TARGET – SQL Business Case study

- 1) Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset
 - Q.1 Data type of all columns in the "customers" table?
 - SELECT column_name , data_type
 - FROM Customer_details.INFORMATION_SCHEMA.COLUMNS
 - WHERE table_name='customers';

- > There are 5 columns in the "customers" table.
- ➤ 4 columns have **String** datatype and 1 column has **integer** datatype.
- Q.2 Get the time range between which the orders were placed.
 - SELECT
 - MIN(order_purchase_timestamp) AS min_t,
 - MAX(order_purchase_timestamp) AS max_t,
 - FROM 'Customer details.orders'

 \blacktriangleright The first order was placed on 4^{th} Sept , 2016 ,while the last order was placed on 17^{th} Oct , 2018.

Additional Inference:

Difference in number of days from the first order till the last?

- SELECT
- TIMESTAMP_DIFF(max_t,min_t,day) AS days_difference
- FROM (SELECT
- MIN(order_purchase_timestamp) AS min_t,
- MAX(order_purchase_timestamp) AS max_t,
- FROM `Customer_details.orders`)

➤ There was a difference of 772 days from first order to the last.

Q.3 Count the Cities & States of customers who ordered during the given period.

CITIES

- SELECT
- c1.customer_city,
- COUNT(c1.customer_city) as order_city_count
- FROM `Customer_details.customers` AS c1 INNER JOIN
 `Customer_details.orders` AS o1 on c1.customer_id = o1.customer_id
- GROUP BY c1.customer_city
- ORDER BY c1.customer_city

Row	customer_city ▼	order_city_count 🔻
1	abadia dos dourados	3
2	abadiania	1
3	abaete	12
4	abaetetuba	11
5	abaiara	2
6	abaira	2
7	abare	2

STATE

- SELECT
- c1.customer_state,
- COUNT(c1.customer_state) as order_state_count
- FROM `Customer_details.customers` AS c1 INNER JOIN
 `Customer_details.orders` AS o1 on c1.customer_id = o1.customer_id
- GROUP BY c1.customer_state
- ORDER BY c1.customer_state

Row	customer_state ▼	order_state_count 🥕
1	AC	81
2	AL	413
3	AM	148
4	AP	68
5	BA	3380
6	CE	1336
7	DF	2140

- Counted the number of orders per City , &
- ➤ Counted the number of orders per State

2) In-depth Exploration:

Q.1 Is there a growing trend in the no. of orders placed over the past years?

- SELECT
- Year_of_Purchase,
- Month of Purchase,
- COUNT(Month_of_Purchase) AS t_coun
- FROM (SELECT
- EXTRACT(YEAR FROM order_purchase_timestamp) AS Year_of_Purchase,
- EXTRACT(MONTH FROM order_purchase_timestamp) AS Month_of_Purchase,
- FROM `Customer_details.orders`)
- GROUP BY Year_of_Purchase , Month_of_Purchase
- ORDER BY Year_of_Purchase DESC ,Month_of_Purchase DESC

Row	Year_of_Purchase	Month_of_Purchase	t_coun ▼
1	2018	10	4
2	2018	9	16
3	2018	8	6512
4	2018	7	6292
5	2018	6	6167
6	2018	5	6873
7	2018	4	6939
8	2018	3	7211
9	2018	2	6728
10	2018	1	7269
11	2017	12	5673
12	2017	11	7544

Row	Year_of_Purchase	Month_of_Purchase	t_coun ▼
13	2017	10	4631
14	2017	9	4285
15	2017	8	4331
16	2017	7	4026
17	2017	6	3245
18	2017	5	3700
19	2017	4	2404
20	2017	3	2682
21	2017	2	1780
22	2017	1	800
23	2016	12	1
24	2016	10	324

- ➤ There is a growing trend in the number of orders placed over the past years
- ➤ However, in the latest months i.e last couple of months of 2018 there has been a sharp decline in orders purchased
- ➤ But if we compare the orders purchased in 2018 from that of 2017 and 2016, then there is a growing trend if exception months of 2018 are left aside.

