Diagrama de aepo libre sobre m: Por segunda leng de Newton T-mg = -ma (1) 7 Diagrama de cuerpo libre sobre M: Por segunda ley do Nowton N -T -Mg =0 TMJ Calarlando sua de torques: TR = IX on $I = \frac{MR^2}{n}$ as; $TR = \frac{MR^2}{2} \times 3$ con $d = \frac{d}{R}$ (roudia6n de de) deslizaciento $TR = \frac{MR^2 a}{2} R T = \frac{Ma}{2} (2)$ a de (1) pera reemplazerla en (2) Des perjondo $T = \frac{M}{2} \left(\frac{mg - T}{M} \right), \quad 2mT = Mmg - MT$ 2mT + MT = Mmg T (2m+M) = Mmg -> T= Mm g Reemplazando este resultado en (2) $\frac{Mm}{(2m+M)}g = \frac{Hq}{2} \qquad q = \frac{2m}{(2m+M)}g$ $Q = \frac{1}{\left(1 + \frac{M}{2m}\right)}$

Solverón gereral 3, Física I (Abril 2016)

Sol. P3. FI (Abril 2016)

Diagrama de cuerpo libre sobre el cilindro

Por segunda Ley de Newton:

Sumando torques alrededor del contro de masa.

$$f_{+r}b = Id$$
 con $I = \frac{Mb^2}{2}y$

for condicion de rolanierto su rotación sun deslizamento V = a/b, as;

Reemplazondo (2) en (1)

$$Mg \sin \beta - Ma = Ma = 3a$$
.

$$\Rightarrow \left[\alpha = \frac{2}{3} g \sin \beta \right]$$

(3) Diagrama de cuerpo libre ordone la posona (7, y7, son friccionas)

$$N_1+N_2-mg=0$$
 (1)

$$F_1 + F_2 = m\omega^2$$

Sumando torque, alrededor del contro de maja.

$$F_1 L + F_2 L + N_1 \left(\frac{d}{2}\right) - N_2 \left(\frac{d}{2}\right) = 0 \quad (3)$$

Reemplazando Fittz en (3)

$$\frac{MU^{2}L}{R}L + N_{1}\frac{d}{Z} - N_{L}\frac{d}{Z} = 0, N_{1} - N_{2} = \frac{-2MU^{2}L}{Rd}$$
 (4)

Sumando (i) y (A)

ndo (i) y (A)
$$2N_{1} = mg - 2mu^{2}L, \qquad N_{1} = \frac{mq}{Rd} - \frac{mu^{2}L}{Rd}$$

$$N_{2} = \frac{mq}{Rd} + \frac{mu^{4}L}{Rd}$$

$$N_2 = \frac{mq}{2} + \frac{mu^2L}{Rd}$$

Sol. P3 PI (Abril 2016)

Haciendo un diagramo de cuerpo libre en el anto A:
h tr.
fr. 13. Vmg
for segonda ley do newton.
$m_{1} + N = \frac{m^{2}}{R} $ (1)
Pora que en ese punto la esferzi se montenza en trayectoria
Pora que en ese punto la esferzi se montenga en trayectoria craulor, se debe montener la condición (i). La minima velocidad con la que podría llegar a ese punto se da cubando N=o.
$mg = \frac{m \mathcal{Q}_{min}}{2} \qquad \mathcal{Q}_{min}^2 = \mathcal{M}_{gR} \qquad (2)$
Por conservación de energia entre el punto inicial (i) y (A)
con $I = \frac{2}{3}mr^2$ y por notación sin deslizamiento $w_{min} = \frac{Q_{min}}{r}$
$Mgh_{min} = \frac{1}{2}MQ_{min}^2 + \frac{1}{2}\frac{2}{3}MpZ\frac{Q_{min}}{pZ} + \frac{1}{2}Mg2R$
2 """ 2 3 " Z J Permilazando (2) 00 -1
Reemplazando (2) en esta easación
$A^{h_{min}} = \frac{1}{2}gR + \frac{1}{2}gR + \frac{1}{2}zR$
$h_{\text{min}} = \frac{1}{2}R + \frac{2}{6}R + R = \left[\frac{11}{6}R\right]$
<u> </u>

(In el caso de habor tomado Agantidos.

I = Mr² entonces. [hmin = 2R])