Problem Set 7

Ryan Coyne

October 27, 2023

1. Let $a, b, c, d \in \mathbb{R}$. Prove: $ac + bd \leq \sqrt{a^2 + b^2} \cdot \sqrt{c^2 + d^2}$. Proof: Consider the square of each side of the relation,

$$(ac+bd)^{2} \leq (a^{2}+b^{2})(c^{2}+d^{2})$$
$$a^{2}c^{2} + 2abcd + b^{2}d^{2} \leq a^{2}c^{2} + b^{2}c^{2} + a^{2}d^{2} + b^{2}d^{2}$$
$$2abcd \leq b^{2}c^{2} + a^{2}d^{2}.$$

Now, we rearrange the relation to relate it to a known quantity. In this case, 0,

$$b^2c^2 - 2abcd + a^2d^2 \ge 0$$

The left side can be easily factored, leading to

$$(bc - ad)^2 \ge 0,$$

which is trivially true in the real numbers. \blacksquare

2. Let $x, y, z \in \mathbb{R}$. Prove: $|x - z| \le |x - y| + |y - z|$. Proof: Note that the sum of arguments on the right is equal to the argument on the left. That is to say,

$$(x-y) + (y-z) = x - z.$$

Therefore, by the triangle inequality, the statement must be true. \blacksquare

3. Prove: For every two positive real numbers, a and b.

$$\frac{a}{b} + \frac{b}{a} \ge 2.$$

First, make a common denominator and add the fractions,

$$\frac{a}{b} + \frac{b}{a} = \frac{a^2}{ab} + \frac{b^2}{ab}$$
$$= \frac{a^2 + b^2}{ab}.$$

1

Next, multiply both sides by ab and rearrange,

$$\frac{a^2 + b^2}{ab} \ge 2$$
$$a^2 + b^2 \ge 2ab$$
$$a^2 - 2ab + b^2 \ge 0.$$

Now, factor the right side,

$$(a-b)^2 \ge 0.$$

This relation is true because the square of any real number is at least 0. Thus, the initial statement is true. \blacksquare

To find the solution set, we begin from $(a - b)^2 = 0$, we take the square root, finding x - y = 0, and therefore, y = x. However, we must not divide by zero, so the complete solution set is y = x where $x \neq 0$.

4. Let A and B be sets. Prove: $A \cup B = A \cap B$ if and only if A = B. (\Longrightarrow) Let $a \in A$. Then, $a \in A \cup B$, and by hypothesis, $a \in A \cap B$. Now, $a \in B$, for all $a \in A$. Thus, $A \subseteq B$.

Let $b \in B$. Then, $b \in A \cup B$, and by hypothesis, $b \in A \cap B$. Now, $b \in A$, for all $b \in B$. Thus, $B \subseteq A$.

Now, since $A \subseteq B$ and $B \subseteq A$, it follows that A = B by definition. (\iff) Since, A = B, it follows that

$$A \cup B = A \cup A$$
$$= A$$

and that

$$A \cap B = A \cap A$$
$$= A.$$

Therefore, $A \cup B = A \cap B$.

5. Let A, B, C be sets. Prove: $A \cap \overline{(B \cap C)} = \overline{(\overline{A} \cup B)} \cap \overline{(\overline{A} \cap \overline{C})}$.

Proof: We begin by showing that $A \cap \overline{(B \cap C)} \subseteq \overline{(\overline{A} \cup B)} \cap \overline{(\overline{A} \cap \overline{C})}$. For all $x \in A \cap \overline{(B \cap C)}$, $x \in A$. Thus, $x \notin \overline{A}$, and so $x \notin \overline{A} \cap \overline{C}$. Now, $x \notin \overline{(A \cup B)} \cap \overline{(A \cap \overline{C})}$, and so $x \in \overline{(\overline{A} \cup B)} \cap \overline{(\overline{A} \cap \overline{C})}$. Therfore, $A \cap \overline{(B \cap C)} \subseteq \overline{(\overline{A} \cup B)} \cap \overline{(\overline{A} \cap \overline{C})}$.

Next we show that $\overline{(\overline{A} \cup B)} \cap \overline{(\overline{A} \cap \overline{C})} \subseteq A \cap \overline{(B \cap C)}$. Let $y \in \overline{(\overline{A} \cup B)} \cap \overline{(\overline{A} \cap \overline{C})}$, so $y \notin \overline{(\overline{A} \cup B)} \cap \overline{(\overline{A} \cap \overline{C})}$.

6. For sets A and B, find a necessary and sufficient condition for

$$(A \times B) \cap (B \times A) = \emptyset.$$

 $A \times B = \{(a, b) | a \in A \text{ and } b \in B\}$

 $B \times A = \{(b, a) | b \in B \text{ and } a \in A\}$

If $(A \times B) \cap (B \times A) = \emptyset$, then (a, b) = (b, a) for some $a \in A$ and $b \in B$.

Now, $(A \times B) \cap (B \times A) = \emptyset$ if and only if $a \neq b$ for all $a \in A$ and $b \in B$.

7. Let A, B, C, and D be sets. Prove: $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$. Proof: First we showt that $(A \times B) \cap (C \times D) \subseteq (A \cap C) \times (B \cap D)$. Let $(x, y) \in (A \times B) \cap (C \times D)$. Then, $(x, y) \in A \times B$, and $(x, y) \in C \times D$. Thus, by definition, $x \in A, y \in B, x \in C$, and $y \in D$. Since x is in both A and $C, x \in A \cap C$, and since y is in both B and $D, y \in B \cap D$. Therefore, $(x, y) \in (A \cap C) \times (B \cap D)$. By following the steps in the reverse order, we can see that $(A \cap C) \times (B \cap D) \subseteq (A \times B) \cap (C \times D)$. Therefore, the statement holds for all A, B, C, and D.