EINFÜHRUNG IN DIE GEOMETRIE UND TOPOLOGIE Blatt 2

Jendrik Stelzner

29. April 2014

Aufgabe 2.1:

Definition. Sei X ein topologischer Raum und $x \in X$. Eine Kollektion \mathcal{B} von Umgebungen von x heißt Umgebungsbasis von x, falls es für jede Umgebung N von x ein $M \in \mathcal{B}$ gibt, so dass $M \subseteq N$.

Wir sagen, dass X das erste Abzählbarkeitsaxiom erfüllt, bzw. dass X erstabzählbar ist, falls es für alle $x \in X$ eine abzählbare Umgebungsbasis \mathcal{B}_x von x gibt.

Bemerkung 1. Jeder metrische Raum ist erstabzählbar. Für einen metrischen Raum X und $x \in X$ bildet nämlich

$$\mathcal{B}_x := \{ B_{\varepsilon}(x) : \varepsilon > 0, \varepsilon \in \mathbb{Q} \}$$

offensichtlich eine Umgebungsbasis von x.

Bemerkung 2. Besitzt $x \in X$ eine abzählbare Umgebungsbasis \mathcal{B} , so besitzt x auch eine abzählbare Umgebungsbasis \mathcal{U} von offenen Umgebungen. Es enthält nämlich jedes $B \in \mathcal{B}$ eine offene Umgebung U_B von x. Es sei dann

$$\mathcal{U} := \{U_B : B \in B\}.$$

Dass $\mathcal U$ eine Umgebungsbasis von x ist, folgt daraus, dass es für jede Umgebung N von x ein $B \in \mathcal B$ gibt mit $B \subseteq N$, und deshalb

$$U_B \subseteq B \subseteq N$$
.

Bemerkung 3. Sind X,Y topologische Räume und $X\cong Y$, so ist offenbar X genaudann erstabzählbar, wenn Y erstabzählbar ist.

Die drei Räume A,B,C sind paarweise nicht homö
omorph zueinander. Zunächst zeigen wir, dass die hawai
ischen Ohrring als einziger der drei Räume kompakt sind.

Der Raum A ist nicht kompakt, da ein Teilraum $X \subseteq \mathbb{R}^n$ genau dann kompakt ist, wenn X in \mathbb{R}^n abgeschlossen und beschränkt ist. Da A offenbar nicht beschränkt ist, ist A nicht kompakt.

Die hawaiischen Ohrringe sind kompakt: Ist $\mathcal U$ eine offene Überdeckung von B in $\mathbb R^2$, so gibt es ein $U_0 \in \mathcal U$ mit $0 \in U_0$. Da U_0 offen in $\mathbb R^2$ ist, gibt es ein $\varepsilon > 0$ mit $B_\varepsilon(0) \subseteq U_0$. Es sei $N \in \mathbb N$, $N \ge 1$, so dass $N > 1/\varepsilon$. Bezeichnet K_n den Kreis mit Mittelpunkt (0,1/n) und Radius 1/n für alle $n \ge 1$, so ist also

$$B = \bigcup_{n \ge 1} K_n \subseteq U_0 \cup \bigcup_{n=1}^N K_n.$$

Da alle K_n offenbar abgeschlossen und beschränkt sind, also kompakt, und die endliche Vereinigung kompakter Mengen offenbar kompakt ist, besitzt $\mathcal U$ als offene Überdeckung von $\bigcup_{n=1}^N K_n$ eine endliche Teilüberdeckung $\mathcal V \subseteq \mathcal U$ von $\bigcup_{n=1}^N K_n$. Es ist daher $\mathcal V \cup \{U_0\} \subseteq \mathcal U$ eine endliche Teilüberdeckung von B. Das zeigt, dass die hawaiischen Ohrringe kompakt ist.

