••• معماری کامپیوتر (۱۱۰–۱۱–۱۱۱) بلسهی هفتم

دانشگاه شهید بهشتی دانشکده ی مهندسی برق و کامپِوتر زمستان ۱۳۹۰ احمد محمودی ازناوه

-فهرست مطالب

- جمعکنندهما

• جمعکنندههای سریع

نمایی از واحد حساب

- نیمجمع کننده و تمامجمع کننده

Inputs		Outputs		
X	У	С	S	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	0	

Inputs			Outp	uts
X	У	c _{in}	c out	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

-شیومهای گوناگون سافت تمامجمع کننده

جمع و تفریق اعداد مکمل

Overflow region Overflow region max Numbers larger Numbers smaller than maxthan max+

Finite set of representable numbers

معماري كامييوتر

سانت جمع کننده با FA

(a) Bit-serial adder.

(b) Ripple-carry adder.

موقعیات سے م

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 $p = x \oplus y$

- زنمیرهی انتقال رقم نقلی

-- زنبیرهی انتقال رقم نقلی (ادامه...)

تَاخِيرِ انتَارِ بِيتَ نقلى در يَكَ جِمعُ كننده ك k يَتِي جِقدر ات؟

- زنجیرهی انتقال رقم نقلی (ادامه...)

$g_i p_i$ Carry is:0 0annihilated or killed0 1propagated1 0generated1 1(impossible)	X _i y _i	$g_i = x_i y_i$ $p_i = x_i \oplus y_i$
$g_{k-2} p_{k-2}$ $g_{k-1} p_{k-1} $	$g_{i+1}p_{i+1} g_{i} p_{i}$ Carry network	g_1p_1 g_0p_0 c_0
c_k c_{k-1} c_{k-2}	c_{i+1} c_i \cdots s_i	

Carry-Lookahead Adder

- جمع کننده با پیش بینی رقم نقلی

$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

$$c_{i+1} = x_i y_i + (x_i + y_i) c_i$$

$$c_{i+1} = g_i + p_i c_i$$

$$g_i = x_i y_i$$

$$p_i = (x_i + y_i)$$

$$c_{i+1} = g_i + p_i (g_{i-1} + p_{i-1}c_{i-1})$$
$$= g_i + p_i g_{i-1} + p_i p_{i-1}c_{i-1}$$

Generate function

Propagate function

$$c_{1} = g_{0} + p_{0}c_{0}$$

$$c_{2} = g_{1} + p_{1}g_{0} + p_{1}p_{0}c_{0}$$

$$c_{3} = g_{2} + p_{2}g_{1} + p_{2}p_{1}g_{0} + p_{2}p_{1}p_{0}c_{0}$$

$$c_{4} = g_{3} + p_{3}g_{2} + p_{3}p_{2}g_{1} + p_{3}p_{2}p_{1}g_{0} + p_{3}p_{2}p_{1}p_{0}c_{0}$$

- پیشیبینی رقم نقلی (ادامه...)

$$c_1 = g_0 + c_0 p_0$$

$$c_2 = g_1 + g_0 p_1 + c_0 p_0 p_1$$

$$c_3 = g_2 + g_1 p_2 + g_0 p_1 p_2 + c_0 p_0 p_1 p_2$$

$$c_4 = g_3 + g_2 p_3 + g_1 p_2 p_3 + g_0 p_1 p_2 p_3 + c_0 p_0 p_1 p_2 p_3$$

Im

- پیش بینی رقم نقلی (ادامه...)

Carry Skip-**9**4j+3 **p**4j+3 **9**4j+2 **p**4j+2 **9**4j+1 p_{4j+1} **9**4j p_{4j} **C**4j C_{4j+4} C_{4j+2} **C**4j+3 C_{4j+1} 4-bit block 4-bit block 0

Carry Select-

