Задания к лабораторным работам для группы №117382

дата генерации документа 25 января 2021 г.

Содержание

Лабораторная работа N 9 «Моделирование реакций в реакторах с различной структурой потоков»

3

Лабораторная работа № 9 «Моделирование реакций в реакторах с различной структурой потоков»

Вариант 1

В реакторе идеального вытеснения протекает реакция:

$$A \underset{k_2}{\overset{k_1}{\longleftrightarrow}} B + \Delta H_1$$
$$B \xrightarrow{k_3} C + \Delta H_2$$

На вход реактор подается смесь при температуре T=259K, теплоемкость смеси $c_p=3979_{\overline{K}}$, состав подаваемой смеси: $c_A=25.4$, $c_B=0.4$. Параметры реакций: энергии активации $E_{a1}=10.5$, $E_{a2}=25.9$, $E_{a3}=23.2$, предэкспоненциальный множитель $k_{01}=14,k_{02}=5166,k_{03}=1857$, тепловой эффект $\Delta H_1=-8.8$, $\Delta H_2=5.1$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 2

В реакторе идеального вытеснения протекает реакция:

$$A + B \underset{k_2}{\overset{k_1}{\longleftrightarrow}} C + \Delta H_1$$
$$B + C \xrightarrow{k_3} D + \Delta H_2$$

На вход реактор подается смесь при температуре T=209K, теплоемкость смеси $c_p=2054_{\overline{K}}$, состав подаваемой смеси: $c_A=27.5$, $c_B=0.2$. Параметры реакций: энергии активации $E_{a1}=7.4$, $E_{a2}=18.2$, $E_{a3}=13.9$, предэкспоненциальный множитель $k_{01}=10, k_{02}=909, k_{03}=254$, тепловой эффект $\Delta H_1=37.4$, $\Delta H_2=38.8$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 3

В реакторе идеального вытеснения протекает реакция:

$$A \underset{k_2}{\overset{k_1}{\longleftrightarrow}} B + \Delta H_1$$
$$B \xrightarrow{k_3} C + \Delta H_2$$

На вход реактор подается смесь при температуре T=259K, теплоемкость смеси $c_p=2089_{\overline{K}}$, состав подаваемой смеси: $c_A=30.4$, $c_B=0.2$. Параметры реакций: энергии активации $E_{a1}=15.9$, $E_{a2}=28.7$, $E_{a3}=19.4$, предэкспоненциальный множитель $k_{01}=274,k_{02}=21289,k_{03}=693$, тепловой эффект $\Delta H_1=6.1$, $\Delta H_2=-16.1$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 4

В реакторе идеального вытеснения протекает реакция:

$$A \xrightarrow{k_1} B + \Delta H_1$$
$$A \xrightarrow{k_2} C + \Delta H_2$$
$$A \xrightarrow{k_3} D + \Delta H_3$$

На вход реактор подается смесь при температуре T=264K, теплоемкость смеси $c_p=2023_{\overline{K}}$, состав подаваемой смеси: $c_A=21.7$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=11.0$, $E_{a2}=24.5$, $E_{a3}=16.3$, предэкспоненциальный множитель $k_{01}=22,k_{02}=3679,k_{03}=197$, тепловой эффект $\Delta H_1=13.0$, $\Delta H_2=-22.6$, $\Delta H_3=31.3$

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 5

В реакторе идеального вытеснения протекает реакция:

$$A \underset{k_2}{\overset{k_1}{\longleftrightarrow}} B + \Delta H_1$$
$$B \xrightarrow{k_3} C + \Delta H_2$$

На вход реактор подается смесь при температуре T=208K, теплоемкость смеси $c_p=2963_{\overline{K}}$, состав подаваемой смеси: $c_A=18.7$, $c_B=0.2$. Параметры реакций: энергии активации $E_{a1}=7.7$, $E_{a2}=13.5$, $E_{a3}=13.5$, предэкспоненциальный множитель $k_{01}=14, k_{02}=141, k_{03}=154$, тепловой эффект $\Delta H_1=33.2$, $\Delta H_2=6.2$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 6

