Version 4.34.14 ** 11:55 ** 21-08-2024

PACE4

modified JULIAN

projection angular-momentum coupled evaporation Monte Carlo code angular distributions obtained using M-states of angular momentum

****** Fusion xsection taken from Bass model

Bass fusion xsection for E = 391 MeV is 1121.66 mb

Fusion radius = 9.4 fm. Barrier height is 60.3074 MeV

Transmission probability for a one-dimens. barrier: Classical

Starting conditions

	Z	N	A	Spin		
Projectile	36	48	84	1 0		
Target	13	14	2	7 0		
Compound nucleus	49	62	11	1		
Bombarding energy (MeV)			391.00		
Target 13 14 27 Compound nucleus 49 62 111 Bombarding energy (MeV) 391.00 Center of mass energy (MeV) 95.11 Compound nucleus excitation energy (MeV) 83.864 Q-value of reaction (MeV) -11.244 Compound nucleus recoil energy (MeV) 295.892						
Compound nucleus e	xcitatior	n energy (N	1eV)	83.864		
Q-value of reaction (M	ЛeV)			-11.244		
Compound nucleus re	ecoil ene	ergy (MeV)		295.892		
Compound nucleus re	ecoil vel	ocity (cm/n	s)	2.270e+00		
Compound nucleus v	elocity/c	;		7.565e-02		
Beam velocity (cm/ns	;)			2.999e+00		
Beam velocity/c				9.997e-02		
Center of mass energy Compound nucleus e Q-value of reaction (N Compound nucleus re Compound nucleus re Compound nucleus ve Beam velocity (cm/ns	gy (MeV, xcitation MeV) ecoil end ecoil vel	n energy (M ergy (MeV) ocity (cm/n	,	95.11 83.864 -11.244 295.892 2.270e+00 7.565e-02 2.999e+00		

Experimental fusion cross section (mb)1.12e+03Fusion L-grazing57.00Fusion L-diffuseness2.00Yrast spin at maximum excitation energy79

Compound nucleus formation cross section (mb) 1.12e+03

			Partia	cros	s section	s (m	b)		
J	SIG(J)	J	SIG(J)	J	SIG(J)	J	SIG(J)	J	SIG(J)
0	0.34	15	10	30	21	45	31	60	7.5
1	1	16	11	31	21	46	31	61	5
2	1.7	17	12	32	22	47	32	62	3.2
3	2.4	18	13	33	23	48	32	63	2
4	3	19	13	34	23	49	33	64	1.3
5	3.7	20	14	35	24	50	33	65	0.8
6	4.4	21	15	36	25	51	33	66	0.49
7	5.1	22	15	37	25	52	33	67	0.31
8	5.7	23	16	38	26	53	32	68	0.19
9	6.4	24	17	39	27	54	30	69	0.12
10	7.1	25	17	40	27	55	27	70	0.072
11	7.8	26	18	41	28	56	24		
12	8.4	27	19	42	29	57	19		
13	9.1	28	19	43	29	58	15		
14	9.8	29	20	44	30	59	11		

^{***}Spherical nucleus level density

Energy range neutron proton alpha gamma for

^{***} Input transmission coefficients determined by input value of TL diffuseness.

^{***} diffuseness = 2.00

^{***} Optical model input calculation bypasses. ********

^{***} Input fission barrier = 48.72 MeV at L=0 taken from Sierk

^{***} G.S. little A multiplied by factor 1 to obtain saddle level density

^{***} No fission calculation for barrier above 30 MeV

^{***} Little-A = MASS / 10

minimal	0.01	1.10	2.19	0.00
minimal	40.00	30.74	55.84	20.00

^{***} Internal probability discriminator of program set to 0.002

Number of cascades is 1000

Optical model parameters for light emitted particles
--

V	*E	*E**2	R0R	ARD	R0C	W0	*E	*E**2	R01	AID	RMCHD	NPD	IMAG	IRAD
47.010	-0.267	-0.002	1.276	0.660	0.000	9.520	-0.053	0.000	1. 26874	0.48	0.000	250.000	SURF	1.000
55.299	-0.550	0.000	1.250	0.650	1.250	13.500	0.000	0.000	1.25	0.47	0.000	250.000	SURF	1.000
50.000	0.000	0.000	7.392	0.576	5.622	14.655	0.000	0.000	7. 39202	0.576	0.000	250.000	VOL	0.000

E.M.Transition strengths in Weisskopf units

E1 = 0.000014 M1 = 0.010000 E2 = 5.900000 M2 = 0.000880

Output results for compound nucleus decay

1. Yields of residual nuclei

Z	N	Α	events	percent	x-section(mb)
49	58	107 In	9	0.9%	10.1
48	59	107 Cd	4	0.4%	4.49
47	60	107 Ag	1	0.1%	1.12
49	57	106 In	104	10.4%	117
48	58	106 Cd	171	17.1%	192
47	59	106 Ag	37	3.7%	41.5
49	56	105 In	54	5.4%	60.6
48	57	105 Cd	176	17.6%	197

