Geoff Cruttwell Mount Allison University

CogSci 2022 Workshop on Category Theory for Cognitive Science July 27th, 2022 Question: how can we represent learning categorically?

We'll discuss:

- "Action-takers" vs. "learners"
- A category of learners
- The (reverse) derivative as a means to construct a learner
- Conclusion and pointers to research

Claim: at the core of many machine learning/deep learning algorithms is a functor.

Action-takers

We can think of an entity that takes some action as a function

$$f:A \rightarrow B$$

where A are the inputs and B are the outputs.

• For example, A might be the set of all pictures of a certain size, B might be the unit interval of real numbers [0,1], and f a function which, given a picture, returns the probability we (or a machine) believes that the picture contains a cat.

Learning

But we want an action-taker, represented by a function $f: A \rightarrow B$, to learn. How can we represent this?

- Imagine that for each set A we have some associated set U_A which represents "ways to update the points of A". (We'll keep this quite general for now).
- One way to think about learning: when we perform an action at some point a, we get an input $f(a) \in B$. We are then told what we would need to do to update f(a) to get the true value b': that is, for each $a \in A$ we are given some update action $u \in U_B$.
- A learner should be able to take this update action and know how to use it to update their own state, represented by giving a point of U_A .

Learning continued

That is:

 A learner would have not only a way to take actions, represented by a function

$$f:A\to B$$

 But can also receive feedback when they take such an action and update their own internal state accordingly, represented by a function

$$U_f: A \times U_B \rightarrow U_A$$
.

This represents the "bidirectional" nature of learning.

Category of learners

Even better: we can build a category with learners as the morphisms!

- **Objects**: an object in this category is a pair of sets (A, U_A) , representing a set of inputs/ouputs and ways to update those inputs/outputs
- Arrows: an arrow from (A, U_A) to (B, U_B) is a learner as on the previous slide: a pair (f, U_f) with

$$f: A \rightarrow B$$
 (an "action")

and

$$U_f: A \times U_B \rightarrow U_A$$
 (an "update")

Category of learners continued

What are identities and composites?

- **Identity**: the identity on (A, U_A) is the identity function on A, together with the map $U_1: A \times U_A \to U_A$ sending (a, u) to u.
- Composition: the composite of

$$(f, U_f): (A, U_A) \rightarrow (B, U_B) \text{ and } (g, U_g): (B, U_B) \rightarrow (C, U_C)$$

is given by the composite function $g\circ f:A\to C$ and the composite update

$$U_{g\circ f}(a,w):=U_f(a,U_g(f(a),w))$$

(where
$$a \in A, w \in U_C$$
).

Note that the composite update goes backwards: *first* it uses the update for g, then the update for f.

Learners go by many names...

This category of learners (and variants of it) have been discovered and rediscovered many times¹ and given many different names:

- They are used in database theory, where they are known as lenses or bidirectional transformations
- Lenses and variants of them (such as optics) are used frequently in functional programming
- Jules Hedges has used them to study open games
- Valeria de Paiva used them to study Gödel's Dialectica interpretation of logic from a categorical viewpoint

Part of the advantange of category theory is to help make these types of connections!

¹For more on this, see https://julesh.com/2018/08/16/lenses-for-philosophers/

Action takers to learners?

Big question: if we have some "action-taker", represented by a function

$$f:A \rightarrow B$$

can we canonically turn it into a "learner"

$$(f, U_f): (A, U_A) \rightarrow (B, U_B)$$
?

More precisely: is there a functor from the category of action-takers to the category of learners?

Key idea: the (reverse) derivative provides a means to go from action-takers to learners!

Setting up the category

In more detail, suppose we can represent our input/output sets as subsets of Cartesian spaces \mathbb{R}^n , so that our functions are of the form

$$f:(A\subseteq\mathbb{R}^n)\to(B\subseteq\mathbb{R}^m)$$

For $A \subseteq \mathbb{R}^n$, we will let the set of all vectors

$$U_A = \mathbb{R}^n$$

represent our possible update actions we can make to A.

The (transpose of) the Jacobian

Now suppose our functions/action-takers

$$f: (A \subseteq \mathbb{R}^n) \to (B \subseteq \mathbb{R}^m)$$

are differentiable. Then we can build a matrix of all partial derivatives of f. For example, if

$$f(x, y, z) = (x^2 + y^2, 3x \sin(z)),$$

we can build the *transpose* of the Jacobian of f, which gives the matrix

$$\left(\begin{array}{cc}
2x & 3\sin(z) \\
2y & 0 \\
0 & 3x\cos(z)
\end{array}\right)$$

(We will see in a minute why we use the transpose of the Jacobian).

