

Светодиод Light-emitting diode - LED

Светодиодите са елементи, които преобразуват електрическата енергия в светлина. Те имат един *PN* преход.

Структура на светодиод

Принцип на действие

Принципът им на действие се основава на процесите на рекомбинация, протичащи в право включен *PN* преход. При право включване започва инжекция на токоносители.

Инжектираните електрони от n-областта рекомбинират с дупките от p-областта. Електроните имат повисоко енергийно ниво и при падането на нивата на дупките губят енергия.

Енергията се излъчва под формата на квантове светлина – фотони.

Явлението се нарича електролуминисценция.

Дължина на вълната

$$E=hf=\frac{hc}{\lambda}=\Delta W$$
 $\lambda = \frac{hc}{\Delta W} = \frac{1200}{\Delta W}$

λ= 380 – 760 nm видима област

 $\Delta W = 1.6 - 3.1 \text{ eV (GaP, SiC, GaAlAs, GaAsP)}$

Колкото по-голяма е широчината на забранената зона, толкова по-голяма е енергията на излъчения фотон и толкова по-висока е честотата на излъчената светлина (респективно по-къса дължината на вълната й).

Е – енергия [J]

f – честота [Hz]

h – константа на Планк

с — скорост на светлината във вакуум

 $\Delta \mathsf{W}$

Violet ∼ 3.17eV

Blue ~ 2.73eV

Green ~ 2.52eV

Yellow ~ **2.15eV**

Orange ~ **2.08eV**

Red ~ 1.62eV

Спектрална характеристика

Спектралната характеристика дава зависимостта на интензитета на излъчване на светодиода от дължината на вълната. Тя се определя от вида на полупроводниковия материал и легиращите примеси в него.

Конструкция на светодиод

Корпуси

DIP – dual in-line package

Surface-Mounted Device (SMD)

Бял светодиод - RGB

5050 LED

Package

Controller

Бял светодиод – син LED + "фосфор"

Бял светодиод – LED + "фосфор"

Син LED + жълт фосфор

UV-LED + RGB фосфор

Нобелова награда за физика - 2014

"for the invention of **efficient** blue light-emitting diodes which has enabled bright and energy-saving white light sources"

© Nobel Media AB. Photo: A. Mahmoud Isamu Akasaki

© Nobel Media AB. Photo: A. Mahmoud **Hiroshi Amano**

© Nobel Media AB. Photo: A. Mahmoud Shuji Nakamura

Why It Was Almost Impossible to Make the Blue LED https://www.youtube.com/watch?v=AF8d72mA41M

Ефективност на светлинните източници

Лумен (символ lm) е единицата за светлинен поток (т.е. количеството светлина, излъчвана от точков източник на светлина за единица време и измервано в един пространствен ъгъл от един стерадиан.).

Качество на бялата светлина

Spectra From Common Sources of Visible Light

color rendering index (CRI)

Light source	CCT (K)	CRI
Low-pressure sodium (LPS/SOX)	1800	-44
High-pressure sodium (HPS/SON)	2100	24
Halophosphate warm-white fluorescent	2940	51
Halophosphate cool-white fluorescent	4230	64
Halophosphate cool-daylight fluorescent	6430	76
Standard LED Lamp	2700-5000	83
High-CRI <u>LED</u> lamp (blue LED)	2700–5000	95
Ceramic discharge metal-halide lamp	5400	96
Ultra-high-CRI <u>LED</u> lamp (violet LED)	2700–5000	99
Incandescent/halogen bulb	3200	100

Цветна температура

Color Temperature Scale

Чувствителност на човешкото око към цвета на светлината

VA характеристика

Поради по-широката забранена зона на материалите, светодиодите имат значително по-голям пад в права посока от Ge и Si изправителни диоди.

VA характеристика на червен и зелен светодиод

Светлинна характеристика

Представлява зависимостта на излъчения светлинен поток Φ от тока I_F , протичащ през диода.

Областта на насищане при големи стойности на тока се дължи на нарастване на относителния дял на безизлъчвателната рекомбинация при загряване на прехода.

