Profiling for Authentication and Authorization

CS 773-TOPICS IN DATA MINING & SECURITY, COURSE PROJECT

Mounika Kompalli (UIN: 01014100) OLD DOMINION UNIVERSITY

ABSTRACT

Data Mining is the efficient discovery of previously unknown, valid, potentially useful, understandable patterns in large datasets. It is an extension of traditional data analysis and statistical approaches. The objective of data mining is to identify valid novel, potentially useful, and understandable correlations and patterns in existing data. A pattern is interesting if it is easily understood by humans, valid on new or test data with some degree of certainty, potentially useful, novel, or validates some hypothesis that a user seeks to confirm.

This project involved analyzing data and deriving useful user patterns based on the given user information. A dataset was given which contained user login and access data for all 19 users in a Department. A profile was developed for each user based on login pattern, session time patterns and access patterns.

User profiles were carefully analyzed to derive some useful statistics that helped in user modelling. Association Rules along with support were determined. Different aspects of modelling like over fitting and outliers were taken into consideration.

Additional information was derived from the given dataset which helped in identifying different user patterns. The assumptions and analysis of data was done considering different data mining security techniques. Users were grouped together based on similar profile characteristics and conclusions are derived to provide a pattern for each user based on commonalities. Clustering technique was implemented on the set of data (or objects) to convert it into a set of meaningful sub-classes, called clusters.

Finally suitable conclusions are derived about the user data using the data mining techniques.

TABLE OF CONTENTS

INTRODUCTION	5
GIVEN DATA	5
ANOMALIES IN GIVEN DATA	6
DERIVATION OF ADDITIONAL INFORMATION FOR TYPE I RECORDS TO STU THE LOGIN PATTERN	
DERIVATION OF ADDITIONAL INFORMATION TO STUDY THE CPU AND KEYBOARD USAGE (TYPE I)	10
DERIVATION OF ADDITIONAL INFOMATION TO STUDY THE EMAIL USAGE PATTERN (TYPE III)	11
DERIVATION OF ADDITIONAL INFORMATION TO STUDY THE RESOURCE US (TYPE II).	
DERIVATION OF ADDITIONAL ATTRIBUTES TO STUDY MACHINE USAGE PA (TYPE II).	
USER PROFILING BASED ON LOGIN PATTERNS	17
USER PROFILING BASED ON CPU USAGE AND KEYBOARD USAGE	18
USER PROFILING BASED ON MACHINE USAGE.	18
USER PROFILING BASED ON RESOURCE USAGE	19
OVERFITTING AND OUTLIERS	22
ASSOCIATION RULES	23
CLUSTERING	27
IMPLEMENTATION OF DATA MINING SECURITY TECHNIQUES	38
CONCLUSIONS	39
REFERENCES	<i>4</i> 1

LIST OF FIGURES AND TABLES

- 1) Anomaly 1- Figure 1- Page 6
- 2) Anomaly 2- Figure 2 Page 7
- 3) Time Range Table 1 Page 8
- 4) USER PROFILING BASED ON LOGIN PATTERNS Table 2 Page 17
- 5) USER PROFILING BASED ON CPU USAGE AND KEYBOARD USAGE Table 3 Page 18
- 6) USER PROFILING BASED ON MACHINE USAGE Table 4 Page 18
- 7) PROFILING BASED ON PRINTER USAGE Table 5 Page 19
- 8) PROFILING BASED ON PROGRAM ACCESS Table 6 Page 20
- 9) PROFILING BASED ON FILE ACCESS Table 7 Page 21
- 10) USER PROFILING BASED ON EMAIL ACCESS Table 8 Page 22
- 11) K-Means Clustering-On Login Access Data Figure 3 Page 28
- 12) K-Means Clustering-On CPU Usage and Keyboard Usage Data Figure 4 Page 29
- 13) K-Means Clustering-On File Access Data Figure 5 Page 30
- 14) K-Means Clustering-On Printer access Data Figure 6 Page 31,32
- 15) K-Means Clustering-On Program Access Data Figure 7 Page 33,34
- 16) K-Means Clustering-On Email Usage Data Figure 8 Page 35,36
- 17) K-Means Clustering-On Machine Usage Data Figure 9 Page 37,38

ACKNOWLEDGEMENT

We would like to take this opportunity to thank Dr. Ravi Mukkamala in providing a helping hand in this project. His valuable guidance, support and supervision all through the course Data mining and Security, are responsible for attaining this project in its present form.

The References and the video links provided in the course material under each module were immensely helpful to understand and apply various data mining techniques.

<u>Name</u>

Mounika Kompalli

Course

CS 773 - Data mining and Security

INTRODUCTION

Login and access data for 19 users belonging to a department are given. A profile has to be developed for each user describing the different statistics with respect to the programs executed, files accessed for read and update, files created and their size, library programs/ utilities executed and printer usage. The statistics for each profile may consist of start time, duration, resources (computers, files, network, and printer) accessed and the type of operations performed.

GIVEN DATA

We are provided with three different types of data which helps in understanding the user's login, resource access and email usage pattern. The first column in the given user data set defines the type of the record.

<u>Type 1 Records</u> – User Login Related data.

The different attributes of the Type 1 Records are:

- Record Type
- User
- Machine
- Date
- Login time
- logout time
- Average number of user processes at any time
- Maximum number of user processes
- Total keyboard characters typed
- CPU use (in seconds) by user processes.

Type 2 Records - User Resource Access related data.

The different attributes of the Type 2 Records are:

- Record Type
- User
- Machine
- Date
- Start time
- Program
- Execution time
- File R Read/File RW (Read write)/File W (write);
- Printer
- Pages printed.

Type 3 Records – User Email Related data

The different attributes of the Type 3 Records are:

- Record Type
- User
- Machine
- Date
- Start time
- E-mail Program
- E-mail address
- Received (R)/Sent(S)
- Bytes
- Attachments.

ANOMALIES IN THE GIVEN DATA

1) A user can only access the resources after he logs in to the system but for few users resource usage and email usage data is mentioned without the login details. E.g.: User U15 The below picture helps in identifying the anomaly.

