

Successioni e Serie numeriche

▼ INDICE

- 1 Successioni e serie numeriche
 - 1.1 Serie Convergenti e Divergenti
- 1.1 Serie geometrica
- 1.2 Serie armonica
 - 1.2.1 Serie armonica generalizzata
- 1.3 Condizioni, teoremi e criteri di convergenza
 - 1.3.1 Condizioni per la convergenza di una serie
 - 1.3.2 Serie a termine di segno costante
 - 1.2.3 Criterio del confronto
 - 1.2.4 Criterio del confronto asintotico
- 1.4 Criterio del rapporto e Criterio della radice
 - 1.4.1 Criterio del rapporto
 - 1.4.2 Criterio della radice
- 1.5 Criterio di Leibniz
- 1.6 Convergenza assoluta

1 Successioni e serie numeriche

Con successione intendiamo l'insieme dei valori assunti da una funzione $a: \mathbb{N} \to \mathbb{R}, n \longmapsto a_n$. Tale insieme, andrebbe scritto come:

$$a = \{a(1), a(2), a(3), ..., a(n)\}$$

per questioni di praticità però è molto più comodo usare la seguente notazione:

$$a_n = a_1, a_2, a_3, ..., a_n$$

dove il numero che si trova in pedice si chiama indice di successione.

ESEMPI DI SUCCESSIONI:

- Se $a_n = 2^n$ allora $a_n = 2, 4, 8, 16, 32, ..., 2^n$;
- Se $a_n = \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, ..., \frac{1}{n}$.

Immaginiamo di voler calcolare la somma dei numeri naturali. Essa è ben definita dalla seguente proprietà:

$$S_n = \sum_{k=0}^n a_k \quad orall n \in \mathbb{N} = \{0,1,2,3,...\}$$

Nel caso dove i termini da sommare sono illimitati, come possiamo sapere il risultato finale della somma? In questo caso viene in nostro aiuto la serie numerica.

DEFINIZIONE DI SERIE NUMERICA:

Data una successione di termine generico a_k , si dice numerico la "somma infinita" dei suoi termini.

$$\lim_{n o +\infty} S_n = \sum_{k=0}^\infty a_k$$

1.1 Serie Convergenti e Divergenti

Le serie numeriche possono assumere varie proprietà, per esempio:

ESEMPI SULLE PROPRIETÀ DELLE SERIE NUMERICHE:

1. Vediamo la seguente successione: se $a_n=0$, allora:

$$S_n = \sum_{k=0}^n 0$$

Cosa accade a questa serie considerando $n \to +\infty$? Nulla, essendo una funzione costante il risultato sarà sempre 0:

$$\lim_{n o\infty}S_n=\sum_{k=0}^\infty 0=0$$

2. Consideriamo ora invece la seguente successione:

$$a_k = rac{1}{k(k+1)}$$

I primi termini della serie sono i seguenti:

•
$$S_1 = \frac{1}{1 \cdot 2}$$

•
$$S_2 = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3}$$

•
$$S_3 = \frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4}$$

• ..

Dunque, il limite per $n \to +\infty$ di questa serie sarà:

$$\lim_{n o +\infty} S_n = \sum_{k=1}^\infty (rac{1}{k(k+1)}) = \lim_{n o +\infty} rac{1}{n(n+1)} = 0$$

In entrambi gli esempi appena mostrati tutte e due le serie tendono ad numero finito, per $n \to +\infty$, ed in questo caso si parla di serie convergenti.

DEFINIZIONE DI SERIE CONVERGENTE:

Una successione delle somme parziali S_n si dice convergente se il limite per n che tende a $+\infty$ converge ad un valore l(ossia finito):

$$lim_{n
ightarrow+\infty}S_n=\sum_{k=0}^\infty a_k=l$$

Ora proviamo ad analizzare queste due ulteriori serie:

ESEMPI SULLE PROPRIETÀ DELLE SERIE NUMERICHE:

- 1. Sia data la successione costante $a_k=1.$ Vediamo come si comporta nelle sue prime serie parziali:
 - $S_0 = 1$
 - $S_1 = 1 + 1 = 2$
 - $S_2 = 1 + 1 + 1 = 3$
 - ...

