

Module 4 : Apprentissage Machine Non Supervisé et Extraction de Connaissances

Analyse de Données

Nicolas PASQUIER Université Côte d'Azur http://www.i3s.unice.fr/~pasquier

Co-financé par :

Use cases réalisés par les masters :

Définition de l'Extraction de Connaissances pour l'Analyse de Données

- Objectif : extraire des motifs et modèles de connaissances à partir de très grands ensembles de données.
- Difficultés algorithmiques
 - Taille des données : volume impose leur stockage en mémoire(s) secondaire(s) dont les temps d'accès (≈ms) nécessitent de minimiser le nombre de lectures.
 - Taille de l'espace de recherche : nombre de motifs ou modèles de connaissances potentiellement valides exponentiel dans la taille des données.
- Extraire des connaissances à partir des données pour :
 - o Identifier des relations entre les données (e.g. liens entre valeurs des variables).
 - Comprendre les structures de l'espace des données (e.g. groupes d'instances similaires).
 - Apprendre des modèles prédictifs (e.g. prédictions de valeurs de variables).
- Différents types de motifs et modèles, différentes représentations
 - Règles, partitionnements, séquences de valeurs, fonctions, etc.
 - Indicateurs statistiques de pertinence (précision) et de portée (importance) associés à chaque motif ou modèle.

Processus d'Extraction de Connaissances à Partir des Données

Processus interactif et itératif

Matrice de Données en Entrée des Algorithmes

- Chaque ligne est une instance (exemple, observation, tuple)
 - o Exemples : un client, un film.
 - Définie par une valeur pour chaque colonne.
- Chaque colonne est une variable (attribut, dimension, champ)
 - Propriété ou caractéristique des instances .
 - Exemples : âge du client, durée du film.
- Dictionnaire des données
 - Type, taille, signification et domaine de valeurs de chaque variable.
- Première étape : vérifier la qualité des données
 - Valeurs erronées, manquantes, mal codées.
 - Outils : visualisations, comptages, statistiques descriptives.

Types de Motifs et Modèles de Connaissances

Modèles prédictifs

- Objectif : apprendre un modèle de prédiction de la valeur d'une variable à partir des exemples décrivant les expériences passées.
- Apprentissage supervisé :
 - Les variables n'ont pas toutes le même rôle : la variable dont la valeur est à prédire est la variable cible, les variables testées pour sa prédiction sont les variables prédictives.
- Classification : prédiction de la valeur d'une variable catégorielle, i.e. non numérique.
- Régression : prédiction de la valeur d'une variable numérique.

Motifs descriptifs

- Objectif : extraire des connaissances sur les données pour comprendre leurs relations entre elles
- Apprentissage non-supervisé :
 - Toutes les variables ont le même rôle, i.e. sont traitées de la même manière par l'algorithme.
- Analyse de liens : relations entre valeurs des variables (colonnes) de la matrice.
- Analyse de similarités : relations de similarités entre instances (lignes) de la matrice.

Apprentissage Supervisé : Classification

- Objectif : apprendre un modèle de prédiction de la valeur d'une variable catégorielle (i.e. discrète) en fonction des valeurs des autres variables pour l'appliquer ensuite à de nouvelles données
 - Apprentissage du classifieur (modèle de prédiction) à partir de l'ensemble d'apprentissage constitué d'instances dont la classe (valeur de la variable cible) est connue.
 - Application du classifieur pour prédire la classe de nouvelles instances de classe inconnue.
- Différents types de classifieurs
 - Arbres de décision, réseaux de neurones, forêts d'arbres de décision aléatoires, machines à vecteurs de support, méthodes bayésiennes, apprentissage par analogie.

Apprentissage Supervisé: Régression

- Objectif : apprendre un modèle de prédiction de la valeur d'une variable numérique continue en fonction des valeurs des autres variables.
- Estimer la relation entre :
 - Une variable dépendante, appelée cible.
 - Les variables explicatives, appelées prédictives.
- Différents types de régression :
 - Linéaire simple ou multiple, polynomiale, logistique, non paramétrique, etc.
 - Défini la nature de la fonction résultat.
 - Type adéquat pour l'application dépend des propriété de la matrice de données.

Ensemble d'Apprentissage (score connu)

Minutes	Facture	Professionnel	Ancienneté	Revenus	Score
276,46	48,43	28,11	3,50	68,86	64,98
189,01	61,93	22,57	2,42	77,31	52,65
197,49	47,90	27,48	2,42	56,89	63,72
256,77	66,92	44,84	2,34	75,23	72,11
274,82	72,78	37,56	3,38	87,60	83,45

Régression

Variable cible : Score

Variables prédictives

Minutes, Facture, Professionnel,

Ancienneté, Revenus

Type de régression :

Linéaire

(fonction linéaire des valeurs des variables prédictives)

Modèle de Régression Linéaire

Score =

Minutes * 0.1747

+ Facture * 0.05427

+ Professionnel * -0.1204

+ Ancienneté * -2.369

+ Revenus * 0.07443

+ 15.46

Analyse de Liens : Algorithme Apriori

Paramètre: minsupport = 50%

- Motifs Fréquents : motifs de connaissances décrivant les cooccurrences fréquentes de valeurs de variables parmi les instances de la matrice.
 - a. **Itemsets Fréquents :** concurrences fréquentes de valeurs de variables (items).
 - b. Règles d'Association : règles d'implication conditionnelles fréquentes entre valeurs de variables.

