Московский физико-технический университет Физтех-школа радиотехники и компьютерных технологий

Лабораторная работа № 3.5.1

Изучение плазмы газового разряда в неоне

Работу выполнил: Шурыгин Антон Б01-909 **Цель работы:** изучение вольт-амперной характеристики тлеющего разряда; изучение свойств плазмы методом зондовых характеристик.

В работе используются: стеклянная газоразрядная трубка, наполненная неоном; высоковольтный источник питания, источник питания постоянного тока; делитель напряжения; потенциометр; амперметры; вольметры; переключатели.

1 Краткая теория

Одним из самых простых методов исследования свойств плазмы является измерение электрических потенциалов с помощью зондов (небольших проводников, вводимых в плазму). В нашей работе используется двойной зонд. Его удобно использовать для нахождения различных параметров плазмы, таких как температура или концентрация частиц.

Рассчитаем величину тока, проходящего через двойной зонд вблизи точки I=0. Напряжение U между зондами равно расзности потенциалов на первом и втором:

$$U = U_2 - U_1 = (U_f + \Delta U_2) - (U_f + \Delta U_1) = \Delta U_2 - \Delta U_1 \tag{1}$$

Найдем ток, приходящий на первый электрод:

$$I_1 = I_{in} - I_{e_0} \cdot exp \frac{eU_1}{k_B T_e} = I_{in} - \left[I_{e_0} \cdot exp \frac{eU_f}{k_B T_e} \right] \cdot exp \frac{e\Delta U_1}{k_B T_e}$$

При $\Delta U_1 = 0$ электронный и ионный ток компенсируют друг друга. Поэтому множитель, заключенный в квадратные скобки равен I_i . Поэтому

$$I_1 = I_{in} \left[1 - exp \frac{eU_1}{k_B} \right] \tag{2}$$

Аналогично для I_2 . Так как зонды соединены последовательно, то $I_1 = -I_2 = I$. Тогда выразим U

$$U = \Delta U_1 - \Delta U_2 = \frac{k_B T_e}{e} ln(1 - \frac{I}{I_{in}}) - \frac{k_B T_e}{e} ln(1 + \frac{I}{I_{in}}) = \frac{k_B T_e}{e} ln \frac{I_{in} - I}{I_{in} + I}$$

Разрешив относительно I, получим

$$I_1 = I_{in}th\frac{eU}{2k_BT_e} \tag{3}$$

Прдиффиренцировав по U в точке U=0, получим

$$k_B T_e = \frac{1}{2} \frac{eI_{in}}{\frac{dI}{dU}} \tag{4}$$

Здесь $\frac{dI}{dU}$ - наклон характеристики зонда вблизи начала координат, а I_{in}

$$I_{in} = 0, 4n_i e S \sqrt{\frac{2k_B T_e}{m_i}} \tag{5}$$

Плазменную частоту колебаний электронов можем рассчитать по формуле:

$$\omega_p = \sqrt{\frac{4\pi n_e e^2}{m_e}} = 5, 6 \cdot 10^4 \sqrt{n_e \text{см}^{-3}} \text{ рад/сек}$$
 (6)

Дебаевский радиус R_D , приняв $T_i \approx 300 K$, рассчитаем из формулы:

$$r_D = \sqrt{\frac{kT_i}{4\pi n_i e^2}} \, \text{cm} \tag{7}$$

Среднее число ионов в дебаевской сфере (должно быть $N_D >> 1$):

$$N_D = n_i \frac{4}{3} \pi r_D^3 \tag{8}$$

Степень ионизации плазмы можно оценить как:

$$\alpha = \frac{n_i}{n} \tag{9}$$

где n находится из уровнения P=nkT при $P\approx 1$ мбар (при нормальных условиях $n=N_L,\,N_L$ - число Лошмидта).

Схема установки для исследования плазмы газового разряда в неоне представлена на рис.1

Стеклянная газоразрядная трубка имеет холодный полый катод, три анода, геттерный узел - стеклопоглощающая пленка. Трубка наполнена изотопом

Рис. 1: Вольт-амперная характеристика двойного зонда

Рис. 2: Схема установки для исследования газового разряда

неона при давлении 2 мм. рт. ст.. Катод и один из анодов с помощью подключателя $\Pi 1$ подключаются через балластный резистор $R_b~(\approx 500~{\rm kOm})$ к регулируемому высоковольтному ист. питания с вых. напряжением до нескольких киловольт.

При подключении к ВИП анода - 1 между ним и катодом возникает газовый разряд. Ток разряда имеряется милиамперметром 1, падению напряжения на трубке вольметром - V1, подключенным к трубке через высокоомный делитель напряжения с коэффциентом $\frac{R_1+R_2}{R_1}$

Таблица 1: Таблица с измерениями

V, volt	I, mkA	V, volt	I, mkA
34.43	0.5	27.26	4.4
33.14	0.76	27.27	3.76
32.04	1.24	27.47	3.2
30.1	1.64	28.09	2.62
28.79	2.36	29.22	2.14
27.94	2.86	30.05	1.78
27.59	3.34	32.05	1.22
27.4	3.72	33.83	0.62
27.36	4	-16.3	-32.75
27.41	4.36	-19.12	-33.95
27.38	4.96	-22.32	-35.38
27.22	5	-24.91	-36.43

При подключении к ВИП анода - 2 разряд возникает в пространстве между катодом и анодом - 2, где нахожится двйоной зонд, используемый для диагностики плазмы положительного столба.

2 Выполнение работы

Данные установки $R_b = 450 \; kOm, d = 0.2 \; mm, l = 5.2 \; mm$

2.1 Вольт-амперная характеристика разряда

Снимаем значения, составляем таблицу 1:

По полученным значениям строим график зависимости U(I) - вольт-амперную характеристику разряда.

