ТРЯП 10

Ковалев Алексей

- **1.** Пусть язык $L = \{a^n b^n c^n : n \in \mathbb{N}_0\}$ над алфавитом $\Sigma = \{a, b, c\}$. Чтобы доказать, что язык \overline{L} является КС-языком, разобьем этот язык на 3 подмножетсва:
 - 1. L_1 слова вида bw и cw, где $w \in \Sigma^*$
 - 2. L_2 слова вида $a^nb^mc^k$, где $n\neq m$ или $m\neq k$ или $n\neq k$
 - 3. L_3 слова, начинающиеся на a, но непридставимые в виде $a^n b^m c^k$

Язык L_1 задается грамматикой с аксиомой S_1

$$S_1 \to bX|cX; X \to aX|bX|cX|\varepsilon$$

так как правило $X \to aX|bX|cX|\varepsilon$ задает любое слово из Σ^* , и любое слово, задаваемое грамматикой начинается с b или c.

Язык L_2 задаеся грамматикой с аксиомой S_2

$$S_2 \to aAPC|PbBC|AQcC|AbBQ$$

$$A \to aA|\varepsilon; \ B \to bB|\varepsilon; \ C \to cC|\varepsilon$$

$$P \to aPb|\varepsilon; \ Q \to bQc|\varepsilon$$

Правилом $P \to aPb|\varepsilon$ могут быть получены слова вида a^nb^n и только они, правилом $Q \to bQc|\varepsilon$ – слова вида b^nc^n и только они. Значит правило $S_2 \to aAPC$ задает слова вида $a^nb^mc^k$, где $n>m,\ k$ – любое. Аналогично $S_2 \to PbBC;\ S_2 \to AQcC$ и $S_2 \to AbBQ$ задают $a^nb^mc^k$, где $m>n,\ k$ – любое; $a^nb^mc^k$, где $m< k,\ n$ – любое, и $a^nb^mc^k$, где $m>k,\ n$ – любое, соответственно. Значит эта грамматика задает только слова из L_2 . Ясно также, что любое слово из L_2 может быть задано этой грамматикой (надо лишь понять, какое из неравенств $n< m;\ n>m;\ k< m;\ m>k$ выполнено и воспользоавться соответствующее число раз правилами). Значит L_2 дейстивтельно задается этой грамматикой.

Язык L_3 задается грамматикой с аксиомой S_3

$$S_3 \to aY$$
$$Y \to AbBCaX|ABcCaX|ABcCbX$$

где A, B, C и X такие же, как и выше. Любое слово, заданное грамматикой, имеет вид $a^{n+1}b^{m+1}c^kaw$; $a^{n+1}b^mc^{k+1}aw$ или $a^{n+1}b^mc^{k+1}bw$, где $w,v\in\Sigma^*$; $n,m,k\in\mathbb{N}_0$, причем n,m,k-1 произвольные. Все эти слова не могут быть представлены как $a^nb^mc^k$. Любое слово из L_3 может быть задано этой грамматикой, так как все они принадлежат к одному из видов слов, указанных выше. Значит L_3 задается этой грамматикой.

Языки L_1, L_2 и L_3 являются КС-языками, значит их объединение также является КС-языком. При этом $L_1 \cup L_2 \cup L_3 = \overline{L}$, значит \overline{L} действительно является КС-языком.

- (а) Покажем, что $L=\{w:|w|_a\geqslant |w|_b\geqslant |w|_c\}$ не является КС-языком. Воспользуемся отрицанием леммы о накачке: $\forall N\in\mathbb{N}$ выберем $a^Nb^Nc^N\in L$. Тогда для любого разбиения w=uxyzv, такого что $|xz|\geqslant 1$ и $|xyz|\leqslant N$ слово xyz не содержит одновременно и a, и c. Возможны следующие случаи
 - 1. $|xz|_a > 0$ и $|xz|_c = 0$. Тогда при i = 0 в слове $ux^iyz^iv = uyv$ букв a меньше, чем букв c, то есть оно не лежит в L.
 - 2. $|xz|_c > 0$ и $|xz|_a = 0$. Тогда при $i \ge 2$ в слове ux^iyz^iv букв c больше, чем букв a, то есть оно не лежит в L.
 - 3. $|xz|_c = 0$ и $|xz|_a = 0$, то есть $|xz|_b > 0$. Тогда при i = 0 в слове $ux^iyz^iv = uyv$ букв c больше, чем букв b, то есть оно не лежит в L.

