M2.2.2 Modelos Supervisados y No Supervisados

Programa Big Data y Business Intelligence

Enrique Onieva

enrique.onieva@deusto.es
https://twitter.com/EnriqueOnieva
https://www.linkedin.com/in/enriqueonieva/

Redes Neuronales

- Motivación, paralelismo con el cerebro biológico
- Funcionamiento de la Neurona Artificial
- Aprendizaje de una neurona
- Modelos y aprendizaje de estructuras de multiples capas

Motivación

- Durante varias décadas los científicos han perseguido la construcción de algoritmos capaces de procesar información al igual que el cerebro
- En la actualidad existen muchas estructuras de redes de neuronas artificiales
- Se caracterizan porque poseen propiedades como la capacidad de aprendizaje a partir de ejemplos

Motivación

- El cerebro humano, por naturaleza
 - Es capaz de reconocer patrones
 - Puede hacer asociaciones entre conceptos
 - Puede manejar información de gran complejidad
 - Es tolerante al ruido
- Un ordenador
 - Tiene una gran capacidad de cálculo
 - Puede hacer cálculos extremadamente precisos
 - Puede implementar lógica

Motivación

- Objetivo: Usar los principios de organización del cerebro para construir sistemas inteligentes.
 - RNA → Emulación (modelo matemático) del funcionamiento del cerebro a bajo nivel.
- Cerebro/RNAs
 - Sistemas masivamente paralelos formados por un gran número de elementos simples (neuronas) interconectados

Aplicaciones

- En dominios difíciles (necesidad aprendizaje)
 - Entradas/salidas muchas dimensiones o con ruido.
 - Tareas clasificación/reconocimiento de patrones.
 - Comprensión por humanos poco importante.
- Aplicaciones:
 - Reconocimiento/generación de voz
 - Reconocimiento de formas (OCR, ...)
 - Identificación personas (voz, huellas, iris,...)
 - Predicción, series temporales...
 - Clasificación, aproximación funciones, filtrado de señales...

Neurona

- Una neurona es una célula especializada del tejido nervioso que asegura la conducción y la transmisión del influjo nervioso.
 - El ser humano tiene entre 20.000 y 200.000 millones
 - Cada una con hasta 30.000 conexiones con otras
- Es la base del procesamiento del cerebro humano

Neurona

Funcionamiento

- Neurona (soma) "acumula" todos los potenciales que recibe en sus entradas (dendritas)
- Si la suma de esos impulsos es "suficiente", cambia su potencia y genera su salida en el axón que se propagará

Aprendizaje

- Las conexiones (sinapsis) pueden modificarse.
- Conexiones más o menos fuertes.
- Permite modificar comportamiento de la neurona para adaptarse a nuevas situaciones (aprendizaje)

Neurona

- Se nace con alguna estructura neuronal
 - Se crean nuevas conexiones y otras se gastan.
 - Se desarrollan por el aprendizaje de la etapa de crecimiento
 - La estructura neuronal cambia durante la vida.
 - Estos cambios consisten en reforzamiento o debilitamiento de conexiones
- El hecho de ser capaz de memorizar la cara de una persona que nos presentan, consiste en alterar "varias" sinapsis de nuestra red neuronal

Neurona Artificial

- El cerebro humano constituye una computadora muy notable, es capaz de interpretar información imprecisa suministrada por los sentidos a un ritmo increíblemente veloz.
 - Características del cerebro deseables para un sistema
 - Es robusto y tolerante a fallos: Diariamente mueren neuronas sin afectar su desempeño.
 - Es flexible:Se ajusta a nuevos ambientes por aprendizaje, no hay que programarlo.
 - Puede manejar información difusa, con ruido o inconsistente.
 - Es altamente paralelo
 - Es pequeño, compacto y consume poca energía

Neurona Artificial

Funcionamiento

- Cada neurona recibe diferentes entradas $(x_1, x_2, x_3, ...)$
- Cada señal se multiplica por un valor, denominado peso, que da una idea de la fuerza de esa conexión $(w_1, w_2, w_3, ...)$
- Se calcula una salida, por una función de Transferencia (F)
 - Función de activación
 - $a=x_1\cdot w_1+\ldots+x_n\cdot w_n+b$
 - Función de transferencia
 - $y=F(x_1\cdot w_1+\ldots+x_n\cdot w_n+b)$
 - Bias o polarización: entrada constante de magnitud 1, y peso b que se introduce en el sumador
 - ¿Os recuerda a algo?

Neurona Artificial

- La entrada (p) se multiplica por el peso (w).
- Otra entrada (1), se multiplica por un sesgo (b).
- La salida del sumador (n) se conoce como estímulo
- Va a la función de transferencia (f), la cual produce la salida (a) de la neurona.

