TALLER INTRODUCCIÓN A LA CIENCIA DE DATOS

Mtro. David Martínez Galicia

davidgalicia@outlook.es

Jornada Académica de Ingenierías

Universidad de Xalapa

Presentación

Divulgación

Docencia / Investigación

Creatividad

Agenda

- Ciencia de datos
- Dos pesitos de programación
- Entender el contexto
- Jugar con los datos
- Hacer las preguntas correctas
- Presentar los resultados

Ciencia de datos

• La ciencia de datos es un campo emergente que se puede definir como la intersección de la computación, la estadística y diversos campos de aplicación.

• Tiene como objetivo extraer información significativa.

Ciencia de datos

Analítica de clientes para entender y proveer ofertas oportunas.

Detección de fraude para identificar, rastrear y prevenir el fraude.

Diagnóstico médico para observar síntomas e identificar patologías.

 R es un lenguaje de programación que nos permite describir los pasos para procesar los datos.

• Rstudio es un entorno de programación para R, es decir, es un conjunto de herramientas que nos facilita la programación.

• Instrucciones, instaladores y datos.

https://goo.su/6SlekUI

Nombre:

Juanita Hernández

Edad:

27 años

Donante de órganos:

Verdadero

 Un dato es la cantidad mínima de información, por sí solo no tiene sentido.

• Existen varios **tipos** como: cadenas de texto, números, valores lógicos, entre otros.

• Variable: espacio donde se almacena un dato.

• Vector: estructura en forma de lista que almacena datos.

• Función: código que realiza una tarea, puede recibir datos.

• Librería: Conjunto de funciones y herramientas con un objetivo.

Paso 1: Crear un nuevo archivo o script.

• Ctrl + enter = ejecutar línea.

 Para poder analizar una base de datos hay que saber de dónde provienen los datos, su significado y tener mucha curiosidad.

• De ahora en adelante, seremos unos expertos en ciclones.

 Los ciclones son un fenómeno meteorológico que se producen cuando el aire caliente y húmedo en océanos tropicales se eleva para formar tormentas eléctricas que giran en espiral.

• A medida que un ciclón gira, atrae más aire caliente y se fortalece. Los ciclones se pueden nombrar dependiendo de la velocidad de sus vientos. En especial, los huracanes son los más destructivos.

 Aunque los ciclones pueden generar grandes pérdidas materiales y humanas, ayudan a mitigar sequías y equilibrar la temperatura global.

 La temporada comienza el 15 de mayo y termina el 30 de noviembre.

 La Oficina Nacional de Administración Oceánica y Atmosférica (NOAA) de los EE. UU. guarda registro de la trayectoria y características de los ciclones tropicales desde 1851.

- La NOAA ofrece dos bases de datos de ciclones.
- Una para los ciclones del océano atlántico y otra para el Pacífico.
- https://www.nhc.noaa.gov/data/#hurdat

 En lo que respecta, ocuparemos una versión que contiene los datos de ambas bases.

¿Qué datos contiene?

- Nombre.
- Año, mes, día y hora.
- Latitud y longitud.
- Estado.
- Viento y presión.
- Radios de la tormenta.

• Para empezar a jugar necesitamos:

- 1. Un archivo nuevo.
- 2. Cargar las librerías que ocuparemos.
- 3. Definir la carpeta en la que trabajaremos.
- 4. Cargar los datos.

• Crear un archivo nuevo, cargar tidyverse y ejecutar la línea.

- Crear una carpeta para guardar los datos y el archivo de R.
- Obtener su dirección, por ejemplo:
- C:\Users\David\Desktop\

Definir la carpeta de trabajo con la función setwd.

• Definir la carpeta de trabajo con la función setwd.

```
Untitled1* ×

Source on Save 
Source 
Source on Save 
Source 
Source
```

Leer y cargar datos usando la función read.csv.

Visualizar datos.

• ¿Cuáles serían las primeras preguntas que te harías con estos datos?

Te propongo tres:

- ¿Cuántos registros tenemos?
- ¿Cuántas tormentas han sido registradas?
- ¿Cuáles son los estados de los ciclones registrados?

• Necesitaremos más funciones para contestar esta pregunta.

- El operador \$ para seleccionar datos de una columna.
- El operador pype %>% para simplificar el código.
- La función nrow para contar el número de registros.
- La función unique para eliminar valores repetidos.
- La función length para saber el número de valores.

¿Cuántos registros tenemos?

nrow(datos)

Resultado = 83,509

¿Cuántas tormentas han sido registradas?

```
datos$nombre %>%
    unique() %>%
    length()
```

Resultado = 1,843

¿Cuáles son los estados de los ciclones registrados?

datos\$estado %>%
 unique()

Resultado = HU, TS, EX, TD, LO, DB, SD, SS, WV, ET, PT, ST, TY

Necesitamos investigar más.

