Exercise Solutions for Math 20

Factoring Polynomials and Simplifying Rational Expressions

 ${\it Nile Jocson < novoseiversia@gmail.com}{>}$

November 8, 2024

Contents

1	Factor the following completely.	
	1.1 $16x^4 - 1$	
	1.2 $8j^3 - 125k^6$	
	1.3 $s^2 + 7s + 10 \dots $	
	1.4 $4n^2 - 12n + 9$	
	1.5 $x^3 - x^2 - x + 1$	
	1.6 $48 - 13q - q^2$	
2	Reduce the following rational expressions to lowest terms. $2.1 \frac{a^2 - b^2}{a^3 - b^3} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$2.1 \frac{a^2 - b^2}{a^3 - b^3} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

1 Factor the following completely.

1.1 $16x^4 - 1$

$\Rightarrow (4x^2 - 1)(4x^2 + 1)$	Factor using difference of two squares.
$\Rightarrow (2x-1)(2x+1)(4x^2+1)$	Factor using difference of two squares.
	-

1.2 $8j^3 - 125k^6$

$\Rightarrow (2j - 5k^2)(4j^2 + 10jk^2 + 25k^4)$	Factor using difference of two cubes.
	•

1.3 $s^2 + 7s + 10$

$\Rightarrow (s+2)(s+5)$	Factor by grouping.

1.4 $4n^2 - 12n + 9$

$\Rightarrow 4n^2 - 6n - 6n + 9$	Factor by grouping.
$\Rightarrow 2n(2n-3) - 3(2n-3)$	
$\Rightarrow (2n-3)^2$	
	•

1.5 $x^3 - x^2 - x + 1$

$\Rightarrow x^2(x-1) - 1(x-1)$	Factor by grouping.
$\Rightarrow (x^2 - 1)(x - 1)$	
$\Rightarrow (x-1)(x+1)(x-1)$	Factor using difference of two squares.
$\Rightarrow (x-1)^2(x+1)$	
	=

1.6 $48 - 13q - q^2$

$\Rightarrow -q^2 - 13q + 48$	Rewrite in standard form.
$\Rightarrow -(q^2 + 13q - 48)$	
$\Rightarrow -(q-3)(q+16)$	Factor by grouping.
	•

2 Reduce the following rational expressions to lowest terms.

2.1 $\frac{a^2-b^2}{a^3-b^3}$

$\Rightarrow \frac{(a-b)(a+b)}{a^3-b^3}$	Factor using difference of two squares.
$\Rightarrow \frac{(a-b)(a+b)}{(a-b)(a^2+ab+b^2)}$	Factor using difference of two cubes.
$\Rightarrow \frac{a+b}{a^2+ab+b^2}$	

2.2 $\frac{x^3-x^2y+xy^2-y^3}{x^6+y^6}$

3 Perform the following operations and simplify.

3.1
$$\left(\frac{x}{x^2-1}-\frac{3}{x+1}\right) \div \frac{2x^2-x-3}{x^3-1}$$

$$\begin{array}{ll} \Rightarrow \left(\frac{x}{(x-1)(x+1)} - \frac{3}{x+1}\right) \div \frac{2x^2 - x - 3}{x^3 - 1} & \text{Factor using difference of two squares.} \\ \Rightarrow \left(\frac{x}{(x-1)(x+1)} - \frac{3(x-1)}{(x-1)(x+1)}\right) \div \frac{2x^2 - x - 3}{x^3 - 1} & \text{LCM} = (x-1)(x+1) \\ \Rightarrow \frac{x - 3(x-1)}{(x-1)(x+1)} \div \frac{2x^2 - x - 3}{x^3 - 1} & \text{LCM} = (x-1)(x+1) \\ \Rightarrow \frac{x - 3x + 3}{(x-1)(x+1)} \div \frac{2x^2 - x - 3}{x^3 - 1} & \text{Factor by grouping.} \\ \Rightarrow \frac{-2x + 3}{(x-1)(x+1)} \div \frac{2x^2 + 2x - 3x - 3}{x^3 - 1} & \text{Factor by grouping.} \\ \Rightarrow \frac{-2x + 3}{(x-1)(x+1)} \div \frac{2x(x+1) - 3(x+1)}{x^3 - 1} & \text{Factor using difference of two cubes.} \\ \Rightarrow \frac{-2x + 3}{(x-1)(x+1)} \div \frac{(2x - 3)(x+1)}{x^3 - 1} & \text{Factor using difference of two cubes.} \\ \Rightarrow \frac{-2x + 3}{(x-1)(x+1)} \div \frac{(2x - 3)(x+1)}{(2x - 3)(x+1)} & \text{Factor using difference of two cubes.} \\ \Rightarrow \frac{-2x + 3}{(x-1)(x+1)} \div \frac{(2x - 3)(x+1)}{(2x - 3)(x+1)} & \text{a} \div b = a \cdot \frac{1}{b} \\ \Rightarrow \frac{-2x + 3}{(x-1)(x+1)^2} & \Rightarrow \frac{-(2x + 3)(x^2 + x + 1)}{(2x - 3)(x+1)^2} \\ \Rightarrow \frac{-(2x - 3)(x^2 + x + 1)}{(2x - 3)(x+1)^2} & \Rightarrow \frac{-x^2 + x + 1}{(x+1)^2} \\ & \Rightarrow -x^2 + x + 1 \\$$

