Oscilaciones

MECÁNICA RACIONAL - 2019

SISTEMAS

Equilibrio Estable

Respuesta: pequeñas oscilaciones en torno al equilibrio

Perturbación por el medio o por un mecanismo

Si existen fuerzas disipativas o si desaparece la perturbación: se podría alcanzar la posición de equilibrio

Sin fuerzas disipativas o con permanentes perturbaciones: Podría mantenerse la oscilación

MINIMO LOCAL DE POTENCIAL

DINAMICA DE SISTEMAS

Una masa sujeta al extremo de un resorte experimenta una **fuerza** F(x) = -kx

La **energía potencial** de la cual se deriva esta fuerza es $U(x) = \frac{1}{2}kx^2$

Suponga un sistema *arbitrario, conservativo y unidimensional*, caracterizado por un potencial U(q) que tiene un equilibrio en q_0 .

En la proximidad de q_0 , se puede desarrollar el potencial U(q) en serie de Taylor:

$$U(q) = U(q_0) + U'(q_0)x + \frac{1}{2}U''(q_0)x^2 + \cdots$$
 donde $x = q - q_0$

es cero porque $U'(q_0) = 0$

es una constante

Potencial con la forma del pot

Éste y la dinámica asociada so

Potencial con la forma del potencial elástico de la Ley de Hooke. Éste y la dinámica asociada son el modelo más general de la dinámica en la **proximidad de un equilibrio estable** de cualquier sistema.

(Paréntesis matemático)

Serie de Taylor: Es una aproximación a una función por medio de una suma de infinitos términos con determinada forma.

La serie de Taylor de una función f(x) infinitamente diferenciable en el entorno de un número real o complejo a será:

$$f(x) = f(a) + \frac{f'(a)}{1!}(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f'''(a)}{3!}(x - a)^3 + \cdots$$

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

(Paréntesis matemático) – Serie de Taylor:

 $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$

Suponga un sistema **arbitrario, conservativo y unidimensional**, caracterizado por un potencial U(q) que tiene un equilibrio en q_0 .

En la proximidad de q_0 , se puede desarrollar el potencial U(q) en serie de Taylor:

$$U(q) = U(q_0) + U'(q_0)x + \frac{1}{2}U''(q_0)x^2 + \cdots \qquad \text{donde } x = q - q_0$$

$$\Rightarrow \text{ es cero porque } U'(q_0) = 0$$

$$\Rightarrow \text{ es una constante}$$

$$U(q) \approx \frac{1}{2}U''(q_0)x^2$$

Potencial con la forma del potencial elástico de la Ley de Hooke.

Éste y la dinámica asociada son el modelo más general de la dinámica en la **proximidad de un equilibrio estable** de cualquier sistema.

$$U(q) \approx \frac{1}{2}U^{\prime\prime}(q_0)x^2$$

$$\mathcal{L}(x, \dot{x}) = \frac{1}{2}m\dot{x}^2 - \frac{1}{2}kx^2$$

El lagrangiano será:
$$\mathcal{L}(x,\dot{x}) = \frac{1}{2}m\dot{x}^2 - \frac{1}{2}kx^2$$
 donde $k = \frac{d^2U}{dx^2}\Big|_{x=x_0=0} > 0$ por ser un

mínimo.

$$\frac{\partial \mathcal{L}}{\partial x} = -kx$$

$$\frac{\partial \mathcal{L}}{\partial x} = -kx \qquad \qquad \frac{\partial \mathcal{L}}{\partial \dot{x}} = m\dot{x} \Rightarrow \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{x}} \right) = m\ddot{x} \qquad \qquad \boxed{m\ddot{x} + kx = 0}$$

$$m\ddot{x} + kx = 0$$

EDO de 2do orden, lineal, homogéneo y con coeficientes constantes

Tenemos 2 soluciones. Se propone una solución exponencial: $x(t) = Ce^{\lambda t}$

