Application No.: 09/839782 Docket No.: 53807-00008USPT

AMENDMENTS TO THE CLAIMS

1-10. (Canceled)

- 11. (Currently Amended) A buzzer driving circuit for minimizing noise in a communication device, the buzzer driving circuit comprising:
 - a buzzer coupled to a voltage source;
 - a plurality of impedance components coupled in series to the buzzer;
- wherein the plurality of impedance components comprises at least one resistor and at least one capacitor coupled in series;
- wherein a value of the at least one resistor is selected so as to minimize noise generated by the buzzer; and-
- wherein the buzzer noise is minimized via a generated acoustic output which is opposite in polarity and equal in magnitude to the buzzer noise.
 - 12. (Canceled)
- 13. (Previously Presented) The buzzer driving circuit of claim 11, wherein a resistance of the buzzer (R_{buzzer}) is less than a resistance of the at least one resistor (R_{650}).
- 14. (Previously Presented) The buzzer driving circuit of claim 13, wherein R_{buzzer} is negligible relative to R_{650} .
- 15. (Previously Presented) The buzzer driving circuit of claim 14, wherein a current flowing through the buzzer (I_{buzzer}) is approximately equal to a voltage across the voltage source ($V_{batdrop}$) divided by the resistance of the at least one resistor (R_{650}).
- 16. (Previously Presented) The buzzer driving circuit of claim 15, wherein $V_{batdrop}$ is equal to a non-constant loop current (I_{loop}) times an internal resistance of the voltage source (R_{int}).
 - 17. (Previously Presented) The buzzer driving circuit of claim 16, wherein: R₆₅₀ is equal to R_{int} multiplied by a ratio of K₁ to K₂;
 - K₁ is a constant determined by characteristics of the buzzer; and
- K₂ is a constant determined by coupling between the buzzer and a circuit board of the communication device.

Application No.: 09/839782 Docket No.: 53807-00008USPT

18. (Currently Amended) A method of reducing noise in a communication device, the method comprising the steps of:

coupling a buzzer to a voltage source;

coupling a plurality of impedance components in series to the buzzer;

wherein the plurality of impedance components comprises at least one resistor and at least one capacitor coupled in series; and

selecting a value of the at least one resistor so as to minimize noise generated by the buzzer; and-

minimizing the buzzer noise via an acoustic output which is opposite in polarity and equal in magnitude to the buzzer noise.

- 19. (Canceled)
- 20. (Previously Presented) The method of claim 18, wherein a resistance of the buzzer (R $_{buzzer}$) is less than a resistance of the at least one resistor (R₆₅₀).
- 21. (Previously Presented) The method of claim 20, wherein R_{buzzer} is negligible relative to R₆₅₀.
- 22. (Previously Presented) The method of claim 21, wherein a current flowing through the buzzer (I_{buzzer}) is approximately equal to a voltage across the voltage source ($V_{batdrop}$) divided by the resistance of the at least one resistor (R_{650}).
- 23. (Previously Presented) The method of claim 22, wherein $V_{batdrop}$ is equal to a non-constant loop current (I_{loop}) times an internal resistance of the voltage source (R_{int}).
 - 24. (Previously Presented) The method of claim 23, wherein:

 R_{650} is equal to R_{int} multiplied by a ratio of K_1 to K_2 ;

K₁ is a constant determined by characteristics of the buzzer; and

K₂ is a constant determined by coupling between the buzzer and a circuit board of the communication device.

25. (Previously Presented) A method of reducing noise in a communication device, the method comprising:

determining, via a radio-frequency (RF) power-management application specific integrated circuit (ASIC), of an amount of current driven from a battery through a power amplifier of the communication device;

generating, based on the determined amount of current, of an acoustic output using an algorithm of the RF power-management ASIC;

wherein the generated acoustic output is opposite in polarity and equal in magnitude to buzzer noise generated in the communication device due to a non-constant current; and

canceling the noise via the generated acoustic output.