Frekans Seçici Devreler

- Şu ana kadar sinosoidal kaynaklı devrelerde frekansın sabit olduğunu varsayarak analiz yaptık.
- Bu ünitede kaynak frekans değişiminin devrelerde etkisi analiz edilecek.
- Dikkatli bir şekilde seçilen devre elemanları, istenilen belirli frekans aralığının outputa aktarılmasını sağlar. Bu devrelere frekans seçici devreler denir.
- Frekan seçici devreler belirli frekanslı sinyallerin geçmesine izin vermediği için filtreler olarak da isimlendirilir.

Long Codal Daywalaw

Frekans Seçici Devreler

Frekans seçici devreler 4 grupta ifade edilebilir:

- Alçak geçiren
- Yüksek geçiren
- Bant geçiren
- Bant durduran

Frekans seçici devreleri tanımlamak için kullanılan araçlardan biri frekans tepki çizimidir. Bu çizimin iki parçası var:

- 1. $|H(j\omega)|$ ω grafiği. Bu grafik büyüklük grafiği olarak da adlandırılır.
- 2. $\theta(j\omega)$ ω grafiği. Bu grafik faz açısı grafiği olarak adlanıdırılır.

Frekans Seçici Devreler

Alçak Geçiren Filtre

Kesim frekansı: $|H(j\omega_c)| = \frac{1}{\sqrt{2}}H_{max}$

$$V_{i}(s) = \frac{R/L}{r}$$

$$R \ge \frac{V_{o}(s)}{r}$$

$$- \qquad \qquad K \le \frac{R/L}{s + R/L}.$$

$$S = j\omega$$

$$H(j\omega) = \frac{R/L}{j\omega + R/L}. \qquad |H(j\omega)| = \frac{R/L}{\sqrt{\omega^2 + (R/L)^2}},$$

$$\theta(j\omega) = -\tan^{-1}\left(\frac{\omega L}{R}\right).$$

5/45

Alçak Geçiren Filtre

Kesim frekansı: $|H(j\omega_c)| = \frac{1}{\sqrt{2}}H_{max}$

$$|H(j\omega_c)| = \frac{1}{\sqrt{2}}|1| = \frac{R/L}{\sqrt{\omega_c^2 + (R/L)^2}}.$$
 $\omega_c = \frac{R}{L}.$

Soru: L=100mH bobin kullanarak 10 Hz'den yüksek sinyalleri filtreleyen "alçak geçiren" bir devre tasarlayınız.

$$\omega_c = \frac{R}{L}.$$

$$\omega_c = 2\pi (10) = 20\pi \text{ rad/s}.$$

$$R = \omega_c L$$

= $(20\pi)(100 \times 10^{-3})$
= 6.28Ω .

$$|V_o(\omega)| = \frac{R/L}{\sqrt{\omega^2 + (R/L)^2}} |V_i|$$

= $\frac{20\pi}{\sqrt{\omega^2 + 400\pi^2}} |V_i|$.

f(Hz)	$\left V_{i}\right \left(V\right)$	$ V_o (V)$
1	1.0	0.995
10	1.0	0.707
60	1.0	0.164
		7/45

Alçak Geçiren Filtre

 V_i 500Hz ve 8 Hz iki sinyalin toplamı, V_o filtrelenmiş sinyal

Decibel Ölçeği

$$G_{\text{dB}} = 10 \log_{10} \frac{P_2}{P_1}$$
 $P_1 = P_2$ 0 dB
$$P_2 = 2P_1$$
 $G_{\text{dB}} = 10 \log_{10} 2 \approx 3 \text{ dB}$
$$P_2 = 0.5P_1$$
 $G_{\text{dB}} = 10 \log_{10} 0.5 \approx -3 \text{ dB}$

$$G_{\text{dB}} = 10 \log_{10} \frac{P_2}{P_1} = 10 \log_{10} \frac{V_2^2/R_2}{V_1^2/R_1}$$

$$= 10 \log_{10} \left(\frac{V_2}{V_1}\right)^2 + 10 \log_{10} \frac{R_1}{R_2}$$

$$R_2 = R_1$$

$$G_{\text{dB}} = 20 \log_{10} \frac{V_2}{V_1} - 10 \log_{10} \frac{R_2}{R_1}$$

$$G_{\text{dB}} = 20 \log_{10} \frac{V_2}{V_1}$$

9/45

Decibel Ölçeği

Magnitude H	$20\log_{10}H\left(\mathrm{dB}\right)$
0.001	-60
0.01	-40
0.1	-20
0.5	-6
$1/\sqrt{2}$	-3
1	0
$\sqrt{2}$	3
2	6
10	20
20	26
100	40
1000	60

Bode Diyagramı

- Frekans cevabında frekans aralığı çok geniş olduğu için lineer frekans eksenini kullanmak çok uygun olmuyor.
- Bundan dolayı transfer fonksiyonunu büyüklüğü dB cinsinden ve frekans logaritma cinsinden veya faz açısı derece cinsinden ve frekansı logiritma cinsinden göstermek standart olmuştur.
- Bu tür yarı logaritmik çizimlere Bode diyagramı denilmektedir.

