Basic Electronics Circuit's Lab

Experiment no. 3

1. DC Regulated power supply.

1) Rectifiers A) Half Wave Rectifier

Connect the circuit as shown in Fig 1.1. Using a CRO, measure the maximum voltage Vm at the output of the rectifier. Using a DC voltmeter, measure the DC voltage Vdc at the load resistance $1 \mathrm{K}\Omega$. Plot the graph for CRO output.

Fig 1.1

Average value of voltage
$$Vdc = \frac{Vm}{\pi} = ------$$

Ripple factor =
$$\sqrt{\left(\frac{Vrms}{Vdc}\right)^2 - 1}$$
 = -----

Rectifier Efficiency =
$$\frac{Pdc}{Pac}$$
 = ------

Where
$$Pac = \frac{V_{rms}^{2}}{R}$$
 and $Pdc = \frac{V_{dc}^{2}}{R}$

B) Full Wave Rectifier

Connect the circuit as shown in **Fig** 2.1. Using a CRO, measure the maximum voltage **Vm** at the output of the rectifier. Using a DC voltmeter, measure the DC voltage **Vdc** at the load resistance **1KO**. Plot the graph for CRO output.

Fig 2.1

RMS value of voltage
$$Vrms = \frac{Vm}{\sqrt{2}} = ----$$

Average value of voltage
$$Vdc = \frac{2Vm}{\pi} = -----$$

Ripple factor =
$$\sqrt{\frac{Vrms}{Vdc}^2 - 1}$$
 = -----

Rectifier Efficiency =
$$\frac{Pdc}{Pac}$$
 = ------

Where
$$Pac = \frac{V_r^2 ms}{R}$$
 and $Pdc = \frac{V_r^2 dc}{R}$

B) Full Wave Bridge Rectifier

Connect the circuit as shown in Fig 3.1. Using a CRO, measure the maximum voltage Vm at the output of the rectifier. Using a DC voltmeter, measure the DC voltage Vdc at the load resistance **1KΩ**. Plot the graph for CRO output.

Fig 3.1

RMS value of voltage
$$Vrms = \frac{Vm}{\sqrt{2}} = ----$$

Average value of voltage
$$Vdc = \frac{2Vm}{\pi} = -----$$

Average value of voltage
$$Vdc = \frac{2Vm}{\pi} = \frac{1}{\pi}$$

Ripple factor = $\sqrt{\left(\frac{Vrms}{Vdc}\right)^2 - 1} = \frac{1}{\pi}$

Rectifier Efficiency =
$$\frac{Pdc}{Pac}$$
 = ------

Where
$$Pac = \frac{V_r^2 ms}{R}$$
 and $Pdc = \frac{V_r^2 dc}{R}$

DC Regulated power supply:

The complete circuit diagram of the d-c power supply is given in **Fig. 4.1.** In this experiment, we will study the performance of a d-c power supply, which consists of a transformer with a center- tapped secondary, two rectifier diodes (1N4007), a shunt capacitor filter and a voltage regulator (IC 7805). Using a CRO and DC voltmeter, measure the voltage **at** TP1, the output of the rectifier, measure the regulated voltage at TP2. Plot the graph .

Fig 4.1

3 – Output

Front view of 7805

