Formule logique : Sémantique

Quentin Fortier

April 22, 2022

Définition

Une **valuation** sur un ensemble V de variables est une fonction de V vers $\{0, 1\}$.

0 est parfois noté Faux ou \bot . 1 est parfois noté Vrai ou \top .

Définition

Une **valuation** sur un ensemble V de variables est une fonction de V vers $\{0, 1\}$.

0 est parfois noté Faux ou \bot . 1 est parfois noté Vrai ou \top .

Définition

Soit v une valuation sur V.

L'**évaluation** $\llbracket \varphi \rrbracket_v$ d'une formule φ sur v est définie inductivement :

- $[T]_v = 1$, $[F]_v = 0$
- $\bullet \ [\![x]\!]_v = v(x) \text{ si } x \in V$
- $\bullet \ \llbracket \neg \varphi \rrbracket_v = 1 \llbracket \varphi \rrbracket_v$
- $\bullet \ \llbracket \varphi \wedge \psi \rrbracket_v = \min(\llbracket \varphi \rrbracket_v, \llbracket \psi \rrbracket_v)$
- $\bullet \ \llbracket \varphi \lor \psi \rrbracket_v = \max(\llbracket \varphi \rrbracket_v, \llbracket \psi \rrbracket_v)$

Si $[\![\varphi]\!]_v=1$, on dit que v est un **modèle** pour φ .

lci une valuation v à valeur booléenne est utilisée.

Définition

Deux formules φ et ψ sur V sont **équivalentes** (et on note $\varphi \equiv \psi$) si, pour toute valuation $v:V \to \{0,\ 1\}$:

$$\llbracket \varphi \rrbracket_v = \llbracket \psi \rrbracket_v$$

Définition

Deux formules φ et ψ sur V sont **équivalentes** (et on note $\varphi \equiv \psi$) si, pour toute valuation $v:V \to \{0,\ 1\}$:

$$\llbracket \varphi \rrbracket_v = \llbracket \psi \rrbracket_v$$

Lois de de Morgan

Pour toutes formules φ , ψ :

$$\neg(\varphi \lor \psi) \equiv \neg\varphi \land \neg\psi$$
$$\neg(\varphi \land \psi) \equiv \neg\varphi \lor \neg\psi$$

Définition

Deux formules φ et ψ sur V sont **équivalentes** (et on note $\varphi \equiv \psi$) si, pour toute valuation $v:V \to \{0,\ 1\}$:

$$\llbracket\varphi\rrbracket_v=\llbracket\psi\rrbracket_v$$

Lois de de Morgan

Pour toutes formules φ , ψ :

$$\neg(\varphi \lor \psi) \equiv \neg\varphi \land \neg\psi$$
$$\neg(\varphi \land \psi) \equiv \neg\varphi \lor \neg\psi$$

Définition

Une formule toujours évaluée à 1 est une **tautologie**.

Une formule toujours évaluée à 0 est une antilogie.

Une formule qui possède au moins une évaluation à $1\ \mathrm{est}\ \mathrm{satisfiable}.$

Soit G = (V, E) un graphe.

Exercice

Définir une formule logique satisfiable si et seulement si G est biparti (c'est-à-dire : $\exists A \subseteq V$ tel que les seules arêtes de G soient entre un sommet de A et un sommet de cA).

Écrire une fonction OCaml pour effectuer cette transformation.

Quelques équivalences importantes :

$$\neg \neg \varphi \equiv \varphi$$

$$\varphi \wedge \varphi \equiv \varphi$$

$$\varphi \vee \varphi \equiv \varphi$$

$$\varphi_1 \wedge (\varphi_2 \wedge \varphi_3) \equiv (\varphi_1 \wedge \varphi_2) \wedge \varphi_3$$

$$\varphi_1 \vee (\varphi_2 \vee \varphi_3) \equiv (\varphi_1 \vee \varphi_2) \vee \varphi_3$$

$$\varphi_1 \vee (\varphi_2 \wedge \varphi_3) \equiv (\varphi_1 \vee \varphi_2) \wedge (\varphi_1 \vee \varphi_3)$$

$$\varphi_1 \wedge (\varphi_2 \vee \varphi_3) \equiv (\varphi_1 \wedge \varphi_2) \vee (\varphi_1 \wedge \varphi_3)$$

$$\varphi_1 \longrightarrow \varphi_2 \equiv \neg \varphi_2 \longrightarrow \neg \varphi_1$$

