Modern Algebra II Spring 2013 Review Sheet for the Second Midterm

Throughout this review sheet, F denotes a **field**.

Proposition: Every ideal in F[x] is a principal ideal, i.e. if I is an ideal in F[x], then there exists an $f(x) \in F[x]$ such that I = (f(x)).

Definition: Let $f(x), g(x) \in F[x]$ and assume that not both of f(x), g(x) are zero. A greatest common divisor (gcd) of f(x) and g(x) is a polynomial d(x) such that $d(x) \mid f(x), d(x) \mid g(x)$, and if e(x) is any polynomial such that $e(x) \mid f(x)$ and $e(x) \mid g(x)$, then $e(x) \mid d(x)$. A gcd of f(x) and g(x) is unique up to a nonzero constant (and is unique if we require that it is monic).

Proposition: Let F be a field and let $f(x), g(x) \in F[x]$, not both zero. then a gcd d(x) of f(x) and g(x) exists. Moreover, there exist $p(x), q(x) \in F[x]$ such that d(x) = f(x)p(x) + g(x)q(x). (We say that d(x) is a linear combination of f(x) and g(x).)

Definition: Let $f(x), g(x) \in F[x]$, not both zero. Then f(x) and g(x) are relatively prime if the gcd of f(x) and g(x) is 1.

Corollary: Suppose that $f(x), g(x) \in F[x]$ are relatively prime and that $f(x) \mid g(x)h(x)$. Then $f(x) \mid h(x)$.

Definition: Let $p(x) \in F[x]$. Then p(x) is irreducible in F[x] if p(x) is not 0 or a unit (i.e. is nonconstant) and, for all $f(x) \in F[x]$, if $f(x) \mid p(x)$, then either f(x) is a unit or f(x) = cp(x) for some $c \in F^*$. Clearly p(x) is irreducible if and only if p(x) is nonconstant and, if p(x) = f(x)g(x), one of f(x), g(x) has degree 0 and the other has degree equal to $\deg p(x)$.

Though we usually omit the qualification "in F[x]" from the adjective "irreducible," it is very important, since irreducibility very much depends on the field F. For example, $x^2 + 1$ is irreducible in $\mathbb{R}[x]$ but not in $\mathbb{C}[x]$, since $x^2 + 1 = (x+i)(x-i)$ in $\mathbb{C}[x]$. A polynomial is reducible if it is not irreducible. A polynomial of degree $n \geq 1$ is reducible if and only if it is a product of two polynomials in F[x] each of which has degree < n. A polynomial of degree one is always irreducible. A polynomial of degree two or three is reducible \iff it has a root in F. A polynomial of degree four is reducible \iff it has a root in F or is a product of two irreducible polynomials of degree two in F[x].

If $p(x) \in F[x]$ is irreducible and $f(x) \in F[x]$, then either $p(x) \mid f(x)$ or p(x) and f(x) are relatively prime.

Corollary: Let $p(x) \in F[x]$ be irreducible in F[x], and suppose that $p(x) \mid f(x)g(x)$. Then either $p(x) \mid f(x)$ or $p(x) \mid g(x)$.

Theorem (Unique factorization in F[x]): Let $f(x) \in F[x]$ be a nonconstant polynomial. Then:

(i) There exist irreducible polynomials $p_1(x), \ldots, p_n(x)$ such that

$$f(x) = p_1(x) \cdots p_n(x).$$

(ii) This factorization is unique in the following sense: if $p_i(x)$, $q_j(x)$ are irreducible polynomials such that

$$p_1(x)\cdots p_n(x) = q_1(x)\cdots q_m(x),$$

then n=m and, after possibly reordering the q_j , $p_i(x)=cq_i(x)$ for some $c\in F^*$.

Theorem: Let I be an ideal in F[x]. Then the following are equivalent:

- 1. I is a maximal ideal.
- 2. I is a prime ideal and $I \neq \{0\}$.
- 3. I = (f(x)) for an irreducible polynomial f(x).

Corollary: The ring F[x]/(f(x)) is a field if and only if f(x) is an irreducible polynomial.

Theorem: Let F be a field and let f(x) be an irreducible polynomial in F[x]. Then there exists a field E containing (a subfield isomorphic to) F and an $\alpha \in E$ such that $f(\alpha) = 0$, in other words there exists a root of f(x) in E.

In fact, one can take E = F[x]/(f(x)) and $\alpha = x + (f(x))$, identifying F with the subfield $\{a + (f(x)) : a \in F\}$ of E.

