▼ 1.) Import the data from CCLE into a new Google Colab file

```
import pandas as pd
from google.colab import drive
import matplotlib.pyplot as plt
drive.mount('/content/gdrive/', force_remount = True)
    Mounted at /content/gdrive/
import sklearn as sk
from sklearn.linear_model import LinearRegression
import statsmodels.api as sm
df = pd.read_csv("/content/gdrive/MyDrive/Econ441B/insurance.csv")
df.loc[df['sex']=='female', 'sex'] = 1
df.loc[df['sex']=='male', 'sex'] = 0
df.loc[df['smoker']=='yes', 'smoker'] = 1
df.loc[df['smoker']=='no', 'smoker'] = 0
df.head()
                                                                   1
                    bmi children smoker
                                             region
                                                         charges
         19
               1 27.900
                                        1 southwest 16884.92400
               0 33.770
                                                      1725.55230
         18
                                        0 southeast
               0 33.000
                                3
         28
                                        0 southeast
                                                      4449.46200
               0 22,705
                                        0 northwest 21984.47061
         33
                                                      3866.85520
        32
               0 28.880
                                        0 northwest
df.loc[df['region']== 'southwest', 'region'] = 0
df.loc[df['region']== 'northwest', 'region'] = 1
df.loc[df['region']== 'southeast', 'region'] = 2
df.loc[df['region']== 'northeast', 'region'] = 3
```

2.) Split the data into 80/20, in/out sample

```
import numpy as np

# every row and every column except for the last one, needs to be in an array for sklearn
data = np.array(df.iloc[:, :-1])

target= np.array(df.iloc[:, -1]) # changed to -3

cut = int((len(data) * .8)//1)

in_data = data[:cut]
out_data = data[cut:]
in_target = target[:cut]
```

→ 3.) Normalize the Data

```
from sklearn import preprocessing

scaler = preprocessing.StandardScaler().fit(in_data)
# making a scaler object that is fit to our in sample data, allows us to scale any data with respect to the mean/sd of sample data
in_data_scale = scaler.transform(in_data)

# scaling our out of sample data based on the in sample data
out_data_scale = scaler.transform(out_data)
```

→ 4.) Get lambda from Lasso cross validation

▼ 5.) Run a lambda regression with that Lambda

```
# use Lasso function/ the alpha above
from sklearn.linear_model import Lasso

mod1 = sk.linear_model.Lasso(alpha = a).fit(in_data_scale, in_target)

coef = mod1.coef_
```

→ 6.) Visualize the coefficients

```
plt.hist(coef)
plt.title('Coefficients Visualized')
plt.xlabel('Coefficients')
plt.ylabel('Region')

# 0 is southwest
# 1 is northwest
# 2 is southeast
#3 is northeast
```


▼ 7.) Interpret the coefficients

In the plot above, region was broken up as such: 0 is southwest, 1 is northwest, 2 is southeast, 3 is northeast. Coefficients with a score less than 1000 were associated with the northeast. Coefficients with scores between 1000 and 2000, between 3000 and 4000, and between 8000 and 9000 were associated with the northwest.

