pandas for Analytics Practitioners, with Applications in Optimization

Dr. Irv Lustig
Optimization Principal

Information Technology and Management Consulting

Question

- You're working to apply optimization to a new problem
- Do you spend more time
 - Dealing with the data
 - Reading it in, organizing it for optimization, etc.
 - Writing your model
 - Tuning the optimizer's performance

From Gurobi Webinar on Performance Tuning

Common support case

- "Gurobi is soooo slow"
- Reason: Model building outside of Gurobi takes 30 minutes
- Model solving takes only a few seconds
- Inefficient data access is the most common reason for slow model construction
 - Long lookup times
 - Insufficient caching / redundant queries
 - Single elements instead of batch processing

http://www.gurobi.com/pdfs/webinars/Webinar-Slides-Introduction-to-Tuning.pdf

What is Python?

From Wikipedia:

- Python is an interpreted high-level programming language for general-purpose programming. Created by Guido van Rossum and first released in 1991, Python has a design philosophy that emphasizes code readability, notably using significant whitespace. It provides constructs that enable clear programming on both small and large scales.
- Python features a <u>dynamic type</u> system and automatic <u>memory management</u>. It supports multiple <u>programming paradigms</u>, including <u>object-oriented</u>, <u>imperative</u>, <u>functional</u> and <u>procedural</u>, and has a large and comprehensive <u>standard library</u>. [27]

What is pandas?

- From pandas.pydata.org:
 - pandas is an open source, BSD-licensed library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming language.
- Library Highlights
 - A fast and efficient **DataFrame** object for data manipulation with integrated indexing;
 - Tools for reading and writing data between in-memory data structures and different formats:
 CSV and text files, Microsoft Excel, SQL databases, and the fast HDF5 format;
 - Intelligent data alignment and integrated handling of missing data: gain automatic label-based alignment in computations and easily manipulate messy data into an orderly form;
 - Flexible reshaping and pivoting of data sets;
 - Intelligent label-based slicing, fancy indexing, and subsetting of large data sets;
 - Columns can be inserted and deleted from data structures for size mutability;
 - Aggregating or transforming data with a powerful group by engine allowing split-apply-combine operations on data sets;
 - High performance merging and joining of data sets;
 - Hierarchical axis indexing provides an intuitive way of working with high-dimensional data in a lower-dimensional data structure;
 - Time series-functionality: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging. Even create domainspecific time offsets and join time series without losing data;
- Note: Examples in this presentation require pandas v0.22 or later
- Optimization Examples use Princeton Consultants OptiPandas library that extends pandas for use with CPLEX and Gurobi

Outline

- Tidy Data
- pandas Fundamentals
- Reading Data
- Creating New Columns
- Analyzing data
- Reshaping Data
- Merging/joining
- GroupBy
- Optimization

Tidy Data – Defined for Statistics

- "Tidy data is a standard way of mapping the meaning of a dataset to its structure. A dataset is messy or tidy depending on how rows, columns and tables are matched up with observations, variables and types. In tidy data:
 - 1. Each variable forms a column.
 - Each observation forms a row.
 - Each type of observational unit forms a table."
- Hadley Wickham, "Tidy Data", Journal of Statistical Software, Volume 59(10), August 2014. https://www.jstatsoft.org/article/view/v059i10/v59i1 0.pdf

Tidy and Untidy Data in Optimization (1)

Untidy data from AMPL (steelT.*):

```
set PROD; # products
param T > 0; # number of weeks
param revenue {PROD,1..T} >= 0;
param market {PROD,1..T} >= 0;
param T := 4;
set PROD := bands coils;
                     3 4 :=
param revenue:
      bands
             25 26 27 27
      coils 30 35 37
                             39;
param market: 1 2
                              4 :=
      bands 6000 6000
                      4000 6500
      coils 4000 2500
                      3500 4200 ;
```

• Tidy form:

PROD T bands 1 6000 25 coils 1 4000 30 bands 2 6000 26 coils 2 2500 35 bands 3 4000 27 coils 3 3500 37 bands 4 6500 27				
bands 1 6000 25 coils 1 4000 30 bands 2 6000 26 coils 2 2500 35 bands 3 4000 27 coils 3 3500 37			market	revenue
coils 1 4000 30 bands 2 6000 26 coils 2 2500 35 bands 3 4000 27 coils 3 3500 37	PROD	Т		
bands 2 6000 26 coils 2 2500 35 bands 3 4000 27 coils 3 3500 37	bands	1	6000	25
coils 2 2500 35 bands 3 4000 27 coils 3 3500 37	coils	1	4000	30
bands 3 4000 27 coils 3 3500 37	bands	2	6000	26
coils 3 3500 37	coils	2	2500	35
	bands	3	4000	27
bands 4 6500 27	coils	3	3500	37
	bands	4	6500	27
coils 4 4200 39	coils	4	4200	39

Tidy and Untidy Data in Optimization (2)

Untidy data from OPL (knapsack.*)

• Tidy Form:

		Use
Resources	Items	
	l1	19
	l10	1
	l11	1
	l12	1
R1	12	1
KI	13	10
	14	1
	15	1
	16	14
	17	152
	13	40
	14	70
R6	15	4
	16	63
	19	60
	l10	660
	l12	9
R7	12	32
	16	5
	18	3

Tidy Data – Defined for Optimization

Wickham Definition for Statistics:

"Tidy data is a standard way of mapping the meaning of a dataset to its structure. A dataset is messy or tidy depending on how rows, columns and tables are matched up with observations, variables and types. In tidy data:

- Each variable forms a column.
- Each observation forms a row.
- 3. Each type of observational unit forms a table."

