Title

Francisco Carlos Trucco Dalmas

October 27, 2022

Contents

Contents	1
1 Exercises Chapter 1	3
Bibliography	q

CHAPTER ONE

Exercises Chapter 1

Exercise 1.1.1

$$\frac{\frac{\alpha \Rightarrow \alpha}{\alpha, \beta \Rightarrow \alpha} (w \Rightarrow)}{\frac{\alpha \Rightarrow \beta \rightarrow \alpha}{\alpha \Rightarrow \beta \rightarrow \alpha} (\Rightarrow \rightarrow)}$$

$$\frac{\Rightarrow \alpha \rightarrow (\beta \rightarrow \alpha)}{\Rightarrow \alpha \rightarrow (\beta \rightarrow \alpha)} (\Rightarrow \rightarrow)$$

Exercise 1.1.2

$$\frac{\alpha \Rightarrow \alpha}{\beta \Rightarrow \beta} \frac{\beta \Rightarrow \beta}{\beta, \beta \rightarrow \gamma \Rightarrow \gamma} (\rightarrow \Rightarrow)$$

$$\frac{\alpha \Rightarrow \alpha}{\beta \rightarrow \gamma, \alpha \rightarrow \beta, \alpha \Rightarrow \gamma} (\rightarrow \Rightarrow)$$

$$\frac{\alpha \rightarrow (\beta \rightarrow \gamma), \alpha \rightarrow \beta, \alpha, \alpha \Rightarrow \gamma}{\alpha \rightarrow (\beta \rightarrow \gamma), \alpha \rightarrow \beta, \alpha \Rightarrow \gamma} (c \Rightarrow)$$

$$\frac{\alpha \rightarrow (\beta \rightarrow \gamma), \alpha \rightarrow \beta, \alpha \Rightarrow \gamma}{\alpha \rightarrow (\beta \rightarrow \gamma), \alpha \rightarrow \beta \Rightarrow \alpha \rightarrow \gamma} (\Rightarrow \rightarrow)$$

$$\frac{\alpha \rightarrow (\beta \rightarrow \gamma), \alpha \rightarrow \beta \Rightarrow \alpha \rightarrow \gamma}{\alpha \rightarrow (\beta \rightarrow \gamma) \Rightarrow (\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma)} (\Rightarrow \rightarrow)$$

Exercise 1.2.1

$$\frac{\frac{\stackrel{\alpha \Rightarrow \alpha}{\Rightarrow \alpha, \neg \alpha} (\Rightarrow \neg)}{\Rightarrow \alpha, \alpha \vee \neg \alpha} (\Rightarrow \vee 2)}{\stackrel{\beta \alpha \vee \neg \alpha, \alpha \vee \neg \alpha}{\Rightarrow \alpha \vee \neg \alpha} (\Rightarrow \vee 1)}$$

Exercise 1.2.2

$$\frac{\frac{\alpha \Rightarrow \alpha}{\alpha, \beta \Rightarrow \alpha} (w \Rightarrow) \quad \frac{\beta \Rightarrow \beta}{\alpha, \beta \Rightarrow \beta} (w \Rightarrow)}{\frac{\alpha, \beta \Rightarrow \alpha \land \beta}{\alpha, \beta, \neg(\alpha \land \beta) \Rightarrow} (\neg \Rightarrow)}$$

$$\frac{\frac{\alpha, \beta, \neg(\alpha \land \beta) \Rightarrow}{\alpha, \beta, \neg(\alpha \land \beta) \Rightarrow \neg\alpha} (\Rightarrow \neg)}{\frac{\neg(\alpha \land \beta) \Rightarrow \neg\alpha \lor \neg\beta}{\neg(\alpha \land \beta) \Rightarrow \neg\alpha \lor \neg\beta} (\Rightarrow \lor 1)}$$

$$\frac{\neg(\alpha \land \beta) \Rightarrow \neg\alpha \lor \neg\beta, \neg\alpha \lor \neg\beta}{\neg(\alpha \land \beta) \Rightarrow \neg\alpha \lor \neg\beta} (\Rightarrow \lor 2)$$

$$\frac{\neg(\alpha \land \beta) \Rightarrow \neg\alpha \lor \neg\beta}{\neg(\alpha \land \beta) \Rightarrow \neg\alpha \lor \neg\beta} (\Rightarrow c)$$

