CPEN 400Q Lecture 10 The quantum Fourier transform and quantum phase estimation

Friday 10 February 2023

Announcements

- Literacy assignment 2 available (due after reading week)
- Project details posted (group and paper selection due next Friday)

Last time

We introduced the quantum Fourier transform, and saw how it is the analog of the classical inverse discrete Fourier transform.

$$QFT|x\rangle = rac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \omega^{xk} |k
angle$$

$$QFT = \frac{1}{\sqrt{N}} \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^{2} & \cdots & \omega^{N-1} \\ 1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(N-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{N-1} & \omega^{2(N-1)} & \cdots & \omega^{(N-1)(N-1)} \end{pmatrix}$$

where for *n* qubits, $N=2^n$, and $\omega=e^{2\pi i/N}$

Last time

We saw the circuits for some special cases.

Image credit: Xanadu Quantum Codebook node F.2, F.3

Quantum Fourier transform

I showed you what the general form of the circuit looked like:

Image credit: Xanadu Quantum Codebook node F.3

Learning outcomes

- Derive the QFT circuit and implement it in PennyLane
- Describe the phase kickback trick
- Outline the steps of the quantum phase estimation (QPE) subroutine
- Use the QFT to implement QPE

Review: fractional binary notation

$$k = 2^{h-1} \cdot k_1 + 2^{h-2} k_2 + \dots + 2 k_{h-1} + k_h$$
Example: Let $k = k_1 k_2 k_3 k_4 = 0.1001$. The numerical value of k is
$$k_1 = \frac{1}{2^k} + \frac{0}{2^2} + \frac{1}{2^3} + \frac{1}{2^4}$$

$$0. \quad |001| = \frac{1}{2} + \frac{0}{2^2} + \frac{0}{2^3} + \frac{1}{2^4}$$

 $=\frac{1}{2}+\frac{1}{11}$

We need this for the QFT because in the exponent, we have

$$\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \omega^{xk} |k\rangle = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2\pi i x(k/N)} |k\rangle \qquad \omega = 0$$

and k/N is a fractional value.

We will show that

$$\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \omega^{\times k} |k\rangle$$

can be factorized as:

This form reveals to us the circuit that creates this state!

We did this last time:

$$|x\rangle \rightarrow \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \omega^{xk} |k\rangle = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2\pi i x (k/N)} |k\rangle$$

$$= \frac{1}{\sqrt{N}} \sum_{k_1=0}^{1} \cdots \sum_{k_n=0}^{1} e^{2\pi i x \left(\sum_{\ell=1}^{n} k_{\ell} 2^{-\ell}\right)} |k_1 \cdots k_n\rangle \quad \text{convert to}$$

$$= \frac{1}{\sqrt{N}} \sum_{k_1=0}^{1} \cdots \sum_{k_n=0}^{1} \bigotimes_{\ell=1}^{n} e^{2\pi i x k_{\ell} 2^{-\ell}} |k_{\ell}\rangle \quad \text{distribute}$$

$$= \frac{1}{\sqrt{N}} \bigotimes_{\ell=1}^{n} \left(\sum_{k_{\ell}=0}^{1} e^{2\pi i x k_{\ell} 2^{-\ell}} |k_{\ell}\rangle\right)$$

$$= \frac{1}{\sqrt{N}} \bigotimes_{\ell=1}^{n} \left(|0\rangle + e^{2\pi i 0 \cdot x_n} |1\rangle\right) \left(|0\rangle + e^{2\pi i 0 \cdot x_{n-1} x_n} |1\rangle\right) \cdots \left(|0\rangle + e^{2\pi i 0 \cdot x_1 \cdots x_n} |1\rangle\right)$$

$$= \frac{\left(|0\rangle + e^{2\pi i 0 \cdot x_n} |1\rangle\right) \left(|0\rangle + e^{2\pi i 0 \cdot x_{n-1} x_n} |1\rangle\right) \cdots \left(|0\rangle + e^{2\pi i 0 \cdot x_1 \cdots x_n} |1\rangle\right)}{\sqrt{N}}$$

