

Vishay Siliconix

N-Channel 100 V (D-S) MOSFET

DESCRIPTION

The attached SPICE model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the - $55\,^{\circ}$ C to 125 $^{\circ}$ C temperature ranges under the pulsed 0 V to 10 V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS
- Apply for both Linear and Switching Application
- Accurate over the 55 °C to + 125 °C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

SUBCIRCUIT MODEL SCHEMATIC

Note

This document is intended as a SPICE modeling guideline and does not constitute a commercial product datasheet. Designers should refer
to the appropriate datasheet of the same number for guaranteed specification limits.

SPICE Device Model Si4102DY

Vishay Siliconix

SPECIFICATIONS (T _J = 25 °C, unless otherwise noted)					
PARAMETER	SYMBOL	TEST CONDITIONS	SIMULATED DATA	MEASURED DATA	UNIT
Static					
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu A$	3		V
Drain-Source On-State Resistance ^a	R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D = 2.7 \text{ A}$	0.146	0.130	Ω
		$V_{GS} = 6 \text{ V}, I_D = 2.5 \text{ A}$	0.154	0.145	
Forward Transconductance ^a	9 _{fs}	V _{DS} = 10 V, I _D = 2.7 A	8	7	S
Diode Forward Voltage ^a	V _{SD}	I _S = 2.1 A	0.82	0.80	V
Dynamic ^b					
Input Capacitance	C _{iss}	V _{DS} = 50 V, V _{GS} = 0 V, f = 1 MHz	385	370	pF
Output Capacitance	C _{oss}		39	40	
Reverse Transfer Capacitance	C _{rss}		10	20	
Total Gate Charge	0	$V_{DS} = 50 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 2.7 \text{ A}$	6.3	7.1	nC
	Q_g	$V_{DS} = 50 \text{ V}, V_{GS} = 6 \text{ V}, I_D = 2.7 \text{ A}$	4.1	4.6	
Gate-Source Charge	Q _{gs}		1.7	1.7	
Gate-Drain Charge	Q_{gd}		1.8	2	

Notes

- a. Pulse test; pulse width $\leq 300~\mu s,~duty~cycle \leq 2~\%.$
- b. Guaranteed by design, not subject to production testing.

Vishay Siliconix

COMPARISON OF MODEL WITH MEASURED DATA ($T_J = 25$ °C, unless otherwise noted)

Note

• Dots and squares represent measured data.