Accelerating GPU Simulations

About me

- Euijun Chung (Pronounced E-June)
- 2nd-year PhD student from Prof. Kim's lab
- Research interests: GPU simulation and performance modeling, ML workloads for GPU, etc.

Challenges of Cycle Level Simulation

- Cycle level simulation takes too long.
- If a simulation speed is 10KIPS (10 instructions per sec), simulating 1B instructions (1 sec in a real machine) takes ~= 28 hours
- ML workload takes hours: 10 hours of ML workloads → 100 years of simulation

Accelerating Simulations

- Accelerating the simulation itself
 - Parallelizing the simulator
 - Event driven simulation
 - Simplifying the model
 - Sampling
 - Statistical Modeling
 - ML based Modeling
- Reducing the workload size
 - Micro benchmarks
 - Reducing the workload size
 - Create small representative workloads

Parallelizing Simulator

- Each P-thread simulates a core. Cores are typically run in parallel so it can be parallelized.
- Memory/Noc (network on chip) needs to be communicated.
- Bottlenecks on the memory

Parallelizing Simulator

- Parallelizing a modern GPU simulator [Arxiv '25]
- Extended GPGPU-sim from 1 thread to 16 threads, average 5.8x speedup

Event Driven Simulation

- Instead of operating by cycle, simulator is operated with events.
- Speeding up long latency operation simulations is possible.
- New event is inserted into the event queue.

Simplifying Models

- Depending on which one to model, we could simplify the modeling.
- Non-critical components are modeled based on the average throughputs and average latency.
- Detailed modeling is needed for modeling any resource contentions.
- Option #1: simplify the pipeline: instead of modeling instruction fetch/decode/execution, we could assume IPC = issue width. Model only caches and memory. E.g.) z-sim¹ CPU simulator simplifies the core pipeline.
- Option #2: simplify the memory model: assume memory system has a fixed latency

Sampling Techniques

- Random Sampling: simple; randomly choose where to simulate.
 - Execution driven: fast forward the part that won't be simulated or use a checkpoint based method
 - Trace driven: generate traces only for simulating sessions
- Handling state information: e.g.) cache, branch predictors → warm up time is needed; or running time is sufficiently long enough to overcome
- Program phase-based sampling (e.g., Simpoint¹)

[1] Sherwood, T., Perelman, E., Hamerly, G., & Calder, B. (2002). Automatically characterizing large scale program behavior. In Proceedings of the 10th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS X).

GPU Sampling Techniques

- Phase-based sampling within the program is non-trivial
 - Execution length for one single thread is too short.
- Solutions:
 - CUDA block level sampling: simulate 100 CUDA blocks instead of 1000s of CUDA blocks
 - Kernel level sampling: simulate 1-2 kernels instead of 10s of kernels
 - Warp level sampling: reduce the number of warps to simulate

Reducing Workloads

- Method #1: reducing iteration counts
 - E.g.) Machine learning workloads run 1000 iterations. Each iteration shows very similar characteristics; instead of 1000 iteration, iterates only once.
- Method #2: reducing input sizes
 - E.g.) Graph algorithm traverses for 1B nodes → graph algorithm traverses for 1M nodes
- Method #3: identify dominant kernels
 - E.g.) A program has 100s of functions. One or two functions dominate 90% of application time; change the application to run only those two functions.

Data-Driven Modeling

E.g.) Cycle count = C1 x # instructions ^(exp1) + C2 x # FP instructions^(exp2) + C3 x # memory instructions^(exp3) etc.

Related works

Workload sampling

- TBPoint [IPDPS '14]
- PKA [MICRO '20]
- Sieve [ISPASS '23]
- Photon [MICRO '23]
- STEM [MICRO '25] (my work!)

Other techniques

- Path Forward Beyond Simulators [MICRO '23]
- GPU Scale-Model Simulation [HPCA '24]

ML-based performance modeling

- Path Forward Beyond Simulators [MICRO '23]
- Performance model for GPU kernels in DNN workloads
- Takeaway: Simple regression models with data size as an input can predict the performance of ML workloads pretty well!

