TRIGONOMETRY Chapter 22

FUNCIONES TRIGONOMÉTRICAS I

HELICOMOTIVACIÓN

HELICOTEORIA

FUNCION SENO:
$$F = \{(x;y)/y = \text{sen}x ; x \in R\}$$

Tabulando algunos valores para x e y :

X	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
y = senx	0	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0

Tabulando mas valores y uniendo con una curva dichos puntos, tenemos:

Dominio: Dom F = R; $x \in R$

Rango: Ran F = $\begin{bmatrix} -1;1 \end{bmatrix} \Rightarrow -1 \leq \text{sen } x \leq 1$

Periodo: $T = 2\pi$

Es una función impar : sen(-x) = -senx

OBSERVACION:

Sea la función : y = A.senBx

Sea la funcion . fAmplitud: |A|; Período: $T = \frac{2\pi}{|B|}$

Ejemplos:

$$y = 3 \sin 2x$$

$$\begin{cases} |A| = 3 \\ T = \pi \end{cases}$$

•
$$y = -2 \operatorname{sen} x$$

$$\begin{cases} |A| = 2 \\ T = 2\pi \end{cases}$$

Halle el rango de la función : f(x) = 5 sen x - 3

Resolución

Recordemos que:

$$\forall x \in \mathbb{R} : -1 \leq senx \leq 1 \quad \dots \ (*)$$

De (*):
$$-1 \le \text{senx} \le 1$$

 $-5 \le 5 \text{ senx} \le 5$
 $-8 \le 5 \text{ senx} - 3 \le 2$
 $-8 \le f(x) \le 2$

$$Ran(f) = [-8;2]$$

Halle el rango de la función: $g(x) = \frac{2 sen 3x - 1}{3}$

Resolución

Recordemos que:

$$\forall x \in \mathbb{R} : 3x \in \mathbb{R}$$

$$\forall \ 3x \in \mathbb{R} : -1 \leq sen3x \leq 1 \dots (*)$$

e (*):

$$-1 \le \sin 3x \le 1$$

 $-2 \le 2 \sin 3x \le 2$
 $-3 \le 2 \sin 3x - 1 \le 1$
 $\div 3$
 $-1 \le \frac{2 \sin 3x - 1}{3} \le \frac{1}{3}$
 $g(x)$

$$\therefore \operatorname{Ran}\left(g\right) = \left[-1; \frac{1}{3}\right]$$

Halle el rango de la unción: f(x) = 6 senx . cosx + 2

Resolución

Recordemos que:

 $2 \operatorname{senx} \cdot \operatorname{cosx} = \operatorname{sen} 2x$

 $\forall x \in \mathbb{R} : 2x \in \mathbb{R}$

 $\forall \ 2x \in \mathbb{R} : -1 \leq sen2x \leq 1 \quad \dots \quad (*)$

$$f(x) = 3.2 senx.cosx + 2$$
 $f(x) = 3. sen2x + 2$
De (*):
$$-1 \le sen2x \le 1$$

$$-3 \le 3 sen2x \le 3$$

$$+2 \qquad -1 \le 3 sen2x + 2 \le 5$$

$$f(x)$$

∴ Ran
$$(f) = [-1; 5]$$

Calcule $T_1 + T_2$, siendo T_1 y T_2 los periodos de las funciones f(x) y g(x)respectivamente, donde: f(x) = 3 sen(5x) y $g(x) = 2 sen(\frac{x}{2})$

Resolución

Recordemos que:

$$y = A sen(Bx)$$

$$f(x) = 3 \operatorname{sen}(5x)$$

$$T_1 = \frac{2\pi}{|5|} = \frac{2\pi}{5}$$

$$g(x) = 2 \operatorname{sen}\left(\frac{1}{3}x\right) \longrightarrow T_2 = \frac{2\pi}{\left|\frac{1}{3}\right|} = \frac{\frac{2\pi}{1}}{\frac{1}{3}}$$

$$T_1 + T_2 = \frac{2\pi}{5} + 6\pi$$

$$T_1 + T_2 = \frac{2\pi}{5} + 6\pi$$
 $T_1 + T_2 = \frac{32\pi}{5}$

 $T_2 = 6\pi$

Del gráfico, halle el valor a

Resolución

Sea: f(x) = y = senx

Se cumple que : $P(\frac{2\pi}{3}; a) \in f$

Luego:
$$a = sen\left(\frac{2\pi}{3}\right) = sen\left(\pi - \frac{\pi}{3}\right)$$

$$a = + \operatorname{sen}\left(\frac{\pi}{3}\right)$$

$$\therefore a = \frac{\sqrt{3}}{2}$$

Las ganancias de una empresa del rubro metal mecánica, están definidas por : f(x) = a sen(x) + b; donde a y b son los costos fijos y variables. Además el rango de la función pertenece al intervalo [-2; 4]; calcule el valor de E = 3a + b

Resolución

Recordemos que:

$$\forall x \in \mathbb{R} : -1 \leq senx \leq 1$$

$$-a \leq a senx \leq a$$

$$+b$$

$$-a + b \leq a senx + b \leq a + b$$

$$f(x)$$

$$-2 = -a + b \leq f(x) \leq a + b = 4$$

Luego:
$$-a+b=-2$$
 $a+b=4$
 $2b=2$
 $b=1$
 $a+b=4$
 $a+b=4$
 $a+b=4$
 $a+b=4$
 $b=3$

Calculamos E:
$$E = 3(3) + 1$$

$$\therefore \mathbf{E} = \mathbf{10}$$

El movimiento de las olas de una playa está representado en un gráfico donde se indican los puntos más altos y más bajos en ellas. Determine el área sombreada en el gráfico.

Resolución

Dato:
$$y = 3 \operatorname{sen}(1x)$$
 $A B$

Luego:
$$T = \frac{2\pi}{|B|} = \frac{2\pi}{|1|} = \frac{2\pi}{1} = 2\pi$$

Calculamos S:
$$S = \frac{(\pi)(3)}{2}$$

$$\therefore S = \frac{3\pi}{2} u^2$$