Lecture 10: Regression & Correlation

Applied Statistics - STAN - 5.37 & 5.38 8 & 9 January 2021 Lecturer: Erika Siregar, SST, MS

Today's Agenda

- Correlation
- Regression
- Multiple Regression

Overview

- Basically we'll learn about relationships between variables in dataset.
- What are variables? Take a look at these datasets.
- Datasets normally have > 1 variables.
- People are curious about whether there's relationship between pairs of variables.
- if relationship exists, what & how strong? → correlation.
- From the related variables, could we create a model so that we can predict y based on x? → regression
- Remember: only make a prediction using regression if correlation exists between the x (independent) and y (dependent).

```
> datasets::airquality
    Ozone Solar.R Wind Temp Month Day
1    41    190    7.4    67    5    1
2    36    118    8.0    72    5    2
3    12    149    12.6    74    5    3
4    18    313    11.5    62    5    4
5    NA    NA 14.3    56    5    5
6    28    NA 14.9    66    5    6
7    23    299    8.6    65    5    7
```

```
> datasets::mtcars

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
```

	head(datasets Sepal.Length		Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	100
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa
7	4.6	3.4	1.4	0.3	setosa

Correlation

- Correlation:
 - relationship/association between 2 variables.
 - Values of one variable are somehow associated with the values of other variable.
- 2 types of correlation:
 - Linear → when the scatter plot of 2 correlated variables form an 'approximately' straight line.
 - Non linear → not covered in this course.

Linear correlation

Non Linear correlation

Correlation (2)

- Symbol:
 - \circ ϱ (for population data)
 - o r (for sample data)
 - Values are between -1 and 1 ->

$$-1 <= r <= 1$$

- The relationship could be:
 - Linear negative correlation (-) →
 - -1 = perfect negative
 - Linear positive correlation (+) → 1
 = perfect positive correlation
 - No correlation (o)
 - Non linear
- straight-line pattern → strong correlation

Working with Correlation

- 1. **Detection** → does linear correlation exist?
 - a. Scatter plot \rightarrow subjective, eye measurement
 - b. Checking on the requirements:
 - i. Simple random sample
 - ii. Scatter plot shows an 'approximately' straight pattern
 - iii. Outliers are removed (if any)
 - c. Calculation:
 - i. Formula \rightarrow cumbersome
 - ii. Technology
 - d. Hypothesis Test.
- 2. **Measurement**: how strong is the linear correlation?
 - a. Represented with symbol 'r'.
 - b. Positif?
 - c. Negative?
 - d. No correlation.

How to compute correlation?

$$r = \frac{n\Sigma xy - (\Sigma x)(\Sigma y)}{\sqrt{n(\Sigma x^2) - (\Sigma x)^2}\sqrt{n(\Sigma y^2) - (\Sigma y)^2}} \quad \text{or} \quad r = \frac{\Sigma (z_x z_y)}{n-1}$$

What a complicated formula. But technology could save you. With R: cor(x, y)

Example of using correlation formula (1)

Table 10-2 Calculating r with Formula 10-1

x (Shoe Print)	y (Height)	x²	y ²	xy
29.7	175.3	882.09	30730.09	5206.41
29.7	177.8	882.09	31612.84	5280.66
31.4	185.4	985.96	34373.16	5821.56
31.8	175.3	1011.24	30730.09	5574.54
27.6	172.7	76 <mark>1</mark> .76	29825.29	4766.52
$\Sigma x = 150.2$	$\Sigma y = 886.5$	$\Sigma x^2 = 4523.14$	$\Sigma y^2 = 157271.47$	$\Sigma xy = 26649.69$

Using Formula 10-1 with the results from Table 10-2, *r* is calculated as follows:

$$r = \frac{n\Sigma xy - (\Sigma x)(\Sigma y)}{\sqrt{n(\Sigma x^2) - (\Sigma x)^2} \sqrt{n(\Sigma y^2) - (\Sigma y)^2}}$$

$$= \frac{5(26649.69) - (150.2)(886.5)}{\sqrt{5(4523.14) - (150.2)^2} \sqrt{5(157271.47) - (886.5)^2}}$$

$$= \frac{96.15}{\sqrt{55.66} \sqrt{475.10}} = 0.591$$

Example of using correlation formula (2)

