Lecture Notes On Back Propagation Technique for CNNs (Part I)

Harry Li [‡], Ph.D.

Computer Engineering Department College of Engineering, San Jose State University San Jose, CA 95192, USA

Research and Development Center for Artificial Intelligence and Automation [‡]
CTI Plus Corporation, 3679 Enochs Street
Santa Clara, CA 95051, USA

Email†: hua.li@sjsu.edu

Abstract—This note is for my lecture on convolutional neural network training techniques. In particular, the back propagation techniques for CNN facial recognitions.

I. BACK PROPAGATION TECHNIQUE

In this note, mathematical formulation of back propagation technique is discussed below.

First, consider notation for a simple feed forward neural network, define input neuron $\overrightarrow{\sigma}$ and output neuron \overrightarrow{S} , so we have

Definition 1. Define input and output neurons for a neural network, the input neuros

$$\overrightarrow{\sigma} = \begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \vdots \\ \vdots \\ \sigma_n \end{pmatrix} \tag{1}$$

and the output neurons

$$\overrightarrow{S} = \begin{pmatrix} s_1 \\ s_2 \\ \cdot \\ \cdot \\ \cdot \\ s_{n_0} \end{pmatrix}$$
(2)

and weights $w_{i,k}$, where i for output neuron s_i , and k for input neuron σ_k , (insert Figure 1 here), hence we have an activation function below.

Definition 2. Define an activation function as

$$s_i = f(w_{i,k} \cdot \sigma_k) \tag{3}$$

$$s_i = f(\sum_{i=1}^{n_o} w_{i,k} \cdot s_k + \phi) = f(\sum_{i=1}^{n_o+1} w_{i,k} \cdot s_k)$$
 (4)

Note in case of convolutional NN, the nerons σ_k in the above equation is the output of 2D convolution layer. Denote 2D convolution as

$$\sigma_k = g_{\sigma_k}(l_i(x, y) * K(x, y); k_{u,v}) \tag{5}$$

where $l_i(x,y)$ is convolution layer i, K(x,y) is a convolution kernel, whose coefficients are u and v such as $((u,v) \in \omega)$, e.g., in a k-by-k patch, k are odd numbers.

Therefore, equation (4) can be updated as follows for one output neuron

$$s_i = f(w_{i,k} \cdot g_{\sigma_k}(l_i(x,y) * K(x,y); k_{u,v}|u,v \in \omega))$$
 (6)

and for all output neuron n_o at that layer with summation

(1)
$$s_i = f(\sum_{i=1}^{n_o+1} w_{i,k} \cdot g_{\sigma_k}(l_i(x,y) * K(x,y); k_{u,v} | u, v \in \omega))$$
 (7)

or in a simplified notation,

$$s_{i} = f(\sum_{i=1}^{n_{o}+1} w_{i,k} \cdot g_{\sigma_{k}}(l_{i} * K))$$
 (8)

Exampel 1. For a simple NN with 2 inputs and 1 output, as given in my hand written note for the case of facial recognition for two person classes, we have input

$$\overrightarrow{\sigma} = \begin{pmatrix} \sigma_1 \\ \sigma_2 \end{pmatrix} \tag{9}$$

and output vector

$$\overrightarrow{s} = (s_1) \tag{10}$$

and weights

$$w_{i,k} \tag{11}$$

for output index i = 1, and input index k = 1, 2. So, we have inputs (σ_1, σ_2) , for example from the given simple two persons (classes) case, have two classes of feature vectors, each vector is two dimensional vector, from my hand written

lecture note, we have a feature vector (1, 2) from class C_1 , which can fit into the equation above.

Now, the activation function of the outpu layer is

$$s_i = f(\sum_{i=1}^2 w_{i,k} s_k + \phi) = f(\sum_{i=1}^3 w_{i,k} s_k)$$
 (12)

Definition 4. Define a transfer function for a single layer NN, denote σ_k as input, for multilayer NN, denote s_k as the input from the previous output layer.

$$h_i = \sum_{i=1}^{n_o} w_{i,k} \sigma_k + \phi = \sum_{i=1}^{n_o+1} w_{i,k} \sigma_k$$
 (13)

So the neuron output i is

$$s_i = f(h_i) = f(h_i(w_{i,k} \cdot \sigma_k)) \tag{14}$$

Note for CNN with convolution layer(s), we have

$$s_i = f(h_i) = f(h_i(w_{i,k} \cdot g_{\sigma_k}(l_i * K)))$$
 (15)

Since l_i convolution data layer, we drop it from the notation and keep the kernel K in the notation for formulation of training. So,

$$s_i = f(h_i) = f(h_i(w_{i,k} \cdot g_{\sigma_k}(K)))$$
 (16)

Example 2. Continued from Example 1, for a simple NN with 2 inputs and 1 output, we have the transfer function as

$$h_i = \sum_{i=1}^{2} w_{i,k} \sigma_k + \phi = \sum_{i=1}^{3} w_{i,k} \sigma_k$$
 (17)

Definition 5. Define an error at each neuron output

$$\zeta_i^{\ \mu} - s_i^{\ \mu} \tag{18}$$

note where $\zeta_i^{\ \mu}$ (pronouced as 'zeta') is a desired (correct) output i at experiment μ , and $s_i^{\ \mu}$ is the actual output i at that experiment.

