Sparse Optimization

Lecture: Proximal Operator/Algorithm and Lagrange Dual

Instructor: Wotao Yin

July 2013

online discussions on piazza.com

Those who complete this lecture will know

- · learn the proximal operator and its basic properties
- · the proximal algorithm
- the proximal algorithm applied to the Lagrange dual

Gradient descent / forward Euler

- assume function f is convex, differentiable
- consider

$$\min f(\mathbf{x})$$

• gradient descent iteration (with step size *c*):

$$\mathbf{x}^{k+1} = \mathbf{x}^k - c\,\nabla f(\mathbf{x}^k)$$

• \mathbf{x}^{k+1} minimizes the following local quadratic approximation of f:

$$f(\mathbf{x}^k) + \langle \nabla f(\mathbf{x}^k), \mathbf{x} - \mathbf{x}^k \rangle + \frac{1}{2c} ||\mathbf{x} - \mathbf{x}^k||_2^2$$

• compare with forward Euler iteration, a.k.a. the explicit update:

$$\mathbf{x}(t+1) = \mathbf{x}(t) - \Delta t \cdot \nabla f(\mathbf{x}(t))$$

Backward Euler / implicit gradient descent

backward Euler iteration, also known as the implicit update:

$$\mathbf{x}(t+1) \stackrel{\text{solve}}{\longleftarrow} \mathbf{x}(t+1) = \mathbf{x}(t) - \Delta t \cdot \nabla f(\mathbf{x}(t+1)).$$

• equivalent to:

1.
$$\mathbf{u}(t+1) \stackrel{\text{solve}}{\longleftarrow} \mathbf{u} = \nabla f(\mathbf{x}(t) - \Delta t \cdot \mathbf{u})$$
,

2.
$$\mathbf{x}(t+1) = \mathbf{x}(t) - \Delta t \cdot \mathbf{u}(t+1)$$
.

• we can view it as the "implicit gradient" descent:

$$(x^{k+1}, u^{k+1}) \stackrel{\text{solve}}{\longleftarrow} x = x^k - cu, \ u = \nabla f(x).$$

- c is the "step size", very different from a standard step size.
- explicit (implicit) update uses the gradient at the start (end) point

Implicit gradient step = proximal operation

proximal update:

$$\mathbf{prox}_{cf}(\mathbf{z}) := \arg\min_{x} f(\mathbf{x}) + \frac{1}{2c} \|\mathbf{x} - \mathbf{z}\|^{2}.$$

optimality condition:

$$0 = c \nabla f(\mathbf{x}^*) + (\mathbf{x}^* - \mathbf{z}).$$

- given input z,
 - $\mathbf{prox}_{cf}(\mathbf{z})$ returns solution x^*
 - $\nabla f(\mathbf{prox}_{cf}(z))$ returns u^*

$$(\mathbf{x}^*, \mathbf{u}^*) \stackrel{\text{solve}}{\longleftarrow} \mathbf{x} = \mathbf{z} - c\mathbf{u}, \ \mathbf{u} = \nabla f(\mathbf{x}).$$

Proposition

Proximal operator is equivalent to an implicit gradient (or backward Euler) step.

Proximal operator handles sub-differentiable f

- ullet assume that f is closed, proper, $\mathit{sub-differentiable}$ convex function
- $\partial f(\mathbf{x})$ is denoted as the subdifferential of f at x. Recall $\mathbf{u} \in \partial f(\mathbf{x})$ if

$$f(\mathbf{x}') \ge f(\mathbf{x}) + \langle \mathbf{u}, \mathbf{x}' - \mathbf{x} \rangle, \ \forall \mathbf{x}' \in \mathbb{R}^n.$$

- ullet $\partial f(\mathbf{x})$ is point-to-set, neither direction is unique
- prox is well-defined for sub-differentiable f; it is point-to-point,
 prox maps any input to a unique point

Proximal operator

$$\mathbf{prox}_{cf}(\mathbf{z}) := \arg\min_{\mathbf{x}} f(\mathbf{x}) + \frac{1}{2c} \|\mathbf{x} - \mathbf{z}\|^{2}.$$

