Cointegración de series de tiempo

Francisco Corona

fcoronav@gmail.com franciscoj.corona@inegi.org.mx

Septiembre 15, 2018.

- Frecuentemente, si realizamos una regresión entre dos series de tiempo no estacionarias $(y_t \ y \ x_t)$, el resultado puede ser obtener una regresión espuria.
- Sin embargo si y_t y x_t son cointegradas, la regresión no es espuria.
- Estos dos hechos hacen que el análisis de series de tiempo múltiples realizados durante la década de los 70s y 80s puedan haber sido inválidos.

- Algunas implicaciones de la regresión espuria son:
 - Errores correlacionados.
 - t-estadísticos incorrectos porque la varianza de los errores no es consistentemente estimada.
 - Generalmente, las relaciones son signficativas erróneamente.
 - ▶ También puede haber relaciones espurias en series I(0), en este caso el errores estándar de ε es $\hat{\sigma}_{\varepsilon}^2/\hat{\lambda}$ donde $\hat{\lambda}$ es la desviación estándar de largo plazo de ε .

- Asumamos dos series de tiempo y_t y x_t de orden de integración d. Denotémoslas cómo $d(y_t, x_t \sim I(d))$.
- Si existe un vector β tal que $y_t \beta x_t = \varepsilon_t$, donde ε_t es de orden de integración menor que d (digamos d-b), entonces decimos que y_t y x_t son cointegradas de orden d-b. Formalmente, $y_t, x_t \sim \mathcal{C}I(d,b)$.
- Por ejemplo, el consumo, C_t y el PIB, PIB_t , suelen ser típicamente integrados de orden 1 (C_t , $PIB_t \sim I(1)$). Al realizar la regresión $C_t = \hat{\alpha} + \hat{\beta}PIB_t + e_t$, (note que $\hat{\beta}$ es la propensión marginal a consumir), si $e_t \sim I(0)$, decimos que el PIB y el consumo no pueden diverger en el largo plazo.

- Si y_t y x_t son integradas de orden 1 y cointegradas, no es necesario aplicar el operador en primeras diferencias y realizar un análisis estadístico y econométrico para analizar relaciones. En este caso, la regresión $y_t = \alpha + \beta x_t + \varepsilon_t$ es válida bajo ciertos supuestos.
- ightharpoonup eta es superconsistente en este caso, es decir, converge más rápido que eta^* en la regresión $\Delta y_t = eta^* \Delta x_t + u_t$
- Nota que Δy_t y Δx_t no tienen raíces unitarias pero $u_t = \varepsilon_t \varepsilon_{t-1}$ está siendo sobre diferenciada.

- Por ejemplo, supongamos que $y_t, x_t \sim I(1)$ y $\varepsilon_t = \theta \varepsilon_{t-1} + a_t$, donde a_t es ruido blanco. En este caso $\sigma_{\varepsilon}^2 = \sigma_a^2/(1-\theta^2)$ pero $\sigma_{\Delta\varepsilon}^2 = 2\sigma_a^2/(1+\theta)$ y dependerá de θ para que $\sigma_{\Delta\varepsilon}^2 > \sigma_{\varepsilon}^2$, es decir, sobrediferenciar puede incrementar la varianza del error.
- Si $y_t \sim I(1)$ pero $x_t \sim I(0)$ las series de tiempo no cointegran (no hay relaciones de largo plazo). En este caso x_t será más constante en el tiempo mientras que y_t irá variando a través del tiempo.

Introducción

residual

Maestría en Cómputo Estadístico. CIMAT	-МТҮ	

${\sf Cointegraci\'on}$

Representación de factores comunes

Nótese que y_t y x_t son cointegradas, la siguiente representación es válida

$$\left(\begin{array}{c} y_t \\ x_t \end{array}\right) = \left(\begin{array}{c} \beta \\ 1 \end{array}\right) f_t + \left(\begin{array}{c} \tilde{y}_t \\ \tilde{x}_t \end{array}\right),$$

donde \tilde{y}_t y \tilde{x}_t son I(0). Claramente $\varepsilon_t = \tilde{y}_t - \beta \tilde{x}_t$ es una combinación de variables I(0) que nunca será I(1). Lo anterior nos indica que series de tiempo cointegradas da cabida a una representación de factores. Por otra parte, si $f_t \sim I(1)$ y $\tilde{\varepsilon}_t \sim I(0)$, una representación de factores da cabida a representaciones de series de tiempo cointegradas.

