Problem A. Adding Integers

Input file: standard input
Output file: standard output

Time limit: 1 second

Memory limit: 1024 mebibytes

You are given integers n and k.

For a positive integer q, f(q) is defined as the sum of $\binom{n}{a_1} \cdot \binom{a_1}{a_2} \cdot \ldots \cdot \binom{a_{q-1}}{a_q}$ for all integer sequences (a_1, a_2, \ldots, a_q) that satisfy the condition $n \geq a_1 \geq a_2 \geq \ldots \geq a_q \geq 0$.

Calculate the value $\sum_{q=1}^{k} f(q)$ modulo 998 244 353.

Here, $\binom{A}{B}$ is the binomial coefficient: the number of ways to select B distinct items from A distinct items.

Input

The first line of input contains an integer t: the number of test cases $(1 \le t \le 10^5)$.

Each of the following t lines contains two integers: n and k $(0 \le n \le 10^9; 1 \le k \le 2 \cdot 10^5)$.

The total sum of k over all test cases does not exceed $2 \cdot 10^5$.

Output

For each test case, print the value of the sum modulo 998 244 353.

Example

standard input	standard output
4	13
2 2	1
0 1	812506614
271 818	405709861
141 42	