Funciones de Transferencia

Las más comunes

- Umbral:
$$a = \begin{cases} 0, si \ n < 0 \\ 1, si \ n \ge 0 \end{cases}$$

- Lineal: a = n

- Lineal saturada:
$$a = \begin{cases} 0, si \ n < 0 \\ n, si \ 0 \le n < 1 \\ 1, si \ n \ge 1 \end{cases}$$

- Sigmoide:
$$a = \frac{1}{1+e^{-n}}$$

Funciones de Transferencia

Más funciones

¿qué las diferencia?

FUNCTION	RANGE	FUNCTION OF NET INPUT g
Identity	$(-\infty, +\infty)$	g
Exponential	(0,∞)	$\exp(g)$
Reciprocal	$(0,\infty)$	1/g
Square	$[0,+\infty)$	g^2
Logistic	(0,1)	$\frac{1}{1+\exp(-g)}$
Softmax	(0,1)	$\frac{\exp(g)}{\sum exponentials}$
Gauss	(0, 1]	$\exp\left(-g^2\right)$
Sine	[-1, 1]	$\sin(g)$
Cosine	[-1, 1]	$\cos(g)$
Elliott	(0,1)	$\frac{g}{1+ g }$
Tanh	(-1, 1)	$\tanh(g) = 1 - \frac{2}{1 + \exp(2g)}$
Arctan	(-1, 1)	$\frac{2}{\pi} \arctan(g)$

Redes Neuronales

- Una red neuronal no es más que un conjunto de neuronas (normalmente) organizadas en capas
 - Capa de entrada: recibe los atributos de los datos
 - Capas ocultas: son capas intermedias que permiten a la red aprender las relaciones entre los datos
 - Capa de salida: es la capa final, que genera la salida del sistema a partir de la información recibida

Redes Neuronales

- Capa de salida: es la capa final, que genera la respuesta a partir de la información recibida
- Para problemas de Regresión
 - Una neurona con función lineal o sigmoidal
- Para problemas de Clasificación
 - Binarios: con una neurona con función de activación umbral es suficiente
 - Puede usarse una función contínua ("probabilidad")
 - Multi-clase: tantas neuronas como clases

Funcionamiento de la Neurona

- El modelo más sencillo es el perceptrón
 - Una neurona con función de activación umbral por cada salida necesaria recibe las entradas, las multiplica por los pesos y genera un resultado

Funcionamiento de la Neurona

 Con un único perceptrón, se pueden implementar clasificadores lineales básicos, para datos tipo AND, OR y NOT

$$\circ$$
 AND \to a = f(-1.5 + x1 + x2)

$$\circ$$
 OR \rightarrow a = f(-0.5 + x1 + x2)

$$\circ$$
 NOT \to a = f(1 - 2*x1)

Mecanismo de aprendizaje

Biológicamente

 Se acepta que la información memorizada en el cerebro se relaciona con los valores de las conexiones.

En las RNA

- Se considera que el conocimiento se encuentra representado en los pesos de las conexiones.
- El proceso de aprendizaje se basa en cambios en estos pesos

Mecanismo de aprendizaje

- Los cambios en el proceso de aprendizaje se reducen a destrucción, modificación y creación de conexiones entre las neuronas.
 - La creación de una conexión implica que el peso de la misma pasa a tener un valor distinto de cero.
 - Una conexión se destruye cuando su valor pasa a ser cero.

Aprendizaje Supervisado

- Se provee a la red con un conjunto de datos de entrada y la "salida"
- Comparamos la salida deseada con la obtenida
 - Si coinciden No hay cambios
 - Si no coinciden
 - Ajustamos los pesos para que pueda tener una respuesta mejor en el futuro ante esa entrada
 - Las RNA, propagan esa diferencia hacia las capas para reajustar todos los pesos

- Supongamos una entrada con valor positivo:
 - Si la neurona responde -1, y debiera responder con 1
 - Debemos incrementar el peso correspondiente
 - Si la neurona responde con 1, y debiera responder con -1
 - Se debe decrementar el peso correspondiente
- Si la entrada es negativa, razonamiento inverso
 - Si la neurona responde -1, y debiera responder con 1
 - Debemos decrementar el peso correspondiente
 - Si la neurona responde con 1, y debiera responder con -1
 - Se debe incrementar el peso correspondiente

 La respuesta de la red neuronal se compara con la respuesta deseada y el error cometido se utiliza para modificar los pesos

Donde

- α es una constante positiva, usualmente pequeña (0.1), llamada factor de aprendizaje, que modera las actualizaciones de los pesos
 - En cada iteración, si d=1 y y=0, entonces (d−y>0), y por tanto los w_i correspondientes a x_i positivos aumentarán (y disminuirán los correspondientes a xi negativos). Análogamente ocurre si es y=1 e d = 0
- Cuando y=d, los w_i no se modifican

Teorema:

 El algoritmo anterior converge en un número finito de pasos a un vector de pesos que clasifica correctamente todos los ejemplos de entrenamiento, siempre que éstos sean linealmente separables y α suficientemente pequeño (Minsky and Papert, 1969)

