Алгебра 1 курс Экзамен Е.Б. Фейгин

Содержание

1	Зада	дачи для подготовки к экзамену															•																		
	1.1																																		•
	1.2																																		•
	1.3																																		•
	1.4															٠																			4
	1.5																																		4
	1.6																																		4
	1.7																																		4
	1.8																																		ļ
	1.9														٠	٠	٠																		ļ
	1.10														٠	٠	٠																		ļ
	1.11																																		ļ
	1 19																																		

1 Задачи для подготовки к экзамену

1.1

$$\sigma = \sigma_{\rho_1} \circ \ldots \circ \sigma_{\rho_l}$$

1. Знак перестановки

Заметим, что любой цикл длины a можо разложить в a-1 цикл длины 2. Так как знак перестановки определяется количеством транспозиций (то есть циклов длины 2), то он равен $(-1)^{(\rho_1-1)\cdot\ldots\cdot(\rho_l-1)}$

2. Порядок перестановки

Заметим, что порядок перестановки это НОК длин независимых циклов, тогда он равен $\gcd(\rho_1,\ldots,\rho_l)$ Докажем это утверждение:

Заметим, что для того, чтобы при перестановка при возведении в степень перешла сама в себя, необходимо и достаточно, чтобы любой ее элемент перешел сам в себя, что равносильно тому, что цикл, в который он входит, пройден целое число раз (если пройден не целое, то элемент не перейдет сам в себя).

Так как при умножении на себя каждый цикл сдвигается на 1, то для того, чтобы перестановка перешла сама в себя, необходимо и достаточно, чтобы степень перестановки делилась на все длины циклов. Минимальным таким числом является НОК длин циклов.

- 3. Порядок класса сопряженности
- 4. Количесвто перестановок, коммутирующих с σ

1.2

Докажем по индукции

База:

2 вершины, очевидна

Переход:

Выполнен для всех деревьев на $\leq n-1$ вершине, доказать что выполнено и на дереве из n вершин.

Рассмотрим дерево на n вершинах и выкинем любую из висящих вершин, для полученного дерева на n-1 вершине $(a_1b_1)\dots(a_{n-2}b_{n-2})$ — цикл длины n. Вернем выброшенную вершину, он соединена ребром $(a_{n-1}b_{n-1})$ с одной из вершин (пусть она имеет номер i), тогда заметим, что ессли рассмотреть перестановку $(a_1b_1)\dots(a_{n-1}b_{n-1})$, то вершина, попавшая в i после $(a_1b_1)\dots(a_{n-2}b_{n-2})$, попадает в вершину n (так как $(a_{n-1}b_{n-1})=(i\ n)$), а выходит оттуда только после следующей перестановки (так как n висячая вершина). Тогда в цикл добавилась еще одна вершины и он теперь проходит по всем n вершинам arrow его длина также увеличилась на 1 и стала равна n.

1.3

1. Это группы $\mathbb{Z}/4\mathbb{Z}$ и $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$

Пусть есть группа A порядка 4, каждый её элемент имеет порядок 1, 2 или 4. Если в A есть элемент порядка 4, то она циклическая, то есть $A\simeq \mathbb{Z}/4\mathbb{Z}$, тогда все группы порядка 4 изоморфны.

Пусть в группе A нет элемента порядка, тогда все элементы A имеют порядок 2, то есть $\forall a \in A: a^2 = e$. Рассмотрим любые два элемента: $a_1^2 = a_2^2 = e$ и $(a_1a_2)^2 = e$. Тогда $a_1a_2 = (a_1a_2)^{-1} = a_2^{-1}a_2^{-1} = a_2a_1$, то есть a_1 и a_2 коммутируют. Тогда любая группа, где все элементы(кроме e) имеют порядок 2, является абелевой.

2. Это группы $\mathbb{Z}/6\mathbb{Z}$ и S_3

Если существует одна подгруппа порядка 2, то она нормальна, и любой элемент порядка 3 коммутирует с одним элементом порядка 2. Так мы получаем циклическую группу.

Так как существует пять неидентичных элементов и пара элементов порядка 3, то всего есть два элемента порядка 3 и три элемента порядка 2, каждый из которых генерирует подгруппу порядка 2.

Группа действует транзитивно и сопрягая эти три подгруппы порядка 2, что дает изоморфизм с S_3 .

3. Это группы $\mathbb{Z}/8\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$, D_8 , $Q_8 = \{\pm 1, \pm i, \pm j, \pm k \mid i^2 = j^2 = k^2 = ijk\}$, E_8

Если в группе есть элемент порядка 8, то она циклическая. Если все неидентичные элементы имеют порядок 2, то группа абелева $(1 = (ab)^2 = abab$, так что $ab = a(abab)b = a^2bab^2 = ba$) – и существует только один вариант.