То есть в любом из случаев выполнено отрицание леммы о накачке. Значит L не является KС-языком.

- (b) Покажем, что язык $L = \{wtw^R : |w| = |t|\}$ над алфавитом $\{a,b\}$ не является КС-языком. Заметим для начала, что все слова из L имеют длину, кратную 3. Воспользуемся теперь отрицанием леммы о накачке: $\forall N \in \mathbb{N}$ выберем $a^Nab^{N-1}a^N \in L$. Тогда для любого разбиения uxyzv, такого что $|xz| \geqslant 1$ и $|xyz| \leqslant N$ слово xyz не содержит одновременно и a части слова до первой b, и a из части слова после первой b (будем обозначать их a_1 и a_2 соответственно). Возможны следующие случаи
 - 1. $|xz|_{a_1} > 0$ и $|xz|_b = 0$. Тогда при $i \ge 2$ в слове ux^iyz^iv для максимального по длине w выполняется $|w| = |w^R| = N$, $|t| \ge N + 1$, то есть оно не лежит в языке.
 - 2. $|xz|_{a_2} > 0$ и $|xz|_b = 0$. Тогда при i = 0 в слове $ux^iyz^iv = uyv$ для максимального по длине w выполняется $|w| = |w^R| < N$, |t| > N, то есть оно не лежит в языке.
 - 3. $|xz|_b > 0$; $|xz|_{a_1} = 0$ и $|xz|_{a_2} = 0$. Тогда при $i \ge 2$ для максимального по длине w выполняется $|w| = |w^R| = N$, |t| > N, то есть оно не лежит в языке.
 - 4. $|xz|_{a_1} > 0$ и $|xz|_b > 0$. Тогда если в x или z есть подстрока ab, то при $i \geqslant 2$ слово ux^iyz^iv не лежит в языке, иначе при $i \geqslant 2$ в слове ux^iyz^iv для максимального по длине w выполняется $|w| = |w^R| = N$, |t| > N, то есть оно также не лежит в языке.
 - 5. $|xz|_{a_2} > 0$ и $|xz|_b > 0$. Тогда если в x или z есть подстрока ba, то при $i \geqslant 2$ слово ux^iyz^iv не лежит в языке, иначе при $i \geqslant 3$ в слове ux^iyz^iv для максимального по длине w выполняется $|w| = |w^R| = N+1, |t| > N+1$, то есть оно также не лежит в языке.

То есть в любом из случаев выполнено отрицание леммы о накачке. Значит L не является КС-языком.

3. Построим приведенную грамматику для грамматики

$$S \to Ba|Sc|Cb$$
; $B \to aS|bB|c$; $C \to Dd$; $D \to DaD|SbC$

Минусы в таблицы означают, что символы бесплодны, плюсы – не бесплодны.

Бесполдные символы – C и D. Недостижимый символ – d. Значит приведенная грамматика – это ($\{S,B\},\ \{a,b,c\},\ P,\ S$), где множество правил P имеет вид

$$S \to Ba|Sc; \ B \to aS|bB|c$$

4. Морфизм $\varphi:\{a,b,c\}^* \to \{a,b\}^*$ определяется из $\varphi(a)=a,\, \varphi(b)=b,\, \varphi(c)=a.$ Тогда для языка $L=\{a^nb^na^n:n\in\mathbb{N}_0\}$ обратный морфизм $\varphi^{-1}(L)=\{(a|c)^nb^n(a|c)^n:n\in\mathbb{N}_0\}.$