AMENDMENTS TO THE SPECIFICATION:

Please replace paragraph [0039] beginning at page 13, line 5, with the following rewritten paragraph:

- 1 [0039] In addition, it is contemplated that the temperature stability of
- 2 switched variable capacitor 20, particularly in its minimum capacitance state
- 3 (transistor 14 off) is greatly improved by this invention. The relation of junction
- 4 capacitance Ci:

$$C_{j} \propto \frac{1}{\sqrt{V_{R} + V_{bi}}}$$

indicates that as reverse bias voltage V_R increases, the dependence of junction 6 capacitance C_{j} on the built-in voltage V_{bi} decreases. The built-in voltage V_{bi} is 7 dependent on temperature, while the reverse bias voltage V_{R} applied by bias 8 9 transistors 18 can be regulated (by an on-chip voltage regulator, band-gap 10 reference circuit, or the like) to be stable with temperature. As a result, an 11 increase in the reverse bias voltage V_R can reduce the temperature sensitivity of 12 junction capacitance C_i. Because bias transistors 18 can apply a stable, high 13 magnitude, reverse bias voltage V_R to across the source/drain regions junctions of 14 transistor 14, the junction capacitance C_i can therefore be made significantly more 15 stable over temperature than according to conventional circuits. 16 parasitic capacitance Cp' over temperature thus translates into temperature stability of the minimum capacitance C_{min}, which depends on parasitic capacitance 17 18 C_p':

$$C_{\min} = \frac{CC_p'}{2(C + C_p)}$$

- 20 The capacitance of switched variable capacitor 20 in the minimum capacitance
- state (transistor 14 off) is therefore rendered more stable by the present invention.