Der Raum C ist nicht kompakt. Bezeichnet $\pi:\mathbb{R}\to\mathbb{R}/\sim$ die kanonische Projektion, so ist nach der Definition der Quotiententopologie eine Teilmenge $U\subset C$ genau dann offen, wenn $\pi^{-1}(U)$ offen in \mathbb{R} ist. Für $A\subseteq\mathbb{R}$ mit $A\cap\mathbb{Z}=\emptyset$ oder $A\cap\mathbb{Z}=\mathbb{Z}$ ist $\pi^{-1}(\pi(A))=A$, also ist $\pi(U)$ offen in C für jede offene Menge $U\subseteq\mathbb{R}$, für die $U\cap\mathbb{Z}=\emptyset$ oder $U\cap\mathbb{Z}=\mathbb{Z}$. Für die offene Überdeckung

$$\mathcal{U} := \left\{ \bigcup_{n \in \mathbb{Z}} B_{1/3}(n) \right\} \cup \bigcup_{n \in \mathbb{Z}} \left\{ (n, n+1) \right\}$$

von $\mathbb R$ ist daher $\mathcal V:=\{\pi(U):U\in\mathcal U\}$ eine offene Überdeckung von C. Da es für alle n+1/2 mit $n\in\mathbb Z$ eine eindeutige Menge in $\mathcal U$ gibt, die n+1/2 enthält, und π auf $\mathbb R-\mathbb Z$ injektiv ist, folgt daraus, dass es für alle $\pi(n+1/2)$ mit $n\in\mathbb Z$ eine eindeutige Menge in $\mathcal V$ gibt, die $\pi(n+1/2)$ enthält. Deshalb besitzt $\mathcal V$ keine endliche Teilüberdeckung. Das zeigt, dass C nicht kompakt ist.

Damit haben wir gezeigt, dass die hawaiischen Ohhringe kompakt ist, A und C aber nicht. Also sind die hawaiischen Ohrring zu keinem der anderen beiden Räume homöomorph.

Nach Bemerkung 1 ist A erstabzählbar. Wir zeigen nun noch, dass C nicht erstabzählbar ist, wodurch sich nach Bemerkung 3 ergibt, dass auch A und C nicht homöomorph sind.

Angenommen, C ist erstabzählbar. Dann hat $\pi(0) \in C$ nach Bemerkung 2 eine abzählbare Umgebungsbasis $\mathcal{U} = \{U_n : n \in \mathbb{Z}\}$ von offenen Umgebungen. Wir schreiben $V_n := \pi^{-1}(U_n)$ für alle $n \in \mathbb{N}$ und setzen

$$\mathcal{V} := \{ V_n : n \in \mathbb{Z} \}.$$

Für alle $n\in\mathbb{Z}$ gilt, dass $\mathbb{Z}\subseteq V_n$, da $\pi(0)\in U_n$, und dass V_n offen ist, da U_n offen ist und π stetig. Für alle $n\in\mathbb{Z}$ gibt es daher ein $r_n>0$ so dass $B_{r_n}(n)\subseteq V_n$. Für alle $n\in\mathbb{Z}$ definieren wir

$$r'_n := \min\{r_n/2, 1/3\}$$

und setzen

$$W:=\bigcup_{n\in\mathbb{Z}}B_{r_n'}(n).$$

W ist eine offene Menge mit $\mathbb{Z} \subseteq W$ und $W \subsetneq V_n$ für alle $n \in \mathbb{Z}$, wobei sich W und V_n um je überabzählbar viele Element unterschieden. Daher ist $\pi(W) \subseteq C$ eine offene Umgebung von $\pi(0) \in C$ mit $\pi(W) \subsetneq U_n$ für alle $n \in \mathbb{Z}$. Dies steht im Widerspruch dazu, dass \mathcal{U} eine Umgebungsbasis von $\pi(0)$ ist.

