Betriebssysteme WS 22/23 Blatt 5

Daniel Augustin, Malte Pullich 24.11.2022

1

1.1

Während Interruptbehandlung: hs2 (010) und hs7 (111)

1.2

```
IVNcken_{pre} = (E \cdot /s_1 \cdot s_0) \cdot \\ ((NB \cdot I_{31} \cdot I_{31} \cdot I_{30} \cdot I_{30} \cdot /I_{26} \cdot I_{25}) + // \text{ INT i} \\ /h_2 \cdot /h_2 \cdot h_0))
```

Während Interruptbehandlung: hs1 (001)

$\mathbf{2}$

2.1

bds = 128

```
int x : st(x) = (var, int, 128)
```

int y : st(y) = (var, int, 129)

const int z = 5: st(z) = (const, int, "5")

2.2

 \cdot x auf den Stack legen: SUBI SP 1 LOAD ACC 128 STOREIN SP ACC 1

(SP) x = 2

 \cdot y auf Stack legen: SUBI SP 1 LOAD ACC 129 STOREIN SP ACC 1

(SP) y = 3 x = 2

 \cdot z auf den Stack legen: SUBI SP 1 LOADI ACC 5 STOREIN SP ACC 1

(SP) z = 5 y = 3 x = 2

· y * z auswerten: LOADIN SP ACC 2 LOADIN SP IN2 MUL ACC IN2 STOREIN SP ACC 2 ADDI SP 1

(SP)
(51)
y * z = 15
x = 2

 \cdot 10 auf Stack legen: SUBI SP LOADI ACC 10 STOREIN SP ACC 1

(SP)
10
y * z = 15
x = 2

 \cdot 15 + 10 auswerten: LOADIN SP ACC 2 LOADIN SP IN2 ADD ACC IN2 STOREIN SP ACC 2 ADDI SP 1

(SP)

$$y * z + 10 = 25$$

 $x = 2$

 $\cdot 25 + x$ auswerten: LOADIN SP ACC 2 LOADIN SP IN2 1 ADD ACC IN2 STOREIN SP ACC 2 ADDI SP 1

2.3

Maximale Anzahl an Teilergebnissen:
$$(x_1 + (x_2 + (x_3 + \cdots (x_{n-1} + x_n)...)))$$

Minimale Anzahl an Teilergebnisen:
$$((...((x_1 + x_2) + x_3) + \cdot \cdot_{n-1})x_n)$$