- ullet since objective is strongly convex, solution $\mathbf{prox}_{cf}(\mathbf{z})$ is unique
- since f is proper, dom $\mathbf{prox}_{cf} = \mathbb{R}^n$
- the followings are equivalent

$$\mathbf{prox}_{cf}\mathbf{z} = \mathbf{x}^* = \underset{\mathbf{x}}{\operatorname{arg \, min}} f(\mathbf{x}) + \frac{1}{2c} \|\mathbf{x} - \mathbf{z}\|^2,$$
$$\mathbf{x}^* \xleftarrow{\operatorname{solve}} 0 \in c \, \partial f(\mathbf{x}) + (\mathbf{x} - \mathbf{z}),$$
$$(\mathbf{x}^*, \mathbf{u}^*) \xleftarrow{\operatorname{solve}} \mathbf{x} = \mathbf{z} - c\mathbf{u}, \ \mathbf{u} \in \partial f(\mathbf{x}).$$

• point \mathbf{x}^* minimizes f if and only if $\mathbf{x}^* = \mathbf{prox}_f(\mathbf{x}^*)$.

Examples

•
$$f(\mathbf{x}) = \iota_{\mathbf{x} \in \mathcal{C}}$$

•
$$f(\mathbf{x}) = \frac{\lambda}{2} ||\mathbf{x}||_2^2$$

•
$$f(\mathbf{x}) = \|\mathbf{x}\|_1$$

•
$$f(\mathbf{x}) = \sum_i \|\mathbf{x}_{\mathcal{G}_i}\|_2$$

•
$$f(\mathbf{X}) = \|\mathbf{X}\|_*$$

Examples

given \mathbf{prox}_f for function f, it is easy to derive \mathbf{prox}_g for

•
$$g(\mathbf{x}) = \alpha f(\mathbf{x}) + \beta$$

•
$$g(\mathbf{x}) = f(\alpha \mathbf{x} + \mathbf{b})$$

•
$$g(\mathbf{x}) = f(\mathbf{x}) + \mathbf{a}^T \mathbf{x} + \beta$$

•
$$g(\mathbf{x}) = f(\mathbf{x}) + (\rho/2) \|\mathbf{x} - \mathbf{a}\|^2$$

Resolvent of ∂f

- ∂f is a *point-to-set* mapping, so is $I + c \partial f$
- in general, $(I + c \partial f)^{-1}$ is a *point-to-set* mapping
- however, we claim

$$\mathbf{prox}_{cf} = (I + c\,\partial f)^{-1}$$

- since $\mathbf{prox}_{cf}(\mathbf{z})$ is always unique, $(I+c\,\partial f)^{-1}$ is a *point-to-point* mapping
- $(I + c \partial f)^{-1}$ is known as the *resolvent* of ∂f with parameter c.
- by the way, ∇f is the gradient operator, and $(I-c\,\nabla f)$ is the gradient-descent operator.

Moreau envelope

- ullet idea: to smooth a closed, proper, nonsmooth convex function f
- definition:

$$M_{cf}(\mathbf{x}) = \inf_{\mathbf{y}} f(\mathbf{y}) + \frac{1}{2c} ||\mathbf{y} - \mathbf{x}||^2.$$

- $\operatorname{dom} M_{cf} = \mathbb{R}^n$ even if f is not
- $M_{cf} \in C^1$ even if f is not; in fact,

$$M_{cf} = ((cf)^* + (1/2) || \cdot ||^2)^*$$

the dual of strongly convex function is differentiable (with Lipschitz gradient)

- \bullet relation with \mathbf{prox}_{cf}
 - $\nabla M_{cf}(\mathbf{x}) = (1/c)(\mathbf{x} \mathbf{prox}_{cf}(\mathbf{x}))$
 - $\mathbf{prox}_{cf}(\mathbf{x}) = \mathbf{x} c \nabla M_{cf}(\mathbf{x})$, explicit gradient step of M_{cf}
 - $\mathbf{prox}_f(\mathbf{x}) = \nabla M_{f^*}(\mathbf{x})$
- ullet example: the Huber function is M_f where $f(\mathbf{x}) = \|\mathbf{x}\|_1$
- ullet c is not a usual step size. As $c o \infty$, $(\mathbf{prox}_{cf}(\mathbf{x}) \mathbf{x}) o (\mathbf{x}^* \mathbf{x})$.

