고급의학통계 - 동등성

동등성

시립대학교 통계학과 2021년 4월 23일 우월성, 동등성, 비열등성

생물학적 동등성

우월성, 동등성, 비열등성 ________

임상실험의 목적: 우월성, 동등성, 비열등성

- 우월성 (superiority)
 - T is superior to S
 - Treatment T has more therapeutic effect than S.
- 동등성(equivalence)
 - T is equivalent to S
 - Two treatments T and S have equal therapeutic effect.
- 비열등성(noninferiority)
 - T is noninferior to S
 - Treatment T is not inferior to S (T is as effective as S)

임상실험의 목적: 우월성, 동등성, 비열등성

Table 1. Hypotheses Associated with the Different Types of Studies when Comparing a New Therapy Against a Current Therapy with Respect to Efficacy

Type of study	Null hypotheses	Research hypothesis
Traditional comparative	There is no difference between the therapies	There is a difference between the therapies
Equivalence	The therapies are not equivalent	The new therapy is equivalent to current therapy
Noninferiority	The new therapy is inferior to the current therapy	The new therapy is not inferior to the current therapy

출처: Walker and Nowacki (2011)

통계적 가설

평균이 큰 것이 좋다고 가정하자.

■ 우월성 연구의 가설

$$H_0: \mu_T = \mu_S$$
 vs. $H_1: \mu_T \neq \mu_S$

- 사실상 우월성 실험의 대립 가설은 $H_1: \mu_T > \mu_S$ 이다.
- 우월성에 대한 가설을 아래와 같이 세울수도 있지만 거의 사용하지 않는다.

$$H_0: \mu_T \leq \mu_S + \delta$$
 vs. $H_1: \mu_T > \mu_S + \delta$

• δ는 margin 이라고 부르며 의학적(임상적)으로 우월한 차이를 보이는 치료 효과의 차이를 말한다.

6

통계적 가설

평균이 큰 것이 좋다고 가정하자.

■ 동등성(equivalence)

$$H_0: |\mu_T - \mu_S| \ge \delta$$
 vs. $H_1: |\mu_T - \mu_S| < \delta$

■ 비열등성(noninferiority)

$$H_0: \mu_T \le \mu_S - \delta$$
 vs. $H_1: \mu_T > \mu_S - \delta$

7

통계적 검정 절차 - 우월성

■ 우월성 연구의 가설

$$H_0: \mu_T = \mu_S$$
 vs. $H_1: \mu_T \neq \mu_S$

- 일반적인 t-검정 또는 z-검정을 사용
- 귀무가설의 기각 조건

$$\frac{\hat{\mu}_T - \hat{\mu}_S}{se(\hat{\mu}_T - \hat{\mu}_S)} > c_{\alpha/2}$$

또는

$$(\hat{\mu}_T - \hat{\mu}_S) - c_{lpha/2} se(\hat{\mu}_T - \hat{\mu}_S) > 0$$

통계적 검정 절차 - 우월성

Efficacy is measured by success rates, where higher is better.

출처: Walker and Nowacki (2011)

통계적 검정 절차 - 비열등성

■ 비열등성의 가설

$$H_0: H_0: \mu_T \le \mu_S - \delta$$
 vs. $H_1: \mu_T > \mu_S - \delta$ (1)

- 일반적인 t-검정 또는 z-검정을 사용
- 귀무가설의 기각 조건

$$(\hat{\mu}_{\mathcal{T}} - \hat{\mu}_{\mathcal{S}}) - c_{\alpha} \operatorname{se}(\hat{\mu}_{\mathcal{T}} - \hat{\mu}_{\mathcal{S}}) > -\delta$$

통계적 검정 절차 - 비열등성

출처: Walker and Nowacki (2011)

통계적 검정 절차 - 동등성

-동등성 가설

$$H_0: |\mu_T - \mu_S| \ge \delta$$
 vs. $H_1: |\mu_T - \mu_S| < \delta$ (2)

- 일반적인 t-검정 또는 z-검정이 아닌 the two one-sided test 를 사용
- 가설 (2)의 귀무가설은 다음 두 개의 단측 귀무 가설의 합집합니다.

$$H_{01}: \mu_T - \mu_S \ge \delta \qquad H_{02}: \mu_T - \mu_S \le -\delta$$
 (3)

따라서 식 (3)에 있는 두 개의 가설이 모두 기각되면 식 (2)에 있는 동등성 가설을 기각할 수 있다.

