UNIVERSITATEA POLITEHNICA DIN BUCUREȘTI

Facultatea

Numărul legitimației de bancă Numele Prenumele tatălui Prenumele

CHESTIONAR DE CONCURS

DISCIPLINA: Algebră și Elemente de Analiză Matematică M

VARIANTA B

- 1. Multimea soluțiilor inecuației $|x+1| \le 3$ este: (5 pct.)
 - a) $\{-4\}$; b) \emptyset ; c) $\{2\}$; d) [-4,2]; e) [-3,3]; f) [-4,0].
- 2. Mulțimea soluțiilor ecuației $x^3 3x^2 + 2x = 0$ este: (5 pct.)
 - a) $\{0,1,2\}$; b) $\{0,2\}$; c) $\{-1,0,1\}$; d) $\{1,2,3\}$; e) $\{-2,0,1\}$; f) $\{1,2,4\}$.
- 3. Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} x^2 + m, & x \le 1 \\ 2x + 1, & x > 1 \end{cases}$. Să se afle $m \in \mathbb{R}$, astfel încât funcția f să fie continuă. (5 pct.)
 - a) m = 2; b) $m = \frac{1}{3}$; c) $m = \frac{1}{2}$; d) m = -2; e) m = 4; f) m = -5.
- 4. Dacă $E = \log_2 20 \log_4 25$, atunci: (5 pct.)
 - a) E = 2; b) E = 4; c) E = 0; d) E = -2; e) E = 3; f) E = -3.
- 5. Să se rezolve ecuația $\sqrt{2x+1}+2x=5$. (5 pct.)
 - a) x = 11; b) $x \in \left\{ \frac{3}{2}, 4 \right\}$; c) x = 4; d) $x = \frac{3}{2}$; e) $x = \frac{1}{6}$; f) x = 15.
- 6. Să se rezolve ecuația $5^{\frac{x+1}{2}} = \sqrt{5}$. (5 pct.)
 - a) x = -1; b) x = 1; c) x = -3; d) x = 0; e) x = 4; f) x = 2.
- 7. Într-o progresie geometrică de numere pozitive $(a_n)_{n\geq 1}$ se cunosc $a_2=3$ și $a_4=12$. Să se calculeze a_3 . (5 pct.)
 - a) $\frac{5}{3}$; b) $\frac{1}{6}$; c) 8; d) 9; e) 4; f) 6.
- 8. Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x + e^{2x}$. Să se calculeze f'(0). (5 pct.)
 - a) -1; b) $\frac{1}{2}$; c) 4; d) $-\frac{3}{2}$; e) 3; f) -2.

- 9. Să se calculeze $E = C_3^0 + C_3^1 + C_3^2 + C_3^3$. (5 pct.)
 - a) E = 3; b) E = 8; c) E = 11; d) E = 14; e) E = 10; f) E = 16.
- 10. Să se calculeze modulul numărului complex $z = \frac{1+i}{1-i}$. (5 pct.)
 - a) 1; b) 2; c) $\frac{2}{3}$; d) $\frac{1}{2}$; e) 0; f) $\frac{3}{2}$.
- 11. Fie sistemul $\begin{cases} x-2y=m\\ 2x+y=n \end{cases}$. Să se determine numerele reale m și n astfel încât x=2, y=1 să fie soluție a sistemului. (5 pct.)
 - a) m = 2, n = 1; b) m = 0, n = 5; c) m = 1, n = 4; d) m = -1, n = 3; e) m = 3, n = 1; f) m = 4, n = 3.
- 12. Să se rezolve inecuația $3x-1 \ge 2x$. (5 pct.)
 - a) $x \ge 1$; b) $x \in \emptyset$; c) $x \ge 5$; d) $x \in [-1,0]$; e) $x \le \frac{1}{5}$; f) $x \le \frac{1}{3}$.
- 13. Să se calculeze $\lim_{\varepsilon \to 0} \int_{\varepsilon}^{1} x^{2015} \ln x \, dx$. (5 pct.)
 - a) $-\infty$; b) $-\frac{1}{2016^2}$; c) $-\frac{1}{2015}$; d) $-\frac{1}{2014}$; e) $-\frac{1}{2015^2}$; f) 0.
- 14. Fie $A = \begin{pmatrix} 1 & 2 & 3 \\ m & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}$. Să se determine $m \in \mathbb{R}$ astfel încât matricea A să fie inversabilă. (5 pct.)
 - a) $m \neq -\frac{1}{3}$; b) $m \neq 0$; c) $m \neq \frac{1}{2}$; d) $m \neq 1$; e) $m \neq -\frac{1}{4}$; f) $m \neq \frac{1}{4}$.
- 15. Fie funcția $f:(0,\infty)\to\mathbb{R}$, $f(x)=x^2-\ln x$. Să se determine abscisa punctului de extrem local al funcției f. (5 pct.)
 - a) $\frac{1}{e}$; b) $-\frac{\sqrt{2}}{2}$; c) $\frac{1}{3}$; d) $\frac{\sqrt{2}}{2}$; e) $\frac{1}{2}$; f) 1.
- 16. Să se calculeze $\int_0^1 (x^3 + x) dx$. (5 pct.)
 - a) $\frac{3}{5}$; b) $\frac{1}{2}$; c) $\frac{3}{4}$; d) $\frac{4}{3}$; e) $\frac{1}{3}$; f) $\frac{4}{5}$.
- **17.** Câte soluții reale are ecuația ||x-1|-1|-1| = 1? **(5 pct.)**
 - a) o infinitate; b) cinci; c) patru; d) şase; e) trei; f) două.
- 18. Fie polinomul $f = X(X+1)^{2n+1} + (m-1)X^n$, unde $n \ge 3$ este număr natural, iar $m \in \mathbb{C}$. Să se determine m astfel încât f să fie divizibil cu $X^2 + X + 1$. (5 pct.)
 - a) m = -2; b) m = 2i; c) m = 18; d) m = 2; e) m = 4; f) m = -2i.