Домашнее задание 2

Для всех итерационных методов использовались критерии малости невязки ($\frac{\|Ax^k-b\|}{\|b\|} \leq \epsilon$) и малости нормы разности двух последовательных приближений ($\frac{\|x^{k+1}-x^k\|}{\|x^k\|} \leq \epsilon$), где $\epsilon=0.000001$ и в качестве нормы используется 2-норма векторов.

Для всех методов максимальное количество итераций maxIterations=1,000,000.

В методе Зайделя с релаксацией для всех матриц использовалось $\omega = 0.5$.

Для метода Якоби проверялось условие сходимости $\rho(D^{-1}R) < 1$, где ρ - спектральный радиус матрицы ($\rho(A) = max\{|\lambda_1|,\dots,|\lambda_n|\}$, где $\lambda_1,\dots,\lambda_n$ - собственные числа), D - диагональная матрица, R=A-D. Это необходимо, так как на неподходящих под это условие матрицах невозможно было найти ответ в силу ограничений на операцию деления для типа float64 (после нескольких десятков итераций из-за деления на относительно маленькое число вектор x ровнялся $[\infty,\dots,\infty]$). Стоит отметить, что матрицы, которые не подходили под это условие, также не подходили под условие диагонального преобладания, которое является существенным (хоть и не необходимым) для сходимости метода Якоби.

 $A_{symmetric}$ - матрица A и ее вектор b, домноженные слева на A^T .

 $\mu(A)$ - число обусловленности.

Все результаты переведены из научной записи(1e+1) в десятичную.

Диагональная матрица

Матрица хорошо обусловленная, т. к. $det(A_{diag}) \approx 79,649,555,832,435,952,568,192,$ $\mu(A_{diag}) = \|A_{diag}\| * \|A_{diag}^{-1}\| = 13.329146508625698$

A												b
73	-8	-1	-2	2	-9	3	1	-10	-3	0	-10	-6
-9	89	-1	0	8	3	7	6	-10	7	-6	6	9
-2	0	79	7	-8	8	7	5	0	8	-4	8	6
-5	-5	-5	91	-8	-7	-3	8	-5	-10	7	7	4
8	-8	3	3	90	-8	-5	7	7	-1	-10	1	7
-3	-10	7	8	-7	98	-5	-5	7	-3	-10	-8	-3
4	-1	-9	-10	-2	-1	73	3	0	7	-7	2	-2
9	2	-4	-7	5	-10	-10	92	7	-9	-2	-3	-4
-1	-10	-1	-10	-10	-6	5	-4	87	-6	3	-2	4
-4	-6	-1	9	-6	-10	8	-3	-8	86	2	1	2
1	1	5	4	7	9	6	3	-1	0	68	9	9
0	5	4	5	-1	-4	-1	-1	2	-4	-1	56	9

$A_{symmetric}$												b
5702	-1333	-405	-446	806	-1059	515	808	-759	-350	-74	-592	-629
-1333	8382	106	-473	-95	-776	497	454	-1909	139	-126	702	832
-405	106	6640	227	-502	1347	-155	-201	-176	689	294	735	452
-446	-473	227	8765	-423	-28	-1157	144	-1143	145	760	856	344
806	-95	-502	-423	8535	-1179	-468	1322	-283	-642	-102	11	491
-1059	-776	1347	-28	-1179	10147	-576	-1436	106	-1168	83	-769	-451
515	497	-155	-1157	-468	-576	5643	-369	427	1096	-116	-70	-327
808	454	-201	144	1322	-1436	-369	8982	300	-1230	-46	-204	-406
-759	-1909	-176	-1143	-283	106	427	300	7997	-1061	-63	12	169
-350	139	689	145	-642	-1168	1096	-1230	-1061	7808	81	-254	151
-74	-126	294	760	-102	83	-116	-46	-63	81	4924	427	736
-592	702	735	856	11	-769	-70	-204	12	-254	427	3242	595

Результаты:

Метод	Точное решение	Якоби	Зайделя	Зайделя с релаксацией	Сопряжённых градиентов	Гаусса
Количество итераций	-	11	7	25	12	-
Критерий окончания итераций	-	Малость невязки	Малость невязки	Малость невязки	Малость невязки	-
x_1	-0.04140748	-0.08219178	-0.08219178	-0.04109589	-0.04140747	-0.04140748
x_2	0.0951535	0.1011236	0.09281207	0.04848392	0.09515349	0.0951535
x_3	0.07045395	0.07594937	0.07386856	0.03745448	0.07045396	0.07045395
x_4	0.04999145	0.04395604	0.04859829	0.02320996	0.04999148	0.04999145
x_5	0.09185645	0.0777778	0.08925145	0.04185914	0.09185645	0.09185645
x_6	-0.00910101	-0.03061224	-0.02652613	-0.01425151	-0.00910098	-0.00910101
x_7	-0.00180436	-0.02739726	-0.00377595	-0.00786627	-0.00180429	-0.00180436
x_8	-0.03653304	-0.04347826	-0.03869037	-0.02089832	-0.03653296	-0.03653304
x_9	0.07336947	0.04597701	0.06900295	0.0287478	0.07336951	0.07336947
x_{10}	0.03064549	0.02325581	0.03024415	0.01333687	0.03064556	0.03064549
x_{11}	0.09893318	0.13235294	0.12128454	0.06387051	0.09893317	0.09893318
x_{12}	0.1443634	0.16071429	0.14361446	0.07596003	0.1443634	0.1443634

Вычисление метода сопряженных градиентов и метода Гаусса выполнялось на симметричной матрице, остальные методы были вычислены на изначальное матрице.

Случайная матрица с выборкой [0,1)

$$det(A_{random}) = -0.007392078169007411, \mu(A_{random}) = \|A_{random}\| * \left\|A_{random}^{-1}\right\| = 171.57062069397406$$

A										b
0.09310	0.46296	0.93137	0.30380	0.60630	0.90974	0.00426	0.19193	0.12714	0.98395	0.41040
0.24521	0.76891	0.47166	0.55561	0.76400	0.41916	0.42559	0.74468	0.95186	0.81468	0.93407
0.20463	0.51378	0.84973	0.84296	0.02374	0.44718	0.66388	0.61766	0.57209	0.25182	0.25237
0.88916	0.98856	0.61451	0.44720	0.89148	0.86907	0.50745	0.06848	0.86180	0.84522	0.49320
0.23916	0.23566	0.37235	0.87459	0.97991	0.58573	0.70257	0.17351	0.22382	0.82836	0.67732
0.17299	0.63587	0.46413	0.88649	0.38913	0.35721	0.93878	0.19617	0.65420	0.82861	0.62401
0.44414	0.05817	0.73251	0.30840	0.17337	0.26483	0.31740	0.64132	0.73144	0.53343	0.80028
0.43692	0.52223	0.08441	0.47346	0.94672	0.80371	0.70694	0.45602	0.69618	0.14082	0.10161
0.74979	0.91611	0.41144	0.98386	0.02433	0.70182	0.64097	0.78008	0.01748	0.49528	0.04442
0.75950	0.49040	0.62319	0.77167	0.47742	0.62423	0.76287	0.99692	0.64978	0.39911	0.30820
0.01054	0.00871	0.45547	0.58313	0.67816	0.75775	0.39740	0.58843	0.48111	0.13340	0.84128
0.16602	0.06466	0.78431	0.62658	0.43781	0.06728	0.47534	0.63883	0.59357	0.72091	0.19221

$A_{symmetric}$									b
4.32860	3.99913	2.72190	4.02301	3.14499	3.29613	2.77881	2.54551	3.25875	3.25499
3.99913	5.79533	3.67262	5.06622	3.95397	4.61251	3.89278	3.73887	3.98181	4.67136
2.72190	3.67262	3.48268	3.37672	2.65894	3.46967	2.79404	2.64362	3.62647	3.83958
4.02301	5.06622	3.37672	5.96422	4.08711	4.37998	3.29952	4.01039	4.01840	4.54352
3.14499	3.95397	2.65894	4.08711	4.05610	3.75951	2.54847	3.04612	2.99136	3.50605
3.29613	4.61251	3.46967	4.37998	3.75951	4.50313	3.09145	3.17113	3.77247	4.02348
2.77881	3.89278	2.79404	3.29952	2.54847	3.09145	3.25688	2.24767	2.72087	3.45720
2.54551	3.73887	2.64362	4.01039	3.04612	3.17113	2.24767	3.64560	3.16916	3.73490
3.25875	3.98181	3.62647	4.01840	2.99136	3.77247	2.72087	3.16916	5.07639	4.46737
3.25499	4.67136	3.83958	4.54352	3.50605	4.02348	3.45720	3.73490	4.46737	4.98484
2.42863	3.40900	2.42971	3.03193	2.97243	2.75708	2.48397	2.59751	2.22107	3.10237
2.79500	3.66512	2.88644	3.11504	2.74696	3.21662	2.82167	2.35331	2.87909	3.44315