Lustig Definition for Optimization:

Tidy data is a standard way of mapping the meaning of a dataset to its structure. A dataset is messy or tidy depending on how rows, columns and tables are matched up with records, parameters and types. In tidy data:

- 1. Each parameter forms a column.
- 2. Each record forms a row.
- 3. Each type of data unit sharing an index forms a table.
- A Multilndex of each record implicitly defines multiple sets

Example of a Table in Tidy Data

		market	revenue
PROD	Т		
bands	1	6000	25
coils	1	4000	30
bands	2	6000	26
coils	2	2500	35
bands	3	4000	27
coils	3	3500	37
bands	4	6500	27
coils	4	4200	39

Parameters

- 1. Each parameter forms a column.
- 2. Each record forms a row.
- 3. Each type of data unit sharing an index forms a table.
- 4. A Multilndex of each record implicitly defines multiple sets

MultiIndex

Tidy Data Read Into Pandas

tidysteel.csv

```
PROD, T, market, revenue bands, 1,6000,25 coils, 1,4000,30 bands, 2,6000,26 coils, 2,2500,35 bands, 3,4000,27 coils, 3,3500,37 bands, 4,6500,27 coils, 4,4200,39
```


pandas Fundamentals

pandas Series

- Essentially a vector of values (or objects)
- Indexed sequentially (default) and possibly by a specified set of labels
- Examples
 - Create a simple series, which will get indexed sequentially s1 = pd.Series([3,1,4,1,5,9,2,6])
 - Get a specific element: s1[5]

Create a series indexed by letters in the alphabet.

Create a series of random numbers, indexed by a MultiIndex.

• Get a specific element: s3['B',5]

Indexing for Series

- A simple index can be built from any list
 - This is called indexing by *label*
 - Duplicate labels are allowed, but be careful!
- You can pick slices of the index
- Examples
 - Get a mid-sequence of elementss1[2:4]
 - Get elements from one point to the end s2['G':]
 - Get elements up to a specific point s2[:'C']
 - Use integer index to get values from label indexed Series
 s2[5:8]
 - Get specified subset of rows s2[['B','E','G']]

Avoiding Ambiguity with integer Index

- If the index is integer, and not sequential, then referring to specific elements can be ambiguous
 - Use .loc or .iloc instead
 - .loc uses the labels for indexing
 - .iloc uses the positional index (row number)

Example

- What is s4[8] ???
 - pandas will return 20

```
s4.loc[8] is 20
s4.iloc[8] is 80
```

10	0
9	10
8	20
7	30
6	40
5	50
4 3	60
	70
2	80
1	90

MultiIndex

- An index with dimension, consisting of <u>levels</u>
- Think of it as a set of tuples
- Three equivalent ways of creating a MultiIndex

03.MultiIndex.ipynb

Slices with MultiIndex

Code		Resu	ılt	Description
<pre>s1 = pd.Series(</pre>	a b c 1 2	1 2 1 2 1 2 0 1 1	0 1 2 3 4 5	Create the series, using the MultiIndex as the index Get all rows where first label is 'a'
s1[:,2]	a b c	1 3 5		Get all rows where second label is 2

Network Application

Code	Result	Description
<pre>s4 = pd.Series(range(6), index=mi4)</pre>	n1 n2 0 n3 1 n2 n4 2 n3 n4 3 n2 n3 4 n4 n1 5	Create a series indexed by the arc (from,to) pairs
s4['n1']	n2 0 n3 1	Get all arcs from n1
s4['n2']	n4 2 n3 4	Get all arcs from n2
s4[:,'n3']	n1 1 n2 4	Get all arcs into n3

DataFrame

 A pandas DataFrame is a table. Each column is a Series, and each Series is sharing the same Index/MultiIndex

S	Specify Each Column (Series)				Specify Each Row (Record)						
{ 'cos	<pre>lf1 = pd.DataFrame(['cost': [10*i for i in range(6)], 'bound': [100*i for i in range(6)] ,</pre>			<pre>df2 = pd.DataFrame.from_records([(10*i, 100*i) for i in range(6)], columns=['cost','bound'], index=mi4)</pre>							
			bound	cost	1				cost	bound	
	from	to					f	10			
		ĮίΟ				1	from	to			
	n1	n2	0	0	1			n2	0	0	
	n1		0 100	0	-		n1	1	0 10	0 100	
	n1 n2	n2						n2			
		n2 n3	100	10			n1	n2 n3	10	100	
	n2	n2 n3 n4	100	10 20			n1 n2	n2 n3 n4	10 20	100	

Q: Anything interesting about these 2 results?

Indexing for DataFrames

 You can get an individual column in one of two ways

```
df1.cost
df1['cost']
```

 Because of the second method, getting a subset of the rows is trickier

Indexing Options and Errors

Doesn't work	Error reported	Works
df1['n1']	KeyError: 'n1'	df1.loc['n1']
df1['n1',:]	TypeError: unhashable type: 'slice'	df1.loc['n1',:]
df1.loc[:,'n3']	<pre>KeyError: 'the label [n3] is not in the [columns]'</pre>	<pre>df1.loc[('n1','n3'),</pre>

Solution for general slicing

idx=pd.IndexSlice

```
df1.loc[idx[:,'n3'],
    'cost']
    KeyError: 'MultiIndex Slicing
    requires the index to be fully
    lexsorted tuple len (2), lexsort
    depth (0)'
```

Sort the index

```
dfs = df1.sort_index() # Make new DataFrame
df1.sort_index(inplace=True) # Same DataFrame
```

KeyError: 'the label [n3] is not	
in the [columns]'	'cost']

DataFrame Indexing Recommendations

Get one column

```
df1.cost
```

Get more than one column

```
df1[['cost','bound']]
```

 To get a slice of rows, use IndexSlice and sort the index.

```
idx = pd.IndexSlice
df1.sort_index(inplace=True)
```

Use .loc and specify the columns

```
df1.loc[idx[:,'n3'],'cost']
df1.loc[idx[:,'n3'],:]
```

Or pick a column (it becomes a Series) and avoid .loc

```
df1.cost['n1',:]
df1.cost[:,'n3']
```

