GeneralBrokenLinesTest

API Documentation

August 5, 2011

Contents

Co	Contents 1			
1	Mo	odule gblfit	2	
	1.1	Variables	2	
	1.2	Class GblPoint	2	
		1.2.1 Methods	2	
		1.2.2 Properties	6	
	1.3	Class GblData	6	
		1.3.1 Methods	6	
		1.3.2 Properties	9	
	1.4	Class GblTrajectory	9	
		1.4.1 Methods	11	
		1.4.2 Properties	13	
		110p020000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
2	Mo	dule gblnum	14	
	2.1	Variables	14	
	2.2	Class BorderedBandMatrix	14	
		2.2.1 Methods	15	
		2.2.2 Properties	16	
		•		
3	Mo	dule gbltst	17	
	3.1	Functions	17	
	3.2	Variables	17	
4		dule mille	18	
	4.1	Variables	18	
	4.2	Class MilleRecord	18	
		4.2.1 Methods	19	
		4.2.2 Properties	21	
In	\mathbf{dex}		22	

1 Module gblfit

Track fit with general broken lines.

Created on Jul 27, 2011

Author: kleinwrt

1.1 Variables

Name	Description
package	Value: None

1.2 Class GblPoint

User supplied point on (initial) trajectory.

Must have jacobians for propagation to previous or next point with offsets (first, last point, points with scatterer). May have:

- 1. Measurement (1D or 2D)
- 2. Scatterer (thin, 2D kinks)
- 3. Additional local parameters (with derivatives). Fitted together with track parameters.
- 4. Additional global parameters (with labels and derivatives). Not fitted, only passed on to (binary) file for fitting with Millepede-II.

1.2.1 Methods

__init__(self)
Create new point.
Overrides: object.__init__

addMeasurement(self, aMeasurement)

Add a mesurement to a point.

Parameters

hasMeasurement(self)

Check point for a measurement.

Return Value

bool

$\mathbf{getMeasurement}(\mathit{self})$

Retrieve measurement of a point.

Return Value

measurement (projection residuals, precision)

(type=list(matrix(float)))

addScatterer(self, aScatterer)

Add a (thin) scatterer to a point.

Parameters

aScatterer: scatterer (kinks, precision)

(type=list(matrix(float)))

hasScatterer(self)

Check point for a scatterer.

Return Value

bool

$\mathbf{getScatterer}(\mathit{self})$

Retrieve scatterer of a point.

Return Value

scatterer (kinks, precision)

(type=list(matrix(float)))

addLocals(self, derivatives)

Add local derivatives.

Parameters

derivatives: local derivatives

(type=list(matrix(float)))

addGlobals(self, labels, derivatives)

Add global derivatives.

Parameters

labels: global labels

(type=list(matrix(int)))

derivatives: global derivatives

(type = list(matrix(float)))

$\mathbf{getNumLocals}(self)$

Get number of local derivatives.

Return Value

Number of local derivatives at point

(type=int)

getLocalDerivatives(self)

Get local derivatives.

Return Value

local derivatives

(type=matrix(float))

$\mathbf{getGlobalLabels}(self)$

Get global labels.

Return Value

lglobal labels

(type=matrix(int))

${\bf getGlobalDerivatives}(\mathit{self})$

Get global derivatives.

Return Value

global derivatives

 $(type{=}matrix(float))$

setLabel(self, aLabel)

Define label of a point.

Parameters

aLabel: label

(type=int)

getLabel(self)

Retrieve label of a point.

Return Value

label

(type=int)

setOffset(self, anOffset, aPrev, aNext)

Define offset of a point and references to previous and next point with offset.

Parameters

anOffset: offset number (at point (>=0) or at next point with offset (<0))

(type=int)

aPrev: label of previous point with offset

(type=int)

aNext: label of next point with offset

(type=int)

getOffset(self)

Get offset of a point.

Return Value

offset number (at point (>=0) or at next point with offset (<0))

(type=int)

queryJacobians(self)

Query point for labels of enclosing offsets.

