Gradient conjugué – fonction quelconque Algorithme de Fletcher-Reeves

$$\begin{split} \mathring{\text{D}} \acute{\text{e}} \text{part} : & x_0 \text{ et } d_0 = - \partial f / \partial x_0 \\ & x_{k+1} = x_k + \lambda_k d_k \\ & \text{avec } \lambda_k \text{ minimisant} \quad g(\lambda) = f(x_k + \lambda_k d_k) \\ & (\text{defini par minimisation suivant } d_k) \\ & \text{puis } d_{k+1} = - \partial f / \partial x_{k+1} + \beta_k d_k \\ & \text{avec } \beta_k = || \partial f / \partial x_{k+1} + \beta_k d_k \\ & \text{avec } \beta_k = || \partial f / \partial x_{k+1} + \beta_k d_k \\ & \text{avec } \beta_k = || \partial f / \partial x_{k+1} + \beta_k d_k \\ & \text{avec } \beta_k = || \partial f / \partial x_{k+1} + \beta_k d_k \\ & \text{avec } \beta_k = || \partial f / \partial x_{k+1} + \beta_k d_k \\ & \text{avec } \beta_k = || \partial f / \partial x_{k+1} + \beta_k d_k \\ & \text{avec } \beta_k = || \partial f / \partial x_{k+1} + \beta_k d_k \\ & \text{avec } \beta_k = || \partial f / \partial x_{k+1} + \beta_k d_k \\ & \text{avec } \beta_k = || \partial f / \partial x_{k+1} + \beta_k d_k \\ & \text{avec } \beta_k = || \partial f / \partial x_{k+1} + \beta_k d_k \\ & \text{avec } \beta_k = || \partial f / \partial x_{k+1} + \beta_k d_k \\ & \text{avec } \beta_k = || \partial f / \partial x_{k+1} + \beta_k d_k \\ & \text{avec } \beta_k = || \partial f / \partial x_{k+1} + \beta_k d_k \\ & \text{avec } \beta_k = || \partial f / \partial x_{k+1} + \beta_k d_k \\ & \text{avec } \beta_k = || \partial f / \partial x_{k+1} + \beta_k d_k \\ & \text{avec } \beta_k = || \partial f / \partial x_{k+1} + \beta_k d_k \\ & \text{avec } \beta_k = || \partial f / \partial x_{k+1} + \beta_k d_k \\ & \text{avec } \beta_k = || \partial f / \partial x_{k+1} + \beta_k d_k \\ & \text{avec } \beta_k = || \partial f / \partial x_{k+1} + \beta_k d_k \\ & \text{avec } \beta_k = || \partial f / \partial x_{k+1} + \beta_k d_k \\ & \text{avec } \beta_k = || \partial f / \partial x_{k+1} + \beta_k d_k \\ & \text{avec } \beta_k = || \partial f / \partial x_{k+1} + \beta_k d_k \\ & \text{avec } \beta_k = || \partial f / \partial x_{k+1} + \beta_k d_k \\ & \text{avec } \beta_k = || \partial f / \partial x_{k+1} + \beta_k d_k \\ & \text{avec } \beta_k = || \partial f / \partial x_{k+1} + \beta_k d_k \\ & \text{avec } \beta_k = || \partial f / \partial x_{k+1} + \beta_k d_k \\ & \text{avec } \beta_k = || \partial f / \partial x_{k+1} + \beta_k d_k \\ & \text{avec } \beta_k = || \partial f / \partial x_{k+1} + \beta_k d_k \\ & \text{avec } \beta_k = || \partial f / \partial x_{k+1} + \beta_k d_k \\ & \text{avec } \beta_k = || \partial f / \partial x_{k+1} + \beta_k d_k \\ & \text{avec } \beta_k = || \partial f / \partial x_{k+1} + \beta_k d_k \\ & \text{avec } \beta_k = || \partial f / \partial x_{k+1} + \beta_k d_k \\ & \text{avec } \beta_k = || \partial f / \partial x_{k+1} + \beta_k d_k \\ & \text{avec } \beta_k = || \partial f / \partial x_{k+1} + \beta_k d_k \\ & \text{avec } \beta_k = || \partial f / \partial x_{k+1} + \beta_k d_k \\ & \text{avec } \beta_k = || \partial f / \partial x_{k+1} + \beta_k d_k \\ & \text{avec } \beta_k = || \partial f / \partial x_{k+1} + \beta_k d_k \\ & \text{avec } \beta_k = || \partial$$

