# Digital Signal Processing

# Yash Rajput BM20BTECH11018

#### **CONTENTS**

| 1 | <b>Software Installation</b> | 1  |
|---|------------------------------|----|
| 2 | Digital Filter               | 1  |
| 3 | Difference Equation          | 2  |
| 4 | Z-transform                  | 2  |
| 5 | Impulse Response             | 4  |
| 6 | DFT and FFT                  | 7  |
| 7 | FFT                          | 9  |
| 8 | Exercises                    | 12 |
|   |                              |    |

Abstract—This manual provides a simple introduction to digital signal processing.

#### 1 Software Installation

Run the following commands

sudo apt-get update sudo apt-get install libffi-dev libsndfile1 python3 -scipy python3-numpy python3-matplotlib sudo pip install cffi pysoundfile

#### 2 Digital Filter

2.1 Download the sound file from

wget https://github.com/yashrajput22/EE3900 -22/blob/master/codes/Section-2/ Sound\_Noise.wav

2.2 You will find a spectrogram at https: //academo.org/demos/spectrum-analyzer. Upload the sound file that you downloaded in Problem 2.1 in the spectrogram and play. Observe the spectrogram. What do you find? Solution: There are a lot of yellow lines between 440 Hz to 5.1 KHz. These represent the



Fig. 2.2

- synthesizer key tones. Also, the key strokes are audible along with background noise.
- 2.3 Write the python code for removal of out of band noise and execute the code.

#### **Solution:**

import soundfile as sf from scipy import signal #read .wav file input signal,fs = sf.read('Sound Noise.way #sampling frequency of Input signal sampl freq=fs #order of the filter order=4 #cutoff frquency 4kHz cutoff freq=4000.0 #digital frequency Wn=2\*cutoff freq/sampl freq # b and a are numerator and denominator polynomials respectively b, a = signal.butter(order, Wn, 'low') #filter the input signal with butterworth filter output signal = signal.filtfilt(b, a, input signal) #output signal = signal.lfilter(b, a,input signal #write the output signal into .wav file sf.write('Sound With ReducedNoise.wav', output\_signal, fs)

2.4 The output the python script of in Problem 2.3 the audio file Sound With ReducedNoise.wav. Play the file in the spectrogram in Problem 2.2. What do you observe?

**Solution:** The key strokes as well as background noise is subdued in the audio. Also, the signal is blank for frequencies above 5.1 kHz.



Fig. 2.4

3 Difference Equation

3.1 Let

$$x(n) = \begin{cases} 1, 2, 3, 4, 2, 1 \end{cases}$$
 (3.1)

Sketch x(n).

3.2 Let

$$y(n) + \frac{1}{2}y(n-1) = x(n) + x(n-2),$$
  
$$y(n) = 0, n < 0 \quad (3.2)$$

Sketch y(n).

**Solution:** The following code yields Fig. 3.3.

wget https://github.com/yashrajput22/EE3900 -22/blob/master/codes/Section-3/3 2.py

3.3 Repeat the above exercise using a C code. **Solution:** The following code yields Fig. 3.3.



Fig. 3.2

wget https://github.com/yashrajput22/EE3900 -22/blob/master/codes/Section-3/3\_2.c

wget https://github.com/yashrajput22/EE3900 -22/blob/master/codes/Section-3/3 2 Mycode.py



Fig. 3.3

4 Z-TRANSFORM

4.1 The Z-transform of x(n) is defined as

$$X(z) = \mathcal{Z}\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
 (4.1)

Show that

$$Z{x(n-1)} = z^{-1}X(z)$$
 (4.2)

and find

$$\mathcal{Z}\{x(n-k)\}\tag{4.3}$$

**Solution:** From (4.1),

$$\mathcal{Z}\{x(n-k)\} = \sum_{n=-\infty}^{\infty} x(n-1)z^{-n}$$

$$= \sum_{n=-\infty}^{\infty} x(n)z^{-n-1} = z^{-1} \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
(4.4)

resulting in (4.2). Similarly, it can be shown that

$$\mathcal{Z}\{x(n-k)\} = z^{-k}X(z) \tag{4.6}$$

4.2 Obtain X(z) for x(n) defined in problem (??). Solution:

$$Z(x(n)) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$

$$= x(0)z^{0} + x(1)z^{-1} + x(2)z^{-2} + x(3)z^{-3} +$$

$$(4.8)$$

$$x(4)z^{-4} + x(5)z^{-5}$$

$$= 1 + 2z^{-1} + 3z^{-2} + 4z^{-3} + 2z^{-4} + z^{-5}$$

4.3 Find

$$H(z) = \frac{Y(z)}{X(z)} \tag{4.10}$$

from (3.2) assuming that the Z-transform is a linear operation.

**Solution:** Applying (4.6) in (3.2),

$$Y(z) + \frac{1}{2}z^{-1}Y(z) = X(z) + z^{-2}X(z)$$
 (4.11)

$$\implies \frac{Y(z)}{X(z)} = \frac{1 + z^{-2}}{1 + \frac{1}{2}z^{-1}} \tag{4.12}$$

4.4 Find the Z transform of

$$\delta(n) = \begin{cases} 1 & n = 0 \\ 0 & \text{otherwise} \end{cases}$$
 (4.13)

and show that the Z-transform of

$$u(n) = \begin{cases} 1 & n \ge 0 \\ 0 & \text{otherwise} \end{cases}$$
 (4.14)

is

$$U(z) = \frac{1}{1 - z^{-1}}, \quad |z| > 1$$
 (4.15)

**Solution:** It is easy to show that

$$\delta(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} 1 \tag{4.16}$$

and from (4.14),

$$U(z) = \sum_{n=0}^{\infty} z^{-n}$$
 (4.17)

$$=\frac{1}{1-z^{-1}}, \quad |z| > 1 \tag{4.18}$$

using the fomula for the sum of an infinite geometric progression.

