Oliver Song 6.041 Exam 1 sheet

Basic shit

Sample space (generally denoted with Ω): the set of all possible outcomes of an experiment

Probability law: every possible outcome of an experiment has a probability of occurring

Axioms

All probabilities must be non-negative: $P(A) \ge 0$ for all A For disjoint events sum is union: $P(A \cup B) = P(A) + P(B)$, if events are disjoint. Works for more than 2 events too.

Total probability is 1: $P(\Omega) = 1$

Basic laws

- If $A \subseteq B$, then $P(A) \le P(B)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $P(A \cup B) \le P(A) + P(B)$
- $P(A \cup B \cup C) = P(A) + P(A^c \cap B) + P(A^c \cap B^c \cap C)$

Discrete shit

Discrete Probability Law: If Ω is finite, then each event A in Ω can be expressed as $A = \{s_1, s_2, ..., s_n\}$ for s_i in Ω .

Pretty much, the probability of any discrete event can be given by THE SUM OF THE PROB OF ALL ITS SMALLER EVENTS **Discrete Uniform Probability Law:** If all outcomes are equally likely, then the probability of the event is the number of events it encompasses over all possible events. $P(A) = |A| / |\Omega|$

Conditional probability

$$\mathbf{P}(A|B) = \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)}$$
 s.t. P(B) > 0

Satisfies

- 1. $P(A \mid B) \ge 0$
- **2.** $P(\Omega \mid B) = 1$
- 3. $P(A_1 \cup A_2 \cup ... \mid B) = P(A_1 \mid B) + P(A_2 \mid B) + ... \text{ s.t. events}$ are disjoint

Multiplication rule

Let A_1 , ... A_n be a set of events s.t. their joint probability > 0

$$\mathbf{P}\left(\bigcap_{i=1}^{n}A_{i}\right)=\mathbf{P}(A_{1})\mathbf{P}(A_{2}|A_{1})\mathbf{P}(A_{3}|A_{1}\cap A_{2})\cdots\mathbf{P}(A_{n}|\bigcap_{i=1}^{n-1}A_{i})$$

Independence

Events A and B are **independent** if $P(A \cap B) = P(A) * P(B)$ or $P(A \mid B) = P(B)$

Events are **conditionally independent** given an event C if $P(A \cap B \mid C) = P(A \mid C) P(B \mid C)$ or

 $P(A | B \cap C) = P(A | C)$

s.t. $P(B \cap C) > 0$

Independence of sets

Pairwise independence is when every pair is independent $P(A_i \cap A_j) = P(A_i) * P(A_j)$

The entire set is independent if

$$\mathbf{P}\left(\bigcap_{i\in\mathcal{S}}A_i\right)=\prod_{i\in\mathcal{S}}\mathbf{P}(A_i)\quad\forall\ S\subseteq\{1,2,\ldots,n\}$$

...which is supposed to mean something to me. I think it is the powerset of multiplication

Total Probability Theorem

Let $A_1, ..., A_n$ be disjoint events that partition Ω . If $P(A_i) > 0$ for each i, then for any event B, this crap:

$$\mathbf{P}(B) = \sum_{i=1}^{n} \mathbf{P}(B \cap A_i) = \sum_{i=1}^{n} \mathbf{P}(B|A_i)\mathbf{P}(A_i)$$

Bayes Rule

$$\mathbf{P}(A_i|B) = \frac{\mathbf{P}(B|A_i)\mathbf{P}(A_i)}{\mathbf{P}(B)} = \frac{\mathbf{P}(B|A_i)\mathbf{P}(A_i)}{\sum_{i=1}^{n}\mathbf{P}(B|A_i)\mathbf{P}(A_i)}$$

Counting rules

Basic counting: For a m-stage process with n_i choices at stage i, the number of total choices is

choices =
$$n_1 * n_2 * ... * n_m$$

Sampling with Replacement: k-length sequences drawn from n distinct items with replacement:

$$\#$$
 sequences = n^k

Permutations: how many ways can you order n things in k buckets?

sequences =
$$\frac{n!}{(n-k)!}$$

Combinations: how many different combinations of k things can you pick from n things?

$$\# \text{ sets} = \frac{n!}{k!(n-k)!}$$

Discrete Random Variables

A **random variable** is a real valued function defined on the sample space:

$$X:\Omega\to\mathbb{R}$$

The **probability mass function (PMF)** for the RV, X, assigns a probability to each event $\{X = x\}$

$$p_X(x) = \mathbf{P}(\{X = x\}) = \mathbf{P}(\{\omega \in \Omega | X(\omega) = x\})$$

That's all bullshit though. To really find a PMF, you have to go through some base cases for the event you want to find (say, after 2 iterations, after 3 iterations, after...) then find an equation describing the pattern for the probability of the event at the nth iteration. Then you can describe it with the fucking brackets

PMF(X=x) = {

$$x^2 + 2x$$
 | $x > 0$
0 | e/w

or whatever shit like that.

