PERBANDINGAN MODEL CHEN DAN MODEL LEE PADA METODE FUZZY *TIME SERIES* UNTUK PREDIKSI HARGA EMAS

TUGAS AKHIR

Diajukan Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Teknik Pada Jurusan Teknik Informatika

Oleh:

DARNI ANGGRIANI 10851004724

FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI SULTAN SYARIF KASIM RIAU PEKANBARU 2012

LEMBAR PERSETUJUAN

PERBANDINGAN MODEL CHEN DAN MODEL LEE PADA MEETODE FUZZY TIME SERIES UNTUK PREDIKSI HARGA EMAS

TUGAS AKHIR

oleh:

DARNI ANGGRIANI 10851004724

Telah diperiksa dan disetujui sebagai laporan tugas akhir di Pekanbaru, pada tanggal 11 Desember 2012

Koordinator Tugas Akhir

Pembimbing I

<u>Iwan Iskandar, S.T, M.T</u> NIK. 130 508 071 <u>Lestari Handayani, S.T, M.Kom</u> NIP. 1981113 200710 2 003

PERBANDINGAN MODEL CHEN DAN MODEL LEE PADA METODE FUZZY *TIME SERIES* UNTUK PREDIKSI HARGA EMAS

DARNI ANGGRIANI 10851004724

Tanggal Sidang: 11 Desember 2012 Periode Wisuda: Februari 2012

Jurusan Teknik Informatika
Fakultas Sains dan Teknologi
Universitas Islam Negeri Sultan Syarif Kasim Riau

ABSTRAK

Emas merupakan suatu investasi penting dalam perekonomian yang mana harganya yang lebih cendrung naik dari pada turun sehingga banyak dari para investor atau manajer investasi yang memprediksi harga emas untuk keesokan harinya. Sistem prediksi menggunakan fuzzy time series berguna untuk menangkap pola data telah lalu kemudian digunakan untuk menghasilkan informasi diwaktu yang akan datang. Dalam fuzzy time series terdapat berbagai model diantaranya model Chen dan Lee, untuk menggetahui model mana yang menghasilkan tingkat keakuratan yang tepat dengan menghitung tingkat keerroran menggunakan AFER dan MSE. Dalam perhitungan fuzzy time series panjang interval telah ditentukan diawal proses, dalam proses ini panjang interval sangat berpengaruh untuk hasil prediksi. Metode untuk penentuan panjang interval yang efektif adalah dengan metode berbasis rata-rata atau average-based fuzzy time series. Sehingga pembentukan fuzzy relationship akan tepat dan menghasilkan hasil prediksi yang efektif. Dari hasil pengujian yang dilakukan dengan menggunakan data dari tahun Januari 2007 - 29 mei 2012, diketahui bahwa prediksi data menggunakan fuzzy time series dengan penetuan interval berbasis rata-rata memiliki keerroran menggunakan model chen AFER 0,010% dan MSE 218,577 model lee rata-rata AFER 0,0013% dan MSE 212,092. Dari hasil pengujian yang telah dilakukan dapat dibuktikan metode fuzzy time series menggunakan model lee lebih menghasilkan tingkat keerroran lebih rendah dibanding model chen.

Kata kunci: Average based, Emas, Fuzzy relationship, Fuzzy time series, Prediksi, Time Series

DAFTAR ISI

HALAMAN JUDUL LAPORANi
LEMBAR PERSETUJUANii
LEMBAR PENGESAHANiii
LEMBAR HAK ATAS KEKAYAAN INTELEKTUALiv
LEMBAR PERNYATAANv
LEMBAR PERSEMBAHANvi
ABSTRAKvii
ABSTRACTviii
KATA PENGANTARix
DAFTAR ISIxi
DAFTAR GAMBARxiv
DAFTAR TABEL xv
DAFTAR RUMUSxvi
DAFTAR SIMBOL xvii
DAFTAR ISTILAHxix
BAB I PENDAHULUANI-1
1.1. Latar BelakangI-1
1.2. Rumusan MasalahI-2
1.3. Batasan MasalahI-2
1.4. Tujuan PenelitianI-2
1.5. Sistematika Penulisan
BAB II LANDASAN TEORIII-1
2.1. Prediksi II-1
2.1.1. Pengertian PrediksiII-1
2.1.2. Beberapa Metode PrediksiII-2
2.2. Konsep dan Jenis DataII-3
2.2.1. Pola Data Dalam PrediksiII-4
2.3 Himpunan Fuzzy (Fuzzy Set)II-4
2.4 Fuzzy Time SeriesII-5

2.4.1 Penentuan Interval	II-6
2.4.2 Tahapan Fuzzy Time Series	II-7
2.5 Pengukuran Efektivitas Prediksi.	II-11
BAB III METODOLOGI PENELITIAN	III-1
3.1. Alur Metodologi Penelitian	III-1
3.2. Pengumpulan Data	III-2
3.3. Analisa	III-2
3.4. Perancangan.	III-3
3.5. Implementasi dan Pengujian	III-3
3.6. Kesimpulan dan Saran.	III-4
BAB IV ANALISA DAN PERANCANGAN	IV-1
4.1. Gambaran Umum Sistem	IV-1
4.1.1 Analisa Data Masukan	IV-2
4.1.2 Analisa Metode Fuzzy Time Serie	IV-3
4.2. Proses Prediksi Fuzzy Time Series dengan Average Base	?dIV-5
4.3. Analisa Fungsional Sistem	IV-16
4.2.1 Context Diagram	IV-17
4.2.2 DFD Level 1	IV-17
4.2.3 DFD Level 2 Proses 3 Hasil Prediksi	IV-18
4.4. Perancangan Sistem	IV 19
4.3.1 Perancangan Basis Data	IV-19
4.5. Perancangan Antar Muka Sistem	IV-20
BAB V IMPLEMENTASI DAN PENGUJIAN	V-1
5.1. Implementasi Perangkat Lunak	V-1
5.1.1 Batasan Implementasi	V-1
5.1.2 Lingkungan Operasional	V-1
5.2. Hasil Implementasi	V-2
5.2.1 Hasil Implementasi Penentuan Interval	V-2
5.2.2 Hasil Implementasi Uinverse Of Discourse	V-3
5.2.3 Hasil Implementasi Fuzzifikasi	V-4
5.2.4 Implementasi Hasil Prediksi Menggunakan Model	Chen

dan Model Lee.	V-6
5.25 Implementasi Grafik Perbandingan Hasil Prediksi	V-7
5.3. Pengujian Sistem	V-7
5.3.1 Pengujian Blackbox	V-8
5.3.2 Pengujian Sistem pada Aspek Keakuratan Nilai Prediks	si . V-9
5.3.3 Kesimpulan Pengujian	V-10
BAB VI PENUTUP.	VI-1
6.1 Kesimpulan	VI- 1
6.2 Saran	VI- 1
DAFTAR PUSTAKA	XX
DAFTAR LAMPIRAN	
DAFTAR RIWAYAT HIDLIP	

BAB I

PENDAHULUAN

1.1 Latar Belakang

Beberapa tahun terakhir mulai bermunculan bermacam-macam investasi, antara lain tabungan, emas, reksadana dan lain-lain. Salah satu investasi yang sedang berkembang sekarang adalah investasi emas, sehingga mulai bermunculan lembaga-lembaga yang mengedarkan emas di Indonesia. Lembaga tersebut antara lain Gerai Dinar (GD), PT. (Aneka Tambang) ANTAM. Tbk dan *London Bullion Market Association* (LBMA). Harga emas yang cenderung menaik membutuhkan sistem yang dapat membantu untuk mengetahui prediksi harga emas diwaktu yang akan datang.

Salah satu metode untuk memprediksi harga emas yaitu dengan fuzzy *time series*, penelitian ini telah dilakukan untuk memprediksi kurs rupiah terhadap dollar amerika (Ahmad, 2011) dimana metode ini dapat menangkap pola dari data yang telah lalu kemudian digunakan untuk memproyeksikan ke masa yang akan datang. Dalam metode fuzzy time series terdapat berbagai model yaitu model Song, Chissom, Chen dan Lee.

Metode fuzzy *time series* menggunakan model Song dan Chissom diimplementasikan untuk memprediksi jumlah pendaftaran (Song 1993), kemudian model Song dan Chissom ini digunakan untuk memprediksi cuaca (Song, 1994) kurangnya tingkat keakuratan dengan menggunakan model tersebut kemudian disempurkan oleh Chen (Chen, 2000) dan kemudian pada tahun 2009 ditemukanlah model Lee yang dianggap lebih baik dalam hal memprediksi dengan metode fuzzy *time series* dibanding model Chen dalam hal keakuratan atau *evaluation* MSE paling kecil (Wangren, 2011)

Dalam penelitian ini, penulis mencoba membandingkan hasil prediksi harga emas dengan menggunakan model Chen dan model Lee pada metode fuzzy *time series*, dimana pada proses fuzzy *time series* panjang interval telah ditentukan

diawal proses karena panjang interval sangat berpengaruh dalam hasil prediksi, sehingga pembentukan *fuzzy relationship* akan tepat. Metode untuk penentuan panjang interval yang efektif adalah dengan metode berbasis rata-rata atau *average-based fuzzy time series* (Xihao, 2008).

1.2 Rumusan Masalah

Berdasarkan latar belakang masalah diatas, maka dapat dirumuskan permasalahan yang diangkat yaitu, "Perbandingan prediksi harga emas menggunakan metode fuzzy *time series* pada model Chen dan Model Lee".

1.3 Batasan Masalah

- Data yang digunakan dalam penelitian ini adalah data harga emas dari The London Bullion Market Association (LBMA) dari tahun 2007-2012.
- 2. Dalam proses fuzzy *time series* terdapat penentuan panjang interval untuk menghasilkan penentuan panjang interval yang akurat untuk hasil prediksi digunakan metode penentuan interval berbasis rata-rata atau *average-based* fuzzy *time series*.
- 3. Untuk menghitung tingkat keakuratan prediksi atau *Evaluation* menggunakan AFER (*average forecating error rate*) dan MSE (*mean square error*).

1.4 Tujuan Penelitian

Tujuan yang ingin dicapai adalah menghasilkan aplikasi yang dapat membantu membandingkan hasil prediksi harga emas menggunakan metode Fuzzy *Time Series* (FTS) menggunakan model Chen dan model Lee.

1.5 Sistematika Penulisan

Sistematika penulisan Tugas Akhir ini dibagi menjadi beberapa bab, hal ini dimaksudkan agar dapat diketahui tahapan dan batasannya. Adapun sistematikanya sebagai berikut :

Bab I Pendahuluan

Bab ini menjelaskan dasar-dasar dari penulisan laporan tugas akhir, yang terdiri dari latar belakang, rumusan masalah, batasan masalah, tujuan, serta sistematika penulisan.

Bab II Landasan Teori

Pada bab ini berisi tentang teori-teori diantaranya adalah mengenai Emas, Fuzzy *Time Series*, Metode Fuzzy *Tme Series* (FTS) dengan penentuan interval berbasis rata-rata, Model Chen dan Model Lee.

Bab III Metodologi Penelitian

Pada Bab ini akan membahas mengenai metodologi serta langkah-langkah dalam melakukan penelitian dan penyusunan tugas akhir.

Bab IV Analisa dan Perancangan

Pada bab ini merupakan pembahasan tentang analisis dari penelitian yang dilakukan dalam tugas akhir ini sekaligus menerangkan perancangan rancang bangun aplikasi yang dibangun.

Bab V Implementasi dan Pengujian

Bab ini membahas langkah pembangunan dan perancangan aplikasi perbandingan hasil prediksi harga emas dengan metode Fuzzy *Tme Series* menggunakan model Chen dan model Lee.

Bab VI Penutup

Bab ini berisi kesimpulan dan saran mengenai hasil analisa, perancangan, implementasi dan hasil pengujian yang telah dilakukan terhadap aplikasi perbandingan hasil prediksi harga emas dengan metode Fuzzy *Tme Series* menggunakan model Chen dan Model Lee.

BAB II

LANDASAN TEORI

2.1. Prediksi

Prediksi merupakan salah satu dari jenis Data mining apabila penggolongannya berdasarkan pada kegunaannya. Prediksi (*Prediction*) pada intinya sama dengan klasifikasi atau estimasi tetapi lebih mengarah pada nilainilai pada masa yang akan datang. Dalam prediksi data yang diproses adalah data historis yang digunakan sebagai data bahan acuan ditambah dengan data-data simulasi yang dapat diubah-ubah sesuai dengan kemungkinan-kemungkinan yang dapat terjadi (Saiful Bukhori, 2007).

