Урок 13. Спряжені оператори

В задачах про спряжені оператори використовуються факти про загальний вигляд функціонала в певних просторах.

Задача 13.1. Нехай $1 і <math>\frac{1}{p} + \frac{1}{q} = 1$. Тоді для будь-якої функції $\phi \in L_p[a,b]$

визначений лінійний неперервний функціонал f , заданий на $L_p \big[a, b \big]$, який можна подати у вигляді

$$f(x) = \int_{a}^{b} \varphi(t) f(t) dt, \qquad (13.1)$$

i

$$||f|| = ||\varphi||_{L_a[a,b]}.$$

I навпаки, для кожного функціонала $f \in L_p^*$ існує функція $\varphi \in L_p[a,b]$, для якої виконується рівність (13.1), тобто між просторами L_p^* і L_q існує ізометрія, а значить, L_q є спряженим простором до L_p (Без доведення.)

Задача 13.2. Нехай f — лінійний неперервний функціонал, заданий на l_p , $1 \le p < \infty$. Тоді для довільної послідовності $a = \left\{a_n\right\}_{n=1}^\infty \in l_q$ співвідношення

$$f(x) = \sum_{i=1}^{\infty} a_i x_i , \qquad (13.2)$$

визначає лінійний неперервний функціонал на l_n і

$$||f|| = ||a||_{I}$$
,

де $\frac{1}{p}+\frac{1}{q}=1$. І навпаки, для кожного $f\in l_p^*$ існує послідовність $a=\left\{a_n\right\}_{n=1}^\infty\in l_q$, для якої виконується рівність (13.2), тобто між просторами l_p^* і l_q існує ізометрія, а значить, l_q є спряженим простором до l_p .

Доведення. Нехай $a = \{a_n\}_{n=1}^{\infty} \in l_q$, а функціонал f задається співвідношенням

$$f(x) = \sum_{i=1}^{\infty} a_i x_i .$$

3 нерівності Гьольдера випливає, що

$$|f(x)| = \left|\sum_{n=1}^{\infty} a_n x_n\right| \le ||a||_{l_q} ||x||_{l_p}, \text{ de } x = \{x_n\}_{n=1}^{\infty} \in l_p.$$

Отже,

$$||f|| \le ||a||_l$$
.

Оскільки функціонал $f \in \pi$ лінійним, достатньо довести протилежну нерівність

$$||f|| \ge ||a||_{l_a}$$
.

Для кожного $m \in \Gamma$ визначимо послідовність

$$x_n^{(m)} = \begin{cases} \operatorname{sgn} a_n \left| a_k \right|^{q-1}, & \text{якщо } n \leq m, \\ 0, & \text{якщо } n > m. \end{cases}$$

Внаслідок рівності p(q-1) = q, маємо

$$\|x^{(m)}\|_{l_p} = \left(\sum_{n=1}^{\infty} |x_n^{(m)}|^p\right)^{\frac{1}{p}} = \left(\sum_{n=1}^{m} |a_n|^q\right)^{\frac{1}{p}}$$

i

$$f(x^{(m)}) = \sum_{n=1}^{m} \operatorname{sgn} a_n |a_n|^{q-1} a_n = \sum_{n=1}^{m} |a_n|^q$$
.

За означенням норми функціонала

$$|f(x^{(m)})| \le ||f||_{l_p^*} ||x^{(m)}||_{l_p}$$

маємо

$$\sum_{n=1}^{m} |a_n|^q \le ||f||_{l_p^*} \left(\sum_{n=1}^{m} |a_n|^q\right)^{1/p}.$$

Звідси випливає, що

$$\left(\sum_{n=1}^{m} |a_n|^q\right)^{1/q} \le \|f\|_{l_p^*} .$$

Переходячи до границі при $m \to \infty$, маємо, що $a \in l_a$.