Fast simulators for ML workloads

- ML workloads are relatively easier to model the performance
- E.g. roofline models for GEMM (General Matrix Multiply) kernels
- ASTRA-Sim [ISPASS '23] ML on Multi-GPU systems
- LLMSimulator [MICRO '24] LLM inference on Multi-GPU systems
- TrioSim [ISCA '25] ML on Multi-GPU systems
- Event-drive, cycle-accurate simulators with simple performance models

TBPoint [IPDPS '14]

Inter-kernel (kernel-level) sampling

$$\begin{split} & \text{inter_feature_vector}_i = < \text{Kernel_Launch_Size}, \text{Control_Flow_Divergence}, \\ & \text{Memory_Divergence}, \text{Thread_Block_Variations} > \\ & = < \frac{\text{\#thread_insts}_i}{\text{avg_thread_insts}}, \frac{\text{\#warp_insts}_i}{\text{avg_warp_insts}}, \\ & \frac{\text{\#mem_reqs}_i}{\text{avg_mem_reqs}}, \text{CV_TB_size} > \end{split}$$

- 1. Extract feature vector per each kernel
- 2. Use clustering to cluster similar kernels into groups

TBPoint [IPDPS '14]

Intra-kernel sampling

- Skip the homogeneous region
- Requires full functional simulation → Does not scale with ML workloads

PKA [MICRO '20]

Inter-kernel (kernel-level) sampling: more metrics than TBPoint

Metric		
Coalesced global loads		
Coalesced global stores		
Coalesced local loads		
Thread global loads		
Thread global stores		
Thread local loads		
Thread shared loads		
Thread shared stores		
Thread global atomics		
#Instructions		
Divergence efficiency		
#thread blocks		

→ K-mreans clustering

PKA [MICRO '20]

- Intra-kernel sampling: early-stopping (more scalable than TBPoint)
- Detect a stable IPC, end simulation early and estimate the final statistics

Sieve [ISPASS '23]

- PKA's limitation: too many metrics to profile!
- Nsight Compute incurs 100-1000x slowdown on most workloads
- Idea: only use instruction count for hand-tuned kernel clustering
- Categorize kernels into tiers:
- Tier-1: There is no variation in the number of instructions across invocations of the same kernels.
- Tier-2: There is little variation in the number of instructions across invocations of the same kernels.
- Tier-3: There is large variation in the number of instructions across invocations of the same kernels.

Sieve [ISPASS '23]

- Tier-1: There is no variation → sample the first kernel
- Tier-2: There is little variation → sample the first kernel
- Tier-3: There is large variation → split the group further with KDE (kernel density estimation), and sample the first kernel from each group
- Limitation:
- Sieve still needs instr-level counters
- Low accuracy on divergent workloads

Photon [MICRO '23]

- Strategy: fine-grained, online simulation skipping
- Similar to PKA's "if IPC is stable then skip simulation" method, but in three levels: BB (Basic block), Warp, and Kernel level.

Photon [MICRO '23]

- Uses online analysis during simulation → No offline step for profiling
- What about for the trace-based simulations? → Still needs full trace

GPU Scale-Model Simulation [HPCA '24]

- Estimating performance on large GPUs with small-GPU simulators
- Strong-scaling workloads: workload is fixed; independent of system size
- Weak-scaling workloads: the workload scales with system size

The work provides simulation speedup (only) for weak-scaling workloads

Open research questions

- Where should we simulate if we have multiple concurrent GPU kernels?
 (e.g. Multi-GPU systems with computation & communication overlap)
- How can we warm up the cache in between the simulation points?
 e.g. L2\$ in between kernels of full simulation and sampled simulation can affect the accuracy of workload sampling
- In CPUs, multiple techniques exist; fast-forwarding, checkpointing, etc.

Swift and Trustworthy Large-Scale GPU Simulation with Fine-Grained Error Modeling and Hierarchical Clustering

Euijun Chung, Seonjin Na, Sung Ha Kang, Hyesoon Kim Georgia Institute of Technology 2025 IEEE/ACM International Symposium on Microarchitecture

Cycle-level GPU microarchitecture simulation

Cycle-level simulations enable fast validation of new (micro) architecture designs.

Cycle-level GPU Simulator

IPC
Cache Hit Rate
Num of Instrs
Memory Access
TLB Hit Rate

• • •

Power usage

Cycle-level GPU Simulations are slow

Problem: Cycle-level simulators track the state of GPU at every cycle.

✓ A 1-second workload on a real GPU can take several days on a simulator.

	Real GPU*	Macsim [17]
Simulation Rate (KIPS)	4103750	50.5
GPT-2: Generate 100 tokens	0.925 sec	20.88 hrs

Can we reduce the simulation time by leveraging the characteristics of large-scale GPU workloads?

- **Speedup** over full simulation $\approx \frac{498}{150} = 3.32$
- Sampling error = $\frac{|500-498|}{498} \times 100(\%) = 0.4\%$

Tradeoff on speedup and accuracy:

More kernel samples make the sampled simulation longer but accurate.

Diverse behaviors of GPU kernels in ML workloads

Challenge: Identical GPU kernels show huge variation across invocations at runtime.

Strategy: Sample sizes should be chosen differently for each kernel.

