

# Predictive Modeling of In-Hospital Mortality in ICU-Admitted

# Heart Failure Patients

# Peter Dunson<sup>1</sup>, Ephrata Getachew<sup>2</sup>, Nate Stevenson<sup>3</sup>





<sup>1</sup>Kenyon College, <sup>2</sup>Amherst College, <sup>3</sup>University of Virginia

## Introduction

- Approximately 6.5 million Americans have heart failure, with nearly 1 million new cases annually, we aim to predict and identify patient risk profiles. **Data**
- Mimic-III database is a freely accessible single-center database containing information about adult patients admitted to intensive care between 2001 and 2012 coming from one medical center in Boston, Massachusetts.
- The heart failure dataset in Mimic III database has 1,177 observations with 69 variables covering demographics, vital signs, comorbidities, and lab results.

## Research Questions

- Which clinical and demographic variables are the most significant predictors of in-hospital mortality?
- How can we balance between model interpretability and predictive accuracy?
- How are varying patient profiles, based on their features, associated with the outcome?

### **Model Selection**

• Elastic net: Combines the penalties from LASSO and Ridge, allowing for a more flexible model.



 Random Forest: Improves accuracy by reducing overfitting through bagging and random feature selection.

## Results

#### Comparing the AUC of bootstrapped samples

| Method           | Mean  | Std. Deviation |
|------------------|-------|----------------|
| Elastic Net      | 0.810 | 0.016          |
| Random<br>Forest | 0.838 | 0.034          |

### Variable Importance





Variable Selection Using Elastic Net and Logistic Regression with Bootstrapping





- The top 10 significant predictors of in-hospital mortality in the bootstrapped logistic regression are
- Vital signs: Heart rate, SpO2
- Lab results: Bicarbonate, PCO2, Urea nitrogen, Renal failure, Blood calcium, Lactic acid, Leucocyte, and Platelets.

## Clustering Analysis

#### **Bayesian Profile Regression**

- Model Overview:
- Dirichlet Process Prior
- Semi supervised mixture model.
- Model identifies clusters with similar risk profiles.
- Features that vary the most across clusters are selected to illustrate variations.
- Uncertainty Quantification:
- MCMC samples from the posterior characterize uncertainty.
- Credible intervals for feature means are used to visualize uncertainty.



## Results from BPR



- Cluster 1 307 patients, risk = 0.18
- Deaths: 9 of 307, 2.9%
- Cluster 6 94 patients, risk = 0.18
- Deaths: 38 of 94, 40.4%
- Cluster 8 78 patients, risk = 0.17
- Deaths: 54 of 78, 69.2%



\*Risk represents the probability of an adverse outcome occurring in each cluster based on the identified features.

#### **Conclusions on BPR**

#### Key Features:

- Cluster 1: High Urea Nitrogen, Renal Failure prevalence
- Cluster 6: Low Comorbidity Score, minimal Renal Failure, high outcome risk
- Cluster 8: High Lactic Acid, low COPD, very high outcome risk



# Acknowledgment

We would like to thank our mentors, Rahul Ladhania, Ph. D., Snigdha Panigrahi, Ph. D., and co-mentor Mengbing Li, for their guidance and support and the BDSI program for the opportunity to conduct research.

# Limitations and References

