Welding method using pulsed frequency - with reversed polarity phase to ensure good separation of molten drops from electrode

Publication number: DE4233818

Publication date:

1994-04-14

Inventor:

MERKLE WILHELM (DE); LECHNER GERHARD (DE);

STUMP GABOR (DE); SCHLANDER JUERGEN (DE)

Applicant: Classification:

- International:

B23K9/09; B23K9/09; (IPC1-7): B23K9/09; B23K9/16

WILHELM MERKLE SCHWEISMASCHINE (DE)

- European:

B23K9/09B2B

Application number: DE19924233818 19921007 Priority number(s): DE19924233818 19921007

Report a data error here

Also published as:

宽 CZ287455 (B6)

Abstract of **DE4233818**

Welding method in which the DC produced by an electric arc between the electrode and workpiece is subjected to a predetermined pulse frequency from a base level (1g) to a higher level (1p). The novelty is that during the time when the current is reduced from its high level to the base level, it is subjected to a reverse polarity (In). USE/ADVANTAGE - Esp. in protection gas welding. The reverse polarity phase ensure premature and good separation of the weld material drops from the electrode. This leads to a relatively low transfer of heat to the weld area. The method is a simple and cheap improvement of prior art processes.

Data supplied from the esp@cenet database - Worldwide

DEUTSCHES PATENTAMT

P 42 33 818.2 Aktenzeichen: Anmeldetag: 7. 10. 92

43 Offenlegungstag: 14. 4.94

(7) Anmelder:

Wilhelm Merkle Schweißmaschinenbau GmbH, 89359 Kötz, DE

(74) Vertreter:

Munk, L., Dipl.-Ing., Pat.-Anw., 86150 Augsburg

② Erfinder:

Merkle, Wilhelm, 8871 Kötz, DE; Lechner, Gerhard, 8873 Ichenhausen, DE; Stump, Gabor, 8873 Ichenhausen, DE; Schlander, Jürgen, 7917 Vöhringen, DE

Prüfungsantrag gem. § 44 PatG ist gestellt

(54) Schweißverfahren und -vorrichtung

Beim Schweißen mittels eines elektrischen Lichtbogens, der zwischen einer kontinuierlich voranbewegbaren Elektrode und dem Werkstück erzeugt wird und über den ein Gleichstrom fließt, der mit vorgegebener Pulsfrequenz von einer Grundstromstärke auf eine höhere Pulsstromstärke erhöht wird und umgekehrt, lassen sich dadurch eine frühzeitige und dennoch sichere Tropfenablösung und damit eine geringe Aufwärmung erreichen, daß der Strom am Ende der Pulsstromphase kurzzeitig umgepolt wird. Die infolge der Umpolung sich ergebende Änderung der Elektronenflußrichtung führt zu einer zwangsweisen Tropfenablösung.

Beschreibung

ء:

Die Erfindung betrifft ein Schweißverfahren, insbesondere Schutzgasschweißverfahren, bei dem zwischen einer kontinuierlich voranbewegbaren Elektrode und dem Werkstück ein elektrischer Lichtbogen erzeugt und der über diesen fließende Gleichstrom mit vorgegebener Pulsfrequenz von einer Grundstromstärke auf eine demgegenüber höhere Pulsstromstärke erhöht wird, sowie eine zur Verfahrensdurchführung geeignete 10 Schweißvorrichtung, insbesondere Schutzgasschweißvorrichtung, mit einem Schweißbrenner, der eine von einem mittels einer Vorschubeinrichtung antreibbaren Schweißdraht durchsetzte Kontaktdüse aufweist, und mit einem dieser zugeordneten Leistungsteil zur Erzeu- 15 gung des mit vorgegebener Pulsfrequenz von der Grundstromstärke auf die Pulsstromstärke ansteigenden Stroms.

Bei Anordnungen, die mit gleicher Schweißstromstärke arbeiten, was früher üblich war, kommt es häufig vor, daß der kontinuierlich voranbewegte Schweißdraht infolge schlechter Tropfenablösung in Kontakt mit dem Werkstück kommt, was zu sogenannten Spritzen führt.

