SPRAWOZDANIE

INTELIGENTNA ANALIZA DANYCH

LAB4 SIECI NEURONOWE I PORÓWNANIE KLASYFIKATORÓW

12.12.2021

JOANNA PRAJZENDANC 36358

> MIŁOSZ SAKOWSKI 36381

Spis treści

1. Cel i przebieg ćwiczenia	3
2. Definicje i założenia	3
2.1. Wyjaśnienie pojęć	3
3. Sieci neuronowe	3
3.1. Omówienie klasyfikatora	3
3.2. Zadanie #1	4
i. Treść polecenia	4
ii. Rozwiązanie	4
iii. Porównanie wyników i wnioski	7
4. Porównanie klasyfikatorów	8
4.1. Zadanie #2	8
i. Treść polecenia	8
ii. Baza danych	8
iii. Klasyfikator: binarny	12
iv. Klasyfikator: drzewo decyzyjne	13
v. Klasyfikator: las losowy	14
vi. Klasyfikator: naiwny bayesowski	15
vii. Klasyfikator: sieci neuronowe	16
4.2. Podsumowanie i wnioski	17

1. Cel i przebieg ćwiczenia

Celem ćwiczenia było utrwalenie wiedzy w zakresie poznanych dotychczas klasyfikatorów: klasyfikator binarny, klasyfikator drzewa decyzyjnego, naiwny klasyfikator bayesowski, klasyfikator lasu losowego i klasyfikator sieci neuronowych. Podczas wykonywania zadań zastosowano również poznaną wcześniej stratyfikację, walidację krzyżową i optymalizację modelu grid search.

2. Definicje i założenia

2.1. Wyjaśnienie pojęć

W sprawozdaniu pojawiają się nowe pojęcia:

- sieci neuronowe statystyczny model obliczeniowy stosowany w uczeniu maszynowym używany jako jeden z klasyfikatorów,
- → neuron warstwy sieci neuronowej, wyróżniamy 3 warstwy: warstwy wejścia (input layer), warstwy ukryte (hidden layer), oraz warstwy wyjścia (output layer).

3. Sieci neuronowe

3.1. Omówienie klasyfikatora

Sieć neuronowa to statystyczny model obliczeniowy stosowany w uczeniu maszynowym. Można o nim myśleć jak o systemie połączonych synapsami neuronów, które przesyłają między sobą impulsy (dane). Sieć neuronowa składa się z trzech warstw:

- warstwy wejścia (input layer),
- → oraz warstwy wyjścia (output layer).

Obraz 1: Rysunek schematyczny sieci neuronowej z wyróżnionymi warstwami

Warstwa wejścia przyjmuje dane wejściowe do obliczeń, w warstwie ukrytej odbywają się wszystkie obliczenia. Wynik tych obliczeń jest przesyłany do warstwy wyjścia.

Na powyższym diagramie okręgi reprezentują neurony, zaś strzałki - synapsy. Każda synapsa ma przypisaną pewną wagę, tzn. liczbę, która (nieco upraszczając) określa, jak silnie przesyłana wartość wpływa na ostateczny wynik obliczeń. Żeby przesłać wartość,

synapsa najpierw czyta wartość z neuronu wejściowego, następnie wartość tę mnoży przez wagę, by w końcu przesłać wynik do neuronu wyjściowego. Następnie neuron wyjściowy dokonuje obliczeń na dostarczonych mu przez synapsy wartościach i otrzymany wynik przekazuje do wychodzącej z niego synapsy.

3.2. Zadanie #1

i. Treść polecenia

Proszę pobrać dowolny zbiór danych ze strony https://archive.ics.uci.edu/ml/index.php

Następnie proszę podzielić zbiór na dane trenujące i testujące, wytrenować i przetestować 5 sieci neuronowych o różnych architekturach. Proszę o sporządzenie sprawozdania z wnioskami.

ii. Rozwiązanie

A. Przygotowanie danych

Dane wykorzystane w zadaniach pochodzą z pliku forestfires.csv, który został pobrany ze strony https://archive.ics.uci.edu/ml/index.php. Jest to zbiór informacji na temat pożarów w parku Montensinho.

