Annual RAC meeting

Vibishan B.

20163448

8th July, 2021

- Dispersal selection
 - Work done up to 2020
 - Post-pandemic data and future directions
- Cancer theory
 - Adaptive therapy
 - Other theory work in cancer

- Dispersal selection
 - Work done up to 2020
 - Post-pandemic data and future directions
- Cancer theory
 - Adaptive therapy
 - Other theory work in cancer

- Dispersal selection
 - Work done up to 2020
 - Post-pandemic data and future directions
- Cancer theory
 - Adaptive therapy
 - Other theory work in cancer

- Existing setup for dispersal selection
- Large outbred population of *Drosophila* melanogaster

- Existing setup for dispersal selection
- Large outbred population of *Drosophila* melanogaster

Tradeoffs against dispersal

 Previous work in normal food showed largely <u>cost-free</u> selection response.

- Existing setup for dispersal selection
- Large outbred population of *Drosophila* melanogaster

Tradeoffs against dispersal

- Previous work in normal food showed largely <u>cost-free</u> selection response.
- Could costs be detected in a nutritionally-deprived context?

- Dispersal evolution with the same setup, but with larval malnutrition

- Dispersal evolution with the same setup, but with larval malnutrition

Selection line populations

- MD-Malnourished Dispersers
- MC-Malnourished Control

- Dispersal evolution with the same setup, but with larval malnutrition

Response at generation 42

- Dispersal response seen-MD were more likely to initiate dispersal and dispersed over longer distances than MC.
- Locomotor activity higher in MD than in MC, but no costs in body weight or fecundity

- Dispersal selection
 - Work done up to 2020
 - Post-pandemic data and future directions
- Cancer theory
 - Adaptive therapy
 - Other theory work in cancer

 Dispersal selection suspended from March to November 2020 spanning 11 generations

- Dispersal selection suspended from March to November 2020 spanning 11 generations
- Two assays to assess loss of phenotype before continuing selection-dry body weight and locomotor activity

Locomotor activity

ANOVA numbers here

Dry body weight

ANOVA numbers here

Resuming selection

- Locomotor phenotype is still detectable, body weight trends are unclear.
- About 20 more generations of dispersal have now been carried out-62 generations of selection in total

Resuming selection

- Locomotor phenotype is still detectable, body weight trends are unclear.
- About 20 more generations of dispersal have now been carried out-62 generations of selection in total
- Bigger set of assays need to be repeated-dispersal kernel, body weight and fecundity
- I plan to conduct smaller experiments for the time being-exploration and male-male aggression, and kit-based estimation of total glucose and triglyceride content.

Resuming selection

- Locomotor phenotype is still detectable, body weight trends are unclear.
- About 20 more generations of dispersal have now been carried out-62 generations of selection in total
- Bigger set of assays need to be repeated-dispersal kernel, body weight and fecundity
- I plan to conduct smaller experiments for the time being-exploration and male-male aggression, and kit-based estimation of total glucose and triglyceride content.
- Standardisation-consumption rate based on coloured dye uptake and recording-based approaches to measure time to starvation or dessication

- Dispersal selection
 - Work done up to 2020
 - Post-pandemic data and future directions
- Cancer theory
 - Adaptive therapy
 - Other theory work in cancer

- Dispersal selection
 - Work done up to 2020
 - Post-pandemic data and future directions
- Cancer theory
 - Adaptive therapy
 - Other theory work in cancer

Conventional vs adaptive therapy

Figure 1: Drug at maximum dose-competitive release of resistant cells

Conventional vs adaptive therapy

Figure 1: Drug at maximum dose-competitive release of resistant cells

Figure 2: Adaptive therapy and control through competition

 Early prostate cancer cells-dependent on testosterone supply for growth-treated by chemical castration

- Early prostate cancer cells-dependent on testosterone supply for growth-treated by chemical castration

- Early prostate cancer cells-dependent on testosterone supply for growth-treated by chemical castration
- Other cells become testosterone-independent in growth
 resistant to inhibitors-treatment?

Three cell types and two resources

- Oxygen-externally-supplied resource
- Testosterone-produced internally
- T⁺-testosterone-dependent, but not producing
- T^p-testosterone-dependent, also producing as a public good
- T⁻-testosterone-independent

This work was done with Harsha, a Master's student in the lab.

A mathematical framework

For
$$i \in \{T^+, T^p, T^-\}$$

$$\frac{dy_i}{dt} = r_{i,max} y_i \left(1 - \frac{\sum_j y_j}{1 + K_{i,max} f_i(O_2) f_i(T)}\right) - \delta_i y_i \tag{1}$$

For $R \in \{O_2, T\}$

$$f_{i}(R) = \begin{cases} 1 & \text{if } ul_{R,i} \leq R\\ \frac{R - ll_{R,i}}{ul_{R,i} - ll_{R,i}} & \text{if } ll_{R,i} < R < ul_{R,i}\\ 0 & \text{if } R \leq ll_{R,i} \end{cases}$$
 (2)

$$\frac{dO_2}{dt} = p_{O_2} - \sum_i \mu_{O_2, i} y_i - \lambda_{O_2} O_2 \tag{3}$$

$$\frac{dtest}{dt} = p_{test}(abi)y_{T^p} - \sum_{i} \mu_{test,i}y_i - \lambda_{test}test$$
 (4)

A mathematical framework

Figure 3: Response function for change in carrying capacity against resource concentration

Parameterisation

Doubling times, consumption rates for oxgen and testosterone, and testosterone production rate for T^p were all derived from literature sources reporting empirical measurements in cell lines.

- Doubling rates scale as $T^- < T^+ < T^p$, but T^- doesn't win by default.
- Resource limitations can be used to tune co-existence.

- Doubling rates scale as $T^- < T^+ < T^p$, but T^- doesn't win by default.
- Resource limitations can be used to tune co-existence.
- Testosterone is the stronger limiting resource in this system.

- Doubling rates scale as T⁻<T⁺<T^p, but T⁻ doesn't win by default.
- Resource limitations can be used to tune co-existence.
- Testosterone is the stronger limiting resource in this system.
- Higher T⁻ proportion makes tumours harder to treat and more unresponsive.

Further development

- A resource-consumer model without explicit carrying capacity terms-parameterisation is ongoing
- Further exploration of therapy parameters in the same model-rules of on and off, frequency, multi-drug combinations
- Spatial dynamics-a discrete reaction-diffusion system is being considered at the moment

All three lines are being developed with undergraduate students from IISER Pune.

- Dispersal selection
 - Work done up to 2020
 - Post-pandemic data and future directions
- Cancer theory
 - Adaptive therapy
 - Other theory work in cancer

Patterns in cancer incidence

Trends across species

- Body size as well as lifespan varies widely across species and taxa.
- Cancer risk is not correlated to this variation.

Patterns in cancer incidence

Trends across species

- Body size as well as lifespan varies widely across species and taxa.
- Cancer risk is not correlated to this variation.

Within species-late-life decline

•

Patterns in cancer incidence

Trends across species

- Body size as well as lifespan varies widely across species and taxa.
- Cancer risk is not correlated to this variation.

Within species-late-life decline

•

Timeline

Thank you for your attention.

