Методы обучения ранжированию (Learning to Rank)

K.B.Воронцов vokov@forecsys.ru

Этот курс доступен на странице вики-ресурса http://www.MachineLearning.ru/wiki «Машинное обучение (курс лекций, К.В.Воронцов)»

МФТИ • 19 марта 2021

Содержание

- 🕕 Постановка задачи и основные подходы
 - Поточечный подход
 - Попарный подход
 - Списочный подход
- Ранжирование в поисковых системах
 - Признаки ранжирования
 - Функционалы качества ранжирования
 - Ранжирование поисковой выдачи в Яндексе
- Пейросетевые модели поиска
 - Модель DSSM (Deep Structured Semantic Model)
 - Хэширование слов
 - Преимущества DSSM

Определения и обозначения

Дано: $X^\ell = \{x_1, \dots, x_\ell\}$ — обучающая выборка, $i \prec j$ — отношение $\ll x_j$ лучше, чем x_i » между объектами из X^ℓ

Найти: ранжирующую функцию $a: X \to \mathbb{R}$, восстанавливающую правильное отношение порядка:

$$i \prec j \Rightarrow a(x_i) < a(x_j)$$

Критерий конструируется по-разному в трёх подходах:

- Point-wise поточечный (аналог регрессии/классификации)
- Pair-wise попарный (качество парных сравнений)
- List-wise списочный (качество ранжированного списка)

Линейная модель ранжирования:

$$a(x, w) = \langle x, w \rangle$$

где $x\mapsto ig(f_1(x),\dots,f_n(x)ig)\in\mathbb{R}^n$ — вектор признаков объекта x

Примеры задач ранжирования

Ранжирование (Learning to Rank, LtR, L2R, LETOR) нужно везде, где система предоставляет пользователю выбор из большого числа вариантов

- ранжирование выдачи поисковой системы
- ранжирование рекомендаций пользователям (книги, фильмы, музыка, товары интернет-магазина, и т.п.)
- ранжирование вариантов автоматического завершения запроса (Query Auto Completion, auto-suggest)
- ранжирование возможных ответов в диалоговых системах (Question Answering Systems)
- ранжирование вариантов перевода в системах машинного перевода (Machine Translation)

Ранговая регрессия (Ordinal Regression)

Обучающая выборка $(x_i,y_i)_{i=1}^\ell$, где $y_i\in Y=\{1\prec 2\prec \cdots \prec K\}$. Функция ранжирования с параметрами w и порогами $b_0=-\infty$, b_1,\ldots,b_{K-1} , $b_K=+\infty$:

$$a(x,w,b) = y$$
, если $b_{y-1} < g(x,w) \leqslant b_y$

Функция потерь $\mathscr{L}(M)$ — убывающая функция отступа M

Критерий обучения по двум ближайшим порогам:

$$\sum_{i=1}^{\ell} \mathscr{L}(g(x_i, w) - b_{y_i-1}) + \mathscr{L}(b_{y_i} - g(x_i, w)) \to \min_{w, b}$$

Критерий обучения по всем порогам:

$$\sum_{i=1}^{\ell} \sum_{y=1}^{K} \mathcal{L}\left(\left(b_{y} - g(x_{i}, w)\right) \operatorname{sign}\left(y - y_{i}\right)\right) \to \min_{w, b}$$

J.D.M.Rennie, N.Srebro. Loss functions for preference levels: regression with discrete ordered labels. IJCAI-2005.

Напоминание: SVM — метод опорных векторов

Линейный классификатор, $Y = \{-1, +1\}$:

$$a(x, w, w_0) = sign(\langle w, x \rangle - w_0), \quad w, x \in \mathbb{R}^n, \ w_0 \in \mathbb{R}$$

Задача обучения SVM:

$$\begin{cases} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{\ell} \xi_i \to \min_{w, w_0, \xi} \\ M_i(w, w_0) \geqslant 1 - \xi_i, & i = 1, \dots, \ell \\ \xi_i \geqslant 0, & i = 1, \dots, \ell \end{cases}$$

где
$$M_i(w, w_0) = y_i(\langle w, x_i \rangle - w_0)$$
 — отступ объекта x_i

Эквивалентная задача безусловной минимизации:

$$\sum_{i=1}^{\ell} (1 - M_i(w, w_0))_+ + \frac{1}{2C} ||w||^2 \rightarrow \min_{w, w_0}$$

Ранговая классификация OC-SVM (Ordinal Classification SVM)