Результаты

Метод	Точное решение	Якоби	Зайделя	Зайделя с релаксацией	Сопряжённых градиентов	Гаусса
Количество итераций	-	∞	56	84	14	-
Критерий окончания итераций	-	-	Малость нормы приближений	Малость нормы приближений	Малость невязки	-
x_1	1.24386958	∞	5.07222390	2.53611195	1.24386957	1.24386958
x_2	-1.46857295	∞	0.064430212	-0.07782169	-1.46857295	-1.46857295
x_3	-0.29223781	∞	0.026281931	-0.17580902	-0.29223781	-0.29223781
x_4	1.10681103	∞	-6.48895878	-1.87528237	1.10681102	1.10681103
x_5	0.58006511	∞	5.17476138	0.68376892	0.58006511	0.58006511
x_6	-0.31909681	∞	11.2342668	2.00074065	-0.31909681	-0.31909681
x_7	-0.76018098	∞	-8.91521041	-0.21629973	-0.76018099	-0.76018098
x_8	-0.97736241	∞	1.7939253	-1.552086	-0.97736241	-0.97736241
x_9	0.75454575	∞	633.812509	15.83035935	0.75454575	0.75454575
x_{10}	-0.62774438	∞	2.68475	-12.26533549	-0.62774438	-0.62774438
x_{11}	-0.2649922	∞	0.632206	-3.45405884	-0.2649922	-0.2649922
x_{12}	1.98558713	∞	676.603626	2.21005337	1.98558712	1.98558713

Все методы вычислялись на симметричной матрице, метод Якоби не дал ответа, так как не выполнялись условия накладываемые на матрицу, которые описаны выше.

<u>Гильбертова матрица</u>

Результаты для Гильбертовой матрицы имеют большие ошибки, так как она плохо обусловлена и имеет относительно большую размерность.

A												b
1.00000	0.50000	0.33333	0.25000	0.20000	0.16667	0.14286	0.12500	0.11111	0.10000	0.09091	0.08333	0.97844
0.50000	0.33333	0.25000	0.20000	0.16667	0.14286	0.12500	0.11111	0.10000	0.09091	0.08333	0.07692	0.18721
0.33333	0.25000	0.20000	0.16667	0.14286	0.12500	0.11111	0.10000	0.09091	0.08333	0.07692	0.07143	0.14532
0.25000	0.20000	0.16667	0.14286	0.12500	0.11111	0.10000	0.09091	0.08333	0.07692	0.07143	0.06667	0.95626
0.20000	0.16667	0.14286	0.12500	0.11111	0.10000	0.09091	0.08333	0.07692	0.07143	0.06667	0.06250	0.64579
0.16667	0.14286	0.12500	0.11111	0.10000	0.09091	0.08333	0.07692	0.07143	0.06667	0.06250	0.05882	0.24603
0.14286	0.12500	0.11111	0.10000	0.09091	0.08333	0.07692	0.07143	0.06667	0.06250	0.05882	0.05556	0.23098
0.12500	0.11111	0.10000	0.09091	0.08333	0.07692	0.07143	0.06667	0.06250	0.05882	0.05556	0.05263	0.17866
0.11111	0.10000	0.09091	0.08333	0.07692	0.07143	0.06667	0.06250	0.05882	0.05556	0.05263	0.05000	0.62681
0.10000	0.09091	0.08333	0.07692	0.07143	0.06667	0.06250	0.05882	0.05556	0.05263	0.05000	0.04762	0.74929
0.09091	0.08333	0.07692	0.07143	0.06667	0.06250	0.05882	0.05556	0.05263	0.05000	0.04762	0.04545	0.37816
0.08333	0.07692	0.07143	0.06667	0.06250	0.05882	0.05556	0.05263	0.05000	0.04762	0.04545	0.04348	0.02893