Na potrzeby zadania pominięto kolumny z wartościami tekstowymi, ponieważ ich zamiana na wartości liczbowe była czasochłonna, a przydatność tych danych niewielka.

```
import pandas as pd
import numpy as np
import statistics as stat
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
```

Obraz 2: Użyte biblioteki

```
fires_origin = pd.read_csv(
    "forestfires.csv", header=0, index_col=False)
d = {
    X': fires origin['X'].values,
   'Y': fires_origin['Y'].values,
    'temp': fires_origin['temp'].values,
   'RH': fires_origin['RH'].values,
    'wind': fires_origin['wind'].values,
    'rain': fires_origin['rain'].values,
    'area': fires_origin['area'].values
fires = pd.DataFrame(d)
print(fires.head())
  X Y temp RH wind rain area
  7 5
        8.2 51
                  6.7
                        0.0
                              0.0
  7 4 18.0 33
                  0.9
                         0.0
                               0.0
  7 4 14.6 33
                         0.0
                               0.0
                   1.3
```

Obraz 3: Wybrane kolumny z pliku forestfires.csv

0.2

0.0

0.0

4.0

1.8

8.3 97

8 6 11.4 99

8 6

```
maximum = max(fires['temp'])
minimum = min(fires['temp'])
median = stat.median(fires['temp'])
diff = round((maximum - median)/4)
\max_{RH} = \max(fires['RH'])
min_RH = min(fires['RH'])
median_RH = stat.median(fires['RH'])
max_wind= max(fires['wind'])
min_wind= min(fires['wind'])
median_wind= stat.median(fires['wind'])
tp = fires['temp']
rh = fires['RH']
w = fires['wind']
serious = fires['temp'].copy()
for i, val in enumerate(fires['temp']):
    #print(val, rh[i], serious[i])
if (val >= (median + diff) and rh[i] <= 30 and w[i] >= 3.0):
        serious.loc[i] = 4
    else:
        if (val >= median + diff):
            serious.loc[i] = 3
             if (val >= (median - diff) and rh[i] \le 50 and w[i] >= 4.0):
                 serious.loc[i] = 3
                 if (val >= median - 2*diff and rh[i] <= 50 and w[i] >= 5.0):
                     serious.loc[i] = 2
                 else:
                     if (val >= median - 2*diff):
                         serious.loc[i] = 1
                     else:
                         serious.loc[i] = 0
```

Obraz 4: Utworzenie kolumny z danymi do klasyfikacji na podstawie własnego algorytmu

```
x = np.array(fires.values)
y = np.array(serious.values)
print(x[:5])
print(y[:5])
       5. 8.2 51.
                       6.7 0.
[ 7. 4. 18. 33. 0.9 0. 0. ]
[ 7. 4. 14.6 33. 1.3 0. 0. ]
      6. 8.3 97.
[ 8.
                       4. 0.2 0. ]
       6. 11.4 99.
[ 8.
                       1.8 0.
[0. 1. 1. 0. 0.]
print(x.shape)
print(y.shape)
(517, 7)
(517,)
```

Obraz 5: Podział danych na zbiór trenujący i testujący

B. Wyniki dokładności sieci neuronowych z różną ilością neuronów

- hidden_layer_sizes parametr ten reprezentuje liczbę neuronów w warstwie ukrytej.
- random_state określa generowanie liczb losowych na potrzeby inicjalizacji wag i odchyleń.
- max_iter parametr ten określa liczbę epok, ile razy każdy punkt danych zostanie użyty.

W zadaniu zbudowano 5 różnych sieci neuronowych:

- 1. Ilość neuronów: 2.
- 2. Ilość neuronów: 5,
- 3. Ilość neuronów: 10,
- 4. Ilość neuronów: 30,
- 5. Ilość neuronów: 50.

```
clf_2 = MLPClassifier(hidden_layer_sizes=(2),
                      random_state=42,
                      max_iter=5000)
clf_5 = MLPClassifier(hidden_layer_sizes=(5),
                      random_state=42,
                      max_iter=5000)
clf_10 = MLPClassifier(hidden_layer_sizes=(10),
                       random_state=42,
                       max_iter=5000)
clf_30 = MLPClassifier(hidden_layer_sizes=(30),
                       random_state=42,
                       max_iter=5000)
clf_50 = MLPClassifier(hidden_layer_sizes=(50),
                       random_state=42,
                       max_iter=5000)
clf_2 = clf_2.fit(x_train, y_train)
clf_5 = clf_5.fit(x_train, y_train)
clf_10 = clf_10.fit(x_train, y_train)
clf_{30} = clf_{30}.fit(x_train, y_train)
clf_50 = clf_50.fit(x_train, y_train)
```

