832 A A deeper comparison with the current methods

In this section, we will discuss the four approaches (nuclear norm minimization, alternating projections, low-rank approximation with GD, and single-step low-rank approximation) in the inroduction in more detail, and compare them with our method. Note that most of them are RMSE recovery in the noisy setting, but we can still make comparison due to the fact that our infinity norm bound automatically implies a RMSE bound with the same error margin.

838 A.1 The noiseless case

839 A.1.1 Nuclear norm minimization

This approach starts from the intuitive idea that if A is mathematically recoverable, it has to be the matrix with the lowest rank agreeing with the observations at the revealed entries. Formally, one would like to solve the following optimization problem:

minimize
$$\operatorname{rank} X$$
 subject to $X_{\Omega} = A_{\Omega}$. (8)

Unfortunately, this problem is NP-hard, and all existing algorithms take doubly exponential time in terms of the dimensions of A [41]. To overcome this problem, Candes and Recht [1], motivated by an idea from the *sparse signal recovery* problem in the field of *compressed sensing* [42, 43], proposed to replace the rank with the nuclear norm of X, leading to

minimize
$$||X||_*$$
 subject to $X_{\Omega} = A_{\Omega}$. (9)

The paper [1] was shortly followed by Candes and Tao [2], with both improvements and trade-offs, and ultimately by Recht [3], who improved both previous results, proving that A is the unique solution to (9), given the sampling size bound

$$|\Omega| \ge C \max\{\mu_0, \mu_1^2\} r N \log^2 N,$$
 (10)

850 for $\mu_1 := \frac{1}{r} \sqrt{mn} \|UV^T\|_{\infty}$.

864

If one replaces μ_1 with its trivial upper bound $\mu_0 \sqrt{r}$, the RHS becomes $C\mu_0^2 r^2 N \log^2 N$. This attains the optimal power of N while missing slightly from the optimal powers of r and $\log N$.

The key advantage of replacing the rank in Problem (8) with the nuclear norm is that Problem (9) 853 is a convex program, which can be further translated into a semidefinite program [1, 2], solvable 854 in polynomial time by a number of algorithms. However, convex optimization program usually 855 runs slowly in practice. The survey [15] mentioned the interior point-based methods SDPT3 [44] 856 and SeDuMi [45], which can take up to $O(|\Omega|^2N^2)$ floating point operations (FLOPs) assuming (10), even if one takes advantage of the sparsity of A_{Ω} . Indeed, as Ω is at least $CN \log N$ (by 858 coupon collector), the number of operations is $\Omega(N^4)$, which is too large even for moderate N. An 859 iterative singular value thresholding method aiming to solve a regularized version of nuclear norm 860 minimization, trading exactness for performance, has been proposed [46]. This motivates further 861 research in the area to find faster methods. In what follows we discuss two other methods, which 862 provide faster algorithms, but require extra assumptions to work. 863

A.1.2 Modified alternating projections

The intuition behind this approach is to fix the rank, then attempt to match the samples as much as possible. If we *know* r = rank A precisely, it is natural to look at the following optimization problem

minimize
$$\|(A - XY^T)_{\Omega}\|_F^2$$
 over $X \in \mathbb{R}^{m \times r}, Y \in \mathbb{R}^{r \times n}$. (11)

This, unfortunately, like (8), is NP-hard [16]. There have been many studies proposing variants of alternating projections, all of which involve the following basic idea: suppose one already obtains an approximator $X^{(l)}$ of X at iteration l, then $Y^{(l)}$ and $X^{(l+1)}$ are defined by

$$Y^{(l)} := \underset{Y \in \mathbb{R}^{r \times n}}{\operatorname{argmin}} \| (A - X^{(l)} Y^T)_{\Omega} \|_F^2, \qquad X^{(l+1)} := \underset{X \in \mathbb{R}^{r \times n}}{\operatorname{argmin}} \| (A - X(Y^{(l)})^T)_{\Omega} \|_F^2.$$

The survey [16] pointed out that these methods tend to outperform nuclear norm minimization in practice. Oh the other hand, there are few rigorous guarantees for recovery. The convergence and final output of the basic algorithm above also depends highly on the choice of $X^{(0)}$ [16].

Jain, Netrapalli and Sanghavi (2012) [24] developed one of the first alternating projections variants for matrix completion with rigorous recovery guarantees. They proved that, under the same setting in Section 1.2 and the sample size condition

$$|\Omega| \ge C\mu_0 r^{4.5} \left(\frac{\sigma_1}{\sigma_r}\right)^4 N \log N \log \frac{r}{\varepsilon},$$

the AP algorithm in [24] recovers A within an Frobenius norm error ε in $O(|\Omega|r^2\log(1/\varepsilon))$ time with high probability. Since the Frobenius norm is larger than the infinity norm, this gives us an exact recovery if we set $\varepsilon = \varepsilon_0/3$, where ε_0 is the precision level of A; see subsection ??.

Compared to the previous approach, there are two new essential requirements here. First one needs to know the rank of A precisely. Second, there is a strong dependence on the condition number $\kappa := \sigma_1/\sigma_r$. Therefore, the result is effective only if κ is small.

The condition number factor was reduced to quadratic by Hardt [5] and again by Hardt and Wooters [4] to logarithmic, at the cost of an increase in the powers of r, μ_0 and $\log N$.

Remark A.1 (A problem with trying all possible ranks). In practice, usually we do not know the 884 rank r exactly, but have some estimates (for instance, r is between known values r_{\min} and r_{\max}). It 885 has been suggested (see, for instance, [47]) that one tries all integers in this range as the potential 886 value of r. From the complexity view point, this only increases the running time by a small factor 887 $r_{\rm max} - r_{\rm min}$, which is acceptable. However, the main trouble with this idea is that it is not clear that 888 among the ouputs, which one we should choose. If we go for exact recovery, then what should we do 889 if there are two different outputs which agree on Ω ? We have not found a rigorious treatment of this 890 issue in the literature. 891

A.1.3 Low rank approximation with Gradient descent

892

899

900

901

902

903

904 905

906

907

908

909

As discussed earlier, if one assumes the independent sampling model with probability p, then the rescaled sample matrix $p^{-1}A_{\Omega}$ can be viewed as a *random perturbation* of A. Since $\mathbf{E}\left[A_{\Omega}/p\right]=A$, this perturbation is unbiased, and the matrix $E:=p^{-1}A_{\Omega}-A$ is a random matrix with mean zero.

Assuming that the rank r is known, Keshavan, Montanari and Oh [7] first use the best rank-r approximation of $p^{-1}A_{\Omega}$ to obtain an approximation of A. Next, they add a cleaning step, using optimization via gradient descent, to achieve exact recovery. Here is the description of their algorithm:

- 1. Trimming: first zero out all columns in A_{Ω} with more than $2|\Omega|/m$ entries, then zero out all rows with more than $2|\Omega|/n$ entries, producing a matrix $\widetilde{A_{\Omega}}$.
- 2. Low-rank approximation: Compute the best rank-r approximation of \widetilde{A}_{Ω} via truncated SVD. Let $\mathsf{T}_r(\widetilde{A}_{\Omega}) = \widetilde{U}_r \widetilde{\Sigma}_r \widetilde{V}_r^T$ be the output.
 - 3. Cleaning: Solve for X, Y, S in the following optimization problem:

$$\text{minimize} \quad \left\|A_{\Omega} - (XSY^T)_{\Omega}\right\|_F^2 \quad \text{for} \quad X \in \mathbb{R}^{m \times r}, Y \in \mathbb{R}^{n \times r}, S \in \mathbb{R}^{r \times r}, \quad (12)^{m \times r} = 0$$

using a gradient descent variant [7], starting with $X_0 = \tilde{U}_r$, $Y_0 = \tilde{V}_r$ and S_0 be the $r \times r$ matrix minimizing the objective function above given X_0 and Y_0 . Let (X_*, Y_*, S_*) be the optimal solution. Output $X_*S_*Y_*^T$.

The last cleaning step resembles the optimization problem in alternating projections methods, but here the authors used gradient descent instead. They [7] showed that the algorithm returns an output arbitrarily close to A, given *enough* iterations in the cleaning step, provided the following sampling size condition:

$$|\Omega| \ge C \max \left\{ \mu_0 \sqrt{mn} \left(\frac{\sigma_1}{\sigma_r} \right)^2 r \log N, \quad \max\{\mu_0, \mu_1\}^2 r \min\{m, n\} \left(\frac{\sigma_1}{\sigma_r} \right)^6 \right\}. \tag{13}$$

It was pointed out [7] that the powers of r and $\log N$ are optimal by the coupon-collector limit, answering a question from [2]. On the other hand, the bound depends heavily on the condition number $\kappa := \sigma_1/\sigma_r$. Furthermore, similar to the situation in the previous subsection, one needs to know the rank r in advance; see Remark A.1.

In a later paper [47], Keshavan and Oh showed that one can compute r (with high probability) if the condition number satisfies $\kappa = O(1)$; see also Remark A.1. Thus, it seems that the critical extra assumption for this algorithm (apart from the three basic assumptions) to be efficient is that the singular values of A are of the same order of magnitude, i.e., $\kappa = O(1)$. This assumption is strong, and we do not know how often it holds in practice. In fact, Figure 1.3 shows that the centered data matrix made from the Yale face dataset has a large condition number.

From the complexity point of view, the first part (low rank approximation) of the algorithm is very fast, in both theory and practice, as it used truncated SVD only once. On the other hand, [7] did not provide a full convergence rate analysis of their (cleaning) gradient descent part. It only briefly mentioned that quadratic convergence is possible [7, Page 14].

A.1.4 Single-step Low-rank approximation with rounding-off

925

949

952

In this approach, one exploits the fact that A has finite precision (which is a necessary assumption for exact recovery to make sense); see subsection 1.1. It is clear that if each entry of A is an integer multiple of ε_0 , then to achieve an exact recovery, it suffices to compute each entry with error less than $\varepsilon_0/2$, and then round it off. In other words, it is sufficient to obtain an approximation of A in the inifinity norm. It has been shown, under different extra assumptions, that low rank approximation fullfils this purpose.

The first infinity norm result was obtained by Abbe, Fan, Wang, and Zhong [9]. They showed that the best rank-r approximation of $p^{-1}A_{\Omega}$ is close to A in the infinity norm [9, Theorem 3.4]. Technically, they proved that if $p \geq 6N^{-1}\log N$, then

$$||p^{-1}(A_{\Omega})_r - A||_{\infty} \le C\mu_0^2 \kappa^4 ||A||_{\infty} \sqrt{\frac{\log N}{pN}},$$

for some universal constant C, provided $\sigma_r \ge C\kappa \|A\|_{\infty} \sqrt{\frac{N \log N}{p}}$, where $\kappa = \sigma_1/\sigma_r$ is the condition number.

If we turn this result into an algorithm (by simply rounding off the approximation), then we face the same two issues discussed in the previous subsection. The algorithm needs to know the rank r, and the condition number κ has to be small. As discussed before, this boils down to the strong assumption that the condition number is bounded by a constant ($\kappa = O(1)$).

Eliminating the condition number. Very recently, Bhardwaj and Vu [10] used different mathematical tools to analyzed a slightly different algorithm. In their analysis, they do not need to know the rank of A. Next, their bound on $|\Omega|$ does not include the condition number κ . Thus, they completely eliminated the role of the condition number. However, the cost here is that they need a new assumption on the gaps between consecutive singular values.

As this work is the closest to our new result, let us state their result for matrices with integer entries (the precision $\varepsilon_0 = 1$). One can reduce the case of general case to this by scaling.

948 Algorithm A.2 (Approximate-and-Round (AR)).

- 1. Let $\tilde{A} := p^{-1}A_{\Omega}$ and compute the SVD: $\tilde{A} = \tilde{U}\tilde{\Sigma}\tilde{V}^T = \sum_{i=1}^{m \wedge n} \tilde{\sigma}_i \tilde{u}_i \tilde{v}_i^T$.
- 2. Let \tilde{s} be the last index such that $\tilde{\sigma}_i \geq \frac{N}{8r\mu}$, where $\mu := N \max\{\|U\|_{\infty}^2, \|V\|_{\infty}^2\}$ is known.
- 951 3. Let $\hat{A} := \sum_{i=1}^{\tilde{s}} \tilde{\sigma}_i \tilde{u}_i \tilde{v}_i^T$.
 - 4. Round off every entry of \hat{A} to the nearest integer.

They showed that with probability 1-o(1), before the rounding step, $\|\hat{A}-A\|_{\infty} < 1/2$, guaranteeing an exact recovery of A, under the following assumptions:

955 • Low-rank: r = O(1).

956

957

958

959

979

• Incoherence: $\mu = O(1)$.

• Sampling density: $p \ge N^{-1} \log^{4.03} N$.

• Bounded entries: $||A||_{\infty} \leq K_A$ for a known constant K_A .

• Gaps between consecutive singular values: $\min_{i \in [s]} (\sigma_i - \sigma_{i+1}) \ge Cp^{-1} \log N$.

Aside from the first three basic assumptions, the new assumption that the entries are bounded is standard for real-life datasets. In the step of finding the threshold, it seems that one needs to know both r and μ , but a closer look at the analysis reveals that it is possible to relax to knowing only their upper bounds. (We will do exactly this in our algorithm, which is a variant of AR.)

As discussed, the main improvement of $\bf AR$ over the previous spectral approaches is the removal of the dependence on the condition number. One no longer need $\kappa = O(1)$. This removal was based on an entirely different mathematical analysis, which shows that the leading singular vectors of A and $p^{-1}A_{\Omega}$ are close in the infinity norm.

In the new assumption on the gaps, the the required bound for the gaps is relatively mild (weaker than what one requires for the application of Davis-Kahan theorem; see [10] for more discussion). However, we do not know how often matrices in practice satisfy it. In fact, Figure 1.3 shows that the Yale face database matrix [26] has several steep drops in singular value gaps.

The reader may have already noticed that this gap assumption, at least in spirit, goes into the *opposite*direction of the small condition number assumption. Indeed, if the gaps between the consecutive
singular values are large, then its suggests that the singular values decay fast, and the condition
number is also large. So, from the mathematical view point, the situation is quite intriguing. We have
two valid theorems with *constrasting extra assumptions* (beyond the three basic assumptions). The
most logical explanation here should be that neither assumption is in fact needed. This conjecture, in
the (more difficult) noisy setting, presented in the next section, is the motivation of our study.

A.2 Recovery with Noise

Candes and Plan, in their influential survey [8], pointed out that data is often noisy. Thus, a more realistic model for the recovery problem is to consider A' = A + Z, for A being the low rank ground truth matrix and Z the noise. We observe a sparse matrix A'_{Ω} , where each entry of A' is observed with probability p and set to 0 otherwise. In other words, we have access to a small random set of noisy entries. Notice that in this case, the truth matrix A is still low rank, but the noisy matrix A', whose entries we observe, can have full rank. In what follow, we denote our input by $A_{\Omega,Z}$, emphasizing the presence of the noise.

Recovery from noisy observation is clearly a harder problem, and most papers concerning noisy recovery aim for recovery in *the normalized Frobenius norm* (root mean square error; RMSE), rather than exact recovery.

Continuing the nuclear norm minimization approach, Candes and Plan [8] adapted to the noisy situation by relaxing the constraint on the observations, leading to the following problem:

minimize
$$||X||_*$$
 subject to $||X_{\Omega} - A_{\Omega,Z}||_F \le \delta$, (14)

where δ is a known upper bound on $\|Z_{\Omega}\|_F$. The authors showed that, under the same sample size condition in [3], with probability 1 - o(1), the optimal solution \hat{A} satisfies

$$\frac{1}{\sqrt{mn}} \|\hat{A} - A\|_F \le C \|Z_{\Omega}\|_F \sqrt{\frac{\min\{m, n\}}{|\Omega|}}.$$
 (15)

If one would like the RMSE to be at most ε , then one needs to require

$$|\Omega| \ge C \frac{\|Z_{\Omega}\|_F^2 \min\{m, n\}}{\varepsilon^2},\tag{16}$$

995 which grows quadratically with $1/\varepsilon$.

For exact recovery, one needs to turn the approximation in the Frobenius norm into an approximation in the infinity norm; see subsection $\ref{eq:condition}$. This is a major mathematical challange, and we do not know any efficient way to do this. The trivial bound that $||M||_{\infty} \leq ||M||_F$ is too generous. If we use this and then use (15) to bound the RHS, then the corresponding bound on $|\Omega|$ in (16) becomes larger than mn, which is meaningless. This is the common situation with all Frobenius norm bounds discussed in this section.

Concerning the alternating method, a corollary of [4, Theorem 1] shows that we can obtain an approximation \hat{A} of rank r, where

$$\|\hat{A} - A\| \le (2 + o(1))\|Z\| + \varepsilon \sigma_1,$$
 (17)

1004 given that

$$p = \tilde{\Omega} \left(\frac{1}{n} \left(1 + \frac{\|Z\|_F}{\varepsilon \sigma_1} \right) \right)^2.$$

The bound here is in the spectral norm, and one can translate into Frobenius norm by the fact that $\|M\|_F \leq \sqrt{\operatorname{rank} M} \|M\|$. Again, it is not clear of how to obtain exact recovery from here.

Continuing the spectral approach, Keshavan, Montanari and Oh [6] also extended their result from [7] to the noisy case, using the same algorithm. They proved that with the same sample size condition as (13), the output satisfies w.h.p.

$$\|\hat{A} - A\|_F \le C \left(\frac{\sigma_1}{\sigma_r}\right)^2 \frac{r^{1/2} m n}{|\Omega|} \|Z_{\Omega}\|_{\text{op}}.$$
 (18)

1010 If one would like to have $\frac{1}{\sqrt{mn}}\|\hat{A} - A\|_F \leq \varepsilon$, this translates to the following sample size condition:

$$|\Omega| \ge C \frac{\sigma^2 r N}{\varepsilon^2} \left(\frac{\sigma_1}{\sigma_r}\right)^2,$$
 (19)

where the dependence on ε is again quadratic.

Chatterjee [22] uses a spectral approach with a fixed truncation point independent from rank A, and thus does not require knowing it. He required that $p \ge CN^{-1}\log^6 N$ and achieved the bound

$$\mathbf{E}\left[\frac{1}{mn}\|\hat{A}-A\|_F^2\right] \leq C \min\left\{\sqrt{\frac{r}{p}\left(\frac{1}{m}+\frac{1}{n}\right)},1\right\} + o(N).$$

The advantage over previous methods is the absence of the incoherence assumption. However, to translate the bound in expectation above to obtain $\frac{1}{\sqrt{mn}}\|\hat{A}-A\|_F \leq \varepsilon$ with probability at least $1-\delta$, assuming Markov's inequality is used, one will need

$$p \ge \frac{Cr}{\varepsilon^4 \delta^2} \left(\frac{1}{m} + \frac{1}{n} \right),$$

The dependence on ε grows substantially faster than [6]. In fact, P. Tran's and Vu's recent result in random perturbation theory [27] can be used to prove a high-probability mean-squared-error bound, again without incoherence, requiring only a quadratic dependence on ε .

If we insist on exact recovery, the only approach which adapts well to the noisy situation is the infinity norm approach. As a matter of fact, the infinity norm bounds presented in Section 2.4 hold in both noiseless and noisy case (with some modification). The reason is this: even in the noiseless case, one already views the (rescalled) input matrix $p^{-1}A_{\Omega}$ as the sum of A and a random matrix E. Thus, adding a new noise matrix Z just changes E to E+Z. This changes few parameters in the analysis, but the key mathematical arguments remain valid.

The result by Abbe et al. [9, Theorem 3.4] yields the same approximation as in the noiseless case, given

$$p \ge C^2 \varepsilon^{-2} \mu_0^4 \kappa^8 (\|A\|_{\infty} + \sigma_Z)^2 N^{-1} \log N,$$
 (20)

where σ_Z is the standard deviation of each entry of Z. If we set $\varepsilon < \varepsilon_0/3$ (see subsection $\ref{subsection}$), then again rounding off would give as an exact recovery. Similarly, algorithm AR works in the noisy case; see [10] for the exact statement. The paper only proves this fact for the case where A has integer entries, but a careful examination of the proof shows that for a general absolute error tolerance ε , one requires $m, n = \Theta(N)$ and

$$p \ge C\varepsilon^{-5} \max \{C'(r, ||A||_{\infty}, \mu), \log^{3.03} N\} N^{-1} \log N,$$
 (21)

where $\mu = N^{1/2} \max\{\|U\|_{\infty}, \|V\|_{\infty}\}$ and C' is a term depending on r, $\|A\|_{\infty}$ and μ only.

Summary. To summarize, in the noisy case, the infinity norm approach is currently the only one that yields exact recovery. The latest results in this directions, [9] and [10], however, requires the extra assumptions that the condition number is small and the gaps are large, respectively. As disucssed at the end of the previous subsection, these conditions constrast each other, and we conjecture that both of them could be removed. This leads to the main question of this paper:

Question 1. Can we use the infinity norm approach to obtain exact recovery in the noisy case with only the three basic assumptions (low rank, incoherence, density)?

B The main matrix perturbation theorems

1042 This section serves two purposes.

1041

1053

1054

1060

1061

First, we will formally introduce the main technical theorems that form the backbone of our argument. 1043 The two main theorems are Theorem B.2, an extension of the classic Davis-Kahan theorem for the 1044 perturbation of low-rank approximations, in the infinity norm; and Theorem B.4, a semi-isotropic 1045 bound that serves an essential role in the contour integral method used to prove Theorem B.2. While 1046 1047 both are novel, Theorem B.2 can be deduced easily with the argument in [27], while Theorem B.4 requires an entirely separate proof with the moment method. We will introduce their corollary, 1048 Theorem B.6, that serves as a "random" version of Theorem B.2. We tend to use this theorem directly 1049 in applications rather than the previous two. Along the way, we will argue that the bounds of Theorem 1050 B.6 are nearly optimal, up to a few $\log N$ and r factors. 1051

Second, we will provide the full proofs of Theorems 2.3 and 3.1, in the following chain:

Theorem B.6 (assumed)
$$\xrightarrow{\text{implies}}$$
 Theorem 3.1 $\xrightarrow{\text{implies}}$ Theorem 2.3.

B.1 Davis-Kahan in the infinity norm: the deterministic version

At this point, we can put aside the matrix completion problem and focus on the perturbation theorey view point. Let us formally introduce the objects involved below.

Setting B.1 (Matrix perturbation). Consider two $m \times n$ matrices: the *original or pure matrix* A, and the *noise or perturbation matrix* E. Let $\tilde{A} := A + E$ be the *noisy or perturbed matrix*. Let A have the SVD $A = U\Sigma V^T = \sum_{i=1}^r \sigma_i u_i v_i^T$, where $\sigma_1 \ge \sigma_2 \ge \dots \sigma_r$. Define the following for A:

- 1. For each $k \in [r]$, $\delta_k := \sigma_k \sigma_{k+1}$, using $\sigma_{r+1} = 0$, and let $\Delta_k := \min\{\delta_k, \delta_{k-1}\}$.
- 2. For each $S \subset [r]$, let $\sigma_S := \min_{i \in S} \sigma_i$ and $\Delta_S := \min\{|\sigma_i \sigma_j| : i \in S, j \in S^c\}$.

Define analogous notations $\tilde{\sigma}_i$, \tilde{u}_i , \tilde{v}_i , $\tilde{\delta}_k$, $\tilde{\Delta}_k$, $\tilde{\sigma}_S$, $\tilde{\Delta}_S$, \tilde{V}_S , \tilde{U}_S , and \tilde{A}_S for \tilde{A} . When S=[s] for some $s\in[r]$, we also use V_s , U_s , A_s in place of the three above.

