Exploratory Data Analysis

Perform 'Exploratory Data Analysis' on the provided dataset 'SampleSuperstore'

Installing required packages

In [1]:

```
!pip3 install cufflinks

'pip3' is not recognized as an internal or external command,
operable program or batch file.
```

In [2]:

```
#import all the libraries first
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

import cufflinks as cf
from plotly.offline import download_plotlyjs,init_notebook_mode,plot,iplot
init_notebook_mode(connected=True)
cf.go_offline()

%matplotlib inline
```

In [4]:

```
#Now read the given csv file for the EDA

df1 = pd.read_csv('SampleSuperstore.csv')
print("Data imported successfully")
df1.head(10)
```

Data imported successfully

Out[4]:

	Ship Mode	Segment	Country	City	State	Postal Code	Region	Category	Sub- Category	Sales	Quantity	Discount	Profit
0	Second Class	Consumer	United States	Henderson	Kentucky	42420	South	Furniture	Bookcases	261.9600	2	0.00	41.9136
1	Second Class	Consumer	United States	Henderson	Kentucky	42420	South	Furniture	Chairs	731.9400	3	0.00	219.5820
2	Second Class	Corporate	United States	Los Angeles	California	90036	West	Office Supplies	Labels	14.6200	2	0.00	6.8714
3	Standard Class	Consumer	United States	Fort Lauderdale	Florida	33311	South	Furniture	Tables	957.5775	5	0.45	383.0310
4	Standard Class	Consumer	United States	Fort Lauderdale	Florida	33311	South	Office Supplies	Storage	22.3680	2	0.20	2.5164
5	Standard Class	Consumer	United States	Los Angeles	California	90032	West	Furniture	Furnishings	48.8600	7	0.00	14.1694
6	Standard Class	Consumer	United States	Los Angeles	California	90032	West	Office Supplies	Art	7.2800	4	0.00	1.9656
7	Standard Class	Consumer	United States	Los Angeles	California	90032	West	Technology	Phones	907.1520	6	0.20	90.7152
8	Standard Class	Consumer	United States	Los Angeles	California	90032	West	Office Supplies	Binders	18.5040	3	0.20	5.7825

9 Standard Consumer Collaboratery Coductory Angelies California Region Code Region Category Category Category Category Category

In [5]:

#For find the data tail df1.tail(10)

Out[5]:

	Ship Mode	Segment	Country	City	State	Postal Code	Region	Category	Sub- Category	Sales	Quantity	Discount	Prc
9984	Standard Class	Consumer	United States	Long Beach	New York	11561	East	Office Supplies	Labels	31.500	10	0.0	15.12
9985	Standard Class	Consumer	United States	Long Beach	New York	11561	East	Office Supplies	Supplies	55.600	4	0.0	16.12
9986	Standard Class	Consumer	United States	Los Angeles	California	90008	West	Technology	Accessories	36.240	1	0.0	15.22
9987	Standard Class	Corporate	United States	Athens	Georgia	30605	South	Technology	Accessories	79.990	1	0.0	28.79
9988	Standard Class	Corporate	United States	Athens	Georgia	30605	South	Technology	Phones	206.100	5	0.0	55.64
9989	Second Class	Consumer	United States	Miami	Florida	33180	South	Furniture	Furnishings	25.248	3	0.2	4.10
9990	Standard Class	Consumer	United States	Costa Mesa	California	92627	West	Furniture	Furnishings	91.960	2	0.0	15.63
9991	Standard Class	Consumer	United States	Costa Mesa	California	92627	West	Technology	Phones	258.576	2	0.2	19.39
9992	Standard Class	Consumer	United States	Costa Mesa	California	92627	West	Office Supplies	Paper	29.600	4	0.0	13.32
9993	Second Class	Consumer	United States	Westminster	California	92683	West	Office Supplies	Appliances	243.160	2	0.0	72.94
4													Þ

In [6]:

#In this we should find the whole information odf the given data. dfl.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9994 entries, 0 to 9993
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype	
0	Ship Mode	9994 non-null	object	
1	Segment	9994 non-null	object	
2	Country	9994 non-null	object	
3	City	9994 non-null	object	
4	State	9994 non-null	object	
5	Postal Code	9994 non-null	int64	
6	Region	9994 non-null	object	
7	Category	9994 non-null	object	
8	Sub-Category	9994 non-null	object	
9	Sales	9994 non-null	float64	
10	Quantity	9994 non-null	int64	
11	Discount	9994 non-null	float64	
12	Profit	9994 non-null	float64	
dtypes: float64(3), int64(2), object(8)				
memory usage: 1015.1+ KB				

In [7]:

 $\mbox{\#In}$ this we should find whole descrpition of the given data. dfl.describe()

Out[7]:

Postal Code Sales Quantity Discount Profit

count	19881 A 19884	9994.0 എൂറ്റു	999 6020000	999 6:86900U	9994.0 00000
mean	55190.379428	229.858001	3.789574	0.156203	28.656896
std	32063.693350	623.245101	2.225110	0.206452	234.260108
min	1040.000000	0.444000	1.000000	0.000000	-6599.978000
25%	23223.000000	17.280000	2.000000	0.000000	1.728750
50%	56430.500000	54.490000	3.000000	0.200000	8.666500
75%	90008.000000	209.940000	5.000000	0.200000	29.364000
max	99301 000000	22638 480000	14 000000	0.800000	8399 976000

In [8]:

```
#In this we find all the maximum values of each coloumn. dfl.max()
```

Out[8]:

Ship Mode Standard Class Segment Home Office Country United States City Yuma State Wyoming Postal Code 99301 Region West Technology Category Sub-Category Tables Sales 22638.5 Quantity 14 Discount 0.8 8399.98 Profit

dtype: object

In [9]:

```
#In this we find all the mainimum values of each coloumn. dfl.min()
```

Out[9]:

First Class Ship Mode Consumer Segment United States Country City Aberdeen State Alabama Postal Code 1040 Central Region Category Furniture Sub-Category Accessories 0.444 Sales Quantity 1 Discount 0 Profit -6599.98 dtype: object

In [10]:

```
#For the Unique Values
df1['Category'].unique()
```

Out[10]:

```
array(['Furniture', 'Office Supplies', 'Technology'], dtype=object)
```

In [11]:

```
#For finding the Missing Values dfl.isna().any()
```

Out.[111:

.

False Ship Mode False Segment Country False City False State False Postal Code False Region False Category False Sub-Category False Sales False Quantity False Discount False Profit False dtype: bool

In [12]:

 $\# Computing \ Pairwise \ Correlation \ of \ Columns \ df1.corr()$

Out[12]:

	Postal Code	Sales	Quantity	Discount	Profit
Postal Code	1.000000	-0.023854	0.012761	0.058443	-0.029961
Sales	-0.023854	1.000000	0.200795	-0.028190	0.479064
Quantity	0.012761	0.200795	1.000000	0.008623	0.066253
Discount	0.058443	-0.028190	0.008623	1.000000	-0.219487
Profit	-0.029961	0.479064	0.066253	-0.219487	1.000000

In [13]:

```
#For create the scatter plot
df1.plot.scatter(x='Discount',y='Profit',c='purple',s=50,figsize=(12,5))
plt.show()
```


In [14]:

```
#Sperad plot for 3D Visulization
df1[['Discount','Profit']].iplot(kind='spread')
```

 $\verb|C:\Users\hp\anaconda3|\lib\site-packages\cufflinks\plotlytools.py:849: Future \verb|Warning:|\lines|$

The pandas.np module is deprecated and will be removed from pandas in a future version. Import num py directly instead

 $\verb|C:\Users\hp\anaconda3\lib\site-packages\cufflinks\plotlytools.py:850: Future \verb|Warning:|Future | Future \verb|Warning:|Future | Future | F$

The pandas.np module is deprecated and will be removed from pandas in a future version. Import num

In [15]:

```
#All data in one code
sns.set_palette('viridis')
sns.pairplot(df1)
plt.show()
```