Corollary: Let F be a field and let f(x) be a nonconstant polynomial in F[x] (i.e. $\deg f(x) \geq 1$). Then there exists a field E containing (a subfield isomorphic to) F and an $\alpha \in E$ such that $f(\alpha) = 0$.

Corollary: Let F be a field and let f(x) be a nonconstant polynomial in F[x] (i.e. deg $f(x) = n \ge 1$). Then there exists a field E containing (a subfield isomorphic to) F and $\alpha_1, \ldots, \alpha_n \in E$ and $c \in F$ such that, in E[x],

$$f(x) = c(x - \alpha_1) \cdots (x - \alpha_n).$$

Definition: Let F be a field. Then an extension field of F is a field E containing F as a subfield.

Definition: Let E be an extension field of F and let $\alpha \in E$. Then α is algebraic over F if there exists a nonzero polynomial $f(x) \in F[x]$ such that $f(\alpha) = 0$. The element $\alpha \in E$ is transcendental over F if it is not algebraic over F, i.e. if $f(x) \in F[x]$ and $f(\alpha) = 0$, then f(x) = 0.

Proposition: Let E be an extension field of F and let $\alpha \in E$. Let

$$\operatorname{ev}_{\alpha} \colon F[x] \to E$$

be the evaluation homomorphism. Then exactly one of the following is true:

- (i) α is transcendental over F and $\operatorname{Ker} \operatorname{ev}_{\alpha} = \{0\}$. In this case $\operatorname{ev}_{\alpha}$ is an isomorphism from F[x] to the image $\operatorname{Im} \operatorname{ev}_{\alpha} = F[\alpha] \subseteq E$. Hence, $F[\alpha]$ is not a subfield of E, and $\operatorname{ev}_{\alpha}$ extends to an isomorphism from F(x) to a subfield of E, denoted $F(\alpha)$.
- (ii) α is algebraic over F and $\operatorname{Ker} \operatorname{ev}_{\alpha} \neq \{0\}$. In this case $\operatorname{Ker} \operatorname{ev}_{\alpha} = (p(x))$ for an irreducible polynomial $p(x) \in F[x]$, and, for all $f(x) \in F[x]$, $f(\alpha) = 0 \iff p(x) \mid f(x)$. Finally, $\operatorname{Im} \operatorname{ev}_{\alpha} = F[\alpha]$ is a subfield of E.

Definition: If E is an extension field of F and $\alpha \in E$, we let $F(\alpha)$ be the smallest subfield of E containing F and α . In case α is algebraic over F, $F(\alpha) = F[\alpha]$. In case α is transcendental over F, $F(\alpha) \neq F[\alpha]$, but every element of $F(\alpha)$ can be written as $p(\alpha)/q(\alpha)$, where $p(x), q(x) \in F[x]$ and $q(x) \neq 0$.

Definition: If $E = F(\alpha)$, then E is a simple extension of F.

Definition: (i) Let E be an extension field of F and let $\alpha \in E$ be algebraic over F. Then $\operatorname{irr}(\alpha, F, x)$ is the unique monic generator of the ideal Ker $\operatorname{ev}_{\alpha}$. It is irreducible and is the monic polynomial of smallest degree for which α is a root.

(ii) With E, F, α as above, we define the degree of α over F (written $\deg_F \alpha$) to be the degree of $\operatorname{irr}(\alpha, F, x)$.

Proposition: Suppose that $E = F(\alpha)$ is a simple extension of F, where α is algebraic over F and $\deg_F \alpha = n$. Then every element of E can be uniquely written as $a_0 + a_1\alpha + \cdots + a_{n-1}\alpha^{n-1}$ where $a_i \in F$.

Definition: Let F be a field. An F-vector space V consists of an abelian group (V, +), whose elements are called vectors, together with a function $F \times V \to V$ called scalar multiplication, and whose value on a pair (α, v) is denoted by $\alpha \cdot v$ or simply αv , satisfying the following:

- 1. For all $\alpha, \beta \in F$ and $v \in V$, $(\alpha + \beta) \cdot v = (\alpha \cdot v) + (\beta \cdot v)$;
- 2. For all $\alpha \in F$ and $v, w \in V$, $\alpha \cdot (v + w) = (\alpha \cdot v) + (\alpha \cdot w)$;
- 3. For all $\alpha, \beta \in F$ and $v \in V$, $\alpha \cdot (\beta \cdot v) = (\alpha \beta) \cdot v$;
- 4. For all $v \in V$, $1 \cdot v = v$.

