Inhaltsverzeichnis

1	Einf	aches	2
	1.1	Vollständige Induktion	2
	1.2	Logik	2
	1.3	Mengen	2
		1.3.1 Definitionen	2
		1.3.2 Rechenregeln	2
		1.3.3 Wichtige Mengen	2
		1.3.4 Intervalle	2
		1.3.5 Mächtigkeit	2
		1.3.6 Topologie	6
		1010 Topologic T.	
2	Mit	leres	3
	2.1	Zwischenwertsatz	3 00
	2.2	Folgen	5
		2.2.1 Definitionen	
		2.2.2 Konvergenzkriterien	6.0 6.0 6.0 6.0
		2.2.3 Rechenregeln für Eigenschaften	:
		2.2.4 Hilfsmethoden	:
		2.2.5 Tipps an Beispielen	:
	2.3	Reihen	
	2.0	2.3.1 Definitionen	
		2.3.2 Konvergenzkriterien	4
		2.3.3 Potenzreihe	4
		2.3.4 Rechenregeln	4
	2.4	Funktionen	4
	2.4		
			4
		2.4.2 Stetigkeit	4
		2.4.3 Folgen von Funktionen	4
	0.5	2.4.4 Differential rechnung	4
	2.5	Taylorreihe & -entwicklung	4
3	Sch	veres	5
J	3.1	Integration	, L
	5.1	9	0.11
	3.2	3.1.1 Rechenregeln	0.11
	3.2	3.2.1 DGL erster Ordnung	1
			L .
	2.2	3.2.3 Lineare, homogene DGL beliebiger Ordnung Differentialrechnung in \mathbb{R}^n	п) п)
	3.3	Differential rectifique in R	ز
4	Forr	neln und Tafeln	6
•		Rechentricks	6
	7.1	4.1.1 Fakultät, Binomialkoeffizienten	6
		4.1.2 Mitternachtsformel	6
		4.1.3 Partialbruchzerlegung	6
		4.1.4 Ungleichungen	6
		4.1.5 Exponentialfunktion und Potenzen	6
		4.1.6 Logarithmen	6
	4.2		6
		Trigonometrische Funktionen	6
	4.3	Hyperbelfunktionen	7
	4.4	Folgen mit Grenzwerten	7
	4.5	Reihen mit Grenzwerten	7
	4.6	Ableitungen	8
		4.6.1 Rechenregeln	8
	4.7	Ableitungstafel	8
		4.7.1 Polynome und Wurzeln	8
		4.7.2 Exponenten und Logarithmen	8
		4.7.3 Trigonometrische Funktionen	8
	4.8	Unbestimmte Integrale	8
		4.8.1 Rechenregeln	8
		4.8.2 Polynome und Wurzeln	8
		4.8.3 Exponenten und Logarithmen	8
		4.8.4 Trigonometrische Funktionen	8
	4.0	Hilfon für Diff'rechnung in \mathbb{R}^n	(

1 Einfaches

1.1 Vollständige Induktion

Kann für ein Prädikat P(n) bewiesen werden, dass $P(n_0)$ und $\forall n \in \mathbb{N} : n > n_0 \land P(n) \rightarrow P(n+1)$ gilt, dann folgt daraus $\forall n \in \mathbb{N} : n > n_0 \rightarrow P(n)$.

Induktionannahme (IA) bezeichnet das Prädikat P(n).

Induktionsverankerung (IV) ist der Beweis von $P(n_0)$.

Induktionsschritt (IS) ist der Beweis von $P(n) \rightarrow P(n+1)$.

1.2 Logik

Wahrheitstafel als Definition gängiger, bool'scher Operatoren

A	B	$\neg A$	$A \wedge B$	$A \vee B$	$A \to B$	$A \leftrightarrow B$
0	0	1	0	0	1	1
0	1	1	0	0	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

1.3 Mengen

1.3.1 Definitionen

Seien im Folgenden A, B Mengen.

- (1) $A \cup B := \{x \mid x \in A \land x \in B\}$ Vereinigung
- (2) $A \cap B := \{x \mid x \in A \lor x \in B\}$ Durchschnitt
- (3) $A \setminus B := A B := \{x \mid x \in A \land x \notin B\} Differenz$
- (4) $A^C := \overline{A} := x \mid x \notin A = M \setminus A Komplement (bzgl. M)$
- (5) $A \subseteq B := \forall x \in A : x \in B$. Teilmenge

1.3.2 Rechenregeln

Diese Beweise (und ähnliche) können durch Einsetzen der obigen Definitionen und logisches Umformen geführt werden.