In [16]:

```
#Category vs Sales Bar Graph

plt.bar('Category', 'Sales', data=df1)
plt.title('Sales vs Category', size= 15)
plt.xlabel('Category', size= 13)
plt.ylabel('Sales', size= 13)
plt.show()
```


In [18]:

```
#Quantities Ordered by each Segment

df_group = df1.groupby('Segment')['Quantity'].sum().reset_index()
print(df_group)
labels = df1['Segment'].unique()
colors = ['lightskyblue', 'lightgreen', 'red']
plt.figure(figsize=(5,5))
plt.pie(df_group['Quantity'],autopct='%1.1f%%',labels=labels,explode=(0.02,0.02,0.02), colors=color
s)
plt.title('Quantities ordered by each segment',size= 15)
plt.show()
```

Segment Quantity
Consumer 19521
Corporate 11608
Home Office 6744

Quantities ordered by each segment

In [19]:

```
#Shipping Models

plt.figure(figsize=(6,5))
sns.countplot('Ship Mode',data=df1, palette='Blues_d')
plt.title('Popular Shipping Modes',size=14)
plt.xlabel('\n Shipping mode',size=12)
plt.ylabel('Number of orders',size=12)
plt.xticks(fontsize=10)
plt.show()
```


In [21]:

```
#Shipping Mode vs Count
sns.catplot('Ship Mode',data=df1,hue='Segment',kind='count',palette='dark',aspect=1.5,height=6)
plt.show()
```


In [22]:

```
#State counts of Unique Values

df1['State'].value_counts()
```

Out[22]:

California	2001
New York	1128
Texas	985
Pennsylvania	587
Washington	506
Illinois	492
Ohio	469
Florida	383
Michigan	255
North Carolina	249
Arizona	224
Virginia	224
Georgia	184
_	183
Tennessee	
Colorado	182
Indiana	149
Kentucky	139
Massachusetts	135
New Jersey	130
Oregon	124
Wisconsin	110
Maryland	105
Delaware	96
Minnesota	89
Connecticut	82
Oklahoma	66
Missouri	66
Alabama	61
Arkansas	60
Rhode Island	56
Utah	53
Mississippi	53
Louisiana	42
South Carolina	42
Nevada	39
Nebraska	38
New Mexico	37
Iowa	30
New Hampshire	27
Kansas	24
Idaho	21
Montana	15
South Dakota	12
Vermont	11 10
District of Columbia	
Maine	8
North Dakota	7
West Virginia	4
Wyoming	1
Name: State, dtype: i	NT 64

In [23]:

```
#Cities each of Least and Most Quantities Ordered
sns.catplot('State',kind='count',data=df1,palette='Set1',height=6,aspect=1.5)
plt.xticks(rotation=90)
plt.show()
```


In [24]:

```
#Grouping by Quantity of Cities

dftop10 = df1.groupby('City')['Quantity'].sum().reset_index().sort_values(by='Quantity',ascending=True)
dftop10
```

Out[24]:

	•,	
386	Port Orange	1
259	Littleton	1
257	Lindenhurst	1
140	Elyria	1
213	Iowa City	1
452	Seattle	1590
438	San Francisco	1935
374	Philadelphia	1981
266	Los Angeles	2879
329	New York City	3417

City Quantity

531 rows × 2 columns

In [25]:

```
#Top 10 Most Ordering Cities

dftop10 = dftop10.head(10)
dftop10.reset_index(drop=True,inplace=True)
dftop10
```

Out[25]:

	City	Quantity
0	Port Orange	1
1	Littleton	1
2	Lindenhurst	1
3	Elyria	1

4	lowa Gity	Quantity
5	Jupiter	1
6	Keller	2
7	Grand Island	2
8	Baytown	2
9	Holyoke	2

In [26]:

```
#Quantities Ordered Region Wise

df_region=df1.groupby('Region')['Quantity'].sum().reset_index()
print(df_region)

labels = df_region['Region'].unique()
plt.figure(figsize=(5,5))
plt.pie(df_region['Quantity'],autopct='%1.1f%%',explode=(0.02,0.02,0.02,0.02),)
plt.title('Quantities ordered by each region',size=13)

plt.show()
```

