What is the goal?

$$\longrightarrow$$
 achieve $Q(t) = Q^*$

$$\longrightarrow$$
 or close to it: $|Q(t) - Q^*| < \varepsilon$

How to: basic idea

- if $Q(t) = Q^*$ do nothing
- if $Q(t) < Q^*$ increase $\lambda(t)$
 - \rightarrow too little in the buffer
- if $Q(t) > Q^*$ decrease $\lambda(t)$
 - \rightarrow too much in the buffer
 - → a rule of thumb: called control law

Since state of receiver buffer must be conveyed to sender who adjusts $\lambda(t)$:

- \longrightarrow called feedback control
- \longrightarrow also closed-loop control

Network protocol implementation:

- \longrightarrow some design options available
- control action undertaken at sender
 - \rightarrow smart sender/dump receiver
 - → preferred mode of many Internet protocols
 - \rightarrow when might the opposite be better?
- receiver informs sender of Q^* and Q(t)
 - → feedback packet (control signaling/messaging)
 - \rightarrow feedback could just be gap $Q^* Q(t)$
 - → or simply up/down binary indication

Key question in feedback congestion control:

- \longrightarrow how much to increase/decrease $\lambda(t)$
- → already know in which direction

Desired state of the system:

$$Q(t) = Q^*$$
 and $\lambda(t) = \gamma$

 \longrightarrow why is " $\lambda(t) = \gamma$ " needed?

Starting state:

- → empty buffer and nothing is being sent
- → think of iTunes, Rhapsody, etc.

i.e.,
$$Q(t) = 0$$
 and $\lambda(t) = 0$

Time evolution (or dynamics): track Q(t) and $\lambda(t)$

Congestion control methods: A, B, C and D

Method A:

- if $Q(t) = Q^*$ then $\lambda(t+1) \leftarrow \lambda(t)$
- if $Q(t) < Q^*$ then $\lambda(t+1) \leftarrow \lambda(t) + a$
- if $Q(t) > Q^*$ then $\lambda(t+1) \leftarrow \lambda(t) a$

where a > 0 is a fixed parameter

→ called linear increase/linear decrease

Question: how well does it work?

Example:

- Q(0) = 0
- $\bullet \ \lambda(0) = 0$
- $Q^* = 100$
- $\gamma = 10$
- a = 1

With a = 0.5:

With a = 3:

With a = 6:

Remarks:

• Method A isn't that great no matter what a value is used

- \rightarrow keeps oscillating
- Actually: would lead to unbounded oscillation if not for physical restriction $\lambda(t) \geq 0$ and $Q(t) \geq 0$
 - \longrightarrow i.e., bottoms out
 - \longrightarrow easily seen: start from non-zero buffer
 - \longrightarrow e.g., Q(0) = 110

With a = 1, Q(0) = 110, $\lambda(0) = 11$:

Method B:

• if $Q(t) = Q^*$ then $\lambda(t+1) \leftarrow \lambda(t)$

• if
$$Q(t) < Q^*$$
 then $\lambda(t+1) \leftarrow \lambda(t) + a$

• if
$$Q(t) > Q^*$$
 then $\lambda(t+1) \leftarrow \delta \cdot \lambda(t)$

where a > 0 and $0 < \delta < 1$ are fixed parameters

Note: only decrease part differs from Method A.

- \longrightarrow linear increase with slope a
- \longrightarrow exponential decrease with backoff factor δ
- \longrightarrow e.g., binary backoff in case $\delta = 1/2$

Similar to Ethernet and WLAN backoff

 \longrightarrow question: does it work?

With a = 1, $\delta = 1/2$:

With a = 3, $\delta = 1/2$:

With a = 1, $\delta = 1/4$:

CS 422 Park

With $a = 1, \, \delta = 3/4$:

Note:

- Method B isn't that great either
- One advantage over Method A: doesn't lead to unbounded oscillation
 - \rightarrow note: doesn't hit "rock bottom"
 - \rightarrow due to asymmetry in increase vs. decrease policy
 - \rightarrow we observe "sawtooth" pattern
- Method B is used by TCP
 - \rightarrow linear increase/exponential decrease
 - \rightarrow additive increase/multiplicative decrease (AIMD)

Question: can we do better?

→ what "freebie" have we not made use of?

Method C:

$$\lambda(t+1) \leftarrow \lambda(t) + \varepsilon(Q^* - Q(t))$$

where $\varepsilon > 0$ is a fixed parameter

Tries to adjust magnitude of change as a function of the gap $Q^* - Q(t)$

- \longrightarrow incorporate distance from target Q^*
- → before: just the sign (above/below)

Thus:

- if $Q^* Q(t) > 0$, increase $\lambda(t)$ proportional to gap
- if $Q^* Q(t) < 0$, decrease $\lambda(t)$ proportional to gap

Trying to be more clever...

 \longrightarrow bottom line: is it any good?

With $\varepsilon = 0.1$:

With $\varepsilon = 0.5$:

Answer: no

 \longrightarrow control law looks good on the surface

 \longrightarrow but looks can be deceiving

Time to try something strange

 \longrightarrow any (crazy) ideas?

Method D:

$$\lambda(t+1) \leftarrow \lambda(t) + \varepsilon(Q^* - Q(t)) - \beta(\lambda(t) - \gamma)$$

where $\varepsilon > 0$ and $\beta > 0$ are fixed parameters

- \longrightarrow odd looking modification to Method C
- \longrightarrow additional term $-\beta(\lambda(t) \gamma)$
- \longrightarrow what's going on?
- \longrightarrow does it work?

With $\varepsilon = 0.2$ and $\beta = 0.5$:

With $\varepsilon = 0.5$ and $\beta = 1.1$:

With $\varepsilon = 0.1$ and $\beta = 1.0$:

