab. Eigentlich ist dies nur von Belang, wenn das zu rendernde Fenster aus mehreren individuellen Teilbereichen besteht. In diesem Fall könnte man aber auch die Anwendung aus mehreren OpenGL-Fenstern zusammensetzen, in in jedem Fenster individuell zeichnen.

Die letzte Anmerkung über die Portabilität und Stabilität ist vielleicht nicht ganz unwichtig. Man kann das Ganze also von 2 Seiten betrachten:

- mit QOpenGLWidget beginnen, und beim Auftreten von Performanceproblemen wechseln,
- mit QopenGLWindow oder einer selbstgeschriebenen leichtgewichtigen Klasse wie in Tutorial 01, beginnen, und im Falle von Kompatibilitätsproblemen auf QOpenGLWidget wechseln

Hinsichtlich der Programmierschnittstelle sind die verschiedenen Klassen sich sehr ähnlich. Nachfolgend sind die einzelnen Anpassungen von Tutorial 03 zur Verwendung von QOpenGLWidget aufgeführt.

4.1.1. Anpassung der Vererbungshierarchie

Der erste Schritt ist das Austauschen der Basisklasse.

RectangleWidget.h

```
class RectangleWindow : public QOpenGLWidget, protected QOpenGLFunctions {
  public:
     RectangleWindow(QWidget * parent = nullptr);
     ....

protected:
    void initializeGL() Q_DECL_OVERRIDE;
    void paintGL() Q_DECL_OVERRIDE;
    ....
};
```

Die Klasse QOpenGLWidget erbt selbst nicht von QOpenGLFunctions, weswegen man diese Klasse als weitere Basisklasse angeben muss (geht auch noch anders, aber so muss im Quelltext sonst nicht viel angepasst werden). Der Konstruktor nimmt, wie andere Widgets auch, ein parent-Zeiger als Argument.

Die Funktionen initializeGL() und paintGL() sind bei QOpenGLWidget protected. Das war's auch schon.

4.1.2. Initialisierung

Der Konstruktor ist entsprechend zu erweitern, sodass der parent Zeiger an die Basisklasse weitergereicht wird:

RectangleWidget.cpp:Konstruktor

Da die Klasse nun ein Widget ist, kann man die minimale Größe auch gleich hier setzen.

Das Setzen der Größe muss vor dem ersten Anzeigen gemacht werden, da sonst das Widget nicht sichtbar ist (und auch nicht vergrößert werden kann).

Die Verwendung der vererbten QOpenGLFunctions Funktionen verlangt auch eine Initialisierung, die muss aber durch Aufruf der Funktion in initializeOpenGLFunctions() in initializeGL() erfolgen.

RectangleWidget.cpp:initializeGL()

```
void RectangleWindow::initializeGL() {
   initializeOpenGLFunctions();
   ....
}
```

Mehr ist nicht zu machen, und schon ist das RectangleWindow ein vollständiges Widget.

Das UpdateBehavior ist beim QOpenGLWidget standardmäßig auf QOpenGLWidget::NoPartialUpdate gesetzt, muss also nicht extra angepasst werden.

4.1.3. Einbettung in ein anderes QWidget

Der Widget-Container (siehe Tutorial 03) kann entfallen, und die Einbettung des Widgets wird wie mit jedem anderen Widget gemacht.

TestDialog.cpp:Konstruktor

```
m_rectangleWindow = new RectangleWindow(this);
m_rectangleWindow->setFormat(format);
// *** create the layout and insert widget container
QVBoxLayout * vlay = new QVBoxLayout;
vlay->setMargin(0);
vlay->setSpacing(0);
vlay->addWidget(m_rectangleWindow);
```

4.2. Performance-Vergleich

Die spannende Frage ist, wieviel langsamer ist das QOpenGLWidget im Vergleich zum direkten Zeichnen via QOpenGLWindow oder der eigenen OpenGLWindow Klasse aus Tutorial 01?

Im direkter Vergleich zwischen Tutorial 03 und Tutorial 04 fällt sofort auffällt auf, dass das Resize-Verhalten unterschiedlich ist. Es gibt eine merkliche Verzögerung bei der Größenänderung eines Widgets (sowohl unter Windows, als auch auf anderen Plattformen) und auch, wenn die Programme im Releasemodus kompiliert sind.

Da in diesen Testfällen nicht gerendert wird, liegt der Unterschied nur allein in der Widget-Compositing-Funktionalität im QOpenGLWidget.

Bei einem kleinen Benchmarktest (ca. 30 Sekunden lang mit dem Mauszeiger die Fenstergröße verändern, dabei die Anzahl der paintEvents() aufzeichnen und dann durch die Laufzeit teilen) kommt man auf:

- 25 Fensteraktualisierungen/Sekunde bei der Variante mit QOpenGLWindow, und
- 15 Fensteraktualisierungen/Sekunde bei der Variante mit QOpenGLWidget.

Das wohlgemerkt ohne OpenGL Zeichenaufrufe.

Interessant wird es, wenn man OpenGL-Animationen dazuschaltet. Dies kann man bei den Beispielen ganz einfach machen, wenn man die Frames für die Farbanimation von 120 auf, ca. 800 ändert. Dann läuft die Animation nach Klick auf "Animate Colors" ein paar Sekunden länger und man kann den CPU Overhead testen.

Bei beiden Varianten dauert die Animation exakt gleich lang, da jeweils mit nahezu 60 Frames pro Sekunde gerendert wird (bei mir zumindest).

Allerdings zeigen beide Varianten unterschiedliche CPU Auslastungen:

- 2.4% (single-core) CPU Load bei der Variante mit QOpenGLWindow, und
- 7.9% (single-core) CPU Load bei der Variante mit QOpenGLWidget.

Ein Unterschied ist da, aber sicher nicht der Rede wert. Da dürfte der optimische Verzögerungseffekt beim Vergrößern/Verkleinern eines Fensters während der Animation eher noch stören.

4.3. Transparenz

Wie schon im Screenshot zu sehen, kann man auch halb-transparente Widgetanwendungen bauen, oder auch Anwendungen mit recht unregelmäßigen Formen.

4.3.1. Mit QOpenGLWidget

Bei Verwendung des QOpenGLWidgets ist das recht einfach. Zunächst gibt man dem obersten Widget das Attribut Qt::WA_TranslucentBackground. Wer keine Titelleiste und keine Rahmen um das Fenster haben möchte, muss dem obersten Widget auch noch die Eigenschaft Qt::FramelessWindowHint geben, also z.B.:

main.cpp

```
int main(int argc, char **argv) {
    QApplication app(argc, argv);

    TestDialog dlg;
    // transparent window
    dlg.setAttribute(Qt::WA_TranslucentBackground, true);
    // no frame and flags.
    dlg.setWindowFlag(Qt::FramelessWindowHint, true);
    dlg.show();

    return app.exec();
}
```

In der eigentlichen Zeichenfunktion muss man nur noch die Hintergrundfarbe auf Transparent umstellen (zumindest einen Alpha-Wert < 1):

RectangleWindow.cpp:paintGL()

```
void RectangleWindow::paintGL() {
    // set the background color = clear color
    glClearColor(0.0f, 0.0f, 0.0f); // fully transparent
    glClear(GL_COLOR_BUFFER_BIT);
    ....
}
```


Normalerweise würde man bei einem Alpha-Wert von 0 erwarten, dass der Hintergrund unverändert durchscheint, auch wenn die RGB Farbanteile der Hintergrundfarbe (clear color) irgendwelche Werte haben. Das ist aber nicht so - die Farben des Hintergrundes erscheinen etwas verblasst. Daher sollte man, wenn man wirklich den Hintergrund unverändert durchscheinen lassen möchte, die clear Color stets auf 0,0,0,0 setzen.

4.3.2. Mit QWindow-basierten OpenGL Renderfenstern

Bei den Varianten aus *Tutorial 01 .. 03* geht Transparenz auch, allerdings mit minimal mehr Aufwand. Bei der Konfiguration des QSurfaceFormat muss man einen AlphaBuffer festlegen (hier gezeigt beim Beispiel aus *Tutorial 01*).

main.cpp

```
int main(int argc, char **argv) {
   QGuiApplication app(argc, argv);
   // Set OpenGL Version information
   QSurfaceFormat format;
   format.setRenderableType(QSurfaceFormat::OpenGL);
   format.setProfile(QSurfaceFormat::CoreProfile);
   format.setVersion(3,3);
   format.setAlphaBufferSize(8);
   TriangleWindow window;
   // Note: The format must be set before show() is called.
   window.setFormat(format);
   window.resize(640, 480);
   window.show();
   window.setFlag(Qt::FramelessWindowHint);
   return app.exec();
}
```

In der Render-Funktion muss man noch Alphablending einschalten, hier gezeigt am Beispiel aus Tutorial 01.

TriangleWindow.cpp:render()

```
void TriangleWindow::render() {
    ....

// Set the transparency to the scene to use the transparency of the fragment shader
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

// set the background color = clear color
glClearColor(0.0f, 0.0f, 0.0f, .0f);
glClear(GL_COLOR_BUFFER_BIT);
....
}
```

5. Tutorial 05: Maus- und Tastatureingaben

In diesem Tutorial geht es primär um Maus- und Tastatureingaben. Und damit das irgendwie Sinn macht, brauchen wir ein (schön großes) 3D Modell, und deshalb ist dieses Tutorial auch *sehr sehr lang*. Und nebenbei geht es noch um Verwaltung von Shaderobjekten, Zeichenobjekten, Nebeleffekt beim Gitterraster und und und...

Figure 5. Tutorial 05 (Linux Screenshot), "Die Welt aus 10000 und einer Box"

Quelltext für dieses Tutorial liegt im github repo: Tutorial_05

In diesem Tutorial werden viele neue Dinge verwendet:

- zwei Modelle (eins für die Boxen und eins für das Gitter), nebst dazugehörigen, unterschiedlichen Shaderprogrammen (das vom Gitter verwendet in die Tiefe abgeblendete Farben)
- · Tiefenpuffer, sodass Gitterlinien/Boxen korrekt vor/hintereinander gezeichnet werden
- Model2World und World2View-Matrizen (mit perspektivischer Projektion)
- Shaderprogramme und Renderobjekte (bzw. Objektgruppen) sind in Klassen zusammengefasst, wodurch der Quelltext deutlich übersichtlicher wird
- eine Maus+Tastatursteuerung mit WASDQE + Mauslook, incl. Shift-Langsam-Bewege-Modus
- und das Ganze wieder mit dem Schwerpunkt: Rendern nur wenn notwendig (Akku sparen!)

5.1. Überblick

Das Tutorial ist sehr lang, und der Quelltext entsprechend auch. Daher gehen wir in diesem Tutorial schrittweise vor. Die gezeigten Quelltextausschnitte stimmen daher nicht immer 100% mit dem finalen Quelltext überein (ich hab da aus didaktischen Gründen immer mal was weggelassen).

Folgende Implementierungsschritte werden besprochen:

- Anpassung der Klasse OpenGLWindow an die in QOpenGLWidget bzw. QOpenGLWindow verwendeten Funktionsnamen
- Vorstellung der Klasse SceneView, die das bisherige TriangleWindow oder RectangleWindow ersetzt
- Transformationsmatrizen: Model → World → Kamera → Projektion (Klassen Transform3D und Camera)
- Tastatur- und Mauseingabebehandlung (Klasse KeyboardMouseHandler)
- Kapselung der Shaderprogramme und Initialisierung und Verwendung derselben (Klasse ShaderProgram)
- Kapselung der Zeichenroutinen für das Gitterraster, Abblendeffekt am Horizont im Shader (Klasse GridObject und Shader grid.vert und grid.frag)
- Kapselung der Zeichenroutinen für die Boxen (Klassen BoxObject und BoxMesh, und Shader withWorldAndCamera.vert und simple.frag)

5.2. Fenster-Basisklasse OpenGLWindow

Als Grundlage für die Implementierung wird die Klasse OpenGLWindow aus Tutorial 01 verwendet, allerdings etwas abgewandelt. Letztlich wird die Schnittstelle angepasst, um ungefähr der des QOpenGLWidget zu entsprechen:

```
class OpenGLWindow : public QWindow, protected QOpenGLFunctions {
   Q_OBJECT
public:
   explicit OpenGLWindow(QWindow *parent = nullptr);
public slots:
   void renderLater();
   void renderNow();
protected:
   bool event(QEvent *event) override;
   void exposeEvent(QExposeEvent *event) override;
   void resizeEvent(QResizeEvent *) override;
   virtual void initializeGL() = 0;
    virtual void resizeGL(int width, int height) { Q_UNUSED(width) Q_UNUSED(height) }
   virtual void paintGL() = 0;
    QOpenGLContext *m_context;
private:
    void initOpenGL();
};
```

Die Funktionen initializeGL() und paintGL() sind aus den vorangegangen Tutorials bekannt. Die Funktion resizeGL() ist eigentlich nur eine Bequemlichkeitsfunktion, welche aus dem Eventhandler resizeEvent() aufgerufen wird.

Neu ist jedoch die Funktion initOpenGL(), in der die OpenGL-Initialisierung (OpenGL Context) gemacht wird.

OpenGLWindow.cpp:initOpenGL()

```
void OpenGLWindow::initOpenGL() {
   Q_ASSERT(m_context == nullptr);
   m_context = new QOpenGLContext(this);
   m_context->setFormat(requestedFormat());
   m_context->create();
   m_context->makeCurrent(this);
   Q_ASSERT(m_context->isValid());
    initializeOpenGLFunctions();
    initializeGL(); // call user code
}
```

Normalerweise wird die Initialisierung beim ersten Anzeigen des Fensters (genaugenommen beim ersten ResizeEvent) aufgerufen, bzw. beim ersten Zeichnen.

OpenGLWindow.cpp: Funktion resizeEvent()

```
void OpenGLWindow::resizeEvent(QResizeEvent * event) {
   QWindow::resizeEvent(event);

// initialize on first call
   if (m_context == nullptr)
        initOpenGL();

   resizeGL(width(), height());
}
```

Unabhängig von dieser Initializierungsfunktion muss man natürlich die Funktion initializeGL() implementieren. Alles andere in der Klasse ist altbekannt.

5.3. Klasse SceneView - die konkrete Implementierung

5.3.1. Klassendeklaration

Zwecks Überblick ist hier zunächst die Klassendeklaration in Teilen. Zuerst die üblichen Verdächtigen:

SceneView.h, Deklaration der Klasse SceneView

```
class SceneView : public OpenGLWindow {
public:
    SceneView();
    virtual ~SceneView() override;

protected:
    void initializeGL() override;
    void resizeGL(int width, int height) override;
    void paintGL() override;
```

Dann kommen die Ereignisbehandlungsroutinen für die Tastatur- und Mauseingaben. Dazu gehören auch die Hilfsfunktionen checkInput() und processInput(), die im Abschnitt zur Tastatur- und Mauseingabe erklärt sind. Die Member-Variablen m_keyboardMouseHandler und m_inputEventReceived gehören auch dazu.

SceneView.h, Deklaration der Klasse SceneView, fortgesetzt

Dann kommt die Funktion updateWorld2ViewMatrix() zur Koordinatentransformation und die dazugehörigen Member-Variablen.

SceneView.h, Deklaration der Klasse SceneView, fortgesetzt

```
void updateWorld2ViewMatrix();
QMatrix4x4
                           m_projection;
Transform3D
                           m_transform;
Camera
                           m camera;
OMatrix4x4
                           m_worldToView;
```

Zuletzt kommen Member-Variablen, die die Shader-Programme und Zeichenobjekte kapseln (beinhalten Shader, VAO, VBO, EBO, etc.)

SceneView.h, Deklaration der Klasse SceneView, fortgesetzt

```
QList<ShaderProgram>
                                 m_shaderPrograms;
    BoxObject
                                 m_boxObject;
    GridObject
                                 m_gridObject;
};
```

Und das war's auch schon - recht kompakt, oder?

5.3.2. Das Aktualisierungskonzept

Erklärtes Ziel dieser OpenGL-Implementierung ist nur dann zu rendern, wenn es wirklich notwendig ist. Also:

- wenn die Fenstergröße (Viewport) verändert wurde,
- wenn das Fenster angezeigt/sichtbar wird (exposed),
- wenn durch Nutzerinteraktion die Kameraposition verändert wird, und
- wenn die Szene selbst transformiert/verändert wird (z.B. programmgesteuerte Animation...)

Wenn man jetzt bei jedem Eintreffen eines solchen Ereignisses jedesmal neu zeichnen würde, wäre das mit ziemlichem Overhead verbunden. Besser ist es, beim Eintreffen eines solchen Ereignisses einfach nur ein Neuzeichnen anzufordern. Da die UpdateRequest-Ereignisse normalerweise mit der Bildschirmfrequenz synchronisiert sind, kann es natürlich sein, dass mehrfach hintereinander UpdateRequest-Events an die Eventloop angehängt werden. Dabei werden diese aber zusammengefasst und nur ein Event ausgeschickt. Es muss ja auch nur einmal je angezeigtem Frame gezeichnet werden.

Grundsätzlich muss man also nur die Funktion QWindow::requestUpdate() (oder unsere Bequemlichkeitsfunktion renderLater()) aufrufen, damit beim nächsten VSync wieder neu gezeichnet wird.

Leider funktionier das Verfahren im Fall des ExposeEvent bzw. ResizeEvent nicht perfekt. Gerade unter Windows führt das beim Vergrößern des Fensters zu unschönen Artefakten am rechten und unteren Bildschirmrand. Daher muss man in diesem Fall tatsächlich sofort in der Ereignisbehandlungsroutine neu zeichnen und dabei den OpenGL Viewport bereits an die neue Fenstergröße anpassen. Das Neuzeichnen wird direkt im ExposeEvent-Handler von OpenGLWindow ausgelöst:

OpenGLWindow.cpp:exposeEvent()

```
void OpenGLWindow::exposeEvent(QExposeEvent * /*event*/) {
    renderNow(); // update right now
}
```

Bei Größenveränderung des Fensters sendet Qt immer zuerst ein ResizeEvent gefolgt von einem ExposeEvent aus. Daher sollte man in der Funktion SceneView::resizeEvent() nicht renderLater() aufrufen!

Ohne eine Aufruf von renderLater() im ResizeEvent-Handler erhält man folgende Aufrufreihenfolge bei der Fenstervergrößerung:

```
OpenGLWindow::resizeEvent()
OpenGLWindow::exposeEvent()
SceneView::paintGL(): Rendering to: 1222 x 891
OpenGLWindow::resizeEvent()
OpenGLWindow::exposeEvent()
SceneView::paintGL(): Rendering to: 1224 x 892
```

Ruft man stattdessen renderLater() auf, erhält man:

```
OpenGLWindow::resizeEvent()
OpenGLWindow::exposeEvent()
SceneView::paintGL(): Rendering to: 1283 x 910
SceneView::paintGL(): Rendering to: 1283 x 910
OpenGLWindow::resizeEvent()
OpenGLWindow::exposeEvent()
SceneView::paintGL(): Rendering to: 1288 x 912
SceneView::paintGL(): Rendering to: 1288 x 912
```

Wie man sieht, wird jedes Mal doppelt gezeichnet, was eine deutlich spürbare Verzögerung bedeutet. Grundsätzlich hilf es zu wissen, dass:

- beim ersten Anzeigen eines Fensters immer erst ein ResizeEvent, gefolgt von einem ExposeEvent geschickt wird
- beim Größenändern eines Fensters ebenfalls immer ein ResizeEvent, gefolgt von einem ExposeEvent geschickt wird
- beim Minimieren und Maximieren eines Fensters nur je ein (oder auf dem Mac mehrere) ExposeEvent geschickt werden. Dies kann man nutzen, um eine Animation zu stoppen und beim erneuten Anzeigen (isExposed() == true) wieder zu starten. Dies ist aber nicht der Fokus in diesem Tutorial. Daher könnte man auch das ExposeEvent komplett ignorieren und renderNow() direkt am Ende von OpenGLWindow::resizeEvent() aufrufen. So wie es aktuell implementiert ist, wird beim Minimieren und Maximieren mehrfach ExposeEvent mit isExposed() == true aufgerufen und damit wird mehrfach gezeichnet, trotz unverändertem Viewport und unveränderte Szene. Das ist aber nicht weiter bemerkbar und verschmerzbar.

