maxon motor

maxon motor control

1-Q-EC Amplificateur DEC 50/5

Référence de commande: 230572

Notice d'utilisation

Edition Octobre 2008

Le DEC (**D**igital **E**C **C**ontroller) est un amplificateur à 1 quadrant (1-Q-EC) destiné à assurer la commande des moteurs à courant continu à commutation électronique (sans balais).

- Réglage digital de la vitesse
- Nombre de tours maximum: 120 000 tr/min (moteur avec 1 paire de pôles)
- Fonctionnement comme régulateur de vitesse, de courant ou du nombre de tours
- Entrée de freinage, de direction et de déconnexion
- Connexion AUX: fonctions réglables (Sortie à +5 V ou entrée de commutation du nombre de tours)
- Affichage de l'état de fonctionnement par LED rouge et verte
- Positionnement de la valeur de consigne par un potentiomètre incorporé (sélection de plusieurs domaines de vitesse) ou par introduction de la valeur de consigne analogique (0 ... +5 V)
- · Adaptation de la limite du courant maximum
- Réglage de l'amplification sur deux niveaux
- Réglage de la pente de la valeur de consigne
- Protection contre la surcharge thermique
- Protection antiblocage (limitation du courant lors d'un blocage du moteur)
- Bornes de connexion enfichables

1	Instructions de sécurité	2
2	Données techniques	
3	Câblage externe minimal	
4	Instruction d'utilisation	6
5	Description des fonctions d'entrées / sorties	
6	Description des fonctions des interrupteurs	
7	Plages de vitesses	12
8	Fonctions des potentiomètres	13
9	Affichage de l'état de fonctionnement	
10	Fonctions de protection	15
	Installation conforme à la compatibilité électromagnétique (CEM)	
	Schéma bloc	
	Dimensions	

Ce notice d'utilisation est disponible comme PDF à la page internet <u>www.maxonmotor.com</u>, sous la rubrique «Service & Downloads», référence de commande 230572.

1 Instructions de sécurité

Personnel qualifié

L'installation et la mise en service ne doivent être effectuées que par du personnel qualifié et suffisamment formé.

Prescriptions légales

L'utilisateur a le devoir de s'assurer que l'amplificateur et les autres composantes satisfont aux prescriptions locales de montage et de connexion.

Découplage de la charge

Lors de la mise en service, le moteur doit tourner à vide, la charge étant découplée.

Dispositifs complémentaires de sécurité

Tous les appareils électroniques ne sont en principe pas à l'abri de panne subite. Les machines et les installations qui en dépendent doivent être munies de dispositifs de sécurité indépendants, capable d'intervenir en cas de panne de la commande ou en cas d'ordre erroné transmis par l'électronique de pilotage, en cas de rupture de câble ou de tout autre incident technique, en établissant des conditions d'exploitation bien définies.

Réparations

Les réparations ne doivent être exécutées que par du personnel qualifié et dûment autorisé ou par le fabricant lui-même. Le démontage ainsi que des interventions inapropriées peuvent engendrer des risques non négligeables pour l'utilisateur.

Danger

Toutes les parties de l'installation doivent être hors tension pendant l'installation de l'amplificateur DEC 50/5.

Après enclenchement, ne pas toucher les conducteurs sous tension!

Tension maximum de service

La tension d'alimentation doit être comprise entre 10 et 50 VDC. Toute tension supérieure ou inversion de la polarité peut détruire l'appareil.

Court-circuit et mise à la terre

L'amplificateur n'est pas protégé contre un court-circuit entre les bornes du moteur et la mise à la terre accidentelle ou à Gnd des bornes de connexion du moteur.

L'appareil contient des composants sensibles aux décharges électrostatiques (ESD)

