

Linguagens Formais e Autômatos (LFA)

Aula de 18/11/2013

Linguagens Recursivamente Enumeráveis, Complexidade (Custo) de Tempo/Espaço, Transdutores para exibir complexidade de Tempo/Espaço

Linguagens Recursivamente Enumeráveis

Se LINGUAGEM RECURSIVA é aquela para a qual existe uma Máquina de Turing que <u>para quando</u> reconhece uma cadeia que a ela pertence e também <u>para quando não reconhece</u> uma outra cadeia que não pertence,

uma LINGUAGEM RECURSIVAMENTE ENUMERÁVEL é aquela para a qual existe uma Máquina de Turing que para quando reconhece uma cadeia que a ela pertence, mas que pode parar ou não ao processar uma cadeia que a ela não pertence.

Linguagens Recursivas são também chamadas de LINGUAGENS DECIDÍVEIS.

sivamente Enumeráveis

Se LINGUAGEM RECURSIVA é aquela para a qual existe uma Máquina de Turing que <u>para quando</u> reconhece uma cadeia que a ela pertence e também <u>para quando não reconhece</u> uma outra cadeia que não pertence,

uma LINGUAGEM RECURSIVAMENTE ENUMERÁVEL é aquela para a qual existe uma Máquina de Turing que para quando reconhece uma cadeia que a ela pertence, mas que pode parar ou não ao processar uma cadeia que a ela não pertence.

Linguagens Irrestritas ou de Tipo O

São "reconhecidas" por **Máquinas de Turing de fita** ilimitada; para toda cadeia pertencente à linguagem, a MT para e aceita-a.

São "definidas" (especificadas) por Gramáticas Irrestritas; para toda cadeia pertencente à linguagem, há uma árvore de derivação completa cuja raíz é o símbolo inicial da gramática e cujas folhas (concatenadas) correspondem à cadeia em questão.

Linguagens recursivas e recursivamente enumeráveis são linguagens irrestritas ou de tipo 0.

Linguagens recursivamente enumeráveis são INDECIDÍVEIS

Tendo em vista que é uma característica das linguagens recursivamente enumeráveis que a MT que as reconhece pode não parar de computar ao receber uma cadeia que não pertença a ela, elas são - estritamente falando - indecidíveis.

Em outras palavras, as MTs que as reconhecem podem necessitar de **tempo infinito** para "decidir" que determinada cadeia não pertence a elas.

Complexidade (Custo) de Tempo/Espaço em MT's

Complexidade de TEMPO (CT):

- CT é o **número máximo de transições processadas por uma computação de MT** quando iniciada por uma cadeia de comprimento **n**, independentemente de a cadeia ser aceita ou não.
- CT é expresso como uma função de n. Como se trata do número MÁXIMO de transições, trata-se sempre do pior caso. Nem todas as cadeias de mesmo comprimento requerem o mesmo número de transições para serem decididas..

Complexidade de ESPAÇO (CE):

CE é o número que expressa a quantidade MÁXIMA de células de MT utilizadas na computação de cadeias de entrada de comprimento n para ler/gravar INFORMAÇÃO DE PROCESSAMENTO (i.e. não são contabilizadas as células da fita utilizadas apenas para a entrada), independentemente de a cadeia ser aceita ou não. Trata-se também do pior caso e CE é expresso como uma função de n.

Usando TRANSDUTORES para gerar representações de complexidade / custo

O que são TRANSDUTORES (finitos)?

- De forma geral, transdutores são Máquinas de Turing com "fitas (adicionais) de saída".
- Os exemplos a seguir foram produzidos com o JFLAP 7.0, versão de 2009. Nesta versão, MT's multifitas admitiam por default 3 movimentações: R (direita), L (esquerda), S (parada).

No JFLAP da última versão as "preferências" das Máquinas de Turing têm de ser alteradas para "S" funcionar como esperado.

