鉄緑会 高3化学 受験科テスト 第5回 板書ノート(前期第6週実施)

第1問

—【問題文】————————————————————————————————————
結晶構造についての以下の文章を読み、後の問いに答えよ。
結晶においては、球状の原子同士が互いに接しあって規則正しく積み重なることによって結晶構造が形成されている。結晶全体の体積に占める原子の体積の割合を充填率という。充填率が理論上の最大値 P をとるような構造は最密充填構造と呼ばれ、面心立方格子(図1)や T がその例として知られている。 最密充填構造である面心立方格子の構造について、さらに考察を進めてみよう。面心立方格子の単位格子を、図1の3点 A,B,C を含む平面で切断すると、図2のような断面図が得られる。この断面は、球を平面状に最も密に充填した構造になっており、最密充填層と呼ばれる。図1の単位格子の一辺の長さを a ,最密充填層の層間距離を L とすると, $L=$ D a が成り立つ。 面心立方格子において、1つの原子は、最も近い位置にある原子 T 個と接している。その中心間距離は、原子半径を T とすると T と表される。また、1 つの原子に 2番目に近い原子は T 個存在し、その中心間距離は T T と表される。 最密充填構造であっても、全ての空間が球で充填されているわけではなく、その結晶構造にはすき間が存在する。面心立方格子の場合、図3に示した 2種類のすき間 T 、 T が存在する。単位格子 T 個の方と、 T の信息ない。 T を表される。 T の
き間Ⅱが ク 個と, すき間 I の方が多い。
すき間を取り囲む原子の数は、すき間 I は L ケ L 個、すき間 I は L コ L 個である。また、面心立方格子を構成する原子の半径を L とすると、各すき間に収容できる球の半径の最大値は、すき間 L については L
na.
さらに、面心立方格子についての上記の考察は、イオン結晶の構造の理解にも応用することができる。例えば、NaCl の結晶(図 4)は、Cl⁻がなす面心立方格子の i の位置に Na⁺ が収容されたものと理解することができる。
ただし、イオン結晶においては、同符号のイオン同士が接すると、電気的に反発し合い結晶が不安定になってしまう。そのた
め、NaCl 型イオン結晶においては、陽イオン・陰イオンのうち大きい方のイオン半径を R 、小さい方のイオン半径を r とすると、 r > $\begin{bmatrix} 7 \end{bmatrix}$ が成り立たなければなくない。 CoCl 刑人オン結果(図5)の場合は、その条件は $\begin{bmatrix} r \end{bmatrix}$ > $\begin{bmatrix} 1 \\ 7 \end{bmatrix}$ トカス
$\frac{r}{R} > $ L J が成り立たなければならない。 $CsCl$ 型イオン結晶(図 S)の場合は,その条件は $\frac{r}{R} > L$ L L L L L L L L L
なる、面心立力格子のする同の考え方にようで構造が理解できるイオン船間の構造は、NaCi 至たりではない。例えばアッセガルシウム CaF_2 の結晶構造は、 Ca^{2+} がなす面心立方格子の \Box
フッ化ビスマス(III) $\operatorname{BiF_3}$ の結晶構造は, $\operatorname{Bi^{3+}}$ がなす面心立方格子の $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
る。また,ダイヤモンドと似た結晶構造を持つセン亜鉛鉱(ZnS,図 6 参照)の場合,S ²⁻ がなす面心立方格子の iv の位置に
Zn ²⁺ が収容されたものと理解することができる。
さらに、クロム鉄鉱の結晶においては、酸化物イオンが面心立方格子をなし、そのすき間Iのうち8個に1個の割合で鉄イオンが、すき間IIのうち2個に1個の割合でクロムイオンが収容されている。このことから、クロム鉄鉱の組成式は ソ と表されること
が分かる。
$lacktriangledown$ Na $^+$ $lacktriangledown$ Cs $^+$ $lacktriangledown$ Zn $^{2+}$
A STATE OF THE STA
図1 図2 図3 図4 図5 図6
問 1 ア ~ ソ に適切な数値・式・語句を記せ。ただし,分数や根号を小数に直す必要はない。また,円周率はπで表し,充填率は 0 と 1 の間の値の割合で表示せよ(百分率表示しないこと)。 問 2 i ~ iv に適切な語句を,それぞれ次の中から選び,記号で答えよ。 (a) すき間 I の全て (b) すき間 II の全て (c) すき間 I の半分 (d) すき間 II の半分 (e) すき間 I の全てとすき間 II の半分 (f) すき間 I とすき間 II の全て 問 3 図 2 に適切な断面図を記せ。三角形 ABC の内部のみ記せばよい。ただし,原子の断面は半径に応じた円で記し,その円と円とが互いに接しているか否かが明確に分かるように記せ。

