SQLskills Immersion Event

IEPTO2: Performance Tuning and Optimization

Module 4: I/O Concepts and I/O Subsystems for DBAs

Jonathan Kehayias Jonathan@SQLskills.com

Overview

- Defining storage terminology
 - □ IOPS, MB/sec, Latency
- Magnetic vs. Solid State Drives (SSDs)
- RAID configurations
- Storage Area Networks
- Configuring drives in Windows
- Testing with Diskspd and Iometer

SQLskills, All rights reserved. https://www.SOLskills.com

IOPS

- Number of read or write operations performed per second
- Size matters
 - Smaller block sizes will allow higher I/Os per second than large blocks
 - Watch out for vendor configuration quotes
 - □ Stated IOPS are typically 4KB block sizes which is rare for databases
- Important for OLTP workloads where transactions are small and reads/writes are typically single page and highly random
- Monitoring in Performance Monitor
 - Physical Disk: Disk Transfers/Sec
 - Physical Disk: Disk Writes/Sec
 - Physical Disk: Disk Reads/Sec

2

SQLskills, All rights reserved

Throughput (Bandwidth) in MB/sec

- Measurement of the amount of data that can be transferred to or from the disk configuration for a average block size
 - Rough approximation (number of operations) x (size of operation)
- Size matters
 - Larger block sizes will allow higher MB/sec at lower IOPS than small blocks
- Important for data warehouse and other large scan implementations but generally not as important OLTP databases
- Very useful for testing appropriate functionality of multiple paths with SANs (covered in Module 3)
- Monitoring in Performance Monitor
 - Physical Disk: Disk Bytes/Sec
 - Physical Disk: Disk Write Bytes/Sec
 - Physical Disk: Disk Read Bytes/Sec

SQLskills, All rights reserved https://www.SQLskills.cor

Latency

- How long it takes an operation to finish measured in milliseconds
- General SQL Server guidelines
 - □ < 8ms: excellent
 - □ < 12ms: good
 - □ < 20ms: fair
 - □ > 20ms: poor
- Reality is "It Depends"
 - □ Block size matters, larger block I/O's take longer to complete
 - Should be workload and SLA-based to meet business requirements
 - Log writes should be as fast as possible (i.e. minimal latency)
- Monitoring in Performance Monitor
 - Physical Disk: Avg. Disk Sec/Transfer
 - Physical Disk: Avg. Disk Sec/Read
 - Physical Disk: Avg. Disk Sec/Write

5

QLskills, All rights reserved.

Traditional HDD

Platters

 Drives have multiple platters with read/write heads above and below each platter

- The read/write heads float on a cushion of air created by the rotational speed of the disk platters known as an air bearing
- □ "Like a 747 flying 500mph at 1/4 inch above the ground" Jim Gray
- Multiple heads still have a fixed articulation point which prevents parallel I/O operations on a single disk
- Mechanical limitations affect performance

6

Traditional HDD

Performance and Latency

- The latency or response time in milliseconds it takes for the drive to begin to transfer data
- Response time = seek time + rotational latency
 - Seek time: the time it takes the read/write head to move from the current track to another track on the hard drive.
 - Rotational latency: the time it takes to rotate the disk platter to the correct position for access by the read/write head

HDD Spindle [RPM]	Average rotational latency [ms]
7,200	4.17
10,000	3.00
15,000	2.00

7

SQLskills, All rights reserved

Solid State Drives (SSDs)

- SSDs have no moving mechanical components
- Data is stored in NAND based flash memory that is persistent with bit level addressing for hard disk emulation
- Access time depends electrical connections to solid state memory, making it very fast and consistent across cells
- General average seek time ranges between 0.08ms and 0.16ms
- NAND types
 - SLC: Single-Level Cell flash stores a single bit value with two states
 - $\ \ \square$ Lower voltages results in longer endurance of 100,000 write cycles
 - MLC: Multi-Level Cell flash stores a double bit value with four states
 - Higher data density per cell at the trade off of higher voltages with reduce cell endurance of 10,000 write cycles
 - TLC: Triple-Level Cell flash stores a triple bit value with eight states
 - □ Higher data density per cell with reduced cell endurance of 5,000 write cycles
 - 3D MLC/TLC: Layers NAND for higher storage densities (up to 32TB in 2.5")

Q

SSD Concepts (1)

Overprovisioning

- Reserves a permanent or temporary portion of the SSD capacity as working space for the controller
 - Improves performance and endurance of the NAND cells

Wear Leveling

- Distributes writes as evenly as possible across the cells to increase endurance and reduce a single cell from wearing out under heavy writes
- May increase write amplification as static data is moved from a underwritten cell to a heavily written cells

Write Amplification

- □ Garbage Collection data is written in pages but only erased in blocks
 - Used pages within a block are read and rewritten to another block to allow reclamation of the stale pages by erasing the current block

.

