Семинар №14.

Робастные статистики.

В реальных данных доля "выбросов" (выделяющихся значений) составляет от 1% до 10% процентов. Это происходит от большого количества неучтенных факторов (в медицине, психологии и пр.), сбоев оборудования (типа скачков напряжения в электросети – в экспериментальной физике), даже в астрономических таблицах встречается до 0,1% ошибок. Поэтому надо как-то реагировать на эти ошибки, когда мы работаем со статистическими данными. Например, отсекать далеко отстоящие наблюдения, переходить от значений членов выборки к их рангам и прочим методам, которые помогают устранить ошибки. Однако, надо следить и за тем, чтобы эффективность получаемых робастных (т.е. устойчивых к выбросам) оценок по сравнению с обычными оценками (т.е. отношение их асимптотических дисперсий) не была слишком низкой.

Одной из простых мер робастности является асимптотическая толерантность — это наибольшая доля выбросов в выборке, которую "выдерживает" статистика, не смещаясь вслед за выбросами на $+\infty$ или $-\infty$. Дадим формальное определение толерантности:

Определение. Пусть для оценки $\widehat{\theta}(x_{(1)},\dots,x_{(n)})$ (где $x_{(1)} \leq \dots \leq x_{(n)}$ – вариационный ряд числовой последовательности $\{x_i\}_{i=1}^n$) найдётся целое число $k,\ 0 \leq k < n$ такое, что

- 1) если $x_{(k+2)}, \ldots, x_{(n)}$ фиксированы, а $x_{(k+1)} \to -\infty$, то $\widehat{\theta}(x_{(1)}, \ldots, x_{(n)}) \to -\infty$;
- 2) если $x_{(1)}, \dots, x_{(n-k-1)}$ фиксированы, а $x_{(n-k)} \to +\infty$, то $\widehat{\theta}(x_{(1)}, \dots, x_{(n)}) \to +\infty$.

Обозначим через k_n^* наименьшее такое k. Асимптотической толерантностью оценки $\widehat{\theta}$ называется предел $\tau_{\widehat{\theta}} = \lim n \to \infty \frac{k_n^*}{n}$, если этот предел существует.

Очевидно, что толерантность выборочного среднего $\tau_{\overline{X}} = 0$, толерантность выборочной медианы $\tau_{\widehat{\mu}} = \frac{1}{2}$, а толерантность введенного ниже усеченного среднего $\tau_{\overline{X}\alpha} = \alpha$.

L-оценки.

Пусть $X_{(1)} \leq \ldots \leq X_{(n)}$ – вариационный ряд выборки $\{X_i\}_{i=1}^n$

Определение. L-оценка – линейная комбинация вида $\sum_{i=1}^n \omega_i X_{(i)}$.

Пример. Усеченное среднее $\overline{X}_{\alpha} = \frac{1}{n-2k}(X_{(k+1)} + \ldots + X_{(n-k)})$, где $k = [\alpha n]$ и $0 < \alpha < 0, 5$. Это несмещенная и состоятельная оценка параметра θ для симметричного относительно θ распределения.

Чтобы изучить асимптотическое поведение L-оценок, обозначим $\omega_{in}=\frac{1}{n}\lambda\left(\frac{i}{n+1}\right)$, где λ – некая функция, определенная на отрезке [0,1]. Определим также $\mu(F,\lambda)=\int\limits_0^1\lambda(t)F^{-1}(t)dt$ и $\sigma^2(F,\lambda)=\int\limits_0^1G^2(t)dt-\left(\int\limits_0^1G(t)dt\right)^2$, где F(t) – некая функция распределения с плотностью p(t), а G(t) – любая функция с $G'(t)=\frac{\lambda(t)}{p(F^{-1}(t))}$.

Теорема 1 $\{X_i\}_{i=1}^n$ – н.о.р.сл.в. на интервале (a,b), где $-\infty \le a < b \le +\infty$ с функцией распределения F, для которой выполнены следующие свойства:

- 1) $p(x) > 0 \ \forall x \in (a,b), \ \textit{где} \ p(x)$ плотность функции распределения F.
- 2) $EX_1^2 < +\infty$.

Потребуем еще, что $\lambda(t)$ – непрерывна почти всюду и ограничена, $\int_0^1 \lambda(t) dt = 1$.

Тогда для L -оценки $L_n=rac{1}{n}\sum_{i=1}^n\lambda\left(rac{i}{n+1}
ight)X_{(i)}$ справедлива сходимость

$$\sqrt{n}(L_n - \mu(F, \lambda)) \xrightarrow{d} \xi \sim N(0, \sigma^2(F, \lambda)) \ npu \ n \to \infty$$

Следствие. Пусть элементы выборки распределены согласно функции распределения $F(x-\theta)$, где F – симметрична относительно 0, а λ – симметрична относительно $\frac{1}{2}$. Тогда $\mu(F,\lambda)=\theta$.

Зададимся вопросом: при каком λ при фиксированной функции распределения F достигается минимум дисперсии?

Определение. Оценка $\widehat{\theta}_n$ называется асимптотически эффективной оценкой параметра θ , если $\sqrt{n}(\widehat{\theta}_n - \theta) \xrightarrow{d} N(0, \frac{1}{i(\theta)})$, где $i(\theta)$ – информация Фишера распределения P_{θ} .

Теорема 2 Пусть плотность p(x) функции распределения F(x) дважды дифференцируема почти всюду и $p(x) \to 0$ при $x \to \pm \infty$. Положим $\gamma(x) = -\frac{p'(x)}{p(x)}$. Тогда при $\lambda^*(t) = C\gamma'(F^{-1}(t))$ $\sigma^2(F, \lambda^*) = \frac{1}{i(\theta)}$, т.е. оценка L_n является асимптотически эффективной оценкой параметра $\mu(F, \lambda)$.

