NOSITEL VYZNAMENÁNÍ ZA BRANNOÙ: VÝCHOVU I. A II. STUPNĚ

ŘADA B PRO KONSTRUKTÉRY

CASOPIS PRO ELEKTRONIKU A AMATERSKÉ VYSILÁNI ROČNÍK XXXIII/1984 ● ČÍSLO 3

V TOMTO SEŠITĚ

Cílevědomě s Rezolucí VII.
sjezdu81
OPTOELEKTRONIKA
Fyzikální základy
optoelektroniky82 Základní optoelektronické
součástky a jejich účinnost84
účinnost84
Dálková ovládání IC85
Přenos zvuku infračerveným
zářením90
Přenos analogového
signálu optoelektronickým
vazebním členem91 Základní vlastnosti OVČ91
Zakladni vlastnosti OVC91
Příklady zapojení OVČ92
Přehled polovodičových součástek infračerveného
spektra94
Ohvody se svítivými
Obvody se svítivými
Obvody se svítivými diodami100 LED jako referenční
Obvody se svítivými diodami100 LED jako referenční
Obvody se svítivými 100 diodami 100 LED jako referenční 100 LED na 220 V 101
Obvody se svítivými 100 diodami 100 LED jako referenční 100 LED na 220 V 101
Obvody se svítivými diodami 100 LED jako referenční dioda 100 LED na 220 V 101 Univerzálně použitelná dioda 102
Obvody se svítivými diodami 100 LED jako referenční dioda 100 LED na 220 V 101 Univerzálně použitelná dioda 102 Indikátor nulového
Obvody se svítivými diodami 100 LED jako referenční dioda 100 LED na 220 V 101 Univerzálně použitelná dioda 102 Indikátor nulového
Obvody se svítivými diodami 100 LED jako referenční dioda 100 LED na 220 V 101 Univerzálně použitelná dioda 102 Indikátor nulového napětí 103 Indikátor špiček 104
Obvody se svítivými diodami 100 LED jako referenční dioda 100 LED na 220 V 101 Univerzálně použitelná dioda 102 Indikátor nulového napětí 103 Indikátor špiček 104 Zkoušeč tranzistorů 105
Obvody se svítivými diodami 100 LED jako referenční dioda 100 LED na 220 V 101 Univerzálně použitelná dioda 102 Indikátor nulového napětí 103 Indikátor špiček 104 Zkoušeč tranzistorů 105 Indikátory vyladění 106
Obvody se svítivými diodami 100 LED jako referenční dioda 100 LED na 220 V 101 Univerzálně použitelná dioda 102 Indikátor nulového napětí 103 Indikátor špiček 104 Zkoušeč tranzistorů 105 Indikátory vyladění 106 Univerzální indikátor
Obvody se svítivými diodami 100 LED jako referenční dioda 100 LED na 220 V 101 Univerzálně použitelná dioda 102 Indikátor nulového napětí 103 Indikátor špiček 104 Zkoušeč tranzistorů 105 Indikátory vyladění 106 Univerzální indikátor úrovní 107
Obvody se svítivými diodami 100 LED jako referenční dioda 100 LED na 220 V 101 Univerzálně použitelná dioda 102 Indikátor nulového napětí 103 Indikátor špiček 104 Zkoušeč tranzistorů 105 Indikátory vyladění 106 Univerzální indikátor úrovní 107 A277D a jeho aplikace 108
Obvody se svítivými diodami 100 LED jako referenční dioda 100 LED na 220 V 101 Univerzálně použitelná dioda 102 Indikátor nulového napětí 103 Indikátor špiček 104 Zkoušeč tranzistorů 105 Indikátory vyladění 106 Univerzální indikátor úrovní 107 A277D a jeho aplikace 108 Dálkové ovládání IČ
Obvody se svítivými diodami 100 LED jako referenční dioda 100 LED na 220 V 101 Univerzálně použitelná dioda 102 Indikátor nulového napětí 103 Indikátor špiček 104 Zkoušeč tranzistorů 105 Indikátory vyladění 106 Univerzální indikátor úrovní 107 A277D a jeho aplikace 108

AMATÉRSKÉ RADIO ŘADA B

Vydává ÚV Svazarmu ve vydavatelství NAŠE VOJSKO, Vladislavova 26, 133 66 Praha 1, tel. 26 06 51-7. Šéfredak tor ing, Jan Klabal, redaktor Lubos Kalousek, OK1FAC. Redakčni radu řídí Ing. J. T. Hyan. Redakce Jungmannova 24, 113 66 Praha 1, tel. 26 06 51-7,

šéfredaktor linka 354, redaktor linka 353, sekretářka linka 355. Ročně vyjde 6 čísel. Cena výtisku 5 Kčs, pololetní předplatné 15 Kčs. Rozšířuje PNS, v jednotkách ozbrojených sil vydavatelství NAŠE VOJSKO; administrace Vladislavova 26, Praha 1. Objednávky přijímá každá pošta i doručovatel. Objednávky do zahraničí vyřizuje PNS, ústřední expedice a dovoz tisku, závod 01, Kafkova 9, 160 00 Praha 6. Tiskne NASE VOJSKO, n. p., zavod 08, 160 05 Praha 6, Vlastina ulice c. 889/23.

Za původnost a správnost přispěvku odpovídá autor. Návštěvy v redakci a telefonické dotazy pouze po 14. hodině. Číslo indexu 46 044.

Toto číslo má vyjít podle plánu 29. 5. 1984 © Vydavatelství NAŠE VOJSKO

Cílevědomě s Rezolucí VII. sjezdu Svazarmu

stilo poctivé úsilí, společenská, branná a pracovní aktivita více než miliónu členů této organizace za důstojné splnění úkolů postavených před naši brannou, vlasteneckou organizaci sjezdy naší KSČ. Celé předsjezdové období od výročních schůzí až po celostátní sjezd dokumentovalo výrazně pevné odhodlání, vůli a podporu vnitřní a zahraniční politice KSC, socialistického státu a činnosti Národní fronty.

Práce se závěry sjezdu bude mít úspěch tehdy, když bude všestranně a konkrétně objasněn všem členům a funkcionářům jejich smysl a podstata a budou konkrétně rozpracovány do podmínek práce jednotlivých orgánů a základních organizací a jejich plnění bude v souladu s plány práce. Vracíme se proto k těm pasážím Rezoluce VII. sjezdu Svazarmu, které mají co říci zejména našim oběma odbornostem.

Jak je uvedeno v úvodní části Rezóluce, sjezd ocenil angažovanou brannou a výchovnou činnost funkcionářů, aktivistů a členů, pomoc a podporu, které se dostává Svazarmu od Československé lidové armády, Lidových milicí a složek ministerstva vnitra, národních výborů, od dalších státních, společenských i hospodářských orgánů a organizací Národní fronty.

Hlavním cílem zůstává i nadále výchova členů Svazarmu v politicky uvědomělé a přesvědčené budovatele a obránce vlasti - socialistické vlastence a internacionalisty. To předpo-kládá upevňovat jejich socialistické přesvědčení a brannou angažovanost základě marxisticko-leninského učení a politiky KSČ a zejména:

1. Prohloubit úsilí o získávání členů pro plnění úkolů branné politiky KSČ. Přesvědčivě vysvětlovat smysl a cíle mírových návrhů SSSR a dalších zemí socialistického společenství. Soustavně odhalovat podstatu agresívní, imperialistické politiky USA a zemí NATO a jějich přípravy na válku. Přitom zvyšovat bdělost a připravenost členů k obraně vlasti.

2. Účinnějším politickovýchovným posilovat vztah členů působením k ČSLA, Sovětské armádě a armádám států Varšavské smlouvy, k vojenské službě a vojenskému povolání. Rozhodněji bojovat proti všem netřídním projevům, zvlášť v otázkách války

Cílevědomě rozvíjet výchovu k socialistickému vlastenectví a internacionalismu, pěstovat hrdost na příslušnost k socialistickému společenství v čele se Sovětským svazem. Usilovat, aby se politické uvědomění projevovalo v kvalitní práci a připravenosti bránit vlast a socialismus. Výchovu na pokrokových, revolučních a bojových tradicích rozvíjet tak, aby z nich zvláště mládež čerpala morální sílu a přesvědčení příkladně pracovat a žít, uskutečňovat revoluční odkaz a ideje brannosti: Vhodně při tom spojovat působení na vědomí a city s využitím filmů, pořadů, audiovizuálních s přímými účastníky bojů proti fašismu, hrdiny socialistické práce, zasloužilými funkcionáři KSC, Svazarmu, ČSLA, Lidových milicí a podobně.

Celostátním sjezdem Svazarmu vyú- 4. Výrazněji příspívat k šíření vědomostí o vědeckotechnickém rozvojia jeho třídních souvislostech. Napomáhat, propagaci vědeckotechnického pokroku ve vojenství, jeho vlivu na morální, politickou a odbornou připravenost příslušníků ozbrojených sil, na vojenskou výchovu a výcvik, přípravu branců, záloh i obyvatelstva k obraně země. Podporovat tvořivé technické myšlení, zájem o progresívní obory elektroniky a uplatňování vědeckotechnických poznatků v branně technické a branně sportovní činnosti Svazarmu.

Upevňovat vědomí odpovědnosti za efektivní využívání materiálních a fi-nančních prostředků, za správný vztah · ke společnému majetku a svěřeným hodnotám. Více působit na dodržování socialistické zákonnosti, prohlubování znalostí právních norem, jejich uskutečňování zejména v oblasti obrany.

5. Zvyšovat úroveň ideové, pracovní a morální výchovy ve svazarmovských kolektivech. Rozhodněji bojovat proti projevům sobeckosti, maloměšťáctví, nadřazenosti, nekázně, neúcty k lidem, ke společenským hodnotám a k práci. Zvyšovat příkladnost, připravenost a výchovné schopnosti vedoucích, cvičitelů a funkcionářů, zejména v práci s mládeží. Přispívat k pochopení a aktivnímu plnění linie VII. sjezdu a usnesení přijímaných orgány Svazarmu. Pěstovat hrdost na členství ve Svazarmu, rozvíjet vysokou aktivitu, upevňovat kázeň a odpovědnost za plnění úkolů.

6. Rozvíjet osvědčené formy politickovýchovné práce a pohotovějí rozšířovat nové formy, zejména masové politické práce. Pozornost věnovat osobní agitaci funkcionářů, branně výchovných pracovníků a pracovníků aparátu Svazarmu. V základních organizacích i ostatních zařízeních věnovat větší péči aktuálnosti, ideovosti a působivosti názorné agitace. Zvyšovat ideový obsah a výchovné zaměření branně sportovních a branně technických soutěží, memoriálů a akcí.

Dbát na soustavné působení základních forem branné propagandy, zejména na vyšší úroveň branně politické přípravy a branně politického školení.

Vydávat pro tyto potřeby kválitnější metodické materiály, názorné pomůcprodejné a účelové publikace

7. Zvyšovat ideově politické, odborné, organizátorské a a výchovné poslání svazarmovského tisku. V jeho obsahu více objasňovat aktuální otázky války a míru, dávat na ně včas odpovědí a argumenty z vyhraněných pozic politiky KSC. Šířeji publikovat zkušenosti z plnění úkolů vojenské politiky KSC, závěrů VII. sjezdu Svazarmu, především ze základních svazarmovských kolektivů, z masového rozvoje zájmové branné činnosti a jednotlivých odbornosti. Lépe propagovat příkladnou práci, nové metody činnosti a kriticky odhalovat nedostatky, které břání kvalitnější práci Svazarmu.

Cílevědomě propagovat poslání úkoly ozbrojených sil, náročnost společenskou závažnost v ČSLA a vojenského povolání. Lépe popularizovat záslužnou činnost Svazarmu ve prospěch ČSLA, připravenosti k CO, technického rozvoje ve společnosti a komunistické výchovy mládeže. Poskytovat obsažnější a pohotovější informace o činnosti Svazarmu zejména Rudému právu, Československé tiskové kanceláři, Československé televizi, Čs. rozhlasu, vojenskému tisku a deníkům společenských organizací, podílejících se na branné výchově.

8. Zdokonalit komplexní řízení politickovýchovné práce. Důraz položit na její jasné a konkrétní obsahové zaměření, na volbu správných opatření a forem. Dosahované výsledky politickovýchovné práce v orgánech Svazarmu pravidelně hodnotit, nejlepší zkušenosti zobecňovat a odstraňovat všechny projevy jejího podceňování a formalismu.

Pravidelně připravovat funkcionářský aktiv a branně výchovné pracovníky k masové politické práci, včetně výměny zkušeností.

Zvýšit poradní a iniciativní úlohu

politickovýchovných komisí. Zkvalitňovat obsah i styl jejich práce.

9. Účinněji spojovat politickovýchovnou a brannou činnost Svazarmu s veřejným a politickým životem v místech. Zvyšovat angažovanost a podíl svazarmovců na plnění politických a budovatelských úkolů, a volebních programů NF, v rozvíjení branné výchovy a propagandy na veřejnosti. K této činnosti lépe využívat zastoupení Svazarmu v Národní frontě, poslanců, národních výborů, brigád socialistické práce i spolupráci s kulturně osvětovými a společenskými organizacemi.

APLIKOVANÁ OPTOELEKTRONIKA

Ladislav Nohejl

Pod pojmem "Optoelektronika" rozumíme v současné době výrobu, využití a vyhodnocení elektromagnetického záření v rozsahu nanometrových (optických) vln a jejich přeměnu na elektrický signál. Prvky emitující záření nebo citlivé na světlo pracující v ultrafialovém, infračerveném nebo viditelném rozsahu označujeme jako "optoelektronické součástky". Optoelektronika je dnes dílčí oblastí informační techniky, je "stará" asi sto let. Po objevu tranzistorů bylo v padesátých letech využito cílevědomě nežádoucí závislosti činnosti diod a tranzistorů na záření a ty byly použity jako přijmače záření. Na počátku šedesátých let byla zvýšená pozornost ve výzkumu věnována zdrojům záření. První sluneční články byly dány do výroby roku 1957 a první křemíkové fotodiody 1959. Po té následovaly LED, segmentovky a tekuté krystaly.

Oblast využití optoelektroniky můžeme v zásadě rozdělit na šest skupin: 1. Měření, kontrola, vyhodnocení, řízení

a měření zdrojů světla.

2. Optoelektronické přístroje s nemodulovaným zářením.

3. Optoelektronické přístroje s modulovaným zářením.

4. Optoelektronické přístroje pro alfanumerické displeje.

5. Optoelektronické přístroje pro záznam obrazu.

6. Optoelektronické přístroje pro reprodukci obrazu.

Jak je zřejmé, je optoelektronika velmi rozsáhlým a mnohostranným oborem, proto se dále budeme zabývat jen některými optoelektronickými součástkami a jejich praktickými aplikacemi. Nejprve si uvedeme něco o materiálech pro optoelektroniku, jejich fyzikálních vlastnostech a objasníme si některé základní pojmy z optiky.

Fyzikální základy optoelektroniky

Světlo je elektromagnetické záření. Elektromágnetické záření s vlnovou délkou 0,38 až 0,78 µm vyvolává v lidském oku vjemy a proto je nazýváme viditelným světlem. Oblast vlnových délek nád 0,78 µm (780 nm) až 100 μm nazýváme infračerveným zářením. Elektromagnetické s vlnovými délkami 10 až 380 nm nazýváme ultrafialovým zářením, které pokračuje až do oblasti rontgenového záření, záření y a do oblasti kosmického záření. Pod pojmem optické záření však rozumíme jen oblast vlnových délek 10 nm až 0,1 mm, tj. ultrafialové, viditelné a infračervené záření. Ze známého vztahu $\lambda = c/f$, kde f je kmitočet vlnění v THz (1012 Hz), c=3.108 ms-1 je rychlost šíření světla ve vakuu (přibližně platí i pro vzduch), můžeme stanovit kmitočet oblasti viditelného, příp. neviditelného světla. Kmitočtový rozsah viditelného světla je tedy 384 až 800 THz.

Rychlost šíření elektromagnetických vln je závislá na prostředí, kterým se vlny šíří; světlo se ve hmotném prostředí šíří pomaleji než ve vakuu. Bílé (sluneční) světlo je složeno ze spektra barevných světel ležících v oblasti viditelného spektra. Barva světla je podle elektromagnetické teorie dána jeho vlnovou délkou.

Podle kvantové teorie má světlo v prostoru a čase nespojitý charakter. Zářící těleso neemituje světelnou energii spojitě, nýbrž nespojitě po malých dávkách — kvantech. Proto mluvíme o tom, že světelná energie je kvantovaná. Nejmenší možné množství energie nazýváme elementárním kvantem a kvanta světelné energie nazýváme fotóny. Jsou to prostorově soustředěná množství energie elektromagnetického záření, která se pohybují stejnou rychlostí jako světlo v daném prostředí.

Energie fotonů je nepřímo úměrná. vlnové délce a udává se v jednotkách eV (elektronvolt). Krajům viditelné oblasti přísluší fotony s energií 3,264 eV (pro vlnovou délku 380 nm) a 1,59 eV (pro vlnovou délku 780 nm). V tab. 1 je přehled vlnových délek, kmitočtů a energií fotonů optického záření. Rozdílu vľnových délek krajů viditelné **oblast**i oblasti odpovídá rozdíl kmitočtů 403 THz a rozdíl energie fotonů odpovídá 1,67 eV. Na obr. 1 je rozsah spektra záření elmag vln. Energie příslušející změně vlnové délky o 1 μm je rovna 4,2 eV/ µm.

Světlo je druhem energie, kterou můžeme získat přeměnou energie tepelné, elektrické apod. Tělesa, která uskutečňují přeměnu energie, nazýváme zdroji světla (zářiče).

Důležité fyzikální veličiny

Chceme-li dobře rozumět katalogovým údajům, které udávají výrobci optoelektronických prvků, musíme být alespoň zběžně seznámeni se základními jednotkami, které se vztahují k záření. Musíme si ovšem uvědomit, že v optoelektronice se pojednává o záření jednak z viditelného spektra, jednak

o záření, na které je lidské oko necitlivé. To je také důvod, proč jednotky používané ve viditelné oblasti spektra se odlišují od jednotek, používaných pro oblast neviditelného spektra záření. Nejprve se budeme zabývat případem, kdy je záření v neviditelné oblasti spektra.

Pro jednoduchost budeme uvažovat, že zdroj záření je možno považovat za bodový zdroj záření. Z tohoto zdroje se šíří zářivá energie We na všechny strany. Zářivá energie procházející nějakou plochou za jednotku času se nazývá zářivý tok touto plochou a označuje se $\phi_{\rm e}$ (indexem $_{\rm e}$ budeme nadále označovat veličiny, které se vztahují k neviditelné části spektra záření) a měří se ve wattech. Předpokládejme nyní, že máme kouli s poloměrem r, v jejímž středu je umístěn bodový zdroj Na povrchu koule si vytneme libovolnou plošku ΔS. Zářivé paprsky, které vystupují ze zdroje Z a procházejí plochou AS vytvářejí kužel, "zářivý kužel", jehož vrcholem je zdroj Z a základnou je plocha AS (obr. 2). Pro

Obr. 2. Plošný řez kuželem vyťatým z koule

další úvahy je nutno si zavést pojem tzv. prostorového úhlu ω. Pokud máme na povrchu koule s poloměrem r vytnutu plochu S, potom prostorovým úhlem ω nazýváme podíl

 $\omega=S/r^2$. Bude-li mít koule jednotkový poloměr a bude-li plocha S vrchlíku koule jednotková, obdržíme prostorový úhel, jehož velikost se nazývá jeden steradián (sr). Steradián je jednotkou prostorového úhlu. Protože povrch koule je $4\pi r^2$, je plný prostorový úhel 4π sr.

Nyní již můžeme zavést důležitou veličinu, tzv. zářivost I_e bodového zdroje ve zvoleném směru, která je určena podílem $\Delta \Phi_e$ zářivého toku, vycházejícího ze zdroje ve zvoleném směru do prostorového úhlu ω a tohoto prostorového úhlu, tedy:

 $I_{\rm e} = \Delta \Phi_{\rm e}/\Delta \omega$.

Jednotkou zářivosti je W/sr, což je výkon emitovaný zářivým zdrojem do jednotkového prostorového úhlu (pro jednoduchost jsme předpokládali, že zářivá energie se ze zdroje šíří ve všech směrech stejně a že se s časem nemění).

Právě tato veličina je vždy uváděna v údajích, které dodává výrobce k infračerveným svítivým diodám. V praxi se tento výkon neudává v jednotkách W/sr, ale v odvozených jednotkách mW/sr.

Další důležitá jednotka je tzv. ozáření (intenzita ozáření) $E_{\rm e}$. Je to podíl zářivého toku $\Delta \Phi_{\rm e}$ dopadajícího na plošku ΔS na povrchu ozařovaného tělesa, a této plošky:

 $E_{\rm e} = \Delta \Phi_{\rm e}/\Delta S$.

Tato veličina charakterizuje velikost zářivé energie (za jednotku času), která dopadá na plošku ΔS. Jednotkou záření je W/m². Číselně je tedy ozáření rovné zářivému toku dopadajícímu na plošnou jednotku ozařovaného tělesa

Tab. 1. Vlnové délky, kmitočty a energie E fotonů optického spektra

Barva-veličina	λ [μm]	f [THz]	<i>E</i> [eV]
Ultrafialová—C	0,1 až 0,28	3000 až 1701	12,4 až 5,43
Ultrafialová—B	0,28 až 0,315	1701 až 857	5,43 až 3,88
Ultrafialová—A	0,315 až 0,38	857 až 789	3,88 až 3,26
Fialová	0,396 až 0,43	. 757 až 696	3,14 až 2,87
Modrofialová	0,421 až 0,456	- 712 až 658	, 2,88 až 2,71
Modrá	0,452 až 0,485	664 až 618	2,74 až 2,56
Zelenomodrá	0,487 až 0,502	616 až 598	2,54 až 2,48
Zelená	0,495 až 0,535	606 až 560	2,51 až 2,32
Žiutozelená .	0,558 až 0,577	537 až 520	2,22 až 2,15
Žlutá	0,568 až 0,585	528 až 512	2,18 až 2,12
Oranžovožiutá	0,585 až 0,597 🦪	512 až 502	2,12 až 2,08
Oranžová	0,592 až 0,608	507 až 494	2,1 až 2,04
Červenooranžová	0,604 až 0,656	497 až 457	2,06 až 1,89
Červená	0,656 až 0,768	456 až 406	1,89 až 1,61
Infračervená—A	0,75 až 1,4	400 až 214	1,65 až 0,89
InfračervenáB	1,4 až 3,0	214 až 100	0,89 až 0,41
InfračervenáC	3,0 až 1000	100 až 0,3	0,41 až 0,00129
	· ·		

Tab. 2. Typická osvětlení a jas vybraných zdrojů světla

Typ osvětlení	Osvětlení [lx]	Zdroj	Jas [nt]
Přímé osvětlení sluncem v poledne	10 ⁵	Slunce	2.10 ⁹ ·
Ve slunný den ve stínu stro- mu "Pod mrakem" venku až	10 ⁴ 10 ³	Wolframové vlákno při teplotě 2700 °K Bílý papír při slunečním	10 ⁷
		světle	2,5.10 ⁴
Výborně osvětlená místnost	10 ² až 2.10 ²	Zářivka	6.10 ³
Osvětlení k pohodlnému čtení	30	Obloha při malé oblačnosti	3.10³
Při úplňku v noci	0,2	Bílý papír při měsíčním osvětlení	0,03

(např. detektoru — přijímače záření). Výše uvedený vztah pro ozáření platí pouze tehdy, je-li ploška ΔS ozářena bodovým zdrojem a kolmá k ose zářivého kužele, v němž na ní dopadá zářivý tok.

Nejsou-li rozměry zdroje záření zanedbatelné proti vzdálenosti, v níž pozorujeme jeho zářivé účinky, musíme na tento zdroj hledět jako na plošný zdroj záření. Pokud si vytneme na povrchu takového zdroje plošku ΔA , která je velmi malá, můžeme ji považovat za bodový zdroj záření a definovat její zářivost stejně jako u bodového zdroje. Potom podíl zářivosti $\Delta I_{\rm e}$ a plošky ΔA plošného zdroje ve zvoleném směru a průmětu této plošky do roviny kolmé ke zvolenému směru se nazývá zář $L_{\rm e}$. Pokud zvolený směr je totožný s kolmicí k plošce ΔA (normálou), potom pro zář $L_{\rm e}$ bude platit:

 $L_{\rm e} = \Delta I_{\rm e}/\Delta A$. Jednotkou záře je W/m².sr.

Plošnými zdroji záření mohou být například infračervené luminiscenční diody s velkým průměrem (8 mm).

Chceme-li charakterizovat zdroj záření ve viditelné oblasti spektra, je situace složitější, neboť vlastnosti zářiče v této oblasti jsou vztaženy ke zrakovému vjemu. A jak je všeobecně známo, lidské oko reaguje na záření různé barvy (různé vlnové délky) s různou citlivostí; infračervené a ultrafialové záření nevyvolává v oku žádný zrakový vjem a to ani při jeho sebevětší intenzitě. Nejcitlivější je lidské oko na zelenožluté světlo s délkou 555 nm. Jediná možnost, jak srovnávat velikosti zářivých toků Φ_e, je srovnání subjektivní. Zářivý tok Φ_ν, který charakterizuje zhodnocení výkonu přenášeného zářením běžným lidským okem s ohledem k rozdílné citlivosti na barvy, nazýváme světelným tokem (index v veličina se týká viditelné části spektra). Na obr. 3 je tzv. poměrná světelná

Obr. 3. Pásový energetický diagram

účinnost V. Křivka udává, kolikrát musí být jednobarevný (monochromatický) tok záření s vlnovou délkou λ větší než tok záření s vlnovou délkou 555 nm, na který je lidské oko nejcitlivější. Z této křivky je zřejmé, že tok záření např. o vlnové délce 650 nm (červené světlo) musí být asi desetkrát větší než tok záření o vlnové délce 555 nm (zelenožluté světlo) protékající stejnou plochou, má-li v oku vzniknout tentýž zrakový vjem. Poměrná světelná účinnost umožňuje tedy vyjádřit, jak asi lidské oko zhodnotí zářivý tok, který připadá na obor viditelného záření a má tedy schopnost vzbudit zrakový vjem.

Analogicky jako v případě neviditelného záření zavádíme tzv. svítivost $I_{\rm v}=\Delta\Phi_{\rm v}/\Delta\omega$.

Jednotka svítivosti je v soustavě Sl základní jednotkou. Nazývá se kandela (značka cd, kandela je rovna svítivosti 1/600 000 m² černého tělesa ve směru kolmém na jeho povrch, které má teplotu tuhnoucí platiny, 1772 °C při tlaku 1,01325.10⁵ Pa).

Jednotka světelného toku lumen (značka lm) je odvozená jednotka, která je určena světelným tokem, který do kužele s prostorovým úhlem 1 steradián vysílá světelný zdroj, jehož svítivost je ve všech směrech rovna 1 kandele (v katalogových údajích se většinou používají menší jednotky

	Neviditeli	ná oblast zář	ení .		Viditelná o	olast záření	
Veličina.	Symbol	Jednotka	Vztahuje se k	Veličina	Jednotka	Symbol	Vztahuje se k
Zářivý tok	Φė	w	vysílači	Světelný tok	lm (cd.sr)	Φ	vysílači
Zářivost Záře Ozáření	Le Ee	W/sr W/m ² .sr W/m ²	vysílači vysílači přijímači	Svitivost Jas Osvětlení	cd (lm.sr ⁻¹) nt (cd.m ⁻²) lx (lm.m ⁻²)	 L	vysílači vysílači přijímači

1 mcd = 1.10⁻³cd nebo μcd = 1.10⁻⁶cd). Osvětlením (intenzitou osvětlení), nazýváme podíl světelného toku ΔΦ dopadajícího na plošku ΔS, a této plošky:

 $E_{\rm V}=\Delta\Phi_{\rm V}/\Delta S$. Osvětlení je číselně rovné světelnému toku, který dopadá na plošnou jednotku osvětlovaného tělesa. Jednotka osvětlení se nazývá lux (značka lx); je to osvětlení, při kterém na plochu 1 m² dopadá rovnoměrně rozložený tok 1 lumenu (1 lx = 1 lm.m²).

Další důležitou veličinou je tzv: jas, který charakterizuje svítivost plošného zdroje světla zcela analogickým způsobem, jakým se definovala záře. Jas je definován jako:

$$L_{v} = \Delta I_{v} / \Delta A$$
.

Tento vztah platí pouze tehdy, je-li zvolený směr, ve kterém zkoumáme účinky světelného toku, totožný s kolmicí k plošce AA. Jednotkou jasu je 1 nit (značka nt), což je jas plošného zdroje, jehož plocha má kolmou svítivost rovnou 1 kandele (1 nt = cd.m-2). Jas je vlastností především svítivých diod, které emitují světlo ve viditelné oblasti záření a které mají buď velký průměr (8 mm), nebo jsou difúzní; tj. světlo celým povrchem, emituií a světelných displejů. Abychom získali základní představu o jednotkách osvětlení a jasu, jsou v tab. 2 typická osvětlení a jas některých zdrojů. Těm čtenářům, kteří mají zájem o přesnější a hlubší poznatky týkající se základních veličin, je možno doporučit ke studiu příručku: Horák, Z., Krupka, F.: Fyzika, SNTL a Alfa: Praha, Bratislava 1981.

Nejdűležitější veličiny můžeme rozdělit podle dvou kategorií, jednak podle toho, zda se jedná o záření v neviditelné nebo viditelné části zářivého spektra a jednak podle toho, zda charakterizují vyzařovaný výkon zdroje nebo dopadající zářivou (světelnou) energii na povrchu detektoru (přijímače) — tab. 3.

Základní optoelektronické součástky a jejich účinnost

Nejpoužívanějšími optoelektronickými součástkami, s nimiž se můžeme setkat v amatérské praxi, jsou luminisceční dioda a fotodioda (fototranzistor).

Funkce luminiscenční (svítivé) diody je založena na jevu, který je charakterizován uvolňováním fotonů z přechodu polovodiče, kterým prochází proud. Uvolňování fotonů znamená vznik záře-

Funkce fotodiody je založena na obráceném jevu — fotony dopadající na polovodičový přechod vyvolávají elektrické napětí.

V souvislosti s činností těchto diod se často hovoří o jejich účinnosti (výtěžku).

Kvantový výtěžek záření luminiscenční diody je dán poměrem počtu fotonů vzniklých v dané spektrální oblasti vlivem průchodu nositelů proudu přechodem p-n k počtu těchto nosičů. Jestliže se v této definici kvantového výtěžku rozumí pod počtem. fotonů plný počet fotonů, jedná se definici tzv. vnitřního kvantového výtěžku. S proudovou hustotou roste i počet emitovaných fotonů n; za sekundu, avšak účinnost se zvětšovat nemusí, protože n_f závisí nejen na proudu diodou, ale i na mnoha dalších činitelích a to materiálových, technologických, fyzikálních a na účinnosti injekce menšinových nosičů (od účinnosti procesu zářivé rekombinace) apod. Dnes jsou světelné účinnosti asi až 1,15 %. Měření na konkrétních výrobcích ukazuje, že kvantový výtěžek záření (účinnost) je nelineární funkcí U, jejíž průběh je uváděn v katalozích.

Pokud se rozumí pod počtem fotonů počet fotonů vystupujících z krystalu, jedná se o definíci tzv. vnějšího kvantového výtěžku. V důsledku ztrát záření bude vnější kvantová účinnost vždy menší než vnitřní kvantová účinnost. Vnější kvantová účinnost (výtěžek záření) je definována poměrem užitečného optického výkonu, vyzařovaného do okolí součástky, ku vstupnímu příkonu P a je závislá především na vnitřní kvantové účinnosti (a to přímo úměrně); geometrii a na vlastní optické soustavě (tvaru povrchu, indexu lomu, tloušťce lámavého prostředí), na konstrukci a na poloze pracovního krystalu. Největší účinnost v současné době mají diody GaAs pólované v propustném směru, což lze zdůvodnit velkou účinností vstřikování minoritních nosičů při polarizáci v propustném směru.

Podobně, jako v případě luminiscenční diody můžeme definovat proudový kvantový výtěžek fotodiody: Proudový kvantový výtěžek fotodiody je dán poměrem počtu uvolněných elektronů v důsledku dopadu fotonů na fotokatodu k počtu těchto fotonů.

Pokud by se někdo chtěl podrobněji seznámit s fyzikou optoelektronických součástek, doporučují knihu ing. RNDr. Pavla Mihálka "Optoelektronika", která vyšla ve slovenském vydavatelství Alfa.

Aplikace infračervených diod při přenosu signálu

Pro investiční i spotřební elektroniku lze s výhodou použít jednopovelové dálkové ovládání s infračervenými diodami. Dále popisovaný obvod vysílače a přijímače se vyznačuje těmito vlastnostmi: malým počtem vnějších součástek, snadnou stavbou, nemá žádné cívky, je odolný proti přebuzení svět-lem, má dosah 15 m bez čočky a 40 m s předřazenou čočkou, napájecí napětí 🕏 pro vysílač i přijímač je 9 V, má malý odběr proudu, takže je možné vyslatpřes milión povelů, přijímač má dva proudové výstupy, které jsou každým povelem přepínány, má kontrolu sepnutí a signalizaci stavu přijímače červenou nebo zelenou LED. Infračervený signál je tvořen impulsy 20 kHz s délkou trvání 1 ms. Aby byla zvětšena odolnost proti nadměrnému osvětlení, je v přijímači použit integrační obvod, takže teprve po sérii vstupních impulsů vznikne impuls pro řízení klopného obvodu:

Na obr. 4 je zapojení jednoduchého vysílače infračerveného (dále IČ) dálkového ovládání. Oscilátor ze dvou hradel NAND-CMOS (hradla C, D) kmitá asi na 20 kHz, pokud je výstupu hradla B úroveň H. Po stlačení tlačítka. Tl bude na vstupu hradla A úroveň H a ta se objeví i na výstupu hradla B, takže oscilátor může kmitat. Po uplynutí doby, určené převážně časovou konstantou $t_1 = R_1C_1$, napětí na vstupu hradla A se zmenší pod prahovou úroveň, takže hradla A a B mění svůj logický stav, čímž je kmitání přerušeno. Doba t1 je navržena tak, aby impuls trval 1 ms. Kondenzátor C2 potlačuje zákmity tlačítka. Během kmitání vede tranzistor BC875 (Darlington) periodicky, także přes diody IČ teče spičkový proud asi 1 A. Energie je během této doby získávána z elektrolytického kondenzátoru C₄, na němž se napětí zmenšuje asi o 1 V. Pro jeden povel je potřebný náboj asi 0,5 mAs. Při kapacitě baterie 200 mAh můžeme tedy vyslat přes milión povelů. Spotřeba při nesepnutém tlačítku Tl. je vzhledem k obvodům CMOS velmi malá. Ve vysílači můžeme použít jen jednu diodu IČ, když zbylé dvě nahradíme odporem 2 Ω. Jedna dioda plně stačí, použijeme-li předřadnou čočku, kterou je paprsek z jedné diody dokonale soustředěn.