Return Value

labels of previous and next point with offsets

(type=pair(int))

addJacobians(self, twoJacobians)

Add jacobians to enclosing offsets.

Parameters

twoJacobians: jacobians for propagation to previous and next point with offsets

(type=pair(matrix(float)))

getDerivatives(self, index)

Get derivatives for locally linearized track model (backward or forward propagation).

Parameters

index: 0 (previous) or 1 (next point with offsets)

(type=int)

Return Value

derivatives

(type=list(matrix(float)))

printPoint(self)

Print point.

Inherited from object

Class GblData Module gblfit

1.2.2 Properties

Name	Description
Inherited from object	
class	

1.3 Class GblData

Data (block) containing value, precision and derivatives for measurements and kinks.

Created from attributes of GblPoints, used to construct linear equation system for track fit.

1.3.1 Methods

$__init__(self)$	$\mathbf{init}_{}(self)$	$\operatorname{init}_{}(\operatorname{self})$
Create new data.	reate new data.	reate new da
Overrides: objectinit	verrides: objectinit	verrides: obj

Class GblData Module gblfit

addDerivatives(self, aLabel, aMeas, aPrec, parCurv, derCurv, aDim, firstParBand, derBand, firstParLocal=0, derLocal=[], labGlobal=[], derGlobal=[])

Add derivatives to data (block). Generate lists of labels.

Parameters

aLabel: label of corresponding point

(type=int)

aMeas: value

(type=float)

aPrec: precision

(type = float)

parCurv: label for 'curvature' parameter (with (1) or

without (0) 'curvature')

(type=int)

derCurv: derivative vs 'curvature'

(type=list(float))

firstParBand: label of first band parameter (offset)

(type=int)

derBand: derivatives vs band parameters (offsets)

(type=list(float))

firstParLocal: label of first local parameter

(type=int)

labGlobal: labels of global parameters

(type=list(int))

derGlobal: derivatives vs global parameters

(type=list(float))

getMatrices(self)

Calculate compressed matrix and right hand side from data.

Return Value

indices, compressed right hand side and matrix

(type=list)

Class GblData Module gblfit

setPrediction(*self*, *aVector*)

Calculate prediction for data from fit.

Parameters

aVector: values of fit parameters

(type = vector(float))

setDownWeighting(self, aMethod)

Outlier down weighting with M-estimators.

Parameters

aMethod: method (1=Tukey, 2=Huber, 3=Cauchy)

(type=int)

Return Value

weight (0..1)

(type = float)

getChi2(self)

Calculate Chi2 (contribution) from data.

Return Value

Chi2

(type=float)

$\mathbf{toRecord}(self)$

Get data components (for copying to MP binaty record)

Return Value

data components

(type=list)

fromRecord(self, dataList)

Set data components (from MP binaty record)

Parameters

dataList: data components

(type=list)

analyzeData(self, maxBand)

Analyze labels of fit parameters to determine number of parameters and border size with given maximal band width.

Parameters

maxBand: maximal band width

(type=int)

Return Value

number of parameters and border size (from this data)

(type=pair(int))

$\mathbf{printData}(self)$

Print data.

Inherited from object

1.3.2 Properties

Name	Description
Inherited from object	
class	

1.4 Class GblTrajectory

(section) General Broken Lines Trajectory.

For a track with an initial trajectory from a prefit of the measurements (internal seed) or an external prediction (external seed) the description of multiple scattering is added by offsets in a local system. Along the initial trajectory points are defined with can describe a measurement or a (thin) scatterer or both. The refit provides corrections to the local track parameters (in the local system) and the corresponding covariance matrix at any of those points.

The broken lines trajectory is defined by (2D) offsets at the first and last point and all points with a scatterer. The prediction for a measurement is obtained by interpolation of

the enclosing offsets and for triplets of adjacent offsets kink angles are determined. This requires for all points the jacobians for propagation to the previous and next offset.

