第六章 样本及抽样分布

- §0 从概率到数理统计
- §1 随机样本
- §2 直方图、分位数与箱线图
- §3 抽样分布

§3 抽样分布

统计推断的两个重要基础

收集数据——从总体 $X \sim F(x)$ 抽取样本 $X_1, X_2, ..., X_n$

加工整理数据——统计量

§3 抽样分布

三种重要的统计学分布

- χ^2 分布主要是用于列联分析
- t分布主要是用于小样本分析
- F分布主要是用于方差分析

四个重要的抽样定理

χ^2 分布

设 $X_1, X_2, ..., X_n$ i.i.d ~ N(0,1), 则称统计量

$$\chi^2 = \sum_{i=1}^n X_i^2$$

服从的分布为自由度为n的 χ^2 (卡方)分布,记为: $\chi^2 \sim \chi^2(n)$

χ^2 分布

这里自由度是指右端包含的独立变量的个数 , $\chi^2(n)$ 的概率密度为

$$f(y) = \begin{cases} \frac{1}{\frac{n}{2}} y^{\frac{n}{2} - 1} e^{-\frac{y}{2}}, & y > 0\\ \frac{1}{2} \left(\frac{n}{2}\right) \\ 0, & y \le 0 \end{cases}$$

关于Γ函数的回顾(详见第二章内容)

$$\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha - 1} e^{-x} dx$$

$$\Gamma(\alpha+1)=\alpha\Gamma(\alpha)$$
 , $\Gamma(1)=1$, $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$

若α为正整数 , 记为n , 则 $\Gamma(n) = (n-1)!$

χ^2 分布的推导:

由第二章第5节例5有 $Y_i = X_i^2 \sim \Gamma\left(\frac{1}{2}, 2\right)$,其概率密度为

$$f(y,1) = \begin{cases} \frac{1}{2^{\frac{1}{2}}\Gamma(\frac{1}{2})} y^{-\frac{1}{2}}e^{-\frac{y}{2}}, & y > 0\\ 0, & y \le 0 \end{cases}$$

$$\Gamma 分布$$

$$\Gamma(k,\theta) = \begin{cases} \frac{1}{\theta^k \Gamma(k)} x^{k-1} e^{-\frac{x}{\theta}}, & x > 0\\ 0, & x \le 0 \end{cases}$$

下面证明相互独立的Γ分布的可加性:

设相互独立的
$$X_1 \sim \Gamma(\alpha, \theta), X_2 \sim \Gamma(\beta, \theta), Z = X_1 + X_2$$

$$f_{Z}(z) = \int_{-\infty}^{\infty} f_{X_{1}}(x) f_{X_{2}}(z - x) dx$$

$$= \int_{0}^{z} \frac{1}{\theta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} e^{-\frac{x}{\theta}} \frac{1}{\theta^{\beta} \Gamma(\beta)} (z - x)^{\beta - 1} e^{-\frac{z - x}{\theta}} dx$$

$$= \frac{e^{-\frac{z}{\theta}}}{\theta^{\alpha + \beta} \Gamma(\alpha) \Gamma(\beta)} \int_{0}^{z} x^{\alpha - 1} (z - x)^{\beta - 1} dx$$

$$= \frac{z^{\alpha + \beta - 2} e^{-\frac{z}{\theta}}}{\theta^{\alpha + \beta} \Gamma(\alpha) \Gamma(\beta)} \int_{0}^{z} \left(\frac{x}{z}\right)^{\alpha - 1} \left(1 - \frac{x}{z}\right)^{\beta - 1} dx$$

$$(\text{H}x = zt, dx = zdt)$$

$$= \frac{\mathbf{z}^{\alpha+\beta-1} e^{-\frac{\mathbf{z}}{\theta}}}{\theta^{\alpha+\beta} \Gamma(\alpha) \Gamma(\beta)} \int_{0}^{1} t^{\alpha-1} (1-t)^{\beta-1} dt \stackrel{\text{def}}{=} A \mathbf{z}^{\alpha+\beta-1} e^{-\frac{\mathbf{z}}{\theta}}$$

