

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平9-281144

(43)公開日 平成9年(1997)10月31日

(51) Int.Cl. [*]	識別記号	序内整理番号	P I	技術表示箇所
G 0 1 R	1/073		G 0 1 R	1/073
	1/06			1/06
	31/26			31/26
H 0 1 L	21/66		H 0 1 L	21/66

審査請求 有 請求項の数 8 O L (全 9 頁)

(21)出願番号	特願平8-92079	(71)出願人	000004237 日本電気株式会社 東京都港区芝五丁目7番1号
(22)出願日	平成8年(1996)4月15日	(72)発明者	副島 康志 東京都港区芝五丁目7番1号 日本電気株式会社内
		(72)発明者	仙波 直治 東京都港区芝五丁目7番1号 日本電気株式会社内
		(74)代理人	弁理士 鈴木 章夫

(54)【発明の名称】 プローブカードとその製造方法

(57)【要約】

【課題】 プローブカードにおけるプローブの弾性変形ストロークが小さいため、多数の電極に対する接続性が低く、かつプローブを微細配置することが難しい。

【解決手段】 基板11の表面に所要のパターンに形成した導体膜からなるプローブパターン15を形成し、このプローブパターン15の先端部の基板11に凹部12を形成して先端部が表面から離間されるようにし、かつこの先端部にパンプ16を設けて半導体素子の電極等に接触させるように構成する。プローブの弾性変形力およびその変形ストロークを増大でき、半導体素子の電極に対する接続性を良好なものとする。また、プローブを基板11のスルーホール18を通して裏面の配線パターン19に接続することにより、その配線スペースが低減でき、プローブの微細配置を可能とし、半導体ウェハ上の複数の半導体素子に対するプロービングが可能となる。

11 基板	16 パンプ
12 凹部	17 穴
13 プローブフィルム	18 スルーホール
14 素子	19 配線パターン
15 プローブパターン	

(2)

特開平9-281144

【特許請求の範囲】

【請求項1】 薄板の表面に所要のパターンに形成した導体膜からなるプローブパターンが形成され、このプローブパターンの先端部を前記基板の表面から離間配置し、この先端部を半導体素子の電極等に接触させるように構成したことを特徴とするプローブカード。

【請求項2】 プローブパターンの先端部に対応する基板の表面に凹部が形成されてなる請求項1のプローブカード。

【請求項3】 プローブパターンの先端部が基板表面から離れる方向にその中間部において曲げ形成されてなる請求項1のプローブカード。

【請求項4】 プローブパターンの先端部には導電体からなるパンプが形成される請求項1ないし3のいずれかのプローブカード。

【請求項5】 プローブパターンは先端部以外の部分において基板に貫通形成されたスルーホールに電気接続される請求項1ないし4のいずれかのプローブカード。

【請求項6】 プローブパターンは、基板の表面に形成された樹脂膜の表面に形成され、この樹脂膜と一体の積層構造をしたプローブフィルムとして構成される請求項1ないし5のいずれかのプローブカード。

【請求項7】 プローブフィルムは複数の樹脂膜と導体膜が積層された構成とされ、その表面側の導体膜でプローブパターンが構成され、下側の導体膜がGND接続される請求項6のプローブカード。

【請求項8】 後工程で形成するプローブパターンの先端部に対応する部分に凹溝が形成された基板を形成する工程と、前記凹溝に充填体を埋設する工程と、前記基板及び充填体の表面に導体膜を所要パターンに形成したプローブパターンを形成する工程と、前記充填体を選択的に除去する工程とを含むことを特徴とするプローブカードの製造方法。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明は半導体素子の電極等に接触させて通電を行うための装置として、図13(a)に示すように、 $50\mu\text{m}\phi \sim 100\mu\text{m}\phi$ 程度の複数本のタンクステンピン31をその基部において支持体32で支持し、このタンクステンピンの先端部を保持体33により半導体素子の電極に対応した配列で保持したタンクステンプローブが提案されている。このタンクステンピン31の先端部を半導体素子の電極に当接することにより電気的な接続が可能となり、半導体素子への通電と電気特性試験が可能となる。しかしながら、このタンクステンプローブでは、各ピンのピッチ

