AARHUS SCHOOL OF ENGINEERING

2.SEMESTERPROJEKT E2PRJ2

GRUPPE 10

Smart Morning System - SMS

3. januar 2017

Forfattere: Vejleder: 201511621 Christian Brandstrup Bondesen Kim Bjerge

201511621 Emil Celik

201408914 Marc Auphong Bui

2015xxxxx Rasmus Lund 201406253 Simon Egeberg

Indhold

1	Indledning	2
2	Kravspecifikation	3
3	Systemarkitektur 3.1 Hardware-arkitektur 3.1.1 BDD 3.1.2 IBD 3.2 Software-arkitektur	4 10
4	Hardware-design, implementering & modultest 4.1 Design (HW) 4.2 Implementering (HW) 4.3 Modultest (HW)	12
5	Software-design, implementering & modultest 5.1 Design (SW) 5.2 Implementering (SW) 5.3 Modultest (SW)	13
6	Integrationstest (HW/SW)	14
7	Accepttest	15
8	Bilag	16

1 Indledning

2 Kravspecifikation

3 Systemarkitektur

3.1 Hardware-arkitektur

3.1.1 BDD

Det nedenstående block definition diagram (BDD) viser relationen mellem systemets elementer, og hvilke hovedelementer systemet består af.

Figur 1: Overordnet BDD for Smart Morning System

Som det ses illustreret i figur 1 består selve systemet i dets overordnet helhed af 5 moduler. X-10 Sender og X-10 Modtager står for at sende og modtage data over lysnettet ved brug af X-10 protokolen. Hvis X-10 Sender kan karakteriseres som hjernen, må X-10 Modtageren karakteriseres som de muskler der bevæger og fortæller hvordan legemer skal agere, altså hhv. Wake-up Light og Electronics.

En mere detaljeret BDD ses herunder, som også viser de enkelte blokkes ports.

Figur 2: Detaljeret BDD for det overordnede Smart Morning System

Den nedenstående tabel forklarer funktionen, de overordnede blokkes ansvar og signalnavne for de overordnede blokke.

Overordnet system					
Bloknavn	Funktionsbeskrivelse	Signal	Kommentar		
X-10 Sender	Modtage data serielt fra PC og sende data over lysnettet, således det overlejret signal kan læses af X-10 Modtageren	18V AC 5V DC 0V Lås Signal	Lysnet VCC Stel DE2 Serielt		
Kodelås	Sender højt eller lavt signal alt efter om systemet er låst eller ej	Lås 0V	DE2 Stel		
Wake-up Light	Tænder/slukker til et vis tidspunkt relativt til modtaget data fra X-10 modtageren	Signal 0V 5V DC	Serielt Stel VCC		
Electronics	Tænder/slukker til et vis tidspunkt relativt til modtaget data fra X-10 modtageren	Signal 0V 5V DC	Serielt Stel VCC		
X-10 Modtager	Modtage data fra lysnettet og sende videre til hhv. Modtager ATmega2560 og dernæst Wake-up Light og Electronics	18V AC 5V DC 0V Signal	Lysnet VCC Stel Serielt		

Tabel 1: Blokbeskrivelse for det overordnede system

X-10 Sender Blokbeskrivelse

Herunder vil de overstående blokke for X-10 Senderen nedbrydes yderligere, og de enkelte blokke vil blive forklaret.

ZeroX-sender			
< <pre><<pre>In Lysnet: Out Zc: In VCC: In Stel:</pre></pre>	orts>> 18VAC Digital 5V 0V		

ZeroX-sender eller Zero Cross Detector på X-10 senderen, bruges til at detekere nulgennemgang og generere et firkant signal der kan tolkes logisk, hvor et højt signal betyder at der er nulgennemgang og omvendt. Dette bruges til at synkronisere hvornår der sendes og modtages data på lysnettet.

ZeroX-sender Blok				
Navn	Funktionsbeskrivelse	Signal		
Lysnet Zc VCC Stel	Modtage signal fra lysnettet Sender digital signal til ATmega2560 Spændingsforsyning til ZeroX-Detector Fælles stel	18V AC Digital 5V DC 0V		

Tabel 2: Blokbeskrivelse for senderens Zero Cross Detector

generator-sender

<ports>>
In Tx: Burst
In VCC: 5V
in Stel: 0V
Out Data: X-10signal

Generator-sender eller 120kHz Carrier Generator bruges, i dette projekt, hovedsageligt til at sende data sikkert, altså de 120kHz, ud på lysnettet som er 50 Hz.

Generator-sender Blok				
Navn	Funktionsbeskrivelse	Signal		
Tx VCC Stel Data	Modtage Burstsignal fra sender ATmega2560 Spændingsforsyning til Generatoren Fælles stel Sender data signal til lysnettet	Burst 5V DC 0V X-10 signal		

Tabel 3: Blokbeskrivelse for senderens Generator

Arduino-sender eller ATmega2560 på senderen fungerer som en controlenhed og som det system der oversættet data fra pc og videre til 1 og 0'er til lysnettet, ved hver nulgennemgang.

Arduino-sender Blok				
Navn	Funktionsbeskrivelse	Signal		
Zc Stel Tx	Modtage digitalt ZeroX signal fra ZeroX Detector Fælles stel Sender 120kHz burst i perioder af 1 ms	Digital 0V Burst		

Tabel 4: Blokbeskrivelse for senderens ATmega2560

X-10 Modtager Blokbeskrivelse

Herunder vil de overstående blokke for X-10 Senderen nedbrydes yderligere, og de enkelte blokke vil blive forklaret.

