Assignment 1

Full Marks: 100

Deadline: 16 February 2022

BRAC University

Semester: Fall 2022 Course No: CSE251

Course Title: Electronic Devices and Circuits

1. Draw the alternate representations of the following circuits [Note that the

number of floating sources should be minimized in your design].

[5+5]

2. Use nodal analysis to find V_{o} in the following circuit:

[10]

Here, v_x = (40+last digit of your ID) V

3. [20+5+10+5]

(a) **Design** a circuit using an **Op-Amp comparator** to turn ON (or OFF) the street lights automatically. For this, you have a lux sensor installed on top of the street lights (facing above) that outputs a voltage proportional to the amount of natural light, as listed below:

$$v_{\text{night, 0 lux}} = 1 \text{ V} \quad v_{\text{dusk, 20 lux}} = 2 \text{ V} \quad v_{\text{dawn, 80 lux}} = 3 \text{ V}$$

The lights require 20 V and should be ON if the light goes below 20 lux (at dusk). [Hints: you may start by building the circuit as a comparator.]

(b) **Analyze** the following circuit and **derive** the expression for the output voltage (V_{out}) in terms of the inputs. If V_1 =1 V, V_2 = 2V, and V_3 = 1.5 V, and all the resistors have equal values, calculate V_{out} .

(c) **Design** a circuit using Op-Amp to implement the following expressions:

$$Z = \int x dt - 2 \frac{dy}{dt} - u$$

- (ii) y = 12x
- (d) **Analyze** the circuit below to find f in terms of inputs x and y.

4. [15+15]

- (a) **Design** an inverting amplifier (i.e., find the values of R_1 and R_2 of the circuit shown in Fig.) in such a way that the voltage gain is -5.
- (b) Consider the circuit in Figure 3(b) again. Assume the input v_i = 0.1 sin ω t (V) has a maximum current rating of 5 μ A. What design changes, if any, are required for this input, if the voltage gain remains the same?
- **5.** Consider the non-inverting schmitt trigger we discussed in class. If R_1 =2 k Ω , R_2 =3×2=6 k Ω , v_L = -10V, v_H =10V, v_{ref} = 2.5V, calculate the threshold voltages and draw the transfer characteristics. [10]