^{***} Gilbert - Cameron spin cutoff parameter used

47	58	105	Ag	36	3.6%	40.4
46	59	105	Pd	2	0.2%	2.24
47	57	104	Ag	17	1.7%	19.1
46	58	104	Pd	5	0.5%	5.61
47	56	103	Ag	141	14.1%	158
46	57	103	Pd	66	6.6%	74
45	58	103	Rh	3	0.3%	3.36
47	55	102	Ag	76	7.6%	85.2
46	56	102	Pd	36	3.6%	40.4
45	56	101	Rh	4	0.4%	4.49
45	55	100	Rh	37	3.7%	41.5
44	56	100	Ru	4	0.4%	4.49
45	54	99	Rh	11	1.1%	12.3
44	55	99	Ru	2	0.2%	2.24
43	54	97	Тс	3	0.3%	3.36
41	53	94	Nb	1	0.1%	1.12
TOTAL	-			1000	100	1121.6

2. Angular distribution results

2.1 Energy and angular distribution of residual nucleus Z = 49 and N = 57 (106ln)

Residual velocity/c Vz = 7.93e-02(sig = 1.34e-03) rms Vxy = 1.70e-03

Energ	Angular range (deg)																	
Rang e																		
(MeV)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Belo w 203																		
251 - 257	1																	
263 - 269	1	2																
269 -	3	6																

^{***} Spin alignment perpendicular to recoil axis - standard compound nucleus angular distribution

275							1	1	I		I	I			1	I		
275																		
275 - 281	9	15	1															
281 - 287	9	16	1															
287 - 293	7	9	1															
293 - 299	8	4	1															
299 - 305	4	3																
305 - 311		2	1															
Abov e 377																		
Total	42	57	5															
dSig/ dOm eg	4. 9e+0 4	2. 2e+0 4	1. 2e+0 3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0 - 203																		
203 - 292	28	48	2															
292 - 381	14	9	3															
Abov e 381																		

2.2 Energy and angular distribution of residual nucleus Z = 48 and N = 58 (106Cd)

Residual velocity/c Vz = 7.65e-02(sig = 1.35e-03) rms Vxy = 2.05e-03

Energ y Rang e								Ang	ular ra	inge (d	leg)							
(MeV)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Belo w 203																		
257 - 263	2																	
263 - 269	2	9																

269 - 275	9	11	3															
275 - 281	7	12	6															
281 - 287	14	19	6	1														
287 - 293	9	20	6	2														
293 - 299	9	9	5															
299 - 305	2	5																
305 - 311	1	2																
Abov e 377																		
Total	55	87	26	3														
dSig/ dOm eg	6. 4e+0 4	3. 4e+0 4	6. 1e+0 3	5e+0 2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0 - 203																		
203 - 292	43	70	21	2														
292 - 381	12	17	5	1														
Abov e 381																		

2.3 Energy and angular distribution of residual nucleus Z = 47 and N = 59 (106Ag)

Residual velocity/c Vz = 7.96e-02(sig = 1.56e-03) rms Vxy = 2.21e-03

Energ y Rang e								Ang	ular ra	inge (d	leg)							
(MeV)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Belo w 203																		
257 - 263	1	1																
263 -	1																	

269																		
269 - 275	1	3	1															
275 - 281	1	2	1															
281 - 287	3	3	5															
287 - 293	1	3	1															
293 - 299	1	3	1															
299 - 305	1	2																
305 - 311	1																	
Abov e 377																		
Total	11	17	9															
dSig/ dOm eg	1. 3e+0 4	6. 6e+0 3	2. 1e+0 3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0 - 203																		
203 - 292	8	11	8															
292 - 381	3	6	1															
Abov e 381																		

2.4 Energy and angular distribution of residual nucleus Z = 49 and N = 56 (105ln)

Residual velocity/c Vz = 7.69e-02(sig = 1.24e-03) rms Vxy = 1.49e-03

Energ y Rang e								Ang	ular ra	inge (c	leg)							
(MeV)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Belo w 203																		
263 - 269	1	2																

269 - 275	9	8																
275 - 281	8	4																
281 - 287	5	3	1															
287 - 293	3	3																
293 - 299	2	4																
299 - 305	1																	
Abov e 377																		
Total	29	24	1															
dSig/ dOm eg	3. 4e+0 4	9. 4e+0 3	2. 3e+0 2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0 - 203																		
203 - 292	25	20	1															
292 - 381	4	4																
Abov e 381																		

2.5 Energy and angular distribution of residual nucleus Z = 48 and N = 57 (105Cd)

Residual velocity/c Vz = 7.57e-02(sig = 1.22e-03) rms Vxy = 1.75e-03

Energ y Rang e								Ang	ular ra	inge (c	leg)							
(MeV)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Belo w 203																		
251 - 257	1																	
263 - 269	4	5	1															
269 -	12	11	2															