Proximal algorithm

Assume that f has a minimizer, then iterate

$$\mathbf{x}^{k+1} = \mathbf{prox}_{c^k f}(\mathbf{x}^k)$$

prox is firmly nonexpansive

$$\left\|\mathbf{prox}_f(\mathbf{x}) - \mathbf{prox}_f(\mathbf{y})\right\|^2 \leq \left\langle \mathbf{prox}_f(\mathbf{x}) - \mathbf{prox}_f(\mathbf{y}), \mathbf{x} - \mathbf{y} \right\rangle, \ \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$$

It converges to the minimizer as long as $c^k > 0$ and

$$\sum_{k=1}^{\infty} c^k = \infty.$$

For example, one can fix $c^k \equiv c$

Step-sized iteration: fix c>0 and pick $\alpha_k\in(0,2)$ uniformly away from 0 and 2:

$$\mathbf{x}^{k+1} = \alpha_k \mathbf{prox}_{cf}(\mathbf{x}^k) + (1 - \alpha^k)\mathbf{x}^k.$$

The convergence takes a *finite* number of iterations if f is polyhedral (i.e. piece-wise linear)

Proximal algorithm

Diminishing regularization

$$\mathbf{x}^{k+1} = \arg\min f(\mathbf{x}) + \frac{1}{2c} \|\mathbf{x} - \mathbf{x}^k\|_2^2$$

As $\mathbf{x}^k \to \mathbf{x}^*$, $\|\partial f(\mathbf{x}^k)\| \to 0$ and thus $f(\mathbf{x})$ becomes "weaker." Hence, $\mathbf{x}^{k+1} - \mathbf{x}^k$ tends to be smaller.

Many algorithms use $\mathbf{prox}_{c^k f}(x^k)$, either entirely or as a part (but most of them were motivated through other means)

Although \mathbf{prox}_{c^kf} can sometimes be difficult to compute, it simplifies computation

- for some sub-differentiable functions
- for those rising in duality (our next focus)

Lagrange duality

Convex problem

$$\min f(\mathbf{x})$$
 s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$.

Relax the constraints and price their violation (pay a price if violated one way; get paid if violated the other way; payment is linear to the violation)

$$\mathcal{L}(\mathbf{x}; \mathbf{y}) := f(\mathbf{x}) + \mathbf{y}^{T} (\mathbf{A}\mathbf{x} - \mathbf{b})$$

For later use, define the augmented Lagrangian

$$\mathcal{L}_A(\mathbf{x}; \mathbf{y}, \mathbf{c}) := f(\mathbf{x}) + \mathbf{y}^T (\mathbf{A}\mathbf{x} - \mathbf{b}) + \frac{c}{2} ||\mathbf{A}\mathbf{x} - \mathbf{b}||^2$$

Minimize \mathcal{L} for fixed price \mathbf{y} : $d(\mathbf{y}) := -\min_{\mathbf{x}} \mathcal{L}(\mathbf{x}; \mathbf{y})$. Always, $d(\mathbf{y})$ is convex

The Lagrange dual problem

$$\min_{\mathbf{y}} d(\mathbf{y})$$

Given dual solution \mathbf{y}^* , recover $\mathbf{x}^* = \min_{\mathbf{x}} \mathcal{L}(\mathbf{x}; \mathbf{y}^*)$ (under which conditions?)

Question: how to compute the explicit/implicit gradients of d(y)?

Dual explicit gradient (ascent) algorithm

Assume d(y) is differentiable (true if f(x) is strictly convex. Is this if-and-only-if?)