В реакторе идеального вытеснения протекает реакция:

$$A \stackrel{k_1}{\longleftrightarrow} C + \Delta H_1$$
$$A \stackrel{k_3}{\longleftrightarrow} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=326K, теплоемкость смеси $c_p=3352_{\overline{K}}$, состав подаваемой смеси: $c_A=21.7$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=15.7$, $E_{a2}=38.5$, $E_{a3}=34.5$, предэкспоненциальный множитель $k_{01}=54,k_{02}=58186,k_{03}=17408$, тепловой эффект $\Delta H_1=-20.3$, $\Delta H_2=21.6$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 7

$$A \underset{k_2}{\overset{k_1}{\longleftrightarrow}} B + \Delta H_1$$
$$B \underset{k_3}{\overset{k_3}{\longleftrightarrow}} C + \Delta H_2$$

На вход реактор подается смесь при температуре T=266K, теплоемкость смеси $c_p=3337_{\overline{K}}$, состав подаваемой смеси: $c_A=32.2$, $c_B=0.4$. Параметры реакций: энергии активации $E_{a1}=14.1$, $E_{a2}=21.9$, $E_{a3}=23.2$, предэкспоненциальный множитель $k_{01}=83,k_{02}=838,k_{03}=2222$, тепловой эффект $\Delta H_1=-36.3$, $\Delta H_2=-28.1$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 8

В реакторе идеального вытеснения протекает реакция:

$$A \xrightarrow{k_1} B + \Delta H_1$$
$$A \xrightarrow{k_2} C + \Delta H_2$$
$$A \xrightarrow{k_3} D + \Delta H_3$$

На вход реактор подается смесь при температуре T=202K, теплоемкость смеси $c_p=3574_{\overline{K}}$, состав подаваемой смеси: $c_A=27.9$, $c_B=0.2$. Параметры реакций: энергии активации $E_{a1}=10.5$, $E_{a2}=15.8$, $E_{a3}=9.9$, предэкспоненциальный множитель $k_{01}=70, k_{02}=575, k_{03}=35$, тепловой эффект $\Delta H_1=-41.7$, $\Delta H_2=-23.6$, $\Delta H_3=-44.8$

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 9

В реакторе идеального вытеснения протекает реакция:

$$A \underset{k_2}{\overset{k_1}{\longleftrightarrow}} C + \Delta H_1$$
$$A \xrightarrow{k_3} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=236K, теплоемкость смеси $c_p=2093_{\overline{K}}$, состав подаваемой смеси: $c_A=28.1$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=11.2$, $E_{a2}=25.8$, $E_{a3}=19.6$, предэкспоненциальный множитель $k_{01}=45,k_{02}=10531,k_{03}=749$, тепловой эффект $\Delta H_1=-11.9$, $\Delta H_2=23.4$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 10

В реакторе идеального вытеснения протекает реакция:

$$A \xrightarrow{k_1} B + \Delta H_1$$

$$A \xrightarrow{k_2} C + \Delta H_2$$

$$A \xrightarrow{k_3} D + \Delta H_3$$

На вход реактор подается смесь при температуре T=204K, теплоемкость смеси $c_p=2656_{\overline{K}}$, состав подаваемой смеси: $c_A=26.7$, $c_B=0.2$. Параметры реакций: энергии активации $E_{a1}=8.7$, $E_{a2}=11.9$, $E_{a3}=11.4$, предэкспоненциальный множитель $k_{01}=19, k_{02}=66, k_{03}=85,$ тепловой эффект $\Delta H_1=-38.0$, $\Delta H_2=40.3$, $\Delta H_3=17.6$

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 11

В реакторе идеального вытеснения протекает реакция:

$$A + B \stackrel{k_1}{\longleftrightarrow} C + \Delta H_1$$
$$B + C \stackrel{k_3}{\longrightarrow} D + \Delta H_2$$

На вход реактор подается смесь при температуре T=313K, теплоемкость смеси $c_p=3719_{\overline{K}}$, состав подаваемой смеси: $c_A=34.4$, $c_B=0.4$. Параметры реакций: энергии активации $E_{a1}=17.7$, $E_{a2}=34.3$, $E_{a3}=21.5$, предэкспоненциальный множитель $k_{01}=80,k_{02}=11434,k_{03}=382$, тепловой эффект $\Delta H_1=-9.1$, $\Delta H_2=-27.8$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 12