Aufgabe 2.2:

(b)

Es ist klar, dass R wegzusammenhängend ist und $R-(\{0\}\times[0,4])$ in die beiden Wegzusammenhangskomponenten $[-1,0)\times[0,4]$ und $(0,1]\times[0,4]$ zerfällt. Da π_0

funktoriell ist, zerfällt daher auch M-K in höchstens zwei Wegzusammenhangskomponenten, wobei $q([-1,0)\times[0,4])$ und $q((0,1]\times[0,4])$ wegzusammenhängend in M-K sind. Wir zeigen, dass M-K bereits wegzusammenhängend ist. Da Wegzusammenhangskomponenten entweder disjunkt oder gleich sind, und jede wegzusammenhängende Teilmenge in einer Wegzusammenhangskomponente liegt, reicht es hierfür zu zeigen, dass q(X) wegzusammenhängend ist für

$$X:=\{-1\}\times [0,4]\cup \{1\}\times [0,4].$$

Dies zeigen wir, indem wir zeigen, dass $q(X) \cong S^1$. (S^1 ist als Quotenten des wegzusammenhängenden Raumes [0,1] ebenfalls wegzusammenhängend.)

Wir betrachten die Abbildung $f: X \to S^1$ mit

$$f(s,t) = \begin{cases} \left(\cos\left(\frac{\pi}{4}t\right), \sin\left(\frac{\pi}{4}t\right)\right) & \text{falls } s = 1, \\ -\left(\cos\left(\frac{\pi}{4}t\right), \sin\left(\frac{\pi}{4}t\right)\right) & \text{falls } s = -1, \end{cases} = s\left(\cos\left(\frac{\pi}{4}t\right), \sin\left(\frac{\pi}{4}t\right)\right).$$

Es ist klar, dass f surjektiv ist und als Bijektion \tilde{f} über q(X) faktorisiert. Wir erhalten ein entsprechendes kommutative Diagramm.

Wir bemerken, dass \tilde{f} stetig ist: Wir zeigen, dass $\tilde{f}^{-1}(B_{\varepsilon}(x))$ in q(X) offen ist für alle $x \in S^1$ und $\varepsilon > 0$, wobei wir zur einfacheren Notation

$$B_{\varepsilon}(x) = \{ y \in S^1 : ||x - y|| < \varepsilon \} \subseteq S^1$$

verstehen wollen. ($\|\cdot\|$ bezeichnet die übliche Norm auf \mathbb{R}^2 .) Da diese ε -Bälle eine Basis der Topologie von S^1 bilden, zeigen wir damit die Stetigkeit von \tilde{f} . Wegen der Definition der Quotientenraumtopologie genügt es hierfür zu zeigen, dass $q^{-1}(\tilde{f}^{-1}(B_{\varepsilon}(x)))$ offen in X ist. Das Urbild eines solchen ε -Balles hat für passende $u,t\in(0,4)$ die Form

$$\begin{cases} 1 \} \times (u,t) \text{ oder} \\ \{-1\} \times (u,t) \text{ oder} \\ \{-1\} \times [0,u) \cup \{1\} \times (t,4] \text{ oder} \\ \{-1\} \times (t,4] \cup \{1\} \times [0,u). \end{cases}$$

Da all diese Mengen offen in X sind, zeigt dies die Stetigkeit von \tilde{f} .

Damit ist \tilde{f} eine stetige Bijektion. Da S^1 Hausdorffsch ist und q(X) als Quotient des kompakten Raumes X ebenfalls quasikompakt ist, ist \tilde{f} schon ein Homöomorphismus. Das zeigt, dass $q(X)\cong S^1$ und damit, dass M-K wegzusammenhängend ist.

Aufgabe 2.3:

Lemma 4. Es seien X und Y topologische Räume, $\varphi:X\to Y$ ein Homöomorphismus und \sim eine Äquivalenzrelation auf X. Es lässt sich auf Y ein Äquivalenzrelation \sim_{φ}

definieren durch

$$x \sim x' \Leftrightarrow \varphi(x) \sim_{\varphi} \varphi(x')$$
 für alle $x, x' \in X$.

Für die entsprechenden Quotientenräume gilt, dass $X/\sim \cong Y/\sim_{\varphi}$.