$$x(t) = Ce^{\lambda t} \tag{2}$$

(2) en (1):
$$m\lambda^2 C e^{\lambda t} + kC e^{\lambda t} = 0 \Rightarrow m\lambda^2 + k = 0 \Rightarrow \lambda^2 = -\frac{k}{m} \Rightarrow \lambda_{1/2} = \pm i\sqrt{\frac{k}{m}} = \pm i\omega_0$$

donde Frecuencia natural del oscilador:
$$\omega_0 = \sqrt{\frac{k}{m}}$$

Dos soluciones:

$$c_1(t) = C_1 e^{+i\omega_0 t}$$

$$x_1(t)=C_1e^{+i\omega_0t}$$
 y $x_2(t)=C_2e^{-i\omega_0t}$ ambas con la misma frecuencia ω_0

La ecuación general de $m\ddot{x} + kx = 0$ es una combinación lineal de las dos: $x(t) = C_1 e^{+i\omega_0 t} + C_2 e^{-i\omega_0 t}$

$$x(t) = C_1 e^{+i\omega_0 t} + C_2 e^{-i\omega_0 t}$$

Considerando la fórmula de Euler: $e^{\pm i\omega_0 t} = cos\omega_0 t \pm i sen\omega_0 t$

$$x(t) = (C_1 + C_2)cos\omega_0 t + i(C_1 - C_2)sen\omega_0 t \Rightarrow x(t) = B_1cos\omega_0 t + B_2sen\omega_0 t$$
 (1) \longrightarrow

Cualquier movimiento que sea combinación de las formas seno y coseno se llama ARMÓNICO

 $x(t) = C_1 e^{+i\omega_0 t} + C_2 e^{-i\omega_0 t}$

 B_1 y B_2 deben ser <u>reales</u> porque x(t) es real.

En función a las **condiciones iniciales**, se pueden identificar $B_1 y B_2$:

- 1) A t = 0, de la expresión (1) se obtiene que $x(0) = B_1 = x_0$
- $\dot{x}(t) = -B_1\omega_0 sen\omega_0 t + B_2\omega_0 cos\omega_0 t \Rightarrow \dot{x}(0) = B_2\omega_0 = v_0$ 2) Diferenciando (1):

Si la oscilación comienza en un punto diferente de x_0 , y desde el reposo ($v_0=0$) => $B_2=0$ => $x(t)=x_0cos\omega_0t$ Fig (a) Si la oscilación comienza en el origen pero con $v_0 \neq 0 \Rightarrow x(t) = \frac{v_0}{\omega_0} sen \omega_0 t$ Fig (b)

La solución general es más difícil de visualizar porque es una combinación de ambos términos:

$$x(t) = x_0 cos \omega_0 t + \frac{v_0}{\omega_0} sen \omega_0 t$$

 $x(t) = B_1 cos \omega_0 t + B_2 sen \omega_0 t$

Definimos una nueva constante: $A = \sqrt{B_1^2 + B_2^2}$ (Es la hipotenusa de:

Podemos reescribir:

$$x(t) = A\left(\frac{B_1}{A}cos\omega_0t + \frac{B_2}{A}sen\omega_0t\right) = A(cos\phi cos\omega_0t + sen\phi sen\omega_0t) \Rightarrow x(t) = A cos(\omega_0t - \phi)$$

Donde A es la amplitud de la oscilación y ϕ es el desfasaje resultante de la combinación.

Formas alternativas de la solución general del oscilador armónico:

$$m\ddot{x} + kx = 0$$

$$x(t) = C_1 e^{+i\omega_0 t} + C_2 e^{-i\omega_0 t}$$

$$x(t) = B_1 cos \omega_0 + B_2 sen \omega_0 t$$

$$x(t) = A cos(\omega_0 t - \phi)$$

Ejemplo: Una botella en un balde

Una botella está flotando en un balde con la tapa hacia arriba. En el equilibrio, está sumergida una profundidad d_0 desde la superficie del agua. Demuestre que, si se la empuja hasta una profundidad d y se la suelta, la botella tendrá un movimiento armónico simple. Encuentre la frecuencia de sus oscilaciones.

