Laboratório 3 - Árvore de decisão

Disciplina CTC-17 Inteligência Artificial

Prof. Paulo André Lima de Castro

Igor Mourão Ribeiro¹ Isabelle Ferreira de Oliveira¹

¹Aluno de Graduação em Engenharia do Instituto Tecnológico de Aeronáutica (ITA)

E-mail: igormr98mr@gmail.com

isabelle.ferreira3000@gmail.com

Os códigos elaborados podem ser consultados integralmente em https://github.com/isabelleferreira3000/ctc-17/tree/master/lab3. Abaixo seguem os resultados obtidos por meio dos códigos implementado. Os arquivos com os códigos também estão em anexo à submissão.

Objetivos

O trabalho tem como objetivo exercitar e fixar conhecimentos adquiridos sobre Árvores de decisão utilizando uma base de dados de fonte diversa e que necessita pré-processamento. Para isso será resolvido o problema proposto: dadas informações sobre um novo usuário (idade, gênero e ocupação), sugerir três filmes que ele irá apreciar. A linguagem escolhida para resolução dos problema foi python.

Descrição dos Classificadores

Assim como foi sugerido no roteiro do laboratório, foi utilizado o banco de dados de classificações de filmes fornecido, assim como foi implementado uma árvore de decisões como modelo de aprendizado.

A forma pensada para realizar o objetivo foi: dado um usuário e um filme (ou seja, as informações de idade, gênero, ocupação, para o usuário; e de gêneros, para o filme), a árvore de decisão chega a um valor de avaliação do filme (um *rating* de 1 a 5). Para recomendar os três filmes, então, percorre-se a lista de filmes, predizendo a avaliação que o usuário em questão o daria, tendo em vista os gêneros do filme e da árvore implementada. Recomenda-se, por fim, os três primeiros filmes com notas 4 ou 5 que aparecem dessa forma.

A implementação da árvore se deu através do algoritmo apresentado em aula e mostrado na Figura 1. Para se chegar aos dados utilizados como parâmetro *exemplos* do algoritmo, foi realizado inicialmente um pré-processamento dos dados fornecidos:

 Primeiro, mergeou-se todas as três tabelas (movies, ratings e users) pelos atributos UserID e MovieID. Retirou-se também as colunas Timestamp e Zip-code por entender-se que são dados irrelevantes para a predição. A essa tabela foi dado o nome de mergerd_data.

- A partir de merged_data, separou-se gêneros compostos de filmes (por exemplo, "Animation|Children's|Comedy") em linhas diferentes, cada linha para um gênero. Assim, um usuário avaliando como 5 um filme de "Animation|Children's", conta como uma avaliação 5 para um filme de "Animation" e uma outra avaliação 5 para um filme de "Children's". Isso foi feito para tornar mais significativa o atributo Genrer, pois inicialmente pouco se repetiam os gêneros compostos. A essa tabela foi dado o nome de data.
- Por fim, embaralhou-se as linhas de *data* aleatoriamente, a fim de não prejudicar o treino e o teste quando forem separados os sets de treino e de teste.

```
função APRENDIZAGEM-EM-ÁRVORE-DE-DECISÃO (exemplos, atributos, padrão) retorna uma árvore de decisão
  entradas: exemplos, conjunto de exemplos
            atributos, conjunto de atributos
            padrão, valor-padrão para o predicado de objetivo
  se exemplos é vazio então retornar padrão
  senão se todos os exemplos têm a mesma classificação então retornar a classificação
  senão se atributos é vazio então retornar VALOR-DA-MAIORIA(exemplos)
  senão
    melhor ← ESCOLHER-ATRIBUTO(atributos, exemplos)
    árvore ← uma nova árvore de decisão com teste de raiz melhor
    m \leftarrow VALOR-DA-MAIORIA(exemplos_i)
     para cada valor vi de melhor faça
       exemplos; \leftarrow {elementos de exemplos com melhor = v_i }
       subárvore ← APRENDIZAGEM-EM-ÁRVORE-DE-DECISÃO(exemplos;, atributos - melhor, m)
       adicionar uma ramificação a árvore com rótulo v; e subárvore subárvore
  retornar árvore
```

Figura 1: Algoritmo para implementação da árvore de decisão.

