1-Form as Scalar Projection onto a Tangent Line

Setup

Consider the smooth curve $C \subseteq \mathbb{R}^2$ defined by

$$C = \{(x, y) \in \mathbb{R}^2 \mid y = x^2\},\$$

and let $f(x) = x^2$, so that f'(x) = 2x. Let

$$p = (1.5, f(1.5)) = (1.5, 2.25),$$

with tangent vector at p:

$$\vec{v} = \langle 1, f'(1.5) \rangle = \langle 1, 3 \rangle$$
.

Hence the tangent space at p is

$$T_pC = \operatorname{span}\{\langle 1, 3 \rangle\}.$$

We define a differential 1-form $\omega \in \Omega^1(\mathbb{R}^2)$ corresponding to the scalar projection onto \vec{v} :

$$\omega = \frac{1}{\sqrt{10}}(dx + 3\,dy).$$

This 1-form evaluates, for any $\vec{w} \in T_p \mathbb{R}^2$, the scalar projection of \vec{w} onto the direction of \vec{v} .

Visualization of Geometry

Interpretation

- The red vector $\vec{v} = \langle 1, 3 \rangle$ is tangent to the curve $y = x^2$ at the point p = (1.5, 2.25).
- The vector $\vec{w} \in T_p \mathbb{R}^2$ is arbitrary.
- The projection $\operatorname{proj}_{\vec{v}}(\vec{w})$ shows the scalar component of \vec{w} in the direction of \vec{v} .
- The 1-form ω returns the component of any input vector along the line in the direction of \vec{v} , normalized by $\|\vec{v}\| = \sqrt{10}$.