Some extra notation. To aid the presentation, for every $a,b \in \mathbb{R}$, let $a \wedge b := \min\{a,b\}$ and $a \vee b := \max\{a,b\}$ Let $[[a,b]] := \{x \in \mathbb{Z} : a \leq x \leq b\}$ and [a] := [[1,a]].

As mentioned in the previous section, one of the most well-known results in perturbation theory is the **Davis-Kahan** $\sin \Theta$ **theorem**, proven by Davis and Kahan [37], which bounds the change in eigenspace projections by the ratio between the perturbation and the eigenvalue gap. The extension for singular subspaces, proven by Wedin [38], states that:

$$\|\tilde{U}_{S}\tilde{U}_{S}^{T} - U_{S}U_{S}^{T}\| \vee \|\tilde{V}_{S}\tilde{V}_{S}^{T} - V_{S}V_{S}^{T}\| \le \frac{C\|E\|}{\Delta_{S}}.$$
 (22)

A key observation is that the worst case (equality) only happens when there are special interactions 1070

between E and A. A series of papers by O'Rourke et al. [39], Tran and Vu [27] exploited the 1071

improbability of such interactions when E is random and A has low rank, and improved the bound 1072

significantly. The former proved the following: 1073

$$\|\tilde{V}_S \tilde{V}_S^T - V_S V_S^T\| \le C\sqrt{|S|} \left(\frac{\|E\|}{\sigma_S} + \frac{\sqrt{r} \|U^T E V\|_{\infty}}{\Delta_S} + \frac{\|E\|^2}{\Delta_S \sigma_S} \right), \tag{23}$$

with high probability, effectively turning the *noise-to-gap* on the right-hand side of Eq. (22) into the 1074

much smaller noise-to-signal ratio. The latter then improved the third term, at the cost of an extra 1075

factor of \sqrt{r} , which does not matter when r = O(1). They showed that if 1076

$$\frac{\|E\|}{\sigma_S} \vee \frac{2r\|U^T E V\|_{\infty}}{\Delta_S} \vee \frac{\sqrt{2r}\|E\|}{\sqrt{\Delta_S \sigma_S}} \le \frac{1}{8},\tag{24}$$

then 1077

$$\|\tilde{V}_S \tilde{V}_S^T - V_S V_S^T\| \le CrR_S, \text{ where } R_S := \frac{\|E\|}{\sigma_S} + \frac{2r\|U^T E V\|_{\infty}}{\Delta_S} + \frac{2ry}{\Delta_S \sigma_S}, \tag{25}$$

1078 where

108

$$y := \frac{1}{2} \max_{i \neq j} (|u_i^T E E^T u_j| + |v_i^T E^T E v_j|)$$
 (26)

Their key improvement is replacing $||E||^2$ in the previous result with the smaller term y, which can 1079 be much smaller in many cases, notably when E is regular [27].

Our first main theorem can be seen as the infinity norm version of this result. **Theorem B.2.** Consider the objects in Setting B.1. Define the following terms: 1082

$$\tau_{1} := \max_{0 \leq a \leq 10 \log(m+n)} \frac{1}{\sqrt{r}} \max \left\{ \frac{\|(EE^{T})^{a}U\|_{2,\infty}}{\|E\|^{2a}}, \frac{\|(EE^{T})^{a}EV\|_{2,\infty}}{\|E\|^{2a+1}} \right\},
\tau_{2} := \max_{0 \leq a \leq 10 \log(m+n)} \frac{1}{\sqrt{r}} \max \left\{ \frac{\|(E^{T}E)^{a}V\|_{2,\infty}}{\|E\|^{2a}}, \frac{\|(E^{T}E)^{a}E^{T}U\|_{2,\infty}}{\|E\|^{2a+1}} \right\}.$$
(27)

Suppose an arbitrary subset $S \subset [r]$ satisfies Eq. (24). Then for a universal constant C,

$$\|\tilde{V}_S \tilde{V}_S^T - V_S V_S^T\|_{\infty} \le C \tau_1^2 r R_S, \tag{28}$$

$$\|\tilde{V}_S \tilde{V}_S^T - V_S V_S^T\|_{2,\infty} \le C \tau_1 r R_S, \tag{29}$$

where R_S is defined in Eq. (25). When S = [s] for some $s \in [r]$, we also have 1084

$$\|\tilde{A}_s - A_s\|_{\infty} \le C\tau_1\tau_2\sigma_s rR_s, \text{ where } R_s := R_{[s]}.$$

$$(30)$$

Analogous bounds for U and \tilde{U} hold, with U and V swapped. 1085

We use Eq. (30) to prove Theorem 3.1. While Eqs. (28) and (29) are not directly used in this paper, 1086

they are the best known infinity norm estimates for these perturbations of spectral quantities and may 1087

be useful in other applications. 1088

One can clearly see that the parameters τ_1 and τ_2 play the roles of the coherence parameters from Eq. 1089

(2). They are needed to extend the spectral norm bounds in [27] to the ∞ - and 2-to- ∞ -norm bounds. 1090

The best possible values for them are respectively $||U||_{2,\infty}/\sqrt{r}$ and $||V||_{2,\infty}/\sqrt{r}$. To estimate them, 1091

we need the semi-isotropic bounds of the theorem in the next part. 1092

Let us end this part with a comment on the optimality of the term R_S in Eq. (25). 1093

Remark B.3 (Sharpness of R_S). Consider the term R_S : 1094

$$R_S = \frac{\|E\|}{\sigma_s} + \frac{2r\|U^T E V\|_{\infty}}{\delta_s} + \frac{2ry}{\delta_s \sigma_s}.$$

The discussion in [27] shows that R_S is an optimal bound for $\|\tilde{V}_S V_S^T - V_S V_S^T\|$, up to the factor r.

The first term is clearly optimal due to the Davis-Kahan theorem in the case r=1. The second and

third terms can be shown to be non-removable as part of the power series expansion that we will demonstrate in the proof (Section C.2).

The term y can be trivially upper-bounded by $||E||^2$. In fact, the slightly weaker bound with $||E||^2$

replacing y looks more natural and consistent with the condition (24). This bound was discovered

by O'Rourke et al. [39] and was the best-known until [27]. In many cases, notably when E is a

stochastic/regular random matrix, namely, there is a common ς such that, for all $i \in [m]$ and $j \in [n]$,

$$\varsigma = \frac{1}{m} \sum_{k=1}^{m} \mathbf{E} \left[|E_{kj}|^2 \right] = \frac{1}{n} \sum_{l=1}^{n} \mathbf{E} \left[|E_{il}|^2 \right],$$

1103 y can be much smaller than ||E|| (see [27] for a detailed computation of y).

1104 B.2 The semi-isotropic bounds on random matrix powers

Below is the main theorem of this part, the full form of the semi-isotropic bound in Section 3.2.

Theorem B.4. Suppose E is a random $m \times n$ matrix with independent entries satisfying:

$$\mathbf{E}\left[E_{ij}\right] = 0, \quad \mathbf{E}\left[|E_{ij}|^2\right] \le \varsigma^2, \quad \mathbf{E}\left[E_{ij}|^l\right] \le M^{l-2}\varsigma^l \quad \text{for all } l \in \mathbb{N}_{\ge 2}. \tag{31}$$

1107 Let N=m+n and $\mathcal{H}:=1.9\varsigma\sqrt{N}$. For each $U\in\mathbb{R}^{m\times n}$ and p>0, define

$$\tau_0(U,p) := \frac{p\|U\|_{2,\infty}}{\sqrt{r}}, \quad \tau_1(U,p) := \frac{Mp^3\|U\|_{2,\infty}}{\sqrt{rN}} + \frac{p^{3/2}}{\sqrt{N}}.$$
 (32)

There are universal constants C and c such that, for any t > 0, if $M \le ct^{-2}N\log^{-2}N$, then for each fixed $k \in [m]$, with probability $1 - O(\log^{-C}N)$,

$$\max_{0 \le a \le t \log N} \|e_{m,k}^T (EE^T)^a U\| \le \tau_0(U, \log \log N) \,\mathcal{H}^{2a} \sqrt{r}.$$
(33)

1110 For each fixed $k \in [n]$, with probability $1 - O(\log^{-C} N)$,

$$\max_{0 \le a \le t \log N} \|e_{n,k}^T (E^T E)^a E^T U\| \le \tau_1(U, \log \log N) \,\mathcal{H}^{2a+1} \sqrt{r}. \tag{34}$$

1111 If the stronger bound $M \le ct^{-2}N\log^{-5}N$ holds, then with probability $1 - O(N^{-2})$,

$$\max_{0 \le a \le t \log N} \max_{k \in [m]} \|e_{m,k}^T (EE^T)^a U\| \le \tau_0(U, \log N) \,\mathcal{H}^{2a} \sqrt{r},\tag{35}$$

$$\max_{0 \le a \le t \log N} \max_{k \in [n]} \|e_{n,k}^T (E^T E)^a E^T U\| \le \tau_1(U, \log N) \,\mathcal{H}^{2a+1} \sqrt{r} \tag{36}$$

1112 Analogous bounds hold for V, with E and E^T swapped.

To the best of our knowledge, there has been no well-known isotropic, semi-isotropic, or even

entry-wise bounds of powers of a random matrix in the literature. This theorem is thus another

noteworthy contribution of this paper and may be of independent interest.

We only use Eqs. (35) and (36) to prove Theorem 3.1, but for the sake of potential future applications,

we still present Eqs. (33) and (34), whose bounds are better but non-uniform in k. More specifically,

we use the following bounds, which directly results from the theorem.

$$\tau_1 \le \frac{(\sqrt{\mu_0} + \sqrt{\log N}) \log N}{\sqrt{m}}, \quad \tau_2 \le \frac{(\sqrt{\mu_0} + \sqrt{\log N}) \log N}{\sqrt{n}}.$$

As mentioned, τ_1 and τ_2 in Theorem B.2 play the roles of the coherence parameters in the matrix

completion setting. In practice, one replaces them with upper bounds when applying Theorem B.2, as

the theorem still works after such substitutions. Let us show that the choices of τ_1 and τ_2 in Theorem

B.4 are nearly optimal upper bounds for them.

Remark B.5 (Sharpness of τ_1, τ_2). A trivial choice of upper bounds is $\tau_1 = \tau_2 = 1/\sqrt{r}$, since we

1124 have

$$\|(EE^T)^a U\|_{2\infty} < \|E\|^{2a}, \quad \|(E^T E)^a E U\|_{2\infty} < \|E\|^{2a+1}.$$

- and analogously for V. This is the best estimate in the worse case for a deterministic E.
- However, if E and A interact favorably, then we can get much better estimates. Let us first consider a
- bound from below. Setting a = 0, we get from Eq. (27) the lower bounds

$$\tau_1 \ge \frac{1}{\sqrt{r}} \|U\|_{2,\infty} = \sqrt{\frac{\mu(U)}{m}}, \quad \tau_2 \ge \frac{1}{\sqrt{r}} \|V\|_{2,\infty} = \sqrt{\frac{\mu(V)}{n}},$$

- where $\mu(U)$ and $\mu(V)$ are the individual incoherence parameters from Eq. (2).
- 1129 If these lower bounds are the truth, then by Eq. (24), one gets, in philosophy, the following bounds
- from Theorem B.2 (when r = O(1)):

$$\|\tilde{V}_{S}\tilde{V}_{S}^{T} - V_{S}V_{S}^{T}\|_{\infty} \leq C \frac{\mu(V)}{n} \|\tilde{V}_{S}\tilde{V}_{S}^{T} - V_{S}V_{S}^{T}\|,$$

$$\|\tilde{V}_{S}\tilde{V}_{S}^{T} - V_{S}V_{S}^{T}\|_{2,\infty} \leq C \sqrt{\frac{\mu(V)}{n}} \|\tilde{V}_{S}\tilde{V}_{S}^{T} - V_{S}V_{S}^{T}\|,$$

$$\|\tilde{A}_{s} - A_{s}\|_{\infty} \leq C \sqrt{\frac{\mu(U)\mu(V)}{mn}} \|\tilde{A}_{s} - A_{s}\|.$$
(37)

- These are the best possible bounds one can hope to produce with Theorem B.2. But how good are they?
- To answer this question, let us consider a simple case where r = O(1), $\mu(V) = O(1)$, and $m = \Theta(n)$.
- Assume the best possible case for the parameters τ_2 , which is that $\tau_2 = \sqrt{\mu(V)/n} = O(n^{-1/2})$. In
- this case, Eq. (28) asserts that

$$\left\| \tilde{V}_S \tilde{V}_S^T - V_S V_S^T \right\|_{\infty} = O\left(\frac{1}{n} \left\| \tilde{V}_S \tilde{V}_S^T - V_S V_S^T \right\| \right).$$

1135 On the other hand, we have

$$\left\|\tilde{V}_{S}\tilde{V}_{S}^{T}-V_{S}V_{S}^{T}\right\|_{\infty}=\Omega\left(\frac{1}{n}\left\|\tilde{V}_{S}\tilde{V}_{S}^{T}-V_{S}V_{S}^{T}\right\|_{F}\right)=\Omega\left(\frac{1}{n}\left\|\tilde{V}_{S}\tilde{V}_{S}^{T}-V_{S}V_{S}^{T}\right\|_{\cdot}\right)$$

- Therefore, our bound says that in the best case scenario, the largest entry of the matrix is of the same
- magnitude as the average one, making Eq. (28) sharp. The sharpness (in the best case) of Eq. (29)
- and Eq. (30) can be argued similarly. Notice that this also fully justifies the optimality of the bound
- 1139 (??) in Theorem 3.1.
- In the next section, we will rigorously prove Theorems 2.3 and 3.1.

1141 B.3 The random theorem

- 1142 Combining Theorem B.4 with familiar bounds on ||E|| and $||U^TEV||_{\infty}$, we get the following
- "random version" of Theorem B.2. Theorem 3.1 is a direct consequence of this theorem.
- **Theorem B.6.** Consider the objects in Setting B.1. Let $\varepsilon \in (0,1)$ be arbitrary Suppose E is a
- random $m \times n$ matrix with independent entries following the model (31) with parameters M and ς .
- 1146 Let N=m+n. Replace τ_1 from Eq. (27) with

$$\tau_1 := \frac{\|U\|_{2,\infty} \log N}{\sqrt{r}} + \frac{M\|V\|_{2,\infty} \log^3 N}{\sqrt{rN}} + \frac{\log^{3/2} N}{\sqrt{N}},\tag{38}$$

and redefine τ_2 symmetrically by swapping U and V. For an arbitrary $S \subset [r]$, suppose

$$\frac{\varsigma\sqrt{N}}{\sigma_S} \vee \frac{r\varsigma(\sqrt{\log N} + M\|U\|_{\infty}\|V\|_{\infty}\log N)}{\Delta_S} \vee \frac{\varsigma\sqrt{rN}}{\sqrt{\Delta_S\sigma_S}} \leq \frac{1}{16}.$$
 (39)

1148 Let us replace the term R_S in Eq. (25) with

$$R_S := \frac{\varsigma\sqrt{N}}{\sigma_S} + \frac{r\varsigma(\sqrt{\log N} + M\|U\|_{\infty}\|V\|_{\infty}\log N)}{\Delta_S} + \frac{2r\varsigma^2N}{\Delta_S\sigma_S}.$$

There are universal constants c and C such that: If $M \le cN^{1/2}\log^{-5}N$, then with probability at least $1 - O(N^{-1})$,

$$\left\| \tilde{V}_S \tilde{V}_S^T - V_S V_S^T \right\|_{\infty} \le C \tau_2^2 r R_S + \frac{1}{N},\tag{40}$$

$$\left\| \tilde{V}_S \tilde{V}_S^T - V_S V_S^T \right\|_{2,\infty} \le C \tau_2 r R_S + \frac{1}{N}. \tag{41}$$

Analogous bounds for U and \tilde{U} hold, with τ_1 replacing τ_2 . When S = [s] for some $s \in [r]$, we slightly abuse the notation to let $R_s := R_{[s]}$. Then with probability $1 - O(N^{-1})$,

$$\|\tilde{A}_s - A_s\|_{\infty} \le C\tau_1\tau_2 r\sigma_s R_s + \frac{1}{N}.$$
 (42)

Furthermore, for each $\varepsilon > 0$, if the term $\frac{2r\varsigma^2 N}{\Lambda_S \sigma_S}$ in R_S is replaced with

$$\frac{r}{\Delta_S \sigma_S} \inf \left\{ t : \mathbf{P} \left(\max_{i \neq j} (|v_i E^T E v_j| + |u_i E E^T u_j|) \le 2t \right) \ge 1 - \varepsilon \right\},$$

then all three bounds above hold with probability at least $1 - \varepsilon - O(N^{-1})$. 1154

B.4 Proof of Theorem 3.1 (using Theorem B.6) 1155

- We now move to the proof of Theorem 3.1. We treat Theorem B.6 as a black box. Its proof, along with the proofs of other main theorems, will be in Appendix C. 1157
- Proof of Theorem 3.1. Let $\varsigma = K/\sqrt{p}$ and $M = 1/\sqrt{p}$. Then for C sufficiently large, $p \ge C(m^{-1} + 1)$
- $n^{-1})\log^{10}N$ implies $M \le c\sqrt{N}\log^{-5}N$, meaning we can apply Theorem B.6, specifically Eq. (42) for this choice of ς and M if the condition (39) holds. We check it for S=[s]. Given that
- $\sigma_s \geq \delta_s \geq 40K\sqrt{rN/p}$, we have

$$\frac{\varsigma\sqrt{N}}{\sigma_S} = \frac{K}{\sigma_S}\sqrt{\frac{rN}{p}} \le \frac{1}{40\sqrt{r}} < \frac{1}{16}, \quad \frac{\varsigma\sqrt{rN}}{\sqrt{\delta_s\sigma_s}} \le \frac{K\sqrt{rN}}{\sqrt{p} \cdot 40rK\sqrt{rN/p}} \le \frac{1}{40} < \frac{1}{16},$$

and, using the fact $\mu_0 \leq N$ and the assumption $r \leq \log^2 N$.

$$\begin{split} & \frac{r\varsigma(\sqrt{\log N} + M\|U\|_{\infty}\|V\|_{\infty}\log N}{\delta_{S}} \leq \frac{rK\sqrt{\log N}}{\delta_{s}\sqrt{p}} + \frac{r^{2}K\mu_{0}\log N}{\delta_{s}p\sqrt{mn}} \\ & \leq \frac{\sqrt{r}\log N}{40\sqrt{N}} + \frac{r^{3/2}\mu_{0}\log N}{\sqrt{pmnN}} \leq \frac{\sqrt{r}\log N}{40\sqrt{N}} + \frac{r^{3/2}\mu_{0}\log N}{\sqrt{C}N\log^{5}N} \leq \frac{1}{\log N} < \frac{1}{16}. \end{split}$$

It remains to transform the right-hand side of Eq. (42) to the right-hand side of Eq. (7). We have

$$\tau_1 \le \frac{\sqrt{\mu_0} \log^3 N}{\sqrt{pmN}} + \frac{\log^{3/2} N}{\sqrt{N}} + \frac{\sqrt{\mu_0} \log N}{\sqrt{n}} \le \frac{\log^{3/2} N}{\sqrt{N}} + \frac{\sqrt{2\mu_0} \log N}{\sqrt{n}}.$$

Combining with the symmetric bound for τ_2 , we ge

$$\tau_1 \tau_2 \le \frac{\log^3 N}{N} + \frac{\sqrt{\mu_0} \log^{5/2} N}{\sqrt{N}} \cdot \frac{\sqrt{2m} + \sqrt{2n}}{\sqrt{mn}} + \frac{2\mu_0 \log^2 N}{\sqrt{mn}} \le 4 \log^2 N \frac{\log N + \mu_0}{\sqrt{mn}},$$

- which is the first factor on the right-hand side of Eq. (7).
- Consider the term R_s . From the above, we have

$$R_s \leq \frac{K}{\sigma_S} \sqrt{\frac{rN}{p}} + \frac{rK\sqrt{\log N}}{\delta_s \sqrt{p}} + \frac{r^2K\mu_0 \log N}{\delta_s p\sqrt{mn}} + \frac{K^2rN}{p\delta_s \sigma_s}.$$

Since $\delta_s \ge 40K\sqrt{rN/p}$, the fourth term is absorbed by the first term. Removing it recovers exactly 1167 the second factor on the right-hand side of Eq. (7). The proof is complete.

