© NCERTIDIIS Red

EXERCISE 1.1

- **1.** (C) **2.** (D)
- **3.** (C)
- 4. (B)
- 5. (A)

- **6.** (B)
- **7.** (C)
- **8.** (A)
- 9. (D)
- **10.** (D)

EXERCISE 1.2

- 1. No, because an integer can be written in the form 4q, 4q+1, 4q+2, 4q+3.
- **2.** True, because n(n+1) will always be even, as one out of n or (n+1) must be even.
- **3.** True, because n(n+1)(n+2) will always be divisible by 6, as at least one of the factors will be divisible by 2 and at least one of the factors will be divisible by 3.
- **4.** No. Since any positive integer can be written as 3q, 3q+1, 3q+2,

therefore, square will be $9q^2 = 3m$, $9q^2 + 6q + 1 = 3(3q^2 + 2q) + 1 = 3m + 1$, $9q^2 + 12q + 3 + 1 = 3m + 1$.

- **5.** No. $(3q+1)^2 = 9q^2 + 6q + 1 = 3(3q^2 + 2q) = 3m + 1$.
- **6.** HCF = 75, as HCF is the highest common factor.
- 7. $3 \times 5 \times 7 + 7 = 7 (3 \times 5 + 1) = 7 (16)$, which has more than two factors.
- 8. No, because HCF (18) does not divide LCM (380).

9. Terminating decimal expansion, because $\frac{987}{10500} = \frac{47}{500}$ and $500 = 5^3 \times 2^2$

$$\left[\frac{987}{10500} = \frac{329}{3500} = \frac{329}{2^2 \cdot 5^3 \cdot 7} = \frac{47}{2^2 \cdot 5^3} = .094.\right]$$

10. Since 327.7081 is a terminating decimal number, so q must be of the form $2^m.5^n$; m, n are natural numbers.

EXERCISE 1.3

8. 63

9. 625

12. 2520 cm

13. 2³.5⁴; 0.0514

EXERCISE 2.1

1.

(C)

3. (D)

6.

7. (B) (A)

(C)

10. (A)

(D) 11.

EXERCISE 2.2

(iii) deg p(x) < deg g(x)(ii) $0, ax^2 + bx +$

(iv) $\deg g(x) \le \deg p(x)$

(vii)

(v) No

False **2.** (i)

False

False (ii)

(iii)

(iv) True True

False

EXERCISE 2.3

(vi)

3. -1, $\frac{-7}{5}$ 4. 0, -3, 55. $\frac{-3}{2}$, $\frac{-1}{4}$ 8. $\sqrt{3}$, $-5\sqrt{3}$ 9. $-2\sqrt{5}$, $\frac{\sqrt{5}}{2}$ 10. $\frac{2}{3}$, $-\frac{1}{7}$

EXERCISE 2.4

1. (i) $-2, \frac{-2}{3}$ (ii) $\frac{5}{2}, \frac{1}{8}$ (iii) $-3\sqrt{3}, \sqrt{3}$ (iv) $\frac{\sqrt{5}}{5}, \frac{-\sqrt{5}}{2}$

2. a = -1 and b = 3 or a = 5, b = -3. Zeroes are -1, 2, 5

3.
$$\frac{-\sqrt{2}}{2}, \frac{-2\sqrt{2}}{3}$$
 4. $k = -3$

Zeroes of
$$2x^4 + x^3 - 14x^2 + 5x + 6$$
 are 1, -3, 2, $-\frac{1}{2}$

Zeroes of $x^2 + 2x - 3$ are 1, -3

5.
$$\sqrt{5}$$
, $\sqrt{5}$ + $\sqrt{2}$, $\sqrt{5}$ - $\sqrt{2}$ **6.** $a = -1$, $b = -2$

1 and 2 are the zeroes of q(x) which are not the zeroes of p(x).

