Intelligence Artificielle et Apprentissage

Cours 4 : clustering par densité

Adrien Revault d'Allonnes

ara@up8.edu

Université Paris 8 - Vincennes à Saint-Denis

IAA - S2 - 2024

- *k*-moyennes
- Clustering hiérarchique

- *k*-moyennes
- Clustering hiérarchique

- k-moyennes
- Clustering hiérarchique

- k-moyennes et sur d'autres données?
- Clustering hiérarchique

- k-moyennes et sur d'autres données?
- Clustering hiérarchique

- k-moyennes et sur d'autres données?
- Clustering hiérarchique

- k-moyennes et sur d'autres données?
- Clustering hiérarchique

- k-moyennes et sur d'autres données?
- Clustering hiérarchique

- Problèmes des k-moyennes :
 - clusters non sphériques
 - clusters de tailles différentes
 - clusters de densités différentes
 - exceptions
 - clusters vides
 - fixer k

- Problèmes des k-moyennes :
 - clusters non sphériques
 - clusters de tailles différentes
 - clusters de densités différentes
 - exceptions
 - clusters vides
 - fixer k
- ⇒ Clustering par densité

- Problèmes des k-moyennes :
 - clusters non sphériques
 - clusters de tailles différentes
 - clusters de densités différentes
 - exceptions
 - clusters vides
 - fixer k
- ⇒ Clustering par densité
 - un cluster = une zone où la densité dépasse un seuil

- Problèmes des k-moyennes :
 - clusters non sphériques
 - clusters de tailles différentes
 - clusters de densités différentes
 - exceptions
 - clusters vides
 - fixer k
- ⇒ Clustering par densité
 - un cluster = une zone où la densité dépasse un seuil
 - + clusters de formes arbitraires
 - + gère le bruit
 - + un seul parcours des données

- Problèmes des k-moyennes :
 - clusters non sphériques
 - clusters de tailles différentes
 - clusters de densités différentes
 - exceptions
 - clusters vides
 - fixer k
- ⇒ Clustering par densité
 - un cluster = une zone où la densité dépasse un seuil
 - + clusters de formes arbitraires
 - + gère le bruit
 - + un seul parcours des données
 - paramètre de densité pour terminer

- Density-Based Spatial Clustering of Applications with Noise
- Un cluster = une zone où la densité dépasse un seuil

- Density-Based Spatial Clustering of Applications with Noise
- Un cluster = une zone où la densité dépasse un seuil

¿ Qu'est-ce que la densité?

- Density-Based Spatial Clustering of Applications with Noise
- Un cluster = une zone où la densité dépasse un seuil

¿ Qu'est-ce que la densité?

« Qualité de ce qui est dense, de ce qui est fait d'éléments nombreux et serrés, contient beaucoup de matière par rapport à l'espace occupé. » https://cnrtl.fr/definition/densité

- Density-Based Spatial Clustering of Applications with Noise
- Un cluster = une zone où la densité dépasse un seuil
- ¿ Qu'est-ce que la densité?
 - « Qualité de ce qui est dense, de ce qui est fait d'éléments nombreux et serrés, contient beaucoup de matière par rapport à l'espace occupé. » https://cnrtl.fr/definition/densité
- ⇒ Beaucoup de trucs dans un petit espace

- Density-Based Spatial Clustering of Applications with Noise
- Un cluster = une zone où la densité dépasse un seuil
- ¿ Qu'est-ce que la densité?
 - « Qualité de ce qui est dense, de ce qui est fait d'éléments nombreux et serrés, contient beaucoup de matière par rapport à l'espace occupé. » https://cnrtl.fr/definition/densité
- ⇒ Beaucoup de trucs dans un petit espace
 - Deux paramètres :
 - ε (ou eps) : le rayon du voisinage
 - MinPts : nombre minimal de voisins dans arepsilon

- Density-Based Spatial Clustering of Applications with Noise
- Un cluster = une zone où la densité dépasse un seuil
- ¿ Qu'est-ce que la densité?
 - « Qualité de ce qui est dense, de ce qui est fait d'éléments nombreux et serrés, contient beaucoup de matière par rapport à l'espace occupé. » https://cnrtl.fr/definition/densité
- ⇒ Beaucoup de trucs dans un petit espace
 - Deux paramètres :
 - ε (ou eps) : le rayon du voisinage
 - MinPts : nombre minimal de voisins dans arepsilon
- \Rightarrow Densité d'un point = nb. points à $\leq \varepsilon$ du point

- Density-Based Spatial Clustering of Applications with Noise
- Un cluster = une zone où la densité dépasse un seuil
- ¿ Qu'est-ce que la densité?
 - « Qualité de ce qui est dense, de ce qui est fait d'éléments nombreux et serrés, contient beaucoup de matière par rapport à l'espace occupé. » https://cnrtl.fr/definition/densité
- ⇒ Beaucoup de trucs dans un petit espace
 - Deux paramètres :
 - ε (ou eps) : le rayon du voisinage
 - MinPts : nombre minimal de voisins dans arepsilon
- \Rightarrow Densité d'un point = nb. points à $\leq \varepsilon$ du point
 - ε -voisinage d'un point $p: \mathcal{V}_{\varepsilon}(p) = \{q \in D | d(p,q) \leq \varepsilon\}$