注意:与z无关

于是,
$$A = \frac{1}{\theta^{\alpha+\beta}\Gamma(\alpha)\Gamma(\beta)} \int_0^1 t^{\alpha-1} (1-t)^{\beta-1} dt$$

由概率性质有

$$\int_{0}^{\infty} Az^{\alpha+\beta-1}e^{-\frac{z}{\theta}}dz = 1 \implies$$

$$A\theta^{\alpha+\beta} \int_{0}^{\infty} \left(\frac{z}{\theta}\right)^{\alpha+\beta-1}e^{-\frac{z}{\theta}}d\left(\frac{z}{\theta}\right) = 1 \implies$$

$$A = \frac{1}{\theta^{\alpha+\beta} \int_{0}^{\infty} t^{\alpha+\beta-1}e^{-t}dt} = \frac{1}{\theta^{\alpha+\beta}\Gamma(\alpha+\beta)}$$

于是,当z > 0时,

$$f_Z(z) = Az^{\alpha+\beta-1}e^{-\frac{z}{\theta}} = \frac{1}{\theta^{\alpha+\beta}\Gamma(\alpha+\beta)}z^{\alpha+\beta-1}e^{-\frac{z}{\theta}}$$

于是对于相互独立的 $X_1 \sim \Gamma(\alpha, \theta), X_2 \sim \Gamma(\beta, \theta)$,若 $Z = X_1 + X_2$,则有 $Z \sim \Gamma(\alpha + \beta, \theta)$,即满足可加性。

于是对于 Γ 分布的特例 χ^2 同样满足可加性,即有

$$\chi^{2} = \sum_{i=1}^{n} X_{i}^{2} \sim \Gamma\left(\frac{n}{2}, 2\right) = \frac{1}{2^{\frac{n}{2}}\Gamma\left(\frac{n}{2}\right)} y^{\frac{n}{2}-1} e^{-\frac{y}{2}}, \qquad y > 0$$

χ^2 分布的性质

• 自由度为n的 χ^2 分布的均值 $\mu = n$ 可以直接从密度函数导出,或者,考虑 $X_i \sim N(0,1)$,于是 $E(X_i^2) = D(X_i) = 1$

$$E(\chi^2) = E(\sum_{i=1}^n X_i^2) = \sum_{i=1}^n E(X_i^2) = n$$

• 自由度为n的 χ^2 分布的方差 $\sigma^2 = 2n$

$$D(X_i^2) = E(X_i^4) - [E(X_i^2)]^2$$

$$= \int_{-\infty}^{+\infty} x^4 \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx - 1 = 2$$

于是,

$$D(\chi^2) = D(\sum_{i=1}^n X_i^2) = \sum_{i=1}^n D(X_i^2) = 2n$$

χ^2 分布的可加性

 $\chi_1^2 \sim \chi^2(m)$, $\chi_2^2 \sim \chi^2(n)$, 且 χ_1^2 和 χ_2^2 相互独立 , 则 $\chi_1^2 + \chi_2^2 \sim \chi^2(m+n)$

推论: $X_1, X_2, ..., X_n$ i.i.d ~ $N(\mu, \sigma^2)$, 随机变量

$$Y = \sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma} \right)^2$$

服从自由度为 $n的\chi^2$ 分布

上α分位点的定义

设 $X \sim f(x)$, 若 $\forall 0 < \alpha < 1$, 存在常数 f_{α} 满足

$$P\{X > f_{\alpha}\} = \int_{f_{\alpha}}^{+\infty} f(x) dx = \alpha$$
则称 f_{α} 为分布密度 $f(x)$ 的上 α 分位点。
$$y = f(x)$$

面积为 α

分位点的作用——

在统计推断时,需要知道给定概率下,对应随机变量的取值。

对 χ^2 分布而言,称满足条件 $P\{\chi^2 > \chi^2_{\alpha}(n)\} = \alpha$ 的点 $\chi^2_{\alpha}(n)$ 为 $\chi^2(n)$ 分布的上 α 分位点

