MA2001 Linear Algebra

Jun Yang, November 17, 2022

Matrices

- 1. A(BC) = (AB)C
- 2. $A(B_1 + B_2) = AB_1 + AB_2$
- 3. $(C_1 + C_2)A = C_1A + C_2A$
- 4. c(AB) = (cA)B = A(cB)
- 5. A0 = 0
- 6. AI = A = IA
- 7. $A^m A^n = A^{m+n}$
- 8. $(AB)^2 = (AB)(AB)$
- 9. $(A^T)^T = A$
- 10. $(A+B)^T = A^T + B^T$
- 11. $(cA)^T = cA^T$
- 12. then $(AB)^T = B^T A^T$

Invertible Matrix

- 1. A is invertible $\Leftrightarrow AB = I$ and BA = I
- 2. if A is invertible and $AB_1 = AB_2$, then $B_1 = B_2$, B could be non-square matrix
- 3. The inverse of a matrix is unique
- 4. $(cA)^{-1} = \frac{1}{c}A^{-1}$
- 5. $(A^T)^{-1} = (A^{-1})^T$
- 6. $(A^{-1})^{-1} = A$
- 7. $(AB)^{-1} = B^{-1}A^{-1}$
- 8. $(A^n)^{-1} = (A^{-1})^n$
- 9. If A is singular, then both AB and BA are singular

Determinant

- 1. If A is an triangular matrix, then det(A) = product of diagonal entries
- 2. $det(A^T) = det(A)$
- 3. $det(AA^{-1}) = det(A) \times det(A^{-1}) = 1$
- 4. a square matrix with two identical rows or columns has 0 determinant
- 5. If $A \xrightarrow{kR_i} B$, then $det(B) = k \times det(A)$
- 6. If $A \leftrightarrow B$, then det(B) = -det(A)
- 7. If $A \xrightarrow{R_j + kR_i} B$, then det(B) = det(A)
- 8. If A is a $n \times n$ matrix, then $det(cA) = c^n det(A)$
- 9. $det(AB) = det(A) \times det(B)$
- 10. $det(A^{-1}) = \frac{1}{det(A)}$
- 11. $A^{-1} = \frac{1}{\det(A)} \times adj(A)$

Linear Span

- 1. Linear span = the set of all linear combinations of $\{c_1u_1 + c_2u_2 + ... + c_ku_k \mid c_1, c_2, ..., c_k \in \mathbb{R}\}$
- 2. $0 \in span(S)$
- 3. For any $v_1, v_2, ..., v_r \in span(S)$ and $c_1, c_2, ..., c_r \in \mathbb{R}$, $c_1v_1 + c_2v_2 + ... + c_rv_r \in span(S)$
- 4. $span(u_1, u_2, ..., u_k) \subset span(v_1, v_2, ..., v_k) \Leftrightarrow u_i$ is a linear combination of $v_1, v_2, ..., v_k$

Subspace

- 1. If it is a span of something, it is a subspace
- 2. span0 is the smallest subspace, a.k.a trivial subspace
- 3. If it satisfies:
 - (a) $0 \in span(S)$
 - (b) For any $v_1, v_2, ..., v_r \in span(S)$ and $c_1, c_2, ..., c_r \in \mathbb{R}$, $c_1v_1 + c_2v_2 + ... + c_rv_r \in span(S)$

then it is a subspace

4. The solution set of a homogenous system of linear equations in n variables is a subspace of \mathbb{R}^n , and it is called the solution space

Linear Independence

- 1. If a set of vectors is linearly dependent, then there exists at least one redundant vector in the set
- 2. If a set of vectors is linearly independent, then tehre is no redundant vector in the set
- 3. In \mathbb{R}^n , if the set has more vector than n, then the set must be linearly dependent

Bases

- 1. let V be a vector space and $S = \{u_1, u_2, ..., u_k\}$ a subset of V, then S is called a basis of V if
 - (a) S is linearly independent
 - (b) S spans V
- 2. For any $u, v \in V, u = v \Leftrightarrow (u)_S = (v)_S$
- 3. For any $v_1, v_2, ..., v_r \in V$ and $c_1, c_2, ..., c_r \in \mathbb{R}$, $(c_1v_1 + c_2v_2 + ... + c_rv_r)_S = c_1(v_1)_S + c_2(v_2)_S + ... + c_r(v_r)_S$
- 4. $v_1, v_2, ..., v_r$ are linearly independent \Leftrightarrow $(v_1)_S, (v_2)_S, ..., (v_r)_S$ are linearly independent vectors in \mathbb{R}^k
- 5. $span\{v_1, v_2, ..., v_r\} = V \Leftrightarrow span\{(v_1)_S, (v_2)_S, ..., (v_r)_S\} = \mathbb{R}^k$

