

Sunghee Yun

January 20, 2020

Contents

Ι	Ma	athematics	7
1	Calc 1.1 1.2 1.3 1.4	Multivariate functions	9 10 10 11
2	Con 2.1	Convex function	14 14 14 17
3	3.1 3.2 3.3 3.4	Vector space	19 20 20 20 21 21 22
II	O	eptimization 2	23
4	4.1 4.2 4.3	Mathematical optimization problem Convex optimization problem Duality 4.3.1 The Lagrange dual problem 4.3.1.1 Examples 4.3.2 Interpretations 4.3.2.1 Max-min characterization of weak and strong duality 4.3.2.2 Saddle-point interpretation Convex optimization problems	25 26 27 28 28 29 29 30 31

4 CONTENTS

		4	4.4.1.1	Equal	lity cor	nstrain	ed pro	oble	em e	xan	nple	es	 							 31
	4.5	Unconst	rained	minimi	zation								 							 32
		4.5.1	Gradier	nt desce	nt met	hod							 							 32
		4	4.5.1.1	Exam	ples .								 							 32
5	Por	tfolio op																		35
	5.1	Problem																		
		5.1.1 A	A portf	olio opt	imizat	ion pro	oblem					•	 			٠		•	٠	 34
П	I S	Statisti	cs																	37
6	Stat	istics B	asics																	39
	6.1	Correlat	tion coe	efficients	s								 							 39
	6.2	Transfor	rmatior	ı of a ra	andom	variab	ole via	a f	unc	tion			 							 39
		6.2.1	Scale ra	ndom v	/ariable	e							 							 39
		6.2.2 1	Multiva	riate ra	ndom	variab	ole						 							 41
		6.2.3 I	Data E	xamples	3								 							 41
7	Vari	ious dist	tributi	ons																43
	7.1	Log-nor	mal dis	tributic	on								 							 43
		7.1.1	Some st	atistics									 							 44
		7.1.2 I	Parame	ter esti	mation	l							 						•	 46
8	Bay	esian St	atistic	es																47
	8.1	Bayesiai	n Theo:	rem .									 							 47
	8.2	Bayesia	n Infere	ence .									 							 47
	8.3	Conjuga	-																	
				lli distri																
		8.3.2	Gaussia	ın distri	bution							•	 							 48
9	Info	rmation	Theo	\mathbf{ry}																49
	9.1	Basics											 							 49
				<i>.</i>																
				Informa																
		9.1.3 I	Relative	e Entroj	ρy (Ku	ıllback	-Leib	ler (dive	rger	ice)	•	 						•	 49
I	V N	A achin	e Lea	rning																51
10) Mac	chine Le	arning	r Basic	's															53
10		Optimal																		
		Bias and																		
		Maximu																		-
		Maximu																		
		Bayesia																		
		Predicti					•	-		-	-		•	-	-		-			59

CONTENTS 5

11	_		ion for Machine Learning	61
			ent method	62 62
12	Bay	esian I	Network	63
13			tive Filtering	65
	13.1	Item-b	based Collaborative Filtering	66
		13.1.1	Rating matrix modeling for menu personalization for mobile shopping app 13.1.1.1 Rating matrix modeling	66 67
		13.1.2	Value augmentation based on Bayesian MAP	68
		13.1.3	Similarity measure among items	68
			13.1.3.1 Cosine similarity	69
			13.1.3.2 Cosine similarity when prior distribution is used	69
			13.1.3.3 Correlation coefficient similarity	70
		13.1.4	Data value transformation	70
			13.1.4.1 TFIDF (or tf-idf)	71
			13.1.4.2 Okapi BM25 transformation	71
		13.1.5	Recommendation based on item similarities	71
	13.2	Collab	orative Filtering using Matrix Factorization	72
		13.2.1	Problem definition and formulations	72
		13.2.2	Solution methods	74
			13.2.2.1 Matrix factorization via singular value decomposition (SVD)	74
			13.2.2.2 Matrix factorization via gradient descent (GD) method	75
			13.2.2.3 Matrix factorization via alternating gradient descent (GD) method .	77
			13.2.2.4 Matrix factorization via stochastic gradient descent (SGD) method	77
			13.2.2.5 Matrix factorization via alternating least-squares (ALS)	78
			13.2.2.6 Weighted matrix factorization via alternating least-squares (ALS) .	80
		13.2.3	Collaborative filtering for implicit feedback dataset	80
			13.2.3.1 Regularization coefficient conversion	81
	13.3		dix	83
		13.3.1	Linear algebra	83
			13.3.1.1 Singular value decomposition (SVD)	83
			13.3.1.2 Singular value decomposition as rank- k approximation	84
14	Tim	e Serie	es Anomaly Detection	85
	14.1	Real-T	Time Anomaly Detection	86
		14.1.1	Computing Anomaly Likelihood	86
15	Reir	aforcer	ment Learning	89
			Markov decision processes	90
			Markov property	90
			Policy	91
			Return	91
			State value function and action value function	92
	15.2		an equation	92
	•		Bellman equations	92

