Unit 3

Symmetric v/s Asymmetric Cryptography

Problem With Symmetric Key

- Problem!
- Suppose sender & receiver may be in different countries.
- ✓ E.g:- Online shopping website
- How they will exchange the key & agree on it?
- Physically visitCourierNotConvenient
- ✓ Internet & ask for confirmation.
- If Intruder gets the key, he can unlock the things.
- Problem 2
- Separate/Unique key for each communication is needed.
- ✓ E.g:- A to B & A to C or B to C
- To overcome Interruption Attack

Key Length & Encryption Strength

- The strength of any encryption algorithm lies on:
- 1. The algorithm used
- 2. Length of Encryption key.
- 3. The algorithm said to be strong if it takes more time to find out the key by the hacker.

Application of PKC

- PGP Email Application.
- In communication with Web Server.
- Online Transactions, the communication is encrypted using a *random number* which is generated by the server & send securely.
- Sending secret key.
- Digital signatures

Strength & Weakness of Public Key

Pros

- Key distribution is easy
- Scalable due to that
- Can provide authentication and non-repudiation

Cons

- Very mathematically intense(large key & Complex Algo)
- Slow due to that(huge chunks)
- More computation time.
- Used for small data & msg.
- Misuse of Public Key is possible.
- Known Cipher text Attack is possible.

Comparison

- 1. Key used for encryption & decryption.
- 2. Speed of encryption & decryption.
- 3. Key agreement/exchange/distribution.
- 4. Number of keys for n participants.
- 5. Usages

Asymmetric Encryption	Symmetric Encryption
1.Public key Encryption	1.Secret Key Encryption
2.Two key/Different Key	2.One /Same/common key
3.One public One Secret	3.Keep Secret
4.One for Encryption & Other for Decryption	4.Same key for both the operation
5.Slower	5.Faster & Efficient
6. Small Data	6.Large Data
7.No Issues	7. Problem of Key Exchange.

Advantage of Public-key crypto

- Suppose N entities, how can any pair of them establish a secret key?
 - Need n*(n-1) /2 keys. Where n=No. of parties involved
 - Key management is challenging
- Public-key crypto advantage
 - Each entity only needs to know N-1 authentic public keys & Private Key

Information Protections by Symmetric Cryptography

Characteristic	Protection?
Confidentiality	Yes
Integrity	Yes
Availability	Yes
Authenticity	No
Non-repudiation	No

Table 11-3 Information protections by symmetric cryptography

Information Protections by Asymmetric Cryptography

Characteristic	Protection?
Confidentiality	Yes
Integrity	Yes
Availability	Yes
Authenticity	Yes
Non-repudiation	Yes

Table 11-6 Information protections by asymmetric cryptography