Durée 2 heures

Tout document interdit

Exercice 1 (2, 3)

 $\beta: (\forall x \ P(x) \to \exists x \ Q(x)) \to \exists x \ \exists y \ (P(x) \to Q(y))$

- 1. Donner une formule que l'on la désignera par β_P sous forme normale prenexe telle que $\beta_P \equiv \beta$.
- 2. Montrer que β_P est valide.

Exercice 2 (2, 1, 1, 1, 1, 2)

On considère les formules suivantes :

$$\alpha_1 : \exists x \ \forall y \ (P(x) \land \ P(y))$$

$$\alpha_2: \forall x \exists y (P(x) \rightarrow P(y))$$

$$\alpha_3 : \forall x (P(x) \rightarrow P(f(x)))$$

- 1. Mettre α_1 sous forme clausale. On désignera par S l'ensemble obtenu.
- 2. Donner le domaine de Herbrand de S.
- 3. Donner l'ensemble des clauses de base de S.
- 4. Vérifier à l'aide d'un arbre sémantique que S est non satisfiable.
- 5. En déduire que α_2 est valide.
- 6. α_3 est-elle valide ? Si la réponse est non, donner un modèle de α_3 .

Exercice 3 (4, 2)

 Γ_1 : { P(a), $P(a) \vee Q(b)$, $P(a) \vee R(b)$, S(a) }

 Γ_2 : { $\mathbf{R}(b)$, $\mathbf{S}(a)$ }

 Γ_3 : { B(a), $B(a) \vee S(a)$, $B(a) \vee S(a)$ }

1. Montrer que:

$$P(a)$$
, $P(a) \vee Q(b)$, $P(a) \vee R(b)$, $S(a) \models R(b) \land S(a)$

2. En déduire que $\Gamma_1 \cup \Gamma_3$ est non satisfiable.

Exercice 4 (2)

Traduire l'énoncé suivant dans le langage des prédicats du premier ordre :

E: Etre bon, c'est penser aux autres.

N. B. Remettre, au plus : une seule double feuille et une seule intercalaire.

Bon courage

Correction

Exercice 1 (2, 3)

$$\beta: (\forall x \ P(x) \to \exists x Q(x)) \to \exists x \exists y (P(x) \to Q(y))$$

Question 1.

Etape 1. On renomme les variables :

$$(\forall u \ P(u) \to \exists v Q(v)) \to \exists x \exists y (P(x) \to Q(y))$$
Etape 2.
$$(\forall u P(u) \to \exists v Q(v)) \to \exists x \ \exists y \ (P(x) \to Q(y))$$

$$\equiv (\exists u \exists v \ (P(u) \to Q(v))) \to \exists x \ \exists y \ (P(x) \to Q(y))$$

$$\equiv \forall u \forall v \ ((P(u) \to Q(v)) \to \exists x \ \exists y \ (P(x) \to Q(y)))$$

$$\equiv \forall u \forall v \ \exists x \ \exists y \ ((P(u) \to Q(v)) \to (P(x) \to Q(y)))$$

$$\beta_{P} : \forall u \forall v \ \exists x \ \exists y \ ((P(u) \to Q(v)) \to (P(x) \to Q(y)))$$

Question 2. Montrer que β_P est valide.

Etape1.

$$\exists p : \exists u \exists v \ \forall x \forall y \ ((P(u) \to Q(v)) \land P(x) \land \ Q(y))$$

Etape2. Forme de Skolem de β_P

$$(\exists \beta_{P})_{S} : \forall x \forall y ((P(a) \rightarrow Q(b)) \land P(x) \land \exists Q(y))$$

Etape3. Mise sous forme clausale:

S: {
$$P(a) \lor Q(b), P(x), Q(y)$$
}

Etape4. Arbre sémantique clos.

Toutes les branches sont fermées. S'est donc non satisfiable. On en déduit que $(\ \beta_P)_S$ est non satisfiable. $\ \beta_P$ est donc non satisfiable et par conséquent $\ \beta_P$

Exercice 2 (2, 1, 1, 1, 1, 2)

On considère les formules suivantes :

$$\alpha_1 : \exists x \ \forall y \ (P(x) \land P(y))$$
 $\alpha_2 : \forall x \ \exists y \ (P(x) \rightarrow P(y))$ $\alpha_3 : \forall x (P(x) \rightarrow P(f(x)))$

1. Mise de α_1 sous forme clausale.

$$(\alpha_1)_S : \forall y (P(a) \land P(y))$$
 (1point)

L'ensemble S des clauses est :

INI 2005-2006.

$$S : \{ P(a), P(y) \}$$
 (1point)

- 2. Domaine de Herbrand de S: H={a}
- (1point)
- 3. Ensemble des clauses de base de S:

$$C : \{ P(a), P(a) \}$$
 (1point)

4. Vérifier à l'aide d'un arbre sémantique que S est non satisfiable.

5. S non satisfiable $\Rightarrow \alpha_1$ non satisfiable donc $\neg \alpha_1$ valide. Par ailleurs, on constate que : $\neg \alpha_1 \equiv \alpha_2$. (1point)

6.
$$\alpha_3$$
 n'est pas valide. $|\alpha_3| = \exists x (P(x) \land P(f(x))).$

2points

Modèle de α_3 : Interprétation M telle que :

$$D_M:N$$

$$M(f)$$
: la fonction successeur

Exercice 3 (4, 2)

$$\Gamma_1$$
: { $P(a)$, $P(a) \vee Q(b)$, $P(a) \vee R(b)$, $S(a)$ }

 Γ_2 : { R(b), S(a)}

$$\Gamma_3$$
: { $B(a)$, $B(a) \vee S(a)$, $B(a) \vee S(a)$ }

- 1. Γ_2 est obtenu à partir de Γ_1 :
 - i. en supprimant la clause unitaire P(a) et toutes les clauses contenant P(a).
 - ii. en supprimant P(a) dans toutes les clauses où il apparaît.

On peut en déduire que toute H-interprétation qui satisfait Γ_1 , satisfait R(b) et S(a). Par conséquent : $\Gamma_1 \mid = R(b) \land S(a)$ (1)

A l'aide d'un arbre sémantique :

P(a), $P(a) \vee Q(b)$, $P(a) \vee R(b)$

2. B(a), $B(a) \vee S(a)$, $B(a) \vee S(a) \models S(a)$

On remarquera que toute H-interprétation qui satisfait Γ_3 , satisfait B(a), donc $\Gamma(a)$. Par conséquent :

$$\Gamma_3 \models \mathsf{S}(a)$$
 (2)

De (1) nous déduisons Γ_1 , $\Gamma_3 \models R(b) \land S(a)$ donc Γ_1 , $\Gamma_3 \models R(b)$ et Γ_1 , $\Gamma_3 \models S(a)$ (3)

De (2) nous déduisons Γ_1 , $\Gamma_3 \models \exists S(a)$ (4)

De (3) et (4) : $\Gamma_1 \cup \Gamma_3$ est non satisfiable.