6 CONTENTS

15.2.2 Bellman optimality equations
15.3 Dynamic programming
15.3.1 Policy evaluation (prediction)
15.3.2 Policy iteration
15.3.3 Value iteration
15.4 Monte Carlo methods
15.4.1 Monte Carlo prediction
15.4.2 Monte Carlo control
15.4.3 Monte Carlo control without exploring starts
15.4.4 Off-policy prediction via important sampling
15.4.5 Off-policy Monte Carlo control
15.5 Temporal-difference learning
15.5.1 TD prediction
15.5.2 Sarsa: on-policy TD Control
15.5.3 Q-learning: off-policy TD control
15.5.4 Maximization bias and double learning
15.6 <i>n</i> -step bootstrapping
15.6.1 <i>n</i> -step TD prediction
15.6.2 <i>n</i> -step Sarsa
15.6.3 n -step off-policy learning
15.7 Planning and learning with tabular methods
15.7.1 Dyna: integrated planning, acting, and learning
15.8 On-policy Prediction with Approximation
15.9 On-policy Control with Approximation
15.10Off-policy Methods with Approximation
15.11Eligibility Traces
15.11.1 The λ -return
$15.11.2\mathrm{TD}(\lambda)$
15.11.3 Why $TD(\lambda)$ approximates the off-line λ -return algorithm?
$15.11.4 \operatorname{Sarsa}(\lambda) \dots \dots$
15.11.5 Tabular methods using eligibility traces
15.12 Appendix: conditional probability and expected value

Part I Mathematics

Calculus

Convex analysis

Linear Algebra

Part II Optimization

Convex Optimization

4.1 Mathematical optimization problem

A mathematical optimization problem can be expressed as

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$ for $i = 1, ..., m$
 $h_i(x) = 0$ for $i = 1, ..., p$ (4.1)

where $x \in \mathbf{R}^n$ is the optimization variable, $f_0 : \mathbf{R}^n \to \mathbf{R}$ is the objective function, $f_i : \mathbf{R}^n \to \mathbf{R}$ for i = 1, ..., n are the inequality constraint functions, and $h_i : \mathbf{R}^n \to \mathbf{R}$ for i = 1, ..., p are the equality constraint functions.

The conditions, $f_i(x) \leq 0$ for i = 1, ..., m, are called inequality constraints and the conditions, $h_i(x) = 0$ for i = 1, ..., p are called equation constraints.

Note that this formulation covers pretty much every single-objective optimization problem. For example, consider the following optimization problem.

maximize
$$f(x_1, x_2)$$

subject to $x_1 \ge x_2$
 $x_1 + x_2 = 2$ (4.2)

This problem can be cast into an equivalent problem as follows.

minimize
$$-f(x_1, x_2)$$

subject to $-x_1 + x_2 \le 0$
 $x_1 + x_2 - 2 = 0$ (4.3)

The feasible set for (4.1) is defined by the set of $x \in \mathbb{R}^n$ which satisfies all the contraints. Also, the optimal value for (4.1) is the infimum of $f_0(x)$ while x is in the feasible set. When the infimum is achievable, we define the optimal solution set as the set of all feasible x achieving the infimum value. These are defined in mathematically rigorous terms below.