11/45

Alçak Geçiren Filtre

Bir önceki örnekte verilen devrenin Bode Diyagramı:

Seri RC devresi

Frekans 0 ise C açık devre gibi davranacaktır. $v_o=v_i$ Frekans sonsuz ise kapasitörün empedansı 0 olacaktır. $v_o=0$

13/45

Alçak Geçiren Filtre

Soru: Verilen devrede transfer fonksiyonunu bulunuz. Kesme frekansı için eşitliği ifade ediniz. Kesme frekansı 3kHz olması için $C=1\mu F$ ise R ne olmalıdır?

$$v_{i} = \frac{1}{RC}$$

$$|H(j\omega)| = \frac{\frac{1}{RC}}{\sqrt{\omega^{2} + \left(\frac{1}{RC}\right)^{2}}}.$$

$$s = j\omega$$

$$|H(j\omega)| = \frac{\frac{1}{RC}}{\sqrt{\omega^2 + \left(\frac{1}{RC}\right)^2}}.$$

$$|H(j\omega_c)| = \frac{1}{\sqrt{2}}(1) = \frac{\frac{1}{RC}}{\sqrt{\omega_c^2 + \left(\frac{1}{RC}\right)^2}}.$$
 $\omega_c = \frac{1}{RC}.$

$$R = \frac{1}{\omega_c C} = \frac{1}{(2\pi)(3 \times 10^3)(1 \times 10^{-6})} = 53.05 \ \Omega.$$

Alçak Geçiren Filtre

Ödev: Seri RC alçak geçiren devrenin kesme frekansı 8kHz olarak ayarlanmak istenmektedir. $R=10k\Omega$ ise kapasitörün değerini hesaplayınız.

1.99 nF.

Ödev: Seri LR alçak geçiren filtrenin kesme frekansı 2kHz ve R=5k Ω ise a) L b)50 kHz frekansında $|H(j\omega)|$ c)50 kHz frekansında $\theta(j\omega)$ değerlerini hesaplayınız.

- (a) 0.40 H;
- (b) 0.04;
- (c) -87.71° .

17/4

Yüksek Geçiren Filtre

 $R \not v_o \omega = \infty \Rightarrow v_o = v_i$

Yüksek Geçiren Filtre

$$|H(j\omega)| = \frac{\omega}{\sqrt{\omega^2 + (1/RC)^2}},$$

$$\theta(j\omega) = 90^{\circ} - \tan^{-1}\omega RC.$$

$$H(s) = \frac{s}{s + 1/RC}.$$

$$s = j\omega$$

$$H(j\omega) = \frac{j\omega}{j\omega + 1/RC}.$$

$$\frac{1}{\sqrt{2}} = \frac{\omega_c}{\sqrt{\omega_c^2 + (1/RC)^2}}.$$

$$\omega_c = \frac{1}{RC}.$$

19/45

Yüksek Geçiren Filtre

Soru: Bir RL yüksek geçiren filtre devresi tasarlayınız. a)Devrenin transfer fonksiyonunu çıkarınız. b) kesme frekansı için eşitlik elde ediniz. c) $R{=}500\Omega$ seçildiyse $f_c{=}15$ kHz için L'nin değerini bulunuz.

$$|H(j\omega)| = \frac{\omega}{\sqrt{\omega^2 + (R/L)^2}}.$$

$$\frac{1}{\sqrt{2}} = \frac{\omega_c}{\sqrt{\omega_c^2 + (R/L)^2}}, \quad \omega_c = \frac{R}{L}.$$

$$H(s) = \frac{s}{s + R/L}.$$

$$H(j\omega) = \frac{j\omega}{j\omega + R/L}.$$

$$L = \frac{R}{\omega_c} = \frac{500}{(2\pi)(15,000)}$$

= 5.31 mH.