2.1.1. Pengertian Prediksi

Prediksi adalah mengetahui perkiraan nilai dari suatu barang diwaktu yang akan datang. Atau prediksi adalah kebutuhan akan prediksi semakin meningkat sejalan dengan keinginan manajemen untuk memberikan tanggapan yang cepat dan tepat terhadap peluang maupun perubahan dimasa mendatang.

Perbedaan antara prediksi, peramalan dan prakiraan adalah prediksi dapat dilakukan secara kualitatif dan kuantitatif. Prediksi kualitatif merupakan prediksi berdasarkan pendapat suatu pihak (*judgement forcast*) dan prediksi kuantitatif merupakan prediksi mendasarkan pada data masa lalu (data historis) dan dapat dibuat dalam bentuk angka yang biasa disebut sebagai data *time series* (Jumingan, 2009). Prediksi kuantitatif tidak lain adalah prediksi sedangkan prediksi kualitatif adalah peramalan, prakiraan dipandang sebagai proses prediksi variabel dimasa mendatang dengan berdasarkan data-data variabel yang bersangkutan dimasa sebelumnya. Data masa lampau tersebut, secara sistematik digabungkan melalui metode tertentu dan diolah untuk keadaan pada masa yang akan datang.

2.1.2. Beberapa Metode Prediksi

Ada berbagai metode yang dapat digunakan untuk proses prediksi adalah sebagai berikut:

1. Backporpagation

Backpropagation adalah sebuah metode sistematik untuk pelatihan multiplayer jaringan saraf tiruan. Metode ini memiliki dasar matematis yang kuat, obyektif dan algoritma ini mendapatkan bentuk persamaan dan nilai koefisien dalam formula dengan meminimalkan jumlah kuadrat galat error melalui model yang dikembangkan (training set) (Kusumadewi, 2004).

2. Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS pertama kali diperkenalkan oleh Lotfi A. Zadeh, 1965, dengan melihat kenyataan bahwa manusia dapat membuat keputusan yang lebih baik berdasarkan informasi yang bukan *numeric* dan kurang pasti. *Neuro Fuzzy* merupakan suatu teknik optimasi yang menggabungkan *Neural Network* dan *Fuzzy Logic*. *Neural network* mengenal pola dan menyesuaikan terhadap perubahan pola. Sedangkan *Fuzzy Logic* menggabungkan pengetahuan manusia dan menarik kesimpulan untuk membuat suatu keputusan. *Neuro Fuzzy* dapat diterapkan dalam analisis prediksi suatu *time series*. Masukan *time series* akan digunakan untuk melatih ANFIS dengan fungsi keanggotaan tertentu yang nilainya antara 0 dan 1.

3. Fuzzy Time Series (FTS)

Fuzzy Time series (FTS) adalah metode prediksi data yang menggunakan prinsipprinsip fuzzy sebagai dasarnya. Sistem prediksi dengan FTS menangkap pola dari data yang telah lalu kemudian digunakan untuk memproyeksikan data yang akan datang. Pertama kali dikembangkan oleh Q. Song and B.S. Chissom pada tahun 1993. Metode ini sering digunakan oleh para peneliti untuk menyelesaikan masalah prediksi. Prosesnya juga tidak membutuhkan suatu sistem pembelajaran dari sistem yang rumit sebagaimana yang ada pada algoritma genetika dan jaringan syaraf sehingga mudah untuk digunakan dan dikembangkan (Robandi, 2006 dikutip dari M. Syauqi Haris, 2010).

2.2. Konsep dan Jenis Data

Dalam ekonometrika, dikenal terdapat 3 kelompok data yaitu data runtun waktu (*time series*), data silang (*cross section*), dan data panel (*pooled data*). Data-data tersebut tentunya sangat diperlukan dalam penelitian, maupun pengambilan keputusan. Pengumpulan data biasanya memerlukan waktu yang lama karena dapat melibatkan banyak aktifitas seperti mendatangi responden, menginput data, menyunting data, maupun menampilkannya dengan suatu alat analisis tertentu. Berikut akan dibahas beberapa jenis data yang telah dibahas di atas (Winarno, 2007).

1. Data runtun waktu (Time Series)

Time series merupakan data yang terdiri atas satu objek tetapi meliputi beberapa periode waktu misalnya harian, bulanan, mingguan, tahunan, dan lainlain. Dapat dilihat dari contoh data time series pada data harga saham, data ekspor, data nilai tukar (kurs), data produksi, dan lain-lain sebagainya. Jika diamati masing-masing data tersebut terkait dengan waktu (time) dan terjadi berurutan. Misalnya data produksi minyak sawit dari tahun 2000 hingga 2009, data kurs Rupiah terhadap dollar Amerika Serikat dari tahun 2000 – 2006, dan lain-lain. Dengan demikian maka akan sangat mudah untuk mengenali jenis data ini. Data time series juga sangat berguna bagi pengambil keputusan untuk memperkirakan kejadian dimasa yang akan datang. Karena diyakini pola perubahan data time series beberapa periode masa lampau akan kembali terulang pada masa kini. Data time series juga biasanya bergantung kepada lag atau selisih.

2. Data Silang (Cross Section)

Data silang terdiri dari beberapa objek data pada suatu waktu, misalnya data pada suatu restoran akan terdiri dari data penjualan, data pembelian bahan baku, data jumlah karyawan, dan data relevan lainnya.

3. Data Panel (Pooled Data)

Data panel adalah data yang menggabungkan antara data runtun waktu (*time series*) dan data silang (*cross section*). Karena itu data panel akan memiliki beberapa objek dan beberapa periode waktu.

2.2.1. Pola Data Dalam Prediksi

Salah satu langkah penting dalam memilih suatu metode prediksi *time* series yang tepat adalah dengan mempertimbangkan jenis pola datanya. Pola data dapat dibedakan menjadi empat, yaitu:

1. Pola kecenderungan (trend)

Kecenderungan merupakan tendensi keseluruhan yang bersifat naik (berkembang) atau menurun (berkontraksi), atau rata tidak naik dan tidak turun selama jangka waktu yang lama.

2. Pola musiman (*seasonal*)

Merupakan pola yang perubahan datanya terjadi secara lengkap dalam periode waktu satu tahun, dan fluktuasi ini berulang dari tahun ke tahun.

3. Pola siklis (*cyclical*)

Merupakan pola yang fluktuasi perubahan datanya terjadi tidak mengikuti jangka waktu yang tetap, tetapi bervariasi dari beberapa bulan sampai beberapa tahun. Pola data seperti ini berhubungan dengan siklus bisnis yang terjadi.

4. Pola Horizontal (*Stationer*)

Pola yang terjadi bilamana data ber*fluktuasi* disekitar nilai rata-rata yang konstan. Suatu produk yang penjualannya tidak meningkat atau menurun selama waktu tertentu termasuk jenis ini. Pola khas dari data horizontal atau *stasioner*.

2.3 Himpunan Fuzzy (Fuzzy Set)

Himpunan *fuzzy* pertama kali dikembangkan pada tahun 1965 oleh Prof. Lotfi Zadeh yang didasarkan pada gagasan untuk memperluas jangkauan fungsi karakteristik sehingga fungsi tersebut akan mencakup bilangan real pada interval. Himpunan *fuzzy* digunakan untuk mengantisipasi nilai-nilai yang bersifat tidak pasti. Pada himpunan tegas (*crisp*), nilai keanggotaan suatu item dalam suatu himpunan dapat memiliki dua kemungkinan, yaitu satu (1) yang berarti bahwa suatu item menjadi anggota dalam satu himpunan, atau nol (0), yang berarti suatu item tidak menjadi anggota dalam suatu himpunan (kesumadewi, 2004).

Pada himpunan *fuzzy* nilai keanggotaan terletak pada rentang 0 sampai 1, yang berarti himpunan *fuzzy* dapat mewakili intreprestasi tiap nilai berdasarkan pendapat atau keputusan dan probabilitasnya. Nilai 0 menunjukan salah dan nilai 1 menunjukan benar dan masih ada nilai-nilai yang terletak antara benar dan salah. Dengan kata lain nilai kebenaran suatu item tidak hanya benar atau salah.

Himpunan fuzzy memiliki dua atribut, yaitu:

- 1. Linguistik, yaitu penamaan suatu grup yang mewakili suatu keadaan atau kondisi tertentu dengan menggunakan bahasa alami, seperti pada suhu yaitu dingin, sejuk, normal, hangat, dan panas.
- 2. Numeris, yaitu suatu nilai (angka) yang menunjukan ukuran dari suatu variabel seperti: 60, 75, 80 dan sebagainya.

Dalam himpunan *fuzzy* terdapat istilah semesta pembicaraan yang merupakan keseluruhan nilai yang diperbolehkan untuk dioperasikan dalam suatu variabel *fuzzy*. Semesta pembicaraan merupakan himpunan bilangan real yang senantiasa naik atau bertambah secara monoton dari kiri ke kanan. Nilai semesta pembicaraan dapat berupa bilangan positif maupun negatif. Contoh semesta pembicaraan untuk variabel temperatur [-4°C, 15°C].

2.4 Fuzzy Time Series

Fuzzy time series merupakan metode prediksi data yang menggunakan konsep fuzzy set sebagai dasar perhitungannya. Sistem prediksi dengan metode ini bekerja dengan menangkap pola dari data yang telah lalu kemudian digunakan untuk memproyeksikan data yang akan datang. Prosesnya juga tidak membutuhkan suatu sistem pembelajaran dari sistem yang rumit sebagaimana yang ada pada algoritma genetika dan jaringan syaraf sehingga mudah untuk digunakan dan dikembangkan (Robandi, 2006 dikutip dari M. Syauqi Haris, 2010).

Defeinisi *fuzzy time series* dapat digambarkan sebagai berikut (Song, 1993), (Song, 1994):

Defenisi 1: Y(t)(t=...,0,1,2,..., adalah merupakan himpunan bagian dari R. Misalkan Y(t) adalah himpunan semesta yang digambarkan oleh himpunan

fuzzy $\mu i(t)$. Jika F(t) terdiri dari $\mu i(t)(i=1,2,...)$, F(t) disebut sebuah fuzzy time series pada Y(t).

Defenisi 2 : Andaikan $F(t+1) = A_i$ dan $F(t) = A_j$, sebuah *fuzzy logical relationship* dapat digambarkan sebagai A_i A_j , dimana A_i dan A_j disebut sisi kiri dan sisi kanan dari *fuzzy logical relationship*, berturut-turut.

2.4.1 Penentuan Interval

Pada dasarnya metode *fuzzy time series* memiliki langkah awal penting yang harus diperhatikan karena memiliki pengaruh terhadap keakuratan hasil prediksi, yaitu dalam penentuan panjang interval. Panjang interval sangat berpengaruh dalam pembentukan langkah selanjutnya, yaitu pembentukan *fuzzy relationship* yang tentunya akan memberikan perhitungan hasil prediksi.

Metode dalam penentuan interval telah berkembang sehingga muncul beberapa metode penentuan interval yang memiliki cara perhitungan yang berbeda-beda, berikut adalah beberapa metode penentuan interval yaitu:

1. Automatic Clustering

Automatic Clustering adalah proses membuat pengelompokan sehingga semua anggota dari setiap partisi mempunyai persamaan berdasarkan matrik tertentu. Sebuah cluster adalah sekumpulan objek yang digabung bersama karena persamaan atau kedekatannya.

Clustering atau klasterisasi merupakan sebuah teknik yang sangat berguna karena akan mentranslasi ukuran persamaan yang intuitif menjadi ukuran yang kuantitatif.

2. Penentuan Interval Berbasis Rata-rata (*Avergae Based*)

Pada dasarnya metode *fuzzy time series* memiliki langkah awal penting yang harus diperhatikan, karena memiliki pengaruh terhadap keakuratan hasil prediksi yaitu dalam penentuan jumlah interval. Dalam perhitungan dengan menggunakan metode ini, penentuan panjang interval merupakan proses awal dari peoses perhitungan. Penentuan panjang interval sangat berpengaruh dalam pembentukan langkah selanjutnya, yaitu penentuan *fuzzy relationship* yang tentunya akan memberikan dampat perbedaan hasil perhitungan prediksi.

