14. Уравнение динамики твёрдого тела, вращающегося вокруг неподвижной оси.

Рассмотрим ТТ, вращающееся вокруг неподвижной (фиксированной) оси *Oz*.

При таком движении положение тела в любой момент времени можно описать углом поворота $\varphi = \varphi(t)$.

По определению угловой скорости (1.25) ее проекция ω_z на ось Oz:

$$\omega_z = \frac{d\varphi(t)}{dt}.$$

Уравнение моментов (4.4) в проекции на ось Oz имеет вид:

$$\frac{dL_z}{dt} = \sum_{j=1}^{N} M_{jz}^{\text{BHeIII}}, \qquad (4.19)$$

где L_z и $M_{jz}^{\rm внеш}$ — соответственно момент импульса тела и момент j-й внешней силы (одной из N внешних сил, действующих на тело) относительно оси Oz.

$$L_z = I \cdot \omega_z, \tag{4.20}$$

где I — момент инерции ТТ относительно Oz. $(4.20) \rightarrow B (4.19)$:

$$\frac{d(I\omega_z)}{dt} = \sum_{j=1}^N M_{jz}^{\text{BHeIII}}.$$

T. к. для вращающегося вокруг неподвижной оси твердого тела $I={\rm const.}$ то основное уравнение динамики вращения TT вокруг неподвижной оси Oz имеет вид:

$$I \cdot \frac{d\omega_z}{dt} = \sum_{j=1}^{N} M_{jz}^{\text{BHeIII}}$$
 (4.21)

или

$$I \cdot \beta_z = \sum_{j=1}^N M_{jz}^{\text{внеш}}, \qquad (4.22)$$

где I- момент инерции ТТ относительно Oz, ω_z- проекция на Oz его угловой скорости, $M_{jz}^{\text{внеш}}-$ момент j-й внешней силы относительно оси Oz, N- число внешних сил, действующих на тело, β_z- проекция на ось Oz углового ускорения тела $\left(\beta_z=\frac{d\omega_z}{dt}=\frac{d^2\phi}{dt^2}\right)$.

Интегрирование уравнения (4.21) или (4.22) с учетом начальных условий позволяет полностью решить задачу о вращении ТТ вокруг неподвижной оси, т. е. найти зависимость от времени проекции угловой скорости $\omega_z = \omega_z(t)$ и угла поворота $\varphi = \varphi(t)$.