Microcontroladores – Período 24.1 (junho/2024 a outubro/2024)

Controle de atividades

	Atividades																														
Alunos		1			2			3			4			5			6			7				8			9			10	
	а	b	С	а	b	С	а	b	С	a	b	С	а	b	С	a	В	С	a	b	С	а	a	b	С	а	b	С	a	b	С
Allis Marques de Lima	1	3	1	1	3	4	1	3	6	1	3	6																			
Andre Hugo Ramalho Lopes	1	3	1	1	3	6	1	3	6	1	3	6																			
Daniel de Sa Pires	0	3	2	0	3	1	1	3	0	1	2	0																	ш		
Felipe Melo Feliciano de Sa	0	3	1	1	3	0	1	3	6	0	2	1																			
Gabriel Soares Santos do Nascimento	1	1	2	1	3	0	0	0	0	-	-	-																			
Gean Rocha da Silva Junior	1	3	1	0	3	3	0	3	6	0	2	1																			
Henrique de Andrade França	1	3	1	1	3	6	1	1	1	-	-	-																			
Heriberto Marcio da Silva Junior	1	3	1	1	3	6	1	3	6	0	2	5																			
Icaro Dutra Gibson da Silva	1	3	1	1	3	6	1	3	6	1	3	6																			
Isaac Sebastian Lima de Araujo	1	2	1	1	3	6	1	3	6	0	3	6																			
Jackson Leandro do Nascimento	0	3	2	1	3	3	0	3	6	0	2	4																			
Joao Matheus Falcao de Oliveira	0	2	1	1	3	6	1	3	6	1	3	6																			
Jose Maurilio Gomes Junior	1	0	1	1	0	6	1	2	5	0	2	1																			
Luann Filgueira Elias	1	1	1	1	3	3	1	3	6	1	3	6																			
Lucas Guedes da Silva	1	3	1	1	3	3	1	3	6	1	2	1																			
Luciana Serrao e Silva	1	3	1	1	3	6	1	3	6	-	-	-																			
Ludmila Vinolia Guimaraes Gomes	1	3	1	1	3	4	1	3	6	1	3	6																			
Luis Phellipe Palitot Moreno	1	3	1	1	3	6	1	3	6	1	3	6																			
Mario Ferreira Leitao	1	3	1	1	3	6	1	1	6	1	3	6																			
Mateus Lucas dos Santos	1	3	1	1	3	6	1	3	6	1	3	6																			
Pedro Marcio Soares Vieira de Castro	1	3	1	1	3	6	1	3	6	1	2	1																			
Rayque Alencar de Melo	1	0	1	1	3	6	1	3	6	1	3	6																			
Rhamon Espinola Pires	1	3	1	1	3	3	1	3	6	1	3	6																			
Rodrigo Lanes Meneses	1	3	1	1	3	4	0	3	2	-	-	-																			
Thais Duarte Brito	1	3	1	1	3	6	-	-	-	-	-	-																			
Vito Elias de Queiroga	1	3	1	1	0	6	0	3	6	-	-	-																			
Yuri Fernandes Souza Silva	1	3	1	1	3	6	1	3	6	1	3	6																			

Legenda

- a) Entrega na data, até às 09h (1,0). Penalização de 3,0 pontos se entregue no dia seguinte.
- b) Com comentários suficientes e esclarecedores. Até 3,0 pontos.
- c) Atende as especificações. Até 6,0 pontos.

Para a atividade 1, item "c"

Critérios de correção (pontos somados):

Até 2 – Portugol sem erro de sintaxe

Até 3 – Hipóteses testadas

1 – Apenas um teste por estrutura

Vejam as páginas seguintes com as atividades.

Descrição

Atividade 7 - Data de entrega: 05/09/24

Tema: Determinando o valor máximo de um sinal e gravá-lo na EEPROM

Objetivo: Medir o valor máximo de um sinal, gravar este valor na EEPROM e sinalizar sua ocorrência.

Contexto: O sinal mostrado na Figura 1 corresponde ao registro da altitude de um foguete durante seu lançamento. A duração deste evento é estimada em 60 segundos, a partir do início do acionamento do motor do foguete. Cinco segundos **após** o foguete atingir a altitude máxima (apogeu) o sistema de paraquedas deve ser acionado para permitir que o foguete reduza sua velocidade de queda e seja recuperado sem danos. Para certificar seu desempenho, o valor apogeu deve ser registrado para conferência após a recuperação do foguete.

