§ 10.2 等差数列

10.2.1 相关概念

学习提纲与学习目标

- 1、掌握等差数列的定义、通项公式和前 n 项和公式的求法
- 2、熟练掌握等差数列的性质,并能利用这些性质解决相应问题
- 1. 等差数列的定义

对于数列 $\{a_n\}$,如果对任意的 $n \ge 1(n \in N^*)$,都有 $a_{n+1} - a_n = d$ (常数),则称 $\{a_n\}$ 为等差 数列,常数d叫这个等差数列的公差。如a,b,c三个数成等差数列,则称b为a,c的等差中项。

2. 等差数列的通项公式

若等差数列 $\{a_n\}$ 的首项是 a_1 ,公差是d,则其通项公式为 $a_n=a_1+(n-1)d$ 。

3. 等差数列的前 n 项和公式

$$S_n = \frac{n(a_1 + a_n)}{2} = na_1 + \frac{n(n-1)d}{2} = \frac{d}{2}n^2 + (a_1 - \frac{d}{2})n$$
;

4. 数列 $\{a_n\}$ 是等差数列 $\Leftrightarrow S_n = An^2 + Bn(A, B)$ 常数) $\Leftrightarrow \frac{S_n}{n}$ 为等差数列。

5. 等差数列的常用性质

- (1) 通项公式的推广: $a_n = a_m + (n-m)d$, $(n, m \in N^*)$.
- (2)若m+n=p+q, 则 $a_m+a_n=a_p+a_q$, $(n,m,p,q\in N^*)$.
- (3) a_k , a_{k+m} , a_{k+2m} , \cdots , $(k, m \in N^*)$ 是公差为 md 的等差数列.
- (4)数列 $S_m, S_{2m} S_m, S_{3m} S_{2m}, \cdots$ 也是等差数列.
- $(5) S_{2n-1} = (2n-1)a_n \circ$

10.2.2 典型例题

例1 (1) (全国I) 设 S_n 为等差数列 $\{a_n\}$ 的前n项和,若 $3S_3 = S_2 + S_4$, $a_1 = 2$,则 $a_5 =$

- A. -12
- B. -10
- C. 10
- (2) 已知等差数列 $\{a_n\}$ 的公差为d,前n项和为 S_n ,则"d>0"是" $S_4+S_6>2S_5$ "的
- A. 充分不必要条件 B. 必要不充分条件
- C. 充分必要条件 D.既不充分也不必要条件

【解】(1)
$$3S_3 = S_2 + S_4 \Rightarrow 3S_3 = S_3 - a_3 + a_4 + S_3 = 2S_3 + d$$

$$\Rightarrow S_3 = d \Rightarrow 3a_2 = d \Rightarrow 3(a_1 + d) = d$$
,

因 $a_1 = 2$, 故 d = -3 , 故 $a_5 = a_1 + 4d = -10$, 选 C。

(2)
$$(S_4+S_6)-2S_5=(S_4-S_5)+(S_6-S_5)=a_6-a_5=d$$
,

因此, $d > 0 \Rightarrow S_4 + S_6 > 2S_5$, 反之亦然

故d>0是 $S_4+S_6>2S_5$ 的充分必要条件,选C。

例 2. 设数列 $\{a_n\}$ 是等差数列,其前 n 项和为 S_n ,若 $a_6 = 2$ 且 $S_5 = 30$,则 S_8 等于(

A. 31

【解】由已知可得
$$\begin{cases} a_1 + 5d = 2 \\ 5a_1 + 10d = 30 \end{cases}, \quad \text{解得} \begin{cases} a_1 = \frac{26}{3} \\ d = -\frac{4}{3} \end{cases}, \quad \therefore \quad S_8 = 8a_1 + \frac{8 \times 7}{2}d = 32 \ .$$

例 3 (1) 在等差数列 $\left\{a_{n}\right\}$ 中,已知 a_{4} + a_{8} = 16 ,则该数列前 11 项和 S_{11} = (

A. 58

B. 88

C. 143

D. 176

(2) 已知等差数列 $\{a_n\}$ 中, $3a_5+7a_{11}=8$, S_n 是 $\{a_n\}$ 的前n项和,则 $S_9+S_{21}=0$

A. 8

D. 32

【解】(1) $a_4 + a_8 = 16 \Rightarrow a_6 = 8$,故 $S_{11} = 11a_6 = 88$,选 B。

【法二】
$$S_{11} = \frac{11(a_1 + a_{11})}{2} = \frac{11(a_4 + a_8)}{2} = \frac{11 \times 16}{2} = 88$$
, 选B.