Forward Current vs Relative Luminous Flux 順電流-相対光束特性 $T_{j} = 25$ °C 5 Relative Luminous Flux(a.u.) 4 相対光東(Irp=65mAで正規化) (Normalized at IFP=65mA) 3 2 0 0 50 100 150 200 250 300 Forward Current(mA)

順電流

Junction Temperature(°C) ジャンクション温度

Оразмеряване на схема със светодиод

Задача: Проектирайте схема на захранване на син (бял, червен,...) светодиод. Захранващото напрежение е 12V.

- Намерете каталожни данни и изберете конкретен модел светодиод.
- От каталожните данни изберете **подходящ ток през диода**. Той не трябва да надхвърля указаната максимална стойност, но и не трябва да е твърде малък защото излъчването ще е слабо.
- Скицирайте схема на свързване на светодиод.
- Оразмерете схемата

Намерете каталожни данни и изберете конкретен модел светодиод.

Google search: blue led datasheet (white led datasheet, ...)

https://cree-led.com/media/documents/C503B-BCS-BCN-GCS-GCN-1094.pdf

https://www.vishay.com/docs/81159/vlhw5100.pdf

От каталожните данни изберете подходящ ток през диода. Той не трябва да надхвърля указаната максимална стойност, но и не трябва да е твърде малък защото излъчването ще е слабо.

(3 mm from the base of the epoxy bi

ABSOLUTE MAXIMUM RATINGS $(T_A = 25^{\circ}C)$

Items	Symbol	Absolute Maximum Rating	Unit
		Blue/Green	
Forward Current	$I_{_{\sf F}}$	30	mA
Peak Forward Current Note1	I_{FP}	100	mA
Reverse Voltage	V_R	5	V
Power Dissipation	P_{D}	120	mW
Operation Temperature	T _{opr}	-40 ~ +95	°C
Storage Temperature	T _{stg}	-40 ~ +100	(RELATIVE LU
	May 2600C for 2 coc m		

T_{sol}

Note:

1. Pulse width ≤ 0.1 msec, duty $\leq 1/10$.

Lead Soldering Temperature

FIG.2 RELATIVE LUMINOUS INTENSITY VS. FORWARD CURRENT

Добра идея е да изберете стойноста на If за която са дадени типични стойност на Uf.

TYPICAL ELECTRICAL & OPTICAL CHARACTERISTICS $(T_A = 25^{\circ}C)$

Characteristics		Color	Symbol	Condition	Unit	Minimum	Typical	Maximum
Forward Voltage		Blue/Green	V_{F}	$I_F = 20 \text{ mA}$	V		3.2	3.6
Reverse Current		Blue/Green	I_{R}	$V_R = 5 V$	μΑ			100
Dominant Wavelength		Blue	$\lambda_{_{D}}$	$I_F = 20 \text{ mA}$	nm	465	470	480
		Green	$\lambda_{\scriptscriptstyle D}$	$I_F = 20 \text{ mA}$	nm	520	527	535
Luminous Intensity	Blue	C503B-BCS/BCN-030	I_{v}	$I_F = 20 \text{ mA}$	mcd	1520	4100	
	Green	C503B-GCS/GCN-030	I_{v}	$I_F = 20 \text{ mA}$	mcd	5860	12500	
50% Power Angle	C503	BB-BCS/BCN/GCS/GCN-030	2θ1/2	$I_F = 20 \text{ mA}$	deg	30		

- Скицирайте схема на свързване на светодиод.
- Оразмерете схемата т.е. изчислете стойността на R1