 $m\ddot{x} + kx = 0$

Hay una forma más para expresar la solución x(t)

$$C_1 = \frac{1}{2}(B_1 - iB_2)$$
 $\forall C_2 = \frac{1}{2}(B_1 + iB_2)$ => $C_2 = C_1^*$

$$x(t) = C_1 e^{i\omega_0 t} + C_1^* e^{-i\omega_0 t} = 2Re C_1 e^{i\omega_0 t}$$

Si
$$C = 2C_1 \Rightarrow C = B_1 - iB_2 = Ae^{-i\phi}$$

$$x(t) = Re \ Ce^{i\omega_0 t} \Rightarrow x(t) = Re \ Ae^{i(\omega_0 t - \phi)}$$

$$x(t) = B_1 cos \omega_0 + B_2 sen \omega_0 t$$

$$x(t) = A\cos(\omega_0 t - \phi)$$

Se representa al número complejo $Ae^{i(\omega_0 t - \phi)}$ que rota en sentido antihorario con velocidad angular ω_0 alrededor de un círculo de radio A. Su parte real (x(t)) es la proyección sobre el eje x.

La proyección oscila hacia adelante y atrás con frecuencia ω_0 y amplitud A. Específicamente, $x(t) = A \cos(\omega_0 t - \phi)$

Además de fuerza conservativa dada por U(x), suponga que existe una fuerza disipativa proporcional a la velocidad: $-\gamma\dot{x}$ (con γ : <u>cte de amortiguamiento</u>). La ecuación de movimiento será: $m\ddot{x} + \gamma\dot{x} + kx = 0$

Es lineal y de segundo orden, homogénea y con coeficientes constantes. De la misma forma que antes, se propone una solución exponencial: $x(t) = Ce^{\lambda t}$

$$\dot{x}(t) = \lambda C e^{\lambda t} \quad \Rightarrow \quad \ddot{x} = \lambda^2 C e^{\lambda t} \quad \Rightarrow \quad m \lambda^2 C e^{\lambda t} + \gamma \lambda C e^{\lambda t} + k C e^{\lambda t} = 0 \quad \Rightarrow m \lambda^2 + \gamma \lambda + k = 0 \quad \Rightarrow \quad \lambda^2 + \frac{\gamma}{m} \lambda + \frac{k}{m} = 0$$

Factor de amortiguamiento:
$$b = \frac{\gamma}{2m} \Rightarrow \frac{\gamma}{m} = 2b$$

$$\lambda^2 + 2b\lambda + \omega_0^2 = 0$$

$$\lambda_{1/2} = \frac{-2b \pm \sqrt{4b^2 - 4\omega_0^2}}{2} \implies \lambda_{1/2} = -b \pm \frac{2\sqrt{b^2 - \omega_0^2}}{2} \implies \lambda_{1/2} = -b \pm \sqrt{b^2 - \omega_0^2} \implies x(t) = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t}$$

$$\lambda_{1/2} = -$$

$$\Rightarrow x(t) = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t}$$

$$x(t) = e^{-bt} \left(C_1 e^{\sqrt{b^2 - \omega_0^2} t} + C_2 e^{-\sqrt{b^2 - \omega_0^2} t} \right)$$

$$\lambda_{1/2} = -b \pm \sqrt{b^2 - \omega_0^2}$$

- 1) Movimiento subamortiguado: $b^2 < \omega_0^2$
- 2) Movimiento sobreamortiguado: $b^2 > \omega_0^2$
- 3) Movimiento críticamente amortiguado: $b^2 = \omega_0^2$

$$x(t) = e^{-bt} \left(C_1 e^{\sqrt{b^2 - \omega_0^2}t} + C_2 e^{-\sqrt{b^2 - \omega_0^2}t} \right)$$

Paréntesis:

Movimiento no amortiguado: b=0

$$x(t) = \left(C_1 e^{i\omega_0 t} + C_2 e^{-i\omega_0 t}\right)$$

Solución de la familia del oscilador armónico sin amortiguamiento

Parámetro de decaimiento: b = 0

$$x(t) = e^{-bt} \left(C_1 e^{\sqrt{b^2 - \omega_0^2}t} + C_2 e^{-\sqrt{b^2 - \omega_0^2}t} \right)$$