		1		1	1	1	1	1			1		1		1	1	1	
275																		
275 - 281	23	17	3															
281 - 287	13	26	2	1														
287 - 293	18	14	3															
293 - 299	6	5	3															
299 - 305	1	2	1															
305 - 311		2																
Abov e 377																		
Total	78	82	15	1														
dSig/ dOm eg	9. 1e+0 4	3. 2e+0 4	3. 5e+0 3	1. 7e+0 2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0 - 203																		
203 - 292	69	72	11	1														
292 - 381	9	10	4															
Abov e 381																		

2.6 Energy and angular distribution of residual nucleus Z = 47 and N = 58 (105Ag)

Residual velocity/c Vz = 7.61e-02(sig = 1.39e-03) rms Vxy = 1.59e-03

Energ y Rang e								Ang	ular ra	inge (d	leg)							
(MeV)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Belo w 203																		
263 - 269	2	1																
269 - 275	4	1	1															

275 - 281	2	1																
281 - 287	4	3	1															
287 - 293	5	2																
293 - 299	1	6																
299 - 305	1	1																
Abov e 377																		
Total	19	15	2															
dSig/ dOm eg	2. 2e+0 4	5. 9e+0 3	4. 7e+0 2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0 - 203																		
203 - 292	16	8	2															
292 - 381	3	7																
Abov e 381																		

2.7 Energy and angular distribution of residual nucleus Z = 47 and N = 56 (103Ag)

Residual velocity/c Vz = 7.96e-02(sig = 2.33e-03) rms Vxy = 3.02e-03

Energ								Ang	ular ra	nge (c	leg)							
у																		
Rang																		
е						-												
(MeV)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Belo w 203																		
239 - 245	1		1															
245 - 251	2	3	2															
251 - 257	2	5	1	2														
257 -		2	7	3														

263																		
263 - 269	2	4	7	3														
269 - 275		1	9	4														
275 - 281		6	8	3														
281 - 287	1	3	7	5														
287 - 293	2	4	8	4														
293 - 299	2	6	3															
299 - 305	3	6	1															
305 - 311	2	3	1															
311 - 317		1		1														
Abov e 377																		
Total	17	44	55	25														
dSig/ dOm eg	2e+0 4	1. 7e+0 4	1. 3e+0 4	4. 2e+0 3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0 - 203																		
203 - 292	10	28	50	23														
292 - 381	7	16	5	2														
Abov e 381																		

2.8 Energy and angular distribution of residual nucleus Z = 46 and N = 57 (103Pd)

Residual velocity/c Vz = 7.67e-02(sig = 2.23e-03) rms Vxy = 3.22e-03

Energ y Rang e								Ang	ular ra	nge (d	leg)							
(MeV)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18

Belo w 203																		
239 - 245		1																
245 - 251	2	1	2															
251 - 257	1		4	1														
257 - 263			2	2														
263 - 269	2	2	4															
269 - 275		2	3	1														
275 - 281	1	1	5	2														
281 - 287	1	2	3	4	2													
287 - 293	1	3	1															
293 - 299	2	1	3	1														
299 - 305		1		1														
311 - 317	1																	
Abov e 377																		
Total	11	14	27	12	2													
dSig/ dOm eg	1. 3e+0 4	5. 5e+0 3	6. 3e+0 3	2e+0 3	2. 6e+0 2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0 - 203																		
203 - 292	8	11	24	10	2													
292 - 381	3	3	3	2														
Abov e 381																		

2.9 Energy and angular distribution of residual nucleus Z = 47 and N = 55 (102Ag)

Residual velocity/c Vz = 7.92e-02(sig = 2.38e-03) rms Vxy = 2.98e-03

Energ								Ang	ular ra	nge (c	leg)							
y Rang e																		
(MeV)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Belo																		
w 203																		
245 - 251	1		1															
251 - 257		5	4															
257 - 263		5	2	2														
263 - 269	1	1	4	1														
269 - 275			4	2														
275 - 281		2	3															
281 - 287	2	4	5															
287 - 293		4	2	2														
293 - 299		3	4	1														
299 - 305		5	1	2														
305 - 311		2																
311 - 317		1																
Abov e 377																		
Total	4	32	30	10														
dSig/ dOm eg	4. 7e+0 3	1. 3e+0 4	7e+0 3	1. 7e+0 3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0 - 203																		
203 - 292	4	20	25	7														
292 - 381		12	5	3														
Abov e 381																		

