CSB-RNN: A Faster-than-Realtime RNN Acceleration Framework with Compressed Structured Blocks

Runbin Shi^{1,3}, Peiyan Dong¹, Tong Geng², Martin Herbordt², Hayden So³, Yanzhi Wang¹ ¹Northeastern University, ²Boston University, ³The University of Hong Kong

BARC'20, Jan. 31, 2020, Boston

Recurrent Neural Networks for Sequence Processing

Natural Language Processing (e.g., translation, sentiment classification)

Real World Issues 😌

- Tremendous MVM Computation (10ms latency on CPU v.s. 500µs realtime requirement)
- Sequential Processing (low concurrency)
- Large Model Size (30M+ Weights)

Techniques in CSB-RNN

- Roadmap: Algorithm + Acceleration Co-optimization
- Algorithm side: Pruning with a novel <u>structured sparse pattern, CSB</u>
- Acceleration side: ISA <u>Architecture</u> with <u>Compilation</u>

Fine-grained Structured Pruning

- Structure: friendly to parallel hardware
- Fine-grained pruning block: (high pruning rate)

Acceleration Framework

Performance

- Pruning rate: 3.5×-25× Lossless pruning, 1.3×-2.8× to existing works.
- Acceleration: 0.12μs 4.79μs inference latency, 2.6×-38.66× more power efficient.

Table 1: Comparison of Pruning Rate

Abbr.	Compression Technique	Prune Rate	Weight Width	Metric	Result	Impro- vement
MT1	column pruning [25]	8×	16-bit	PPL	112.73	1×
	CSB pruning	12.5×	16-bit	FFL	112.02	1.6×
MT2	row-column [26]	4.35×	floating		82.59	1×
	bank-balanced [3]	5×	16-bit	PPL	82.59	1.1×
	CSB pruning	12×	16-bit		82.33	$2.8 \times$
SR1	block-circulant [24]	8×	16-bit		24.57%	1×
	row-balanced [10]	8.9×	16-bit	PER	20.70%	1.1×
	bank-balanced [3]	10×	16-bit	LLK	23.50%	1.3×
	CSB pruning	13×	16-bit		20.10%	1.6×
SR2	block-circulant [14]	8×	16-bit	PER	20.02%	1×
	CSB pruning	20×	16-bit	FER	20.01%	$2.5 \times$
SR4	column pruning [7]	14.28×	16-bit	Accu	98.43%	1×
	CSB pruning	23×	16-bit	Accu	99.01%	1.61×

Table 2: Comparison of Inference Latency and Power Efficiency

Abbr.	Work	#PE	Freq. (MHz)	Latency (μs)	Power (Watt)	Power Eff. (k-frames/W)	Power Eff. Improv.
MT1	BBS [3]	1518	200	1.30	19	40.49	1×
	CSB-RNN	512	200	0.79	8.9	142.72	3.53×
SR1	C-LSTM [24]	2680	200	8.10	23	5.37	18.20×
	E-RNN [14]	2660	200	7.40	29	4.66	$15.80 \times$
	ESE [10]	1504	200	82.70	41	0.29	1×
	CSB-RNN	1024	200	4.79	18.3	11.40	38.66×
SR2	E-RNN [14]	2280	200	6.70	25	5.97	1×
	CSB-RNN	1024	200	2.60	18.3	20.98	3.51×
SR4	DeltaRNN [7]	768	125	0.38	7.3	360.49	1×
	CSB-RNN	512	200	0.12	8.9	936.74	2.60×

Thank you.