

Computer Vision für Mensch-Maschine Schnittstellen

Vorlesung WS 2017/18
Prof. Dr.-Ing. Rainer Stiefelhagen, Dr. Saquib Sarfraz
Maschinensehen für MMI, Institut für Anthropomatik & Robotik
Studienzentrum für Sehgeschädigte

Institut für Anthropomatik und Robotik, Fakultät für Informatik

Lecture 3

FACE DETECTION

Motivation – Why Face Detection? (1)

- Person Identification
- Perception of emotional expressions
- Mouth as source of speech
- Lipreading
- Perception of intention & attention
- Perception of age
- Perception of gender
- Perception of ethnical race

How would you approach it?

- Features ?
- Classifier ?

Color Based Face Detection

- Rationale: human skin has consistent color, which is distinct from many objects
- Possible approach:
 - 1. find skin colored pixels
 - 2. Group skin colored pixels
 - (and apply some heuristics) to find the face

Karlsruher Institut für Technologie

Color

- Grayscale Image: Each pixel represented by one number
 - typically integer between 0 and 255
- Color image: Pixels represented by three numbers
- Different representations exist → "Color Spaces"

Color Spaces

- **RGB**: most widely used, specifies colors in terms of the primary colors red (R), green (G), and blue (B).
- HSV/HSI: hue (H), saturation (S) and value(V)/intensity (I)
 - Closely related to human perception (hue, colorfulness and brightness)

Color Spaces (2)

- Class Y spaces: YCbCr (Digital Video), YIQ (NTSC), YUV (PAL)
 - Y channel contains brightness, other two channels store chrominance (U=B-Y, V=R-Y)
 - Conversion from RGB to Yxx is a linear transformation
- Perceptually uniform spaces: e.g. CIE-Lab, CIE-Luv, ...
 - Perceived color difference is uniform to difference in color values
 - Euclidian distance can be used for color comparison

Color Spaces (3)

- Chromatic Color Spaces
 - Two color channels containing chrominance (colour) information
 - HS (taken from HSV)
 - UV (taken from YUV)
 - Normalized rg from RGB:
 - r = R / (R+G+B)
 - g = G / (R+G+B)
 - \bullet b = B / (R+G+B)
- Motivation: sometimes it is argued that chromatic skin color models are more robust

Skin Color Distribution – Examples (1)

Skin Color Distribution – Examples (2)

Problems!

 Reflected color depends on spectrum of the light source (and properties of the object / surface)

Foundations of Vision, by Brian Wandell, Sinauer Assoc., 1995

- If the light source / illumination changes, the reflected color signal changes!
- This is problematic!

How to model skin color?

- Non-parametric models
 - → typically histograms
- Parametric models
 - Gaussian Model
 - Gaussian Mixture Model
- Or just learn decision boundaries between classes
 - → discriminative model
 - ANN, SVM, ...

Histogram as skin color model

- Works very well in practice
- Memory size quickly gets high
 - 128MB if n=256 (RGB space),
 - 256KB if n=32 (RGB space)
- A large number of labelled skin and non-skin samples is needed!

Histogram Backprojection

The simplest (and fastest) way to utilize histogram information is the histogram backprojection

- Each pixel in the backprojection is set to the value of the (skin-color) histogram bin indexed by the color of the respective pixel
 - A color x is considered as skin color if $H_+(x) > \theta$

Histogram Matching

- Backprojection is good, when the color distribution of the target is monomodal.
- Backprojection is not optimal, when the target is multi colored!
- Solution: Build a histogram of the image within the search window, and compare it to the target histogram.
- Many distance metrics for histograms, e.g.:
 - Battacharya distance
 - Histogram intersection
 - Earth-movers distance,...