Perbedaan panjang interval akan sangat mempengaruhi hasil prediksi dan tingkat ke*error*an serta penentuan panjang interval tidak boleh terlalu besar karena akan terjadi *fluktuasi* atau terlalu kecil karena akan terjadi himpunan tegas (*crips*), (Huang, 2005).

Berdasarkan penelitian menentukan jumlah interval menggunakan metode *average based* atau penentuan interval berbasis rata-rata dapat memberikan hasil prediksi lebih akurat dibanding metode pembagian interval lainnya, (Huang dkk, 2005), (Xihao dkk, 2007). Berikut adalah proses penentuan interval berbasis rata-rata (*Average based*):

1. Hitung semua nilai selisih (lag) absolute dimana D_i ($_i$ = 1,...n-1) sehingga menjadi

$$\begin{array}{ll} ^{n\text{--}1} & & \\ & |(D_{i+1}) - (D_i)| & \\ ^{i=1} & \dots & (2.1) \end{array}$$

- 2. Hasil penjumlahan dari proses pertama kemudian dibagi dengan jumlah data.
- 3. Untuk menentukan basis interval, hasil dari proses 2 dibagi 2.

Tabel 2.1 Basis Interval

Jangkauan	Basis
0.1 - 1.0	0.1
1.1 - 10	1
11 - 100	10
101 - 1000	100
1001 - 10000	10000

4. Setelah mendapatkan nilai basis interval maka nilai jangkauan dari basis tersebut dapat digunakan sebagai panjang interval.

2.4.2 Tahapan Fuzzy Time Series

Berikut adalah tahapan dari proses Fuzzy Time Series :

1. Setelah mendapatkan panjang interval, maka untuk pembentukan U (*Universe of Discourse*) adalah

$$(D_{max} - D_{min})$$
/panjang interval ...(2.2)

Yang mana D_{max} adalah data terbesar dan D_{min} adalah data terkecil dari data yang kita gunakan.maka $U = \{U_1, U_2, ..., U_n\}$, yang akan membentuk seperti $U_1 = \{Dmin, x_1\}$ $U_2 = \{x_1, x_2\}$... $U_n = \{x_{n-1}, Dmax\}$ dimana $x_1 < x_2 < < x_{n-1}$, (Chen, 2006).

2. Metode *fuzzy time series* berdasarkan himpunan *fuzzy* diskrit. Himpunan *fuzzy* diskrit tersebut dapat digambarkan sebagai berikut (Song, 1993), (Song, 1994):

Misalkan U adalah semesta pembicaraan, dimana $U = \{U_1, U_2, ..., U_n\}$. Maka sebuah himpunan $fuzzy A_i$ dari U digambarkan sebagai:

$$A_i = f_{Ai}(U_1)/U_1 + f_{Ai}(U_2)/U_2 + ... + f_{Ai}(U_n)/U_n$$

Dimana f_{Ai} adalah fungsi keanggotaan dari A_i , f_{Ai} : U [0,1]. f_{Ai} (Ui) merupakan nilai keanggotaan dari U dalam A_i , dimana $f_{Ai}(U_i)$ [0,1] dan 1 i n. Nilai keanggotaan dari f_{Ai} dilambangkan dengan a_{ij} dimana nilainya adalah sebagai berikut:

$$a_{ij} = \begin{cases} 1 & If = j = i \\ 0.5 & If j = i-1 \text{ atau } i+1 \\ 0 & Yang lainnya \end{cases} \dots (2.3)$$

kemudian dibangun himpunan fuzzy, dimana A_i sejumlah k dimana 1 i k. Untuk U_n sejumlah j, dimana 1 j n. Sehingga diperoleh himpunan fuzzy sebagai berikut :

$$A_1 = a_{11} / U_1 + a_{12} / U_2 + \dots + a_{1n} / U_n$$

 $A_2 = a_{21} / U_1 + a_{22} / U_2 + \dots + a_{2n} / U_n$
 \dots
 $A_k = a_{k1} / U_1 + a_{k2} / U_2 + \dots + a_{kn} / U_n$

Apabila dibentuk matriks n*n, dengan nilai n yang didapatkan dari hasil *universe of discourse*, misalkan n adalah 5 maka nilai a_{ij} dapat dilihat pada Tabel 2.1 matrik dibawah ini :

Tabel 2.1 Matrik a_{ii}

a_{ij}	1	2	3	4	5
1	1	0,5	0	0	0

2	0,5	1	0,5	0	0
3	0	0,5	1	0,5	0
4	0	0	0,5	1	0,5
5	0	0	0	0,5	0

Selanjutnya himpunan fuzzy menjadi sebagai berikut:

$$A_{1} = 1 / U_{1} + 0.5 / U_{2} + 0 / U_{3} + 0 / U_{4} + 0 / U_{5}$$

$$A_{2} = 0.5 / U_{1} + 1 / U_{2} + 0.5 / U_{3} + 0 / U_{4} + 0 / U_{5}$$

$$A_{3} = 0 / U_{1} + 0.5 / U_{2} + 1 / U_{3} + 0.5 / U_{4} + 0 / U_{5}$$

$$A_{4} = 0 / U_{1} + 0 / U_{2} + 0.5 / U_{3} + 1 / U_{4} + 0.5 / U_{5}$$

$$A_{5} = 0 / U_{1} + 0 / U_{2} + 0 / U_{3} + 0.5 / U_{4} + 1 / U_{5}$$

3. misalkan Y (t) (t= ...,0,1,2, ...), adalah himpunan bagian dari R. Misalkan Y(t) adalah himpunan semesta yang digambarkan oleh himpunan fuzzy Ui(t). Jika F(t) terdiri dari Ui(t) (i = 1,2,...), F(t) disebut sebuah fuzzy time series pada Y(t).

If
$$F(t)$$
 maka $Y(t)$... (2.4)

- 4. Misalkan $F(i) = A_i \, dan \, F(i+1) = A_j$. Hubungan antara dua pengamatan berturut-turut, $F(i) \, dan \, F(i+1)$ menjadi $F(i) \, F(t+1)$, disebut sebagai Fuzzy logic relationship (FLR), dapat dilambangkan oleh Ai Aj, di mana Ai disebut sisi kiri left hand side (LHS) atau Current State dan Aj sisi kanan right hand side (RHS) atau Next State.
- 5. Gabungkan *fuzzy logical relationship* menjadi *fuzzy logical relationship Group* (FLRG), dimulai dari sisi kiri yang sama. Ada terdapat beberapa model untuk proses FLRG yaitu model Song, model Chen dan Model Lee perbedaan antara ketiga model tersebut adalah dari proses pengelompokannya, berikut adalah penjelesannya:
 - a. Model Song dan Chissom

Semua Fuzzy logic Relationship dikelompokkan. Misal (Ai): Ai Aj_1 , Ai Aj_1 dan Ai Aj_2 . Dari 3 fuzzy logic relationship dapat dikelompokkan. Song dan chissom akan menghasilkan R^{11} =Ai x Aj_1 , R^{12} = Ai x Aj_2 , yang mana Ai Aj_1 , Ai Aj_1 diambil hanya satu saja

dan akan dibentuk menjadi perhitungan bentuk matriks yang mana apabila R^{11} =Ai x Aj₁ terdapat di matrik 11 akan bernilai 1 dan yang lain 0.

b. Model Chen

Semua $Fuzzy \ logic \ Relationship$ dikelompokkan. Misal (Ai): Ai Aj₁, Ai Aj₁ dan Ai Aj₂. Dari 3 $fuzzy \ logic \ relationship$ dapat dikelompokkan. Chen akan menghasilkan Ai Aj₁, Ai Aj₂, yang mana Ai Aj₁, Ai Aj₁ dianggap sama sehingga diambil hanya satu.

c. Model Lee

Semua *Fuzzy* logic Relationship dikelompokkan atau *fuzzy* logic relationship group (FLRG) menjadi kelompok yang saling berhubungan. Misal (Ai): Ai Aj₁, Ai Aj₁ dan Ai Aj₂. Dari 3 *fuzzy* logic relationship dapat dikelompokkan. Lee akan menghasilkan Ai Aj₁, Ai Aj₁ dan Ai Aj₂, menurut Lee Ai Aj₁, Ai Aj₁ dapat mempengaruhi nilai prediksi maka nilai tersebut harus dihitung.

6. Proses perhitungan hasil deffuzzifikasi untuk hasil prediksi dengan menggunakan model yang diinginkan. Dalam batasan masalah proses deffuzifikasi menggunakan model chen dan model lee, misal hasil FLRG menghasilkan A_i ($Current\ State$), A_{j1} , A_{j1} , A_{j1} , A_{j2} , A_{j2} ,... A_{jp} ($Next\ State$) , maka proses perhitungan model chen pada $fuzzy\ logical\ relationship\ group$ menghasilkan A_i , A_{j1} , A_{j2} ,..., A_{jp} yang mana nilai keanggotaan maksimum dari A_{j1} , A_{j2} , ..., A_{jp} merupakan nilai tengah dari interval U_1 , U_2 ,..., U_p sehingga menjadi m_1 , m_2 , ..., m_p sehingga perhitungannya menjadi (m_1 , m_2 , ..., m_p)/p. Pada model lee proses $fuzzy\ logical\ relationship\ group\ pada\ model lee menjadi <math>A_i \Rightarrow A_j$, sehingga pada $fuzzy\ logical\ relationship\ group\ pada\ model lee menjadi <math>A_i \Rightarrow A_j$, $A_i \Rightarrow A_j$. Seingga proses perhitungan model lee A_i , A_{j1} , A_{j1} , A_{j2} , A_{j2} , A_{j1} ... A_{jp} , sehingga perhitungannya menjadi $3/n(m_1) + 2/n\ (m_2) + p/n(m_p)$, yang mana n adalah jumlah next $state\ dari\ fuzzy\ logical\ relationship\ group\ (FLRG)$.

2.5 Pengukuran Efektivitas Prediksi

Teknik prediksi tidak selamanya selalu tepat karena teknik prediksi yang digunakan belum tentu sesuai dengan sifat datanya atau disebabkan oleh kondisi di luar bisnis yang mengharuskan bisnis perlu menyesuaikan diri. Oleh karena itu,

perlu diadakan pengawasan prediksi sehingga dapat diketahui sesuai atau tidaknya teknik prediksi yang digunakan. Sehingga dapat dipilih dan ditentukan teknik prediksi yang lebih sesuai dengan cara menentukan batas toleransi prediksi atas penyimpangan yang terjadi (Jumingan,2009).

Pada prinsipnya, pengawasan prediksi dilakukan dengan membandingkan hasil prediksi dengan kenyataan yang terjadi. Penggunaan teknik prediksi yang menghasilkan penyimpangan terkecil adalah teknik prediksi yang paling sesuai untuk digunakan (Jumingan,2009). Pengujian menggunakan metode AFER (average forecasting error rate) dan MSE (mean square error) pernah digunakan (Jilani, 2007). Adapun perhitungan AFER dan MSE dapat dilihat pada Rumus 2.5 dan Rumus 2.6.

AFER =
$$\frac{|Ai - Fi|/Ai}{n}$$
 ...(2.5)
MSE =
$$\frac{\prod_{i=1}^{n} (Ai - Fi)^{2}}{n}$$

Keterangan Rumus:

Ai = nilai aktual pada data ke-i

Fi = nilai hasil prediksi untuk data ke-i

n =banyaknya data.

Karena hasil prediksi tidak selamanya tepat untuk mengukur tingkat akurasi prediksi menggunakan AFER dan MSE, nilai prediksi akan semakin akurat apabila nilai MSE semakin kecil (Vincent, 2005).

BAB III

METODOLOGI PENELITIAN

3.1 Alur Metodologi Penelitian

Metodologi penelitian adalah cara yang digunakan dalam memperoleh berbagai data untuk diproses menjadi informasi yang lebih akurat sesuai permasalahan yang akan diteliti.

Gambar 3.1 Tahapan Metodologi Penelitia

3.2 Pengumpulan Data

Pada tahap ini dilakukan pengumpulan data *time series* dari harga emas dimana pada penelitian tugas akhir ini digunakan data *time series* harga emas selama 6 tahun yaitu dari tahun 2007-2012, yang didapatkan dari situs *The London Bullion Market Association* (LBMA). Selain itu, pada tahap ini juga dilakukan pencarian informasi-informasi mengenai metode prediksi yang akan digunakan yaitu *fuzzy time series* dan metode *average based* (Penentuan Interval Berbasis Rata-rata) sebagai metode pembagian interval dalam *fuzzy time series*. Adapun pendekatan yang penulis lakukan dalam memperoleh informasi-informasi yang dibutuhkan dalam penelitian diantaranya adalah Studi Pustaka (*Library Research*).

