实验二 分组密码算法 DES

一、 实验目的

通过用 DES 算法对实际的数据进行加密和解密来深刻了解 DES 的运行原理。

二、实验原理

分组密码是一种对称密码体制,其特点是在明文加密和密文解密的过程中,信息都是按照固定长度分组后进行处理的。在分组密码的发展历史中,曾出现了许多优秀的算法,包括 DES,IDEA,AES,Safer++等等。下面以 DES 算法为例介绍分组密码算法的实现机制。

DES 算法将明文分成 64 位大小的众多数据块,即分组长度为 64 位。同时用 56 位密钥对 64 位明文信息加密,最终形成 64 位的密文。如果明文长度不足 64 位,即将其扩展为 64 位(如补零等方法)。具体加密过程首先是将输入的数据进行初始置换(IP),即将明文 M 中数据的排列顺序按一定的规则重新排列,生成新的数据序列,以打乱原来的次序。然后将变换后的数据平分成左右两部分,左边记为 L_0 ,右边记为 R_0 ,然后对 R_0 实行在子密钥(由加密密钥产生)控制下的变换 f,结果记为 f(R_0 , K_1),再与 L_0 做逐位异或运算,其结果记为 R_1 , R_0 则作为下一轮的 L_1 。如此循环 16 轮,最后得到 L_{16} 、 R_{16} ,再对 L_{16} 、 R_{16} 实行逆初始置换 IP^{-1} ,即可得到加密数据。解密过程与此类似,不同之处仅在于子密钥的使用顺序正好相反。DES 全部 16 轮的加密过程如图 1-1 所示。

DES 的加密算法包括 3 个基本函数:

1. 初始置换 IP

它的作用是把输入的 64 位数据块的排列顺序打乱,每位数据按照下面的置换规则重新排列,即将第 58 位换到第一位,第 50 位换打第 2 位,…,依次类推。置换后的 64 位输出分为 L_0 、 R_0 (左、右) 两部分,每部分分别为 32 位。

58 50 42 34 26 18 10 2 60 52 44 36 28 20 12 4 62 54 46 38 30 22 14 6 64 56 48 40 32 24 16 8 57 49 41 33 25 17 9 1 59 51 43 35 27 19 11 3 61 53 45 37 29 21 13 5 63 55 47 39 31 23 15 7

图 1-1 DES 加密/解密流程

 R_0 和 K_1 经过 f (R_0 , K_1) 变换后的输出结果,再和 L_0 进行异或运算,输出结果位 R_1 , R_0 则赋给 L_1 。 L_1 和 R_1 同样再做类似运算生成 L_2 和 R_2 ,…,经过 16次运算后生成 L_{16} 和 R_{16} 。

2. f 函数

f 函数是多个置换函数和替代函数的组合函数,它将 32 位比特的输入变换为 32 位的输出,如图 1-2 所示。 R_i 经过扩展运算 E 变换后扩展为 48 位的 $E(R_i)$,与 K_{i+1} 进行异或运算后输出的结果分成 8 组,每组 6 比特。每一组再经过一个 S 盒(共 8 个 S 盒)运算转换为 4 位,8 个 4 位合并为 32 位后再经过 P 变换输出为 32 位的 $f(R_i,K_{i+1})$ 。其中,扩展运算 E 与置换 P 主要作用是增加算法的扩散效果。

图 1-2 f 函数原理图

3. 逆初始置换 IP-1

它将 L₁₆和 R₁₆作为输入,进行逆初始置换得到密文输出。逆初始置换是初始置换的逆运算,置换规则如下所列:

40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31

38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29

36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27

34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25

DES 的加密算法中除了上面介绍的 3 个基本函数,还有一个非常重要的功能模块,即子密钥的生成模块,具体子密钥的产生流程图如图 1-3 所示。输入的初始密钥值为 64 位,但 DES 算法规定,其中第 8、16、…、64 位为奇偶校验位,不参予 DES 的运算。所以,实际可用位数只有 56 位,经过缩小选择位表 1 (表 1-2) 即密钥置换 PC-1 的变换后,初始密钥的位数由 64 位变成了 56 位,将其平分位两部分 C_0 , D_0 。然后分别进行第一次循环左移,得到 C_1 和 D_1 ,将 C_1 (28 位)、 D_1 (28 位)合并后得到 56 位的输出结果,再经过压缩置换 PC-2(表 1-3),从而得到了密钥 K_1 (48 位)。依次类推,便可得到 K_2 、…、 K_{16} 。需要注意的是,16 次循环左移对应的左移位数要依据表 1-1 的规则进行。

图 1-3 子密钥的生成流程

表 1-1 左移位数规则

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
LS_i	1	1	2	2	2	2	2	2	1	2	2	2	2	2	2	1

表 1-2 压缩置换 PC-1

57	49	41	33	25	17	9
1	58	50	42	34	26	18
10	2	59	51	43	35	27
19	11	3	60	52	44	36
63	55	47	39	31	23	15
7	62	54	46	38	30	22
14	6	61	53	45	37	29
21	13	5	28	20	12	4

表 1-3 压缩置换 PC-2

14	17	11	24	1	5
3	28	15	6	21	10
23	19	12	4	26	8
16	7	27	20	13	2
41	52	31	37	47	55
30	40	51	45	3	48
44	49	39	56	34	53
46	42	50	36	29	32

三、 实验环境

运行 Windows 操作系统的 PC 机,具有 VC 等语言编译环境

四、 实验内容和步骤,

1. 算法分析:

对课本中 DES 算法进行深入分析,对初始置换、E 扩展置换,S 盒代换、轮函数、密钥生成等环节要有清晰的了解,并考虑其每一个环节的实现过程。

- 2. DES 实现程序的总体设计: 在第一步的基础上, 对整个 DES 加密函数的 实现进行总体设计, 考虑数据的存储格式, 参数的传递格式, 程序实现的总体层 次等, 画出程序实现的流程图。
- 3. 在总体设计完成后,开始具体的编码,在编码过程中,注意要尽量使用高效的编码方式。
- 4. 利用 3 中实现的程序,对 DES 的密文进行雪崩效应检验。即固定密钥, 仅改变明文中的一位,统计密文改变的位数;固定明文,仅改变密钥中的一位, 统计密文改变的位数。

五、 实验报告和要求

(1) 分别实现 DES 的加密和解密,提交程序代码和执行结果。

(2) 在检验雪崩效应中,要求至少改变明文和密文中各八位,给出统计结果并计算出平均值。