Shenzhen Lingxing MicroelectronicsTechnology Co., Ltd.

Number:SN74LS193-AX-LJ-A066EN

SN74LS193 (LX) **Presettable Synchronous 4-bit Binary** up/down Counter; Asynchronous Reset

Product Specification

Specification Revision History:

htttp://www.lingxingic.com

Version	Date	Description
2021-06-A1	2021-06	New
2023-04-B1	2023-04	Update the template

VER: 2023-04-B1

1/24

Shenzhen Lingxing MicroelectronicsTechnology Co., Ltd. Tab: 835-12-B4 Number:SN74LS193-AX-LJ-A066EN

Contents

1. General Description	3
2、Block Diagram And Pin Description	6
2.1、Block Diagram	6
2.2、Pin Configurations	
2.3、Pin Description	7
2.4、Function Table	
3. Electrical Parameter	8
3.1、Absolute Maximum Ratings	
3.2、Recommended Operating Conditions	9
3.3、Electrical Characteristics	
3.3.1、DC Characteristics 1	
3.3.2 DC Characteristics 2	10
3.3.3、DC Characteristics 3	11
3.3.4、AC Characteristics 1	12
3.3.5、AC Characteristics 2	14
3.3.6、AC Characteristics 3	16
4、Testing Circuit	
4.1、AC Testing Circuit	18
4.2、AC Testing Waveforms	
4.3. Measurement Points	
4.4、Test Data	20
5. Package Information	21
5.1、DIP16	21
5.2、SOP16	22
5.3、TSSOP16	23
6. Statements And Notes	24
6.1. The name and content of Hazardous substances or Elements in the product	24
6.2、Notes	24

Shenzhen Lingxing MicroelectronicsTechnology Co., Ltd.

Tab: 835-12-B4 Number:SN74LS193-AX-LJ-A066EN

1, General Description

The SN74LS193 is a 4-bit synchronous binary up/down counter. Separate up/down clocks, CPU and CPD respectively, simplify operation. The outputs change state synchronously with the LOW-to-HIGH transition of either clock input. If the CPU clock is pulsed while CPD is held HIGH, the device will count up. If the CPD clock is pulsed while CPU is held HIGH, the device will count down. Only one clock input can be held HIGH at any time to guarantee predictable behavior. The device can be cleared at any time by the asynchronous master reset input (MR); it may also be loaded in parallel by activating the asynchronous parallel load input (PL). The terminal count up (TCU) and terminal count down (TCD) outputs are normally HIGH. When the circuit has reached the maximum count state of 15, the next HIGH-to-LOW transition of CPU will cause TCU to go LOW. TCU will stay LOW until CPU goes HIGH again, duplicating the count up clock. Likewise, the TCD output will go LOW when the circuit is in the zero state and the CPD goes LOW. The terminal count outputs can be used as the clock input signals to the next higher order circuit in a multistage counter, since they duplicate the clock waveforms. Multistage counters will not be fully synchronous, since there is a slight delay time difference added for each stage that is added. The counter may be preset by the asynchronous parallel load capability of the circuit. Information present on the parallel data inputs (D0 to D3) is loaded into the counter and appears on the outputs (Q0 to Q3) regardless of the conditions of the clock inputs when the parallel load (PL) input is LOW. A HIGH level on the master reset (MR) input will disable the parallel load gates, override both clock inputs and set all outputs (Q0 to Q3) LOW. If one of the clock inputs is LOW during and after a reset or load operation, the next LOW-to-HIGH transition of that clock will be interpreted as a legitimate signal and will be counted. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of V_{CC}.

Features:

- Synchronous reversible 4-bit binary counting
- Asynchronous parallel load
- Asynchronous reset
- Expandable without external logic
- Specified from -40 $^{\circ}$ C to +125 $^{\circ}$ C
- Packaging information: DIP16/SOP16/TSSOP16

3/ 24

htttp://www.lingxingic.com

Shenzhen Lingxing MicroelectronicsTechnology Co., Ltd.
Tab: 835-12-B4 Number:SN74LS193-AX-LJ-A066EN

Ordering Information:

Tube packing specifications:

Part number	Packaging form	Marking code	Tube quantity	Boxed tube quantity	Boxed quantity	Notes
SN74LS193N (LX)	DIP16	SN74LS193N	25 PCS/tube	40 tube/box	1000 PCS/box	Dimensions of plastic enclosure: 19.0mm×6.4mm Pin spacing: 2.54mm
SN74LS193D (LX)	SOP16	LS193	50 PCS/tube	200 tube/box	10000 PCS/box	Dimensions of plastic enclosure: 10.0mm×3.9mm Pin spacing: 1.27mm
SN74LS193PW(LX)	TSSOP16	LS193	96 PCS/tube	200 tube/box	19200 PCS/box	Dimensions of plastic enclosure: 5.0mm×4.4mm Pin spacing: 0.65mm

Shenzhen Lingxing MicroelectronicsTechnology Co., Ltd. Number:SN74LS193-AX-LJ-A066EN

Tab: 835-12-B4

Reel packing specifications:

Part number	Packaging form	Marking code	Reel quantity	Boxed reel quantity	Notes
SN74LS193DR(LX)	SOP16	LS193	2500 PCS/reel	5000 PCS/box	Dimensions of plastic enclosure: 10.0mm×3.9mm Pin spacing:1.27mm
SN74LS193PW(LX)	TSSOP16	LS193	5000 PCS/reel	10000 PCS/box	Dimensions of plastic enclosure: 5.0mm×4.4mm Pin spacing:0.65mm

Note: If the physical information is inconsistent with the ordering information, please refer to the actual product.

