Ex 1 Parmi les matrices

$$A = \left(\begin{array}{cccc} 1 & 2 & 3 \end{array} \right); \ B = \left(\begin{array}{cccc} 1 & 1 & 2 & 2 \end{array} \right); \ C = \left(\begin{array}{cccc} 1 & 2 & 1 & 2 \\ 2 & 0 & 2 & 0 \end{array} \right);$$

Matrices: corrigés

$$D = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}; E = \begin{pmatrix} 1 & 2 & 1 \\ -2 & -1 & 0 \\ 2 & 1 & -1 \\ 0 & 3 & 1 \end{pmatrix}; F = \begin{pmatrix} 1 & 2 \\ 3 & 1 \\ -2 & 1 \end{pmatrix}$$

On peut envisager les produits :

$$AD = (14), \quad AF = \begin{pmatrix} 1 & 7 \end{pmatrix}, \quad BE = \begin{pmatrix} 3 & 9 & 1 \end{pmatrix}, \quad CE = \begin{pmatrix} -1 & 7 & 2 \\ 6 & 6 & 0 \end{pmatrix}, \quad DA = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix}$$

$$DB = \begin{pmatrix} 1 & 1 & 2 & 2 \\ 2 & 2 & 4 & 4 \\ 3 & 3 & 6 & 6 \end{pmatrix}, \quad ED = \begin{pmatrix} 8 \\ -4 \\ 1 \\ 9 \end{pmatrix}, \quad EF = \begin{pmatrix} 5 & 5 \\ -5 & -5 \\ 7 & 4 \\ 7 & 4 \end{pmatrix} \quad \text{et} \quad FC = \begin{pmatrix} 5 & 2 & 5 & 2 \\ 5 & 6 & 5 & 6 \\ 0 & -4 & 0 & -4 \end{pmatrix}$$

Ex 2 Soient
$$A = \begin{pmatrix} 4 & -2 & 0 \\ 6 & -3 & 0 \\ 3 & -2 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} -3 & 2 & 0 \\ -6 & 4 & 0 \\ -3 & 2 & 0 \end{pmatrix}$. Un calcul élémentaire donne $AB = BA = 0_{\mathcal{M}_3}$.

Si donc A était inversible, on aurait $AA^{-1}=I_3$ d'où (en multipliant par B): $BAA^{-1}=B$, soit $B=0_{\mathcal{M}_3}$. De même si B était inversible, on aurait $A=0_{\mathcal{M}_3}$, ce qui contradictoire.

Ex 3 Soient A et B deux matrices nilpotentes de $\mathcal{M}_n(\mathbb{K})$ qui commutent. Notons $\mathbb{O} = 0_{\mathcal{M}_n}$.

On suppose que $A^p=\mathbb{O}$ et $B^q=\mathbb{O}$, avec $(p,q)\in\mathbb{N}^2$, de sorte que

$$\forall k \geqslant p, \ A^k = \mathbb{O} \quad \text{et} \quad \forall k \geqslant q, \ B^k = \mathbb{O}$$

Alors, puisque A et B commutent, on a $\forall k \in \mathbb{N}, (AB)^k = A^k B^k$. En posant $r = \max(p, q)$, on a alors:

$$(AB)^r = A^r B^r = \mathbb{O}$$
 i.e. AB est nilpotente

De plus, pour tout $n \in \mathbb{N}$, on peut appliquer la formule du binôme :

$$(A+B)^n = \sum_{k=0}^n \binom{n}{k} A^k B^{n-k}$$

Poson s=p+q. Alors, si $k\in [\![0,s]\!]:$

si
$$k \geqslant p$$
, alors $A^k = \mathbb{O}$

et

si
$$k < p$$
, alors $s - k > q$ donc $B^{s-k} = \mathbb{O}$

Par combinaison linéaire, il s'ensuit que :

$$(A+B)^s = \mathbb{O}$$
 i.e. $A+B$ est nilpotente

PCSI 1 Thiers 2019/2020

$$\mathbf{Ex\ 4}\ \ \mathrm{Si}\ (a,b,c)\in\mathbb{R}^{3},\ \mathrm{on\ note}\ M\ (a,b,c)=\left(\begin{array}{ccc} a+c & b & -c \\ b & a+2c & -b \\ -c & -b & a+c \end{array}\right)\ \mathrm{et}\ \mathcal{A}=\left\{ M\ (a,b,c)\ ,\ (a,b,c)\in\mathbb{R}^{3}\right\}$$

a) Pour tout $(a, b, c) \in \mathbb{R}^3$, on a M(a, b, c) = aI + bJ + cK, avec

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I_3, \quad J = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix} \quad \text{et} \quad K = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$

Soit alors $(a, b, c, a', b', c', \lambda, \mu) \in \mathbb{R}^6$. Alors

$$\lambda M(a,b,c) + \mu M(a',b',c') = \lambda (aI + bJ + cK) + \mu (a'I + b'J + c'K)$$
$$= (\lambda a + \mu a') I + (\lambda b + \mu b') J + (\lambda c + \mu c') K$$
$$= M(\lambda a + \mu a', \lambda b + \mu b', \lambda c + \mu c') \in \mathcal{A}$$

Ainsi

toute combinaison linéaire d'éléments de $\mathcal A$ est dans $\mathcal A$

b) Avec les mêmes notations,

$$M(a, b, c) M(a', b', c') = (aI + bJ + cK) (a'I + b'J + c'K)$$

est une combinaison linéaires de I, J, H, J^2 , JK, KJ, K^2 . D'après la question précédente, il suffit prouver que chacun de ces 7 matrices est dans A pour conclure que M (a, b, c) M (a', b', c') est dans A.

C'est évidemment le cas des 3 premières. De plus des calculs élémentaires donnent

$$J^{2} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 1 \end{pmatrix} = K \in \mathcal{A}$$

$$JK = \begin{pmatrix} 0 & 2 & 0 \\ 2 & 0 & -2 \\ 0 & -2 & 0 \end{pmatrix} = 2J \in \mathcal{A}$$

$$KJ = J^{3} = JK = 2J \in \mathcal{A}$$

$$K^{2} = J^{2}K = J(JK) = 2J^{2} = 2K \in \mathcal{A}$$

On peut finalement conclure par combinaison linéaire :

tout produit d'éléments de $\mathcal A$ est dans $\mathcal A$

Ex 5 Soit
$$A = \begin{pmatrix} 0 & 0 & i \\ i & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in \mathcal{M}_3(\mathbb{C})$$
.

a) Un calcul facile donne

$$A^{2} = \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{et} \quad A^{3} = \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix} = A^{2}$$

On peut sans crainte conjecturer : $\forall k \geqslant 2, \ A^k = A^2 \ [H_k]$

- * H_2 est une évidence.
- * Si $k \ge 2$ et H_k est vraie, alors $A^{k+1} = AA^k \stackrel{H_k}{=} AA^2 = A^3 = A^2$ CQFD.
- b) Montrons que M commute avec A si et seulement si M est combinaison linéaire de I, A et A^2 .
 - * Si M est combinaison linéaire de I,A et $A^2,$ alors \exists $(a,b,c) \in \mathbb{C}^3$ / $M=aI+bA+cA^2,$ et $AM=aA+bA^2=cA^3=MA$
 - * Inversement, si $M=\left(\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & j \end{array}\right)$ commute avec A, alors (ce n'est pas fin...) :

$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & j \end{pmatrix} \begin{pmatrix} 0 & 0 & i \\ i & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & i \\ i & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & j \end{pmatrix}$$

c'est-à-dire

$$\begin{pmatrix} ib & 0 & ia+c \\ ie & 0 & id+f \\ ih & 0 & ig+j \end{pmatrix} = \begin{pmatrix} ig & ih & ij \\ ia & ib & ic \\ g & h & j \end{pmatrix}$$

Ce qui équivaut à :

$$\begin{cases} b = g \\ b = h = 0 \\ e = a \\ g = ih \\ ij = ia + c \\ ic = id + f \\ j = ig + j \end{cases} \iff \begin{cases} b = g = h = 0 \\ e = a \\ j = a - ic \\ f = ic - id \end{cases}$$

D'où M est de la forme

$$M = \begin{pmatrix} a & 0 & c \\ d & a & i(c-d) \\ 0 & 0 & a-ic \end{pmatrix} = \begin{pmatrix} a & 0 & (c-d)+d \\ d & a & i(c-d) \\ 0 & 0 & a-i(c-d)-id \end{pmatrix}$$

Autrement dit

$$M = a \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + d \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & -i \end{pmatrix} + (c - d) \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & i \\ 0 & 0 & -i \end{pmatrix}$$

En factorisant par -i

$$\begin{array}{lll} M & = & a \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right) - id \left(\begin{array}{ccc} 0 & 0 & i \\ i & 0 & 0 \\ 0 & 0 & 1 \end{array} \right) - i \left(c - d \right) \left(\begin{array}{ccc} 0 & 0 & i \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{array} \right) \\ & = & aI - idA - i \left(c - d \right) A^2 \quad \text{CQFD} \end{array}$$

