# Appendices Representation and relative positioning from visual information

Submitted by: Asma BRAZI

Supervised by: Cédric HERPSON

Laboratory of Computer Sciences, Paris 6 Sorbonne University - Faculty of Sciences and Engineering

June - July 2019





# Contents

| Α                       | List of components                        | 2 |  |  |  |  |
|-------------------------|-------------------------------------------|---|--|--|--|--|
|                         | A.1 Thymio II                             | 2 |  |  |  |  |
|                         | A.2 Raspberry-Pi                          | 2 |  |  |  |  |
| A.3 Raspberry-Pi Camera |                                           |   |  |  |  |  |
|                         | A.4 Power-bank                            | 3 |  |  |  |  |
| В                       | Conversion between pixels and centimeters | 5 |  |  |  |  |
|                         | B.0.1 Nonlinear Regression                | 5 |  |  |  |  |
|                         | B.0.2 Multiple Polynomial Regression      | 6 |  |  |  |  |
| С                       | 3D Object recognition                     | 7 |  |  |  |  |

## Appendix A

## List of components

## A.1 Thymio II

#### Description

Thymio II is a mobile robot dedicated to the education field. It has many sensors for different purposes. These sensors covered:infrared receiver, proximity, 3 axis accelerometer, ground sensors for line following...etc.

Data sheet

https://www.generationrobots.com/fr/401213-robot-mobile-thymio-2.htmlURL



## A.2 Raspberry-Pi

#### Description

The Raspberry-Pi is a s single-board computer with wireless LAN and Bluetooth connectivity. It needs a micro USB power supply (2.1 A) in order to be plugged into a power-bank. It has 1GB RAM, 4 USB 2 ports, Full size HDMI, 100 base Ethernet and including a quad core 1.2GHz Broadcom BCM2837 64bit CPU.

Data sheet

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/



## A.3 Raspberry-Pi Camera

#### Description

The Raspberry-Pi Camera delivers a 5MP resolution image, and 1080p HD video recording at 30 frame/second. It plugs into the Camera Serial Interface connector on the Raspberry-Pi.

Data sheet

 $\label{lem:https://uk.pi-supply.com/products/raspberry-pi-camera-board-v1-3-5mp-1080p?lang=fr$ 



### A.4 Power-bank

#### Description

For testing, we used RAVPower powerbank to power the Raspberry-Pi. It has 2A input which can charge the 6700 mAh portable charger. this feature guarantees that the Raspberry-Pi's services work correctly.

Data sheet



# Appendix B

## Conversion between pixels and centimeters

In this section, we explain how we built the conversion system which permitted us to use the distances in pixels in the reality.

Firstly, we performed some measurements to know the dimensions of some objects in pixels and in centimeters depending on a certain distance from the camera.

#### B.0.1 Nonlinear Regression

The first table contains the equivalence between the real distance in centimeters and the one in pixels, between an object and the autonomous robot. The distance in pixels is the column X and the one in centimeters is in the column Y.

