

<u>Help</u>

konainniaz 🗸

Next >

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u>

## ☆ Course / Week 3: Generative Modeling II / Problem Set 3

G



## **Problem Set 3**

☐ Bookmark this page

#### Problem 1

1/1 point (graded)

A data set consists of 200 points in  $\mathbb{R}^{80}$ . If we store these in a matrix, with one point per row, what is the dimension of the matrix?

- 200 × 80
- O 80 × 200
- O 200 × 1
- O 1 × 80



Submit

#### Problem 2

3/3 points (graded)

For 
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
 and  $B = \begin{pmatrix} -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}$ , compute

a) 
$$A^T =$$

- $\begin{pmatrix}
  4 & 5 & 6 \\
  1 & 2 & 3
  \end{pmatrix}$
- $\begin{pmatrix}
  1 & 2 \\
  3 & 4 \\
  5 & 6
  \end{pmatrix}$
- $\begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$
- $\begin{pmatrix}
  6 & 3 \\
  5 & 2 \\
  4 & 1
  \end{pmatrix}$



| $ \begin{pmatrix} 2 & 2 & 4 \\ 4 & 6 & 6 \end{pmatrix} $                                             |       |
|------------------------------------------------------------------------------------------------------|-------|
| $ \bigcirc \begin{pmatrix} 0 & 2 & 4 \\ 5 & 4 & 6 \end{pmatrix} $                                    |       |
| $ \begin{pmatrix} 0 & 0 & 2 \\ 5 & 5 & 6 \end{pmatrix} $                                             |       |
| $ \begin{array}{ccc}  & 6 & 3 & 1 \\ 2 & 4 & 7 \end{array} $                                         |       |
| ✓                                                                                                    |       |
| c) $A - B =$                                                                                         |       |
| $ \begin{array}{ccc}  & 2 & 0 & 0 \\  & 1 & 0 & 1 \end{array} $                                      |       |
| $ \begin{array}{c cccc} \bullet & \begin{pmatrix} 2 & 2 & 2 \\ 3 & 6 & 6 \end{pmatrix} \end{array} $ |       |
| $ \begin{pmatrix} 2 & 2 & 2 \\ 1 & 3 & 6 \end{pmatrix} $                                             |       |
| $ \begin{array}{c cccc}  & 2 & 1 & 0 \\ 3 & 1 & 1 \end{array} $                                      |       |
| ✓                                                                                                    |       |
| Submit                                                                                               |       |
| Problem 3                                                                                            |       |
| 2/2 points (graded) Let $x = (1, 0, -1)$ and $y = (0, 1, -1)$ .                                      |       |
| a) What is $x \cdot y$ ?                                                                             |       |
| 1                                                                                                    |       |
| b) What is the angle between these two vectors, in degrees (give a number in the range 0 to          | 180)? |
| 60                                                                                                   |       |

| Submi     |
|-----------|
|           |
| Proble    |
| 2/2 point |

#### em 4

ts (graded)

For each pair of vectors below, say whether or not they are orthogonal.

a) (1, 3, 0, 1) and (-1, -3, 0, -1)

not orthogonal ~

b) (1, 3, 0, 1) and (1, 3, 0, -10)

orthogonal

Submit

## Problem 5

1/1 point (graded)

Find the unit vector in the same direction as x = (1, 2, 3).

- $\bigcirc$  (1, 2, 3)/6
- (1,2,3)/14
- $\bigcirc$  (1, 2, 3)/ $\sqrt{7}$
- $(1,2,3)/\sqrt{14}$



Submit

## Problem 6

1/1 point (graded)

Find all unit vectors in  $\mathbb{R}^2$  that are orthogonal to (1, 1).

- (1, -1) and (-1, 1)
- (1,1)/2 and (-1,-1)/2
- $\checkmark$   $(1, -1)/\sqrt{2}$  and  $(-1, 1)/\sqrt{2}$

# Problem 7 1/1 point (graded) How would you describe the set of all points $x \in \mathbb{R}^d$ with $x \cdot x = 25$ ? Select all that apply. $\checkmark$ All points of $\ell_2$ length 5. The surface of a sphere that is centered at the origin, of radius 25. $\square$ All points of $\ell_2$ length 25. ✓ The surface of a sphere that is centered at the origin, of radius 5. Submit Problems 8-17 correspond to "Linear algebra II: matrix products and linear functions" Problem 8 1/1 point (graded) Which of the following is a linear function of $x \in \mathbb{R}^3$ ? Select all that apply. $2x_1 - 3x_2$ Submit Problem 9 1/1 point (graded) True or false: the function $f(x) = 2x_1 - x_2 + 6x_3$ can be written as $w \cdot x$ for $x \in \mathbb{R}^3$ , where w = (2, -1, 6). True False Submit

Problem 10

Consider the linear function that is expressed by the matrix  $\begin{pmatrix} 1 & 2 & 0 \\ 3 & 0 & -1 \end{pmatrix}$ .

