

A Level · OCR · Physics

Multiple Choice Questions

E.m.f & Internal Resistance

E.m.f & Internal Resistance / Calculating E.m.f / Determining Internal Resistance / E.m.f & Potential Difference / Energy Transfer

Medium (5 questions) /5 Hard (2 questions) /2 **Total Marks** */*7

Scan here to return to the course

or visit savemyexams.com

Medium Questions

1 The potential difference across a lamp is 2.5 V. The current in the lamp is 20 mA.

What is the energy dissipated in the lamp in 3.0 hours?

- **A.** 0.050 J
- **B.** 0.15 |
- **C.** 9.0 |
- **D.** 540 J

(1 mark)

2 One million electrons travel between two points in a circuit.

The **total** energy gained by the electrons is 1.6×10^{-10} J.

What is the potential difference between the two points?

- **A.** $1.6 \times 10^{-16} \text{ V}$
- **B.** $1.6 \times 10^{-4} \text{ V}$
- **C.** $1.0 \times 10^3 \text{ V}$
- **D.** $1.0 \times 10^9 \text{ V}$

(1 mark)

3 The diagram below represents a battery composed of two cells, each with an emf of 5 V each connected in series with an external resistor with a resistance of 4.7 k Ω . A voltmeter placed in parallel with the external resistor records a measurement of 9.4 V.

The resistor labeled r represents the combined internal resistance of the two cells.

Calculate the internal resistance of the battery.

- **A.** 3 O
- **B.** 35 O
- **C.** 120 Ω
- **D.** 300 Ω

(1 mark)

- **4** Consider the following statements about the electromotive force and internal resistance:
 - 1. Because of internal resistance, the electromotive force is always greater than the terminal potential difference
 - 2. The lost volts are found by adding together the terminal potential difference and the electromotive force
 - 3. The electromotive force is not actually a force and has units of J ${\rm C}^{-1}$

Which of the statements is correct?

- **A.** 1 and 2
- **B.** 1 and 3
- **C.** Only 1
- **D.** 2 and 3

- **5** A 5 Ω resistor receives 10 J of energy when 2.5 C of charge flows through it. What is the potential difference across the resistor?
 - **A.** 2 V
 - **B.** 4 V
 - **C.** 25 V
 - **D.** 50 V

(1 mark)

Hard Questions

1 Two cells, each of e.m.f E and internal resistance *r* are placed in series with two parallel resistors of resistance R as shown in the diagram below.

Which of the following expressions is equal to the current drawn from these cells?

$$A. I = \frac{\mathcal{E}}{(2r + \frac{R}{2})}$$

B.
$$I = \frac{2\mathcal{E}}{(2r + \frac{R}{2})}$$

$$C. I = \frac{\mathcal{E}}{(r+R)}$$

D.
$$I = \frac{4\mathcal{E}}{R}$$

(1 mark)

2 Consider a resistor with length *L*, cross-sectional area *A*, and resistivity? joined in series with a cell of electromotive force ξ and internal resistance r. For this particular power supply, the mean drift velocity of electrons v passing through the resistor and the number density of conduction electrons *n* within the resistor are known.

Which of the following expressions are equal to the internal resistance of the cell?

A.
$$r = \frac{1}{A} \left(\frac{\xi}{nev} - \rho L \right)$$

B.
$$r = \frac{1}{A} \left(\frac{\xi}{nev} + \rho L \right)$$

$$\mathbf{C.} \ r = \left(\frac{\xi}{Anev} - \rho L\right)$$

D.
$$r = \frac{\rho L}{A}$$

(1 mark)