I. Rappels

1) Notion de fonction

Définition

Définir une fonction f sur un intervalle [a;b[, c'est fournir une **relation** qui à chaque valeur x de l'intervalle [a;b[associe un nombre appelé **image** et noté f(x). On dit que x a pour **antécédent** le nombre x.

2) Variations d'une fonction

Définitions

- Si une fonction f est **croissante** sur un intervalle I alors les images sont rangées dans le même ordre que leur antécédent; c'est à dire que f(x) augmente quand x augmente.
- Si une fonction f est **décroissante** sur un intervalle I alors les images sont rangées dans l'ordre inverse de leur antécédent; c'est à dire que f(x) diminue quand x augmente.

II. Fonctions linéaires, fonctions affines

1) Définition

Définition

a et b sont des nombres quelconques; la fonction qui à tout nombre x, associe le nombre ax + b, est une fonction affine.

Cas particuliers:

- Si b = 0, la fonction est linéaire.
- Si a = 0, la fonction est constante.

Exemples

On considère les fonctions f, g, h et i:

•
$$f(x) = 2x$$

•
$$h(x) = 3x - 4$$

•
$$g(x) = -x + 2$$

•
$$i(x) = 5$$

- f est une fonction linéaire (On a a=2 et b=0).
- q est une fonction affine (On a a=-1 et b=2).
- h est une fonction affine (On a a=3 et b=-4).
- i est une fonction constante (On a a=0 et b=5).

2) Représentation graphique

Propriétés

- La représentation graphique d'une fonction affine f(x) = ax + b et une droite. On dit que y = ax + b est l'équation de la droite. a est le coefficient directeur (ou la pente) de la droite. b est l'ordonnée à l'origine.
- La droite passe par le point de coordonnées (0; b), si la fonction est linéaire elle passe par l'origine du repère.

Exemple

On considère la fonction affine f(x) = 2x + 4. Elle ne passe pas par l'origine du repère, elle n'est pas linéaire. Elle passe par le point de coordonnées (0;4).

3) Variations

Propriétés

- Si a > 0, alors la fonction f est strictement croissante.
- Si a < 0, alors la fonction f est strictement décroissante.

a > 0

x	$-\infty$	$\frac{-b}{}$	$+\infty$
f(x)	_	$ \begin{array}{c} a \\ 0 \end{array} $	+

a < 0

x	$-\infty$	$\frac{-b}{-}$	$+\infty$
f(x)	+	$ \begin{array}{c} a \\ 0 \end{array} $	

4) Détermination d'une équation de droite

Á retenir

On détermine l'équation (y = ax + b) d'une droite à partir de deux points de cette droite $A(x_A; y_A)$ et $B(x_B; y_B)$.

Le coefficient directeur a, est obtenu par le calcul suivant :

$$a = \frac{y_B - x_A}{x_B - x_A}$$

L'ordonnée à l'origine b est obtenue en remplaçant x et y dans l'équation par les coordonnées d'un des points.

Exemple

La droite Δ passe par les points de coordonnées (2;5) et (4;9), on a :

$$a = \frac{9-5}{4-2}$$
$$a = \frac{4}{2}$$
$$a = 2$$

Donc l'équation de la droite Δ est de la forme y=2x+b. Pour trouver b on remplace x et y par les coordonnées de A, on a :

$$y = 2x + b$$

$$5 = 2 \times 2 + b$$

$$5 = 4 + b$$

$$1 = b$$

4

Donc Δ est la droite d'équation y = 2x + 1.

III. Fonction carré

$\acute{\mathbf{A}}$ retenir

La fonction carré est définie par $x \mapsto x^2$.

Elle est:

- définie sur $]-\infty;+\infty[.$
- décroissante sur $]-\infty;0]$ et croissante sur $[0;+\infty[$.

Courbe représentative de la fonction $f(x)=x^2$ et tableau de variations associé :

x	$-\infty$	0	$+\infty$
x^2	+	0	+

IV. Fonction inverse

Á retenir

La fonction inverse est définie par $x\mapsto \frac{1}{x}$. Elle est :

- définie sur $]-\infty;0[\cup]0;+\infty[.$
- décroissante sur $]-\infty;0[$ et sur $]0;+\infty[$.

Courbe représentative de la fonction $f(x) = \frac{1}{x}$ et tableau de variations associé :

x	$-\infty$	0	$+\infty$
1			1 \infty
	_		+
~			'

x	$-\infty$	0	$+\infty$
$\frac{1}{x}$			*

V. Fonction cube

Á retenir

La fonction cube est définie par $x \mapsto x^3$. Elle est définie et croissante sur l'intervalle $]-\infty; +\infty[$.

Courbe représentative de la fonction $f(x) = x^3$ et tableau de variations associé :

x	$-\infty$	0	$+\infty$
x^3	_	0	+

VI. Fonction racine

Á retenir

La fonction racine carrée est définie par $x \mapsto \sqrt{x}$. Elle est définie et croissante sur $[0; +\infty[$.

Courbe représentative de la fonction $f(x) = \sqrt{x}$ et tableau de variations associé :

$$\begin{array}{c|cc} x & 0 & +\infty \\ \hline \sqrt{x} & + \end{array}$$