Count of c Column L	abels 🗷			Ţ.						
Row Labels ▼ M09	N	/10 N	/11 N	/12 I	M13	M14	M15	M16	M18	Grand Total
∃1	22	1	1	1	1	5		22	8	61
U09	22									22
U10		1								1
U11			1							1
U12				1						1
U13					1					1
U14 U15?						5				5
U16								22		22
U18									8	8
■2	19	3	3	3	3	7	3	13	10	64
U09	19									19
U10		3								3
U11			3							3
U12				3						3
U13					3					3
U14						7				
< <u>1015</u>							3			3
U16								13		13
U18									10	
∃3	11		2	2	2	6	2	11	11	47
U09	11									11
U11			2							2
U12				2						2
U13					2					2
U14						6				6
< <u>U15</u>							2			
U16								11		11
U18									11	
Grand Total	52	4	6	6	6	18	5	46	29	172

Figure 1

2) User U10 has no login information available for M21, M23, M25 but resource and Email usages are mentioned in the data set.

Record Type Column Lab	els 🖅							
Row Labels ▼ M10		M11	M21	M22	M23	M24	M25	Grand Total
□1	1	1	13	7	10	7	21	60
< <u>∪10</u>	1) 1	Ō) 1		
U11		1	3	2	2	2	3	13
U12			3	1	2	1	5	12
U13			2	1	2	1	6	12
U14			2	1	2	1	2	8
U15			3	1	2	1	5	12
□2	3	3	10	16		3	42	79
< <u>U10</u>	3		(1	$\overline{)}$	2			
U11		3		4		3	6	16
U12				3			10	13
U13			9	3			10	22
U14				3			6	9
U15				3			10	13
∃3		2		4		1	23	30
< <u>∪10</u>						1		
U11		2		2			4	8
U12				1			5	6
U13							6	6
U14							2	2
U15				1			5	6
Grand Total	4	6	23	27	12	11	86	169

Figure 2

DERIVATION OF ADDITIONAL INFORMATION

From the given user data, additional information is derived to analyze and study user patterns. The Type 1 records are studied and carefully analyzed using MS Excel.

Pivot tables are used to filter the attributes and to generate separate profiles for each user.

The type 1 Records have login information and the following additional attributes are derived which helped us to analyze data and study user patterns.

The type 2 Records have Resource Usage Details like the Printer Access, File access and the Program Access related details.

The type 3 Records have the Email Usage details.

Derivation of Additional Information for Type 1 Records to study the login pattern:

1) No. of days a user logged in

This attribute helps us to know the number of days each user logged in for the given month. Using MS Excel filters the number of days is calculated making use of the Date column from the given Type 1 user data.

This is a numerical attribute.

2) Login periods

The Login periods attribute is derived from the login time column of type 1 user dataset. This attribute helps us to figure out all those users who are logging in the same time interval. A numeric value is assigned for every hour to denote the login periods.

Time Range	Numeric value
00:00:00-00:59:59	1
1:00:00-1:59:59	2
2:00:00-2:59:59	3
3:00:00-3:59:59	4
4:00:00-4:59:59	5
5:00:00-5:59:59	6
6:00:00-6:59:59	7
7:00:00-7:59:59	8
8:00:00-8:59:59	9
9:00:00-9:59:59	10
10:00:00-10:59:59	11
11:00:00-11:59:59	12
12:00:00-12:59:59	13
13:00:00-13:59:59	14
14:00:00-14:59:59	15
15:00:00-15:59:59	16
16:00:00-16:59:59	17
17:00:00-17:59:59	18
18:00:00-18:59:59	19
19:00:00-19:59:59	20
20:00:00-20:59:59	21
21:00:00-21:59:59	22
22:00:00-22:59:59	23
23:00:00-23:59:59	24

Table 1

3) Logout periods

The Logout periods attribute is derived from the logout time column of type 1 user dataset.

This attribute helps us to figure out all those users who are logging out the same time interval.

A numeric value is assigned for every hour to denote the logout periods.

Refer to Fig 3 for the numeric values.

This is a numerical attribute.

4) No. of days a user logged in during weekdays.

This attribute is derived from the date column of the given type 1 user data. Pivot tables and filters were used to separate the users who logged in during weekdays.

The number of weekdays each user has logged in is displayed in this attribute.

As the given type 1 user data belongs to September month of the year 2008, all the weekdays of this month are filtered to find out the number of days an individual user logged in to the respective machines.

Weekdays: Monday- Friday

Dates: Sep 1-Sep 5, Sep 8-Sep 12, Sep 15- Sep 19, Sep 22-26, Sep 29-Sep 30.

This attribute helps an employer to keep track of the employees who are logging in during weekdays without fail.

This is a numerical attribute.

5) No. of days a user logged in during weekends

This attribute is derived from the date column of the given type 1 user data. Pivot tables and filters were used to separate the users who logged in during weekends

The number of weekends each user has logged in is displayed in this attribute.

As the given type 1 user data belongs to September month of the year 2008, all the weekends of this month are filtered to find out the number of days an individual user logged in to the respective machines

Weekends: Saturday, Sunday

Dates: Sep 6, Sep 7, Sep 13, Sep 14, Sep 20, Sep 21, Sep 27, Sep 28.

This attribute helps an employer to keep track of the employees who are working on weekends to finish their duties.

This is a numerical attribute.

6) No. of times a user logging in during working hours

Considering the fact that whenever a user takes a break during working hours he logs out and logs back into the machine, this particular attributes helps an employer to keep track of the number of breaks each employee is taking during working hours.

This attribute is also used to find out those users who are not logging out of their machines even during breaks or after the working hours. This helps an organization to reduce the power consumption and CPU usage.

This attribute is derived from the date column of the given type 1 user data. Pivot tables and

filters were used to separate the users who logged in multiple times during working hours. Considered Working hours: 09:00:00 to 17:59:59.

This is a numerical attribute.

7) No. of times a user logging in after/before working hours.

This attribute is used to keep track of those users who are logging in before or after the working hours.

This attribute is derived from the date column of the given type 1 user data. Pivot tables and filters were used to separate the users who logged in multiple times during working hours. After/Before working hours: 18:00:00 to 08:59:59.

This is a numerical attribute.

8) No. of times a user logging out during working hours

Considering the fact that whenever a user takes a break during working hours he logs out and logs back into the machine, this particular attributes helps an employer to keep track of the number of breaks each employee is taking during working hours.

This attribute is also used to find out those users who are not logging out of their machines even during breaks or after the working hours. This helps an organization to reduce the power consumption and CPU usage.

This attribute is derived from the date column of the given type 1 user data. Pivot tables and filters were used to separate the users who logged out multiple times during working hours. Considered Working hours: 09:00:00 to 17:59:59.