Table 10-3 Calculating r with Formula 10-2

x (Shoe Print)	y (Height)	Z _x	z _y	$z_x \cdot z_y$
29.7	175.3	-0.20381	-0.41035	0.08363
29.7	177.8	-0.20381	0.10259	-0.02091
31.4	185.4	0.81524	1.66191	1.35485
31.8	175.3	1.05501	-0.41035	-0.43292
27.6	172.7	-1.46263	-0.94380	1.38043
				$\Sigma(z_x \cdot z_y) = 2.36508$

$$z_x = \frac{x - \bar{x}}{s_x} = \frac{29.7 - 30.04}{1.66823} = -0.20381$$

$$r = \frac{\sum (z_x \cdot z_y)}{n-1} = \frac{2.36508}{4} = 0.591$$

Using R:

> cor(foot_height\$foot, foot_height\$height)
[1] 0.5912691

Properties of Linear Correlation (r)

- 1. if all values of either variable are **converted to a different scale**, the value of **r does not change**.
- 2. The value of r is not affected by the choice of x and y. **Interchange all x- and y-values** and the value of r **will not change**.
- 3. R is very **sensitive to outliers**, they can dramatically affect its value.
- 4. correlation does not imply causality

Coefficient of Determination (r^2)

- 1. r=correlation
- 2. r^2 = proportion of the variation in **y** that is explained by the linear relationship between **x** and **y**. $r^2 = \frac{\text{explained variation.}}{\text{total variation}}$

Example:

Using the pizza data fare costs, we found that r = 0.988. What proportion of the variation in the **subway fare (y)** can be explained by the variation in the **costs of a slice of pizza (x)**?

- With r = 0.988, we get r2 = 0.976.
- We conclude that 0.976 (or about 98%) of the variation in the cost of a subway fares can be explained by the linear relationship between the costs of pizza and subway fares.
- This implies that about 2% of the variation in costs of subway fares cannot be explained by the costs of pizza.

Hypothesis Test for Correlation (1)

1. Hypothesis:

```
Ho: \rho = 0
H1: \rho \neq 0 or \rho < 0 or \rho > 0
```

- 2 Choices of Test statistics:
 - a. **r:**

Decision:

- i. **Reject Ho**: |r| > critical value → there is sufficient evidence to support the claim of a linear correlation
- ii. **Fail to reject Ho**: $|\mathbf{r}| \leftarrow$ critical value \rightarrow there is not sufficient evidence to support the claim of a linear correlation.
- iii. Critical value \rightarrow Refer to Table A-5 in Triola's book (p.588)
- iv. Critical value using R:

```
# Pearson's critical value

critical.r <- function( n, alpha = .05 ) {

df <- n - 2

critical.t <- qt(alpha/2, df, lower.tail = F)

critical.r <- sqrt( (critical.t^2) / ( (critical.t^2) + df ) )

return(critical.r)
}

# Example usage: Critical correlation coefficient at sample size of n = 100

critical.r(23, 0.05)
```

Hypothesis Test for Correlation (2)

1. Hypothesis:

Ho:
$$\rho = 0$$

H1: $\rho \neq 0$ or $\rho < 0$ or $\rho > 0$

2. 2 Choices of Test statistics:

$$t = \frac{r}{\sqrt{\frac{1-r^2}{n-2}}} \qquad \text{df = n-2}$$

Decision:

- i. Reject Ho: p-value $\leq \alpha \rightarrow$ there is sufficient evidence to support the claim of a linear correlation
- ii. Fail to reject Ho: p-value > α . \rightarrow there is not sufficient evidence to support the claim of a linear correlation.

Example 1

 Use the paired pizza subway fare data, test the claim that there is a linear correlation between the costs of a slice of pizza and the subway fares. Use a 0.05 significance level.

Answer:

- Ho: ρ = 0
- H1: ρ ≠ 0
- r = 0.988.
- The critical value of r = 0.811 (Table A-5 with n = 6 and α = 0.05)
- Because |0.988| > 0.811, we reject Ho.
 (Rejecting "no linear correlation" indicates that there is a linear correlation.)

We conclude that there is sufficient evidence to support the claim of a linear correlation between costs of a slice of pizza and subway fares.


```
> cor(pizza$cost_of_pizza, pizza$subway_fare)
[1] 0.9878109
```

```
> critical.r(6, 0.05)
[1] 0.8114014
```

Example 1 (2)

Using test statistics t:

The linear correlation coefficient is r = 0.988 and n = 6 (six pairs of data), so the test statistic is $t = \frac{r}{\sqrt{1 - r}} = \frac{0.988}{\sqrt{1 - r}} = 12.793$

tatistic is $t = \frac{r}{\sqrt{\frac{1-r^2}{n-2}}} = \frac{0.988}{\sqrt{\frac{1-0.988^2}{6-2}}} = 12.793$

With df = 4, P-value < 0.01.

