Linearly Stabilized Schemes

Linearly Stabilized Schemes for the Time Integration of

Kevin Chow

December 9, 2016

Linearly Stabilized Schemes for the Time Integration of Stiff Nonlinear PDEs

Kevin Chow

December 9, 2016

Table of contents

- Introduction
 - Example
- 2 Linear Stability
 - Test equation
 - IMEX Euler
 - EIN
 - IMEX Multistep
- Comparing the Methods
 - Test Problem 1
 - Test Problem 2
- 4 Numerical Experiments
 - Image Inpainting
 - Motion by Mean Curvature
- Conclusion

2016-1

-Table of contents

Linearly Stabilized Schemes

Introduction Example Linear Stability Test equation • IMEX Euler • EIN IMEX Multistep Comparing the Methods • Test Problem 1 • Test Problem 2 Numerical Experiments · Image Inpainting

· Motion by Mean Curvature Conclusion

Table of contents

イロト イ御 トイミト イミト 一意

Introduction

Introduction

- Focus on time stepping for stiff nonlinear PDEs.
 - Stability
 - Accuracy
 - Efficiency
 - Simplicity


```
Introduction

I Floor on time stopping for still nonlinear PDEs.
Southly
South
```

Consider the heat equation,

$$u_t = u_{xx}, \quad x \in \Omega, \quad t > 0.$$

Discretize in space:

$$U'=LU, \quad U\in\mathbb{R}^N, \quad t>0.$$

Explicit: $U^{n+1} = G(U^n, U^{n-1}, \dots, LU^n, LU^{n-1}, \dots)$, but $\Delta t \leq Ch^2$. Implicit: $AU^{n+1} = b$; unconditionally stable, but must solve a linear system.

Linearly Stabilized Schemes Example -Introduction Consider the heat equation $\mu_t = \mu_{cv}, \quad x \in \Omega, \quad t > 0.$ -Example Discretize in space U' = LU, $U \in \mathbb{R}^N$, t > 0. └─Example

Now compare with

$$u_t = \frac{u_{\mathsf{XX}}}{1 + u_{\mathsf{x}}^2} - \frac{1}{u}, \quad \mathsf{X} \in \Omega, \quad t > 0.$$

and

$$U' = F(U), \quad U \in \mathbb{R}^N, \quad t > 0.$$

Explicit: $U^{n+1} = G(U^n, U^{n-1}, ..., F(U^n), F(U^{n-1}), ...)$, but $\Delta t \leq Ch^2$. Implicit: $AU^{n+1} = b(U^{n+1})$; unconditionally stable, but must solve a nonlinear system because nonlinearity is in the stiff term.

Linearly Stabilized Schemes -Introduction -Example └─Example

Example Now compare with $u_t = \frac{u_{ax}}{1 \perp u^2} - \frac{1}{u}, \quad x \in \Omega, \quad t > 0.$ U' = F(U), $U \in \mathbb{R}^N$, t > 0.

Comparing side-by-side:

$$u_t = u_{xx}, \quad x \in \Omega, t > 0,$$

$$u_t = \frac{u_{xx}}{1 + u_x^2} - \frac{1}{u}, \quad x \in \Omega, t > 0,$$

Explicit: $\Delta t < Ch^2$

Implicit: unconditionally stable;

solution to linear system

Explicit: $\Delta t < Ch^2$

Implicit: unconditionally stable;

solution to nonlinear system

Summary: What We Like

Explicit: simple; handles nonlinear terms with no added difficulty.

Implicit: large time steps

Kevin Chow

Linearly Stabilized Schemes Introduction Example -Example

Example

Comparing side-by-side

Implicit: large time steps

Modify the equation,

$$u_t = \frac{u_{xx}}{1 + u_x^2} - \frac{1}{u} - u_{xx} + u_{xx}, \quad x \in \Omega, \quad t > 0,$$

and discretize in space,

$$U' = F(U) - LU + LU, \quad U \in \mathbb{R}^N, \quad t > 0.$$

Use implicit-explicit time stepping, e.g.

$$\frac{U^{n+1}-U^n}{\Delta t}=F(U^n)-LU^n+LU^{n+1}.$$

Linearly Stabilized Schemes -Introduction -Example └─Example

Example Modify the equation $u_t = \frac{u_{ax}}{1+e^2} - \frac{1}{a} - u_{ax} + u_{ax}, \quad x \in \Omega, \quad t > 0,$ and discretize in space U' = F(U) - LU + LU, $U \in \mathbb{R}^N$, t > 0.

 $\frac{U^{n+1} - U^n}{\Delta x} = F(U^n) - LU^n + LU^{n+1}$

More generally, from U' = F(U), we can modify as

$$U' = \underbrace{F(U) - pLU}_{(\star)} + pLU, \quad p > 0,$$

and apply a time stepping scheme that treats (\star) explicitly.