En notant \overline{a} au lieu de $\neg a$, a+b au lieu de $a \lor b$, ab au lieu de $a \land b$, les équivalences précédentes deviennent :

$$\overline{a} \equiv a$$

$$aa \equiv a$$

$$a + a \equiv a$$

$$a(bc) \equiv (ab)c$$

$$a + (b+c) \equiv (a+b) + c$$

$$a + bc \equiv (a+b)(a+c)$$

$$a(b+c) \equiv ab + ac$$

Et les lois de De Morgan :

$$\overline{a+b} \equiv \overline{a}\overline{b}$$

$$\overline{ab} \equiv \overline{a} + \overline{b}$$

Exercice

Comment peut-on réécrire $(\bigvee_i \varphi_i) \wedge (\bigvee_j \psi_j)$?

Et
$$(\bigwedge_i \varphi_i) \vee (\bigwedge_j \psi_j)$$
 ?

Théorème

Soit φ une formule possédant des \neg uniquement sur des variables.

Alors $\neg \varphi$ équivaut à :

- inverser les ∨ et ∧
- inverser les variables avec leurs négations
- lacksquare inverser T et F

Théorème

Soit φ une formule possédant des \neg uniquement sur des variables.

Alors $\neg \varphi$ équivaut à :

- inverser les ∨ et ∧
- inverser les variables avec leurs négations
- lacksquare inverser T et F

Preuve: Par induction structurelle.

Théorème

Soit φ une formule possédant des \neg uniquement sur des variables.

Alors $\neg \varphi$ équivaut à :

- inverser les ∨ et ∧
- inverser les variables avec leurs négations
- \odot inverser T et F

Preuve: Par induction structurelle.

Par exemple si $\varphi = (x \vee y) \wedge ((\neg x \wedge z) \vee \neg y) \vee \neg z$ alors :

$$\neg \varphi \equiv (\neg x \land \neg y) \lor ((x \lor \neg z) \land y) \land z$$

Théorème

Soit φ une formule possédant des \neg uniquement sur des variables.

Alors $\neg \varphi$ équivaut à :

- inverser les ∨ et ∧
- 2 inverser les variables avec leurs négations
- \odot inverser T et F

Preuve: Par induction structurelle.

Par exemple si $\varphi = (x \lor y) \land ((\neg x \land z) \lor \neg y) \lor \neg z$ alors :

$$\neg \varphi \equiv (\neg x \land \neg y) \lor ((x \lor \neg z) \land y) \land z$$

On peut calculer sur des formules un peu comme sur les réels.

Par exemple, comme (a + b)(c + d)e = ace + ade + bce + bde:

$$(a \lor b) \land (c \lor d) \land e \equiv (a \land c \land e) \lor (a \land d \land e) \lor (b \land c \land e) \lor (b \land d \land e)$$

Soit $V=\{x_0,...,x_{n-1}\}$. Pour savoir si une formule est une tautologie, une méthode naïve est d'énumérer les 2^n distributions de vérité $v:V\to\{0,1\}$.

Soit $V=\{x_0,...,x_{n-1}\}$. Pour savoir si une formule est une tautologie, une méthode naïve est d'énumérer les 2^n distributions de vérité $v:V\to\{0,1\}$.

On peut représenter v par un entier dont le ième bit est $v(x_i)$ (bitset). On énumère alors tous les entiers de 0 à $2^n - 1$.

Soit $V=\{x_0,...,x_{n-1}\}$. Pour savoir si une formule est une tautologie, une méthode naïve est d'énumérer les 2^n distributions de vérité $v:V\to\{0,1\}$.

On peut représenter v par un entier dont le ième bit est $v(x_i)$ (bitset). On énumère alors tous les entiers de 0 à $2^n - 1$.

Exercice

En déduire des fonctions OCaml tautologie et satisfiable. On pourra utiliser Int.logand, Int.logor, Int.shift_left pour les opérations bit à bit.

Complexité:

Soit $V=\{x_0,...,x_{n-1}\}$. Pour savoir si une formule est une tautologie, une méthode naïve est d'énumérer les 2^n distributions de vérité $v:V\to\{0,1\}$.

On peut représenter v par un entier dont le ième bit est $v(x_i)$ (bitset). On énumère alors tous les entiers de 0 à $2^n - 1$.

Exercice

En déduire des fonctions OCaml tautologie et satisfiable. On pourra utiliser Int.logand, Int.logor, Int.shift_left pour les opérations bit à bit.

Complexité : $\geq 2^n$.

Soit φ une formule sur V. On peut représenter les différentes valeurs des évaluations de φ par une **table de vérité**.

Soit φ une formule sur V. On peut représenter les différentes valeurs des évaluations de φ par une **table de vérité**.

Table de vérité de $(x \wedge y) \vee (\neg x \wedge \neg y)$:

\boldsymbol{x}	y	$(x \land y) \lor (\neg x \land \neg y)$
0	0	1
0	1	0
1	0	0
1	1	1

Chaque ligne correspond à une valuation v possible et $[\![\varphi]\!]_v$.

Soit φ une formule sur V. On peut représenter les différentes valeurs des évaluations de φ par une **table de vérité**.

Table de vérité de $(x \wedge y) \vee (\neg x \wedge \neg y)$:

\boldsymbol{x}	y	$(x \land y) \lor (\neg x \land \neg y)$
0	0	1
0	1	0
1	0	0
1	1	1

Chaque ligne correspond à une valuation v possible et $[\![\varphi]\!]_v$.

Deux formules sont équivalentes ssi elles ont la même table de vérité.

Vous êtes perdus dans le désert et vous avez le choix entre 2 chemins, gardés par 2 sphinx.

Le premier vous dit : « au moins un des chemins conduit à une oasis. » Le second ajoute : « le chemin de droite se perd dans le désert. » Sachant que les deux sphinx disent tous deux la vérité, ou bien mentent tous deux, que faites vous ?

Vous êtes perdus dans le désert et vous avez le choix entre 2 chemins, gardés par 2 sphinx.

Le premier vous dit : « au moins un des chemins conduit à une oasis. » Le second ajoute : « le chemin de droite se perd dans le désert. » Sachant que les deux sphinx disent tous deux la vérité, ou bien mentent tous deux, que faites vous ?

Soient x= « le chemin de gauche conduit à une oasis » et y= « le chemin de droite conduit à une oasis ».

Vous êtes perdus dans le désert et vous avez le choix entre 2 chemins, gardés par 2 sphinx.

Le premier vous dit : « au moins un des chemins conduit à une oasis. » Le second ajoute : « le chemin de droite se perd dans le désert. » Sachant que les deux sphinx disent tous deux la vérité, ou bien mentent tous deux, que faites vous ?

Soient x= « le chemin de gauche conduit à une oasis » et y= « le chemin de droite conduit à une oasis ».

D'après l'hypothèse, la formule $\varphi=((x\vee y)\wedge \neg y)\vee (\neg(x\vee y)\wedge y)$ doit être vraie.

Vous êtes perdus dans le désert et vous avez le choix entre 2 chemins, gardés par 2 sphinx.

Le premier vous dit : « au moins un des chemins conduit à une oasis. » Le second ajoute : « le chemin de droite se perd dans le désert. » Sachant que les deux sphinx disent tous deux la vérité, ou bien mentent tous deux, que faites vous ?

Soient x= « le chemin de gauche conduit à une oasis » et y= « le chemin de droite conduit à une oasis ».

D'après l'hypothèse, la formule $\varphi=((x\vee y)\wedge \neg y)\vee (\neg(x\vee y)\wedge y)$ doit être vraie.

En écrivant la table de vérité de φ ou en utilisant notre fonction Caml, on trouve que la seule solution est x=1 et y=0: il faut donc prendre le chemin de gauche.

Nombre de tables de vérités différentes sur $\,n\,$ variables :

Nombre de tables de vérités différentes sur n variables : 2^{2^n} (2 choix pour chacune des 2^n distributions de vérité).

Nombre de tables de vérités différentes sur n variables : 2^{2^n} (2 choix pour chacune des 2^n distributions de vérité).

Question

Est-ce que toutes les tables de vérités possibles peuvent être obtenues par une formule logique?

