Question number	Scheme	Marks
9 (a)	$\frac{y6}{-26} = \frac{x3}{53} \implies y = \frac{1}{2}x - \frac{9}{2}$ oe	M1A1A1 (3) B1
(b)	Gradient of perpendicular = -2 $y6 = -2(x3) \Rightarrow -2 = -2 \times x - 12 \Rightarrow x = -5$	M1A1 cso
(c)	Equation of perpendicular to l through B $y2=-2(x-5) \Rightarrow y=-2x+8$	(3) B1
	$\sqrt{85} = \sqrt{(f2)^2 + (e5)^2}$	M1
	$85 = ((-2e+8)+2)^{2} + (e+5)^{2} \Rightarrow 0 = 5e^{2} - 30e + 40$	M1 M1A1
	$\Rightarrow (e-4)(e-2) = 0 \Rightarrow e = 2, (e=4)$ $f = -2 \times 2 + 8 \Rightarrow f = 4 \text{Coordinates of } Q \text{ are } (2,4)$ ALT	A1 (6)
	$-2 = \frac{f+2}{e-5} \Rightarrow f = 8-2e$ $\sqrt{85} = \sqrt{(f-2)^2 + (e-5)^2}$	[B1
(d)	$85 = ((-2e+8)+2)^{2} + (e+5)^{2} \Rightarrow 0 = 5e^{2} - 30e + 40$	M1
	$\Rightarrow (e-4)(e-2) = 0 \Rightarrow e = 2, (e=4)$ $f = 8 - 2 \times 2 = 4 \text{Coordinates of } Q \text{ are } (2, 4)$	M1 M1A1
	Area of $ABQP$ $AP = \sqrt{(-35)^2 + (-62)^2} = \sqrt{20}$	A1 (6)]
	$AB = \sqrt{(-3-5)^2 + (-6-2)^2} = \sqrt{80}$ $BQ = \sqrt{(2-5)^2 + (4-2)^2} = \sqrt{45}$	
	Shape is a trapezium $Area = \frac{1}{2} \left(\sqrt{80} \right) \left(\sqrt{20} + \sqrt{45} \right) = 50$	M1 (either) A1 (all)
	$\begin{vmatrix} \mathbf{ALT} \\ \frac{1}{2} \begin{pmatrix} -3 & 5 & 2 & -5 & -3 \\ -6 & -2 & 4 & -2 & -6 \end{pmatrix} =$	M1A1 (4)
	$\frac{1}{2}((6+20-4+30)-(-30-4-20+6)) = 50$	{M1A1
	2	M1A1} (4) [16]

Part	Mark	Guidance
(a)	M1	Either uses the correct formula substituting in the correct values of y and x to
		form an equation,
		OR finds the gradient of lusing $m = \frac{y_1 - y_2}{y_1 + y_2}$ and then uses either
		OR finds the gradient of <i>l</i> using $m = \frac{y_1 - y_2}{x_1 - x_2}$ and then uses either
		$y - y_1 = m(x - x_1)$ or $y = mx + c$
		If they use $y = mx + c$ they must reach a value of c for the award of this mark.
		Allow one sign error.
	A1	For the correct equation of the line un-simplified.
	A1	For $y = \frac{1}{2}x - \frac{9}{2}$ oe
(b)	B1	For the gradient of the perpendicular of -2
	M1	For a complete method to find the value of k .
		Finds the equation of the line through A and P and subs in -2 to find the value of k .
		$\{y6 = -2(x3) \Rightarrow -2 = -2 \times x - 12 \Rightarrow x = -5\}$
	A1	k = -5 Accept $x = -5$
		Note: This is a show question – Every step must be correct for the award of this mark
		this mark.
ALT	Uses th	
	B1	this mark. e gradient of AP For the gradient of the perpendicular of -2 seen explicitly or used correctly
	T	this mark. e gradient of AP For the gradient of the perpendicular of -2 seen explicitly or used correctly For a complete method to find to find the value of k using gradients.