• The feasible set for (4.1) is defined by

$$\mathcal{F} = \{ x \in \mathcal{D} \mid f_i(x) \le 0 \text{ for } i = 0, \dots, m, \ h_i(x) = 0 \text{ for } j = 1, \dots, p \} \subseteq \mathbf{R}^n$$

$$(4.4)$$

where

$$\mathcal{D} = \left(\bigcap_{0 \le i \le m} \mathbf{dom} \, f_i\right) \cap \left(\bigcap_{1 \le i \le p} \mathbf{dom} \, h_i\right). \tag{4.5}$$

• The optimal value for (4.1) is defined by

$$p^* = \inf_{x \in \mathcal{F}} f_0(x) \tag{4.6}$$

We use the conventions that $p^* = -\infty$ if $f_0(x)$ is unbounded below for $x \in \mathcal{F}$ and that $p^* = \infty$ if $\mathcal{F} = \emptyset$.

• The optimal solution set for (4.1) is defined by

$$\mathcal{X}^* = \{ x \in \mathcal{F} \mid f_0(x) = p^* \}. \tag{4.7}$$

4.2 Convex optimization problem

A mathematical optimization problem is called a convex optimization problem if the objective function and all the inequality constraint functions are convex functions and all the equality constraint functions are affine functions.

Hence, a convex optimization problem can be expressed as

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$ for $i = 1, ..., m$ (4.8)
 $Ax = b$

where $x \in \mathbf{R}^n$ is the optimization variable, $f_i : \mathbf{R}^n \to \mathbf{R}$ for i = 0, ..., n are convex functions, $h_i : \mathbf{R}^n \to \mathbf{R}$ for i = 1, ..., p are the equality constraint functions, $A \in \mathbf{R}^{p \times n}$, and $b \in \mathbf{R}^p$.

A function, $f: \mathbf{R}^n \to \mathbf{R}$, is called a convex function if $\operatorname{\mathbf{dom}} f \subseteq \mathbf{R}^n$ is a convex set and for all $x, y \in \operatorname{\mathbf{dom}} f$ and all $0 \le \lambda \le 1$,

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) \tag{4.9}$$

where $\operatorname{dom} f \subseteq \mathbf{R}^n$ denotes the domain of f.

A convex optimization enjoys a number of nice theoretical and practical properties.

• A local minimum of a convex optimization problem is a global minimum, *i.e.*, if for some R > 0 and $x_0 \in \mathcal{F}$, $||x - x_0|| < R$ and $x \in \mathcal{F}$ imply $f_0(x_0) \le f_0(x)$, then $f_0(x_0) \le f_0(x)$ for all $x \in \mathcal{F}$.

Proof: Assume that $x_0 \in \mathcal{F}$ is a local minimum, *i.e.*, for some R > 0, $||x - x_0|| < R$ and $x \in \mathcal{F}$ imply $f_0(x_0) \leq f_0(x)$.

Now assume that x_0 is not a global minimum, *i.e.*, there exists $y \in \mathcal{F}$ such that $y \neq x_0$ and $f_0(y) < f_0(x_0)$. Then for $z = \lambda y + (1 - \lambda)x_0$ with $\lambda = \min\{R/\|y - x_0\|, 1\}/2$, the convexity of f_0 implies

$$f_0(z) \le \lambda f_0(y) + (1 - \lambda) f_0(x_0)$$
 (4.10)

since $0 < \lambda \le 1/2 < 1$. Furthermore

$$||z - x_0|| = \lambda ||y - x_0|| \le R/2,$$
 (4.11)

hence $f_0(z) \geq f_0(x_0)$, which together with (4.10) implies

$$f_0(x_0) \le f_0(z) \le \lambda f_0(y) + (1-\lambda)f_0(x_0) < \lambda f_0(x_0) + (1-\lambda)f_0(x_0) = f_0(x_0),$$
 (4.12)

which is a contradiction. Therefore there is no $y \in \mathcal{F}$ such that $y \neq x_0$ and $f_0(y) < f_0(x_0)$. Therefore x_0 is a global minimum.

• For a unconstrained problem, *i.e.*, the problem (4.8) with m = p = 0, with differentiable objective function, $x \in \operatorname{dom} f_0$ is an optimal solution if and only if $\nabla f_0(x) = 0 \in \mathbf{R}^n$.

