A Review of Descriptive Statistics, OLS and an Introduction to Stata

Andy Grogan-Kaylor

1 Jul 2020

Social Service Agency Data

Simulated data on social service clients

. use clients.dta, clear // use (get) the data (Simulated Clients)

. describe

Contains data from clients.dta

 obs:
 521
 Simulated Clients

 vars:
 8
 3 Jun 2020 15:14

 size:
 29,176

variable name	torage type	display format	value label	variable label
ID age gender program mental_health_1 mental_health_2 latitude		%9.0g %9.0g %9.0g %9.0g %9.0g %9.0g %9.0g	gender program	ID age gender program mental_health_T1 mental_health_T2 latitude
longitude	double	%9.0g		longitude

Sorted by:

One Line Stata

do_something to_variable(s), options

Quite often the default options are so well chosen that you do not need to specify any options.

- use mydata.dta
- summarize // descriptive statistics
- keep x1 x2 x3 // keep only selected variables
- list x1 x2 x3 in 1/10 // list cases for selected variables
- browse // look at data
- lookfor [word] // look for variables with a particular word

Figure 1: The Stata Interface

The Stata Interface

Measures of Central Tendency

- What are mean and median. Why are they different?
 - Where is standard deviation?
 - Subsets of variables?
 - Finding variables?

cummariza

. Summarize					
Variable	0bs	Mean	Std. Dev.	Min	Max
ID	521	2965.449	1158.32	1005	4989
age	521	28.0438	7.047373	18.05584	45.45653
gender	521	1.821497	.7549825	1	3
program	521	2.197697	.7973963	1	4
mental_hea_1	521	95.11707	5.161698	80.93709	108.5736
mental_hea_2	521	98.87066	7.423767	79.57518	118.2272
latitude	521	42.25321	.1027698	41.99847	42.6237
longitude	521	-83.74921	.0987047	-84.04328	-83.42666

. summarize age, detail

	age		
Percentiles	Smallest		
18.17739	18.05584		
18.72159	18.05992		
19.54324	18.10945	0bs	521
22.37428	18.13374	Sum of Wgt.	521
26.61352		Mean	28.0438
	Largest	Std. Dev.	7.047373
	18.17739 18.72159 19.54324 22.37428	18.17739 18.05584 18.72159 18.05992 19.54324 18.10945 22.37428 18.13374 26.61352	Percentiles Smallest 18.17739 18.05584 18.72159 18.05992 19.54324 18.10945 Obs 22.37428 18.13374 Sum of Wgt. 26.61352 Mean

75%	32.88188	44.35607		
90%	38.46387	44.78399	Variance	49.66547
95%	41.26977	45.30344	Skewness	.5501433
99%	44.16425	45.45653	Kurtosis	2.317297

Measures of Variation

Some programs, e.g. R make you search for standard deviation. With Stata, sd is easily accessible with summarize.

```
. histogram mental_health_T1, normal scheme(burd) (bin=22, start=80.937087, width=1.2562034)
```

. graph export myhistogram.png, width(500) replace (file myhistogram.png written in PNG format)

Figure 2: histogram of mental health

Comparing Continuous and Continuous Variables

```
. twoway scatter mental_health_T1 age, msymbol(o) scheme(burd)
```

```
. graph export myscatter.png, width(500) replace (file myscatter.png written in PNG format)
```

Correlation

Figure 3: scatterplot of age and mental health

mental_hea_1	1.0000	
age	-0.0093 0.8329	1.0000

Comparing Continuous Variables Across Categorical Variables

- . graph bar mental_health_T2, over(program) scheme(burd)
- . graph export mybargraph.png, width(500) replace (file mybargraph.png written in PNG format)

t-test

- . preserve // preserve data set
- . keep if program == 1 \mid program == 2 \mid only keep 2 programs for now (201 observations deleted)
- . ttest mental_health_T2, by(program)
 Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Program Program	111 209	94.7963 105.3512	.4969934 .3562424	5.23615 5.150136	93.81138 104.6489	95.78123 106.0535
combined	320	101.69	.4033737	7.215767	100.8964	102.4836