© SQLskills, All rights reserve

SSD Concepts (2)

Flash Translation Layer

- Provides logical block mapping and garbage collection capabilities
- May be prone to "flying writes" due to firmware or controller bugs leading to database corruption on write
 - Customer database with GPT (guid partition database) data would show up using DBCC PAGE while investigating corruption reported by DBCC CHECKDB
 - First part of the page was all zeros followed by the GPT information as outlined for the GPT in MSDN

OS Error 665 and Defragmentation

- OS file fragmentation can affect SQL Server databases stored on SSDs due to NTFS file attribute list limitations
 - □ Small autogrowths over time can fragment the file hitting the NTFS limitation
 - SQL Server 2014 can run on newer Refs file system without this limit
- http://bit.ly/ssd-defrag

10

RAID

Redundant Array of Independent/Inexpensive Disks

- Combines multiple disk drive components into a single logical unit, distributing data across the disks for redundancy and improved performance
- Configurations or levels are named by the word RAID and a numeric value specific to the configuration for standardization
- Common RAID levels
 - □ RAID 0 Striping
 - □ RAID 1 Mirroring
 - □ RAID 5 Striping with parity
 - □ RAID 6 Striping with double-parity

11

© SQLskills, All rights reserve

RAID Levels: RAID 0

Striping

- Usage scenarios:
 - Data you don't care about
 - Performance matters more than data loss risk
- Pros:
 - Fast read and write performance
- Cons:
 - Total loss of data from single disk failure
- Watch out for this with PCI-Express SSDs and IaaS implementations
 RAID O

Sထို့**L**skills

12

PCI-Express SSDs

 Some PCI-Express SSDs like the FusionIO ioDrive Duo 640 present two physical disks to Windows

To get full capacity from the card requires Windows RAID 0

13

SQLskills, All rights reserved

RAID Levels: RAID 1

Mirroring

- Usage scenarios:
 - Important data that requires redundancy to protect from disk failures
- Pros:
 - Mirrored storage protects from single disk loss
- Cons:
 - Only provides half the storage
 - Write performance equal to one disk

14

PCI-Express SSDs and RAID 1 320GB 320GB RAID 1 RAID 1 using a single card still does not provide redundancy against a controller failure on the card or PCle slot failures **Collidit, All rights received the controller failures**

RAID Levels: RAID 5

Striping with Parity

Usage scenarios:

Where reads exceed writes, data files

Pros:

Maximize available capacity from minimal number of disks with redundancy

Cons:

- Protection from single disk failure only as loss of two disks results in total data loss
- Write penalty for parity calculation
- Significant performance impact occurs when degraded

17

QLskills, All rights reserved. https://www.SOLskills.com

RAID 5 Degraded Performance MD3000i - 1TB 7200 RPM Disks - Cache Enabled 50.00% 45.00% 40.00% 35.00% 30.00% 25.00% = 32K Random Write 20.00% -64K Random Write -128K Random Write 15.00% 5.00% 12 **S**ထို့**L**skills

Nested RAID Levels

- Implement one level of RAID on top of another level of RAID
- Can be used to create better redundancy as well as higher levels of performance
- Common nested RAID levels are
 - □ 10 or 1+0: striping over mirrored pairs
 - □ 01 or 0+1: mirroring over striping
 - □ 50 or 5+0: striping over single-parity striping
 - □ 60 or 6+0: striping of double-parity striping
 - □ 100 or 10+0 or 1+0+0: striping over a striped set of mirrored pairs

© SQLskills, All rights r

Nested RAID Levels: RAID 10 or 1+0

Striping Over Mirrored Pairs

Usage scenarios:

- Transaction log files, heavy write data files
- Redundancy is more important than cost

Pros:

- Fast read and write performance
- $_{\square}$ Supports multiple disk failures as long as two of the failed disks aren't in the same RAID 1 pair

Cons:

Doubles the cost of storage

21

SQLskills, All rights reserved https://www.SOLskills.con

Nested RAID Levels: RAID 10 or 1+0

Striping Over Mirrored Pairs

- Single disk loss keeps array available
- Multiple disk losses in different RAID 1 keeps array available
- Double disk loss in same RAID 1 results in array failure

Nested RAID Levels: RAID 01 or 0+1

Mirroring Over Striping

- IS NOT THE SAME AS RAID 10/1+0
- Single disk loss keeps array available
- Double disk loss in different RAID 0 results in array failure

Other RAID Configurations

- RAID 6
 - Similar to RAID 5 but provides double parity disks allowing for up to two disks to fail and the array remains available
 - Common recommendation for some SAN vendors
- RAID 50, RAID 100, etc
 - Specialized RAID configurations that stripe other RAID levels to increase performance

© SQLskill:

DAS Benefits

- Inexpensive to implement and achieve high performance configurations for SQL Server
- Ease of configuration requires minimal knowledge of underlying storage specifics
- Storage dedicated to SQL Server simplifying monitoring and troubleshooting of performance

25

© SQLskills, All rights reserve https://www.SOLskills.co

DAS Disadvantages

- Does not support clustering before SQL Server 2012
 - Some exceptions exist where a single array may be connected by seriallyattached SCSI (SAS) to two servers redundantly
 - □ MD3200
- Requires appropriate IOPS, MB/sec, and storage size considerations up front
 - LUN configurations cannot be dynamically reconfigured once set up (some exceptions exist)
 - Beware of controller and interface bottlenecks that limit the available throughput from the disks in the array

26

SQLskills, All rights reserved https://www.SOLskills.com

Storage Area Networks (SANs)

- "A storage area network (SAN) is any high-performance network whose primary purpose is to enable storage devices to communicate with computer systems and with each other" (Storage Networking Industry Association)
 - Does not specify interconnect technology
 - Does not specify types of storage devices

27

© SQLskills, All rights reserve

What Do You Think of as a SAN?

Scale out Compellent

OR

Equallogic PS6210XS

Reality is: both are SANs and have very different capabilities!

28

SAN Advantages

Shared storage

- Increases disk utilization
- Reduces management by making it easier to create new volumes and dynamically allocate storage
- Create diskless servers that boot from SAN only

Advanced features

 Mirroring, snapshots, continuous data protection, clustering and geoclustering only offered by SANs

Performance

 Almost unlimited number of spindles, controllers, and cache can be put together to meet the requirements

20

© SQLskills, All rights reserve

SAN Disadvantages

Unpredictable performance

 When you share your disks, controllers, and fiber switches between dozens of servers it is very difficult to have predictable performance

Higher latency

- □ Distance the I/Os have to travel; added layers of switches, cabling and ports
- □ PCI Bus → HBA → FC switches → FC ports → array processors → disks

Limited bandwidth

- □ FC now 16Gb/s max
- □ iSCSI 10Gb/s max
- □ Note: 1Gb/s = 128MB/s

Cost

QLskills, All rights reserved. https://www.SOLskills.com

SAN Components

Basics

- Drives
 - Physical interface, size, rotation speed, and RAID configuration level
- SAN storage controllers
 - □ FA port/iSCSI port count and speeds
 - Cache size and configuration
- SAN fabric
 - Number of switches, their port speeds and path configurations
- Host bus adapter
 - Queue depth, port speeds, pathing/multipathing

21

© SQLskills, All rights reserve

Multipathing

- Primary purpose of multipathing configurations is to provide redundancy and protection
- Secondary to redundancy is to improve performance
 - Just having multiple paths doesn't guarantee a performance improvement
 - Some SANs only allow one path per LUN
 - iSCSI allows one connection per target
 - Achieving performance improvements may require changes to the physical database layout

Understanding SAN I/O Capacity

- The available bandwidth of a SAN is limited to the lowest available bandwidth bottleneck in the configuration
- Example scenario
 - \Box HBAs: 2 x 8Gb/s = ~1,600MB/s (max)
 - \Box Switch: 2 x 8Gb/s = ~1,600MB/s (max)
 - □ SAN has 4 x 2Gb/s FA Ports = ~800MB/s (max)

1

SQLskills, All rights reserved https://www.SOLskills.con

Understanding SAN I/O Capacity

Scenario 1

- HBAs: $2 \times 8Gb/s = \sim 1,600MB/s (max)$
- Switch: 2 x 8Gb/s = ~1,600MB/s (max)
- SAN ports: 4 x 2Gb/s FA ports = ~800MB/s (max)
- Cache: 1 x 1,600MB/s = ~1,600MB/s (max)
- Disks: $80 \times 20MB/s = \sim 1,600MB/s \text{ (max)}$
- Maximum bandwidth is limited by the SAN ports