5/ 24

Shenzhen Lingxing MicroelectronicsTechnology Co., Ltd.

Tab: 835-12-B4 Number:SN74LS193-AX-LJ-A066EN

2. Block Diagram And Pin Description

2.1 Block Diagram

Figure 1. Logic symbol

Figure 2. IEC logic symbol

Figure 3. Functional diagram

Shenzhen Lingxing MicroelectronicsTechnology Co., Ltd.

Number:SN74LS193-AX-LJ-A066EN

Tab: 835-12-B4

Figure 4. Logic diagram

2.2. Pin Configurations

2.3 Pin Description

Pin No.	Pin Name	Description
1	D1	data input 1
2	Q1	flip-flop output 1
3	Q0	flip-flop output 0
4	CPD	count down clock input
5	CPU	count up clock input
6	Q2	flip-flop output 2
7	Q3	flip-flop output 3
8	GND	ground (0V)
9	D3	data input 3
10	D2	data input 2
11	PL	asynchronous parallel load input (active LOW)
12	TCU	terminal count up (carry) output (active LOW)
13	TCD	terminal count down (borrow) output (active LOW)
14	MR	asynchronous master reset input (active HIGH)
15	D0	data input 0
16	V_{CC}	supply voltage

Note: CPD, CPU is LOW-to-HIGH, edge triggered.

Shenzhen Lingxing MicroelectronicsTechnology Co., Ltd.

Number:SN74LS193-AX-LJ-A066EN

2.4 Function Table

Operating		Input							Output					
mode	MR	PL	CPU	CPD	D0	D1	D2	D3	Q0	Q1	Q2	Q3	TCU	TCD
Reset	Н	X	X	L	X	X	X	X	L	L	L	L	Н	L
(clear)	Н	X	X	Н	X	X	X	X	L	L	L	L	Н	Н
	L	L	X	L	L	L	L	L	L	L	L	L	Н	L
Parallel	L	L	X	Н	L	L	L	L	L	L	L	L	Н	Н
load	L	L	L	X	Н	Н	Н	Н	Н	Н	Н	Н	L	Н
	L	L	Н	X	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
Count up	L	Н	1	Н	X	X	X	X	count up		Н	Н		
Count down	L	Н	Н	1	X	X	X	X		count	down		Н	Н

Note:

- [1] H=HIGH voltage level; L=LOW voltage level; X=don't care; \=LOW-to-HIGH transition.
- [2] TCU=CPU at terminal count up (HHHH).
- [3] TCD=CPD at terminal count down (LLLL).

3, Electrical Parameter

3.1. Absolute Maximum Ratings

(Voltages are referenced to GND(ground=0V), unless otherwise specified.)

Parameter	Symbol	Cond	itions	Min.	Max.	Unit
supply voltage	V_{CC}	-	-	-0.5	+7.0	V
input clamping current	I_{IK}	$V_{\rm I}$ < -0.5V or $^{\rm V}$	$V_{\rm I} > V_{\rm CC} + 0.5 V$	-	±20	mA
output clamping current	I_{OK}	$V_{\rm O}$ < -0.5V or V	-	±20	mA	
output current	I_{O}	$V_O = -0.5V$ to	$V_{O} = -0.5 \text{V to } (V_{CC} + 0.5 \text{V})$			mA
supply current	I_{CC}		-	-	50	mA
ground current	I_{GND}		-	-	-50	mA
storage temperature	T_{stg}		-	-65	+150	$^{\circ}$
total power dissipation	P _{tot}		-	-	500	mW
Soldering	$T_{ m L}$	10s	DIP	24	15	$^{\circ}$ C
temperature	ıL	108	SOP/TSSOP	26	50	$^{\circ}\mathbb{C}$

htttp://www.lingxingic.com

Shenzhen Lingxing MicroelectronicsTechnology Co., Ltd.

Number:SN74LS193-AX-LJ-A066EN

Tab: 835-12-B4

3.2, Recommended Operating Conditions

Parameter	Symbol	Cond	itions	Min.	Тур.	Max.	Unit
supply voltage	V_{CC}	-	2.0	5.0	6.0	V	
input voltage	$V_{\rm I}$	-	0	-	V_{CC}	V	
output voltage	V_{O}	-	0	-	V_{CC}	V	
• • • • • • • • • • • • • • • • • • • •	$\Delta t/\Delta V$		$V_{CC}=2.0V$	-	-	625	ns/V
input transition rise and fall rate		-	$V_{CC}=4.5V$	-	1.67	139	ns/V
risc and ran rate			V _{CC} =6.0V	-	0 5.0 6.0 V 0 - V _{CC} V 0 - V _{CC} V - 625 ns/ 1.67 139 ns/ - 83 ns/	ns/V	
ambient temperature	T_{amb}	-	-	-40	-	+125	$^{\circ}$

3.3, Electrical Characteristics

3.3.1, DC Characteristics 1

(T_{amb}=25°C, voltages are referenced to GND (ground=0V), unless otherwise specified.)