Méthodes du gradient conjugué: Conclusions

- •Polak-Ribière équivalent au Fletcher-Reeves pour les fonctions quadratiques, mais donne des résultats différents pour des fonctions quelconques
- •Nécessite le stockage de très peu d'information :
- d_k , ∂ f/ ∂ x_k , ∂ f/ ∂ x_{k+1} (3 vecteurs de dim. «n»)
- Vitesse de convergence très supérieure à celle des algorithmes du gardient classiques
- => Méthode à considérer pour des problèmes de grande taille (n>100)

Méthodes de Newton

- •Idée : utiliser l'algorithme de Newton pour résoudre le système ∂ f/ ∂ x = 0
- L'algorithme correspondant est donc

$$\mathbf{x}_{k+1} = \mathbf{x}_k - (\partial^2 \mathbf{f} / \partial \mathbf{x}_k^2)^{-1} \partial \mathbf{f} / \partial \mathbf{x}_k$$

- •Dans le cas de fonctions quadratiques, l'algorithme converge en une seule itération
- •Demeure le pb de la convergence globale si f(x) est quelconque => on apporte les modifications suivantes

$$x_{k+1} = x_k - \lambda_k (\partial^2 f / \partial x_k^2)^{-1} \partial f / \partial x_k$$

avec $\lambda_{\bf k}$ minimisant $~{\bf f}({\bf x})$ dans la direction (∂ $^2{\bf f}/$ ∂ ${\bf x^2}_{\bf k})^{-1}$ ∂ ${\bf f}/$ ∂ ${\bf x_k}$

• Il se peut que localement ($\partial^2 f / \partial x^2_k$) ne soit pas définie positive, alors

$$M_k = \mu_k I + \partial^2 f / \partial x_k^2$$
 avec μ_k scalaire positif

Méthodes de quasi-Newton

•Idée: Il s'agit d'une généralisation, permettant de ne pas avoir à calculer le Hessien

L'algorithme correspondant est donc

$$x_{k+1} = x_k - \lambda_k H_k \partial f / \partial x_k$$

avec λ_k minimisant f(x) dans la direction $H_k \partial f / \partial x_k$

• On veut faire aussi bien que Fletcher -Reevs =>

 H_k sera une matrice dont on impose la convergence en « n » itérations vers l'inverse du Hessien dans le cas où f(x) est quadratique

- A l'itération « n » on se retrouve dans la configuration de la méthode de Newton et donc on converge en un coup
- D'une manière plus générale, H devra être une approximation de l'inverse du hessien

Différentes formules peuvent être adaptées

$$H_{k+1} = H_k + \Delta_k$$

- Δ_k est une matrice de rang 1 ou 2
- •Dans le cas d'une fonction quadratique, on rappelle

$$A^{-1}(\partial f/\partial x_{k} - \partial f/\partial x_{k-1}) = A^{-1}(Ax_{k} + b - Ax_{k-1} - b) = x_{k} - x_{k-1}$$

On souhaite imposer la relation

$$H_{k+1}(\partial f/\partial x_k - \partial f/\partial x_{k-1}) = x_k - x_{k-1}$$
 soit $H_{k+1}\gamma_k = \delta_k$

- •D'autre part, pour respecter la symétrie on définit $\Delta_k = \alpha_k u_k u_k^T$ correction de rang 1
- En posant

$$\delta_k = x_k - x_{k-1}$$
 et $\gamma_k = \partial f / \partial x_k - \partial f / \partial x_{k-1}$

$$=> \Delta_{k} = \alpha_{k} u_{k} u_{k}^{T} = (\delta_{k} - H_{k} \gamma_{k}) (\delta_{k} - H_{k} \gamma_{k})^{T} / \gamma_{k}^{T} (\delta_{k} - H_{k} \gamma_{k})$$

avec
$$\delta_k = x_k - x_{k-1}$$
 et $\gamma_k = \partial f / \partial x_k - \partial f / \partial x_{k-1}$

•On peut démontrer que H_{n+1}=A⁻¹

(convergence de la méthode de quasi Newton dans le cas quadratique en "n" itérations)

Algorithme de Fletcher-Powell

Correction de rang 2

$$H_{k+1} = H_k + \delta_k \delta_k^{T} / \delta_k^{T} \gamma_k - H_k \gamma_k \gamma_k^{T} H_k / \gamma_k^{T} H_k \gamma_k$$

Algorithme:

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \lambda_{\kappa} \mathbf{d}_k$$

avec λ_k minimisant f(x) dans la direction $d_k = -H_k \partial f / \partial x_k$

$$H_{k+1} = H_k + \delta_k \delta_k^{\mathsf{T}} / \delta_k^{\mathsf{T}} \gamma_k - H_k \gamma_k \gamma_k^{\mathsf{T}} H_k / \gamma_k^{\mathsf{T}} H_k \gamma_k$$
et $\delta_k = X_{k+1} - X_k$ et $\gamma_k = \partial f / \partial X_{k+1} - \partial f / \partial X_k$

Algorithme de Broyden, Fletcher, Goldfrab, Shanno (BFGS)

- On sait que $H_{k+1}\gamma_{\kappa} = \delta_{\kappa}$
- •On intervertit les rôles de γ_{κ} et δ_{κ}

•
$$G_{k+1} = G_k + \gamma_k \gamma_k^T / \gamma_k^T \delta_k - G_k \delta_k \delta_k^T G_k / \delta_k^T G_k \delta_k$$

• On obtient $G_{k+1}\delta_k = \gamma_{\kappa}$ à comparer avec

$$\gamma_{\kappa} = H_{k+1}^{-1} \delta_{\kappa}$$

Donc G_{k+1} approxime le hessien directement

La récurrence sur G_{k+1} s'inverse donc

$$(G_{k+1})^{-1} = (G_k)^{-1} + [1 + \gamma_k^T (G_k)^{-1} \gamma_k / \delta_k^T \gamma_k]^* \delta_k \delta_k^T / \delta_k^T \gamma_k - (\delta_k \gamma_k^T (G_k)^{-1} + (G_k)^{-1} \gamma_k \delta_k^T) / \delta_k^T \gamma_k$$

Algorithme de Broyden, Fletcher, Goldfrab, Shanno (BFGS)

Et finalement

$$\begin{aligned} \mathbf{H}_{k+1} &= \mathbf{H}_{k} + [\mathbf{1} + \gamma_{k}^{\mathsf{T}} \mathbf{H}_{k} \gamma_{k} / \delta_{k}^{\mathsf{T}} \gamma_{k}]^{*} \delta_{k} \delta_{k}^{\mathsf{T}} / \delta_{k}^{\mathsf{T}} \gamma_{k} - \\ &- (\delta_{k} \gamma_{k}^{\mathsf{T}} \mathbf{H}_{k} + \mathbf{H}_{k} \gamma_{k} \delta_{k}^{\mathsf{T}}) / \delta_{k}^{\mathsf{T}} \gamma_{k} \end{aligned}$$

• Moins sensible que DFP (David Fletcher Powell) aux imprécisions de la procédure de recherche unidimensionnelle => permet l'utilisation de méthodes unidimensionnelles « économiques » qui nécessitent un petit nombre d'évaluations de la fonction

Grad. Conjugué : Fletcher-Reeves Quasi-Newton : BFGS

Que choisit-on?

 BFGS est beaucoup plus coûteuse en calcul (construction matricielle à chaque itération)

N.B. On n'inverse pas la matrice, on récure directement sur H⁻¹

- Si la valeur du vecteur qui minimise la fonction n'est pas importante => Fletcher-Reeves
- Si on veut avoir une confiance en l'estimation => BFGS (matrice des dérivées secondes)

Comparaison des différentes méthodes. Résultats sur la convergence.

- Fait au tableau
- Conclusion:
 - Avantage des méthodes de quasi-Newton sur les méthodes du gradient conjugué en ce qui concerne le nombre de calculs de la fonction; par contre, présence de produits de matrices (calculs en n³)

Minimisation multivariable avec contraintes. Aspects théoriques.

I. Généralités, propriétés caractéristiques des optimums constraints

J.1. Position du problème - définition

• Contraintes (définissant 𝒯)

Inégalité : $g_i(x) \le 0$ i=1 ... m Saturées en x_0 , si $g_i(x_0) = 0$ (x0 est sur les bords du domaine \mathcal{D}) Non saturées en x0, si $g_i(x_0) < 0$

Egalité : $h_i(x) = 0$ j=1 ... $p \le n-1$

Minimum absolu x*

Défini par $\forall x \in \mathcal{D}$, $f(x) \ge f(x^*)$ strict si l'égalité est stricte.

