Umans Complexity Theory Lectures

Boolean Circuits & NP:

- Uniformity and Advice
- NC hierarchy

1

Outline

- · Boolean circuits and formulas
- · uniformity and advice
- the NC hierarchy and parallel computation
- the quest for circuit lower bounds
- a lower bound for formulas

Boolean circuits

- circuit C
 - directed acyclic graph
 - nodes: AND (∧); OR (∨); NOT (¬); variables x_i

- C computes function $f:\{0,1\}^n \rightarrow \{0,1\}$.
 - identify C with function f it computes

3

Boolean circuits

- size = # gates
- **depth** = longest path from input to output
- formula (or expression): graph is a tree
- Every function f:{0,1}ⁿ → {0,1} is computable by a circuit of size at most O(n2ⁿ)
 - AND of n literals for each x such that f(x) = 1
 - OR of up to 2ⁿ such terms

Circuit families

- Circuit works only for all inputs of a specific input length n.
- Given function f: ∑^{*} → {0,1}
- Circuit family: a circuit for each input length: C₁, C₂, C₃, ... = "{C_n}"
- "{C_n} computes f" iff for all x in ∑^{*}

$$C_{|x|}(x) = f(x)$$

 "{C_n} decides L", where L is the language associated with f: For all x in ∑^{*},

x in L iff
$$C_{|x|}(x) = f(x) = 1$$

5

Connection to TMs

- given TM M running in time T(n) decides language L
- can build circuit family {C_n} that decides L
 - size of $C_n = O(T(n)^2)$
 - Proof: CVAL construction used for polytimecompleteness proof
- Conclude: L ∈ P implies family of polynomial-size circuits that decides L

Uniformity

- Strange aspect of circuit families:
 - can "encode" (potentially uncomputable) information in family specification
- solution: uniformity require specification is simple to compute

<u>Definition</u>: circuit family $\{C_n\}$ is <u>logspace</u> uniform iff there is a TM M that outputs C_n on input 1^n and runs in $O(\log n)$ space.

7

Uniformity

<u>Theorem</u>: P =languages decidable by logspace uniform, polynomial-size circuit families $\{C_n\}$.

- Proof:
 - already saw (⇒)
 - (\Leftarrow) on input x, generate $C_{|x|}$, evaluate it and accept iff output = 1

Q

TMs that take advice

- A circuit family {C_n} without uniformity constraint is called "non-uniform"
- Regard "non-uniformity" as a limited resource just like time, space, as follows:
 - add read-only "advice" tape to TM M
 - M "decides L with advice A(n)" iff $M(x,\,A(|x|)) \text{ accepts} \Leftrightarrow x \in L$
 - note: A(n) depends only on |x|

9

TMs that take advice

- Definition: TIME(T(n))/f(n) = the set of those languages L for which:
 - -there exists A(n) s.t. $|A(n)| \le f(n)$
 - TM M decides L with advice A(n) in timeT(n)
- · most important such class:

```
P/poly = \bigcup_k TIME(n^k)/n^k
```

TMs that take advice

Theorem: L ∈ **P/poly** iff L decided by family of (non-uniform) polynomial size circuits.

- Proof:
 - $(\Rightarrow) C_n$ from CVAL construction; hardwire advice A(n)
 - (\Leftarrow) define A(n) = description of C_n; on input x, TM simulates C_{|x|}(x)

11

Approach to P/NP

- Believe NP ⊄ P
 - equivalent: "NP does not have uniform, polynomial-size circuits"
- - equivalent: "NP (or, e.g. SAT) does not have polynomial-size circuits"
 - implies P ≠ NP
 - many believe: best hope for **P** ≠ **NP**

Parallelism

 uniform circuits allow refinement of polynomial time:

13

Parallelism

 The NC ("Nick's Class") Hierarchy of logspace uniform circuits:

$$NC_k = O(\log^k n)$$
 depth, poly(n) size
 $NC = \bigcup_k NC_k$

• captures "efficiently parallelizable problems"