Gradient descent iteration (if the maximizing dual is used, it is called *gradient* ascent):

$$\mathbf{y}^{k+1} = \mathbf{y}^k - c \, \nabla f(\mathbf{y}^k).$$

It turns out to be *relatively easy* to compute ∇d , via an unstrained subproblem:

$$\nabla d(\mathbf{y}) = \mathbf{b} - \mathbf{A}\bar{\mathbf{x}}, \quad \text{where } \bar{\mathbf{x}} = \operatorname*{arg\,min}_{\mathbf{x}} \mathcal{L}(\mathbf{x}; \mathbf{y}).$$

Dual gradient iteration

- 1. $\mathbf{x}^k \stackrel{\text{solve}}{\leftarrow} \min_{\mathbf{x}} \mathcal{L}(\mathbf{x}; \mathbf{y}^k);$
- 2. $\mathbf{y}^{k+1} = \mathbf{y}^k c(\mathbf{b} \mathbf{A}\mathbf{x}^k).$

Sub-gradient of d(y)

Assume $d(\mathbf{y})$ is sub-differentiable (which condition on primal can guarantee this?)

Lemma

Given dual point \mathbf{y} and $\bar{\mathbf{x}} = \arg\min_{\mathbf{x}} \mathcal{L}(\mathbf{x}; \mathbf{y})$, we have $\mathbf{b} - \mathbf{A}\bar{\mathbf{x}} \in \partial d(\mathbf{y})$.

Proof.

Recall

- $\mathbf{u} \in \partial d(\mathbf{y})$ if $d(\mathbf{y}') \ge d(\mathbf{y}) + \langle \mathbf{u}, \mathbf{y}' \mathbf{y} \rangle$ for all \mathbf{y}' ;
- $d(\mathbf{y}) := -\min_{\mathbf{x}} \mathcal{L}(\mathbf{x}; \mathbf{y}).$

From (ii) and definition of $\bar{\mathbf{x}}$,

$$d(\mathbf{y}) + \langle \mathbf{b} - \mathbf{A}\bar{\mathbf{x}}, \mathbf{y}' - \mathbf{y} \rangle = -\mathcal{L}(\bar{\mathbf{x}}; \mathbf{y}) + (\mathbf{b} - \mathbf{A}\bar{\mathbf{x}})^{T}(\mathbf{y} - \mathbf{y}')$$

$$= -[f(\bar{\mathbf{x}} + \mathbf{y}^{T}(\mathbf{A}\bar{\mathbf{x}} - \mathbf{b})] + (\mathbf{b} - \mathbf{A}\bar{\mathbf{x}})^{T}(\mathbf{y} - \mathbf{y}')$$

$$= -[f(\bar{\mathbf{x}}) + (\mathbf{y}')^{T}(\mathbf{A}\bar{\mathbf{x}} - \mathbf{b})]$$

$$= -\mathcal{L}(\bar{\mathbf{x}}; \mathbf{y}') < d(\mathbf{y}').$$

From (i),
$$\mathbf{b} - \mathbf{A}\bar{\mathbf{x}} \in \partial d(\mathbf{y})$$
.

Dual explicit (sub)gradient iteration

The iteration:

- 1. $\mathbf{x}^k \stackrel{\text{solve}}{\longleftarrow} \min_{\mathbf{x}} \mathcal{L}(\mathbf{x}; \mathbf{y}^k);$
- 2. $\mathbf{y}^{k+1} = \mathbf{y}^k c_k(\mathbf{b} \mathbf{A}\mathbf{x}^k);$

Notes:

- ullet $(\mathbf{b} \mathbf{A}\mathbf{x}^k) \in \partial d(\mathbf{y}^k)$ as shown in the last slide
- it does *not* require d(y) to be differentiable
- convergence might require a careful choice of c_k (e.g., a diminishing sequence) if $d(\mathbf{y})$ is only sub-differentiable (or lacking Lipschitz continuous gradient)

Dual implicit gradient

Goal: to descend using the (sub)gradient of d at the *next point* y^{k+1} : Following from the Lemma, we have

$$\mathbf{b} - \mathbf{A}\mathbf{x}^{k+1} \in \partial d(\mathbf{y}^{k+1}), \text{ where } \mathbf{x}^{k+1} = \mathop{\arg\min}_{\mathbf{x}} \mathcal{L}(\mathbf{x}; \mathbf{y}^{k+1})$$

