Plot::exclul: $\{(1 - x - x \text{ FinancialDerivative} | \{European, \}\}\}$

 $\label{eq:call} $$ $ Call \ , \{Rule[\ll 2\gg], Rule[\ll 2\gg$

Call}, {Rule[\ll 2 \gg], Rule[\ll 2 \gg]}, {Rule[\ll 2 \gg], Rule[\ll 2 \gg], Rule[\ll 2 \gg], Rule[\ll 2 \gg])]) - 0, (-1 + x + x \ll 1 \gg - x FinancialDerivative[\ll 1 \gg]) - 0}

must be a list of equalities or real-valued functions. »


```
a = 0; Plot[{Max[s[x,t], l[x,t]] - a l[x,t] - (1-a) (s[x,t])},
\{x, 0.5005, 1\}, PlotRange \rightarrow All]
```

Plot::exclul: $\{(1 - x - x \text{ FinancialDerivative} | \{European, \}\}$

 $Call\}, \{Rule[\ll 2 \gg], Rule[\ll 2 \gg]\}, \{Rule[\ll 2 \gg], Rule[\ll 2 \gg], Rule[\ll 2 \gg], Rule[\ll 2 \gg]\}$ $]\}] + x \ Financial Derivative [\{European,$

 $Call\}, \{Rule[\ll 2 \gg], Rule[\ll 2 \gg]\}, \{Rule[\ll 2 \gg], Rule[\ll 2 \gg], Rule[\ll 2 \gg], Rule[\ll 2 \gg]\}, \{Rule[\ll 2 \gg]\}, \{Rule[\ll 2 \gg]\}, \{Rule[\ll 2 \gg]\}, Rule[\ll 2 \gg]\}, \{Rule[\ll 2 \gg]\}, Rule[\ll 2 \gg]\}, Rule[$]}]) – 0 , (–1 + x + x \ll 1 \gg – x FinancialDerivative[\ll 1 \gg]) – 0}

must be a list of equalities or real-valued functions. \gg