1) Movimiento subamortiguado: $b^2 < \omega_0^2$

$$\sqrt{b^2-\omega_0^2}=i\sqrt{\omega_0^2-b^2}=i\omega_1$$
 , ω_1 es la frecuencia de amortiguamiento

Donde $\omega_1 < \omega_0$. En el caso particular de un amortiguamiento muy pobre, b << ω_0 y $\omega_1 \approx \omega_0$:

podemos escribirlo como $Acos(\omega_1 t - \phi)$

$$x(t) = Ae^{-bt}cos(\omega_1 t - \phi)$$

Parámetro de decaimiento: b

A mayor valor de *b*, más rápidamente se amortiguan las oscilaciones.

 $x(t) = e^{-bt} \left(C_1 e^{\sqrt{b^2 - \omega_0^2}t} + C_2 e^{-\sqrt{b^2 - \omega_0^2}t} \right)$

2) Movimiento sobreamortiguado: $b^2 > \omega_0^2$

Donde *b* es un valor grande.

$$x(t) = C_1 e^{-\left(b - \sqrt{b^2 - \omega_0^2}\right)t} + C_2 e^{-\left(b + \sqrt{b^2 - \omega_0^2}\right)t}$$

Ambos términos son decrecientes, aunque el primero decrece en menor medida por la forma de su exponente.

Parámetro de decaimiento: $b-\sqrt{b^2-\omega_0^2}$ (a medida que b aumenta, el parámetro disminuye)

 $x(t) \rightarrow 0$ cuando $t \rightarrow \infty$

$$x(t) = e^{-bt} \left(C_1 e^{\sqrt{b^2 - \omega_0^2}t} + C_2 e^{-\sqrt{b^2 - \omega_0^2}t} \right)$$

3) Movimiento críticamente amortiguado: $b^2=\omega_0^2$. Es el límite de los casos anteriores.

$$x(t) = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t}$$

Cuando
$$b^2=\omega_0^2$$
, la ecuación $\lambda_{1/2}=-b\pm\sqrt{b^2-\omega_0^2}$ genera $\lambda_1=\lambda_2$

Se genera una sola solución del tipo: $x(t) = C_1 e^{-bt}$

La segunda ecuación se obtiene de proponer $x(t) = te^{-bt}$, que también es

solución de $m\ddot{x} + \gamma\dot{x} + kx = 0$ cuando $b^2 = \omega_0^2$

La solución general para este caso: $x(t) = C_1 e^{-bt} + C_2 t e^{-bt} = (C_1 + C_2 t) e^{-bt}$

Parámetro de decaimiento: $b=\omega_0$ Ambos términos decaen de la misma forma.

$$x(t) = e^{-bt} \left(C_1 e^{\sqrt{b^2 - \omega_0^2}t} + C_2 e^{-\sqrt{b^2 - \omega_0^2}t} \right)$$

Comparación de parámetros de decaimiento:

damping	β	decay parameter
none	$\beta = 0$	0
under	$\beta < \omega_{\rm o}$	β
critical	$\beta = \omega_{\rm o}$	β
over	$\beta > \omega_{\rm o}$	$\beta - \sqrt{\beta^2 - \omega_o^2}$

Gráfico del parámetro de decaimiento vs b. Muestra que las oscilaciones se amortiguan más rápidamente en el caso que $b=\omega_0$, que es la situación del amortiguamiento crítico.

Por ejemplo, es un auto se busca que las oscilaciones causadas por un camino con baches decaigan rápidamente.

Un péndulo de longitud I y masa m se mueve sumergido en aceite con un ángulo θ decreciente. El aceite retarda el movimiento con una fuerza resistiva proporcional a la velocidad: $F=2m\sqrt{\frac{g}{l}}(l\dot{\theta})$. Inicialmente, el péndulo arranca a $t_0=0$ con un ángulo $\theta=\alpha$ y desde el reposo. Encuentre el desplazamiento angular y la velocidad angular.

