Percephon Miskakes:

Perception algorithm through the origin:

for
$$i=1,...,m$$
 do

if $g^{(i)}(0,n^{(i)}) \leq 0$ then

 $\theta = 0 + g^{(i)}n^{(i)}$

return O

$$\chi^{(1)} = [-1, -1] \longrightarrow y^{(1)} = 1$$

$$\chi^{(2)} = [1, 0] \longrightarrow y^{(2)} = -1$$

$$\chi^{(3)} = [-1, 1.5] \longrightarrow y^{(3)} = 1$$

$$\xi^{(0)} = 0$$

dot product

* $y^{(i)}(\theta, x^{(i)}) = mumber$ $\theta \cdot \alpha^{(i)} = [\theta_1, \theta_2] \cdot [n_1^{(i)}, \alpha_2^{(i)}]$ $= \theta_1 \times n_1^{(i)} + \theta_2 \times n_2^{(i)}$

 $= O_{1} \times \alpha_{1} + O_{2} \times \alpha_{2}$ $= y^{(i)} \alpha_{1}^{(i)} = y^{(i)} \cdot [\alpha_{1}^{(i)}, \alpha_{2}^{(i)}] = vector$ $= [y^{(i)} \alpha_{1}^{(i)}, y^{(i)} \alpha_{2}^{(i)}]$

7. number of miotakes of Perception elg. if it states with $n^{(1)}$ $y^{(1)}(8.n^{(1)}) = 1 ((0,0] \cdot n^{(1)}) = 0 \quad 1^{57} \text{ miotake}$ $updake 0 \rightarrow 0 = 0^{(0)} + y^{(1)}n^{(1)} = [0,0] + 1 [-1,-1] = [-1,-1]$ $y^{(2)}(0.n^{(2)}) = -1 ([-1,-1] \cdot [1,0]) = -1 (-1\times1-1\times0) = 1 \text{ no miotake}$ $y^{(3)}(8.n^{(3)}) = 1 ([-1,-1] \cdot [-1,1.5]) = 1(-1\times-1+-1\times1.5) = -0.5 \text{ 2}^{-1} \text{ M.}$ $updake 0 \rightarrow 0 = 0 + y^{(2)}n^{(3)} = (-1,-1]+1 [-1,1.5] = [-2,0.5]$ logophison of the separating hyperplane : [[-1,-1],[-3,0.5]]

2. In this port, what one the factors that affect the number of mistakes made by the algorithm?

Iteration order

linear Support rector Machines:

In this problem, we will investigate minimizing the training objective for a support vector Machine (with margin loss).

The training objective for the Support vector machine (With margin loss) can be seen as optimizing a balance between the average things loss over the examples and a Regularization term that tries to keep the parameters small (increase the margin). This balance is set by the negularization term 1 > 0. Here we only consider the case without the offset parameter 8.

Training objective =
$$\frac{1}{m} \sum_{i=1}^{m} \left[loss_{k} \left(y^{(i)} \left(\theta \cdot n^{(i)} \right) + \frac{1}{2} ||\theta||^{2} \right] \right]$$

Hinge $loss_{i} \Rightarrow loss_{k} \left(y \cdot (\theta \cdot n) \right) = masc \left\{ 0, 1 - y \cdot (\theta \cdot n) \right\}$

$$\hat{\theta} = \text{Argmin}_{\theta} \left[loss_{k} \left(y \cdot (\theta \cdot n) \right) + \frac{1}{2} ||\theta||^{2} \right]$$

1. Suppose loss (y(ô.ac)) >0. Express ô in knows of a, y and d.

The above loss can be minimized by solving for the following equation,

Passive - Aggressive algorithm:

The Passive-Aggressive algorithm (Without offset) responds to a labeled training example (21, y) by finding O that minimizes:

Where O(k) is the current setting of the parameters prior to encountering (21, y)

We could replace the loss function with something else:

but the real-valued step-size parameter γ is no longer equal to one. it now depends on both $O^{(N)}$ and the training example (n,y).

If I is large, the skep size of the algorithm () would be small

1. Suppose loss, (g 0 let 1) x) > 0. Express the value of y in kerns of h in this case:

$$\int (\theta) = \frac{1}{2} \| \theta - \theta^{(k)} \|^2 + \log_k (y \theta \cdot x)$$

$$= \frac{1}{2} \| \theta - \theta^{(k)} \|^2 + 1 - y \theta \cdot \infty$$

the compute the minimum by setting gradient of f(0):

Where I is just the steep size, thus $y = \frac{1}{\lambda}$ when $lon_{h}(y o^{(r+1)}, x) > 0$