B.5 Proof of Theorem 2.3

- In this section, we prove Theorem 2.3. We will first assume Theorem 3.1 as a black box, then prove 1170
- Theorem 3.1 in the next subsection. It suffices to prove Theorem 2.3 in its full form, where the 1171
- sampling condition (5) replaces (3) and the condition $r_{\text{max}} \leq \log^2 N$ is removed. 1172
- Proof of the full Theorem 2.3. Let $C_2 = 1/c$ for the constant c in Theorem B.6. We rewrite the
- assumptions below:

1169

1. Signal-to-noise: $\sigma_1 \geq 100r\kappa\sqrt{r_{\text{max}}N}$.

1175

2. Sampling density: this is equivalent to the conjunction of three conditions:

$$p \ge \frac{Cr^4r_{\max}\mu_0^2K_{A,Z}^2}{\varepsilon^2}\left(\frac{1}{m} + \frac{1}{n}\right),\tag{43}$$

$$p \ge C\left(\frac{1}{m} + \frac{1}{n}\right)\log^{10}N,\tag{44}$$

$$p \ge \frac{Cr^3 K_{A,Z}^2}{\varepsilon^2} \left(1 + \frac{\mu_0^2}{\log^2 N} \right) \left(1 + \frac{r^3 \log N}{N} \right) \left(\frac{1}{m} + \frac{1}{n} \right) \log^6 N. \tag{45}$$

Let $\rho := \hat{p}/p$. From the sampling density assumption, a standard application of concentration bounds [36, 48] guarantees that, with probability $1 - O(N^{-2})$.

$$0.9 \le 1 - \frac{1}{\sqrt{N}} \le 1 - \frac{\log N}{\sqrt{pmn}} \le \rho \le 1 + \frac{\log N}{\sqrt{pmn}} \le 1 + \frac{1}{\sqrt{N}} \le 1.1.$$
 (46)

1179 Furthermore, an application of well-established bounds on random matrix norms gives

$$||E|| \le 2\kappa \sqrt{N},\tag{47}$$

- with probability $1-O(N^{-1})$. See [35, 34], [40, Lemma A.7] or [35] for detailed proofs. Therefore we can assume both Eqs. (46) and (47) at the cost of an $O(N^{-1})$ exceptional probability.
- Let $C_0 := 40$. The index s chosen in the SVD step of Approximate-and-Round 2 is the largest such that

$$\hat{\delta}_s \ge C_0 K_{A,Z} \sqrt{r_{\text{max}} N/\hat{p}} = C_0 \rho^{-1/2} \kappa \sqrt{r_{\text{max}} N}.$$

Firstly, we show that SVD step is guaranteed to choose a valid $s \in [r]$. Choose an index $l \in [r]$ such that $\delta_l \geq \sigma_1/r \geq 100\kappa\sqrt{r_{\max}N}$, we have

$$\hat{\delta}_l \ge \rho^{-1/2} \tilde{\delta}_l \ge \rho^{-1/2} (\delta_l - 2||E||) \ge (100r_{\text{max}}^{1/2} - 4)\rho^{-1/2} \kappa \sqrt{N} \ge 2C_0 \rho^{-1/2} \kappa \sqrt{r_{\text{max}} N},$$

so the cutoff point s is guaranteed to exist. To see why $s \in [r]$, note that

$$\hat{\delta}_{r+1} \le \rho^{-1/2} \tilde{\sigma}_{r+1} \le \rho^{-1/2} \|E\| \le 2\rho^{-1/2} \kappa \sqrt{r_{\max} N} < C_0 \rho^{-1/2} \kappa \sqrt{r_{\max} N}.$$

- We want to show that the first three steps of Approximate-and-Round 2 recover A up to an absolute
- 1188 error ε , namely $\|\hat{A}_s A\|_{\infty} \leq \varepsilon$, we will first show that $\|A_s A\|_{\infty} \leq \varepsilon/2$ (with probability
- 1189 $1 O(N^{-1})$). We proceed in two steps:
- 1. We will show that $||A_s A||_{\infty} \le \varepsilon/4$ when C is large enough. To this end, we establish:

$$\sigma_{s+1} \le r\delta_{s+1} \le r(\tilde{\delta}_{s+1} + 2\|E\|) \le r(C_0 \rho^{-1/2} \sqrt{r_{\max}} + 4) \kappa \sqrt{N} \le 2rC_0 K_{A,Z} \sqrt{r_{\max} N/p}.$$
(48)

For each fixed indices j, k, we have

$$|(A_s - A)_{jk}| = |U_{j,\cdot}^T \Sigma_{[s+1,r]} V_{k,\cdot}| \le \sigma_{s+1} ||U||_{2,\infty} ||V||_{2,\infty} \le 2r C_0 K_{A,Z} \sqrt{\frac{r_{\max} N}{p}} \frac{r\mu_0}{\sqrt{mn}}$$

$$= \sqrt{\frac{4C_0^2 r^4 r_{\max} \mu_0^2 K_{A,Z}^2}{p} \left(\frac{1}{m} + \frac{1}{n}\right)} \le \varepsilon/4.$$

- where the last inequality comes from the assumption (43) if C is large enough. Since this holds for all pairs (j,k), we have $\|A_s A\|_{\infty} \le \varepsilon/4$.
- 2. Secondly, we will show that $\|\tilde{A}_s A_s\|_{\infty} \le \varepsilon/4$ with probability $1 O(N^{-1})$. We aim to use Theorem B.6, so let us translate its terms into the current context. By the sampling density condition, we have the following lower bounds for δ_s and σ_s :

$$\sigma_s \ge \delta_s \ge \tilde{\delta}_s - 2\|E\| \ge C_0 \rho^{-1/2} \kappa \sqrt{r_{\text{max}} N} - 2\|E\| \ge .9C_0 \kappa \sqrt{r_{\text{max}} N}.$$
 (49)

1197 Consider the condition (39). If it holds, then we can apply Theorem B.6. We want

$$\frac{\kappa\sqrt{N}}{\sigma_s}\vee\frac{r\kappa(\sqrt{\log N}+K\|U\|_{\infty}\|V\|_{\infty}\log N)}{\delta_s}\vee\frac{\kappa\sqrt{rN}}{\sqrt{\delta_s\sigma_s}}\leq\frac{1}{16}$$

By Eq. (49), we can replace all three denominators above with $.9C_0\kappa\sqrt{r_{\max}N}$. Additionally, $\|U\|_{\infty} \leq \|U\|_{2,\infty} \leq \sqrt{\frac{r\mu_0}{m}}$ and $\|V\|_{\infty} \leq \|V\|_{2,\infty} \leq \sqrt{\frac{r\mu_0}{n}}$, so we can replace them with these upper bounds. We also replace K with $p^{-1/2}$ (its definition). We want

$$\frac{\kappa\sqrt{N} \ \lor \ \kappa\sqrt{rN} \ \lor \ r\kappa(\sqrt{\log N} + \frac{r\mu_0}{\sqrt{pmn}}\log N)}{.9C_0\kappa\sqrt{r_{\max}N}} \le \frac{1}{16},$$

which is equivalent to

$$\frac{1 \vee \sqrt{r} \vee r(\sqrt{\frac{\log N}{N}} + \frac{r\mu_0}{\sqrt{pmnN}} \log N)}{.9C_0\sqrt{r_{\max}}} \le \frac{1}{16}$$

which easily holds. Therefore we can apply Theorem B.6. We get, for a constant C_1 ,

$$\|\tilde{A}_s - A_s\|_{\infty} \le C_1 \tau_{UV} \tau_{VU} \cdot r\sigma_s R_s + \frac{1}{N}$$

Let us simplify the first term in the product, $\tau_{UV}\tau_{VU}$.

$$\tau_{UV} = \frac{K\|U\|_{2,\infty} \log^3 N}{\sqrt{rN}} + \frac{\log^{3/2} N}{\sqrt{N}} + \frac{\|V\|_{2,\infty} \log N}{\sqrt{r}}$$

$$\leq \frac{\sqrt{\mu_0} \log^3 N}{\sqrt{pmN}} + \frac{\log^{3/2} N}{\sqrt{N}} + \frac{\sqrt{\mu_0} \log N}{\sqrt{n}} \leq \frac{\log^{3/2} N}{\sqrt{N}} + \frac{\sqrt{2\mu_0} \log N}{\sqrt{n}},$$

where the first inequality comes from (44) if C is large enough. Similarly,

$$\tau_{VU} \le N^{-1/2} \log^{3/2} N + m^{-1/2} \sqrt{2\mu_0} \log N.$$

Therefore,

1204

1207

$$\tau_{UV}\tau_{VU} \le \frac{\log^3 N}{N} + \frac{\sqrt{\mu_0} \log^{5/2} N}{\sqrt{N}} \cdot \frac{\sqrt{2m} + \sqrt{2n}}{\sqrt{mn}} + \frac{2\mu_0 \log^2 N}{\sqrt{mn}}$$
$$\le \log^2 N \frac{\log N + 4\sqrt{\mu_0} \sqrt{\log N} + 4\mu_0}{2\sqrt{mn}} \le \log^2 N \frac{\log N + 4\mu_0}{\sqrt{mn}}.$$

For the second term, we have the following upper bound:

$$\begin{split} r\sigma_s R_s & \leq r\sigma_s \left(\frac{\kappa \sqrt{N}}{\sigma_s} + \frac{r\kappa(\sqrt{\log N} + \frac{r\mu_0}{\sqrt{mn}}K\log N}{\delta_s} + \frac{r\kappa^2 N}{\delta_s\sigma_s} \right) \\ & = r \left(\kappa \sqrt{N} + \frac{r\kappa\sigma_s}{\delta_s} \left(\sqrt{\log N} + \frac{r\mu_0\log N}{\sqrt{pmn}} \right) + \frac{r\kappa^2 N}{\delta_s} \right) \\ & \leq r \left(\kappa \sqrt{N} + r^2\kappa \left(\sqrt{\log N} + \frac{r\mu_0\log N}{\sqrt{pmn}} \right) + \frac{r\kappa^2 N}{.9C_0\kappa\sqrt{rN}} \right) \\ & \leq r^{3/2}\kappa \left(\sqrt{2N} + r^{3/2} \left(\sqrt{\log N} + \frac{r\mu_0\log N}{\sqrt{pmn}} \right) \right). \end{split}$$

Under the condition (45), we have

$$pmn \ge Cr^3\mu_0^2\log^4 N \implies \frac{r\mu_0\log N}{\sqrt{pmn}} < .1\sqrt{\log N},$$

so the above is simply upper bounded by

$$\frac{\sqrt{2}r^{3/2}K_{A,Z}}{\sqrt{p}}\left(\sqrt{N}+r^{3/2}\sqrt{\log N}\right).$$

Multiplying the two terms, we have by Theorem B.6,

$$\|\tilde{A}_{s} - A_{s}\|_{\infty} \leq \log^{2} N \cdot \frac{\log N + 4\mu_{0}}{\sqrt{mn}} \cdot \frac{\sqrt{2}r^{3/2}K_{A,Z}}{\sqrt{p}} \left(\sqrt{N} + r^{3/2}\sqrt{\log N}\right)$$

$$\leq \sqrt{\frac{2r^{3}K_{A,Z}^{2}\log^{6} N}{p} \left(1 + \frac{4\mu_{0}^{2}}{\log^{2} N}\right) \left(1 + \frac{r^{3}\log N}{N}\right) \left(\frac{1}{m} + \frac{1}{n}\right)} \leq \varepsilon/4.$$
(50)

where the last inequality comes from the condition (45) if C is large enough.

After the two steps above, we obtain $\|\tilde{A}_s - A\|_{\infty} \le \varepsilon/2$ with probablity $1 - O(N^{-1})$. Finally, we get, using Fact (46) and the triangle inequality,

$$\|\hat{A}_s - A\|_{\infty} = \left\| \rho^{-1} \tilde{A}_s - A \right\|_{\infty} \le \frac{1}{\rho} \|\tilde{A}_s - A\|_{\infty} + \left| \frac{1}{\rho} - 1 \right| \|A\|_{\infty} \le \frac{\varepsilon/2}{.9} + \frac{K_A}{.9\sqrt{N}} < \varepsilon.$$

This is the desired bound. The total exceptional probability is $O(N^{-1})$. The proof is complete. \Box

1214 C Proof of main results

1209

1225

1226

1227

1228

1229

1231

1236

1237

1238 1239

1240

1241

1242

1243

- 1215 As mentioned, Theorem B.6 is a corollary of B.2 when the noise matrix is random. In actuality,
- 1216 Theorem B.2 is a slightly simplified version of the full argument for the deterministic case and does
- not directly lead to the random case. However, the reader can be assured that the changes needed to
- make Theorem B.2 imply Theorem B.6 are trivial, and will be discussed when we prove the latter.
- Proof structure. First, we will assume Theorem B.2 and use it to prove Theorem B.6, which directly implies Theorem 3.1. The proof contains a novel high-probability *semi-isotropic* bound for powers of a random matrix, which can be of further independent interest.
- We will then discard the random noise context and prove Theorem B.2. The proof adapts the contour integral technique in [27], but with highly non-trivial adjustments to handle the inifnity norm, instead of spectral norm as in [27]. The proof roughly has two steps:
 - 1. Rewrite the quantities on the left-hand sides of the bounds in Theorem B.2 as a power series in terms of E, similar to a Taylor expansion.
 - 2. Devise a bound that decays exponentially for each power term, and sum them up as a geometric series to obtain a bound on the quantities of interest. The final bound, Lemma C.7, will be general enough to imply all three of bounds of Theorem B.2.

1230 The structure for this section will be:

c C.1 The random version: Proof of Theorem B.6

In this section, we prove Theorem B.6, assuming Theorem B.2. First, consider the term

$$\frac{\|E\|}{\sigma_S} \vee \frac{2r\|U^T E V\|_{\infty}}{\Delta_S} \vee \frac{\sqrt{2r}\|E\|}{\sqrt{\sigma_S \Delta_S}}$$

from the condition (24). Let us replace the terms related to E in the above with their respective high-probability bounds.

- ||E||. There are tight bounds in the literature. For E following the Model (31), with the assumption $M \leq (m+n)^{1/2} \log^{-5}(m+n)$, the moment argument in [34] can be used.
- $||U^T E V||_{\infty} = \max_{i,j} |u_i^T E v_j|$. These terms can be bounded with a simple Bernstein bound.
 - $y = \frac{1}{2} \max_{i \neq j} (|u_i E E^T u_j| + |v_i E^T E v_j|)$. The terms inside the maximum function can be bounded with the moment method. The most saving occurs when E is a stochastic matrix, meaning its row norms and column norms have the same second moment. For the purpose of proving Theorem B.6, the naive bound $||E||^2$ suffices.

Upper-bounding these three is routine, which we summarize in the lemma below. 1244

Lemma C.1. Consider the objects in Setting B.1. Let $E \in \mathbb{R}^{m \times n}$ be a random matrix satisfying 1245

Model (31) with parameters M and ς . Suppose $M \leq (m+n)^{1/2} \log^{-3}(m+n)$. Then with probability $1 - O((m+n)^{-2})$, all of the following hold: 1247

$$||E|| \le 1.9\varsigma\sqrt{m+n} \le 2\varsigma\sqrt{m+n},\tag{51}$$

$$\max_{i \neq j} (|u_i E E^T u_j| + |v_i E^T E v_j|) \le 2||E||^2 \le 8\varsigma^2(m+n).$$
(52)

$$\max_{i,j} |u_i^T E v_j| \le 2\varsigma (\sqrt{\log(m+n)} + M \|U\|_{\infty} \|V\|_{\infty} \log(m+n)).$$
 (53)

Proof. Eq. (51) follows from the moment argument in [34]. Eq. (52) follows from Eq. (51). It 1248 remains to check Eq. (53). Fix $i, j \in [r]$. Write 1249

$$u_i^T E v_j = \sum_{k \in [m], h \in [n]} u_{ik} v_{jh} E_{kh} = \sum_{(k,h) \in [m] \times [n]} Y_{kh},$$

where we temporarily let $Y_{kh}:=u_{ik}v_{jh}E_{kh}$ for convenience. We have $|Y_{kh}|\leq \|U\|_{\infty}\|V\|_{\infty}|E_{kh}|$. Let $X_{kh}:=Y_{kh}/(\varsigma\|U\|_{\infty}\|V\|_{\infty})$, then $\{X_{kh}:(k,h)\in[m]\times[n]\}$ are independent random variables 1250

1251

and for each $(k, h) \in [m] \times [n]$, 1252

$$\mathbf{E}[X_{kh}] = 0$$
, $\mathbf{E}[|X_{kh}|^2] \le 1$, $\mathbf{E}[|X_{kh}|^l] \le M^{l-2}$ for all $l \in \mathbb{N}$.

We also have 1253

$$\sum_{k,h} \mathbf{E} \left[|X_{kh}|^2 \right] = \frac{\sum_{k,h} u_{ik}^2 v_{jh}^2 \mathbf{E} \left[|E_{kh}|^2 \right]}{\varsigma^2 ||U||_{\infty}^2 ||V||_{\infty}^2} \le \frac{\varsigma^2 \sum_{k,h} u_{ik}^2 v_{jh}^2}{||U||_{\infty}^2 ||V||_{\infty}^2} = \frac{1}{||U||_{\infty}^2 ||V||_{\infty}^2}$$

By Bernstein's inequality [48], we have for all t > 0

$$\mathbf{P}\left(\left|\sum_{k,h} X_{kh}\right| \ge t\right) \le \exp\left(\frac{-t^2}{\sum_{k,h} \mathbf{E}\left[|X_{kh}|^2\right] + \frac{2}{3}Mt}\right) \le \exp\left(\frac{-t^2}{\|U\|_{\infty}^{-2} \|V\|_{\infty}^{-2} + \frac{2}{3}Mt}\right).$$

We rescale $Y_{kh} = \varsigma ||U||_{\infty} ||V||_{\infty} X_{kh}$ and replace t with $t/(\varsigma ||U||_{\infty} ||V||_{\infty})$, the above becomes

$$\mathbf{P}\left(\left|\sum_{k,h} Y_{kh}\right| \ge t\right) \le \exp\left(\frac{-t^2}{\varsigma^2 + \frac{2}{3}M\|U\|_{\infty}\|V\|_{\infty}t}\right).$$

Let N = m + n and $t = 2\varsigma(\sqrt{\log N} + M||U||_{\infty}||V||_{\infty}\log N)$, we have

$$t^2 \ge 4\varsigma^2 \log N, \quad t^2 \ge 2M \|U\|_{\infty} \|V\|_{\infty} t \log N,$$

thus 1257

$$t^2 \ge \frac{12}{7} \left(\varsigma^2 + \frac{2}{3} M \|U\|_{\infty} \|V\|_{\infty} t \right) \log N.$$

Combining everything above, we get 1258

$$\mathbf{P}\left(|u_i^T E v_j| \ge 2\varsigma(\sqrt{\log N} + M\|U\|_{\infty}\|V\|_{\infty}\log N)\right) \le N^{-12/7}.$$

By a union bound over $(i, j) \in [r] \times [r]$, the proof of Eq. (53) and the lemma is complete. 1259

Now all that remains is computing τ_1 and τ_2 . More precisely, since both are random, we compute a 1260 good choice of high-probability upper bounds for them. This, however, is likely intractable since the 1261 appearance of powers of ||E|| in the denominator makes it hard to analyze the right-hand sides of Eq. 1262 (27). To overcome this, notice that the argument in Theorem B.2 works in the same way if, instead of 1263

being rigidly refined by Eq. (27), τ_1 and τ_2 are any real numbers satisfying 1264

$$\tau_{1} \geq \max_{a \in [[0,10 \log(m+n)]]} \frac{1}{\sqrt{r}} \max \left\{ \frac{\|(EE^{T})^{a}U\|_{2,\infty}}{\mathcal{H}^{2a}}, \frac{\|(EE^{T})^{a}EV\|_{2,\infty}}{\mathcal{H}^{2a+1}} \right\},
\tau_{2} \geq \max_{a \in [[0,10 \log(m+n)]]} \frac{1}{\sqrt{r}} \max \left\{ \frac{\|(E^{T}E)^{a}V\|_{2,\infty}}{\mathcal{H}^{2a}}, \frac{\|(E^{T}E)^{a}E^{T}U\|_{2,\infty}}{\mathcal{H}^{2a+1}} \right\},$$
(54)

- for some upper bound $\mathcal{H} \geq ||E||$. 1265
- From this point, we will discard Eq. (27) and treat $(\tau_1, \tau_2, \mathcal{H})$ as any tuple that satisfies Eq. (54). 1266
- Specifically, we will choose $\tau_0(U)$, $\tau_1(U)$, $\tau_0(V)$, $\tau_1(V)$ such that 1267

$$\forall a \in [[0, 10\log(m+n)]]: \ \tau_0(U) \geq \frac{1}{\sqrt{r}} \frac{\left\| (EE^T)^a U \right\|_{2,\infty}}{\mathcal{H}^{2a}}, \quad \tau_1(U) \geq \frac{1}{\sqrt{r}} \frac{\left\| (E^T E)^a E^T U \right\|_{2,\infty}}{\mathcal{H}^{2a+1}}$$

- and symmetrically for $\tau_0(V)$ and $\tau_1(V)$, with E and E^T swapped. We can then simply let τ_1 1268 $\tau_0(U) + \tau_1(V)$ and $\tau_2 = \tau_1(U) + \tau_0(V)$. 1269
- This is equivalent to bounding terms of the form 1270

$$\|e_{m,k}^T(EE^T)^aU\|,\quad \|e_{m,k}^T(EE^T)^aEV\|,\quad \|e_{n,l}^T(E^TE)^aV\|,\quad \|e_{n,l}^T(E^TE)^aE^TU\|,$$

- uniformly over all choices for $k \in [m], l \in [n]$ and $0 \le a \le 10 \log(m+n)$, motivating Theorem 1271
- B.4. We will treat it as a black box the the sake of this proof. The proof of Theorem B.4 will be in the 1272
- last subsection. Let us prove Theorem B.6 now using Theorem B.4 and Lemma C.1. 1273
- *Proof of Theorem B.6.* Consider the objects from Setting B.1. We aim to apply Theorem B.2. By 1274
- Lemma C.1, with probability $1 O((m+n)^{-1})$, we can replace condition (24) in Theorem B.2 1275

$$\frac{\|E\|}{\sigma_S} \vee \frac{2r\|U^T E V\|_{\infty}}{\Delta_S} \vee \frac{\sqrt{2r}\|E\|}{\sqrt{\sigma_S \Delta_S}} \le \frac{1}{8}$$

with condition (39) in Theorem B.6

$$\frac{\varsigma\sqrt{N}}{\sigma_S} \ \lor \ \frac{r\varsigma(\sqrt{\log N} + M\|U\|_{\infty}\|V\|_{\infty}\log N)}{\Delta_S} \ \lor \ \frac{\varsigma\sqrt{rN}}{\sqrt{\Delta_S\sigma_S}} \le \frac{1}{16}.$$

Assume (39) holds, then (24) also hold and we can now apply Theorem B.2. Define

$$\tau_1 = \tau_0(U, \log(m+n)) + \tau_1(V, \log(m+n)), \quad \tau_2 = \tau_0(V, \log(m+n)) + \tau_1(U, \log(m+n)),$$

- where $\tau_0(U,\cdot), \tau_1(U,\cdot)$ and $\tau_0(V,\cdot), \tau_1(V,\cdot)$ are from Theorem B.4. These terms match exactly with 1278
- τ_1 and τ_2 from the statement of Theorem B.6. If they also matched τ_1 and τ_2 in Theorem B.2, the 1279
- proof would be complete. However, they do not. 1280
- Let $\mathcal{H} := 2\varsigma\sqrt{m+n}$, then $\mathcal{H} \geq ||E||$ by Lemma C.1. Per the discussion around the condition 1281
- (54) above, if we can show that τ_1 , τ_2 and \mathcal{H} satisfy (54), then the argument in Theorem B.2 still 1282
- works. By Theorem B.4 for t = 10, (54) holds with probability $1 O((m+n)^{-2})$, so the proof is 1283
- complete. 1284
- In the next section, we prove Theorem B.2. The proof is an adaptation of the main argument in [27] 1285
- for the SVD. While this adaptation is easy, it has several important adjustments, sufficient to make 1286
- Theorem B.2 independent result rather than a simple corollary. For instance, the adjustment to adapt 1287
- the argument for the infinity and 2-to-infinity norms necessitates the semi-isotropic bounds, a feature 1288
- not required in the original results for the operator norm. For this reason, we present the entire proof. 1289

The deterministic version: Proof of Theorem B.2

- In this section, we provide the proof of Theorem B.2. 1291
- Given A and $\tilde{A} = A + E$, there are three terms we need to bound, correspoding to Eqs. (28), (29) 1292 and (30): 1293

$$\|\tilde{V}_{S}\tilde{V}_{S}^{T} - V_{S}V_{S}^{T}\|_{\infty}, \quad \|\tilde{V}_{S}\tilde{V}_{S}^{T} - V_{S}V_{S}^{T}\|_{2,\infty}, \quad \|\tilde{A}_{s} - A_{s}\|_{\infty}.$$

- The strategy of bounding all three are almost identical, and is an extension to the SVD case of the 1294 strategy for the eigendecomposition in [27]. 1295
- 1296
- In fact, there are only two subtractions to analyze, namely $\tilde{V}_S\tilde{V}_S^T-V_SV_S^T$ and \tilde{A}_s-A_s . As an example, consider the former. If one views A and thus U and V as fixed, the above can be viewed 1297
- as a function f(E) satisfying f(0) = 0. The difficulty comes from the fact that we cannot (yet) 1298
- express this function as an arithmetic combination of basic functions, which is often what is needed 1299
- to analyze it in depth.

1290

One basic idea to rewrite this function in a tractable form is to find a tractable form for the function $g:A\mapsto VV^T$, and write

$$\tilde{V}_S \tilde{V}_S^T - V_S V_S^T = g(\tilde{A}) - g(A) = g(A + E) - g(A).$$

If E is a square matrix (i.e. m=n) with some "favorable" properties, such as being a diagonal matrix, one can hope to rewrite the last expression as a Taylor series

$$\sum_{\gamma=1}^{\infty} \frac{g^{(\gamma)}(A)}{\gamma!} E^{\gamma},$$

given the derivatives of g are well-defined at A. The crucial point is how to come up with the function g and an analogy for the Taylor series that works for a general matrix E. This is still hard, at first glance, since, just like f, g seems to be inexpressible in terms of simple functions.

