Algorytmy Optymalizacji Dyskretnej

Felix Zieliński 272336

Lista 2

Zadanie 1. W tym zadaniu należało zminimalizowad koszty zakupu paliwa poprzez wyznaczenie planu zakupu i dostaw paliwa na lotniska.

Uogólnione parametry z zadania:

- L_i j-te lotnisko
- F_i i-ta firma
- z_j zapotrzebowanie j-tego lotniska
- p_i podaż paliwa z i-tej firmy
- $\bullet \ k_{ij}$ koszt zakupu galonu paliwa od i-tej firmy przez j-te lotnisko

Zmienne decezyjne:

 \boldsymbol{x}_{ij} - ilość paliwa dostarczona przez i-tą firmę na j-te lotnisko.

Ograniczenia:

- $x_{ij} \geq 0$ ilość paliwa musi być nieujemna
- $\bullet \ \sum_i x_{ij} = z_j$ suma dostaw do danego lotniska musi zaspoko
ić jego zapotrzebowanie
- $\sum_i x_{ij} \leq p_i$ firma nie może dostarczyć więcej paliwa, niż sama produkuje

Funkcja celu:

Koszt wszystkich dostaw: $min \sum_{i,j} x_{ij} * k_{ij}$

Rozwiazanie:

TBD

Zadanie 2. W tym zadaniu należało zmaksymalizować zysk zakładu poprzez wyznaczenie optymalnego tygodniowego planu placy.

Uogólnione parametry z zadania:

- L_i i-ty wyrób
- M_i j-ta maszyna
- \bullet cp_{ij} czas (w minutach na kilogram) obróbki i-tego wyroby na j-tej maszynie
- \bullet C_{j} czas dostępności j-tej maszyny w godzinach
- $\bullet \ sp_i$ cena sprzedaży i-tego wyrobu
- $\bullet \ kp_{j}$ koszt za godzinę pracy j-tej maszyny
- \bullet km_i koszt materiałowy za kilogram i-tego wyrobu
- \bullet z_i maksymalny tygodniowy popyt na i-ty wyrób

Zmienne decezyjne:

 \boldsymbol{x}_i - liczba kilogramów wyprodukowanego i-tego wyrobu.

Ograniczenia:

- $x_{ij} \geq 0$ ilość wyprodukowanego wyrobu musi być nieujemna
- $\sum_i x_i * c p_{ij} \leq C_j/60$ maszyny mają ograniczony czas pracy
- $x_i \leq z_i$ nie ma sensu produkować więcej wyrobu, niż jest na niego popyt

Funkcja celu:

Zysk, jako różnica między przychodem a kosztami zmiennymi: $\max(x_i*(\sum_i(sp_i-km_i)-\sum_j(kp_j/60)*\sum_i(cp_{ij}/60)))$

Rozwiazanie:

TBD

Zadanie 2. W tym zadaniu należało zmaksymalizować zysk zakładu poprzez wyznaczenie optymalnego tygodniowego planu placy.

Uogólnione parametry z zadania:

- M_j j-ta maszyna

- \bullet cp_{ij} czas (w minutach na kilogram) obróbki i-tego wyroby na j-tej maszynie
- \bullet C_j czas dostępności j-tej maszyny
- $\bullet \ sp_i$ cena sprzedaży i-tego wyrobu
- $\bullet \ kp_{j}$ koszt za godzinę pracy j-tej maszyny
- \bullet km_i koszt materiałowy za kilogram i-tego wyrobu
- z_i maksymalny tygodniowy popyt na i-ty wyrób

Zmienne decezyjne:

 $\boldsymbol{x_i}$ - liczba kilogramów wyprodukowanego i-tego wyrobu.

Ograniczenia:

- x_i ilość
- $\bullet \ \sum_i x_{ij} = z_j$ suma dostaw do danego lotniska musi zaspoko
ić jego zapotrzebowanie
- $\sum_i x_{ij} \leq p_i$ firma nie może dostarczyć więcej paliwa, niż sama produkuje

Funkcja celu:

Koszt wszystkich dostaw: $min \sum_{i,j} x_{ij} * k_{ij}$

Rozwiazanie:

TBD