4.5 Show that

$$a^n u(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} \frac{1}{1 - az^{-1}} \quad |z| > |a|$$
 (4.19)

**Solution:** 

$$\mathcal{Z}\lbrace a^n u(n)\rbrace = \sum_{n=-\infty}^{\infty} a^n u(n) z^{-n}$$
 (4.20)

$$= \sum_{n=-\infty}^{\infty} u(n) (az^{-1})^n$$
 (4.21)

$$= \sum_{n=-\infty}^{\infty} (az^{-1})^n, \quad |az^{-1}| < 1 \quad (4.22)$$

(4.23)

$$= \frac{1}{1 - az^{-1}}, \quad |a| < |z| \tag{4.24}$$

using the fomula for the sum of an infinite geometric progression.

4.6 Let

$$H(e^{j\omega}) = H(z = e^{j\omega}).$$
 (4.25)

Plot  $|H(e^{j\omega})|$ . Comment.  $H(e^{j\omega})$  is known as the *Discret Time Fourier Transform* (DTFT) of x(n).

**Solution:** The graph is symmetric and periodic it is attending high of value 4 and minimum between (0 - 0.5). It is bounded between (0, 4) and periodic with period  $(2\pi)$  because in the below equation  $\cos(\omega)$  is periodic function having period  $2\pi$ 

$$H\left(e^{j\omega}\right) = \frac{1 + e^{-2j\omega}}{1 + \frac{e^{-j\omega}}{2}}\tag{4.26}$$

$$\Rightarrow \left| H\left(e^{j\omega}\right) \right| = \frac{\left| 1 + e^{-2j\omega} \right|}{\left| 1 + \frac{e^{-j\omega}}{2} \right|}$$

$$= \frac{\left| 1 + e^{2j\omega} \right|}{\left| e^{2j\omega} + \frac{e^{j\omega}}{2} \right|}$$

$$(4.27)$$

$$= \frac{\frac{|1 + \cos 2\omega + j \sin 2\omega|}{|e^{j\omega} + \frac{1}{2}|}}{(4.29)}$$

$$= \frac{\left|4\cos^2(\omega) + 4j\sin(\omega)\cos(\omega)\right|}{|2e^{j\omega} + 1|}$$
(4.30)

$$= \frac{|4\cos(\omega)||\cos(\omega) + j\sin(\omega)|}{|2\cos(\omega) + 1 + 2j\sin(\omega)|}$$
(4.31)

$$\therefore \left| H\left(e^{j\omega}\right) \right| = \frac{|4\cos(\omega)|}{\sqrt{5 + 4\cos(\omega)}} \tag{4.32}$$

The following code plots Fig. 4.6.

wget https://github.com/yashrajput22/EE3900 -22/blob/master/codes/Section-4/4\_5.py



Fig. 4.6:  $|H(e^{j\omega})|$ 

4.7 Express x(n) in terms of  $H(e^{j\omega})$ .

# **Solution:**

$$\int_{-\pi}^{\pi} e^{j\omega(n-k)} d\omega = \begin{cases} 2\pi & n=k\\ 0 & \text{otherwise} \end{cases}$$
 (4.33)

$$H(e^{j\omega}) = \sum_{n=-\infty}^{\infty} h(n) e^{-j\omega n}$$
(4.34)

$$\int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega k} d\omega = \sum_{n=-\infty}^{\infty} h(n) \int_{-\pi}^{\pi} e^{-j\omega n} e^{j\omega k} d\omega$$
(4.35)

$$\int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega k} d\omega = \sum_{n=-\infty}^{\infty} h(n) 2\pi \quad (4.36)$$

$$\int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega k} d\omega = 2\pi h(n)$$
 (4.37)

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega k} d\omega = h(n)$$
 (4.38)

# 5 IMPULSE RESPONSE

5.1 Using long division, find

$$h(n), \quad n < 5 \tag{5.1}$$

for H(z) in (4.12).

**Solution:** 

$$H(z) = \frac{1 + z^{-2}}{1 + \frac{1}{2}z^{-1}}$$
 (5.2)

Let  $z^{-1} = x$ , then, by polynomial long division we get

$$\frac{2x-4}{z^2+1}$$

$$\frac{-x^2-2x}{-2x+1}$$

$$\frac{2x+4}{5}$$

$$\Rightarrow (1+z^{-2}) = (\frac{1}{2}z^{-1}+1)(2z^{-1}-4)+5$$

$$(5.3)$$

$$\Rightarrow \frac{(1+z^{-2})}{\frac{1}{2}z^{-1}+1} = (2z^{-1}-4)+\frac{5}{\frac{1}{2}z^{-1}+1}$$

$$(5.4)$$

$$\Rightarrow H(z) = (2z^{-1}-4)+\frac{5}{\frac{1}{2}z^{-1}+1}$$

Now, consider  $\frac{5}{\frac{1}{2}z^{-1}+1}$ 

The denominator  $\frac{1}{2}z^{-1} + 1$  can be expressed as sum of an infinite geometric progression, which as its first term equal to 1 and common

(5.5)

ratio 
$$\frac{-1}{2}z^{-1}$$
  
Therefore, we can write  $\frac{5}{\frac{1}{2}z^{-1}+1}$  as  $5\left(1+\left(\frac{-1}{2}z^{-1}\right)+\left(\frac{-1}{2}z^{-1}\right)^2+\left(\frac{-1}{2}z^{-1}\right)^3+\left(\frac{-1}{2}z^{-1}\right)^4+\ldots\right)$   
Therefore  $H(z)$  can be given by

$$H(z) = (2z^{-1} - 4) + \frac{5}{\frac{1}{2}z^{-1} + 1}$$
 (5.6)

$$= 2z^{-1} - 4 + 5 + \frac{-5}{2}z^{-1} + \frac{5}{4}z^{-2} + \frac{-5}{8}z^{-3} + \frac{5}{16}z^{-6}$$

$$\implies H(z) = 1z^{0} + \frac{-1}{2}z^{-1} + \frac{5}{4}z^{-2} + \frac{-5}{8}z^{-3} + \frac{5}{16}z^{-6}$$

$$(5.8)$$

$$\stackrel{\text{\tiny §}}{\approx}$$

$$(5.7)$$

Comparing the above expression to (4.1) we get h(n) for n<5 as,

$$h(0) = 1 \tag{5.10}$$

$$h(1) = \frac{-1}{2} \tag{5.11}$$

$$h(2) = \frac{5}{4} \tag{5.12}$$

$$h(3) = \frac{-5}{8} \tag{5.13}$$

$$h(4) = \frac{5}{16} \tag{5.14}$$

5.2 Find an expression for h(n) using H(z), given that

$$h(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} H(z) \tag{5.15}$$

and there is a one to one relationship between h(n) and H(z). h(n) is known as the *impulse response* of the system defined by (3.2).

