

- **ML**→**QIP** (quantum-applied ML) ['74]
- **QIP**→**ML** (quantum-enhanced ML) ['94]
- ML-insipred QM/QIP
- Physics inspired ML/AI

Machine learning is not one thing. Al is not even a few things.

big data analysis

unsupervised learning

supervised learning

deep learning

generative models

non-parametric learning

online learning

sequential decision theory

computational learning theory

reinforcement learning

control theory

parametric learning

statistical learning

non-convex optimization

local search

Symbolic Al

QeML is even more things

QeML is even more things

Machine Learning: the **WHAT**

or

Sudo is this a cat?

Learning P(labels|data) given samples from P(data, labels)

-generative models-clustering (discriminative)-feature extraction

Sudo make me a cat.
Sudo what is a cat!?

Learning structure in P(data)give samples from P(data)

Machine Learning: the **HOW**

What about quantum computers?

Quantum computers...

...and physics

-manipulate registers of 2-level systems (qubits)

-full description:

 $n \ qubits \rightarrow 2^n \ dimensional$ vector

-manipulation: acting locally (gates)

special-purpose quantum annealers

...and computer science

-likely can *efficiently* compute more things than classical computers (factoring) e.g. factor numbers, or generate complex distributions

-even if QC is "shallow"

Quantum computers...

...and physics

-manipulate registers of 2-level systems (qubits)

-full description:

 $n \ qubits \rightarrow 2^n \ dimensional$ vector

...and computer science

-can compute things likely beyond **BPP** (factoring)

-can produce distributions which are hard-to-simulate for classical computers (unless **PH collapses**)

-even if QC is "shallow"

special-purpose *quantum annealers*

- a) The optimization bottleneck
- b) Big data & comp. complexity
- c) Machine learning Models

- a) The optimization bottleneck
- b) Big data & comp. complexity
- c) Machine learning Models

- quantum annealers
- universal QC and Q. databases
- restricted (shallow) architectures

- a) The optimization bottleneck quantum annealers
- b) Big data & comp. complexity universal QC and Q. databases
- c) Machine learning Models restricted (shallow) architectures

Precursors of Quantum Big Data

Exponential data?

Much of data analysis is linear-algebra:

regression = Moore-Penrose PCA = SVD...

supervised learning

ve models

Shallow quaptuarning circuits

online learning

non-parametric **learning**

parametric learning

Adiabatic QC/ computational learning thoughtum optimization statistical learning reinforcement lear Quantum oracle identification

Quantum walks

Symbolic Al

sequential

decision

theory

Enter quantum linear algebra

-*n* qubits \leftrightarrow 2^{*n*} dimensional vector

- -compute evolution = linear algebra
- -so... evolution of quantum systems *does* linear algebra
- -with exponentially large matrices!

amplitude encoding

$$\mathbf{R}^{N} \ni \mathbf{x} = (x_{i})_{i}$$

$$\downarrow \downarrow$$

$$|\psi\rangle \propto \sum_{i=1}^{N} x_{i}|i\rangle$$

block encoding

$$U|0\rangle|\psi\rangle = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} \psi \\ 0 \end{bmatrix} = \begin{bmatrix} A\psi \\ C\psi \end{bmatrix} = |0\rangle A|\psi\rangle + |1\rangle C|\psi\rangle$$

functions of operators

$$f(A)|\psi\rangle = \alpha_0|\psi\rangle + \alpha_1 A|\psi\rangle + \alpha_0 A^2|\psi\rangle \cdots$$

$$\approx A^{-1}|\psi\rangle$$

inner products

$$P(0)_{\psi} = |\langle 0|\psi\rangle|^2$$

If this worked literally...this would make us INFORMATION GODS.

Prediction: 44 zettabytes by 2020.

If all data is floats, this is 5.5x10²¹ float values

If this worked literally...this would make us INFORMATION GODS.

Prediction: 44 zettabytes by 2020.