Representación de factores comunes

- Este resultado es útil dado que podemos asociar la información común de largo plazo en f_t , mientras que el componente estacionario nos otorgará información del corto plazo.
- Stock y Watson (1988), Vahid y Engle (1993), Gonzalo y Granger (1995), entre otros, explotan dicha representación de factores para analizar las tendencias comunes y componentes transitorios entre grupos de variables. Esta parte del curso será tratada más a detalle en el caso de series de tiempo multivariadas.
- Nótese que esta representación nos permite simular fácilmente series de tiempo cointegradas.

Modelo de Corrección de Errores

- Nótese que si $Y_t = (y_t, x_t)'$, al aplicar ΔY_t , perdemos la información de largo plazo y sólo podemos analizar la de corto plazo (incluso distorcionadamente).
- Una alternativa muy popular para analizar el comportamiento de corto y largo plazo de variables es el denominado Modelo de Corrección de Errores (MCE).
- ▶ El teorema de representación de Granger indica que para una colección de variables *I*(1), representación de corrección de errores y cointegración en equivalentes.

Modelo de Corrección de Errores

Asumamos la ecuación de consumo

$$\label{eq:ct} \textit{C}_t = \alpha_0 + \alpha_1 \textit{C}_{t-1} + \beta_0 \textit{PIB}_t + \beta_1 \textit{PIB}_{t-1} + \varepsilon_t,$$
 donde $\textit{C}_t, \textit{PIB}_t \sim \textit{I}(1).$

ightharpoonup Restamos C_{t-1} en ambos lados de la ecuación

$$\Delta C_t = \alpha_0 + (\alpha_1 - 1)C_{t-1} + \beta_0 PIB_t + \beta_1 PIB_{t-1} + \varepsilon_t.$$

lacktriangle Ahora, sumando $-eta_0 PIB_{t-1}$ en ambos lados de la ecuación

$$\Delta C_t = \alpha_0 + (\alpha_1 - 1)C_{t-1} + (\beta_1 - \beta_0)PIB_{t-1} + \beta_0 \Delta PIB_t + \varepsilon_t.$$

Modelo de Corrección de Errores

Notése lo siguiente

$$(-(\alpha_1 - 1), -(\beta_1 - \beta_0)) \begin{pmatrix} C_{t-1} \\ PIB_{t-1} \end{pmatrix} = \alpha_0 + \beta_0 \Delta PIB_t + \varepsilon_t.$$

- Sólo si C_t y PIB_t están cointegradas, el lado derecho de la ecuación será estacionario, i.e., $\varepsilon_t \sim I(0)$.
- ➤ Se puede generalizar este resultado para más series de tiempo incluyendo también tendencias determinísticas.

Maestría en Cómputo Estadístico. CIMAT-MTY

Pruebas de cointegración

Pruebas de cointegración: Engle y Granger (1987)

Prueba ADF sobre los residuales (Procedimiento de Engle-Granger, 1987)

 Como lo vimos la clase anterior la prueba ADF está basada en probar si

$$H_0: \beta = 0,$$

en este caso, para la regresión

$$\Delta \varepsilon_t = \beta \varepsilon_{t-1} + \sum_{i=1}^p \gamma_i \Delta \varepsilon_{t-i} + e_t.$$

Si rechazamos H_0 las variables están cointegradas, caso contrario, no hay evidencia de cointegración.

Prueba ADF sobre los residuales (Procedimiento de Engle-Granger, 1987)

- Nótese que es redundante usar constante y tendencia determinística en la regresión ADF.
- ¿Son los mismos valores críticos que para el caso de integración?
- Otro procedimiento es el Sargan and Bhargava (1983) basado en el contraste de Durbin-Watson pero no es muy utilizado porque es válido sólo cuando el residual sigue un proceso AR(1).

Estimación del MCE

- Pasos para la estimación del MCE:
 - **1.** Estima por OLS la regresión: $y_t = c + \beta x_t + \varepsilon_t$
 - 2. Prueba si los residuales $\hat{\varepsilon}_t$ son estacionarios.
 - **3.** Estima por OLS la regresión: $\Delta y_t = c_0 + \beta_0 \Delta x_t + \rho \hat{\varepsilon}_{t-1} + u_t$
 - 4. Valida el modelo donde es es importante que ho < 1 puesto que asegura convergencia al estado de equilibrio de largo plazo.
- Nota que si $\rho = -1$, Δy_t converge al instante al estado de equilibrio, mentras si $\rho > 1$ el proceso no converge.

Un breve experimento

Generemos 500 series cointegradas, estimemos la densidad de los coeficientes de corrección de error, contabilizamos las veces que no rechazamos hipótesis nula de no estacionariedad y verifiquemos en esos casos que los coeficientes de corrección de error sean siempre positivos. Pruebas de cointegración

Histograma del término de corrección de error

Maestría en Cómputo Estadístico. CIMAT-MTY

Pruebas de cointegración

> # stastics

```
> nocoint <- mat_info[,"p.value"] > 0.05
> sum(nocoint)/R
[1] 0.072
> quantile(mat_info[nocoint, "p.value"])
       0%
                 25%
                          50%
                                      75%
                                                100%
0.05046419 0.08455907 0.14303470 0.26227963 0.87323276
>
> # stastics
> nocoint <- mat_info[,"p.value"] > 0.05
> sum(nocoint)/R
[1] 0.072
> quantile(mat_info[nocoint, "p.value"])
                 25%
                       50%
                                  75%
                                               100%
0.05046419 0.08455907 0.14303470 0.26227963 0.873232760.01
```

Maestría en Cómputo Estadístico.	CIMAT-MTY
Pruebas de cointegración	

▶ Podemos apreciar, que aunque haya coeficientes menores a -1, lo que indica sobrecovergencia al estado de equilibrio, existe una equivalencia entre modelos no cointegrados y términos de corrección de error mayores a 0. Maestría en Cómputo Estadístico. CIMAT-MTY

Pruebas de cointegración

Pruebas de cointegración: Phillips and Ouliaris (1990)

Phillips and Ouliaris (1990)

Phillips and Ouliaris (1990) introducen dos pruebas basadas en residuales denominadas: razón de varianzas y prueba multivariada de la traza. Esta última tiene la ventaja que es invariante a la normalización (variable endógnea). Ambas pruebas están basadas en el siguiente Vector Autorregresivo de orden 1

$$Y_t = \hat{\Pi} Y_{t-1} + \hat{\xi}_t.$$

Phillips and Ouliaris (1990)

La razón de varianza, \hat{P}_u está dada por

$$\hat{P}_{u} = \frac{T\hat{\omega}_{11\cdot 2}}{T^{-1}\sum_{i=1}^{T}\hat{\varepsilon}_{t}^{2}}.$$

La varianza condicional $\hat{\omega}_{11\cdot 2}$ es derivada de la matriz de covarianza $\hat{\Omega}$ de $\hat{\xi}_t$ y es definida como

$$\hat{\omega}_{11\cdot 2} = \hat{\omega}_{11} - \hat{\omega}_{21} \hat{\Omega}_{22}^{-1} \hat{\omega}_{21},$$

Pruebas de cointegración

Phillips and Ouliaris (1990)

donde la matriz de covarianza $\hat{\Omega}$ está dada por

$$\hat{\Omega} = \left[egin{array}{ccc} \hat{\omega}_{11} & \hat{\omega}_{12} \ \hat{\omega}_{21} & \hat{\Omega}_{22} \end{array}
ight]$$

y es estimada como

$$\hat{\Omega} = T^{-1} \sum_{t=1}^{T} \hat{\xi}_{t}' \hat{\xi}_{t} + T^{-1} \sum_{s=1}^{I} w_{sl} \sum_{t=1}^{T} (\hat{\xi}_{t} \hat{\xi}_{t-s}' + \hat{\xi}_{t-s} \hat{\xi}_{t}').$$

donde $w_{sl} = 1 - s/(l+1)$.

Nótese que el estadístico es una razón entre la varianza del residual de la regresión de cointegración y la varianza condicional entre y_t y x_t.

Phillips and Ouliaris (1990)

Nótese que si los residuales de la regresión de cointegración no tienen una varianza explosiva, la razón de varianza tenderá a ser grande, en estos casos, la regresión no sería espuria y por lo tanto, indicaría evidencia de cointegración. Los valores críticos vienen dados por Phillips and Ouliaris (1990).