**Solution:** From (4.12),

$$H(z) = \frac{1}{1 + \frac{1}{2}z^{-1}} + \frac{z^{-2}}{1 + \frac{1}{2}z^{-1}}$$
 (5.16)

$$\implies h(n) = \left(-\frac{1}{2}\right)^{n} u(n) + \left(-\frac{1}{2}\right)^{n-2} u(n-2)$$
(5.17)

using (4.19) and (4.6).

5.3 Sketch h(n). Is it bounded? Convergent?

**Solution:** Yes, it is bounded between and convergent. We can clearly see in the plot it is not tending to infinite and remain finite. The following code plots Fig. 5.3.



Fig. 5.3: h(n) as the inverse of H(z)

we know that

$$h(n) = \left(-\frac{1}{2}\right)^n u(n) + \left(-\frac{1}{2}\right)^{n-2} u(n-2) \quad (5.18)$$

Implies we can write that

$$h(n) = \begin{cases} 0 & , n < 0 \\ \left(\frac{-1}{2}\right)^n & , 0 \le n < 2 \\ 5\left(\frac{-1}{2}\right)^n & , n \ge 2 \end{cases}$$
 (5.19)

A sequence is said to be bounded when

$$|x_n| \le M, \forall n \in \mathcal{N} \tag{5.20}$$

Now consider (5.19),

For n < 0,

$$|h(n)| \le 0 \tag{5.21}$$

For  $0 \le n < 2$ ,

$$|h(n)| = (\frac{1}{2})^n$$
 (5.22)

$$\implies |h(n)| \le 1$$
 (5.23)

For  $n \ge 2$ ,

$$|h(n)| = 5(\frac{1}{2})^n$$
 (5.24)

$$\implies |h(n)| \le 5 \tag{5.25}$$

From above we can say that,

$$M = \max\{0, 1, 5\} \tag{5.26}$$

$$= 5 \tag{5.27}$$

Therefore since M exists and is a real value, we can say that h(n) is bounded.

5.4 Convergent? Justify using the ratio test.

**Solution:** We see that h(n) is bounded. For large n, we see that

$$h(n) = \left(-\frac{1}{2}\right)^n + \left(-\frac{1}{2}\right)^{n-2} \tag{5.28}$$

$$= \left(-\frac{1}{2}\right)^n (4+1) = 5\left(-\frac{1}{2}\right)^n \tag{5.29}$$

$$\implies \left| \frac{h(n+1)}{h(n)} \right| = \frac{1}{2} \tag{5.30}$$

and therefore,  $\lim_{n\to\infty} \left| \frac{h(n+1)}{h(n)} \right| = \frac{1}{2} < 1$ . Hence, we see that h(n) converges.

5.5 The system with h(n) is defined to be stable if

$$\sum_{n=-\infty}^{\infty} h(n) < \infty \tag{5.31}$$

Is the system defined by (3.2) stable for the impulse response in (5.15)?

**Solution:** By using h(n) from 5.3

$$h(n) = \left(-\frac{1}{2}\right)^n u(n) + \left(-\frac{1}{2}\right)^{n-2} u(n-2)$$
 (5.32)  
$$= \sum_{n=-\infty}^{\infty} \left(-\frac{1}{2}\right)^n u(n) + \left(-\frac{1}{2}\right)^{n-2} u(n-2)$$
 (5.33)

$$= \sum_{n=-\infty}^{\infty} \left(-\frac{1}{2}\right)^n u(n) + \sum_{n=-\infty}^{\infty} \left(-\frac{1}{2}\right)^{n-2} u(n-2)$$
(5.34)

$$= \sum_{n=-\infty}^{\infty} \left( -\frac{1}{2} \right)^n + \sum_{n=-\infty}^{\infty} \left( -\frac{1}{2} \right)^{n-2}$$
 (5.35)

$$=\frac{2}{3} + \frac{2}{3} < \infty \tag{5.37}$$

5.6 Verify the above result using a python code. **Solution:** 

wget https://github.com/yashrajput22/EE3900 -22/blob/master/codes/Section-5/5 6.py 5.7 Compute and sketch h(n) using

$$h(n) + \frac{1}{2}h(n-1) = \delta(n) + \delta(n-2), \quad (5.38)$$

This is the definition of h(n).

**Solution:** The following code plots Fig. 5.7. Note that this is the same as Fig. 5.3.

$$= h(n) + \frac{1}{2}h(n-1) = \delta(n) + \delta(n-2)$$
(5.39)

 $= H(z) + \frac{1}{2}z^{-1}H(z) = 1 + z^{-2}$  (5.40)

$$H(z) = \frac{1}{1 + \frac{1}{2}z^{-1}} + \frac{z^{-2}}{1 + \frac{1}{2}z^{-1}}$$
 (5.41)

$$h(n) = \left(-\frac{1}{2}\right)^n u(n) + \left(-\frac{1}{2}\right)^{n-2} u(n-2) \quad (5.42)$$

wget https://github.com/yashrajput22/EE3900 -22/blob/master/codes/Section-5/5 7.py



Fig. 5.7: h(n) from the definition

5.8 Compute

$$y(n) = x(n) * h(n) = \sum_{n = -\infty}^{\infty} x(k)h(n - k) \quad (5.43)$$

Comment. The operation in (5.43) is known as *convolution*.

**Solution:** The following code plots Fig. 5.8. Note that this is the same as y(n) in Fig. 3.3.

wget https://github.com/yashrajput22/EE3900 -22/blob/master/codes/Section-5/5 8.py



Fig. 5.8: y(n) from the definition of convolution

5.9 Express the above convolution using a Teoplitz matrix.

#### **Solution:**

We know that from, (5.43),

$$y(n) = x(n) * h(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$
 (5.44)

This can also be writen as a matrix-vector multiplication given by the expression,

$$y = T(h) * x$$
 (5.45)

In the equation (5.45), T(h) is a Teoplitz matrix.

