Digital Signal Processing

Class 19 04/01/2025

ENGR 71

- Class Overview
 - Circulant Matrix
 - Fast Fourier Transform
- Assignments
 - Reading:
 - Chapter 8: The Fast Fourier Transform
 - Problems:

Chapter 7: 7.8, 7.9, 7.11(b), 7.14, 7.18, 7.25

Pick one symmetry property from Table 7.1 and one property

from Table 7.2 to prove. (Next class, say which ones.)

Due: Friday, April 4

Project Ideas

Project Ideas

- Speech recognition (more complex than Lab 2)
 - Classifier for multiple words
 - I can provide a dataset with multiple instances of several different words
- Musical instrument tone recognition
 - Using recordings of musical instruments, determine note being played
 - Determine if instrument is in tune, sharp, or flat.
- Identification of musical instruments
 - I have a dataset of recordings for several different instruments
- Identification of music genre
 - From frequency characteristics, can you determine a type of music
 - Classical, rock, etc.

Project ideas

- Filtering
 - Filtering to isolate sounds
 - Equalizer
- Noise reduction
- Audio effects processing
 - Reverb, echo, distortion
- Echo cancellation
- Several possibilities if you are interested in 2-D signal processing for image data
- Hardware projects
 - Link to site with collection of <u>Arduino-based projects</u>
- Theoretical research topics are also welcome
 - Paper on some interesting topic

Fourier Transform

Teaching math was way more fun after tenure.

Fourier Series

• Fourier series for periodic signals:

$$x(t) = x(t + T_0)$$
 $f_0 = \frac{1}{T_0}$ $\omega_0 = 2\pi f_0 = \frac{2\pi}{T_0}$

$$x(t) = \sum_{k=-\infty}^{+\infty} X_k e^{jk\omega_0 t}$$
 (Synthesis Eq.)

$$X_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-jk\omega_0 t} dt$$
 (Analysis Eq.)

$$X_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-jk\omega_0 t} dt$$
 (Analysis Eq.)

Fourier Transform

• Fourier transform aperiodic signals:

$$X(\Omega) = \mathcal{F}[x(t)] = \int_{-\infty}^{+\infty} x(t)e^{-j\Omega t}dt$$
 (Analysis Equation)

$$x(t) = \mathcal{F}^{-1}[X(\Omega)] = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\Omega) e^{+j\Omega t} d\omega \quad \text{(Synthesis Equation)}$$

Time and frequency are continous variables

$$-\infty < t < \infty$$

$$-\infty < \Omega < \infty$$

Using Ω to distinguish it from dicrete time case where frequency is between $-\pi$ and π

Discrete-Time Fourier Transform

Discrete-time Fourier transform

$$X(\omega) = \sum_{n = -\infty}^{\infty} x[n]e^{-j\omega n} - \pi \le \omega < \pi \quad \text{(Analysis equation)}$$

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega n} d\omega$$
 (Synthesis equation)

Time, labeled by the integer index n, is discrete $(t = nT_s)$

$$-\infty < n < \infty$$

$$-\pi < \omega < \pi$$

Limits on ω are imposed by the Nyquist condition

 π represents maximum positive frequency $f_{Nyquist} = \frac{f_s}{2} = \frac{1}{2T_s}$

(where T_s is the sampling interval or alternatively, f_s is the sampling frequency)

Discrete Fourier Series

• Discrete Fourier series for a periodic sequence with period N

$$x_p[n+mN] = x_p[n]$$
 $m = ..., -1, 0, 1, ...$

$$x[n] = \sum_{k=0}^{N-1} c_k e^{j2\pi kn/N}$$

where

$$c_{k} = \frac{1}{N} \sum_{n=0}^{N-1} x [n] e^{-j2\pi kn/N}$$

Discrete Fourier Transform

Discrete Fourier Transform

Discrete Fourier Transform (DFT)

Analysis Equation

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi kn/N}$$
, $k = 0,1,2,...,N-1$

Inverse Discrete Fourier Transform (IDFT)

Synthesis Equation

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j2\pi kn/N}, \quad n = 0, 1, 2, ..., N-1$$