EXERCISE 3.1

3. (D) 1. (D) (C)

7. (D) **6.** (C) (C) 8. (D) 10.

12. 13. 11. (C) (D) (\mathbb{C})

EXERCISE 3.2

- (iii) No **1.** (i) Yes (ii) No
- (iii) No **2.** (i) No (ii) Yes
- **3.** (i) No (iii) Yes (iv) No (ii) Yes
- **4.** No 5. False 6. Not true

EXERCISE 3.3

- (ii) $\lambda = 1$ (iii) All real values of λ except ± 1 .
- All real values of *p* except 10. (ii) p = 1
- (iii) All real values of p except $\frac{9}{10}$. (iv) All real values of p except – 4.
- 5. Do not cross each other.
- **6.** x y = -42x + 3y = 7; infinitely many pairs.

7. 31,
$$\frac{-5}{7}$$

8.
$$x = 1, y = 4$$

9. (i)
$$x = 1.2$$
, $y = 2.1$ (ii) $x = 6$, $y = 8$ (iii) $x = 3$, $y = 2$

(ii)
$$x = 6$$
 $y = 8$

(iii)
$$x = 3, y = 2$$

(iv)
$$x = \frac{1}{6}$$
, $y = \frac{1}{4}$ (v) $x = 1$, $y = -1$ (vi) $x = a^2$, $y = b^2$

(v)
$$x = 1, y = -1$$

(vi)
$$x = a^2, y = b^2$$

(vii)
$$x = \frac{1}{2}$$
, $y = \frac{-3}{2}$

10.
$$x = 340, y = -165; \lambda = -\frac{1}{2}$$

- **11.** (i) consistent; x = -1, y = -1
- inconsistent (ii)
- (iii) consistent. The solution is given by y = 3-x, where x can take any value, i.e., there are infinitely many solutions.
- **12.** (2,0), (0, 4), (0, -4); 8 sq. units. **13.** x = y, Infinitely many lines.
- **14.** a = 5, b = 2.

- 15. 55°. 85°.
- **16.** Salim's age = 38 years, Daughter's age = 14 years.
- **17.** 40 years.
- 18.
- 19. 100 students in hall A, 80 students in hall B.
- **20.** Rs 10, Rs 3. **21.** 100.
- **22.** x = 20, y = 30, $\angle A = 130^{\circ}$, $\angle B = 100^{\circ}$, $\angle C = 50^{\circ}$, $\angle D = 80^{\circ}$

EXERCISE 3.4

- 2. (0,0),(4,4),(6,2)
- **3.** 8 sq. units
- 4x + 4y = 100,3x = y + 15, where Rs x and Rs y are the costs of a pen and a pencil box respectively; Rs 10, Rs 15 **5.** (1, 0), (2, 3), (4, 2) **6.** 10 km/h, 40 km/h
- 7. 2.5 km/h

- 8. 10 km/h, 4 km/h
- **9.** 83

- 10. Rs 2500, Rs 30
- 11. Rs 600, Rs 400
- **12.** Rs 12000 in scheme A, Rs 10000 in scheme B
- **13.** 500

EXERCISE 4.1

1. (D) **2.** (C) **3.** (C) **4.** (A) **5.** (B)

6. (D) **7.** (B) **8.** (C) **9.** (B) **10.** (A)

11. (C)

EXERCISE 4.2

1. (i) No, because discriminant = -7 < 0.