Поэтому любая другая группа должна иметь хотя бы один элемент порядка 4. Заметим, что подгруппа < a >, сгенерированная элементом a, имеет индекс 2 и, следовательно, является нормальной. Рассмотрим элементы $b \in < a >$.

Если существует такой b порядка 2, который коммутирует с a, то группа абелева $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$.

Если существует элемент b порядка 2, который не коммутирует с a, то $b^{-1}ab$ должен быть элементом < a > (нормальной подгруппы) порядка 4, который не равен a, поэтому $a^{-1} = a^3$.

Иначе все элементы вне < a > имеют порядок 4, образуя шесть элементов порядка 4, один порядка 2 и идентичность. Квадрат любого элемента порядка 4 должен быть элементом порядка 2. Поэтому мы берем $b \in < a >$ порядка 4 – который не может коммутировать с a, так как это сделает всю группу коммутативной, а это не работает со всеми эти элементы порядка 4. Как и раньше, < a > нормально, поэтому мы должны иметь $b^{-1}ab = a^{-1}$ и вместе с $a^4 = b^4 = 1$ и $a^2 = b^2$

Таким образом существует ровно 5 групп порядка 8.

1.4

- 1. Заметим, что если два разных простых числа делят порядок группы, то у нее будут подгруппы каждого из этих порядков, поэтому только одно простое число может быть делителем порядка группы. Кроме того, p-группа имеет подгруппы любого порядка, делящие порядок группы, поэтому порядок должен быть p^2 . Наконец, группа циклическая, если она имеет ровно одну подгруппу любого порядка, делящего порядок группы, поэтому наша группа должна быть циклической. В заключение, $\mathbb{Z}/p^2\mathbb{Z}$ является единственной возможной группой, причем для всех простых p.
- 2. Заметим, что если более трех различных простых чисел делят порядок группы, то у нее будет больше 4 подгрупп, поэтому не более двух простых чисел могут быть делителями порядка группы. Кроме того, группа имеет подгруппы любого порядка, делящие порядок группы, поэтому порядок должен быть не больше p^3 (иначе групп уже больше 4). Наконец, группа циклическая, если она имеет ровно одну подгруппу любого порядка, делящего порядок группы, поэтому наша группа должна быть циклической. Тогда есть несколько вариантов: либо наша группа это $\mathbb{Z}/p^3\mathbb{Z}$, либо $\mathbb{Z}/p_1p_2\mathbb{Z}$.

1.5

1.6

1.

1.7

1. классы сопряженности A_3

Классы сопряженности: \overline{e} , $\overline{(123)}$, $\overline{(132)}$

2. классы сопряженности A_4

Классы сопряженности: \overline{e} , $\overline{(123)}$, $\overline{(234)}$, $\overline{(12)(34)}$

3. классы сопряженности A_5

Классы сопряженности: \overline{e} , $\overline{(abc)}$, $\overline{(ab)(cd)}$, $\overline{(abcde)}$, $\overline{(acbde)}$

4. классы сопряженности A_6

1.8

1.9

Пусть G – групп, $\mathrm{Aut}(G)$ – множество её автоморфизмов $\phi:\ G\simeq G.$

1. Докажем, что Aut(G) – группа

Применим ϕ^{-1} к $\phi(gh) = \phi(g)\phi(h)$ получим $gh = \phi^{-1}(\phi(g)\phi(h))$, но $g = \phi^{-1}(\phi(g))$ и $h = \phi^{-1}(\phi(h))$. Обозначим $g' = \phi(g)$ и $h' = \phi(h)$, тогда $\phi^{-1}(g'h') = \phi^{-1}(g')\phi^{-1}(h')$. Так как ϕ биекция, то (g',h') покрывает $G \times G$. Откуда $\phi^{-1} \in \operatorname{Aut}(G)$ и $\phi \circ \phi^{-1} = \phi^{-1} \circ \phi = \operatorname{id}_G$. Тогда $\phi^{-1}\psi^{-1}$ обратное к $\psi \circ \phi$, для $\psi, \phi \in \mathrm{Aut}(G)$. Так как композиция двух групп гомоморфизмов является группой гомоморфизмов, мы заключаем, что $\operatorname{Aut}(G)$ является группой.

2. Для $g \in G$ определим $c_q : G \simeq G$ как левое сопряжение: $c_q(g^{/}) = gg^{/}g^{-1}$. И докажем, что $g \to c_q$ является группой гомоморфизмов $G \to \operatorname{Aut}(G)$

Так как $c_g \circ c_{g'} = c_{gg'}$ и $c_1 = \mathrm{id}_G$, то $c_{g^{-1}}$ — обратный для c_g и $g \to c_g$ — гомоморфизм $G \to \mathrm{Aut}(G)$ (поскольку свойство группового гомоморфизма требует только проверки совместимости с групповым законом). Тогда так как $c_q = \mathrm{id}_G$ только в том случае когда $gg'g^{-1} = g' \quad \forall g' \in G$, так же заметим что c_q однозначно определено когда все g коммутируют со всеми $g' \in G$.

