Algebraic Foundations for Effect-Dependent **Optimisations**

Ohad Kammar Gordon Plotkin

Principles of Programming Seminar Carnegie Mellon University January 30, 2012

POPI'12

* Gifford-style types and effects

Effect systems

$$\ell_1 := 1;$$
 $\ell_2 := deref(\ell_3)$

* Gifford-style types and effects

Effect systems

$$\vdash \ell_1 := 1;$$
 $\ell_2 := \mathsf{deref}(\ell_3) : () \,! \, \underbrace{\{\mathtt{lookup}, \mathtt{update}\}}_{arepsilon}$ $\Gamma \vdash M : A \,! \, arepsilon$

Effect-dependent optimisations [Benton et al.]

Swap:
$$\begin{array}{c} \vdash M_i : () ! \, \varepsilon_i, \\ \varepsilon_i \subseteq \{ \text{lookup} \} \end{array} \Longrightarrow \begin{array}{c} M_1; \, M_2; \, N \\ = \\ M_2; \, M_1; \, N \end{array}$$

A language a paper

- ▶ N. Benton and A. Kennedy. *Monads, effects and transformations,* 1999.
- N. Benton, A. Kennedy, L. Beringer, M. Hofmann. Reading, writing and relations, 2006.
- N. Benton and P. Buchlovsky. Semantics of an effect analysis for exceptions, 2007.
- N. Benton, A. Kennedy, L. Beringer, M. Hofmann. Relational semantics for effect-based program transformations with dynamic allocation, 2007.
- N. Benton, A. Kennedy, L. Beringer, M. Hofmann. Relational semantics for effect-based program transformations: higher-order store, 2009.
- ▶ J. Thamsborg, L. Birkedal. A kripke logical relation for effect-based program transformations, 2011.

Contribution

Craft

case by case treatment

Science

general semantic account of Gifford-style effect type systems

Engineering

- results: validate optimisations that occur in practice
- tools: to assist validation and instrumentation, e.g. optimisation tables
- methods: for overcoming difficulties, e.g. equational reasoning for modular validation

Marriage of effects and monads [Wadler and Thiemann'03]

Observation [Wadler'98]

Change notation:

$$\Gamma \vdash M : A ! \varepsilon \implies \Gamma \vdash M : T_{\varepsilon}A$$

 $T_{\varepsilon}A$ is an indexed family of monadic types.

Suggested monads for global state

* Algebraic theory of effects [Plotkin and Power]

An interface to effects:

* Algebraic theory of effects [Plotkin and Power]

An interface to effects:

Effect operations Σ e.g.: lookup : 2, update : $1\langle 2 \rangle$

Effect equations *E* e.g.:

Each theory $\langle \Sigma, E \rangle$ generates a monad T (free model).

Algebraic view

Key observation

 ε as an algebraic **signature**.

Global state

```
For \Sigma \coloneqq \{ \texttt{lookup} : 2, \texttt{update} : 1 \langle 2 \rangle \}, \varepsilon = \emptyset, \{ \texttt{lookup} \}, \{ \texttt{update} \}, \{ \texttt{lookup}, \texttt{update} \}
```

A novel banality.

$$\left\{egin{array}{lll} & \operatorname{update}_b & & & & & & \\ & \operatorname{update}_{b'} & = & \operatorname{update}_{b'} \ & & & & & & & \\ & & \operatorname{update}_b & & \operatorname{update}_b & & & \\ & \operatorname{lookup} & & & & & & \\ & \operatorname{lookup} & & & & & & \\ & \operatorname{lookup} & & & & & & \\ & \operatorname{lookup} & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ &$$

$$E_{\varepsilon} = \{s = t \in E | s, t \text{ are } \varepsilon\text{-terms}\}$$

$$E_{\{ ext{lookup,update}\}}$$
 $E_{\{ ext{lookup,update}\}} = E_{\{ ext{lookup,update}\}} = E_{\{ ext{lookup}\}}$ $E_{\{ ext{update}\}}$ $E_{\{ ext{update}\}}$

$$\operatorname{Th} \left\{ \begin{array}{cccc} & \operatorname{update}_b & & & \\ & | & & & | & & \\ & \operatorname{update}_{b'} & = & \operatorname{update}_{b'} & , \\ & x & & x & & \\ & \operatorname{update}_b & \operatorname{update}_b & \\ & | & & & | & \\ & \operatorname{lookup} & = & | & , \\ & x_0 & x_1 & & x_b & \\ \end{array} \right.$$

