T(n) = 3T
$$\left(\frac{n}{2}\right) + n^2$$

$$a = 3, b = 2 \qquad f(n) = n^2$$

$$n \log_6 a = n \log_8 3$$

$$companing \qquad n \log_2 3 \qquad and \qquad n^2$$

$$n^{\log_2 3} < n^2$$
 (case 3)

: according to master's knearem:
$$T(n) = \theta(n^2)$$

(2)
$$T(n) = 4T \left(\frac{n}{2}\right) + n^2$$

$$a = 4, b = 2$$

$$n (ag) = n^{(ag)} = n^2 = f(n) (ease 2)$$

(3)
$$T(n) = T(n/2) + 2^n$$

 $a = 1, b = 2$
 $n^{(oq)} = n^0 = 1$
 $1 < 2^n$ (case 3)

According to masters theorem
$$T(n) = \Theta(2^n)$$

$$\P \qquad T(n) = 2^n T\left(\frac{n}{2}\right) + n^n$$

.. Masteris theorem is not applicable as a function

(5)
$$\tau(n) = (\theta(n/q) + n)$$

$$a = 16, b = 4 \quad f(n) = n$$

$$n^{\log_2 n} = n^{\log_2 2 n} = n^2, f(n) \neq n^2$$

$$\tau(n) = \theta(n^2 \log_2 n)$$

(6) $T(n) = 2T(n/2) + n \log n$ a = 2, b = 2, $f(n) = n \log n$ $n \log_{2} a = n \log_{2} 2 = n$ f(n) > nAcc to masters T(n) = 0 (n log n) $T(n) = 2T(n_{y}) + n^{0.51}$ a = 2, b = 4, $f(n) = n^{0.51}$ $n \log_{2} a = n \log_{2} 2 = n^{0.5}$ $n^{0.5} < f(n)$ Acc to masters method T(n) = 0 ($n^{0.51}$) $f(n) = as(n/2) + \frac{1}{n}$

as a<1: Master's Method not applicable

(i) $T(n) = 16 \dot{\tau} (n/4) + n/6$ a = (6, b = 4) f(n) = n/6 $n \cos a = n \cos a = n^2$ $\therefore According to master,$ T(n) = 0 (n/6)(i) $T(n) = 47 (n/2) + \log n$

a=4, b=2 f(n)=logn $n^{log_ba}=n^{log_24}=n^2$ $n^2>f(n)$ According to matters $T(n)=O(n^2)$

Anushk

(12) T(n)= sgort(n)+ M2+ cog n

: Master's Next applicable as a is not a constant

: acc to master's method thoorem, $T(n) = o\left(n^{\log_2 3}\right)$

(14) $T(n) = 8T(n/3) + \sqrt{3}n$ $a = 3, b = 3, f(n) = \sqrt{n}$ $n \log_3 a = n \log_3 3 = n$ $n > \sqrt{n}$ $\therefore T(n) = O(n)$

(15) T(n) = 4T(n/2) + cn a = 4, b = 2, f(n) = c * n n = 4, b = 2, f(n) = c * n n = 4, b = 2, f(n) = c * n n = 4, b = 2, f(n) = c * n n = 4, b = 2, f(n) = c * n n = 4, b = 2, f(n) = c * n n = 4, b = 2, f(n) = c * n n = 4, b = 2, f(n) = c * nn = 4, b = 2, f(n) = c * n

According to masteri method, T(n) = O(n2)

(6) $T(n) = 3T(n/y) + n\log n$ $a = 3, b = 4, f(n) = n\log n$ $n\log a = n\log 3 = n \cdot 3$ $n^{24} < n\log n$ $Acc + 0 \text{ master's nethod}, T(n) = \Theta(n\log n)$

Amelika

 $T(\eta) = 37 (\eta/3) + (\eta/2)$ a=3, b=3, f(n) = M2 n 6909 = n 6933 = n 0 (n)= 0 (n/2) $T(\eta) = \Theta \left(n(\log \eta) \right)$ $T(n) = 6T(n/3) + n^2 \log n$ a=6,6=3,An)=n2logn n 6969 = n 6956 = n 163 n1.63 \$ < n log n : acc to masteris method T(n) = O(n2ogn) T(n) = 4T (n/2) + mlog n a=4,6=2 ($f(n)=n/\log n$ n696a = n6924 = n8 n>n/ 69n According to masters theorem ((n) = 0 (n2) 7(n) = 647(n(8) - n2cogn (00) Master's theorem is not applicable as f(n) is not increasing function. (21) $T(n) = 77 (n/3) + n^2$ $a = 7, b = 3, f(n) = n^2$ ncog69 = ncog37 = n1.7 $n^{1.4} < n^2 \Rightarrow T(n) = \Theta(n^2)$ (by master's meshod) $T(n) = T(n/2) + n(2 - \cos n)$ Masters suconem unit applicable since negularity condition is isoloted in case 3.

Amslika