The equation (5.45) can be expanded as,

$$\mathbf{y} = \mathbf{x} \otimes \mathbf{h}$$

$$\mathbf{y} = \begin{pmatrix} h_1 & 0 & . & . & . & 0 \\ h_2 & h_1 & . & . & . & 0 \\ h_3 & h_2 & h_1 & . & . & 0 \\ . & . & . & . & . & . & . \\ h_{n-1} & h_{n-2} & h_{n-3} & . & . & 0 \\ h_n & h_{n-1} & h_{n-2} & . & . & h_1 \\ 0 & h_n & h_{n-1} & h_{n-2} & . & h_2 \\ . & . & . & . & . & . \\ 0 & . & . & . & 0 & h_{n-1} \\ 0 & . & . & . & 0 & h_n \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ . \\ . \\ x_n \end{pmatrix}$$

$$(5.47)$$

5.10 Show that

$$y(n) = \sum_{n = -\infty}^{\infty} x(n - k)h(k)$$
 (5.48)

**Solution:** From (5.43), we substitute k := n - k to get

$$y(n) = \sum_{k=-\infty}^{\infty} x(k) h(n-k)$$
 (5.49)

$$=\sum_{n-k=-\infty}^{\infty}x\left(n-k\right)h\left(k\right)\tag{5.50}$$

$$=\sum_{k=-\infty}^{\infty}x\left(n-k\right)h\left(k\right)\tag{5.51}$$

#### 6 DFT and FFT

6.1 Compute

$$X(k) \stackrel{\triangle}{=} \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}, \quad k = 0, 1, \dots, N-1$$

and H(k) using h(n).

# **Solution:**

We know that,

$$x(n) = \left\{ \frac{1}{1}, 2, 3, 4, 2, 1 \right\} \tag{6.2}$$

Here, let,  $\omega = e^{-j2\pi k}$ . Then.

$$X(k) = 1 + 2\omega^{\frac{1}{5}} + 3\omega^{\frac{2}{5}} + 4\omega^{\frac{3}{5}} + 2\omega^{\frac{4}{5}} + \omega$$
(6.3)

Similarly, we know from (5.19),

$$h(n) = \begin{cases} 0 & , n < 0 \\ \left(\frac{-1}{2}\right)^n & , 0 \le n < 2 \\ 5\left(\frac{-1}{2}\right)^n & , n \ge 2 \end{cases}$$
 (6.4)

Now, again let,  $\omega = e^{-j2\pi k}$ . Then,

$$H(k) = 1 + \frac{-1}{2}\omega^{\frac{1}{5}} + \frac{5}{4}\omega^{\frac{2}{5}} + \frac{-5}{8}\omega^{\frac{3}{5}} + \frac{5}{16}\omega^{\frac{4}{5}} + \frac{-5}{32}\omega$$
(6.5)

6.2 Compute

$$Y(k) = X(k)H(k) \tag{6.6}$$

**Solution:** 

Now, from (6.3) and (6.5), we know

X(k) and H(k). Now, given that,

$$Y(k) = X(k) * H(k)$$
 (6.7)

$$Y(k) = (1 + 2\omega^{\frac{1}{5}} + 3\omega^{\frac{2}{5}} + 4\omega^{\frac{3}{5}} + 2\omega^{\frac{4}{5}} + \omega)*$$

$$(1 + \frac{-1}{2}\omega^{\frac{1}{5}} + \frac{5}{4}\omega^{\frac{2}{5}} + \frac{-5}{8}\omega^{\frac{3}{5}} + \frac{5}{16}\omega^{\frac{4}{5}} + \frac{-5}{32}\omega)$$
(6.8)

$$Y(k) = 1 + \frac{3}{2}\omega^{\frac{1}{5}} + \frac{13}{4}\omega^{\frac{2}{5}} + \frac{35}{8}\omega^{\frac{3}{5}} + \frac{45}{16}\omega^{\frac{4}{5}}$$
$$\frac{115}{32}\omega^{\frac{5}{5}} + \frac{1}{8}\omega^{\frac{6}{5}} + \frac{25}{32}\omega^{\frac{7}{5}} - \frac{5}{8}\omega^{\frac{8}{5}}$$
$$-\frac{5}{32}\omega^{5} \quad (6.9)$$

where,  $\omega = e^{-j2k\pi}$ 

# 6.3 Compute

$$y(n) = \frac{1}{N} \sum_{k=0}^{N-1} Y(k) \cdot e^{j2\pi kn/N}, \quad n = 0, 1, \dots, N-1$$
(6.10)

**Solution:** The following code plots Fig. 5.8 and computes X(k) and Y(k). Note that this is the same as y(n) in Fig. 3.3.

wget https://github.com/yashrajput22/EE3900 -22/blob/master/codes/Section-6/6\_3.py



Fig. 6.3: y(n) from the DFT

6.4 Repeat the previous exercise by computing X(k), H(k) and y(n) through FFT and IFFT. **Solution:** Download the code from



Fig. 6.4: y(n) using FFT and IFFT

wget https://github.com/yashrajput22/EE3900 –22/blob/master/codes/Section-6/6 4.py

Observe that Fig. (6.4) is the same as y(n) in Fig. (3.3).