が $0.5\text{mm} \sim 5\text{mm}$ 程度であるため、 $100\mu\text{m}$ 程度の半導体素子の電極ピッチに対応することは難しい。また、タンクステンピンの長さが 3cm から 10cm 程度あるため、 100MHz 以上の高周波特性が悪くなるという問題がある。このようなプローブ装置としては、例えば特開平6-118100号公報に記載されたものがある。

【0003】 このため、近年では図13(b)に示すようなメンブレンプローブが提案されている。このメンブレンプローブは、ポリイミド等のフィルム41の表面に、銅等の導体で複数のプローブ配線42を形成し、各配線の端部に半田やメッキによりパンプ43を形成している。そして、これを支持板44にエラストマ45を介して貼り付けている。この構成では、半導体素子の電極にパンプ43を当接させて電気接続を行うことができる。

【0004】

【発明が解決しようとする課題】 このような従来のメンブレンプローブでは、複数のパンプ43と、半導体素子の電極の各平面性が高くないと、プローブを電極に当接させたときに一部のパンプが電極に接触されなくななる状態が生じる。これを防止するためには、パンプを設けている配線に弾力性を付与し、この弾性変形によって全てのパンプが電極に接触させることができる。しかしながら、この弾性力は、メンブレン裏面のエラストマ45によるのみであるため、弾性変形量には限りがあり、半導体素子を形成したウェハの反り等に対応できないことがある。また、プローブ配線42をフィルム41の周辺部にまで延長して外部機器に接続するための配線46に電気接続を行っているため、プローブ配線42の長さが長くなり、微細なプローブを配列した構成を採用することが難しく、半導体ウェハ上に形成されたダイシング前の半導体素子へのプローピングができないと共に、高周波特性が劣化されるおそれもある。

【0005】 本発明の目的は、半導体素子の電極に対する接觸の信頼性を高めるとともに、ウェハ上の半導体素子への接觸を可能とし、かつ高周波特性を改善したプローブカードを提供することにある。

【0006】

【課題を解決するための手段】 本発明のプローブカードは、基板の表面に所要のパターンに形成した導体膜からなるプローブパターンが形成され、このプローブパターンの先端部を基板の表面から離間配置し、この先端部を半導体素子の電極等に接触させるように構成したことを特徴とする。この場合、プローブパターンの先端部に対応する基板の表面に凹部が形成された構成、あるいはプローブパターンの先端部が基板表面から離れる方向にその中間部において曲げ形成された構成が採用できる。また、プローブパターンの先端部には導電体からなるパンプが形成され、あるいはプローブパターンは先端部以外

(3)

特開平9-281144

の部分において基板に貫通形成されたスルーホールに電気接続されることが好ましい。

【0007】また、本発明の更に好ましい形態としては、プローブパターンは、基板の表面に形成された樹脂膜の表面に形成され、この樹脂膜と一体の積層構造をしたプローブフィルムとして構成されることが好ましい。また、この場合、プローブフィルムは複数の樹脂膜と導体膜が積層された構成とされ、その表面側の導体膜でプローブパターンが構成され、下側の導体膜がGND接続されることが好ましい。

【0008】また、本発明の製造方法は、後工程で形成するプローブパターンの先端部に対応する部分に凹溝が形成された基板を形成する工程と、前記凹溝に充填体を埋設する工程と、前記基板及び充填体の表面に導体膜を所要パターンに形成したプローブパターンを形成する工程と、前記充填体を選択的に除去する工程とを含むことを特徴とする。

【0009】

【発明の実施の形態】次に、本発明の実施形態について図面を参照して説明する。図1 (a), (b) は本発明のプローブカードの第1の実施形態の断面図とその一部の底面図である。この実施形態では、複数のプローブが一枚のカードとして一体に形成された例を示している。アルミナ、空化アルミ、ガラス、ガラスセラミック等のセラミック、ガラスエポキシ等の樹脂で形成される基板11の表面(下面)には、任意深さの凹部12が形成されており、かつこの凹部12を含む前記基板11の表面に樹脂膜14と導体膜15とを積層したプローブフィルム13が接着され、かつ前記導体膜15は所要のパターンに形成されてプローブパターンとして構成されている。樹脂膜14には、ポリイミド、ベンゾシクロブテン、エポキシ等が用いられる。また、プローブパターンとしての導体膜15には、銅やニッケル等の金属が用いられる。

