Homework #2

Ruixin Guo

October 8, 2021

2. Let $F_Z(x) = P(Z < x)$ be the CDF of $\mathcal{N}(0, 1)$.

$$F_{SZ}(x) = P(SZ < x)$$

$$= P(Z < x | S = 1)P(S = 1) + P(-Z < x | S = -1)P(S = -1)$$

$$= \frac{1}{2}P(Z < x) + \frac{1}{2}P(Z > -x)$$

$$= P(Z < x)$$

$$= F_Z(x)$$

The fourth equality is because the PDF of $\mathcal{N}(0,1)$ is symmetric about the y-axis, P(Z < x) = P(Z > -x). Thus Z and SZ has the same distribution. $SZ \sim \mathcal{N}(0,1)$.

3.

a. The PDF of $\mathcal{N}(\mu, \sigma)$ is

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\{-\frac{(x-\mu)^2}{2\sigma^2}\}$$

When μ is known, f(x) can be expressed as a conditional probability indexed by σ :

$$f(x|\sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\{-\frac{(x-\mu)^2}{2\sigma^2}\}\tag{1}$$

Let $h(x) = \frac{1}{\sqrt{2\pi}}$, $c(\sigma) = \frac{1}{\sigma}$, $w_1(\sigma) = \frac{1}{\sigma^2}$ and $t_1(x) = -\frac{(x-\mu)^2}{2}$. Equation (1) can be expressed as $f(x|\sigma) = h(x)c(\sigma)\exp\{w_1(\sigma)t_1(x)\}$

Since $h(x) \ge 0$, $c(\sigma) \ge 0$, and $t_1(x)$ does not depend on σ , $f(x|\sigma)$ belongs to exponential family.

When σ is known, f(x) can be expressed as a conditional probability indexed by μ :

$$f(x|\mu) = \frac{1}{\sqrt{2\pi}\sigma} \exp\{-\frac{1}{2\sigma^2}(x^2 - 2\mu x + \mu^2)\}$$
 (2)

Let $h(x) = \frac{1}{\sqrt{2\pi}\sigma}$, $c(\sigma) = 1$, $w_1(\mu) = 1$, $t_1(x) = x^2$, $w_2(\mu) = 2\mu$, $t_2(x) = x$, $w_3(\mu) = \mu^2$ and $t_3(x) = 1$. Equation (1) can be expressed as

$$f(x|\sigma) = h(x)c(\sigma)\exp\{\sum_{i=1}^{3} w_i(\mu)t_i(x)\}\$$

Since $h(x) \ge 0$, $c(\mu) \ge 0$, and $t_1(x)$, $t_2(x)$, $t_3(x)$ does not depend on μ , $f(x|\mu)$ belongs to exponential family.

b. The PDF of Beta(a, b) is

$$f(x) = \frac{1}{\beta(a,b)} x^{a-1} (1-x)^{b-1}$$

where $\beta(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$ and 0 < x < 1.

When a is known, f(x) can be expressed as a conditional probability indexed by b:

$$f(x|b) = \frac{1}{\beta(a,b)} x^{a-1} \exp\{(b-1)\log(1-x)\}\tag{3}$$

Let $h(x) = x^{a-1}$, $c(b) = \frac{1}{\beta(a,b)}$, $w_1(b) = b - 1$ and $t_1(x) = \log(1-x)$. Equation (3) can be expressed as $f(x|b) = h(x)c(b) \exp\{w_1(b)t_1(x)\}$

Thus f(x|b) belongs to exponential family.

When b is known, f(x) can be expressed as a conditional probability indexed by a:

$$f(x|a) = \frac{1}{\beta(a,b)} x^{b-1} \exp\{(a-1)\log(1-x)\}\tag{4}$$

Let $h(x) = x^{b-1}$, $c(a) = \frac{1}{\beta(a,b)}$, $w_1(a) = a - 1$ and $t_1(x) = \log(1-x)$. Equation (4) can be expressed as $f(x|a) = h(x)c(a) \exp\{w_1(a)t_1(x)\}$

Thus f(x|a) belongs to exponential family.

c. The PMF of $Pois(\lambda)$ is

$$P(X = x) = \frac{e^{-\lambda}\lambda^x}{x!}$$

which can be regarded as a conditional probability indexed by λ :

$$P(X = x | \lambda) = \frac{1}{x!} e^{-\lambda} \exp\{x \log \lambda\}$$
 (5)

Let $h(x) = \frac{1}{x!}$, $c(\lambda) = e^{-\lambda}$, $w_1(\lambda) = \log \lambda$ and $t_1(x) = x$. Equation (5) can be expressed as $P(X = x | \lambda) = h(x)c(\lambda) \exp\{w_1(\lambda)t_1(x)\}$

Thus $P(X = x | \lambda)$ belongs to exponential family.

d. The PMF of NBin(r, p) is

$$P(X = x) = {x + r - 1 \choose r - 1} p^{r} (1 - p)^{x}$$

When r is known, P(X = x) can be regarded as a conditional probability indexed by p:

$$P(X = x|p) = {x+r-1 \choose r-1} \exp\{r \log p + x \log(1-p)\}$$
 (6)

Let $h(x) = {x+r-1 \choose r-1}$, c(p) = 1, $w_1(p) = r \log p$, $t_1(x) = 1$, $w_2(p) = \log(1-p)$ and $t_2(x) = x$. Equation (6) can be expressed as

$$P(X = x|p) = h(x)c(p) \exp\{\sum_{i=0}^{2} w_i(p)t_i(x)\}\$$

Thus P(X = x|p) belongs to exponential family.

4.