3.2
$$\left(\frac{x}{x+y} + \frac{y}{x-y}\right) \cdot \frac{x^2 - xy}{x^4 - y^4} \div \frac{x}{x^2 + 2xy + y^2}$$

$$\Rightarrow \left(\frac{x(x-y)}{(x-y)(x+y)} + \frac{y(x+y)}{(x-y)(x+y)}\right) \cdot \frac{x^2 - xy}{x^4 - y^4} \div \frac{x}{x^2 + 2xy + y^2}$$

$$\Rightarrow \frac{x(x-y) + y(x+y)}{(x-y)(x+y)} \cdot \frac{x^2 - xy}{x^4 - y^4} \div \frac{x}{x^2 + 2xy + y^2}$$

$$\Rightarrow \frac{x^2 - xy + xy + yy}{(x-y)(x+y)} \cdot \frac{x^2 - xy}{x^4 - y^4} \div \frac{x}{x^2 + 2xy + y^2}$$

$$\Rightarrow \frac{x^2 + y^2}{(x-y)(x+y)} \cdot \frac{x^2 - xy}{x^4 - y^4} \div \frac{x}{x^2 + 2xy + y^2}$$

$$\Rightarrow \frac{x^2 + y^2}{(x-y)(x+y)} \cdot \frac{x^2 - xy}{(x^2 - y^2)(x^2 + y^2)} \div \frac{x}{x^2 + 2xy + y^2}$$
Factor using difference of two squares.
$$\Rightarrow \frac{x^2 + y^2}{(x-y)(x+y)} \cdot \frac{x^2 - xy}{(x-y)(x+y)(x^2 + y^2)} \div \frac{x}{x^2 + 2xy + y^2}$$
Factor using difference of two squares.
$$\Rightarrow \frac{x^2 + y^2}{(x-y)(x+y)} \cdot \frac{x(x-y)}{(x-y)(x+y)(x^2 + y^2)} \div \frac{x}{x^2 + 2xy + y^2}$$

$$\Rightarrow \frac{x}{(x-y)(x+y)} \cdot \frac{x}{(x-y)(x+y)(x^2 + y^2)} \div \frac{x}{x^2 + 2xy + y^2}$$

$$\Rightarrow \frac{x}{(x-y)(x+y)^2} \div \frac{x}{(x^2 + 2xy + y^2)}$$
Factor using difference of two squares.
$$\Rightarrow \frac{x^2 + y^2}{(x-y)(x+y)} \cdot \frac{x(x-y)}{(x-y)(x+y)(x^2 + y^2)} \div \frac{x}{x^2 + 2xy + y^2}$$

$$\Rightarrow \frac{x}{(x-y)(x+y)^2} \cdot \frac{x}{(x^2 + 2xy + y^2)}$$
Factor using perfect square trinomial.
$$\Rightarrow \frac{x}{(x-y)(x+y)^2} \cdot \frac{(x+y)^2}{x}$$

$$\Rightarrow \frac{x}{(x-y)(x+y)^2} \cdot \frac{(x+y)^2}{x}$$

$$\Rightarrow \frac{1}{x-y}$$