6.5 Wherever possible, express all the above equations as matrix equations.

**Solution:** We use the DFT Matrix, where  $\omega = e^{-\frac{j2k\pi}{N}}$ , which is given by

$$\mathbf{W} = \begin{pmatrix} \omega^0 & \omega^0 & \dots & \omega^0 \\ \omega^0 & \omega^1 & \dots & \omega^{N-1} \\ \vdots & \vdots & \ddots & \vdots \\ \omega^0 & \omega^{N-1} & \dots & \omega^{(N-1)(N-1)} \end{pmatrix}$$
(6.11)

i.e.  $W_{jk} = \omega^{jk}$ ,  $0 \le j, k < N$ . Hence, we can write any DFT equation as

$$\mathbf{X} = \mathbf{W}\mathbf{x} = \mathbf{x}\mathbf{W} \tag{6.12}$$

where

$$\mathbf{x} = \begin{pmatrix} x(0) \\ x(1) \\ \vdots \\ x(n-1) \end{pmatrix}$$
 (6.13)

Using (??), the inverse Fourier Transform is given by

$$\mathbf{x} = \mathcal{F}^{-1}(\mathbf{X}) = \mathbf{W}^{-1}\mathbf{X} = \frac{1}{N}\mathbf{W}^{\mathbf{H}}\mathbf{X} = \frac{1}{N}\mathbf{X}\mathbf{W}^{\mathbf{H}}$$
(6.14)

$$\implies \mathbf{W}^{-1} = \frac{1}{N} \mathbf{W}^{\mathbf{H}} \tag{6.15}$$

where H denotes hermitian operator. We can rewrite  $(\ref{eq:hermitian})$  using the element-wise multiplication operator as

$$\mathbf{Y} = \mathbf{H} \cdot \mathbf{X} = (\mathbf{W}\mathbf{h}) \cdot (\mathbf{W}\mathbf{x}) \tag{6.16}$$

The plot of y(n) using the DFT matrix in Fig. (6.5) is the same as y(n) in Fig. (3.3). Download the code using

wget https://github.com/yashrajput22/EE3900 -22/blob/master/codes/Section-6/6\_5.py

and run it using



Fig. 6.5: y(n) using the DFT matrix

6.6 Find the time complexities of computing y(n) using FFT/IFFT and convolution.

**Solution:** The C code for finding the running times of these three algorithms can be downloaded from

This code generates three text files that are used to plot the runtimes of the algorithms in the following Python codes

Figs. (6.6) and (6.6) are generated by executing the codes.



Fig. 6.6: The worst-case complexity of FFT/IFFT is  $O(n \log n)$ 



Fig. 6.6: The worst case complexity of convolution is  $O(n^2)$ 

#### 7 FFT

1. The DFT of x(n) is given by

$$X(k) \triangleq \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}, \quad k = 0, 1, \dots, N-1$$
(7.1)

2. Let

$$W_N = e^{-j2\pi/N} \tag{7.2}$$

Then the N-point DFT matrix is defined as

$$\mathbf{F}_{N} = [W_{N}^{mn}], \quad 0 \le m, n \le N - 1$$
 (7.3)

where  $W_N^{mn}$  are the elements of  $\mathbf{F}_N$ .

3. Let

$$\mathbf{I}_4 = \begin{pmatrix} \mathbf{e}_4^1 & \mathbf{e}_4^2 & \mathbf{e}_4^3 & \mathbf{e}_4^4 \end{pmatrix} \tag{7.4}$$

be the  $4 \times 4$  identity matrix. Then the 4 point *DFT permutation matrix* is defined as

$$\mathbf{P}_4 = \begin{pmatrix} \mathbf{e}_4^1 & \mathbf{e}_4^3 & \mathbf{e}_4^2 & \mathbf{e}_4^4 \end{pmatrix} \tag{7.5}$$

4. The 4 point DFT diagonal matrix is defined as

$$\mathbf{D}_4 = diag \begin{pmatrix} W_4^0 & W_N^1 & W_N^2 & W_N^3 \end{pmatrix}$$
 (7.6)

5. Show that

$$W_N^2 = W_{N/2} (7.7)$$

Solution: We write

$$W_N^2 = \left(e^{-\frac{j2\pi}{N}}\right)^2 = e^{-\frac{j2\pi}{N/2}} = W_{N/2}$$
 (7.8)

6. Show that

$$\mathbf{F}_4 = \begin{bmatrix} \mathbf{I}_2 & \mathbf{D}_2 \\ \mathbf{I}_2 & -\mathbf{D}_2 \end{bmatrix} \begin{bmatrix} \mathbf{F}_2 & 0 \\ 0 & \mathbf{F}_2 \end{bmatrix} \mathbf{P}_4 \tag{7.9}$$

**Solution:** Observe that for  $n \in \mathbb{N}$ ,  $W_4^{4n} = 1$  and  $W_4^{4n+2} = -1$ . Using (??),

$$\mathbf{D}_{2}\mathbf{F}_{2} = \begin{bmatrix} W_{4}^{0} & 0 \\ 0 & W_{4}^{1} \end{bmatrix} \begin{bmatrix} W_{2}^{0} & W_{2}^{0} \\ W_{2}^{0} & W_{2}^{1} \end{bmatrix}$$
 (7.10)  
$$= \begin{bmatrix} W_{4}^{0} & 0 \\ 0 & W_{4}^{1} \end{bmatrix} \begin{bmatrix} W_{4}^{0} & W_{4}^{0} \\ W_{4}^{0} & W_{4}^{2} \end{bmatrix}$$
 (7.11)

$$= \begin{bmatrix} W_4^0 & W_4^0 \\ W_4^1 & W_4^3 \end{bmatrix} \tag{7.12}$$

$$\Longrightarrow -\mathbf{D}_2 \mathbf{F}_2 = \begin{bmatrix} W_4^2 & W_4^6 \\ W_4^3 & W_4^9 \end{bmatrix} \tag{7.13}$$

and

$$\mathbf{F}_2 = \begin{pmatrix} W_2^0 & W_2^0 \\ W_2^0 & W_2^1 \end{pmatrix} \tag{7.14}$$

$$= \begin{pmatrix} W_4^0 & W_4^0 \\ W_4^0 & W_4^2 \end{pmatrix} \tag{7.15}$$

Hence,

$$\mathbf{W}_{4} = \begin{pmatrix} W_{4}^{0} & W_{4}^{0} & W_{4}^{0} & W_{4}^{0} \\ W_{4}^{0} & W_{4}^{2} & W_{4}^{1} & W_{4}^{3} \\ W_{4}^{0} & W_{4}^{4} & W_{4}^{2} & W_{4}^{6} \\ W_{4}^{0} & W_{4}^{6} & W_{4}^{3} & W_{4}^{9} \end{pmatrix}$$
(7.16)

$$= \begin{bmatrix} \mathbf{I}_2 \mathbf{F}_2 & \mathbf{D}_2 F_2 \\ \mathbf{I}_2 \mathbf{F}_2 & -\mathbf{D}_2 F_2 \end{bmatrix}$$
 (7.17)

$$= \begin{bmatrix} \mathbf{I}_2 & \mathbf{D}_2 \\ \mathbf{I}_2 & \mathbf{D}_2 \end{bmatrix} \begin{bmatrix} \mathbf{F}_2 & 0 \\ 0 & \mathbf{F}_2 \end{bmatrix}$$
 (7.18)

Multiplying (7.18) by  $P_4$  on both sides, and noting that  $W_4P_4 = F_4$  gives us.

