MA4702. Programación Lineal Mixta. 2018.

Profesor: José Soto

Escriba(s): Juan Pablo Donoso Merlet

Fecha: 12 de marzo 2018.

Cátedra 0

1. PLM: Modelos y formulaciones.

Modelos

Partamos con definiciones elementales:

Definición 1 (Problema de optimización e instancias). Un problema de optimización (P) consiste en un conjunto de instancias, siendo una instancia definida por tres aspectos:

- Un conjunto factible S.
- Una función a optimizar $f: S \to \mathbb{R}$.
- \blacksquare Un objetivo, minimizar o maximizar la función f en dicho conjunto S.

Por ejemplo, para el problema de optimización de MST, una instancia estaría conformada por un grafo G = (V, E) con pesos en las aristas, junto con un conjunto factible S de los árboles generadores de dicho grafo G.

<u>observación</u>: Diremos que *resolvemos* una instancia siempre y cuando seamos capaces de realizar alguna de las dos siguientes opciones:

- 1. Encontrar OPT $\in S$ tal que $f(OPT) = \max_{x \in S} f(x)$
- 2. Mostrar que no hay un elemento $OPT \in S$ que cumpla lo anterior, donde en general hay tres casos:
 - Por infactibilida $(S = \emptyset)$.
 - El problema es no acotado (máximo es $+\infty$).
 - No alcanzable, i.e. el máximo no se alcanza pero si supremo.

Por último, recordemos lo que es un algoritmo.

Definición 2 (Algoritmo). Una secuencia de instrucciones que resuelve *instancias* de un problema de optimización (P). Así, los problemas que nos interesarán en este curso son aquellos que se puedan *modelar* como un PLM.

Definición 3 (PLM). Un Programa Lineal Mixto consiste es un problema de optimización tal que el conjunto factible S es un conjunto lineal mixto, es decir:

$$S := \{ x \in \mathbb{Z}^E \times \mathbb{R}^C : Ax < b \} \subset \mathbb{R}^n$$

con $n, m \in \mathbb{N}$, $E, C \subseteq [n]$ tales que $E \cup C = [n]$, $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ y $b \in \mathbb{R}^m$.

Ejemplo:(Knapsack)

Consideremos el siguiente problema. Tenemos $n \in \mathbb{N}$ objetos, cada uno con un valor $v_i \geq 0$ y tamaño $s_i \geq 0$ asociados, y una mochila de capacidad $B \geq 0$. La idea es seleccionar los objetos a poner en la mochila de modo tal de maximizar el valor total, i.e.:

$$\max \sum_{i \in [n]} v_i x_i$$
 s.a.
$$\sum_{i \in [n]} s_i x_i \le B$$

$$x_i \in \{0,1\} \quad \forall i \in [n]$$

Notar que el vector $x \in \{0,1\}^n$ es tal que:

 $x_i = 1 \iff$ el objeto i se agrega a la mochila.

observación: La palabra modelo se usa muy coloquialmente como algo intercambiable con formulación. En rigor:

Un PLM es un modelo de una instancia si podemos extraer una solución de dicha instancia resolviendo el PLM Así, lo mínimo que se pedirá a un PLM en la modelación de un problema es:

- Óptimos del PLM se asocian a optimos del problema.
- Algún óptimo del problema se refleje como objeto factible del PLM.

Por último, si pidiesemos que el conjunto factible del PLM fuese **igual** al conjunto de soluciones factibles del problema, hablamos de un problema exacto.

Ejemplo: El modelo de knapsack es exacto.

Ejemplo (de problema no exacto): Caminos de largo mínimo en un grafo dirigido. Sea $G = (V, \vec{E})$ un digrafo, con un nodo origen $s \in V$ y un nodo destino $t \in V$. Consideremos además una función de largos no negativos $\ell : \vec{E} \to \mathbb{R}_+$. Veamos este problema de dos maneras:

1. Como flujo: El problema de optimización a resolver es:

mín
$$\sum_{\vec{e} \in \vec{E}} \ell_{\vec{e}} x_{\vec{e}}$$
 s.a.
$$x(\delta^{-}(v)) - x(\delta^{+}(v)) = \begin{cases} 0 & v \not\in \{s,t\} \\ -1 & \text{si } v = s \\ 1 & \text{si } v = t \end{cases}, \quad \forall v \in V$$

$$x_{\vec{e}} \in \{0,1\} \qquad \forall \vec{e} \in \vec{E}$$

Se puede demostrar que este modelo no es exacto, pues no hay correspondencia entre los caminos factibles del problema y los puntos factibles definidos por las restricciones de este modelo.

2. Como conector:

mín
$$\sum_{\vec{e} \in \vec{E}} \ell_{\vec{e}} x_{\vec{e}}$$

s.a. $x(\delta^+(S)) \ge 1$ $\forall S \subseteq V$, con S un $s-t$ corte $x_{\vec{e}} \in \{0,1\}$ $\forall \vec{e} \in \vec{E}$

Este modelo tampoco es exacto, pero la diferencia es que aquí el tamaño del conjunto factible es exponencial en |V|. A pesar de eso, a veces igual preferimos estos casos.

Ejercicio: Llame S_{flujo} y S_{conector} a los conjuntos lineales enteros factibles de los PLE anteriores (i.e. los dominios). Cada $x \in S$ es de la forma χ^A con $A \subseteq E$. Defina:

$$\overline{S} = \{ A \subseteq E : \chi^A \in S \}$$

y considere por último $\overline{S}^{\downarrow}$ los conjuntos minimales para la inclusión en $\overline{S}.$ Demuestre que:

$$\overline{S}_{\rm flujo}^{\downarrow} = \overline{S}_{\rm conector}^{\downarrow}$$

Formulaciones

Definición 4 (Poliedro). \mathcal{P} es poliedro si es la intersección de un conjunto finito de semiplanos.

Definición 5 (Formulación de un conjunto lineal mixto). Decimos que un poliedro \mathcal{P} es una formulación de un conjunto lineal mixto $S \subseteq \mathbb{Z}^E \times \mathbb{R}^C$ si:

$$\mathcal{P} \cap (\mathbb{Z}^E \times \mathbb{R}^C) = S$$

Figura 1: La envoltura convexa tiene una cantidad infinita de caras que la definen, y por lo tanto no sería un poliedro.

Definición 6 (\mathcal{P} es mejor formulación que \mathcal{Q}). Dadas dos fomulaciones \mathcal{P} y \mathcal{Q} de S, decimos que \mathcal{P} es mejor que \mathcal{Q} si:

$$\mathcal{P} \subseteq \mathcal{Q}$$

observación: Notemos que para toda formulación \mathcal{P} de S, siempre se tiene que:

$$S \subseteq \mathcal{P}$$

Como además \mathcal{P} es poliedro, podemos concluir que:

$$conv(S) \subseteq \mathcal{P}$$

Así, si ocurriese que conv(S) fuese un poliedro, entonces sería la mejor formulación.

observación: conv(S) no es necesariamente un poliedro. Para ello consideremos el siguiente S:

$$S = \{(x,y) \in \mathbb{Z}^2 : y \le \sqrt{2}x, \ x \ge 1, \ y \ge 1\}$$

Figura 2: La envoltura convexa tiene una cantidad infinita de caras que la definen, y por lo tanto no sería un poliedro.

observación:

PL: factible + fn. objetivo acotada \Longrightarrow se alcanza óptimo PLM: factible + fn. objetivo acotada y no se alcanza óptimo necesariamente

Uno de los objetivos del curso es probar que esto no ocurre si los datos son racionales.