Additional local or global parameters can be added and the trajectories can be written to special binary files for calibration and alignment with Millepede-II. (V. Blobel, NIM A, 566 (2006), pp. 5-13).

The conventions for the coordinate systems follow: Derivation of Jacobians for the propagation of covariance matrices of track parameters in homogeneous magnetic fields A. Strandlie, W. Wittek, NIM A, 566 (2006) 687-698.

(section) Calling sequence:

1. Create trajectory:

```
traj = GblTrajectory()
```

- 2. For all points on initial trajectory
 - Create points and add appropiate attributes:

```
point = GblPoint()
point.addMeasurement(..)
point.addScatterer(..)
point.addLocals(..)
point.addGlobals(..)
```

• Add point (ordered by arc length) to trajectory, get label of point:

```
label = traj.addPoint(point)
```

3. Define (points with) offsets:

```
traj.defineOffsets()
```

4. Optionally add external seed:

```
traj.addExternalSeed(..)
```

- 5. For all points on initial trajectory
 - Query for required jacobians:

```
traj.queryJacobians(label)
```

• Add requested jacobians:

```
traj.addJacobians(label,..)
```

6. Optionally write trajectory to MP binary file:

```
traj.milleOut(..)
```

7. Fit trajectory, bet Chi2, Ndf (and weight lost by M-estimators):

```
[...] = traj.fit()
```

- 8. For any point on inital trajectory
 - Get corrections and covariance matrix for track parameters:

```
[..] = traj.getResults(label)
```

Alternatively trajectories can by read from MP binary files and fitted. As the points on the

initial trajectory are not stored in this files results at points (corrections, covariance matrix) are not available.

1.4.1 Methods

```
\_init\_(self, hasCurv = True, aDim = [0, 1])
```

Create new trajectory.

Overrides: object.__init__

addPoint(self, point)

Add point to trajectory. Points have to be ordered in arc length.

Parameters

```
point: point to be added
     (type=GblPoint)
```

Return Value

label of added point

(type=int)

getNumPoints(self)

Get number of points on trajectory.

Return Value

number of points

(type=int)

addExternalSeed(self, aLabel, aSeed)

Add external seed to trajectory.

Parameters

aLabel: label of point with external seed

(type=int)

aSeed: seed (covariance matrix of track parameters at point)

(type=list(matrix(float)))

queryJacobians(self, aLabel)

Query point for adjacent scatterers.

Parameters

aLabel: label of point

(type=int)

Return Value

labels of previous and next point with offset

(type=pair(int))

addJacobians(self, aLabel, twoJacobians)

Provide point for jacobians to adjacent scatterers.

Parameters

aLabel: label of point

(type=int)

twoJacobians: jacobians for propagation to previous and next

point with offset

(type=pair(matrix(float)))

defineOffsets(self)

Define offsets from list of points.

$\mathbf{dump}(self)$

Dump trajectory.

milleOut(self, aFile)

Write (data blocks of) trajectory to MP (binary) file.

Parameters

aFile: MP file

(type=file)

milleIn(self, aFile)

Read (data blocks of) trajectory from MP (binary) file.

Parameters

aFile: MP file

(type=file)

getResults(self, aLabel)

Get results (corrections, covarinace matrix) at point in forward or backward direction.

Parameters

aLabel: signed label of point (<0 backward, >0 forward) (type=int)

Return Value

correction vector, covarinace matrix for track parameters $% \left(x\right) =\left(x\right) +\left(x\right) +$

(type=list)

fit(self, optionList=',')

Perform fit of trajectory.

Parameters

optionList: M-estimators to be used (one iteration per character)

$$(type=string)$$

Return Value

Chi2, Ndf, loss of weight from fit ([0., -1, 0.] if fit failed)

(type=list)

Inherited from object

1.4.2 Properties

Name	Description
Inherited from object	
_class	

2 Module gblnum

Algebra for linear equation system with bordered band matrix.