【0010】前記プローブパターン15は、複数本の細いパターンに形成されており、これらプローブパターン15の先端部、すなわち半導体素子の電極に接触される部分は前記凹部12の平面領域に配置される。そして、前記各プローブパターン15の先端部には半田や金属メッキ等により導電性のバンプ16が形成されている。また、前記バンプ16を除く他の領域のプローブパターン15の表面上には樹脂からなる絶縁膜17が薄く形成され、プローブパターン15の導電表面を被覆している。さらに、各プローブパターン15の他端部は、基板11に形成されたスルーホール18に接続され、基板の裏面において図外の測定装置に電気接続される配線パターン19に接続されている。

【0011】この構成のプローブカードでは、バンプ16を半導体素子の電極に当接させたときには、プローブパターン15の下地となる樹脂膜14が厚さ方向に弹性

変形されるため、この弾性力によってバンプが電極に電気接続される。そして、このときバンプ16の直下の基板11の表面には凹部12が形成されているため、前記樹脂膜14は凹部12の内部にまで進入する状態で弹性変形され、その弹性変形量が増大される。これにより、前記した弾性力が高められて電極に対する接触力が増大されて接触性が高められる。また、弹性変形量の増大によりバンプ16およびプローブパターン15での厚さ方向の変形ストロークが増大されることになるため、半導体素子を構成しているウェハに反りが生じている場合でも、樹脂膜の弹性変形量の増大によってこれに追従でき、全てのバンプが電極に対して好適に接触され、電気接続されることになる。

【0012】ここで、前記凹部12の断面形状は、図2に示すように、底面の形状が円弧状に形成された凹部12Aとして構成されてもよい。また、凹部12, 12Aの平面形状は、矩形、円形、楕円形等、その平面P3にバンプ16とプローブパターン15の先端部の領域を含むものであれば、バンプの配列状態に応じて任意の形状に設定できる。また、凹部12, 12Aの深さもバンプ16やプローブパターン15の変形量に応じて適切な深さに設定できる。

【0013】また、図3 (a), (b) に断面図と底面図を示すように、プローブパターン15の先端部に沿って樹脂膜14に厚さ方向に貫通されるスリット20を形成することで、バンプ16の近傍における樹脂膜14の変形性を高め、プローブパターン15の弹性変形量を増大させて半導体素子の電極に対する迫従性を高めることができる。この場合、図4のように、隣接するプローブパターン間にスリット21を形成するようにしておく、この場合にはプローブパターン15を個別に塑性変形可能とし、かつ各プローブパターン15の弹性変形量を個別に増大することができ、かつ半導体素子の電極の不規則な平面性に迫従させることができる。

【0014】さらに、図5 (a) に示すように、プローブパターン15の表面上にさらに導体膜22を積層することで、プローブパターン15の弾力性を高め、樹脂膜14の弾力性と導体膜15, 22の弾力性とで全体の弾性変形力を高め、電極に対するバンプ16の弾接力を高めて、接触の信頼性を高めることも可能である。ここでは、銅からなるプローブパターンの上に、導体膜22としてニッケルメッキを施している。あるいは、図5 (b) のように基板11上の樹脂膜14と導体膜15と共に多層の樹脂膜14A, 14Bと導体膜15A, 15Bとで構成し、上層の導体膜15Aでプローブパターンを構成し、下層の導体膜15Bで任意の配線を形成してもよい。

【0015】また、バンプ16は、図6 (a) のように、半田や導電性物質を供給してその材料の表面張力をを利用して球面状に形成したバンプ16A、あるいは図6

(4)

