LECTURE 12:HOW DO PEOPLE EVALUATE OTHERS?

People Express Opinions

In many online applications users express positive and negative attitudes/opinions:

- Through <u>actions</u>:
 - Rating a product
 - Pressing a "like" button
- ☐ Through **text**:
 - Writing a comment, a review
- Success of these online applications is built on people <u>expressing opinions</u>
 - Recommender systems
 - Wisdom of the Crowds
 - Ranking

People & Evaluations

- □ About items:
 - Movie and product reviews

- About other users:
 - Online communities

- □ About items created by others:
 - Q&A websites

User-User Evaluations

- Many on-line settings where one person expresses an opinion about another (or about another's content)
 I trust you [Kamvar-Schlosser-Garcia-Molina '03]
 - □ I agree with you [Adamic-Glance '04]
 - □ I vote in favor of admitting you into the community [Cosley et al. '05, Burke-Kraut '08]
 - □ I find your answer/opinion helpful
 [Danescu-Niculescu-Mizil et al. '09,
 Borgs-Chayes-Kalai-Malekian-Tennenholtz '10]

Evaluations: Some Issues

Some of the central issues:

Factors:

What factors drive one's evaluations?

□ Synthesis:

How do we create a composite description that accurately reflects cumulative opinion of the community?

Evaluations: the Setting

People evaluate each other:

- □ Direct: User to user [ICWSM '10]
- Indirect: User to content (created by another member of a community) [WSDM '12]
- Where online does this explicitly occur on a large scale?

Evaluations: the Data

- Wikipedia adminship elections
 - Support/Oppose (120k votes in English)
 - 4 languages: EN, GER, FR, SP

- Stack Overflow Q&A community
 - Upvote/Downvote (7.5M votes)
- Epinions product reviews
 - Ratings of others' product reviews (13M)
 - \blacksquare 5 = positive, 1-4 = negative

The New Setting

Relation to the previous class:

We still talk about one person evaluating the other via a \pm /- evaluation

So far we focused on evaluations in the context of a network

Now we focus on a single evaluation (without the context of a network)

Human Evaluations

■ What drives human evaluations?

- □ How do properties of evaluator A and target B affect A's vote?
 - Status and Similarity are two fundamental drivers behind human evaluations

Definitions

□ Status:

(note status is now explicit, and not implicitly determined by the network!)

- Level of recognition, merit, achievement, reputation in the community
 - Wikipedia: # edits, # barnstars
 - Stack Overflow: # answers

□ User-user Similarity:

- Overlapping topical interests of A and B
 - Wikipedia: Similarity of the articles edited
 - Stack Overflow: Similarity of users evaluated

Relative vs. Absolute Assessment

How do properties of evaluator A and target B affect A's vote?

- □ Two natural (but competing) hypotheses:
 - (1) Prob. that B receives a positive evaluation depends primarily on the characteristics of B
 - There is some objective criteria for user B to receive a positive evaluation

Relative vs. Absolute Assessment

How do properties of evaluator A and target B affect A's vote?

- □ Two natural (but competing) hypotheses:
 - (2) Prob. that B receives a positive evaluation depends on relationship between the characteristics of A and B
 - User A compares herself to user B and then makes the evaluation

Effects of Status

- How does status of B affect A's evaluation?
 - Each curve is fixed status difference: $\Delta = S_A S_B$
- □ Observations:
 - Flat curves: Prob. of positive eval. P(+) doesn't depend on B's status
 - Different levels: Different values of Δ result in different behavior

Status difference remains salient even as A and B acquire more status

Effects of Similarity

- How does prior interaction shape evaluations? 2 hypotheses:
 - (1) Evaluators are more supportive of targets in their area
 - "The more similar you are, the more I like you"
 - (2) More familiar evaluators know weaknesses and are more harsh
 - "The more similar you are, the better I can understand your weaknesses"

Effects of Similarity

Prior interaction/ similarity boosts positive evaluations

Status & Similarity

Status is a proxy for quality when evaluator does not know the target

Status & Similarity

Who shows up to evaluate?

Elite evaluators vote on targets in their area of expertise

- Selection effect in who gives the evaluation
 - \square If $S_A > S_B$ then A and B are highly similar

A Puzzle

• What is P(+) as a function of $\Delta = S_A$ - S_B ?

Based on findings so far:

A Puzzle: The Mercy Bounce

■ What is P(+) as a function of $\Delta = S_{\Delta}$ -

S_B? 0.88 0.86 Rebound Fraction of positive votes for $S_A >$ 0.84 0.82 0.8 0.78 Baseline 0.76 0.74 Especially 0.72 negative 0.7 for $S_A = S_B$ 0.68

How can we explain this?

The Mercy Bounce

- Why low evals. of users of same status?
 - Not due to users being tough on each other
 - But due to the effects of similarity

So: High-status evaluators tend to be more favorably disposed

Aggregating Evaluations

- So far: Properties of individual evaluations
- But: Evaluations need to be "summarized"
 - Determining rankings of users or items
 - Multiple evaluations lead to a group decision
- How to aggregate user evaluations to obtain the opinion of the community?
 - Can we guess community's opinion from a small fraction of the makeup of the community?

Ballot-blind Prediction

- Predict Wikipedia adminship election results without seeing the votes
 - Observe identities of the first k (=5) people voting (but *not* how they voted)
 - Want to predict the election outcome
 - Promotion vs. no promotion
- □ Why is it hard?
 - Don't see the votes (just voters)
 - \square Only see first 5 voters (out of \sim 50)

Ballot-blind: The Model

- Want to model prob. user A
 votes + in election of user B
- Our model:

$$P(A = +|B) = P_A + d(\Delta_B, S_B)$$

- $\square P_{\Delta} \dots$ empirical fraction of + votes of A
- $\square d(S,\Delta)$... avg. deviation in fraction of + votes
 - When As evaluate B from a particular (S,Δ) quadrant, how does this change their behavior

Similarity (percentile)

-20000 -10000

10000

Status difference (Delta)

 \square Predict 'elected' if: $\sum_{i=1}^k P(A_i = +|B|) > w$

Ballot-blind Prediction

Based on only who showed to vote predict the outcome of the election

Number of votes	E
5	71.4%
10	75.0%
all	75.6%

□ Other methods:

- Guessing gives 52% accuracy
- Logistic Regression on status and similarity features: 67%
- If we see the first k votes 85% (gold standard)

Summary

- Social media sites are governed by (often implicit) user evaluations
- Wikipedia voting process has an explicit,
 public and recorded process of evaluation
- Main characteristics:
 - Importance of relative assessment: Status
 - Importance of prior interaction: Similarity
 - Diversity of individuals' response functions
- □ **Application:** Ballot-blind prediction

Important Points

- Online social systems are globally organized based on status
- Similarity plays important role
- Audience composition helps predict audience's reaction
- What kinds of opinions do people find helpful?