Parameter	Symbol	Co	onditions	Min.	Тур.	Max.	Unit
IIICII 11		$V_{CC}=2.0V$		1.5	1.2	-	V
HIGH-level input voltage	V_{IH}	V _{CC} =4.5V		3.15	2.4	-	V
input voltage		V	_{CC} =6.0V	4.2	3.2	-	V
LOW/11		V	C _{CC} =2.0V	-	0.8	-	V
LOW-level input voltage	V_{IL}	V _{CC} =4.5V		-	2.1	1.35	V
input voltage		V	$T_{\rm CC}$ =6.0V	-	2.8	- - 0.5 1.35 1.8 - - - - 0.1 0.1 0.26 0.26 ±1.0	V
			I _O =-20uA; V _{CC} =2.0V	1.9	2.0		V
HIGH-level			I _O =-20uA; V _{CC} =4.5V	4.4	4.5	-	V
output voltage	V_{OH}	$V_{I} = V_{IH} \text{ or } V_{IL}$	I _O =-20uA; V _{CC} =6.0V	5.9	6.0	-	V
output voltage			$I_O=-4$ mA; $V_{CC}=4.5$ V	3.98	4.32	-	V
			I_{O} =-5.2mA; V_{CC} =6.0V	5.48	5.81	-	V
			I_{O} =20uA; V_{CC} =2.0V	-	0	0.1	V
LOWI			I _O =20uA; V _{CC} =4.5V	-	0	0.1	V
LOW-level output voltage	V_{OL}	$V_{I} = V_{IH} \text{ or } V_{IL}$	I _O =20uA; V _{CC} =6.0V	-	1.2 - V 2.4 - V 3.2 - V 0.8 0.5 V 2.1 1.35 V 2.8 1.8 V 2.0 - V 4.5 - V 6.0 - V 4.32 - V 5.81 - V 0 0.1 V 0 0.1 V 0 0.1 V 0 0.15 0.26 V 0.16 0.26 V - ±1.0 u 8.0 u.	V	
output voltage			$I_O=4mA$; $V_{CC}=4.5V$	-	0.15	0.26	V
			$I_{O}=5.2$ mA; $V_{CC}=6.0$ V	-	0.16	- - 0.5 1.35 1.8 - - - - 0.1 0.1 0.26 0.26 ±1.0	V
input leakage current	$I_{\rm I}$	•	V_{I} = V_{CC} or GND; V_{CC} =6.0V		-	±1.0	uA
supply current	I_{CC}	$V_{I}=V_{CC}$ or GN	$ID; I_O = 0A; V_{CC} = 6.0V$	-	-	8.0	uA
input capacitance	C_{I}		-	-	3.5	-	pF

Shenzhen Lingxing MicroelectronicsTechnology Co., Ltd.

Tab: 835-12-B4 Number:SN74LS193-AX-LJ-A066EN

Tab: 835-12-B4

3.3.2, DC Characteristics 2

 $(T_{amb} = -40 \,^{\circ}\text{C} \text{ to } +85 \,^{\circ}\text{C}, \text{ voltages are referenced to GND (ground} = 0V), unless otherwise specified.)$

Parameter	Symbol	Co	onditions	Min.	Тур.	Max.	Unit
HIGH 1 1		V	_{CC} =2.0V	1.5	-	-	V
HIGH-level input voltage	V_{IH}	V	_{CC} =4.5V	3.15	-	-	V
input voltage		V	_{CC} =6.0V	4.2	-		V
LOWI		V	_{CC} =2.0V	-	-	0.5	V
LOW-level input voltage	voltage V _{IL} V _{CC} =4.5V		_{CC} =4.5V	-	-	1.35	V
input voitage		V	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V			
			I _O =-20uA; V _{CC} =2.0V	1.9	-		V
HICH lavel	V_{OH}	$V_{I} = V_{IH}$ or V_{IL}	I _O =-20uA; V _{CC} =4.5V	4.4	-	-	V
			I _O =-20uA; V _{CC} =6.0V	5.9	-	-	V
HIGH-level output voltage			I_{O} =-4mA; V_{CC} =4.5V	3.84	-	-	V
			I_{O} =-5.2mA; V_{CC} =6.0V	1.5 4.2 0.5 - 1.35 1.8 1.9 4.4 5.9 3.84 0.1 0.1 0.1 0.33 0.33 1.0	V		
			I _O =20uA; V _{CC} =2.0V	-	-	0.1	V
LOWI			I _O =20uA; V _{CC} =4.5V	-		0.1	V
LOW-level output voltage	V_{OL}	$V_I = V_{IH} \text{ or } V_{IL}$	I _O =20uA; V _{CC} =6.0V	1	-	0.1	V
Output voltage			I _O =4mA; V _{CC} =4.5V		-	0.33	V
			I _O =5.2mA; V _{CC} =6.0V	-	-	0.33	V
input leakage current	$I_{\rm I}$	V_{I} = V_{CC} or GND; V_{CC} =6.0V		-	-	±1.0	uA
supply current	I_{CC}	$V_{I}=V_{CC}$ or GN	$D; I_0 = 0A; V_{CC} = 6.0V$	-	-	80	uA

Shenzhen Lingxing MicroelectronicsTechnology Co., Ltd.