2 Données techniques

2.1	Caractéristique	es électriques	
		Tension d'alimentation V_{CC} (ondulation tolérée < 5 %) . Tension de sortie max	
		Vitesse max. (moteur avec 1 paire de pôles)	
2.2	Entrées		
		Speed	Résolution: 1024 niveaux
		/Disable	L, CMOS (5V) ou interrupteur contre Gnd L, CMOS (5V) ou interrupteur contre Gnd
2.3	Entrée / Sortie		, <u>-,</u> -, -
2.0	Little 7 doi tie	AUX (configurable)	Entrée digitale / sortie +5 VDC
2.4	Tension de so	rtie	
		Tension d'alimentation capteurs à effet de Hall V_{CC} Hal	II7 12 VDC, max. 30 mA
2.5	Bornes de con	nexion du moteur	
		Motor winding 1 Motor winding 2 Motor winding 3	
2.6	Potentiomètre	s et interrupteur	
		Speed 1, Speed 2 / Ramp, I _{max} , gain	
2.7	Indicateur LED		
		État en fonctionnement: LED verte Indication d'erreur: LED rouge	
2.8	Température-	[/] Humidité	
		Exploitation	40 +85°C
2.9	Fonctions de p	protection	
		Surveillance thermique de l'étage final Surveillance de blocageLimitation du courant du m	
2.10	Caractéristique	es mécaniques	
		Masse Dimensions Plaque de fixation Distances entre les trous	voir dessin, <u>chapitre 13</u> par 4 vis M3
2.11	Connexions		
		Bornes PCB (connecteur des bornes du circuit conduct Pas	
		Convenant pour sections de fils	

3 Câblage externe minimal

3.1 Régulateur de vitesse

3.2 Régulateur de courant et régulateur de tension

4 Instruction d'utilisation

4.1 Détermination de la puissance d'alimentation

N'importe quelle alimentation à courant continu peut être utilisée, si elle répond aux exigences minimales résumées ci-dessous.

Durant la phase d'installation et de mise au point, nous vous recommandons de séparer mécaniquement le moteur de la machine qu'il doit entraîner, afin d'éviter tout dommage résultant d'un mouvement incontrôlé.

Puissance d'alimentation nécessaire

Tension de sortie	V _{CC} min. 10 VDC; V _{CC} max. 50 VDC
Ondulation	< 5 %
Courant de sortie	dépend de la charge, maximum 5 A en charge continue accélération brève, max. 10 A

La tension d'alimentation nécessaire peut être calculée comme suit:

Valeurs connues

- ⇒ Couple en exploitation M_B [mNm]
- ⇒ Vitesse d'exploitation n_B [tr/min]
- ⇒ Tension nominale du moteur U_N [V]
- ⇒ Vitesse du moteur à vide à U_N, n₀ [tr/min]
- ⇒ Pente vitesse/couple du moteur Δn/ΔM [tr/min / mNm]

Valeur cherchée

⇒ Tension d'alimentation V_{CC} [V]

Solution

$$V_{CC} = \frac{U_N}{n_0} \cdot (n_B + \frac{\Delta n}{\Delta M} \cdot M_B) \cdot \frac{1}{0.95} + 1V$$

Choisissez une alimentation pouvant fournir la tension sous charge ainsi calculée. La relation ci-dessus tient compte d'une modulation max. du PWM de 95 % ainsi que d'une chute de tension de 1 V à l'étage final.

Note

Lors de l'utilisation de l'entrée «/Brake», tenir compte du <u>chapitre 5.1.5, Fonction de freinage «/Brake»!</u>

4.2 Ajustement des potentiomètres

4.2.1 Réglage de base

Le positionnement de base des potentiomètres permet d'obtenir un fonction-

nement idéal.

Les appareils sous emballage original sont déjà préajustés en usine.

Réglage de base des potentiomètres		
P1	Speed 1	50 %
P2	Speed 2 / Ramp	50 %
P3	I _{max}	50 %

Note

Butée gauche du potentiomètre: Valeur minimale Butée droite du potentiomètre: Valeur maximale

4.2.2 Ajustage

Régulateur de vitesse digital

- Selon le mode d'exploitation, la valeur de consigne doit être prescrite pour atteindre le nombre de tours désirés. Si nécessaire, adapter la vitesse maximale avec les interrupteurs \$5 et \$6 (voir chapitre 7, «Plages de vitesses»).
- Mettre le potentiomètre P3 I_{max} à la valeur limite désirée.
 Le potentiomètre P3 permet d'ajuster le courant maximal dans le domaine de 0 ... 10 A de manière linéaire.
- L'interrupteur S2 gain doit être positionné sur l'amplification désirée (S2 OFF: amplification élevée du réglage, S2 ON: amplification basse) Important: Si le moteur devient instable, vibre ou engendre des bruits, il faut diminuer l'amplification, mettre l'interrupteur S2 sur ON.

Régulateur de courant digital

- Réglez la vitesse voulue à l'aide du potentiomètre P1 Speed 1. Celui-ci permet de faire varier linéairement le nombre maximal de tours entre 500 et 25 000 tr/min (moteur avec 1 paire de pôles), ceci indépendamment de la position des interrupteurs S5 et S6 (voir chapitre 7, «Plages de vitesses»).
- 2. Introduire la valeur de consigne dans l'entrée «Speed», pour que le couple désiré de rotation soit atteint.

Note

Une valeur de consigne de 0 ... 5 V appliquée à l'entrée "Speed" correspond à un domaine de réglage du courant allant de 0 à environ 5 A.

Largeur de bande du régulateur de courant: environ 15 Hz

Régulateur de tension digital

- Introduire la valeur de consigne à l'entrée «Speed», pour que la vitesse de rotation désirée soit atteinte. La valeur de consigne (0 ... 5 V) correspond à une tension au moteur de 0 V ... V_{CC}. La vitesse maximale s'obtient en multipliant la tension d'alimentation par la constante de vitesse du moteur, indépendamment de la position des interrupteurs S5 et S6.
- Positionner le potentiomètre P3 I_{max} sur la valeur limite désirée.
 Le potentiomètre P3 permet d'ajuster le courant maximal dans le domaine de 0 ... 10 A de manière linéaire.

5 Description des fonctions d'entrées / sorties

5.1 Entrées

5.1.1 Valeur de consigne «Speed»

Dans l'entrée «Speed», il faut introduire la valeur de consigne analogique.

L'entrée de la valeur de consigne est utilisée dans les modes d'exploitations suivants: Régulateur du nombre de tours, régulateur de courant et régulateur en tension.

L'entrée «Speed» est protégée contre les surtensions.

Domaine des tensions d'entrée	0 +5 V (Référence: Gnd)
Impédance d'entrée	> 1 M Ω (dans le domaine 0 +5 V)
Protection contre les surtensions	
continu	-50 +50 V

Utilisation d'un potentiomètre externe

L'utilisation d'un potentiomètre externe peut s'appliquer à la sortie AUX (Interrupteur S1 AUX 'on') et servir de référence +5 V.

La résistance conseillée pour ce potentiomètre est de 10 k Ω

Note

0 V correspond à la vitesse minimale (voir chapitre 7, «Plages de vitesses»).

5.1.2 Découplage «/Disable»

Découplage ou verrouillage de l'étage de puissance.

L'étage de puissance est actif si l'entrée «/Disable» est libre ou connecté à une tension supérieure à 2.4 V. Si une rampe de vitesse est préréglée, elle sera alors exécuté lors de l'accélération.

L'étage de puissance est désactivé s'il est relié au Gnd ou à une tension inférieure à 0.8 V (sa résistance devient alors très élevée) et le moteur s'arrête alors sans autre freinage que le frottement (arrêt non-freiné).

L'entrée «/Disable» est protégée contre les surtensions.

Domaine des tensions d'entrée	0 +5 V
Impédance d'entrée	33 k Ω de résistance pullup à +5 V
Protection permanente contre les surtensions	-50 +50 V
Temps de retardement	ca. 12 ms
«/Disable» activé	Entrée ouverte ou tension d'entrée > 2.4 V
«/Disable» inactivé	Entrée reliée à Gnd ou tension d'entrée < 0.8 V

Note

Si la position de l'interrupteur a été changée, le processus de rétablissement du Disable-Enable provoque la reprise de la nouvelle position.

5.1.3 Sens de rotation «Direction»

Le changement de niveau provoque le freinage non réglé du moteur (par effet de court-circuitage des enroulements, voir également au <u>paragraphe 5.1.5, Fonction de freinage «/Brake»</u> puis accélération en sens inverse de rotation, jusqu'à atteindre de nouveau la vitesse nominale imposée. Une rampe de vitesse ne peut être exécutée que lors de l'accélération.

L'entrée «Direction» est protégée contre les surtensions.

