

1

Why Numerical Integration?

There are many functions $sinx^2$, $\frac{e^x}{x}$, etc

$$\int \frac{\sin x^2}{x} dx^{\circ} \circ \int \frac{\text{Solve it, if you}}{\cos x} dx^{\circ} = \int \frac{\sin x^2}{x} dx^{\circ} = \int \frac{\sin x}{x} dx^{\circ} = \int \frac{\sin x}{$$

- \checkmark whose integration analytically is impossible .
- ✓ Also some integrals, whose evaluation would be very complicated.
- ✓ In many cases, analytic methods fails.
- ✓ In such cases, Numerical methods are used.

Numerical Integration

Consider the observation table

x	x_0	<i>x</i> ₁	x_2	x_3	x_{n-1}	x_n
y = f(x)	<i>y</i> ₀	y_1	<i>y</i> ₂	y_3	y_{n-1}	y_n

The process of evaluating definite integral $\int_{x_0}^{x_n} f(x) dx$ from set of tabulated values of f(x) is called Numerical integration.

Methods of Numerical Integration

- 1. Trapezoidal Rule
- 2. Simpson's 1/3 Rule
- 3. Simpson's 3/8 Rule
- 4. Weddle's Rule

Trapezoidal Rule

➤ Consider the observation table

x	x_0	x_1	<i>x</i> ₂	x_3	x_{n-1}	x_n
у	y_0	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	y_{n-1}	y_n

$$\int_{a}^{b} f(x) \ dx = \frac{h}{2} [(F + L) + 2(rest \ of \ all)]$$

$$= \frac{h}{2} [(y_0 + y_n) + 2(y_1 + y_2 + y_3 + \dots + y_{n-1})]$$

$$F = first \ obs. = y_0 \qquad \bullet \ x_n = x_0 + nh$$

$$L = last \ obs. = y_n$$

$$F = first \ obs. = y_0$$
 • $x_n = x_0 + n$

Where,
$$h = \frac{b-a}{n}$$
 • n is no of sub – intervals.

Example 1:

Evaluate $\int_0^1 e^x dx$ using trapezoidal rule with n = 10.

Solution:

Here a = 0, b = 1 & n = 10

Now,

$$h = \frac{b - a}{n} = \frac{1 - 0}{10} = \frac{1}{10} = 0.1$$

Let,
$$y = f(x) = e^x$$

x	0	0.1	0.2	0.3	0.4
у	1	1.1052	1.2214	1.3499	1.4918
0.5	0.6	0.7	0.8	0.9	1.0
1.6487	1.8221	2.0138	2.2255	2.4596	2.7183
y(0.1) = e $y(0.2) = e$ $y(0.3) = e$	$\Rightarrow y(0) = 0.1 = 1.105$ $0.2 = 1.221$ $0.3 = 1.349$ $0.4 = 1.491$	2 4 9	y(0.6) = y(0.7) = y(0.8) = y(0.9) =	$e^{0.5} = 1.644$ $e^{0.6} = 1.82$ $e^{0.7} = 2.01$ $e^{0.8} = 2.22$ $e^{0.9} = 2.45$ $e^{1.0} = 2.718$	21 38 55 96

x	0	0.1	0.2	0.3	0.4				
У	$y_0 = 1$ $y_1 = 1.1052$ $y_2 = 1.2214$ $y_3 = 1.3499$ $y_4 = 1.4918$								
0.5	.5 0.6 0.7 0.8 0.9 1.0								
$y_5 = 1.6487$	$y_6 = 1.8221$	$y_7 = 2.0138$	$y_8 = 2.2255$	$y_9 = 2.4596$	$y_{10} = 2.7183$				
By the Trapezoidal rule, $\int_{0}^{1} e^{x} dx = \frac{h}{2} [(y_0 + y_{10}) + 2(y_1 + y_2 + y_3 + y_4 + y_5 + y_6 + y_7 + y_8 + y_9)]$									
$= \frac{0.1}{2}[(1+2.7183) + 2(1.1052 + 1.2214 + 1.3499 + 1.4918 + 1.6487 + 1.8221 + 2.0138 + 2.2255 + 2.4596)]$									
= 1.7197									

Example 2:

Evaluate $\int_0^{\pi} \sin x \, dx$ using trapezoidal rule with n = 10.