Phillips and Ouliaris (1990)

El estadístico multivariado de la traza viene dado por

$$\hat{P}_z = Ttr(\hat{\Omega}M_{zz}^{-1}),$$

donde $M_{YY} = T^{-1} \sum_{t=1}^{T} Y_t Y_t'$. Los valores críticos vienen dados por Phillips and Ouliaris (1990).

En ambos casos, las hipótesis nulas denotan no cointegración, es decir, rechazamos H_0 con valores grandes de \hat{P}_u y \hat{P}_z .

Maestría en	Cómputo	Estadístico.	CIMAT-MTY
Fiercicio	emnírico		

Ejercicio empírico

Ejercicio empírico

- Con las series del Índice de Producción Industrial de México y de Estados Unidos, ambas desestacionalizadas, verifiquemos si se cumple la relación empírica de cointegración, que implica sincronización de las economías a largo plazo.
- ► Tomemos el logaritmo a las series y observemos sus características estocásticas.

- Ejercicio empírico

Maestría en	Cómputo	Estadístico.	CIMAT-MTY
L Eigeniaio			

▶ Las series parecen tener un comportamiento no estacionario. Se realizarán pruebas de raíces unitarias (ADF) para verificar que el orden de integración de las series sea el mismo. Ejercicio empírico

Pruebas de raíces unitarias

```
> # pruebas ADF
> adf.test(dat[,"IPIMEX"])
        Augmented Dickey-Fuller Test
data: dat[, "IPIMEX"]
Dickey-Fuller = -3.0387, Lag order = 6, p-value = 0.1385
> adf.test(dat[,"IPIUSA"])
        Augmented Dickey-Fuller Test
data: dat[, "IPIUSA"]
Dickey-Fuller = -3.1912, Lag order = 6, p-value = 0.08972
> adf.test(diff(dat[,"IPIMEX"]))
        Augmented Dickey-Fuller Test
data: diff(dat[, "IPIMEX"])
Dickey-Fuller = -5.6508, Lag order = 6, p-value = 0.01
> adf.test(diff(dat[,"IPIUSA"]))
        Augmented Dickey-Fuller Test
data: diff(dat[, "IPIUSA"])
Dickey-Fuller = -4.3194, Lag order = 6, p-value = 0.01
```

Maestría en Cómputo Estadístico. CIMAT-MTY

Ejercicio empírico

Se aprecia que el orden de integración de las series es el mismo, i.e., I(1). Podemos realizar la regresión $\log(IPI_t^{MEX}) = \beta_0 + \beta_1 \log(IPI_t^{USA}) + \varepsilon_t$

Ejercicio empírico

Regresión

```
> regre <- lm(dat[."IPIMEX"] ~ dat[."IPIUSA"])</pre>
> summary(regre)
Call:
lm(formula = dat[, "IPIMEX"] ~ dat[, "IPIUSA"])
Residuals:
            1Q
                     Median
                                   3Q
     Min
                                            Max
-0.175705 -0.024651 -0.002459 0.028747 0.100630
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept)
              0.22539 0.07943 2.838 0.00485 **
dat[, "IPIUSA"] 0.93282 0.01730 53.920 < 2e-16 ***
---
Residual standard error: 0.03784 on 305 degrees of freedom
Multiple R-squared: 0.9051, Adjusted R-squared: 0.9047
F-statistic: 2907 on 1 and 305 DF, p-value: < 2.2e-16
```

Podemos apreciar que los coeficientes son significativos y la elasticidad $\partial \log(IPI_t^{MEX})/\partial \log(IPI_t^{USA})=0.933$ que indica que cuando la economía de los Estados Unidos crece 1%, la de México lo hace en 0.933% en el largo plazo.

Ejercicio empírico

Ejercicio empírico

▶ El residual de la regresión parece ser estacionario aunque presenta movimientos bruscos antes y después de 1995. Sin embargo, nótese que la media y la varianza parecen ser constantes. Realizando la prueba de ADF sin especificación alguna obtenemos un p-valor de 0.01, por lo que hay argumentos para afirmar que las economías de México y Estados Unidos están sincronizadas. Estimemos el MCE y analizemos las dinámicas de corto y largo plazo existentes.

```
Ejercicio empírico
```

