Arnold diffusion for several examples of perturbation using Scattering maps

Rodrigo G. Schaefer. Director: Amadeu Delshams

Universitat Politècnica de Catalunya - Departament de Matemàtica Aplicada

rodrigo.schaefer@upc.edu

Abstract

In this work we illustrate the Arnold diffusion for several examples of the a priori unstable Hamiltonian system of 2+1/2 degrees of freedom $H(p,q,I,\varphi,s)=\frac{p^2}{2}+\cos q-1+\frac{I^2}{2}+h(q,\varphi,s;\varepsilon)$ —proving that for any small periodic perturbation of the form $h(q,\varphi,s;\varepsilon)$, where $h(q,\varphi,\varepsilon)=\varepsilon\cos q\,(a_{00}+a_{10}\cos\varphi+a_{01}\cos s)$ or $h(q,\varphi,\varepsilon)=\varepsilon\cos q\,(a_{00}+a_{10}\cos\varphi+a_{01}\cos(\varphi-s))$

 $(a_{10}a_{01} \neq 0 \text{ and } \varepsilon \neq 0 \text{ small enough)}$ there is global instability for the action, i.e., $I(0) \leqslant -I(\varepsilon) \leqslant I(T)$ for some T and for any positive $I(\varepsilon) \leqslant C \log \frac{1}{\varepsilon}$ for some constant C.

For this, we apply a geometrical mechanism based in the so-called Scattering map.

We present some similarities and differences between these cases. Besides, we study present a case with 3+1/2 degrees of freedom, represented by Hamiltonian

 $H(p, q, I_1, I_2, \varphi_1, \varphi_2, s) = \frac{p^2}{2} + \cos q - 1 + \frac{I_1^2}{2} + \frac{I_1^2}{2} + \varepsilon \cos q \left(a_{00} + a_1 \cos \varphi_1 + a_2 \cos \varphi_2 + a_3 \cos s\right).$

Introduction

Consider an *a priori unstable* Hamiltonian with $2 + \frac{1}{2}$ degrees of freedom with 2π -periodic time dependence:

$$H_{\varepsilon}(p,q,I,\varphi,s) = \pm \left(\frac{p^2}{2} + \cos q - 1\right) + \frac{I^2}{2} + \varepsilon f(q)g(\varphi,s),\tag{1}$$

where $p, I \in \mathbb{R}$, $q, \varphi, s \in \mathbb{T}$ and ε small enough. In the unperturbed case ($\varepsilon = 0$), the Hamiltonian H_0 represents the standard pendulum plus a rotor:

$$H_0(p, q, I, \varphi, s) = \frac{p^2}{2} + \cos q - 1 + \frac{I^2}{2},$$

with associated equations:

$$\dot{q} = \frac{\partial H_0}{\partial p} = p \qquad \dot{p} = -\frac{\partial H_0}{\partial q} = \sin q$$

$$\dot{\varphi} = \frac{\partial H_0}{\partial I} = I \qquad \dot{I} = -\frac{\partial H_0}{\partial \varphi} = 0.$$

$$\dot{\varphi} = \frac{\partial H_0}{\partial I} = I \qquad \dot{I} = -\frac{\partial H_0}{\partial \varphi} = 0.$$
(2)

and flow $\phi_t(p, q, I, \varphi, s) = (p(t), q(t), I, It + \varphi, t + s)$.

In this case, (0,0) is a saddle point on the variables (p,q), i.e., it has an unstable and a stable invariant manifold, denoted by $W^u(0)$ and $W^s(0)$ respectively. Considering $P(p,q)=\frac{p^2}{2}+\cos q-1$, we have that $P^{-1}(0)$ divides the phase space, concerning the behavior of orbits. The branches of $P^{-1}(0)$ are called *separatrices* and take the form

$$(p_0(t), q_0(t)) = \left(\frac{2}{\cosh t}, 4 \arctan e^{\pm t}\right).$$

These orbits are homoclinic orbits. They are at the same time stable and unstable manifolds of the saddle point (0,0).

