http://www.makaut.com

CS/B.Tech(ECE-New)/SEM-3/EC-302/2013-14

In a semiconductor the hole diffusion length L_p is given by

 $D_p \tau_p$

- c) D_p/τ_p
- b) $\left(D_p \tau_p\right)^2$ d) $\forall \left(D_p \tau_p\right)$.
- Solar cell operates in
 - 1st quadrant of I-V plot a)
 - 2nd quadrant of I-V plot b)
 - 3rd quadrant of I-V plot c)
 - 4th quadrant of I-V plot.
- LED works on the principle of
 - Photoluminescence a)
 - Electroluminescence ы
 - Cathodoluminescence c)
 - Radioluminescence.
- Which of the following diodes does not posses a negative differential resistance region?
 - Tunnel diode a)
- Gunn diode
- Zener diode c)

IMPATT diode.

CS/B.Tech(ECE-New)/SEM-3/EC-302/2013-14 2013

SOLID STATE DEVICES

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

Choose the correct alternatives for the following:

 $10 \times 1 = 10$

http://www.makaut.com

A semiconductor which behaves like an insulator at i) zero Kelvin is called

- Intrinsic semiconductor a)
- b) Extrinsic semiconductor
- Elemental semiconductor
- Degenerate semiconductor.

3104(N)

http://www.makaut.com

| Turn over

3104(N)

2

http://www.makaut.com

CS/B.Tech(ECE-New)/SEM-3/EC-302/2013-14

- The leakage current I CBO flows through
 - Base and Emitter terminals
 - **Emitter and Collector terminals**
 - c) Base and Collector terminals
 - Emitter, Base and Collector terminals. d)
- In a BJT, the base region should be very narrow to minimize the
 - Drift current
 - Diffusion current b)
 - Recombination current
 - Tunnelling current.
- The function of the SiO 2 layer in MOSFETs is to provide
 - High input impedance
 - High output impedance b)
 - Flow of current carries within channel c)
 - Both (a) and (b).

| Turn over

3 104(N)http://www.makaut.com CS/B.Tech(ECE-New)/SEM-3/EC-302/2013-14

Strong inversion takes place in an n-channel MOSFET when

a)
$$\Phi_S = 0$$

a)
$$\Phi_S = 0$$
 b) $\Phi_S \leq \Phi_F$

c)
$$\Phi_S = 2\Phi_F$$
 d) $\Phi_S = \Phi_F$.

d)
$$\Phi_S = \Phi_F$$
.

- To turn OFF an SCR, it is necessary to reduce its current to less
 - Trigger current
- Holding current
- Breakover current c)
- none of these.

GROUP - B (Short Answer Type Questions)

 $3 \times 5 = 15$ Answer any three of the following.

- What is density of states? 2.
 - Explain the plot of Fermi-Dirac distribution function with energy for different temperatures.
 - 3 Volts is applied across a 1-cm long Si bar. Determine mobility when the drift velocity is 10 4 cm/sec.

1 + 2 + 2

- What are mobility and conductivity? 3.
 - What are the effects of temperature and doping on 2 + 3mobility?

3104(N)

http://www.makaut.com

4. What is contact potential? Drive an expression for it. A Si p-n junction diode with doping concentration in p and n-regions 10^{-17} cm $^{-3}$ and 5×10^{-15} cm $^{-3}$ respectively is in equilibrium.

Calculate the contact potential for the junction at room temperature. 1 + 4

- What is meant by d.c. operating point or Q point in the context of transistor characteristics? What is load line?

 Why is transistor biasing necessary? 2+1+2
- 6. What is early effect? Explain how the early effect modifies the input current in case of CB and CE configuration of an $n \cdot p \cdot n$ transistor? 1 + 4

GROUP - C (Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- a) Explain the working principle of Zener Diode & its use
 as a reference voltage device.
 - b) Calculate the ideality factor (η) of a diode if the diode current increases from 0.40 mA to 10 mA when the applied voltage increases from 0.38 V to 0.48 V at 300K.

http://www.makaut.com

8. a) Prove that for an abrupt $p \cdot n$ junction transition capacitance C_T is proportional to $\left(V_0 - V \right)^{-\frac{1}{2}}$, where V_0 is the inbuilt potential and V is applied potential. 6

CS/B.Tech(ECE-New)/SEM-3/EC-302/2013-14

b) The depletion layer capacitance of a p-n junction under reverse bias (- 1.0 V) is 5.0 pF. If the built in voltage of the junction is 0.9V. calculate the junction capacitance under 0.5 V forward bias condition.

With V-I characteristic curve explain how solar cell delivers power to external load.

d) What are fill factor and conversion efficiency of solar cell?

a) Describe briefly the principle of operation of a tunnel diode. Draw the I-V characteristics and mention the -ve resistance region.

b) What is Thermal runway?

What is Photo Transistor ?

- 10. a) Derive the equation for the different current components in a BJT by Ebers-Moll model.
 - Describe the basic structure of Schottky diode and explain why it is suitable for high frequency operation.

3 + 2

3

3104(N)

6

3104(N)

http://www.makaut.com

Turn over

http://www.makaut.com

5

http://www.makaut.com

CS/B.Tech(ECE-New)/SEM-3/EC-302/2013-14

11. Why is the depletion region tapered near the drain end of a JFET? With the increase of V_{DS} why complete pinch-off at the drain end does not take place? Derive an expression for pinch-off voltage of a JFET. From Shockley's equation, find out an expression for the slope of the transfer characteristic of a JFET. Derive an expression for equivalent capacitance for a MOS capacitor. 2+2+3+3+5

http://www.makaut.com

3104(N)

http://www.makaut.com

7