HW7

November 20, 2024

Exercise 1 Let $U \subset \mathbb{R}^d$ be a bounded domain. Let $u(x) \in \mathcal{C}^2(U) \cap \mathcal{C}(\bar{U})$ solve

$$\begin{cases} -\Delta u = 1, & U, \\ u = 0, & \partial U. \end{cases}$$

Show that for any $x_0 \in U$,

$$\frac{1}{2d} \min_{x \in \partial U} |x - x_0|^2 \le u(x_0) \le \frac{1}{2n} \max_{x \in \partial U} |x - x_0|^2.$$

Hint: consider $v(x) = u(x) - \frac{1}{2d}|x - x_0|^2$.

Exercise 2 Let $U_0 \subset \mathbb{R}^d$ be a bounded domain, and $U := \mathbb{R}^d \setminus \bar{U_0}$. Let $u \in \mathcal{C}^2(U) \cap \mathcal{C}(\partial U)$ satisfy

$$\begin{cases}
-\Delta u + c(x)u = 0, & U, \\
u = g(x), & \partial U, \\
\lim_{|x| \to \infty} u(x) = \ell,
\end{cases}$$

where $c(x) \geq 0$ is bounded on any bounded subset of U. Show that

$$\sup_{U} |u(x)| \le \max \{ |\ell|, \max_{\partial U} |g(x)| \}.$$

Hint: obtain an L^{∞} -estimate on $B_R \setminus U_0$ for any R > 0, and then take $R \to \infty$.

Exercise 3 Let $U \subset \mathbb{R}^d$ be bounded. Let $u \in \mathcal{C}^2(U) \cap \mathcal{C}(\bar{U})$ solve

$$\begin{cases}
-\Delta u + u^3 - u = 0, & U, \\
u = 0, & \partial U.
\end{cases}$$

Show that if $\max_{\partial U} |g(x)| \le 1$, then $\max_{\bar{U}} |u(x)| \le 1$.

Hint: let $x_0 = \underset{x \in \bar{U}}{\operatorname{argmax}} u(x)$; note that if $u(x_0) > 1$ then $(u^3 - u)(x_0) > 0$; use this to get a contradiction.

Exercise 4 Let $u \in \mathcal{C}^2(U) \cap \mathcal{C}^1(\bar{U})$ solve

$$\begin{cases}
-\Delta u + c(x)u = f(x), & U, \\
\frac{\partial u}{\partial n} + \alpha(x)u = 0, & \partial U,
\end{cases}$$

where $\alpha(x) \geq 0$ and $c(x) \geq c_0 > 0$. Show that there exists a constant $M = M(c_0)$,

$$\int_{U} |\nabla u(x)|^{2} dx + \frac{c_{0}}{2} \int_{U} |u(x)|^{2} dx + \int_{\partial U} \alpha(x) u^{2}(x) dS(x) \le M \int_{U} |f(x)|^{2} dx.$$

Exercise 5 Let $u \in \mathcal{C}^2([0,\infty) \times \mathbb{R})$ solve the wave equation in one dimension:

$$\begin{cases} \partial_{tt} u - \partial_{xx} u = 0, & (0, \infty) \times \mathbb{R}, \\ u = g, & \partial_{t} u = h, & \{t = 0\} \times \mathbb{R}. \end{cases}$$

Assume that g, h have compact support. Let

$$k(t) = \frac{1}{2} \int_{-\infty}^{\infty} |\partial_t u(t, x)|^2 dx, \quad p(t) = \frac{1}{2} \int_{-\infty}^{\infty} |\partial_x u(t, x)|^2 dx,$$

be the kinetic and potential energy.

- 1. Show that k(t) + p(t) is constant in t (you do not have to use d'Alembert formula.)
- 2. Show that p(t) = k(t) when t is large.