Giacomo Borin

April 15, 2021

Abstract

Stuff Stuff Stuff

Contents

	1 Introduction to the working set 1.1 The circluar units and the class number	
2	2 The Greither Setup 2.1 A little remark	5
3	3 Index calculation 3.1 Particular case of formula 5	
	3.2 A new system of units	 10
	3.3 A factorization for i_{β}	 10

1 Introduction to the working set

Consider the n-th cyclotomic field $\mathbb{Q}(\zeta_n)$ with ζ_n a n-th primitive root of unity, with $n \not\equiv 2 \mod 4$, and define K as the maximal real subfield of $\mathbb{Q}(\zeta)$, also another notation that we will use for the maximal real subfield is $\mathbb{Q}(\zeta_n)^+$. From now we will refer to ζ_n without the index if not necessary.

Proposition 1.1. The maximal real subfield is $K = \mathbb{Q}(\zeta + \zeta^{-1})$

Proof. First of all we can easly see that K is real, infact since for the root of unity $\overline{\zeta} = \zeta^{-1}$ (complex conjugation) and so:

$$\overline{\zeta + \zeta^{-1}} = \overline{\zeta} + \overline{\zeta^{-1}} = \zeta^{-1} + \zeta$$

So $\zeta + \zeta^{-1}$ is real and K too.

Since $\mathbb{Q}(\zeta)$ is complex (so strictly greater) the index $e:=[\mathbb{Q}(\zeta):K]\geq 2$. Consider now the polynomial of degree 2 in $K[x]:f=(x-\zeta)(x-\zeta^{-1})=x^2-(\zeta+\zeta^{-1})x+1$, since ζ is a root obviously $e\leq 2$, so the subfield K has maximal degree since this is the minimal degree for a proper subfield.

If there was another $K' = \mathbb{Q}(\chi)$ with such property we can consider $H = \mathbb{Q}(\zeta, \chi)$ that is also real with $\mathbb{Q}(\zeta) \supseteq H \supset K$, so H = K and akin H = K' so K = K' and K is unique.

Now we will consider the **group** of units E_K that is the group formed by the invertible elements of its ring of integers O_K^* . Is it possible to characterize the ring of integers for K [6, Proposition 2.16] similarly to what happens for $O_{\mathbb{Q}(\zeta)}$ (infact the proof follows without difficulty from this)

Proposition 1.2.
$$O_K = Z[\zeta + \zeta^{-1}]$$

Since $x^n - 1$ is separable $\mathbb{Q}(\xi)/\mathbb{Q}$

is a Galois extension and it's easy to see that its Galois group G_0 is isomorphic to $(\mathbb{Z}_n)^*$. Also we can se that:

Proposition 1.3. K/\mathbb{Q} is a Galois extension and its Galois group G is isomorphic to $\mathbb{Z}_n^*/\{\pm 1\}$

Proof. Consider the map $\sigma: G_0 \to G$ that maps α_i to $\alpha_{i|_G}$ where α_i is the automorphism that maps ζ to ζ^i . Obviously σ is a morphism of groups. Also it is easy to describe its kernerl:

$$\ker(\sigma) = \{ \alpha_i \in G_0 \mid \forall x \in K \text{ follows } x = \alpha_i(x) \}$$

$$\stackrel{(1)}{=} \{ \alpha_i \in G_0 \mid \zeta + \zeta^{-1} = \alpha_i(\zeta + \zeta^{-1}) = \zeta^i + \zeta^{-i} \}$$

$$\stackrel{(2)}{=} \{ \alpha_1, \alpha_{-1} \}$$

Where (1) follows from the fact that $K = \mathbb{Q}(\zeta + \zeta^{-1})$ and (2) from linear algebra. So from the first theorem of isomorphism $\sigma(G_0) \simeq \mathbb{Z}_n^*/\{\pm 1\}$ and then

$$\phi(n)/2 = |\mathbb{Z}_n^*/\{\pm 1\}| \le |G| \le [K:\mathbb{Q}] = [\mathbb{Q}(\zeta):\mathbb{Q}]/2 = \phi(n)/2$$

So $\sigma(G_0) = G$ and $|G| = [K : \mathbb{Q}]$ and the thesis follows.

Remark 1. We excluded the case of $n \equiv 2 \mod 4$ because it is a repetition, infact in this situation $G_0 \simeq \mathbb{Z}_{2+4k}^*$ and since 2+4k=2(1+2k) with the second term odd for the Chinese reminder theorem $\mathbb{Z}_{2+4k}^* \simeq \mathbb{Z}_2^* \times \mathbb{Z}_{1+2k}^* \simeq \{1\} \times \mathbb{Z}_{1+2k}^* \simeq \mathbb{Z}_{1+2k}^*$ that is isomorphic to the Galois group for the n/2-th root of unity.

