Optimization Model for a SCRUM-based Software Development Company

${\bf Truely Most Wanted}$

September 6, 2025

Contents

1	1. Sets (Entities)	2
2	2. Indices	3
3	3. Goals	3
4	4. Conditions	5
5	5. DecisionVariables	7

Introduction

We formulate a mixed-integer optimization model that uses the provided Entities.csv, Relationships.csv, and the generated Goals.csv, Conditions.csv, and DecisionVariables.csv. The model aligns team structure, backlog composition, sprint planning, and delivery outcomes under SCRUM.

1 1. Sets (Entities)

- *P* Projects (Project)
- *T* Teams (Team)
- W Workers (Worker)
- *F* Features (Feature)
- S Skills (Skill)
- R Roles (Role)
- *PO* Product Owners (ProductOwner)
- SM Scrum Masters (ScrumMaster)
- PB Product Backlogs (ProductBacklog)
- SP Sprints (Sprint)
- SPP Sprint Plannings (SprintPlanning)
- DS Daily Scrums (DailyScrum)
- SR Sprint Reviews (SprintReview)
- SRE Sprint Retrospectives (SprintRetrospective)
- SBL Sprint Backlogs (SprintBacklog)
- SG Sprint Goals (SprintGoal)
- E Epics (Epic)
- *US* User Stories (UserStory)
- TK Tasks (Task)
- DEV Development Snapshots (DevelopmentSnapshot)
- BL Blockers (Blocker)
- SH Stakeholders (Stakeholder)
- *VEL* Velocity records (Velocity)
- REP Release Plans (ReleasePlan)
- RM Roadmaps (Roadmap)
- SCB Scrum Boards (ScrumBoard)
- FED Feature Documentations (FeatureDocumentation)

2 2. Indices

- $p \in P$, $t \in T$, $w \in W$, $f \in F$, $r \in R$, $po \in PO$, $sm \in SM$, $pb \in PB$
- $sp \in SP$, $sbl \in SBL$, $sg \in SG$, $e \in E$, $us \in US$, $tk \in TK$, $dev \in DEV$
- $bl \in BL$, $sh \in SH$, $vel \in VEL$, $rep \in REP$, $rm \in RM$, $scb \in SCB$, $fed \in FED$

Parameters (from entity attributes).

- $budget_p$ (Project.budget), $priority_f$ (Feature.priority), $effort_{tk}$ (Task.effort), $storypts_{us}$ (UserStory.story_points)
- $totalEff_{sbl}$ (SprintBacklog.total_effort), $cards_{scb}$ (ScrumBoard.number_of_cards), $entries_{pb}$ (ProductBacklog.number_of_entries)
- $severity_{bl}$ (Blocker.severity), $achv_{sg}$ (SprintGoal.achievement_status), $attend_{sr}$ (SprintReview.attendees_count)
- sat_{sre} (SprintRetrospective.team_satisfaction), $relev_{sh}$ (Stakeholder.relevance_to_feature)
- $maxvel_{vel}$, $minvel_{vel}$ (Velocity.max_velocity / min_velocity), $teamsize_t$ (Team.team_size)

Relationship incidence parameters (from Relationships.csv). Binary constants $A^{(k)}$ capture fixed links when needed; e.g., $A^{R19}_{vel,t} = 1$ if Velocity record vel refers to Team t (R19), otherwise 0. Similar incidence tensors can be defined for R17, R20, R21 if treated as data.

Decision variables (from DecisionVariables.csv). All variables are binary unless stated.