Transactions de Ventes

TID	Articles achetés
1	lait, céréales, thé
2	lait, café, céréales, sucre
3	café, céréales, sucre
4	café, sucre
5	lait, café, céréales, sucre
6	café, céréales, sucre

Itemsets Fréquents

Itemset	TID	Support	
café, sucre	2,3,4,5,6	83% (5)	
café, céréales	2,3,5,6	66% (4)	
céréales, sucre	2,3,5,6	66% (4)	
café, céréales, sucre	2,3,5,6	66% (4)	
lait, céréales	1,2,5	50% (3)	

Règles d'Association

Antécédent		Conséquence	Support	Confiance	Lift
café	\rightarrow	sucre	83% (5)	100%	1,20
sucre	\rightarrow	café	83% (5)	100%	1,20
café	\rightarrow	céréales	66% (4)	80%	0,96
céréales		café	66% (4)	80%	0,96
sucre	\rightarrow	céréales	66% (4)	80%	0,96
céréales	\rightarrow	sucre	66% (4)	80%	0,96
café, sucre	-	céréales	66% (4)	80%	0,96
café, céréales	\rightarrow	sucre	66% (4)	100%	1,20
céréales, sucre	\rightarrow	café	66% (4)	100%	1,20
lait		céréales	50% (3)	100%	1,20

Exemples d'Applications d'Analyse de Liens

- Analyse des historiques d'activités sur les sites Internet
- Données sources
 - Utilisateurs identifiés : historique des consultations
 - Utilisateurs anonymes : articles consultés durant la session
- Exemple d'itemset fréquent (combinaison d'articles consultés fréquemment)
 - {chargeur USB-C 100W, chargeur USB-C 60W, câble USB-C 5A}
- Analyse des historiques d'achats sur les sites Internet
 - Données sources
 - Utilisateurs identifiés : historique des achats
 - Utilisateurs anonymes : articles achetés simultanément
- Exemple de règle d'association (liens conditionnels entre achats)
 - Achat[Nespresso Colombia] → Achat[Nespresso Costa Rica]

Analyse de Similarités : Clustering et Détection d'Exceptions

- Similarité entre deux instances :
 - Évaluée par comparaison des valeurs des variables pour les deux instances.
 - Mesure de distance entre les instances (points) dans l'espace des données.
- Clustering: regroupement des instances similaires en clusters (groupes).
- Détection d'exceptions : identification des instances hors normes, aux propriétés inhabituelles.
 - Instances dont la distance aux autres points dans l'espace des données est importante (i.e. isolées).

Exemple : segmentation de voyageurs par clustering pour la modélisation des choix

Clustering: Algorithme des K-means

- Objectif: matrice de données bidimensionnelle à partitionner en 3 clusters (paramètre K = 3).
- Dimensions : variables V₁ et V₂ .

Algorithme des K-means : Itérations

 Itérations : re calcul des centroïdes (moyennes des variables par cluster), recalcul des distances des instances aux centroïdes et réaffectation des instances au centroïde le plus proche si nécessaire.

Algorithme des K-means : Résultat

- Arrêt des itérations lorsque la stabilité est atteinte : pas de réaffectation d'instance.
- Résultat de l'algorithme :
 - Identifiant du cluster d'affectation pour chaque instance.
 - Distance de chaque instance au centroïde de son cluster d'affectation .
 - Description des centroïdes des clusters : distribution des valeurs de chaque variable pour les instances du cluster (moyenne, écart-type, etc.) .

Centroïdes des Clusters

Cluster	mean(V ₁)	mean(V ₂)
1	10.02	0.37
2	3.36	1.21
3	10.34	2.79

Références Internet et Bibliographie

Sites Internet

- KDNuggets : site de référence en Artificial Intelligence, Business Analytics, Big Data, Data Mining,
 Data Science et Machine Learning. https://www.kdnuggets.com/
- SIGKDD: The community for data mining, data science and analytics. https://kdd.org/

Bibliographie

- Data Mining The Textbook; Charu C. Aggarwal, Springer, 2015.
- Data Science: Fondamentaux et Études de Cas Machine Learning avec Python et R. Éric Biernat, Michel Lutz & Yann LeCun, Eyrolles, 2015.

Logiciel R et Langage Python

Logiciel R

- R and Data Mining Examples and Case Studies, Yanchang Zhao, Academic Press, Elsevier, 2012.
 Documents, exemples, tutoriels et principales librairies R pour l'extraction de connaissances.
 http://www.rdatamining.com
- CRAN Task Views: librairies et fonctions centrales par types d'applications <u>https://cran.r-project.org/web/views/MachineLearning.html</u> <u>https://cran.r-project.org/web/views/Cluster.html</u>
- R Interface to Keras Deep Learning Library (Tensorflow) https://keras.rstudio.com/

Langage Python

- Librairie Scikit-Learn : méthodes d'apprentissage supervisé et non-supervisé <u>https://scikit-learn.org/stable/supervised_learning.html</u>
- Librairie Mlxtend : Machine Learning Extensions http://rasbt.github.io/mlxtend/
- Keras : The Python Deep Learning Library (Tensorflow) https://keras.io/