Sistemas difusos paramétricos

Modelo Mandani Modelo Takagi-Sugeno

Inteligencia Artificial

Dra. Soledad Espezua Ll.

Modelo Mamdani

- Es el modelo más común en desarrollo de sistemas difusos.
- Fue propuesto por Ebrahim Mamdani y fue el primero que se utilizó para controlar una máquina de vapor. En este sistema las reglas están dadas por expresiones lingüísticas.
- Se caracteriza por: ser muy intuitivo; tener una amplia aceptación.

1. Aspectos del Modelo Mamdani

Ventajas y desventajas

• Los sistemas de inferencia tipo Mamdani, se definen por reglas lingüísticas, cuyos antecedentes y consecuentes son especificados por conjuntos difusos.

• Ventajas:

- La interpretabilidad del modelo Mamdani se vuelve <u>más intuitiva</u>, pues tanto los antecedentes como los consecuentes son conjuntos difusos, lo cual facilita el entendimiento del comportamiento entrada/salida.
- Ambos antecedentes y consecuentes fueron proyectados por un especialista que domina el proceso a ser mapeado, dejando entonces un ajuste más asequible.

Desventajas:

- Ambos antecedentes y consecuentes tendrán que ser ajustados por el proyectista/especialista, siendo que tal proceso puede demandar un excesivo esfuerzo.
- La complejidad del ajuste de los consecuentes frente a los antecedentes también crecerá en función de la cantidad de términos difusos definidos para cada variable de entrada/salida.

2. Ejemplo Completo: Fase definición del Problema (I)

Especificación de las variables del problema

- La determinación de la presión interna a ser ejercida en un sistema automatizado de frenos automotrices puede estimarse a partir del movimiento (masa y velocidad) del vehículo.
- Los expertos involucrados con el proyecto del sistema especificaron el siguiente sistema difuso para ser aplicado en este problema:
 - <u>Variables de entrada</u>: Velocidad (km/h) $\rightarrow v \in [0; 180]$ Masa del vehículo (ton) $\rightarrow m \in [0; 2.4]$
- <u>Variables de salida:</u> Presión en el freno (atm) $\rightarrow p \in [0; 1]$

- Se desea conocer cuál sería la presión a ser ejercida en los frenos para un vehículo con masa de 1.5 ton y una velocidad instantánea de 155 km/h.
- Los operadores difusos que se utilizarán serán los siguientes:
 - Conectivo \rightarrow Y (Mínimo), O (Máximo)
 - Implicación → Mamdani
 - Agregación → Máximo
 - Defusificación → Centro de Área (CDA)

2. Ejemplo Completo: Fase definición del Problema (II)

Especificación de las Funciones de Pertenencia

Variable de **ENTRADA** (Velocidad) $v \in [0; 180] \rightarrow km/h$ Variable de **ENTRADA** (Masa) $m \in [0; 2,4] \rightarrow Tonelada$

Variable de SALIDA (Presión)

 $p \in [0; 1] \rightarrow atm$

2. Ejemplo Completo: Fase especificación de las reglas

Especificación de las Reglas Difusas

• Después de analizar el problema, los diseñadores definieron que todas las reglas del sistema difusa se formulen en una tabla:

		velocidad					
		MB	BA	ME	AL	MA	
masa	MP	MI	MI	MI	ME	ME	
	PE	MI	МІ	MI	ME	ME	
	ME	MI	МІ	ME	ME	ME	
	GR	ME	ME	EL	EL	EL	
	MG	ME	ME	EL	EL	EL	

Regla 1: Si (velocidad es "muy baja") Y (masa es "muy pequeña") Entonces presión en el freno es "mínima"

:

Regla 19: Si (velocidad es "alta") Y (masa es "grande")

Entonces presión en el freno es "elevada"

• Así, todas las otras reglas pueden ser obtenidas a partir de la tabla.