5.3.3. Verwendung der Klasse *SceneView*

Die Klasse SceneView wird als QWindow-basierte Klasse selbst via Widget-Container in den Testdialog eingebettet (siehe *Tutorial 03*).

Bei der Analyse des Tutorialquelltextes kann man sich von außen nach innen "arbeiten":

- main.cpp Instanziert TestDialog
- TestDialog.cpp Instanziert SceneView und bettet das Objekt via Window-Container ein.

Es gibt im Quelltext von TestDialog.cpp nur ein neues Feature: Antialiasing (siehe letzter Abschnitt "Antialiasing" dieses Tutorials).

5.3.4. Implementierung der Klasse *SceneView*

Und da wären wir auch schon bei der Implementierung des Klasse SceneView.

Im Konstruktor werden letztlich 3 Dinge gemacht:

- dem Tastatur/Maus-Eingabemanager werden die für uns interessanten Tasten mitgeteilt, siehe Abschnitt "Tastatur- und Mauseingabe"
- die beiden ShaderProgramm-Container Objekte werden erstellt und konfiguriert, siehe Abschnitt "Shaderprogramme"
- die Kamera- und Welttransformationsmatrizen werden auf ein paar Standardwerte eingestellt, siehe Abschnitt "Transformationsmatrizen"

SceneView.cpp, Konstruktor

```
SceneView::SceneView() :
   m_inputEventReceived(false)
   // tell keyboard handler to monitor certain keys
   m_keyboardMouseHandler.addRecognizedKey(Qt::Key_W);
   m_keyboardMouseHandler.addRecognizedKey(Qt::Key_A);
   m_keyboardMouseHandler.addRecognizedKey(Qt::Key_S);
   m_keyboardMouseHandler.addRecognizedKey(Qt::Key_D);
   m_keyboardMouseHandler.addRecognizedKey(Qt::Key_Q);
   m_keyboardMouseHandler.addRecognizedKey(Qt::Key_E);
   m_keyboardMouseHandler.addRecognizedKey(Qt::Key_Shift);
   // *** create scene (no OpenGL calls are being issued below, just the data structures are created.
   // Shaderprogram #0 : regular geometry (painting triangles via element index)
   ShaderProgram blocks(":/shaders/withWorldAndCamera.vert",":/shaders/simple.frag");
   blocks.m_uniformNames.append("worldToView");
   m_shaderPrograms.append( blocks );
   // Shaderprogram #1 : grid (painting grid lines)
   ShaderProgram grid(":/shaders/grid.vert",":/shaders/simple.frag");
   grid.m_uniformNames.append("worldToView"); // mat4
   grid.m_uniformNames.append("gridColor"); // vec3
   grid.m_uniformNames.append("backColor"); // vec3
   m_shaderPrograms.append( grid );
   // *** initialize camera placement and model placement in the world
   // move objects a little bit to the back of the scene (negative z coordinates = further back)
   m_transform.translate(0.0f, 0.0f, -5.0f);
   m_camera.translate(0,5,0);
   m_camera.rotate(-30, m_camera.right());
```


Im Konstruktor werden nur Eigenschaften für die Shaderprogramme festgelegt, die eigentliche Initialisierung (OpenGL-Aufrufe) findet in initializeGL() statt.

Im Destruktor der Klasse werden die OpenGL-Objekte wieder freigegeben:

SceneView.cpp, Destruktor

```
SceneView::~SceneView() {
    m_context->makeCurrent(this);

    for (ShaderProgram & p : m_shaderPrograms)
        p.destroy();

    m_boxObject.destroy();
    m_gridObject.destroy();
}
```

Wichtig ist hier, dass der OpenGL-Context für das aktuelle Fenster aktuell gesetzt wird (m_context->makeCurrent(this)). Damit können dann die OpenGL-Objekte freigegeben werden. Dies erfolgt in den destroy() Funktionen der Shaderprogramm-Wrapper-Klasse und Zeichen-Objekt-Wrapper-Klassen.

5.3.5. OpenGL-Initialisierung

Die eigentlich Initialisierung der OpenGL-Objekte (Shaderprogramme und Pufferobjekte) erfolgt in initializeGL():

SceneView.cpp:initializeGL()

```
#define SHADER(x) m_shaderPrograms[x].shaderProgram()

void SceneView::initializeGL() {
    // initialize shader programs
    for (ShaderProgram & p : m_shaderPrograms)
        p.create();

    // tell OpenGL to show only faces whose normal vector points towards us
    glEnable(GL_CULL_FACE);
    // enable depth testing, important for the grid and for the drawing order of several objects
    glEnable(GL_DEPTH_TEST);

// initialize drawable objects
    m_boxObject.create(SHADER(0));
    m_gridObject.create(SHADER(1));
}
```

Dank der Kapselung der Shaderprogramm-Initialisierung in der Klasse ShaderProgram und der Kapselung der Zeichenobjekt-spezifischen Initialisierung in den Objekten ist diese Funktion sehr viel übersichtlicher als in den bisherigen Tutorials.

Das Makro SHADER(x) wird verwendet, um bequem auf das QOpenGLShaderProgram Objekt in der Wrapper-Klasse zuzugreifen.

Die beiden glXXX Befehle in der Mitte der Funktion schalten zwei für 3D Szenen wichtige Funktionen ein:

- GL_CULL_FACE Zeichne Flächen nicht, welche mit dem "Rücken" zu uns stehen
- GL_DEPTH_TEST Führe beim Zeichnen der Fragmente einen Tiefentest durch, und verwerfe weiter

hintenliegende Fragmente. Das ist wichtig dafür, dass die gezeichneten Boxen das dahinterliegende Gitter überdecken. Der dafür benötigte Tiefenpuffer wird über QSurfaceFormat konfiguriert (QSurfaceFormat::setDepthBufferSize()).

Die Funktion qlDepthFunc(GL LESS) muss nicht aufgerufen werden, da das bei OpenGL der Standard ist.

Man kann testweise mal das Flag GL_DEPTH_TEST nicht setzen - die etwas verwirrende Darstellung ist, nun ja, verwirrend.

Für den Tiefentest ist ein zusätzlicher Tiefenpuffer notwendig (bisher hatten wir nur den Farbpuffer (engl. Color Buffer). Wichtig ist daher, dass bei Verwendung eines Tiefenpuffers dieser Puffer ebenso wie der Farbpuffer zu Beginn des Zeichnens gelöscht wird. Dies passiert in paintGL():

SceneView.cpp:paintGL()

```
void SceneView::paintGL() {
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
}
```


Falls bei Verwendung des Tiefenpuffers/Tiefentests das Problem des z-Fighting auftritt, kann man die Genauigkeit des Tiefenpuffers erhöhen. Dies erfolgt durch Aufruf der Funktion QSurfaceFormat::setDepthBufferSize(). In diesem Tutorial liegen die Boxen immer schön weit auseinander, sodass eine Genauigkeit von 8bit ausreicht. Dieser wird bei Konfiguration des QSurfaceFormat-Objekts in TestDialog.cpp gesetzt:

```
format.setDepthBufferSize(8);
```

5.4. Tastatur- und Mauseingabe

Ot stellt in QWindow und QWidget Ereignisbehandlungsroutinen für Tastatur- und Mauseingaben zur Verfügung. Die Deklaration dieser Funktion sind oben in der SceneView Klassendeklaration zu sehen.

Wenn man eine Taste auf der Tastatur drückt wird ein QEvent::KeyPress ausgelöst und die Memberfunktion keyPressEvent(QKeyEvent *event) aufgerufen. Das passiert auch, wenn man die Taste gedrückt hält. Unterscheiden kann man dieses durch Prüfen der Eigenschaft AutoRepeat (QKeyEvent::isAutoRepeat()).

Für die Navigation in einer 3D Umgebung hält man die Tasten (z.B. WASD oder ähnliche) längere Zeit gedrückt (d.h. über mehrere Frames hinweg). Man benötigt also einen Zustandsmanager, der sich den aktuellen Zustand der Tasten merkt.

Ein solcher "Inputmanager" hält intern also für jede (berücksichtigte) Taste einen Zustand:

- · Nicht gedrückt
- Gerade gedrückt
- · Wurde gedrückt

Letzterer ist eigentlich nur dann wichtig, wenn auf einzelne Tastendrücke reagiert werden soll, während eventuell eine aufwändige Neuzeichenroutine läuft.

5.4.1. Der Tastatur- und Maus-Zustandsmanager

Man könnte die gesamte Tastatur- und Mausbehandlung natürlich auch direkt in der Klasse SceneView implementieren, in der auch die Ereignisbehandlungsfunktionen aufgerufen werden. Es ist aber übersichtlicher, diese in der Klasse KeyboardMouseHandler zu kapseln.

Die Aufgabe dieser Klasse ist letztlich sich zu merken, welche Taste/Mausknopf gerade gedrückt ist. Die Implementierung der Klasse ist für das Tutorial eigentlich nicht so wichtig, vielleicht lohnt aber ein Blick auf die Klassendeklaration:

```
class KeyboardMouseHandler {
public:
    KeyboardMouseHandler();
    virtual ~KeyboardMouseHandler();
   // functions to manage known keys
   void addRecognizedKey(Qt::Key k);
   void clearRecognizedKeys();
    // event handler helpers
    void keyPressEvent(QKeyEvent *event);
    void keyReleaseEvent(QKeyEvent *event);
   void mousePressEvent(QMouseEvent *event);
   void mouseReleaseEvent(QMouseEvent *event);
   void wheelEvent(QWheelEvent *event);
    // state changing helper functions
    bool pressKey(Qt::Key k);
    bool releaseKey(Qt::Key k);
    bool pressButton(Qt::MouseButton btn, QPoint currentPos);
    bool releaseButton(Qt::MouseButton btn);
    // query functions
    bool keyDown(Qt::Key k) const;
    bool buttonDown(Qt::MouseButton btn) const;
    QPoint mouseDownPos() const { return m_mouseDownPos; }
    int wheelDelta() const;
    // state reset functions
    QPoint resetMouseDelta(const QPoint currentPos);
    int resetWheelDelta();
   void clearWasPressedKeyStates();
private:
   enum KeyStates {
       StateNotPressed,
        StateHeld,
        StateWasPressed
    };
    std::vector<Qt::Key>
                            m_keys;
    std::vector<KeyStates> m_keyStates;
    KeyStates
                            m_leftButtonDown;
    KeyStates
                            m_middleButtonDown;
    KeyStates
                            m_rightButtonDown;
    QPoint
                            m mouseDownPos;
    int
                            m_wheelDelta;
};
```

Eine KeyboardMouseHandler-Klasse wird nach der Erstellung durch Aufrufe von addRecognizedKey() konfiguriert (siehe Konstruktor der Klasse SceneView).

Für die Tastatur- und Maus-Ereignisbehandlungsroutinen gibt es passende Hilfsfunktionen, sodass man von den Event-Funktionen der eigenen View-Klasse einfach diese Hilfsfunktionen aufrufen kann. Die Zustandsänderungslogik (auch das Prüfen auf AutoRepeat) wird in diesen Funktionen gemacht. Bei bekannten Tasten wird der QKeyEvent oder QMouseEvent akzeptiert, sonst ignoriert.

Den Zustand einzelner Tasten kann man auch programmgesteuert durch die pressXXX und releaseXXX Funktionen ändern.

Danach kommen die Funktionen zum Abfragen des Zustands. Bei Tasten ist die Abfrage mit keyDown() oder buttonDown() recht klar (sowohl der Zustand "gerade gedrückt", als auch "gedrückt und wieder losgelassen" liefern hier true zurück).

Bei der Mausbewegung und Scroll-Rad muss immer die Veränderung zwischen zwei Abfragezeitpunkten angeschaut werden. Bei Verwendung einer Free-Mouse-Look-Taste (hier rechte Maustaste), wird beim Drücken dieser Taste die globale Cursorpostion abgelegt, welche über mouseDownPos() abgefragt werden kann. Bei Mouse-Wheel-Ereignissen werden die Drehstufen (Winkel/Ticks) addiert.

Wenn man diese Änderungen nun in eine Bewegung umwandelt, muss man diese nach dem Auslesen wieder zurücksetzen. Dies erfolgt mit den Funktionen resetMouseDelta() und resetWheelDelta(), welche beide die bislang erfassten Differenzen zurückliefern. Die const-Abfragefunktionen mouseDownPos() und wheelDelta() können also verwendet werden, um zu Testen, ob es eine Maus-/Scrollradbewegung gab. Und beim Anwender der Änderungen ruf man die resetXXX() Funktionen auf.

Zuletzt muss man die Funktion clearWasPressedKeyStates() nach Abfrage der Tasten aufrufen, um die "wurde gedrückt" Zustände wieder in den "Nicht gedrückt" Zustand zurückzusetzen.

Die Implementierung der Klasse ist recht einfach und selbsterklärend und muss hier nicht näher ausgeführt werden. Interessant ist die Verwendung der Klasse. Dazu müssen wir uns zunächst den Programmauflauf der Ereignisschleife und Auswertung der Tasteneingabe genauer anschauen.

5.4.2. Die Ereignisschleife und Tastatur-/Mausevents

Zwischen zwei Frames (also Aufrufen von paintGL()) läuft das Programm in der Ereignisschleife. Sobald eine Taste gedrückt oder losgelassen wird, ruft Qt die entsprechende Ereignisbehandlungsfunktion auf, d.h. keyPressEvent() bzw. keyReleaseEvent(). Ebenso werden bei Mausaktionen die entsprechenden Aktionen ausgelöst.

Die Aufrufe werden an die gleichnamigen Funktionen in Zustandsmanager (KeyboardMouseHandler) weitergereicht. Wenn die betreffende Taste dem Zustandsmanager bekannt ist, wird der aktuelle Zustand im Zustandsmanager entsprechend geändert.

Nun wird noch geprüft, ob die Taste eine Szenenveränderung (bspw. Kamerabewegung) bewirkt. Dies erfolgt in der Funktion SceneView::checkInput().

```
void SceneView::checkInput() {
   // trigger key held?
    if (m_keyboardMouseHandler.buttonDown(Qt::RightButton)) {
       // any of the interesting keys held?
        if (m_keyboardMouseHandler.keyDown(Qt::Key_W) ||
           m_keyboardMouseHandler.keyDown(Qt::Key_A) ||
           m_keyboardMouseHandler.keyDown(Qt::Key_S) ||
           m_keyboardMouseHandler.keyDown(Qt::Key_D) ||
           m_keyboardMouseHandler.keyDown(Qt::Key_Q) ||
           m_keyboardMouseHandler.keyDown(Qt::Key_E))
            m_inputEventReceived = true;
            renderLater();
            return:
       }
        // has the mouse been moved?
        if (m_keyboardMouseHandler.mouseDownPos() != QCursor::pos()) {
           m_inputEventReceived = true;
            renderLater();
            return;
        }
    // scroll-wheel turned?
    if (m keyboardMouseHandler.wheelDelta() != 0) {
       m_inputEventReceived = true;
       renderLater();
       return;
   }
}
```

In dieser Funktion werden nun die Abfragefunktionen verwendet, d.h. der Zustand des Tastatur-/Maus-Zustandsmanagers wird nicht verändert. Auch ist zu beachten, dass die Abfrage nach dem Mausrad separat erfolgt.

Wird eine relevante Taste oder Mausbewegung erkannt, wird durch Aufruf von renderLater() ein Zeichenaufruf in die Event-Schleife eingereiht (kommt beim nächsten VSync) und das Flag m_inputEventReceived wird gesetzt dann geht die Kontrolle wieder zurück an die Ereignisschleife.

Es sollte wirklich nur neu gezeichnet werden, wenn dies durch Tastendruck- oder Mausbewegung notwendig wird. Dadurch, dass das UpdateRequest nur bei Bedarf gesendet wird, kann man ansonsten wild auf der Tastatur herumhämmern, ohne dass auch nur ein OpenGL-Befehl aufgerufen wird.

Es ist nun möglich, dass ein weiteres Tastaturereignis eintrifft, bevor das UpdateRequest-Ereignis eintritt. Bspw. könnte dies das QEvent::KeyRelease-Ereignis eines gerade zuvor eingetroffenen QEvent::KeyPress-Ereignisses derselben Taste sein. Deshalb wird der Zustand einer Taste beim keyReleaseEvent() auf "Wurde gedrückt" geändert, und nicht einfach wieder zurück auf "Nicht gedrückt". Sonst hätte man im Zustandsmanager keine Information mehr darüber, dass die Taste in diesem Frame kurz gedrückt wurde. Das ist zwar bei hohen Bildwiederholfrequenzen hinreichend unwahrscheinlich, kann aber bei sehr komplexen Szenen (bzw. schwacher Hardware) hilfreich sein.

5.4.3. Auswertung der Eingabe und Anpassung der Kameraposition- und Ausrichtung

Die eigentliche Auswertung der Tastenzustände und Bewegung der Kamera erfolgt am Anfang der SceneView::paintGL()-Funktion:

SceneView.cpp:paintGL()

```
void SceneView::paintGL() {
    // process input, i.e. check if any keys have been pressed
    if (m_inputEventReceived)
        processInput();
    ...
```

Da die Zeichenfunktion aus einer Vielzahl von Gründen aufgerufen werden kann, dient das Flag m_inputEventReceived dazu, nur dann die Eingaben auszuwerten, wenn es tatsächlich welche gab.

Der Zeitaufwand für die Auswertung der Eingaben ist nicht wirklich groß. Da aber einige Matrizenoperationen involviert sind, kann man sich die Arbeit auch sparen, daher das "dirty" Flag m_inputEventReceived.

