ARTIFICIAL INTELLIGENCE VS. MACHINE LEARNING

June 21, 2025

ARTIFICIAL INTELLIGENCE (AI) VS. MACHINE LEARNING (ML)

ARTIFICIAL INTELLIGENCE (AI)

Definition: All refers to the simulation of human intelligence in machines, enabling them to perform tasks that typically require human cognition, such as reasoning, problem-solving, understanding natural language, and decision-making.

Scope: All is a broad field that includes various subfields like machine learning, computer vision, natural language processing (NLP), robotics, and expert systems.

Example: A robot navigating a maze using predefined rules. A chatbot (like Siri or Alexa) answering questions using NLP

MACHINE LEARNING (ML)

Definition: ML is a subset of AI that focuses on enabling machines to learn from data without being explicitly programmed. It involves algorithms that improve automatically through experience.

Key Idea: Instead of hard-coding rules, ML models learn patterns from historical data to make predictions or decisions.

Example: A recommendation system (like Netflix) suggesting movies based on your past viewing habits.

A spam filter learning to classify emails as "spam" or "not spam.

KEY DIFFERENCES (AI VS. ML)

Aspect	Artificial Intelligence (AI)	Machine Learning (ML)
Goal	Simulate human-like intelligence in machines.	Learn from data to make predictions or decisions.
Approach	Can use rule-based systems, ML, or other methods.	Relies on statistical models trained on data.
Scope	Broader (includes robotics, NLP, expert systems).	Narrower (subset of AI).
Human Intervention	May or may not require learning from data.	Always requires data for training.

REAL-LIFE APPLICATIONS OF MACHINE LEARNING

- ✓ **Netflix Recommendations** Uses collaborative filtering to suggest movies/ shows.
- Chatbots & Virtual Assistants NLP models like GPT-4 power conversational AI.
- Self-Driving Cars Computer vision & reinforcement learning for navigation.
- Medical Image Analysis Detects tumors in X-rays using deep learning.
- Predictive Typing Smart keyboards (like Gboard) predict the next word.
- Social Media Algorithms Facebook/Instagram personalize feeds using ML

TYPES OF MACHINE LEARNING

1. SUPERVISED LEARNING

Definition: The model learns from labeled data (input-output pairs).

Example:

- Predicting house prices based on features (size, location). house
- Classifying emails as spam/ham. envelopeAlgorithms:
- Linear Regression (for numerical predictions).
 chart
- Logistic Regression, Random Forest (for classification).

2. UNSUPERVISED LEARNING

Definition: The model finds hidden patterns in unlabeled data.

Example:

- Customer segmentation (grouping users by behavior). people
- Anomaly detection in fraud cases.
 magnifying-glass Algorithms:
- K-Means Clustering, group
- · Principal Component Analysis (PCA).

3. REINFORCEMENT LEARNING

Definition: The model learns by trial and error using rewards/punishments.

Example:

- Training a robot to walk. robot
- Al playing chess (like AlphaZero). chess

Algorithms:

- Q-Learning, target
- Deep Q Networks (DQN).

REGRESSION VS. CLASSIFICATION (DETAILED BREAKDOWN)

REGRESSION

Definition: Predicts a continuous numerical value (e.g., price, temperature, marks).

Key Characteristics:

- Output is a real number.
- Used when the target variable is quantitative.

Examples:

- Predicting house prices based on location and size. house
 - Estimating sales revenue for next quarter. money

Algorithms:

- Linear Regression: Fits a straight line to the data.
- Decision Trees: Splits data into branches for prediction.

Support Vector Regression (SVR): Works well with non-linear data.

CLASSIFICATION

Definition: Predicts a discrete category or class label (e.g., yes/no, spam/not spam).

Key Characteristics:

- Output is a class or category.
- · Used when the target variable is qualitative. Examples:
- Email spam detection (spam vs. not spam). envelope
- · Medical diagnosis (disease present or not). hospital

Algorithms:

 Logistic Regression: Predicts probability of class membership (despite its name, it's for classification).
 percent

- Random Forest: Ensemble method using multiple decision trees. forest
- Support Vector Machines (SVM): Finds the best boundary between classes

COM-PARISONTABLE

Feature	Regression	Classification
Output Type	Continuous value (e.g., 45.7, 100.2)	Discrete class (e.g., "Yes", "No")
Goal	Predict a quantity	Assign a category
Evaluation Metrics	Mean Squared Error (MSE), R ² Score	Accuracy, Precision, Recall, F1-Score
Example Use Case	Predicting temperature tomorrow	Detecting fraudulent transactions

TYPICAL MACHINE LEARNING WORKFLOW

- Define the Problem What are we trying to predict/solve?
- Collect & Clean Data Remove missing values, handle outliers.
- Split Data Training (70-80%) & Testing (20-30%) sets.
- Train Model Fit the algorithm on training data.
- Evaluate Accuracy Use metrics like MSE (Regression) or Accuracy (Classification).
- Deploy Model Use it for real-world predictions