Reading Data into DataFrames

CSV and Excel Files

- pandas read_csv() and read_excel() functions have lots of options
- Default for CSV: df = pd.read_csv('myfile.csv')
 - Assume a comma separator
 - Assume there is a header row defining column names
 - Creates a sequential index for the DataFrame
 - Uses all columns and all rows
- Default for Excel: df = pd.read_excel('myfile.xlsx')
 - Read the first sheet in the workbook
 - Assume the first row contains names of columns
 - Creates a sequential index for the DataFrame
 - Uses all columns and rows that have values
 - Be careful with a sheet that has extraneous data!
- Various parameters allow you to override the default behaviors

Read CSV Data Into Pandas

tidysteel.csv

PROD, T, market, revenue bands, 1,6000,25 coils, 1,4000,30 bands, 2,6000,26 coils, 2,2500,35 bands, 3,4000,27 coils, 3,3500,37 bands, 4,6500,27 coils, 4,4200,39

		market	revenue
PROD	Т		
bands	1	6000	25
coils	1	4000	30
bands	2	6000	26
coils	2	2500	35
bands	3	4000	27
coils	3	3500	37
bands	4	6500	27
coils	4	4200	39

Read Database Data into pandas

 Consider a MySQL table called "gas" in a schema called "pandas"

name	demand	price	octane	lead
Super	3000.0	70.0	10.0	1.0
Regular	2000.0	60.0	8.0	2.0
Diesel	1000.0	50.0	6.0	1.0

 Use python package sqlalchemy to get connection to database (database specific)

```
import sqlalchemy as sqla
engine = sqla.create_engine(
    'mysql+pymysql://irv:password@localhost:3306')
conn=engine.connect()
```

Multiple ways to read the table

Read all columns, no index created

```
df1 = pd.read_sql_table("gas", con=conn, schema="pandas")
```

Read all columns, specify column for index

Look up metadata to get primary key information

You can also do classic SQL queries

Jupyter

05. Database. ipynb

Read HTML table data

- Pandas can read data from HTML tables
- May need to figure out where the table is within the HTML page.
- Using example from Gurobi:

http://www.gurobi.com/resources/examples/food-manufacture-II

df = pd.read_html("http://www.gurobi.com/resources/examples/food-

manufacture-II")[1]

Jupyter

06.html.ipynb

Note that a list is returned.
 Have to get the right table.

More on I/O supported by pandas

Reading Functions

read_csv

read excel

read hdf

read_sql

read_json

read_html

read_stata

read sas

read clipboard

read pickle

Writing Functions

to csv

to_excel

to hdf

to_sql

to_json

to_html

to_stata

to clipboard

to_pickle

Manipulating Data

Creating Indexes

- All the reading functions allow you to specify which columns make up the Index/MultiIndex
- But you can also set the index if there is not one
 df1 = df.set_index(['Month'])
- You can also reset the index to be numericaldf2 = df1.reset_index()
- If you want to change the index from one column to another, reset and then set:

Read the Data, then get the index sets!

 Get the complete index set as a list list(mrdf.index)

 Look at the unique values corresponding to the index name 'PROD' (two methods)

```
set(mrdf.index.get_level_values('PROD'))
mrdf.index.levels[mrdf.index.names.index('PROD')]
```

 Look at the unique values corresponding to the index name 'T' (two methods)

```
set(mrdf.index.get_level_values('T'))
```


Creating New Columns

- Given a DataFrame, you can create new columns that are arithmetic combinations of other columns
 - The computations are done treating Series as vectors
- Example:

```
df = df.assign(totmin = 60*df.hours + df.minutes)
```

Alternative:

	hours	minutes
0	5	14
1	2	4
2	5	7
3	9	51
4	9	1
5	5	14
2 3 4 5 6	5 5 3	51
7	3	1

	hours	minutes	totmin
0	5	14	314
1	2	4	124
2	5	7	307
3	9	51	591
4	9	1	541
5	5	14	314
6	5	51	351
7	3	1	181

Example Using Date Data

33850 records of Begin/End Dates "dates.csv"

```
Begin, End
20150407, 20150411
20150404, 20150411
20150409, 20150413
20150409, 20150417
20150403, 20150411
20150403, 20150409
```

20150403,20150408

20150403,20150403

Multiple Transformations with .assign

```
ddf = didf.assign(delta = didf.End-didf.Begin,
                  BegYear = didf.Begin//10000,
                  EndYear = didf.End//10000)
                                                             07.assign.ipynb
ddf = (
    ddf.assign(BegMonth = (ddf.Begin-ddf.BegYear*10000)//100,
               EndMonth = (ddf.End-ddf.EndYear*10000)//100,
               BegDay = ddf.Begin % 100,
               EndDay = ddf.End % 100)
    [['Begin','BegYear','BegMonth','BegDay','End',
      'EndYear','EndMonth','EndDay','delta']]
```

 Note use of multiple assignments, and chaining to reorder the columns

	Begin	BegYear	BegMonth	BegDay	End	EndYear	EndMonth	EndDay	delta
0	20150407	2015	4	7	20150411	2015	4	11	4
1	20150404	2015	4	4	20150411	2015	4	11	7

Jupyter

pandas has built-in Date/Time handling

```
dtdf = didf.assign(
    BegTime = pd.to_datetime(didf.Begin, format='%Y%m%d'),
    EndTime = pd.to_datetime(didf.End, format='%Y%m%d')
)
```


	Begin	BegTime	BegYear	BegMonth	BegDay	End	EndTime	EndYear	EndMonth	EndDay	delta
0	20150407	2015-04-07	2015	4	7	20150411	2015-04-11	2015	4	11	4 days
1	20150404	2015-04-04	2015	4	4	20150411	2015-04-11	2015	4	11	7 days

dtdf.dtypes

Begin	int64	End	int64
BegTime	datetime64[ns]	EndTime	datetime64[ns]
BegYear	int64	EndYear	int64
BegMonth	int64	EndMonth	int64
BegDay	int64	EndDay	int64
		delta	timedelta64[ns]

Understanding Data

 After you read in a table, there are useful features to look at parts of the data

Method	Result
df.head(n)	First n (default 5) rows of DataFrame
df.tail(n)	Last n (default 5) rows of DataFrame
<pre>df.describe()</pre>	Descriptive statistics of each column
len(df)	Number of rows in DataFrame
df.sum()	Sum of each column
df.min()	Minimum value of each column
df.max()	Maximum value of each column
<pre>df.hist(bins=n)</pre>	Histogram plot of each column with n bins (default 10)

You can filter and sort data

Filtering

```
df[df.normal < -25]
df[(df.uniform - df.normal > 7) & (df.normal > 0)]
```

Sorting

```
df.sort values(by='normal', inplace=True)
```

Note how the index is preserved when sorting!