Dem wurde durch das gattungsgemäße pulsed-arc-Schweißen abgeholfen, bei dem der Schweißstrom mit 25 vorgegebener Pulsfrequenz von der niedrigeren Grundstormstärke auf die sehr viel höhere Pulsstromstärke erhöht wird und umgekehrt, wobei sich im Stromverlauf insbesondere beim Abfall des Stroms vergleichsweise steile Flanken ergeben. Dies bewirkt eine Tropfenablö- 30 sung noch bevor der Schweißdraht in Kurzschluß mit dem Werkstück gelangen kann, womit Spritzer vermieden werden. Nachteilig hierbei ist allerdings, daß infolge der hohen Pulsstromstärke vergleichsweise viel Energie übertragen wird. Die Folge davon sind hohe Lichtbo- 35 gen- und Schweißbadtemperaturen, was insbesondere bei geringer Dicke des Werkstücks, wie bei dünnen Blechen, und/oder bei Materialien mit niedrigen Schmelztemperaturen, wie Aluminium, zu einem unerwünschten Abschmeizen des Werkstücks und dementsprechend 40 zur Entstehung von Löchern führt. Aus diesem Grunde konnten in den genannten Fällen bisher nur von Hand zugeführte Elektroden Verwendung finden, was allerdings einen hohen Arbeitsaufwand bedeutet.

Hiervon ausgehend ist es daher die Aufgabe der vorliegenden Erfindung, das gattungsgemäße Verfahren und die gattungsgemäße Vorrichtung mit einfachen und kostengünstigen Mitteln so zu verbessern, daß unter Beibehaltung der grundsätzlichen Vorteile des pulsedarc-Schweißens die auf das Schweißgut übertragene 50 einem Wechselst Wärme vergleichsweise gering ist.

Diese Aufgabe wird verfahrensmäßig dadurch gelöst, daß der Strom zwischen der Zeitspanne, in welcher er Pulsstromstärke aufweist, und der nachfolgenden Zeitspanne, in welcher er Grundstormstärke aufweist, umgepolt ist.

Dies wird vorrichtungsmäßig einfach dadurch bewerkstelligt, daß das Leistungsteil einen zwischen jeder Pulsstromspanne und der darauffolgenden Grundstromspanne aktivierbaren Wechselrichter aufweist.

Durch die Umpolung des Stroms ergibt sich eine Umkehr der Elektronenflußrichtung, was zu einem zwangsweisen Abreißen eines an der Elektrode vorhandenen Tropfens führt. Da ein derartiger Tropfen abgerissen, d. h. mit Gewalt abgelöst wird, ist in vorteilhafter Weise eine frühzeitige Tropfenablösung, also eine Tropfenablösung nach der Übertragung von erst vergleichsweise wenig Wärme, möglich. Die Pulsstromspanne kann hier

daher in vorteilhafter Weise verkürzt werden. Dennoch erfolgt eine zuverlässige Tropfenablösung, bevor die Elektrode in Kurzschluß mit dem Werkstück kommt. Die erfindungsgemäßen Maßnahmen stellen daher sicher, daß auch beim Schweißen dünner Bleche bzw. von Materialien mit geringem Schmelzpunkt mit kontinuierlich voranbewegter Elektrode gearbeitet werden kann und dabei sowohl Spritzer als auch ein Wegbrennen bzw. Wegschmelzen von Material verhindert wird.

Vorteilhafte Weiterbildungen und zweckmäßige Ausgestaltungen der übergeordneten Maßnahmen sind in den Unteransprüchen angegeben. So kann es zur Stabilisierung des Lichtbogens vorteilhaft sein, an den Null-Durchgängen des Stroms Spannungsspitzen zu erzeugen. Diese Spannungsspitzen ergeben eine starke Ionisierung des Gases, im Falle von Schutzgasschweißen des Schutzgases, wodurch die Leitfähigkeit erhalten bleibt und eine im Bereich des Schweißbads sich bildende Oxydschicht aufgerissen wird, was zur Folge hat, daß der Lichtbogen trotz des Null-Durchgangs des Stroms erhalten bleibt.

Zur Erzeugung der genannten Spannungsspitzen kann das Leistungsteil einfach einen mit der An-bzw. Absteuerung des Wechselrichters aktivierbaren, entsprechend der Umpolung des Stroms umschaltbaren Spannungssptitzengenerator aufweisen, wie er auch zum Zünden bereits Verwendung findet.

