Syntactic and semantic parsing for natural language understanding

2. Question answering

Hiroshi Noji

Question answering

- ▶ Main focus: question answering with external database
- System may convert an input question into a query to the database, and obtain the answer

Outline

- Difference between RTE and QA
 - Pure bottom-up approach like ccg2lambda is difficult for QA
 - Grounding is necessary
- Top-down semantic parsing for QA
 - Learning CCG from sentence/logical form pairs
 - Learning dependency-based compositional semantics
 - an approach to learn semantic parsing without supervision to logical forms

Concrete task: querying SPARQL

- Often a specific database accepts a predefined query language
 - e.g., Freebase is a very large open domain database, which accepts SPARQL
 - So our task is converting an input sentence into a SPARQL query

```
Input: How many teams participate in UEFA?
```

```
SPARQL:
```

```
select count(?x) where {
  ?a Team ?x .
  ?a League Uefa .
}
```

Equivalent lambda-expression:

count(λx.∃a.Team(x, a) ∧ League(a, Uefa))

Problem

How many teams participate in UEFA?

Desirable logical-form

count(λx.∃a.Team(x, a) ∧ League(a, Uefa))

Parser output count(λx.∃a.Team(x, a) ∧ Participate(a, Uefa))

- Consider running a CCG parser to get a logical form
 - We can convert a logical expression into a SPARQL query by rules
- ▶ However, DB query must be written with keywords in the DB
 - Because the language used in DB is strict
 - This is in contrast to RTE, where the logical forms are inputs to a prover that uses the knowledge on word variations internally

Grounding

- ▶ For QA, we need to find the mapping from words in the input to corresponding DB keywords
- Technique to find such mappings is called grounding
 - In general, grounding connects a sentence with a real word entity
 - e.g., image grounding: we describe "panda" (text) by a figure of pandas (real entity)
 - In DB, the real entity is DB keywords (e.g., League)
- ▶ The bottom-up approaches we discussed so far (for RTE) are not related with grounding, so they are called a non-grounding approach

Partly bottom-up approach?

- So for DB, I don't know the fully bottom-up (non-grounding) approach built on a CCG parser or other parsers
- There is only a hybrid approach between bottom-up and topdown approach
 - First, parse an input sentence with a CCG parser to obtain a non-grounding logical form
 - Then convert it into a **grounded logical form** to be able to query to DB (using the idea of weak supervision, described later)
 - See: Reddy et al. Large-scale Semantic Parsing without Question-Answer Pairs. TACL 2016.

Outline

- Difference between RTE and QA
 - Pure bottom-up approach like ccg2lambda is difficult for QA
 - Grounding is necessary
- Top-down semantic parsing for QA
 - Learning CCG from sentence/logical form pairs
 - Learning dependency-based compositional semantics
 - an approach to learn semantic parsing without supervision to logical forms

Problem: obtaining logical forms

What is the most populous city in California?

- What system does:
 - Convert a sentence into a logical form (query) ⇒ difficult
 - Obtain the answer by querying to the database ⇒ deterministic
- Challenge is how to convert a sentence into logical form

Two different top-down approaches

Top-down approaches are further divided into two, based on the form of supervision

Fully supervised approach:

- Each training data is (sentence, logical form) pair
- e.g., (What's Bulgaria's capital?, λx.capital(x, bulgaria))
- Pro: Learning is more tractable
- Con: Preparing many logical forms by hand is costly

Weakly supervised approach:

- Each training data is (sentence, answer) pair
- e.g., (What's Bulgaria's capital?, Sofia)
- Logical form is a latent variable in a model
- Much more challenging, but much more cheaper

Short history

- ▶ Fully-supervised approach was dominated until ~2011, 2012
- ▶ 2011, a successful weakly-supervised approach appeared:
 - Liang et al,. Learning dependency-based compositional semantics. In ACL 2011.
 - Since then, weak supervision becomes a popular approach
- Advantage of weak supervision is scalability:
 - Writing logical form is impossible for ordinary people
 - But answering a question does not require linguistic knowledge
 - → We can use crowdsourcing to collect the data cheaply!

