Theorem. If A be an additive subgroup of Euclidean space \mathbb{R}^n such that every bounded region of space contains only finitely many elements of A, then A is a lattice of dimension $\leq n$.

Proof. Let $\{v_1, \ldots, v_m\}$ be a maximal **R**-linearly independent set of elements from A (if $A = \{0\}$, take the empty set; otherwise, add linearly independent vectors until no new elements from A can be added). Let m be the maximum possible size of such a set, since any such set has size $\leq n$. We will prove the statement by induction on m. Clearly, if m = 0 then $A = \{0\}$, hence is a lattice of dimension 0.

Let $A_0 = A \cap \text{span}\{v_1, \dots, v_{m-1}\}$. Then $\{v_1, \dots, v_{m-1}\}$ is a maximal linearly independent subset of A_0 , so by induction A_0 is a lattice with some basis $\{u_1, \dots, u_k\}$, where $k \leq m-1$. However, $\{v_1, \dots, v_{m-1}\} \subseteq A_0$, thus $\{v_1, \dots, v_{m-1}\}$ is in the vector space spanned by $\{u_1, \dots, u_k\}$ over \mathbf{R} . Since $\{v_1, \dots, v_{m-1}\}$ is linearly independent over \mathbf{R} , this means that $k \geq m-1$. Therefore, we know k=m-1.

Let $S = A \cap \{a_1u_1 + \cdots + a_{m-1}u_{m-1} + a_mv_m \mid 0 \le a_i < 1 \text{ for } 1 \le i \le m-1, 0 \le a_m \le 1\}$. By the triangle inequality, S is contained within a ball of radius $|u_1| + \cdots + |u_{m-1}| + |v_m|$ about the origin, hence is finite. Now, $\{u_1, \ldots, u_{m-1}, v_m\}$ must be linearly independent, since if v_m were in the span of the u_i s, then $\text{span}\{u_1, \ldots, u_{m-1}\}$ would contain $\text{span}\{v_1, \ldots, v_m\}$, contradicting that this latter set is linearly independent. So every element of S has a unique representation of the form

$$a_1u_1 + \cdots + a_{m-1}u_{m-1} + a_mv_m$$

with $0 \le a_i < 1$ for $1 \le i \le m-1$ and $0 \le a_m \le 1$. So there is some $v_m' \in S$ which has a minimal but nonzero coefficient a_m when expanded as

$$v'_{m} = a_{1}u_{1} + \dots + a_{m-1}u_{m-1} + a_{m}v_{m}.$$

We know this because these expansions are unique and S is finite.

Replacing v_m with v'_m , we now see that $\{u_1, \ldots, u_{m-1}, v'_m\}$ is still linearly independent because $\{u_1, \ldots, u_{m-1}\}$ is linearly independent and, due to the uniqueness of the representations we just discussed, v'_m is not a linear combination of $\{u_1, \ldots, u_{m-1}\}$. Also, $\{u_1, \ldots, u_{m-1}, v'_m\}$ spans A over \mathbf{R} : if there were some $v \in A \setminus \mathrm{span}(\{u_1, \ldots, u_{m-1}, v'_m\})$ then v would be linearly independent of $\{u_1, \ldots, u_{m-1}, v'_m\}$, meaning that $\{u_1, \ldots, u_{m-1}, v'_m, v\}$ is a linearly independent set, contradicting that m is the largest possible size of a linearly independent set in A.

Let $v \in A$. Then v can be expressed uniquely as a linear combination $v = b_1 u_1 + \dots + b_{m-1} u_{m-1} + b_m v_m'$. Letting $v_m' = a_1 u_1 + \dots + a_{m-1} u_{m-1} + a_m v_m$ be the expansion of v_m' given previously, we have

$$v = b_1 u_1 + \dots + b_{m-1} u_{m-1} + b_m v'_m$$

= $b_1 u_1 + \dots + b_{m-1} u_{m-1} + b_m (a_1 u_1 + \dots + a_{m-1} u_{m-1} + a_m v_m)$
= $(b_1 + b_m a_1) u_1 + \dots + (b_{m-1} + b_m a_{m-1}) u_{m-1} + (b_m a_m) v_m$.

