- Probability spaces are triplets of $(\Omega, \mathcal{F}, \Pr(\cdot))$ consisting of a sample space Ω , set of events \mathcal{F} , and a probability measure $\Pr(\cdot)$
 - Sample space: any set Ω
 - Events \mathcal{F} : This is a set consisting of subsets of Ω satisfying:
 - a. $\Omega \in J$
 - b. Closed under complement: $E \in \mathcal{F}$ implies $E^c \in \mathcal{F}$, and
 - c. Closed under countable union: for any countably many subsets $E_1,\ldots,E_k,\ldots\in\mathcal{F}$, we have $\cup_{k=1}^\infty E_k\in\mathcal{F}$
 - Probability measure $\Pr(\cdot)$: is a function from \mathcal{F} to $\mathbb{R}^+:=\{x\in\mathbb{R}\mid x\geq 0\}$ that satisfies:
 - i. $Pr(\Omega) = 1$, and
 - ii. For a countably many subsets $\{E_k\}$ in $\mathcal F$ that is mutually disjoint (i.e., $E_i\cap E_j=\emptyset$ for all $i\neq j$), we have

$$\Pr(\bigcup_{k=1}^{\infty} E_k) = \sum_{k=1}^{\infty} \Pr(E_k).$$

- ullet Question: How to show that a function $X:\Omega \to \mathbb{R}$ is a random variable?
- There are several ways:
 - a. By definition, showing that for all $B\in\mathcal{B}$, it suffices to show that $X^{-1}((-\infty,a])\in\mathcal{F}$ for all $a\in\mathbb{R}$.
 - b. Practical way: Let $g:\mathbb{R}^n \to \mathbb{R}$ be a continuous mapping and let X_1,\dots,X_n be r.v's. Then $X=g(X_1,X_2,\dots,X_n)$ is a r.v. This allows us to construct new random variables from the old ones: for example if X,Y are random variables, X+Y, X-Y, $X\times Y$, X^Y , etc. are all random variables.
- For a r.v. X, we define the distribution function (or cumulative distribution function (CDF)) of X, to be the mapping $F_X : \mathbb{R} \to [0,1]$ defined by $F(x) = \Pr(X^{-1}((-\infty,x]))$.
- Properties of Distribution Functions (see HW 3):
 - a. F_X is non-decreasing.
 - b. $\lim_{x \to -\infty} F_X(x) = 0$, and $\lim_{x \to \infty} F_X(x) = 1$.
 - c. $F_X(\cdot)$ is right-continuous, i.e., for any $x\in\mathbb{R}$, $\lim_{y\to x^+}F_X(y)=F_X(x)$.
 - d. Define $F_X(x^-) := \lim_{y \uparrow x} F_X(y)$, then

$$F_X(x^-) = \Pr(X < x) = \Pr(\{\omega \in \Omega \mid X(\omega) < x\}).$$

- e. For any $x \in \mathbb{R}$, we have $\Pr(X = x) = F_X(x) F_X(x^-)$.
- Expected value of simple r.v.s: For $X = \sum_{i=1}^{m} \alpha_i \mathbf{1}_{A_i}$, we define

$$\mathbb{E}[X] := \sum_{i=1}^{m} \alpha_i \Pr(A_i).$$

- For a positive random variable X (i.e., $X \ge 0$ almost surely), we define:

$$\mathbb{E}[X] := \sup \{ \mathbb{E}[Y] \mid Y \leq X \text{ and } Y \text{ is a simple function} \}.$$

- Define positive and negative side of a random variable as: $X^+=\mathbf{1}_{X\geq 0}X$ and $X^-=-\mathbf{1}_{X\leq 0}X$. Note that they are both non-negative r.v.s.
- We say that the expected value of X exists if either $\mathbb{E}[X^+]<\infty$ or $\mathbb{E}[X^-]<\infty$ and we let it be

$$\mathbb{E}[X] := \mathbb{E}[X^+] - \mathbb{E}[X^-].$$

- If $X \ge 0$, then $\mathbb{E}[X] \ge 0$.
- monotonicity: if $X \leq Y$, then $\mathbb{E}[X] \leq \mathbb{E}[Y]$.
- $\bullet \ \mathbb{E}[|X|] = 0$ if and only if X = 0 almost surely.
- Markov Inequality: For a non-negative random variable X,

$$\Pr(X \ge \alpha) \le \frac{\mathbb{E}[X]}{\alpha}$$

for any $\alpha > 0$.