(2)
$$S_9 + S_{21} = 9a_5 + 21a_{11} = 3(3a_5 + 7a_{11}) = 3 \times 8 = 24$$

【注意】对于等差数列

如
$$n+m=p+q$$
 , 则 $a_n+a_m=a_p+a_q$; (2) $S_{2n-1}=(2n-1)a_n$

例 4 记 S_n 为等差数列 $\{a_n\}$ 的前 n 项和,若 $a_4 + a_5 = 24$, $S_6 = 48$,则 $\{a_n\}$ 的公差为 ()

A. 1

【解】
$$a_4 + a_5 = a_1 + 3d + a_1 + 4d = 24$$
 , $S_6 = 6a_1 + \frac{6 \times 5}{2}d = 48$, 汝 $\begin{cases} 2a_1 + 7d = 24 \\ 6a_1 + 15d = 48 \end{cases}$,

解得d=4,选C。

【解法二】 $a_4 + a_5 = 24 \Rightarrow a_3 + a_6 = 24$ (1)

$$S_6 = 48 \Rightarrow \frac{6}{2}(a_1 + a_6) = 48 \Rightarrow a_1 + a_6 = 16$$
 (2)

(1) - (2) 得: 2d = 8, 故d = 4, 选C。

例 5.已知两个等差数列 $\{a_n\}$ 和 $\{b_n\}$ 的前 n 项和分别为 S_n 和 T_n ,对任意正整数 n ,都有

$$rac{S_n}{T_n} = rac{2n+6}{n+1} \; , \; \; \text{for } rac{a_{10}}{b_{10}} = \; (\; \;)$$

【解】由等差数列的性质知: $S_{21}=21a_{10},\ T_{21}=21b_{10}$, 故

$$\frac{a_{10}}{b_{10}} = \frac{S_{21}}{T_{21}} = \frac{2 \times 10 + 6}{10 + 1} = \frac{26}{11}$$

例 6 (1) .已知两个等差数列 $\{a_n\}$ 和 $\{b_n\}$ 的前 n 项和为 A_n 和 B_n ,且 $\frac{A_n}{B_n} = \frac{7n+45}{n+3}$,则使得

 $\frac{a_n}{b}$ 为整数的正整数 n 的个数是____

(2) 两个等差数列
$$\{a_n\}$$
, $\{b_n\}$, $\frac{a_1+a_2+...+a_n}{b_1+b_2+...+b_n} = \frac{7n+2}{n+3}$, 则 $\frac{a_5}{b_5} = \underline{\hspace{1cm}}$.

【巧解】(1) 直接用公式: $A_{2n-1}=(2n-1)a_n$, $B_{2n-1}=(2n-1)b_n$

因 n 为正整数, 故 n=1,2,3,5,11 时, $\frac{a_n}{b_n}$ 为整数, 即 $\frac{a_n}{b_n}$ 为整数的 n 的个数是 5.

(2) 令
$$\{a_n\}$$
 的前 n 项和为 S_n , $\{b_n\}$ 的前 n 项和为 T_n , 则 $\frac{a_5}{b_5} = \frac{S_9}{T_0} = \frac{7 \times 9 + 2}{9 + 3} = \frac{65}{12}$

例 7.(1)若等差数列 $\{a_n\}$ 满足 $a_7+a_8+a_9>0, a_7+a_{10}<0$,则当 n=_____时, $\{a_n\}$ 的前 n 项和最大.

(2) 已知等差数列的公差 d<0,前 n 项和记为 S_n ,满足 $S_{20}>0$, $S_{21}<0$,则当 n=______时, S_n 达到最大值.

【解】 (1)
$$a_7 + a_8 + a_9 = 3a_8 > 0 \Longrightarrow a_8 > 0$$
 ,

$$a_7 + a_{10} = a_8 + a_9 < 0 \Rightarrow a_9 < 0$$
, $\& S_8 \& X$

(2) 由
$$S_{21} = 21a_{11} < 0$$
 知: $a_{11} < 0$,

$$S_{20} = 10(a_{10} + a_{11}) > 0, \quad a_{10} > 0,$$

又, d < 0, 数列为单调递减数列,

$$\therefore n=10$$
时, S_n 最大.

