Задача 1. Времето за преглед на пациент е експоненциално разпределена случайна величина с очакване 30(мин). За преглед има записани двама пациенти - първият за 11:00, а вторият за 11:30, като и двамата пристигат в точно определения час. Ако прегледът на първия не е завършил, вторият изчаква. Да се пресметне средно колко време ще прекара вторият пациент в поликлиниката.

Задача 2. Нека случайната величина $X \sim Exp(\lambda)$. Да се намерят плътностите на случайните величини

- Y = -X;
- Y = 2X 1;
- $Y = \sqrt{X}$;
- $Y = X^{\alpha}$ sa $\alpha > 0$.

Задача 3. Лъч (светлина) минава от точката (0,2) към т. (0,1) и се пречупва случайно, сключвайки ъгъл $\theta \in (-\pi/2;\pi/2)$ с Oy. Нека X е точката, в която пречупеният лъч пресича Ox. Да се намери плътността на X.

Задача 4. Праговото напрежение на диоди машина A е нормално разпределена случайна величина с очакване 100 и дисперсия 49, а от машина B - с очакване 90 и дисперсия 25. Диод е годен, ако праговото му напрежение е по-голямо от 85. Каква е вероятността случайно избран диод да бъде годен?

Задача 5. Височината на прилив е нормално разпределена случайна величина с очакване 6м и стандартно отклонение 1.5м. Дига предпазва от наводнение при височина на прилива до 8м.

- 1. Каква е вероятността за наводнение?
- 2. Колко висока трябва да е дигата, така че от 200 прилива най-много при един да има наводнение?

Задача 6. Монета, за която вероятността за падане на ези е 3/4 се хвърля 2000 пъти. Каква е вероятността броят на падналите се езита да е между 1475 и 1535?

Задача 7. Точка (X,Y) попада по случаен начин в триъгълник с върхове в точките с координати (0,0), (0,2) и (3,0). Да се намери съвместната плътност, функцията на разпределение и корелацията на X и Y.

Задача 8. Електронно устройство за предпазване от крадци автоматично променя осветлението в дома. То е настроено така, че през фиксиран час, в случаен момент X ще запали лампите, а в момент Y ще ги угаси. Нека съвместната плътност на случайните величини X и Y е $f_{X,Y}(x,y)=cxy, 0 < x < y < 1$.. Да се намери

- 1. константата с;
- 2. маргиналните плътности и математическите очаквания;
- 3. вероятността лампите да бъдат запалени преди 45-тата минута и да светят по-малко от 10 минути;
- 4. колко е средното време на светене, ако лампите са запалени на 15-тата минута;
- 5. каква е вероятността лампите да светят по-малко от 20 минути?

Задача 9. Нека X е температурата (в градуси), а Y е времето (в минути), необходимо за запалване на дизелов двигател. Нека $f_{X,Y}(x,y) = 1/2000(x+5y+10), -10 \le x \le 30, 0 \le y \le 2$. Да се определи

- 1. вероятността да е нужна поне 1 минута за запалване;
- 2. средното време за запалване при 15 градуса;
- 3. ако двигателят е запалил за 1.5 минути, каква е вероятността температурата да е отрицателна?

Задача 10. Върху страните на квадрат, независимо една от друга, по случаен начин попадат две точки. Да се намери математическото очакване на квадрата на разстоянието между точките, ако страната на квадрата е a.

Задача 11. Нека случайните величини $X_1, X_2 \sim Exp(\lambda)$ са независими. Да се намери разпределението на случайната величина $Y = X_1/(X_1 + X_2)$.

Задача 12. Нека случайните величини $X_1, X_2 \sim U(0,1)$ са независими. Да се намери разпределението на случайната величина $Y = X_1 + X_2$.

Задача 13. Нека случайните величини $X_1, X_2 \sim Exp(\lambda)$ са независими. Да се намери плътността на случайната величина

- 1. $Y = \max(X_1, X_2);$
- 2. $Y = \min(X_1, X_2)$.