Q.2 Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

- SELECT
- Month_of_Purchase,
- COUNT(Month_of_Purchase) AS order_monthwise_coun
- FROM
- (SELECT
- EXTRACT(MONTH FROM order_purchase_timestamp) AS Month_of_Purchase
- FROM 'Customer details.orders')
- GROUP BY Month_of_Purchase
- ORDER BY Month_of_Purchase DESC

Row	Month_of_Purchase	order_monthwise_coun ▼
1	12	5674
2	11	7544
3	10	4959
4	9	4305
5	8	10843
6	7	10318
7	6	9412
8	5	10573
9	4	9343
10	3	9893
11	2	8508
12	1	8069

- ➤ We can't see any significant difference in terms of numbers of orders being placed when it comes to monthly seasonality.
- ➤ However, there is a slight up-trend in orders in mid-months(5th to 8th) and a downtrend in the end-months(9th to 12th).

Q.3 During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night) ?

- SELECT
- time_bins,
- COUNT(time_bins) AS count_tod
- FROM (SELECT
- order_purchase_timestamp,
- extracted_hour,
- CASE
- WHEN extracted_hour BETWEEN 0 AND 6
- THEN "DAWN"
- WHEN extracted_hour BETWEEN 7 AND 12
- THEN "MORNINGS"
- WHEN extracted_hour BETWEEN 13 AND 18
- THEN "AFTERNOON"
- WHEN extracted_hour BETWEEN 19 AND 23
- THEN "NIGHT"
- END AS time bins
- FROM (SELECT
- order_purchase_timestamp,
- EXTRACT(HOUR FROM order_purchase_timestamp) AS extracted_hour,
- FROM `Customer_details.orders`))
- GROUP BY time_bins

Row	time_bins ▼	//	count_tod	· //
1	MORNINGS			27733
2	DAWN			5242
3	AFTERNOON			38135
4	NIGHT			28331

> Brazilian customers mostly place their orders in 'Afternoon' as per the data.

3) Evolution of E-commerce orders in the Brazil region:

Q.1 Get the month on month no. of orders placed in each state.

- SELECT
- customer_state,
- Month_of_Purchase,
- COUNT(Month_of_Purchase) AS Count_of_purchases
- FROM (SELECT
- c1.customer_state,
- EXTRACT(MONTH FROM o1.order_purchase_timestamp) AS Month_of_Purchase
- FROM `Customer_details.customers` AS c1 INNER JOIN
 `Customer_details.orders` AS o1 on c1.customer_id = o1.customer_id)
- GROUP BY customer_state ,Month_of_Purchase
- ORDER BY customer_state , Month_of_Purchase ;

customer_state ▼	Month_of_Purchase	Count_of_purchases
AC	1	8
AC	2	6
AC	3	4
AC	4	9
AC	5	10
AC	6	7
AC	7	9
AC	8	7
AC	9	5
AC	10	6
	AC	AC 1 AC 2 AC 3 AC 4 AC 5 AC 6 AC 7 AC 8 AC 9

Row	customer_state ▼	Month_of_Purchase	Count_of_purchases
12	AC	12	5
13	AL	1	39
14	AL	2	39
15	AL	3	40
16	AL	4	51
17	AL	5	46
18	AL	6	34
19	AL	7	40
20	AL	8	34
21	AL	9	20

Given above is the month-on-month no. of orders placed in each state.

Q.2 How are the customers distributed across all the states?

- SELECT
- customer_state,
- COUNT(customer_id) AS C_N
- FROM `Customer_details.customers`
- GROUP BY customer_state
- ORDER BY customer_state

Row	customer_state ▼	C_N ▼
1	AC	81
2	AL	413
3	AM	148
4	AP	68
5	BA	3380
6	CE	1336
7	DF	2140
8	ES	2033
9	G0	2020
10	MA	747

Row 10	customer_state ▼ MA	C_N ▼ 747
11	MG	11635
12	MS	715
13	MT	907
14	PA	975
15	PB	536
16	PE	1652
17	PI	495
18	PR	5045
19	RJ	12852
00	DNI	405

> Above is the distribution of customers state wise.