Studi pustaka (*Library Research*) merupakan metode yang dilakukan untuk menemukan dan mengumpulkan data atau informasi kasus dari referensi-referensi terkait. Referensi-referensi ini dapat berupa buku-buku tentang metode prediksi, jurnal-jurnal atau tulisan penelitian prediksi data *time series* menggunakan *fuzzy time series*, atau artikel-artikel yang membahas kasus yang sama dengan kasus dalam laporan ini.

3.3 Analisa

Analisa berarti metode yang khusus untuk menganalisis masalah yang dapat dimulai dari analisa terhadap langkah-langkah dalam melakukan prediksi data *time series* harga emas dengan menggunakan metode *fuzzy time series*.

Pada tahap ini dilakukan analisa data masukan, analisa terhadap metode yang digunakan untuk prediksi data harga emas dan analisa data keluaran. Dimana metode yang digunakan adalah metode *fuzzy time series* dengan model Chen dan Model Lee (Wangren dkk, 2011) dan metode *Average Based* (Penentuan Interval Berbasis Rata-rata) (Xihao dkk, 2007) sebagai metode pembagian interval dalam *fuzzy time series*. Dimana dalam perhitungannya terdapat tiga proses perhitungan utama yaitu:

- 1. Proses pembagian interval
- 2. Proses fuzzy time series
- 3. Proses perhitungan *deffuzifikasi* menggunakan model chen dan model lee

Berikut secara umum seluruh langkah-langkah dari tiga proses perhitungan utama yang akan digunakan untuk melakukan prediksi terhadap data harga emas:

- a. Hitung jumlah selisih (*lag*) absolut antar data *time series* dan proses menggunakan metode *Average Based*.
- b. Tentukan semesta pembicaraan *U* (*Universe of Discourse*) berdasarkan hasil proses *average based* dan bagi kedalam beberapa interval yang memiliki panjang interval sama.
- c. Tentukan Himpunan Fuzzy Ai
- d. Tentukan fuzzy logical relationship Ai Aj
- e. Tentukan fuzzy logical relationship group (FLRG).
- f. Lakukan proses defuzzifikasi dan melakukan perhitungan nilai prediksi.
- g. Hitung tingkat error dari prediksi.

Untuk menganalisa sistem menggunakan Data Flow Diagram (DFD).

3.4 Perancangan

Perancangan berarti metode yang khusus digunakan untuk merancang halhal yang telah dianalisa dengan tujuan untuk memberikan kemudahan dan menyederhanakan suatu proses atau jalannya aliran data, perancangan terhadap model, dan merancang bangun aplikasi. Perancangan ini terdiri dari : perancangan database dan perancangan *Interface*.

3.5 Implementasi dan Pengujian

Implementasi dan pengujian merupakan metode terakhir yang digunakan setelah analisa dan perancangan rancang bangun aplikasi selesai dilakukan. Metode ini akan menjelaskan tentang penerapan jalannya rancang bangun yang telah dianalisa dan dirancang. Aplikasi yang telah dirancang dan dianalisa selanjutnya diimplementasikan dan dilakukan pengujian untuk mengetahui tingkat

keberhasilan aplikasi yang telah ada. Implementasi pengembangan aplikasi ini akan dikembangkan pada spesifikasi *hardware* dan *software* berikut:

1. Perangkat Keras

Processor : Intel Atom
Memori (RAM) : 1.00 GB

2. Perangkat Lunak

Sistem Operasi : Windows 7 Ultimate
Bahasa Pemrograman : Borland Delphi 6

Program Database : Microsoft Access 2003

Sementara untuk tahapan pengujian yang akan dilakukan pada aplikasi yang telah dibangun yaitu pengujian *blackbox* untuk pengujian tingkah laku sistem yang telah dirancang dan untuk menghitung tingkat keakuratan hasil prediksi atau *evaluation* dengan dengan menggunakan *Average Forecasting Error Rate* (AFER) dan *Mean Square Error* (MSE) untuk melihat tingkat keerorran terendah dari Model Chen dan Model Lee.

3.6 Kesimpulan dan Saran

Tahapan kesimpulan dan saran merupakan akhir dari penelitian tugas akhir ini. Tahapan ini berisi tentang kesimpulan dari hasil-hasil penelitian dan pengujian yang telah dilakukan pada penelitian tugas akhir ini, yaitu membangun sistem prediksi untuk harga emas dimana pada penelitian ini digunakan data *time series* harga saham perusahaan *The London Bullion Market Association* (LBMA) dan berisi saran-saran membangun yang dapat dijadikan bahan penelitian ulang untuk meneliti dan merancang sistem serta metode yang digunakan untuk menghasilkan prediksi yang lebih baik.

BAB IV

ANALISA DAN PERANCANGAN

4.1 Gambaran Umum Sistem

Implementasi untuk prediksi harga emas ini berupa sebuah sistem prediksi yang menerapkan model dari metode *Fuzzy Time Series* (FTS) dan menggunakan metode *Average Based* (Penentuan Interval Berbasis Rata-rata) sebagai metode untuk pembagian interval. Data masukan untuk melakukan prediksi adalah data *time series* dari harga emas, yang selanjutnya akan diproses dengan perhitungan menggunakan model dari metode FTS. Untuk lebih jelasnya Gambaran umum sistem dapat dilihat pada Gambar 4.1 berikut.

Gambar 4.1. Gambaran Umum Sistem

Berdasarkan Gambar 4.1 dapat diketahui bahwa rancang bangun dari sistem prediksi ini memiliki beberapa proses berupa data masukan, proses utama dan keluaran yang dapat dijelaskan sebagai berikut:

- Data masukan yang dibutuhkan oleh sistem berupa time series dari harga emas yang selanjutnya akan di proses oleh sistem menggunakan konsep dari model FTS.
- 2. Proses Utama, menyatakan proses-proses utama yang terdapat pada rancang bangun sistem prediksi, yaitu dimulai dari proses penentuan selisih dari data *time series* untuk penentuan interval. Selanjutnya, dari interval yang telah ditentukan akan dilakukan prosesn perhitungan untuk menentukan hasil prediksi mengunakan metode *Fuzzy Time Series* (FTS) dan pada proses deffuzzifikasi menggunakan model chen dan model lee.
- 3. Keluaran merupakan hasil dari proses-proses utama yang terjadi pada sistem. Output dari sistem berupa hasil prediksi terhadap semua harga emas dan untuk harga emas hari berikutnya serta persentase error yang juga ditampilkan dalam bentuk grafik agar lebih jelas serta mudah dimengerti.

4.1.1 Analisa Data Masukan

Dari Gambaran umum sistem prediksi pada Gambar 4.1 telah dijelaskan bahwa dalam prosesnya sistem prediksi ini menggunakan data *time series* harga emas sebagai data masukan. *Time series* (deret waktu) adalah data yang disusun berdasarkan urutan waktu atau data yang dikumpulkan dari waktu ke waktu. Waktu yang digunakan dapat berupa hari, minggu, bulan, tahun dan sebagainya. Data *time series* sangat berguna bagi pengambil keputusan untuk memperkirakan atau meramalkan kejadian di masa yang akan datang. Karena diyakini pola perubahan data *time series* beberapa periode masa lampau akan kembali terulang pada masa kini.

Data masukan yang akan digunakan pada sistem prediksi adalah data *time* series harian dari harga emas dan selanjutnya akan dilakukan perhitungan prediksi menggunakan metode FTS untuk menghasilkan prediksi harga emas hari

berikutnya. Adapun data *time series* harga emas yang akan digunakan untuk prediksi diperoleh dari situs *The london Bullion Market Association* (LBMA) selama 6 tahun. Adapun alasan digunakannya data harga emas perusahaan dengan jumlah data *time series* selama 6 tahun adalah untuk melihat apakah ada perbedaan persentase *error* dari AFER dan MSE atau tingkat ketepatan prediksi dari hasil prediksi yang didapatkan, sehingga dapat memberikan kesimpulan akhir apakah semakin banyak jumlah data *time series* yang digunakan akan memberikan hasil prediksi lebih akurat atau sebaliknya. Pada Tabel 4.1 adalah data harga emas pada tahun 2012 yang akan digunakan sebagai percobaan perhitungan.

Tabel 4.1 Data Harga Emas Tahun 2012

		_	
DATE	Harga/US D (D _i)		
03-Jan-12	1580.00		
04-Jan-12	1603.00		
05-Jan-12	1614.50		(
06-Jan-12	1621.00		(
09-Jan-12	1618.00		(
10-Jan-12	1627.00		(
11-Jan-12	1641.00		(
12-Jan-12	1652.50		(
13-Jan-12	1642.00		(
16-Jan-12	1643.50		
17-Jan-12	1662.00		
18-Jan-12	1657.00		
19-Jan-12	1664.00		
20-Jan-12	1646.00		
23-Jan-12	1675.00		
24-Jan-12	1669.00		1
25-Jan-12	1659.00		2
26-Jan-12	1713.00		4
27-Jan-12	1722.00		Ź

	TT //TIO
DATE	Harga/US D (D _i)
30-Jan-12	1720.50
31-Jan-12	1738.00
01-Feb-12	1744.00
02-Feb-12	1747.50
03-Feb-12	1759.50
06-Feb-12	1717.00
07-Feb-12	1720.00
08-Feb-12	1743.00
09-Feb-12	1733.00
10-Feb-12	1715.50
13-Feb-12	1727.00
14-Feb-12	1721.00
15-Feb-12	1725.50
16-Feb-12	1716.00
17-Feb-12	1732.00
20-Feb-12	1729.50
21-Feb-12	1737.00
22-Feb-12	1754.75
23-Feb-12	1776.50

	Harga/USD
DATE	(D_i)
24-Feb-12	1778.50
27-Feb-12	1765.00
28-Feb-12	1774.75
29-Feb-12	1790.00
01-Mar-12	1721.00
02-Mar-12	1714.50
05-Mar-12	1698.00
06-Mar-12	1685.50
07-Mar-12	1682.50
08-Mar-12	1701.50
09-Mar-12	1699.50
12-Mar-12	1705.25
13-Mar-12	1694.75
14-Mar-12	1662.00
15-Mar-12	1646.75
16-Mar-12	1649.00
19-Mar-12	1654.00
20-Mar-12	
19-Mar-12	

4.2 Analisa Metode Fuzzy Time Series (FTS) untuk Prediksi Emas

Pada batasan masalah disebutkan bahwa penelitian ini menggunakan metode *Fuzzy Time Series* dan menggunakan metode *Average Based* (Penetuan Interval Berbasis Rta-rata) sebagai metode pembagian interval.

Pada dasarnya metode FTS memiliki langkah awal penting yang harus diperhatikan karena memiliki pengaruh terhadap keakuratan hasil prediksi yaitu dalam penentuan jumlah interval. Dalam perhitungan dengan menggunakan metode ini, penentuan panjang interval merupakan awal dari proses perhitungan. Penentuan panjang interval sangat berpengaruh dalam pembentukan langkah selanjutnya, yaitu penentuan fuzzy relationship yang tentunya akan memberikan dampak perbedaan hasil perhitungan prediksi. Berdasarkan penelitian (Huang, dkk, 2005) bahwa perbedaan panjang interval akan sangat mempengaruhi hasil prediksi dan tingkat eror prediksi serta penentuan panjang interval tidak boleh terlalu besar dan tidak boleh terlalu kecil, karena jika panjang interval terlalu besar maka tidak akan terjadi fluktuasi dalam proses perhitungan metode FTS. Demikian juga jika panjang interval tersebut terlalu kecil maka makna dari FTS sendiri akan hilang karena himpunan yang terbentuk cenderung ke himpunan tegas (crisp). Dari pernyataan tersebut membuktikan bahwa penentuan panjang interval merupakan langkah awal dan memiliki peran penting dalam metode FTS. Berdasarkan penelitian-penelitian yang ada terdapat beberapa cara untuk menentukan jumlah interval dan pada penelitian ini menggunakan metode Averge Based (Penentuan Interval Berbasi Rata-rata) yang memberikan hasil prediksi lebih akurat dibandingkan metode pembagian interval lainnya (Xihao dkk, 2007). Adapun Gambaran khusus porses prediksi menggunakan metode Fuzzy Time Series dengan penentuan interval berbasis rata-rata (Avergae Based) dapat dilihat pada Gambar 4.2.

