TOPOLOGIA GENERALE

DIMOSTRAZIONI E CONTROESEMPI

DEFINIZIONI DELLE PROPRIETÀ

- N1 Ogni punto ha una base di intorni numerabile.
- N2 Lo spazio ha una base di aperti numerabile.
- Sep Se esiste un sottoinsieme denso e numerabile.
- T0 Dati due punti c'è un aperto che li distingue. $(\forall x,y \in X \exists A \text{ aperto t.c. } x \in A, y \notin A \text{ oppure } x \notin A, y \in A)$
- T1 I punti sono chiusi.
- T2 Punti distinti hanno intorni disgiunti.
- Reg Un punto ed un chiuso che non lo contiene hanno intorni disgiunti.
- Norm Ogni coppia di chiusi disgiunti ha intorni disgiunti.
 - T3 Reg + T0.
 - T4 Norm + T1.
 - Cpt Ogni ricoprimento di aperti ha un sottoricoprimento finito.
- Lind Ogni ricoprimento di aperti ha un raffinamento numerabile.
- Conn Non esistono due aperti propri la cui unione è lo spazio intero. (Vale anche con i chiusi)
- PathConn Presi due punti esiste un arco che li connette $(\forall x,y\in X\ \exists \gamma:[0,1]\to X$ continua t.c. $\gamma(0)=x,\gamma(1)=y)$
- LocConn Ogni punto ha una base di intorni connessi.
- LocPathConn Ogni punto ha una base di intorni connessi per archi.
 - LocCpt Ogni punto ha una base di intorni compatti.
 - ParaCpt Ogni ricoprimento aperto ha un raffinamento localmente finito.
 - Metr Metrizzabile, ovvero esiste una distanza che induce la topologia.

Proprietà	Sottospazi	Prodotti	Quozienti	Funzioni \mathcal{C}^0	Implica
N1	<u> </u>	Numerabili			_
N2	✓	Numerabili	Aperti	Aperte	
Sep	×	Numerabili		✓	
T0	✓	Arbitrari			
T1	✓	Arbitrari			
T2	✓	Arbitrari			
Reg	✓	Arbitrari			
Norm	Chiusi	×			
T3	✓	Arbitrari			
T4	Chiusi	×			
Cpt	Chiusi	Arbitrari		✓	(+T2) Chiuso
Lind	Chiusi	×			
Conn	×	Arbitrari		✓	
PathConn	×	Arbitrari		✓	Conn
LocConn	Aperti				
LocPathConn	Aperti				
Metr	✓	Numerabili			
ParaCpt	Chiusi	×			

LEMMI INSIEMISTICI UTILI

 $f: A \to B$ funzione, $X \subseteq A$, $Y \subseteq B$. Allora valgono:

- $X \subseteq f^{-1}(f(X))$
- $\bullet \ f(f^{-1}(Y)) \subseteq Y$
- $f(\cup_i X_i) = \cup_i f(X_i)$
- $f(\cap_i X_i) \subseteq \cap_i f(X_i)$
- Se f è iniettiva allora $f(\cap_i X_i) = \cap_i f(X_i)$
- $f^{-1}(\cup_i Y_i) = \cup_i f^{-1}(Y_i)$
- $f^{-1}(\cap_i Y_i) = \cap_i f^{-1}(Y_i)$

N1

N2

SEP

La Separabilità NON passa ai sottospazi

Usando il fatto (dimostrato dopo) che prodotti numerabili di separabili sono separabili, si consideri \mathbb{R}_{sf} , ovvero \mathbb{R} con la topologia di Sorgenfrey. Esso è separabile, infatti \mathbb{Q}_{sf} è sicuramente numerabile, inoltre è denso. Sia infatti $x \in \mathbb{R}_{sf}$ e sia U_x un suo intorno. Allora, siccome sono una base per la topologia, $\exists a, b$ t.c. $x \in [a,b) \subseteq U_x$. Per densità dei razionali nell'ordinamento dei reali, si ha $\exists q \in \mathbb{Q}_{sf}$ t.c. $q \in [a,b)$. Allora anche $\mathbb{R}_{sf} \times \mathbb{R}_{sf}$ è separabile, ma non lo è il suo sottospazio $R = \{(x,y) \in \mathbb{R}_{sf} \times \mathbb{R}_{sf} \mid x+y=0\}$: mostriamo infatti che esso ha la topologia discreta come sottospazio. Infatti sia $(x,-x) \in R$, esso è aperto poiché $(x,-x) = [x,x+h) \times [-x,-x+h) \cap R$, con h > 0. Quindi abbiamo un insieme di cardinalità del continuo con la topologia discreta, che non può essere separabile.