 \bullet Jensen's Inequality: For a convex function $\Phi:\mathbb{R}\to\mathbb{R},$

$$\Phi(\mathbb{E}[X]) \leq \mathbb{E}[\Phi(X)].$$

Since $-\boldsymbol{\Phi}$ is a concave function, the reverse inequality holds for concave functions

ullet Very n important result: Monotone Convergence Theorem (MCT): Suppose that $X_1 \leq X_2 \leq \cdots \leq X = \lim_{k \to \infty} X_k$. Then,

$$\lim_{k \to \infty} \mathbb{E}[X_k] = \mathbb{E}[\lim_{k \to \infty} X_k] = \mathbb{E}[X].$$

Definition 1. Let $(\Omega, \mathcal{F}, \Pr(\cdot))$ be a probability space. The mapping $X : \Omega \to \mathbb{R}$ is called a random variable if the pre-image of any interval $(-\infty, a]$ belongs to \mathcal{F} , i.e.

$$X^{-1}((-\infty, a]) \in \mathcal{F}$$
 for all $a \in \mathbb{R}$, (1)

where

$$X^{-1}(B) := \{ \omega \in \Omega \mid X(\omega) \in B \}.$$

 $\label{lem:lemportant} \textbf{Important Result} \colon \text{If we have a random variable } X \text{, then } (1) \text{ implies that}$

$$X^{-1}(B) \in \mathcal{F}$$
 for all $B \in \mathcal{B}$.

Notation: We use three notations interchangeably $\{\omega\in\Omega\mid X(\omega)\in B\}:=\{X\in B\}:=X^{-1}(B).$

- We say that b is an upper bound for a sequence $\{\alpha_k\}$, if $\alpha_k \leq b$ for all k. Smallest such b is called is the supremum of $\{\alpha_k\}$ and is denoted by $\sup_{k\geq 1}\alpha_k$. We always assume that $+\infty$ is an upper bound for a sequence and hence, supremum always exists.
- Similarly, we say that b is a lower bound for a sequence {α_k}, if α_k ≥ b for all k. Largest such b is called is the infimum of {α_k} and is denoted by inf_{k≥1} α_k.
- We define:

$$\limsup_{k \to \infty} \alpha_k = \inf_{t \ge 1} \sup_{k \ge t} \alpha_k$$
$$\liminf_{k \to \infty} \alpha_k = \sup_{t \ge 1} \inf_{k \ge t} \alpha_k$$

- Note that for a sequence of r.v.s $\{X_k\}$ and for an $\omega \in \Omega$, $\{X_i(\omega)\}$ is a sequence in \mathbb{R} . Then
 - I. $X(\omega) = \sup_{k \ge 1} X_k(\omega)$ is a random variable,
 - II. $X(\omega) = \inf_{k>1} X_k(\omega)$ is a random variable,
 - III. $\overline{X}(\omega) := \limsup_{k \to \infty} X_k(\omega)$ is a random variable,
 - IV. $\underline{X}(\omega) := \liminf_{k \to \infty} X_k(\omega)$ is a random variable,
 - V. if $\overline{X}(\omega) = \underline{X}(\omega)$ for almost all $\omega \in \Omega$, X defined by $X = \lim_{k \to \infty} X_k(\omega)$ is a random
 - For a r.v. X, we define the distribution function (or cumulative distribution function (CDF)) of X, to be the mapping $F_X : \mathbb{R} \to [0,1]$ defined by $F(x) = \Pr(X^{-1}((-\infty,x]))$.
 - Properties of Distribution Functions (see HW 3):
 - a. F_X is non-decreasing.
 - b. $\lim_{x\to\infty} F_X(x) = 0$, and $\lim_{x\to\infty} F_X(x) = 1$.
 - c. $F_X(\cdot)$ is right-continuous, i.e., for any $x\in\mathbb{R}$, $\lim_{y\to x^+}F_X(y)=F_X(x)$.
 - d. Define $F_X(x^-) := \lim_{y \uparrow x} F_X(y)$, then

$$F_X(x^-) = \Pr(X < x) = \Pr(\{\omega \in \Omega \mid X(\omega) < x\}).$$

- e. For any $x \in \mathbb{R}$, we have $\Pr(X = x) = F_X(x) F_X(x^-)$.
- If we are given a distribution F, the first question one may ask is Does there exist a probability space $(\Omega, \mathcal{F}, \mathbf{Pr})$ and a function $X: \Omega \to \mathbb{R}$ such that X has the given distribution F? And the following theorem is the answer to this question.

