CS3230

Tutorial 8

- 1. Give an argument to show why dynamic programming algorithm gives optimal solution for coin changing problem.
- 2. Build a table to show how the dynamic programming algorithm will work for finding the optimal algorithm for following matrix multiplication.

$$M_1 \times M_2 \times M_3 \times M_4 \times M_5$$
, where

 M_1 is a matrix of size 6×6

 M_2 is a matrix of size 6×3

 M_3 is a matrix of size 3×4

 M_4 is a matrix of size 4×4

 M_5 is a matrix of size 4×8

3. Give a counterexample to show that the following conjecture is false:

To minimize the number of scalar multiplications of the product $M_1 \times M_2 \times ... \times M_n$, it should be grouped as

$$(M_1 \times M_2 \times \dots M_k) \times (M_{k+1} \times \dots \times M_n),$$

where M_k has minimum number of columns.

- 4. Modify the algorithm given in the class to show how the order of matrix multiplication can be obtained along with the optimal number of multiplications needed.
- 5. Give a dynamic programming algorithm to compute a^n given the following formula:

$$a^0 = 1$$

$$a^n = a^{n/2} * a^{n/2}$$
 if *n* is even.

$$a^{n+1} = a^{n/2} * a^{n/2} * a$$
 if n is odd.