Gambar 4.2 Gambaran Khusus Prediksi Harga Emas Menggunakan Metode *Fuzzy*Time Series Menggunakan Penentuan Interval Berbasis Rata-rata

4.2.1 Pembagian Interval dengan Average Based

Dalam Penerapan menggunakan penentuan interval dengan *average based* terdapat 4 tahapan dalam proses tersebut. Berikut adalah proses penentuan interval yang dapat dilihat pada 2.4.1.

1. Hitungan selisih (*lag*) absolut pada tiap data, dengan rumus 2.1, hasil proses dapat dilihat pada Tabel 4.2

Tabel 4.2 Perhitungan Data lag atau selisih absolut untuk Penentuan Interval

		Harga/USD	Selisih (Lag)
No	DATE	(Di)	$ D_{(i+1)}-D_{(i)} $
1	03-Jan-12	1580	$ D_2 - D_1 = 23$
2	04-Jan-12	1603	$ D_3-D_2 =11,5$
3	05-Jan-12	1614,5	$ D_4-D_3 =6,5$
4	06-Jan-12	1621	$ D_5 - D_4 = 3$

No	DATE	Harga/USD (Di)	Selisih (Lag) D _(i+1) -D _(i)
29	10-Feb-12	1715,5	$ D_{30}-D_{29} =11,5$
30	13-Feb-12	1727	$ \mathbf{D}_{31}\mathbf{-D}_{30} =6$
31	14-Feb-12	1721	$ D_{32}-D_{31} =4,5$
32	15-Feb-12	1725,5	$ D_{33}-D_{32} =9,5$

5	09-Jan-12	1618	$ D_6-D_5 =9$
6	10-Jan-12	1627	$ D_7 - D_6 = 14$
7	11-Jan-12	1641	$ D_8-D_7 =12$
8	12-Jan-12	1652,5	$ D_9 - D_8 = 11$
9	13-Jan-12	1642	$ D_{10}-D_9 =1,5$
10	16-Jan-12	1643,5	$ D_{11}-D_{10} =19$
11	17-Jan-12	1662	$ D_{12}-D_{11} =5$
12	18-Jan-12	1657	$ \mathbf{D}_{13} - \mathbf{D}_{12} = 7$
13	19-Jan-12	1664	$ D_{14}-D_{13} =18$
14	20-Jan-12	1646	$ D_{15}-D_{14} =29$
15	23-Jan-12	1675	$ D_{16}-D_{15} =6$
16	24-Jan-12	1669	$ D_{17}-D_{16} =10$
17	25-Jan-12	1659	$ D_{18}-D_{17} =54$
18	26-Jan-12	1713	$ D_{19}-D_{18} =9$
19	27-Jan-12	1722	$ D_{20}-D_{19} =1,5$
20	30-Jan-12	1720,5	$ D_{21}-D_{20} =18$
21	31-Jan-12	1738	$ D_{22}-D_{21} =6$
22	01-Feb-12	1744	$ D_{23}-D_{22} =3,5$
23	02-Feb-12	1747,5	$ D_{24}-D_{23} =12$
24	03-Feb-12	1759,5	$ D_{25}-D_{24} =42,5$
25	06-Feb-12	1717	$ D_{26}-D_{25} =3$
26	07-Feb-12	1720	$ D_{27}-D_{26} =23$
27	08-Feb-12	1743	$ D_{28}-D_{27} =10$
28	09-Feb-12	1733	$ D_{29}-D_{28} =17,5$

33	16-Feb-12	1716	$ D_{34}-D_{33} =16$
34	17-Feb-12	1732	$ D_{35}-D_{34} =2,5$
35	20-Feb-12	1729,5	$ D_{36}-D_{35} =7,5$
36	21-Feb-12	1737	$ D_{37}-D_{36} =17.8$
37	22-Feb-12	1754,75	$ D_{38}-D_{37} =21,8$
38	23-Feb-12	1776,5	$ D_{39}-D_{38} =2$
39	24-Feb-12	1778,5	$ D_{40}-D_{39} =13,5$
40	27-Feb-12	1765	$ D_{41}-D_{40} =9,75$
41	28-Feb-12	1774,75	$ D_{42}-D_{41} =15,25$
42	29-Feb-12	1790	$ D_{43}-D_{42} =69$
43	01-Mar-12	1721	$ D_{44}-D_{43} =6,5$
44	02-Mar-12	1714,5	$ D_{45}-D_{44} =16,5$
45	05-Mar-12	1698	$ D_{46}-D_{45} =12,5$
46	06-Mar-12	1685,5	$ D_{47}-D_{46} =3$
47	07-Mar-12	1682,5	$ D_{48}-D_{47} =19$
48	08-Mar-12	1701,5	$ D_{49}-D_{48} =2$
49	09-Mar-12	1699,5	$ D_{50}-D_{49} =5,75$
50	12-Mar-12	1705,25	$ D_{51}-D_{50} =10,5$
51	13-Mar-12	1694,75	$ D_{52}-D_{51} =32,75$
52	14-Mar-12	1662	$ D_{53}-D_{52} =15,25$
53	15-Mar-12	1646,75	$ D_{54}-D_{43} =2,25$
54	16-Mar-12	1649	$ D_{55}-D_{54} =5$
55	19-Mar-12	1654	-
			= 721

- 2. Kalkulasikan semua nilai selisih (lag) absolut kemudian dibagi dengan jumlah data, didapatkan 721/54 = 13,35 ,
- 3. Untuk menentukan basis interval hasil proses 2 kemudian dibagi 2 sehingga menjadi 13,35/2 = 6,67, yang nilainya dibulankan menjadi 7 dan lihat pada Tabel 2.1, 7 masuk dalam basis 1 dalam jangkauan 1.1-10.
- 4. Didapatkan panjang interval 7.

4.2.2 Fuzzy Time Series

Setelah mendapatkan panjang interval, barulah kita masuk dalam proses *fuzzy time series*, dalam proses *fuzzy time series* terdapat 6 proses. Berikut adalah tahapan proses *fuzzy time series* yang dapat dilihat pada SubBab 2.4.2.

1. Proses pertama dari *fuzzy time series adalah* pembentukan *universe of discourse* U. Dari data harga emas yang terdapat pada Tabel 4.1, kita mencari nilai minimal dan maksimal, diperoleh (Dmin = 1580, Dmax = 1790). Proses pembentukan U (*Universe of Discourse*) dapat dilihat pada rumus 2.2, sehingga diperolah (1790-1580)/7 = 30, maka didapatkan panjang intervalnya adalah 30 maka kita akan membagi data menjadi 30 yaitu dari U₁, U₂,U₃.....U₃₀

```
U_1=[1580, 1587], \ U_2=[1587, 1594], \ U_3=[1594, 1601], \ U_4=[1601, 1608], \ U_5=[1608, 1615], \ U_6=[1615, 1622], \ U_7=[1622, 1629], \ U_8=[1629, 1636], \ U_9=[1636, 1643], \ U_{10}=[1643, 1650], \ U_{11}=[1650, 1657], \ U_{12}=[1657, 1664], \ U_{13}=[1664, 1671], \ U_{14}=[1671, 1678], \ U_{15}=[1678, 1685], \ U_{16}=[1685, 1692], \ U_{17}=[1692, 1699], \ U_{18}=[1699, 1706], \ U_{19}=[1706, 1713], \ U_{20}=[1713, 1720], \ U_{21}=[1720, 1727], \ U_{22}=[1727, 1734], \ U_{23}=[1734, 1741], \ U_{24}=[1741, 1748], \ U_{25}=[1748, 1755], \ U_{26}=[1755, 1762], \ U_{27}=[1762, 1769], \ U_{28}=[1769, 1776], \ U_{29}=[1776, 1783], \ U_{30}=[1783, 1790],
```

2. Tentukan tiap-tiap himpunan fuzzy Ai sebanyak interval yang telah dibagi sebelumnya yang dapat dilihat pada rumus 2.3. Untuk menyederhanakan, maka nilai keanggotaan dari himpunan fuzzy Ai berada diantara 0, 0.5, 1 dimana 1 i n, n adalah jumlah interval yang telah dibagi sebelumnya, berikut adalah bentuk matriks dari pembentukan himpunan fuzzy, yang dapat dilihat pada Tabel 4.3 :

Tabel 4.3 Matriks dari Himpunan Fuzzy

a_{ij}	1	2	3	4	5	6	7	 16	17	18	•••	28	29	30
1	1	0,5	0	0	0	0	0	 0	0	0		0	0	0
2	0,5	1	0,5	0	0	0	0	 0	0	0		0	0	0
3	0	0,5	1	0,5	0	0	0	 0	0	0		0	0	0
4	0	0	0,5	1	0,5	0	0	 0	0	0		0	0	0
5	0	0	0	0,5	1	0,5	0	 0	0	0		0	0	0
6	0	0	0	0	0,5	1	0,5	 0	0	0		0	0	0
7	0	0	0	0	0	0,5	1	 0	0	0		0	0	0
•••							•••	 						
16	0	0	0	0	0	0	0	 1	0,5	0		0	0	0
17	0	0	0	0	0	0	0	 0,5	1	0,5		0	0	0
18	0	0	0	0	0	0	0	 0	0,5	1		0	0	0
••••							•••	 						
28	0	0	0	0	0	0	0	 0	0	0		1	0,5	0
29	0	0	0	0	0	0	0	 0	0	0		0,5	1	0,5
30	0	0	0	0	0	0	0	 0	0	0		0	0,5	1

Dari Tabel 4.3 matriks tersebut menghasilkan himpunan *fuzzy* sebagai berikut:

$$A1 = 1/u1 + 0.5/u2 + 0/u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10 + 0/u11 + 0/u12 + 0/u13 + 0/u14 + 0/u15 + 0/u16 + 0/u17 + 0/u18 + 0/u19 + 0/u20 + 0/u21 + 0/u22 + 0/u23 + 0/u24 + 0/u25 + 0/u26 + 0/u27 + 0/u28 + 0/u29 + 0/u30$$

$$A2 = 0.5/u1 + 1/u2 + 0.5/u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10 + 0/u11 + 0/u12 + 0/u13 + 0/u14 + 0/u15 + 0/u16 + 0/u17 + 0/u18 + 0/u19 + 0/u20 + 0/u21 + 0/u22 + 0/u23 + 0/u24 + 0/u25 + 0/u26 + 0/u27 + 0/u28 + 0/u29 + 0/u30$$

$$A3 = 0/u1 + 0.5/u2 + 1/u3 + 0.5/u4 + 0/u5 + 0/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10 + 0/u11 + 0/u12 + 0/u13 + 0/u14 + 0/u15 + 0/u16 + 0/u17 + 0/u18 + 0/u19 + 0/u20 + 0/u21 + 0/u22 + 0/u23 + 0/u24 + 0/u25 + 0/u26 + 0/u27 + 0/u28 + 0/u29 + 0/u30$$

$$A4 = 0/u1 + 0/u2 + 0.5/u3 + 1/u4 + 0.5/u5 + 0/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10 + 0/u11 + 0/u12 + 0/u13 + 0/u14 + 0/u15 + 0/u16 + 0/u17 + 0/u18 + 0/u19 + 0/u20 + 0/u21 + 0/u22 + 0/u23 + 0/u24 + 0/u25 + 0/u26 + 0/u27 + 0/u28 + 0/u29 + 0/u30$$

$$A5 = 0/u1 + 0/u2 + 0/u3 + 0.5/u4 + 1/u5 + 0.5/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10 + 0/u11 + 0/u12 + 0/u13 + 0/u14 + 0/u15 + 0/u16 + 0/u17 + 0/u18 + 0/u19 + 0/u20 + 0/u21 + 0/u22 + 0/u23 + 0/u24 + 0/u25 + 0/u26 + 0/u27 + 0/u28 + 0/u29 + 0/u30$$

$$A6 = 0/u1 + 0/u2 + 0/u3 + 0/u4 + 0.5/u5 + 1/u6 + 0.5/u7 + 0/u8 + 0/u9 + 0/u10 + 0/u11 + 0/u12 + 0/u13 + 0/u14 + 0/u15 + 0/u16 + 0/u17 + 0/u18 + 0/u19 + 0/u20 + 0/u21 + 0/u22 + 0/u23 + 0/u24 + 0/u25 + 0/u26 + 0/u27 + 0/u28 + 0/u29 + 0/u30$$