- Density-Based Spatial Clustering of Applications with Noise
- Un cluster = une zone où la densité dépasse un seuil
- ¿ Qu'est-ce que la densité?
 - « Qualité de ce qui est dense, de ce qui est fait d'éléments nombreux et serrés, contient beaucoup de matière par rapport à l'espace occupé. » https://cnrtl.fr/definition/densité
- ⇒ Beaucoup de trucs dans un petit espace
 - Deux paramètres :
 - ε (ou eps) : le rayon du voisinage
 - MinPts : nombre minimal de voisins dans arepsilon
- \Rightarrow Densité d'un point = nb. points à $\leq \varepsilon$ du point
 - ε -voisinage d'un point $p: \mathcal{V}_{\varepsilon}(p) = \{q \in D | d(p,q) \leq \varepsilon\}$
 - Densité de $p=|\mathcal{V}_{\varepsilon}(p)|$

- Density-Based Spatial Clustering of Applications with Noise
- Un cluster = une zone où la densité dépasse un seuil
- ¿ Qu'est-ce que la densité?
 - « Qualité de ce qui est dense, de ce qui est fait d'éléments nombreux et serrés, contient beaucoup de matière par rapport à l'espace occupé. » https://cnrtl.fr/definition/densité
- ⇒ Beaucoup de trucs dans un petit espace
- Deux paramètres :
 - ε (ou eps) : le rayon du voisinage
 - MinPts : nombre minimal de voisins dans arepsilon
- \Rightarrow Densité d'un point = nb. points à $\leq \varepsilon$ du point
 - ε -voisinage d'un point $p: \mathcal{V}_{\varepsilon}(p) = \{q \in D | d(p,q) \leq \varepsilon\}$
 - Densité de $p=|\mathcal{V}_{\varepsilon}(p)|$
 - $\mathcal{V}_{\varepsilon}(c) \geq \texttt{MinPts}$: **point central** (central point)

- Density-Based Spatial Clustering of Applications with Noise
- Un cluster = une zone où la densité dépasse un seuil
- ¿ Qu'est-ce que la densité?
 - « Qualité de ce qui est dense, de ce qui est fait d'éléments nombreux et serrés, contient beaucoup de matière par rapport à l'espace occupé. » https://cnrtl.fr/definition/densité
- ⇒ Beaucoup de trucs dans un petit espace
- Deux paramètres :
 - ε (ou eps) : le rayon du voisinage
 - MinPts : nombre minimal de voisins dans arepsilon
- \Rightarrow Densité d'un point = nb. points à $\leq \varepsilon$ du point
 - ε -voisinage d'un point $p: \mathcal{V}_{\varepsilon}(p) = \{q \in D | d(p,q) \leq \varepsilon\}$
 - Densité de $p=|\mathcal{V}_{\varepsilon}(p)|$
 - $\mathcal{V}_{\varepsilon}(c) \geq \texttt{MinPts}$: point central (central point)
 - $\mathcal{V}_{\varepsilon}(f)$ <MinPts et $d(f,c) \leq \varepsilon$: point frontière (border point)

- Density-Based Spatial Clustering of Applications with Noise
- Un cluster = une zone où la densité dépasse un seuil
- ¿ Qu'est-ce que la densité?
 - « Qualité de ce qui est dense, de ce qui est fait d'éléments nombreux et serrés, contient beaucoup de matière par rapport à l'espace occupé. » https://cnrtl.fr/definition/densité
- ⇒ Beaucoup de trucs dans un petit espace
 - Deux paramètres :
 - ε (ou eps) : le rayon du voisinage
 - MinPts : nombre minimal de voisins dans arepsilon
- \Rightarrow Densité d'un point = nb. points à $\leq \varepsilon$ du point
 - ε -voisinage d'un point $p: \mathcal{V}_{\varepsilon}(p) = \{q \in D | d(p,q) \leq \varepsilon\}$
 - Densité de $p=|\mathcal{V}_{\varepsilon}(p)|$
 - $\mathcal{V}_{\varepsilon}(c) \geq \texttt{MinPts}$: point central (central point)
 - $\mathcal{V}_{\varepsilon}(f) < \mathtt{MinPts}$ et $d(f,c) \leq \varepsilon$: point frontière (border point)
 - $\mathcal{V}_{arepsilon}(a) < exttt{MinPts}$ et d(a,c) > arepsilon : point aberrant (noise point)

Visuellement

Accessibilité par densité

- q est directement accessible par densité depuis p si :
 - $\mathcal{V}_{\varepsilon}(p)$ est dense (i.e. p est un point central)
 - $q \in \mathcal{V}_{\varepsilon}(p)$
- q est accessible par densité depuis p s'il existe une séquence $\{p_1, \ldots, p_n\}$ telle que :
 - $-p_1, = p$
 - p_{i+1} est directement accessible par densité depuis p_i
 - $p_n = q$
- q est densément connecté à p si $\exists o \in D$
 - p est accessible par densité depuis o
 - q est accessible par densité depuis o

DBSCAN, l'algo

```
DBSCAN(D, eps, MinPts)
   C = 0
   pour chaque point P non visité des données D
      marquer P comme visité
      PtsVoisins = epsilonVoisinage(D, P, eps)
      si tailleDe(PtsVoisins) < MinPts
         marguer P comme BRUIT
      sinon
         C++
         étendreCluster(D, P, PtsVoisins, C, eps, MinPts)
étendreCluster(D, P, PtsVoisins, C, eps, MinPts)
   ajouter P au cluster C
   pour chaque point P' de PtsVoisins
      si P' n'a pas été visité
         marquer P' comme visité
         PtsVoisins' = epsilonVoisinage(D, P', eps)
         si tailleDe(PtsVoisins') >= MinPts
            PtsVoisins = PtsVoisins U PtsVoisins'
      si P' n'est membre d'aucun cluster
         ajouter P' au cluster C
epsilonVoisinage(D, P, eps)
   retourner tous les points de D qui sont à une distance inférieure à eps de P
```

IAA - 8

Illustration

