Numerical Linear Algebra

Lecture Notes 3: Norms of Vectors and Matrix

Professor: Zhihua Zhang

1 Vector Norms

Definition 1.1 (Vector Norm). A vector norm $||\mathbf{x}||$ is any mapping from \mathbb{R}^n to \mathbb{R} with the following four properties.

- $||\mathbf{x}|| \ge 0$ for all $\mathbf{x} \in \mathbb{R}^n$
- $||\mathbf{x}|| = 0$ iff $\mathbf{x} = 0$
- $||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||, \ \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$
- $||\alpha \mathbf{x}|| = |\alpha|||\mathbf{x}||, \mathbf{x} \in \mathbb{R}^n$

Theorem 1.1. $||\cdot||$ is convex.

Proof. For any $\alpha \in [0,1]$ and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$,

$$||\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}|| \le ||\alpha \mathbf{x}|| + ||(1 - \alpha)\mathbf{y}|| = \alpha||\mathbf{x}|| + (1 - \alpha)||\mathbf{y}||$$

Definition 1.2 (p-norm). Let $p \leq 1$ be a real number.

$$||\mathbf{x}||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$$

Example 1.1.

$$||\mathbf{x}||_1 = \sum_{i=1}^n |x_i|$$
$$||\mathbf{x}||_2 = \left(\sum_{i=1}^n x_i^2\right)^{\frac{1}{2}}$$
$$||\mathbf{x}||_{\infty} = \max_i(|x_i|)$$

Definition 1.3 (0-norm).

$$||\mathbf{x}||_0 = \#(i|x_i \neq 0)$$

that is a total number of non-zero elements in a vector.

Remark: Strictly speaking, $||\cdot||_0$ is not a norm as it doesn't satisfy the property 4 of the vector norm definition.

1.1 Inner Products and Norms

Theorem 1.2 (Cauchy-Schwarz Inequality). For all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$,

$$|\mathbf{x}^T \mathbf{y}| = |\langle \mathbf{x}, \mathbf{y} \rangle| \le \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} \sqrt{\langle \mathbf{y}, \mathbf{y} \rangle}$$

Theorem 1.3 (Hölder's Inequality). For all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $p, q \in \mathbb{R}$, and $\frac{1}{p} + \frac{1}{q} = 1$, then

$$|\mathbf{x}^T \mathbf{y}| \le ||\mathbf{x}||_p ||\mathbf{y}||_q$$

Theorem 1.4. For all $\mathbf{x} \in \mathbb{R}^n$,

$$||\mathbf{x}||_2 \le ||\mathbf{x}||_1 \le \sqrt{n}||\mathbf{x}||_2$$
$$||\mathbf{x}||_{\infty} \le ||\mathbf{x}||_2 \le \sqrt{n}||\mathbf{x}||_{\infty}$$
$$||\mathbf{x}||_{\infty} \le ||\mathbf{x}||_1 \le n||\mathbf{x}||_{\infty}$$

Theorem 1.5. Let $||\cdot||_{\alpha}$ and $||\cdot||_{\beta}$ be two norms on \mathbb{R}^n . There are two constants $c_1, c_2 \geq 0$, such that for all $\mathbf{x} \in \mathbb{R}^n$,

$$c_1||\mathbf{x}||_{\alpha} \le ||\mathbf{x}||_{\beta} \le c_2||\mathbf{x}||_{\alpha}$$

1.2 Convergence

A sequence $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots$ where each $\mathbf{x}^{(i)} \in \mathbb{R}^n$ is said to converge to $\mathbf{x} \in \mathbb{R}^n$ if

$$\lim_{k \to \infty} ||\mathbf{x}^{(k)} - \mathbf{x}|| = 0$$

A sequence $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots$ is called Cauchy if for all $\epsilon > 0$ there exists a positive integer $N(\epsilon)$ such that

$$n, m \ge N(\epsilon) \implies ||\mathbf{x}^{(n)} - \mathbf{x}^{(m)}|| \le \epsilon$$

1.3 Dual Norms

Definition 1.4. Let $||\cdot||$ be a norm on \mathbb{R}^n , the function

$$||\mathbf{y}||_D = \max_{||\mathbf{x}||=1} |\mathbf{y}^T \mathbf{x}| = \max_{||\mathbf{x}||=1} \mathbf{y}^T \mathbf{x}$$

is the dual norm of $||\cdot||$.