Minimum relatif x*

 \exists un voisinage $\mathcal{V}(x^*)$ tel que $\forall x \in \mathcal{D} \cap \mathcal{V}(x^*)$, $f(x) \ge f(x^*)$

Point admissible

Direction admissible en x_0

Soit x_0 admissible et une direction d Soit $x(\alpha) = x_0 + \alpha d$, avec $\alpha \ge 0$

d est admissible \Leftrightarrow [$\exists \alpha^*>0$, $\forall \alpha < \alpha^*$, $x(\alpha) \in \mathcal{D}$]

Remarque: Si x_0 est strictement intérieur à \mathcal{D} , toutes les directions sont admissibles.

Fig.1 Direction admissible Fig.2 Point admissible régulier Fig.3 Point admissible non régulier

Point admissible régulier (qualification des contraintes)

 x_0 est admissible régulier si les <u>gradients des contraintes</u> inégalité sont saturées en x_0 et ceux des contraintes égalité <u>sont indépendants</u>

Le gradient des contraintes est dirigé vers <u>l'extérieur</u> du domaine (vers les g>0)

•Directions limite (ou tangente) en x₀ admissible

 $\zeta(x_0)$ =ensemble des directions d'telles que $[\partial h_i / \partial x_0]^T$.d=0 (pour toutes les contraintes égalité)

 $[\partial d_i / \partial x_0]^T$.d=0 (pour toutes les contraintes inégalité saturées en x_0)

Fig.4 Direction tangente

But recherché:

La recherche d'un mini absolu est difficile: L'algotrithme est « aveugle » D'où recherche d'un minimum local.

Hypthèses où le mini local est un mini absolu (convexité, unimodalité)

Conditions nécessaires du 1er ordre

CN1 (sans hypothèse sur la différentialité des contraintes) Soit f(x) de classe C₁

 x^* mini local => ∃ d admissible en x^* , $f_{x^*}^T$.d ≥ 0 où f_{x^*} est le gradient de f Interprétation géométrique:

Les déplacements dans une direction admissible ne peuvent pas faire décroître la fonction (f(x)) dans le sens des niveaux croissants)

Conditions nécessaires du 1er ordre - suite

On peut chercher des propriétés en précisant la façon dont est défini le domaine (Kuhn & Tucker)...

Le plus évident étant f_{x^*} =- μ_i g_{ix^*} où g_{ix^*} est le gradient de g saturée et μ_i >0

Démonstration: On se déplace à partir de x^* . Soit $x(\alpha) = x^* + \alpha d$ avec d>0, d admissible Développement de Taylor

$$f[x(\alpha)] = f(x^*) + \alpha [\partial f/\partial x^*]^T dx/d\alpha + \alpha \epsilon(\alpha)$$

$$f[x(\alpha)]=f(x^*)+\alpha[f_{x^*}^{T}d]+\alpha \epsilon(\alpha)$$

$$x^* \text{ mini} => f[x(\alpha)] \ge f(x^*) => f_{x^*}^T d \ge 0$$

Cas sans contrainte

$$x^* mini => f_{x^*} = 0$$

Introduction du Lagrangien pour des contraintes C₁

Cas des contraintes égalité (Conditions de Lagrange)

Min
$$f(x)$$
 contraint par $h_j(x) = 0$ $j=1...p$

On définit une fonction de pénalité $\Phi(x) = \{0 \text{ si } x \text{ est admissible, } + \infty \text{ si non}\}$

Le problème <u>contraint</u> : {Min f(x), $h_i(x) = 0$ } est équivalent au problème <u>non contraint</u>

$$Min[f(x)+\Phi(x)]$$

Choix de la fonction de pénalité $\Phi(x)$

$$\Phi(\mathbf{x}) = \mathbf{Max} [\sum_{j=1}^{p} \lambda_{j} \mathbf{h}_{j}(\mathbf{x})]$$

$$\lambda_{j=1}$$

Si x est admissible $\Phi(x)=0$

Si x est non admissible, il existe j tel que $h_j(x) \neq 0$ D'où $Max[\sum \lambda_j h_j(x)] = +\infty$

Le problème non contraint auquel on est ramené s'écrit donc

Min[f(x)+ max
$$\sum_{j=1}^{p} h_{j}(x)$$
]

Comme f(x) est indépendant de λ , on peut écrire $\min[Max(f(x) + \sum_{i=1}^{p} \lambda_i h_i(x))]$

Le Lagrangien est défini par

$$L(x,\lambda)=f(x)+\sum_{j=1}^{n} \lambda_{j}h_{j}(x)$$

On appellera problème primal $Min[Max(f(x) + \sum_{j=1}^{p} \lambda_{j}h_{j}(x))]$