Nombre de tables de vérités différentes sur n variables : 2^{2^n} (2 choix pour chacune des 2^n distributions de vérité).

Question

Est-ce que toutes les tables de vérités possibles peuvent être obtenues par une formule logique?

Exemple: comment obtenir la table suivante?

x	y	?
0	0	1
0	1	1
1	0	0
1	1	1

Nombre de tables de vérités différentes sur n variables : 2^{2^n} (2 choix pour chacune des 2^n distributions de vérité).

Question

Est-ce que toutes les tables de vérités possibles peuvent être obtenues par une formule logique?

Exemple: comment obtenir la table suivante?

x	y	?
0	0	1
0	1	1
1	0	0
1	1	1

Avec la formule $\neg x \lor y$, qu'on note aussi $x \longrightarrow y$.

2ème exemple:

y	z	?
0	0	1
0	1	1
1	0	0
1	1	0
0	0	1
0	1	0
1	0	1
1	1	0
	0 0 1 1 0 0	0 0 0 1 1 0 1 1 0 0 0 1 1 0

Cette méthode marche tout le temps, et permet de prouver :

Théorème

Toute table de vérité peut être obtenue avec une formule logique. Il existe donc exactement 2^{2^n} formules logiques à n variables, à équivalence près.

Cette méthode marche tout le temps, et permet de prouver :

Théorème

Toute table de vérité peut être obtenue avec une formule logique. Il existe donc exactement 2^{2^n} formules logiques à n variables, à équivalence près.

De plus, la forme de la formule obtenue est bien particulière.

Définition

- Un **littéral** est une variable ou sa négation.
- Une **clause** est une conjonction de littéraux (c'est à dire de la forme $\ell_1 \wedge \ell_1 \wedge ... \wedge \ell_p$ où ℓ_i est un littéral).

Cette méthode marche tout le temps, et permet de prouver :

Théorème

Toute table de vérité peut être obtenue avec une formule logique. Il existe donc exactement 2^{2^n} formules logiques à n variables, à équivalence près.

De plus, la forme de la formule obtenue est bien particulière.

Définition

- Un littéral est une variable ou sa négation.
- Une **clause** est une conjonction de littéraux (c'est à dire de la forme $\ell_1 \wedge \ell_1 \wedge ... \wedge \ell_p$ où ℓ_i est un littéral).

Théorème

Toute formule logique est équivalente à une formule sous **forme normale disjonctive**, c'est à dire de la forme $c_1 \vee ... \vee c_k$ où c_i est une clause.

Conséquence

Définition

On dit que ψ est une **conséquence** de φ , et on note $\varphi \models \psi$, si tout modèle de φ est un modèle de ψ (c'est-à-dire : pour toute valuation v, $\|\varphi\|_v \leq \|\psi\|_v$).

Conséquence

Définition

On dit que ψ est une **conséquence** de φ , et on note $\varphi \models \psi$, si tout modèle de φ est un modèle de ψ (c'est-à-dire : pour toute valuation v, $[\![\varphi]\!]_v \leq [\![\psi]\!]_v$).

Exemples:

- $x \models x \lor (y \land z)$
- $y \models x \longrightarrow y$

Conséquence

Lemme

Soient φ et ψ deux formules. Alors :

$$\varphi \models \psi$$
 si et seulement si $\models \varphi \longrightarrow \psi$

Ensemble de formules

On peut généraliser les définitions à un ensemble Γ de formules :

Définition

ullet Un modèle pour Γ est une valuation v telle que :

$$\forall \varphi \in \Gamma, \ \llbracket \varphi \rrbracket_v = 1$$

• Une formule φ est une conséquence logique de Γ si tout modèle de Γ est un modèle de φ .

On note alors $\Gamma \models \varphi$.

Ensemble de formules

On peut généraliser les définitions à un ensemble Γ de formules :

Définition

ullet Un modèle pour Γ est une valuation v telle que :

$$\forall \varphi \in \Gamma, \ \llbracket \varphi \rrbracket_v = 1$$

• Une formule φ est une conséquence logique de Γ si tout modèle de Γ est un modèle de φ .

On note alors $\Gamma \models \varphi$.

Exemple:

$$\{x, x \longrightarrow y\} \models y$$