9 Image Segmentation

- 9.1 Image Segmentation
- 9.2 Thresholding
- 9.3 Classification
- 9.4 K-means Clustering
- 9.5 Bayesian Classification
- 9.6 Region-Based Segmentation
- 9.7 Video Segmentation

9.1 Image Segmentation

Decomposition of scene into its components

- Key step in image analysis and object-based coding
- Correspondence to physical objects (ملسلة)

Spatial segmentation

Into different regions

Temporal segmentation

Shot detection

Requirements for complete segmentation

- Connectivity: each region (segment) consists of connected image points
- Completeness: union of all regions yields complete image
- Homogeneity: each region is homogeneous under given criterion
- Closeness: combining two segments gives inhomogeneous region

Result of segmentation process is also called partition

Partition Examples

Cluster-Based Segmentation

Assumptions

- Each pixel is assigned a set of features (color, gradient, texture, etc.)
- Feature space reveals significant cumulative clusters
- Supervised segmentation (classification)
 - Class prototypes are known (e.g. pdfs)
 a prati knowledge available
- (2) Unsupervised segmentation (cluster analysis)
 - Neither class prototypes nor number of classes are available

Example: 2 features, 3 classes

Special case: thresholding

- Only one feature (e.g. luminance)
- Only two classes: object (foreground) vs. background

9.2 Thresholding

Key issue: threshold Θ selection

Supervised thresholding

Example: MAP (Maximum a Posteriori) estimator

Minimizes segmentation error

Unsupervised Thresholding

Idea: find Θ that minimizes within-class variance

- Operates directly on gray level histogram
- Assumes bimodal distribution (foreground vs background)

$$\sigma_{\text{wcv}}^{2}(\Theta) = \omega_{F}(\Theta)\sigma_{F}^{2}(\Theta) + \omega_{B}(\Theta)\sigma_{B}^{2}(\Theta) \qquad \text{where} \qquad \omega_{F/B}(\Theta) = \frac{N_{F/B}(\Theta)}{N}$$
Issues

$$\omega_{F}(\Theta) + \omega_{B}(\Theta) = 1$$

- Requires exhaustive search
- Computing variances can be computationally expensive

Total variance does not change

Equivalent solution: maximize between-class variance

$$\sigma_{\rm bcv}^2(\Theta) = \sigma^2 - \sigma_{\rm wcv}^2(\Theta)$$

Unsupervised Thresholding

Between-class variance

$$\sigma_{\text{bcv}}^{2}(\Theta) = \sigma^{2} - \sigma_{\text{wcv}}^{2}(\Theta) = (*)$$

$$= \left[\left(\frac{1}{N} \sum_{n} f^{2}[n] \right) - \mu^{2} \right] - \frac{N_{F}}{N} \left[\left(\frac{1}{N} \sum_{n \in F} f^{2}[n] \right) - \mu_{F}^{2} \right] - \frac{N_{B}}{N} \left[\left(\frac{1}{N} \sum_{n \in B} f^{2}[n] \right) - \mu_{B}^{2} \right] =$$

$$= -\mu^{2} + \frac{N_{F}}{N} \mu_{F}^{2} + \frac{N_{B}}{N} \mu_{B}^{2} + \frac{1}{N} \left(\sum_{n} f^{2}[n] - \frac{N_{F}}{N} \sum_{n \in F} f^{2}[n] - \frac{N_{B}}{N} \sum_{n \in B} f^{2}[n] \right)$$

$$\omega_{F}(\Theta) + \omega_{B}(\Theta) = 1$$

$$\omega_{F}(\Theta) + \omega_{B}(\Theta) + \omega_{B}(\Theta) + \omega_{B}(\Theta) = \mu$$

$$\sigma_{\text{bcv}}^{2}(\Theta) = \omega_{F}(\Theta) \omega_{B}(\Theta) (\mu_{F}(\Theta) - \mu_{B}(\Theta))^{2}$$

$$\omega_{B}(\Theta) = 0$$

$$\omega_{B}(\Theta) + \omega_{B}(\Theta) = 0$$

Unsupervised Thresholding

()

Search for threshold that maximizes between-class variance

This automatic threshold selection is known as Otsu's algorithm

Efficient recursive computation of $N_{F/B}$ and $\mu_{F/B}$:

$$N_F(\Theta + 1) = N_F(\Theta) + \mathbf{n}_{\Theta}$$

$$N_B(\Theta + 1) = N_B(\Theta) - n_{\Theta}$$

$$\mu_F(\Theta + 1) = \frac{\mu_F(\Theta)N_F(\Theta) + \Theta n_{\Theta}}{N_F(\Theta + 1)}$$

$$\mu_B(\Theta + 1) = \frac{\mu_B(\Theta)N_B(\Theta) - \Theta n_{\Theta}}{N_B(\Theta + 1)}$$

Otsu's Thresholding Examples

Original image

Thresholded image

Histograms

0.03 0.025 0.02 0.015 0.01 0.005 0 50 100 150 200 250

=) use marphological filles for smoothering being mark!

