

Exercice

Soit E un espace vectoriel de dimension finie. On appelle transvection tout endomorphisme de E différent de l'identité tel qu'il existe un hyperplan H vérifiant

- i) $\forall x \in H$, f(x) = x
- $ii) \ \forall x \in E, \quad f(x) x \in H$
- 1) Une projection sur un hyperplan de E est-elle une transvection?
- **2-a)** Montrer que, si f est une transvection d'hyperplan H, alors il existe une unique droite vectorielle D incluse dans H telle que, pour tout $x \in E$, $f(x) x \in D$.
 - b) En déduire l'existence d'une forme linéaire φ et d'un vecteur u non nul tel que $H=\operatorname{Ker}\varphi$ et pour tout $x\in E$, $f(x)=x+\varphi(x)u$.
- 3) Montrer que f est une transvection si et seulement si il existe une base de E dans laquelle tous les coefficients de la diagonale de la matrice de f sont égaux à 1 et tous les autres sont nuls à l'exception d'un seul qui vaut 1.
- 4) Déterminer le polynôme minimal d'une transvection. Ce polynôme minimal caractérise-t-il les transvections?
- 5) Montrer qu'une transvection est inversible et que son inverse est également une transvection.

Éléments de solution

- 1) Soit H un hyperplan de E. Une projection p sur H vérifie
 - i) $\forall x \in H$, p(x) = x
 - ii) $\forall x \notin H, p(x) \in H$

Donc, si $x \notin H$, alors $p(x) - x \notin H$ car $p(x) \in H$ et H est un sous-espace vectoriel de E. On en déduit qu'une projection n'est pas une transvection.

2-a) Soient f une transvection d'hyperplan H et F un supplémentaire de H dans E.

Supposons que $\{f(a) - a \; ; \; a \in F\} = \{0\}$. Comme $E = H \oplus F$, tout élément x de E s'écrit $x = x_h + x_F$ avec $x_h \in H$ et $x_F \in F$. On a alors $f(x) = f(x_H) + f(x_F) = x_H + x_F = x$, donc f = Id. Absurde. Il existe alors $a \in F$ tel que $b = f(a) - a \neq 0$.

Posons $D = \text{Vect}\{b\}$. D est une droite vectorielle car $b \neq 0$. On a $D \subset H$ car $b \in H$.

Soit $x \in E$ avec $x = x_H + x_F$. $x_F \in F$ donc il existe $\lambda \in \mathbb{K}$ tel que $x_F = \lambda a$ et $f(x_F) = \lambda f(a) = \lambda (b+a)$ car b = f(a) - a. On en déduit que $f(x) = x_H + \lambda (b+a) = x_H + x_F + \lambda b$. Donc $f(x) - x = \lambda b \in D$. On a donc montré l'existence d'une telle droite.

Montrons qu'elle est unique. S'il y en avait deux D et D' distincts, alors on aurait, pour tout $x \in E$, $f(x) - x \in D \cap D'$, c'est-à-dire f(x) - x = 0. On aurait donc f = Id. Absurde.

b) On a vu que, pour tout $x \in E$, $f(x) - x \in D$. Soit u un vecteur directeur de D. Définissons une application φ par

$$\varphi: \left[\begin{array}{c} E \to \mathbb{K} \\ x \mapsto \lambda \end{array} \right]$$

où λ est le scalaire défini de manière unique par $f(x)-x=\lambda u$. Montrons que φ est linéaire.

Soit $(x,y) \in E^2$, alors $f(x+y) - (x+y) = \varphi(x+y)u$, mais on a également, par linéarité de f, $f(x+y)-(x+y)=f(x)-x+f(y)-y=(\varphi(x)+\varphi(y))u$. Comme $u\neq 0$, on en déduit que $\varphi(x+y)=\varphi(x)+\varphi(y)$. On montre de même que, pour tout $x \in E$, pour tout $\alpha \in \mathbb{K}$, $\varphi(\alpha x) = \alpha \varphi(x)$. On a donc bien défini une forme linéaire.

Déterminons $\operatorname{Ker} \varphi$. Si $x \in H$, alors f(x) - x = 0 donc $x \in \operatorname{Ker} \varphi$. Comme $\dim \operatorname{Ker} \varphi = \dim E - 1 = \dim H$, on en déduit que $H = \operatorname{Ker} \varphi$.

