Problema 1-01 Bits necesarios

n	2 ⁿ	n	2 ⁿ	n	2 ⁿ
0	1	11	2048	22	4194304
1	2	12	4096	23	
2	4	13	8192	24	
3	8	14	16384	25	
4	16	15	32768	26	
5	32	16	65536	27	
6	64	17	131072	28	
7	128	18	262144	29	
8	256	19	524288	30	
9	512	20	1048576	31	
10	1024 = 1 K	21	2097152	32	
a) 50: 6 bi		c) 5.000:	13 bit	e) 1.000	0.000:

a) 50: 6 bit c) 5.000: 13 bit b) 1.000: 10 bit d) 100.000: 17 bit

bit 20 bit

Problema 1-02 Magnitud representada

a)
$$534_{(8} = 5.8^2 + 3.8^1 + 4.8^0 = 348$$

b)
$$111010_{(2} = 1.2^5 + 1.2^4 + 1.2^3 + 1.2^1 = 58$$

c)
$$3A_{(16} = 3.16^1 + 10.16^0 = 58$$

d)
$$1101,110_{(2} = 2^3 + 2^2 + 2^0 + 2^{-1} + 2^{-2} = 13,75$$

e)
$$23,42_{(8} = 2.8 + 3 + 4.8^{-1} + 2.8^{-2} = 19,53$$

Problema 1-03 Representación de magnitudes

a) 52 en b	inario:						
128	64	32	16	8	4	2	1
		1	1	0	1	0	0
b) 38 en h	exadecima	al:					
	1	6				1	
	2	2				6	_
c) 23 en o	ctal:						
51	2	6	54		8		1
					2		7

d) 41,5 en	binario:							
0,5·2 = 1,0	⇒ 41,5 = 1	101001,1 ₍₂						
128	64	32	16	8	4	2	1	
		1	0	1	0	0	1	
e) 12,75 en		= 14,6 ₍₈						
512	2	64	4		8		1	
					1		4	

16	1
7	D

Problema 1-04 Magnitud 6

a) Código Gray asumiendo que se representa el rango [0, 15]:

GRAY 4 BITS	SIGNIFICADO
0000	0
0001	1
0011	2
0010	3
0110	4
0111	5
0101	6
0100	7
1100	8
1101	9
1111	10
1110	11
1010	12
1011	13
1001	14
1000	15

b) Código BCD:

BCD	SIGNIFICADO
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9

c) Código 7 segmentos:

DP	А	В	С	D	E	F	G	
0	1	0	1	1	1	1	1	

Problema 1-05 Dígitos Gray

Base 10	Base 2	Gray (2 bits)	Gray (3 bits)	Gray (4 bits)	Gray (4 bits) + bit paridad par
0	0	00	000	0000	00000
1	1	01	001	0001	10001
2	10	11	011	0011	00011
3	11	10	010	0010	10010
4	100		110	0110	00110
5	101		111	0111	10111
6	110		101	0101	00101
7	111		100	0100	10100
8	1000			1100	01100
9	1001			1101	11101
10	1010			1111	01111
11	1011			1110	11110
12	1100			1010	01010
13	1101			1011	11011
14	1110			1001	01001
15	1111			1000	11000

Problema 1-06 Interpretación de cadena

```
Interprete el siguiente dato de 8 bits 10010111, según los
siguientes códigos binarios:
a) Binario natural:
   10010111 = 151
b) S-M:
   1.00101111 = -23
c) Ca2
   10010111
   01101001 = 105
   10010111 = -105
d) BCD
   1001.0111 = 97
```

Problema 1-07 Direcciones IP

Problema 1-08 Simplificación de funciones

```
a) f = (bc' + a'd)(ab' + cd') [f = 0]
b) f = b'd + a'bc' + acd + a'bc
e) f = [(ab')a][(ab)'b][f = 0]
d) f = ab' + c'd'
e) f = (ab + ac)ab
f) f = xy(v + w)[(x + y)v]
g) f = x + yz
h) f = (a+b+c)(d+a)+bc+ac
```

```
b)
f = b'd + a'bc' + acd + a'bc =
= b'd + a'b(c' + c) + acd = b'd + a'b + acd
<u>abcd f</u> <u>abcd f</u>
                                  cd
0000 0 1000 0
                                  00 01 11 10
0001 1 1001 1
                              ab
                                   0
       1010 0
0010 0
                              00
                                  1
0011 1 1011 1
                              01
                                   0
                                     0
0100 1 1100 0
                              11
                              10 0
0101 1 1101 0
0110 1 1110 0
0111 1 1111 1
```


Problema 1-09 Conjuntos de mintérminos y maxtérminos

 $F1 = \Pi(1, 2, 3, 5, 6, 7, 13, 14, 15)$

 $F2 = \Sigma(0, 4, 8, 9, 10, 14, 15)$

Pos	F1	F2	F1+F2	F1·F2	F1⊕F2	F1⊙F2
0	1	1	1	1	0	1
1	0	0	0	0	0	1
2	0	0	0	0	0	1
3	0	0	0	0	0	1
4	1	1	1	1	0	1
5	0	0	0	0	0	1
6	0	0	0	0	0	1
7	0	0	0	0	0	1
8	1	1	1	1	0	1
9	1	1	1	1	0	1
10	1	1	1	1	0	1
11	1	0	1	0	1	0
12	1	0	1	0	1	0
13	0	0	0	0	0	1
14	0	1	1	0	1	0
15	0	1	1	0	1	0