Eine weitere zweckmäßige Maßnahme kann darin bestehen, daß die Stärke des umgepolten Stroms betragsmäßig der Grundstromstärke entspricht. Dies ergibt einerseits ausreichende Abreißkräfte und ermöglicht andererseits eine einfache Bauweise, da eine Umpolung des Stroms genügt.

Weitere vorteilhafte Ausgestaltungen und zweckmä-Bige Fortbildungen der übergeordneten Maßnahmen sind in den restlichen Unteransprüchen angegeben und aus der nachstehenden Beschreibung eines bevorzugten Ausführungsbeispiels entnehmbar.

In der nachstehend beschriebenen Zeichnung zeigen: Fig. 1 ein Blockschaltbild des Leistungsteils einer erfindungsgemäßen Schweißvorrichtung,

Fig. 2 ein Strom-Zeitdiagramm der Vorrichtung gemäß Fig. 1.

Fig. 3 ein Spannungs-Zeitdiagramm der Vorrichtung gemäß Fig. 1 und

Fig. 4 eine weitere Einzelheit der erfindungsgemäßen Schweißvorrichtung teilweise im Schnitt.

Das der Fig. 1 zugrundeliegende Leistungsteil einer erfindungsgemäßen Schweißvorrichtung enthält einen einem Wechselstromeingang 1 nachgeordneten Transformator 2, der die Wechselstromspannung von 380 Volt auf 55 Volt herabsetzt. Dem Transformator 2 ist ein Gleichrichter 3 nachgeordnet, der den Wechselstrom in Gleichstrom umwandelt. Zur Glättung ist eine dem Gleichrichter 3 nachgeordnete Kondensatoranordnung 4 vorgesehen.

Dieser ist ein durch eine Kaskade gebildeter Stromregler 5 nachgeschaltet, durch den die Stromstärke erhöht und erniedrigt werden kann. Auf den Stromregler
50 5 folgt ein Wechselrichter 6, durch den der Strom mit
vorgegebener Frequenz umgepolt werden kann. Zur
diesbezüglichen Glättung ist eine dem Wechselrichter 6
nachgeordnete Drosselanordnung 7 vorgesehen. Vor
dem Ausgang des Leistungsteils ist in den Strompfad
noch ein Spannungsspitzengenerator 8 eingeschaltet,
durch den Spannungsspitzen erzeugbar sind.

Der Stromregler 5, der Wechselrichter 6 und der Spannungsspitzengenerator 8 sind mittels einer Steuer-

1

"einrichtung 9 so steuerbar, daß sich der den Fig. 2 und 3 zugrundeliegende Strom- bzw. Spannungsverlauf ergeben. Die Stromstärke, deren Verlauf über der Zeit der Fig. 2 zugrundeliegt, wird bei ti mittels des Stromreglers 5 ausgehend von einer Grundstromstärke Ig von etwa 20 A über eine bestimmte Zeitspanne auf eine Pulsstromstärke Ip von etwa 250 A erhöht und danach bei t2 plötzlich wieder abgesenkt, so daß sich eine steile Flanke des Stromverlaufs ergibt. Die Absenkung der Stromstärke erfolgt auf Grundstromstärke. Gleichzeitig 10 mit der Absenkung erfolgt aber eine durch den Wechselrichter 6 bewerkstelligbare Umpolung des Stroms, so daß sich ein Null-Durchgang des Stromverlaufs ergibt, wie bei t2 erkennbar ist. Nach einer vorgegebenen Zeitspanne erfolgt bei t3 eine Rückpolung, so daß sich ein 15 weiterer Null-Durchgang ergibt. Die nun wieder vorliegende, positive Grundstromstärke Ig wird wiederum eine bestimmte Zeitspanne aufrechterhalten, bis bei t4 der Vorgang mit der Erhöhung auf die Pulsstromstärke Ip von Neuem beginnt.