Is this unconditionally stable?

Linear Stability

 $U'=F(U)-\rho LU+\rho LU,\quad \rho>0,$

and apply a time stepping scheme that treats (*) explicitly

equation:

With linear modification:

U' = F(U) - pLU + pLU

 $\mathsf{Linearize} \to \mathsf{Diagonalize} \to \mathsf{Test}$

 $u' = \lambda u - p\lambda u + p\lambda u$

 $=(1-p)\lambda u+p\lambda u$

$$U' = F(U)$$

 $\mathsf{Linearize} o \mathsf{Diagonalize} o \mathsf{Test}$ equation:

$$u' = \lambda u$$

Apply time stepping method:

$$u^{n+1} = \xi(\lambda \Delta t)u^n.$$

Unconditional stability:

$$|\xi(\lambda \Delta t)| \le 1$$
 for all $\lambda \Delta t < 0$.

Linearly Stabilized Schemes Linear Stability └─Test equation -Scalar test equation Scalar test equation Standard case: Linearize → Diagonalize → Test $u' = \lambda u - p\lambda u + p\lambda u$ $=(1-\rho)\lambda u + \rho\lambda u$ Apply time stepping method: $u^{n+1} = \mathcal{E}(\lambda \Delta t)u^n$ Unconditional stability $|\xi(\lambda \Delta t)| \le 1$ for all $\lambda \Delta t < 0$.

Applied to the test equation, $u' = (1 - p)\lambda u + p\lambda u$, yields

$$\frac{u^{n+1}-u^n}{\Delta t}=(1-p)\lambda u^n+p\lambda u^{n+1}.$$

The amplification factor is

$$\xi_1(\lambda \Delta t) = rac{1 + (1 - p)\lambda \Delta t}{1 - p\lambda \Delta t}.$$

Impose unconditional stability:

$$|\xi_1(\lambda \Delta t)| \le 1$$
 for all $\lambda \Delta t < 0 \iff p \ge 1/2$.

Linearly Stabilized Schemes Linear Stability └─IMEX Euler Implicit-explicit Euler

Implicit-explicit Euler

The amplification factor is

 $\frac{u^{n+1}-u^n}{\Delta t} = (1-p)\lambda u^n + p\lambda u^{n+1}.$

Impose unconditional stability: $|f_1(\lambda \Delta t)| \le 1$ for all $\lambda \Delta t \le 0 \iff p \ge 1/2$.

Explicit-implicit-null (EIN)

Duchemin and Eggers (2014) use Richardson extrapolation to get second order. The amplification factor is

$$\xi_{EIN}(\lambda \Delta t) = 2\xi_1^2(\lambda \Delta t/2) - \xi_1(\lambda \Delta t).$$

and

$$|\xi_{EIN}(\lambda \Delta t)| \le 1$$
 for all $\lambda \Delta t < 0 \iff p \ge 2/3$.

Linearly Stabilized Schemes
Linear Stability
EIN
Explicit-implicit-null (EIN)

 $|\mathcal{E}_{EW}(\lambda \Delta t)| \le 1 \text{ for all } \lambda \Delta t < 0 \iff \rho \ge 2/3$

An alternative for second and higher order methods: IMEX multistep methods.

Table: Parameter restriction for select IMEX methods.

Order	Method	$p \in$
1	IMEX-Euler	$[1/2,\infty)$
2	SBDF2	$[3/4,\infty)$
	CNAB	$[1,\infty)$
	mCNAB	$[8/9,\infty)$
	CNLF	$[1/2,\infty)$
3	SBDF3	[7/8, 2]
4	SBDF4	[11/12, 5/4]

Linearly Stabilized Schemes

Linear Stability

IMEX Multistep

Implicit-explicit multistep methods

Implicit-explicit multistep methods

An alternative for second and higher order methods: IMEX multistep methods.

: Parameter restriction for select IMEX methods.				
Order	Method	ρ∈		
1	IMEX-Euler	$[1/2, \infty)$		
2	SBDF2 CNAB mCNAB CNLF	$[3/4, \infty)$ $[1, \infty)$ $[8/9, \infty)$ $[1/2, \infty)$		
3	SBDF3	[7/8,2]		
4	SBDF4	[11/12,5/4]		

Do the methods work as advertised? Examine this with two test problems,

$$u_t = \frac{u_{xx}}{1 + u_x^2} - \frac{1}{u},$$

and

$$u_t = \Delta(u^5).$$

Linearly Stabilized Schemes Comparing the Methods -Comparing the methods

2016-12-04

Do the methods work as advertised? Examine this with two test problems, $u_t = \frac{u_{ax}}{1 + u_x^2} - \frac{1}{u}$ $u_t = \Delta(u^5)$.