В реакторе идеального вытеснения протекает реакция:

$$A + B \stackrel{k_1}{\underset{k_2}{\longleftrightarrow}} C + \Delta H_1$$
$$A \stackrel{k_3}{\longrightarrow} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=253K, теплоемкость смеси $c_p=2991_{\overline{K}}$, состав подаваемой смеси: $c_A=31.8$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=13.3$, $E_{a2}=22.1$, $E_{a3}=20.8$, предэкспоненциальный множитель $k_{01}=83,k_{02}=2124,k_{03}=1075$, тепловой эффект $\Delta H_1=-8.5$, $\Delta H_2=-21.7$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 13

В реакторе идеального вытеснения протекает реакция:

$$A \underset{k_2}{\overset{k_1}{\longleftrightarrow}} B + \Delta H_1$$
$$B \underset{k_3}{\overset{k_3}{\longleftrightarrow}} C + \Delta H_2$$

На вход реактор подается смесь при температуре T=236K, теплоемкость смеси $c_p=2179_{\overline{K}}$, состав подаваемой смеси: $c_A=23.9$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=13.9$, $E_{a2}=23.9$, $E_{a3}=13.2$, предэкспоненциальный множитель $k_{01}=159, k_{02}=4466, k_{03}=85$, тепловой эффект $\Delta H_1=-6.7$, $\Delta H_2=-16.6$.

В реакторе идеального вытеснения протекает реакция:

$$A \stackrel{k_1}{\longleftrightarrow} C + \Delta H_1$$

$$A \xrightarrow{k_3} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=226K, теплоемкость смеси $c_p=3289_{\overline{K}}$, состав подаваемой смеси: $c_A=28.4$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=7.8$, $E_{a2}=13.1$, $E_{a3}=12.0$, предэкспоненциальный множитель $k_{01}=5$, $k_{02}=41$, $k_{03}=42$, тепловой эффект $\Delta H_1=41.8$, $\Delta H_2=-29.3$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 15

В реакторе идеального вытеснения протекает реакция:

$$A \stackrel{k_1}{\longleftrightarrow} B + \Delta H_1$$

$$B \xrightarrow{k_3} C + \Delta H_2$$

На вход реактор подается смесь при температуре T=207K, теплоемкость смеси $c_p=2827_{\overline{K}}$, состав подаваемой смеси: $c_A=15.5$, $c_B=0.2$. Параметры реакций: энергии активации $E_{a1}=9.3$, $E_{a2}=16.3$, $E_{a3}=13.8$, предэкспоненциальный множитель $k_{01}=33, k_{02}=681, k_{03}=205$, тепловой эффект $\Delta H_1=24.0$, $\Delta H_2=-18.8$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 16

В реакторе идеального вытеснения протекает реакция:

$$A \stackrel{k_1}{\longleftrightarrow} B + \Delta H_1$$

$$B \xrightarrow{k_3} C + \Delta H_2$$

На вход реактор подается смесь при температуре T=279K, теплоемкость смеси $c_p=3295_{\overline{K}}$, состав подаваемой смеси: $c_A=22.6$, $c_B=0.2$. Параметры реакций: энергии активации $E_{a1}=11.1$, $E_{a2}=28.9$, $E_{a3}=9.6$, предэкспоненциальный множитель $k_{01}=9$, $k_{02}=5061$, $k_{03}=6$, тепловой эффект $\Delta H_1=-28.3$, $\Delta H_2=-12.2$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 17

$$A \stackrel{k_1}{\underset{k_2}{\longleftrightarrow}} C + \Delta H_1$$

$$A \xrightarrow{k_3} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=323K, теплоемкость смеси $c_p=3844_{\overline{K}}$, состав подаваемой смеси: $c_A=16.1$, $c_B=0.2$. Параметры реакций: энергии активации $E_{a1}=23.5$, $E_{a2}=32.6$, $E_{a3}=18.5$, предэкспоненциальный множитель $k_{01}=608, k_{02}=7186, k_{03}=88$, тепловой эффект $\Delta H_1=-15.2$, $\Delta H_2=34.6$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 18