The authors of [27] came up with a clever idea. Imagine first, for simplicity, that both A and E are square symmetric matrices, and that V and \tilde{V} contain the eigenvector, rather than singular vectors, of their respective matrices. In other words, U=V and the numbers σ_i are temporarily viewed as eigenvalues. Instead of measuring the difference $g(\tilde{A})-g(A)$ directly, they considered the difference of the *Stieltjes transforms*, and obtained the expansion:

$$(zI - \tilde{A})^{-1} - (zI - A)^{-1} = \sum_{\gamma=1}^{\infty} [(zI - A)^{-1}E]^{\gamma} (zI - A)^{-1}.$$
 (55)

It is easy to show that this identity hold whenever the right-hand side converges. Conveniently, the convergence is also guaranteed by the condition (24) of Theorem B.2, as we will see later. To obtain $\tilde{V}_S \tilde{V}_S^T$ and $V_S V_S^T$, rewrite the left-hand side of Eq. (55) as

$$\sum_{i=1}^{n} \frac{\tilde{v}_i \tilde{v}_i^T}{z - \tilde{\sigma}_i} - \sum_{i=1}^{n} \frac{v_i v_i^T}{z - \sigma_i}.$$

If one can find a contour Γ_S that encircles precisely the set $\{\sigma_i, \tilde{\sigma}_i\}_{i \in S}$ while satisfying that the right-hand side of the expansion converges for every point on that contour, one will be able to integrate over Γ_S and obtain the power series expansion

$$\tilde{V}_S \tilde{V}_S^T - V_S V_S^T = \sum_{\gamma=1}^{\infty} \oint_{\Gamma_S} [(zI - A)^{-1} E]^{\gamma} (zI - A)^{-1}$$

$$= \sum_{\gamma=1}^{\infty} \oint_{\Gamma_S} \left[\left(\sum_{i \in [r]} \frac{v_i v_i^T}{z - \sigma_i} + \frac{I - VV^T}{z} \right) E \right]^{\gamma} \left(\sum_{i \in [r]} \frac{v_i v_i^T}{z - \sigma_i} + \frac{I - VV^T}{z} \right).$$

The precise details on how to choose this contour can be found in [27]. The final steps to bound the left-hand side will be:

- 1. Expand the right-hand side into sums involving products of E and $v_i v_i^T$ and $Q = I VV^T$.
- 2. Bound each product by estimating the scalar contour integral and the norm of each factor.

Back to the context in this paper, where we handle the SVD instead of the eigendecomposition. In [27], the author used this expansion to obtain a bound on the spectral norm of the left-hand side by bounding each term in the series. We make appropriate adjustments to their argument to adapt it to the SVD, while also proving a novel *semi-isotropic* bound on powers of random matrices to extend the result to the infinity norm.

C.2.1 The power series expansion for the SVD case

1321

1322

1328

Firstly, let us introduce the symmetrization trick, which translates the SVD into an eigendecomposition. If A has the SVD: $A = \sum_{i \in [r]} \sigma_i u_i^T v_i^T$, then we have the following eigendecomposition for the symmetrized version of A:

$$A_{\text{\tiny sym}} := \begin{pmatrix} 0 & A \\ A^T & 0 \end{pmatrix} = \sum_{i=1}^r \frac{1}{2} \sigma_i \left(\begin{bmatrix} u_i \\ v_i \end{bmatrix} \begin{bmatrix} u_i^T, & v_i^T \end{bmatrix} - \begin{bmatrix} u_i \\ -v_i \end{bmatrix} \begin{bmatrix} u_i^T, & -v_i^T \end{bmatrix} \right)$$

For each $i \in [r]$, let

$$w_i = \frac{1}{\sqrt{2}} \begin{bmatrix} u_i \\ v_i \end{bmatrix}, \qquad w_{-i} = \frac{1}{\sqrt{2}} \begin{bmatrix} u_i \\ -v_i \end{bmatrix}, \quad \sigma_{-i} = -\sigma_i$$

The unit vectors $\{w_i : |i| \in [r]\}$ are orthogonal, and thus we can write

$$A_{\text{sym}} = W\Lambda W^T = \sum_{|i| \in [r]} \sigma_i w_i w_i^T,$$

as an eigendecomposition of A_{sym} . We have

$$\begin{bmatrix} U_S U_S^T & 0 \\ 0 & V_S V_S^T \end{bmatrix} = \sum_{|i| \in S} w_i w_i^T.$$

Since the pair (i, -i) always go together when we use A_{sym} to analyze A, we will use a different set of notation for A_{sym} and W, which supersede the conventional notation for spectral entities:

- W_S is the matrix whose columns are $\{w_i : |i| \in S\}$. Note that the conventional notation would just be $\{w_i : i \in S\}$.
 - $(A_{\text{sym}})_S = W_S \Lambda W_S^T = \sum_{|i| \in S} \sigma_i w_i w_i^T$. This way $(A_{\text{sym}})_S = (A_S)_{\text{sym}}$. The conventional notation would only involve half of the sum.
 - For $s \in [r]$, let $W_s := W_{[s]}$ and $(A_{sym})_s := (A_{sym})_{[s]}$. Technically, $(A_{sym})_s$ will then be the best rank-2s approximation of A_{sym} , as opposed to the conventional meaning of the notation.
 - For convenience, let $\sigma_0 := 0$.

We define $\tilde{\sigma}_i$, \tilde{w}_i and \tilde{W}_s , \tilde{W}_S , \tilde{A}_s , \tilde{A}_S similarly for $\tilde{A}=A+E$. From Eq. (55) for the symmetric case, we have the expansion

$$(zI - \tilde{A}_{ ext{sym}})^{-1} - (zI - A_{ ext{sym}})^{-1} = \sum_{z=1}^{\infty} \left[(zI - A_{ ext{sym}})^{-1} E_{ ext{sym}} \right]^{\gamma} (zI - A_{ ext{sym}})^{-1},$$

1346 which is equivalent to

1339 1340

1341

1343

$$\sum_{i} \frac{\tilde{w}_{i} \tilde{w}_{i}^{T}}{z - \tilde{\sigma}_{i}} - \sum_{|i| \in [r]} \frac{w_{i} w_{i}^{T}}{z - \sigma_{i}} = \sum_{\gamma = 1}^{\infty} \left[(zI - A_{\text{sym}})^{-1} E_{\text{sym}} \right]^{\gamma} (zI - A_{\text{sym}})^{-1}.$$
 (56)

Let Γ_S denote a contour in $\mathbb C$ that encircles $\{\pm\sigma_i,\pm\tilde\sigma_i\}_{i\in S}$ and none of the other eigenvalues of $\tilde W$ and W, satisfying that the right-hand side of Eq. (56) converges for every z on the contour. Integrating over Γ_S of both sides and dividing by $2\pi i$, we have

$$\begin{bmatrix} \tilde{U}_S \tilde{U}_S^T - U_S U_S^T & 0\\ 0 & \tilde{V}_S \tilde{V}_S^T - V_S V_S^T \end{bmatrix} = \tilde{W}_S \tilde{W}_S - W_S W_S^T$$

$$= \sum_{\gamma=1}^{\infty} \oint_{\Gamma_S} \frac{\mathrm{d}z}{2\pi i} \left[(zI - A_{\text{sym}})^{-1} E_{\text{sym}} \right]^{\gamma} (zI - A_{\text{sym}})^{-1}.$$
(57)

Suppose one aims to bound $\|\tilde{V}_S\tilde{V}_S^T - V_SV_S^T\|_{\infty}$. The simplest approach is to fix two entries $j,k\in[n]$ and obtain a bound for the jk-entry that holds regardless of j and k. Noting that

$$(\tilde{V}_S \tilde{V}_S^T - V_S V_S^T)_{jk} = (\tilde{W}_S \tilde{W}_S^T - W_S W_S^T)_{(j+m)(k+m)},$$

we have the expansion

$$(\tilde{V}_{S}\tilde{V}_{S}^{T} - V_{S}V_{S}^{T})_{jk} = \sum_{\gamma=1}^{\infty} \oint_{\Gamma_{S}} \frac{\mathrm{d}z}{2\pi i} e_{m+n,m+j}^{T} \left[(zI - A_{\text{sym}})^{-1} E_{\text{sym}} \right]^{\gamma} (zI - A_{\text{sym}})^{-1} e_{m+n,m+k}, \tag{58}$$

where $e_{N,l}$ denotes the l^{th} standard basis vector in N dimensions.

- From this point onwards, our proof diverges from the argument in [27]. The goal is still the same,
- but our expansion will be different from [27], with the goal of creating powers of E_{sym} , rather than
- alternating products like $E_{\text{sym}}QE_{\text{sym}}Q\dots E_{\text{sym}}$. To ease the notation, we denote

$$P_i := w_i w_i^T$$
, for $i = \pm 1, \pm 2, \dots, \pm r$.

The resolvent of A_{sym} , which is a function of a complex variable z, can now be written as:

$$(zI-A_{\text{sym}})^{-1} = \sum_{|i| \in [r]} \frac{P_i}{z-\sigma_i} + \frac{I-\sum_{|i| \in [r]} P_i}{z} = \sum_{|i| \in [r]} \frac{\sigma_i P_i}{z(z-\sigma_i)} + \frac{I}{z}.$$

Plugging into Eq. (58), the term with power γ becomes

$$\oint_{\Gamma_S} \frac{\mathrm{d}z}{2\pi i} e_{m+n,m+j}^T \left[\left(\sum_{|i| \in [r]} \frac{\sigma_i P_i}{z(z-\sigma_i)} + \frac{I}{z} \right) E_{\text{sym}} \right]^{\gamma} \left(\sum_{|i| \in [r]} \frac{\sigma_i P_i}{z(z-\sigma_i)} + \frac{I}{z} \right) e_{m+n,m+k}. \tag{59}$$

When expanding the above, we get monomials of the form

$$\oint_{\Gamma_S} \frac{\mathrm{d}z}{2\pi i} e_{m+n,m+j}^T \underbrace{\left(\frac{I}{z} E_{\mathrm{sym}} \dots \frac{I}{z} E_{\mathrm{sym}}\right)}_{\alpha_0 \text{ times}} \underbrace{\left(\frac{\sigma_{\scriptscriptstyle 7} P_{\scriptscriptstyle ?}}{z(z-\sigma_{\scriptscriptstyle ?})} E_{\mathrm{sym}} \dots \frac{\sigma_{\scriptscriptstyle 7} P_{\scriptscriptstyle ?}}{z(z-\sigma_{\scriptscriptstyle ?})} E_{\mathrm{sym}} \dots \frac{\sigma_{\scriptscriptstyle 7} P_{\scriptscriptstyle ?}}{z(z-\sigma_{\scriptscriptstyle ?})} E_{\mathrm{sym}} \underbrace{\left(\frac{\sigma_{\scriptscriptstyle 7} P_{\scriptscriptstyle ?}}{z(z-\sigma_{\scriptscriptstyle ?})} E_{\mathrm{sym}} \dots E_{\mathrm{sym}} \frac{\sigma_{\scriptscriptstyle 7} P_{\scriptscriptstyle ?}}{z(z-\sigma_{\scriptscriptstyle ?})}\right)}_{(\beta_h-1) E_{\mathrm{sym}} \text{ factors}} \underbrace{\left(\frac{E_{\mathrm{sym}} I}{z} \dots E_{\mathrm{sym}} \frac{I}{z} \dots E_{\mathrm{sym}} \frac{I}{z}\right)}_{\alpha_h \text{ times}} e_{m+n,m+k},$$

where the question marks stand for different indices i's. Rearranging, we get the form

$$\left[\oint_{\Gamma_{S}} \frac{\mathrm{d}z}{2\pi i} \frac{1}{z^{\alpha_{0}+\beta_{0}+\alpha_{1}+\ldots+\beta_{h-1}+\alpha_{h}}} \underbrace{\frac{\sigma_{?}}{z-\sigma_{?}} \frac{\sigma_{?}}{z-\sigma_{?}} \cdots \frac{\sigma_{?}}{z-\sigma_{?}}}_{\beta_{1} \text{ factors}}\right] \\
e^{T}_{m+n,m+j} E^{\alpha_{0}}_{\text{sym}} \left(\underbrace{P_{?} E_{\text{sym}} P_{?} E_{\text{sym}} \dots P_{?} E_{\text{sym}}}_{\beta_{1} \text{ factors}}\right) E^{\alpha_{1}}_{\text{sym}} \cdots \underbrace{\left(\underbrace{P_{?} E_{\text{sym}} P_{?} E_{\text{sym}} \dots P_{?}}_{\beta_{2} \text{ min}} e_{m+n,m+k}\right)}_{(\beta_{h}-1) E_{\text{sym}} \text{ factors}} (60)$$

At this point, one can see how several terms in Theorem B.2, especially the incoherence parameters τ and τ' , appear in the final bounds. The long matrix product can be rearranged as

$$(e_{m+n,m+j}^{T}E_{\text{sym}}^{\alpha_{0}}w_{?})\underbrace{(w_{?}^{T}E_{\text{sym}}w_{?}\dots w_{?}^{T}E_{\text{sym}}w_{?})(w_{?}^{T}E_{\text{sym}}^{\alpha_{1}+1}w_{?})}_{(\beta_{1}-1)E_{\text{sym}}\text{ factors}}$$

$$\dots (w_{?}^{T}E_{\text{sym}}^{\alpha_{h-1}+1}w_{?})\underbrace{(w_{?}^{T}E_{\text{sym}}w_{?}\dots w_{?}^{T}E_{\text{sym}}w_{?})(w_{?}^{T}E_{\text{sym}}^{\alpha_{h}}e_{m+n,m+k})}_{(\beta_{h}-1)E_{\text{sym}}\text{ factors}}$$
(61)

1363 As a sneak peek of the proof:

1364

- The two terms at the beginning and ending of the product give rise to τ and τ' .
- The terms $w_2^T E_{\text{sym}} w_2$ give rise to the term $||U^T EV||_{\infty}$ in Eq. (24).
- The terms $w_{_{?}}^{T}E_{_{\mathrm{sym}}}^{\alpha_{i}+1}w_{_{?}}$ mostly give rise to the term $\|E\|$, but in the special cases where $\alpha_{i}=1$ for all i will be more strongly bounded with the term y in R_{3} .
- To further analyze these products and their sum and turn this argument into the proof, we need to formalize them with proper notation.
- 1370 C.2.2 Notation and roadmap
- 1371 **Setting C.2.** The following list also summarizes the notation used in the proof.
- For all matrices B, define $B_{ ext{sym}} := \begin{pmatrix} 0 & B \\ B^T & 0 \end{pmatrix}$.

• Consider A. For each $i \in [r]$, let

1373

1380

1381

1382

1383

1384

1385

1386

1389

$$\sigma_{-i} = -\sigma_i, \ u_{-i} = -u_i, \ v_{-i} = -v_i, \ \text{ and } \ w_i = \frac{1}{\sqrt{2}} \begin{bmatrix} u_i \\ v_i \end{bmatrix}$$

- Define $\Lambda := \{\sigma_i\}_{i \in [[-r,r]]}$ (which includes $\sigma_0 = 0$) and $W := [w_i]_{i \in [\pm r]}$, where $[\pm r] := \{i : |i| \in [r]\}$ (which does not include 0).
- Define \tilde{w}_i similarly, with rank \tilde{A} instead of r.
- Let $e_{N,k}$ be the k^{th} vector of the standard basis in \mathbb{R}^N .
- Γ_S is a contour encircling precisely the set $\{\sigma_i, \tilde{\sigma}_i : |i| \in S\}$ and no other eigenvalues, such that the right-hand side of Eq. (56) converges absolutely for all z on it.
 - For each h, let $\Pi_h(\gamma)$ be the set of all pairs of $\alpha = [\alpha_k]_{k=0}^h$ and $\beta = [\beta_k]_{k=1}^h$ such that:
 - $\alpha_0, \alpha_h \ge 0$, and $\alpha_k \ge 1$ for $1 \le k \le h 1$,

•
$$\beta_k \ge 1 \text{ for } 1 \le k \le h,$$
 (62)

- $\bullet \quad \alpha+\beta=\gamma+1, \quad \text{ where } \alpha:=\textstyle\sum_{k=0}^h\alpha_k, \quad \text{ and } \beta:=\textstyle\sum_{k=1}^h\beta_k.$
- Note that the conditions above imply $2h-1 \le \gamma+1$, so the maximum value for h is $\lfloor \gamma/2 \rfloor +1$.
 - For each β above satisfying each $\beta_k \geq 1$, we use $\mathbf{I} = [i_1, i_2, \dots, i_{\beta}]$ for an element of $[\pm r]^{\beta}$. Together, the triple $(\alpha, \beta, \mathbf{I})$ define uniquely a monomial of the form (60). Define $\mathbf{I}_{a:b}$ as the subsequence $[i_a, i_{a+1}, \dots, i_b]$.
 - For each $(\alpha, \beta) \in \Pi_h(\gamma)$ and $\mathbf{I} \in [\pm r]^{\beta}$, define

$$\mathcal{C}(\mathbf{I}) := \oint_{\Gamma_S} \frac{\mathrm{d}z}{2\pi i} \frac{1}{z^{\gamma+1}} \prod_{j \in [\beta]} \frac{\sigma_{i_j}}{z - \sigma_{i_j}},$$

$$\mathcal{M}(\boldsymbol{\alpha},\boldsymbol{\beta},\mathbf{I}) := E_{\text{sym}}^{\alpha_0} \Big(\prod_{j=1}^{\beta_1} P_{i_j} E_{\text{sym}} \Big) E_{\text{sym}}^{\alpha_1} \dots \Big(\prod_{j=\beta_1+\dots+\beta_{h-1}}^{\beta-1} P_{i_j} E_{\text{sym}} \Big) P_{i_{\beta-1}} E_{\text{sym}}^{\alpha_h},$$

- where $P_i := w_i w_i^T$ for each $i \in [\pm r]$. We call the first, scalar, term the *integral coefficient* and the second the *monomial matrix*.
 - Define the following terms:

$$\begin{split} \mathcal{T}(\boldsymbol{\alpha},\boldsymbol{\beta}) &= \sum_{\mathbf{I} \in [\pm r]^{\beta}} \mathcal{C}(\mathbf{I}) \mathcal{M}(\boldsymbol{\alpha},\boldsymbol{\beta},\mathbf{I}), \qquad \mathcal{T}^{(\gamma,h)} = \sum_{(\boldsymbol{\alpha},\boldsymbol{\beta}) \in \Pi_h(\gamma)} \mathcal{T}(\boldsymbol{\alpha},\boldsymbol{\beta}), \\ \mathcal{T}^{(\gamma)} &= \sum_{h=1}^{\lfloor \gamma/2 \rfloor + 1} \mathcal{T}^{(\gamma,h)}, \qquad \qquad \mathcal{T} = \sum_{\gamma \geq 1} \mathcal{T}^{(\gamma)}. \end{split}$$

1390 From Eqs. (58), (59) and (60), we have

$$(\tilde{V}_S \tilde{V}_S^T - V_S V_S^T)_{jk} = e_{m+n,m+j}^T \mathcal{T} e_{m+n,m+k}.$$
 (63)

At this point, we look at the larger context of Theorem B.2. Consider Eq. (29). To bound $\|\tilde{V}_S\tilde{V}_S^T - V_S\|$

 $V_SV_S^T\|_{2,\infty}$, we can fix one index j and find a bound for its j^{th} row that holds with probability close

enough to 1 to beat the n factor from the union bound. We have

$$(\tilde{V}_S \tilde{V}_S^T - V_S V_S^T)_{j,\cdot} = e_{m+n,m+j}^T \mathcal{T}.$$
 (64)

Therefore, we will introduce a Lemma to bound $M^T \mathcal{T} M'$ for generic matrices M and M' (both with m + n rows), and apply it to obtain both Eq. (28) and (29).

Finally, consider Eq. (30). Following the same train of thought, we want to bound the (j, k)-entry of

1397 $\tilde{A}_s - A_s$ for a fixed $j \in [m]$ and $k \in [n]$. The series \mathcal{T} as defined in Setting C.2 will not be directly

helpful here. Instead, we will modify it slightly, particularly at the integral coefficient, to obtain the

power series for $(A_s - A_s)_{ik}$. The remaining steps will be identical to the proofs of (28) and (29).

The details will be given later, when we prove (30).

1401 C.2.3 Bounding the change in singular subspace expansions

- Let us prove Eqs. (28) and (29) here. We aim to upper bound $||M^T \mathcal{T} M'||$, with $||\cdot||$ being the
- spectral norm, which generalizes both the absolute value of a scalar and the L2 norm of a vector. In
- fact, the proof works for any sub-multiplicative norm that is invariant under transposition. We can
- plug in different choices for M and M' to obtain (28) and (29).
- We start off with bounds on the integral coefficient and the monomial matrix.
- Lemma C.3 (Bound on integral coefficients). Consider the objects defined in Setting C.2. Let $I = \{i_k : k \in \beta\} \in [\pm r]^{\beta}$ and denote the following:

$$\sigma_S(\mathbf{I}) := \min\{|\sigma_{i_k}|: |i_k| \in S\},$$

$$\Delta_S(\mathbf{I}) := \min\{|\sigma_{i_k} - \sigma_{i_l}| : |i_k| \in S, |i_l| \notin S\}.$$

1409 *We have*,

$$|\mathcal{C}(\mathbf{I})| \le \frac{2^{\gamma+\beta-1}}{\sigma_S(\mathbf{I})^{\gamma+1-\beta}\Delta_S(\mathbf{I})^{\beta-1}} \le \frac{2^{\gamma+\beta-1}}{\sigma_S^{\gamma+1-\beta}\Delta_S^{\beta-1}}.$$
 (65)

- In the steps that follow, we will mainly use the second bound of Eq. (65), with one exception where
- the first, more precise, bound is needed. It thus makes sense to keep both.
- Lemma C.4 (Bound on monomial matrices). Consider the objects defined in Setting C.2. Fix γ , h
- 1413 and $(\alpha, \beta) \in \Pi_h(\gamma)$ and $\mathbf{I} = \{i_k : k \in \beta\} \in [\pm r]^{\beta}$. Then

$$||M^T \mathcal{M}(\boldsymbol{\alpha}, \boldsymbol{\beta}, \mathbf{I})M'|| \leq ||E||^{\alpha - \alpha_0 - \alpha_h + h - 1} \cdot ||W^T E_{\text{sym}} W||_{\infty}^{\beta - h} \cdot ||w_{i,}^T E_{\text{sym}}^{\alpha_0} M|| \cdot ||w_{i,}^T E_{\text{sym}}^{\alpha_h} M'||.$$
(66)

- Assuming both bounds above hold, we have the following bounds for each level in the sum M^TTM' .
- The first is a bound on $M^T \mathcal{T}_{\nu}(\boldsymbol{\alpha}, \boldsymbol{\beta}) M'$.
- Lemma C.5 (Bound on $\mathcal{T}(\alpha, \beta)$). Consider objects in Setting C.2. Fix γ and h such that $1 \le h \le 1$
- 1417 $\gamma/2+1$, and $\alpha, \beta \in \Pi_h(\gamma)$, and define the following terms

$$\tau(M) = \max_{0 \le \alpha \le 10 \log(m+n)} \frac{1}{2r} \sum_{|i| \in [r]} \frac{\|w_i^T E_{\text{sym}}^{\alpha} M\|}{\|E_{\text{sym}}\|^{\alpha}}, \quad \text{and analogously for } \tau(M').$$
 (67)

1418

$$R_{1} := \frac{\|E\|}{\sigma_{S}} \vee \frac{2r\|W^{T}E_{\text{sym}}W\|_{\infty}}{\Delta_{S}}, \quad R_{2} := \frac{\sqrt{2r}\|E\|}{\sqrt{\sigma_{S}\Delta_{S}}}, \quad R_{3} := \frac{2r\max_{|i|\neq|j|}|w_{i}E_{\text{sym}}^{2}w_{j}|}{\sigma_{S}\Delta_{S}}$$
(68)