Solution:

Here a = 0, $b = \pi \& n = 10$

Now,

$$h = \frac{b-a}{n} = \frac{\pi - 0}{10} = \frac{\pi}{10}$$

Let, $y = f(x) = sinx$

Let,
$$y = f(x) = sin x$$

x	0	$\pi/10$	$2\pi/10$	$3\pi/10$	$4\pi/10$				
у	0	0 0.3090		0.8090	0.9511				
$5\pi/10$	$6\pi/10$	$6\pi/10$ $7\pi/10$		$9\pi/10$	$10\pi/10$				
1.0000	0.9511	0.8090	0.5878	0.3090	0				
$y(x) = \sin^2 x$	$\mathbf{n}x \Longrightarrow y(0)$	$=\sin 0=0$	$y(5\pi/1)$	$\binom{1}{0} = 1$					
$y(^{\pi}/_{10}) =$	$= \sin^{\pi}/_{10} =$	0.3090	$y(^{6\pi}/_{1})$	$_{0}) = 0.9511$	L				
$y(2\pi/_{10})$	$= \sin^{2\pi}/_{10}$	= 0.5878	$y(^{7\pi}/_{1}$	(0) = 0.8090	0				
$y(^{3\pi}/_{10})$	$= \sin^{3\pi}/_{10}$	= 0.8090	$y(^{8\pi}/_{1}$	(0) = 0.587	8				
$v(4\pi/10)$	$= \sin^{4\pi}/_{10}$	s = 0.9511	$y(^{9\pi}/_{1})$	$y(^{9\pi}/_{10}) = 0.3090$					
7 (710)	/10	,	$y(^{10\pi}/$	$(_{10}) = 0$					

x	0	$3\pi/10$	$4\pi/10$						
у	0	0 0.3090 0.5878 0.8090							
$5\pi/10$	$6\pi/10$ $7\pi/10$ $8\pi/10$ $9\pi/10$ $10\pi/10$								
1.0000	0.9511 0.8090 0.5878 0.3090 0								
π	ezoidal rule, $\frac{h}{2}[(y_0 + y_{10})]$	$1 + 2(y_1 + y_2)$	$+y_3 + y_4 + y_4$	$y_5 + y_6 + y_7$	$+y_8+y_9)]$				
$= \frac{\pi}{20} [(0+0) + 2(0.3090 + 0.5878 + 0.8090 + 0.9511 + 1 + 0.9511 + 0.8090 + 0.5878 + 0.309)]$									
$=\frac{\pi}{20}(12.6276)=1.9835$									

Simpson's 1/3 Rule

➤ Consider the observation table

$$\int_{a}^{b} f(x) dx = \frac{h}{3} [(F+L) + 4(odd obs.) + 2(even obs.)]$$

$$= \frac{h}{3} [(y_0 + y_n) + 4(y_1 + y_3 + \cdots) + 2(y_2 + y_4 + \cdots)]$$

$$Where, h = \frac{b-a}{n} \\ \bullet \ n \ is \ no \ of \ sub-intervals. \\ F = first \ obs. = y_0 \\ L = last \ obs. = y_n$$

Example 1: Evaluate $\int_0^6 \frac{dx}{1+x}$ taking h=1 using Simpson's $\frac{1}{3}$ rule. Hence Obtain an approximate value of $\log_e 7$.