7. Show that

$$\mathbf{F}_{N} = \begin{bmatrix} \mathbf{I}_{N/2} & \mathbf{D}_{N/2} \\ \mathbf{I}_{N/2} & -\mathbf{D}_{N/2} \end{bmatrix} \begin{bmatrix} \mathbf{F}_{N/2} & 0 \\ 0 & \mathbf{F}_{N/2} \end{bmatrix} \mathbf{P}_{N} \quad (7.19)$$

**Solution:** Observe that for even N and letting  $\mathbf{f}_N^i$  denote the  $i^{\text{th}}$  column of  $\mathbf{F}_N$ , from (7.12) and (7.13),

$$\begin{pmatrix} \mathbf{D}_{N/2} \mathbf{F}_{N/2} \\ -\mathbf{D}_{N/2} \mathbf{F}_{N/2} \end{pmatrix} = \begin{pmatrix} \mathbf{f}_N^2 & \mathbf{f}_N^4 & \dots & \mathbf{f}_N^N \end{pmatrix}$$
(7.20)

and

$$\begin{pmatrix} \mathbf{I}_{N/2} \mathbf{F}_{N/2} \\ \mathbf{I}_{N/2} \mathbf{F}_{N/2} \end{pmatrix} = \begin{pmatrix} \mathbf{f}_N^1 & \mathbf{f}_N^3 & \dots & \mathbf{f}_N^{N-1} \end{pmatrix}$$
(7.21)

Thus.

$$\begin{bmatrix} \mathbf{I}_{2}\mathbf{F}_{2} & \mathbf{D}_{2}\mathbf{F}_{2} \\ \mathbf{I}_{2}\mathbf{F}_{2} & -\mathbf{D}_{2}\mathbf{F}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{I}_{N/2} & \mathbf{D}_{N/2} \\ \mathbf{I}_{N/2} & -\mathbf{D}_{N/2} \end{bmatrix} \begin{bmatrix} \mathbf{F}_{N/2} & 0 \\ 0 & \mathbf{F}_{N/2} \end{bmatrix}$$
$$= \begin{pmatrix} \mathbf{f}_{N}^{1} & \dots & \mathbf{f}_{N}^{N-1} & \mathbf{f}_{N}^{2} & \dots & \mathbf{f}_{N}^{N} \end{pmatrix}$$
(7.22)

and so,

$$\begin{bmatrix} \mathbf{I}_{N/2} & \mathbf{D}_{N/2} \\ \mathbf{I}_{N/2} & -\mathbf{D}_{N/2} \end{bmatrix} \begin{bmatrix} \mathbf{F}_{N/2} & 0 \\ 0 & \mathbf{F}_{N/2} \end{bmatrix} \mathbf{P}_{N}$$
$$= \begin{pmatrix} \mathbf{f}_{N}^{1} & \mathbf{f}_{N}^{2} & \dots & \mathbf{f}_{N}^{N} \end{pmatrix} = \mathbf{F}_{N}$$
(7.23)

8. Find

$$\mathbf{P}_4\mathbf{x} \tag{7.24}$$

Solution: We have,

$$\mathbf{P}_{4}\mathbf{x} = \begin{pmatrix} \mathbf{e}_{4}^{1} & \mathbf{e}_{4}^{3} & \mathbf{e}_{4}^{2} & \mathbf{e}_{4}^{4} \end{pmatrix} \begin{pmatrix} x(0) \\ x(1) \\ x(2) \\ x(3) \end{pmatrix} = \begin{pmatrix} x(0) \\ x(2) \\ x(1) \\ x(3) \end{pmatrix}$$
(7.25)

9. Show that

$$\mathbf{X} = \mathbf{F}_N \mathbf{x} \tag{7.26}$$

where  $\mathbf{x}, \mathbf{X}$  are the vector representations of x(n), X(k) respectively.

**Solution:** Writing the terms of X,

$$X(0) = x(0) + x(1) + \dots + x(N-1)$$
(7.27)

$$X(1) = x(0) + x(1)e^{-\frac{1^{2\pi}}{N}} + \dots + x(N-1)e^{-\frac{1^{2(N-1)\pi}}{N}}$$
(7.28)

:

$$X(N-1) = x(0) + x(1)e^{-\frac{j2(N-1)\pi}{N}} + \dots + x(N-1)e^{-\frac{j2(N-1)(N-1)\pi}{N}}$$
(7.29)

Clearly, the term in the  $m^{\text{th}}$  row and  $n^{\text{th}}$  column is given by  $(0 \le m \le N - 1)$  and  $0 \le n \le N - 1)$ 

$$T_{mn} = x(n)e^{-\frac{12mn\pi}{N}} (7.30)$$

and so, we can represent each of these terms as a matrix product

$$\mathbf{X} = \mathbf{F}_N \mathbf{x} \tag{7.31}$$

where  $\mathbf{F}_N = \left[e^{-\frac{-j2mn\pi}{N}}\right]_{mn}$  for  $0 \le m \le N-1$  and  $0 \le n \le N-1$ .