3. Докажем, что Inn(G) – нормальная подгруппа Aut(G)

Для $\phi \in \operatorname{Aut}(G)$ заметим $\phi \circ c_q \circ \phi^{-1} : g' \mapsto \phi(g\phi(g')g^{-1}) = \phi(g)g'\phi(g)^{-1} = c_{\phi(q)}(g')$. Тогда $\phi \circ c_q \circ \phi^{-1} = c_{\phi(q)}(g')$ $c_{\phi(q)}$. Откуда $\operatorname{Inn}(G)$ – нормальная подгруппа $\operatorname{Aut}(G)$.

1.10

1.11

Пусть $U(n) = \{k \mid 1 \le k < n \text{ and } (k, n) = 1\}$

1. Докажем что $\operatorname{Aut}(Z_n) \cong U(n)$

Пусть n это целое число, тогда распишем разложение n на простые в виде: $n=2^{n_0}p_1^{n_1}\dots p_k^{n_k}$, где $n_0\geqslant 0$ и $n_i\leqslant 1,\ p_i$ - простое число.

Тогда: $\operatorname{Aut}(\mathbb{Z}_n) = \mathbb{Z}_2 \oplus \mathbb{Z}_{2^{n_0-2}} \times \mathbb{Z}_{(p_1-1)p_1^{n_1-1}} \times \cdots \times \mathbb{Z}_{(p_k-1)p_k^{n_k-1}}.$ Или же $\operatorname{Aut}(\mathbb{Z}_n) = \mathbb{Z}_{(p_1-1)p_1^{n_1-1}} \times \cdots \times \mathbb{Z}_{(p_k-1)p_k^{n_k-1}}.$

Заметим, что $U(p^n)\cong \mathbb{Z}_{p^{n-1}}(p-1)$ и $U(2^n)\cong \mathbb{Z}_2\times \mathbb{Z}_{2^{n-2}},$

Откуда $\operatorname{Aut}(Z_n) \cong U(2^n) \times U(p_1^{n_1}) \times \ldots \times U(p_k^{n_k}) \cong U(n)$

2. Докажем что $\operatorname{Aut}(D_n)\cong Z_n\times U(n)$, ведь $\operatorname{Aut}(D_3)$ и $\operatorname{Aut}(D_4)$ являются частными случаями

Пусть $a,b\in D_n$ будут гененраторами, такие что |a|=2, |b|=n и $aba=b^{-1}.$ Элементы порядка nиз D_n переходят в b^i для (i,n)=1. Элементы порядка 2 это b^ja при $j=0,\ldots,n-1$ и $b^{\frac{n}{2}}$ для чётных n. Определим автоморфизм $\phi_{i,j}$ для D_n для $i\in D_n$ и $j\in \mathbb{Z}_n$ задающий $\phi_{i,j}(a)=ab^j$ и $\phi_{i,j}(b)=b^i$. Тогда $\operatorname{Aut}(D_n) = \{\phi_{i,j} | i \in U(n), j \in \mathbb{Z}_n\}.$

Композиция удовлетворяет уравнению (1): $\phi_{i_1,j_1}\circ\phi_{i_2,j_2}=\phi_{i_1i_2,j_1+i_1j_2}$. Определим подгруппы $N=\{\phi_{1,j}\mid j\in\mathbb{Z}_n\}$ и $U=\{\phi_{i,0}\mid i\in U(n)\}$. Тогда уравнение дает изоморфизм $N\cong\mathbb{Z}_n$ и $U\cong U(n)$. Заметим что $\phi_{i,j}^{-1}=\phi_{i^{-1},-ji^{-1}}$ (где i^{-1} это обратный по умножению для i в U(n)) заметим что N – нормальная подгруппа $\mathrm{Aut}(D_n)$. Тогда $\mathrm{Aut}(D_n)\cong N imes_\Phi U$ для некоторого $\Phi:\ U o$ $\operatorname{Aut}(N)$. Чтобы определить Φ мы используем (1): $\Phi_{\phi_{i,0}}(\phi_{1,j}) = \phi_{i,0} \circ \phi_{1,j} \circ \phi_{i,0}^{-1} = \phi_{i,0} \circ \phi_{1,j} \circ \phi_{i-1,0} = \phi_{1,ij}$. Так мы доказали, что $\operatorname{Aut}(D_n) \cong Z_n \times U(n)$.

1.12

1.