For an initial condition $(0,0,I,\varphi,s)$, the unperturbed flow is $\phi_t(0,0,I,\varphi,s)=(0,0,I,It+\varphi,t+s)$, that is, the torus $\tau_I^0=\{(0,0,I,\varphi,s);\,(\varphi,s)\in\mathbb{T}^2\}$ is an invariant set for the flow. τ_I^0 is called whiskers the set

$$W^{0}\tau_{I}^{0} = \{(p_{0}(\tau), q_{0}(\tau), I, \varphi, s); \tau \in \mathbb{R}, (\varphi, s) \in \mathbb{T}^{2})\}.$$

Consider now any interval $[-I^*, I^*]$, I^* any positive value, and an uncountable family of tori

$$\tilde{\Lambda} = \{\tau_I^0\}_{I \in [-I^*, I^*]}.$$

The set $\tilde{\Lambda}$ is a normally hyperbolic invariant manifold (NHIM) with coincident stable and unstable invariant manifolds:

$$W^{0}\tilde{\Lambda} = \left\{ (p_{0}(\tau), q_{0}(\tau), I, \varphi, s); \tau \in \mathbb{R}, I \in [-I^{*}, I^{*}], (\varphi, s) \in \mathbb{T}^{2} \right\}.$$

We now come back to the perturbed case, that is, $\varepsilon \neq 0$. By the theory of NHIM, if $f(q)g(\varphi,s)$ is smooth enough, there exists $\tilde{\Lambda}_{\varepsilon}$ close to $\tilde{\Lambda}$ and the local invariant manifolds $W^u_{loc}(\Lambda_{\varepsilon})$ and $W^s_{loc}(\tilde{\Lambda}_{\varepsilon})$ are ε -close to $W^0(\tilde{\Lambda})$. But now, in general, $W^u(\tilde{\Lambda}_{\varepsilon})$ and $W^s(\tilde{\Lambda}_{\varepsilon})$ do not coincide, because the *separatrices* split.

The Inner and the Outer dynamics

We have two dynamics associated to $\tilde{\Lambda}_{\varepsilon}$, the inner and outer dynamics. For the study of the inner dynamics we use the *Inner map* and for the outer we use the *Scattering map*.

Inner map

The inner dynamics is the dynamics on the NHIM. Being $\tilde{\Lambda}_{\varepsilon} \approx \tilde{\Lambda}$, the Hamiltonian H_{ε} restricted to $\tilde{\Lambda}_{\varepsilon}$ is

$$K(I, \varphi, s; \varepsilon) = \frac{I^2}{2} + \varepsilon f(0)g(\varphi, s).$$

The Hamiltonian equations are:

$$\dot{\varphi} = I$$
 $\dot{I} = \varepsilon f(0) \frac{\partial g}{\partial \varphi}(\varphi, s)$ $\dot{s} = 1.$ (3)

Scattering map

Let $\tilde{\Lambda}$ be a NHIM with invariant manifolds intersecting transversally along a homoclinic manilfold $\tilde{\Gamma}$. A scattering map is a map $S: \tilde{\Lambda} \longrightarrow \tilde{\Lambda}$, such that $S(\tilde{x}_{-}) = \tilde{x}_{+}$ if there exists $\tilde{z} \in \tilde{\Gamma}$ satisfying

$$\phi_t(\tilde{z}) \longrightarrow \phi_t(\tilde{x}_-) \text{ as } t \longrightarrow -\infty$$

 $\phi_t(\tilde{z}) \longrightarrow \phi_t(\tilde{x}_+) \text{ as } t \longrightarrow +\infty,$

In order to define the *Scattering map* $S_{\varepsilon}: \tilde{\Lambda}_{\varepsilon} \to \tilde{\Lambda}_{\varepsilon}$ we have to look for homoclinic points, that is, $\tilde{z} \in W^u(\tilde{\Lambda}_{\varepsilon}) \pitchfork W^s(\tilde{\Lambda}_{\varepsilon})$. We are going to use the Melnikov potential to find these points. When the intersection is not transversal, we can have problems.