PMF Properties

Let X be a RV and S be a countable subset of the real line The axioms of probability still hold

$$p_X(x) \ge 0$$

 $\mathbf{P}(X \in S) = \sum_{x \in S} p_X(x)$
 $\sum_x p_X(x) = 1$

Remember that a PMF always sums to 1.

Partitions

What is this crap?

The number of ways to partition an n-element set into r disjoint subsets, with n_k elements in the k^{th} subset:

$$\binom{n}{n_1, n_2, \dots, n_r} = \binom{n}{n_1} \binom{n - n_1}{n_2} \cdots \binom{n - n_1 - \dots - n_r - 1}{n_r}$$
$$= \frac{n!}{n_1! n_2! \cdots n_r!}$$

where

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
$$\sum_{i=1}^{r} n_i = n$$

Expectation

Given a random variable X with PMF $p_X(x)$:

- $\mathbf{E}[X] = \sum_{x} x p_X(x)$
- Given a derived random variable Y = g(X):

$$\mathbf{E}[g(X)] = \sum_{x} g(x)p_X(x) = \sum_{y} yp_Y(y) = E[Y]$$
$$\mathbf{E}[X^n] = \sum_{x} x^n p_X(x)$$

• Linearity of Expectation: $\mathbf{E}[aX + b] = a\mathbf{E}[X] + b$.

Variance

The expected value of a derived random variable g(X) is

$$\mathbf{E}[g(X)] = \sum_{x} g(x) p_X(x)$$

The variance of X is calculated as

- $var(X) = \mathbf{E}[(X \mathbf{E}[X])^2] = \sum_{X} (X \mathbf{E}[X])^2 \rho_X(X)$
- $var(X) = \mathbf{E}[X^2] \mathbf{E}[X]^2$
- $var(aX + b) = a^2 var(X)$

Canonical distributions (discrete)

		` ,		
	X	$p_X(k)$	$\mathbf{E}[X]$	var(X)
Bernoulli	{ 1 success 0 failure	$\begin{cases} p & k = 1 \\ 1 - p & k = 0 \end{cases}$	р	p(1 - p)
Binomial	Number of successes in n Bernoulli trials	$ \begin{pmatrix} \binom{n}{k} p^k (1-p)^{n-k} \\ k = 0, 1, \dots, n \end{pmatrix} $	np	np(1-p)
Geometric	Number of trials until first success	$(1-p)^{k-1}p$ $k=1,2,\dots$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Uniform	An integer in the interval [a,b]	$\begin{cases} \frac{1}{b-a+1} & k=a,\ldots,b\\ 0 & \text{otherwise} \end{cases}$	<u>a+b</u> 2	(b-a)(b-a+2) 12
Poisson	Number of rare events	$k = 0, 1, 2, \dots$	λ	λ

How to solve common problems

Coin flips heads with probability p

K is the # flips up to and including the 2nd head. What is PMF? $p_K(k)=(k-1)(1-p)^{k-2}p^2$

Ok, what's the **conditional PMF** of K | first flip is heads?

$$p_{K|H_1}(k) = (1-p)^{k-2}p$$

Ok, what's the expected value?

Let T_1 denote the event that the first flip is a tail. Conditional on T_1 , (K-1) should have the same distribution as K without the condition, so

$$E[K|T_1] = E[K] + 1.$$

We now use the total expectation law, combined with the fact that the geometric random variable of parameter p has mean 1/p, to write

$$E[K] = E[K|H_1] \cdot p + E[K|T_1] \cdot (1-p) = \left(1 + \frac{1}{p}\right) \cdot p + (E[K] + 1) \cdot (1-p)$$

= 2 + (1-p)E[K].

This yields

$$E[K] = \frac{2}{p}.$$

Ok, L is the number of identical flips before the first change.

What's the **PMF**?

$$p_L(\ell) = (1-p)^{\ell} \cdot p + p^{\ell} \cdot (1-p).$$

What's the **Expected Value**?

$$\mathbf{E}[L] = p \cdot \mathbf{E}[L|H_1] + (1-p) \cdot \mathbf{E}[L|T_1] = \frac{p}{1-p} + \frac{1-p}{p}.$$

What's the variance?

We use the same technique as in Part b) to compute $\mathbf{E}[L^2]$, where the expected value of the square of a geometric random variable can be easily computed from its mean and variance, given on Page 2:

$$\mathbf{E}[L^2] = p \cdot \mathbf{E}[L^2|H_1] + (1-p) \cdot \mathbf{E}[L^2|T_1] = \frac{p(1+p)}{(1-p)^2} + \frac{(1-p)(2-p)}{p^2}.$$

Now computing the variance of L is straightforward:

$$\begin{split} \mathsf{Var}(L) &= \mathbf{E}[L^2] - (\mathbf{E}[L])^2 \\ &= \frac{p(1+p)}{(1-p)^2} + \frac{(1-p)(2-p)}{p^2} - \left(\frac{p}{1-p} + \frac{1-p}{p}\right)^2 \\ &= \frac{1-p}{p^2} + \frac{p}{(1-p)^2} - 2. \end{split}$$