Domaine des tensions d'entrée	0 +5 V	
Impédance d'entrée	33 kΩ de résistance pullup à +5 V	
Protection permanente contre les		
surtensions	-50 +50 V	
Temps de retardement	ca. 12 ms	

Rotation à droite (CW)	Entrée ouverte ou tension d'entrée > 2.4 V
Rotation à gauche (CCW)	Entrée reliée à Gnd ou tension d'entrée < 0.8 V

Si le sens de rotation est inversé lorsque l'arbre du moteur est en train de tourner, il faut impérativement prendre garde aux limitations décrites au <u>paragraphe 5.1.5, Fonction de freinage «/Brake»</u>, sinon l'amplificateur peut être endommagé.

5.1.4 Fonction de rampe

La fonction de rampe permet d'assurer une progression contrôlée du nombre de tours du moteur au démarrage ou lors d'une modification de la valeur de consigne.

Le temps d'accélération est donné par le potentiomètre **P2 Ramp** et il se réfère au nombre de tours maximal autorisé dans le domaine actuellement choisi. (voir le <u>chapitre 7</u>, «<u>Plages de vitesses</u>»)

Temps d'accélération réglable avec le potentiomètre P2 Ramp	environ 20 ms jusqu'à 10 s
en butée à gauche	environ 20 ms
en butée à droite	environ 10s
Division	linéaire environ 1.0 s/division

Exemple:

Potentiomètre **P2 Ramp**: 40 % Modification consigne «Speed»: 0 V vers 3 V

Temps d'accélération pour atteindre le nombre nominal de tours

Temps d'accélération =
$$\frac{3V}{5V} \cdot 40\% \cdot 10s = ca$$
. 2.4s

Note

Le temps minimal de l'accélération ne peut être atteint qu'avec une grande amplification de la régulation et un entraînement suffisamment dynamique.

5.1.5 Fonction de freinage «/Brake»

La fonction «/Brake» est inactive si l'entrée est libre ou que la tension est supérieure à 2.4 V.

La fonction «/Brake» est active (l'axe du moteur est freiné jusqu'à l'arrêt) si l'entrée est connectée au Gnd ou à une tension inférieure à 0.8 V. Les bobinages du moteur sont court-circuités pour cette opération. Ils restent court-circuités jusqu'à ce que la fonction «/Brake» soit désactivée.

La fonction «/Brake» peut aussi être utilisée lorsque la fonction «/Disable» est active.

L'entrée «/Brake» est protégée contre les surtensions.

Domaine des tensions d'entrée	0 +5 V
Impédance d'entrée	33 kΩ de résistance pullup à +5 V
Protection permanente contre les surtensions	-50 +50 V
Courant maximum de freinage	30 A
Temps de retardement	Environ 12 ms

«/Brake» inactive	Entrée ouverte ou tension d'entrée > 2.4 V
«/Brake» active	Entrée reliée à Gnd ou tension d'entrée < 0.8 V

Le nombre de tours maximum de freinage est limité par le courant de courtcircuit maximum admissible et par l'énergie cinétique maximale à absorber:

- I <= 30 A
- W_k <= 20 Ws

Les valeurs suivantes peuvent être calculées ainsi:

Partant des données du moteur, le nombre de tours de freinage maximum admissible est de:

nombre de tours max de freinage limité par le courant de freinage (I = 30 A)

$$n_{\text{max}} = 30A \cdot k_n \cdot (R_{Ph-Ph} + 0.05\Omega)$$
 [tr/min]

k_n = Constante de vitesse [tr/min/ V]

 R_{Ph-Ph} = Résistance aux bornes (phase-phase) [Ω]

Pour un moment d'inertie donné, le nombre maximum de tours max de freinage se calcule à l'aide de la formule suivante:

nombre de tours max de freinage limité par l'énergie cinétique (W_k = 20 Ws)

$$n_{\text{max}} = \sqrt{\frac{365}{J_R + J_L}} \cdot 10\,000 \quad [tr/\text{min}]$$

 J_R = Inertie du rotor [gcm²]

 J_L = Moment d'inertie de la charge [gcm²]

	maxon motor	
Notice d'utilisation		1-Q-EC Amplificateur DEC 50/5

5.1.6 «AUX»

La connexion «AUX» peut être utilisée en entrée ou en sortie, selon la position de l'interrupteur qui la commande.

La connexion «AUX» n'est protégée contre les surtensions que si l'interrupteur S1 est ouvert.