Other Data Transformations

Melting Helps Make Tidy Data!

Pivoting Does the Reverse

You can concatenate rows or columns

```
pd.concat([df1,df2])
```


Stack/Unstack – Another pivot operation

 Stacking, with renaming, helps make tidy data by transforming 2 dimensional data by moving column names to index (convert wide to long)

```
df.rename_axis("ind", axis="columns")
    .stack()
    .to_frame("col")
```

 Unstacking is the reverse operation – Good for two dimensional output (convert long to wide)

```
df.unstack()
```

Note that missing values become NaN

Merging/Joining

- pandas Supports Database-style Joins and Merges
 - Essential for combining different tables across indices


```
pd.merge(adf, bdf,
                               how='left', on='x1')
                         Join matching rows from bdf to adf.
                       pd.merge(adf, bdf,
                               how='right', on='x1')
  1.0 T
  2.0 F
                         Join matching rows from adf to bdf.
D NaN T
                       pd.merge(adf, bdf,
                               how='inner', on='x1')
                         Join data. Retain only rows in both sets.
                       pd.merge(adf, bdf,
                               how='outer', on='x1')
                         Join data. Retain all values, all rows.
  NaN
```

Merging/Joining Example

personhoursperday		hours
id	day	
ADK0000000000ICFPT	Мо	0
BEL000000001JDGQU	Мо	8
CFM0000000002KEHRV	Мо	0
DGN000000003LFISW	Мо	0
EHO000000004MGJTX	Мо	0

prefs table		pref
person_id	site_id	
MPW0000000272UORBF	ADK0000000364ICFPT	64
ORY000000196WQTDH	ADK0000000364ICFPT	32
QTA0000000146YSVFJ	ADK0000000364ICFPT	97
TWD000000123BVYIM	ADK0000000364ICFPT	57
ADK0000000000ICFPT	ADK0000000390ICFPT	35

sitehoursperday		hours
id	day	
	Мо	8.0
	Tu	8.0
ADK0000000364ICFPT	We	8.0
	Th	8.0
	Fr	4.0

pandas Merging/Joining Example

peoplehoursperday		hours
id	day	
ADK0000000000ICFPT	Мо	0
BEL000000001JDGQU	Мо	8
CFM0000000002KEHRV	Мо	0
DGN000000003LFISW	Мо	0
EHO000000004MGJTX	Мо	0

prefs table		pref
person_id	site_id	
MPW0000000272UORBF	ADK0000000364ICFPT	64
ORY000000196WQTDH	ADK0000000364ICFPT	32
QTA000000146YSVFJ	ADK0000000364ICFPT	97
TWD0000000123BVYIM	ADK0000000364ICFPT	57
ADK0000000000ICFPT	ADK0000000390ICFPT	35

```
        sitehoursperday
        hours

        id
        day

        Mo
        8.0

        Tu
        8.0

        We
        8.0

        Th
        8.0

        Fr
        4.0
```

groupby – A Powerful pandas Operator

 When working with data, we often need to apply a mathematical operator (sum, min, max, etc.) across a column, grouped by other sets of columns

df.groupby(by="col")

Return a GroupBy object, grouped by values in column or index level named "col".

Function	Description	Function	Description
size()	Size of each group	sum()	Sum values of each group
min()	Minimum of each group	max()	Maximum of each group
mean()	Mean of each group	agg(function)	Apply function to each group

groupby Examples

peoplehoursperday		hours
id	day	
ADK0000000000ICFPT	Мо	0
BEL000000001JDGQU	Мо	8
CFM0000000002KEHRV	Мо	0
DGN000000003LFISW	Мо	0
EHO0000000004MGJTX	Мо	0

peoplehoursperday
 .groupby(by='id').sum()

	hours
id	
ADK0000000000ICFPT	6
ADK0000000026ICFPT	8
ADK0000000052ICFPT	16
ADK0000000078ICFPT	16
ADK000000104ICFPT	25

Jupyter

No. 11. GroupBy. ipynb

peoplehoursperday
 .groupby(by='day').sum()

	hours
day	
Fr	1110
Мо	1518
Sa	133
Su	88
Th	1696
Tu	1818
We	1757

pandas for Optimization

OptiPandas

- Princeton Consultants Library for extending pandas for use in optimization modeling
- Allows constraints to be represented as
 - Series(Linear Expression) <= Series(Linear Expression)
 - Series(Linear Expression == Series(Linear Expression)
 - Series(Linear Expression) >= Series(Linear Expression)
- Makes it easier to write sums over MultiIndex expressions in a highly performant way

import optipandas as opd

Comparing AMPL to pandas

Model File

```
set PROD;
param T > 0;

param rate {PROD} > 0;
param avail {1..T} >= 0;
```

Data File

```
param T := 4;
set PROD := bands coils;

param avail := 1 40 2 40 3 32 4 40;

param rate := bands 200 coils 140;
```


avail.csv

```
Period, avail
1,40
2,40
3,32
4,40
```

rate.csv

```
PROD, rate bands, 200 coils, 140
```

Code

 Note how the sets are inferred from the data

AMPL and pandas Data Representation

AMPL ".dat" file

```
param T := 4;
set PROD := bands coils;
param avail := 1 40 2 40 3 32 4 40;
param rate := bands 200
                        coils 140 ;
param inv0 := bands 10 coils 0;
param prodcost := bands 10  coils 11;
param invcost := bands 2.5 coils
param revenue:
                                 4 :=
      bands
                    26
                          27
                                27
      coils
               30
                    35
                          37
                                39;
param market:
                     2
                           3
                                 4 :=
      bands
             6000
                   6000
                        4000
                              6500
      coils 4000
                   2500
                        3500
                              4200 ;
```