Ex 6 Soit $a \in \mathbb{C}$ et $A = \begin{pmatrix} -1 & a & a \\ 1 & -1 & 0 \\ -1 & 0 & -1 \end{pmatrix}$. Calcul des puissances de A. On écrit

$$A = -I + N$$
 avec $I = I_3$ et $N = \begin{pmatrix} 0 & a & a \\ 1 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}$

On remarque:

$$N^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & a & a \\ 0 & -a & -a \end{pmatrix} \quad \text{et} \quad N^{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

N est nilpotente, d'ordre 3 et commute avec -I: onpeut donc appliquer la formule du binôme : $\forall n \in \mathbb{N}$,

$$A^{n} = (-I)^{n} + n(-I)^{n-1}N + \frac{n(n-1)}{2}(-I)^{n-2}N^{2} + 0_{\mathcal{M}_{3}}$$

Soit

$$A^{n} = (-1)^{n} \left[I - nN + \frac{n(n-1)}{2} N^{2} \right]$$

Ainsi, pour $n \in \mathbb{N}$,

$$A^{n} = (-1)^{n} \begin{pmatrix} 1 & -an & -an \\ -n & 1 + \frac{1}{2}an(n-1) & \frac{1}{2}an(n-1) \\ n & -\frac{1}{2}an(n-1) & 1 - \frac{1}{2}an(n-1) \end{pmatrix}$$

Voyons si cette formule est valable pour $n \in \mathbb{Z}$: si $n \in \mathbb{N}$, on pose

$$B_n = (-1)^{-n} \left[I + nN + \frac{n(n+1)}{2} N^2 \right]$$

Alors

$$B_n A^n = \left[I + nN + \frac{n(n+1)}{2} N^2 \right] \left[I - nN + \frac{n(n-1)}{2} N^2 \right]$$
$$= I - n^2 N^2 + \frac{n(n+1)}{2} N^2 + \frac{n(n-1)}{2} N^2 + 0_{\mathcal{M}_3}$$
$$= I$$

Pour n=1, cela prouve l'inversibilité de A (et $A^{-1}=B_1$). De plus pour tout $n\in\mathbb{N}$,

$$A^{-n} = (A^n)^{-1} = B_n = (-1)^{-n} \left[I + nN + \frac{n(n+1)}{2} N^2 \right]$$

La formule donne donc bien A^n pour tout entier $n \in \mathbb{Z}$.

Ex 7 Soient (x_n) , (y_n) et (z_n) les suites définies par récurrence par $x_0 = 1$, $y_0 = -1$, $z_0 = 1$, et

$$\forall n \in \mathbb{N}, \begin{cases} x_{n+1} = 4x_n - 3y_n - 3z_n \\ y_{n+1} = 3x_n - 2y_n - 3z_n \\ z_{n+1} = 3x_n - 3y_n - 2z_n \end{cases}$$

a) Calculons les puissances de $A=\begin{pmatrix}4&-3&-3\\3&-2&-3\\3&-3&-2\end{pmatrix}$. On a, en notant $I=I_3$ et $\mathbb{O}=0_{\mathcal{M}_3}$:

$$A^{2} = \begin{pmatrix} -2 & 3 & 3 \\ -3 & 4 & 3 \\ -3 & 3 & 4 \end{pmatrix} = -A + 2I$$

Le polynôme $P = X^2 + X - 2 = (X - 1)(X + 2)$ annule A. Montrons par récurrence :

$$\forall n \in \mathbb{N}, \ \exists (a_n, b_n) \in \mathbb{R}^2 / A^n = a_n A + b_n I \quad (H_n)$$

- * H_0 est vraie avec $(a_0, b_0) = (0, 1)$ (et H_1 aussi avec $(a_1, b_1) = (1, 0)$
- * Soit $n \in \mathbb{N}$. Supposons H_n . Alors

$$A^{n+1} = (a_n A + b_n I) A = a_n A^2 + b_n A = a_n (2I - A) + b_n A = (b_n - a_n) A + 2a_n I$$

En posant

$$\begin{cases} a_{n+1} = b_n - a_n \\ b_{n+1} = 2a_n \end{cases}$$

on a bien

$$A^{n+1} = a_{n+1}A + b_{n+1}I$$

Mais alors pour tout $n \in \mathbb{N}$:

$$a_{n+2} = b_{n+1} - a_{n+1} = -a_{n+1} + 2a_n$$

 $b_{n+2} = 2a_{n+1} = 2b_n - 2a_n = -b_{n+1} + 2b_n$

 $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ vérifient donc la même relation de récurrence linéaire d'ordre 2 :

$$u_{n+2} + u_{n+1} - 2u_n = 0$$

de polynôme caractéristique $X^2 + X - 2 = (X - 1)(X + 2)$.

Il existe ainsi 4 constantes $\alpha, \beta, \alpha', \beta'$ telles que

$$\forall n \in \mathbb{N}, \begin{cases} a_n = \alpha + \beta (-2)^n \\ b_n = \alpha' + \beta' (-2)^n \end{cases}$$

Les conditions initiales donnent

$$\left\{ \begin{array}{l} a_0 = 0 = \alpha + \beta \\ a_1 = 1 = \alpha - 2\beta \end{array} \right. \iff \left\{ \begin{array}{l} \alpha = 1/3 \\ \beta = -1/3 \end{array} \right.$$

et
$$\left\{ \begin{array}{l} b_0=1=\alpha'+\beta' \\ b_1=0=\alpha'-2\beta' \end{array} \right. \iff \left\{ \begin{array}{l} \alpha'=2/3 \\ \beta'=1/3 \end{array} \right.$$
 Finalement pour tout entier $n\in\mathbb{N}$:

$$A^{n} = \frac{1}{3} [1 - (-2)^{n}] A + \frac{1}{3} [2 + (-2)^{n}] I$$

ou

$$A^{n} = \frac{1}{3} [(A + 2I) + (-2)^{n} (I - A)]$$

Explicitement

$$A^{n} = \frac{1}{3} \left[\begin{pmatrix} 6 & -3 & -3 \\ 3 & 0 & -3 \\ 3 & -3 & 0 \end{pmatrix} + (-2)^{n} \begin{pmatrix} -3 & 3 & 3 \\ -3 & 3 & 3 \\ -3 & 3 & 3 \end{pmatrix} \right]$$

b) On pose classiquement pour tout $n \in \mathbb{N}$:

$$X_n = \left(\begin{array}{c} x_n \\ y_n \\ z_n \end{array}\right) \quad \text{de sorte que } X_0 = \left(\begin{array}{c} 1 \\ -1 \\ 1 \end{array}\right) \quad \text{et} \quad X_{n+1} = AX_n$$

On montre alors très facilement par récurrence que

$$\forall n \in \mathbb{N}, \ X_n = A^n X_0$$

soit

$$\begin{pmatrix} x_n \\ y_n \\ z_n \end{pmatrix} = \frac{1}{3} \begin{bmatrix} \begin{pmatrix} 6 & -3 & -3 \\ 3 & 0 & -3 \\ 3 & -3 & 0 \end{bmatrix} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} + (-2)^n \begin{pmatrix} -3 & 3 & 3 \\ -3 & 3 & 3 \\ -3 & 3 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \end{bmatrix}$$
$$= \frac{1}{3} \begin{bmatrix} \begin{pmatrix} 6 \\ 0 \\ 6 \end{pmatrix} + (-2)^n \begin{pmatrix} -3 \\ -3 \\ -3 \end{pmatrix} \end{bmatrix}$$

Ainsi, pour tout $n \in \mathbb{N}$:

$$\begin{cases} x_n = 2 - (-2)^n \\ y_n = -(-2)^n \\ z_n = 2 - (-2)^n \end{cases}$$

Ex 8 Soit
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
. On a

$$A^{2} = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \quad \text{et} \quad A^{3} = \begin{pmatrix} 5 & 3 & 3 \\ 3 & 1 & 1 \\ 3 & 1 & 1 \end{pmatrix}$$

On en déduit

$$A^3 = A^2 + 2A$$
 (soit $X^3 - X^2 - 2X$ annule A)

Montrons par récurrence que $\forall n \in \mathbb{N}^*, \ \exists (a_n, b_n) \in \mathbb{R}^2 \ / \ A^n = a_n A + b_n A^2 \ (H_n)$

- H_1 est vraie avec $(a_1, b_1) = (1, 0)$ (et H_2 aussi avec $(a_2, b_2) = (0, 1)$.
- Soit $n \in \mathbb{N}^*$. Supposons H_n et montrons H_{n+1} : on a

$$A^{n+1} = (a_n A + b_n A^2) A = a_n A^2 + b_n A^3 = a_n A^2 + b_n (A^2 + 2A) = 2b_n A + (a_n + b_n) A^2$$