Given that E(X) = 0, Var(X) = 1, E(Y) = 0, Var(Y) = 1, $Cov(X, Y) = \rho$, we have

$$E(Z) = E(aX + bY) = aE(X) + bE(Y) = 0$$
(7)

$$E(W) = E(cX + dY) = cE(X) + dE(Y) = 0$$
(8)

$$Var(Z) = Var(aX + bY) = Var(aX) + Var(bY) + 2Cov(aX, bY)$$
$$= a^{2}Var(X) + b^{2}Var(Y) + 2abCov(X, Y)$$
$$= a^{2} + b^{2} + 2ab\rho = 1$$
(9)

$$Var(W) = Var(cX + dY) = Var(cX) + Var(dY) + 2Cov(cX, dY)$$
$$= c^{2}Var(X) + d^{2}Var(Y) + 2cdCov(X, Y)$$
$$= c^{2} + d^{2} + 2cd\rho = 1$$
(10)

$$Cov(Z, W) = Cov(aX + bY, cX + dY)$$

$$= Cov(aX, cX) + Cov(aX, dY) + Cov(bY, cX) + Cov(bY, dY)$$

$$= acVar(X) + adCov(X, Y) + bcCov(Y, X) + bdVar(Y)$$

$$= ac + bd + \rho(ad + bc) = 0$$
(11)

Equations (7) and (8) hold for any a, b, c, d.

Equations (9), (10) and (11) hold only when a, b, c, d satisfy the following relationship (in terms of ρ):

$$\begin{cases} a^2 + b^2 + 2ab\rho = 1 \\ c^2 + d^2 + 2cd\rho = 1 \\ ac + bd + \rho(ad + bc) = 0 \end{cases}$$

5.

$$\begin{split} E((Y-E(Y|X))^2|X) &= \sum_y (y-E(Y|X))^2 P(Y=y|X) \\ &= \sum_y y^2 P(Y=y|X) - \sum_y 2y E(Y|X) P(Y=y|X) + \sum_y E(Y|X)^2 P(Y=y|X) \\ &= E(Y^2|X) - 2E(Y|X) E(Y|X) + E(Y|X)^2 \\ &= E(Y^2|X) - E(Y|X)^2 \end{split}$$

6.

a. Since $p \sim \text{Beta}(a, b)$, we first compute E(p), Var(p) and E(p(p-1)), which will be used in computing E(X) and Var(X) below.

$$E(p) = \int_0^1 p \frac{1}{\beta(a,b)} p^{a-1} (1-p)^{b-1} dp$$

$$= \frac{1}{\beta(a,b)} \int_0^1 p^a (1-p)^{b-1} dp$$

$$= \frac{\beta(a+1,b)}{\beta(a,b)} = \frac{\Gamma(a+1)\Gamma(b)}{\Gamma(a+b+1)} \cdot \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} = \frac{a}{a+b}$$

$$\begin{split} Var(p) &= E(p^2) - E(p)^2 \\ &= \int_0^1 p^2 \frac{1}{\beta(a,b)} p^{a-1} (1-p)^{b-1} dp - E(p)^2 \\ &= \frac{\beta(a+2,b)}{\beta(a,b)} - E(p)^2 \\ &= \frac{(a+1)a}{(a+b+1)(a+b)} - \frac{a^2}{(a+b)^2} = \frac{ab}{(a+b)^2(a+b+1)} \end{split}$$

$$E(p(1-p)) = \int_0^1 p(1-p) \frac{1}{\beta(a,b)} p^{a-1} (1-p)^{b-1} dp$$
$$= \frac{\beta(a+1,b+1)}{\beta(a,b)} = \frac{ab}{(a+b)(a+b+1)}$$

By the law of total expectation,

$$E(X) = E(E(X|P))$$

$$= E(np)$$

$$= nE(p)$$

$$= \frac{na}{a+b}$$

By the law of total variance

$$\begin{split} Var(X) &= E(Var(X|P)) + Var(E(X|P)) \\ &= E(np(1-p)) + Var(np) \\ &= nE(p(1-p)) + n^2 Var(p) \\ &= n\frac{ab}{(a+b)(a+b+1)} + n^2 \frac{ab}{(a+b)^2(a+b+1)} \end{split}$$

b.

$$P(X = x) = \int_0^1 P(X = x | P = p) P(P = p) dp$$

$$= \int_0^1 \binom{n}{x} p^x (1 - p)^{n-x} \cdot \frac{1}{\beta(a, b)} p^{a-1} (1 - p)^{b-1} dp$$

$$= \binom{n}{x} \cdot \frac{1}{\beta(a, b)} \int_0^1 p^{x+a-1} (1 - p)^{n+b-x-1} dp$$

$$= \binom{n}{x} \cdot \frac{1}{\beta(a, b)} \cdot \beta(x + a, n + b - x)$$

$$= \binom{n}{x} \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} \frac{\Gamma(x + a)\Gamma(n + b - x)}{\Gamma(a + b + n)}$$

c. Since $E(P) = \frac{a}{a+b}$ and $Var(P) = \frac{ab}{(a+b)^2(a+b+1)}$,

$$\begin{split} Var(X) &= nE(P)(1-E(P)) + n(n-1)Var(P) \\ &= n\frac{a}{a+b}(1-\frac{a}{a+b}) + n(n-1)\frac{ab}{(a+b)^2(a+b+1)} \\ &= n\frac{ab}{(a+b)^2} + n^2\frac{ab}{(a+b)^2(a+b+1)} - n\frac{ab}{(a+b)^2(a+b+1)} \\ &= n[\frac{ab}{(a+b)^2} - \frac{ab}{(a+b)^2(a+b+1)}] + n^2\frac{ab}{(a+b)^2(a+b+1)} \\ &= n\frac{ab}{(a+b)(a+b+1)} + n^2\frac{ab}{(a+b)^2(a+b+1)} \end{split}$$

Which is the same result we get in a. Thus the equation is proved.