	Region	Quantity
0	Central	8780
1	East	10618
2	South	6209
3	West	12266

Quantities ordered by each region

In [27]:

```
#Highest Selling Categories

df_cats = df1.groupby('Category')['Quantity'].sum().reset_index()

df_cats
```

Out[27]:

	Category	Quantity
0	Furniture	8028
1	Office Supplies	22906
2	Technology	6939

In [28]:

```
#Distribution of Products Sold

plt.figure(figsize=(5,5))
labels=df_cats['Category'].unique()
plt.pie(df_cats['Quantity'],autopct='%1.1f%%',labels=labels,explode=(0.02,0.02,0.02))
```

```
plt.title('Distribution of products sold',size=13)
plt.show()
```

Distribution of products sold

In [29]:

```
#Most Profitable Categories

dfprofit = dfl.groupby('Category')['Profit'].sum().reset_index()
print(dfprofit)
plt.figure(figsize=(5,5))
labels=dfprofit['Category'].unique()
plt.pie(dfprofit['Profit'],autopct='%1.1f%%',labels=labels,explode=(0.02,0.02,0.02))

plt.title('Distribution of profits categorywise',size=20)
plt.show()
```

Category Profit
Furniture 18451.2728
Office Supplies 122490.8008
Technology 145454.9481

Distribution of profits categorywise

In [30]:

```
#Most Profitable Products

dftop10_items = df1.groupby('Sub-Category')['Profit'].sum().reset_index().sort_values(by='Profit',a
scending=False)
dftop10_items.reset_index(drop=True,inplace=True)
dftop10_items=dftop10_items.head(10)
dftop10_items
```

Out[30]:

	Sub-Category	Profit
0	Copiers	55617.8249
1	Phones	44515.7306
2	Accessories	41936.6357
3	Paper	34053.5693
4	Binders	30221.7633
5	Chairs	26590.1663
6	Storage	21278.8264
7	Appliances	18138.0054
8	Furnishings	13059.1436
9	Envelopes	6964.1767

In [31]:

```
#Visualizing the Top 10 Profitable Products
sns.catplot('Sub-Category','Profit',data=dftop10_items,kind='bar',aspect=1.5,height=9,palette='ch:2
.5,-.2,dark=.3')
plt.title('Top 10 profitable products',size=20)
plt.xticks(size=15)
plt.yticks(size=15)
plt.yticks(size=15)
plt.ylabel('Cumulative profit',size=18)
plt.xlabel('Products',size=18)
plt.show()
```


In [32]:

```
#Top Profitable cities
dftop10_cities = df1.groupby('City')['Profit'].sum().reset_index().sort_values(by='Profit',ascending=False)
dftop10_cities = dftop10_cities.head(10)
```

```
dftop10_cities
```

Out[32]:

	City	Profit
329	New York City	62036.9837
266	Los Angeles	30440.7579
452	Seattle	29156.0967
438	San Francisco	17507.3854
123	Detroit	13181.7908
233	Lafayette	10018.3876
215	Jackson	7581.6828
21	Atlanta	6993.6629
300	Minneapolis	6824.5846
437	San Diego	6377.1960

In [33]:

```
#Visualizing the Top 10 Profitable Cities
sns.catplot('City','Profit',data=dftop10_cities,kind='bar',aspect=2,height=8,palette='dark')
plt.title('Top 10 cities with profit inflow',size=25)
plt.xticks(size=15)
plt.yticks(size=15)
plt.yticks(size=15)
plt.ylabel('Cumulative profit',size=18)
plt.xlabel('City',size=18)
plt.show()
```


Conclusion

From above Data Visualization we can conclude as follow:

Data Quality: Good quality data with no need for data preprocessing. No null values in Data set.

'Standard Class' accounts for the majority of profit.

'HomeOffice' segment generates least sale.		
In central region Furniture incures loss.		
'Florida', 'Oregon', 'Arizona', 'Illinois', 'Texas', 'Pennsylvania', 'Ten 'Colorado' and 'Ohio' have noticeably less Profit.¶	nessee', 'North Carlina',	
In []:		
In []:		