Excel for pandas

	Α	В	С	D	E
1	Product	rate	inv0	prodcost	invcost
2	bands	220	10	10	2.5
3	coils	154	0	11	3
4					
5					
6					
7	Revenue	1	2	3	4
8	bands	25	26	27	27
9	coils	30	35	37	39
10					
11	Market	1	2	3	4
12	bands	6000	6000	4000	6500
13	coils	4000	2500	3500	4200
14					
15					
16			•		
17	Time	avail			
18	1	40			
19	2	40			
20	3	32			
21	4	40			

AMPL and pandas data declarations

AMPL declarations

set PROD;
param T > 0;

param rate {PROD} > 0;
param inv0 {PROD} >= 0;
param avail {1..T} >= 0;
param market {PROD,1..T} >= 0;

param prodcost {PROD} >= 0;

param invcost {PROD} >= 0;

param revenue {PROD,1..T} >= 0;

python code with pandas

```
productDF = pd.read excel("steelT.xlsx", index col=0,
                          skip footer=18)
revenue = pd.read excel("steelT.xlsx", index col=0,
                        skiprows=6, skip footer=12)
revenue.index.name = 'Product'
market = pd.read excel("steelT.xlsx", index col=0,
                       skiprows=10, skip footer=8)
market.index.name = 'Product'
avail = pd.read_excel("steelT.xlsx", index_col=0,
                      skiprows=16, usecols=1)
rmDF = pd.concat(
    [market.rename axis("T", axis="columns")
     .stack().rename("market"),
     revenue.rename axis("T", axis="columns")
     .stack().rename("revenue")],
    axis=1)
```

Decision Variable Declaration

AMPL

var Make {PROD,1..T} >= 0;

var Inv {PROD,0..T} >= 0;

var Sell {p in PROD, t in 1..T} >= 0, <= market[p,t];

 pandas

from docplex.mp.model import Model

model = Model(name='steelT')

Make = pd.Series(model.continuous_var_list(rmDF.index, name='Make'), index=rmDF.index, name="Make")

13.steelT.ipynb

Make = pd.Series(model.continuous_var_list(rmDF.index, name='Make'), index=rmDF.index, name="Make")

**Total Continuous_var_list(rmDF.index, name='Make'), index=rmDF.index, name='Make')

**Total Continuous_var_list(rmDF.index, name='Make'), index=rmDF.index, name='Make')

**Total Continuous_var_list(rmDF.index, name='Make')

**Total Continuous_var_list(rmDF.index,

Sell = pd.Series(model.continuous var list(rmDF.index, ub=list(rmDF.market.values),

Note that we had to create an Index to contain time period 0

Decision Variables as a DataFrame

Product	Т	Make	Sell	Inv
bands	0	NaN	NaN	Inv_('bands', 0)
	1	Make_('bands', 1)	Sell_('bands', 1)	Inv_('bands', 1)
	2	Make_('bands', 2)	Sell_('bands', 2)	Inv_('bands', 2)
	3	Make_('bands', 3)	Sell_('bands', 3)	Inv_('bands', 3)
	4	Make_('bands', 4)	Sell_('bands', 4)	Inv_('bands', 4)
coils	0	NaN	NaN	Inv_('coils', 0)
	1	Make_('coils', 1)	Sell_('coils', 1)	Inv_('coils', 1)
	2	Make_('coils', 2)	Sell_('coils', 2)	Inv_('coils', 2)
	3	Make_('coils', 3)	Sell_('coils', 3)	Inv_('coils', 3)
	4	Make_('coils', 4)	Sell_('coils', 4)	Inv_('coils', 4)

Objective Function

AMPL

```
maximize Total_Profit:
    sum {p in PROD, t in 1..T} (revenue[p,t]*Sell[p,t] -
        prodcost[p]*Make[p,t] - invcost[p]*Inv[p,t]);
```

python

Time constraints

AMPL

```
subject to Time {t in 1..T}:
   sum {p in PROD} (1/rate[p]) * Make[p,t] <= avail[t];</pre>
```

python (using OptiPandas library)

Initial Inventory/Balance constraint

AMPL

```
subject to Init_Inv {p in PROD}: Inv[p,0] = inv0[p];
```

python (using OptiPandas library)

Balance Constraints

AMPL

```
subject to Balance {p in PROD, t in 1..T}:
    Make[p,t] + Inv[p,t-1] = Sell[p,t] + Inv[p,t];
```

python

What does shift(1) do?

Inv.groupby('Product').shift(1)

Solve and Obtain the Solution

		Inv	Make	Sell
Product	Т			
	1	0.0	5990.0	6000.0
bands	2	0.0	6000.0	6000.0
Darius	3	0.0	2040.0	2040.0
	4	0.0	2800.0	2800.0
	1	540.0	1967.0	1427.0
coils	2	0.0	1960.0	2500.0
COIIS	3	0.0	3500.0	3500.0
	4	0.0	4200.0	4200.0

A More Complex Example

Our Example Problem

- Assign hours of work of people to sites per day of week
- Each person can work
 - At most a specified number of hours per day
 - At most a specified number of hours per week
 - At most a specified number of days per week
- Each site needs a set of people assigned for a number of hours per day
- When a person is assigned to a site
 - They must be assigned for at least an hour, in half-hour increments
 - They must be assigned for at least 2 days in the week
- There is a preference score for each person/site pair that is eligible to be assigned
 - Maximize the preferences
- There are not enough people available to cover all the site requirements, so maximize the coverage as best as possible

Data: Sites.csv

```
id,num_hours
TWD00000000357BVYIM,12.0
UXE0000000358CWZJN,179.0
VYF0000000359DXAKO,171.0
WZG0000000360EYBLP,11.0
XAH0000000361FZCMQ,10.0
```