En posant

$$\begin{cases} a_{n+1} = 2b_n \\ b_{n+1} = a_n + b_n \end{cases}$$

on a bien

$$A^{n+1} = a_{n+1}A + b_{n+1}A^2$$
 CQFD

Pour tout $n \in \mathbb{N}^*$ on a alors

$$b_{n+2} = a_{n+1} + b_{n+1} = b_{n+1} + 2b_n$$

et

$$a_{n+2} = 2b_{n+1} = 2(a_n + b_n) = a_{n+1} + 2a_n$$

 $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ vérifient donc la même relation de récurrence linéaire d'ordre 2:

$$u_{n+2} - u_{n+1} - 2u_n = 0$$

de polynôme caractéristique $X^2 - X - 2 = (X+1)(X-2)$. Donc

$$\exists (\alpha, \beta, \alpha', \beta') / \forall n \in \mathbb{N}^*, \begin{cases} a_n = \alpha (-1)^n + \beta 2^n \\ b_n = \alpha' (-1)^n + \beta' 2^n \end{cases}$$

Les conditions initiales donnent

$$\begin{cases} a_1 = 1 = -\alpha + 2\beta \\ a_2 = 0 = \alpha + 4\beta \end{cases} \iff \begin{cases} \alpha = -2/3 \\ \beta = 1/6 \end{cases}$$

et

$$\begin{cases} b_1 = 0 = -\alpha' + 2\beta' \\ b_2 = 1 = \alpha' + 4\beta' \end{cases} \iff \begin{cases} \alpha' = 1/3 \\ \beta' = 1/6 \end{cases}$$

Finalement pour tout entier $n \in \mathbb{N}$:

$$A^{n} = \frac{1}{6} \left[-4 (-1)^{n} + 2^{n} \right] A + \frac{1}{6} \left[2 (-1)^{n} + 2^{n} \right] A^{2}$$

ou

$$A^{n} = \frac{1}{6} \left[(-1)^{n} \left(-4A + 2A^{2} \right) + 2^{n} \left(A + A^{2} \right) \right]$$

Explicitement

$$A^{n} = \frac{1}{6} \left[(-1)^{n} \begin{pmatrix} 2 & -2 & -2 \\ -2 & 2 & 2 \\ -2 & 2 & 2 \end{pmatrix} + 2^{n} \begin{pmatrix} 4 & 2 & 2 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} \right]$$

Ex 9 Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{K})$. On note $\operatorname{tr} A = a + d$ et $\det A = ad - bc$.

a) Théorème de Cayley-Hamilton pour la dimension 2 : on a

$$A^2 = \begin{pmatrix} a^2 + bc & ab + bd \\ ac + cd & d^2 + bc \end{pmatrix}, \quad (\operatorname{tr} A) \ A = \begin{pmatrix} a^2 + da & ab + bd \\ ac + cd & d^2 + ad \end{pmatrix}, \quad (\det A) \ I_2 = \begin{pmatrix} ad - bc & 0 \\ 0 & ad - bc \end{pmatrix}$$

Il vient facilement, en notant $\mathbb{O} = 0_{\mathcal{M}_2}$:

$$A^2 - (\operatorname{tr} A) A + (\det A) I_2 = \mathbb{O}$$

b) Soit $\lambda \in \mathbb{R}$, et $B = \begin{pmatrix} 1 - \lambda + \lambda^2 & 1 - \lambda \\ \lambda - \lambda^2 & \lambda \end{pmatrix}$, determinant: λ^2 alors

$$\operatorname{tr} B = 1 + \lambda^2$$
 et $\det B = \lambda - \lambda^2 + \lambda^3 - (1 - \lambda)(\lambda - \lambda^2) = \lambda^2$

D'après le a), on a ainsi, en posant $I = I_2$:

$$B^2 - (1 + \lambda^2) B + \lambda^2 I = \mathbb{O}$$

Le polynôme $X^2 - (1 + \lambda^2) X + \lambda^2$, dont les racines sont évidemment 1 et λ^2 (cf somme et produit), est annulateur de B. Montrons par récurrence que pour tout entier $n \in \mathbb{N}$:

$$\exists (a_n, b_n) \in \mathbb{R}^2 / B^n = a_n B + b_n I \quad (H_n)$$

- * H_0 est vraie avec $(a_0, b_0) = (0, 1)$ (et H_1 aussi avec $(a_1, b_1) = (1, 0)$
- * Soit $n \in \mathbb{N}$. Supposons H_n . Alors

$$B^{n+1} = (a_n B + b_n I) B = a_n B^2 + b_n B = a_n ((1 + \lambda^2) B - \lambda^2 I) + b_n B = (b_n + (1 + \lambda^2) a_n) B - \lambda^2 a_n I$$

En posant

$$\begin{cases} a_{n+1} = b_n + (1 + \lambda^2) a_n \\ b_{n+1} = -\lambda^2 a_n \end{cases}$$

on a bien

$$A^{n+1} = a_{n+1}A + b_{n+1}I$$

Mais alors pour tout $n \in \mathbb{N}$:

$$a_{n+2} = b_{n+1} + (1+\lambda^2) a_{n+1} = (1+\lambda^2) a_{n+1} - \lambda^2 a_n$$

$$b_{n+2} = -\lambda^2 a_{n+1} = -\lambda^2 b_n - (1+\lambda^2) \lambda^2 a_n = (1+\lambda^2) b - \lambda^2 b_n$$

 $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ vérifient donc la même relation de récurrence linéaire d'ordre 2 :

$$u_{n+2} - (1 + \lambda^2) u_{n+1} + \lambda^2 u_n = 0$$

de polynôme caractéristique $X^2-\left(1+\lambda^2\right)X+\lambda^2=(X-1)\left(X-\lambda^2\right)$

i. Premier cas: $\lambda \notin \{-1,1\}$, i.e. $\lambda^2 \neq 1$. Alors il existe ainsi 4 constantes $\alpha, \beta, \alpha', \beta'$ telles que

$$\forall n \in \mathbb{N}, \begin{cases} a_n = \alpha + \beta \lambda^{2n} \\ b_n = \alpha' + \beta' \lambda^{2n} \end{cases}$$

Les conditions initiales donnent

$$\begin{cases} a_0 = 0 = \alpha + \beta \\ a_1 = 1 = \alpha + \lambda^2 \beta \end{cases} \iff \begin{cases} \alpha = \frac{-1}{\lambda^2 - 1} \\ \beta = \frac{1}{\lambda^2 - 1} \end{cases}$$

et

$$\begin{cases} b_0 = 1 = \alpha' + \beta' \\ b_1 = 0 = \alpha' + \lambda^2 \beta' \end{cases} \iff \begin{cases} \alpha' = \frac{\lambda^2}{\lambda^2 - 1} \\ \beta' = \frac{-1}{\lambda^2 - 1} \end{cases}$$

Finalement pour tout entier $n \in \mathbb{N}$:

$$B^{n} = \frac{1}{\lambda^{2} - 1} \left[-1 + \lambda^{2n} \right] B + \frac{1}{\lambda^{2} - 1} \left[\lambda^{2} - \lambda^{2n} \right] I$$

ou

$$B^{n} = \frac{1}{\lambda^{2} - 1} \left[\left(\lambda^{2} I - B \right) + \lambda^{2n} \left(B - I \right) \right]$$

Explicitement

$$B^{n} = \frac{1}{\lambda^{2} - 1} \left[\begin{pmatrix} \lambda - 1 & \lambda - 1 \\ \lambda^{2} - \lambda & \lambda^{2} - \lambda \end{pmatrix} + \lambda^{2n} \begin{pmatrix} \lambda^{2} - \lambda & 1 - \lambda \\ \lambda - \lambda^{2} & \lambda - 1 \end{pmatrix} \right]$$

$$= \frac{1}{\lambda + 1} \left[\begin{pmatrix} 1 & 1 \\ \lambda & \lambda \end{pmatrix} + \lambda^{2n} \begin{pmatrix} \lambda & -1 \\ -\lambda & 1 \end{pmatrix} \right]$$

$$B^{n} = \frac{1}{\lambda + 1} \begin{pmatrix} \lambda^{2n+1} + 1 & 1 - \lambda^{2n} \\ -\lambda^{2n+1} + \lambda & \lambda + \lambda^{2n} \end{pmatrix}$$

ii. Deuxième cas : $\lambda = 1$ alors B = I, et pour tout entier $n \in \mathbb{N}$

$$B^n = I$$

iii. Troisième cas : $\lambda = -1$ alors $B = \begin{pmatrix} 3 & 2 \\ -2 & -1 \end{pmatrix}$ et les suites (a_n) et (b_n) sont de la forme

$$\forall n \in \mathbb{N}, \ \left\{ \begin{array}{l} a_n = (\alpha + n\beta) \\ b_n = \left(\alpha' + n\beta'\right) \end{array} \right., \ \text{où} \ \left(\alpha, \beta, \alpha', \beta'\right) \in \mathbb{R}^4$$