Die Auswertung des Tastatur- und Mauszustandes erfolgt in der Funktion SceneView::processInput():

```
void SceneView::processInput() {
   m_inputEventReceived = false;
   if (m_keyboardMouseHandler.buttonDown(Qt::RightButton)) {
        // Handle translations
       QVector3D translation;
        if (m_keyboardMouseHandler.keyDown(Qt::Key_W))
                                                            translation += m_camera.forward();
        if (m_keyboardMouseHandler.keyDown(Qt::Key_S))
                                                            translation -= m_camera.forward();
        if (m_keyboardMouseHandler.keyDown(Qt::Key_A))
                                                            translation -= m_camera.right();
        if (m_keyboardMouseHandler.keyDown(Qt::Key_D))
                                                            translation += m_camera.right();
        if (m_keyboardMouseHandler.keyDown(Qt::Key_Q))
                                                            translation -= m_camera.up();
       if (m_keyboardMouseHandler.keyDown(Qt::Key_E))
                                                           translation += m_camera.up();
       float transSpeed = 0.8f;
       if (m_keyboardMouseHandler.keyDown(Qt::Key_Shift))
           transSpeed = 0.1f;
       m_camera.translate(transSpeed * translation);
       // Handle rotations
       // get and reset mouse delta (pass current mouse cursor position)
       QPoint mouseDelta = m_keyboardMouseHandler.resetMouseDelta(QCursor::pos());
       static const float rotatationSpeed = 0.4f;
       const QVector3D LocalUp(0.0f, 1.0f, 0.0f); // same as in Camera::up()
       m_camera.rotate(-rotatationSpeed * mouseDelta.x(), LocalUp);
       m_camera.rotate(-rotatationSpeed * mouseDelta.y(), m_camera.right());
       // finally, reset "WasPressed" key states
       m_keyboardMouseHandler.clearWasPressedKeyStates();
   int wheelDelta = m_keyboardMouseHandler.resetWheelDelta();
   if (wheelDelta != 0) {
        float transSpeed = 8.f;
       if (m_keyboardMouseHandler.keyDown(Qt::Key_Shift))
           transSpeed = 0.8f;
       m_camera.translate(wheelDelta * transSpeed * m_camera.forward());
   }
   updateWorld2ViewMatrix();
}
```

Auch in dieser Funktion werden Bewegungen der Kamera durch Tastendrücke und Schwenker durch Mausbewegung unabhängig vom Scrollrad-Zoom behandelt. Am Ende der Funktion werden die Welt-zu-Perspektive-Transformationsmatrizen angepasst. Die relevanten Matrizen und auch das Kamera-Objekt (Klasse Camera) sind im Abschnitt "Transformationsmatrizen und Kamera" weiter unten beschrieben.

Die Bewegung der Kamera ist recht einfach nachvollziehbar - je nach gedrückter Taste wird eine Verschieberichtung auf den Vektor translation addiert. Der tatsächliche Verschiebevektor wird durch Multiplikation mit einer Geschwindigkeit transSpeed berechnet. Hier ist auch die "Verlangsamung-bei-Shift-Tastendruck"-eingebaut.

Die Geschwindigkeit ist hier als "Bewegung je Frame" zu verstehen, was bei stark veränderlichen Frameraten (z.B. bei komplexer Geometrie) zu einer variablen Fortbewegungsgeschwindigkeit führen kann. Hier kann man alternativ eine Zeitmessung einbauen und den Zeitabstand zwischen Abfragen des Eingabezustands in die Berechnung der Verschiebung einfließen lassen.

Die Drehung der Kamera hängt von der Mausbewegung ab. Hier wird die Funktion resetMouseDelta() aufgerufen, welche zwei Funktionen hat:

- die Bewegung der Maus seit dem Druck auf die rechte Maustaste bzw. seit letztem Aufruf von resetMouseDelta() wird zurückgeliefert, und
- mouseDownPos wird auf die aktuelle Maus-Cursorposition gesetzt (sodass beim nächsten Aufruf

Bei der Bewegung erfolgt die Neigung der Kamera um die x-Achse des lokalen Kamerakoordinatensystems (wird zurückgeliefert durch die Funktion m_camera.right(). Analog könnte man die Kamera auch um die lokale y-Achse der Kamera schwenken (wie in einem Flugsimulator üblich), dies führt aber zu recht beliebigen Ausrichtungen. Möchte man die Kamera eher parallel zum "Fußboden" halten, dann dreht man die Kamera um die y-Achse des Weltenkoordinatensystems (Vektor 0,1,0).

Am Ende des Tastaturabfrageteils werden noch die "wurde gedrückt"-Zustände zurückgesetzt.

Das Scrollrad soll in diesem Beispiel ein deutlich schnelleres Vorwärts- oder Rückwärtsbewegen durch die Szene ermöglichen. Deshalb werden die Mausradbewegungen mit größerer Verschiebegeschwindigkeit skaliert. Wie auch bei der Abfrage der Mausbewegung wird in der Funktion resetWheelDelta() der aktuell akkumulierte Scrollweg zurückgeliefert und intern im Zustandsmanager wieder auf 0 gesetzt.

5.4.4. Auf gedrückte Tasten reagieren

Wie oben erläutert wird das Neuzeichnen nur bei Registrieren eines Tastendrucks angefordert. Nehmen wir mal an, die rechte Maustaste ist gedrückt und die Vorwärtstaste W wird gedrückt gehalten. Dann sendet das Betriebssystem (bzw. Window-Manager) in regelmäßigen Abständen KeyPress-Events (z.B. 50 je Sekunde, je nach Einstellung). Diese sind dann als AutoRepeat gekennzeichnet und führen damit nicht zu einer Änderung im Eingabe-Zustandsmanager, aber zu einer erneuten Prüfung der Neuzeichnung (Aufruf von checkInput()). Und da eine Kamera-relevante Taste gedrückt gehalten ist, wird ein Neuzeichnen via renderLater() angefordert. Als Konsequenz ruckelt das Bild dann im Rythmus der Tastenwiederholrate... nicht sehr angenehm anzusehen.

Daher muss das Prüfen auf gedrückte Tasten regelmäßig, d.h. einmal pro Frame erfolgen. Und der geeignete Ort dafür ist das Ende der paint6L()-Funktion:

SceneView.cpp:paintGL()

```
void SceneView::paintGL() {
    ...
    checkInput();
}
```

Ganz zum Schluss wird nochmal auf eine Tasteneingabe geprüft und damit bei Bedarf ein UpdateRequest eingereiht.

Damit wäre die Tastatur- und Mauseingabe auch schon komplett.

5.5. Shaderprogramme

Die Verwaltung der Shaderprogramme macht Qt ja eigentlich schon durch die Klasse QOpenGLShaderProgram. Wenn man eine weitere Wrapper-Klasse außen herum packt, dann wird der Quelltext noch deutlich übersichtlicher. In der Deklaration der Wrapper-Klasse ShaderProgram findet man die gekapselte Qt Klasse wieder:

ShaderProgram.h

```
class ShaderProgram {
public:
    ShaderProgram();
    ShaderProgram(const QString & vertexShaderFilePath, const QString & fragmentShaderFilePath);
   void create();
   void destroy();
   QOpenGLShaderProgram * shaderProgram() { return m_program; }
    // paths to shader programs, used in create()
             m_vertexShaderFilePath;
m_fragmentShaderFilePath;
    QString
   QString
    QStringList m_uniformNames; // uniform (variable) names
    QList<int> m_uniformIDs; // uniform IDs (resolved in create())
private:
    QOpenGLShaderProgram
                             *m_program;
};
```

Zur Verwaltung von Shaderprogrammen gehören auch die Variablen, die man dem Vertex- und/oder Fragment-Shaderprogramm übergeben möchte (siehe Shaderprogramme in Abschnitt "Zeichenobjekte"). Die Verwendung der Klasse sieht vor, dass man erst alle Eigenschaften setzt (Resourcen-Pfade zu den Shaderprogrammen, und die uniform-Namen im Vektor m_uniformNames). Dies wird im Konstruktor der SceneView-Klasse gemacht:

SceneView.cpp:SceneView()

```
SceneView::SceneView() :
   m_inputEventReceived(false)
{
    // Shaderprogram #0 : regular geometry (painting triangles via element index)
   ShaderProgram blocks(":/shaders/withWorldAndCamera.vert",":/shaders/simple.frag");
   blocks.m_uniformNames.append("worldToView");
   m_shaderPrograms.append( blocks );
    // Shaderprogram #1 : grid (painting grid lines)
    ShaderProgram grid(":/shaders/grid.vert",":/shaders/grid.frag");
    grid.m_uniformNames.append("worldToView"); // mat4
    grid.m_uniformNames.append("gridColor"); // vec3
    grid.m_uniformNames.append("backColor"); // vec3
    m_shaderPrograms.append( grid );
}
```

Die Konfiguration aller Shaderprogramme kann vor der eigentlichen OpenGL-Initialisierung erfolgen. Diese erfolgt für jedes Shaderprogramm beim Aufruf der Funktion ShaderProgram::create(). Die macht dann die eigentliche Initialisierung, die in den vorangegangenen Tutorials in der initializeGL() Funktion gemacht wurde:

Dank der netten Hilfsfunktionen QOpenGLShaderProgram::addShaderFromSourceFile() und QOpenGLShaderProgram::uniformLocation() ist das auch recht übersichtlich. Die Fehlerbehandlung könnte noch besser sein, aber das kann man ja schnell nachrüsten.

Beim Aufruf von QOpenGLShaderProgram::addShaderFromSourceFile() ist das erste Argument zu beachten, welches den Typ des Shaderprogramms festlegt!

Die Funktion uniformLocation() sucht in beiden Shaderprogrammen nach uniform Deklarationen, also Variablen, die unabhängig von Vertex oder Fragment dem Shaderprogramm zur Verfügung stehen. Diese werden beim compilieren und linken durchnummeriert und den zu einem uniform-Variablennamen passenden Index kann man mit uniformLocation() ermitteln.

Bei der Verwendung des Shaders kann man dann mit setUniformValue() den entsprechenden Wert setzen (siehe auch Shaderprogramm-Beispiele im Abschnitt "Zeichenobjekte").

Die Shaderprogramme wissen selbst nicht, für welche Objekte sie zum Zeichnen gebraucht werden. Auch werden die Variablen (uniforms), die sie zur Funktion benötigen, meist woanders gespeichert. Daher gibt es in der Klasse nicht mehr zu tun.

5.6. Transformationsmatrizen und Kamera

5.6.1. Transformationen

Das Thema *Transformationsmatrizen* ist in den in der Einleitung zitierten Webtutorials/Anleitungen ausreichend beschrieben. Die Format zur Transformation eines Punktes/Vektors pModel in den Modellkoordinaten zu den View-Koordinaten pView benötigt 3 Transformationsmatrizen:

```
pView = M_projection * M_World2Camera * M_Model2World * pModel
```

Dies entspricht den Schritten:

1. Transformation des Punktes von Modellkoordinaten in das Weltenkoordinatensystem. Dies ist bei

bewegten/animierten Objekten sinnvoll, d.h. eine Objekteigenschaft. Manchmal möchte man auch die gesamte Welt transformieren, auch dafür nimmt man die Model-zu-Welt-Transformationsmatrix.

- 2. Transformation von Welt- zu Beobachterkoordinatensystem (Kamera). Ist eigentlich das Gleiche, jedoch ist die Kamera, deren Ausrichtung und Position modellunabhängig.
- 3. Projektionstransformation (othogonal, perspektivisch, ...), kann z.B. durch near/far-plane und Angle-of-View definiert werden.

Da die Objekte in Modell bzw. Weltkoordinaten definiert und verwaltet werden, sollte besser OpenGL die Transformationen durchführen (dafür ist es ja gemacht). Je nach Anzahl der zu transformierenden Objekte kann nun den objektspezifischen ersten Transformationsschritt in das Weltenkoordinatensystem auf der CPU durchführen (idealerweise parallelisiert). Die Transformation von Weltkoordinaten in die projezierte Darstellung macht dann OpenGL. Da diese Matrix für alle Objekte gleich ist, kann man diese auch bequem den Shaderprogrammen übergeben. D.h. die Matrix:

```
M_World2View = M_Projection * M_World2Camera * M_Model2World
```

wird als uniform-Variable an die Shaderprogramme übergeben. Die Transformieren dann damit hocheffizient auf der Grafikkarte alle Vertex-Koordinaten.

5.6.2. Aktualisierung der World2View Matrix

Die Projektionsmatrix ändert sich bei jeder Viewport-Änderung, da sich damit zumeist das Breite/Höhe-Verhältnis ändert. Sonst ändert sich diese Matrix eigentlich nie, außer vielleicht in den Benutzereinstellungen (wenn z.B. Linseneigenschaften wie Öffnungswinkel oder Zoom verändert werden).

Die Model2World-Matrix bleibt wie oben geschrieben außen vor, da objektabhängig.

Die Kameramatrix (World2Camera) ändert sich jedoch ständig während der Navigation durch die Szene. Da die Navigation am Anfang der Neuzeichenroutine ausgewertet wird, erfolgt die Neuberechnung der Matrix (falls notwendig) auch direkt vorm Neuzeichnen.

Es ist denkbar, dass ein MouseMove-Event mehrfach während eines Frames ausgelöst wird. Wenn man nun die Neuberechnung der Matrix daran koppelt, führt das mitunter zu unnützer Rechenarbeit. Daher ist es sinnvoller, die Berechnung erst zu Beginn des Zeichenzyklus durchzuführen.

Die eigentliche Berechnung erfolgt in der Funktion updateWorld2ViewMatrix. Dank der Funktionalität der Matrixklasse QMatrix4x4 eine sehr kompakte Funktion.

```
void SceneView::updateWorld2ViewMatrix() {
   // transformation steps:
   // model space -> transform -> world space
       world space -> camera/eye -> camera view
        camera view -> projection -> normalized device coordinates (NDC)
   m_worldToView = m_projection * m_camera.toMatrix() * m_transform.toMatrix();
}
```

Die Multiplikation mit der Modell-Transformationsmatrix (m_transform) ist eigentlich nicht zwingend notwendig, dient aber der Demonstration der Animationsfähigkeit (konstantes Rotieren der Welt um die y-Achse). Dazu den #if 0 Block in paintGL() nach #if 1 ändern.

Die ganze Arbeit der Konfiguration und Erstellung der Translations, Rotations, und Skalierungsmatrizen macht die Klasse Transform3D. In der Funktion toMatrix() werden diese einzelnen Matrizen zur Gesamtmatrix kombiniert (implementiert mit Lazy-Evaluation):

Transform3D.cpp:toMatrix()

```
const QMatrix4x4 &Transform3D::toMatrix() const {
    if (m_dirty) {
        m_dirty = false;
        m_world.setToIdentity();
        m_world.translate(m_translation);
        m_world.rotate(m_rotation);
        m_world.scale(m_scale);
    }
    return m_world;
}
```

Die Kamera-Klasse ist davon abgeleitet und beinhaltet letztlich nur die inverse Transformation vom Welten- zum Beobachterkoordinatensystem (siehe auch https://www.trentreed.net/blog/qt5-opengl-part-3b-camera-control). Im Prinzip hilft es sich vorzustellen, dass die Kamera ein positioniertes und ausgerichtetes Objekt selbst ist. Nun wollen wir dieses Kamera-Objekt nicht mittels einer Model2World-Transformationsmatrix in das Weltenkoordinatensystem hieven, sondern uns eher aus der Weltsicht in die lokale Sicht des Kamera-Objekts bewegen. Dies bedeuted, wir müssen alle Weltkoordinaten mittels der Inversen der Kamera-Objekt-Model2World-Matrix multiplizieren. Das macht dann die entsprechend spezialisiert toMatrix()-Funktion:

Camera.h:toMatrix()

```
const QMatrix4x4 & toMatrix() const {
    if (m_dirty) {
        m_dirty = false;
        m_world.setToIdentity();
        m_world.rotate(m_rotation.conjugated());
        m_world.translate(-m_translation);
    }
    return m_world;
}
```

Daneben bietet die Kameraklasse noch 3 interessante Abfragefunktionen, welche die Koordinatenrichtungen des lokalen Kamera-Koordinatensystems im Weltenkoordinatensystem zurückliefern:

```
// negative Kamera-z-Achse
QVector3D forward() const {
   const QVector3D LocalForward(0.0f, 0.0f, -1.0f);
    return m_rotation.rotatedVector(LocalForward);
}
// Kamera-y-Achse
QVector3D up() const {
   const QVector3D LocalUp(0.0f, 1.0f, 0.0f);
    return m_rotation.rotatedVector(LocalUp);
}
// Kamera-x-Achse
QVector3D right() const {
    const QVector3D LocalRight(1.0f, 0.0f, 0.0f);
    return m_rotation.rotatedVector(LocalRight);
}
```

Die eigentliche Arbeit macht hier die Klasse QQuaternion, welche man dankenswerterweise nicht selbst implementieren muss.

5.7. Zeichenobjekte

In diesem Abschnitt geht es um die Verwaltung von Zeichenobjekten. Dies ist nicht wirklich ein Qt-Thema, da diese Art von Datenmanagement in der einen oder anderen Art in jeder OpenGL-Anwendung zu finden ist. Wen also nur die Qt-spezifischen Dinge interessieren, kann dieses Kapitel gerne überspringen.

5.7.1. Effizientes Zeichnen großer Geometrien

Es gibt eine wesentliche Grundregel in OpenGL:

Wenn man effizient große Geometrien zeichnen möchte, dann muss man die Anzahl der glDrawXXX Aufrufe so klein wie möglich halten.

Ein Beispiel: wenn man 2 Würfel zeichen möchte, hat man folgende Möglichkeiten:

- alle 12 Seiten einzeln Zeichen (12 glDrawXXX Aufrufe), z.B. als:
 - GL_TRIANGLES (6 Vertices je Seite)
 - GL_TRIANGLE_STRIP (4 Vertices je Seite)
 - GL QUADS (4 Vertices je Seite)
- jeden Würfel einzeln zeichnen (2 qlDrawXXX Aufrufe), dabei alle Seiten des Würfels zusammen zeichnen via:
 - GL_TRIANGLES (8 Vertices, 6*6 Elementindices)
 - GL_QUADS (8 Vertices, 6*4 Elementindices)
- beide Würfel zusammen zeichnen (1 glDrawXXX Aufruf), dabei alle Seiten beider Würfels zusammen zeichnen via:
 - GL_TRIANGLES (2*8 Vertices, 2*6*6 Elementindices)
 - GL QUADS (2*8 Vertices, 2*6*4 Elementindices)

Die oben angegebene Anzahl der Vertexes gilt natürlich nur für einfarbige Würfel. Sollen die Seitenflächen unterschiedlich gefärbt sein, braucht man natürlich für jede Seite 4 Vertices, also bspw. bei GL_TRIANGLES brauch man für die 2 Würfel 2*6*4 Vertices.

Wenn man Objekte mit gemischten Flächenprimitiven hat (also z.B. Dreiecke und Rechtecke, oder Polygone), dann kann man entweder nach Flächentyp zusammenfassen und je Flächentyp ein glDrawXXX Aufruf ausführen, oder eben alles als Dreiecke behandeln und nur einen Zeichenaufruf verwenden. Kann man mal durch Profiling ausprobieren, was dann schneller ist. Der Speicherverbrauch spielt auch eine Rolle, da der Datentransfer zwischen CPU und GPU immer auch an der Geschwindigkeit der Speicheranbindung hängt.

Die Gruppierung von Zeichenelementen erfolgt im Prinzip nach folgenden Kriterien:

- Vertexdaten bei interleaved Storage (z.B. nur Koordinaten wie beim Gitter unten, Koordinaten-und-Farben, Koordinaten-Normalen-Texturcoords-Farben)
- Geometrietyp (siehe oben)
- · Objektveränderlichkeit
- Transparenz (dazu in einem späteren Tutorial mehr)

Das Ganze hängt also stark von der Anwendung ab. Im Tutorial 05 gibt es zwei Arten von Objekten:

- das Gitter, bestehend aus Linien und ausschließlich Koordinaten, gezeichnet via GL_LINES
- die Boxen, mit GL_TRIANGLES gezeichnet.