Na obr. Ś je zapojení přijímače. Fotodioda BP104 s integrovaným filtrem IČ tvoří spolu s rezistorem R₁ dělič napětí, který je nastaven tak, že při běžném osvětlení úbytek napětí na něm neovlivňuje pracovní bod diody. Odpor rezistoru R₁ má být co největší, neboť

zesílení je mu přímo úměrné. Následující zesilovač T₁, T₂ má velký vstupní odpor, malý přenos na vstup a zesílení asi 100. Komplementární dvojice T3, T4 tvoří stabilní zesilovač se zesílením asi 100. Stejnosměrný pracovní bod všech čtyř tranzistorů je stabilizován zpětnou vazbou přes R₈. Pracovní bod se nastavuje takto: Báze tranzistoru T₁ musí mít dvojnásobné napětí přechodu báze-emitor, tedy asi 1,4 V. Poměrem R₈ ku R₃ je nastaveno klidové stejnosměrné napětí na kolektoru T₄, asi 1,8 V. Na R₆ vznikne úbytek asi 0,7 V měřeno oproti +9 V, takže přes T₃ teče proud asi 0,7 mA. Na R7 vznikne úbytek 1,5 V. Napětí na bázi T3 musí být o 0,7 V větší, tj. 2,2 V, takže kolektorový proud T2 bude asi 0,4 mA. Vstupní signál na kolektoru T4 je zesílen asi 10 000krát přes kondenzátor ìe C₅ veden na usměrňovač D₃, D₂. Při každém impulsu se nabíjí kondenzátor C₆, amplituda napětí na výstupu T₅ je závislá na poměru C₅:C₆. integračním obvodem C₅, C₆, D₂, D₃, R₁₀ je zajištěno, že krátkodobé rušivé impulsy budou potlačeny. Objeví-li se na vstupu série impulsů, začne přijímač pracovat. Impulsy delší než 1 ms nepůsobí rušivě, neboť se kondenzátor C6 vybíje přes

Obr. 6. Vysílač světelné schránky

rezistor R₁₀. Protože hrana impulsu na výstupu tranzistoru T5 není dostatečně strmá, je na výstup T5 připojeno několik hradel NAND, pracujících jako tvarovač, takže pro monostabilní klopný obvod dostaneme "čisté" spouštěcí impulsy. Použitý obvod 4027 je dvojitý klopný obvod J-K, jehož první polovina je zapojena jako čítací klopný obvod (vstupy J. a K jsou na úrovni H) klidovém stavu je na výstupu Q úroveň L. Po příchodu kladné hrany na hodinový vstup 13 překlopí se výstup Q na úroveň H. Současně se dobíjí kondenzátor C9 přes R13, čímž bude asi po 3 ms překročena prahová úroveň na vstupu nulování (vývod 12) a klopný obvod se překlopí zpět. Tím vznikné strmý impuls pro druhý klopný obvod Ten mění po každé přijaté sérii impulsů svůj stav. Následující budič CMOS slouží k napájení diod LED. Potřebujeme-li větší výstupní proud, lze budič CMOS nahradit tranzistory. Diody LED slouží jako indikátory zapnutí a stavu.

Na obr. 6 je zapojení vysílače, který spolu s přijímačem z obr. 7 tvoří tzv. světelnou schránku. Dosah tohoto systému je závislý kromě jiného na tom, v. jaké míře je schopen přijímač odlišit signál IČ z vysílače od ostatních rušivých signálů IČ. Dosah lze zvětšit použitím modulovaného světelného signálu. Přijímač je řízen modulací nebo impulsy. Citlivost roste se selektivitou přijímače; pro vysílač platí, že modulační kmitočet musí být co nejstabilnější. Aby bylo dosaženo co největší stability, je nutné použít oscilátor LC; u vysílače na obr. 6 byl použit Franklinův oscilátor. Dioda D2 (IČ) ja buzena přímo z oscilátoru. Dioda D1 zlepšuje podstatně stabilitu oscilátoru. Bude-li napětí na kmitavém obvodu větší než napětí napájecí, zabrání D, přepólování tranzistoru T₁ a zvětší se útlum obvodu. Modulační kmitočet lze měnit v rozsahu 23,7 kHz 'až 25,9 kHz kondenzátorem

C₃. Doporučený typ diody IČ je LD271, je však možné použít i jiné typy. Maximálního výkonu je dosaženo, je-li R₃ nastaven tak, aby přes něj tekl proud 105 mA; dioda IČ pak pracuje na hranici povolené zatížitelnosti. Výkon lze zvětšit zapojením několika diod IČ do série; proud přes R₃ je rovněž nastaven na 105 mA. Při použití více než dvou do série zapojených diod je nutné zvětšit napájecí napětí o 1,5 V na každou diodu.

každou diodu.

Na obr. 7 je zapojení přijímače světelné schránky. Již v předchozím odstavci bylo řečeno, že přijímač musí mít co největší selektivitu. Přijímač má šířku pásma asi 100 Hz (při přijímaném kmitočtu 24 kHz), které je dosaženo zapojením zpětné vazby. Tranzistory T₁ a T₂ jsou zapojeny jako kaskódový zesilovač se zpětnou vazbou. Po zesilení tranzistory T₃ a T₄ je signál usměrněn; tranzistory T₅, T₆ a T₇ umožňují připojit relé, jehož kontakty mohou ovládat další obvody. Šířku pásma přijímače nelze podstatně zmenšit, neboť kapacita fotodiody D₁ je závislá na přiváděném světle. Vstupní obvod je více či méně rozlaďován okolním světlem.

Obvody světelné schránky nastavujeme tak, že nejprve zjistíme odběr proudu vysílačem (50 až 105 mA); kapacitní trimr C₃ ve vysílači nastavíme do střední polohy a poté vysílač vypneme. Potenciometry v přijímači nastavíme tak, aby běžec P, byl u R, a běžec P₂ u R₁₅; dioda D₄ se rozsvítí, když bude kmitat vstupní stupeň. P2 pak nastavíme do polohy, kdy ještě LED bude sotva viditelně svítit. Poté otáčíme běžcem P1, až LED právě zhasne. Pak zapneme vysílač a pomalu zvětšujeme vzdálenost mezi vysílačem a přijíma-čem, dokud LED nezačne pokmitávat. Trimr C₁ v přijímači nastavíme tak, aby LED plynule svítila. Vzdálenost nadále zvětšujeme a opět doladujeme C1. Pokud nedosáhneme výrazného maxima, musime změnou C₃ ve vysílači přizpůsobit vysílaný kmitočet kmitočtu přijímanému. Nakonec nastavíme P. podle požadované citlivosti přijímače:

Napětí pro vysílač i přijímač musí být stabilizované. Vzdálenost mezi vysílačem s diodou IČ a přijímačem s fotodiodou BPW34 musí být minimálně 10 m bez použití optiky a filtru IČ.

Dálková ovládání IČ

V budoucnu budou pro dálkové ovládání TVP a rozhlasových přijímačů v ČSSR používány dva typy dálkového ovládání: první typ vychází ze systému IR-60 fy Siemens, který umožňuje přenést až 120 povelů. Vysílač je sestaven z klávesnice pro zadávání povelů, které

Obr. 8. Blokové zapojení SAB3210

jsou kódovacím obvodem SAB3210, umožňujícím kódovat až 60 povelů, převedeny na impulsně modulovaný signál, kterým se přes výkonový stupeň moduluje záření IČ diody GaAs LD 271.

Zapojení kódovacího obvodu Obvod je SAB3210 je na obr. 8. sestaven z obvodu matice, obvodu řízení sepnutí, oscilátoru, obvodu řízení průběhů a výstupního bloku. Obvod matice, tvořený osmi řádky (Z1 až Z8) a čtyřmi sloupci (Sa až Sd) kontroluje stav klávesnice, kterou jsou povely za-dávány. Stlačením jednoho ze 60 tlačítek se zvolí příslušný vstup daného sloupce a řádku. Přes obvod řízení sepnutí a vnější tranzistor se uvede činnost celý kódovací obvod SAB3210. Řízené sepnutí probíhá takto: v klidovém stavu jsou výstupy hradel v obvodu řízení sepnutí propojeny přes R2 (obr. 10) na napájecí napětí. Vstupy těchto hradel jsou spojeny se vstupy řádků a sloupců. Změna stavu řádku a sloupce (zadáním povelu) vyvolá v obvodu řízení sepnutí řídicí signál ETA, kterým se otevře připojený tranzistor, který připojí napájecí napětí $U_{\rm DD}$ na SAB3210. Tím se dosáhne, že klidový odběr proudu bude jen 5 µA.

V nejjednodušší verzi je IO schopen zpracovat 32 povelů. Využijeme-li některých tlačítek pro dva povely a přidáme-li 14 díod, lze počet povelů rozšířit až na šedesát. Zapojení pro tento případ je na obr. 9. Pro každé další čtyři povely potřebujeme čtyři jednoduchá tlačítka a dvě diody, které

propojují příslušné tlačítko s daným řádkem a s řádkem 8. Toto rozšíření je umožněno speciálním zapojením matice v SAB3210 a to dvojkombinací řádků. Dvojkombinace řádků může být brána buď jako "přímý" řádek nebo jako řádek sdružený. Sedm sdružených řádků spolu se čtyřmi sloupci dává 28 nových povelů. Při připojení napětí $U_{\rm DD}$ na obvod začne kmitat vnitřní oscilátor. Kmitočet oscilátoru je určen vnějším obvodem LC.

Po skončení doby zákmitu kontaktu tlačítka se vnitřní matice v IO začne "dotazovat" na stav sloupců. Jsou-li dotázány všechny čtyři sloupce, je učiněn dotaz na tó, s kterými řádky jsou propojeny. Zakódovaný stav matice se sériově přes sedmistupňový posuvný registr spolu se signálem polovičního kmitočtu (f_{osc} = 62,5 kHz) a střídou 1:4 přenese na výstup IRA a přes koncový stupeň na diodu IČ. Před každou šestibitovou informací je zařazen tzv. startovací bit, jehož logický stav může být ve výrobě nastaven maskou. Tím je např. umožněno rozlišit 60 povelů pro televizní nebo 60 povelů pro rozhlasový přijímač. Také je možné jedním kódem ovládat několik přístrojů, pokud se kmitočet nosné nebo oscilátoru liší alespoň o 50 %. Dále je možné dva za sebou následující povely rozlišit nejen časově, ale i vhodným uspořádáním kódu. Toho lze dosáhnout speciálním povelovým kódem, který je vždy vyslán po "puštění" tlačítka na vysílači dálkového ovládání. Tento 62. povel je kombinací HHH HHHL. Teprve po něm přejde vysílač do klidového stavu. Toto rozlišení je nutné zejména při použití desítkové klávesnice, např. při volbě kanálů v přístrojích s kmitočtovou syntézou, při volbě stránky Teletextu při programování hodin apod.

Běžný opakovací cyklus povelu je asi 125 ms a slouží zároveň jako hodiny pro analogovou paměť přijímače (de-kodéru). Periodickým krátkodobým propojováním sloupců matice vysílače lze tento cyklus zkrátit na 30 ms. Při trvalém propojení sloupců nedostaneme na výstupu IRA IO žádný modulační signál. Tímto způsobem nebo pomocí spínacího tranzistoru je možné synchronně ovládat několik vysílačů, takže zadávané povely je možné řadit za sebou. Toho lze využít např. při televizních hrách s několika hráči, nebo při ovládání několika přístrojů jak spotřební, tak i investiční elektroniky. Na obr. 10 je zapojení vysílače dálkového ovládání pro 32 povelů.

Řadu dalších aplikací umožňuje spojení několika IO SAB 3210 do multiplexního provozu. Na obr. 11 je příklad zapojení dvou IO SAB3210 v multiplexním provozu. V klidovém stavu jsou oba IO odpojeny od napájecího napětí. Oba obvody mají společný oscilátor a

Obr. 10. Zapojení vysílače s perifériemi

2×SAB3210 3×LD271 HHH IRA1 IRA2 koncový stupe. spinaci stupen ETA1 ETA2 $]_{Br}$ matice 2 CLCK CLCKO vysilač 1: start bit H s Br vysilače rovnocenné vysilač 2: start bit L bez Br... vysilač 2 prioritni

Obr. 9. Rozšíření matice u SAB3210

٠.

Obr. 11. Zapojení vysílačů IČ v multiplexním provozu

jejich vývody 17 jsou spolu galvanicky propojeny. Bude-li zadán povel jednou z obou klávesnic, připojí se oba IO. Vyslán bude jen povel přes vysílač, jehož klávesnice byla stisknuta. V případě, že byl vyslán povel z obou klávesnic, bude kódované slovo vysláno časově po sobě. Vysílače se připojují přes tranzistor BC238, který je ovládán povely z ETAI a ETAII. Jsou-li oba IO připojeny do báze tranzistoru přes 15 kΩ budou mít stejnou prioritu. Je-li spínací tranzistor připojen jen na obvod II, pracuje obvod II přednostně před obvodem I, neboť oscilátor obvodu I má předstih půl periody hodin. Signály z obvodů l a ll lze časově rozlišit tím, že se SAB3210 při současném krátkodobém připojení úrovně H na sloupce S_a a S_b nastaví do výchozí polohy. Vodič S_d obvodu I je spojen přes dvě diody se sloupci S_a a S_b obvodu II. Tím se zpozdí kódované slovo z obvodu II o 20 ms oproti kódovanému slovu z obvodu I. Podle toho pracují-li obvody l a ll se stejným nebo rozdílným startovacím bitem, musíme použít buď dva SAB3209 nebo jeden přijímače přijímač SAB3271.

Pro dekódování povelů z vysílače je nutno použít přijímač (dekodér) SAB3209, jehož vnitřní zapojení je na (dekodér) obr. 12. Přilímač dálkového ovládání zpracovává sedmibitové povely, které vybírá z modulované nosné 31,25 kHz. V SAB3209 vznikají dva druhy povelů: v první skupině jsou povely pro změnu programu nebo pro řízení ladění a ve druhé skupině pro analogové funkce a ostatní spínání

Z 64 povelů jich vysílačem může být vysláno 60, z nichž je zpracováno vnitřně 32.

Dekodér SAB3209 zpracovává v první skupině povely pro 16 programů, které jsou v dvojkovém kódu. Dvojkový kód můžeme vyvolat staticky na výstupech PRGA, PRGB, PRGC a PRGD. Příslušné paměřové klopné obvody mohou být nastaveny signály přivedenými na vstup. Při každé změně programu je na výstupu D/A převodníku hlasitosti úroveň L, čímž jsou potlačeny rušivé šumy při změně programu. Doba potlačení rušivých šumů může být prodloužena až na 0,5 s kondenzáto-rem, připojeným na vývod PC. Kladný impuls na PC vznikne při každé změně programu nebo při připojení napájecího napětí. Výstup PC může pracovat i jako vstup. Krátkodobým připojením kladného napětí na PC se čítač programu posune o jeden krok dopředu. Vně připojený kondenzátor potlačuje zákmity tlačítka.

Ve druhé skupině povelů jsou povely "Hlasitost ±". "Jas ±", "Kontrast ± ", "Barva ±", které jsou zpracovány v

Obr. 12. Blokové

zapojení přijímače SAB3209

2×8C238 BC636 SAB3210 2G2 REC 16 PAUZA <u> 15</u> START STOP U+ PR1 NOT : PR2 NOT : 13 PR3 Tu 11 PR4 MgR PR5 MgE 3 22 mH MgZ PR6 ≪ HL+ ≫ HL-M/S B+ 9 VYP LD57 2×LD271 Z1 -*7*5 -26 Obr. 13.a) zapoje-ní vysílače IČ pro 27 -Z8 dálkové ovládání

SAB3209. Příslušné analogové úrovně jsou odebírány ve tvaru pravoúhlého napětí 1 kHz na výstupech ANAL1, ANAL2, ANAL3 a ANAL4. Analogová hodnota vznikne integrací obvody RC připojenými na tyto výstupy - potře-bné stejnosměrné napětí je úměrně napětí schodovitého průběhu. Maxi-mální počet "schodů" na každém z uvedených výstupů je 64. Vnitřním komparátorem je výstup pro hlasitost nastaven na L, je-li překlopen klopný obvod Q_T a IO je ve stavu "standby" (čekej), nebo bude-li na vývodu PC úroveň H. Klopný obvod Q_T bude vynulován povelem L při "standby", nebo povelem programu, nebo povelem "normování"

Klopný obvod "standby" rozlišuje tyto "spínané" funkce:

volbu programu 1 až 16 dálkovým ovládáním,

volbu programu povely +PRG a

-PRG kruhovým čítačem,

povel "Zapni",

volbu dvou rezervních povelů,

vnější nastavení tohoto klopného obvodu úrovní L na výstupu SB.

Informace o spínaných funkcích jsou zapamatovány klopným obvodem "standby", obvod ize vynulovat poveobvodem lem "standby". Při přerušení napájecího napětí (výpadek sítě) je obvod automaticky vynulován do stavu "standby". Výstup "standby" funguje -stavu při zápisu do paměti programu jako vstup; tím lze nastavit klopný obvod pro připojení sítě a to krátkodobým spojením kontaktu, ovládaného síťovým

spínačem, se zemí. Přes budicí tranzistor je řízeno buď relé nebo tyristor (nebo triak), přes něž se např. připojuje výkonová čásť přístroje (rozklady u

Kromě těchto funkcí jsou k dispozici ještě dva rezervní výstupy, které jsou řízeny dalším klopným obvodem. Při každém stlačení tlačítka na vysílači, mění tyto výstupy svůj stav ve stav inverzní. Přednostní úroveň na výstupu RSV1 je H a na výstupu RSV2 L, ty se automaticky nastaví po připojení napájecího napětí. Stejné úrovně jsou na výstupech i při stavu "standby" a při normování. Obě funkce je možno libovolně využít.

U dálkového ovládání je mezi fotodiodou a dekodér SAB3209 zapojen předzesilovač s TDA4050.

Dálkové ovládání zařízení hi-fi

Na obr. 13. je zapojení vysílače; jímž, lze dálkově ovládat:

tuner - 6 předvolených stanic,

tuner - přepínání mono/stereo;

zesilovač – přepínání nf zdrojů signálu,

zesilovač -- propojení tuner-magnetofon,

zesilovač -- regulace hlasitosti, hlouběk, výšek a jejich normování:

magnetofon — zapnutí/vypnutí, magnetofon — start,

magnetofon — stop, magnetofon — mezera,

magnetofon — záznam.

Aby mohl být magnetofon dálkově ovládán, musí mít odpovídající mecha-

Na obr. 13a je zapojení vysílače soupravy dálkového ovládání. Po spojení příslušného řádku a sloupce se na vývodu 8 SAB3210 objeví kódovaná informace, která přes řídicí obvod s tranzistory T1, T2 moduluje vysílaný signál IC. Dioda LD57 omezuje proud a indikuje prov z. Tranzistor T3 je ve funkci jen při: ačení tlačítka a připoju-

B. Z1 72 Z5 Z6 16 **Z8** zap 680 b)

získáván přímo ze SAB3209. Zdroj 1 napájí předzesilovač SAB3209 a druhý vysílač místního ovládání. Při stavu "standby" přitáhne relé Re₁, přeruší se "standby" pritanne reie ne, prerusi se napájení pro ovládání dalších funkcí přístroje. Reié odpadá po stlačení některého s tlačítek (PR₁ až PR₆, PR2) a přes klidový kontakt připojí napájecí přes Kildovy Kontakt přípoji napajeci napětí pro ostatní přístroje. Na obr. 13d je připojení dalších přístrojů na "řídicí" vodič. Vodiči PR₁ až PR₆ může být nastaveno šest pevně zvolených vysilačů. Po zapnutí se první tři klopné obyody pastaví (přes kondenzátory) do obvody nastaví (přes kondenzátory) do prioritní polohy.

je napájecí napětí na IO. V klidovém stavu je T3 zavřený, takže odběr z baterie je jen několik μA.

Pro ovládání na přístroji je použit druhý vysílač (obr. 13b), jehož výstup AK je přímo propojen se vstupem dekodéru (obr. 13c). Při ovládání na přístroji je předzesilovač automaticky odpojen druhým vysílačem přes přívod X. Jednotlivé programy jsou voleny tlačítky PR+ a PR—. Povelem PR+ se současně zapíná zařízení. Dekodér SAB3209 (obr. 13c) dostává informaci z detekovaného signálu IČ přes předzesilovač nebo po přívodu AK z druhého vysílače. Pro anologové veličiny HL (hla-sitost), B (regulace výšek) a V (regulace hloubek) jsou využívány tři paměti SAB3209. Analogové funkce mají tvar impulsně šířkového signálu, který se integračním členem mění na stejnosměrné napětí. Na výstupech pro řízení programu (PRGA až PRGD) jsou povely v binárním kódu, které jsou zpracovávány dekodérem 1 ze 16 (nápř. MH74154). Strobovací impuls na vývodu 8 řídí výstup programu a paměti dekodéru. Povel pro přepínání mono/stereo je

2×BC238

88

Druhý typ několikapovelového dálkového ovládání

Kodér vysílače

IO U807 (ekvivalent SAB3011 fy Valvo) je kodér vysílače pro 2 x 64 povelů, zhotovený technologii CMOS. Kodér pracuje takto: je-li stlačeno některé z tlačítek klávesnice, začne ihned kmitat vnitřní oscilátor a obvod stavu klávesnice se dotazuje tak dlouho, pokud "nenajde" stlačené tlačítko. Tento dotazovací cyklus je odolný proti rušení. Jeden kodér U807 může být použit pro ovládání dvou přístrojů. Na výstupu REMO se objeví sériový impulsní kód, který lze přenést buď ultrazvukem nebo infračerveným zářením. Po stlačení tlačítka se přenáší 7bitové slovo. Dokud je tlačítko stlače-no, opakuje se sedmibitové slovo alespoň jednou. Po "puštění" tlačítka nebo po prvním opakování přechází obvod do klidového stavu. Není-li stlačeno žádné tlačítko, je oscilátor odpojen a z baterie je odebírán jen klidový proud. Zde aplikovaný sériový impulsní kód byl vývinut speciálně pro možnost přenosu povelů ultrazvukem i infračerveným zářením. Při použití ultrazvuku pro přenos ma příznakový impuls mezery v poměru 9:11:14:19 a při přenosu infračerveným zářením nebo při místním ovládání je tento 5:7:14:19.

Vzhledem k tomu, že se jedná o obvod LSI, nebudeme se zabývat jeho vnitřním zapojením, ale popíšeme si funkci jednotlivých vstupů a výstupů:

MOR, MOB, MOC — vstupy pro řízení funkce: pomocí těchto vstupů určujeme druh přenosu — ultrazvuk, záření IČ, místní ovládání. Podle připojených úrovní L nebo H je určen řídicí bit S; SENON až SEN7N — vstupy senzorů klávesnicové matice 8 × 8. Když není stlačeno žádné tlačítko, jsou na úrovni H; DRVON až DRV7N — výstupy budičů klávesnicové matice 8 × 8. V klidovém stavu jsou všechny

budiče na úrovni L. Při stisknutém tlačítku zůstává L jen na příslušném budiči, ostatní přejdou do stavu s velkým odporem (třístavový výstup). Příslušný budič je během operace ve stavu L; QCLS, QCL-QCLS je vstup hodin systému při místním ovládání. QCL je výstup budiče oscilátoru pro připojení vnějšího oscilačního obvodu;

REMO — výstup modulačního signálu, v klidovém stavu na úrovni L. Při přenosu modulačního signálu je přenášeno sedm bitů v tomto pořadí — S, A, B, C, D, E, F, kde S je řídicí bit určený logickou úrovní na MOC a bity A až Foznačují 64 bodů klávesnice, které dostaneme překřížením SENON až SEN7N s DRVON až DRV7N.

IO U807 je v pouzdře DIP-24, vývod 1-SEN6N, vývod 2-SEN2N, 3-SEN0N, 4-SEN1N, 5-SEN3N, 6-SEN5N, 7-SEN4N, 8-SEN7N, 9-QCL, 10-QCLS, 11-REMO, 12- $U_{\rm SS}$ (— $U_{\rm B}$, zem), 13-MOC, 14-MOA, 15-MOB, 16-DRV0N, 17-DRV1N, 18-DRV2N, 19-DRV3N, 20-DRV4N, 21-DRV5N, 22-DRV6N, 23-DRV7N, 24- $U_{\rm DD}$ (+ $U_{\rm B}$).

Zapojení vysílače pro přenos infračerveným světlem s tímto obvodem je na obr. 14.

Dekodér přijímače

IO U806 (SAB3022) je zhotoven technologií MOS s kanálem N. Obvod U806 má vstupy i pro místní ovládání. Přenesený signál je jako povel odebírán sériově ze sběrnice IBUS. Jednotlivé povely jsou využity k řízení čtyř analogových pamětí a k řízení registru programů. Dále je k dispozici vstupvýstup pro funkci zapnuto/vypnuto a dva výstupy pro rezervů, výstup identifikačního signálu pro podsystém a signál pro umlčovač při změně programu. Pro místní ovládání je k dispozici pět vstupů, které umožňují realizovat maximálně 31 povelů přenášených paralelním kódem, a které jsou buď volně volitelné nebo programované maskou. Mezi zvláštnosti U806 patří: sériová

sběrnice pro 64 povelů, univerzální obvod pro řízení podsystémů, po jejichž vyvolání je volně přístupná analogová paměť a rezerva, paralelní výstupy registru programů.

Signály z dálkového ovládání jsou přes vstup RSIGI převzaty dekodérem, jsou proměřeny a vyslány na sběrnici IBUS — to obvod zvládne za 110 ms. Při každém signálu nebo sérii signálů následuje testovací (měřicí) cyklus: kontrola doby mezi impulsy, kontrola vzdálenosti slov, kontrola počtu bitů a porovnání tvaru slova. Signály, které nevyhovují zadaným podmínkám, nejsou vyhodnoceny. Vyhovující signály musí mít poměr kmitočtu vysílače k hodinovému kmitočtu přijímače 1:64 ± 14 %. Povely jsou přenášeny jako sedmibitové slovo (1 bit řídicí, 6 bitů dat). V dekodéru se řídicí bit volí volbou úrovně na RSVD. Při RSVD = H bude S = 0 a při RSVD = L bude S = 1.

Funkce vývodů U806:

LOCA až LOCE — pět vstupů pro zadávání povelů z klávesnice přístroje, povely jsou kódovány vnější diodovou maticí. V klidovém stavu jsou všechny tyto vstupy uvnitř IO propojeny s U_{DD}. 31 povelů ze 64 je vybráno maskou ve vnitřní paměti ROM. Povely z klávesnice přístroje mají prioritu před povely z dálkového ovládání na vstupu RSIGI. Děj na výstupu IBUS je vždy zcela dokončen;

DATA, DLEN — výstup dat na sériovou sběrnici IBUS, zpracované povely jsou dány různými požadavky podsystému a jsou shodné s jednotlivými nebo opakovanými povely stlačených tlačítek. Vysílačem mohou být vyslány buď jako jednotlivé povely (např. číslo) nebo dva opakované povely za sebou (kroková funkce), nebo osmkrát za sebou opakovaný povel (analogová funkce). Povel vyslaný na IBUS má délku slova 6 bitů, je synchronizován s hodinami systému a přenesen na výstup DATA. Ze sběrnic IBUS přicházející povely jsou převzaty všemi podsy-

Obr. 15. Překlenutí výstupního napětí pomocí U_{BE}

Opr. 16. Zapojení přijímače IČ s U806

stémy, v nichž podle jejich okamžitého stavu mohou vyvolat reakce, a to buď v jednom, nebo i v několika podsystémech. Všeobecně lze říci, že reakce podsystému na daný povel je určena stavem podsystému.

Po sběrnicích DATA a DLEN jsou přenášeny různé tvary slov mezi jednotlivými podsystémy. Proto je nutné, aby každý přijímač sběrnice měl obvod pro rozlišení tvaru slova a zpracovával jen požadované slovo. Všechny vysílače na DATA a DLEN musí mít možnost kontroly, není-li po sběrnicích již něco přenášeno. Kontrola se provádí na vstupu/výstupu DLEN. Při obsazené sběrnící je nutné opožděné vyslání slova. U U806 je doba zpožděného vyslání 512

VOLU, ANAL2, ANAL3, ANAL4 — U806 má celkem čtyři analogové paměti. Analogová hodnota je nastavitelná v 63 stupních s celkovou dobou nastavení 7,3 s při dálkovém ovládání a 8,3 s při místním ovládání. Místní ovládání se realizuje přes vývody LOCA až LOCE. Analogová hodnota odpovídá impulsům s opakovacím kmitočtem 2 kHz se střídou v_T, která je dána dobou trvání úrovně H k celkové době cyklu. Střída v_T může být 0/64 až 63/64. Integrací výstupního impulsu vnějším integračním obvodem RC dostaneme stejnosměrné napětí úměrné střídě v_T. Povelem "normování" nebo po připojenapájecího napětí jsou ANAL2, ANAL3, ANAL4 nastaveny na 50 % maximální hodnoty a VOLU buď na 33 % nebo 50 % maximální hodnoty (dáno maskou). Výstúp VOLU je krátkodobě (200 ms) spínán na úroveň L při každé změně programu (po povelu 16 až 34,36 a 37), tedy je-li MODEP = H nebo povelem 1 (umlčení). Při povelu 1 se překlopí vnitřní klopný obvod, jehož zpětné překlopení je možné povelem 1 (umlčení) nebo povelem 2 (vypnuto). Při povelu 4 (VOLU+) se mění hlasitost od nuly k maximu. Povelem 0 se realizuje normování. Ve stavu "standby" se stav analogových pamětí nemůže měnit a VOLU = L, nezávisle na stavu analogové paměti;

síťovém spinači (t_{nast} > 2t_{CLCK}); RSVA, RSVB, RSVD — výstup RSVA je výstup klopného obvodu, který může být překlopen povelem 3. Vně lze obvod nastavit napětím větším než 3,5 V, jinak pracuje jako tester. Při povelu 6 vzniká na výstupu RSVB kladný impuls s dobou trvání 1 ms. Povelem 7 (rezerva C) vznikne na výstupu RSVB kladný impuls, trvající po dobu stlačení tlačítka. Minimální šířka impulsu je 100 ms. Výstupní signál na RSVD je závislý na úrovní na vývodu MODEP. Při MODEP = L povelem 8 vyslán na výstup RSVD kladný impuls s úrovní L, trvající po dobu stlačení tlačítka. Minimální šířka impulsu je 100 ms. Při MODEP = H bude na RSVD impuls s úrovní L po každé změně programu (povely 16 až 31,36 a 37). Tento impuls proběhne asi 100 ms před změnou programu. RSVD může pracovat jako vstup — při spojení RSVD se zemí může IO zpracovávat signály dálkového ovládání s řídicím bitem S = 1

PRGA až PRGD, MODEP-PRGA, PRGB, PRGC a PRGD jsou výstupy 4bitového registru programů, jehož obsah se mění povely 16 až 31 (přímá volba programů 1 až 16) nebo povely 36 a 37 (krokování programů + a -Při povelu 36 a 37 a stavu "standby" se obsah registru programů nemění. Spojením PRGD se zemí se počet programů zmenší na 12. Výstup MOĎEP udává, je-li přípojen podsystém (MO-DEP = L) nebo ne (MODEP = H). Podsystém je vyvolán povely 56 a 63. Při vyvolání podsystému nebo při MO-DEP = L povely 16 až 31,36 a 37 nemaií vliv na obsah registrů programů, výstup VOLU není umičen a výstup ŘSVD nemění program, avšak může být ovlivněn povelem 8 (rezerva D);

nulování — obvod má vnitřní nulování. Po připojení napájecího napětí se IO během druhé periody hodin dostane do stavu "standby" a analogové paměti 2, 3, 4 budou mít stav odpovídající 50 % maximální hodnoty a paměť VOLU 30 % nebo 50 % max. hodnoty. Výstup VOLU je na L. Registr programu bude na programu "1", výstup OFF=H (zapojen povel pro umlčení), RSVA=L, RSVB=L a RSVD=L, MODEP=H;

použití výstupů k přepínání mezi stavy provozu: některé výstupy (MO-DEP RSVD, PRGD) mohou být použity jako vstupy pro přepínání na jiné druhy provozu a to spojením daných vývodů se zemí. Pokud je chceme použít současně jako výstup, je nutno na vývod připojit bipolární tranzistor, takže výstup je překlenut napětím U_{BE} (obr. 15). Zapojení přijímače s U806 je na obr. 16.

Přenos zvuku infračerveným zářením

V dále popisovaném systému dálkového bezdrátového přenosu televizního zvuku se využívá záření IČ, které je modulováno zvukovým doprovodem z televizního přijímače. V televizních při-jímačích, kde není k dispozici žádný neregulovaný výstup nf, je nutné použít paralelní mf zesilovač pro modulaci vysílače záření IČ (obr. 17). Tím je vyloučeno, že modulační zdvih vysílače bude závislý na nastavení regulátoru hlasitosti v televizním přijímači. Mf zesilovač televizního přijímače bude nejméně ovlivněn, připojíme-li vstup mf zesilovače vysílače na demodulační obvod mf zesilovače TVP. Mf zesilovač vysílače nepotřebuje tedy na vstupu žádné selektivní obvody a můžeme

zmenšit i kapacitu kondenzátoru deemfáze C₄. Nosná 93,75 kHz je získávána astabilním multivibrátorem. Toto řešení se vyznačuje dobrými modulačními vlastnostmi, pokud je kmitočet stabilní. Teplotně je obvod stabilizován tranzistorem T₅, který však primárně pracuje, jako modulátor pro multivibrátor, jehož kmitočet je určen R₁₃ a R₁₄. Kmitočet se nastavuje P₅, kterým se nastavuje i pracovní bod tranzistoru T₅. Odporovým děličem R₄ a R₅ se nastavuje kmitočtový zdvih, který má být maximálně 10 kHz (odpovídá zdvihu 50 kHz na kmitočtu 6,5 MHz; modulační kmitočet je 1 kHz). Do série zapojené diody (8×CQY38) jsou napájeny z budiče T₁₅ a koncového stupně T₁₉ kmitočtově modulovanou nosnou ve spínacím režimu. Při tom musí být dodržen maximální proud diodami v propustném směru (asi 90 mA). Pro světelné diody je vstupní příkon asi 1 W a výstupní vyzařovaný výkon asi 64 mW. Ve vodorovném směru má dioda CQY38 velký vyzařovací úhel (asi 160°), ve svislém směru je vyzařovací úhel malý, takže v tomto směru lze paprsek zaostřit. Reflektor je pak konstruován tak, aby se posluchač nacházel v oblasti paprsku.