2.10 Energy and angular distribution of residual nucleus Z = 46 and N = 56 (102Pd)

Residual velocity/c Vz = 7.88e-02(sig = 1.92e-03) rms Vxy = 2.83e-03

Energ y Rang								Ang	ular ra	nge (d	leg)							
e (MeV)	0	4	2	2	4	E	6	7	0	٥	10	11	10	12	1.1	15	16	17
(NCV)	1	2	3	3	5	5 6	6 7	8	9	9	10 11	11 12	12 13	13 14	14 15	15 16	16 17	17 18
Belo w 203	'			<u> </u>			<u>'</u>					12		17		10		
245 - 251	1																	
251 - 257		2	1	1														
257 - 263	1	1																
263 - 269	1	3	2	1														
269 - 275		1	2															
275 - 281		2	1	3														
281 - 287		2	1															
287 - 293	1	4	1	1														
293 - 299	2	1																
Abov e 377																		
Total	6	16	8	6														
dSig/ dOm eg	7e+0 3	6. 3e+0 3	1. 9e+0 3	1e+0 3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0 - 203																		
203 - 292	3	14	8	6														
292 - 381	3	2																
Abov e 381																		

2.11 Energy and angular distribution of residual nucleus Z = 45 and N = 55 (100Rh)

Residual velocity/c Vz = 7.55e-02(sig = 2.72e-03) rms Vxy = 3.64e-03

Energ								Ang	ular ra	nge (c	leg)							
y Rang																		
e (MeV)		l _a	0		4	l e	0	7	0		40	44	40	40	44	45	40	47
(IVIC V)	1	2	3	3	4 5	5 6	6 7	7 8	9	9	10 11	11 12	12 13	13 14	14 15	15 16	16 17	17 18
Belo w 203	<u> </u>	2	3	4	5	0	1	0	9	10	111	12	13	14	13	10	17	10
221 - 227			1															
227 - 233	1																	
233 - 239				1														
239 - 245			2															
245 - 251			4															
257 - 263		3	2															
263 - 269	1		2	3	1													
269 - 275	1	2		1		2												
275 - 281			2															
281 - 287		1	2			1												
287 - 293				1														
293 - 299		1																
305 - 311		1																
317 - 323	1																	
Abov e 377																		
Total	4	8	15	6	1	3												
dSig/	4.	3.	3.	1e+0	1.	3.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

dOm eg	7e+ 03	1e+0 3	5e+ 03	3	3e+ 02	2e+0 2						
0 - 203												
203 - 292	3	6	15	6	1	3						
292 - 381	1	2										
Abov e 381												

2.12 Energy and angular distribution of ALL residual nuclei

Energ								Ang	ular ra	nge (d	leg)							
y Rang																		
e																		
(MeV)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Belo w 203																		
221 - 227	1	1	1															
227 - 233	1		1															
233 - 239				1	1													
239 - 245	1	3	4	1														
245 - 251	6	5	12															
251 - 257	5	12	11	4	1													
257 - 263	4	12	16	8														
263 - 269	18	31	22	9	1													
269 - 275	40	50	27	9		2												
275 - 281	52	63	31	10	1													
281 - 287	53	85	35	12	2	1												
287 - 293	49	70	24	11	1													

293 - 299	36	44	21	2														
299 - 305	17	26	3	3														
305 - 311	5	13	3	1														
311 - 317	1	2		1														
317 - 323	1																	
Abov e 377																		
Total	290	417	211	72	7	3												
dSig/ dOm eg	3. 4e+ 05	1. 6e+0 5	4. 9e+ 04	1. 2e+0 4	9. 1e+ 02	3. 2e+0 2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0 - 203																		
203 - 292	223	325	183	63	7	3												
292 - 381	67	92	28	9														
Abov e 381																		

Neutron spectra in laboratory coordinates 4258 events

Ener								Ang	jular ra	ange (deg)							
gy range																		
(MeV)	0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170
	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180
0-1	2	5	7	12	31	34	34	33	35	23	24	11	12	10	11	6	4	1
1 - 2	2	3	7	9	34	70	49	51	34	37	22	13	7	6	4	1	1	1
2 - 3	7	5	6	19	49	94	68	44	34	24	18	13	11	5	5	1	2	
3 - 4	7	3	5	25	87	68	48	42	29	18	11	6	5	3	3	2		
4 - 5	4	5	10	49	87	63	45	34	21	10	5	4	5			1		
5 - 6	1	5	33	88	69	62	31	24	10	5	2	2	1					
6 - 7	9	16	52	83	63	44	29	14	3	2	2	1		1		1		
7 - 8	5	49	93	68	59	29	19	10	2	2	1	2		1				
8 - 9	17	70	77	54	45	29	13	9	3	3								
9 - 10	25	55	56	46	40	16	10	7	5	1								
10 - 11	13	52	36	35	26	16	9	3	1	1								
11 -	16	33	43	33	24	8	8	1	1	1	1							