Пусть
$$Y=\{1,\dots,K\}$$
, функция ранжирования линейная с порогами $b_0=-\infty$, $b_1,\dots,b_{K-1}\in\mathbb{R}$, $b_K=+\infty$:
$$a(x,w,b)=y, \text{ если } b_{y-1}<\langle w,x\rangle\leqslant b_y$$

Постановка задачи SVM для ранговой классификации:

$$\begin{cases} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{\ell} [y_i \neq K] (\xi_i + \xi_i^*) \to \min_{w,b,\xi} \\ b_{y_i-1} + 1 - \xi_i^* \leqslant \langle w, x_i \rangle \leqslant b_{y_i} - 1 + \xi_i \\ \xi_i^* \geqslant 0, \quad \xi_i \geqslant 0 \end{cases}$$

Попарный подход

Переход к гладкому функционалу качества ранжирования:

$$Q(w) = \sum_{i \prec j} \left[\underbrace{a(x_j, w) - a(x_i, w)}_{\mathsf{Margin}(i, j)} < 0 \right]$$

$$\leqslant \sum_{i \prec j} \mathcal{L} \left(a(x_j, w) - a(x_i, w) \right) \to \min_{w}$$

где a(x,w) — параметрическая модель ранжирования

 $\mathscr{L}(M)$ — убывающая непрерывная функция отступа $\mathsf{Margin}(i,j)$:

- $\mathcal{L}(M) = (1 M)_+ \mathsf{RankSVM}$
- $\mathcal{L}(M) = \exp(-M) \text{RankBoost}$
- $\mathcal{L}(M) = \log(1 + e^{-M})$ RankNet

Ranking SVM: метод опорных векторов для ранжирования

Постановка задачи SVM для попарного подхода:

$$Q(w) = \frac{1}{2} \|w\|^2 + C \sum_{i \prec j} \mathscr{L} \underbrace{\left(\underbrace{a(x_j, w) - a(x_i, w)}_{\mathsf{Margin}(i, j)} \right)}_{\mathsf{Margin}(i, j)} \rightarrow \min_{w},$$

где
$$a(x,w)=\langle w,x\rangle$$
 — линейная функция ранжирования $\mathscr{L}(M)=(1-M)_+$ — «шарнирная» функция потерь (hinge loss) $M=\mathsf{Margin}(i,j)=\langle w,x_j-x_i\rangle$ — отступ

Постановка задачи квадратичного программирования:

$$\begin{cases} \frac{1}{2} \|w\|^2 + C \sum_{i \prec j} \xi_{ij} \to \min_{w, \xi} \\ \langle w, x_j - x_i \rangle \geqslant 1 - \xi_{ij}, \quad i \prec j \\ \xi_{ij} \geqslant 0, \quad i \prec j \end{cases}$$

RankNet: логистическая регрессия для ранжирования

RankNet: гладкий функционал качества ранжирования:

$$Q(w) = \sum_{i \prec j} \mathscr{L}(a(x_j, w) - a(x_i, w)) \rightarrow \min_{w}$$

при $\mathscr{L}(M) = \log(1 + e^{-\sigma M})$ и линейной модели $a(x) = \langle w, x \rangle$.

Метод стохастического градиента:

выбираем на каждой итерации случайную пару $i \prec j$:

$$w := w + \eta \cdot \frac{\sigma}{1 + \exp(\sigma \langle x_i - x_i, w \rangle)} \cdot (x_j - x_i)$$

Christopher J.C. Burges From RankNet to LambdaRank to LambdaMART: an overview // Microsoft Research Technical Report MSR-TR-2010-82. 2010.

От попарного RankNet к списочному LambdaRank

Метод стохастического градиента для попарного функционала:

$$w := w + \eta \cdot \frac{\sigma}{1 + \exp(\sigma \langle x_i - x_i, w \rangle)} \cdot (x_j - x_i)$$

Пусть \ddot{Q} — негладкий функционал качества ранжирования, в частности, для его вычисления список объектов x_i может ранжироваться по убыванию значений $a(x_i)$.

 $\Delta ilde{Q}_{ii}$ — изменение $ilde{Q}$ при перестановке $x_i \leftrightarrows x_i$ в списке.