- 4) Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others
 - Q.1 Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only). You can use the "payment_value" column in the payments table to get the cost of orders.
 - SELECT
 - Year_of_Purchase,
 - cost_orders,
 - prev,
 - ROUND(((cost_orders prev)/prev) * 100 , 2) AS perc_inc
 - FROM (
 - SELECT
 - Year_of_Purchase,
 - cost_orders,
 - LAG(cost_orders,1,NULL)OVER(ORDER BY Year_of_Purchase) AS prev
 - FROM (SELECT
 - Year of Purchase,
 - SUM(payment value) AS cost orders
 - FROM (SELECT
 - o1.order_id,
 - EXTRACT(MONTH FROM o1.order_purchase_timestamp) AS Month_of_Purchase,
 - EXTRACT(YEAR FROM o1.order_purchase_timestamp) AS Year_of_Purchase,
 - p1.payment_value
 - FROM `Customer_details.orders` as o1 INNER JOIN
 `Customer details.payments` as p1 ON o1.order id = p1.order id)
 - WHERE Year_of_Purchase IN (2017,2018) AND Month_of_Purchase BETWEEN 1 AND 8
 - GROUP BY Year_of_Purchase))

Row	Year_of_Purchase	cost_orders ▼	prev ▼	perc_inc ▼
1	2017	3669022.119999	null	null
2	2018	8694733.839999	3669022.119999	136.98

➤ Hence, we can infer that there was a 136% increase in the cost of orders from year 2017 to 2018.

Q.2 Calculate the Total & Average value of order price for each state.

- SELECT
- c1.customer_state,
- SUM(p1.payment_value) AS Total,
- AVG(p1.payment_value) AS Average
- FROM `Customer_details.customers` AS c1 INNER JOIN
 `Customer_details.orders` AS o1 ON c1.customer_id = o1.customer_id
 INNER JOIN `Customer_details.payments` as p1 ON o1.order_id =
 p1.order_id
- GROUP BY c1.customer state

Henceforth, the above image gives the result of Total & Average value of Order price for each state.

Q.3 Calculate the Total & Average value of order freight for each state

- SELECT
- c1.customer_state,
- o1.order status,
- SUM(p1.payment_value) AS Total,
- AVG(p1.payment_value) AS Average
- FROM `Customer_details.customers` AS c1 INNER JOIN
 `Customer_details.orders` AS o1 ON c1.customer_id = o1.customer_id
 INNER JOIN `Customer_details.payments` as p1 ON o1.order_id =
 p1.order_id
- WHERE o1.order_status = 'shipped'
- GROUP BY c1.customer_state,o1.order_status

Row	customer_state ▼	order_status ▼ snippeu //	Total ▼ 5052.0500000000/	Average ▼ 100.401/00/142//
11	GO	shipped	4177.87	130.5584374999
12	ES	shipped	3448.470000000	202.8511764705
13	MT	shipped	2400.979999999	57.16619047619
14	SE	shipped	2700.140000000	270.014
15	RS	shipped	7907.880000000	213.7264864864
16	PE	shipped	6716.679999999	186.5744444444
17	AM	shipped	250.26	125.13
18	TO	shipped	999.5	333.1666666666
19	PR	shipped	6530.349999999	225.1844827586
				470.40

Henceforth, the above image gives the result of Total & Average value of Order freight for each state.

- 5) Analysis based on sales, freight and delivery time
 - Q.1 Find the no. of days taken to deliver each order from the order's purchase date as delivery time.

Also, calculate the difference (in days) between the estimated & actual delivery date of an order.

