Matlab/Octave: Bestiario de comandos y sentencias

A lo largo de este documento, x e y serán vectores fila o columna, z un número complejo, A y B matrices.

Espacio de trabajo:	básicos
Ctrl + C	Aborta la operación o sentencia actual en la línea de comandos
clc	Limpia la ventana de comandos
clear	Borra todas las variables
clear x A	Borra las variables x y A
diary 'fichero.txt'	Registra en un fichero lo que se hace en la ventana de comandos
diary off	Para el registro
diary on	Reanuda el registro
save fichero	Guarda las variables definidas en el fichero
save fichero x A	Guarda las variables \boldsymbol{x} y \boldsymbol{A} en el fichero
load fichero	Carga las variables almacenadas en el fichero
pwd	Muestra la ubicación del directorio de trabajo actual
dir	Muestra el contenido del directorio de trabajo actual
cd carpeta	Permite acceder a una carpeta del directorio de trabajo actual
help comando	Abre la documentación del comando
lookfor 'texto'	Busca el texto en la documentación de comandos
	Conecta una misma sentencia escrita en dos lineas seguidas de código
comando;	La ";" suprime la salida del comando
nombreprograma	Ejecuta nombreprograma.m
tic, sentencias, toc	Devuelve el tiempo de ejecución to- tal de las sentencias

Espacio de trabajo: formato y salida		
format short	Muestra n ^{os} con 4 decimales	
format short e	Muestra $n^{ m os}$ con 4 decimales en notación exponencial	
format long	Muestra n^{os} con 15 decimales	
format long e	Muestra n ^{os} con 15 decimales en notación exponencial	
format rat	Muestra n^{os} en formato racional	
% Esto es un comentario Comentarios		
disp('texto')	Muestra el texto	
disp(x)	Muestra el contenido de la variable \boldsymbol{x}	

Constantes numéricas	
pi	$\pi \simeq 3.1415926535897$
i ój	Unidad imaginaria $\sqrt{-1}$
Inf	Infinito
NaN	"No es un número" (p.ej., $0/0$)
eps	Precisión relativa de máquina en doble precisión (por defecto, $2.2204\cdot 10^{-16}$)
realmax	${ m N}^{ m o}$ positivo más grande en doble precisión, $1.7977 \cdot 10^{308}$
realmin	${ m N^o}$ positivo más pequeño en doble precisión $2.2251\cdot 10^{-308}$

Operaciones aritméticas y funciones básicas		
1.349	Los decimales de un real se definen CON EL PUNTO "." NO con comas o tildes	
3+4, 7*4, 2-6	Suma, producto y resta	
8/3, 3\8	División por la derecha y por la izquierda	
3^7	Calcula la potencia 3^7	
rem(17,3)	Resto de la división de $17\ \mathrm{entre}\ 3$	
sqrt(5)	Calcula la raíz cuadrada $\sqrt{5}$	
log(3)	Calcula el logaritmo neperiano $\ln(3)$	
log10(100)	Calcula el logaritmo $\log_{10}(100)$	
abs(-5)	Calcula el valor absoluto $ -5 $	
sin(5*pi/3)	Calcula el seno $\sin(5\pi/3)$	
cos(-pi/3)	Calcula el coseno $\cos(-\pi/3)$	
exp(3)	Calcula la exponencial e^3	

Números complejos	
z=1-2*i ó z=complex(1,-2)	Crea el número complejo $z=1-2i$ (a partir de las partes real e imaginaria)
abs(z)	Módulo (valor absoluto) de z
angle(z)	Argumento de z
z'	Conjugado de z
real(z)	Parte real de z
imag(z)	Parte imaginaria de \boldsymbol{z}
isreal(z)	Devuelve 1 si z es real, 0 si no

Definiendo variables básicas	
a = 3	Define la variable a como 3
b = 4.321	Define la variable b como 4.321
c = 'texto'	Define en $\it c$ una cadena de caracteres con el texto
<pre>cond = logical(1)</pre>	Define en $cond$ el valor lógico 1 ($true$)