LambdaRank: домножение градиента на $|\Delta ilde{Q}_{ii}|$ приводит к приближённой оптимизации негладкого функционала \ddot{Q} :

$$w := w + \eta \cdot \frac{\sigma}{1 + \exp(\sigma \langle x_i - x_i, w \rangle)} \cdot |\Delta \tilde{Q}_{ij}| \cdot (x_j - x_i)$$

Christopher J.C. Burges From RankNet to LambdaRank to LambdaMART: An Overview // Microsoft Research Technical Report MSR-TR-2010-82. 2010.

Задача ранжирования поисковой выдачи

D — коллекция текстовых документов (documents)

Q — множество запросов (queries)

 $D_q \subseteq D$ — множество документов, найденных по запросу q

X=Q imes D — объектами являются пары «запрос, документ»:

$$x \equiv (q, d), \ q \in Q, \ d \in D_q$$

Y — упорядоченное множество рейтингов

 $y\colon X o Y$ — оценки релевантности, поставленные асессорами: чем выше оценка y(q,d), тем релевантнее документ d запросу q

Правильный порядок определён только между документами, найденными по одному и тому же запросу q:

$$(q,d) \prec (q,d') \Leftrightarrow y(q,d) < y(q,d')$$

Типы признаков для ранжирования поисковой выдачи

Типы признаков

- функции только документа *d*
- \bullet функции только запроса q
- ullet функции запроса и документа (q,d)
- текстовые
 - слова запроса q встречаются в d чаще обычного
 - слова запроса q есть в заголовках или выделены в d
- ссылочные
 - на документ d много ссылаются
 - документ d содержит много полезных ссылок
- кликовые
 - на документ d часто кликают
 - на документ d часто кликают по запросу q

$\mathsf{TF}\mathsf{-}\mathsf{IDF}(q,d)$ — мера релевантности документа d запросу q

 n_{dw} (term frequency) — число вхождений слова w в текст d; N_w (document frequency) — число документов, содержащих w; N — число документов в коллекции D;

 N_w/N — оценка вероятности встретить слово w в документе; $(N_w/N)^{n_{dw}}$ — оценка вероятности встретить его n_{dw} раз;

 $P(q,d) = \prod_{w \in q} (N_w/N)^{n_{dw}}$ — оценка вероятности встретить в документе d слова запроса $q = \{w_1, \dots, w_k\}$ чисто случайно.

Оценка релевантности запроса q документу d:

$$\mathsf{TF}\text{-}\mathsf{IDF}(q,d) = -\log P(q,d) = \sum_{w \in q} \underbrace{n_{dw}}_{\mathsf{TF}(w,d)} \underbrace{\log (N/N_w)}_{\mathsf{IDF}(w)} \ \to \ \mathsf{max}$$

 $TF(w, d) = n_{dw}$ — term frequency; $IDF(w) = log(N/N_w)$ — inverted document frequency.

Семейство мер релевантности Best Matching (Okapi BM25)

Модификация TF-IDF:

- рост ТF ограничивается сверху
- ТF уменьшается для длинных документов
- вес IDF для частых слов становится ещё меньше

$$\mathsf{BM}(q,d) = \sum_{w \in q} \frac{n_{dw}(k_1+1)}{n_{dw} + k_1 \left(1-b+b\frac{n_d}{\bar{n}_d}\right)} \max \left\{ \log \frac{N-N_w+\frac{1}{2}}{N_w+\frac{1}{2}}, \varepsilon \right\}$$

 n_d — длина документа d $ar{n}_d$ — средняя длина документов в коллекции $b \in [0,1]$ управляет учётом длины документа (обычно b=0.75) $k_1\geqslant 0$ ограничивает линейный рост TF (обычно $k_1=2$) arepsilon ограничивает снизу IDF (обычно arepsilon=0)

S.Robertson, H.Zaragoza. The probabilistic relevance framework: BM25 and beyond. 2009.

PageRank — классический ссылочный признак

Документ d тем важнее, чем больше ссылок других документов c на d, чем важнее документы c, ссылающиеся на d, чем меньше других ссылок имеют эти c.

Вероятность попасть на страницу d, если кликать случайно:

$$\mathsf{PR}(d) = \frac{1 - \delta}{\mathsf{N}} + \delta \sum_{c \in D_d^{in}} \frac{\mathsf{PR}(c)}{|D_c^{out}|},$$

 $D_d^{in} \subset D$ — множество документов, ссылающихся на d, $D_c^{out} \subset D$ — множество документов, на которые ссылается c, $\delta = 0.85$ — вероятность продолжать клики (damping factor), N — число документов в коллекции D.