Proof: The Taylor theorem implies that for any $x, y \in \operatorname{dom} f_0$,

$$f_0(y) = f(x) + \nabla f_0(x)^T (y - x) + \frac{1}{2} (y - x)^T \nabla^2 f_0(z) (y - x)$$
(4.13)

for some z on the line segment having x and y as its end points, i.e., $z = \alpha x + (1-\alpha)y$ for some $0 \le \alpha \le 1$. Since $\nabla^2 f(x) \succeq 0$ for any $z \in \operatorname{dom} f_0$, we have

$$f_0(y) \ge f_0(x) + \nabla f_0(x)^T (y - x)$$
 (4.14)

Thus, if for some $x_0 \in \mathbf{R}^n$, $\nabla f_0(x_0) = 0$, for any $x \in \operatorname{dom} f_0$,

$$f_0(x) \ge f_0(x_0) + \nabla f_0(x_0)^T (x - x_0) = f_0(x_0),$$
 (4.15)

hence x_0 is an optimal solution. Now assume that x_0 is an optimal solution, but $\nabla f_0(x_0) \neq 0$. Then for any k > 0, if we let $x = x_0$ and $y = x_0 - k\nabla f_0(x_0)$, (4.13) becomes

$$f_0(y) = f(x_0) + \nabla f_0(x_0)^T (-k\nabla f_0(x_0)) + \frac{k^2}{2} \nabla f_0(x_0)^T \nabla^2 f_0(z) \nabla f_0(x_0)$$
$$= f(x_0) - k \|\nabla f_0(x_0)\|^2 + \frac{k^2}{2} \nabla f_0(x_0)^T \nabla^2 f_0(z) \nabla f_0(x_0)$$

for all $y = x_0 - k\nabla f_0(x_0) \in \operatorname{dom} f_0$.

Since for $k < 2\|\nabla f_0(x_0)\|^2/\nabla f_0(x_0)^T\nabla^2 f_0(z)\nabla f_0(x_0)$, $-k\|\nabla f_0(x_0)\|^2 + \frac{k^2}{2}\nabla f_0(x_0)^T\nabla^2 f_0(z)\nabla f_0(x_0) < 0$, thus $f_0(y) < f(x_0)$, hence the constradiction. Therefore, if x_0 is an optimal solution for the unconstrained problem, $\nabla f_0(x_0) = 0$.

4.3 Duality

4.3.1 The Lagrange dual problem

4.3.1.1 Examples

4.3.1.1.1 Standard form LP

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \succeq 0 \end{array}$$

The Lagrange dual problem is

maximize
$$-b^T \nu$$

subject to $A^T \nu + c > 0$ (4.17)

4.3. DUALITY 29

4.3.1.1.2 Inequality form LP

minimize
$$c^T x$$

subject to $Ax \leq b$ (4.18)

The Lagrange dual problem is

maximize
$$-b^T \lambda$$

subject to $A^T \lambda + c = 0$
 $\lambda \succeq 0$ (4.19)

4.3.1.1.3 Least-squares solution of linear equations

minimize
$$(1/2)x^Tx$$

subject to $Ax = b$ (4.20)

The Lagrange dual problem is

maximize
$$-(1/2)\nu^T A A^T \nu - b^T \nu \tag{4.21}$$

4.3.1.1.4 Entropy maximization

minimize
$$\sum_{i=1}^{n} x_i \log x_i$$
subject to
$$Ax = b$$

$$\mathbf{1}^T x = 1$$

$$(4.22)$$

with domain $\mathcal{D} = \mathbf{R}_{+}^{n}$

The Lagrange dual problem is

maximize
$$-b^T \lambda - \log \left(\sum_{i=1}^n \exp(-a_i^T \lambda) \right)$$

subject to $\lambda \succeq 0$ (4.23)

4.3.2 Interpretations

4.3.2.1 Max-min characterization of weak and strong duality

We first note that for any $f: X \times Y \to \mathbf{R}$, we have

$$\sup_{y \in Y} \inf_{x \in X} f(x, y) \le \inf_{x \in X} \sup_{y \in Y} f(x, y). \tag{4.24}$$

This inequality is called max-min inequality.