On résout encore

$$\left\{ \begin{array}{ll} a_0 = 0 = \alpha \\ a_1 = 1 = \alpha + \beta \end{array} \right. \iff \left\{ \begin{array}{ll} \alpha = 0 \\ \beta = 1 \end{array} \right.$$

et

$$\begin{cases} b_0 = 1 = \alpha' \\ b_1 = 0 = \alpha' + \beta' \end{cases} \iff \begin{cases} \alpha' = 1 \\ \beta' = -1 \end{cases}$$

Finalement pour tout entier $n \in \mathbb{N}$:

$$B^n = nB + (1-n)I$$

Explicitement

$$B^n = \begin{pmatrix} 1+2n & 2n \\ -2n & 1-2n \end{pmatrix}$$

Ex 10 Calculs d'inverses

calculas differences

a)
$$A = \begin{pmatrix} 0 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$
. On résout le système $(S): AX = Y$, avec $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et $Y = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$:

$$(S) \iff \begin{cases} -y + z = x' \\ -x & + z = y' \\ x + y - z = z' \end{cases}$$

$$\iff \begin{cases} -x & + z = y' \\ x + y - z = z' \text{ (permutation)} \\ -y + z = x' \end{cases}$$

$$\iff \begin{cases} -x & + z = y' \\ y & = y' + z' \text{ (}L_2 \leftarrow L_2 + L_1\text{)} \\ -y + z = x' \end{cases}$$

$$\iff \begin{cases} x & -z = -y' \\ y & = y' + z' \\ z = x' + y' + z' \end{cases}$$

Finalement, on a l'unique solution:

$$(S) \Longleftrightarrow \begin{cases} x = x' + z' \\ y = y' + z' \\ z = x' + y' + z' \end{cases}$$

A est donc inversible d'inverse

$$A^{-1} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

b)
$$B = \begin{pmatrix} 1+i & 1 & i \\ 0 & -i & 1 \\ 2-i & 1 & 0 \end{pmatrix}^{-1} =$$
. On résout le système $(S): BX = Y$, avec $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et $Y = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$:

Le pivot de Gauss n'est pas bien pratique ici, utilisons une méthode had hoc.

En multipliant la deuxième ligne par i:

$$(S) \Longleftrightarrow \begin{cases} (1+i)x + y + iz = x' \\ y + iz = iy' \\ (2-i)x + y = z' \end{cases} \Longleftrightarrow \begin{cases} (1+i)x = x' - iy' \\ y + iz = iy' \\ (2-i)x + y = z' \end{cases}$$

Avec $\frac{1}{1+i} = \frac{1}{2} (1-i)$, il vient

$$(S) \iff \begin{cases} x = \frac{1}{2} (1-i) x' - \frac{1}{2} (1+i) y' \\ y + iz = iy' \\ y = -(2-i) \left[\frac{1}{2} (1-i) x' - \frac{1}{2} (1+i) y' \right] + z' \end{cases}$$

$$\iff \begin{cases} x = \frac{1}{2} (1-i) x' - \frac{1}{2} (1+i) y' \\ y = -\frac{1}{2} (1-3i) x' + \frac{1}{2} (3+i) y' + z' \\ iz = iy' - \left[-\frac{1}{2} (1-3i) x' + \frac{1}{2} (3+i) y' + z' \right] \end{cases}$$

$$\iff \begin{cases} x = \frac{1}{2} (1-i) x' - \frac{1}{2} (1+i) y' \\ y = -\frac{1}{2} (1-3i) x' + \frac{1}{2} (3+i) y' + z' \\ z = \frac{1}{2} (-i-3) x' - \frac{1}{2} (-3i-1) y' + iz' \end{cases}$$

Finalement B est inversible et :

$$B^{-1} = \frac{1}{2} \begin{pmatrix} 1-i & -1-i & 0 \\ -1+3i & 3+i & 2 \\ -3-i & 1+3i & 2i \end{pmatrix}$$

Ex 11 Soit $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{K})$. On note $\operatorname{Tr}(A) = \sum_{i=1}^n a_{ii}$ (**trace** de A)

a) Soient A, B dans $\mathcal{M}_n(\mathbb{R})$, et $(\lambda, \mu) \in \mathbb{R}^2$. En notant a_{ij} et b_{ij} les termes généraux de A et B, on a

$$tr(\lambda A + \mu B) = \sum_{i=1}^{n} (\lambda a_{ii} + \mu b_{ii}) = \lambda \sum_{i=1}^{n} a_{ii} + \mu \sum_{i=1}^{n} b_{ii}$$

soit

$$tr(\lambda A + \mu B) = \lambda tr(A) + \mu tr(B)$$

b) Avec les notations précédentes, le terme (i,i) de AB est $\sum_{k=1}^{n} a_{ik}b_{ki}$ et celui de BA est $\sum_{\ell=1}^{n} b_{i\ell}a_{\ell i}$. Donc

$$\operatorname{tr}(AB) = \sum_{i=1}^{n} \sum_{k=1}^{p} a_{ik} b_{ki}$$
 et $\operatorname{tr}(BA) = \sum_{i=1}^{p} \sum_{\ell=1}^{n} b_{i\ell} a_{\ell i} = \sum_{\ell=1}^{n} \sum_{i=1}^{p} a_{\ell i} b_{i\ell}$

Les lettres en jeu dans ces doubles sommes sont muettes, et on en déduit donc

$$tr(AB) = tr(BA)$$

c) Si $A \in \mathcal{M}_n(\mathbb{K})$ et $P \in GL_n(\mathbb{K})$, on a d'après le b), en écrivant $PAP^{-1} = (PA)P^{-1}$

$$\operatorname{Tr}\left(\left(PA\right)P^{-1}\right) = \operatorname{Tr}\left(P^{-1}\left(PA\right)\right) = \operatorname{Tr}\left(I_{n}A\right)$$

soit

$$Tr\left(PAP^{-1}\right) = Tr\left(A\right)$$

Ex 12 a) Soit $A \in \mathcal{M}_n(\mathbb{K})$ et $P \in GL_n(\mathbb{K})$, et $B = P^{-1}AP$. Alors si $k \in \mathbb{N}$,

$$B^{k} = (P^{-1}AP)(P^{-1}AP)\cdots(P^{-1}AP)$$
$$= P^{-1}APP^{-1}AP\cdots P^{-1}AP$$

Soit

$$B^k = P^{-1}A^kP$$

Cette méthode éclaire le calcul mais manque un peu de rigueur. On montre le résultat par récurrence :

- * $B^0=I_n$ et $P^{-1}A^0P=PI_nP^{-1}=PP^{-1}=I_n$, d'où le résultat à l'ordre 0.
- * Si $k \in \mathbb{N}$ et Calculer $B^k = P^{-1}A^kP$, alors

$$B^{k+1} = B^k B = P^{-1} A^k P P^{-1} A P = P^{-1} A^k A P = P^{-1} A^{k+1} P$$
 COFD

b) Application : soit
$$A = \begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & 2 \\ 2 & 2 & -1 \end{pmatrix}$$
 et $P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & -2 \end{pmatrix}$. On pose $D = P^{-1}AP$.

* Commençons par calculer P^{-1} en appliquant l'algorithme de Gauss-Jordan à la matrice augmentée

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & -1 & 1 & 0 & 1 & 0 \\ 1 & 0 & -2 & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & -2 & 0 & -1 & 1 & 0 \\ 0 & -1 & -3 & -1 & 0 & 1 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1/2 & -1/2 & 0 \\ 0 & -1 & -3 & -1 & 0 & 1 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & 1 & 1/2 & 1/2 & 0 \\ 0 & 1 & 0 & 1/2 & -1/2 & 0 \\ 0 & 0 & -3 & -1/2 & -1/2 & 1 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & 1 & 1/2 & 1/2 & 0 \\ 0 & 1 & 0 & 1/2 & -1/2 & 0 \\ 0 & 0 & 1 & 1/6 & 1/6 & -1/3 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & 1 & 1/2 & 1/2 & 0 \\ 0 & 1 & 0 & 1/2 & -1/2 & 0 \\ 0 & 0 & 1 & 1/6 & 1/6 & -1/3 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & 1/3 & 1/3 & 1/3 \\ 0 & 1 & 0 & 1/2 & -1/2 & 0 \\ 0 & 0 & 1 & 1/6 & 1/6 & -1/3 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & 1/3 & 1/3 & 1/3 \\ 0 & 1 & 0 & 1/2 & -1/2 & 0 \\ 0 & 0 & 1 & 1/6 & 1/6 & -1/3 \end{pmatrix}$$