$A_{symmetric}$												b
1.56498	0.92308	0.67582	0.53944	0.45145	0.38940	0.34302	0.30690	0.27792	0.25409	0.23414	0.21716	1.76640
0.92308	0.57089	0.42857	0.34762	0.29425	0.25598	0.22701	0.20421	0.18575	0.17047	0.15759	0.14657	1.13524
0.67582	0.42857	0.32600	0.26667	0.22708	0.19845	0.17661	0.15934	0.14528	0.13360	0.12371	0.11524	0.87851
0.53944	0.34762	0.26667	0.21933	0.18750	0.16434	0.14660	0.13250	0.12100	0.11142	0.10329	0.09631	0.72909
0.45145	0.29425	0.22708	0.18750	0.16074	0.14118	0.12614	0.11417	0.10438	0.09620	0.08926	0.08328	0.62818
0.38940	0.25598	0.19845	0.16434	0.14118	0.12420	0.11111	0.10067	0.09211	0.08496	0.07887	0.07363	0.55423
0.34302	0.22701	0.17661	0.14660	0.12614	0.11111	0.09950	0.09023	0.08261	0.07624	0.07082	0.06614	0.49716
0.30690	0.20421	0.15934	0.13250	0.11417	0.10067	0.09023	0.08187	0.07500	0.06925	0.06435	0.06012	0.45150
0.27792	0.18575	0.14528	0.12100	0.10438	0.09211	0.08261	0.07500	0.06874	0.06349	0.05902	0.05516	0.41400
0.25409	0.17047	0.13360	0.11142	0.09620	0.08496	0.07624	0.06925	0.06349	0.05866	0.05455	0.05099	0.38255
0.23414	0.15759	0.12371	0.10329	0.08926	0.07887	0.07082	0.06435	0.05902	0.05455	0.05073	0.04743	0.35575
0.21716	0.14657	0.11524	0.09631	0.08328	0.07363	0.06614	0.06012	0.05516	0.05099	0.04743	0.04436	0.33260

Результаты

Метод	Точное решение	Якоби	Зайделя	Зайделя с релаксацией	Сопряжённых градиентов	Гаусса
Количество итераций	-	∞	398,143	760,067	7	-
Критерий окончания итераций	-	-	Малость нормы приближений	Малость нормы приближений	Малость нормы приближений	-
x_1	46,781,720.8	∞	17.81627383	-3,583.32097743	30.78958822	863.078119
x_2	849,034,980	∞	-91.70662594	91,128.5186219	-214.16477372	191.0547
x_3	181,684,671,000	∞	57.41217542	-481,556.34841693	220.24024254	980,106.815
x_4	447,964,920,000	∞	45.41660631	634,810.5275951	160.16744491	518,299.37
x_5	17,765,826,500,000	∞	20.08695618	390,529.52021387	9.5460452	3,125,122.47
x_6	7,351,576,700,000	∞	2.7947155	-474,326.46996043	-94.26656176	2,369,739.56
x_7	213,749,747,000,000	∞	-6.48350621	-470,036.33912928	-132.4074806	2,395,753.35
x_8	84,020,107,000,000	∞	-10.46428639	-1,280,820.31120389	-118.56941313	478,289.70
x_9	447,139,526,000,000	∞	-11.35370314	1,242,462.62332825	-70.5986475	34,288.02
x_{10}	25,426,524,000,000	∞	-10.57752072	1,554,802.01113041	-3.02426836	16,908,362.2
x_{11}	134,524,619,000,000	∞	-8.98870386	-639,258.44737977	73.89735875	851,236,572
x_{12}	4,109,452,800,000	∞	-7.07703951	-568,582.92197412	153.43207369	530,440.05

Все методы вычислялись на симметричной матрице, метод Якоби не дал ответа, так как не выполнялись условия накладываемые на матрицу, которые описаны выше.

//TODO:

- // Проверить все критерии окончания итераций
- // Проверить, правильно ли указано, где использовались изначальные, а где симметричные матрицы
- // Объяснить использование именно симметричных матриц там, где они используются
- // (Не обязательно) Объяснить неточность решений обоими методами Зайделя для случайной матрицы // неоптимальным критерием окончания итераций (возможно, лучше предоставить решение только с невязкой и
- // объяснить это)
- // Раньше Зайдель и Градиенты давали одинаковый ответ на Гильберта, разобраться и, если что, пофиксить.
- // Теперь в Гильберте даже ничего общего просто нет, выглядит печально.
- // Просмотреть все еще раз, может что-то забыл