MATHEMATICS 271 L01 FALL 2015 QUIZ 2 SOLUTIONS

1. Use the Euclidean Algorithm to find gcd(156, 115) and find integers x and y such that gcd(156, 115) = 156x + 115y.

Solution: We have

$$156 = 1 \times 115 + 41$$

$$115 = 2 \times 41 + 33$$

$$41 = 1 \times 33 + 8$$

$$33 = 4 \times 8 + 1$$

$$8 = 8 \times 1 + 0$$

so gcd(156, 115) = 1, and using the "table method":

	156	1	0
	115	0	1
$R_1 - R_2$	41	1	-1
$R_2 - 2R_3$	33	-2	3
$R_3 - R_4$	8	3	-4
$R_4 - 4R_5$	1	-14	19

Thus, gcd(156, 115) = 1 and $gcd(156, 115) = 156 \times (-14) + 115 \times (19)$, that is, x = -14 and y = 19.

2. Prove that for all **non-zero** real numbers x and y, if x is rational and y is irrational then xy is irrational.

Solution: Suppose that x and y are non-zero real numbers. Suppose that x is rational and y is irrational. We prove that xy is irrational by contradiction. Suppose that xy is rational. Since x and xy are rational, there are integers m, n, p, q so that $x = \frac{m}{n}$ and $xy = \frac{p}{q}$ where $\frac{p}{q}$

$$n \neq 0 \neq q$$
. Note that $m \neq 0$ also because $x \neq 0$. Now, since $x \neq 0$, $y = \frac{xy}{x} = \frac{q}{\underline{m}} = \frac{pn}{mq}$

where pn and mq are integers, and $mq \neq 0$ because $m \neq 0 \neq q$. Thus, y is rational, which contradicts the assumption that y is irrational. Thus, xy is irrational.

3. Prove by induction on n that $5^n - 4n - 1$ is divisible by 16 for all integers $n \ge 1$. Solution: We prove this by induction on n.

Basis: (n=1)

When n = 1, $5^n - 4n - 1 = 5^1 - 4 \times 1 - 1 = 0 = 16 \times 0$ where $0 \in \mathbb{Z}$, so $5^n - 4n - 1$ is divisible by 16 when n = 1.

Inductive Hypothesis: Suppose that for some integer $k \geq 1$,

$$5^k - 4k - 1$$
 is divisible by 16. (IH)

We want to show that $5^{k+1} - 4(k+1) - 1$ is divisible by 16. From (IH), there is an integer m so that $5^k - 4k - 1 = 16m$. Now,

From,

$$5^{k+1} - 4(k+1) - 1 = 5 \times 5^k - 4k - 4 - 1$$

 $= 5 \times 5^k - 4k - 5$
 $= 5 \times 5^k - 20k - 5 + 16k$
 $= 5(5^k - 4k - 1) + 16k$
 $= 5 \times 16m + 16k$ because $5^k - 4k - 1 = 16m$
 $= 16(5m + k)$.

Since $5^{k+1} - 4(k+1) - 1 = 16(5m+k)$ where 5m+k is an integer, $5^{k+1} - 4(k+1) - 1$ is divisible by 16, as required.

Thus, $5^n - 4n - 1$ is divisible by 16 for all integers $n \ge 1$.