1.1 The circluar units and the class number

Definition 1.4. If \mathbb{K} is a number field (as $\mathbb{Q}(\zeta)$ and K) we can define the **ideal class group** as the quotient $\mathcal{F}_{\mathbb{K}}/\mathcal{P}_{\mathbb{K}}$ where:

 $\mathcal{F}_{\mathbb{K}}$ is the group of the nonzero fractional ideals of the ring of integers $O_{\mathbb{K}}$, that are the $O_{\mathbb{K}}$ -submodules J of K such that exists $r \in O_{\mathbb{K}}$ such that $rI \subset O_{\mathbb{K}}$

 $\mathcal{P}_{\mathbb{K}}$ is the set of nonzero principal fractionary ideals, so the ideals generated by only one element

We will indicate the number of classes in $\mathcal{F}_{\mathbb{K}}/\mathcal{P}_{\mathbb{K}}$ as h_K . This number will measure the "distance" of $O_{\mathbb{K}}$ to became a unique factorization domain. In [4, Page 141] it is proven that actually the ideal class group is finite so h_K is well defined.

Definition 1.5. For a field $\mathbb{K} \subseteq \mathbb{Q}(\zeta_n)$ (with n minimal) we define the group of cyclotomic (or circular) units as the intesection $C_{\mathbb{K}}$ of the group generated by:

$$\{-1, \zeta, 1 - \zeta^a \text{ for } a = 1, ..., n - 1\}$$

and the unit of \mathbb{K} ($E_{\mathbb{K}}$). An elements of $C_{\mathbb{K}}$ is said to be a **circular unit** of \mathbb{K} .

In general the circular units aren't easy to describe, in fact in general $1-\zeta^a$ is not a unit, but for the particular case in which $\mathbb K$ is the maximal real subfield (K) it has some intresting properties and it's related to the class number.

If $n = p^m$ where p is a prime it is possible to describe ([6, Lemma 8.1, Theorem 8.2]) explicitly the group of circluar units as the group generated by -1 and:

$$\xi_a = \zeta^{\frac{1-a}{2}} \frac{1-\zeta^a}{1-\zeta}$$
 for $1 < a < \frac{p^m}{2}, (a, p) = 1$

Also we have the equality for the index:

$$[E_K:C_K]=h_K$$

Moreover Sinnot in [5] has imporved this showing that E_K/C_K is finite and the index is:

$$[E_K:C_K]=2^a h_K$$

where if g is the number of distinct primes dividing n we have that a = 0 if g = 1 (as expected) and $a = 2^{g-2} + 1 - g$ otherwhise. Even if the index is simple does not exist a simple costruction of C_K , so we have the problem:

Explicitly construct a group C' with finite index $[E_K : C']$ that is optimal

Where we will understand later what we mean by *optimal*, but essentially we want the index to be small and with a simple factorization for $[E_K : C']/h_K$. In particular the costruction of Greither will generalize the work of Ramachandra and Levesque, so we will omit them from now and see them later.

1.2 Dirichlet Characters

Definition 1.6. Given a group X and a field \mathbb{F} a Dirichlet character is a group homomorphism $\chi: X \to \mathbb{F}^*$

In our case the field is $\mathbb C$ and X is the Galois group $G_0 \simeq \mathbb Z_n^*$, so we can see the dirichlet characters as homomorphisms: $\xi: \mathbb Z_n^* \to \mathbb C^*$. Since if n|m there is a natural homomorphism $\mathbb Z_m^* \to \mathbb Z_n^*$ we can induct a new character using the composition from $\mathbb Z_m^*$. This characters are completely equivalent, so we can choose n to be minimal and call it the **conductor** of χ , denoted by f_{χ} .

In some cases the character are also extended as ring homomorphisms from $\mathbb{Z}_n \to \mathbb{C}$, assuming χ to be zero on the non invertible elements. In this way the conductor can be seen as a sort of period, infact for all n we have $\chi(n) = \chi(n+f_{\chi})$.

Also we need another object: the group ring $\mathbb{Z}[G]$, that is a free \mathbb{Z} -module with G as basis on which we define the addition (using the module addition) and the moltiplication inducting it from the operation of G. This costruction is also possible for a general ring and a multiplicative group:

Definition 1.7. The group ring of X over R, denoted by R[X] or RX, is the set of all mapping $f: X \to R$ with finite support (i.e. with finite $x \in X$ such that $f(x) \neq 0$). The addition and the scalar multiplication are defined as usual.

We can also have a group structure over R[X] using the vector addition and the multiplication: were fg is defined as: $fg(x) = \sum_{y \in X} f(y)g(y^{-1}x) = \sum_{uv=x} f(u)g(v)$.

