CausalAI系列读书会

Causal Concepts and Graphical Models

报告人: 朱淑媛

清华大学工业工程系在读博士生

研究方向: 供应链协调、行为运作管理

Association versus Causation

- Traditional regression model : p(y|x)
 - Describe an association in the sense of how seeing different values of X to *predict* the value of Y

- An explicit distinction between concepts of association and causation
 - While there can be an association between X and Y, a *manipulation* of X may not necessarily result in a corresponding change in Y.
 - X is causal for Y if some manipulation of X has an effect on Y

Do-calculus

- Observing $p(y; see(X = \tilde{x})) = p(y|\tilde{x})$
- Intervening $p(y; do(X = \tilde{x}))$
- the association is not the causation: $p(y; do(X = \tilde{x})) \neq p(y|\tilde{x})$
- Do-calculus uses graphical rules to convert conditioning on doing into conditioning on seeing. And a $do(X_j = \widetilde{x_j})$ -intervention modularly replaces the factor $p(x_j | x_{pa(j)})$ by $I(x_j = \widetilde{x_j})$

Regime Indicator

- Regime is a specific value
 - Let σ be the indicator for the regime, taking value in S.
 - $p(x; \sigma = s) = p(x; s), s \in S$ —> The joint distribution of X under regime s.
 - p(y,x;s) = p(x;s)p(y|x;s) seeing
 - Forcing X to be \tilde{x} , $p(x; \sigma = \tilde{x}) = I(x = \tilde{x})$
 - Association is not causation $p(y|\tilde{x}; \sigma = \emptyset) \neq p(y; \sigma = \tilde{x})$
- Regime is conditional or dynamic interventions
 - $p(x|C=c, \sigma=g_X) = I(x=g_X(c))$

学历

工作 工资

p(工作, 学历; 本科) = p(学历; 本科)p(工作| 学历; 本科)

p(学历; 本科) = I(学历 = 本科)

 $p(\text{工作|学历}; \sigma = \emptyset) \neq I(\text{工作|学历} = 本科)$

Potential Outcomes

- Goal: Considering some causal effect of X on an outcome Y.
- Defining the potential outcome $Y(\tilde{x})$ to be the value of Y that if X is forced to \tilde{x} .
- Association is not causation $p(Y(x) = y) \neq p(y|x)$
- Advantage 1. For this method is formulated at the level of variables instead of distributions, they can be used to express in individual causal effects as functions of $Y^i(\tilde{x})$ for different \tilde{x} .
- Advantage2. Because of the same reason, it also allow to express "cross-world" independent such as $Y(\tilde{x}) \perp W(x')|(Z,X)$ for two different value \tilde{x}, x' .

- 工作(本科)
- $p(\text{工作(本科)} = 程序员) \neq p(\text{工作|本科})$
- 工资(高于1万) ⊥ 家庭(城市)|(工作)

Causal Effect

- X has a causal effect on Y if an intervention in the former affects the distribution of the latter. $p(\text{工作}; do(\text{学历} = \text{本科})) \neq p(\text{工作}; do(X = \text{小学}))$
- Do-calculus: $p(y; do(X = \tilde{x})) \neq p(y; do(X = \tilde{x}'))$, if $\tilde{x} \neq \tilde{x}'$
- Regime indicator: $p(y; \sigma = s) \neq p(y; \sigma = s')$, if $s, s' \in S$ denote two different interventions in X $p(\text{工作}; \sigma = \text{本科}) \neq p(\text{工作}; \sigma = \text{小学})$
- Potential outcomes:

$$E(\text{工作}; do($$
学历 = 本科 $)) \neq E(\text{工作}; do(X = 小学))$

- average causal effect(ACE) : $E(Y; do(X = \tilde{x})) E(Y; do(X = \tilde{x}'))$
- Individual causal effect(ICE): $Y^i(\tilde{x}) Y^i(\tilde{x}')$

Notation and Terminology of Graphical Models

- If $A \subset V$, subvectors and induced subgraphs are denoted by X_A , G_A .
- Pa(工作): 学历、家庭
- Ch(工作): 工资
- De(学历): 工作、工资
- Nd(工资): 学历、家庭、工作
- $p(x) = \prod_{k \in V} p(x_k | x_{pa(k)}) \Leftrightarrow X_k \perp X_{nd(k) \setminus pa(k)} | X_{pa(k)}$
- p(x) = p(工资| 工作) p(工作| 学历) p(学历) p(工作| 家庭) p(家庭)

Causal DAGs

Intervention Graphs

Definition 15.3.1 (Intervention DAG and Model). Consider the random vector $\mathbf{X} = (X_1, \dots, X_K)$, on vertices $V = \{1, \dots, K\}$ of a DAG \mathcal{G} . Let \mathcal{S} denote a set of regimes and let $p(\cdot; \sigma = s), s \in \mathcal{S}$, be the joint distributions under the respective regimes. The augmented DAG $\mathcal{G}^{\sigma} = (V \cup \{\sigma\}, E^{\sigma})$ is called the intervention DAG for \mathbf{X} under regimes \mathcal{S} if it has the following properties:

- (i) the node σ is a source node (has no incoming directed edges),
- (ii) each distribution $p(\mathbf{x}; s), s \in \mathcal{S}$, factorizes according to \mathcal{G} ,
- (iii) for disjoint $A, B \subset V$, whenever B is d-separated from σ by A in \mathcal{G}^{σ} we have: $p(\mathbf{x}_B|\mathbf{x}_A;s)=p(\mathbf{x}_B|\mathbf{x}_A;s')$, for all $s\neq s'$. This is denoted by $\mathbf{X}_B \perp \!\!\! \perp \sigma |\mathbf{X}_A$.

Causal DAGs

Causal Graphs

Definition 15.3.2 (Causal DAG). Consider a DAG $\mathcal{G} = (V, E)$ and a random vector $\mathbf{X} = (X_1, \dots, X_K)$ with distribution p. Then \mathcal{G} is called a causal DAG for \mathbf{X} if p satisfies the following:

- (i) p factorizes, and thus is Markov, according to G, and
- (ii) for any $A \subset V$ and any $\widetilde{\mathbf{x}}_A, \mathbf{x}_B$ in the domains of $\mathbf{X}_A, \mathbf{X}_B$, where $B = V \setminus A$,

p(工资,工作,家庭,学历; do(小学)) = p(工资|工作)p(工作|学历,家庭)p(家庭)I(学历 = 小学)

Structural Equation Method

- Assuming that X_k is a function of its graphical parents and possibly a random variables ϵ_k
- $X_k \coloneqq f_k(X_{pa(k)}, \epsilon_k)$
- Combining DAGs and with NPSEMs:
- NPSEMs allow to simply add equations for each intervention. The result is a system of equations that simultaneously describes what would happen if X_j was fixed at value $\widetilde{x_j}$ as well as at value $\widetilde{x_j}'$ etc.

· 工作 :=
$$f_{\text{工作}}$$
(学历,家庭, ϵ_k)

• 工资
$$\coloneqq f_{\text{工资}}(\text{工作}, \epsilon_k)$$

Comparison

Discussion

• The difference between the causal graph and Bayes