3) On note n la dimension de E. Supposons qu'il existe une base $\{e_1,\ldots,e_n\}$ de E dans laquelle tous les coefficients diagonaux de la matrice de f soient égaux à 1 et tous les autres sont nuls sauf l'un d'entre eux (que l'on note a_{ij} avec $i \neq j$) qui vaut 1. Soit $H = \mathsf{Vect}\{e_1, \dots, e_{i-1}, e_{i+1}, \dots, e_n\}$, alors H est un hyperplan, par construction, et, pour tout $x \in H$, f(x) = x.

Si $x \in E$, alors $x = \sum_{k=1}^{n} x_k e_k$ et

$$f(x) = \sum_{k=1}^{n} x_k f(e_k) = \sum_{k=1, k \neq i}^{n} x_k e_k + x_i (e_i + e_j)$$

donc $f(x) - x = x_i e_j$ pour $j \neq 1$, c'est-à-dire que $f(x) - x \in H$.

Réciproquement, soit f une transvection, alors il existe une forme linéaire φ et un vecteur u non nul tel que, pour tout $x \in E$, $f(x) = x + \varphi(x)u$. Soit F un supplémentaire de Ker φ . On appelle e_1 un vecteur directeur de F. Soit $e_2 = f(e_1) - e_1$, alors $e_2 \in H$. On complète $\{e_2\}$ en une base $\{e_2, \ldots, e_n\}$ de H. Comme $e_1 \notin H$, le système $\{e_1,\ldots,e_n\}$ est une base de E.

On a $f(e_i)=e_i$ si $2\leq i\leq n$ car $e_i\in H$ et $f(e_1)=e_1+e_2$ par construction. Dans cette base, la matrice représentative de f a la forme demandée.

4) Le polynôme minimal de f est un diviseur de son polynôme caractéristique qui est $(X-1)^n$: il est donc de la forme $\mu_f(X) = (X-1)^p$ avec $1 car <math>f \ne Id$. Comme, pour tout $x \in E$, $f(x) - x \in H$ et que, pour tout $y \in H$, f(y) = y, on a, pour tout $x \in E$, f(f(x) - x) = f(x) - x, donc $f^2 - 2f + Id = 0$ et le polynôme $X - 2 - 2X + 1 = (X - 1)^2$ est un polynôme

annulateur de f. D'après ce qui précéde, c'est son polynôme minimal.

$$M = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \text{ et } N = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

les matrices représentant deux endomorphismes f et g dans la base canonique de \mathbb{R}^4 .

Soit $F = \{(x, y, 0, 0); (x, y) \in \mathbb{R}^2\}$ et $G = \{(0, 0, z, t); (z, t) \in \mathbb{R}^2\}$, alors $\mathbb{R}^4 = F \oplus G$. F et G sont stables par f et g. Les matrices M et N ne sont pas semblables puisque le sous-espace vectoriel associé à 1 est de dimension 2 pour f (donc f n'est pas une transvection) et de dimension 3 pour g. Elles ont même polynôme minimal : $(X-1)^2$.

5) Comme le polynôme minimal d'une transvection est $\mu_f(X) = X^2 - 2X + 1$, on a $f \circ (2Id - f) = (2Id - f) \circ f = Id$ donc f est inversible et son inverse est 2Id - f.

Si on se place dans la base définie à la question 2, la matrice représentative de 2Id-f a pour matrice une matrice dont tous les coefficients diagonaux valent 1 et tous les autres sont nuls sauf le terme a_{ij} avec $i \neq j$ qui vaut -1. Il suffit alors de changer la base $\{e_1,\ldots,e_n\}$ en la base $\{e_1,\ldots,e_{i-1},-e_i,e_{i+1},\ldots,e_n\}$ pour montrer que f^{-1} est également une transvection.

Compléments : Notons E_{ij} la matrice dont tous les coefficients sont nuls sauf son terme de la ième ligne et jème colonne qui vaut 1. Les matrices de transvection sont les matrices $T_{ij}(\lambda) = Id + \lambda E_{ij}$ pour $i \neq j$.

- La matrice $MT_{ij}(\lambda)$ s'obtient en remplaçant dans M la jème colonne notée c_j par $c_j + \lambda c_i$.
- La matrice $T_{ij}(\lambda)M$ s'obtient en remplaçant dans M la ième ligne notée l_i par $l_i + \lambda l_j$.

Ces matrices interviennent dans les opérations élémentaires sur les lignes et les colonnes. Elles engendrent SL(E). Elles font partie (avec les dilatations) des générateurs de GL(E).