

Esercitazione 14: Chua's circuit

Brognoli Roberto, Garbi Luca, Libardi Gabriele

University of Trento Department of Physics Via Sommarive 14, 38123 Povo (TN), Italy

Introduzione

L'obiettivo di questa esperienza è quello di confrontare l'implementazione sperimentale di un circuito basato su un negative impedance converter con la previsione teorica. Infine viene presentato il risultato del comportamento non lineare del Chua's circuit.

1 Setup

1.1 Materiali

- Generatore di funzione d'onda Rigol DG1022 (impedenza nominale in uscita $R_s = 50 \Omega$);
- multimetro digitale (DMM) Agilent 34410A;
- oscilloscopio Agilent DSOX2002A;
- cavi coassiali BNC-banana e BNC-BNC;
- resistori e capacitori vari;
- 4 Op-Amp OP07, 1 trimmer da 10 k Ω .

2 Descrizione e discussione dei risultati

2.1 Caratteristica I-V di un NIC

Gli Op-Amp vengono alimentati da una tensione di \pm 12 V ai rispettivi pin e la corrente in ciascun ramo viene limitata a 80 mA. Il circuito alla base di quelli implementati in seguito è il negative impedance converter (NIC) raffigurato nella figura seguente (1). Studiamo

Figure 1: Negative impedance converter.

la caratteristica I-V di questo circuito per un generico Z_L . Sapendo che esso lavora in feedback negativo abbiamo $V_- = V_+ = V_{in}$. Inoltre quando non in saturazione si ha

$$V_{in} = V_{out} \frac{Z_L}{R_0 + Z_L} \Longrightarrow V_{out} = V_{in} \left(1 + \frac{R_0}{Z_L} \right)$$

Ora, sfruttando $I = V_{in} - V_{out}/R_0$ otteniamo

$$I = -\frac{V_{in}}{Z_L}$$

Chiedere che l'op-amp non sia in saturazione equivale a chiedere che

$$|V_{in}| \le \frac{V_{sat}}{|1 + \frac{R_0}{Z_L}|} \doteq V'_{sat}$$

Se V_{in} supera V_{sat}^{\prime} otteniamo $I=V_{in}-V_{sat}/R_0$ ovvero

$$I = \frac{V_{in}}{R_0} - \frac{V'_{sat}}{R_0} \left| 1 + \frac{R_0}{Z_L} \right|$$

Nel caso in cui Z_L è un carico resistivo R e l'operazionale non è in saturazione la caratteristica I-V del NIC è pertanto una retta con pendenza -1/R. Quando invece l'opamp è in regime di saturazione

$$I = \frac{V_{in}}{R_0} - \frac{V_{sat}'}{R_0} \left(1 + \frac{R_0}{R} \right) .$$

2.2 Caratteristica I-V di un Chua's diode

Due NIC con carico resistivo possono essere messi in parallelo per ottenere un *Chua's diode* (Fig.2). Diamo al NIC di sinistra il pedice A e a quello di destra il pedice B. La

Figure 2: Chua's diode.

caratteristica I-V del *Chua's diode* sarà la sovrapposizione dei NIC A e B con Z_L un carico resistivo dal momento che $I = I_A + I_B$. Chiamiamo V_A^{sat} e V_B^{sat} i due voltaggi di saturazione in ingresso. Dalla definizione e sapendo che $R_3/R_4 > R_1/R_2$ si ricava che $V_B^{sat} > V_A^{sat}$. L'andamento I-V di questo circuito si divide in tre zone pertanto, ovvero

• quando $|V_{in}| < V_B^{sat}$, la curva I-V è una retta di pendenza

$$m_1 = -\frac{1}{R_4} - \frac{1}{R_2}$$

 \bullet quando $V_B^{sat} \leq |V_{in}| \leq V_A^{sat},$ la curva I-V è una retta di pendenza

$$m_2 = \frac{1}{R_3} - \frac{1}{R_2}$$

 $\bullet\,$ quando $|V_{in}| > V_A^{sat},$ la curva I-V è una retta di pendenza

$$m_3 = \frac{1}{R_3} + \frac{1}{R_1}$$

Nella figura seguente (3) è presente la curva I-V ottenuta sperimentalmente prendendo la tensione in ingresso ed in uscita all'operazionale per diversi valori di V_{in} .

Figure 3: Chua's diode - curva I-V.

2.3 Chua's circuit

Di seguito (Fig.4) è raffigurato il cosiddetto *Chua's circuit* che implementa il circuito di cui è stata fatta l'analisi nella sezione precedente. Effettuando un'analisi circuitale sui punti

Figure 4: Chua's circuit.

 V_1 e V_2 troviamo il sistema di equazioni differenziali seguenti

$$\begin{cases} C_2 \dot{V}_2 = -I_L + \frac{V_1 - V_2}{R} \\ C_1 \dot{V}_1 = -g(V_1) + \frac{V_2 - V_1}{R} \\ V_2 = L \dot{I}_L \end{cases}$$

che può essere riscritta, dividendo la prima equazione per C_2 e poi derivandola, come

$$\begin{cases} \dot{V}_2 = -\frac{V_2}{LC_2} + \frac{\dot{V}_1 - \dot{V}_2}{RC_2} \\ \dot{V}_1 = -\frac{g(V_1)}{C_1} + \frac{V_2 - V_1}{RC_1} \end{cases}$$

Realizziamo sperimentalmente il *Chua's circuit* utilizzando come resistenza R il trimmer da $10 \text{ k}\Omega$ e come induttanza L un *gyrator* costituito da due op-amp, come in figura (5). Nella coppia di grafici seguente è raffigurato il risultato sperimentale del circuito quando

Figure 5: Induttanza da 20 mH realizzata mediante gyrator.

si va a graficare V_2 in funzione di V_1 per diversi valori di R. R è infatti il parametro di

accoppiamento delle due equazioni differenziali che implementano un sistema non lineare di caos deterministico. Diminuendo quindi il valore di resistenza con il trimmer e partendo da $R=3~k\Omega$ otteniamo come pattern prima un singolo attrattore e poi un attrattore doppio.