$$A7 = 0/u1 + 0/u2 + 0/u3 + 0/u4 + 0/u5 + 0.5/u6 + 1/u7 + 0.5/u8 + 0/u9 + 0/u10 + 0/u11 + 0/u12 + 0/u13 + 0/u14 + 0/u15 + 0/u16 + 0/u17 + 0/u18 + 0/u19 + 0/u20 + 0/u21 + 0/u22 + 0/u23 + 0/u24 + 0/u25 + 0/u26 + 0/u27 + 0/u28 + 0/u29 + 0/u30$$

$$A8 = 0/u1 + 0/u2 + 0/u3 + 0/u4 + 0/u5 + 0/u6 + 0.5/u7 + 1/u8 + 0.5/u9 + 0/u10 + 0/u11 + 0/u12 + 0/u13 + 0/u14 + 0/u15 + 0/u16 + 0/u17 + 0/u18 + 0/u19 + 0/u20 + 0/u21 + 0/u22 + 0/u23 + 0/u24 + 0/u25 + 0/u26 + 0/u27 + 0/u28 + 0/u29 + 0/u30$$

$$A9 = 0/u1 + 0/u2 + 0/u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7 + 0.5/u8 + 1/u9 + 0.5/u10 + 0/u11 + 0/u12 + 0/u13 + 0/u14 + 0/u15 + 0/u16 + 0/u17 + 0/u18 + 0/u19 + 0/u20 + 0/u21 + 0/u22 + 0/u23 + 0/u24 + 0/u25 + 0/u26 + 0/u27 + 0/u28 + 0/u29 + 0/u30$$

$$A10 = 0/u1 + 0/u2 + /u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7 + 0/u8 + 0.5/u9 + 1/u10 + 0.5/u11 + 0/u12 + 0/u13 + 0/u14 + 0/u15 + 0/u16 + 0/u17 + 0/u18 + 0/u19 + 0/u20 + 0/u21 + 0/u22 + 0/u23 + 0/u24 + 0/u25 + 0/u26 + 0/u27 + 0/u28 + 0/u29 + 0/u30$$

.

$$A18 = 0/u1 + 0/u2 + 0/u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10 + 0/u11 + 0/u12 + 0/u13 + 0/u14 + 0/u15 + 0/u16 + 0.5/u17 + 1/u18 + 0.5/u19 + 0/u20 + 0/u21 + 0/u22 + 0/u23 + 0/u24 + 0/u25 + 0/u26 + 0/u27 + 0/u28 + 0/u29 + 0/u30$$

$$A19 = 0/u1 + 0/u2 + 0/u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10 + 0/u11 + 0/u12 + 0/u13 + 0/u14 + 0/u15 + 0/u16 + 0/u17 + 0,5/u18 + 1/u19 + 0,5/u20 + 0/u21 + 0/u22 + 0/u23 + 0/u24 + 0/u25 + 0/u26 + 0/u27 + 0/u28 + 0/u29 + 0/u30$$

...

$$A27 = 0/u1 + 0/u2 + 0/u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10 + 0/u11 + 0/u12 + 0/u13 + 0/u14 + 0/u15 + 0/u16 + 0/u17 + 0/u18 + 0/u19 + 0/u20 + 0/u21 + 0/u22 + 0/u23 + 0/u24 + 0/u25 + 0,5/u26 + 1/u27 + 0,5/u28 + 0/u29 + 0/u30$$

$$A28 = 0/u1 + 0/u2 + 0/u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10 + 0/u11 + 0/u12 + 0/u13 + 0/u14 + 0/u15 + 0/u16 + 0/u17 + 0/u18 + 0/u19 + 0/u20 + 0/u21 + 0/u22 + 0/u23 + 0/u24 + 0/u25 + 0/u26 + 0,5/u27 + 1/u28 + 0,5/u29 + 0/u30$$

- A29 = 0/u1 + 0/u2 + 0/u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10 + 0/u11 + 0/u12 + 0/u13 + 0/u14 + 0/u15 + 0/u16 + 0/u17 + 0/u18 + 0/u19 + 0/u20 + 0/u21 + 0/u22 + 0/u23 + 0/u24 + 0/u25 + 0/u26 + 0/u27 + 0.5/u28 + 1/u29 + 0.5/u30
- A30 = 0/u1 + 0/u2 + 0/u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7 + 0/u8 + 0/u9 + 0/u10 + 0/u11 + 0/u12 + 0/u13 + 0/u14 + 0/u15 + 0/u16 + 0/u17 + 0/u18 + 0/u19 + 0/u20 + 0/u21 + 0/u22 + 0/u23 + 0/u24 + 0/u25 + 0/u26 + 0/u27 + 0/u28 + 0.5/u29 + 1/u30
 - 3. Tentukan *fuzzy logical relationship Ai* Aj berdasarkan nilai Ai yang telah ditentukan pada langkah sebelumnya, dimana Ai adalah tahun n dan Aj tahun n+1 pada data *time series* yang dapat dilihat pada Tabel 4.4.

Tabel 4.4 Penentuan $Fuzzy \ Logical \ Relationship$

DATE	USD / Harga	Fuzzifikasi	Relationship
03-Jan-12	1580	A1	-
04-Jan-12	1603	A4	A1 => A4
05-Jan-12	1614,5	A5	A4 => A5
06-Jan-12	1621	A6	A5=> A6
09-Jan-12	1618	A6	A6 => A6
10-Jan-12	1627	A7	A6 => A7
11-Jan-12	1641	A9	A7 => A9
12-Jan-12	1652,5	A11	A9=> A11
13-Jan-12	1642	A9	A11 => A9
16-Jan-12	1643,5	A10	A9 => A10
17-Jan-12	1662	A12	A10 => A12
18-Jan-12	1657	A11	A12 => A11
19-Jan-12	1664	A12	A11 => A12
20-Jan-12	1646	A10	A12 => A10
23-Jan-12	1675	A14	A10 => A14
24-Jan-12	1669	A13	A14 => A13
25-Jan-12	1659	A12	A13 => A12
26-Jan-12	1713	A19	A12 => A19
27-Jan-12	1722	A21	A19 => A21
30-Jan-12	1720,5	A20	A21 => A20
31-Jan-12	1738	A23	A20 => A23
01-Feb-12	1744	A24	A23 => A24
02-Feb-12	1747,5	A24	A24 => A24
03-Feb-12	1759,5	A26	A24 => A26
06-Feb-12	1717	A20	A26 => A20
07-Feb-12	1720	A21	A20 => A21
08-Feb-12	1743	A24	A21 => A24
09-Feb-12	1733	A22	A24 => A22
10-Feb-12	1715,5	A20	A22 => A20
13-Feb-12	1727	A21	A20 => A21
14-Feb-12	1721	A21	A21 => A21
15-Feb-12	1725,5	A21	A21 => A21
16-Feb-12	1716	A20	A21 => A20
17-Feb-12	1732	A22	A20 => A22

20-Feb-12	1729,5	A22	A22 => A22
21-Feb-12	1737	A23	A22 => A23
22-Feb-12	1754,75	A25	A23=> A25
23-Feb-12	1776,5	A29	A25 => A29
24-Feb-12	1778,5	A29	A29 => A29
27-Feb-12	1765	A27	A29 => A27
28-Feb-12	1774,75	A28	A27 => A28
29-Feb-12	1788	A30	A28 => A30
01-Mar-12	1721	A21	A30 => A21
02-Mar-12	1714,5	A20	A21 => A20
05-Mar-12	1698	A17	A20 => A17
06-Mar-12	1685,5	A16	A17 => A16
07-Mar-12	1682,5	A15	A16 => A15
08-Mar-12	1701,5	A18	A15 => A18
09-Mar-12	1699,5	A18	A18 => A18
12-Mar-12	1705,25	A18	A18 => A18
13-Mar-12	1694,75	A17	A18 => A17
14-Mar-12	1662	A12	A17 => A12
15-Mar-12	1646,75	A10	A12 => A10
16-Mar-12	1649	A10	A10 => A10
19-Mar-12	1654	A11	A10 => A11

4. Dari hasil *fuzzy logic relationship* masuk dalam proses *defuzzifikasi* atau *fuzzy logical relationship group* menggunakan model Chen. Proses pembentukan FLRG model chen dapat dilihat pada SubBab 2.4.2, pada Tabel 4.5 merupakan hasil FLRG, pada Tabel 4.6 Tabel FLRG menggunakan model Chen:

Tabel 4.5 Fuzzy Logical Relationship Group

A1 => A4	A11 => A9, A11 => A12,
A4 => A5	A10 => A12, A10 => A14, A10 => A10
	A10 => A11
A5 => A6	A12 => A11, A12 => A10, A12 => A19,
	$A12 \Rightarrow A10$
A6 => A6, A6 => A7	A14 => A13

A7 => A9	A13 => A12
A9 => A11, A9 => A10	A19 => A21
A20 => A23, A20 => A21, A20 =>	A21 => A20, A21 => A24, A21 => A21,
A21, A20 => A22, A20 => A17	A21 => A21, A21 => A20. A21 => A20
100 101 100 105	101 101 101 100
A23 => A24, A23 => A25,	A24 => A24, A24 => A26, A24 => A22
A26 => A20	A22 => A20, A22 => A22, A22 => A23
A25 => A29	A29 => A29, A29 => A27,
A27 => A28	A28 =>A30
A30 => A21	A17 => A16, A17 => A12
A16 => A15	A15 => A18
A18 => A18, A18 => A18, A18 =>	
A17	

Tabel 4.6 *fuzzy logical relationship group* (FLRG) dan Defuuzifikasi menggunakan model Chen

Current	Next state	Perhitungan	Nilai
state			Prediksi
A1	A4	1604,5	1604,5
A4	A5	1611,5	1611,5
A5	A6	1618,5	1618,5
A6	A6, A7	(1618,5+1625,5)/2	1622
A7	A9	1639,5	1639,5
A9	A10, A11	(1646,5+1653,5)/2	1650
A10	A12, A14, A10, A11	(1660,5+1674,5+1646,5+1653,5)/	1658,75
		4	
A11	A9, A12	(1639,5+1660,5)/2	1650
A12	A10, A11, A19	(1646,5+1653,5+1709,5)/3	1669,83
A13	A12	1660,5	1660,5
A14	A13	1667,5	1667,5
A15	A18	1702,5	1702,5

A16	A15	1681,5	1681,5
A17	A16, A12	(1688,5+1660,5)/2	1674,5
A18	A18, A17	(1702,5+1695,5)/2	1699
A19	A21	1723,5	1723,5
A20	A23, A21, A22, A17	(1737,5+1723,5+1730,5+1695,5)/	1721,75
		4	
A21	A21, A24, A20	(1723,5+1744,5+1716,5)/3	1728,16
A22	A20, A22, A23	(1716,5+1730,5+1737,5)/3	1728,1
A23	A24, A25	(1774,5+1751,5)/2	1748
A24	A24, A26, A22	(1744,5+1758,5+1730,5)/3	1744,5
A25	A29	1779,5	1779,5
A26	A20	1716,5	1716,5
A27	A28	1772,5	1772,5
A28	A30	1786,5	1786,5
A29	A29, A27	(1779,5+1765,5)/2	1772,5
A30	A21	1723,5	1723,5

5. Dari hasil *fuzzy logic relationship* masuk dalam proses *defuzzifikasi* atau *fuzzy logical relationship group* menggunakan model Lee. Proses pembentukan FLRG model Lee dapat dilihat pada SubBab 2.4.2, pada Tabel 4.7 merupakan hasil FLRG menggunakan model Lee:

Tabel 4.7 fuzzy logical relationship group (FLRG) menggunakan model Lee

Current	Next state	Perhitungan	Nilai
state			Prediksi
A1	A4	1604,5	1604,5
A4	A5	1611,5	1611,5
A5	A6	1618,5	1618,5
A6	A6, A7	(1/2)(1618,5) + (1/2)(1625,5)	1622
A7	A9	1639,5	1639,5
A9	A10, A11	(1/2)(1646,5) + (1/2)(1653,5)	1650