- (ii) Yes, because discriminant = 9 > 0.
- (iii) No, because discriminant = 0.
- (iv) Yes, because discriminant = 4 > 0.
- (v) No, because discriminant = -64 < 0.
- (vi) Yes, because discriminant = $(2+2\sqrt{2})^2 > 0$.
- (vii) Yes, because discriminant = 1 > 0.
- (viii) No, because discriminant = -7 < 0.
- (ix) Yes, because discriminant = 1 > 0.
- (x) Yes, because discriminant = 8 > 0.
- 2. (i) False, for example : $x^2 = 1$ is a quadratic equation with two roots.
 - (ii) False, for example $x^2 + 1 = 0$ has no real root.
 - (iii) False, for example : $x^2+1=0$ is a quadratic equation which has no real roots.
 - (iv) True, because every quadratic polynomial has almost two zeroes.
 - (v) True, because if in $ax^2+bx+c=0$, a and c have opposite signs, then ac<0 and so $b^2-4ac>0$.
 - (vi) True, because if in $ax^2+bx+c=0$, a and c have same sign and b=0, then $b^2-4ac=-4ac<0$.
- 3. $x^2-3x+1=0$ is an equation with integral coefficients but its roots are not integers.
- **4.** $x^2 6x + 7 = 0$, which has roots $3 + \sqrt{2}$, $3 \sqrt{2}$
- 5. Yes. $\sqrt{3}x^2 7\sqrt{3}x + 12\sqrt{3} = 0$. which has roots 3, 4
- **6.** No. **7.** Yes

EXERCISE 4.3

1. (i)
$$\frac{5}{2}$$
, -1

(ii)
$$-1, -\frac{8}{5}$$
 (iii) $-\frac{4}{3}, 3$

(iii)
$$-\frac{4}{3}$$
, 3

$$(v) -3\sqrt{2}, \sqrt{2}$$

(vi)
$$\sqrt{5}.2\sqrt{5}$$

(v)
$$-3\sqrt{2}$$
, $\sqrt{2}$ (vi) $\sqrt{5}$, $2\sqrt{5}$ (vii) $\sqrt{11} + 3$, $\sqrt{11} - 3$

2. (i)
$$-\frac{3}{2}, \frac{2}{3}$$
 (ii) $-\frac{1}{2}, 3$ (iii) $\sqrt{2}, -\frac{\sqrt{2}}{6}$

$$(ii) - \frac{1}{2}, 3$$

(iii)
$$\sqrt{2}$$
, $-\frac{\sqrt{2}}{6}$

(iv)
$$\frac{\sqrt{5}}{3}$$
, $-2\sqrt{5}$ (v) $\frac{1}{21}$, $\frac{1}{21}$

(v)
$$\frac{1}{21}$$
, $\frac{1}{21}$

EXERCISE

- 1. (i) Real roots exist; roots are $\frac{1}{2}$, $\frac{-3}{4}$
 - (ii) Real roots exist; roots are 2, $-\frac{1}{2}$
 - (iii) Real roots exist; roots are $\frac{1}{5} + \frac{\sqrt{51}}{5}$, $\frac{1}{5} \frac{\sqrt{51}}{5}$
 - (iv) Real roots exist; roots are $4 + \frac{3\sqrt{2}}{2}$, $4 \frac{3\sqrt{2}}{2}$
 - (v) Real roots exist; roots are $-7\sqrt{5}$, $2\sqrt{5}$
- 2. The natural number is 12
- **3.** The natural number is 8
- 4. Original speed of the train is 45 km/h
- 5. Zeba's age now is 14 years
- Nisha's age is 5 years and Asha's age is 27 years.
- Length of the pond is 34 m and breadth is 24 m
- 8. 14

EXERCISE 5.1

1. (D) **2.** (B) **3.** (B) **4.** (B) **5.** (C)

6. (B) **7.** (B) **8.** (B) **9.** (C) **10.** (A)

11. (C) **12.** (D) **13.** (B) **14.** (C) **15.** (A)

16. (A) **17.** (C) **18.** (A)

EXERCISE 5.2

- 1. (i), (iv) and (vii) form an AP as in each of these $a_{k+1} a_k$ is the same for different values of k.
- 2. False, as $a_4 a_3 \neq a_3 a_2$.
- 3. Yes, $a_{30} a_{20} = (30 20)d = 10d = -40$.
- **4.** The difference between any two corresponding terms of such APs is the same as the difference between their first terms.
- 5. No.
- 6. No, as the total fare (in Rs) after each km is 15, 23, 31, 39, ---
- 7. (i), (ii) and (iii) form an AP as in the list of numbers formed every succeeding term is obtained by adding a fixed number.
- **8.** (i) Yes (ii) No (iii) No

