# Estimating the Effect of a Mis-measured, Endogenous, Binary Treatment

Francis J. DiTraglia
Camilo Garcia-Jimeno

University of Pennsylvania

November 19th, 2015

#### What is the causal effect of $T^*$ ?

$$y_i = h(T_i^*, \mathbf{x}_i) + \varepsilon_i$$

- ▶ y − Outcome of interest
- ▶ h Unknown function that does not depend on i
- ▶ T\* Unobserved, endogenous binary treatment
- ➤ T Observed, mis-measured surrogate for T\*
- ▶ x − Exogenous covariates
- $\triangleright$   $\varepsilon$  Mean-zero error term
- ▶ z Discrete instrumental variable

#### Example 1: Smoking and Birthweight

RCT with 612 pregnant smokers in Glasgow, Scotland: 306 are offered financial incentives to attend smoking cessation program.

- ▶ y Birthweight
- ▶ T\* True smoking behavior
- ► T Self-reported smoking behavior
- x Mother characteristics
- ▶ z Offer of financial incentive

#### Example 2: Schooling and Test Scores

RCT in Afghanistan: a school is built in 6 out of 11 villages.

- ▶ y Score on math and language test
- ▶ T\* True school attendance
- ► T Self-reported school attendance
- x Household characteristics
- ► z School built in village

#### Non-classical Measurement Error: Binary $T^*$

- Many applications of linear model have binary treatment
- ▶ Binary  $T^* \implies \mathbb{E}[T^*w] \le 0$
- Misclassification Probabilities:

$$\alpha_0 = \mathbb{P}(T = 1 | T^* = 0)$$
 $\alpha_1 = \mathbb{P}(T = 0 | T^* = 1)$ 

- ▶ Non-Differential Measurement Error:  $T \perp (z, u) | T^*$
- $\sigma_{T^*}^2 \not< \sigma_T^2$  so work with  $\alpha_0, \alpha_1$  rather than  $\kappa$
- Four-dimensional Problem...

#### Results for a Mis-classified Binary Regressor

Aigner (1973), Bollinger (1996)...

▶ Even if  $\rho_{T^*u} = 0$ , OLS is biased and inconsistent: typically attenuated towards zero *but could flip signs!* 

Kane et al. (1999), Black et al. (2000), Frazis et al. (2003)...

- $ho_{zu}=0 \implies \text{IV}$  solves endogenous regressor problem if there is no mis-classification
- $ho_{T^*u}=0$  and  $ho_{zu}=0 \implies$  non-linear GMM estimator can solve the mis-classification problem

# OLS and IV Probability Limits: Binary $T^*$

Where  $p = \mathbb{P}(T = 1)$ 

$$\begin{aligned} \text{plim}\left(\widehat{\beta}_{OLS}\right) &=& \frac{\sigma_{T^*}^2}{\sigma_T^2} \left[\beta \left(1 - \alpha_0 - \alpha_1\right) + \frac{\sigma_{T^*u}}{\sigma_{T^*}^2}\right] \\ \text{plim}\left(\widehat{\beta}_{IV}\right) &=& \frac{\beta}{1 - \alpha_0 - \alpha_1} + \frac{\sigma_{zu}}{\sigma_{zT}} \\ \sigma_{T^*}^2 &=& \frac{\left(p - \alpha_0\right)\left(1 - p - \alpha_1\right)}{\left(1 - \alpha_0 - \alpha_1\right)^2} \end{aligned}$$

7/ 25

## What About Endogenous, Mis-measured $T^*$ , Valid z?

$$y = \beta T^* + u$$
$$u = c + \varepsilon$$

- ▶ No results in the literature for this case
- Important setting in applied work: e.g. RCTs
- ▶ Discrete Instrument:  $z \in \{z_1, \dots, z_K\}$
- ▶ Non-parametric First Stage:  $p_k^* = \mathbb{P}(T^* = 1|z = z_k)$
- ▶ What does  $E[\varepsilon|z] = 0$  buy us in this case?