例 8. 在等差数列 $\{a_n\}$ 中,若 $S_4=1, S_8=4$,则 $a_{17}+a_{18}+a_{19}+a_{20}$ 的值为(

【解】
$$S_4 = 1, S_8 - S_4 = 3,$$

因 $S_4, S_8 - S_4, S_{12} - S_8, S_{16} - S_{12}, S_{20} - S_{16}$ 成等差数列,易知该数列为1,3,5,7,9

故,
$$a_{17} + a_{18} + a_{19} + a_{20} = S_{20} - S_{16} = 9$$

【解】:由题意知, $S_3, S_6 - S_3, S_9 - S_6, S_{12} - S_9$ 成等差数列,

如 $S_3=m$,则 $S_6=3m$,从而 $S_6-S_3=2m$,故上面等差数列的公差为 m

从而
$$S_9 - S_6 = 3m$$
, $S_{12} - S_9 = 4m$

进而得
$$S_9 = 6m$$
 , $S_{12} = 10m$, 故 $\frac{S_6}{S_{12}} = \frac{3m}{10m} = \frac{3}{10}$

例 10.等差数列 $\{a_n\}$ 的前 n 项和为 S_n , 若公差 d>0, $(S_8-S_5)(S_9-S_5)<0$,则(

A.
$$|a_7| > |a_8|$$

B.
$$|a_7| < |a_8|$$

C.
$$|a_7| = |a_8|$$
 D. $a_7 = 0$

D.
$$a_7 = 0$$

【解】: 因
$$d>0$$
, 故由 $(S_8-S_5)(S_9-S_5)<0$ 知 $\begin{cases} S_8-S_5<0 \\ S_9-S_5>0 \end{cases}$,从而有

$$\begin{cases} a_6 + a_7 + a_8 < 0 \\ a_6 + a_7 + a_8 + a_9 > 0 \end{cases} \Rightarrow \begin{cases} 3a_7 < 0 \\ 2(a_7 + a_8) > 0 \end{cases} \Rightarrow \begin{cases} a_7 < 0 \\ a_7 + a_8 > 0 \end{cases}$$

故 $|a_8|>|a_7|$, 选B。

例 11 (全国 II) 等差数列 $\{a_n\}$ 的前 n 项和为 S_n , $a_3=3$, $S_4=10$, 则 $\sum_{i=1}^n \frac{1}{c}=($)

【解】
$$a_1 + a_4 = a_2 + a_3 = 5$$
 , 进而得 $a_2 = 2$, $a_n = n$, 故 $S_n = \frac{n(n+1)}{2}$,

$$\sum_{k=1}^{n} \frac{1}{S_k} = 2\sum_{k=1}^{n} \frac{1}{k(k+1)} = 2\sum_{k=1}^{n} (\frac{1}{k} - \frac{1}{k+1}) = 2(1 - \frac{1}{n+1}) = \frac{2n}{n+1}$$

例 12. 已知等差数列 $\{a_n\}$ 的前 n 项和为 S_n ,若 m>1且 $a_{m-1}+a_{m+1}-a_m^2=0$, $S_{2m-1}=38$, 则m等于()

A. 38

B. 20

c. 10

D. 9

【解】 由 $a_{m-1} + a_{m+1} - a_m^2 = 0$ 得 $2a_m - a_m^2 = 0$,解 得 $a_m = 2$ ($a_m = 0$ 舍 去 , 否 则 $S_{2m-1} = (2m-1)a_m = 0$, $S_{2m-1} = (2m-1)a_m = 38$, 2m-1=19, 2m-1=19, 2m-1=19

例 13. 已知单调递增的等差数列 $\{a_n\}$,满足 $|a_{10}\cdot a_{11}| > a_{10}\cdot a_{11}$,且 $a_{10}^2 < a_{11}^2$, S_n 为其前 n 项

和,则()

A.
$$a_8 + a_{12} > 0$$

B、
$$S_1, S_2, \cdots S_{19}$$
都小于零, S_{10} 为 S_n 的最小值

$$C$$
, $a_8 + a_{13} < 0$

D、
$$S_1, S_2, \cdots S_{20}$$
都小于零, S_{10} 为 S_n 的最小值

【解析】由 $|a_{10}\cdot a_{11}| > a_{10}\cdot a_{11}$ 知: $a_{10}\cdot a_{11} < 0$,再由 $\{a_n\}$ 单调递增知: $a_{10}< 0$, $a_{11}> 0$

