1 Conceitos Fundamentais

1.1 Divisão Euclidiana

Sejam $a,b\in\mathbb{Z}$ com $b\neq 0$, a divisão euclidiana de a por b consiste na identidade

$$a = b \cdot q + r \qquad q, r \in \mathbb{Z} \, \wedge \, 0 \leq r < b$$

1.2 Divisibilidade

Sejam $a, b \in \mathbb{Z}$ com $b \neq 0$, dizemos que b divide a, denotando $b \mid a$, se

$$\exists c \in \mathbb{Z}: \ a = b \cdot c$$

Propriedades:

• $\forall a \in \mathbb{Z} : a \mid 0$

• $\forall a \in \mathbb{Z} : \pm 1 \mid a$

• $\forall a \in \mathbb{Z} : \pm a \mid a$

• $\forall c \in \mathbb{Z} : a \mid b \implies ac \mid bc$

• $\forall x, y \in \mathbb{Z} : a \mid b \land a \mid c \implies a \mid (bx + cy)$

• $\forall a, b \in \mathbb{Z} : a \mid b \land b \mid a \implies b = \pm a$

1.3 Máximo Divisor Comum

Sejam $a, b \in \mathbb{Z}$ com $(a, b) \neq (0, 0)$, o máximo divisor comum de a e b é um inteiro d tal que

$$d \mid a \wedge d \mid b$$

$$\forall d': d' \mid a \wedge d' \mid b \implies d' \mid d$$

<u>Lema</u>: Sejam $a, b \in \mathbb{Z}$ com $(a, b) \neq (0, 0)$, e $q, r \in \mathbb{Z}$ com $a = b \cdot q + r$. O mdc(a, b), se existe, é igual a mdc(b, r).

Identidade de Bézout: Sejam $a, b \in \mathbb{Z}$ com $(a, b) \neq (0, 0)$, então

$$\exists \alpha, \beta \in \mathbb{Z} : \alpha \cdot a + \beta \cdot b = \mathrm{mdc}(a, b)$$

1

Lema de Euclides: Sejam $a, b, c \in \mathbb{Z}$ com $a, b, c \neq 0$. Se a|bc e $\mathrm{mdc}(a, b) = 1$, então a|c.

Propriedades: Sejam $a, b, c \in \mathbb{Z}$ com $a, b, c \neq 0$

• $mdc(a, c) = mdc(b, c) \iff mdc(ab, c) = 1$

• $\operatorname{mdc}(a,b) = d \iff \operatorname{mdc}\left(\frac{a}{d}, \frac{b}{d}\right) = 1$

• $a \mid c \land b \mid c \implies \left(\frac{ab}{\operatorname{mdc}(a,b)}\right) \mid c$

• $(a \mid c \land b \mid c \land \operatorname{mdc}(a, b) = 1) \implies ab \mid c$

1.4 Mínimo Multiplo Comum

Sejam $a, b \in \mathbb{Z}$ com $(a, b) \neq (0, 0)$, o mínimo multiplo comum de $a \in b$ é um inteiro m tal que

$$a \mid m \wedge b \mid m$$

$$\forall\,m':\ a\mid m'\,\wedge\,b\mid m'\implies m\mid m'$$

$$\underline{\text{Teorema:}} \ \forall \, a,b \in \mathbb{Z}, (a,b) \neq (0,0): \ \operatorname{mmc}(a,b) = \frac{ab}{\operatorname{mdc}(a,b)}$$

1.5 Fatoração

<u>Lema</u>: Seja $n=ab\in\mathbb{Z}$ com $n\neq 0,\pm 1,$ então $a\leq \lfloor \sqrt{n}\rfloor \ \lor\ b\leq \lfloor \sqrt{n}\rfloor.$

1.6 Números Primos

Um número p é primo se os únicos divisores de p são ± 1 e $\pm p$.

Lema: Seja $p \in \mathbb{Z}$ primo, e $x_1, \ldots, x_n \in \mathbb{Z}$.

Se $p \mid (x_1 \cdot \ldots \cdot x_n)$, então $p \mid x_i$ para ao menos algum $i \in [1, n] \subset \mathbb{Z}$.

<u>Teorema</u>: Qualquer número natural $n \ge 2$ é produto de um conjunto <u>único</u> e finito de números primos.

Corolário: Seja $a \in \mathbb{Z}$ com $a \neq 0, \pm 1$.