$$\begin{array}{ccc} & & & & \\ & & & & \\ \text{update}_0 & & \text{update}_1 & = x \\ & & & & x \end{array}$$

$$E_{\varepsilon} = \{ s = t \in E | s, t \text{ are } \varepsilon\text{-terms} \}$$

$$E_{\{lookup,update\}} \qquad E_{\{lookup\}} = \\ E_{\{lookup\}} \qquad E_{\{update\}} \qquad \begin{cases} e_{\{lookup\}} = e_{\{lookup\}} \\ e_{\{lookup\}} = e_{\{update\}} \\ e_{\{lookup\}} = e_{\{update\}} \\ e_{\{lookup\}} = e_{\{update\}} \\ e_{\{lookup\}} = e_{\{update\}} \\ e_{\{update\}} = e_{\{upda$$

$$E_{\varepsilon} = \{s = t \in E | s, t \text{ are } \varepsilon\text{-terms}\}$$

$$E_{\{lookup,update\}} \qquad E_{\{lookup\}} = \\ E_{\{lookup\}} \qquad E_{\{update\}} \qquad \\ E_{\emptyset} \qquad \qquad Th \left\{ \begin{array}{cccc} lookup & lookup \\ lookup & lookup \\ \hline x_{00} & x_{10} & x_{10} & x_{11} & x_{00} & x_{11} \\ \hline \\ lookup & & & & \\ \hline \\ x_{00} & x_{01} & x_{10} & x_{11} & x_{00} & x_{11} \\ \hline \\ \\ Compare: \end{array} \right\}$$

$$E = \begin{cases} \text{update}_b & \text{update}_b & \text{update}_b & \text{lookup} \\ \text{update}_{b'} & = & \text{update}_{b'} & , & \text{lookup} & = \\ \frac{1}{x} & \frac{1}{x} & \frac{1}{x} & \frac{1}{x} & \frac{1}{x} & \frac{1}{x} & \frac{1}{x} \end{cases}$$

$$E_{\varepsilon} = \{ s = t \in E | s, t \text{ are } \varepsilon\text{-terms} \}$$

$$E_{\{\mathrm{lookup},\mathrm{update}\}} \qquad E_{\{\mathrm{update}\}} = \\ E_{\{\mathrm{lookup}\}} \qquad E_{\{\mathrm{update}\}} \\ E_{\{\mathrm{lookup}\}} \qquad F_{\{\mathrm{update}\}} \qquad \text{Th} \left\{ \begin{array}{c} \mathrm{update}_b \\ \mathrm{update}_b \\ \mathrm{update}_{b'} \\ \mathrm{update}_{b'} \end{array} \right\}$$

Derived monads

Structure

- Optimisations
 - structural, algebraic (local), abstract (global)
 - unification
 - discovery
- Conclusion

Optimisations

Structural properties

Valid for all T_{ε}

e.g.

- \triangleright β , η rules
- sequencing

$$(M; N); P = M; (N; P)$$

Practically

Bread and butter of optimisation, e.g.

- constant propagation
- common subexpression elimination
- loop unrolling

etc..

Local algebraic properties

Single equations in E_{ε} , e.g.:

$$\begin{array}{cccc} \operatorname{update}_b & \operatorname{update}_b \\ \operatorname{lookup} & = & & \\ x_0 & x_1 & & x_b \end{array}$$

become optimisations, e.g.:

$$\ell := V;$$
 $y \leftarrow \text{deref}(\ell);$ $= N[V/y]$

note quantification over variables only (local property).

* Global algebraic properties

Algebraic characterisation

For all $t(x_1, \ldots, x_n)$:

$$x \stackrel{t}{\sim} x = x$$

note quantification over terms too (global property).