另外,
$$a_{10}^2 < a_{11}^2 \Rightarrow |a_{10}| < a_{11} | \Rightarrow a_{11} + a_{10} > 0$$

从而知:
$$a_8 + a_{12} = 2a_{10} < 0$$
, $a_8 + a_{13} = a_{11} + a_{10} > 0$, A、C 均错。

又,
$$S_{19} = \frac{19(a_1 + a_{19})}{2} = 19a_{10} < 0, S_{20} = \frac{20(a_1 + a_{20})}{2} = 10(a_{10} + a_{11}) > 0$$
,B对D错。

综上,选B。

进一步,由于
$$a_{10} < 0$$
,故 $S_1, S_2, \dots, S_{10} < 0$,且 $S_1 < S_2 < \dots < S_{10} < 0$

考虑到 $a_{11}>0$,故从 S_{11} 开始, S_n 开始递增,但 $S_{19}<0$,故 $S_{11},S_{12},\cdots,S_{18}<0$,

综上, $S_1, S_2, \cdots S_{19}$ 都小于零, S_{10} 为 S_n 的最小值。

例 14. 等差数列 $\{a_n\}$ 的前n项和 S_n 满足 $S_{20}=S_{40}$,下列结论中一定正确的是(

A.
$$S_{30}$$
是 S_n 中的最大值

B.
$$S_{30}$$
 是 S_n 中的最小值 C. $S_{30} = 0$ D. $S_{60} = 0$

C.
$$S_{30} = 0$$

D.
$$S_{60} = 0$$

【巧解】由题意知: S_{20} , $S_{40} - S_{20}$, $S_{60} - S_{40}$ 成等差数列,

也即
$$S_{20}$$
, O , $S_{60} - S_{40}$ 成等差数列, 故 $S_{20} + (S_{60} - S_{40}) = 2 \times 0 = 0$,

故
$$S_{60} = S_{40} - S_{20} = 0$$
,选D。

【法二】
$$\diamondsuit S_n = An^2 + Bn \ (A, B)$$
 为常数)

故,
$$S_{20} = 400A + 20B$$
, $S_{40} = 1600A + 40B$

$$S_{20} = S_{40} \Rightarrow 400A + 20B = 1600A + 40B \Rightarrow 60A + B = 0 \Rightarrow B = -60A$$

故,
$$S_n = An^2 - 60A \cdot n$$

故
$$S_{60} = 3600A - 3600A = 0$$
,选D。

例 15. 设等差数列 $\left\{a_n\right\}$ 的前 n 项和为 S_n ,且满足 $S_{2020}>0$,对任意正整数 n ,都 有 $|a_n| \ge |a_k|$,则k的值为(

A. 1008

B. 1009

C. 1010

D. 1011

【解】注意等差数列的性质: $S_{2n-1} = (2n-1)a_n$

$$\begin{cases} S_{2020} > 0 \Longrightarrow a_{1010} + a_{1011} = a_1 + a_{2020} > 0 \\ S_{2021} < 0 \Longrightarrow a_{1011} < 0 \end{cases} \Longrightarrow \begin{cases} a_{1011} < 0 \\ a_{1010} > 0 \\ \mid a_{1010} \mid > \mid a_{1011} \mid \end{cases},$$

故 $\{a_n\}$ 为递减数列,且 $n \le 1010$ 时, $a_n > a_{1010} > 0$,故 $|a_n| > |a_{1010}| > |a_{1011}|$ $n \ge 1011$ 时, $a_n < a_{1011} < 0$,故 $|a_n| > |a_{1011}|$

综上,对任意的正整数n,都有 $|a_n| > |a_{1011}|$,故k = 1011,选D.

例 16.在数列 $\{a_n\}$ 中, $a_1=2$, $(a_{n+1}-1)(a_n-1)+2a_{n+1}-2a_n=0$ $(n \in \mathbb{N}^*)$,若 $a_n < \frac{51}{50}$,则 n 的最小值为______.