- SELECT
- order_id,
- order_status,
- TIMESTAMP_DIFF(order_delivered_customer_date,order_purchase_timestamp, DAY) AS delivery_time,
- TIMESTAMP_DIFF(order_estimated_delivery_date,order_delivered_customer_date,DAY) AS diff estimated delivery time
- FROM `Customer details.orders`
- WHERE order_status = 'delivered'

Row	order_id ▼	order_status ▼	delivery_time ▼	diff_estimated_delive
1	635c894d068ac37e6e03dc54e	delivered	30	1
2	3b97562c3aee8bdedcb5c2e45	delivered	32	0
3	68f47f50f04c4cb6774570cfde	delivered	29	1
4	276e9ec344d3bf029ff83a161c	delivered	43	-4
5	54e1a3c2b97fb0809da548a59	delivered	40	-4
6	fd04fa4105ee8045f6a0139ca5	delivered	37	-1
7	302bb8109d097a9fc6e9cefc5	delivered	33	-5
8	66057d37308e787052a32828	delivered	38	-6
9	19135c945c554eebfd7576c73	delivered	36	-2
10	4493e45e7ca1084efcd38ddeb	delivered	34	0

- In the above results, 'delivery_time' refers to the actual time taken to deliver the order
- 'diff_estimated_delivery_time' refers to the difference in estimated time of order delivery and actual time taken to deliver the order.

Q.2 Find out the top 5 states with the highest & lowest average freight value

- SELECT
- c1.customer_state,

- o1.order_status,
- AVG(p1.payment_value) AS Average
- FROM `Customer_details.customers` AS c1 INNER JOIN
 `Customer_details.orders` AS o1 ON c1.customer_id = o1.customer_id
 INNER JOIN `Customer_details.payments` as p1 ON o1.order_id =
 p1.order_id
- WHERE o1.order_status = 'shipped'
- GROUP BY c1.customer_state,o1.order_status
- ORDER BY average DESC
- LIMIT 5

Row	customer_state ▼	order_status ▼	Average ▼
1	TO	shipped	333.1666666666
2	SE	shipped	270.014
3	RR	shipped	227.3625
4	PR	shipped	225.1844827586
5	RS	shipped	213.7264864864

> Top 5 states with highest freight cost

- SELECT
- c1.customer_state,
- o1.order_status,
- AVG(p1.payment_value) AS Average
- FROM `Customer_details.customers` AS c1 INNER JOIN
 `Customer_details.orders` AS o1 ON c1.customer_id = o1.customer_id
 INNER JOIN `Customer_details.payments` as p1 ON o1.order_id = p1.order_id
- WHERE o1.order_status = 'shipped'
- GROUP BY c1.customer_state,o1.order_status
- ORDER BY average
- LIMIT 5

Row	customer_state ▼	order_status ▼	Average ▼
1	MT	shipped	57.16619047619
2	AC	shipped	94.37
3	MG	shipped	120.6556756756
4	AM	shipped	125.13
5	GO	shipped	130.5584375

> Top 5 states with lowest freight cost

Q.3 Find out the top 5 states with the highest & lowest average delivery time.

- SELECT
- customer_state,
- AVG(delivery_time) AS avg_del_time
- FROM (SELECT
- c1.customer_state,
- o1.order_id,
- o1.order_status,
- TIMESTAMP_DIFF(o1.order_delivered_customer_date,o1.order_purcha se_timestamp,DAY) AS delivery_time,
- FROM `Customer_details.orders` AS o1 INNER JOIN
 `Customer_details.customers` AS c1 ON o1.customer_id =
 c1.customer id
- WHERE o1.order_status = 'delivered')
- GROUP BY customer_state
- ORDER BY avg del time DESC
- LIMIT 5

Row	customer_state ▼	avg_del_time ▼
1	RR	28.97560975609
2	AP	26.73134328358
3	AM	25.98620689655
4	AL	24.04030226700
5	PA	23.31606765327

- > top 5 states with the highest average delivery time.
- SELECT
- customer state,
- AVG(delivery_time) AS avg_del_time
- FROM (SELECT
- c1.customer state,
- o1.order_id,
- o1.order_status,
- TIMESTAMP_DIFF(o1.order_delivered_customer_date,o1.order_purcha se timestamp,DAY) AS delivery time,
- FROM `Customer_details.orders` AS o1 INNER JOIN
 `Customer_details.customers` AS c1 ON o1.customer_id =
 c1.customer_id
- WHERE o1.order_status = 'delivered')
- GROUP BY customer state
- ORDER BY avg_del_time

LIMIT 5

Row	customer_state ▼	avg_del_time ▼
1	SP	8.298093544722
2	PR	11.52671135486
3	MG	11.54218777523
4	DF	12.50913461538
5	SC	14.47518330513

> top 5 states with the lowest average delivery time.