Data: People.csv

```
id, total hrs per week, days per week
ADK0000000000ICFPT,6,3
BEL000000001JDGQU, 12, 3
CFM0000000002KEHRV, 10, 7
DGN000000003LFISW, 28, 6
EH00000000004MGJTX,14,1
FIP0000000005NHKUY, 25, 3
GJQ00000000060ILVZ,20,4
```

Data: peoplehoursperday.csv

```
id, day, hours
GJQ00000002660ILVZ, Fr, 2
UXE000000150CWZJN, We, 4
FIP0000000161NHKUY,Su,0
ILS0000000138QKNXB, We, 0
SVC0000000278AUXHL, Tu, 7
JMT000000139RLOYC, Tu, 4
PSZ0000000223XRUEI, We, 8
```


Data: sitehoursperday.csv

```
id, day, hours
ADK0000000364ICFPT, Mo, 8.0
ADK0000000364ICFPT, Tu, 8.0
ADK0000000364ICFPT, We, 8.0
ADK0000000364ICFPT, Th, 8.0
ADK0000000364ICFPT, Fr, 4.0
ADK0000000390ICFPT, Mo, 8.0
ADK000000390ICFPT, Tu, 8.0
ADK0000000390ICFPT, We, 8.0
ADK0000000416ICFPT, Tu, 2.5
ADK0000000416ICFPT, We, 2.5
ADK000000442ICFPT, Mo, 7.0
```


Data: prefs.csv

person id, site id, pref MPW000000272UORBF, ADK0000000364ICFPT, 64 ORY000000196WQTDH, ADK0000000364ICFPT, 32 QTA000000146YSVFJ, ADK0000000364ICFPT, 97 TWD000000123BVYIM, ADK0000000364ICFPT, 57 ADK0000000000ICFPT, ADK000000390ICFPT, 35 ADK000000026ICFPT, ADK0000000390ICFPT, 95 ADK000000052ICFPT, ADK0000000390ICFPT, 97 ADK000000130ICFPT, ADK0000000390ICFPT, 49 ADK000000156ICFPT, ADK000000390ICFPT, 45 ADK000000234ICFPT, ADK0000000390ICFPT, 83 ADK000000260ICFPT, ADK000000390ICFPT, 40

OPL Declarations to Read In Data

```
setof(string) sites = ...;
float num hours per site[sites] = ...;
tuple tPeopleData {
    float total hrs per week;
    float days per week;
setof(string) people = ...;
tPeopleData peopleData[people] = ...;
tuple tIdDayIndex {
    string id;
    string day;
};
setof(tIdDayIndex) siteHoursPerDayIndex = ...;
float hours per site day[siteHoursPerDayIndex] = ...;
setof(tIdDayIndex) peopleHoursPerDayIndex = ...;
float hours per people day[peopleHoursPerDayIndex] = ...;
tuple tPeopleSiteIndex {
    string person id;
    string site id;
};
setof(tPeopleSiteIndex) prefIndex= ...;
float pref[prefIndex] = ...;
```

Each declaration includes declaring an index set and an array of data indexed on that set

OPL Data File to Read in Data

```
SheetConnection siteSheet("sites.csv");
SheetConnection peopleSheet("people.csv");
SheetConnection siteHoursPerDaySheet("sitehoursperday.csv");
SheetConnection peopleHoursPerDaySheet("peoplehoursperday.csv");
SheetConnection prefSheet("prefs.csv");
sites from SheetRead(siteSheet, "A2:A549");
num hours per site from SheetRead(siteSheet, "B2:B549");
people from SheetRead(peopleSheet, "A2:A358");
peopleData from SheetRead(peopleSheet, "B2:C358");
siteHoursPerDayIndex from SheetRead(siteHoursPerDaySheet, "A2:B1705");
hours per site day from SheetRead(siteHoursPerDaySheet, "C2:C1705");
peopleHoursPerDayIndex from SheetRead(peopleHoursPerDaySheet, "A2:B2500");
hours per people day from SheetRead(peopleHoursPerDaySheet, "C2:C2500");
prefIndex from SheetRead(prefSheet, "A2:B33301");
pref from SheetRead(prefSheet, "C2:C33301");
```

Read statements needed for each index set, and for each data array.

Precise locations in Excel worksheet are required.

Python (pandas) to read in data

```
import pandas as pd
sites = pd.read csv("sites.csv", index col=0)
sites.index.name = 'site id'
people = pd.read csv("people.csv", index col=0)
people.index.name = 'person id'
peoplehoursperday = pd.read csv("peoplehoursperday.csv", index col=[0,1])
peoplehoursperday.index.names = ['person id', 'day']
sitehoursperday = pd.read csv("sitehoursperday.csv", index col=[0,1])
sitehoursperday.index.names = ['site id', 'day']
prefs = pd.read csv("prefs.csv", index col=[0,1])
```

Do people and peoplehoursperday correspond?

O P L

p a n d a s

Check that the people in the prefs table are in the people table

O P L

```
setof(string) peopleInPrefs = { p | <p,s> in prefIndex };
setof(string) peopleToPeoplePrefs = people diff peopleInPrefs;
assert (card(peopleToPeoplePrefs) == card(people) - card(peopleInPrefs));

execute {
    writeln("People in prefs and People refer to same people? ",
        (Opl.card(people) == Opl.card(peopleInPrefs)) &&
        (Opl.card(peopleToPeoplePrefs) == 0));

    writeln("Number of people in prefs = ", Opl.card(peopleInPrefs));
    writeln("People in prefs are in people table? ",
        Opl.card(peopleToPeoplePrefs) == Opl.card(people) - Opl.card(peopleInPrefs));
}
```

```
p
a
n
d
a
s
```

Output

PeopleHoursPerDay and People refer to same people? True Number of people 357

People in Prefs and People refer to same people? False Number of people in prefs = 338

People in prefs are in people table? True

So we can conclude that there are people who have no sites they can be assigned to