We can prove this as follows. Let $g: Y \to \mathbf{R}$ be a function defined by $g(y) = \inf_{x \in X} f(x, y)$ and let $h: X \to \mathbf{R}$ be a function defined by $h(x) = \sup_{y \in Y} f(x, y)$. Then we have that for any $x \in X$ and $y \in Y$

$$g(y) = \inf_{x \in X} f(x, y) \le f(x, y), \tag{4.25}$$

which implies that for any $x \in X$

$$\sup_{y \in Y} g(y) \le \sup_{y \in Y} f(x, y) = h(x). \tag{4.26}$$

This again implies that

$$\sup_{y \in Y} g(y) \le \inf_{x \in X} h(x),\tag{4.27}$$

hence the proof.

4.3.2.2 Saddle-point interpretation

Suppose $f: X \times Y \to \mathbf{R}$. We refer a point $(\tilde{x}, \tilde{y}) \in X \times Y$ a saddle-point for f (and X and Y) if

$$f(\tilde{x}, y) \le f(\tilde{x}, \tilde{y}) \le f(x, \tilde{y}) \tag{4.28}$$

for all $x \in X$ and $y \in Y$.

Now if x^* and λ^* are primal and dual optimal points for a problem in which strong duality obtains, the form a saddle-point for the Lagrangian. Conversely, if (x, λ) is a saddle-point of the Lagrangian, then x is primal optimal, λ is dual optimal, and the optimal duality gap is zero.

To prove these, assume that $x^* \in \mathcal{D}$ and $(\lambda^*, \nu^*) \in \mathbf{R}_+^m \times \mathbf{R}^p$ are primal and dual optimal points for a problem in which strong duality obtains. Then for any $x \in \mathcal{D}$ and $(\lambda, \nu) \in \mathbf{R}_+^m \times \mathbf{R}^p$, we have

$$L(x^*, \lambda, \nu) = f_0(x^*) + \sum_{i=1}^m \lambda_i f_i(x^*) + \sum_{i=1}^p \nu_i h_i(x^*) \le f_0(x^*) = g(\lambda^*, \nu^*) \le L(x, \lambda^*, \nu^*)$$
(4.29)

where the left inequality comes from the fact that $\lambda_i f_i(x^*) \leq 0$ for all i = 1, ..., m and $h_i(x^*) = 0$ for all i = 1, ..., p and the right inequality comes from the definition of (Lagrange) dual function. Now from the complementary slackness we know that $\lambda_i f_i(x^*) = 0$ for all i = 1, ..., m. Therefore

$$L(x^*, \lambda^*, \nu^*) = f_0(x^*), \tag{4.30}$$

thus we have

$$L(x^*, \lambda, \nu) \le L(x^*, \lambda^*, \nu^*) \le L(x, \lambda^*, \nu^*),$$
 (4.31)

hence the proof.

Now suppose that $\tilde{x} \in \mathcal{D}$ and $(\tilde{\lambda}, \tilde{\nu}) \in \mathbf{R}_{+}^{m} \times \mathbf{R}^{p}$ are the saddle-point of the Lagrangian, *i.e.*, for all $x \in \mathcal{D}$ and $(\lambda, \nu) \in \mathbf{R}_{+}^{m} \times \mathbf{R}^{p}$,

$$L(\tilde{x}, \lambda, \nu) \le L(\tilde{x}, \tilde{\lambda}, \tilde{\nu}) \le L(x, \tilde{\lambda}, \tilde{\nu}). \tag{4.32}$$

First we show that \tilde{x} is a feasible point. The left inequality says that for all $(\lambda, \nu) \in \mathbf{R}_{+}^{m} \times \mathbf{R}^{p}$,

$$L(\tilde{x}, \lambda, \nu) = f_0(\tilde{x}) + \sum_{i=1}^{m} \lambda_i f_i(\tilde{x}) + \sum_{i=1}^{p} \nu_i h_i(\tilde{x}) \le L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$$

$$(4.33)$$

If $f_i(\tilde{x}) > 0$ for some $i \in \{1, ..., m\}$ or $h_i(\tilde{x}) \neq 0$ for some $i \in \{1, ..., p\}$, $L(\tilde{x}, \lambda, \nu)$ is unbounded above and the above inequality cannot hold. Therefore $f_i(\tilde{x}) \leq 0$ for all $i \in \{1, ..., m\}$ and $h_i(\tilde{x}) = 0$

for all $i \in \{1, ..., p\}$, *i.e.*, \tilde{x} is primal feasible. Since the inequality must hold when $\lambda = 0$ and $\nu = 0$, we have

$$f(\tilde{x}) \le L(\tilde{x}, \tilde{\lambda}, \tilde{\nu}).$$
 (4.34)