Sejam $p_1, \ldots, p_n \in \mathbb{Z}$ primos.

Sejam $h_1, \ldots, h_n \in \mathbb{Z}$ maiores que 0.

a pode ser escrito como $a = \pm \left(p_1^{h_1} \cdot \ldots \cdot p_n^{h_n} \right)$

Corolário: Seja $a, b \in \mathbb{Z}$ com $a \in b \neq 0, \pm 1$.

Sejam $\forall i: h_i, k_i \geq 0, e p_1, \dots, p_n \in \mathbb{Z}$ primos tais que

$$a = \pm \ p_1^{h_1} \cdot \ldots \cdot p_n^{h_n}$$

$$b = \pm p_1^{k_1} \cdot \ldots \cdot p_n^{k_n}$$

Então:

• $mdc(a, b) = p_1^{d_1} \cdot \ldots \cdot p_n^{d_n}$, onde $d_i = min(h_i, k_i)$

• $\operatorname{mmc}(a,b) = p_1^{d_1} \cdot \ldots \cdot p_n^{d_n}$, onde $d_i = \operatorname{max}(h_i, k_i)$

Teorema: Há um número infinito de números primos.

Corolário: Seja $p \in \mathbb{Z}$ primo com p > 0, então $\sqrt{p} \in \mathbb{Q}$.

Teorema: Não há forma polinomial que gere apenas números primos.

<u>Teorema</u>: Sejam $a, b \in \mathbb{N}^+$ com $\mathrm{mdc}(a, b) = 1$, então a sequência $(an + b)_{n=0}^{\infty}$ contém infinitos primos.

A função para o número de primos menores que $x \in \mathbb{R}$ é

$$\pi(x) \sim \frac{x}{\ln x}$$

1.6.1 Números de Fermat

Os números de Fermat são dados pela função

$$F: \mathbb{N}^+ \to \mathbb{N}^+$$
$$F(n) = 2^{2^n} + 1$$

Teorema: Nem todos números de Fermat são primos.

Teorema: Seja $a \ge 2 \in \mathbb{Z}$ e $a^2 + 1$ primo. Então a é par e $n = 2^m$.

Teorema: $\forall k \in \mathbb{Z}, n \in \mathbb{N}^+ : \operatorname{mdc}(F(n), F(n+k)) = 1.$

Ou seja, todos números de Fermat são co-primos entre si.

Corolário: Como $F(1), \ldots, F(n)$ são co-primos, entre seus fatores há ao menos n números primos distintos.

1.6.2 Números de Mersenne

Os números de Mersenne são dados pela função

$$M: \mathbb{P} \to \mathbb{N}^+$$
$$M(p) = 2^p - 1$$

Teorema: Nem todos números de Mersenne são primos.

Teorema: Seja $a \in \mathbb{Z}$ com $a \ge 1$. Então $a^n - 1$ é primo se e somente se a = 2 e n é primo.

2 Congruências

2.1 Relações de Equivalência

Uma relação sobre um conjunto A é um subconjunto $R\subset A\times A$. Dizemos que aRb se $(a,b)\in R$.

Uma relação pode ter as seguintes propriedades:

- Reflexividade: se $\forall a \in A : aRa$.
- Simetria: se $\forall a, b \in A : aRb \implies bRa$.
- Transitividade: $\forall a, b, c \in A : aRb \land bRc \implies aRc$.
- Antissimetria: se $\forall a, b \in A : aRb \land bRa \implies a = b$.
- Totalidade: se $\forall a, b \in A : aRb \oplus bRa$.

Definição: Uma relação R sobre A é de equivalência se ela é reflexiva, simétrica e transitiva.

2.2 Classes de Equivalência

Seja $a \in A$ e R uma relação de equivalência sobre A. Definimos a classe de equivalência de a como

$$[a]_R := \{x \in A \mid aRx\} = \{x \in A \mid xRa\}$$

Notação: $\bar{a} := [a]_m$

Propriedades:

- $\forall a \in A : a \in [a]_R$
- $[a]_R = [b]_R \iff aRb$
- $[a]_R \cap [b]_R = \emptyset \iff a Rb$
- As classes de equivalência de um conjunto formam uma partição deste: $\forall A: A = \bigsqcup_{a \in A} [a]_R$

Seja R uma relação de equivalência sobre A. Denotamos o conjunto das classes de equivalência de R

$$A_{/R} := \{ [a]_R \mid a \in A \}$$

2.3 Congruência

Seja $m \in \mathbb{Z}$ com m > 1. Dizemos que a é congruente b módulo m se $m \mid (a - b)$. Denota-se

$$a \equiv_m b$$

Teorema: Para qualquer m > 1, \equiv_m forma uma relação de equivalência sobre \mathbb{Z} .

