

ANÁLISIS MATEMÁTICO II Examen Final 27/09/2023

APELLIDO DEL ALUMNO: .	••••••	NOMBRE:	•••••

CORRIGIÓ: REVISÓ:

T1	T2	P1	P2	P3	P4	CALIFICACIÓN

Todas las respuestas deben ser justificadas adecuadamente para ser tenidas en cuenta.

No resolver el examen en lápiz. Duración del examen: 2 horas

Condición de aprobación (6 puntos): tres ejercicios correctamente resueltos (uno de T1 o T2 y dos de P1, P2, P3 o P4).

T1) Indique si cada una de las siguientes proposiciones es verdadera o falsa. Si es verdadera proporcione una demostración, caso contrario exhiba un contraejemplo.

- **a.** La función definida por $g(x,y) = 1 + \sqrt[3]{x^2(y-1)}$ tiene derivada en toda dirección en el punto $(x_0, y_0) = (0,1)$ y es diferenciable en dicho punto.
- **b.** El plano de ecuación z 4x + 4 = 0 es el plano tangente en el punto $(x_0, y_0, z_0) = (1,0,0)$ al gráfico de la función z = g(x, y) definida implícitamente por la ecuación $2x^3 + y^4 + z^3 xz 2x = 0$ en un entorno de (1,0,0).
- **T2**) **a**. Enuncie el Teorema de la Regla de la cadena para una función $\vec{h} = \vec{f} \circ \vec{g}$ con $\vec{g}: R^n \to R^m$ y $\vec{f}: R^m \to R^p$.
 - **b.** Calcule $\lim_{x \to +\infty} y(x)$ sabiendo que y(x) es la solución particular de y'' + 4y' + 5y = 5 Con y(0) = 1 e y'(0) = -2.
- **P1**) Sea el campo escalar $f: \mathbf{D} \subset \mathbb{R}^2 \to \mathbb{R}$ tal que $f(x,y) = \sqrt[4]{x-y} \sqrt{1-(x-1)^2-(y-1)^2}$. Calcule la circulación del campo $\vec{F}: \mathbb{R}^2 \to \mathbb{R}^2$ $/\vec{F}(x,y) = (8y + 8xy + 3, 4x^2 2x + 3y^2)$ a lo largo de la curva frontera del conjunto \mathbf{D} , dominio natural de f, recorrida en sentido horario.
- **P2**) Determine analítica y gráficamente la región de integración en el plano xy de la integral expresada en coordenadas polares $\int_0^{\frac{\pi}{6}} d\theta \int_0^{\frac{\sqrt{3}}{\cos\theta}} r^2 \cos\theta \ dr + \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} d\theta \int_0^2 r^2 \cos\theta \ dr$. Luego plantee la integral dada en coordenadas cartesianas (NO calcule las integrales)
- **P3**) Calcule la circulación del campo vectorial $\vec{F}(x, y, z) = (x^2, 1, z)$ a lo largo del triángulo de vértices A = (0,0,0), $B = ((1,1,0) \text{ y } C = (0,0,1) \text{ con la orientación } B \to A \to C \to B$.
- **P4)** Calcule el flujo del campo vectorial $\vec{G}: R^3 \to R^3 / \vec{G}(x,y,z) = (xz,yz,x^2+y^2)$ a través de la superficie abierta de ecuación $z=4-\sqrt{x^2+y^2}$ que se encuentra en el semiespacio $z\geq 0$ orientada con vector normal de tercera componente positiva.