P est donc bien inversible et

$$P^{-1} = 6 \begin{pmatrix} 1/3 & 1/3 & 1/3 \\ 1/2 & -1/2 & 0 \\ 1/6 & 1/6 & -1/3 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 2 & 2 & 2 \\ 3 & -3 & 0 \\ 1 & 1 & -2 \end{pmatrix}$$

* Alors un petit calcul donne

$$D = \frac{1}{6} \begin{pmatrix} 2 & 2 & 2 \\ 3 & -3 & 0 \\ 1 & 1 & -2 \end{pmatrix} \begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & 2 \\ 2 & 2 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & -2 \end{pmatrix} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -3 \end{pmatrix}$$

Comme $A = PDP^{-1}$, la question précédente assure que pour tout $n \in \mathbb{N}$,

$$A^{n} = PD^{n}P^{-1}$$

$$= \frac{1}{6} \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & -2 \end{pmatrix} \begin{pmatrix} 3^{n} & 0 & 0 \\ 0 & 3^{n} & 0 \\ 0 & 0 & (-3)^{n} \end{pmatrix} \begin{pmatrix} 2 & 2 & 2 \\ 3 & -3 & 0 \\ 1 & 1 & -2 \end{pmatrix}$$

$$= \frac{3^{n}}{6} \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & -2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (-1)^{n} \end{pmatrix} \begin{pmatrix} 2 & 2 & 2 \\ 3 & -3 & 0 \\ 1 & 1 & -2 \end{pmatrix}$$

Après calcul, on obtient finalement :

$$A^{n} = \frac{3^{n-1}}{2} \begin{pmatrix} 5 + (-1)^{n} & -1 + (-1)^{n} & 2 - 2(-1)^{n} \\ -1 + (-1)^{n} & 5 + (-1)^{n} & 2 - 2(-1)^{n} \\ 2 - 2(-1)^{n} & 2 - 2(-1)^{n} & 2 + 4(-1)^{n} \end{pmatrix}$$

ou

$$A^{n} = \frac{3^{n}}{6} \begin{pmatrix} 5 & -1 & 2 \\ -1 & 5 & 2 \\ 2 & 2 & 2 \end{pmatrix} + \frac{(-3)^{n}}{6} \begin{pmatrix} 1 & 1 & -2 \\ 1 & 1 & -2 \\ -2 & -2 & 4 \end{pmatrix}$$

Ex 13 Soient $n \in \mathbb{N}^*$ et $\omega = e^{2i\pi/n}$, et $A = (a_{ij}) \in \mathcal{M}_n$ (\mathbb{R}) définie par $a_{ij} = \omega^{(i-1)(j-1)}$. On note \overline{A} la matrice de terme général $\overline{a_{ij}}$. Alors, pour $(i,j) \in [[1,n]]^2$:

$$[A\overline{A}]_{ij} = \sum_{k=1}^{n} a_{ik} \overline{a_{kj}}$$

$$= \sum_{k=1}^{n} \omega^{(i-1)(k-1)} \omega^{-(k-1)(j-1)}$$

$$= \sum_{k=1}^{n} \omega^{(i-1)(k-1)-(k-1)(j-1)}$$

$$= \sum_{k=1}^{n} \omega^{(k-1)(i-j)}$$

$$= \sum_{k=1}^{n} (\omega^{i-j})^{k-1}$$

$$= \sum_{k=0}^{n-1} (\omega^{i-j})^k$$

Si i = j, alors

$$\left[A\overline{A}\right]_{ij} = \sum_{k=0}^{n-1} 1 = n$$

Si $i \neq j$, alors comme $-(n-1) \leqslant i-j \leqslant n-1$ et $i-j \neq 0$, on a $\omega^{i-j} \neq 1$, d'où

$$[A\overline{A}]_{ij} = \frac{1 - (\omega^{i-j})^n}{1 - \omega^{i-j}} = \frac{1 - (\omega^n)^{i-j}}{1 - \omega^{i-j}} = \frac{1 - 1}{1 - \omega^{i-j}} = 0$$

Il s'ensuit que

$$A\overline{A}_{ij} = n\delta_{ij}$$

soit

$$A\overline{A} = nI_n = \left(\begin{array}{ccc} n & & 0 \\ & \ddots & \\ 0 & & n \end{array}\right)$$

Mais alors $A\left(\frac{1}{n}\overline{A}\right)=I_n$, d'où A est inversible et

$$A^{-1} = \frac{1}{n}\overline{A}$$

Ex 14 Soient $(a_1, \ldots, a_n) \in \mathbb{R}^{*n}_+$, $D = \text{Diag}(a_1, \ldots, a_n)$, $J \in \mathcal{M}_n(\mathbb{K})$ la matrice dont tous les termes valent 1. On pose

$$A = J + D = \left(\begin{array}{ccc} 1 + a_1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 + a_n \end{array}\right)$$

Si $X = \begin{pmatrix} x_1 \\ x_n \end{pmatrix}$, alors calculer ${}^t XX$ est un réel, qui vaut (na $\ddot{\text{v}}$ ement) :

$$^{t}XX = [^{t}XX]_{11} = \sum_{k=1}^{n} [^{t}X]_{1k} [X]_{k1} = \sum_{k=1}^{n} [X]_{k1} [X]_{k1}$$

Soit

$$tXX = \sum_{k=1}^{n} x_k^2$$

De la même manière tXAX est aussi un réel, et :

$${}^{t}XAX = \left[{}^{t}XAX\right]_{11} = \sum_{k=1}^{n} \sum_{\ell=1}^{n} \left[{}^{t}X\right]_{1k} [A]_{k\ell} [X]_{\ell 1} = \sum_{k=1}^{n} \sum_{\ell=1}^{n} [X]_{k1} [A]_{k\ell} [X]_{\ell 1}$$

Autrement dit

$${}^tXAX = \sum_{k=1}^n \sum_{\ell=1}^n \left[A\right]_{k\ell} x_k x_\ell$$

Le terme général de A est $[A]_{ij}=1+a_i\delta_{ij}$, donc

$${}^{t}XAX = \sum_{k=1}^{n} \sum_{\ell=1}^{n} (1 + a_{k}\delta_{k\ell}) x_{k}x_{\ell}$$

$$= \sum_{k=1}^{n} \sum_{\ell=1}^{n} x_{k}x_{\ell} + \sum_{k=1}^{n} \left(\sum_{\ell=1}^{n} a_{k}\delta_{k\ell}x_{k}x_{\ell}\right)$$

$$= \left(\sum_{k=1}^{n} x_{k}\right)^{2} + \sum_{k=1}^{n} a_{k}x_{k}^{2} \quad (\text{car } \delta_{k\ell} \text{ s'annule sauf pour } \ell = k)$$

Montrons que A est inversible : il suffit de voir que si $AX=0_{\mathbb{R}^n}$ alors $X=0_{\mathbb{R}^n}$. Or si $AX=0_{\mathbb{R}^n}$ alors

$$^tXAX = 0$$
 soit $\left(\sum_{k=1}^n x_k\right)^2 + \sum_{k=1}^n a_k x_k^2 = 0$

Comme $\forall k \in [1, k] | a_k > 0$, les deux termes du membre de gauche de cette égalité sont positifs, ce qui entraîne

$$\sum_{k=1}^{n} a_k x_k^2 = 0$$

qui à son tour entraîne (somme de termes positifs) :

$$\forall k \in [[1, k]], \ a_k x_k^2 = 0$$

et on en déduit donc que $x_1=\cdots x_n=0$ CQFD. On peut conclure :

A est inversible

Ex 15 On note $J \in \mathcal{M}_n(\mathbb{K})$ la matrice dont tous les termes valent 1.

a) Soit $A \in \mathcal{M}_n(\mathbb{K})$, et σ la somme de tous les coefficients de A. Alors pour tout $(i, j) \in [1, n]^2$:

$$[JAJ]_{ij} = \sum_{k=1}^{n} \sum_{\ell=1}^{n} [J]_{ik} [A]_{k\ell} [J]_{\ell j} = \sum_{k=1}^{n} \sum_{\ell=1}^{n} [A]_{k\ell} = \sigma$$

La matrice JAJ a donc un terme général constant égal à σ , i.e.

$$JAJ = \sigma J$$

En particulier si $\underline{A=I_n}$, alors $\sigma=n$, donc, comme $J^2=JI_nJ$:

$$J^2 = nJ$$

b) Soit $A=(a_{ij})\in\mathcal{M}_n$ définie par : $\left\{ \begin{array}{ll} a_{ij}=0 & \text{si } i=j\\ a_{ij}=1 & \text{sinon} \end{array} \right. :$

$$A = \begin{pmatrix} 0 & 1 & \cdots & 1 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \cdots & 1 & 0 \end{pmatrix} = J - I, \quad \text{où } I = I_n$$

