# Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики



| U             | U                |   |
|---------------|------------------|---|
| УЧЕБНЫЙ ЦЕНТР | ОБШЕЙ ФИЗИКИ ФТО | D |

| Группа М3202                  | _ К работе допущен |
|-------------------------------|--------------------|
| Студент Фадеев А. В.          | _ Работа выполнена |
| Преподаватель Тимофеева Э. О. | _ Отчет принят     |

### Отчет по моделированию №1

## Маятник Фуко

- 1. Цель работы.
  - Освоить навык комплексного решения физических и инженерных задач, используя методы численного моделирования процессов.
  - Смоделировать работу Маятника Фуко
- 2. Задачи, решаемые при выполнении работы.
  - Написание программы для моделирования физического процесса
  - Визуализация результата
  - Поиск траектории движения конца колеблющего маятника на платформе
- 3. Рабочие формулы.
- **2. Уравнения движения.** На маятник действуют силы Кориолиса, центробежная сила и сила тяжести. Уравнения движения в векторной форме запишутся в виде

$$m\frac{d\vec{\mathbf{v}}}{dt} = \vec{F}_T + \vec{F}_K + \vec{F}_{\text{u.6.}} \tag{1}$$

или

$$m\frac{d\vec{\mathbf{v}}}{dt} = mG\frac{\vec{r}}{L} + 2m[\vec{\mathbf{v}}\vec{\omega}] + m\omega^2 \vec{r}$$
 (2)

Здесь  $\omega$  – относительная частота;  $\nu$  – относительная скорость. Расписывая по проекциям х и у, получим

$$\frac{d\mathbf{v}_{x}}{dt} = 2\mathbf{v}_{y}\omega + \omega^{2}x - g\frac{x}{L},$$

$$\frac{d\mathbf{v}_{y}}{dt} = -2\mathbf{v}_{x}\omega + \omega^{2}y - g\frac{y}{L}$$

$$\frac{dx}{dt} = \mathbf{v}_{x}, \quad \frac{dy}{dt} = \mathbf{v}_{y}.$$
(3)

Ускорение свободного падения у поверхности Земли зависит от широты. Приблиз

 $g=9,780318(1+0,005302\sin arphi-0,000006\sin^2 2arphi)-0,000003086h,$  где arphi — широта рассматриваемого места, h — высота над уровнем моря в метрах.

#### 4. Программный код

#### 5. Примеры:

g = 9.832 for all

$$x = 1$$
,  $y = 1$ ,  $vx = 0$ ,  $vy = 0$ ,  $w = 0.04$ ,  $l = 100$ 



$$x = 1$$
,  $y = 1$ ,  $vx = 10$ ,  $vy = 0$ ,  $w = 0.04$ ,  $l = 100$ 



$$x = 1$$
,  $y = 1$ ,  $vx = 2$ ,  $vy = 0$ ,  $w = 0.08$ ,  $l = 100$ 



x = 1, y = 1, vx = 2, vy = 0, w = 0.08, l = 300

