1. Linear Regression

Linear regression is a statistical method used for modeling the relationship between **a dependent variable** (often denoted as **y**) and one or more independent variables (often denoted as **x**). It assumes a linear relationship between the independent variables and the dependent variable.

The formula for linear regression can be written as:

$$y = \beta_0 + \beta_1 x + \varepsilon$$

Here:

- y is the dependent variable.
- x is the independent variable.
- β_0 is the y-intercept (value of y when x = 0).
- β_1 is the slope of the regression line (the change in y for a one-unit change in x).
- e is the error term (the difference between the observed value and the predicted value).

The goal of linear regression is to estimate the coefficients β 0 and β 1 that minimize the sum of the squared differences between the observed and predicted values of y.

L2 loss

The L2 loss, also known as the squared error loss or mean squared error (MSE)

$$L_{
m L2} = rac{1}{n} \sum_{i=1}^n (\hat{y}_i - y_i)^2$$

In the context of linear regression, the goal is to minimize the L2 loss function with respect to the model parameters (coefficients) to find the best-fitting line that minimizes the squared differences between the predicted and actual values.

We use the L2 loss in linear regression because it encourages the **residuals** (the differences between observed and predicted values) **to be distributed around zero**, which aligns with the assumptions of linear regression.

Stochastic Gradient Descent

1. Linear Regression

Stochastic Gradient Descent (SGD) linear regression is a variant of linear regression where instead of using the entire dataset to update the model parameters in each iteration, it uses a single random data point (or a small subset of data points) to update the parameters.

In each iteration:

- Randomly select a data point or a mini-batch of data points from the dataset.
- Compute the gradient of the loss function with respect to the selected data point(s).
- Update the model parameters using the gradient descent algorithm. This involves adjusting the parameters in the opposite direction of the gradient to minimize the loss function.

Mini-batch gradient descent computes gradients and updates parameters based on a small random subset of the data.

Why Linear regression:

- explainable
- · cheap to compute

1. Linear Regression