Password Strength Analysis Report

1. Multiple Passwords with Varying Complexity

The following passwords were created and tested with different levels of complexity:

Password	Length	Character Types	Complexity Level
raj1	4	Lowercase, Numbers	Very Weak
raj12	5	Lowercase, Numbers	Weak
raj1234	7	Lowercase, Numbers	Weak
raj1234567	10	Lowercase, Numbers	Moderate
Raj@\$125	8	Upper, Lower, Numbers, Symbols	Strong
R@j3\$H!92#LmX&	14	Upper, Lower, Numbers, Symbols	Very Strong
Rajesh	6	Uppercase, Lowercase	Weak
Rajesh@754\$	11	Upper, Lower, Numbers, Symbols	Strong

2. Character Type Variations Used

Uppercase Letters

• Purpose: Increases character pool from 26 to 52 letters

Lowercase Letters

• Used in: All passwords

• Purpose: Base alphabetic characters for readability

Numbers

• Purpose: Adds 10 additional characters to the pool

Special Symbols

• Symbols used: @, \$, !, #, &

• Purpose: Dramatically increases complexity and character pool

Length Variations

• Shortest: 4 characters (raj1)

• Longest: 14 characters (R@j3\$H!92#LmX&)

• Range: 4-14 characters

3. Password Strength Test Results

Password Analysis Summary

raj1 (4 characters)

• Estimated Strength: Very Weak

• Crack Time: Less than 1 second

• Issues: Too short, no uppercase, no symbols, dictionary word base

raj12 (5 characters)

• Estimated Strength: Weak

• Crack Time: Less than 1 second

• **Issues**: Too short, no uppercase, no symbols, predictable pattern

raj1234 (7 characters)

• Estimated Strength: Weak

• Crack Time: Seconds to minutes

• Issues: Sequential numbers, no uppercase, no symbols

raj1234567 (10 characters)

• Estimated Strength: Moderate

• Crack Time: Hours to days

• **Issues**: Predictable sequential pattern, no uppercase or symbols

Raj@\$125 (8 characters)

• Estimated Strength: Strong

Crack Time: Months to years

• Strengths: Mixed case, symbols, numbers

• Issues: Still contains recognizable word "Raj"

R@j3\$H!92#LmX& (14 characters)

• Estimated Strength: Very Strong

• Crack Time: Centuries

• Strengths: Long length, all character types, no patterns

Rajesh (6 characters)

• Estimated Strength: Weak

• Crack Time: Minutes

• Issues: Common name, no numbers or symbols, too short

Rajesh@754\$ (11 characters)

Estimated Strength: Strong

• Crack Time: Years

• Strengths: Good length, mixed characters

• **Issues**: Contains dictionary word (name)

4. Scores and Feedback Summary

Key Findings from Password Strength Checker

Common Feedback Received:

- Passwords under 8 characters are considered weak
- Using only lowercase and numbers provides minimal security
- Sequential patterns (1234567) are easily guessable
- Dictionary words or names reduce strength significantly
- Symbols and mixed case dramatically improve strength
- Length is one of the most important factors

Scoring Pattern Observed:

- 0-25%: Very Weak (raj1, raj12)
- 26-50%: Weak (raj1234, Rajesh)
- 51-75%: Moderate to Strong (raj1234567, Raj@125, Rajesh@754)

5. Best Practices for Creating Strong Passwords

Essential Requirements

1. Minimum Length

- Use at least 12 characters
- 14+ characters recommended for critical accounts
- Each additional character exponentially increases security

2. Character Diversity

- Include uppercase letters (A-Z)
- Include lowercase letters (a-z)
- Include numbers (0-9)
- Include special symbols (@, #, \$, !, &, %, etc.)

3. Avoid Common Patterns

- No sequential numbers (123456)
- No keyboard patterns (qwerty, asdfgh)
- No repeated characters (aaaaaa)
- No simple substitutions (P@ssw0rd)

4. Avoid Personal Information

- No names (yours or family members)
- No birthdates
- No phone numbers
- No addresses
- No pet names

5. Uniqueness

- Use different passwords for different accounts
- Never reuse passwords across important sites
- Don't use slight variations of the same password

Advanced Best Practices

6. Randomness

- Use password generators for maximum randomness
- Avoid predictable word combinations
- Mix character positions unpredictably

7. Memorability vs Security Balance

- Use passphrases: "Coffee\$Morning#Beach!2024"
- Create acronyms from sentences: "IW2EbCo@8AM!" (I Wake 2 Eat breakfast Coffee @ 8 AM!)
- Use password managers to store complex passwords