Valores lógicos y operaciones lógicas
<pre>a = 10;</pre>
~(a == 5) % Comprobamos la negación de lo anterior true
<pre>a == 10 % Comprobamos si a es igual a 10 true</pre>
<pre>a >= 5 % Comprobamos si a es mayor o igual a 5 true</pre>
<pre>a < 11</pre>
a ~= 4 % Comprobamos si a es no igual a 4 true
a > 1 88 a ~= 10 % Comprobamos si a es mayor que 1 Y false % no igual a 10
a > 1 a ~= 10 % Comprobamos si a es mayor que 1 Ó true % no igual a 10
xor(a == 10, a < 100) % Si a es 10 Ó (exclusivo) false % menor que 100

Vectores y matrices:	generación y acceso
x = [1, 2, 3] ó	Define x como el vector
x = [1 2 3]	fila $[1,2,3]$
x = [1; 2; 3] ó	Define x como el vector
x = [1, 2, 3]'	$ {\rm columna} [1,2,3]^t $
7:15	Vector fila con $7, 8, \ldots, 14, 15$
1.1:0.2:3.3	Vector fila con $1.1,1.3,\ldots,3.3$
linspace(2, 6.5, 100)	Genera un vector fila con 100 componentes equiespaciadas entre el 2 y el 6.3
A = [1, 2, 3, 4; 5, 6, 7, 8; 9, 10, 11, 12]	Define A como una matriz 3×4
x(2:12)	Del $2^{ m o}$ al $12^{ m o}$ elemento de x
x(2:end)	${\sf Del}\ {\sf 2^o}\ {\sf al}\ {\sf \'ultimo}\ {\sf elemento}\ {\sf de}\ x$
x(1:2:end)	El $1^{\rm er}$, $3^{\rm er}$, $5^{\rm o}$,hasta el último elemento de x .
A(3,4)	El elemento de la $3^{\rm a}$ fila y la $4^{\rm a}$ columna de A
A(3,:)	La $3^{ m a}$ fila de A
A(:,4)	La 4 $^{ m a}$ columna de A
A(2, 1:5)	Del $1^{ m o}$ al $5^{ m o}$ elemento de la $2^{ m a}$ fila
A([1,3],4)	Los elementos de la $1^{\rm a}$ y $3^{\rm a}$ fila que se encuentran en la $4^{\rm a}$ columna
A(:)	La matriz A vista como vector co- lumna (con los elementos en orden columna)

Matlab/Octave: Bestiario de comandos y sentencias

Vectores y matrices: composición y borrado		
[A ; B] Matriz compuesta por las filas de A sobre las filas de B (con mismo no de columnas)		
[A , B]	Matriz compuesta por las columnas de A seguidas de las de B (con mismo n $^{\rm o}$ de filas)	
[3,v; c d]	Matriz compuesta por 3 seguido de la fila de v , sobre las columnas de c seguidas de las de d	
A = []	Borra todos los elementos de ${\cal A}$	
x(4) = []	Elimina la 4^{a} componente de x	
A(3,:) = []	Elimina la $3^{ m a}$ fila A	

Operaciones de vectores y matrices Multiplica cada elemento de x por 33 * X X + 2 Suma 2 a cada elemento de xSuma elemento a elemento los vectores x e yx + yA * y Producto de una matriz y un vector Producto (matricial) de dos matrices $A \cdot B$ A * B Producto (elemento a elemento) de dos matrices A .* B A ^ 3 La matriz (cuadrada) A elevada a la 3ª potencia A .^ 3 La matriz con los elementos de A elevados al cubo Traspuesta de Ainv(A) Inversa de AA / 3 Divide cada elemento de A por 3Devuelve la matriz donde cada elemento es 3 dividido 3 ./ A por el correspondiente de A

