Math 505, 1/13

Picking up where we left off last time, we ask when a polynomial p over a field Kis solvable by radicals; that is, when the splitting field L of p lies inside the last field K_n of a sequence of extensions $K = K_0 \subset K_1 \subset \cdots \subset K_n$ such that each $K_i = K_{i-1}(\alpha_i)$ with $\alpha_i^{n_i} = \beta_i \in K_{i-1}$ for some positive integer n_i . (We do not assume that K_i is Galois over K_{i-1} , nor do we make any a priori assumption about the degrees n_i .) Suppose that there is such a chain of fields K_i for p and let N be the product of the integers n_i . We now extend the field L slightly, letting K'_0 be the splitting field of $x^N - 1$ over K_0 and inductively letting K'_i be the splitting field of $x^{n_i} - \beta_i$ over K'_{i-1} . Then K'_i is Galois over K'_{i-1} for i>0 and its Galois group is a subgroup of \mathbf{Z}_{n_i} , since any K'_{i-1} -automorphism of K'_i is determined by what it does to α_i , and the only choices are to send it to α_i times some n_i th root of 1 in K'_{i-1} . It follows that K'_i is Galois over K'_{i-1} with cyclic Galois group if i > 0, while K'_0 is Galois over K_0 with abelian Galois group. Since a finite abelian group is a direct product of cyclic groups, we may replace the field K'_0 by a chain of fields ending in K'_0 such that each field is Galois over the previous one with cyclic Galois group. The upshot is that some extension L' of L is the last field in a chain of fields beginning with K_0 , with each field a cyclic Galois extension of the previous one. Applying the Galois correspondence and recalling that the map from subgroups of the Galois group to intermediate fields is inclusion-reversing, we deduce that there is a decreasing chain of subgroups $G_0 > G_1 > \ldots > G_n = 1$ with G_0 the Galois group of L' over K, each G_i normal in G_{i-1} , and each quotient group G_{i-1}/G_i cyclic. The existence of such a chain for a fixed group G_0 is of course a purely group-theoretic one on G_0 ; amazingly, Galois managed to formulate it and show its equivalence (in his setting) to solvability by radicals *before* the notion of an abstract group had been introduced! We express this condition by calling the group G_0 solvable; nowadays most students see it for the first time in a group theory course, but Galois introduced it precisely to characterize the conditions under which a polynomial is solvable by radicals over **Q**. An easy formal consequence of the definition is that any quotient of a solvable group is again solvable; applying this observation to the splitting field L of our original polynomial p over K, we see that if a polynomial over a field is solvable by radicals, then the Galois group of its splitting field must be solvable. This is half of the famous Galois Criterion.

Over fields K of characteristic 0, the converse half of the Galois Criterion holds as well: a polynomial p over K is solvable by radicals if and only if the Galois group of its splitting field is solvable. Before proving this, we take time out to exhibit an example of a quintic polynomial over \mathbf{Q} that is not solvable by radicals. Take $p = x^5 - 4x + 2$. An easy calculus computation show that p has exactly three real roots (one negative and two positive). Amazingly enough, this property alone is enough to identify the Galois group G of (the splitting field S of) p: it is the symmetric group S_5 ! To prove this note first that S is generated over \mathbf{Q} by the five roots of p in \mathbf{C} , so any element of G permutes these roots and is in turn determined by how it permutes them. Now p is

irreducible over \mathbf{Q} (by the Eisenstein Criterion), so the degree of S over \mathbf{Q} must be a multiple of the degree 5 of any of the roots of p over \mathbf{Q} . It follows that G contains an element of order 5 in S_5 , which must be a 5-cycle (since 5 is prime). We also know that complex conjugation is an automorphism of S lying in G, which fixed 3 of the roots and flips the other two. Taking a suitable power of the 5-cycle, we may label the roots r_1, \ldots, r_5 in such a way that two elements of S_5 lying in G are the 5-cycle (r_1, r_2, \ldots, r_5) and the transposition (r_1, r_2) . Conjugating the transposition by the 5-cycle we get that the transpositions $(r_2, r_3), (r_3, r_4), (r_4, r_5)$ all lie in G. But now a standard fact from a first course on group theory is that transpositions of adjacent indices $(r_1, r_2), \ldots, (r_{n-1}, r_n)$ generate all of S_n for any n. We conclude that S has the maximum possible degree of 120 over \mathbf{Q} and that G is all of S_5 , as claimed. Note that it would be essentially impossible to prove this using field theory alone; note also, more generally, that any irreducible polynomial of prime degree q over \mathbf{Q} with exactly q-2 real roots has Galois group S_q over \mathbf{Q} .

Since the only normal subgroups of S_5 are 1, the alternating group A_5 , and S_5 itself, we deduce that no algebraic expression involving only rational numbers, arithmetic operations, and nth roots (for any n) can represent a root of p, for if one such expression did represent a root of p, than all other roots could be gotten from the same expression by making different choices of roots at some step, so that p would be solvable by radicals over \mathbf{Q} . It is not difficult (though I will probably not take the time to do it) given any $n \geq 5$ (prime or not) to write down a polynomial of degree n over \mathbf{Q} with Galois group S_n : no such polynomial is solvable by radicals over \mathbf{Q} .