Theorem 1. Suppose that a function $F : \mathbb{R} \to [0,1]$ satisfies the above properties (a), (b) and (c), then there exists a probability space $(\Omega, \mathcal{F}, \mathbf{Pr})$ and a r.v. X such that F is the distribution function of X.

- We say that X is a continuous r.v., if $F_X(x)$ is continuous. If further, $F_X(x) = \int_{-\infty}^x f_X(u) du$ for a non-negative function $f_X : \mathbb{R} \to \mathbb{R}^+$, we say that X has a probability density function (PDF) $f_X(x)$.
- ullet Very important: For a (continuous) r.v. X with the pdf $f_X(x)$

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$$

 \bullet More generally (and important result), for any integrable function $g(\cdot),$ for the random variable Z=g(X), we have

$$\mathbb{E}[Z] = \mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx.$$

- We say that a random variable is a discrete random variable if $\Pr(X \in B) = 1$ for a (finite or) countable set $B = \{b_k \mid k \geq 1\}$.
- We define the *probability mass function* $p:\mathbb{R}\to [0,1]$ of a discrete random variable X to be defined by:

$$p_X(x) = \begin{cases} \Pr(X = b_k) & \text{if } x = b_k \text{ for some } k \ge 1 \\ 0 & \text{otherwise.} \end{cases}$$

 \bullet Very important: For a discrete r.v. X (see HW3)

$$\mathbb{E}[X] = \sum_{k=1}^{\infty} b_k p_X(b_k).$$

ullet We say X,Y are two random variables, if $X^{-1}(B_1)$ and $Y^{-1}(B_2)$ are independent for any Borel sets $B_1,B_2\in\mathcal{B}$, i.e.,

$$\Pr(X \in B \text{ and } Y \in B) = \Pr(X \in B) \Pr(Y \in B)$$

• Important Fact (Iemma): X,Y are independent if $X^{-1}((-\infty,\alpha])$ and $Y^{-1}((-\infty,\beta])$ are independent for all $\alpha,\beta\in\mathbb{R}$, i.e., it suffices to hold the above for sets of the form $(-\infty,\alpha]$. In other words, X,Y are independent if and only if

$$\Pr(X \le \alpha, Y \le \beta) = F_X(\alpha)F_Y(\beta).$$

- ullet Similarly, we say that X_1,\dots,X_n are independent if for any collection of Borel-sets B_1,\dots,B_n , the events $X_1^{-1}(B_1),\dots,X_n^{-1}(B_n)$ are independent.
- Again it follows from a result 1 that X_1, \ldots, X_n are independent iff for any selection of real numbers $\alpha_1, \ldots, \alpha_n$:

$$\Pr(X_1 \leq \alpha_1, X_2 \leq \alpha_2, \dots, X_n \leq \alpha_n) = F_{X_1}(\alpha_1) \cdots F_{X_n}(\alpha_n).$$

ullet Recall Markov's Inequality: For a non-negative rv X

$$\Pr(X \ge \alpha) \le \frac{\mathbb{E}[X]}{\alpha},$$

for any $\alpha > 0$.

- Define $Var(X)=\mathbb{E}[(X-\bar{X})^2]=\mathbb{E}[X^2]-\mathbb{E}[X]^2.$ (if exists)
- \bullet Chebyshev's inequality (an extension of the Markov's inequality): For a random variable X we have

$$\Pr(|X - \bar{X}| \ge \alpha) \le \frac{Var(X)}{\alpha^2}.$$

• Now suppose that we have an independent process $\{X_k\}$. What can we say about?

$$P(\max_{1 \le k \le n} |S_k| \ge \alpha)$$

Theorem 2. (Kolmogorov's Maximal Inequality) For a zero mean and independent process $\{X_k\}$ and any $n \geq 1$, we have

$$P(\max_{1 \le k \le n} |S_k| \ge \alpha) \le \frac{Var(S_n)}{\alpha^2}.$$

ullet Application: Estimating worst case scenario by day n of COVID

Theorem 4. For an independent sequence of random variables $\{X_k\}$ with zero mean, if

$$\sum_{k=1}^{\infty} Var(X_k) < \infty,$$

then $\lim_{n\to\infty} \sum_{k=1}^n X_n$ exists.

