```
import pandas as pd #importing pandas package
#reading a csv file
data=pd.read csv(r"D:\Temp\Data Science & Artificial Intelligence\
Completed\Week-3\Class-16 on 07-02-2024 on Wednusday\Notes\7th\7th\
DataFrame Pandas\data.csv")
data
                                       BirthRate InternetUsers \
              CountryName CountryCode
0
                    Aruba
                                           10.244
                                                             78.9
                                   ABW
1
                                                              5.9
              Afghanistan
                                   AFG
                                           35.253
2
                                           45.985
                   Angola
                                   AG0
                                                             19.1
3
                  Albania
                                   ALB
                                           12.877
                                                             57.2
4
     United Arab Emirates
                                   ARE
                                           11.044
                                                             88.0
                                   . . .
              Yemen, Rep.
                                           32.947
                                                             20.0
190
                                   YEM
191
             South Africa
                                   ZAF
                                           20.850
                                                             46.5
192
         Congo, Dem. Rep.
                                                             2.2
                                   COD
                                           42.394
193
                   Zambia
                                   ZMB
                                           40.471
                                                             15.4
194
                 Zimbabwe
                                   ZWE
                                           35.715
                                                             18.5
             IncomeGroup
0
             High income
1
              Low income
2
     Upper middle income
3
     Upper middle income
4
             High income
. .
190 Lower middle income
191
     Upper middle income
192
              Low income
193 Lower middle income
194
              Low income
[195 rows x 5 columns]
len(data)# total 195 rows
195
data.shape # 195 rows AND 5 columns
(195, 5)
data.columns #Columns
Index(['CountryName', 'CountryCode', 'BirthRate', 'InternetUsers',
       'IncomeGroup'],
      dtype='object')
data.head()
```

```
CountryName CountryCode
                                      BirthRate
                                                 InternetUsers
0
                  Aruba
                                 ABW
                                         10.244
                                                           78.9
1
            Afghanistan
                                 AFG
                                         35.253
                                                            5.9
2
                                                           19.1
                 Angola
                                 AG0
                                         45.985
3
                Albania
                                 ALB
                                         12.877
                                                           57.2
4
  United Arab Emirates
                                 ARE
                                         11.044
                                                           88.0
           IncomeGroup
0
           High income
1
            Low income
2
  Upper middle income
3
  Upper middle income
4
           High income
data.dtypes# datatype of the variables
CountryName
                  object
CountryCode
                  object
BirthRate
                 float64
InternetUsers
                 float64
IncomeGroup
                  object
dtype: object
data.info()# total information
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 195 entries, 0 to 194
Data columns (total 5 columns):
                    Non-Null Count
#
     Column
                                     Dtype
                    195 non-null
 0
     CountryName
                                     object
1
     CountryCode
                    195 non-null
                                     object
 2
     BirthRate
                    195 non-null
                                     float64
 3
     InternetUsers 195 non-null
                                     float64
4
     IncomeGroup
                    195 non-null
                                     object
dtypes: float64(2), object(3)
memory usage: 7.7+ KB
data.isnull().sum()# no null values
CountryName
                 0
CountryCode
                 0
BirthRate
                 0
InternetUsers
                 0
IncomeGroup
dtype: int64
data.head()
            CountryName CountryCode
                                      BirthRate
                                                 InternetUsers \
0
                  Aruba
                                 ABW
                                         10.244
                                                           78.9
```

```
1
            Afghanistan
                                 AFG
                                         35.253
                                                            5.9
2
                                 AG0
                                         45.985
                                                           19.1
                 Angola
3
                Albania
                                 ALB
                                         12.877
                                                           57.2
  United Arab Emirates
                                 ARE
                                         11.044
                                                           88.0
           IncomeGroup
0
           High income
1
            Low income
2
  Upper middle income
3
  Upper middle income
           High income
data.describe()
                   InternetUsers
        BirthRate
       195.000000
                       195.000000
count
        21.469928
                       42.076471
mean
        10.605467
                        29.030788
std
min
         7.900000
                         0.900000
25%
        12.120500
                        14.520000
        19.680000
50%
                       41.000000
75%
        29.759500
                        66,225000
        49.661000
                       96.546800
max
# importing supported libraries
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
top 20=data[['CountryName','BirthRate']].sort values(by='BirthRate',as
cending=False).reset index().drop('index',axis=1).head(20)
plt.rcParams['figure.figsize']=(10,5)
plt.bar(x=top 20.CountryName, height=top 20.BirthRate, width=0.8, ec='red
plt.xticks(ticks=range(len(top_20)), labels=top_20.CountryName, rotation
=45)
plt.tick params(length=15, width=0.2)
plt.title('Top 20 Countries In BirthRate',size=25)
plt.xlabel('Country Name', size=15)
plt.ylabel('Birth Rate', size=15)
plt.show()
```



```
# Niger Country Having Top Birth Rate.
least_20=data[['CountryName','BirthRate']].sort_values(by='BirthRate',
ascending=False).reset_index().drop('index',axis=1).tail(20)

plt.bar(x=least_20.CountryName,height=least_20.BirthRate,width=0.8,ec=
'red')
plt.xticks(ticks=range(len(least_20)),labels=least_20.CountryName,rota
tion=80)
plt.tick_params(length=15,width=0.2)
plt.title('Least 20 Countries In BirthRate',size=25)
plt.xlabel('Country Name',size=15)
plt.ylabel('Birth Rate',size=15)
plt.show()
```

