Cellular Automata and Game of Life: Viral Infection

第二组组长: 向志强

组员: 兰有金 肖亦歌 侯文娟 刘昭华

Definition of Cellular Automaton

Definition : What is cellular automaton?

Lattice of cells
Set of allowable states
Transition function

Cellular
Automaton

A Special Case: Game of Life

The rules for the Game of Life

Proposition: 1 = alive, 0 = dead; 8-cell Moore neighborhood

At the Next Generation

- dead to alive: if exactly 3 of its 8 neighbors are alive;
- live remains alive if either 2 or 3 of its 8 neighbors is alive but otherwise it dies.

Game of Life and Viral infection

The Creator:
John Horton Conway

Die of COVID-19

Model Specification

$$A=(Ld, S, N, f)$$

- A = Cellular Automaton system
- Ld = d dimension grid space, d=2
- S = state set
- N = neighbors set
- f = transition function

Model: 3 Different States in Viral Infection

***** How do we get sick?

Pi:感染 死治愈异。 再感染

Ti:感染 免疫

Model: Neighbors Set

(i-1, j-1)	(i-1, j)	(i-1, j+1)
(i, j-1)	(i, j)	(i, j+1)
(i+1, j-1)	(i+1, j)	(i+1, j+1)

Moore Neighbor
$$r=1$$
 3x3
 $r=2$ 5x5

Model: State Set

$$S_{i,j}^t = \{0,1,2\}$$

- 0 =susceptible , can not infected others but can be infected
- 1 = infected, can infected others, create antibody eventually cured with time
- 2 = cured or dead, can not infected others and immunity decreases with time
- ❖ Introduce $t(S_{i,j}^t)$, $T(S_{i,j}^t)$, $p(S_{i,j}^t)$. $t(S_{i,j}^t)$ =Duration of infected, $t_{max}(S_{i,j}^t)$ =maximum of $t(S_{i,j}^t)$ $T(S_{i,j}^t)$ = Duration of immunity. $T_{max}(S_{i,j}^t)$ =maximum of $T(S_{i,j}^t)$ $p(S_{i,j}^t)$ = probability of being infected

Model: Transition function

Original state

$$S_{i,j}^t = \{0\}, \ t(S_{i,j}^t) = 0, \ \forall i,j$$

* Randomly choose several cell, let

$$S_{i,j}^t = \{1\}, \qquad t(S_{i,j}^t) = 1$$

Model: Transition function

If
$$p(S_{i,j}^t) > 0.8$$
, and $\sum_{i=1}^{i+1} \sum_{j=1}^{j+1} S_{i,j}^t > 0$

then let

$$S_{i,j}^t = 0 \quad \to \quad S_{i,j}^t = 1$$

$$t(S_{i,j}^t) = t(S_{i,j}^t) + 1$$

Where

$$p(S_{i,j}^t)$$
= Random (0,1)

Model: Transition function

If $t(S_{i,j}^t) < t_{max}(S_{i,j}^t)$, remain infected

$$t(S_{i,j}^t) = t(S_{i,j}^t) + 1$$

if
$$t(S_{i,j}^t) > t_{max}(S_{i,j}^t)$$
,

Then let

$$S_{i,j}^t = 1 \quad \to \quad S_{i,j}^t = 2$$

$$t(S_{i,j}^t) = 0$$
, $T(S_{i,j}^t) = T(S_{i,j}^t) + 1$

Results and development

Step1: Run the original model

Step2: Introduce government control

Step3: Introduce virus mutation

Step4: Introduce health care

Results 1: Original model(∞)

Results 2: Government Control(30days)

Infected: 554 Dead: 220 Survivor: 5626 Infected: 71 Dead: 198 Survivor: 6131

Results 3: Virus Mutation(50 days)

Infected: 1272

Dead: 1259

Survivor: 3869

Infected: 12

Dead: 208

Survivor: 6180

Infected: 17

Dead: 272

Survivor: 6111

Results 4: Health Care(50 days)

Thank You !