Lawrence Page, Sergey Brin, Rajeev Motwani, Terry Winograd. The PageRank Citation Ranking: Bringing Order to the Web. 1998.

Оценивание качества поиска

Precision — доля релевантных среди найденных Recall — доля найденных среди релевантных

$$P=rac{ ext{TP}}{ ext{TP}+ ext{FP}}$$
 — точность (precision) $R=rac{ ext{TP}}{ ext{TP}+ ext{FN}}$ — полнота (recall) $F_1=rac{2PR}{P+R}$ — F1-мера

TP (true positive) — найденные релевантные FP (false positive) — найденные нерелевантные FN (false negative) — ненайденные релевантные TN (true negative) — не должен учитываться

Недостаток: в «большом поиске» FN и Recall неизвестны

Точность, средняя точность, усреднённая средняя точность

Пусть $Y = \{0,1\}$, y(q,d) — релевантность, a(q,d) — оцениваемая функция ранжирования, $d_q^{(i)}$ — i-й документ по убыванию a(q,d).

Precision, точность — доля релевантных среди первых n:

$$P_n(q) = \frac{1}{n} \sum_{i=1}^n y(q, d_q^{(i)})$$

Average Precision, средняя P_n по позициям n релевантных $d_q^{(n)}$:

$$AP(q) = \sum_{n} y(q, d_{q}^{(n)}) P_{n}(q) / \sum_{n} y(q, d_{q}^{(n)})$$

Mean Average Precision — AP, усреднённая по всем запросам:

$$MAP = \frac{1}{|Q|} \sum_{q \in Q} AP(q)$$

Доля «дефектных пар»

Пусть $Y \subseteq \mathbb{R}$, y(q,d) — релевантность, a(q,d) — оцениваемая функция ранжирования, $d_q^{(i)}$ — i-й документ по убыванию a(q,d).

Доля инверсий порядка среди первых n документов:

$$\mathsf{DP}_n(q) = \frac{2}{n(n-1)} \sum_{i,j=1}^n \left[i < j \right] \left[y(q, d_q^{(i)}) < y(q, d_q^{(j)}) \right]$$

Связь с коэффициентом ранговой корреляции (au Кенделла):

$$\tau(a,y) = 1 - 2 \cdot \mathsf{DP}_n(q)$$

Связь с AUC (area under ROC-curve) в задачах классификации с двумя классами $\{-1,+1\},\ a\colon X\to \mathbb{R}$:

$$\mathsf{AUC}_n(q) = rac{1}{\ell_-\ell_+} \sum_{i,i=1}^n \left[y_i < y_j
ight] \left[a(x_i) < a(x_j)
ight] = 1 - rac{n(n-1)}{2\ell_-\ell_+} \mathsf{DP}_n(q)$$

DCG — Discounted Cumulative Gain

Пусть $Y \subseteq \mathbb{R}$, y(q,d) — релевантность, a(q,d) — оцениваемая функция ранжирования, $a_q^{(i)}$ — i-й документ по убыванию a(q,d).

Дисконтированная (взвешенная) сумма выигрышей:

$$\mathsf{DCG}_n(q) = \sum_{i=1}^n \underbrace{\mathcal{G}_q(d_q^{(i)})}_{\mathsf{gain}} \cdot \underbrace{\mathcal{D}(i)}_{\mathsf{discount}}$$

 $G_q(d) = (2^{y(q,d)}-1)$ — бо́льший вес релевантным документам $D(i) = 1/\log_2(i+1)$ — бо́льший вес в начале выдачи

Нормированная дисконтированная сумма выигрышей:

$$NDCG_n(q) = \frac{DCG_n(q)}{\max DCG_n(q)}$$

 $\max \mathsf{DCG}_n(q)$ — это $\mathsf{DCG}_n(q)$ при идеальном ранжировании

Яндекс pFound — модель поведения пользователя

Пусть $Y \subseteq [0,1]$,

y(q,d) — релевантность, оценка вероятности найти ответ в d, a(q,d) — оцениваемая функция ранжирования, $d_a^{(i)} = i$ -й документ по убыванию a(q,d).