De $J^n = nJ$ on tire

$$(A+I)^2 = n (A+I) \iff A^2 + (2-n) A = (n-1) I$$

 $\iff \frac{1}{n-1} (A + (2-n) I) A = I$

Donc $A \in GL_n(\mathbb{R})$ et

$$A^{-1} = \frac{1}{n-1} (A + (2-n) I) = \frac{1}{n-1} \begin{pmatrix} 2-n & 1 & \cdots & 1 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \cdots & 1 & 2-n \end{pmatrix}$$

Remarque : on a ainsi, pour n=2 et n=3 :

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \text{et} \quad \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}^{-1} = \frac{1}{2} \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$

Ex 16 Soit
$$N = \begin{pmatrix} 0 & 1 & & 0 \\ & \ddots & \ddots & \\ & 0 & \ddots & 1 \\ & & & 0 \end{pmatrix} \in \mathcal{M}_n$$
. On note $\mathbb{O} = 0_{\mathcal{M}_n}$

Le terme général de N est, pour tout couple $(i, j) \in [1, n]$:

$$[N]_{ij} = \delta_{i+1,j}$$

Calculons celui de \mathbb{N}^2 :

$$\left[N^2\right]_{ij} = \sum_{k=1}^n \delta_{i+1,k} \delta_{k+1,j}$$

Dans cette somme, pour avoir un terme non nul il faut un entier k tel que i+2=k+1=j. Autrement dit

$$\left[N^2\right]_{ij} = \left\{ \begin{array}{l} 1 \text{ si } i+2=j \\ 0 \text{ sinon} \end{array} \right.$$

soit

$$\left[N^2\right]_{ij} = (\delta_{i+2,j})$$

Ainsi

$$N^2 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ & \ddots & \ddots & 1 \\ & 0 & \ddots & 0 \\ & & & 0 \end{pmatrix}$$

On conjecture que pour tout entier p, le terme général de N^p est $\delta_{i+p,j}$. Montrons-le par récurrence :

- C'est évident pour p = 0 ($N^0 = I_n$ de terme général δ_{ij}).
- Si la formule est valable pour $p \in \mathbb{N}$, alors $\forall (i, j) \in [[1, n]]^2$,

$$\left[N^{p+1}\right]_{ij} = \left[N^p N\right]_{ij} \overset{\mathrm{HDR}}{=} \sum_{k=1}^n \delta_{i+p,k} \delta_{k+1,j} = \left\{ \begin{array}{l} 1 \text{ si } i+p+1=j \\ 0 \text{ sinon} \end{array} \right.$$

soit

$$\left[N^{p+1}\right]_{ij} = (\delta_{i+p+1,j})$$

En particulier,

$$\left\{\begin{array}{ll} \mathrm{Si}\; p=n-1:N^{n-1}=\left(\begin{array}{cc} 0&&1\\&0\\&&0\end{array}\right)=E_{1n}\neq\mathbb{O}\\ \mathrm{Si}\; p=n:N^n=\mathbb{O} \end{array}\right.$$

N est nilpotente d'ordre n

Ex 17 Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice nilpotente d'ordre $p \ge 1$. On pose $B = I_n - A$.

On connait la formule:

$$(I_n - A) \sum_{k=0}^{p-1} A^k = I_n - A^p = I_n$$

Il s'ensuit que B est inversible et que

$$I_n - A)^{-1} = \sum_{k=0}^{p-1} A^k$$

 $\boxed{ (I_n - A)^{-1} = \sum_{k=0}^{p-1} A^k }$ $\underline{ \text{Application}} : \text{soit } A = \left(\begin{array}{cccc} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{array} \right). \text{ En posant } N = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array} \right), \text{ on a (cf. ex précédent)} :$

Comme A = I - N, on en déduit que $A \in GL_4$ et

$$A^{-1} = I_4 + N + N^2 + N^3 = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Ex 18 Lemme d'Hadamard: soit $A=(a_{ij})\in\mathcal{M}_n\left(\mathbb{K}\right)$ une matrice à diagonale strictement dominante, i.e. vérifiant

$$\forall i \in \llbracket 1, n \rrbracket, |a_{ii}| > \sum_{j \neq i} |a_{ij}|$$

Montrons que A est inversible : par l'absurde, sinon le système $AX = 0_{\mathbb{K}^n}$ aurait une solution X non nulle. On aurait donc $(x_1, \ldots, x_n) \neq (0, \ldots, 0)$ vérifiant :

$$\begin{cases} \sum_{j=1}^{n} a_{1j}x_{j} = 0 \\ \vdots &, \text{ soit } \forall i \in [[1, n]], \sum_{j=1}^{n} a_{ij}x_{j} = 0 \\ \sum_{j=1}^{n} a_{nj}x_{j} = 0 \end{cases}$$

On considère un entier $i_0 \in [1, n]$ tel que $|x_{i_0}| = \max(|x_1|, \dots, |x_n|)$

Alors $x_{i_0} \neq 0$ sinon X serait nul. On a donc

$$\sum_{j=1}^{n} a_{ij} x_j = 0 \Longleftrightarrow a_{i_0 i_0} x_{i_0} = -\sum_{j \neq i} a_{i_0 j} x_j$$

Par inégalité triangulaire et majoration de $|x_j|$ par $|x_{i_0}|$:

$$|a_{i_0i_0}| |x_{i_0}| \le \sum_{j \ne i} |a_{i_0j}| |x_j| \le |x_{i_0}| \sum_{j \ne i} |a_{i_0j}|$$

En simplifiant par $|x_{i_0}| > 0$:

$$|a_{i_0i_0}|\leqslant \sum_{j\neq i}|a_{i_0j}|$$

ce qui est contraire à l'hypothèse, d'où notre résultat.

Ex 19 <u>Matrices élémentaires</u>: si $(k, \ell) \in [[1, n]]^2$, on considère la matrice $E_{k\ell}$ de \mathcal{M}_n (\mathbb{K}) dont tous les termes sont nuls hormis le terme d'indice (k, ℓ) qui vaut 1. On rappelle que

$$\delta_{ij} = \begin{cases} 1 \text{ si } i = j \\ 0 \text{ sinon} \end{cases}$$

a) Il est facile d'exprimer le terme général de $E_{k\ell}$: pour tout $(i,j) \in [1,n]^2$,

$$E_{k\ell}_{ij} = \delta_{ik}\delta_{j\ell}$$

b) On a alors, pour $A=(a_{ij})\in\mathcal{M}_n\left(\mathbb{K}\right)$, la décomposition

$$A = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} E_{ij}$$

En effet, on a bien pour $(k, \ell) \in [1, n]^2$:

$$\left[\sum_{i=1}^{n}\sum_{j=1}^{n}a_{ij}E_{ij}\right]_{k\ell} = \sum_{i=1}^{n}\sum_{j=1}^{n}a_{ij}\left[E_{ij}\right]_{k\ell} = \sum_{i=1}^{n}\sum_{j=1}^{n}a_{ij}\delta_{ik}\delta_{j\ell} = a_{k\ell} = [A]_{k\ell}$$

c) Soit $(k, \ell, p, q) \in [[1, n]]^4$. Calculons $E_{k\ell} E_{pq} : \text{si } (i, j) \in [[1, n]]^2$,

$$[E_{k\ell}E_{pq}]_{ij} = \sum_{r=1}^{n} [E_{k\ell}]_{ir} [E_{pq}]_{rj} = \sum_{r=1}^{n} \delta_{ik}\delta_{r\ell}\delta_{rp}\delta_{jq} = \delta_{ik}\delta_{jq} \sum_{r=1}^{n} \delta_{r\ell}\delta_{rp}$$

Comme $\delta_{r\ell}$ n'est non nul que pour $r=\ell$, il vient

$$[E_{k\ell}E_{pq}]_{ij} == \delta_{ik}\delta_{jq}\delta_{\ell p} = \delta_{\ell p} [E_{kq}]_{ij}$$

Il s'ensuit que

$$\begin{bmatrix} E_{k\ell}E_{pq} = \delta_{\ell p}E_{kq} \end{bmatrix}$$
 Si $\ell = p, \ E_{k\ell}E_{pq} = E_{kq}$ Si $\ell \neq p, \ E_{k\ell}E_{pq} = \mathbb{O}$

Autrement dit

- d) Soit $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{K})$.
 - * Calculons $E_{k\ell}A$. Si $(i,j) \in [1,n]^2$, on a comme au c):

$$[E_{k\ell}A]_{ij} = \sum_{r=1}^{n} [E_{k\ell}]_{ir} [A]_{rj} = \sum_{r=1}^{n} \delta_{ik} \delta_{r\ell} a_{rj} = \delta_{ik} \sum_{r=1}^{n} \delta_{r\ell} a_{rj} = \delta_{ik} a_{\ell j}$$

Ainsi:

$$\begin{cases} \text{ si } i = k, \ [E_{k\ell}A]_{ij} = a_{\ell j} \\ \text{ si } i \neq k, \ [E_{k\ell}A]_{ii} = 0 \end{cases}$$

