4DM4 Lab 1 Report Linear Feedback Shift Register

Ashpan Raskar - raskara - 400185326 Ahnaf Bhuiyan - bhuiya3 - 400198359

September 28, 2022

Part A

$\mathbf{A2}$

Yes, the Linear Feedback Shift Register (LFSR) does reach a steady state. It takes 4194303 (\approx 4.19 million) clock ticks for the LFSR to return back to its original state. This is also known as the period of the output stream.

A3

Included at the end of the file is the first page of the randomly generated numbers from the LFSR.

A4

The formula for the conditional probability of a 0-run of length k occurring is given by:

$$\frac{1}{2}^k \tag{1}$$

This equation can be explained by ...

A5

K	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
0-Runs	524288	262144	131072	65536	32768	16384	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	1	0	0	0	0
Cond-Prob	0.50000	0.25000	0.12500	0.06250	0.03125	0.01563	0.00781	0.00391	0.00195	0.00098	0.00049	0.00024	0.00012	0.00006	0.00003	0.00002	0.00001	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Theoretical	0.50000	0.25000	0.12500	0.06250	0.03125	0.01563	0.00781	0.00391	0.00195	0.00098	0.00049	0.00024	0.00012	0.00006	0.00003	0.00002	0.00001	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Cond-Prob																								

Table 1: Table of 0-run lengths and their probabilities.

A6

K	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
0-Runs	524288	262144	131072	65536	32768	16384	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	1	0	1	0	0
Cond-Prob	0.50000	0.25000	0.12500	0.06250	0.03125	0.01563	0.00781	0.00391	0.00195	0.00098	0.00049	0.00024	0.00012	0.00006	0.00003	0.00002	0.00001	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Theoretical	0.50000	0.25000	0.12500	0.06250	0.03125	0.01563	0.00781	0.00391	0.00195	0.00098	0.00049	0.00024	0.00012	0.00006	0.00003	0.00002	0.00001	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Cond-Prob																								

Table 2: Table of 1-run lengths and their probabilities.

Part B

B2

B3

B4

B5

Extra Info

localhost:4649/?mode=clike 1/402