1419 and assume that

$$R := R_1 \vee R_2 < 1/4.$$

1420 Suppose that $1 \le \gamma \le 10 \log(m+n)$. We have

$$||M^{T}\mathcal{T}(\boldsymbol{\alpha},\boldsymbol{\beta})M'|| \leq \begin{cases} r\tau(M)\tau(M')2^{\gamma+\beta}R_{1}R^{\gamma-1} & \text{if } 1 \leq h < \gamma/2 + 1, \\ 16r\tau(M)\tau(M')(4R)^{\gamma-2}(R_{3} + R_{1}^{2}) & \text{if } h = \gamma/2 + 1. \end{cases}$$
(69)

- When $10\log(m+n) < \gamma$, an analogous version of the above holds with $\|M\|$ and $\|M'\|$ replacing
- 1422 $\tau(M)$ and $\tau(M')$, respectively.
- Summing up the bounds above over all $(\alpha, \beta) \in \Pi_h(\gamma)$ and all $1 \le h \le \gamma/2 + 1$, we get the
- 1424 following lemma.
- Lemma C.6 (Bound on each power term in \mathcal{T}). Consider the objects in Setting C.2 and R, R_1 , R_2
- and R_3 from Lemma C.5. For each $1 \le \gamma \le 10 \log(m+n)$, we have

$$\left\| M^T \mathcal{T}^{(\gamma)} M' \right\| \leq r \tau(M) \tau(M') \left[9R_1 (6R)^{\gamma - 1} + \mathbf{1} \{ \gamma \text{ even} \} \cdot 16 (4R)^{\gamma - 2} (R_3 + R_1^2) \right].$$

- When $10\log(m+n) < \gamma$, an analogous version of the above holds with $\|M\|$ and $\|M'\|$ replacing
- 1428 $\tau(M)$ and $\tau(M')$, respectively.
- Summing up the bounds above over all $\gamma \geq 1$, we get the final bound for the power series:
- Lemma C.7 (Bound on the whole \mathcal{T}). Consider the objects in Setting C.2 and R, R_1 , R_2 and R_3
- from Lemma C.5. Suppose $R \leq 1/4$. Then the $\mathcal T$ converges in the metric $\|\cdot\|$ and satisfies, for a
- 1432 universal constant C,

$$||M^T \mathcal{T} M'|| \le Cr \Big[\tau(M) \tau(M') + ||M|| ||M'|| (m+n)^{-2.5} \Big] (R_1 + R_3).$$

- Let us remark on the meanings of the new terms, which are simply translation of terms from Theorem 1433 B.2 into the language of Setting C.2. 1434
- The term $||M|| ||M'|| (m+n)^{-2.5}$ is small, and will be absorbed into the term $\tau(M)\tau(M')$ 1435 for our applications. 1436
 - When translating back from the symmetric setting with A_{sym} and W back to A and U, V, the terms R, R_1 , R_2 and R_3 satisfy

$$R = R_1 \vee R_2 = \frac{\|E\|}{\sigma_S} \vee \frac{2r\|U^T E V\|_{\infty}}{\Delta_S} \vee \frac{\sqrt{2r}\|E\|}{\sqrt{\sigma_S \Delta_S}},$$

and 1439

1437

1438

$$R_1 + R_3 \le 2 \left(\frac{\|E\|}{\sigma_S} + \frac{r\|U^T E V\|_{\infty}}{\Delta_S} + \frac{ry}{\Delta_S \sigma_S} \right).$$

• Similarly, recall the definitions of τ_1 and τ_2 in Eq. (27). As a function of M, τ satisfies 1440 $\tau(e_{m+n,k}) = \tau_1 \text{ for } k \le m, \quad \tau(e_{m+n,k}) = \tau_2 \text{ for } m+1 \le k \le m+n, \quad \text{ and } \tau(I) \le 1,$ (70)

- To summarize, the logical structure is: 1441
- Lemma C.5 $\xrightarrow{\text{implies}}$ Lemma C.6 $\xrightarrow{\text{implies}}$ Lemma C.7 $\xrightarrow{\text{implies}}$ Eqs. (28), (29) in Theorem B.2 1442
- We will finish the last step, which is the proof of (28) and (29) here. The proofs of Lemmas C.5, C.6 1443 and C.7 will be postpone to Section C.3. 1444
- Proof of Theorem B.2 part I. Consider the objects defined in Theorem B.2 and the additional objects 1445
- in Setting C.2. By the remark above, the condition (24) in Theorem B.2 is equivalent to $R_1 \lor R_2 \le 1/4$, 1446
- so we can apply the lemmas in this section.
- Let us prove Eq. (28). Consider arbitrary $j, k \in [n]$. From Eq. (63), $(\tilde{V}_S \tilde{V}_S^T V_S V_S^T)_{jk}$ is $M^T \mathcal{T} M'$ 1448
- for $M=e_{m+n,j+m}$ and $M'=e_{m+n,k+m}$. We apply the bound Lemma C.7, while replacing both $\tau(M)$ and $\tau(M')$ with τ_2 (permissible by Eq. (70)), to get 1449
- 1450

$$\left| (\tilde{V}_S \tilde{V}_S^T - V_S V_S^T)_{jk} \right| \le Cr(R_1 + R_3) \left(\tau_2^2 + \frac{\|M\| \|M'\|}{(m+n)^{2.5}} \right) \le 3Cr\tau_2^2(R_1 + R_3),$$

- where the last inequality is due to the facts ||M|| = ||M'|| = 1 and $\tau_1, \tau_2 \ge (m+n)^{-1/2}$. This holds 1451
- over all $j, k \in [n]$, so it extends to the infinity norm, proving Eq. (28). 1452
- Let us prove Eq. (29). Consider an arbitrary $j \in [n]$. By Eq. (64), $(\tilde{V}_S \tilde{V}_S^T V_S V_S^T)_{j,\cdot} = M^T \mathcal{T} M'$ for the choices $M = e_{m+n,j+m}$ and $M' = I_{m+n}$. We repeat the previous calculations, but this time Eq. (70) tells us to replace $\tau(M)$ with τ_2 and $\tau(M')$ with 1, to get
- 1455

$$\|(\tilde{V}_S \tilde{V}_S^T - V_S V_S^T)_{j,\cdot}\| \le 3Cr\tau_2(R_1 + R_3),$$

- which holds uniformly over $j \in [n]$, proving Eq. (29). 1456
- Next, we will finish proving Theorem B.2 by proving Eq. (30). The argument is identical, but there is 1457
- a small but important change in the integral coefficient, enough to separate the proof into the next 1458
- 1459 part.

1460

Bounding the change in low rank approximations

- Throughout this part, we assume S = [s] for a fixed $s \in [r]$. Consider Eq. (56) again. We already 1461
- know that integrating both sides gives $\tilde{W}_s \tilde{W}_s^T W_s W_s^T$ on the left-hand side. Since we are aiming to 1462
- bound \tilde{A}_s-A_s , we need $\tilde{W}_s\tilde{\Lambda}_s\tilde{W}_s^T-W_s\Lambda_sW_s^T$ on the left-hand side instead. This can be achieved by multiplying both sides with z before integrating, taking advantage of the fact 1463

$$\oint_{\Gamma} \frac{z dz}{z - \sigma} = \sigma$$

for every contour Γ encircling σ . Therefore, the analogy of Eq. (57) is

$$(\tilde{A}_{s} - A_{s})_{\text{sym}} = (\tilde{A}_{\text{sym}})_{s} - (A_{\text{sym}})_{s} = \sum_{|i| \in [s]} \left(\frac{z\tilde{w}_{i}\tilde{w}_{i}^{T}}{z - \tilde{\sigma}_{i}} - \frac{zw_{i}w_{i}^{T}}{z - \sigma_{i}} \right)$$

$$= \sum_{\gamma=1}^{\infty} \oint_{\Gamma_{s}} \frac{zdz}{2\pi i} \left[(zI - A_{\text{sym}})^{-1}E_{\text{sym}} \right]^{\gamma} (zI - A_{\text{sym}})^{-1}.$$

$$= \sum_{\gamma=1}^{\infty} \oint_{\Gamma_{s}} \frac{zdz}{2\pi i} \left[\left(\sum_{|i| \in [r]} \frac{\sigma_{i}P_{i}}{z(z - \sigma_{i})} + \frac{I}{z} \right) E_{\text{sym}} \right]^{\gamma} \left(\sum_{|i| \in [r]} \frac{\sigma_{i}P_{i}}{z(z - \sigma_{i})} + \frac{I}{z} \right).$$

$$(71)$$

Therefore, we can replace the integral coefficient $C(\mathbf{I})$ from Setting C.2 with

$$C_1(\mathbf{I}) := \oint_{\Gamma_S} \frac{z dz}{2\pi i} \frac{1}{z^{\gamma+1}} \prod_{j \in [\beta]} \frac{\sigma_{i_j}}{z - \sigma_{i_j}}.$$
 (72)

- Respectively define $\mathcal{M}_1(\boldsymbol{\alpha},\boldsymbol{\beta},\mathbf{I}),\ \mathcal{T}_1(\boldsymbol{\alpha},\boldsymbol{\beta}),\ \mathcal{T}_1^{(\gamma,h)},\ \mathcal{T}_1^{(h)}$ and \mathcal{T}_1 analogously to $\mathcal{M}(\boldsymbol{\alpha},\boldsymbol{\beta},\mathbf{I}),$ 1468 $\mathcal{T}(\boldsymbol{\alpha},\boldsymbol{\beta}),\mathcal{T}^{(\gamma,h)},\mathcal{T}^{(h)}$ and \mathcal{T} from Setting C.2.
- The only piece we need to modify in the proofs of Eqs. (28) and (29) is the integral coefficient bound, namely Lemma C.3. We have this bound for $C_1(\mathbf{I})$:
- Lemma C.8 (Bound on integral coefficients). Consider the objects in Setting C.2 and Lemma C.3 and C_1 defined in Eq. (72). We have,

$$|\mathcal{C}_{1}(\mathbf{I})| \leq \frac{2^{\gamma+\beta-2}}{\sigma_{s}(\mathbf{I})^{\gamma-\beta}\Delta_{s}(\mathbf{I})^{\beta-1}} \leq \frac{2^{\gamma+\beta-2}}{\sigma_{s}^{\gamma-\beta}\Delta_{s}^{\beta-1}} = \frac{\sigma_{s}}{2} \cdot \frac{2^{\gamma+\beta-1}}{\sigma_{s}^{\gamma+1-\beta}\Delta_{s}^{\beta-1}}.$$
 (73)

- The purpose of the last transformation is to highlight that the bound on the new integral coefficient is simply scaled up by a factor $\sigma_s/2$ compared to the old bound.
- We remark that this bound does not hold for all choices of β if the power of z in Eq. (72) is larger
- than 1, or when S does not contain exactly the first s singular values. Therefore, one can neither
- extend Eq. (30) to a general S nor to quantities like $\tilde{A}_s^2 \tilde{A}_s^2$, at least not in a simple way.
- 1478 Proof of Theorem B.2 part II. We prove Eq. (30). Fix $j \in [m]$ and $k \in [n]$. By Eq. (71), $(\tilde{A}_s -$
- 1479 $A_s)_{jk} = M^T \mathcal{T}_1 M'$ for $M = e_{m+n,j}$ and $M' = e_{m+n,m+k}$. The bound on $M^T \mathcal{T}_1 M'$ will simply
- be the same bound for $M^T \mathcal{T} M'$ scaled up by $\sigma_s/2$. By Eq. (70), we can also replace $\tau(M)$ with τ_1
- and $\tau(M')$ with τ_2 . Therefore we obtain

$$\left| (\tilde{A}_s - A_s)_{jk} \right| \le Cr(R_1 + R_3) \left(\tau_1 \tau_2 + \frac{\|M\| \|M'\|}{(m+n)^{2.5}} \right) \le 3Cr\tau_1 \tau_2(R_1 + R_3),$$

- where the last inequality holds due to $\tau_1, \tau_2 \ge (m+n)^{-1/2}$ and ||M|| = ||M'|| = 1. After passing to the inifinity norm, the proofs of Eq. (30) and of Theorem B.2 are complete.
- Now it remains to prove the lemmas in Sections C.2.3 and C.2.4. We will prove Lemmas C.4, C.5,
- 1485 C.6 and C.7. The proofs of the bounds on the integral coefficients (Lemmas C.3 and C.8) will be
- postponed to Section D due to their lengths.

1487 C.3 Bounding the generic series

- 1488 Let us prove Lemma C.4.
- 1489 Proof of Lemma C.4. Consider a monomial matrix $\mathcal{M}(\alpha, \beta, \mathbf{I})$ has the form

$$\mathcal{M}(\boldsymbol{\alpha}, \boldsymbol{\beta}, \mathbf{I}) := E_{\text{sym}}^{\alpha_0} \Big(\prod_{j=1}^{\beta_1} P_{i_j} E_{\text{sym}} \Big) E_{\text{sym}}^{\alpha_1} \dots \Big(\prod_{j=\beta-\beta_h}^{\beta-1} P_{i_j} E_{\text{sym}} \Big) P_{i_{\beta-1}} E_{\text{sym}}^{\alpha_h}. \tag{74}$$

1490 From Eq. (61), we can rearrange this to get

$$M^{T}\mathcal{M}(\boldsymbol{\alpha}, \boldsymbol{\beta}, \mathbf{I})M' = \left(M^{T}E_{\text{sym}}^{\alpha_{0}}w_{i_{1}}\right) \left(\prod_{j=1}^{\beta_{1}-1}w_{i_{j}}^{T}E_{\text{sym}}w_{i_{j+1}}\right) \left(w_{i_{\beta_{1}}}^{T}E_{\text{sym}}^{\alpha_{1}+1}w_{i_{\beta_{1}+1}}\right)$$

$$\dots \left(w_{i_{\beta-\beta_{h}}}^{T}E_{\text{sym}}^{\alpha_{h-1}+1}w_{i_{\beta-\beta_{h}+1}}\right) \left(\prod_{j=\beta-\beta_{h}+1}^{\beta-1}w_{i_{j}}^{T}E_{\text{sym}}w_{i_{j+1}}\right) \left(w_{i_{\beta}}^{T}E_{\text{sym}}^{\alpha_{h}}M'\right)$$

- Let us break down this product into the following types:
- 1. $M^T E_{\text{sym}}^{\alpha_0} w_{i_1}$ and $w_{i_\beta}^T E_{\text{sym}}^{\alpha_h} M'$: bounded by their respective norms.
- 1493 2. $w_{i_j}^T E_{\text{sym}} w_{i_{j+1}}$ for each $j \in [\beta 1]$: bounded by $\|W^T E_{\text{sym}} W\|_{\infty}$, and their number is $(\beta_1 1) + (\beta_2 1) + \ldots + (\beta_h 1) = \beta h$.
- 3. $w_{i_j}^T E_{\text{sym}}^{\alpha+1} w_{i_{j+1}}$ for $j=\beta_1+\ldots+\beta_l$ and $\alpha=\alpha_l$ for some l: bounded by $\|E\|^{\alpha_l+1}$, and their total power is $(\alpha_1+1)+(\alpha_2+1)+\ldots+(\alpha_{h-1}+1)=\alpha-\alpha_0-\alpha_h+h-1$.
- Due to the fact $\|\cdot\|$ is sub-multiplicative, the proof is complete.
- 1498 We continue with proving Lemma C.5.
- 1499 Proof of Lemma C.5. For simplicity, let $X = W^T E_{\text{sym}} W$. Since

$$\mathcal{T}(oldsymbol{lpha},oldsymbol{eta}) = \sum_{\mathbf{I} \in [2r]^eta} \mathcal{C}(\mathbf{I}) \mathcal{M}(oldsymbol{lpha},oldsymbol{eta},\mathbf{I}),$$

1500 we obtain

$$\|M^T \mathcal{T}(\boldsymbol{\alpha}, \boldsymbol{\beta}) M'\| \leq \|X\|_{\infty}^{\beta-h} \|E\|^{\alpha-\alpha_0-\alpha_h+h-1} \sum_{\mathbf{I} \in [\pm r]^{\beta}} |\mathcal{C}(\mathbf{I})| \|M^T E_{\text{sym}}^{\alpha_0} w_{i_1}\| \|w_{i_{h\beta_h}}^T E_{\text{sym}}^{\alpha_h} M'\|.$$

Applying the second part of the bound (65) on C(I) in Lemma C.3, we get

$$||M^{T}\mathcal{T}(\alpha,\beta)M'|| \leq ||X||_{\infty}^{\beta-h}||E||^{\alpha-\alpha_{0}-\alpha_{h}+h-1} \frac{2^{\gamma+\beta-1}}{\sigma_{S}^{\alpha}\Delta_{S}^{\beta-1}} \sum_{\mathbf{I}\in[\pm r]^{\beta}} ||M^{T}E_{\text{sym}}^{\alpha_{0}}w_{i_{1}}|| ||w_{i_{h\beta_{h}}}^{T}E_{\text{sym}}^{\alpha_{h}}M'||$$

$$= ||X||_{\infty}^{\beta-h}||E||^{\alpha-\alpha_{0}-\alpha_{h}+h-1} \frac{2^{\gamma+\beta-1}(2r)^{\beta-2}}{\sigma_{S}^{\alpha}\Delta_{S}^{\beta-1}} \sum_{i\in[\pm r]} ||w_{i}^{T}E_{\text{sym}}^{\alpha_{0}}M|| \sum_{i\in[\pm r]} ||w_{i}^{T}E_{\text{sym}}^{\alpha_{h}}M'||$$

$$= ||X||_{\infty}^{\beta-h}||E||^{\alpha+h-1} \frac{2^{\gamma+\beta-1}(2r)^{\beta}}{\sigma_{S}^{\alpha}\Delta_{S}^{\beta-1}} \sum_{i\in[\pm r]} \frac{||w_{i}^{T}E_{\text{sym}}^{\alpha_{0}}M||}{2r||E||^{\alpha_{0}}} \sum_{i\in[\pm r]} \frac{||w_{i}^{T}E_{\text{sym}}^{\alpha_{h}}M'||}{2r||E||^{\alpha_{h}}}$$

$$\leq \tau(M)\tau(M')||X||_{\infty}^{\beta-h}||E||^{\alpha+h-1} \frac{2^{\gamma+\beta-1}(2r)^{\beta}}{\sigma_{S}^{\alpha}\Delta_{S}^{\beta-1}}.$$

$$(75)$$

1502 After rearrangements, we get

$$||M^T \mathcal{T}(\boldsymbol{\alpha}, \boldsymbol{\beta}) M'|| \leq r \tau(M) \tau(M') 2^{\gamma + \beta - 1} \left[\frac{2r ||X||_{\infty}}{\Delta_S} \right]^{\beta - h} \left[\frac{||E||}{\sigma_S} \right]^{\alpha - h + 1} \left[\frac{\sqrt{2r} ||E||}{\sqrt{\sigma_S \Delta_S}} \right]^{2(h - 1)}.$$

By the definitions of R, R_1 and R_2 , we can replace the first two powers with R_1 and the third with R_2 to get

$$||M^T \mathcal{T}(\boldsymbol{\alpha}, \boldsymbol{\beta}) M'|| \le r \tau(M) \tau(M') 2^{\gamma + \beta - 1} R_1^{\gamma - 2h + 2} R_2^{2(h-1)}$$

Suppose $h < \gamma/2 + 1$, then $\gamma - 2h + 2 \ge 1$, so we further have the bound

$$||M^T \mathcal{T}(\boldsymbol{\alpha}, \boldsymbol{\beta}) M'|| \le r \tau(M) \tau(M') 2^{\gamma + \beta - 1} R_1 R^{\gamma - 2h + 1 + 2(h - 1)} = r \tau(M) \tau(M') 2^{\beta} R_1(2R)^{\gamma - 1}.$$

We get the first case of Eq. (69). Now consider the case $h = \gamma/2 + 1$, which only happens when γ is 1506 even. The previous bound becomes 1507

$$||M^{T}\mathcal{T}(\boldsymbol{\alpha},\boldsymbol{\beta})M'|| \le r\tau(M)\tau(M')2^{\gamma+\beta-1}R_{2}^{2(h-1)} = r\tau(M)\tau(M')2^{\beta-1}(2R_{2})^{\gamma}.$$
 (76)

If we are content with this bound, continuing the rest of the proof will lead to the final bound 1508

$$||M^T \mathcal{T} M'|| \le Cr\tau(M)\tau(M')(R_1 + R_2^2),$$

which is fine, but slightly less efficient than the target 1509

$$||M^T \mathcal{T} M'|| \le Cr\tau(M)\tau(M')(R_1 + R_3),$$

- since it is trivial that $R_3 \leq R_2^2$, and can be much smaller in some cases (see Remark B.3). 1510
- To reach the target, we need to extract at least one factor of R_1 or R_3 from the bound, rather than 1511
- having R_2^{γ} , hence a more delicate argument is needed.
- If $\gamma = 2h 2$, then $\alpha_0 = \alpha_h = 0$ and $\alpha_1 = \ldots = \alpha_{h-1} = \beta_1 = \ldots = \beta_h = 1$, thus $\beta = h$. Let $(\boldsymbol{\alpha}^*, \boldsymbol{\beta}^*)$ denote the corresponding tuple. Plugging into Eq. (74) and simplifying, we have 1513
- 1514

$$M^T \mathcal{T}(\boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) M' = \sum_{\mathbf{I} \in [\pm r]^h} \mathcal{C}(\mathbf{I}) \left(M^T w_{i_1} \right) \left(w_{i_h}^T M' \right) \prod_{k=1}^{h-1} w_{i_k}^T E_{\text{sym}}^2 w_{i_{k+1}},$$

- Consider the long product at the end of the right-hand side. For the purpose of this proof, let
- 1516
- $y := \max_{|i| \neq |j|} |w_i^T E_{\text{sym}}^2 w_j|$ (the term in R_3 's definition). Note that this is smaller than the term y in Theorem B.2. Our goal is to extract at least one factor y out from the product, which should give rise 1517
- to R_3 . Therefore, consider two subcases for I: 1518
- (1) There is k so that $|i_k| \neq |i_{k+1}|$, Then $\left|w_{i_k}^T E_{\text{sym}}^2 w_{i_{k+1}}\right| \leq y$ and we are good. The rest of the product can be bounded by $\|E\|^2$. The total contribution of this subcase is at most 1519 1520

$$r\tau(M)\tau(M')2^{\gamma+\beta-1}R_3R_2^{\gamma-2} = r\tau(M)\tau(M')2^{3\gamma/2}R_3R_2^{\gamma-2}$$

- since we can simply replace a factor of R_2^2 in Eq. (76) with R_3 . 1521
- (2) $|i_k| = i$ for all $k \in [h-1]$, for some $i \in [r]$. If $i \notin S$, then it is trivial from the definition of 1522 \mathcal{C} in (C.2) that $\mathcal{C}(\mathbf{I}) = 0$. Suppose $i \in S$, it is time for us to apply the first, stronger bound in 1523 Lemma C.3. The key improvement is the fact $\Delta_S(\mathbf{I}) = \sigma_i \geq \sigma_S$, instead of $\Delta_S(\mathbf{I}) \geq \Delta_S$ 1524 in the normal cases, so we get 1525

$$|\mathcal{C}(\mathbf{I})| \leq \frac{2^{\gamma+\beta-1}}{\sigma_S(\mathbf{I})^{\gamma+1-\beta}\Delta_S(\mathbf{I})^{\beta-1}} \leq \frac{2^{3\gamma/2}}{\sigma_S^{\gamma}}.$$

The monomial matrix total contribution of this subcase is at mos 1526

$$\tau(M)\tau(M')\sum_{i\in S}\sum_{\mathbf{I}\in\{\pm i\}^h}\frac{2^{3\gamma/2}\|E\|^{2(h-1)}}{\sigma_S^{\gamma}}=r\tau(M)\tau(M')\frac{2^{3\gamma/2+h}\|E\|^{\gamma}}{\sigma_S^{\gamma}}\leq 2r\tau(M)\tau(M')(4R_1)^{\gamma}.$$

Therefore, the contribution of the case $h = \gamma/2 + 1$ is at most

$$r\tau(M)\tau(M')\left[2^{3\gamma/2}R_3R_2^{\gamma-2}+2(4R_1)^{\gamma}\right] \le 16r\tau(M)\tau(M')(4R)^{\gamma-2}\left(R_3+R_1^2\right).$$

The proof is complete in the case $1 \le \gamma \le 10 \log(m+n)$. For the case $\gamma > 10 \log(m+n)$, consider 1528 Eq. (75) again. We cannot use $\tau(M)$ and $\tau(M')$ anymore, but we can use the trivial upper bounds 1529

$$\sum_{i\in [\pm r]} \frac{\left\|w_i^T E_{\operatorname{sym}}^{\alpha_0} M\right\|}{2r\|E\|^{\alpha_0}} \leq \|M\|, \quad \sum_{i\in [\pm r]} \frac{\left\|w_i^T E_{\operatorname{sym}}^{\alpha_h} M'\right\|}{2r\|E\|^{\alpha_h}} \leq \|M'\|$$

- in place of $\tau(M)$ and $\tau(M')$, which complete the proof. 1530
- Let us proceed with the proof of Lemma C.6, which simply involve summing up the bounds in Lemma C.5 over all choices of (α, β) .

