Работу выполнили Самохин Валентин, Юрченко Петр 676 гр. под руководством

Нухова А. К.

Маршрут VIII № 5 27 марта 2018 г.,

Лабораторная работа № 4.3.1:

Изучение дифракции света

Цель работы: исследовать явления дифракции Френеля и Фраунгофера на щели, изучить влияние дифракции на разрешающую способность оптических инструментов.

В работе используются: оптическая скамья, ртутная лампа, монохроматор, щели с регулируемой шириной, рамка с вертикальной нитью, двойная щель, микроскоп на поперечных салазках с микрометрическим винтом, зрительная труба.

Теоретическая справка. Дифракцией, в самом широком смысле слова, называют отклонения в распространении волн от законов геометрической оптики. Частный случай дифракции - огибание волной препятствия и её проникновение в область геометрической тени.

Основными параметрами, существенно определяющими характер дифракционных явлений, являются длина волны λ , размер отверстия b и расстояние до плоскости наблюдения z. Как показывает дальнейший анализ, характер дифракционных явлений определяется значением волнового параметра

 $\frac{\sqrt{\lambda z}}{b}$.

• $p \ll 1$: геометрическая оптика

• $p\gg 1$: дифракция Фраунгофера

• $p \sim 1$: дифракция Френеля

Примеры тонких экранов (транспарантов)

1. Амплитудная синусоидальная решётка - тонкая пластинка, амплитудная прозрачность которой меняется от точки к точке по закону

$$t(x) = \beta(1 + m\cos\Omega x),$$

где m=const - глубина модуляции, $\Omega=\frac{2\pi}{d}$ - пространственная частота решетки с периодом d.

2. Дифракционная решетка - непрозрачный экран с рядом параллельных равноотстоящих щелей, d - период решётки, b - ширина щелей.

Если амплитудная прозрачность транспаранта не меняется от точки к точке, а изменяется только набег фазы $\varphi(x,y)$, то такой транспарант называется фазовым.

3. Фазовая синусоидальная решетка

$$t(x) = \exp^{im\cos\Omega x} \approx 1 + im\cos\Omega x$$

4. Тонкая линза

$$t(x,y) = \exp^{-i\frac{k}{2f}(x^2+y^2)}$$

Принцип Гюйгегнса - Френеля Согласно принципу Гюйгенса, каждую точку, куда пришла волна, можно рассматривать как источник вторичной волны. То есть можно представить себе, что волна возбуждает колебания некоторого фиктивного источника (осциллятора), который и переизлучает вторичную волну. Частота ω этой переизлучённой волны совпадает с частотой исходной монохроматической волны. Френель дополнил принцип Гюйгенса, предложив рассматривать световое колебание в любой точке наблюдения в области z>0 как результат интерференции этих вторичных волн.

Дифракция Френеля

На круглом отверстии. При дифракции Френеля на круглом отверстии интенсивность в точке P, находящейся на оси отверстия на расстоянии z от него, равна

$$I = 2I_0(1 - \cos(\frac{k}{2z}r^2)).$$

Минимумы(четные) и максимумы(нечетные) достигаются при значения радиуса отверстия

$$r_m = \sqrt{m\lambda z}$$

Пластинка, делающая синфазными вклады dA от каждого ее участка, есть тонкая линза с фокусным расстоянием f=z.

Рис. 1: Метод векторных диаграмм

Две зоны Шустера

Спираль Корню

Пятно Пуассона. Амплитуда в центре геометрической тени малого препятствия (шарика или диска) остаётся почти такой же, как если бы это препятствие отсутствовало.

На щели В данном случае вместо кольцевых зон Френеля мы имеем зоны в виде полос (их называют зонами Шустера). Вклад от каждой следующей зоны Шустера в колебание в точке наблюдения находится в противофазе (разность фаз π) с вкладом от предыдущей зоны.

Продолжая дальше построение векторной диаграммы, придём к спирали Корню.

m-я зона Шустера — это полоса, внешний край которой отстоит от точки наблюдения на расстояние $z+m\lambda/2$ и на расстояние $\xi_m=\sqrt{m\lambda z}.$

Дифракция Фраунгофера

На щели.

$$g(\theta) \propto \frac{\sin(\frac{kb}{2}\sin\theta)}{\frac{kb}{2}\sin\theta}$$

Рис. 2: Поле и угловое распределение интенсивности при дифракции на щели

На двух щелях.

$$I(\theta) = |g(\theta)^2| \cdot (1 + \cos(kd\sin\theta))^2$$

Рис. 3: Дифракция Фраунгофера на двух щелях

На решетке.

$$g_N(\theta) = g(\theta) \sum_{n=0}^{N-1} \exp^{im\alpha}.$$

$$|g_N(\theta)| = |g(\theta)| \cdot \left| \frac{\sin \frac{Nkd \sin \theta}{2}}{\sin \frac{kd \sin \theta}{2}} \right|.$$

Характерной особенностью решётки является наличие узких максимумов, в которые идёт подавляющая доля общего потока энергии. Их положения определяются условием