EXERCISE 5.3

1. $(A_1) \rightarrow (B_4)$

$$(A_*) \rightarrow (B_*)$$

$$(A_3) \rightarrow (B_1)$$

$$(A_4) \rightarrow (B_2)$$

2. (i)
$$1, \frac{5}{4}, \frac{3}{2}$$
 (ii) $\frac{11}{3}, \frac{10}{3}, 3$ (iii) $4\sqrt{3}, 5\sqrt{3}, 6\sqrt{3}$

(iv)
$$(a+2) + (b+1)$$
, $(a+2) + (b+2)$, $(a+3) + (b+2)$

(v)
$$5a+4$$
, $6a+5$, $7a+6$

3. (i)
$$\frac{1}{2}$$
, $\frac{1}{3}$, $\frac{1}{6}$ (ii) -5 , -8 , -11 (iii) $\sqrt{2}$, $\frac{3}{\sqrt{2}}$, $\frac{4}{\sqrt{2}}$

(ii)
$$-5, -8, -11$$

(iii)
$$\sqrt{2}, \frac{3}{\sqrt{2}}, \frac{4}{\sqrt{2}}$$

4.
$$a=-1, b=15, c=31$$

$$a=-1, b=15, c=31$$
 5. 3, 7, 11, 15, --- **6.** $d=-\frac{1}{5}, n=27$

10. Yes,
$$17^{th}$$
 term. **11.** $k = 0$

20.
$$n = 6, d = 10$$

k = 27

21. (i) –9400 (ii)
$$\frac{7n-1}{2}$$
 (iii) $\frac{11(11a-6b)}{a+b}$

32.
$$n = 5, 11$$

EXERCISE 5.4

(i) 1683

10. 728 m; 26 m

EXERCISE 6.1

1. No,
$$25^2 \neq 5^2 + 24^2$$

2. No,
$$\angle D = \angle R$$
 but $\angle F \neq \angle P$.

3. Yes, because
$$\frac{PA}{QA} = \frac{PB}{BR}$$

Yes, SAS criterion.

- **5.** No, $\triangle QPR \sim \triangle STM$
- **6.** No, Corresponding sides must also be proportional.
- 7. Yes, as the corresponding two sides and the perimeters are equal, their third sides will also be equal.
- **8.** Yes, AAA criterion.
- 9. No, ratio will be $\frac{9}{25}$.
- **10.** No, For this, $\angle P$ should be 90°.
- 11. Yes, AA criterion.
- 12. No, angles should be included angles between the two pairs of proportional sides.

EXERCISE 6.3

- 2. x = 2
- 4. 9:1
- $4\sqrt{3}$ cm 6.

- 8. 1:3
- 9. 60 cm
- 108 cm^2 10.
- **12.** 12 cm

- 14. 10 m
- 15. 8 m

EXERCISE 6.4

- 5 cm, 2 cm 1.
- BC = 6.25 cm, EF = 16.8 cm. **5.** 0.8 m 2.
- 8 km 6.
- $20.4 \,\mathrm{m}$

8. 9 m

- $2\sqrt{5}$ cm, 6 cm 9.
- $2\sqrt{5}$ cm, 5 cm, $3\sqrt{5}$ cm 10.
- **14.** 8 cm, 12 cm, 16 cm

EXERCISE 7.1

- 1. (B)
- 3. (C)
- (B)
- 5. (C)

- 6. (B)
- (C)
- 8. (B)

(B)

(B)

- 9. (D)
- 10. (A)

- 11. (B)
- 12. (D)

(D)

- 13.
- 14. (A)
- 15. (A)

- 17.
- 19.