Comparing the methods

First test problem:

$$u_t = \frac{u_{xx}}{1 + u_x^2} - \frac{1}{u}, \quad 0 < x < 10, \quad t > 0,$$

with initial condition

$$u(x,0)=1+0.10\sin\left(\frac{\pi}{5}x\right),$$

and boundary conditions u(0, t) = 1 = u(10, t).

Stabilized as

$$u_t = \frac{u_{xx}}{1 + u_x^2} - \frac{1}{u} - pu_{xx} + pu_{xx}.$$

Linearly Stabilized Schemes Comparing the Methods Test Problem 1 └─Test Problem 1

Numerical convergence test

Figure : Numerical convergence of linearly stabilized schemes at time T=0.35. Compared against a reference solution generated using an explicit 3rd order RK with $\Delta t = 1.46 \times 10^{-5}$. Stabilized by adding and subtracting pu_{xx} .

Linearly Stabilized Schemes Comparing the Methods -Test Problem 1 -Numerical convergence test

How did we choose p? Consider

$$u' = \lambda u - p\lambda u + p\lambda u$$

and

$$U' = F(U) - pLU + pLU.$$

With the test equation, we derived a restriction on p. More generally, the restriction applies to $p\lambda_L/\lambda_F$. For test problem 1 with centred differences, we find

$$rac{p\lambda_L}{\lambda_F}pprox p(1+(D_1ar{u}_j^n)^2),$$

Linearly Stabilized Schemes Comparing the Methods └─Test Problem 1 Failure of SBDF3 and SBDF4

 $U' = F(U) - \rho LU + \rho LU$ $\frac{\rho \lambda_L}{\lambda_n} \approx \rho (1 + (D_L \bar{u}_j^{\rho})^2),$

Failure of SBDF3 and SBDF4

The selection of p for SBDF3 is dictated by

$$\max_{1 \le j \le N} \frac{7}{8} \frac{1}{1 + (D_1 \bar{u}_i^n)^2} \le p \le \min_{1 \le j \le N} \frac{2}{1 + (D_1 \bar{u}_i^n)^2}.$$

Figure : Numerical solution to test problem 1 .

Figure : Development of instabilities using SBDF3, p = 1.625.

4□ > 4@ > 4 ≥ > 4 ≥ > ≥ 990

Linearly Stabilized Schemes

Comparing the Methods
Test Problem 1
Failure of SBDF3 and SBDF4

Failure of SBDF3 and SBDF4. The selection of p for SBDF3 is detained by $\frac{n}{n(2p)^2} \frac{1}{n^2 + (D_n^2)^2} \le P \le \frac{n(n)}{n(2p)^2} \frac{2}{n^2} + \frac{1}{n(2p)^2}$

Second test problem:

$$u_t = \Delta(u^5), \quad (x, y) \in [0, 1]^2, \quad t > 0,$$

with initial and boundary conditions set such that the exact solution is

$$u(x, y, t) = \left(\frac{4}{5}(2t + x + y)\right)^{1/4}.$$

Stabilize with $p\Delta u$; $p\lambda_L/\lambda_F \approx p/(8(1+t))$.

Linearly Stabilized Schemes Comparing the Methods Test Problem 2 └─Test Problem 2

Linearly Stabilized Schemes Comparing the Methods -Test Problem 2 -Numerical convergence test

Figure: Numerical convergence of linearly stabilized schemes at time T=0.40. Compared against a reference solution generated using an explicit 3rd order RK with $\Delta t = 6.25 \times 10^{-6}$. Stabilized using $p\Delta u$; $p\lambda_L/\lambda_F \approx p/(8(1+t))$.

Discretizing $u' = (1 - p)\lambda u + p\lambda u$, we observe that the discretization error grows with p.

How does the error behave as we increase p?

Examine the coefficient of the leading order error term.

Table: Coefficient of leading order error term as applied to the test equation.

Method	Coefficient	
EIN	$\frac{\frac{1}{2}(p-p^2)}{\frac{2}{3}p-\frac{5}{18}}$	
SBDF2	$\frac{2}{3}p - \frac{5}{18}$	
CNAB	$\frac{1}{2}p - \frac{1}{4}$	
CNLF	$p-\frac{1}{6}$	

Linearly Stabilized Schemes Comparing the Methods -Test Problem 2 -Error constant

Error constant

Examine the coefficient of the leading order error term.

Figure : Amplification factor as $\Delta t \to \infty$.

Linearly Stabilized Schemes Comparing the Methods -Test Problem 2 –Amplification factor as $\Delta t
ightarrow \infty$

- Image inpainting.
- Mean curvature motion.

Linearly Stabilized Schemes

Numerical Experiments

Numerical Experiments

Numerical Experiments

We consider two classes of problems to demonstrate the effectiveness of our new methods:

ur new methods:
Unage inpainting.
Unage inpainting.
Unage inpainting.

