Module probability Distribution

* sample space:

The set of all possible outcomes of an experiment is called sample space.

It is denoted by 'S'

Note that the element of set s is called sample points.

For example: In a throw of two coins,

The sample space $S = \{(H, H), (H, T), (T, H), (T, T)\}$

* Event: A subset of sample space is called an event.

for example: 0 if $S = \{ (H,H), (H,T), (T,H), (T,T) \}$ Then $A_1 = \{ (H,H), (T,H) \}$ $A_2 = \{ (H,T), (T,H), (T,T) \}$ are the

events

1 In a throw of a die.

The sample space $S = \{1, 2, 3, 4, 5, 6\}$ and $B_1 = \{1, 4\}$ $B_2 = \{3, 4, 5\}$ $B_3 = \{6\}$ are events * probability:

If S is the sample space with n points which are mutually exclusive and A is the event (subset of S) with m points then the ratio $\frac{m}{n}$ is called probability of A and is denoted by p(A)

-that is $P(A) = \frac{m}{n} = \frac{number of points in A}{number of points in S}$

Important Note: i> P(A) > 0, for any A

ii> P(S) = 1

iii'> P(AUB) = P(A) + P(B), for any exclusive events A, B

* complement of the event:

the A be the event of a sample space S then the complement of A is denoted by \overline{A} and is given by $\overline{A} = S - A$

NOTE: AUA = S

* Random Variables:

The variable which is associated with The outcomes of the sample space of the random experiment is called random variable

for example:

In a throw of three coins

sample space's' = { HHH, HHT, HTH, HTT, THH, THT, TTH, TTT }

: n(s) = 8

Random experiment : Tossing of three coins

Random variable (8.V)

x = number of heads

X = 0, 1, 2, 3

Probability distribution

Х	O	1	2_	3
P(X=x)	8	3/8	3	1

probability Distribution:

let X be the random variable and xi be the values of X - then the set of pairs { xi, P(xi) } is colled as probability distribution, where p(xx) is probability of xi