Un péndulo de longitud l y masa m se mueve sumergido en aceite con un ángulo θ decreciente. El aceite retarda el movimiento con una fuerza resistiva proporcional a la velocidad: $F=2m\sqrt{\frac{g}{l}}(l\dot{\theta})$. Inicialmente, el péndulo arranca a t_0 = 0 con un ángulo $\theta=\alpha$ y desde el reposo. Encuentre el desplazamiento angular y la velocidad angular.

Considerando: $\sqrt{\frac{g}{l}}=10s^{-1}\,$ y $\,\alpha=10^{-2}rad\,$, el diagrama de fase será:

Luego de soltarlo desde el reposo, el péndulo se acelera rápidamente volviendo al punto de equilibrio. Después se desacelera a medida que θ tiende a cero. $\dot{\theta}$ es siempre negativa.

Oscilaciones amortiguadas forzadas

Cualquier oscilador natural que evoluciona pierde energía por el efecto de la amortiguación y termina en el REPOSO

Para que continúen las oscilaciones, debe existir *fuerzas externas* que perturben el sistema Por ejemplo, un niño en una hamaca que recibe un empujón periódico de su padre.

La fuerza neta
$$F_N$$
 sobre el sistema será: $F_N = -\gamma \dot{x} - kx + F(t)$

donde: $-\gamma \dot{x}$ es la fuerza de amortiguamiento y F(t) es la fuerza externa

La ecuación de movimiento será:
$$F(t) = m\ddot{x} + \gamma\dot{x} + kx \implies \ddot{x} + 2b\dot{x} + \omega_0^2 x = f(t)$$

donde: $f(t) = \frac{F(t)}{m}$, fuerza por unidad de masa.

$$\ddot{x} + 2b\dot{x} + \omega_0^2 x = f(t)$$
 es una ecuación inhomogénea.

Se puede demostrar que la solución de esta ecuación será: $x(t) = x_p(t) + x_h(t)$

$$x(t) = x_p(t) + x_h(t)$$

$$x_h(t)=C_1e^{\lambda_1t}+C_2e^{\lambda_2t}$$
 que es la solución de la ecuación homogénea $\ddot{x}+2b\dot{x}+\omega_0^2x=0$

 $x_p(t)$ es una solución particular que dependerá de la forma de F(t).

Oscilaciones sinusoidalmente forzadas

Un caso particular es el de aplicación de una fuerza que varía armónicamente con el tiempo:

$$F_N = -\gamma \dot{x} - kx + F_0 \cos \omega t$$

homogénea $x_h(t)$

particular $x_n(t)$

Solución homogénea:
$$x_h(t) = e^{-bt} \left(C_1 e^{\sqrt{b^2 - \omega_0^2} t} + C_2 e^{-\sqrt{b^2 - \omega_0^2} t} \right)$$
 (2)

Solución particular: Se propone la solución $x_p(t) = D \cos(\omega t - \delta)$ (3)

(3) En (1):
$$\{A - D[(\omega_0^2 - \omega^2)\cos\delta + 2\omega b \, sen\delta]\}\cos\omega t = \{D[(\omega_0^2 - \omega^2)sen\delta - 2\omega b \, cos\delta]\}\sin\omega t$$
 (4)

Dado que las funciones seno y coseno son linealmente independientes, la única manera que se satisfaga (4) será anulando ambos coeficientes a la vez. Por lo tanto:

Oscilaciones sinusoidalmente forzadas

Del término sen
$$\omega t$$
: $tan\delta = \frac{2\omega b}{\omega_0^2 - \omega^2} \Rightarrow$

$$\Rightarrow sen\delta = \frac{2\omega b}{\sqrt{\left(\omega_0^2 - \omega^2\right)^2 + 4\omega^2 b^2}} \quad y \quad cos\delta = \frac{\omega_0^2 - \omega^2}{\sqrt{\left(\omega_0^2 - \omega^2\right)^2 + 4\omega^2 b^2}}$$