F1+F2 =
$$\Sigma(0, 4, 8, 9, 10, 11, 12, 14, 15)$$

F1·F2 = $\Sigma(0, 4, 8, 9, 10)$
F1⊕F2 = $\Sigma(11, 12, 14, 15)$
F1⊙F2 = $\Sigma(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13)$

F1+F2 =
$$\Sigma$$
(0, 4, 8, 9, 10, 11, 12, 14, 15)
F1+F2 = Π (1, 2, 3, 5, 6, 7, 13)

F1·F2 =
$$\Sigma$$
(0, 4, 8, 9, 10)
F1·F2 = Π (1, 2, 3, 5, 6, 7, 11, 12, 13, 14, 15)

F1
$$\oplus$$
F2 = \sum (11, 12, 14, 15)
F1 \oplus F2 = \prod (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13)

F1
$$\circ$$
F2 = Σ (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13)
F1 \circ F2 = Π (11, 12, 14, 15)

Problema 1-10 Obtención de mapas

Problema 1-11 Suma de mintérminos y producto de maxtérminos

a) F(A, B, C) = A + B' + C

Pos	ABC	F
0	000	1
1	001	1
2	010	0
3	011	1
4	100	1
5	101	1
6	110	1
7	111	1

$$F = \sum (0, 1, 3, 4, 5, 6, 7)$$
 $F = \prod (2)$

b)
$$F(A, B, C) = [(A + B)'(B + C)]'$$

$$F(A, B, C) = [(A + B)'(B + C)]' = [(A'B'(B + C)]' =$$

= $[A'B'B + A'B'C]' = [A'B'C]' = A + B + C'$

Pos	ABC	F
0	000	1
1	001	0
2	010	1
3	011	1
4	100	1
5	101	1
6	110	1
7	111	1

$$F = \Sigma(0, 2, 3, 4, 5, 6, 7)$$
 $F = \Pi(1)$

c)
$$F(A, B, C, D) = (AB + BCD')' + A'CD'$$

 $F(A, B, C) = (AB + BCD')' + A'CD' =$
 $= (AB)'(BCD')' + A'CD' = (A' + B')(B' + C' + D) + A'CD' =$
 $= A'B' + A'C' + A'D + B' + B'C' + B'D + A'CD' =$
 $= A'B' + A'C' + A'D + B' + B'C' + B'D + A'CD' =$
 $= B' + A'(C' + D + CD') = B' + A'(C' + D + C) = A' + B'$

Pos	ABCD	F	Pos	ABCD	F
0	0000	1	8	1000	1
1	0001	1	9	1001	1
2	0010	1	10	1010	1
3	0011	1	11	1011	1
4	0100	1	12	1100	0
5	0101	1	13	1101	0
6	0110	1	14	1110	0
7	0111	1	15	1111	0

$$F = \sum (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)$$
 $F = \prod (12, 13, 14, 15)$

d)
$$F(A, B, C, D) = (A' + C)D + B'D$$

$$F(A, B, C, D) = (A' + C)D + B'D =$$

= A'D + CD + B'D = (D)(A' + B' + C)

Pos	ABCD	F	Pos	ABCD	F
0	0000	0	8	1000	0
1	0001	1	9	1001	1
2	0010	0	10	1010	0
3	0011	1	11	1011	1
4	0100	0	12	1100	0
5	0101	1	13	1101	0
6	0110	0	14	1110	0
7	0111	1	15	1111	1

$$F = \Sigma(1, 3, 5, 7, 9, 11, 15)$$
 $F = \Pi(0, 2, 4, 6, 8, 10, 12, 13, 14)$

e)
$$F(X, Y, Z) = (XY + Z)'(Y + XZ)$$

$$F(X, Y, Z) = (XY + Z)'(Y + XZ) = (XY)'Z'(Y + XZ) =$$

$$= (X' + Y')(Z'Y + Z'XZ) = (X' + Y')Z'Y = X'Z'Y + Y'Z'Y = X'YZ'$$

Pos	XYZ	F
0	000	0
1	001	0
2	010	0
3	011	0
4	100	0
5	101	1
6	110	0
7	111	0

$$F = \Sigma(5)$$
 $F = \Pi(0, 1, 2, 3, 4, 6, 7)$

f)
$$F(A, B, C) = (AB'C + ABC')'$$

$$F(A, B, C) = (AB'C + ABC')' = [A(B'C + BC')]' = [A(B \oplus C)]' =$$

= A' + (B \circ C) = A' + BC + B'C'

Pos	ABC	F
0	000	1
1	001	1
2	010	1
3	011	1
4	100	1
5	101	0
6	110	0
7	111	1

$$F = \Sigma(0, 1, 2, 3, 4, 7)$$
 $F = \Pi(5, 6)$

g)
$$F(A, B, C) = (AB' + C(A' + B))(B + C)$$

$$F(A, B, C) = (AB' + C(A' + B))(B + C) = (AB' + CA' + CB)(B + C) =$$

$$= AB'B + AB'C + CA'B + CA'C + CB + CB =$$

$$= AB'B + AB'C + CA'B + CA'C + CB + CB = AB'C + A'C + BC =$$

$$= C(AB' + A' + B) = C(A + A' + B) = C$$

Pos	ABC	F
0	000	0
1	001	1
2	010	0
3	011	1
4	100	0
5	101	1
6	110	0
7	111	1

$$F = \Sigma(1, 3, 5, 7)$$
 $F = \Pi(0, 2, 4, 6)$