特開平9-281144

(b) のようにスタッドバンプとして形成したバンプ 16B、さらには図 6 (c) のように選択メッキにより形成したバンプ 16C として構成してもよい。

【0016】図 7 (a) は本発明の第 2 の実施形態を示す断面図である。この実施形態では、基板 11 に樹脂膜 14 と導体膜 15 を積層形成し、導体膜 15 を所要のパターンに形成してプローブパターンを形成している点では前記第 1 の実施形態と同じである。しかしながら、この実施形態では、基板 11 の表面には凹部を設けておらず、その代わりにプローブパターン 15C は、その先端部が基板 11 の表面から離れる方向に向けて曲げ形成している。この場合、曲げる部分は、同図のように、プローブパターン 15C の長さ方向の略中間位置から先端側の領域であっても、或いは図 7 (b) のように、プローブパターン 15D の先端側の領域のみであってもよい。

また、この実施形態では、プローブパターンの先端にはバンプは形成しておらず、図 7 (c) のように、プローブパターン 15C (15D) の先端を細く形成し、電極に対して点に近い状態で接觸されるよう構成している。

【0017】この第 2 の実施形態においては、プローブパターン 15C、15D の自身の弾力性によって電極に接觸する際の弾性力を得ることができる。また、その弾性変形量はプローブパターンの曲げ範囲内であるため、プローブパターンの曲げ量を任意に設定することで、プローブの接觸に際しての任意の変形ストロークを得ることができる。

【0018】次に、前記したプローブカードの製造方法の一例を説明する。図 8 及び図 9 は前記第 1 の実施形態における図 3 に示したようなプローブカードの製造方法を工程順に示す斜視図である。先ず、図 8 (a) のように、ガラスセラミックのグリーンシートに所要の配線を印刷形成し、厚さ 1.5 mm、縦横 15 cm × 15 cm の積層体からなる基板 11 を形成する。図示では、後にプローブパターンのスルーホールとなる配線 18 を形成したことが示されている。そして、スライシングソーにより基板 11 の表面に枠目状に深さ 500 μm の凹部、ここでは凹溝 12 を形成する。この凹溝 12 は、半導体素子の電極に接觸されるプローブパターンの先端が配置される領域に形成される。次いで、図 8 (b) のように、銀粉末と有機ビニルからなるペーストを前記凹溝 12 に充填し、焼成して充填体 23 を形成する。そしてこの充填体 23 の表面を研磨し、前記基板 11 と同一面となるように平滑化する。

【0019】次いで、図 9 (a) のように、感光性ポリイミドを基板 11 および充填体 23 の表面上に塗布し、これをフォトリソグラフィ技術により所要のパターンに形成して樹脂膜 14 を形成する。ここでは樹脂膜 14 は前記基板 11 の上に形成され、かつその周辺部が前記凹溝 12 内の充填体 23 の上部にまで張り出した矩形のパターンに形成している。さらに、この樹脂膜 14 の表面

にレジストをフォトリソグラフィ技術により所要のパターンに形成し、かつその上に銅メッキを施し、前記レジストを除去することでリフトオフ法により所要のパターンのプローブパターン 15 を形成する。このプローブパターン 15 は、一端部は前記充填体 23 の上にまで延長され、他端部は前記スルーホールとなる配線 18 と電気接続された構成とされる。また、表層の絶縁膜 17 を感光性ポリイミドをフォトリソグラフィでパターン形成し、この絶縁膜 17 から露呈されるプローブパターン 15 の先端部にフランクスと共晶半田を供給し、230℃でリフローしてバンプ 16 を形成する。バンプ 13 の表面を #1000 のサンドペーパで 10 μm 程度研磨し、その表面の高さばらつきを少なくし、かつバンプ表面に微細な凹凸を形成する。また、バンプ 16 の表面にはニッケルメッキ 3 μm、金メッキ 0.3 μm を形成する。

【0020】しかる後、充填体 23 に陽極を接続し、炭素を陰極として希硝酸中で両電極に 2 V を印加し、充填体 23 を溶融させる。これにより、図 9 (b) のように、充填体 23 は基板 11 から除去され、結果として基板 11 の表面には樹脂膜 14 とプローブパターン 15、表面絶縁層 17、およびバンプ 16 のみが残され、プローブカードが形成される。