This is only a formal representation of the linear combinations, useful for the definition, but we will obviously use a simpler notation $f = \sum_{x \in X} f(x)x$.

Now we would like to generalize again the characters as ring homorphism from $\mathbb{Z}[G]$ (or another Galois group) to \mathbb{C} . This is very simple since G is a basis for the free \mathbb{Z} -module its definition over the group is enough.

Notation. Given the elements $z \in \mathbb{Q}(\zeta)$ and $f \in \mathbb{Z}[G_0]$ it's well defined the power notation x^f , infact for $g \in G_0$ we have the well definiton for $z^g = g(z)$, $z^{g_1+g_2} = z^{g_1}z^{g_2}$ and $z^{-g} = (z^g)^{-1}$.

2 The Greither Setup

Let's consider an integer n (with $n \not\equiv 2 \mod 4$), with factorization $n = p_1^{e_1} \cdots p_s^{e_s}$ and let $S = \{1, ..., n\}$. We will use the power set $\mathcal{P}_S = \{I \mid I \subsetneq S\}$ and the notation $n_I = \prod_{i \in I} p_i^{e_i}$

The Greither's idea is to define a subgroup starting from a function $\beta: \mathcal{P}_S \to \mathbb{Z}[G_0]$, then varing β we have different subgroups but with similar properties.

Definition 2.1. A function β is called multiplicative if $\beta(\emptyset) = 1$ and for all sets I, J with empty intersection we have $\beta(I \cup J) = \beta(I)\beta(J)$.

A multiplicative function is univocally determinated from its value over the singletons: $\{\{i\} \mid , i \in S\}$ (we will use this later for a particular construction)

Consider a general function β and $I \in \mathcal{P}_S$, we define $z_I := 1 - \zeta^{n_I}$ and

$$z(\beta) := \prod_{i \in I} z_I^{\beta(I)}$$

Using that $1-\zeta^{-m}=-\zeta^{-m}(1-\zeta^m)$, $\overline{\zeta}=\zeta^{-1}$ and the properties of complex conjugation we have that

$$\overline{z(\beta)} = \prod_{I \in \mathcal{P}_S} (1 - \zeta^{-n_I})^{\beta(I)} = \prod_{I \in \mathcal{P}_S} -\zeta^{-n_I\beta(I)} (1 - \zeta^{n_I})^{\beta(I)} =
= (-1)^{|\mathcal{P}_S|} \prod_{I \in \mathcal{P}_S} \zeta^{-n_I\beta(I)} z_I^{\beta(I)} \stackrel{*}{=} -\zeta^{-t} z(\beta) \text{ with } t = \sum n_I \beta(I) \quad (1)^{\beta(I)} = (-1)^{|\mathcal{P}_S|} \sum_{I \in \mathcal{P}_S} \zeta^{-n_I\beta(I)} z_I^{\beta(I)} \stackrel{*}{=} -\zeta^{-t} z(\beta) = (-1)^{|\mathcal{P}_S|} \sum_{I \in \mathcal{P}_S} \zeta^{-n_I\beta(I)} z_I^{\beta(I)} \stackrel{*}{=} -\zeta^{-t} z(\beta) = (-1)^{|\mathcal{P}_S|} \sum_{I \in \mathcal{P}_S} \zeta^{-n_I\beta(I)} z_I^{\beta(I)} \stackrel{*}{=} -\zeta^{-t} z(\beta) = (-1)^{|\mathcal{P}_S|} \sum_{I \in \mathcal{P}_S} \zeta^{-n_I\beta(I)} z_I^{\beta(I)} \stackrel{*}{=} -\zeta^{-t} z(\beta) = (-1)^{|\mathcal{P}_S|} \sum_{I \in \mathcal{P}_S} \zeta^{-n_I\beta(I)} z_I^{\beta(I)} \stackrel{*}{=} -\zeta^{-t} z(\beta) = (-1)^{|\mathcal{P}_S|} \sum_{I \in \mathcal{P}_S} \zeta^{-n_I\beta(I)} z_I^{\beta(I)} \stackrel{*}{=} -\zeta^{-t} z(\beta) = (-1)^{|\mathcal{P}_S|} \sum_{I \in \mathcal{P}_S} \zeta^{-n_I\beta(I)} z_I^{\beta(I)} \stackrel{*}{=} -\zeta^{-t} z(\beta) = (-1)^{|\mathcal{P}_S|} \sum_{I \in \mathcal{P}_S} \zeta^{-n_I\beta(I)} z_I^{\beta(I)} \stackrel{*}{=} -\zeta^{-t} z(\beta) = (-1)^{|\mathcal{P}_S|} \sum_{I \in \mathcal{P}_S} \zeta^{-n_I\beta(I)} z_I^{\beta(I)} \stackrel{*}{=} -\zeta^{-t} z(\beta) = (-1)^{|\mathcal{P}_S|} \sum_{I \in \mathcal{P}_S} \zeta^{-n_I\beta(I)} z_I^{\beta(I)} \stackrel{*}{=} -\zeta^{-t} z(\beta) = (-1)^{|\mathcal{P}_S|} \sum_{I \in \mathcal{P}_S} \zeta^{-n_I\beta(I)} z_I^{\beta(I)} \stackrel{*}{=} -\zeta^{-t} z(\beta) = (-1)^{|\mathcal{P}_S|} \sum_{I \in \mathcal{P}_S} \zeta^{-n_I\beta(I)} z_I^{\beta(I)} \stackrel{*}{=} -\zeta^{-t} z(\beta) = (-1)^{|\mathcal{P}_S|} \sum_{I \in \mathcal{P}_S} \zeta^{-n_I\beta(I)} z_I^{\beta(I)} \stackrel{*}{=} -\zeta^{-t} z(\beta) = (-1)^{|\mathcal{P}_S|} \sum_{I \in \mathcal{P}_S} \zeta^{-n_I\beta(I)} z_I^{\beta(I)} \stackrel{*}{=} -\zeta^{-t} z(\beta) = (-1)^{|\mathcal{P}_S|} \sum_{I \in \mathcal{P}_S} \zeta^{-n_I\beta(I)} z_I^{\beta(I)} \stackrel{*}{=} -\zeta^{-t} z(\beta) = (-1)^{|\mathcal{P}_S|} \sum_{I \in \mathcal{P}_S} \zeta^{-n_I\beta(I)} z_I^{\beta(I)} \stackrel{*}{=} -\zeta^{-t} z(\beta) = (-1)^{|\mathcal{P}_S|} z_I^{\beta(I)} \stackrel{*}{=} -\zeta^{-n_I\beta(I)} z_I^{\beta(I)} \stackrel{*}{=} -\zeta^{-n_I\beta(I$$