当n充分大时 , $\chi^2(n) \approx \frac{1}{2} \left(z_{\alpha} + \sqrt{2n-1} \right)^2$, z_{α} 是 标准正态分布的上 α 分位点

χ^2 分布表($P\{\chi^2 > \chi^2_{\alpha}(n)\} = \alpha$)

$\begin{bmatrix} \alpha \\ n \end{bmatrix}$	0.995	0.99	0.975	0.95	0.90	0.10	0.05	0.025
1	0.00004	0.00016	0.001	0.004	0.016	2.706	3.841	5.024
2	0.01	0.02	0.051	0.103	0.211	4.605	5.991	7.378
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143
5	0.412	0.554	0.831	1.145	1.61	9.236	11.07	12.833
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449
7	0.989	1.239	1.69	2.167	2.833	12.017	14.067	16.013
8	1.344	1.646	2.18	2.733	3.49	13.362	15.507	17.535
9	1.735	2.088	2.7	3.325	4.168	14.684	16.919	19.023
10	2.156	2.558	3.247	3.94	4.865	15.987	18.307	20.483
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.92
12 2018/11	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337

t分布(Student(学生氏)分布)

定义:设 $X \sim N(0,1)$, $Y \sim \chi^2(n)$, 且X与Y相互独立 , 称随机变量

$$t = \frac{X}{\sqrt{Y/n}}$$

服从自由度为n的t分布, $t \sim t(n)$

t分布的概率密度函数为:

$$h(t) = \frac{\Gamma\left[\frac{n+1}{2}\right]}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}}, -\infty < t < +\infty$$

t分布特性

t分布关于x=0对称

• n=1时 , E(t)不存在

$$h(t) = \frac{\Gamma(1)}{\sqrt{\pi}(1+t^2)\Gamma(\frac{1}{2})}$$

• n≥2时, E(t) =0

n→∞时,t分布趋向于标准正态分布

$$\lim_{n \to \infty} h(t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

n足够大(≥ 45)时, t分布可用标准正态分布近似

对t分布而言, 称满足条件

$$P\{t > t_{\alpha}(n)\} = \alpha$$

的点 $t_{\alpha}(n)$ 为t分布的上 α 分位点 由概率密度的对称性, $t_{1-\alpha}(n) = -t_{\alpha}(n)$

推论: 如果 $X_1, X_2, ..., X_n$ i.i.d, $\sim N(\mu, \sigma^2)$, 则随机变量

$$T = \frac{\bar{X} - \mu}{S/\sqrt{n}}$$

为自由度为n-1的t分布。

t分布被大量用于总体均值的推断、样本比较等问题

t分布的来历

- t分布最先提出者——Helmert和Lüroth (1876)
- 1908年William Sealy Gosset用笔名 "Student" 在 Biometrika 上发表了题为 "The probable error of a mean" 的文章
- Gosset当时在Guinness啤酒厂工作,对小样本问题感兴趣——大麦样本可能只有极少数
- 命名的来历
 - Gosset的雇主不希望雇员用真名发表论文 vs. Guinness不希望对手掌握这一小样本方法
 - Ronald Fisher在其文章中称这一分布为 "Student's distribution" , 并用t表示值 , 原因之一是Gosset和Student 的最后一个字母 都是t

F分布(方差比分布)

定义:设 $U\sim\chi^2(n_1)$, $V\sim\chi^2(n_2)$, 且U与V相互独立 , 称随机变量

$$F = \frac{U/n_1}{V/n_2}$$

服从自由度为 (n_1,n_2) 的F分布,记为 $F \sim F(n_1,n_2)$ 注意到,

$$\frac{1}{F} = \frac{V/n_2}{U/n_1} \sim F(n_2, n_1)$$

若 $F \sim F(n_1, n_2)$,则 $1/F \sim F(n_2, n_1)$

F分布的密度函数

$$\psi(y) = \begin{cases} \frac{\Gamma\left(\frac{n_1 + n_2}{2}\right) \left(\frac{n_1}{n_2}\right)^{\frac{n}{2}} y^{\frac{n}{2} - 1}}{\Gamma\left(\frac{n_1}{2}\right) \Gamma\left(\frac{n_2}{2}\right) \left(1 + \frac{n_1}{n_2} y\right)^{\frac{n_1 + n_2}{2}}}, & y > 0\\ 0, & \sharp \text{ } \end{cases}$$