35

SQLskills, All rights reserved

Understanding SAN I/O Capacity

Scenario 2

- HBAs: $2 \times 8Gb/s = \sim 1,600MB/s (max)$
- Switch: 2 x 8Gb/s = ~1,600MB/s (max)
- SAN ports: 4 x 8Gb/s FA ports = ~3,200MB/s (max)
- Cache: 1 x 1,600MB/s = ~1,600MB/s (max)
- Disks: 40 x 20MB/s = ~800MB/s (max)
- Maximum bandwidth is limited by the disks

36

SQLskills, All rights reserved https://www.SOLskills.com

iSCSI vs. Fibre Channel

Best Practices

- Use the fastest interface you can:
 - □ 16Gb/s FC, 10Gb/s iSCSI, 8Gb/s FC, 4Gb/s FC, 2Gb/s FC, 1Gb/s iSCSI or FC
- The slower the interface the more important appropriate multipathing becomes to achieving the needed throughput
- Know the limitations of the controller's connections
 - You can probably connect more than you are currently using

38

SQLskills, All rights reserved. https://www.SOLskills.com

iSCSI Considerations

- Network design
 - Dedicated hardware including HBAs, switches, and cabling
 - □ TCP Offload Engine (TCOE) enabled NICs or iSCSI HBAs for servers
 - Use Jumbo Frames end-to-end on iSCSI network to improve throughput for larger packet sizes
- Single path per target may require considerations for LUN and database file layout to achieve the optimal I/O configuration
- May require intervention to bring multiple paths back online after failure

39

SQLskills, All rights reserved

iSCSI Performance Characteristics

- Equallogic PS-6100XS
 - □ 7 x 400GB SSD + 17 x 600GB 10K RPM
 - □ RAID 6
 - □ Two controllers 4GB cache, 4 x 1Gb/sec per controller
- Equallogic PS-6110XS
 - □ 7 x 400GB SSD + 17 x 600GB 10K RPM
 - □ RAID 6
 - □ Two controllers 4GB cache, 4 x 10Gb/sec per controller

40

Real World Customer Example

- EMC CX4-240 SAN with 240 15K RPM disks
 - Each shelf of drives contains 16 15K RPM 300GB disks total of 15 shelves
 - □ Three shelves of drives (total 48) dedicated to SQL Server
 - 4 disk RAID 10 for system database data files
 - □ 4 disk RAID 10 for system database log files
 - 8 disk RAID 10 for main database data files
 - 4 disk RAID 10 for main database log files
 - 8 disk RAID 10 for tempdb data files
 - 4 disk RAID 10 for tempdb log file and secondary database log file
 - 6 disk RAID 10 for second database data file
 - 7 disk RAID 5 for backups
 - 3 hot spares (one per shelf)
 - Avg. Latency for writes 70-200ms
 - Avg. Latency for reads 140-260ms

45

SQLskills, All rights reserved

Real World Customer Example (2)

- Same EMC CX4-240 SAN with 240 15K RPM disks
 - □ Each shelf of drives contains 16 15K RPM 300GB disks total of 15 shelves
 - Three shelves of drives (total 48) dedicated to SQL Server
 - □ 3 hot spares (one per shelf)
 - 28 disk RAID 5+0 (EMC internal striping of 4 disk RAID 5) for database data files
 - □ 10 disk RAID 10 for log files
 - $\,\square\,$ 7 disk RAID 5 for backups
 - Avg. Latency for writes 20-40ms
 - Avg. Latency for reads 20-50ms
- Identical workloads and the same total number of disks but striped so that performance is significantly improved
- This also is EMC's recommended configuration for SQL Server

16

Storage Spaces Direct (S2D) Windows Server 2016

- Storage Spaces Direct uses local-attached drives to create a converged or hyper-converged environment that supports failover clustering and shared volumes across independent servers
 - □ Converged = SMB3
 - □ Hyper-converged = CSVs
- Hyper-converged configurations require 4GB RAM per TB of drive capacity for cache and S2D internal usage
- Requires Windows Server 2016 Datacenter and a minimum of 2 nodes with a maximum of 16 nodes
 - All servers must have the same drive types
 - 2 drive minimum for cache per server if using caching
 - □ 4 drive minimum for capacity per server (2 for virtual machines)