In Schönlieb and Bertozzi (2011), the authors proposed the fourth order inpainting model

$$u_t = -\Delta
abla \cdot \left(rac{
abla u}{\sqrt{\left|
abla u
ight|^2 + \epsilon^2}}
ight) + \lambda_0 (u_0 - u),$$

and numerical solution by the first order accurate method

$$\frac{u^{n+1} - u^n}{\Delta t} = -\Delta \nabla \cdot \left(\frac{\nabla u^n}{\sqrt{|\nabla u^n|^2 + \epsilon^2}} \right) + \lambda_0 (u_0 - u^n) + p_1 \Delta^2 u^n - p_1 \Delta^2 u^{n+1} + p_0 \lambda u^n - p_0 \lambda u^{n+1}.$$

Image Inpainting

$$u_t = -\Delta \nabla \cdot \left(\frac{\nabla u}{\sqrt{|\nabla u|^2 + e^2}} \right) + \lambda_0(u_0 - u),$$

numerical solution by the first order accurate method
 $u^{a+1} - u^a = -\Delta \nabla \cdot \left(\frac{\nabla u^a}{2} \right) + \lambda_0(u_0 - u),$

numerical solution by the first order accurate method
$$\frac{u^{\alpha+1}-u^{\alpha}}{\Delta t} = -\Delta\nabla\cdot\left(\frac{\nabla u^{\alpha}}{\sqrt{|\nabla u^{\alpha}|^2+\epsilon^2}}\right) + \lambda_0(u_0-u^{\alpha}) \\ + \rho_1\Delta^2u^{\alpha}-\rho_1\Delta\Delta^2u^{\alpha+1} + \rho_0\lambda u^{\alpha-1}\rho_0\lambda u^{\alpha+1}$$

Image inpainting

Figure : $TV-H^{-1}$ image restoration.

Table : Iteration counts for $TV-H^{-1}$ image restoration.

	Δt	Iterations
SBDF1	0.30	1002
SBDF2	0.54	401
CNAB	0.64	347

Linearly Stabilized Schemes Numerical Experiments -Image Inpainting ☐ Image inpainting

$$u_t = \kappa |\nabla u| = |\nabla u| \nabla \cdot \left(\frac{\nabla u}{|\nabla u|}\right)$$

on an initial dumbbell-shaped curve in 3D. We solve to time T=0.75 on a $256 \times 128 \times 128$ periodic grid.

Linearly Stabilized Schemes Numerical Experiments -Motion by Mean Curvature └─Motion by mean curvature Motion by mean curvature We awrive the level set equation for motion by mean curvature $u_t = \kappa |\nabla u| = |\nabla u| \nabla \cdot \left(\frac{\nabla u}{|\nabla u|}\right)$

Motion by mean curvature

Figure : Mean curvature flow of a dumbbell-shaped curve in 3D. From the left to right, top to bottom, the plots show the evolution at times $t=0,\,0.10,\,0.30,\,0.525,\,0.55,\,0.75.$

Linearly Stabilized Schemes

Numerical Experiments

Motion by Mean Curvature

Motion by mean curvature

- Forward Euler: 3000 time steps \rightarrow over 28 minutes.
- SBDF2: 75 time steps \rightarrow under 100 seconds.

Linearly Stabilized Schemes

Numerical Experiments

Motion by Mean Curvature

Motion by mean curvature

Motion by mean curvature

On a machine with an Intel $^{\otimes}$ Core $^{^{TM}}$ iS-4570 CPU@3.20GHz runnin $_{\rm MATLAB}$ 2014b:

Forward Euler: 3000 time steps → over 28 minutes
 SBDF2: 75 time steps → under 100 seconds.

Conclusion

Conclusion

Contributions of this thesis mainly fall into two categories:

- Further developed linearly stabilized schemes.
 - Outlined a framework for developing new methods of this type.
 - Identified properties necessary for effective schemes.
- Proposed new methods that outperform existing ones.
 - IMEX multistep methods and exponential time differencing methods.

Future work:

- Oevelopment higher order methods without the deficiencies exhibited by ETD methods.
- ② A comparison with popular algorithms for nonlinear stiff PDEs, particularly for image inpainting.

Linearly Stabilized Schemes Conclusion

Conclusion

Conclusion

Contributions of this thesis mainly fall into two categories A Further developed linearly stabilized schemes . Outlined a framework for developing new methods of this type

. Identified properties necessary for effective schemes. a Proposed new methods that outperform existing ones , IMEX multistep methods and exponential time differencing method

 Development higher order methods without the deficiencies exhibited by ETD methods

A comparison with popular algorithms for nonlinear stiff PDEs,

particularly for image inpainting.