CONVEX ANALYSIS WORKSHOP

RYUTO SAITO

1. Convex functions

I made this material referring to [1].

1.1. Definitions.

Definition 1.1.1 (Convex function): A function $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is *convex* if **dom** f is a convex set and

$$\forall \boldsymbol{x}, \boldsymbol{y} \in \operatorname{\mathbf{dom}} f, \forall t \in [0, 1], f(t\boldsymbol{x} + (1 - t)\boldsymbol{y}) \le tf(\boldsymbol{x}) + (1 - t)f(\boldsymbol{y}) \quad (1)$$

where $\operatorname{dom} f$ is the effective domain of f:

$$\operatorname{dom} f := \{ \boldsymbol{x} \mid f(\boldsymbol{x}) < \infty \}. \tag{2}$$

Definition 1.1.2 (Concave function): A function f is said to be *concave* if -f is convex.

Definition 1.1.3 (Non-decreasing and non-increasing): A function $f: \mathbb{R} \to \mathbb{R}$ is called *non-decreasing* if

$$\forall a, b \in \mathbb{R}, a \le b \Longrightarrow f(a) \le f(b). \tag{3}$$

Likewise, a function $f: \mathbb{R} \to \mathbb{R}$ is called *non-increasing* if

$$\forall a, b \in \mathbb{R}, a \le b \Longrightarrow f(a) \ge f(b). \tag{4}$$

1.2. Exercise.

Proposition 1.2.1 (Scalar composition): For $h : \mathbb{R} \to \mathbb{R} \cup \{\infty\}$, $g : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$, define $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ by

$$f(\boldsymbol{x}) \coloneqq h(g(\boldsymbol{x})) \tag{5}$$

with

$$\operatorname{dom} f = \{ \boldsymbol{x} \in \operatorname{dom} g \mid g(\boldsymbol{x}) \in \operatorname{dom} h \}. \tag{6}$$

Then f is convex if

- h is convex and nondecreasing and q is convex, or
- h is convex and nonincreasing and g is concave.

Proof: First, we prove that f is convex if h is convex and nondecreasing and g is convex.

Let $x, y \in \text{dom } f$, and $t \in [0, 1]$. Since $x, y \in \text{dom } f$, we have $x, y \in \text{dom } g$

and $g(\boldsymbol{x}), g(\boldsymbol{y}) \in \operatorname{dom} h$. From the convexity of $\operatorname{dom} g$, $t\boldsymbol{x} + (1-t)\boldsymbol{y} \in \operatorname{dom} g$. Then, since g is convex, we have

$$g(t\boldsymbol{x} + (1-t)\boldsymbol{y}) \le tg(\boldsymbol{x}) + (1-t)g(\boldsymbol{y}). \tag{7}$$

Since $g(\mathbf{x}), g(\mathbf{y}) \in \mathbf{dom} h$ and $\mathbf{dom} h$ is convex, we have $tg(\mathbf{x}) + (1 - t)g(\mathbf{y}) \in \mathbf{dom} h$. Then,

$$h(tg(\boldsymbol{x}) + (1-t)g(\boldsymbol{y})) < \infty. \tag{8}$$

Using the assumption that h is nondecreasing and (7), it follows that

$$h(g(t\boldsymbol{x} + (1-t)\boldsymbol{y})) \le h(tg(\boldsymbol{x}) + (1-t)g(\boldsymbol{y})). \tag{9}$$

From (8) and (9), we get

$$h(g(t\boldsymbol{x} + (1-t)\boldsymbol{y})) < \infty, \tag{10}$$

which means $g(t\boldsymbol{x}+(1-t)\boldsymbol{y})\in\operatorname{dom} h$. Since $t\boldsymbol{x}+(1-t)\boldsymbol{y}\in\operatorname{dom} g$ and $g(t\boldsymbol{x}+(1-t)\boldsymbol{y})\in\operatorname{dom} h$, we get $t\boldsymbol{x}+(1-t)\boldsymbol{y}\in\operatorname{dom} f$. Therefore, $\operatorname{dom} f$ is convex set. From the convexity of h, we have

$$h(tg(\boldsymbol{x}) + (1-t)g(\boldsymbol{y})) \le th(g(\boldsymbol{x})) + (1-t)h(g(\boldsymbol{y})). \tag{11}$$

