Office Hour: 1:30-3:30 PM, Th

STAT 610: Discussion 5

1 Summary

• Linear model: $Y = X\beta + \epsilon$.

$$MSE : \hat{\beta} = (X^{\top}X)^{-1}X^{\top}Y$$
$$SSR : ||Y - X^{\top}\hat{\beta}||^{2}$$

Assumptions

(A1)
$$\epsilon \sim N(0, \sigma^2 I_n)$$

(A2)
$$E[\epsilon] = 0$$
, $Var(\epsilon) = \sigma^2 I_n$

(A3)
$$E[\epsilon] = 0, Var(\epsilon) = V$$

A1 implies A2 implies A3.

- A linear models with full rank $X^{\top}X$ and assumption (A1).
 - $-\beta \sim N(\beta, \sigma^2(X^\top X)^{-1})$, and $\ell^\top \beta$ is the UMVUE for $\ell^\top \beta$ for any $\ell \in \mathbb{R}^p$.
 - $SSR/\sigma^2 \sim \chi_{n-p}$. SSR/(n-p) is the UMVUE for σ^2
 - SSR and $\hat{\beta}$ are independent.
- Under assumption (A2), we consider (BLUE).
 - For everey $\ell \in \mathbb{R}^p$, the BLUE for $\ell^{\top}\beta$ is the one has the smallest variance within the following class of linear unbiased estimators

$$\{c^{\top}Y| \quad E[c^{\top}Y] = \ell^{\top}\beta\}.$$

- Gauss-Markov Theorem: Given a linear models with full rank $X^{\top}X$ and assumption (A2). We have $\ell^{\top}\hat{\beta}$ is BLUE for $\ell^{\top}\beta$.
- Under assumption (A3), consider weighted least square.

$$\hat{\beta}_{V^{-1}} = (X^{\top} V^{-1} X)^{-1} X^{\top} V^{-1} Y.$$

Office Hour: 1:30-3:30 PM, Th

2 Questions

1. Suppose that

$$Y_{ij} = \alpha_i + \beta t_{ij}, \quad i = 1, \dots, a, \ j = 1, \dots, b.$$

- (a) Express the data in a linear model $Y = X\beta + \epsilon$ and identify X.
- (b) In what condition X is full rank?
- (c) Obtain an LSE of β .

- 2. Under linear models and assumption (A1), find the UMVUE's of
 - (a) $(\ell^{\top}\beta)^2$,
 - (b) $\ell^{\top} \beta / \sigma$,
 - (c) $(\ell^{\top}\beta/\sigma)^2$.

- 3. Suppose $Y_{n\times 1} = X_{n\times p}\beta_{p\times 1} + \epsilon_{n\times 1}$, where $\epsilon_i \stackrel{i.i.d}{\sim} \mathcal{N}(0, \sigma^2)$ is independent of X_i , and the design matrix $X_{n\times p}$ is of full rank.
 - (a) If A is any arbitrary $p \times n$ matrix such that AX is invertible. Prove that $\tilde{\beta} = (AX)^{-1}AY$ is a linear unbiased estimator of β , and $(AX)^{-1}AA^T(X^TA^T)^{-1} \geq (X^TX)^{-1}$.
 - (b) If A is any invertible symmetric matrix of size n, prove that $\tilde{\beta} = (X^T A X)^{-1} X^T A Y$ is a linear unbiased estimator of β , and $(X^T A X)^{-1} X^T A^2 X (X^T A X)^{-1} \ge (X^T X)^{-1}$.