Especificações:

- Considere que o altímetro fornece um sinal analógico cuja proporção é linear em relação à altitude, fornecendo 1 V para cada 100 m e sendo 0 V a altitude correspondente ao nível do solo;
- Considere que o foguete está projetado para que o apogeu não ultrapasse 420 m;
- Considere que, instantes antes do lançamento do foguete, um botão (configurado em *pull up*) deve ser pressionado para acionar o início da aquisição de dados;
- Um sistema para aquisição e registro da altitude deve ser implementado utilizando o microcontrolador PIC12F675, programado em Assembly;
- O botão enviará nível lógico LOW à porta GPO quando pressionado, indicando que a aquisição deve ser iniciada;
- O valor do apogeu deve ser armazenado na posição 17_h da EEPROM;
- A porta GP5 deve ser utilizada para acionar o paraquedas;
- Os procedimentos a seguir só devem iniciar após o microcontrolador identificar nível LOW na porta GPO;
- O procedimento de aquisição deve ficar em loop, efetuando a conversão A/D enquanto o altímetro indicar um valor for inferior a 10 m de altitude;
- A conversão A/D deve ser feita em 8 bits, pela porta GP1 e tão rápido quanto possível (limitado pela velocidade do microcontrolador);
- Quando o valor da conversão A/D for maior que o equivalente a 10 m de altitude (nível de trigger), um outro loop de conversão A/D (tão rápido quanto possível) deve ser iniciado e permanecer até que o sistema identifique o apoqeu do foquete:
- A cada conversão A/D efetuada, o valor convertido deve ser comparado para buscar a MAIOR altitude no evento:
- Quando o apogeu for identificado, seu valor deve ser armazenado na EEPROM na posição 17_h;
- Após a identificação do apogeu, um TIMER deve ser inicializado para acionar o paraquedas 5 s após o foguete atingir seu apogeu;
- A abertura do paraquedas será efetuada com um pulso de 2 s de duração em nível lógico HIGH na porta GP5;
- Após o pulso de abertura do paraquedas, o sistema deve permanecer em loop sem atividade (FIM GOTO FIM).

Figura 1. Registro da altitude a partir do altímetro.

Atividade 6 - Data de entrega: 22/08/24

Tema: Medição de tensão e indicação em BCD

Objetivo: Exercício de familiarização com o conversor A/D do PIC.

Especificações:

- Uma conversão A/D deve ser efetuada a cada 100ms, em modo cíclico;
- A interrupção gerada pelo conversor A/D deve ser utilizada;
- Utilize o TIMER 1 para a contagem do período de amostragem (100ms);
- A interrupção gerada pelo TIMER 1 deve ser utilizada;
- O valor da conversão A/D, de 0V a 5V, deve ser transformado para uma escala de 0 a 9, em valores inteiros. Veja a escala na tabela abaixo;
- O valor da escala a ser mostrado, de 0 a 9, deve ser representado na codificação BCD para ser conectado a um display de 7 segmentos. Para que todos tenham a mesma conectividade, siga a seguinte configuração:
 - **GP0** → **b**₀ (MENOS significativo) do BCD
 - **GP1** → **b**₁ do BCD
 - **GP4** → **b**₂ do BCD
 - **GP5** → **b**₃ (MAIS significativo) do BCD
- A conversão A/D deve ser feita pela porta GP2;

Valor da tensão (V)	Valor mostrado no display
A/D ≤ 0,5	0
0,5 < A/D ≤ 1,0	1
1,0 < A/D ≤ 1,5	2
1,5 < A/D ≤ 2,0	3
2,0 < A/D ≤ 2,5	4
2,5 < A/D ≤ 3,0	5
3,0 < A/D ≤ 3,5	6
3,5 < A/D ≤ 4,0	7
4,0 < A/D ≤ 4,5	8
A/D > 4,5	9

Atividade 5 - Data de entrega: 15/08/24

Tema: Comparador: medindo de 0 a 3,5V em uma escala de 0 a 7 e indicação em BCD Objetivo: Exercício de familiarização com o comparador do PIC.

Contexto: Um valor de tensão entre 0 e 3,5V deve ser representado em uma escala discreta, indicando a escala de 0 a 7 em BCD, para representação em um display de 7 segmentos.

Especificações:

- Utilização obrigatória do comparador do PIC;
- A tensão de entrada é de 0 a 3,5V;
- A conversão de tensão para a escala de 0 a 7 deve ser efetuada através do comparador;
- O valor da tensão deve ser convertido para codificação BCD para ser conectado ao display de 7 segmentos;
- A indicação deve ser efetuada, em modo cíclico e tão rápido quanto possível (limitado pela velocidade do microcontrolador);
- Os bits do display b2, b1, b0 devem ser conectados às portas GP4, GP2, GP0, respectivamente;
- Os níveis de tensão e a escala correspondente estão descritos na tabela a seguir:

Valor da	Valor mostrado no
tensão (V)	display

V<0,5	0
0,5 <v<1,0< td=""><td>1</td></v<1,0<>	1
1,0 <v<1,5< td=""><td>2</td></v<1,5<>	2
1,5 <v<2,0< td=""><td>3</td></v<2,0<>	3
2,0 <v<2,5< td=""><td>4</td></v<2,5<>	4
2,5 <v<3,0< td=""><td>5</td></v<3,0<>	5
3,0 <v<3,5< td=""><td>6</td></v<3,5<>	6
3,5 <v< td=""><td>7</td></v<>	7

Atividade 4 - Data de entrega: 06/08/24
Tema: Identificando o tipo de pulso

Objetivo: Exercício com interrupção.

