

Brock Biology of Microorganisms

Sixteenth Edition, Global Edition

Madigan • Bender • Buckley • Sattley • Stahl

Chapter 13

Microbial Evolution and Genome Dynamics

Vorige les: Escherichia coli

- gemiddeld 4721 genen
- core genome bestaat uit maar 1976 genen
- 15.826 genen niet in alle stammen (vaak via horizontal gene transfer)

Number of genomes analyzed

16e: figuur 13.22

Vorige les: core en pan genoom

Core genoom: genen die aanwezig zijn in elke stam

Pan genoom: totaal aantal genen (van alle stammen samen)

Vorige les: horizontal gene transfer (HGT)

16e: figuur 13.19

Chromosomal islands

= genomic islands

Clusters van genen met een speciale functie

Pathogenicity island: chromosonal island met virulentie factoren

Aanwijzingen voor overdracht via HGT:

- vaak geflankeerd voor inverted repeats
- GC-gehalte en codon gebruik
- meestal onderdeel van het pan genoom
- bevatten soms integrase gen
- soms experimenteel aangetoond

Pathogenicity en chromosomal islands

16e: figuur 13.23

Fylogenie

evolutionaire geschiedenis

16S rRNA (= Small Subunit (SSU) rRNA)

- universally distributed
- functionally constant
- highly conserved
- adequate lenght

16e: figuur 13.24

Fylogenie

Primers kunnen universeel zijn of gericht zijn tegen b.v. een species, genus, phylum

Fylogenie - sequence alignment

Fylogenetische analyse:

- nodig: homologie (niet verwarren met similarity)
- meestal op basis van orthologen

Sequences before alignment

- GGA CCT AAA TTT ATA CCC
- GGA AAA GGG CCC AAA CGC
- GGA GGG CCT TTT ATA CCC

Sequence differences

	1	2	3
1	_		_
2	11	-	-
3	6	11	_

Sequences after alignment

(a)

1	GGA			CCT	AAA	TTT	ATA	CCC
2	GGA	AAA	GGG	CCC			AAA	CGC
3	GGA		GGG	CCT		TTT	ΔΤΔ	CCC

(b)

16e: figuur 13.26

Fylogenetische boom

Weergave evolutionaire geschiedenis

Fylogenetische boom

16e: figuur 13.27

Stel je hebt 4 organismen => 3 mogelijkheden

Stel je hebt 10 organismen => 2 miljoen mogelijkheden

Stel je hebt 20 organismen => een mol mogelijkheden

Hoe bouw je dan een fylogenetische boom?

Distance based methods

 The first step in making a tree is to align sequences.

- 2. A distance matrix is calculated from the number of sequence differences.
- 3. The tree is constructed by adding nodes to join lineages that have the fewest differences.

1	A	C	T	G	A	C
2	A	C	T	C	A	T
3	A	C	A	T	G	G
4	A	C	A	A	G	A
(a)						

Voorbeeld: neighbour joining

NJ geeft een unrooted tree

Hoe 'bouw' je een fylogenetische boom?

Algoritmes waarmee één enkele boom wordt gemaakt. B.v.

- Neigbour Joining
- Unweighted Pair Group Method with Arithmetic Mean (UPGMA)

Methoden die gebruik maken van 'optimality criteria'. B.v.

- Parsimony
- Maximum Likelyhood
- Bayesian

Deze methoden evalueren een groot aantal mogelijke bomen en kiezen dan de boom die het best bij de sequentie data past

Parsimony

'Occams razor'

https://www.youtube.com/watch?v=skcCu4RUkAg

The tree that requires the smallest number of sequence changes to generate the sequences in the alignment is the most likely tree

Parsimony

Figure from: Cambell Biology 10th edition

sequence

Maximum likelyhood en Bayesian methoden

Selectie meest passende boom op basis van een evolutionair model

Bootstrapping

Het kan voorkomen dat de data in meerdere bomen 'passen'

Bootstrapping is een statistische methode waarbij de data opnieuw random 'gesampled' worden.

De bootstrap waarde geeft het percentage aan waarmee een bepaalde knoop in een fylogenetische boom wordt ondersteund door de sequentie data.

Dus: hoge bootstrap-waarde -> boom is betrouwbaar

Limitaties fylogenetische bomen - homoplasy

= convergent evolution

organismen delen een eigenschap die niet afkomstig is van een gemeenschappelijke voorouder

kan in sequenties het gevolg zijn van recurrent mutations

Recurrent mutations

Recurrent mutation can erase evolutionary information, causing sequence differences to underestimate true distances.

1 ACTG

2 AGTG
Substitution mutations

4 ACTC

Four differences are observed between sequences 1 and 4.

Only one difference is observed between sequences 1 and 4.

16e: figuur 13.29

Time

Limitaties fylogenetische bomen – HGT

Verschil fylogenie van genen en fylogenie van organismen

SSU rRNA genen: HGT frequentie erg laag

Toch analyse meerdere genen beter

16e: figuur 13.30

Systematiek

naamgeving en classificatie

Systematiek

Diversiteit en relaties van organismen.

Fylogenie: evolutionaire geschiedenis

Taxonomie: identificatie, classificatie, naamgeving

maakt gebruik van een *polyphasic approach*

(gebruikt fenotypische, genotypische en fylogenetische informatie)

Nomenclatuur

Binominaal systeem (Carl Linnaues)

Naam: Genus species

Voorbeeld: Escherichia coli

Wetenschappelijke tekst: één keer volledige naam noemen. Daarna mag je het genus afkorten (*E. coli*).

