Funzioni log ed exp

Tabella dei contenuti

Logaritmo	2
Osservazione	3
Dimostrazione	3
Proprietà del logaritmo	4
Proprietà I	4
Proprietà II	4
Proprietà III	4
Proprietà IV	6
Proprietà V	7
Esponenziale	7
Proprietà dell'esponenziale	8
Proprietà I	8
Proprietà II	8
Proprietà III	8
Proprietà IV	8
Proprietà V	8
Costruzione di un elevamento a potenza	9
Numero di Nepero (o Eulero)	9
Esercizi aggiuntivi	10

Logaritmo

Funzione logaritmo

Considerato un ramo di iperbole equilatera di equazione $y=\frac{1}{x}$ per x>0, definiamo la funzione $\log:(0,+\infty)\to\mathbb{R}$ nel modo seguente:

Funzione logaritmo

Dato $p \ge 1$ allora $\log(p)$ è definito come l'area sottesa dalla funzione $y = \frac{1}{x}$ e contenuta nei vertici $(1,1),(1,0),(p,0),(p,\frac{1}{p})$.

Contrariamente, dato $p \in (0,1)$, definiamo la funzione come **l'opposto** dell'area sottesa dalla funzione $y=\frac{1}{x}$ e contenuta nei vertici $(1,1),(1,0),(p,0),(p,\frac{1}{p})$.

 $Nota\ bene$

In sintesi $\log(p) > 0$ se $p \ge 0$, mentre $\log(p) < 0$ se 0 .

Osservazione

Per ogni p>0, $\log(p)$ è uguale all'area sottesa dalla funzione $y=\frac{1}{x}$ e compresa tra i punti $(1,1),\,(0,0)$ e $(p,\frac{1}{p}).$

Dimostrazione

Supponiamo $p \ge 1$. Siano A_1, A_2, A_3, A_4 le aree delle quattro regioni in figura. Allora:

$$A_1+A_2=\text{Area di OHU} \qquad A_2+A_3=\text{Area di OKP}$$

$$=\frac{1\cdot 1}{2}=\frac{1}{2} \qquad \qquad =\frac{p\cdot \frac{1}{p}}{2}=\frac{1}{2}$$

Dunque, data l'area della figura $HKPU = A_3 + A_4$:

$$\begin{array}{ccc} A_1+\cancel{A_2}=\cancel{A_2}+A_3 &\Longrightarrow & A_1=A_3\\ &\Longrightarrow & A_3+A_4=A_1+A_4\\ &\Longrightarrow & A_1+A_4=\text{Area di HKPU} & \square \end{array}$$

Il grafico risultante è:

Funzione logaritmo

Proprietà del logaritmo

Proprietà I

Dal grafico della funzione logaritmo nel punto (1,0), notiamo che:

$$\log(1) = 0$$

Proprietà II

Dal grafico sottostante possiamo notare come:

$$\forall p \in (0, +\infty), \ \log(\frac{1}{p}) = -\log(p)$$

Infatti:

Funzione logaritmo

Proprietà III

Possiamo affermare che:

$$\forall p \in (0, +\infty), \forall q \in (0, +\infty), \ \log(pq) = \log(p) + \log(q)$$

Grazie al principio di conservazione delle aree.

Conservazione delle aree Date R una regione del piano misurabile qualsiasi e la sua immagine \bar{R} mediante T, allora le due possiedono la stessa area.

Questo perché la trasformazione T modifica i quadrati di lato unitario in rettangoli di lati $p, \frac{1}{p}$, infatti l'area del quadrato $= 1 \cdot 1 = 1 = p \cdot \frac{1}{p} =$ l'area del

rettangolo.

Conservazione delle aree

Dimostrazione Dati p>1, q>1, consideriamo T una trasformazione del piano in sé:

$$T: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}, \ (x,y) \mapsto (px, \frac{y}{p})$$

Questa trasformazione manda l'iperbole di equazione xy=1 in sé, questo perché se (x,y) appartiene all'iperbole, allora anche $(\bar x,\bar y)=T(x,y)=(px,\frac{y}{p})$ appartiene all'iperbole perché:

$$\bar{x}\bar{y} = px \cdot \frac{y}{p} = xy = 1$$

Scegliamo quindi come R l'area compresa tra i punti:

$$Q_a(1,0), Q_b(q,0), Q_c(q,\frac{1}{q}), Q_d(1,1)$$

Il cui grafico risulta come il seguente:

Funzione logaritmo

Di conseguenza applicando la trasformazione $T(x,y)=(px,\frac{y}{p})$, otteniamo come immagine \bar{R} l'area compresa tra i punti:

$$P_a(p,0), P_b(pq,0), P_c(pq,\frac{1}{pq}), P_d(p,\frac{1}{p})$$

Perciò otteniamo il grafico:

Funzione logaritmo

Per cui dato che $\log(p)$ è definito come l'area compresa tra $(1,0),(p,0),(p,\frac{1}{p}),(1,1),$ cioè A, e che \bar{R} ed R sono equivalenti, allora:

$$\log(pq) = \text{Area di } A + \text{Area di } \bar{R}$$

 $= \log(p) + \text{Area di } \bar{R}$
 $= \log(p) + \text{Area di } R$
 $= \log(p) + \log(q)$

Proprietà IV

Il logaritmo è una funzione iniettiva e quindi sappiamo che è strettamente monotona in modo crescente, pertanto se x_1, x_2 appartengono al dominio e $x_1 < x_2$, allora $f(x_1) < f(x_2)$, ed infatti possiamo scrivere:

$$x_1 < x_2 \iff \log(x_1) < \log(x_2)$$

Infatti dal grafico si nota che il logaritmo di x_1 è minore di x_2 :

Funzione logaritmo

Proprietà V

Il logaritmo è anche una funzione suriettiva, grazie alla quale possiamo dire con certezza che il logaritmo è una funzione biettiva.

Esponenziale

Funzione logaritmo

Definiamo la funzione esponenziale come $\exp : \mathbb{R} \to \mathbb{R}$ per ogni $y \in \mathbb{R}$ dato esiste uno ed un solo $x \in (0, +\infty)$ t.c. $\log(x) = y$, per questo possiamo affermare con certezza che la funzione esponenziale è l'inversa del logaritmo.

Proprietà dell'esponenziale

Proprietà I

In quanto l'esponenziale è la funzione inversa del logaritmo, applicando prima una e poi l'altra, otteniamo:

$$\forall t \in \mathbb{R}, \ \log(\exp t) = t \qquad \forall t > 0, \ \exp(\log t) = t$$

Proprietà II

La funzione esponenziale è sempre positiva, infatti:

$$\forall t \in \mathbb{R}, \ \exp t > 0$$

Proprietà III

La funzione exp : $\mathbb{R} \to (0, +\infty)$ (cioè con codominio l'asse delle ordinate al di sopra della retta orizzontale y = 0) è biettiva e strettamente crescente.

Proprietà IV

Dal momento che log(1) = 0, possiamo affermare che exp(0) = 1 perché dalla proprietà I sappiamo che:

$$\exp(0) = \exp(\log 1) = 0$$

Proprietà V

Possiamo affermare che per ogni coppia di numeri reali qualsiasi, l'esponenziale della loro somma è il prodotto delle esponenziali dei due, cioè:

$$\forall a \in \mathbb{R}, \forall b \in \mathbb{R}, \exp(a+b) = \exp(a) \cdot \exp(b)$$

Dimostrazione Dimostriamo la proprietà utilizzando anche la funzione logaritmo:

$$\log(\exp(a) \cdot \exp(b)) = \log(\exp a) + \log(\exp b)$$
$$= a + b$$
$$= \log(\exp(a + b))$$

Di conseguenza, essendo la funzione logaritmo, una funzione iniettiva, significa che per qualsiasi p,q positivi $\log(p) = \log(q) \iff p = q$, perciò sostituendo p,q, otteniamo che $\exp(a) \cdot \exp(b) = \exp(a+b)$

Costruzione di un elevamento a potenza

Per potenze di base positiva, dato $a \in (0, +\infty), b \in \mathbb{R}$, possiamo definire:

$$a^b \coloneqq \exp(b \log a)$$

Ad esempio $a^3 = \exp(3 \log a)$.

Numero di Nepero (o Eulero)

Definiamo $e = \exp(1)$ e quindi $\forall b \in \mathbb{R}, \ e^b = \exp(b \cdot \log e) = \exp(b).$

Esercizi aggiuntivi

Esercizio Dato un numero reale $a \in (0, +\infty)$, dimostrare che $\forall n \in \mathbb{N}$ t.c. $n \ge 1$, $\exp(n \cdot \log a) = \underbrace{a \cdot a \cdot \ldots \cdot a}_{n}$. Svolgimento

1. Passo base: per n = 1 abbiamo,

$$\exp(1 \cdot \log a) = \exp(\log a) = a$$

2. Passo induttivo: per n+1 abbiamo,

$$\exp((n+1) \cdot \log a) = \exp((n \cdot \log a) + (\log a))$$

$$= \exp(n \cdot \log a) \cdot \exp(\log a)$$

$$= \exp(n \cdot \log a) \cdot a$$

$$=_{hp} \underbrace{\underbrace{a \cdot a \cdot \dots \cdot a}_{n+1} \cdot a}_{n+1} \quad \Box$$

Dove l'ultima uguaglianza segue dall'ipotesi induttiva (hp), cioè che l'espressione $\exp(n \cdot \log a) = \underbrace{a \cdot a \cdot \ldots \cdot a}_{n}$ sia assunta come vera.