

ENGENHARIA ELETRÔNICA

EEN241 – MICROCONTROLADORES E SISTEMAS EMBARCADOS

4º NOTURNO
PROF. RAFAEL CORSI

HENRIQUE PEREIRA ROSA 11.02741-0
EDUARDO GALINSKAS KARWOSKI 13.01129-4

01/JUNHO/2016

1.1: Quantização de áudio

Valores comuns para quantização áudio em sistemas digitais de auto desempenho com computadores são 16 e 24 bits, porém os valores pordem variar muito de acordo com a aplicação.

1.2: Aliasing

Aliasing acontece quando sinal não é amostrado em uma taxa coerente, sendo assim possível recuperar mais de um sinal dos dados amostrados. O que é errado já apenas uma forma de onda específica foi amostrada.

A imagem abaixo salienta o problema, onde é possivel visualizar duas senoides com os mesmos pontos amostrados.

Assim anti-aliasing são técnicas de amostragem que visam evitar o aliasing.

1.3: SNR

Relação sinal ruído é a relação entre um sinal de interesse e o ruído do meio ao qual esse sinal está inserido. O SNR é importante por que se essa relação for muio grande o ruído possuirá uma amplitude considerável que intefirirá na leitura do sinal de interesse e as vezes até mesmo impossibilitando a leitura. Por esse motiv é sempre importante saber a relação sinal ruído ou fazer algum tratamento para elevar o sinal de interesse de modo a limitar o SNR.

1.4: ENOB

O número efetivo de bits de um ADC é o valor real que um módulo pode converter. Esse numero é menor que o valor nominal por que sistemas reais apresnetam ruídos assim como o próprio ADC que infere ruído e distorções na leitura do sinal. Então o ENOB é uma forma de classificar os ADC qualificando o número útil de bits que módulo ADC fornece.

1.5: Conversores de aproximações sucessivas

Após o sinal ser retido, um módulo dentro do conversor é inclimentado e comparado com o sinal retido. Quanto o sinal incremental superar o sinal retido o módulo de clock e controle envia o sinal a saída finalizando o proceso de conversão.

2.1: 1MHz

De acordo com o teorema de Nyquist o a taxa de amostragem deve ser no minímo maior que o dobro do sinal amostrado. Então com uam taxa de amostragem de 1MHz poderíamos, sob a benção de Nyquist, medir sinais de até 499kHz. Porém isso deve ser analisado com cautela por que para muitos sinais a benção de Nyquist não é sufiente, como em sinais de áudio, onde apenas seguindo a ideologia de Nyquist o sinal perderia muito sua qualidade.

2.2: Pinos

Os pinos usados pelo ADC são:

AD0: PA17	AD8: PA21
AD1: PA18	AD9: PA22
AD2/WKUP9: PA19	AD10 : PC13
AD3/WKUP10: PA20	AD11: PC15
AD4/RTCOUT0: PB0	AD12: PC12
AD5/RTCOUT1: PB1	AD13: PC29
AD6/WKUP12 : PB2	AD14: PC30

AD7: PB3

2.3: Consumo

O consumo do sendor de temperatura varia de 50 a 80uA.

2.4: Tensão de referência

Pino de referência o uC: O de referência de tensão é ADVREF e sua tensão pode variar de GND+0,2V à VDDIN-0,2V.

SAM4S-EK2: A potenciômetro está conectado ao 3,3V.

2.5: Diagrama de blocos

2.6: ADC timings

ADC Startup time: De 20 à 40s.

Tracking time: 15 vezes o período de Clock que varia de 45 à 1000ns.

Conversion time: 20 vezes o período de Clock.