LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS

Zijiang Yang

Background

- Personalized model: heterogenous distribution/ multiple downstream tasks
- Full Finetuning: updating all parameters of pre-trained model
 - Pretrained model $P_{\Phi_0}(y|x)$ with parameter Φ_0 , update Φ_0 to $\Phi_0 + \Delta\Phi$
 - Dimension of $\Delta\Phi$ = Dimension of Φ , too many parameters to update
 - Learn a different $\Delta\Phi$ for each downstream task
- Existing solutions
 - Adding adapter layers: introduce inference latency
 - Prompt tuning: hard to directly optimize the prompt

LORA

- Inspiration: The change in weights ΔW has a low intrinsic rank. We can train some dense layers by optimizing rank decomposition matrices of the dense layers' change.
- Update parameters:
 - $W_0 + \Delta W = W_0 + BA$
 - B $\in R^{d \times r}$, $A \in R^{r \times k}$, $r \ll \min(d, k)$
 - $O(r(d+k)) \ll O(dk)$
- Training A and B
 - Initialization: A= random Gaussian, B=zeros
 - Forward pass: $h = W_0x + \Delta Wx = W_0x + BAx$
 - Use Adam Adapter to train A and B

Applying LORA to Transformer

• Only adapting the attentions weights (W_q, W_k, W_v, W_o) for downstream tasks, freeze MLP layers.

• Benefits:

- Reduce memory and storage usage (VRAM, checkpoint size, GPUs)
- Easy to switch between tasks by only changing LORA parameters instead of full parameters

• Limitations:

• If we choose to absorb A and B into W to eliminate inference latency, it is not straight forward to batch inputs to different tasks with different A and B

Experiments

- Evaluate downstream task performance of Lora and other adaptation method on different models
- Lora trains fewer parameters without sacrificing too much accuracy