12																		
12 - 13	8	33	32	25	13	9	6	2			1							
13 - 14	8	19	30	13	14	4	3	2										
14 - 15	7	15	28	16	10	5	2	2	1									
15 - 16	8	24	17	13	5	3			1									
16 - 17	3	11	6	9	4	1												
17 - 18	6	11	9	8	7	3	1	1										
18 - 19	3	3	4	5	2	1	1											
19 - 20	1	7	8	3	3	2												
20 - 21	4	6	3	3														
21 - 22		3	3	4		2												
22 - 23		2	2	1	2	1												
23 - 24	3	1	3	3	2													
24 - 25			3		1	1												
25 - 26	1	2	1	1														
26 - 27	1																	
28 - 29			3	1														
Abov e 30	1			1														
Total	162	438	577	627	677	565	376	279	180	127	87	52	41	26	23	12	7	2
dSig/ dOm ega	1901 .8	1731 .49	1396 .91	1118 .44	979. 561	705. 671	424. 442	295. 497	184. 843	130. 41	92.1 295	58.6 833	51.1 867	37.5 975	40.9 924	29.0 149	27.6 112	23.3 21
0 - 5	22	21	35	114	288	329	244	204	153	112	80	47	40	24	23	11	7	2
5 - 10	57	195	311	339	276	180	102	64	23	13	5	5	1	2		1		
10 - 20	73	208	213	160	108	52	30	11	4	2	2							
Abov e 20	10	14	18	14	5	4												

Ener gy								Ang	ular ra	nge (d	eg)							
range (MeV)	0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	17
	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	0
	10	20	30	40	50	60	10	80	90	100	110	120	130	140	150	160	170	18 0
0 - 1												1	1	3	1	1	1	
1 - 2										2	2		4	5	1	1		
2 - 3									1	6	7	8	3	3	2	2	1	
3 - 4									5	9	5	5	3	3		2		Ш
4 - 5							2	2	4	5	9	1	3	1		2		Ш
5 - 6						1	4	6	5	8	7	2	1			1		Ш
6 - 7						3	4	5	6		3	4	1	1				Ш
7 - 8					1	2	5	7	4	3	4		1					Ш
8 - 9						3	6	8	5	1	1		1		1			Ш
9 - 10				1	2	5	3	4	2	6	1	2						Ш
10 - 11				1	4	6	13	2	7									
11 - 12			1		7	11	4	6	1		1				1			
12 - 13	1	1	2	3	7	7	1	3		1								
13 - 14		1	1	2	8	5	6	4	4									
14 - 15		1	7	6	5	4	6	3	1									
15 - 16	1	2	7	7	10	4	2	1	1									
16 - 17		5	5	6	3	1	2											
17 - 18	1	6	5	7	9	3	1											
18 - 19	4	4	3	2	6		2	1										
19 - 20		4	5	7	7	1	1											
20 - 21	1	1	8	1	2					1								
21 - 22	1	5	9	2	1		1											
22 - 23	2		2	1	5			1										
23 - 24	1	1	4	3	2													
24 -	1	1		2		3												

25																		
25 - 26	2	1	1															
26 - 27		2				2												
27 - 28	1	1																
28 - 29			1	1														
29 - 30		1																
Abov e 30		1	1															
Total	16	38	62	52	79	61	63	53	46	42	40	23	18	16	6	9	2	
dSig/ dOm ega	187. 832	150. 221	150. 101	92.7 57	114. 306	76.1 875	71.1 167	56.1 338	47.2 376	43.1 277	42.3 584	25.9 561	22.4 722	23.1 369	10.6 937	21.7 612	7. 8889 2	0
0 - 5							2	2	10	22	23	15	14	15	4	8	2	
5 - 10				1	3	14	22	30	22	18	16	8	4	1	1	1		
10 - 20	7	24	36	41	66	42	38	20	14	1	1				1			
Abov e 20	9	14	26	10	10	5	1	1		1								

Alpha spectra in laboratory coordinates 472 events

Energ								Angu	lar ran	ge (de	g)							
y range																		
(MeV)	0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170
	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180
0 - 1										1		1		2	2	2		
1 - 2									3	1	2		1	1				
2 - 3								1	2	3	4		1	2		1		
3 - 4								3	3	4	3	3						
4 - 5								3	3	1	3	1	2					
5 - 6							1	6	2	2	1							
6 - 7							2	7	2									
7 - 8							1	6	2	1		1						
8 - 9							1	4	6	2								
9 - 10							3	1			1							
10 - 11							5		2	1								
11 - 12						2	1	4	1									
12 -							3	2										

