

More about BICR - some technical concepts

Disclaimer

The views and opinions presented here represent those of the speaker and not necessarily those of Syndax.

Bias Reduction and Detection using BICR

Evaluation bias in LE may lead to estimation bias

- Evaluation bias may be introduced by the subjective aspect of the disease evaluation in PFS
- When patients and investigators are unblinded to treatment assignment,
 PD may be declared earlier in one arm than the other in a systematic fashion

PFS estimated from BICR data has less evaluation bias

- PFS based on BICR can be the primary analysis
- PFS based on BICR can also serve as a sensitivity analysis to demonstrate the robustness of PFS based on LE

BICR as an audit tool

- Complete-case BICR vs. BICR audit
- BICR conducted in a random sample to detect potential evaluation bias
- Dodd 2011, Amit 2011, Stone 2015

BICR Audit - Amit 2011

Key question

- "whether discordance represents systematic bias/unreliability in the estimate of the treatment effect, or whether such discordance is simply a reflection of the variability inherent in the process." - Amit 2011
- Zhang 2013 (DOI: 10.1158/1078-0432.CCR-12-3364)

Table 4: Evaluation Results for Method A and Method B

						Method A			Method B	
		Tumor		CC BICR HR	HR Ratio				% CC	% CC
Study	N	type ¹	LE HR (95% CI)	(95% CI)	(BICR / LE)	% CC	Mean	% replicate audits	audits	audits
						audits ²	audit size ²	confirming LE ³	$(0.100)^4$	$(0.075)^5$
1	752	MBC	0.79 (0.68, 0.91)	0.74 (0.64, 0.87)	0.94	0%	73%	100%	14.8%	23.2%
2	722	MBC	0.49 (0.40, 0.59)	0.54 (0.44, 0.67)	1.10	5%	29%	100%	48.4%	57.7%
3-HER2-	952	MBC	0.89 (0.76, 1.04)	0.96 (0.78, 1.20)	1.08	100%	100%	0	26.1%	37.1%
3-HER2+	219	MBC	0.72 (0.54, 0.97)	0.67 (0.45, 0.99)	0.93	100%	100%	100	21.2%	39.6%
4-Anth	622	MBC	0.66 (0.54, 0.81)	0.79 (0.63, 1.00)	1.20	78%	86%	36%	66.0%	75.3%
4-Cap	615	MBC	0.67 (0.56, 0.82)	0.70 (0.56, 0.87)	1.04	32%	55%	100%	29.6%	38.7%
5	762	MBC	0.81 (0.68, 0.95)	0.86 (0.72, 1.04)	1.06	100%	100%	0%	48.0%	58.0%
6	724	MBC	0.44 (0.36, 0.55)	0.35 (0.27, 0.46)	0.80	0%	30%	100%	4.9%	8.0%
7	769	RCC	0.44 (0.35, 0.54)	0.45 (0.37, 0.56)	1.02	0%	30%	100%	30.8%	38.9%
8	750	RCC	0.41 (0.33, 0.52)	0.41 (0.31, 0.53)	1.00	0%	35%	100%	23.4%	30.2%
9-25mg	416	RCC	0.70 (0.58, 0.86)	0.68 (0.55, 0.85)	0.97	2%	61%	100%	15.6%	25.6%
9-15mg	417	RCC	0.75 (0.61, 0.92)	0.76 (0.62, 0.94)	1.01	100%	100%	100%	3.7%	7.6%
10	416	RCC	0.33 (0.26, 0.42)	0.33 (0.26, 0.43)	1.00	0%	35%	100%	17.4%	24.1%
11	649	RCC	0.62 (0.51, 0.75)	0.59 (0.47, 0.74)	0.95	21%	41%	100%	19.4%	27.3%
12	435	RCC	0.43 (0.34, 0.54)	0.41 (0.32, 0.54)	0.95	0%	35%	100%	19.8%	29.0%
13	723	RCC	0.68 (0.56, 0.82)	0.68 (0.56, 0.83)	1.00	14%	49%	100%	24.5%	33.7%
14	463	MCRC	0.39 (0.32, 0.48)	0.55 (0.45, 0.67)	1.41	5%	29%	100%	98.2%	99.0%
15-Oxal	812	MCRC	1.35 (1.09, 1.67)	1.38 (1.08, 1.77)	1.02	100%	100%	0%	45.5%	54.7%
16-WT	656	MCRC	0.81 (0.67, 0.98)	0.80 (0.66, 0.98)	0.99	100%	100%	100%	25.6%	34.0%
16-Mu	527	MCRC	1.15 (0.95, 1.40)	1.22 (1.00, 1.50)	1.06	100%	100%	0%	16.4%	26.8%
17-WT	597	MCRC	0.71 (0.58, 0.87)	0.75 (0.62, 0.92)	1.06	16%	68%	100%	24.5%	33.4%
17-Mu	589	MCRC	0.82 (0.67, 0.99)	0.90 (0.74, 1.10)	1.10	100%	100%	0%	64.3%	74.6%
18	663	NSCLC	0.50 (0.41, 0.60)	0.63 (0.52, 0.76)	1.26	32%	46%	100%	53.4%	62.2%
19	884	NSCLC	0.71 (0.61, 0.82)	0.71 (0.60, 0.83)	1.00	29%	46%	100%	17.4%	24.8%
20	171	PNET	0.42 (0.26, 0.66)	0.31 (0.18, 0.54)	0.74	1%	55%	100%	0.0%	0.0%
21	410	PNET	0.38 (0.29, 0.48)	0.40 (0.30, 0.54)	1.05	0%	40%	100%	77.4%	84.7%
22	711	STS	0.72 (0.61, 0.85)	0.76 (0.64, 0.90)	1.06	28%	48%	100%	41.4%	51.7%
23	369	STS	0.35 (0.28, 0.45)	0.31 (0.24, 0.41)	0.89	0%	35%	100%	10.4%	16.0%
24	312	GIST	0.29 (0.20, 0.40)	0.32 (0.23, 0.45)	1.10	0%	40%	100%	56.5%	65.5%
25	645	Ovarian	0.69 (0.58, 0.82)	0.79 (0.65, 0.96)	1.14	67%	80%	100%	55.5%	66.0%
26	429	Carcinoid	0.78 (0.62, 0.98)	0.93 (0.71, 1.22)	1.19	100%	100%	0%	22.1%	32.7%