 $x \lambda j=1$

On appellera problème dual $\begin{aligned} & \text{Max}[\text{Min}(f(x) + \sum_{j=1}^{p} \lambda_j h_j(x))] \\ & \lambda \quad x \end{aligned}$

Soient (x^*, λ_j^*) la solution (si elle existe) du problème (primal ou dual) sous condition de dualité forte

$$x^*$$
 optimum => II existe $\lambda_1^* \dots \lambda_p^*$ tels que $\partial f/\partial x^* + \sum_{j=1}^p \lambda_j^* \partial h_j / \partial x^* = 0$

(Conditions de Lagrange du 1^{er} ordre)

Cas de contraintes inégalité (Conditions de Kuhn & Tucker)

$$\underset{x}{\text{Min }} f(x), \, g_i(x) \leq 0 \ , \quad i=1 \, \dots \, m$$

On choisit la fonction de pénalité

$$Φ(x) = Max ∑ λigi(x))] λi≥0$$

 $λi i=1$

Si x est admissible $g_i(x) \le 0$ et $\Phi(x)=0$

Si x est non admissible, $\exists i$ tel que $g_i(x) > 0$ D'où $Max[\sum \lambda_i g_i(x)] = + \infty$ $\lambda_i \ge 0$

On appellera problème primal Min [Max L(x, λ)]

x λ≥0

On appellera problème dual Max [Min L(x, λ)]

λ≥0 x

Soient (x^*, λ_i^*) la solution (si elle existe) du problème (primal ou dual)

$$x^*$$
 optimum => il existe $\lambda_i^* \ge 0$ tels que ∂ f/ ∂ $x^* + \sum_{i=1}^m \lambda_i^* \partial g_i / \partial x^* = 0$

Interprétation: $\partial f/\partial x^* = -\sum \lambda_i \partial g_i/\partial x^*$

(Gradient de f = combinaison linéaire négative des contraintes)

Point selle du Lagrangien

Min [Max $L(x,\lambda)$] primal

x λ≥0

Max [Min $L(x,\lambda)$] dual

 $\lambda \ge 0$ x

Si la Lagrangien admet un point col, alors la solution du pb dual= solution du pb primal

Exemple (cas convexe) Utilisation du problème dual

• Min $f(x) = x_1^2 + x_2^2$ avec $2x_1 + x_2 \le -4$

Lagrangien:

$$L(x, \lambda) =$$

$$\min_{X} L(x, \lambda) =>$$

Fonction duale: Max W(λ)=L[x*(λ), λ)] =

d'où
$$x_1^*=$$
 , $x_2^*=$ et $f(x^*)=W(\lambda^*)=$

Le problème dual est parfois beaucoup plus simple à résoudre

Conditions nécessaires du 2e ordre

CN2 (pas d'hypothèse sur les contraintes)

Soit f(x) de classe C₂

 x^* mini local => \forall d admissible en x^* , $f_{x^*}^{\mathsf{T}} d \ge 0$ où f_{x^*} est le gradient de f

Et si $f_{x^*}^T d = 0$, alors $d^T F_{xx}^* d \ge 0$ (F_{xx}^* traduit la courbure vers le haut ou le bas)

Démonstration:

 x^* mini local => \forall d admissible $f_{x^*}^T d \ge 0$ déjà démontré en CN1 Si $f_{x^*}^T d = 0$, alors

$$f[x(\alpha)]=f(x^*)+\alpha.0+\frac{1}{2}\alpha^2d^TF^*_{xx}d+\alpha^2\epsilon(\alpha)$$

 $f[x(\alpha)] \ge f(x^*) => d^TF^*_{xx}d \ge 0$ pour tout d admissible

On peut chercher des propriétés en précisant la façon dont est défini le domaine (Kuhn & Tucker)...

Cas sans contraintes

$$x^* \text{ opt } => f_{x^*} = 0, F^*_{xx} \ge 0$$

Conditions suffisantes du 2nd ordre (fonction et contraintes de classe C₂)

Conditions suffisantes du 2e ordre

Introduction du Lagrangien du problème

Minimiser f(x) contraint par

$$g_i(x) \le 0$$
 $i = 1 ... m$
 $h_i(x) = 0$ $j = 1 ... p \le n-1$

$$L(x, \mu_i, \lambda_i) = f(x) + \Sigma \mu_i g_i(x) + \Sigma \lambda_i h_i(x)$$

C.S.2 II existe un lot de λ_j un lot de μ_i positionnels tels que

(1)
$$\Sigma \mu_i g_i(x^*)=0$$
 (2) $L_{x^*}=(x^*,\mu_i,\lambda_i)=0$ (3) $d^T L_{xx}^* d \ge 0$ pour tout $d \in \zeta(x^*)$

Alors x* est minimum local.