- 16. (D)
- 18.
- (B)
- 20. (C)

EXERCISE 7.2

- True. Because all three sides of both triangles are proportional.
- True. The three points lie on the line x = -4.
- False, since two points lie on the y axis and one point lies in quadrant I. 3.
- False. $PA = \sqrt{2}$ and $PB = \sqrt{10}$, i.e., $PA \neq PB$.
- 5. True, since ar $(\Delta ABC) = 0$.

- **6.** False, since the diagonals donot bisect each other.
- 7. True, radius of the circle = 5 and OP > 5
- 8. False, since $AP \neq AQ$
- **9.** True, since P divides AB in the ratio 1 : 2
- **10.** True, since B divides AC in the ratio 2:7
- 11. False, since PC = $\sqrt{26} < 6$, P will lie inside the circle.
- **12.** True, Mid-points of both the diagonals are the same and the diagonals are of equal length.

EXERCISE 7.3

- 1. Scalene triangle
- **2.** (9, 0), (5, 0), 2 points

3. Rectangle

- **4.** a = -3
- 5. (-3, 5) the middle point of AB. Infinite number of points. In fact all points which are solutions of the equation 2x+y+1=0.
- **6.** $\left(\frac{-1}{2},0\right)$, isosceles triangle

7. $\frac{19}{14}$

8. y=-3,-5, $PQ=\sqrt{290}$, $13\sqrt{2}$

9. (

- **10.** 6:7, $\left(\frac{-34}{13}, 0\right)$
- **1.** 1:5

12. a = 1 b = -3

- **13.** k = 22, AB = $2\sqrt{61}$
- **14.** a = 5, 3
- **15.** 19

16./11

- 17. a = 2, Area = 6 sq. unit
- **18.** $\left(\frac{4}{5}, \frac{21}{5}\right)$
- 19. $2,\frac{1}{2}$
- **20.** 8:1, $\left(\frac{8}{3}, \frac{-1}{9}\right)$

EXERCISE 7.4

1. $(0, 3-4\sqrt{3})$ 2. $\frac{3}{4}$ sq. units.

- 3. (i) $\left(\frac{x_2 + x_3}{2}, \frac{y_2 + y_3}{2}\right)$ (ii) $\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$
 - (iii) same as (ii) (iv) same as (ii)
- **4.** $a = -3, h = \frac{12\sqrt{26}}{13}$

5. Yes, Jaspal should be placed at the point (7, 5)

- 5. Tes, Jaspai should be placed at the point (7, 5)
- **6.** House to Bank = 5 km

Bank to school = 10 km

School to Office = 12 km

Total distance travelled = 27 km

Distance from house to office = 24.6 km

Extra distance = 2.4 km

EXERCISE 8.1

- **1.** (B) **2.** (A) **3.** (B) **4.** (C) **5.** (B)
- **6.** (B) **7.** (C) **8.** (A) **9.** (A) **10.** (D)
- 11. (B) 12. (C) 13. (C) 14. (B) 15. (A)

EXERCISE 8.2

- 1. True 2. False 3. False $[\sin 80^{\circ} \sin 10^{\circ} = \text{positive} : \text{as } \theta \text{ increases}, \text{ value of } \sin \theta \text{ increases}]$
- 4. True 5. True 6. False 7. False 8. False
- **9.** False **10.** False **11.** False **12.** True

EXERCISE 8.3

8. 30° **9.** $\frac{-1}{2}$ **10.** $\frac{15}{2}$ m **11**. 1 **12.** 90° **14.** 45°

EXERCISE 8.4

3. $10(\sqrt{3}+1)$ m 7. $25\sqrt{3}$ m 13. $10\sqrt{3}$ m; 10 m 14. $h(\cot \alpha - \cot \beta)$

16. $5(\sqrt{3}+3)$ m **18.** 8 m

EXERCISE 9.1

1. (B)

2. (D)

3. (C)

6. (C)

7. (A)

8. (A)

EXERCISE 9.2

False

False

3. True

True

True

6. False 7. True 8. False

True

10. True

EXERCISE 9.3

1. 3 cm

20 cm

4.8 cm 7. 30° 11. $\frac{20}{3}$ cm

12.

