Devoir facultatif n° 7

- 1) Questions préliminaires. Soit $\mathbb{K} \subset \mathbb{L} \subset \mathbb{M}$ trois corps.
 - a) Montrer que L est un K-espace vectoriel.
 - b) On note $[\mathbb{L} : \mathbb{K}] = \dim_{\mathbb{K}}(\mathbb{L})$. On suppose que \mathbb{M} est de dimension finie sur \mathbb{K} . Montrer que $[\mathbb{M} : \mathbb{K}] = [\mathbb{M} : \mathbb{L}][\mathbb{L} : \mathbb{K}]$. On s'assurera au préalable que ces objets ont un sens.

On prend \mathbb{K} parmi \mathbb{Q} , \mathbb{R} et \mathbb{C} . Soit \mathbb{L} un sous-corps de \mathbb{C} tel que $\mathbb{K} \subset \mathbb{L}$. On rappelle que si $a \in \mathbb{L}$, alors l'application

$$\operatorname{ev}_a : \mathbb{K}[X] \to \mathbb{L}, \ P \mapsto P(a)$$

est un morphisme. Si Ker $(ev_a) \neq \{0\}$, c'est-à-dire s'il existe $P \in \mathbb{K}[X]$ non nul tel que P(a) = 0, on dit que a est algébrique sur \mathbb{K} . Sinon, a est dit transcendant sur \mathbb{K} . On note $\mathbb{K}[a] = \text{Im}(ev_a)$.

- 2) Polynôme minimal annulateur.
 - a) Montrer que si a est algébrique sur \mathbb{K} , alors il existe un polynôme $m \in \mathbb{K}[X]$ tel que $\mathrm{Ker}(\mathrm{ev}_a) = m\mathbb{K}[X]$.

Indication : considérer un polynôme de degré minimal.

b) Montrer qu'il existe un unique tel polynôme unitaire.

Si $a \in \mathbb{L}$ est algébrique sur \mathbb{K} , ce polynôme unitaire vérifiant $\operatorname{Ker}(\operatorname{ev}_a) = m\mathbb{K}[X]$ sera noté m_a et appelé polynôme minimal annulateur de a sur \mathbb{K} .

- 3) Généralités sur $\mathbb{K}[a]$. Soit a algébrique.
 - a) Soit d le degré de m_a . Montrer que $d = \dim(\mathbb{K}[a])$.
 - **b)** Montrer que m_a est soit irréductible, soit constant, sur \mathbb{K} .
 - c) Montrer que $\mathbb{K}[a]$ est un corps.
- 4) Clôture algébrique. Soit $a \in \mathbb{L}$.
 - a) Montrer que $\mathbb{K}[a]$ est la plus petite sous-algèbre de \mathbb{L} (sev stable par produit, passage à l'inverse, contenant 1) contenant a.
 - b) Montrer que a est algébrique sur \mathbb{K} si et seulement si $\mathbb{K}[a]$ est de dimension finie sur \mathbb{K} .

c) On définit la clôture algébrique de \mathbb{K} dans \mathbb{L} par :

$$\overline{\mathbb{K}}^{\mathbb{L}} = \left\{ \, a \in \mathbb{L} \mid \, \, a \, \, \text{est alg\'ebrique sur } \, \mathbb{K} \, \right\}.$$

Montrer que $\overline{\mathbb{K}}^{\mathbb{L}}$ est un sous-corps de \mathbb{L} (il suffit de montrer que c'est un sous-groupe de \mathbb{L} , stable par produit, passage à l'inverse et qui contient 1). *Indication :* penser à considérer $\mathbb{K}[x][y]$.

5) Exemple.

- a) Montrer que $\sqrt{2} \notin \mathbb{Q}$.
- b) Montrer que $\sqrt{2}$ est algébrique sur \mathbb{Q} , déterminer son polynôme annulateur minimal.
- c) Montrer que $(1, \sqrt{2})$ est une base de $\mathbb{Q}[\sqrt{2}]$ en tant que \mathbb{Q} -ev.
- d) Est-ce que $\sqrt{3} \in \mathbb{Q}[\sqrt{2}]$?
- e) Déterminer le polynôme annulateur minimal de $\sqrt{3}$ sur \mathbb{Q} . Même question sur $\mathbb{Q}[\sqrt{2}]$.
- f) Est-ce que $\sqrt{6} \in \mathbb{Q}[\sqrt{2}]$? Vérifier que $\sqrt{6} \in \mathbb{Q}[\sqrt{2}][\sqrt{3}]$.
- g) Que vaut $[\mathbb{Q}[\sqrt{2}][\sqrt{3}]:\mathbb{Q}]$? Donner une base de $\mathbb{Q}[\sqrt{2}][\sqrt{3}]$ en tant que \mathbb{Q} -ev.