Interrupteur S1 fermé

Fonction	Tension de sortie
Tension de sortie	+5 VDC ± 5 %
Résistance interne	220 Ω
Courant de sortie, appliqué à un potentiomètre externe >=10 k Ω	500 μΑ

Interrupteur S1 ouvert

Fonction	Inversion du sens de rotation
Domaine des tensions d'entrée	0 +5 V
Impédance d'entrée	33kΩ de résistance pullup à +5 V
Protection permanente contre les surtensions	-50 +50 V
Nombre de tours imposé par le potentiomètre Speed 1	Entrée ouverte ou tension d'entrée > 4.0 V
Nombre de tours imposé par le potentiomètre Speed 2	Entrée reliée à Gnd ou tension d'entrée < 1.0 V

5.1.7 «Hall sensor 1», «Hall sensor 2», «Hall sensor 3»

Les capteurs à effet Hall sont utilisés pour détecter la position du rotor. Les entrées des capteurs «Hall» sont protégées contre les surtensions.

Domaine des tensions d'entrée	0 +5 V
Impédance d'entrée	15 kΩ de résistance pullup à +5 V
Niveau de tension «bas»	max. 0.8 V
Niveau de tension «haut»	min. 2.4 V
Protection permanente contre les surtensions	-50 +50 V

S'applique aux capteurs Hall IC's ayant un comportement de Schmitt-Trigger ainsi que des sorties à collecteur ouvert.

5.2 Sorties

5.2.1 «V_{CC} Hall»

Tension d'alimentation des capteurs à effet Hall.

Tension de sortie	7 12 VDC
Courant de sortie maximum	30 mA (courant limité)

6 Description des fonctions des interrupteurs

7 Plages de vitesses

La valeur de consigne (0 \dots 5 V) correspond, en **mode régulateur de vitesse**, aux plages de vitesses suivantes:

	Type de moteur					
Interrupteur S5 et S6	Moteur avec	Moteur avec	Moteur avec			
	1 paire de pôles	4 paires de pôles	8 paires de pôles			
123456 ■ ■ ■ OFF	500 6 000 tr/min	125 1 500 tr/min	67 750 tr/min			
123456 OFF	500 25 000 tr/min	125 6 250 tr/min	67 3 125 tr/min			
123456 OFF	500 60 000 tr/min	125 15 000 tr/min	67 7 500 tr/min			
123456 OFF	500 120 000 tr/min	125 30 000 tr/min	67 15 000 tr/min			

Note

- En mode régulation de courant, la vitesse maximale est réglable de 500 ... 25 000 tr/min à l'aide du potentiomètre P1 Speed (moteur avec 1 paire de pôles), indépendamment de la position des interrupteurs S5 et S6. Pour les moteurs de plus de 1 paire de pôles il faut se référer à la tabelle ci-dessus.
- En fonctionnement «sélection de vitesse» (open loop), la valeur de consigne 0 V correspond à une tension aux bornes du moteur de 0 V et donc à une vitesse de 0 tr/min. La vitesse maximale s'obtient en multipliant la tension d'alimentation par la constante de vitesse du moteur, indépendamment de la position des interrupteurs **S5** et **S6**.

8 Fonctions des potentiomètres

La table qui suit indique les potentiomètres qui sont actifs dans les différents modes d'exploitation.

	Mode d'exploitation							
	Régulateur de vitesse (closed loop)			Régulateur de courant		Régulateur de tension (open loop)		
Fonctions des potentiomètres	Valeur de consigne avec potentiomètre interne P1	Valeur de consigne avec potentiomètre externe	Valeur de consigne externe 0 +5 V	Avec 2 différentes vitesses	Valeur de consigne avec potentiomètre externe	Avec valeur de consigne externe 0 +5 V	Valeur de consigne avec potentiomètre externe	Avec valeur de consigne externe 0 +5 V
P1 Speed1	\			✓	√	\		
P2 Speed2				√				
P2 Ramp	\	✓	✓					
P3 I _{max}	✓	√	✓	√			✓	√

9 Affichage de l'état de fonctionnement

Une diode lumineuse rouge et une autre verte (LED) signalent l'état de l'exploitation.

9.1 Aucune LED n'est allumée

Cause

- L'alimentation ne fonctionne pas
- · Le fusible est défectueux
- La polarité de l'alimentation a été inversée
- L'alimentation des capteurs Hall V_{CC} est court-circuitée

9.2 LED vert

Clignotement (LED verte)	État d'exploitation
LED allumée	L'amplificateur est actif
	La fonction /Disable est activée
	La fonction /Brake est activée

9.3 LED rouge vacillant ou clignotant irrégulièrement

La commande a détecté une situation anormale dans l'entrée des capteurs Hall.