Theorem 1.6. The dual norm is a norm.

Proof. (1) and (4) is obvious.

(2) If
$$\mathbf{y} \neq 0$$
, then $||\mathbf{y}||_D = \max_{||\mathbf{x}||=1} |\mathbf{y}^T \mathbf{x}| \ge \left|\mathbf{y}^T \frac{\mathbf{y}}{||\mathbf{y}||}\right| = \frac{||\mathbf{y}||_2^2}{||\mathbf{y}||} \ge 0$.

(3)

$$||\mathbf{y} + \mathbf{z}||_{D} = \max_{||\mathbf{x}||=1} |(\mathbf{y} + \mathbf{z})^{T} \mathbf{x}|$$

$$\leq \max_{||\mathbf{x}||=1} (|\mathbf{y}^{T} \mathbf{x}| + |\mathbf{z}^{T} \mathbf{x}|)$$

$$\leq \max_{||\mathbf{x}||=1} |\mathbf{y}^{T} \mathbf{x}| + \max_{||\mathbf{x}||=1} |\mathbf{z}^{T} \mathbf{x}|$$

$$= ||\mathbf{y}||_{D} + ||\mathbf{z}||_{D}$$

Lemma 1.1. Let $||\cdot||$ be a norm and $||\cdot||_D$ be its dual norm, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$,

$$||\mathbf{y}^T \mathbf{x}||_D \le ||\mathbf{x}|| \cdot ||\mathbf{y}||_D$$
$$||\mathbf{y}^T \mathbf{x}||_D \le ||\mathbf{x}||_D \cdot ||\mathbf{y}||$$

Proof.

$$||\mathbf{y}||_D = \max_{||\mathbf{z}||=1} |\mathbf{y}^T \mathbf{z}| \ge \left| \mathbf{y}^T \frac{\mathbf{x}}{||\mathbf{x}||} \right| = \frac{|\mathbf{y}^T \mathbf{x}|}{||\mathbf{x}||}$$

Example 1.2.

$$|\mathbf{y}^T \mathbf{x}| = |\sum_{i=1}^n y_i x_i| \le \sum_{i=1}^n |y_i| \cdot |x_i| \le \max_i |y_i| \sum_{i=1}^n |x_i| = ||\mathbf{y}||_{\infty} ||\mathbf{x}||_1$$

Example 1.3.

$$|\mathbf{x}^T \mathbf{y}| \le ||\mathbf{x}||_2 \cdot ||\mathbf{y}||_2$$

Theorem 1.7. Let $||\cdot||$ be a vector norm on \mathbb{R}^n , and $||\cdot||_D$ be its dual norm, and c > 0 be given, then $||\mathbf{x}|| = c||\mathbf{x}||_D$ for all $\mathbf{x} \in \mathbb{R}^n$ iff $||\cdot|| = \sqrt{c}||\cdot||_2$. In particular, $||\mathbf{x}|| = ||\mathbf{x}||_D$ iff $||\cdot||$ is the l-2 norm $||\cdot||_2$.

Proof. (a) If $||\cdot|| = \sqrt{c}||\cdot||_2$ and $\mathbf{x} \in \mathbb{R}^n$, then

$$||\mathbf{x}||_{D} = \max_{||\mathbf{y}||=1} |\mathbf{x}^{T}\mathbf{y}| = \max_{||\mathbf{y}||=1} \left|\mathbf{x}^{T} \frac{\sqrt{c}\mathbf{y}}{\sqrt{c}}\right| = \max_{||\mathbf{z}||_{2}=1} \frac{|\mathbf{x}^{T}\mathbf{z}|}{\sqrt{c}} = \frac{1}{\sqrt{c}} ||\mathbf{x}||_{2.D} = \frac{1}{\sqrt{c}} ||\mathbf{x}||_{2} = \frac{1}{c} ||\mathbf{x}||$$

(b) If $||\cdot|| = c||\cdot||_D$, then

$$||\mathbf{x}||_2^2 = \mathbf{x}^T \mathbf{x} \le ||\mathbf{x}|| \cdot ||\mathbf{x}||_D = \frac{1}{c} ||\mathbf{x}||^2$$

So $||\mathbf{x}|| \ge \sqrt{c}||\mathbf{x}||_2$.