- (1) $A \cup B = B \cup A$, $A \cap B = B \cap A$.
- (2) $A \cup (B \cup C) = (A \cup B) \cup C$, $A \cap (B \cap C) = (A \cap B) \cap C$.
- (3) $A \cup (B \cap C) = (A \cap B) \cup (A \cap C),$ $A \cap (B \cup C) = (A \cup B) \cap (A \cup C).$
- (4) $(A \setminus B) \cup C = (A \cup B) \cap (B^C \cup C),$ $(A \setminus B) \cap C = A \setminus (B \cup C^C).$
- (5) $(A \cup B)^C = A^C \cap B^C$, $(A \cap B)^C = A^C \cup B^C$.
- (6) $(A \backslash B) = A \cap B^C$.
- (7) $(A \backslash B) \backslash C = A \backslash (B \cup C)$.

1.3.3 Wichtige Mengen

 \mathbb{N}_0 , natürliche Zahlen mit $\mathbf{0}$ $\mathbb{N} := \{0, 1, 2, 3, \dots\}$.

 \mathbb{N} , natürliche Zahlen $\mathbb{N} := \{1, 2, 3, \dots\} = \mathbb{N} \setminus \{0\}.$

 \mathbb{Z} , ganze Zahlen $\mathbb{Z}:=\{\ldots,-2,-1,0,1,2,\ldots\}.$

 \mathbb{Q} , rationale Zahlen $\mathbb{Q}:=\{\frac{p}{q}\,|\,p\in\mathbb{Z},q\in\mathbb{N}_0\}.$

 \mathbb{R} , reelle Zahlen \mathbb{R} := rationale und irrationale Zahlen, $\mathbb{Q} \subseteq \mathbb{R}$.

 \mathbb{C} , reelle Zahlen $\mathbb{C}:=\{a-bi\,|\,a,b\in\mathbb{R}\},\,\mathrm{mit}\,\,i^2=-1.$

1.3.4 Intervalle

$$\begin{array}{ll} [a,b] := \{x \in \mathbb{R} \,|\, a \leq x \leq b\} & \text{abgeschlossen} \\]a,b] := \{x \in \mathbb{R} \,|\, a \leq x < b\} := (a,b] & \text{halboffen (links)} \\ [a,b[:= \{x \in \mathbb{R} \,|\, a < x \leq b\} := [a,b) & \text{halboffen (rechts)} \\]a,b[:= \{x \in \mathbb{R} \,|\, a < x < b\} := (a,b) & \text{offen} \end{array}$$

- (1) Offene Intervalle sind offene Mengen
- (2) Abgeschlossene Intervalle sind abgeschlossene Mengen
- (3) Abgeschlossene, beschränkte Intervalle $(a,b\neq\infty)$ sind kompakt.

1.3.5 Mächtigkeit

Zwei Mengen A, B heißen gleichmächtig, wenn es eine bijektive Abbildung $f: A \to B$ gibt. Wir schreiben |A| = |B|. Es gilt $|\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Q}| < |\mathbb{R}| = |[a, b]| = |\mathbb{C}|$.

1.3.6 Topologie

Sei im Folgenden $\Omega, A \subseteq \mathbb{R}^d$.

Definitionen

- (1) Die Menge $B_r(x_0) = \{x \in \mathbb{R}^d | |x x_0| < r\}$ heißt offener Ball mit Radius r > 0 um $x_0 \in \mathbb{R}^d$.
- (2) $x_0 \in \Omega$ heißt innerer Punkt von Ω falls $\exists r > 0 : B_r(x_0) \subseteq \Omega$.
- (3) Ω heißt offen falls alle $x \in \Omega$ innere Punkte sind.
- (4) A heißt abgeschlossen falls $\mathbb{R}^d \setminus A$ offen ist.
- (5) $\Omega^o := \operatorname{int}(\Omega) = \bigcup_{U \subset \Omega, U \text{ offen}} U$ heißt offener Kern von Ω .
- (6) $\operatorname{clos}(\Omega) := \bigcap_{A \supset \Omega}$, AabgeschlossenA heißt Abschluss von Ω .
- (7) $\partial \Omega := \operatorname{clos}(\Omega) \setminus \operatorname{int}(\Omega)$ heißt Rand von Ω .