Discard

$$M$$
; return () = return ()

Knowledge unification

Discard	В Г	$\Gamma \vdash_{\varepsilon} M : \mathbf{F}_{\varepsilon}A \Gamma \vdash_{\varepsilon'} N : \underline{B}$	ВF	$\Gamma \vdash_{\varepsilon} M : \mathbf{F}_{\varepsilon} A$		
		$(\mathbf{coerce}M)\;\mathbf{to}\;x:A.N=N$		M to $x:A$. $\mathbf{return}_{\varepsilon}\star=\mathbf{return}_{\varepsilon}\star$	Ĺ	
					T	

$\mathcal{T}_{\varepsilon}$ affine: $\mathbf{f} \qquad \eta_{\mathbb{1}}^{\varepsilon}: \mathbb{1} \to F_{\varepsilon}\mathbb{1} $ has a continuous inverse	For all $arepsilon$ -terms t : $t(\mathbf{x},\dots,\mathbf{x})=\mathbf{x}$

Knowledge unification

i	name	utilitarian form	pristine form	abstract side condition	algebraic equivalent	example basic theories
	Discard	$\frac{\Gamma \vdash_{\varepsilon} M : \mathbf{F}_{\varepsilon}A \Gamma \vdash_{\varepsilon'} N : \underline{B}}{(\mathbf{coerce}M) \text{ to } x : A.\ N = N}$	$\Gamma \vdash_{\varepsilon} M : \mathbb{F}_{\varepsilon} A$ $M \text{ to } x : A. \text{ return}_{\varepsilon} * = \text{return}_{\varepsilon} *$	$\mathcal{T}_{\varepsilon}$ affine: $\mathfrak{p} = \eta_{\pm}^{\varepsilon} : \mathbb{1} \to F_{\varepsilon}\mathbb{1} $ has a continuous inverse	For all ε -terms t : $t(\mathbf{x}, \dots, \mathbf{x}) = \mathbf{x}$	read-only state, convex, upper and lower semilartices
v	Сору	$\begin{tabular}{ll} $\Gamma \vdash_{\mathcal{C}} M : \mathbf{F}_{\mathcal{E}}A$ \\ $\Gamma, x : A, y : A \vdash_{\mathcal{E}'} N : \underline{B}$ \\ \hline $\operatorname{coerce}M \ \operatorname{to} x : A.$ \\ $\operatorname{coerce}M \ \operatorname{to} y : A. N = $\\ &\operatorname{coerce}M \ \operatorname{to} x : A. N[x/y] \\ \end{tabular}$	$\Gamma \vdash_{\varepsilon} M : \mathbf{F}_{\varepsilon}A$ $M \text{ to } x : A . M \text{ to } \underline{y} : A . \text{return}_{\varepsilon}(x, y)$ $M \text{ to } x : A . \text{return}_{\varepsilon}(x, x)$	$\mathcal{T}_{\varepsilon}$ relevant: $\psi_{\varepsilon} \circ \delta = L^{\varepsilon} \delta$	For all ε -terms t : $t(t(\mathbf{x}_{11}, \dots, \mathbf{x}_{1n}), \dots, t(\mathbf{x}_{n1}, \dots, \mathbf{x}_{nn}))$ $= t(\mathbf{x}_{11}, \dots, \mathbf{x}_{nn})$	exceptions, lifting, read-only state, write-only state
	Weak Copy	$\begin{array}{c} \Gamma \vdash_{\sigma} M : \mathbb{F}_{\epsilon} A \\ \Gamma, y : A \vdash_{\tau'} N : \underline{B} \end{array}$ $\begin{array}{c} \text{coerceM to } x : A \\ \text{coerceM to } y : A . N = \\ \text{coerceM to } y : A . N \end{array}$	$\frac{\Gamma \vdash_{\varepsilon} M : \mathbf{F}_{\varepsilon} A}{M \text{ to } x : A . M = M}$	$\mu^{\varepsilon} \circ L^{\varepsilon} \pi_1 \circ \operatorname{str}^{\varepsilon} \circ \delta = \operatorname{id}$	For all ε -terms t : $t(t(\mathbf{x}_1, \dots, \mathbf{x}_n), \dots, t(\mathbf{x}_1, \dots, \mathbf{x}_n))$ $= t(\mathbf{x}_1, \dots, \mathbf{x}_n)$	any affine or relevant theory: lifting, exceptions, read-only and write-only state, all three semilattice theories
