Soit K un corps.

Série supplémentaire de questions "vrai-faux", 8 mai 2014

Vrai Faux Soit $A \in M_n(K)$. Si $f \in K[t]$ de degré n est un polynôme annulateur de A, alors f(t) est un multiple de $c_A(t)$. (Rappel : $c_A(t)$ est le polynôme caractéristique de A.) Toute matrice symétrique dans $M_n(\mathbb{R})$ est orthogonale. Toute matrice orthogonale dans $M_n(\mathbb{R})$ est diagonalisable. Toute matrice unitaire de $M_n(\mathbb{C})$ est inversible. Soit $\beta: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ une forme bilinéaire symétrique et soit B la matrice de β par rapport à la base canonique de \mathbb{R}^n . Alors β est définie positive si et seulement si $\det(B) \neq 0$. Soit $B = J_7(\lambda)$ un bloc de Jordan de taille 7 associé à une valeur propre λ . Alors $\dim(\operatorname{Ker}(B - \lambda \cdot I)^2) = 2.$ Soit $J = J_n(\lambda)$ un bloc de Jordan de taille n associé à une valeur propre λ . Alors J est diagonalisable si et seulement si n=1. Soit $\phi: M_{2\times 3}(K) \to M_{2\times 3}(K)$ une transformation linéaire. Supposons que $c_{\phi}(t) = t^4(t-1)(t-2)$. Si dim(ker(ϕ)) = 4 alors ϕ est diagonalisable. Si $A \in M_4(\mathbb{C})$ est telle que le polynôme $t^2(t^2+1)$ est un polynôme annulateur, alors $\operatorname{rg}(A) < 4$. Tout espace vectoriel de dimension finie, muni d'un produit scalaire, possède une base orthonormale par rapport à ce produit scalaire. Si $\psi \in \mathcal{L}(\mathbb{R}^4, \mathbb{R}^4)$ est telle que $\mathbb{R}^4 = \ker(\psi - \mathrm{id})^2 \oplus \ker(\psi + \mathrm{id})^2$, alors le polynôme minimal de ψ est $(t-1)^2(t+1)^2$. Si $A, B \in M_n(K)$ sont telles que $c_A(t) = c_B(t)$ et $m_A(t) = m_B(t)$, alors A et B sont semblables. Si $A, B \in M_n(K)$ sont telles que $c_A(t) = c_B(t)$ et $m_A(t) = m_B(t)$, et $\dim(\ker(A - \lambda \cdot I)) =$ $\dim(\ker(B-\lambda\cdot I))$ pour toute racine λ de $c_A(t)$, alors A et B sont semblables. Si β est une forme bilinéaire symétrique non dégénérée sur un K-espace vectoriel V, et W est un sous-espace de V, alors la restriction $\beta:W\times W\to \mathbf{K}$ est une forme bilinéaire symétrique non dégénérée sur W. Si β est une forme bilinéaire symétrique non dégénérée sur un K-espace vectoriel V, et W est un sous-espace de V tel que $W \cap W^{\perp} = \{0\}$, alors la restriction $\beta: W \times W \to V$ est une forme bilinéaire symétrique non dégénérée sur W. Si β est un produit scalaire sur un \mathbb{R} -espace vectoriel V, et W est un sous-espace de V, alors la restriction $\beta: W \times W \to V$ est une forme bilinéaire symétrique non dégénérée sur W. Si β est un produit scalaire sur un \mathbb{R} -espace vectoriel V, et W est un sous-espace de V, alors la restriction $\beta: W \times W \to V$ est un produit scalaire sur W.

L'ensemble $O_n(\mathbb{R})$ de toutes les matrices orthogonales de $M_n(\mathbb{R})$ est un sous-groupe de $GL_n(\mathbb{C})$.
Toute transformation linéaire normale sur un espace euclidien ou hermitien est diagonalisable.
Toute transformation linéaire auto-adjointe sur un espace euclidien ou hermitien est diagonalisable.
L'application identité et l'application nulle (sur un espace euclidien ou hermitien) sont auto-adjointes.
Toute transformation unitaire sur un espace hermitien est normale.
Soit V un espace euclidien ou hermitien sur le corps $K=\mathbb{R}$, respectivement $K=\mathbb{C}$, et soit W un sous-espace de V . Pour $v\in V$, soit $\operatorname{proj}_W(v)$ la projection orthogonale de v sur W . Alors il existe $\lambda\in K$ tel que $v+\lambda\cdot\operatorname{proj}_W(v)\in W^\perp$.
Soient $A, B \in M_n(K)$ congruentes et supposons que A soit inversible. Alors B est inversible.
Soit $A \in M_n(K)$ telle que $t^{n-1}(t + \lambda)$ soit un polynôme annulateur pour un certain $\lambda \in K$, $\lambda \neq 0$. Alors A n'est pas inversible.
Soit V un espace euclidien ou hermitien et soit E une base de V . Pour $\phi \in \mathcal{L}(V, V)$, avec adjointe ϕ^* , alors $(\phi^*)_E^E = \overline{((\phi)_E^E)^t}$.