【解析】 易知 $a_n \ne 1$ (否则,由 $(a_n - 1)(a_{n-1} - 1) + 2a_n - 2a_{n-1} = 0 \Rightarrow a_{n-1} = 1 \Rightarrow a_1 = 1$); 另外, $(a_{n+1} - 1)(a_n - 1) + 2a_{n+1} - 2a_n = 0 \Rightarrow (a_{n+1} - 1)(a_n - 1) + 2(a_{n+1} - 1) - 2(a_n - 1) = 0$ $\Rightarrow 2[(a_n - 1) - (a_{n+1} - 1)] = (a_{n+1} - 1)(a_n - 1)$ $\Rightarrow \frac{1}{a_{n+1} - 1} - \frac{1}{a_n - 1} = \frac{1}{2} \Rightarrow \frac{1}{a_n - 1} = 1 + \frac{1}{2}(n - 1) \Rightarrow a_n = 1 + \frac{2}{n+1}$ 由 $a_n < \frac{51}{50} \Rightarrow 1 + \frac{2}{n+1} < 1 + \frac{1}{50} \Rightarrow n > 99$,

故最小的n=100

例 17. 设 $\{a_n\}$ 为单调递增数列,首项 $a_1=4$,且满足 $a_{n+1}^{\ \ 2}+a_n^{\ 2}+16=8(a_{n+1}+a_n)+2a_{n+1}\cdot a_n$, $n\in N^*$,则 $a_1-a_2+a_3-a_4+\cdots+a_{2n-1}-a_{2n}=$ (

A,
$$-2n(2n-1)$$
 B, $-3n(n+3)$ C, $-4n(2n+1)$ D, $-6n(n+1)$

【解】 由
$$a_1 = 4$$
 及 $a_{n+1}^2 + a_n^2 + 16 = 8(a_{n+1} + a_n) + 2a_{n+1} \cdot a_n$ 得 $a_2 = 16$

曲
$$a_{n+1}^2 + a_n^2 + 16 = 8(a_{n+1} + a_n) + 2a_{n+1} \cdot a_n$$
 得 $a_{n+2}^2 + a_{n+1}^2 + 16 = 8(a_{n+2} + a_{n+1}) + 2a_{n+2} \cdot a_{n+1}$

两式相减得
$$a_{n+2}^2 - a_n^2 = 8(a_{n+2} - a_n) + 2a_{n+1}(a_{n+2} - a_n)$$
,即 $a_{n+2} + a_n = 8 + 2a_{n+1}$,

故
$$(a_{n+2}-a_{n+1})-(a_{n+1}-a_n)=8$$
,

故
$$a_n - a_{n-1} = (a_2 - a_1) + 8(n-2) = 8n - 4$$
,

利用累加法得:
$$a_n - a_1 = 8\sum_{k=2}^n k - 4(n-1) = 4n^2 - 4$$
, 故 $a_n = 4n^2$

$$\text{Mfii}, \quad a_1 - a_2 + a_3 - a_4 + \dots + a_{2n-1} - a_{2n} = \sum_{k=1}^{n} (a_{2k-1} - a_{2k}) = -4\sum_{k=1}^{n} (4k-1) = -4n(2n+1)$$

【解法二】 由 $a_1 = 4$ 及 $a_{n+1}^2 + a_n^2 + 16 = 8(a_{n+1} + a_n) + 2a_{n+1} \cdot a_n$, 易求得 $a_2 = 16$, 进而得 $a_3 = 36, a_4 = 64$;

验证: n=1时, $a_1-a_2=-12$, 排除 A 选项。

$$n=2$$
 H ^{\dagger} , $a_1-a_2+a_3-a_4+\cdots+a_{2n-1}-a_{2n}=a_1-a_2+a_3-a_4=-40$

只有选项 C 满足此要求, 选 C。

例 18(全国 I)已知数列 $\{a_n\}$ 的前 n 项和为 S_n , a_1 =1 , $a_n \neq 0$, $a_n a_{n+1} = \lambda S_n - 1$, 其中 λ 为常数.

- (I)证明: $a_{n+2} a_n = \lambda$;
- (Ⅱ) 是否存在 λ , 使得 $\{a_n\}$ 为等差数列? 并说明理由.
- (I) 【证明】 由题设, $a_n a_{n+1} = \lambda S_n 1, a_{n+1} a_{n+2} = \lambda S_{n+1} 1.$

两式相减得 $a_{n+1}(a_{n+2}-a_n)=\lambda a_{n+1}$.

