Power Consumption

SPECIAL TOPIC 2

Load Capacitance of a Gate

Switching Activity: Charge Flow

- $Q = C_L V_{dd}$
- For every pulse, charge Q flows from VDD to GND

Switching Activity: Power Dissipation

 Energy dissipated for every pulse, when charge Q flows from VDD to GND:

$$E = QV_{dd} = (C_LV_{dd})V_{dd} = C_LV_{dd}^2$$

- Power is energy dissipated per second.
- If there are n_p pulses per second at a gate's output, switching power dissipation of the gate is:

$$P = C_L V_{dd}^2 n_p$$

Switching Power for Clocks & Data

- For a clock with frequency f, n_D = f
 - Switching power dissipation of a buffer driving clock is:

$$P = C_L V_{dd}^2 f$$

• For data signals, we define an activity factor, α :

$$\alpha = n_p/f$$

Switching power for driver of such a signal is:

$$P = C_L V_{dd}^2 f \alpha$$

• Generally, α << 1 and clock is the most active signal in the circuit

Clock Gating

SPECIAL TOPIC 3

Clock Gating

64-bit register which changes state only when some enable signal, EN, is high:

Circuit without Clock Gating

Rising edges of these two pulses do no work since E is low ⇒ pulses can be eliminated to save power

Circuit with Clock Gating

CLK TTTT

GCLK TTTTT

GCLK: gated

clock

Problem with using AND gate for clock gating

- •If EN changes when CLK is high, we get incorrect clock edges:
 - Cannot let EN change when CLK is high

Integrated Clock Gating Cell (ICG)

- Cannot let EN when CLK is high: use latch (level-sensitive) to block EN when CLK is high
 - Latch is transparent when CLK is low
- Combination of latch and AND gate is called an "Integrated Clock Gating" cell (ICG)

- EN does not go through to the AND gate when CLK is high
 - Latch is transparent with CLK is low

ICG with Test Feature

- When chip is being tested, clock must be ungated regardless of value of EN
 - Add "test" input (T) to ICG to bypass EN during test:

- T = 1 when circuit is being tested
- ICG is transparent to CLK when T = 1, regardless of value of EN

Symbol for ICG

- There is no standard symbol for an ICG
- We will use the following as symbols for ICGs in this class:

ICG without test input

ICG with test input

ICGs in Standard Cell Libraries

- Most standard cell libraries contain ICGs
- In the dotlib, ICGs, and only ICGs, must have the attribute "clock_gating_integrated_cell" defined

clock_gating_integrated_c
ell : latch_posedge;

clock_gating_integrated_c
ell :
latch_posedge_precontrol;

clock_gating_integrated_c
ell :
latch_posedge_postcontro
l;