- ¿Acaso no existen nombres repetidos?
- ¿Qué significan los estados?

¿Acaso no existen nombres repetidos?

- Desde que inicia el año, los huracanes comienzan a ser nombrados en orden alfabético, alternando nombres masculinos y femeninos.
- Los nombres que empiezan con q, u, x, y ó z se excluyen de la lista por ser poco comunes.
- Las listas se reutilizan cada seis años, por eso es común que cada cierto tiempo los nombres se repitan.
- Si un huracán fue muy devastador, como Katrina o Patricia, los científicos retiran ese nombre y lo sustituyen por otro.

¿Qué significan los estados?

- TD Depresión tropical (< 34 nudos)
- TS Tormenta tropical (34-63 nudos)
- HU Huracán (> 64 nudos)
- EX Ciclón extratropical (de cualquier intensidad)
- SD Depresión subtropical (< 34 nudos)
- SS Tormenta subtropical (> 34 nudos)
- LO: Sistema de baja de presión (de cualquier intensidad)
- WV Onda tropical (de cualquier intensidad)
- DB Perturbación (de cualquier intensidad)

¿Es necesario enfocarse en todos los estados?

• Visto lo visto, necesitamos modificar nuestra base de datos.

- ¿Cómo podemos evitar que se repitan los nombres?
- ¿Cómo podemos filtrar los registros por el estado?

¿Cómo podemos evitar que se repitan los nombres?

- Agregando al nombre de la tormenta el año.
- Se necesita la función mutate para modificar los datos.

```
datos <- datos %>%
    mutate(nombre = paste(nombre, año, sep = ""))
```

• Repetimos el proceso.

```
datos$nombre %>%
    unique() %>%
    length()
```

Resultado = 3,119

¿Cómo podemos filtrar los registros por el estado?

• Se necesita la función filter para seleccionar los datos.

```
datos <- datos %>%
  filter(estado == "TD" | estado == "TS" | estado == "HU")
```

Número de registros: 71,312

 Hay ocasiones en las que necesitamos crear nuevas. En este caso, por ejemplo, nos hace falta la categoría de las tormentas.

• Para facilitar aún más las cosas, vamos a agregar a la variable estado el número de categoría, pero solo a los huracanes.

Te propongo una última pregunta:

• ¿El número de tormentas y su intensidad han aumentado los últimos años?

• Necesitaremos más funciones para contestar esta pregunta.

- La función group_by para agrupar registros.
- La función summarize modificar la base de datos.

Primero determinaremos la categoría máxima de cada tormenta.

```
datos2 <- datos %>%
   group_by(año, nombre) %>%
   summarise(maxCategoria =
        ifelse(is.element("HU5", estado), "HU5",
        ifelse(is.element("HU4", estado), "HU4",
        ifelse(is.element("HU3", estado), "HU3",
        ifelse(is.element("HU2", estado), "HU2",
        ifelse(is.element("HU1", estado), "HU1",
        ifelse(is.element("TS", estado), "TS",
        ifelse(is.element("TD", estado), "TD", "NA")))))),
        .groups = "keep")
```

```
datos3 <- datos2 %>%
  group_by(año, maxCategoria) %>%
  summarise(conteo = n(), .groups = "keep") %>%
  filter(año >= 1850, año <= 2019) %>%
  mutate(decada = floor(año/10)*10) %>%
  group_by(decada, maxCategoria) %>%
  summarise(conteo = sum(conteo), .groups = "keep")
```

Ordenar las categorías.

```
datos3 <- datos3 %>% mutate(maxCategoria =
   factor(maxCategoria,
   levels = c("NA","TD","TS","HU1","HU2","HU3","HU4","HU5")))
```

Hay dos opciones:

- Usar tablas.
- Usar gráficos.

÷	decada	maxCategoria	conteo
1	1850	HU4	9
2	1850	HU3	12
3	1850	HU2	18
4	1850	TS	14
5	1860	HU4	4
6	1860	HU3	28
7	1860	HU2	17
8	1860	TS	23
9	1870	HU4	14
10	1870	HU3	14
11	1870	HU2	27
12	1870	TS	20
13	1880	HU4	15
14	1880	HU3	18
15	1880	HU2	30
16	1880	TS	26
47	1000	1004	4/

• Usaremos una gráfica de barras.

```
datos3 %>%
    ggplot(aes(x = decada, y = conteo, fill = maxCategoria)) +
    geom_col()
```


¿Qué crees que sugiere la gráfica?

49

Trayectoria de ciclones desde 1956 / Cyclone tracks since 1956

Autor / Author: David Martínez-Galicia | Twitter: @OyeDavidGalicia | Datos / Data: Atlantic and NE/NC Pacific HURDAT2 (NHC, NOAA)