13. $8\sqrt{2} \text{ cm}^2$ 14. 24 cm

EXERCISE 10.1

(D)

2. (B)

3. (A)

4. (C) **5.** (B)

6. (D)

EXERCISE 10.2

1. True

2. False **3.** False

4. True

EXERCISE 10.3

2. Yes **7.** No

EXERCISE 10.4

1. 3.25 cm **2.** Yes, yes **3.** 4 cm **6.** 8 cm

EXERCISE 11.1

1. (B) **2.** (A) **3.** (B) **4.** (A) **5.** (B)

6. (A) **7.** (D) **8.** (B) **9.** (C) **10.** (D)

EXERCISE 11.2

1. No, radius of the circle is $\frac{a}{2}$

- 2. Yes, side of the square is 2a cm
- 3. No, side of the outer square = diagonal of the inner square
- **4.** No, it is only true for minor segment.
- 5. No, it is πd .
- **6.** Yes, distance covered in one revolution = $2\pi r$
- 7. No, it will depend on the value of radius.
- **8.** Yes, it will be true for the arcs of the same circle.
- 9. No, it will be true for the arcs of the same circle.
- 10. No, it will be true for arcs of the same circle.
- 11. Yes, radius of the circle breadth of the rectangle.
- 12. Yes, their radii are equal
- 13. Yes, their radii are equal
- **14.** No, diagonal of the square is p cm.

EXERCISE 11.3

1. 33 cm 2. $(16\pi - 32)$ cm² 3. 308 cm²

4. 500. **5.** 154 m^2 **6.** $(380 + 25\pi)\text{cm}^2$

7. 54.5 cm^2 8. $(32 + 2\pi) \text{m}^2$ 9. $(248 - 4\pi) \text{m}^2$

10.
$$\left(\frac{308}{3} - 49\sqrt{3}\right) \text{ cm}^2$$
 11. 30.96 cm² **12.** 39.25 cm²

15. 1386 cm² **16.**
$$\frac{60}{\pi}$$
 cm

EXERCISE 11.4

3.
$$(24\sqrt{21}-77)$$
m²

4.
$$(75.36 - 36\sqrt{3})$$
cm²

$$(75.36-36\sqrt{3})$$
 cm² **5.** Rs 3061.50 **6.** 196 cm²

14.
$$45\frac{5}{6}$$
 cm² 15. $73\frac{1}{3}$ cm, Areas: $\frac{154}{3}$ cm², 154 cm²; Arc lengths: $\frac{44}{3}$ cm;

Arc lengths of two sectors of two different circles may be equal, but their area need not be equal.

17.
$$(180-8\pi)$$
 cm² 18. 40 19. $(\frac{25\pi}{4} + \frac{25}{2})$ cm² 20. 462 cm²

EXERCISE 12.1

- 3. (B)
- (B)
- (C)

- **6.**
- 8. (A)
- 9. (B)
- **10.** (A)

- 11. (B)
- 13. (A)
- **14.** (A)
- 15. (A)

- 16.
- 18. (A)
- **19.** (A)
- 20. (D)

EXERCISE 12.2

- **False**
- **2.** False
- 3. False
- False
- 5. False

- **6.** True
- 7. False
- 8. True

EXERCISE 12.3

- 1. 6 cm **2.** 84
- 15 cm
- 7:1 **5.** 160 cm²

- 6.
- 7. 855 cm² (approx.) **8.** 14 cm, 7 cm; 132 cm³, 66 cm³; 396 cm³ **9.**
 - 327.4 cm³