13																		
13 - 14							7	4	1									
14 - 15						1	7	1										
15 -						3	4											
16 16 -						7	5											
17 -						6	5											
18 -						4		1										
19 -					1	7	3	1										
20 -					1	6	2											
21 -					2	4	1											
22 -						2												
23 -					1	6												
24																		
24 - 25				1	1	4	1											
25 - 26					3	2	1											
26 - 27				2	2	3	1											
27 - 28					7	2		1										
28 - 29				2	4	2												
29 - 30				2	3													
Abov e 30	13	40	57	58	30	3	2											
Total	13	40	57	65	55	64	56	45	27	16	14	6	4	5	2	3		
dSig/ dOm ega	152. 613	158. 127	137. 996	115. 946	79.5 803	79.9 344	63.2 148	47.6 607	27.7 264	16.4 296	14.8 254	6. 7711 5	4. 9938 3	7. 2302 8	3. 5645 6	7. 2537 3	0	0
0 - 5								7	11	10	12	5	4	5	2	3		
5 - 10							8	24	12	5	2	1						
10 - 20					1	30	40	13	4	1								
Abov e 20	13	40	57	65	54	34	8	1										

Emission from unbound and bound states(*), and total gamma ray spectrum

(*) note that emission of a particle from an unbound state is not allowed in the code if Ecm is less than Emin

Energy range (MeV)	Unbound	Bound	TOTAL
0 - 1	0	563	563
1 - 2	5663	2739	8402
Total	5663	3302	8965

4.3 percent of cascades trapped before reaching ground state due to spin inhibition

Average energy at which cascades were trapped is 0.5 MeV, average spin = 4.95349 hbar

**** successive decays through single yrast cascade assumed

----- C.M. spectra of emitted particles -----

Ex(MeV)	Neut	Prot	Alpha	Gamma
0 - 1	101			563
1 - 2	721			8402
2 - 3	974			
3 - 4	736	3		
4 - 5	553	15		
5 - 6	395	45		
6 - 7	282	92		
7 - 8	157	95		
8 - 9	110	84	1	
9 - 10	73	79	2	
10 - 11	55	57	8	
11 - 12	38	48	26	
12 - 13	21	42	50	
13 - 14	7	22	60	
14 - 15	16	16	62	
15 - 16	7	9	66	
16 - 17	6	8	46	

17 - 18	3	4	37	
18 - 19	1	3	28	
19 - 20	1	1	24	
20 - 21		1	20	
21 - 22			16	
22 - 23	1		9	
23 - 24		2	7	
24 - 25			3	
25 - 26			1	
26 - 27			3	
27 - 28			2	
29 - 30			1	
Total	4258	626	472	8965
Average Energy	4.07868	9.2476	15.9831	1.4372

Track down of decay modes at 83.7639, 42.432, 10 MeV excitation

Ex	= 83.76	639	Gamma = MeV		Lifetime = 1.64e-21 sec	Average J = 18.672	Stand.dev. = 6.680
	Part	Num	DelJ	RMS-dJ			
Neut	2510	0.344223	2.59051	14.5487			
Prot	300	0.206667	2.46171	15.4575			
Alph	190	-2.41053	5.38028	19.1992			
Ex	= 42.43	32 (Gamma = 0 MeV	0.0615	Lifetime = 1.49e-20 sec	Average J = 15.019	Stand.dev. = 5.467
	Part	Num	DelJ	RMS-dJ			
	ıaıı	Nulli	Delo	KWIO-GO			
Neut	2397	-0.609929	2.16295	13.2115			
Prot	341	-0.715543	1.99413	14.7009			
Alph	257	-2.70817	4.84627	17.8755			

Ex = 10	Gamma =	Lifetime =	Average J = 8.627	Stand.dev. =
	0.000206 MeV	2.49e-11 sec		3.711

	Part	Num	DelJ	RMS-dJ
Neut	2036	-0.968075	1.91532	11.7905
Prot	119	-1.09244	1.96182	12.0252
Alph	42	-1.97619	3.49489	14.9048
Gamm	794	-1.73678	1.90221	1

---- end of evaporation calculation ----

***** Complete traceback diagnostic of particle and gamma emission *****

Components of gamma spectrum

Energy	E1-spec	E2-spec
0.05 - 0.15		18
0.15 - 0.25		37
0.25 - 0.35		6
0.35 - 0.45		31
0.45 - 0.55		6
0.55 - 0.65	166	299
1.05 - 1.15	554	7848
Above 3.05	0	0

M states at final J vs Ex

0 - 3	0.24	1.74	1.00			 	 	 	 	 	
3 - 6	0.24	2.15	3.64			 	 	 	 	 	
6 - 9	0.37	2.26	2.58			 	 	 	 	 	
9 - 12	0.91	2.26	2.52	2.08		 	 	 	 	 	
12 - 15	1.41	2.31	2.55	2.97		 	 	 	 	 	
15 - 18	1.29	1.98	2.51	2.83	5.00	 	 	 	 ••	 	
18 -	1.43	2.18	2.74	2.49	2.85	 	 	 	 	 	

