Formale Syntax: HPSG o2. Merkmalstrukturen und Merkmalbeschreibungen

Roland Schäfer

Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Iena

Stets aktuelle Fassungen: https://github.com/rsling/VL-HPSG
Basiert teilweise auf Folien von Stefan Müller: https://hpsg.hu-berlin.de/~stefan/Lehre/S2021/hpsg.html
Grundlage ist Stefans HPSG-Buch: https://hpsg.hu-berlin.de/~stefan/Pub/hpsg-lehrbuch.html.de

Stefan trägt natürlich keinerlei Verantwortung für meine Fehler und Missverständnisse!

Übersicht

Formale Syntax: HPSG | Plan

- Phrasenstruktur und Phrasenstrukturgrammatiken
- Merkmalstrukturen und Merkmalbeschreibungen
- Komplementation und Grammatikregeln
- Verbsemantik und Linking (Semantik 1)
- 5 Adjunktion und Spezifikation
- 6 Lexikon und Lexikonregeln
- 7 Konstituentenreihenfolge und Verbbewegung
- 8 Nicht-lokale Abhängigkeiten und Vorfeldbesetzung
- Quantorenspeicher (Semantik 2)
- Unterspezifikationssemantik (Semantik 3)

```
https://rolandschaefer.net/archives/2805
https://github.com/rsling/VL-HPSG/tree/main/output
https://hpsg.hu-berlin.de/~stefan/Pub/hpsg-lehrbuch.html
```

Einleitung

Ziele

Worum geht es heute?

- Repräsentation von Merkmalen und ihren Werten in Grammatiken
- Strukturierte/hierarchische Merkmalstrukturen
- Unifikation von Merkmalstrukturen
- Merkmalstrukturen vs. Merkmalbeschreibungen

Müller (2013: Kapitel 2)

Merken Sie sich die Strukturen von heute nicht als "korrekte Modellierung" des Deutschen in HPSG!

Wir nehmen heute einige Vereinfachungen und Didaktisierungen vor, denn es geht darum, grundlegende Repräsentationen/Prinzipien einzuführen.

Völlig abwegig sind die Strukturen dieser Lektion aber auch nicht.

Generell haben Sie mehr davon, wenn Sie in jeder Woche zu verstehen versuchen, warum sich bestimmte Repräsentationen wieder ändern, als wenn Sie von Anfang an nur wissen wollen, wie das Endergebnis in den Prüfungen aussehen wird.

Vorteil von Merkmalstrukturen

Problem mit einfachen Phrasenstrukturgrammatiken

- Symbolinflation | Selbst für einfachste Valenz-/Kongruenzphänomene
- Viele Regeln und viele Kategorien

Merkmalstrukturen wie in HPSG

- Komplexe Symbole, dadurch weniger Symbole
- Extrem einfache Regeln (Kombinatorik)

Merkmalstrukturen und Merkmalbeschreibungen

Merkmalstrukturen modellieren linguistische Objekte.

- Merkmal-Wert-Struktur
- Attribut-Wert-Struktur
- Feature structure

Wir nutzen Merkmalsbeschreibungen, um über Merkmalstrukturen zu sprechen.

- Attribute-value matrix
- Feature matrix

Shieber (1986), Pollard & Sag (1987), Johnson (1988), Carpenter (1992), King (1994), Richter (2004, 2021)

AVM-Format

Einfache Merkmalbeschreibung

```
ATTRIBUT wert
```

Mehrere Attribut-Wert-Paare in einer Struktur

```
ATTRIBUT<sub>1</sub> wert
ATTRIBUT<sub>2</sub> wert
... ...
```

Komplexe Merkmale können Werte von Attributen sein!

```
ATTRIBUT<sub>1</sub> wert

ATTRIBUT<sub>2</sub> ATTRIBUT<sub>2-1</sub> wert

ATTRIBUT<sub>2-2</sub> wert
```

Wörter in Merkmalen beschreiben | Phone und Graphen

PHONE oder GRAPHEN | Aussprache bzw. Schreibung

GRAPHEN Tisch

Aber reicht diese Datenstruktur?

- Tisch | Sieht aus wie ein Symbol ohne Struktur
- Phonetik/Phonologie | Ketten von Phonen/Phonemen Bei Schäfer (2018) und anderen: Segmente
- Phonologische Grammatik | Zugriff auf einzelne Segmente Auslautverhärtung | Zugriff auf letztes Segment einer Silbe

Listen

Lösung für GRAPH(EN) oder PHON(E) | Geordnete Listen

$$\left[\mathsf{GRAPH} \left\langle \mathsf{T}, \mathsf{i}, \mathsf{s}, \mathsf{c}, \mathsf{h} \right\rangle \right]$$

Auf einer Liste stehen eigentlich auch Merkmalbeschreibungen.

