1. Naj bo *A* matrika

$$A = \begin{bmatrix} 4 & 1 & 3 & 1 \\ 1 & 4 & 1 & 3 \\ 3 & 1 & 4 & 1 \\ 1 & 3 & 1 & 4 \end{bmatrix}.$$

- (a) Poišči ortonormirano bazo \mathbb{R}^4 sestavljeno iz lastnih vektorjev matrike A.
- (b) Zapiši spektralni razcep matrike *A* izrazi *A* kot linearno kombinacijo matrik pravokotnih projekcij.

$$\begin{split} \text{Rešitev: (a) } B_{\mathbb{R}^4} &= \{\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3, \mathbf{q}_4\} = \left\{ \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ -1 \\ 0 \\ 1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} -1 \\ 1 \\ -1 \\ 1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \right\}. \\ \text{(b) } A &= \mathbf{q}_1 \mathbf{q}_1^\mathsf{T} + \mathbf{q}_2 \mathbf{q}_2^\mathsf{T} + 5 \mathbf{q}_3 \mathbf{q}_3^\mathsf{T} + 9 \mathbf{q}_4 \mathbf{q}_4^\mathsf{T}. \end{split}$$

2. Poišči (ekonomični) singularni razcep matrike

$$A = \begin{bmatrix} 0 & -2 & 1 \\ 1 & 2 & 0 \end{bmatrix},$$

tj. poišči ortogonalni matriki U in V ter (kvadratno) diagonalno matriko S, da bo $A = USV^{\mathsf{T}}$. Lahko slediš tem korakom:

- (a) Diagonaliziraj AA^{T} v ortonormirani bazi \mathbb{R}^2 . Prepričaj se, da je prehodna matrika ravno U, diagonalna matrika pa točno S^2 .
- (b) S pomočjo S in U iz prejšnje točke ter zapisa $A = USV^{\mathsf{T}}$ določi še V.

Rešitev: (a)
$$D = \begin{bmatrix} 1 & 0 \\ 0 & 9 \end{bmatrix}$$
, $U = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$, $AA^{\mathsf{T}} = UDU^{\mathsf{T}}$. (b) U kot prej, $S = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$, $V = \frac{1}{3\sqrt{2}} \begin{bmatrix} 3 & 1 \\ 0 & 4 \\ 3 & -1 \end{bmatrix}$.

- 3. Naj bo $A\mathbf{x} = \mathbf{b}$ predoločen sistem linearnih enačb, tj. matrika $A \in \mathbb{R}^{m \times n}$ je pokončna; $m \ge n$. Denimo, da poznamo singularni razcep A; $A = USV^\mathsf{T}$. Naj bo S^+ matrika, ki jo dobimo iz S, tako da vse neničelne singularne vrednosti $\sigma_i > 0$ zamenjamo z $\frac{1}{\sigma_i}$ in transponiramo. Označimo $A^+ = VS^+U^\mathsf{T}$. Preveri naslednje:
 - (a) Če je A kvadratna in polnega ranga, potem je $A^+ = A^{-1}$.
 - (b) Vektor $\mathbf{x} = A^+ \mathbf{b}$ je rešitev sistema $A\mathbf{x} = \mathbf{b}$ v smislu linearne metode najmanjših kvadratov (tj. $A^+ \mathbf{b}$ je ena od rešitev sistema $A^T A \mathbf{x} = A^T \mathbf{b}$).