由于 $a_{n+1} \neq 0$,所以 $a_{n+2} - a_n = \lambda$.

(II) 由题设, $a_1 = 1$, $a_1 a_2 = \lambda S_1 - 1$, 可得 $a_2 = \lambda - 1$;

由 (I) 知, $a_3 = \lambda + 1$.

故 $a_{n+2}-a_n=4$,由此可得 $\{a_{2n-1}\}$ 是首项为 1,公差为 4 的等差数列, $a_{2n-1}=4n-3$; $\{a_{2n}\}$ 是首项为 3,公差为 4 的等差数列, $a_{2n}=4n-1$.

下面观察数列 $\{a_n\}$ 中任意相邻的三个项: $a_{2n-1}, a_{2n}, a_{2n+1}$

显然, $a_{2n}-a_{2n-1}=a_{2n+1}-a_{2n}=2$,

故 $\{a_n\}$ 是首项为 $a_1=1$,公差为2的等差数列。

因此存在 $\lambda = 4$,使得数列 $\{a_n\}$ 为等差数列。

- **例 19.** 若正实数数列 $\{c_n\}$ 满足 $c_{n+1}^2 \le c_n c_{n+2} \left(n \in N^*\right)$,则称 $\{c_n\}$ 是一个对数凸数列;若实数列 $\{d_n\}$ 满足 $2d_{n+1} \le d_n + d_{n+2}$,则称 $\{d_n\}$ 是一个凸数列。已知 $\{a_n\}$ 是一个对数凸数列, $b_n = \ln a_n$ 。
 - (1) 证明: $a_1a_{10} \ge a_5a_6$;
 - (2) 若 $a_1a_2\cdots a_{2024}=1$, 证明: $a_{1012}a_{1013}\leq 1$;
 - (3) 若 $b_1 = 1, b_{2024} = 2024$, 求 b_{10} 的最大值。
 - (I) 【证明】 由题意得: $a_{n+1}^2 \le a_n a_{n+2}$, $\therefore \frac{a_{n+2}}{a_{n+1}} \ge \frac{a_{n+1}}{a_n} \ge \frac{a_n}{a_{n-1}} \ge \cdots \ge \frac{a_2}{a_1}$,

故
$$\frac{a_{10}}{a_0} \ge \frac{a_9}{a_9} \ge \frac{a_8}{a_7} \ge \cdots \ge \frac{a_3}{a_2} \ge \frac{a_2}{a_1}$$

 $\therefore a_1 a_{10} \ge a_2 a_9 \ge a_3 a_8 \ge a_4 a_7 \ge a_5 a_6 ,$

故 $a_1a_{10} \ge a_5a_6$, 证毕。

故 $a_1a_{2024} \geq a_2a_{2023} \geq a_3a_{2022} \geq \cdots \geq a_{1011}a_{1014} \geq a_{1012}a_{1013}$,

故
$$(a_{1012}a_{1013})^{1012} \le a_1a_2\cdots a_{2024} = 1$$
,

 $\therefore a_{1012}a_{1013} \le 1$,证毕。

也即 $b_{n+1}-b_n \leq b_{n+2}-b_{n+1}$,

$$\therefore b_{2024} - b_{2023} \ge b_{11} - b_{10}, b_{2022} - b_{2021} \ge b_{11} - b_{10}, \cdots, b_{11} - b_{10} \ge b_{11} - b_{10}$$

以上式子累加,得
$$b_{2024} - b_{10} \ge 2014(b_{11} - b_{10})$$
 ①

另外,
$$b_{11}-b_{10} \ge b_{10}-b_{9}$$
, $b_{11}-b_{10} \ge b_{9}-b_{8}$, …, $b_{11}-b_{10} \ge b_{2}-b_{1}$

以上式子累加得9
$$(b_{11}-b_{10}) \ge b_{10}-b_1$$

结合①②得:
$$\frac{b_{2024}-b_{10}}{2014} \ge b_{11}-b_{10} \ge \frac{b_{10}-b_{1}}{9}$$
,

$$\therefore \frac{2024 - b_{10}}{2014} \ge \frac{b_{10} - 1}{9} , 化简得 b_{10} \le 10 ,$$

另外,显然有 $b_n = n$ 符合题意,此时 $b_{10} = 10$,

综上, b_{10} 的最大值为 10。