BykovDS 26122024-170048

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Даны значения s-параметров на некоторой частоте:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.3	0.491	-125.3	20.783	102.4	0.028	50.6	0.455	-60.3

Требуется выбрать согласованный аттенюатор с минимальным затуханием, подключения которого будет docmamoчнo, чтобы обеспечить безусловную устойчивость всего устройства на этой частоте.

- 1) аттенюатор с затуханием 3.1 дБ, подключённый к плечу 1;
- 2) аттенюатор с затуханием 2.3 дБ, подключённый к плечу 2;
- 3) аттенюатор с затуханием 2.3 дБ, подключённый к плечу 2;
- 4) аттенюатор с затуханием 2 дБ, подключённый к плечу 2.

Найти неравномерность усиления в полосе, ограниченной частотами $f_{_{\rm H}}=2.8~\Gamma\Gamma$ ц и $f_{_{\rm B}}=3.3~\Gamma\Gamma$ ц, используя рисунок 1.

Рисунок 1 – Частотная характеристика усиления

- 1) 0.6 дБ
- 2) 1.5 дБ
- 3) 1.3 дБ
- 4) 0.3 дБ

Дано значение коэффициента передачи диссипативной цепи коррекции, выполненной в виде цепи постоянного входного сопротивления 50 Ом: $s_{21} = -13.8 \text{ дБ}.$

Ко входу этой цепи подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью 1 дБм.

Какая мощность рассеивается внутри цепи коррекции?

- 0 мВт
- 2) 1.2 mB_T
- 3) 0.9 мBт
- 4) 0.1 mBT

Дано значение коэффициента отражения от входа реактивной цепи коррекции $s_{11} = -0.44 - 0.04$ і.

Найти модуль (в дБ) коэффициента передачи s_{21} .

- 1) -1.9 дБ
- 2) -1.2 дБ
- 3) -1.8 дБ
- 4) -0.9 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.557	164.3	5.587	74.3	0.050	58.2	0.270	-42.2
1.6	0.579	144.0	3.515	58.3	0.074	56.2	0.253	-50.0
2.2	0.616	127.5	2.526	43.8	0.098	51.5	0.238	-62.4
2.8	0.661	113.0	1.958	30.1	0.119	45.7	0.226	-78.0
3.4	0.700	101.2	1.584	18.4	0.139	40.2	0.217	-96.2
4.0	0.738	91.4	1.317	6.9	0.157	34.5	0.222	-116.1
4.6	0.768	82.9	1.110	-3.3	0.173	29.1	0.237	-135.2

Выбрать Γ -образный четырёхполюсник (см. рисунок 2), который может обеспечить согласование со стороны плеча 2 на частоте 3.4 $\Gamma\Gamma$ ц.

Рисунок 2 – Различные реализации Г-образного четырёхполюсника

- 1) A
- 2) B
- 3) C
- 4) D

Дана частотная характеристика модуля коэффициента отражения (см. рисунок 3) от входа цепи согласования (слева) с действительным импедансом R (подключённым справа). (Измерения проведены с помощью генератора с внутренним импедансом 50 Om).

Рисунок 3 – Частотная характеристика модуля коэффициента отражения

Какой из предложенных рисунке 4 ситуаций соответствует эта частотная характеристика?

Варианты ОТВЕТА: 1) а 2) b 3) с 4) d

Рисунок 4 — Различные реализаци и Γ -образной цепи согласования