Zusammenfassung Homologische Algebra

© BY Tim Baumann, http://timbaumann.info/uni-spicker

Def. Verklebedaten sind gegeben durch einen Funktor

$$X: \Delta^{\mathrm{op}}_{\mathrm{strikt}} \to \mathbf{Set}.$$

Dabei ist Δ_{strikt} die Kategorie mit den Mengen $[n] := \{0, 1, ..., n\}$ für $n \in \mathbb{N}$ als Objekten und streng monotonen Abbildungen.

Notation. $X_{(n)} := X([n])$

Def. Das Standard-n-Simplex $\Delta_n \subset \mathbb{R}^{n+1}$ ist die von den (n+1) Standardbasisvektoren aufgespannte lineare Hülle. Eine streng monotone Abb $f:[n] \to [m]$ induziert durch Abbilden des i-ten Basisvektors auf den f(i)-ten eine Inklusion $\Delta_f: \Delta_n \to \Delta_m$,

 ${\bf Def.}\;$ Die geometrische Realisierung von Verklebedaten X ist der topologische Raum

$$|X| := \left(\coprod_{n \in \mathbb{N}} (\Delta_n \times X_{(n)}) \right) / R$$

Dabei ist $X_{(n)}$ diskret. Die Äquivalenzrelation R wird erzeugt von $(\Delta_f(t), x) \sim (t, X(f)(x))$ mit $t \in \Delta_m, x \in X_{(n)}, f : [m] \to [n]$ s.m.s.

Def. Das k-Skelett $\operatorname{sk}_k X$ von Verklebedaten X ist definiert durch $(\operatorname{sk}_k X)_{(n)} := \{x \in X_{(n)} \mid n \leq k\}, \ (\operatorname{sk}_k X)(f) := X(f) \text{ sofern möglich}$

Def. Eine simpliziale Menge ist ein Funktor

$$X: \Delta^{\mathrm{op}} \to \mathbf{Set}.$$

Dabei ist Δ die Kategorie mit den Mengen $[n]:=\{0,1,...,n\}$ für $n\in\mathbb{N}$ als Objekten und monotonen Abbildungen.

Notation. $X_n := X([n])$

Def. Die geometrische Realisierung einer simplizialen Menge X ist der topologische Raum

$$|X| := \left(\coprod_{n \in \mathbb{N}} (\Delta_n \times X_n)\right) / R$$

Die Äquivalenzrelation R wird dabei erzeugt von

 $(\Delta_f(t), x) \sim (t, X(f)(x))$ mit $t \in \Delta_m, x \in X_n$ und $f : [m] \to [n]$ monot. Funktoren $\Delta^{op} \to \mathbf{Set}$.

Def. Ein topologischer Raum heißt **trianguliert**, wenn er die Realisierung von Verklebedaten ist.

Def. Der Nerv einer Überdeckung $X=\cup_{\alpha\in A}U_\alpha$ eines topologischen Raumes ist die simpliziale Menge

$$X_n := \{ (\alpha_0, ..., \alpha_n) \in A^{n+1} \mid U_{\alpha_0} \cap ... \cap U_{\alpha_n} \neq \emptyset \}$$

$$X(f)(\alpha_0, ..., \alpha_n) := (\alpha_{f(0)}, ..., \alpha_{f(m)}) \quad \text{für } f : [m] \to [n].$$

Bem. Falls die Überdeckung lokal endlich ist und alle nichtleeren, endlichen Schnitte $U_{\alpha_1} \cap \ldots \cap U_{\alpha_n}$ zusammenziehbar sind, so ist die geom. Realisierung des Nerves der Überdeckung homotopieäq. zu X.

Def. $\Delta[p]_n := \{g : [n] \to [p] \text{ monoton steigend } \}, \Delta[p](f)(g) := g \circ f$

Def. Der klassifizierende Raum einer Gruppe G ist gegeben durch die Realisierung der simpl. Menge BG mit $(BG)_n := G^n$ und

$$BG(f:[m] \to [n])(g_1,...,g_n) := (h_1,...,h_m), \quad h_i = \prod_{j=f(i-1)+1}^{f(i)} g_j$$

Def. Ein *n*-Simplex $x \in X_n$ heißt **degeneriert**, falls eine monotone surjektive Abbildung $f : [n] \to [m], n > m$ und ein Element $y \in X_m$ existiert mit x = X(f)(y).

Def. Seien X Verklebedaten. Wir konstruieren eine dazugehörende simpliziale Menge \tilde{X} wie folgt:

$$\tilde{X}_n := \{(x,g) \mid x \in X_{(k)}, g : [n] \to [k] \text{ monoton und surjektiv}\},$$

Für eine monotone Abbildung $f:[m] \to [n]$ und $(x,g) \in \tilde{X}_n$ schreiben wir zunächst $g \circ f = f_1 \circ f_2$ mit einer Injektion f_1 und einer Surjektion f_2 und setzen $\tilde{X}(f)(x,g) := (X(f)(x), f_2)$.

Prop. Eine simpliziale Menge \tilde{X} kann genau dann aus (eindeutigen) Verklebedaten gewonnen werden, falls für alle nicht-degenerierten Simplizes $x \in \tilde{X}_n$ und streng monotonen Abbildungen $f:[m] \to [n]$ auch $\tilde{X}(f)(x) \in \tilde{X}_m$ nicht degeneriert ist.

Prop. Seien X Verklebedaten, \tilde{X} die entsprechende simpliziale Menge. Dann gilt $|X| \approx |\tilde{X}|$.

Def. Das k-Skelett $\operatorname{sk}_k X$ einer simplizialen Menge X ist geg. durch $(\operatorname{sk}_k X)_n := \{X(f)(x) \mid p \le k, f : [n] \to [p] \text{ monoton}, x \in X_n\}.$

$$(\mathsf{SK}_k A)_n := \{A(f)(x) \mid p \leq \kappa, f : [n] \to [p] \text{ monoton}, x \in A_p\}.$$

Def. Eine simpliziale Menge X hat **Dimension** n, falls $X = \operatorname{sk}_n X$.

Def. Eine simpliziale Abbildung zwischen simplizialen Mengen X und Y ist eine natürliche Transformation zwischen den beiden Funktoren $\Delta^{\text{op}} \to \mathbf{Set}$.

Def. Die Kategorie der simplizialen Mengen ist die Funktorkategorie $[\Delta^{op}, \mathbf{Set}]$.

Prop. Geom. Realisierung ist ein Funktor $|-|: [\Delta^{op}, \mathbf{Set}] \to \mathbf{Top}$.

Bspe. • Eine Überdeckung $(U_{\alpha})_{\alpha \in A}$ eines topologischen Raumes ist Verfeinerung von $(V_{\beta})_{\beta \in B}$, wenn es eine Abbildung $\psi : A \to B$ gibt, sodass $U_{\alpha} \subset V_{\psi(\alpha)}$ für alle $\alpha \in A$. Dies induziert eine simpliziale Abb. zwischen den Nerven der Überdeckungen durch

$$F_n(\alpha_0,...,\alpha_n) := (\psi(\alpha_0),...,\psi(\alpha_n)).$$

• Ein Gruppenhomomorphismus $\phi:G\to H$ stiftet eine Abbildung $BG\to BH$ zwischen den klassifizierenden Räumen durch

$$F(g_1,...,g_n) := (\phi(g_1),...,\phi(g_n)).$$

Def. Ein simplizialer topologischer Raum ist ein Funktor

$$X:\Delta^{\mathrm{op}}\to\mathbf{Top}.$$

Die geometrische Realisierung eines simplizialen topologischen Raumes definiert wie bei simplizialen Mengen mit dem Unterschied dass X_n im Allgemeinen nicht die diskrete Topologie trägt.

Def. Eine bisimpliziale Menge ist ein Funktor

$$X: \Delta^{\mathrm{op}} \times \Delta^{\mathrm{op}} \to \mathbf{Set}$$
.

Notation. $X_{nm} := X([n], [m])$

Bsp. Das direkte Produkt von simplizialen Mengen X und Y ist die bisimpliziale Menge

$$(X \times Y)_n := X_n \times Y_n, \quad (X \times Y)(f, g)(x, y) := (f(x), g(y)).$$

Def. Die **Diagonale** DX einer bisimplizialen Menge X ist die simpliziale Menge mit $(DX)_n := X_{nn}$ und DX(f) := X(f, f).

Def. Sei X eine bisimpliziale Menge.

- Setze $|X|^D := |DX|$.
- $\bullet\,$ Definiere einen simplizialen topologischen Raum X^I durch

$$X_n^I := |X_{\bullet n}|, \quad X^I(g) := |X(\mathrm{id}, g)|.$$

Setze $|X|^{I,II} := |II, I|$.

• Definiere Analog $|X|^{II,I}$.

Satz (Eilenberg-Zilber). $|X|^D \cong |X|^{I,II} \cong |X|^{II,I}$ kanonisch.