ALT (b)	B1	this mark. e gradient of AP For the gradient of the perpendicular of -2 seen explicitly or used correctly For a complete method to find to find the value of k using gradients. $-2 = \frac{-26}{k3} \Rightarrow -2k - 6 = 4 \Rightarrow k = (-5)$
	B1	this mark. e gradient of AP For the gradient of the perpendicular of -2 seen explicitly or used correctly For a complete method to find to find the value of k using gradients. $-2 = \frac{-26}{k3} \Rightarrow -2k - 6 = 4 \Rightarrow k = (-5)$ $k = -5$
	B1 M1	this mark. e gradient of AP For the gradient of the perpendicular of -2 seen explicitly or used correctly For a complete method to find to find the value of k using gradients. $-2 = \frac{-26}{k3} \Rightarrow -2k - 6 = 4 \Rightarrow k = (-5)$ $k = -5$ Note: This is a show question – Every step must be correct for the award of
(b)	B1 M1	this mark. e gradient of <i>AP</i> For the gradient of the perpendicular of -2 seen explicitly or used correctly For a complete method to find to find the value of k using gradients. $-2 = \frac{-26}{k3} \Rightarrow -2k - 6 = 4 \Rightarrow k = (-5)$ $k = -5$ Note: This is a show question – Every step must be correct for the award of this mark.
(b)	B1 M1	this mark. e gradient of AP For the gradient of the perpendicular of -2 seen explicitly or used correctly For a complete method to find to find the value of k using gradients. $-2 = \frac{-26}{k3} \Rightarrow -2k - 6 = 4 \Rightarrow k = (-5)$ $k = -5$ Note: This is a show question – Every step must be correct for the award of this mark. Either writes down the equation of the line BQ using the coordinates of B
(b)	B1 M1	this mark. For the gradient of the perpendicular of -2 seen explicitly or used correctly For a complete method to find to find the value of k using gradients. $-2 = \frac{-26}{k3} \Rightarrow -2k - 6 = 4 \Rightarrow k = (-5)$ $k = -5$ Note: This is a show question – Every step must be correct for the award of this mark. Either writes down the equation of the line BQ using the coordinates of B $y2 = -2(x - 5) \Rightarrow y = -2x + 8 \Rightarrow (f = -2e + 8)$
(b)	B1 M1	For the gradient of the perpendicular of -2 seen explicitly or used correctly For a complete method to find to find the value of k using gradients. $-2 = \frac{-26}{k3} \Rightarrow -2k - 6 = 4 \Rightarrow k = (-5)$ $k = -5$ Note: This is a show question – Every step must be correct for the award of this mark. Either writes down the equation of the line BQ using the coordinates of B $y2 = -2(x - 5) \Rightarrow y = -2x + 8 \Rightarrow (f = -2e + 8)$ Or writes down an expression for the gradient of BQ using the coordinates of A
(b)	B1 M1	For the gradient of the perpendicular of -2 seen explicitly or used correctly For a complete method to find to find the value of k using gradients. $-2 = \frac{-26}{k3} \Rightarrow -2k - 6 = 4 \Rightarrow k = (-5)$ $k = -5$ Note: This is a show question – Every step must be correct for the award of this mark. Either writes down the equation of the line BQ using the coordinates of B $y2 = -2(x - 5) \Rightarrow y = -2x + 8 \Rightarrow (f = -2e + 8)$ Or writes down an expression for the gradient of BQ using the coordinates of A
(b)	B1 M1	For the gradient of the perpendicular of -2 seen explicitly or used correctly For a complete method to find to find the value of k using gradients. $-2 = \frac{-26}{k3} \Rightarrow -2k - 6 = 4 \Rightarrow k = (-5)$ $k = -5$ Note: This is a show question – Every step must be correct for the award of this mark. Either writes down the equation of the line BQ using the coordinates of B $y2 = -2(x - 5) \Rightarrow y = -2x + 8 \Rightarrow (f = -2e + 8)$ Or writes down an expression for the gradient of BQ using the coordinates of A $-2 = \frac{f + 2}{e - 5} \Rightarrow f = 8 - 2e$