Sätze

- (1) \emptyset , \mathbb{R}^d sind offen und abgeschlossen.
- (2) $\Omega_1, \Omega_2 \subseteq \mathbb{R}^d$ offen $\Longrightarrow \Omega_1 \cap \Omega_2$ offen.
- (3) $\Omega_i \subseteq \mathbb{R}^d$ offen $\Longrightarrow \bigcup_{i \in I} \Omega_i$ offen.
- (4) $A_1, A_2 \subseteq \mathbb{R}^d$ abgeschlossen $\implies A_1 \cup A_2$ abgeschlossen.
- (5) $A_i \subseteq \mathbb{R}^d$ abgeschlossen $\Longrightarrow \bigcap_{i \in I} A_i$ abgeschlossen.

2 Mittleres

2.1 Zwischenwertsatz

2.2 Folgen

2.2.1 Definitionen

Falls nicht anders angegeben, ist $(a_n)_{n\in\mathbb{N}}$ eine Folge. Der **Grenzwert** a einer Folge existiert genau dann, wenn $\forall \epsilon > 0, \epsilon \in \mathbb{R} \exists n_0 \in \mathbb{N} \forall n \in \mathbb{N} : |a - a_n| < \epsilon$ Wir schreiben dann $a = \lim_{n \to \infty} a_n$ oder auch $a_n \to a$.

konvergent Der Grenzwert existiert.

divergent Der Grenzwert existiert nicht.

Nullfolge a = 0.

beschränkt $\exists C \in \mathbb{R} : |a_n| \leq C$.

unbeschränkt Falls nicht beschränkt. Immer divergent!

monoton wachsend $a_n \geq a_{n+1}, \forall n \in \mathbb{N}$

monoton fallend $a_n \leq a_{n+1}, \forall n \in \mathbb{N}$

streng monoton wachsend $a_n > a_{n+1}, \forall n \in \mathbb{N}$

streng monoton fallend $a_n < a_{n+1}, \forall n \in \mathbb{N}$

alternierend $a_n < 0 \implies a_{n+1} > 0, \forall n \in \mathbb{N}$

bestimmt divergent / uneigentlich konvergent $a = \pm \infty$

Teilfolge Durch Weglassen von Gliedern aus $(a_n)_{n\in\mathbb{N}}$ entstandene, unendliche Folge.

Häufungspunkt $b = \lim_{n \to \infty} b_n$, $(b_n)_{n \in \mathbb{N}}$ Teilfolge.

 $\limsup \max\{b_n \text{ konvergente Teilfolge } | \lim_{n\to\infty} b_n \}.$

 $\liminf \min\{b_n \text{ konvergente Teilfolge } | \lim_{n \to \infty} b_n\}.$

2.2.2 Konvergenzkriterien

- (1) $a_n \to a \implies a_n a \to 0 \implies |a_n a| \to 0.$
- (2) Jede Teilfolge einer konvergenten Folge konvergiert gegen ihren Grenzwert. Eine konvergente Folge hat also genau einen Häufungspunkt.
- (3) (a_n) monoton wachsend und nach oben beschränkt \implies (a_n) konvergent.
- (4) (a_n) monoton fallend und nach unten beschränkt \Longrightarrow (a_n) konvergent.
- (5) $\left(\sum_{n=0}^{\infty} a_n\right)$ konvergent $\implies a=0$, siehe Reihen.
- (6) $\exists f, f(n) = a_n \wedge \lim_{x \to \infty} f(x) = a \implies \lim_{n \to \infty} a_n = a$.
- (7) $\exists (a_n), (b_n), (c_n) \text{ mit } a_n \leq b_n \leq c_n \land a = c \implies b = a,$ sogenanntes **Einschließungskriterium**.

Cauchy-Kriterium Eine Folge $(a_n)_{n\in\mathbb{N}}$ heißt *Cauchy-Folge*, falls

$$\forall \epsilon > 0 : \exists n_0 \in \mathbb{N} : \forall n, l \ge n_0 : |a_n - a_l| < \epsilon$$

Insbesondere gilt, $(a_n)_{n\in\mathbb{N}}$ konvergent \iff (a_n) Cauchy-Folge. Siehe auch **Tipps an Beispielen** für angewandte Kriterien.