Separou-se o dataset final *data* em três subgrupos, *training set*, *cross validation* set e *test set*, seguindo uma proporção de 3:1:1. Numa primeira situação, utilizou-se todo a tabela *data* (cerca de 1.200.000 linhas para o *training set*); já numa segunda situação, utilizou-se apenas cerca de 50.000 linhas para o *training set*.

No classificador *a priori*, apenas avaliou-se os filmes seguindo sempre com a avaliação mais recorrente.

Dados e Resultados da comparação

Os dados foram melhor descritos na seção Descrição dos Classificadores acima, mas a seguir também será abordado o *dataset* criado pelas avaliações de filme da aluna Isabelle. Já os resultados para os modelos descritos anteriormente foram apresentados nas Tabela de 2 a 5.

Acerca do dataset criado pelas avaliações de filme da aluna Isabelle, foram analisados 10 filmes. A lista de filmes com a avaliação da aluna e a predição da árvore de decisão foi apresentada na Tabela 1. As cores na Tabela 1 foram escolhidos da seguinte

maneira: em verde, o caso de acerto; em vermelho, predições completamente erradas (na qual um filme seria indicado e o usuário não gostaria, ou um filme que o usuário gostaria bastante não foi indicado); em amarelo, predições erradas, porém não tão prejudiciais (uma vez que o filme seria indicado e o usuário gostaria do filme, mesmo que não no mesmo nível predito).

Tabela 1: Filmes, avaliações e predições para o dataset criado pela aluna.

Filme	Avaliação	Predição	
1: Toy Story (1995)	5	3	
3799: Pok♦mon the Movie 2000 (2000)	5	3	
3945: Digimon: The Movie (2000)	4	3	
3752: Me, Myself and Irene (2000)	3	4	
3564: Flintstones in Viva Rock Vegas, The (2000)	3	3	
3527: Predator (1987)	2	4	
2205: Mr. & Mrs. Smith (1941)	2	4	
2959: Fight Club (1999)	5	4	
19: Ace Ventura: When Nature Calls (1995)	3	4	
2571: Matrix, The (1999)	5	4	

Tabela 2: Acurácias dos modelos apresentados.

Modelo	Acurácia		
	Training set	Validation set	Test set
Decision Tree com todos os dados	0.3552	0.3498	0.3493
Decision Tree com parte dos dados	0.3999	0.3235	0.3209
A priori com avaliação mais recorrente	0.3476	0.3446	0.3449
Decision Tree com	-	-	0.15

dataset criado pela aluna Isabelle			
A priori com dataset criado pela aluna Isabelle	-	-	0.15

Tabela 3: Matriz de confusão dos modelos apresentados.

Mode	Matriz de confusão Matriz de confusão					
lo	Training set	Validation set	Test set			
Decis ion Tree com todo s os dado s	[[1088	[[269	[[352 32 2697 19493 800] [133 78 4750 39066 1318] [236 105 9956 95752 3780] [190 83 9815 129328 6516] [176 37 5713 82911 7046]]			
Decis ion Tree com parte dos dado s	[[136	[[20	[[11 13 202 589 101] [12 24 377 1290 214] [31 38 829 2868 572] [32 54 960 3906 848] [14 37 605 2538 649]]			
A priori com avali ação mais recor rente	[[0 0 0 2857 0] [0 0 0 5323 0] [0 0 0 13306 0] [0 0 0 17536 0] [0 0 0 11421 0]]	[[0 0 0 919 0] [0 0 0 1852 0] [0 0 0 4510 0] [0 0 0 5794 0] [0 0 0 3739 0]]	[[0 0 0 916 0] [0 0 0 1917 0] [0 0 0 4338 0] [0 0 0 5800 0] [0 0 0 3843 0]]			
Decis ion Tree com datas et criad o pela aluna Isabe Ile		-	[[0 2 2 0] [1 0 3 0] [1 2 0 0] [2 4 3 0]]			
A priori com datas et criad o pela aluna lsabe lle	-	-	[[0 0 4 0] [0 0 4 0] [0 0 3 0] [0 0 9 0]]			

Tabela 4: Erro quadrático médio dos modelos apresentados.