This is a numerical attribute.

9) No. of times a user logging out before/after working hours

This attribute is used to keep track of those users who are logging out before or after the working hours.

This attribute is derived from the date column of the given type 1 user data. Pivot tables and filters were used to separate the users who logged out multiple times during working hours. After/Before working hours: 18:00:00 to 08:59:59.

This is a numerical attribute.

DERIVATION OF ADDITIONAL INFORMATION TO STUDY THE CPU AND KEYBOARD USAGE (TYPE 1 RECORDS)

1) No. of Keyboard characters typed

This attribute displays the number of keyboard characters typed by each user.

This is a numerical attribute and is used by the employer to keep track of the keyboard usage of each employee.

2) Total keyboard characters typed during weekdays

This attribute displays the number of keyboard characters that are typed during weekdays by each user. This is a numerical attribute

3) Total keyboard characters typed during weekend

This attribute displays the number of keyboard characters that are typed during weekends by each user.

This is a numerical attribute

4) Total CPU use by user processes

This attribute displays the total CPU use by the user processes in seconds.

This is a numerical attribute that denotes the CPU usage with respect to time.

5) Total CPU use during weekdays

This attribute displays the total CPU use by the user processes in seconds during weekdays. This is a numerical attribute that denotes the CPU usage with respect to time.

6) Total CPU use during weekend

This attribute displays the total CPU use by the user processes in seconds during weekends. This is a numerical attribute that denotes the CPU usage with respect to time.

DERIVATION OF ADDITIONAL INFORMATION FROM TYPE 3 USER DATA TO STUDY THE EMAIL USAGE PATTERN

1) Total No. of emails sent or Received

This attribute helps us to figure out the total number of emails either sent or received by each user.

MS Excel filters were used to separate the total number of emails sent.

This is a numerical attribute.

2) Email Id from which Max No. of emails sent or received

This attribute helps us to figure out the email id from which each user sent or received maximum number of emails.

MS Excel filters were used to separate the total number of emails sent.

This is a numerical attribute.

3) Total size of emails sent/received in Kilo bytes

This attribute helps us to figure out the total size of emails sent or received by each individual user.

This attribute is expressed in terms of Kilo bytes and is a numerical attribute.

This can be used by an employer to figure out the size of data that is exchanged between employees in the form of emails.

4) Total No. of Attachments sent or received

This attribute displays the number of attachments sent or received by each user.

This is a numerical attribute and can be used by the employer to find out the number of attachments that are frequently exchanged between his employees.

5) Emails received or sent during working hours

This attribute displays the number of emails sent or received during working hours. This is a numerical attribute and can be used by the employer to find out the number of emails that are being sent or received by each employee especially during working hours.

Working hours: 9:00:00 to 17:59:59

6) Emails received or sent after/ before working hours

This attribute displays the number of emails sent or received after working hours. This is a numerical attribute and can be used by the employer to find out the number of emails that are being sent or received by each employee after working hours and separating those employees who are working after working hours to complete the assigned tasks.

After /before Working hours: 18:00:00-08:59:59

7) Total No. of emails sent or received during weekdays

This attribute displays the number of emails sent or received during weekdays. This is a numerical attribute and can be used by the employer to find out the number of emails that are being sent or received by each employee during weekdays and to keep track of all those employees who are working and who are not during weekdays.

8) Total No. of emails sent or received during weekends

This attribute displays the number of emails sent or received during weekends. This is a numerical attribute and can be used by the employer to find out the number of emails that are being sent or received by each employee during weekends and to keep track of all those employees who are working even during weekends to finish their tasks.

9) Sent/Received to/from mom@icare.com

This attribute displays the information whether a particular user has sent any emails to the id mom@icare.com.

mom@icare.com is identified to be a personal email and this attribute can be used by the employer to keep track of those employees that are sending personal emails during office hours.

This is a Boolean attribute.

DERIVATION OF ADDITIONAL INFORMATION FROM TYPE 2 USER DATA TO STUDY THE RESOURCE USAGE

Some additional attributes were derived to study the resource usage pattern of users.

They are listed below:

Attributes to study the program access pattern.

1) Total No. of programs executed

This attribute displays the total number of programs that are executed by individual user.

This attribute is a numerical attribute and is used to highlight the workload that is shared between different users.

2) Types of programs executed

From the given type 3 user dataset different types of programs executed by the users are identified and listed under this attribute.

Different type of programs executed:

UP: User Program

LP: Library Program

3) Programs executed on weekdays

This attribute displays the number of programs that are executed during weekdays.

This is a numerical attribute and is used by the employer to keep track of the program execution in terms of quantity.

4) Programs executed during working hours

This attribute displays the number of programs that are executed during working hours.

This attribute is a numerical attribute and helps the employer to keep track of those employees who are working on programs during working hours.

5) Programs executed after working hours

This attribute displays the number of programs that are executed after working hours. This attribute is a numerical attribute and helps the employer to keep track of those employees who are working on programs after working hours.

6) Programs executed on weekends

This attribute displays the number of programs that are executed during weekdays. This is a numerical attribute and is used by the employer to keep track of the program execution in terms of quantity.

7) Total Execution time

This attribute displays the total execution time for each user.

This is a numerical attribute and is used by the employer to keep track of those employees who are utilizing the working hours in executing the programs.

8) Type of program executed Max no. of times

This attribute displays the type of programs that are executed maximum number of times.

This is a numerical attribute and is used to figure out the type of programs on which the users spend maximum time.

Type of programs: LP / UP

Attributes to study the printer usage pattern

1) No. of pages printed

This attribute displays the number of pages printed by each user.

This is a numerical attribute and is used by the employer to keep track of those employees who are printing maximum number of pages.

2) No. of pages printed on weekdays

This attribute displays the number of printers that are used during weekdays by each user.

This is a numerical attribute and is used by the employer to keep track of the number of pages that are printed on weekdays.

3) No. of pages printed on weekend

This attribute displays the number of pages that are printed on weekends.

This is a numerical attribute and is used by the employer to keep track of the number of pages that will be needed by the organization during weekends.

4) No. of pages printed during working hours

This attribute displays the number of pages that are printed during working hours by each user.

This is a numerical attribute and is used by the employer to keep track of the number of pages that are needed in the organization during working hours.

5) No. of pages printed after working hours

This attribute displays the number of pages that are printed after working hours by each user.