In * we use that $|\mathcal{P}_S| = 2^s - 1$ is odd.

We define now for $a \in (1, n/2)$ coprime with n the real unit:

$$\xi_a(\beta) := \zeta^{d_a(\beta)} \frac{\sigma_a(z(\beta))}{z(\beta)} \text{ with } d_a(\beta) = (1-a)\frac{t}{2}$$
 (2)

Where $\underline{\sigma_a}$ is the automorphism $\zeta \mapsto \zeta^a$. This is real because using the equation 1 and $\overline{\sigma_a(z)} = \sigma_a(\overline{z})$ we have:

$$\overline{\xi_a(\beta)} = \zeta^{-d_a(\beta)} \frac{\zeta^{-at} \sigma_a(z(\beta))}{\zeta^{-t} z(\beta)} = \xi_a(\beta)$$
(3)

And its a unit because its the product of circular units. We now use this units to define the goal group of the article:

 C_{β} is the group generated by -1 and $\xi_a(\beta)$ for 1 < a < n/2 and (a, n) = 1

For its index we will use the notation: $[E_K : C_{\beta}] = h_K i_{\beta}$.

2.1 A little remark

Sometimes it is easier to work with functions β to $\mathbb{Z}[G]$ instead of $\mathbb{Z}[G_0]$ (as we will do later), but this is not a problem because we can show that with somo hypotesis C_{β} remain the same.

Initially we can osserve that we can factor the real unit $\xi_a(\beta)$ with simpler real units

$$x_a(\beta, I) = \zeta^{\frac{(1-a)}{2}n_I\beta(I)} \frac{\sigma_a(z_I^{\beta(I)})}{z_I^{\beta(I)}}$$

such that we have the equality:

$$\xi_a(\beta) = \prod_{I \in \mathcal{P}_S} x_a(\beta, I) \tag{4}$$

Lemma 2.2. Consider two functions β_1 and β_2 from \mathcal{P}_S to $\mathbb{Z}[G_0]$ such that for all $I \in \mathcal{P}_S$ their images of $\beta_i(I)$ coincides in $\mathbb{Z}[\operatorname{Gal}(\mathbb{Q}(\zeta_{n/n_I})^+/\mathbb{Q})]^{-1}$ for i = 1, 2. Then for all $I \in \mathcal{P}_S$ $x_a(\beta_i, I)$ coincides for i = 1, 2