Created on Jul 27, 2011

Author: kleinwrt

2.1 Variables

Name	Description
package	Value: None

2.2 Class BorderedBandMatrix

```
object — gblnum.BorderedBandMatrix
```

(Symmetric) Bordered Band Matrix.

Separate storage of border, mixed and band parts. Example for matrix size=8 with border size and band width of two:

Is stored as:

```
| C34 C45 C56 C67 C78 0. |
| C35 C46 C57 C68 0. 0. |
```

2.2.1 Methods

getBlockMatrix(self, aIndex)

Retrieve (compressed) block from BBmatrix:

aMatrix(i,j) = BBmatrix(aIndex(i),aIndex(j))

Parameters

aIndex: list of indices (type=list(int))

Return Value

(compressed) matrix (type=matrix(float))

printMatrix(self)

Print BBmatrix.

solveAndInvertBorderedBand(self, aRightHandSide)

Solve linear equation A*x=b system with BBmatrix A, calculate BB part of inverse of A.

Parameters

aRightHandSide: right hand side 'b' of linear equation system (type=vector(float))

Return Value

solution

(type = vector(float))

Raises

ZeroDivisionError Band matrix is not positive definite

Note: BBmatrix is replaced by BB part of it's inverse

Inherited from object

```
__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(), __reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(), __str__(), __subclasshook__()
```

2.2.2 Properties

Name	Description
Inherited from object	
class	

Variables Module gbltst

3 Module gbltst

Simple Test Program for General Broken Lines.

Created on Jul 27, 2011

Author: kleinwrt

3.1 Functions

example1()

Create points on initial trajectory, create trajectory from points, fit and write trajectory to MP-II binary file, get track parameter corrections and covariance matrix at points.

Equidistant measurement layers and thin scatterers, propagation with simple jacobian (quadratic in arc length differences).

example2()

Read trajectory from MP-II binary file and refit.

3.2 Variables

Name	Description
_package	Value: None

4 Module mille

Input/output of MP-II binary records.

Created on Aug 1, 2011

Author: kleinwrt

4.1 Variables

Name	Description
_package	Value: None

4.2 Class MilleRecord

Millepede-II (binary) record.

Containing information for local (track) and global fit.

The data blocks are collected in two arrays, a real array and an integer array, of same length. The content of the arrays:

0 1 2 3 4	real array 0.0 RMEAS, measured value local derivative local derivative	<pre>integer array error count (this record) 0 index of local derivative index of local derivative</pre>	iMeas -+	- block
-	SIGMA, error (>0)	0	iErr	510011
	global derivative	label of global derivative	1011	
	global derivative	label of global derivative	_	+
	RMEAS, measured value	0	$_$ position	
	local derivative	index of local derivative		
	local derivative	index of local derivative		
	SIGMA, error	0		
	global derivative	label of global derivative		
	global derivative	label of global derivative		
	global derivative	label of global derivative	recLen	

4.2.1 Methods

 $_$ **init** $_$ (self)

Create MP-II binary record.

Overrides: object.__init__

addData(self, dataList)

Add data block to (end of) record.

Parameters

dataList: list with measurement, error, labels and derivatives

(type=list)

getData(self)

Get data block from current position in record.

Return Value

list with measurement, error, labels and derivatives

(type=list)

addSpecial(self, iSpecial, gSpecial, aTag=0)

Add special data block to record:

real array integer array

0.0

-float(NSP)-0.1*tag 0 ! indicates special data of length NSP

following NSP floating and NSP integer data

Parameters

iSpecial: list of labels

(type=list(int))

gSpecial: list of values

(type=list(float))

aTag: tag (1: external seed (matrix))

(type=int)

getSpecial(self)

Get special data block from current position.

Return Value

special data block (list of labels, list of values)

(type=list)

printRecord(self)

Print record.

writeRecord(self, aFile)

Write record to file.

Parameters

aFile: (binary) file

(type=file)

readRecord(self, aFile)

Read record from file.