(b)	B1 M1	For the gradient of the perpendicular of -2 seen explicitly or used correctly For a complete method to find to find the value of k using gradients. $-2 = \frac{-26}{k3} \Rightarrow -2k - 6 = 4 \Rightarrow k = (-5)$ $k = -5$ Note: This is a show question – Every step must be correct for the award of this mark. Either writes down the equation of the line BQ using the coordinates of B $y2 = -2(x - 5) \Rightarrow y = -2x + 8 \Rightarrow (f = -2e + 8)$ Or writes down an expression for the gradient of BQ using the coordinates of A $-2 = \frac{f + 2}{e - 5} \Rightarrow f = 8 - 2e$ Uses Pythagoras theorem with the coordinates of P and Q to form
	B1 M1	For the gradient of the perpendicular of -2 seen explicitly or used correctly For a complete method to find to find the value of k using gradients. $-2 = \frac{-26}{k3} \Rightarrow -2k - 6 = 4 \Rightarrow k = (-5)$ $k = -5$ Note: This is a show question – Every step must be correct for the award of this mark. Either writes down the equation of the line BQ using the coordinates of B $y2 = -2(x - 5) \Rightarrow y = -2x + 8 \Rightarrow (f = -2e + 8)$ Or writes down an expression for the gradient of BQ using the coordinates of AB $-2 = \frac{f + 2}{e - 5} \Rightarrow f = 8 - 2e$ Uses Pythagoras theorem with the coordinates of P and Q to form $\sqrt{85} = \sqrt{(f2)^2 + (e5)^2} \text{or} 85 = (f2)^2 + (e5)^2$
(b)	B1 M1	For the gradient of the perpendicular of -2 seen explicitly or used correctly For a complete method to find to find the value of k using gradients. $-2 = \frac{-2 - 6}{k - 3} \Rightarrow -2k - 6 = 4 \Rightarrow k = (-5)$ $k = -5$ Note: This is a show question – Every step must be correct for the award of this mark. Either writes down the equation of the line BQ using the coordinates of B $y - 2 = -2(x - 5) \Rightarrow y = -2x + 8 \Rightarrow (f = -2e + 8)$ Or writes down an expression for the gradient of BQ using the coordinates of A $-2 = \frac{f + 2}{e - 5} \Rightarrow f = 8 - 2e$ Uses Pythagoras theorem with the coordinates of P and Q to form $\sqrt{85} = \sqrt{(f - 2)^2 + (e - 5)^2} \text{or} 85 = (f - 2)^2 + (e - 5)^2$ Substitutes an expression for f to form a 3TQ in e
(b)	B1 M1 A1 B1	For the gradient of the perpendicular of -2 seen explicitly or used correctly For a complete method to find to find the value of k using gradients. $-2 = \frac{-26}{k3} \Rightarrow -2k - 6 = 4 \Rightarrow k = (-5)$ $k = -5$ Note: This is a show question – Every step must be correct for the award of this mark. Either writes down the equation of the line BQ using the coordinates of B $y2 = -2(x - 5) \Rightarrow y = -2x + 8 \Rightarrow (f = -2e + 8)$ Or writes down an expression for the gradient of BQ using the coordinates of AB $-2 = \frac{f + 2}{e - 5} \Rightarrow f = 8 - 2e$ Uses Pythagoras theorem with the coordinates of P and Q to form $\sqrt{85} = \sqrt{(f2)^2 + (e5)^2} \text{or} 85 = (f2)^2 + (e5)^2$
