math+econ+code on equilibrium virtual whiteboard, day 1

Alfred Galichon

June 2021

Excess supply function

$$e_{z}^{\sigma}\left(p\right) = \sum_{i} \frac{\exp\left(\frac{u_{iz}\left(p_{z}\right)}{\sigma}\right)}{\sum_{z' \in Z_{0}} \exp\left(\frac{u_{iz'}\left(p_{z'}\right)}{\sigma}\right)} - \sum_{j} \frac{\exp\left(\frac{-c_{jz}\left(p_{z}\right)}{\sigma}\right)}{\sum_{z' \in Z_{0}} \exp\left(\frac{-c_{jz'}\left(p_{z'}\right)}{\sigma}\right)}$$

where

$$Z_0 = Z \cup \{0\}$$

Properties of e^{σ} :

Gross substitutes: $e_z^{\sigma}(p)$ is increasing in p_z and decreasing in p_x ($x \neq z$). Indeed

$$e_z^{\sigma}(p) = \sum_{i} \frac{1}{\sum_{z' \in Z_0} \exp\left(\frac{u_{iz'}(p_{z'})}{\sigma} - \frac{u_{iz}(p_z)}{\sigma}\right)}$$
$$-\sum_{j} \frac{1}{\sum_{z' \in Z_0} \exp\left(\frac{c_{jz}(p_z)}{\sigma} - \frac{c_{jz'}(p_{z'})}{\sigma}\right)}$$

We want to solve

$$e_z^{\sigma}(p) = 0 \ \forall z \in Z.$$

Coordinate update algorithms. (Jacobi and Gauss-Seidel). Idea (Jacobi) = given a guess p_z^t of the solution, update p_z^{t+1} such that

$$e_z^{\sigma}\left(p_z^{t+1}; p_{-z}^t\right) = 0$$

where p_{-z}^t means all the other entries of p but the zth entry. Great if you have access to parallel computing. For instance if |Z|=3

$$\begin{array}{lcl} e_{1}^{\sigma}\left(p_{z_{1}}^{t+1},p_{z_{2}}^{t},p_{z_{3}}^{t}\right) & = & 0 \\ e_{2}^{\sigma}\left(p_{z_{1}}^{t},p_{z_{2}}^{t+1},p_{z_{3}}^{t}\right) & = & 0 \\ e_{3}^{\sigma}\left(p_{z_{1}}^{t},p_{z_{2}}^{t},p_{z_{3}}^{t+1}\right) & = & 0 \end{array}$$

Serial version = Gauss-Seidel. Assume |Z| = 3

$$\begin{array}{lcl} e_1^{\sigma} \left(p_{z_1}^{t+1}, p_{z_2}^{t}, p_{z_3}^{t} \right) & = & 0 \\ e_2^{\sigma} \left(p_{z_1}^{t+1}, p_{z_2}^{t+1}, p_{z_3}^{t} \right) & = & 0 \\ e_3^{\sigma} \left(p_{z_1}^{t+1}, p_{z_2}^{t+1}, p_{z_3}^{t+1} \right) & = & 0 \end{array}$$

Reference: James Ortega and Werner Rheinboldt (1970). Iterative Solution of Nonlinear Equations in Several Variables. SIAM.

0.1 Coordinate update function

Define the coordinate update function $cu_z\left(p_{-z}\right)$ as the solution p_z' to

$$e_z\left(p_z', p_{-z}\right) = 0$$

We can describe Jacobi as $p_z^{t+1} = cu_z \left(p_{-z}^t \right)$ for each z.

Convergence of Jacobi 1

Jacobi can be written as

$$p_z^{t+1} = cu_z \left(p^t \right)$$

Note: we are looking for p^* such that $e(p^*) = 0$. That is, we are looking for p^* such that $p^* = cu(p^*)$.

Property 1. cu_z is increasing, in the sense that

$$p \le p' \implies cu(p) \le cu(p')$$

Indeed,

$$e_z\left(cu_z\left(p_{-z}\right);p_{-z}\right)=0$$

take derivative wrt p_x where $x \neq z$ and get

$$\frac{\partial e_z}{\partial p_z} \frac{\partial c u_z}{\partial p_x} \left(p_{-z} \right) + \frac{\partial e_z}{\partial p_x} = 0$$

hence

$$\frac{\partial c u_z}{\partial p_x} \left(p_{-z} \right) = -\frac{\frac{\partial e_z}{\partial p_x}}{\frac{\partial e_z}{\partial p_z}}$$

Now we know that $\frac{\partial e_z}{\partial p_z} > 0$ and $\frac{\partial e_z}{\partial p_x} \leq 0$ (gross substitutes). Therefore, the coordinate update is a monotone increasing function.

If p^* exists, and if p^0 is such that $p^0 \leq p^*$ for all z, then

$$p^{1} = cu(p^{0}) \le cu(p^{*}) = p^{*}$$

thus by induction all the Jacobi sequence p^t will be less that p^* .

Assume that $p^0 \leq p^1$. Then $cu(p^0) = p^1 \leq cu(p^1) = p^2$ and by induction p^t will be increasing.

Assuming e_z is continuous in p_z , this implies $p^t \to p^*$.

Theorem (Berry, Gandhi, Haile, weak version). Assuming e_z is increasing in p_z , decreasing in p_x for $x \neq z$, and that $\sum_{z \in \mathcal{Z}} e_z(p_z)$ is increasing in each of the p_x , $x \in \mathcal{Z}$ (law of aggregate supply). The the map $p \to e(p)$ is inverse isotone, meaning that for any two price vectors p and p', then

$$e_z(p) \le e_z(p') \ \forall z \in Z$$

implies $p_z \leq p'_z$ for all $z \in Z$.