Proof. Obviously for all $I \in \mathcal{P}_S$ $x_a(\beta_i, I)$ depends only on the image of β_i over $z_I = 1 - \zeta_n^{n_I} \in \mathbb{Q}(\zeta_{n/n_I})^2$, so it's enough to show the equivalence over $\mathbb{Q}(\zeta_{n/n_I})$. Since the two functions are equal on $\mathbb{Q}(\zeta_{n/n_I})^+$ their difference $\beta_1(I) - \beta_2(I)$ is the identity on the reals, so it is a multimple of 1 - j, where j is the complex conjugation We can observe now, using morphism properties, that exist a unit r such that:

$$\mathbb{Q}(\zeta_{n/n_I})^+ \ni q = \frac{x_a(\beta_1, I)}{x_a(\beta_2, I)} = \left(\zeta^{\frac{(1-a)}{2}n_I} \frac{\sigma_a(z_I)}{z_I}\right)^{\beta_1(I) - \beta_2(I)} = r^{1-j}$$

So we have that $\overline{q}=q^j=r^{(1-j)j}=r^{j-1}=q^{-1}$ (since $j^2=1$), that for real numebers happen only for ± 1

Remark 2. For what we have seen in the equation 4 it follows immediatly that also $\xi_a(\beta)$ is unique up to a sign if β is a lifting of a function from \mathcal{P}_S to $\mathbb{Z}[G]$. Since the group C_β contains -1 it is enough to have a function $\beta: \mathcal{P}_S \to \mathbb{Z}[G]$ for its definition.

The substitution of the group rings as homomorphism of fields make sense to compare two elements for their image on $\mathbb{Q}(\zeta_{n/n_I})^+$

 $^{^{2}\}zeta_{n/n_{I}}=\zeta_{n}^{n_{I}}$

3 Index calculation

Theorem 3.1. For any function $\beta: \mathcal{P}_S \to \mathbb{Z}[G]$ we have

$$i_{\beta} = \prod_{\substack{\chi \neq 1 \\ even}} \left(\sum_{\substack{I \in \mathcal{P}_S \\ (f_{\chi}, n_I) = 1}} \phi(n_I) \cdot \chi(\beta(I)) \cdot \prod_{i \notin I} (1 - \chi^{-1}(p_i)) \right)$$
 (5)

Remarks 3 (On theorem 3.1). • ϕ is the Euler totient function

- A character χ is said to be **even** if $\chi(-1) = 1$
- With χ^{-1} we mean the character defined as $1/\chi$ on the invertible elements and zero otherwhise, that is also a morphism because 1/(xy) = (1/x)(1/y).

For the proof we need the following Lemmas:

Lemma 3.2. For $z \in \mathbb{Q}(\zeta)^*$ and $\gamma \in \mathbb{Z}[G_0]$, then for any character χ we have:

$$\sum_{(a,n)=1} \chi^{-1}(a) \log |z^{\sigma_a \gamma}| = \chi(\gamma) \sum_{(a,n)=1} \chi^{-1}(a) \log |z^{\sigma_a}|$$
 (6)

Proof. It is easy to prove this for $\gamma = \sigma_g \in G_0$, infact since g is invertible in \mathbb{Z}_n is possible to change the index from (a, n) = 1 to (ag, n) = 1 and rearrange. Then we can pass to $\mathbb{Z}[G_0]$ using the additivity of χ and the logaritm of exponential (also the modulo is multiplicative).

For the calculation of the index we need a new object that allows to evaluate a :

Definition 3.3. The **regulator** R_L of a number fields L is defined as follows: given its rank r, a set of independent units $\{\epsilon_1, ..., \epsilon_r\} \subset L$ and $\{\sigma_1, ..., \sigma_{r+1}\}$ its embedding into \mathbb{R} or \mathbb{C} . Set δ_j to be 1 if σ_j is real, and 2 otherwhise. Then:

$$R_L(\epsilon_1, ..., \epsilon_r) = |\det(\delta_i \log |\epsilon_i^{\sigma_i}|)_{1 < i, j < r}|$$
(7)

Remark 4. The embedding that we decide to omit is not relevant, in fact since they are units their norm is 1, so $\sum_i \delta_i \log |\epsilon_j^{\sigma_i}| = \log |\prod_i \epsilon_j^{\delta_i \sigma_i}| = \log |N(\epsilon_j)| = 0$, so writing this equality as a linear system from Cramer formula follows the uniqueness of the determinant up to a sign.

