

Introduction to Machine Learning

Neural networks / "feature learning"

Dr. Kfir Levy
Learning and Adaptive Systems (las.ethz.ch)

What are good features?

- Classification of handwritten digits (e.g. MNIST data)
- What properties should good features have?
- What features would you use?
- Examples:
 - Pixels?
 - Edge Detectors?
 - Strokes?
 - Others?

Importance of features

- Success in learning crucially depends on the quality of features
- Hand-designing features requires domain-knowledge
- What about kernel methods?
 - Rich set of feature maps
 - Can fit "any function" with infinite data*
 - Choosing the "right" kernel can be challenging
 - Computational complexity grows with size of data
- Can we learn good features from data directly??

Learning features

Learning with m hand-designed features

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{i=1}^n \ell\left(y_i; \sum_{j=1}^m w_j \phi_j(\mathbf{x}_i)\right)$$

• **Key Idea**: Parameterize the feature maps, and optimize over the parameters!

$$\mathbf{w}^* = \arg\min_{\mathbf{w}, \mathbf{\theta}} \sum_{i=1}^m \ell\left(y_i; \sum_{j=1}^m w_j \phi(\mathbf{x}_i, \mathbf{\theta}_j)\right)$$

Parameterizing feature maps

One possibility:

$$\phi(\mathbf{x}, \theta) = \varphi(\underline{\theta^T \mathbf{x}})$$

• Hereby, $\theta \in \mathbb{R}^d$ and $\varphi: \mathbb{R} \to \mathbb{R}$ is a nonlinear function, called "activation function"

Sigmoid activation and variants

Sigmoid and tanh activation function

Rectified linear units (ReLU)

$$\varphi(z) = \max(z, 0)$$

Artificial Neural networks (ANNs)

Functions of this form

$$f(\mathbf{x}_{i} | \mathbf{w}_{i} \mathbf{0}) = \sum_{j=1}^{m} w_{j} \varphi(\theta_{j}^{T} \mathbf{x})$$

are (examples of) artificial neural networks (ANNs) (also called Multi-layer Perceptrons)

 More generally, the term artificial neural network refers to nonlinear functions which are nested compositions of (variable) linear functions composed with (fixed) nonlinearities

Graphical illustration

Some comments

Can have more than one output

 Useful, e.g., for multi-class prediction (one output per class), or multi-output regression

- Can have more than one hidden layer
 - Neural networks with several hidden layers ≈ "Deep Learning"

Indexing units

Making predictions

ullet Suppose we have learned all parameters $w_{i,j}$

• Given an input, how do we make predictions?

Forward propagation!

Forward propagation

Input layer

Hidden layer 1

Hidden layer 2

Output layer

Forward propagation

For each unit j on input layer, set its value

$$v_j = x_j$$

- ullet For each layer $\ \ell=1:L-1$
 - ullet For each unit j on layer ℓ set its value

$$v_j = \varphi \Big(\sum_{i \in \text{Layer}_{\ell-1}} w_{j,i} v_i \Big)$$

For each unit j on output layer, set its value

$$f_j = \sum_{i \in \text{Layer}_{L-1}} w_{j,i} v_i$$
Predict $y_j = f_j$ for regression, $y_j = \text{sign}(f_j)$ for classification

Forward propagation (short notation)

- For input layer: $\mathbf{v}^{(0)} = \mathbf{x}$
- ullet For each hidden layer $\ell=1:L-1$

$$\mathbf{v}^{(\ell)} = \varphi(\mathbf{z}^{(\ell)}) \quad \varphi(\mathbf{z}^{(\ell)}) = (\varphi(\mathbf{z}^{(\ell)}), \varphi(\mathbf{z}^{(\ell)}), \varphi(\mathbf{z}^{(\ell)}), \varphi(\mathbf{z}^{(\ell)}))$$

- ullet For output layer: $f = \mathbf{W}^{(L)} \mathbf{v}^{(L-1)}$
- Predict: y = f (regression) or y = sign(f) (class.) $\hat{y} = \alpha rymux P_i$

Universal Approximation Theorem

Theorem 2. Let σ be any continuous sigmoidal function. Then finite sums of the form

$$G(x) = \sum_{j=1}^{N} \alpha_j \sigma(y_j^{\mathrm{T}} x + \theta_j)$$

are dense in $C(I_n)$. In other words, given any $f \in C(I_n)$ and $\varepsilon > 0$, there is a sum, G(x), of the above form, for which

$$|G(x) - f(x)| < \varepsilon$$
 for all $x \in I_n$.

 Cybenko., G. (1989) "Approximations by superpositions of sigmoidal functions", Mathematics of Control, Signals, and Systems, 2 (4), 303-314

→ demo

How can we train the weights?

- Given data set $D = \{(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_n, \mathbf{y}_n)\}$
 - want to optimize weights $\mathbf{W} = (\mathbf{W}^{(1)}, \dots, \mathbf{W}^{(L)})$
- How do we measure and optimize goodness of fit?
- → Apply loss function (e.g., Perceptron loss, multi-class hinge loss, square loss, etc.) to output

$$\ell(\mathbf{W}; \mathbf{y}, \mathbf{x}) = \ell(\mathbf{y} - f(\mathbf{x}, \mathbf{W})) = (\mathbf{y} - f(\mathbf{x}, \mathbf{W}))^{2}$$

→ Then optimize the weights to minimize loss over D

$$\mathbf{W}^* = \arg\min_{\mathbf{W}} \sum_{i=1}^{n} \ell(\mathbf{W}; \mathbf{y}_i, \mathbf{x}_i)$$

Side note: Losses for multi-outputs

 When predicting multiple outputs at the same time, usually define loss as sum of per-output losses:

$$\ell(\mathbf{W}; \mathbf{y}, \mathbf{x}) = \sum_{i=1}^{p} \ell_i(\mathbf{W}; y_i, \mathbf{x})$$

- Examples
 - ullet For regression tasks, i.e., $\ y_i \in \mathbb{R}$ may use squared loss
 - For classification, may use multiclass Perceptron or hinge loss

How do we optimize over weights?

Want to do Empirical Risk Minimization

$$\mathbf{W}^* = \arg\min_{\mathbf{W}} \sum_{i=1}^n \ell(\mathbf{W}; \mathbf{y}_i, \mathbf{x}_i)$$

- I.e., jointly optimize over all weights for all layers to minimize loss over the training data
- This is in general a non-convex optimization problem

Nevertheless, can try to find a local optimum

Stochastic gradient descent for ANNs

$$\mathbf{W}^* = \arg\min_{\mathbf{W}} \sum_{i=1}^n \ell(\mathbf{W}; \mathbf{y}_i, \mathbf{x}_i)$$

- Initialize weights W
- For t = 1,2,...
 - ullet Pick data point $(\mathbf{x},\mathbf{y})\in D$ uniformly at random
 - Take step in negative gradient direction

$$\mathbf{W} \leftarrow \mathbf{W} - \eta_t \nabla_{\mathbf{W}} \ell(\mathbf{W}; \mathbf{y}, \mathbf{x})$$