Modulované záření IČ je přijímáno fotodiodou BPW34 (D1). Přes oddělovací kondenzátor C₁ v obr. 18 je na bázi T₂ přivedena nosná 93,75 kHz. Při velmi silném osvětlení např. slunečními paprsky by byl příjem nemožný, neboť stejnosměrná složka světla ovlivní odpor diody v závěrném směru, který je pak menší než odpor rezistoru proto je nutné před diodou použít filtr-IČ (např. černé organické sklo). Tak lze zlepšit příjem i za běžných-světelných podmínek a současně zmenšit vliv jasu obrazovky. Tranzistory T₂ a T₃ pracují iako měnič impedance. Integrovaný obvod SO41P (má stejné zapojení jako známý TBA120) je mf zvukový zesilovač s kvadraturním detektorem, určený speciálně pro bateriový provoz, tedy pro malá napájecí napětí a malý odběr ze zdroje. Demodulační obvod je nastaven na 93,75 kHz. Pro odfiltrování vf složky je třeba použít složitější obvod (R₁₂, C₁₃ a R₁₃, C₁₄), neboť nosný kmitočet a nf signál jsou relativně blízko sebe. Nf signál je zesílen tranzistory T₂₁, T₂₂ a T₂₃. Sluchátka jsou spojena paralelně, mají impedanci $2 \times 400 \Omega$

Na obr. 19 je zapojení druhého typu vysílače záření IČ. Mf signál zvuku je přes keramický filtr přiveden na vstup IO₁, který signál nedemoduluje, nýbrž převádí z kmitočtu 6,5 MHz na kmitočet 95 kHz — na vývody 7 a 9 IO₁ je přivedeno napětí o kmitočtu 6,595 MHz, posunuté o 180°. Na vývodu 8 IO₁ je pak k dispozici signál o kmitočtu 95 kHz, který je modulován

Obr. 17. Zapojení vysílače IČ modulovaného zvukem z TVP

Obr. 18. Zapojení přijímače IČ pro sluchátka

kmitočtově. Přes dolní propust je signál 95 kHz přiveden do tvarovače impulsů, na jehož kolektorovém odporu dostaneme pravouhlé napětí se střídou 1:1. Toho je dosaženo předpětím báze T₂ (rezistory R₁₃ a R₁₄). Dioda D₁ zabraňuje nabíjení vazebního kondenzátoru. Koncový stupeň je buzen z komplementární dvojice T3 a T4, která představuje zdroj o malé impedanci. To zlepšuje podstatně spínací vlastnosti použitého koncového tranzistoru a jeho ztráta během spínání bude malá. Potřebný světelný výkon vyzařuje dioda SLH8 (D₄). Vyzařování ve vertikálním směru je zmenšeno čočkou. Vodorovný vyzařovací úhel není omezen. Potřebný proud je odebírán z koncového stupně přes transformátor. Aby dioda SLH8 byla chráněna v závěrném směru, je s ní do série zapojena rychlá spínací dioda D₃.

Na obr. 20 je zapojení přijímače k vysílači z obr. 19. Přijímací dioda BPW34 mění signál IČ v kmitočtově modulovaný signál s nosnou 95 kHz. Pro impedanční přizpůsobení je použit zesilovač s tranzistorem T₁. Zpětnou vazbou ve třístupňovém zesilovači s T₂, T₃ a T₄ jsou potlačeny signály nízkých

kmitočtů. Z T_4 je zesílený signál veden do omezovače a demodulátoru s TBA120S a také do usměrňovače pro šumovou bránu. Pro demodulaci je použit počítací detektor, který se vyznačuje velmi dobrou linearitou. Výstupní napětí se nastavuje potenciometrem P_1 na vývodu 5 TBA120S, kam je připojena i šumová brána s tranzistorem T_5 . Dvoustupňový nf zesilovač T_6 a T_7 se zpětnou vazbou zesiluje nf signál na potřebnou úroveň. Potenciometrem P_2 Ize nastavit práh sepnutí šumové brá ny.

Přenos analogového signálu optoelektronickým vazebním členem

Častým problémem, který je nutno řešit při návrhu elektronických zařízení, je přenos analogového nebo impulsního signálu mezi dvěma galvanicky oddělenými obvody. Použitím optoelektronických vazebních členů je možno uvedený problém jednoduše vyřešit.

Obr. 19. Zapojení vysílače IČ pro bezdrátový přenos zvuku

Základní vlastnosti optoelektronických vazebních členů

Optoelektronický vazební člen (OVČ) se skládá z vysílače infračerveného (IČ) záření, přijímače záření IČ a vazebního prostředí, které zprostředkuje přenos záření od vysílače k přijímači. Vysílač záření IČ je zpravidla realizován luminiscenční diodou, která má oproti jiným zdrojům záření delší dobu života, malý příkon, malé rozměry a je velmi rychlá.

příkon, malé rozměry a je velmi rychlá. Jako přijímač záření IČ se většinou používá fotodioda nebo fototranzistor. Běžná provedení OVČ jsou na obr. 21. Použití fotodiody umožňuje obvykle podstatně rychlejší funkci OVČ. Někteří výrobci používají fototranzistor s vyvedenou bází. To umožňuje využít přechodu kolektor-báze jako fotodiody, takže OVČ je rychlejší. Pokud se nevyžaduje velká rychlost, je možné použít na místě přijímacího prvku fotorezistor. Taková zařízení jsou sice pomalá, mají však poměrně dobrou linearitu. V obvodech, v nichž přijímač spíná velká napětí (např. síťové napětí) se jako přijímací prvek používá fototyristor.

Vazební prostředí spolů s typem pouzdra určuje izolační vlastnosti OVČ. Může jím být vzduch, nebo jiné plynné prostředí, nebo i světlovod tvořený světelným vláknem. Světlovody se používají všude tam, kde je třeba dosáhnout velmi velkého izolačního napětí, nebo tam, kde musí být z nějakého důvodu vzdálena vysílací a přijímací část OVČ.

Základními parametry, charakterizujícími vlastnosti OVČ, jsou izolační
napětí nebo izolační odpor, proudový
přenos a parametry vstupního a výstupního prvku. Ve většině případů se
realizují OVČ tak, že jsou kompatibilní
s logickými obvody TTL. Proto se
u OVČ, podobně jako u logických
obvodů, udávají některé druhy
zpoždění.

Izolační napětí (izolační odpor) je určeno vazebním prostředím a mechanickým provedením OVČ jako celku. K dosažení extrémních izolačních na-

Obr. 20. Zapojení přijímače IČ pro bezdrátový přenos zvuku

Vysilač	Přijímač	Charakleristika
<u></u>	fotodioda ·	– pro širokopásmové aplikace – malý vlastní šum – η = 0,2 %
}	fotodioda a tranzistor	– šiřka pásma a šum jsou omezeny použitým tranzistorem – η = 10 až 20 %
y	fotodioda a Darlington	-stejnė jako fotodioda a tranzistor, ale vėtši zesiteni - η =100 ož 200 %
¥ =	fololranzistor	-omezená širka pásma (velká kapacila báze-kolektor) - zvýšený vlastní šum - η = 30 až 100°%
7 =	foto- darlington	– stejně jako u fototranzístoru, ale větší zesitení – η = 100 až 600 %

Obr. 23. Přenosová funkce OVČ

Obr. 21. Provedení optoelektronických vazebních členů

pětí se používá jako vazební člen světlovod, popř. speciální pouzdra např. ve tvaru válce, hranolu z plastické hmoty s vývody umístěnými na protilehlých vzdálenějších plochách. Pro izolační napětí do 2500 V se obvykle používají pouzdra DIL a pro izolační napětí do 1000 V i pouzdra kovová. Izolační odpor je určen především vlastnostmi pouzdra a dosahuje 10¹⁰ až 10¹³ Ω.

Proudový přenos n je poměr proudu výstupního prvku (fotodiody, fototranzistoru, fototyristoru) k proudu tekoucímu

vstupní svítivou diodou a udává se buď jako bezrozměrné číslo nebo v procentech. OVČ, které používají jako výstupní prvek fototranzistor, mají zpravidla proudový přenos několik desítek procent. Zvětšit ho lze použitím dalšího tranzistoru v Darlingtonově zapojení (obr. 21). Prvky tohoto typu mají proudový přenos 300 % i větší. Speciální OVČ určené pro spolupráci s obvody TTL mají proudový přenos 400 až 600 %. Vlastní velikost činitele proudového přenosu závisí na kvantovém výtěžku záření svítivé diody, útlumu světelného záření, na přenosové cestě, kvantovém výtěžku fotodiody a konečně na proudovém zesílení OVČ.

Na tomto místě je nutné upozornit na to, že kvantový výtěžek svítivé diody není konstanta, ale veličina nelineárně závislá na proudu $I_{\rm F}$, tj. meži vyzářeným výkonem a proudem svítivou diodou je nelineární závislost. Proto je také proudový přenos η veličina závislá na proudu $I_{\rm F}$.

Protože od zesilovače s OVČ budeme vyžadovat přenos stejnosměrných signálů v obou polaritách, případně přenos střídavého signálu, je nutné nastavit klidovým proudem I_{F0} vhodný pracovní bod na charakteristice svitivé diody (podobně jako se nastavuje pracovní bod tranzistoru). Činitel proudového přenosu v tomto bodě (tj. při proudu I_{F0} diodou) budeme označovat jako η_0 . V tomto případě bude η_0 skutečně konstantní veličinou, neboť je vztažena ke konstantnímu proudu I_{F0} .

Použití optoelektronických vazebních členů

OVC se používá všude tam, kde je třeba přenést signál mezi dvěma galvanicky oddělenými obvody. Dále se jich používá k přerušení zemních smyček, oddělení země elektronických přístrojů od výkonových zařízení. Známá jsou i použití v lékařství, např. ke snímání biopotenciálů. V tomto případě použití OVČ zajišťuje ochranu živého organismu před úrazem elektrickým proudem. Použití OVČ je možno rozdělit do dvou základních skupin: při přenosu impulsních signálů a při přenosu analogových signálů.

Zatímco použití OVČ pro signály impulsního charakteru se stalo zcela běžné [1], [2], je použití OVČ pro analogové signály poměrně obtížné. Důvodů, proč přenos analogových signálů OVČ je poměrně složitá technická záležitost, je několik, především je to nelinearita přenosové funkce OVČ, která je důsledkem toho, že závislost mezi vstupním a výstupním proudem OVČ je obecně nelineární. S poměrně dobrou přesností je možné aproximovat přenosovou funkci OVČ výrazem

 $I_E = I_{E0} (I_E/I_{F0})^n$, kde I_{F0} je klidový proud svítivou diodou, který zaručuje přenos stejnosměrného signálu v obou polaritách, případně přenos střídavého signálu. Klidovým proudem je tak určen pracovní bod svítivé diody i fotodiody (fototranzisto-

I_{E0} je klidový proud fotodiody (fototranzistoru), pro nějž platí:

 $I_{\rm E0}=I_{\rm F0}\eta_{\rm 0},$ kde $\eta_{\rm 0}$ je činitel proudového přenosu při proudu $I_{\rm F0}$ diodou.

 $I_{\rm E}$ je "fotoproud" při proudu $I_{\rm F}$ svítivou diodou. Konečně n je činitel nelinearity vazebního členu. K tomu, abychom určili činitele n, je nutné nejprve vynést do grafu v logaritmickém měřítku závislost $I_{\rm E}=f(I_{\rm F})$, tj. závislost $I_{\rm E}$ na $I_{\rm F}$. Potom směrnice tečny v bodě $I_{\rm F0}$ údává velikost činitele n (obr. 22).

Pokud se nevyžaduje velký dynamický rozsah signálu, lze na přenosové funkci najít přibližně lineární úsek a realizovat zesilovače malých signálů s izolovaným vstupem. Použítí jednoduchých OVČ pro signály s velkým dynamickým rozsahem je silně omezeno nelineárním průběhem přenosové funkce. Na obr. 23 je typický průběh přenosové funkce běžného OVČ. Jak je zřejmé z obrázku, linearita se zlepšuje se zvětšujícím se proudem I_F svítivou diodou. Ovšem na druhé straně zvětšování I_F vede k rychlému zhoršování proudového přenosu při dlouhodobém provozu.

Při přenosu analogových signálů je dalším důležitým parametrem stabilita zařízení. Lze obecně říci, že kvantový výtěžek $Q_{\rm FD}$ fotodiody bude vždy stabilnější než zesílení tranzistoru. Z toho

. tedy vyplývá, že pokud jsou vysoké nároky na stabilitu zařízení, je lépe použít OVČ s fotodiodou, než OVČ s fototranzistorem. Stabilita zařízení bude v tomto případě tím lepší, čím menší budou pracovní proudy a čím nižší bude pracovní teplota. Teplotní závislost činitele proudového přenosu η je určena záporným teplotním činitelem svítivé diody a kladným teplotním činitelem fotodiody. Vzhledem k tomu, že teplotní drift svítivé diody převládá, je výsledný drift činitele proudového přenosu OVČ přibližně -0,5 %/° K[3]. Další důležitý parametr, který ovlivňuje přenos analogového signálu OVČ, je šum. U běžného OVČ vzniká šum jednak ve svítivé diodě, jednak ve fotodiodě (fototranzistoru). Při malých proudech převládá šum fotodiody a při proudech větších než asi 1 mA šum diody.

Jak je z uvedeného rozboru zřejmé, nemůže zesilovač s jedním OVČ při přenosu analogového signálu zajistit nejkvalitnější parametry. Zesilovač s jedním OVČ bude vhodný pouze pro ty případy, kdy se bude jednat pouze o přenos poměrně malých střídavých signálů. V tomto případě se neuplatní teplotní drift OVČ, neboť vstup i výstup můžeme oddělit kondenzátory a díky malému signálu bude i zkreslení zesilovače v přijatelných mezích. Pro nejvyšší nároky při přenosu analogových signálů je nutné kompenzovat vliv teplotního driftu i nelinearity přenosové funkce OVČ. Velmi účinným řešením, které potlačuje uvedené nepříznivé vlastnosti OVČ, je použít dva OVČ. V současné době jsou vyvinuty a používány dva hlavní typy tzv. opticky vázaných izolačních zesilovačů. Jednak je to typ zpětnovazební, kdy jeden OVČ se používá k vlastnímu přenosu signálu a druhý je zapojen ve zpětnovazební smyčce zesilovače, jednak typ dife-renční, ve kterém jsou oba OVC zapojeny v přenosové cestě diferenčního zesilovače (obdoba kompenzace nelinearity dvojčinných nf koncových zesilovačů).

Při vlastní realizaci opticky vázaných zesílovačů se dvěma vazebními členy je nutné vybrat OVČ tak, aby jejich činitelé nelinearity se lišily jen velmi málo.

Příklady zapojení

Na obr. 24 je zapojení izolačního zesilovače s OVČ. Zesilovač je určen k přenosu barevného signálu [4]. Šířka přenášeného pásma je asi 6 MHz. Základem uvedeného zapojení je OVČ fy Motorola 4N25. Uvedený OVČ je složen ze svítivé diody a z křemíkového fototranzistoru. Aby bylo dosaženo vyhovující linearity, je dioda napájena ze zdřoje konstantního proudu (T2). Emitorový sledovač na vstupu zesilovače zajišťuje dostatečně velký vstupní odpor. Korekční obvod v emitoru tranzistoru T2 kompenzuje úbytek zesílení

Obr. 24. Zapojení izolačního zesilovače pro přenos televizního signálu

fototranzistoru na vysokých kmitočtech. Celkový přenos izolačního zesilovače je asi 0 dB. Maximální mezivrcholové vstupní napětí je asi 1 V. Zesílení je možno nastavit trimrem R₁₁.

Zesilovač biopotenciálů, používající optoelektronickou vazbu, je na obr. 25. Autoři uvádějí kmitočtovou charakteristiku do 50 kHz. Chyba linearity je při proudu 6 mA svítivou diodou v OVČ pro modulační proud ± 0,4 mA maximálně ± 1 %. Zlepšení linearity by si vyžádalo zvětšit klidový proud diodou, tím by se však zkracovala doba jejího života. Z hlediska jednoduchosti jsou k napájení izolované části zesilovače použity dvě baterie.

Další příklad zapojení izolačního zesilovače s jedním OVČ je na obr. 26. Tranzistor T₁ spolu s R₁, R₂ a R₃ zajišťují klidový proud diodou asi 20 mA. Odpor rezistoru R₃ navíc určuje rozkmit výstupního napětí. Pro uvedený odpor může být vstupní napětí +1 V, což odpovídá proudu 15 až 25 mA diodou. Tranzistory T₂ a T₃ pracují jako kaskád-ní zesilovač. Vlastnosti tohoto zesilovače jsou dány stupněm zpětné vazby (R₄ a R₆); změnou R₄ je možno měnit stupeň zpětné vazby a tím i zesílení. Vzhledem k tomu, že smyčka zpětné vazby neobsahuje celý OVČ, budou vlastnosti izolačního zesilovače silně závislé na teplotě. Posuv výstupní stejnosměrné úrovně v tomto případě není na závadů, neboť zesilovač je určen

pouze pro střídavé signály (vstup příp. výstup zesilovače jsou odděleny C_1 , příp. C_2). Teplotní změny se ovšem projeví na stabilitě zesílení, neboť účinnost svítivé diody velmi závisí na teplotě. Tento nedostatek je do jisté míry možné kompenzovat použitím termistoru. Chyba linearity uvedeného typu izolačního zesilovače je typicky 2 % pro rozsah vstupního napětí + 1 V.

Na obr. 27 je zapojení izolačního zesilovače se dvěma OVČ [5]. Základem zapojení je dvojitý OVČ HP5082-4354 fy Hewlett-Packard. Vzhledem k tomu, že oba OVČ jsou ve společném pouzdře, dá se očekávat, že zapojení bude mít velmi dobré vlastnosti.

R₁ určuje rozsah vstupního napětí. Pro R₁ = 4,7 kΩ může být vstupní napětí —5 až +5 V, což odpovídá proudu svitivou diodou 2 až 4 mA. Výstupní nulová úroveň je určena poměrem R₂ ku R₃. Zesílení je určeno volbou R₄. Jak bývá u izolačních zesilovačů zvykem, nastavuje se jednotkové zesílení (0 dB). Šířka přenášeného pásma je omezena vlastnostmi použitého operačního zesilovače (25 kHz). Štabilita zesílení je velmi dobrá. Nestabilita zesílení je velmi dobrá. Nestabilita zesílení je —0,03 %/°C. Ofset nuly je ± 1 mV/°C. Maximální izolační napětí je omezeno vzdálenostmi vývodů a je u dvojitého OVČ 500 V. Pokud se v uvedeném zapojení použijí dva samostatné OVČ,

Obr. 28. Rozdílový izolační zesilovač; a) základní řízení triaku, b) řízení triaku OVČ, c) zapojení pro napájení ze sítě

zvětší se izolační napětí na 2500 V. Chyba linearity je asi 1 %.

Dalším z často používaných typů izolačních zesilovačů-je diferenční izolační zesilovač. Jak je zřejmé z obr. 28, jedná se v základě o známé a používané zapojení. Bude-li se zvětšovat proud svítivou diodou jednoho OVC, bude se ve stejný okamžik zmenšovat proud svítivou diodou druhého OVČ. Zatímco u dříve uvedených zapojení izolačních zesilovačů se dvěma OVČ byla velikost chyby linearity určena poměrem činitelů nelinearit jednotlivých OVČ, pak u diferenčního zesilovače bude určena rozdílem nelinearit jednotlivých činitelů. Jinými slový: pro malou chybu linearity je nutné vybrat dva takové OVČ, které mají pokud možno stejné činitele nelinearity. Párování OVČ v tomto případě obtížnější. V zapojení na obr. 28 je pro $n_1 = 1.9$ a $n_2 = 1.7$ chyba linearity 2,8 %. V uvedeném zapojení je rozsah vstupního napětí určen odporem rezistorů $R_1 = R_2$. Je-li $R_1 = R_2 = 2.7 \text{ k}\Omega$ může být vstupní napětí -5 až +5 V, což odpovídá proudu luminiscenční diodou 2 až 4 mA. Volbou R₃ je možné nastavit nulovou výstupní úroveň na výstupu zesilovače, zatímco volbou R5 je určen zisk zesilovače [5].

Bezkontaktní síťový spínač

Bezkontaktní síťový spínač se v současné době realizuje obvykle triakem. Pro galvanické oddělení řídicího obvodu od sítě se většinou používá impulsní transformátor. Pokroky ve vývoji OVČ umožňují nahradit tento transformátor obvodem s OVČ, který může být levnější. Vstupní a výstupní strana je galvanicky oddělena OVČ,

Obr. 26. Zapojení izolačního zesilovače sijedním OVČ

Obr. 27. Zapojení izolačního zesilovače se dvěma OVČ

takže izolační napětí je řádu jednotek kV. V OVČ je vstupní proud převeden na záření, které je po proběhnutí krátké dráhy snímáno fotodiodou, jež ho opět mění v elektrický signál. Pro řízení triaku potřebujeme v zásadě střídavý řídicí proud, který je ve fázi s proudem zátěží. Spínač S na obr. 29a řídí tento proud. Při otevřeném spínači je rezistor 330 Ω zapojen mezi řídicí elektrodu a katodu triaku a zabraňuje jeho otevření. Sepnutím spínače S se triak otevře Tento spínač můžeme nahradit OVČ jako je např. 4N45, který dodává řídicí proud asi 10 mA. Na obr. 29b je základní zapojení OVČ a triaku. Protože 4N45 má maximální výstupní napětí 7 V, je nutné při aplikaci v síti 220 V použít emitorový sledovač podle obr. 29c. Pomocí dvou do série zapojených svítivých diod je vstupní napětí emitorového sledovače nastaveno na 3,6 V, toto napětí napájí OVČ. Větší část napětí (maximálně 307 V) je "sražena" emitorovým sledovačem. Protože tranzistory se závěrným napětím $U_{\rm CE}$ větivá než 300 V jsou drahé, byly použity dva tranzistory se závěrným napětím 250 V.

Řízení triaku na vstupní straně podle obr. 29c probíhá takto: vstupní proud asi 1,5 mA převede výstupní stranu OVČ do stavu s malým odporem, takže emitor omezovače je spojen se záporným pólem napájené. Oba tranzistory povedou, zkratují usměrňovač a triak se otevře. Při přerušení vstupního proudu bude mít výstupní strana OVČ velký odpor a tím se přeruší řídicí proud pro triak. Proud báze omezovacích tranzistorů neprotéká do emitoru, takže tranzistory budou mít velký odpor

a chrání OVC před velkým napětím. Rezistory v sérii se svítivými diodami (možno použít i Zenerovu diodu) jsou navrženy tak, aby diodami při odpoje-ném OVČ tekl proud asi 1 mA, který na rezistoru 330 Ω vyvolá úbytek téměř 1 V, a triak se neotevře. Vstupní proud OVČ je volen tak, že výkonová ztráta na výstupní straně je max. 100 mW; je toho dosaženo vstupním proudem 1,5 mA, činitelem proudového přenosu 20 a maximálním výstupním napětím 3,6 V. Můstkový usměrňovač musí být navržen na síťové napětí a pro proud 35 mA. Triak TO4700D je opatřen potřebným chladičem, aby snesl proud 15 A, takže při 220 V může spínat zátěž 3,3 kW. Triak spíná již při vstupním proudu OVČ 0,4 mA. (Funkschau 0,4 mA. (Funkschau 18/78).

Přehled polovodičových součástek infračerveného spektra

V tab. 4 je přehled diod, v tab. 5 je přehled fotodiod, v tab. 6 přehled fototranzistorů a v tab. 7 přehled OVČ nejznámějších světových výrobců a výrobců z RVHP. Tyto tabulky umožňují případně najít i náhradu u aplikací, uveřejněných v zahraničních časopisech.

V tabulkách 4 až 7 se používají tyto symboly:

 $U_{\rm R}$ napětí v závěrném směru, $I_{\rm F}$ proud v propustném směru trvalý, $I_{\rm FM}$ maximální proud v propustném směru, $P_{\rm z}$ ztrátový výkon, λ vlnová délka, $U_{\rm F}$ napětí v propustném směru, $P_{\rm lum}$ zářivost, $I_{\rm R0}$ proud v závěrném směru, $P_{\rm tum}$ zářizatemnění, $I_{\rm R}$ proud v závěrném směru, E osvětlení — ozáření, $U_{\rm 0}$ fotometrické napětí, $U_{\rm CE0}$ napětí kolektor-emitor při proudu báze = 0, $I_{\rm CM}$ maximální proud kolektoru, $I_{\rm C0}$ kolektorový proud při

zatmění, $U_{\rm CE}$ napětí kolektor-emitor, $I_{\rm C}$ kolektorový proud při daném osvětlení, $t_{\rm r}$ doba zotavení, $t_{\rm l}$ doba vypnutí, $U_{\rm izol}$ izolační napětí OVČ, $I_{\rm V}$ svítivost, L jas. Ve sloupci výrobce je S-Siemens, V-Valvo, M-Mullard, GE-General Electric, F-Fairchild, ME-Micro Electronics LTD, Gl-General Instrument, O-Optron, H-Hitachi, Ll-Litronix, Tfk-Telefunken, Tl-Texas Instruments, Mot-Motorola, HP-Hewlett-Packard.

Tab. 4. Přehled infračervených diod

Тур	U _R [V]	/ _F [mA]	/ _{FM} (mA)	Pz. [mW]	λ [nm]	`U _F [[V]	ři/ _F [mA]	P _{lum} při [mW/sr]	/ _F [mA]	Výrobce
AL103A	 	- 0	52	·		1,6	50	1	50	SSSR
AL103B			52			1,6	50	0,6	50	SSSR
AL106A			100			1,7	100	0,2	100	SSSR
AL106B			100			1,7	100	0,4	100	SSSR
AL106V			100	1	•	1,7	100	0,6	100	
AL107A			100				100	. 6	100	SSSR
AL107B			100	ľ		2	100	10	100	SSSR
AL109A	. '		-22			1,2	20	0,2	20	SSSR
CODP18	3	200		1	940	1,5		1	200	PLR
CQDP20	3 -	200		,	1000	1,7		2,5	200	PLR
CQX14	Ť		100	170	940	1,7	100	5,4	100	GE
CQX15	ĺ		100	170	940	1,7	100	5.4	100	GE
CQX16		ļ '	100	170	940	1,7	100	1,5	100	GE
CQX17			100	170	940	1,7	100	1,5	100	GE
CQX18			Ì	·	940			0,3	20	Tfk
CQX19		ŀ			940			40	200	Tfk
CQX46			1		940			10	100	Tfk
CQX47			_		940			33	100	Tfk
CQY11B	2	30	1	50		İ		0,064	20	М
CQY11C	2	30		50	'	1		1,25	20-	М
CQY17	4	100	2000	180	950	1,35	100	10-30	100	S
CQY31					940			9-1	100	Tfk
CQY32					940		٠.	10	100	₹fk
CQY33N	ŀ				940			7	100	Tfk
CQY34N				i '	940			18	100	· Tfk
CQY35N					940		-	36	100	Tfk
CQY36N			~		940	l		. 1,5	50	Tfk
CQY37N]]	940	1	İ	· 4,5	50	Tfk
CQY49C	2	100	1000	150 -	930	1,3	50	5	50.	V, M
CQY49B	2	100		150		Ī	I	0.3	50	M

			_							
Тур	U _R [V]	I _F	/ _{FM} [mA]	ρ _z [mW]`	.i [nm]	<i>U</i> _F [V]	oři/ _F :	P _{tum} př [mW/sr]	/ _F [mA]	Výrobce
		fine)	[IIIA]	[mag	frind	[*]	linvi	[1111731]	[IIIIA]	· · ·
CQY50	2	100		150			l .	0,18	20	M
CQY52	. 2	100	500	150	930	· 1,3	_50	0,45	20	V, M
CQY58A	` 5	50	200	100	930	1,2	20	1	20	V, M
CQY77	4	230	4000	350	950	1,7	100	8-40	100	S
CQY78	4-	- 230	4000	350	950	1,7	100	1-5	100	S
CQY89A	-5	130	2500	215	930 -	1,4	100	9	100	V, M
CQY98			ŀ	j	940			20	100	Tfk
CQY99				l	940	•		14	100	Tfk
CQYP13	3	50	l l		960	1,5	50	0,4	50	PLR
CQYP14	3	50	1	1	950	1,5	50	0,1	50	"PLR
CQYP15	3	100			950	1,5	100	0,5	100	PLR
CQYP16	3.	100	' '		1000	1,5	100	1,5	100	PLR
CQYP17	3	300	i .	ļ	950	1,7	300	0,5	300	PLR
CQYP19	3	200			950	1.5	200	1	200	PLR
CQYP20	3	200			1000	1,7	200	. 2,5	200	PLR
CQYP22	5`	100			960	1,7	100	10	100	PLR
CQYP23	5	100]	960	1,7	100	10	100	PLR
CQWP13	3	35			950	1,5	35	0,3	35	PLR
C30000			1	1	ĺ "	٠.		3,5	100	RCA
C0001				1			İ	2,2	100	RCA
F5D1		·	1					12	i	GE
F5D2	-							9		GE
F5D3							1	10.5	· ·	.GE
F5E1		İ	,	i				12		GE
F5E2							1	9		GE
F5E3	,			.	•			10,5		GE
FPE100			100		890	1,3	100	0,3		F
FPE104		`	100	1	890	1,35	100	10 -	100	٠. ۴
FPE106			100		890	1,35	100	0,4	100	F
FPE500			250		890	1,35	100	10	100	F
FPE510			250		890	1,35	100	1	100	F
FPE520	1	1	250	1	940	1,35	100	50	100	F
FPE530			250		940	1.35	100	5	100	F
HEMT	• 5	30	60	120	670	2,5	10	0,5	10	HP
			1	1			•			

Тур -	U _R [8]	/ _F [mÅ]	/ _{FM} · [mA]	P _z [mW]	[nm]	<i>U</i> _₹ p	fi/ _F [mA]	P _{lum} při [mW/sr]	/ _F [mA]	Výrobce
HEMT 6000	12	20	60	50	700	1,8	10	0,25	10	. HP
HLP20	•			,	740	.		20		н
HLP30				·	880			30		Н
HLP40					880	.		40		H
HLP50 HLP60					880 880			50 60		H
HLP70					880			70		H
RL-55		50						0,5	50	Li
RL-60		50						0,5	50	Li
RL-61		50	5000	470	050	,,	100	0,5	50 100	Li S
D242 D260	. 4	300 50	5000 1500	470 85	950 950	1,7 1,6	50	2,5—12,5 2,5—8	50	S
D261	4.	50	1500	85	950	1,6	50	1,25-10	50	S
D262								Ì	}	
1269 1 Daga	İ									
iz LD260 D271	4	130	2500	210	950	1,7	100	7—16	100	s
VIR30	,				940	1,6	20	0,5	20	ME
VIRSO		1			940	1,6	20	. 1	20	ME
MIRB50			-		940	1,6	20	1	20	ME
ED558		100	′	1300 1300	940 940	1,7	100	3,5 5,4	100	GE GE
LED55C LED56		100		1300	940	1,7 1,7	100	1,5	100	GE
ME60	3	50	1000	75 .	900	1,5	50	0,5	50	GI
ME61	3	50	1000	75	900	1,5	50	0,55	50	GI
ME7021	8	100	1000	. 150	900	1,5	50	1	50	GI
ME7024 ME7121	5	100	1000	150 150	900	1,5 1,8	50 50	1 3	50 50	GI GI
ME7121	3	100	1000	150	940	1,8	50	3	50	Gi
ME7161	3	50	1000	75	940	1,8	50	l 3	50	GI
MLED60	l	:	,		900			0,55 °	50	Mot
MLED90	ĺ	1			900			0,35	50	Mot
MLED92 MLED900	Į				900			0,65 0,55	100 50	Mot Mot
MLED900	1		l	١.	900			0.35	50	Mot
MLED930	ı	1			900			0,65	100	Mot
OLD122	6	100	1000	ļ	940	1,7	100	2.4-5	100	ОК
OLD125	4	. 40	500		940	1,7	- 40	1,8	40	OK
OLD127 OLD128	6	50	500	70	940	1,45 1,7	50 40	0,6	50 40	OK
OP123	2	100		′°	940	1.5	50	0,6	50	0
OP124	2	100			940	1,5	50	1	50	0
OP130	2	200			940	1,75	100	1	100	0
OP131	2	200			940	1,75	100	3	100	0
OP132 · OP133	2 2	200			940	1,75 1,75	100	5	100	0
OP160	2	40	1	1	940	1,6	20	0,5	20	ŏ
SFH400	4.	300	5000	470	950	1,7	100	12,564	100	S
SFH401	4	300	5000	470	950	1,7	100	6,3—32	100	S
SFH402	4	300	5000	470	950	1,7	100	1,6—8	100 80	S
SFH404 SFH405	2	70	300 1500	65	950	1,65 1,6	50	1,5 1 ÷ 8	50	S
SFH407	2	70	300	~	830	1,65	100	0.3	"	·s
SG1001	0	1		'	940			1,6	50	RC/
SG1002	İ	l .		ŀ	940	1		1,6	50	RC/
SG1003 SG1004	١.				940 940			2,1	50 50	RC/
SLH8		1000		1	930	2		80	"	TI
TIL23		50	1		940	1,5		0,8		TI
TIL24		50			940	1,5		1	١.	TI
TIL26		35			940	1,9		1,5	}	TI
TIL31 TIL32	l	100	"		940	1,75		1,2	1	TI
TIL33	·	100			940	1,75		5		Π
TIL34	l .	100	1		940	1.75		3	1.	TI
TIL38		100	1		900		٠.	6	100	TI
TIL41	1	20			940	1,6		1,2		TI.
—50 Tixlo6	l	500	1		910	2,3		1,2	1	TI
TIXL12		300			930	2,3		50		Ť
TIXL13		300	1		930	2		30	1	TI
TIXL14	1	1000			930	2	.	75		- 1
TIXL15	l	1000	1		930	2		50	1	TI TI
TIXL16A TIXL16B		2000			930 930	2	1	150 230		TI
TIXL16C	ľ	3000		l	940	2		400		Ti
TIXL27		300			940	2,2		20		TI
TIXL35		50			910	2		1,2		TI TI
TIXL36	l	50			910	2	l .	1,5	ľ	TI
TIXL471 V194P		- 50			910	1,8	١.	10	100	1
V213P	Ι΄		1		940	J] 1	100	Tfk
V242P	i	1	1 .	1	940	I	i	0,8	100	[Tfk