Notiamo subito che:

$$S_n = \sum_{k=0}^n a_k = n+1 = +\infty$$

2. Determinare se la seguente successione ammette limite a $+\infty$:

$$a_k = rac{k}{100}$$

I primi termini della serie sono:

- $S_1 = \frac{1}{100} = 0.01$
- $S_2 = \frac{1}{100} + \frac{2}{100} = 0.03$
- $S_3 = \frac{1}{100} + \frac{2}{100} + \frac{3}{100} = 0.06$
- .

Il limite della serie è infinito per n che tende a $+\infty$:

$$\lim_{n o \infty} S_n = \sum_{k=1}^\infty rac{k}{100} = \lim_{n o \infty} rac{n}{100} = +\infty$$

Come possiamo vedere da questi due esempi entrambi non ammettono un limite finito, perché tutti e due tendono a $+\infty$ e in questo caso si parla di serie divergente.

DEFINIZIONE DI SERIE DIVERGENTE:

Una successione delle somme parziali S_n si dice divergente se il limite per n che tende a infinito diverge ad un valore $+\infty$ ($o-\infty$) :

$$\lim_{n
ightarrow+\infty}S_n=\sum_{k=0}^\infty a_k=+\infty(\ o\ -\infty\)$$

ATTENZIONE:

Ricorda che se una serie non converge, non è detto che essa sia divergente, per esempio:

ESEMPIO:

Consideriamo la serie della seguente successione $a_n = (-1)^n$:

$$S_n = \sum_{k=0}^n (-1)^k$$

•
$$S_1 = 1$$

•
$$S_2 = 1 - 1 = 0$$

•
$$S_3 = 1 - 1 + 1 = 1$$

•
$$S_3 = 1 - 1 + 1 - 1 = 0$$

• ..

Notiamo quindi che:

$$S_n = egin{cases} 1 \; se \; n \; \grave{e} \; pari \ 0 \; se \; n \; \grave{e} \; dispari \end{cases}$$

Dunque tale serie per $n \to +\infty$ non è né convergente ad un limite finito l né divergente a $+\infty$ ($o-\infty$).

1.1 Serie geometrica

La seguente serie:

$$\sum_{k=0}^{n} q^k$$

con $q \in \mathbb{R}$ è detta serie geometrica, questa tipologia di serie è particolarmente ricorrente e per valutarne la convergente o meno è sufficiente dare un'occhiata al parametro q, in questo modo:

$$S_n = 1 + q + q^2 + ... + q^k$$

Avendo questo possiamo dimostrare che se $q \neq 1$ la somma della successione riportata sopra sarà $\frac{1-q^{n+1}}{1-q}$, mentre nel caso in cui q=1 allora diventa semplicemente n+1, visto che tutti i termini diventano singolarmente uguali a 1, quindi:

$$S_n = 1 + q + q^2 + ... + q^n = egin{cases} rac{1 - q^{n+1}}{1 - q} \ se \ q
eq 1 \ n + 1 \ se \ q = 1 \end{cases}$$

Adesso per capire se la serie converge, diverge oppure è indeterminata, sarà sufficiente fare il limite per $n \to +\infty$ della successione delle somme parziali, sfruttando la definizione data in precedenza, quindi:

$$\lim_{n o +\infty} = egin{cases} rac{1}{1-q} \ se \ -1 < q < 1 \ +\infty \ se \ q \geqslant 1 \ non \ esiste \ se \ q \leq -1 \end{cases}$$

Quindi dalla seguente definizione possiamo dedurre che:

$$\sum_{k=0}^{\infty} q^k = egin{cases} Convergente(con\ somma\ rac{1}{1-q})\ se\ -1 < q < 1 \ Divvergente(+\infty)\ se\ q \geqslant 1 \ Indeterminata(non\ esiste)\ se\ q \leq -1 \end{cases}$$

Da quanto appena concluso possiamo dare la seguente definizione:

DEFINIZIONE DI SERIE GEOMETRICA:

La serie geometrica è definita come:

$$S_n = \sum_{k=0}^n q^k = egin{cases} rac{1-q^{n+1}}{1-q} \ se \ q
eq 1 \ n+1 \ se \ q=1 \end{cases}$$
 $\lim_{n o +\infty} S_n = \sum_{k=0}^n q^k = egin{cases} rac{Convergente(con \ somma \ rac{1}{1-q}) \ se \ -1 < q < 1 \ Divvergente(+\infty) \ se \ q \geqslant 1 \ Indeterminata(non \ esiste) \ se \ q \leq -1 \end{cases}$

Ora che abbiamo la definizione della serie geometrica andiamo a vedere qualche esempio:

D

ESEMPI SULLA SERIE GEOMETRICA:

$$\sum_{k=0}^{\infty} \left(\frac{1}{2}\right)^k$$

Come si può notare si tratta di una serie geometrica in cui q è uguale ad $\frac{1}{2}$ di conseguenza possiamo subito dedurre che converge essendo q più piccolo di 1(convergente per -1 < q < 1) e la somma della serie sarà la seguente:

$$\frac{1}{1-q} o \frac{1}{1-\frac{1}{2}} = 2$$

Quindi la somma equivale a 2.