This is a numerical attribute and is used by the employer to keep track of the number of pages that are needed in the organization after working hours.

Additional Attributes to study the file access pattern.

1) No. of files opened with Read access

This attribute displays the total number of files that are opened with Read permission by each user.

This is a numerical attribute and is used by the employer to keep track of those employees who are having the access to Read the files in the organization.

2) No. of files opened with Read-write access

This attribute displays the total number of files that are opened with Read permission by each user.

This is a numerical attribute and is used by the employer to keep track of those employees who are having the access to Read and make changes to the files in the organization.

3) Total no. of files accessed

This attributes displays the total number of files that are accessed by each user.

This is a numerical attribute and is the sum of attributes No. of files opened with Read access and No. of files opened with Read-write access.

4) Total no. of files opened during working hours

This attribute displays the total number of files that are opened during working hours.

This is a numerical attribute and is used by the employer to keep track of the number of files that are being accessed during working hours.

5) Total no. of files opened after working hours

This attribute displays the total number of files that are opened after working hours.

This is a numerical attribute and is used by the employer to keep track of the number of files that are being accessed after working hours.

6) Total no. of files accessed on weekdays

This attribute displays the total number of files that are opened during weekdays.

This is a numerical attribute and is used by the employer to keep track of the number of files that are being accessed by the employees during weekdays.

7) Total no. of files accessed on weekend

This attribute displays the total number of files that are opened on weekends.

This is a numerical attribute and is used by the employer to keep track of the number of files that are being accessed by the employees on weekends.

DERIVATION OF ADDITIONAL ATTRIBUTES TO STUDY THE MACHINE USAGE PATTERN

1) Shared?

This attribute helps us to identify whether the machine is shared between two users or used by a single user.

This is a Boolean attribute and the possible values are Yes and No.

This attribute can be used by the employer to keep track of those machines that are used by multiple users.

2) Total time Used (In mins)

This attribute displays the total time each machine is used by the users.

This is a numerical attribute that displays the time in minutes and is used by the employer to keep track of those machines that are used for large intervals of time.

3) Frequently used by

This attribute displays the User Id of the user who uses the machine frequently.

There are some systems that are exclusively used by a single user and some systems that are used by multiple users.

This is a nominal attribute and is used to identify those users that use a particular system frequently.

4) Machine used during weekdays

This attribute helps us to identify those machines that are used during weekdays.

This is a Boolean attribute and the possible values are Yes or No.

This attribute helps the employer to be informed about those machines that are used during weekdays.

5) Machine used during weekends

This attribute helps us to identify those machines that are used during weekends.

This is a Boolean attribute and the possible values are Yes or No.

This attribute helps the employer to be informed about those machines that are used during weekends.

USER PROFILING

USER PROFILING BASED ON LOGIN PATTERNS

User	No. of days a user logged in	Login_period	Logout_period	No. of days a user logged in during weekdays	No. of days a user logged in during weekends	No. of times a user logging in during working hours	No. of times a user logging in before/after working hours	No. of times a user logging out during working hours	No. of times a user logging out before/after working hours
U01	22	9	18	22	0	0	22	22	0
U02	22	More than once	More than once	22	0	7	15	12	10
U03	22	9	18	22	0	0	22	22	0
U04	22	More than once	More than once	22	0	6	16	12	10
U05	22	9	18	22	0	0	22	22	0
U06	22	More than once	More than once	22	0	6	16	12	10
U07	22	9	18	22	0	0	22	22	0
U08	22	More than once	More than once	22	0	6	16	12	10
U09	22	9	18	22	0	0	22	22	0
U10	22	More than once	More than once	22	0	6	16	12	10
U11	22	9	18	22	0	0	22	22	0
U12	22	More than once	More than once	22	0	8	14	20	2
U13	22	More than once	More than once	22	0	8	14	20	2
U14	22	More than once	More than once	22	0	8	14	20	2
U15	21	More than once	More than once	21	0	8	13	20	1
U16	22	More than once	More than once	22	0	8	14	20	2
U17	22	More than once	More than once	22	0	8	14	20	2
U18	8	More than once	More than once	1	7	1	7	7	1
U19	8	More than once	More than once	1	7	1	7	7	1

Table 2

USER PROFILING BASED ON CPU USAGE AND KEYBOARD USAGE

User	Machine	No. of Keyboard characters typed	Total keyboard characters typed during weekdays	Total keyboard characters typed during weekend	Total CPU use by user processes	Total CPU use during weekdays	Total CPU use during weekend
U01	M01	246995	246995	0	241844	241844	0
U02	M02	246995	246995	0	241844	241844	0
U03	M03	246995	246995	0	241844	241844	0
U04	M04	246995	246995	0	241844	241844	0
U05	M05	246995	246995	0	241844	241844	0
U06	M06	246995	246995	0	241844	241844	0
U07	M07	246995	246995	0	241844	241844	0
U08	M08	246995	246995	0	241844	241844	0
U09	M09	246995	246995	0	241844	241844	0
U10	Multiple	246995	246995	0	241844	241844	0
U11	Multiple	246995	246995	0	241844	241844	0
U12	Multiple	246995	246995	0	241844	241844	0
U13	Multiple	246995	246995	0	241844	241844	0
U14	Multiple	246995	246995	0	241844	241844	0
U15	Multiple	234650	234650	0	229746	229746	0
U16	M16	246995	246995	0	241844	241844	0
U17	M19	246995	246995	0	241844	241844	0
U18	M18	87820	12345	75475	84650	13400	71250
U19	M19	87820	12345	75475	84650	13400	71250

Table 3

USER PROFILING BASED ON MACHINE USAGE

Machine	Shared ?	Total time Used (minutes)	Frequently used by	Machine used during weekdays	Machine used during weekends	Total number of keyboard characters typed	Total CPU usage by user processes
M01	No	11965	U01	Yes	No	246995	241844
M02	No	10418	U02	Yes	No	246995	241844
M03	No	11965	U03	Yes	No	246995	241844
M04	No	10343	U04	Yes	No	246995	241844
M05	No	11952	U05	Yes	No	246995	241844
M06	No	10343	U06	Yes	No	246995	241844
M07	No	11965	U07	Yes	No	246995	241844
			Multiple				
M08	Yes	13134	Users	Yes	No	316250	309310
M09	No	11955	U09	Yes	No	246995	241844