Тур	U _B [V]	/ _F [mA]	/ _{FM} [mA]	ρ _z [mW]	λ. [nm]	U _F při l _F [V] [mA]		P _{lum} při [mW/sr]	/ _F [[mA]	Výrobce
VQ110A	2	50	100	75	940	1,5	50-	0.2	50	NDR
VQ110B	2	50	100	75	940	1,5	50	0,8	50	NDR
VQ110C	2	50	100	75	940	1,5	50	1,8	50	NDF
VQ120A	2	100		150	940	1,5	50	0.4	50	NDF
VQ120B	2	100		150	940	1.5	50	0,7	50	- NDF
VQ120C	2	100		150	940	1,5	50	1	50	NDF
VQ121A					940	1,5		0,8	50	NDF
VQ121B	١,	l	1	l ·	940	1,5.)	1,2	50	NDF
VQ123				ŀ	940	1,5	ŀ	3	50	NDF
WK164		100	5000	l	950	1,7	100	0,3-2	100	TESL
02		ì	l					١,	} -	
1N6264	ŀ	100		1300	940	1,7	100	6	100	GE
1N6265	ŀ	100		1300	940	1,7	100	6	100	GE
1N6266	l	100	l	1300	940	1,7	100	25	100	GE

Tab. 5. Přehled fotodiod

Тур	UR	ρ,	λ	I _{RO} p	8 <i>U</i> =	/_	při <i>U</i>	- 9 F	Uol	h F	Výrobce	l
,"			[nm]	(nA)	[V]	[µA]		[lx (mW/	[17]	[bx]	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	l
	l'''	,,,,,,	,,,,,	1,,	٠,	(201)-	l '''	/cm ²))	1"	[]		
<u> </u>	-	<u> </u>	 	—	 		\vdash	— <i>"</i>	 	├—	 	
BP104 '	20	150	950	2	10	40		l	l		S	l
8PCP44	45	1	950		1	40	45	(0,1	l		PLR	
BPDP30	100	l	900	10	60	40	60	(0,1)	٠.		PLR	ı
BPDP35	100		900	50	60	40	60	(0,1)	l	1	PLR	
BPDP41	100	Ì	900	500	60	40	60	- (0,1)			PLR	
BPW20	ŀ		70		٠.	33	5	1000	0,43	1000	Tfk	
BPW21	İ	!	550			7	5	1000	0,38	1000	Tfk	
BPW24			800			45	20	1000	0,38	1000	Tfk	
BPW28	170		400-	1			1				Tfk	
1	Ι.		-940									
BPW32	7	100	800	0,02	1	10		. (1)	0,36	1000	S	ľ
BPW33	7	150	800	0,1	. 1	50		1000		l	S	l
BPW34	32	150	850	2	10	6,5	'	100	0,365	1000	S,T,M,PLR	
BPW35	1		700			l			0,38	1000	Tfk	
BPW41	ĺ				١.	75	5	1000	0,4	1000	Tfk	
BPW43	١.,		800	٠		15	5	1000	0,32	1000	Tfk	
BPW50	32	150	900	30	10	45	5	(1)			<u>v</u>	
BPW61	32	325	850	30	10	70	5	1000	0,365	1000	l v	
BPW61P	70	325	850	1	10	45	5	(1)	0,365	1000	V	
BPX40	18		800	ŀ		13	1	1000			M	
BPX41 BPX42	18	Į	800			38		1000	i		. М	
BPX48	12 10	50	850	+00	40	140	١.	1000	0.200	1,000	M	l
BPX60	32	325	850	100	10	32 50		1000 1000	0,365 0,365	1000	S	
BPX61	32	325	850	2	10	70]	1000	0,365	1000	S S	
BPX63	7	200	800	5	10	10		1000	0,363	1000	S	i
BPX65	50	250	850	1	20	10		1000			S	
BPX66	50	250	850	0,15	1	9	1	1000			S	ı
BPX90	32	100	850	5	10	40	'	1000	0,46	1000	. \$	l
BPX91B	10	150	850	7	10	50		1000	0,46	1000	S	
BPX92	32	50	850	ĺ	10	7	1	1000	0,40	1000	S	i
BPX93	32	75	850	0,5	10	8	,	1000	0,46	1000	S	
BPX94	18	300	800	0,1	1	8		1000	0,40	1000	M.	l
BPY12	20	150	850	100	20	100		1000	0,365	1000	S	ı
BPYP30	100		750-		~	10		1000	0,000	"""	PLR	
}		•	-900		٠.					ŀ		ĺ
BPYP35	100	1	B00-		ľ	20		1000		ŀ	PLR	ı
	"		900		1		i			<u> </u>		ĺ
BPYP41	100		1			2	ľ	1000			PLR	
BPYP44	100		400-			40	45	1000			PLR	
			1100					'''		1		
C30801	30	1	900	200		650		(1)			RCA	
C30802	30		900	500		650		(1)	Ì		RCA	
C30803	200	١.	1060	300		600		(1)			RCA	
C30804	200		1060	500		600		(1)			RCA	
C30805	200	ļ	900	3000		650		(1)			RCA	
C30806	200	1	1060	3000		600		(1)			RCA	
C30807	45	1	900	40		620		(1)			RCA	
C30808	45	Ì	900	70		620		(1)			RCA	
C30809	45	1	900	200		620		(1)	٠,		RCA	
C30810	45		900	400		620		(1)			RCA	
C30811	350	1	1060	100) ·	10000		(1)			RCA	
C30812	200		900	200		620		- (1).			RCA	
C30813	200		900	200		620		(1)			RCA	
C30814	200		1060	600		600	.	(1)			RCA	
MRD500	100	1	800	2	20	2		(5)			Mot	
MRD510	100		800	2	20	2	ا ۽ ا	(5)	1		Mot	
OA10T	20	500		50	5	1	5	500			OKI	
OD22	20		600	5	1,5	2	1,5	100	*	1	OKI	
OD228	8	150	500	6	1,5	0,9	1,5	100			OKI	

]	_		·							
Тур	U _R	P.	λ.		iU _R		při <i>U</i>		Uop		Výrobce
]	[V]	lmwl	(nm)	[nA]	[V]	[µA]	[V]	[lx (mW/ /cm²)]	[V]	[[x]	
	Щ						-				***
OD22F	20	150	600	5	1,6	0,6	1,5	100	1		OKI
OD31	20	150	600	2	1,5	0,5	1,5	100			OKI.
OD31F	20	150	600	2	1,5	0,1	1,5	100			OKI
OD43L	20	150	600	1	1,5	2,3	1,5	100		-	OKI
OD62	8	150	600	10	1,7	1,7	1,5	100			OKI
OD72P	50	150	600.	5	1,5	1,5	1,5	100			OKI
OP790	100			10	10	12	10	(20)			0
OP900	100		li	10	10	8	10	(20)			0 '
OT22	8	150	700	300	1,5	1600	1,5	100			OKI
OT22F	8	150	600	300	1,5	400	1,5	100			OKI
OT31	8	150	700	100	1,5	400	1,5	100			OKI
OT31F	8	150	600	80	1,5	80	1,5	100			OKI
S153P		ŀ	790			85	5		0,4	1000	Tfk
S168P].	790			2	5		در د		Tfk
S171P	170	100	450	1							Tfk
			950								
S1777P	170	100	450—	1	,						Tfk
			950				_				
S178P] _		790			2	5				Tfk .
SFH100	7	100	800	10	7	175		1000	0,43	1000	S
SFH200	١	1	800	20	3	470		(1)			S
SFH202	50		850	1	20	10		1000	0.00	4000	S S
SFH203	32	325	555	7	10	0,7		100	0,38	1000	0
SFH204	12	40	850	0,01	10	350	١. ا	(1)	0,4	1000	0
SFH205	20	150	950	2	10	40		(1)	0,327		S
SFH206	20	150	950	2	10	50	5	(1)	0,327	4000	S
SFH206K	20	150	850	2	10 -	70	5	1000	0,365	1000	S NDR
SP101	25	10	820	500	20	600	20.	(1)			
SP102	25	30	820	20	20	1,25		1000			NDR NDR
SP103	25	10	820	1000	20	50	20	,1000 1000	۸ 20		NDR
SP105	٦	250	555	40	3	170	50		0,38		Ti
TiL81	30 30	250 250	555 555	10 10	10 10	170 40	50 50	(20) (20)			TI
TIL99 TIL100	30	150	940		10	15	10	(20)			TI
TIED55	170	100	900	5 10	10	20000	10	(1)			ŤI
TIED55		100	900	10		15000	1	(1)	1		, TI
TIED50	170 155	100	900	2		20000		(1)			TI .
TIED69	155	100	900	3,5		20000		(1)			TI
TIED89	200	100	.900	15	100	400		(1)			Ti
TIED82	260	L	900	100	180	680	l	(1)			TI
TIED83	80	100	633	5	100	25000	[(1)			τi
TIED84	80	100	633	15	ľ	25000		(1)			Ti
TIED85	80	-50	633	5	1	25000		(1)			Ti
TIED86	80	50	633	10	1	25000		(1)			Ti
TIED87	155		900	0,8		20000		(1)			Ti
TIED88	155	50	900	- 2		20000		(1)			~ Ti
TIED89	155		900	3,5		20000	ļ	(1)			.Ti
TIED98	50		900	2.	25	500	12	(1)	1	.	TI
TIED50	155	1		2	-~	20000	-	(1)	,		Ti
IPP75	5	1.00	1	•	l	70		1000	0,3	1000	TESLA
5082	50	100	800	2	25	500	ļ	(1)	0,0		HP
-4203	1 "	1.00	1, 300	١ ٠		***		\ '"			
5082	20	100	800	0,6	10	500		(1)			HP
-4204	~	"		""	••]	1 '''	1		
5082	50	100	800	0,15	25	500		(1)		1	HP
4205	-	"			1			``	ł		
5082	20	100	800	2,5	10	500		(1)	1	1	HP
-4207	1		1	'	1			''		1	
5082	50	100	800	5	25	500		(1)			HP
-4220	1	1		l	١.	l	1	l	l		

Tab. 6: Přehled fototranzistorů

Тур		Г (mA)	P _z [mW]	/ _{Co} při [nA]	<i>U</i> _{CE} [V]	/ _C při [mA]		E E (IX) (mW/ cm²)	t, (ns)	t ₁ (ns)	λ [nm]	Výrobce
BP103	50	200	3 0 0	. 5	30	0,160- 1,250	5	1000	5000	5000	850	S
BP103B	35	200	210	5	30	1,6-12,6	5	1000	5000	5000	850	s
PBDP22	15		100	100	15	0,25		1000	10000	10000		PLR
BPDP23	15		50	500	15	0,2		1000	10000	10000		PLR
BPDP24	15	l	50	100	15	0,25		1000	10000	10000		PLR
BPRP25	15		20	100	15	0,6 · ·	5	1000	10000	10000		PLR
BPW13	32		375			0,2-0,6	l	1000	1600	1700	790	Tfk
BPW14	32		375		l	2-6		1000	1600	1700	790	Tfk
BPW16N	32		100			0.6		1000	1600	1700	790	Tfk

Тур		CM [mA]	Pz [mW]	Ico při [nA]	U _{CE} [V]	I _C pfii (mA)	/ _{CE} 8	E [x] (mW/ cm ²)	t, [ns]	t; (ns)	λ (nm)	Výrobce
BPW17N	32		100			3		1000	1600	1700	790	Tfk .
BPW22A	50	50	100	100	30	1,5	5	(1)	3000	3000		Valvo
BPW36 BPW37	45 45	10 10		100 100	10 10	6	5	(10) (10)				GE GE
BPW38	25	10		100	12	3	5	(0,2)				GE
BPW39	32		150		'-	0,5-1,6	٠	1000	1600	1700		Tfk
BPW40	32		100			6		1000	1600	1700		Tfk
BPW42	32		100			3		1000	1600	1700		Tfk
BPX25	32	200	300	500	24	5 .	6	1000	3000	4000		V
BPX29	32 50	200	300	500	24	0,25	6 5	1000	5000 5000	8000 12000	070	V S
BPX38 BPX43	50 50	50 100	330 330	5-20 5-20	25 25	0,4-3,2 1,6-12,5	5	1000	5000	12000	870 870	S
BPX70	30	25	180	100	20	0,1-0,7	5	1000	13000	12000	010	М
BPX71	50	50	50	25	30	4	5	(20)	30000	20000		٧
BPX72	30	50	180	100	20	0,85	5	1000	20000	20000		٧
BPX80	32	50	100	25	25	0,63-5	5	1000	5000	5000	850	S _.
-89	20		400	400			_	/41	2000	2000		
BPX95C BPXP28	30 25	50	100 150	100	20	3 0,5-10	5	(1) 1000	3000 0,9 ms	2000 1 ms		S PLR
BPY61	50	60	70	5	25	0,8-6,3	5	1000	5000	5000	850	S
BPY62	32	100	300	5	25	1,25-6,3	5	1000	5000	5000	800	Š
BPYP21	8		50	500	6	0,05.	6	1000	10000	10000		PLR
BPYP22	15		100	100	15	0,25	12	1000	10000	10000		PLR
BPYP24	15		100	100	15	1	5	1000	10000	10000		PLR
BPYP25	15		20	100	15	0.1-0.4	5	1000	10000	10000		PLR
BPYP26 CL138	15 18	100	20 300	5000 1000	15 5	0,2-0,6 15-80	5 3	1000	10000 0.3 ms	10000 0,15 ms		PLR . ME
FPT100	30	25	100	100	5	0.2-2.6	5.	(2)	2800	2800		F
FPT101	30	25	100	100	Ĭ	0,8-3,5	5	(20)	2800	2800		F.
FPT102	50	25	100			0,1-25 nA		0,1	200	200		F
		0						μW)	,			
FPT110	30	25	100		·	0,2-1,8	5	(5)	2800	2800		F
FPT120	15	25	100			0,4-4,5	5	(1)	18000	18000		F
FPT120C FPT130	11 15	25 25	100 100			16-25 0,4-2,7	5	(5)	18000 18000	18000 18000		F
FPT131	15	25	100			0,4-2,7	. 5 _.	(1) (5)	2800	2800		F
FPT132	10	25	100			0,2-1,5	5	(1)	18000	18000		F
FPT136	15	25	100		-	0,1-0,88	5	(5)	2800	2800		F
FPT137	10	25	100			0,2-0,9	5	(1)	18000	18000		F
FPT220	20	25	100			1-2	5	(1)	18000	18000		F.
FPT230	20	25	100			0,6-1,2	5	(1)	18000	18000		F
FPT320	20	25	100			0,75-2,25	5	(1)	18000	18000		F.
FPT330 FPT400	20 30	25 25	100			0,45-1,35 7,5-12	5	(1)	18000 0,1 ms	18000 0,1 ms		F
FPT410	30	25	100			5-8	5	(1)	0,1 ms	0,1 ms		F
FPT500	45	25	100			1-6	5	(1)	3000	3000		F
FPT510'	45	25	100			0,5-3	5	(5)	3000	3000		F
FPT520	30	25	100			5-18	-5	(1)	10000	10000		- F
FPT530	30	25	100			3-12	5	(5)	10000	10000		F
FPT540	12	25	100			8-30	5	(1)	18000	18000		F
FPT550 FPT560	12 30	25 25	100		,	8-24 15	5	(5) (0,5)	18000 0,1 ms	18000 0,1 ms		F
FPT570	30	25	100			6	5	(0,5)	0,1 ms	0,1 ms	-	F
FPT610	30	25	100			1,4	5	(5)	2800	2800		F
PT630	30	25	100			0,9	5	(1)	18000	18000		F
<px80-89< td=""><td></td><td>50</td><td>100</td><td>200</td><td>25</td><td>0,6-5</td><td>5.</td><td>1000</td><td>5000</td><td>5000</td><td>850</td><td>TESLA</td></px80-89<>		50	100	200	25	0,6-5	5.	1000	5000	5000	850	TESLA
(P101	32		50	100	32	1	6	3200				TESLA
<p102 _14F1</p102 	32 25		50	200 100	50 10	0,3-0,8 15	6	3200	75000	50000		TESLA
14F1 14F2	25		1-	100	10	5		(1) (1)	75000	50000		GE
14G1	45			100	10	0,6		(1)	5000	5000		GE
_14G2	45			100	10	0.3		(1)	5000	5000		GE
.14G3	45			100	10	1,2		(1)	5000	5000		GE
.14H1	60			100	10	0,5		(10)	2000	2000		GE, Mot
_14H2	30			100	10	2		(10)	2000	2000		GE, Mot
.14H3	60 30			100	10	2		(10)	2000	2000		GE, Mo
.14H4 .PT100	30			100 2	10 5	0,5 0,3-3,9	5	(10)	2000	2000		GE, Mo
_PT110	30			2	5	0.3-3.9	5	(5) · (5)	ļ į			Li Li~
S600	50		50	25	30	0,2-2,4	5	3380	8000	6000	900	TI
S602	40		50	25	30	0.5	5	3380	8000	6000	900	Ti
S611	50		50	25	30	0.5	5	3380	8000	6000	900.	Ti
S612	50		50	2,5	30	1	5	3380	8000	6000	900	Ti
S613	50		50	25	30	2	5	3380	8000	6000	900	TI
S614	50		.50	25	30	3	5	3380	8000	6000	900	TI TI
.S615	50	•	50	25	30	4	5	3380	8000	6000	900	ŢI
_S616 _S617	50 50		50 50	25 25	30 30	5	5	3380	8000	6000	900	TI Ti
-S617 -S618	50 50	·	50 50	25 25	30	6 7	. 5 . 5	3380 3380	8000	6000	900	TI.
LS619	50		50	25 25	30	8	. 5	3380	8000 8000	6000 6000	900	TI TI
MAL 100	30	50	200	100	5	0.2	5	(2)	4000	5000	300	ME
MEL11	30	100	300	200	5	0,5-10	3	(2)		0.08 ms		ME
		100	300	500						. 7		

Тур		/ _{СМ}	P _z [mW]	/co při [nA] -	U _{CE} [V]	/ _C phi	CE 8	E (X)	t, [ns]	t _f	i (nm)	Výrobce
								(mW/ cm²)				
MEL31	30 30	50 50	200 200	50 50	5 5	0,01-0,035 0,03-0,1	5 5	(2) (2)	10000 10000	10000 10000		ME ME
MEL32 MEL78	30	25	50	100	5	0,03-0,1	5	(2)	3000	3000	-	ME
MRD160	40			100	20	1,5	·	(5)	2000	2000		Mot
MRD300	50			25	20	7,5		(5)	2000	2000		Mot
MRD310	50			25 100	20	2,5		(5)	2000 2000	2000 - 2000		Mot Mot
MRD360 MRD370	40 40			100	10	20 10		(0,5) (0,5)	2000	2000		Mot
MRD450	40			100	20	4		(5)	2000	2000		Mot
MRD601	50			· 25	. 30	1,5		(20)	2000	2000		Mot
MRD602	50			25	30	3,5		(20)	2000	2000		Mot
MRD603 MRD604	50 50			25 25	30	6 8,5		(20)	2000	2000	l	Mot Mot
MRD14B	12			100	12	2		(2)	2000	2000		Mot
MRD3050	30			100	20	0,2		(5)	2000	2000	ĺ	Mot
MRD3051	30			100	20	0,2		(5)	2000	2000		Mot
MRD3054 MRD3055	30			100 100	20 20	1,2 1,8		(5) (5)	2000 2000	2000		Mot Mot
MRD3056	30			100	20	2,5		(5)	2000	2000		Mot
MT1	30	40	200	1		0,56	5	(1)	2000	2000	900	GI
MT2	30	40	200	1		1,4	5	(1)	2000	2000	900	GI
MT8020 · OP300	30 15	40	200	1,5 250	10 10	0,35	5	(1)	2500 20000	1800 20000	900 840	GIO
OP300	15			250	10	0,8 0,8-2,4	5	(1) (1)	20000	20000	840	0
OP302	15			250	10	1,8-5,4	5	(1)	20000	20000	840	Ö
OP303	15			1000	10	3,6-12	5	(1) -	20000	20000	840	0
OP304	15 15	· '	1	1000	10	7-21 14-43	- 5 - 5	(1)	20000	20000 20000	840 840	0
OP305 OP500	30			1000	10 15	1	5	(1) (20)	5000	5000	840	0
OP530	15			100	10	0,5	5	(0.5)	20000	20000	840	Ō
OP600	- 50			25	10	8,0	5	(20)	2500	2500	840	0
OP601	50			25	10	0,5-3	5	(20)	2000	2000	840	0
OP602 OP603	50 50			.25 25	10 10	2-5 4-8	5	(20)	2000 2500	2000 2500	840 840	0
OP604	50			25	10	7-22	5	(20)	2500	2500	840	Ö
OP640	25			100	10	0,8	5	(20)	2500	- 2500	840	0
OP641	25	-		100	10	0.5-3	5	(20)	2000	2000	840	0
OP642 OP643	25 25			100	10 10	2-5 4-8	5	(20)	2000 2500	2000 2500	840 840	0
OP644	25			100	10	7-22	5	(20)	2500	2500	840	Ö
OP700	25		۵	100	10	8,0	5	(20)	5000	5000	840	0
OP701	25		1	100	10	1,5	5	(20)	5000	5000	840	0
OP702 OP703	25			100	10 10	3	5	(20)	5000 5000	5000 5000	840 840	0
OP800	30			100	10	0,8	5	(5)	4000	4000	840	Ŏ
OP801	30			100	10	0,5-3	5	(5)	4000	4000	840	0
OP802	30			100	10	2-5	5	(5)	4500	4500	840	0
OP803 OP804	30 30			100	10 10	4-8 7-22	5	(5) (5)	5000 5500	5000 5500	840 840	0
OP805	30		i .	100	10	15	5	(5)	6000	6000	840	Ö
OP830	15			1000	10	15	5	(0,5)	20000	20000	840	0
OT13L	15	20	150	50	10	0,5-5	10	30	1800 5000	1200 5000	700	OKI
SFH305 SFH500	32 15	50 20	75 100	3 1	25 10	1-3,2 0,7	5	1000	250	250	850 1100	S
SP201	32		50	100	15	0,25	5	1000	5000	5000	780	NDR
SP201A	32		50	100	15	1,2-3,3	5	1000	5000	5000	780	NDR
SP201B SP201C	32 32		50 50	100	15	2,7-5,7 4,7-8,4	5	1000	5000 5000	5000 5000	780 780	NDR
SP201D	32		50	100	15 15	4,7 -8,4 7	5	1000	5000	5000	780	NDR NDR
SP211	50		50	100	25	0,25	5	1000	5000	5000	850	NDR
SP211A	50		50	100	25	0,4-0,8	5	1000	5000	- 5000	850	NDR
SP211B	50. 50		50 50	100	25	0,6-1,2	5 5	1000	5000 5000	5000	850	NDR
SP211C SP211D	50		50	100 100	25 25	1-2 1,6-3,2	5	1000	5000	5000 5000	850 850	NDR NDR
SP212A	50		100	100	25	0,4	5	1000	4000	4000	850	NDR
SP212B	50	1	100	100	25	0,6	5	1000	4000	4000	850	NDR
SP212C	50		100	100	25	1	5	1000	4000	4000	850	NDR
SP212D T10	50 20		100	100 i	25 1,5	1,6 0,0007	5 9	1000	1800	4000 1200	850 700	NDR OKI
T36	10	5	50	100	1,5	0,0007	9	100	1800	1200	700	OKI
TIL78	50		50	-25	30	1-7	5	(20)	8000	6000		ΤI
TIL81	30	50	250	100	10	5-22	5	(5)	8000	6000		T!
TIL89 TIL609	30 50	50	250 50	100 25	10 30	1-5 0,5-3	5	(20)	8000 8000	6000 6000	900	TI TI
TIL610	50		50	25	30	0,5-3 2-5	5	(20)	8000	6000	900	TI
TIL611	50		50	25	30	4-8	5	(20)	8000	6000	900	.TI
TIL612	50		50	25	30	7	5	(20)	8000	6000	900	TI
TIL621	50		50	100	30	0,6	5	(5)	8000	6000	900	TI-
ลริสวิก												
až 630 2N5777	25			100	12	4 ((2)	75000	50000		Mot, GE

•

ур	I _F	P 2	UCEO (UR)	c (F)	Pz	/co (R	o) při	Ic/IF	\dot{t}_r, t_t	Uizol	Výrobce
						UCE	1				١.,
	`	[mW]	[V]	[mA]	[mW]	[nA]	[V]	[%]	[µS]	[kV]	
AOD 101A	20			-		(2000)	15)	1	0,1	0,1	SSSR
AOT D2A	40			,	300	(1000)	30)	50		0,5	SSSR
CNC	40	150	· 5					5	900	5	PLR
P16 CNS	40	150	5.					5	900	5	PLR
P16 CNS	40	150	30					2	20	1,5	PLR
217						.		10	10	10	PLR
CNS 218 .	50	50	15			ŀ					
CNX21 CNX35	50 100	100 200	30 30	25 100	100 200	50 50	10	20 40	3	10 4,4	V
CNX36	100	200	30	100	200	50	10	80	3	4.4	V V
CNX38 CNX48	100	150 200	80 30	100 100	200	50 100	10	70 20000	3	4,3 4,3	١v
CNY17	60	100	70	50	150	5	10	40-320	2	4,4	S, GE
CNY18 CNY21	60 50	100	32 32	100 50	150 130	2	10	16-125	2,2,5 3,4	0,5 10	S, Tfk
CNY22	30	50	50	30	200			25	,,,,	2,8	М
NY23	30	50	30	30	200			50		2	М
CNY24	50	120	32	50	130	100	1,0	100	4,7	,10	Tfk
CNY28 CNY29			30 25			100 100	10 10	12,5			GE GE
CNY30		1	200	20			"		\ · · ·	2,5	GE
CNY31		l .	30			100	10	400		3,5	GE
CNY32 CNY33			30 300			100	10 200	20		3,5 1,5	GE
CNY34		ļ	400	20		100				2,5	GE
NY35			30	l		200	10	10		0,95	GE
CNY36 CNY37	60 60	100 100	32 - 32	100 100	150 150			4	4,3 4,3		Tfk Tfk
NY42	30	50	50	30	200			25 -	1,0	2,8	M
CNY43	30	50	30.	30	200		-	50		2	M.
CNY44	30	50 50	50	30.	80	,		30 30		1 1	M M
CNY46 CNY47	30 30	100	50 30	30 30	150	100	10	20-40		2	M,GE
CNY48	60	100	30	100	150	100	-10	600		1,5	M,GE
CNY50	100	150	35	100	150	100	20	25-40	5	5	\ V
CNY51 CNY62	100	150	70 50	100	200	100	10	100 25	3.	5,3	GE V
CNY63	100	150	30	100	200	100	10	50	5	4,3	v
CNY64	75	120	32	50	130		ļ	100	7	8,2	Tfk
CNY65 CNY66	75 75	120 120	32 32	50 50	130			100	7 7	11,6	Tfk Tfk
CNY70	60	100	32	50	100	١.		. 4	'	'	Tfk
CNY75	60 40	100 20	70 8	100	150	,		100 5	· 10	10 0,5	Tfk PLR
3P				'	-						1
CQ12 3P	40	20	5					5	10	1,5	PLR
CQ13 3P	60	90	. 8					10 .	· 10	5	PLR
CQ15	40	80	8					15	10	0,5	PLR
3P CQ22	100							5	1	5	PLR
3P CQ32	40	150	25					10	0,4	10	PLR
BP . CQY	60	100	32	50	150			90	7	4,4	Tfk
ON CD	60	250	20	25				10	4	1,5	, '''' F
310 CD	60	250	20	25				10	4	1,5	F
310A				ŀ							
CD 10B	60	250	20	25				10	4	2,5	F
CD. 110C	60	250	20	25				10	4	5	, F
CD B10D	60	250	20	25				10	4	6	, F
CD 20A	60	250	30	25				20	2,5	1,5	F
CD 120B	60	250	30	25				20	2,5	2,5	F
CD 320C	60	250	30 .	25				20	2,5	5	F

Тур	lç	Pz	U _{CEO} (U _R)	[c (F)	Pz	Ico (R		ldle	t _{ri} t _t	U _{izol}	Výrobce
	[mA]	[mW]	[v]	[mA] [*]	[mW]	[nA]	[V]	[%]	[µs]	[kV]	
FCD	60	250	30	25				50	3	1,5	F
825A FCD 825B	60	250	30	25				50	3	2,5	F,
FCD 825C	60	250	30	25				50	3	5	F
FCD 825D	60	250	30	25				50	3	6	F
FCD 830A	60	250	30	25				20	1,6	1,5	F
FCD 830B	60	250	30	25				20	1,6	2,5	F
FCD 830C	60	250	30	25				20	1,6	5	F
FCD 830D	60,	250	30	25		,		20	1,6	6	F
FCD 831A	60	250	30	25		٠		10	1,6	1,5	F
FCD 831B	60	250	. 30	25			ď	10	1,6	2,5	·F
FCD 831C	60	250	30	25				10	1,6	5	F
FCD 831D	60	250	30	25				10	1,6	6	F
FCD 836	60	250	20	25				6	1,6	1,5	· F -
FCD 836C	60	250	. 20	25			(·	6	1,6	5	F
FCD 836D	60	250	20	25				6	1,6	6	F
FCD 850	80	250	30	125				100	15;150	1,5	F
FCD 850C	80	250	30	125				100	15;150	5	F
FCD 850D	80	250	30	125				100	15;150	6	F
FCD 860	80	250	30	125				200	80,150	1,5	F
FCD 855 FCD	80	250 250	55 30	125				100	15;150 80;150	1,5	F
865 H11A1		250	30	123		50		50	2	1,5 2,5	GE,Mot
H11A2		٠	30			50	•	20	2	1,5	GE,Mot
H11A3			30			50		20 10	2	2,5	GE GE
H11A5			30 30			. 50 100		30	2	1,5 1,5	GE
H11		ļ	30			- 50		10	, 2	1,5	GE
A10 H11A			30			50		- 20	2	5,65	GE
520 H11A			30			50		50	2	5,65	GE
550 H11A 5100			. 30			50	·	100	2	5,65	GE
H11 AA1			30		•	100		20	. 2	1,5	GE
H11 AA2			30			200		10	2	1,5	GE
H11B1 H11B2			25			100 100	-	500 200	125;100		GE
H11B3 H11B			25 25 25			100 100 100		100 100	125;100 125;100 125;100	1,5	GE GE GE
255 H11C1			200	20		50			1	2,5	GE
H11C2 H11C3			200 200	20 30		50 50			1	1,5 1,5	GE GE
H11C4	1		400	20		100			1	2,5	GE
H11C5			400	20		100			1	1,5	GE
H11C6		l	400 300	30		100 100		20	1 5	1,5 2,5	GE GE
H11D2			300			100		20	5	1,5	GE
H11D3			200			100	l	. 20	5	1,5	GE
H11D4			200			100		10	⁻ 5	1,5	GE
H13A1 H13A2			30 30			100 100			5	•	GE
H13A2		1	25			100			5 150		GE GE
H13B2			25	1		100			150	·	GE
	1	<u>t</u>	1:	L	1		L	L	L	L	1

Тур	l _F	Pz	U _{CEO} (U _R)	(c (f)	Pz	Ico (R Uce		Idle	t _e ,t _e	U _{izot}	Výrobce
•	[mA]	mW]	[v]	[mA]	[mW]	[nA]	Įνj	[%]	las)	[kV]	
H11F1 H11F2 H11F3 H15A1 H15A1 H15B1 H15B2 H17A1 H17B1 H20A1 H20A2 H20B1 H20B2 H74A1 H74C1 H74C2	20 20 20 20 20 20		30 30 15 30 30 25 25 30 25 30 25 25 15 (200) (400)	0,05 1 0,2 0,05 2,5 1		100 100 100 100 100 100 100 100 100		10 400 200	15 15 15 3 125;100 125;100 5 150 5 150	2,5 2,5 1,5 4 4 4 4 4 1,5 1,5	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
HCPL 2502	25	45	5	8	100	3	5,5	15-22	0,2;0,3	3	HP
HCPL 2530	25	45	15	8	35	3	5,5	7-8	0,3;0,4	3	НР
HCPL 2531	25	45	15	8	35	3	5,5	19-24	0,2;0,3	3	, HP
HCPL 2601	20		7	25	40				0,025; 0,015	3	HP
HCPL 2602	60		7	25	40				25;15 ns	3	HP
HCPL 2630	10		5	16	60			700	25 ns	3 .	HP
HCPL 2730	20	35	7	60	100	10	7	1000	5;10	3	НР
HCPL 2731	20	35	18	60	100	5	18	1000	25;20	3	НР
HCPL: 2770	20		20	40	50	5	18.	500	25;35	1,5	НР
IL1 IL5 IL12 IL15 IL16 IL74 IL100 IL101 ILA30 ILA55 ILC	100 100 100 100 100 100 10 10 60 60 60		30 30 30 30 30 30 30 55 30	100 100 100 100 100 100 100 60 60 60		50 250 250 100 100 500	10 5 5 5 5 5 5 5	20 50 10 6 6 12,5 1000 1000 100 100	-0,075 0,2	2,5 2,5 1,5 1,5 1,5 2,5 1,5 1,5 2,5	
A2-30 ILC	60		55	60		100	5	100		2,5	Li
A2-55 ILCT6 ILD74 ILQ74 MB101 MB 104A	60 100 100 50 40		30 20 20 15 70		50 200	100 500 500 500 500	10 5 5 5 10	20 0,125 0,125 4 40	5 2	1,5 1,5 1,5 5 4,3	Li Li Li NDR NDR
MB 104B	40		70		200	50	10	100	2	4,3	NDR
MB 104C MB110 MB111 MB123	100 30 50		(50) (3) - 15	(100)	50 100 100	(50)	(20)	0,2	0,5 0,1 5	4,3 2 2,8	NDR NDR NDR NDR
MB125 MCA -230	50 60	90	16 30	125	210	1	10	400	10 5;35	2,5	NDR GI,Mot
MCA 231	60	90	30	125	160	1	10	400	80	3,5	GI
MCA 255	60	90	55	125	210	1	10	400	5;35	2,5	GI,Mot
MCL 601	20	100	15	30	100			:	0,01	2	GI
MCL 611	20	100	15	30	100				0,01	2.	GI
MCS2 MCS 2400	60 60	90 90	(200) (400)	(150) (100)	200 200	(200) (200)	,		7 7	3,5 3,5	GI GI
MCS 6200	60	90		(150)	200	(20)			10	1,5	GI
MCS 6201	60	90		(150)	200	(20)	4.5		10	2,5	GI
MCT2 MCT2E MCT6 MCT26	60	200 200 100 200	30 30 30 30	50 50 30	200 250 150 200	5 5 5	10 10 10 5	60 60 50	0,3 0,175 2,4 2	1,5 3,5 1,5 1,5	GI,Mot GI GI GI