Scattering map: Melnikov potential and crests We have the following preposition

Proposition 1. Given $(I, \varphi, s) \in [-I^*, I^*] \times \mathbb{T}^2$, assume that the real function

$$\tau \in \mathbb{R} \longmapsto \mathcal{L}(I, \varphi - I \tau, s - \tau) \in \mathbb{R}$$

has a non degenerate critical point $\tau^* = \tau(I, \varphi, s)$, where

$$\mathcal{L}(I,\varphi,s) = \int_{-\infty}^{+\infty} \left(f(q_0(\sigma)) g(\varphi + I\sigma, s + \sigma; 0) - f(0) g(\varphi + I\sigma, s + \sigma; 0) \right) d\sigma.$$

Then, for $0 < |\varepsilon|$ small enough, there exists a transversal homoclinic point \tilde{z} to $\tilde{\Lambda}_{\varepsilon}$, which is ε -close to the point $\tilde{z}^*(I,\varphi,s) = (p_0(\tau^*),q_0(\tau^*),I,\varphi,s) \in W^0(\tilde{\Lambda})$:

$$\tilde{z} = \tilde{z}(I, \varphi, s) = (p_0(\tau^*) + O(\varepsilon), q_0(\tau^*) + O(\varepsilon), I, \varphi, s) \in W^u(\tilde{\Lambda}_{\varepsilon}) \pitchfork W^s(\tilde{\Lambda}_{\varepsilon}).$$

The function \mathcal{L} is called the *Melnikov potential*. We consider the following change of variables

$$\theta = \varphi - I s.$$

The scattering map has the explicit form

$$S_{\varepsilon}(I,\theta) = \left(I + \varepsilon \frac{\partial \mathcal{L}^*}{\partial \theta}(I,\theta) + O(\varepsilon^2), \theta - \varepsilon \frac{\partial \mathcal{L}^*}{\partial I}(I,\theta) + O(\varepsilon^2)\right).$$

where

$$\mathcal{L}^*(I,\theta) = \mathcal{L}(I,\varphi - I\tau^*(I,\varphi,s), s - \tau^*(I,\varphi,s)).$$

 \mathcal{L}^* is called *the reduced Poincaré function*.

Remark 1. The level curves of the Reduced Poincaré function is very useful to understand the behavior of the scattering map.

Objective

We want to build pseudo-orbits using inner and scattering maps that is increase on the variable I. It holds the existence of a real orbit close to that pseudo-orbit, i. e., it is increase on the variable I too.

1 Case:
$$f(q)g(\varphi,s) = \cos q(a_{00} + a_{10}\cos\varphi + a_{01}\cos s)$$

Inner dynamics

In this case, this system is integrable. Equations (3) turn out

$$\dot{\varphi} = I$$
 $\dot{I} = \varepsilon a_{10} \sin \varphi$ $\dot{s} = 1$

It does not require the KAM theory.

Figure 1: (a) An exemple of inner dynamics for the first case (b)Inner dynamics for the second case.

Scattering map

The Melnikov Potential is given by

$$\mathcal{L}(I, \varphi, s) = A_{00} + A_{10}(I)\cos\varphi + A_{01}\cos s,$$

where
$$A_{00} = 4 a_{00}$$
, $A_{10}(I) = \frac{2 \pi I a_{10}}{\sinh(\frac{I \pi}{2})}$ and $A_{01} = \frac{2 \pi a_{01}}{\sinh(\frac{\pi}{2})}$.