Motif:

- · Les capteurs Hall sont mal connectés
- Les câbles d'alimentation des capteurs Hall sont interrompus
- Grandes perturbations sur les fils des capteurs Hall.
 (Remède: Remplacer les câbles existants par des câbles blindés)
- Les capteurs Hall du moteur sont défectueux.

9.4 LED rouge, clignotant régulièrement

Selon le genre de clignotement on peut distinguer les messages d'erreurs suivants:

Clignotement (LED rouge)	Message d'erreur
т——	La protection contre la surcharge thermique est activée
	 L'arbre du moteur est bloqué La charge est trop élevée Le réglage de I_{max} est trop petit Liaison manquante de bobinage
	À l'enclenchement, la commande a détecté des conditions invalides dans les entrées des capteurs Hall => Vérifier les connexions extérieures de ces capteurs et les signaux émis.
······	Un mode d'exploitation invalide a été détecté parmi les interrupteurs S3-S6

10 Fonctions de protection

10.1 Protection contre les surcharges thermiques

Lorsque la température de l'étage final dépasse 100°C pendant plus de 1.5 secondes, celui-ci est alors déclenché. Cet état d'erreur est cité <u>chapitre 9, «Affichage de l'état de fonctionnement».</u>

Si la température des étages finaux redescend en-dessous de 80°C, le moteur va redémarrer. Si une rampe de vitesse est sélectionnée, l'accélération du moteur suivra cette rampe imposée.

10.2 Protection contre le blocage

Si le rotor du moteur reste bloqué plus de 1.5 secondes, la limitation du courant se positionne sur 4.2 A, pour autant que la limitation de courant n'ait pas été fixée à une valeur inférieure par le potentiomètre I_{max} .

Note

Cette fonction n'est pas active en mode de régulateur de courant.

11 Installation conforme à la compatibilité électromagnétique (CEM)

Alimentation (+V_{CC} - Power Gnd)

- Aucun blindage n'est normalement nécessaire.
- Câblage à point neutre lorsque plusieurs amplificateurs sont desservis par la même alimentation secteur.

Câble du moteur (> 30 cm)

- Un câble blindé est vivement recommandé.
- Connectez le blindage aux deux extrémités:

Côté DEC 50/5: Fond du boîtier.

Côté moteur: Boîtier du moteur ou construction mécanique reliée à faible résistance

au boîtier du moteur.

Utilisez un câble séparé.

Câble du capteur à effet Hall (> 30 cm)

- Un câble blindé est vivement recommandé.
- Connectez le blindage aux deux extrémités:

Côté DEC 50/5: Fond du boîtier.

Côté moteur: Boîtier du moteur ou construction mécanique reliée à faible résistance

au boîtier du moteur.

Utilisez un câble séparé.

Raccordement direct du câble moteur/Hall au DEC 50/5 (≤ 30 cm)

- Tube de blindage sur le câble de raccordement moteur/Hall.
- Connectez le blindage aux deux extrémités du câble

ou

- Reliez le boîtier du moteur au fond du boîtier du DEC 50/5 par une liaison de résistance aussi faible que possible.
- Placez le câble de raccordement du moteur ou du capteur Hall aussi près que possible de la liaison citée ci-dessus.

Signaux analogiques (AUX, Speed)

- Aucun blindage n'est normalement nécessaire.
- Dans le cas de signaux analogiques de faible niveau et d'un environnement électromagnétique perturbé, utilisez un câble blindé.
- Connectez normalement le blindage aux deux extrémités. En cas de problèmes dus aux perturbations 50/60 Hz, déconnectez le blindage d'un côté.

Signaux digitaux (Disable, Direction, Brake)

Aucun blindage n'est nécessaire.

Voir également le schéma bloc au chapitre 12.

Il est judicieux de soumettre l'installation avec tous ses composants (moteur, amplificateur, alimentation, filtre CEM, câblage, etc.) à un essai de compatibilité électromagnétique (CEM) afin d'assurer un fonctionnement exempt de dérangements et conforme aux prescriptions CE.

12 Schéma bloc

13 Dimensions

