

Example: 1-Sum


```
count(a, N):
    sum = 0
    for i in range(N):
        if a[i] == 0:
            sum += 1
    return sum
```

How many instructions as a function of input size N?

Operation	Frequency		
Assignment statement	1		
For loop, "in range" comparison	N+1		
"if equal" comparison	N		
Array access []	N		
Increment	N		
Total	(3N+2) to (4N+2)		

Example: 2-Sum

Operation	Frequency
Assignment statement	1 [A] + [B]
For loop "in range" comparison	$(N+1) + [N+(N-1)++1+0] = \frac{1}{2}N(N+3)+1$
Equal comparison	$(N-1) + (N-2) + + 1 + 0 = \frac{1}{2}N(N-1)$
Array access []	<i>N</i> (<i>N</i> -1)
Increment	$0 \text{ to } \frac{1}{2}N(N-1)$
Total	2 + 2N^2 to 2 + 5/2N^2 - 1/2N

Asymptotic notations: Comparing algorithms

- Consider two algorithms, A and B, for solving a given problem.
- Let the running times of the algorithms be $T_a(n)$ and $T_b(n)$ for problem size n.
- Suppose the problem size is n_0 and

$$T_a(n_0) < T_b(n_0)$$

Then algorithm A is better than algorithm B for **problem size** n_O .

Comparing algorithms

lf

$$T_a(n) < T_b(n)$$

for all $n \geq n_0$

Then algorithm A is better than algorithm B regardless of the problem size

Comparing algorithms

For algorithm analysis, we emphasize on the operation count's order of growth for <u>large input</u> sizes

To compare and rank the order of growth (for comparing the efficiency of different algorithms), we use Asymptotic notations.

Note: the difference in running times on small inputs cannot really distinguish efficient algorithms from inefficient ones. Interested in large values of input, n.

Asymptotic notations

In comparing algorithms, consider the asymptotic behaviour of the two algorithms for large problem sizes, under worst-case.

Big-Oh notation: used to characterize the asymptotic behavior of functions.

Revision on Big-O

- Informal way of thinking about Big-O Notation:
- O(1): Nightcrawler teleport
- O(lg(n)): train
- O(n): taxi
- O(n²): bus
- O(n³): cycling
- O(n⁴): walking

Revision on Big-O

- Informal way of thinking about Big-O Notation:
- Big-O is taking the taxi during peak hours.
- Big- Ω is taking a taxi that drives 120km/h

SINGAPORE INSTITUTE OF TECHNOLOGY

(the "O" stands for "order of")

Big-Oh Example: 1-Sum


```
def count(a, N):
    sum = 0
    for i in range(N):
        if a[i] == 0:
            sum += 1
    return sum
```

Maximum total operations: 4n + 2.

Prove that (4n + 2) is O(n).

Proof

Need to prove this condition:

$$4n + 2 \le kn$$
 for all $n \ge n_0$.
Can we find k (> 0) and n_0 ?

$$\Rightarrow 4n + 2 \le kn$$

$$\Rightarrow (k - 4)n \ge 2$$

$$\Rightarrow n \ge \frac{2}{k - 4}$$

$$\Rightarrow \text{Pick k} = 5 \text{ and } n_0 = 2, \text{ gives:}$$

$$4n + 2 \le 5n,$$

$$for all n \ge 2.$$
∴ Proven.

We say that the worst case run-time of 1-Sum is O(n).

Big-Oh Example: 2-SUM

Maximum

total operations:

$$\frac{1}{2}n(5n+6) + \frac{3}{2}$$

Prove that

$$\frac{1}{2}n(5n+6) + \frac{3}{2}$$
 is $O(n^2)$.

Proof

Need to prove this condition:

$$\frac{1}{2}n(5n+6) + \frac{3}{2} \le \text{kn}^2 \text{ for all } n \ge n_0.$$

i.e. $5n^2 + 6n + 3 \le 2kn^2$.
Can we find $k \ (> 0)$ and n_0 ?

We have:

For all
$$n \ge 1$$
,
 $\Rightarrow 5n^2 + 6n + 3 \le 5n^2 + 6n^2 + 3n^2$
 $\Rightarrow 5n^2 + 6n + 3 \le 14n^2$

Compare
$$(5n^2 + 6n + 3)/2 \le kn^2$$

 $5n^2 + 6n + 3 \le 2kn^2$

$$\Rightarrow$$
 2k=14

$$\Rightarrow$$
 pick k = 7 & n_0 = 1, gives:

$$\frac{1}{2}n(5n+6) + \frac{3}{2} \le 7n^2 \text{ for all } n \ge 1.$$

$$\therefore Proven.$$

Big-Oh Rules

If f(n) is a polynomial of degree d, then f(n) is $O(n^d)$.