(b)	B1 M1 A1 B1	For the gradient of the perpendicular of -2 seen explicitly or used correctly For a complete method to find to find the value of k using gradients. $-2 = \frac{-26}{k3} \Rightarrow -2k - 6 = 4 \Rightarrow k = (-5)$ $k = -5$ Note: This is a show question – Every step must be correct for the award of this mark. Either writes down the equation of the line BQ using the coordinates of B $y2 = -2(x - 5) \Rightarrow y = -2x + 8 \Rightarrow (f = -2e + 8)$ Or writes down an expression for the gradient of BQ using the coordinates of A $-2 = \frac{f + 2}{e - 5} \Rightarrow f = 8 - 2e$ Uses Pythagoras theorem with the coordinates of A and A to form $\sqrt{85} = \sqrt{(f - 2)^2 + (e - 5)^2} \text{or} 85 = (f - 2)^2 + (e - 5)^2$ Substitutes an expression for A to form a 3TQ in A and A in A in A and A in A
(b)	B1 M1 A1 B1 M1	For the gradient of the perpendicular of -2 seen explicitly or used correctly For a complete method to find to find the value of k using gradients. $-2 = \frac{-2 - 6}{k - 3} \Rightarrow -2k - 6 = 4 \Rightarrow k = (-5)$ $k = -5$ Note: This is a show question – Every step must be correct for the award of this mark. Either writes down the equation of the line BQ using the coordinates of B $y - 2 = -2(x - 5) \Rightarrow y = -2x + 8 \Rightarrow (f = -2e + 8)$ Or writes down an expression for the gradient of BQ using the coordinates of A $-2 = \frac{f + 2}{e - 5} \Rightarrow f = 8 - 2e$ Uses Pythagoras theorem with the coordinates of P and Q to form $\sqrt{85} = \sqrt{(f - 2)^2 + (e - 5)^2} \text{or} 85 = (f - 2)^2 + (e - 5)^2$ Substitutes an expression for f to form a 3TQ in e

(c)	B1	Either writes down the equation of the line BQ using the coordinates of B			
(-)		$y2 = -2(x - 5) \Rightarrow y = -2x + 8 \Rightarrow (f = -2e + 8)$			
		Or writes down an expression for the gradient of BQ using the coordinates of B			
		$-2 = \frac{f+2}{e-5} \Rightarrow f = 8-2e$			
	M1	Uses Pythagoras theorem with the coordinates of P and Q to form			
		$\sqrt{85} = \sqrt{(f2)^2 + (e5)^2}$			
	M1	Substitutes an expression for e to form an equation in f			
		$85 = (f+2)^2 + \left(9 - \frac{f}{2}\right)^2 \Rightarrow 0 = 5f^2 - 20f$ oe			
	M1	Solves their 2TQ equation			
	A1	f=4			
	A1	e = 2 (f > 0)			
Any attempt using ratios – please send to review.					
(d)	M1	Uses Pythagoras theorem to find the lengths of AB or AP or BQ			
		$AB = \sqrt{(-3-5)^2 + (-6-2)^2} = (\sqrt{80}), AP = \sqrt{('5'-3)^2 + (-2-6)^2} = (\sqrt{20})$			
		$BQ = \sqrt{(5-2)^2 + (-2-4)^2} = (\sqrt{45})$			
	A1	$AB = \sqrt{80}$, $AP = \sqrt{20}$ and $BQ = \sqrt{45}$ (ALL THREE)			
	M1	Shape is a trapezium so uses correct formula, or breaks down into a triangle and			
		rectangle to find an area			
		$A = \frac{1}{2} \left(\sqrt{80'} \right) \left(\sqrt{20'} + \sqrt{45'} \right) = (50)$			
		or			
		Area of rectangle = $\sqrt{20'} \times \sqrt{80'} = 40'$			
		Area of triangle = $\frac{1}{2} \left(\sqrt{45'} - \sqrt{20'} \right) \times \sqrt{80'} = 10'$			
		Total area = (50)			
	A1	A = 50			
ALT	ALT 1				
(d)	M1	Uses correct formula for the area of the quadrilateral using determinants using their values of (e, f)			
		There must be 5 sets of coordinates in either clockwise or anticlockwise order			
		starting and finishing at the same coordinate			
	A1	For the correct formula with the correct coordinates.			
	M1	For processing the calculation correctly.			
	A1	A = 50 If they leave the final answer as $A = -50$ withhold this mark			
ALT	<u> </u>	If they leave the final answer as $A = -50$ withhold this mark			
(d)	M1	6×10 4×10			
(4)	1411	For the area of either APB or PBQ _APB = $\frac{6 \times 10}{2} = 30$ $PBQ = \frac{4 \times 10}{2} = 20$			
	A1	For both correct areas of triangles APB and PBQ			
	M1	For adding together their areas of triangles APB and PBQ			
	A1	50			