Number:SN74LS193-AX-LJ-A066EN

Tab: 835-12-B4

3.3.3 DC Characteristics 3

 $(T_{amb} = -40\,^{\circ}\text{C} \text{ to } + 125\,^{\circ}\text{C}, \text{ voltages are referenced to GND (ground} = 0V), unless otherwise specified.)$

Parameter	Symbol	Co	onditions	Min.	Тур.	Max.	Unit
HIGH 1 1	HICH lavel	V	_{CC} =2.0V	1.5	-	-	V
HIGH-level input voltage	V_{IH}	V	_{CC} =4.5V	3.15	-	-	V
input voltage		V	_{CC} =6.0V	4.2	-	-	V
I OW 1		V	CC=2.0V	-	-	0.5	V
LOW-level input voltage	$V_{ m IL}$	$V_{I} = V_{IH} \text{ or } V_{IL} \\ I_{O} = -20 \text{uA}; V_{CC} = 4.5 \text{V} \\ I_{O} = -20 \text{uA}; V_{CC} = 6.0 \text{V} \\ I_{O} = -4 \text{mA}; V_{CC} = 4.5 \text{V} \\ I_{O} = -5.2 \text{mA}; V_{CC} = 6.0 \text{V} \\ I_{O} = 20 \text{uA}; V_{CC} = 2.0 \text{V} \\ I_{O} = 20 \text{uA}; V_{CC} = 4.5 \text{V} \\ I_{O} = 20 \text{uA}; V_{CC} = 4.5 \text{V} \\ I_{O} = 4 \text{mA}; V_{CC} = 6.0 \text{V} \\ I_{O} = 5.2 \text{mA}; V_{CC} = 6.0 \text{V} \\ V_{I} = V_{CC} \text{ or GND}; \\ V_{CC} = 6.0 \text{V} \\ V_{CC} = 6.0 \text{V}$	CC=4.5V	-	-	1.35	V
input voitage		V	CC=6.0V	2	-		V
		$V_{I} = V_{IH} \text{ or } V_{IL}$	I _O =-20uA; V _{CC} =2.0V	1.9	-	-	V
HIGH-level	V_{OH}		I _O =-20uA; V _{CC} =4.5V	4.4	-	-	V
			I _O =-20uA; V _{CC} =6.0V	5.9	-	-	V
output voltage			I _O =-4mA; V _{CC} =4.5V	3.7	-	-	V
			I_{O} =-5.2mA; V_{CC} =6.0V	5.2	-	-	V
			I _O =20uA; V _{CC} =2.0V		-	0.1	V
LOWI			I _O =20uA; V _{CC} =4.5V	-	-	0.1	V
LOW-level output voltage	V_{OL}	$V_{I} = V_{IH} \text{ or } V_{IL}$	I _O =20uA; V _{CC} =6.0V		-	0.1	V
output voltage			I _O =4mA; V _{CC} =4.5V	-	-	0.4	V
			I ₀ =5.2mA; V _{CC} =6.0V	-	-	0.4	V
input leakage current	I _I			-	-	±1.0	uA
supply current	I_{CC}	V _I =V _{CC} or GN	D; I _O =0A; V _{CC} =6.0V	-	-	160	uA

Shenzhen Lingxing MicroelectronicsTechnology Co., Ltd. Tab: 835-12-B4 Number:SN74LS193-AX-LJ-A066EN

Tab: 835-12-B4

3.3.4, AC Characteristics 1

(T_{amb} =25 °C, voltages are referenced to GND (ground=0V), unless otherwise specified.)

Parameter	Symbol	Condition	s	Min.	Тур.	Max.	Unit
	•		$V_{CC}=2.0V$	-	63	215	ns
		CPU, CPD to Qn;	V _{CC} =4.5V	-	23	43	ns
		see Figure 6	V _{CC} =6.0V	-	18	37_	ns
		_	V _{CC} =2.0V	-	39	125	ns
		CPU to TCU;	V _{CC} =4.5V	-	14	25	ns
		see Figure 7	V _{CC} =6.0V	-	11	21	ns
			$V_{CC}=2.0V$		39	125	ns
		CPD to TCD;	V _{CC} =4.5V	-	14	25	ns
		see Figure 7	V _{CC} =6.0V	-	11	21	ns
			V _{CC} =2.0V		69	220	ns
		PL to Qn;	V _{CC} =4.5V	1	25	44	ns
		see Figure 8	$V_{CC}=6.0V$	-	20	37	ns
propagation delay t _p ,		MD to One	$V_{CC}=2.0V$)	58	200	ns
	t_{pd}	MR to Qn; see Figure 9	V_{CC} =4.5V)	21	40	ns
		see Figure 9	V _{CC} =6.0V	-	17	34	ns
		Dn to On	$V_{CC}=2.0V$	-	69	210	ns
		Dn to Qn; see Figure 8	$V_{CC}=4.5V$	-	25	42	ns
		see Figure 0	$V_{CC}=6.0V$	-	20	36	ns
		PL to TCU, PL to TCD; see Figure 11	$V_{CC}=2.0V$	-	80	290	ns
			$V_{CC}=4.5V$	-	29	58	ns
			$V_{CC}=6.0V$	-	23	49	ns
		MR to TCU, MR to	$V_{CC}=2.0V$	-	74	285	ns
		_	$V_{CC}=4.5V$	-	27	57	ns
	\	TCD; see Figure 11	$V_{CC}=6.0V$	-	22	48	ns
			$V_{CC}=2.0V$	-	80	290	ns
		Dn to TCU, Dn to TCD; see Figure 11	$V_{CC}=4.5V$	-	29	58	ns
		see Figure 11	$V_{CC}=6.0V$	-	23	49	ns
HIGH to LOW			$V_{CC}=2.0V$	-	19	75	ns
output	t_{THL}	see Figure 9	$V_{CC}=4.5V$	-	7	15	ns
transition time	· ·		V _{CC} =6.0V		6	13	ns
LOW to HIGH			$V_{CC}=2.0V$	-	19	75	ns
output	t _{TLH}	see Figure 9	V _{CC} =4.5V	-	7	15	ns
transition time			V _{CC} =6.0V	-	6	43 37 125 25 21 125 25 21 220 44 37 200 40 34 210 42 36 290 58 49 285 57 48 290 58 49 75 15 13 75	ns
pulse width	t	CPU, CPD (HIGH or	$V_{CC}=2.0V$	100	22	-	ns
puise widui	$t_{ m W}$	LOW);	V _{CC} =4.5V	20	8	125 25 21 125 25 21 220 44 37 200 40 34 210 42 36 290 58 49 285 57 48 290 58 49 75 15 13 75 15	ns

