CSC 2204 Finite Automata Theory and Formal Languages

Learning Outcomes

- Describe the fundamental concepts of formal language theory and their properties.
- Design languages and machines using different representations.
- Transform between equivalent notations and machines.
- Implement machines.

Why?

- Designing and Checking the behavior of Digital Circuits.
- Components of Compilers.
- Scanning large bodies of text (e.g. Web Pages)
- Communication protocols

Background

- David Hilbert
 - German mathematician.
 - Discovered and developed a broad range of fundamental ideas.
 - Put forth a most influential list of 23 unsolved problems.

Background

- Alan Mathison Turing
 - English mathematician.
 - Development of theoretical computer science.
 - Turin Machine, can be considered a model of General-purpose computer.

Historical Perspective

1930	Alan Turing studies Turing machinesDecidabilityHalting problem
1940 - 50s	 "Finite automata" machines Chomsky Hierarchy for formal languages
1969	NP-Hard
1970 -	 Modern computer science: Compilers, Computational Theory Complexity Theory

Background

- Automata Theory
 - Study of abstract computing devices, or "machines".
- Automaton
 - An abstract computing device.
 - Need not even be a physical hardware!
- Fundamental Question
 - Find out what different models of machines can do and cannot do.

Course Organization

- Sections:
 - Regular languages and their Descriptors
 - Context-free languages and their Descriptors
 - Turing Machines and TM variants
 - Decidability
- Outlines

Textbook:

Introduction to computer theory, Daniel I. A. Cohen.

Reference Books:

- Introduction to Automata Theory, Languages and Computation, J.E. Hopcroft, R. Motwani, J.D. Ullman, Addison Wesley/Pearson.
- Automata, Computability and Complexity: Theory and Applications, by Elaine Rich.
- An Introduction to Formal Languages and Automata, by Peter Linz, Jones & Bartlett Publishers.
- Theory of Automata, Formal Languages and Computation, by S. P. Eugene, Kavier, New Age Publishers.

Marks Distribution

- 3 Quizzes, each of 5 marks (15%)
- 3 Assignment, each of 5 marks (15%)
- 1 Midterm (Theory: 25%, Viva: 5%)
- 1 Final (Theory: 30%, Viva: 10%)