

Table of Contents

The Information Provided is Public Domain

Custom Skis	1
Automated Ski Edge Bender	4
Instrumented Thru-Axle	5

Custom Skis

Folsom Custom Skis
October 2016-October 2018
Design Engineer, Production Engineer, Graphic Designer

Objectives:

- Design and manufacture custom skis to individual client specifications
- Manufacture and deliver high quality product

Key Challenges:

- Design for efficient manufacturability
- Manufacture skis accurately to design specifications
- Manufacture skis to meet high quality standards

Materials:

Design:

Camber Profile Sketch

Ski Core Design

Final Design with Custom Graphic

Simulation:

Simulated Force on Ski

Automated Ski Edge Bender

Folsom Custom Skis
September 2017 - May 2018
Design Engineering Advisor, Technical Liaison

Objectives:

- Automate ski edge bending process
- Decrease production time of custom skis
- Increase durability of ski edges

Key Challenges:

- Accommodating irregular ski geometry
- Accounting for material properties of ski edges
- Converting ski geometry to G code for CNC operation

Bending Wheels with Material Loaded

Components of Automated Edge Bender

Hand Bent Ski Edge with Tip Seam

Machine Bent Edge

Instrumented Thru-Axle

University of Denver/Sram Corporation September 2014 - May 2015 FEA Specialist, DAQ Specialist, Manufacturing Engineer

Mountain Bike With Instrumented Thru-Axle

SRAM Maxle Ultimate

Objectives:

- Characterize loading conditions experienced by Maxle
- Design and build prototype of instrumented Maxle
- Perform stress analysis on Maxle using FEA and Field Data

Key Challenges:

- FEA
- Circuit design/DAQ
- Part modification/System assembly

FEA (Performed in Hypermesh, Ansys, and Abaqus):

Meshing and Boundary Conditions

Hole Analysis for Safety

Axial Load Analysis

Biased Mesh Around Hole

Circuit Design and DAQ:

Half Wheatstone Bridge To Measure Bending Strain

Circuit and DAQ System Housing

Part Modification and System Assembly:

Remove Material from Existing Hub

Fabricate End Cap for Hub

Final Assembly of Modified Part

Results:

Loading Experienced During Sprint

Loading Experienced Riding into Wall

