

Weekly Progress Report Presentation

NOVEL OPTIMIZED GLOBAL MAXIMUM POWER POINT TRACKING TECHNIQUE FOR SINGLE-STAGE GRID CONNECTED PV SYSTEM

BY

MAHMUD OMER

Case 1: MPPT using PSO, Particle Initialization

Array type: SunPower SPR-315E-WHT-D:

Case 1: MPPT using PSO, Particle Initialization

Array type: SunPower SPR-315E-WHT-D:

Array Size: 15.1 kW, 4 parallel strings, 12 series modules/String

 $\begin{aligned} & \textbf{ParticlePosition(i,1)} = \textbf{unifrnd(((i-1)*(1/nPop)*(Vmax-Vmin)+Vmin),} \\ & ((i)*(1/nPop)*(Vmax-Vmin)+Vmin)); \end{aligned}$

Case 1: MPPT using PSO, Particle Initialization

Array type: SunPower SPR-315E-WHT-D:

Array Size: 15.1 kW, 4 parallel strings, 12 series modules/String

 $\begin{aligned} & \textbf{ParticlePosition(i,1)} = \textbf{unifrnd(((i-1)*(1/nPop)*(Vmax-Vmin)+Vmin),} \\ & ((i)*(1/nPop)*(Vmax-Vmin)+Vmin)); \end{aligned}$

Case 1: MPPT using PSO, Particle Initialization

Array type: SunPower SPR-315E-WHT-D:

ParticlePosition =zeros(nPop,MaxIt);	% Particle position in the voltage curve
<pre>ParticleVelocity = zeros(nPop,MaxIt);</pre>	% Particle Velocity towards personal best
<pre>ParticleSolution = zeros(nPop,MaxIt);</pre>	% Power corresponding to particles position
<pre>ParticleBestPosition =zeros(nPop,MaxIt);</pre>	% Personal best position of particle
<pre>ParticleBestSolution = zeros(nPop,MaxIt);</pre>	% Power corresponding personal best of a particle
<pre>GlobalBestSolution = zeros(1,MaxIt);</pre>	% initialize global best solution and particle position
GlobalBestPosition = zeros(1,MaxIt);	

Case 1: MPPT using PSO, Particle Conversion to MPP

Array type: SunPower SPR-315E-WHT-D:

Case 2: MPPT using PSO, Particle Conversion to MPP

Array type: SunPower SPR-315E-WHT-D:

Case 2: MPPT using PSO, Particle Conversion to MPP

Array type: SunPower SPR-315E-WHT-D:

Case 2: MPPT using PSO , Particle Conversion to MPP

Array type: SunPower SPR-315E-WHT-D:

Case 2: GMPPT using PSO

Array type: SunPower SPR-315E-WHT-D:

Case 3: GMPPT using PSO

Array type: SunPower SPR-315E-WHT-D:

Array Size: 15.1 kW, 4 parallel strings, 12 series

Case 4: GMPPT using PSO

Array type: SunPower SPR-315E-WHT-D:

Array Size: 15.1 kW, 4 parallel strings, 12 series

Case 5: GMPPT using PSO

Array type: SunPower SPR-315E-WHT-D:

Array Size: 15.1 kW, 4 parallel strings, 12 series

Case 6: GMPPT using PSO

Array type: SunPower SPR-315E-WHT-D:

Array Size: 15.1 kW, 4 parallel strings, 12 series

☐ GMPPT Algorithms for Single stage PV System: Literature Review

Literature	Journal and date of publication	MPPT Technique used
"Control and Performance Analysis of a Single-Stage Utility-Scale Grid-Connected PV System"	IEEE SYSTEMS JOURNAL, VOL. 11, NO. 3, SEPTEMBER 2017	This paper highlights that "most of the previous work have investigated about two-stage PV system" MPPT The paper itself doesn't address Partial shading and it uses IC to track
"Modelling Guidelines and a Benchmark for Power System Simulation Studies of Three- Phase Single-Stage Photovoltaic Systems"	IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 26, NO. 2, APRIL 2011	MPPT Doesn't consider PSC and it uses P & O and IC for the model MPPT
"Modified particle swarm optimisation-based maximum power point tracking controller for single-stage utility-scale photovoltaic system with reactive power injection capability"	IET Renewable Power Generation, ISSN 1752-1416, January 2016	Consider Partial shading and uses PSO algorithm This paper highlights that "Moreover, most of the PSO algorithms, presented in previous works, have been implemented and tested for PV system with two-stage or dc-dc converter scheme"

☐ GMPPT Algorithms for Single stage PV System: Literature Review

"Real-time implementation of three-phase single-stage SPV grid-tied system using TL-VSC"	IET Renewable Power Generation, ISSN 1752-1416, August 2017	Incremental conductance maximum power point tracking (IC-MPPT)
"Control Issues in Single-Stage Photovoltaic Systems: MPPT, Current and Voltage Control"	IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 8, NO. 2, MAY 2012	It doesn't consider <u>PSC</u> , uses P &O And IC MPPTs
"A Single-Stage Three-Phase Photovoltaic System with Enhanced Maximum Power Point Tracking Capability and Increased Power Rating"	IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 26, NO. 2, APRIL 2011	It divides the PV array into two subarrays to mitigate the issues of PS
"Multi-Objective Single-Stage SPV System Integrated to 3P4W Distribution Network Using DMSI-Based Control Technique"	IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 54, NO. 3, MAY/JUNE 2018	It Uses P&O For MPPT
"Grid Integration of Three-Phase Single-Stage PV System Using Adaptive Laguerre Filter Based Control Algorithm Under Nonideal Distribution System"	IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 55, NO. 6, NOVEMBER/DECEMBER 2019	It Uses P&O For MPPT
"A novel nonlinear sliding mode controller for a single stage grid-connected photovoltaic system"	ELSEVIER, ISA Transactions 107 (2020) 329–339	Perturb and Observe (P & O) MPPT algorithm is employed in this paper