

Faculty of Science and Engineering

Department of Mathematics and Statistics

END OF SEMESTER ASSESSMENT PAPER

MODULE CODE: MS4111 SEMESTER: Spring 2007-08

MODULE TITLE: Discrete Mathematics 1 DURATION OF EXAMINATION: 2 1/2 hours

LECTURER: E. MacAogáin PERCENTAGE OF TOTAL MARKS: 80%

EXTERNAL EXAMINER: Prof. J. King

INSTRUCTIONS TO CANDIDATES: Answer four questions. All questions are weighted equally. Give the reasoning for your answers.

(a) Let $A = \{1, 2, 3, ..., 10\}$ and $B = \{2, 4, 6, ..., 12\}$. Find: (i) $A \cup B$ 1 (ii) $A \cap B$ 1 (iii) A - B2 (iv) $(A - B) \cup (B - A)$ 2 (b) Let $A = \{a, b, c\}$ and $B = \{1, 2\}$. Find $A \times B$. 4 (c) Let C, D and E be three sets. Simplify: $\overline{C \cap (D-E)} \cup C$ 5 (d) Prove, using any method, that a set of order n has 2^n subsets. 5 2 (a) Find: (i) gcd(140,48)2 2 (ii) lcm(35,14)(b) Convert the following numbers to decimal numbers: (i) 11001₂ 2 (ii) 104₈ 2 (iii) $A2B_{16}$ 2 (c) Using the Binomial Theorem, or otherwise, expand: $(2a - b)^4$ 5 5 (d) Prove, using mathematical induction, that:

 $2+4+6+\cdots+2n=n(n+1), \forall n \in \mathbf{N}$

(where **N** is the set of natural numbers.)

- 3 (a) For each of the following relations * on the given sets, which of the properties reflexivity, symmetry, transitivity do they have?
 - (i) Set P of living persons: x * y iff x is married to y.
 - (ii) Set **Z** of integers: x * y iff x < y.
 - (iii) Set \mathbf{Z} : x * y iff x + y is even.

3

3

6

2

5

7

8

- (b) Let $m \in \mathbb{N}$. Prove that $x \equiv y \pmod{m}$ is an equivalence relation on \mathbb{Z} .
- (c) Find the set of all integers between -12 and 12 such that:

$$x \equiv 3 \pmod{7}$$

(d) Find the set of all integers between -12 and 12 such that:

$$2x \equiv 1 \pmod{3}$$

4 (a) Show that the following is a contradiction: $(P \land (Q \lor (\sim P))) \land (\sim Q)$

3

- (b) Form the negation of the following statement: 3 < 5 and 4 is even. 3
- (c) Write down the converse, inverse and contrapositive of the following proposition:

if he's old then he's wise.

- (d) For the following truth table:
 - (i) write down the disjunctive normal form of the function
 - (ii) simplify algebraically 3
 - (iii) simplify using Karnaugh maps. 3

- 5 (a) Prove directly that if x and y are even integers then xy is an even integer.
 - (b) Use the contrapositive to prove: if the square of an integer is odd then the integer is odd.
 - (c) Prove by contradiction (i.e. "reductio ad absurdum") that $\sqrt{3}$ is irrational.

6 (a) Find the general solution of the following recurrence relation:

$$a_n = 5a_{n-1} - 6a_{n-2}$$

7

7

(b) Find the particular solution of the above recurrence relation which satisfies the initial conditions:

$$a_0 = 2, \ a_1 = 5$$

Hence evaluate a_5 .

(c) Find the general solution of the following recurrence relation:

$$a_n = 5a_{n-1} - 6a_{n-2} + 10$$

[Hint: see part(a)] 6