Circular Convolution

Circular Convolution

$$x_3 = x_1 \odot x_2 = \sum_{n=0}^{N-1} x_1[n] x_2[((m-n))_N]$$

Circular Convolution

Example with N=4 length sequence

$$x_{3}[0] = \sum_{n=0}^{3} x_{1}[n]x_{2}[((0-n))_{4}] = x_{1}[0]x_{2}[((0-0))_{4}] + x_{1}[1]x_{2}[((0-1))_{4}] + x_{1}[2]x_{2}[((0-2))_{4}] + x_{1}[3]x_{2}[((0-3))_{4}]$$

$$x_{3}[0] = x_{1}[0]x_{2}[0] + x_{1}[1]x_{2}[3] + x_{1}[2]x_{2}[2] + x_{1}[2]x_{2}[1]$$

$$x_{3}[1] = \sum_{n=0}^{3} x_{1}[n]x_{2}[((1-n))_{4}] = x_{1}[0]x_{2}[((1-0))_{4}] + x_{1}[1]x_{2}[((1-1))_{4}] + x_{1}[2]x_{2}[((1-2))_{4}] + x_{1}[3]x_{2}[((1-3))_{4}]$$

$$x_{3}[1] = x_{1}[0]x_{2}[1] + x_{1}[1]x_{2}[0] + x_{1}[2]x_{2}[3] + x_{1}[3]x_{2}[2]$$

$$x_{3}[2] = \sum_{n=0}^{3} x_{1}[n]x_{2}[((2-n))_{4}] = x_{1}[0]x_{2}[((2-0))_{4}] + x_{1}[1]x_{2}[((2-1))_{4}] + x_{1}[2]x_{2}[((2-2))_{4}] + x_{1}[3]x_{2}[((2-3))_{4}]$$

$$x_{3}[2] = x_{1}[0]x_{2}[2] + x_{1}[1]x_{2}[1] + x_{1}[2]x_{2}[0] + x_{1}[3]x_{2}[3]$$

$$x_{3}[3] = \sum_{n=0}^{3} x_{1}[n]x_{2}[((3-n))_{4}] = x_{1}[0]x_{2}[((3-0))_{4}] + x_{1}[1]x_{2}[((3-1))_{4}] + x_{1}[2]x_{2}[((3-2))_{4}] + x_{1}[3]x_{2}[((3-3))_{4}]$$

$$x_{3}[3] = x_{1}[0]x_{2}[3] + x_{1}[1]x_{2}[2] + x_{1}[2]x_{2}[1] + x_{1}[3]x_{2}[0]$$

04/01/2025 ENGR 071 Class 19

Circular Convolution

Re-written as:

$$x_{3}[0] = x_{2}[0]x_{1}[0] + x_{2}[3]x_{1}[1] + x_{2}[2]x_{1}[2] + x_{2}[1]x_{1}[3]$$

$$x_{3}[1] = x_{2}[1]x_{1}[0] + x_{2}[0]x_{1}[1] + x_{2}[3]x_{1}[2] + x_{2}[2]x_{1}[3]$$

$$x_{3}[2] = x_{2}[2]x_{1}[0] + x_{2}[1]x_{1}[1] + x_{2}[0]x_{1}[2] + x_{2}[3]x_{1}[3]$$

$$x_{3}[3] = x_{2}[3]x_{1}[0] + x_{2}[2]x_{1}[1] + x_{2}[1]x_{1}[2] + x_{2}[0]x_{1}[3]$$

This can be written in matrix form as:

$$\begin{pmatrix} x_3 \begin{bmatrix} 0 \\ x_3 \begin{bmatrix} 1 \\ x_3 \begin{bmatrix} 1 \end{bmatrix} \\ x_3 \begin{bmatrix} 2 \\ x_2 \begin{bmatrix} 1 \end{bmatrix} \end{pmatrix} = \begin{pmatrix} x_2 \begin{bmatrix} 0 \end{bmatrix} & x_2 \begin{bmatrix} 3 \end{bmatrix} & x_2 \begin{bmatrix} 2 \end{bmatrix} & x_2 \begin{bmatrix} 3 \end{bmatrix} & x_2 \begin{bmatrix} 2 \end{bmatrix} & x_2 \begin{bmatrix} 3 \end{bmatrix} & x_2 \begin{bmatrix} 2 \end{bmatrix} & x_2 \begin{bmatrix} 3 \end{bmatrix} & x_2$$

where $\mathbf{x_1}$ and $\mathbf{x_3}$ are length 4 sequences

and $\mathbb{C}_{4}^{x_2}$ is the 4×4 circulant matrix formed from the elements of sequence $x_2[n]$

Notice that the circulant matrix consists of the columns of sequence $x_2(n)$ cyclically permuted.