Yüksek Geçiren Filtre

21/45

Yüksek Geçiren Filtre

Soru: Yüksek geçiren RL devresine yük bağlandı ise transfer fonksiyonunu ve $R=R_L=500\Omega$, L=5.31mH ise kesme frekansını bulunuz.

$$H(s) = \frac{\frac{R_L sL}{R_L + sL}}{R + \frac{R_L sL}{R_L + sL}} = \frac{\left(\frac{R_L}{R + R_L}\right)s}{s + \left(\frac{R_L}{R + R_L}\right)\frac{R}{L}}$$

$$H(s) = \frac{0.5s}{s + 0.5 \times \frac{500}{5.31 \times 10^{-3}}} = \frac{0.5s}{s + 0.5 \times 94162} = \frac{0.5s}{s + 0.5A}$$

Yüksek Geçiren Filtre

$$H(s) = \frac{0.5s}{s + 0.5A} = \frac{1}{2 + A/s}$$

 ω sonsuza giderken maks transfer 1/2 olacaktır. kesim frekansı ise maks değerin $1/\sqrt{2}$ katı olacaktır.

$$|H(jw)| = \frac{1}{\sqrt{4 + A^2/\omega^2}} = (\frac{1}{2\sqrt{2}})$$

$$8 = 4 + A^2/\omega_c^2$$

$$\omega_c^2 = A^2/4$$

$$\omega_c = A/2 = 2\pi f_c$$

$$f_c = A/(4\pi) \approx 7.5kHz$$

23/45

Yüksek Geçiren Filtre

Ödev: Seri RL yüksek geçiren filtre $R=5k\Omega$ ve L=3.5mH devre elemanlarından oluşmuştur. Kesme frekansını bulunuz.

1.43 Mrad/s.

Ödev: Seri RC yüksek geçiren filtre $C=1\mu F$ kapasitörü var ise verilen R değerleri için kesme frekanslarını hesaplayınız.

(a) 100Ω ; (b) $5 k\Omega$; and (c) $30 k\Omega$.

- (a) 10 krad/s;
- (b) 200 rad/s;
- (c) 33.33 rad/s.

Bant Geçiren Filtre

- $\omega_o = \sqrt{\omega_{c1}\omega_{c2}}$: merkez frekansı (rezonans frekansı) $\beta = \omega_{c2} - \omega_{c1}$: bant genişliği $Q = \omega_o/\beta$: Kalite faktörü

(c)

Bant Geçiren Filtre

$$H(s) = \frac{(R/L)s}{s^2 + (R/L)s + (1/LC)}.$$

$$|H(j\omega)| = \frac{\omega(R/L)}{\sqrt{[(1/LC) - \omega^2]^2 + [\omega(R/L)]^2}},$$

Bant Geçiren Filtre

 ω_o durumunda empedans kompleks değildir.

$$j\omega_o L + \frac{1}{j\omega_o C} = 0.$$

$$\omega_o = \sqrt{\frac{1}{LC}}.$$

27/45

Bant Geçiren Filtre

$$|H(j\omega)| = \frac{\omega(R/L)}{\sqrt{[(1/LC) - \omega^2]^2 + [\omega(R/L)]^2}},$$

$$|H(j\omega_o)| = \frac{1}{\sqrt{2}}$$

$$\omega_{c1} = -\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \left(\frac{1}{LC}\right)},$$

$$\omega_{c2} = \frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \left(\frac{1}{LC}\right)}.$$

$$\omega_{c1} = -\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \left(\frac{1}{LC}\right)},$$

$$\omega_{c2} \ = \frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \left(\frac{1}{LC}\right)}.$$

$$\beta = \omega_{c2} - \omega_{c1} = \frac{R}{L}.$$

$$\omega_o = \sqrt{\omega_{c1} \cdot \omega_{c2}} = \sqrt{\frac{1}{LC}}.$$

$$Q = \omega_o/\beta$$

$$= \sqrt{\frac{L}{CR^2}}.$$

29/45

Bant Geçiren Filtre

Soru: 1 kHz-10 kHz aralığındaki frekansları seçmek için $1\mu F$ kapasitör kullanılacaksa seri RLC devresinde R ve L değerlerini ve kalite faktörünü, bant genişliğini, merkez frekansını bulunuz.

$$f_o = \sqrt{f_{c1}f_{c2}} = \sqrt{(1000)(10,000)} = 3162.28 \text{ Hz}.$$

$$\omega_o = \sqrt{\frac{1}{LC}}.$$
 $L = \frac{1}{\omega_o^2 C} = \frac{1}{[2\pi(3162.28)]^2(10^{-6})} = 2.533 \text{ mH}.$

$$Q = \omega_o/\beta$$
 $Q = \frac{f_o}{f_{c2} - f_{c1}} = \frac{3162.28}{10,000 - 1000} = 0.3514.$

$$\beta = \omega_{c2} - \omega_{c1}$$
 = $\frac{R}{L}$. = $9000 \times 2\pi = R/2.533m$ $R = 143.24\Omega$

