CLOUD COMPUTING PRACTICAL 8: AMAZON SAGEMAKER

Name: Shriya Thabe

Roll No: A076

$1) Creating \ IAM \ ROLE \ and \ assigning \ sage maker \ permission$

IAM Role is created.

2) creating s3 bucket named mygroup2

3) open Amazon SageMaker console

Select Notebook instances and click create notebook instances

Here we will assign the IAM role created earlier i.e fraud detection

4) CREATE A JUPYTER NOTEBOOK

Notebook is created

1. Open Jupyter or JupyterLab according to the interface needed.

- 2. Go to File menu->Choose New-> Notebook.
- 3. Select Kernel as 'conda python3'

Deploying the model (Here it is stored in s3 bucket that we had created)

RoleArn: arn:aws:iam::975050009706:role/lucifer007

```
In [1]: import shap
   X, y = shap.datasets.adult()
                \label{eq:continuous} $$X_{display} = shap.datasets.adult(display=True)$$ feature_names = list(X.columns)$$
                feature_names
                Matplotlib is building the font cache; this may take a moment.
    Out[1]: ['Age',
'Workclass'
                  'Education-Num',
                  'Marital Status',
                   'Occupation',
                   'Relationship'
                   'Race',
                  'Sex',
'Capital Gain',
                  'Capital Loss'
                  'Hours per week',
'Country']
In [7]: import sagemaker, boto3, os
   bucket = sagemaker.Session().default_bucket()
   prefix = "demo-sagemaker-xgboost-adult-income-prediction"
            boto3.Session().resource('s3').Bucket(bucket).Object(
    os.path.join(prefix, 'data/train.csv')).upload_file('train.csv')
boto3.Session().resource('s3').Bucket(bucket).Object(
                 os.path.join(prefix, 'data/validation.csv')).upload_file('validation.csv')
            sagemaker.config INFO - Not applying SDK defaults from location: /etc/xdg/sagemaker/config.yaml
sagemaker.config INFO - Not applying SDK defaults from location: /home/ec2-user/.config/sagemaker/config.yaml
In [8]: import sagemaker
            region = sagemaker.Session().boto_region_name
            print("AWS Region: {}".format(region))
            role = sagemaker.get_execution_role()
            print("RoleArn: {}".format(role))
            AWS Region: us-east-1
```

```
! aws s3 cp {rule_output_path} ./ --recursive

from IPython.display import FileLink, FileLinks
display("Click link below to view the XGBoost Training report", FileLink("CreateXgboostReport/xgboost_report.html"))

download: s3://sagemaker-us-east-1-975050009706/demo-sagemaker-xgboost-adult-income-prediction/xgboost_model/sagemaker-xgboost-
2024-10-24-09-29-24-130/rule-output/CreateXgboostReport/xgboost-reports/EvaluationMetrics.json to CreateXgboostReport/xgboost-
eports/EvaluationMetrics.json
download: s3://sagemaker-us-east-1-975050009706/demo-sagemaker-xgboost-adult-income-prediction/xgboost_model/sagemaker-xgboost-
2024-10-24-09-29-24-130/rule-output/CreateXgboostReport/xgboost-reports/FeatureImportance.json to CreateXgboostReport/xgboost-reports/FeatureImportance.json to CreateXgboostReport/xgboost-
eports/FeatureImportance.json
download: s3://sagemaker-us-east-1-975050009706/demo-sagemaker-xgboost-adult-income-prediction/xgboost_model/sagemaker-xgboost-
2024-10-24-09-29-24-130/rule-output/ProfilerReport/profiler-output/profiler-report.ipynb to ProfilerReport/profiler-output/profiler-report.ipynb
download: s3://sagemaker-us-east-1-975050009706/demo-sagemaker-xgboost-adult-income-prediction/xgboost_model/sagemaker-xgboost-
2024-10-24-09-29-24-130/rule-output/CreateXgboostReport/xgboost-reports/ConfusionMatrix.json to CreateXgboostReport/xgboost-reports/ConfusionMatrix.json to CreateXgboostReport/xgboost-reports/ConfusionMatrix.json
```

```
from sagemaker.debugger import Rule, ProfilerRule, rule_configs
from sagemaker.session import TrainingInput
s3_output_location='s3://{}/{}/.format(bucket, prefix, 'xgboost_model')
container=sagemaker.image_uris.retrieve("xgboost", region, "1.2-1")
print(container)
xgb_model=sagemaker.estimator.Estimator(
    image_uri=container,
   role=role,
    instance count=1,
    instance_type='ml.m4.xlarge',
    volume_size=5,
    output_path=s3_output_location,
    sagemaker_session=sagemaker.Session(),
    rules=[
        Rule.sagemaker(rule_configs.create_xgboost_report()),
        ProfilerRule.sagemaker(rule_configs.ProfilerReport())
)
```

```
In [18]: xgb_predictor.endpoint_name
Out[18]: 'sagemaker-xgboost-2024-10-24-09-34-02-816'
In [19]: import numpy as np
def predict(data, rows=1000):
    split_array = np.array_split(data, int(data.shape[0] / float(rows) + 1))
    predictions = ''
    for a range is called annow.
                  for array in split_array:
    predictions = ','.join([predictions, xgb_predictor.predict(array).decode('utf-8')])
return np.fromstring(predictions[1:], sep=',')
In [20]: import matplotlib.pyplot as plt
             predictions=predict(test.to_numpy()[:,1:])
             plt.hist(predictions)
             plt.show()
               3500
               3000
               2500
               2000
               1500
               1000
                 500
                    0
                          0.0
                                          0.2
                                                          0.4
                                                                          0.6
                                                                                          0.8
                                                                                                           1.0
```

```
In [21]: import sklearn
            cutoff=0.5
            print(sklearn.metrics.confusion_matrix(test.iloc[:, \theta], np.where(predictions > cutoff, 1, \theta))) print(sklearn.metrics.classification_report(test.iloc[:, \theta], np.where(predictions > cutoff, 1, \theta)))
            [[4670 356]
             [ 480 1007]]
                               precision
                                                 recall f1-score support
                           0
                                      0.91
                                                   0.93
                                                                 0.92
                                                                              5026
                           1
                                     0.74
                                                   0.68
                                                                 0.71
                                                                              1487
                                                                 0.87
                                                                              6513
                 accuracy
                macro avg
                                      0.82
                                                   0.80
                                                                 0.81
            weighted avg
                                     0.87
                                                   0.87
                                                                 0.87
                                                                              6513
```