用于比较多种类型的样本 方差问题,如:比较样本 是否来源于不同总体

对F分布而言, 称满足条件

$$P\{F > F_{\alpha}(n_1, n_2)\} = \alpha$$

的点 $F_{\alpha}(n_1, n_2)$ 为F分布的上 α 分位点

F分布上α分位点的性质,

$$F_{1-\alpha}(n_1, n_2) = \frac{1}{F_{\alpha}(n_2, n_1)}$$

证:由F分布方差比的特点

$$1 - \alpha = P\{F > F_{1-\alpha}(n_1, n_2)\} = P\left\{\frac{1}{F} < \frac{1}{F_{1-\alpha}(n_1, n_2)}\right\}$$
$$= 1 - P\left\{\frac{1}{F} \ge \frac{1}{F_{1-\alpha}(n_1, n_2)}\right\}$$

于是

$$P\left\{\frac{1}{F} \ge \frac{1}{F_{1-\alpha}(n_1, n_2)}\right\} = \alpha$$

又因为 $\frac{1}{F}$ ~ $F(n_2,n_1)$,所以 $F_{\alpha}(n_2,n_1) = \frac{1}{F_{1-\alpha}(n_1,n_2)}$

即,

$$F_{1-\alpha}(n_1, n_2) = \frac{1}{F_{\alpha}(n_2, n_1)}$$

例:

F分布表中 没有

$$= \frac{F_{0.90}(12,9)}{F_{0.1}(9,12)} = \frac{1}{2.21} = 0.452$$

F分布表中 直接查得

为何称之为F-分布?

- F-分布是为了纪念著名统计学家费歇耳(Ronald Aylmer Fisher 1890-1962)而命名
- 关于Fisher

英国统计与遗传学家,现代统计科学的奠基人之一。 在遗传学的研究中,引入并发展了统计学方法,其著作《研究工作者的统计方法》(1925)影响超过半世纪。著作《天择的遗传理论》将统计分析的方法带入进化论的研究。

正态总体的抽样定理

最重要的总体: $X \sim N(\mu, \sigma^2)$

问题:如何由样本获得对 μ 和 σ^2 的估计

方法:构造合适的统计量 $g(X_1, X_2, ..., X_n)$

问题:

- 1. 什么统计量是合适的?
- 2. $g(X_1, X_2, ..., X_n)$ 服从什么分布?

抽样定理回答了上述问题

定理1. 设 $X_1, X_2, ..., X_n$ 是来自总体 $X \sim N(\mu, \sigma^2)$ 的样本,则

$$\bar{X} \sim N(\mu, \sigma^2/n)$$

证明: 由 $X_1, X_2, ..., X_n$ 独立同分布,以及正态分布的性质,于是有

$$\bar{X} = \frac{1}{n}(X_1 + X_2 + \dots + X_n)$$

仍服从正态分布,且

$$E(\bar{X}) = \mu, \qquad D(\bar{X}) = \frac{\sigma^2}{n}$$

于是,

$$\bar{X} \sim N(\mu, \sigma^2/n)$$

证明了X逼近µ的合理性

定理2. 设 $X_1, X_2, ..., X_n$ 是来自总体 $X \sim N(\mu, \sigma^2)$ 的样本, \bar{X} 和 S^2 分别为样本均值与样本方差,则有

$$(1) \frac{(n-1)S^2}{\sigma^2} \sim \chi^2 (n-1)$$

(2) \bar{X} 和 S^2 相互独立

n取不同值时 $\frac{(n-1)S^2}{\sigma^2}$ 的分布

如果(1)成立,则
$$E\left[\frac{(n-1)S^2}{\sigma^2}\right] = n-1 \Rightarrow E[S^2] = \sigma^2$$

$$D\left[\frac{(n-1)S^2}{\sigma^2}\right] = 2(n-1) \Rightarrow D[S^2] = \frac{2\sigma^4}{(n-1)}$$
证明了 S^2 逼近 σ^2 的合理性