Otsu's Thresholding Examples

Original image

Thresholded image

Histograms

9.3 Classification

For each pixel (m,n) we have L features

Feature vector $\mathbf{f}[m, n] = [f_0[m, n], f_1[m, n], \dots, f_{L-1}[m, n]]^T$

We have K clusters (a priori knowledge)

Cluster centroids $c^{(k)} = [c^{(0)}, c^{(1)}, ..., c^{(K-1)}]^{T}$ (*k*th cluster)

Each pixel is assigned the **best fitting** cluster *S* according to

$$S[m,n] = \underset{k}{\operatorname{argmin}} \sum_{l=1}^{L} \left| f_{l}[m,n] - c_{l}^{(k)} \right|^{P} = \underset{k}{\operatorname{argmin}} \left\| \mathbf{f}[m,n] - \mathbf{c}^{(k)} \right\|_{P}$$

If P=2 (Euclidean norm) we have nearest neighbor classification

Chroma Keying

Color is more powerful feature than luminance

3D space vs. 1D space

Classification with only two classes

 Take picture in front of green screen (or blue, or orange...)

Classification

Merging

http://techteacherslog.net

http://www.ralph-dte.eu

https://i.ytimg.com/vi/4bkENVYNHHs/maxresdefault.jpg

9.4 K-means Clustering (msuprovised case)

Simple unsupervised learning algorithm

Extension of nearest neighbor classification with **unknown** cluster centroids (clustering problem)

Assumption: number of classes *K* known a priori

Start with arbitrarily chosen set of K cluster centroids $c^{(k)}$

- Nearest neighbor classification (assign each pixel to its nearest cluster)
- Re-compute cluster centroids

$$c_{\text{new}}^{(k)} = \frac{1}{N_k} \sum_{\substack{(m,n) \in \\ \text{cluster } k}} f[m,n] \qquad k = 0,1, \dots, K-1$$
Mean value of all features assigned to class k

Go back to step 1) (or terminate if centroids don't change anymore)

K-means Clustering Example

L=1, only gray level

Original

2 clusters

3 clusters

4 clusters

K-means Clustering

Automatically finds clusters that minimize squared classification error

Important for image quantization (cluster centroids)

Example (8-bit luminance depth, i.e. 256 gray levels)

Original

(ટાઝનેડ) 4 clusters

(3 Ms) 8 clusters

(น_{ับไร}) 16 clusters

Kaup: Image, Video, and Multidimensional Signal Processing Chair of Multimedia Communications and Signal Processing

9.5 Bayesian Classification

Based on minimization of Bayes risk $R(\hat{S})$

Risk defined as expected cost value

$$R(\hat{S}) = E[C(\hat{S}, S)] = \iint_{S, f} C(\hat{S}, S)P(S, f)dSdf = \iint_{S, f} C(\hat{S}, S)P(S|f)P(f)dSdf$$
admated for segmentation

Segmentation

Feature probability P(f) ("observed signal") is class-independent

The same for all classes → no influence on minimization

$$R(\hat{S}|\mathbf{f}) = \int_{S} C(\hat{S}, S) P(S|\mathbf{f}) dS$$

Bayesian classification

$$\hat{S} = \underset{S}{\operatorname{argmin}} R(\hat{S}|\boldsymbol{f}) = \underset{S}{\operatorname{argmin}} \left[\int_{S} C(\hat{S}, S) P(S|\boldsymbol{f}) dS \right] \qquad (*)$$

Maximum a Posteriori (MAP)

Cost function:
$$C(\hat{S}, S) = 1 - \delta(\hat{S}, S)$$
 $\delta(\hat{S}, S) = \begin{cases} 1 & \text{if } \hat{S} = S \\ 0 & \text{else} \end{cases}$ $C(\hat{S}, S) = \begin{cases} 0 & \text{if } \hat{S} = S \\ 1 & \text{if } \hat{S} = S \end{cases}$

Bayes risk:
$$R_{\text{MAP}}(\hat{S}|\mathbf{f}) = \int_{S} (1 - \delta(\hat{S},S)) P(S|\mathbf{f}) dS = 1 - P(\hat{S}|\mathbf{f}) \implies \min$$