Remarques générales sur CS2

1) $e_T \mu_i g_i(x^*)=0$ => prendre les μ_i nuls pour les contraintes non actives

2)
$$L_{x^*} = (x^*, \mu_i, \lambda_j) = 0 \implies f_x(x^*) = -\sum \mu_i g_i(x^*) - \sum \lambda_j h_j(x^*)$$

Illustration (en l'abscence de h_i)

- $-f_x(x^*)$ se décompose dans composantes > 0 sur g_{1x} et g_{2x} (strictement) descente de f => sortie du domaine
- 3) Il s'agit bien d'un minimum et non d'un maximum

Remarque sur CS2 quand x* est régulier

• Quand x* est régulier, mes conditions (1) et (2) sont appelés conditions nécessaires de K.T. du 1er ordre

Cas sans contraintes:

$$f_x(x^*) = 0$$
 et $F_{xx}(x^*) > 0$ => x^* est minimum local

Méthodes primales

- Les méthodes primales cherchent à résoudre le problème directement, et
- 1) engendrent une suite de points satisfaisant les contraintres
- 2) correspondent à une suite décroissante des valeurs de la fonction
- En cas d'arrêt de la procédure, le point courant peut être pris comme approximation de l'optimum recherché.

I.1Méthodes de changement de variable:

$$a \le x \le b$$
 => $x=a+(b-a)sin^2(y)$

On remplace x par une variable non contrainte y

I.2Méthodes des diretions admissibles (Zoutendijk, Topkins et Veinott)

- x₀ le point de départ satisfaisant les contraintes
- I₀ l'ensemble des indices des contraintes saturées en X₀
 On cherche une direction admissible d

On doit avoir
$$(\partial g_i / \partial x_0).d \le 0$$

(afin que le déplacement ne rende aucune contrainte saturée positive) D'autre part la fonction doit diminuer lors d'un déplacement

$$\begin{split} &(\partial f/\partial x_0)^T.d < 0\\ &\text{Idée}: \text{Min } (\partial f/\partial x_0)^T.d < 0\\ &\text{contraint par } (\partial g_j/\partial x_0).d \leq 0 \text{ } i \in I_0 \end{split}$$

 $\Sigma |d|=1$

Inconvénients:

- •Tout déplacement suivant d peut faire sortir du domaine Exemple
- •Un petit déplacement peut changer le nombre de contraintes saturées et entraîner un discontinuité brusque de la direction

Exemple (fait au tableau)

=> Raffinements de la méthode précédente (Topkins et Veinott)
Tenir compte de <u>toutes</u> les contraintes (saturées + non saturées)

II.2 Méthodes de pénalité avec paramètres

- Pénalité à point intérieur : <u>la proximité des contraintes</u> est pénalisée avec un poids de moins en moins grand
- Min f(x) avec $g_i(x) > 0$ et X_0 point de départ admissible
- Min $\theta(x,r_k)=f(x)+r_k \sum 1/g_i(x)$ avec r_k suite décroissante vers zéro x

Illustration: (faite au tableau)

II.2 Méthodes de pénalité avec paramètres

- Pénalité à point extérieur : <u>la non satisfaction des</u> contraintes est pénalisée avec un poids de plus en plus grand
- Min f(x) avec g_i(x) > 0 et X₀ point de départ, non nécessairement admissible
- Min $F(x,r_k)=f(x)+1/r_k\Sigma$ {Min[0,g_i(x)]}² avec r_k suite décroissante x

II.2 Méthodes de pénalité avec paramètres

- Méthodes mixtes
- Min f(x) avec $g_i(x) > 0$ i=1...m $h_i(x) = 0$ j=1...p

On décompose $h_j(x)=0$ <=> $h_j(x)>0$, j=1 ... p et $h_j(x)\leq 0$, j=1 ... p on note $g_i(x)>0$ i=m+1, ...,m+1+2p Soit en posant q=m+1+2p

n c

• Min $F(x,r_k)=f(x)+r_k\sum 1/g_i(x)+1/r_k\sum \{Min[0,g_i(x)]\}^2$ avec r_k suite décroissante vers 0 x i=1 i=n+1

1^{er} terme : inégalités impératives 2^{eme} terme : inégalités non impératives (tjs vérifiées) et contraintes égalité