Lecture Outline

Reminders to self:

- ☐ Turn on lecture recording to Cloud
- ☐ Turn on Zoom microphone
- Last Lecture
 - Continued Analysis of clocked sequential circuits
 - Analysis of Moore machine by Transition Tables & State Graphs
 - Designed a 2-flip-flop Moore machine using State Graph & Transition Table
 - Started Analysis of Mealy machine by Transition Tables & State Graphs
- Today's Lecture
 - Continue Analysis of clocked sequential circuits
 - Finish Analysis of Mealy machine by Transition Tables & State Graphs
 - Timing charts from State Tables & Graphs
 - General models for clocked sequential circuits
 - Start design of clocked sequential circuits

Handouts and Announcements

Announcements

ECE2060

- Homework Problem HW 13-2
 - I expect to post on Carmen this afternoon
 - Due 11:59pm Thursday 3/30
- Homework Reminder
 - HW 12-5 now past due (11:25am today)
 - HW 13-1 Due: 11:25am Wednesday 3/29
- Read for Friday: pages 463-472, 149-151
- Participation Quiz 10 available 12:25pm today
 - Due 12:25pm tomorrow
 - Available additional 24hr with late penalty

Handouts and Announcements

Announcements

ECE2060

- Mini-Exam 5 Reminder
 - Available 5pm Monday 3/27 through 5:00pm Tuesday 3/28
 - Due in Carmen PROMPTLY at 5:00pm on 3/28
 - Designed to be completed in ~36 min, but you may use more
 - When planning your schedule:
 - I recommend building in 10-15 min extra
 - To allow for downloading exam, signing and dating honor pledge, saving solution as pdf, and uploading to Carmen
 - I also recommend not procrastinating
- Exam review topics available on Carmen
- Sample Mini-Exams 6 and 7 from Au20 also available

COLLEGE OF ENGINEERING

ECE2060

Analysis by Transition Tables & Graphs

Repeat Mealy example (last lecture) using these techniques:

•
$$J_A = XB$$

•
$$K_A = X$$

•
$$J_B = X$$

•
$$K_B = XA$$

2. Derive

next-state equations for each flip-flop

from its input equations^X

(using flip-flop next-state relations)

$$\begin{array}{c}
B' - \\
X - \\
A - \\
X' - \\
B'
\end{array}$$

$$Z = XB' + XA + X'A'B$$

J-K:
$$Q^{+} = JQ' + K'Q$$

•
$$A^{+} = XBA' + X'A$$

•
$$B^+ = XB' + (XA)'B = XB' + X'B + A'B$$

COLLEGE OF ENGINEERING

ECE2060

Analysis by Transition Tables & Graphs

Repeat Mealy example (last lecture) using these techniques:

+XA + X'A'B

COLLEGE OF ENGINEERING

ECE2060

Analysis by Transition Tables & Graphs

Repeat Mealy example (last lecture) using these techniques:

4. Combine these maps to form the transition table that gives the next state of the flip-flop as a function of current state and circuit inputs

	A ⁺ B	+	Z		Present	Next State	Preser		
AB	X = 0	1	X = 0	1	State	X = 0 1	X = 0	1	
00	00	01	0	1	S ₀	S ₀ S ₁	0	1	
01	01	11	1	0	S ₁	S_1 S_2	1	0	
11	11	00	0	1	S ₂	S_2 S_0	0	1	
10	10	01	0	1	S ₃	S ₃ S ₁	0	1	6

COLLEGE OF ENGINEERING

ECE2060

Analysis by Transition Tables & Graphs

Repeat Mealy example (last lecture) using these techniques:

	A^+B^-	Z		
AB	X = 0	1	X = 0	1
00	00	01	0	1
01	01	11	1	0
11	11	00	0	1
10	10	01	0	1

		Present
Present	Next State	Output
State	X = 0 1	X = 0 1
So	S ₀ S ₁	0 1
51	S_1 S_2	1 0
S2	S_2 S_0	0 1
S ₃	S ₃ S ₁	0 1

COLLEGE OF ENGINEERING

ECE2060

Analysis by Transition Tables & Graphs

Repeat Mealy example (last lecture) using these techniques:

	A^+B^-	+	Z	
AB	X = 0	1	X = 0	1
00	00	01	0	1
01	01	11	1	0
11	11	00	0	1
10	10	01	0	1

		Present
Present	Next State	Output
State	X = 0 1	X = 0 1
So	S ₀ S ₁	0 1
51	S_1 S_2	1 0
S2	S_2 S_0	0 1
S ₃	S ₃ S ₁	0 1

But look at S_3 out here without any transitions pointing into it

State Graphs

ECE2060

Comparison of Moore vs Mealy State Graphs

- This labeling assumes that output is only on active clock edge
- Recall that doing so eliminates errors due to
- Thus no provision for extra input changes that produce false outputs included on state graphs

State Tables & Graphs

Procedure to Construct and Interpret Timing Charts:

- 1. Remember that a state change can only occur after the active edge of the clock
- 2. The input should normally be stable immediately before and after the clock edge
 - Before: For longer than at least the time See D flip-flop lecture or
 - After: For longer than at least the time Figure 11-20 in textbook
- 3. Output changes:

ECE2060

- Moore: only when state change
- Mealy: can change when input changes, as well as when state changes
 - False output may occur between when state changed and when input changes to next value
 - Output may be temporarily incorrect until new input value is applied
- 4. False outputs difficult to determine from state graphs. When constructing timing charts for Mealy circuits use either:
 - Signal tracing, or
 - State tables

State Tables & Graphs

Procedure to Construct and Interpret Timing Charts:

- 5. When using a Mealy state table to make a timing chart:
 - a) For first input, read present output and plot it
 - b) Read next state and plot it, following active edge of clock
 - c) Go to row in table corresponding to next state, read output from old input column, and plot it (this may be a false output)
 - d) Change to next input and repeat steps a), b) and c)
 - Including step c) assumes a fully detailed timing chart is being constructed
 - Step c) may be omitted if goal is just the correct output sequence.
- 6. For Mealy circuits the best time to read output is just before active clock edge
 - Input must be stable at that time
 - Thus output will be correct then

State Tables & Graphs

TopHat

Is this Moore or Mealy?

- A. State S_0 , input = 0 Output Z = 1
- B. State S_1 , input = 0 False output Z = 0
- C. State S_1 , input = 1 False output Z = 1

Using input & output just before active clock edge:

12

X = Z = Z

- input = 0 Clock

 False output Z = 0D. State S_1 , input = 1

 Output Z = 1
- E. State S_1 , input = 1 False Output Z = 1
- F. State S_1 , input = 0 Output Z = 0(To State S_0)

(before rising edge of clock).

General Models for Sequential Circuits

- A sequential circuit can be divided into two parts
 - Flip-flops (which serve as
 - Combinational logic (which realizes
- Combinational logic may be implemented
 - With gates (all of our examples so far)
 - With a , or Alternative approaches previously introduced
 - With a or for implementing combinational logic

COLLEGE OF ENGINEERING

ECE2060

General Models for Sequential Circuits

COLLEGE OF ENGINEERING

ECE2060

General Models for Sequential Circuits

- Determining minimum clock period
 - Must allow for
 - Propagation delay, t_p , from active clock edge until flip-flop outputs are stable
 - Longest propagation delay through combinational logic, t_c
 - Flip-flop setup time, t_{su} : time before active clock edge that inputs must be valid
 - Assuming the inputs are stable no later than $t_c + t_{su}$ before the active clock edge, the minimum clock period is

$$T_{clk}(min) = t_p + t_c + t_{su}$$

• If the inputs are not stable that soon, then the time required for the inputs to be stable, t_x , is $> t_p$ and must replace t_p

$$T_{clk}(min) = t_x + t_c + t_{su}$$

- Clock signals also travel different distances and may arrive at different times
 - Characterized by clock skew, t_{sk}
 - May have to be added to period, or put constraints on t_p and t_c
 - This is an FYI varies with details of situation. Be aware clock skew exists.

COLLEGE OF ENGINEERING

ECE2060

General Models for Sequential Circuits

Mealy Design Example: Sequence Detector

- Sequence Detector Description:
 - Circuit that
 - Examines a serial string of 0's and 1's applied to the *X* input
 - Generates an output Z = 1 only when a prescribed input sequence occurs
 - Assume that the input *X* will change only between clock pulses
 - For this example, the prescribed input sequence is 101
 - Any input sequence ending in 101 produces Z = 1
 - If output Z = 1 you know that the last three serial input bits were 101
 - Circuit will not reset when a 1 output occurs
 - Sample input/output sequence:

17

Mealy Design Example: Sequence Detector

- Sequence Detector: Any input sequence ending in 101 produces Z=1
 - Initially start circuit in a reset state S_0
 - Since prescribed sequence does not start with 0, if in S_0 and zero received, then
 - If in S_0 and 1 received, must remember that. Go to new state
 - If in S_1 and 0 received, must remember that "10" has been received.
 - If in S_1 and 1 received, still have only first "1" bit in "101" pattern.
 - If in S_2 and 0 received, "00" isn't desired pattern, nor first "1".
 - If in S_2 and 1 received
 - Have full "101" pattern:
 - And have first "1" of next pattern
 - This is the only transition for which should be output
 - Outputs for all other transitions should be

THE OHIO STATE UNIVERSITY COLLEGE OF ENGINEERING

ECE2060

Mealy Design Example: Sequence Detector

"remember" three states

The Transition Table can be created from the State Table

	A^+	B^+	Z	
AB	X = 0	X = 1	X = 0	X = 1
00	00	01	0	0
01	10	01	0	0
10	00	01	0	1

Remember, output is present as soon as *X* changes. Present before state change at active clock edge.

COLLEGE OF ENGINEERING

ECE2060

Mealy Design Example: Sequence Detector

D Flip-Flop Next-State
Maps and the Output
Map can be created from
the Transition Table

le	2	A^+	B ⁺	Z		
Table		X = 0	X = 1	X = 0	X = 1	
tion	00 01 10	00	01	0	0	
ansi	01	10	01	0	0	
Tra	10	00	01	0	1	

COLLEGE OF ENGINEERING

ECE2060

Mealy Design Example: Sequence Detector

$$A^+ = X'B$$

$$B^+ = X$$

$$Z = XA$$