75 - 78 78 - 81									 	 	 	 	
72 - 75		0.65	0.77	1.04	0.96	0.87	0.44		 	 	 	 	
69 - 72	1.25	1.84	1.32	1.40	1.47	1.36	1.00		 	 	 	 	
66 - 69	1.25	1.40	1.87	1.39	1.56	1.94	2.33	1.00	 	 	 	 	
63 - 66		1.31	2.00	2.04	1.73	1.20	1.00		 	 	 	 	
60 - 63	1.00	1.40	1.89	1.76	1.80	2.62	3.50		 	 	 	 	
57 - 60	0.71	1.63	1.58	2.28	2.00	1.89	1.00		 	 	 	 	
54 - 57	0.60	1.97	1.97	1.97	1.96	2.56	1.00		 	 	 	 	
51 - 54	0.75	1.70	2.08	1.85	2.11	2.17			 	 	 	 	
48 48 - 51		2.21	2.29	2.47	2.77	1.00			 	 	 	 	
45 45 -	1.25	1.73	2.22	2.45	2.56	2.83	3.00		 	 	 	 	
42 42 -	1.13	2.22	2.11	2.46	1.96	2.00			 	 	 	 	
39 39 -	1.22	2.07	2.51	2.07	2.39	4.67			 	 	 	 	
36 36 -	1.00	2.22	2.63	2.24	3.55	2.00			 	 	 	 	
33 33 -	1.50	2.61	2.65	2.78	2.25	7.00			 	 	 	 	
30 30 -	1.50	2.08	2.27	2.51	2.38	5.00			 	 	 	 	
27 27 -		2.16		2.17	3.57				 	 	 	 	
24 24 -		2.44		2.59	4.56					 		 	
21 21 -	0.75	1.92	2 /12	2.52	1.25								

Decay summary. Mode = NEUT Total = 4258 Out of = 1000 events Multiplicity = 4.258

Average Ecm = 4.1 Average spin removed = 1.4
--

, worago			, words	o opiii		- Cu									
9 - 12	3								 	 	 	 	3	2	0
12 - 15	7	35	8						 	 	 	 	50	7.1	2.73679
15 - 18	12	98	57						 	 	 	 	167	8.34731	2.91789
18 - 21	7	57	70	16					 	 	 	 	150	10.1667	3.67045
21 - 24	7	54	93	37	1				 	 	 	 	192	11.2448	3.93005
24 - 27	12	44	75	56	6				 	 	 	 	193	12	4.72015
27 - 30	9	48	98	47	6				 	 	 	 	208	11.8317	4.31294
30 - 33	9	38	76	60	14	2			 	 	 	 	199	12.9548	5.02186
33 - 36	4	36	49	40	13	1			 	 	 	 	143	12.8741	5.09747
36 - 39	6	26	70	45	18	3			 	 	 	 	168	13.5476	5.14528
39 - 42	8	36	57	54	17	3			 	 	 	 	175	13.2857	5.41728
42 - 45	7	34	70	55	22	3			 	 	 	 	191	13.5707	5.28199
45 - 48	3	26	50	46	19	3			 	 	 	 	147	14.0748	5.24383
48 - 51	1	21	52	39	28	5			 	 	 	 	146	14.9795	5.38194
51 - 54	3	23	44	44	29	3			 	 	 	 	146	14.8082	5.48886
54 - 57	5	23	57	53	42	8			 	 	 	 	188	15.4043	5.75256
57 - 60	5	25	54	55	31	17	1		 	 	 	 	188	15.6436	6.24377
60 - 63	1	11	41	39	20	9	2		 	 	 	 	123	16.1057	5.77465
63 - 66	1	11	26	37	16	2	3		 	 	 	 	96	15.8542	5.70449
66 - 69	4	15	54	51	34	16	2	1	 	 	 	 	177	16.435	6.2858

69 - 72	6	24	72	79	71	34	3										289	17.173	6.27825
72 - 75	3	14	27	41	36	11	7										139	17.5396	6.72402
84 - 87	8	64	136	234	188	105	40	5									780	18.6026	6.77446
Ex/J	-4	-9	-14	-19	-24	-29	-34	-39	-44	-49	-54	-59	-64	-69	-74	-79	sum	avrg	stdv
Sum	131	763	1336	1128	611	225	58	6											