From (9) and (11), we get

$$h(g(tx + (1-t)y)) \le th(g(x)) + (1-t)h(g(y)).$$
 (12)

That is

$$f(t\boldsymbol{x} + (1-t)\boldsymbol{y}) \le tf(\boldsymbol{x}) + (1-t)f(\boldsymbol{y}). \tag{13}$$

Then, we have shown that f is convex if h is convex and nondecreasing and q is convex.

Next, we prove that f is convex if h is convex and nonincreasing and g is concave. Let $\boldsymbol{x}, \boldsymbol{y} \in \operatorname{dom} f$, and $t \in [0,1]$. Since $\boldsymbol{x}, \boldsymbol{y} \in \operatorname{dom} f$, we have $\boldsymbol{x}, \boldsymbol{y} \in \operatorname{dom} g$ and $g(\boldsymbol{x}), g(\boldsymbol{y}) \in \operatorname{dom} h$. Recall that $g(\boldsymbol{x}), g(\boldsymbol{y}) \in \mathbb{R} \cup \{\infty\}$, we have $-g(\boldsymbol{x}) < \infty$ and $-g(\boldsymbol{y}) < \infty$. That is $\boldsymbol{x}, \boldsymbol{y} \in \operatorname{dom} -g$. From the convexity of $\operatorname{dom} -g$, $t\boldsymbol{x} + (1-t)\boldsymbol{y} \in \operatorname{dom} -g$. Then, since -g is convex, we have

$$-g(tx + (1-t)y) \le t(-g(x)) + (1-t)(-g(y)).$$
(14)

Multiplying this inequality by -1 yields

$$g(t\boldsymbol{x} + (1-t)\boldsymbol{y}) \ge tg(\boldsymbol{x}) + (1-t)g(\boldsymbol{y}). \tag{15}$$

Since $g(\mathbf{x}), g(\mathbf{y}) \in \operatorname{dom} h$ and $\operatorname{dom} h$ is convex, we have $tg(\mathbf{x}) + (1 - t)g(\mathbf{y}) \in \operatorname{dom} h$. Then,

$$h(tg(\boldsymbol{x}) + (1-t)g(\boldsymbol{y})) < \infty. \tag{16}$$

Using the assumption that h is nonincreasing and (15), it follows that

$$h(g(t\boldsymbol{x} + (1-t)\boldsymbol{y})) \le h(tg(\boldsymbol{x}) + (1-t)g(\boldsymbol{y})). \tag{17}$$

From (16) and (17), we get

$$h(g(t\boldsymbol{x} + (1-t)\boldsymbol{y})) < \infty, \tag{18}$$

which means $g(t\boldsymbol{x}+(1-t)\boldsymbol{y})\in\operatorname{\mathbf{dom}} h$. Since $t\boldsymbol{x}+(1-t)\boldsymbol{y}\in\operatorname{\mathbf{dom}} g$ and $g(t\boldsymbol{x}+(1-t)\boldsymbol{y})\in\operatorname{\mathbf{dom}} h$, we get $t\boldsymbol{x}+(1-t)\boldsymbol{y}\in\operatorname{\mathbf{dom}} f$. Therefore, $\operatorname{\mathbf{dom}} f$ is convex set. From the convexity of h, we have

$$h(tg(\boldsymbol{x}) + (1-t)g(\boldsymbol{y})) \le th(g(\boldsymbol{x})) + (1-t)h(g(\boldsymbol{y})). \tag{19}$$

From (17) and (19), we get

$$h(g(tx + (1-t)y)) \le th(g(x)) + (1-t)h(g(y)).$$
 (20)

That is

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y).$$
 (21)

Then, we have shown that f is convex if h is convex and nonincreasing and g is cocave.

References

1. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)

 $Email\ address:$ j
2200071@gunma-u.ac.jp