MSO 201A: Homework 10

1. Let X1, X2,..., Xn be a trandom sample forom an exponential distantion with p.d.f.

$$f_{x}(\alpha) = \frac{1}{\beta} e^{-\frac{2}{\beta}}, \quad \alpha > 0.$$

Show that $\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} x_i$ is an unbiased estimator of β .

- 2. Let $X_1, X_2, ..., X_n$ be a grandom sample forom Uniform $(0, \theta)$, where $\theta > 0$. Show that $\frac{n+1}{n} \times (n)$ and $2 \times n$ are both unbiased estimator of θ . Hure $X_{(n)} = \max\{X_1, ..., X_n\}$, and $X_n = \frac{1}{n} \sum_{i=1}^n X_i$.
- 3. Let X1, X2,..., Xn he a grandom sample firom Poisson distribution with the parameter 0; 0>0. Find an unbiassed estimatoor of 0e⁻²⁰.
 - 4. Let $X_1, X_2, ..., X_n$ due a Grandom sample from Binomial (1, θ), where $0 < \theta < 1$. Find an unbiased estimator of $\theta^2(1-\theta)$.
 - 5. Let x_1 and x_2 be independent transform samples with densities $f_1(x_1) = \theta e^{-\theta x_1}$ and $f_2(x_2) = 2\theta e^{-2\theta x_2}$, as the traspectively, where $\theta > 0$ is an unknown parameter, and $0 < x_1, x_2 < \infty$. Find a sufficient statistic for θ .

6. Let X1, X2,... Xn lae a randon sample forom a Beta (a,B) distribution (a>0,B>0) with p.d.f. $f(x) = \frac{\left[\alpha + \beta\right]}{\left[\alpha + \beta\right]} x^{\alpha - 1} \left(1 - x\right)^{\beta - 1}, x \in (0, 1)$ otherwise

- (a) The Xi is sufficient food of Bris unknown known
- (6) T(1-Xi) in sufficient four B if d is known.
- (e) (Thin Xi, Thin (1-Xi)) is jointly sufficient four (a, B) if both & and B are unknown.
- 7. Let X1, X21., Xn ble a trandom sample forom Uniforum $(\theta - \frac{1}{2}, \theta + \frac{1}{2})$, where $\theta \in \mathbb{R}$. Find a sufficient statistic four O.