Obraz 6: Zastosowanie klasyfikatora sieci neuronowych z różną ilością neuronów

Obraz 7: Obliczenie dokładności modelu w zależności od ilości neuronów

iii. Porównanie wyników i wnioski

Tabela 1: Zestawienie wyników dokładności modelu sieci neuronowej w zależności od liczby neuronów

Ilość neuronów	Dokładność
2	0,397
5	0,744
10	0,840
30	0,814
50	0,833

Dokładność modelu wyraźnie rośnie w zależności od liczby neuronów w sieci neuronowej.

Obraz 8: Wykres zależności dokładności modelu od ilości neuronów

Prawdopodobnie zależność ta jest funkcją logarytmiczną, co oznacza że wartość dokładności szybko rośnie już dla niewielkiej liczby neuronów - dzięki czemu szybko możemy otrzymać zadowalające przybliżenie, ale też uzyskanie bardzo dużej dokładności (powyżej 90%) będzie wymagało sieci neuronów o bardzo dużej ilości neuronów, co przekłada się na czas obliczeń i duże ryzyko przetrenowania modelu.

4. Porównanie klasyfikatorów

4.1. Zadanie #2

i. Treść polecenia

Pobrać wybraną bazę danych i porównać wytrenowanie różnymi klasyfikatorami.

ii. Baza danych

A. Informacje techniczne

- charakterystyka: wielowymiarowa,
- → ilość danych: 125,
- ♦ brakujace wartości: brak.

Bazę danych pobrano z

https://archive.ics.uci.edu/ml/datasets/Alcohol+QCM+Sensor+Dataset

W pobranym zestawie danych znajdowało się 5 plików z wynikami pomiarów:

- QCM3.csv,
- QCM6.csv,
- ◆ QCM7.csv,
- QCM10.csv,
- QCM12.csv.

Nazwy plików odpowiadają numerowi czujnika QCM użytego podczas pomiarów.

B. Opis badania i zawartość zestawu danych¹

Celem badania było zmierzenie reakcji różnych czujników QCM na 5 wybranych alkoholi, aby określić który z tych czujników będzie najlepszy do klasyfikacji tych alkoholi.

Pomiary dotyczyły 5 różnych gazów (alkoholi):

- 1-octanolu,
- 1-propanolu,
- 2-butanolu,
- 2-propanolu,
- 1-isobutanolu.

oraz artykułu "Classification of alcohols obtained by QCM sensors with different characteristics using ABC based neural network" M. Fatih Adak, Peter Lieberzeit, Purim Jarujamrus, Nejat Yumusak (https://www.sciencedirect.com/science/article/pii/S2215098619303337)

¹ Opracowanie na podstawie analizy tongahancepel: https://www.kaggle.com/tolgahancepel/qcm-sensor-alcohol-classification-using-keras/notebook

Wymienione gazy zostały zbadane przez 5 różnych sensorów QCM², czyli przez mikrowagi kwarcowe, która są rodzajem czujnika do wykrywania bardzo małych zmian masy. Mikrowaga kwarcowa działa na zasadzie rezonatora kwarcowego pracującego z drganiami ścinającymi³ i jest używana do budowania tzw. *Elektronicznego nosa*⁴.

Obraz 9: a) rysunek schematyczny mikrowagi kwarcowej; b) zdjęcie przykładowej mikrowagi kwarcowej

Rezonator kwarcowy składa się z dwóch okręgów, które różnią się zawartością MIP^5 i NP^6 . Każdy z okręgów to osobny kanał pomiaru drgań (kanał pomiaru).

Tabela 2: Stosunki MIP i NP w każdym z czujników
Czujnik MIP

Czujnik	MIP	NP
QCM3	1	1
QCM6	1	0
QCM7	1	0,5
QCM10	1	2
QCM12	0	1

Podłączając mikrowagę do układu elektronicznego, można zmierzyć zmianę częstotliwości drgań rezonatora, która odpowiada zmianie masy. Dzięki temu można "zważyć" gaz.