Complexidade de TEMPO

Seja a linguagem L definida sobre $\Sigma = \{a,b\}$; ela aceita cadeias

 $w = a^n b^m a^q para n, m, q > 0 e m = n+q.$

Observe o comportamento de MT_{lenta} assim definida:

MT deve aceitar w se:

- 1) Para no estado final
- 2) O cursor está no final da cadeia de entrada

Rastros da Complexidade de Tempo de MT_{lenta}

Rastros da Complexidade de Tempo de MT_{lenta}

Rastros da Complexidade de Tempo de MT_{lenta}

Exercício 1:

Como tornar MT_{lenta} menos lenta (e correta, se preciso)?

- -- O exercício é para ser feito idealmente em duplas, com o(a) colega a seu lado.
- -- A especificação de MT_{lenta} no JFLAP está no slide seguinte. Considera-se como condição de <u>aceitação</u> da cadeia a <u>parada</u> de MT_{lenta} no estado final e o cursor posicionado ao final da cadeia entrada.
- -- Estas condições, porém, podem ser diferentes (por exemplo, cursor em outra posição, parada em estado não final, etc.). O que não pode mudar é que cadeias não pertencentes a L sejam rejeitadas e cadeias pertencentes sejam aceitas (L é decidível).

Deve reconhecer $a^nb^ma^q$ para n, m, q > 0 e m=n+q

Exercício 2:

Como ε ∉ L, podemos dizer que L é uma linguagem de tipo 1?

-- Há uma MT de fita <u>limitada</u> que reconhece L?

-- Se sua resposta for positiva, compare a <u>complexidade de tempo</u> da **MT de fita limitada** que reconhece L com a da <u>MT_{lenta}</u>. O que se observa e conclui?

Diminuir a complexidade de uma MT é torná-la mais eficiente. Por vezes, eficiência de tempo pode vir em detrimento de eficiência de espaço, ou vice-versa.

Fatos interessantes

Na apostila online de Chris Cooper

(<u>http://www.ics.mq.edu.au/~chris/langmach/chap09.pdf</u>) mostrase como uma MT de fita dupla pode ser convertida em MT equivalente de fita única.

O processo começa por uma representação unidimensional do espaço bidimensional:

- 1. Rotular as fitas superior e inferior com inteiros positivos ímpares (acima) e inteiros positivos pares (abaixo)
- 2. Em seguida projetar este espaço sobre uma única fita

	-5	-3	-1	1	3	5	7	9	
	-6	-4	-2	0	2	4	6	8	
	1								
	•								

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7																
		-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	

Continuação:

- 3. Em seguida estabelecem-se as seguintes correspondências:
 - mov UP na MT(bidim) → mov LEFT na MT(unidim)
 - mov DOWN na MT(bidim) → mov RIGHT na MT(unidim)
 - mov LEFT na MT(bidim) → mov LEFT LEFT na MT(unidim)
 - mov RIGHT na MT(bidim) → mov RIGHT RIGHT na MT(unidim)

Com estas correspondências, a MT da aula passada que computava a função swap(n,m) para n representado em uma fita e m na outra pode ser computada por MT' de uma única fita.

Exercício 3: para casa com 2 MT's para swap(n,m)

Tabela de Transição Bidim

	0	1	
0	0U1	1U2	read bottom track
1	0D3	0D5	0 read on bottom
2	1D5	1D6	1 read on bottom
3	0L3	1L4	halt if both tracks
4	0R7	1L4	read 0
5	1R0	0R0	swap 1 with 0
6		1R0	"swap" 1 with 1

- Estude os passos de conversão MT(bidim) → MT(unidim)
- 2. Compare a complexidade de tempo das duas MT's

Tabela de Transição Unidim

	0	1
0	0L1	1L2
1	0R3	0R5
2	1R5	1R6
3	0L3	1L4
3′	0L3	1L3
3′′	0L4	1L4
4	0R7	1L4
4′	0L7	1L7
4''	0L4	1L4
5	1R0	0R0
5′	0R0	1R0
5′′	0R0	1R0
6		1R0
6′	0R0	1R0