Then, the critical points of $\mathcal{L}(I, \varphi - I \tau, s - \tau)$ are τ^* such that

$$I A_{10}(I) \sin(\varphi - I \tau^*) + A_{10} \sin(s - \tau^*) = 0.$$

Crests and several Scattering maps

Define by $\mathit{crests}\ \mathrm{C}(I),$ the curves on (φ,s) such that satisfy

$$I A_{10}(I)\sin\varphi + A_{01}\sin s = 0. \tag{4}$$

Remark 2. We have two curves satisfying the equation above, the *maximum* crest, $C_M(I)$, and the *minimum* crest, $C_m(I)$. The maximum crest contains the point $\varphi = 0$ and s = 0, and the minimum the point $\varphi = \pi$ and $s = \pi$.

Then the function $\tau^*(I, \varphi, s)$ is determined by the value τ where the straight lines $R_\theta = \{(\varphi - I\tau, s - \tau); \tau \in \mathbb{R}\}$, where $\theta = \varphi - Is$, intersects C(I).

Therefore, we have to study the crests. Rewrite the equation (4) as

$$\mu\alpha(I)\sin\varphi + \sin s = 0, (5)$$

where

$$\alpha(I) = \frac{\sinh(\frac{\pi}{2})I^2}{\sinh(\frac{\pi I}{2})} \quad \text{and} \quad \mu = \frac{a_{10}}{a_{01}}.$$

We have to consider two cases, depending on the values of I:

• For $|\alpha(I)|<\frac{1}{|\mu|}$, the crests are horizontal, see figure 2, $C_{M,m}(I)=\{(\varphi,\xi_{M,m}(I,\varphi)),\varphi\in\mathbb{T}\}$

$$\xi_M(\varphi, I) = -\arcsin(\mu\alpha(I)\sin\varphi) \quad \text{mod } 2\pi$$

$$\xi_m(\varphi, I) = \arcsin(\mu\alpha(I)\sin\varphi) + \pi \quad \text{mod } 2\pi$$
(6)

Figure 2: (a) *Horizontal* crests for $\mu := a_{10}/a_{01} = 0.6$ and I = 1.2 (b) *Vertical crests* for $\mu = 1.2$ and I = 1

• For $|\alpha(I)|>\frac{1}{|\mu|}$, the crests are vertical, see figure 2 (b), $\mathcal{C}_{M,m}(I)=\{(\eta_{M,m}(I,s),s);s\in\mathbb{T}\}$

$$\eta_M(s,I) = -\arcsin(\sin s / (\mu \alpha(I))) \mod 2\pi$$

$$\eta_m(s,I) = \arcsin(\sin s / (\mu \alpha(I))) + \pi \mod 2\pi.$$
(7)

Remark 3. The crests for $|\alpha(I)| = \frac{1}{|\mu|}$ are not displayed (they are straight lines).

In the figure 2 (a) and (b) the straight line R_{θ} intersects each crest $C_M(I)$ and $C_m(I)$ transversally, giving rise to two values τ_M^* and τ_m^* , therefore to two different scattering maps. However, tangencies between R_{θ} and two crests can appear some values of I, originating new scattering maps.

The level curves of $\mathcal{L}^*(I,\theta)$ and the Arnold diffusion

Proposition 2. Consider the function

$$\mathcal{L}^*(I,\theta) = A_{00} + A_{10}(I)\cos(\theta - I\tau^*(I,\theta,0)) + A_{01}\cos(-\tau^*(I,\theta)),$$

where $A_{10}(I) = \frac{2\pi I a_{10}}{\sinh(I\pi/2)}$, $A_{01} = \frac{2\pi a_{01}}{\sinh(\pi/2)}$, A_{00} a constant and $\tau^*(I, \theta)$ satisfies the equation:

$$IA_{10}(I)\sin(\theta - I\tau^*(I,\theta)) + A_{01}\sin(\xi_M(I,\theta - I\tau^*(I,\theta))) = 0,$$

 ξ_M a horizontal parametrization of the maximum crest $C_M(I)$.