MBC = metastatic breast cancer, RCC = renal cell carcinoma, MCRC = metastatic colorectal cancer, NSCLC = non-small cell lung cancer, PNET = pancreatic neuroendocrine tumors, STS = soft tissue sarcoma, GIST = gastrointestinal stromal tumor, 'over the 10.000 replicates per study; '% of 10.000 and treplicates (whether partial or CC) per study in which consistency of the PFS treatment effect is concluded (i.e. the LE result is confirmed); '4% of 10,000 replicate audits per study for which CC audit is recommended (i.e. differential discordance (DD) in EDR < -0.100 or DD in LDR > 0.100); % of 10,000 replicate audits for which CC audit is recommended (i.e. DD in EDR < -0.075 or DD in LDR > 0.075)

BICR Audit - Amit 2011 (cont.)

Differential discordance

- Difference between treatment arms in discordance rates
- Basic framework for evaluating/detecting bias in LE

Table 1 – BICR versus LE disease progression assessments.								
	BICR							
	PD	No PD						
Investigator PD No PD	a = a1 + a2 + a3	b d						
Note: In practice a LE PD occurring later than a BICR PD (a3) would be observed rarely. a1: number of agreements on timing and occurrence of PD. a2: number of times LE declares PD later than BICR. a3: number of times LE declares PD earlier than BICR.								

Amit 2011 (doi:10.1016/j.ejca.2011.02.013)

$$EDR = \frac{b + a3}{a + b}$$

Early Discrepancy Rate (EDR): LE calling PD earlier than BICR

$$LDR = \frac{c + a2}{b + c + a2 + a3}$$

Late Discrepancy Rate (LDR): LE calling PD later than BICR

• Go to full BICR if Δ_{LDR} or Δ_{EDR} > threshold value in BICR audit

Dodd 2011 and Stone 2015

	Dodd 2011	Stone 2015	
Underlying Population Parameter	HR _{BICR} in the entire population	HR _{BICR} /HR _{LE} in the trial population (i.e., HRR _F _hat)	
Statistical Inference Approach	Estimation (efficient estimator) $ln(HR_{BICR,S}_hat) + \lambda ln(HR_{LE,F-S}_hat)$	Hypothesis testing H ₀ : HRR _F _hat ≥ HRR _U	
Decision Making	If upper confidence limit < CIF, audit only; otherwise, full BICR	If reject H ₀ , audit only; otherwise, full BICR	

Informative Censoring for estimation bias in PFS

- Evaluation bias in LE may lead to estimation bias
 - Evaluation bias may be introduced by the subjective aspect of the disease evaluation in PFS
 - When patients and investigators are unblinded to treatment assignment, PD ma be declared earlier in one arm than the other in a systematic fashion
- PFS estimated from BICR data may have less evaluation bias
 - PFS based on BICR can be the primary analysis
 - PFS based on BICR can also serve as a sensitivity analysis to demonstrate the robustness of PFS based on LE
- PFS estimated from BICR data may have estimation bias resulted from informative censoring (if it occurs more frequently in one arm than the other)

Informative Censoring (cont.)

Example

- Retrospective BICR was used
- Potential evaluation bias: early call of PD in control arm
- No scans were collected after PD per LE → censoring in BICR for these local PDs

