

ACM MobiSys 2025

Satori: In-band Analog Backscatter for Audio Transmission

Yang Zou, Xin Na, Yimiao Sun, Yande Chen, Yuan He*
School of Software & BNRist, Tsinghua University

Background: Audio sensing Machine failure detection **Command recognition** Security surveillance Audio sensing supports various industrial applications.

Backscatter Technology

Backscatter for audio transmission

A backscatter tag harvests ambient energy and modulates the audio data onto the backscattered signals.

Existing Works

Digital backscatter

Single tone excitation

Passive WiFi

NSDI'16

RF Transformer MobiCom'22

WiFi excitation

HitchHike
Sensys'16

FreeRider
CoNext'17

MOXcatter
Mobisys'18

RapidRider

Tscatter
Mobisys'22

WiTAG

INFOCOM'21

Mobisys'23 SIGCOMM'20

Orthcatter

CABMobisys'22

SyncScatter
NSDI'21

NSDI'24

• • • • • •

They can achieve throughput of 100 kbps or even Mbps with ultra-low power consumption.

Analog backscatter

Mobicom'21

Mobisys'23

They directly embed the analog signals into reflected RF signals.

Obstacles

Obstacles

Satori Overview

Satori explores the in-band analog backscatter for audio transmission.

Tag Design

> In-band analog backscatter

Tag Design

> In-band analog backscatter

Phase Shifter

Structure of the phase shifter

Accurate audio embedding

> The reflected phase is nearly linear with the voltage.

Satori leverages the phase shifter to achieve accurate analog audio embedding while minimizing power consumption.

Tag Design

> In-band analog backscatter

Modeling the Channel

Channel model of the backscattered signal

The tuning circle represents the backscatter tag's phase shift effect on the wireless channel.

In-band Backscatter Channel

Channel model of in-band backscatter

- > One channel measurement alone can't extract the tag's phase modulation.
- > The tag should provide at least three points with distinct phases.

Tag Design

> In-band analog backscatter

In-band Analog Modulation

The analog audio signal is carried in the internal angles of the tuning triangle formed by the three symbols.

In-band Analog Modulation

Consider the in-band transmission

The tuning triangle can reliably carry the audio signal in the in-band backscatter transmission with self-interference.

Satori Receiver Design

Receiving process

Received WiFi symbols

Estimated channel:

- Leverage four pilot subcarriers for per-symbol channel estimation.
- > Extract the tuning triangle from the estimated channel and recover the audio signal.

Problems

2-steps CFO Calibration

Average CFO calibration

Use the linear fitting method to estimate the average CFO.

> Fluctuating CFO calibration

OFDM symbol

Relationship between θ_{err} and CFO:

$$\theta_{err} = \angle \left(\sum_{t=1}^{16} x[t] x^*[t+64] \right)$$
$$\approx 2\pi \times f_{cfo} \times 3.6 \mu s$$

Use the cyclic prefix (CP) to estimate the fluctuating CFO symbol by symbol.

Problems

Fading-adaptive Audio Recovery

Assign lower ω_i to pilots with deeper fading.

How to determine ω_i ?

Severe fading leads to smaller tuning triangles.

Fading-adaptive Audio Recovery

Assign lower ω_i to pilots with deeper fading.

How to determine ω_i ?

Weight assignment:

$$\omega_i = D_{i1} + D_{i2} + D_{i3}$$

The fading-adaptive audio recovery improves robustness against deep fading.

Implementation & Evaluation

Implementation

- The prototype is implemented on a 4-layer printed circuit board (PCB) with commercial components.
- 2 simple RF switches and 4 varactors for in-band analog modulation consume uW-level power.

- The transceivers are implemented with USRP B210/N210 SDR.
- The transmitter sends 802.11n signals generated by MATLAB Wireless Waveform Generator.

Evaluation Setup

Transceiver

- Implemented with USRP
- Transmission power: 20 dBm
- Antenna: 6 dBi gain
- Signal: IEEE 802.11n packets

Tag

- Antenna: 6 dBi gain
- Tx-to-Tag distance: 0.5m (default)
- Varying Tag-to-Rx distance.

Audio

- Two speakers generate audio signals
- Audio frequency: 200~3600 Hz
- Audio data rate: 320 kbps

Floorplan of the experiment environment.

Key Metric: SNR of the received audio

Evaluation: SNR

SNR in LOS scenarios

SNR in NLOS scenarios

Satori supports transmission range of 35 m and achieves an SNR exceeding 18 dB.

[Leggiero]: Xin Na, Xiuzhen Guo, Zihao Yu, Jia Zhang, Yuan He, and Yunhao Liu. Leggiero: Analog WiFi Backscatter with Payload Transparency. ACM Mobisys 2023.

[M.A.B.]: Jia Zhao, Wei Gong, and Jiangchuan Liu. 2021. Microphone array backscatter: An application-driven design for lightweight spatial sound recording over the air. ACM MobiCom 2021

Evaluation: Impact on WiFi Traffic

Rx-to-Tx Distance: 4m

Tag-to-Tx Distance

- Goodput fluctuation is less than 1% when Tag-to-Tx > 0.1m.
- Goodput decreases only when the taging is very close to Tx and MCS is high.

Satori does not significantly impact WiFi traffic across most distance and MCS settings.

Proof-of-concept Application

Machine Failure Detection

Speech Command Recognition

- The audio transmitted by Satori can be accurately recognized.
- Satori effectively supports downstream audio sensing tasks.

Datasets:

[Machine Failure Detection]: Purohit Harsh, Tanabe Ryo, Ichige Kenji, Endo Takashi, Nikaido Yuki, Suefusa Kaori, and Kawaguchi Yohei. MIMII Dataset: Sound Dataset for Malfunctioning Industrial Machine Investigation and Inspection. DCASE 2019.

[Speech Command Recognition]: Pete Warden. Speech commands: A dataset for limited-vocabulary speech recognition. arXiv preprint 2018.

Conclusion

- We propose Satori, an in-band analog backscatter that enables ultra-low-power audio transmission.
- Satori transmits audio at a 41.67 kHz embedding rate, achieve an SNR exceeding 18 dB, and supports transmission distances more than 35 m.
- Satori follows the paradigm of RF computing, offering a direct manipulation from analog audio to the phase of RF signals.

Yang Zou

Xin Na

Yimiao Sun

Yande Chen

Yuan He

Please find more details in:

http://tns.thss.tsinghua.edu.cn/sun/https://ling-yanghui.github.io/

Embedding Rate

- > Satori takes 6 WiFi symbols to embed one audio signal sample.
- \succ It achieves a sampling rate of 41.67 kHz, sufficient for audio signal of 20Hz~20kHz.

CFO Problems

Carrier frequency offset (CFO) introduces phase error:

$$\theta_{err}(t) = \int 2\pi f_{cfo}(t) d_t$$

The phase error caused by the CFO causes the deformation of the extracted tuning triangles, leading to audio recovery failure.

Deep Fading

Estimated channel on two pilot subcarriers

The channel fading significantly weakens some pilot subcarriers, making the tuning triangle severely affected by the noise.