Lineær regresjon (enkel og multippel) ISTx1003 Statistisk læring og Data Science

Stefanie Muff, Institutt for matematiske fag

Oktober 20 og 21, 2025

Anerkjennelse

Disse slides bygger på slides fra Mette Langaas, 2020.

Takk til Mette for at jeg fikk bruke noen av materialene.

Plan for i dag og morgen 14:15-15:00 (tema "Regresjon")

- Læringsmål og plan for prosjektmodulen ISTx1003.
- De tre temaene i modulen:
 - Regresjon
 - Klassifikasjon
 - Klyngeananlyse
- Pensum og læringsressurser
- Prosjektoppgaven og Blackboard-informasjon
- Tema: Enkel og multippel lineær regresjon

Hvem er vi?

- Studentene: BIDATA og BDIGSEC, omtrent 250 studenter totalt.
- Faglig ansvarlig for innholdet i modulen er Stefanie Muff (stefanie.muff@ntnu.no).
- I veilederteamet (for prosjektet) inngår i tillegg
 - Trondheim: studentassistentene Morten Egeberg Christiansen og Oscar Kehinde Asplin Martins
 - Gjøvik: Bare digital veiledning
 - Ålesund: Digital veiledning og support av Siebe B. van Albada

Hva er statistisk læring og data science?

- Statistisk læring inneholder stort sett alle metoder som hjelper oss å lære av data.
- Data science er et konsept for å forene statistikk, dataanalyse, informatikk og tilhørende metoder for å "forstå og analysere relle fenomener med data".

Læringsmål (av modulen)

Etter du har gjennomført denne modulen skal du kunne:

- forstå når du kan bruke regresjon, klassifikasjon og klyngeananlyse til å løse et ingeniørproblem
- kunne gjennomføre multippel lineær regresjon på et datasett
- bruke logistisk regresjon og nærmeste nabo for å utføre en klassifikasjonsoppgave
- \bullet bruke hierarkisk og k-means klyngeanalyse på et datasett, forstå begrepet avstandsmål
- og kunne kommunisere resultatene fra regresjon/ klassifikasjon/klyngeanalyse til medstudenter og ingeniører
- bli en kritisk leser av resultater fra statistikk/maskinlæring/ statistisk læring/data science/kunstig intelligens når disse rapporteres i media, og forstå om resultatene er realistiske ut fra informasjonen som gis
- kunne besvare prosjektoppgaven på en god måte!

Pensum og læringsressurser

Pensum er definert som "svarene på det du blir spurt om på prosjektoppgaven'' og de kan du finne ved å bruke læringsressursene.

Alle ressurser er tilgjengelig her:

https://wiki.math.ntnu.no/istx100y/2025h/1003

Tema Regresjon:

- Korte videoer: (by Mette Langaas)
 - Multippel lineær regresjon: introduksjon (14:07 min)
 - Multippel lineær regresjon: analyse av et datasett (15:20 min)
- Denne forelesningen
- Disse slides med notater

Prosjektoppgaven

- Vi ser hvor informasjonen ligger på Blackboard.
- Vi ser på prosjektoppgaven på https://s.ntnu.no/isthub. Velg mappe 1003.
- Karakteren teller 30% til den endelige karakteren.
- Vi bruker prosentvurderingsmetoden: Konverterer poengene i en % (heltall, avrundet) og så bruker vi følgende skala:

```
Karakterskala for prosentvurderingsmetoden
A: 89-100 poeng
B: 77-88 poeng
C: 65-76 poeng
D: 53-64 poeng
E: 41-52 poeng
F: 0-40 poeng
```

Veiledning til prosjektoppgaven

Fysisk veiledning for Trondheim:

Alle fredager: 24.10, 31.10., 7.11, og 14.11., 10:15-12:00, Sentralbygg S5.

Digital veiledning for Ålesund og Gjøvik:

Veiledning via Whereby

- Man 3.11. og 10.11., 14:15-15:00
- Tir 4.11. og 11.11., 14:15-16:00

Det er et kø-system så dere må evt vente litt:

https://whereby.com/stefanies-whereby

Mattelab forum for ALLE

- Åpent 24/7, men stenger fredag, 14.11., 17:00.

Læringsmål for regresjon

- Du kan lage en modell for å forstå sammenhengen mellom en respons og én eller flere forklaringsvariabler.
- Du kan lage en modell for å predikere en respons fra en eller flere forklaringsvariabler.