Тур -	l _F	Pz	U _{CEO} (U _R)	(c (f)	Pz	Ice (a Uce		ld F	t _r ,t _f	U _{izol}	Výrobce	
	[mA]	[mW]	[V]	[mA]	[mW]	[nA]	[V]	[%] ·	(µs)	[kV]		
MCT66	60	100	30	30	150	5	10	15	2,4	1,5	GI	
MCT4 MCT	·40 60	90 90	30 30		200 200	5 15	. 5	35 225	2 4;5	1 2,5	GI GI	ľ
210 MCT	60	90	30		200	. 5	10	67	4,9	3,5	GI	
271 MCT	60	90			200	5	10	115	6	3,5.	GI	
272	٠		30					(A)				
MCT 273	60	. 90	30	1.	200	5	10	200	7,6	3,5	GI	
MCT 274	60	90	30		200	5	10	305	9,1	3,5	GI	
MCT 275	60	90	80		200	5	10	125	4,5	3,5	GI	
MCT	60	90	30		200	5	10	30	2,4	3,5	GI	ĺ
276 MCT	60	90	. 30		200	5	10	100	15	2,5	GI	l
277 MID	25	45	7	20	70	150	5,5		1000	3,5	GI	
400 MOC	10		30	45				300		1,5	Mot .	
119 MOC	10		30	5				20		5	Mot	
1005						_						
MOC 1006	10		30	3				10	,	5	Mot	l
MOC 3010	8		(250)							7,5	Mot	١
MOC 2011	5		(250)	í						7,5	Mot	l
MOC .	10		80	45				300	- :	1,5	Mot	l
MOC -	10		80	60			·	500		1,5	Mot	١
8050 OC22	50		10	×-	100	100	8		ľ	1	ОКІ	
OPB 120	50					100	10		2,5		0	
OPB 125	50			,	İ	250	10		80	:	0	
OPB 242	50					100	10		2,5		0 .	
OPB	50					300	10				0	
243 OPB	50					100	10		2,5		0	
253 OPB	40					100	10		10		0	ľ
700 OPB	40					100	10		80		0	ŀ
703 OPB	50			^		250	5		80		0	ŀ
:705 OPB	50					100	5		10		0	
710		١.										
OPB 730	50					250	5		80		0.	
OPB 804	20					100	10		5		0 -	
OPB 806	15				,	25	30		2,5	-	0,	
OPB 810	40					100	10		5		0	
OPB 813	20					100	10		5		٥	
OPB -	20	'				100	10		5	- 11	0	
814 OPB	20					100	10		5		0	
815 OPI	10					100	20	25	3	1	0	
102 OPI	10					100	20	100	3	1	0	
103 OPI	20		÷			100	10	12,5	2	10	0	
110												
OPI 113	10			'	.)	100	10	50	3,25	10	0	
OPI 120	30					100	10	20	2	15	0	-
OPI 123	10					100	10	50	3,25	15	0	
OPI 130	10		-			100	10 -	200	50	1	0,	
OPI	40		,			50	10	15	2	1	0	
140	1.		<u> </u>					<u> </u>	<u> </u>		<u> </u>	

Тур –	I _F	Pz	U _{CEO} (UR)	(c (F)	Pz	I _C o (In		ldle	t _r ,t ₁	U _{izoi}	Výrobce
	[mA]	[mW]	[V]	[mA]	[mW]	[nA]	[V]	[%]	[#£S]	[kV]	*
OPI	50					100	10	10	2	50	0
150 OPI	50					100	10	25	3,25	50	0
153 OPI	10			٠, '		100	10	2	2	1,5	0
2150 OPI	10		•			100	10	10	2	1,5	- 0
2151 OPI	16		•		-	50	10	20	3	1,5	0
2152 -							· .				
OPI 2153	16					50	10	50	3	1,5	0
OPI 2250	10	,				100	10	, 2	2	2,5	
OPI 2251	10					100	10	10	2	2,5	
OPI 2252	16	, ,				50	10	20	3	2,5	0
OPI 2253	16		*	ľ		50	10	50 .	. 3	2,5	0
OPI 2500	10			· ;		50	10	12,5	2	1,5	0
OPI 3150	10					100	10	300	3;25	1,5	0
OPI	10		-			100	10 -	300	3;25	1,5	0
3151 OPI	10		-			100	10	300	.3;25	1,5	0
3152 OPI	10					100	10	500	3;25	1,5	0
3153 OPI	10			-		100	10	300	3;25	2,5	0
3250 OPI	10			i I		100	10	500	3;25.	2,5	0
3253 OPI	16	·				100	10	20	3	5,5	
5000 OPI	10					100	10	10	3	5,5	0
5010 SFH	60	100	70	100	150		"	40-320	, ,	2,8	° s
600			-						2;2,5		
SFH 601	60	100	70	150	150			40-320	2	5,3	S ,
TIL 102	40	300	35	50		. 6	20	20-60] 3	1"	TI.
T1L 103	40	300	35	50		6	20	100-150	6	1	TI
TIL 107	15					25	30	3-6		1	TI
TIL 111	100	150	30		150	1	10	12,5- 40	2	1,5	TI,Mot
TIL 116	100	150			150	1	10	20-50	2	2,5	l II
TIL 112	100	150	20		150	1	- 5	2-20	. 2	1,5	ТІ
TIL 113	100	150	30		150	100	10	300	50	1,5	TI
TIL	100	150	30		150	1	10	1000 50-100	2	2,5	·TI
117 TIL	100	150	20		150	100	5	10-20	2	1,5	T)
118 TIL	100	150	30		150	100	10	300-	50	1,5	TI
119 TIL	100	150	30		150	1	10	1000	2	5	TI.
124 TIL	100	150	30		150	1	10	,	2	5	τı
125 TIL	100	150	30		150	1	10		2	5	TI .
126 ~ TIL	100	150	30		150	100	10	300	50	5	TI
127 TIL	100	150	30		150	100	10	300	50	5	Ti
128 TIL	100	150	30		150	1	10	12,5-40	2	2,5	''
153	١.	-	*						-		
TIL 154	100	150	30		150	1	10	20-50	2	2,5	TI I
TIL 155	100	150	30		150	1 .	10	50-100	2	2,5	TI -
TIL 156	100	150	30 .		150	100	10 -	300- 1000	50	2,5	TI
TIL 157	100	160	30		150	100	10	300- 1000	·50	2,5	TI
	Ľ		<u> </u>					<u> </u>			

Гур	1 _F	Pz	U _{CEO} (UR)	/c (F)	Pz	Ico (R		Idl _F	trite	U _{izol}	Výrobce
	[mA]	[mW]	[V]	[mA]	(mW)	[nA]	[V]	[%]	[#s]	[kV]	
WK 16412	30		. 20		100	100	30	2-50	. 15	4	TESLA
WK 16413	20	50	20		50	100	10	60-1000	125	2,5	TESLA
4N22	40	li	35	50	300	100	20	25-40	15	1	TI.O
4N23	40		35	50	300	100	20	60-80	15	1	TI,O
4N24	40		35	50	300	100	20 1	00	20	1	TI,O
٠.								-150			
4N25	80	150	30	· ·	150	1	10	10-20	2	2,5	TI,O,
									l.		GE,Mot
4N26	80	150	30		150	1	10 ,	20	2	1,5	Li,F,
							ŀ	/			Tfk,GI
4N27	80	150	30		150	1	10	10	2	1,5	S,TI,
											O,Mot
4N28	80	150	30		150	1	10	10	2	0,5	TI,O,
48100	ا ۱	460			450	400					TFK,GI
4N29	80	150	30		150	100	10-	100	0,6;17	2,5	GI,O,
4N30	80	150	30	١,	150	100	10	100	0.6.17	1.5	GE,F ₫
41130	**	130	30		130	100	10	100	0,6;17	1,5	GI,Li, O.F
4N31	80	150	30 -		150	100	10	50	0,6;17	1,5	Gl.O.
	"	""	•	İ .	""	100	٠ `` ا	30	0,0,17	1,0	F,Li
4N32	80	150	30		150	100	10	500	0.6:45	2,5	Gi,O.F.
· -			- 7				"	330		-,0	GE,Li

Тур	l _E	Pz	U _{CE0} (U _R)	/c (∮ F)	ρz	Ico IR		1dle	t _r ,t _t	Uizol	Výrobce
	[mA]	[mW]	[V]	[mA]	[mW]	[nA]	[V]	[%]	[# \$]	[kV]	
4N33	80	150	30		150	100	10	500	0,6;45	1,5	GI,GE, F.Li,O
4N35	60	100	30	100	300	5	10	100	3	2,5	GI,GE,F, Tfk,S
4N36	60	100	30	100	300	5 -	10	100	3	1,75	S,Tfk, Gl.GE
4N37	60	100	30	100	.300	5	10	100	3	1,05	F,S, .Tfk,G1
4N38	20		. 80			50	60	20	2	1,5	GE, Mot,O
4N39	14		(200) -	j		50	l		1	1,5	GE
4N40	14	١.	(400)]	150			1	1,5	GE
4N45	20	35	7	60	100	1	5	200- 1200	5;80	3	HP
4N46	20	35	20	60	100	1 .	18	200- 1500	5;80	3	HP
4N47	40		35	50	300	6	20	800	110	1	TI
4N48	40		35	50	300	6	20	800	10	1	TI,
4N49	40		35	50	300	6	20	800	10	1	וז /
6N134	20	35	7	, 25	40				0,035	1,5	HP
6N135	25	45	15	8	100	3	5,5	7-18	0,5	3	. HP
6N136	25	45	15	8	100	3	5,5 1	19-24	0,4	3	HP
6N137	10		7	50	85	-			0,025	3	HP
6N138	20	35		60	100	10	5	B00-600	5	3	HP,GI
6N139	20	35	18	60	100	10	18	100-900	1;4	3	HP,Gi

Obvody se svítivými diodami

V další části si uvedeme různé obvody s diodami svítícími ve viditelném spektru světla, pro něž budeme používat označení LED. V současné době jsou nejběžnějšími LED diody červené s vinovou délkou $\lambda=630$ až 780 nm, diody oranžové s $\lambda=600$ až 630 nm, žluté s $\lambda=570$ až 600 nm a zelené s $\lambda=530$ až 570 nm. Firma Siemens připravuje do výroby diody modré s $\lambda=470$ nm a v budoucnu je možné očekávat i diody fialové s $\lambda=380$ až 400 nm. Fa Texas Instruments inzeruje i diody hnědé (jantarové) s $\lambda=620$ nm. Někteří výrobci kombinují některé barvy, takže v jednom pouzdře jsou dvě diody s různou barvou, z nichž jedna svítí při jednom směru proudu a druhá při opačném.

Dříve než se seznámíme s obvody LED, povíme si něco o tom, jak lze zjistit vlastnosti "neznámých" LED. Velmi zajímavým parametrem při ověřování LED je závěrné napětí $U_{\rm R}$. Většina LED má toto napětí minimálně 3 V (až na diody SSSR - viz tab. 10), a tedy pokud není zřejmé, který z vývodů je katoda, je nutné pro zkoušení použít zdroj s napětím do 3 V, aby se LED nezničil. Pokud při tomto napětí teče diodou proud řádu až desítek μA, je dioda připojena v závěrném směru. Do série s diodou pak zapojíme rezistor asi 150 Ω vývody diody obrátíme - je-li dobrá, měla by se rozsvítit. U zelených, oranžových a žlutých diod je nutné napětí v propustném směru (pokud jsme ho bezpečně určili) pomalu zvět-šovat až asi na 5 V. Proud diodou by měl být 1 až 20 mA.

LED jako referenční dioda

Úbytek napětí na LED závisí na typu diody a mění se podle typu od 1,4 do 2,2 V při proudu diodou od 5 do 10 mA. Zvýší-li se teplota okolí o 1 °C, zmenší se úbytek napětí při konstantním prou-

Obr. 30. LED jako referenční dioda

du asi o 1,5 mV — teplotní součinitel LED je tedy —1,5 mV/°C. Těchto vlastností lze s výhodou využít při konstrukci zdroje konstantního proudu (obr. 30). Teplotní součinitel LED a přechodu báze—emitor jsou přibližně stejné, takže působí proti sobě. Pro kolektoro-

vý proud platí rovnice: $I = \frac{U_{\text{LED}} - U_{\text{BE}}}{R} \setminus V$ Je třeba znovu upozornit, že napětí U_{LED} je závislé na typu LED.

Linearizace indikace s diodami LED

Řídíme-li LED analogově napětím, vzniká problém: LED se rozsvítí až při napětí asi 1,5 V. Zvětší-li se toto napětí o několik set mV, zvětší se jas a vyzářený výkon LED a ta se dostává rychle do oblasti saturace, neboť proud diodou se zvětšuje exponenciálně. Zapojíme-li však LED do zpětné vazby napětím řízeného zdroje proudu s operačním zesilovačem, je proud ILED diodou přímo úměrný řídlcímu napětí. Dioda D₂ v obr. 31a, zapojená antipara-

Obr. 31. a) linearizace průběhu s LED pro symetrické napájení, b) linearizace průběhu s LED pro nesymetrické napájení

lelně k LED, zabraňuje provozu v závěrném směru a omezuje závěrné napětí na LED na 0,7 V. Závislost mezi kladným řídicím napětím a proudem

LED je dána rovnicí: $I_{LED} = \frac{U}{R_1}$

Na obr. 31a je zapojení pro symetrické napájení a na obr. 31b pro nesymetric-, ké napájení.

Blikající LED

Stav LED na obr. 32 je závislý na logických signálech na vstupech A, B hradel. Je-li na vstupu B úroveň L (na vstupu A může při tom být úroveň L nebo H) LED nesvítí. Je-li na vstupu B úroveň H a na vstupu A úroveň L, svítí LED trvale. Při úrovni H na vstupech A i B začne kmitat multivibrátor z hradel H1 až H3 na kmitočtu asi 3,5 Hz, v jehož rytmu poblikává LED. Při napájecím napětí 15 V je odběr proudu 25 mA.

Obr. 32. Blikající LED

Řízení LED obvody TTL

Na obr. 33 je zapojení výstupního protitaktního zesilovače hradel a invertorů obvodů TTL. LED se v daném případě připojuje k výstupu přes R_s. LED se rozsvítí, bude-li na výstupu A úroveň L, tj. tehdy, vede-li tranzistor T₃ a T₂ je uzavřen. Rezistor R_s omezuje proud diodou. Když je LED zapojen mezi výstupem A a zemí, lze R_s vynechat. LED se rozsvítí tehdy, bude-li na výstupu A (bez připojené LED) úroveň

Obr. 33. Řízení LED obvody TTL

H: Je-li výstup A na úrovni L, pak povedou tranzistory T₁ a T₃; když bude na výstupu A úroveň H, budou tranzistory T₁ a T₃ zavřeny. V tomto stavu povede T₂, takže přes tento tranzistor a vně připojenou zátěž (v našem připadě LED) poteče proud. Napětí na diodě bude 1,5 V, takže na výstupu A nebude již úroveň H. Rezistor R₃ v IO pracuje jako předřadný pro LED. Kromě toho je proud LED omezen úbytkem napětí na diodě D₁ a saturačním napětím tranzistoru T₂. Toto zapojení je vhodné pro všechna standardní hradla a invertory TTL, kromě hradel s otevřeným kolektorem. U hradel s otevřeným kolektorem je nutné mezi zdroj a otevřený kolektor zapojit sériový omezovací rezistor asi 120 až 150 Ω.

Doutnavka s LED

Běžná doutnavka použitá jako indikátor se může připojit přímo na síťové napětí, přičemž její příkon je minimální. Jako indikátor sítě lze použít i LED s předřadným rezistorem, neboť doba života LED je podstatně delší než doutnavky nebo žárovky, navíc i její příkon je velmi malý (20 až 30 mW). Předřadný rezistor pro omezení proudu LED (při 220 V) musí mít zatlžitelnost asi 3,5 W, tato ztráta se promění v teplo. Vidíme, že použití předřadného rezistoru není nejlepším řešením, mnohem vhodnější je řešení na obr. 34.

Obr. 34. Doutnavka s LED

K omezení proudu je použit kondenzátor, který představuje odpor pro střídavý proud. Výhodou tohoto řešení je, že se v kondenzátoru neztrácí žádný výkon. Kapacitu kondenzátoru lze obecně spočítat pro jakékoli napětí, proud a kmitočet:

$$C = \frac{1}{6.28Uf}$$

kde C je kapacita kondenzátoru ve faradech, U je efektivní napětí ve V, f je kmitočet v Hz a I je efektivní proud, tekoucí LED v A.

Pro síťové napětí 220 V, kmitočet 50 Hz a proud LED 20 mA je kapacita kondenzátoru 270 nF. Provozní napětí kondenzátoru musí být minimálně dvojnásobkem síťového napětí (600 až 1000 V). Dioda D₂ zabraňuje tomu, aby napětí v závěrném směru nebylo nepřípustně velké.

Polovodičové odrazky na kolo

Velkým nebezpečím v nočním silničním provozu jsou cyklisté. Často kola nemají žádné nebo jen defektní koncové světlo. Pokud silnice není osvětlena, cyklisté se velmí špatně

Obr. 35. Odrazka na kolo

rozeznávají. To platí i pro mopedisty Zapojení na obr. 35 může tuto situaci podstatně zlepšit. Zapojení lze realizovat jednoduše, neboť se skládá pouze ze tří součástek. Skoro každé kolo nebo moped mají pro osvětlení k dispozici střídavé napětí 6 V. Proto jsou na obr. 35 zapojeny dvě diody LED antiparalelně, každá pro jednu půlvlnu. Odpor 220 Ω omezuje proud LED, neboť žárovky na kole bývají napájeny i z dynama, jehož špičkové napětí je až 30 V (nelze změřit běžným voltmetrem). V praktickém provedení použijeme pro tuto odrazku starou defektní žárovku, které odstraníme baňku, a diody s rezistorem připojíme na držák vlákna. Abychom chránili spoje před otřesy, tak odrazku po odzkoušení zalijeme průhledným epoxidem. Celek pak umístíme do pouzdra odrazky.

LED na 220 V

Vzhledem k dlouhé době života jsou LED často využívány jako indikátory. Nedostatkem LED je, že je lze bez dalších součástek použít jen pro malé napětí, jinak je třeba použít předřadníky. V předřadném rezistoru vzniká při průtoku proudu ztráta, která se mění v teplo. Pokud máme k dispozici střídavý proud, můžeme použít jako omezovač proudu kondenzátor. Abychom vyloučili problémy, které vznikají při připojování LED na 220 V, je v obvodu na obr. 36 zapojena paralelně s

Obr. 36. LED na 220 V

LED Zenerova dioda. Během záporné půlvlny je Zenerova dioda D₂ v propustném směru přepólována a pracuje tedy jako běžná dioda, takže napětí na LED v závěrném směru bude nevelké. Během kladné půlvlny omezuje D₂ napětí na D₁ a R₁ na 2,7 V. Použijeme-li místo Zenerovy diody obyčejnou diodu, pak se zkracuje doba života LED proudovými nárazy. Kapacita kondenzátoru určuje proud tekoucí diodou LED: při 100 nF je proud asi 4 mA a při 470 nF asi 20 mA.

Úsporná dioda LED

V době, kdy celý svět šetří energií, je aplikace LED, jímž teče proud 20 mA, neúsporná vzhledem např. k obvodům, CMOS, které mají spotřebu jen několik

μW, zejména u zařízení napájených z baterií. Jak tento problém vyřešit, ukazuje obr. 37. na němž je zapojení "úsporné" LED. LED je napájena proudovými impulsy 100 mA s periodou 625 ms. Tím se zmenší střední odběr proudu asi na 0,2 mA, takže odběr proudu bude 100× menší, než v běžném zapojení. Kondenzátor C1 se nabíjí přes R₂. Po dosažení napětí v propustném směru na diodách D₁ a D₂ dostane řetězec invertorů v IO, impuls, který v konečné fázi sepne tranzistor T₁. Pak dioda D₃ pracuje jako vybíjecí odpor pro kondenzátor C1. Během tohoto vybíjení je maximálně dosažitelný proud 100 mA. Po vybití C1 se uzavřou diody D₁ a D₂. Na vstupu a výstupu invertorového řetězce bude úroveň L. Tranzistor T1 se uzavře a celý cyklus se opakuje. Diody D₁ a D₂ je možné nahradit běžnými křemíkovými diodami. "V tomto případě je nutno zkontrolovat, zda je dosaženo správného spínání. R₃ v přívodu napájení lO₁ optimalizuje odběr proudu tohoto IO.

"Inteligentní" blikavé světlo

Blikavé světlo tohoto typu je zvláštností, zejména je-li zhotoveno z LED. K čemu je dobré? Může být vhodným dárkem pro dobrého přítele nebo přítelkyni jako doplněk k hi-fi zařízení. Blikavé světlo (obr. 38) se skládá z pěti diod a řídicího obvodu (Ize použít i deset diod, pak je třeba obvod jinak "programovat"). Vstup nulování/reset je pak připojen na jiný výstup IO₂ nebo není zapojen, zvětšuje se i počet výstupních zesilovačů s tranzistory, počet rezistorů a LED.

V základním zapojení svítí LED jedna po druhé - tedy jako "běžící světlo". Rychlost posuvu ize nastavit potenciometrem P₁. Změnou zápojení je možné dosáhnout i jiného průběhu svícení. Základní zapojení je vhodné např. k napodobení osvětlení stavebního místa v modelové železnici, nebo ho lze použít jako stupnici teploměru při použití jedné diody v každém koncovém stupni. Do báze T1 zapojíme katodu a do emitoru T₂ anodu diody. Katodu druhé diody dame do báze T₂ a anodu do emitoru T₃ atd. (obr. 38a). Při stavbě běžícího světla "vpřed-vzad" použijementalké jednu diody. Katodu použijementalké jednu diody. Katodu pro me také jednu diodu. Katoda první diody je připojena do báze T₁ a její anoda na vývod 3 IO2. Katody druhé a třetí diody jsou připojeny do báze T2. Anoda druhé diody je připojena na vývod 2 a anoda třetí diody na vývod 6 IO2. Stejně jsou zapojeny dvě diody do báze T₃ a do báze T₄. Anody diod jdoucích do báze T₃ jsou připojeny na vývody 4 a 5 IO₂ a anody diod z báze T₄ jsou připojeny na vývody 7 a 1 IO₂. Báze T₅ je spojena s vývodem 10 IO₂. Báze T₅ je spojena s vývodem 10 IO₂ přes jednu diodu, jejíž anoda je na vývodu 10 IO₂ (obr. 38b). Je samozřejmá že tyto diodu můžena soužej mé, že tyto diody můžeme rovněž

Obr. 38. Inteligentní blikavé světlo

připojit na ostatní vývody IO2. Je správné, je-li vstup nulování propojen s volným výstupem. V obvodu běžícího světla "vpřed-vzad" je vstup nulování propojen s vývodem 9 IO₂. Toto zapojení můžeme kombinovat se zapojením podle obr. 38a (diody mezi bázemi a emitory tranzistorů). Tak dostaneme originální světelný "vzorek"

Na obr. 38 je zapojení základní verze "inteligentního" blikajícího světla. 10, je zapojen jako generátor pravoúhlého signálu. Kondenzátor C₁ se jednou nabíjí a po druhé vybíjí. Tento cyklus se nastavuje potenciometrem P1 (kmitočet generátoru slouží jako hodiny pro IO_2). Výstupy IO_2 se v rytmu taktovacího kmitočtu mění na úroveň H, kterou se spínají tranzistory, přes které se rozsvěcí LED.

Bude-li konečně výstup Q5 na úrovni H. vede se tento signál na vstup nulování IO_2 IO_2 se "vynuluje" a rozsvítí se dioda D_1 . Rezistory R_5 až R_9 omezují proud diodami LED. Při 470 Ω a napájecím napětí 5 V je proud diodami LED asi 8 mA. Změnou předřadných rezistorů můžeme ovlivnit jas LED, ale nesmíme připustit, aby byl proud diodami větší než 30 mA. Napájecí napětí může být v rozsahu 5 až 15 V. Při napájecím napětí větším než 8 V můžeme na pozici 10, použít operační zesilovač MAA741.

Kontrola funkce

Jako indikátor činnosti zařízení lze použit LED s předřadným rezistorem jako voltmetr. Dokonalejší indikaci do-staneme, použijeme-li kombinovaný proudově napěťový indikátor (obr. 39).

Obr. 39. LED pro kontrolu funkce obvodu

Toto zapojení využívá skutečnosti, že červená a zelená dioda LED mají rozdílná napětí v propustném směru. Neodebírá-li spotřebič žádný proud, svítí jen červená LED, která má menší napětí v propustném směru, než LED zelená. Teče-li zatěžovací proud přes R₁, dostaneme na R₁ a D₂ větší úbytek napětí, dostatečný k rozsvícení-zelené LED. Pro návrh zapojení použijeme následující rovnice:

 $R_2 = U_B$. 100 Ω [Ω ; V], $R_1 = 0.5 \Omega / I$ [Ω A].

Odpor rezistoru R₁ musí být větší než 10 Ω. Zelená dioda slouží jako indikátor správné funkce přístroje. Lze ji umístit na čelním panelu.

Napěťová lupa LED pro zdroje 5 V

Při napájení obvodů TTL a mikroprocesorů je kritické napájecí napětí, jehož přípustné kolísání je ± 10 %. Také zde platí: důvěra je dobrá, ale kontrola je lepší. Napěťový indikátor s LED má v tomto případě mnohem lepší vlastnosti než voltmetr s měřidlem. Uvedené zapojení indikuje napětí 4,5 až 5,5 V (obr. 40) a funguje tedy jako "napěťová lupa". IO LM3914 má stejné vlastnosti jako LM3915, oproti LM3915 má však lineárně odstupňované výstupní napětí, sloužící k řízení diod LED. Retězec rezistorů na výstupu IO je tvořen deseti stejnými rezistory 1 kΩ. Potenciometry P₁ a P₂ a rezistory R₄, R₅, R₆ je nastaveno na "studeném" konci výstupního napěťového řetězce napětí 1,5 V a na "živém" konci napětí 1,8 V.

pro 5 V

Obr. 38a. Úprava pro teploměr

Obr. 38b. Úprava pro kroužící světlo

Obr. 41: Univerzální LED

dioda na obr. 41 chrání LED při změně polarity napájecího napětí, LED lze tedý napájet i střídavým napětím 5 až 20 V.

Indikátor vybuzení s LED

Indikátor vybuzení pracuje na principu voltmetru špičkového vstupního nápětí s dobou odezvy řádově několik ms. Sloupec diod LED slouží k indikaci této špičkové hodnoty, přičemž pro přenosovou funkci je využito třístupňové aproximace logaritmické křivky (obr. 42). Vstupní signál je zesílen tranzistory T₁ a T₂. Špičkové napětí usměrňují a zdvojují diody D₁ a D₂. Dioda D₁ je spojena se zemí pouze střídavě přes C₆, neboť to vyžaduje dané zapojení operačního zesilovače. Potenciometrem P2 můžeme nastavit dolní rozsah indikátoru vybuzení. Signál je přiveden na neinvertující vstup operačního zesi-

Obr. 40. Napěťová lupa 11/11 11 D. D_6 D, D 10M 10 250 390

Tím je dosaženo správného rozsahu indikace napětí (diody D₁ až D₁₀). První a poslední dioda jsou červené. Napájecí napětí obvodu je rovno napětí hlída-nému. Odběr proudu je 20 mA. Dioda D₁₁ chrání obvod před chybnou polaritou vstupního napětí. K nastavení obvodu je třeba digitální voltmetr a regulo-vatelný zdroj. Nejdříve nastavíme na zdroji přesně napětí 4,5 V a otáčíme P₂, až se rozsvítí jen dioda D₁. Tento postup několikráte opakujeme, až dosáhneme toho, že nastavení P1 neo-

Univerzálně použitelná dioda

Běžná dioda LED svítí jen tehdy, když je správně pólovaná. Předřadným rezistorem omezujeme proud diodou na 10 až 30 mA to má jeden závažný nedostatek: musíme měnit odpor. rezistoru při změně napájecího napětí. Místo předřadného rezistoru je proto výhodné použít FET, z něhož lze udělat zdroj proudu, spojime-li elektrodu G se S (emitorem). Podle typu FET je proud 11 až 14 mA při rozsahu napájecího napětí 5 až 30 V. Univerzální křemíková

lovače. Referenční napětí pro OZ je získáno pomocí diody D₉ (pouze při nesymetrickém napájecím napětí). Diody D_3 a D_4 kompenzují teplotní činitel diod D_1 a D_2 . Obvodem ve zpětné vazbě je určen průběh přenosové funkce. Odpory v jednotlivých větvích zpětné vazby určují stupeň strmosti charakteristiky a jednotlivé diody LED nebo Zenerova dioda bod zlomu charakteristiky? Tranzistor T₁₄ spolu s diodami D₆, D₇ a rezistory R₂₆, R₂₇ tvoří zdroj konstantního proudu. V klidovém stavu, tj. bez vstupního napětí, jsou tranzistory T₃ až T₁₃ otevřeny a zkratují diody D₁₄ až D₂₄. Diody D₉, D₁₂ a D₁₄ svítí trvale. Při zvětšujícím se vstupním signálu se tranzistory T₃ až T₁₃ postupně zavírají a tím se rozsvěcují jednotlivé diody. Je třeba věnovat pozornost diodě D7, neboť v nevybuzeném stavu: může být napětí na výstupu OZ 2 až 4 V, podle použitého OZ.

Pomocí zpětné vazby můžeme vytvořit libovolnou přenosovou funkci. Při

použití indikátoru vybuzení v magnetofonu nebo směšovacím pultu je vhodné použít zpětnou vazbu z obr. 42, neboť pak získáme velký lineární rozsah v horní části charakteristiky, tj. při úrovních kolem 0 dB. Pro aplikaci ve stereofonním zařízení je vhodné vybrat stejné Zenerovy diody podle obr. 42a.

Zenerovy diody podle obr. 42a.
Zapojení z obr. 42 je na desce s plošnými spoji podle obr. 43. Potenciometrem P₁ nastavíme úroveň 0 dB (380 mV) a potenciometrem P₂ dolní hranici vstupních napětí. Proud sloupcem diod LED je 20 mA, je určen zdrojem konstantního proudu T₁₄. Proud lze měnit rezistorem R₂₆.

Indikátor nulového napětí

Na obr. 44 je zapojení indikátoru nulového napětí s LED. Schmittův klopný obvod se zpětnou vazbou a hysterezí s proměnným poměrem impulsmezera (podle stavu nabíjení nebo vybíjení kondenzátoru C₁) je zde použit k indikaci nulového napětí. Nabíjecí a

Obr. 43. Deska s plošnými spoji S203 a rozložení součástek VU-metru

Obr. 44. Indikátor nuly

vybíjecí proud kondenzátoru C₁ veden pres odpory R₈ a R₇ na C₁. Výstupní napětí operačního zesilovače se střídavě mění od kladného do záporného napájecího napětí až do doby, kdy se vyrovná doba nabíjení a vybíjení C₁; vnější oscilátor dodává symetrické pravoúhlé napětí. Připo-jíme-li na R₅ dodatečné kladné vnější napětí, pak se vzniklý proud (přes Re) přičte k vnitřnímu nabíjecímu proudu a odečte od vybíjecího proudu. Při záporném vnějším napětí probíhá děj obráceně. Vnější napětí ± 50 mV postačí již k tomu, že se poměr impulsmezera u oscilátoru mění od 0 do 100 %, což je na výstupu indikováno střídavě blikajícími diodami. Obvod lze použít tam, kde potřebujeme hlídat malá napětí. V zapojení na obr. 44 je citlivost 50 mV. Při napětích větších než +50 mV a menších než -50 mV vysadí oscilátor, diody LED přestanou blikat a podle polarity napětí se rozsvítí jen iedna LED trvale. Citlivost obvodu můžeme zvětšit nebo zmenšit zvětšením nebo zmenšením odporu rezistoru R_7 (R_7 max. asi 3,3 M Ω). Při zmenšování R7 je vhodné zvětšit kapacitu kondenzátoru C1. Impedance zdroje, který je spojen s tímto indikátorem, smí být maximálně 10 kΩ při větší impedanći je nutné použít oddělovací stupeň.

Indikátor špičkového výkonu pro reproduktory

Dobré reproduktorové soustavy jsou v současné době málo citlivé na přetížení. Přesto je možné, že při krátkodobých špičkách napětí vzniknou v reprodukci signály neharmonických kmitočtů, které nejen že znepříjemňují poslech, ale za určitých podmínek mohou i zničit reproduktory. Optický indikátor špiček obvykle nepatří mezi základní vybavení zesilovačů, proto je vhodné ho do zesilovačů, proto je vhodné ho do zesilovačů vestavět. Indikátor na obr. 45 je možné připojit k přívodům k reproduktorům bez dodatečného zdroje napájecího napětí.

Obr. 45. Indikátor špičkového výkonu

Amatérsée AD 10 8/3

Obvod reagují jen na krátkodobá špičková napětí. Indikaci prahového vstupního napětí (nesmí být zaměňováno s indikací přetížení) je možné nastavit pro výkony 15 až 125 W na 8 Ω (14 až 45 V) nebo pro 30 až 250 W na 4 Ω.

Dodává-li zesilovač signál, pak se C2 nabije přes R₁ a D₁. Použité jednocestné usměrnění vyžaduje použít tranzistory s U_{CE0} = 45 V. V klidovém stavu jsou všechny tranzistory uzavřeny a diodou D₅ (LED) neteče proud. Cást vstupního napětí je přes potenciometr P₁ přiváděna do báze T₁. Dosáhneme-li výstupní napětí zesilovače kritické velikosti, otevře se tranzistor T_1 (a tím i T_2), takže se C₁ rychle nabije, T₃ začne vést a připojí zdroj proudu z R₉, R₁₀, D₃, D₄ a T₄, který udržuje proud diodou LED asi na 20 mA. Zmenší-li se výstupní napětí pod úroveň prahového napětí, nastaveného potenciometrem P1, uzavřou se tranzistory T₁ a T₂. Protože se C₁ vybíjí pouze přes R₇ a R₈, zůstanou T₃ a T₄ po dobu asi 1 s otevřeny a C₂ se vybijí přes D₅, T₄ a R₁₀. Zapojení má tu výhodu, že i při velmi krátkodobém špičkovém napětí se dioda viditelně rozsvítí. Je-li znám špičkový výkon zesilovače, pak lze z jednoduché rovnice vypočítat maximální špičkové napětí:

 $U_{sp} = \sqrt{2P_{sp}R_z}$. Při nastavování obvodu lze použít stabilní stejnosměrné napětí, které odpovídá špičkovému napětí vypočítanému z předchozí rovnice. Kladný pól napětí připojíme do spoje na R_1-P_1 . Pak otáčíme P_1 tak dlouho, dokud se nezačne rozsvěcet dioda D_5 . Aby T_4 nebyl dlouho zatěžován, je vhodné přívod napětí při nastavování odpínat. Obvod lze zapojit jak na výstup zesilovače, tak i na vstupní svorky reproduktorové soustavy.