² the Qaurtz Crystal Microbalance - mikrowaga kwarcowa

³ Informacje pochodzą z Wikipedii: https://pl.wikipedia.org/wiki/Mikrowaga_kwarcowa

⁴ Więcej na Wikipedii: https://pl.wikipedia.org/wiki/Elektroniczny_nos

⁵ moleculary imprinted polymers -

⁶ Nanoparticles -

Jeden pomiar dla jednego czujnika trwał 120 min, w trakcie tego czasu najpierw czujnik był umieszczany na 30 min w czystym powietrzu w celu oczyszczenia, następnie wybrany gaz był dodawany do powietrza aż do uzyskania zadanej koncentracji powietrze - alkohol i dokonywano pomiaru. Przed kolejnym pomiarem w innej koncentracji tego samego gazu czujnik był oczyszczany przez 7 min w czystym powietrzu.

Tabela 3: Wartości koncentracji powietrze - alkohol, dla których wykonano pomiary

L.p.	Koncentracja powietrza	Koncentracja alkoholu
1	0,799	0,201
2	0,700	0,300
3	0,600	0,400
4	0,501	0,499
5	0,400	0,600

Wszystkie pomiary zostały przeprowadzone w temperaturze pokojowej 25°C. Alkohol w stanie płynnym był przelewany do szklanej tuby o pojemności 50ml z umieszczonym czujnikiem. Próbka alkoholu docierała do czujnika jako gaz i wyniki zmiany częstotliwości drgań w Hz z każdego z dwóch kanałów mikrowagi kwarcowej były przesyłane do komputera.

Obraz 10: Przykład pomiarów zmiany częstotliwości dla 1-Proponalu z czujnika QCM3

C. Przygotowanie do klasyfikacji

```
import pandas as pd
import numpy as np
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedKFold
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import cross_val_score
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score
from sklearn import tree
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.neural_network import MLPClassifier
```

Obraz 11: Użyte biblioteki

```
qcm3 = pd.read_csv('Dataset/QCM3.csv', sep = ';')
qcm6 = pd.read_csv('Dataset/QCM6.csv', sep = ';')
qcm7 = pd.read_csv('Dataset/QCM7.csv', sep = ';')
qcm10 = pd.read_csv('Dataset/QCM10.csv', sep = ';')
qcm12 = pd.read_csv('Dataset/QCM12.csv', sep = ';')
print(qcm3.head())
    0.799_0.201 0.799_0.201.1 0.700_0.300 0.700_0.300.1 0.600_0.400
         -10.06
                          -10.62
                                          -14.43
                                                            -18.31
                                                                             -24.64
1
          -9.69
                            -10.86
                                           -16.73
                                                             -21.75
                                                                             -28.47
          -12.07
                           -14.28
                                           -21.54
                                                             -27.92
                                                                             -35.19
2
                           -17.41
                                           -25.91
3
          -14.21
                                                             -33.36
                                                                             -41.29
4
                                           -29.97
                                                             -37.84
                                                                             -47.03
          -16.57
                            -20.35
     0.600\_0.400.1 \quad 0.501\_0.499 \quad 0.501\_0.499.1 \quad 0.400\_0.600 \quad 0.400\_0.600.1 \quad \backslash 
            -30.56
                            -38.62
                                             -45.59
                                                             -54.89
                                                                               -62.28
                                              -52.43
            -35.83
                            -43.65
                                                                                -71.27
1
            -43.94
                            -52.04
2
                                              -62.49
                                                                                -83.10
            -51.27
                            -59.94
                                              -71.55
                                                              -81.51
                                                                               -93.83
4
            -57.29
                            -67.13
                                              -78.96
                                                              -90.01
                                                                              -102.65
    1-Octanol 1-Propanol 2-Butanol
                                            2-propanol
                                                          1-isobutanol
0
             1
                            0
                                         0
                                                       0
                                                                        0
1
             1
                            a
                                         0
                                                       0
                                                                        0
2
             1
                            0
                                         0
                                                       0
                                                                        0
3
             1
                            0
                                         0
                                                       0
                                                                        0
4
             1
                            0
                                         0
                                                       0
                                                                        0
```