Regresjon – motiverende eksempel

(Veiledet læring - vi kjenner responsen)

 Kropssfett er en viktig indikator for overvekt, men vanskelig å måle.

Spørsmål: Hvilke faktorer tillater præsis estimering av kroppsfettet?

Vi undersøker 243 mannlige deltakere. Kroppsfett (%), BMI og andre forklaringsvariabler ble målet. Kryssplott:

For en model for funker god for prediksjon trenger vi $multippel\ lineær\ regresjon.$ Men vi begynner med $enkel\ lineær\ regresjon$ (bare en forklaringsvariabel):

Enkel lineær regresjon

- \bullet En kontinuerlig respons variabel Y
- Bare en forklaringsvariabel x_1
- Relasjon mellom Y og x_1 er antatt å være lineær.

Hvis den lineære relasjonen mellom Y og x er perfekt, så gjelder

$$y_i = \beta_0 + \beta_1 x_{1i}$$

for alle i. Men..

Hvilken linje er best?

Enkel lineær regresjon

a) Kan vi tilpasse den "rette" linjen til dataene?

- $$\begin{split} \bullet & \ \hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1i}. \\ \bullet & \ \hat{e}_i = \hat{y}_i y \\ \bullet & \ \hat{\beta}_0 \ \text{og} \ \hat{\beta}_1 \ \text{velges slik at} \end{split}$$

$$SSE = \sum_{i} \hat{e}_{i}^{2}$$

c) Fremtidige presisjoner av predikert y (kroppsfett)?

Lineær regresjon – antakelser

$$Y_i = \underbrace{\beta_0 + \beta_1 x_{i1}}_{\hat{y}_i} + e_i$$

med

$$e_i \sim \mathsf{N}(0,\sigma^2)$$
 .

Do-it-yourself "by hand"

Her kan du finne de beste parametrene selv:

Bruk denne lenken:

 $https://gallery.shinyapps.io/simple_regression/$

Multippel lineær regresjon

Nesten det samme some enkel lineær regresjon, vi bare summerer flere forklaringsvariabler:

$$Y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \ldots + \beta_p x_{pi} + e_i \ , \quad e_i \sim \mathsf{N}(0, \sigma^2) \ .$$

For eksempel:

$$\mathrm{bodyfat}_i = \beta_0 + \beta_1 \mathrm{bmi}_i + \beta_2 \mathrm{age}_i + e_i \ .$$

Regresjonsanalyse i fem steg

Steg 1: Bli kjent med dataene ved å se på oppsummeringsmål og ulike typer plott

Steg 2: Spesifiser en matematisk modell

Steg 3: Tilpass modellen

Steg 4: Presenter resultatene fra den tilpassede modellen

Steg 5: Evaluer om modellen passer til dataene

Vi skal ikke snakke så mye om hvordan man finner en god modell, men om hvordan man sammenligner to modeller (med justert \mathbb{R}^2).

Steg 1: Bli kjent med dataene

Vi kan for eksempel se på histogram og boxplot:

Ellers en parplot med kryssplotter for alle forklaringsvariable(r) (x_1,\ldots,x_p) og respons y:


```
##
      bodyfat
                         age
                                        weight
                                                         height
   Min. : 0.70
                    Min.
                           :22.00
                                   Min. : 56.75
                                                     Min.
                                                            :162.6
##
    1st Qu.:12.50
                   1st Qu.:35.50
                                    1st Qu.: 72.30
                                                     1st Qu.:173.7
   Median :19.20
                   Median :43.00
                                   Median: 80.02
                                                     Median :177.8
   Mean
          :19.11
                           :44.83
                                           : 80.91
                                                            :178.5
##
                   Mean
                                   Mean
                                                     Mean
##
   3rd Qu.:25.20
                   3rd Qu.:54.00
                                   3rd Qu.: 89.32
                                                     3rd Qu.:183.5
##
   Max. :47.50
                   Max.
                           :81.00
                                   Max.
                                           :119.29
                                                     Max.
                                                            :196.8
                                                         hip
##
        bmi
                        neck
                                       abdomen
##
    Min.
           :19.06
                   Min.
                           :31.10
                                   Min.
                                           : 70.40
                                                     Min.
                                                            : 85.30
##
   1st Qu.:23.07
                   1st Qu.:36.40
                                   1st Qu.: 84.90
                                                     1st Qu.: 95.55
##
   Median :25.10
                   Median :38.00
                                   Median: 91.00
                                                     Median: 99.30
##
   Mean
          :25.34
                   Mean
                         :37.96
                                  Mean
                                         : 92.38
                                                     Mean
                                                            : 99.69
##
   3rd Qu.:27.34
                   3rd Qu.:39.40
                                   3rd Qu.: 99.15
                                                     3rd Qu.:103.15
##
   Max.
           :39.12
                    Max.
                           :43.90
                                    Max.
                                           :126.20
                                                     Max.
                                                            :125.60
```

I Python får du en oppsummering av datasettet (df) med df.describe().