- $\forall a \in \mathbb{Z} : a \equiv_m a$.
- $\forall a, b \in \mathbb{Z} : a \equiv_m b \implies b \equiv_m a$.
- $\forall a, b, c \in \mathbb{Z} : a \equiv_m b \land b \equiv_m c \implies a \equiv_m c$.

Propriedades:

- $a \equiv_m 0 \iff m \mid a$.
- $a \equiv_m b \iff -a \equiv_m -b$.
- $a \equiv_m b \wedge a' \equiv_m b' \implies (a+a') \equiv_m (b+b').$
- $a \equiv_m b \wedge a' \equiv_m b' \implies (a \cdot a') \equiv_m (b \cdot b').$
- $\forall k \neq 0 \in \mathbb{Z} : a \equiv_m b \iff ka \equiv_m kb$.

<u>Teorema</u>: Seja $m \in \mathbb{Z}$ com m > 1. Então $\mathbb{Z}_{/m} = \{[0]_m, [1]_m, \dots [m-1]_m\}$

Portanto, $|\mathbb{Z}_{/m}| = m$.

 $\underline{\text{Corolário}}\text{: Seja }p(x)\text{ um polinômio com coeficientes inteiros. Então }a\equiv_{m}b\implies p(a)\equiv_{m}p(b).$

2.3.1 Inverso Aritmético

Sejam $a, n \in \mathbb{Z}$. O inverso mod n de a é um número a' tal que

$$a \cdot a' \equiv_n 1$$

Teorema: O inverso de a existe se e somente se mdc(a, n) = 1.

2.3.2 Equações Lineares de Congruência

Sejam $a, b, n \in \mathbb{Z}$ com $n \neq 0$. Uma equação linear de congruência é da forma

$$ax \equiv_n b$$

Duas equações lineares de congruência são equivalentes se o conjunto solução de ambas é o mesmo.

<u>Teorema</u>: Uma equação linear de congruência $ax \equiv_n b$ possui solução inteira se e somente se

$$mdc(a, n) \mid b$$

Se a equação possui uma ou mais soluções inteiras, e seja d = mdc(a, n). Então, esta equação é equivalente à equação reduzida

$$\frac{a}{d} \cdot x \equiv_{\frac{n}{d}} \frac{b}{d}$$

Seja $ax \equiv_n b$ uma equação de congruência reduzida (mdc(a, n) = 1). Seja a' um inverso aritmético mod n de a.

Então, a equação é equivalente a

$$x \equiv_n a \cdot a'$$

3 Resíduo

Seja $n \in \mathbb{N}^*$ e $a \in \mathbb{Z}$. O resíduo r de $a \mod n$ é o resto da divisão euclidiana de a por n.

$$r \equiv_n a$$

Portanto, o resíduo é único e mínimo.

4 Sistemas Lineares de Congruência

Um sistema linear de equações de congruência é do tipo

$$\begin{cases} a_1 \cdot x \equiv_{n_1} b_1 \\ \vdots \\ a_s \cdot x \equiv_{n_s} b_s \end{cases}$$

Dizemos que o sistema é compatível se ele possuir ao menos uma solução inteira.

Se um sistema é compatível, então todas suas equações são compatíveis. Então

$$\forall i \in [1, s] : \operatorname{mdc}(a_i, n_i) \mid b_i$$

Portanto, o sistema compatível é equivalente ao sistema

$$\begin{cases} x \equiv_{n'_1} b_1 \\ \vdots & \text{onde } n'_i = \frac{n_i}{\text{mdc}(a_i, n_i)} \\ x \equiv_{n'_s} b_s \end{cases}$$

<u>Teorema</u>: Sejam $m, n \in \mathbb{Z}$ co-primos. A congruência $x \equiv_{(m \cdot n)} a$ é equivalente ao sistema chinês

$$\begin{cases} x \equiv_m a \\ x \equiv_n a \end{cases}$$

5 Anéis

Seja A um conjunto. Uma operação binária * sobre A é uma função

$$*: A \times A \rightarrow A$$

Uma operação binária pode ter as seguintes propriedades:

- $\forall a, b, c \in A : a * (b * c) = (a * b) * c$ (associativa)
- $\exists \lambda \in A, \forall a \in A : a * \lambda = \lambda * a = a$ (elemento neutro)
- $\forall a \in A, \exists a' \in A : a * a' = a' * a = \lambda$ (inverso)
- $\forall a, b \in A : a * b = b * a$ (comutatividade)

Definição: Um conjunto A com operações $+ e \cdot é$ um anel comutativo unitário se

- + e · são associativos, comutativos e possuem elemento neutro.
- + possui inverso.

