Evaluating the <u>Stability of Model Explanations</u> in <u>Instance-dependent Cost-sensitive Credit Scoring</u>

Matteo Ballegeer, Matthias Bogaert, Dries F. Benoit

August 28th, 2025

GHENT UNIVERSITY - RESEARCH GROUP DATA ANALYTICS

A bridge between model explainability and cost-sensitive learning

A bridge between model explainability and cost-sensitive learning

Main Contributions

- 1 First credit scoring study relating explainable AI to cost-sensitive learning.
- 2 Demonstrate the impact of IDCS classifiers on the stability of post-hoc explainable AI techniques.
- 3 Show that a known negative impact of class imbalance on explanation stability¹ is amplified when using IDCS classifiers.
- 4 Introduce a novel, cross-dataset comparable evaluation metric for cost-sensitive learning.

A bridge between model explainability and cost-sensitive learning

Main Contributions

- 1 First credit scoring study relating explainable AI to cost-sensitive learning.
- 2 Demonstrate the impact of IDCS classifiers on the stability of post-hoc explainable AI techniques.
- 3 Show that a known negative impact of class imbalance on explanation stability¹ is amplified when using IDCS classifiers.
- 4 Introduce a novel, cross-dataset comparable evaluation metric for cost-sensitive learning.

Explainable Al

An increasing focus on regulating the use of black-box machine learning models

Explainable Al

In response, XAI techniques to explain black-box models are rising in popularity

Explainable Al

In response, XAI techniques to explain black-box models are rising in popularity

A bridge between model explainability and cost-sensitive learning

Cost-sensitive Learning

A		L.		١
Δ		ш	ıa	ı
$\boldsymbol{\sqcap}$	L	u	Ju	Į

No DefaultDefaultNo DefaultTrue negativeFalse negativeDefaultFalse positiveTrue positive

Actual

	No Default	Default
No Default	Cost (0 0)	Cost (0 1)
Default	Cost (1 0)	Cost (1 1)

Symmetrical misclassification costs

Asymmetrical at the class level

Predicted

Instance-dependent Cost-sensitive Learning

The requested loan amounts (and associated cost) between customers can vary a lot

		Actual					Actual	
		No Default	Default				No Default	Default
Predicted	No Default	Cost (0 0) Cost (0 1)	Predicted	No Default	Cost _i (0 0)	Cost (0 1)		
Pred	Default	Cost (1 0)	Cost (1 1)		Pred	Default	Cost (1 0)	Cost (1 1)

Asymmetrical at the class level

Asymmetrical at the instance level

Instance-dependent Cost-sensitive Credit Scoring

The most popular credit scoring cost matrix from literature is used

		Act	ual			Actual		
		No Default	Default				No Default	Default
Predicted	No Default	Cost (0 0)	Cost (0 1)		icted	No Default	0	$Amount_i \cdot LGD$
Pred	Default	Cost (1 0)	Cost (1 1)		Predicted	Default	$r_i + Cost_{alt}$	0

Asymmetrical at the instance level

 $Cost_{alt} = -\overline{r} \cdot \pi_0 + \overline{Amount} \cdot LGD \cdot \pi_1$

Instance-dependent Cost-sensitive Credit Scoring

Cost-efficient decision-making comes down to minimizing the AEC

		Act	ual			Actual		
		No Default	Default				No Default	Default
cted	No Default	Cost (0 0)	Cost (0 1)	No Default Default		0	$Amount_i \cdot LGD$	
Predicted	Default	Cost (1 0)	Cost (1 1)	,	Pred	Default	$r_i + Cost_{alt}$	0
	$Cost_{alt} = -\overline{r} \cdot \pi_0 + \overline{Amount} \cdot LGD \cdot \pi_1$							

Average Expected Cost
$$(AEC)_i = y_i \cdot [(1 - s(default)_i) \cdot (Amount_i \cdot LGD)] + (1 - y_i) \cdot [s(default)_i \cdot (r_i + (-\overline{r} \cdot \pi_0 + \overline{Amount} \cdot LGD \cdot \pi_1))]$$