 $I_R1 = I_D1 = 20mA$

Избор на стандартна стойност на резистора

R1 = 440Ω (изчислена стойност) => избираме стандартна стойност от ред E24 R1 = 430Ω , 5%

```
E24 values (5% tolerance)
1.0, 1.1, 1.2, 1.3, 1.5, 1.6, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.6, 3.9, 4.3

E48 values (2% tolerance)
1.00, 1.05, 1.10, 1.15, 1.21, 1.27, 1.33, 1.40, 1.47, 1.54, 1.62, 1.69, 1.78, 1.87, 1.96, 2.05, 2.15, 2.26, 2.37, 2.49, 2.61, 2.74, 2.87, 3.01, 3.16, 3.32, 3.48, 3.65, 3.83, 4.02, 4.22, 4.42, 4.64, 4.87, 5.11, 5.36, 5.62, 5.90, 6.19, 6.49, 6.81, 7.15, 7.50, 7.87, 8.25, 8.66, 9.09, 9.53

E96 values (1% tolerance)
1.00, 1.02, 1.05, 1.07, 1.10, 1.13, 1.15, 1.18, 1.21, 1.24, 1.27, 1.30, 1.33, 1.37, 1.40, 1.43, 1.47, 1.50, 1.54, 1.58, 1.62, 1.65, 1.69, 1.74, 1.78, 1.82, 1.87, 1.91, 1.96, 2.00, 2.05, 2.10, 2.15, 2.21, 2.26, 2.32, 2.37, 2.43, 2.49, 2.55, 2.61, 2.67, 2.74, 2.80, 2.87, 2.94, 3.01, 3.09, 3.16, 3.24, 3.32, 3.40, 3.48, 3.57, 3.65, 3.74, 3.83, 3.92, 4.02, 4.12, 4.22, 4.32, 4.42, 4.53, 4.64, 4.75, 4.87, 4.99, 5.11, 5.23, 5.36, 5.49, 5.62, 5.76, 5.90, 6.04, 6.19, 6.34, 6.49, 6.65, 6.81, 6.98, 7.15, 7.32, 7.50, 7.68, 7.87, 8.06, 8.25, 8.45, 8.66, 8.87, 9.09, 9.31, 9.53, 9.76
```

Числата от тези редове се умножават по степени на 10 за да се получат стойностите на съпротивленията. Например 4.3 съответства на 4.3Ω , 43Ω , 430Ω , $4.3\kappa\Omega$, $43\kappa\Omega$, $430\kappa\Omega$ и т.н.

$$P_R = U_R * I_R = 8.8V * 0.02A = 0.176W$$

Избираме 1/4W резистор

Code	e	Lengt	h (l)	Width	(w)	Heigh	t (h)	Power
Imperial	Metric	inch	mm	inch	mm	inch	mm	Watt
0201	0603	0.024	0.6	0.012	0.3	0.01	0.25	1/20 (0.05)
0402	1005	0.04	1.0	0.02	0.5	0.014	0.35	1/16 (0.062)
0603	1608	0.06	1.55	0.03	0.85	0.018	0.45	1/10 (0.10)
0805	2012	0.08	2.0	0.05	1.2	0.018	0.45	1/8 (0.125)
1206	3216	0.12	3.2	0.06	1.6	0.022	0.55	1/4 (0.25)
1210	3225	0.12	3.2	0.10	2.5	0.022	0.55	1/2 (0.50)
1812	3246	0.12	3.2	0.18	4.6	0.022	0.55	1
2010	5025	0.20	5.0	0.10	2.5	0.024	0.6	3/4 (0.75)
2512	6332	0.25	6.3	0.12	3.2	0.024	0.6	1

Задача: Да се оразмери схемата, така че през диодите да тече ток 20mA.

От графиката: If = 20mA -> Uf = 3.5V

$$U_R1 = U1 - 3 .Uf = 12 - 10.5 = 1.5V$$

R1 = U_R1 / I_R1 = U_R1 / If = 1.5V / 20mA = 0.075 kOhm = 75 Ohm

(a)
$$U_1 = 12V$$
, $R_1 = ?$

(б) Волт-амперна характеристика на светодиод

Допълнителни ресурси

- How Resistor Work https://www.youtube.com/watch?v=DYcLFHgVCn0
- How LED Works https://www.youtube.com/watch?v=O8M2z2hlbag
- Why It Was Almost Impossible to Make the Blue LED https://www.youtube.com/watch?v=AF8d72mA41M
- How Blue LEDs Were Invented https://www.youtube.com/watch?v=yoTALRhAqWc&t=0s