# Arquitectura de ordenadores

Sistemas informáticos

### Objetivos

- Aprender cuáles son y cómo actúan las unidades funcionales de un sistema informático.
- Conocer las funciones de los principales componentes físicos de un sistema informático.
- Reconocer los componentes físicos de un sistema informático y mecanismos de interconexión.
- Verificar el proceso de puesta en marcha de un equipo.
- Conocer el concepto de máquina virtual y sus ventajas
- Operar las máquinas respetando las normas de seguirdad y las recomendaciones ergonómicas

### Arquitectura física y lógica

- Dentro de un sistema informático existe una parte física y otra lógica.
- La parte física son aquellos componentes eléctricos, electrónicos o mecánicos que conforman el equipo. A estos componentes se les denomina componentes hardware.
- La parte lógica o **software** la componen los programas o aplicaciones que se ejecutan en un equipo. En este sentido el software es hasta cierto punto intangible ya que existe en forma de datos dentro de algunos componentes hardware.

### Modelo Von Neumann. Componentes

- Unidad de procesamiento: se encarga de la ejecución e interpretación de instrucciones y datos formada por unidad aritmético lógica (ALU), unidad de control y registros de almacenamiento.
- Memoria: almacena instrucciones y datos
- Dispositivos de entrada-salida: elementos que actúan de interfaz con el resto de partes.

#### Modelo Von Neumann. Comunicaciones

- Las diferentes unidades funcionales se interconectan mediante buses de comunicación o buses del sistema:
- Buses de instrucciones: líneas de comunicación que transmiten instrucciones.
- Buses de datos: líneas de comunicación que transmiten únicamente datos.
- Buses de direcciones: líneas de comunicación empleadas para acceder a las distintas memorias, indicando una dirección de acceso de lectura o escritura.

### Diagrama del modelo Von Neumann.



#### Modelo Harvard.

- Supuso una mejora con respecto a la arquitectura Von Neumann
- La arquitectura Von Neumann no permitía el acceso simultaneo a datos e instrucciones. Esto se debe a que, a pesar de tener dos buses separados, hay una sola memoria compartida para ambas cosas.
- La arquitectura Harvard separa la memoria de instrucciones de la de datos lo cual permite el acceso simultaneo.

## Diagrama del modelo Harvard.



### Actividad de investigación

Busca en internet los primeros computadores con programas almacenados y su relación con el modelo Von Neumann.