Fully supervised approach

Training data:

- a) What states border Texas $\lambda x.state(x) \wedge borders(x, texas)$
- **b)** What is the largest state $\arg\max(\lambda x.state(x), \lambda x.size(x))$
- c) What states border the state that borders the most states $\lambda x.state(x) \wedge borders(x, \arg\max(\lambda y.state(y), \lambda y.count(\lambda z.state(z) \wedge borders(y, z))))$

training a parser

How many states border Oregon? \longrightarrow Semantic parser $\longrightarrow count(\lambda x.state(x) \land borders(x, oregon))$

Note on logical forms of DB query

- How can we read count(λx.state(x) ∧ borders(x, oregon))?
- $\rightarrow \lambda x.f(x)$ is a function
 - In DB query, a function can be seen as a set (entities satisfying f(x) relation)
- So $count(\lambda x.f(x))$ returns the size of entities satisfying f(x)
- ▶ We assume a DB, which keeps unary and binary relations
 - λx.borders(x, oregon) is a operation retrieving all entries where the second column is oregon
 - state(x) restricts the results to the values found in state

california texas nevada

state

californiaoregonnevadaoregonlong vieworegonnevadautah

border

CCG can help?

Training data:

- a) What states border Texas $\lambda x.state(x) \wedge borders(x, texas)$
- **b)** What is the largest state $\arg\max(\lambda x.state(x), \lambda x.size(x))$
- c) What states border the state that borders the most states $\lambda x.state(x) \wedge borders(x, \arg\max(\lambda y.state(y), \lambda y.count(\lambda z.state(z) \wedge borders(y, z))))$

Yes

- There are many approaches with this supervision relied on CCG
- Zettlemoyer & Collins, 2005, 2007; Kwiatkowski et al., 2010, 2011; Artzi & Zettolemoyer, 2011, 2013; etc.

▶ Difference from RTE:

We do not use the output of CCG parser, but induce the grammar

Inducing CCG from logical forms

- We treat CCG derivation as a latent variable (z) in the model
- ▶ Objective function: $\sum_{i=1}^{n} \log \left(\sum_{z} p(y, z | x, \theta) \right)$
 - maximize the likelihood marginalizing z
 - can be done by a variant of SGD (or a latent-variable perceptron)

Why we don't use existing parsers?

- Probably the main reason is historical
 - We can of course utilize the results of existing CCG parsers
 - But the approach without existing parsers succeeded and got more popular
 - Note that even using other parsers, grounding (supervised learning by gold logical forms) is necessary
- Advantage of inducing grammar (not using existing parsers):
 - Free from parsing errors (error propagation)
 - (Possibly) developing a system for other languages is easier
 - CCG parsers are not available in many languages

Is this fully-supervised?

- In some sense, this approach is also a kind of weakly-supervised approach
 - in that we do not assume a gold syntactic derivation into the desired logical form (y)
 - We infer the latent CCG derivation (z) that bridges x and y
 - EM-like algorithm

Assumption (seed knowledge)

- Knowledge about CCG rules:
 - forward/backward application/composition, etc.
 - e.g., X/Y: f Y/Z: g \rightarrow X/Z: $\lambda x.f(g x)$ (>B)
- ▶ Type of logical form for each CCG category
 - NP : a (constant)
 - N: $\lambda x.p(x)$
 - S\NP/NP : λx.λy.p(x,y)
- Initial lexicon (domain-independent important words):
 - What: $S/(S\NP)/N$: $\lambda f. \lambda g. \lambda x. f(x) \wedge g(x)$

Finding categories on words

What states border Texas $\lambda x.state(x) \wedge borders(x, texas)$ $NP \qquad texas$ $N \qquad \lambda x.state(x)$ $SNP/NP \qquad \lambda x.\lambda y.borders(x, y)$ $SNP/NP \qquad \lambda x.\lambda y.borders(y, x)$ $SNP \qquad \lambda x.borders(x, texas)$ $S/(SNP)/N \qquad \lambda f.\lambda g.\lambda x.f(x) \wedge g(x)$ $SNP/N \qquad \lambda f.\lambda x.state(x) \wedge f(x)$...

- First step is decomposing the final logical form into smaller pieces
- Corresponding CCG categories are limited due to the type constraints (isomorphism)

How learning proceeds?

- ▶ There is no constraint between each word and category
 - Learning this mapping is the main challenge
- We want to find mapping leading to the correct logical form

How learning proceeds?

What Texas border states S\NP/N: N:*λx.state(x)* $S/(S\NP)/N$: NP:texas $\lambda f. \lambda g. \lambda x. f(x) \wedge g(x)$ $\lambda f.\lambda x.state(x) \wedge f(x)$ S\NP: NP:texas S\NP/NP: $\lambda x.borders(x, texas)$ $\lambda x.\lambda y.borders(y, x)$ N:λx.state(x) $S/(S\NP)$: S\NP/NP: $\lambda g.\lambda x.state(x) \land g(x)$ $\lambda x.\lambda y.borders(x, y)$ S\NP:λy.borders(texas, y)

 $S:\lambda x.state(x) \land borders(texas, x)$

Other incorrect category assignments (mostly) lead to wrong logical forms

gold: $\lambda x.state(x) \wedge borders(x, texas)$

How learning proceeds?