#### Observable Moments: $y = \beta T^* + u$

$$ar{y}_{tk} = \mathbb{E}[y|T=t,z=z_k], \quad p_{tk} = q_k p_k$$
  $q_k = \mathbb{P}(z=z_k), \quad p_k = \mathbb{P}(T=1|z=z_k)$ 

#### Unobservable Moments: $y = \beta T^* + u$

$$m_{tk}^* = \mathbb{E}[u|T^* = t, z = z_k], \quad p_{tk}^* = q_k p_k^*$$

$$p_k^* = \mathbb{P}(T^* = 1|z = z_k) = \frac{p_k - \alpha_0}{1 - \alpha_0 - \alpha_1}$$

# Possible Assumptions On $m_{tk}^*$

Joint Exogeneity: 
$$\mathbb{E}[\varepsilon|T^*,z]=0$$
 $\implies m_{tk}^*=c \quad \text{for all } t,k$ 

Exogenous Treatment:  $\mathbb{E}[\varepsilon|T^*]=0$ 
 $\implies \frac{1}{\mathbb{P}(T^*=t)}\sum_k p_{tk}^* m_{tk}^*=c \quad \text{for all } t$ 

Exogenous Instrument:  $\mathbb{E}[\varepsilon|z]=0$ 
 $\implies (1-p_k^*)m_{0k}^*+p_k^*m_{1k}^*=c \quad \text{for all } k$ 

## Moment Conditions Imposing $\mathbb{E}[\varepsilon|z]=0$

One pair of equations for each k = 1, ..., K

$$\hat{y}_{0k} = \alpha_1(p_k - \alpha_0) \left(\frac{\beta}{1 - \alpha_0 - \alpha_1}\right) + (1 - \alpha_0)c - (p_k - \alpha_0)m_{1k}^*$$

$$\hat{y}_{1k} = (1 - \alpha_1)(p_k - \alpha_0) \left(\frac{\beta}{1 - \alpha_0 - \alpha_1}\right) + \alpha_0c + (p_k - \alpha_0)m_{1k}^*$$

where 
$$\hat{y}_{0k}=(1-p_k)ar{y}_{0k}$$
 and  $\hat{y}_{0k}=p_kar{y}_{1k}$ 

2K Equations in K + 4 Unknowns

#### Mahajan

#### *Proposition*: $\beta$ is Undentified Regardless of K

#### **Proof Sketch**

- (1) Show that  $W = \beta/(1 \alpha_0 \alpha_1)$  is identified.
- (2) Show that  $Q = c + \beta(1 \alpha_0)/(1 \alpha_0 \alpha_1)$  is identified.
- (3)  $(1) + (2) \implies (\mathcal{Q}, \mathcal{W})$  are fixed
- (4) Use (3) to rewrite equations in terms of (Q, W).
- (5) Discover that there is only *one* equation per k! Rearranging:

$$m_{1k}^* = \frac{\mathcal{W}(\hat{y}_{0k} - \alpha_1 \mathcal{Q}) - \beta(\mathcal{Q} - \beta - \mathcal{W}\alpha_1) + \mathcal{W}^2(1 - p_k)\alpha_1}{\mathcal{W}(1 - p_k - \alpha_1) - \beta}$$

## Special Case of Prev Proof: $\alpha_0 = 0$

$$\hat{y}_{0k} = c + p_k \beta \left(\frac{\alpha_1}{1 - \alpha_1}\right) - p_k m_{1k}^*$$

$$\hat{y}_{1k} = p_k \beta + p_k m_{1k}^*$$

#### Identification by Conditional Variances?

#### **New Assumption**

Homoskedastic errors w.r.t. the *instrument*:  $E[\varepsilon^2|z] = E[\varepsilon^2]$ 

#### Not Crazy!

Holds in an RCT or a true natural experiment.

#### **New Moment Conditions**

For each pair  $(k, \ell)$ 

$$s_k^2 - s_\ell^2 = \mathcal{W}^2 \left[ p_k (1 - p_k) - p_\ell (1 - p_\ell) + (\alpha_0 - \alpha_1) (p_k - p_\ell) \right]$$
  
+2\mathcal{W} \left[ (p\_k - \alpha\_0) (m\_{1k}^\* - c) - (p\_\ell - \alpha\_0) (m\_{1\ell}^\* - c) \right]

Where  $s_k^2 = Var(y|z=z_k)$ , and  $\mathcal{W}$  is the Wald IV estimator.