Tester pro 7pólové konektorové zásuvky

Při připojení palubní sítě slouží u přívěsů k automobilům 7pólové zásuvky. Před každou jízdou má podle předpisu řidič zkontrolovat, zda u přívěsu svítí všechna světla, zejména však blikače, koncová a brzdová světla. Pokud tomu tak není, je třeba zjistit, zda je vadná žárovka nebo přívod. Příruční tester 7pólových zásuvek zkracuje podstatně vyhledání chyby. Na obr. 46 je zapojení takového testeru, který umožňuje kontrolovat obsazení kontaktů (při nové elektroinstalaci) i jejich funkci. Manipulace s ním je velmi jednoduchá - tester nasuneme do zásuvky a sledujeme jednotlivé diody: je-li na kontaktu zásuvky příslušné napětí, rozsvítí se příslušná dioda na testeru. Pro napětí baterie 6 V je R1 až $R_6 = 180 \Omega$ pro 12 V je to 380 Ω a pro 24 V 820Ω. Na vývod 58L je připojeno levé koncové světlo, na 58R pravé koncové světlo, na L levý blikač, na R pravý blikač, na 54 brzdová světla, na 54g vnitřní osvětlení a na 31 kostra vozidla.

Obr. 46. Zkoušeč autozásuvek

Zkoušeč obvodů 555

Integrovaný obvod 555 určený původně jako časovač našel mnohonásobné uplatnění. I když je 555 odolný proti nesprávné manipulaci, může se zničit. Zkoušeč na obr. 47 umožňuje jednoduše zkontrolovat funkčnost obvodu 555. Testovaný obvod je zapojen jako multivibrátor. Připojíme-li zkoušeč přes S₁ na napájecí napětí, nabije se přes R₁ a R₂ kondenzátor C₁. Dosáhne-li napětí na kondezátoru dvou: třetin napájecího napětí, překlopí se klopný obvod s IO1 a kondenzátor C1 se začne vybíjet přes R2 a vývod 7 IO1. Zmenší-li se napětí na kondenzátoru na jednu třetinu napájecího napětí, klopný obvod se překlopí zpět. Vnitřní propo-

Obr. 47. Zkoušeč IO 555

jení vývodu 7 se zemí se přeruší a děj se opakuje. Výstup IO_1 (vývod 3 je spojen se dvěma diodami. Při větším výstupním napětí svítí D_2 a D_1 je zhasnutá, kdežto při malém napětí na výstupu IO_1 je tomu obráceně. Pracujeli IO_1 jako astabilní multivibrátor, svítí střídavě obě diody. Pokud tomu tak není, je obvod vadný. Kmitočet blikání můžeme určit z rovnice: $f = \frac{1,44}{C_1} (R_1 + 2R_2)$

Je-li R₂ mnohem větší než R₁, platí přibližně:

$$f = \frac{1.44}{R_2C_1}$$
 [Hz; μ F, $k\Omega$].

V daném zapojení je kmitočet poblikávání 0,5 Hz. Obvod slouží pouze k testování, nikoli k trvalému provozu.

Zkoušeč vodivosti spojů

Se zkoušečem na obr. 48 je možné zjistit, zda jsou nebo nejsou vodivě spojeny dva body. Zkoušeč indikuje průchodnost v rozsahu od 0 do 5 M Ω odpory větší než 5 M Ω jsou indikovány jako přerušení. Výsledky měření jsou signalizovány dvěma LED. Jak je zřejmé z obr. 48 je elektroda D T_1 připojena přímo na kladný pól napájecího napětí (zde dvě baterie 1,5 V). Přes R_2 a R_3 je elektroda S spojena se záporným pólem baterie. Měřený spoj je pak zapojen mezi minus baterie a elektrodu G T_1 . Tranzistorem neteče prakticky proud, je řízen pouze napětím na G. Zkoušeč indikuje, zda má-li spoj malý nebo velký odpor. Je-li spoj

Obr. 48. Měřič průchodnosti spojů

Obr. 49. Zkoušeč tranzistorů

0,2 mA n. R. M D. D, D, R_m Q.V 0, n D. I M324 Obr. 50. Zkoušeč tranzistorů

^{R₁} | 1₄₇₀

12×1N4148

přerušen, pak je na G T₁ napětí +3 V proti zemi, takže napětí S bude přibližně rovno napájecímu napětí, T2 se otevře a rozsvítí se dioda D₁. odpor zkoušeného spoje menší než $5 \, M\Omega$, zmenší se napětí na G a T_1 se uzavírá, odpor mezi S a D se zvětšuje, čímž se uzavře T_2 . Tranzistor T_3 dostává proud do báze a začne vést, takže se rozsvítí dioda D₂ a D₁ zhasne. Rozsah měření je určen odporem rezistoru R₁. Čím větší bude tento odpor, tím větší bude rozsah měření.

Zkoušeč tranzistorů

Zkoušeč tranzistorů na obr. 49 není přesným měřicím přístrojem, lze s ním však rozlišit dobré tranzistory od vadných. Zkoušeč informuje, zda je tranzistor v pořádku nebo vadný, a o tom, zda patří do skupiny A (proudové zesílení 140 až 270), B (proudové zesílení 270 až 500) nebo C (proudové zesílení větší než 500).

Test tranzistoru n-p-n: Tranzistor bude zasunut do objimky TUN a Př₁ se nastaví do polohy c. Rozsvítí-li se dioda D₂, pak tranzistor patří do skupiny s proudovým zesílením C. Pokud se tato dioda nerozsvítí, přepneme Př, do polohy b, nerozsvítí-li se dioda, tak do polohy a. Pokud se nerozsvítí D₂ v žádné ze tří poloh Př₁, je tranzistor vadný nebo má proudové zesílení menší než 140. Proud do báze měřeného tranzistoru lze přerušit - svítí-li D₂, musí po sepnutí S₁ zhasnout, opačném případě je zkrat mezi kolektorem a emitorem.

Zkoušeč pracuje takto: Přes R1 teče do báze TUN proud 10 μA, který vyvolá kolektorový proud, jenž způsobí na R2, R₃, R₄ úbytek napětí. V závislosti na poloze Př, je tento úbytek přiveden na operační zesilovač IO1 a zde porovnán s. pevným napětím, nastaveným na neinvertujícím vstupu. Druhá polovina zapojení je identická a je určena pro měření tranzistorů p-n-p. Zkoušeč je napájen z jedné baterie 9 V.

Zkoušeč tranzistorů

Zkoušeč tranzistorů na obr. 50 umožňuje zjistit jednak polaritu měřeného tranzistoru a jednak proudový zesilovací činitel. Připojíme-li napájecí napětí, rozsvítí se dioda D₁₃ nebo D₁₄, podle toho, jde-li o tranzistor n-p-n nebo p-n-p. Současně můžeme na měřidle číst proudový zesilovací činitel. Nerozsvítí-li se žádná z obou diod, je zesilovací činitel menší než 50, nebo je tranzistor vadný. Při zkratu mezi kolektorem a emitorem svítí obě diody současně. Obvod na obr. 50 pracuje takto: 101a je zapojen jako generátor

10, - 7493 H, až H12 = 103 = 104 - 7404 H₁₃ až H₂₀ = 10₅ = 10₆ - 7400 1 2 <u>8</u>_ Obr. 51. Zkoušeč kabelů pravoúhlého napětí s kmitočtem asi 1 kHz. IO_{1b} odvozuje z tohoto signálu napětí emitor-báze, které má podle probíhající půlvlny zápornou nebo kladnou polaritu. Příslušný kolektorový proud teče přes R₈ a buď R₉, R₁₀ nebo R₁₁, R₁₂. V závislosti na směru proudu na R₈ vzniká kladný nebo záporný úbytek napětí, kterým jsou řízeny komparátory IO_{1c} nebo IO_{1d}, které rozsvěcí příslušné diody. Současně teče kolektorový proud přes diodový můstek a měřidlo. Bázový proud je při měření přibližně konstantní, proto je výchylka

Zkoušeč kabelů

ručky měřidla mírou proudového ze-

sílení. Plná výchylka odpovídá proudo-

vému zesílení asi 500. Přístroj se

cejchuje pomocí P1 podle tranzistoru,

jehož proudové zesílení je známé.

Zkoušeč kabelů na obr. 51 je pomocníkem tam, kde potřebujeme testovat velký počet spojů a potřebujeme je zcela zřetelně odlišit. Obvod na obr. 51 umožňuje současně testovat osm spojení; podle potřeby je ho možné rozšířit až na 16 spojů. Obvod pracuje takto: az na 16 spoju. Obvod pracuje takto: Hodinový generátor (H₁, H₂, H₃) řídí přes H₄ čtyřbitový čítač IO₂. Jeho tři. výstupy jsou spojeny se vstupy IO₁. Během periody hodin je vždy jeden výstup IO₁ na úrovní L. Tento signál je přes osm invertorů H₅ až H₁₂ přiveden přes svorkovníci na kabel. Druhý konec kabelu je spojen se vstupy hradel H_{13} až H_{20} . Mezi výstupy těchto hradel a příslušnými vstupy IO1 je jako indikátor zapojeno 8x2 antiparalelně zapojené

LED (D₁ až D₁₈). Diody s lichými čísly se rozsvítí (D_1 , D_3 , D_5 atd.), je-li příslušný výstup hradla NAND na úrovni L a současně odpovídající výstup IO₁ na úrovni H (to je během 87,5 % doby). Jinak svítí diody se sudými čísly (D_2 , D_4 , D₆ atd.), výstup hradla NAND je na úrovni H a příslušný výstup IO₁ na úrovni L (během 12,5 % doby). Je-li žíla kabelu přerušena, pak zůstává výstup hradla NAND připojeného na tuto žílu na úrovní L a z obou diod připojených na tento výstup se rozsvítí dioda s lichým číslem. Při správném spojení dioda nesvítí, neboť se ve stejném rytmu mění napětí na katodě a na

D₄'K

D3 01

D₂_K

H₂₀

₹s,

D,

anodě. Rovněž i zkraty mezi žílami jsou indikovány, neboť LED se sudým číslem má anodu na H a katodu na L. Diody nevyžadují žádné předřadné rezistory. Pokud není připojen žádný kabel, svítí vždy liché diody. Přístroj kontrolujeme pomocí S₁, kterým se rozsvěcí sudé diody. Při rozšíření na 16 spojů nahradíme IO1 typem 74154 (výstup D IO2 spojíme se vstupem D u IO1), současně musíme zvětšit na dvojnásobek počet invertorů, hradel NAND

Zkoušeč logických stavů (úrovní)

V současné době je k dispozici poměrně široká paleta zkoušečů logických stavů digitálních obvodů. Zapojení na obr. 52 je navrženo tak, že třemi LED rozlišuje logické úrovně L, H a nedefinovaný stav. Je-li na vstupu zkoušeče logická úroveň menší než 0,7 V, oba tranzistory nevedou, na výstupu horního hrdla NAND bude uroveň L, rozsvítí se LED "L' nedefinovaném rozsahu, tj. mezi 0,7 V až 2,5 V se otevře levý tranzistor a pravý zůstane uzavřený. Na výstupu středního hradla NAND je úroveň L. což indikuje střední dioda LED. Pokud bude vstupní úroveň větší než 2,5 V, oba tranzistory povedou, spodní hradlo NAND bude mít na výstupu úroveň L a sepne LED "H".

Obr. 52. Zkoušeč logických obvodů

Další typ zkoušeče logických stavů je na obr. 53 - rozlišuje stav L, H a nedefinovaný stav. Je-li vstupní úroveň menší než 1 V, indikuje zkoušeč logický stav L diodou "L", protože vede tranzistor p-n-p. V rozsahu mezi 1 až 2 V jsou oba tranzistory uzavřeny, takže na vstup hradla OR (1/4 IO 7486) jsou přiváděny dvě rozdílné úrovně, jeho výstup je na úrovni H, což indikuje LED

Obr. 53. Zkoušeč logických obvodů

NC". Při vstupní úrovní nad 2 V povede tranzistor n-p-n a rozsvítí se LED "H". 10 7486 má čtyři hradla OR, takže přidáním tří tranzistorů n-p-n, tří p-n-p, několik diod a rezistorů je možné sestavit čtyřkanálový analyzátor úrovní.

Dalším typem zkoušeče logických úrovní s automatickým nastavením úrovní je zkoušeč na obr. 54. Tranzistor T₁ tvoří spolu s R₃, R₄, D₅ a D₆ zdroj konstantniho proudu pro LED D3 a D4. V

Obr. 54. Zkoušeč logických obvodů

 $R_2 = U_{Bmin} - 0.6$ $R_3 = \frac{U_{B}-1.4}{1.2} [\Omega; V]$ 0,2 4049 BC557 Sei 15 V 10M 4×1N4148

vybije přes LED D₁, tj. jen tehdy, když má baterie dostatečně velké napětí.

Jen v tomto případě při sepnutém S₁

povede tranzistor T1. C1 se vybíjí přes

omezovací odpor R₃ a LED. Minimální napětí baterie, které je ještě použitelné,

se nastavuje děličem R₁, R₂. Odpor

rezistorů R2, R3 vypočítáme z rovnic:

_ [Ω; Ω,V]

0,6R₁

Pro minimální napětí baterie 6 V a pro jmenovité napětí 9 V bude $R_2=10~\Omega$ a $R_3 = 39~\Omega$. Odpor rezistoru R_4 může být 10 k Ω až 1 M Ω . Při větším odporu je zkoušeč úspornější. Při $R_4 = 100 \text{ k}\Omega$ bude doba mezi dvema testy asi 10 s (C₁ se nabíjí přes R₄). Indikátory vyladění

indikátor vyladění na obr. 56 využívá k indikaci vyladění na rozsahu VKV dvou dvoubarevných diod LED. Obvod je navržen tak, že se rozsvítí dvě LED stejné barvy, je-li přijímač správně naladěn. Pro řízení indikátoru se používá stejnosměrné napětí získané po detekci mf signálu. Je-li stejnosměrná složka detekovaného signálu podstatně menší než napětí báze T₄, nastavené potenciometrem P₂, je tranzistor T₃ uzavřen a T₄ otevřen. Potom svítí dioda D₃ zeleně a D₄ červeně. Pří zvětšování vstupního napětí se otvírá T₃ a T₄ se uzavře při napětí, rovném

napětí na běžci P2. Barvy diod se změní D₃ svítí červeně a D₄ zeleně. V mezipoloze mezi těmito dvěma stavy svítí obě LED "míchanou" barvou (zele-

Obr. 56. Indikátor vyladění

nou a červenou), podle velikosti řídicího napětí převládá buď červená nebo zelená. Je-li vstupní napětí přesně stejné jako napětí na běžci P₂, musí obě diody svítit tak, že jsou červená a zelená složka stejné. Průběh přechodu ize nastavit potenciometrem P1. Tranzistory T₁ a T₂ jsou zapojeny jako zdroje konstatního proudu, takže intenzita světla bude v celém rozsahu konstant-

Indikátor vyladění na obr: 57 používá k indikaci vyladění jednobarevné diody. Na vstup je přivedeno napětí AFC, kterým jsou řízeny IO1 a IO2 (kompa-

tomto případě je proud diodami LED nezávisle na napájecím napětí, nastaven asi na 12 mA. Katody diod LED jsou přes hradla H₁ a H₂ připojovány na zem. Další funkce obvodu je závislá na napětí na R_1 . Je-li na něm např. velké napětí proti zemi, pak invertor H_1 invertuje tuto úroveň H a připojí katodu D₃ na zem. D₃ se rozsvítí a indikuje "H" Dioda D4 nesvítí, neboť na její katodě je úroveň H. D₄ se rozsvítí bude-li na Ř₁ malé napětí (menší než 1/3 napájecího napětí). V tomto případě je indikována úroveň "L", neboť po dvojím invertování je na katodě D₄ úroveň L. Rezistor R₁ spolu s diodami D₁, D₂ tvoří ochranobvod proti napětím větším než 100 V na vstupu. Vstupní rezistor R2 (10 MΩ zaručuje, že testovaný obvod nebude zatěžován, zaručuje i správnou funkci invertoru H₁ při nepřipojeném vstupním signálu. Obvod nemůže být tedy vybuzen nežádoucími rušivými signály. Obvod na obr. 54 je jednoduchým zkoušečem pro obvody TTL a CMOS. U obvodů TTL nesouhlasí indikované úrovně přesně s úrovněmi definovanými. Pro běžná měření to však nevadí. Je-li na vstup zkoušeč připojen sled impulsů, pak se rozsvěcují obě dlody v závislosti na kmitočtu impulsů, v některých případech svítí trvale. Tento typ zkoušeče nevyžaduje pro napájení jmenovitě napětí, neboť je schopen pracovat s automatickým nastavením úrovně. Napájecí napětí může být odebíráno z testovaného obvodu.

Jednoduchý zkoušeč stavu baterií

Zkoušeč udává, v jakém stavu je daná baterie. Stav baterie Ize zjistit podle napětí, je-li baterie zatížena: zkoušeč sám nesmí kontrolní obvod během měření zatěžovat. Zkoušeč na obr. 55 velmi šetrně zachází s energií baterie. Krátkou dobu svítící dioda na zkoušeči indikuje, že baterie má dostatečnou rezervu energie (pro přenosné přístroje, jako např. přijímač, magnetofon apod.). Dioda "bleskne", když se C₁

Obr. 55. Zkoušeč stavu baterie

Obr. 57. Indikátor vyladění

Obr. 61. Univerzální indikátor úrovně

Je-li napětí AFC větší než napětí referenční (nastavené děličem R2, R3, P1 a R4), otevře se T1 a rozsvítí se dioda D₁. Naopak při menším napětí AFC, než je napětí referenční, povede T₂ a rozsvítí se dioda D₂. Rovná-li se napětí AFC napětímu referenčnímu. isou tranzistory T_1 a T_2 uzavřeny a přeshradla NAND H_1 až H_4 se sepne T_3 a rozsvítí se D_3 . Napětí po detekci se u různých typů přijímačů liší, proto nejsou na obrázku uvedeny odpory rezistorů R₂, R₃, R₄ a P₁. U IO TCA420A je napětí AFC 9,5 V. Abychom získali referenční napětí, budou $R_2 = 4.7 \text{ k}\Omega$ $R_3 = 100 \Omega$ a $P_1 = 4.7 \text{ k}\Omega$. Je-li v mf zesilovači použit např. obvod CA3089 s napětím AFC = 5,6 V, zvětšíme R_2 na 12 k Ω a ostatní ponecháme stejné. Nahradímeli R₃ potenciometrem, pak můžeme mimo refereční napětí nastavit i "šířku" rozsahu svícení D₃.

K řízení indikátoru vyladění na obr. 58 je použito dvou měničů impedance s komplementárními tranzistory v Darlingtonově zapojení. V emitorech tran-

Obr. 58. Indikátor vyladění

zistorů p-n-p jsou diody LED. K omezení proudu diodami slouží společný emitorový odpor, proto je celkový odběr proudu konstantní. Se změnou bázového proudu se mění jas LED. Pro zapojení lze použít jakékoli tranzistory malého výkonu. Vstup obvodu je připo-jen na výstup AFC mf zesilovače, např. u A220 na vývod 8. Přívod z výstupu demodulátoru nemusí být stíněný, pokud je ihned u vstupu použit filtrační člen. Kladný pól děliče je připojen na napájení demodulátoru, takže je vyloučen drift indikátoru. Citlivost Ize zvětšit, nahradíme-li R, rezistorem 1 ΜΩ: Při nastavování musíme zkratovat anténní přívod přijímače a potenciometrem otáčíme tak dlouho, až je jas obou diod stejný. Dělič napětí musime upravit podle velikosti vstupního napětí.

Na obr. 59 je zapojení indikátoru vyladění s jedním operačním zesilovačem. LED jsou připojeny na výstup OZ a proud přes ně je ochranným obvodem OZ a rezistorem 1,5 kΩ omezen na asi 10 mA. Podle požadované citlivosti

Obr. 59. Indikátor vyladění

nastavíme zpětnovazebním odporem zisk OZ. Při 1 $M\Omega$ bude zisk 100 a při 100 $k\Omega$ 10. Na invertující vstup OZ připojíme referenční napětí a na neinvertující vstup napětí AFC z přijímače.

Indikátor mono-stereo

Na obr. 60 je zapojení indikátoru mono-stereo ve spojení s IO MC1310 (A290). Zelená dioda D₁ slouží jako obvykle k indikaci stereo, červená D₃ k indikaci mono. Sepne-li při stereofonním vysílání tranzistor v IO, pak bude na D₂ podstatně menší napětí než na D₃ +D₄ a D₃ zhasne, bude svítit jen D₁.

Obr. 60. Indikátor mono-stereo

Univerzální indikátor úrovní s LED

Na obr. 61 je zapojení univerzálního indikátoru úrovní s diodami LED. Předností indikátoru je, že ho můžeme sestrojit ze součástek běžně dostupných i na našem trhu, dále dovoluje měnit zesílení, "natvarování" podle potřeby (zpětnou vazbou z výstupu na invertující vstup operačního zesilovače), je ho možné připojit na libovolnou signálovou cestu, čímž najde uplatnění v mnoha zařízeních. Jeho nedostatkem je velká plocha pro "zástavbu" a velký odběr proudu (až 150 mA).

Diody LED D₉ a D ₁₄ jsou rozsvěceny tranzistory T₁ až T ₆ Konstruktér-má možnost použít LED různých barev, čímž se zvyšuje efekt (např. D₉, D₁₀— červené, D₁₁, D₁₂— zelené, D₁₃, D₁₄— žluté). Předřadné rezistory LED musí být pak navrženy pro napětí 2,6 V,

3 V nebo 2 V a proudy 20 mA, 30 mA nebo 25 mA. Při napájecím napětí větším než 6 V mají předřadné rezistory zatížitelnost 0,25 W a při napětí $U_{\rm B}$ větším než 14 V 0,5 W. Ostatní rezistory jsou 0,1 W. Proud do báze tranzistorů teče, když je překročeno prahové na-pětí diod D₃ až D₉; to bývá v pro-pustném směru 0,7 V, jako první se rozsvítí dioda D₁₀ a poslední D₁₅. Relativně malý odpor předřadných rezistorů v bázích tranzistorů (R₇ až R₁₂) má za následek rychlé rozsvěcení jednotli-vých diod. Tak je při "páskovém" provedení indikátoru dosaženo při dynamické skladbě plného efektu. Přihlédneme-li k tomu, že poslední LED (D_{15}) se rozsvěcí při šestkrát větším napětí než první LED (D₁₀), je s indikátorem možné realizovat dynamický rozsah 16 dB. Toho Ize s výhodou užít např. při záznamu na magneto-Je třeba ještě poznamenat, fon'. mnoho indikátorů má -20 dB. Proto speciálně u magnetofonů je výhodné zvětšit počet LED na deset - potom musíme zvětšit odpor rezistoru R2 na 18 kΩ. R5 chrání OZ před velkým přetížením a je nutné poněkud zmenšit jeho odpor při desetidiodovém indikátoru, neboť při velkém spínacím proudu na něm vzniká úbytek napětí. Dioda D2 omezuje záporné půlvlny signálu, takže na indikátor jsou přiváděny jen kladné půlvlny. Spínací část indikátoru reaguje na velikost hudebního signálu, takže diody LED poblikávají podle kmitočtu tohoto signálu. Při vyšších kmitočtech by toto poblikávání nebylo patrné, proto je k D₂ připojen kondenzátor C₅, který změny kmitočtu integruje, což se příznivě projeví i na obvodu zpětné vazby OZ. Tak zvaná nf demodulace slouží k zaznamenání a "zviditelnění" kmitočtů. Kapacitu C₅ je třeba stanovit empiricky a její změnou lze nastavit optimum pro každého uživatele. Při nf demodulaci je z R₅, odporu diody D₂ v propustném směru a z C5 vytvořena dolní propust s mezním kmitočtem asi 100 Hz, tzn. že všechny signály kmitočtů nad 100 Hz jsou směrem ke spínací části potlačeny. V moderní hudbě převažují kmitočty kolem 1 kHz, takže je indikována jen desetina jejich amplitudy, což odpovídá přesně slyšitelnému vjemu člověka, který převážně poslouchá hudbu v tomto rozsahu kmitočtů. Tento rozpor mezi přijímaným zvukem a optickým "basovým indikátorem" je odstraněn horní propustí C2, R1 Mezní kmitočet je s ohledem na velký vstupní odpor neinvertujícího

vstupu nastaven na 1 kHz, přičemž jsou stanoveny přenosové poměry tak, že při směšování kmitočtových průběhů je dosaženo přibližně lineárního průběhu, proto se překrývají akustický vjem zvuku s optickým vjemem indikátoru. Kondenzátor C₁ odděluje galvanicky vstup OZ od zařízení a dioda D₁ slouží jako ochrana vstupu, takže na vstup se dostanou jen kladná napětí. OZ slouží ke třem účelům: odděluje horní a dolní propust, je jím realizován velký vstupní odpor a potřebně zesiluje signál pro spínací část. Zesílení regulovatelné v širokých mezích dovoluje velkou variabilitu zapojení. Při použití invertujícího OZ mají nevhodně navržené odpory rezistorů vliv na vstupní odpor a odpor zpětnovazební smyčky. Kmitočtová kompenzace je navržena pro zesilení 50 dB. R₃ nastavíme tak, aby byl indikátor vybuzen při požadované hlasitosti. Jako OZ je možné použít MAA503, jako T_1 až T_6 typy KC508 nebo podobné typy, diody D_1 , D_2 jsou Ge, např. GA201, a ostatní dlody jsou Si, např. KA206.

Špičkový indikátor úrovně

Obvod na obr. 62 je špičkový indikátor úrovně s diodami LED, který je možno použít pro indikaci krátkodobého přebuzení při záznamu na magnetofon, pro indikaci výstupního výkonu nf zesilovače apod. Indikátor pracuje spolehlivě v rozsahu kmitočtů 30 Hz až 30 kHz a jeho maximální citlivost je 0,15 až 0,25 V, rozsah dynamiky indikovaných signálů 10 až 14 dB (to umožňuje registrovat signál při záznamů např. na úrovních —6, —3 a + 3 dB od jmenovité hodnoty). Základem zapojení je IO 7400, který je využit ve funkci invertorů. Aby diody D₂ až D₅ při chybějícím vstupním signálu nesvítily, musí být na výstupu invertorů úroveň L. Proto musí být na vstupu indikátoru kladné napětí, jehož úroveň na vstupu každého invertoru se nastavuje R₁ až R₄ Při zvětšení záporné půlvlny

Obr. 62. Špičkový indikátor úrovně

měřeného signálu nad nastavenou úroveň vznikne na výstupu příslušného invertoru úroveň H a rozsvítí se příslušná svítivá dioda. Jestliže potřebujeme Větší počet indikovaných úrovní signálu, je možné použít dva až tři indikátory. Pro vyloučení vzájemných vlivů jsou jednotlivé indikátory připojeny přes emitorové sledovače, které jsou ke zdroji signálu připojeny přes jednoduchý zesilovač. Zapojení tohoto zesilovače s emitorovým sledovačem je na obr. 63. Jako 10 je možné použít i 7404, tranzistory jsou typu KC508 a Dr

Obr. 63. Oddělovací zesilovač

je KZ141. Při několika indikátorech je nutné použít na místě D₁ výkonnější Zenerovu diodu.

Univerzální displej LED

Displej s diodami LED na obr. 64 je možné použít pro otáčkoměry, indikátory úrovní a v mnoho dalších zařízeních. Zařízení je složeno ze dvou řad diod LED (12 v jedné řadě) a příslušné řídicí logiky. K řízení potřebujeme tři digitální a jeden analogový signál. Pomocí tří digitálních signálů je stanoveno, která z obou řad LEDů je řízena a zda má svítit jako sloupec nebo jako běžící bod (svítí vždy jedna dioda). Analogový signál určuje jednotlivé úrovně. Ke dvěma odpovídajícím diodám ve dvou řadách přísluší jeden OZ, zapojený jako komparátor, který srov-

5V6

Ю

119

-3×LM324 T₁ až T₁₂ - BC108 T₁₃ až T₁₅ - BC517

K, až K, -10, až 10, -

0,4 W

Rídicí obvod pro diody LED a jeho aplikace

IO A277D slouží k tomu, abychom mohli zobrazit měřené napětí ve tvaru svítivého bodu nebo svíticího pásku. Rozsah indikace je určen dolním a horním referenčním napětím. IO může řídit maximálně 12 LED. IO lze řadit i kaskádně a tak zvětšit počet diod LED pro indikaci.

IO A277D je v plastickém pouzdře s 2×9 vývody: 1-zem, 2-řízení jasu, 3-maximální referenční napětí, 4-LED12, 5-LED11, 6-LED10, 7-LED9, 8-LED8, 9-LED7, 10-LED6, 11-LED5, 12-LED4, 13-LED3, 14-LED2, 15-LED1, 16-referenční napětí minimální, 17-vstupní řídicí napětí $U_{\rm SI}$, 18-napájecí napětí.

Obr. 65. Ztrátový výkon A277D

Obr. 64. Univerzální displej s LED

Tab. 8. Mezní a provozní údaje A277D

Rozsah napájecích napětí U _B pro bodový provoz pro páskový provoz (dolní meze platí pro LED s napětím			až 18 V, až 18 V.
v propustném směru 1,5 V) Povolený rozsah vstupních napětí U_3 , U_{16} , U_{17} Pracovní rozsah vstupních napětí U_3 , U_{16} , U_{17} Pro $U_8 < 9$ V platí následující podminky	. :	U₃≦	U _B . 6,2 V. U _B —3 V, U _B —3 V.
Rozsah pracovních teplot Rozdíl referenčního napětí při bodovém provozu páskovém provozu Přepínací napětí U ₁₅ U ₁₄ pro odlišení pásekbod při bodovém provozu		-25 1,4 a 1,2 a	až +85 °C. ž 6,2 V, ž 6,2 V.
páskovém provozu Jmenovité údaje pro $U_{\rm B}=12~{\rm V},~\vartheta=25~{\rm ^{\circ}C}$		1,3 V Max.	Typ.
Klidový odběr proudu I _B Vstupní proud I ₃ , I ₁₇ I ₁₆ Proud budiči při zhasnutých LED		10 2000 2000 50	4,5 mA 6 nA 100 nA μA

lO je možné zapojit pro dva způsoby provozu: indikace páskem se 12 LED, indikace bodem se 12 LED.

V tab. 8 jsou mezní a provozní údaje tohoto IO. Do kaskády je možné zapojit nejvíce pět IO. Na obr. 65 jsou přípustné ztráty pro danou teplotu okolí. Ztrátový výkon IO je dán při bodovém provozu rovnicí:

$$\begin{split} P_z &= I_{\text{LED}}(U_{\text{B}} - U_{\text{F} \text{ LED}}) \ + \ U_{\text{B}}/_{\text{B}} \\ & [\text{mW}; \text{ mA}, \text{V}], \\ P_z &= I_{\text{LED}}(3U_{\text{B}} - 9U_{\text{F} \text{ LED}}) \ + \ U_{\text{B}}/_{\text{B}} \\ & [\text{mW}; \text{ mA}, \text{V}], \end{split}$$

kde I_{LED} je proud LED,

U_B napájecí napětí IO,

U_{F LED} úbytek napětí na LED v propustném směru,

I_B proud pro napájení IO.

Na obr. 66 je blokové schéma IO A277D. Řetězec rezistorů rozděluje lineárně v napěťových stupních vnějšínapětí $U_{\rm ref\ max} - U_{\rm ref\ min}$, které je přivedeno jako dílčí napětí na řetězec komparátorů, kde je porovnáváno s vnějším řídicím napětím $U_{\rm st}$ Z tohoto řídicího napětí je odvozen kvazianalogový signál, který má dvanáct úrovní (případně 13, nesvítí-li žádná LED). Vstupní a výstupní proudová charakteristika LED je pevně nastavena strmostí komparátorů. Tím je umožněno volit (volbou rozdílu referenčních napětí) změnu rozsvícení LED od. plynulého ($\Delta U_{\rm ref} = 1.2$ až 2 V) ke skokovému ($\Delta U_{\rm ref} = 4$ až 6 V), případně přechodovy stav.

Výstupy komparátorů s budicími tranzistory pro rozsvěcení LED jsou navázány přes logiku, která určuje, budou-li diody ve sloupci svítit jako pásek nebo jako bod. Při "páskovém" provozu je zvolen kompromis mezi odběrem proudu a potřebným napájecím napětím, proto jsou diody spojeny sérioparálelně (obr. 67). Každá ze tří skupin budicích tranzistorů má společný emi-

torový rezistor. Tím je dán při "páskovém" provozu shodný proud všemi čtýřmi budicími tranzistory v jedné skupině. Přenosové poměry mezi skupinami jsou nastaveny uvnitř skupin a to tak, aby i při bodovém provozu bylo dosaženo rovnoměrného přechodu světla v rozsahu celé stupnice. Na obr. 68 je záznam ze snímače charakteristik, na němž je závislost proudu LED na řídicím napětí. Při $U_{\rm st}=0$ nesvítí žádná dioda. Po dosažení prahového napětí se rozsvítí první LED. Při větším $\Delta U_{\rm ref}$ je prahové napětí pro sepnutí první diody LED přibližně rovno napětovému skoku na odporovém řetězci. Tak je možné pro stanovení přechodu světla použít výraz

$$\dot{L} = 13 \, \frac{U_{\rm st} - U_{\rm ref \, min}}{U_{\rm ref \, max} - U_{\rm ref \, min}} \, .$$

Konečný počet dílů L označuje počet rozsvícených diod (L=0 nesvítí žádná dioda, při L větším než 12 svítí všech dvanáct diod). Různé způsoby připojení diod LED určují, zda jde o bodový nebo páskový provoz. Volba páskového nebo bodového provozu je odvozena z napětí na diodách 1 a 2, připojených na vývody 14 a 15. Při rozdílu U_{15} — U_{14} menším než 0,9 V je provoz bodový, při rozdílu U_{15} — U_{14} větším než 1,3 V je provoz páskový. Napětí na bázi. budicích tranzistorů můžeme ovlivnit z vnějšku a tak řídit jas

Obr. 69. Zapojení pro regulaci jasu

Obr. 70. Závislost $I_{LED} = f(U_2)$

LED. Při nezapojeném vývodu 2 bude střední proud LED asi 10 mA. Na obr. 69 jsou dva způsoby řízení jasu LED. Napětí U_2 může být nastaveno děličem napětí, pomocí fototranzistorů lze řídit jas LED podle okolního osvětlení. Jsou možná i další zapojení, která mohou dát potřebné informace (např. blikání apod.). Na obr. 70 je závislost proudu LED na napětí U_2 při zapojeném vývodu 2. Proud lze nastavit až na 20 mA.