По наклону касательной к графику определим максимальное дифференциальное сопротивление разряда $R_{max} \approx 2 \ kOm$:

2.2 Работа с зондом

Погрешность при данных измерениях - погрешность амперметра тока разряда - $\sigma I_{rarz} = 0.03~mA$ Снимаем значения, составляем таблицу 2:

По полученным значениям строим графики зависимости I(U):

Таблица 2: Таблица с измерениями

U1, volt	I1m mkA	U2, volt	I2, mkA	U3, volt	I3, mkA
24,91	24.89	24.91	90.91	24.91	52.54
21.36	23.94	21.33	91.09	21.79	50.64
18.86	23.31	18.27	89.2	18.03	48.38
15.37	22.38	14.59	84.05	14.92	46.37
11.85	20.93	10.5	71.16	12.31	43.62
8.76	17.79	9.14	64.39	9.76	38.86
7.27	15.28	8.3	59.41	6.17	26
6.23	13.09	7.49	53.87	5.36	21.92
5.26	10.62	7.65	55.04	4.26	15.8
4.26	7.88	6.69	48	2.69	6.12
3.53	5.62	5.36	36.81	2.04	1.81
2.44	1.83	4.13	25.11	1.78	0
1.94	0.16	1.78	0.41	-0.78	-15.4
-1.94	-13.21	-1.77	-29.95	-2.33	-25.6
-3.29	-17.49	-3.55	-47.48	-3.46	-32
-4.44	-20.5	-4.12	-52.58	-5.15	-40.43
-5.56	-23.08	-5.04	-60.34	-7.17	-48.21
-6.9	-25.48	-6.14	-68.57	-8.85	-52.74
-8.01	-27.04	-7.32	-76.24	-10.95	-56.71
-9.87	-29.14	-8.95	-84.92	-14.37	-60.63
-10.7	-29.81	-10.13	-90.05	-18.12	-63.58
-13.2	-31.35	-13.09	-99.2	-21.16	-65.62
-16.3	-32.75	-15.95	-104.67	-23.36	-67.18
-19.12	-33.95	-19.62	-108.4	-24.91	-68.31
-22.32	-35.38	-21	-109.22		
-24.91	-36.43	-24.91	-110.1		

BAX разряда $U = f(I_pasp)$

Рис. 3: График зондовой характеристик $i_{razr}=5\ mA$

Зондовые характеристики для разных токов разряда

Рис. 4: Графики I(U) для трех разл. токов разряда. Зондовые характеристики

По графикам 1, 2, 3, 4 рассчитаем I, а так же $\frac{dI}{dU}$, U=0. Для этого проводим соответствующие ассимптоты и касательные. Сведем полученные

Рис. 5: График зондовой характеристик $i_{razr}=1,5\ mA$

Рис. 6: График зондовой характеристик $i_{razr}=3\ mA$

результаты в таблицу 1: Учтем погрешности.

Рис. 7: График зондовой характеристик $i_{razr} = 5 \ mA$

Таблица 3: Таблица для расчетов

I_{razr}, mA	I_{iH}, mkA	$\frac{dI}{dU}, \frac{mkA}{V}$
1.5	19	6.96
3.0	39	32
5.0	73	82

Таблица 4: Таблица для расчетов

I_{razr}, mA	$kT_e, el \cdot Volt$	$n_e \cdot 10^{15}, m^{-3}$	$T_e, K \cdot 10^4$	$\sigma T_e, \ K \cdot 10^4$
1.5	1.36	26.3	1.6	0.18
3.0	0.64	44	0.7	0.08
5.0	0.44	77	0.5	0.06

Теперь рассчитаем температуру электронов T_e по формуле (?), а также n_e - концентрацию электронов в плазме по формуле Бома (?).

Построим график зависимости $n_e = f(I_{razr})$

Затем рассчитаем плазменную частоту колебаний электронов ω_e , а так же дебаевский радиус экранирования (с учетом того, что температура

Рис. 8: График зависимости $n_e I_{razr}$

Таблица 5: Таблица для расчетов

I_{razr}, mA	$\omega_p, \cdot 10^{11}, \frac{rad}{sec}$	$r_D \cdot 10^{-2}, cm$	N_D	$\alpha \cdot 10^{-7}$
1.5	0.87	0.21	387	4.60
3.0	1.56	0.16	171	7.81
5.0	2.18	0.13	92	13.6

ионов мала по сравнению с электронной).

Теперь оценим среднее число ионов в дебаевской среде N_D . Примем $r_D \approx 10^{-3} m$ судя из рассчетов. Тогда $R_D \approx 10^8$ а также степерь ионизации плазмы долю ионизированных атомов α при учете, что давление в трубке $P \approx 2 \ Torr$. Сведем все полученные результаты в итоговую таблицу 5.

3 Вывод

В данной работе мы изучили вольт-амперную характеристику тлеющего разряда. Затем занялись изучением свойств плазмы методом зондовых характеристик.

В этом пункте мы получили, что температура электронов у нас порядка $T_e \approx 10^4 \, K,$ тогда $kT_e \approx 1 \, eV.$

Концентрация электронов в плазме получилось порядка $n_e \approx 10^{16}$.

Плазменная частота колебаний получилось порядка $\omega_p \approx 10^{16} \, \frac{rad}{sec}$. Дебаевский радиус получили $r_D \approx 10^{-3} \, m$, среднее число ионов в дебаевской сфере много больше единицы (см. таблицу 5).

Полученные значения близки к табличным.