통계적 검정 절차 - 동등성

 the two one-sided test는 다음과 같은 두 조건이 만족되면 귀무가설을 기각한다.

$$\frac{\hat{\mu}_T - \hat{\mu}_S - \delta}{se(\hat{\mu}_T - \hat{\mu}_S)} < -c_\alpha \quad \text{and} \quad \frac{\hat{\mu}_T - \hat{\mu}_S + \delta}{se(\hat{\mu}_T - \hat{\mu}_S)} > c_\alpha$$

위의 귀무가설 기각 조건은 다음과 동일하다. 즉 $100(1-2\alpha)\%$ 신뢰구간이 $(-\delta,\delta)$ 안에 존재하면 귀무가설을 기각한다.

$$-\delta < (\hat{\mu}_T - \hat{\mu}_S) - c_\alpha \operatorname{se}(\hat{\mu}_T - \hat{\mu}_S) < (\hat{\mu}_T - \hat{\mu}_S) + c_\alpha \operatorname{se}(\hat{\mu}_T - \hat{\mu}_S) < \delta$$

통계적 검정 절차 - 동등성

동등성 검정의 Size 와 유의수준

■ 100(1 – 2α)% 신뢰구간을 이용하는 경우 검정의 Size 와 유의수준은 ? (Kang (2008) 참조)

생물학적 동등성

생체이용률(Bioavailability)

- the rate and extent to which the active ingredient is absorbed from a drug product and becomes available at the site of action
- 주성분 또는 그 활성대사체가 제제로부터 전신순환혈로 흡수되는 속도와 양의 비율
- Pharmacokinetic (PK) measures (평가항목) of bioavailability
 - *AUC_t*: Area under the blood or plasma concentration-time curve; 일정시간까지 혈중농도-시간곡선하면적
 - C_{max}: Maximum Concentration; 최고혈중농도
 - T_{max}: Time to Maximum Concentration; 최고혈중농도 도달시간

약품 주성분의 생체이용률의 변화

약품 주성분의 생체이용률의 평균적 변화

생물학적동등성의 정의: FDA 과 KFDA

Bioequivalence by FDA

absence of a significant difference in Bioavailability between two formulations.... when administered at the same molar dose under similar conditions in an appropriately designed study

• in vivo: Bioequivalence

in vitro: Bioequivalence

KFDA

의약품동등성시험이란 그 주성분 · 함량 및 제형이 동일한 두 제제에 대한 의약품동등성을 입증하기 위해 실시하는 생물학적동등성시험, 비교용출시험, 비교붕해등 기타시험의 생체내·외 시험을 말한다.

생물학적동등성 실험의 설계

- 생체이용률(bioavailibility)은 개인간에 변동이 크다
- 개인효과(individual effect)를 제거하기 위한 쌍비교 t-검정 (paired t-test)의 개념을 도입
- 실험자가 두 개의 처리를 모두 받는다.
- 생동성실험은 주로 교차시험(crossover design)을 이용한다.
- 제재의 반감기가 긴 경우 등 특수한 경우는 독립실험(Parallel study)도 가능하다.

2x2 교차시

2 x 2 crossover design

2x4 교차시험

2 x 4 crossover design

교차실험에 대한 통계적 모형

- 보통 10-20명의 실험 대상자
- 각 실험 대상자가 2개(3개 또는 4개)의 반응값(PK responses) 을 가진다.
- 각 실험대상자의 반응값은 독립이 아니다 (correlated response; repeated measurements)
- 실험대상자 간의 변이가 크다 (large between-subject variation)
- 시험약과 대조약간의 (로그)반응값의 평균의 차이가 주 검토대상이다.
- 정규분포를 가정한 선형혼합모형(linear mixed model)

평균적 생물학적동등성에 대한 가설

- The absence of a significant difference (중대한 차이가 없다) in two population means between two formulations .
- = 시험약(T)과 대조약(R)간의 반응값의 평균의 차이: $\mu_T \mu_R$:
 - 보통 반응변수(PK response)에 로그를 취한 뒤 통계분석
 - $\delta = \mu_T \mu_R$: 시험약(T)과 대조약(R)간의 로그 반응값의 평균의 차이