Exercise 1.2.3

$$\frac{\frac{\alpha \Rightarrow \alpha}{\alpha \Rightarrow \beta, \alpha} (\Rightarrow w)}{\Rightarrow \alpha \rightarrow \beta, \alpha} (\Rightarrow w)
\frac{\Rightarrow \alpha \rightarrow \beta, \alpha}{\Rightarrow \alpha} (\Rightarrow x)
\frac{(\alpha \rightarrow \beta) \rightarrow \alpha \Rightarrow \alpha, \alpha}{(\alpha \rightarrow \beta) \rightarrow \alpha \Rightarrow \alpha} (\Rightarrow c)$$

Exercise 1.3

Lemma 1.1. The following propositions are equivalent:

- (a) The sequent $\alpha_1, \alpha_2 \Rightarrow \beta_1, \beta_2$ is provable in **LK**.
- (b) The sequent $\alpha_1 \wedge \alpha_2 \Rightarrow \beta_1 \vee \beta_2$ is provable in **LK**.
- (c) The sequent $\Rightarrow \alpha_1 \land \alpha_2 \rightarrow \beta_1 \lor \beta_2$ is provable in **LK**.

Proof. Now we will show that (a) implies (b). Assume that $\alpha_1, \alpha_2 \Rightarrow \beta, \beta_2$ is provable in **LK**. Then there exists a proof for the sequent. Using this proof, we can construct the following proof of $\alpha_1 \land \alpha_2 \Rightarrow \beta \lor \beta_2$:

$$\frac{\frac{\alpha_{1}, \alpha_{2} \Rightarrow \beta_{1}, \beta_{2}}{\alpha_{1}, \alpha_{1} \land \alpha_{2} \Rightarrow \beta_{1}, \beta_{2}} (\land 2 \Rightarrow)}{\frac{\alpha_{1} \land \alpha_{2}, \alpha_{1} \land \alpha_{2} \Rightarrow \beta_{1}, \beta_{2}}{\alpha_{1} \land \alpha_{2} \Rightarrow \beta_{1}, \beta_{2}} (c \Rightarrow)}} (\land 1 \Rightarrow)$$

$$\frac{\frac{\alpha_{1} \land \alpha_{2} \Rightarrow \beta_{1}, \beta_{2}}{\alpha_{1} \land \alpha_{2} \Rightarrow \beta_{1}, \beta_{1} \lor \beta_{2}} (\Rightarrow \lor 2)}{\frac{\alpha_{1} \land \alpha_{2} \Rightarrow \beta_{1} \lor \beta_{2}, \beta_{1} \lor \beta_{2}}{\alpha_{1} \land \alpha_{2} \Rightarrow \beta_{1} \lor \beta_{2}} (\Rightarrow \lor 1)}}$$

If we replace the leaf containing the sequent $\alpha_1, \alpha_2 \Rightarrow \beta, \beta_2$ with the proof of this same sequent, we obtain a valid proof of $\alpha_1 \land \alpha_2 \Rightarrow \beta \lor \beta_2$.

Now we will show that (b) implies (c). Similarly as before. Assume that $\alpha_1 \land \alpha_2 \Rightarrow \beta \lor \beta_2$ is provable in **LK**. Then there exists a proof for the sequent. Using this proof, we can construct the following proof of $\alpha_1\alpha_2 \Rightarrow \beta \lor \beta_2$:

Exercise 1.4

If we accept this generalized cut rule we can obtain, for example, a proof for the empty sequent \Rightarrow :

$$\frac{\stackrel{\alpha \Rightarrow \alpha}{\Rightarrow \alpha, \neg \alpha} (\Rightarrow \neg) \qquad \stackrel{\alpha \Rightarrow \alpha}{\xrightarrow{\alpha, \neg \alpha \Rightarrow}} (\neg \Rightarrow)}{\Rightarrow} (cut)$$

But this should not be possible, as the interpretation of the empty sequent \Rightarrow is that "a contradiction follows from no assumptions".

Exercise 1.5

As explained in the book, it is enough to show that:

- Every initial sequent is a tautology
- For each rule of **LK**, if (each of) the upper sequent(s) is a tautology then the lower sequent is a tautology.