Shenzhen Lingxing MicroelectronicsTechnology Co., Ltd. Tab: 835-12-B4 Number:SN74LS193-AX-LJ-A066EN

		Γ' (** 60**	4.5	_		
		see Figure 6	V _{CC} =6.0V	17	6	-	ns
		MR (HIGH);	$V_{CC}=2.0V$	100	25	-	ns
		see Figure 9	$V_{CC}=4.5V$	20	9	-	ns
		see Figure 9	$V_{CC}=6.0V$	17	7	-	ns
			$V_{CC}=2.0V$	100	19	-	ns
		PL (LOW); see Figure 8	$V_{CC}=4.5V$	20	7	-	ns
		see rigule o	$V_{CC}=6.0V$	17	6	-	ns
			V _{CC} =2.0V	50	8	-	ns
		PL to CPU, CPD;	V _{CC} =4.5V	10	3	-	ns
magazianzi tima	4	see Figure 8	V _{CC} =6.0V	9	2	-	ns
recovery time	t _{rec}	MR to CPU, CPD; see Figure 9	$V_{CC}=2.0V$	50	0	-	ns
			V _{CC} =4.5V	10	0	-	ns
			V _{CC} =6.0V	9	0	-	ns
	t_{su}	Dn to PL; see Figure 10; note: CPU = CPD = HIGH	V _{CC} =2.0V	80	22	-	ns
set-up time			V _{CC} =4.5V	16	8	-	ns
			V _{CC} =6.0V	14	6	-	ns
		Dn to PL; see Figure 10	V _{CC} =2.0V	0	-14	-	ns
			V _{CC} =4.5V	0	-5	-	ns
hold time			V _{CC} =6.0V	0	-4	-	ns
noid time	t_h	CPU to CPD, CPD to	V _{CC} =2.0V	80	22	-	ns
		CPU;	V _{CC} =4.5V	16	8	-	ns
		see Figure 12	V _{CC} =6.0V	8	6	-	ns
			V _{CC} =2.0V	4.0	13.5	-	MHz
maximum	f_{max}	CPU, CPD; see Figure 6	V _{CC} =4.5V	20	41	-	MHz
frequency			V _{CC} =6.0V	24	49	-	MHz
power dissipation capacitance	C_{PD}	V _I =GND to V _{CC} ; V _{CC} =	5V; f _i =1MHz	-	24	-	pF

Note:

[1] t_{pd} is the same as t_{PLH} and t_{PHL} .

[2] C_{PD} is used to determine the dynamic power dissipation (P_D in uW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

f_i=input frequency in MHz;

f_o=output frequency in MHz;

C_L=output load capacitance in pF;

V_{CC}=supply voltage in V;

N=number of inputs switching;

 $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs.}$

Shenzhen Lingxing MicroelectronicsTechnology Co., Ltd.

Tab: 835-12-B4 Number:SN74LS193-AX-LJ-A066EN

Tab: 835-12-B4

3.3.5, AC Characteristics 2

 $(T_{amb}=-40\,^{\circ}\text{C} \text{ to } +85\,^{\circ}\text{C}, \text{ voltages are referenced to GND (ground=0V), unless otherwise specified.)}$