8. Regular Updates

- Change passwords every 90-180 days for critical accounts
- Change immediately if breach is suspected
- Don't reuse old passwords

6. Key Tips Learned from Evaluation

Critical Lessons

1. Length Matters Most

- A 12-character password with basic complexity beats an 8-character password with high complexity
- Each added character multiplies crack time exponentially

2. Character Variety is Essential

- Using all four character types (upper, lower, number, symbol) creates the strongest passwords
- Even one symbol dramatically increases strength

3. Predictable Patterns Are Dangerous

- Common patterns like "123456" or "password" are cracked instantly
- Even longer passwords with patterns (raj1234567) remain vulnerable

4. Names and Dictionary Words Reduce Security

- Attackers use dictionary attacks that include common names
- "Rajesh" alone is weak, but "R@j3\$H!92#LmX&" is very strong

5. Context Matters

- Banking/email passwords need maximum strength
- Less critical accounts can use moderate strength
- Never use weak passwords for any online account

Practical Implementation Tips

- Use a Password Manager: LastPass, 1Password, Bitwarden, or Dashlane
- Enable Two-Factor Authentication (2FA): Adds extra security layer
- **Test Before Using**: Always check strength before finalizing
- Write Down Securely: If needed, store in physical safe, not digitally
- **Update Regularly**: Set calendar reminders for password changes

7. Common Password Attacks

1. Brute Force Attack

Description: A brute force attack systematically tries every possible combination of characters until the correct password is found.

How It Works:

- Starts with single characters: a, b, c... 1, 2, 3...
- Progresses to two characters: aa, ab, ac... a1, a2...
- Continues through all combinations
- Eventually tries every possible password

Time to Crack Examples:

- 4-character password (lowercase only): < 1 second
- 8-character password (lowercase only): 7 hours
- 8-character password (all character types): 7 years
- 12-character password (all character types): 34,000 years

Defense:

- Use long passwords (12+ characters)
- Use all character types
- Account lockout policies (limit login attempts)
- Rate limiting on login attempts

2. Dictionary Attack

Description: Uses a pre-compiled list of common words, phrases, names, and commonly used passwords.

How It Works:

- Tries words from dictionaries (English, multilingual)
- Tests common passwords (password, 123456, qwerty)
- Includes names, places, sports teams
- Uses leaked password databases
- Tries common substitutions (P@ssw0rd, Pa\$\$word)

Common Dictionary Sources:

- RockYou database (32 million real passwords)
- SecLists password lists
- Wikipedia word lists
- Common names databases

Defense:

- Avoid dictionary words
- Don't use names or common phrases
- Use random character combinations
- Implement account lockout mechanisms

3. Rainbow Table Attack

Description: Uses pre-computed hash tables to reverse cryptographic hash functions.

How It Works:

- Hashes are mathematical one-way functions
- Rainbow tables contain millions of pre-computed password hashes
- Attackers compare stolen hashes against tables
- Instant match reveals original password

Defense:

- Salting (adding random data before hashing)
- Using strong hashing algorithms (bcrypt, Argon2)
- Long, complex passwords are harder to pre-compute

4. Credential Stuffing

Description: Uses username/password combinations from previous data breaches.

How It Works:

- Hackers obtain credentials from breached websites
- Try same credentials on other sites
- Works because people reuse passwords
- Automated tools test millions of combinations

Defense:

- Use unique passwords for each account
- Enable breach monitoring (Have I Been Pwned)
- Use password managers to generate unique passwords

5. Phishing Attacks

Description: Tricks users into revealing passwords through deception.

How It Works:

- Fake login pages mimicking legitimate sites
- Emails pretending to be from trusted sources
- Social engineering to manipulate users
- Users voluntarily enter passwords

Defense:

- Verify website URLs carefully
- Never click email links requesting passwords
- Enable 2FA to protect even if password is stolen
- Security awareness training

6. Keylogger Attacks

Description: Malware records every keystroke on infected computers.