Proposition: Let F be a field and let E be an extension field of F. Then E is an F-vector space.

Definition: Let V be an F-vector space.

- 1. A subspace or vector subspace W of V is an abelian subgroup W of V such that, for all $w \in W$ and $\alpha \in W$, $\alpha \cdot w \in W$. With this closure property, W with the induced operations is a vector space in its own right.
- 2. If V_1 and V_2 are two F-vector spaces, a linear map $F: V_1 \to V_2$ is a homomorphism F of abelian groups such that, for all $\alpha \in F$ and $v \in V_1$, $F(\alpha v) = \alpha F(v)$.
- 3. Given $v_1, \ldots, v_k \in V$, a linear combination of v_1, \ldots, v_k is an element of V of the form $\sum_{i=1}^k \alpha_i v_i$ where $\alpha_1, \ldots, \alpha_k \in F$. The set of all linear combinations of v_1, \ldots, v_k , namely

$$\left\{ \sum_{i=1}^{k} \alpha_i v_i : \alpha_i \in F \right\}$$

is a vector subspace of V, called the span of v_1, \ldots, v_k . It contains v_1, \ldots, v_k and is the smallest vector subspace of V containing v_1, \ldots, v_k .

- 4. V is finite-dimensional if there exist $v_1, \ldots, v_k \in V$ such that the span of v_1, \ldots, v_k is V.
- 5. $v_1, \ldots, v_k \in V$ are linearly independent if, for all $\alpha_1, \ldots, \alpha_k \in F$, the linear combination $\sum_{i=1}^k \alpha_i v_i = 0$ if and only if $\alpha_i = 0$ for all i.
- 6. $v_1, \ldots, v_k \in V$ are a basis for V over F, or an F-basis, or simply a basis if F is clear from the context, if they are linearly independent and span V. $v_1, \ldots, v_k \in V$ are a basis for V over F if and only if every $v \in V$ can be written as $\sum_{i=1}^k \alpha_i v_i = 0$ for a unique choice of $\alpha_1, \ldots, \alpha_k \in F$.

Theorem: Let V be an F-vector space. Suppose that $v_1, \ldots, v_k \in V$ are linearly independent and that $w_1, \ldots, w_\ell \in V$ span V. Then $k \leq \ell$.

Corollary: If V is finite dimensional, then there exists a basis for V. Moreover, every two bases have the same number of elements, and this number is called the $\dim_F V$ of V.

Corollary: If V is finite dimensional and $v_1, \ldots, v_k \in V$ are linearly independent, then v_1, \ldots, v_k can be completed to a basis of V: there exist v_{k+1}, \ldots, v_n such that v_1, \ldots, v_n are a basis of V. In particular, $k \leq \dim_F V$.

Corollary: If V is finite dimensional and W is a vector subspace of V, then $\dim_F W \leq \dim_F V$, and equality holds if and only if W = V.

Definition: Suppose that E is an extension field of F. If E is a finite-dimensional F-vector space, then E is called a *finite* extension of F. (Note: this does **not** mean that E is a finite set.) In this case, $\dim_F E$ is called the degree of E over F and is written [E:F].

Proposition: Suppose that $E = F(\alpha)$ is a simple extension of F. Then E is a finite extension of F if and only if α is algebraic over F. In this case $[F(\alpha):F] = \dim_F F(\alpha) = \deg_F \alpha$ and $1, \alpha, \ldots, \alpha^{n-1}$ is a basis of E, where $n = \deg_F \alpha$.

Proposition: Let E be an extension field of F, and suppose that E is a finite dimensional vector space over F, of dimension $\dim_F E = [E:F]$. Let V be an E-vector space; note that we can also view V as an F-vector space. Then V is finite dimensional as an E-vector space if and only if V is finite dimensional as an F-vector space, and in this case

$$\dim_F V = [E:F] \dim_E V.$$

Corollary: Let E be an extension field of the field F and let K be an extension field of E, i.e. $F \leq E \leq K$. Then K is a finite extension of F if and only if K is a finite extension of E and E is a finite extension of F, and in this case we have

$$[K:F] = [K:E][E:F].$$

Corollary: Let E be an extension field of the field F and let K be an extension field of E, i.e. $F \leq E \leq K$, and suppose that K is a finite extension of F. Then K is a finite extension of E and E is a finite extension of F, and in this case [K:E] and [E:F] both divide [K:F].

