COMMUNICATION USING LASER

A Brief Overview

COMMUNICATION USING LASER

Solar Panel as Receiver

2N2222 Transistor (Pre-Amplifier)

D882 Transistor (Power Amplifier)

Logic Level Convertor (3.3V & 5V)

TRANSMITTER SECTION

RECEIVER SECTION

COMMUNICATION USING LASER

We are thinking of implementing this design as a High-Bandwidth & Long Distance Reliable Mode of Analog-Digital Conversion using pulsating LASER Beams. The transmitter will include an Arduino & the receiver can be another microcontroller like Arduino, NodeMCU or Raspberry Pi. We can transmit sensor data / preset data / user custom data and maybe multimedia content over long distances at extremely-high power efficiency & ultra-low cost margins to generate a complete IOT Network without cabling or a dedicated Networking system like WIFI.

We initially thought of using an LDR in the Receiver section but the LDR is usually biased by the power supply & usually slow to react to changing intensity of light patters so we required a more reliable approach.

Solar panel was the best candidate, since it was extremely accurate & it generates voltage on its own when excited by charged photons. We just amplified that little current it generated just from a simple laser beam (we used a Focussed Torch since we have damaged our Laser Beam) using 2 High Gain and 2 Power Transistors to create a fast-accurate signal. With little calibration with capacitors, shunt resistances and signal diodes, we could isolate noise from the circuit as well.

TINKERCAD TO REALITY

Some Shots of the Alpha Build

Section : C CSE (C6)

Mananjay Roy Tandrita Dey Kajal Singha Deepprabha Malviya Baishakhi Dutta Tuhinadri Banerjee

THANK YOU