В реакторе идеального вытеснения протекает реакция:

$$A + B \underset{k_2}{\overset{k_1}{\longleftrightarrow}} C + \Delta H_1$$
$$B + C \xrightarrow{k_3} D + \Delta H_2$$

На вход реактор подается смесь при температуре T=238K, теплоемкость смеси $c_p=3292_{\overline{K}}$, состав подаваемой смеси: $c_A=30.7$, $c_B=0.4$. Параметры реакций: энергии активации $E_{a1}=13.2$, $E_{a2}=22.8$, $E_{a3}=13.8$, предэкспоненциальный множитель $k_{01}=124,k_{02}=2583,k_{03}=104$, тепловой эффект $\Delta H_1=13.2$, $\Delta H_2=-23.5$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 19

В реакторе идеального вытеснения протекает реакция:

$$A + B \stackrel{k_1}{\underset{k_2}{\longleftrightarrow}} C + \Delta H_1$$
$$A \stackrel{k_3}{\longrightarrow} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=318K, теплоемкость смеси $c_p=2916_{\overline{K}}$, состав подаваемой смеси: $c_A=20.1$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=15.7$, $E_{a2}=24.5$, $E_{a3}=11.9$, предэкспоненциальный множитель $k_{01}=25, k_{02}=384, k_{03}=10$, тепловой эффект $\Delta H_1=-12.2$, $\Delta H_2=22.1$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 20

В реакторе идеального вытеснения протекает реакция:

$$A + B \stackrel{k_1}{\underset{k_2}{\longleftrightarrow}} C + \Delta H_1$$
$$B + C \stackrel{k_3}{\longrightarrow} D + \Delta H_2$$

На вход реактор подается смесь при температуре T=358K, теплоемкость смеси $c_p=3612_{\overline{K}}$, состав подаваемой смеси: $c_A=33.8$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=28.7$, $E_{a2}=39.6$, $E_{a3}=18.6$, предэкспоненциальный множитель $k_{01}=1699, k_{02}=18883, k_{03}=58$, тепловой эффект $\Delta H_1=-38.7$, $\Delta H_2=12.1$.

В реакторе идеального вытеснения протекает реакция:

$$A \xrightarrow{k_1} B + \Delta H_1$$
$$A \xrightarrow{k_2} C + \Delta H_2$$
$$A \xrightarrow{k_3} D + \Delta H_3$$

На вход реактор подается смесь при температуре T=202K, теплоемкость смеси $c_p=3231_{\overline{K}}$, состав подаваемой смеси: $c_A=19.7$, $c_B=0.4$. Параметры реакций: энергии активации $E_{a1}=10.4$, $E_{a2}=12.9$, $E_{a3}=7.4$, предэкспоненциальный множитель $k_{01}=53, k_{02}=85, k_{03}=9$, тепловой эффект $\Delta H_1=43.7$, $\Delta H_2=33.5$, $\Delta H_3=16.5$

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 22

В реакторе идеального вытеснения протекает реакция:

$$A + B \underset{k_2}{\overset{k_1}{\longleftrightarrow}} C + \Delta H_1$$
$$A \xrightarrow{k_3} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=331K, теплоемкость смеси $c_p=2352_{\overline{K}}$, состав подаваемой смеси: $c_A=34.7$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=17.7$, $E_{a2}=26.2$, $E_{a3}=17.4$, предэкспоненциальный множитель $k_{01}=55, k_{02}=544, k_{03}=57$, тепловой эффект $\Delta H_1=11.9$, $\Delta H_2=8.6$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 23

В реакторе идеального вытеснения протекает реакция:

$$A + B \stackrel{k_1}{\underset{k_2}{\longleftrightarrow}} C + \Delta H_1$$
$$B + C \stackrel{k_3}{\longrightarrow} D + \Delta H_2$$

