further reproduction or distribution is permitted

CODE

COMMENTARY

of higher grades, these limits are replaced by the expressions $\varepsilon_{ty} + 0.003$ and $\varepsilon_{ty} + 0.008$, respectively. The first expression is the same expression as used for the limit on ε_t for classification of tension-controlled members in Table 21.2.2; this expression is further described in Commentary R21.2.2. The second expression provides a limit on ε_t with Grade 420 reinforcement that is approximately the same value as the former constant of 0.010.

Table 8.4.2.2.4—Maximum modified values of γ_f for nonprestressed two-way slabs

· · · · · · · · · · · · · · · · · · ·				
Column location	Span direction	v_{uv}	ε_t (within b_{slab})	Maximum modified γ_f
Corner column	Either direction	≤0.5\psi v _c	$\geq \varepsilon_{ty} + 0.003$	1.0
	Perpendicular to the edge	≤0.75¢v _c	$\geq \varepsilon_{ty} + 0.003$	1.0
Edge column	Parallel to the edge	≤0.4¢v _c	$\geq \varepsilon_{ty} + 0.008$	$\frac{1.25}{1 + \left(\frac{2}{3}\right)\sqrt{\frac{b_1}{b_2}}} \le 1.0$
Interior column	Either direction	≤0.4\psi\v_c	$\geq \epsilon_{ty} + 0.008$	$\frac{1.25}{1 + \left(\frac{2}{3}\right)\sqrt{\frac{b_1}{b_2}}} \le 1.0$

- **8.4.2.2.5** Concentration of reinforcement over the column by closer spacing or additional reinforcement shall be used to resist moment on the effective slab width defined in 8.4.2.2.2 and 8.4.2.2.3.
- **8.4.2.2.6** The fraction of M_{sc} not calculated to be resisted by flexure shall be assumed to be resisted by eccentricity of shear in accordance with 8.4.4.2.

8.4.3 *Factored one-way shear*

- **8.4.3.1** For slabs built integrally with supports, V_u at the support shall be permitted to be calculated at the face of support.
- **8.4.3.2** Sections between the face of support and a critical section located d from the face of support for nonprestressed slabs and h/2 from the face of support for prestressed slabs shall be permitted to be designed for V_u at that critical section if (a) through (c) are satisfied:
 - (a) Support reaction, in direction of applied shear, introduces compression into the end regions of the slab.
 - (b) Loads are applied at or near the top surface of the slab.
 - (c) No concentrated load occurs between the face of support and critical section.

8.4.4 Factored two-way shear

R8.4.4 Factored two-way shear

The calculated shear stresses in the slab around the column are required to conform to the requirements of 22.6.