	Swap	$ \begin{array}{c c} \Gamma \vdash_{e_1} M_1 : F_{e_1} A_1 \Gamma \vdash_{e_2} M_2 : F_{e_2} A_2 \\ \Gamma, x_1 : A_1, x_2 : A_2 \vdash_{e'} N \\ \hline \text{coerce} M_1 \text{ to } x_1 : A_2 \\ \text{coerce} M_2 \text{ to } x_2 : A_2 \cdot N = \\ \text{coerce} M_2 \text{ to } x_2 : A_2 \cdot N \\ \text{coerce} M_1 \text{ to } x_1 : A_1 \cdot N \end{array} $	$ \begin{array}{c} \Gamma \vdash_{\varepsilon_1} M_1 : \mathbf{F}_{\varepsilon_1} A_1 \Gamma \vdash_{\varepsilon_2} M_2 : \mathbf{F}_{\varepsilon_2} A_2 \\ \hline \mathbf{rorce} M_1 \text{ to } x_1 : A_1 \\ \hline \mathbf{coerce} M_2 \text{ to } x_2 : A_2 \cdot \mathbf{roturn}_{\varepsilon} (x_1, x_2) = \\ \hline \mathbf{coerce} M_2 \text{ to } x_2 : A_2 \cdot \mathbf{roturn}_{\varepsilon} (x_1, x_2) \\ \hline \mathbf{coerce} M_1 \text{ to } x_1 : A_1 \cdot \mathbf{roturn}_{\varepsilon} (x_1, x_2) \end{array} $	$\begin{array}{ll} \mathfrak{T}_{\varepsilon_1 \subseteq \varepsilon}, \mathfrak{T}_{\varepsilon_2 \subseteq \varepsilon} \text{ commute:} \\ \psi_{\varepsilon} \circ (m^{\varepsilon_1 \subseteq \varepsilon} \times m^{\varepsilon_2 \subseteq \varepsilon}) \\ \mathfrak{p} & = \\ \tilde{\psi}_{\varepsilon} \circ (m^{\varepsilon_1 \subseteq \varepsilon} \times m^{\varepsilon_2 \subseteq \varepsilon}) \end{array}$	$\mathfrak{T}_{\varepsilon_1 \subseteq \varepsilon} \text{ translations commute} \\ \text{with } \mathfrak{T}_{\varepsilon_2 \subseteq \varepsilon} \text{ translations (see tensor equations)}$	$\mathcal{T}_1 \rightarrow \mathcal{T}_1 \otimes \mathcal{T}_2 \leftarrow \mathcal{T}_2,$ e.g., distinct global memory cells
	Weak Swap	$\frac{\Gamma \vdash_{\varepsilon_1} M_1 : \mathbf{F}_{\varepsilon_1} A_1}{\Gamma \vdash_{\varepsilon_1} X_1 : A_1 \vdash_{\varepsilon_r} M_2 : \mathbf{F}_{\varepsilon_2} A_2}{(same as Swap)}$	$\begin{array}{c} \Gamma \vdash_{\mathcal{E}_1} M_1 : \mathbf{F}_{\mathcal{E}_1} A_1 \Gamma \vdash_{\mathcal{E}_2} M_2 : \mathbf{F}_{\mathcal{E}_2} A_2 \\ \hline \text{coerce } M_1 \text{ to } x_1 : A_1, \\ \text{coerce } M_2 \text{ to } x_2 : A_2 \cdot \text{return}, x_1 = \\ \text{coerce } M_1 \text{ to } x_1 : A_1, \text{ return}, x_1 \\ \hline \text{coerce } M_1 \text{ to } x_1 : A_1, \text{ return}, x_2 \end{array}$	$\begin{aligned} \psi_{\varepsilon} \circ (m^{\varepsilon_1} \times m^{\varepsilon_2}) \\ \circ (\operatorname{id} \times \eta^{\varepsilon_2}_{\varepsilon_1}) &= \\ \hat{\psi_{\varepsilon}} \circ (m^{\varepsilon_1} \times m^{\varepsilon_2}) \\ \circ (\operatorname{id} \times \eta^{\varepsilon_2}_{\widetilde{\varepsilon}}) \end{aligned}$	For all ε -terms $t = \mathfrak{T}_1(t')$, $s = \mathfrak{T}_2(s')$: $t(s(\mathbf{x}_1, \dots, \mathbf{x}_1), \dots, s(\mathbf{x}_n, \dots, \mathbf{x}_n)) = s(t(\mathbf{x}_1, \dots, \mathbf{x}_n), \dots, t(\mathbf{x}_1, \dots, \mathbf{x}_n))$	when T_{e_2} is affine, e.g.: read-only state and convex, upper and lower semilartices.