There are additional data checks (omitted for brevity)

Merging/Joining

peoplehoursperday		hours
id	day	
ADK0000000000ICFPT	Мо	0
BEL000000001JDGQU	Мо	8
CFM0000000002KEHRV	Мо	0
DGN000000003LFISW	Мо	0
EHO000000004MGJTX	Мо	0

prefs table		pref
person_id	site_id	
MPW0000000272UORBF	ADK0000000364ICFPT	64
ORY000000196WQTDH	ADK0000000364ICFPT	32
QTA0000000146YSVFJ	ADK0000000364ICFPT	97
TWD000000123BVYIM	ADK0000000364ICFPT	57
ADK0000000000ICFPT	ADK0000000390ICFPT	35

sitehoursperday		hours
id	day	
	Мо	8.0
	Tu	8.0
ADK0000000364ICFPT	We	8.0
	Th	8.0
	Fr	4.0

Merging: OPL vs. pandas

```
O
P
L
```

```
setof(tIdDayIndex) prefPeopleHoursByDayIndexAll =
    { <p,d> | p in peopleInPrefs, <p,d> in peopleHoursPerDayIndex };
setof(tIdDayIndex) prefSitesHoursByDayIndexAll =
    { <s,d> | s in sitesInPrefs, <s,d> in siteHoursPerDayIndex };
tuple tPersonSiteDay {
    string person id;
    string site id;
    string day;
};
setof(tPersonSiteDay) prefsPersonSiteDayIndexAll =
    { <p,s,d> | <p,s> in prefIndex,
               <p,d> in prefPeopleHoursByDayIndexAll,
                <s,d> in prefSitesHoursByDayIndexAll };
float hoursPerPersonSiteDayAll[<p,s,d> in prefsPersonSiteDayIndexAll] =
    minl(hours per people day[<p,d>], hours per site day[<s,d>]);
setof(tPersonSiteDay) prefsPersonSiteDayIndex =
    { <p,s,d> | <p,s,d> in prefsPersonSiteDayIndexAll : hoursPerPersonSiteDayAll[<p,s,d>] > 0};
```

```
p
a
n
d
a
```

Determining Eligible pairs, people, sites

O P L

```
setof(tPersonSiteDay) allVarsIndex = prefsPersonSiteDayIndex;
setof(tPeopleSiteIndex) eligiblePairs = { <p,s> | <p,s,d> in allVarsIndex };
setof(string) eligiblePeople = { p | <p,s> in eligiblePairs };
setof(string) eligibleSites = { s | <p,s> in eligiblePairs };
```

```
p
a
n
d
a
```

```
allvars = prefswithdaily.set_index(['person_id','site_id','day'])
eligiblePairs = set((p,s) for (p,s,d) in allvars.index)
eligiblePeople = set(p for p,s in eligiblePairs)
eligibleSites = set(s for p,s in eligiblePairs)
```

Decision Variables

O P L

```
p
a
n
d
a
s
```

```
int blocksPerPersonSiteDay[<p,s,d> in prefsPersonSiteDayIndex] =
       ftoi(round(2.0*hoursPerPersonSiteDayAll[<p,s,d>]));
dvar int+ h[<p,s,d> in allVarsIndex] in 0..blocksPerPersonSiteDay[<p,s,d>];
dvar int+ pairday[<p,s,d> in allVarsIndex] in 0..1;
dvar int+ z[eligiblePairs] in 0..1;
dvar float+ shortage[eligibleSites];
dvar float+ excess[eligibleSites];
from gurobipy import *
m=Model("sched")
h = pd.Series(m.addVars(allvars.index ub=2*allvars.daily hours.values,
                         vtype=GRB.INTEGER, name="h").values(),
              index=allvars.index, name='h')
pairday = pd.Series(m.addVars(allvars.index, vtype=GRB.BINARY,
                               name='pairday').values(),
                    index=allvars.index, name='pairday')
z = pd.Series(m.addVars(eliqiblePairs, vtype=GRB.BINARY, name="z").values(),
              index=pd.MultiIndex.from tuples(eligiblePairs,
                                              names=['person id','site id']),
              name='z')
shortage = pd.Series(m.addVars(eligibleSites, vtype=GRB.CONTINUOUS,
                               name='shortage').values(),
                     index=pd.Index(eligibleSites, name='site id'), name='shortage')
excess = pd.Series(m.addVars(eligibleSites, vtype=GRB.CONTINUOUS,
                             name='excess').values(),
                   index=pd.Index(eligibleSites, name='site id'), name='excess')
```

Objective Function (Hierarchical)

O P L

```
minimize 1.0*totalShortage + 0.0*totalExcess + 0.0*totalPrefs;
totalShortage == sum(s in eligibleSites) shortage[s];
totalExcess == sum(s in eligibleSites) excess[s];
totalPrefs == sum(p in eligiblePairs) pref[p]*z[p];
/* Script */
thisOplModel.generate();
cplex.solve();
thisOplModel.postProcess();
var objVal = cplex.getObjValue();
cplex.setObjCoef(thisOplModel.totalShortage, 0);
cplex.setObjCoef(thisOplModel.totalExcess, 1);
thisOplModel.shortageBound.UB = objVal + 0.25;
cplex.solve();
objVal = cplex.getObjValue();
thisOplModel.excessBound.UB = objVal + 0.25;
cplex.setObjCoef(thisOplModel.totalExcess, 0);
cplex.setObjCoef(thisOplModel.totalPrefs, -1); // To maximize
cplex.solve();
```

```
p
a
n
d
```

```
m.setObjective(quicksum(shortage), sense=GRB.MINIMIZE)
m.optimize()
m.addConstr(quicksum(shortage) <= m.ObjVal+0.25, name='shortageBound')
m.setObjective(quicksum(excess))
m.optimize()
m.addConstr(quicksum(siteSlackVars.excess) <= m.ObjVal+0.25, name='excessBound')

conDF = zvars.merge(prefs, left_index=True, right_index=True, how='left')
m.setObjective(quicksum(prefs.pref[z.index]*z), sense=GRB.MAXIMIZE)
m.optimize()</pre>
```