10. 150 **11.** 1500 **12.** 2541 **13.** 12960 **14.** 450

EXERCISE 12.4

- **1.** 28.44 cm **2.** 8.6 m **3.** 3960 cm³, 29.7 kg **4.** 480000 words
- **5.** 51 minutes 12 sec **6.** 74.25m³,80.61 m² **7.** Rs 2250
- **8.** 2 hours **9.** 112 m **10.** 0.5 cm **11.** 487.6 cm³
- **12.** Rs 230.12 **13.**36 cm, 43.27 cm **14.** 301.44 cm², 377.1 cm³
- **15.** 4 m **16.** 54 **17.** 1.584 m³
- **18.** 90 cm **19.**2.5 cm **20.** 170.8 cm³

EXERCISE 13.1

- **1.** (C) **2.** (B) **3.** (A) **4.** (C) **5.** (B) **6.** (B) **7.** (B) **8.** (C) **9.** (C) **10.** (C)
- 6. (B) 7. (B) 8. (C) 9. (C) 10. (C) 11. (A) 12. (D) 13. (D) 14. (A) 15. (C)
- **16.** (B) **17.** (C) **18.** (A) **19.** (A) **20.** (A)
- 21. (D) 22. (B) 23. (C) 24. (A) 25. (C)
- **26.** (B)

EXERCISE 13.2

- 1. Not always, because for calculating median of a grouped data, the formula used is based on the assumption that the observations in the classes are uniformly distributed (or equally spaced).
- 2. Not necessary, the mean of the data does not depend on the choice of a (assumed mean).
- **3.** No, it is not always the case. The values of these three measures can be the same. It depends on the type of data.
- 4. Not always. It depends on the data.
- **5.** No, the outcomes are not equally likely. For example, outcome 'one girl' means *gbb*, *bgb*, *bbg* 'three girls' means *ggg* and so on.
- **6.** No, the outcomes are not equally likely. The outcome '3' is more likely than the others.
- 7. Peehu; probability of Apoorv's getting $36 = \frac{1}{36}$ while probability of Peehu's getting

$$36 = \frac{1}{6} = \frac{6}{36}$$
.

- **8.** Yes, the probability of each outcome is $\frac{1}{2}$, since the two outcomes are equally likely.
- 9. No, outcomes '1' and 'not 1' are not equally likely, $P(1) = \frac{1}{6}$, $P(\text{not 1}) = \frac{5}{6}$,
- **10.** No, the outcomes are not equally likely. Outcome 'no head' means 'TTT'; outcome 'one head' means THT, HTT, TTH and so on. $P(TTT) = \frac{1}{8}$, $P(\text{one head}) = \frac{3}{8}$ and so on.
- **11.** No, the outcomes 'head' and 'tail' are equally likely every time regardless of what you get in a few tosses.
- 12. It could be a tail or head as both the outcomes are equally likely, in each toss.
- **13.** No, head and tail are equally likely. So, no question of expecting a tail to have a higher chance in the 4th toss.
- **14.** Yes, the outcomes 'odd number', 'even number' are equally likely in the situation considered.

EXERCISE 13.3

- 1. 5.5
- 2. 35
- **3.** 12.93
- 1 26
- **5.** Rs. 356.5

- **6.** 109. 92
- **7.** 123.4 kg
- **8.** 14.48 km/*l*; No, the manufacturer is claiming mileage 1.52 km/h more than the average mileage

9.

Weight (in kg)	Number of persons
Less then 45 Less then 50	4 8
Less then 55 Less then 60	21 26
Less then 65	32
Less then 70 Less then 75	37 39
Less then 80	40

10.

Marks	Number of students
0-10	10
10-20	40
20-30	80
30-40	140
40-50	170
50-60	130
60-70	100
70-80	70
80-90	40
90-100	20

11.

