Multisets and Aggregation

Dr Paolo Guagliardo

dbs-lecturer@ed.ac.uk

Fall 2018

Duplicates

R	$\pi_A(R)$	SELECT A FROM R			
A B		A			
a1 b1	<u>——</u> a1	<u></u> a1			
a2 b2	a2	a2			
a1 b2		a1			

- We considered relational algebra on sets
- ► SQL uses **bags**: sets with duplicates

Multisets (a.k.a. bags)

Sets where the same element can occur multiple times

The number of occurrences of an element is called its multiplicity

Notation

 $a \in_k B$: a occurs k times in bag B

 $a \in B$: a occurs in B with multiplicity ≥ 1

 $a \notin B$: a does not occur in B (that is, $a \in_0 B$)

Relational algebra on bags

Relations are bags of tuples

Projection

Keeps duplicates

$$\pi_A \begin{pmatrix} A & B \\ \hline 2 & 3 \\ 1 & 1 \\ 2 & 2 \end{pmatrix} = \begin{bmatrix} A \\ \hline 2 \\ 1 \\ 2 \end{bmatrix}$$

Relational algebra on bags

Cartesian product

Concatenates tuples as many times as they occur

Relational algebra on bags

Selection

Takes all occurrences of tuples satisfying the condition:

If
$$\bar{a} \in_k R$$
, then $\begin{cases} \bar{a} \in_k \sigma_{\theta}(R) & \text{if } \bar{a} \models \theta \\ \bar{a} \not\in \sigma_{\theta}(R) & \text{otherwise} \end{cases}$

Example

$$\sigma_{A>1} \begin{pmatrix} A & B \\ \hline 2 & 3 \\ 1 & 2 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} A & B \\ \hline 2 & 3 \\ \hline 2 & 3 \end{pmatrix}$$

Relational algebra on bags

Duplicate elimination ε

New operation that removes duplicates:

If
$$\bar{a} \in R$$
, then $\bar{a} \in R$

Example

$$\varepsilon \begin{pmatrix} A & B \\ \hline 2 & 3 \\ 1 & 2 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} A & B \\ \hline 2 & 3 \\ 1 & 2 \\ \hline 2 & 3 \end{pmatrix}$$

Relational algebra on bags

Union

Adds multiplicities:

If
$$\bar{a} \in_k R$$
 and $\bar{a} \in_n S$, then $\bar{a} \in_{k+n} R \cup S$

Example

Relational algebra on bags

Intersection

Takes the **minimum** multiplicity:

$$\text{If } \bar{a} \in_k R \text{ and } \bar{a} \in_n S, \quad \text{ then } \bar{a} \in_{\min\{k,n\}} R \cap S$$

Example

Relational algebra on bags

Difference

Subtracts multiplicities up to zero:

If
$$\bar{a} \in_k R$$
 and $\bar{a} \in_n S$, then
$$\begin{cases} \bar{a} \in_{k-n} R - S & \text{if } k > n \\ \bar{a} \not\in R - S & \text{otherwise} \end{cases}$$

Example

RA on sets vs. RA on bags

Equivalences of RA on sets do not necessarily hold on bags

Example

On bags $\sigma_{\theta_1 \vee \theta_2}(R) \neq \sigma_{\theta_1}(R) \cup \sigma_{\theta_2}(R)$

$$\varepsilon (\sigma_{\theta_1 \vee \theta_2}(R)) = \varepsilon (\sigma_{\theta_1}(R) \cup \sigma_{\theta_2}(R))$$
 holds

Basic SQL queries revisited

$$\begin{split} Q := & \mathbf{SELECT} \; \big[\, \mathbf{DISTINCT} \, \big] \; \alpha \; \mathbf{FROM} \; \tau \; \mathbf{WHERE} \; \theta \\ & \mid Q_1 \; \mathbf{UNION} \; \big[\, \mathbf{ALL} \, \big] \; Q_2 \\ & \mid Q_1 \; \mathbf{INTERSECT} \; \big[\, \mathbf{ALL} \, \big] \; Q_2 \\ & \mid Q_1 \; \mathbf{EXCEPT} \; \big[\, \mathbf{ALL} \, \big] \; Q_2 \end{split}$$

SQL and RA on bags

SQL RA on bags

CET FOR	_ ()
SELECT α	$\pi_{lpha}(\cdot)$
SELECT DISTINCT α	$\varepsilonig(\pi_{lpha}(\cdot)ig)$
Q_1 UNION ALL Q_2	$Q_1 \cup Q_2$
Q_1 intersect all Q_2	$Q_1 \cap Q_2$
Q_1 except all Q_2	$Q_1 - Q_2$
Q_1 UNION Q_2	$\varepsilon(Q_1 \cup Q_2)$
Q_1 intersect Q_2	$\varepsilon(Q_1\cap Q_2)$
Q_1 EXCEPT Q_2	$\varepsilon(Q_1) - Q_2$

Duplicates and aggregation (1)

Customer

ID	Name	City	Age
1	John	Edinburgh	31
2	Mary	London	37
3	Jane	London	22
4	Jeff	Cardiff	22

Average age of customers: $\mathbf{avg}(\pi_{\mathsf{Age}}(\mathsf{Customer}))$

▶ If we remove duplicates we get $\frac{31+37+22}{3} = 30$ (wrong)

SQL keeps duplicates by default: SELECT AVG (age)
FROM Customer;

Duplicates and aggregation (2)

Account

Number	Branch	CustID	Balance		
111	London	1	1330.00		
222	London	2	1756.00		
333	Edinburgh	1	450.00		

Number of branches: $|\varepsilon(\pi_{\mathsf{Branch}}(\mathsf{Account}))|$

▶ If we keep duplicates we get 3 (wrong)

```
In SQL: SELECT COUNT (DISTINCT branch)
FROM Account;
```

Aggregate functions in SQL

```
AVG average value of elements in a column

SUM adds up all elements in a column

MIN minimum value of elements in a column

MAX maximum value of elements in a column
```

- ► Using **DISTINCT** with **MIN** and **MAX** makes no difference
- ► COUNT (*) counts all rows in a table
- ► COUNT (DISTINCT *) is illegal

To count all distinct rows of a table T use

```
SELECT COUNT(DISTINCT T.*)
FROM T ;
```

Aggregation and empty tables

Suppose table T has a column (of numbers) called A

```
SELECT MIN(A), MAX(A), AVG(A), SUM(A), COUNT(A), COUNT(\star) FROM T WHERE 1=2;
```

min		max		sum		avg		count		count
	-+-		+-		+-		+-		-+	
					1		1	0		0