Ora avendo visto un caso abbastanza semplice e intuitivo andiamo a vedere un esempio con proprietà degli esponenziali:

$$\sum_{k=0}^{\infty} \left(\frac{1}{3}\right)^k$$

Da qui copiamo che è convergente e la somma sarà:

$$\frac{1}{1 - \frac{1}{3}} = \frac{3}{2}$$

Adesso proviamo a risolvere un caso con le costanti moltiplicative:

$$\sum_{k=0}^{\infty} \frac{3}{2^k}$$

A prima vista verrebbe da fare la stessa cosa fatta nel precedente esercizio ossia $\left(\frac{3}{2}\right)^k$, ma non è corretto, in questo caso bisogna avanzare in questo modo:

$$3 \cdot \sum_{k=0}^{\infty} \frac{1}{2^k}$$

Fatto questo semplice passaggio ci ritroveremo con un caso simile al precedente e basterà fare:

$$3 \cdot \sum_{k=0}^{\infty} \left(\frac{1}{2}\right)^k = 3 \cdot \frac{1}{1 - \frac{1}{2}} = 3 \cdot 2 = 6$$

In questo caso sarà di nuovo convergente e la somma sarà 6.

Dagli esempi appena visti avevamo sempre k=0, ma \cos a succede se k>0?

Prendiamo per esempio la seguente successione:

$$\sum_{k=5}^{\infty} \left(\frac{1}{2}\right)^k$$

Per poter svolgere tale esercizio basta applicare la seguente formula:

$$\sum_{k=k_0}^n q^k = q^{k_0} \cdot \sum_{h=0}^{n-5} q^h$$

Dove nel nostro caso diventerà:

$$\sum_{k=5}^{\infty} \left(\frac{1}{2}\right)^k = \left(\frac{1}{2}\right)^5 \cdot \sum_{k=0}^{\infty} \left(\frac{1}{2}\right)^k = \left(\frac{1}{2}\right)^5 \cdot \frac{1}{1 - \frac{1}{2}} = \frac{1}{32} \cdot 2 = \frac{1}{16}$$

1.2 Serie armonica

Per comprendere la serie armonica prendiamo come esempio la seguente successione:

$$a_n = rac{1}{n+1}$$

Tale successione è detta successione armonica e la sua serie finita corrisponde a:

$$S_n = \sum_{k=1}^n rac{1}{k} = 1 + rac{1}{2} + rac{1}{3} + rac{1}{4} + ... + rac{1}{n}$$

Per capire se questa seria converga o diverga bisogna chiedersi cosa accade per S_{n+1} :

$$S_{n+1} = \sum_{k=1}^{n+1} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + ... + \frac{1}{n} + \frac{1}{n+1}$$

$$\sum_{k=1}^n \frac{1}{k} + \frac{1}{n+1} \rightarrow S_n + \frac{1}{n+1}$$

Quindi:

$$S_n + \frac{1}{n+1} > S_n$$

Possiamo concludere che per $n \to +\infty$ la serie armonica sia divergente.

1.2.1 Serie armonica generalizzata

Proviamo ora ad usare la serie armonica generalizzata, dove α è un numero reale:

$$S_n = \sum_{k=1}^n rac{1}{k^lpha} = 1 + rac{1}{2^lpha} + rac{1}{3^lpha} + rac{1}{4^lpha} + ... + rac{1}{n^lpha}$$

Per capire se converge o diverge bisogna tenere a mente che:

- Converge se $\alpha > 1$;
- Diverge positivamente se $\alpha \leq 1$.