5.7.2. Verwaltung von Zeichenobjekten

Eine Möglichkeit, die für das Zeichnen derart gruppierter Daten benötigten Objekte, d.h. VertexArrayObject (VAO), VertexBufferObject (VBO) und ElementBufferObject (EBO), zu verwalten, ist eigene Datenhalteklassen zu verwenden. Diese sehen allgemein so aus:

Deklaration einer Zeichenobjektklasse

```
class DrawObject {
public:
   DrawObject();
   // create native OpenGL objects
   void create(QOpenGLShaderProgram * shaderProgramm);
   // release native OpenGL objects
   void destroy();
   // actual render objects
   void render();
   // Data members to store state
   QOpenGLVertexArrayObject m_vao;
                               m_vbo; // Vertex buffer
   QOpenGLBuffer
                               m_ebo; // Element/index buffer
   QOpenGLBuffer
   // other buffer objects
};
```

Die drei wichtigen Lebenszyklusphasen der Objekte sind durch die Funktionen create(), destroy() und render() abgebildet.

Speichermanagement bei OpenGL Objekten sollte explizit erfolgen, und nicht im Destruktor der Zeichenobjekt-Klassen. Es ist beim Aufräumen im Destruktor durch die automatisiert generierte Aufrufreihenfolge der einzelnen Destruktoren schwierig sicherzustellen, dass der dazugehörige OpenGL-Kontext aktiv ist. Daher empfiehlt es sich, stets eine explizite destroy() Funktion zu verwenden.

Außerdem werden die Zeichenobjekte so kopierbar und können, unter anderem, in std::vector oder ähnlichen Container verwendet werden.

Am Besten wird das Datenmanagement in einer Beispielimplementierung sichtbar.

5.7.3. Zeichenobjekt #1: Gitterraster in X-Z Ebene

Beginnen wir mit einem einfachen Beispiel: Ein Gitterraster soll auf dem Bildschirm gezeichnet werden, sozusagen als "Boden". Es werden also Linien in der X-Z-Ebene (y=0) gezeichnet, wofür der Elementtyp GL_LINES zum Zeichnen verwendet wird.

Für jede Linie sind Start- und Endkoordinaten anzugeben, wobei die y-Koordinate eingespart werden kann.

Man muss nicht immer alle Koordinaten (x,y,z) an den Vertexshader übergeben, wenn es nicht notwendig ist.

Wir stellen also den Vertexpuffer mit folgendem Schema zusammen:

x1sz1sx1ez1ex2sz2sx2ez2e... also jeweils x und z Koordinatentuple für je Start- (s) und Endpunkt (e) einer Linie nacheinander.

Diese Geometrieinformation wird in der Klasse GridObject zusammengestellt:

GridObject.h, Klassendeklaration

```
class GridObject {
public:
   void create(QOpenGLShaderProgram * shaderProgramm);
   void destroy();
   void render();
   unsigned int
                               m_bufferSize;
   QOpenGLVertexArrayObject m_vao;
    QOpenGLBuffer
                              m_vbo;
};
```

Die Implementierung der create() Funktion ist das eigentlich Interessante:

```
void GridObject::create(QOpenGLShaderProgram * shaderProgramm) {
   const unsigned int N = 100; // number of lines to draw in x and z direction
   // width is in "space units", whatever that means for you (meters, km, nanometers...)
   float width = 500;
   // grid is centered around origin, and expands to width/2 in -x, +x, -z and +z direction
   // create a temporary buffer that will contain the x-z coordinates of all grid lines
   std::vector<float> gridVertexBufferData;
   // we have 2*N lines, each line requires two vertexes, with two floats (x and z coordinates) each.
   m_bufferSize = 2*N*2;
   gridVertexBufferData.resize(m_bufferSize);
   float * gridVertexBufferPtr = gridVertexBufferData.data();
   // compute grid lines with z = const
   float x1 = -width*0.5;
   float x2 = width*0.5;
   for (unsigned int i=0; i<N; ++i, gridVertexBufferPtr += 4) {</pre>
       float z = width/(N-1)*i-width*0.5;
       gridVertexBufferPtr[0] = x1;
       gridVertexBufferPtr[1] = z;
       gridVertexBufferPtr[2] = x2;
       gridVertexBufferPtr[3] = z;
   // compute grid lines with x = const
   float z1 = -width*0.5;
   float z2 = width*0.5;
   for (unsigned int i=0; i<N; ++i, gridVertexBufferPtr += 4) {</pre>
       float x = width/(N-1)*i-width*0.5;
       gridVertexBufferPtr[0] = x;
       gridVertexBufferPtr[1] = z1;
       gridVertexBufferPtr[2] = x;
       gridVertexBufferPtr[3] = z2;
   }
```

Im ersten Teil wird ein linearer Speicherbereich (bereitgestellt in einem std::vector) mit den Liniendaten gefüllt. Das Raster besteht aus Linien in X und Z Richtung (2), jeweils N Linien, und jede Linie hat einen Start- und einen Endpunkt (2) und jeder Punkt besteht aus 2 Koordinaten. Dies macht 2*N*2*2 floats (=NVertices).

Es ist ok an dieser Stelle den Speicherbereich in einem temporären Vektor anzulegen, da beim Erzeugen des OpenGL-Vertexpuffers die Daten kopiert werden und der Vektor danach nicht mehr benötigt wird. Dies ist im Falle von veränderlichen Daten (siehe BoxObjekte unten) anders.

Im zweiten Teil der Funktion werden dann wie gehabt die OpenGL-Pufferobjekte erstellt:

GridObject.cpp:create(), fortgesetzt

```
// Create Vertex Array Object
   m_vao.create();  // create Vertex Array Object
m_vao.bind();  // and bind it
   // Create Vertex Buffer Object
   m_vbo.create();
   m_vbo.bind();
   m_vbo.setUsagePattern(QOpenGLBuffer::StaticDraw);
    int vertexMemSize = m_bufferSize*sizeof(float);
   m_vbo.allocate(gridVertexBufferData.data(), vertexMemSize);
    // layout(location = 0) = vec2 position
    shaderProgramm->enableAttributeArray(0); // array with index/id 0
    shaderProgramm->setAttributeBuffer(0, GL_FLOAT,
                                   0 /* position/vertex offset */,
                                   2 /* two floats per position = vec2 */,
                                   0 /* vertex after vertex, no interleaving */);
    m_vao.release();
   m_vbo.release();
}
```

Die Aufrufe von shaderProgramm->enableAttributeArray und shaderProgramm->setAttributeBuffer definieren, wie der Vertexshader auf diesen Speicherbereich zugreifen soll. Deshalb muss die Funktion create() auch das dazugehörige Shaderprogramm als Funktionsargument erhalten.

Nachdem nun die Puffer erstellt und konfiguriert wurden, ist der Rest der Klassenimplementierung recht übersichtlich:

GridObject.cpp:destroy() und render()

```
void GridObject::destroy() {
   m_vao.destroy();
   m_vbo.destroy();
}
void GridObject::render() {
   m_vao.bind();
    // draw the grid lines, m_bufferSize = number of floats in buffer
   glDrawArrays(GL_LINES, 0, m_bufferSize);
    m_vao.release();
}
```

Die Funktion destroy() ist sicher selbsterklärend. Und die Render-Funktion ebenso.

Beachte, dass die Funktion glDrawArrays() als drittes Argument die Länge des Puffers als Anzahl der Elemente vom Typ des Puffers (hier GL_FLOAT) erwartet, und nicht die Länge in Bytes.

Die Funktion render() wird direkt aus SceneView::paint6L() aufgerufen. Hier ist der entsprechende Abschnitt aus der Funktion:

SceneView.cpp:paintGL()

```
void SceneView::paintGL() {
    ...

// set the background color = clear color
    QVector3D backColor(0.1f, 0.15f, 0.3f);
    glClearColor(0.1f, 0.15f, 0.3f, 1.0f);

QVector3D gridColor(0.5f, 0.5f, 0.7f);
    ...

// *** render grid ***

SHADER(1)->bind();
SHADER(1)->setUniformValue(m_shaderPrograms[1].m_uniformIDs[0], m_worldToView);
SHADER(1)->setUniformValue(m_shaderPrograms[1].m_uniformIDs[1], gridColor);
SHADER(1)->setUniformValue(m_shaderPrograms[1].m_uniformIDs[2], backColor);
m_gridObject.render(); // render the grid
SHADER(1)->release();
...
```

Hier sieht man auch, wie die Variablen an die Shaderprogramme übergeben werden. In Abschnitt "Shaderprogramme" oben wurde ja gezeigt, wie die IDs der uniform Variablen ermittelt werden. Nun müssen diese Variablen vor jeder Verwendung des Shaderprogramms gesetzt werden. Dies erfolgt direkt vor dem Aufruf der GridObject::render() Funktion.

Das Ergebnis dieses Zeichnens (mit uniformer Gitterfarbe) ist zunächst ganz nett:

Figure 6. Einfaches Gitterraster (einfarbig) mit sichtbarer endlicher Ausdehnung

Aber schöne wäre es, wenn das Gitter mit zunehmender Tiefe verblasst.

Gitter mit Abblendung in der Tiefe

Das Gitter sollte sich nun in weiter Ferne der Hintergrundfarbe annähern. Man könnte das zum Beispiel erreichen, wenn man die Farbe des Gitters an weiter entfernten Punkte einfärbt.

Den Vertexshader könnte man wie folgt erweitern:

```
#version 330
// GLSL version 3.3
// vertex shader
layout(location = 0) in vec2 position; // input: attribute with index '0'
                                        // with 2 floats (x, z coords) per vertex
out vec4 fragColor;
                                        // output: computed vertex color for shader
                                  // threshold
const float FARPLANE = 50;
float fragDepth;
                                      // normalized depth value
uniform mat4 worldToView;  // parameter: the view transformation matrix
uniform vec3 gridColor;  // parameter: grid color as rgb triple
uniform vec3 backColor;
                                       // parameter: background color as rgb triple
void main() {
  gl_Position = worldToView * vec4(position.x, 0.0, position.y, 1.0);
  fragDepth = max(0, min(1, gl_Position.z / FARPLANE));
  fragColor = vec4( mix(gridColor, backColor, fragDepth), 1.0);
}
```

Es gibt 3 Parameter, die dem Shaderprogramm gegeben werden müssen (das passiert in SceneView::paint6L(), siehe Quelltextausschnitt oben):

- worldToView Transformationsmatrix (von Weltkoordinaten zur perspektivischen Ansicht)
- gridColor Farbe des Gitters
- backColor Hintergrundfarbe

Die Variable gl_Position enthält nach der Transformation die normalisierten Koordinaten. In der Berechnung wird die zweite Komponente des Vertex-Vektors (angesprochen über .y) als z-Koordinate verwendet.

Für die Abblendefunktionalität ist die Entfernung des Linienstart- bzw. -endpunktes interessant. Nun sind die z-Koordinaten dieser normalisierten Position alle sehr dicht an 1 dran. Deshalb werden sie noch skaliert (entsprechend der perspektivischen Transformationsregeln etwas wie eine Farplane). Nun kann man diese Tiefe, gespeichert in der Variable fragDepth nutzen, um zwischen Gitterfarbe und Hintergrundfarbe linear mit der GLSL-Funktion mix() zu interpolieren.

Figure 7. Gitterraster mit Vertex-basierter Abblendung

Das Ergebnis geht schon in die richtige Richtung, aber es gibt einen unschönen Effekt, wenn man parallel zu den Linien schaut. Die Koordinaten der Endpunkte der seitlich laufenden Linien sind sehr weit weg (in der

perspektivischen Projekten), sodass beide Linienenden nahezu Hintergrundfarbe bekommen. Und da die Fragmentfarbe eine lineare Interpolation zwischen den Vertexfarben ist, verschwindet die gesamte Linie.

Das Problem lässt sich nur beheben, wenn man die Ablendfunktionalität in den Fragment-Shader steckt.

Der Vertex-Shader wird dadurch total einfach:

grid.vert (Vertexshader)

Letztlich werden nur noch die Vertex-Koordinaten transformiert und an den Fragment-Shader weitergereicht. Der sieht dann so aus:

grid.frag (Fragmentshader)

Die Variable gl_FragCoord wird für jeden einzelnen Bildpunkt von OpenGL bereitgestellt und enthält die Normalized Device Coordinates (NDC). Wenn man beachtet, dass diese Koordinaten durch Division mit w berechnet werden, dann bekommt man die originale z-Koordinate durch Multiplikation mit w. Das ganze wird dann noch mit einem Begrenzungswert (FARPLANE) skaliert. Falls bei der Definition des View-Frustums andere Werte für Near/Farplane verwendet werden, muss man die Formel entsprechend anpassen (siehe https://learnopengl.com/Advanced-OpenGL/Depth-testing für die dahinterliegende Mathematik).

Damit sieht das Ergebnis dann wie gewünscht aus:

Figure 8. Gitterraster mit Fragment-basierter Abblendung (Fog/Nebeleffekt)

5.7.4. Zeichenobjekt #2: Viele viele Boxen

Um die Performance der Grafikkarte (und der Anwendung) zu testen, kann man sehr viele Boxen modellieren und dann mittels eines einzigen glDrawElements()-Aufrufs zeichnen lassen. Bei modernen Grafikkarten sollten locker Millionen von Boxen flüssig gezeichnet werden können.

Die Aufgabe besteht nun darin, die Vertexdaten aller Boxen und die dazugehörigen Elementindexe in die zwei Puffer (VBO und EBO) zu stecken, und den Quelltext auch noch einigermaßen verstehen zu können.

Zunächst wird wie beim Gitter ein Boxen-Zeichenobjekt erstellt:

BoxObject.h

```
class BoxObject {
public:
    BoxObject();
    void create(QOpenGLShaderProgram * shaderProgramm);
    void destroy();
   void render();
    std::vector<BoxMesh>
                                m_boxes;
    std::vector<Vertex>
                                m_vertexBufferData;
    std::vector<GLuint>
                                m_elementBufferData;
    QOpenGLVertexArrayObject
                                m_vao;
    QOpenGLBuffer
                                m_vbo;
    QOpenGLBuffer
                                m_ebo;
};
```

Sieht erstmal fast genauso aus wie bei der Klasse GridObject.

Beide Klassen stellen ja die gleichen Funktionen zur Verfügung. Man könnte also auf die Idee kommen, hinsichtlich Initialisierung und Aufräumen alle Zeichenobjekte gleich zu behandeln. Geht sicher, hängt aber vom Programm ab (und der Datenveränderlichkeit), ob das sinnvoll ist. Beim Tutorial 05 wäre das sicher gut gewesen (hab ich mir aber wegen nur zwei Objekten gespart).

Vielleicht noch ein Hinweis zu den Puffern. Neben OpenGL-Pufferobjekten m_vbo und m_ebo sind die ursprünglichen Datenpuffer m_vertexBufferData und m_elementBufferData dauerhaft als Membervariablen vorhanden. Dies ermöglicht eine nachträgliche Aktualisierung eines Teils der Daten (z.B. Farben einer einzelnen Box oder einer Seite), ohne dass neu Speicher reserviert werden muss und die Puffer erneut aufgebaut werden.

Teilweise Aktualisierung von Pufferdaten spielt in diesem Tutorial keine Rolle. Es lohnt sich aber, die Funktion QOpenGLBuffer::mapRange anzuschauen (bzw. die darunterliegenden nativen OpenGL-Funktionen glMapBuffer und glMapBufferRange).

Die eigentliche Geometrie, d.h. Größe und Position der Boxen wird durch die BoxMesh-Objekte bereitgestellt, welche im Vektor m boxes vorgehalten werden.

Die Implementierung der 3 Funktionen ist dann auch recht ähnlich wie beim GridObject.

BoxObject.cpp:destroy() und render()

```
void BoxObject::destroy() {
    m_vao.destroy();
    m_vbo.destroy();
    m_ebo.destroy();
}

void BoxObject::render() {
    m_vao.bind();
    glDrawElements(GL_TRIANGLES, m_elementBufferData.size(), GL_UNSIGNED_INT, nullptr);
    m_vao.release();
}
```

Die Funktionen destroy() und render() sind selbsterklärend (wie schon beim GridObject. Zur Vollständigkeit sei nocheinmal der Aufruf der Zeichenfunktion gezeigt:

SceneView.cpp:paintGL()

Erstellung der OpenGL-Puffer - struct Vertex

Interessanter ist dann schon die create()-Funktion, in der die Puffer befüllt werden:

BoxObject.cpp:create()

```
void BoxObject::create(QOpenGLShaderProgram * shaderProgramm) {
   // create and bind Vertex Array Object
   m_vao.create();
   m_vao.bind();
   // create and bind vertex buffer
   m_vbo.create();
   m_vbo.bind();
   m_vbo.setUsagePattern(QOpenGLBuffer::StaticDraw);
   int vertexMemSize = m_vertexBufferData.size()*sizeof(Vertex);
   m_vbo.allocate(m_vertexBufferData.data(), vertexMemSize);
   // create and bind element buffer
   m ebo.create();
   m_ebo.bind();
   m_ebo.setUsagePattern(QOpenGLBuffer::StaticDraw);
   int elementMemSize = m_elementBufferData.size()*sizeof(GLuint);
   m_ebo.allocate(m_elementBufferData.data(), elementMemSize);
   // set shader attributes
   // index 0 = position
   shaderProgramm->enableAttributeArray(0); // array with index/id 0
   shaderProgramm->setAttributeBuffer(0, GL_FLOAT, 0, 3, sizeof(Vertex));
   // index 1 = color
   shaderProgramm->enableAttributeArray(1); // array with index/id 1
   shaderProgramm->setAttributeBuffer(1, GL_FLOAT, offsetof(Vertex, r), 3, sizeof(Vertex));
   m_vao.release();
   m_vbo.release();
   m_ebo.release();
}
```

Die create()-Funktion ist inzwischen sicher gut verständlich (ansonsten siehe *Tutorial 03* und *Tutoral 04*):

- 1. das Vertex Array Objekt wird erstellt,
- 2. die Pufferobjekte werden erstellt und die Inhalte der bereits initialisierten Puffer (m_vertexBufferData und m_elementBufferData werden in die OpenGL-Puffer kopiert)
- 3. die Attribute im Shaderprogramm werden gesetzt, d.h. die Zusammensetzung des Puffers

Hier kommt das erste Mal die Struktur Vertex zum Einsatz. Diese gruppiert alle Attribute eines einzelen Vertex:

```
struct Vertex {
    Vertex() {}
    Vertex(const QVector3D & coords, const QColor & col) :
        x(float(coords.x())),
        y(float(coords.y())),
        z(float(coords.z())),
        r(float(col.redF())),
        g(float(col.greenF())),
        b(float(col.blueF()))
    {
    float x,y,z;
    float r,g,b;
};
```

Die Klasse enthält derzeit lediglich 6 floats, 3 für die Koordinaten, und 3 für das rgb-Farbtuple.

Beim Erstellen eines Puffers im interleaved-Modus werden nun die Vertex-Daten nacheinander in den Puffer kopiert (Details dazu im nächsten Abschnitt).

Dem Shaderprogramm muss man nun mitteilen, wo in diesem kontinuierlichen Speicherbereich die einzelen Attribute zu finden sind. Der stride-Parameter ist die Größe eines Vertex-Datemblocks in Bytes, welches sizeof(Vertex) zurückliefert. Das offset Argument (3. Argument in setAttributeBuffer()) ist die Anzahl der Bytes seit Beginn eines Vertexblocks, bei dem das jeweilige Datenelement beginnt. Im Fall des rgb-Farbtuples beginnt dieser Speicherbereich bei dem float r, und das passende Byte-Offset liefert offset (Vertex, r) zurück.