Matrix Multiplication

$$\begin{array}{c|c}
n \times n \\
matrix A
\end{array}$$

$$\begin{array}{c}
n \times n \\
matrix B
\end{array}$$

$$\begin{array}{c}
n \times n \\
matrix AB
\end{array}$$

- what is the parallel complexity of this problem?
 - work = poly(n)
 - time = log (n)

15

Matrix Multiplication

- · two details
 - arithmetic matrix multiplication...

$$A = (a_{i,k}) B = (b_{k,j})$$
 $(AB)_{i,j} = \sum_{k} (a_{i,k} \times b_{k,j})$

... vs. Boolean matrix multiplication:

$$A = (a_{i, k}) B = (b_{k, j}) (AB)_{i, j} = \bigvee_{k} (a_{i, k} \wedge b_{k, j})$$

- single output bit: to make matrix multiplication a language: on input A, B, (i, j) output (AB)_{i,j}

Matrix Multiplication

- Boolean Matrix Multiplication is in NC₁
 - level 1: compute n ANDS: $a_{i,k} \wedge b_{k,j}$
 - next log n levels: tree of ORS
 - n² subtrees for all pairs (i, j)
 - select correct one and output

17

Boolean formulas and NC₁

- A formula is a circuit that is a tree with no shared substructures.
- We measure formula size by leaf-size.
- Previous circuit for matrix mult is actually a formula. This is no accident:

<u>Theorem</u>: $L \in NC_1$ iff decidable by polynomial-size uniform family of Boolean formulas.

Boolean formulas and NC₁

- Proof:
 - (⇒) convert a NC₁ circuit of depth log(n) into a formula tree
 - recursively: ^ >
 - note: logspace transformation (stack depth log n, stack record 1 bit – "left" or "right")

Aril 16, 2013

19

Boolean formulas and NC₁

- -(⇐) convert formula tree F of size n into formula tree of depth O(log n)
 - note: size ≤ 2^{depth}, so new formula has poly(n) size

Boolean formulas and NC₁

Let F' be a minimal subtree of formula tree F with size at least n/3

- implies $size(F') \le 2n/3$
- define D(n) = maximum depth required for any size n formula
- Subtrees F_1 , F_0 , F' all size $\leq 2n/3$ $D(n) \leq D(2n/3) + 3$

implies depth $D(n) \le O(\log n)$

21

Relation to other classes

- Clearly NC ⊆ P
 - recall P ≡ uniform poly-size circuits
- NC₁ ⊆ L
 - on input x, compose logspace algorithms for:
 - generating $C_{|x|}$
 - · converting to formula
 - FVAL

Relation to other classes

- NL ⊆ NC₂: S-T-CONN ∈ NC₂
 - given G = (V, E), vertices s, t
 - -A = adjacency matrix (with self-loops)
 - (A²)_{i, j} = 1 iff path of length ≤ 2 from node i to node i
 - (Aⁿ)_{i, j} = 1 iff path of length ≤ n from node i to node j
 - compute with depth log n tree of Boolean matrix multiplications, output entry s, t
 - log² n depth total

23

NC vs. P

 Can every efficient algorithm be efficiently parallelized?

$$NC \stackrel{?}{=} P$$

- P-complete problems least-likely to be parallelizable
 - if P-complete problem is in NC, then P = NCWhy:

we use logspace reductions to show problem **P**-complete; **L** in **NC**

NC vs. P

 Open: Can every uniform, poly-size Boolean circuit family be converted into a uniform, poly-size Boolean formula family?

$$NC_1 \stackrel{?}{=} P$$

25

NC Hierarchy Collapse

 $NC_1 \subseteq NC_2 \subseteq NC_3 \subseteq NC_4 \subseteq ... \subseteq NC$

Exercise

if $NC_i = NC_{i+1}$, then $NC = NC_i$

(prove for non-uniform versions of classes)