Starting with the state

$$|x\rangle = |x_{1} \cdots x_{n}\rangle, \qquad |x_{2}\rangle = |x_{1}\rangle + |x_{2}\rangle = |x_{1}\rangle + |x_{2}\rangle = |x_{2}\rangle + |x_{2}\rangle +$$

 $X_{1}=1$ $0.X_{1} \cdot \frac{X_{1}}{2} e^{2\pi i \cdot \frac{X_{1}}{2}} = e^{\pi i} - 1 = \sqrt{2}(0)-11$

$$0.x_1x_2...x_n = \frac{x_1}{2} + \frac{x_2}{2^2} + ... + \frac{x_n}{2^n}$$

We are trying to make

$$|x\rangle
ightarrow rac{\left(|0\rangle + e^{2\pi i 0.x_n}|1\rangle
ight)\left(|0\rangle + e^{2\pi i 0.x_{n-1}x_n}|1
angle
ight)\cdots\left(|0
angle + e^{2\pi i 0.x_1\cdots x_n}|1
angle
ight)}{\sqrt{N}}$$

Every qubit has a different *phase* on the $|1\rangle$ state.

We need a gate that adds this:

$$R_{2} = \begin{pmatrix} e^{-i\theta_{12}} & 0 \\ 0 & e^{i\theta_{12}} \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{pmatrix}$$

Apply controlled
$$R_2$$
 from qubit $2 \rightarrow 1$ $|x_1\rangle - |H| - |R_2|$ $|x_2\rangle - |X_1\rangle$ $|x_2\rangle - |X_2\rangle$ $|x_3\rangle - |X_2\rangle$ $|x_3\rangle - |x_3\rangle - |x_3\rangle - |x_3\rangle$ First qubit picks up a phase: $2\pi i \cdot 0.x_1$ $|x_1\rangle - |x_2\rangle - |x_2\rangle$ $|x_1\rangle - |x_2\rangle - |x_2\rangle$ $|x_2\rangle - |x_2\rangle$ $|x_1\rangle - |x_2\rangle - |x_2\rangle$ $|x_2\rangle - |x_1\rangle - |x_2\rangle - |x_2\rangle$ $|x_1\rangle - |x_2\rangle - |x_2\rangle$

Apply controlled R_3 from qubit $3 \rightarrow 1$

$$R_3 = \begin{pmatrix} 1 & 0 \\ 0 & e^{-\frac{\pi i}{2^3}} \end{pmatrix}$$

$$\begin{array}{c|c} |x_1\rangle & \hline H & \hline R_2 & \hline R_3 \\ |x_2\rangle & \hline & \\ |x_3\rangle & \hline & \vdots \\ |x_{n-1}\rangle & \hline & \\ |x_n\rangle & \hline \end{array}$$

First qubit picks up another phase:

Apply a controlled R_4 from $4 \rightarrow 1$, etc. up to the *n*-th qubit to get

$$\frac{1}{\sqrt{2}} (107 + e^{2\pi i \cdot 0. x_1 x_2 ... x_n} | 1 \rangle) | x_2 - x_n \rangle$$

Next, do the same thing with the second qubit: apply H, and then controlled rotations from every qubit from 3 to n to get

Do this for all qubits to get that big ugly state from earlier:

$$|x\rangle \rightarrow \frac{\left(|0\rangle + e^{2\pi i 0.x_n}|1\rangle\right)\left(|0\rangle + e^{2\pi i 0.x_{n-1}x_n}|1\rangle\right)\cdots\left(|0\rangle + e^{2\pi i 0.x_1\cdots x_n}|1\rangle\right)}{\sqrt{N}}$$

(though note that the order of the qubits is backwards - this is easily fixed with some SWAP gates)

Quantum Fourier transform

Gate counts:

- n Hadamard gates
- n(n-1)/2 controlled rotations
- $\lfloor n/2 \rfloor$ SWAP gates if you care about the order

The number of gates is polynomial in n!

Efficient!

Reminder: where are we going?

