Assignment Homework4 due 02/04/2019 at 08:00pm EST

1. (10 points)

Let $x \in \mathbb{R}^{n_I}$ and $y \in \{0,1\}$. Consider the logistic regression model $v = \sigma(\omega^T x + b)$ trained using an entropy loss function L(y, v) = yln(v) + (1 - y)ln(1 - v).

The computational graph for the training procedure is given below, where $u(\omega, b) := x^T \omega + b$, $v(u) := \sigma(u)$ and $C(v) = L_v(v) := L(y, v)$.

Answer the following:

Hint: (1) If no parents for that node, just leave it blank. (2) Use "w" for greek letter " ω ". (3) Use g1,g2... for g_1,g_2 ...

 $Generated\ by\ \textcircled{\textcircled{C}WeBWorK}, http://webwork.maa.org, Mathematical\ Association\ of\ America$

- 1. [4 pts] What are the parents of:
- ω : _____ help (formulas)
- b: _____ help (formulas)
- u: _____ help (formulas)
- v: _____ help (formulas)
 C: _____ help (formulas)
- 2. [2 pts] Given $u, v, g_1(s) = \frac{d\sigma}{du}(s)$ and $g_2(s) = \frac{dL_y}{dv}(s)$, then $\frac{dC}{du}(u)$ can be expressed as ______ help (formulas)
- 3. [4 pts] Given $\omega, b, u, g_3(s) = \frac{dC}{du}(s), g_4(r, s) = \frac{\partial u}{\partial b}(r, s)$ and $g_5(r, s) = \nabla_{\omega} u(r, s)$, then $\frac{\partial C}{\partial b}(\omega, b) = \underline{\hspace{1cm}}$ and $\nabla_{\omega} C(\omega, b) = \underline{\hspace{1cm}}$ help (formulas)

Answer(s) submitted:

- •
- **■** 1.7
- 11
- 17
- g1(u)*g2(v)
- g3(u)*g4(w,b)
- g3(u)*g5(w,b)

(correct)