2.2.3 Rechenregeln für Eigenschaften

Addition

- (1) $(a_n), (b_n)$ konvergent $\implies (a_n + b_n)$ konvergent.
- (2) $(a_n), (b_n)$ beschränkt $\implies (a_n + b_n)$ beschränkt.
- (3) (a_n) konvergent, (b_n) divergent $\implies (a_n + b_n)$ divergent.
- (4) (a_n) beschränkt, (b_n) unbeschränkt $\implies (a_n + b_n)$ unbeschränkt.
- (5) (a_n) beschränkt, $(b_n) \to \pm \infty \implies (a_n + b_n) \to \pm \infty$.
- (6) $(a_n) \to \pm \infty$, $(b_n) \to \pm \infty \implies (a_n + b_n) \to \pm \infty$.

Multiplikation

- (1) (a_n) Nullfolge, (b_n) beschränkt $\implies (a_n \cdot b_n)$ Nullfolge.
- (2) $(a_n), (b_n)$ konvergent $\implies (a_n \cdot b_n)$ konvergent.
- (3) $(a_n), (b_n)$ beschränkt $\implies (a_n \cdot b_n)$ beschränkt.
- (4) $(a_n) \to a, a \neq 0, (b_n)$ divergent $\implies (a_n \cdot b_n)$ divergent.

Grenzwerte Wir setzen $a := \lim_{n \to \infty} a_n, b := \lim_{n \to \infty} b_n$.

- (1) $\lim_{n\to\infty} (a_n \pm b_n) = a \pm b.$
- (2) $\lim_{n\to\infty} (c \cdot a_n) = c \cdot a$.
- (3) $\lim_{n\to\infty} (a_n \cdot b_n) = a \cdot b$.
- (4) $\lim_{n\to\infty} ((a_n)^c) = a^c, c \text{ konstant.}$
- (5) $\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = \frac{a}{b}, b \neq 0.$

2.2.4 Hilfsmethoden

Referenzfolgen Für folgende Folgen gilt: weiter rechts stehende wachsen schneller gegen $+\infty$.

$$1, \ln(n), n^a(a > 0), q^n(q > 1), n!, n^n$$

Bernoullische Ungleichung $(1+x)^n \ge 1 + nx, x \ge -1, n \in \mathbb{N}$.

Stirlingformel – Abschätzungen für n!

$$\sqrt{2\pi n} \left(\frac{n}{e}\right)^n \le n! \le \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \cdot e^{\frac{1}{12n}},$$

insbesondere gilt $\sqrt{2\pi n} (\frac{n}{\epsilon})^n \approx n!$

2.2.5 Tipps an Beispielen

Gruppieren von Gliedern

Wurzel

Bruch

n im Exponent

Satz von l'Hospital

2.3 Reihen

2.3.1 Definitionen

Eine Reihe $\sum_{k=1}^{\infty} a_k$ heißt konvergent mit Grenzwert s, wenn die Folge der Partialsummen $(S_n)_{n\in\mathbb{N}}, S_n := \sum_{k=1}^n a_k$ gegen s konvergiert. Es gilt also wie folgt.

$$\sum_{k=1}^{\infty} a_k = s \iff \lim_{n \to \infty} \sum_{k=1}^{n} a_k = s$$

2.3.2 Konvergenzkriterien

Nullfolge als Notwendigkeit Falls (a_n) keine Nullfolge, gilt Folgendes nicht und somit konvergiert auch nicht folgende Reihe.

$$\sum_{n=1}^{\infty} a_n \text{ konvergent } \implies \lim_{n \to \infty} a_n = 0$$

 ϵ -Kriterium $\forall \epsilon > 0: \exists n_0 \in \mathbb{N}: \forall n \geq n_0: |\sum_{k=1}^n a_k - s| < \epsilon$

Absolute Konvergenz Konvergiert $\sum_{n=1}^{\infty} |a_n|$, so sagen wir die Reihe konvergiert absolut. Es gilt $\sum_{n=1}^{\infty} |a_n|$ konvergent $\Longrightarrow \sum_{n=1}^{\infty} a_n$ konvergent. Die Umkehrung gilt i. A. nicht.

Majorantenkriterium Ist $|a_n| \leq b_n$ und die *Majorante* $\sum_{n=1}^{\infty} b_n$ konvergent, so konvergiert $\sum_{n=1}^{\infty} a_n$ absolut.