 $d\sin\theta_m = m\lambda$

$$I(\theta)$$
 $N^2|g(\theta)|^2$
 $\sin \theta$

Рис. 4: Дифракция Фраунгофера на решетке

На круглом отверстии. При дифракции плоской волны на круглом отверстии в непрозрачном экране на удаленной плоскости наблюдения образуется картина дифракции: центральное яркое дифракционное пятно (пятно Эйри) окружено чередующимися светлыми и темными кольцами. Угловая полуширина пятна Эйри определяется условием

$$\sin \theta = 1,22 \frac{\lambda}{D}$$

Установки

Дифракция Френеля на щели. Схема установки для наблюдения дифракции Френеля представлена на рис. 1. Световые лучи освещают щель S_2 и испытывают на ней дифракцию. Дифракционная картина рассматривается с помощью микроскопа M, сфокусированного на некоторую плоскость наблюдения Π .

Рис. 5: Схема установки для наблюдения дифракции Френеля

Щель S2 освещается параллельным пучком монохроматического света с помощью коллиматора, образованного объективом O_1 и щелью S_1 , находящейся в его фокусе. На щель S_1 сфокусировано изображение спектральной линии, выделенной из спектра ртутной лампы Л при помощи простого монохроматора C, в котором используется призма прямого зрения. Распределение интенсивности света в плоскости наблюдения П проще всего рассчитывать с помощью зон Френеля (для щели их иногда называют зонами Шустера). При освещении щели S_2 параллельным пучком лучей (плоская волна) зоны Френеля представляют собой полоски, параллельные краям щели. Результирующая амплитуда в точке наблюдения определяется суперпозицией колебаний от тех зон Френеля, которые не перекрыты створками щели. Графическое определение результирующей амплитуды производится с помощью векторной диаграммы — спирали Корню. Суммарная ширина n зон Френеля ξ_n определяется соотношением:

$$\xi_n = \sqrt{an\lambda}$$
,

где а – расстояние от щели до плоскости наблюдения (рис. 5), а λ – длина волны.

Дифракция Фраунгофера на щели. Картина дифракции резко упрощается, когда ширина щели становится значительно меньше ширины первой зоны Френеля.

Это условие всегда выполняется при достаточно большом расстоянии а от щели до плоскости наблюдения. Дифракционную картину, наблюдаемую в этом случае, принято называть дифракцией Фраунгофера. Исследование такой дифракционной картины заметно облегчается, потому что упрощаются фазовые соотношения.

Дифракцию Френеля и Фраунгофера можно наблюдать на одной и той же установке (рис. 1). Однако при обычных размерах установки дифракция Фраунгофера возникает только при очень узких щелях. Например, при $a \approx 20-40 cm$ и $\lambda \approx 5 \cdot 10^{-5} cm$ получаем $D \ll 0.3 cm$. Поскольку работать с такими тонкими щелями неудобно, для наблюдения дифракции Фраунгофера к схеме, изображённой на рис. 1 добавляется объектив O_2 (рис. 6).

Рис. 6: Схема установки для наблюдения дифракции Фраунгофера на щели

Дифракционная картина наблюдается здесь в фокальной плоскости объектива O_2 .

Рис. 7: Схема установки для наблюдения дифракции Фраунгофера на двух щелях

Дифракция Фраунгофера на двух щелях. Для наблюдения дифракции Фраунгофера на двух щелях в установке (рис. 6) следует заменить щель S_2 экраном Э с двумя щелями (рис. 7). При этом для оценки влияния ширины входной щели на чёткость дифракционной картины вместо входной щели S_1 следует поставить щель с микрометрическим винтом. Два дифракционных изображения входной щели, одно из которых образо-

вано лучами, прошедшими через левую, а другое — через правую щели, накладываются друг на друга.

Если входная щель достаточно узка, то дифракционная картина в плоскости П (рис. 6) подобна той, что получалась при дифракции на одной щели (рис. 7), однако теперь вся картина испещрена рядом дополнительных узких полос. Наличие этих полос объясняется суперпозицией световых волн, приходящих в плоскость наблюдения через разные щели экрана Э.

Влияние дифракции на разрешающую способность оптического инструмента.

Установка, представленная на рис. 8, позволяет исследовать влияние дифракции на разрешающую способность оптических инструментов. Как уже было выяснено, линзы O_1 и O_2 в отсутствие щели S_2 создают в плоскости Π изображение щели S_1 , и это изображение рассматривается в микроскоп M. Таким образом, нашу установку можно рассматривать как оптический инструмент, предназначенный для получения изображения предмета. При этом коллиматор (щель S_1 и объектив O_1) является моделью далёкого предмета, а объектив O_2 и микроскоп M составляют зрительную трубу, наведённую на этот предмет. Если перед объективом O_2 зрительной трубы расположить щель S_2 , то изображение объекта будет искажено дифракцией на щели S_2 . Чем меньше ширина S_2 0 этой щели, тем сильнее искажение. Качественной характеристикой этих искажений может служить минимальное угловое расстояние φ_{min} между объектами (источниками), которые ещё воспринимаются как раздельные.

Рис. 8: Схема установки для исследования разрешающей способности оптического инструмента