The initial sequents are always of the form $\alpha \Rightarrow \alpha$. But this is a tautology as the corresponding formula is $\alpha \to \alpha$ is a tautology. To see this notice that for any $a \in \{0,1\}$ it is the case that $a \to a = 1$, and thus for any valuation h, it holds that $h(\alpha \to \alpha) = h(\alpha) \to h(\alpha) = 1$.

Now we will prove that for each rule of **LK**, if each of the upper sequents is a tautology then the lower sequent is also a tautology. More precisely, we will show that if each of the corresponding formulae of the upper sequents is a tautology then the corresponding formula of the lower sequent is a tautology.

Given a multiset of formulae Δ , we will write $\bigwedge \Delta$ instead of $\bigwedge_{\alpha \in \Delta} \alpha$ and $\bigvee \Delta$ instead of $\bigvee_{\alpha \in \Delta} \alpha$.

Rule
$$(\lor \Rightarrow)$$

Assume that $\alpha \land \wedge \Gamma \rightarrow \bigvee \Pi$ and that $\beta \land \wedge \Gamma \rightarrow \bigvee \Pi$ are both tautologies. We will show that $(\alpha \lor \beta) \land \wedge \Gamma \rightarrow \bigvee \Pi$ is a tautology.

Let *h* be an arbitrary valuation. If $h(\bigvee \Pi) = 1$, then:

$$h((\alpha \vee \beta) \wedge \bigwedge \Gamma \to \bigvee \Pi) = h((\alpha \vee \beta) \wedge \bigwedge \Gamma) \to h(\bigvee \Pi) = h((\alpha \vee \beta) \wedge \bigwedge \Gamma) \to 1 = 1$$

Assume now that $h(\bigvee \Pi) = 0$. Given that the upper sequents are tautologies we have that:

$$h((\alpha \land \bigwedge \Gamma \to \bigvee \Pi) = 1 = h((\beta \land \bigwedge \Gamma \to \bigvee \Pi)$$

Using the fact that $h(\lor \Pi) = 0$, it is easy to obtain that $h(\alpha) = 0$, $h(\beta) = 0$ and that $h(\land \Gamma) = 0$. Then $h((\alpha \lor \beta) \land \land \Gamma) = 0$.

And thus:

$$h((\alpha \lor \beta) \land \bigwedge \Gamma \rightarrow \bigvee \Pi) = h((\alpha \lor \beta) \land \bigwedge \Gamma) \rightarrow h(\bigvee \Pi) = 0 \rightarrow h(\bigvee \Pi) = 1$$

Rule (cut)

Assume that $\alpha \land \Lambda \Gamma \to \bigvee \Pi$ and that $\beta \land \Lambda \Gamma \to \bigvee \Pi$ are both tautologies. We will show that $(\alpha \lor \beta) \land \Lambda \Gamma \to \bigvee \Pi$ is a tautology.

Let *h* be an arbitrary valuation. If $h(\bigvee \Pi) = 1$, then:

$$h((\alpha \vee \beta) \wedge \bigwedge \Gamma \to \bigvee \Pi) = h((\alpha \vee \beta) \wedge \bigwedge \Gamma) \to h(\bigvee \Pi) = h((\alpha \vee \beta) \wedge \bigwedge \Gamma) \to 1 = 1$$

Assume now that $h(\bigvee \Pi) = 0$. Given that the upper sequents are tautologies we have that:

$$h((\alpha \land \bigwedge \Gamma \to \bigvee \Pi) = 1 = h((\beta \land \bigwedge \Gamma \to \bigvee \Pi)$$

Using the fact that $h(\lor \Pi) = 0$, it is easy to obtain that $h(\alpha) = 0$, $h(\beta) = 0$ and that $h(\land \Gamma) = 0$. Then $h((\alpha \lor \beta) \land \land \Gamma) = 0$.

And thus:

$$h((\alpha \vee \beta) \wedge \bigwedge \Gamma \to \bigvee \Pi) = h((\alpha \vee \beta) \wedge \bigwedge \Gamma) \to h(\bigvee \Pi) = 0 \to h(\bigvee \Pi) = 1$$

The other rules are similar.

Exercise 1.6		
Exercise 1.7		
Exercise 1.8		
Exercise 1.9		
Exercise 1.10		
Exercise 1.11		
Exercise 1.12		
Exercise 1.13		
Exercise 1.14		
Exercise 1.15		

.

Bibliography