证明:(1)

$$\frac{(n-1)S^2}{\sigma^2} = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{\sigma^2} = \sum_{i=1}^n \left[\frac{(X_i - \mu) - (\bar{X} - \mu)}{\sigma} \right]^2$$
$$= \sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma} \right)^2 - n \left(\frac{\bar{X} - \mu}{\sigma} \right)^2$$

于是,

$$\frac{(n-1)S^2}{\sigma^2} + \left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}\right)^2 = \sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma}\right)^2$$

注意到:
$$\sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma}\right)^2 \sim \chi^2(n)$$
,而 $\left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}\right)^2 \sim \chi^2(1)$

于是由 χ^2 分布的性质,有 $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$

定理3. 设 $X_1, X_2, ..., X_n$ 是来自总体 $X \sim N(\mu, \sigma^2)$ 的样本, \bar{X} 和 S^2 分别为样本的均值与样本方差,则有

$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$

证明:由定理1和定理2有:

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1), \qquad \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

于是由t分布定义有,

$$\frac{\frac{\overline{X} - \mu}{\sigma}}{\sqrt{n}} \sim t(n-1) \Rightarrow \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$

$$\sqrt{\frac{(n-1)S^2}{(n-1)\sigma^2}}$$

定理4. 设 $X_1, X_2, ..., X_n$ 与 $Y_1, Y_2, ..., Y_n$ 分别是来自总体 $X \sim N(\mu_1, \sigma_1^2)$ 和 $Y \sim N(\mu_2, \sigma_2^2)$ 的样本,且两样本分别独立,两样本均值与样本方差分别为 $\bar{X}, \bar{Y}, S_1^2, S_2^2$,则有

$$\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$$

$$\stackrel{\text{if } \sigma_1^2 = \sigma_2^2 = \sigma^2 \text{ if } ,}{\underline{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}} \sim t(n_1 + n_2 - 2),$$

$$\frac{S_2^2/\sigma_2^2}{S_2^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$$

其中

$$S_w^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}, \qquad S_w = \sqrt{S_w^2}$$

证明:(1)由定理2

$$\frac{(n_1-1)S_1^2}{\sigma_1^2} \sim \chi^2(n_1-1), \frac{(n_2-1)S_2^2}{\sigma_2^2} \sim \chi^2(n_2-1)$$

由假设 S_1^2 , S_2^2 相互独立,则由F分布的定义知

$$\frac{(n_1-1)S_1^2}{(n_1-1)\sigma_1^2} / \frac{(n_2-1)S_2^2}{(n_2-1)\sigma_2^2} \sim F(n_1-1, n_2-1)$$

即,

$$\frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$$

(2) 易知

$$\bar{X} - \bar{Y} \sim N \left(\mu_1 - \mu_2, \frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2} \right)$$

即有

$$U = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sigma \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim N(0, 1)$$

又由给定条件知

$$\frac{(n_1-1)S_1^2}{\sigma^2} \sim \chi^2(n_1-1), \frac{(n_2-1)S_2^2}{\sigma^2} \sim \chi^2(n_2-1)$$

由 χ^2 分布的可加性有

$$V = \frac{(n_1 - 1)S_1^2}{\sigma^2} + \frac{(n_2 - 1)S_2^2}{\sigma^2} \sim \chi^2(n_1 + n_2 - 2)$$

由U,V的独立性以及t分布的定义有

$$\overline{\sqrt{V/(n_1 + n_2 - 2)}} = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$

作业

概率论与数理统计 pp. 147-148, #4, #6, #7, #9