Autrement dit,

 $E_{k\ell}A$ est la matrice dont toutes les lignes sont nulles sauf la ligne k qui est la ligne ℓ de A

* Calculons $AE_{k\ell}$. De même pour $(i,j) \in \llbracket 1,n \rrbracket^2$:

$$[AE_{k\ell}]_{ij} = \sum_{r=1}^{n} [A]_{ir} [E_{k\ell}]_{rj} = \sum_{r=1}^{n} a_{ir} \delta_{rk} \delta_{j\ell} = \delta_{j\ell} \sum_{r=1}^{n} \delta_{rk} a_{ir} = \delta_{j\ell} a_{ik}$$

Ainsi:

$$\begin{cases} \text{ si } j = \ell, \ [AE_{k\ell}]_{ij} = a_{ik} \\ \text{ si } j \neq \ell, \ [AE_{k\ell}]_{ij} = 0 \end{cases}$$

Autrement dit,

 $AE_{k\ell}$ est la matrice dont toutes les colonnes sont nulles sauf la colonne ℓ qui est la colonne k de A

e) Soit $(k, \ell) \in [[1, n]]^2$. Multiplions A à gauche de par $I_n + \lambda E_{k\ell}$

$$(I_n + \lambda E_{pq}) A = A + \lambda E_{k\ell} A$$

D'après le calcul du d),

Si $i \neq k$, la ligne i de $\lambda E_{k\ell}A$ est nulle, donc celle de $A + \lambda E_{k\ell}A$ est celle de ALa ligne k de $E_{k\ell}A$ est la ligne ℓ de A, donc celle de $A + \lambda E_{k\ell}A$ est celle de A augmentée de λ fois la ligne ℓ de A

la multiplication à gauche de
$$A$$
 par $I_n + \lambda E_{k\ell}$ opère $L_k \leftarrow L_k + \lambda L_\ell$

Ex 20 On cherche toutes les matrices A de $\mathcal{M}_n(\mathbb{K})$ vérifiant :

$$\forall M \in \mathcal{M}_n(\mathbb{K}), AM = MA$$

- Analyse : si A convient, alors en particulier, elle commute avec toutes les matrices élémentaires E_{ij}

$$\forall (i,j) \in [[1,n]]^2, E_{ij}A = AE_{ij}$$

où (cf. ex précédent):

$$E_{ij} = (\delta_{ik}\delta_{j\ell})_{1 \le k,\ell \le n}$$

En notant a_{ij} le terme général de A, celà s'écrit, pour tout $(i,j,k,\ell) \in {[\![} 1,n{]\!]}^4$

$$\sum_{r=1}^{n} [E_{k\ell}]_{ir} [A]_{rj} = \sum_{r=1}^{n} [A]_{ir} [E_{k\ell}]_{kj} \iff \delta_{ik} \sum_{r=1}^{n} \delta_{r\ell} a_{rj} = \delta_{j\ell} \sum_{r=1}^{n} \delta_{rk} a_{ir}$$
$$\iff \delta_{ik} a_{\ell j} = \delta_{j\ell} a_{ik}$$

- * En fixant i=k, on a donc pour tout couple (ℓ,j) tel que $\ell \neq j: \boxed{a_{\ell j}=0}$. A est diagonale.
- * En fixant i = k et $\ell = j$, on a donc pour tout couple $(i, j) : \boxed{a_{jj} = a_{ii}}$: la diagonale est constante.

Ainsi, A est nécessairement une matrice scalaire, i.e. de la forme

$$\lambda I_n$$
, où $\lambda \in \mathbb{K}$

- Synthèse : les matrices scalaires commutent avec toutes les autres :

$$\forall M \in \mathcal{M}_n (\mathbb{K}), (\lambda I_n) M = M (\lambda I_n) = \lambda M$$

- Conclusion:

les matrices qui commutent avec toutes les autres sont les matrices scalaires

$$\operatorname{rg} M = 1 \iff \exists L \in \mathcal{M}_{12}(\mathbb{K}) \setminus \{0\}, \ \exists C \in \mathcal{M}_{21}(\mathbb{K}) \setminus \{0\} \ / \ M = LC$$

* Si M = LC avec $L \in \mathcal{M}_{12}(\mathbb{K}) \setminus \{0\}$ et $C \in \mathcal{M}_{21}(\mathbb{K}) \setminus \{0\}$, alors, en posant

$$L = (a, b) \neq (0, 0)$$
 et $C = \begin{pmatrix} c \\ d \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

on a

$$M = \left(\begin{array}{cc} ca & cb \\ da & db \end{array}\right)$$

Quitte à échanger les lignes, on peut supposer que $c \neq 0$, et alors, en opérant $L_2 \leftarrow L_2 - \frac{d}{c}L_1$

$$M \sim \left(\begin{array}{cc} ca & cb \\ 0 & 0 \end{array} \right)$$

D'où $\operatorname{rg} M=1$ puisque la première ligne de cette matrice échelonnée est non nulle.

* Inversement, si rg M=1, alors le déterminant de M est nul, soit, si $M=\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$,

$$ad = bc$$

Mais alors les deux lignes de M sont proportionnelles, donc proportionnelles à une même ligne non nulle

$$L = (\alpha, \beta)$$

Donc

$$\exists (k,k') \neq (0,0) \ / \left\{ \begin{array}{l} (a,b) = (k\alpha,k\beta) \\ (c,d) = (k'\alpha,k'\beta) \end{array} \right.$$
(si $k=k'=0$, alors $M=\mathbb{O}$). En posant $C=\binom{k}{k'} \in \mathcal{M}_{21}\left(\mathbb{K}\right) \setminus \{0\}$, on a

$$CL = \begin{pmatrix} k \\ k' \end{pmatrix} (\alpha, \beta) = \begin{pmatrix} k\alpha & k\beta \\ k'\alpha & k'\beta \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = M \quad \text{CQFD}$$

Dans ce cas, on a pour $n \in \mathbb{N}^*$:

$$M^{n} = \underbrace{CLCL \cdots CL}_{n \text{ fois}} = \underbrace{C(LC)(LC) \cdots (LC)}_{n-1 \text{ fois}} L$$

Or

$$LC = (\alpha, \beta) \binom{k}{k'} = \alpha k + \beta k' = a + d = \operatorname{tr} M \in \mathbb{K}$$

Ainsi

$$M^n = C (\operatorname{tr} M)^{n-1} L = (\operatorname{tr} M)^{n-1} CL$$

soit

$$\boxed{M^n = (\operatorname{tr} M)^{n-1} M}$$

Remarque : pour plus de rigueur, on peut faire une récurrence facile. On a de plus $M^0=I_2$, évidemment.

- b) Soit $n \in \mathbb{N}^*$. Résolution dans $\mathcal{M}_2\left(\mathbb{C}\right)$ de l'équation $(E): M^n = A$, où $A = \begin{pmatrix} 2 & 3 \\ 4 & 6 \end{pmatrix}$
 - * **Analyse**: si M est solution, alors $\operatorname{rg} M \in \{0, 1, 2\}$.
 - · $M \neq \mathbb{O}$ (matrice nulle) donc rg $M \neq 0$
 - · $M \notin GL_2(\mathbb{C})$ car sinon M^n serait inversible, et donc A le serait, ce qui est faux ($\det A = 0$). Donc $\operatorname{rg} M \neq 2$.

Ainsi, nécessairement $\operatorname{rg} M=1$. Mais la question précédente prouve alors qu'il existe une colonne non nulle C et une ligne non nulle L telles que

$$M = CL$$

L'équation (E) devient alors, toujours d'après a) :

$$(\operatorname{tr} M)^{n-1} M = A$$

Il s'ensuit que M est un multiple de A :

$$\exists \lambda \in \mathbb{C} \ / \ M = \lambda A$$

Mais A est elle aussi de rang 1, et s'écrit

$$A = \begin{pmatrix} 1 \\ 2 \end{pmatrix} (2,3)$$
, avec $\operatorname{tr} A = (2,3) \begin{pmatrix} 1 \\ 2 \end{pmatrix} = 8$

Donc (E) devient

$$\lambda^n A^n = A \iff \lambda^n 8^{n-1} A = A \iff \lambda^n = \frac{1}{8^{n-1}} = \frac{8}{8^n}$$

Nos connaissances des racines n-ièmes des nombres complexes donnent

$$\lambda^n = \frac{8}{8^n} \Longleftrightarrow \exists k \in [[0, n-1]] / \lambda = \frac{\sqrt[n]{8}}{8} e^{2ik\pi/n}$$

Finalement, M s'écrit

$$M = \frac{\sqrt[n]{8}}{8}e^{2ik\pi/n}A, \quad k \in [[0, n-1]]$$

* **Synthèse** : si $k \in [0, n-1]$ et $M = \frac{\sqrt[n]{8}}{8}e^{2ik\pi/n}A$, il vient facilement :

$$M^n = \frac{8}{8^n} A^n = \frac{8}{8^n} 8^{n-1} A = A$$

* Conclusion:

les solutions de
$$(E)$$
 sont les matrices de la forme $M=\frac{\sqrt[n]{8}}{8}e^{2ik\pi/n}A, \quad k\in [[0,n-1]]$