M10	No	601	U10	Yes	No	12345	12098
M11	No	540	U11	Yes	No	12345	12098
M12	No	240	U12	Yes	No	12345	12098
M13	No	240	U13	Yes	No	12345	12098
M14	No	2820	U14	Yes	No	42565	40458
M16	No	9800	U16	Yes	No	246995	241844
M18	No	4162	U18	Yes	Yes	87820	84650
M19	Yes	13962	Multiple Users	Yes	Yes	334815	326494
M21	Yes	7410	Multiple Users	Yes	No	120360	110844
M22	Yes	3854	Multiple Users	Yes	No	93940	82700
M23	Yes	4860	Multiple Users	Yes	No	149000	146660
M24	Yes	1744	Multiple Users	Yes	No	80390	85586
M25	Yes	12620	Multiple Users	Yes	No	230925	228112
M26	Yes	5417	Multiple Users	Yes	No	166905	172976
M27	Yes	3333	Multiple Users	Yes	No	49135	51116
M28	Yes	6675	Multiple Users	Yes	No	171215	150490
M29	Yes	1945	Multiple Users	Yes	No	105940	104756
M30	Yes	6178	Multiple Users	Yes	No	140615	149410

Table 4

USER PROFILING BASED ON RESOURCE USAGE

PROFILING BASED ON PRINTER USAGE

User	Machin e	Printe r used	No. of pages printed	No. of pages printed on weekday	No. of pages printed on weekend	No. of pages printed during working hours	No. of pages printed after working hours
U01	M01	PR1	142	142	0	122	20
U02	M02	PR1	160	160	0	140	20
U03	M03	PR1	142	142	0	122	20
U04	M04	PR1	160	160	0	140	20
U05	M05	PR2	142	142	0	122	20
U06	M06	PR2	160	160	0	140	20

U07	M07	PR2	142	142	0	122	20
U08	M08	PR2	160	160	0	140	20
U09	M09	PR2	142	142	0	122	20
U10	Multiple	PR2	160	160	0	140	20
U11	Multiple	PR3	142	142	0	122	20
U12	Multiple	PR3	142	142	0	95	47
U13	Multiple	PR4	202	202	0	155	47
U14	Multiple	PR4	142	142	0	95	47
U15	Multiple	PR4	142	142	0	95	47
U16	M16	PR4	92	92	0	92	0
U17	M19	PR6	92	92	0	92	0
U18	M18	PR5	56	0	56	56	0
U19	M19	PR6	56	0	56	56	0

Table 5

PROFILING BASED ON PROGRAM ACCESS

User	Machine	Total No. of programs executed	Types of programs executed	Programs executed on weekdays	Programs executed during working hours	Programs executed after working hours	Programs executed on weekend	Total Execution time	Type of program executed Max no. of times
U01	M01	19	3	19	18	1	1	11910	LP
U02	M 02	28	5	28	27	1	1	28310	UP
U03	M03	19	3	19	18	1	1	11910	LP
U04	M 04	28	5	28	27	1	1	28310	UP
U05	M05	19	3	19	18	1	1	11910	UP
U06	M06	28	5	28	27	1	1	28310	UP
U07	M07	19	3	19	18	1	1	11910	LP
U08	M08	28	5	28	27	1	1	28310	UP
U09	M09	19	3	19	18	1	1	11910	LP
U10	Multiple	28	7	28	27	1	1	28310	UP
U11	Multiple	19	3	19	18	1	1	11910	UP
U12	Multiple	19	3	19	15	4	4	11910	UP
U13	Multiple	28	6	28	24	4	4	18300	UP/LP
U14	Multiple	19	3	19	15	4	4	11910	UP
U15	Multiple	19	3	19	15	4	4	11910	UP
U16	M16	13	6	13	13	0	0	8550	UP/LP
U17	M19	13	6	13	13	0	0	8550	LP
U18	M18	10	10	0	13	0	10	6720	UP
U19	M19	10	6	0	13	0	10	6720	LP

Table 6
PROFILING BASED ON FILE ACCESS

User	Machin e	No. of files opened with Read access	No. of files opened with Readwrite access	Total no. of files accesse d	Total no. of files opened during working hours	Total no. of files opened after working hours	Total no. of files accessed on weekday s	Total no. of files accessed on weekend
U01	M01	11	8	19	18	1	19	0
U02	M02	16	12	28	27	1	28	0
U03	M03	11	8	19	18	1	19	0
U04	M04	16	12	28	27	1	28	0
U05	M05	3	16	19	18	1	19	0
U06	M06	7	21	28	27	1	28	0
U07	M07	3	16	19	18	1	19	0
U08	M08	7	21	28	27	1	28	0
U09	M09	3	16	19	18	1	19	0
U10	Multiple	7	21	28	27	1	28	0
U11	Multiple	19	0	19	18	1	19	0
U12	Multiple	19	0	19	15	4	19	0
U13	Multiple	25	3	28	24	4	28	0
U14	Multiple	19	0	19	15	4	19	0
U15	Multiple	19	0	19	15	4	19	0
U16	M16	12	1	13	13	0	13	0
U17	M19	12	1	13	13	0	13	0
U18	M18	9	1	10	10	0	0	10
U19	M19	9	1	10	10	0	0	10

Table 7

USER PROFILING BASED ON EMAIL ACCESS

Use r	Machin e	Email progra m	Sent or Receive d	Total No. of emails sent or Receive d	Email Id from which Max No. of emails sent or Received	Total size of emails sent/rec eiwed in Kilo bytes	Total No. of Attachmen ts sent or received	Emails received or sent during working hours	Emails received or sent after working hours	Total No. of emails sent or received during weekdays	Total No. of emails sent or receiwd during weeken ds	Sent/Receive d to/from mom@icare.c om
U01	M01	E1	Sent	11	jones@pqr.com	5061	10	9	1	11	0	No