1533 Proof of Lemma C.6. Let us consider the case $\gamma \leq 10 \log(m+n)$ first. Recall that

$$M^{T} \mathcal{T}^{(\gamma)} M' = \sum_{h=1}^{\lfloor \gamma/2 \rfloor + 1} \sum_{(\boldsymbol{\alpha}, \boldsymbol{\beta}) \in \Pi_{h}(\gamma)} M^{T} \mathcal{T}(\boldsymbol{\alpha}, \boldsymbol{\beta}) M'.$$
 (77)

Consider the easy case where γ is odd. Then $h < \gamma/2 + 1$, and we have, by Lemma C.5,

$$||M^{T}\mathcal{T}^{(\gamma)}M'|| \leq \sum_{h=1}^{\lfloor \gamma/2\rfloor+1} \sum_{(\boldsymbol{\alpha},\boldsymbol{\beta})\in\Pi_{h}(\gamma)} r\tau(M)\tau(M')2^{\beta}R_{1}(2R)^{\gamma-1}$$

$$= r\tau(M)\tau(M')R_{1}(2R)^{\gamma-1} \sum_{h=1}^{\lfloor \gamma/2\rfloor+1} \sum_{\beta=h}^{\gamma+2-h} 2^{\beta} \left| \{(\boldsymbol{\alpha},\boldsymbol{\beta})\in\Pi_{h}(\gamma): \sum_{j}\beta_{j} = \beta\} \right|$$

$$(78)$$

The elements of the set at the end are just tuples $(\alpha_0, \dots, \alpha_h, \beta_1, \dots, \beta_h)$ such that

$$\beta_1, \dots, \beta_h \ge 1$$
, $\sum_{i=1}^h \beta_i = \beta$, and $\alpha_0, \alpha_h \ge 0$, $\alpha_1, \dots, \alpha_{h-1}$, $\sum_{i=0}^h \alpha_i = \gamma + 1 - \beta$.

The number of ways to choose such a tuple is $\binom{\beta-1}{h-1}\binom{\gamma+2-\beta}{h}$. Plugging into Eq. (78), we obtain

$$||M^{T}\mathcal{T}_{\nu}^{(\gamma)}M'|| \leq r\tau(M)\tau(M')R_{1}(2R)^{\gamma-1} \sum_{h=1}^{\lfloor \gamma/2\rfloor+1} \sum_{\beta=h}^{\gamma+2-h} {\beta-1 \choose h-1} {\gamma+2-\beta \choose h} 2^{\beta}$$

$$= r\tau(M)\tau(M')R_{1}(2R)^{\gamma-1} \sum_{\beta=1}^{\gamma+1} 2^{\beta} \sum_{h=1}^{\beta \wedge (\gamma+2-\beta)} {\beta-1 \choose h-1} {\gamma+2-\beta \choose h}$$

$$\leq r\tau(M)\tau(M')R_{1}(2R)^{\gamma-1} \sum_{\beta=1}^{\gamma+1} 2^{\beta} {\gamma+1 \choose \beta} = 9r\tau(M)\tau(M')R_{1}(6R)^{\gamma-1}.$$
(79)

Now consider the case γ is even. The only extra term will be in the case $h=\gamma/2+1$, where α and β are both all 1s. Therefore, in total we have

$$\begin{aligned} \left\| M^T \mathcal{T}_{\nu}^{(\gamma)} M' \right\| &\leq 9r\tau(M)\tau(M') R_1(6R)^{\gamma - 1} + \mathbf{1}\{\gamma \text{ even}\} \cdot 16r\tau(M)\tau(M') (4R)^{\gamma - 2} (R_3 + R_1^2) \\ &\leq r\tau(M)\tau(M') \left[9R(6R)^{\gamma - 1} + 16(4R)^{\gamma - 2} \mathbf{1}\{\gamma \text{ even}\} (R_1^2 + R_3) \right] \end{aligned}$$

- For the remaining case, $\gamma > 10 \log(m+n)$, we can simply replace $\tau(M)$ with $\|M\|$ and similarly for M'. The proof is complete.
- Now we finish the bound on the entire power series.
- 1542 Proof of Lemma C.7. For convenience, let $k = \lfloor 10 \log(m+n) \rfloor$. Applying Lemma C.6, we have

$$\sum_{\gamma=1}^{k} \left\| M^{T} \mathcal{T}_{\nu}^{(\gamma)} M' \right\| \leq r \tau(M) \tau(M') \left[9 \sum_{\gamma=1}^{\infty} R_{1} (6R)^{\gamma-1} + 16(R_{3} + R_{1}^{2}) \sum_{\gamma=1}^{\infty} (4R)^{2\gamma-2} \right] \\
\leq r \tau(M) \tau(M') \left[\frac{9R_{1}}{1 - 6R} + \frac{16(R_{3} + R_{1}^{2})}{1 - 16R^{2}} \right] \leq Cr \mathcal{L}_{\nu} \tau \tau' (R_{1} + R_{3}),$$

1543 and

$$\sum_{\gamma=k+1}^{\infty} \left\| M^T \mathcal{T}_{\nu}^{(\gamma)} M' \right\| \leq r \|M\| \|M'\| \left[9 \sum_{\gamma=k+1}^{\infty} R_1 (6R)^{\gamma-1} + 16(R_3 + R_1^2) \sum_{\gamma=\lceil (k+1)/2 \rceil}^{\infty} (4R)^{2\gamma-2} \right] \\
\leq r \|M\| \|M'\| \left[\frac{9R_1 (6R)^k}{1 - 6R} + \frac{16(4R)^{k-1} (R_3 + R_1^2)}{1 - 16R^2} \right] \leq \frac{Cr \|M\| \|M'\| (R_1 + R_3)}{(m+n)^{2.5}}.$$

- The convergence is guaranteed by the geometrically vanishing bounds on the $\|\cdot\|$ -norms of the terms.
- Summing up the two parts, we obtain, by the triangle inequality

$$||M^T \mathcal{T}_{\nu} M'|| \le Cr \left(\tau(M)\tau(M') + \frac{||M|| ||M'||}{(m+n)^{2.5}}\right) (R_1 + R_3).$$

1546 The proof is complete.

D **Proofs of technical lemmas** 1547

Proof of bound for contour integrals of polynomial reciprocals 1548

In this section, we prove Lemmas C.3 and C.8, which provide the necessary bounds on the integral 1549 coefficients in the proof of Theorem B.2. Recall that the integrals we are interested in have the form 1550

$$\mathcal{C}(\mathbf{I}) = \oint_{\Gamma_S} \frac{z^{\nu} dz}{2\pi i} \frac{1}{z^{\gamma+1}} \prod_{k=1}^{\beta} \frac{\sigma_{i_k}}{z - \sigma_{i_k}}, \quad \mathcal{C}_1(\mathbf{I}) = \oint_{\Gamma_S} \frac{z dz}{2\pi i} \frac{1}{z^{\gamma+1}} \prod_{k=1}^{\beta} \frac{\sigma_{i_k}}{z - \sigma_{i_k}},$$

where $\beta \leq \gamma + 1$. We can combine them into the common form below:

$$C_{\nu}(\mathbf{I}) := \oint_{\Gamma_S} \frac{z^{\nu} dz}{2\pi i} \frac{1}{z^{\gamma+1}} \prod_{k=1}^{\beta} \frac{\sigma_{i_k}}{z - \sigma_{i_k}}, \quad \text{where } \nu \in \{0, 1\} \text{ and } \beta \le \gamma + 1.$$
 (80)

Let the multiset $\{\sigma_{i_k}\}_{k\in[\beta]}=A\cup B$, where $A:=\{a_i\}_{i\in[l]}$ and $B:=\{b_j\}_{j\in[k]}$, where each $a_i\in S$ and each $b_i \notin S$, having multiplicities m_i and n_j respectively. We can rewrite the above into 1553

$$C_{\nu}(\mathbf{I}) = \prod_{i=1}^{l} a_i^{m_i} \prod_{j=1}^{k} b_j^{n_j} C(n_0; A, \mathbf{m}; B, \mathbf{n}),$$
(81)

1554 where

$$C(n_0; A, \mathbf{m}; B, \mathbf{n}) := \oint_{\Gamma_A} \frac{\mathrm{d}z}{2\pi i} \frac{1}{z^{n_0}} \prod_{i=1}^k \frac{1}{(z - b_j)^{n_j}} \prod_{i=1}^l \frac{1}{(z - a_i)^{m_i}},$$
 (82)

where $n_0 = \gamma + 1 - \nu$. The m_i 's and n_j 's satisfy $\sum_i m_i + \sum_j n_j \le \gamma + 1$. We can remove the set S and simply denote the contour by Γ_A without affecting its meaning. The next three results will 1555

build up the argument to bound these sums and ultimately prove the target lemmas. 1557

Lemma D.1. Let $A = \{a_i\}_{i \in [l]}$ and $B = \{b_j\}_{j \in [k]}$ be disjoint set of complex non-zero numbers 1558

and $\mathbf{m} = \{m_i\}_{i \in [l]}$ and n_0 and $\mathbf{n} = \{n_j\}_{j \in [k]}$ be nonnegative integers such that $m + n + n_0 \ge 2$, 1559

where $m = \sum_{i \neq i} m_i$ and $n := \sum_{i \geq 1} n_i$. Let Γ_A be a contour encircling all numbers in A and none in $B \cup \{0\}$. Let a, d > 0 be arbitrary such that: 1560

1561

$$d \le a, \qquad a \le \min_{i} |a_i|, \qquad d \le \min_{i,j} |a_i - b_j|. \tag{83}$$

Suppose that $0 \le m_i' \le m_i$ for each $i \in [l]$ and that $m' := \sum_{i=1}^k m_i' \le n_0$. Then for $C(n_0; A, \mathbf{m}; B, \mathbf{n})$ defined Eq. (82), we have

$$|C(n_0; A, \mathbf{m}; B, \mathbf{n})| \le {m + n + n_0 - 2 \choose m - 1} \frac{1}{a^{n_0 - m'} d^{m + n - 1}} \prod_{i=1}^{l} \frac{1}{|a_i|^{m'_i}}$$
(84)

Proof. Firstly, given the sets A and B and the notations and conditions in Lemma D.1, the weak 1564 bound below holds 1565

$$|C(n_0; A, \mathbf{m}; B, \mathbf{n})| \le {m+n+n_0-2 \choose m-1} \frac{1}{d^{m+n+n_0-1}}.$$
 (85)

We omit the details of the proof, which is a simple induction argument. We now use Eq. (85) to prove 1566 the following:

$$|C(n_0; A, \mathbf{m}; B, \mathbf{n})| \le {m+n+n_0-2 \choose m-1} \frac{1}{a^{n_0}d^{m+n-1}}.$$
 (86)

We proceed with induction. Let $P_1(N)$ be the following statement: "For any sets A and B, and the 1568 notations and conditions described in Lemma D.1, such that $m + n + n_0 = N$, Eq. (86) holds." 1569

Since $m+n+n_0 \ge 2$, consider N=2 for the base case. The only case where the integral is non-zero 1570

is when m=1 and $n+n_0=1$, meaning $A=\{a_1\}, m_1=1$ and either $B=\varnothing$ and $n_0=1$, or 1571

 $B = \{b_1\}$ and $n_1 = 1$, $n_0 = 0$. The integral yields a_1^{-1} in the former case and $(a_1 - b_1)^{-1}$ in the

latter, confirming the inequality in both.

- Consider $n \geq 3$ and assume $P_1(n-1)$. If m=0, the integral is again 0. If $n_0=0$, Eq. (86) 1574
- automatically holds by being the same as Eq. (85). Assume $m, n_0 \ge 1$. There must then be some 1575
- $i \in [l]$ such that $m_i \ge 1$, without loss of generality let 1 be that i. We have 1576

$$C(n_0; A, \mathbf{m}; B, \mathbf{n}) = \frac{1}{a_1} \left[C(n_0 - 1; A, \mathbf{m}; B, \mathbf{n}) - C(n_0; A, \mathbf{m}^{(1)}; B, \mathbf{n}) \right]$$
(87)

- where $\mathbf{m}^{(i)}$ is the same as \mathbf{m} except that the *i*-entry is $m_i 1$. 1577
- Consider the first integral on the right-hand side. Applying $P_1(N-1)$, we get 1578

$$|C(n_0 - 1; A, \mathbf{m}; B, \mathbf{n})| \le {m + n + n_0 - 3 \choose m - 1} \frac{1}{a^{n_0 - 1} d^{m + n - 1}}.$$
 (88)

Analogously, we have the following bound for the second integral:

$$\left| C(n_0; A, \mathbf{m}^{(1)}; B, \mathbf{n}) \right| \le \binom{m+n+n_0-3}{m-2} \frac{1}{a^{n_0} d^{m+n-2}} \le \binom{m+n+n_0-3}{m-2} \frac{1}{a^{n_0-1} d^{m+n-1}}.$$
(89)

- Notice that the binomial coefficients in Eqs. (88) and (89) sum to the binomial coefficient in Eq. (86), 1580
- we get $P_1(N)$, which proves Eq. (86) by induction. 1581
- Now we can prove Eq. (84). The logic is almost identical, with Eq. (86) playing the role of Eq. (85)
- in its own proof, handling an edge case in the inductive step. Let $P_2(n)$ be the statement: "For any
- sets A and B, and the notations and conditions described in Lemma D.1, such that $m + n + n_0 = N$, 1584
- Eq. (84) holds." 1585
- The cases N=1 and N=2 are again trivially true. Consider $N\geq 3$ and assume $P_2(N-1)$. Fix 1586
- 1587
- any sequence m'_1, m'_2, \ldots, m'_l satisfying $0 \le m'_i \le m_i$ for each $i \in [k]$ and $n_0 \ge m'_1 + \ldots + m'_k$. If $m'_1 = m'_2 = \ldots = m'_k = 0$, we are done by Eq. (86). By symmetry among the indices, assume $m'_1 \ge 1$. This also means $n_0 \ge 1$. Consider Eq. (87) again. For the first integral on the right-hand side, applying $P_2(N-1)$ for the parameters $n_0 1, n_1, \ldots, n_k, m_1, \ldots, m_l$ and $m'_1 1, m'_2, \ldots, m'_k$ 1588
- 1589
- 1590
- yields the bound 1591

$$|C(n_0 - 1; A, \mathbf{m}; B, \mathbf{n})| \le {\binom{m + n + n_0 - 3}{m - 1}} \frac{1}{a^{n_0 - m'} d^{m + n - 1}} \frac{1}{|a_1|^{m'_1 - 1}} \prod_{i=2}^{l} \frac{1}{|a_i|^{m'_i}}.$$
 (90)

Applying $P_2(N-1)$ for the parameters $n_0, n_1, \ldots, n_k, m_1-1, \ldots, m_l$ and $m'_1-1, m'_2, \ldots, m'_k$, we get the following bound for the second integral on the right-hand side of Eq. (87):

$$\left| C(n_0; A, \mathbf{m}^{(1)}; B, \mathbf{n}) \right| \leq {m+n+n_0-3 \choose m-2} \frac{1}{a^{n_0-m'+1}d^{m+n-2}} \frac{1}{|a_1|^{m'_1-1}} \prod_{i=2}^{l} \frac{1}{|a_i|^{m'_i}} \\
\leq {m+n+n_0-3 \choose m-2} \frac{1}{a^{n_0-m'}d^{m+n-1}} \frac{1}{|a_1|^{m'_1-1}} \prod_{i=2}^{l} \frac{1}{|a_i|^{m'_i}}.$$

- Summing up the bounds by summing the binomial coefficients, we get exactly $P_2(N)$, so Eq. (84) is 1594 proven by induction. 1595
- **Lemma D.2.** Let A, B, m, n, n_0 , Γ_A and a, d be the same, with the same conditions as in Lemma D.1. Suppose that $0 \le m_i' \le m_i$ and $0 \le n_j' \le n_j$ for each $i, j \ge 1$ and 1597

$$m' + n' \le n_0 \text{ for } m' := \sum_i m'_i, \quad n' := \sum_j n'_j.$$

Then for $C(n_0; A, \mathbf{m}; B, \mathbf{n})$ defined in Eq. (82), we have

$$|C(n_0; A, \mathbf{m}; B, \mathbf{n})| \le \binom{n + n_0 - n' + m - 2}{m - 1} \frac{(1 + d/a)^{n'}}{a^{n_0 - m' - n'} d^{m + n - 1}} \prod_{i=1}^{l} \frac{1}{|a_i|^{m'_i}} \prod_{j=1}^{k} \frac{1}{|b_j|^{n'_j}}.$$
(91)

1599 *Proof.* We have the expansion

$$\begin{split} &\frac{1}{z^{n_0}} \prod_{j=1}^k \frac{b_j^{n_j'}}{(z-b_j)^{n_j}} \prod_{i=1}^l \frac{1}{(z-a_i)^{m_i}} = \frac{1}{z^{n_0-n'}} \prod_{j=1}^k \frac{1}{(z-b_j)^{n_j-n_j'}} \prod_{j=1}^k \left(\frac{1}{z} - \frac{1}{z-b_j}\right)^{n_j'} \prod_{i=1}^l \frac{1}{(z-a_i)^{m_i}} \\ &= \frac{1}{z^{n_0-n'}} \prod_{j=1}^k \frac{1}{(z-b_j)^{n_j-n_j'}} \sum_{0 \le r_j \le n_j' \forall j} \frac{(-1)^{r_1+\dots+r_k}}{z^{n'-r_1-\dots-r_k}} \prod_{j=1}^k \binom{n_j'}{r_j} \frac{1}{(z-b_j)^{r_j}} \prod_{i=1}^l \frac{1}{(z-a_i)^{m_i}} \\ &= \sum_{0 \le r_j \le n_j' \forall j} \frac{(-1)^{r_1+\dots+r_k}}{z^{n_0-r_1-\dots-r_k}} \prod_{j=1}^k \binom{n_j'}{r_j} \frac{1}{(z-b_j)^{r_j+n_j-n_j'}} \prod_{i=1}^l \frac{1}{(z-a_i)^{m_i}}. \end{split}$$

1600 Integrating both sides over Γ_A , we have

$$C(n_0; A, \mathbf{m}; B, \mathbf{n}) \prod_{j=1}^k b_j^{n_j'} = \sum_{0 \le r_i \le n', \forall j} (-1)^{\sum_j r_j} \binom{n_j'}{r_j} C\left(n_0 - \sum_j r_j; A, \mathbf{m}; B, \mathbf{r} + \mathbf{n} - \mathbf{n}'\right),$$

where the *j*-entry of $\mathbf{r} + \mathbf{n} - \mathbf{n}'$ is simply $r_j + n_j - n'_j$. Applying Lemma D.1 for each summand on the right-hand side and rearranging the powers, we get

$$\left| C \left(n_0 - \sum_j r_j; A, \mathbf{m}; B, \mathbf{r} + \mathbf{n} - \mathbf{n}' \right) \right| \le \binom{m + n + n_0 - n' - 2}{m - 1} \frac{(a/d)^{\sum_j r_j}}{a^{n_0 - m'} d^{n - n' + m - 1}} \prod_{i=1}^l \frac{1}{|a_i|^{m'_i}}.$$

1603 Summing up the bounds, we get

$$\begin{vmatrix} C(n_0; A, \mathbf{m}; B, \mathbf{n}) \prod_{j=1}^k b_j^{n_j'} \end{vmatrix} \leq \binom{m+n+n_0-n'-2}{m-1} \frac{\prod_{i=1}^l |a_i|^{-m_i'}}{a^{n_0-m'}d^{n-n'+m-1}} \sum_{0 \leq r_j \leq n_j' \forall j} \prod_{j=1}^k \binom{n_j'}{r_j} \frac{a^{r_j}}{d^{r_j}}$$

$$= \binom{m+n+n_0-n'-2}{m-1} \frac{\prod_{i=1}^l |a_i|^{-m_i'}}{a^{n_0-m'}d^{n-n'+m-1}} \left(\frac{a}{d}+1\right)^{n'}.$$

- 1604 Rearranging the term, we get precisely the desired inequality.
- With the lemma above, we are ready to prove both Lemmas C.3 and C.8.
- Proof of Lemmas C.3 and C.8. First rewrite the integral into the forms of (80), then (81) and (82). Let us consider two cases for C:
- 1608 1. $\nu = 0$, so $n_0 = \gamma + 1$. Let $a = \sigma_S(\mathbf{I})$, $d = \Delta_S(\mathbf{I})$, $m = \beta_S(\mathbf{I})$, $n = n' = \beta_{S^c}(\mathbf{I})$, $m'_i = m_i$ and $n'_j = n_j$ for all i, j, then $m' + n' = \beta \le \gamma + 1 = n_0$, so we can apply Lemma D.2 to get

$$|C(n_0; A, \mathbf{m}; B, \mathbf{n})| \le \binom{n_0 + m - 2}{m - 1} \frac{(1 + d/a)^{n'}}{a^{n_0 - m - n} d^{m + n - 1}} \prod_{i=1}^{l} \frac{1}{|a_i|^{m_i}} \prod_{j=1}^{k} \frac{1}{|b_j|^{n_j}},$$

or equivalently,

$$|\mathcal{C}_0(\mathbf{I})| \le \left(1 + \frac{\Delta_S(\mathbf{I})}{\sigma_S(\mathbf{I})}\right)^{\beta_{S^c}(\mathbf{I})} \binom{\gamma + \beta_S(\mathbf{I}) - 1}{\beta_S(\mathbf{I}) - 1} \frac{1}{\sigma_S(\mathbf{I})^{\gamma + 1 - \beta} \Delta_S(\mathbf{I})^{\beta - 1}}.$$

Since $\Delta_S(\mathbf{I}) \leq \sigma_S(\mathbf{I})$ and the binomial coefficient is at most $2^{\gamma+\beta_S(\mathbf{I})-1}$, we get the final bound

$$|\mathcal{C}_0(\mathbf{I})| \leq \frac{2^{\gamma + \beta_S(\mathbf{I}) - 1 + \beta_{S^c}(\mathbf{I})}}{\sigma_S(\mathbf{I})^{\gamma + 1 - \beta} \Delta_S(\mathbf{I})^{\beta - 1}} = \frac{2^{\gamma + \beta - 1}}{\sigma_S(\mathbf{I})^{\gamma + 1 - \beta} \Delta_S(\mathbf{I})^{\beta - 1}} \leq \frac{2^{\gamma + \beta - 1}}{\sigma_S^{\gamma + 1 - \beta} \Delta_S^{\beta - 1}},$$

where the last inequality holds due to $\sigma_S(\mathbf{I}) \geq \sigma_S$ and $\Delta_S(\mathbf{I}) \geq \Delta_S$. The proof of Lemma C.3 is complete.