Notation: if E is an extension field of F, and $\alpha, \beta \in E$, then $F(\alpha, \beta)$ is the smallest subfield of E containing F, α , and β . Clearly $F(\alpha, \beta) = F(\alpha)(\beta) = F(\beta)(\alpha)$. The field $F(\alpha_1, \ldots, \alpha_n)$ is defined similarly.

Definition: if E is an extension field of F, then E is an algebraic extension of F if, for every $\alpha \in E$, α is algebraic over F.

Proposition: If E is a finite extension of F, then E is an algebraic extension of F.

Proposition-Definition: Let E be an extension field of F, and let $\alpha, \beta \in E$. If α and β are algebraic over F, then so are $\alpha \pm \beta$, $\alpha\beta$, and α/β (if $\beta \neq 0$). Thus the subset $\{\alpha \in E : \alpha \text{ is algebraic over } F\}$ is a subfield of E, the algebraic closure of F in E.

Definition: The algebraic closure of \mathbb{Q} in \mathbb{C} is a subfield of \mathbb{C} , denoted by $\overline{\mathbb{Q}}$ or by \mathbb{Q}^{alg} . It is called the *field of algebraic numbers*.

Lemma: Let E be an extension field of F. Then E is a finite extension of $F \iff$ there exist $\alpha_1, \ldots, \alpha_n \in E$, algebraic over F, such that $E = F(\alpha_1, \ldots, \alpha_n)$.

Corollary: Let $F \leq E \leq K$ with E an algebraic extension of F. If $\alpha \in K$ and α is algebraic over E, then α is algebraic over F.

Corollary: Let $F \leq E \leq K$. Then K is an algebraic extension of $F \iff K$ is an algebraic extension of E and E is an algebraic extension of F.

Definition: Let K be a field. Then K is algebraically closed if, for every $f(x) \in K[x]$ of degree at least one, there exists $\alpha \in K$ such that $f(\alpha) = 0$. Proposition: Let K be a field. Then the following are equivalent:

- (i) K is algebraically closed.
- (ii) If $f(x) \in K[x]$ and $\deg f(x) \geq 1$, then f(x) is a product of linear factors.
- (iii) If L is an algebraic extension of K, then L = K.

Famous fact (Fundamental Theorem of Algebra): \mathbb{C} is algebraically closed. Definition: An algebraic closure of F is an extension field K of F such that (i) K is algebraically closed and (ii) K is algebraic over F.

Proposition: Let F be a field and let E be an extension field of F which is algebraically closed. Then the algebraic closure of F in E is an algebraic closure of F.

Corollary: \mathbb{Q}^{alg} is algebraically closed, and is an algebraic closure of \mathbb{Q} .

Fact (Existence of Algebraic Closures): Let F be a field. Then there exists an extension field E of F which is an algebraic closure of F. Moreover, two algebraic closures of F, say E_1 and E_2 , are isomorphic; more precisely, there exists an isomorphism $\sigma: E_1 \to E_2$ such that $\sigma(a) = a$ for all $a \in F$.

Definition: For $f(x) = \sum_{i=0}^{n} a_i x^i \in F[x]$, the formal derivative Df(x) is the polynomial $Df(x) = \sum_{i=1}^{n} (i \cdot a_i) x^{i-1} \in F[x]$. It satisfies:

1. $D: F[x] \to F[x]$ is F-linear, i.e. for all $f, g \in F[x]$ and $a \in F$,

$$D(f+g) = Df + Dg$$
 and $D(af) = aDf$.

- 2. (Product rule) For all $f, g \in F[x]$, D(fg) = (Df)g + f(Dg).
- 3. (Power rule) For all $f \in F[x]$ and $n \in \mathbb{N}$, $D(f^n) = n \cdot f^{n-1}Df$.
- 4. If F has characteristic p, then $D(x^p) = 0$. In general, if F has characteristic 0, then $Df(x) = 0 \iff f(x)$ is constant. If F has characteristic p, then Df(x) = 0, where $f(x) = \sum_{i=0}^{n} a_i x^i$, \iff for all i such that $a_i \neq 0$, p|i, \iff $f(x) = \sum_{j=0}^{m} a_{jp} x^{jp}$, \iff $f(x) = g(x^p)$, where $g(x) = \sum_{j=0}^{m} b_j x^j$ (we set $b_j = a_{jp}$).

We can restate (4) as: Ker D = F if the characteristic of F is 0, and Ker $D = F[x^p]$ if the characteristic of F is p > 0.

Proposition: a is a multiple root of f(x) (i.e. $(x-a)^m|f(x)$ for some $m \ge 2) \iff f(a) = Df(a) = 0$.