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit	
		GDV	V _{CC} =2.0V	-	-	270	ns
		CPU, CPD to Qn;	V _{CC} =4.5V	-	-	54	ns
		see Figure 6	V _{CC} =6.0V	-	-	46	ns
		_	V _{CC} =2.0V	-	-	155	ns
		CPU to TCU;	V _{CC} =4.5V	-	-	31	ns
		see Figure 7	V _{CC} =6.0V	<u> </u>	-	26	ns
		_	V _{CC} =2.0V		-	155	ns
		CPD to TCD;	V _{CC} =4.5V	-	-	31	ns
		see Figure 7	V _{CC} =6.0V	-	-	26	ns
		_	V _{CC} =2.0V	-	-	275	ns
		PL to Qn;	V _{CC} =4.5V	-	-	55	ns
		see Figure 8	V _{CC} =6.0V	-		47	ns
		N/D / O	V _{CC} =2.0V			250	ns
propagation delay	t_{pd}	MR to Qn; see Figure 9	V _{CC} =4.5V	-	-	50	ns
delay		see Figure 9	V _{CC} =6.0V	- "	-	43	ns
		D + 0	V _{CC} =2.0V	-	-	265	ns
		Dn to Qn; see Figure 8	$V_{CC}=4.5V$	-	-	53	ns
		see Figure 6	V _{CC} =6.0V	-	-	45	ns
		PL to TCU, PL to TCD; see Figure 11	V _{CC} =2.0V	-	-	365	ns
			V _{CC} =4.5V	-	-	73	ns
			V _{CC} =6.0V	-	-	62	ns
		MR to TCU, MR to TCD; see Figure 11	$V_{CC}=2.0V$	-	-	355	ns
			$V_{CC}=4.5V$	-	-	71	ns
			$V_{CC}=6.0V$	-	-	60	ns
			$V_{CC}=2.0V$	-	-	365	ns
		Dn to TCU, Dn to TCD;	$V_{CC}=4.5V$	-	-	73	ns
		see Figure 11	V _{CC} =6.0V	-	-	62	ns
HIGH to LOW			$V_{CC}=2.0V$	-	-	95	ns
output	t _{THL}	see Figure 9	$V_{CC}=4.5V$	-	-	19	ns
transition time			$V_{CC}=6.0V$	-	-	16	ns
LOW to HIGH			$V_{CC}=2.0V$	-	-	95	ns
output	t_{TLH}	see Figure 9	$V_{CC}=4.5V$	-	-	19	ns
transition time			$V_{CC}=6.0V$	-	-	16	ns
		CPU, CPD (HIGH or	$V_{CC}=2.0V$	125	-	ı	ns
		LOW);	V _{CC} =4.5V	25	-	-	ns
		see Figure 6	V _{CC} =6.0V	21	-	-	ns
pulsa width	t.	MD (IIICII).	V _{CC} =2.0V	125	-	_	ns
pulse width	$t_{ m W}$	MR (HIGH); see Figure 9	V _{CC} =4.5V	25	-	-	ns
		see Figure 7	V _{CC} =6.0V	21	-	-	ns
		PL (LOW);	V _{CC} =2.0V	125	-	-	ns
		see Figure 8	V _{CC} =4.5V	25	-	-	ns

Shenzhen Lingxing MicroelectronicsTechnology Co., Ltd. Tab: 835-12-B4 Number:SN74LS193-AX-LJ-A066EN

			V _{CC} =6.0V	21	-	1	ns
		_	V _{CC} =2.0V	65	-	-	ns
		PL to CPU, CPD;	$V_{CC}=4.5V$	13	-	-	ns
racovery time	.	see Figure 8	V _{CC} =6.0V	11	-	1	ns
recovery time	$\mathbf{t}_{\mathrm{rec}}$	MD 42 CDIT CDD.	$V_{CC}=2.0V$	65	-	1	ns
		MR to CPU, CPD; see Figure 9	V _{CC} =4.5V	13	-	1	ns
		see Figure 9	$V_{CC}=6.0V$	11	-	-	ns
	$t_{ m su}$	Dn to PL; see Figure 10; note: CPU = CPD = HIGH	$V_{CC}=2.0V$	100	-	-	ns
set-up time			V _{CC} =4.5V	20	-	1	ns
			$V_{CC}=6.0V$	17	-	1	ns
		Dn to PL; see Figure 10	$V_{CC}=2.0V$	0	-		ns
			$V_{CC}=4.5V$	0	-	-	ns
hold time	t.		$V_{CC}=6.0V$	0	-	-	ns
noid time	t _h	CPU to CPD, CPD to	$V_{CC}=2.0V$	100	-	-	ns
		CPU;	$V_{CC}=4.5V$	20	-	-	ns
		see Figure 12	$V_{CC}=6.0V$	17	-	-	ns
			V _{CC} =2.0V	3.2		-	MHz
maximum frequency	f_{max}	CPU, CPD; see Figure 6	V_{CC} =4.5V	16	-	-	MHz
rrequericy			V _{CC} =6.0V	19	-	-	MHz

Note:

[1] t_{pd} is the same as t_{PLH} and t_{PHL} .

15/ 24

Shenzhen Lingxing MicroelectronicsTechnology Co., Ltd.

Number:SN74LS193-AX-LJ-A066EN

Tab: 835-12-B4

3.3.6, AC Characteristics 3

 $(T_{amb}$ =-40 °C to +125 °C, voltages are referenced to GND (ground=0V), unless otherwise specified.)