Eigenvalues of unitary matrices

Fun fact: eigenvalues of unitary matrices are complex numbers with magnitude 1. $U(k) = \lambda_k | k \rangle$ $(U|k\rangle)^{\dagger} = (\lambda_k|k\rangle)^{\dagger} \Rightarrow \langle k|U^{\dagger} - \lambda_k^* \langle k| \bigcirc$ 0 x 0: (k) utulk) = 2k*(k1. 2klk) $\langle k|I|k\rangle = \lambda_k^* \lambda_k \langle k|k\rangle$ $\langle k|k\rangle$ $1 = |\lambda_k|^2 \Rightarrow \lambda_k^* e$

Eigenvalues of unitary matrices

So we can write

O. Ok. .. Uke

where θ_k is some phase angle such that $|\theta_k| \leq 1$.

What if we want to *learn* an unknown θ_k ?

Eigenvalues of unitary matrices

Idea: apply U to the relevant eigenvector, because that's "what makes the phase come out".

...but this is an unobservable global phase!

We have to do something different: eigenvalue estimation, or quantum phase estimation (QPE).

Quantum phase estimation

Given a unitary U and one of its eigenvectors $|k\rangle$, estimate the value of θ_k such that

$$U|k\rangle = e^{2\pi i \theta_k}|k\rangle$$

Must determine:

- lacktriangle How to design a circuit that extracts the θ_k
- To what precision can we estimate it
- What to do if we don't know a $|k\rangle$ in advance

(You will explore the last two in your homework!)

Quantum phase estimation

Let U be an n-qubit unitary; $|k\rangle$ is an n-qubit eigenstate.

Assume θ_k can be represented *exactly* using t bits:

$$\theta_k = 0.\theta_{k_1} \cdots \theta_{k_t}$$

Quantum phase estimation

You may see this version too:

Let's analyze the state at points 1, 2, and 3 above.

Image credit: Xanadu Quantum Codebook node P.2

We apply U to $|k\rangle$; how does the phase get to the top register?

Phase kickback

The secret lies in something called *phase kickback*.

What happens when we apply a CNOT to the following state?

$$\begin{vmatrix} 0 \\ 1-7 \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \end{vmatrix} \begin{pmatrix} \frac{|0\rangle - |1\rangle}{\sqrt{2}} \end{vmatrix} = \begin{vmatrix} 0 \\ 1-7 \end{vmatrix}$$

We stopped here.

What happens when we apply a CNOT to this state?

$$|1\rangle \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) \qquad |1\rangle$$

$$|1\rangle \left(\frac{|1\rangle - |0\rangle}{\sqrt{2}}\right) = |1\rangle \left(-|1\rangle\right)$$

$$= \left(-|1\rangle\right) |-\rangle$$
also like we've sharred the where of the second rubit.

It looks like we've changed the phase of the second qubit.

Phase kickback

The math doesn't care which qubit a global phase is attached to.

$$\mathit{CNOT}\left(|1\rangle\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)\right) = (-|1\rangle)\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)$$

Seems the target qubit has done something to the control qubit!

We say that the phase has been "kicked back" from the second qubit to the first.

Consider the top-most qubit:

$$\begin{split} (CU)^{2^{t-1}} \left(\frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)|+\rangle^{\otimes t-1} |k\rangle \right) &= (CU)^{2^{t-1}} \left(\frac{1}{\sqrt{2}} |0\rangle |+\rangle^{\otimes t-1} |k\rangle \right) \\ &+ (CU)^{2^{t-1}} \left(\frac{1}{\sqrt{2}} |1\rangle |+\rangle^{\otimes t-1} |k\rangle \right) \\ &= \left(\frac{1}{\sqrt{2}} |0\rangle |+\rangle^{\otimes t-1} |k\rangle \right) \\ &+ \left(\frac{1}{\sqrt{2}} |1\rangle |+\rangle^{\otimes t-1} (e^{2\pi i \theta_k})^{2^{t-1}} |k\rangle \right) \end{split}$$

Use phase kickback

$$\begin{split} &\left(\frac{1}{\sqrt{2}}|0\rangle|+\rangle^{\otimes t-1}|k\rangle\right)+\left(\frac{1}{\sqrt{2}}|1\rangle|+\rangle^{\otimes t-1}(e^{2\pi i\theta_k})^{2^{t-1}}|k\rangle\right)\\ &=\left(\frac{1}{\sqrt{2}}|0\rangle|+\rangle^{\otimes t-1}|k\rangle\right)+\left(\frac{1}{\sqrt{2}}(e^{2\pi i\theta_k})^{2^{t-1}}|1\rangle|+\rangle^{\otimes t-1}|k\rangle\right)\\ &=\frac{1}{\sqrt{2}}(|0\rangle+(e^{2\pi i\theta_k})^{2^{t-1}}|1\rangle)|+\rangle^{\otimes t-1}|k\rangle \end{split}$$