Minorantenkriterium Ist $a_n \ge b_n \ge 0$ und die *Minorante* $\sum_{n=1}^{\infty} b_n$ divergent, so divergiert $\sum_{n=1}^{\infty} a_n$.

Leibnizkriterium Wenn folgende 3 Kriterien erfüllt sind, konvergiert $\sum_{n=1}^{\infty} a_n$.

- (1) (a_n) ist alternierend, also $\forall n \in \mathbb{N} : a_n < 0 \implies a_{n+1} > 0$
- (2) $a_n \to 0$ oder $|a_n| \to 0$
- (3) $(|a_n|)$ ist monoton fallend

Wurzelkriterium

$$\sqrt[n]{|a_n|} \to q \implies \begin{cases} q < 1 & \Longrightarrow \sum_{n=1}^{\infty} a_n \text{ konvergiert absolut} \\ q = 1 & \Longrightarrow \text{ keine Aussage} \\ q > 1 & \Longrightarrow \sum_{n=1}^{\infty} a_n \text{ divergiert} \end{cases}$$

Quotientenkriterium

$$\left|\frac{a_{n+1}}{a_n}\right| \to q \implies \begin{cases} q < 1 & \Longrightarrow \sum_{n=1}^{\infty} a_n \text{ konvergiert absolut} \\ q = 1 & \Longrightarrow \text{ keine Aussage} \\ q > 1 & \Longrightarrow \sum_{n=1}^{\infty} a_n \text{ divergiert} \end{cases}$$

2.3.3 Potenzreihe

Die Potenzreihe hat die allgemeine Form

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = \sum_{n=0}^{\infty} a_n z^n,$$

dabei nennt man x_0 den Entwicklungspunkt.

Konvergenzradius Wir definieren den Konvergenzradius wie folgt.

$$r := \sup\{|z| \mid \sum_{n=0}^{\infty} a_n z^n \text{ ist konvergent }\}$$

Es gilt also insbesondere, dass die Reihe für alle |z| < r konvergiert und für für alle |z| > r divergiert. Er kann mit der Formel von Cauchy-Hadamard wie folgt berechnet werden.

$$r = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}}$$

Gilt außerdem, dass ab einem $n_0 \in \mathbb{N}$ für alle $n \geq n_0$ $a_n \neq 0$ gilt, so können wir auch wie folgt r berechnen.

$$r = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$

Randpunkte Der Konvergenzradius gibt keine Hinweise auf das Konvergenzverhalten der Reihe an den sogenannten $Randpunkten \pm r$. Hierzu können z. B. die Randpunkte in die Reihe eingesetzt werden und anschließend die Konvergenz überprüft bzw. widerlegt werden.

2.3.4 Rechenregeln

Für konvergente Reihen gilt Folgendes.

$$\sum_{n=1}^{\infty} a_n = a, \sum_{n=1}^{\infty} b_n = b \implies \sum_{n=1}^{\infty} (\alpha a_n + \beta b_n) = \alpha a + \beta b$$

Für absolut konvergente Reihen gilt außerdem, dass folgende Reihe absolut und unabhängig von der Summationsreihenfolge konvergiert.

$$\sum_{k,l=1}^{\infty} a_k b_l = \sum_{k=1}^{\infty} a_k \cdot \sum_{l=1}^{\infty} b_l$$

- 2.4 Funktionen
- 2.4.1 Grenzwerte
- 2.4.2 Stetigkeit
- 2.4.3 Folgen von Funktionen
- 2.4.4 Differentialrechnung
- 2.5 Taylorreihe & -entwicklung

3 Schweres

3.1 Integration

Im Folgenden seien F, f definiert auf]a, b[.

- (1) F heißt Stammfunktion von f falls F' = f.
- (2) Für Stammfunktionen F_1, F_2 von f gilt: $F_1 F_2$ konstant.
- (3) $\int_{x_0}^{x_1} f(x)dx := F(x_1) F(x_0)$ heißt Integral von f über $[x_0,x_1]$. Dabei ist $a< x_0<=x_1< b$ und F'=f.
- (4) **Hauptsatz:** $F(y) = \int_a^y f(x) dx, y \in]a, b[\Longrightarrow F' = f.$

3.1.1 Rechenregeln

Das Integral ist ein *lineares* und *monotones* Funktional, wie folgende zwei Sätze zeigen!