Beweis. Es ist klar, dass \sim_{φ} eine Äquivalenz relation auf Y definiert, und dass φ eine Bijektion $\bar{\varphi}: X/\sim \to Y/\sim_{\varphi}$ induziert mit

$$\bar{\varphi}: [x]_{\sim} \mapsto [\varphi(x)]_{\sim_{\alpha}}.$$

Bezeichnen $\pi_X: X \to X/\sim$ und $\pi_Y: Y \to Y/\sim_{\varphi}$ die kanonischen Projektionen, so ergibt sich also das folgende kommutative Diagramm.

$$X \xrightarrow{\varphi} Y$$

$$\pi_X \downarrow \qquad \qquad \downarrow \pi_Y$$

$$X/\sim \xrightarrow{\bar{\varphi}} Y/\sim_{\varphi}$$

Da $\pi_Y \circ \varphi$ als Verknüpfung stetiger Funktionen stetig ist, und $\bar{\varphi} \circ \pi_X = \pi_Y \circ \varphi$ folgt aus der universellen Eigenschaft der Quotientenraumtopologie, dass $\bar{\varphi}$ stetig ist. Das zeigt, dass $\bar{\varphi}$ eine stetige Bijektion ist.

Um zu zeigen, dass $\bar{\varphi}$ ein Homö
omorphismus ist, bemerken wir, dass die Äquivalenzrelation
 \sim_{φ} durch den Homöomorphismus φ^{-1} eine Äquivalenz
relation $(\sim_{\varphi})_{\varphi^{-1}}$ auf X induziert mit

$$y\sim_{\varphi}y'\Leftrightarrow \varphi^{-1}(y)(\sim_{\varphi})_{\varphi^{-1}}\varphi^{-1}(y') \text{ für alle } y,y'\in Y.$$

Dabei ist direkt klar, dass $(\sim_{\varphi})_{\varphi^{-1}}=\sim$. Wir erhalten also analog eine stetige Bijektion $\overline{\varphi^{-1}}:Y/\sim_{\varphi}\to X/\sim$ mit

$$\overline{\varphi^{-1}}: [y]_{\sim_{\varphi}} \mapsto [\varphi^{-1}(y)]_{\sim},$$

für die offenbar $\overline{\varphi^{-1}}=\overline{\varphi}^{-1}.$ Das zeigt, dass $\bar{\varphi}$ ein Homö
omorphismus ist. $\hfill\Box$

Wir bezeichnen die gegebene Äquivalenzrelation mit \sim und setzen

$$S := \{(x, y, z) \in T : x \ge 0\}.$$

Wir zeigen zunächst, dass $T/\sim \cong S/\sim$. Bezeichnet $\iota:S\to T$ die kanonische Inklusion und sind $q:T\to T/\sim$ und $\tilde{q}:S\to S/\sim$ die kanonischen Projektionen, so erhalten wir das folgende kommutatve Diagramm.

Dabei ist $\tilde{\iota}$ die induzierte Abbildung, d.h. die eindeutige Abbildung, die das obige Diagramm kommutieren lässt. (Sie ist gegeben durch $\tilde{\iota}:[x]_{\sim}\mapsto [x]_{\sim}$.) Da ι und q stetig sind, ist es auch $q\circ\iota$. Da $q\circ\iota=\tilde{\iota}\circ\tilde{q}$ folgt aus der universellen Eigenschaft des Quotientenraums, dass $\tilde{\iota}$ stetig ist.

Da S jede Äquivalenzklasse von \sim in T nichttrivial schneidet ist $\tilde{\iota}$ surjektiv. Es ist auch klar, dass $\tilde{\iota}$ injektiv ist. Also ist $\tilde{\iota}$ eine stetige Bijektion. Da S kompakt ist, und S/\sim damit quasikompakt, genügt es für die Homöomorphie von $\tilde{\iota}$ zu zeigen, dass T/\sim Hausdorffsch ist.