The first column is the sequence;

column 2 has the last element of column 1 first, followed by the remaining elements of column 1; column 3 has the last element of column 2 first, followed by the remaining elements of column 2; column 4 has the last element of column 3 first, followed by the remaining elements of column 3;

This definition of the circulant matrix can be generalized for any N-length sequence.

– Example 7.2.1 from book:

$$x_1[n] = \{2,1,2,1\};$$
 $x_2[n] = \{1,2,3,4\}$

Find the circular convolution of $x_1[n]$ and $x_2[n]$: $x_3[n] = x_1[n] \odot x_2[n]$

In matrix form:

In Matlab, you can also use the command toeplitz to construct a circulant matrix of any size based on a sequence x[n]:

$$c = toeplitz([x(1) fliplr(x(2:end))], x)'$$

Circulant Matrix

- -The circulant matrix has a lot of interesting properties
 - The eigenvalues are the elements of the DFT of the sequence in the first column
 - The matrix formed, using the eigenvectors as columns, is the matrix with elements W_N^{kn} which is used to find the DFT: $\mathbf{X} = \mathbf{W}_N \mathbf{x}$
 - This can be used to show that circular convolution in the time-domain is the product of the DFT's of the convolved sequences

If,
$$y[n] = x_1[n] \odot x_2[n]$$
, then $Y[k] = X_1[k] \cdot X_2[k]$

$$\left(W_{N} \equiv e^{-j2\pi/N}\right)$$

Start with the expression for circular convolution in the time-domain: $y[n] = x_1[n] \odot x_2[n]$

In matrix notation: $\vec{\mathbf{y}} = \mathbf{C}_N^{x_2} \vec{\mathbf{x}}_1$ where $\mathbf{C}_N^{x_2}$ is the circulant matrix formed using sequence $x_2[n]$, and $\vec{\mathbf{x}}_1$ is a sequence (represented as a column vector).

 $\mathbf{C}_{N}^{x_{2}}$ is diagnoalized by \mathbf{W}_{N} with eigenvalues: $X_{2}[k]$ which is the DFT of $x_{2}[n]$, so $\mathbf{C}_{N}^{x_{2}} = \mathbf{W}_{N}^{-1} diag(\vec{\mathbf{X}}_{2})\mathbf{W}_{N}$.

 $\left(diag(\vec{X}_2)\right)$ is a diagonal matrix with $X_2[k]$ as the diagonal elements.)

Substituting this in the matrix equation for convolution:

$$\vec{\mathbf{y}} = \left(\mathbf{W}_{N}^{-1} diag\left(\vec{\mathbf{X}}_{2}\right) \mathbf{W}_{N}\right) \vec{\mathbf{x}}_{1} \implies \mathbf{W}_{N} \vec{\mathbf{y}} = \left(\mathbf{W}_{N} \mathbf{W}_{N}^{-1}\right) diag\left(\vec{\mathbf{X}}_{2}\right) \left(\mathbf{W}_{N} \vec{\mathbf{x}}_{1}\right) \implies \mathbf{W}_{N} \vec{\mathbf{y}} = diag\left(\vec{\mathbf{X}}_{2}\right) \left(\mathbf{W}_{N} \vec{\mathbf{x}}_{1}\right)$$

The DFT's of $\vec{\mathbf{x}}_1$ and $\vec{\mathbf{y}}$ are: $\vec{\mathbf{X}}_1 = \mathbf{W}_N \vec{\mathbf{x}}_1$ and $\vec{\mathbf{Y}} = \mathbf{W}_N \vec{\mathbf{y}}$, showing that $\vec{\mathbf{Y}} = \vec{\mathbf{X}}_2^T \vec{\mathbf{X}}_1$.

Note that this is the element-by-element product: $\vec{\mathbf{X}}_2^T \vec{\mathbf{X}}_1$: $Y[k] = X_2[k]X_1[k]$ for each k = 0, 1, ..., N-1, since in the matrix equation, $diag(\vec{\mathbf{X}}_2)$ is a diagonal matrix.

