MATRIUS I VECTORS

Examen parcial

5 de novembre de 2010

Exercici 1. (i) Trobeu
$$a$$
 per tal que el rang de $A = \begin{pmatrix} 3 & 0 & 2 & -2 \\ 0 & 1 & 2 & -2 \\ 2 & 0 & 1 & 1 \\ -3 & 1 & 0 & a \end{pmatrix}$ sigui 3. (4 punts)

(ii) Calculeu matrius invertibles P, Q tals que $PAQ = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ pel valor de a que hagueu trobar a (i). (6 punts)

Exercici 2. Sigui
$$A_n = (a_i^j) \in \mathcal{M}_{n \times n}(\mathbb{R})$$
 definida per $(a_i^j) = \begin{cases} -i & i = j - 1 \\ j & i = j + 1 \\ 0 & \text{altres casos} \end{cases}$

(i) Escriviu A_n en forma matricial i demostreu que és antisimètrica. (2 punts)

(ii) Demostreu que
$$\det(A_n) = \begin{cases} 0 & \text{si } n \text{ senar} \\ \prod_{p=1}^{n/2} (2p-1)^2 & \text{si } n \text{ parell.} \end{cases}$$
 (4 punts)

- (iii) Discutiu el rang de A_n segons el valor de n. (2 punts)
- (iv) Calculeu les matrius A_4^{-1} i A_{125}^{-1} quan sigui possible. (2 punts)

TEORIA

- **Tema** Definiu determinant d'una matriu quadrada, enuncieu les propietats més important i demostreu alguna d'elles a partir només de la definició (no de cap altra propietat). (7 punts)
- Qüestió 1 Siguin $A, B \in \mathcal{M}_{n \times n}(\mathbb{R})$, B invertible; proveu que $\operatorname{tr}(B^{-1}AB) = \operatorname{tr}(A)$. (1 punts)
- Qüestió 2 Donada $A \in \mathcal{M}_{4\times 3}(\mathbb{R})$, proveu que existeix sempre un sistema Ax = b incompatible. (1 punts)
- Qüestió 3 Sigui $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ tal que $Ab = \lambda b$ per una matriu columna b no nul·la, $\lambda \in \mathbb{R}$. Demostreu que $\det(A \lambda I_n) = 0$. (1 punts)