|     | x   | у     | Best Function<br>Calculated y | Best Function<br>Error       |
|-----|-----|-------|-------------------------------|------------------------------|
| 1.  | 392 | 2     | 18.62263621                   | 16.62263621                  |
| 2.  | 380 | 5     | 20.66766475                   | 15.66766475                  |
| 3.  | 365 | 10    | 23.91535548                   | 13.91535548                  |
| 4.  | 347 | 20    | 29.32422069                   | 9.324220689                  |
| 5.  | 328 | 30    | 38.04548798                   | 8.045487977                  |
| 6.  | 317 | 40    | 45.50036461                   | 5.50036461                   |
| 7.  | 302 | 60    | 60.74989973                   | 7.498997335·10 <sup>-1</sup> |
| 8.  | 290 | 80    | 80.45851629                   | $4.585162872 \cdot 10^{-1}$  |
| 9.  | 283 | 100   | 97.35643493                   | 2.643565069                  |
| 10. | 277 | 120   | 116.8711326                   | 3.128867438                  |
| 11. | 268 | 140   | 159.986603                    | 19.98660301                  |
| 12. | 265 | 160   | 179.80583                     | 19.80582999                  |
| 13. | 263 | 180   | 195.0688499                   | 15.0688499                   |
| 14. | 261 | 200   | 212.2498379                   | 12.24983786                  |
| 15. | 260 | 220   | 221.6429632                   | 1.642963214                  |
| 16. | 259 | 240   | 231.6189761                   | 8.381023901                  |
| 17. | 257 | 260   | 253.4709531                   | 6.529046932                  |
| 18. | 256 | 280   | 265.4244513                   | 14.57554866                  |
| 19. | 254 | 300   | 291.5789532                   | 8.42104681                   |
| 20. | 253 | 320   | 305.8522072                   | 14.14779279                  |
| 21. | 251 | 340   | 336.9413971                   | 3.058602898                  |
| 22. | 250 | 360   | 353.7965108                   | 6.203489198                  |
| 23. | 249 | 380   | 371.5329225                   | 8.467077498                  |
| 24. | 247 | 400   | 409.5732798                   | 9.573279766                  |
| 25. | 245 | 476   | 450.6655805                   | 25.3344195                   |
| 26. | 240 | 523.5 | 558.9172161                   | 35.41721612                  |
| 27. | 230 | 659.5 | 650.899337                    | 8.600663007                  |

Figure B.1: Equivalence pixels-centimeters for the distance between the robot and the object

We performed a Nonlinear Regression on the data to obtain an equation with the distance in pixels as entry and the distance in centimeters as a result.

We can see in the column Best function calculated Y the result of the equation, knowing the distance in pixels. And in the Best function error, the difference between the distance in centimeters we have measured and the one estimated by the equation. The biggest error is estimated to 14.15 with X=253 and Y=320. The error remains acceptable because it is in centimeters and we remind that our goal is only to build roughly the environment. So, we do not need that precision of estimation.

## B.0.2 Multiple Polynomial Regression

The second table contains

|     | x <sub>1</sub> | x <sub>2</sub> | y    | Calculated y | Error                        |
|-----|----------------|----------------|------|--------------|------------------------------|
| 1.  | 12             | 291.57         | 6    | 5.941085609  | 5.891439107·10 <sup>-2</sup> |
| 2.  | 17             | 493.90         | 34   | 34.01596939  | 1.596938913·10 <sup>-2</sup> |
| 3.  | 30             | 321            | 22   | 22.03124041  | 3.124041279·10 <sup>-2</sup> |
| 4.  | 41             | 493.90         | 11   | 10.98618923  | 1.381077155·10 <sup>-2</sup> |
| 5.  | 43             | 103.25         | 14.5 | 14.67331914  | 1.733191432·10 <sup>-1</sup> |
| 6.  | 80             | 27.84          | 21   | 18.03244112  | 2.967558875                  |
| 7.  | 100            | 24.68          | 11   | 15.15052281  | 4.150522812                  |
| 8.  | 180            | 33.40          | 21   | 20.63091866  | 3.690813367·10 <sup>-1</sup> |
| 9.  | 145            | 25.78          | 14.5 | 13.91776739  | 5.822326054·10 <sup>-1</sup> |
| 10. | 195            | 18.78          | 14.5 | 13.16978524  | 1.330214761                  |
| 11. | 241            | 21.65          | 21   | 21.96089411  | 9.608941076·10 <sup>-1</sup> |
| 12. | 347            | 71.11          | 55   | 55.00197246  | 1.972455392·10 <sup>-3</sup> |
| 13. | 582            | 21.05          | 51   | 50.98789442  | 1.21055796·10 <sup>-2</sup>  |

# Appendix C

# 3D Object recognition

This project may improved for 3D Object Recognition. Currently, the objects to detect are only in 2D. Obviously, it will be more interesting to make the autonomous robot able to detect 3D object, and to integrate them to the 3D virtual map.

In this case, we have begun to work on 3D object recognition, and we have thought about a solution where Deep Learning is used. For that,