Parameter	Symbol	Condition	S	Min.	Тур.	Max.	Unit
		CDU CDD . O	V _{CC} =2.0V	-	-	325	ns
		CPU, CPD to Qn; see Figure 6	V _{CC} =4.5V	-	1	65	ns
		see Figure 0	V _{CC} =6.0V	-	-	55	ns
		_	$V_{CC}=2.0V$	-	-	190	ns
		CPU to TCU;	V _{CC} =4.5V		1	38	ns
		see Figure 7	$V_{CC}=6.0V$	-	-	32	ns
			V _{CC} =2.0V	-	1	190	ns
		CPD to TCD;	V _{CC} =4.5V	-	1	38	ns
		see Figure 7	V _{CC} =6.0V	-	-	32	ns
		PL to Qn; see Figure 8	$V_{CC}=2.0V$	-	1	330	ns
	$t_{ m pd}$		V _{CC} =4.5V	-		66	ns
propagation			$V_{CC}=6.0V$	-		56	ns
delay		MR to Qn; see Figure 9	$V_{CC}=2.0V$	-	-	300	ns
			$V_{CC}=4.5V$	-	-	60	ns
			$V_{CC}=6.0V$	-	-	51	ns
		Dn to Qn; see Figure 8	$V_{CC}=2.0V$	-	ı	315	ns
			$V_{CC}=4.5V$	-	-	63	ns
			$V_{CC}=6.0V$	-	-	54	ns
		DI 4- TOU DI 4-	$V_{CC}=2.0V$	-	-	435	ns
		PL to TCU, PL to	$V_{CC}=4.5V$	-	-	87	ns
		TCD; see Figure 11	$V_{CC}=6.0V$	-	-	74	ns
		MD to TCU MD to	$V_{CC}=2.0V$	-	-	430	ns
		MR to TCU, MR to	$V_{CC}=4.5V$	-	-	86	ns
		TCD; see Figure 11	$V_{CC}=6.0V$	-	-	73	ns
		== ===	$V{CC}=2.0V$	-	-	435	ns
		Dn to TCU, Dn to TCD; see Figure 11	$V_{CC}=4.5V$	-	ı	87	ns
		See Figure 11	$V_{CC}=6.0V$	-	-	74	ns

Shenzhen Lingxing MicroelectronicsTechnology Co., Ltd. Tab: 835-12-B4 Number:SN74LS193-AX-LJ-A066EN

Tab: 835-12-B4

HIGH to LOW			V _{CC} =2.0V	-	-	110	ns
output	$t_{ m THL}$	see Figure 9	V _{CC} =4.5V	-	-	22	ns
transition time			V _{CC} =6.0V	-	-	19	ns
LOW to HIGH			V _{CC} =2.0V	-	-	110	ns
output	t_{TLH}	see Figure 9	V _{CC} =4.5V	-	-	22	ns
transition time			V _{CC} =6.0V	-	-	19	ns
		CPU, CPD (HIGH or	V _{CC} =2.0V	150	-	-	ns
		LOW);	V _{CC} =4.5V	30	-		ns
		see Figure 6	V _{CC} =6.0V	26	-	-	ns
		MD (HIGH)	V _{CC} =2.0V	150	-	-	ns
pulse width	$t_{ m W}$	MR (HIGH); see Figure 9	V _{CC} =4.5V	30	-	-	ns
		see Figure 7	$V_{CC}=6.0V$	26	-	1	ns
		PL (LOW); see Figure 8	$V_{CC}=2.0V$	150	-	1	ns
			$V_{CC}=4.5V$	30		1	ns
			V _{CC} =6.0V	26	-	-	ns
	t _{rec}	PL to CPU, CPD; see Figure 8 MR to CPU, CPD; see Figure 9	$V_{CC}=2.0V$	75	-	-	ns
			$V_{CC}=4.5V$	15	-	ı	ns
recovery time			$V_{CC}=6.0V$	13	-	ı	ns
recovery time			$V_{CC}=2.0V$	75	-	1	ns
			V _{CC} =4.5V	15	-	1	ns
			$V_{CC}=6.0V$	13	-	-	ns
		Dn to PL; see Figure 10;	$V_{CC}=2.0V$	120	-	1	ns
set-up time	t_{su}	note: CPU = CPD =	$V_{CC}=4.5V$	24	-	-	ns
		HIGH	$V_{CC}=6.0V$	20	-	-	ns
		_ \	$V_{CC}=2.0V$	0	-	-	ns
		Dn to PL; see Figure 10	$V_{CC}=4.5V$	0	-	1	ns
hold time		see Figure 10	$V_{CC}=6.0V$	0	-	-	ns
noid time	$t_{\rm h}$	CPU to CPD, CPD to	$V_{CC}=2.0V$	120	-	-	ns
		CPU;	$V_{CC}=4.5V$	24	-	-	ns
		see Figure 12	V _{CC} =6.0V	20	-	-	ns
:			V _{CC} =2.0V	2.6	-	-	MHz
maximum frequency	f_{max}	CPU, CPD; see Figure 6	V _{CC} =4.5V	13	-	_	MHz
ricquency			V _{CC} =6.0V	15	-	-	MHz

[1] t_{pd} is the same as t_{PLH} and t_{PHL} .

htttp://www.lingxingic.com

 $Shenzhen\ Lingxing\ Microelectronics Technology\ Co.,\ Ltd.$

Tab: 835-12-B4 Number:SN74LS193-AX-LJ-A066EN

4. Testing Circuit

4.1, AC Testing Circuit

Figure 5. Test circuit for measuring switching times

Definitions for test circuit:

R_L=Load resistance.

C_L=Load capacitance including jig and probe capacitance.

 R_T =Termination resistance should be equal to the output impedance Z_o of the pulse generator.

S1=Test selection switch.