Histogram Backprojection vs. Matching

- Histogram Backprojection
 - Compares color of a single pixel with color model
 - Fast and simple
 - Can only cope well with mono-modal distributions
 - sufficient for skin-color classification
- Histogram Matching / Intersection
 - Compares color histogram of image patch with color model
 - Better performance
 - Can cope with multi-modal distributions
 - Computationally expensive

Other Models: Gaussian Density Models

- Gaussian Densities
 - Assume that the distribution of skin colors p(x) has a parametric functional form
 - **Most common funtion:** Gaussion function $G(\mathbf{x}; \mu, \mathbf{C})$:

$$p(x|skin) = G(\mathbf{x}; \mu, \mathbf{C}) = (2\pi)^{-d/2} |\mathbf{C}|^{-1/2} \exp \{-1/2 (\mathbf{x} - \mu)^{\mathsf{T}} \mathbf{C}^{-1} (\mathbf{x} - \mu)\}$$

- Mean μ and covariance matrix **C** are estimated from a training set of skin colors $S = \{x_1, x_2, ..., x_N\}$:
 - $\mu = E\{x\}$, $C = E\{(x \mu) (x \mu)\}$
- A color is considered as skin color if
 - $p(x|skin) > \theta$ or
 - p(x|skin) > p(x|non-skin)

Mixture of Gaussians Models

- Mixture of Gaussians
 - One Gaussian might not be sufficient to describe the distribution of skin colors (e.g. in HS-space)

$$p(x) = \sum_{i=1}^{K} \pi_i G(x, \mu_i, C_i)$$

- Parameter set

 can be estimated using the EM algorithm
 - Iteratively changes parameters so as to maximize the log-likelihood of the training set:

$$L = \log \prod_{i=1}^{N} p(x_i \mid \Phi)$$

- A color is considered as skin color if
 - $p(x|skin) \ge \theta$
 - \bullet or p(x|skin) > p(x|non-skin)

Bayes Classifier

- Skin Classification using Bayes Decision Rule
 - Minimum cost decision rule
 - Classify pixel to skin class if P(Skin|x) > P(Non-Skin|x)
 - Decision Rule: $\frac{p(\mathbf{x} \mid Skin)}{p(\mathbf{x} \mid Non Skin)} \ge \frac{P(Non Skin)}{P(Skin)}$
 - The classconditionals $p(x|\omega)$ can be estimated from the corresponding histograms:

$$p(x \mid \omega_i) = h_i(x) / \sum_x h_i(x),$$

where $h_i(x)$ is the count of pixels from class ω_i that have value x

Discriminative Models / Classifiers

- Artificial Neural Networks
- Support Vector Machine

Many possible approaches ...

- Histogram backprojection / matching
- Gaussian / Gaussian Mixture model
- Bayes Classification
- Discriminative approaches: SVM, ANN
- Different color models
 - 3D color models: RGB, HSV, ...
 - Chromatic color models (2D)
- Which approach is best?

Performance Measures

Performance Measures

- Measuring the performance of object recognition algorithms is not trivial
- There are different measures depending on the application
- 1. For classification (i.e. yes/no decision, if object is present or not)
 - ROC (Receiver-Operating-Characteristic)
- 2. For localization (i.e. detecting the object's position)
 - RPC (Recall-Precision-Curve)
 - DET (Detection Error Trade-Off)

Classifying a hypothesis

When comparing recognition hypotheses with ground-truth annotations have to consider four cases:

Example:

	Predicted positive	Predicted negative
Positive examples (Pos)	True positive (TP)	False negative (FN)
Negative example (Neg)	False positive (FP)	True negatives (TN)

Prediction: Yes

Case: TP

No FN

Yes

FP

No TN

ROC

- Used for the task of classification
- Measures the trade-off between true positive rate and false positive rate:

true positive rate =
$$\frac{TP}{Pos} = \frac{TP}{TP+FN}$$

false positive rate = $\frac{FP}{Neg} = \frac{FP}{FP+TN}$

- Example:
 - Algorithm X detects 80% of all faces (true positive rate), while making 25% error on images not containing faces

ROC

- Each prediction hypothesis has generally an associated probability value or score
- The performance values can therefore plotted into a graph for each possible score as a threshold

Skin-color: Analysis and Comparison

- Phung et al., Skin segmentation using color pixel classification: Analysis and comparision, IEEE PAMI, Vol.27 (1), Jan. 2005
- Database: ECU face and skin detection database
 - 4000 images, mainly from the Web, diversity of background, illumination, face & skin types
 - 12.000 face images, 2000 landscape images

