Miejsce na naklejkę z kodem

(Wpisuje zdający przed				
rozpoczęciem pracy)				
KOD ZDAJACEGO				

MMA-R1A1P-021

EGZAMIN MATURALNY Z MATEMATYKI

POZIOM ROZSZERZONY

Arkusz II

Czas pracy 150 minut

Instrukcja dla zdającego

- 1. Proszę sprawdzić, czy arkusz egzaminacyjny zawiera 12 stron. Ewentualny brak należy zgłosić przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi należy zapisać czytelnie w miejscu na to przeznaczonym przy każdym zadaniu.
- 3. Proszę pisać tylko w kolorze niebieskim lub czarnym; nie pisać ołówkiem.
- 4. W rozwiązaniach zadań trzeba przedstawić tok rozumowania prowadzący do ostatecznego wyniku.
- 5. Nie wolno używać korektora.
- 6. Błędne zapisy trzeba wyraźnie przekreślić.
- 7. Brudnopis nie będzie oceniany.
- 8. Obok każdego zadania podana jest maksymalna liczba punktów, którą można uzyskać za jego poprawne rozwiązanie.
- 9. Podczas egzaminu można korzystać z tablic matematycznych, cyrkla i linijki oraz kalkulatora. Nie można korzystać z kalkulatora graficznego.
- 10. Do ostatniej kartki arkusza dołączona jest **karta odpowiedzi**, którą **wypełnia egzaminator**.

Za rozwiązanie wszystkich zadań można otrzymać łącznie 60 punktów

Życzymy powodzenia!

(Wpisuje zdający przed rozpoczęciem pracy)

PESEL ZDAJĄCEGO

ARKUSZ II

MAJ ROK 2002

Zadanie 11. (4 pkt)

Wyznacz wszystkie wartości parametru m, dla których równanie

$$mx^2 - 3(m+1)x + m = 0$$

nie ma rozwiązania w zbiorze liczb rzeczywistych.

Zadanie 12. (4 pkt)

A i B są zdarzeniami losowymi i
$$P(B) > 0$$
.
Wykaż, że $P(A/B) \le \frac{1 - P(A')}{P(B)}$.

Zadanie 13. (5 pkt)

Sprawdź, że przekształcenie P płaszczyzny dane wzorem P((x, y)) = (x + 1, -y) jest izometrią. Wyznacz równanie obrazu okręgu o równaniu $x^2 + y^2 - 2x = 0$ w przekształceniu P.

Zadanie 14. (6 pkt)

Zaznacz na płaszczyźnie zbiór
$$F = \left\{ (x, y) : x \in R \land y \in R \land \log_{\frac{1}{2}} (|x| - 1) \ge -2 \land |y| > 0 \right\}.$$

Napisz równania osi symetrii figury F.

Zadanie 15. (6 pkt)

Objętość walca jest równa $250\pi\,\mathrm{cm}^3$. Przedstaw pole powierzchni całkowitej tego walca jako funkcję długości promienia jego podstawy i określ dziedzinę tej funkcji. Wyznacz długość promienia takiego walca, którego pole powierzchni całkowitej jest najmniejsze.

Zadanie 16. (7 pkt)

Naszkicuj w jednym układzie współrzędnych wykresy funkcji $f(x) = 2^{x+1}$ oraz $g(x) = \left| \frac{x+1}{x} \right|$. Na podstawie wykonanego rysunku określ liczbę ujemnych rozwiązań równania f(x) = g(x).

Zadanie 17. (8 pkt)

Rozwiąż równanie: $2\sin 2x + \operatorname{ctg} x = 4\cos x$ dla $x \in \langle 0, 2\pi \rangle$. Ze zbioru rozwiązań tego równania losujemy bez zwracania dwie liczby. Oblicz prawdopodobieństwo zdarzenia, że co najmniej jedno z wylosowanych rozwiązań jest wielokrotnością liczby $\frac{\pi}{2}$.

Zadanie 18. (10 pkt)

Rozwiąż nierówność $\frac{1}{2^x} + \frac{1}{4^x} + \frac{1}{8^x} + ... > 2^x - 0$, (9), gdzie lewa strona tej nierówności jest sumą nieskończonego ciągu geometrycznego.

Zadanie 19. (10 pkt)

W trójkącie jeden z kątów ma miarę 120°. Długości boków tego trójkąta są kolejnymi wyrazami ciągu arytmetycznego, którego suma wynosi 30. Wyznacz stosunek długości promienia okręgu opisanego na tym trójkącie do długości promienia okręgu wpisanego w ten trójkąt.

Brudnopis