【0021】このようにして作成されたプローブカードは、例えば図 10 に示す平面パターン構成とされ、半導体ウェハに枠目状に形成された多数個の半導体素子の電極に対して電気接続されるプローブカードとして形成される。

【0022】なお、前記した図 8 (a) の工程で凹溝 12 を形成した基板を形成した後に、図 11 に示すように、樹脂膜 14 とプローブパターン 15 を一体化したプローブフィルム 13 を別工程で形成しておき、このプローブフィルム 13 を基板 11 に対して位置決めした上で異方導電性接着剤によりプローブパターン 15 とスルーホール 18 とが電気接続されるようにして接着固定する製造方法も採用できる。

【0023】本発明者が、図 12 (a)、(b) に断面図と、その一部の縮小平面図を示すプローブカードを作成した後、種々の試験を行った結果を次に示す。ここで、樹脂膜 14 の厚さ c は 10 μm、プローブパターン 15 の厚さ b は 5 μm、その幅 g は 80 μm、プローブパターン 15 のピッチ f は 120 μm、凹溝 12 の幅 a はプローブパターン 15 の有効長さ c に依存し、a = c × 2 + 200 μm とした。プローブパターン間に形成したスリット 21 の長さ h は a と同じである。そして、プローブカードの縦横寸法を 1.5 cm × 1.5 cm、プローブ領域 13 cm × 1.3 cm、樹脂膜 14 の厚さ 10 μm、プローブパターン 15 の長さ 1 mm、およびその厚さ 5 μm、プローブピッチ 120 μm、バンプ 16 の高さ 50 μm、およびその直径 90 μm の条件で、以下に述べる (1) から (10) のように構造を変化させてブ

(5)

特開平9-281144

ローピングの試験を行った。

【0024】(1) 基板をアルミナの多層配線基板、窒化アルミの多層配線基板に変えて、プローブの特性に変化がないことを確認した。基板をガラスエポキシ基板にしたときには、10cm×10cmの範囲では基板にセラミックを用いたときと同様に安定してプローピングできることを確認した。

(2) 樹脂膜の材料を感光性ベンゾンクロブテン、感光性エポキシに変えてプローブを作製し、良好な接続性と10万回のプローピング寿命を確認した。ただし、膜強度が弱いためにプローブに横方向の力が加わったときにボリュミドよりも疲れやすくなる。

(3) 樹脂膜の断面形状が図3のようにプローブの先端側で分離されている構造においても良好な接続性と10万回以上のプローピング寿命を確認した。形状を変更しない場合に比べ、プローブが上下するストロークが増え、軟らかくなかった。

【0025】(4) プローブの先端を図7のように細くし、60μmの寸法とした構造についても良好な接続性と10万回以上のプローピング寿命を確認した。形状を変更しない場合に比較してプローブが軟らかくなかった。

(5) プローブパターンを、図5(a)のように、銅の上にニッケルを5μmメッキしたプローブについても良好な接続性と10万回以上のプローピング寿命を確認した。ニッケルメッキを施さない場合に比較してプローブ

が硬くなった。

(6) 図5(b)のように、樹脂膜と導体膜を2層構造とし、基板に近い下側の導体膜をGNDとしてプローブカードを作製することで、インピーダンス制御が可能となり、かつ良好な接続性と10万回以上のプローピング寿命を確認した。

【0026】(7) バンプを図6(b)のスタッバップ、図6(c)のメッキバンプとし、良好な接続性と10万回以上のプローピング寿命を確認した。

(8) 樹脂膜に形成されるスリットが、図3(b)または図4に示すいずれの形状でも、良好な接続性と10万回以上のプローピング寿命を確認した。

(9) 基板の凹溝の平面形状、断面形状の如何にかわらず、プローブの特性に変化がないことを確認した。

(10) 図7(a)、(b)のような、プローブパターンを曲げ形成したものにおいても、良好な接続性と10万回以上のプローピング寿命を確認した。

【0027】以上の結果を(表1)に示す。ここで、プローブ接続性の評価において、○は全てのプローブが被測定半導体素子(ウェハ)の電極と接触が得られた、△は測定を繰り返す中で接続が得られないとあった、×は接続がえられなかった、をそれぞれ示している。なお、単位はμmである。

