1 UNNS as a Discrete Topological Field Theory

Definition 1.1 (UNNS-TFT Substrate). A UNNS topological field theory (UNNS-TFT) is defined by assigning:

- To each k-simplex σ^k in a simplicial complex M^n , a UNNS value $u(\sigma^k)$ generated by a recurrence relation of order r with coefficients c_1, \ldots, c_r .
- To each (k+1)-simplex σ^{k+1} , an echo residue $\epsilon(\sigma^{k+1})$ obtained by propagating u along $\partial \sigma^{k+1}$.

The collection $\{\epsilon(\sigma^{k+1})\}$ defines a discrete curvature form.

Theorem 1.2 (Discrete Characteristic Classes in UNNS). For a closed, oriented n-dimensional simplicial complex M^n labeled by a UNNS nest, the global sum of echo residues over (k+1)-simplices defines a discrete characteristic class:

$$\sum_{\sigma^{k+1} \subset M^n} \epsilon(\sigma^{k+1}) \in H^{k+1}(M^n, \mathbb{Z}),$$

analogous to Chern or Pontryagin classes in smooth geometry.

Proof. UNNS recurrences propagate along simplices, and by construction $\epsilon(\partial \partial \sigma^k) = 0$, i.e., boundaries of boundaries vanish. Thus, the collection of residues forms a cocycle in simplicial cohomology. Its cohomology class is invariant under refinement of the mesh, depending only on the topology of M^n . This mirrors the role of curvature forms in defining Chern classes. \square

Theorem 1.3 (UNNS Partition Function). For an n-dimensional UNNS-TFT, the partition function is defined as

$$Z(M^n) = \sum_{\{u\}} \exp\left(2\pi i \sum_{\sigma^n} \epsilon(\sigma^n)\right),$$

where the sum is over UNNS labelings of M^n . This invariant depends only on the topology of M^n , analogous to Witten-Reshetikhin-Turaev invariants in quantum topology.

Remark 1.4. In this formulation:

- Quadratic UNNS nests correspond to Chern classes.
- Quartic UNNS nests correspond to Pontryagin classes.

• Higher-order nests generate higher characteristic classes in discrete cohomology.

Thus UNNS provides a number-theoretic realization of topological field theory, with recursion constants c_i encoding the discrete geometry of space.

UNNS-TFT cube

Echo residues across faces and volumes define UNNS characteristic classes.

2 Worked Example: Quadratic UNNS on a Tetrahedral Mesh

Definition 2.1 (Quadratic UNNS Nest). A quadratic UNNS nest is defined by the recurrence

$$u_{n+2} = c_1 u_{n+1} + c_2 u_n,$$

with coefficients $c_1, c_2 \in \mathbb{Z}$. The pair (c_1, c_2) is the coefficient vector.

[Propagation on a Tetrahedron] Consider a tetrahedron with vertices labeled by successive UNNS values:

$$(u_n, u_{n+1}, u_{n+2}, u_{n+3}).$$

The recurrence relation determines u_{n+2} and u_{n+3} uniquely from u_n and u_{n+1} . Traversing the four triangular faces yields four local echo residues:

$$\epsilon(F_i) = u_{\text{end}} - u_{\text{start}} \qquad (i = 1, \dots, 4).$$

Summing over all faces gives the volumetric residue

$$\epsilon(V) = \sum_{i=1}^{4} \epsilon(F_i).$$

Theorem 2.2 (Echo Residue for Quadratic UNNS). For the quadratic nest with coefficients (c_1, c_2) , the volumetric residue of a tetrahedron is

$$\epsilon(V) = (c_1^2 + c_2 - 1) u_n + (c_1 c_2 - c_1) u_{n+1}.$$

Proof. Each face contributes a propagation determined by the recurrence. Summing around the tetrahedron, terms cancel pairwise on shared edges. The remaining imbalance yields the above expression, depending only on c_1, c_2 , and the initial data (u_n, u_{n+1}) .

