Jaypee Institute of Information and Technology Department of Mathematics

Course: Matrix Computations (16B1NMA533)

Tutorial Sheet 7 [C301-3.4]

(Topics covered: Orthogonality, Gram-Schmidt process, QR-decomposition)

- 1. Let *V* be an inner product space and let *u* and *v* be vectors in *V*. Suppose that $||u|| = \sqrt{3}$, ||v|| = 4 and the angle between u and v is $\pi/6$. Compute $\langle u, v \rangle$ and $\langle u+v, 2u-v \rangle$.
- 2. Suppose we define the inner product between two continuous functions by $\langle u(x), v(x) \rangle = \int_0^{\pi/2} u(x)v(x)dx$. If $u(x) = \sin x$ and v(x) = x, find the angle between them.
- 3. Find vectors $u, v \in \mathbb{R}^2$ such that u is a scalar multiple of (1, 3), v is orthogonal to (1, 3), and (1, 2) = u + v.
- 4. Determine angle between x_1 and x_2 , projection of x_1 onto x_2 and its orthogonal component for (i) $x_1 = (1, 1, 0)$, $x_2 = (2, 2, 1)$, (ii) $x_1 = (0, 1, 1, 1)$, $x_2 = (1, 1, 1, 0)$.
- 5. Use Gram-Schmidt orthonormalization process to construct an orthonormal set from the given set of linearly independent vectors of real inner product space w. r. t standard inner product.

 (i) \{(0,1,1,1),(1,1,1,0)\}, (ii) \{(1,1,0,0),(0,1,-1,0),(0,0,-1,1),(0,1,-1,0)\}.
- 6. Determine **QR** decomposition for the following matrices:

$$(i)\begin{bmatrix} 1 & 3 \\ 1 & 5 \end{bmatrix} \quad (ii)\begin{bmatrix} 1 & 2 & 2 \\ 1 & 0 & 2 \\ 0 & 1 & 1 \end{bmatrix} \quad (iii)\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$