	Notes
Sampled Signals	
Digital Signal Processing	
Contents	Notes
Digital Signals	
Sampling, Aliasing and Nyquist	
Spectrum	
Filters	
Spectra of Sampled Signals Fourier Series	
Negative Frequencies	
Sampling Theorem	
Fourier Transform	
Sampling in Frequency Domain	
Digitization Example	No.
 Signal sampling is performed by an Analogue to Digital Converter or ADC to create a digital signal from an analogue 	Notes
signal	
Analogue Anising Parallel in the filter Transmitter Clock	
Digital Connection (baseband, RF, optical etc.)	
Reconstituted Serial Trace Analogue	
Reconstituted Serial D/A LPF Analogue Output Reconstituted Clock	
PCM System	
The analogue signal is reconstructed from the digital signal by a Digital to Analogue Converter (DAC).	

Minimum Sampling Frequency

- \blacksquare An analogue signal at frequency f_i should be sampled at least $f_s = 2 \times f_i$
- Otherwise the digital signal will not contain sufficient information to enable the original analogue signal to be reconstructed

This analogue signal (cosine wave) with frequency f_i has been sampled at

$$f_s = 2f_i$$
.

Notes

Under Sampling

lacktriangleright If an analogue signal is undersampled where $f_i>f_s/2$ then the digital signal will not contain sufficient information to reconstruct the analogue signal

The discrete samples here are insufficient to recreate the original signal.

Aliasing (Errors)

- \blacksquare Aliasing occurs when the sampling frequency is not high enough $f_s < 2f_i$ or
- \blacksquare (Equivalently) the sampled analogue signal has too high frequency $f_i>f_s/2$

 $f_{
m alias} = 50 {
m Hz}$

 $f_s = 200 \mathrm{Hz}$

 $J_{S} = 200$

Aliasing (error) frequencies occur:

 $f_{\rm alias} \text{ is one of } \{(f_i + n \times f_s) \text{ or } (n \times f_s - f_i): \text{ for } -\infty \leq n \leq \infty\}$

Notes			
-			

Sampling and Nyquist

A digital signal is sampled f_s times a second.

■ The Nyquist frequency, also known as the folding frequency is

 $\frac{f_s}{2}$.

■ The **Nyquist rate** which is:

$$2 \times E$$

where \boldsymbol{B} is the bandwidth of the signal.

■ The **sampling frequency** should be greater than the Nyquist rate:

$$f_s > 2B$$

to prevent **aliasing** errors.

Spectrum: no aliasing

If $f_s=2B$ frequency spectrum of digital signal will be:

 $f_s/2$ is known as folding frequency because all frequencies from 0Hz to $B{\rm Hz}$ fold over to $B{\rm Hz}$ to $2B{\rm Hz}$:

Creating a mirror image of the frequencies.

Spectrum: with aliasing

If $f_s < 2B$ frequency spectrum of digital signal will be:

Aliasing error frequencies occur in the overlap region between $(f_s-B){\rm Hz}$ and $B{\rm Hz}.$

Notes

Notes

Notes

Spectrum: $f_s > 2B$

Here there is a gap known as a guard band between $B\ \mbox{Hz}$ and $(f_s-B)\mbox{Hz}.$

Notes			

Non-Ideal Filters

This guard band can be useful because the antialiasing filter and reconstruction filters will not be ideal filters and will have finite width transition bands between the pass and stop bands:

frequency

Notes ______

Spectra of Sampled Signals

The spectra of sampled signals contains:

- \blacksquare Negative frequencies from $-f_s/2$ to 0 Hertz
- \blacksquare Original signal frequencies from 0 Hertz to $f_s/2$ Hertz
- Images of the negative and original signal frequencies

	1 /	\	I
	- 1	- 1	I
	\	1 /	^ /
\bigvee	\bigvee		
		∣ fr	e quency
			# 4-1-1-1

Notes			

Fourier Series

Discrete Fourier series approximation of periodic digital signal $\boldsymbol{x}[n]$

$$a_k = \frac{1}{N} \sum_{n=0}^{N-1} x[n] \exp\left(-\frac{j2\pi kn}{N}\right).$$

with $0 \le n < N$.

 a_k represents the spectral components or harmonics for $0 \leq k < N.$

The original signal can be reconstructed with:

$$x[n] = \sum_{k=0}^{N-1} a_k \exp\left(-\frac{j2\pi kn}{N}\right).$$

Notes

Euler's Formula

Euler's formula is often used to expand the complex exponentials:

$$\exp\left(-\frac{j2\pi kn}{N}\right) = \cos\left(\frac{2\pi kn}{N}\right) - j\sin\left(\frac{2\pi kn}{N}\right).$$

So the signal $\boldsymbol{x}[n]$ is approximated by a combination of cosine and complex sinusoidal functions.

