Name: Vivek Vikram Pundkar

Roll no: 77

GR no: 11910860

Division: C

Batch: 3

Josephus Problem

Algorithm

i) Pass the number of people 'n' and the number of people to

ii) be skipped after each killing 'k' to the Josephus function.

iii) If value of n is not 1, call the josephus(n-1, k)

iv) Position returned by call will be considered and return (josephus(n - 1, k) + k-1) % n + 1

v) Stop when n = 1 and return 1.

Analysis:

Let's assume the total time required to be T(n). But for recursively calling the function n-1 times the time complexity would be T(n-1). Thus, we can say,

$$T(n) = T(n-1) + O(1)$$
(1)

$$T(n-1) = T(n-2) + O(1)$$
(2)

$$T(1) = O(1)$$
(3)

After substituting values, we get, T(n) = O(n)

Time Complexity: O(n)

GCD

Algorithm

i) Pass the two numbers 'a' and 'b' to the GCD function.

- ii) If we subtract a smaller number from a larger GCD doesn't change, so if we keep subtracting repeatedly the larger of two, we end up with GCD.
- iii) Now instead of subtraction, if we divide the smaller number a%b,
- iv) Stop when a = 0 and return b as final answer.

Analysis:

Assuming a>b, by using the principle of mathematical induction we can prove that value of a will be at least f(n+2) and value of b will be at least f(n+1) where f(n) is the nth term in the Fibonacci series. So,

$$A >= f(n+2) \& b >= f(n+1)$$
 (1)

Now according to the Binet formula,

$$F(n) = \{((1 + \sqrt{5})/2)n - ((1 - \sqrt{5})/2)n\}/\sqrt{5}$$
 or $f(n) \approx \emptyset n$

From this we can say,

$$N \approx \log \emptyset(f(n))$$
 (2)

Combining (1) and (2),

$$F(n+1) \approx min(a,b)$$

$$N{+}1 \approx log \emptyset min(a{,}b)$$

$$O(n) = O(n+1) = \log(\min(a,b))$$
 (3)

Time Complexity: O(Log min(a, b))

Exponential

Algorithm

- i) Pass the two numbers 'x' and 'n' to the gcd function.
- ii) Calculate m by calling gcd function recursively and passing x and n/2 as parameters.
- iii) Stop calling recursive function when n = 0 and return 1.
- iv) Return m*m*x for every recursion if n is odd.
- v) Return m*m for every recursion of n is even.

Analysis:

Let the total time required be T(n). Then time required for recursive function will be T(n/2) and the time required for the return statement will be O(1). So, we can say:

$$T(n) = T(n/2) + O(1)...(1)$$

$$T(n/2) = T(n/4) + O(1)...(2)$$

From the above equations,

$$T(n) \sim O(\log n)$$

Time Complexity of optimized solution: O(logn)