If all data is floats, this is 5.5x10²¹ float values

... can be stored in state of 73 qubits (ions, photons....)

Timeline

Summary of quantum (inspired) "big data"

The "bad"

-not an inexhaustible source of exponential quantum advantage

Quantum and classical

-exponentially efficient processing given suitable databases

Quantum advantages over classical

-Quantum works with full-rank transforms (e.g. Fourier for series)
-polynomial advantage (up to 16 degree difference at the moment)
-error scaling: exponential precision v.s. poly (in-)precision

- a) The optimization bottleneck quantum annealers
- b) Big data & comp. complexity universal QC and Q. databases
- Machine learning Models restricted (shallow) architectures

(Quantum) Machine learning Models

Improving ML == speeding up algorithms... or is it?

Machine learning Models matter!

best fit v.s. "generalization performance" or classifying well beyond the training set

Data: | The state of the state

Challenge:

Models:

Not all models (+training algo) are born equal (for real datasets)...

sequential

decision

theory

Machine learning Models

family of functions.
if it's "good", we can generalize well

Quantum Machine learning Models

How about "shallow quantum circuits"?
-instead neural network, train a QC!
-related to ideas from
q. condensed-matter physics (VQE)

Quantum Machine learning Models "quantum kernel methods"

The good

- near term architectures
- seems to be robust
 (noise not inherently critical!)
- possibly **very expressive**

The neutral

- many parameters
- **model advantages** less clear (contrast to variational methods!)

The bad

- **barren plateaus** (also in DNN)

A hope... killer app for noisy QCs?

ML good for dealing with noise (in *data*)...
Can QML deal with *its own* noise (in *process*)?

Beyond ML?

Quantum-enhanced reinforcement learning

superv

Sha

non-param learning

parametric lear computati

c.f. Briegel

sequential decision nent theory theory entification control theory walks

Symbolic Al

big data ar

super

Sha

non-param learning

parametric lea computa

Towards good-old-fashioned-AI

- -planning
- -(symbolic) reasoning
- -automated proving
- -logic

Symbolic Al

Optimal packing

Shortest tours

$$f(x_1,\ldots,x_n) = (x_1 \vee x_{10} \vee \bar{x}_{51}) \wedge (\bar{x}_3 \vee \bar{x}_{10} \vee \bar{x}_{11}) \wedge (\bar{x}_{11} \vee \bar{x}_{44} \vee \bar{x}_{51}) \cdots$$

Traffic flow optimization

RL and ML

Find a proof of
Riemann's hypothesis
with less than a million lines
(if it exists)?

finding *good* (not worst case!) solutions to this is central to AI

big data ar

super

Sha

non-param learning

parametric lea computa

Towards good-old-fashioned-AI

Quantum solutions for combinatorial optimization

NB: NP not in BQP

-annealers

-quantum-enhanced classical algorithms even on small QCs

Symbolic Al

NP problems on smaller quantum computers

Works because structure is loose

For heuristic solutions... noise may not be a terminal problem

Al as the killer ap?

ML

big data an

Quantum linear algebra

supervised learning

renerative models

Shallow quantum circuits

online learning

non-param learning

parametric learning

Adiabatic QC/ computational learning tum optimization statistical learning

sequential decision reinforcement theory le Quantum oracle identification control theory

Quantum walks

Symbolic Al

Editor-in-Chief **Giovanni Acampora**, University of Naples Federico II, Italy

CALL FOR

PAPERS

Field Editors

1) Quantum Machine Learning Seth Lloyd (MIT), USA

2) Quantum Computing for Artificial Intelligence Hans Jürgen Briegel, (Innsbruck, Austria)

- 3) Artificial Intelligence for Quantum Information Processing Chin-Teng Lin (Sydney, Australia)
- 4) Quantum- and Bio-inspired Computational Intelligence Francisco Herrera (Granada, Spain)
- 5) Quantum Optimization

 Davide Venturelli (USRA, USA)