Instance-dependent Cost-sensitive Credit Scoring

Relative AEC is introduced as dimensionless adaptation of AEC

Average Expected Cost
$$(AEC)_i = y_i \cdot [(1 - s(default)_i) \cdot (Amount_i \cdot LGD)] + (1 - y_i) \cdot [s(default)_i \cdot (r_i + (-\overline{r} \cdot \pi_0 + \overline{Amount} \cdot LGD \cdot \pi_1))]$$

Relative Average Expected Cost $(relAEC)_i = 1 - \frac{AEC(yi, s(default)_i, Amount_i)_i}{AEC(yi, \pi_1, Amount_i)}$

A bridge between model explainability and cost-sensitive learning

Explanation Stability in IDCS Credit Scoring

Does optimizing for an IDCS loss function impact the stability of model explanations?

Explanation Stability in IDCS Credit Scoring

Does optimizing for an IDCS loss function impact the stability of model explanations?

Overview

Datasets and models

Model performance

Explanation stability

Stability metrics

Хр	Φ ₁	Φ ₂	Φ ₃
Α	0.20	0.21	0.36
В	0.84	0.22	0.28
C	0.55	0.33	0.89
D	0.93	0.65	0.77
E	0.12	0.10	0.11

Value Stability

Coefficient of Variation (CV)

Ranking Stability

Sequential Rank Agreement (SRA)

Stability metrics

Хр	Φ ₁	Φ ₂	Φ ₃
A	0.20	0.21	0.36
В	0.84	0.22	0.28
С	0.55	0.33	0.89
D	0.93	0.65	0.77
E	0.12	0.10	0.11

Хр	R ₁	R ₂	R ₃	Var _L
Α	4	4	3	0.33
В	2	3	4	1
С	3	2	1	1
D	1	1	2	0.33
E	5	5	5	0

Ranking Stability

Sequential Rank Agreement (SRA)

Stability metrics

Хр	R_1	R ₂	R ₃	V ar _L
A	4	4	3	0.33
В	2	3	4	1
С	3	2	1	1
D	1	1	2	0.33
E	5	5	5	0

Depth	S(d)	SRA
1	{C, D}	0.67
2	{B, C, D}	0.77
3	{A, B, C, D}	0.67
4	{A, B, C, D}	0.67
5	{A, B, C, D, E}	0.53

Ranking Stability

Sequential Rank Agreement (SRA)

Overview

Model performance

Performance metrics

Nested 5-fold CV

Explanation Stability Results

HMEQ dataset

SHAP

LIME

Explanation Stability Results

HMEQ dataset

CV

Explanation Stability Results

HMEQ dataset

SHAP

LIME

Conclusions

1 There is a trade-off between directly optimizing for costs and providing stable explanations.

Conclusions

- 1 There is a trade-off between directly optimizing for costs and providing stable explanations.
- 2 In their current state, IDCS classifiers will fail to meet the regulatory XAI standards to be used in practice.
- 3 Further research should explore safety measures or remediations to make IDCS model explanations more stable.

Discussion: the importance of a training sample

Traditional ML models:

$$s(x) = \mathbb{E}(Y \mid x)$$

- Feature distribution
- Class imbalance (cfr Chen et al.)

IDCS ML models:

AEC(Y, s(x), C)

- Feature distribution
- Class imbalance
- COST

Discussion: IDCSL and data valuation

Ghorbani, A., & Zou, J. (2019). Data shapley: Equitable valuation of data for machine learning. In International conference on machine learning (pp. 2242-2251). PMLR.

De Vos, S., Vanderschueren, T., Verdonck, T., & Verbeke, W. (2023). Robust instance-dependent cost-sensitive classification. Advances in data analysis and classification, 17(4), 1057-1079.

Matteo Ballegeer

PhD Researcher
Research group Data Analytics
matteo.ballegeer@ugent.be

Read the study here