Devuelve $A \cdot B^{-1}$

Devuelve $A^{-1} \cdot B$

A / B

A \ B

A ./ B

Funciones aux	kiliares de vectores y matrices	
length(x)	N^o de componentes de x	
size(A)	Tamaño de A	
[m,n]=size(A)	Asigna a m el \mathbf{n}^{o} de filas y a n el \mathbf{n}^{o} de columnas de A	
sum(x)	Suma todos los elementos de \boldsymbol{x}	
sum(A)	Vector de sumas de cada columna de ${\cal A}$	
prod(x)	Multiplica todos los elementos de \boldsymbol{x}	
prod(A)	Vector de productos de cada columna de ${\cal A}$	
sort(x)	Ordena ascendentemente los elementos de \boldsymbol{x}	
sort(A)	Ordena ascendentemente de forma independiente cada columna de ${\cal A}$	
max(x)	Valor máximo de x	
max(A)	Vector con el máximo de cada columna de ${\cal A}$	
min(x)	Valor mínimo de x	
min(A)	Vector con el mínimo de cada columna de ${\cal A}$	

División (elemento a elemento) de dos matrices

estructura básica de un programa # CALCULO DEL AREA DE UN CIRCULO # Entrada de datos r = input('Introduce el radio del ciculo: '); # Algoritmo A = pi*r^2; # Salida de datos fprintf('El area del circulo es %.3f \n', A);

Entrada y salida de datos	
a=input('Introduce dato:')	Saca en pantalla el texto de entrada de dato y se lo asigna a al presionar Enter
c=input('¿Nombre?','s')	Asigna la cadena de caracte- res introducida por usuario
disp(A) ó disp('texto')	Muestra A o texto
<pre>fprintf('Es a=%f \n ', a)</pre>	Escribe en pantalla el texto combinado con el dato de \boldsymbol{a}
c=sprintf('Es a=%f \n ', a)	Almacena en c la cadena de caracteres del texto combinado con el dato de a

Format	o de salida de datos
%f	Formato en coma flotante (escribe con 6 decimales)
%d	Formato como enteros, lógicos,
%s	Formato de cadenas de caracteres
%-6.3f	Salida de datos en coma flotante, justificado a izqda. (con -), con 6 caracteres mínimos reservados para escritura, escrito con 3 decimales
%4.2d	Salida de datos de enteros etc, justificado a dcha. (sin -), con 4 caracteres mínimos reservados para escritura, con un mínimo de 2 dígitos
%7s	Salida de cadenas de caracteres, justificado a dcha. (sin -) con mínimo de anchura de 7 caracteres

```
Redondeo de números
                Elimina la parte decimal de 3.2 y devuelve el
fix(3.2)
                entero 3
floor(3.2)
                Mayor entero por debajo de 3.2, es decir 3
floor(-3.2)
                Mayor entero por debajo de -3.2, es decir -4
ceil(3.2)
                Menor entero por encima de 3.2, es decir 4
ceil(-3.2)
                Menor entero por encima de -3.2, es decir -3
round(3.2)
                Entero más cercano a 3.2, es decir 3
round(3.7)
                Entero más cercano a 3.7, es decir 4
```

```
Generación de elementos aleatorios
                      Genera nº aleatorio equiprobable en el
rand()
                      intervalo ABIERTO (0,1)
                      Genera una matriz 3 \times 3 de n^{os} aleatorios
rand(3)
                      equiprobables en (0,1)
                      Genera una matriz 4 \times 2 de reales aleato-
rand(4,2)
                      rios equiprobables en (0,1)
                      Genera nº aleatorio equiprobable en el
2+13*rand()
                      intervalo ABIERTO (2, 15)
                      Genera nº ENTERO aleatorio equiproba-
2+fix(13*rand())
                      ble en el intervalo CERRADO [2, 14]
```

```
Bucle while (I)

% Bucle while come un for
i = 0;
while i < 7
    disp(i);
    i = i + 1;
end</pre>
```

```
## Bucle while (II)

## Generamos los cubos de num naturales <100
i=1; c=1;
while c<100
    disp(c);
    i=i+1; c=i^3;
end
```