Solution:

Here
$$a = 0$$
, $b = 6 \& h = 1$

$$n = \frac{b-a}{h} = \frac{6-0}{1} = 6$$

Let,
$$y = f(x)$$

$$y = \frac{1}{1+x}$$

x	0	1	2	3	4	5	6	
у	1	0.5	0.3333	0.2555	0.2000	0.1667	0.1429	
	1 10	y(0) =	1	1				
$y(x) = \frac{1}{2}$	$\frac{1}{1+x}$	y(1) =	0.5					
y(x) =	$\frac{1}{1+x}$	y(2) =	0.3333					
	112	y(3) =						
y(x) =	$\frac{1}{1+x}$	y(4) =	0.2000	I				
y(x) =	$\frac{1}{1+x} \Longrightarrow$	<i>y</i> (5) =	0.1667	y(x) =	$\frac{1}{1+x} =$	<i>y</i> (6) =	= 0.1429	

x	0	1	2	3	4	5	6
у	1	0.5	0.3333	0.2500	0.2000	0.1667	0.1429
	y_0	y_1	y_2	y_3	y_4	<i>y</i> ₅	<i>y</i> ₆
$\int_{0}^{6} \frac{dx}{1+x}$ $= \frac{1}{3} [(1 + \frac{1}{3})^{2}]$	mpson's $\frac{1}{x} = \frac{h}{3} [(y + 0.1429)]$ $\frac{1}{3} = \frac{1}{3}$	$(y_0 + y_6) - (y_6) + (y_6) + (y_6)$					+ 0.2)]

Example 1:

$$\int_{0}^{6} \frac{dx}{1+x} = 1.9588$$

Find the exact solution of integral

By Direct Method,

$$\int_{0}^{6} \frac{dx}{1+x} = [\log(1+x)]_{0}^{6} = \log(7) - \log(1)$$

$$= \log 7$$

$$\int_{0}^{6} \frac{dx}{1+x} = \log 7 = 1.9588$$

Example 2:

Evaluate $\int_{-2}^{6} (1+x^2)^{\frac{3}{2}} dx$ using Simpson's $\frac{1}{3}$ rule with taking **six** subintervals. Use four digits after decimal points for calculation.

Solution:

Here
$$a = -2$$
, $b = 6 \& n = 6$

Nov

$$h = \frac{b-a}{n} = \frac{6+2}{6} = \frac{8}{6} = \frac{4}{3} \neq 1.3333$$

Let,
$$y = f(x) = (1 + x^2)^{-1}$$

5

x	-2	-2/3	2/3	2	10/3	14/3	6			
У	11.1803	1.7360	1.7360	11.1803	42.1479	108.7094	225.0622			
$y(x) = (1+x^2)^{\frac{3}{2}} \Longrightarrow y(-2) = (1+0)^{\frac{3}{2}} = 11.1803$ $y(x) = (1+x^2)^{\frac{3}{2}} \Longrightarrow y(-2/3) = 1.7360$										
y(x) =	$(1+x^2)^{\frac{1}{2}}$	$\frac{3}{2} \Rightarrow y(-$	-2/3) =	1.7360						
y(2/3)	= 1.7360	0								
y(2) =	11.1803									
y(10/3) = 42.14	479								
y(14/3) = 108.7094										
y(6) = 225.0622										

x	-2	-2/3	2/3	2	10/3	14/3	6
У	11.1803	1.7360	1.7360	11.1803	42.1479	108.7094	225.0622
	y_0	y_1	y_2	y_3	y_4	y_5	y_6
$\int_{0}^{1} e^{x} dx$ $= \frac{4}{9} [(11.4 + 42.147)]$	mpson's $= \frac{h}{3}[(y_0 + \frac{h}{3})] = \frac{h}{3}[(y_0 + \frac{h}{3})]$ $= \frac{h}{3}[(y_0 + \frac{h}{3})]$ $= \frac{h}{3}[(y_0 + \frac{h}{3})]$ $= \frac{h}{3}[(y_0 + \frac{h}{3})]$ $= \frac{h}{3}[(y_0 + \frac{h}{3})]$	· y ₆) + 4(25.0622)	+ 4(1.73				2(1.736

Exercise

1. Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by using Trapezoidal rule taking h=1.

