Learning Parameters of Stochastic Radio Channel Models from Summaries

Ayush Bharti, Ramoni Adeogun, Troels Pedersen

Aalborg University

{ayb, ra, troels}@es.aau.dk

1st Post-IRACON Meeting September 14-15, 2020

Model Calibration Problem

Aim: To fit a stochastic radio channel model $\mathcal{M}(\theta)$ (e.g. Saleh-Valenzuela, Propagation Graph, etc.) to channel impulse response measurements y

Calibration Problem: Estimate θ given data y

Classical estimation techniques require access to the likelihood function:

Maximum a Posteriori (MAP) estimate:
$$\hat{\theta}_{MAP} = \operatorname*{argmax}_{\theta} f(y|\theta)p(\theta)$$

Maximum Likelihood (ML) estimate:
$$\hat{\theta}_{ML} = \underset{\theta}{\operatorname{argmax}} f(y|\theta)$$

Minimum Mean Squared Error (MMSE) estimate:
$$\hat{\theta}_{MMSE} = \mathbb{E}\left[f(y|\theta)p(\theta)\right]$$

Since we do not observe the multipath components (i.e. their delays, gains, etc.), the likelihood function $f(y|\theta)$ is intractable and cannot be evaluated numerically.

State-of-the-art Calibration Method

Calibration method followed by SV, COST 2100, WINNER, METIS, etc.:

Drawbacks:

- Requires sophisticated algorithms (multipath extraction, clustering) which can be cumbersome to use due to a number of heuristic choices
- Prone to errors (e.g estimation artifacts, censoring effects)
- Overall performance of these algorithms are hard to investigate

Proposed Calibration Methods

Instead of using multipath components and clusters:

we use easy-to-compute summaries:

Proposed Calibration Methods

We use easy-to-compute summaries:

Advantages:

- Simpler processing chain
- Fit is based on explicit choice of summaries
- Easier to evaluate performance of the estimator
- Information on posterior is obtained (not only point estimates)

Approximate Bayesian Computation (ABC)

ABC is a likelihood-free inference method that permits sampling from the (approximate) posterior of a generative model¹.

Rejection ABC algorithm

- Sample $\theta^* \sim p(\theta)$
- Simulate data from model, $y \sim \mathcal{M}(\theta^*)$
- If $\rho(S(y), S(y_{\text{obs}})) < \epsilon$, accept θ^*

Here $S(\cdot)$ is a vector of summary statistics and $\rho(\cdot, \cdot)$ is a distance measure.

With N accepted samples, we can approximate the posterior distribution:

$$p(\theta | \rho(S(y), S(y_{\text{obs}})) < \epsilon) \approx p(\theta | y),$$

and can compute point estimates:

$$\hat{\theta}_{\mathsf{MMSE}} pprox \frac{1}{N} \sum_{i=1}^{N} \theta_{i}$$

¹ M. A. Beaumont, Approximate Bayesian computation in evolution and ecology, Annu. Rev. Ecol. Evol. Syst., vol. 41, pp. 379406, dec 2010.

Proposed Likelihood-free Inference Methods

Simulation Experiment

- Model: Polarimetric Propagation model²
- Parameters:
 - Reflection gain, $g \sim \mathcal{U}(0,1)$
 - ▶ No. of scatters, $N_s \sim \text{Uniform integers}[5, 50]$
 - ▶ Probability of visibility, $P_{\mathsf{vis}} \sim \mathcal{U}(0,1)$
 - ▶ Polarization ratio, $\gamma \sim \mathcal{U}(0,1)$
 - Noise variance, $\sigma_N^2 \sim \mathcal{U}(2 \times 10^{-10}, 2 \times 10^{-9})$
- Summaries:
 - Means and covariances of first three temporal moments:

$$m_k = \int t^k |y(t)|^2 dt, \quad k = 0, 1, 2.$$

Cross-polarization ratio

$$\mathrm{XPR} = \frac{1}{2} \left[\frac{\mathbb{E}[m_0^{vv}]}{\mathbb{E}[m_0^{vh}]} + \frac{\mathbb{E}[m_0^{hh}]}{\mathbb{E}[m_0^{hv}]} \right]$$

²R. Adeogun, T. Pedersen, C. Gustafson, and F. Tufvesson, Polarimetric Wireless Indoor Channel Modelling Based on Propagation Graph, IEEE Transactions on Antennas and Propagation, vol. 67, no. 10, 2019.

Simulation Results using ABC

Approximate marginal posteriors after each iteration:

- Distribution of samples converge around the true value.
- Width of posterior is different for different parameters.
- Some parameters converge faster than others.

Simulation Results using Deep Learning

Settings: 2 hidden layers, 20 neurons per layer

Distribution of parameter estimates obtained after 200 estimator runs:

Observations:

- The parameters are estimated accurately.
- The uncertainty in estimates is fairly small.

Application to Measured Data

We apply the proposed methods on MIMO measurements from Gustafson et al., 2016³.

- Environment: small conference room of dimension $3m \times 4m \times 3m$
- Frequency range: 58 GHz to 62 GHz
- 25 × 25 planar array, leading to 625 channel realizations
- 801 frequency samples
- Frequency separation: 5 MHz

³Carl Gustafson, David Bolin, Fredrik Tufvesson, Modeling the polarimetric mm-wave propagation channel using censored measurements, IEEE GLOBECOM, 2016.

Conclusions

- The proposed machine learning methods based on ABC and DL are able to accurately calibrate stochastic radio channel models, in particular the PG model.
- The methods by-pass any intermediate step of extracting the multipath components and require no additional information or post-processing.
- Availability of pseudocodes and libraries make the proposed methods easy to implement compared to the state-of-the-art approach.
- The performance of the proposed methods is easy to evaluate, as opposed to the multi-step approach.
- The choice of summaries is crucial in estimating the parameters, and the uncertainty in the estimates decreases with informative summaries.
- **Coming soon:** Generic ABC method for calibrating different channel models.