This function maps vectors in  $\mathbb{R}^p$  to  $\mathbb{R}^q$ .

a) What is p?

3

b) What is q?

2

c) Which of the following vectors are mapped to zero?

**✓** (2, −1, 6)

**✓** (-4, 2, -12)

(1,4,-1)

(4, -2, 1)

~

Submit

## Problem 11

3/3 points (graded)

Compute the product:  $\begin{pmatrix} 1 & 0 & -1 \\ 2 & 3 & 4 \end{pmatrix} \begin{pmatrix} 3 & 0 & 1 \\ 0 & 0 & 1 \\ 2 & 6 & 0 \end{pmatrix}$ :

$$= \begin{pmatrix} 1 & a & 1 \\ 14 & b & c \end{pmatrix}$$

a =

-6 ✓

b =

24



b) What is  $xx^T$ ?

$$xx^T = \begin{pmatrix} 1 & a & b \\ 3 & 9 & c \\ 5 & 15 & d \end{pmatrix}$$

25

Submit

d =

## Problem 16

1/1 point (graded)

Vectors  $x, y \in \mathbb{R}^d$  both have length 2. If  $x^Ty = 2$ , what is the angle between x and y, in degrees (the answer is an integer in the range 0 to 180)?

60

Submit

## Problem 17

2/2 points (graded)

The line shown below can be expressed in the form  $w \cdot x = 12$  for  $x \in \mathbb{R}^2$ . What is w?





 $w = (w_1, w_2)$ 

 $w_1 =$ 

3

 $w_2 =$ 

4

Submit

Problems 18-24 correspond to "Linear algebra III: square matrices as quadratic functions"

## Problem 18

4/4 points (graded)

The quadratic function  $f: \mathbb{R}^3 \to \mathbb{R}$  given by

$$f(x) = 3x_1^2 + 2x_1x_2 - 4x_1x_3 + 6x_3^2$$

can be written in the form  $x^TMx$  for some symmetric matrix M. What are the missing entries in M?

$$M = \begin{pmatrix} a & 1 & b \\ 1 & c & 0 \\ -2 & d & 6 \end{pmatrix}$$

a =

3

b =

-2

0 d =Submit Problem 19 7/7 points (graded) Answer the following questions about the quadratic function  $f: \mathbb{R}^3 \to \mathbb{R}$  associated with the matrices A.a) True or false: the quadratic function associated with A = diag(6, 2, -1) is  $f(x_1, x_2, x_3) = 6x_1^2 + 2x_2^2 - x_3^2$ . True False b)  $A = \begin{pmatrix} 1 & 2 & 4 \\ 2 & -1 & 4 \\ 2 & -2 & 1 \end{pmatrix}$ Find the coefficients of the function  $f(x_1, x_2, x_3) = ax_1^2 + bx_1x_2 + cx_1x_3 + dx_2^2 + ex_2x_3 + fx_3^2$  generated by this matrix. a =b =c =d =-1

e =2 f =Submit Problem 20 1/1 point (graded) Which of the following matrices is necessarily symmetric? Select all that apply.  $\triangle$   $AA^T$  for arbitrary matrix A.  $\checkmark$   $A^TA$  for arbitrary matrix A.  $\checkmark$   $A + A^T$  for arbitrary square matrix A.  $A - A^T$  for arbitrary square matrix A. Submit Problem 21 2/2 points (graded) Let A = diag(1, 2, 3, 4, 5, 6, 7, 8). a) What is |A|? 1\*2\*3\*4\*5\*6\*7\*8 b) True or false:  $A^{-1} = diag(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{7}, \frac{1}{8})$ True False

#### Problem 22

2/2 points (graded)

Vectors  $u_1, ..., u_d \in \mathbb{R}^d$  all have unit length and are orthogonal to each other. Let U be the  $d \times d$  matrix whose rows are the  $u_i$ .

a) What is  $UU^T$ ?

 $\bigcirc$  U

 $\bigcup U^T$ 

 $OU^{-1}$ 

 $\bullet$   $I_d$ 

~

b) What is  $U^{-1}$ ?