Model & Method	# Trainable Parameters	1	SST-2	MRPC	CoLA	QNLI	QQP	RTE	STS-B	Avg.
RoB _{base} (FT)*	125.0M	87.6	94.8	90.2	63.6	92.8	91.9	78.7	91.2	86.4
RoB _{base} (BitFit)*	0.1M	84.7	93.7	92.7	62.0	91.8	84.0	81.5	90.8	85.2
$RoB_{base} (Adpt^{D})^*$	0.3M	$87.1_{\pm .0}$	$94.2_{\pm .1}$	$88.5_{\pm 1.1}$	$60.8_{\pm.4}$	$93.1_{\pm .1}$	$90.2_{\pm.0}$	$71.5_{\pm 2.7}$	$89.7_{\pm .3}$	84.4
$RoB_{base} (Adpt^{D})^*$	0.9M	$87.3_{\pm .1}$	$94.7_{\pm .3}$	$88.4_{\pm .1}$	$62.6_{\pm .9}$	$93.0_{\pm.2}$	$90.6_{\pm.0}$	$75.9_{\pm 2.2}$	$90.3_{\pm .1}$	85.4
RoB _{base} (LoRA)	0.3M	$87.5_{\pm .3}$	$\textbf{95.1}_{\pm .2}$	$89.7_{\pm .7}$	$63.4_{\pm 1.2}$	$93.3_{\pm .3}$	$90.8_{\pm.1}$	$\pmb{86.6}_{\pm.7}$	$\textbf{91.5}_{\pm .2}$	87.2
RoB _{large} (FT)*	355.0M	90.2	96.4	90.9	68.0	94.7	92,2	86.6	92.4	88.9
RoB _{large} (LoRA)	0.8M	$90.6_{\pm .2}$	$96.2_{\pm.5}$	$\textbf{90.9}_{\pm 1.2}$	$\textbf{68.2}_{\pm 1.9}$	$\textbf{94.9}_{\pm.3}$	$91.6 \scriptstyle{\pm .1}$	$\textbf{87.4}_{\pm 2.5}$	$\textbf{92.6}_{\pm .2}$	89.0
RoB _{large} (Adpt ^P)†	3.0M	90.2 _{±.3}	96.1 _{±.3}	90.2 _{±.7}	68.3 _{±1.0}	94.8 _{±.2}	91.9 _{±.1}	83.8 _{±2.9}	92.1 _{±.7}	88.4
$RoB_{large} (Adpt^{P})^{\dagger}$	0.8M	90.5 _{±.3}	$96.6_{\pm .2}$	$89.7_{\pm 1.2}$	$67.8_{\pm 2.5}$	94.8 $_{\pm .3}$	$91.7_{\pm .2}$	$80.1_{\pm 2.9}$	$91.9_{\pm .4}$	87.9
$RoB_{large} (Adpt^{H})^{\dagger}$	6.0M	89.9 _{±.5}	$96.2_{\pm.3}$	$88.7_{\pm 2.9}$	$66.5_{\pm 4.4}$	$94.7_{\pm .2}$	$92.1_{\pm .1}$	$83.4_{\pm 1.1}$	$91.0_{\pm 1.7}$	87.8
$RoB_{large} (Adpt^{H})^{\dagger}$	0.8M	90.3 _{±.3}	$96.3_{\pm .5}$	$87.7_{\pm 1.7}$	$66.3_{\pm 2.0}$	$94.7_{\pm .2}$	$91.5_{\pm.1}$	$72.9_{\pm 2.9}$	$91.5_{\pm.5}$	86.4
RoB _{large} (LoRA)†	0.8M	$90.6_{\pm .2}$	$96.2_{\pm.5}$	90.2 $_{\pm 1.0}$	$68.2_{\pm1.9}$	94.8 _{±.3}	$91.6_{\pm.2}$	85.2 $_{\pm 1.1}$	92.3 $_{\pm .5}$	88.6
DeB _{XXL} (FT)*	1500.0M	91.8	97.2	92.0	72.0	96.0	92.7	93.9	92.9	91.1
DeB _{XXL} (LoRA)	4.7M	$ 91.9_{\pm .2} $	$96.9_{\pm.2}$	$\textbf{92.6}_{\pm.6}$	$\textbf{72.4}_{\pm 1.1}$	$\textbf{96.0}_{\pm.1}$	$\textbf{92.9}_{\pm.1}$	$\textbf{94.9}_{\pm.4}$	$\textbf{93.0}_{\pm.2}$	91.3

Experiments

Model & Method	# Trainable	E2E NLG Challenge					
	Parameters	BLEU	NIST	MET	ROUGE-L	CIDEr	
GPT-2 M (FT)*	354.92M	68.2	8.62	46.2	71.0	2.47	
GPT-2 M (Adapter ^L)*	0.37M	66.3	8.41	45.0	69.8	2.40	
GPT-2 M (Adapter ^L)*	11.09M	68.9	8.71	46.1	71.3	2.47	
GPT-2 M (Adapter ^H)	11.09M	$67.3_{\pm .6}$	$8.50_{\pm .07}$	$46.0_{\pm.2}$	$70.7_{\pm .2}$	$2.44_{\pm .01}$	
GPT-2 M (FT^{Top2})*	25.19M	68.1	8.59	46.0	70.8	2.41	
GPT-2 M (PreLayer)*	0.35M	69.7	8.81	46.1	71.4	2.49	
GPT-2 M (LoRA)	0.35M	$ 70.4_{\pm .1}$	$\pmb{8.85}_{\pm .02}$	$\textbf{46.8}_{\pm .2}$	$\textbf{71.8}_{\pm.1}$	$\pmb{2.53}_{\pm .02}$	
GPT-2 L (FT)*	774.03M	68.5	8.78	46.0	69.9	2.45	
GPT-2 L (Adapter ^L)	0.88M	$69.1_{\pm.1}$	$8.68_{\pm.03}$	$46.3_{\pm .0}$	$71.4_{\pm .2}$	$\pmb{2.49}_{\pm.0}$	
GPT-2 L (Adapter ^L)	23.00M	$68.9_{\pm .3}$	$8.70_{\pm .04}$	$46.1_{\pm .1}$	$71.3_{\pm .2}$	$2.45_{\pm .02}$	
GPT-2 L (PreLayer)*	0.77M	70.3	8.85	46.2	71.7	2.47	
GPT-2 L (LoRA)	0.77M	$oxed{70.4}_{\pm.1}$	$\pmb{8.89}_{\pm .02}$	$\textbf{46.8}_{\pm .2}$	$\textbf{72.0}_{\pm.2}$	$2.47_{\pm .02}$	