U Pr	Isolated Swap	$\frac{\Gamma \vdash_{\varepsilon_1} M_1 : \mathbf{F}_{\varepsilon_1} A_1 \Gamma \vdash_{\varepsilon_2} M_2 : \mathbf{F}_{\varepsilon_2} A_2}{(same as Swap)}$	$\begin{array}{ll} \Gamma \vdash_{\varepsilon_1} M_1 : \mathbf{F}_{\varepsilon_1} A_1 & \Gamma \vdash_{\varepsilon_2} M_2 : \mathbf{F}_{\varepsilon_2} A_2 \\ \hline \text{coerce} M_1 \text{ to } x_1 : A_1 \\ \text{coerce} M_2 \text{ to } x_2 : A_2 : \text{return}_{\varepsilon} * = \\ \text{coerce} M_2 \text{ to } x_2 : A_1 : \text{return}_{\varepsilon} * \\ \hline \text{coerce} M_1 \text{ to } x_1 : A_1 : \text{return}_{\varepsilon} * \end{array}$	$\begin{aligned} \psi_{\varepsilon} \circ (m^{\varepsilon_1} \times m^{\varepsilon_2}) \\ \circ (\eta_{i}^{\varepsilon_1} \times \eta_{i}^{\varepsilon_2}) = \\ \tilde{\psi_{\varepsilon}} \circ (m^{\varepsilon_1} \times m^{\varepsilon_2}) \\ \circ (\eta_{i}^{\varepsilon_1} \times \eta_{i}^{\varepsilon_2}) \end{aligned}$	For all ε -terms $t = \mathfrak{T}_1(t')$, $s = \mathfrak{T}_2(s')$: $t(s(\mathbf{x}, \dots, \mathbf{x}), \dots, s(\mathbf{x}, \dots, \mathbf{x})) = s(t(\mathbf{x}, \dots, \mathbf{x}), \dots, t(\mathbf{x}, \dots, \mathbf{x}))$	when $T\varepsilon_1$ is affine: read-only state and convex, upper and lower semilattices.
	Unique	$\frac{\Gamma \vdash_{\varepsilon} M_i : \mathbf{F}_{\varepsilon} 0, i = 1, 2}{M_1 = M_2}$	(same as utilitarian form)	$F_e 0 = 0, 1$	$\mathcal{T}_{\varepsilon}$ equates all ε -constants	all three state theories, all three semilattice theories, a single unparameterised exception, lifting
	Pure Hoist	$ \begin{array}{c c} \Gamma \vdash_{\varepsilon} M : \mathbf{F}_{\varepsilon}A & \Gamma, x : A \vdash_{\varepsilon}r N : \underline{B} \\ \hline \mathbf{return}_{\varepsilon} : \mathbf{thunk} \; (\mathbf{coerce}M \; \mathbf{to} \; x : A, N) \\ &= M \; \mathbf{to} \; x : A. \; \mathbf{return}_{\varepsilon} \; \mathbf{thunk} \; N \end{array} $	$ \begin{array}{c} \Gamma \vdash_{\varepsilon} M : \mathbf{F}_{\varepsilon} A \\ \hline \mathbf{roturn}_{\varepsilon} \ \mathbf{thunk} \ M = \\ M \ \mathbf{to} \ x : A. \ \mathbf{return}_{\varepsilon} \ \mathbf{thunk} \ \mathbf{return}_{\varepsilon} x \end{array} $	$_{\mathbf{F}}$ $L^{\varepsilon}\eta_{W}^{\varepsilon}=\eta_{ F_{\varepsilon}W }^{\varepsilon}$	all ε -terms are equal to variables in $\mathcal{T}_{\varepsilon}$	the empty theory, inconsistent theories
	Hoist	$\Gamma \vdash_{\varepsilon} M : F_{\varepsilon}A \Gamma, x : A \vdash_{\varepsilon'} N : \underline{B}$ $M \text{ to } x : A.$ $\text{return}_{\varepsilon} \text{ thunk (coerce}M \text{ to } x : A. N)$	$\Gamma \vdash_{\varepsilon} M : \mathbf{F}_{\varepsilon} A$ $M \text{ to } x : A.$ $\text{thunk return}_{\varepsilon} (x, \text{ thunk } M) = M \text{ to } x : A.$	$L^{\epsilon}\langle \eta^{\epsilon}, id \rangle = str^{\epsilon} \circ \delta$	all ε -terms are either a variable or independent of their variables via T_ε	all theories containing only constants: lifting and exceptions