Now we need to recall some Lemmas from [6] without the proofs:

Lemma 3.4 (Lemma 4.15 in [6]). Given the groups $A \subset B$ of finite index, generated by independent units of a number field L, respectively $\{\epsilon_i\}_{i=1}^r$ and $\{\mu_i\}_{i=1}^r$:

$$[B:A] = \frac{R_L(\epsilon_1, ..., \epsilon_r)}{R_L(\mu_1, ..., \mu_r)}$$
(8)

Lemma 3.5 (Lemma 5.26 in [6]). Let X be a finite abelian group and let f be a function on X with values in \mathbb{C}

$$\det(f(\sigma\tau^{-1}) - f(\sigma))_{\sigma,\tau \neq 1} = \prod_{\substack{\chi \in \hat{X} \\ \chi \neq 1}} \sum_{\sigma \in X} \chi(\sigma) f(\sigma)$$
(9)

Where \hat{X} is the set of homorphisms (characters) from X to \mathbb{C}^*

In our case X will be $G \equiv \mathbb{Z}_n/\pm 1$, and so the elements of \hat{X} are the even characters of \mathbb{Z}_n .

Proof of Theorem 3.1. Using Lemma 3.4 we can evaluate $[E_K : C_{\beta}]$ with the quotient of the regulators. In the equation 8 we can omit the unit -1 since it is contained in both the two groups (for what we have said in 4 can only change a sign).

So we need to prove that $R(\xi_a(\beta)) = \pm R_K h_K A$ with (a, n) = 1, 1 < a < n/2 and A be the right part of the equation 5. The \pm is a more simple way to indicate that we don't matter the sign without inserting everything in a modulo.

From definition, using that δ_i is always 1 since the units are all real and the embeddings can be seen as elements of the Galois Group G:

$$R(\xi_{a}(\beta)) = \pm \det[\log |\xi_{a}(\beta)^{\tau}|] \quad ((a, n) = 1, 1 < a < n/2; \tau \in G)$$

$$\stackrel{(1)}{=} \pm \det[f(\tau\sigma) - f(\tau)]_{\sigma, \tau \in G-1} \quad \text{with } f(\sigma) = \log |\sigma z(\beta)|$$

$$= \prod_{\substack{\chi \neq 1 \\ \text{even}}} \frac{1}{2} \sum_{(a, n) = 1} \chi^{-1}(a) \log |\sigma_{a} z(\beta)| \quad \text{using Lemma } 3.5$$

$$= \prod_{\substack{\chi \neq 1 \\ \text{even}}} \frac{1}{2} \sum_{(a, n) = 1} \chi^{-1}(a) \sum_{I \in \mathcal{P}_{S}} \log |(1 - \zeta^{n_{i}a})^{\beta(I)}|$$

$$= \prod_{\substack{\chi \neq 1 \\ \text{even}}} \frac{1}{2} \sum_{I \in \mathcal{P}_{S}} \left(\sum_{(a, n) = 1} \chi^{-1}(a) \log |(1 - \zeta^{n_{i}a})^{\beta(I)}| \right)$$

$$\stackrel{6}{=} \prod_{\substack{\chi \neq 1 \\ \text{even}}} \frac{1}{2} \sum_{I \in \mathcal{P}_{S}} \left(\chi(\beta(I)) \sum_{(a, n) = 1} \chi^{-1}(a) \log |(1 - \zeta^{n_{i}a})| \right)$$

Where in (1) we have used that $\log |\zeta^d| = 0$ because ζ is a unit and the logaritm's properties.

The last part is a bit technical and uses [6, Lemma 8.4] to reduce the first sum to the $I \in \mathcal{P}_S$ such that $(f_{\chi}, n_I) = 1$, and then continues as for the proof of Theorem 8.3 in [6, Pages 148-150] and involves the analytic class numebr formula and Dirichlet L-series (also Chapter 4 in [6]).

3.1 Particular case of formula 5

Now we can try to see what happen if we request some conditions over β , with some particular cases.

Theorem 3.6. If we assume $\beta: \mathcal{P}_S \to \mathbb{Z}[G]$ to be multiplicative then:

$$i_{\beta} = \prod_{\substack{\chi \neq 1 \\ even}} \left(\prod_{p_i \nmid f_{\chi}} \left(\phi(p_i^{e_i}) \cdot \chi(\beta(i)) + 1 - \chi^{-1}(p_i) \right) \right)$$
 (10)

Where $\beta(i)$ mean $\beta(\{i\})$

Proof. It is easy that we can lift β to $\mathbb{Z}[G_0]$ conserving multiplicativity. Consider now, for $\chi \neq 1$ even, the two factors :

$$T_{\chi} = \sum_{\substack{I \in \mathcal{P}_S \\ (f_{\chi}, n_I) = 1}} \phi(n_I) \cdot \chi(\beta(I)) \cdot \prod_{i \notin I} (1 - \chi^{-1}(p_i))$$

$$\tag{11}$$

and

$$U_{\chi} = \prod_{p_i \nmid f_{\chi}} \left(\phi(p_i^{e_i}) \cdot \chi(\beta(i)) + 1 - \chi^{-1}(p_i) \right)$$
 (12)

that are the arguments of the products in equations 5 and 10. So it's enough to prove $U_{\chi} = T_{\chi}$. Initially we can observe that the argument of the sum in 11 are the subset of $S_{\chi} = \{i \mid p_i \nmid f_{\chi}\}$. Also we can observe

$$\phi(n_I) = \prod_{i \in I} \phi(p_i^{e_i})$$

$$\chi(\beta(I)) = \chi\left(\prod_{i \in I} \beta(i)\right) = \prod_{i \in I} \chi(\beta(i))$$

From which expanding the product of U_{χ} we get the equality.