How It Works:

- Software or hardware records all typing
- Captures passwords as they're typed

- Sends data to attacker
- Works regardless of password strength

Defense:

- Anti-malware software
- Virtual keyboards for sensitive logins
- Password managers (auto-fill avoids typing)
- Regular system scans

8. How Password Complexity Affects Security

Mathematical Foundation

Character Pool Size:

- Lowercase only (26 characters): 26ⁿ possible combinations
- Uppercase (52 characters): 52ⁿ possible combinations
- Numbers (62 characters): 62^n possible combinations
- Symbols (92+ characters): 92^n possible combinations

Where n = password length

Exponential Growth:

- 8-char lowercase: 208,827,064,576 combinations
- 8-char all types: 6,095,689,385,410,816 combinations
- 12-char all types: 475,920,314,814,253,376,475,136 combinations

Real-World Impact

Time to Crack Analysis

4-Character Password:

- Lowercase only: < 1 second
- All character types: < 1 second
- Verdict: Unacceptable for any use

8-Character Password:

• Lowercase only: 7 hours

• All character types: 7 years

• **Verdict**: Minimum acceptable with all character types

12-Character Password:

• Lowercase only: 2 months

• All character types: 34,000 years

• Verdict: Strong security for most purposes

16-Character Password:

• Lowercase only: 5 years

• All character types: 44 million years

• Verdict: Excellent security

Security Improvement Factors

Adding One Character:

• Multiplies crack time by character pool size (26-92x)

More effective than adding complexity to shorter password

Adding Character Type:

• Lowercase → + Uppercase: 2x improvement

• Numbers: 2.4x improvement

• Symbols: 1.5x improvement

• Combined effect: 7.2x improvement for 8-char password

Removing Patterns:

• Dictionary words: Reduces from years to seconds

• Sequential patterns: Reduces by 99%+

• Personal info: Makes vulnerable to targeted attacks

Practical Security Implications

Low Complexity (raj1234)

• Crack Time: Minutes

• Attack Success: 100% with dictionary attack

• Risk Level: Critical

• Acceptable Use: Never

Moderate Complexity (raj1234567)

• Crack Time: Hours to days

• Attack Success: High with pattern recognition

• **Risk Level**: High

• Acceptable Use: Low-security local applications only

High Complexity (Raj@\$125)

• Crack Time: Months to years

• Attack Success: Low with brute force

• Risk Level: Moderate

Acceptable Use: Most online accounts with 2FA

Maximum Complexity (R@j3\$H!92#LmX&)

• Crack Time: Centuries

• Attack Success: Nearly impossible

Risk Level: Minimal

• Acceptable Use: All purposes including banking

Defense-in-Depth Strategy

Password complexity is part of layered security:

1. Strong Password: First line of defense

2. Two-Factor Authentication: Protects even if password compromised

3. Account Monitoring: Detect suspicious access

4. **Regular Updates**: Limit damage from undetected breaches

5. Unique Passwords: Contain breach to single account

6. Password Manager: Enable use of maximum complexity

Conclusion on Complexity Impact

Password complexity doesn't just improve security incrementally—it creates exponential improvements. A 12-

character password with all character types is not slightly better than an 8-character one; it's millions of times more secure. The combination of length and character diversity creates a multiplicative effect that transforms a password from crackable in seconds to effectively unbreakable.

The Security Equation:

Security = (Character Pool Size)^Length × Pattern Randomness

Every element must be maximized for true security. A long password with patterns is weak. A complex password that's too short is weak. Only the combination of adequate length (12+), full character diversity (4 types), and randomness (no patterns) creates truly secure passwords.

Final Recommendations

For Immediate Implementation

- 1. Audit Current Passwords: Check all passwords against strength criteria
- 2. Replace Weak Passwords: Prioritize banking, email, and social media
- 3. **Install Password Manager**: Use to generate and store strong passwords
- 4. Enable 2FA: Add second authentication factor wherever available
- 5. Check for Breaches: Use haveibeenpwned.com to check email addresses

Password Creation Formula

Minimum Standard:

- 12+ characters
- At least one uppercase letter
- At least one lowercase letter
- At least one number
- At least one special symbol
- No dictionary words or names
- No sequential patterns
- Unique for each account

Example Strong Password Generation:

1. Start with random words: "Sunset Mountain Coffee"

2. Take first letters: "SMC"

3. Add random numbers: "SMC8729"

4. Add symbols: "S@MC#8729"

5. Extend and randomize: "S@MC#8729!Bx&Pm"

6. Result: 16-character strong password

Long-Term Security Culture

• Treat passwords as keys to your digital life

• Never share passwords via email, text, or verbally

- Change passwords immediately after suspected compromise
- Educate family members about password security
- Regular security training and awareness

• Stay informed about new security threats

Report Prepared By: Adarsh R Majigoudar

Date: 2025

Classification: Educational Document

Purpose: Password Security Awareness and Best Practices