IN THE CLAIMS:

Claims 1-4 (Cancelled).

5. (Currently Amended) A composition comprising a curable silicone composition

and a silver-based powder that is surface-treated via a chemical reaction with an oxidation

inhibitor that is a triazole-based compound.

6. (Currently Amended) The composition of claim 5, where the silver-based powder

is surface-treated via the chemical reaction with the oxidation inhibitor by after application of

mechanical energy to the silver-based powder.a mechanochemical reaction.

7. (Cancelled)

8. (Previously Presented) The composition of claim 5, where the curable silicone

composition is curable with a hydrosilylation reaction.

9. (Currently Amended) The composition of claim 8, comprising:

(A) 100 parts by weight of an organopolysiloxane having at least two alkenyl groups per

molecule;

(B) an organopolysiloxane having at least two silicon-bonded hydrogen atoms per

molecule, where component (B) is present in an amount sufficient to provide silicon-

bonded hydrogen atoms in an amount of 0.5 to 5 per one alkenyl group of component

(A);

(C) 50 to 2,000 parts by weight of the silver-based powder, surface-treated via the

chemical reaction with the oxidation inhibitor, for each 100 parts by weight of component

(A); and

Serial No.: 10/536,669 H&H File No.: 71,051-009 2

(D) a platinum catalyst in an amount required for promoting the hydrosilylation reaction.

10. (Previously Presented) The composition of claim 5 that is further defined as an

electroconductive adhesive agent, heat-radiating adhesive agent, electroconductive die-bonding

agent, heat-radiating die-bonding agent, electroconductive paste, heat-radiating paste,

electromagnetic shielding agent, or raw material for manufacturing an electroconductive sheet,

heat-radiating sheet, or electromagnetic-wave absorption sheet.

Claims 11-16 (Cancelled).

17. (Previously Presented) The composition of claim 5, where the oxidation inhibitor is

present in an amount of 0.01 to 2 parts by weight per 100 parts by weight of the silver-based

powder.

18. (Currently Amended) The composition of claim 9, where the silver-based powder,

surface-treated with the oxidation inhibitor via the chemical reaction, is present in an amount of 300

to 600 parts by weight for each 100 parts by weight of component (A).

19. (Currently Amended) The composition of claim 5, where the silver-based powder

is surface-treated via the chemical reaction with an-the oxidation inhibitor prior to introduction

into the composition.

Serial No.: 10/536,669 H&H File No.: 71,051-009 3

Please add the following new claims:

20. (New) A method for preparing a curable silicone composition, said method

comprising the steps of:

a) utilizing an organic solution of an oxidation inhibitor comprising a phenol-based or

triazole-based compound as a lubricating agent,

b) applying mechanical energy to a silver-based powder,

c) subjecting the silver-based powder to surface treatment with the oxidation inhibitor,

and

d) incorporating the surface-treated silver-based powder into the curable silicone

composition.

21. (New) A method as set forth in claim 20 wherein the oxidation inhibitor is a

triazole-based compound.

22. (New) A method as set forth in claim 20 wherein the oxidation inhibitor is a

phenol-based compound.

23. (New) A method as set forth in claim 20 wherein the oxidation inhibitor is further

defined as a hindered phenol-based compound.

24. (New) A method as set forth in claim 20 wherein the curable silicone

composition is curable with a hydrosilylation reaction.

25. (New) A method as set forth in claim 24 wherein the curable silicone

composition comprises:

(A) 100 parts by weight of an organopolysiloxane having at least two alkenyl groups per

molecule;

Serial No.: 10/536,669 H&H File No.: 71,051-009 (B) an organopolysiloxane having at least two silicon-bonded hydrogen atoms per

molecule, where component (B) is present in an amount sufficient to provide silicon-bonded

hydrogen atoms in an amount of 0.5 to 5 per one alkenyl group of component (A);

(C) 50 to 2,000 parts by weight of the silver-based powder, surface-treated with the

oxidation inhibitor, for each 100 parts by weight of component (A); and

(D) a platinum catalyst in an amount required for promoting the hydrosilylation reaction.

26. (New) A method as set forth in claim 20 wherein the oxidation inhibitor is present

in an amount of 0.01 to 2 parts by weight per 100 parts by weight of the silver-based powder.

27. (New) A method as set forth in claim 26 wherein the silver-based powder is present

in an amount of 300 to 600 parts by weight for each 100 parts by weight of component (A).

28. (New) A method as set forth in claim 20 wherein the step of applying mechanical

energy is further defined as crushing, shocking, or rolling the silver-based powder.

29. (New) A method as set forth in claim 20 wherein the oxidation inhibitor is a

triazole-based compound, the step of applying mechanical energy is further defined as crushing,

shocking, or rolling the silver-based powder, the curable silicone composition is curable with a

hydrosilylation reaction, and the curable silicone composition comprises:

(A) 100 parts by weight of an organopolysiloxane having at least two alkenyl groups per

molecule;

(B) an organopolysiloxane having at least two silicon-bonded hydrogen atoms per

molecule, where component (B) is present in an amount sufficient to provide silicon-bonded

hydrogen atoms in an amount of 0.5 to 5 per one alkenyl group of component (A);

(C) 50 to 2,000 parts by weight of the silver-based powder, surface-treated with the

oxidation inhibitor, for each 100 parts by weight of component (A); and

Serial No.: 10/536,669 H&H File No.: 71.051-009 5

(D) a platinum catalyst in an amount required for promoting the hydrosilylation reaction,

the oxidation inhibitor is present in an amount of 0.01 to 2 parts by weight per 100 parts by weight

of the silver-based powder, and the silver-based powder that is surface-treated with the oxidation

inhibitor is present in an amount of 300 to 600 parts by weight for each 100 parts by weight of

component (A).

Serial No.: 10/536,669 H&H File No.: 71,051-009