What is happening in the exponent?

$$\begin{split} \left(e^{2\pi i\theta_k}\right)^{2^{t-1}} &= e^{2\pi i\theta_k \cdot 2^{t-1}} \\ &= e^{2\pi i\left(\frac{\theta_{k_1}}{2^1} + \frac{\theta_{k_2}}{2^2} + \cdots \frac{\theta_{k_t}}{2^t}\right) \cdot 2^{t-1}} \\ &= e^{2\pi i\left(2^{t-2}\theta_{k_1} + 2^{t-3}\theta_{k_2} + \cdots \frac{\theta_{k_t}}{2}\right)} \\ &= e^{2\pi i\frac{\theta_{k_t}}{2}} \\ &= e^{2\pi i0 \cdot \theta_{k_t}} \end{split}$$

So we have the combined state:

$$\frac{1}{\sqrt{2}}(|0\rangle + (e^{2\pi i\theta_k})^{2^{t-1}}|1\rangle)|+\rangle^{\otimes t-1}|k\rangle = \frac{1}{\sqrt{2}}(|0\rangle + e^{2\pi i0.\theta_{k_t}}|1\rangle)|+\rangle^{\otimes t-1}|k\rangle$$

Let's do the second-last qubit (ignore what happens to others for now):

$$(CU)^{2}\left(|+\rangle^{\otimes t-2}\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)|+\rangle|k\rangle\right)=|+\rangle^{\otimes t-2}\frac{1}{\sqrt{2}}(|0\rangle+e^{2\pi i\theta_{k}\cdot2}|1\rangle)|+\rangle|k\rangle$$

Again check the exponent...

$$\begin{split} (e^{2\pi i \theta_k})^2 &= e^{2\pi i \theta_k \cdot 2} \\ &= e^{2\pi i (\frac{\theta_{k_1}}{2^1} + \frac{\theta_{k_2}}{2^2} + \cdots \frac{\theta_{k_t}}{2^t}) \cdot 2} \\ &= e^{2\pi i (\theta_{k_1} + \frac{\theta_{k_2}}{2} + \cdots \frac{\theta_{k_t}}{2^{t-1}})} \\ &= e^{2\pi i 0 \cdot \theta_{k_2} \cdots \theta_{k_t}} \end{split}$$

So we have the combined state:

Can show in the same way that for the last qubit

$$|+\rangle^{\otimes t-1}\frac{1}{\sqrt{2}}(|0\rangle+(e^{2\pi i\theta_k})|1\rangle)|k\rangle=|+\rangle^{\otimes t-1}\frac{1}{\sqrt{2}}(|0\rangle+e^{2\pi i0.\theta_{k_1}\cdots\theta_{k_t}}|1\rangle)|k\rangle$$

After step 2, we have the state

$$\frac{1}{\sqrt{2}}(|0\rangle + e^{2\pi i 0.\theta_{k_t}}|1\rangle) \cdots \frac{1}{\sqrt{2}}(|0\rangle + e^{2\pi i 0.\theta_{k_2} \cdots \theta_{k_t}}|1\rangle) \frac{1}{\sqrt{2}}(|0\rangle + e^{2\pi i 0.\theta_{k_1} \cdots \theta_{k_t}}|1\rangle)|k\rangle$$

Should look familiar!

Last step is to apply the inverse QFT to recover the state...

Image credit: Xanadu Quantum Codebook node P.2

We can then measure to learn the numerical value of θ_k .

Let's implement it.

Next time

Content:

- Quiz 5 on Monday
- Continuing with QPE
- Moving towards Shor's algorithm

Action items:

- 1. Choose project group and paper
- 2. Literacy assignment 2

Recommended reading:

- Codebook nodes F.1-F.3, P.1-P.4
- Nielsen & Chuang 5.1, 5.2