4.2, AC Testing Waveforms

Figure 6. The clock (CPU, CPD) to output (Qn) propagation delays, the clock pulse width, and the maximum clock pulse frequency

Figure 7. The clock (CPU, CPD) to terminal count output (TCU, TCD) propagation delays

 $Shenzhen\ Lingxing\ Microelectronics Technology\ Co.,\ Ltd.$

Tab: 835-12-B4 Number:SN74LS193-AX-LJ-A066EN

Figure 8. The parallel load input (PL) and data (Dn) to Qn output propagation delays and PL removal time to clock input (CPU, CPD)

Figure 9. The master reset input (MR) pulse width, MR to Qn propagation delays, MR to CPU, CPD removal time and output transition times

Figure 10. The data input (Dn) to parallel load input (PL) set-up and hold times

htttp://www.lingxingic.com

19/ 24

VER: 2023-04-B1

 $Shenzhen\ Lingxing\ Microelectronics Technology\ Co.,\ Ltd.$

Tab: 835-12-B4 Number:SN74LS193-AX-LJ-A066EN

Figure 11. The data input (Dn), parallel load input (PL) and the master reset input (MR) to the terminal count outputs (TCU, TCD) propagation delays

Figure 12. The CPU to CPD or CPD to CPU hold times

4.3. Measurement Points

Inj	put	Output
V_{I}	V_{M}	$\mathbf{V}_{\mathbf{M}}$
GND to V _{CC}	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$

4.4. Test Data

Inj	put	Lo	ad	S1 position		
$\mathbf{V}_{\mathbf{I}}$	$t_{\rm r}$, $t_{\rm f}$	$t_{ m r},t_{ m f}$ $C_{ m L}$ $R_{ m L}$		t_{PHL}, t_{PLH}		
V_{CC}	V _{CC} 6ns		1kΩ	open		

Shenzhen Lingxing MicroelectronicsTechnology Co., Ltd.
Tab: 835-12-B4 Number:SN74LS193-AX-LJ-A066EN

5. Package Information

5.1, DIP16

Cromb al	Dimensions (mm)					
Symbol	Min.	Max.				
A2	3.20	3.60				
A1	0.51	-				
A	3.60	5.33				
L	3.00	3.60				
b	0.36	0.56				
B1	1.:	52				
D	18.80	19.94				
E1	6.20	6.60				
e	2.:	54				
С	0.20	0.36				
eB	7.62	9.30				

21/24 VER: 2023-04-B1

htttp://www.lingxingic.com

Shenzhen Lingxing MicroelectronicsTechnology Co., Ltd. Tab: 835-12-B4 Number:SN74LS193-AX-LJ-A066EN

Tab: 835-12-B4

5.2, SOP16

Symbol	Dimensions (mm)				
Symbol	Min.	Max.			
A	1.35	1.80			
A1	0.10	0.25			
A2	1.25	1.55			
b	0.33	0.51			
c	0.19	0.25			
D	9.50	10.10			
Е	5.80	6.30			
E1	3.70	4.10			
e	1.:	27			
L	0.35	0.89			
θ	0°	8°			

22/24

htttp://www.lingxingic.com

Shenzhen Lingxing MicroelectronicsTechnology Co., Ltd.

Number:SN74LS193-AX-LJ-A066EN

5.3、TSSOP16

Cymhol	Dimensions (mm)				
Symbol	Min.	Max.			
A	-	1.20			
A1	0.05	0.15			
A2	0.80	1.05			
b	0.19	0.30			
c	0.09	0.20			
D	4.90	5.10			
E1	4.30	4.50			
E	6.20	6.60			
e	0.	.65			
L	0.45	0.75			
θ	0°	8°			

23/24

htttp://www.lingxingic.com

Shenzhen Lingxing MicroelectronicsTechnology Co., Ltd.

Tab: 835-12-B4 Number:SN74LS193-AX-LJ-A066EN

6. Statements And Notes

6.1. The name and content of Hazardous substances or Elements in the product

				Hazar	dous substa	ances or Ele	ements			
Part name	Lead and lead compo unds	Mercur y and mercur y compo unds	Cadm ium and cadmi um comp ounds	Hexaval ent chromiu m compoun ds	Polybro minated biphenyl s	Polybro minate d biphen yl ethers	Dibutyl phthala te	Butylbe nzyl phthala te	Di-2-et hylhex yl phthala te	Diisobu tyl phthala te
Lead frame	0	0	0	0	0	0	0	0	0	0
Plastic resin	0	0	0	0	0	0	0	0	0	0
Chip	0	0	0	0	0	0	0	0	0	0
The lead	0	0	0	0	0	0	0	0	0	0
Plastic sheet installed	0	0	0	0	0	0	0	0	0	0
explanation	of ×: Indi	Indicates that the content of hazardous substances or elements in the detection limit of the following the SJ/T11363-2006 standard. A standard of the following the SJ/T11363-2006 standard.								63-2006

6.2, Notes

We Recommend you to read this chapter carefully before using this product.

The information in this chapter is provided for reference only and Lingxing disclaims any express or implied warranties, including but not limited to applicability, special application or non-infringement of third party rights.

This product is not suitable for critical equipment such as life-saving, life-sustaining or safety equipment. It is also not suitable for applications that may result in personal injury, death, or serious property or environmental damage due to product malfunction or failure. Lingxing will not be liable for any damages incurred by the customers at their own risk for such applications.

The customer is responsible for conducting all necessary tests Lingxing's application to avoid failure in the application or the application of the customer's third party users. Lingxing does not accept any liability.

The Company reserves the right to change or improve the information published in this chapter at any time. The information in this chapter are subject to change without notice. We recommend the customer to consult our sales staff before purchasing.

Please obtain related materials form Lingxing's regular channels and we are not responsible for its content if it is provided by sources other than our company.

In case of any conflict between the Chinese and English version, the version is subject to the Chinese one.

htttp://www.lingxingic.com