Conjunto de Términos:

- Velocidad → MB (muy baja), BA (baja), ME (media), AL (alta), MA (muy alta)
- Masa → MP (muy pequeña), PE (pequeña), ME (media), GR (grande), MG (muy grande)
- Presión → MI (mínima), ME (media), EL (elevada)

2. Ejemplo Completo: Fase fusificación de las variables

Fusificación de las variables

Se desea conocer cuál sería la presión a ser ejercida en los frenos para un vehículo con masa de 1.5 ton y una velocidad instantánea de 155 km/h.

- Entonces, para (v = 155 km/h) y (m = 1.5 ton), se tienen dos reglas activadas, según las funciones de pertenencia de las entradas dadas abajo.
- Las reglas activadas están circuladas en <u>azul</u> en la tabla.

		velocidad					
		MB	BA	ME	AL	MA	
masa	MP	MI	MI	MI	ME	ME	
	PE	MI	MI	MI	ME	ME	
	ME	MI	MI	ME	ME	ME	
	GR	ME	ME	EL	EL	EL	
	MG	ME	ME	EL	EL	EL	

2. Ejemplo Completo: Fase ejecución de la implicación(I)

Ejecución de la implicación

- Para los valores de entrada: (v=155 km/h) y (m = 1.5 ton)
- Primero, se identificaron todas las reglas activadas.
- De la diapositiva anterior, se constata que se tienen dos reglas activadas:
 - ➤ 1a: Si (velocidad es "muy alta") Y (masa es "media")

 Entonces presión en el freno "media"
 - ➤ 2ª: Si (velocidad es "muy alta") Y (masa es "grande") Entonces presión en el freno "elevada"

Primera regla

Segunda regla

Realizando la Implicación (Primera Regla):

- Conectivo Y (AND) → Mínimo
- ➤ Implicación ENTONCES → Mamdani (Operador "Mínimo")

Si (velocidad es "muy alta") Y (masa es "media") Entonces (presión "media")

2. Ejemplo Completo: Fase ejecución de la implicación(II)

Ejecución de la implicación

- Para los valores de entrada: (v=155km/h) y (m=1,5ton)
- Primero, se identificaron todas las reglas activadas.
- Reglas activadas:
 - ➤ 1a: Si (velocidad es "muy alta") Y (masa es "media") Entonces presión en el freno "media"
 - 2ª: Si (velocidad es "muy alta") Y (masa es "grande") Entonces presión en el freno "elevada"

Realizando la Implicación (Segunda Regla):

- ightharpoonup Conectivo Y (AND) \rightarrow Mínimo
- ➤ Implicación ENTONCES → Mamdani (Operador "Mínimo")

Si (velocidad es "muy alta") Y (masa es "grande") Entonces (presión "elevada")

Primera regla

Segunda regla

2. Ejemplo Completo: Fase agregación de contribuciones

nes Carrie Gal

Agregación de Reglas activadas

- Primero, se deben poner a disposición todas las contribuciones producidas por las reglas activadas.
- A partir de las dos diapositivas anteriores, se tienen dos reglas activadas para las entradas (v = 155 km/h) y (m = 1,5 ton):
 - ➤ 1a: Si (velocidad es "muy alta") Y (masa es "media")

 Entonces presión en el freno "media"
 - 2ª: Si (velocidad es "muy alta") Y (masa es "grande") Entonces presión en el freno "elevada"

Primera regla

- Segunda regla

Realizando la Agregación:

- Su función es agregar (combinar) las contribuciones de las reglas activadas.
- Operador de Agregación → Máximo (entre las curvas que delimitan las regiones de contribución de cada regla activada).

2. Ejemplo Completo: Fase defusificación

Defusificación de la Región de Salida

- Aquí, ya se debe disponer de la región difusa calculada a partir de las contribuciones individuales de cada regla activada (como ya se ha obtenido en la diapositiva anterior).
- Entonces, en esta región difusa de salida, se aplica un operador de defusificación a fin de proporcionar un valor puntual (crisp) de salida.
- Este valor puntual de salida pertenece al universo de discurso de la respectiva variable difusa de salida.

