# **Cyclistic Bike-Share Case Study – Deliverables**

Prepared by: [Sneha Jayaram]

Date: [07-22-2025]

This deliverables report summarizes the outcomes of the Cyclistic (Divvy) bike-share case study. The goal of the analysis was to identify differences in ride behavior between casual riders and annual members using Divvy trip data (Q1 2019 & Q1 2020). The insights will guide marketing strategies to convert casual riders into annual members.

#### 1. A clear statement of the business task

Design marketing strategies aimed at converting casual riders into annual members. In order to do that, however, the team needs to better understand how annual members and casual riders differ, why casual riders would buy a membership, and how digital media could affect their marketing tactics.

# 2. A description of all data sources used

Divvy Q1 2019 Dataset

• Time Period: January 1 – March 31, 2019

• Number of trips: ~365,000

• File name: Divvy\_Trips\_2019\_Q1.csv

| Column Name       | Description                                |
|-------------------|--------------------------------------------|
| trip_id           | Unique trip identifier                     |
| start_time        | Date & time trip started                   |
| end_time          | Date & time trip ended                     |
| Bikeid            | Numeric ID of the bike used                |
| Tripduration      | Duration of trip in seconds                |
| from_station_id   | Station ID where the trip started          |
| from_station_name | Station name where the trip started        |
| to_station_id     | Station ID where the trip ended            |
| to_station_name   | Station name where the trip ended          |
| Usertype          | Rider type → <b>Subscriber</b> (member) or |
|                   | Customer (casual)                          |
| gender            | Gender of rider (if provided)              |
| birthyear         | Birth year of rider                        |

#### Divvy Q1 2020 Dataset

• Time Period: January 1 – March 31, 2020

• **Number of trips:** ~426,000

• **File name:** Divvy\_Trips\_2020\_Q1.csv

| California Nama | Description |
|-----------------|-------------|
| Column Name     | Description |

| ride_id               | Unique trip identifier                             |
|-----------------------|----------------------------------------------------|
| rideable_type         | Type of bike (classic_bike, docked_bike,           |
|                       | electric_bike)                                     |
| started_at            | Date & time trip started                           |
| ended_at              | Date & time trip ended                             |
| start_station_name    | Station name where the trip started                |
| start_station_id      | Station ID where the trip started                  |
| end_station_name      | Station name where the trip ended                  |
| end_station_id        | Station ID where the trip ended                    |
| member_casual         | Rider type $\rightarrow$ <b>member</b> (annual) or |
|                       | casual (single-ride/day pass)                      |
| start_lat / start_lng | GPS location of start station                      |
| end_lat / end_lng     | GPS location of end station                        |
|                       |                                                    |

## Documentation of any cleaning or manipulation of data

- Renamed columns in the 2019 dataset to match 2020 schema (e.g., trip\_id → ride\_id, bikeid → rideable\_type).
- Combined Q1 2019 & Q1 2020 datasets using bind\_rows() after making column names consistent.
- **Re-coded rider types** → Subscriber → member, Customer → casual.
- Created new columns: date, month, day, year, day\_of\_week, ride\_length.
- Calculated ride duration for all trips (ended\_at started\_at).
- Removed bad data → trips with negative durations or quality-control rides.

For detailed cleaning steps and exact code implementation, please refer to the provided R script (cyclistic\_analysis.R).

## A summary of your analysis

- 1. Number of Rides(plot1)-
  - Members ride more than casual
  - Members use bicycles highly from Monday to Friday
  - From this we can conclude that members use bicycle for Work Travelling.
- 2. Duration of ride(plot2)-
  - Casuals have more duration of rides than members
  - Casuals ride bicycles at leisure.
  - Members use it for shorter trips.

## Supporting visualizations and key findings



## Number of Rides by Weekday & Rider Type-

- 1. Members ride more frequently than casual riders, especially on weekdays (Mon–Fri).
- 2. **Key insight:** Members likely use the service for **work commuting**, while casual riders are more active on weekends → suggesting **recreational use**.



Average Ride Duration by Weekday & Rider Type-

- Casual riders have longer average ride durations than members, especially on weekends.
- Key insight: Casual riders tend to take leisurely, longer rides, while members ride shorter, practical trips.

## Your top three recommendations based on your analysis

- 1. Since Casual riders ride during leisure it might be during weekends so introduce pricing plans of weekend.
- 2. Members can ride and have discount, also collect their information(eg-phone number) and message them about new pricing plans and discount and encourage them to ride cycle and save environment (go green initiative).
- 3. Digital Marketing- use apps to send notifications and their daily riding kms.