

	WYPEŁNIA ZDAJĄCY	Miejsce na naklejkę.
KOD	PESEL	Sprawdź, czy kod na naklejce to E-100 .
		Jeżeli tak – przyklej naklejkę. Jeżeli nie – zgłoś to nauczycielowi.

EGZAMIN MATURALNY Z MATEMATYKI Poziom podstawowy

DATA: 23 sierpnia 2022 r.
GODZINA ROZPOCZĘCIA: 9:00
CZAS PRACY: 170 minut
LICZBA PUNKTÓW DO UZYSKANIA: 45

WYPEŁNIA ZESPÓŁ NADZORUJĄCY
Uprawnienia zdającego do:
nieprzenoszenia zaznaczeń na kartę
dostosowania zasad oceniania
 dostosowania w zw. z dyskalkulią.

Instrukcja dla zdającego

- Sprawdź, czy arkusz egzaminacyjny zawiera 25 stron (zadania 1–35).
 Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 3. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.
- 4. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 5. Odpowiedzi do zadań zamkniętych (1–28) zaznacz na karcie odpowiedzi w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 6. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (29–35) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 7. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 8. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 9. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 10. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.

W każdym z zadań od 1. do 28. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0-1)

Liczba $\frac{8^{-40}}{2^{10}}$ jest równa

- **A.** 4^{-4}
- **B.** 4^{-50}
- **C.** 2^{-47}
- **D.** 2^{-130}

Zadanie 2. (0-1)

Liczba $\log_2 32 - \log_2 8$ jest równa

A. 2

- **B.** 14
- **C.** 16
- **D.** 24

Zadanie 3. (0-1)

Liczba $(5-2\sqrt{3})^2$ jest równa

- **A.** $25 + 4\sqrt{3}$ **B.** $25 4\sqrt{3}$ **C.** $37 + 20\sqrt{3}$ **D.** $37 20\sqrt{3}$

Zadanie 4. (0-1)

Cene x (w złotych) pewnego towaru obniżono najpierw o 30%, a następnie obniżono o 20% w odniesieniu do ceny obowiązującej w danym momencie. Po obydwu tych obniżkach cena towaru jest równa

A. $0.36 \cdot x$ złotych.

B. $0,44 \cdot x$ złotych.

C. $0.50 \cdot x$ złotych.

D. $0.56 \cdot x$ złotych.

Zadanie 5. (0-1)

Jednym z rozwiązań równania $5(x+1)-x^2(x+1)=0$ jest liczba

A. 1

- **B.** (-1)
- **C.** 5

D. (-5)

Zadanie 6. (0-1)

Zbiorem wszystkich rozwiązań nierówności $\frac{8x-3}{4} > 6x$ jest przedział

A.
$$\left(-\infty, -\frac{3}{4}\right)$$

B.
$$\left(-\frac{3}{4}, +\infty\right)$$

C.
$$\left(-\infty, -\frac{3}{16}\right)$$

A.
$$\left(-\infty, -\frac{3}{4}\right)$$
 B. $\left(-\frac{3}{4}, +\infty\right)$ C. $\left(-\infty, -\frac{3}{16}\right)$ D. $\left(-\frac{3}{16}, +\infty\right)$

Zadanie 7. (0-1)

Suma wszystkich rozwiązań równania (2x-1)(2x-2)(x+2)=0 jest równa

A.
$$\left(-\frac{7}{2}\right)$$

$$\mathbf{B.}\left(-\frac{1}{2}\right)$$

c.
$$\frac{1}{2}$$

Zadanie 8. (0-1)

Punkt A = (1,2) należy do wykresu funkcji f, określonej wzorem $f(x) = (m^2 - 3)x^3 - m^2 + m + 1$ dla każdej liczby rzeczywistej x. Wtedy

A.
$$m = -4$$

B.
$$m = -2$$
 C. $m = 0$

C.
$$m = 0$$

D.
$$m = 4$$

Zadanie 9. (0-1)

Funkcja liniowa f określona wzorem f(x) = (2m - 5)x + 22 jest rosnąca dla

A.
$$m > \frac{2}{5}$$

B.
$$m > 2.5$$
 C. $m > 0$

C.
$$m > 0$$

D.
$$m > 2$$

Zadanie 10. (0-1)

Funkcja kwadratowa f określona wzorem $f(x) = x^2 + bx + c$ osiąga dla x = 2 wartość najmniejszą równą 4. Wtedy

A.
$$b = -4$$
, $c = 8$

B.
$$b = 4$$
, $c = -8$

C.
$$b = -4$$
, $c = -8$

D.
$$b = 4$$
, $c = 8$

Zadanie 11. (0-1)

Dana jest funkcja kwadratowa f określona wzorem f(x) = -2(x-2)(x+1). Funkcja fjest rosnąca w zbiorze

A.
$$(-\infty, \frac{1}{2})$$
 B. $(-1, 2)$ **C.** $(0, \frac{5}{2})$ **D.** $(\frac{5}{2}, +\infty)$

c.
$$(0, \frac{5}{2})$$

D.
$$\left(\frac{5}{2}, +\infty\right)$$

Zadanie 12. (0-1)

Na rysunku przedstawiono wykres funkcji f określonej na zbiorze (-2,5).