Nel nostro caso:

• Se $\alpha < 1$ abbiamo:

$$\frac{1}{k^{lpha}} > \frac{1}{k}$$

dunque segue che:

$$\sum_{k=1}^n \frac{1}{k^\alpha} > \sum_{k=1}^n \frac{1}{k} \to \sum_{k=1}^n \frac{1}{k^\alpha} > +\infty$$

Poiché la serie armonica generalizzata per $\alpha > 1$ è minore di una serie divergente, ne consegue che essa sia divergente.

• Se $\alpha > 1$ abbiamo:

$$rac{1}{k^{lpha}} < rac{1}{k}$$

di conseguenza:

$$\sum_{k=1}^{n} \frac{1}{k^{\alpha}} < \sum_{k=1}^{n} \frac{1}{k} \to \sum_{k=1}^{n} \frac{1}{k^{\alpha}} < +\infty$$

Poiché la serie armonica generalizzata per lpha>1 è minore di una serie divergente, ne consegue che essa sia convergente (poiché solo un valore definito può essere minore di $+\infty$)

Con queste dimostrazioni non siamo in grado di dedurre quale sia il valore a cui converge la serie, ma solo che essa converga. Per questo scriviamo $<+\infty$.

Detto questo proviamo dare una definizione alla serie armonica generalizzata:

DEFINIZIONE DI SERIE ARMONICA GENERALIZZATA:

La serie armonica generalizzata è definita come:

$$\lim_{n o +\infty} S_n = \sum_{k=1}^\infty rac{1}{k^lpha} = egin{cases} +\infty \ se \ lpha \le 1 \ <+\infty \ se \ lpha > 1 \end{cases}$$

Ora che abbiamo anche una definizione vediamone qualche esempio:

D

ESEMPI DI SERIE ARMONICA GENERALIZZATA:

Facciamo caso di avere la seguente serie:

$$\sum_{k=1}^{\infty} \frac{1}{k^{\pi}}$$

Possiamo subito dire che converge perché α , che in questo caso è π , è $\alpha>1$ e secondo quello detto in precedenza:

$$\sum_{k=1}^{\infty} \frac{1}{k^{\pi}} < +\infty$$

Ora vediamo un altro caso:

$$\sum_{k=1}^{\infty} \frac{1}{k^{\frac{e}{3}}}$$

In questo caso notiamo subito che diverge perché:

$$\frac{e}{3} < 1$$

quindi secondo la definizione detta prima:

$$\sum_{k=1}^{\infty} \frac{1}{k^{\frac{e}{3}}} = +\infty$$

1.3 Condizioni, teoremi e criteri di convergenza

Adesso andremo a vedere una serie di condizioni, teoremi, criteri e altre regole che ci permetteranno di capire se una serie converge o diverge senza l'uso di calcoli.

1.3.1 Condizioni per la convergenza di una serie

Prendiamo in considerazione la seguente serie convergente:

$$\sum_{k=0}^{\infty}a_k=l,l\in\mathbb{R}$$

come ben sappiamo, l'espressione si tradurrà in:

$$l = \lim_{n o \infty} S_n = \lim_{n o \infty} \sum_{k=0}^n a_k$$

Avendo stabilito che $n o\infty$ allora $S_n o l.$ Di conseguenza, lo stesso deve valere anche per s_{n+1} , quindi:

$$\lim_{n o\infty} s_{n+1} - \lim_{n o\infty} S_n = a_{n+1} \ 0-0 = a_n+1 \ a_{n+1} = 0$$

Quindi riformulando ciò che abbiamo appena fatto:

TEOREMA CONDIZIONE DI CONVERGENZA:

Se una serie è convergente per $n o \infty$, allora $a_k o 0$

$$\sum_{k=0}^{\infty} a_k < +\infty \Longrightarrow a_k o 0$$

ATTENZIONE:

La condizione ⇒(se...allora) impone che solo se la prima condizione è vera allora anche la seconda deve esserlo(non il contrario).