8.) Compare in and out of sample MSE's

```
mod1.predict(np.array(in_data_scale))
     array([25165.72081561, 4111.67312725, 6985.78958892, ...,
           11841.48932999, 11618.73145994, 12554.34362287])
mod1.predict(np.array(out_data_scale))
    array([32986.21227301, 14520.02948007, 3662.30461561, 12114.62425727,
             9888.77478496, 6372.648214 , 10528.91591359, 2421.05429294,
            28839.7208477 , 15927.63497427,
                                            863.27520379, 5700.16014472,
            4864.98739871, 6632.40560948, 14286.22429435, 28829.13566582,
            11789.53587507, 12743.01953297, 16744.39589255,
           34923.08968067, 12042.68110969, 5341.72764788, 26808.48015779,
           12686.61071212, 4452.71331449, 36314.49634992,
                                                           4809.70881489.
           11602.38640984, 5926.09691852, 27119.07929919, 11624.75913734
            8391.26716732, 14489.97823528, 7077.00973455, 12057.37637924,
           10265.67116259, 10021.72039712, 4688.90230071,
                                                           7488,6928644
            12825.64830864, 34230.04490394, 33016.22956642,
                                                           4853.64537152
            2470.81460765, 13032.22051585, 9995.63703699, 29181.66608218,
            31595.7989852 , 3468.91602343, 27201.58043261, 12713.11374767,
            37372.64615687, 6106.52567756, 31322.22579959, 12329.75551131,
            11604.78395058, 9280.29791928, 7517.10108397,
                                                            -737.21138698,
            7634.60634472, 9947.97046638, 15636.47470898,
                                                            7583.84130221,
            6171.02732521, 10885.82225 , 7706.68739799,
                                                            2239.70674643.
             6516.39982714, 26677.58518913, 13085.46550774,
                                                           9810.28660434,
             9668.61331196, 9237.70192577, 11668.99012105, 12763.85370359,
            36862.3185657 , 3609.29720996, 9419.2999362 , 9599.62853347,
            2937.08603496, 14455.53458775, 33753.41080621,
                                                            8812.54343215
            10631.32835315, 5920.97992949, 30498.84468544,
            3521.26406719, 9173.18118121, 10446.07435382, 10886.79816277,
            8608.59691824, 2318.28657257, 8089.8796793,
                                                            5947.75555275.
            15510.24740914, 4141.34161075, 8029.4447984,
            25516.12085816, 31411.09848076, 15716.30676406,
            6517.74877383, 2529.13157531, 32750.58296812,
                                                            7417,67793797
            5536.6846713 \ , \ 29035.75260186, \ 12498.95917205,
                                                            4018.21757058
            4226.27015928, 9863.64253546, 26947.30362642,
            28760.35318764, 14330.03723086, 31144.77498778,
                                                            3045.498387
            7214.43579922, 6454.84788056, 13853.36813165, 11984.68039924,
            3348.56122338, 3082.72529933, 25946.27673358, 9492.6367593,
            8149.38126681, 4996.42945546, 6210.49956346, 13213.08781765,
            4165.3479939 , 12075.9538776 , 25942.67436185, 3496.49350528,
            14658.26415865, 31645.52267021, 29729.76787057, 15037.68275649,
             7599.82466473, 9758.79620989,
                                            321.25194396, 12464.8627062
            5463.25036477, 5552.92012596, 6734.97237331, 8204.29816305,
            34198.23877728, 8505.84398823, 3762.22279666,
                                                            7305.51775472.
             9299.09059563, 24691.02177627,
                                            7101.77459124,
                                                            9651.4068841
            4544.09342551, 11420.40563813, 13501.65605656, 12933.01178218,
            36419.56680593, 23609.55354276, 10844.70663798, 10400.37481619,
            9401.78668481, 4855.54083743, 11622.92290616, 12008.46398649
```

```
6339.64156291, 8336.15798256, 38436.68220386, 40002.4506467, 1863.51235005, 6113.68732043, 3679.84266914, 4707.29123898, 8766.95272429, 7165.21418905, 5661.37784181, 30871.09325685, 27445.26128871, -381.91982962, 25237.97318062, 8884.89356503, 6017.2249374, 10724.71846508, 13582.79099494, 11141.66480911, 14976.16504573, 9324.07929832, 3538.55347258, 7290.8403024, 8165.77400852, 8907.5631135, 12187.11420851, 35491.12974167, 11782.4297296, 27810.91551648, 3865.00833426, 9299.89006032, 6000.91517322, 5618.2236322, 9122.7248108, 6536.11157541, 26972.05206453, 10268.90719162, 3964.80585797, 5961.14822345, 31523.41757929, 3943.03029485, 1176.78697955, 32843.35732354, 23526.92907365, 3004.3477735, 38450.04063874, 8412.1155594, 1582.63445599, 5973.97091656, 29423.61015808, 10771.86682672, 5472.29261909, 27238.25490016, 1433.24496651, 9183.04846802, 11414.1403745, 820.90305628, 1699.48711019, 4762.69752916, 6139.10618232, 1832.68481449, 32697.16857718, 37849.7128077,
```

Colab paid products - Cancel contracts here

✓ 0s completed at 4:22 PM