Dimensions

- 1. Let V be a vector space which has a basis with k vectors,
 - (a) Any subset of V with more than k vectors is always linearly dependent
 - (b) Any subset of V with less than k vectors cannot spans V

this means that every basis for V have the same size k

2. The dimension of a vector space V, denoted by dim(V), is defined to be the number of vectors in a basis for V

Transition Matrix

- 1. a transition matrix is invertible
- 2. P^{-1} is the transition matrix with an opposite direction
- 3. A transition matrix from S to T, write it in S is a linear combination of T, then form the matrix with

$$([s_1]_T \quad [s_2]_T \quad [s_3]_T)$$

Row Space and Column Space

- 1. The nonzero rows of REF of A form a basis for the row space of REF of A and A
- 2. Let $W = span\{u_1, u_2, u_3\}$, methods to find the basis of W:
 - (a) i. Place the vectors as row vectors to form a matrix
 - ii. Get the row space from REF
 - iii. The basis of row space is the basis of W
 - (b) i. Place the vectors as column vectors to form a matrix
 - ii. The basis of the column space is the basis of W
- 3. A linear system Ax = b is consistent $\Leftrightarrow b$ lies in the column space of A

Ranks

- 1. The row space and the column space of a matrix has the same dimension
- 2. The rank of a matrix is the dimension of its row space and its column space
- 3. rank(0) = 0 and $rank(I_n) = n$
- 4. $rank(A) \leq min\{m, n\}$
- 5. If $rank(A) = min\{m, n\}$, then A is said to have full rank
- 6. A square matrix A is of full rank $\Leftrightarrow det(A) \neq 0$
- 7. $rank(A) = rank(A^T)$
- 8. A linear system Ax = b is consistent $\Leftrightarrow A$ and (A|b) have the same rank
- 9. $rank(AB) \le min\{rank(A), rank(B)\}$

Nullspaces and Nullities

- 1. The solution space of Ax = 0 is the nullspace of A
- 2. The dimension of the null space of A is the nullity of A
- 3. rank(A) + nullity(A) = the number of columns of A

The Dot Product

- 1. The norm(length) of $u = ||u|| = \sqrt{u_1^2 + u_2^2 + ... + u_k^2}$
- 2. $d(u,v) = ||u-v|| = \sqrt{(u_1-v_1)^2 + (u_2-v_2)^2 + \dots + (u_k-v_k)^2}$
- 3. $u \cdot v = u_1 v_1 + u_2 v_2 + ... + u_k v_k$
- 4. $\theta = \cos^{-1}(\frac{u \cdot v}{||u||||v||})$
- 5. $u \cdot v = v \cdot u$
- 6. $(u+v)\cdot w = u\cdot w + v\cdot w$ and $w\cdot (u+v) = w\cdot u + w\cdot v$
- 7. $(cu) \cdot v = u \cdot (cv) = c(u \cdot v)$
- 8. ||cu|| = |c|||u||
- 9. $u \cdot u > 0$; $u \cdot u = 0 \Leftrightarrow u = 0$

Orthogonal and Orthonormal Bases

- 1. u and v are orthogonal if $u \cdot v = 0$
- 2. $\frac{1}{||u||}U$ is a unit vector
- 3. An orthogonal set is linearly independent
- 4. To show S is an orthogonal basis for V, we need to check:
 - (a) S is orthogonal
 - (b) |S| = dim(V) or span(S) = V
- 5. Let $S = \{u_1, u_2, ..., u_k \text{ be an orthogonal basis for } V$, then for any $w \in V$: $w = \frac{w \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{w \cdot u_2}{u_2 \cdot u_2} u_2 + ... + \frac{w \cdot u_k}{u_k \cdot u_k} u_k$
- 6. From above, w is the projection onto V
- 7. Gram-Schmidt Process: Let $\{u_1, u_2, ..., u_k\}$ be a basis for V $v_1 = u_1$

$$\begin{array}{l} v_2 = u_2 - \frac{u_2 \cdot v_1}{v_1 \cdot v_1} v_1 \\ v_3 = u_3 - \frac{u_3 \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{u_3 \cdot v_2}{v_2 \cdot v_2} v_2 \end{array}$$

