Problem

Read the definitions of NOPREFIX(A) and NOEXTEND(A) in Problem 1.40.

- a. Show that the class of CFLs is not closed under NOPREFIX.
- b. Show that the class of CFLs is not closed under NOEXTEND.

Problem 1 40

Recall that string x is a *prefix* of string y if a string z exists where xz = y, and that x is a *proper prefix* of y if in addition $x \neq y$. In each of the following parts, we define an operation on a language A. Show that the class of regular languages is closed under that operation.

- Aa. NOPREFIX(A) = $\{w ? Al \text{ no proper prefix of } w \text{ is a member of } A\}$.
- **b.** NOEXTEND(A) = {w ? Alw is not the proper prefix of any string in A}.

Step-by-step solution

Step 1 of 3

a)

Consider the NOPREFIX operation. For a language A, the NOPREFIX operation is defined as:

 $NOPREFIX(A) = \{ w \in A \mid \text{no proper prefix of } w \text{ is a member of } A \}$

- $\bullet \text{ Now consider the language } P \text{ , defined as } P = P_1 \cup P_2 \\ \text{ where } P_1 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \text{ and } P_2 = \left\{ x^a y^b z^b \mid a, b \geq 1 \right\} \\ \bullet P_2 = \left\{ x^a y^b z^b \mid a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a, b \geq 1 \right\} \\ \bullet P_3 = \left\{ x^a y^b z \mid a \neq b, a,$
- If a string $x^a y^b z$ of P_1 is considered, then the proper prefix of it is the string that consists only x and y and all the string in P_1 and P_2 consists minimum one z. Therefore, all strings in P_1 is in NOPREFIX(P).

Comment

Step 2 of 3

Now, if a string $x^a y^b z^b$ in P_2 is considered. It is not in NOPREFIX(P), if and only if there is proper prefix of it that is in P.

- As no proper prefix exists in P_2 , the proper prefix will have to come from P_1 and hence the $a \neq b$. Thus, the string in P_2 which are in NOPREFIX(P) are $\left\{x^ay^az^a \mid a \geq 1\right\}$. Therefore, $NOPREFIX(P) = P_1 \cup \left\{x^ay^az^a \mid a \geq 1\right\}$
- P is a context free language since P_1 and P_2 are both context-free and context-free languages are closed under union. However, NOPREFIX(P) is not context-free.
- In other way, context-free behavior is shown by $NOPREFIX(P) \cap P(x^*y^*zzz^*) = \{x^ay^az^a \mid a \ge 2\}$ that is a contradiction. Therefore, a context-free language P exists in such a way that NOPREFIX(P) is not context-free.

Hence, from the above discussion, it can be said that context-free languages are not closed under NOPREFIX operation.

Comment

Step 3 of 3

b)

Consider the NOEXTEND operation. For a language A, the NOEXTEND operation is defined as:

 $NOEXTEND(P) = \{ w \in A \mid w \text{ is not a proper prefix of any string in } A \}$

Now consider the language $P = P_1 \cup P_2$ where $P_1 = \left\{ x^a y^b z^c \mid a \neq b, a, b, c \geq 1 \right\}$ and $P_2 = \left\{ x^a y^b z^b \mid a, b \geq 1 \right\}$.

• Consider the string $x^a y^b z^c \in P_1$, the given string is not in NOEXTEND(P) since $x^a y^b z^{c+1}$, which is an extension of the string is in P.

- Now, the string $x^a y^b z^b$ is considered. Now any extension of this string in P should belong to P_1 . Hence this string will not exist in NOEXTEND(P), if and only if an extension of it P_1 if P_2 if P_3 if P_4 if P_4
- Hence, $NOEXTEND(A) = \left\{ x^a y^a z^a \mid a \ge 1 \right\}$. As it is known that P is context-free but NOEXTEND(P) is not context-free.

Hence from the above explanation, it can be said that "the context-free language are not closed under NOEXTEND operation".

Comment