Man könnte statt offset(Vertex, r) auch 3*sizeof(float) oder 12 schreiben. ABER dann besteht die Gefahr, dass bei komplexeren Strukturen durch implizites Padding ungewollt eine Speicherbereichsverschiebung auftritt und das Shaderprogramm dann auf einen falschen Speicherbereich zugreift (siehe auch http://www.catb.org/esr/structure-packing). Dies ist auch der Grund, warum sizeof(Vertex) statt 6*sizeof(float) als stride verwendet wird. Solange nur floats in der Struktur verwendet werden, wird der Compiler (normalerweise) kein Padding einfügen.

Initialisieren der Vertex- und Elementpuffer für die Boxen

Die ganze Arbeit der Vertex- und Index-Puffer-Erstellung wird im Konstruktor der Klasse BoxObject und der Hilfsklasse BoxMesh gemacht.

```
BoxObject::BoxObject() :
    m_vbo(QOpenGLBuffer::VertexBuffer), // actually the default, so default constructor would have been enough
    m_ebo(QOpenGLBuffer::IndexBuffer) // make this an Index Buffer
{
    // create center box
    BoxMesh b(4,2,3);
    b.setFaceColors({Qt::blue, Qt::red, Qt::yellow, Qt::green, Qt::magenta, Qt::darkCyan});
    Transform3D trans;
    trans.setTranslation(0,1,0);
    b.transform(trans.toMatrix());
    m_boxes.push_back( b);
    const int BoxGenCount = 10000;
    const int GridDim = 50; // must be an int, or use cast below
    // initialize grid (block count)
    int boxPerCells[GridDim][GridDim];
    for (unsigned int i=0; i<GridDim; ++i)</pre>
        for (unsigned int j=0; j<GridDim; ++j)</pre>
            boxPerCells[i][j] = 0;
    for (unsigned int i=0; i<BoxGenCount; ++i) {</pre>
        // create other boxes in randomize grid, x and z dimensions fixed, height varies discretely
        // x and z translation in a grid that has 500 units width/depths with 5 m grid line spacing
        int xGrid = qrand()*double(GridDim)/RAND_MAX;
        int zGrid = grand()*double(GridDim)/RAND_MAX;
        int boxCount = boxPerCells[xGrid][zGrid]++;
        float boxHeight = 4.5;
        BoxMesh b(4,boxHeight,3);
        b.setFaceColors({Qt::blue, Qt::red, Qt::yellow, Qt::green, Qt::magenta, Qt::darkCyan});
        trans.setTranslation((-GridDim/2+xGrid)*5, boxCount*5 + 0.5*boxHeight, (-GridDim/2 + zGrid)*5);
        b.transform(trans.toMatrix());
        m_boxes.push_back(b);
    }
    unsigned int NBoxes = m_boxes.size();
    // resize storage arrays
    m_vertexBufferData.resize(NBoxes*BoxMesh::VertexCount);
    m_elementBufferData.resize(NBoxes*BoxMesh::IndexCount);
    // undate the buffers
    Vertex * vertexBuffer = m_vertexBufferData.data();
    unsigned int vertexCount = 0;
    GLuint * elementBuffer = m_elementBufferData.data();
    for (const BoxMesh & b : m_boxes)
        b.copy2Buffer(vertexBuffer, elementBuffer, vertexCount);
}
```

Wichtig ist zunächst die Initialisierung der QopenGLBuffer Objekte. Als Konstruktorargument wird der Typ des Buffers angegeben (VertexBuffer ist der Standard, aber beim m_ebo Objekt muss man IndexBuffer festlegen).

Dann wird zunächst eine Testbox erstellt. Dies beinhaltet die folgenden Schritte:

1. Erstellung eines BoxMesh Objekts mit den Ausdehnungen 4x2x3 (die Box wird zentriert um das eigene Koordinatensystem erstellt, also x=-2...-2, y=-1...1, z=-1,5...1,5):

```
BoxMesh b(4,2,3);
```

2. Festlegen der Seitenfarben:

```
b.setFaceColors({Qt::blue, Qt::red, Qt::yellow, Qt::green, Qt::magenta, Qt::darkCyan});
```

3. Verschiebung der Box in das Weltenkoordinatensystem (erst Erstellung der Transformationsmatrix, dann anwenden der Transformation auf die Box):

```
Transform3D trans;
trans.setTranslation(0,1,0);
b.transform(trans.toMatrix());
```

4. Zuletzt ablegen der Box im Vektor m_boxes:

```
m_boxes.push_back( b);
```

Die Klasse BoxMesh merkt sich zunächst nur die Koordinaten und Farbzuordnungen.

Als nächstes werden noch eine Reihe weiterer Boxen erstellt, und in einem Raster mit Dimension *GridDim x GridDim* gestapelt. Wenn man mal die eienen Grafikkarte testen will, kann man gerne BoxGenCount auf eine Million erhöhen und/oder das Gitterraster vergrößern (z.B. GridDim=500) um eine etwas größere "Stadt" zu bekommen.

Bei größeren Rasterdimensionen sieht man auch gut den Effekt des Tiefenclippings, d.h. Objekte hinter der FARPLANE werden nicht mehr gerendert.

Nun kommt der eigentlich interessante Teil. Es werden erst Pufferspeicher reserviert. Dabei liefern die Funktionen BoxMesh::VertexCount und BoxMesh::IndexCount die je Meshobjekt benötigte Anzahl von Elementen zurück. Man hätte hier auch gleich die Anzahl eintragen können, aber so bleibt der Code hinreichend universell und kann auf beliebige andere Meshobjekte übertragen werden.

Zuletzt kommt das Befüllen der Puffer in traditioneller C-Methodik zum Befüllen kontinuierlicher Speicherbereiche mit Elementen:

```
Vertex * vertexBuffer = m_vertexBufferData.data();
unsigned int vertexCount = 0;
GLuint * elementBuffer = m_elementBufferData.data();
for (const BoxMesh & b : m_boxes)
    b.copy2Buffer(vertexBuffer, elementBuffer, vertexCount);
```

Es werden erst Zeiger auf den Beginn des Pufferspeichers geholt und der Startindex der Vertices auf 0 gesetzt. Dann werden in jedem Schleifendurchlauf die Daten eines BoxMeshes in die Puffer geschrieben und die Zeigervariablen entsprechend vorgerückt. Ebenso wird der Startindex der Vertexes erhöht (vertexCount), sodass bei er nächsten Box neue Vertexnummern vergeben werden.

In dieser Art ließen sich ohne weiteres andere Objekttypen verwalten und zusammengefasst in einen Zeichenpuffer kopieren. Die ganze objektspezifische Geometriearbeit passiert im jeweiligen Mesh-Objekt, in diesem Fall in der Klasse BoxMesh.

Die Klasse BoxMesh

Inzwischen sollte die Aufgabe der Klasse BoxMesh klar sein:

- speichern der originalen Geometrie (im lokalen Koordinatensystem)
- speichern/anwenden der Transformation zum Weltenkoordinatensystem
- befüllen des linearen Vertexpuffer-Speichers und Elementpuffer-Speichers

Auch hier gibt es wieder verschiedene Möglichkeiten. Man kann sich, nach dem Prinzip der lazy evaluation erst einmal nur die für die Schritte benötigten Parameter merken, also z.B. Breite, Höhe und Länge der Box, und die Transformationsmatrix. Wenn dann der Vertexpuffer gefüllt werden soll, erstellt man die Vertexkoordinaten, führt die Transformation aus und kopiert dann die resultierenden Koordinaten. Das Verfahren ist sinnvoll, wenn sich die Transformation (also Model-zu-Weltkoordinaten) häufig ändert.

Alternativ kann man, wie hier in Tutorial 05, auch die Koordinaten gleich berechnen, d.h. beim Erstellen des Objekt die Vertexkoordinaten im lokalen Koordinatensystem festlegen, und dann bei Ausführen der Transformation sofort an Ort und Stelle transformieren. Dies reduziert die Arbeit beim eigentlichen Befüllen des OpenGL-Vertex-Puffers, führt aber zu witzigen Effekten bei mehrfacher Anwendung der in-place Transformation (wegen der unvermeidlichen Rundungsfehler... einfach mal mehrere 100 Mal im Kreis drehen und sich über die Geometrieveränderung freuen). Da Animation oder Transformation in diesem Tutorial keine Rolle spielt, werden die Boxen gleich zu Beginn ins Weltenkoordinatensystem transformiert.

Bevor wir uns der eigentlichen Implementierung widmen, hift vielleicht die eine oder andere Skizze, die Box-Geometrie zu verstehen:

Figure 9. Nummerierung der Knoten (Vertices) der Box

Die Nummerierung der Vertexes ist zunächst einmal für die Datenhaltung in der BoxMesh-Klasse notwendig. Es werden nämlich im Konstruktor schon einmal die Vertexkoordinaten berechnet:

BoxMesh.cpp, Konstruktor

```
BoxMesh::BoxMesh(float width, float height, float depth, QColor boxColor) {

m_vertices.push_back(QVector3D(-0.5f*width, -0.5f*height, 0.5f*depth)); // a = 0
m_vertices.push_back(QVector3D( 0.5f*width, -0.5f*height, 0.5f*depth)); // b = 1
m_vertices.push_back(QVector3D( 0.5f*width, 0.5f*height, 0.5f*depth)); // c = 2
m_vertices.push_back(QVector3D(-0.5f*width, 0.5f*height, 0.5f*depth)); // d = 3

m_vertices.push_back(QVector3D(-0.5f*width, -0.5f*height, -0.5f*depth)); // e = 4
m_vertices.push_back(QVector3D( 0.5f*width, -0.5f*height, -0.5f*depth)); // f = 5
m_vertices.push_back(QVector3D( 0.5f*width, 0.5f*height, -0.5f*depth)); // g = 6
m_vertices.push_back(QVector3D(-0.5f*width, 0.5f*height, -0.5f*depth)); // h = 7

setColor(boxColor);
}
```

Die Knotenkoordinaten sind zunächst in einem Vektor von QVector3D abgelegt. Bei einem nachfolgenden Aufruf zur Transformation werden diese Koordinaten einfach verändert:

BoxMesh.cpp:transform()

```
void BoxMesh::transform(const QMatrix4x4 & transform) {
   for (QVector3D & v : m_vertices)
     v = transform*v;
}
```


Bei mehrfacher Ausführung von transform() auf die Rundungsfehler achten!

Nun sind die Boxen also bereits im Weltenkoordinatensystem verankert und der Vertexpuffer und Indexpuffer können befüllt werden.

Für das weitere Vorgehen ist es hilfreich, das Speicherlayout des Vertexpuffers einmal gesehen zu haben. Die folgende Abbildung zeigt das Ziel dieser Kopieraktion.

Figure 10. Speicherlayout des Vertexpuffers

Alle Boxen werden nacheinander im VBO abgelegt. Je Box sind das 6 Seiten, wobei für jede Seite 4 Vertexes mit je Koordinaten und Farbwerten abgelegt werden. Das Kopieren erfolgt in der Funktion copy2Buffer(), wobei jeweils die Daten für eine einzelne Box kopiert werden. In der Abbildung ist auch der stride (Länge eines Vertexdatenblocks) gezeigt.

In der Funktion copy2Buffer() wird zunächst ein temporärer Vektor cols mit Farben für jede Seite angelegt, für den Fall, dass einfarbige Boxen verwendet werden:

BoxMesh.cpp:copy2Buffer()

```
void BoxMesh::copy2Buffer(Vertex *& vertexBuffer, GLuint *& elementBuffer, unsigned int & elementStartIndex) const {
   std::vector<QColor> cols;
   Q_ASSERT(!m_colors.empty());
   // three ways to store vertex colors
   if (m_colors.size() == 1) {
       cols = std::vector<QColor>(6, m_colors[0]);
   }
   else {
       Q_ASSERT(m_colors.size() == 6);
       cols = m_colors;
   }
```

Nun werden die Seiten nacheinander in der Reihenfolge vorne, rechts, hinten, links, unten und oben in die Puffer geschrieben:

```
void BoxMesh::copy2Buffer(Vertex *& vertexBuffer, GLuint *& elementBuffer, unsigned int & elementStartIndex) const {
   // front plane: a, b, c, d, vertexes (0, 1, 2, 3)
   copyPlane2Buffer(vertexBuffer, elementBuffer, elementStartIndex,
           Vertex(m_vertices[0], cols[0]),
           Vertex(m_vertices[1], cols[0]),
           Vertex(m_vertices[2], cols[0]),
           Vertex(m_vertices[3], cols[0])
       );
   // right plane: b=1, f=5, g=6, c=2, vertexes
   // Mind: colors are numbered up
   copyPlane2Buffer(vertexBuffer, elementBuffer, elementStartIndex,
           Vertex(m_vertices[1], cols[1]),
           Vertex(m_vertices[5], cols[1]),
           Vertex(m_vertices[6], cols[1]),
           Vertex(m_vertices[2], cols[1])
       );
   // back plane: g=5, e=4, h=7, g=6
   copyPlane2Buffer(vertexBuffer, elementBuffer, elementStartIndex,
           Vertex(m_vertices[5], cols[2]),
           Vertex(m_vertices[4], cols[2]),
           Vertex(m_vertices[7], cols[2]),
           Vertex(m_vertices[6], cols[2])
       );
   // left plane: 4,0,3,7
   copyPlane2Buffer(vertexBuffer, elementBuffer, elementStartIndex,
           Vertex(m_vertices[4], cols[3]),
           Vertex(m_vertices[0], cols[3]),
           Vertex(m_vertices[3], cols[3]),
           Vertex(m_vertices[7], cols[3])
       );
   // bottom plane: 4,5,1,0
   copyPlane2Buffer(vertexBuffer, elementBuffer, elementStartIndex,
           Vertex(m_vertices[4], cols[4]),
           Vertex(m_vertices[5], cols[4]),
           Vertex(m_vertices[1], cols[4]),
           Vertex(m_vertices[0], cols[4])
       );
   // top plane: 3,2,6,7
   copyPlane2Buffer(vertexBuffer, elementBuffer, elementStartIndex,
           Vertex(m_vertices[3], cols[5]),
           Vertex(m_vertices[2], cols[5]),
           Vertex(m_vertices[6], cols[5]),
           Vertex(m_vertices[7], cols[5])
       );
}
```

Beim Aufruf der Funktion copyPlane2Buffer() stehen die Zeiger vertexBuffer und elementBuffer stehts am Anfang des Speicherbereichs, in den die nun folgenden Seitendaten geschrieben werden.

Ebenso enthält die Variable elementStartIndex den Vertexindex, bei dem die Nummerierung beginnt. Bei der ersten Box beginnt die Nummerierung auf der Vorderseite mit 0 (d.h. Vertexes 0...3 sind auf der Vorderseite), siehe auch folgende Abbildung:

Figure 11. Seitennummerierung und generierte Dreieckselemente

Die Koordinaten und Farben werden beim Aufruf in die Vertex-Struktur kopiert.

Nachdem die Daten für die Vorderseite kopiert wurden, sind die Zeiger entsprechend verschoben worden und zeigen nun auf den Speicherbereich der nächsten Seite. Beim Aufruf der Funktion copyPlane2Buffer() muss auf die korrekte Reihenfolge der Vertexes geachtet werden, sodass die Vertices immer entgegen des Uhrzeigersinns übergeben werden.

Die letzte Abbildung zeigt auch die zwei Dreiecke, welche die Seite bilden. Deshalb wird in dieser Funktion sowohl der Vertexpuffer als auch der Indexpuffer befüllt. Innerhalb der Funktion copyPlane2Buffer() wird die Nummerierung relativ durchgeführt, d.h. die Vertices sind immer 0 bis 3, wobei allerdings stets der Startindex addiert wird (siehe Abbildung, rechte Seite).

```
void copyPlane2Buffer(Vertex * & vertexBuffer, GLuint * & elementBuffer, unsigned int & elementStartIndex,
    const Vertex & a, const Vertex & b, const Vertex & c, const Vertex & d)
{
   // first store the vertex data (a,b,c,d in counter-clockwise order)
   vertexBuffer[0] = a;
   vertexBuffer[1] = b;
   vertexBuffer[2] = c;
   vertexBuffer[3] = d;
   // advance vertexBuffer
   vertexBuffer += 4;
   // we generate data for two triangles: a, b, d and b, c, d
    elementBuffer[0] = elementStartIndex;
    elementBuffer[1] = elementStartIndex+1;
    elementBuffer[2] = elementStartIndex+3;
    elementBuffer[3] = elementStartIndex+1;
    elementBuffer[4] = elementStartIndex+2;
   elementBuffer[5] = elementStartIndex+3;
   // advance elementBuffer
   elementBuffer += 6;
    // 4 vertices have been added, so increase start number for next plane
   elementStartIndex += 4;
}
```

Hier machen wir uns nun eine nette Eigenschaft von C/C++ zu Nutze. Wenn wir einen Speicherbereich als Vektor einer Struktur behandeln, und via Index Objekte zuweisen, dass wird automatisch der Speicherbereich mit den Inhalten der Strukturen in der Reihenfolge der Deklaration der Variablen befüllt.

Da die Addressen und der Startindex als Referenzvariablen übergeben wurden, können wir die Zeiger "weiterschieben" und die Vertexanzahl entsprechend erhöhen.

Das schöne an der Funktion copyPlane2Buffer() ist, dass sie unverändert auch funktioniert, wenn die Vertex -Struktur später um Normalenvektoren und/oder Texturkoordinaten erweitert wird.

Mehr gibt es auch zur Klasse BoxMesh nicht zu sagen, womit wir am Ende des *Tutorial 05* angelangt wären. Um das ganze aber noch abzurunden (und etwas schicker aussehen zu lassen) fehlt noch Kantenglättung.

5.8. Antialiasing

Es gibt hier verschiedene Möglichkeiten, Antialiasing (Kantenglättung) zu verwenden. Die wohl einfachste aus Sicht der Programmierung ist das Einschalten von Multisampling (MSAA) (siehe Erläuterung auf https://www.khronos.org/opengl/wiki/Multisampling).

Dazu muss man beim Konfigurieren des QSurfaceFormat-Objekts nur folgende Zeile hinzufügen:

```
format.setSamples(4); // enable multisampling (antialiasing)
```

Multisampling braucht mehr Grafikkartenspeicher und ist durch das mehrfache Samplen von Pixeln/Fragmenten

natürlich langsamer. Daher gibt es auch die Möglichkeit, Antialiasing in das Shaderprogramm einzubauen. Das ist aber, ebenso wie ein Drahtgittereffekt, ein Thema für ein anderes Tutorial.

6. Tutorial 06: Fehlerbehandlung und und Profiling mit QOpenGLDebugLogger und QOpenGLTimeMonitor

In diesem Tutorial geht es um zwei Themen:

- sinnvolle Fehlerbehandlung und Kapselung der Fehlerausgaben
- Profiling von GPU Operationen (sinnvoll für die nächsten Tutorials, in denen durchaus zeitkritische Operationen angestoßen werden)

Qt-Klassen in diesem Tutorial:

- QOpenGLDebugLogger
- QOpenGLTimerQuery
- QOpenGLTimeMonitor
- QElapsedTimer

Quelltext für dieses Tutorial liegt im github repo: Tutorial_06

6.1. Fehlerbehandlung

Alle bisher vorgestellten Qt-Wrapper-Klassen um native OpenGL-Aufrufe haben bereits eine Fehleranalyse eingebaut, also bspw. QopenGLShaderProgram, QopenGLBuffer oder QopenGLContext.