Modelo	Erro quadrático médio		
	Training set	Validation set	Test set
Decision Tree com todos os dados	1.4430	1.4571	1.4541
Decision Tree com parte dos dados	1.5159	1.6776	1.6866
A priori com avaliação mais recorrente	1.4220	1.4231	1.4329
Decision Tree com dataset criado pela aluna Isabelle	-	-	2.0
A priori com dataset criado pela aluna Isabelle	-	-	1.45

Tabela 5: Estatística kappa dos modelos apresentados.

Modelo	Estatística kappa		
	Training set	Validation set	Test set
Decision Tree com todos os dados	0.03269	0.02301	0.02275
Decision Tree com parte dos dados	0.1322	0.0204	0.01914
A priori com avaliação mais recorrente	0.0	0.0	0.0
Decision Tree com dataset criado pela aluna Isabelle	-	-	-0.07594
A priori com dataset criado pela aluna Isabelle	-	-	0.0

Discussão e sugestão de melhorias para o classificador

Acreditou-se que os resultados para acurácia (assim como para as outras métricas) não foram tão satisfatórios devido principalmente a presença de ruídos nos dados. Esses ruídos são ocasionados por diferentes usuários acabarem se encaixando no mesmo perfil

(Idade, Gênero e Ocupação) e avaliarem filmes diferentemente. Além disso, separar os gêneros de filmes compostos em linhas distintas com gêneros simples também contribuiu para o aumento do ruído. Utilizar os nomes dos filmes infelizmente era inviável, dada a grande quantidade de filmes diferentes.

Através da matriz de confusão, pode-se perceber a grande tendência em avaliar-se com notas altas (4 e 5) em detrimento das demais notas. O erro quadrático médio (assim como a acurácia) mostrou que o modelo muito mais simples (o *a priori*) alcançou resultados semelhantes, ou até mesmo melhores do que os da árvore de decisão. Infelizmente, o coeficiente Kappa apresentou o quão semelhante ao aleatório acabou se tornando essa previsão.

Esse resultado, entretanto mede referente aos acertos das previsões de avaliações dadas aos filmes pelos usuários, o que não necessariamente prejudica a indicação de filme tanto assim. Note que, caso o sistema preveja avaliações 4, 4 e 5 para supostos três filmes, e o usuário passa a avaliar como 5, 5, 4, não houve nenhum acerto usando essas métricas, mas mesmo assim as indicações deixaram o usuário satisfeito.

Seria interessante, então, analisar mais detalhadamente o resultado do *test set*, assim como foi analisado com as cores a Tabela 1. Assim, talvez possa-se observar que as previsões de avaliações, embora erradas, não prejudicasse tanto o usuário. Por exemplo, para o caso da Tabela 1, seriam indicados para se assistir os filmes "Me, Myself and Irene (2000)", "Predator (1987)", "Mr. & Mrs. Smith (1941)", "Fight Club (1999)", "Ace Ventura: When Nature Calls (1995)" ou "Matrix, The (1999)", e a usuária estaria satisfeita com 4 dos 6 filmes indicados.

Conclusões

Proposta de trabalho foi interessante por levar os alunos a implementar um aprendizado por árvore de decisão (o que leva a um entendimento melhor do algoritmo), além de fazê-lo lidar com a preparação inicial dos dados (etapa bastante presente em projetos reais de aprendizado). A dupla classifica esse trabalho como extenso, mas está com a sua complexidade dentro do esperado para o problema.

O trabalho ajudou no entendimento sobre o assunto, servindo não só para mostrar como é a implementação desses algoritmos, mas também entender que às vezes modelos mais simples podem ser semelhantes à modelos mais elaborados. Foi bastante interessante criar o próprio *dataset* com avaliações de filmes, a fim de se colocar no lugar do usuário do serviço fornecido e analisá-lo mais pessoalmente do que só através das métricas numéricas.

Descrição da Implementação

A linguagem escolhida para resolução dos problema foi Python3, utilizando também as bibliotecas Pandas e Sklearn para lidar com arquivos de dados e para as métricas de comparação, respectivamente. A árvore foi implementada sem o auxílio de bibliotecas e pode ter seu código analisado tanto por meio do código enviado em anexo, como pelo link para o repositório Github apresentado no início do relatório.