Introduction to Computer Science Lecture 10: Artificial Intelligence

Department of Electrical Engineering National Taiwan University

What Is AI?

John Searle

Strong AI: A physical symbol system can have a mind and mental states.

Weak AI: A physical symbol system can act intelligently.

Stuart Russell

	Human	Rational
Think	Thinking humanly	Thinking rationally
Act	Acting humanly	Acting rationally

Chinese Room Argument by John Searle

- Suppose it is possible to have a program P that is sufficient for understanding of Chinese.
- In principle a person in the Chinese room can carry out \mathcal{P} .
- But such a person would not understand Chinese.
- ullet So ${\mathcal P}$ is not sufficient for producing understanding of Chinese.
- So there is no program sufficient for producing understanding of Chinese.

3/39

(NTUEE) Artificial Intelligence

Turing Test (1950)

Operational Test

Turing Test Applications

- ELIZA (1965).
- Mitsuku (2016 Loebner prize winner).
- CAPTCHA

Acting Rationally: Rational Agent

- Rational behavior: maximizes the expected performance, given available information.
- Doesn't necessarily involve thinking e.g., blinking reflex
- Rational ≠ Omniscience
 - Percepts may not supply all relevant information.
- Rational ≠ Clairvoyant
 - Action outcomes may not be as expected.
- High-level rationality ⇒ information gathering, exploration, learning, autonomy.

Agents and Environments

- An agent is an entity that perceives and acts.
- The agent function maps any percept sequences to an action.

$$f: \mathcal{P}^* \to \mathcal{A}$$

- An agent program is the implementation of an agent function.
- Computational limitations → limited rationality.

(NTUEE) Artificial Intelligence 7 / 39

Different Levels of Al

- Level 0: Simple reflex, marketing "AI".
- Level 1: Search, planning based on some knowledge base.
- Level 2: Learning, exploration.
- Level 3: Automatic feature generation, high-level abstraction.

3 Waves of Al

Achievement and Bottlenecks

Milestone achievement: Deep Blue beat Kasparov in 1997.

- "Seems" mainly for "toy" problems.
- Difficult to directly apply to real problems.
 - How to treat patients?
 - Which product should we develop?

Decline of ANN

- Minsky and Papert, MIT (1969)
- XOR problem.
- Connection problem.

Expert Systems

- Standford's MYCIN (1960): Diagnosis of infections (69% vs. 80%).
- Cyc project (Lanet, 1984): Semantic network.

Achievement and Bottleneck

Watson beat human champions in Jeopardy! in 2011.

- Ontology problem: e.g. what is "part of"?
- Common sense
 - He saw a woman in the garden with a telescope.
- Frame problem (McCarthy).
- Symbol grounding problem (Harnad): Embodiment.

Natural Language Processing

- Syntactic analysis
 - Mary gave John a birthday card.John got a birthday card.Subject: Mary Subject: John
- Semantic analysis, contextual analysis
 - John drove me home.
 - John drove me crazy.
 - The pigpen was built by the barn.
 - The pigpen was built by the farmer.
 - Do you know what time it is?

Natural Language Processing (contd.)

- Information retrieval / extraction
 - It's raining cats and dogs.
 - Ya, I just stepped on a poodle.
 - What do lawyers do when they die?
 - Lie still.
 - You can count on me.
 - Ya, right. That's comforting.

Search a Production System

Game Tree & Minimax Search

Heuristic

- For most games, a complete search is practically impossible.
 - Chess $\sim 10^{47}$; Chinese chess $\sim 10^{48}$; Go $\sim 10^{171}$
- A quantitative estimate of the distance to a goal is needed.
- Requirements for good heuristics
 - Much easier to compute than a complete solution
 - Reasonable estimate of proximity to a goal

Let's Define a Heuristic

XX_{-}	100
X	10
	0
OX*	0
O	-10
00_	-100

$$0+10+10-10+0+10+0+100 = 120$$
The board favors X

(NTUEE)

Does It Work?

This is the best choice for O based on our heuristic.

How About This?

What's Wrong?

- Heuristics are not perfect
 - Otherwise, we'd call them solutions
- Heuristics are usually more accurate toward the end of the game.
- Need some search procedure for more accurate estimation.

Heuristic + Minimax Search

Alpha-Beta Pruning

Learning

- Supervised vs. unsupervised
- Supervised
 - Learning by provided examples
 - Imitation
 - Parameter tuning
- Unsupervised
 - Learning by experiences
 - Reinforcement
 - Evolutionary (semi-supervised)

Artificial Neural Networks

- Human brain
 - 10¹¹ neurons
 - 10¹⁴ synapses

Perceptron

1 iff greater than or equal to the threshold

Some Building Blocks

AND

$$\begin{array}{ccc} x & \longrightarrow & \boxed{1} \\ y & \longrightarrow & \boxed{1} \end{array} 1.5 \qquad -$$

OR

$$\begin{array}{ccc} x & \longrightarrow & \boxed{1} \\ y & \longrightarrow & \boxed{1} \end{array} 0.5 \qquad \longrightarrow$$

SIGN

$$x \longrightarrow \boxed{1} \boxed{0} \boxed{-}$$

Some Examples

$$x \rightarrow \boxed{1 2} \rightarrow \text{output}$$

$$\begin{array}{ccc} x & \longrightarrow & \boxed{1} \\ y & \longrightarrow & \boxed{-1} \end{array} 0$$

The XOR Problem

Associative Memory

Content addressable

How Does It Work

a.

Start: All but the rightmost units are excited

c.

Step 2: The top and bottom units become excited

b.

Step 1: Only the leftmost units remain excited

d.

Final: All the units on the perimeter are excited

Example

BAM applet: http://www.cbu.edu/~pong/ai/bam/bamapplet.html

Darwin's Theory of Evolution

- Evolution
 - The change in populations of organisms over generations.
- Darwin's idea: Natural selection
 - Struggle to survive
 - Survival of the fittest
 - Genetic variation: inherited traits

Black-Box Optimization

- Finding the x that yields the highest y with an unknown f
- Evolving the giraffe that is the fittest in an unknown environment.
- Instead of finding a solution, let's evolve a solution.

(1+1) Evolutionary Strategy

- Simplest evolutionary strategy
- One parent: n-dimension real vector, $P = (p_1, ..., p_n)$
- Generate one child by mutation: $C = (c_1, ..., c_n)$

-
$$c_i = p_i + N(0, \sigma^2)$$

- Replace P by C iff C is better.
- Modify σ according to the replacement rate r.
 - One fifth rule

1/5 Rule Intuition

- $\sigma \leftarrow \sigma/C^{1/n}$, if $r > \Theta$
- $\sigma \leftarrow \sigma \cdot C^{1/n}$, if $r < \Theta$
- If replacement rate high, not exploring enough → increase step size.
- If replacement rate low, too daring → reduce step size.
- ullet $\Theta=1/5$ (Guessed by Rechenberg) and C=0.817 (Progress analysis by Schwefel)

Visualization of 1/5 Rule

Training NN with (1+1)ES

5 neurons, 17 parameters

4 neurons, 18 parameters

Total Differences: 172(123.084600)/1540