U02	M02	E1	Sent	12	jones@pqr.com	5065	10	9	1	12	0	Yes
U03	M03	E1	Sent	11	jones@pqr.com	5061	10	9	1	11	0	No
U04	M04	E1	Sent	12	jones@pqr.com	5065	10	9	1	12	0	Yes
U05	M05	E1	Sent	11	jones@pqr.com	5061	10	9	1	11	0	No
U06	M06	E1	Received	12	smith@abc.org	5065	10	9	1	12	0	Yes
U07	M07	E1	Sent	11	smith@abc.org	5061	10	9	1	11	0	No
U08	M08	E1	Received	12	smith@abc.org	5065	10	9	1	12	0	Yes
U09	M09	E3	Sent	11	smith@abc.org	5061	10	9	1	11	0	No
U10	Multiple	E3	Received	12	smith@abc.org	5065	10	9	1	12	0	Yes
U11	Multiple	E1	Sent	11	xyz@sai.org	5061	10	9	1	11	0	No
U12	Multiple	E1	Sent	11	xyz@sai.org	5061	10	6	4	11	0	No
U13	Multiple	E1	Sent	11	xyz@sai.org	5061	10	6	4	11	0	No
U14	Multiple	E1	Sent	11	xyz@sai.org	5061	10	6	4	11	0	No
U15	Multiple	E1	Received	11	bob@xyz.com	5061	10	6	4	11	0	No
U16	M16	E1	Received	11	bob@xyz.com	5061	10	6	4	11	0	No
U17	M19	E4	Received	11	bob@xyz.com	5061	10	6	4	11	0	No
U18	M18	E5	Received	11	bob@xyz.com	5061	10	6	4	2	9	No
U19	M19	E4	Received	11	bob@xyz.com	5061	10	6	4	2	9	No

Table 8

OVERFITTING AND OUTLIERS

Arguably, the most important safeguard in building predictive models is complexity regularization to avoid over fitting the data. When models are overfit, their accuracy is lower on new data that wasn't seen during training, and therefore when these models are deployed, they will disappoint, sometimes even leading decision makers to believe that predictive modeling "doesn't work".

One way modelers reduce the likelihood of overfit is to apply the principle of Occam's razor, where if two models exhibit the same accuracy, we will prefer the simpler model because it is more likely to generalize well. By simpler, we must keep in mind that we prefer models that *behave* more simply rather than models that just appear to be simpler because they have fewer terms.

OUTLIERS

Outliers are also referred to as abnormalities, deviants, or anomalies in the data mining and statistics literature. In most applications, the data is created by one or more generating processes, which could either reflect activity in the system or observations collected about entities. When the generating process behaves in an unusual way, it results in the creation of outliers. Therefore, an outlier often contains useful information about abnormal characteristics of the systems an entities, which impact the data generation process. The recognition of such unusual characteristics provides useful application-specific insights.

ASSOCIATION RULES

5) If

```
1) If
Emails received or sent during working hours = 10
Emails received or sent after working hours =1
Then, Total size of emails sent/received in Kilo bytes = 5061.
Coverage = 6
Support = 6
Accuracy =100%
2) If
Emails received or sent during working hours = 11
Emails received or sent after working hours =1
Then, Total size of emails sent/received in Kilo bytes = 5065.
Coverage = 5
Support = 5
Accuracy =100%
3) If
Types of programs executed = 3
Programs executed during working hours = 18
Programs executed after working hours = 1
Type of program executed Max no. of times= LP
Then, Total Execution time = 11910
Coverage = 4
Support = 4
Accuracy = 100\%
4) If
Types of programs executed = 3
Programs executed during working hours = 18
Programs executed after working hours = 1
Then, Total Execution time = 11910,
Coverage = 5
Support = 5
Accuracy = 100\%
```

Types of programs executed = 5
Programs executed during working hours = 27
Programs executed after working hours = 1
Type of program executed Max no. of times=UP
Then, Total Execution time = 28310

Coverage = 5 Support = 5 Accuracy = 100%

6) If,

Login_period=9
Logout_period=18
Then, No. of days a user logged in=22
Coverage = 6
Support = 6
Accuracy = 100%

7) If,

No. of times a user logging in during working hours=6 No. of times a user logging in before/after working hours=16 Then, Login_period="More than once".
i.e. the user is logging in more than one interval of time.

Coverage = 4 Support = 4 Accuracy = 100%

8) If,

No. of times a user logging out during working hours=12 No. of times a user logging out before/after working hours=10 Then, Logout_period="More than once".
i.e. the user is logging out more than one interval of time.

Coverage = 4 Support = 4 Accuracy = 100%

9) If,

Total number of keyboard characters typed=246995 Total CPU usage by user processes=241844 Then, Total time Used (minutes) =11965

```
Coverage = 9
   Support = 3
   Accuracy = 33.33\%
   As the accuracy is falling under 75%, this cannot be made as a Rule.
10) If,
Total No. of emails sent or Received=12
Total size of emails sent/received in Kilo bytes=5065
Then, Sent/Received to/from <a href="mon@icare.com">mon@icare.com</a> Yes
   Coverage = 5
   Support = 5
   Accuracy = 100\%
11) If,
Total No. of emails sent or Received=11
Total size of emails sent/received in Kilo bytes=5061
Then, Sent/Received to/from mom@icare.com= No
   Coverage = 14
   Support = 14
   Accuracy = 100\%
12) If,
Total No. of emails sent or Received=11
Total size of emails sent/received in Kilo bytes=5061
Then, Email Id from which Max No. of emails sent or Received= xyz@sai.org
   Coverage = 14
   Support = 4
   Accuracy = 28.57\%
   As the accuracy is falling under 75%, this cannot be made as a Rule.
13) If,
Email program='E1'
Email Id from which Max No. of emails sent or Received= jones@pqr.com
Then, Total size of emails sent/received in Kilo bytes =5061
   Coverage = 5
   Support = 3
   Accuracy = 60\%
```

As the accuracy is falling under 75%, this cannot be made as a Rule. So Let us try Pruning of any one of the attribute from the above Rule, Let's remove the attribute "Email Id from which Max No. of emails sent or Received" The Rule after pruning is as follows.

14) If,

Email program='E1'

Then, Total size of emails sent/received in Kilo bytes =5061

Coverage = 14 Support = 10 Accuracy = 71.4%

After Pruning, we have considerably increased the Accuracy percentage but it is still falling below the threshold 75 %,

So, this cannot be made as a Rule.

15) If,

Sent or Received= 'Sent' Email Id from which Max No. of emails sent or Received='jones@pqr.com' Then, Total No. of emails sent or Received=11

Coverage = 5 Support = 3 Accuracy = 60%

As the accuracy is falling under 75%, this cannot be made as a Rule. So Let us try Pruning of any one of the attribute from the above Rule, Let's remove the attribute "Email Id from which Max No. of emails sent or Received" The Rule after pruning is as follows.