- Kernels with broad distributions → More samples for high accuracy
- Kernels with distinct peaks → Sample less from each peak for high speedup & accuracy

Leveraging kernel execution time for sampling

Idea: leverage kernel execution time as a key signature to sample kernels.

✓ Kernel's execution time reveals much information about runtime characteristics.

- Narrow: constant execution time → less samples
- Wide: variable performance due to uarchitecture-sensitive code → more samples
- Multiple: kernel used in multiple contexts → separate samples from each peak

Statistical approach for kernel-level sampling

Solution: Statistical approach based on kernel profiles.

We can adaptively determine the **sample sizes of kernels** based on their **execution time distributions**.

• Sample size based on CoV (Coefficient of variation, σ/μ)

Given a workload with a kernel sequence, How to select the <u>important</u> kernels?

1. Group kernels by kernel names.

Question: How to separate the peaks into separate groups?

2. ROOT **additionally separates** runtimeheterogenous kernels into different groups.

3. STEM selects the **optimal sample size** of each group for the best speedup and accuracy.

Kernel-level sampling of GPU workloads

✓ Sampling error is minimized.

Applying the Central Limit Theorem

Central Limit Theorem (CLT): The mean of samples will always follow a Gaussian distribution as the sample size $m \to \infty$.

Average kernel execution time follows a Gaussian distribution $\overline{X} \sim N(\mu, \sigma^2/m)$.

We can **analytically calculate** the relationship between the sample size and the error.

• The **minimum number of samples** to ensure the error bound ϵ :

$$e = \left| \frac{|C|\bar{X} - |C|\mu}{|C|\mu} \right| = \left| \frac{\mu \pm \frac{z_{1-\alpha/2}\sigma}{\sqrt{m}} - \mu}{\mu} \right| = \frac{z_{1-\alpha/2}\sigma}{\mu\sqrt{m}} \le \epsilon$$
 Error bound (e.g. 5%)

STEM: Statistical Error Model for kernel sampling

Minimization problem: minimize simulation time while the error is bounded.

The **goal**:

Minimize the total simulation time (= Maximize the speedup)

The **constraints**:

- Sampling error should stay within the given error bound ϵ .
- We should sample at least one sample from each cluster
- √ The solution can be obtained with KKT (Karush-Kuhn-Tucker) conditions
 - More details in the paper!

ROOT: Fine-grained hierarchical kernel clustering

Goal: Distinguish each peak into separate clusters to accurately & effectively sample

Challenges:

- Peaks are often distinct or overlapping
- The number of clusters is unknown, cannot apply traditional clustering algorithms (kmeans)

Solution:

 We propose ROOT, hierarchical clustering solution for GPU kernels

Deriving the ROOT

ROOT is a <u>recursive algorithm that uses STEM</u> to estimate whether splitting will lead to a better speedup.

Compare the simulation time:

$$au_{old} = m\bar{X}$$

$$\tau_{new} = \sum_{i} m_i \bar{X}_i$$

→ We can **estimate** how much simulation time we can save from $\tau_{new} = \sum m_i \bar{X}_i$ splitting kernels into smaller clusters

Hierarchical clustering of ROOT

Evaluation of STEM+ROOT

Evaluated GPU workloads:

- Rodinia* (GPGPU workloads)
- Casio** (ML workloads)
- Huggingface (Large-scale LLM/ML workloads)

Baseline methods:

GPUs, ASPLOS 2024

- Random sampling
- PKA [MICRO '20]
- Sieve [ISPASS '23]
- Photon [MICRO '23]

Speedup & Error validation

Methods	Rodinia (GPGPU)		CASIO (ML)		Huggingface (LLM & ML)	
	Speedup	Error	Speedup	Error	Speedup	Error
	(x)	(%)	(x)	(%)	(×)	(%)
Random*	7.09	26.67	984.87	28.39	1004.97	2.40
PKA	8.35	34.85	1425.01	29.26	N/A (Profiling overhead)**	
Sieve	2.62	6.63	391.09	23.75	N/A (Profiling overhead)**	
Photon	2.84	2.71	168.61	9.85	N/A (BBV process overhead)**	
STEM	3.00	0.93	109.595	0.36	31719.057	0.57

^{*}Uniform random; We sample 10% and 0.1% of kernels for Rodinia and CASIO, respectively.

 STEM & ROOT achieves comparable speedup with significantly lower sampling error compared to baseline methods.

^{**}Profiling and BBV processing overhead is estimated at up to 78.68 days.