Least 20 Countries In BirthRate


```
# According to the Hong Kong SAR, China having least Birth Rate.
sns.set_style('darkgrid')
sns.histplot(data=data.BirthRate,bins=10,kde=True,ec='white',alpha=1)
plt.xticks(ticks=range(0,len(data),5))
plt.title('Birth Rate Amoung The Countries',size=25)
plt.xlabel('BirthRate',size=20)
plt.ylabel('Count',size=20)
plt.xlim(0,60)
plt.show()
```


# Amoung	all	countries	nearly	48	countries	having	low	birth	rate.
data.head	d()								

	CountryName	CountryCode	BirthRate	InternetUsers	\
0	Aruba	ABW	10.244	78.9	
1	Afghanistan	AFG	35.253	5.9	
2	Angola	AG0	45.985	19.1	
3	Albania	ALB	12.877	57.2	
4	United Arab Emirates	ARE	11.044	88.0	

IncomeGroup

High income

Low income

Upper middle income

Upper middle income

High income

data.InternetUsers

0	78.9
1	5.9
2	19.1
3	57.2
4	88.0
190	20.0
191	46.5
192	2.2

Iceland having highest internet users amoung all the countries.
least20_int_con=data[['CountryName','InternetUsers']].sort_values(by='InternetUsers',ascending=False).reset_index().drop('index',axis=1).tail(20)

```
plt.bar(x=least20_int_con.CountryName,height=least20_int_con.InternetU
sers)
plt.xticks(rotation=80)
plt.title('Least 20 Birthrate Countries',size=20)
plt.xlabel('Country Name',size=15)
plt.ylabel('Internet Users',size=15)
plt.show()
```



```
# Eritrea has least internet users amoung all the counties.
data.InternetUsers
0
       78.9
1
         5.9
2
       19.1
3
        57.2
4
       88.0
        . . .
       20.0
190
191
       46.5
192
        2.2
193
        15.4
```

```
194 18.5
Name: InternetUsers, Length: 195, dtype: float64

sns.histplot(data=data.InternetUsers,kde=True)
plt.xticks(ticks=range(0,100,10))
plt.xlabel('Internet Users',size=15)
plt.ylabel('Count',size=15)
plt.show()
```



```
# Amoung all the countries, there are more countires having 0-10%
internet users in there respective countries.

top_20c=data.sort_values(by='BirthRate',ascending=False).head(20)
sns.set_style('ticks')

plt.plot(np.arange(len(top_20c)),top_20c.BirthRate,'-ro',label='Birth Rate')
plt.plot(np.arange(len(top_20c)),top_20c.InternetUsers,'-
bo',label='Internet Users')
plt.xticks(ticks=range(len(top_20c)),labels=top_20c.CountryName,rotati
on=80)
plt.tick_params(length=5,color='red',axis='both')
plt.grid(which='both',linewidth=20,alpha=0.1,color='yellow')
plt.minorticks_on()
plt.title('Top_20 Countries Analysis',size=20,pad=5)
plt.legend(framealpha=1,edgecolor='red',shadow=True)
plt.show()
```