Best Approximation

1. Let Ax = b be a linear system, then u is a least square solution to the system $Ax = b \Leftrightarrow u$ is a solution to $A^TAx = A^Tb$

Orthogonal Matrices

- 1. A square matrix A is orthogonal if $A^{-1} = A^T$
- 2. A is orthogonal
 - \Leftrightarrow The rows of A form an orthonormal basis for \mathbb{R}^n
 - \Leftrightarrow The columns of A form an orthonormal basis for \mathbb{R}^n

Eigenvalues and Eigenvectors

- 1. λ is an eigenvalue of A
 - $\Leftrightarrow Au = \lambda u$
 - $\Leftrightarrow \lambda u Au = 0$
 - $\Leftrightarrow (\lambda I A)u = 0$
 - \Leftrightarrow the linear system $(\lambda I A)u = 0$ has non-trivial solutions $\Leftrightarrow det(\lambda I A) = 0$
- 2. Eigenspaces is the solution space of the linear system $(\lambda I A) = 0$

Diagonalization

- 1. A square matrix A is diagonalizable if there exists an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix. P is said to diagonalize A
- 2. A is diagonalizable \Leftrightarrow A has n linearly independent eigenvectors
- 3. Steps to diagonalize a matrix of n order:
 - (a) Find all distinct eigenvalues $\lambda_1, ..., \lambda_k$
 - (b) For each eigenvalue find a basis $S_{\lambda i}$ for the eigenspace $E_{\lambda i}$
 - (c) Let $S = S_{\lambda 1} \cup ... \cup S_l ambda_k$ If |S| < n, then A is not diagonalizable If |S| = n, then A is diagonalizable
 - (d) If an n order matrix A has n distinct eigenvalues, then A is diagonalizable

section*Orthogonal Diagonalization

1. A square matrix A is called orthogonally diagonalizable if there exists an orthogonal matrix such that P^TAP is a diagonal matrix, the matrix P is said to orthogonally diagonalize A

- 2. A square matrix A is orthogonally diagonalizable $\Leftrightarrow A$ is symmetric, i.e. $A^T = A$
- 3. Steps to diagonalize a matrix of n order:
 - (a) Find all distinct eigenvalues $\lambda_1, ..., \lambda_k$
 - (b) For each eigenvalue
 - i. find a basis $S_{\lambda i}$ for the eigenspace $E_{\lambda i}$
 - ii. use te Gram-Schmidt Process to transform $S_{\lambda i}$ to an orthonormal basis $T_{\lambda i}$
 - (c) Let $T = T_{\lambda 1} \cup ... \cup T_l ambda_k$
- 4. If A is symmetric, eigenvectors from different eigenspaces of A are always orthogonal to each other

Linear Transformation

1. $T: V \to W$ is called a linear transformation $\Leftrightarrow T(cu + dv) = cT(u) + dT(v)$

- 2. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation,
 - (a) T(0) = 0
 - (b) If $u_1, ..., u_k \in \mathbb{R}^n$ and $c_1, ..., c_k \in \mathbb{R}$, then $T(c_1u_1 + ... + c_ku_k) = c_1T(u_1) + ... + c_kT(u_k)$

Ranges and Kernels

- 1. The range R(T) is the column space of a standard matrix
- 2. The rank of T is rank(T) = dim(R(T)) = rank(A)
- 3. The kernel Ker(T) is the null space of a standard matrix
- 4. The nullity of T is nullity(T) = dim(Ker(T)) = nullity(A)
- 5. Let $T: \mathbb{R}^n \to \mathbb{R}^m$, rank(T) + nullity(T) = n

Invertible Matrix

The following statements are equivalent:

- 1. A is invertible
- 2. The linear system Ax = 0 has only the trivial solution
- 3. The RREF of A is I
- 4. A can be expressed as a product of elementary matrices
- 5. $det(A) \neq 0$
- 6. The rows of A form a basis for \mathbb{R}^n
- 7. The columns of A form a basis for \mathbb{R}^n
- 8. rank(A) = n
- 9. 0 is not an eigenvalue of A