Obraz 12: Załadowanie danych z plików

```
dataset = pd.concat([qcm3, qcm6, qcm7, qcm10, qcm12])
print("Shape of dataset: ", dataset.shape)
Shape of dataset: (125, 15)
```

Obraz 13: Połączenie danych w jeden zestaw

```
# dodanie kolumny z wartościami liczbowymi dla każdego rodzaju alkoholu
dataset.loc[dataset["1-Octanol"] == 1, 'alcohol'] = 1
dataset.loc[dataset["1-Propanol"] == 1, 'alcohol'] = 2
dataset.loc[dataset["2-Butanol"] == 1, 'alcohol'] = 3
dataset.loc[dataset["2-propanol"] == 1, 'alcohol'] = 4
dataset.loc[dataset["1-isobutanol"] == 1, 'alcohol'] = 5
dataset['alcohol'].value_counts()
1.0
        25
2.0
        25
3.0
        25
4.0
        25
5.0
        25
Name: alcohol, dtype: int64
```

Obraz 14: Dodanie kolumny sumarycznej klasyfikującej rodzaj użytego alkoholu

iii. Klasyfikator: binarny

```
# klasyfikator binarny
x = np.array(dataset.values[:,:10])
y = np.array(dataset.values[:,15])
print(x[:5])
print(y[:5])
[[ \ -10.06 \ \ -10.62 \ \ -14.43 \ \ -18.31 \ \ -24.64 \ \ -30.56 \ \ -38.62 \ \ -45.59 \ \ -54.89
  -62.28]
 [ -9.69 -10.86 -16.73 -21.75 -28.47 -35.83 -43.65 -52.43 -61.92
   -71.27]
 [ -12.07 -14.28 -21.54 -27.92 -35.19 -43.94 -52.04 -62.49 -71.97
   -83.1 ]
 -93.83]
 [ -16.57 -20.35 -29.97 -37.84 -47.03 -57.29 -67.13 -78.96 -90.01
  -102.65]]
[1. 1. 1. 1. 1.]
x_train, x_test, y_train, y_test = train_test_split(
  x, y, test_size=0.9, random_state=42)
print(x_train.shape)
print(y_train.shape)
print(x_test.shape)
print(y_test.shape)
(12, 10)
(12,)
(113, 10)
(113,)
```

Obraz 15: Podział na zbiór trenujący i testujący

```
# stratyfikacja
skf = StratifiedKFold(n_splits=5, shuffle=True)

# walidacja krzyżowa
# skalowanie maksymalnej iteracji
model = make_pipeline(StandardScaler(), LogisticRegression())
model.fit(x_train, y_train)
# pomiar dokładności bez stratyfikacji i walidacji krzyżowej
y_test_pred_from_model = model.predict(x_test)
print(accuracy_score(y_test, y_test_pred_from_model))
# pomiar dokładności ze stratyfikacją i walidacją krzyżową
print(cross_val_score(model, x, y, cv=skf))

0.4690265486725664
[0.76 0.52 0.56 0.56 0.52]
```

Obraz 16: Obliczenie dokładności modelu dla klasyfikatora binarnego

Pomimo faktu, że zbiór jest zbalansowany stratyfikacja w połączeniu z walidacją krzyżową wydają się podnosić dokładność modelu.

Nie zastosowano optymalizacji modelu ze względu na złożoność klasyfikatora.

iv. Klasyfikator: drzewo decyzyjne

```
# klasyfikator drzewa decyzyjnego
x = np.array(dataset.values[:,:10])
y = np.array(dataset.values[:,15])
x_train, x_test, y_train, y_test = train_test_split(
   x, y, test_size=0.9, random_state=42)
print(x[:5])
print(y[:5])
[[ -10.06 -10.62 -14.43 -18.31 -24.64 -30.56 -38.62 -45.59 -54.89
 -71.27]
 [ -12.07 -14.28 -21.54 -27.92 -35.19 -43.94 -52.04 -62.49 -71.97
  -83.1 ]
 [ -14.21 -17.41 -25.91 -33.36 -41.29 -51.27 -59.94 -71.55 -81.51 -93.83]
        -20.35 -29.97 -37.84 -47.03 -57.29 -67.13 -78.96 -90.01
  -102.65]]
[1. 1. 1. 1. 1.]
print(x_train.shape)
print(y_train.shape)
print(x_test.shape)
print(y_test.shape)
(12, 10)
(12,)
(113, 10)
```