Top 20 Countries Analysis


```
# Accounding to the above plot, even though Niger having highest
birthrate but the internet users are less.
# In Nigeria, almost people are using the internet.
data.head()
            CountryName CountryCode
                                      BirthRate
                                                  InternetUsers \
                                                           78.9
0
                  Aruba
                                 ABW
                                         10.244
                                         35.253
1
            Afghanistan
                                 AFG
                                                            5.9
2
                                 AG0
                                         45.985
                                                           19.1
                 Angola
                                                           57.2
3
                Albania
                                 ALB
                                         12.877
                                         11.044
  United Arab Emirates
                                 ARE
                                                           88.0
           IncomeGroup
0
           High income
1
            Low income
2
  Upper middle income
3
   Upper middle income
4
           High income
sns.lmplot(data,x='BirthRate',y='InternetUsers')
plt.title('Corelations',size=20)
plt.grid()
plt.show()
```



```
sns.lmplot(data,x='BirthRate',y='InternetUsers',hue='IncomeGroup')
plt.title('Corelations',size=20)
plt.grid()
plt.show()
```



```
sns.boxplot(data,x='IncomeGroup',y='BirthRate',hue='IncomeGroup')
plt.xlabel('Income Group',size=20,labelpad=20)
plt.ylabel('Birth Rate',size=20,labelpad=20)
plt.yticks(ticks=range(0,round(data.BirthRate.max())+10,5))
plt.xticks(fontsize=12)
plt.grid(which='minor',axis='y',alpha=1,linewidth=1,color='yellow')
plt.minorticks_on()
plt.show()
```


Income Group

From the above graph, in lower income group countris there is more birthrate.

we are having some outliers. if we focus on them, then we will get more information.

data[(data.IncomeGroup=='High income')&(data.BirthRate>30)]# outlier

CountryName CountryCode BirthRate InternetUsers
IncomeGroup
67 Equatorial Guinea GNQ 35.362 16.4 High
income

amoung all the highincome countries, Equatorial Guinea Country has more income and more birth rate why?

data[(data.IncomeGroup=='Low income')&(data.BirthRate<24)]# outlier</pre>

CountryName CountryCode BirthRate InternetUsers IncomeGroup 132 Nepal NPL 20.923 13.3 Low income

we found low income countries has ,more birthrate. eventhough Nepal Country has low income but why low birth rate?

data[(data.IncomeGroup=='Upper middle income')&(data.BirthRate>40)]#
outlier

CountryName CountryCode BirthRate InternetUsers
IncomeGroup
2 Angola AGO 45.985 19.1 Upper middle
income

```
# amoung all the countries in upper middle income group, why Angola
country has more birth rate?

sns.boxplot(data,x='IncomeGroup',y='InternetUsers')
plt.xlabel('Income Group',size=20,labelpad=20)
plt.ylabel('Internet Users',size=20,labelpad=20)
plt.xticks(fontsize=12)
plt.show()
```


Income Group

```
# From the above graph, where there is much internet usage there is
much income.
# That income is high because of maybe many factors like online
business...etc.
# Using technology in there respective works...
data[(data.IncomeGroup=='High
income')&(data.InternetUsers<20)]#Outlier</pre>
          CountryName CountryCode BirthRate InternetUsers
IncomeGroup
67 Equatorial Guinea
                              GNQ
                                      35.362
                                                        16.4 High
income
# how Equatorial Guinea country in high income group with low internet
users?
# how they generating their income with less internet users?
data.head()
```

```
CountryName CountryCode
                                     BirthRate
                                                 InternetUsers \
                                         10.244
0
                  Aruba
                                ABW
                                                          78.9
1
            Afghanistan
                                AFG
                                         35.253
                                                           5.9
2
                                         45.985
                                                          19.1
                 Angola
                                AG0
3
                Albania
                                ALB
                                         12.877
                                                          57.2
  United Arab Emirates
                                ARE
                                         11.044
                                                          88.0
           IncomeGroup
0
           High income
            Low income
1
2
  Upper middle income
3
  Upper middle income
4
           High income
data[['BirthRate','InternetUsers']].corr()
               BirthRate
                          InternetUsers
BirthRate
                1.000000
                              -0.815589
InternetUsers -0.815589
                               1.000000
data['IncomeGroup'].unique()
array(['High income', 'Low income', 'Upper middle income',
       'Lower middle income'], dtype=object)
data['Income grp num']=data['IncomeGroup'].map({'High income':4,'Upper
middle income':3,'Lower middle income':2,'Low income':1})
data[['BirthRate','InternetUsers','Income grp num']].corr()
                BirthRate
                           InternetUsers
                                          Income grp num
BirthRate
                                                -0.795319
                 1.000000
                               -0.815589
InternetUsers
                -0.815589
                                1.000000
                                                 0.869828
                -0.795319
                                0.869828
                                                 1.000000
Income grp num
# Accounding to our analysis InternetUsers And IncomeGroup are
corelated with eachother
```