Zwischen t2 und t3 liegt die negative Grundstromstärke vor, wie durch In angedeutet ist. Die zwischen t2 und t3 liegende Zeitspanne, in welcher die Stromstärke die negative Grundstromstärke In aufweist, wird mit Negativ-Phase N bezeichnet. Diese liegt zwischen der Puls- 25 20 durch einen positiven Spannungsausschlag, entsprephase P, in welcher die Stromstärke die Pulsstromstärke Ip aufweist, und der Grundstromphase G, in welcher die Stromstärke die positive Grundstromstärke Ig aufweist. Die Negativ-Phase N und die Grundstromphase G können etwa gleich lang sein. Im dargestellten Beispiel liegt 30 gleiche Dauer vor. Die Pulsstromphase P ist demgegenüber um etwa 25% bis 30% verkürzt. Die Pulsfrequenz, mit der sich der Verlauf der Stromstärke wiederholt, ist abhängig von der Elektrodenstärke. Bei Schweißen mit einer 1-mm-Elektrode beträgt diese Frequenz etwa 200 35 Stabilität des Lichtbogens 18 auswirkt. Hierdurch wer-Hertz, wobei sich eine Pulsstromphase P von 1,3 bis 1,5, hier 1,4 Mikrosekunden sowie eine Negativphase und Grundstromphase von 1,75 bis 1,85, hier 1,8 Mikrosekunden ergeben.

Der Strom fließt über einen in Fig. 1 durch eine unter- 40 brochene Linie angedeuteten Lichtbogen zwischen der Schweißelektrode und dem Werkstück. Die Elektrode 10 wird dabei, wie in Fig. 4 angedeutet ist, mittels eines Schweißbrenners 11 geführt, der eine mit dem der Fig. 1 zugrundeliegenden Leistungsteil elektrisch verbundene 45 Kontaktdüse 12 enthält, durch welche die durch einen Draht gebildete Elektrode 10 hindurchgeführt ist. Im dargestellten Beispiel handelt es sich um einen Schutzgas-Schweißbrenner, der mit einer die Kontaktdüse 12 umgebenden Gasdüse 13 versehen ist, die an eine nicht 50 näher dargestellte Schutzgasquelle angeschlossen ist und das ausströmende Schutzgas der Schweißstelle zuleitet. Die durch einen Schweißdraht gebildete Elektrode 10, die an ihrem vorderen Ende tropfenförmig abschmilzt, wie bei 14 angedeutet ist, wird mittels einer 55 Vorschubeinrichtung 15 kontinuierlich nachgeführt. Hierzu wird der die Elektrode 10 bildende Schweißdraht in der Regel von einer Trommel abgewickelt, die mittels eines Getriebemotors kontinuierlich antreibbar

Durch den abrupten Abfall der Stromstärke am Ende der Pulsstromphase P und die dabei erfolgende Umpolung des Stroms erfolgt ein zwangsweises Abreißen des am vorderen Elektrodenende vorhandenen, durch den Lichtbogen geschmolzenen Tropfens 14. Die an die 65 Hochstromphase in Form der Pulsstromphase P sich anschließende, längere Niederstromphase in Form der Negativ-Phase N und der Grundstromphase G ermögli-

chen nach Ablösung des Tropfens 14 einen entsprechenden Nachschub der Elektrode 10. Da die Umpolung am Ende der Pulsstromphase P auch bei vergleichsweise kurzer Pulsstromphase P eine zuverlässige Tropfenab-5 lösung ergibt, kann diese frühzeitig genug erfolgen, um eine Überhitzung des Tropfens 14 und dementsprechend des im Bereich einer herzustellenden Schweißnaht 16 sich ergebenden Schweißbads zu verhindern. Die wirksam werdenden Wärmemengen können dabei so gering gehalten werden, daß auch dünne, durch die Schweißnaht 16 zu verbindende Aluminiumbleche 17 etc. im Bereich der einander zugewandten Kanten nicht wegschmelzen. Dennoch werden durch die zuverlässige Tropfenablösung Spritzer vermieden.