Obraz 17: Podział na zbiór trenujący i testujący

bez walidacji krzyżowej i stratyfikacji 0.3982300884955752 walidacja i stratyfikacja [0.76 0.96 0.8 0.96 0.84]

Obraz 18: Obliczenie dokładności modelu z klasyfikatorem drzewa decyzyjnego bez optymalizacji

```
# optymalizacja modelu
criterion = np.array(['gini', 'entropy'])
max_depth = np.array([
   1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20])
grid = GridSearchCV(estimator = clf,
                    param_grid = dict(
                        max_depth=max_depth,
                        criterion=criterion))
grid.fit(x, y)
print(grid.best_params_)
{'criterion': 'gini', 'max_depth': 16}
clf = tree.DecisionTreeClassifier(
   criterion = grid.best_params_['criterion'],
    max_depth = grid.best_params_['max_depth'])
clf = clf.fit(x_train, y_train)
# dokładność
y_test_pred_from_clf = clf.predict(x_test)
print(accuracy_score(y_test, y_test_pred_from_clf))
print(cross_val_score(clf, x, y, cv=skf))
0.4247787610619469
[0.92 0.96 0.96 0.84 0.92]
```

Obraz 19: Optymalizacja modelu i obliczenie dokładności zoptymalizowanego modelu z klasyfikatorem drzewa decyzyjnego

Pomimo faktu, że zbiór jest zbalansowany stratyfikacja w połączeniu z walidacją krzyżową wydają się podnosić dokładność modelu.

v. Klasyfikator: las losowy

Obraz 20: Podział na zbiór trenujący i testujący

```
clf = RandomForestClassifier(n_estimators=2)
skf = StratifiedKFold(n_splits=5, shuffle=True)
clf = clf.fit(x_train, y_train)
# doktadność
y_test_pred_from_clf = clf.predict(x_test)
print(accuracy_score(y_test, y_test_pred_from_clf))
print(cross_val_score(clf, x, y, cv=skf))
0.34513274336283184
[0.8     0.84    0.72    0.76    0.96]
```

Obraz 21: Obliczenie dokładności modelu z klasyfikatorem lasu losowego bez optymalizacji

```
# optymalizacja modelu
criterion = np.array(['gini', 'entropy'])
max_depth = np.array(
   [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15])
n_{estimators} = np.array([2,3,4,5,6,7,8,9,10])
clf = RandomForestClassifier()
grid = GridSearchCV(estimator = clf,
                   param_grid = dict(
                       n_estimators = n_estimators,
                        max_depth=max_depth,
                       criterion=criterion))
grid.fit(x, y)
print(grid.best_params_)
{'criterion': 'entropy', 'max_depth': 12, 'n_estimators': 5}
clf = RandomForestClassifier(
   n_estimators = grid.best_params_['n_estimators'],
    criterion = grid.best_params_['criterion'],
   max_depth = grid.best_params_['max_depth'])
clf = clf.fit(x_train, y_train)
# dokładność
y_test_pred_from_clf = clf.predict(x_test)
\verb|print(accuracy_score(y_test, y_test_pred_from_clf))| \\
print(cross_val_score(clf, x, y, cv=skf))
0.5132743362831859
[1. 0.92 0.84 0.92 0.96]
```

Obraz 22: Optymalizacja modelu i obliczenie dokładności zoptymalizowanego modelu z klasyfikatorem lasu losowego

Pomimo faktu, że zbiór jest zbalansowany stratyfikacja w połączeniu z walidacją krzyżową podnoszą dokładność modelu.

vi. Klasyfikator: naiwny bayesowski

Obraz 23: Podział na zbiór trenujący i testujący

```
clf = GaussianNB()
clf = clf.fit(x_train, y_train)

# doktadność
y_test_pred_from_clf = clf.predict(x_test)
print(accuracy_score(y_test, y_test_pred_from_clf))
skf = StratifiedKFold(n_splits=5, shuffle=True)
print(cross_val_score(clf, x, y, cv=skf))

0.2743362831858407
[0.52 0.48 0.32 0.4 0.56]
```

Obraz 24: Obliczenie dokładności modelu z naiwnym klasyfikatorem bayesowskim bez optymalizacji

Pomimo faktu, że zbiór jest zbalansowany stratyfikacja w połączeniu z walidacją krzyżową wydają się podnosić dokładność modelu.

