Задача. Классики

Имя входного файла: hopscotch.in или стандартый ввод Имя выходного файла: hopscotch.out или стандартный вывод

Ограничение по времени: 4 секунды Ограничение по памяти: 64 мегабайта

Маленькая девочка Полина уже не первый год ездит в ЛКШ, где участвует в различных конкурсах и турнирах. Больше всего ей запомнилось соревнование по игре в классики. Так как ЛКШ не совсем обычный лагерь, то и классики здесь особые. Напомним правила:

- 1. Поле представляет собой полоску из n клеток.
- 2. По ней можно прыгать либо влево на x, либо вправо на y клеток,. Также можно прыгнуть на месте.
- 3. Всего нужно сделать k прыжков
- 4. За пределы поля прыгать нельзя.
- 5. Для каждой клетки заданы свои числа a_i и b_i . Они означают, что, оказавшись в клетке номер i после t-го прыжка, игрок получает $a_i \cdot t + b_i$ очков.
- 6. До прыжков игрок находится в стартовой клетке s и получает за это b_s очков.

Из достоверных источников Полина узнала, что в этом году турнир по классикам тоже будет проводиться, и хочет во что бы то ни стало победить в нем, набрав как можно больше очков. Помогите ей в этом начинании, написав программу, которая по известным полю и стартовой позиции определяет максимальное число очков, которое можно получить ровно за k прыжков. Полина — умная девочка, и этой информации ей будет достаточно, чтобы понять, как достичь такого результата.

Формат входных данных

В первой строке находятся три числа: n — количество клеток в линии $(1 \le n \le 700)$, k — количество прыжков $(1 \le k \le 700)$ и s — номер стартовой клетки $(1 \le s \le n)$. Во второй строке записаны через пробел n целых чисел a_i . В третьей строке записаны через пробел n целых чисел b_i . В четвёртой строке записаны через пробел два числа x и y $(1 \le x, y \le 700)$.

Формат выходных данных

Вывести максимальное количество очков, которое можно получить после ровно k прыжков.

Примеры

hopscotch.in	hopscotch.out
3 5 2	52
1 2 3	
3 2 1	
1 1	

Замечание

Гарантируется, что в любой момент времени $0 \le t \le k$ на любой клетке неотрицательное число очков, не большее 10^6 .