Contexto:

Um periférico se comunica com um microcontrolador através de uma porta (GP4). Para identificar a recepção do pulso o microcontrolador utiliza a medida da sua duração. A partir desse valor, o microcontrolador deve fornecer três possibilidades através dos LEDs ligados em suas portas, segundo a tabela abaixo:

Duração (μs)	Tipo	GP2	GP1	GP0
170 < T < 230	LOW	OFF	OFF	ON
350 < T < 450	HIGH	OFF	ON	OFF
Fora destes intervalos	Erro	ON	OFF	OFF

Especificações:

A partir do contexto descrito acima, proponha um aplicativo em Assembly (PIC12F675) para identificar a qual tipo corresponde o pulso recebido.

- O programa deve utilizar interrupção;
- A porta utilizada na comunicação deve ser a GP4;
- Quando n\u00e3o tem pulso, GP4 permanece em n\u00edvel l\u00f3gico HIGH. O pulso deve ser medido pelo tempo que GP4 permanece em n\u00edvel l\u00f3gico LOW;
- A resposta para cada pulso deve ser dada através dos LEDs ligados às portas GP0, GP1 e GP2, de acordo com a tabela acima;

Alguns Valores Propostos para Testes (faça outros):

Duração (μs)	Tipo de pulso	GP2	GP1	GP0
150	Erro	ON	OFF	OFF
250	Erro	ON	OFF	OFF
190	LOW	OFF	OFF	ON
420	HIGH	OFF	ON	OFF
340	Erro	ON	OFF	OFF
380	HIGH	OFF	ON	OFF
220	LOW	OFF	OFF	ON
480	Erro	ON	OFF	OFF

Atividade 3 - Data de entrega: 25/07/24

Tema: Controle de portas X frequência de saída

Objetivo: Exercícios para gerenciamento de portas e de timers.

Contexto: Gerador de tom em diferentes frequências.

Especificações:

- A aplicação deve gerar uma onda guadrada (duty cycle de 50%) em 4 diferentes frequências: 262Hz, 349Hz, 440Hz, 523Hz;
- A frequência deve ser selecionada a partir da combinação de botões ligados às portas do PIC, de acordo com a tabela a seguir:

GP0	GP1	GP2	Gp4 (saída) Frequência
0	X	X	LOW
1	0	0	262Hz
1	0	1	349Hz
1	1	0	440Hz
1	1	1	523Hz

- Botão 0 GPO;
- Botão 1 GP1;
- Botão 2 GP2;
- Sinal gerado: sáida em GP4.
- Para não danificar o amplificador de áudio, quando GP0 estiver em LOW, a saída (GP4) deve se manter em LOW.
- Seu código fonte deve estar estruturado com a mesma estrutura do modelo "vazio.asm".

Atividade 2 - Data de entrega: 16/07/24 Tema: Rotina de atraso de 31,25 ms

Objetivo: Exercício de aplicação da linguagem Assembly.

Contexto: Para executar determinadas tarefas temporizadas, é necessário a medição de tempo decorrido ou a repetição de unidade tempo de atraso.

Especificações:

- Implementar uma subrotina de unidade de tempo de atraso de 31,25 ms (1/32 s);
- A subrotina deve ser implementada para o PIC12F675 operando com seu clock interno (4MHz);
- O tempo de atraso inclui a chamada à subrotina (CALL) e seu respectivo retorno;
- Apenas os tempos de execução das instruções devem ser utilizados para produzir atrasos;
- Para permitir a medida e afericão dos tempos da subrotina, uma transicão na porta GP5 deve ser gerada repetidamente a cada 31,25 ms.

Atividade 1 - Data de entrega: 02/07/24

Tema: Dia da semana

Objetivo: Exercício com algoritmo.

Especificações:

A partir de uma determinada data, indicada nas variáveis dd, mm e aa, proponha um ALGORITMO para identificar a qual dia da semana esta data corresponde.

- O algoritmo deve fornecer respostas para datas compreendidas entre 01/01/1910 e 31/12/2100;
- A resposta deve ser dada através da variável **W**, de acordo com a seguinte notação:
 - 1. W=0 → data fora da especificação;
 - 2. W=1 → domingo;
 - 3. W=2 → segunda-feira;
 - 4.
 - 5. W=7 → sábado:
- O ALGORITMO deve ser escrito em Portugol (pseudocódigo escrito em português);
- Pela própria definição, o ALGORITMO deve ter uma sequência de passos descritivos, ordenados e sem ambiguidade;
- Os passos descritivos não podem conter ações abstratas ou que impliquem na utilização de outras operações diferentes das aritméticas (+, -, *, /). Estruturas condicionais e de repetição são permitidas.

Alguns Valores Propostos para Testes (faça outros):

Datas verificadas	Descrição	Valor esperado
16/01/1905	Verificação de erro	0
16/01/2105	Verificação de erro	0
10/08/2021	Início das aulas	3
21/06/1970	Tri da copa de futebol	1
24/02/1955	Nasceu Steve Jobs	5
02/04/2005	Morte do papa João Paulo II	7
22/08/2024	Nossa 2 ^a . AV	5