$$\begin{aligned} \frac{1}{c}||\mathbf{x}|| &= ||\mathbf{x}||_D = \max_{||\mathbf{y}||=1} |\mathbf{x}^T \mathbf{y}| \\ &= \max_{\mathbf{y} \neq 0} \left| \mathbf{x}^T \frac{\mathbf{y}}{||\mathbf{y}||} \right| \\ &= \max_{\mathbf{y} \neq 0} \left| \mathbf{x}^T \mathbf{y} \frac{||\mathbf{y}||_2}{||\mathbf{y}||_2} \frac{1}{||\mathbf{y}||} \right| \\ &= \max_{\mathbf{y} \neq 0} \left| \mathbf{x}^T \frac{\mathbf{y}}{||\mathbf{y}||_2} \right| \frac{||\mathbf{y}||_2}{||\mathbf{y}||} \\ &\leq \frac{1}{\sqrt{c}} \max_{\mathbf{y} \neq 0} \left| \mathbf{x}^T \frac{\mathbf{y}}{||\mathbf{y}||_2} \right| \\ &= \frac{1}{\sqrt{c}} ||\mathbf{x}||_2 \end{aligned}$$

So $||\mathbf{x}|| = \sqrt{c}||\mathbf{x}||_2$ because $||\mathbf{x}|| \ge \sqrt{c}||\mathbf{x}||_2$ and $||\mathbf{x}|| \le \sqrt{c}||\mathbf{x}||_2$.

2 Matrix Norms

Definition 2.1. $f: \mathbb{R}^{m \times n} \longrightarrow \mathbb{R}$ is a matrix norm if the following properties hold,

- $f(\mathbf{A}) \ge 0$, for all $\mathbf{A} \in \mathbb{R}^{m \times n}$
- $f(\mathbf{A}) = 0$ iff $\mathbf{A} = 0$
- $f(\mathbf{A} + \mathbf{B}) < f(\mathbf{A}) + f(\mathbf{B})$, for all $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$
- $f(\alpha \mathbf{A}) = |\alpha| f(\mathbf{A})$, for all $\alpha \in \mathbb{R}$, $\mathbf{A} \in \mathbb{R}^{m \times n}$

Definition 2.2 (F-norm).

$$||\mathbf{A}||_F = \left(\sum_{i,j} A_{ij}^2\right)^{\frac{1}{2}} = tr(\mathbf{A}\mathbf{A}^T)^{\frac{1}{2}}$$

Definition 2.3. Let $||\cdot||$ be a matrix norm, $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{B} \in \mathbb{R}^{n \times p}$. we say $||\cdot||$ be consistent if $||\mathbf{A}\mathbf{B}|| \le ||\mathbf{A}|| \cdot ||\mathbf{B}||$.

Remark: Not all matrix norms are consistent.

Definition 2.4. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$, $||\cdot||$ be a vector norm on \mathbb{R}^n , then

$$|||\mathbf{A}||| = \sup_{\mathbf{x} \neq 0} \frac{||\mathbf{A}\mathbf{x}||}{||\mathbf{x}||} = \max_{||\mathbf{x}||=1} ||\mathbf{A}\mathbf{x}||$$

is called an operator norm or induced norm.

Theorem 2.1. An operator norm is a consistent matrix norm.

Proof. (1) If $\mathbf{A} \neq 0$, there exists some $\hat{\mathbf{x}} \in \mathbb{R}^n$ such that $\mathbf{A}\hat{\mathbf{x}} \neq 0$. So we have $||\hat{\mathbf{x}}|| > 0$, $||\mathbf{A}\hat{\mathbf{x}}|| > 0$,

$$|||\mathbf{A}||| = \max_{\mathbf{x} \neq 0} \frac{||\mathbf{A}\mathbf{x}||}{||\mathbf{x}||} \ge \frac{||\mathbf{A}\hat{\mathbf{x}}||}{||\hat{\mathbf{x}}||} > 0$$

$$|||\alpha \mathbf{A}||| = \max_{\mathbf{x} \neq 0} \frac{||\alpha \mathbf{A} \mathbf{x}||}{||\mathbf{x}||} = |\alpha| \cdot |||\mathbf{A}|||$$