Um an den Null-Durchgängen des Stromverlaufs ein Abreißen des in Fig. 4 bei 18 angedeuteten Lichtbogens zu verhindern, wird an den Null-Durchgängen, also bei t2 und t3, jeweils eine Spannungsspitze 19 bzw. 20 erzeugt, wie aus Fig. 3 erkennbar ist. Hierzu wird der 20 Spannungsspitzengenerator 8 mittels der Steuereinrichtung 9 entsprechend angesteuert. Die am Anfang der Negativ-Phase N erzeugte Spannungsspitze 19 ergibt sich durch einen negativen Spannungsausschlag, die am Ende der Negativ-Phase N erzeugte Spannungsspitze chend der jeweils erfolgenden Umpolung des Stroms. Der Spannungsspitzengenerator 8 wird dementsprechend ebenfalls von Negativ auf Positiv umgeschaltet, was ebenfalls durch die Steuereinrichtung 9 bewerkstelligt wird. Die Spannungsspitzen 19 bzw. 20 bewerkstelligen eine starke Ionisierung des den Lichtbogen 18 zum Werkstück hin treibenden Schutzgases, womit eine dortige Oxydschicht aufgerissen wird und die Leitfähigkeit erhalten bleibt, was sich positiv auf den Erhalt und die den eine hohe Bedienungsfreundlichkeit und Qualität sichergestellt. Die Spannungsspitzen 19 bzw. 20 können betragsmäßig in der Größenordnung der Zündspannung von etwa 300 V liegen. Als Spannungsspitzengenerator 8 kann daher einfach ein Zündgerät Verwendung finden.

Patentansprüche

- 1. Schweißverfahren, insbesondere Schutzgasschweißverfahren, bei dem zwischen einer kontinuierlich voranbewegbaren Elektrode (10) und dem Werkstück (17) ein elektrischer Lichtbogen (18) erzeugt und der über diesen fließende Gleichstrom mit vorgegebener Pulsfrequenz von einer Grundstromstärke (Ig) auf eine demgegenüber höhere Pulsstromstärke (Ip) erhöht wird, dadurch gekennzeichnet, daß der Strom zwischen der Zeitspanne, in welcher er Pulsstromstärke (Ip) aufweist, und der nachfolgenden Zeitspanne, in welcher er Grundstromstärke (lg) aufweist, umgepolt ist.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß an den Null-Durchgängen des Stroms Spannungsspitzen (19, 20) erzeugt werden.
- 3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Stärke des umgepolten Stroms betragsmäßig der Grundstromstärke (Ig) entspricht.
- 4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Rückpolung des Stroms etwa in der Mitte zwischen Umpolung und nachfolgendem Anstieg auf Pulsstromstärke (Ip) erfolgt.

5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Spanne, in welcher Impulsstromstärke (I_p) vorliegt, kürzer als die Spanne, in der jeweils positive oder negative Grundstromstärke vorliegt, ist.

Grundstromstärke vorliegt, ist.

6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Spanne, in welcher Impulsstromstärke (Ip) vorliegt, um 25 bis 30% kürzer als die

Spanne, in welcher jeweils positive bzw. negative Grundstromstärke vorliegen, ist.

7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Pulsfrequenz, mit welcher die Stromstärke auf die Pulsstromstärke (Ip) erhöht wird, bei einer 1-mm-Elektrode etwa 200 Hz beträgt.

8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Grundstromstärke (Ig) weniger als 10% der Pulsstrom-

stärke (Ip) beträgt.

weist.

٠,

9. Schweißvorrichtung, insbesondere Schutzgasschweißvorrichtung, mit einem Schweißbrenner
(11), der eine von einem mittels einer Vorschubeinrichtung (15) antreibbaren Schweißdraht durchsetzte Kontaktdüse (12) aufweist, und mit einem
der Kontaktdüse (12) zugeordneten Leistungsteil
zur Erzeugung eines mit vorgegebener Pulsfrequenz von einer Grundstromstärke auf eine demgegenüber höhere Pulsstromstärke ansteigenden
Stroms, zur Durchführung des Verfahrens nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Leistungsteil einen zwischen
jeder Pulsstromphase und der darauffolgenden
Grundstromphase aktivierbaren Wechselrichter (6)
aufweist.

10. Schweißvorrichtung nach Anspruch 9, dadurch 35 gekennzeichnet, daß das Leistungsteil einen mit der An-bzw. Absteuerung des Wechselrichters (6) aktivierbaren, entsprechend der Umpolung des Stroms umschaltbaren Spannungsspitzengenerator (8) auf-

Hierzu 1 Seite(n) Zeichnungen

45

50

55

60

Nummer: Int. Cl.5:

DE 42 33 818 A1

Offenlegungstag:

B 23 K 9/09 14. April 1994

