• Convolutional filtering is a general class of techniques used in signal processing for filtering continuous or discrete signals. It's based on the idea of a *finite impulse response filter* (FIR). In deep learning this was first applied to vision, wherein the convolutional filters are 2-dimensional patches (of varying sizes) that mimic the receptive fields in the human visual cortex.

• In NLP, convolutions are performed over the sequence dimension in embedding space, followed by a summation (or similar operation) to collapse the convolved features along the sequence dimension (this is called *pooling*), yielding a fixed size feature representation.

Because of this pooling operation, convolutional filtering does not capture long range dependences well.

Convolutional filtering

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

4	

Image

Convolved Feature

Convolutions applied to images

Convolutions applied to text

Illustrations taken from Stanford UFLDL Wiki

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

4	

Image

Convolved Feature

Convolutional filtering

- Convolutional filtering is a general class of techniques used in signal processing for filtering continuous or discrete signals. It's based on the idea of a *finite impulse response filter* (FIR). In deep learning this was first applied to vision, wherein the convolutional filters are 2-dimensional patches (of varying sizes) that mimic the receptive fields in the human visual cortex.
- In NLP, convolutions are performed over the sequence dimension in embedding space, followed by a summation (or similar operation) to collapse the convolved features along the sequence dimension (this is called *pooling*), yielding a fixed size feature representation.
- Because of this pooling operation, convolutional filtering does not capture long range dependences well.

Recurrent connections

- Recurrent neural networks are based on the idea of an *infinite impulse response filter* (IRR), whereby the feature representation at the t^{th} sequence position, $\mathbf{h}^{(t)}$, is a function of both $\mathbf{x}^{(t)}$ and $\mathbf{h}^{(t-1)}$. This *hidden state* can then be used in a variety of of ways, for example in language modeling a word/token is predicted at each sequence step, whereas for a text classification task, only the feature layer at the last step, $\mathbf{h}^{(T)}$, is used to predict the output.
- In theory recurrent connections enable us to maximally capture context. In practice, training these networks becomes increasingly difficult for long sequences due to a phenomenon called vanishing gradients.
- The popular Long-Short Term Memory (LSTM) cell block is based on this idea!