Example 2

- 2. With the choco data and α = 5%, compute:
 - a. Test statistics $r \rightarrow try$ yourself based on slide 8
 - b. Test statistics t

- Decision?
- Interpretation?

Part II: Regression

Regression

The regression equation expresses a relationship between x (called the explanatory variable, predictor variable or independent variable), and y (called the response variable or dependent variable).

- Equation: ŷ = b₁x + b₀ → remember in math: y = mx + b?
- b₁ = slope or gradient
- o b = intercept
- It represents the straight line that best fits the paired sample data
- The best-fitting straight line is called a regression line a.k.a line of best fit a.k.a least squares line

The slope **b1** represents the **marginal change** in y that occurs when x changes by one unit (besarnya perubahan y, ketika x berubah sebesar 1 unit).

Example

Year	1960	1973	1986	1995	2002	2003
Cost of Pizza	0.15	0.35	1.00	1.25	1.75	2.00
Subway Fare	0.15	0.35	1.00	1.35	1.50	2.00
CPI	30.2	48.3	112.3	162.2	191.9	197.8

Based on the data above, create the regression equation, in which the explanatory variable (or **x** variable) is the **cost** of a slice of pizza and the response variable (or **y** variable) is the corresponding cost of a **subway fare**.

Tips: use R function lm().

Usage:

 $lm(y \sim x, data)$

Answer

R script:

library(readr)
pizza <- read_csv('pizza.csv')</pre>

lm(subway_fare ~ cost_of_pizza, data = pizza)

Output:

Coefficients:

(Intercept) cost_of_pizza

0.03456 0.94502

Regression Equation:

 $\hat{y} = 0.03456 + 0.94502x$

year	cost_of_pizza	subway_fare	срі
1960	0.15	0.15	30.2
1973	0.35	0.35	48.3
1986	1	1	112.3
1995	1.25	1.35	162.2
2002	1.75	1.5	191.9
2003	2	2	197.8

Influential Points

Pizza

year	cost_of_pizza	subway_fare	срі
1960	0.15	0.15	30.2
1973	0.35	0.35	48.3
1986	1	1	112.3
1995	1.25	1.35	162.2
2002	1.75	1.5	191.9
2003	2	2	197.8
2015	2	-20	

Strategy for predicting values of Y

Strategy for Predicting Values of Y

Is the regression equation a good model?

- The regression line graphed in the scatterplot shows that the line fits the points well.
- r indicates that there is a linear correlation.
- The prediction is not much beyond the scope of the available sample data.

Yes.
The regression equation is a good model.

No.
The regression equation is not a good model.

Substitute the given value of x into the regression equation $\hat{y} = b_0 + b_1 x$.

Regardless of the value of x, the best predicted value of y is the value of \overline{y} (the mean of the y values).

Evaluating the Model

1. residual/error: observed y – predicted y = $\mathbf{y} - \hat{\mathbf{y}}$.

the **least-squares property** \rightarrow if the sum of the squares of the residuals is the smallest sum possible

Residual Plot: a scatter plot of $(x, y - \hat{y})$.

Residual plot suggests whether a regression equation is a good model or not.

Residual Plots

Residual plots pattern:

- 1. should have no pattern (other than a straight-line pattern)
- 2. should not become thicker (or thinner) when viewed from left to right.

Which residual plot suggests that the regression equation is a good model.

Deviation pictured in residual plot

- Total deviation
- Explained deviation
- Unexplained deviation

Standard error (se)

(total deviation) = (explained deviation) + (unexplained deviation)

$$(y-\overline{y}) = (\hat{y}-\overline{y}) + (y-\hat{y})$$

(total variation) = (explained variation) + (unexplained variation)

$$\Sigma (y - \bar{y})^2 = \Sigma (\hat{y} - \bar{y})^2 + \Sigma (y - \hat{y})^2$$

Standard Error

$$S_e = \sqrt{\frac{\sum (y - \hat{y})^2}{n - 2}}$$

or

$$S_e = \sqrt{\frac{\sum y^2 - b_0 \sum y - b_1 \sum xy}{n-2}}$$

- The residual standard error (RSE) is a way to measure the standard deviation of the residuals in a regression model.
- <<< RSE, the better the model.
- RSE can be a useful metric to use when comparing two or more models to determine which model best fits the data.

