

Introducción a la Física (2014)

• Unidad: 02

• Clase: 05

Fecha: 20140529J

Contenido: Energía

Web: http://halley.uis.edu.co/fisica_para_todos/

• Archivo: 20140612J-HA-energia.pdf

En el episodio anterior -> Como se escribe un paper

En el episodio anterior

Modalidad de Entrega

Deberán realizar un informe grupal de no más de tres páginas en ŁTEX, identificando claramente los miembros del grupo. Dado que nos interesa que empiecen a trabajar en ŁTEX, en este informe la presentación final del informe no será evaluada (salvo el cumplimiento de los lineamientos expresados debajo), sólo los conceptos vertidos y los análisis realizados. En todos los casos, utilicen todos los materiales que consideren necesarios para justificar sus respuestas, **citando** correctamente las fuentes utilizadas.

Recuerde los siguientes lineamientos mínimos para un informe:

- El título debe capturar la atención de un posible lector
- Es importante identificar correctamente a los autores del trabajo
- El informe debe tener un resumen corto que explique las principales características y las conclusiones del trabajo realizado
- Las figuras deben poseer epígrafes (pie de gráficas). Estos deben ser autocontenidos: con sólo leer el epígrafe el lector debe ser capaz de entender las gráficas sin necesidad de leer el texto.
- Las figuras deben ser explicadas y referenciadas en el texto del informe.
- Las unidades se escriben fuera del entorno matemático:
 - **incorrecto**: "... la distancia medida fue de 1,5 *m t s* ..." (se obtuvo así: \$1.5 mts\$. Notar además que "mts" no es la abreviatura de metros en el sistema internacional).
 - correcto: "... la distancia medida fue de 1,5 m..." (se obtuvo así: \$1.5\$\, m).
- Un trabajo no puede tener faltas ni ortográficas ni gramaticales. Cuando termine de escribir, lea el texto en voz alta y corrija aquellas frases que necesiten serlo.

¿Realmente existe?

- Energía (del griego ἐνέργεια energeia, actividad, operación): magnitud escalar que describe la cantidad de trabajo que puede ser realizado por una fuerza.
- Es un atributo de los objetos y de los sistemas y obedece una ley de conservación: es una magnitud escalar conservada
- Cada fenómeno físico se asocia con alguna forma de energía
- •Incluyen:
 - cinética, potencial, térmica, gravitatoria, sonora, luminosa, elástica, electromagnética, nuclear, ...

Energía mecánica

- En general, se denomina
- Energía Mecánica = Potencial + Cinética
- •OJO (= Guarda = Cuidado):
 - no dice "Potencial Gravitatoria", dice "Potencial"

Nada se gana, nada se pierde...

Energía mecánica se convierte

en por

energía mecánica
energía térmica
energía eléctrica
radiación electromagnética
energía química
energía nuclear

Nada se gana, nada se pierde...

Energía química se convierte

en por

energía mecánica

energía térmica

energía eléctrica

radiación electromagnética

energía química

Analizando conversiones de energía

Energía potencial gravitatoria

- Recordemos las características de la energía potencial
 - Interacción → "Cargas"
 - Depende de la posición relativa
 - configuración espacial en presencia de un CAMPO de fuerzas conservativas
- ¿podemos aventurar una dependencia funcional?

Energía potencial gravitatoria

$$E_g(r) = -G \frac{m_1 m_2}{r}$$

$$G = 6.67 \times 10^{-11} \frac{J m}{kg^2} \qquad G = 6.67 \times 10^{-11} \frac{m^3}{kg s^2}$$

Cambio de energía potencial

$$\Delta E_{g12} = E_{g2} - E_{g1}$$

$$\Delta E_{g12} = -G m_1 m_2 \left(\frac{1}{r_2} - \frac{1}{r_1}\right)$$

Cambio de energía potencial

En los cambios de energía potencial, sólo importan las posiciones iniciales y finales

Referencia externa

- Sólo movemos la masa m,
- Entonces c=a
- Pero
 - b-a=r₁
 - d-c=r,

¡¡Sólo importan las posiciones relativas!!

La referencia en el infinito

- Decreto
- · Se considera como punto de referencia para la energía

 La energía potencial gravitatoria para dos cuerpos a distancia r es igual al trabajo necesario para separar esos cuerpos desde esa distancia r hasta una distancia infinita.

Suponga que m,=M es la Tierra

$$\Delta E_{g12} = -G M m \left(\frac{1}{r_2} - \frac{1}{R} \right)$$

$$\Delta E_{g12} = -GMm(\frac{1}{R+h} - \frac{1}{R})$$

Paréntesis matemático

$$x \to 0 \Rightarrow \frac{1}{(1+x)} \simeq 1 - x$$

$$h \ll R \Rightarrow \frac{1}{(1+\frac{h}{R})} \simeq 1 - \frac{h}{R}$$

 La famosa fórmula para la variación de energía potencial gravitatoria

$$\Delta E_{g12} = -GM m \left(\frac{1}{R+h} - \frac{1}{R}\right) \simeq mgh$$

$$g = \frac{GM}{R^2}$$

- g es la aceleración de la gravedad
- Sobre la superficie terrestre, g ~ 9.8 m/s²
- ¿Podremos calcular los valores de g para otros cuerpos?

$$\left(g_{\oplus} = \frac{GM_{\oplus}^{\prime}}{R_{\oplus}^{2}}\right)$$

La gráfica

La energia se conserva.... siempre

Dado que la energía se conserva:

La variación de un tipo de energía implica la variación de otro tipo para compensar el cambio: la variación total es cero

$$\Delta E_g + \Delta E_x = 0$$

$$\Delta E_g = -\Delta E_x$$

$$\Delta E_g = -\Delta E_x$$

$$E_{g2} + E_{x2} = E_{gI} + E_{xI} \rightarrow E_2 = E_1$$

La energía total inicial es igual a la energía total final

Mensaje de unos amigos