Se, além disso, $(A, +, \cdot)$ é tal que (A^*, \cdot) possui inverso, então dizemos que A é um corpo.

5.1 Anéis em \mathbb{Z}

Podemos definir as operações + e \cdot para as classes de equivalência de qualquer m sobre os inteiros

$$\forall [a]_m, [b]_m \in \mathbb{Z}_{/m} : [a]_m + [b]_m := [a+b]_m$$

$$\forall [a]_m, [b]_m \in \mathbb{Z}_{/m} : [a]_m \cdot [b]_m := [a \cdot b]_m$$

Teorema: $(\mathbb{Z}_{/m}, +, \cdot)$ é um anel comutativo unitário $\forall m \in \mathbb{Z}$.

Teorema: Seja $\bar{a} \cdot \bar{c} = \bar{b} \cdot \bar{c}$ em $Z_{/m}$. Se c e m são co-primos, então $\bar{a} = \bar{b}$

Lema: Seja $(A, +, \cdot)$ um anel comutativo unitário. O inverso de um de um elemento $a \in A$, se existe, é único.

5.1.1 Conjunto das Unidades

O conjunto das unidades de $\mathbb{Z}_{/m}$ são os elementos de $\mathbb{Z}_{/m}$ que possuem um inverso multiplicativo

$$\mathcal{U}(\mathbb{Z}_{/m}) = \left\{ \bar{a} \in \mathbb{Z}_{/m} \mid \exists \, \bar{a}' \in \mathbb{Z}_{/m} : \bar{a} \cdot \bar{a}' = \bar{1} \right\}$$

Teorema: $(\mathcal{U}(\mathbb{Z}_{/m}), \cdot)$ é um grupo comutativo.

<u>Teorema</u>: $\bar{a} \in \mathcal{U}(\mathbb{Z}_{/m})$ se e somente se a e m são co-primos.

5.1.2 Divisores de Zero

Um elemento $a \in A^*$ de um anel $(A, +, \cdot)$ é um divisor de zero se

$$\exists b \in A^*: \ a \cdot b = 0$$

<u>Teorema</u>: Se $\bar{a} \in \mathbb{Z}_{/m}$ é uma unidade, então \bar{a} não é divisor de zero.

5.1.3 Teoremas

Corolário: Seja $m \geq 2 \in \mathbb{Z}$. As seguintes afirmações são equivalentes:

- $(\mathbb{Z}_{/m},+,\cdot)$ é um corpo, ou seja: $\mathcal{U}(\mathbb{Z}_{/m})=\mathbb{Z}_{/m}\setminus\{\bar{0}\}$
- $(\mathbb{Z}_{/m},+,\cdot)$ não tem divisores de zero.
- m é primo

<u>Lema</u>: Seja p primo. Em $\mathbb{Z}_{/p}$, a equação $x^2=\bar{1}$ tem como únicas soluções $\pm\bar{1}$.

<u>Teorema de Wilson</u>: Seja $n>1\in\mathbb{Z}$. Então $n>0\in\mathbb{P}\iff (n-1)!\equiv_n-1$.

5.1.4 Pequeno Teorema de Fermat

Seja $p>0\in\mathbb{P}, a\in\mathbb{Z}.$ Então

$$a^p \equiv_p a$$

Corolário: Seja $p > 0 \in \mathbb{P}, a \in \mathbb{Z}$ com $\mathrm{mdc}(p, a) = 1$. Então

$$a^{p-1} \equiv_p 1$$

5.1.5 Teorema de Euler-Fermat

Seja $a, n \in \mathbb{Z}$ com $n \geq 2$ e mdc(a, n) = 1. Então

$$\varphi(n) = \left| \left\{ k \mid \forall \, n > 0 \in \mathbb{Z} : \mathrm{mdc}(k, n) = 1 \right\} \right|$$
$$a^{\varphi(n)} \equiv_n 1$$