La Separabilità passa ai prodotti numerabili

Enunciato

 $X := \prod_{n \in \mathbb{N}} X_n$, con $D_i \subseteq X_i$ denso e numerabile. Allora anche X è separabile.

Dimostrazione

Sia $a_n \in D_n$ un punto a caso. Prendiamo $D = \{(r_i)_{i \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} D_n \mid r_i = a_i$ per tutti tranne un numero finito di indici $\}$, ovvero l'insieme che è costituito da prodotti finiti dei D_i in tutte le varie posizioni possibili. Questo insieme è denso: sia $x \in X$, allora $\forall U_x$ intorni abbiamo $\exists A = \prod_{n \in \mathbb{N}}^{FIN} [A_n/X_n]$ t.c. $x \in A \subseteq U_x$. Allora per ogni indice i tale che $\pi_i(A) \neq X_i$ selezioniamo $r_i = d_i \in \pi_i(A)$, mentre per gli altri scegliamo $r_i = a_i$. Allora $(r_i)_{i \in \mathbb{N}} \in D \cap A$. Inoltre è anche numerabile poiché si può scrivere un suo elemento in questo modo: si denoti con $(i)_2$ la stringa che in base due denota $i \in \mathbb{N}$ con soli zeri e uni. Allora si associ ad un elemento $x = (r_i)_{i \in \mathbb{N}} \in D$ la stringa ottenuta concate-

nando le seguenti informazioni: $\forall i, T_i := \left\{ \begin{array}{ll} 2 & \text{se } r_i = a_i \\ (r_i)_2 & \text{se } r_i \neq a_i \end{array} \right.$ Questa stringa è infinita ma termina con un numero infinito di "2". Si levino questi numeri e si legga il numero così costruito in base tre. Allora questa è una iniezione nei naturali.

In realtà la separabilità si trasmette anche ai prodotti di cardinalità continua (Marcewski-Hewitt), ma è molto difficile da dimostrare, quindi non lo facciamo.

Immagine \mathcal{C}^0 di un separabile è separabile

Enunciato

X separabile. $f: X \to Y \in \mathcal{C}^0$, allora f(X) è separabile.

Dimostrazione

Sia $D \subset X$ il denso e numerabile di X. Allora dico che $f(D) \cap f(X)$ è il denso e numerabile di f(X). Ovviamente è numerabile. Mostriamo che è denso: $f(X) = f(\overline{D}) \subseteq \overline{f(D)}^{f(X)} = \overline{f(D)} \cap f(X) \cap f(X)$. dove $1'\subseteq V$ vale per una definizione equivalente di continuità e sappiamo che la chiusura di f(D) in f(X) è uguale alla chiusura di f(D) intersecato f(X).

T0

TO PASSA AI SOTTOSPAZI

Enunciato

 $X \text{ T0}, Y \subseteq X \implies Y \text{ T0}.$

Dimostrazione

Siano $a,b \in Y$. Allora esiste un aperto $A \subset X$ t.c. $a \in A,b \notin A$ oppure $a \notin A,b \in A$. Allora $B := A \cap Y$ è aperto in Y e vale $a \in B,b \notin B$ oppure $a \notin B,b \in B$, a seconda di quale valeva prima.

Prodotto arbitrario di T0 è T0

Enunciato

 $X := \prod_i X_i, X_i \text{ T0 } \forall i$, allora $X \in \text{T0}$.

Dimostrazione

Siano $a,b \in X$. Allora $a \neq b \implies \exists j$ t.c. $a_j \neq b_j$. Siccome X_j è T0, ho che $\exists A_j \subset X_j$ aperto t.c. $a_j \in A_j$, $b_j \notin A_j$ oppure $a_j \notin A_j$, $b_j \in A_j$. Allora $A := A_j \times \prod_{i \neq j} X_i$ è un aperto di X che fa ciò che vogliamo.