На вход реактор подается смесь при температуре T=335K, теплоемкость смеси $c_p=2891_{\overline{K}}$, состав подаваемой смеси: $c_A=18.1$, $c_B=0.2$. Параметры реакций: энергии активации $E_{a1}=21.0$, $E_{a2}=38.1$, $E_{a3}=35.8$, предэкспоненциальный множитель $k_{01}=254,k_{02}=35138,k_{03}=22363$, тепловой эффект $\Delta H_1=42.5$, $\Delta H_2=-44.7$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 24

$$A \underset{k_2}{\overset{k_1}{\longleftrightarrow}} B + \Delta H_1$$
$$B \underset{k_3}{\overset{k_3}{\longleftrightarrow}} C + \Delta H_2$$

На вход реактор подается смесь при температуре T=342K, теплоемкость смеси $c_p=3010_{\overline{K}}$, состав подаваемой смеси: $c_A=19.3$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=24.4$, $E_{a2}=27.8$, $E_{a3}=26.2$, предэкспоненциальный множитель $k_{01}=314,k_{02}=723,k_{03}=484$, тепловой эффект $\Delta H_1=-28.8$, $\Delta H_2=-9.6$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 25

В реакторе идеального вытеснения протекает реакция:

$$A + B \underset{k_2}{\overset{k_1}{\longleftrightarrow}} C + \Delta H_1$$
$$A \xrightarrow{k_3} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=360K, теплоемкость смеси $c_p=3610_{\overline{K}}$, состав подаваемой смеси: $c_A=27.4$, $c_B=0.2$. Параметры реакций: энергии активации $E_{a1}=29.0$, $E_{a2}=49.7$, $E_{a3}=42.6$, предэкспоненциальный множитель $k_{01}=2447, k_{02}=559504, k_{03}=71440$, тепловой эффект $\Delta H_1=-26.0$, $\Delta H_2=28.8$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 26

В реакторе идеального вытеснения протекает реакция:

$$A \stackrel{k_1}{\rightleftharpoons} C + \Delta H_1$$
$$A \stackrel{k_3}{\rightleftharpoons} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=219K, теплоемкость смеси $c_p=2303_{\overline{K}}$, состав подаваемой смеси: $c_A=30.7$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=10.1$, $E_{a2}=18.1$, $E_{a3}=11.3$, предэкспоненциальный множитель $k_{01}=43, k_{02}=813, k_{03}=48$, тепловой эффект $\Delta H_1=-16.7$, $\Delta H_2=-12.3$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 27

В реакторе идеального вытеснения протекает реакция:

$$A \underset{k_2}{\overset{k_1}{\longleftrightarrow}} C + \Delta H_1$$
$$A \xrightarrow{k_3} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=355K, теплоемкость смеси $c_p=3120_{\overline{K}}$, состав подаваемой смеси: $c_A=19.1$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=28.0$, $E_{a2}=36.2$, $E_{a3}=34.4$, предэкспоненциальный множитель $k_{01}=2044, k_{02}=8253, k_{03}=5195$, тепловой эффект $\Delta H_1=29.3$, $\Delta H_2=-21.1$.

В реакторе идеального вытеснения протекает реакция:

$$A \xrightarrow{k_1} B + \Delta H_1$$
$$A \xrightarrow{k_2} C + \Delta H_2$$
$$A \xrightarrow{k_3} D + \Delta H_3$$

На вход реактор подается смесь при температуре T=291K, теплоемкость смеси $c_p=2519_{\overline{K}}$, состав подаваемой смеси: $c_A=26.1$, $c_B=0.2$. Параметры реакций: энергии активации $E_{a1}=18.5$, $E_{a2}=31.8$, $E_{a3}=21.1$, предэкспоненциальный множитель $k_{01}=337, k_{02}=13592, k_{03}=430$, тепловой эффект $\Delta H_1=-15.7$, $\Delta H_2=43.1$, $\Delta H_3=43.5$

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 29

В реакторе идеального вытеснения протекает реакция:

$$A \stackrel{k_1}{\rightleftharpoons} B + \Delta H_1$$
$$B \stackrel{k_3}{\rightleftharpoons} C + \Delta H_2$$

