Ideas of mathematical proof. Practical class week 21

- **3.1.** Use a diagram to prove the property $A \times (B \cup C) = (A \times B) \cup (A \times C)$.
- **3.2.** Let $A = \{1, 2, ..., 100\}$ be the set of all integers from 1 to 100. Let R be a relation on $\mathscr{P}(A)$ (the set of all subsets of A) defined as BRC if $|B| \leq |C|$. Determine if R is (1) transitive, (2) reflexive, (3) symmetric, (4) antisymmetric, in each case giving a proof if yes, or a counterexample if not. Hence state whether R is an order, or an equivalence, or neither.
- **3.3.** On the set $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, consider the relation R defined as aRb if $a \mid b$ (that is, a divides b). Draw the diagram of R as a subset of $S \times S$.
- **3.4.** Let \sim be a relation on the set $\mathbb{R} \times \mathbb{R}$ defined by $(x,y) \sim (a,b)$ if y-|x|=b-|a|.
 - (1) Show that \sim is an equivalence.
 - (2) What is the equivalence class of (2, -3) with respect to this equivalence \sim ?
- **3.5.** Consider the order relation on \mathbb{N} defined by divisibility: $a \mid b$ (when b = ak for $k \in \mathbb{N}$). What are the infimum and supremum of the set $S = \{8, 12, 36\}$? Does this set have the greatest element? the smallest element?
- **3.6.** Consider the lexicographical order \leq_L on $\mathbb{R} \times \mathbb{R}$, which means that by definition $(a,b) \leq_L (c,d)$ if either a < c (while b and d can be any), or a = c and $b \leq d$.
 - (a) Find the supremum (least upper bound), if it exists, with respect to \leq_L of the set $D = \{(x,y) \mid x^2 + y^2 \leq 1\}$ (the disc of radius 1 with centre at the origin, including the unit circle).
 - (b) Find the supremum (least upper bound), if it exists, with respect to \leq_L of the set $D_0 = \{(x,y) \mid x^2 + y^2 < 1\}$ (the disc of radius 1 with centre at the origin, without the boundary unit circle).
- **3.7.** On the set $S = \mathbb{N} \times \mathbb{N}$, consider the relation \sim defined as $(m_1, n_1) \sim (m_2, n_2)$ if $m_1 \cdot n_2 = m_2 \cdot n_1$. Show that \sim is an equivalence. Describe the equivalence class of (1, 2) with respect to this equivalence \sim .