Probability a posteriori $P(\hat{S}|f)$

• Probability of assigning \hat{S} given feature f (usually not known)

$$P(S|\mathbf{f}) = \frac{P(\mathbf{f}|S)P(S)}{p(\mathbf{f})}$$

does not affect maximization

Thomas Bayes (1701-1761)

$$\hat{S}_{MAP} = \underset{S}{\operatorname{argmax}} P(S|\mathbf{f}) = \underset{S}{\operatorname{argmax}} [P(\mathbf{f}|S)P(S)]$$

Bayesian Classification

Difference between MAP and nearest neighbor classification

Decision not necessarily for the nearest cluster

Instead, the following is considered

- \bigcirc Clusters a priori probability (P(S))
 - · Which cluster is more likely?
- Peature likelihood within a specific class P(f|S)
 - Given a cluster, which feature vector is more likely?

Example (1D)

Nearest neighbor assigns class A (it is closer)

MAP assigns class B (it is more likely)

Bayesian Classification

If classes are equally probable then MAP is reduced to Maximum Likelihood (ML) classifier

$$\hat{S}_{\text{ML}} = \underset{S}{\operatorname{argmax}} [P(\mathbf{f}|S)P(S)] = \underset{S}{\operatorname{argmax}} P(\mathbf{f}|S)$$

Other cost functions are also possible

Disadvantage of classification and clustering methods discussed so far

Operate on features only (no spatial relation between pixels considered)

9.6 Region-Based Segmentation

Idea:

Incorporate knowledge about topological structure of partition (especially neighbor relations)

Region:

Group of connected pixels with similar properties

- **Principles: 1** Similarity
 - Feature differences / variance
 - Spatial proximity

new her!

- Euclidean distance
- Compactness of a region

Region Growing

Starts with a set of **seed** points

- Expansion (growth) by pixels with similar features
- Adjacent similar regions are merged together

→ bottom-up segmentation

Properties

- Fast and conceptually simple
- Sensitive to noise
- Gradient problem ————

Similarity Measures for Two Regions

Given mean μ and variance σ^2 of two neighboring regions R_i and R_j

(4) Absolute deviation of mean value

$$d(R_i, R_j) = |\mu(R_i) - \mu(R_j)|$$

Simple to calculate, does not account for region variances

(2) Variance coherence

$$d(R_i, R_j) = \sigma^2(R_i \cup R_j) - \frac{\sigma^2(R_i) + \sigma^2(R_j)}{2}$$

Extensible to higher order statistics

(3) Likelihood ratio

$$d(R_i, R_j) = \frac{\sigma^2(R_i \cup R_j)^{N_i + N_j}}{\sigma^2(R_i)^{N_i} \cdot \sigma^2(R_j)^{N_j}}$$

Considers region size N

(je is included uniplicately)

(midudes reliebility of estimates)

Region Splitting

Split image into disjoint regions

Check each region for homogeneity, if not homogeneous keep splitting

Example: quad-tree decomposition

Problems:

- How to optimally split a region into homogeneous sub-regions?
- Requires knowledge about number of sub-regions and location of region boundaries (e.g. by edge detection)

Split & Merge Segmentation

Combination of agglomerative and divisive region operations

Splitting (e.g. quad-tree)

Keep splitting until all blocks fulfill homogeneity criterion

Merging

Merge all neighboring block which are sufficiently similar

Disadvantage: region borders often exhibit "staircase" character

9.5 Temporal Segmentation of Video

Detection of scene cuts and smooth scene transitions (fading)

 Usually as preprocessing for video structuring applications (news server, media abstraction for messaging)

Scene cut assumption

 Content changes significantly between two consecutive frames or over a number of frames

Analysis of suitable (global) image feature over time

- Color distribution, motion, texture descriptors, etc.
- Often audio track is analyzed in parallel to improve segmentation results (e.g. silence detection)

Shot Detection Using Feature Histograms

Shot detection

 Detect scene cuts and segment video into a number of temporal consistent video sequences (shots)

Histogram of suitable image feature (e.g. color)

- Analyze sum of absolute histogram differences between subsequent video frames
- Scene cut detected if: a) Sum excedes hard threshold T_H (hard cut)

Sensitive to (sudden) illumination changes → use additional features

Shot Detection Using Motion Analysis

Change in global motion usually corresponds to new scene

E.g. start and end of camera pan (= horizontal movement)

Detection of shot boundaries

Significant change in motion trajectory

Example: $v_t = \begin{bmatrix} v_x \\ v_y \end{bmatrix}$ Global translational motion between consecutive frames

Can be improved by considering higher order motion

Rotation, zoom, affine models, etc.

