Eine Woche, ein Beispiel 9.10 ramified covering: alg curve case

Today we are going to move out of the world of RS, trying to switch from cplx alg geo to number theory. The pictures become less intuitive; on the other hand, more interesting phenomenons will appear during the journey.

- I alg curve viewed as stack quotient

- 2. ramified covering for alg curve/IR
 3. Frobenius for alg curve/IR
 4. complexify is a ramified covering by non geometrical connected spaces
 5. alg curves and function fields
- - · Correspondence
 - Valuations
- 6. alg curve over IFp. miscellaneous.

I alg curve viewed as stack quotient

This table can clarify many confusions during the study of varieties over non alg close fields.

Rmk Spec C over IR is not geo connected!

When we take the base change, there are no difference for C-pts. However, when we try to count C-pts on the fiber of X/R of form Spec C, then we see a pair of C-pts.

E.g. Let's work on Air = Spec IR[x]. As a set.

Spec
$$IR[x] = \{(x-a) \mid a \in IR \} \cup \{(x^2+bx+c) \mid b \cdot c \in IR \} \cup \{(o) \}$$

$$= IR \cup \mathcal{H} \cup \{(o) \}$$

$$\mathcal{A}_{IR}(IR) = \mathcal{M}_{Or_{IR-olg}}(IR[x], IR) = IR$$

$$\mathcal{A}_{IR}(C) = \mathcal{M}_{Or_{IR-olg}}(IR[x], C) = C = \mathcal{A}_{IC}(C)$$

One gets a $\Gamma_{\mathbb{R}}$ -action on $A_{\mathbb{R}}(\mathbb{C})$ by $x \longmapsto \tau \circ x$. Observe that $MaxSpec\ |R[x]| = A_{IR}(C)/\Gamma_{IR}$ $A_{IR}(R) = A_{IR}(C)^{\Gamma_{IR}}$ as a set, so we can view $A_{IR}(R)$ as the quotient stack of $A_{IR}(R)$ quotienting out

Tir-action.

E.x. Work out the same results for AIF, . E.p., shows that

$$A_{F_p}(F_p) = F_p$$
 $A_{F_p}(F_p) = F_p = A_{F_p}(F_p)$
 $A_{F_p}(F_p) = A_{F_p}(F_p)/F_p$
 $A_{F_p}(F_p) = A_{F_p}(F_p)/F_p$

Ex. For an (sm) alg curve X over & (In general, X: f.t. over a field x), try to show that $X(\kappa) = X(\kappa^{\text{sep}})^{\Gamma_{\kappa}}$ Iclosed pts of X = $X(x^{sep})/\Gamma_{k}$

by Hilbert's Nullstellensatz.

e.p., for x: closed pt of X,

 $Stab_{x}(\Gamma_{x}) = \Gamma_{x'} \iff fiber at x = Spec x'$.

	/A/R	A'c /c	Ac/R
MaxSpec	RUH	C	C 2 cplx conj
IR-pts	R	_	ø
C-pts	C	C	CUCT
$\Gamma_{IR} = G_0(G_{IR})$	trivial on pts & fcts	no action	see orange arrows

2. ramified covering for alg curve/IR

Many examples we worked on RS can be reused in this setting.

E.g. $f: A_{IR} \rightarrow A_{IR}$ $f(z) = z^3$

 $f: A_{IR} \longrightarrow A_{IR} \qquad f(z) = z^3 - 3z$

Įf

$$f(z) = z^3 - 3z$$

f-1(zo) = f-1((z-Zo))

classical picture

split:
$$f^{-1}(o) = \text{Spec } IR \text{ LI Spec } IR \text{ LI Spec } IR$$

$$f^{-1}((z^2+1)) = \text{Spec } C \text{ LI Spec } C \text{ LI Spec } C$$

$$(partially) \text{ inert: } f^{-1}(18) = \text{Spec } C \text{ LI Spec } IR$$

$$generic \text{ point: } f^{-1}((o)) = \text{Spec } IR(z^2)$$

$$ramified: f^{-1}(2) = \text{Spec } IR \text{ LI Spec } IR$$

algebraic picture

Air
$$\beta_{1}$$
 β_{2} β_{3} β_{6} β_{7} β_{4} β_{2} β_{7} β_{8} β_{1} β_{1} β_{1} β_{1} β_{2} β_{3} β_{4} β_{1} β_{1} β_{2} β_{3} β_{4} β_{1} β_{2} β_{3} β_{4} β_{5} β_{7} β_{8} β_{1} β_{1} β_{2} β_{3} β_{4} β_{5} β_{7} β_{8} β_{1} β_{1} β_{2} β_{3} β_{4} β_{5} β_{5} β_{7} β_{8} β_{1} β_{1} β_{2} β_{3} β_{4} β_{5} β_{5} β_{5} β_{7} β_{7}