Лабораторная работа 1.2.4

Определение главных моментов инерции твердых тел с помощью крутильных колебаний

Красоткина Виктория

28 ноября 2022 г.

Цель: Измерить периоды крутильных колебаний рамки при различных положениях закрепленного в ней тела, проверить теоретическую зависимость между периодами крутильных колебаний тела относительно различных осей, определить моменты инерции относительно нескольких осей для каждого тела, по ним найти главные моменты инерции тела и посторить эллипсоид инерции.

Приборы:

- установка для получения крутильных колебаний
- набор исследуемых твердых тел
- секундомер

Теоретическая часть

Инерционные свойства твердого тела при вращении определяется пространственным распределением. Оно характеризуется тензором инерции тела. Тензор инерции твердога тела является симметричным тензором 2-ого ранга $J \in T_2^0(V)$ и имеет 6 независимых компонент, которые в прямоугольной декартовой системе координат выражаются как:

$$J_{ij} = \int (\delta_{ij}r^2 - r_ir_j) \ dm = J_{ji}, \quad J = J_{ij} \cdot h^i \otimes h^j$$

где r – расстояния от точек до центра, относительно которого вычисляется тензор инерции, а r_i – координатные компоненты соответствующих отрезков, i и j — номера координат (от 1 до 3).

Если для какой либо системы координат все 6 компонент известны, то момент инерции тела относительно произвольной оси l, проходящей через начало координат может быть вычислен по формуле:

$$J_l = n^j n^i J_{ij} = \overrightarrow{n}^T J \overrightarrow{n}$$

где \overrightarrow{n} – единичный вектор-столбец который задает направление оси, J – тензор инерции.

А момент импульса \vec{L} и вращательная энергия тела $E_{\text{вращ}}$ тогда будут выражаться как:

$$E_{\text{вращ}} = \frac{1}{2} \ \vec{\omega}^T \cdot J \cdot \vec{\omega} = \frac{1}{2} \sum_{ij} \omega^i J_{ij} \omega^j$$
 $\vec{L} = J \cdot \vec{\omega}, \qquad L_i = \sum_j J_{ij} \omega^j$

Отложим вдоль оси l из начала координат радиус-вектор r равный по длине $1/\sqrt{J_l}$. Проведем множество таких отрезков, соответствующих различным направлениям оси l. Геометрическое место концов указанных отрезков, является поверхность второго порядка — эллипсоид. Этот эллипсоид принято называть эллипсоидом инерции. Он жестко связан с телом для которого он постоен. Знание эллипсоида инерции позволяет найти момент инерции тела относительно любой оси, проходящей через

центр эллипсоида. Длина отрезка r будет определять момент инерции тела относительно оси l:

$$J_l = \frac{1}{r^2} \tag{1}$$

Как и всякий симметричный тензор второго ранга может быть диагонализован некоторой заменой координат. Пусть система координат, в которой он диагонализован имеет оси Ox, Oy, Oz, тогда эти оси совпадают с главными осями тела. Полученные диагональные элементы J_x, J_y, J_z называются главными моментами инерции тела, а ур-ие эллипсоида инерции в этих координатах примит вид:

$$1 = J_x r_x^2 + J_y r_y^2 + J_z r_z^2$$

Крутильные колебания рамки с телом описываются уравнением:

$$(I+I_p)\frac{d^2\phi}{dt^2} = -f \cdot \phi$$

Здесь I и I_p – моменты инерции тела и рамки относительно оси вращения, φ – угол поворота рамки, меняющийся со временем t, f – модуль кручения проволоки. Период крутильных колебаний рамки с телом определяется формулой:

$$T = 2\pi \sqrt{\frac{I + I_p}{f}}$$

На рисунке показано, как проходят оси вращения в параллелепипеде. Оси AA', BB' и CC' являются главными. Моменты инерции относительно этих осией обозначим соотственно J_x, J_y, J_z .

Рис. 1: Оси вращения прямоугольного параллелепипеда

Момент инерции I_D при вращении относительно диагонали DD' выражается через главные моменты с помощью формулы:

$$I_d = I_x \frac{a^2}{d^2} + I_y \frac{b^2}{d^2} + I_z \frac{c^2}{d^2}$$
 (2)

Используя связь момента инерции с периодом крутильных колебаний получаем соотношение между периодами колебаний относительно осей DD', EE', MM' и PP' с периодами крутильных колебаний относительно главных осей.

$$(a^2 + b^2 + c^2)T_D^2 = a^2T_x^2 + b^2T_y^2 + c^2T_z^2$$
(3)

$$(b^2 + c^2)T_E^2 = b^2T_y^2 + c^2T_z^2$$
(4)

$$(a^2 + c^2)T_P^2 = a^2T_x^2 + c^2T_z^2$$
 (5)

$$(a^2 + b^2)T_M^2 = a^2 T_x^2 + b^2 T_y^2$$
 (6)

Эти соотношения также необходимо проверить экспериментально.