【表1】

プローブ長さ	バンプ高さ	プローブ接続性	プロービング寿命
100	10	△	100 (回)
100	20	△	10
100	50	×	0
100	150	×	0
100	200	×	0
200	10	△	1000
200	20	○	100
200	50	×	10
200	150	×	0
200	200	×	0
1000	10	△	10万回以上
1000	20	△	10万回以上
1000	50	○	10万回以上
1000	150	○	10万回以上
1000	200	△	1万回
3000	10	△	10万回以上
3000	20	△	10万回以上
3000	50	△	10万回以上
3000	150	○	10万回以上
6000	200	△	10万回以上
6000	10	△	10万回以上
6000	20	△	10万回以上
6000	50	△	10万回以上
6000	150	△	10万回以上
6000	200	△	10万回以上

【0028】

【発明の効果】以上説明したように本発明は、基板の表面に所要のパターンに形成した導体膜からなるプローブパターンを形成し、このプローブパターンの先端部を基板の表面から離間配置し、この先端部を半導体素子の電極等に接触させるように構成しているので、プローブの弹性変形力およびその変形ストロークを増大でき、半導体素子の電極に対する接続性を良好なものとし、かつ多回の繰り返しに対しても高い信頼性を得ることができる。また、プローブからの配線を基板の裏面側に取り出す構成とすることにより、その配線スペースが低減でき、しかもプローブの変形ストロークが大きくできるとともに基板の剛性を高めてその平面性を高め、かつプローブ先端部の平坦性を高めることができるので、半導体ウェハ上に形成された半導体素子のような多数の電極に対して一括して大きな面積でプロービングを行うことが可能なプローブカードが得られる。さらに、プローブにおける配線を多層化し、その一部の配線を利用することでプローブのインピーダンス整合を取ることができ、高周波特性の優れたプローブカードが得られる。

【図面の簡単な説明】

【図1】本発明の第1の実施形態の断面図とその一部の

底面図である。

【図2】基板の変形例を示す断面図である。

【図3】樹脂膜にスリットを設けた実施形態の断面図と一部の底面図である。

【図4】スリットの変形例を示す底面図である。

【図5】プローブパターンの変形例を示す断面図である。

【図6】バンプの異なる例を示す断面図である。

【図7】本発明の第2の実施形態の断面図である。

【図8】本発明の製造方法を工程順に示す斜視図のその1である。

【図9】本発明の製造方法を工程順に示す斜視図のその2である。

【図10】作製されたプローブカードの全体構成の底面図である。

【図11】本発明の他の製造方法を示す斜視図である。

【図12】試験対象としてのプローブカードの断面図とその縮小底面図である。

【図13】従来のプローブ装置の各異なる例を示す図である。

【符号の説明】

1 1 基板

(7)

特開平9-281144

1 2 四部
 1 3 プローブフィルム
 1 4, 1 4A, 1 4B 樹脂膜
 1 5, 1 5A~1 5D 導体膜 (プローブパターン)
 1 6, 1 6A~1 6C バンプ
 1 7 絶縁膜

1 8 スルーホール
 1 9 配線パターン
 2 0, 2 1 スリット
 2 2 導体膜
 2 3 充填体

【図1】

1 1 基板
 1 2 四部
 1 3 プローブフィルム
 1 4 樹脂膜
 1 5 プローブパターン
 1 6 バンプ
 1 7 樹脂膜
 1 8 スルーホール
 1 9 配線パターン

【図2】

【図5】

【図3】

【図4】

【図6】

(8)

特開平9-281144

【図7】

(a)

(b)

(c)

【図8】

(a)

(b)

【図9】

(b)

【図10】

(9)

特開平9-28144

【図11】

【図12】

【図13】