$$\begin{bmatrix} & & \\ &$$

Strenggenommen falsche Kurzschreibweisen für PHON in typischer HPSG

$$\begin{bmatrix} \mathsf{PHON} & \mathsf{Tisch} \end{bmatrix} \\ \begin{bmatrix} \mathsf{PHON} & \left\langle \mathsf{Tisch} \right\rangle \end{bmatrix}$$

Morpholosyntaktische Merkmale

Lösung für Probleme mit Genus usw. in PSGs von letzter Woche

```
PHON Tisch
PART-OF-SPEECH noun
GENDER masculine
NUMBER sg
CASE nom
```

Andere Merkmalausstattungen = andere sprachliche Zeichen

```
PHON Tisch
POS n
GEN masc
NUM sg
CAS acc

PHON Tisch
POS n
GEN masc
NUM sg
CAS dat
```

Abgekürzte Schreibweise mit *oder* bzw. ∨

```
PHON Tisch
POS n
GEN masc
NUM sg
CAS nom \( \precede{a} \) acc \( \precede{d} \) dat
```

Dasselbe für eine Verbform

Verben | Teilweise dieselben, teilweise andere Merkmale verglichen mit Nomina

```
PHON sieht
POS V
PER 3
NUM SG
```

Syntaktisch relevant auch Finitheit bzw. Status

```
PHON sieht
POS V
PER 3
NUM sg
FINIT true
```


Getypte Strukturen

Nicht alle Wörter haben alle Merkmale. | Typen und Beschränkungen über Typen

```
n
PHON Tischs
GEN masc
NUM sg
CAS gen
```

```
finite-verb
PHON sieht
PER 3
NUM sg
TENSE pres
MOD ind
```

```
infinite-verb

PHON gesehen

STATUS 3
```

Typenhierarchien

Typen sind sehr wichtig in HPSG und bilden Hierachien. Denkbares Beispiel:

- Typen sind die eigentlichen Wortarten in HPSG.
- Monotonizität | Untertypen erben alle Merkmale/Beschränkungen ihrer Obertypen.
- Mehrfachvererbung | Ein Typ kann mehrere Obertypen haben.
- Keine Sorge! Dazu kommen wir noch im Detail.

Valenz

Letzte Woche in PSGs | Valenz doppelt in Kategorien und Regeln kodiert

Regel für Satz mit intransitivem Verb S → NP(Per. Num. nom) V itr(Per. Num)

Regel für Satz mit transitivem Verb

 $S \rightarrow NP(Per1, Num1, nom) NP(Per2, Num2, akk) V_tr(Per1, Num1)$

Regel für Satz mit ditransitivem Verb

 $S \rightarrow NP(Per1, Num1, nom) NP(Per2, Num2, dat) NP(Per3, Num3, akk) V_dtr(Per1, Num1)$

Typische Definition von Valenz allerdings Die Liste der Ergänzungen eines Worts.

Valenz als Liste

Valenz | Liste von Merkmalsbeschreibungen

Bezeichnung für Valenz in HPSG: SUBCATEGORISATION, kurz SUBCAT

```
finite-verb

PHON sieht

PER 3

NUM sg

TENSE pres

MOD ind

SUBCAT \langle [n], [n] \rangle
```

Hinreichende Beschreibung

Valenzliste | Hinreichend eingrenzende Beschreibung der Ergänzungen des Verbs

```
finite-verb
   PHON sieht
   PER 3
   NUM sg
   TENSE pres
                   ind
   MOD
SUBCAT \left\langle \begin{bmatrix} n \\ PER & 3 \\ NUM & sg \\ CAS & nom \end{bmatrix}, \begin{bmatrix} n \\ CAS & acc \end{bmatrix} \right\rangle
```

Subjekt-Verb-Kongruenz und Strukturteilung

Übereinstimmung von Merkmalen | Hart verdrahtet durch Strukturteilung

Strukturteilung bedeutet Token-Identität von Werten, nicht Kopie! Man kann sich die Nummern als Zeiger auf dieselbe Datenstruktur vorstellen.

Beispiel für Valenz einer Präposition

Valenz von Präpositionen | NP in einem bestimmten Kasus

$$\begin{bmatrix} prep \\ PHON & wegen \\ SUBCAT & \left\langle \begin{bmatrix} n \\ CAS & gen \end{bmatrix} \right\rangle \end{bmatrix}$$

- Was ist mit argumentmarkierenden Präpositionen/Präpositionalobjekten? leiden unter, abhängen von, glauben an usw.
- Was ist mit Wechselpräpositionen mit Akkusativ oder Dativ? unter, neben, über usw.

Beispieleintrag für einen Determinierer

Kongruenzmerkmale innerhalb der NP auch beim Determinierer erforderlich

```
det
PHON des
GEN masc
NUM sg
CAS gen
```

Determinierer in der NP

DP oder NP? | Für Deutsch ist eine NP-Analyse näherliegend.

Wie kann man Notwendigkeit von und Kongruenz mit Determinierern kodieren?