Notes

Negative Frequencies

- Negative frequencies are the mirror image of the frequencies in the signal.
- How to represent a real signal (i.e. no $j = \sqrt{-1}$) with a combination of cosine and complex sinusoidal functions?
- Only use the real part of the complex exponential.

Example

Represent $\cos(\Omega n + \theta)$ with complex exponentials where $\Omega = \frac{2\pi k}{N}$.

Notes			

Negative Frequencies

Example Representing $\cos(\Omega n + \theta)$ with complex exponentials:

$$\begin{split} &A\cos\left(\Omega n + \theta\right) \\ &= &\frac{A}{2}\exp\left(j\Omega n + \theta\right) + \frac{A}{2}\exp\left(-j\Omega n + \theta\right) \end{split}$$

- The **positive frequencies** travel anti-clockwise
- The **negative frequencies** travel clockwise
- Positive and negative frequencies project same value onto real (Re) axis.

Complex Plane:

Notes

where
$$\Omega = \frac{2\pi k}{N}$$
.

Sampling Theorem

An analogue signal x(t) with bandwidth B is uniquely specified by its samples $x[n]=x(mT),\ m=0,\pm 1,\pm 2,...$ with sampling period $T=1/f_s$ and sampling frequency f_s where

$$f_s > 2B$$
.

Sampled Signal

The sampled signal can be described by a train of unit impulse functions:

$$x_{\delta}(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT)$$

here we are using the unit impulse function:

$$\delta(t-nT) = \left\{ \begin{array}{ll} 1 & \text{when} & t=nT \\ 0 & \text{elsewhere.} \end{array} \right.$$

The analogue signal x(t) can be multiplied by $x_\delta(t)$ to get

$$x[n] = x(t)x_{\delta}(t) = \sum_{n=-\infty}^{\infty} x(t)\delta(t-nT)$$

$$= \sum_{n=-\infty}^{\infty} x(nT)\delta(t-nT),$$

using sifting property of delta function $x(t)\delta(t-nT)=x(nt)\delta(t-nT).$

Votes			
Votes			
TO			

Fourier Transform

Fourier transform:

$$X(f) = \int\limits_{-\infty}^{\infty} x(t) \exp{(-j2\pi f t)} \, \mathrm{d}t.$$

Inverse Fourier transform:

$$x(t) = \int_{-\infty}^{\infty} X(f) \exp(-j2\pi f t) df.$$

Sampling in Frequency Domain

Fourier Transform of impulse train:

$$X_{\delta}(f) = \frac{1}{T} \sum_{n} \delta(f - nf_s)$$

Fourier (or inverse) Transform of multiplication is convolution, ... Fourier transform of $x(t)\times x_\delta(t)$ is

$$X(f) * \delta(f - nf_s)$$

Convolution of any function e.g. ${\cal G}(f)$ with impulse function shifts ${\cal G}(f)$:

$$G(f) * \delta(f - nf_s) = G(f - nf_s).$$

Using above we get:

$$X(f) * X_{\delta}(f) = X(f) * \left[\frac{1}{T} \sum_{n=-\infty}^{\infty} \delta(f - nf_s) \right]$$
$$= \frac{1}{T} \sum_{n=-\infty}^{\infty} X(f - nf_s)$$

Notes

Notes

	_
	_
	_
	_

Sampling in Frequency Domain

 \therefore Fourier Transform of sampling process $x(t)x_{\delta}(t)$:

$$X(f)*X_{\delta}(f) = \frac{1}{T} \sum_{n=-\infty}^{\infty} X(f - nf_s)$$

shows spectrum of x(t) is repeated at intervals spaced by nf_s .

For analogue signal with frequency f_i , the sampled signal's frequency content for the positive frequency will be

...,
$$f_i - 2f_s$$
, $f_i - f_s$, f_i , $f_i + f_s$, $f_i + 2f_s$, ...

Notes

-		

Sampling in Frequency Domain

Sampling images of negative frequencies of signal:

$$\dots, -2f_s - f_i, -f_s - f_i, -f_i, f_s - f_i, 2f_s - f_i, \dots$$

Combining positive and negative frequencies:

$$((f_i + n \times f_s), (n \times f_s - f_i) : \text{ for } -\infty \le n \le \infty)$$

Notes

Reconstruction

The frequency images of the original signal have to be removed when the analogue signal is reconstructed.

A reconstruction filter can help remove the noisy components that may otherwise manifest as a series of steps.

Notes

Sampled Signals: Summary

Digital signal processing systems perform:

- filtering
- analogue to digital conversion
- signal processing function
- digital to analogue conversion
- filtering

Analogue to Digital Conversion (ADC) and Digital to Analogue Conversion (DAC) are important steps that convert and reconstruct an analogue signal to and from the digital domain. Aliasing errors may occur if the signal is not sampled frequently enough.

Furthermore the digital representation is ambiguous with images of the original signal that need to be removed upon reconstruction to an analogue form.

Notes		