$X_{t,p}$	(DV0) Team t assigned to Project p
$Y_{w,t}$	(DV1) Worker w belongs to Team t
$R_{w,r}$	(DV2) Worker w takes Role r
$A_{po,pb}$	(DV3) PO po manages Backlog pb
$S_{t,sm}$	(DV4) SM sm supports Team t
$B_{f,pb}$	(DV5) Feature f in Backlog pb
$E_{e,pb}$	(DV6) Epic e in Backlog pb
$U_{us,e}$	(DV7) User Story us in Epic e
$V_{tk,us}$	(DV8) Task tk belongs to Story us
$PICK_{us,sbl}$	(DV9) Story us in SprintBacklog sbl
$D_{sbl,sp}$	(DV10) SprintBacklog sbl belongs to Sprint sp
$G_{sp,sg}$	(DV11) Sprint sp pursues Goal sg
$C_{scb,tk}$	(DV12) Task tk shown on ScrumBoard scb
$FDoc_{fed,f}$	(DV13) Documentation fed belongs to Feature f
$Q_{sp,dev}$	(DV14) Sprint sp generates DevSnapshot dev

3 3. Goals

Let weights w_g be taken from Goals.csv (column Weight). The global objective is a weighted sum of the individual goals Z_g , respecting their min/max polarity. For readability we list each goal with its ID, name, and mathematical form.

• G0 maximize_story_points_delivered:

$$Z_0 = \sum_{us \in US} storypts_{us} \cdot \left(\sum_{sbl \in SBL} PICK_{us,sbl}\right), \quad \text{max}$$

• G1 minimize_total_task_effort:

$$Z_1 = \sum_{tk \in TK} effort_{tk} \cdot \left(\sum_{us \in US} V_{tk,us}\right), \quad \min$$

• G2 minimize_blocker_severity:

$$Z_2 = \sum_{bl \in BL} severity_{bl}$$
, min

• G3 maximize_feature_priority:

$$Z_3 = \sum_{f \in F} \sum_{pb \in PB} priority_f B_{f,pb}, \quad \max$$

• G4 minimize_project_budget:

$$Z_4 = \sum_{p \in P} budget_p$$
, min

• G5 maximize_velocity_ceiling:

$$Z_5 = \sum_{vel \in VEL} vel, \quad \max$$

• G6 maximize_stakeholder_relevance:

$$Z_6 = \sum_{sh \in SH} relev_{sh}, \quad \max$$

• G7 maximize_sprint_goal_achievement:

$$Z_7 = \sum_{sp \in SP} \sum_{sq \in SG} achv_{sg} G_{sp,sg}, \quad \max$$

• G8 minimize_scrum_board_wip:

$$Z_8 = \sum_{scb \in SCB} cards_{scb}, \quad \min$$

• G9 minimize_product_backlog_size:

$$Z_9 = \sum_{pb \in PB} entries_{pb}, \quad \min$$

• G10 maximize_sprint_review_engagement:

$$Z_{10} = \sum_{sr \in SR} attend_{sr}, \quad \max$$

• G11 maximize_team_satisfaction:

$$Z_{11} = \sum_{sre \in SRE} sat_{sre}, \quad \max$$

• G12 maximize_feature_throughput:

$$Z_{12} = \sum_{f \in F} \sum_{pb \in PB} \text{estimated_effort}_f B_{f,pb}, \quad \text{max}$$

Composite objective. Let $\mathcal{G}_{\text{max}} = \{0, 3, 5, 6, 7, 10, 11, 12\}$ and $\mathcal{G}_{\text{min}} = \{1, 2, 4, 8, 9\}$. With weights w_q :

$$\max \sum_{g \in \mathcal{G}_{\text{max}}} w_g Z_g - \sum_{g \in \mathcal{G}_{\text{min}}} w_g Z_g$$

4 4. Conditions

Below, each condition references the Conditions.csv entry and is expressed as linear constraints when applicable.

• C1 team_assignment_uniqueness (R1): Each team has exactly one project.

$$\sum_{p \in P} X_{t,p} = 1 \qquad \forall t \in T$$

• C2 worker_to_single_team (R2): Each worker belongs to exactly one team.

$$\sum_{t \in T} Y_{w,t} = 1 \qquad \forall w \in W$$

• C3 team_capacity_respects_size: Team headcount cannot exceed team_size.