Por tanto,

- En el caso de conjuntos de entrenamiento linealmente separables, el resultado será perfecto, con un perceptrón
- No hay manera "buena" de comprobar si un problema es linealmente separable

Modelos de varias capas

- ¿Por qué más capas?
 - Una única neurona implementa una función lineal sobre los datos de entrada
 - (Corta los datos con una línea recta)
 - Para datos más complejos, se necesitarán más capas
 - Esa función será perfecta si los datos son linealmente separables
 - Eso no va a ocurrir en casos reales

Modelos de varias capas

- La activación se propaga a través de los pesos desde la capa de entrada hacia las intermedias.
- Aprendizaje, se actualizan 2 conjuntos de pesos:
 - Aquellos entre la capa intermedia y la de salida, y aquellos entre la capa de entrada y la capa intermedia.
 - El error debido al primer conjunto de pesos se calcula empleando el método anteriormente descrito.
 - Entonces se propaga hacia atrás la parte del error debido a los errores que tienen lugar en el segundo conjunto de pesos y se asigna el error proporcional a los pesos que lo causan

Modelos de varias capas

- Podemos utilizar cualquier número de capas ocultas
- El método es bastante general
 - El tiempo de entrenamiento puede ser excesivo para arquitecturas con muchas capas (Deep Learning)
 - El perceptrón multicapa es el modelo más utilizado
 - Funciones de transferencia sigmoideas en capas ocultas, normalmente

Aprendizaje en varias capas

- Backpropagation:
 - La red empieza fijando pesos de forma aleatoria
 - Proceso iterativo hasta alcanzar un criterio de parada
- Ciclos (épocas) de dos procesos:
 - Fase forward: calcular la salida de la red
 - Neuronas activadas en secuencia desde la capa de inputs a la outputs.
 - Aplicar a cada neurona sus pesos y función de activación
 - Al llegar a la capa final se produce una señal de output
 - Fase backward: calcular el error y reajustar pesos
 - Comparar la diferencia entre la señal de output y los valores reales.
 - Se propaga el error hacia atrás para recalcular los pesos

Número de capas ocultas

- Con muchos conjuntos de datos, una sóla capa puede ser suficiente
 - No hay teoría sobre cuántas capas ocultas son necesarias
 - Deep neural network: Redes con varias capas ocultas
- Teorema
 - "It has been proven that a neural network with at least one hidden layer of sufficient neurons is a universal function approximator. This means that neural networks can be used to approximate any continuous function to an arbitrary precision over a finite interval"

Número de Neuronas por Capa

- Entrenar varias redes con distinto número de neuronas ocultas y estimar el error generalizado de cada red
 - Procedimiento simple: empezar sin neuronas ocultas y añadir una neurona cada vez.
 - o Calcular el error de generalización de cada red
 - Dejar de añadir neuronas si aumenta la generalización del error (overfitting)
- Para una red con 2 capas ocultas
 - \circ ¿Mejor con 1 neurona en la $1^{\underline{a}}$ y 1000 en la $2^{\underline{a}}$?
 - \circ ¿Mejor con 1000 neurona en la $1^{\underline{a}}$ y 1 en la $2^{\underline{a}}$?

Otros modelos de redes

- Radial Basis Neural Network
 - Similar, neuronas con función de base radial
- Mapas auto-organizados
 - Redes Kohonen y Bolzman
 - Las neuronas se conectan en red

- Redes Elman, Hopfield y Jordan
 - Las neuronas se conectan con neuronas de capas anteriores

Radial Basis Function

Elman Neural Network

Jordan Neural Network

Hopfield Neural Network

Deep Learning (En 3 frases)

- Se basa en redes neuronales "clásicas", pero...
 - Muchas (pero muchas) entradas
 - No le paso características de una imagen, le paso todos los valores de todos y cada uno de los píxeles
 - No le paso frecuencias de palabras, le paso todo el documento
 - Muchas capas
 - Del orden de decenas: podéis probar el tiempo que se tarda en entrenar una red conforme el número de capas (y neuronas) aumenta
 - Coste computacional muy (pero muy) grande
 - Mi ordenador echa humo
 - Trabajo en plataformas "Big"

Resúmen

- Un consejo: Al igual que con otros modelos, estandarizar/normalizar antes las entradas
- Ventajas
 - Pocas presunciones sobre relaciones entre las variables
 - Valen para clasificación y regresión
 - Modelizan cualquier problema complejo
 - Gran potencia (precisión)
- Desventajas
 - Caja negra, difícil interpretación
 - Fácil overfitting con estructuras neuronales complejas
 - Computacionalmente intensivas

Copyright (c) University of Deusto

This work (but the quoted images, whose rights are reserved to their owners*) is licensed under the Creative Commons "Attribution-ShareAlike" License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/

Enrique Onieva

enrique.onieva@deusto.es
https://twitter.com/EnriqueOnieva
https://www.linkedin.com/in/enriqueonieva/

