Computational Principles of Memory

Zeyuan Ye

Memory: The ability of persisting information

STM: min

LTM: days – life

Remarkable

Most Biological processes are transient:

Time constant for membrane: ms

Post synapse Potential: 100 ms

Remarkable

How do our brain form memory based on the transient activity?

Content

- 1. Neural circuit models
- 2. Properties of those models

Basic Picture

Model: Discrete Attractor

Model: Continuous Attractor

Model: Continuous Attractor

Very Robust!

Fiete, I. R. (2017). Proceedings of the National Academy of Sciences of the United States of America

Intrinsic Decay of information

Not robust

Properties: Fisher Information

Lim, S., &Goldman, M. S. (2012). Neural Computation

Properties: Capacity

Properties: Capacity

Attractor model show better in both robustness and capacity Then why long transient or continuous attractor?

Conclusion

1. Neural circuit models

2. Properties of those models