Using this formula and the definition of C_{β} we can see that for β costant to 1 (that is the simplest example of multiplicative β) we get the Ramachandra's unit index from [3] (or in a more modern notation [6, Theorem 8.3]):

$$[E_K : C_R] = h_K \cdot \prod_{\substack{\chi \neq 1 \text{even}}} \left(\prod_{p_i \nmid f_\chi} \left(\phi(p_i^{e_i}) + 1 - \chi(p_i) \right) \right)$$
 (13)

Where C_R is the group generated by -1 and the units of the form of 2 with $\beta(I) = 1$:

$$\xi_a := \zeta^{d_a} \prod_{I \in \mathcal{P}_a} \frac{1 - \zeta^{an_I}}{1 - \zeta^{n_I}} \text{ with } d_a = \frac{1}{2} (1 - a) \sum_{I \in \mathcal{P}_a} n_I$$

We can also coNstruct β multiplicative such that:

$$\beta(i) = \begin{cases} 1 \text{ if exists } \chi \neq 1 \text{ even, with } \chi(p_i) = 1 \\ 0 \text{ otherwhise} \end{cases}$$

And we obtain the Levesque group $C_{\mathcal{D}}$ defined in [2, Page 331]

3.2 A new system of units

Following the previous steps we know construct a new multiplicative map β with a more optimal index.

Notation. If x is an element of finite group Γ we define:

$$N_x := 1 + x + \dots + x^{\operatorname{ord}(x) - 1} \in \mathbb{Z}[\Gamma]$$

This will be called trace element of x.

Let now define G_i for i = 1, ..., s to be the Galois group $\operatorname{Gal}(\mathbb{Q}(\zeta_{n/p_i^{e_i}})^+/\mathbb{Q}))$. Consider now the Frobenius automorphism:

$$F_i: G_i \to G_i \text{ with } \alpha \mapsto \alpha^{p_i}$$

and its trace element $N_{F_i} \in \mathbb{Z}[G_i]$. Now we choose for every i = 1, ..., s a lift of N_{F_i} into $\mathbb{Z}[G_0]^3$ and associate it to $\beta(i)$; then β is defined multiplicatively.

Of course β is not unique, but for all $I \in \mathcal{P}_S$ they coincide in $\mathbb{Z}[\operatorname{Gal}(\mathbb{Q}(\zeta_{n/n_I})^+/\mathbb{Q})]$, so we can use Lemma 2.2 and C_{β} is well defined.

3.3 A factorization for i_{β}

Here we will recall some facts and definitions from [4, Chapter 11]. These are generals for a finite separable extension of a number field, but we will restrict in the case of \mathbb{K}/\mathbb{Q} number field.

Consider a prime p in \mathbb{Z} and its ideal extension in the ring of integers $pO_{\mathbb{K}}$. Since O_K is a Dedekin domain we can factorize it with prime ideals:

$$pO_{\mathbb{K}} = \prod_{i=1}^{g} \mathfrak{p}_i^{e_i} \tag{14}$$

Definition 3.7. The number g is said to be the decomposition degree (or number) of p in the extension \mathbb{K}/\mathbb{Q} .

For every $i=1,...,g,\,e_i$ is said to be the ramification degree (or index) of \mathfrak{p}_i in \mathbb{K}/\mathbb{Q} .

For every $i=1,...,g,\ f_i:=[O_{\mathbb{K}}/\mathfrak{p}_i:\mathbb{Z}_p]$ is called the *inertial degree* (or residual).

 $^{^3 \}text{Remind that } \zeta_{n/p_i^{e_i}} = \zeta_n^{p_i^{e_i}}$

In particular is possible to prove that if $n = [\mathbb{K} : \mathbb{Q}]$ so

$$n = \sum_{i=1}^{g} f_i e_i$$

Also if \mathbb{K}/\mathbb{Q} is a Galois extension then also e_i, f_i does not depend on i and so

$$n = efg$$

We also recall from [6, Theorem 3.7] the relation between the characters X over the galois group of \mathbb{K}/\mathbb{Q} and decomposition degree of p in the extension \mathbb{K}/\mathbb{Q} :

$$g = |\{\chi \in X \mid \chi(p) = 1\}$$
 (15)

We have now the ingredients for evaluating in a optimal way i_{β} .