The right inequality of (4.32) implies that

$$L(\tilde{x}, \tilde{\lambda}, \tilde{\nu}) \le g(\tilde{\lambda}, \tilde{\nu}) = \inf_{x \in \mathcal{D}} L(x, \tilde{\lambda}, \tilde{\nu}),$$
 (4.35)

which implies that $f_0(\tilde{x}) \leq g(\tilde{\lambda}, \tilde{\nu})$. Since $g(\lambda, \nu)$ is an underestimator of $f_0(x)$ for any feasible $x \in \mathcal{D}$ and $(\tilde{\lambda}, \tilde{\nu}) \in \mathbf{R}_+^m \times \mathbf{R}^p$, i.e., $g(\tilde{\lambda}, \tilde{\nu}) \leq f_0(\tilde{x})$, thus $g(\tilde{\lambda}, \tilde{\nu}) = f_0(\tilde{x})$. Therefore \tilde{x} is an optimal solution for the primal problem and $(\tilde{\lambda}, \tilde{\nu})$ is an optimal solution for the dual problem, hence the proof.

4.4 Convex optimization problems

4.4.1 Equality constrained problem

Consider the following equality constrained problem:

minimize
$$f(x)$$

subject to $Ax = b$ (4.36)

where $x \in \mathbf{R}^n$ is the optimization variable, $A \in \mathbf{R}^{m \times n}$, and $b \in \mathbf{R}^m$. The Lagrangian is

$$L(x,\nu) = f(x) + \nu^{T} (Ax - b)$$
(4.37)

and the Lagrange dual function is

$$g(\nu) = \inf_{x \in \mathbf{R}^n} L(x, \nu) = -\sup_{x \in \mathbf{R}^n} (-\nu^T A x - f(x)) - b^T \nu = -f^* (-A^T \nu) - b^T \nu$$
 (4.38)

The KKT optimality conditions are

primal feasibility:
$$Ax = b$$
 (4.39)

gradient of Lagrangian vanishes:
$$\nabla f(x) + A^T \nu = 0$$
 (4.40)

4.4.1.1 Equality constrained problem examples

Consider the following equality constraint quadratic problem:

$$\begin{array}{ll} \text{minimize} & x^T P x + q^T x \\ \text{subject to} & A x = b \end{array} \tag{4.41}$$

where $x \in \mathbf{R}^n$ is the optimization variable, $P \in \mathcal{S}_{++}^n$, $q \in \mathbf{R}^n$, $A \in \mathbf{R}^{m \times n}$, and $b \in \mathbf{R}^m$.

The Lagrangian is

$$L(x,\nu) = x^{T} P x + q^{T} x + \nu^{T} (Ax - b). \tag{4.42}$$

The gradient of the Lagrangian with respect to x is

$$\nabla_x L(x, \nu) = 2Px + q + A^T \nu = 0, \tag{4.43}$$

hence

$$\underset{x}{\operatorname{argmin}} L(x, \nu) = -\frac{1}{2} P^{-1} (q + A^{T} \nu)$$
(4.44)

The KKT conditions are

primal feasibility:
$$Ax = b$$
 (4.45)

gradient of Lagrangian vanishes:
$$2Px + q + A^T \nu = 0$$
 (4.46)

which are equivalent to

$$\begin{bmatrix} 2P & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} x \\ \nu \end{bmatrix} = \begin{bmatrix} -q \\ b \end{bmatrix}. \tag{4.47}$$

The conjugate of the objective function is

$$f^*(y) = \sup_{x} (y^T x - x^T P x - q^T x). \tag{4.48}$$

Since the gradient of $y^Tx - x^TPx - q^Tx$ is y - q - 2Px,

$$\underset{x}{\operatorname{argsup}}(y^{T}x - x^{T}Px - q^{T}x) = \frac{1}{2}P^{-1}(y - q), \tag{4.49}$$

thus

$$f^*(y) = -\frac{1}{4}(y-q)^T P^{-1}(y-q) + \frac{1}{2}(y-q)^T P^{-1}(y-q) = \frac{1}{4}(y-q)^T P^{-1}(y-q)$$
$$= \frac{1}{4}(y^T P^{-1}y - 2q^T P^{-1}y + q^T P^{-1}q)$$

