Departamento de Análisis Matemático, Universidad de Granada

Variable Compleja I, Grado en Ingeniería Informática y Matemáticas

Convcatoria de junio

Ejercicio 1. (**2 puntos**) Sean $f,g \in \mathcal{H}\big(D(0,1)\big)$ con $f(z) \neq 0$ para cada $z \in D(0,1)$. Supongamos que para todo $n \in \mathbb{N}$ verificando $n \geq 2$ se cumple que

$$f(1/n)g(1/n) - f'(1/n) = 0.$$

¿Qué se puede afirmar sobre f y g?

Ejercicio 2. (2.5 puntos) Integrando la función $z \longmapsto \frac{\log(z+i)}{1+z^2}$ sobre un camino cerrado que recorra la frontera del conjunto $\{z \in \mathbb{C} : |z| < R, \ \mathrm{Im} \, z > 0\}$, con $R \in \mathbb{R}$ y R > 1, evaluar la integral

$$\int_{-\infty}^{+\infty} \frac{\log(1+x^2)}{1+x^2} dx.$$

Ejercicio 3. (2.5 puntos) Sea $f \in \mathcal{H}\big(D(0,1)\big)$ no constante, continua en $\overline{D}(0,1)$ y verificando que |f(z)| = 1 para cada $z \in \mathbb{T}$.

- a) Probar que f tiene un numero finito (no nulo) de ceros en D(0,1).
- b) Probar que $f(\overline{D}(0,1)) = \overline{D}(0,1)$.

Ejercicio 4. (3 puntos) Para cada $n \in \mathbb{N}$ tomamos $a_n = \frac{1}{n}$ y definimos la función $f_n \in \mathcal{H}(\mathbb{C} \setminus \{a_n\})$ por $f_n(z) = \frac{1}{z - a_n}$.

- a) Si $K = \{a_n : n \in \mathbb{N}\} \cup \{0\}$, probar que la serie de funciones $\sum_{n \ge 1} \frac{f_n(z)}{n^n}$ converge absolutamente en todo punto del dominio $\Omega = \mathbb{C} \setminus K$ y uniformemente en cada subconjunto compacto contenido en Ω .
- b) Deducir que la función dada por $f(z) = \sum_{n=1}^{+\infty} \frac{f_n(z)}{n^n}$ es holomorfa en Ω y estudiar sus singularidades aisladas.
- c) Probar que para cada $\delta > 0$ el conjunto $f(D(0,\delta) \setminus K)$ es denso en \mathbb{C} .

Granada, 14 de junio de 2017