Funkcja g jest określona za pomocą funkcji f następująco: g(x) = f(x-1). Wykres funkcji g można otrzymać poprzez odpowiednie przesunięcie wykresu funkcji f. Dziedzina funkcji g jest zbiór

A.
$$(0,2)$$

B.
$$(-1, 6)$$
 C. $(-3, 4)$

C.
$$(-3, 4)$$

Zadanie 13. (0-1)

Dane są ciągi $a_n=3n$ oraz $b_n=4n-2$, określone dla każdej liczby naturalnej $n\geq 1$. Liczba 10

A. jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n) .

B. jest wyrazem ciągu (a_n) i <u>nie jest</u> wyrazem ciągu (b_n) .

C. nie jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n) .

D. <u>nie jest</u> wyrazem ciągu (a_n) i <u>nie jest</u> wyrazem ciągu (b_n) .

Zadanie 14. (0-1)

Dany jest ciąg geometryczny (a_n) , określony dla każdej liczby naturalnej $n \geq 1$. Drugi wyraz tego ciągu oraz iloraz ciągu (a_n) są równe 2. Suma pięciu początkowych kolejnych wyrazów tego ciągu jest równa

A. 1

- **B.** 11
- **C.** 21
- **D.** 31

Zadanie 15. (0-1)

W ciągu dwóch godzin trzy jednakowe maszyny produkują razem 1200 guzików. Ile guzików wyprodukuje pięć takich maszyn w ciągu jednej godziny? Przyjmij, że maszyny pracują z taką samą, stałą wydajnością.

- **A.** 800
- **B.** 900
- **C.** 1000
- **D.** 1500

Zadanie 16. (0-1)

Przyprostokątna AC trójkąta prostokątnego ABC ma długość 6, a przeciwprostokątna AB ma długość $3\sqrt{5}$. Wtedy tangens kąta ostrego CAB tego trójkąta jest równy

A.
$$\frac{\sqrt{5}}{5}$$

B.
$$\frac{2\sqrt{5}}{5}$$

c.
$$\frac{1}{2}$$

Zadanie 17. (0-1)

Nie istnieje kąt ostry α taki, że

A.
$$\sin \alpha = \frac{1}{3}$$
 i $\cos \alpha = \frac{2}{3}$

C.
$$\sin \alpha = \frac{3}{5}$$
 i $\cos \alpha = \frac{4}{5}$

B.
$$\sin \alpha = \frac{5}{13}$$
 i $\cos \alpha = \frac{12}{13}$

D.
$$\sin \alpha = \frac{9}{15} \ i \ \cos \alpha = \frac{12}{15}$$

Zadanie 18. (0-1)

Wierzchołki A, B, C czworokąta ABSC leżą na okręgu o środku S. Kąt ABS ma miarę 40° (zobacz rysunek), a przekątna BC jest dwusieczną tego kąta.

Miara kąta ASC jest równa

- **A.** 30°
- **B.** 40°
- **C.** 50°
- **D.** 60°

Zadanie 19. (0-1)

Punkty A oraz B leżą na okręgu o środku S. Kąt środkowy ASB ma miarę 100° . Prosta l jest styczna do tego okręgu w punkcie A i tworzy z cięciwą AB okręgu kąt o mierze α (zobacz rysunek).

Wtedy

A. $\alpha = 40^{\circ}$

B. $\alpha = 45^{\circ}$

C. $\alpha = 50^{\circ}$

D. $\alpha = 60^{\circ}$

Zadanie 20. (0-1)

Pole prostokąta jest równe 16, a przekątne tego prostokąta przecinają się pod kątem ostrym α , takim, że $\sin \alpha = 0.2$. Długość przekatnej tego prostokata jest równa

A.
$$4\sqrt{5}$$

B.
$$4\sqrt{10}$$

Zadanie 21. (0-1)

Proste o równaniach $y = \frac{2}{3}x - 3$ oraz y = (2m - 1)x + 1 są prostopadłe, gdy

A.
$$m = -\frac{5}{4}$$
 B. $m = -\frac{1}{4}$ **C.** $m = \frac{5}{6}$ **D.** $m = \frac{5}{4}$

B.
$$m = -\frac{1}{4}$$

C.
$$m = \frac{5}{6}$$

D.
$$m = \frac{5}{4}$$

Zadanie 22. (0-1)