A10	A12, A14, A10, A11	(1/4)(1660,5) + (1/4)(1674,5) +	1658,75
		(1/4)(1646,5) + (1/4)(1653,5)	
A11	A9, A12	(1/2)(1639,5) + (1/2)(1660,5)	1650
A12	A10, A10, A11, A19	(2/4)(1646,5) + (1/4)(1653,5) +	1664
		(1/4)(1709,5)	
A13	A12	1660,5	1660,5
A14	A13	1667,5	1667,5
A15	A18	1702,5	1702,5
A16	A15	1681,5	1681,5
A17	A16, A12	(1/2)(1688,5) + (1/2)1660,5)	1674,5
A18	A18, A18, A17	(2/3)(1702,5) + (1/3)(1695,5)	1700,16
A19	A21	1723,5	1723,5
A20	A23, A21, A21, A22,	(1/5)(1737,5) + (2/5)(1723,5) +	1722,1
	A17	(1/5)(1730,5) + (1/5)(1695,5)	
A21	A20, A24, A21, A21,	(3/6)(1716,5) + (2/6)(1723,5) +	1723,5
	A20, A20	(1/6)(1744,5)	
A22	A20, A22, A23	(1/3)(1716,5) + (1/3)(1730,5) +	1728,17
		(1/3)(1737,5)	
A23	A24, A25	(1/2)(1774,5) + (1/2)(1751,5)	1748
A24	A24, A26, A22	(1/3)(1744,5) + (1/3)(1758,5) +	1744,5
		(1/3)(1730,5)	
A25	A29	1779,5	1779,5
A26	A20	1716,5	1716,5
A27	A28	1772,5	1772,5
A28	A30	1786,5	1786,5
A29	A29, A27	(1/2)(1779,5) + (1/2)(1765,5)	1772,5
A30	A21	1723,5	1723,5
l	1	I .	I

Dari hasil $fuzzy\ logic\ relationship\ group\ didapatkan$ nilai prediksi bisa dilakukan proses prediksi yang dapat dilihat pada Tabel 4.8 :

Tabel 4.8 Hasil prediksi emas

Tanggal	USD	prediksi Chen	prediksi Lee
03-Jan-12	1580,00	-	-
04-Jan-12	1603,00	1604,5	1604,5
05-Jan-12	1614,50	1611,5	1611,5
06-Jan-12	1621,00	1618,5	1618,5
09-Jan-12	1618,00	1622	1622
10-Jan-12	1627,00	1622	1622
11-Jan-12	1641,00	1639,5	1639,5
12-Jan-12	1652,50	1650	1650
13-Jan-12	1642,00	1650	1650
16-Jan-12	1643,50	1650	1650
17-Jan-12	1662,00	1658,75	1658,75
18-Jan-12	1657,00	1669,83	1664
19-Jan-12	1664,00	1650	1650
20-Jan-12	1646,00	1669,83	1664
23-Jan-12	1675,00	1658,75	1658,75
24-Jan-12	1669,00	1667,5	1667,5
25-Jan-12	1659,00	1660,5	1660,5
26-Jan-12	1713,00	1669,83	1664
27-Jan-12	1722,00	1723,5	1723,5
30-Jan-12	1720,50	1728,16	1723,5

	****	111 : 01	prediksi
Tanggal	USD	prediksi Chen	Lee
31-Jan-12	1738,00	1721	1722,1
01-Feb-12	1744,00	1748	1748
02-Feb-12	1747,50	1744,5	1744,5
03-Feb-12	1759,50	1744,5	1744,5
06-Feb-12	1717,00	1716,5	1716,5
07-Feb-12	1720,00	1721	1722,1
08-Feb-12	1743,00	1728,16	1723,5
09-Feb-12	1733,00	1744,5	1744,5
10-Feb-12	1715,50	1728,1	1728,1
13-Feb-12	1727,00	1721	1722,1
14-Feb-12	1721,00	1728,16	1723,5
15-Feb-12	1725,50	1728,16	1723,5
16-Feb-12	1716,00	1728,16	1723,5
17-Feb-12	1732,00	1721	1722,1
20-Feb-12	1729,50	1728,1	1728,1
21-Feb-12	1737,00	1728,1	1728,1
22-Feb-12	1754,75	1748	1748
23-Feb-12	1776,50	1779,5	1779,5
24-Feb-12	1778,50	1772,5	1772,5
27-Feb-12	1765,00	1772,5	1772,5

Tanggal	USD	prediksi Chen	prediksi Lee
28-Feb-12	1774,75	1772,5	1772,5
29-Feb-12	1790,00	1786,5	1786,5
01-Mar-12	1721,00	1723,5	1723,5
02-Mar-12	1714,50	1728,16	1723,5
05-Mar-12	1698,00	1721	1722,1
06-Mar-12	1685,50	1674,5	1674,5
07-Mar-12	1682,50	1681,5	1681,5
08-Mar-12	1701,50	1702,5	1702,5
09-Mar-12	1699,50	1699	1700,16
12-Mar-12	1705,25	1699	1700,16
13-Mar-12	1694,75	1699	1700,16
14-Mar-12	1662,00	1674,5	1674,5
15-Mar-12	1646,75	1669,83	1669,83
16-Mar-12	1649,00	1658,75	1658,75
19-Mar-12	1654,00	1658,75	1658,75
20-Mar-12	1648,00	1650	1650

Hasil Tabel 4.8 yang berwarna tebal merupakan hasil prediksi menggunakan model chen dan model lee yang menghasilkan nilai prediksi yang berbeda.

4.2 Analisa Fungsional Sistem

Untuk membangun sebuah sistem diperlukan analisa fungsional sistem yang terdiri bagan alir sistem (*flowchart*) dapat dilihat pada Gambar 4.3, digram konteks (*Context Diagram*) dapat dilihat pada Gambar 4.4, *Data Flow Diagram* (DFD) level 1 pada Gambar 4.5, serta deskripsinya pada Tabel 4.9 dan Tabel 4.10, dan *Data Flow Diagram* level 2 pada Gambar 4.6, serta deskripsi Tabel 4.11.

Gambar 4.3 Flowchart aplikasi prediksi harga emas

4.2.1 Context Diagram

Gambar 4.4 Context Diagram

Entitas luar yang berhubungan dengan sistem pada digram konteks adalah admin merupakan pengguna yang memiliki hak akses untuk dapat meng*input*kan data harga emas.

4.2.2 DFD Level 1

Gambar 4.5 DFD Level 1 *Fuzzy Time Series* Menggunakan Model Chen dan Model Lee

Tabel 4.9 Proses DFD level 1

njang interval dari
dan <i>fuzzy logic</i>
ogic relationship
da

gruop, perhitungan prediksi dan perhitungan
evaluation atau tingkat keerroran

Tabel 4.10 Aliran Data Level 1

Nama Data	Deskripsi
Dt_harga_emas	Data yang meliputi harga emas
Info_harga_emas	Berisi info harga emas
Panjang_interval	Input panjang interval dari hasil proses pertama
Info_flr	Proses fuzzy logic relationship dan fuzzifikasi
Data_prediksi	Proses deffuzifikasi atau fuzzy logic relationship
	group
Info_hasil_prediksi	Hasil dari proses perhitungan dengan metode FTS
	dengan penentuan interval berbasis rata-rata
Info_pengukuran_prediksi	Output mengetahui berapa tingkat keakuratan hasil
	prediksi

4.2.3 DFD Level 2 Proses 3 Hasil Prediksi

Gambar 4.6 DFD Level 2 Proses Hasil Prediksi

Tabel 4.11 Proses DFD level 2 Proses Prediksi

No.	Nama	Deskripsi
3.1.	Fuzzy Logic Relation	Proses pengelompokkan dari hasil proses Fuzzy
	Group (FLRG)	logic relationship (FLR)
	Hasil Prediksi	Proses penghitungan nilai prediksi dari proses
3.2.		fuzzy logic relationship group (FLRG)
	Hitung Evaluation	Hasil dari nilai prediksi akan di banding dengan
3.3.		nilai data time series untuk mencari tingkat
		ke <i>error</i> an dari hasil prediksi

4.3 Perancangan Sistem

Setelah melakukan analisa, kemudian dilanjutkan dengan perancangan sistem berdasarkan analisa permasalahan yang telah dilakukan sebelumnya.

4.3.1 Perancangan Basis Data

dalam perancangan basis data, dibangun dengan dengan nama basis data "Harga Emas" dimana terdiri dari 3 Tabel, yaitu Tabel harga emas, yaitu pada Tabel 4.12, Tabel FLR pada Tabel 4.13, dan Tabel hasil pada Tabel 4.14.

1. Tabel Harga Emas

- Nama : Harga

- Deskripsi : Berisi Data Harga Emas

- Primary key : <u>Id</u>

Nama Field	a Field Type dan Length Deskripsi		Null	Default
<u>Id</u>	Autonumber	Id	Not Null	-
tanggal	datetime	Tanggal harga emas	Not Null	-
harga	Double	Harga emas	Not Null	-

2. FLR

- Nama : Fuzzy logic relationship

- Deskripsi : proses komputasi

- Primary key : -

Nama Field	Type dan Length	Deskripsi	Null	Default
current	Byte	current	Not Null	-
next	Byte	next	Not Null	-

3. Data Hasil

- Nama : Data Hasil

- Deskripsi : Berisi Data hasil predisksi harga emas Chen

- Primary Key : nomor

Nama Field	Type dan Length	Deskripsi	Null	Default
nomor	Integer (10)	Integer (10) Jumlah data		-
Data	Double	Data aktual harga emas	Not Null	-
Hasil Chen	Double	Hasil prediksi harga emas menggunakan model chen	Not Null	-
Hasil Lee	Double	Hasil prediksi harga emas menggunakan model lee	Not Null	-

4.4 Perancangan Antar Muka (Interface) Sistem

Perancangan terhadap *interface* sistem merupakan sebuah rancangan pada sisi antarmuka sistem yang sedang dikembangkan. Rancang bangun aplikasi prediksi ini mempunyai kemampuan memprediksi harga emas pada hari yang akan datang dan dapat melihat grafik prediksi dengan harga yang sebenarnya, maka rancang *interface* sistem akan dibangun.

Gambar 4.7 Interface untuk Form penentuan interval

Gambar 4.8 Interface untuk Form Fuzzifikasi

Gambar 4.9 Interface untuk Form Prediksi Model Chen dan Model Lee

Gambar 4.10 Interface untuk Form Grafik Perbandingan

BAB V

IMPLEMENTASI DAN PENGUJIAN

5.1. Implementasi Perangkat Lunak

Implementasi merupakan tahapan dimana tahapan ini digunakan untuk mengetahui apakah aplikasi yang dikembangkan telah menghasilkan tujuan yang diinginkan dengan melakukan pengkodean dari hasil analisa dan perancangan kedalam sistem.

5.1.1 Batasan Implementasi

Batasan implementasi dari Tugas Akhir ini adalah :

- 1. Menggunakan bahasa pemrograman Delphi 6 dan *database* Microsoft Access 2003.
- 2. Sistem dirancang hanya sebagai pengujian untuk membuktikan apakah metode yang digunakan sesui untuk studi kasus tersebut.

5.1.2 Lingkungan Operasional

Komponen-komponen yang dibutuhkan untuk menerapkan aplikasi ini antara lain berupa komponen *hardware* dan *software*, maka berikut ini adalah lingkungan operasional implementasi yang digunakan oleh penulis adalah sebagai berikut :

1. Perangkat Keras

Processor : Intel Atom
Memori (RAM) : 1.00 GB

2. Perangkat Lunak

Sistem Operasi : Windows 7 Ultimate

Bahasa Pemrograman : Borland Delphi 6

DBMS : Microsoft Access 2003

5.2 Hasil Implementasi

Setelah tahap analisa dan perancangan selesai dilakukan, maka dilanjutkan dengan tahap implementasi sistem dari hasil analisa yang telah diperoleh dan mengimplementasikan hasil perancangan interface dari rancang bangun aplikasi prediksi ini.

5.2.1 Hasil Implementasi Penentuan Interval

Berikut adalah implementasi sistem dalam *form* penentuan interval berbasis rata-rata.

Gambar 5.1 Tampilan *Form* Pencarian Interval

Form dalam aplikasi ini berisi menu silahkan masukkan file database yang berfungsi untuk mencari dimana database harga emas yang akan di proses, Menu Tampilkan Informasi Data berfungsi untuk mengetahui jumlah atau banyaknya data kita didalam database tersebut dan untuk mengetahui nilai terbesar dan terkecil dari suatu data didalam database, dan untuk Hitung Interval Rata-rata berfungsi untuk mendapatkan interval yang akan dilakukan untuk mendapatkan Universe of Discourese (U) dalam proses fuzzy yang akan digunakan untuk mencari nilai prediksi. Tabel 5.1 Penjelasan Form pada implementasi proses penentuan interval

Objek	Deskripsi		
Masukkan File	Merupakan menu untuk mencari dimana database harga emas		
Database	yang akan di proses.		
Tampilkan	Merupakan menu untuk Mengetahui informasi dari data tersebut		
Informasi Data	seperti jumlah data, data terbesar dan terkecil dari <i>database</i> harga		
	emas yang kita cari tadi.		
Hitung Interval	Proses perhitungan Interval dari database harga emas tadi dan		
Rata-rata	menampilkan datanya dalam bentuk grafik.		
Next	Merupakan menu untuk ke menu aplikasi selanjutnya.		