問1.2: ア: 4 (これは覚えておくべき)

(不): 六方最密構造

ウ: A 全属の単位格子の見方

体心 … 计方体 六方最密… A→B→A→B… の最密充填 面心 ···立方体 or A+B+C→A+B+C→···o 最密充填

・今回は面心の、立方体の格子定数の、と、層間距離し、 ⇒立方体で見るのが 自然

解法①: 立方体で見る方法

解法②: 最密充填から見る (面倒)→ 解烙参照

工: 12 (これも覚えておくべき)

オカ: おねのもの⇒自分で考える。立体を把握するには 直交座標を活用したい!: 立方体で考えると楽

左図のピンクの球について考察。 対称性より、左図のみ考えれば+分。 (左図のピンク球を原点とする直交 座標で、ダンの、サンロ、モンロを カバーできているため)

よて(ii)の距離は2/2r… 団

☆個数カウント:モレなくダブリなく

久軸、子軸にそれぞれ 2つずつ … 6個… 団 別解 最密充填層で見る (B.C.18 高t | 316ト

(全て描けてはいないか) 服補の 橙灰の球

⇒2つの距離は-? 灰· 2/3r

橙:(多3+)2+(多6+)2 = 2/2r - =,5

> 出). 6個… 团, 2[2r... 团

目②:面心のすき間の個数。図より.

I:正四面体すき間、I:正八面体すき間。

※導出方法は発例を復習り

すき間 [(正四面体すき間):単位格子内に 8個 … 用 すき間 [(正八面体すき間):単位格子内に 4個… ⑦

「同回:すき間を用む原子数

すき間 [(正四面/本すき間): 4個… [5] すき間工(正八面体すき間): 6個 … コ

団包 すき間のサイズ

☆断面図: 有名点(重心·接点 など)を通るように 切断。 **ぬ正四面体は立方体に埋めこむと考えやすい**

・正四面体すき間 : 半径を14とする。

(緑) r+ta = 2r× 3 小立方体の 小主方体の -辺の長さ

∴ $f_4 = (\frac{6}{2} - 1)_{1} ... \oplus$

ここに注目

・正八面体すき間 : 半径を ねとする。

(r+ h) 12 = 2r · · fg = (√2 - 1)r ··· 🕏

□.因他これは知識

NaCl型: 片方面心、もう片方正八面体すき間全て CsCl型:(体心立方格子の)片方頂点 片方体心

(h) ... [] [2-1 ... [] [3-1 ... []

II これも(ほぼ)知識 (a) ← Nacl/Cscl/BasとCaFaは関

Ⅲ これは未知…数で考える Bi³ は 面心型(4個) → Fit 12個 西方のすき間全て (f)

iv これは知識 (c)

り これも未知

0~~ 面心:4個

Crat. ... すき間Iに半分: 4×==2個

Ferty ... すき関Iに音: 8×= 1個 = TeCr20x

問3、最密充填の1層分を切断にいる

第2問

【問題文】

次の文章を読んで、問 $1\sim2$ に答えよ。ただし、原子量はC=12.0、アボガドロ定数を 6.02×10^{23} /mol とする。

図 1

黒鉛は図 1 に示すような層状の結晶構造を持つ(破線で囲んだひし形柱は単位格子である)。この結晶の層内の最近接炭素原子間距離は $0.142\,\mathrm{nm}$ で,炭素原子同士は強い力で結ばれており,この結合を $\boxed{\hspace{1.5cm}}$ 結合という。また,層と層は弱い力で結ばれており,この力を $\boxed{\hspace{1.5cm}}$ という。

問1 (イ) , (口) に適切な語句を入れよ。

問 2 黒鉛の密度を $2.0\,\mathrm{g/cm^3}$ として,図 1 の層間距離 L を有効数字 2 桁で求め, nm 単位で答えよ。答に至る過程も記せ。ただし,必要ならば以下の値を用いよ。 $\sqrt{2}=1.41$ $\sqrt{3}=1.73$ $\sqrt{7}=2.64$

問1: 1: 共有

回・ファンデルワールスカ

問2:

• A屬, B屬 (B屬 は 左右逆)の 原子教

• 底面績 (a= 0.142nmとする)

 $49. \quad \frac{1}{2}(3a.\sqrt{3}a) = \frac{3}{2}\sqrt{3}a^{2}$