Chomsky Normal Form

We introduce Chomsky Normal Form, which is used to answer questions about context-free languages

Chomsky Normal Form

Chomsky Normal Form. A grammar where every production is either of the form $A \to BC$ or $A \to c$ (where A, B, C are arbitrary variables and c an arbitrary symbol).

Example:

$$S \to AS \mid \mathbf{a}$$

 $A \to SA \mid \mathbf{b}$

(If language contains ε , then we allow $S \to \varepsilon$ where S is start symbol, and forbid S on RHS.)

Why Chomsky Normal Form?

The key advantage is that in Chomsky Normal Form, every derivation of a string of n letters has exactly 2n-1 steps.

Thus: one can determine if a string is in the language by exhaustive search of all derivations.

Conversion

The conversion to Chomsky Normal Form has four main steps:

- 1. Get rid of all ε productions.
- 2. Get rid of all productions where RHS is one variable.
- 3. Replace every production that is too long by shorter productions.
- 4. Move all terminals to productions where RHS is one terminal.

1) Eliminate ε Productions

Determine the nullable variables (those that generate ε) (algorithm given earlier).

Go through all productions, and for each, omit every possible subset of nullable variables.

For example, if $P \to A \times B$ with both A and B nullable, add productions $P \to \times B \mid A \times \mid \times$.

After this, delete all productions with empty RHS.

2) Eliminate Variable Unit Productions

A unit production is where RHS has only one symbol.

Consider production $A \to B$. Then for every production $B \to \alpha$, add the production $A \to \alpha$. Repeat until done (but don't re-create a unit production already deleted).

3) Replace Long Productions by Shorter Ones

For example, if have production $A \to BCD$, then replace it with $A \to BE$ and $E \to CD$.

(In theory this introduces many new variables, but one can re-use variables if careful.)

4) Move Terminals to Unit Productions

For every terminal on the right of a non-unit production, add a substitute variable.

For example, replace production $A \to bC$ with productions $A \to BC$ and $B \to b$.

Example

Consider the CFG:

$$S \to \mathbf{a}X\mathbf{b}X$$

$$X \to \mathbf{a}Y \mid \mathbf{b}Y \mid \varepsilon$$

$$Y \to X \mid \mathbf{c}$$

The variable X is nullable; and so therefore is Y. After elimination of ε , we obtain:

$$S \to \mathbf{a} X \mathbf{b} X \mid \mathbf{a} \mathbf{b} X \mid \mathbf{a} X \mathbf{b} \mid \mathbf{a} \mathbf{b}$$

$$X \to \mathbf{a} Y \mid \mathbf{b} Y \mid \mathbf{a} \mid \mathbf{b}$$

$$Y \to X \mid \mathbf{c}$$

Example: Step 2

After elimination of the unit production $Y \to X$, we obtain:

$$S \to \mathsf{a} X \mathsf{b} X \mid \mathsf{a} \mathsf{b} X \mid \mathsf{a} X \mathsf{b} \mid \mathsf{a} \mathsf{b}$$

$$X \to \mathsf{a} Y \mid \mathsf{b} Y \mid \mathsf{a} \mid \mathsf{b}$$

$$Y \to \mathsf{a} Y \mid \mathsf{b} Y \mid \mathsf{a} \mid \mathsf{b} \mid \mathsf{c}$$

Example: Steps 3 & 4

Now, break up the RHSs of S; and replace a by A, b by B and c by C wherever not units:

$$S \to EF \mid AF \mid EB \mid AB$$

$$X \to AY \mid BY \mid a \mid b$$

$$Y \to AY \mid BY \mid a \mid b \mid c$$

$$E \to AX$$

$$F \to BX$$

$$A \to a$$

$$B \to b$$

$$C \to c$$

Practice

Convert the following CFG into Chomsky Normal Form:

$$S \to AbA$$

 $A \to Aa \mid \varepsilon$

Solution to Practice

After the first step, one has:

$$S \to A \mathbf{b} A \mid \mathbf{b} A \mid A \mathbf{b} \mid \mathbf{b}$$
 $A \to A \mathbf{a} \mid \mathbf{a}$

The second step does not apply. After the third step, one has:

$$S o TA \mid bA \mid Ab \mid b$$
 $A o Aa \mid a$ $T o Ab$

Solution Continued

And finally, one has:

$$S o TA \mid BA \mid AB \mid$$
 b $A o AC \mid$ a $T o AB$ $B o$ b $C o$ a

Summary

There are special forms for CFGs such as Chomsky Normal Form, where every production has the form $A \to BC$ or $A \to c$. The algorithm to convert to this form involves (1) determining all nullable variables and getting rid of all ε -productions, (2) getting rid of all variable unit productions, (3) breaking up long productions, and (4) moving terminals to unit productions.