Na obr. 71 je standardní zapojení pro páskový provoz. Dělič napětí R_1 , R_2 , R_3 určuje napětí $U_{\rm ref\ min}$ a $U_{\rm ref\ min}$ a $U_{\rm ref\ min}$ = 2 V nastavíme $U_{\rm ref\ min}$ = 2 V a $U_{\rm ref\ max}$ = 6 V. Při běžném proudu děličem I = 0,1 mA bude

$$\frac{U_{\mathrm{B}}}{I} = \mathrm{R}_1 + \mathrm{R}_2 + \mathrm{R}_3$$

a $R_1:R_2:R_3 = U_{\text{ref min}}:(U_{\text{ref max}}-U_{\text{ref min}}):$: $(U_B-U_{\text{ref max}}),$

$$R_1:R_2:R_3=1:2:3, \quad 6R_1=\frac{12}{0.1}$$

 $R_1=20~k\Omega, R_2=40~k\Omega$ a $R_3~60~k\Omega.$

Na obr. 72 je zapojení bodového indikátoru se dvanácti diodami. Volí se $U_{\rm ref\ min}=0$ V. Tím je dosaženo minimálního "přeskoku" mezi diodami. Kromě LED potřebujeme jen dělič napětí pro nastavení $U_{\rm ref\ max}$. Při nestabilizovaném napájecím napětí se zvyšují náklady o stabilizovaný zdroj pro $U_{\rm ref}$. Samozřejmě je možné použít i další vnější obvody, jako např. obvod regulace jasu apod.

Vzhledem k tomu, že se v ČSSR uvažuje používat tyto obvody, uvedu několik pokynů pro jejich aplikaci:

 Při bodovém provozu mohou zůstat výstupy pro LED nezapojeny nebo mohou být vzájemně propojeny, pokud nepoužijeme všech dvanáct LED.

Při páskovém provozu mohou být LED nahraženy drátovými spojkami. Ke zpracování proudu jsou využity všechny výstupy budičů. Tak je možné použít méně než 12 LED.

Pokud bude IO použit mimo rámec standardního zapojení je třeba upozornit, že rozdíl napětí mezi vývody 15 a 14 určuje způsob provozu. Napětí lze korigovat diodami. Budeli při bodovém provozu při použití různých LED splněna podmínka, že U_{FLED2} > U_{FLED1} + 0,9 V (díky extrémním tolerancím propustných napětí LED), pak nemusí být IO zajištěn bodový provoz. Také v tomto případě je možná korekce diodou zapojenou do série s první LED.

V páskovém i bodovém provozu mohou být použity LED libovolných barev a napětí v propustném směru, a mohou být kombinovány do jedné stupnice. Při tom pro daný provoz je nutno věnovat pozornost rozdílu napětí U₁₅—U₁₄

 Pro vyloučení poruch ve vf rozsahu je nutné blokovat napájecí a někdy i řídicí napětí kondenzátorem.

pro návrh děliče určujícího napětí U₃,
 U₁₆, U₁₇ je proud děličem 0,1 mA.

— IO A277D může v páskovém provozu nahradit IO UAA180 (stejně rozlôžené vývody). Užívatel má u A277D možnost nastavit proud LED na 20 mA a u UAA180 na 10 mA. Při nezapojeném vývodu 2 u A277D bude proud LED 10 mA.

 A277D umožňuje provoz v širokém rozsahu napájecích napětí a tudíž i provoz z baterie.

Zapojení s několika obvody A277D

Kromě základní aplikace, kdy je řízeno dvanáct diod v bodovém nebo páskovém provozu, existuje mnoho dalších aplikací IO 277D. Princip otevřeného kolektoru, který je použit u budicích tranzistorů LED, a speciální obvod pro rozlišení bodového a páskového provozu dovolují rozšířit rozsah použití jen několika dalšími součástkami připojenými k IO.

U bodového provozu je např. indikována střední hodnota měřené veličiny (svítí dvě sousední diody). Využijeme-li tohoto efektu, tzn. použijeme-li pro 2n-1 napěřových stupňů n LED, pak se doporučuje nastavit rozdíl referenčních napětí tak, aby rozsah svícení jedné diody LED odpovídal přechodu svícení. První LED se nerozsvítí tedy při $U_{\rm st} = U_{\rm refmin}$, ale již při překročení prahového napětí. Někdy je naopak požadováno, aby některá dioda indikátoru svítila stále (např. jako kontrola funkce). Při páskovém provozu to může být např. LED připojený přímo na zdroj, aniž bychom potřebovali IO. Totéž lze

realizovat i při bodovém provozu, pokud chceme, aby tento LED označoval např. začátek stupnice (obr. 73). spínacím tranzistorem je možné LED "0" zhasnout, dosáhne-li vstupní napětí úrovně potřebné pro rozsvícení LED "1". Na obr. 75 je příklad zapojení pro zhášení LED-T₁ odpojí vnější LED tehdy, když je aktivován některý budicí stupeň IO. R₁, R₂ jsou navrženy tak, aby T₁ byl v saturaci.

Pokud potřebujeme více než dvanáct LED, je nutné řadit několik IO za sebou. Počet IO v kaskádě je omezen maximálními napětími U3, U16, U17 a minimálním rozdílem referenčních napětí, který musí být dodržen pro daný druh provozu. Kaskádně lze IO spojit jak v páskovém tak i bodovém provozu. Do kaskády lze zapojit maximálně pět IO. Při tom musíme nastavit minimální rozdíl referenčních napětí. Při bodovém provozu je možné potřebně překrýt rozsah řídicího napětí (vypuštěním dvanácté diody u IO₁ až IO₄). V tomto případě bude možné zapojit 56 LED při bodovém provozu a 60 LED při páskovém provozu. Je třeba poznamenat, že při bodovém provozu dvanáctá dioda svítí neustále (pro Ust větší než Urel max). Proto je dvanáctá dioda při bodovém provozu vynechávána nebo je nutné použít zapojení podle obr. 74 - dvěma IO je řízeno 24 LED. R₁ volíme tak, aby byl plně saturován. R₂ až R₅ jsou děličem referenčního napětí. Rezistorem R₄ nastavujeme plynulost přechodu referenčního napětí. Rezistorem R₃ nastavujeme plynulost přechodu indikátoru mezi prvním a druhým IO (mezi 12. a 13. LED).

Na obr. 75 a 76 jsou zapojení, která šetří diody LED. Další předností tohoto uspořádání je zkrácení stupnice, menší nároky na zapojení a větší spolehlivost. Zlepšuje se i přehlednost stupnice. Na obr. 75 je 24 hodnot indikováno dvěma IO a 13 LED. Vnější LED indikuje 0. Třináctá dioda LED je umístěna tak, že indikuje zapnutí horního rozsahu indikátoru. Vývody 5 až 15 IO jsou propojeny a řídí LED2 až LED12 (a nepřímo přes T₁ a R₁ také LED1). R₃ až R₆ slouží k nastavení referenčního napětí a k nastavení plynulé indikace.

Na obr. 76 je zapojení indikátoru 20 hodnot v páskovém provozu. Vývody 5 10 nejsou využity a u 10₁ je vývod 5 spojen s vývodem 4 a řídí indikaci, která určuje, zda se jedná o horní nebo dolní rozsah. Současně se při aktivizovaném horním rozsahu zmenší napětí na emitoru T₁ a IO₁ je přepnut do bodového provozu, takže LED1 až LED10 nebudou řízeny z IO₁ a indikova-ná hodnota odpovídá signálu přivedenému i v rámci IO2. Tohoto způsobu zavyužít lze pojení při malém počtu LED "v rámci" jednoho IO. Tak je možné čtvrtý nebo osmý LED použít při

Obr. 73. Zapojení stupnice s. 13 LED v bodovém provozu

Obr. 74. Zapojení dvou A277D v bodovém provozu +-

páskovém provozu jako zvláštní LED k označení rozsahu.

U indikátorů nastavení jmenovité hodnoty potřebujeme indikovat odchyl-

Obr. 78. Indikátor s nulou uprostřed

se jmenovitá hodnota. Na obr. 77 je obvod pro páskový provoz se speciálním připojením LED pro indikaci nuly. Tím je současně ovlivněna volba provozu pásek-bod. Z vývodů 9 a 10 lO je odebírán signál odchylky od nuly (<+ 1 až >-1). Červené diody (± 5) indikují překročení nebo nedosažení rozsahu. Je možné odvodit i další signály (blikání, zvonění apod.). Zem lO (vývod 1) musí vždy být pod úrovní U_{ref} min. a musíme počítat. s šestinásobným napětím LED v přopustném směru, což je asi přibližně 2 V na budící tranzistor. Tranzistory T₁ a T₂ zabraňují zhasnutí indikátoru při nedosažení rozsahu. Uvedené zapojení rozlišuje, teče-li přes vývod 1 lO jen proud lO nebo i proud

sviti La,

Obr. 75. Indikace 24 hodnot 13 LED

ku od nulové hodnoty na obě strany. To lze realizovat inverzním zesilovačem. Při využití provozu pásek-bod lze takový indikátor sestrojit s jedním IO A277D. Přitom je možno volit mezi bodovým a páskovým indikátorem. Páskový indikátor je přehlednější (zejména při mnoha proměnných veličinách), bodový indikátor dovoluje lepší rozlišení.

Indikátory s nulou uprostřed -

Na obr. 77 až 79 jsou tři zapojení indikátoru s nulou uprostřed. Všechna tři zapojení mají společné to, že při překročení rozsahu $U_{\rm st}$ indikátor zhasne. Rozsah indikace je nastaven, rezistory zapojenými do kladného a záporného napájecího napětí. $U_{\rm ref\ min}$ a $U_{\rm ref\ max}$ je možné naprogramovat např. mění-li

Obr. 76. Zapojení indikátoru 20 hodnot s 10 LED

Obr. 79. Indikátor s nulou uprostřed

diody LED. Pro kontrolu funkce je možné, aby diodou LED6 tekl malý proud nastavený vně, takže zelený LED poněkud svítí, kdežto při nastavení nulové odchylky svítí plně.

Na obr. 78 je zapojení indikátoru s 13 LED. "Nulový" LED je napájen zevně a svítí trvale (indikace funkce). Nula je indikována přechodem mezi LED6 a LED8 (vývody 10 a 8 IO), takže tento indikátor má lepší rozlišení. LED1 je napájen přes T₁, R₁, R₅ (podobně jako na obr. 74). Na obr. 79 je zapojení lineárního indikátoru s 13 LED. 10 A277D je navržen pro lineární zobrazení analogových napěťových signálů. Nelineárním (např. logaritmickým) zesilovačem může být indikované napětí potřebně upraveno a přivedeno na vstup U_{st} (vývod 17 IO). Signál lze "tvarovat" i připojením několika výstupů na jeden LED. Nelinearity lze také dosáhnout zapojením vazebního obvodu mezi vývody $U_{\rm st}$, $U_{\rm ref\ max}$ a $U_{\rm ref\ min}$, nebo mezi výstupy pro LED. Kromě toho máme také možnost pro dvě vstupní napětí vydělit $U_{\rm st}/U_{\rm ref\ max}$. Toho se využívá např. v automobilovém průmyslu k určení okamžité spotřeby pohonné hmoty. Jsou zapotřebí následující operace: získat sled impulsů, průtoku jejichž kmitočet odpovídá $\Delta V/\Delta t \approx f_1$), a který je úměrný kmitočtu rychlosti průtoku $(I_s/I_1 \approx f_2)$, získat analogová napětí, která jsou úměrná kmitočtům impulsů ($U_1 \approx f_1$, $U_2 \approx f_2$), zobrazit poměr napětí a indikovat okamžitou spotřebu IO A277D $(\Delta V/I_s \approx U_1/U_2)$

 $=U_{\rm st}/U_{\rm ref\ max}$). Změny referenčního napětí, které mohou vzniknouť při kolísajícím napájecím napětí, např. v automobilu, nejsou kritické, neboť řídicí napětí je lineárně závislé na napětí napájecím.

Neobvyklé aplikace A277D

indikátorů s nulou uprostřed v páskovém provozu je možné vzhledem ke speciálnímu připojení LED změnou řízení volby provozu pásek-bod rozšířit rozsah aplikací A277D.

Na obr. 80 je řízeno osm LED v provozu pásek, přičemž IO pracuje v bodovém provozu (posuvem napětí diodami D₁ až D_n; n odpovídá zvolenému napětí v propustném směru. LED2). Toto zapojení je vhodné z hlediska napájecího napětí a proudu. U_{Bmin} je určeno počtem LED a jejich napětími v propustném směru.

Obr. 83. Řízení matice displeje s 12x12 LED

Obr. 80. Zapojení pro malý odběr proudu

Amatérike: AD 10 B/3 Obr. 81. Zapojení pro malé napájecí

Při malém napájecím napětí může být získán "pásek" dynamickým říze-ním (pilovitým řídicím napětím) IO v bodovém provozu. Vzhledem k nelinearitě charakteristiky proud LED/jas LED má toto zapojení relativně velkou světelnou účinnost při daném středním Dynamický provoz ovšem zanášet do sousedních obvodů rušení. Úprava napájecího napětí oproti standardnimu zapojeni je na obr. 81. Potřebný úbytek pro IO musí být nahražen diodami D₁ až D₃ Napájecí napětí může být zmenšeno o 2*U*_{FLED}.

IO může být v daných aplikacích použit pro stupnici typu pásek-bod (část stupnice svítí jako bodový indikátor a část jako páskový). Přitom je nutné dodržeť správný postup pro volbu provozu pásek-bod. Na obr. 82 je

Obr. 82. Smíšená stupnice bod-pásek

Obr. 84. Negovaný indikátor ("běžící díra")

Obr. 85. Okénkový diskriminátor

jednoduchý příklad smíšené indikace, kde svítící červený LED1 udává, že není dosaženo požadovaného rozsahu. LED2 až LED5 pracují v páskovém provozu a jsou napájeny přes diody D₁ až D_n (n odpovídá Δ*U*_{1 LED 1,2}).

až D_n (7 odpovida $\Delta \nu_{1LED\,1;2}$).

Příklad pro řízení dvourozměrové matice je na obr. 83. IO₁ je obvyklým způsobem spojen s LED. IO₂ spíná tranzistory T₁ až T₁₂ do saturace a přes ně připíná napájecí napětí na anody LED.

Na obr. 84 je zapojení negovaného indikátoru ("běžící díra"). Svítí všechny diody až na jednu, jejíž umístění je závislé na měřené hodnotě ($U_{\rm st}$).

Při nastavené indikované hodnotě může být kromě jedné rozsvícené diody získán signál, který tuto hodnotu zdůrazňuje (blikáním indikátoru, akustický signál apod.), nebo provede sám požadovanou operaci. Pro získání takového signálu může být propojeno i několik budičů. Obvyklým případem použití zapojení je hlášení mezní hodnoty. Tyto obvody lze použít jako prahový spínač (vícenásobný klopný obvod), okenkový diskriminátor apod. Převod pilovitého impulsu ve vícenásobný impuls pravoúhlý je možný při dodržení časové konstanty IO v páskovém provozu. Na obr. 85 je zapojení okénkového diskriminátoru se třemi výstupními signály. Zajímavá je spotřeba a teplotní stabilita při malých výstupních proudech (nastavená Rs. R4). Rezistory R₁, R₂ se nastavuje přesně práh, který je hrubě nastaven zvole-

Obr. 86. Dělič řídicího napětí stupnice přijímače FM

nými výstupy. Pokud chceme odděleně nebo společně s LED provozovat další obvody z řídicího obvodu A277D (např. relé, doutnavky apod.), pak je zapotřebí pro větší proudy použít tranzistory připojené na budicí výstupy IO. Příklad připojení tranzistorů je na obr. 85 a na obr. 83 u IO2. Příslušný způsob provozu (bod nebo pásek) je určen rozdílem napětí mezi vývody 15 a 14 IO.

Elektronická stupnice pro přijímač

Příkladem, který ukazuje možnost kaskádního řazení a nelineární indikace s několika IO, je příklad stupnice pro přijímač CCIR FM. Počet kaskádně řazených A277D vychází ze dvou předpokladů: požadované rozlišení daného měřicího rozsahu nesmí být voleno menší než měřená odchylka, musí být dodržen minimální rozdíl referenčních napětí pro daný způsob provozu, tj. 1,2 V pro pásek a 1,4 V pro bod.

Z toho vyplývá, že při velkém řídicím napětí s ohledem na první podmínku není možné do kaskády zapojit více než pět IO. Tento počet A277D je dán pro lineární dělení řídicího napětí, které smí být v rozsahu 0 až 6,2 V. Následující příklad ukazuje, že pro požadované nelineární dělení přivedeného napětí

Obr. 87. Dělič referenčního napětí stupnice přijímače FM

s minimálními požadavky na zapojení nejsou splněny základní požadavky pro IO A277D. Vysílače v pásmu CCIR mají odstup kanálů 300 ± 50 kHz. Při odstupu kanálů 250 kHz můžeme každý vysílač indikovat jednou diodou, takže potřebujeme pro celý rozsah CCIR celkem 69 LED, tj. šest A277D. Z křivky ladicího napětí pro jednotku VKV je zřejmé rozdělení 69 LED, a to 5 x 12 a 1 × 9. Krajní body řídicího napětí pro jednotlivé A277D jsou: 2,5 až 3,7 V; 3,7 až 5,2 V; 5,2 až 7,6 V; 7,6 až 11,1 V; 11,1 až 17,2 V; 17,2 až 23 V. Vzhledem k minimálnímu rozdílu referenčních napětí je volen páskový provoz. Po aproximací křivky řídicího napětí v šesti stupních je zřejmé, že maximální chyby < 250 kHz a tím i rozlišení je dodrženo. V praxi se však používá rozlišení 500 kHz i více. Pro tyto účely stačí 35 LED a tři IO, pro které je navržen následující obvod. Řídicí napětí bude 2,5 až 5,2 V; 5,2 až 11,1 V a 11,1 až 23 V. Pro tato napětí je na obr. 86 dělič řídicího napětí $U_{\rm st}$ s následujícími rozdíly řídicího napětí: $\rm IO_1=2,6~V;~IO_2=2,4~V~a~IO_3=3~V.~Tak~se~dosáhlo$ celkem rovnoměrného přechodu světla. Dělič pro 10₁ musí být chráněn Zenerovou diodou, neboť řídicí napětí nesmí být větší než U_B Na obr. 87 je dělič referenčního napětí. Tento dělič je navržen s ohledem na překrytí rozsahu a posuv řídicího napětí oddělovacím tranzistorem. Potenciometrem nastavíme $U_{\text{ref max}} = 4.8 \text{ V na IO}_3$.

Indikátor úrovně

Na obr. 88 je zapojení indikátoru úrovně (VU-metr) s deseti diodami v páskovém provozu. Pro logaritmování vstupního napětí je použito běžné zapojení se dvěma operačními zesilovači a diodovým členem ve zpětné vazbě. Pro dvoustupňové zpracování je použit dvojitý operační zesilovač B082 (ekvivalent TL082). Dioda ve vývodu 1 A277D "zvětšuje" potenciál země a zabraňuje tak překročení maximál-

B/3

Amatérsé? ADI

ního přípustného napětí. Protože indikátor pracuje prakticky bez zpoždění, jsou zřetelné špičky přebuzení.

Otáčkoměr s LED

Na obr. 89 je otáčkoměr pro čtyřtaktní spalovací motory v automobilech s diodami LED. Otáčkoměr je sestaven z tvarovače impulsů (IO₁, Á301D), diskriminátoru impulsů (C₂, R₇, D₁, T₁, C₃), analogového indikátoru napětí (IO₂, A277D) a diod LED1 až LED12. Součástky T₂, R₂, P₃ a C₅ slouží k automatické regulaci jasu; mohou být vypuštěny, vývod 2 IO2 musí však zůstat volný. Pro tvarování impulsů slouží A301D, zapojený jako otáčkoměr. Pro měření rychlosti otáčení je využito kmitočtu přerušovače. Vstupní svorka E je spojena s kontaktem přerušovače (UK) a je k němu připojena paralelně. Zvolený neobvyklý způsob řízení A301D do vstupu na vývodu 4 způsobuie. že monostabilní klopný obvod reaguje na kladné špičky napětí na vstupu E, které jsou minimálně 100 V (napětí se dělí na R4 a vnitřním rezistoru 101). Rúšení vzniklá kmitajícím kontaktem přerušovače jsou potlačena kondenzátorem C₄. U automobilů s tranzistorovým nebo tyristorovým zapalováním nevznikají na kontaktu přerušovače tak velké napěťové špičky, a proto může mít R4 menší odpor nebo může být využito běžného spouštění přes vývod 3 101. 101 produkuje při každém otevření kontaktu přerušovače jeden impuls s periodou 2,5 ms, který lze odebírat z komplementárních výstupů na vývodech 6 a 10. Délka impulsu je určena kondenzátorem C₁, jehož kapacita není kritická. Na vývod 10 lO₁ je připojen obvod kmitočtového diskriminátoru (R10, C2, D1, R7, T1, C3) a na C3 dostaneme stejnosměrné napětí úměrné kmitočtu impulsů. Tranzistor T₁ má mít B ≥ 200 (např. KC308B,C). Jak již bylo řečeno, stejnosměrné napětí (zde 0 až 1,8 V) na C₃ při konstantním napájecím napětí bude závislé hlavně na kmitočtu daném C₂, nikoli na šířce impulsů, neboť ty jsou podstatně delší, než vybíjecí konstanta C₂. Změnou C₂ můžeme při splnění mezních podmínek (C2 = 0,3 až $0.5C_1$ a $C_1 \le 0.22 \mu F$) přizpůsobit na jiný rozsah rychlosti otáčení a kmitočtů. Hodnoty uvedené v obr. 89 platí pro kmitočtový rozsah 0 až 200 Hz, což odpovídá 0 až 6000 ot/min. R₆ a R₁₂ mají jen malý vliv na šířku impulsů; R₇ a R₁₀ slouží k vybíjení C₂, aby při otevřeném T₁ nebyl překročen přípustný proud 1 mA stabilizovaného zdroje na vývodu 13 IO.

Pro impulsní kmitočtový minátor a rovněž pro řídicí 102 potřebujeme stabilizované napětí, aby chyba bỳla menší než 2 %. Stabilizované referenční napětí asi + 2,9 V je přiváděno ze stabilizátoru z IO1 (vývod 13). Použití A301D umožňuje vypustit dodatečný stabilizátor. A301D a A277D jsou v našem případě připojeny na napájecí napětí, které se může měnit od 11 do 17 V, aniž by kolísání napájeciho napětí mělo vliv na indikátor. Referenční napětí upravené děličem R₈, R₉, P₁, odvozené ze stabilizovaného napětí A301D, je porovnáváno s napětím na kondenzátoru C3, které je úměrné rychlosti otáčení a slouží jako řídicí napětí pro A277D. Při použití v automobilu je nutno počítat se širokým rozsahem okolních teplot, které mohou ovlivňovat přesnost indikace Teplotní součinitel stabilizovaného napětí na vývodu 13 A301D je prakticky kompenzován. Teplotní činitel D₁ a T₁ je kompenzován napětím na R_s a změnou napájecího napětí T₁. Kapacita C3 nemá vliv na výsledky měření, může být zmenšena nebo zvětšena, takže se mění jen rychlost změny otáčení. Bez C3 indikátor poblíkává. Při U_{st}=U_{ref min} nesvítí žádná dioda a při U st=U_{ref max} svítí všechny diody, LED12 indikuje maximum $U_{\rm st}$. Svítivé diody jsou rozděleny do tří pásků po čtyřech diodách, připojených přímo na A277D. Budiče v IO₂ pracují jako zdroje konstantního proudu, takže kolísání napájecíno napětí nemá vliv na jas LED. Pro aplikaci jako otáčkoměr je lépe použít páskový provoz; zapojení s bodovým provozem, kdy svítí jen jedna dioda je rovněž možné a to změnou zapojení LED. R_8 , R_9 , P_1 nastavujeme měřený rozsah ($U_{\rm ref\ min}$, $U_{\rm ref\ max}$). P_1 je nastaven tak, aby při 500 ot/min svítil jen LED1. kompenzuje rovněž vliv proudu tekoucího z vývodu 17 102 přes vývod 2, na němž může být ofset maximálně 0,2 V (na kondenzátoru C₃). Potenciometrem P2 je nastaven horní konec rozsahu (rozsvítí se LED12 při 6000 ot/min). P₁ a P₂ se vzájemně ovlivňují, proto je nutné nastavení opakovat několikrát; poslední se nastavuje P₂. Vzhledem k nežádoucím tolerancím P₂ bude nutné při konečném nastavení měnit C_2 a někdy i C_1 . S ohledem na teplotní kompenzace je vhodné dodržet uvedené odpory rezistorů. Indikátor ie v celém rozsahu lineární a chyba indikace je menší než 2 %.

IO musíme chránit proti přepolování a proti záporným špičkám napětí vznikajících v palubní síti. K tomuto účelu

slouží Zenerova dioda D₂ a předřadný rezistor 22 Ω. Zenerova dioda zaručuje napěťovým oproti spolehlivost špičkám, které mají původ v autoelektronice. Klidový proud zapojení je asi 20 mA; podle stavu indikace a jasu LED se tento proud zvětšuje o 20 mA na skupinu diod. Potenciometrem P3 nastavíme optimální jas při denním světle $(T_2$ je osvětlen). T_2 je vhodné umístit u LED1 až LED12, aby ovlivňoval svít LED podle místního osvětlení. Větší osvětlení vede ke zvětšování napětí U_H na vývodu 2 IO₂ a tím i k zvětšení proudu diodami LED. Pokud je to potřebné, můžeme nastavit minimální jas při tmavém okolí změnou R2. Místo T₂ můžeme použít i fotoodpor, pak R₂ musíme zmenšit nebo ho můžeme i vypustit. Potenciometrem P3 můžeme regulovat jas LED ručně. Kondenzátor C₅ má vliv na plynulou změnu jasu, jeho kapacitu můžeme měnit v širokém rozsahu.

Zmíníme se ještě o možnosti doplnit otáčkoměr o obvod, který způsobí blikání LED při překročení maximální rychlosti otáčení. Zapojení je na obr. 90. LED začnou poblikávat, když se rozsvítí LED9 a další. V přívodu UB pro tuto skupinu diod je zapojen jako proudové čidlo tranzistor T₃. Rozsvítí-li se LED, označující mezní hodnotu, otevře se T3 a na jeho kolektoru bude napětí U_B. Tím bude spuštěn generátor s H₁, H₂ (4011). V klidovém stavu (LED9 a následující nesvítí a T3 je uzavřen) je na výstupu H₂ úroveň L a na výstupu H₃ úroveň H. Dělič napětí R₂, R₃ zajišťuje maximální jas LED a také to, že na vývod 2 A277D nepřijde větší napětí, než + 6 V. (U_{2max} =+6 V pro A277D). Přes R₅ je vstup H₁ úrovní L uzavřen. Pokud je otevřen T3, generátor pracuje a jeho kmitočet (asi 3 Hz) je určen R₁ a C₆. Pracujícím taktovacím generátorem se výstup H₃ dostane na úroveň L a vývod 2 bude přes R2, R3 na zemi. Všechny diody zhasnou: T3 se ihned uzavře. Přes R₅ je na vstupu H₁ úroveň H a generátor opakuje celý cyklus. Indikátor bliká tak dlouho, pokud je obvodem A277D buzen LED kontrolovaný T3. Tato metoda blikání je použitelná také pro jednotlivé LED nebo skupiny LED uvnitř měřeného rozsahu, nebo i pro jednotlivé LED při bodovém provozu. Použití obvodu CMOS v generátoru má tu přednost, že lze využít celého rozsahu napájecích napětí A301D a A277D. Kmitočet blikání můžeme měnit v širokém rozsahu změnou R₁ nebo C₆, R₃ můžeme využít k ruční změně jasu LED. Rovněž automatická regulace jasu je v obr. 90 použitelná a je navržena stejně jako v obr. 89 (T2, R_2 , P_3 , C_5 musime vypustit) a nahražuje R_2 , R_3 v obr. 90 (T_2 , R_2 z obr. 89 jsou zapojeny mezi + U_B a výstup H₃).

Rozsah indikace se nastavuje P₁ a P₃ a to tak, aby při 500 ot/min svítil LED1 a při 6000 ot/min LED12. Pokud

Obr. 90. Blikač pro otáčkoměr

nemůžeme pro cejchování použít dílenský otáčkoměr, přivedeme na 10_1 vývod 3) úzké spouštěcí impulsy daného kmitočtu (16,66 Hz pro LED1 a 200 Hz pro LED12).

(Dokončení v příštím čísle)

KONSTRUKČNÍ ČÁST

Dálkové ovládání IČ

Úvod

Sledujeme-li vývoj spotřební elektroniky ve světě v posledních letech, můžeme zaznamenat velmi zajímavý trend — začíná se projevovat snaha o takové provedení přístrojů spotřební elektroniky (zejména rozhlasových a televizních přijímačů), které umožňurozhlasových je co nejjednodušší a nejpohodlnější obsluhu. Jedním ze základních prvků se stalo dálkové bezdrátové ovládání, Můžeme přelaďovát na dálku rozhlasový přijímač (pokud je vybaven automatickým laděním), řídit jeho hlasitost, korekce apod., u televizních přijímačů je možné ovládat navíc kontrast a jas. Současné systémy dálkového ovládání umožňují dálkově ovládat všechny potřebné funkce jak u rozhlasových, tak i televizních přijímačů.

Jakým způsobem se dálkové ovládání realizuje? Pomineme-li možnost vysokofrekvenčního přenosu povelů (který používají např. modeláři a které se nehodí pro tyto účelý z hlediska rušení), jsou pouze dvě možnosti, jednak ultrazvuk a jednak infračervené záření. Počátky dálkového ovládání (bezdrátového) byly založeny na ultrazvuku. Ovšem záhy bylo od tohoto způsobu upuštěno, pro některé jeho nedostatky (např. byl velmi ome-

zen počet přenášených povelů), a proto se přešlo k systémům, které pro přenos používají infračervené záření.

Základem systémů dálkového ovládání, využívajícího infračervené záření, je generátor a přijímač infračerveného záření. Jako generátor se používají luminiscenční diody, pracující v înfračervené oblasti spektra, a jako přijímač rychlé fotodiody nebo i fototranzistory. Vzhledem k tomu, že se obvykle vyžaduje větší počet povelů a velká odolnost proti rušení, používají se systémy s-nosnou vlnou (10 kHz až 500 kHz), která je vhodným způsobem modulována (kódována).

inžalukoM systém dálkového ovládání je ve většině případů založen na pulsně šířkové modulaci, která je velmi odolná proti rušení. Kódovací a dekódovací obvody umožňují realizovat celé ovládání integrovanými obvody. Pokud mluvíme o rušení, je nutné si uvědomit, že při přenosu ovládacích povelů se mohou vyskytovat dva druhy rušení: rušení, které pochází od světelných zdrojů viditelného spektra a průmyslové rušení (jiskřící spínače, kolektörové neodrušené motory apod.).

Světelné rušení může mít jednak impulsní charakter (zapnutí nebo vypnutí světelných zdrojů), nebo statickou povahu (konstantní intenzita světla v místě, kde se používá systém dálkového ovládání). Posledně jmenovaná porucha (statická) se zdánlivě nemůže vůbec projevit u přenosu modulovaného signálu, protože vytváří u fotodiody (fototranzistoru) pouze stejnosměrnou složku proudu, kterou je možno vyloučit tím, že fotodiodu připojíme k zesilovači přes oddělovací kondenzátor. Může se však stát, je-li parazitní osvětlení velmi intenzívní, že proud fotodiody dosáhne nasycené hodnoty a dodatečné infračervené záření již nezpůsobí žádnou změnu proudu tekoucího fotodiodou. V tomto případě pomáhá filtr, který potlačí světelné záření z oblasti viditelného světla, ale propouští infračervené záření. Filtr je nutné umístit těsně před fotodiodu tak, aby viditelné záření nemohlo dopadat na fotodiodu, nebo použít fotodiodu s integrovaným filtrem. Filtr lze zhotovit velmi jednoduše. Stačí použít kousek barevného neexponovaného a vyvolaného filmu (ne inverzního), nebo černé organické sklo. Na obr. 1. je závislost propustnosti na vlnové délce takového filtru z barevného filmu. Na první pohled je ihned vidět, že v oblasti infračerveného záření je propustnost velká, zatímco v oblasti viditelného světla je propustnost zanedbatelná.

Zatím jsme se zabývali rušením, které může být způsobeno konstantním osvětlením fotodiody. Velmi blízko k tomuto rušéní má i rušení, které vzniká modulací světelných zdrojů kmitočtem 50 Hz. 1 když to vůbec lidské oko nevnímá, tak všechny světelné zdroje, pokud jsou napájeny střídavým proudem, jsou více nebo méně tímto proudem modulovány. Běžné žárovky méně (tepelná setrvačnost), zářívky a výbojky více. Tuto nepříjemnou poruchu můžeme vyloučit tak, že použijeme relativně vysoký modulační kmitočet (vyšší než 10 kHz) a na přijímací straně použijeme selektivní propust pro modulační kmitočet nebo alespoň účinné potlačení kmitočtů v oblasti 50 Hz.

Impulsní poruchy, které vznikají při zapnutí nebo vypnutí světelných zdrojů, se ve většině případů, díky relativně vysokému modulačnímu kmitočtu, vůbec neprojeví. Většina běžných světelných zdrojů nedosahuje plné intenzity ihned po zapnutí, ale až po nějaké době. Stejně tak klesá intenzita světla při vypnutí světelného zdroje. Pokud na přijímací straně budou účině potlačeny nízké kmitočty, tak poruchy tohoto typu se vůbec neprojeví.

Již jsem se zmínil, že poruchy může způsobovat i průmyslové rušení (jiskření). Zdá se to být paradoxní, že průmýslové rušení může být příčinou poruch při přenosu, který je uskutečněn infračerveným zářením. Musíme si však uvědomit, že zesilovač na přijímací straně musí mít zesílení 10 000 až 20 000. Pokud by zesilovač neměl tak velké zesílení, tak by mělo dálkové ovládání malý dosah. A právě velké zesílení zesilovače přináší na druhé straně malou odolnost proti průmyslovému rušení. Kmitočtové spektrum které vzniká při jiskření, je velmi široké, od velmi nízkých až po relativně vysoké kmitočty a proto budou vždy rušivé signály zasahovat do kmitočtové oblasti, ve které zesilovač pracuje. Zvýšit odolnost zesilovače proti průmyslovému rušení lze několika způsoby: za prvé, celý zesilovač se umístí do stínicího krytu, v případě potřeby i do dvojitého stínicího krytu. Za druhé se zesilovač realizuje jako selektivni. Za třetí se zvolí vhodný druh modulace, která je odolná proti rušení (např. pulsně šířková modulace).

