MA32009 Lecture slides

Philip Murray

Lecture 1

A general model

$$\frac{dN}{dt} = f(N)N = H(N),$$

Numerical solution

Dimensions and nondimensionalisation

As an example, consider the linear ODE

$$\frac{dN}{dt} = rN.$$

Steady-state analysis

Lecture 10

- Recap
- ► Techniques for single first order ODE (ctd)
- Example model 1: Logistic growth
- Example model 2: Spruce budworm

Graphical solution

Bifurcation diagrams

Example model 1: the logistic growth equation

$$\frac{dN}{dt} = rN(t)\left(1 - \frac{N(t)}{K}\right).$$

Numerical solution

Figure 1: Numerical solution of the logistic growth model

Graphical analysis

Example model 2: the spruce budworm model

$$\frac{dN}{dt} = r_B N \left(1 - \frac{N}{K_B} \right) - \frac{BN^2}{A^2 + N^2},\tag{1}$$

Nondimensionalisation

$$\frac{dn}{d\tau} = rn\left(1 - \frac{n}{q}\right) - \frac{n^2}{1 + n^2} = H(n),$$

Plotting the RHS

Figure 2: RHS of spr. budworm model

Numerical solution

Steady state analysis

$$rn^*(1 - \frac{n^*}{q}) - \frac{n^{*2}}{1 + n^{*2}} = 0.$$

Lecture 12

i Recap - Spruce budworm model

$$\frac{dn}{d\tau} = rn\left(1 - \frac{n}{q}\right) - \frac{n^2}{1 + n^2} = H(n),$$

Steady states: $n^* = 0$ or

$$rn^*(1-\frac{n^*}{q})-\frac{n^{*2}}{1+n^{*2}}=0.$$

- ightharpoonup r small one stable steady state
- ightharpoonup r large one stable steady state (outbreak)
- ightharpoonup r intermediate bistability (two stable steady states and one unstable)

Today: bifurcation analysis, hysteresis, harvesting

Tangent bifurcations in \emph{rq} space

Plotting stability regions in the rq plane

Figure 3: Bifurcations in the rq plane

Hysteresis

Figure 4: Bifurcations in the rq plane

Harvesting

- use models to simulate how much resource can be extracted?
- approach: take model without harvesting and add in harvesting terms

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right) - EN.$$

where E is the harvesting rate.

Question: what value of ${\cal E}$ maximises the long term yield?

Delay differential equation models

$$\frac{dN}{dt} = H(N(t), N(t-T)),$$

A linear delay differential equation model

$$\frac{dN}{dt} = -N(t - T),$$

Linear stability analysis (ctd.)

$$\frac{dN}{dt} = -N(t-T),$$

Two dependent variable ODE models

$$\begin{split} \frac{du}{dt} &= f(u,v),\\ \frac{dv}{dt} &= g(u,v). \end{split}$$

Steady states

The trace determinant plane

eaddlalnaint

Nullclines

Periodic solutions (Poincaire-Bendixson theorem)

- System of two ODEs
- Confined set containing unstable node or spiral
- \blacktriangleright as $t \to \infty$, the trajectory will tend towards a limit cycle.

No periodic soltutions - (Dulac criterion)

- ▶ D simply connected region in the plane
- ightharpoonup B(x,y), continuously differentiable on D, with

$$\frac{\partial}{\partial u}(Bf) + \frac{\partial}{\partial v}(Bg)$$

not identically zero and does not change sign in D.