NP mit Kongruenz als Baum

In HPSG gibt es eigentlich keine Bäume. Zur Illustration aber hilfreich:

Offene Probleme

Wir haben jetzt so getan, als hätten wir schon eine Syntax!

- Eigentlich nur Lexikoneinträge
- Fehlende Regeln für Kombinationsmechanismus
- NP auf der letzten Folie | Nur eine grobe Idee, wo wir hin wollen
- Projektionsebenen (N vs. NP) nicht unterscheidbar
- Also auch keine Identifikation von Köpfen
- Identifikation der Merkmale, die vom Kopf zur Phrase projizieren
- Zusammenbau von des Tischs aus des und Tischs

Kopfmerkmale

Head features | Bündel der Merkmale, die vom Kopf zur Phrase projizieren

Projizierte Kopfmerkmale

Durch Merkmalbündel | Optimale Struktur finden/Generalisierungen abbilden

HEAD-Typen

Wortartenspezifisch sind die HEAD-Bündel, nicht die Wörter/Phrasen.

Zusammenlegen von Informationen

Beispiel | Lexikalische Spezifikation der Valenz einer Präposition

```
 \begin{bmatrix} \textit{word} \\ \textit{phon} & \textit{wegen} \\ \textit{head} & \left[ \textit{prep} \right] \\ \textit{SUBCAT} & \left\{ \begin{bmatrix} n \\ \textit{head} & \prod_{cas} n \\ \textit{gen} \end{bmatrix} \right\}
```

Die NP kommt mit viel mehr Information daher.

Die Informationen unter 1 sind aber kompatibel und unifizieren daher.

Unifikation

Unifikation | Mehrere Merkmalstrukturen zu einer machen Bedingungen für Unifikation von zwei Merkmalstrukturen A und B:

• A und B enthalten keine widersprüchlichen Informationen.

- Aus nicht widersprüchlichen Informationen wird die Vereinigungsmenge gebildet.
- A kann mehr Informationen enthalten als B oder umgekehrt.

$$\begin{bmatrix} cas & nom \\ PER & 3 \end{bmatrix} und \begin{bmatrix} cas & nom \end{bmatrix} unifizieren zu \begin{bmatrix} cas & nom \\ PER & 3 \end{bmatrix}$$

A und B können beide mehr Informationen enthalten als die jeweils andere.

Vorbereitung

Nächste Woche geht es um Valenz und Valenzabbindung.

Sie sollten dringend vorher aus dem HPSG-Buch Abschnitt 3.1 und Kapitel 4 lesen!

Das sind gerade mal 15 Seiten.

Literatur I

- Carpenter, Bob. 1992. The Logic of Typed Feature Structures. (Cambridge Tracts in Theoretical Computer Science 32). Cambridge: Cambridge University Press.
- Johnson, Mark. 1988. Attribute-Value Logic and the Theory of Grammar. (CSLI Lecture Notes 16).
- King, Paul. 1994. An Expanded Logical Formalism for Head-Driven Phrase Structure Grammar. Arbeitspapiere des SFB 340 Nr 59. Tübingen: Universität.
- Müller, Stefan. 2013. Head-Driven Phrase Structure Grammar: Eine Einführung. 3. Aufl. (Stauffenburg Einführungen 17). Tübingen: Stauffenburg Verlag.
- Pollard, Carl & Ivan A. Sag. 1987. Information-Based Syntax and Semantics. (CSLI Lecture Notes 13).
- Richter, Frank. 2004. A Mathematical Formalism for Linguistic Theories with an Application in Head-Driven Phrase Structure Grammar. Universität Tübingen Phil. Dissertation (2000).
- Richter, Frank. 2021. Formal Background. In Stefan Müller, Anne Abeillé, Robert D. Borsley & Jean-Pierre Koenig (Hrsg.), Head-Driven Phrase Structure Grammar: The Handbook, 89–124. Berlin.
- Schäfer, Roland. 2018. Einführung in die grammatische Beschreibung des Deutschen. 3. Aufl. (Textbooks in Language Sciences 2). Berlin.
- Shieber, Stuart M. 1986. An Introduction to Unification-Based Approaches to Grammar. (CSLI Lecture Notes 4). republished as 2003. An Introduction to Unification-Based Approaches to Grammar. Brookline, MA: Microtome Publishing, 2003.

Autor

Kontakt

Prof. Dr. Roland Schäfer Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena Fürstengraben 30 07743 Jena

https://rolandschaefer.net roland.schaefer@uni-jena.de

Lizenz

Creative Commons BY-SA-3.0-DE

Dieses Werk ist unter einer Creative Commons Lizenz vom Typ Namensnennung - Weitergabe unter gleichen Bedingungen 3.0 Deutschland zugänglich. Um eine Kopie dieser Lizenz einzusehen, konsultieren Sie

http://creativecommons.org/licenses/by-sa/3.0/de/ oder wenden Sie sich brieflich an Creative Commons, Postfach 1866, Mountain View, California, 94042, USA.