Lemma: Let E be an extension field of F, and let $f(x), g(x) \in F[x] \subseteq E[x]$.

- (i) f(x) divides g(x) in $F[x] \iff f(x)$ divides g(x) in E[x].
- (ii) Let $d(x) \in F[x]$. Then d(x) is a gcd of f(x) and g(x) in $F[x] \iff d(x)$ is a gcd of f(x) and g(x) in E[x].
- (iii) f(x) and g(x) are relatively prime in $F[x] \iff f(x)$ and g(x) are relatively prime in E[x].

Proposition: Let $f(x) \in F[x]$. Then f(x) and Df(x) are not relatively prime \iff there exists an extension field E of F such that f(x) has a multiple root in E.

Corollary: Let $f(x) \in F[x]$ be an irreducible polynomial. Then f(x) has a multiple root in some extension field E of $F \iff Df(x) = 0$, In particular, if the characteristic of F is zero, f(x) does not have a multiple root in any extension field E of F.

Let \mathbb{F} be a finite field. Then \mathbb{F} has characteristic p > 0, p a prime number, and the field $\mathbb{Z}/p\mathbb{Z}$, which we will write henceforth as \mathbb{F}_p , is a subfield of

 \mathbb{F} . Since \mathbb{F} is finite, it is a finite-dimensional \mathbb{F}_p -vector space, of dimension $n = [\mathbb{F} : \mathbb{F}_p]$, say. Thus $\#(\mathbb{F}) = q = p^n$ is a prime power. Also, since \mathbb{F}^* is a finite subgroup of \mathbb{F}^* , it is cyclic, say $\mathbb{F}^* = \langle \alpha \rangle$, and so $\mathbb{F} = \mathbb{F}_p(\alpha)$. More generally, if \mathbb{F}' is any subfield of \mathbb{F} , then $\mathbb{F} = \mathbb{F}'(\alpha)$. In particular, every finite extension of a finite field is a simple extension.

Definition: For a finite field \mathbb{F} of characteristic p (i.e. $\#(\mathbb{F})$ is a power of p), let $\sigma_p \colon \mathbb{F} \to \mathbb{F}$ be the Frobenius homomorphism: $\sigma_p(\alpha) = \alpha^p$. Since \mathbb{F} is finite and σ_p is injective, it is also surjective, hence an automorphism of \mathbb{F} with the property that $\sigma_p(a) = a$ for all $a \in \mathbb{F}_p \leq \mathbb{F}$. More generally, for a positive integer, we can define $\sigma_{p^k}(\alpha) = \alpha^{p^k}$. By induction, we claim that $\sigma_{p^k} = (\sigma_p)^k$ (since $(\sigma_p)^k(\alpha) = \sigma_p \circ \cdots \circ \sigma_p(\alpha) = \sigma_p \circ (\sigma_p)^{k-1}(\alpha) = \sigma_p(\alpha^{p^{k-1}}) = (\alpha^{p^{k-1}})^p = \alpha^{p^k} = \sigma_{p^k}(\alpha)$). Thus σ_{p^k} is also an automorphism of \mathbb{F} . In particular, for $q = p^n = \#(\mathbb{F})$, σ_q is an automorphism of \mathbb{F} . If \mathbb{F} is a field with $\#(\mathbb{F}) = q = p^n$, then, for all $\alpha \in \mathbb{F}$, $\alpha^q = \alpha$. Two equivalent formulations are (a) α is a root of $x^q - x$; (b) $\sigma_q(\alpha) = \alpha$.

Theorem: Let p be a prime number.

- (i) For every $n \in \mathbb{N}$, if we set $q = p^n$, then there exists a field \mathbb{F}_q with $\#(\mathbb{F}_q) = q$.
- (ii) If \mathbb{F}_1 and \mathbb{F}_2 are two finite fields with $\#(\mathbb{F}_1) = \#(\mathbb{F}_2)$, then \mathbb{F}_1 and \mathbb{F}_2 are isomorphic.
- (iii) Let \mathbb{F} be a field of order $q = p^n$, and let \mathbb{F}' be a field of order $q' = p^m$. Then \mathbb{F}' is isomorphic to a subfield of $\mathbb{F} \iff m|n \iff q = (q')^d$ for some positive integer d.