Algorithm (SGD):

S:λx.state(x)∧borders(x, texas)

for each (sentence, logical form) pair:

- 1. find derivations leading to the given logical form
- 2. strengthen the weights appeared in the found derivations

states
$$\rightarrow$$
 N: $\lambda x.state(x)$ 5.0 \Rightarrow 5.8 (+0.8)
states \rightarrow NP: $texas$ 0.2 \Rightarrow -0.5 (-0.7)

Why did this approach succeed?

- Strong inductive bias of CCG
 - Combinatory rules of CCG highly restrict the candidate lexical categories → facilitate mapping of words and categories
 - Such implicit bias to help machine learning algorithm is called "inductive bias", which is essential for many NLP systems
- Sentences are not complex
 - Question sentences are not very complex
 - They are typically 5~10 words
 - search space for a model is not so quite large

Later extensions

- Zettlemoyer and Collins (UAI 2005)
 - first approach; described so far
 - use some initial lexicon (e.g., what, every)
- Kwiatokovski et al., (EMNLP 2010)
 - Reducing supervision signals by learning mapping of every word

I want a flight to Boston $S: \lambda x.flight(x) \wedge to(x,BOS)$

- using alignment technique in machine translation (IBM model) to obtain better initial parameters
- ▶ Kwiatokovski et al., (EMNLP 2011)
 - Further refinements in the probabilistic model

Outline

- Difference between RTE and QA
 - Pure bottom-up approach like ccg2lambda is difficult for QA
 - Grounding is necessary
- Top-down semantic parsing for QA
 - Learning CCG from sentence/logical form pairs
 - Learning dependency-based compositional semantics
 - an approach to learn semantic parsing without supervision to logical forms

Weakly-supervised approach

- CCG induction requires (sentence, logical form) pairs, but annotating logical forms are costly
 - requires expert knowledge
- Can we learn a semantic parser only from (sentence, answer) pairs?
 - Liang et al. showed this is possible
 - Idea:
 - Logical form is treated as a latent variable in the model
 - This logical form is simpler (weaker than first-order logic) and aimed at querying DB (very task-specific)
 - Learning correct logicals form via SGD-like algorithm

Logical form is latent variable

DCS

Dependency-based compositional semantics

For "city in California"

Constraints

$$c \in \mathtt{city}$$

$$c_1 = \ell_1$$

$$\ell \in \mathtt{loc}$$

$$\ell_2 = s_1$$

$$s \in {\rm CA}$$

A subtree represents a set (Rows of loc where 2nd column is CA)

Database

city

San Francisco
Chicago
Boston
•••

loc

Mount Shasta	California
San Francisco	California
Boston	Massachusetts
• • •	• • •

CA

California

Comparison to lambda expression

 Gap between syntax of sentence and lambda expression is large

Syntax of DCS much resembles dependency structure

Trick for resemblance to dependency

most populous city in California

Execute at semantic scope

Mark at syntactic scope

▶ Explanation is simple, but actual mechanism is complex

Learning

- Basically the same as CCG-based approach
 - Though DCS resembles dependency structure, we do not use any existing parsers
- Difference: We do not have the correct logical form
 - We can infer whether the created DCS tree is correct or not, by directly querying it to DB
 - If DB returns the correct answer, the DCS tree is probably correct (weak-supervision)
 - Note: We can convert a DCS tree into a DB-specific logical form

Initial lexicon

```
city city
state state
river river

argmax population population CA

What is the most populous city in CA?
```

Lexical Triggers:

- 1. String match
- 2. Function words (20 words) $most \Rightarrow argmax$
- 3. Nouns/adjectives $city \Rightarrow city \text{ state river population}$

 $CA \Rightarrow CA$

- Learning from answer only is very hard
 - We assume some initial lexicon (more than initial CCG-based approach), which is necessary

SGD-like algorithm

- ▶ Find K-best DCS derivations under the current model (beam search)
- Push the weights of features appeared in derivations that return the correct answer

Results

On GEO, 600 training examples, 280 test examples

Figure from Liang et al., Learning dependency-based compositional semantics. In ACL 2011.

Plan of the last lecture

- We have seen a short history of semantic parsing for QA until DCS appeared in 2011
 - That time the domain was very limited (e.g., US geography)
 - Words are limited in a domain, and learning was not so hard
- In the last lecture, we discuss more recent research efforts
 - Open-domain QA (on Wikipedia, and Google Freebase)
 - QA from a semi-structured table
 - Context-dependent QA
 - (multi-modal QA?)