4.5 Unconstrained minimization

4.5.1 Gradient descent method

4.5.1.1 Examples

4.5.1.1.1 A quadratic problem in \mathbb{R}^2 We consider the quadratic objective function on \mathbb{R}^2

$$f(x) = \frac{1}{2}(x_1^2 + \gamma x_2^2) \tag{4.50}$$

where $\gamma > 0$.

We apply the gradient descent method with exact line search. The gradient of f is

$$\nabla f(x) = \begin{bmatrix} x_1 \\ \gamma x_2 \end{bmatrix} \tag{4.51}$$

Let $\tilde{f}: \mathbf{R}_+ \to \mathbf{R}$ defined by $\tilde{f}(t) = f(x - t\nabla f(x))$. Now

$$\tilde{f}(t) = f\left(\begin{bmatrix} (1-t)x_1\\ (1-\gamma t)x_2 \end{bmatrix}\right) = \frac{1}{2}\left((1-t)^2 x_1^2 + \gamma (1-\gamma t)^2 x_2^2\right)$$
(4.52)

and

$$\frac{d}{dt}\tilde{f}(t) = -(1-t)x_1^2 - \gamma^2(1-\gamma t)x_2^2 = 0 \tag{4.53}$$

implies

$$t = \frac{x_1^2 + \gamma^2 x_2^2}{x_1^2 + \gamma^3 x_2^2} \tag{4.54}$$

minimizes $\tilde{f}(t)$. Since

$$1 - t = \frac{\gamma^2 (\gamma - 1) x_2^2}{x_1^2 + \gamma^3 x_2^2} \tag{4.55}$$

and

$$1 - \gamma t = \frac{(1 - \gamma)x_1^2}{x_1^2 + \gamma^3 x_2^2} \tag{4.56}$$

Thus the exact line search yields

$$x^{+} = x - t\nabla f(x) = \begin{bmatrix} (1-t)x_{1} \\ (1-\gamma t)x_{2} \end{bmatrix} = \frac{(1-\gamma)x_{1}x_{2}}{x_{1}^{2} + \gamma^{3}x_{2}^{2}} \begin{bmatrix} -\gamma^{2}x_{2} \\ x_{1} \end{bmatrix}.$$
(4.57)

If $x = \alpha [\gamma \ 1]^T$, then

$$x^{+} = \frac{\alpha^{3}(1-\gamma)\gamma}{\alpha^{2}\gamma^{2}(1+\gamma)} \begin{bmatrix} -\gamma^{2} \\ \gamma \end{bmatrix} = \alpha \frac{1-\gamma}{1+\gamma} \begin{bmatrix} -\gamma \\ 1 \end{bmatrix}. \tag{4.58}$$

If $x = \alpha[-\gamma \ 1]^T$, then

$$x^{+} = -\frac{\alpha^{3}(1-\gamma)\gamma}{\alpha^{2}\gamma^{2}(1+\gamma)} \begin{bmatrix} -\gamma^{2} \\ -\gamma \end{bmatrix} = \alpha \frac{1-\gamma}{1+\gamma} \begin{bmatrix} \gamma \\ 1 \end{bmatrix}. \tag{4.59}$$

Therefore if $x^{(0)} = [\gamma \ 1]^T$, then

$$x^{(k)} = \left(\frac{1-\gamma}{1+\gamma}\right)^k \begin{bmatrix} (-1)^k \gamma \\ 1 \end{bmatrix} = \left(\frac{\gamma-1}{\gamma+1}\right)^k \begin{bmatrix} \gamma \\ (-1)^k \end{bmatrix}. \tag{4.60}$$

Portfolio optimization

Part III Statistics

Part IV Machine Learning

Machine Learning Basics

Optimization for Machine Learning

Bayesian Network

Collaborative Filtering

Time Series Anomaly Detection

Reinforcement Learning