$$\sum_{w \in W} Y_{w,t} \le teamsize_t \qquad \forall t \in T$$

• C4 user_story_to_one_epic (R9):

$$\sum_{e \in E} U_{us,e} = 1 \qquad \forall us \in US$$

• C5 task_to_one_user_story (R10):

$$\sum_{us \in US} V_{tk,us} = 1 \qquad \forall tk \in TK$$

• C6 user_story_to_max_one_sprint_backlog (R11):

$$\sum_{sbl \in SBL} PICK_{us,sbl} \le 1 \qquad \forall us \in US$$

• C7 sprint_backlog_belongs_to_one_sprint (R12):

$$\sum_{sp \in SP} D_{sbl,sp} = 1 \qquad \forall sbl \in SBL$$

5

• C8 sprint_has_one_goal (R13):

$$\sum_{sg \in SG} G_{sp,sg} = 1 \qquad \forall sp \in SP$$

• C9 backlog_entry_count_consistency:

$$\sum_{f \in F} B_{f,pb} + \sum_{e \in E} E_{e,pb} \le entries_{pb} \qquad \forall pb \in PB$$

• C10 sprint_backlog_capacity:

$$\sum_{us \in US} storypts_{us} PICK_{us,sbl} \le totalEff_{sbl} \qquad \forall sbl \in SBL$$

• C11 velocity_floor: Using incidence $A_{vel,t}^{R19}$, enforce team capacity lower bound (planning guideline).

$$\sum_{us \in US} storypts_{us} \sum_{sbl \in SBL} PICK_{us,sbl} \geq \sum_{t \in T} \left(\sum_{vel \in VEL} A_{vel,t}^{R19} minvel_{vel} \right)$$

• C12 stakeholder_influence_cap (planning governance over reviews):

$$\sum_{sh \in SH} \text{influence_level}_{sh} \leq \Gamma$$

where Γ is a policy parameter.

• C0 limit_project_budget (portfolio guardrail): with unit cost κ per story point,

$$\kappa \sum_{us \in US} storypts_{us} \sum_{sbl \in SBL} PICK_{us,sbl} \leq \sum_{p \in P} budget_p$$

Further relationship guards (always-on).

$$\sum_{pb \in PB} A_{po,pb} \leq 1 \qquad \forall po \in PO \quad (R5)$$

$$\sum_{po \in PO} A_{po,pb} = 1 \qquad \forall pb \in PB \quad (R5)$$

$$\sum_{sm \in SM} S_{t,sm} = 1 \qquad \forall t \in T \quad (R6)$$

$$\sum_{pb \in PB} B_{f,pb} \leq 1 \qquad \forall f \in F \quad (R7)$$

$$\sum_{pb \in PB} E_{e,pb} \leq 1 \qquad \forall e \in E \quad (R8)$$

$$\sum_{f \in F} FDoc_{fed,f} = 1 \qquad \forall fed \in FED \quad (R15)$$

$$\sum_{dev \in DEV} Q_{sp,dev} = 1 \qquad \forall sp \in SP \quad (R22)$$

5 5. DecisionVariables

- DV0 assign_team_to_project $X_{t,p} \in \{0,1\}$
- DV1 assign_worker_to_team $Y_{w,t} \in \{0,1\}$
- DV2 assign_worker_to_role $R_{w,r} \in \{0,1\}$
- DV3 assign_po_to_backlog $A_{po,pb} \in \{0,1\}$
- DV4 assign_scrum_master_to_team $S_{t,sm} \in \{0,1\}$
- DV5 put_feature_in_backlog $B_{f,pb} \in \{0,1\}$
- DV6 put_epic_in_backlog $E_{e,pb} \in \{0,1\}$
- DV7 link_userstory_to_epic $U_{us,e} \in \{0,1\}$
- DV8 link_task_to_userstory $V_{tk,us} \in \{0,1\}$
- DV9 pick_userstory_into_sprint_backlog $PICK_{us,sbl} \in \{0,1\}$
- DV10 link_sprint_backlog_to_sprint $D_{sbl,sp} \in \{0,1\}$
- DV11 link_sprint_to_goal $G_{sp,sg} \in \{0,1\}$
- DV12 show_task_on_scrum_board $C_{scb,tk} \in \{0,1\}$
- DV13 link_feature_doc_to_feature $FDoc_{fed,f} \in \{0,1\}$
- DV14 link_sprint_to_development_snapshot $Q_{sp,dev} \in \{0,1\}$