ΛΥΣΗ

α) Η διαίρεση του πολυωνύμου P(x) με το πολυώνυμο $\delta(x)$:

Η ταυτότητα της διαίρεσης είναι:

$$P(x) = \delta(x) \cdot (x^2 + 4x + 10) + (\alpha + 22) x - 24$$

Επομένως πρέπει να ισχύει $(\alpha + 22) x - 24 = 24x - 24$ για κάθε $x \in \mathbb{R}$.

Είναι:

$$(\alpha + 22) x - 24 = 24x - 24 \Leftrightarrow \alpha + 22 = 24 \Leftrightarrow \alpha = 2.$$

β) Για
$$\alpha = 2$$
, είναι $P(x) = x^4 + x^3 + 2x - 4$.

i. Το υπόλοιπο της διαίρεσης του P(x) με το x-1 είναι το P(1)=0.

ii. Ζητείται η επίλυση της εξίσωσης P(x) = 0.

Είναι: $P(1) = 0 \Leftrightarrow 1$ ρίζα του $P(x) \Leftrightarrow x - 1$ παράγοντας του P(x).

Εφαρμογή του σχήματος Horner:

1	1	0	2	-4	ρ =1
	1	2	2	4	
1	2	2	4	0	

Επομένως ισχύει:
$$P(x) = (x - 1) \cdot (x^3 + 2x^2 + 2x + 4)$$

$$Aλλάx^3 + 2x^2 + 2x + 4 = x^2(x+2) + 2(x+2) = (x+2)(x^2+2).$$

Τελικά ισχύει
$$P(x) = (x-1) \cdot (x+2) \cdot (x^2+2)$$
.

Είναι λοιπόν

$$P(x) = 0 \Leftrightarrow (x-1) \cdot (x+2) \cdot (x^2+2) = 0 \stackrel{x^2+2\neq 0}{\Longleftrightarrow} x = 1 \ \dot{\eta} \ x = -2.$$

Επομένως, τα σημεία τομής του άξονα x'x με την γραφική παράσταση της πολυωνυμικής συνάρτησης P(x), είναι τα A(-2,0) και B(1,0).

iii. Ζητείται η επίλυση της ανίσωσης P(x) < 0.

Το πρόσημο των τιμών του P(x) φαίνεται στον παρακάτω πίνακα προσήμων:

х	-∞	- 2		1		+∞
x-1	_		_	0	+	
x + 2	_	0	+		+	
$x^2 + 2$	+		+		+	
P(x)	+	0	-	() +	

Ως εκ τούτου, $P(x) < 0 \Leftrightarrow -2 < x < 1$.