Nie zastosowano optymalizacji modelu ze względu na złożoność klasyfikatora.

vii. Klasyfikator: sieci neuronowe

Obraz 25: Podział na zbiór trenujący i testujący

```
# doktadność
y_test_pred_from_clf = clf.predict(x_test)
print(accuracy_score(y_test, y_test_pred_from_clf))
skf = StratifiedKFold(n_splits=5, shuffle=True)
print(cross_val_score(clf, x, y, cv=skf))
0.19469026548672566
[0.12 0.24 0.2 0.16 0.16]
```

Obraz 26: Obliczenie dokładności modelu z klasyfikatorem sieci neuronowych bez optymalizacji

```
# optymalizacja modelu
hidden_layer_sizes = np.array([5,10,30,50,100])
random_state = np.array([0,10,20,40,60])
max_iter = np.array([8000])
clf = MLPClassifier()
grid = GridSearchCV(estimator = clf,
                   param_grid = dict(
                       hidden_layer_sizes=(hidden_layer_sizes),
                        random_state=random_state,
                       max_iter=max_iter))
grid.fit(x, y)
print(grid.best_params_)
{'hidden_layer_sizes': 30, 'max_iter': 8000, 'random_state': 20}
clf = MLPClassifier(
   hidden_layer_sizes = (grid.best_params_['hidden_layer_sizes']),
   random_state = grid.best_params_['random_state'],
   max_iter = grid.best_params_['max_iter'])
clf = clf.fit(x_train, y_train)
# dokładność
y_test_pred_from_clf = clf.predict(x_test)
print(accuracy_score(y_test, y_test_pred_from_clf))
print(cross_val_score(clf, x, y, cv=skf))
0.5398230088495575
[0.92 0.96 0.88 0.88 0.8 ]
```

Obraz 27: Optymalizacja modelu i obliczenie dokładności zoptymalizowanego modelu z klasyfikatorem sieci neuronowych

Pomimo faktu, że zbiór jest zbalansowany stratyfikacja w połączeniu z walidacją krzyżową podnosi dokładność modelu.

4.2. Podsumowanie i wnioski

W porównaniu dokładności modeli wzięto wyniki dla najlepiej dopasowanego modelu - z zastosowaniem grid_search jeżeli było to możliwe oraz ze stratyfikacją i walidacją krzyżową, ponieważ pomiary wykazały, że dokładność każdego z modeli była wtedy większa.

Tabela 4: Zestawienie średnich dokładności najlepiej dopasowanych modeli dla różnych klasyfikatorów

Klasyfikator	Średnia dokładność modelu
binarny	0,560
drzewa decyzyjnego	0,896
lasu losowego	0,912
naiwny bayesowski	0,424
sieci neuronowe	0,920

Dla wybranego zestawu danych najlepiej poradziły sobie modele z klasyfikatorami: lasu losowego i sieci neuronowych, model z klasyfikatorem drzewa decyzyjnego również ma bardzo wysoką dokładność. Modele z klasyfikatorami: binarnym i naiwnym bayesowskim mają dokładność rzędu 50%, jednak warto zauważyć że podczas wykonywania ćwiczenia były to modele bez zastosowania optymalizacji grid_search.

Oprócz wyniku dokładności warto również pamiętać o złożoności klasyfikatorów i czasu wykonywania obliczeń przez program. Klasyfikator sieci neuronowych jest najbardziej złożonym z wszystkich użytych w ćwiczeniu, najtrudniej było wybrać zakres danych podczas optymalizacji modelu i czas wykonywania obliczeń był zdecydowanie najdłuższy. Klasyfikatory: drzewa decyzyjnego i lasu losowego mają równie wysoką dokładność, a ich złożoność jest dużo mniejsza i wykonują się szybciej.