Для того щоб довести ізометрію між просторами l_q і l_q^* , покажемо,що кожний функціонал $f \in l_p^*$ можна подати у вигляді

$$f(x) = \sum_{i=1}^{\infty} a_i x_i .$$

Виберемо послідовності $e_n = \left(0,0,...0,\underbrace{1}_{n},0,...\right), n = 1,2,....$

Покажемо, що якщо $x = \left\{x_n\right\}_{n=1}^{\infty} \in l_p$, то

$$x = \sum_{n=1}^{\infty} x_n e_n .$$

Дійсно, якщо

$$S_m = \sum_{n=1}^m x_n e_n ,$$

то

$$||x^{(m)} - S_m||_{l_p}^p = \sum_{n=1}^{\infty} |x_n|^p.$$

Оскільки $x\in l_p$, то $\sum_{n=m+1}^\infty \left|x_n\right|^p\to 0$ при $m\to\infty$. Отже, $S_m\to x$ при $m\to\infty$. Таким чином,

$$x = \sum_{n=1}^{\infty} x_n e_n .$$

Оскільки f — лінійний неперервний функціонал, маємо

$$f(S_m) \to f(x)$$
 при $m \to \infty$

i

$$f(S_m) = \sum_{n=1}^m a_n x_n.$$

Отже,

$$f(x) = \sum_{i=1}^{\infty} a_i x_i$$

і ізометрію установлено.

Задача 13.3. Знайдіть оператор, спряжений до оператора $A: L_2[0,1] \to L_2[0,1]$, задається формулою

$$Ax(t) = \int_{0}^{t} x(s) ds.$$

Доведення. За теоремою 13.1. будь-який функціонал g , заданий на $L_2 \big[0,1 \big]$, можна записати у вигляді

$$g(x) = \int_{0}^{1} g(s)x(s)ds.$$

Тоді

$$g(Ax) = \int_{0}^{1} g(s) \left(\int_{0}^{s} x(\tau) d\tau \right) ds.$$

Поміняємо порядок інтегрування:

$$g(Ax) = \int_{0}^{1} \left(\int_{\tau}^{1} g(s) ds \right) x(\tau) d\tau.$$

Оскільки

$$f(x) = \int_{0}^{1} f(\tau)x(\tau)d\tau,$$

i

$$f(x) = g(Ax),$$

маємо

$$f(t) = \int_{0}^{1} g(s) ds,$$

3 іншого боку,

$$f = A^*g$$

Таким чином.

$$A^* y(t) = \int_t^1 y(\tau) d\tau . \blacksquare$$

Задача 13.4. Знайдіть оператор, спряжений до оператора $A: L_2\left[0,1\right] \to L_2\left[0,1\right]$, що задається формулою

$$Ax(t) = \int_{0}^{1} \sin(t^{2}s) x(s) ds.$$

Доведення. Із задачі 13.1 випливає, що лінійний неперервний функціонал у просторі $L_2 \big[0,1 \big]$ можна подати у вигляді

$$g(Ax) = (y, Ax) = \int_0^1 Ax(t)y(t)dt = \int_0^1 \left(\int_0^1 \sin(t^2s)x(s)ds\right)y(t)dt,$$

де $\|g\| = \|y\|_{L_2[a,b]}$.

Поміняємо порядок інтегрування.

Функціональний аналіз, спеціальність "Прикладна математика" (2012)

$$(y,Ax) = \int_0^1 \left(\int_0^1 \sin(t^2 s) y(t) dt \right) x(s) ds = (x,A^*y)$$

Отже,

$$A^*y(s) = \int_0^1 \sin(t^2s) y(t) dt.$$

Оператор A^* діє з $L_2[0,1]$ (це самоспряжений простір) в $L_2[0,1]$ і є обмеженим. **Задача 13.5.** Знайдіть оператор, спряжений до оператора $A: l_1 \to l_1$, задається формулою

$$Ax = (x_1 - x_2, x_1 + x_2, x_3, x_4, ...).$$

Доведення. Із задачі 13.2 випливає, що будь-який функціонал $g ∈ l_1^*$ можна записати у вигляді

$$g(x) = \sum_{i=1}^{\infty} g_i x_i.$$

Тоді

 $g(Ax) = g_1(x_1 - x_2) + g_2(x_1 + x_2) + g_3x_3 + \dots = (g_1 + g_2)x_1 + (-g_1 + g_2)x_2 + g_3x_3 + \dots$ Із рівності

$$f(x) = g(Ax)$$

отримуємо

$$f_1 = g_1 + g_2,$$

 $f_2 = -g_1 + g_2,$
 $f_i = g_i, i = 3, 4, ...$

Оскільки

$$f = A^*g,$$

оператор $A^*: l_{\scriptscriptstyle \infty} \to l_{\scriptscriptstyle \infty}$ задається формулою

$$A^*y = (y_1 + y_2, -y_1 + y_2, y_3, ...).$$