Evaluating the transpose of the Jacobian

Evaluated at a point, say a = (x, y, z) = (2, 1, 0), we get a matrix of numbers

$$\begin{pmatrix} 2(2) & 3\sin(0) \\ 2(1) & 0 \\ 0 & 3(2)\cos(0) \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 2 & 0 \\ 0 & 6 \end{pmatrix}$$

Which we could then apply to an vector in \mathbb{R}^2 , say u=(-1,2), to get a vector in \mathbb{R}^3 :

$$\left(\begin{array}{cc} 4 & 0 \\ 2 & 0 \\ 0 & 6 \end{array}\right) \left(\begin{array}{c} -1 \\ 2 \end{array}\right) = \left(\begin{array}{c} -4 \\ -2 \\ 12 \end{array}\right)$$

But this is exactly what we need for a learner: given a point of the domain a and an update action (=vector) u in the codomain, we have an update action (= vector) in the domain.

Transpose of the Jacobian gives a learner

That is, altogether, we started with a function

$$f: A \subseteq \mathbb{R}^3 \to B \subseteq \mathbb{R}^2$$

and the transpose of the Jacobian, when evaluated at a point of A and a vector in \mathbb{R}^2 , gives a vector in \mathbb{R}^3 , giving us a map which we will write as R(f):

$$R(f): A \times \mathbb{R}^2 \to \mathbb{R}^3$$
,

ie.,

$$R(f): A \times U_B \rightarrow U_A$$

in other words, we have a learner!

The claim is now that we have a functor

(Differentiable functions)
$$\rightarrow$$
 (Learners)

given by sending

$$(A \subseteq \mathbb{R}^n)$$
 to (A, \mathbb{R}^n)

and

$$f: (A \subseteq \mathbb{R}^n) \to (B \subseteq \mathbb{R}^m)$$

to

But wait: does this preserve composition?

Reverse derivative preserves composition

In the simplest case, suppose we have differentiable functions

$$f: \mathbb{R} \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}$$

If we apply the process in the previous slide to both of f and g individually, then compose them (in the category of learners) we get the update function we get sends

$$(a,w)\mapsto R_f(a,R_g(f(a),w))=R_f(a,g'(f(a)\cdot w)=f'(a)\cdot g'(f(a))\cdot w$$

Reverse derivative preserves composition

In the simplest case, suppose we have differentiable functions

$$f: \mathbb{R} \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}$$

If we apply the process in the previous slide to both of f and g individually, then compose them (in the category of learners) we get the update function we get sends

$$(a,w)\mapsto R_f(a,R_g(f(a),w))=R_f(a,g'(f(a)\cdot w)=f'(a)\cdot g'(f(a))\cdot w$$

whereas if we first compose f and g as functions, then apply the above process, the update function we get sends

$$(a, w) \mapsto R_{g \circ f}(a, w) = (g \circ f)'(a) \cdot w = g'(f(a)) \cdot f'(a) \cdot w$$

by the chain rule. So they are in fact equal!

In other words, functoriality of this operation holds precisely because of the chain rule!

More on the reverse derivative and its properties

Why is knowing that it is a functor useful? It tells you that if the way you calculate an action is based on composing many small parts (as in a neural network), then you can make an update by making updates to each of its constitutent parts. This is the essence of backpropagation. Slogan:

 ${\sf Backpropagation} = {\sf Chain} \ {\sf rule} = {\sf Functoriality}$

More on the reverse derivative and its properties

Why is knowing that it is a functor useful? It tells you that if the way you calculate an action is based on composing many small parts (as in a neural network), then you can make an update by making updates to each of its constitutent parts. This is the essence of backpropagation. Slogan:

 ${\sf Backpropagation} = {\sf Chain} \ {\sf rule} = {\sf Functoriality}$

The reverse derivative also has other nice properties:

- If the input update is 0, then the output update will also be 0 ("if you got the right answer, you don't need to make any changes").
- More generally, the (reverse) derivative is linear, so that eg., if the an update $u = u_1 + u_2$, then you can update by summing the result of updating for u_1 and for u_2 .

Categorical machine learning setup

This functor is the core of any gradient-based learning process. The full process has additional components to it:

- You might vary how you measure the "degree of wrongness" of an answer (use a different loss function)
- You might vary how large of an update you make at each step (eg., initially making larger updates then later making smaller updates)
- You might wait to make changes after seeing the results of a number of different feedbacks and/or use the results of previous feedbacks

In the paper "Categorical foundations of Gradient-based learning", myself and my co-authors describe how to fit these various parts into a categorical setup as well. But at the core of it is always this reverse derivative functor!

Conclusions

In conclusion:

- Very generally, one can represent a "learner" as an arrow in a particular category.
- The (reverse) derivative provides a well-defined (ie., functorial) process to go from certain types of action-takers to certain types of learners.
- This process is at the core of many machine-learning algorithms.
- Question: are there other well-defined ways to build learners?

References

At the end of this session we'll provide links to a variety of categorical papers, but here are a few specific to this talk:

- (2022) G. Cruttwell, B. Gavranovic, N. Ghani, P. Wilson, and F. Zanasi. Categorical foundations of Gradient-based learning. To be published in the proceedings of ESOP 2022.
- (2019) B. Fong, D. Spivak, and R. Tuyeras. **Backprop as Functor:** A compositional perspective on supervised learning. LICS 2019.
- (2021) D. Shiebler, B. Gavranovic, and P. Wilson. Category theory in machine learning. ACT 2021.