T1

T1 PASSA AI SOTTOSPAZI

Enunciato

 $X \text{ T1, } Y \subseteq X \implies Y \text{ T1.}$

Dimostrazione

Sia $a \in Y$. Allora $\{a\} \subset X$ è chiuso in X, quindi $\{a\} = \{a\} \cap Y$ è chiuso in Y.

Prodotto arbitrario di T1 è T1

Enunciato

 $X := \prod_i X_i, X_i \text{ T1 } \forall i$, allora $X \in \text{T1}$.

Dimostrazione

Sia $x=(x_i)_{i\in I}\in X$. Allora $C_j:=\{x_j\}\times\prod_{i\neq j}X_i$ è chiuso in X $\forall j$. Inoltre $x=\cap_jC_j$, quindi $\{x\}$ è chiuso in X.

T2

T2 PASSA AI SOTTOSPAZI

Enunciato

 $X \text{ T2}, Y \subseteq X \implies Y \text{ T2}.$

Dimostrazione

Siano $a, b \in Y, a \neq b$ e siano $A, B \subseteq X$ gli aperti di X tali che $a \in A, b \in B, A \cap B = \emptyset$. Allora $A \cap Y$ e $B \cap Y$ sono aperti in Y, ancora disgiunti e contengono i due punti.

Prodotto arbitrario di T2 è T2

Enunciato

 $X := \prod_i X_i, X_i \text{ T2 } \forall i$, allora $X \in \text{T2}$.

Dimostrazione

Siano $a,b \in X, a \neq b$. Allora $\exists j$ t.c. $a_j \neq b_j$. Siano $A_j, B_j \subseteq X_j$ gli aperti di X_j tali che $A_j \cap B_j = \emptyset$, $a_j \in A_j, b_j \in B_j$. Allora $A := A_j \prod_{i \neq j} X_i$, $B := B_j \prod_{i \neq j} X_i$ sono due aperti di X tali che $a \in A, b \in B$. Inoltre $A \cap B = (A_i \cap B_j) \prod_{i \neq j} X_i = \emptyset$.

REG

Norm

T3

T4

CPT

CHIUSO IN UN COMPATTO È COMPATTO

Enunciato

X compatto. $Y \subset X$ chiuso in X, allora Y è compatto.

Dimostrazione

Sia $\{A_{\lambda} \cap Y\}_{\lambda \in \Lambda}$ il ricoprimento aperto di Y. Allora considero $\{A_{\lambda}\}_{\lambda \in \Lambda} \cup (X \setminus Y)$ come ricoprimento di X (siccome $X \setminus Y$ è aperto in X). Allora ne esiste un ricoprimento finito, da cui abbiamo $A_1, \ldots, A_n, X \setminus Y$ tali che $Y \subseteq \bigcup_{i=1}^n A_i$.

LA COMPATTEZZA NON PASSA A SOTTOSPAZI ARBITRARI

Basta considerare $Y=\{\frac{1}{n}\mid n\in\mathbb{N}\}$ come sottoinsieme di [0,1] con la topologia euclidea. [0,1] è compatto, mentre $\{(\frac{1}{n}-\frac{1}{3n},\frac{1}{n}+\frac{1}{3n})\mid n\in\mathbb{N}\}$ è un ricoprimento aperto di Y di cui non ne esiste uno finito, perché altrimenti lascia scoperto qualche $\frac{1}{n}$ per qualche n abbastanza grande.

Immagine \mathcal{C}^0 di Compatti è compatta

Enunciato

 $f: X \to Y$ con X Cpt. Allora f(X) è Cpt.

Dimostrazione

Siano $A_{\lambda} \subset Y$ aperti in Y t.c. $f(X) \subseteq \bigcup_{\lambda \in \Lambda} A_{\lambda}$. Consideriamo $B_{\lambda} := f^{-1}(A_{\lambda})$. Essi sono un ricoprimento aperto (perché $f \in \mathcal{C}^0$) di X. Per compattezza ne esiste un ricoprimento finito B_1, \ldots, B_n . Allora A_1, \ldots, A_n ricoprono f(X).

Compatto in un T2 è Chiuso

Enunciato

 $Y \subseteq X$ compatto, X T2 allora Y è chiuso in X.