Taxonomy

Classificeren van organismen (in groepen met vergelijkbare organismen)

Taxon	Name	Properties	Confirmed by
Domain	Bacteria	Bacterial cells; rRNA gene sequences typical of <i>Bacteria</i>	Microscopy; 16S rRNA gene sequence analysis; presence of unique biomarkers, for example, peptidoglycan
Phylum	Proteobacteria	rRNA gene sequence typical of Proteobacteria	16S rRNA gene sequence analysis
Class	Gammaproteobacteria	Gram-negative bacteria; rRNA sequence typical of Gammaproteobacteria	Gram-staining, microscopy
Order	Chromatiales	Phototrophic purple bacteria	Characteristic pigments ► Figures 14.6, 14.7, and 14.13)
Family	Chromatiaceae	Purple sulfur bacteria	Ability to oxidize H ₂ S and store S ⁰ within cells; microscopic observation of S ⁰ (see photo); 16S rRNA gene sequence
Genus	Allochromatium	Rod-shaped purple sulfur bacteria; <95% 16S rRNA gene sequence identity with other genera	Microscopy (see photo)
Species	warmingii	Cells $3.5-4.0~\mu m \times 5-11~\mu m$; storage of sulfur mainly in poles of cell (see photo); <97% 16S rRNA gene sequence identity with other species	Cell size measured microscopically with a micrometer; observation of polar position of S ⁰ globules in cells (see photo); 16S rRNA gene sequence

Species

Taxonomische categorie die een groep individuen beschrijft. Groep is:

- monofyletisch (zelfde gemeenschappelijke voorouder)
- genomisch coherent
- fenotypisch coherent
- duidelijk anders dan andere species

Beschrijving van microbiële soorten op basis van een *polyphasic approach* (fenotypische, genotypische en fylogenetische informatie)

Een species is monofyletisch

SSU rRNA gen en taxonomische rang

SSU rRNA genen:

- Zelfde soort meestal >98.6% sequence similarity
- Verschillende soorten meestal <97% sequence similarity

Voor hogere rangen (nog) geen vastgestelde cut-off, maar:

- Genus ~ 95% similarity
- Familie ~ 92% similarity
- Order ~ 89% similarity
- Klasse ~ 86% similarity
- Phylum ~ 83% similarity

Multilocus sequence typing (MLST)

SSU rRNA genen soms niet geschikt voor nauw verwante soorten

Eiwit-coderende genen: mutaties accumuleren sneller

MLST: analyse van meerdere (4 tot meer dan 1000!) geconserveerde 'housekeeping genes' (b.v. recA, gyrA)

Te gevoelig om soorten in hogere taxa dan 'soorten' in te delen

Toepassing in b.v. clinische microbiologie en epidemiologie

Multilocus sequence typing (MLST)

Genoom analyse

Steeds vaker analyse van het hele genoom voor identificatie en beschrijving van micro-organismen.

Inzicht in evolutionaire relaties b.v. op basis van:

- aan-/afwezigheid van genen
- syntenie (volgorde van genen in een genoom)
- GC-gehalte

Average nucleotide identity (ANI)

In silico:

- Genoom verdeeld in fragmenten van 1000 bp
- Elk fragment vergeleken met orthologe sequentie in ander genoom
- Berekening gemiddelde nucleotide identity

Taxonomie: fenotypische analyse

Category	Characteristics
Morphology	Colony morphology; Gram reaction; cell size and shape; pattern of flagellation; presence of spores, inclusion bodies (e.g., PHB, ^a glycogen, or polyphosphate granules, gas vesicles, magnetosomes); capsules, S-layers, or slime layers; stalks or appendages; fruiting body formation
Motility	Nonmotile; gliding motility; swimming (flagellar) motility; swarming; motile by gas vesicles
Metabolism	Mechanism of energy conservation (phototroph, chemoorganotroph, chemolithotroph); utilization of individual carbon, nitrogen, or sulfur compounds; fermentation of sugars; nitrogen fixation; growth factor requirements
Physiology	Temperature, pH, and salt ranges for growth; response to oxygen (aerobic, facultative, anaerobic); presence of catalase or oxidase; production of extracellular enzymes
Cell lipid chemistry	Fatty acids; polar lipids; respiratory quinones
Cell wall chemistry	Presence or absence of peptidoglycan; amino acid composition of cross-links; presence or absence of cross-link interbridge
Other traits	Pigments; luminescence; antibiotic sensitivity; serotype; production of unique compounds, for example, antibiotics

^aPHB, poly-β-hydroxybutyric acid (◀ Section 2.7).

Nieuwe soorten beschrijven

International Code of Nomenclature of Prokaryotes (Prokaryotic Code)

Formele validatie

- Publicatie (gedetailleerde beschrijving) in peer reviewed journal (b.v. the International Journal of Systematic and Evolutionary Microbiology, IJSEM)
- Levensvatbare <u>rein</u>cultures in ten minste twee culture collecties

Type strain:

- vertegenwoordigt een soort
- opgenomen in een culture collectie

Naamgeving: https://lpsn.dsmz.de/

Naamgeving

https://lpsn.dsmz.de/

Prokaryotic Code: alleen officiële naam wanneer de soort volledig gevalideerd is.

Voorlopige naam (beginnend met *Candidatus*) wanneer een organisme wel gekarakteriseerd is, maar nog niet in een <u>rein</u>culture gekweekt.

Fictief voorbeeld: Candidatus Hanzebacter ubique

Operational taxonomic unit (OTU)

cluster van (niet-gekweekte of onbekende) organismen, gegroepeerd op basis van DNA sequence similarity van een taxonomische marker

soort-achtige eenheid van diversiteit met >97% sequence similarity

B.v. op basis van SSU rRNA

Ribosomal Database Project (RDP; http://rdp.cme.msu.edu/)

Alle figuren in deze PowerPoint zijn eigen werk of afkomstig uit Brock Biologiy of Microorganisms (15th of 16th edition, Pearson) tenzij anders vermeld.