Decay summary. Mode = PROT Total = 626 Out of = 1000 events Multiplicity = 0.626

Average Ecm = 9.2 Average spin removed = 1.2

15 - 18	5	6	12														23	8.52174	4.02027
18 - 21		10	10	2													22	10.1818	3.21412
21 - 24	1	8	11	5	1												26	11.4231	4.4564
24 - 27		5	7	12													24	13.4583	3.94735
27 - 30	1	12	15	7													35	11	3.92792
30 - 33	1	10	7	6	1												25	11.2	4.83322
33 - 36		2	6	9	2												19	14.8947	4.07682
36 - 39	1	9	9	3	1												23	10.6957	4.47636
39 - 42	1	4	8	4	2												19	12.5263	5.10282
42 - 45	1	2	8	11	2												24	14.2917	4.5596
45 - 48	1	6	9	7	4	1											28	13.7857	5.85758
48 - 51		2	9	9	1												21	14.1429	3.64216
51 - 54	1	2	6	10	3												22	14.7273	4.93763
54 - 57		3	9	6	4		1										23	15.2609	5.82511
57 - 60	1	3	13	20	8												45	15.4444	4.57314
60 - 63	1	4	7	8	2	1											23	13.9565	5.66053
63 - 66		1	1	4	3	1											10	18	5.38516
66 - 69		3	5	7	2	1											18	15.0556	5.30694
69 - 72	1	7	14	12	11	6											51	16.2157	6.44529
72 - 75		1	3	8	11												23	18.3043	4.22657
84 - 87	3	11	27	32	34	12	3										122	17.3689	6.50246
Ex/J	-4	-9	-14	-19	-24	-29	-34	-39	-44	-49	-54	-59	-64	-69	-74	-79	sum	avrg	stdv
Sum	19	111	196	182	92	22	4												

Average Ecm = 16 Average spin removed = 4.1																			
15 - 18		3															3	7	0
18 - 21			3														3	12	0
21 - 24		3	2	1													6	10.333	3 3.72678
24 - 27		3	7	2													12	11.583	3 3.20048
27 - 30	1	4	1		1												7	9.1428	6 5.89015
30 - 33		3	3	2	1												9	12.555	6 4.96904
33 - 36		3	10	5	1												19	13.052	6 3.83164
36 - 39		6	5	2	3	3											19	14.894	7 7.31181
39 - 42		3	6	11	4	3											27	16.629	6 5.5986
42 - 45			11	14	3	4											32	17	4.84123
45 - 48		5	8	7	11	2	1										34	17	6.41689
48 - 51		1	4	3	2												10	15	4.58258
51 - 54		2	1	7	6	3											19	18.842	1 5.66859
54 - 57		3	3	4	3	1											14	15.571	4 6.10286
57 - 60	1	4	6	4	7	1											23	15.260	9 6.52898
60 - 63			5	7	8	3											23	18.956	5 4.83176
63 - 66		1	3	5	3	2											14	17.714	3 5.62429
66 - 69		2	2	11	5	1	1										22	17.909	1 5.56702
69 - 72	1		8	14	16	13	2										54	20.425	9 5.99568
72 - 75		2	5	4	7	4	2										24	19.5	7.07107
84 - 87	1	7	13	28	20	15	10	4									98	20.367	3 7.81729
Ex / J	-4	-9	-14	-19	-24	-29	-34	-39	-44	-49	-54	-59	-64	-69	-74	-79	sum	avrg	stdv
Sum	4	55	106	131	101	55	16	4											
Decay summary. Mode = G-E1 Total = 720 Out of = 1000 events Multiplicity = 0.72																			
Average Ecm = 1.3 Average spin removed = 0.21																			
0 - 3	269	9															269	2 0	
3 - 6	264	4															264	2 0	
6 - 9	149	9															149	2 0	
9 - 12	35																35	2 0	
	3																3	2 0	
Ex / J	-4	-9	-14	-19	-24	-29	-34	-39	-44	-49	-54	-59	-64	-69	-74	-79	sum	avrg st	dv

Decay summary. Mode = G-E2 Total = 8245 Out of = 1000 events Multiplicity = 8.245

Average Ecm = 1.5 Average spin removed = 1.1																				
	0 - 3	1180	102	1														1283	2.4053	1.37884
	3 - 6	1972	413	14														2399	2.91913	2.01063
	6 - 9	1291	546	138	1													1976	4.08755	3.10607
	9 - 12	537	630	259	24													1450	6.2069	3.84061
	12 - 15	46	318	293	66													723	9.62102	3.7391
	15 - 18		22	188	87	4												301	13.2126	2.98523
	18 - 21			24	58	13												95	16.4211	3.06621
	21 - 24				9	6												15	19	2.44949
	24 - 27					3												3	22	0
	Ex / J	-4	-9	-14	-19	-24	-29	-34	-39	-44	-49	-54	-59	-64	-69	-74	-79	sum	avrg	stdv
	Sum	5026	2031	917	245	26														

Fission probability as function of excitation

Ex.Energy Probability

- 84 87 0.00e+00 72 - 75 0.00e+00
- 69 72 0.00e+00
- 66 69 0.00e+00
- 63 66 0.00e+00
- 60 63 0.00e+00
- 57 60 0.00e+00
- 54 57 0.00e+00
- 51 54 0.00e+00
- 48 51 0.00e+00
- 45 48 0.00e+00
- 42 45 0.00e+00
- 39 42 0.00e+00
- 36 39 0.00e+00
- 33 36 0.00e+00
- 30 33 0.00e+00
- 27 30 0.00e+00
- 24 27 0.00e+00
- 21 24 0.00e+00

Total sum of fission probabilities 0.000e+00

Excitation energy window - average = 0 FWHM = 0
Spin window - average = 0 FWHM = 0

Average fabs projection 0 Average rms proj 0