Ex 22 On considère la matrice $A \in \mathcal{M}_n(\mathbb{R})$ de terme général $a_{ij} = \frac{1}{(i+j-1)!}$ soit

$$A = \begin{pmatrix} \frac{1}{1!} & \frac{1}{2!} & \cdots & \frac{1}{n!} \\ \frac{1}{2!} & \frac{1}{3!} & \cdots & \frac{1}{(n+1)!} \\ \vdots & \vdots & & \vdots \\ \frac{1}{n!} & \frac{1}{(n+1)!} & \cdots & \frac{1}{(2n-1)!} \end{pmatrix}$$

Soit
$$Y=\left(\begin{array}{c}y_1\\ \vdots\\ y_n\end{array}\right)\in\mathbb{R}^n$$
 vérifiant $AY=0_{\mathbb{R}^n}.$ On définit le polynôme

$$P = \sum_{k=1}^{n} \frac{y_k}{(n+k-1)!} X^{n+k-1} = \frac{y_1}{n!} X^n + \frac{y_2}{(n+1)!} X^{n+1} + \dots + \frac{y_n}{(2n-1)!} X^{2n-1}$$

a) On connait la formule

$$D\left(\frac{X^p}{p!}\right) = \begin{cases} \frac{X^{p-1}}{(p-1)!} & \text{si } p \geqslant 1\\ 0 & \text{si } p = 0 \end{cases}$$

Donc

$$D^{\ell}\left(\frac{X^{p}}{p!}\right) = \begin{cases} \frac{X^{p-\ell}}{(p-\ell)!} & \text{si } p \geqslant \ell \\ 0 & \text{si } p < \ell \end{cases}$$

Par linéarité, on a donc, pour $\ell \in [0, n-1]$,

$$P^{(\ell)} = \sum_{k=1}^{n} y_k D^{\ell} \left(\frac{X^{n+k-1}}{(n+k-1)!} \right)$$
$$= \sum_{k=1}^{n} y_k \frac{X^{n+k-1-\ell}}{(n+k-1-\ell)!}$$

En évaluant en 1, cela donne

$$P^{(\ell)}(1) = \sum_{k=1}^{n} \frac{y_k}{(n+k-\ell-1)!}$$

Or $AY = 0_{\mathbb{R}^n}$ s'écrit, à la ligne $n - \ell$

$$\sum_{k=1}^{n} [A]_{n-\ell,k} y_k = 0 \quad \text{soit} \quad \sum_{k=1}^{n} \frac{y_k}{(n-\ell+k-1)!} = 0$$

Ainsi, naturellement

$$\forall \ell \in [0, n-1], \ P^{\ell}(1) = 0$$

b) Mais de plus

$$P = X^{n} \sum_{k=1}^{n} \frac{y_{k}}{(n+k-1)!} X^{k-1}$$

Donc 1 et 0 sont racines de P d'ordre au moins n chacun. Or $\deg P \leqslant 2n-1$, ce qui assure que

$$P = 0$$

Les coefficients de P sont ainsi nuls, i.e. $y_1 = \cdots = y_n = 0$, soit $Y = 0_{\mathbb{R}^n}$.

Le système $AY = 0_{\mathbb{R}^n}$ n'admet que la solution nulle, donc

A est inversible

Ex 23 Soit $A \in GL_n(\mathbb{R})$. On suppose que tous les coefficients de A et de A^{-1} sont positifs ou nuls.

Montrons que sur chaque colonne de A, il y a un unique terme non nul :

Appelons a_{ij} et b_{ij} les termes généraux de A et de son inverse B.

Pour tous i, j distincts, de $[AB]_{ij} = 0$ on tire

$$\sum_{k=1}^{n} a_{ik} b_{kj} = 0$$

Une somme de termes positifs est nulle si et seulement si ses termes sont nuls, donc :

$$\forall k \in [[1, n]], \ a_{ik}b_{kj} = 0$$

Soit k un entier entre 1 et n: par inversibilité de B, on peut choisir sur la ligne k de B un élément non nul soit

$$b_{kj} \neq 0$$
, où $j \in [[1, n]]$

Alors pour tout i différent de j, on a $a_{i,k} = 0$.

Cela démontre que la colonne k admet n-1 zéros au moins c'est-à-dire n-1 exactement par inversibilité.

Ex 24 Une méthode hors programme de calcul de puissances : soit $A = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 2 & 1 \\ -1 & 1 & 2 \end{pmatrix}$.

a) On note $I = I_3$ et $\mathbb{O} = 0_{\mathcal{M}_3}$.On calcule facilement

$$A^{2} = \begin{pmatrix} -2 & 3 & 3 \\ -3 & 4 & 3 \\ -3 & 3 & 4 \end{pmatrix} = 3A - 2I$$

Donc $A^2 - 3A + 2I = \mathbb{O}$. $P = X^2 - 3X + 2 = (X - 1)(X - 2)$ est donc un polynôme annulateur de A.

b) Soit $n \in \mathbb{N}$. Le reste R de la division euclidienne de X^n par P est de degré inférieur à 1, donc s'écrit

$$R = aX + b, \quad (a, b) \in \mathbb{R}^2$$

On a donc l'existence d'un unique polynôme ${\cal Q}$ tel que

$$(DE): X^n = (X^2 - 3X + 2) Q + aX + b$$

En substituant successivement 1 et 2 à X (les racines de P) dans (DE), il vient :

$$\left\{ \begin{array}{l} 1=a+b \\ 2^n=2a+b \end{array} \right. \iff \left\{ \begin{array}{l} a=2^n-1 \\ b=2-2^n \end{array} \right.$$

Ainsi on a l'identité polynômiale

$$X^{n} = (X^{2} - 3X + 2) Q + (2^{n} - 1) X + (2 - 2^{n})$$

c) On montre (c'est la difficulté qui fait que cette méthode n'est pas au programme) que cette identité reste vraie lorsque l'on substitue la matrice A à l'indéterminée X. Alors

$$A^{n}=\left(A^{2}-3A+2I\right)Q\left(A\right)+\left(2^{n}-1\right)A+\left(2-2^{n}\right)I$$

D'où puisque $A^2 - 3A + 2I = \mathbb{O}$:

$$A^{n} = (2^{n} - 1) A + (2 - 2^{n}) I$$

soit

$$A^n = 2^n (A - I) + (2I - A)$$

ou encore

$$A^{n} = 2^{n} \begin{pmatrix} -3 & 3 & 3 \\ -3 & 3 & 3 \\ -3 & 3 & 3 \end{pmatrix} + \begin{pmatrix} 4 & -3 & -3 \\ 3 & -2 & -3 \\ 3 & -3 & -2 \end{pmatrix}$$

d) Procédons de même avec $B=\left(\begin{array}{cc} -8 & 4 \\ -9 & 4 \end{array}\right)$: en posant $I=I_2,$

$$B^2 = \begin{pmatrix} 28 & -16 \\ 36 & -20 \end{pmatrix} = -4B - 4I$$

Le polynôme $P = X^2 + 4X + 4 = (X + 2)^2$ est annulateur de B.

Si $n \in \mathbb{N}$, le reste de la division euclidienne de X^n par P est de degré inférieur à 1, donc s'écrit

$$R = aX + b, \quad (a, b) \in \mathbb{R}^2$$

On a donc l'existence d'un unique polynôme Q tel que

$$(DE): X^n = (X+2)^2 Q + aX + b$$

En substituant -2 à X on obtient $(-2)^n = -2a + b$.

En dérivant (DE) puis en substituant -2 à X, on obtient

$$nX^{n-1} = 2(X+2)Q + (X+2)^{2}Q' + a$$

d'où $\underline{n\left(-2\right)^{n-1}}=a,$ ce qui fournit alors $\underline{b=\left(-2\right)^{n}-n\left(-2\right)^{n}=\left(1-n\right)\left(-2\right)^{n}}.$

Ainsi on a l'identité polynômiale :

$$X^{n} = (X^{2} + 4X + 4) Q + n (-2)^{n-1} X + (1-n) (-2)^{n}$$

On substitue (par magie) la matrice B à l'indéterminée X pour obtenir

$$B^{n} = n (-2)^{n-1} B + (1-n) (-2)^{n} I$$

soit

$$B^{n} = (-2)^{n-1} (n (B + 2I) - 2I)$$

Explicitement

$$B^n = (-2)^{n-1} \left[n \begin{pmatrix} -6 & 4 \\ -9 & 6 \end{pmatrix} - \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \right] = (-2)^{n-1} \begin{pmatrix} -6n - 2 & 4n \\ -9n & 6n - 2 \end{pmatrix}$$