Punkty A = (1, -3) oraz C = (-2, 4) są końcami przekątnej AC rombu ABCD. Środek przekątnej BD tego rombu ma współrzędne

A.
$$\left(-\frac{1}{2}, \frac{1}{2}\right)$$
 B. $\left(\frac{1}{2}, -\frac{3}{2}\right)$ **C.** $(-1, 2)$ **D.** $(-1, 1)$

B.
$$\left(\frac{1}{2}, -\frac{3}{2}\right)$$

C.
$$(-1, 2)$$

D.
$$(-1,1)$$

Zadanie 23. (0-1)

Punkty A = (-6,5), B = (5,7), C = (10,-3) są wierzchołkami równoległoboku ABCD. Długość przekątnej BD tego równoległoboku jest równa

A.
$$3\sqrt{5}$$

B.
$$4\sqrt{5}$$

C.
$$6\sqrt{5}$$

D.
$$8\sqrt{5}$$

Zadanie 24. (0-1)

Obrazem prostej o równaniu y = 2x + 5 w symetrii osiowej względem osi 0x jest prosta o równaniu

A.
$$y = 2x - 5$$

B.
$$y = -2x - 5$$

C.
$$y = -2x + 5$$

D.
$$y = 2x + 5$$

Zadanie 25. (0-1)

W graniastosłupie prawidłowym stosunek liczby wszystkich krawędzi do liczby wszystkich ścian jest równy 7:3. Podstawą tego graniastosłupa jest

- A. trójkat.
- B. pięciokat.
- C. siedmiokąt.
- **D.** ośmiokąt.

Zadanie 26. (0-1)

Średnia arytmetyczna zestawu liczb a, b, c, d jest równa 20. Wtedy średnia arytmetyczna zestawu liczb a - 10, b + 30, c, d jest równa

- **A.** 10
- **B.** 20
- **C.** 25
- **D.** 30

Zadanie 27. (0-1)

Wszystkich trzycyfrowych liczb naturalnych większych od 300 o wszystkich cyfrach parzystych jest

- **A.** $6 \cdot 10 \cdot 10$
- **B.** 3 · 10 · 10
- **C.** 6 · 5 · 5
- **D.** $3 \cdot 5 \cdot 5$

Zadanie 28. (0-1)

Doświadczenie losowe polega na dwukrotnym rzucie symetryczną sześcienną kostką do gry, która na każdej ściance ma inną liczbę oczek – od jednego do sześciu. Niech p oznacza prawdopodobieństwo otrzymania w drugim rzucie liczby oczek podzielnej przez 3. Wtedy

- **A.** $p = \frac{1}{18}$

- **B.** $p = \frac{1}{6}$ **C.** $p = \frac{1}{3}$ **D.** $p = \frac{2}{3}$

Zadanie 29. (0-2)

Rozwiąż nierówność

$$3x^2 - 8x \ge 3$$

Zadanie 30. (0-2)

Trójwyrazowy ciąg (x, y-4, y) jest arytmetyczny. Suma wszystkich wyrazów tego ciągu jest równa 6. Oblicz wszystkie wyrazy tego ciągu.

Wypełnia	Nr zadania	29.	30.
	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 31. (0-2)

Wykaż, że dla każdej liczby rzeczywistej $\,a\,$ różnej od $\,0\,$ i każdej liczby rzeczywistej $\,b\,$ różnej od $\,0\,$ spełniona jest nierówność

$$2a^2 - 4ab + 5b^2 > 0$$

$$\frac{4}{x+2} = x - 1$$

Wypełnia	Nr zadania	31.	32.
	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 33. (0-2)

Dany jest trójkąt równoboczny ABC o boku długości 24. Punkt E leży na boku AB, a punkt F – na boku BC tego trójkąta. Odcinek EF jest równoległy do boku AC i przechodzi przez środek S wysokości CD trójkąta ABC (zobacz rysunek). Oblicz długość odcinka EF.

Zadanie 34. (0-2)

Ze zbioru pięciu liczb $\{-5, -4, 1, 2, 3\}$ losujemy kolejno ze zwracaniem dwa razy po jednej liczbie. Zdarzenie A polega na wylosowaniu dwóch liczb, których iloczyn jest ujemny. Oblicz prawdopodobieństwo zdarzenia A.

Wypełnia	Nr zadania	33.	34.
	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 35. (0-5)

Dany jest graniastosłup prosty ABCDEFGH, którego podstawą jest prostokąt ABCD. W tym graniastosłupie |BD|=15, a ponadto |CD|=3+|BC| oraz $|\angle CDG|=60^\circ$ (zobacz rysunek).

Oblicz objętość i pole powierzchni bocznej tego graniastosłupa.

Wypełnia	Nr zadania	35.
	Maks. liczba pkt	5
egzaminator	Uzyskana liczba pkt	