Obr. 1. Závislost propustnosti filtru z barevného filmu na vlnové délce

Jednoduchá souprava pro dálkové ovládání

Dále uvedený stavební návod na jednoduchou soupravu pro dálkové ovládání umožňuje realizovat tři varian-

1. Jednopovelovou soupravu.

2. Jednopovelovou soupravu se zvýšenou odolností proti průmyslovému ručení

Obr. 3. Zapojení vysílače

3. Dvoupovelovou soupravu.

Pokud jde o jednopovelovou soupravu, byl zvolen modulační kmitočet 15 kHz. Impulsy s tímto opakovacím kmitočtem jsou vysílány po dobu 5 ms. Šířka impulsu je asi 70 µs. To znamená, že během 5 ms je vyslána série asi 70 impulsů. Tato série je na přijímací straně zesílena (10 000x), detekována a dále upravena pro další použití. Odolnost proti rušení, které vzniká jiskřením při zapnutí nebo vypnutí spotřebičů s indukční zátěží (tj. motory ledniček, vysavačů apod.) je zlepšena tím, že rušící spěktrum jistý čas od zapnutí nebo vypnutí doznívá. Tento čas nikdy nepřesáhne 200 ms. Představme si, že nyní vyšleme jednu sérii impulsů, po níž přijímač asi po 300 ms přejde do stavu přípravy, ale neuvolní ovládací impuls. Stav přípravy trvá asi 700 ms. Po této době se přijímač navrátí automaticky do klidového stavu. Pokud vyšleme druhou sérii impulsů, která bude přijata v době, kdy je přijímač ve stavu přípravy, uvolní přijímač ovládací impuls. To znamená, že přijímač uvolní ovládací impulsy pouze v době přípravy. Z toho vyplývá, že rušící impuls, který uvede přijímač do stavu přípravy, nemůže způsobit uvolnění ovládacího impulsu, neboť po 200 mś zanikne a teprve po této době může přijímač uvolnit ovládací impulsy. Vzhledem k tomu, že doba přípravy trvá asi 700 ms, je nutné, aby druhá série impulsů byla vyslána v časovém intervalu asi 250 ms až 650 ms po vyslání první série impulsů. (Viz časový diagram na obr. 2.) Z této skutečnosti také vyplývá vysoká odolnost proti rušení. Za prvé, žádné rušivé spektrum, které vzniká při zapnutí nebo vypnutí indukční zátěže nepřesahuje dobu 200 ms, která je nutná, aby přijímač uvolnil ovládací impuls. Za druhé, je velmi nepravděpodobné, že by se mohly vyskytnout rušivé impulsy, které následují po sobě s časovým odstupem .250 až 650 ms.

Jako třetí varianta dále uvedeného zapojení je dvoupovelová souprava. Tato varianta vychází z předchozí varianty, při které se používá k uvolnění

Obr. 2. Časový diagram soupravy se zvýšenou odolností proti rušení

ovládacího impulsu dvou po sobě následujících sérií impulsů. Přijímací strana je v tomto případě doplněna obvodem, který vyhodnotí zda byla vyslána jedna nebo dvě série impulsů. Z uvedeného rozboru však vyplývá, že při povelu, který je odvozen od vyslání jedné série impulsů, bude uvolněný ovládací, impuls málo odolný proti rušení. Proto je tato varianta vhodná pro použití tam, kde je úroveň průmyslových poruch velmi malá

Největším problémem při konstrukci však zůstávají klíčové prvky celého zařízení. Jedná se o infračervené luminiscenční diody a fotodiody, popřípadě fototranzistory. Fotonky Tesla 1PP75 a KP101 se ukázaly jako nevyhovující pokud jde o citlivost, modernější typy KPX80 až KPX89 byly pro autora nedosažitelné, stejně jako infračervené luminiscenční diody TESLA WK164 21. Východiskem se ukázaly optoelektronické prvky fy RFT, které jsou dosažitelné v NDŘ. Jedná se o infračervenou luminiscenční diodu VQ110 (nejlépe VQ110C) a fototranzistor SP201. Ke zvětšení vyzařovaného výkonu jsou ve vysílači použity dvě diody VQ110. Podobně na straně přijímače byly použity dva fototranzistory SP201. Důvodem k tomu není zvětšení citlivosti přijímače, ale relativně úzký přijímací diagram použitého fototranzistoru. Pokud použijeme dva fototranzistory, které mají vzájemně odkloněné optické osv. obdržíme širší přijímací diagram, popř. můžeme odklonit optické osy fototranzistorů do dvou vyznačených směrů, ze kterých budeme vyžadovat spolehlivou funkci dálkového ovládání:

Vysílač

Vysílací část ovládacího zařízení se skládá ze čtyř základních částí, generátoru signálu modulačního kmitočtu 15 kHz, proudového zesilovače, generátoru sérií impulsů a obvodu, který zajišťuje, že budou vyslány jen dvě série impulsů.

Na obr. 3 je zapojení vysílače. Jednotlivé části výsílače, tak jak o nich bylo hovořeno, jsou odděleny přerušovanou čarou. Generátor modulačního signálu, pracující jako astabilní multivibrátor, je sestaven ze dvou hradel NAND tvpu CMOS, 10_{2cd} . Kmitočet generátoru je určen konstantou $\tau_1=R_{11}$ C₅. Generovaný signál má impulsní charakter a pravoúhlý průběh (střídu 1:1). Výstupní signál z generátoru je přiveden na vstup proudového zesilovače s tranzistory T₁ a T_{2-i}V emitoru T₁ je zapojena luminiscenční (svítivá) dioda LQ100, která stabilizuje amplitudu lačního signálu asi na 1,5 V. Zmenšení napětí baterie pak nemá podstatný vliv na kolektorový proud T2 a tudíž nebude mít ani podstatný vliv na vyzářený

výkon infračervených diod D5, D6, které jsou zapojeny v kolektorovém obvodu T2. V popisovaném zapojení se vyzařovaný výkon podstatně nemění v rozmezí napájecího napětí 6 až 9 V. Amplituda proudových impulsů v kolektoru T2. je asi 200 mA. Aby vyzářený výkon nezávisel na vnitřním odporu napájecí baterie, není kolektor T2 připojen přímo na kladný pól baterie, ale přes rezistor R₁₇. Přes tento rezistor se také průběžně nabíjí kondenzátor C₆. Při impulsním provozu tranzistoru slouží C6 jako náhradní proudový zdroj s malým vnitřním odporem. Z toho vyplývá, že i poměrně velký vnitřní odpor baterie nemá vliv na amplitudu proudových impulsů v kolektorovém obvodu T2.

Další částí vysílače je generátor sérií impulsů. Jak již bylo uvedeno, je vhodné, z hlediska odolnosti proti rušení, vysílat při jednom povelu dvě série impulsů, které po sobě následují v určitém časovém odstupu (500 ms). K tomu slouží v zapojení na obr. 3 astabilní multivibrátor s hradly IO2a,b. Opakovací perioda multivibrátoru je určena časovou konstantou $\tau_2 = (R_7 +$ - R₈) C₄. Potřebnou velikost opakovací periody lze nastavit odporovým tri-mrem (asi 500 ms). Zde je třeba zmínit se krátce o volbě vhodné délky jedné série impulsů. Aby se nezkracovala doba života infračervených svítivých diod, je nutné volit délku série impulsů v závislosti na tom, jaká byla zvolena amplituda proudových impulsů, tekoucích diodami. V popisovaném zapojení byla zvolena amplituda asi 200 mA, což omezuje délku jedné série impulsů asi na 5 ms. To znamená, že generátor sérií impulsů musí zajistit, aby jedna série impulsů byla dlouhá asi 5 ms a aby doba mezi jednotlivými sériemi byla asi 500 ms. Z těchto požadavků vyplývá, že uvažovaný generátor musí mít na svém výstupu signál, jehož tvar je uveden na obr. 4. Tento signál pak činnost generátoru modu-signálu 15 kHz, který je v ovládá_. lačního činnosti jen tehdy, je-li na vstupu 9 hradla 10_{2c} úroveň H. K tomu, aby byl zajištěn poměr mezi délkou impulsu a opakovací periodou 1:100, je v generátoru sérií impulsů dioda D₃ a odporový trimr R₉. Vhodným nastavením trimru R₉ je možné dosáhnout požadované délky impulsů (5 ms), trimrem R₈ se nastavuje opakovací perioda.

Generátor sérii impulsů, tak jak byl popsán, zajišťuje nekonečný počet

·Obr. 4. Signál na výstupu generátoru série impulsů

sérií impulsů. Pro naše účely je ovšem zapotřebí, aby vysílač vyslal jen dvě série impulsů. K tomu jsou použity dva klopné obyody typu D. 10...

klopné obvody typu D, IO_{1a,b} Činnost této části vysílacího zařízení: předpokládejme, že v klidovém stavu je na výstupech Q1 a Q2 úroveň L. Po sepnutí Př₁ přejde úroveň na výstupech Q1 a Q2 na úroveň H. Tato úroveň je přes diodu D₁, odpor R₅ přenesena na vstup 1 hradla IO_{2a}. V tomto okamži-ku se uvolní činnost generátoru serií impulsů. Na výstupu generátoru bude generován impuls s délkou 5 ms (tj. bude během tohoto impulsu uvolněna činnost generátoru modulačních impulsů s opakovacím kmitočtem 15 kHz). Aby se mohlo vyhodnotit, že byly vyslány dvě série impulsů, tak se z výstupu 3 hradla IO_{2a} přivádějí řídicí impulsy z generátorů série impulsů současně na vstupy T1 a T2 IO_{1a,b.} Tyto impulsy jsou vůči výstupním impulsům (výstup 4 hradla 10_{2b}) invertovány. Vzestupná hrana prvního impulsu má za důsledek, že úroveň ze vstupu D1 se přenese na výstup Q1, tj. výstup Q1 přejde na úroveň L. Stejně tak se přenese úroveň vstupu D2 na výstup Q2. Díky zpožďovacímu charakteru členu R₂, C₁, v okamžiku příchodu vzestúpné hrany impulsu na vstup T2 bude ještě na vstupu D2 úroveň H, takže se nezmění úroveň na vstupu Q2 a ten zůstane na úrovní H. V důsledku toho bude generátor sérií impulsů stále v činnosti. Teprve až s příchodém vzestupné hrany druhého impulsu, přivedeného na vstupy T1 a T2, nastane změna. Zatímco úroveň na výstupu Q1 se jíž nezmění a, zůstane na úrovní L (přenáší se úroveň ze vstupu D1 na výstup Q1), výstup Q2 přejde z úrovně H na úroveň L. Je tomu tak proto, že v okamžiku příchodu vzestupné hrany druhého impulsu je na výstupu Q1 úroveň L, která bude tedy i na vstupu D2 a tato úroveň se v uvedený okamžik přenáší na výstup Q2. Úroveň L na výstupu Q2 však znamená, že na vstupu 1 obvodu IO2a bude také úroveň L. Generátor sérií impulsů bude tedy po dvou periodách vyřazen z činnosti. Jinými slovy: vysílač bude automaticky vyřazen z činnosti po dvou sériích

Jak jsem se již zmínil v úvodní části, je možné realizovat popisovanou variantu jako dvoupovelový systém. V tomto případě jedna přenášená série impulsů ponese informaci o změně stavu v jednom dálkově ovládaném kanále, a dvě série přenášených impulsů budou znamenat změnu stavu ve druhém dálkově ovládaném kanálu. To znamená, že v tomto případě budeme vyžadovat, aby vysílač podle okolností vyslal jednu nebo dvě série impulsů. Z tohoto požadavku vyplývá, že vysílač musíme vybavit takovým obvodem, který umožňuje vyslat pouze jednu sérii impulsů. Celý obvod, který umožňuje vyslat pouze jednu sérii impulsů, se skládá z R₃, C₃, D₂ a Př₂. V kidovém stavu je kondenzátor C3 stále dobíjen na napětí napájecího zdřoje. Jinými slovy: v klidovém stavu je C3 nabit na úroveň H. Přepnutím Př₂ se tato úroveň přenese přes D₂ a R₅ na vstup hradla IO_{2a}, tím se uvede v činnost generátor sérií impulsů. Kondenzátor C₃ se v okamžíku, kdy je sepnut přepínač Př₂, začíná vybíjet přes R₄. Po jisté době, která je uvěga a časovou konstantou. která je určena časovou konstantou $\tau_3 = C_3 \dot{R}_4$, se napětí na C_3 zmenší na úroveň L, což přeruší činnost generátoru sérií impulsů. Zvolíme-li časovou

Obr. 5. Deska s plošnými spoji S204 a rozmístění součástek vysílače

konstantu r₃ tak, aby generátor sérií impulsů byl v činnosti asi 5 ms, je dosaženo cíle, tj. při sepnutí přepínače Př₂ bude vyslána pouze jedna série impulsů.

vysílače Stavba se zjednoduší, postačí-li při dálkovém ovládání vyslat jednu sérii impúlsů. vždy pouze V tomto případě nezapojíme při stavbě obvod, který vyhodnocuje vyslání dvou sérii impulsů (tedy IO_{1a,b} a součástky až k přerušované čáře na obr. 3). V generátoru sérií impulsů vynecháme R₆, R₇, R₈, R₉, C₄, D₃, a vstupy 2,1 hradla 102a spojíme. Hradla 102a,b v daném případě již netvoří generátor sérií impulsů a pracují pouze jako tvarovač impulsu, který vzniká při sepnutí Př₂, tj. při vybíjení C_3 . Po dobu, po níž je kondenzátor C_3 nabit na úroveň H, bude v činnosti generátor modulačních impulsů s opakovacím kmitočtem

15 kHz (hradla IO $_{2c,d}$). Zmenší-li se napětí na C_3 na úroveň L (C_3 se vybíjí přes R_4), přeruší se činnost generátoru modulačních impulsů, tj. bude vyslána pouze jedna série impulsů, jejíž dělka je určena časovou konstantou r_3 . Tato časová konstanta je volena tak, aby délka jedné série impulsů byla asi 5 ms.

Stavba vysílače

Stavba vysílače je velmi jednoduchá. Všechny elektrické součástky jsou na desce s plošnými spoji (obr. 5). Pro integrované obvody je vhodné použít objímky. Vyhneme se tak nebezpečí, že

je poškodíme při pájení. Při práci s obvody CMOS je nutno zachovat všechna opatření, která platí pro IO CMOS. Jako C4 není vhodné, z hlediska stability a reprodukovatelnosti při stavbě, použít elektrolytický kondenzátor, nejlépe vyhoví kondenzátor s papírovým dielektrikem nebo s dielektrikem z plastické hmoty. Svítivou červenou diodu D4 můžeme s výhodou použít pro signalizaci. Její krátké záblesky nás budou informovat o tom, zda vysílač pracuje správně. Při instalaci vysílače do vhodného pouzdra nesmíme zapomenout vysunout infračervené diody D₅, D₆ co nejvíce z pouzdra. V opačném případě bychom se šidili o vyzářený výkon (tato zásada platí i při instalaci fototranzistoru v přijímači).

Ještě se krátce zmíním o volbě

vhodného typu napájecí baterie. Jak vyplývá ze zapojení vysílače, je použito napájecí napětí 9 V, které je nezbytné vzhledem k tomu, že se ve vysílači používají dvě infračervené svítivé diody. Pokud bychom použili jen jednu diodu, vystačíme s napětím 4,5 V (bez rezervy při poklesu napětí) až 6 V (s rezervou). Ovšem použití jedné diody znamená zmenšení vyzařovaného výkonu. Je proto lépe použít diody dvě. To znamená tedy použít napájecí napětí 9 V. Mohli bychom tedy použít např. dvě baterie 4,5 V, šest baterií 1,5 V, tři baterie po 3 V, které by byly propojeny do série nebo jednu des-tičkovou baterii 9 V. Právě tato baterie se ukázala jako nejvhodnější. Její velké přednosti jsou: malé rozměry, malá hmotnost, jednoduchá výměna. Navíc destičkové baterie mají jednu velkou přednost: nikdy se nestane, že by při stárnutí poškodily elektronický přístroj naleptáním plošných spojů nebo součástek, jak se to dosti často stává při používání ostatních typů baterií. Zůstává pouze otázka doby života de-stičkové baterie (je relativně drahá ve srovnání s ostastními typy baterií).

Dále si uvedeme krátkou rozvahu. týkající se doby života destičkové baterie 9 V. V klidovém stavu vysílače obvody CMOS a tranzistory (jsou v nevodivém stavu) odebírají proud, který je podstatně menší než 1 μA. Celkový klidový proud může ovlivnit pouze zbytkový proud kondenzátoru C₆. Ovšem i zde při použití vhodného typu kondenzátoru může být zbytkový proud 1 µA nebo i méně. Navíc je kondenzátor stále nabit, "formuje" se a jeho zbytkový proud se nezvětšuje. To znamená, že napájecí zdroj ve vysílači nemusíme z hlediska doby života destičkové baterie vůbec vy pínat. Jaká nastane situace po uvedení,

vysílače do provozu? Uvažujme případ, kdy vysílač vyšle dvě série impulsů. z-nichž každá bude mít délku 5 ms. Vzhledem k tomu, že délka impulsů a vzdálenost mezi nimi je stejná, je možné z energetického hlediska uvažovat, že vysílač místo dvou modulovaných sérií po 5 ms vyšle pouze jeden nemodulovaný signál o délce 5 ms. Energie je během této doby získávána elektrolytického kondenzátoru C6. Pro jeden povel je zapotřebí z kondenzátoru C₆ odčerpat náboj:

 $Q = I_{mv}t$ kde Q je náboj v coulombech (As), Imv je amplituda proudových impulsů tekoucích diodami D5, D6 (200 mA). Takže v našem případě bude platit: $Q = 0.2.5.10^{-3} = 1.10^{-3}$ As. Pro destičkovou baterii 9 V udávají výrobci většinou kapacitu asi 200 mA hod, ti. 720 As, takže kapacita baterie bude stačit na $720/10^{-3} = 720\,000$ povelů.

Vidíme tedy, že kapacita baterie by měla teoreticky stačit asi na 700 000 povelů. I když skutečnost bude asi o něco horší, můžeme z výpočtu usuzovat, že doba života baterie bude určena spíše "skladováním" ve vysílači než vlastním použitím. Velký vliv na dobu života baterie bude mít již zmíněný zbytkový proud kondenzátoru C6. Je proto vhodné tento proud před zapájením C₆ do desky s plošnými spoji ověřit.

Přijímač

Přijímač se skládá ze dvou základních částí: z vlastního přijímače (zesilovače, detektoru, spínacího tranzistoru) a z části, která má za úkol vyhodnotit informaci z přijímaného signálu. Nejprve si popíšeme zapojení a funkci vlastního přijímače

Na obr. 6 je základní zapojení první části přijímacího zařízení. Na vstupu zesilovače jsou paralelně dva fototran-zistory SP201. Odpor emitorových rezistorů R₁ a R₂ fototranzistorů T₁ a T₂ je volen tak, aby i při maximálním osvětlení ve viditelném spektru nepřešly tranzistory do saturace. Pokud by totiž fototranzistory pracovaly v oblasti nasyceného proudu, potom by byly zcela necitlivé na ovládací infračervené signály. Ovšem na druhé straně je vhodné volit R₁ a R₂ co největší, neboť zesílení fototranzistorů je přímo úměrné odporu rezistorů R_1 a R_2 . Následující zesilovač s tranzistory T_3 , T_4 má velký vstupní odpor, malý parazitní přenos z výstupu na vstup a zesílení asi 100. Další část zesilovače je tvořena komplementární dvojicí tranzistorů T₅, která má rovněž zesílení asi 100. Stejnosměrný pracovní bod celého zesilovače je určen zápornou zpětnou vazbou kolektorového rezistoru

Ts do báze T3. Při správném nastavení je napětí báze-emitor T3 asi 1,4 V. Poměrem R₅ ku R₃ je určeno klidové stejnosměrné napětí na kolektoru T4, asi 1.8 V. Na kolektorovém rezistoru R₈ tranzistoru T₅ je úbytek napětí asi 0,7 V (měřeno proti napájecímu napětí +9 V). Tento úbytek odpovídá kolektorovému proudu T₅ asi 0,7 mA. To znamená, že na emitoru T₅ bude napětí asi 1,5 V. Napětí na bázi T₅ musí být o 0,7 V větší než napětí na emitoru T_5 , tj. na bázi T_5 bude napětí asi 2,2 V. Z tohoto údaje dále vyplývá i velikost kolektorového proudu T₄, který musí být tak velký, aby na kolektoru T₄ bylo napětí 2,2 V (kolekotorový proud T4 bude přibližně 0,4 mA).

Kmitočtová charakteristika zesilovače je upravena tak, že nízké kmitočty (desítky až stovky Hz) jsou potlačeny stejně jako vysoké kmitočty (desítky kHz a výše). Maximální zesílení (asi 10 000) je právě v žádané oblasti 10 až 20 kHz. Ze strany nízkých kmitočtů je přenosová charakteristika upravena jednak vazebními kondenzátory C_1 , C_2 , C_8 , jednak kondenzátorem C_4 ve zpětnovazební smyčce a kondenzátorem C₆ v emitorovém obvodu T₅. Ze strany vyšších kmitočtů je přenosová charakteristika zesilovače upravena kondenzátorem C7 v kolektorovém obvodu T6. Za zesilovačem s tranzistory T₃ až T₆ následuje detekční obvod s diodami D₁ a D₂. Kondenzátor C₉ a R₁₁ zde plní funkci integračního členu. Napětí na C₉ se zvětšuje vždy s příchodem každého impulsu. Ovšem teprve po sérii impulsů, které mají vhodný opakovací kmitočet, se kondenzátor Co nabije na takové napětí (asi 0,5 V), při němž přejde T₇ z nevodivého stavu do stavu vodivého, a na kolektoru T7 se tedy objeví kladný napěťový skok. To znamená, že jeden velmi krátký impuls nemůže ovlivnit napětí kolektoru T7.

Vybíjecí konstanta integračního členu R₁₁, C₉ musí ovšem být volena tak, aby se během mezery mezi dvěma následujícími impulsy ze série podstatněji nevybil kondenzátor C₉. V tomto případě by ani velmi dlouhá série žádaných impulsů neovlivnila stav tranzistoru T7.

Dále si vysvětlíme funkci části, která vyhodnocuje informaci z příjímaného signálu. V nejjednodušším případě můžeme už z výstupu A (obr. 6) odebírat signál, který může ovládat přímo nějaké zařízení. Ovšem ve většině případů bude nutno výstupní signál vhodně upravit (zesílit, tvarovat apod.). Jedna z možností je uvedena na obr. 7. Výstupní signál je nejprve tvarován čtyřmi invertory (IO_{1a,b,c,d}). Z výstupu tvarovacího obvodu je signál přiveden na vstup monostabilního klopného obvodu (IO_{2a}). V klidovém stavu je na výstupu Q obvodu 10_{2a} úroveň L. Po příchodu vzestupné hrany impulsu, který je přiveden na hodinový vstup, se úroveň na výstupu Q změní na H. Od tohoto okamžiku se začíná C₁₂ nabíjet přes R₁₄. Asi po 3 ms bude překročena prahová úroveň vstupu R (nulování) a obvod se překlopí do původního stavu, tj. na výstupu Q bude úroveň L. Výstupními impulsy z monostabilního klopného obvodu je pak dále ovládán stav bistabilního klopného obvodu (IO2b). To znamená, že tento obvod bude s příchodem každého impulsu měnit svůj stav. Výstupy Q a Q bistabilního klopného obvodu jsou od dalších obvodů odděleny výkonovými invertory (IO1e,f).

Obr. 7. Zapojení vyhodnocovací části přijímače IČ

Svítivé diody D4 a D3 plní funkci indikátoru stavu bistabilního klopného obvodu. Z výstupu B·a C můžeme potom ovládat další zařízení. Jak bylo již řečeno, stav bistabilního klopného obvodu se mění vždy se vzestupnou hranou impulsu, tj. vždy při jedné sérii vstupních impulsů (f = 15 kHz). Popsaný obvod bude tedy vhodný všude tam, kde budeme vyžadovat ovládání typu

zapnuto-vypnuto.

Jak jsem uvedl v úvodní části, je výhodné při rušení vysílat dvě série impulsů. To znamená, že přijímač zůstává necitlivý vůči první sérii impulsů a teprve při druhé sérii dojde ke změně na výstupních svorkách přijímače. Pro tento případ je vhodná další varianta vyhodnocovací části, jejíž zapojení je na obr. 8. Podobně jako v předcházejícím případě je výstupní signál z kolektoru T₇ příveden přes tvarovací obvod IO3 na hodinový vstup monostabilního klopného obvodu IO_{4a} . Ovšem další funkce je již odlišná. V klidovém stavu je na výstupech Q1 a Q2 úroveň L. S příchodem vzestupné hrany impulsu, který je přiveden zároveň na hodinové vstupy T1 a T2 se jednak překlopí klopný obvod IO_{4a}, tj. na výstupu Q1 bude úroveň H, a jednak se úroveň vstupu D2 přenese na výstup Q2. Na vstupu D2 v okamžiku příchodu hodinového impulsu je však úroveň L (klidová úroveň) a teprve po jisté době, která je určena časovou konstantou R₁₉, C₁₅ (zpožďovací obvod) bude na vstupu D2 úroveň H. To znamená, že s příchodem prvního hodinového impulsu přejde úroveň na výstupu Q1 na H, ale úroveň na výstupu Q2 se nezmění (L). Až se nabíje kondenzátor C₁₅ na úroveň H, potom s příchodem druhého hodinového impulsu se přenese úroveň H ze vstupu D2 na výstup Q2. Z výkladu vyplývá, že parazitní rušicí impulsy, které přijdou v časovém intervalu mezi prvním žádaným signálem (první série) a okamžikem, kdy se kondezátor nabije na úroveň H, nemohou ovlivnit úroveň na výstupu Q2.

S příchodem prvního impulsu přejde výstup Q1 na úroveň H. Od tohoto okamžiku se přes R₁₇ začne nabijet C₁₄, asi po 600 až 700 ms bude překročena prahová úroveň nulovacích vstupů R1 a R₂ (kondenzátor C₁₄ se nabije na úroveň H) a oba obvody se překlopí do klidového stavu, tj. na výstupech Q1 a Q2 bude úroveň L. Zároveň přejde na úroveň L i vstup D2 (kondenzátor C15 se velmi rychle vybije přes D₅ a R₁₈). To znamená, že druhý impuls musí přijít po prvním impulsu až se nabije kondenzátor C₁₅ na úroveň H (asi 200 až 300 ms), ale nesmí přijít později, než se nabije kondenzátor C₁₄ na úroveň H (asi 600 až 700 ms). Pokud tedy vysílač vyšle druhou sérii impulsů se zpožděním asi 500 ms po první sérii, tak se může změnit úroveň na výstpup Q2. Parazitní rušicí impuls, který přijde mimo výše uvedený časový interval, nemůže úroveň na výstupu Q2 změnit. Tímto způsobem je tędy u této varianty zapojení zaručena odolnost proti náhodným rušicím impulsům. Na rozdíl od první varianty má změna na výstupu Q2 charakter impulsu. Pokud by pro další použití byla nutná trvalá změna stavu (zapnuto-vypnuto), je nutné při-pojit na výstup Q2 bistabilní klopný obvod, stejně zapojený jako IO_{2b} na obr. 7. Podobně jako v předchozí variantě, tak i zde jsou výstupy Q a Q obvodu IO4b odděleny od ďalších obvodů výkonovými invertory (IO_{3e,t}). Svítivé diody D₆ a D₇ zde plní funkci indikátoru stavu klopného obvodu IO4b. výstupů D a E můžeme potom ovládat další zařízení (viz konstrukce přijímače).

Poměrně jednoduchou úpravou můžeme změnit výše popsaný jednopovelový systém na systém dvoupove-lový. Pokud totiž budeme používat variantu se dvěma sériemi vstupních impulsů, potom, jak již bylo uvedeno, můžeme jednoduchou úpravou vysílače vyslat buď jednu nebo dvě série impulsů. Doplníme-li přijímač obvodem, který vyhodnotí, zda byla přijata jedna nebo dvě série impulsů, tak obdržíme dvoupovelový ovládací systém

Dostáváme se tak ke třetí variantě, jejíž zapojení je též na obr. 8. Jak je vidět z uvedeného zapojení, obsahuje zcela nezměněnou původní variantu doplněnou o klopné obvody 105a a 10_{5b}. Vyhodnocení skutečnosti, že byly přijaty dvě série impulsů, je úplně stejné jako v předcházejícím zapojení. Pokud jsou tedy přijmuty dvě série impulsů, tak na výstupu Q2 obvodu 104b se krátkodobě změní stav. Tato změna je pak indikována svítivou diodou D₆ a z výstupní svorky D můžeme odebírat řídicí impuls k dalšímu zpracování. K vyhodnocení jedné série impulsů slouží klopný obvod IO5a, jehož hodinový vstup je připojen k výstupu Q1 obvodu IO_{4a}, a vstup D je připojen přes zpožďovací obvod k výstupu Q2 obvodu IO_{4b}. V klidovém stavu je na výstupech Q1 a Q2 obvodu IO₄ úroveň H, stejná je i úroveň výstupu Q obvodu Nosa: Při příjmu první série impulsů přechází výstup Q1 IO_{4a} na úroveň L. Stav obvodu IO _{5a} se nemění, neboť hodinový vstup IO₅ je citlivý pouze na vzestupnou hranu impulsu. Dochází-li k automatickému nulování klopných obvodů ${\rm IO_{4a,b}}$ přechází výstup ${\rm Q1~IO_{4a}}$ na úroveň H. V tomto okamžiku se přenáší úroveň, která je na vstupu D obvodu IO5a, na výstup tohoto obvodu. Úroveň na vstupu D obvodu IO_{5a} je právě kritériem, byla-li přijmuta jedna nebo dvě série impulsů. Pokud byla vyslána jenom jedna série impulsů, potom v okamžiku nulování obvodu lO_{4a,b} bude na výstupu Q2 obvodu lO_{4b} úroveň H. Tato úroveň se tedy přenese na výstup Q obvodu IO_{5a} . Zároveň se přes R_{24} začne nabíjet C_{18} . Jakmile napětí na tomto kondenzátoru dosáhne úrovně H, pak se obvod překlopí do původního stavu, takže na výstupu Q bude úroveň L. Vzestupnou hranou takto vzniklého impulsu je pak dále ovládán stav bistabilního klopného obvodu IO_{5b}. K tomu dochází vždy, je-li přijmuta pouze jedna série impulsů a klopný obvod IO_{5b} změní svůj stav. Změna stavu tohoto obvodu je indikována svítivou diodou D7.

Jiný stav nastane, jsou-li správně přijmuty dvě série impulsů. V tomto okamžiku, kdy se automaticky nulují klopné obvody IO_{4a,b} bude na výstupu Q2 obvodu IO_{4b} úroveň L. Tato úroveň se tedy v tomto okamžiku přenáší i na výstup Q klopného obvodu IO5a. Vzhledem ktomu, že tato úroveň je na tomto výstupu i v klidovém stavu, nemění se stav IO5a a tudíž ani stav IO5b. Jinými slovy: při příjmu dvou sérií impulsů se nemění stav IO_{5b}. Zatímco při příjmu jedné série impulsů se stav IO5b mění trvale, tak při příjmu dvojité série má změna na výstupu Q2 obvodu IO4b pouze charakter impulsu. Pokud by byla pro další použití nutná trvalá změna stavu (zapnuto-vypnuto), je nutné připojit na výstup Q2 obvodů IO4b další klopný obvod, zapojený stejně

jako 10_{5b}.

Konstrukce přijímače

Z hlediska možných vairant použití je přijímač "rozložen" na dvě samostatné

Obr. 8. Zapojení vyhodnocovací části s velkou odolností proti rušení (případně části pro dvoupovelový systém)

části. Každá z těchto částí je na samostatné desce s plošnými spoji. První částí je vlastní přijímač, jehož zapojení je na obr. 6. Deska s plošnými spoji a rozložení součástek jsou na obr. 9.

Druhá část je tvořená obvody, které tvarují výstupní impulsy z přijímače, popř. vyhodnocují počet sérií impulsů, které byly přijaty. Tato druhá část může byt realizována ve dvou variantách. První varianta používá pouze jedné série impulsů. Je vhodná pro takové použití, kde vystačíme s jedním povelem a kde se nevyskytuje silné impulsní rušení. Jedná se o zapojení na obr. 7. Deska s plošnými spoji a rozložení součástek této varianty je na obr. 10.

Zapojení druhé varianty, které je na obr. 8, umožňuje dvoupovelové ovládání. Tuto variantu můžeme použít také pro jednopovelové ovládání využívající dvou sérií impulsů, které je vhodné pro místa, kde se vyskytuje impulsní rušení. V tomto případě nezapojíme lO₅ a výstup Q2 lO_{4b} propojíme se vstupem invertoru lO_{3f}.

Vlastní přijímač můžeme tedy kombinovat podle potřeby s první nebo druhou variantou vyhodnocovací části. Celý přijímač je nutné umístit do stinicího krytu (piech, kuprextit). V místech s velmi silným rušením je vhodné přijímač umístit do dvojitého stínicího krytu. Při provozu popisovaného zařízení se však ukázalo, že dvojité stínění není obvykle nutné. Pokud nebude při provozu vadit užší přijímací diagram použitých fototranzistorů, stačí použít pouze jeden. Při použití dvou fototranzistorů je nutné je navzájem od sebe odklonit. Odklon, který bude zaručovat maximálně spolehlivý provoz, je nejlépe vyzkoušet v prostoru, v němž bude infračervené dálkové ovládání použito.

Obr. 9. Deska s plošnými spoji S205 a rozložení součástek pro základní část přijímače

Obr. 10. Deska s plošnými spoji S206 a rozložení součástek první varianty vyhodnocovací části přijímače IČ

Obr. 11. Deska s plošnými spoji S207 a rozložení součástek první varianty vyhodnocovací části IČ

Literatura

- [1] Jelínek, J.: Optoelektronické vazební členy. ST 7/1976.
- [2] Schaltungbeispiele mit optoelektronische Koppler. Radio-Fernsehen Elektronik 22/1973.
- [3] Olschewski, W.: Optokoppler für analoge Signale. Elektronik 9/1978.
- [4] Linear Optokoppler. Elektronikschau 1/1977.
- [5] Hodapp, M.: Optical Isolator yield benefits in many linear circuit. Electronics, březen 1976, s. 105. Časopisy: Radio (SSSR), Elektor 1975,

Casopisy: Radio (SSSR), Elektor 1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982; Radio—Fernsehen—Elektronik 1980, 1981, 1982; Funkamateur 1981, 1982; Elektronikschau 1978, 1982; Funkschau 1977, 1981, 1982; Elektronik 1978, Firemní literatura Valvo, National' Semiconductor, Telefunken, Siemens, RFT, TESLA.

