课后作业四

- 1. user.txt 数据中有一些同学的性别、年龄、身高等数据:
- 读取数据,按性别分别计算平均身高,平均年龄

```
user <- read.table('user.txt', header = T)
user
cat('Female average age is', mean(user[which(user$Sex=='F'),]$Age), '\n')
cat('Female average height is', mean(user[which(user$Sex=='F'),]$Height), '\n')
cat('Male average age is', mean(user[which(user$Sex=='M'),]$Age), '\n')
cat('Male average height is', mean(user[which(user$Sex=='M'),]$Height), '\n')</pre>
```

A data.frame: 19 × 4

Name	Sex	Age	Height
<chr></chr>	<chr></chr>	<int></int>	<dbl></dbl>
Alice	F	13	56.5
Becka	F	13	65.3
Gail	F	14	64.3
Karen	F	12	56.3
Kathy	F	12	59.8
Mary	F	15	66.5
Sandy	F	11	51.3
Sharon	F	15	62.5
Tammy	F	14	62.8
Alfred	М	14	69.0
Duke	М	14	63.5
Guido	М	15	67.0
James	М	12	57.3
Jeffrey	М	13	62.5
John	М	12	59.0
Philip	М	16	72.0
Robert	M	12	64.8
Thomas	М	11	57.5
William	M	15	66.5

```
Female average age is 13.22222
Female average height is 60.58889
Male average age is 13.4
Male average height is 63.91
```

• 转换成列表,并利用 sapply 函数计算平均年龄和身高

```
user <- read.table('user.txt', header = T)
data <- as.list(user[,3:4])
data
sapply(data, mean)</pre>
```

\$Age

```
13 · 13 · 14 · 12 · 12 · 15 · 11 · 15 · 14 · 14 · 14 · 15 · 12 · 13 · 12 · 16 · 12 · 11 · 15

$Height

56.5 · 65.3 · 64.3 · 56.3 · 59.8 · 66.5 · 51.3 · 62.5 · 62.8 · 69 · 63.5 · 67 · 57.3 · 62.5 · 59 · 72 · 64.8 · 57.5 · 66.5
```

Age: 13.3157894736842 Height: 62.3368421052632

• 按照身高分为两个等级 A, B, 并对其姓名进行排序

```
user <- read.table('user.txt', header = T)
A <- user[which(user$Height >= 60.0),]
A[order(A[,1]),]
B <- user[which(user$Height < 60.0),]
B[order(B[,1]),]</pre>
```

A data.frame: 12 × 4

	Name	Sex	Age	Height
	<chr></chr>	<chr></chr>	<int></int>	<dbl></dbl>
10	Alfred	M	14	69.0
2	Becka	F	13	65.3
11	Duke	M	14	63.5
3	Gail	F	14	64.3
12	Guido	М	15	67.0
14	Jeffrey	M	13	62.5
6	Mary	F	15	66.5
16	Philip	M	16	72.0
17	Robert	M	12	64.8
8	Sharon	F	15	62.5
9	Tammy	F	14	62.8
19	William	М	15	66.5

A data.frame: 7 × 4

	Name	Sex	Age	Height
	<chr></chr>	<chr></chr>	<int></int>	<dbl></dbl>
1	Alice	F	13	56.5
13	James	M	12	57.3
15	John	M	12	59.0
4	Karen	F	12	56.3
5	Kathy	F	12	59.8
7	Sandy	F	11	51.3
18	Thomas	M	11	57.5

2. 编写一个函数,提取输入矩阵的奇数行和偶数列构成的子矩阵

```
1
    myMatrix <- function(matrix0){</pre>
 2
         a <- c()
 3
         for (i in 1:ncol(matrix0)) {
 4
             if (i %% 2 == 0) {
 5
                  for (j in 1:nrow(matrix0)) {
 6
                      if (j %% 2 == 1) {
 7
                          a <- c(a, matrix0[j,i])</pre>
 8
9
                  }
             }
10
11
12
         matrix1 <- matrix(a,nrow = floor(nrow(matrix0) / 2))</pre>
13
         return (matrix1)
14
    b \leftarrow matrix(c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16), nrow = 4)
15
16
17
    b <- myMatrix(b)</pre>
18
    b
```

A matrix: 4×4 of type dbl

1	5	9	13
2	6	10	14
3	7	11	15
4	8	12	16

A matrix: 2×2 of type dbl

5	13
7	15

3. π 的估计:

考虑服从 (0,1) 区间上均匀分布的独立随机变量 X,Y 因此,二维随机变量 (X,Y) 的联合概率密度为

$$f(x,y) = egin{cases} 1, \ 0 < x < 1, \ 0 < y < 1 \ 0, \ otherwise \end{cases}$$

则
$$P\{X^2+Y^2\leq 1\}=rac{\pi}{4}$$

提示:产生均匀分布随机变量 runif()

```
1  x <- runif(10000, min = 0, max = 1)
2  y <- runif(10000, min = 0, max = 1)
3  result <- x ^ 2 + y ^ 2 <= 1
4  oneFourthPi <- length(result[which(result == TRUE)]) / 10000
5  print(oneFourthPi * 4)</pre>
```

1 [1] 3.1416

4. R 语言编程错误分析

- 。 函数的参数输入顺序错误,输入的数量错误
 - 根据错误信息修改参数或查看帮助文档
- 。 调用函数时没有使用 ()
- 使用包前没有加载(library)
- 。 引号使用不当