Math 450 Homework 1 Dr. Fuller

Due January 30

- 1. Let $x, y \in \mathbb{R}^n$. Prove that $|\langle x, y \rangle| = ||x|| ||y||$ if and only if y = rx for some $r \in \mathbb{R}$. Check out CS proof
- 2. Let $x, y \in \mathbb{R}^n$ be nonzero. Prove that $||x + y||^2 = ||x||^2 + ||y||^2$ if and only if x and y are orthogonal.
- 3. Let $\mathbf{x} = (1, 1, ..., 1)$ and $\mathbf{y} = (1, 2, ..., n)$ in \mathbf{R}^n . Let θ_n be the angle between \mathbf{x} and \mathbf{y} in \mathbf{R}^n . Find $\lim_{n \to \infty} \theta_n$.
- 4. (\square) Decide if the following subsets of \mathbb{R}^n are open and/or closed. (Draw pictures, and give answers. No proofs necessary.)
 - (a) $\{(x,y): xy=0\} \subset \mathbb{R}^2$
 - (b) $\{(x,y): xy \neq 0\} \subset \mathbb{R}^2$
 - (c) $\{(x, y, z) : x^2 + y^2 < 1 \text{ and } z = 0\} \subset \mathbb{R}^3$
 - (d) $\{(x,y,z): x^2+y^2<1\}\subset \mathbb{R}^3$
 - (e) $\{(x_1,\ldots,x_n): \operatorname{each} x_i \in \mathbb{Q}\} \subset \mathbb{R}^n$
- 5. (\square) Let S be an (n-1)-dimensional vector subspace of \mathbb{R}^n . Prove that S is not an open set.
- 6. (\square) Let $x \in \mathbb{R}^n$, $r \ge 0$, and define $\overline{B}(x,r) = \{y \in \mathbb{R}^n : ||x-y|| \le r\}$. Prove that $\overline{B}(x,r)$ is closed.
- 7. (a) Prove that \mathbb{R}^n is an open set.
 - (b) Let $\{U_{\alpha}\}_{{\alpha}\in\Gamma}$ be a collection of an arbitrary number of open sets in \mathbb{R}^n . Prove that $\bigcup U_{\alpha}$ is an open set.
 - (c) Let U_1 and U_2 be open sets in \mathbb{R}^n . Prove that $U_1 \cap U_2$ is open.
- 8. Let $\{C_{\alpha}\}_{{\alpha}\in\Gamma}$ be a collection of an arbitrary number of closed sets in \mathbb{R}^n .
 - (a) Prove that $\bigcap_{\alpha \in \Gamma} C_{\alpha}$ is an closed set.
 - (b) Professor Doofus writes that in addition $\bigcup C_{\alpha}$ is a closed set. Give an example which shows that Doofus is wrong.

$$\frac{\langle u,w\rangle\langle w,v\rangle}{\langle w,w\rangle} \stackrel{?}{=} |\langle u,v\rangle|$$

<u, v>= 11Proj ull. 11v11 (Projun, Projuv) = (u, v)