Viele der Funktionen, die native OpenGL-Funktionen aufrufen, liefern ein bool zurück, und im Falle eines Fehlers (false) kann man mit der Memberfunktion log() eine Fehlermeldung abfragen.

Eine typische Debugausgabe wurde in den bisherigen Tutorials schon verwendet:

6.1.1. Exceptions und Qt

Es wäre natürlich sinnvoll, wenn man zwischen akzeptablen Fehlern (Warnungen) und kritischen Fehlern

unterscheidet.

Ein Qt-typischer Weg der Fehlerbehandlung wäre die Prüfung von Fehlern in Funktionen und dann Kommunikation via Funktionsrückgabewerten, ob ein Fehler aufgetreten ist oder nicht. Alternativ können auch Fehlerflags gesetzt werden, die dann an verschiedenen Stellen geprüft werden müssen. Diese Art der Fehlerbehandlung verlangt jedoch selbst viel Disziplin von Programmierern und führt in der Praxis leider häufig dazu, dass ein Fehlerflag/Rückgabewert nicht getestet wird und deshalb das Programm irgendwas macht. In Zusammenhang mit OpenGL heißt das meist, ein leeres oder unvollständig gezeichnetes Bild.

Bei kritischen Fehler, bei denen das Programm nicht sinnvoll weitergeführt werden kann, möchte man vielleicht in klassischer C++-Manier Exceptions verwenden. Dieses Kapitel behandelt eine Möglichkeit, mit Qt und Exceptions eine Fehlerbehandlung zu realisieren.

Die nachfolgend diskutierten Ansätze zur Exceptionbehandlung und Meldungsausgabe gelten aber eigentlich für jede Qt Anwendung, unabhängig von OpenGL.

Bei Verwendung von Exceptions wäre obiger Quelltext dann etwas länglicher und würde eventuell so aussehen:

und irgendwo weiter draußen:

```
catch (MyOpenGLException & ex) {
    ex.writeMsgStackToStream(std::cerr);
}
```


Entscheidend bei der Verwendung von Exceptions ist das kontrollierte Aufräumen der OpenGL-Resourcen. Auch gelten natürlich alle normalen Vorsichtsmaßnahmen und Programmierregeln für Exception-Code (siehe auch *Scott Meyers "Effektives C++"*).

An anderer Stelle im Quelltext möchte man sich einfach darauf verlassen, dass ein bestimmter Aufruf korrekt abläuft. Hier kann man asserts verwenden:

```
Q_ASSERT(m_vertexBufferObject.bind());
```

Es lohnt sich allerdings, die jeweiligen Gründe für ein Fehlschlagen nachzulesen. Beim QOpenGLBuffer kann die bind() Funktion aus mehreren Gründen fehlschlagen:

- Der Puffertyp wird bei der gerade verwendeten OpenGL-Implementierung (treiberseitig) nicht unterstützt (ein Portabilitätsproblem).
- Der OpenGL-Context ist nicht aktuell (ein Programmierfehler).
- Der Puffer wurde (noch) nicht erstellt (auch ein Programmierfelhler).

Also bis auf den ersten Grund, ist ein Q_ASSERT sicher das Mittel der Wahl. Bei der Plattformunterstützung hilft letztlich nur ein explizites Abfragen der Funktionalität - und, falls dies im Vorfeld nicht für alle Funktionen möglich ist, eben doch die Verwendung einer Exception.

Beispiel für eine Exceptionklasse

Eine eigene Exceptionklasse zu schreiben ist nicht wirklich ein Qt-typisches Problem, daher hier nur kurz ein minimalistischer Vorschlag zum selber ausbauen:

OpenGLException.h

```
#ifndef OPENGLEXCEPTION_H
#define OPENGLEXCEPTION_H
#include <stdexcept>
#include <list>
#include <QString>
class OpenGLException : public std::exception {
public:
   OpenGLException(const QString & msg);
   OpenGLException(const QString & msg, const QString & where);
   OpenGLException(OpenGLException & previous, const QString & msg);
   OpenGLException(OpenGLException & previous, const QString & msg, const QString & where);
    void writeMsgStackToStream(std::ostream & strm) const;
private:
    std::list<std::pair<QString, QString> > m_msgStack;
#define FUNCID(x) const char * const FUNC_ID = "[" #x "]"
#endif // OPENGLEXCEPTION_H
```

wobei die Implementierung recht selbsterklärend ist:

OpenGLException.cpp

```
#include "OpenGLException.h"
#include <QStringList>
OpenGLException::OpenGLException(const QString & msg) {
    m_msgStack.push_back( std::make_pair(QString(msg), QString()));
}
OpenGLException::OpenGLException(const QString & msg, const QString & where) {
    m_msgStack.push_back( std::make_pair(QString(msg), where));
OpenGLException::OpenGLException(OpenGLException & previous, const QString & msg) :
    m_msgStack(previous.m_msgStack)
{
    m_msgStack.push_back( std::make_pair(QString(msg), QString()));
}
OpenGLException::OpenGLException(OpenGLException & previous, const QString & msg, const QString & where) :
    m_msgStack(previous.m_msgStack)
{
    m_msgStack.push_back( std::make_pair(QString(msg), where));
}
void OpenGLException::writeMsgStackToStream(std::ostream & strm) const {
    for (std::list<std::pair<QString, QString> >::const_iterator it = m_msgStack.begin();
        it != m_msgStack.end(); ++it)
        QStringList lines = it->first.split("\n");
        QString indx("[%1] ");
        indx = indx.arg(std::distance(m_msgStack.begin(),it));
        for (const QString & 1 : lines) {
            if (it->second.isEmpty())
                strm << (indx + l + "\n").toStdString();</pre>
                strm << (indx + it->second + " : " + l + "\n").toStdString();
        }
        strm.flush();
    }
}
```

Interessanter ist eher die Verwendung, also bspw. in ShaderProgram.cpp:

ShaderProgram.cpp

```
void ShaderProgram::create() {
    FUNCID(ShaderProgram::create);
    ...

// read the shader programs from the resource
    if (!m_program->addShaderFromSourceFile(QOpenGLShader::Vertex, m_vertexShaderFilePath))
        throw OpenGLException(QString("Error compiling vertex shader %1:\n%2").arg(m_vertexShaderFilePath).arg
(m_program->log()), FUNC_ID);
    ...
```

Vielleicht kurz noch eine Erläuterung zum FUNCID() Makro. Ist eigentlich nur eine Lese-/Schreibvereinfachung:

```
FUNCID(ShaderProgram::create);
// wird zu
const char * const FUNC_ID = "[ShaderProgram::create]";
```

Die Klasse OpenGLException nimmt im Konstruktor entweder ein oder zwei Argumente, im Beispiel oben ist die Variante mit den zwei Argumenten verwendet. Nun kann man in der Aufrufhierarchie weiter oben die Exception fangen und mit weiteren Informationen anreichern. Zum Beispiel:

```
void SceneView::initializeGL() {
   FUNCID(SceneView::initializeGL);
       for (ShaderProgram & p : m_shaderPrograms)
           p.create();
   }
   catch (OpenGLException & ex) {
       throw OpenGLException(ex, "OpenGL initialization failed.", FUNC_ID);
   }
}
```

Hier wird die Exception gefangen und erneut geworfen. Damit die bisherigen Informationen nicht verloren gehen, wird der Konstruktor mit OpenGLException-Argument verwendet. In der Implementierung oben sieht man, dass die neue Klasse die Meldungsliste der bisherigen Exception-Instanz übernimmt, und einfach die neue Information anhängt.

Beim Aufruf von ex.writeMsgStackToStream(std::cerr) wird nun z.B. Folgendes ausgegeben:

```
[0] [ShaderProgram::create] : Error compiling fragment shader :/shaders/simple.frag:
[0] [ShaderProgram::create] : 0(8) : error C1503: undefined variable "fragsColor"
[0] [ShaderProgram::create] :
[1] [SceneView::initializeGL] : OpenGL initialization failed.
```

QApplication::notify

Man könnte jetzt die geworfene Exception einfach in der main.cpp fangen, also so:

```
try {
   TestDialog dlg;
   dlg.show();
   return app.exec();
}
catch (OpenGLException & ex) {
    ex.writeMsgStackToStream(std::cerr);
    return EXIT_FAILURE;
}
```

Aber wenn nun eine Exception geworfen wird, bekommt man folgende Warnung ausgegeben:

```
Qt has caught an exception thrown from an event handler. Throwing exceptions from an event handler is not supported in Qt.
You must not let any exception whatsoever propagate through Qt code.
If that is not possible, in Qt 5 you must at least reimplement
QCoreApplication::notify() and catch all exceptions there.
```

Wenn man in Qt eine Exception wirft, sollte diese eigentlich nicht bis in die Ereignisschleife gelangen (ursprünglich war Qt ohne Exception-Unterstützung konzipiert). Die "saubere" Variante besteht also darin, diese notify()-Funktion zu überladen:

DebugApplication.cpp

```
class DebugApplication : public QApplication {
public:
    DebugApplication( int & argc, char ** argv) : QApplication(argc, argv), m_aboutToTerminate(false)
    {}

    virtual bool notify(QObject *recv, QEvent *e) override {
        try {
            return QApplication::notify( recv, e );
      }
      catch (OpenGLException &ex) {
            ex.writeMsgStackToStream(std::cerr);
            m_aboutToTerminate = true;
            QApplication::exit(1);
      }
      return false;
}

// Flag to check for program abort
bool m_aboutToTerminate;
};
```

Soweit recht klar, es sollte jedoch noch erwähnt werden, was das Flag m_aboutToTerminate for eine Bewandnis hat. Letztlich wird notify() als Teil der Ereignisschleife aufgerufen, d.h. nach Rückkehr aus notify() landet man wieder in der Ereignisschleife, und weitere Teiles des Programms (wie z.B. paintGL()-Funktionen) können aufgerufen werden, bevor exit() greift.

Damit man nicht auf un-initialisierte Variablen zugreift, kann man am Anfang von Funktionen dieses Flag prüfen, und notfalls einfach die Arbeit verweigern. In der paintGL()-Funktion sähe das z.B. so aus:

SceneView.cpp:paintGL()

```
void SceneView::paintGL() {
   if (((DebugApplication *)qApp)->m_aboutToTerminate)
     return;
...
}
```

Der alte C-cast ist natürlich nicht ganz auf der Höhe der Zeit, aber einen (teuren) dynamic cast braucht man nur, wenn man sich nicht sicher ist, ob tatsächlich ein DebugApplication-Objekt verwendet wird (also z.B. in einer Bibliotheksfunktion).

Ist die Ereignisschleife dann abgearbeitet, wird das Programm kontrolliert beendet, als hätte man das Hauptfenster

geschlossen. Damit muss man dann auch das Aufräumen des Speichers nur einmal programmieren.

6.1.2. Qt-MessageHandler

An verschiedenen Stellen im Qt-Quelltext (und natürlich eigenem Quelltext) werden die Funktionen qDebug() oder qWarning() verwendet. Wenn man diese Ausgaben in einem QWidget sehen möchte (bspw. QPlainTextEdit), oder in eine Log-Datei schreiben möchte, kann man einen eigenen Qt-MessageHandler installieren:

main.cpp

```
void qDebugMsgHandler(QtMsgType type, const QMessageLogContext &context, const QString &msg) {
    (void) context:
    QString msgPrefix = "[" + QDateTime::currentDateTime().toString() + "] ";
    switch (type) {
                                                     "; break;
       case QtDebugMsg : msgPrefix += "Debug:
       case QtWarningMsg : msgPrefix += "Warning: "; break;
       case QtCriticalMsg : msgPrefix += "Critical: "; break;
       case QtFatalMsg : msgPrefix += "Fatal:
                                                     "; break;
       case QtInfoMsq
                         : msgPrefix += "Info:
                                                     "; break;
   QStringList lines = msg.split("\n");
    for (const QString & 1 : lines)
        std::cout << (msgPrefix + 1).toStdString() << std::endl;</pre>
}
int main(int argc, char **argv) {
   qInstallMessageHandler(qDebugMsgHandler);
}
```

Das führt dann zu schön formatierten Ausgaben mit Zeitstempel:

```
[So. Apr. 5 21:17:58 2020] Debug:
                                     GL_KHR_debug extension available
[So. Apr. 5 21:18:02 2020] Debug:
                                     Debug Logger initialized
[So. Apr. 5 21:18:02 2020] Debug:
                                     BoxObject - VertexBuffer size = 5625.56 kByte
[So. Apr. 5 21:18:13 2020] Debug:
[So. Apr. 5 21:18:21 2020] Debug:
                                    ++++ [APISource:OtherType] Buffer detailed info: Buffer object 1 (bound to
GL_ARRAY_BUFFER_ARB, usage hint is GL_STATIC_DRAW) will use VIDEO memory as the source for buffer object operations.
[So. Apr. 5 21:18:21 2020] Debug:
[So. Apr. 5 21:18:27 2020] Debug:
                                     BoxObject - ElementBuffer size = 1406.39 kByte
[So. Apr. 5 21:18:27 2020] Debug:
                                    ++++ [APISource:OtherType] Buffer detailed info: Buffer object 2 (bound to
GL_ELEMENT_ARRAY_BUFFER_ARB, usage hint is GL_STATIC_DRAW) will use VIDEO memory as the source for buffer object
operations.
[So. Apr. 5 21:18:27 2020] Debug:
[So. Apr. 5 21:18:27 2020] Debug:
                                    GridObject - VertexBuffer size = 31.25 kByte
[So. Apr. 5 21:18:27 2020] Debug:
                                    ++++ [APISource:OtherType] Buffer detailed info: Buffer object 3 (bound to
GL_ARRAY_BUFFER_ARB, usage hint is GL_STATIC_DRAW) will use VIDEO memory as the source for buffer object operations.
[So. Apr. 5 21:18:27 2020] Debug:
[So. Apr. 5 21:18:27 2020] Debug:
                                    SceneView::paintGL(): Rendering to: 700 x 416
[So. Apr. 5 21:18:27 2020] Debug:
                                        0.002048 ms/frame
[So. Apr. 5 21:18:27 2020] Debug:
                                       6.18394 ms/frame
[So. Apr. 5 21:18:27 2020] Debug:
                                       0.001024 ms/frame
[So. Apr. 5 21:18:27 2020] Debug:
                                       1.97427 ms/frame
[So. Apr. 5 21:18:27 2020] Debug:
                                    Total render time: 8.16128 ms/frame
[So. Apr. 5 21:18:27 2020] Debug:
                                    Total paintGL time: 11 ms----
```

In dieser Logausgabe sieht man schonmal zwei interessante Inhalte:

- · OpenGL-Debug-Informationen
- · Profiling-Ausgaben

6.1.3. QOpenGLDebugLogger

Zusätzliche Debug-Ausgaben lassen sich mit der Klasse QopenGLDebugLogger erhalten (welche intern glGetError() aufruft und Meldungen via signal-slot-Verbindung an eigene Slots weiterleitet. Die Qt-Dokumentation beschreibt das Feature ausreichend - der Tutorial 06 Quelltext enthält ein Beispiel der Verwendung dieser Klasse.

6.2. Profiling und Performance-Tuning

Wenn man OpenGL-Performance-Probleme analysieren und beheben will, braucht man Messungen. Hierfür gibt es OpenGL-Timers bzw. Zeitstempel, die durch die Qt-Klasse QOpenGLTimerQuery gekapselt sind.

Die Verwendung ist denkbar einfach, allerdings mit einer kleinen Tücke:

```
QOpenGLTimerQuery startTimer;
QOpenGLTimerQuery endTimer;
...
startTimer.create();
endTimer.create();
...
startTimer.recordTimestamp();

OPEN_GL_CODE
endTimer.recordTimestamp();
...
GLuint64 startT = m_startTimer.waitForResult();
GLuint64 endT = m_endTimer.waitForResult();
qDebug() << "Render time: " << (endT - startT)*1e-6 << "ms/frame";
...
startTimer.destroy();
endTimer.destroy();</pre>
```

Das Problem besteht nun darin, dass es etwas Zeit dauern kann, bis die Funktionen waitForResult() fertig sind. Während dieser Zeit wartet der Thread und blockiert die CPU. Ist also eventuell nicht die ideale Variante. Man kann auch erfragen, ob die Werte bereits da sind, mittels der Funktion isResultAvailable().

Man kann dann in der paintGL()-Funktion einfach diese Abfrage einbauen und die bis dahin gesammelten Daten ausgeben. Die einfachste Form ist jedoch das Warten auf die Daten am Ende der Schleife:

SceneView.cpp:paintGL()

```
void SceneView::paintGL() {
   // record start time stamp
   m_startTimer.recordTimestamp();
   // *** render boxes
    SHADER(0)->bind();
    SHADER(0)->setUniformValue(m_shaderPrograms[0].m_uniformIDs[0], m_worldToView);
    m_boxObject.render(); // render the boxes
    SHADER(0)->release();
   // *** render grid ***
    SHADER(1)->bind();
    SHADER(1)->setUniformValue(m_shaderPrograms[1].m_uniformIDs[0], m_worldToView);
    SHADER(1)->setUniformValue(m_shaderPrograms[1].m_uniformIDs[1], gridColor);
    SHADER(1)->setUniformValue(m_shaderPrograms[1].m_uniformIDs[2], backColor);
    m_gridObject.render(); // render the grid
   SHADER(1)->release();
   m_endTimer.recordTimestamp();
   GLuint64 startT = m_startTimer.waitForResult();
   GLuint64 endT = m_endTimer.waitForResult();
    qDebug() << "Render time: " << (endT - startT)*1e-6 << "ms/frame";</pre>
}
```

Wenn man etwas genauer wissen möchte, welcher Teil des OpenGL-Codes den größten Zeitaufwand bedeutet, so könnte man einfach mehrere Timer verwenden. Qt stellt zu diesem Zweck jedoch die hilfreiche Klasse QOpenGLTimeMonitor zur Verfügung, die mehrere in Sequenz aufgerufenen OpenGL-Timer-Objekte verwaltet.

Die Verwendung ist hinreichend einfach:

```
QOpenGLTimeMonitor m_timers;
// Initialisierung
m_timers.setSampleCount(5);
m_timers.create();
// Render loop
m_timers.reset();
m_timers.recordSample(); // setup paint #1
// *** render boxes
SHADER(0)->bind();
SHADER(0)->setUniformValue(m_shaderPrograms[0].m_uniformIDs[0], m_worldToView);
m_timers.recordSample(); // render #1
m_boxObject.render();
SHADER(0)->release();
// *** render grid afterwards ***
m_timers.recordSample(); // setup paint #2
SHADER(1)->bind();
SHADER(1)->setUniformValue(m_shaderPrograms[1].m_uniformIDs[0], m_worldToView);
SHADER(1)->setUniformValue(m_shaderPrograms[1].m_uniformIDs[1], gridColor);
SHADER(1)->setUniformValue(m_shaderPrograms[1].m_uniformIDs[2], backColor);
m_timers.recordSample(); // render #2
m_gridObject.render();
SHADER(1)->release();
m_timers.recordSample(); // finish
// Intervallausgabe
QVector<GLuint64> intervals = m_timers.waitForIntervals();
for (GLuint64 it : intervals)
    qDebug() << it*1e-6 << "ms/frame";</pre>
// Zeitstempel
QVector<GLuint64> samples = m_timers.waitForSamples();
// Gesamtzeitausgabe
qDebug() << "Render time: " << (samples.back() - samples.front())*1e-6 << "ms/frame";</pre>
// Cleanup
m_timers.destroy();
```

Wichtig ist, dass vor der Initialisierung mittels setSamplesCount() die Anzahl der geplanten recordSample()-Aufrufe festgelegt wird.