# *Proposition*: $(\alpha_0 - \alpha_1)$ is Identified

Define

$$\widetilde{\mathcal{W}}_{k\ell} = \frac{\mathbb{E}[yT|z_k] - \mathbb{E}[yT|z_\ell]}{p_k - p_\ell}$$

Show that:

$$(p_{k} - \alpha_{0})(m_{1k}^{*} - c) - (p_{\ell} - \alpha_{0})(m_{1\ell}^{*} - c) =$$

$$(p_{k} - p_{\ell}) \left[ \widetilde{W}_{k\ell} - \mathbb{E}[y] - \mathcal{W} \left\{ (1 - p) + (\alpha_{0} - \alpha_{1}) \right\} \right]$$

Substituting and rearranging:

$$\alpha_0 - \alpha_1 = (2p - 1 - p_k - p_\ell) + \frac{2(\hat{W}_{k\ell} - \mathbb{E}[y])}{\mathcal{W}} - \frac{s_k^2 - s_\ell^2}{(p_k - p_\ell)\mathcal{W}^2}$$

## What Good is $(\alpha_0 - \alpha_1)$ ?

- ▶ Test a necessary condition for *no mis-classification*: $\alpha_0 = \alpha_1$
- ▶ Simple, tighter partial identification bounds for  $\beta$
- In some settings, one of the mis-classification probabilities is known to be zero  $\implies \beta$  point identified

#### Identification from Third Moments

#### Simulation Study

$$\begin{split} y &= \beta \, T^* + \varepsilon \\ T^* &= \mathbf{1} \, \{ \gamma_0 + \gamma_1 z + \eta > 0 \} \\ \gamma_0 &= \Phi^{-1}(\delta), \ \gamma_1 = \Phi^{-1}(1-\delta) - \Phi(\delta) \ \text{so that} \ \delta \\ \text{E.g. if} \ \delta &= 0.1 \ \text{then} \ 10\% \ \text{of those} \ \textit{not} \ \text{offered treatment get it} \\ \text{anyway, and} \ 10\% \ \text{of those offered treatment don't take it up.} \end{split}$$
 If  $T^* = 0 \ \text{then} \ T = 0 \ \text{(E.g. Birthweight and smoking)}$  
$$T | T^* = 1 \sim \text{Bernoulli(?)} \end{split}$$

$$\left[\begin{array}{c} \varepsilon \\ \eta \end{array}\right] \sim N\left(\left[\begin{array}{c} 0 \\ 0 \end{array}\right], \left[\begin{array}{cc} 1 & 0.3 \\ 0.3 & 1 \end{array}\right]\right)$$





β





(a) 
$$N = 500, \delta = 0.1$$
 (b)  $N = 1000, \delta = 0.1$  (c)  $N = 5000, \delta = 0.1$  (d)  $N = 5000, \delta = 0.1$  (e)  $N = 5000, \delta = 0.1$  (f)  $N = 5000, \delta = 0.1$  (f)  $N = 5000, \delta = 0.1$  (g)  $N$ 

(a) 
$$N = 500, \delta = 0.2$$
 (b)  $N = 1000, \delta = 0.2$  (c)  $N = 5000, \delta = 0.2$  (d)  $N = 5000, \delta = 0.2$  (e)  $N = 5000, \delta = 0.2$  (f)  $N = 5000, \delta = 0.2$  (f)  $N = 5000, \delta = 0.2$  (g)  $N$ 

(a) 
$$N = 500, \delta = 0.3$$
 (b)  $N = 1000, \delta = 0.3$  (c)  $N = 5000, \delta = 0.3$  (d)  $N = 5000, \delta = 0.3$  (e)  $N = 5000, \delta = 0.3$  (f)  $N = 5000, \delta = 0.3$  (f)  $N = 5000, \delta = 0.3$  (f)  $N = 5000, \delta = 0.3$  (g)  $N$ 

#### Empirical Illustration: Schooling and Test Scores