Se la seconda condizione è negata(ossia a_k non tende a 0), allora anche la prima è necessaria che lo sia, per esempio:

$$\sum_{k=0}^{\infty} \frac{k}{k+1}$$

Calcoliamo il limite di a_k per $k o \infty$:

$$\lim_{k o\infty}rac{k}{k+1}=\lim_{k o\infty}rac{k}{k(1+rac{1}{k})}=1$$

Avendo come risultato $a_k
eq 0$, è impossibile che la serie converga

TEOREMA NEGAZIONE DELLA CONDIZIONE DI CONVERGENZA:

Se per $n o +\infty$ esce che $a_k o 0$ (non tende a 0), allora la serie non può convergere:

$$a_k
ightarrow 0 \Longrightarrow \sum_{k=0}^\infty a_k \; non \; \grave{e} \; convergente$$

1.3.2 Serie a termine di segno costante

TEOREMA SERIE A TERMINI DI SEGNO COSTANTE:

Se $a_k \geq 0$ allora la serie converge oppure diverge positivamente:

$$S_n = \sum_{k=0}^{\infty} a_k = egin{cases} < +\infty \ +\infty \end{cases}$$

Se $a_k \leq 0$ allora la serie converge oppure diverge negativamente:

$$S_n = \sum_{k=0}^\infty a_k = egin{cases} < -\infty \ -\infty \end{cases}$$

Proviamo ora a vedere un esempio utilizzando i teoremi appena visti:

ESEMPIO DI APPLICAZIONE DEI TEOREMI VISTI FINO AD ORA:

Consideriamo la seguente serie:

$$S_n = \sum_{k=0}^{\infty} \frac{k}{k+1}$$

Proviamo a stabilire se converge o meno senza l'ausilio dei calcoli:

- 1. Sappiamo che si tratta di una serie a termini positivi perché $a_k \geq 0$, quindi può solo convergere o divergere;
- 2. Il limite a_k per $n o \infty$ sappiamo che è 1, ed essendo che $a_k o 0$ la serie non può convergere;
- 3. Facendo il resoconto, sappiamo che o diverge o converge e che $a_k \rightarrow 0$ quindi non può convergere, di conseguenza la serie è divergente.

1.2.3 Criterio del confronto

Sappiamo di avere 2 successioni, ossia a_n e b_n che rispettano definitivamente la condizione $0 \le a_n \le b_n$, allora valgono le seguenti implicazioni:

- Se la serie $\sum b_n$ converge allora converge anche la serie $\sum a_n$;
- Se la serie $\sum b_n$ diverge a $+\infty$ allora diverge a $+\infty$ anche la serie $\sum a_n$.

Come possiamo vedere questo criterio a differenza dei precedenti chiama in causa 2 serie, una è la nostra di cui vogliamo dimostrare l'eventuale divergenza o convergenza e l'altra è una seconda serie che utilizziamo come confronto.

Informalmente il criterio quindi ci dice che se riusciamo a vedere che i termini della nostra serie (a_n) sono definitivamente minori o uguali dei termini della seconda serie (b_n) e quest'ultima converge allora possiamo concludere che convergerà anche la nostra, stesso discorso per la convergenza.

ESEMPIO CRITERIO DEL CONFRONTO:

Analizziamo la seguente serie:

$$S_n = \sum_{k=1}^\infty sin(rac{1}{k^2})$$

Notiamo subito che $a_k \geq 0$, dunque la serie è convergente o divergente

Andiamo quindi a calcolarci il limite di $a_k \ per \ n o \infty$:

$$\lim_{k o\infty} sin(rac{1}{k^2}) = \lim_{k o\infty} sin(0) = 0$$

NOTA:

Teoricamente con i teoremi visti prima potremmo già dire che la serie è convergente.

Proviamo ora a confrontare la serie con altre due serie secondo la condizione imposta precedentemente($0 \le a_n \le b_n$), quindi:

$$\sum_{k=1}^{\infty} 0 \leq \sum_{k=1}^{\infty} sin\left(rac{1}{k^2}
ight) \leq \sum_{k=1}^{\infty} rac{1}{k^2}$$

Ovviamente la serie a sinistra è convergente visto che $a_k \to 0$. La serie a destra è una serie armonica generalizzata dove vediamo che α , ossia 2, è $\alpha > 1$ quindi converge:

$$convergente \leq \sum_{k=1}^{\infty} sinigg(rac{1}{k^2}igg) \leq convergente$$

La nostra serie essendo fra 2 serie convergenti convergerà anch'essa:

$$\sum_{k=1}^{\infty} sinigg(rac{1}{k^2}igg) < +\infty$$

1.2.4 Criterio del confronto asintotico

Date 2 successioni a_n e b_n a termini definitivamente postivi, se sono asintotiche ovvero se:

$$\lim_{n\to\infty}\frac{a_n}{b_n}=1$$

allora le corrispondenti serie $\sum a_n \ e \ \sum b_n$ hanno lo stesso carattere ovvero, o sono entrambi convergenti oppure sono entrambi divergenti.