Therefore for
$$y[n] = x_1[n] \odot x_2[n]$$
, $Y[k] = X_1[k] \cdot X_2[k]$

- Fast Fourier Transform
 - Cooley and Tukey (1965)
 - Actually, Gauss knew about this algorithm in 1805

- Fast Fourier Transform
 - Recall equations for DFT and IDFT

Discrete Fourier Transform (DFT)

$$X(k) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}, \qquad k = 0, 1, 2, ..., N-1$$

Inverse Discrete Fourier Transform (IDFT)

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j2\pi kn/N}$$
, $n = 0, 1, 2, ..., N-1$

- Define W_N as: $W_N = e^{-j2\pi/N}$ which is the N'th primative root of unity.
 - Then:

$$W_N^{kn} = e^{-j2\pi kn/N}, \quad W_N^{-nk} = e^{j2\pi nk/N}$$

-The DFT and IDFT in terms of W_N are:

Discrete Fourier Transform (DFT)

$$X(k) = \sum_{n=0}^{N-1} x(n)W_N^{kn}$$
, $k = 0, 1, 2, ..., N-1$

Inverse Discrete Fourier Transform (IDFT)

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) W_N^{-nk}, \quad n = 0, 1, 2, ..., N-1$$

• Algorithms for DFT and IDFT can be made more efficient by exploiting symmetry and periodicity properties of W_N

-Symmetry property:
$$W_N^{k+N/2} = -W_N^k$$

$$W_N^{k+N/2} = e^{-j2\pi(k+N/2)n/N}$$

$$= e^{-j2\pi kn/N} e^{-j2\pi(N/2)n/N}$$

$$= e^{-j2\pi kn/N} e^{-j\pi n}$$

$$= -e^{-j2\pi kn/N}$$

$$W_N^{k+N/2} = -W_N^k$$

• Algorithms for DFT and IDFT can be made more efficient by exploiting symmetry and periodicity properties of W_N

-Periodicity property:
$$W_N^{(k+N)n} = W_N^{k(n+N)} = W_N^{kn}$$

$$W_N^{(k+N)n} = e^{-j2\pi(k+N)n/N}$$

$$= e^{-j2\pi kn/N} e^{-j2\pi(N)n/N}$$

$$= e^{-j2\pi kn/N} e^{-j2\pi n}$$

$$= e^{-j2\pi kn/N}$$

$$W_N^{k(n+N)n} = e^{-j2\pi k(n+N)/N}$$

$$= e^{-j2\pi kn/N} e^{-j2\pi k(N)/N}$$

$$= e^{-j2\pi kn/N} e^{-j2\pi k}$$

$$= e^{-j2\pi kn/N}$$

$$W_N^{(k+N)n} = W_N^{k(n+N)} = W_N^{kn}$$

- Algorithms for DFT and IDFT can be made more efficient by exploiting symmetry and periodicity properties of W_N
 - -Complex conjugate symmetry: $W_N^{k(N-n)} = W_N^{-kn} = (W_N^{kn})^*$

$$W_{N}^{k(N-n)} = e^{-j2\pi k(N-n)/N}$$

$$= e^{-j2\pi kN/N} e^{+j2\pi kn/N}$$

$$= e^{-j2\pi k} e^{+j2\pi n/N}$$

$$= e^{+j2\pi kn/N}$$

$$= W_{N}^{-kn} = (W_{N}^{kn})^{*}$$

$$W_{N}^{k(N-n)} = W_{N}^{-kn} = (W_{N}^{kn})^{*}$$

- -Other relationships for W_N
 - If N can be factored into a product of integers: N = LM

$$egin{align} W_N^{mqL} &= e^{-j2\pi mqL/N} = e^{-j2\pi mq/(N/L)} \ W_N^{mqL} &= W_{N/L}^{mq} = W_M^{mq} \ W_N^{Mpl} &= e^{-j2\pi plM/N} = e^{-j2\pi pl/(N/M)} \ W_N^{Mpl} &= W_{N/M}^{pl} = W_L^{pl} \ \end{array}$$

For N factored as N = ML

$$W_N^{mqL} = W_{N/L}^{mq} = W_M^{mq}$$

$$W_N^{Mpl}=W_{N/M}^{\ pl}=W_L^{mq}$$

for integers: m, q, p, and l

- Divide and Conquer Algorithms
 - Consider the case where N=ML
 - Represent the input sequence x[n] and output DFT X[k] as
 - 2-D arrays rather than linear sequences