Del término
$$\cos \omega t$$
: $D = \frac{A}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\omega^2 b^2}}$

La solución particular será:

$$x_p(t) = \frac{A}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\omega^2 b^2}} cos(\omega t - \delta) \qquad con \qquad \delta = \arctan \frac{2\omega b}{\omega_0^2 - \omega^2}$$

 $\{A - D[(\omega_0^2 - \omega^2)\cos\delta + 2\omega b \operatorname{sen}\delta]\}\cos\omega t$ = $\{D[(\omega_0^2 - \omega^2)sen\delta - 2\omega b \cos\delta]\}$ sen ωt

$$con \delta = \arctan \frac{2\omega b}{\omega_0^2 - \omega^2}$$

representa la diferencia de fase entre la fuerza externa y el movimiento resultante.

Para un ω_0 fijo:

ω	δ
$\omega = 0$	δ = 0
$\omega = \omega_0$	$\delta = \pi/2$
$\omega o \infty$	$\delta \to \pi$

Oscilaciones sinusoidalmente forzadas

La solución gral será:
$$x(t) = x_h(t) + x_p(t) = e^{-bt} \left(C_1 e^{\sqrt{b^2 - \omega_0^2} t} + C_2 e^{-\sqrt{b^2 - \omega_0^2} t} \right) + D \cos(\omega t - \delta)$$

 $x_h(t)$ representa los efectos del transiente (régimen transitorio, no estacionario) que se extinguen con el tiempo por el factor exponencial e^{-bt} . Es irrelevante con el tiempo.

 $x_p(t)$ representa los efectos del estado estacionario (régimen permanente)

Respuesta de un oscilador lineal amortiguado a una fuerza externa sinusoidal. a) Fuerza externa cosenoidal b) Movimiento resultante $(x_0 = v_0 = 0)$. Por los 2 o 3 primeros ciclos, es visible el régimen no estacionario. Luego sólo se visualiza el estado estacionario.

Ejemplos de oscilaciones amortiguadas perturbadas por fuerzas externas. La solución del estado estacionario x_p , la del transiente x_h y la suma x se muestran en a) para una frecuencia de perturbación $\omega > \omega_1$ y en b) para $\omega < \omega_1$

Fenómeno de Resonancia

La Resonancia se da a un valor determinado de frecuencia y consiste en que la amplitud D alcanza un valor máximo.

$$D = \frac{A}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\omega^2 b^2}} \Rightarrow \frac{dD}{d\omega}\Big|_{\omega = \omega_R} = 0$$

De esta expresión se obtiene:
$$\omega_R = \sqrt{\omega_0^2 - 2b^2}$$

Comparación de frecuencias de oscilación:

- 1) Oscilaciones libres: $\omega_0^2 = \frac{k}{m}$
- 2) Oscilaciones libres con amortiguamiento: $\omega_1^2 = \omega_0^2 b^2$
- 3) Oscilaciones forzadas con amortiguamiento: $\omega_R^2 = \omega_0^2 2b^2$ (Notar que $\omega_0 > \omega_1 > \omega_R$)

El grado de amortiguamiento puede evaluarse en un sistema oscilatorio Q que es un "Factor de Calidad":

$$Q = \frac{\omega_R}{2b}$$

Fenómeno de Resonancia

$$Q = \frac{\omega_R}{2b} \quad \omega_R = \sqrt{\omega_0^2 - 2b^2}$$

Con un amortiguamiento débil, Q crece y la curva de resonancia se asemeja a la de un oscilador sin amortiguamiento.

Si el amortiguamiento es muy grande, Q es muy pequeño.

a) Muestra la amplitud D como función de la frecuencia de la perturbación ω para diferentes valores de Q.

b) Desfasaje δ (la diferencia de fase entre la fuerza externa y el movimiento resultante) en función a la frecuencia de la perturbación ω para diferentes valores de Q.

Driven Mechanical Oscillator

MIT Physics Lecture Demonstration Group