Let $c_m = \lfloor b_m \rfloor$. Note that the coefficient of v_m in $v - c_m v_m'$ is $(b_m - c_m) a_m$, which satisfies $0 \le (b_m - c_m) a_m < a_m$ since $0 \le b_m - c_m < 1$. Next, for each $i = 1, \ldots, m-1$ let c_i be the floor of the coefficient of u_i in $v - c_m v_m'$. Let

$$v' = v - c_1 u_1 - \dots - c_{m-1} u_{m-1} - c_m v'_m$$

Each u_i is in A, v'_m is in A, and each c_i is an integer. So v' is a **Z**-linear combination of elements in A, hence $v' \in A$. Furthermore, the coeffecients of $u_1, \ldots, u_{m-1}, v_m$ in v' are all less than 1 and at least 0 by construction; therefore, $v' \in S$. The coefficient of v_m in v' is the same as the coefficient of v_m in v, which we previously noted is strictly less than a_m . By the minimality of a_m (recall how a_m was defined), we realize that this coefficient must be 0. Therefore, v' is a **Z**-linear combination of $\{u_1, \ldots, u_{m-1}\}$. But also, $w' = c_1u_1 + \cdots + c_{m-1}u_{m-1} + c_mv'_m$ is in the span of $\{u_1, \ldots, u_{m-1}, v'_m\}$ over **Z**. Thus, v = v' + w is in the span of span $\{u_1, \ldots, u_{m-1}, v'_m\}$ over **Z**, and so this set generates A. We have already shown this set to be linearly independent over **R**, and that $m \leq n$. Therefore, A is a lattice of dimension $\leq n$.

Proposition. Let $\mathcal{M} \subseteq \mathbf{R}^n$ be such that $0 \in \mathcal{M}$ and $[\alpha - \beta] \in \mathbf{Z}$ for all $\alpha, \beta \in \mathcal{M}$. Then the additive group $\mathbf{Z}[\mathcal{M}]$ generated by \mathcal{M} also satisfies $[\alpha - \beta] \in \mathbf{Z}$ for all $\alpha, \beta \in \mathbf{Z}[\mathcal{M}]$, and contains finitely many points in any bounded region of \mathbf{R}^n . Therefore, $\mathbf{Z}[\mathcal{M}]$ is a lattice in \mathbf{R}^n .

Proof. Let $\alpha \in \mathbf{Z}[\mathcal{M}]$, so that $\alpha = \sum_{t=1}^{m} \alpha_t$ for some $\alpha_1, \ldots, \alpha_m \in \mathcal{M}$. We have

$$[\alpha] = \left[\sum_{t=1}^{m} \alpha_t\right] = \left[\sum_{t=1}^{m} \alpha_t, \sum_{t=1}^{m} \alpha_t\right] = \sum_{s=1}^{m} \sum_{t=1}^{m} \left[\alpha_s, \alpha_t\right] = \sum_{t=1}^{m} \left[\alpha_t\right] + \sum_{1 \le s < t \le m} 2\left[\alpha_s, \alpha_t\right].$$

Since $[\alpha_s] = [\alpha_s - 0] \in \mathbf{Z}$, and $[\alpha_s - \alpha_t] = [\alpha_s] + [\alpha_t] - 2[\alpha_s, \alpha_t] \in \mathbf{Z}$ for all $s, t \in \mathbf{Z}$, we know $2[\alpha_s, \alpha_t] \in \mathbf{Z}$ for all $s, t \in \mathbf{Z}$. Therefore, $[\alpha] \in \mathbf{Z}$. Since $\mathbf{Z}[\mathcal{M}]$ is a subgroup, we know that $\alpha - \beta \in \mathbf{Z}[\mathcal{M}]$ for any $\beta \in \mathbf{Z}[\mathcal{M}]$, thus $[\alpha - \beta] \in \mathbf{Z}$ as well.

Let R be any bounded region of \mathbf{R}^n . We aim to show that $\mathbf{Z}[\mathcal{M}] \cap R$ is finite. We may assume R is closed, since R is certainly contained within its closure and hence so is $\mathbf{Z}[\mathcal{M}] \cap R$. Let \mathcal{C} be the set of all open balls in \mathbf{R}^n of radius $\frac{1}{2}$. \mathcal{C} is an open cover of the compact set R, hence it has a finite subcover $\mathcal{C}' \subset \mathcal{C}$ containing $N \in \mathbf{Z}_{>0}$ elements. If $B \in \mathcal{C}'$, then B may contain at most one point of $\mathbf{Z}[\mathcal{M}]$, since we have $[\alpha - \beta] \in \mathbf{Z}$, and thus $|\alpha - \beta| \ge 1 > \frac{1}{2}$, for any distinct $\alpha, \beta \in \mathbf{Z}[\mathcal{M}]$. Therefore, $\mathbf{Z}[\mathcal{M}] \cap R$ contains at most N points. By the previous theorem, we see that $\mathbf{Z}[\mathcal{M}]$ must be a lattice in \mathbf{R}^n .