1616 2. $\nu=1$ and S=[s] for some $s\in[r]$. This is the special case for Lemma C.8. Note that $n_0=\gamma$ in this case. Without loss of generality, assume $|a_1|=\sigma_s(\mathbf{I})$, then we are guaranteed $m_1\geq 1$. Applying Lemma D.2 for the same parameters as in the previous case, except that $m_1'=m_1-1$, we get

$$|C(n_0; A, \mathbf{m}; B, \mathbf{n})| \le |a_1| \binom{n_0 + m - 2}{m - 1} \frac{(1 + d/a)^{n'}}{a^{n_0 - m + 1 - n} d^{m + n - 1}} \prod_{i=1}^{l} \frac{1}{|a_i|^{m_i}} \prod_{j=1}^{k} \frac{1}{|b_j|^{n_j}},$$

which translates to

$$|\mathcal{C}_1(\mathbf{I})| \leq \binom{\gamma + \beta_s(\mathbf{I}) - 2}{\beta_s(\mathbf{I}) - 1} \left(1 + \frac{\Delta_s(\mathbf{I})}{\sigma_s(\mathbf{I})}\right)^{\beta_{S^c}(\mathbf{I})} \frac{\sigma_s(\mathbf{I})}{\sigma_s(\mathbf{I})^{\gamma + 1 - \beta} \Delta_s(\mathbf{I})^{\beta - 1}} \leq \frac{2^{\gamma + \beta - 2}}{\sigma_s(\mathbf{I})^{\gamma - \beta} \Delta_s(\mathbf{I})^{\beta - 1}}.$$

Now, it may seem that we can simply replace $\sigma_s(\mathbf{I})$ and $\Delta_s(\mathbf{I})$ respectively with σ_s and Δ_s to get the final bound. This is true in most cases, but the situtation is more complicated when $\beta=\gamma+1$, since the inequality $\sigma_s(\mathbf{I})^{\gamma-\beta} \geq \sigma_s^{\gamma-\beta}$ would be reversed. This is where the fact S=[s] comes into play. Consider the case $\beta=\gamma+1$. We have

$$\frac{2^{\gamma+\beta-2}}{\sigma_s(\mathbf{I})^{\gamma-\beta}\Delta_s(\mathbf{I})^{\beta-1}} \leq \frac{2^{\gamma+\beta-2}}{\sigma_s^{\gamma-\beta}\Delta_s^{\beta-1}} \Leftrightarrow \frac{\sigma_s(\mathbf{I})}{\Delta_s(\mathbf{I})^{\gamma}} \leq \frac{\sigma_s}{\Delta_s^{\gamma}}.$$

Since $\gamma \geq 1$, we have

1625

1628

1629

1631

$$\frac{1}{\Delta_s(\mathbf{I})^{\gamma-1}} \le \frac{1}{\Delta_s^{\gamma-1}}.$$

It suffices to show $\sigma_s(\mathbf{I})/\Delta_s(\mathbf{I}) \leq \sigma_s/\delta_s$ to complete the last step. Choose $t \in [s]$ where $\sigma_t = \sigma_S(\mathbf{I})$, then $\Delta_S(\mathbf{I}) \geq \sigma_t - \sigma_{s+1}$, thus

$$\frac{\sigma_S(\mathbf{I})}{\Delta_S(\mathbf{I})} \le \frac{\sigma_t}{\sigma_t - \sigma_{s+1}} \le \frac{\sigma_s}{\sigma_s - \sigma_{s+1}} = \frac{\sigma_s}{\delta_s}.$$

This completes the final step, proving Lemma C.8. Note that the inequality above does not hold if S does not contain a continguous chunk of the largest singular values.

1630

D.2 Proof of semi-isotropic bounds for powers of random matrices

In this section, we prove TheoremB.4, which gives semi-itrosopic bounds for powers of E_{sym} in the second step of the main proof strategy.

The form of the bounds naturally implies that we should handle the even and odd powers separately.

1635 We split the two cases into the following lemmas.

Lemma D.3. Let $m, r \in \mathbb{N}$ and $U \in \mathbb{R}^{m \times r}$ be a matrix whose columns u_1, u_2, \ldots, u_r are unit vectors. Let E be a $m \times n$ random matrix following Model (31) with parameters M and $\varsigma = 1$, meaning E has independent entries and

 $\mathbf{E}[E_{ij}] = 0$, $\mathbf{E}[\|E\|_{ij}^2] \le 1$, $\mathbf{E}[\|E\|_{ij}^p] \le M^{p-2}$ for all p.

$$\mathbf{E}\left[E_{ij}\right] \equiv 0, \quad \mathbf{E}\left[\|E\|_{ij}\right] \leq 1, \quad \mathbf{E}\left[\|E\|_{ij}\right] \leq M^{2}$$
 Joi an

1639 For any $a \in \mathbb{N}$, $k \in [n]$, for any D > 0, for any $p \in \mathbb{N}$ such that

$$m+n \ge 2^8 M^2 p^6 (2a+1)^4,$$

we have, with probability at least $1 - (2^5/D)^{2p}$,

$$\left\| e_{n,k}^T (E^T E)^a E^T U \right\| \leq D r^{1/2} p^{3/2} \sqrt{2a+1} \left(16 p^{3/2} (2a+1)^{3/2} M \frac{\|U\|_{2,\infty}}{\sqrt{r}} + 1 \right) [2(m+n)]^a.$$

Lemma D.4. Let E be a $m \times n$ random matrix following the model in Lemma D.3. For any matrix $V \in \mathbb{R}^{m \times l}$ with unit columns v_1, v_2, \ldots, v_l , any $a \in \mathbb{N}$, $k \in [n]$, any D > 0, and any $p \in \mathbb{N}$ such that

$$m+n \ge 2^8 M^2 p^6 (2a)^4$$

we have, with probability at least $1 - (2^4/D)^{2p}$,

$$||e_{n,k}^T(E^TE)^aV|| \le Dp||V||_{2,\infty}[2(m+n)]^a.$$

Let us prove the main objective of this section, Theorem B.4, before delving into the proof of the technical lemmas.

Proof of Theorem B.4. Consider the analogue of Eq. (33) for V (we wrote the proof for V before the final edit, and wanted to save the energy of changing to U) and Eq. (34), and assume $M \le \log^{-2-\varepsilon}(m+n)\sqrt{m+n}$. Fix $k \in [n]$. It suffices to prove the following two bounds uniformly over all $a \in [\lfloor t \log(m+n) \rfloor]$:

$$||e_{n,k}^T(E^TE)^a E^T U|| \le C\tau_1(U, \log\log(m+n))(1.9\varsigma\sqrt{m+n})^{2a+1}\sqrt{r}$$
 (92)

$$||e_{n,k}^T(E^TE)^aV|| \le C\tau_0(V, \log\log(m+n))(1.9\varsigma\sqrt{m+n})^{2a}\sqrt{r}.$$
 (93)

Fix $a \in [\lfloor t \log(m+n) \rfloor]$. Let $p = \log \log(m+n)$. We can assume p is an integer for simplicity without any loss. This choice ensures

$$M^{2}p^{6}(2a)^{4} < M^{2}p^{6}(2a+1)^{4} \le \frac{(m+n)t^{4}\log^{4}(m+n)\log^{6}\log(m+n)}{\log^{4+2\varepsilon}(m+n)} = o(m+n),$$

so we can apply both Lemmas D.3 and D.4.

Let us prove Eq. (92) for a. Applying Lemma D.3 for the random matrix E/ς and $D=2^{13}$ gives, with probability $1-\log^{-4.04}(m+n)$,

$$\begin{split} &\frac{\|e_{n,k}^T(E^TE)^aE^TU\|}{(1.9\varsigma\sqrt{m+n})^{2a+1}} \leq \frac{Dr^{1/2}p^{3/2}\sqrt{2a+1}}{1.9\sqrt{m+n}} \left(16p^{3/2}(2a+1)^{3/2}M\frac{\|U\|_{2,\infty}}{\sqrt{r}} + 1\right) \left(\frac{2}{3.61}\right)^a \\ &\leq \frac{Dr^{1/2}p^{3/2}}{\sqrt{m+n}} \left(16p^{3/2}M\frac{\|U\|_{2,\infty}}{\sqrt{r}} + 1\right) \leq 2^{17}\sqrt{r} \left(\frac{Mp^3\|U\|_{2,\infty}}{\sqrt{r(m+n)}} + \frac{p^{3/2}}{\sqrt{m+n}}\right), \end{split}$$

where the second inequality is due to $\alpha \leq (\sqrt{2}/1.9)^{\alpha}$. A union bound over all $a \in [\lfloor t \log(m+n) \rfloor]$ makes the bound uniform, with probability at least $1 - \log^{-3}(m+n)$. The term inside parentheses in the last expression is less than $D_{U,V,\log\log(m+n)}$, so Eq. (92), and thus Eq. (34) follows.

Let us prove Eq. (93). Applying Lemma D.3 for the random matrix E/ς and $D=2^{10}$ gives, with probability $1-\log^{-8}(m+n)$,

$$\frac{\|e_{n,k}^T(E^TE)^aV\|}{(1.9\epsilon\sqrt{m+n})^{2a+1}} \le Dp\|V\|_{2,\infty} \left(\frac{2}{3.61}\right)^a \le 2^{10}p\|V\|_{2,\infty} \le 2^{10}\sqrt{r}D_{U,V,p},$$

proving Eq. (93) and thus Eq. (33) after a union bound, similar to the previous case.

Let us now prove Eqs (35) and (36), focusing on the former first. Since the 2-to- ∞ norm is the the largest norm among the rows, it suffices to prove Eq. (33) holds uniformly over all $k \in [n]$ for $p = \log(m+n)$. Substituting this new choice of p into the previous argument, for a fixed k, we have Eq. (33), but with probability at least $1 - (m+n)^{-4.04}$. Applying another union bound over $k \le [n]$ gives Eq. (35) with probability at least $1 - (m+n)^{-3}$. The proof of (36) is analogous. The proof of Theorem B.4 is complete.

Now let us handle the technical lemmas D.3 and D.4. The odd case (Lemma D.3) is more difficult, so we will handle it first to demonstrate our technique. The argument for the even case (Lemma D.4) is just a simpler version of the same technique.

D.2.1 Case 1: odd powers

1671

Proof. Without loss of generality, let k=1. Let us fix $p \in \mathbb{N}$ and bound the $(2p)^{th}$ moment of the expression of concern. We have

$$\mathbf{E} \left[\left\| e_{n,1}^{T} (E^{T} E)^{a} E^{T} U \right\|^{2p} \right] = \mathbf{E} \left[\left(\sum_{l=1}^{r} (e_{n,1}^{T} (E^{T} E)^{a} E^{T} u_{l})^{2} \right)^{p} \right]$$

$$= \sum_{l_{1}, \dots, l_{p} \in [r]} \mathbf{E} \left[\prod_{h=1}^{p} (e_{n,1}^{T} (E^{T} E)^{a} E^{T} u_{l_{h}})^{2} \right].$$
(94)

Temporarily let $\mathcal W$ be the set of walks $W=(j_0i_0j_1i_1\dots i_a)$ of length 2a+1 on the complete bipartite graph $M_{m,n}$ such that $j_0=1$. Here the two parts of M are $I=\{1',2',\dots,m'\}$ and $J=\{1,2,\dots,n\}$, where the prime symbol serves to distinguish two vertices on different parts with the same number. Let $E_W=E_{i_0j_0}E_{i_0j_1}\dots E_{i_{a-1}j_a}E_{i_aj_a}$. We can rewrite the final expression in the above as

$$\sum_{l_1, l_2, \dots, l_p \in [r]} \sum_{W_{11}, W_{12}, W_{21}, \dots, W_{p2} \in \mathcal{W}} \mathbf{E} \left[\prod_{h=1}^p E_{W_{h1}} E_{W_{h2}} u_{l_h i_{(h1)_a}} u_{l_h i_{(h2)_a}} \right],$$

where we denote $W_{hd}=(j_{(hd)0},i_{(hd)0},\ldots,i_{(hd)a})$. We can swap the two summation in the above to get

$$\sum_{W_{11},W_{12},W_{21},\dots,W_{p2}\in\mathcal{W}}\mathbf{E}\left[\prod_{h=1}^p E_{W_{h1}}E_{W_{h2}}\right]\sum_{l_1,l_2,\dots,l_p\in[r]}\prod_{h=1}^p u_{l_hi_{(h1)a}}u_{l_hi_{(h2)a}}.$$

The second sum can be recollected in the form of a product, so we can rewrite the above as

$$\sum_{W_{11},W_{12},W_{21},\dots,W_{p2}\in\mathcal{W}} \mathbf{E} \left[\prod_{h=1}^{p} E_{W_{h1}} E_{W_{h2}} \right] \prod_{h=1}^{p} U_{\cdot,i_{(h1)a}}^{T} U_{\cdot,i_{(h2)a}}$$

1682 Define the following notation:

- 1683 1. \mathcal{P} is the set of all *star*, i.e. tuples of walks $P=(P_1,\ldots,P_{2p})$ on the complete bipartite graph $M_{m,n}$, such that each walk $P_r \in \mathcal{W}$ and each edge appears at least twice.
- Rename each tuple $(W_{h1}, W_{h2})_{h=1}^p$ as a star P with $W_{hd} = P_{2h-2+d}$.
- For each P, let V(P) and E(P) respectively be the set of vertices and edges involved in P.
- Define the partition $V(P)=V_I(P)\cup V_J(P),$ where $V_I(P):=V(P)\cap I$ and $V_J(P):=V(P)\cap J.$
- 1689 2. $E_P := E_{P_1} E_{P_2} \dots E_{P_{2n}}$

1690 1691

1692

1693

1694

1695

1696

1697

1698

1699

- 3. $P^{\text{end}} := (i_{1a}, i_{2a}, \dots, i_{(2p)a})$, which we call the *boundary* of P. Then $u_Q := \prod_{r=1}^{2p} u_{q_r}$ for any tuple $Q = (q_1, \dots, q_r)$.
 - 4. $\mathcal S$ is the subset of "shapes" in $\mathcal P$. A shape is a tuple of walks $S=(S_1,\ldots,S_{2p})$ such that all S_r start with 1 and for all $r\in[2p]$ and $s\in[0,a]$, if i_{rs} appears for the first time in $\{i_{r's'}:r'\leq r,s'\leq s\}$, then it is strictly larger than all indices before it, and similarly for j_{rs} . We say a star $P\in\mathcal P$ has shape $S\in\mathcal S$ if there is a bijection from V(P) to [|V(P)|] that transforms P into S. The notations V(S), $V_I(S)$, $V_J(S)$, E(S) are defined analogously. Observe that the shape of P is unique, and S forms a set of equivalent classes on $\mathcal P$.
- 5. Denote by $\mathcal{P}(S)$ the class associated with the shape S, namely the set of all stars P having shape S.
- 1700 We can rewrite the previous sum as:

$$\sum_{P \in \mathcal{P}} \mathbf{E}\left[E_P\right] \prod_{h=1}^{p} U_{\cdot, i_{(2h-1)a}}^{T} U_{\cdot, i_{(2h)a}}$$

Using triangle inequality and the sub-multiplicity of the operator norm, we get the following upper bound for the above:

$$\sum_{P \in \mathcal{P}} |\mathbf{E}[E_P]| \prod_{h=1}^{p} ||U_{\cdot,i_{(2h-1)a}}|| ||U_{\cdot,i_{(2h)a}}|| = r^p \sum_{P \in \mathcal{P}} u_{P^{\text{end}}} |\mathbf{E}[E_P]| = r^p \sum_{S \in \mathcal{S}} \sum_{P \in \mathcal{P}(S)} u_{P^{\text{end}}} |\mathbf{E}[E_P]|,$$
(95)

where the vector u is given by $u_i = r^{-1/2} \|U_{\cdot,i}\|$ for $i \in [m]$. Observe that

$$||u|| = 1$$
 and $||u||_{\infty} = r^{-1/2} ||U||_{2,\infty}$.

Fix $P \in \mathcal{P}$. Let us bound $\mathbf{E}[E_P]$. For each $(i,j) \in E(P)$, let $\mu_P(i,j)$ be the number of times (i,j)1704 is traversed in P. We have 1705

$$|\mathbf{E}[E_P]| = \prod_{(i,j)\in E(P)} \mathbf{E}\left[|E_{ij}|^{\mu_P(i,j)}\right] \le \prod_{(i,j)\in E(P)} M^{\mu_P(i,j)-2} = M^{2p(2a+1)-2|E(P)|}.$$

Since the entries u_i are related by the fact their squares sum to 1, it will be better to bound their 1706 symmetric sums rather than just a product $u_{P^{\text{end}}}$. Fix a shape S, we have 1707

$$\begin{split} \sum_{P \in \mathcal{P}(S)} |u_{P^{\text{end}}}| &= \sum_{f: V(S) \hookrightarrow [m]} \prod_{k=1}^{|V(S^{\text{end}})|} |u_{f(k)}|^{\mu_{S^{\text{end}}}(k)} \leq m^{|V_I(S)| - |V(S^{\text{end}})|} n^{|V_J(S)| - 1} \prod_{k=1}^{|V(S^{\text{end}})|} \sum_{i=1}^{m} |u_i|^{\mu_{S^{\text{end}}}(k)} \\ &= m^{|V_I(S)| - |V(S^{\text{end}})|} n^{|V_J(S)| - 1} \prod_{k=1}^{|V(S^{\text{end}})|} ||u||^{\mu_{S^{\text{end}}}(k)}_{\mu_{S^{\text{end}}}(k)}, \end{split}$$

- where we slightly abuse notation by letting $\mu_Q(k)$ be the number of time k appears in Q. 1708
- Consider $||u||_l^l$ for an arbitrary $l \in \mathbb{N}$. When l = 1, $||u||_l^l \le \sqrt{m}$ by Cauchy-Schwarz. When $l \ge 2$,
- we have $||u||_l^l \le ||u||_{\infty}^{l-2} ||u||_2^2 = ||u||_{\infty}^{l-2}$. Thus

$$\sum_{P \in \mathcal{P}(S)} |u_{P^{\mathrm{end}}}| \leq \prod_{k=1}^{|V(S)|} \|u\|_{\mu_{S^{\mathrm{end}}}(k)}^{\mu_{S^{\mathrm{end}}}(k)} \leq \prod_{k \in V_{2}(S)} \|u\|_{\infty}^{\mu_{S^{\mathrm{end}}}(k)-2} (\sqrt{m})^{|V_{1}(S^{\mathrm{end}})|} = \|u\|_{\infty}^{2p-\nu(S)} m^{|V_{1}(S^{\mathrm{end}})|/2},$$

- where, we define $V_1(Q)$ as the set of vertices appearing in Q exactly once and $V_2(Q)$ as the set of 1711
- vertices appearing at least twice, and to shorten the notation, we let $\nu(S) := |V_1(S^{\text{end}})| + 2|V_2(S^{\text{end}})|$. 1712
- Combining the bounds, we get the upper bound below for (95): 1713

$$\begin{split} &M^{2p(2a+1)} \sum_{S \in \mathcal{S}} M^{-2|E(S)|} m^{|V_I(S)| - |V(S^{\text{end}})|} n^{|V_J(S)| - 1} \|u\|_{\infty}^{2p - \nu(S)} m^{|V_1(S^{\text{end}})|/2} \\ &= M^{2p(2a+1) + 2} \sum_{S \in \mathcal{S}} M^{-2|V(S)|} m^{|V_I(S)| - \nu(S)/2} n^{|V_J(S)| - 1} \|u\|_{\infty}^{2p - \nu(S)}. \end{split}$$

- Suppose we fix $|V_1(S^{\text{end}})|=x$, $|V_2(S^{\text{end}})|=y$, $|V_I(S)|=z$, $|V_J(S)|=t$. Let $\mathcal{S}(x,y,z,t)$ be the
- subset of shapes having these quantities. To further shorten the notation, let $M_1 := M^{2p(2a+1)} ||u||_{\infty}^{2p}$. 1715
- Then we can rewrite the above as: 1716

$$M_1 \sum_{x,y,z,t \in \mathcal{A}} M^{-2(z+t)} m^{z-x/2-y} n^{t-1} ||u||_{\infty}^{-x-2y} |\mathcal{S}(x,y,z,t)|, \tag{96}$$

- where \mathcal{A} is defined, somewhat abstractly, as the set of all tuples (x, y, z, t) such that $\mathcal{S}(x, y, z, t) \neq \emptyset$. 1717
- We first derive some basic conditions for such tuples. Trivially, one has the following initial bounds: 1718

$$0 \le x, y,$$
 $1 \le x + y \le z,$ $x + 2y \le 2p,$ $0 \le z, t,$ $z + t \le p(2a + 1) + 1,$

- where the last bound is due to $z + t = |V(S)| \le |E(S)| + 1 \le p(2a + 1) + 1$, since each edge is 1719
- repeated at least twice. However, it is not strong enough, since we want the highest power of m and 1720
- n combined to be at most 2ap, so we need to eliminate a quantity of p.
- **Claim D.5.** When each edge is repeated at least twice, we have $z x/2 y + t 1 \le 2ap$. 1722
- 1723
- Proof of Claim D.5. Let $S=(S_1,\ldots,S_{2p})$, where $S_r=j_{r0}i_{r0}j_{r1}i_{r1}\ldots j_{ra}i_{ra}$. We have $j_{r0}=1$ for all r. It is tempting to think (falsely) that when each edge is repeated at least twice, each vertex 1724
- appears at least twice too. If this were to be the case, then each vertex in the set 1725

$$A(S) := \{i_{rs} : 1 < r < 2p, 0 < s < a - 1\} \cup \{j_{rs} : 1 < r < 2p, 1 < s < a\} \cup V_1(S^{\text{end}})\}$$

- appears at least twice. The sum of their repetitions is 4ap + x, so the size of this set is at most 1726
- 2ap + x/2. Since this set covers every vertex, with the possible exceptions of $1 \in I$ and $V_2(S^{\text{end}})$, its 1727
- size is at least z y + t 1, proving the claim. In general, there will be vertices appearing only once 1728
- in S. However, we can still use the simple idea above. Temporarily let $A_1(S)$ be the set of vertices 1729
- appearing once in S and f(S) be the sum of all edges' repetitions in S. Let $S^{(0)}:=S$. Suppose for

1731 $k \ge 0$, $S^{(k)}$ is known and satisfies $|A(S^{(k)})| = |A(S)| - k$, $f(S^{(k)}) = 4pa + x - 2k$ and each edge appears at least twice in $S^{(k)}$. If $A_1(S^{(k)}) = \emptyset$, then by the previous argument, we have

$$2(z-y+t-1-k) \le 4pa+x-2k \implies z-x/2-y+t-1 \le 2pa$$

proving the claim. If there is some vertex in $A_1(S^{(k)})$, assume it is some i_{rs} , then we must have

 $s \leq a-1$ and $j_{rs}=j_{r(s+1)}$, otherwise the edge $j_{rs}i_{rs}$ appears only once. Create $S^{(k+1)}$ from

1735 $S^{(k)}$ by removing i_{rs} and identifying j_{rs} and $j_{r(s+1)}$, we have $|A(S^{(k+1)})| = |A(S)| - (k+1)$

and $|f(S^{(k)})| = 4pa + x - 2(k+1)$. Further, since i_{rs} is unique, $j_{rs}i_{rs} \equiv i_{rs}j_{r(s+1)}$ are the only

2 occurrences of this edge in $S^{(k)}$, thus the edges remaining in $S^{(k+1)}$ also appears at least twice.