M-оценки.

Усеченное среднее \overline{X}_{α} — своеобразный компромисс между выборочным средним \overline{X} ($\alpha=0$) и выборочной медианой $\widehat{\mu}$ ($\alpha\to 0.5$) (т.е. и робастна, и эффективность не сильно уменьшается). Но можно действовать иначе: заметим, что \overline{X} и $\widehat{\mu}$ минимизируют соответственно $\sum (X_i-\theta)^2$ и $\sum |X_i-\theta|$. Хьюбер предложил строить оценки параметра θ с помощью минимизации "меры разброса" $\sum \rho_b(X_i-\theta)$, где $\rho_b(x)=\frac{x^2}{2}I\{|x|\leq b\}+(b|x|-\frac{b^2}{2})I\{|x|>b\}$ (такие оценки называются оценками Хьюбера). Обобщим этот метод в следующем определении.

<u>Определение.</u> M-оценка M_n параметра сдвига θ определяется для некоторой функции $\rho(x)$ как точка минимума по θ функции $\sum \rho(X_i - \theta)$.

Очевидно, что если $\rho(x)$ строго выпукла, то минимизирующее значение единственно. Примером M -оценок могут служить только что введенные нами оценки Хьюбера.

Кроме того, понятно, что если у функции $\rho(x)$ есть производная, то M_n есть одно из решений уравнения $\sum \rho'(X_i - \theta) = 0$.

Теорема 3 Пусть $\{X_i\}_{i\geq 1}$ – н.о.р.сл.в. с ф.р. $F(x-\theta)$, где p(x)=F'(x) – четная. Тогда при слабых предположениях относительно F и ρ' выполнено

$$\sqrt{n}(M_n - \theta) \xrightarrow{d} \xi \sim N(0, \sigma^2(F, \rho')), \text{ npu } n \to \infty,$$

где асимптотическая дисперсия равна $\sigma^2(F, \rho') = \frac{\int (\rho'(x))^2 p(x) dx}{\int \rho''(x) p(x) dx^2}$.

Замечание. Если $\rho(x) = -\ln p(x)$, то $\rho'(x) = \gamma(x) = -\frac{p'(x)}{p(x)}$. В этом случае минимизация суммы $\sum \rho(X_i - \theta)$ эквивалентно максимизации правдоподобия $\prod p(X_i - \theta)$, т.е. M -оценка параметра сдвига совпадает с оценкой максимального правдоподобия (ОМП) и поэтому является асимптотически эффективной.

R-оценки.

R-оценки ведут своё происхождение от ранговых критериев для проверки гипотез о значении параметра сдвига θ (см. статистику Манна-Уитни, критерий Уилкоксона, медиану Ходжеса-Лемана и прочие методы непараметрической статистики).

Пусть $X_{(1)} < \ldots < X_{(n)}$ — вариационный ряд выборки $\{X_i\}_{i=1}^n,\ d_1,\ldots,d_n$ — набор неотрицательных чисел. Рассмотрим $\frac{n(n+1)}{2}$ полусумм вида $\frac{X_{(j)}+X_{(k)}}{2}$ при $1 \le j \le k \le n$. Каждой такой полусумме припишем вес $\omega_{jk} = \frac{d_{n-(k-j)}}{\sum_{i=1}^n id_i}$. Легко убедиться, что $\sum_{i,k} \omega_{jk} = 1$.

Определение. Рассмотрим дискретное распределение, присваивающее вероятности ω_{jk} значениям $\frac{X_{(j)}+X_{(k)}}{2}$. Тогда R-оценка R_n есть медиана этого распределения.

Пример. 1) Если $d_1 = \ldots = d_{n-1} = 0$, $d_n = 1$, то $\sum i d_i = n$ и $\omega_{jk} = \frac{1}{n}$ при j = k, тогда дискретное распределение из определения R-оценки – равномерное на множестве значений $\{X_{(i)}\}$, $i \in \{1,\ldots,n\}$. Т.е. $R_n = med\{X_{(1)},\ldots,X_{(n)}\}$ – выборочная медиана.

2) Если $d_1 = \ldots = d_n = 1$, то все величины $\frac{X_{(j)} + X_{(k)}}{2}$ имеют одинаковый вес $\frac{2}{n(n+1)}$. Тогда $R_n = med\left\{\frac{X_{(j)} + X_{(k)}}{2}, j, k \in \{1, \ldots, n\}\right\}$ – так называемая медиана средних Уолша (называемая также медианой Ходжеса-Лемана) W.

Изучим теперь асимптотические свойства R-оценок. Пусть функция K(t) определена на отрезке [0,1], не убывает на нём и K(1-t)=-K(t). Положим $d_i:=d_{in}=K\left(\frac{i+1}{2n+1}\right)-K\left(\frac{i}{2n+1}\right)$.

Теорема 4 В модели $X_i \sim F(x-\theta)$, где F'(x) = p(x) – четная, при некоторых условиях на F и K выполнено

$$\sqrt{n}(R_n - \theta) \xrightarrow{d} N(0, \sigma^2(F, K)),$$

где
$$\sigma^2(F,K) = \int_0^1 K^2(t)dt / \left(\int_{\mathbb{R}} K'[F(x)]p^2(x)dx\right)^2$$
.

Асимптотическая эффективность R -оценки для заданной функции распределения F достигается при $K(t)=\gamma(F^{-1}(x)),$ где $\gamma(x)=-\frac{p'(x)}{p(x)},$ как и ранее.