ИЗПИТ

по Анализ I част, специалност "Компютърни науки" 1 февруари 2022г.

Име:	 Фак.номер:

- 1. Нека A е ограничено непразно множество от реални числа. Дайте дефиниция на $\sup A$ и $\inf A$. Какво означава, че $c \in \mathbb{R}$ не е инфимум на A? Нека M и N са такива непразни множества от реални числа, че за всяко x от M и за всяко y от N е изпълнено неравенството $x \leq y$. Докажете, че съществува такова реално число r, че да са в сила неравенствата $x \leq r \leq y$ за всяко $x \in M$ и за всяко $y \in N$.
- 2. Дайте дефиниция на граница и на точка на сгъстяване на дадена редица от реални числа. Докажете, че ако съществува реално число a такова, че от всяка подредица на редицата $\{a_n\}_{n=1}^{\infty}$ може да се избере подредица с граница a, то $\{a_n\}_{n=1}^{\infty}$ е сходяща редица с граница a.
- 3. Нека $f: D \longrightarrow \mathbb{R}$, където $D \subset \mathbb{R}$. Какво означава f да е непрекъсната в дадена точка? Какво означава f да е непрекъсната? Непрекъсната ли е функцията f, зададена с $f(x) = [x] \sin x$ (тук [x] е цялата част на x). Формулирайте и докажете Теоремата на Вайерщрас.
- 4. Нека $f: \mathbb{R} \longrightarrow \mathbb{R}$ е непрекъсната и съществуват границите $\lim_{x \to -\infty} f(x) = l_1$, $\lim_{x \to +\infty} f(x) = l_2$, като $l_1, \ l_2 \in \mathbb{R}$. Докажете, че f е ограничена. (Използвайте предишната задача.)
- Напишете дефиницията за диференцируемост на функция в дадена точка.
 Диференцируема ли е функцията

$$f(x) = \begin{cases} x^2 e^{-x^2} & \text{, and } |x| \le 1\\ \frac{1}{e} & \text{, and } |x| > 1 \end{cases}$$

върху реалната права? Ако да, пресметнете производната на f. Формулирайте и докажете правилото за диференциране на композиция.

- 6. Формулирайте и докажете Теоремата на Лагранж за средните стойности. Докажете, че $|\arctan y| < |x-y|$ за всички реални числа x и y.
- 7. Напишете формулата на Тейлър с остатък във формата на Пеано и с остатък във формата на Лагранж, като формулирате и достатъчни условия върху функцията, при които са в сила съоветните формули. Докажете формулата на Тейлър с остатък във формата на Пеано.