Assume that

$$a_{10} a_{01} \neq 0.$$

Then there exists a level curve defined, at least, in $(-\infty, -I_{++}) \cup (-I_+, I_+) \cup (I_{++}, +\infty)$. where $I_+ \sim \sqrt{\frac{\pi}{2\mu \sinh(\pi/2)}}$ and $I_{++} \approx \frac{4 \sinh(\pi/2) \log(|\mu|)}{\pi}$.

Definition 1. We call *highways* the curves in the cylinder $(I, \theta) \in \mathbb{R} \times \mathbb{T}$ such that $\mathcal{L}^*(I, \theta) = A_{00} + A_{01}$.

These *highways* are "vertical" and exist, at least, for $(-\infty, -I_{++}) \cup (-I_+, I_+) \cup (I_{++}, +\infty)$. The existence of the highways gives us an "easy" way for the diffusion: the pseudo-orbit is built along the highway.

Figure 3: The level curves of \mathcal{L}^* and the *highways* in black, for $a_{10}/a_{01}=0.6$

For a general case, we can combine different Scattering maps or a Scattering map with the inner map to ensure the Arnold diffusion.

Theorem 1. Consider a Hamiltonian of the form (1) where $f(q) = \cos q$ and $g(\varphi, t) = a_{00} + a_{10} \cos \varphi + a_{01} \cos t$. Assume that

$$a_{10} a_{01} \neq 0.$$

Then, for any $I^*>0$, there exists $\varepsilon^*=\varepsilon^*(I^*)>0$ such that for any ε , $0<\varepsilon<\varepsilon^*$, there exists a trajectory $(p(t),q(t),I(t),\varphi(t))$ such that for some T>0

$$I(0) \le -I^* < I^* \le I(T).$$

A complete study of this case can be found in [4].

2 Case: $f(q)g(\varphi,s) = \cos q(a_{00} + a_{10}\cos\varphi + a_{01}\cos(\varphi - s))$

This case is given as an example in [1].

Inner dynamics

We have that the inner dynamics is described by a Hamiltonian system with the Hamiltonian

$$K(I,\varphi,s) = \frac{I^2}{2} + \varepsilon \left(a_{1,0} \cos \varphi + a_{1,-1} \cos(\varphi - s) \right), \tag{8}$$

and differential equations

$$\dot{I} = \varepsilon \left(a_{1,0} \sin \varphi + a_{1,-1} \sin(\varphi - s) \right) \qquad \dot{\varphi} = I \qquad \dot{s} = 1. \tag{9}$$

We have two resonances I=0 and I=1, so it is necessary to be careful. In general our method is to restrict the inner map in such way that the inner dynamics has horizontal invariant tori.

Scattering map

Now, the Melnikov Potential takes the form

$$\mathcal{L}(I,\varphi,s) = A_{1,0}(I)\cos\varphi + A_{1,-1}(I)\cos(\varphi - s),$$

where

$$A_{1,0}(I) = \frac{2\pi I a_{1,0}}{\sinh(\pi/2I)} \quad \text{and} \quad A_{1,-1}(I) = \frac{2\pi (I-1)a_{1,-1}}{\sinh(\pi/2(I-1))}.$$
 (10)

Crests $\mathcal{C}(I)$ are defined as the curves on $(I, \varphi, \varphi - s = \sigma), (\varphi, \sigma) \in \mathbb{T}^2$, satisfying

$$IA_{1,0}(I)\sin\varphi + (I-1)A_{1,-1}(I)\sin\sigma = 0.$$
 (11)

This equation can be rewritten, for $I \neq 1$ as

$$\mu\alpha(I)\sin\varphi + \sin\sigma = 0,\tag{12}$$

where

$$\mu = \frac{a_{1,0}}{a_{1,-1}} \quad \text{and} \quad \alpha(I) = \frac{I^2 \sinh(\frac{\pi}{2}(I-1))}{(I-1)^2 \sinh(\frac{\pi I}{2})}.$$

Remark 4. In this case, the crests have the same parameterization that in the previous case, but we use the variables I and σ .