Экспериментальная установка

Рис. 2: Схема установки

В данной работе используется устройство для получения крутильных колебаний, изображенное на рисунке 2. Рамка 1 жестко соединена с проволокой 2, закрепленной вертикально в специальных зажимах 3, позволяющих сообщить начальное закручивание для возбуждения крутильных колебаний вокруг вертикальной оси. В рамке с помощью планки 4, гаек 5 и винта 6 закрепляется твердое тело 7. На теле имеются специальные выемки, позволяющие его закрепить так, чтобы ось вращения проходила в теле под различными углами через центр масс.

Ход работы

Сперва определим погрешности приборов:

• штангенциркуль: $2 \cdot \frac{\text{цена деления}}{2} = 0.1 \text{ мм}$

• весы: из описания прибора 0.1 г

Систематическую погрешность будем определять по формуле

$$\sigma_{\text{CHCT}} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (x_i - \langle x \rangle)^2}$$

Общую погрешность найдем как среднеквадратичную величину из всех погрешностей:

 $\sigma = \sqrt{\sigma_{\text{случ}}^2 + \sigma_{\text{пр}}^2 + \dots}$

- 1. Ознакомимся с установкой для получения крутильных колебаний. Проволока натянута хорошо, рамка жестко закреплена, устройство для возбуждения крутильных колебаний работает нормально, колебаний в вертикальной плоскости не возникает.
- 2. Научимся закреплять тела в рамке по инструкции, описанной в теоретической части.
- 3. Выберем амплитуду колебаний 7.0° . Через время t=23.50 с, равное 10 колебаниям, амплитуда стала равна 6.5° . Следовательно, амплитуда уменьшилась на $\frac{7.0^\circ-6.5^\circ}{7.0^\circ}\cdot 100\%=7\%$. Изменение амплитуды мало, следовательно будем использовать амплитуду $A=7.0^\circ$.
- 4. Для пустой рамки и для тел при различных их положениях определим периоды колебаний по времени 10 колебаний, повторяя каждое измерение по 3 раза.

t, c	<i>T</i> , c			
23.50	2.350			
25.23	2.523			
24.98	2.498			
$\overline{T} = 2.457 \text{ c}$				
$\sigma_T^{\text{CJI}} = 0.076 \text{ c}$				

Таблица 1: Пустая рамка

- 5. Штангенциркулем измерим геометрические размеры тел. Вычислим главные моменты инерции тел. Их погрешность определяется погрещностями штангенциркуля и весов.
 - параллелепипед

$$\begin{split} I_z &= \frac{m}{12}(a^2 + b^2) \ \Rightarrow \ \sigma_{I_z} = \frac{1}{12}\sqrt{\left(a^2 + b^2\right)^2\,\sigma_m^2 + (2ma)^2\sigma_a^2 + (2mb)^2\sigma_b^2} \\ I_x &= (4.351 \pm 0.006) \cdot 10^{-3} \ \text{kg·m}^2, \ I_y = (5.651 \pm 0.007) \cdot 10^{-2} \ \text{kg·m}^2 \\ I_z &= (2.184 \pm 0.004) \cdot 10^{-3} \ \text{kg·m}^2 \end{split}$$

C	C'	A	A'	В	B'	D	D'
t, c	<i>T</i> , c	t, c	<i>T</i> , c	t, c	<i>T</i> , c	t, c	<i>T</i> , c
32.34	3.234	38.04	3.804	40.83	4.083	34.79	3.479
32.39	3.239	37.84	3.784	40.88	4.088	34.74	3.474
32.28	3.280	37.87	3.787	40.75	4.075	34.87	3.487
$\overline{T} = 3$.251 c	$\overline{T} = 3$.792 с	$\overline{T} = 4$.082 с	$\overline{T} = 3$.480 с
$\sigma_T^{\text{сл}} = 0.021 \text{ c} \sigma_T^{\text{сл}} = 0.009 \text{ c}$		$\sigma_T^{\text{сл}} = 0$	0.005 c	$\sigma_T^{\text{CJ}} = 0$	0.005 c		

Таблица 2: Параллелепипед

E	E'	MM'		P	P'
t, c	<i>T</i> , c	t, c	<i>T</i> , c	t, c	<i>T</i> , c
33.43	3.343	38.44	3.844	34.38	3.438
33.54	3.354	38.37	3.837	34.54	3.454
33.57	3.357	38.65	3.865	34.49	3.449
$\overline{T} = 3$.351 с	$\overline{T} = 3$.849 с	$\overline{T} = 3$.447 c
$\sigma_T^{\text{CJ}} = 0$	0.006 c	$\sigma_T^{\text{сл}} = 0$	0.011 c	$\sigma_T^{\text{сл}} = 0$	0.007 c