[Ans: 1.4108]

- 1. Evaluate by Trapezoidal rule $\int_0^4 \frac{dx}{1+x^4}$ taking h=4. [Ans: 1.081]
- 2. Evaluate $\int_{-2}^{+2} \frac{3x \ dx}{(4+x)^2}$ by using Simpson's 1/3 rd rule with six intervals. [Ans: -0.710]
- 3. Evaluate $\int_0^4 e^x \ dx$ by using Simpson's 1/3 rd rule given that $e=2.72, e^2=7.39, e^3=20.09, e^4=54.6$ and compare the result with its actual value.

[Ans: 53.87]

Simpson's 3/8 Rule

➤ Consider the observation table

x	x_0	x_1	x_2	x_3	x_4	x_{n-1}	x_n
у	y_0	y_1	y_2	y_3	y_4	y_{n-1}	y_n

$$\int_{a}^{b} f(x) dx = \frac{3h}{8} [(F+L) + 2(Multiple \ of \ 3) + 3(Not \ Multiple \ of \ 3)]$$

$$= \frac{3h}{8} [(y_0 + y_n) + 2(y_3 + y_6 + \dots) + 3(y_1 + y_2 + y_4 \dots)]$$

Where, $h = \frac{b-a}{n}$ $F = first \ obs. = y_0$ $L = last \ obs. = y_n$

6

Example 1:

Evaluate $\int_0^3 \frac{dx}{1+x}$ taking n = 6 using Simpson's 3/8 rule. Hence Obtain an approximate value of $\log_e 2$. Estimate the bound of error involved in the process.

Solution:

Here
$$a = 0$$
, $b = 3 \& n = 6$

$$h = \frac{b-a}{n} = \frac{3-0}{6} = 0.5$$
Let, $y = f(x) = \frac{1}{1+x}$

Let,
$$y = f(x) = \frac{1}{1+x}$$

	х	0	0.5	1	1.5	2	2.5	3			
	у	1	0.6667	0.5000	0.4000	0.3333	0.2857	0.2500			
	$y(x) = \frac{1}{1+x} \Longrightarrow y(0) = \frac{1}{1+0} = 1$										
у	$y(x) = \frac{1}{1+x} \Longrightarrow y(0.5) = 0.6667$										
3	$v(x) = \frac{1}{2}$	$\frac{1}{1+x}$	y(1) =	0.5000							
3	$y(x) = \frac{1}{2}$	$\frac{1}{1+x}$	y(1.5) :	= 0.4000)						
3	$y(x) = \frac{1}{1+x} \Longrightarrow y(2) = 0.3333$										
y	$y(x) = \frac{1+x}{1+x} \Rightarrow y(2.5) = 0.2857 y(x) = \frac{1}{1+x} \Rightarrow y(3) = 0.2500$										

Example 2:

Evaluate $\int_4^{5.2} \log x \ dx$ using Simpson's 3/8 rule.

Solution:

Let
$$y = f(x) = \log x$$

Let
$$n = 6 \Rightarrow h = \frac{b-a}{n} = \frac{5.2-4}{6} = 0.2$$

4.6 1.3863 1.4351 1.4816 1.5261 1.5686 1.6094 1.6487

X	4	4.2	4.4	4.6	4.8	5.0	5.2
у	1.3863	1.4351	1.4816	1.5261	1.5686	1.6094	1.6487
By Simpson's 3/8 rule, $\int_{4}^{5.2} \log x dx = \frac{3h}{8} \left((y_0 + y_6) + 2(y_3) + 3(y_1 + y_2 + y_4 + y_5) \right)$							
$=\frac{3(0.2)}{8}\big((1.3863+1.6487)+2(1.5261)$							
+3(1.4351+1.4816+1.5686+1.6094)							
= 1.8278							