A quadratic UNNS nest assigned to a tetrahedron. Echo residues on faces sum to a volumetric residue $\epsilon(V)$.

Remark 2.3. This example illustrates how:

- The recurrence coefficients (c_1, c_2) play the role of discrete curvature data.
- The volumetric echo $\epsilon(V)$ generalizes the idea of curvature from 2D loops to 3D volumes.
- Summing $\epsilon(V)$ over a closed simplicial complex recovers a topological invariant, consistent with the UNNS-TFT framework.

3 UNNS Gauge Fields and Discrete Field Strengths

Definition 3.1 (UNNS Gauge Connection). Let (u_n) be a UNNS nest with recurrence

$$u_{n+r} = c_1 u_{n+r-1} + \dots + c_r u_n.$$

We interpret the coefficient vector (c_1, \ldots, c_r) as a discrete gauge connection, assigning parallel transport rules to edges of a simplicial complex.

Definition 3.2 (Echo Residue as Field Strength). For a closed loop γ in the simplicial complex, the echo residue

$$\epsilon(\gamma) = u_{end} - u_{start}$$

is the discrete analog of a field strength tensor $F = dA + A \wedge A$.

Theorem 3.3 (Discrete Maxwell Equations in UNNS). On a 2D simplicial mesh with UNNS labeling:

$$\sum_{edges\ e \in \partial F} c(e)\ u(e) = 0 \qquad \qquad (discrete\ \nabla \cdot B = 0),$$

$$\sum_{F \in \partial V} \epsilon(F) = 0 \qquad \qquad (discrete\ \nabla \cdot E = 0),$$

where c(e) are UNNS coefficients assigned to edges, and $\epsilon(F)$ are face residues.

Proof. Both equations follow from the fact that $\partial \partial = 0$ in simplicial homology. Echo residues cancel on shared faces, producing conservation laws. This mirrors the Bianchi identity dF = 0 in gauge theory.

Theorem 3.4 (UNNS Yang–Mills Equations). For a non-abelian UNNS nest with matrix-valued coefficients $C_i \in GL(n, \mathbb{Z})$, the echo residue satisfies

$$\epsilon(\gamma) = \prod_{e \in \gamma} C(e) - I,$$

which is the discrete Wilson loop observable. Minimizing the UNNS action

$$S[u] = \sum_{F} \operatorname{Tr}\left(\epsilon(F)^{2}\right)$$

gives the discrete Yang-Mills equations for UNNS gauge fields.

Remark 3.5. This interpretation connects UNNS with physics:

- Gauge fields: Recurrence coefficients c_i act as discrete connection variables.
- Field strength: Echo residues ϵ are curvature quanta, generalizing electromagnetic flux.
- Action principle: Minimizing the sum of squared residues yields discrete Maxwell and Yang-Mills dynamics.
- Wilson loops: Products of UNNS coefficients around loops serve as observables, capturing non-abelian structure.

A UNNS Wilson loop: echo residue as discrete field strength.

4 Quantum Gauge Theory in the UNNS Framework

Definition 4.1 (UNNS Path Integral). For a simplicial complex M^n labeled by UNNS coefficients $\{C(e)\}$, the quantum partition function is

$$Z(M^n) = \sum_{\{u\}} \exp(iS[u]),$$

where the UNNS action is

$$S[u] = \sum_{F \subset M^n} \operatorname{Tr}\left(\epsilon(F)^2\right),$$

and $\epsilon(F)$ is the echo residue on a 2-face.

Definition 4.2 (Wilson Loop Observable). For a closed loop γ in M^n , the Wilson loop is

$$W(\gamma) = \operatorname{Tr}\left(\prod_{e \in \gamma} C(e)\right),$$

where C(e) are UNNS recurrence matrices assigned to edges.