Таблица 3: Параллелепипед

цен	нтр	ребо		уг	ОЛ
30.80	3.080	30.72	3.072	30.70	3.070
30.84	3.084	30.63	3.063	30.77	3.077
30.76	3.076	30.77	3.077	30.80	3.080
$\overline{T} = 3$	3.080 c $\overline{T} = 3.0$.071 c	$\overline{T} = 3$.076 с
$\sigma_T^{\text{сл}} = 0$	$\sigma_T^{\rm c_{\it I}}$ = 0.003 c		0.006 c	$\sigma_T^{\text{сл}} = 0$	0.004 c

Таблица 4: Куб

цен	нтр	диаметр		
32.46	3.246	30.63	3.063	
32.35	3.235	30.76	3.076	
32.34	32.34 3.234		3.078	
$\overline{T} = 3$.238 с	$\overline{T} = 3$.072 с	
$\sigma_T^{\text{CJ}} = 0$	0.005 c	$\sigma_T^{\text{сл}} = 0$	0.007 c	

Таблица 5: Цилиндр

пар	раллелепиі	куб	цили	индр	
2082.0, г			1086.9, г	2263	.7, г
AA', cm	BB', cm	CC', cm	a, cm	h, cm	d, cm
10.02	5.05	15.01	9.26	4.91	8.80

Таблица 6: Геометрические размеры тел

• Куб

$$I = \frac{ma^2}{6} \implies \sigma_I = \frac{1}{6} \sqrt{a^4 \sigma_m^2 + (2ma)^2 \sigma_a^2}$$
$$I = (1.553 \pm 0.022) \cdot 10^{-3} \text{ kg} \cdot \text{m}^2$$

• Цилиндр

$$I_h = \frac{mr^2}{2} \implies \sigma_{I_h} = \frac{1}{2} \sqrt{a^4 \sigma_m^2 + (2mr)^2 \sigma_r^2}$$

$$I_h = (2.191 \pm 0.010) \cdot 10^{-3} \text{ Kp·m}^2$$

$$I_d = \frac{mr^2}{4} + \frac{mh^2}{12} \implies \sigma_{I_h} = \sqrt{\frac{1}{4} (r^4 \sigma_m^2 + (2mr)^2 \sigma_r^2) + \frac{1}{12} (h^4 \sigma_m^2 + (2mh)^2 \sigma_h^2)}$$

$$I_d = (1.550 \pm 0.012) \cdot 10^{-3} \text{ Kp·m}^2$$

Проверим справедливость формул (3) - (6).

$$\begin{split} (a^2+b^2+c^2)T_D^2 &= 0.425 \text{ m}^2 \cdot \text{c}^2, \ a^2T_x^2+b^2T_y^2+c^2T_z^2 = 0.425 \text{ m}^2 \cdot \text{c}^2 \\ (b^2+c^2)T_E^2 &= 0.282 \text{ m}^2 \cdot \text{c}^2, \ b^2T_y^2+c^2T_z^2 = 0.281 \text{ m}^2 \cdot \text{c}^2 \\ (a^2+c^2)T_P^2 &= 0.387 \text{ m}^2 \cdot \text{c}^2, \ a^2T_x^2+c^2T_z^2 = 0.382 \text{ m}^2 \cdot \text{c}^2 \\ (a^2+b^2)T_M^2 &= 0.187 \text{ m}^2 \cdot \text{c}^2, \ a^2T_x^2+b^2T_y^2 = 0.187 \text{ m}^2 \cdot \text{c}^2 \end{split}$$

Видно, что значения правой и левой части совпадают.

6. Рассчитаем величину $\frac{1}{\sqrt{T^2-T_P^2}}$ для каждой оси параллелепипеда, куба и цилиндра.

	AA'	BB'	CC'	DD'	EE'	PP'	MM'
<i>T</i> , c	3.792	4.082	3.251	3.480	3.351	3.447	3.849
$\frac{1}{\sqrt{T^2 - T_P^2}}$, 1/c	0.346	0.307	0.470	0.406	0.439	0.414	0.338

Таблица 7: Параллелепипед

Построим проекции эллипсоида инерции на плоскости XOY, XOZ и YOZ.

t, c	<i>T</i> , c		
23.50	2.350		
25.23	2.523		
24.98	2.498		
\overline{T} = 2.457 c			
$\sigma_T^{\rm c_{\it I}} = 0.076 { m c}$			

Таблица 8: Пустая рамка

t, c	<i>T</i> , c			
23.50	2.350			
25.23	2.523			
24.98	2.498			
\overline{T} = 2.457 c				
$\sigma_T^{\rm c_{\it I}} = 0.076 {\rm c}$				

Таблица 9: Пустая рамка

,с"р"п,

,с"р"п,,с"р"п,