

Low V_{CE(sat)} IGBT with Diode High speed IGBT with Diode **Combi Packs**

	V _{CES}	C25	V _{CE(sat)}
IXGH10N60U1	600 V	20 A	2.5 V
IXGH10N60AU1	600 V	20 A	3.0 V

Symbol	Test Conditions	Maximum Ratings		
V _{CES}	T _J = 25°C to 150°C	600	V	
$\mathbf{V}_{\mathtt{CGR}}$	$T_{_J}$ = 25°C to 150°C; $R_{_{GE}}$ = 1 $M\Omega$	600	V	
V _{GES}	Continuous	±20	V	
$V_{\scriptscriptstyle{\sf GEM}}$	Transient	±30	V	
I _{C25}	T _C = 25°C	20	A	
I _{C90}	$T_{c} = 90^{\circ}C$	10	Α	
I _{CM}	$T_{\rm C}$ = 25°C, 1 ms	40	Α	
SSOA (RBSOA)	V_{GE} = 15 V, T_{VJ} = 125°C, R_{G} = 150 Ω Clamped inductive load, L = 300 μ H	I _{CM} = 20 @ 0.8 V _{CES}	А	
P _c	T _C = 25°C	100	W	
T _J		-55 + 150	°C	
T_{JM}		150	°C	
T _{stg}		-55 + 150	°C	
M _d	Mounting torque (M3)	1.13/10	Nm/lb.in.	
Weight		6	g	
	ad temperature for soldering 62 in.) from case for 10 s	300	°C	

Symbol	Test Conditions	Ch (T _J = 25°C, unless min .	otherwi	ristic Va se speci max.	
BV _{CES}	$I_{C} = 750 \ \mu\text{A}, \ V_{GE} = 0 \ \text{V}$	600			V
$V_{\rm GE(th)}$	$I_{_{C}} = 500 \; \mu\text{A}, \; V_{_{CE}} = V_{_{GE}}$	2.5		5.5	V
I _{CES}	$V_{CE} = 0.8 \bullet V_{CES}$ $V_{GE} = 0 V$	$T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$		260 2.5	μA mA
I _{GES}	$V_{CE} = 0 \text{ V}, V_{GE} = \pm 20 \text{ V}$			±100	nA
V _{CE(sat)}	$I_{\rm C} = I_{\rm C90}, V_{\rm GE} = 15 \text{ V}$	10N60U1 10N60AU1		2.5 3.0	V

G = Gate, C = Collector, E = Emitter, TAB = Collector

Features

- · International standard package JEDEC TO-247 AD
- · IGBT and anti-parallel FRED in one package
- 2nd generation HDMOS™ process
- Low $\mathbf{\tilde{V}}_{\text{CE(sat)}}$ for low on-state conduction losses
- MOS Gate turn-on
 - drive simplicity
- Fast Recovery Epitaxial Diode FRED)
 - soft recovery with low $\boldsymbol{I}_{_{\boldsymbol{R}\boldsymbol{M}}}$

Applications

- · AC motor speed control
- · DC servo and robot drives
- · DC choppers
- Uninterruptible power supplies (UPS)
- · Switch-mode and resonant-mode power supplies

Advantages

- · Space savings (two devices in one package)
- Easy to mount with 1 screw (isolated mounting screw hole)
- · Reduces assembly time and cost

© 1996 IXYS All rights reserved 91751G(3/96)

IXGH10N60U1 IXGH10N60AU1

LIXYS

Symbol	Test Conditions Characteristic Values $(T_{\perp} = 25^{\circ}C, \text{ unless otherwise specified})$			
	min.	typ.	max.	
g _{fs}	$I_{_{C}}=I_{_{C90}};~V_{_{CE}}=10~V,~4$ Pulse test, t \leq 300 μs , duty cycle \leq 2 %	8	S	
C _{ies} C _{oes} C _{res}		750 125 30	pF pF pF	
$\mathbf{Q}_{\mathbf{g}_{\mathbf{g}_{\mathbf{c}}}}$ $\mathbf{Q}_{\mathbf{g}_{\mathbf{c}}}$		50 15 25	70 nC 25 nC 45 nC	
t _{d(on)} t _{ri} E _{on}	Inductive load, T_J = 25°C $ \begin{vmatrix} I_C = I_{C90}, V_{GE} = 15 \text{ V}, L = 100 \mu\text{H} \\ V_{CE} = 0.8 V_{CES}, R_G = R_{off} = 150 \Omega \end{vmatrix} $	100 200 0.4	ns ns mJ	
t _{d(off)} t _{fi} E _{off}	$\begin{cases} \text{Switching times may increase} \\ \text{for V}_{\text{CE}} \text{ (Clamp)} > 0.8 \bullet \text{V}_{\text{CES}}, \\ \text{higher T}_{\text{J}} \text{ or increased R}_{\text{G}} \end{cases} 10\text{N}60\text{AU1}$	600 300 0.6	ns ns mJ	
$\begin{aligned} & \mathbf{t}_{d(on)} \\ & \mathbf{t}_{ri} \\ & \mathbf{E}_{on} \\ & \mathbf{t}_{d(off)} \\ & \mathbf{t}_{fi} \end{aligned}$	$eq:local_$	100 200 1 900 570 360 2.0 1.2	ns ns mJ 1500 ns 2000 ns 600 ns mJ mJ	
R _{thJC}		0.25	1.25 K/W K/W	

TO-247 AD Outline Q A1 -1 = Gate 2 = Collector 3 = EmitterTab = Collector .087 .059 .040 A₁

Reverse Diode (FRED)

Characteristic Values

(T_J = 25°C, unless otherwise specified)

Symbol	lest Conditions m	ın.	typ.	max.	
V _F	$I_F = I_{C90}, \ V_{GE} = 0 \ V,$ Pulse test, $t \le 300 \ \mu s$, duty cycle $d \le 2 \ \%$			1.75	V
I _{RM} t _{rr}	$\begin{cases} I_F = I_{C90}, \ V_{GE} = 0 \ V, \ -di_F/dt = 64 \ A/\mu s \\ V_R = 360 \ V & T_J = 100^{\circ} \\ I_F = 1 \ A; \ -di/dt = 50 \ A/\mu s; \ V_R = 30 \ V & T_J = 25^{\circ} \end{cases}$	Ď.	2.5 165 35	50	A ns ns
R _{thJC}				2.5	K/W

Fig. 1 Saturation Characteristics

Fig. 3 Collector-Emitter Voltage vs. Gate-Emitter Voltage

Fig. 5 Input Admittance

Fig. 2 Output Characterstics

Fig. 4 Temperature Dependence of Output Saturation Voltage

Fig. 6 Temperature Dependence of Breakdown and Threshold Voltage

Fig.7 Gate Charge

Fig.9 Capacitance Curves

Fig.10 Transient Thermal Impedance

Fig.11 Maximum Forward Voltage Drop

Fig.13 Junction Temperature Dependence off I... and Q

Fig.15 Peak Reverse Recovery Current

Fig.12 Peak Forward Voltage V_{FR} and Forward Recovery Time t_{FR}

Fig.14 Reverse Recovery Charge

Fig.16 Reverse Recovery Time

Fig.17 Diode Transient Thermal resistance junction to case

Pulse Width - Seconds