Steg 2: Spesifiser modellen

 $\mathrm{N} \mathring{\mathrm{a}}$ må vi spesifisere en modell med å velge hvilke forklaringsvariabler vi vil bruke

$$y \sim x_1 + x_2 + x_3$$
.

I Python er det

formel='y
$$\sim$$
 x1 + x2 + x3'.

Eksempel 1:

$$bodyfat \sim bmi$$

hvis den matematiske modellen er

$$\mathrm{bodyfat}_i = \beta_0 + \beta_1 \mathrm{BMI}_i + e_i \ ,$$

Python: formel='bodyfat ~ bmi'.

Eksempel 2:

$$bodyfat \sim bmi + age$$

hvis den matematiske modellen er

$$\mathrm{bodyfat}_i = \beta_0 + \beta_1 \mathrm{BMI}_i + \beta_2 \mathrm{age}_i + e_i \ .$$

Python: formel='bodyfat ~ bmi + age'.

Steg 3: Tilpass modellen

"Tilpasse" betyr:

- Vi estimerer $\beta_0,\,\beta_1,\,\dots$, og vi får estimater $\hat{\beta}_0,\,\hat{\beta}_1,\dots$
- I tillegg estimerer vi også σ^2 .

Steg 4: Resultat og tolkning av estimatene

OLS Regression Results									
Dep. Variable:		bodyf	at	R-squ	 ared:		0.539		
Model:			LS	Adj.	R-squared:		0.537		
Method:	Least Squares			F-statistic:			281.8		
Date:	Wed, 08 Sep 2021			Prob (F-statistic):			2.06e-42		
Time:	18:58:47			Log-Likelihood:			-761.28		
No. Observations		2	243	AIC:			1527.		
Df Residuals:		2	41	BIC:			1534.		
Df Model:									
Covariance Type:		nonrobu	ıst						
	coef	std err		t	P> t	[0.025	0.975]		
Intercept -26	.9844	2.769	-9	.746	0.000	-32.439	-21.536		
bmi 1	.8188	0.108	16	.788	0.000	1.605	2.032		

- Tilpasset regresjonslinje og 95% konfidensintervall for regressjonslinja (forventningsverdien $\mathrm{E}(Y)$).
- 95% prediksjonsintervall for nye observasjoner (kroppsfett for nye personer; håndtegnet).

Steg 5: Passer modellen?

Tukey-Anscome (TA) diagram:

Her vil man

- Ikke noe struktur
- Sentrering rundt 0 verdien

Kvantil-kvantil plot:

Her ser man at observasjonene ligger mer og mindre på linja.

Hvordan ser det ut når en modell ikke passer?

Multippel lineær regresjon

Gjenta samme analyse med to kovariabler (formel='bodyfat ~ bmi + age'):

```
OLS Regression Results
Dep. Variable:
                                         R-squared:
                                                                            0.580
                               bodyfat
Model:
                                         Adj. R-squared:
                                                                            0.577
Method:
                        Least Squares
                                        F-statistic:
                                                                            165.9
                     Wed. 08 Sep 2021
                                        Prob (F-statistic):
Date:
                                                                         5.67e-46
Time:
                              19:55:28
                                        Log-Likelihood:
                                                                          -749.88
No. Observations:
                                                                            1506.
Df Residuals:
                                   240
                                         BIC:
                                                                            1516.
Df Model:
Covariance Type:
                             nonrobust
                 coef
                          std err
                                                   P>|t|
                                                               [0.025
                                                                           0.975]
Intercept
             -31.2545
                            2.790
                                     -11.203
                                                   0.000
                                                             -36.750
                                                                          -25.759
bmi.
               1.7526
                            0.104
                                      16.773
                                                   0.000
                                                               1.547
                                                                            1.958
               0.1327
                            0.027
                                       4.857
                                                   0.000
                                                               0.079
                                                                            0.186
age
```

Med fem kovariabler:

Dep. Variab	le:	body	fat	R-squa	ared:		0.726
Model:					R-squared:		0.726
Method:		Least Squa			istic:		125.
Date:		Thu. 09 Sep 2	021	Prob ((F-statistic)		1.73e-6
Time:		09:16:49		Log-Likelihood:			-698.2
No. Observa	tions:		243	AIC:			1409
Df Residual	s:		237	BIC:			1429
Df Model:							
Covariance	Type:	nonrot	oust				
=======	coef	std err		t	P> t	[0.025	0.975
Intercept	-35.2802	2 6.073	-5.	809	0.000	-47.245	-23.310
bmi .	0.3881	0.224		730	0.085	-0.054	0.83
age	0.0038	0.027	Θ.	141	0.888	-0.050	0.05
weight	-0.1141	0.029	-3.	883	0.000	-0.172	-0.05
neck	-0.4581	0.216		123	0.035	-0.883	-0.03
abdomen	0.8888	0.085	10.	486	0.000	0.722	1.05

Hva betyr alt dette?

• coef: $\hat{\beta}_j$

• std err: $\hat{\mathrm{SE}}(\hat{\beta}_j)$

• t: $\frac{\hat{\beta}_j - 0}{\operatorname{SE}(\hat{\beta}_j)}$

• P>|t|: p-verdi (obs! p=0.000 er ikke mulig, det betyr egentlig p<0.0005)

Hva betyr alt dette?

	coef	std err	t	P> t	[0.025	0.975]
Intercept bmi	-35.2802 0.3881	6.073	-5.809 1.730	0.000	-47.245 -0.054	-23.316 0.830
age	0.0038	0.027	0.141	0.888	-0.050	0.058
weight	-0.1141	0.029	-3.883	0.000	-0.172	-0.056
neck	-0.4581	0.216	-2.123	0.035	-0.883	-0.033
abdomen	0.8888	0.085	10.486	0.000	0.722	1.056

Prediksjon:

$$\hat{y} =$$

Prediker bodyfat for en ny person med bmi=25, age=50, weight=75, neck=40, abdomen=95:

$$\hat{y} =$$

= 21.88

	coef	std err		P> t	[0.025	0.975]
Intercept	-35.2802	6.073	-5.809	0.000	-47.245	-23.316
bmi	0.3881	0.224	1.730	0.085	-0.054	0.830
age	0.0038	0.027	0.141	0.888	-0.050	0.058
weight	-0.1141	0.029	-3.883	0.000	-0.172	-0.056
neck	-0.4581	0.216	-2.123	0.035	-0.883	-0.033
abdomen	0.8888	0.085	10.486	0.000	0.722	1.056

- Hva betyr $\hat{\beta}_0$?
- Hva betyr $\hat{\beta}_{abdomen} = 0.89$?

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-35.2802	6.073	-5.809	0.000	-47.245	-23.316
bmi	0.3881	0.224	1.730	0.085	-0.054	0.830
age	0.0038	0.027	0.141	0.888	-0.050	0.058
weight	-0.1141	0.029	-3.883	0.000	-0.172	-0.056
neck	-0.4581	0.216	-2.123	0.035	-0.883	-0.033
abdomen	0.8888	0.085	10.486	0.000	0.722	1.056

• 95% konfidensintervall: Intervall vi har stor tro at den inneholder den sanne stigningen $\beta_j.$

•
$$[\hat{\beta}_j \pm \underbrace{t_{\alpha/2,d_f}}_{\approx 1.96} \cdot SE(\hat{\beta}_j)]$$

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-35.2802	6.073	-5.809	0.000	-47.245	-23.316
bmi	0.3881	0.224	1.730	0.085	-0.054	0.830
age	0.0038	0.027	0.141	0.888	-0.050	0.058
weight	-0.1141	0.029	-3.883	0.000	-0.172	-0.056
neck	-0.4581	0.216	-2.123	0.035	-0.883	-0.033
abdomen	0.8888	0.085	10.486	0.000	0.722	1.056

ullet p-verdier og hypotesetester

Recap: Formell definisjon av p-verdien

p-verdien er sannsynligheten for det vihar observert eller noe mer ekstremt, dersom H_0 er sant.

