"min-nmap" desarrollado con python 3

Eduardo Eliezar Castillo Hernández

Contenido

- Definición de sondeo de puertos
- Estados de los puertos de un equipo
- Protocolos necesarios
 - IP
 - ICMP
 - TCP
 - UDP
- Detección de hosts objetivos
 - ICMP PING
 - TCP SYN
- Sondeo de puertos
 - TCP SYN
 - UDP PING

Sondeo de puertos

- El termino se refiere a la acción de analizar el estado de los puertos de un equipo conectado a una red de comunicaciones.
- Con el objetivo de determinar que servicios esta ofreciendo y las posibles vulnerabilidades que pueda tener según los puertos que se encuentren abiertos.

Estados de los puertos de un equipo

Un puerto puede tener 3 estados básicos:

- Abierto: el puerto tiene una aplicación escuchando en el, y acepta conexiones TCP o paquetes UDP.
- Cerrado: el puerto es accesible y alcanzable, pero no tiene una aplicación escuchando en él.
- Filtrado: el puerto no es accesible debido a que a un filtro esta impidiendo que los paquetes lo alcancen. Esto puede deberse a un dispositivo cortafuegos, las reglas de acceso de un router o a un cortafuegos instalado en el equipo.

Estados de los puertos de un equipo (II)

Ademas de los anteriores 3 estados, se puede clasificar un puerto en 3 estados mas:

- No filtrado: el puerto es accesible pero no se puede determinar si esta abierto o cerrado.
- Abierto | Filtrado: no es posible determinar si el puerto esta abierto o filtrado.
- Cerrado | Filtrado: no es posible determinar si el puerta esta cerrado o filtrado.

Puerto: Abierto

*PC2 recibe el paquete, lo acepta e informa a PC1 que lo ha recibido y aceptado.

Puerto: Cerrado

*PC2 recibe el paquete, no lo acepta, pero informa a PC1 que lo ha recibido y no lo ha aceptado.

Puerto: Filtrado

*PC2 nunca recibe el paquete.

*PC1 no sabe si el paquete fue recibido o no, ya que no recibe ninguna respuesta.

Protocolos necesarios: IP

*Min-map no calcula el Checksum del paquete, delega esta tarea al sistema operativo.

Protocolos necesarios: ICMP

ICMP: Tipos y códigos utilizados

Tipo	Código	Descripción		
0	0	Respuesta de ECO (ECHO REPLY)		
3	1	Host inalcanzable		
3	2	Protocolo inalcanzable		
3	3	Puerto inalcanzable		
3	9	Red de destino prohibida administrativamente		
3	10	Host de destino prohibido administrativamente		
3	13	Comunicación prohibida administrativamente mediante filtrado.		
8	0	Solicitud de eco (ECHO REQUEST)		

Checksum ICMP

Tipo

1 Byte

Código

1 Byte

Checksum

2 Bytes

Identificador

2 Bytes

Secuencia

2 Bytes

Datos

N Bytes

Pasos:

- Rellenar campo Checksum con ceros.
- Dividir el paquete completo en palabras de 2 Bytes (16 bits).
 - Si el numero de palabras resultantes es impar, agregar una palabra (2 Bytes) de 0.
- Sumar las palabras obtenidas.
- Si el resultado de la suma es de mas de 16 bits (2 Bytes), tomar los primeros 16 bits de menos significativos y sumarle los bits sobrantes.

Protocolos necesarios: TCP

Pseudocabecera TCP

0 L	4 8 I	3 12 L	16 	20	24	28 I	32				
	Source Address (from IP Header)										
Destination Address (from IP Header)											
	Reserved	Protocol (from IP Header)		TCP Segment Length (computed)							