Seien hierfür $x,y\in T$ mit $q(x)\neq q(y)$, also $x\neq y$ und $x\neq -y$. Da x,y,-x und -y paarweise verschieden sind und T Hausdorffsch ist, gibt es ein $\varepsilon>0$, so dass die ε -Bälle um x,y,-x und -y paarweise disjunkt sind. Da

$$q^{-1}(q(B_{\varepsilon}(x))) = B_{\varepsilon}(x) \cup B_{\varepsilon}(-x) \text{ und}$$
$$q^{-1}(q(B_{\varepsilon}(y))) = B_{\varepsilon}(y) \cup B_{\varepsilon}(-y)$$

offen in T sind, sind $q(B_{\varepsilon}(x))$ und $q(B_{\varepsilon}(y))$ disjunkte, in T/\sim offene Mengen, die x, bzw. y enthalten. Da q surjektiv ist, zeigt dies, dass T/\sim Hausdorffsch ist.

Also ist $S/\sim \cong T/\sim$.

Wir bemerken auch, dass $[-1,1]\times [0,4]\cong S,$ etwa durch passende Kugelkoordinaten

$$g:[-1,1]\times[0,4]\to S, (t,u)\mapsto \begin{pmatrix} \cos(t\arcsin(1/2))\sin(u\pi/4)\\ \cos(t\arcsin(1/2))\cos(u\pi/4)\\ \sin(t\arcsin(1/2)). \end{pmatrix}$$

Es ist bekannt, dass dies eine Homöomorphismus ist. g^{-1} induziert nach Lemma 4 durch \sim eine Äquivalenzrelation $\sim_{g^{-1}}$ auf S. Man sieht leicht, dass diese gerade (t,0) mit (-t,4) identifiziert für alle $t\in[-1,1]$ und sonst keine Identifikationen vornimmt. Daher ist nach Lemma 4

$$S/\sim \cong ([-1,1]\times [0,4])/\sim_{q^{-1}}\cong M$$

wobei M das Möbiusband bezeichnet, wie in der vorherigen Aufgabe definiert wurde.

Aufgabe 2.4:

Statt die Teilaufgaben zu bearbeiten, betrachten wir verschiedene Möglichkeiten $\mathbb{R}P^n$ zu konstruieren. Die zu zeigenden Aussagen ergeben sich dann als einfache Korollare.

Wir betrachten auf $\mathbb{R}^{n+1}-\{0\}$ die Äquivalenzrelation \sim mit

$$x \sim y \Leftrightarrow \exists \lambda \in \mathbb{R}^\times \text{ mit } y = \lambda x.$$

Es ist unmittelbar klar, dass

$$(\mathbb{R}^{n+1} - \{0\})/\sim \cong \mathbb{R}P^n \text{ via } [x]_{\sim} \to \text{span}(x).$$

Wir zeigen zunächst, dass bereits $S^n/\sim\cong\mathbb{R}P^n$. Dabei bemerke man, dass \sim auf S^n genau die gegenüberliegenden Punkte miteinander identifiziert, d.h.

$$x \sim x' \Leftrightarrow x = x' \text{ oder } x = -x' \text{ für alle } x, x' \in S^n.$$

Hierfür definieren wir uns für alle $A \in X$ die Saturierung von A als

$$A^{\mathrm{sat}} = \left\{ \left. x \in \mathbb{R}^{n+1} - \{0\} \right| \exists a \in A \text{ mit } x \sim a \right\} = \bigcup_{a \in A} [a]_{\sim}.$$

Ist $U\subseteq S^n$ offen in S^n , so ist U^{sat} offen in $\mathbb{R}^{n+1}-\{0\}$. Für $y\in U^{\mathrm{sat}}$ gibt es ein $x\in U$ und $\lambda\in\mathbb{R}^\times$ mit $y=\lambda x$. Da U offen in S^n ist gibt es ein $\varepsilon>0$ mit $B_\varepsilon(x)\cap S^n\subseteq U\cap S^n$. Es ist klar, dass daher

$$\inf \left\{ \|z - x\| | z \not\in U^{\text{sat}} \right\} > 0.$$

Deshalb gibt es ein $\delta > 0$ mit $B_{\delta}(x) \subseteq U^{\text{sat}}$. Es ist daher auch

$$U^{\text{sat}} \supseteq \lambda B_{\delta}(x) = B_{\lambda\delta}(\lambda x) = B_{\lambda\delta}(y).$$

Das zeigt, dass U^{sat} offen in $\mathbb{R}^{n+1} - \{0\}$ ist.

