Ejemplo sencillo

S1 y S2	0= Abierto	1= Cerrado
Lamp	0= Apagado	1= Encendido

S1	S2	Lamp(Salida)
0	0	0 (apagado)
0	1	0 (apagado)
1	0	0 (apagado)
1	1	1 (Encendido)

S1	S2	Lamp(Salida)
0	0	0 (apagado)
0	1	1 (Encendido)
1	0	1 (Encendido)
1	1	1 (Encendido)

Función AND

Función OR

El perceptron, la neurona mas sencilla

Con pesos en 1 ...

 $W_0 = 0,5$, ¿ Què salida produce?

 $W_0 = 1,5$ ¿ Què salida produce?

Realicemos una practica comprobando como funciona una neurona artificial.

Superficie de decisión

Es la superficie en donde la salida es precisamente igual al umbral de activación.

$$\sum_{i=1}^{D} w_i x_i = w_0$$

Para dos entradas y despejando el umbral, quedaría:

$$w_1 \cdot x_1 + w_2 \cdot x_2 - w_0 = 0$$

Despejando x_2 , quedaría:

$$x_2 = \frac{w_0}{w_2} - \frac{w_1}{w_2} x_1$$

Superficie de decisión

$$x_2 = \frac{w_0}{w_2} - \frac{w_1}{w_2} x_1$$

$$x_2 = \frac{w_0}{w_2} - \frac{w_1}{w_2} x_1 \qquad \qquad x_2 = -\frac{w_1}{w_2} x_1 + \frac{w_0}{w_2}$$

$$y = -mx + b$$

Serán líneas rectas!!!

Valor de x_2 , cuando $x_1=0$:

$$x_2 = -\frac{w_1}{w_2}x_1 + \frac{w_0}{w_2} \qquad x_2 = \frac{w_0}{w_2}$$

Valor de x_1 , cuando $x_2=0$:

$$x_2 = -\frac{w_1}{w_2}x_1 + \frac{w_0}{w_2} \longrightarrow 0 = -\frac{w_1}{w_2}x_1 + \frac{w_0}{w_2} \longrightarrow \frac{w_1}{w_2}x_1 = \frac{w_0}{w_2} \longrightarrow x_1 = \frac{w_0}{w_1}$$

Superficie de decisión AND

Si
$$x_2 = 0$$

$$w_0 = 1.5$$
 $w_1 = 1$

$$w_1 = 1$$

$$w_2 = 1$$

Si
$$x_1 = 0$$

$$x_1 = \frac{w_0}{w_1}$$

$$x_1 = \frac{1.5}{1} = 1.5$$

X1	X2	Output
0	0	0
0	1	0
1	0	0
1	1	1

$$x_2 = \frac{w_0}{w_2}$$

$$x_2 = \frac{1.5}{1} = 1.5$$

Superficie de decisión OR

Si
$$x_2 = 0$$

$$w_0 = 0.5$$
 $w_1 = 1$

$$w_1 = 1$$

$$w_2 = 1$$

Si
$$x_1 = 0$$

$$x_1 = \frac{w_0}{w_1}$$

$$x_1 = \frac{0.5}{1} = 0.5$$

X1	X2	Output
0	0	0
0	1	1
1	0	1
1	1	1

$$x_2 = \frac{w_0}{w_2}$$

$$x_2 = \frac{0.5}{1} = 0.5$$