¿From now on in this review sheet, R denotes an **integral domain**. For $r, s \in R$, we say that r divides s (written r|s) if there exists a $t \in R$ such that s = tr. We have defined units for R, and the (multiplicative) group of all such is denoted R^* . If $r, s \in R$, then r and s are associates if there exists a unit $u \in R^*$ such that r = us. In this case, $s = u^{-1}r$, and indeed the relation that r and s are associates is an equivalence relation. We say that $r \in R$ is irreducible if $r \neq 0$, r is not a unit, and if s divides r then either s is a unit or s is an associate of r. In other words, if r = st for some $t \in R$, then either s or t is a unit (and hence the other is an associate of r).

Definition: R is a unique factorization domain (UFD) if (i) for every $r \in R$ not 0 or a unit, there exist irreducibles $p_1, \ldots, p_n \in R$ such that $r = p_1 \cdots p_n$, and (ii) if $p_i, 1 \le i \le n$ and $q_i, 1 \le j \le m$ are irreducibles such

that $p_1 \cdots p_n = q_1 \cdots q_m$, then n = m and, after reordering, p_i and q_j are associates.

Definition: R is a principal ideal domain (PID) if every ideal I of R is principal, i.e. for every ideal I of R, there exists $r \in R$ such that I = (r).

Theorem (not proved): A principal ideal domain is a unique factorization domain.

Definition: Let R be an integral domain. Let $r, s \in R$, not both 0. A greatest common divisor (gcd) of r and s is an element $d \in R$ such that d|r, d|s, and if $e \in R$ and e|r, e|s, then e|d. If a gcd of r and s exists, it is unique up to a unit (i.e. any two gcd's of r and s are associates). The elements r and s are relatively prime if gcd(r,s) = 1; equivalently, if $d \in R$ and d|r, d|s, then d is a unit.

Proposition: if R is a UFD, then the gcd of two elements $r, s \in R$, not both 0, exists.

Theorem: Let R be a PID, and let $r, s \in R$, not both 0. Then the gcd d of r and s exists. Moreover, d is a linear combination of r and s: there exist $a, b \in R$ such that d = ar + bs.

Note: for a general UFD, the gcd of two elements r and s will not in general be a linear combination of r and s.

Corollary (of Theorem): If R is a PID, $r, s \in R$ are relatively prime and r|st, then r|t.

Corollary: If R is a PID, and $r \in R$ is an irreducible, then for all $s, t \in R$, if r|st, then either r|s or r|t.

The two corollaries above are true more generally in a UFD, with fairly straightforward proofs.

The following proves the uniqueness half of the assertion that a PID is a UFD:

Corollary: If R is a PID, then uniqueness of factorization holds in R: if $p_i, 1 \le i \le n$ and $q_j, 1 \le j \le m$ are irreducibles such that $p_1 \cdots p_n = q_1 \cdots q_m$, then n = m and, after reordering, p_i and q_j are associates.

Definition: Let R be an integral domain. A Euclidean norm on R is a function $N: R - \{0\} \to \mathbb{Z}$ satisfying:

- 1. For all $r \in R \{0\}$, $N(r) \ge 0$.
- 2. For all $a, b \in R$ with $a \neq 0$, there exist $q, r \in R$ with b = aq + r and either r = 0 or N(r) < N(a).

An integral domain R such that there exists a Euclidean norm on R is called a *Euclidean domain*.

Definition: The Euclidean norm N is submultiplicative if in addition N satisfies: For all $a, b \in R - \{0\}$, $N(a) \leq N(ab)$. It is multiplicative if N satisfies: For all $a, b \in R - \{0\}$, N(ab) = N(a)N(b). If N is multiplicative and N(a) > 0 for all $a \in R - \{0\}$, then N is submultiplicative.

Examples: $R = \mathbb{Z}$, N(a) = |a|; R = F[x], F a field, and $N(f(x)) = \deg f(x)$, defined for $f(x) \neq 0$. Here (1) is clear and (2) is the statement of long division in \mathbb{Z} or in F[x]. In fact, it is easy to see that N is submultiplicative in both cases.

Proposition: If R is a Euclidean domain, then R is a PID.

Lemma: Let R be an integral domain and let N be a submultiplicative Euclidean norm on R. For all $b \in R - \{0\}$, exactly one of the following holds:

- 1. b is not a unit and N(a) < N(ab) for all $a \in R \{0\}$.
- 2. b is a unit and N(a) = N(ab) for all $a \in R \{0\}$.

Proposition: If R is a Euclidean domain with a submultiplicative Euclidean norm and $r \in R$ is not 0 or a unit, then r is a product of irreducibles.

Corollary: If R is a Euclidean domain, then R is a UFD.

(Of course, this follows from the more general fact that a PID is a UFD.)