Realizando la Defusificación:

➤ Operador de Defusificación → Centro de Área (CDA)

$$CDA = \frac{\sum_{k=1}^{N} \mu(p_k). p_k}{\sum_{k=1}^{N} \mu(p_k)}$$

donde:

- p_k es el k-ésimo valor de discretización del universo de discurso de la presión,
- N la cantidad de puntos.

2. Ejemplo Completo: Resumen

- \triangleright Conectivo \rightarrow Y (Mínimo), O (Máximo)
- ➤ Implicación → Mamdani
- ➤ Agregación → Máximo
- ➤ Defuzzificación → Centro de Área (CDA)

3. Consideraciones finales

- En general el modelo Mamdani es el más ampliamente usado porque se presta más a la representación de conocimiento del experto.
- Nos permite describir el conocimiento de una forma intuitiva.
- Sin embargo para aplicaciones de control y algunos problemas de optimización se emplea más frecuentemente el modelo Takagi-Sugeno.

2. Modelo Takagi-Sugeno (TS)

Introducción al modelo TS

- Fue introducido por Takagi, Sugeno y Kang en 1985.
- En el modelo TS (Takagi-Sugeno), los sistemas de inferencia difuso se componen de la siguiente estructura:
 - Antecedentes → Definidos por conjuntos difusos (similar al modelo Mamdani).
 - Consecuentes → Definidos por funciones polinomiales.

Ventajas:

- Los consecuentes de las reglas pueden ser automáticamente obtenidos por medio de regresión lineal.
- El especialista es responsable de ajustar solamente los antecedentes de las reglas, ahorrándose así el esfuerzo que se tendría para también ajustar los consecuentes.
- El prototipado de los procesos a ser mapeados puede ser ejecutado de manera mucho más rápida y eficiente.

Desventajas:

- La interpretabilidad de los consecuentes puede demandar <u>más esfuerzo</u> a fin de comprender la relación entrada/salida del proceso.
- Hay necesidad de tener disponible una <u>colección de valores</u> relacionando las entradas con las salidas, de modo que los coeficientes de las funciones polinomiales puedan ser calculados.

4. Inferencia en el Modelo TS

Formato de estructuras de reglas

- Las diferencias del sistema TS frente al de Mamdani están en los siguientes aspectos:
 - Consecuentes → Definidos por funciones polinomiales.
 - Requisitos de Aplicabilidad → Necesidad de tener una colección de datos que relacionen entradas/salidas para ajustar las funciones polinomiales.

Estructura de reglas:

• Considere un sistema compuesto de dos entradas $(x \ y \ y)$ y una salida (z). Las variables lingüísticas de entrada $(x \ y \ y)$ se definen respectivamente por los conjuntos de términos $\{A_1, A_2\}$ y $\{B_1, B_2\}$. Por lo tanto, se tiene:

```
Hecho 1: x es A'

Hecho 2: y es B'

Regla 1: Si (x es A_1) Y (y es B_1) entonces z_1 = f_1 (x, y)

Regla 2: Si (x es A_1) Y (y es B_2) entonces z_2 = f_2 (x, y)

Regla 3: Si (x es A_2) Y (y es B_1) entonces z_3 = f_3 (x, y)

Regla 4: Si (x es A_2) Y (y es B_2) entonces z_4 = f_4 (x, y)

Consecuencia: z = f(z_1, z_2, z_3, z_4)
```