Matlab/Octave: Bestiario de comandos


```
Bucle for (III)

**Bucle con paso no trivial
for i=1.5:0.1:2
disp(i)
end
```

```
Bucle for (III)

% Bucle sobre un vector predefinido

for i=[4,1,1,-2,0.4]

disp(i)

end
```

```
Bucle for anidado II

% Bucle anidado dependiente
for i=1:4
    for j=1:i
        suma = i+j;
        fprintf('a i=%d,\t sumo j=%d: da %d\n',i,j,suma)
    end
end
```

```
    Interrupciones de bucles y programas/funciones

    break
    Interrumpe el menor bucle que lo contiene y continua con el programa

    continue
    Pasa automáticamente a la siguiente iteración del menor bucle que lo contiene

    return
    Termina automáticamente el progreso del programa o función
```

```
Algoritmo de la suma

v=input('Introduce un vector...');

%Variable para la suma parcial, "S"
S=0; %inicializacion (o es neutro para la suma)
for i=1:length(v)
    S=S+v(i); %suma parcial con elem. del vector
end

fprintf('La suma es %f \n', S)
```

```
v=input('Introduce un vector...');

%Variable para el producto parcial, "P"
P=1; %inicializacion (1 es neutro para el producto)
for i=1:length(v)
    P=P*v(i); %producto parcial con elem. del vector
end

fprintf('El producto es %f \n', P)
```

Algoritmo del producto

```
Algoritmo del máximo

v=input('Introduce un vector...');

%Variable para el CANDIDATO a maximo, "M"
M=v(1); %inicializacion (1er elem.)
for i=2:length(v) % seguimos desde 2a componente
if v(i)>M % Si supera al candidato...
M=v(i); % ...actualizamos el candidato
end
end

fprintf('El maximo es %f \n', M)
```

```
% suma
% IMPORTANTE: en el fichero suma.m
function w = suma(x, y)
    w = x + y;
end %opcional
>> suma(10, -5)
5
```

```
Funciones sin argumentos

% FICHERO: escribodato.m
function escribodato(n)
fprintf('El valor del dato es %f\n',n);
% FICHERO: errores.m
function errores()
fprintf('DATOS ERRONEOS: fin del programa\n');

>> escribodato(12.5)
El valor del dato es 2.500000

>> errores()
DATOS ERRONEOS: fin del programa
```

```
funciones anónimas (l)

fun1= @(x) sin(x)*cos(x)+1;

fun1(pi/4)
    1.5000

f = @(x) sin(x.^2)./(5*x);

f(pi/2)
    0.0795
f([-pi/2, 0, pi/2])
    -0.0795 NaN 0.0795

g = @(x,y) x*cos(y^2);
g(1,0)
    1
```

```
Funciones anónimas (II)

h=inline('x*y*z-x^3+y^2*z');
h(1,1,0)
-1
```

Matlab/Octave: Bestiario de comandos

Funciones auxiliares de vectores y matrices (II) norm(x) Norma ||x||dot(x,y) Producto escalar $x \cdot y$ cross(x,y) Producto vectorial $x \times y$ det(A) Determinante de Atrace(A) Traza de Aeig(A) Vector de autovalores de A