16) If,

Sent or Received= 'Sent'

Then, Total No. of emails sent or Received=11

Coverage = 11 Support = 9 Accuracy = 81.81%

The Accuracy has considerably increased after pruning.

As, the accuracy is greater than 75 % . This can be now considered as a Rule.

17) If,

Email Id from which Max No. of emails sent or Received='bob@xyz.com' Sent or Received='Received'
Then, Total No. of emails sent or Received=11

Coverage = 5 Support = 5 Accuracy = 100%

CLUSTERING

Clustering is a process of partitioning a set of data (or objects) into a set of meaningful subclasses, called clusters.

Help users understand the natural grouping or structure in a data set.

Clustering: unsupervised classification: no predefined classes. Used either as a stand-alone tool to get insight into data distribution or as a preprocessing step for other algorithms.

We have used K-Means Clustering technique to partition the given user data set into a meaningful clusters.

K-MEANS CLUSTERING TECHNIQUE

K-means is one of the simplest unsupervised learning algorithms that solve the well-known clustering problem. The procedure follows a simple and easy way to classify a given data set through a certain number of clusters (assume k clusters) fixed apriori.

The main idea is to define k centers, one for each cluster. These centers should be placed in a cunning way because of different location causes different result. So, the better choice is to place them as much as possible far away from each other.

The next step is to take each point belonging to a given data set and associate it to the nearest center. When no point is pending, the first step is completed and an early group age is done. At this point we need to re-calculate k new centroids as barycenter of the clusters resulting from the previous step

After we have these k new centroids, a new binding has to be done between the same data set points and the nearest new center. A loop has been generated. As a result of this loop we may notice that the k centers change their location step by step until no more changes are done or in other words centers do not move any more.

K-Means Clustering-On Login Access Data

kMeans

Number of iterations: 2

Within cluster sum of squared errors: 15.034233938019653

Missing values globally replaced with mean/mode

Cluster centroids:

		Cluster#			
Attribute	Full Data	0	1	2	3
	(19)	(5)	(6)	(2)	(6)
User	U01	U02	U01	U18	U12
logindaysnum	20.4737	22	22	8	21.8333
Loginperiod	Multiple	Multiple	9	Multiple	Multiple
Logoutperiod	Multiple	Multiple	18	Multiple	Multiple
weekdaysloginnum	19.7368	22	22	1	21.8333
weekendloginnum	0.7368	0	0	7	0
workhrsloginnum	4.2632	6.2	0	1	8
aftworkhrsloginnum	16.2105	15.8	22	7	13.8333
workhrslogoutnum	17.1579	12	22	7	20
aftworkhrslogoutnum	3.3158	10	0	1	1.8333

Time taken to build model (full training data) : 0.01 seconds

=== Model and evaluation on training set ===

Clustered Instances

5 (26%) 6 (32%) 1 2 (11%) 2 6 (32%)

Figure 3

K-Means Clustering-On CPU Usage and Keyboard Usage Data

kMeans

Number of iterations: 3 Within cluster sum of squared errors: 25.01500905116785 Missing values globally replaced with mean/mode

Cluster centroids:

		Cluster#			
Attribute	Full Data	0	1	2	3
	(19)	(7)	(9)	(2)	(1)
User	U01	U01	U02	U18	U17
Machine	Multiple	Multiple	M02	M18	M19
CharTyped	229590	245231.4286	246995	87820	246995
CharTypedweekday	221645.2632	245231.4286	246995	12345	246995
CharTypedweekend	7944.7368	0	0	75475	0
CPUusedProc	224660.5263	240115.7143	241844	84650	241844
TotalCPUweekday	217160.5263	240115.7143	241844	13400	241844
TotalCPUweekend	7500	0	0	71250	0

Time taken to build model (full training data) : 0.01 seconds

=== Model and evaluation on training set ===

Clustered Instances

0 7 (37%) 1 9 (47%) 2 2 (11%) 3 1 (5%)

Figure 4

K-Means Clustering-On File Access Data

kMeans

Number of iterations: 2

Within cluster sum of squared errors: 29.70533749744699

Missing values globally replaced with mean/mode

Cluster centroids:

		Cluster#			
Attribute	Full Data	0	1	2	. 3
	(19)	(6)	(5)	(2)	(6)
User	U01	U02	U01	U18	U11
Machine	Multiple	Multiple	M01	M18	Multiple
filesrdaccessnum	11.9474	13	6.2	9	16.6667
filesrdwtaccessnum	8.3158	15	12.8	1	0.3333
totalfiles	20.2632	28	19	10	17
fileaccessworkhrs	18.8421	26.5	18	10	14.8333
fileaccessaftworkhrs	1.4211	1.5	1	0	2.1667
fileaccessweekday	19.2105	28	19	0	17
fileaccessweekend	1.0526	0	0	10	0

Time taken to build model (full training data) : 0 seconds

=== Model and evaluation on training set ===

Clustered Instances

0 6 (32%) 1 5 (26%) 2 2 (11%) 3 6 (32%)

Figure 5

K-Means Clustering-On Printer access Data

kMeans

Number of iterations: 4

Within cluster sum of squared errors: 34.05838234338559

Missing values globally replaced with mean/mode

Cluster centroids:

		Cluster#			
Attribute	Full Data	0	1	2	3
	(19)	(6)	(9)	(1)	(3)
User	U01	T02	U01	U18	U16
Machine	Multiple	Multiple	M01	M18	M19
printer	PR2	PR4	PR2	PR5	PR6
pagesprinted	135.5789	155	150	56	80
weekdayprintpage	129.6842	155	150	0	61.3333
weekendprintpage	5.8947	0	0	56	18.6667
workhrprintpage	114.1053	117	130	56	80
aftworkhrprintpage	21.4737	38	20	0	0

Time taken to build model (full training data) : 0 seconds

=== Model and evaluation on training set ===

Clustered Instances

0 6 (32%) 1 9 (47%) 2 1 (5%) 3 3 (16%)

Figure 6

K-Means Clustering-On Program Access Data

kMeans

Number of iterations: 3

Within cluster sum of squared errors: 32.89596098857761

Missing values globally replaced with mean/mode

Cluster centroids:

		Cluster#			
Attribute	Full Data	0	1	2	3
	(19)	(11)	(4)	(1)	(3)
User	U01	U02	U01	U18	U16
Machine	Multiple	Multiple	M01	M18	M19
Totalprogexec	20.2632	23.9091	19	10	12
typeprogexec	4.6316	4.3636	3	10	6
progexecweekday	19.2105	23.9091	19	0	8.6667
progexecworkhrs	19.1579	21.8182	18	13	13
progexecaftworkhrs	1.4211	2.0909	1	0	0
progexecweekend	2.4737	2.0909	1	10	3.3333
totalexectime	15662.1053	19945.4545	11910	6720	7940
progtypename	UP	UP	LP	UP	LP

Time taken to build model (full training data) : 0 seconds

=== Model and evaluation on training set ===

Clustered Instances

- 0 11 (58%)
- 1 4 (21%)
- 2 1 (5%)
- 3 3 (16%)

Figure 7

K-Means Clustering-On Email Usage Data

kMeans

Number of iterations: 4

Within cluster sum of squared errors: 43.2066666666666

Missing values globally replaced with mean/mode

Cluster centroids:

		Cluster#			
Attribute	Full Data	0	1	2	3
	(19)	(5)	(9)	(3)	(2)
User	U01	U02	 U01	U17	 U15
Machine	Multiple	M02	Multiple	M19	Multiple
Emailprogram	E1	E1	E1	E4	E1
SentorReceived	Sent	Received	Sent	Received	Received
TotalNo.ofemails	11.2632	12	11	11	11
EmailMaxemail	jones@pqr.com	smith@abc.org	xyz@sai.org	bob@xyz.com	bob@xyz.com
Totsizeoemails/rKb	5062.0526	5065	5061	5061	5061
No.ofAttachments	10	10	10	10	10
Emailworkhrs	7.7368	9	8	6	6
Emailaftworkhrs	2.2632	1	2	4	4
Emailweekday	10.3158	12	11	5	11
Emailweekend	0.9474	0	0	6	0
s/rt/fmom@icare.com	No	Yes	No	No	No

Time taken to build model (full training data) : 0 seconds

=== Model and evaluation on training set ===

Clustered Instances

0 5 (26%) 1 9 (47%) 2 3 (16%) 3 2 (11%)

Figure 8

K-Means Clustering-On Machine Usage Data

kMeans

Number of iterations: 5

Within cluster sum of squared errors: 45.253128464456445

Missing values globally replaced with mean/mode

Cluster centroids:

		Cluster#			
Attribute	Full Data	0	1	2	3
	(27)	(2)	(8)	(11)	(6)
Machine	M01	M01	M02	M10	M08
shared	No	No	No	Yes	Yes
totalusedtime	7053.3704	8063.5	11092.625	3700.2727	7478.3333
frequser	Multiple	U01	U02	Multiple	Multiple
weekdayuse	Yes	Yes	Yes	Yes	Yes
weekenduse	Yes	Yes	Yes	No	Yes
keybdchartyped	161563.3333	167407.5	246995	83860.4545	188161.6667
CPUuseproc	158094.4444	163247	241844	83620.3636	181246.6667

Time taken to build model (full training data): 0.01 seconds

=== Model and evaluation on training set ===

Clustered Instances

0 2 (7%) 1 8 (30%) 2 11 (41%) 3 6 (22%)

Figure 9

IMPLEMENTATION OF DATA MINING SECURITY TECHNIQUES:

One Of the Key points that has be considered while working on data is the user privacy. Since the given data does not contain any private information about the user or any Social Security information, there is no major threat of data security of the user. Confidentiality and integrity of user data has been all through the project work.

However the login, printer ,machine, file access details of the user are all required by the organization's management to keep track of the employees, and as this information is not as sensitive as credit card or other private information data mining security is not of much concern with respect to the given data in our personal opinion.

The data is not been modified or tampered, the integrity of the data has been maintained. Since the name of the user also is hidden while studying the data, so privacy preserving data mining techniques are considered.

CONCLUSIONS

After careful analysis of data using different data mining techniques we have come to the following conclusions about the user behavior based on the Login Access pattern, CPU & Keyboard Usage pattern, File Access, Printer Access, Program Access, email usage and machine usage.

About Login Access Pattern

- 1) From the type 1 data we found out that all the Users have logged in to the machines on 22 days in the given month counting both weekdays and weekends, except for Users U18 and U19 who logged in for only 8 days in the given month.
- 2) There are few users who have logged in at a particular time interval and logged out at a particular time interval like Users U01,U03,U05,U07,U11 while the remaining users logged into the machines at multiple times.

About CPU & Keyboard Usage pattern

- 1) From the type 1 user data it is very apparent that all the users have typed 246995 characters and Total CPU Use, 241844 except for the Users U15, U18 and U19.
- 2) Only two Users have considerable CPU Usage and keyboard Usage during weekends (U18, U19) while the remaining users have zero usage.

About Machine Usage pattern

- 1) From the type 1 User data we observed that there are a total of 27 machines among which 15 are used exclusively by users and 12 are shared between multiple users.
- 2) Machines M08 and M19 are used for maximum time and Machines M18 and M19 are the only two machines that are used during weekends in the given month.

About Program access

- 1) From the Type 2 User data we observed that the UP type of programs are executed maximum number of times and have a larger contribution over the total execution time when compared to the LP Programs.
- 2) From the additional attributes we derived, it is apparent that most number of programs are executed during working hours and on weekdays.

About Printer access

1) From the type 2 user data we observed that Printer PR 2 is used by maximum number of Users.

2) From the additional attributes we derived we found out that Use U13 has printed the maximum number of pages for the given month.

About File access

- 1) From the type 2 user data we observed that Users U06, U08 and U10have updated the files maximum number of times.
- 2) User U13 has opened files maximum number of times and Users U18 and U19 are the only two users who have accessed the files during weekends.

About email access

- 1) From the type 3 user data, we have observed that the Users U02, U04, U06, U08, U10 have sent or received personal mails.
- i.e. mails to/from mom@icare.com
- 2) Most number of emails are received only from smith and Bob.

REFERENCES:

http://faculty.wiu.edu/C-Amaravadi/is524/res/dm_c_ov.pdf

www.cs.bu.edu/fac/gkollios/ada05/.../lect19-05.ppt

 $\underline{http://abbottanalytics.blogspot.com/2014/05/why-overfitting-is-more-dangerous-than.html}$

http://charuaggarwal.net/outlierbook.pdf

https://sites.google.com/site/dataclusteringalgorithms/k-means-clustering-algorithm

http://ijcttjournal.org/Volume4/issue-2/IJCTT-V4I2P129.pdf