

Institut Supérieur d'Informatique et de Mathématiques de Monastir

Devoir Surveillé - S1-2024/2025

Filière: I ^{ère} Licence en sciences informatique: Génie Logiciel et Système d'information	rmatique : Matière : l et Système Logique Formelle		Enseignante : Aljia BOUZIDI
Date: 20 / 11 / 2024	Nbr de Crédits : 3	Coefficient: 1.5	Documents autorisés : Non
Durée : 1h	Régime d'éva	luation : Mixte	Nombre de pages : 05

Exercice 1 (5 points)

Pour chaque énoncé ci-dessous, déterminez si elle est une proposition ou non (répondez par 'oui' ou 'non'). Si ce n'est pas une proposition, expliquer pourquoi.

- 1. Les dragons ont existé il y a des milliers d'années
- 2. L'Égypte est le pays le plus peuplé du monde
- 3. Pour tout $x \in \mathbb{R}$, il existe un $y \in \mathbb{R}$ tel que x + y = 10
- 4. Les rêves prémonitoires sont une preuve de la clairvoyance
- 5. Tous les triangles ont trois côtés
- 6. L'amour est la seule émotion réelle
- 7. Ouvre la fenêtre
- 8. Une condition suffisante ou nécessaire pour qu'un joueur gagne le match est qu'il s'entraîne dur
- 9. Pour tous les nombres entiers x, s'il existe un nombre entier y tel que x + y = 10, alors x est un multiple de 2.
- 10. Soit f(x) = 2x + 1

Exercice 2 (5 points)

Trois collègues, Albert, Bernard et Charles déjeunent ensemble chaque jour ouvrable.

Question: Exprimer les propositions ci-dessous par des formules propositionnelles :

- 1. Il suffit qu'Albert commande un dessert pour que Bernard en commande un aussi
- 2. Une condition nécessaire pour Bernard et Albert commande un dessert est que Charles commande un dessert.
- 3. Chaque jour, soit Bernard, soit Charles, mais pas les deux, commandent un dessert.
- 4. Albert ou Charles, ou les deux, commandent chaque jour un dessert. De plus, s'ils ne le font pas tous les deux, Bernard en commande aussi un.
- 5. Charles commande un dessert si seulement si Albert fait de même. Cependant, si Albert commande un dessert, cela ne signifie pas nécessairement que Charles en commande un.

Exer	cice	3	(6	points)	:
		_	_	P 0	•

Soit la formule A : $(p \lor q) \leftrightarrow (\neg q \rightarrow p)$

1. Utiliser la méthode des arbres pour trouver une FND équivalente à A (1.5pts)

FND(A)=....

۷.	Offliser la méthode des arbres pour trouver une FNC équivalente à A (1.5pts)
	FNC(A)=

3.	Déduire la propriété de A	- /		-	-		
		·····					
4.	Utiliser la méthode des tautologie ? (2 pts)	arores pour	montrer que	la formule	B est ou	non un	•
D	$(p \land (-q)) \lor (p \land q)$						

3.	Déduire la propriété de A à partir des arbres construits. Pourquoi ? (1pt)		
			••
4.	Utiliser la méthode des arbres pour montrer que la formule B est tautologie ? (2 pts)	ou non	une
B	$(p \land (\neg q)) \lor (p \land q)$		

Exercice 4: (4 Points)

En utilisant les tableaux de Karnaugh, déterminer une FNC équivalente à R (2pts) et une FND équivalente à T (2pts) représentés par les tableaux ci-dessous :

FNC(R)=			a b			
	ĸ		0 0	0 1	11	10
		0 0	1	0	0	1
		0 1	1	0	0	1
	c d	11	1	1	0	1
		10	1	0	0	1
······						_

FND(T	FND(T)=		
	,		

Т		a b				
		00	0 1	11	10	
c d	00	0	0	0	1	
	0 1	0	0	1	1	
	11	1	1	1	1	
	10	1	0	0	1	

Bonne Travall