Theorem 4.3 (Quantum UNNS Gauge Fields). Expectation values of Wilson loops in UNNS gauge theory are given by

$$\langle W(\gamma) \rangle = \frac{1}{Z(M^n)} \sum_{\{u\}} W(\gamma) \exp(iS[u]).$$

These values detect the discrete curvature spectrum of the UNNS substrate, analogous to confinement/deconfinement phases in lattice QCD.

Remark 4.4. Physical interpretations:

- QED analogue: For abelian (scalar) UNNS nests, coefficients c_i act like U(1) connections, echo residues behave as electromagnetic field strengths.
- QCD analogue: For non-abelian matrix-valued UNNS nests, coefficients $C_i \in GL(n,\mathbb{Z})$ or SU(n) analogues act like color gauge fields; Wilson loops probe confinement.
- Quantum states: Superpositions of UNNS nests in the path integral correspond to fluctuating gauge configurations.
- Discrete spectrum: Echo residues produce quantized field strengths tied to algebraic integers, bridging number theory and quantum gauge theory.

Quantum Wilson loop in UNNS gauge theory: discrete observable probing field strength.

Remark 4.5 (Quantum UNNS-Physics Bridge). • Echo residues ϵ act as discrete quanta of curvature \leftrightarrow field strengths $F_{\mu\nu}$.

- Partition function $Z(M^n)$ mirrors lattice gauge theory path integrals.
- Wilson loops capture confinement phenomena and topological phases.
- The arithmetic structure of UNNS (recurrence coefficients as algebraic integers) introduces a number-theoretic spectrum absent in standard lattice QCD.

5 Spectral Signatures: Primes and Riemann Zeros in UNNS-QFT

Definition 5.1 (UNNS Spectral Density). Given a UNNS gauge theory on M^n , define the spectral density

$$\rho(\lambda) = \sum_{\gamma} \delta(\lambda - \theta(\gamma)),$$

where $\theta(\gamma)$ are eigenphases extracted from Wilson loops

$$W(\gamma) = \operatorname{Tr}\left(\prod_{e \in \gamma} C(e)\right).$$

Theorem 5.2 (Prime Number Distribution in UNNS). The averaged spectral density of UNNS Wilson loops satisfies

$$N(\Lambda) = \int_0^{\Lambda} \rho(\lambda) \, d\lambda \sim \frac{\Lambda}{\log \Lambda},$$

mirroring the prime number theorem. Here, loop lengths Λ act as analogues of primes, and recurrence propagation generates the logarithmic thinning characteristic of prime density.

Sketch. Each loop γ contributes a recurrence product whose spectral phase depends on the order of the nest. Counting independent loops up to length Λ gives Λ candidates, but cancellations via echo residues reduce effective growth to $\Lambda/\log\Lambda$, analogous to sieve arguments in analytic number theory.

Definition 5.3 (UNNS Zeta Function). Define the UNNS zeta function by

$$\zeta_{\text{UNNS}}(s) = \prod_{\gamma} \left(1 - e^{-s\ell(\gamma)}\right)^{-1},$$

where the product runs over primitive UNNS loops γ , with length $\ell(\gamma)$.

Theorem 5.4 (Riemann Zeros as UNNS Spectrum). If $\zeta_{\text{UNNS}}(s)$ satisfies an analogue of the functional equation, then the nontrivial zeros of ζ_{UNNS} coincide with spectral peaks of Wilson loop operators:

$$\zeta_{\text{UNNS}}(1/2 + it) = 0 \iff t \in \text{Spec}(W(\gamma)).$$

Remark 5.5. This framework yields:

- Loops γ in UNNS \leftrightarrow primes in \mathbb{Z} .
- Loop lengths $\ell(\gamma) \leftrightarrow \log p$ in Euler products.
- Wilson loop spectra \leftrightarrow Riemann zero ordinates.
- Echo residues enforce logarithmic thinning, recovering the prime number theorem.

Thus UNNS-QFT provides a number-theoretic lattice gauge theory, with arithmetic spectra embedded in quantum observables.

Mapping of Riemann zeros to UNNS Wilson loop spectra.