6.2.1. GPU und CPU Profiling

Die Schwierigkeit bei der Optimierung von OpenGL-Code liegt in der parallelen Ausführung von GPU und CPU-Code, und den mitunter schwierig zu erkennenden Sychronisationsstellen. Grundregel sollte sein, dass paintGL()-Aufrufe schnell genug hintereinander erfolgen, um Animationen/Kamerabewegungen flüssig darzustellen. D.h. die Summe

aus OpenGL-Zeit und CPU-Zeit (z.B. für Eingabebehandlung oder Datenverwaltung) sollte < als die zur Verfügung stehende Zeit pro Frame sein.

Was man machen kann, ist die Zeit der gesamten paintGL()-Funktion zu messen, wobei man die Klasse QElapsedTimer verwenden kann, also z.B. so:

SceneView.cpp:paintGL()

```
void SceneView::paintGL() {
   m_cpuTimer.start();
   qint64 elapsedMs = m_cpuTimer.elapsed();
   qDebug() << "Total paintGL time: " << elapsedMs << "ms";</pre>
```

7. Tutorial 07: Markieren/Auswählen von Flächen

In diesem Tutorial geht es darum, Flächen bzw. Objekte in der Scene auszuwählen.

Figure 12. Tutorial_07, Visualisierung eines Bildschirmstrahls

Quelltext für dieses Tutorial liegt im github repo: Tutorial 07

Es gibt für das Markieren/Auswählen von Objekten und Flächen eigentlich nur grundlegende Techniken:

- Strahlenverfolgung (Ray Picking), d.h. Bestimmung der Sichtlinie im Weltenkoordinatensystem und dann Schnittpunktberechnung aller Objekte und Sortierung nach Tiefe.
- Rendern in einen offscreen-Framenbuffer mit individuellen Farben aller anklickbaren Objekte und Identifizierung der Objekte durch Abbildung der Farben auf originale Objekte/Flächen.

7.1. Option 1: Strahlenverfolgung

Der Grundgedanke ist einfach: Die Mausposition im lokalen Fenster umrechnen in Weltkoordinaten und entlang dieser Linie alle Schnittpunkte mit auswählbaren Objekten finden. Das näheste Objekte zum Betrachter ist dann das ausgewählte Objekt.

Die Welt (in der perspektivischen Darstellung) hat eine near plane und eine far plane. Alles davor und dahinter wird

geklippt und nicht dargestellt. Daher kann hier auch nichts sinnvoll ausgewählt werden. Der Betrachter schaut durch die *near plane* hindurch auf die Scene, und der Blickstrahl trifft irgendwo hinten auf die *far plane*. Da der Blickstrahl senkrecht zum Bildschirmoberfläche steht, sieht man die Linie selbst nur als Punkt.

Die Berechnung ist hinreichend trivial:

- 1. Globale Mauskoordinaten von <code>QCursor::pos()</code> in lokale Mauskoordinaten umrechnen (mittels <code>QWindow::mapFromGlobal()</code>)
- 2. Mausposition des lokalen Fensters in Normalized Device Coordinates (NDC) umrechnen. Dabei hilft sich vorzustellen, dass das Fenster das normalisierte x-y-Koordinatensystem beinhaltet, mit dem Mittelpunkt genau in der Mitte des Fensters und der Ausdehnung -1..1 in beide Achsen. Wenn man also genau in die Mitte klickt, ist das 0,0 in NDC. Ganz oben links geklickt ist das -1,1 (y-Achse zeigt nach oben in NFC). Die z-Koordinate ist -1 für die *far plane* und 1 für die *near plane*. W-Komponente auf 1 setzen.
- 3. Model2Projection-Matrix (also Produkt aller Transformationsmatrizen) invertieren
- 4. Beide Punkte mit der inversen Matrix transformieren

Fertig. Hier ist der Quelltext:

```
void SceneView::pick(const QPoint & globalMousePos) {
   // local mouse coordinates
   QPoint localMousePos = mapFromGlobal(globalMousePos);
   int my = localMousePos.y();
   int mx = localMousePos.x();
   // viewport dimensions
   const qreal retinaScale = devicePixelRatio(); // needed for Macs with retina display
   qreal vpw = width()*retinaScale;
   qreal vph = height()*retinaScale;
   // invert world2view matrix, with m_worldToView = m_projection * m_camera.toMatrix() * m_transform.toMatrix();
   bool invertible:
   QMatrix4x4 projectionMatrixInverted = m_worldToView.inverted(&invertible);
   if (!invertible) {
       qWarning()<< "Cannot invert projection matrix.";</pre>
   }
   // mouse position in NDC space, one point on near plane and one point on far plane
   float halfVpw = vpw/2.0;
   float halfVph = vph/2.0;
   QVector4D near(
               (mx - halfVpw) / halfVpw,
               -1*(my - halfVph) / halfVph,
               -1,
               1.0);
   QVector4D far(
               near.x(),
               near.y(),
               1.
               1.0);
   // transform from NDC to model coordinates
   QVector4D nearResult = projectionMatrixInverted*near;
   QVector4D farResult = projectionMatrixInverted*far;
   // don't forget normalization!
   nearResult /= nearResult.w();
   farResult /= farResult.w();
   // update pick line vertices (visualize pick line)
   m_context->makeCurrent(this);
   m_pickLineObject.setPoints(nearResult.toVector3D(), farResult.toVector3D());
}
```

Ganz am Ende wird noch ein neu eingeführtes OpenGL-Zeichenobjekt aktualisiert. Nach der Lektüre von *Tutorial 05* sollte der Quelltext in PickLineObject.* selbsterklärend sein. Diese Objekt nutzt übrigends den gleichen Vertex- und Fragmentshader wie er für die Boxen eingesetzt wird.

7.1.1. Erkennung von Mausklick-Ereignissen

Bisher wurde mit dem Eingabemanager das Gedrückthalten der rechten Maustaste behandelt. Nun soll aber darauf reagiert werden, dass die linke Maustaste geklickt wurde (Linksklick=Auswahl). Das macht man am besten, indem man auf das Loslassen der Maustaste wartet. Gleichzeitig muss man sich dann aber die Position der Maus beim Loslassen merken, da die Maus ja hinterher noch bewegt werden kann.

Der Eingabemanager hat ja, wie in Tutorial 05 erklärt, für Tasten (einschließlich Maustasten) einen Zustand "Wurde

gedrückt". Den kann man nun einfach abfragen, z.B. in SceneView::checkInput():

SceneView::checkInput()

```
void SceneView::checkInput() {
    // this function is called whenever _any_ key/mouse event was issued
    //
    // has the left mouse butten been release
    if (m_keyboardMouseHandler.buttonReleased(Qt::LeftButton)) {
        m_inputEventReceived = true;
        renderLater();
        return;
    }
    ....
}
```

Die Funktion KeyboardMouseHandler::buttonReleased(btn) macht dabei nichts weiter, als zu prüfen, ob der Status der Taste auf KeyboardMouseHandler::StateWasPressed steht.

In der selben Art und Weise, wie auf andere Tastendrücke und Mausbewegungen reagiert wurde, kann man nun die Auswahlroutine anstoßen:

SceneView::processInput()

Wichtig ist hier vielleicht nur, dass man abschließend auch die Flags der Maustasten zurücksetzt.

Mit dem derzeitigen Quelltextstand kann man nun wild in der Scene herumklicken, wobei man natürlich erstmal nichts sieht. Erst bei Bewegung in der Scene wird die nun visualisierte Sichtgerade erkennbar - bis zum nächsten Linksklick.

7.1.2. Finden von angeklickten Objekten

Die zweite, auch nicht sonderlich komplizierte Aufgabe besteht darin, alle Objekte zu finden, die von der Sichtlinie geschnitten werden. Wenn es sich hierbei um Flächen handelt, ist das recht einfache Mathematik aus dem Tafelwerk (siehe Wikipedia).

Mathematische Grundlagen

Ich schreibe die Mathematik hier nochmal kurz auf (aber nur um zu testen, wie man mit Asciidoctor ordentliche Gleichungen hinbekommt :-))

Ebenengleichung in Normalenform, mit a als Bezugspunkt der Ebene und n als Normalenvektor:

$$(\mathbf{x} - \mathbf{a}) \cdot \mathbf{n} = 0$$

Geradengleichung, mit **d** als Richtung und **s** als Startpunkt:

$$\mathbf{x} = \mathbf{s} + t \, \mathbf{d}$$

Einsetzen und Ausmultiplizieren ergibt:

$$t_0 = \frac{(\mathbf{a} - \mathbf{s}) \cdot \mathbf{n}}{\mathbf{d} \cdot \mathbf{n}}$$

Falls der Richtungsvektor der Geraden **d** und der Normalenvektor **n** senkrecht aufeinanderstehen wird der Nenner zu 0, d.h. die Gerade liegt parallel zur Ebene (entweder neben oder in der Ebene, ist uns aber hier egal). Dann soll es keinen Schnittpunkt geben.

Auch wenn Normalenvektor und Sichtgeradenvektor in die gleiche Richtung zeigen, soll kein Schnittpunkt berechnet werden (man würde ja sonst auf die Rückseite einer Fläche klicken).

Damit hätte man das erste Prüfkriterium (Bedingung 1):

$$\mathbf{d} \cdot \mathbf{n} < 0$$

Ob eine begrenzte *Fläche* von der *Strecke* (unserer Sichtlinie) geschnitten wird, hängt von der Lage des Schnittpunkts ab.

Wird die Sichtlinie durch den Start- und Endpunkt p1 und p2 (near und far-Punkte) definiert, und damit s = p1 und d = p2 - p1, dann muss t zwischen 0 und 1 liegen (Bedingung 2).

Der berechnete Schnittpunkt

$$\mathbf{x_0} = \mathbf{s} + t_0 \, \mathbf{d}$$

liegt in der Ebene. Man kann nun die Ebenengleichung in Parameterform schreiben und die Parameter für den Schnittpunkt bestimmen. Wiederum definieren wir die Ebene über die Eckpunkte, hier **a**, **b** und **c**:

$$\mathbf{x} = \mathbf{a} + r(\mathbf{b} - \mathbf{a}) + s(\mathbf{c} - \mathbf{a})$$

Der Normalenvektor für die Schnittpunktberechnung oben ist dann:

$$\mathbf{n} = (\mathbf{b} - \mathbf{a}) \times (\mathbf{c} - \mathbf{a})$$

Nach Einsetzen und Auflösen nach r und s kann man prüfen, ob sowohl r als auch s zwischen 0 und 1 liegen (Bedingung 3).

Nachdem nun die Mathematik klar ist, hier nochmal die Zusammenfassung des Angeklickt-Prüf-Algorithmus:

- (Vorberechnung: Normalenvektoren, Seitenvektoren der Flächen)
- · Prüfung ob Sichtgeradenvektor und Normalenvektor der Ebene zueinander zeigen (Skalarprodukt der Vektoren

liefert (absoluten) Winkel < 90°) (damit ist auch der Fall "Gerade liegt parallel zur Ebene" ausgeschlossen)

- Berechnung Schnittpunkt (Geradenfaktor t) und Test, ob im Interval [0..1]
- Berechnung Punkt in Ebene (Faktoren r und s) und Test, ob im Interval [0..1]

Falls statt einer rechteckigen Ebene ein Dreieck getestet wird, so muss bei der Schnittpunktprüfung gelten:

```
r \ge 0, s \ge 0 und r + s \le 1
```

7.1.3. Die pick-Implementierung

Die Funktion pick() oben wird um den Aufruf der eigentlichen Auswahl-/Markierfunktion erweitert:

SceneView.cpp::pick()

```
void SceneView::pick(const QPoint & globalMousePos) {
    ....

// now do the actual picking - for now we implement a selection
    selectNearestObject(nearResult.toVector3D(), farResult.toVector3D());
}
```

Die Funktion selectNearestObject() wird mit Start- und Endpunkt der Sichtlinie aufgerufen und ist selbst auch recht kompakt:

SceneView.cpp::selectNearestObject()

```
void SceneView::selectNearestObject(const QVector3D & nearPoint, const QVector3D & farPoint) {
   QElapsedTimer pickTimer;
   pickTimer.start();
    // compute view direction
   QVector3D d = farPoint - nearPoint;
    // create pick object
    PickObject p(-10000000.f, std::numeric_limits<unsigned int>::max());
   // now process all objects and update p to hold the closest hit
   m_boxObject.pick(nearPoint, d, p);
   // ... other objects
    // any object accepted a pick?
    if (p.m_objectId == std::numeric_limits<unsigned int>::max())
        return; // nothing selected
    qDebug().nospace() << "Pick successful (Box #"</pre>
                       << p.m_objectId << ", Face #" << p.m_faceId << ", z = " << p.m_z << ") after "
                       << pickTimer.elapsed() << " ms";</pre>
    // Mind: OpenGL-context must be current when we call this function!
   m_boxObject.highlight(p.m_objectId, p.m_faceId);
}
```

Zum Testen der Performance hab ich in die Funktion einen Timer reingelegt (siehe Kapitel *Picking Performance* unten). Den Timer und die qDebug()-Ausgabe kann man aber getrost rauswerfen.

In der Funktion wird zuerst der Linienvektor **d** berechnet. Dann wird ein PickObject (eine Struktur mit Infos über angeklickte Objekte) erstellt und deren z-Wert ganz weit hinten initialisiert. Dann geht man alle Zeichenobjekte durch (bzw. alle Datenstrukturen, die Modellgeometrien enthalten) und testet alle enthaltenen Flächen auf Kollision mit dem Sichtstrahl. In diesem Tutorial gibt es nur ein Zeichenobjekt (m boxObject), aber das Schema ist klar.

Hinterher kann man über Vergleich der Objekt-ID mit dem Initialisierungswert (hier größter unsigned int) prüfen, ob überhaupt eine Fläche getroffen wurde.

Und zuletzt kann man durch Aufruf der Funktion BoxObject::highlight() noch das angeklickte Objekt hervorheben (siehe Abschnitt Einfärben ausgewählter Objekte weiter unten).

Die ganze Arbeit der Kollisionsprüfung erfolgt und BoxObject::pick() und davon aufgerufenen Funktionen:

BoxObject.cpp::pick()

```
void BoxObject::pick(const QVector3D & p1, const QVector3D & d, PickObject & po) const {
    // now process all box objects
    for (unsigned int i=0; i<m_boxes.size(); ++i) {</pre>
        const BoxMesh & bm = m_boxes[i];
        for (unsigned int j=0; j<6; ++j) {</pre>
            // is intersection point closes to viewer than previous intersection points?
            if (bm.intersects(j, p1, d, z)) {
                if (z > po.m_z) {
                    po.m_z = z;
                    po.m_objectId = i;
                    po.m_faceId = j;
                }
            }
       }
   }
}
```

In dieser Funktion wird letztlich jede Box einzeln geprüft, und in jeder Box jede einzelne Fläche. Der eigentliche Schnittpunkt-Test erfolgt in der Funktion BoxMesh::intersects(). Wurde ein Schnittpunkte gefunden, aktualisiert man die PickObject Struktur, aber nur, wenn das Objekt dichter am Betrachter liegt (größerer z-Wert).

BoxMesh.cpp::intersects()

```
bool BoxMesh::intersects(unsigned int planeIdx, const QVector3D & p1, const QVector3D & d, float & z) const {
    const Rect & p = m_planeInfo[planeIdx];
    return intersectsRect(p.m_a, p.m_b, p.m_normal, p.m_offset, p1, d, z);
}
```

Hier wird die objektunabhängige Schnittpunkt-Testfunktion intersectsRect aufgerufen, und dieser Funktion die für den mathematischen Algorithmus oben benötigten Parameter der aktuell gewählten Seite (mit Index planeIdx) übergeben. Das sind die Parameter der Ebenegleichung (a, b, n, offset) und die Parameter der Sichtline p1 und d. Die z-Koordinate des gefundenen Schnittpunkts wird im Falle eines Treffers in das Argument z eingetragen.

Die Parameter der Seitenfläche werden bei Übertragung der Boxobjekt-Koordinante in den Vertexpuffer aktualisiert (dann sind die Vertexkoordinaten des Boxobjekts bereits transformiert).

Der oben beschriebene mathematische Algorithmus zur Schnittpunkterkennung steckt nun in der Funktion intersectsRect():

```
bool intersectsRect(const QVector3D & a,
                const QVector3D & b,
                const QVector3D & normal,
                const QVector3D & offset,
                const QVector3D & p1,
                const QVector3D & d,
                float & z)
{
    // first the normal test
    double angle = QVector3D::dotProduct(d, normal)/qAbs(d.length());
    if (angle >= 0)
        return false; // same direction, no intersection possible
    // intersection point on line
    double t = QVector3D::dotProduct(offset - p1, normal) / QVector3D::dotProduct(d, normal);
    // outside viewing range?
    if (t < 0 || t > 1)
        return false;
    QVector3D x0 = p1 + t*d;
    // now determine location on plane
    QVector3D rhs = x0 - offset; // right hand side of equation system: a * x + b * y = (x - offset)
    // we have three possible ways to get the intersection point, try them all until we succeed
    double x,y;
    // rows 1 and 2
    if (solve(a.x(), a.y(), b.x(), b.y(), rhs.x(), rhs.y(), x, y)) {
        if (x > 0 && x < 1 && y > 0 && y < 1) { z = x0.z(); return true; }
                                                 return false;
    }
    // rows 1 and 3
    if (solve(a.x(), a.z(), b.x(), b.z(), rhs.x(), rhs.z(), x, y)) {
        if (x > 0 \ \&\& x < 1 \ \&\& y > 0 \ \&\& y < 1) { z = x0.z(); return true; }
        else
                                                 return false;
    }
    // rows 2 and 3
    if (solve(a.y(), a.z(), b.y(), b.z(), rhs.y(), rhs.z(), x, y)) {
        if (x > 0 \ 88 \ x < 1 \ 88 \ y > 0 \ 88 \ y < 1) { z = x0.z(); return true; }
                                                return false;
    }
    return false;
}
```

Im Prinzip ist das 1-zu-1 der Algorithmus oben, mit der Prüfung der 3 Bedingungen. Bei der Berechnung der Parameter der Ebenengleichungen gibt es letztlich 3 Variante, wobei durchaus 2 davon je nach Lage der Ebene und Sichtlinie fehlschlagen können.

Liegt beispielsweise eine Fläche in der x-y Ebene, d.h. z = 0 und Normalenvektor = [0,0,1]. Dann wären z.B. $\mathbf{a} = [4,0,0]$ und $\mathbf{b} = [0,2,0]$. Die Ebene wird von einem Sichtstrahl durchstoßen, mit $\mathbf{d} = [-1,-1,-1]$.