MCE

```
> summary(MCE(regre,0))
Call:
lm(formula = dy ~ lag.f(ce, 1) + dx)
Residuals:
     Min
               10 Median
                                   30
                                           Max
-0.082140 -0.005327 0.000583 0.005899 0.068913
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0006846 0.0007205 0.950 0.342801
lag.f(ce, 1) -0.0569046 0.0185323 -3.071 0.002330 **
dx
          0.4114295 0.1085776 3.789 0.000182 ***
Residual standard error: 0.01224 on 303 degrees of freedom
  (1 observation deleted due to missingness)
Multiple R-squared: 0.07067, Adjusted R-squared: 0.06453
F-statistic: 11.52 on 2 and 303 DF, p-value: 1.507e-05
```

Ejercicio empírico

▶ Observamos que la convergencia al estado de equilibrio es lenta y que la dinámica transitoria es signicativa, es decir $\partial \Delta \log(IPI_t^{MEX})/\partial \Delta \log(IPI_t^{USA}) = 0.411$. Relicemos una prueba de ruido blanco sobre los residuales del modelo.

```
> test.lb <- c()
> for(i in 1 : 12)
+    test.lb[i] <- Box.test(resid(mce), lag = i,
type = "Ljung-Box")$p.value
> test.lb
    [1] 0.54371335 0.81232435 0.93654172 0.22621221 0.30884481 0.26950131
    0.32045100 0.37737358 0.10914201 0.06571904 0.09474593 0.111648
```

► Los residuales del modelo parecen ser ruido blanco de acuerdo a la prueba de Ljung-Box probando desde 1 hasta 12 rezagos.

Ejercicio empírico

 Realizamos la prueba de Phillips & Ouliaris y obtenemos lo siguiente

No rechazamos H_0 en los dos casos (al 5%). Pareciera que contradice a la prueba de Engle-Granger.

- Intuitivamente, si hay cointegración, entonces $Y_t = Pf_t + \varepsilon_t$ y $var(Y_t) = Pvar(f_t)P' + var(\tilde{\varepsilon}_t)$. Hemos visto que f_t es el componente I(1) asociado al largo plazo, es esperable que la varianza de largo plazo esté asociada a la varianza de las observaciones.
- En este caso, la descomposición de valores propios de Σ_Y tenderá a darnos el número de combinaciones lineales independientes de máxima varianza de largo plazo, es decir N r ecuaciones de cointegración. Si r = 0 las series son caminatas aleatorias independientes (relación espuria) y si r = N, estaríamos contradiciendo el concepto de cointegración.

lacktriangle Realizando la descomposición espectral de $\hat{\Sigma}_Y$ obtenemos que

Pareciera que N-r=1, es decir, existe una combinación lineal "signficativa" de largo plazo.

- Exsiten formalizaciones para estos casos, los cuales se verán más adelante para el caso multivariado.
- Verifiquemos en clase si se cumple el "pass-thru" del tipo de cambio a los precios.

Tarea (se puede entregar hasta el lunes 1 de octubre de 2018)

- (4 pts) Escribe una función en R que realice las pruebas de raíces unitarias en el contexto de cointegración considerando los valores críticos de Engle y Yoo (1987), Ouliaris et al. (1989) y MacKinnon (1991). Toma en cuenta las dimensiones de las variables, etc.
- 2. (2.5 pts) Programa una función en R que genere el procedimiento de Sargan y Bhargava (1983).
- **3.** (3.5 pts) Con los procedimientos anteriores y los visto en clase, piensa en un problema que sea de tu interés, i.e, donde sea evidente relacionar variables no estacioanrias y concluye si existe evidencia de que existen relaciones de largo plazo.

Referencias para la tarea

- Sargan, J. D. and Bhargava, A. (1983), Testing Residuals from Least Squares Regression for Being Generated by the Gaussian Random Walk, Econometrica 51(1), pp. 153-174.
- 2. Engle, R. and Yoo, S. (1987), Forecasting and testing in cointegrated systems, Journal of Econometrics 35, pp. 143-159.
- MacKinnon, J. (1991), Critical values for cointegration tests, in R. F. Engle and C. W. J. Granger, eds, Long-Run Economic Relationships: Readings in Cointegration, Advanced Texts in Econometrics, Oxford University Press, Oxford, UK, chapter 13.
- Ouliaris, S., Park, J. Y. and Phillips, P. C. B. (1989), Testing for a unit root in the presence of a maintained trend, in B. Raj, ed., Advances in Econometrics and Modelling, Kluwer Academic Publishers, Dordrecht, pp. 7-28.