4. Inferencia en el Modelo TS

Procedimientos operacionales

• Así, mediante estas reglas, ahora sólo se hay que especificar el formato de las funciones polinomiales $f_i(x,y)$ envueltas en el sistema:

```
Hecho 1: x \in A'

Hecho 2: y \in B'

Regla 1: Si (x \in A_1)Y (y \in B_1) entonces z_1 = f_1(x, y)

Regla 2: Si (x \in A_1)Y (y \in B_2) entonces z_2 = f_2(x, y)

Regla 3: Si (x \in A_2)Y (y \in B_1) entonces z_3 = f_3(x, y)

Regla 4: Si (x \in A_2)Y (y \in B_2) entonces z_4 = f_4(x, y)

Consecuencia: z = f(z_1, z_2, z_3, z_4)
```

- Las funciones polinomiales $f_i(x,y)$ en el modelo TS se asumen como funciones lineales, siendo que en este caso se tienen dos alternativas:
 - $z_i = f_i(x,y) = c_i \{ \text{constante} \} \rightarrow \text{Modelo TS de orden 0}$
 - $z_i = f_i(x,y) = a_i \cdot x + b_i \cdot y + c_i \rightarrow \textbf{Modelo TS de orden 1}$

Por lo tanto, aquí hay necesidad de obtener los coeficientes (a_i, b_i, c_i) de las funciones polinomiales.

• Tales coeficientes se obtienen a partir de los valores de entrada/salida que se han puesto a disposición, utilizando un método de regresión lineal (por ejemplo: mínimos cuadrados).

5. Defusificación en el Modelo TS

Generación de la respuesta final crisp (salida del modelo)

• Ahora, por medio de los diversos valores proporcionados por z_i , basta con combinar estos valores a fin de generar el resultado final defusificado, el cual será asignado a la propia variable z:

```
Hecho 1: x \in A'

Hecho 2: y \in B'

Regla 1: Si (x \in A_1) Y (y \in B_1) entonces z_1 = f_1 (x, y)

Regla 2: Si (x \in A_1) Y (y \in B_2) entonces z_2 = f_2 (x, y)

Regla 3: Si (x \in A_2) Y (y \in B_1) entonces z_3 = f_3 (x, y)

Regla 4: Si (x \in A_2) Y (y \in B_2) entonces z_4 = f_4 (x, y)

Consecuencia: z_4 = f_4 (x, y)
```

• En este caso, uno de los operadores de defusicación más utilizados es el dado por la **media ponderada**, considerando aquí el grado de activación μ_i de cada regla activada R_i , es decir:

Media ponderada
$$Z = \frac{\sum u_i \cdot z_i}{\sum u_i}$$

7. Ejemplo Completo: Fase definición del Problema (I

Especificación de las variables del problema

- La determinación de la presión interna a ser ejercida en un sistema automatizado de frenos automotrices puede estimarse a partir del movimiento (masa y velocidad) del vehículo.
- Los expertos involucrados con el proyecto del sistema especificaron el siguiente sistema difuso para ser aplicado en este problema:
 - Variables de entrada:

Velocidad (km/h) $\rightarrow v \in [0; 180]$

Masa del vehículo (ton) $\rightarrow m \in [0; 2.4]$

• Variables de salida:

Presión en el freno (atm) $\rightarrow p \in [0; 1]$

- Se desea conocer cuál sería la presión a ser ejercida en los frenos para un vehículo con masa de 1.5 ton y con una velocidad instantánea de 155 km/h.
- Los operadores difusos que se utilizarán serán los siguientes:
 - Conectivo $\rightarrow Y$ (Mínimo), O (Máximo)
 - Implicación → Takagi-Sugeno
 - Defusificación → Media ponderada.

