Rappel de cours

Une matrice $n \times n$ A est diagonalisable $(A = PDP^{-1}0$ si:

- ullet Elle a n vecteurs propres linéairement indépendants, condition pour avoir une matrice P formée des vecteurs propores en colonne qui est inversible.
- Elle a n valeurs propres distinctes, car n valeurs propres génèrent n vecteurs propres linéairement indépendants
- $\sum dim \ E_{sp_n}(A) = n$
- pour chaque valeur propre sp, on a $dim\ E_{sp}(A)=multiplicite\ sp$. La multiplicité de sp le nombre de racine de sp.
- si $\chi_A(X) = P(X)$ et P(X) est un polynome scindé (ie $P(X) = C(X A_1)(X A_2) \dots (X A_{m-1})(X A_m)$).
- si $\chi_A(X) = P(X)$ et P(A) = 0.

Exercice 2

Exercice 2.1

On a $\chi_A(X) = (X-1)^2(X-2)^2$ avec $A^2 - A + I_4 = 0$. La matrice A est diagonalisable ssi on a $\chi_A(A) = 0$.

$$\chi_A(A) = (A-1)^2 (A-2)^2 = ((A-1)(A-2))^2 = (A^2 - 3A - 2I_4)^2 = 0$$

Donc la matrice A est diagonalisable.

Les valeurs propres $Sp(A) = \{1, 2\}$. Comme la matrice A est diagonalisable on a $dim E_1(A) + dim E_2(A) = 4$ et la multiplicité de chaque valeur propre est 2.(ie $(X-1)^2 = 0$ génère une racie double 1). Donc $dim E_1(A) = 2$.

Exercice 2.2

On a $\chi_B(X) = (X-1)^2(X-2)^2$ avec $B^2 - B + I_2 \neq 0$. La matrice A est diagonalisable ssi on a $\chi_B(B) = 0$.

$$\chi_B(B) = (B-1)^2(B-2)^2 = ((B-1)(B-2))^2 = (B^2 - 3B - 2I_2)^2 \neq 0$$

Donc la matrice B n'est pas diagonalisable.

Exercice 2.3

On a une matrice C symétrique (ie $C^T = C$) et $\chi_C(X) = (X-1)^2(X-2)^2 = \det(XI-C)$. Comme la matrice C est symétrique, elle est diagonalisable. Comme elle est diagonalisable on a $\chi_C(C) = 0$

$$\chi_C(C) = (C-1)^2(C-2)^2 = ((C-1)(C-2))^2 = (C^2 - 3C - 2I_4)^2 = 0$$

Donc $C^2 - 3C - 2I_4 = 0$. QED