UNIT VI

Analog to digital converter

And

Digital to analog converter

Weighted Binary Resistance Network

Weighted Binary Resistance Network Circuit

Voltage Gain (
$$A_V$$
) = $\frac{R_F}{R_1}$

 $R_{IN} = \frac{1}{R_4} + \frac{1}{R_3} + \frac{1}{R_2} + \frac{1}{R_1}$

Voltage Output (Vout) = Vref X Av

Vref X R_F X Rin

Continue

- For example
- Referring to the circuit as shown, the highest value resistor (150K Ω) is a digital input resistor. The smallest bit (least significant bit), and the values of other resistor is

$$\begin{split} R_1 &= 150 K \\ R_2 &= \frac{R_1}{2^1} = \frac{150 K}{2^1} = 75 k \Omega, \Rightarrow \text{ Bit ke } 2^1 \\ R_3 &= \frac{R_1}{2^2} = \frac{150 K}{2^2} = \frac{150 K}{4} = 37.5 k \Omega, \quad \Rightarrow \text{ Bit ke } 2^2 \\ R_4 &= \frac{R_1}{2^3} = \frac{150 K}{8} = 18.75 k \Omega \quad \Rightarrow \text{ Bit ke } 2^3 \end{split}$$

Circuit analysis to find Vout

If binary input is 0001

= <u>0.4V</u>

R1 = 150K
$$\Omega$$
, R_F = 20K Ω , Vref = 3V
Voltage Gain (A_V) = R_F = $\frac{20K\Omega}{150K\Omega}$ = 0.133
R1 150K Ω
Vout = Vref X A_V
= 3V X 0.1333

Continue

❖ If binary input is 0110

R2 =
$$75K\Omega$$
, R3 = $37.5K\Omega$, R_F = $20K\Omega$, Vref = $3V$

R_T = $R2//R3$ = $25K\Omega$

Voltage Gain $(A_V) = R_F$ = $20K\Omega$ = 0.8

R_T = V = V

Calculate

❖If binary input is 1100

Simply that we can see the resulting output is shown in the table below

Decimal	Digital input				
	D	С	В	А	Vout (V)
0	0	0	0	0	0
1	0	0	0	1	0.4
2	0	0	1	0	0.8
3	0	0	1	1	1.2
4	0	1	0	0	1.6
5	0	1	0	1	2.0
6	0	1	1	0	2.4
7	0	1	1	1	2.8
8	1	0	0	0	3.2
9	1	0	0	1	3.6
10	1	0	1	0	4.0
11	1	0	1	1	4.4
12	1	1	0	0	4.8
13	1	1	0	1	5.2
14	1	1	1	0	5.6
15	1	1	1	1	6.0

Example

Find output voltage and current for a binary weighted resistor DAC of 4 bits where:

 $R = 10 \text{ k Ohms}, R_f = 5 \text{ k Ohms and } V_R = 10 \text{ Volts. Applied binary word is } 1001.$

Solution

Solution Cont'd

$$I_o = -\frac{10 \,\mathrm{V}}{\Omega} \left[\frac{1}{2^0 * 10^4} + \frac{0}{2^1 * 10^4} + \frac{0}{2^2 * 10^4} + \frac{1}{2^3 * 10^4} \right]$$

$$I_0 = -0.001125 \,\mathrm{A}$$

$$V_0 = -R_f I_0$$

$$V_0 = -(5*10^3 \,\Omega)(-0.001125 \,\mathrm{A}) = 5.625 \,\mathrm{V}$$

Solution Cont'd

Binary input = 1001 = 9

From example, $V_0 = 5.625 V$

$$V_0/V_R = 5.625V/10V = 9/16$$

Binary Weighted Resistor

- Advantages
 - ➤ Simple Construction/Analysis
 - > Fast Conversion
- Disadvantages
 - ➤ Requires large range of resistors (2000:1 for 12-bit DAC) with necessary high precision for low resistors
 - > Requires low switch resistances in transistors
 - Can be expensive. Therefore, usually limited to 8-bit resolution.

Limitations of binary weighted

Has problems if bit length is longer than 8 bits

For example, if R = 10 k Ohms

 $R_8 = 2^{8-1}(10 \text{ k Ohms}) = 1280 \text{ k Ohms}$

If $V_R = 10$ Volts,

 $I_8 = 10V/1280 \text{ k Ohms} = 7.8 \mu\text{A}$

Op-amps to handle those currents are expensive because this is usually below the current noise threshold.

Limitations Cont'd

If R = 10 Ohms and
$$V_{ref}$$
 = 10 V
I = V_R/R = 10V/10 Ohms = 1 A

This current is more than a typical op-amp can handle.

Large resistors more error

Questions

Quick Quiz

Why the switches used in weighted resistor DAC are of single pole double throw (SPDT) type?

- a) To connect the resistance to reference voltage
- b) To connect the resistance to ground
- c) To connect the resistance to either reference voltage or ground
- d) To connect the resistance to output

Quick Quiz

What is the disadvantage of binary weighted type DAC?

- a) Require wide range of resistors
- b) High operating frequency
- c) High power consumption
- d) Slow switching

Quick Quiz

- The smallest resistor in a 12 bit weighted resistor DAC is $2.5k\Omega$, what will be the largest resistor value?
 - a) $40.96M\Omega$
 - b) 10.24MΩ
 - c) $61.44 \, M\Omega$
 - d) $18.43M\Omega$