Now we only have $|A_1(S^{(k+1)})| \leq |A_1(S^{(k)})|$, with possible equality, since j_{rs} can be come unique

after the removal, but since there is only a finite number of edges to remove, eventually we have

 $A_1(S^{(k)}) = \emptyset$, completing the proof of the claim.

1741 Claim D.5 shows that we can define the set A of *eligible sizes* as follows:

$$\mathcal{A} = \left\{ (x, y, z, t) \in \mathbb{N}^4_{\geq 0} : \ 1 \leq t; \ 1 \leq x + y \leq z; \ x + 2y \leq 2p; \ z - x/2 - y + t - 1 \leq 2ap \right\}. \tag{97}$$

Now it remains to bound |S(x, y, z, t)|.

1743 **Claim D.6.** Given a tuple $(x, y, z, t) \in A$, where A is defined in Eq. (97), we have

$$|\mathcal{S}(x,y,z,t)| \leq \frac{2^{l+1}(2p(a+1))!(2pa)!(l+1)^{2p(2a+1)-2l}}{(2p(2a+1)-2l)!l!z!(t-1)!} (16p(a+1)-8l-2)^{4p(a+1)-2l-1}.$$

- 1744 *Proof.* We use the following coding scheme for each shape $S \in \mathcal{S}(x,y,z,t)$: Given such an S, we
- can progressively build a codeword W(S) and an associated tree T(S) according to the following

1746 scheme:

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

- 1. Start with $V_J = \{1\}$ and $V_I = \emptyset$, W = [] and T being the tree with one vertex, 1.
 - 2. For $r = 1, 2, \dots, 2p$:
 - (a) Relabel S_r as $1k_1k_2 \dots k_{2a}$.
 - (b) For $s = 1, 2, \dots, 2a$:
 - If $k_s \notin V(T)$ then add k_s to T and draw an edge connecting k_{s-1} and k_s , then mark that edge with a (+) in T, and append (+) to W. We call its instance in S_r a plus edge.
 - If $k_s \in V(T)$ and the edge $k_{s-1}k_s \in E(T)$ and is marked with (+): unmark it in T, and append (-) to W. We call its instance in S_r a *minus edge*.
 - If $k_s \in V(T)$ but either $k_{s-1}k_s \notin E(T)$ or is unmarked, we call its instance in S_r a neutral edge, and append the symbol k_s to W.

1758 This scheme only creates a preliminary codeword W, which does not yet uniquely determine the

original S. To be able to trace back S, we need the scheme in [34] to add more details to the

preliminary codewords. For completeness, we will describe this scheme later, but let us first bound

the number of preliminary codewords.

Claim D.7. Let $\mathcal{PC}(x, y, z, t)$ denote the set of preliminary codewords generable from shapes in $\mathcal{S}(x, y, z, t)$. Then for l := z + t - 1 we have

$$|\mathcal{PC}(x,y,z,t)| \le \frac{2^l (2p(a+1))!(2pa)!(l+1)^{2p(2a+1)-2l}}{(2p(2a+1)-2l)!l!z!(t-1)!}.$$

Note that the bound above does not depend on x and y. In fact, for fixed z and t, the right-hand side

is actually an upper bound for the sum of |S(x,y,z,t)| over all pairs (x,y) such that (x,y,z,t) is

eligible. We believe there is plenty of room to improve this bound in the future.

1767 Proof. To begin, note that there are precisely z and t-1 plus edges whose right endpoint is

respectively in I and J. Suppose we know u and v, the number of minus edges whose right endpoint

is in I and J, respectively. Then

- The number of ways to place plus edges is at most $\binom{2p(a+1)}{z}\binom{2pa}{t-1}$.
- The number of ways to place minus edges, given the position of plus edges, is at most $\binom{2p(a+1)-z}{v}\binom{2pa-t+1}{v}.$
 - The number of ways to choose the endpoint for each neutral edge is at most $z^{2p(a+1)-z-u}t^{2pa-t+1-v}$.
- 1775 Combining the bounds above, we have

1773

1797

1798

1799

1800

$$|\mathcal{S}(x,y,z,t)| \le \binom{2p(a+1)}{z} \binom{2pa}{t-1} \sum_{u+v=z+t-1} \binom{2p(a+1)-z}{u} \binom{2pa-t+1}{v} z^{f(z,u)} t^{g(t,v)}, \tag{98}$$

where f(z,u) = 2p(a+1) - z - u and g(u,v) = 2pa - t + 1 - v. Let us simplify this bound. The sum on the right-hand side has the form

$$\sum_{i+j=k} \binom{N}{i} \binom{M}{j} z^i t^j,$$

where k = 2(p(2a+1) - (z+t-1)), N = 2p(a+1) - z, M = 2pa - t + 1. We have

$$\begin{split} & \sum_{i+j=k} \binom{N}{i} \binom{M}{j} z^i t^j = \sum_{i+j=k} \frac{N!M!}{k!(N-i)!(M-j)!} \binom{k}{i} z^i t^j \leq \sum_{i+j=k} \frac{N!M!}{k!} \frac{(z+t)^k}{(N-i)(M-j)!} \\ & \leq \frac{N!M!(z+t)^k}{k!(M+N-k)!} \sum_{i+j=k} \binom{M+N-k}{N-i} \leq \frac{2^{M+N-k}N!M!(z+t)^k}{k!(M+N-k)!}. \end{split}$$

Replacing M, N and k with their definitions, we get

$$\begin{split} & \sum_{u+v=z+t-1} \binom{2p(a+1)-z}{u} \binom{2pa-t+1}{v} z^{f(z,u)} t^{g(t,v)} \\ & \leq \frac{2^{z+t-1} (2p(a+1)-z)! (2pa-t+1)! (z+t)^{2p(2a+1)-2(z+t-1)}}{(2p(2a+1)-2(z+t-1))! (z+t-1)!}, \end{split}$$

replacing z + t - 1 with l, we prove the claim.

Back to the proof of Claim D.6, to uniquely determine the shape S, the general idea is the following. 1781 We first generated the preliminary codeword W from S, then attempt to decode it. If we encounter 1782 a plus or neutral edge, we immediately know the next vertex. If we see a minus edge that follows 1783 from a plus edge (u, v), we know that the next vertex is again u. Similarly, if there are chunks 1784 of the form (++...+-...) with the same number of each sign, the vertices are uniquely 1785 determined from the first vertex. Therefore, we can create a condensed codeword W^* repeatedly 1786 removing consecutive pairs of (+-) until none remains. For example, the sections (-+-+-) and 1787 (-++--) both become (-). Observe that the condensed codeword is always unique regardless of 1788 the order of removal, and has the form 1789

$$W^* = [(+ ... +) \text{ or } (-... -)] \text{ (neutral)} [(+... +) \text{ or } (-... -)] \dots \text{ (neutral)} [(+... +) \text{ or } (-... -)],$$

where we allow blocks of pure pluses and minuses to be empty. The minus blocks that remain in W^* are the only ones where we cannot decipher.

Recall that during decoding, we also reconstruct the tree T(S), and the partial result remains a tree at any step. If we encounter a block of minuses in W^* beginning with the vertex i, knowing the right endpoint j of the last minus edge is enough to determine the rest of the vertices, which is just the unique path between i and j in the current tree. We call the last minus edge of such a block an important edge. There are two cases for an important edge.

1. If i and all vertices between i and j (excluding j) are only adjacent to at most two plus edges in the current tree (exactly for the interior vertices), we call this important edge simple and just mark the it with a direction (left or right, in addition to the existing minus). For example, $(--\ldots)$ becomes $(--\ldots)$ where dir is the direction.

2. If the edge is non-simple, we just mark it with the vertex j, so $(--\ldots)$ becomes $(--\ldots(-j))$.

It has been shown in [34] that the fully codeword \overline{W} resulting from W by marking important edges uniquely determines S, and that when the shape of S is that of a single walk, the cost of these markings is at most a multiplicative factor of $2(4N+8)^N$, where N is the number of neutral edges in the preliminary W. To adapt this bound to our case, we treat the star shape S as a single walk, with a neutral edge marked by 1 after every 2a+1 edges. There are 2p-1 additional neutral edges from this perspective, making N=4p(a+1)-2l-1 in total. Combining this with the bound on the number of preliminary codewords (Claim D.7) yields

$$|\mathcal{S}(x,y,z,t)| \le \frac{2^{l+1}(2p(a+1))!(2pa)!(l+1)^{2p(2a+1)-2l}}{(2p(2a+1)-2l)!l!z!(t-1)!} (16p(a+1)-8l-2)^{4p(a+1)-2l-1},$$

where l = z + t - 1. Claim D.6 is proven.

1811 Back to the proof of Lemma D.3. Temporarily let

$$G_l := 2p(2a+1) - 2l$$
 and $F_l := \frac{2^{l+1}(l+1)^{G_l}}{G_l!l!}(4G_l + 8p - 2)^{G_l + 2p - 1}.$

Note that $(2p(a+1))!(2pa)!F_l$ is precisely the upper bound on |S(x,y,z,t)| in Claim D.6. Also let

$$M_2 = M_1(2p(a+1))!(2pa)! = M^{2p(2a+1)}(2p(a+1))!(2pa)! ||u||_{\infty}^{2p}$$

Replacing the appropriate terms in the bound in Claim D.6 with these short forms, we get another series of upper bounds for the last double sum in Eq. (95):

$$\begin{split} &M_2 \sum_{x,y} \|u\|_{\infty}^{-x-2y} \sum_{l=x+y}^{\lfloor 2pa+x/2+y \rfloor} M^{-2(l+1)} F_l \sum_{z+t=l+1} \frac{m^{z-x/2-y} n^{t-1}}{z!(t-1)!} \\ &\leq M_2 \sum_{x,y} \|u\|_{\infty}^{-x-2y} \sum_{l=x+y}^{\lfloor 2pa+x/2+y \rfloor} \frac{M^{-2(l+1)} F_l}{(l-\lfloor \frac{x}{2} \rfloor - y)!} \sum_{z+t=l+1} \binom{l-\lfloor \frac{x}{2} \rfloor - y}{z-\lfloor \frac{x}{2} \rfloor - y} m^{z-\lfloor \frac{x}{2} \rfloor - y} n^{t-1} \\ &\leq M_2 \sum_{x,y} \|u\|_{\infty}^{-x-2y} \sum_{l=x+y}^{\lfloor 2pa+x/2+y \rfloor} \frac{M^{-2(l+1)} F_l}{(l-\lfloor \frac{x}{2} \rfloor - y)!} (m+n)^{l-\lfloor \frac{x}{2} \rfloor - y}. \end{split}$$

Temporarily let C_l be the term corresponding to l in the sum above. For $l \geq x+y+1$, we have

$$\frac{C_l}{C_{l-1}} = \frac{2(m+n)(G_l+1)(G_l+2)}{M^2 l^3 (4G_l+8p-2)^2 (l-|\frac{x}{2}|-y)} \left(1+\frac{1}{l}\right)^{G_l} \left(1-\frac{4}{2G_l+4p+3}\right)^{G_l+2p+1}.$$

The last power is approximately $e^{-2}\approx 0.135$, and for $p\geq 7$ a routine numerical check shows that it is at least 1/8. The second to last power is at least 1. The fraction be bounded as below.

$$\frac{2(m+n)(G_l+1)(G_l+2)}{M^2l^3(4G_l+8p-2)^2(l-\lfloor\frac{x}{2}\rfloor-y)} \geq \frac{2(m+n)\cdot 1\cdot 2}{M^2l^4(8p-2)^2} \geq \frac{m+n}{16M^2l^4p^2} \geq \frac{m+n}{16M^2p^6(2a+1)^4}.$$

Therefore, under the assumption that $m+n\geq 256M^2p^6(2a+1)^4$, we have $C_l\geq 2C_{l-1}$ for all $l\geq 1$, so $\sum_l C_l\leq 2C_{l^*}$, where $l^*=\lfloor 2pa+x/2+y\rfloor$, the maximum in the range. We have

$$2C_{l^*} \leq 2(m+n)^{2pa} \frac{(2M^{-2})^{2pa+\lfloor \frac{x}{2}\rfloor + y + 1}(2pa + \lfloor \frac{x}{2}\rfloor + y + 1)^{2(p-\lfloor \frac{x}{2}\rfloor - y)}}{(2(p-\lfloor \frac{x}{2}\rfloor - y))! \cdot (2pa + \lfloor \frac{x}{2}\rfloor + y)! \cdot (2pa)!} \cdot \left(16p - 8 \left| \frac{x}{2} \right| - 8y - 2\right)^{4p - 2\lfloor \frac{x}{2}\rfloor - 2y - 1}.$$

Temporarily let $d = p - (\lfloor \frac{x}{2} \rfloor + y)$ and N = p(2a + 1), we have

$$2C_{l^*} \le 2(m+n)^{2pa} \frac{(2M^{-2})^{N-d+1}(N-d+1)^{2d}(8p+8d-2)^{2p+2d-1}}{(2pa)! \cdot (2d)! \cdot (N-d)!}.$$

For each d, there are at most 2(p-d) pairs (x,y) such that $d=p-(\lfloor \frac{x}{2}\rfloor +y)$, so overall we have the following series of upper bounds for the last double sum in Eq. (95):

$$M_{2}(m+n)^{2pa} \sum_{d=0}^{p-1} 4(p-d) \|u\|_{\infty}^{-2(p-d)} \cdot \frac{(2M^{-2})^{N-d+1}(N-d+1)^{2d}(8p+8d-2)^{2p+2d-1}}{(2pa)! \cdot (2d)! \cdot (N-d)!}$$

$$\leq M_{3}(m+n)^{2pa} \sum_{d=0}^{p-1} \|u\|_{\infty}^{2d} \cdot \frac{2^{-d}M^{2d}(N-d+1)^{2d}(8p+8d-2)^{2p+2d-1}}{(2d)! \cdot (N-d)!},$$
(99)

1823 where

$$M_3 = 4p \frac{M_2 ||u||_{\infty}^{-2p} (2M^{-2})^{N+1}}{(2pa)!} = 2^{p(2a+1)+3} p M^{-2} (2p(a+1))!.$$

Let us bound the sum at the end of Eq. (99). Temporarily let A_d be the term corresponding to d and $x := 2^{-1/2} M \|u\|_{\infty}$. We have

$$A_d = \frac{x^{2d}(N-d+1)^{2d}}{(2d)!(N-d)!}(8p+8d-2)^{2p+2d-1} \le \frac{x^{2d}N^{3d}}{(2d)!N!}\frac{(16p)^{2p+2d}}{8p}.$$

1826 Therefore

$$\sum_{d=0}^{p-1} A_d \le \frac{(16p)^{2p}}{8pN!} \sum_{d=0}^{p-1} \frac{(16pN^{3/2}x)^{2d}}{(2d)!} \le \frac{(16p)^{2p}}{8pN!} \sum_{d=0}^{p-1} \binom{2p}{2d} (16pN^{3/2}x)^{2d} \frac{e^{2d}}{(2p)^{2d}}$$
$$= \frac{(16p)^{2p}}{8pN!} (8eN^{3/2}x+1)^{2p} \le \frac{(16p)^{2p}}{8pN!} (16N^{3/2}M||u||_{\infty}+1)^{2p}.$$

Plugging this into Eq. (99), we get another upper bound for (95):

$$M_4(16N^{3/2}M||u||_{\infty}+1)^{2p}(m+n)^{2ap}$$

1828 where

$$M_4 := M_3 \frac{(16p)^{2p}}{8pN!} = 2^{p(2a+1)+3} p M^{-2} (2p(a+1))! \frac{(16p)^{2p}}{8p(2ap+p)!} \le \frac{2^{2ap} 2^{10p} p^{3p} (a+1)^p}{8M^2}.$$

1829 To sum up, we have

$$\begin{split} \mathbf{E} \left[\left\| e_{n,1}^T (E^T E)^a E^T U \right\|^{2p} \right] &\leq r^p \sum_{S \in \mathcal{S}} \sum_{P \in \mathcal{P}(S)} u_{P^{\text{end}}} \left| \mathbf{E} \left[E_P \right] \right| \\ &\leq \frac{r^p 2^{2ap} 2^{10p} p^{3p} (a+1)^p}{8M^2} (16N^{3/2} M \|u\|_{\infty} + 1)^{2p} (m+n)^{2ap} \\ &\leq \left(2^5 r^{1/2} p^{3/2} \sqrt{2a+1} (2^4 p^{3/2} (2a+1)^{3/2} M \|u\|_{\infty} + 1) \cdot \left[2(m+n) \right]^a \right)^{2p}. \end{split}$$

Let D>0 be arbitrary. By Markov's inequality, for any p such that $m+n\geq 2^8M^2p^6(2a+1)^4$, the moment bound above applies, so we have

$$\left\|e_{n,1}^T(E^TE)^aE^TU\right\| \leq Dr^{1/2}p^{3/2}\sqrt{2a+1}(16p^{3/2}(2a+1)^{3/2}M\|u\|_{\infty}+1)[2(m+n)]^a$$

with probability at least $1-(2^5/D)^{2p}$. Replacing $||u||_{\infty}$ with $\frac{1}{\sqrt{r}}||U||_{2,\infty}$, we complete the proof. \square

1833 D.2.2 Case 2: even powers

1834 *Proof.* Without loss of generality, assume k=1. We can reuse the first part and the notations from the proof of Lemma D.3 to get the bound

$$\mathbf{E}\left[\left\|e_{n,1}^T(E^TE)^aV\right\|^{2p}\right] \leq r^p \sum_{S \in \mathcal{S}} \sum_{P \in \mathcal{P}(S)} v_{P^{\mathrm{end}}} \left|\mathbf{E}\left[E_P\right]\right|,$$

1836 where $v_i = r^{-1/2} \|V_{\cdot,i}\|$. Again,

$$\|v\|=1 \ \ {\rm and} \ \|v\|_{\infty}=r^{-1/2}\|V\|_{2,\infty},$$

and S is the set of shapes such that every edge appears at least twice, $\mathcal{P}(S)$ is the set of stars having 1837 shape S, and 1838

$$E_P = \prod_{ij \in E(P)} E_{ij}^{m_P(ij)}, \text{ and } v_Q = \prod_{j \in V(Q)} v_j^{m_Q(j)}.$$

Note that a shape for a star now consists of walks of length 2a: 1839

$$S = (S_1, S_2, \dots, S_{2p})$$
 where $S_r = j_{r0}i_{r0}j_{r1}i_{r1}\dots j_{ra}$.

We have, for any shape S and $P \in \mathcal{P}(S)$, 1840

$$\mathbf{E}\left[E_{P}\right] \leq M^{4pa-2|E(S)|} \leq M^{2pa-2|V(S)|+2}, \quad |v_{P^{\mathrm{end}}}| \leq ||v||_{\infty}^{2p}, \text{ and } |\mathcal{P}(S)| \leq m^{|V_{I}(S)|} n^{|V_{J}(S)|-1},$$

where the power of n in the last inequality is due to 1 having been fixed in $V_J(S)$. Therefore 1841

$$\sum_{S \in \mathcal{S}} \sum_{P \in \mathcal{P}(S)} v_{P^{\mathrm{end}}} \left| \mathbf{E} \left[E_P \right] \right| \leq M_1 \sum_{S \in \mathcal{S}} M^{-2|V(S)|} m^{|V_I(S)|} n^{|V_J(S)|-1}, \ \, \text{where} \,\, M_1 := M^{4pa+2} \|v\|_{\infty}^{2p}.$$

Let S(z,t) be the set of shapes S such that $|V_I(S)| = z$ and $|V_I(S)| = t$. Let A be the set of eligible 1842

1843

$$A := \{(z, t) \in \mathbb{N}^2 : 0 \le z, \ 1 \le t, \ \text{ and } z + t \le 2pa + 1\}.$$

Using the previous argument in the proof of Lemma D.3 for counting shapes, we have for $(z,t) \in \mathcal{A}$: 1844

$$|\mathcal{S}(z,t)| \le \frac{[(2pa)!]^2 F_l}{z! \cdot (t-1)!} m^z n^{t-1}, \text{ where } l := z+t-1 \in [2pa],$$

where

$$G_l := 4ap - 2l$$
 and $F_l := \frac{2^{l+1}(l+1)^{G_l}}{G_l!l!}(4G_l + 8p - 2)^{G_l + 2p - 1}.$

We have

$$\begin{split} &\sum_{S \in \mathcal{S}} \sum_{P \in \mathcal{P}(S)} v_{P^{\text{end}}} \left| \mathbf{E} \left[E_P \right] \right| \leq M_1 \sum_{l=0}^{2ap} M^{-2(l+1)} [(2ap)!]^2 F_l \sum_{z+t=l+1} \frac{m^z n^{t-1}}{z! \cdot (t-1)!} \\ &= M_2 \sum_{l=0}^{2ap} \frac{M^{-2l} F_l}{l!} \sum_{z+t=l+1} \binom{l}{z} m^z n^{t-1} = M_2 \sum_{l=0}^{2ap} \frac{M^{-2l} F_l}{l!} (m+n)^l, \end{split}$$

where $M_2 := M_1[(2pa)!]^2 M^{-2} = M^{4ap}[(2pa)!]^2 ||v||_{\infty}^{2p}$. Let C_l be the term corresponding to l in the last sum above. An analogous calculation from the proof of Lemma D.3 shows that under the 1847

1848

assumption that $m+n \geq 256M^2p^6(2a)^4$, $C_l \geq 2C_{l-1}$ for each l, so $\sum_{l=0}^{2pa} C_l \leq 2C_{2pa}$, where 1849

$$C_{2pa} = \frac{M^{-4ap}2^{2ap+1}(8p-2)^{2p-1}}{[(2ap)!]^2}(m+n)^{2ap}.$$

Therefore

$$\begin{split} &\mathbf{E}\left[\left\|e_{n,1}^T(E^TE)^aV\right\|^{2p}\right] \leq r^p \sum_{S \in \mathcal{S}} \sum_{P \in \mathcal{P}(S)} v_{P^{\mathrm{end}}} \left|\mathbf{E}\left[E_P\right]\right| \\ &\leq 2r^p M_2 \frac{M^{-4ap} 2^{2ap+1} (8p-2)^{2p-1}}{[(2ap)!]^2} (m+n)^{2ap} = 4 \left(2^3 p r^{1/2} \|v\|_{\infty} [2(m+n)]^a\right)^{2p}. \end{split}$$

Pick D > 0, by Markov's inequality, we have 1851

$$\mathbf{P}\left(\left\|e_{n,1}^{T}(E^{T}E)^{a}V\right\| \ge Dpr^{1/2}\|v\|_{\infty}[2(m+n)]^{a}\right) \le \left(\frac{16p}{D}\right)^{2p}.$$

Replacing $||v||_{\infty}$ with $r^{-1/2}||V||_{2,\infty}$, we complete the proof.