R^2 og justert R^2

Dep. Variable:	bodyfat	R-squared:	0.726
Model:	OLS	Adi. R-squared:	0.720
Method:	Least Squares	F-statistic:	125.3
Date:	Thu, 09 Sep 2021	Prob (F-statistic):	1.73e-64
Time:	09:16:49	Log-Likelihood:	-698.26
No. Observations:	243	AIC:	1409.
Df Residuals:	237	BIC:	1429.
Of Model:			
Covariance Type:	nonrobust		

$$R^2 = \frac{\text{TSS} - \text{SSE}}{\text{TSS}} = 1 - \frac{\text{SSE}}{\text{TSS}} = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y}_i)^2},$$

med

$$\mathrm{TSS} = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

som måler den totale variabiliteten i $(y_1,\ldots,y_n).$

Problemet med \mathbb{R}^2 : Verdien blir alltid større når flere variabler er lagt til.

For modellvalg bruker vi derfor en justert versjon:

$$R_{adj}^2 = 1 - (1-R^2)\frac{n-1}{n-p-1}$$

TA og kvantil-kvantil plot

Binære forklaringsvariabler

Den enkleste modellen er

$$y_i = \beta_0 + \beta_1 x_{1i} + e_i \ . \label{eq:yi}$$

Hva betyr det når x_{1i} er enten 0 eller 1 (binær)?

$$\begin{array}{ll} \beta_0 + e_i & \quad \text{hvis } x_{1i} = 0 \ , \\ \beta_0 + \beta_1 + e_i & \quad \text{hvis } x_{1i} = 1 \ . \end{array}$$

Eksempel: Studie om kvikksølv (Hg)

Modell:

$$\log(Hg_{urin})_i = \beta_0 + \beta_1 \cdot x_{1i} + \beta_2 \cdot x_{2i} + \beta_3 \cdot x_{3i} + e_i \ , \label{eq:gurin}$$

Med

- $\log(Hg_{urin})$: log konsentrasjon av Hg i urin.
- x_1 binær variabel som er 1 hvis person røyker, ellers 0
- x_2 antall amalgam fillinger i tennene.
- \bullet x_3 antall fiskemåltider per måned.

Interpretasjon av regresjon med binær variabel

	coef	std err		P> t	[0.025	0.975]
Intercept	-2.1136	0.100	-21.101	0.000	-2.311	-1.916
smoking	0.3317	0.257	1.292	0.198	-0.175	0.839
amalgam_quant	0.1799	0.039	4.566	0.000	0.102	0.258
fisk_quant	0.0678	0.017	4.088	0.000	0.035	0.101

Modell for røyker:

Modell for ikke-røyker:

Kategoriske forklaringsvariabler

- Vi gjør ting enda mer fleksible (eller kompliserte!) når vi også tillater kategoriske forklaringsvariabler.
- Eksempel med 3 kategorier: Bildatasett med y=bensinforbruk og forklaringsvariabler vekt og origin som er en av de tre kategoriene {American,European,Japanese}.

- Idé: dummy-variabel koding kalles one-hot koding i maskinlæring.
 - $x_{2i} = 0$ og $x_{3i} = 0$ hvis origin er "American"
 - $x_{2i} = 1$ og $x_{3i} = 0$ hvis origin er "European"
 - $x_{2i} = 0$ og $x_{3i} = 1$ hvis origin er "Japanese"

Modellen:
$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{3i} + e_i$$

Dep. Variable:			R-squared:		0.70	2
Model:		OLS I	Adj. R-squared		0.70	10
Method:	Least S	quares	F-statistic:		304.	7
Date:	Mon, 13 Se	p 2021	Prob (F-statis	tic):	1.28e-10	1
Time:	14	:42:02	Log-Likelihood		-1123.	9
No. Observations:		392	AIC:		2256	
Df Residuals:		388	BIC:		2272	
Df Model:		3				
Covariance Type:	non	robust				
	coef	std err	t	P> t	[0.025	0.975]
Intercept	43.7322	1.113	39.277	0.000	41.543	45.921
origin[T.European]	0.9709	0.659	1.474	0.141	-0.324	2.266
origin[T.Japanese]	2.3271	0.665	3.501	0.001	1.020	3.634
weiaht	-0.0070	0.000	-21.956	0.000	-0.008	-0.006

Så hva er modellene for de tre opprinnelsene (origin) av bilene?

Videre denne uken

- Se på videoene om multippel lineær regresjon (hvis du ikke har allerede gjort det).
- Se på videoene om klassifikasjon.
- Begyn å jobbe med prosjektoppgaven problem 1.
- Se her for mer informasjon: https://wiki.math.ntnu.no/istx100y/2025h/1003