Experiments

- Scaling up to GPT-3
- LoRA matches or exceeds the fine-tuning baseline on all three datasets
- Not all methods benefit monotonically from having more trainable parameters

Which weight matrices in Transformer should we apply LORA to?

• Even we only adapt Lora to attention heads, there are still 4 kinds of weights to be finetuned. Which one is more appropriate?

	# of Trainable Parameters = 18M							
Weight Type Rank r	$\left \begin{array}{c}W_q\\8\end{array}\right $	W_k 8	$\frac{W_v}{8}$	W_o	W_q, W_k 4	$W_q, W_v $ 4	W_q, W_k, W_v, W_o	
WikiSQL (±0.5%) MultiNLI (±0.1%)	1		73.0 91.0	73.2 91.3	71.4 91.3	73.7 91.3	73.7 91.7	

What is the optimal rank r for LORA?

- Adapting W_q and W_v can achieve very high accuracy with rank r=1, but training W_q alone needs much larger r.
- In creasing r does not cover a more meaningful subspace
 - -> Updating matrix \(\Delta W \) could have a very small "intrinsic rank"

	Weight Type	r = 1	r = 2	r = 4	r = 8	r = 64
WikiSQL(±0.5%)	W_{α}	68.8	69.6	70.5	70.4	70.0
	W_q, \dot{W}_v	73.4	73.3	73.7	73.8	73.5
	W_q, W_k, W_v, W_o	74.1	73.7	74.0	74.0	73.9
	W_q	90.7	90.9	91.1	90.7	90.7
MultiNLI (±0.1%)	W_q, \hat{W}_v	91.3	91.4	91.3	91.6	91.4
	W_q, W_k, W_v, W_o	91.2	91.7	91.7	91.5	91.4

Subspace similarity between different r

- We do singular value decomposition to $A_{r=8}$ and $A_{r=64}$, and get $U_{r=8}$, $U_{r=64}$. Then we measure the normalized subspace similarity based on Grassmann distance.
- The top singular-vector directions of $A_{r=8}\ and\ A_{r=64}$ are the most useful

How does the adaptation matrix ΔW compare to W?

- We project W onto the r-dimensional subspace of ΔW by computing U^TWV^T
- ΔW has a stronger correlation with W compared to a random matrix
 - -> ΔW enhance some features of W
- \bullet ΔW only amplifies directions that are not emphasized in W instead of repeating the top singular directions
- The amplification factor is huge

		r=4	:	$\begin{array}{ c c c c }\hline & r = 64 \\ \Delta W_q & W_q & {\rm Random} \\ \end{array}$			
	ΔW_q	W_q	Random	ΔW_q	W_q	Random	
$ U^{\top}W_qV^{\top} _F =$	0.32	21.67	0.02	1.90	37.71	0.33	
$ W_q _F = 61.95$	$ \qquad \Delta$	$ W_q _F$ =	= 6.91	<u> </u> <u> </u>	$ W_q _F$ =	= 3.57	

Discussion

- Are LoRA adapters more robust to malicious client updates compared to full-model FL?
- If we apply Lora to federated learning, will the heterogeneity of data among clients undermine the "low-rank assumption" of LoRA?
- Does LoRA, by only transmitting low-rank parameters, provide better privacy protection?