

### FIG.I(A)

FORMATION OF INSULATING LAYER 101 a



#### FIG.I(B)

SEQUENTIAL FORMATION OF INSULATING LAYER IOI b
AND SEMICONDUCTOR FILM

IO2

IOID
IOIO

#### FIG. I(C)

CRYSTALLIZATION



#### FIG.I(D)

FORMATION OF ACTIVE LAYER AND GATE INSULATING



#### FIG.I(E)

FORMATION OF GATE WIRING





#### FIG.2(A)

#### ANODIC OXIDATION



#### FIG. 2(B)

#### DOPING WITH PHOSPHORUS



### FIG. 2(C)

#### DOPING WITH BORON



#### FIG.2(D)

#### FORMATION OF WIRING



P-CHANNEL TYPE

N-CHANNEL TYPE



F16.3

|                               |         | SUBSTRATE SUBSTRATE SUBSTRATE 4 | SUBSTRATE | SUBSTRATE |
|-------------------------------|---------|---------------------------------|-----------|-----------|
| FLOW RATE OF RAW MATERIAL GAS | S i H 4 | 4                               | 01        | 15        |
|                               | N 2 0   | 400                             | 20        | 50        |
|                               | N H 3   | 0                               | 1 00      | 200       |
| HEAT TREATMENT                |         | CONDUCTED NO                    | NO        | NO        |
| COMPOSITION RATIO             | 2       | 7.0                             | 24.0      | 44. 1     |
| (Alumic %)                    | 0       | 59.5                            | 26. 5     | 6.0       |
|                               | S i     | 32.0                            | 33.0      | 34. 4     |
|                               | Н       | 1.5                             | 16.5      | 15.5      |
| REFRACTIVE INDEX              |         | 1. 4566                         | 1.7468    | 1.7975    |
|                               |         |                                 |           |           |

OF INSULATING LAYER (SILICON OXIDE NITRIDE LAYER) 1010 FILM FORMING CONDITIONS AND PHYSICAL PROPERTIES







#### FIG. 5A

□ N-CHANNEL TYPE (L/W=5.6/7.5  $\mu$ m) □ P- CHANNEL TYPE (L/W=5.6/7.5  $\mu$ m)



#### FIG. 5B



#### FIG. 50

CHANGE OF NUMBER OF DIGITS OF I CUT

STRESS CONDITIONS 150°C, I HOUR, VG: 20V(N-CHANNEL TYPE),-20V(P-CHANNEL TYPE), VD=VS=0V





## F16.6

DRIVER CIRCUIT (CMOS CIRCUIT)

PIXEL MATRIX CIRCUIT







F(G, 7(A)) formation of underlying film, active layer and gate insulating film



200

# F1G. 7 (B)

DOPING PROCESS OF PHOSPHORUS (FORMATION OF n"-TYPE REGION)



# F1G.7(C)FORMATION OF CONDUCTIVE FILM



306



# FIG.8(A)

DOPING WITH BORON (FORMATION OF P+- TYPE REGION)



# F16.8(B)

FORMATION OF WIRING



N-CHANNEL TYPE P-CHANNEL TYPE

N- CHANNEL TYPE



F(G, G, A) DOPING WITH PHOSPHORUS (FORMATION OF n+- TYPE REGION)



# FIG. 9(B)





### FIG.10



PLAN VIEW OF PIXEL MATRIX CIRCUIT





FIG. 12(A)



FIG. 12(B)





### FIG. 13(A)



### FIG.13(B)



#### FIG.13(C)







FIG. 14(C)



FIG.14(E)







FIG.15(C) projection unit (three-lens type)