Marks	Number of candidates
0-10	.2
10-20	2
20-30	3
30-40	4
40-50	6
50-60	6
60-70	5
70-80	2
80-90	4

12.
$$a = 12, b = 13, c = 35, d = 8, e = 5, f = 50$$

13.	(i) Less than type		(ii) More than type	
	Ages (in years)	Number of students	Ages (in years)	Number of students
	Less than 10	0	More than or equal to 10	300
	Less than 20	60	More than or equal to 20	240
	Less than 30	102	More than or equal to 30	198
	Less than 40	157	More than or equal to 40	143
	Less than 50	227	More than or equal to 50	73
	Less than 60	280	More than or equal to 60	60
	Less than 70	300		6

14.

Marks	Number of students
0-20	17
20-40	5
40-60	7
60-80	8
80-100	13

- **15.** Rs 1263.15
- **16.** 109.17 km/h **17.** Rs 11875

- **18.** 201.7 kg **19.** (i) $\frac{1}{6}$ (ii) $\frac{5}{6}$ **20.** (i) $\frac{1}{6}$ (ii) $\frac{5}{12}$ (iii) 0
- **21.** (i) $\frac{1}{9}$ (ii) $\frac{1}{9}$ (iii) 0 **22.** $\frac{4}{9}$

- 23. $P(2) = \frac{1}{18}$, $P(3) = \frac{1}{9}$, $P(4) = \frac{1}{6}$, $P(5) = \frac{1}{6}$, $P(6) = \frac{1}{6}$, $P(7) = \frac{1}{6}$, $P(8) = \frac{1}{9}$ $P(9) = \frac{1}{18}$
- **24.** $\frac{3}{4}$ **25.** (i) $\frac{1}{8}$ (ii) $\frac{1}{2}$ **26.** $\frac{2}{9}$
- **27.** (i) $\frac{5}{11}$ (ii) $\frac{7}{22}$ (iii) $\frac{17}{22}$

28. (i) $\frac{13}{49}$

(ii) $\frac{3}{49}$

29. (i) $\frac{10}{49}$

(ii) $\frac{1}{49}$

30. (i) $\frac{1}{10}$

(ii) $\frac{3}{10}$

(iii) $\frac{3}{5}$

31. (i) $\frac{14}{99}$

(ii) $\frac{85}{99}$

32. (i) $\frac{1}{2}$

(ii) $\frac{9}{100}$

33. $\frac{21}{26}$

34. 0.69

35. $\frac{11}{75}$

36. P (not defective) = $\frac{3}{4}$, P (2nd bulb defective) = $\frac{5}{23}$

37. (i) $\frac{4}{9}$

(ii) $\frac{5}{9}$

(iii) $\frac{1}{3}$

(iv) $\frac{5}{18}$

38. (i) $\frac{1}{8}$

(ii) $\frac{1}{8}$

(iii) $\frac{3}{4}$

39. (i) 5 scores (0, 1, 2, 6, 7, 12)

(ii) $\frac{1}{3}$

40. (i) $\frac{7}{8}$

(ii) $\frac{15}{16}$

41. (i) $\frac{5}{6}$

(ii) $\frac{1}{3}$

42. (i) 0.009

(ii) $\frac{8}{999}$

[Hint: (ii) After first player has won the prize the number of perfect squares greater than 500 will be reduced by 1]

202 EXEMPLAR PROBLEMS

EXERCISE 13.4

1. 51.75

2. 48.41

3. 31 years

4. 201.96 g

7. Median salary = Rs 13420, Modal salary = Rs 12730

8. $f_1 = 28, f_2 = 24$ **9.** p = 5, q = 7

11. Median = 17.81 hectares, Mode = 17.76 hectares

12. Median rainfall = 21.25 cm

13. average = 170.3 sec.

14. (i)	Distance (in m)	No. of students	Cummulative frequency
	0-20	6	165°
	20-40	11	17
	40-60	17	34
	60-80	12	46
	80-100	4	50

(iii) 49.41 m.