Wir betrachten nun das folgende kommutative Diagramm.

$$S^{n} \xrightarrow{l} \mathbb{R}^{n+1} - \{0\}$$

$$\pi_{1} \downarrow \qquad \qquad \downarrow \pi_{2}$$

$$S^{n} / \sim \xrightarrow{l'} (\mathbb{R}^{n+1} - \{0\}) / \sim$$

Dabei bezeichnet ι die kanonische Inklusion, π_1 und π_2 bezeichnen die kanonischen Projektionen und ι' die induzierte Abbildung, die das Diagram kommutieren lässt, d.h.

$$\iota': S^n/\sim \to (\mathbb{R}^{n+1} - \{0\})/\sim, [x]_{\sim} \to [x]_{\sim}.$$

Die Wohldefiniertheit von ι' ist klar Es ist auch klar, dass ι' injektiv ist. Die Surjektivität von ι' folgt daraus, dass S^n jede Äquivalenzklasse von \sim auf $\mathbb{R}^{n+1}-\{0\}$ nichttrivial schneidet. ι' ist also bijektiv. ι ist auch stetig, denn $\pi_2\circ\iota$ ist als Komposition stetiger Abbildungen stetig, und wegen $\pi_2\circ\iota=\iota'\circ\pi_1$ folgt daraus durch die universelle Eigenschaft des Quotientenraums, dass ι' stetig ist. Das zeigt, dass ι' eine stetige Bijektion ist.

Um zu zeigen, dass ι' ein Homöomorphismus ist, zeigen wir, dass ι' offen ist. Da eine Menge $U\subseteq S^n/\sim$ genau dann offen in S^n/\sim ist, wenn $\pi_1^{-1}(U)$ offen in S^n ist, und $V\subseteq (\mathbb{R}^{n+1}-\{0\})/\sim$ genau dann offen in $(\mathbb{R}^{n+1}-\{0\})/\sim$ ist, wenn $\pi_2^{-1}(V)$ offen in $\mathbb{R}^{n+1}-\{0\}$ ist, genügt für die Offenheit von ι' zu zeigen, dass

$$\pi_2^{-1}(\iota'(\pi(U)))$$

offen ist in $\mathbb{R}^{n+1} - \{0\}$ für alle $U \subseteq S^n$ offen in S^n . Da

$$\pi_2^{-1}(\iota'(\pi(A))) = A^{\text{sat}}$$
 für alle $A \subseteq S^n$

fogt dies aus den vorherigen Beobachtungen über die Saturierung offener Mengen.

Das zeigt, dass ι' offen und somit ein Homöomorphismus ist.

Wir gehen nun noch einen Schritt weiter. Wir können \mathbb{D}^n mit "der nördlichen Hemisphäre" der \mathbb{S}^n identifizieren via der Abbildung

$$D^n \to S^n, (x_1, \dots, x_n) \mapsto \left(x_1, \dots, x_n, \sqrt{1 - \sum_{i=1}^n x_i^2}\right).$$

Bezeichnen wir das Bild dieser Abbildung mit \tilde{D}^n , so erhalten wir einen Homö
omorphismus

$$\varphi_n: D^n \to \tilde{D}^n, (x_1, \dots, x_n) \mapsto \left(x_1, \dots, x_n, \sqrt{1 - \sum_{i=1}^n x_i^2}\right)$$

$$\varphi_n^{-1}: \tilde{D}^n \to D^n, (x_1, \dots, x_n, x_{n+1}) \to (x_1, \dots, x_n).$$