10. Derive the following Step-by-step visualisation of 8-point FFTs into 4-point FFTs and so on

$$\begin{bmatrix} X(0) \\ X(1) \\ X(2) \\ X(3) \end{bmatrix} = \begin{bmatrix} X_1(0) \\ X_1(1) \\ X_1(2) \\ X_1(3) \end{bmatrix} + \begin{bmatrix} W_8^0 & 0 & 0 & 0 \\ 0 & W_8^1 & 0 & 0 \\ 0 & 0 & W_8^2 & 0 \\ 0 & 0 & 0 & W_8^3 \end{bmatrix} \begin{bmatrix} X_2(0) \\ X_2(1) \\ X_2(2) \\ X_2(3) \end{bmatrix}$$
(7.32)

$$\begin{bmatrix} X(4) \\ X(5) \\ X(6) \\ X(7) \end{bmatrix} = \begin{bmatrix} X_1(0) \\ X_1(1) \\ X_1(2) \\ X_1(3) \end{bmatrix} - \begin{bmatrix} W_8^0 & 0 & 0 & 0 \\ 0 & W_8^1 & 0 & 0 \\ 0 & 0 & W_8^2 & 0 \\ 0 & 0 & 0 & W_8^3 \end{bmatrix} \begin{bmatrix} X_2(0) \\ X_2(1) \\ X_2(2) \\ X_2(3) \end{bmatrix}$$
(7.33)

4-point FFTs into 2-point FFTs

$$\begin{bmatrix} X_1(0) \\ X_1(1) \end{bmatrix} = \begin{bmatrix} X_3(0) \\ X_3(1) \end{bmatrix} + \begin{bmatrix} W_4^0 & 0 \\ 0 & W_4^1 \end{bmatrix} \begin{bmatrix} X_4(0) \\ X_4(1) \end{bmatrix}$$
 (7.34)

$$\begin{bmatrix} X_1(2) \\ X_1(3) \end{bmatrix} = \begin{bmatrix} X_3(0) \\ X_3(1) \end{bmatrix} - \begin{bmatrix} W_4^0 & 0 \\ 0 & W_4^1 \end{bmatrix} \begin{bmatrix} X_4(0) \\ X_4(1) \end{bmatrix}$$
(7.35)

$$\begin{bmatrix} X_2(0) \\ X_2(1) \end{bmatrix} = \begin{bmatrix} X_5(0) \\ X_5(1) \end{bmatrix} + \begin{bmatrix} W_4^0 & 0 \\ 0 & W_4^1 \end{bmatrix} \begin{bmatrix} X_6(0) \\ X_6(1) \end{bmatrix}$$
 (7.36)

$$\begin{bmatrix} X_2(2) \\ X_2(3) \end{bmatrix} = \begin{bmatrix} X_5(0) \\ X_5(1) \end{bmatrix} - \begin{bmatrix} W_4^0 & 0 \\ 0 & W_4^1 \end{bmatrix} \begin{bmatrix} X_6(0) \\ X_6(1) \end{bmatrix}$$
 (7.37)

$$P_{8} \begin{bmatrix} x(0) \\ x(1) \\ x(2) \\ x(3) \\ x(4) \\ x(5) \\ x(6) \\ x(7) \end{bmatrix} = \begin{bmatrix} x(0) \\ x(2) \\ x(4) \\ x(6) \\ x(1) \\ x(3) \\ x(5) \\ x(7) \end{bmatrix}$$
 (7.38)

$$P_{4} \begin{bmatrix} x(0) \\ x(2) \\ x(4) \\ x(6) \end{bmatrix} = \begin{bmatrix} x(0) \\ x(4) \\ x(2) \\ x(6) \end{bmatrix}$$
 (7.39)

$$P_{4} \begin{bmatrix} x(1) \\ x(3) \\ x(5) \\ x(7) \end{bmatrix} = \begin{bmatrix} x(1) \\ x(5) \\ x(3) \\ x(7) \end{bmatrix}$$
 (7.40)

Therefore,

$$\begin{bmatrix} X_3(0) \\ X_3(1) \end{bmatrix} = F_2 \begin{bmatrix} x(0) \\ x(4) \end{bmatrix}$$
 (7.41)

$$\begin{bmatrix} X_4(0) \\ X_4(1) \end{bmatrix} = F_2 \begin{bmatrix} x(2) \\ x(6) \end{bmatrix}$$
 (7.42)

$$\begin{bmatrix} X_5(0) \\ X_5(1) \end{bmatrix} = F_2 \begin{bmatrix} x(1) \\ x(5) \end{bmatrix}$$
 (7.43)

$$\begin{bmatrix} X_6(0) \\ X_6(1) \end{bmatrix} = F_2 \begin{bmatrix} x(3) \\ x(7) \end{bmatrix}$$
 (7.44)

**Solution:** We write out the values of performing an 8-point FFT on **x** as follows.

$$X(k) = \sum_{n=0}^{7} x(n)e^{-\frac{1^{2kn\pi}}{8}}$$
 (7.45)

$$= \sum_{n=0}^{3} \left( x(2n)e^{-\frac{j2kn\pi}{4}} + e^{-\frac{j2k\pi}{8}}x(2n+1)e^{-\frac{j2kn\pi}{4}} \right)$$
(7.46)

$$= X_1(k) + e^{-\frac{i2k\pi}{4}} X_2(k) \tag{7.47}$$

where  $X_1$  is the 4-point FFT of the evennumbered terms and  $X_2$  is the 4-point FFT of the odd numbered terms. Noticing that for  $k \geq 4$ ,

$$X_1(k) = X_1(k-4) (7.48)$$

$$e^{-\frac{j2k\pi}{8}} = -e^{-\frac{j2(k-4)\pi}{8}} \tag{7.49}$$

we can now write out X(k) in matrix form as in (??) and (??). We also need to solve the two 4-point FFT terms so formed.

$$X_{1}(k) = \sum_{n=0}^{3} x_{1}(n)e^{-\frac{j2kn\pi}{8}}$$

$$= \sum_{n=0}^{1} \left( x_{1}(2n)e^{-\frac{j2kn\pi}{4}} + e^{-\frac{j2k\pi}{8}} x_{2}(2n+1)e^{-\frac{j2kn\pi}{4}} \right)$$

$$(7.51)$$

$$= X_3(k) + e^{-\frac{12k\pi}{4}} X_4(k) \tag{7.52}$$

using  $x_1(n) = x(2n)$  and  $x_2(n) = x(2n+1)$ . Thus we can write the 2-point FFTs

$$\begin{bmatrix} X_3(0) \\ X_3(1) \end{bmatrix} = F_2 \begin{bmatrix} x(0) \\ x(4) \end{bmatrix}$$
 (7.53)

$$\begin{bmatrix} X_4(0) \\ X_4(1) \end{bmatrix} = F_2 \begin{bmatrix} x(2) \\ x(6) \end{bmatrix}$$
 (7.54)