Now, for CNN, the error function above can be written as

$$\zeta_i^{\mu} - f(h_i(w_{i,k} \cdot g_{\sigma_k}(K)))^{\mu}$$
 (19)

where both $w_{i,k}$ and K have to be learned in the training of CNN.

Definition 6. Define total error for all neuron outputs and for all experiments

$$D = \frac{1}{2} \sum_{\mu=1}^{m} \sum_{i=1}^{n_o} (\zeta_i^{\mu} - s_i^{\mu})^2$$
 (20)

note where ${\zeta_i}^\mu$ for i equal to 1,2,..., n_o , for n_o output neurons. Total number of experiment is m. In the previous lecture example, we have two classes (persons), each class with 3 feature vectors for the hand calculation, so experiment μ is equal to 6 due to total number of 6 feature vectors for the experiments.

In case of CNN, we will have the above equation to count the convolution kernel, so we have

$$D = \frac{1}{2} \sum_{\mu=1}^{M} \sum_{i=1}^{n_o} (\zeta_i^{\mu} - f(h_i(w_{i,k} \cdot g_{\sigma_k}(K)))^{\mu})^2$$
 (21)

Property 1. Minimize error function

$$\frac{\partial D}{\partial w_{i,k}} = \frac{\partial}{\partial w_{i,k}} \frac{1}{2} \sum_{\mu=1}^{6} \sum_{i=1}^{1} (\zeta_i^{\mu} - s_i^{\mu})^2
= \sum_{\mu=1}^{6} (\zeta_i^{\mu} - s_i^{\mu}) f'(h_i^{\mu}) \frac{\partial h_i}{\partial w_{i,k}}$$
(22)

So for the hand calculation example, we have 1 output, and input feature vector is 2 dimension,

$$\frac{\partial D}{\partial w_{1,k}} = \frac{\partial}{\partial w_{1,k}} \frac{1}{2} \sum_{\mu=1}^{6} \sum_{i=1}^{1} (\zeta_1^{\mu} - s_1^{\mu})^2 = \sum_{\mu=1}^{6} (\zeta_1^{\mu} - s_1^{\mu}) f'(h_1^{\mu}) \frac{\partial h_1}{\partial w_{1,k}}$$
(23)

Note the derivative of the activation function

$$f'(h_1^{\mu}) \tag{24}$$

We can choose RELU as an activation function.

Property 2. *Minimize error function with convolution kernel coefficients*

$$\frac{\partial D}{\partial k_{i,k}} = \frac{\partial}{\partial k_{i,k}} \frac{1}{2} \sum_{\mu=1}^{6} \sum_{i=1}^{1} (\zeta_i^{\mu} - s_i^{\mu})^2
= \sum_{\mu=1}^{6} (\zeta_i^{\mu} - s_i^{\mu}) f'(h_i^{\mu}) \frac{\partial h_i}{\partial k_{i,k}}$$
(25)

Property 3. Learning by updating the weights by gradient descent

$$w_{i,k}(t+1) = w_{i,k}(t) + \delta w_{i,k}(t)$$
 (26)

where

$$\delta w_{i,k}(t) = -\epsilon \frac{\partial D}{\partial w_{i,k}} \tag{27}$$

for the given example, we have

$$w_{1,k}(t+1) = w_{1,k}(t) + \delta w_{1,k}(t) \tag{28}$$

where

$$\delta w_{1,k}(t) = -\epsilon \frac{\partial D}{\partial w_{1,k}} \tag{29}$$

Writing the $\delta w_{i,k}(t) = -\epsilon \frac{\partial D}{\partial w_{i,k}}$ in a vector form, we have

$$\begin{pmatrix}
\frac{\partial D}{\partial w_{i,1}} \\
\frac{\partial D}{\partial w_{i,2}} \\
\vdots \\
\frac{\partial D}{\partial w_{i,n}}
\end{pmatrix} = \begin{pmatrix}
(\zeta_i^{\mu} - s_i^{\mu}) f'(h_i^{\mu}) \frac{\partial h_i}{\partial w_{i,1}} \\
(\zeta_i^{\mu} - s_i^{\mu}) f'(h_i^{\mu}) \frac{\partial h_i}{\partial w_{i,2}} \\
\vdots \\
(\zeta_i^{\mu} - s_i^{\mu}) f'(h_i^{\mu}) \frac{\partial h_i}{\partial w_{i,n}}
\end{pmatrix}$$
(30)

(To be continued)