5.2.2 Hasil Implementasi Universe of Discourse

Berikut adalah implementasi sistem dalam proses *Universe of Discourse*, proses fuzzifikasi dan proses *Fuzzy Logical Relationship* (FLR).

Gambar 5.2 Tampilan Form Fuzzifikasi

Tabel 5.2 Penjelasan Form pada implementasi proses Fuzzifikasi

Objek	Deskripsi
Universe of	Merupakan menu yang akan menampilkan proses pembentukan
Discourse	U
Data Fuzzy	Merupakan menu yang akan menampilkan proses Fuzzifikasi
FLR	Merupakan menu yang akan menampilkan porses Fuzzy logical
	Relationship atau proses untuk menetukan daerah Current State
	dan Next State dari data time series tersebut

5.2.4 Implementasi Hasil Prediksi Menggunakan Model Chen dan Model Lee

Berikut adalah implementasi sistem dalam proses hasil prediksi. *Form* dalam aplikasi ini yaitu *form* data hasil prediksi menggunakan model chen dan model lee.

Gambar 5.3 Tampilan Form Prediksi Menggunakan Model Chen dan Model Lee

5.2.5 Implementasi Grafik Hasil Perbandingan Hasil Prediksi

Berikut adalah implementasi sistem dalam proses perbandingan hasil prediksi antara data sebenarnya, hasil prediksi model chen dan hasil perdiksi model lee dalam bentuk grafik.

Gambar 5.4 Tampilan Form Grafik Hasil Perbandingan Hasil

5.3 Pengujian Sistem

Pengujian sistem ini dilakukan untuk melihat hasil implementasi, apakah berjalan sesuai tujuan atau masih terdapat kesalahan-kesalahan. Pengujian ini dilakukan dengan menguji fungsi satu per satu. Pengujian dilakukan dengan 2 cara yaitu pengujian dengan menggunakan *Blackbox* dan Pengujian dengan tingkat ke*error*an data menggunakan AFER dan MSE.

5.3.1 Pengujian *Blackbox*

Pengujian dengan *Blackbox* yaitu pengujian yang dilakukan untuk antarmuka perangkat lunak pengujian ini dilakukan untuk mengetahui apakah aplikasi sudah sesuai dengan yang diharapkan dan keluaran yang dihasilkan benar-benar tepat.

Tabel 5.3. Hasil Pengujian Sistem dengan Metode *Blackbox*.

No ·	Objek Pengujian	Hasil yang Didapat	Kesimpulan		
1.	Form Pencarian	m Pencarian Mencari database Harga Emas yang akan			
	Interval pada Button	digunakan untuk memprediksi harga			
	Find				
	Button Tampilkan	Menampilkan Informasi jumlah data, data	Benar		
	Informasi Data	terbesar dan terkecil dari database harga			
		emas tersebut			
	Button Hitung	Informasi panjang interval yang akan	Benar		
	Interval Rata-Rata	digunakan untuk pencarian fuzzyfikasi pada			
		form selanjutnya			
2.	Form Fuzzifikasi	Membagi Universe Of Discourse atau U	Benar		
	pada Button Tabel	sepanjang interval yang telah di <i>Imputkan</i> .			
	Himpunan Universe				
	of Discourse				
	Button Himpunan	Membagi suatu elemen akan memiliki 2	Benar		
	Fuzzy	kemungkinan keanggotaan			
	Button Grafik fuzzy	Menampilkan Grafik dari Himpunan Fuzzy	Benar		
	Button Nilai	Merupakan menu yang akan menampilkan	Benar		
	Keanggotaan	nilai keanggotaan dari data time series			
	Button Data	Menampilkan data harga emas tersbut	Benar		
	Terfuzzifikasi	masuk dalam himpunan crips yang sesuai			

	Button Fuzzy Logic	Menampilkan relasi dari data Terfuzzifikasi	Benar
	Relationship		
3.	Button Set FLRG	Menggabungkan data Fuzzifikasi yang sama	Benar
	(Fuzzy Logic	dan menampilkan nilai prediksi	
	Relationship Group)	menggunakan model chen dan model lee	
	Button Prediksi	Menampilkan harga emas pada keesokan	Benar
		harinya dan membandingkan data hasil	
		prediksi model chen dan model lee dengan	
		data asli, menampilkan grafik perbandingan	
		dan menampilkan tingkat keakuratan data	
		dengan AFER dan MSE	

5.3.2 Pengujian Sistem pada Aspek Keakuratan Nilai Prediksi

Pengujian sistem pada aspek keakuratan nilai prediksi yaitu dilakukan dengan menguji dan membandingkan hasil nilai prediksi dengan nilai kebenaran harga emas yang sebenarnya. Dari hasil pengukuran tingkat keakuratan data didapatkan hasil perhitungan dengan sistem perbandingan hasil selama percobaan 14 hari berturutturut dari tanggal 01 Oktober 2012 – 17 Oktober 2012 menggunkan data dari tahun 2007 didapatkan hasil percobaan adalah:

Tabel 5.4 Perbandingan hasil prediksi

TGL	Data	Prediksi	Prediksi	AFER	MSE	AFER	MSE
		Model	Model Lee	Model	Model	model	Model
		Chen		Chen	Chen	Lee	Lee
1/10/12	1770,50	1783,45	1777,71	0,99%	218,4	0,94%	211,7
2/10/12	1778,50	1757,78	1757,78	0,99%	218,2	0,94%	211,8
3/10/12	1777,25	1785,68	1778,28	0,99%	218,3	0,96%	211,8
4/10/12	1786,50	1773,12	1768,01	0,99%	218,1	1%	211,7
5/10/12	1790,00	1755,92	1755,92	0,99%	218,1	0,94%	211,7
6/10/12	Libur	-	-	-	-	-	-

7/10/12	Libur	-	-	-	-	-	-
8/10/12	1769,00	1802,42	1802,42	0,99%	218,7	0,91%	212,2
9/10/12	1770,75	1763,36	1763,36	0,99%	219,2	2,09%	212,7
10/10/12	1763,00	1764,48	1764,48	0,99%	219,1	3,09%	212,6
11/10/12	1767,25	1766,15	1767,35	1,98%	218,9	0,94%	212,4
12/10/12	1767,00	1764,48	1764,29	1,16%	218,8	1,18%	212,3
13/10/12	Libur	-	-	-	-	-	-
14/10/12	Libur	-	-	-	-	-	-
15/10/12	1747,25	1764,48	1764,29	0,99%	218,6	2,18%	212,1
16/10/12	1737,50	1741,07	1741,07	0,99%	218,6	1,48%	212,1
17/10/12	1747,75	1740,11	1740,11	0,99%	218,5	1%	212,1

5.3.4 Kesimpulan Pengujian

Dari hasil pengujian yang telah dilakukan bahwa aplikasi prediksi ini telah dapat memberikan hasil yang diharapkan oleh penulis yakni *output* harga emas pada keesokan harinya ini sesuai dengan analisa dan perancangan. Dari hasil percobaan didapatkan hasil rata-rata tingkat ke*error*an atau *evaluation* menggunakan Model Chen AFER 0,010%, MSE 218,577 dan Model Lee AFER 0,0013%, MSE 212,092.

BAB VI

PENUTUP

6.1 Kesimpulan

Setelah melalui tahap analisa dan pengujian pada aplikasi perbandingan hasil prediksi Fuzzy *Time Series* dengan model chen dan model lee, maka dapat diambil suatu kesimpulan sebagai berikut:

- 1. Sistem prediksi harga emas menggunakan fuzzy *time series* pada model chen dan model lee dengan penentuan interval berbasis rata-rata dapat memberikan hasil harga emas untuk keesokan harinya.
- 2. Prediksi dengan Metode Fuzzy *time series* antara Model Chen dan Lee yang menghasilkan nilai tingkat ke*error*an yang rendah adalah menggunakan model lee dengan nilai ke*error*an Chen AFER 0,010%, MSE 218,577 dan Model Lee AFER 0,0013%, MSE 212,092.

6.2 Saran

Agar sistem ini dapat bermanfaat baik untuk sekarang maupun akan datang, maka penulis memberikan saran, sebagai berikut:

- Diharapkan dapat menampilkan perkembangan harga emas perbulan pada setiap tahunnya.
- 2. Diharapkan untuk penelitian selanjutnya dapat menggunakan metode Candlestick Chart karena dapat menghasilkan hasil prediksi yang lebih akurat.

DAFTAR PUSTAKA

- Ahmad Amiruddin Anwary. "Prediksi Kurs Rupiah Terhadap Dollar Amerika Menggunakan Metode Fuzzy Time Series". 2011.
- Berry, M.J.A., John Wiley & Sons. Data Mining Techniques,. 2004
- Chen, S. M. "Forecasting enrollments based on fuzzy time series". *Fuzzy Sets and Systems*, 81: 311-319. 1996.
- Chen, S. M. "Forecasting enrollments based on High-Order fuzzy time series". *Cybernetics and Systems*, 33: 1-16. 2002.
- Fayyad, U. M.; Piatetsky-Shapiro, G.; Smyth, P.; and Uthurusamy, R. *Advances in Knowledge Discovery and Data Mining*. Menlo Park, Calif.: AAAI Press. . 1996
- Jilani, T. A, Burney, S.M.A, dan Ardil, C."Fuzzy Metric Approach for Fuzzy time Series Forecasting based on Frequency Density Based Partitioning". Proceedings of World Academy of Science, Engineering and Technology 34, 2007.
- Jilani, T. A, Burney, S.M.A, dan Ardil, C."Multivariate High Order Fuzzy Time Series Forecasting for Car Road Accidents". World Academy of Science, Engineering and Technology 34. 2007.
- Jumingan. Studi Kelayakan Bisnis Teori dan Pembuatan Proposal Kelayakan. Bumi Aksara. Jakarta. 2009.
- Kusumadewi, S., Purnomo, H. *Aplikasi Logika Fuzzy untuk Pendukung Keputusan*. Graha Ilmu. Yogyakarta. 2004.
- M. Syauqi Haris. Implementasi Metode Fuzzy Time Series Dengan Penentuan Interval Berbasis Rata-rata untuk Peramalan Data Penjualan Bulanan. 2010.
- Makridakis, S., Wheelright, S.C., dan McGee, V.E. *Metode dan Aplikasi Peramalan edisi ke-2, jilid I.* Alih Bahasa : Andriyanto, U.S., dan Basith, A. Erlangga. Jakarta. 1992.
- Robandi, I. Desain Sistem Tenaga Modern Optimasi Logika Fuzzy Algoritma Genetika. Andi. Yogyakarta. 2006.

- Song, Q. dan Chissom, B. S. "Forecasting enrollments with fuzzy time series-Part I". *Fuzzy Sets and Systems*, 54: 1-9. 1993.
- Song, Q. dan Chissom, B. S. "Forecasting enrollments with fuzzy time series-Part II". *Fuzzy Sets and Systems*, 62: 1-8. 1994.
- Saiful Bukhori, *Pengembangan Sandpile Model Untuk Memprediksi Sistem yang Dalam Kondisi Chaotic*, Jurnal Informatika Vol 8. 2007.
- Shamsul Faisal Mohd Hussein, Gold Price Prediction Using Radial Basis Function Neural Network. IEEE. 2011.
- Winarno, W.W. Analisis Ekonometrika dan Statistika dengan Eviews. UPP STIM YKPN. Yogyakarta. 2007.
- Wangren Qiu, Xiaodong Liu dan Hailin Li. *A generalized method for forecasting based on fuzzy time series*. Expert System with Applications. 38, 10446-10453. 2011
- Xihao, S., Li Yimin. Average-based fuzzy time series models for forecasting shanghai compound index. World Journal of Modelling and Simulation Vol.4 pp. 104-111. 2008.
- http://www.lbma.org.uk (Akses setiap hari untuk mendapatkan data harga emas).