На вход реактор подается смесь при температуре T=347K, теплоемкость смеси $c_p=2537_{\overline{K}}$, состав подаваемой смеси: $c_A=33.0$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=25.6$, $E_{a2}=37.8$, $E_{a3}=27.3$, предэкспоненциальный множитель $k_{01}=753, k_{02}=20313, k_{03}=907$, тепловой эффект $\Delta H_1=-29.6$, $\Delta H_2=-32.9$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 30

В реакторе идеального вытеснения протекает реакция:

$$A + B \stackrel{k_1}{\underset{k_2}{\longleftrightarrow}} C + \Delta H_1$$
$$B + C \stackrel{k_3}{\longrightarrow} D + \Delta H_2$$

На вход реактор подается смесь при температуре T=302K, теплоемкость смеси $c_p=3334_{\overline{K}}$, состав подаваемой смеси: $c_A=28.9$, $c_B=0.2$. Параметры реакций: энергии активации $E_{a1}=14.7$, $E_{a2}=19.6$, $E_{a3}=21.5$, предэкспоненциальный множитель $k_{01}=25, k_{02}=110, k_{03}=322$, тепловой эффект $\Delta H_1=36.9$, $\Delta H_2=-11.8$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 31

$$A \underset{k_2}{\overset{k_1}{\longleftrightarrow}} C + \Delta H_1$$
$$A \underset{k_3}{\overset{k_3}{\longleftrightarrow}} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=219K, теплоемкость смеси $c_p=2192_{\overline{K}}$, состав подаваемой смеси: $c_A=28.0$, $c_B=0.2$. Параметры реакций: энергии активации $E_{a1}=12.0$, $E_{a2}=16.0$, $E_{a3}=12.7$, предэкспоненциальный множитель $k_{01}=67, k_{02}=256, k_{03}=70$, тепловой эффект $\Delta H_1=-27.4$, $\Delta H_2=-39.8$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 32

В реакторе идеального вытеснения протекает реакция:

$$A \xrightarrow{k_1} B + \Delta H_1$$
$$A \xrightarrow{k_2} C + \Delta H_2$$
$$A \xrightarrow{k_3} D + \Delta H_3$$

На вход реактор подается смесь при температуре T=320K, теплоемкость смеси $c_p=3473_{\overline{K}}$, состав подаваемой смеси: $c_A=17.1$, $c_B=0.4$. Параметры реакций: энергии активации $E_{a1}=15.5$, $E_{a2}=28.8$, $E_{a3}=26.6$, предэкспоненциальный множитель $k_{01}=35, k_{02}=2720, k_{03}=808$, тепловой эффект $\Delta H_1=26.3$, $\Delta H_2=-43.5$, $\Delta H_3=-26.8$

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 33

В реакторе идеального вытеснения протекает реакция:

$$A \underset{k_2}{\overset{k_1}{\longleftrightarrow}} B + \Delta H_1$$
$$B \xrightarrow{k_3} C + \Delta H_2$$

На вход реактор подается смесь при температуре T=309K, теплоемкость смеси $c_p=3443_{\overline{K}}$, состав подаваемой смеси: $c_A=28.6$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=21.5$, $E_{a2}=39.5$, $E_{a3}=24.7$, предэкспоненциальный множитель $k_{01}=705, k_{02}=156572, k_{03}=956$, тепловой эффект $\Delta H_1=27.9$, $\Delta H_2=-18.5$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 34

В реакторе идеального вытеснения протекает реакция:

$$A \xrightarrow{k_1} B + \Delta H_1$$

$$A \xrightarrow{k_2} C + \Delta H_2$$

$$A \xrightarrow{k_3} D + \Delta H_3$$

На вход реактор подается смесь при температуре T=377K, теплоемкость смеси $c_p=3778_{\overline{K}}$, состав подаваемой смеси: $c_A=15.2$, $c_B=0.4$. Параметры реакций: энергии активации $E_{a1}=18.9$, $E_{a2}=53.1$, $E_{a3}=27.8$, предэкспоненциальный множитель $k_{01}=60,k_{02}=536824,k_{03}=575$, тепловой эффект $\Delta H_1=-42.4$, $\Delta H_2=-40.1$, $\Delta H_3=-36.9$