Per capire meglio come funziona vediamo subito un esempio:

ESEMPIO CRITERIO DEL CONFRONTO ASINTOTICO:

Studiare il carattere della serie:

$$\sum_{k=1}^{\infty} e^{\frac{1}{k}} - 1$$

Avendo la serie a_n dobbiamo trovare una serie asintotica b_n che in questo caso sarà:

$$e^{rac{1}{k}}-1\simrac{1}{k}$$

poiché:

$$\lim_{k\to\infty}\frac{e^{\frac{1}{k}}-1}{\frac{1}{k}}=1$$

Fatto questo ci ritroveremo con una serie armonica, ossia:

$$\sum_{k=1}^{\infty} \frac{1}{k}$$

dove $\alpha \leq 1$ (in questo caso $\alpha = 1$) quindi è divergente a $+\infty$ di conseguenza lo sarà anche la serie a_n :

$$\sum_{k=1}^{\infty}e^{rac{1}{k}}-1=\ diverge\ a\ +\infty$$

1.4 Criterio del rapporto e Criterio della radice

Per capire meglio come funzionano entrambi i criteri andiamoli a vedere separatamente.

1.4.1 Criterio del rapporto

Supponiamo che le seguenti serie:

$$\sum_{k=0}^{\infty} a_k \; e \; \sum_{k=0}^{\infty} b_k$$

siano due serie convergenti e che $k\in\mathbb{R}$, allora:

1.

$$\sum_{k=0}^\infty (a_k+b_k)=\sum_{k=0}^\infty a_k+\sum_{k=0}^\infty b_k$$

2.

$$\sum_{k=0}^{\infty} k \cdot a_k = k \cdot \sum_{k=0}^{\infty} a_k$$

La seconda ci segnala che la presenza di una costante moltiplicativa(k) davanti al termine generale della serie, $\overline{}$ non modifica il carattere della serie, ossia se la serie di a_n converge allora anche b_n converge(stessa cosa per la divergenza).

Quando si lavora su termini definitivamente non negativi(cioè con $a_k \geq 0$) può solo convergere o divergere a $+\infty$, ma non può essere indeterminata!

Quindi possiamo definire il teorema del criterio del rapporto:

TEOREMA CRITERIO DEL RAPPORTO:

Sia $a_k \geq 0$ definitivamente e supponiamo che:

$$\lim_{k o\infty}rac{a_k+1}{a_k}=l$$

- Se l < 1 allora $\sum a_n$ converge;
- Se l>1 allora $\sum a_n$ diverge;
- Se l=1 non possiamo dire se la serie diverge o converge.

1.4.2 Criterio della radice

Sostanzialmente i 2 criteri sono simili e di conseguenza anche i teoremi difatti:

TEOREMA CRITERIO DELLA RADICE:

Sia $a_k \geq 0$ definitivamente e supponiamo che:

$$\lim_{k o\infty}\sqrt[k]{a_k}=l$$

- Se l < 1 allora $\sum a_n$ converge;
- Se l>1 allora $\sum a_n$ diverge;
- Se l=1 non possiamo dire se la serie diverge o converge.

Poco fa abbiamo detto che i due criteri sono simili, poiché in base al valore di l entrambe convergono o divergono.

Tuttavia. vi è chiaramente una preferenza situazionale nella scelta del criterio da applicare:

- Se la serie a_k presenta un termine di tipo k! allora conviene utilizzare il criterio del rapporto;
- Se la serie a_k presenta un termine di tipo $x^k, x \in \mathbb{R}$, allora conviene utilizzare il criterio della radice.

Per capire meglio andiamo subito a vedere due esempi sulla loro applicazione:

ESEMPI SUI DUE CRITERI:

1. Applichiamo uno dei due criteri alla seguente serie:

$$\sum_{k=0}^{\infty} \frac{k!}{k^2}$$

Essendoci k! bisognerà utilizzare il criterio del rapporto:

$$\lim_{k \to \infty} \frac{\frac{k!}{k^2} + 1}{\frac{k!}{k^2}} = \lim_{k \to \infty} \frac{\frac{(k+1)!}{(k+1)^2}}{\frac{k!}{k^2}} = \lim_{k \to \infty} \frac{k^2}{k+1} = +\infty \Rightarrow l > 1$$

Visto che $l(+\infty) > 1$ allora la serie diverge.

2. Vediamo subito un altro esempio:

$$\sum_{k=1}^{\infty} k \left(\frac{2}{3}\right)^k$$

Avendo x^k useremo il criterio della radice:

$$\lim_{k o\infty} \sqrt[k]{kigg(rac{2}{3}igg)^k} = \lim_{k o\infty} rac{2\cdot\sqrt[k]{k}}{3} = rac{2}{3} \Rightarrow l < 1$$

Avendo $l(\frac{2}{3}) < 1$ la serie converge.

1.4.3 Criterio di Leibniz

Iniziamo subito dando il teorema di Leibniz, ossia:

TEOREMA DEL CRITERIO DI LEIBNIZ:

Sia a_n una successione e supponiamo che:

- 1. $a_n \geq 0$ definitivamente;
- 2. $a_n o 0$ per $n o +\infty$;
- 3. $a_{n+1} \leq a_n$ per ogni n, ossia è una successione costante.

Allora la serie:

$$\sum_{n=0}^{\infty} (-1)^n \cdot a_n \stackrel{\text{e}}{=} convergente$$

Per poter utilizzare il criterio le 3 condizioni elencate prima devono essere verificate, se anche una delle condizioni non lo è allora non possiamo più utilizzare il criterio.

Per capire meglio andiamo subito a vedere qualche esempio:

ESEMPI CRITERIO DI LEIBNIZ:

Studiare il carattere della serie

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n!}$$

Andiamo subito a vedere se le 3 condizioni sono verificate:

- 1. Nel nostro caso a_n è uguale a $\frac{1}{n!}$ che in questo caso è ≥ 0 ;
- 2. Andiamo a vedere se $\frac{1}{n!} \to 0$ per $n \to +\infty$:

$$\lim_{n\to +\infty}\frac{1}{n!}=0$$

Quindi anche questa è verificata.

3. Andiamo ora a calcolare $a_{n+1} \leq a_n$:

$$\frac{1}{(n+1)!} \le \frac{1}{n!}$$

Possiamo dire che è verificata visto che per ogni n a_n sarà comunque maggiore uguale a a_{n+1} .

Quindi la serie è convergente visto che tutte e 3 le condizioni sono verificate.

Studiare il carattere della serie

$$\sum_{n=1}^{\infty} (-1)^n \cdot \frac{n-1}{n^2+n}$$

Andiamo subito a vedere se le 3 condizioni sono verificate:

- 1. Nel nostro caso a_n è uguale a $\frac{n-1}{n^2+n}$ che in questo caso è ≥ 0 ;
- 2. Andiamo a vedere se $\frac{n-1}{n^2+n} o 0$ per $n o +\infty$:

$$\lim_{n o +\infty} rac{n-1}{n^2+n} = 0$$

Quindi anche questa è verificata.

3. Andiamo ora a calcolare $a_{n+1} \leq a_n$:

$$rac{n}{(n+2)(n+1)} \leq rac{(n-1)}{n^2+n} \Rightarrow n \cdot n \leq (n-1)(n+2) \Rightarrow n \geq 2 \; extit{quindi converge}$$

1.6 Convergenza assoluta

Iniziamo subito dando il teorema della convergenza assoluta, ossia:

TEOREMA DELLA CONVERGENZA ASSOLUTA:

Una serie $\sum a_n$ si dice assolutamente convergente se converge la serie $\sum |a_n|$, quindi se la $\sum a_n$ converge assolutamente, allora converge.

Andiamo a vedere un esempio per capire meglio come funziona:

ESEMPIO DELLA CONVERGENZA ASSOLUTA:

Prendiamo come esempio la seguente serie:

$$\sum_{n=1}^{\infty} \frac{sin(n!)}{n^4}$$

Andiamo a vedere se la nostra serie converge per $\sum |a_n|$, usando il criterio del confronto:

$$\sum_{n=1}^{\infty} \left| \frac{\sin(n!)}{n^4} \right|$$

$$0 \leq \left| rac{sin(n!)}{n^4}
ight| \leq rac{1}{n^4} \Rightarrow \sum_{n=1}^{\infty} \left| rac{sin(n!)}{n^4}
ight| rac{converge}{n^4} \Rightarrow \sum_{n=1}^{\infty} rac{sin(n!)}{n^4} rac{converge}{n^4}$$