Constraint: Limit Hours Per Person Per Day

 $\sum_{(p,s,d)} h[p,s,d] \leq 2 * people_hours_per_day[p,d], \forall (p,d)$

```
forall (<p,d> in prefPeopleHoursByDayIndex) {
   PersonHoursPerDay[<p,d>]:
        sum(<p,s,d> in allVarsIndex) h[<p,s,d>] <= 2*hours_per_people_day[<p,d>];
}
```

```
opd.forall(m, ["person_id", "day"],
     (opd.sum('site_id', h) <= 2*peoplehoursperday.hours), "PersonHoursPerDay")</pre>
```

P

n d a s

Constraint: Limit Hours Per Site Per Day

```
O
P
I
```

```
forall (<s,d> in prefSitesHoursByDayIndex) {
   SiteHoursPerDay[<s,d>]:
        sum(<p,s,d> in allVarsIndex) h[<p,s,d>] <= 2*hours_per_site_day[<s,d>];
}
```

P a

n

d

a

```
opd.forall(m, ["site_id", "day"],
          (opd.sum('person_id', h) <= 2*sitehoursperday.hours), "SiteHoursPerDay")</pre>
```

Constraint: Limit Hours Per Week

```
forall (p in eligiblePeople) {
TotalHoursPerWeek[p]:
    sum(<p,s,d> in allVarsIndex) h[<p,s,d>] <= 2*peopleData[p].total hrs per week;</pre>
```

(opd.sum(['site id','day'], h) <= 2*people.total hrs per week),</pre>

a

n

d

a

S

opd.forall(m, "person id",

"TotalHoursPerWeek")

Constraint: Must be assigned for at least an hour

O P L

```
forall (<p,s,d> in allVarsIndex) {
  PairDayUp[<p,s,d>]:
    h[<p,s,d>] <= blocksPerPersonSiteDay[<p,s,d>]*pairday[<p,s,d>];
  PairDayLow[<p,s,d>]:
    2*pairday[<p,s,d>] <= h[<p,s,d>];
}
```

person_id	site_id	day	bret	daily_ hours	h	pairday
MPW0000000272UORBF		Мо	64	8 N	ADKOOOOOO3641CEPT Mol	<gurobi.var pairday[MPW0000000272UORBF, ADK0000000364ICFPT,Mo]></gurobi.var
		Tu	64	8.0	, •	<pre><gurobi.var adk0000000364icfpt,tu]="" pairday[mpw0000000272uorbf,=""></gurobi.var></pre>

Constraint: Limit on Total Days Per Week

```
O
P
L
```

```
forall (p in eligiblePeople) {
  TotalDaysPerWeek[p]:
    sum(<p,s,d> in allVarsIndex) pairday[<p,s,d>] <= peopleData[p].days_per_week;
}</pre>
```

P

a

n

d

a

Constraint: If assigned to a site, must be for at least 2 days

О Р L

```
forall (<p,s> in eligiblePairs) {
ZVarUp[<p,s>]:
    2*z[<p,s>] <= sum(<p,s,d> in allVarsIndex) pairday[<p,s,d>];
ZVarLow[<p,s>]:
    sum(<p,s,d> in allVarsIndex) pairday[<p,s,d>] <=
        card({<p,s,d> | <p,s,d> in allVarsIndex}) *z[<p,s>];
}
```

Compute the sum as an object. Use number of variables in sum to compute big-M

```
P
a
n
d
a
s
```

Constraint: Track Hours Assigned to Site

O P I

```
P
```

a n d

a

Solving

```
m.setParam(GRB.Param.TimeLimit, 300)
m.setParam(GRB.Param.CutPasses, 1)
m.optimize()
m.addConstr(quicksum(shortage) <= m.ObjVal+0.25, name='shortageBound')</pre>
m.setObjective(quicksum(excess))
resetParams()
m.setParam(GRB.Param.TimeLimit, 180)
m.setParam(GRB.Param.Presolve, 0)
m.setParam(GRB.Param.Cuts, 0)
m.optimize()
m.addConstr(quicksum(.excess) <= m.ObjVal+0.25, name='excessBound')</pre>
conDF = zvars.merge(prefs, left index=True, right index=True, how='left')
m.setObjective(quicksum(prefs.pref[z.index]*z), sense=GRB.MAXIMIZE)
resetParams()
m.setParam(GRB.Param.MIPGap, 0.01) # Set gap to 1%
m.setParam(GRB.Param.Cuts, 0)
m.setParam(GRB.Param.SubMIPNodes, 1500)
m.setParam(GRB.Param.TimeLimit, 180)
m.optimize()
```

Solution

hvals = pd.Series([h.x for h in h], index=h.index)
pairings = hvals[hvals>0]

			hours
person_id	site_id	day	
ORY000000196WQTDH	ADK000000364ICFPT	Th	4.0
ORTUUUUUU 196WQTDH	ADRUUUUUUU304ICFFI	Fr	4.0
		Мо	2.0
QTA000000146YSVFJ	ADK0000000364ICFPT	Tu	12.0
		We	12.0
TWD000000123BVYIM	ADK000000364ICFPT	Мо	12.0
T VV DUUUUUUU T Z 3 D V T IIVI	ADRUUUUUUU304ICFFI	Th	12.0
ADV0000004201CEDT	ADV0000000000CEDT	Мо	16.0
ADK000000130ICFPT	ADK000000390ICFPT	Tu	2.0
BEL0000000235JDGQU	ADK000000390ICFPT	Tu	14.0

Conclusion

- pandas and Python provide a powerful combination for working with data used to build optimization models
 - There are other powerful features in pandas for analyzing and organizing data
 - Reshaping, Grouping, Functions on data, plotting
- Using pandas, you can write efficient code for building optimization models
 - With OptiPandas from Princeton Consultants, write vectors of constraints
- Think Different!
 - Data FIRST
 - Model SECOND