Wir behaupten nun weiter, dass bereits $\tilde{D}^n/\sim \cong S^n/\sim$. Hierfür betrachen wir das folgende kommutative Diagramm.

$$\tilde{D}^{n} \xrightarrow{l} S^{n}$$

$$\pi_{1} \downarrow \qquad \qquad \downarrow \pi_{2}$$

$$\tilde{D}^{n} / \sim \xrightarrow{l'} S^{n} / \sim$$

Dabei ist ι die kanonische Inklusion, π_1 und π_2 sind die kanonischen Projektionen und ι' ist die eindeutige Abbildung, die das Diagramm kommutieren lässt. Diese ist offenbar wohldefiniert und eindeutig. Da $\pi_2 \circ \iota = \iota' \circ \pi_1$ stetig ist, folgt aus der universellen Eigenschaft des Quotientenraums, dass ι' stetig ist. Es ist klar, dass ι' injektiv ist, und die Surjektivität von ι' folgt daraus, dass \tilde{D}^n jede Äquivalenzklasse von \sim auf S^n nichttrivial schneidet. Es ist also ι' eine stetige Bijektion.

Da $\tilde{D}^n\cong D^n$ kompakt ist, und daher \tilde{D}^n/\sim als Quotient eines kompakten Raumes quasikompakt, genügt es, um zu zeigen, dass ι' ein Homöomorphismus ist, zu zeigen, dass S^n/\sim Hausdorffsch ist. Seien hierfür $x,y\in S^n$ mit $\pi_2(x)\neq\pi_2(y)$, also $x\neq y$ und $x\neq -y$. Dann sind x,-x,y und -y paarweise verschieden. Da S^n Hausdorffsch ist, gibt es daher ein $\varepsilon>0$, so dass die ε -Bälle um x,-x,y und -y eingeschränkt auf S^n paarweise disjunkt sind. Da

$$\pi_2^{-1}(\pi_2(B_{\varepsilon}(x)\cap S^n)) = (B_{\varepsilon}(x)\cup B_{\varepsilon}(-x))\cap S^n \text{ und}$$

$$\pi_2^{-1}(\pi_2(B_{\varepsilon}(y)\cap S^n)) = (B_{\varepsilon}(y)\cup B_{\varepsilon}(-y))\cap S^n$$

sind daher $\pi_2(B_\varepsilon(x))$ und $\pi_2(B_\varepsilon(y))$ offen und disjunkt in S^2/\sim . Da π_2 surjektiv ist, zeigt dies, dass S^n/\sim Hausdorffsch ist.

Das zeigt, dass $\tilde{D}^n \cong S^n / \sim$.

Durch den Homöomorphismus φ_n^{-1} wird nach Lemma 4 durch die Äquivalenzrelation \sim auf \tilde{D}^n eine Äquivalenzrelation \sim^* auf D^n induziert. Da \sim auf S^n genau die gegebenüberliegenden Punkt miteinander identifiziert ergibt sich direkt, dass \sim^* die auf dem Rand von D^n gegenüberliegenden Punkte miteinander identifiziert und sonst keine Identifikationen vornimmt. Nach Lemma 4 gilt auch

$$D^n/\sim^* \cong \tilde{D}^n/\sim$$
.

Insgesamt haben wir damit nun gezeigt, dass

$$D^n/\sim^* \cong \tilde{D}^n/\sim \cong S^n/\sim \cong (\mathbb{R}^{n+1}-\{0\})/\sim \cong \mathbb{R}P^n.$$

(a)

Ist \sim auf $D^1=[0,1]$ die Äquivalenzrelation, die 0 und 1 identifiziert und sonst keine Identifikationen vornimmt, so ist bekanntermaßen $[0,1]/\sim\cong S^1$. Nach der obigen Diskussion gilt aber auch $D^1/\sim\cong\mathbb{R}P^1$. Also ist $S^1\cong\mathbb{R}P^1$.

(b)

Dies wurde in der obigen Diskussion gezeigt.