Aosuaci Opuillisation

2012/1/2

* Global algebraic properties

Algebraic characterisation

For all ε_1 -term $t(\mathbf{x}_1,\ldots,\mathbf{x}_n)$, and ε_2 -term $s(\mathbf{x}_1,\ldots,\mathbf{x}_m)$:

Swap

$$x \leftarrow M_1; y \leftarrow M_2; return \langle x, y \rangle$$

$$= y \leftarrow M_2; x \leftarrow M_1; return \langle x, y \rangle$$

* Global algebraic properties

Algebraic characterisation

For all ε_1 -term $t(\mathbf{x}_1,\ldots,\mathbf{x}_n)$, and ε_2 -term $s(\mathbf{x}_1,\ldots,\mathbf{x}_m)$:

Isolated swap

$$M: N = N: M$$

Applicable for more effects.

Additional contributions

Details in the paper, and:

► An extended **example**:

```
\begin{aligned} \mathsf{Exceptions} + \big(\mathsf{Read}\ \mathsf{Only} \otimes \mathsf{Write}\ \mathsf{Only} \otimes \mathsf{Read\text{-}Write} \otimes \\ \big(\mathsf{Rollback}\ \mathsf{Exceptions} + \mathsf{Input} + \mathsf{Output} + \\ \big(\mathsf{Non\text{-}determinism} \otimes \mathsf{Lifting}\big)\big)\big) \end{aligned}
```

```
(2^9 = 512 \text{ effect sets}).
```

- Modular validation of optimisations.
- Optimisation tables.

Caveats

- No effect inference.
- Not a rich logic (equational only).
- Only Gifford-style effect systems.
- Only algebraic effects.
- Did not cover all optimisations.

Summary

- ▶ N. Benton and A. Kennedy. *Monads, effects and transformations,* 1999.
- N. Benton, A. Kennedy, L. Beringer, M. Hofmann. Reading, writing and relations, 2006.
- ▶ N. Benton and P. Buchlovsky. Semantics of an effect analysis for exceptions, 2007.
- N. Benton, A. Kennedy, L. Beringer, M. Hofmann. Relational semantics for effect-based program transformations with dynamic allocation, 2007.
- ▶ N. Benton, A. Kennedy, L. Beringer, M. Hofmann. *Relational* semantics for effect-based program transformations: higher-order store, 2009.
- ▶ J. Thamsborg, L. Birkedal. A kripke logical relation for effect-based program transformations, 2011.

Summary

- Category theory was crucial to this formulation.
- ► The categorical characterisations connected to Führmann, Jacobs, Kock and Wraith.

Contribution

Craft

case by case treatment

Science

general semantic account of Gifford-style effect type systems

Engineering

- results: validate optimisations that occur in practice
- tools: to assist validation and instrumentation, e.g. optimisation tables
- methods: for overcoming difficulties, e.g. equational reasoning for modular validation

Appendices

- Atkey
- ► Further work

Abstract optimisations

(contd.) Discard: $x \leftarrow M$; $return_{\varepsilon} 0 = return_{\varepsilon} 0$

Discard: Pristine Form

$$\frac{\Gamma \vdash M : T_{\varepsilon}A}{\mathtt{x} \leftarrow M; \mathtt{return}_{\varepsilon} \, 0 = \mathtt{return}_{\varepsilon} \, 0}$$

(cont.)

Categorical Characterisation

$$T_{\varepsilon}1 \cong 1$$

Due to Kock, Jacobs, Führmann

Further work

- Effect reconstruction
- Handlers
- Automation
- More effects
- Locality

- Concurrency
- DSL reasoning.
- Richer program logics (Hoare, modal, etc.).

Isolated swap applicability

For example, if $\varepsilon_1 = \{\text{input}\}, \varepsilon_2 = \{\text{lookup}, \text{update}\}.$

Atkey

Precise relationship of semantics is further work.

Similarities:

- Soundness of optimisations.
- ▶ Validation of the Benton et. al global state optimisations.
- Constructing a semantics out of an equational theory.

Differences:

- Our work included a general treatment of optimisations.
- Our work is tightly coupled to the algebraic semantics.
- Out work treats modular combinations of optimisations.

Perhaps our work can be generalised to the parametrised setting.