Dimostrazione

Mostriamo che $A:=X\setminus Y$ è aperto in X: sia $a\in A$, siccome X è T2 abbiamo $\forall y\in Y, \exists A_y, Y_y$ aperti in X t.c. $a\in A_y, y\in Y_y, A_y\cap Y_y=\emptyset$. Allora $\{Y_y\}_{y\in Y}$ sono un ricoprimento aperto di Y, allora ne estraggo un ricoprimento finito Y_{y_1},\ldots,Y_{y_n} . Considero ora $U:=\cap_{i=1}^n A_{y_n}$ che è un insieme aperto in X (in quanto intersezione di un numero finito di aperti) che è disgiunto da ciascuno degli Y_i ed è quindi disgiunto da Y, ovvero $X\setminus Y$ è aperto.

LIND

CHIUSO IN UN LINDELÖF È LINDELÖF

Enunciato

X Lindelöf. $Y \subset X$ chiuso in X, allora Y è Lindelöf.

Dimostrazione

Sia $\{A_{\lambda} \cap Y\}_{\lambda \in \Lambda}$ il ricoprimento aperto di Y. Allora considero $\{A_{\lambda}\}_{\lambda \in \Lambda} \cup (X \setminus Y)$ come ricoprimento di X (siccome $X \setminus Y$ è aperto in X). Allora ne esiste un ricoprimento numerabile, da cui abbiamo $\{A_n\}_{n \in \mathbb{N}}, X \setminus Y$ tali che $Y \subseteq \bigcup_{i \in \mathbb{N}} A_i$.

CONN

SOTTOSPAZI DI UN CONNESSO NON SONO CONNESSI

Si prenda [0,1] con la topologia euclidea e si considerino arbitrari tipi di sottospazi, solitamente non sono connessi. Ad esempio $X = \{0\} \cup \{1\}$.

Immagine \mathcal{C}^0 di Connessi è connessa

Enunciato

 $f: X \to Y$ con X Conn. Allora f(X) è Conn.

Dimostrazione

Per assurdo siano A_1, A_2 i due aperti in Y che sconnettono f(X). Allora $B_1 := f^{-1}(A_1), B_2 := f^{-1}(A_2)$ sono aperti (sono ancora disgiunti) che sconnettono X, Assurdo.

PATHCONN

SOTTOSPAZI DI UN CONNESSO PER ARCHI NON SONO CONNESSI PER ARCHI

Si prenda [0,1] con la topologia euclidea e si considerino arbitrari tipi di sottospazi, solitamente non sono connessi per archi. Ad esempio $X = \{0\} \cup \{1\}$.

Immagine \mathcal{C}^0 di Connessi per archi è connessa per archi

Enunciato

 $f: X \to Y$ con X PathConn. Allora f(X) è PathConn.

Dimostrazione

Siano $y_1, y_2 \in f(X)$, ovvero $y_1 = f(x_1), y_2 = f(x_2)$. Per ipotesi sia $\gamma : [0,1] \to X \in \mathcal{C}^0$ tale che $\gamma(0) = x_1, \gamma(1) = x_2$, consideriamo allora $g := f \circ \gamma$, anch'essa continua. Abbiamo $g : [0,1] \to Y \in \mathcal{C}^0$ tale che $g(0) = y_1, g(1) = y_2$.

CONNESSO PER ARCHI IMPLICA CONNESSO

Enunciato

 $X \operatorname{PathConn} \implies X \operatorname{Conn}$.

Dimostrazione

Per assurdo siano A_1,A_2 i due aperti in X che lo sconnettono. Siano $x_1 \in A_1, x_2 \in A_2$ e si prenda $\gamma:[0,1] \to X \in \mathcal{C}^0$ tale che $\gamma(0)=x_1,\gamma(1)=x_2$. Allora $B_1:=\gamma^{-1}(A_1), B_2:=\gamma^{-1}(A_2)$ sono ancora aperti e sconnettono [0,1], Assurdo.

LocConn

LOCPATHCONN

METR

SOTTOSPAZI DI METRIZZABILI SONO METRIZZABILI

Ovvio, basta restringere la funzione distanza

PARACPT

SORGENFREY