Generando matrices y vectores	
zeros(5)	Crea una matriz 5×5 de 0's
zeros(12, 5)	Crea una matriz 12×5 de 0's
ones(5)	Crea una matriz 5×5 de 1's
ones(12, 5)	Crea una matriz 12×5 de 1's
eye(5)	Crea una matriz identidad de 5×5
eye(12, 5)	Crea una matriz 12×5 con 1's en la diagonal
repmat(A,3,2)	Crea una matriz por bloques compuesta por 3 filas y 2 columnas de matrices ${\cal A}$
diag(x)	Crea una matriz con \boldsymbol{x} en la diagonal y 0's en el resto
diag(A)	Devuelve un vector fila conteniendo la diagonal de ${\cal A}$
diag(diag(A))	Crea una matriz manteniendo la diagonal de ${\cal A}$ y con 0's en el resto
blkdiag(A,B)	Crea una matriz por bloques compuesta por A y B como bloques diagonales
triu(A)	Matriz triangular superior de ${\cal A}$
fliplr(A)	$\label{eq:matrix} \begin{tabular}{ll} Matriz formada por intercambiar las columnas de A con respecto al eje vertical medio \end{tabular}$
fliplr(A)	$\begin{array}{c} \text{Matriz formada por intercambiar las filas} \\ \text{de } A \text{ con respecto al eje horizontal medio} \end{array}$
reshape(A,[5,2])	$\label{eq:matrix} \mbox{Matriz } 5\times 2 \mbox{ formada por los elementos} \\ \mbox{de } A \mbox{ manteniendo el orden}$

```
Department of the state of the
```

```
Funciones para búsqueda de condiciones lógicas
 b=[-1,0,1,2];
                %alguno es >0?
 any(b>0)
 all(b>0)
                %todos son >0?
 find(b>0)
                %donde es >0?
 %Para matrices, funcionan por COLUMNAS
 A = [-2:2; linspace(0,1,5)]
     -2.0000 -1.0000 0 1.0000 2.0000
         0 0.2500 0.5000 0.7500 1.0000
    0 0 0 1 1
    0 1 1 1 1
 any(A>o)
    0 1 1 1 1
 all(A>0)
    0 0 0 1 1
 find(A>0)
     6
    10
```

Gráficos 2D	
plot([2,4],[-1,3])	Dibuja el segmento entre puntos $(2,-1)$ y $(4,3)$
plot([1 6 5 2 1], [2 0 4 3 2])	Dibuja el polígono de puntos $(1^{er} y)$ último punto iguales: p.ej. $(1,2)$
plot(x,y)	Dibuja el gráfico de puntos con ordenadas y con respecto a las abscisas x (es decir, los puntos $(x(i),y(i))$)
axis equal	Fuerza a tener la misma escala en el eje \boldsymbol{x} y en el \boldsymbol{y}
axis([xmin, xmax, ymin, ymax])	Fija los límites del gráfico en valores particulares de los ejes
title('Un Título')	Añade un título al gráfico
xlabel('etiqueta x')	Añade una etiqueta al eje \boldsymbol{x}
ylabel('etiqueta y')	Añade una etiqueta al eje \boldsymbol{y}
legend('esto','este')	Etiqueta dos curvas en el gráfico
grid	Añade una cuadrícula al gráfico
hold on,, hold off	Superpone gráficos
figure	Comienza un nuevo gráfico
clf	Limpia la ventana de gráficos

```
Gráficos 2D
  %Dominio: [-3pi,3pi] (subdiv. en 1000 puntos)
  x = linspace(-3*pi, 3*pi, 1000);
  y1 = \sin(x); y2 = \cos(x);
  f=Q(x) 1-x.^2; %podemos usar funciones anonimas
  v3 = f(x);
                          %Para añadir varias curvas
  hold on
 plot(x, y1, 'r-'); %sen(x) linea continua roja
plot(x, y2, 'k--'); %cos(x) linea discontinua negra
plot(x, y3, 'g-.', 'Linewidth', 2); %1-x^2 linea verde
                                              %ptos&trazos doble
  hold off
  % Fijamos los limites de los ejes
  axis([-3*pi, 3*pi, -1.5, 1.5])
  % Etiquetas de ejes
  xlabel('x'); ylabel('y');
  % Titulo
  title('Grafico de sen(x), cos(x) y 1-x<sup>2</sup>');
  % Legenda de curvas
  legend('sen(x)', 'cos(x)', '1-x^2');
                     Grafico de sen(x), cos(x) y 1-x2
       1.5
                                                     sen(x)
                                                     cos(x)
                                                     - 1-x 2
       0.5
       -0.5
```

-2 0