Security Analysis of Unified Payments Interface and Payment Apps in India

Early Indian Payments Apps - Wallets

India was predominantly a cash-based economy and while payment app existed, they were not the chosen mode of payment

Mobile Payments using Unified Payments Interface

In 2016, the National Payments Corporation of India launched UPI to enable free instant micro-payments from a mobile platform.

UPI's "Broad Guidelines"

User's primary cell number (UPI ID) must be registered with the bank out-of-band

Factor 1

Device fingerprint

Cell number + device info "device hard-binding"

Factor 2

Passcode

Optional

Factor 3

UPI PIN

6-digits of debit card + expiry date

User Profile Setup A

Authorize Transactions

Reverse Engineering Barriers

Protocol Analysis

Unpublished protocol and no back-end access to UPI servers.

Analyze the protocol through the lens of UPI apps.

Evading App Defenses

Security defenses are many and differ for each app

Evading App Defenses

Defenses:

- Obfuscated
- Use encrypted communication
- Emulator detection built-in
- Requires a physical SIM card to be present on the phone
 - Makes dynamic analysis difficult
- UPI apps undergo a thorough security review in India

Approach:

A combination of static reverse-engineering, code instrumentation and traffic analysis

Device Hard-binding

Alternate Workflow

Attacker can induce a failure in step 2 of default workflow by turning on airplane mode

Attacker enters victim cell number from an attacker device

Alternate workflow may allow an attacker to bind her cell phone with a cell number registered to bank account of another user

Attacker Device Details

Registration Token

UPI Server

BHIM

Send Cell# + Token as HTTP msg

Send OTP

Breaking Device Binding

BHIM

ATTACKER PHONE

Attacker Device Details

Registration Token

1111-0

UPI Server

Attacker enters victim's cell number

Send Cell# + Token as HTTP msg

Send OTP

Trojan needs RECEIVE_SMS permission to read **OTP**

Leak Passcode

Use an overlay on BHIM's passcode entry screen
No additional permissions required

Add Bank Account

UPI server appears to allow brute-force attacks. An attacker can learn of all bank accounts of a user
UPI server reveals sensitive bank info without the user providing any bank specific secrets

Attacker can start bruteforcing with the most popular banks

New UPI User vs. Existing User

For an existing user, attacker can sync a user's bank account through UPI without providing any bank-related secrets

Authorize Transaction: UPI PIN

UPI PIN can be leaked the same way as the passcode.

Setting UPI PIN

- Requires partial card details printed on a card
- Transactions require complete card number + secret PIN shared with the bank

Setting UPI PIN requires only partial debit card info and NO secret - a lower bar in India

Conclusion

- They uncover core security holes in the workflow of UPI 1.0
 - Using an attacker-controlled app, we show how an attacker can attack a user's bank account and steal money from him
- They responsibly disclosed the vulnerabilities to CERT-IN and makers of UPI in 2017
 - Contacted all the app vendors
- UPI 2.0 released in August 2018
 - Fixed the alternate workflow we exploit, but other security holes remain
- Other attack vectors that could potentially compromise UPI 2.0
 - SMS spoofing, loss of user's device or compromising the system
- Calls for proper security vetting of the proprietary protocol since discussions are on to make UPI global

References

- [1] Manal Adham, Amir Azodi, Yvo Desmedt, and Ioannis Karaolis. How to attack two-factor authentication internet banking. In Financial Cryptography and Data Security, pages 322–328, 2013.
- [2] Mohammed Aamir Ali and Aad van Moorsel. Designed to be broken: A reverse engineering study of the 3D Secure 2.0 Payment Protocol. In Financial Cryptography and Data Security, pages 201–221, 2019.
- [3] Samaher AlJudaibi. Research paper for mobile devices security. 2016. https://www.researchgate.net/p
- ublication/309675787_Research_Paper_for_Mob ile_Devices_Security.
- [4] APKTOOL. https://ibotpeaches.github.io/Ap ktool/, 2018. [Online; accessed October-2018].
- [5] BHIM. https://play.google.com/store/apps/d etails?id=in.org.npci.upiapp, 2016. [Online; accessed October-2018].