Since the implicit step is $\mathbf{y}^{k+1} = \mathbf{y}^k - c(\mathbf{b} - A\mathbf{x}^{k+1})$, we can derive

$$\mathbf{x}^{k+1} = \arg\min_{\mathbf{x}} \mathcal{L}(\mathbf{x}; \mathbf{y}^{k+1}) \iff$$

$$0 \in \partial_{\mathbf{x}} \mathcal{L}(\mathbf{x}^{k+1}; \mathbf{y}^{k+1}) = \partial f(\mathbf{x}^{k+1}) + \mathbf{A}^{T} \mathbf{y}^{k+1}$$

$$= \partial f(\mathbf{x}^{k+1}) + \mathbf{A}^{T} (\mathbf{y}^{k} - c(\mathbf{b} - \mathbf{A}\mathbf{x}^{k+1})).$$

Therefore, while \mathbf{x}^{k+1} is a solution to $\min_{\mathbf{x}} \mathcal{L}(\mathbf{x}; \mathbf{y}^{k+1})$; it is also a solution to

$$\min_{\mathbf{x}} \mathcal{L}_{A}(\mathbf{x}; \mathbf{y}^{k}, c) = f(\mathbf{x}) + (\mathbf{y}^{k})^{T} (\mathbf{A}\mathbf{x} - \mathbf{b}) + \frac{c}{2} ||\mathbf{A}\mathbf{x} - \mathbf{b}||^{2},$$

which is *independent* of \mathbf{y}^{k+1} .

Dual implicit gradient

Proposition

Assuming $\mathbf{y}' = \mathbf{y} - c(\mathbf{b} - \mathbf{A}\mathbf{x}')$, the followings are equivalent

- 1. $\mathbf{x}' \stackrel{\text{solve}}{\longleftarrow} \min_{\mathbf{x}} \mathcal{L}(\mathbf{x}; \mathbf{y}')$,
- 2. $\mathbf{x}' \stackrel{\text{solve}}{\leftarrow} \min_{\mathbf{x}} \mathcal{L}_A(\mathbf{x}; \mathbf{y}, c)$.

Dual implicit gradient iteration

The iteration

$$\mathbf{y}^{k+1} = \mathbf{prox}_{cd}(\mathbf{y}^k)$$

is commonly known as the augmented Lagrangian method or the method of multipliers.

Implementation:

- 1. $\mathbf{x}^{k+1} \stackrel{\text{solve}}{\longleftarrow} \min_{\mathbf{x}} \mathcal{L}_A(\mathbf{x}; \mathbf{y}^k, c);$
- 2. $\mathbf{y}^{k+1} = \mathbf{y}^k c(\mathbf{b} \mathbf{A}\mathbf{x}^{k+1}).$

Proposition

The followings are equivalent

- 1. the augmented Lagrangian iteration;
- 2. the implicit gradient iteration of d(y);
- 3. the proximal iteration $\mathbf{y}^{k+1} = \mathbf{prox}_{cd}(\mathbf{y}^k)$.

Dual explicit/implicit (sub)gradient computation

Definitions:

- $\mathcal{L}(x;y) = f(x) + y^T (Ax b)$
- $\mathcal{L}_A(x; y, c) = \mathcal{L}(x; y) + \frac{c}{2} ||Ax b||^2$

Objective:

$$d(y) = -\min_{x} \mathcal{L}(x; y).$$

Explicit (sub)gradient iteration: $\mathbf{y}^{k+1} = \mathbf{y}^k - c\nabla d(\mathbf{y}^k)$ or use a subgradient $\partial d(\mathbf{y}^k)$

- 1. $\mathbf{x}^{k+1} = \arg\min_{\mathbf{x}} \mathcal{L}(\mathbf{x}; \mathbf{y}^k)$;
- 2. $\mathbf{v}^{k+1} = \mathbf{v}^k c(\mathbf{b} \mathbf{A}\mathbf{x}^{k+1}).$

Implicit (sub)gradient step: $\mathbf{y}^{k+1} = \mathbf{prox}_{cd}\mathbf{y}^k$

- 1. $\mathbf{x}^{k+1} = \arg\min_{\mathbf{x}} \mathcal{L}_A(\mathbf{x}; \mathbf{y}^k, c);$
- 2. $\mathbf{y}^{k+1} = \mathbf{y}^k c(\mathbf{b} \mathbf{A}\mathbf{x}^{k+1}).$

The implicit iteration is more stable; "step size" c does not need to diminish.