 $\bigcirc U$ 

 $\bullet$   $U^T$ 

 $\bigcup U^{-1}$ 

 $\bigcirc I_d$ 

**~** 

Submit

## Problem 23

1/1 point (graded)

Matrix  $A = \begin{pmatrix} 1 & 2 \\ 3 & z \end{pmatrix}$  is singular. What is z?

}

**~** 

Submit

## Problem 24

1/1 point (graded)

The *trace* of a  $d \times d$  matrix A is defined to be  $tr(A) = \sum_{i=1}^{d} A_{ii}$ . Which of the following statements is true, for arbitrary  $d \times d$  matrices A, B? Select all that apply.

| $ \operatorname{tr}(A) = \operatorname{tr}(A^T). $                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| r(A+B) = tr(A) + tr(B).                                                                                                                                                 |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
| Submit                                                                                                                                                                  |
| Problems 25-27 correspond to "The multivariate Gaussian"                                                                                                                |
| Problem 25                                                                                                                                                              |
| 1/1 point (graded) A spherical Gaussian has mean $\mu=(1,0,0)$ . At which of the following points will the density be the same as at $(1,1,0)$ ? Select all that apply. |
| (0,0,0)                                                                                                                                                                 |
|                                                                                                                                                                         |
|                                                                                                                                                                         |
| $\boxed{ \  \  } \hspace{1cm} (1,0,1)$                                                                                                                                  |
|                                                                                                                                                                         |
| Submit                                                                                                                                                                  |
| Problem 26                                                                                                                                                              |
| 1/1 point (graded) How many real-valued parameters are needed to specify a diagonal Gaussian in $\mathbb{R}^d$ ?                                                        |
| $\bigcirc$ d                                                                                                                                                            |
|                                                                                                                                                                         |
| $O \frac{1}{2}d^2$                                                                                                                                                      |
| $\bigcirc d^2$                                                                                                                                                          |
| ✓                                                                                                                                                                       |
| Submit                                                                                                                                                                  |

Problems 28-29 correspond to "Gaussian generative models"

#### Problem 28

3/3 points (graded)

Suppose we solve a classification problem with k classes by using a Gaussian generative model in which the jth class is specified by parameters  $\pi_j, \mu_j, \Sigma_j$ . In each of the following situations, say whether the decision boundary is linear, spherical, or other quadratic.

a) We compute the empirical covariance matrices of each of the k classes, and then set  $\Sigma_1 = \Sigma_2 = \dots = \Sigma_k$  to the average of these matrices.



b) The covariance matrices  $\Sigma_j$  are all  ${f diagonal}$ , but no two of them are the same.



c) There are two classes (that is, k=2) and the covariance matrices  $\Sigma_1$  and  $\Sigma_2$  are multiples of the identity matrix.



Submit

#### Problem 29

2/2 points (graded)

Consider a binary classification problem in which we fit a Gaussian to each class and find that they are both centered at the origin but have different covariances:  $\mu_1 = \mu_2 = 0$  and  $\Sigma_1 \neq \Sigma_2$ . Derive the precise form of the **decision boundary**, that is, the points x for which the two classes are equally likely. You will find that it is

$$x^{T}(\Sigma_{2}^{-1} - \Sigma_{1}^{-1})x = a \ln \frac{|\Sigma_{1}|}{|\Sigma_{2}|} + b \ln \frac{\pi_{1}}{\pi_{2}}.$$

What are a and b?



b =

a =



Problem 30 corresponds to "More generative modeling"

#### Problem 30

5/5 points (graded)

For each of the situations below, say which of the following distributions would be the best model for the data: Gaussian, gamma, beta, Poisson, or categorical.

a) You collect the number of airplane landings at Los Angeles International Airport during each one hour interval over the course of a week (thus, a total of 168 data points).



b) For your favorite sports team, you compute the fraction of games they won each year, during the period 1980-2015 (thus, a total of 36 data points).



c) Your local pet store has mammals, reptiles, birds, amphibians, and fish. You measure the fraction of each (thus, a total of five numbers).



d) You collect the pollution levels (positive real numbers reflecting concentrations of particulate matter) recorded in your city over the past year (thus, a total of 365 numbers).



e) Like (d), but instead you use the log of these values.



© All Rights Reserved



## edX

<u>About</u>

**Affiliates** 

edX for Business

Open edX

<u>Careers</u>

<u>News</u>

# Legal

Terms of Service & Honor Code

Privacy Policy

**Accessibility Policy** 

<u>Trademark Policy</u>

<u>Sitemap</u>

## **Connect**

**Blog** 

Contact Us

Help Center

Media Kit















© 2022 edX LLC. All rights reserved.