Q.4 Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

- SELECT
- customer_state,
- avg_del_time,
- avg_est_del,
- (avg_est_del avg_del_time) AS diff_btwn_avgs
- FROM (SELECT
- customer_state,
- AVG(delivery_time) AS avg_del_time,
- AVG(diff_estimated_delivery_time) AS avg_est_del,
- FROM (SELECT
- c1.customer_state,
- o1.order id,
- o1.order_status,
- TIMESTAMP_DIFF(o1.order_delivered_customer_date,o1.order_purcha se timestamp,DAY) AS delivery time,
- TIMESTAMP_DIFF(o1.order_estimated_delivery_date,o1.order_delivere d_customer_date,DAY) AS diff_estimated_delivery_time
- FROM `Customer_details.orders` AS o1 INNER JOIN
 `Customer_details.customers` AS c1 ON o1.customer_id =
 c1.customer_id
- WHERE o1.order_status = 'delivered')
- GROUP BY customer_state
- ORDER BY avg_del_time)
- ORDER BY diff_btwn_avgs DESC
- LIMIT 5

Row	customer_state ▼	avg_del_time ▼	avg_est_del ▼	diff_btwn_avgs ▼
1	SP	8.2980935447	10.1344890601	1.8363955153850267
2	PR	11.526711354	12.3642088157	0.8374974608978345
3	MG	11.542187775	12.2991016381	0.75691386295576635
4	RO	18.913580246	19.1316872427	0.21810699588477434
5	AC	20.637500000	19.7625000000	-0.8749999999999645

top 5 states where the order delivery is really fast as compared to the estimated date of delivery

6) Analysis based on the payments:

Q.1 Find the month on month no. of orders placed using different payment types.

- SELECT
- payment_type,
- Month_of_Purchase,
- COUNT(order_id) AS No_of_orders
- FROM (SELECT
- o1.order_id,
- p1.payment_type,
- EXTRACT(MONTH FROM o1.order_purchase_timestamp) AS Month_of_Purchase
- FROM `Customer_details.payments` AS p1 INNER JOIN
 `Customer_details.orders` AS o1 on p1.order_id = o1.order_id)
- GROUP BY Payment_type,Month_of_Purchase
- ORDER BY Payment_type, Month_of_Purchase;

Row	payment_type ▼	Month_of_Purchase	No_of_orders ▼
1	UPI	1	1715
2	UPI	2	1723
3	UPI	3	1942
4	UPI	4	1783
5	UPI	5	2035
6	UPI	6	1807
7	UPI	7	2074
8	UPI	8	2077
9	UPI	9	903
10	UPI	10	1056

Row	payment_type ▼	Month_of_Purchase	No_of_orders ▼
11	UPI	11	1509
12	UPI	12	1160
13	credit_card	1	6103
14	credit_card	2	6609
15	credit_card	3	7707
16	credit_card	4	7301
17	credit_card	5	8350
18	credit_card	6	7276
19	credit_card	7	7841
20	credit_card	8	8269

➤ Above shows Month on Month no. of orders placed using different payment types

Q.2 Find the no. of orders placed on the basis of the payment installments that have been paid.

- SELECT
- p1.payment_installments,
- COUNT(o1.order_id) as num_of_orders
- FROM `Customer_details.payments` AS p1 INNER JOIN
 `Customer_details.orders` AS o1 on p1.order_id = o1.order_id
- GROUP BY p1.payment installments

	ppa,	
Row	payment_installment	num_of_orders ▼
1	0	2
2	1	52546
3	2	12413
4	3	10461
5	4	7098
6	5	5239
7	6	3920
8	7	1626
9	8	4268
10	9	644

> The above gives the no. of orders placed on the basis of the payment installments.