ZeroX-modtager				
< <ports>></ports>				
In Lysnet:	18VAC			
Out Zc: Digital				
In VCC: 5VDC				
In Stel:	ov			

ZeroX-modtager eller Zero Cross Detector for X-10 Modtageren fungerer ligesom Zero Cross Detector i X-10 Senderen.

ZeroX-modtager Blok					
Navn	Funktionsbeskrivelse	Signal			
Lysnet Zc VCC Stel	Modtage signal fra lysnettet Sender digital signal til ATmega2560 Spændingsforsyning til ZeroX-Detector Fælles stel	18V AC Digital 5V DC 0V			

Tabel 5: Blokbeskrivelse for modtagerens Zero Cross Detector

Detector-modtager				
< <ports>></ports>				
In Lysnet: 18VAC				
Out Data:	X-10signal			
In Stel: 0V				
In VCC:	5VDC			

Detector-modtager eller 120 kHz Carrier Detector er den blok der skal stå for at modtage det overlejrede signal fra lysnettet, og filtrere de 120 kHz fra de 50 Hz, og konvertere det signal om til et data signal der kan læses af ATmega2560 på X-10 Modtageren.

	Detector-modtager Blok				
Navn	Funktionsbeskrivelse	Signal			
Lysnet Data Stel VCC	Modtage overlejret signal fra lysnettet Sender data signal til ATmega2560 Fælles stel Spændingsforsyning til Generatoren	18V AC X-10 signal 0V 5V DC			

Tabel 6: Blokbeskrivelse for modtagerens Detector

Arduino-modtager

<<ports>>
In Zc: Digital
In Stel: 0V
In Data: X-10signal

Out serielt: signal

Arduino-modtager elloer ATmega2560 på X-10 modtageren, modtager data signalet fra 120 kHz Carrier Detector, og oversætter dette signal til hhv. Wake-up Light og Electronics. Ligeledes bruges Zero Cross Detectoren til at synkronisere hvornår der skal læses data.

Arduino-modtager Blok				
Navn	Funktionsbeskrivelse	Signal		
Zc	Modtage digitalt ZeroX signal fra ZeroX Detector	Digital		
Stel	Fælles stel	0V		
Data	Modtage data signal fra Detektor	X-10 signal		
Serielt	Sender signal til Wake-up Light og Electronics med X-10 data	Signal		

Tabel 7: Blokbeskrivelse for modtagerens Arduino

3.1.2 IBD

For at forklare sammenhængen og forbindelsen mellem de enkelte HW-blokke, illustreres de ved internal block diagrams (IBD) for hhv. X-10 Sender og X-10 Modtager.

Herunder ses IBD'en for X-10 Senderen. Signalerne er yderligere beskrevet i signalbeskrivelsestabellerne længere nede.

Figur 3: IBD for X-10 Senderen

Herunder ses IBD'en for X-10 Modtageren. Signalerne er yderligere beskrevet i signalbeskrivelsestabellerne længere nede.

Figur 4: IBD for X-10 Modtageren

${\bf Signal be skrivel se}$

I nedenstående tabel beskrives signalerne i forbindelserne vist i hhv. figur 3 og fig 4.

	Signalbeskrivelse					
X-10 Sender						
Signal	Funktionsbeskrivelse	Område	Port In	Port Out	Kom.	
18VAC	Signal fra lysnettet	18VAC	ZeroX: Lysnet Lysnettet	Lysnettet Generator: Data		
5V	Forsyningsspænding	5V DC	ZeroX: VCC Generator: VCC	Forsyning Forsyning		
0V	Stel/Reference	0V	ZeroX: Stel Generator: Stel Arduino: Stel	Reference Reference Reference		
digital	Digitalt Zero Cross signal	0.2-5 V	Arduino: Zc	ZeroX: Zc		
Burst	120 kHz burst fra AT- mega2560	120 kHz	Generator: Tx	Arduino: Tx		
Serielt	Seriel data fra PC		Arduino: Serielt	PC		
lås	Logisk låse signal	0.2-5 V	Arduino: lås	Kodelås		
		X-10 N	Modtager			
Signal	Funktionsbeskrivelse	Område	Port In	Port Out	Kom.	
18VAC	Signal fra lysnettet	18VAC	ZeroX: Lysnet Lysnettet	Lysnettet Detector: Lysnet		
5V	Forsyningsspænding	5V DC	ZeroX: VCC Detector: VCC	Forsyning Forsyning		
0V	Stel/Reference	0V	ZeroX: Stel Detector: Stel Arduino: Stel	Reference Reference Reference		
digital	Digitalt Zero Cross signal	0.2-5 V	Arduino: Zc	ZeroX: Zc		
X-10 signal	120 kHz burst fra AT- mega2560	120 kHz	Generator: Tx	Arduino: Tx		
serielt	Seriel data fra lysnettet oversat af protokol		Arduino: serielt	Wake-up Light, Electronics		

Tabel 8: Signalbeskrivelse for både X-10 Sender og Modtager

3.2 Software-arkitektur

- 4 Hardware-design, implementering & modultest
- 4.1 Design (HW)
- 4.2 Implementering (HW)
- 4.3 Modultest (HW)

- 5 Software-design, implementering & modultest
- 5.1 Design (SW)
- 5.2 Implementering (SW)
- 5.3 Modultest (SW)

6 Integrationstest (HW/SW)

7 Accepttest

8 Bilag