7. Ejemplo Completo: Fase definición del Problema (

Especificación de las Funciones de Pertenencia

Variable de **ENTRADA** (Velocidad) $v \in [0; 180] \rightarrow km/h$

Variable de **ENTRADA** (Masa) $m \in [0; 2,4] \rightarrow Tonelada$

$$Z = \frac{\sum u_i \cdot z_i}{\sum u_i} \longrightarrow p = \frac{\mu_1 \cdot p_1 + \mu_2 \cdot p_2}{\mu_1 + \mu_2}$$

Variable de **SALIDA** (Presión) $p \in [0; 1] \rightarrow atm$

7. Ejemplo Completo: Fase fusificación de las variable

Especificación de las Reglas Difusas

- Después de analizar el problema, los diseñadores definieron que todas las reglas del sistema difuso serían del tipo:
 - Si (velocidad es "alta") Y (masa es "grande") Entonces presión en el freno es "p = a.v + b.m + c"
- Conjunto de Términos:
 - Velocidad (v) → MB (muy baja), BA (baja), ME (media), AL (alta), MA (muy alta)
 - Masa (m) → MP (muy pequeña), PE (pequeña), ME (media), GR (grande), MG (muy grande)
 - Presión (p) $\rightarrow p = a.v + b.m + c$

Fusificación de las variables

• Entonces, para (v = 155 km/h) y (m = 1.5 ton), se tienen dos reglas activadas, según las funciones de pertenencia de las entradas dadas abajo.

7. Ejemplo Completo: Fase ejecución de la implicación(I)

Ejecución de la implicación

- Para los siguientes valores de entrada: (v=155 km/h) y (m =1,5 ton)
- Primero, identificar todas las reglas activadas.
- De la diapositiva anterior, se constata que se tienen dos reglas activadas:
 - ► 1a: Si (velocidad es "muy alta") Y (masa es "media") Entonces presión en el freno " $p_1 = a_1.v + b_1.m + c_1$ "

Primera regla

> 2°: Si (velocidad es "muy alta") Y (masa es "grande") Entonces presión en el freno " $p_2 = a_2.v + b_2.m + c_2$ "

Segunda regla

Realizando la Implicación (Primera Regla):

- Conectivo Y (AND) → Mínimo
- ➤ Implicación ENTONCES → Takagi-Sugeno

Si (velocidad es "muy alta") **Y** (masa es "media") **Entonces** (" $p_1 = a_1 \cdot v + b_1 \cdot m + c_1$ ")

7. Ejemplo Completo: Fase ejecución de la implicación(II)

Ejecución de la implicación

- Para los siguientes valores de entrada: (v=155 km/h) y (m = 1,5 ton)
- Primero, identificar todas las reglas activadas.
- Se tienen dos reglas activadas:
 - ► 1a: Si (velocidad es "muy alta") Y (masa es "media") Entonces presión en el freno " $p_1 = a_1.v + b_1.m + c_1$ "
 - > 2°: Si (velocidad es "muy alta") Y (masa es "grande") Entonces presión en el freno " $p_2 = a_2.v + b_2.m + c_2$ "

Primera regla

Segunda regla

Realizando la Implicación (Segunda Regla):

- ➤ Conectivo Y (AND) → Mínimo
- ➤ Implicación ENTONCES → Takagi-Sugeno

Si (velocidad es "muy alta") Y (masa es "grande") Entonces (" $p_2 = a_2.v + b_2.m + c_2$ ")

7. Ejemplo Completo: Resumen

• Por lo tanto, para producir la salida final (defusificación) de p, basta con obtener los valores de los coeficientes (a_1 , b_1 , c_1 , a_2 , b_2 , c_2) asociados a p_1 y p_2 .

Procedimientos de obtención de las funciones de regresión (I)

- Considerando que se dispone de un conjunto de entradas/ salidas conocidas, entonces es posible obtener las respectivas funciones de regresión.
- Por ejemplo, dadas dos variables lingüísticas de entrada $(x \ y \ y)$, compuestas respectivamente por los conjuntos de términos difusos $\{A_1, A_2, A_3\}$ y $\{B_1, B_2, B_3\}$, cuyas funciones de pertenencia se dan por:

Procedimiento de obtención de las funciones de regresión (II)