Вероятность найти ответ в первых n документах (по формуле полной вероятности):

$$\mathsf{pFound}_n(q) = \sum_{i=1}^n P_i \cdot y(q, d_q^{(i)}),$$

где P_i — вероятность дойти до i-го документа:

$$P_1 = 1;$$

$$P_{i+1} = P_i \cdot (1 - y(q, d_q^{(i)})) \cdot (1 - P_{out}),$$

где P_{out} — вероятность прекратить поиск без ответа

Яндекс pFound — модель поведения пользователя

Параметры критерия pFound:

- $P_{out} = 0.15$ вероятность прекратить поиск без ответа;
- y(q,d) оценка вероятности найти ответ в документе:

оценка асессора	y(q,d)
Vital	0.61
Useful	0.41
Relevant+	0.14
Relevant—	0.07
Not Relevant	0.00

Гулин А., Карпович П., Расковалов Д., Сегалович И. Оптимизация алгоритмов ранжирования методами машинного обучения. РОМИП-2009.

О ранжировании поисковой выдачи в Яндексе

- Более 50 000 новых оценок асессоров ежемесячно
- За 8 лет придумано и проверено более 2000 признаков
- Pair-wise подход лучше, чем point-wise и list-wise
- Наряду с данными асессоров (explicit relevance feedback) используются большие, но менее надёжные данные о поведении пользователей (implicit relevance feedback)

Технологии:

- MatrixNet: модель ранжирования градиентный бустинг над ODT (небрежными решающими деревьями)
- CatBoost: свободно доступный аналог MatrixNet, хорошо работающий с категориальными признаками
- FML (Friendly Machine Learning): среда для тестирования алгоритмов машинного обучения, включая ранжирование

Постановка задачи для DSSM (Deep Structured Semantic Model)

 Δ **Дано**: Q — множество запросов

 D_q^+ — множество кликнутых документов (clickthrough data)

Найти: вероятностную модель релевантности документов

$$p(d|q) = \operatorname{SoftMax}_{d \in D_q} \gamma R(q, d) = \frac{\exp \left(\gamma R(q, d) \right)}{\sum\limits_{d' \in D_q} \exp \left(\gamma R(q, d') \right)},$$

 $R(q,d)=\cos(u_q,u_d)$ — косинусная близость эмбедингов $u_q,u_d;$ D_q содержит по 4 случайных некликнутых документа вместе с каждым кликнутым $d\in D_q^+$ (Negative Sampling).

Критерий максимума правдоподобия:

$$\sum_{q \in Q} \sum_{d \in D_q^+} \log p(d|q) \to \max_{\Omega},$$

тах по параметрам кодировщика $u_d = f(d, \Omega)$

Нейросетевой кодировщик в DSSM

Трёхслойная сиамская нейронная сеть с параметрами $\Omega = (W_1, b_1, W_2, b_2, W_3, b_3)$

$$u_d = \operatorname{th}(W_3 v_d^2 + b_3)$$

 $v_d^2 = \operatorname{th}(W_2 v_d^1 + b_2)$
 $v_d^1 = \operatorname{th}(W_1 x_d + b_1)$

 $x_d = WordHash(d)$

Хэширование слов (word hashing): документ d представляется вектором частот не слов n_{dw} , а буквенных триграмм: WordHash (дармолюб) = { _да, арм, рмо, мол, олю, люб, юб_}

Po-Sen Huang, et al. Learning Deep Structured Semantic Models for Web Search using Clickthrough Data. 2013.

Преимущества DSSM

- Благодаря Word Hashing:
 - сокращается размерность векторов x_d с 500k до 30k,
 - схожие по написанию слова имеют близкие векторы,
 - появляется возможность обрабатывать новые слова,
 - а также слова с опечатками
- В отличие от других эмбедингов, которые обучаются реконструировать данные без учителя, DSSM обучается с учителем, по большим данным о кликах пользователей
- Поэтому он опережает по качеству поиска как частотные модели (TF-IDF, BM25), так и векторные (PLSA, LDA, DAE)

Po-Sen Huang, et al. Learning Deep Structured Semantic Models for Web Search using Clickthrough Data. 2013.

Резюме в конце лекции

- Ранжирование особый класс задач машинного обучения:
 - по обучающей выборке похоже на классификацию,
 - по функции ранжирования похоже на регрессию
- Критерий качества ранжирования зависит от приложения.
 Наилучшего универсального критерия не существует.
- Три подхода: поточечный, попарный, списочный.
 Теоретически списочный должен быть наилучшим.
 Однако в Яндексе долгое время лучше работал попарный.

Tie-Yan Liu. Learning to Rank for Information Retrieval. 2011. Hang Li. A Short Introduction to Learning to Rank. 2011.