Speedup & Error validation on cycle-level simulators

μ arch Changes	*PKA error (%)	*Sieve error (%)	Photon error (%)	STEM (ours) error (%)
Baseline	20.06	24.40	5.96	2.03
Cache size ×2	22.66	25.67	5.44	1.93
Cache size $\times \frac{1}{2}$	16.65	22.61	5.33	1.96
#SM \times 2				
	17.90	28.18	6.49	2.28
$\#SM \times \frac{1}{2}$	23.68	23.08	5.14	2.30

^{*}We observe high error on Rodinia workloads, as we use smaller configurations to run full cycle-level simulation for error measurement.

- STEM & ROOT consistantly achieves lower sampling error compared to baseline methods on Macsim.
- Adaptive sample size helps preserving the accuracy even if we change the microarchitecture

More details & evaluation results in our paper!

- Mathematical modeling and proofs on statistical sampling
- Sensitivity analysis on changing the error bound
- Evaluating STEM on a GPU with kernel profiles from a different GPU
- Evaluation on microarchitecture metrics (Cache hit rate, # instrs, etc.)
- Workload profiling overhead comparison for sampling
- and more.

Conclusion

- Our work leverages execution time of kernels to distinguish runtimeheterogeneous kernels, thereby achieving fast and accurate kernel sampling.
- STEM: Statistical Error Model for optimal sample size selection with bounded error
- ROOT: Fine-grained hierarchical clustering for kernel-level sampling
- Accurate and scalable kernel sampling solution for large-scale GPU workloads
 - Small (<1%) sampling error & high speedup on GPU workloads.
 - Scalability on large-scale workloads with minimal profiling overhead

Backup slides

STEM: Statistical Error Model for kernel sampling

Question: What if we are sampling kernels from multiple clusters at the same time?

Sample m1, m2, m3 kernels from each cluster

Optimization problem:

Solution (Using KKT Conditions):

$$m_{i} = \left\lceil \frac{\sqrt{\sum_{j} a_{j} b_{j}}}{c} \cdot \sqrt{\frac{b_{i}}{a_{i}}} \right\rceil \text{ for } \forall i \in \{0, ..., k-1\}$$

$$a_i \equiv \mu_i, \, b_i \equiv N_i^2 \sigma_i^2$$
, and $c \equiv (\epsilon \sum_i N_i \mu_i / z_{1-\alpha/2})^2$

Deriving the ROOT

Compare the speedup:

$$\tau_{old} = m\bar{X} = \lceil (z_{1-\alpha/2}\sigma/\mu\epsilon)^2 \rceil \cdot \bar{X}$$

$$\tau_{new} = \sum_{i} m_{i} \bar{X}_{i} = \sum_{i} \left| \frac{\sqrt{\sum_{j} a_{j} b_{j}}}{c} \cdot \sqrt{\frac{b_{i}}{a_{i}}} \right| \cdot \bar{X}_{i}$$

Baseline kernel sampling methods for GPU workloads

Sampling Methods	PKA [2]	Sieve [24]	Photon [21]	STEM+ROOT (ours)	
Kernel signature	12 instr. level metrics	Kernel name &	GPU Basic Block Vector (BBV)	Kernel name &	
		Num. of instrs	GPO Basic Block vector (BBV)	Exe. time distribution	
Clustering	k-means	Hand-tuned,	Find a kernel with	Fine-grained hierarchical (ROOT)	
	K-means	based on CoV (σ/μ)	similar BBV and #warps		
Kernel sample size	Single per cluster,	Single per cluster,	(95% threshold)	Adaptive sampling with statistically	
	first chronological	first chronological	(93% threshold)	determined sample size (STEM)	
Profiling granularity	Instr. count and	Instruction to the salars	Basic block count per warp	Execution time per kernel	
	statistics per warp	Instr. count per warp	Basic block could per warp		
Scalability for	Very low Low		Low	High	
large-scale workloads	very low	Low	Low	I nign	

Limitations on previous works:

- PKA, Sieve, and Photon all rely on static code-level analysis, which fail to capture runtime heterogeneity of GPU kernels
- PKA and Sieve rely on heavy profiling of instr-level metrics
- Photon's BBV comparions between kernels involve $O(N^2d)$ computations.
 - N = Number of kernels, d = BBV dimension

Speedup & Error validation

Profiling overhead

Sampling	Profiler used,	Rodinia	CASIO	Huggingface	
methods	metrics collected	(GPGPU)	(ML)	(LLM & ML)	
PKA [2]	NCU, collecting 12 metrics	35.57×	3704.23×	N/A	
Sieve [24]	NVBit, collecting				
	num. of instrs	94.14×	293.58×	N/A	
Photon [21]	NVBit, collecting	12.81×	38.58×	N/A	
	& processing BBVs	12.01%	30.30%		
STEM	NSYS, collecting	1.54×	5.53×	1.33×	
(ours)	kernel exe. time	1.54	3.33X	1.55	

Using execution time as a key parameter gives a huge improvement in scalability