Now, the function $\alpha(I)$ is not bounded, not symmetric to I=0 and not defined in I=1. It has some consequences on the scattering map:

- There is no scattering map defined on whole $\mathbb{T} \times \mathbb{R}$;
- Scattering maps are not symmetric to I=0;
- Large highways do not exist.

Figure 4: (a)Scattering map associated to a horizontal crest. (b)Scattering map associated to a vertical crest.

3 An example for 3 + 1/2 degrees of freedom

We consider a Hmiltonian system represented by:

$$H_{\varepsilon}(I_1, I_2, \varphi_1, \varphi_2, p, q, t) = \pm \left(\frac{p^2}{2} + \cos q - 1\right) + h(I_1, I_2) + \varepsilon \cos q \, g(\varphi_1, \varphi_2, s),$$
 (13)

where

$$h(I_1, I_2) = \Omega_1 \frac{I_1^2}{2} + \Omega_2 \frac{I_2^2}{2}$$
, and $g(\varphi_1, \varphi_2, s) = a_1 \cos \varphi_1 + a_2 \cos \varphi_2 + a_3 \cos s$.

Crests equation:

$$\sum_{i=1}^{3} A_i \omega_i \sin(\varphi_i) = 0, \tag{14}$$

where $\omega_i = \Omega_i I_i$ for i = 1, 2, $\omega_3 = -1$ and

$$A_i = A_i(\omega_i) = \frac{2\pi\omega_i}{\sinh(\pi\omega_i/2)}a_i, \qquad i = 1, 2.$$

That equation can be rewritten as

$$\sin s = \alpha_1(\omega_1)\mu_1\sin\varphi_1 + \alpha_2(\omega_2)\mu_2\sin\varphi_2,\tag{15}$$

where $\alpha_i(\omega_i) = -\omega_i^2 \sinh(\pi/2)/\sinh(\omega_i\pi/2)$, i = 1, 2, and $\mu_i = a_i/a_3$, i = 1, 2.

Remark 5. It is well defined if, only if, $-1 \le \alpha_1(\omega_1)\mu_1 \sin \varphi_1 + \alpha_2(\omega_2)\mu_2 \sin \varphi_2 \le 1$. So, Besides dynamics variables φ_1 and φ_2 , the 4 constants ω_1 , ω_2 , μ_1 and μ_2 have an important role.

This system has 3 different kinds of crests (see Fig. 5), and they appear in the following way:

Figure 5: (a)Horizontal crests (b)Vertical crests (c)Inseparable crests.

- For $|\mu_1| + |\mu_2| \le 0.97$ the crests are horizontal;
- For $0 < \mu_1, \mu_2 \le 0.97$, but $|\mu_1| + |\mu_2| > 0.97$ the crests are horizontal or inseparable.
- For $\mu_i > 0.97$ $(i, j = 1, 2, i \neq j)$. The crests can be horizontal, inseparable or vertical.

References

- [1] Amadeu Delshams, Rafael de la Llave, and Tere M Seara. *A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem : heuristics and rigorous verification on a model.* 2006.
- [2] Amadeu Delshams, Rafael de la Llave, and Tere M. Seara. Instability of high dimensional hamiltonian systems: Multiple resonances do not impede diffusion. *Advances in Mathematics*, 294:689 755, 2016.
- [3] Amadeu Delshams and Gemma Huguet. A geometric mechanism of diffusion: Rigorous verification in a priori unstable Hamiltonian systems. *Journal of Differential Equations*, 250(5):2601–2623, 2011.
- [4] Amadeu Delshams and R.G. Schaefer. Arnold Diffusion for a Complete Family of Perturbations. *Regular and Chaotic Dynamics*, 22(1):78–108, 2017.

Acknowledgements

This work was supported by the Catalan Grant 2014SGR504. Rodrigo Schaefer is supported by CNPq/CsF GDE 246579/2013-7.