- Drop lower-order terms
- Drop constant factors

Example:

$$f(n) = 8n^6 + 7n^4 + 5n^2 + 2n + 16$$
$$f(n) = O(n^6)$$

Big-Oh and Growth Rate

The big-Oh notation gives an upper bound on the growth rate of a function.

The statement

"f(n) is O(g(n))"

means that the growth rate of f(n) is no more than the growth rate of g(n)

Common order-of-growth

SINGAPORE INSTITUTE OF TECHNOLOGY

Graphical illustration

The set of functions 1, logN, \sqrt{N} , N, NlogN, N^2 , N^3 and 2^N suffices to describe the order of growth of most common algorithms.

Common order-of-growth

Numeric illustration

	lg N	lg²N	√ N	N	N lg N	N lg² N	N 3/2	N ²
1								
i	3	9	3	10	30	90	30	100
1	6	36	10	100	600	3.600	1.000	10.000
1	9	81	31	1.000	9.000	81.000	31.000	1.000.000
1	13	1 1 169	100	10.000	130.000	1.690.000	1.000.000	100.000.000
1	16	256	316	100.000	1.600.000	25.600.000	31.600.000	10 Million
1	19	361	1.000	1.000.000	19.000.000	361.000.000	1 Million	1 1 Billion

In this table:

lg N means log₂ N.

 $\lg^2 N$ means $(\lg N)^2$ or $(\log_2 N)^2$.

Common order-of-growth

SINGAPORE INSTITUTE OF TECHNOLOGY

Algorithm or program code illustration

order of growth	name	typical code framework	description	example
1	constant	a = b + c;	statement	add two numbers
log N	logarithmic	while (N > 1) { N = N / 2; }	divide in half	binary search
N	linear	for (int i = 0; i < N; i++) { }	loop	find the maximum
N log N	linearithmic	[see mergesort lecture]	divide and conquer	mergesort
N ²	quadratic	<pre>for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) {</pre>	double loop	check all pairs
N ³	cubic	<pre>for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) for (int k = 0; k < N; k++) {</pre>	triple loop	check all triples
2 ^N	exponential	[see combinatorial search lecture]	exhaustive search	check all subsets

Growth Rate: Practical Implication

growth rate	name		effect on a program that runs for a few seconds		
		description	time for 100x more data	size for 100x faster computer	
1	constant	independent of input size	-	-	
log N	logarithmic	nearly independent of input size	-	-	
N	linear	optimal for N inputs	a few minutes	100x	
N log N	linearithmic	nearly optimal for N inputs	a few minutes	100×	
N ²	quadratic	not practical for large problems	several hours	10×	
N³	cubic	not practical for medium problems	several weeks	4-5x	
2 ^N	exponential	useful only for tiny problems	forever	1x	

Types of Analyses

- Worst case. Upper bound on cost.
 - Determined by "most difficult" input.
 - Provides a guarantee for all inputs.
- Best case. Lower bound on cost.
 - Determined by "easiest" input.
 - Provides a goal for all inputs.
- Average case. Expected cost for random input.
 - Needs a model for "random" input.
 - Provides a way to predict performance.

Theory of Algorithms

- Upper bound.
 - Performance guarantee of algorithm for any input.
- Lower bound.
 - Proof that no algorithm can do better.
- Optimal algorithm.
 - Lower bound = upper bound (to within a constant factor).

Big-Oh Notation - upper bound

Big-Oh Notation - upper bound

Big-Omega Notation - lower bound

Big-Theta Notation - optimal bound

Properties of Asymptotic

Suppose we know that

$$f_1(n) = O(g_1(n))$$

 $f_2(n) = O(g_2(n))$

What can we say about the asymptotic behavior of the sum and the product of $f_1(n)$ and $f_2(n)$?