Parameters

aFile: (binary) file

(type=file)

moreData(self)

Locate next data block.

Return Value

next block exists

(type=bool)

specialDataTag(self)

Get special data tag from block.

Return Value

tag or -1 for ordinary data block

(type=int)

Inherited from object

```
__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(), __reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(), __str__(), __subclasshook__()
```

4.2.2 Properties

Name	Description
Inherited from object	
_class	

Index

gblfit (module), 2–13	gblfit.GblPoint.queryJacobians (method),
gblfit.GblData (class), 6–9	5
gblfit.GblData.addDerivatives (method),	gblfit.GblPoint.setLabel (method), 4
6	gblfit.GblPoint.setOffset (method), 4
gblfit.GblData.analyzeData (method), 8	gblfit.GblTrajectory (class), 9–13
gblfit.GblData.fromRecord (method), 8	gblfit.GblTrajectory.addExternalSeed (method),
gblfit.GblData.getChi2 (method), 8	11
gblfit.GblData.getMatrices (method), 7	gblfit.GblTrajectory.addJacobians (method),
gblfit.GblData.printData (method), 9	12
gblfit.GblData.setDownWeighting (method),	gblfit.GblTrajectory.addPoint (method),
8	11
gblfit.GblData.setPrediction (method),	gblfit.GblTrajectory.defineOffsets (method),
7	12
gblfit.GblData.toRecord (method), 8	gblfit.GblTrajectory.dump $(method)$, 12
gblfit.GblPoint (class), 2–6	gblfit.GblTrajectory.fit (method), 13
gblfit.GblPoint.addGlobals (method), 3	gblfit.GblTrajectory.getNumPoints (method),
gblfit.GblPoint.addJacobians (method),	11
5	gblfit.GblTrajectory.getResults (method),
gblfit.GblPoint.addLocals (method), 3	12
$gblfit.GblPoint.addMeasurement\ (method),$	gblfit.GblTrajectory.milleIn (method), 12
2	gblfit.GblTrajectory.milleOut (method),
$gblfit.GblPoint.addScatterer\ (method),$	12
3	gblfit.GblTrajectory.queryJacobians (method),
$gblfit.GblPoint.getDerivatives\ (method),$	11
	num (module), 14–16
${\tt gblfit.GblPoint.getGlobalDerivatives}\ (method$	gblnum.BorderedBandMatrix (class), 14–
4	16
gblfit.GblPoint.getGlobalLabels $(method)$,	gblnum.BorderedBandMatrix.addBlockMatrix (method), 15
gblfit.GblPoint.getLabel (method), 4	gblnum.BorderedBandMatrix.getBlockMatrix
gblfit.GblPoint.getLocalDerivatives (method)	ŭ
4	gblnum.BorderedBandMatrix.printMatrix
gblfit.GblPoint.getMeasurement (method),	(method), 16
3	gblnum.BorderedBandMatrix.solveAndInvertBordere
gblfit.GblPoint.getNumLocals (method),	(method), 16
9 , , , , , , , , , , , , , , , , , , ,	est $(module)$, 17
	gbltst.example1 (function), 17
-1-1C+ C1-1D-:++C++ (+h1) 2	
gblfit.GblPoint.hasMeasurement (method), 2 mill	
2 mill	e (module), 18–21
gblfit.GblPoint.hasScatterer (method), 3	mille.MilleRecord (class), 18–21
gblfit.GblPoint.printPoint (method), 5	mille.MilleRecord.addData (method), 19

INDEX

```
mille.MilleRecord.addSpecial (method),
19
mille.MilleRecord.getData (method), 19
mille.MilleRecord.getSpecial (method),
19
mille.MilleRecord.moreData (method), 20
mille.MilleRecord.printRecord (method),
20
mille.MilleRecord.readRecord (method),
20
mille.MilleRecord.specialDataTag (method),
20
mille.MilleRecord.specialDataTag (method),
20
mille.MilleRecord.writeRecord (method),
20
```