For $i \in 1, ..., s$ define g_i, f_i, e_i to be as in the definition 3.7 for the prime p_i in K/\mathbb{Q} .

Theorem 3.8. With C_{β} as defined before we have

$$i_{\beta} = \prod_{i=1}^{s} e_i^{g_i - 1} f_i^{2g_i - 1}$$

Remark 5. This index is optimal because we have a lot of info about its factorization for definiton, also since e_i and f_i are factors of n, the factorization of the last one is enough to know the i_{β} 's. We will see later that is also smaller than other index already studied.

Proof. For s = 1 this is trivial, since $i_{\beta} = 1$.

For $s \geq 2$ is possible to prove that $e_i = \phi(p_i^{e_i})$. For $i \in S$ and χ such that $p_i \nmid f_{\chi}$ we define

$$y(\chi, i) = \phi(p_i^{e_i}) \cdot \chi(\beta(i)) + 1 - \chi^{-1}(p_i)$$

Considering $\overline{\chi}$ to be the character induced by χ in G_i we have $\chi(\beta(i)) = \overline{\chi}(N_{F^i})$ and $\chi(p_i) = \overline{\chi}(F_i)$ using the isomorphism between G_i and the relative modulo ring. There are two cases:

$$\chi(p_i)=1:\overline{\chi}(N_{F_i})=\sum\overline{\chi}(F_i)^j=\sum 1=\operatorname{ord}(F_i)=f_i$$
 (from fact A in [4, Page 544]) and so $y(\chi,i)=\phi(p_i^{e_i})f_i+0=e_if_i$

$$\chi(p_i) \neq 1$$
: Since $\overline{\chi}(F_i) \neq 1$ follows $\overline{\chi}(N_{F_i}) = 0$. Hence $y(\chi, i) = \phi(p_i^{e_i}) \cdot \chi 0 + 1 - \chi^{-1}(p_i) = 1 - \chi^{-1}(p_i)$

Then, indexing the product by i:

$$\begin{split} i_{\beta} &= \prod_{i=1}^{s} \prod_{\substack{\chi \neq 1 \text{ even} \\ p_i \nmid f_{\chi}}} y(\chi, i) \\ &= \prod_{i=1}^{s} \left(\prod_{\substack{\chi(p_i) = 1}} e_i f_i \prod_{\substack{\chi(p_i) \neq 1}} (1 - \chi^{-1}(p_i)) \right) \quad (\chi \neq 1 \text{ even}, \, p_i \nmid f_{\chi}) \\ &\stackrel{*}{=} \prod_{i=1}^{s} ((e_i f_i)^{g_i - 1} \cdot f_i^{g_i}) \\ &= \prod_{i=1}^{s} e_i^{g_i - 1} f_i^{2g_i - 1} \end{split}$$

In * the exponent g_i-1 come from 15 (there isn't the trivial character). Instead for the second part we are using that, since $\chi^{-1}(p_i) = \overline{\chi^{-1}}(F_i)$ is a non trivial $ord(F_i) = f_i$ -th root of unity for all characters (and varing χ we get every unit g_i times) we use that from the factorization of x^f-1 as $(x-1)(1+x+...+x^{f-1})$ evaluated in 1 we have $\prod_{\zeta^f=1,\zeta\neq 1}(1-\zeta)=f$.

12

References

- [1] Cornelius Greither. "Improving Ramachandra's and Levesque's unit index". English. In: Number theory. Fifth conference of the Canadian Number Theory Association, Ottawa, Ontario, Canada, August 17–22, 1996. Providence, RI: American Mathematical Society, 1999, pp. 111–120. ISBN: 0-8218-0964-4/pbk.
- [2] Claude Levesque. On improving Ramachandra's unit index. English. Number theory, Proc. 1st Conf. Can. Number Theory Assoc., Banff/Alberta (Can.) 1988, 325-338 (1990). 1990.
- [3] K. Ramachandra. "On the units of cyclotomic fields". English. In: *Acta Arith.* 12 (1966), pp. 165–173. ISSN: 0065-1036; 1730-6264/e.
- [4] Paulo Ribenboim. Classical theory of algebraic numbers. English. New York, NY: Springer, 2001, pp. xxiv + 681. ISBN: 0-387-95070-2/hbk.
- [5] W. Sinnott. On the Stickelberger ideal and the circular units of an abelian field. English. Theorie des nombres, Semin. Delange-Pisot-Poitou, Paris 1979-80, Prog. Math. 12, 277-286 (1981). 1981.
- [6] Lawrence C. Washington. Introduction to cyclotomic fields. English. Vol. 83. Springer, New York, NY, 1982.