47

© SQLskills, All rights reserve

Cloud Storage (Azure and AWS)

- Cloud infrastructure performance is based entirely on the configuration appropriately being sized to requirements
- Maximum IOPS limits per VM and per disk volume are independent of each other
 - AWS EC2 instance type maximum I/O throughput limits (https://sqlskills.com/help/aws-ebs)
 - Azure VM size and type IOPS limits (https://sqlskills.com/help/azvmio)
- Achieving appropriate storage throughput usually requires striping multiple volumes together using Windows Storage Spaces (not S2D)
 - Must use PowerShell for configuration to set <u>column count</u> (# disks to stripe data across) – THIS IS INCREDIBLY IMPORTANT!!! Column count cannot be changed after VDISK creation.

48

VMware Considerations

- Controller types
 - LSI Logic SAS
 - □ ESXi 4.x and later max of 60 virtual disks per controller
 - Common for OS boot device not recommended by VMware for I/O intensive workloads
 - VMware Paravirtual SCSI
 - □ ESXi 4.x and later max of 256 virtual disks per controller
 - Device queue depth limited to 64 and controller queue depth limited to 254 by default
 - Can be increased to 254 per device and 1024 per controller https://kb.vmware.com/s/article/2053145
 - □ Max of 4 per VM distribute VMDKs across multiple controllers
 - NVMe
 - Requires appropriate hardware support
 - High performance access to non-volatile memory storage devices

40

SQLskills, All rights reserved

Storage Design

Shared vs. Dedicated Spindles

- Shared spindles allows for higher utilization of the underlying storage capacity
 - Requires significant consideration up front to minimize the performance impact of sharing spindles
 - One application (often SQL Server, Exchange, or other OLTP solution) can cause the majority of I/O demand
 - I/O demanding applications should never share the same physical spindles
- Dedicated spindles have lower utilization of storage capacity but predictable performance
 - $\ \ \square \ \$ Some SANs only offer shared storage configurations
- Virtualization
 - Underlying VHD/VMDK appears dedicated but may be on shared LUN physically

50

Windows Disk Types

Basic

- Default and most common disk type to use in Windows for SQL Server
- Can use master boot record (MBR) or GUID-partition table (GPT) partition types
 - □ MBR limit to 2TB in size
- Volumes can be extended if contiguous free space exists physically

51

SQLskills, All rights reserve

Windows Disk Types

Dynamic

- Software RAID
 - □ Create RAID 0, RAID 1, and RAID 5 volumes
- Use with SQL:
 - □ Mirrored (RAID 1)
 - Use with Fusion-io or other PCI-X SSDs to provide redundancy across multiple cards
- Do not use:
 - □ Striped (RAID 0)
 - □ No redundancy
 - Spanned
 - Data written to disks sequentially filling each disk before writing to the next disk in the span
 - Striping with parity (RAID 5)
 - □ High CPU overhead for software-parity calculations

52

Mount Points

- Provide a mechanism to exceed 26 volume limit based on available drive letters
 - Additional volumes can be mounted as folders under an existing volume
- May be required for large multi-instance clusters

SÇ Lskills

53

QLskills, All rights reserved

Mount Points

Monitoring Complications

- Mount point support is not built into most monitoring tools requiring custom solutions to monitor space usage of the mounted volumes
- Mount points properties provide the target volume information for matching to Disk Management
- sys.dm_os_volume_stats DMF in SQL Server 2008 R2 onwards will return mounted volume information per database file

54

SQLskills, All rights reserved https://www.SOLskills.com

Partition Alignment

Background

- Disks report the first 63 sectors as hidden
 - This reserved portion is where the master boot record is stored
 - □ Equates to 31.5KB of disk space: (512 bytes per sector) x (63 sectors)
- Prior to Windows Server 2008, partitions were offset by 31.5KB resulting in misalignment of the partition with stripe units, disk controller, and cache segment lines
 - Misalignment can reduce performance by 30% or more depending on the array stripe size and allocation unit size
 - Plenty of evidence from many, many customers