ID	Classifier	Classifier	Color
		Parameters	Representation
CbCr-fixed	CbCr fixed-range: $77 \le Cb \le 127$ and $133 \le Cr \le 173$	[9]	CbCr
HS-fixed	HS fixed-range: $0.23 \le S \le 0.68$ and $0 \le H \le 50^{\circ}$	[11]	HS
GT plane-set	Garcia & Tziritas' plane set: skin cluster by 8 planes in YCbCr	[10]	YCbCr
Bayesian	Bayesian classifier with the histogram technique: 256 ³ bins	trained	RGB
2DG-pos	2-D unimodal Gaussian of skin	trained	CbCr
3DG-pos	3-D unimodal Gaussian of skin	trained	YCbCr
3DG-pos/neg	3-D unimodal Gaussians of skin and nonskin	trained	YCbCr
3DGM	3-D Gaussian mixture of skin and nonskin	[4]	RGB
MLP	Multilayer perceptron	trained	RGB

Skin-color: Analysis and Comparison (2)

Conclusions

- Bayesian approach and MLP worked best
 - Bayesian approach needs much more memory
- Approach is largely unaffected by choice of color space, but
- Results degraded when only chrominance channels were used

Phung et al., Skin segmentation using color pixel classification: Analysis and comparision, IEEE PAMI, Vol.27 (1), Jan. 2005

Institut für Anthropomatik und Robotik

From Skin-Colored Pixels to Faces

- Skin-colored pixels need to be grouped into object representations
- Problems: skin-colored background, further skin-colored body parts (hands, arms, ...), Noise, ...

Perceptual Grouping (1)

- Morphological Operators: Operators performing an action on shapes where the input and output is a binary image.
- Threshold each pixel's skin affiliation → Binary Image

Perceptual Grouping (2)

- Morphological Erosion:
 - Remove pixels from edges of objects
 - Set pixel value to min value of surrounding pixels

Perceptual Grouping (3)

- Morphological Dilatation:
 - Add pixels to edges of objects
 - Set pixel value to max value of surrounding pixels

Perceptual Grouping (4)

- Morphological Opening:
 - Apply erosion, then dilatation
 - Goal:
 - Smooth outline
 - Open small bridges
 - Eliminate outliers

Perceptual Grouping (5)

- Morphological Closing:
 - Apply dilatation, then erosion
 - Goal:
 - Smooth inner edges
 - Connect small distances
 - Fill unwanted holes

Perceptual Grouping (6)

- Apply morphological closing then morphological opening
- Resulting image is reduced to connected regions of skin color (blobs)

From Skin Blobs To Faces

- Goal: align bounding box around face candidate
- Important for:
 - Face Recognition
 - Head Pose Estimation
- Different approaches:
 - Choose cluster with biggest size
 - Ellipse fitting (approximate face region by ellipse)
 - Heuristics to distinguish between different skin clusters
 - Use temporal information (tracking)
 - Facial Feature Detection
 - **.** . . .

Real-time color-based face tracking (1996)

J. Yang & A. Waibel, A real-time face tracker, WACV 1996

- Chromatic skin color model (r,g)
- Color modelled using one Gaussian
- Color-model gradually adapted to cope with illumination changes
- Active camera control
- Runs @ 15-30 fps (in 1996!), depending on face size

Summary – Skin color classification

- Different color spaces and classifiers can be used
 - Models: histograms, Gaussian Models, Mixture of Gaussians Model
 - Histogram-backprojection / Histogram matching
 - Bayes classifier
 - Discriminative Classifiers (ANN, SVM)
- Bayesian classifier and ANN seem to work well
 - Sufficient training data is needed for modeling the pdf, in particular for Bayesian approach (positive & negative pdfs learned)
- Advantages: Fast, rotation & scale invariant, robust against occlusions
- Disadvantages:
 - Affected by illumination
 - Cannot distinguish head and hands
 - Skin-colored objects in the background problematic
- Metric: ROC curve used to compare classification results / methods
 - True positive rate vs. false positive rate

Institut für Anthropomatik und Robotik

References

- Phung et al, Skin Segmentation Using Color Pixel Classification: Analysis and Comparison, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, 1, Jan. 2005
- Michael J. Swain and Dana H. Ballard, Color Indexing, International Journal on Computer Vision, 7:1, 11-32 (1991)