Die Gleichungssysteme 2 und 3 sind damit nicht lösbar, da die Determinante jeweils zu 0 wird. Ähnliches kann für andere Ebenenausrichtungen passieren, weswegen alle 3 Kombinationen getestet werden müssen.

Man kann das bei der Box und den 6 Seiten sehr schön sehen:

- Vorne und Hinten benötigen Gleichungssystem 1
- Links und Rechts benötigen Gleichungssystem 3
- Oben und Unten benötigen Gleichungssystem 2

Die Lösungsfunktion ist einfach eine Implementierung der Cramerschen Regel (https://de.wikipedia.org/wiki/Cramersche_Regel):

PickObject.cpp:solve()

```
/* Solves equation system with Cramer's rule:
    a x + c y = e
    b x + d y = f
*/
bool solve(double a, double b, double c, double d, double e, double f, double & x, double & y) {
    double det = a*d - b*c;
    if (det == 0.)
        return false;

    x = (e*d - c*f)/det;
    y = (a*f - e*b)/det;
    return true;
}
```

7.1.4. Picking Performance

Anhand der möglicherweise vielen Flächen in einer komplexen Szene mag man auf die Idee kommen, dass die CPUbasierte Schnittpunktberechnung zu langsam wäre. Machen wir mal den Test:

1 Mio Boxen (BoxObject.cpp:Zeile 34), macht 6 Mio Flächen. Im Debug Modus dauert die Schnittpunktberechnung mit *allen* Flächen nach obigem Algorithmus insgesamt ca. 240 ms. Da lohnt es sich nicht, irgendwelche Performanceoptimierungen zu untersuchen (wie BSD- oder Octrees zur Partitionierung des Raumes etc., was man so in anderen Texten dazu findet).

7.1.5. Einfärben ausgewählter Objekte

Ist nun Objekt und Seite identifiziert, so möchte man das jeweilige Objekt vielleicht hervorheben. Dafür müssen die entsprechenden Vertex-Farbeigenschaften geändert werden.

Auch dies ist wieder nicht übermäßig kompliziert, da die Datenstrukturen in *Tutorial 05* bereits in geeigneter Form angelegt wurden, als hätte man geahnt, dass man sowas mal brauchen würde :-):

```
void BoxObject::highlight(unsigned int boxId, unsigned int faceId) {
    // we change the color of all vertexes of the selected box to lightgray
   // and the vertex colors of the selected plane/face to light blue
   std::vector<QColor> faceCols(6);
    for (unsigned int i=0; i<6; ++i) {</pre>
        if (i == faceId) faceCols[i] = QColor("#b40808");
                                   faceCols[i] = QColor("#f3f3f3");
   m_boxes[boxId].setFaceColors(faceCols);
    // then we update the respective portion of the vertexbuffer memory
   Vertex * vertexBuffer = m_vertexBufferData.data();
   unsigned int vertexCount = 0;
   GLuint * elementBuffer = m_elementBufferData.data();
    // advance pointers to position of the box
   vertexBuffer += boxId*6*4; // 6 planes, with 4 vertexes each
    elementBuffer += boxId*6*6; // 6 planes, with 2 triangles with 3 indexes each
   vertexCount += boxId*6*4;
   m_boxes[boxId].copy2Buffer(vertexBuffer, elementBuffer, vertexCount);
   // and now update the entire vertex buffer
   m_vbo.bind();
   m_vbo.allocate(m_vertexBufferData.data(), m_vertexBufferData.size()*sizeof(Vertex));
   m_vbo.release();
}
```

Am Ende der Funktion wird der gesamte Vertexpuffer in die Grafikkarte kopiert. Bei größeren Objekten (> 1 Mio Elemente) kann das dann schonmal etwas dauern. Daher gibt es auch die Funktion QOpenGLBuffer::write(), welche nur einen Teil des Puffers ersetzt. Dann müsste die Funktion so angepasst werden:

```
void BoxObject::highlight(unsigned int boxId, unsigned int faceId) {
    ....

// and now update the respective portion of the vertex buffer
    m_vbo.bind();
    m_vbo.write(boxId*6*4*sizeof(Vertex), m_vertexBufferData.data() + boxId*6*4, 6*4*sizeof(Vertex));
    m_vbo.release();
}
```

Die Funktion QOpenGLBuffer::write() ruft intern glBufferSubData(GL_ARRAY_BUFFER, offset, count, data) auf. Wichtig ist hier das Verständnis der Parameter der Funktion QOpenGLBuffer::write(int offset, const void *data, int count):

- · offset Byte offset
- data Zeiger auf die Daten, die hineinkopiert werden sollen (das Offset wird hier nicht angewendet!)
- count Anzahl der Bytes zum kopieren

Man darf also nicht den Fehler machen, und m_vertexBufferData.data() als zweites Argument übergeben, sondern muss auch hier den Zeiger auf den Beginn des modifizierten Bereiches vorrücken m_vertexBufferData.data() + boxId*6*4.

Was bringt die Änderung? Bei 1 Mio Boxen dauert die Variante mit allocate() ca. 160 ms (Debugmodus), mit write()

deutlich weniger als 1 ms.

Natürlich sollte man sich die markierten Boxen merken, sodass man die Markierung hinterher wieder entfernen kann. Das sollte selbst aber nicht übermäßig kompliziert sein.

Ähnlich, wie hier die Farben in den Vertexdaten aktualisiert wurden, kann man auch geometrische Objekte verschieben. Also bei Mausbewegung (und bspw. gedrückter linker Maustaste) die Vertexkoordinaten des markierten Objekts anpassen, den Vertexpuffer aktualisiern und siehe da - Objekte werden verschoben.

7.2. Option 2: Falschfarbenrendering

Technisch gibt es eine Einschränkung: es stehen 256⁴ - 1 Farben stehen zur Verfügung (rgba) für ebenso viele Elemente. Reicht das nicht aus, muss entweder gefiltert werden (d.h. nur die prinzipiell sichtbaren Objekte bekommen eine Nummer/Farbe), oder man benutzt Ray-Tracking.

Die zahlreichen Tutorials zum Thema Picking verwenden die folgende Technik:

- Schleife über alle anklickbaren Elemente
 - · Setzen der eindeutigen Farbe je Element via uniform im Shader
 - Zeichen jedes Elements via glDrawXXX-Aufruf
- Lesen der Pixelfarbe unter dem Mauscursor

Unnötig zu erwähnen, dass alleine die Vielzahl an glDrawXXX Calls problematisch ist. Außerdem ist es je anch Anwendung nicht notwendig, dieses Prozedere bei jedem Mausklick zu wiederholen.

7.2.1. Optimierungsidee für quasi-statische Szenen

Nehmen wir mal an, es handelt sich um ein Programm mit vorwiegend nicht-animierten Szenen (Zielvorgabe dieses Tutorials). Dann könnte man die Falschfarbenberechnung stets kurz nach dem Abschluss der Kamerabewegung machen (d.h. mit kleiner Zeitverzögerung), und das resultierende Falschfarbenbild im CPU-Speicher vorhalten. Wenn man nun mit der Maus klickt, hat man sofort den Farbwert unter dem Mauscursor zur Hand. Man könnte auch viele Klicks abfragen, ohne die GPU zu beschäftigen.

Ist sicher eine recht einfache Variante und klingt super nach Arbeitseinsparung. Vor allem, wenn bei der Anwendungen ein Auswahl-Klick in der Scene zunächst nur mit irgendeiner Art der Hervorhebung verbunden ist. Die Scene müsste dann zwar neu gezeichnet werden, aber an der Falschfarbendarstellung zur Auswahl ändert sich nichts.

Ohne die kleine "mit etwas Verzögerung zeichnen" Optimierung sieht der Algorithmus dann also so aus:

- Falls Scenensicht bewegt: zeichnen der Scene in einen Framebuffer, wobei hier der Vertexshader die Farben der Flächen aus einem separaten Farbpuffer holt - dies erlaubt weiterhin die Verwendung von Indexlisten und Vertexarrays
- · Zeichnen der Scene wie gehabt

Wir bräuchten dafür also: - ein weiteres ShaderProgramm, welches die Koordinaten aus dem Vertexarray (mit interleaved Storage) liest, aber die Falsch-Farben aus einem separaten Puffer holt - einen Framebuffer, in den die Falschfarbendarstellung kopiert wird - eine Möglichkeit, die Farbwerte des Puffers im CPU-Speicher abzulegen eine Abfrage der Farbwerte und Identifikation des angeklickten Elements

Hmm, wenn ich so darüber nachdenke, dass wir bereits einen funktionierenden und ausreichend schnellen Pickingalgorithmus oben haben, will man sich diesen Aufwand eigentlich nicht machen. Daher lass ich das jetzt mal bleiben und würde das Thema "Falschfarbenrendering" in einem späteren Tutorial zum Zweck der Sichtfaktorberechnung wieder ausbuddeln.

8. Texturen mit QOpenGLTexture

Natives OpenGL:

```
// Wrap style
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_MIRRORED_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_MIRRORED_REPEAT);

// Border color in case of GL_CLAMP_TO_BORDER
float borderColor[] = { 1.0f, 1.0f, 0.0f, 1.0f };
glTexParameterfv(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, borderColor);

// Texture Filtering
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
```

9. Tutorial 09: Shadowmaps/Mehrfach-Render-Passes und QOpenGLFramebufferObject

TODO: Schattenwurf durch doppeltes Rendern (erst Kamera in Sonnenposition in Framebuffer rendern, dann diesen als Texturinput für den 2. Renderpass nehmen).

10. Tutorial 10: CMake als BuildSystem für Qt und OpenGL, und Deployment von Qt+OpenGL Anwendungen

Für das automatische Bauen von Qt (z.B. mit Jenkins oder ähnlichen Build-Systemen) bietet sich CMake an. Es geht zwar auch mit qmake, aber in diesem Tutorial soll gezeigt werden, wie man das eine CMakeLists.txt-Datei für das Bauen von Qt-Anwendungen unter Linux, MacOS und Windows konfiguriert.

Im zweiten Teil des Tutorials geht es dann um das Deployment, d.h. welche Dateien jeweils kopiert werden müssen. Auch dies ist nicht wirklich OpenGL-spezifisch, aber zeigt nochmal, welche OpenGL-Bibliotheken auf den jeweiligen Betriebssystemen vorausgesetzt werden können, und welche kopiert werden müssen.

CMakeLists.txt - Dateien und entsprechende Build-Scripte liegen verschiedenen Tutorial-Quelltexten bei. Konkret beziehen sich die Beispiele unten auf den Tutorial 06 Quelltext, der im github repo liegt: Tutorial_06

10.1. CMakeLists.txt für OpenGL-Anwendungen

Hier ist eine Beispiel-CMakeLists.txt-Datei (aus Tutorial 05), welche das mal demonstriert:

```
# CMakeLists.txt file for OpenGL + Qt Tutorial Series
# The project name
project( Tutorial_06 )
```

```
# Require a fairly recent cmake version
cmake_minimum_required( VERSION 2.8.12 )
# Set default build type
if (NOT CMAKE_BUILD_TYPE)
    set( CMAKE_BUILD_TYPE RelWithDebInfo CACHE STRING
        "Choose the type of build, options are: None Debug Release RelWithDebInfo MinSizeRel." FORCE)
endif (NOT CMAKE_BUILD_TYPE)
# Packages
# Test for Qt5 modules
find_package(Qt5Widgets REQUIRED)
# set corresponding libraries
set( QT_LIBRARIES
    Qt5::Widgets
# we need OpenGL
find_package( OpenGL REQUIRED )
# Application
# automatically add CMAKE_CURRENT_SOURCE_DIR and CMAKE_CURRENT_BINARY_DIR to the include directories in every processed
CMakeLists.txt
set( CMAKE_INCLUDE_CURRENT_DIR ON )
include_directories(
    ${PROJECT_SOURCE_DIR}
                                # needed so that ui-generated header files find our own headers
    ${Qt5Widgets_INCLUDE_DIRS}
)
# collect a list of all designer ui files
file( GLOB APP_UIS ${PROJECT_SOURCE_DIR}/*.ui )
# collect a list of all header files (to be used in MOC compiler)
file( GLOB APP_HDRS ${PROJECT_SOURCE_DIR}/*.h )
# collect a list of all source files in this directory
file( GLOB APP_SRCS ${PROJECT_SOURCE_DIR}/*.cpp )
# collect the Qt resource files (*.qrc)
file( GLOB APP_QRCS ${PROJECT_SOURCE_DIR}/*.qrc )
# look for Windows rc file
file( GLOB APP_WIN_RC ${PROJECT_SOURCE_DIR}/*.rc )
# look for Apple icns file
file( GLOB APP_MACOS_ICNS ${PROJECT_SOURCE_DIR}/*.icns )
qt5_wrap_ui( APP_UI_SRCS ${APP_UIS} )
qt5_add_resources( APP_RC_SRCS ${APP_QRCS} )
qt5_wrap_cpp( APP_MOC_SRCS ${APP_HDRS} )
# build application executable for the different platforms
if( WIN32 )
    add_executable( ${PROJECT_NAME} WIN32
                    ${APP_SRCS} ${APP_MOC_SRCS} ${APP_RC_SRCS} ${APP_UI_SRCS} ${APP_WIN_RC}
```

```
# enable console window (to see debug/profiler messages)
    set_target_properties( ${PROJECT_NAME} PROPERTIES LINK_FLAGS "/SUBSYSTEM:CONSOLE" )
endif( WIN32 )
if( UNIX )
    if( APPLE )
        add_executable( ${PROJECT_NAME} MACOSX_BUNDLE
                        $\{\app_srcs} $\{\app_moc_srcs} $\{\app_rc_srcs} $\{\app_ui_srcs} $\{\app_macos_icns}\}
    else( APPLE )
        add_executable( ${PROJECT_NAME}
                        ${APP_SRCS} ${APP_MOC_SRCS} ${APP_RC_SRCS} ${APP_UI_SRCS}
    endif( APPLE )
endif( UNIX )
# link libraries
target_link_libraries( ${PROJECT_NAME}
    ${QT_LIBRARIES}
    ${OPENGL_LIBRARIES}
)
```

Das Script selbst ist eigentlich nicht schwer zu verstehen (eventuell kann man mal die CMake-Syntax und Befehle auf https://cmake.org nachschlagen). Je nachdem, welche Qt-Module verwendet werden, müsste man die Sektion "Packages" noch entsprechend erweitern.

Unter Windows lohnt es sich (zumindest während der Entwicklung), das Konsolenfenster einzublenden, damit man qDebug()-Ausgaben sieht. Das wird mit der Zeile:


```
set_target_properties( ${PROJECT_NAME} PROPERTIES LINK_FLAGS "/SUBSYSTEM:CONSOLE" )
```

eingeschaltet.

10.1.1. Erstellung

Linux

Um Quelltexte und Resourcendateien nicht mit den generierten Dateien in einem Verzeichnis zu haben, lohnt sich ein *out-of-source* build, d.h. in einem getrennte Verzeichnis. Beispielsweise kann man parallel zum Tutorial_05 -Verzeichnis noch ein Verzeichnis build_Tutorial_05 anlegen. In diesem Verzeichnis reichen dann folgende Befehle zur Erstellung aus:

```
cmake -DCMAKE_BUILD_TYPE:String="Release" ../Tutorial_05
make -j4
```

Das Argument -DCMAKE_BUILD_TYPE:String="Release" legt ein Release-Build fest, Standard ist Debug. -j4 legt beim make das Erstellen mit 4 parallelen Jobs fest.

Mit eigener Qt Version bauen

Falls nicht das systemweit installierte Qt verwendet werden soll, kann man auch den CMAKE_PREFIX_PATH auf eine eigene Qt Installation umbiegen.

```
export CMAKE_PREFIX_PATH=~/Qt/5.14.1/gcc_64
cmake -DCMAKE_BUILD_TYPE:String="Release" ../Tutorial_05
make -j4
```

MacOS

Ganz genauso wie unter Linux.

Windows

Fast genauso wie unter Linux, nur eben mit Batch-Befehlen. Hier ist ein Beispiel für die Verwendung eines VC-Compilers, bereits als Batch-Datei zusammengestellt:

```
@echo off

:: cl compiler path
call "c:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\vcvarsall.bat" x64

:: path to Qt
set CMAKE_PREFIX_PATH=c:\Qt\5.11.3\msvc2015_64

:: configure in release mode, to build with JOM
cmake -G "NMake Makefiles JOM" -DCMAKE_BUILD_TYPE:String="Release" ..\Tutorial_05

:: build
jom
```

Natürlich muss man die Pfade zum VC Compiler und zur Qt Installation im Batch-Script oben anpassen.

Alternativ kann man unter Windows CMake auch dazu benutzen, VC Projektdateien zu erstellen, aber wenn man Qt Creator hat, wer braucht dann VC als Editor?

10.1.2. Deployment

Windows

Nachdem man unter Windows die Anwendung kompiliert hat, muss man noch die zur Verteilung benötigten DLLs zusammenstellen. Dies geht am einfachsten durch Verwendung des windeployqt Tools. Ein Aufruf sieht wie folgt aus:

```
:: path to Qt
set CMAKE_PREFIX_PATH=c:\Qt\5.11.3\msvc2015_64

:: copy dependencies
%CMAKE_PREFIX_PATH%\bin\windeployqt vc_x64_deploy\Tutorial_06.exe
```

Die vom Tool ins Verzeichnis kopierten Dateien werden für die Ausführung benötigt. Es sind zumeist nicht alle Dateien notwendig, das hängt aber vom jeweiligen Programm ab. Anstelle die redist.exe auf dem Zielsystem

auszuführen, kann man auch die benötigten VC DLLS direkt mit kopieren, also bspw. msvcp140.dll und vcruntime140.dll bei VC 2015.

Die Dateien befinden sich z.B. in:

```
c:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\redist\x64\Microsoft.VC140.CRT
```

Sind alle benötigten Dateien im gleichen Verzeichnis wie die .exe-Datei, sollte man das Programm auf anderen Windows-Rechnern starten können (als Portable-Version).

Es bietet sich an, das Deployment nicht im Erstellungsverzeichnis durchzuführen. Die Beispielskripte build.bat und deploy.bat im Tutorial 06 Quelltext zeigen, wie man Erstellung und Deployment in separaten Unterverzeichnissen durchführt. Dann kann man vereinfacht auch das gesamte Deployment-Verzeichnis packen und hat sofort ein "Portable"-Release der Software.

MacOS

Unter MacOS wird eine Qt Anwendung üblicherweise gegen die installierten Frameworks gebaut. Man kann sich das anschauen, wenn man mit otool to gelinkten Bibliotheken anschaut:

```
> otool -L Tutorial_05.app/Contents/MacOS/Tutorial_05
Tutorial_05.app/Contents/MacOS/Tutorial_05:
    @rpath/QtWidgets.framework/Versions/5/QtWidgets (compatibility version 5.11.0, current version 5.11.3)
    /System/Library/Frameworks/OpenGL.framework/Versions/A/OpenGL (compatibility version 1.0.0, current version 1.0.0)
    @rpath/QtGui.framework/Versions/5/QtGui (compatibility version 5.11.0, current version 5.11.3)
    @rpath/QtCore.framework/Versions/5/QtCore (compatibility version 5.11.0, current version 5.11.3)
    /usr/lib/libc++.1.dylib (compatibility version 1.0.0, current version 120.1.0)
    /usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 1226.10.1)
```