Map the sequence into $x(n) \rightarrow x(l,m)$: n = l + mL

Map the DFT into $X(k) \rightarrow X(p,q)$: k = Mp + q

Transform with 1-D n, k:

$$X(k) = \sum_{n=0}^{N-1} x(n) W_N^{kn}$$

Transform with 2-D indices: n = l + mL; k = Mq + p

$$X(p,q) = \sum_{m=0}^{M-1} \sum_{l=0}^{L-1} x(l,m) W_N^{(Mp+q)(mL+l)}$$

$$W_{N}^{(Mp+q)(mL+l)} = W_{N}^{MLmp+mqL+Mpl+lq} = W_{N}^{MLmp}W_{N}^{mqL}W_{N}^{Mpl}W_{N}^{lq}$$

Take advantage of symmetry properties:

$$W_{N}^{MLmp}=W_{N}^{Nmp}=1; \quad W_{N}^{mLq}=W_{N/L}^{mq}=W_{M}^{mq}; \quad W_{N}^{Mpl}=W_{N/M}^{pl}=W_{L}^{pl}$$

Using
$$W_N^{MLmp} = 1$$
; $W_N^{mLq} = W_M^{mq}$; $W_N^{Mpl} = W_L^{pl}$

$$X(p,q) = \sum_{m=0}^{M-1} \sum_{l=0}^{L-1} x(l,m) W_N^{(Mp+q)(mL+l)} = \sum_{m=0}^{M-1} \sum_{l=0}^{L-1} x(l,m) W_M^{mq} W_L^{pl} W_N^{lq}$$

Rearranging:

$$X(p,q) = \sum_{l=0}^{L-1} W_N^{lq} \left[\sum_{m=0}^{M-1} x(l,m) W_M^{mq} \right] W_L^{pl}$$

(Repeating the last equation from previous slide)

$$X(p,q) = \sum_{l=0}^{L-1} W_N^{lq} \left[\sum_{m=0}^{M-1} x(l,m) W_M^{mq} \right] W_L^{pl}$$

The innermost term is an M-point DFT over index m

$$F(l,q) = \sum_{m=0}^{M-1} x(l,m) W_M^{mq}, \quad 0 \le q \le M-1 \quad \text{for each row } l$$

The remaining sum is:

$$X(p,q) = \sum_{l=0}^{L-1} \left[W_N^{lq} F(l,q)\right] W_L^{pl}$$

is an L-point DFT over new array: $G(l,q) = W_N^{lq} F(l,q)$; $0 \le l \le L$ -1; $0 \le q \le M$ -1

The final DFT is

$$X(p,q) = \sum_{l=0}^{L-1} G(l,q) W_L^{pl}$$

The linear index for the DFT is: k = qL + p

- Have we done any good here?
- Remember, an N-point DFT requires N^2 multiplication and N(N-1) additions

$$X(k) = \sum_{n=0}^{N-1} x(n) W_N^{kn}$$

• Step 1 of the new algorithm finds L, m-point DFT's

$$F(l,q) = \sum_{m=0}^{M-1} x(l,m) W_M^{mq}$$

Number of multiplications: LM²

Number of additions: LM(M-1)

• Step 2: (getting an $L \times M$ array)

$$G(l,q) = W_N^{lq} F(l,q)$$
; $0 \le l \le L - 1$; $0 \le q \le M - 1$

Number of multiplications: LM

Number of additions: none

• Step 3 (Finds M, L-point DFT's)

$$X(p,q) = \sum_{l=0}^{L-1} G(l,q) W_L^{pl}$$

Number of multiplications: ML^2

Number of additions: ML(L-1)

• Total number of multiplications and additions:

Number of multiplications: $LM^2 + LM + ML^2 = ML(M + L + 1) = N(M + L + 1)$

Number of additions: LM(M-1) + 0 + ML(L-1) = ML(M+L-2) = N(M+L-2)

Comparison:

Multiplications: $N^2 \to N(M+L+1)$

Additions: $N(N-1) \rightarrow N(M+L+2)$

Comparison: Example for N = 1000, M = 500, L = 2

Multiplications: $N^2 \to N(M+L+1)$: 1,000,000 \to 503,000

Additions: $N(N-1) \rightarrow N(M+L-2)$: 999,000 \rightarrow 500,000

- Previous algorithm shows how divide and conquer works, but it is not how the usual FFT works
 - Rather than a single factorization of N, factorize it many times and repeat the procedure.
 - Factors of: $N = r_1 r_2 \cdots r_v$
 - Radix algorithms for when N is a power of some value, $N = r^{\nu}$
 - Most common one is when N is a power of 2.
 - You can always pad a sequence to make this the case $N = 2^{\nu}$
 - Divide and conquer by recursively splitting sequence into 2 equal parts.
 - This will reduce computational complexity from $N^2 \to N \log_2 N$

- Radix-2 FFT (decimation in time) Algorithm
 - For this algorithm, number of samples is a power of 2: $N = 2^{\nu}$
 - If it isn't you could pad it.
 - Start by dividing the sequence in 2: M=N/2; L=2

Separate sum into separate sums of even and odd elements of original sequence:

$$X(k) = \sum_{n=even} x(n)W_N^{kn} + \sum_{n=odd} x(n)W_N^{kn}$$

$$X(k) = \sum_{r=0}^{N/2-1} x(2r)W_N^{k(2r)} + \sum_{r=0}^{N/2-1} x(2r+1)W_N^{k(2r+1)}$$

even indices : n = 2r

odd indices: n = 2r + 1

$$r = 0, 1, \dots, \frac{N}{2} - 1$$

$$X(k) = \sum_{r=0}^{N/2-1} x(2r)W_N^{k(2r)} + \sum_{r=0}^{N/2-1} x(2r+1)W_N^{k(2r+1)}$$

$$X(k) = \sum_{r=0}^{N/2-1} x(2r)W_N^{k(2r)} + W_N^k \sum_{r=0}^{N/2-1} x(2r+1)W_N^{k(2r)}$$

$$X(k) = \sum_{r=0}^{N/2-1} x(2r)W_{N/2}^{kr} + W_N^k \sum_{r=0}^{N/2-1} x(2r+1)W_{N/2}^{kr}$$

$$X(k) = \sum_{r=0}^{N/2-1} x(2r)W_{N/2}^{kr} + W_N^k \sum_{r=0}^{N/2-1} x(2r+1)W_{N/2}^{kr}$$

$$N/2 \text{ DFT of even samples}$$

$$N/2 \text{ DFT of odd samples}$$

$$X(k) = X_e(k) + W_N^k X_o(k)$$
 Sum of 2 N/2 point DFT's

$$X(k) = X_e(k) + W_N^k X_o(k)$$

Operation count:

$$2 \times \left(\frac{N}{2}\right)^2 + N = \frac{N^2}{2} + N$$
 multiplies

Original without splitting would be N^2 multiplies

You can keep splitting each of the N/2 sub-DFT's:

Split
$$\frac{N}{2}$$
 DFT's $\rightarrow 2 \times \frac{N}{4}$
Split $\frac{N}{4}$ DFT's $\rightarrow 2 \times \frac{N}{8}$
etc.

How many times can you split for $N = 2^p$?

$$\frac{N}{2}, \frac{N}{4}, \frac{N}{8}, \dots \frac{N}{2^{p-1}}, \frac{N}{2^p}$$

$$p = \log_2 N \text{ splits}$$

$$\frac{N}{2}, \frac{N}{4}, \frac{N}{8}, \dots \frac{N}{2^{p-1}}, \frac{N}{2^p}$$

$$p = \log_2 N \text{ splits}$$

Operation count for multiplies:

1:
$$\frac{N}{2}DFT's$$
: $2\left(\frac{N}{2}\right)^{2} + N = \frac{N^{2}}{2} + N = \frac{N^{2}}{2^{1}} + N$
2: $\frac{N}{4}DFT's$: $2\left[2\left(\frac{N}{4}\right)^{2} + \frac{N}{2}\right] + N = \frac{N^{2}}{4} + 2N = \frac{N^{2}}{2^{2}} + 2N$
3: $\frac{N}{4}DFT's$: $2\left\{2\left[2\left(\frac{N}{8}\right)^{2} + \frac{N}{4}\right] + \frac{N}{2}\right\} + N = \frac{N^{2}}{8} + 3N = \frac{N^{2}}{2^{3}} + 3N$
 $p: \frac{N}{2^{p}}DFT's \rightarrow \frac{N^{2}}{2^{p}} + 3N = \frac{N^{2}}{N} + pN = N + N\log_{2}N$

$$\sim O(N \log_2 N)$$
 for large N

Diagram for 3 stages of N = 8 point DFT

Signal Flow Graph for N = 8 point DFT

The basic operation that takes place at each stage is a "butterfly"