Bant Geçiren Filtre

31/49

Bant Geçiren Filtre

Soru: Verilen devre bir bant geçiren filtredir. Kesme frekansları için gerekli olan denklemler verilmiştir. Devrede merkez frekansı 5kHz, bant genişliği 200 Hz ve $5\mu F$ kapasitör seçilmişse R ve L değerlerini ve kalite faktörünü hesaplayınız.

$$\omega_{c1} = -\frac{1}{2RC} + \sqrt{\left(\frac{1}{2RC}\right)^2 + \frac{1}{LC}},$$

$$\omega_{c2} = \frac{1}{2RC} + \sqrt{\left(\frac{1}{2RC}\right)^2 + \frac{1}{LC}}.$$

$$\omega_{c1} = -\frac{1}{2RC} + \sqrt{\left(\frac{1}{2RC}\right)^2 + \frac{1}{LC}},$$

$$\omega_{c2} = \frac{1}{2RC} + \sqrt{\left(\frac{1}{2RC}\right)^2 + \frac{1}{LC}}.$$

$$\beta = \omega_{c2} - \omega_{c1}$$
$$= \frac{1}{RC}.$$

$$R = \frac{1}{\beta C}$$

$$= \frac{1}{(2\pi)(200)(5 \times 10^{-6})}$$

$$= 159.15 \ \Omega.$$

33/45

Bant Geçiren Filtre

$$\omega_{c1} = -\frac{1}{2RC} + \sqrt{\left(\frac{1}{2RC}\right)^2 + \frac{1}{LC}},$$

$$\omega_{c2} = \frac{1}{2RC} + \sqrt{\left(\frac{1}{2RC}\right)^2 + \frac{1}{LC}}.$$

$$\omega_o = \sqrt{\omega_{c1} \cdot \omega_{c2}}$$

$$\omega_o = \sqrt{\frac{1}{LC}}$$

$$L = \frac{1}{\omega_o^2 C} = \frac{1}{[2\pi (5000)]^2 (5 \times 10^{-6})}$$
$$= 202.64 \,\mu\text{H}.$$

$$\omega_o = \sqrt{\frac{1}{LC}}$$
 $Q = \omega_o/\beta$

$$= \sqrt{\frac{R^2C}{L}}.$$
 $\beta = \omega_{c2} - \omega_{c1}$

$$= \frac{1}{RC}.$$

Bant Geçiren Filtre

Ödev: Verilen bant geçiren filtrede merkez frekansı 12 kHz, kalite faktörü 6 olması için ve 1 μF kapasitör kullanılmışsa R ve L değerleri ne olmalıdır?

$$L = 1.76 \text{ mH}, R = 22.10 \Omega.$$

35/45

Bant Geçiren Filtre

Ödev: Verilen bant geçiren filtrede merkez frekansı 2kHz ve bant genişliği 500 Hz ise C ve L değerlerini hesaplayınız. (R=250 Ω kullanınız.)

$$L = 4.97 \text{ mH}, C = 1.27 \mu\text{F}.$$

37/45

39/45

Soru: Seri bant durduran RLC devresinin bant genişliği 250 Hz, merkez frekansı 750 Hz olması isteniyor. 100 nF kapasitör kullanılmışsa R, L, ω_{c1} , ω_{c2} ve Q değerlerini hesaplayınız. $\omega_{c1} = -\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}},$

$$\omega_{c1} = -\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}$$

$$\omega_{c2} = \frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}.$$

$$V_{i}(s) \begin{pmatrix} + \\ + \\ - \\ 1/sC \end{pmatrix} V_{o}(s)$$

$$\omega_{c1} = -\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}},$$

$$\begin{cases} + \\ \omega_{c1} = -\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}, \\ V_o(s) \end{cases}$$

$$\omega_{c2} = \frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}.$$

$$Q = \omega_o/\beta = 3.$$

$$L = \frac{1}{\omega_o^2 C} = \frac{1}{[2\pi(750)]^2(100 \times 10^{-9})} = 450 \text{ mH}.$$

$$\omega_{c1} = -\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}},$$

$$\omega_{c2} = \frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}.$$

$$R = \beta L$$

$$= 2\pi(250)(450 \times 10^{-3})$$

$$\omega_{c1} = 3992.0 \text{ rad/s}$$

$$= 707 \Omega.$$

$$\omega_{c2} = 5562.8 \text{ rad/s}.$$

43/4

Ödev: Merkez frekansı 4kHz ve kalite faktörü 5 olan seri RLC bant durduran devreyi 500nF kapasitör kullanarak tasarlamak için L ve R değerlerini bulunuz.

$$L = 3.17 \text{ mH},$$

 $R = 15.92 \Omega.$