R Script:

summary(regression_model)

Example

Use Formula 10-6 to find the standard error of estimate s_e for the paired pizza/subway fare data listed in Table 10-1in the Chapter Problem. n = 6

$$\Sigma y^{2} = 9.2175$$

$$\Sigma y = 6.35$$

$$\Sigma xy = 9.4575$$

$$b_{0} = 0.034560171$$

$$b_{0} = 0.04502129$$

$$\sum y^{2} - b_{0} \Sigma y - b_{1} \Sigma xy$$

$$n - 2$$

$\boldsymbol{\nu}_0$	- 0.0343001/1	<i>,</i> //	11 2	
\boldsymbol{b}_1	= 0.94502138	V		
$\underline{s}_{e} =$	9.2175 – (0.03456	0171)(6.35	5) – (0.945021	38)(9.4575)
		- 2		
y	s = 0.1	2298700	= 0.123	

^	year 🗦	cost_of_pizza *	subway_fare	cpi [‡]
1	1960	0.15	0.15	30.2
2	1973	0.35	0.35	48.3
3	1986	1.00	1.00	112.3
4	1995	1.25	1.35	162.2
5	2002	1.75	1.50	191.9
6	2003	2.00	2.00	197.8

Prediction Interval

an interval estimate of a predicted value of y

$$\hat{y} - E < y < \hat{y} + E$$

Where:

$$E = \mathbf{t}_{\alpha/2} S_e / 1 + \frac{1}{n} + \frac{n(x_0 - x)^2}{n(\Sigma x^2) - (\Sigma x)^2}$$

- x_o represents the given value of x
 t_{α/2} has n 2 degrees of freedom

Example

For the paired pizza/subway fare costs from the Chapter Problem, we have found that for a pizza cost of \$2.25, the best predicted cost of a subway fare is \$2.16. Construct a 95% prediction interval for the cost of a subway fare, given that a slice of pizza costs \$2.25 (so that x = 2.25).

Answer:

$$E = t_{\alpha/2} s_e / \sqrt{1 + \frac{1}{n} + \frac{n(x_0 - x)^2}{n(\Sigma x^2) - (\Sigma x)^2}}$$

$$E = (2.776)(0.12298700) \sqrt{1 + \frac{1}{6}} \frac{6(2.25 - 1.0833333)^2}{6(9.77) - (6.50)^2}$$

$$E = (2.776)(0.12298700)(1.2905606) = 0.441$$

Construct the CI

$$\hat{y} - E < y < \hat{y} + E$$

$$2.16 - 0.441 < y < 2.16 + 0.441$$

$$1.72 < y < 2.60$$

Try it with R

Multiple Regression

1 y, many x-es

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \ldots + b_k x_k.$$

Adjusted R²

Adjusted
$$R^2 = 1 - \frac{(n-1)}{[n-(k+1)]} (1-R^2)$$

where n = sample sizek = number of predictor (x) variables

Height of Mother	Height of Father	Height of Daughter
63	64	58.6
67	65	64.7
64	67	65.3
60	72	61.0
65	72	65.4
67	72	67.4
59	67	60.9
60	71	63.1
58	66	60.0
72	75	71.1
63	69	62.2
67	70	67.2
62	69	63.4
69	62	68.4
63	66	62.2
64	76	64.7
63	69	59.6
64	68	61.0
60	66	64.0
65	68	65.4

Find the multiple regression equation in which the response (y) variable is the height of a daughter and the predictor (x) variables are the height of the mother and height of the father.

```
> daughter_lm <- lm(daughter ~ mother + father, data = height)</pre>
> print(daughter lm)
Call:
lm(formula = daughter ~ mother + father, data = height)
Coefficients:
(Intercept)
                  mother
                              father
    7.4543
                  0.7072
                              0.1636
> summary(daughter lm)
Call:
lm(formula = daughter ~ mother + father, data = height)
Residuals:
    Min
             1Q Median
                                    Max
-3.8805 -0.6942 0.5915 0.8651 3.3138
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
            7.4543
                        10.8804
                                 0.685
                                           0.503
mother
             0.7072
                        0.1289
                                 5.488
                                          4e-05 ***
father
             0.1636
                        0.1266
                                1.293
                                          0.213
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.94 on 17 degrees of freedom
Multiple R-squared: 0.6752, Adjusted R-squared: 0.637
F-statistic: 17.67 on 2 and 17 DF, p-value: 7.057e-05
```

Logistic Variable

 Dichotomous/binary dependent variable →0/1, male/female, yes/no, etc

In R: $glm(y \sim x1 + x2 + ... + xk)$

Exercise

Using data 'salary.csv'

- 1. Uji hipotesis korelasi.
- 2. R dan R2 (manual or R) dan interpretasinya + Buat scatter plotnya
- 3. Buat regression equation + residual plot
- 4. Hitung standard error + make a prediction + interval estimate

Thanks! ANY QUESTIONS?