A careful operation count shows that there are N/2 butterflies at each stage and $\log_2 N$ stages

Multiplies: $\frac{N}{2}\log_2 N$	Number of Points, N	Complex Multiplications in Direct Computation, N ²	Complex Multiplications in FFT Algorithm, $(N/2) \log_2 N$	Speed Improvement Factor
$\frac{1}{2}$	4	16	4	4.0
Additions: $N \log_2 N$	8	64	12	5.3
$\mathcal{O}_{\mathcal{L}}$	16	256	32	8.0
	32	1,024	80	12.8
	64	4,096	192	21.3
	128	16,384	448	36.6
	256	65, 536	1,024	64.0
	512	262,144	2,304	113.8
	1,024	1,048,576	5,120	204.8

If you had a signal with 10⁹ samples, and it took 1 nsec per multiply. DFTwould take 31 years. FFT would take 30 sec.

Notice that the order of the inputs is "weird" because of all of the sub-DFT suffling: $\{x(0), x(4), x(2), x(6), x(1), x(5), x(7), x(7),$

$(n_2n_1n_0)$	\rightarrow	$(n_1n_0n_2)$	\rightarrow	$(n_0n_1n_2)$
(0 0 0)	\rightarrow	(0 0 0)	\rightarrow	(0 0 0)
$(0\ 0\ 1)$	\rightarrow	$(0\ 1\ 0)$	\rightarrow	$(1\ 0\ 0)$
$(0\ 1\ 0)$	\rightarrow	$(1\ 0\ 0)$	\rightarrow	$(0\ 1\ 0)$
$(0\ 1\ 1)$	\rightarrow	$(1\ 1\ 0)$	\rightarrow	$(1\ 1\ 0)$
$(1\ 0\ 0)$	\rightarrow	$(0\ 0\ 1)$	\rightarrow	$(0\ 0\ 1)$
$(1\ 0\ 1)$	\rightarrow	$(0\ 1\ 1)$	\rightarrow	$(1\ 0\ 1)$
$(1\ 1\ 0)$	\rightarrow	$(1\ 0\ 1)$	\rightarrow	$(0\ 1\ 1)$
$(1\ 1\ 1)$	\rightarrow	$(1\ 1\ 1)$	\rightarrow	$(1\ 1\ 1)$
		(b)		

- If you are into matrix stuff, another way to think of the radix-2 fft is as factorization of the W_N matrix
 - The fft becomes a product of log_2N matrices where each matrix has only N non-zero elements
 - For an 8-point fft:

$$W_8 = \left(B_1 B_2 B_3\right) P_8$$

where P_8 reorders the inputs (bit-reversal)

Each B represents a butterfly

In general, FFTwould be:

$$\mathbf{X} = \left(\mathbf{B}_{\log_2 N} \mathbf{L} \mathbf{B}_3 \mathbf{B}_2 \mathbf{B}_1\right) \mathbf{P}_N \mathbf{X}$$

For N=8, the bit-reversal permutation matrix is:

Second stage (Grouping pairs of 4)

$$B_2 = egin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 & W_8^1 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 & 0 & W_8^3 \ 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \ 0 & W_8^1 & 0 & 0 & 0 & -W_8^1 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 \ 0 & 0 & 0 & W_8^3 & 0 & 0 & 0 & -W_8^3 \ \end{bmatrix}$$

First stage (Grouping pairs of 2)

$$B_1 = egin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \ 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 & -1 \end{bmatrix}$$

Third stage (Final Combination)

$$B_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & W_8^1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & W_8^2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & W_8^3 \end{bmatrix}$$

- There are several other FFT algorithms
 - The book covers a couple of others
 - The Matlab fft uses radix-2 if signal is power of 2
 - If not, and has a few small factors, uses a mixed radix algorithm
 - If the sequence has a prime number number of samples, it uses the Bluestein (or chirp-z) algorithm
- A good video on fft for reference:
 - https://www.youtube.com/watch?v=lGCAlv3G8Oc