Properties of Asymptotic

Suppose we know that

$$f_1(n) = O(g_1(n))$$

 $f_2(n) = O(g_2(n))$

Theorem 1:

$$f_1(n) + f_2(n) = O(\max(g_1(n), g_2(n)))$$

Consider the functions

$$f_1(n) = n^3 + n^2 + n + 1 = O(n^3)$$
 and $f_2(n) = n^2 + n + 1 = O(n^2)$

By Theorem 1, the asymptotic behavior of the sum

$$f_1(n) + f_2(n)$$
 is $O(max(n^3, n^2))$.
 $\Rightarrow f_1(n) + f_2(n)$ is $O(n^3)$.

Properties of Asymptotic

Suppose we know that

$$f_1(n) = O(g_1(n))$$

 $f_2(n) = O(g_2(n))$

Theorem 2:

$$f_1(n) \times f_2(n) = O(g_1(n) \times g_2(n))$$

Consider the functions

$$f_1(n) = n^3 + n^2 + n + 1 = O(n^3)$$
 and $f_2(n) = n^2 + n + 1 = O(n^2)$

By Theorem 2, the asymptotic behavior of the product

$$f_1(n) \times f_2(n)$$
 is $O(n^3 \times n^2)$.

$$\Rightarrow f_1(n) \times f_2(n)$$
 is $O(n^5)$.

General Plan for Algo Run-time Analysis

- 1. Decide on parameter n indicating input size.
- 2. Identify algorithm's basic operation $cost\ model$.
- 3. Set up a sum expressing the *number of times* the basic operation is executed.
- 4. Simplify the sum using standard formulas and rules to determine big-Oh of the running time.

Example 1: O(n)

 Provide a Big-oh notation (means an upper bound or a worst case analysis) for the run-time of the following algorithm

```
def funcA(n):
    sum = 0
    x = n*[100*random.random()]
    for i in range(n):
        sum += x[i]
    return sum
```

Example 1: O(n)


```
def funcA(n):
    sum = 0
    x = n*[100*random.random()]
    for i in range(n):
        sum += x[i]
    return sum
```

- 1. Input size: n
- 2. Basic operations:Statements in the *for* loop
- 3. Number of times the basic operations are executed: *n*
- 4. According to Big-Oh rules, the runtime of the algorithm is O(n), i.e. *Linear* run-time

Example 2: O(lg(n))


```
def funcB(n):
    sum = 0
    x = n*[100*random.random()]
    count = 1
    while count<n:
        sum += x[count]
        count=count*2
    return sum</pre>
```

- 1. Input size: *n*
- 2. Basic operations:Statements in the *while*loop
- 3. Number of times the basic operations are executed: 2*lg(n)
- 4. According to Big-Oh rules, the runtime of the algorithm is $O(\lg(n))$, i.e. *Logarithmic* run-time

Example 3: $O(n^2)$


```
def funcC(n):
    sum = 0
    x = [ n*[100*random.random()] for i in range(n)]
    for i in range(n):
        for j in range(n):
            sum += x[i][j]
    return sum
```

- 1. Input size: *n*
- 2. Basic operations: Statements in the double nested *for* loop
- 3. Number of times the basic operations are executed: $n*n = n^2$
- 4. According to Big-Oh rules, the runtime of the algorithm is $O(n^2)$, i.e. *Quadratic* run-time

Example 4: $O(n^3)$

- 1. Input size: *n*
- 2. Basic operations: Statements in the triple nested *for* loop
- 3. Number of times the basic operations are executed: $n*n*n = n^3$
- 4. According to Big-Oh rules, the runtime of the algorithm is $O(n^3)$, i.e. *Cubic* run-time

Example 5: $O(n^2)$


```
def funcE(n):
    sum = 0
    x = [ n*[100*random.random()] for i in range(n)]
    for i in range(n):
        for j in range(i+1):
            sum += x[i][j]
    return sum
```

- 1. Input size: *n*
- 2. Basic operations: Statements in the doubly nested for loop
- 3. Number of times the basic operations are executed:

```
= 1+2+3+...+(n-2)+(n-1)+n
= \frac{1}{2}n(n+1)
= \frac{1}{2}(n^2+n)
```

1. According to Big-Oh rules, the runtime of the algorithm is $O(n^2)$, i.e. *Quadratic* run-time

Example 6: $O(2^n)$


```
def fib(n):
    if n==1 or n ==2:
        return 1
    else:
        return fib(n-1)+fib(n-2)
```

- 1. Input size: *n*.
- 2. Basic operations: Recursive call with two sub-branches.
- 3. The runtime of the algorithm is $O(2^n)$, i.e. *Exponential* run-time.