Using a similar idea for the terms  $X_2$ ,

$$\begin{bmatrix} X_5(0) \\ X_5(1) \end{bmatrix} = F_2 \begin{bmatrix} x(1) \\ x(5) \end{bmatrix}$$
 (7.55)

$$\begin{bmatrix} X_6(0) \\ X_6(1) \end{bmatrix} = F_2 \begin{bmatrix} x(3) \\ x(7) \end{bmatrix}$$
 (7.56)

But observe that from (7.25),

$$\mathbf{P}_{8}\mathbf{x} = \begin{pmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \end{pmatrix} \tag{7.57}$$

$$\mathbf{P}_4 \mathbf{x}_1 = \begin{pmatrix} \mathbf{x}_3 \\ \mathbf{x}_4 \end{pmatrix} \tag{7.58}$$

$$\mathbf{P}_4 \mathbf{x}_2 = \begin{pmatrix} \mathbf{x}_5 \\ \mathbf{x}_6 \end{pmatrix} \tag{7.59}$$

where we define  $x_3(k) = x(4k)$ ,  $x_4(k) = x(4k + 2)$ ,  $x_5(k) = x(4k + 1)$ , and  $x_6(k) = x(4k + 3)$  for k = 0, 1.

#### 11. For

$$\mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 2 \\ 1 \end{pmatrix} \tag{7.60}$$

compte the DFT using (7.26)

Solution: Download the Python code from

- 12. Repeat the above exercise using the FFT after zero padding **x**.
- 13. Write a C program to compute the 8-point FFT. **Solution:** The C code for the above two problems can be downloaded from

# 8 Exercises

Answer the following questions by looking at the python code in Problem 2.3.

#### 8.1 The command

in Problem 2.3 is executed through the following difference equation

$$\sum_{m=0}^{M} a(m) y(n-m) = \sum_{k=0}^{N} b(k) x(n-k) \quad (8.1)$$

where the input signal is x(n) and the output signal is y(n) with initial values all 0. Replace **signal.filtfilt** with your own routine and verify.

wget https://github.com/yashrajput22/EE3900 -22/blob/master/codes/Section-7/7 \_1.py

8.2 Repeat all the exercises in the previous sections for the above *a* and *b*.

**Solution:** For the given values, the difference equation is

$$y(n) - (4.44) y(n-1) + (8.78) y(n-2)$$

$$- (9.93) y(n-3) + (6.90) y(n-4)$$

$$- (2.93) y(n-5) + (0.70) y(n-6)$$

$$- (0.07) y(n-7) = \left(5.02 \times 10^{-5}\right) x(n)$$

$$+ \left(3.52 \times 10^{-4}\right) x(n-1) + \left(1.05 \times 10^{-3}\right) x(n-2)$$

$$+ \left(1.76 \times 10^{-3}\right) x(n-3) + \left(1.76 \times 10^{-3}\right) x(n-4)$$

$$+ \left(1.05 \times 10^{-3}\right) x(n-5) + \left(3.52 \times 10^{-4}\right) x(n-6)$$

$$+ \left(5.02 \times 10^{-5}\right) x(n-7)$$
(8.2)

From (8.1), we see that the transfer function can be written as follows

$$H(z) = \frac{\sum_{k=0}^{N} b(k)z^{-k}}{\sum_{k=0}^{M} a(k)z^{-k}}$$

$$= \sum_{i} \frac{r(i)}{1 - p(i)z^{-1}} + \sum_{i} k(j)z^{-j}$$
 (8.4)

where r(i), p(i), are called residues and poles respectively of the partial fraction expansion of H(z). k(i) are the coefficients of the direct polynomial terms that might be left over. We can now take the inverse z-transform of (8.4) and get using (4.19),

$$h(n) = \sum_{i} r(i) [p(i)]^{n} u(n) + \sum_{j} k(j) \delta(n-j)$$
(8.5)

Substituting the values,

$$h(n) = [(2.76) (0.55)^{n} + (-1.05 - 1.84J) (0.57 + 0.16J)^{n} + (-1.05 + 1.84J) (0.57 - 0.16J)^{n} + (-0.53 + 0.08J) (0.63 + 0.32J)^{n} + (-0.53 - 0.08J) (0.63 - 0.32J)^{n} + (0.20 + 0.004J) (0.75 + 0.47J)^{n} + (0.20 - 0.004J) (0.75 - 0.47J)^{n}]u(n) + (-6.81 × 10^{-4}) \delta(n)$$
(8.6)

The values r(i), p(i), k(i) and thus the impulse response function are computed and plotted at

wget https://github.com/yashrajput22/EE3900 -22/blob/master/codes/Section-7/7\_2\_1. py The filter frequency response is plotted at

Observe that for a series  $t_n = r^n$ ,  $\frac{t_{n+1}}{t_n} = r$ . By the ratio test,  $t_n$  converges if |r| < 1. We note that observe that |p(i)| < 1 and so, as h(n) is the sum of convergent series, we see that h(n) converges. From Fig. (8.2), it is clear that h(n) is bounded. From (4.1),

$$\sum_{n=0}^{\infty} h(n) = H(1) = 1 < \infty$$
 (8.7)

Therefore, the system is stable. From h(n) is negligible after  $n \ge 64$ , and we can apply a 64-bit FFT to get y(n). The following code uses the DFT matrix to generate y(n).

wget https://github.com/yashrajput22/EE3900 -22/blob/master/codes/Section-7/7\_2\_3. py



Fig. 8.2: Plot of h(n)

8.3 What is the sampling frequency of the input signal?

**Solution:** Sampling frequency(fs)=44.1kHZ.

8.4 What is type, order and cutoff-frequency of the above butterworth filter

**Solution:** The given butterworth filter is low pass with order=4 and cutoff-frequency=4kHz.

8.5 Modifying the code with different input parameters and to get the best possible output.

**Solution:** A better filtering was found on setting the order of the filter to be 7.



Fig. 8.2: Filter frequency response



Fig. 8.2: Plot of y(n)