ECE 405 MICROCOMPUTER & MICROPROCESSOR WEEK THREE LECTURES

Introduction to Operating Systems

- In brief, an operating system is the set of programs that controls a computer. Some examples of operating systems are UNIX, Mach, MS-DOS, MS-Windows, Windows/NT, OS/2 and MacOS.
- A computer system can be divided roughly into four components: the hardware, the operating system, the application programs and the users

Introduction to Operating Systems

- An operating system is a program that acts as an intermediary between a user of a computer and the computer hardware.
- The purpose of an operating system is to provide an environment in which a user can execute programs.
- The primary goal of an operating system is thus to make the computer system convenient to use.
- A secondary goal is to use the computer hardware in an efficient manner.

Objectives of Operating Systems

- To hide details of hardware by creating abstraction.
- To allocate resources to processes (Manage)
- resources).
- Provide a pleasant and effective user interface by Simplify the execution of user programs and make solving user problems easier.
- OS simplifies and manages the complexity of running application programs efficiently.

Objectives of Operating Systems

- Make application software portable and versatile.
- Provide isolation, security and protection among user programs.
- Improve overall system reliability (error confinement, fault tolerance, reconfiguration)

- Process Management.
- Main-Memory Management.
- File Management.
- I/O System Management.
- Secondary-Storage Management.
- Networking,
- Protection System.
- Command Interpreter System

- Process Management
- A process is only ONE instant of a program in execution.
- The five major activities of an operating system in regard to process management are:
- Creation and deletion of user and system processes.
- Suspension and resumption of processes.
- A mechanism for process synchronization.
- A mechanism for process communication.
- A mechanism for deadlock handling

- Process, on the other hand, includes:
- Current value of Program Counter (PC)
- Contents of the processors registers
- Value of the variables
- The processes stack (SP) which typically contains temporary data such as subroutine parameter, return address, and temporary variables.
- A data section that contains global variables.

- Process State
- As a process executes, it changes state. The state of a process is defined in part by the current activity of that process. Each process may be in one of the following states:
- New State: The process being created.
- Running State: A process is said to be running if it has the CPU, that is,
- process actually using the CPU at that particular instant.

Figure: Diagram of process states.

- Blocked (or waiting) State: A process is said to be blocked if it is waiting for some event to happen such that as an I/O completion before it can proceed. Note that a process is unable to run until some external event happens.
- Ready State: A process is said to be ready if it is waiting to be assigned to a processor.
- Terminated state: The process has finished execution

- Main-Memory Management
- Main-Memory is a large array of words or bytes. Each word or byte has its own address. Main memory is a repository of quickly accessible data shared by the CPU and I/O devices.
- The major activities of an operating system in regard to memory-management are:
- Keep track of which part of memory are currently being used and by whom.
- Decide which processes are loaded into memory when memory space becomes available.
- Allocate and deallocate memory space as needed

- File Management
- A file is a collected of related information defined by its creator. Computer can store files on the disk (secondary storage), which provide long term storage.
- The creation and deletion of files.
- The creation and deletion of directions.
- The support of primitives for manipulating files and directions.
- The mapping of files onto secondary storage.
- The backup of files on stable storage media.

- I/O System Management
- One of the purposes of an operating system is to hide the peculiarities of specific hardware devices from the user.
- Secondary-Storage Management
- Generally speaking, systems have several levels of
- storage, including primary storage, secondary storage and cache storage. Instructions and data must be placed in primary storage or cache to be referenced by a running program

Networking

 A distributed system is a collection of processors that do not share memory, peripheral devices, or a clock.
 The processors communicate with one another through communication lines called network.

Protection System

 Protection refers to mechanism for controlling the access of programs, processes, or users to the resources defined by a computer system.

•

- Command Interpreter System
 - A command interpreter is an interface of the operating system with
- the user. The user gives commands with are executed by operating system
- (usually by turning them into system calls).

Operating Systems Services

Program Execution

 The system must be able to load a program into memory and to run it. The program must be able to end its execution, either normally or abnormally (indicating error).

I/O Operations

 A running program may require I/O. This I/O may involve a file or an I/O device.

Operating Systems Services

File System Manipulation

The output of a program may need to be written into new files or input taken from some files. The operating system provides this service.

Error Detection

An error is one part of the system may cause malfunctioning of the complete system. To avoid such a situation the operating system constantly monitors the system for detecting the errors

System Calls and System Programs

 System calls provide the interface between a process and the operating system. These calls are generally available as assembly-language instructions, and are usually listed in the manuals used by assembly-language programmers.

It involves Passing parameters between a running program and OS via registers, memory tables or stack.