Why is this useful?

for our purposes, assume that p is a subsolution, i.e.

$$e_z(p) \le 0 = e_z(p^*) \ \forall z$$

then 1) $p \leq p^*$.

2) $e_z(p) \le 0 = e_z(cu_z(p); p_{-z})$

therefore $p_z \leq cu_z(p)$.

As a result, if we start from a subsolution, then the Jacobi sequence

$$p^{t+1} = cu\left(p^t\right)$$

is converging to p^* .

We start from $e\left(p^{0}\right) \leq 0 = e\left(p^{*}\right)$ (subsolution). By inverse isotonicity, it follows

$$p^0 \le p^*$$

as a result because *cu* is isotone (=monotone=order preserving)

$$p^{t}=cu^{t}\left(p^{0}\right) \leq cu^{t}\left(p^{\ast}\right)$$

but as p^* is a fixed point of cu, it follows that

$$p^t < p^*$$
.

Second, if $p^0 \le p^*$, then $p^0 \le cu\left(p^0\right) = p^1$ and as a result, by applying cu^t again

$$p^t \le p^{t+1}$$

Therefore p_z^t increases and is bounded above. As a result it converges to \bar{p}_z .

$$e_z\left(cu\left(p_z^t\right), p_{-z}^t\right) = 0$$

therefore

$$e_z\left(\bar{p}_z,\bar{p}_{-z}\right) = 0.$$

$$cu\left(p_{z}^{t}\right) \geq p_{z}^{t}$$

Apply this to the supply function above

$$e_z^{\sigma}(p) = \sum_i \frac{\exp\left(\frac{u_{iz}(p_z)}{\sigma}\right)}{\sum_{z' \in Z_0} \exp\left(\frac{u_{iz'}(p_{z'})}{\sigma}\right)} - \sum_j \frac{\exp\left(\frac{-c_{jz}(p_z)}{\sigma}\right)}{\sum_{z' \in Z_0} \exp\left(\frac{-c_{jz'}(p_{z'})}{\sigma}\right)}$$

We shall:

- 1. Show that the assumptions in Berry Gandhi and Haile are met.
- 2. There is a subsolution.
- 3. There is a solution p^* here, we shall show that there is a supersolution.
- 1. BGH assumptions.

Gross substitutes hold.

Let's show that the law of aggregate supply holds, ie

$$\sum_{z \in Z} e_z \left(p \right)$$

is increasing in all the p_z 's.

$$\sum_{z \in Z} e_z^{\sigma}(p) = \sum_{i} \left(1 - \frac{1}{\sum_{z' \in Z_0} \exp\left(\frac{u_{iz'}(p_{z'})}{\sigma}\right)} \right)$$
$$-\sum_{j} \left(1 - \frac{1}{\sum_{z' \in Z_0} \exp\left(\frac{-c_{jz'}(p_{z'})}{\sigma}\right)} \right)$$

thus

$$\sum_{z \in Z} e_z^{\sigma}(p) = |I| - |J| + \sum_{j} \frac{1}{\sum_{z' \in Z_0} \exp\left(\frac{-c_{jz'}(p_{z'})}{\sigma}\right)}$$
$$-\sum_{i} \frac{1}{\sum_{z' \in Z_0} \exp\left(\frac{u_{iz'}(p_{z'})}{\sigma}\right)}$$

which shows that

$$\sum_{z \in Z} e_z^{\sigma} \left(p \right)$$

is increasing in each p_z and therefore law of aggregate supply holds, and therefore BGH assumptions are met.

2. There is a subsolution p^{sub} . Simply take $p_z = -N$ for N large enough.

3. There is a supersolutuion p^{\sup} . Simply take $p_z = +N$ for N large enough. As a result $e\left(p^{\sup}\right) \leq e\left(p^{\sup}\right)$

as a result, the Jacobi sequence that starts from p^{sub} is increasing and bounded above by p^{sup} , and therefore converges to the equilibrium price p^* . Similarly he Jacobi sequence that starts from p^{sup} is decreasing and converges to p^* .

1.1 Convergence of Jacobi from any starting point

Now assume BGH assumptions are met.

Assume a solution p exists e(p) = q for any q (therefore e is invertible)

Call p^* the solution to $e(p^*) = 0$.

Then Jacobi converges from any starting point.

Consider any initial price vector p^0 , and consider the Jacobi sequence that starts from p^0 . ie $p^{t+1} = cu(p^t)$.

```
\begin{split} p^{lower} &= e^{-1} \left( e \left( p^0 \right) \wedge 0 \right) \\ p^{upper} &= e^{-1} \left( e \left( p^0 \right) \vee 0 \right) \\ \text{We have by definition} \\ e \left( p^{lower} \right) &= e \left( p^0 \right) \wedge 0 \leq 0 \text{ is a subsolution and} \\ e \left( p^{lower} \right) &= e \left( p^0 \right) \wedge 0 \leq e \left( p^0 \right) \text{ therefore} \\ p^{lower} \leq p^0. \end{split}
```

Similarly, p^{upper} is a supersolution which is greater than p^0 . $p^{lower} \leq p^0 \leq p^{upper}$ thus $cu^t \left(p^{lower} \right) \leq cu^t \left(p^0 \right) \leq cu^t \left(p^{upper} \right)$ both upper and lower bounds converge to p^* , therefore $cu^t \left(p^0 \right)$ converges to p^* .

Notation:

```
a \lor b is the vector such that (a \lor b)_z = \max(a_z, b_z)
a \land b is the vector such that (a \land b)_z = \min(a_z, b_z)
```