55

SQLskills, All rights reserved

Partition Alignment

Determining Offset

- (partition offset) divided by (stripe unit size)
 - Should result in a whole number
 - Common stripe sizes are 64KB, 128KB, 256KB and 512KB
 - □ 32,256 bytes (31.5 KB) / 65,536 bytes (64 KB) = 0.4921875
 - Misaligned
 - □ 131,072 bytes (128 KB) / 65,536 bytes (64 KB) = 2
 - Properly aligned
- Windows Server 2008
 - □ Uses 1,024 KB (2,048 sectors) alignment for new partitions
 - Previously created partitions may be misaligned
 - Even on Windows Server 2008, always check and validate
 - Command Line: wmic partition get StartingOffset, Name
 - Manually create partitions using DiskPart to set offset when necessary
 - Uncommon stripe sizes

56

NTFS Allocation Unit Size

- Also known as 'NTFS cluster size'
- Sets the smallest unit of consumption on NTFS volume for files
- Can only be set when the volume is formatted
- Default size: 4KB
 - Optimized for storage of lots of small files
- For SQL Server a 64KB allocation unit size should be used to match the size of a single extent
 - Improves read-ahead performance
 - Reduces the number of split I/Os
 - Does not allow the disk to use NTFS compression
 - Plenty of empirical evidence to prove this
- This is not as critical as partition alignment for performance!!

57

© SQLskills, All rights reserve

Benchmarking Storage

Diskspd and IOMeter

- Use test files that are at least twice the size of the installed cache size
 - Small files against a large cache = cached I/O
 - □ Disabling cache = not reality during production
 - Exceeding cache size forces physical disk I/Os
- Test different I/O sizes (4KB, 8KB, 64KB, 256KB)
- Test different workload types (read/write, sequential/random)
- Test impact of thread count and outstanding I/Os

SQLskills, All rights reserved https://www.SOLskills.cor

Considerations During Testing

- Test normal configuration and impact of degraded RAID
 - Degraded performance can be significantly worse than normal configuration and may not meet SLA
- If testing a shared SAN, ensure that the SAN is under its normal workload during the tests
- "Pull-the-plug" tests
 - Ensure that multipathing works as expected when one of the paths is removed
 - Test for path stickiness after restoration of a failed path to determine if the path resumes normal operation or not
 - Ensure that write caching is battery backed and doesn't lead to lost write or data corruption issues

50

© SQLskills, All rights reserve

Key Takeaways

- Configure storage based on performance and redundancy requirements, not strictly on capacity
- The type of workload and data being stored on a disk array should dictate the RAID level being used
 - Don't use RAID 5 for heavy writes (e.g. transaction logs, tempdb), use RAID
 10 instead to provide better redundancy and eliminate parity overhead
- PCI-Express SSDs require extra cards with RAID 1 across the cards for true redundancy

60

SQLskills, All rights reserved https://www.SOLskills.com

Key Takeaways

- Follow the SAN vendor's recommended best practices for SQL Server
- Don't assume SAN-based storage performance problems are automatically a problem with the SAN itself, remember there are a lot of components between the server and the actual storage
 - □ Watch out for the "I can ping it" network guy, the SAN admin hates him too
- Collect performance metrics in Performance Monitor and bring your latency numbers to the SAN admin to show where performance is affecting SQL Servers workload to troubleshoot
- Don't over-think SAN storage configuration and try to slice the storage up following "best practices" for isolation, it might be better to use a larger pool of disks, dedicated to SQL Server, than to have smaller isolated groups

61

© SQLskills, All rights reserve

Additional Resources

- Storage Area Network Essentials http://amzn.to/1sLlEJy
- SQL Server Best Practices for I/O Whitepaper http://bit.ly/1rwtbYN
- Storage Top 10 Best Practices http://bit.ly/YHxhmJ
- SQL Server SAN Best Practices http://bit.ly/1nARo27

62

SQLskills, All rights reserved. https://www.SOLskills.com

Additional Resources

- NAND Basics: Understanding the Technology Behind Your SSD http://bit.ly/1sLlKRl
- SLC, MLC or TLC NAND for Solid State Drives http://bit.ly/YD88tz
- The SSD Endurance Experiment http://bit.ly/1pmthPy
- Disk Partition Alignment Best Practices for SQL Server http://bit.ly/1uWKaE2

63

© SQLskills, All rights reserve

Review

- Defining storage terminology
 - □ IOPS, MB/sec, Latency
- Magnetic vs. Solid State Drives (SSDs)
- RAID configurations
- Storage Area Networks
- Configuring drives in Windows
- Testing with Diskspd and Iometer

64

SQLskills, All rights reserved. https://www.SOLskills.com