(3)

$$|||\mathbf{A} + \mathbf{B}||| = \max_{\mathbf{x} \neq 0} \frac{||(\mathbf{A} + \mathbf{B})\mathbf{x}||}{||\mathbf{x}||} \le \max_{\mathbf{x} \neq 0} \frac{||\mathbf{A}\mathbf{x}|| + ||\mathbf{B}\mathbf{x}||}{||\mathbf{x}||} \le \max_{\mathbf{x} \neq 0} \frac{||\mathbf{A}\mathbf{x}||}{||\mathbf{x}||} + \max_{\mathbf{x} \neq 0} \frac{||\mathbf{B}\mathbf{x}||}{||\mathbf{x}||} = |||\mathbf{A}||| + |||\mathbf{B}|||$$

(4)

$$||\mathbf{A}\mathbf{B}\mathbf{x}|| \leq |||\mathbf{A}||| \cdot ||\mathbf{B}\mathbf{x}|| \leq |||\mathbf{A}||| \cdot |||\mathbf{B}||| \cdot ||\mathbf{x}||$$

which means that

$$\frac{||\mathbf{A}\mathbf{B}\mathbf{x}||}{||\mathbf{x}||} \le |||\mathbf{A}||| \cdot |||\mathbf{B}|||$$

is true for all $\mathbf{x} \neq 0$, so

$$|||\mathbf{A}\mathbf{B}||| \leq |||\mathbf{A}||| \cdot |||\mathbf{B}|||$$

Remark: Not all consistent matrix norms are operator norms.

Definition 2.5. For $p \ge 1$,

$$|||\mathbf{A}|||_p = \max_{\mathbf{x} \neq} \frac{||\mathbf{A}\mathbf{x}||_p}{||\mathbf{x}||_p}$$

Theorem 2.2.

$$||\mathbf{Q}\mathbf{A}\mathbf{Z}||_F = ||\mathbf{A}||_F$$

and

$$||\mathbf{QAZ}||_2 = ||\mathbf{A}||_2$$

for
$$\mathbf{Q}\mathbf{Q}^T = \mathbf{Q}^T\mathbf{Q} = \mathbf{I}_m$$
 and $\mathbf{Z}\mathbf{Z}^T = \mathbf{Z}^T\mathbf{Z} = \mathbf{I}_n$.

Proof.

$$||\mathbf{Q}\mathbf{A}\mathbf{Z}||_{F} = tr(\mathbf{Q}\mathbf{A}\mathbf{Z}\mathbf{Z}^{T}\mathbf{A}^{T}\mathbf{Q}^{T})^{\frac{1}{2}} = tr(\mathbf{Q}\mathbf{A}\mathbf{A}^{T}\mathbf{Q}^{T})^{\frac{1}{2}} = tr(\mathbf{A}\mathbf{A}^{T})^{\frac{1}{2}} = ||\mathbf{A}||_{F}$$

$$||\mathbf{Q}\mathbf{A}\mathbf{Z}||_{2} = \max_{\mathbf{x}\neq 0} \frac{||\mathbf{Q}\mathbf{A}\mathbf{Z}\mathbf{x}||_{2}}{||\mathbf{x}||_{2}} = \max_{\mathbf{y}\neq 0} \frac{||\mathbf{Q}\mathbf{A}\mathbf{y}||_{2}}{||\mathbf{y}||_{2}} = \max_{\mathbf{y}\neq 0} \frac{||\mathbf{A}\mathbf{y}||_{2}}{||\mathbf{y}||_{2}} = ||\mathbf{A}||_{2}$$

Theorem 2.3.

$$\begin{aligned} |||\mathbf{A}|||_{\infty} &= \max_{\mathbf{x} \neq 0} \frac{||\mathbf{A}\mathbf{x}||_{\infty}}{||\mathbf{x}||_{\infty}} = \max_{i} \sum_{j} |A_{ij}| \\ |||\mathbf{A}|||_{1} &= \max_{\mathbf{x} \neq 0} \frac{||\mathbf{A}\mathbf{x}||_{1}}{||\mathbf{x}||_{1}} = |||\mathbf{A}^{T}|||_{\infty} = \max_{j} \sum_{i} |A_{ij}| \end{aligned}$$

Theorem 2.4.

$$|||\mathbf{A}|||_2 = \max_{\mathbf{x} \neq 0} \frac{||\mathbf{A}\mathbf{x}||_2}{||\mathbf{x}||_2} = \sqrt{\lambda_{max}(\mathbf{A}^T \mathbf{A})}$$
$$|||\mathbf{A}|||_2 = |||\mathbf{A}^T|||_2$$