Figure 4: bar graph of mental health at time 2

diff	-10.55491	.6083793	-11.75187	-9.357953
diff =	mean(Program) - mear	n(Program)	t degrees of freedom	t = -17.3492 t = 318
	ff < 0 = 0.0000 Pr	Ha: diff != 0 $(T > t) = 0.00$		diff > 0 t) = 1.0000

ANOVA

. restore // restore old version of data

. oneway ${\tt mental_health_T2}$ program, tabulate // oneway analysis of variance

	Summary o	of mental_	health_T2		
program	Mean	Std. Dev	. Freq.		
Program A	94.796305	5.236150	2 111		
Program B	105.35121	5.150136	2 209		
Program C	94.299149	5.200225	4 188		
Program D	95.582917	5.619914	3 13		
Total	98.870656	7.423767	3 521		
·	Ana	alysis of	Variance		
Source	SS	d	f MS	F	Prob > F
Between group	s 14689.0	6155	3 4896.53849	181.23	0.0000
Within group	s 13968	.791 51	7 27.0189382		
Total	28658.4	4065 52	0 55.1123202		
Bartlett's te	st for equal	variances:	chi2(3) = 0	0.1991 Pro	b>chi2 = 0

Importantly, ,tabulate gives us a table of results.

Regression

- What is the equation?
- What do the results mean?
- What is substantively or statistically significant?

regress	mental	health	Т2	mental	health	Т1	i	. program

Source		SS	df		MS	Number of		=	521
Model Residual		4704.3725 13954.034	4 516		3.09313 0427015	F(4, 516) Prob > F R-squared	l	=	135.94 0.0000 0.5131
Total	28	3658.4065	520	55.1	123202	Adj R-squ Root MSE	ared	=	0.5093 5.2003
mental_health	_T2	Coef.	Std.	Err.	t	P> t	[95%	Conf	. Interval]
mental_health	_T1	0327405	.04	4321	-0.74	0.460	119	8123	.0543314
progi	ram								
Program	В	10.57171	.611	1758	17.30	0.000	9.37	1008	11.77241
Program	C	494409	.622	4837	-0.79	0.427	-1.71	7323	.728505
Program		.7226213	1.52	6873	0.47	0.636	-2.2	7703	3.722272
_cc	ons	97.90435	4.23	6239	23.11	0.000	89.5	8195	106.2267

What if We Want to Allow For Different Slopes?

Instructor will draw this out.

. regress $mental_health_T2$ c. $mental_health_T1\#\#i.program$

				r(1, 513)	-	11.00	
Model	14743.6327	7 2	106.23324	Prob > F	=	0.0000	
Residual	13914.7738	513 2	7.1243155	R-squared	=	0.5145	
				Adj R-squa	red =	0.5078	
Total	28658.4065	520 5	5.1123202	Root MSE	=	5.2081	
ment	al_health_T2	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
ment	al_health_T1	.0038108	.0940124	0.04	0.968	1808858	.1885074
	program						
	Program B	14.13882	11.07298	1.28	0.202	-7.615155	35.89279
	Program C	2.227825	11.6862	0.19	0.849	-20.73087	25.18653
	Program D	27.30439	22.3002	1.22	0.221	-16.50657	71.11535
program#c.ment	al_health_T1						
	Program B	0375708	.1162481	-0.32	0.747	2659517	.1908101
	Program C	0286832	.1228833	-0.23	0.816	2700997	.2127332
	Program D	2851331	.2385022	-1.20	0.232	7536944	.1834281
	_cons	94.43455	8.938253	10.57	0.000	76.87446	111.9946

df MS Number of obs = F(7 513) =

Regression Assumptions and the Issue of "Normality"

Questions?