1 Instructions

- Complete all the five problems in Section 2 and <u>only two problems of your choice</u> from the problems listed in Section 3.
- You may discuss the problems with peers. You must, however, write up your own solutions.
- Show work and be rigorous within reason.
- List all the references you might use.
- The exam is due by 7:00 p.m. on Friday December 11, 2020.

Fall 2020

- If you need hints, clarifications, etc..., do not hesitate to come and talk to me.
- Good Luck!

2 Complete all the five problems in this section

Problem 1 (3 points) Let f and g be real-valued functions on [0,1] with the property that for every $x \in [0,1]$, g is differentiable at x and $g'(x) = (f(x))^2$.

- (1-1) Prove that $g \in BV([0,1])$ and is an increasing function. Conclude that $f \in L_m^1([0,1])$ where m is the Lebesgue measure restricted to [0,1].
- (1-2) Suppose, in addition, that f is bounded on [0,1]. Prove that

$$2\int_0^1 gf^2 dm = g^2(1) - g^2(0).$$

Problem 2 (3 points) Denote the Lebesgue measure restricted to the interval [0,1] by m. Let $\{a_n\}_{n\geq 1}$ be a sequence of real numbers such that $\sum_{n\geq 1} \sqrt{n}a_n^2 < \infty$. Let $\{f_n\}_{n\geq 1}$ be an orthonormal basis for $L_m^2([0,1])$. Define $S_n = \sum_{k=1}^n a_k f_k$ and $S = \sum_{k=1}^\infty a_k f_k$.

Prove the following statements:

- $(2\text{-}1)\ S\in L^2_m([0,1]).$
- (2-2) $\sum_{k=1}^{\infty} a_k f_k(x)$ converges almost everywhere on [0, 1].
- $(2-3) \sum_{k>1} ||S S_{k^2}||_2^2 < \infty.$

Problem 3 (2 points) Assume that $f \in AC[0,1]$ and there is a function g continuous on [0,1] such that f' = g a.e. Show that f is differentiable everywhere on [0,1], and that f'(x) = g(x) for all $x \in [0,1]$. Show by an example that the hypothesis of absolute continuity is necessary.

Problem 4 (3 points) Let m denote the Lebesgue measure on \mathbb{R}^d and let $f \in L^p_m(\mathbb{R}^d)$, where $1 \leq p < \infty$. For $\alpha > 0$, define

$$E_{\alpha}(f) = \{ x \in \mathbb{R}^d : |f(x)| > \alpha \}.$$

- (4-1) Show that E_{α} has finite Lebesgue measure.
- (4-2) Use (a) to show that every $f \in L_m^p(\mathbb{R}^d)$, $1 \leq p \leq 2$, can be decomposed as $f_1 + f_2$ where $f_1 \in L_m^1(\mathbb{R}^d)$ and $f_2 \in L_m^2(\mathbb{R}^d)$.

Problem 5 (3 points)

Let m denote the Lebesgue measure restricted to the interval [0,1], and let $f:[0,1] \to [0,\infty]$ be Lebesgue integrable. Assume that

$$\int_0^1 f^n dm = \int_0^1 f \, dm \quad \text{for} \quad n = 1, 2, 3, \dots$$

Let $E = \{x \in [0,1] : f(x) > 1\}$ and $F = \{x \in [0,1] : 0 < f(x) < 1\}.$

Prove that $m(E \cup F) = 0$ and conclude that f = 0 or f = 1 a.e.

3 Complete two problems of your choice from this group

Problem 6 (3 points)

Let m denote the Lebesgue measure restricted to the interval [0,1]. In each of the following, either explain why the given conditions imply that

$$\lim_{n\to\infty} \int_0^1 f_n \, dm = \int_0^1 f \, dm$$

or provide a counterexample.

- (6-1) f_n is continuous on [0,1] and $f_n \to f$ a.e. on [0,1].
- (6-2) f_n is continuous on [0,1] and $f_n \to f$ uniformly on [0,1].
- (6-3) f_n and f are continuous on [0,1], $f_n(x) \ge f_{n+1}(x) \ge 0$ for all x, and $f_n \to f$ a.e. on [0,1].
- (6-4) f_n is continuous on [0,1], $f_n(x) \leq f_{n+1}(x)$ for all x, and $f_n \to f$ a.e. on [0,1].
- (6-5) f_n is continuous on [0, 1], and $f_n \to f$ in measure.

Problem 7 (3 points)

Suppose that $f \in L^1([0,1],dm)$ where m denotes the Lebesgue measure on [0,1]. Assume that $f \geq 0$ and that $\int_0^1 f dm = 1$. Prove that there exists a measurable set $A \subset [0,1]$, such that

$$m(A) = 1/2$$
 and $\int_A f dm = \frac{1}{2}$.

Problem 8 (3 points) Let $A \subset \mathbb{R}$ be a Lebesgue measurable set with $m(A) < \infty$. Set $\varphi(x) = m(A \cap (x+A))$ for each $x \in \mathbb{R}$. Prove that $\lim_{|x| \to \infty} \varphi(x) = 0$.