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 35

В реакторе идеального вытеснения протекает реакция:

$$A + B \underset{k_2}{\overset{k_1}{\longleftrightarrow}} C + \Delta H_1$$
$$A \xrightarrow{k_3} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=360K, теплоемкость смеси $c_p=3069_{\overline{K}}$, состав подаваемой смеси: $c_A=28.5$, $c_B=0.4$. Параметры реакций: энергии активации $E_{a1}=24.4$, $E_{a2}=38.0$, $E_{a3}=23.5$, предэкспоненциальный множитель $k_{01}=251,k_{02}=9975,k_{03}=267$, тепловой эффект $\Delta H_1=-25.7$, $\Delta H_2=-16.4$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 36

В реакторе идеального вытеснения протекает реакция:

$$A + B \stackrel{k_1}{\underset{k_2}{\longleftrightarrow}} C + \Delta H_1$$
$$A \stackrel{k_3}{\longrightarrow} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=344K, теплоемкость смеси $c_p=3458_{\overline{K}}$, состав подаваемой смеси: $c_A=25.1$, $c_B=0.4$. Параметры реакций: энергии активации $E_{a1}=25.3$, $E_{a2}=37.0$, $E_{a3}=36.4$, предэкспоненциальный множитель $k_{01}=1039, k_{02}=15969, k_{03}=18043$, тепловой эффект $\Delta H_1=24.5$, $\Delta H_2=-23.8$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 37

В реакторе идеального вытеснения протекает реакция:

$$A \underset{k_2}{\overset{k_1}{\longleftrightarrow}} B + \Delta H_1$$
$$B \xrightarrow{k_3} C + \Delta H_2$$

На вход реактор подается смесь при температуре T=283K, теплоемкость смеси $c_p=2562_{\overline{K}}$, состав подаваемой смеси: $c_A=27.8$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=13.7$, $E_{a2}=25.7$, $E_{a3}=12.1$, предэкспоненциальный множитель $k_{01}=32, k_{02}=2471, k_{03}=18$, тепловой эффект $\Delta H_1=30.9$, $\Delta H_2=24.5$.

В реакторе идеального вытеснения протекает реакция:

$$A \stackrel{k_1}{\longleftrightarrow} B + \Delta H_1$$

$$B \xrightarrow{k_3} C + \Delta H_2$$

На вход реактор подается смесь при температуре T=364K, теплоемкость смеси $c_p=3060_{\overline{K}}$, состав подаваемой смеси: $c_A=30.4$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=21.6$, $E_{a2}=48.0$, $E_{a3}=42.6$, предэкспоненциальный множитель $k_{01}=212,k_{02}=295324,k_{03}=84701$, тепловой эффект $\Delta H_1=-20.4$, $\Delta H_2=-7.6$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 39

В реакторе идеального вытеснения протекает реакция:

$$A + B \stackrel{k_1}{\longleftrightarrow} C + \Delta H_1$$

$$B+C \xrightarrow{k_3} D+\Delta H_2$$

На вход реактор подается смесь при температуре T=235K, теплоемкость смеси $c_p=3223_{\overline{K}}$, состав подаваемой смеси: $c_A=22.5$, $c_B=0.2$. Параметры реакций: энергии активации $E_{a1}=13.2$, $E_{a2}=17.0$, $E_{a3}=19.1$, предэкспоненциальный множитель $k_{01}=80, k_{02}=215, k_{03}=748$, тепловой эффект $\Delta H_1=32.1$, $\Delta H_2=41.0$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 40

В реакторе идеального вытеснения протекает реакция:

$$A \stackrel{k_1}{\longleftrightarrow} C + \Delta H_1$$

$$A \xrightarrow{k_3} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=365K, теплоемкость смеси $c_p=3220_{\overline{K}}$, состав подаваемой смеси: $c_A=30.9$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=20.2$, $E_{a2}=30.8$, $E_{a3}=19.2$, предэкспоненциальный множитель $k_{01}=47, k_{02}=936, k_{03}=61$, тепловой эффект $\Delta H_1=-22.6$, $\Delta H_2=26.0$.