• La relación de las dos variables de entrada $(x \ y \ y)$ con la variable de salida z es dada por la siguiente tabla:

	X	у	Z
(1	0,15	2,36	1,62
2	0,20	2,84	3,21
3	0,29	2,96	1,93
4	0,35	1,81 ←	2,39
) 5	0,48	1,12 ←	1,74
16	0,62 ←	0,83 ←	2,43
	0,74 ←	2,15 ←	0,76
8	0,81 ←	0,27	1,40
9	0,93 ←	0,89 ←	0,84
10	0,94 ←	2,25 ←	3,41

- Así, para cada regla que compone el sistema, se puede aplicar la regresión en los puntos pertenecientes a su dominio de activación.
- Por ejemplo, dada la siguiente regla R: Si $(x \text{ es "A}_3")$ y $(y \text{ es "B}_2")$ entonces $z_R = f(x,y)$ En este caso, basta con realizar regresión lineal $\{z_R = a.x + b.y + c\}$ en los puntos en los que $(0,5 \le x \le 1,0)$ y $(0,75 \le y \le 2,25)$.

Por lo tanto, los puntos considerados en esta regresión serían las muestras 6, 7, 9 y 10.

Procedimiento de obtención de las funciones de regresión (III)

• Realizar la correlación sobre estos puntos para obtener los coeficientes {a,b,c} para encontrar

• Por ejemplo, obteniendo los coeficientes {a,b,c} por el método del mínimo cuadrado con un término de intercepción añadido (ones(4,1))

$$X = [ones(4,1) \ x(:) \ y(:)]$$

$$X = \begin{bmatrix} 1 & 0.62 & 0.83 \\ 1 & 0.74 & 2.15 \\ 1 & 0.93 & 0.89 \\ 1 & 0.94 & 2.25 \end{bmatrix}$$

$$Z = \begin{bmatrix} 2.43 \\ 0.76 \\ 0.84 \\ 3.41 \end{bmatrix}$$

$$\beta = (X^{T}*X)^{-1}* (X^{T}*Z)$$

$$\beta = \begin{bmatrix} 1.197 \\ 0.109 \\ \beta_1 \\ \beta_2 \end{bmatrix}$$

$$Z_R = \beta_2 x + \beta_1 y + \beta_0$$

 $Z_R = 0.375x + 0.109y + 1.197$

• Finalmente, reemplazar los valores de entrada x y y dados en el problema para encontrar z_R

$$p_1 = 0.375x + 0.109y + 1.197$$

Sistema de inferencia Sugeno

Tipo de Orden en sistemas Sugeno:

Una regla típica: IF Input1=x AND Input2=y THEN z = ax + by + c

- Modelo Sugeno difuso es de orden cero si (a=b=0, z=c) la salida z es una constante. Este modelo es el más usado.
- Modelo Sugeno difuso es de primer orden si la salida z es un polinomio de primer orden.

Orden cero en inferencia Sugeno

- En el caso, del modelo Sugeno de orden cero, la salida z_i de cada regla es promediada por las reglas activadas w de cada regla.
- Por ejemplo para una regla con AND en el Antecedente, Input1 = x, Input2 = y, la activación de la regla seria:

$$w_i = ANDMethod(F_1(x), F_2(y))$$

Donde $F_{1,2}(.)$ son funciones de pertenencia para entradas Input1, Input2.

Orden cero en inferencia Sugeno

El resultado final del sistema W es el promedio ponderado de todas las salidas de reglas, calculado como:

$$W = \frac{\sum_{i=1}^{N} w_i * Z_i}{\sum_{i=1}^{N} w_i}$$

Donde N es el número de reglas.

Ejemplo: Orden cero en inferencia Sugeno

Ejemplo: Orden cero en inferencia Sugeno

Evaluación de las Reglas

Ejemplo: Orden cero en inferencia Sugeno

Agregación de los consecuentes

Fin Sistemas difusos paramétricos