

### **Description**

The VST10N210 uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of  $R_{DS(ON)}$  and  $Q_g$ . This device is ideal for high-frequency switching and synchronous rectification.

#### **General Features**

- $V_{DS} = 100V, I_D = 9A$   $R_{DS(ON)} < 27m\Omega @ V_{GS} = 10V$  (Typ:21m $\Omega$ )  $R_{DS(ON)} < 37m\Omega @ V_{GS} = 4.5V$  (Typ:30m $\Omega$ )
- Excellent gate charge x R<sub>DS(on)</sub> product(FOM)
- Very low on-resistance R<sub>DS(on)</sub>
- 150 °C operating temperature
- Pb-free lead plating
- 100% UIS tested

#### **Application**

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply



### **Package Marking and Ordering Information**

| Device Marking | Device    | Device Package | Reel Size | Tape width | Quantity   |
|----------------|-----------|----------------|-----------|------------|------------|
| VST10N210-S23  | VST10N210 | SOT-223        | Ø330mm    | 12mm       | 2500 units |

#### Absolute Maximum Ratings (T<sub>A</sub>=25 ℃unless otherwise noted)

| Parameter                                        | Symbol           | Limit      | Unit         |  |
|--------------------------------------------------|------------------|------------|--------------|--|
| Drain-Source Voltage                             | V <sub>DS</sub>  | 100        | V            |  |
| Gate-Source Voltage                              | V <sub>G</sub> s | ±20        | V            |  |
| Drain Current-Continuous                         | I <sub>D</sub>   | 9          | Α            |  |
| Drain Current-Pulsed (Note 1)                    | I <sub>DM</sub>  | 36         | Α            |  |
| Single pulse avalanche energy (Note 5)           | E <sub>AS</sub>  | 96         | mJ           |  |
| Maximum Power Dissipation                        | P <sub>D</sub>   | 2.5        | W            |  |
| Operating Junction and Storage Temperature Range | $T_{J}, T_{STG}$ | -55 To 150 | $^{\circ}$ C |  |

#### **Thermal Characteristic**

| Thermal Resistance,Junction-to-Ambient (Note 2) | $R_{\theta JA}$ | 50 | °C/W |
|-------------------------------------------------|-----------------|----|------|
|-------------------------------------------------|-----------------|----|------|



# Electrical Characteristics (T<sub>A</sub>=25 ℃ unless otherwise noted)

| Parameter                          | Symbol                                                                     | Condition                                 | Min | Тур  | Max  | Unit |
|------------------------------------|----------------------------------------------------------------------------|-------------------------------------------|-----|------|------|------|
| Off Characteristics                |                                                                            |                                           | •   |      |      |      |
| Drain-Source Breakdown Voltage     | BV <sub>DSS</sub>                                                          | V <sub>GS</sub> =0V I <sub>D</sub> =250μA | 100 | -    | -    | V    |
| Zero Gate Voltage Drain Current    | I <sub>DSS</sub>                                                           | V <sub>DS</sub> =100V,V <sub>GS</sub> =0V | -   | -    | 1    | μA   |
| Gate-Body Leakage Current          | I <sub>GSS</sub>                                                           | $V_{GS}$ =±20 $V$ , $V_{DS}$ =0 $V$       | -   | -    | ±100 | nA   |
| On Characteristics (Note 3)        |                                                                            |                                           | •   |      |      |      |
| Gate Threshold Voltage             | V <sub>GS(th)</sub>                                                        | $V_{DS}=V_{GS},I_{D}=250\mu A$            | 1.2 | 1.9  | 2.5  | V    |
| Dunin Course On State Besistance   | Б                                                                          | V <sub>GS</sub> =10V, I <sub>D</sub> =9A  | -   | 21   | 27   | mΩ   |
| Drain-Source On-State Resistance   | R <sub>DS(ON)</sub>                                                        | V <sub>GS</sub> =4.5V, I <sub>D</sub> =9A | -   | 30   | 37   | mΩ   |
| Forward Transconductance           | rd Transconductance g <sub>FS</sub> V <sub>DS</sub> =5V,I <sub>D</sub> =9A |                                           | -   | 12   | -    | S    |
| Dynamic Characteristics (Note4)    |                                                                            |                                           | 1   |      |      | •    |
| Input Capacitance                  | C <sub>lss</sub>                                                           |                                           | -   | 1600 | -    | PF   |
| Output Capacitance                 | Coss                                                                       | $V_{DS}$ =50V, $V_{GS}$ =0V,<br>F=1.0MHz  | -   | 139  | -    | PF   |
| Reverse Transfer Capacitance       | C <sub>rss</sub>                                                           | F=1.UIVIHZ                                | -   | 11   | -    | PF   |
| Switching Characteristics (Note 4) |                                                                            |                                           | 1   |      |      | •    |
| Turn-on Delay Time                 | t <sub>d(on)</sub>                                                         |                                           | -   | 10   | -    | nS   |
| Turn-on Rise Time                  | t <sub>r</sub>                                                             | $V_{DD}$ =50V, $R_L$ =5.5 $\Omega$        | -   | 4    | -    | nS   |
| Turn-Off Delay Time                | t <sub>d(off)</sub>                                                        | $V_{GS}$ =10 $V$ , $R_{G}$ =2.5 $\Omega$  | -   | 22   | -    | nS   |
| Turn-Off Fall Time                 | t <sub>f</sub>                                                             |                                           | -   | 5    | -    | nS   |
| Total Gate Charge                  | Qg                                                                         | \/ F0\/   OA                              | -   | 26   |      | nC   |
| Gate-Source Charge                 | Q <sub>gs</sub>                                                            | $V_{DS}=50V,I_{D}=9A,$                    | -   | 7.4  | -    | nC   |
| Gate-Drain Charge                  | Q <sub>gd</sub>                                                            | V <sub>GS</sub> =10V                      | -   | 3.8  | -    | nC   |
| Drain-Source Diode Characteristics |                                                                            |                                           | 1   |      |      | •    |
| Diode Forward Voltage (Note 3)     | V <sub>SD</sub>                                                            | V <sub>GS</sub> =0V,I <sub>S</sub> =9A    | -   | -    | 1.2  | V    |
| Diode Forward Current (Note 2)     | Is                                                                         |                                           | -   | -    | 9    | Α    |
| Reverse Recovery Time              | trr                                                                        | $T_J = 25^{\circ}C, I_F = 4.5A$           | -   | 34.6 | -    | nS   |
| Reverse Recovery Charge            | Qrr                                                                        | $di/dt = 100A/\mu s^{(Note3)}$            | -   | 57.7 | -    | nC   |

#### Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- **3.** Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to product
- **5.** EAS condition: Tj=25  $^{\circ}$ C,VDD=50V,VG=10V,L=0.5mH,Rg=25 $\Omega$



## **Test Circuit**

## 1) E<sub>AS</sub> test circuit



## 2) Gate charge test circuit



# 3) Switch Time Test Circuit





## **Typical Electrical and Thermal Characteristics**



**Figure 1 Output Characteristics** 



**Figure 2 Transfer Characteristics** 



Figure 3 Rdson- Drain Current



Figure 4 Rdson-Junction Temperature



Figure 5 Gate Charge



Figure 6 Source- Drain Diode Forward





Figure 7 Capacitance vs Vds



Figure 9 V<sub>GS</sub>(th) vs Junction Temperature



**Figure 8 Safe Operation Area** 



Figure 10 Current De-ratin



**Figure 11 Normalized Maximum Transient Thermal Impedance**