Main idea of the proof: show that $\sum_{k=1}^{\infty} X_k$ is a Cauchy sequence almost surely by utilizing the Maximal inequality:

$$\Pr(\sup_{M \ge m} |S_M - S_m| \ge \epsilon) \le \frac{1}{\epsilon^2} \sum_{k=m}^{\infty} \mathsf{Var}(X_k).$$

Theorem 5. Sum of an independent random process $\{X_k\}$ converges almost surely if and only if for any $\alpha > 0$, if we let $Y_k = X_k \mathbf{1}_{|X_k| \le \alpha}$, the following three (deterministic) series converges:

- $\sum_{k=1}^{\infty} P(|X_k| \ge \alpha) < \infty$,
- $\sum_{k=1}^{\infty} \mathbb{E}[Y_k]$ converges, and
- $\sum_{k=1}^{\infty} Var(Y_k)$ converges.

- ullet We say that a DT or a CT random process $\{X_t\}$ is
 - 1. An independent process: if any finite collection X_{t_1}, \ldots, X_{t_n} are independent for any $n \geq 2$ and $t_1 < t_2 < \ldots < t_n$.
 - 2. An independent increment process: if for any $n \geq 2$, and $a_1 < b_1 \leq a_2 < b_2 \leq \ldots \leq a_n < b_n$, the increments $X_{b_1} X_{a_1}$, $X_{b_2} X_{a_2}$, ..., $X_{b_n} X_{a_n}$ are independent.

Theorem 1. (Kolmogorov's 0-1 Law) A tail event of an independent process is a trivial event, i.e., Pr(E) = 0 or Pr(E) = 1!

- Note that the above result holds irrespective of the distributions of any of them!
- Implications:
 - a. Probability of giant component on percolation process in \mathbb{Z}^2 is either 0 or 1.
 - b. Probability of giant component on percolation process in \mathbb{Z}^2 that is edge dependent is either 0 or 1 irrespective of probability of each edge.
 - c. $\Pr(\lim_{k \to \infty} S_k \text{ exists})$ is 0 or 1 for partial sums of independent processes.
 - ullet We say that a function $h:\mathbb{R}^n \to \mathbb{R}$ is measurable if $h^{-1}(B) \in \mathcal{B}$ for all Borel sets $B \in \mathcal{B}^n$.
 - Important classes of measurable functions:
 - continuous functions.
 - piece-wise continuous functions, and
 - convex (concave) functions.
 - ullet Lemma 1: If X and Y are independent random variables, then $g_1(X)$ and $g_2(Y)$ are independent random variables for any measurable functions $g_1(\cdot),g_2(\cdot)$.
 - More generally: for independent $X_1, \ldots, X_k, X_{k+1}, \ldots, X_n, g_1(X_1, \ldots, X_k)$ and $g_2(X_{k+1}, \ldots, X_k)$ would be independent for any measurable functions g_1, g_2 of appropriate dimensions.
 - Lemma 2: If X and Y are independent, then $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$.

Theorem 3. For an independent sequence of random variables $\{X_k\}$ with zero mean, we have:

$$\Pr(\max_{1 \le k \le n} |S_k| \ge \alpha) \le \frac{Var(S_n)}{\alpha^2}.$$

Proof. • Define $A_k = \{\omega \mid |S_k| \ge \alpha, |S_1|, \dots, |S_{k-1}| < \alpha\}$.

• A_1, \ldots, A_n are mutually exclusive and we have:

$$\begin{aligned} \operatorname{Var}(S_n) &= \mathbb{E}[|S_n|^2] \geq \mathbb{E}[(\mathbf{1}_{A_1} + \mathbf{1}_{A_2} + \ldots + \mathbf{1}_{A_n})|S_n|^2] \\ &= \sum_{k=1}^n \mathbb{E}[\mathbf{1}_{A_k}|S_n|^2] \\ &= \sum_{k=1}^n \mathbb{E}[\mathbf{1}_{A_k}(S_n - S_k + S_k)^2] \\ &= \sum_{k=1}^n \mathbb{E}[\mathbf{1}_{A_k}((S_n - S_k)^2 + 2(S_n - S_k)S_k + S_k^2)] \\ &\geq \sum_{k=1}^n 2\mathbb{E}[\mathbf{1}_{A_k}S_k(S_n - S_k)] + \mathbb{E}[\mathbf{1}_{A_k}(S_k^2)] \\ &\geq \alpha^2 \sum_{k=1}^n \Pr(\mathbf{1}_{A_k}) \\ &= \alpha^2 \Pr(\max_{1 \leq k \leq n} |S_k| \geq \alpha). \end{aligned}$$