평균적 생물학적동등성에 대한 가설

■ 평균적 생물학적동등성에 대한 가설

$$H_0: \delta \leq \delta_L$$
 or $\delta \geq \delta_U$ vs. $H_1: \delta_L < \delta < \delta_U$

■ 동등성 한계 (bioequivalence limit)

$$\delta_L = -0.223 = log(0.8)$$
 and $\delta_U = 0.223 = log(1.25)$

■ 평균적 생물학적동등성에 대한 가설(로그변환 전)

$$H_1: 0.8 < \frac{\mu_T'}{\mu_R'} < 1.25$$

평균적 생물학적동등성에 대한 검정법

■ 평균적 생물학적동등성을 어떤 통계적 방법으로 검정할 것인가?

$$H_0: \delta \leq \delta_L$$
 or $\delta \geq \delta_U$ vs. $H_1: \delta_L < \delta < \delta_U$

- Historical development of statistical tests for ABE
 - Westlake (1976), Hsu (1984), Bofinger (1985, 1992),
 Schuirmann (1987), Liu(1990)
 - Berger and Hsu (1996), Brown, Hwang, and Munk (1997),
 Perlman and Wu (1999), Welleck (2003), Romano (2005)
 - FDA guidance: 1992, 1997, 1999, 2000 and some drafts

평균적 생물학적동등성에 대한 검정법}

가설

$$H_0: |\mu_T - \mu_R| \ge \delta$$
 vs. $H_1: |\mu_T - \mu_R| < \delta$

- 신뢰구간을 이용한 방법
- 2개의 단측검정을 결합한 방법 (Two ones-sided tests; TOST)

$$H_{01}: \mu_T - \mu_R < -\delta \text{ and } H_{02}: \mu_T - \mu_R > \delta$$

신뢰구간을 이용한 평균적 생물학적동등성 검정

■ 가설

$$H_0: |\mu_T - \mu_R| \ge \delta$$
 vs. $H_1: |\mu_T - \mu_R| < \delta$

- $\mu_T \mu_R$ 에 대한 신뢰구간 C(Y) 를 구한다.
- 신뢰구간이 동등성 한계안에 포함되면 평균적 생물학적동등성 선언!

$$C(y) \subset (-\delta, \delta)$$

2개의 단측검정을 이용한 방법

- 정규분포 가정
- 각 처리에 대한 평균 \bar{y}_T 과 \bar{y}_R 는 μ_T 과 μ_R 의 추정량
- $SE = \bar{y}_T \bar{y}_R$ 의 표준 오차(standard error)라고 하자
- 다음을 만족하면 귀무가설 H₀를 기각 (생물학적 동등성을 선언)

$$rac{ar{y}_T - ar{y}_R + \delta}{SE} > t_lpha \quad ext{and} \quad rac{ar{y}_T - ar{y}_R - \delta}{SE} < -t_lpha$$

위의 귀무가설 기각조건은 아래와 동일한다 (90% 신뢰구간이 동등성 한계안에 있다)

$$[(\bar{y}_T - \bar{y}_R - t_\alpha(SE), \ (\bar{y}_T - \bar{y}_R + t_\alpha(SE))] \subseteq (-\delta, \ \delta)$$

2개의 단측검정을 이용한 방법: 이론}

- TOST is a special case of intersection-union test (Berger and Hsu, 1996)
- TOST is level 2α test, but its size is actually α .

size of test =
$$\sup_{H_0} P(\text{ test rejects } H_0)$$

- Improved tests are proposed by Berger and Hsu (1996), Brown, Hwang, and Munk (1997), Perlman and Wu (1999), Welleck (2003), Romano (2005)
- But, still TOST is widely used because of its validity and simplicity

최적기각역: Brown et al (1997)

References

References

Kang, Seung-Ho. 2008. "동등성 시험을 신뢰구간을 사용하여 검정하는 경우 왜 신뢰도 90." *응용통계연구* 21 (5): 867--73.

Walker, Esteban, and Amy S Nowacki. 2011. "Understanding Equivalence and Noninferiority Testing." *Journal of General Internal Medicine* 26 (2): 192–96.