Linearität
$$\int_{x_0}^{x_1} \alpha f(x) + \beta g(x) dx = \alpha \int_{x_0}^{x_1} f(x) dx + \beta \int_{x_0}^{x_1} g(x) dx.$$

Monotonie Sei $f,g:]a,b[\to \mathbb{R}$ beschränkt und R-integrabel dann gilt $f\leq g \implies \int_{x_0}^{x_1} f(x) dx \leq \int_{x_0}^{x_1} g(x) dx$.

Gebietsadditivität
$$\int_{x_0}^{x_2} f(x)dx = \int_{x_0}^{x_1} f(x)dx + \int_{x_1}^{x_2} f(x)dx$$
, wobei $x_0 \le x_1 \le x_2$.

Substitution Ausgehend von der Ableitungsregel $\frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$ können wir folgende Integrationsregel herleiten.

$$\int_{x_0}^{x_1} f'(g(x))g'(x)dx = f(g(x))|_{x_0}^{x_1} = \int_{g(x_0)}^{g(x_1)} f'(u)du$$

Substituiert man u := g(x), ergibt sich $\frac{du}{dx} = g'(x) \iff du = g'(x)dx$. Bleibt noch ein Restterm i(x), löse u = g(x) nach x = h(u) auf und ersetzte i(x) durch h(i(x)).

Die neuen Grenzen – nur bei bestimmten Integralen – sind nun $g(x_0)$ und $g(x_1)$. Bei unbestimmten Integralen müssen keine Grenzen angepasst werden!

Nach Berechnung des Integrals resubstituiere u durch g(x).

Partielle Integration So ähnlich lässt sich auch aus der Ableitungsregel $\frac{d}{dx}f(x)g(x)=f'(x)g(x)+f(x)g'(x)$ eine Integrationsregel aufstellen.

$$\int_{x_0}^{x_1} (f'(x)g(x) + f(x)g'(x))dx = f(x)g(x)|_{x_0}^{x_1}$$

$$= \int_{x_0}^{x_1} f'(x)g(x)dx + \int_{x_0}^{x_1} f(x)g'(x)dx$$

$$\iff \int_{x_0}^{x_1} f'(x)g(x)dx = f(x)g(x)|_{x_0}^{x_1} - \int_{x_0}^{x_1} f(x)g'(x)dx.$$

3.2 Differentialgleichungen

3.2.1 DGL erster Ordnung

Definition Eine Gleichung, in der (ausschließlich) die Unbekannten y=y(x),y'=y'(x) und x vorkommen, heißen *Differentialgleichung erster Ordnung*.

Seperation der Variablen y' = g(y)f(x) lässt sich mittels Seperation der Variablen lösen. Dazu bringen wir die "ys auf die eine, die xs auf die andere Seite" der Gleichung. Anschließend integrieren wir auf beiden Seiten nach dx und erhalten so Folgendes.

$$y' = g(y)f(x) \iff \frac{y'}{g(y)} = f(x) \iff \int \frac{dy}{dxg(y)} dx = \int f(x) dx$$

$$\iff \int \frac{1}{g(y)} dy = F(x) + C_0 \iff \ln|g(y)| = F(x) + C_1.$$

Durch Anwenden von exp auf beiden Seiten und anschließendes Umformen der Konstanten, erhalten wir schließlich.

$$g(y) = C \cdot e^{F(x)} \iff y = g^{-1}(C \cdot e^{F(x)})$$

Bemerke, dass es zusätzliche konstante Lösungen für y geben kann, nämlich für alle y mit g(y)=0.

Variation der Konstanten Für y'=y+x betrachte die Lösung der linearen, homogenen DGL y'-y=0. Diese hat ungefähr die Form $y=C_1e^{\lambda_1x}+C_2e^{\lambda_2x}$. Nun ersetze $C_1:=u_1(x), C_2:=u_2(x)$ und löse anschließend das Gleichungssystem.

$$\binom{b}{c}$$

3.2.2 DGL zweiter Ordnung

3.2.3 Lineare, homogene DGL beliebiger Ordnung

Definition Eine lineare, homogene DGL der Ordnung n über eine Funktion $f \in \mathbb{C}^n$ ist eine Gleichung der Form

$$a_n f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \dots + a_1 f'(x) + a_0 f(x) = 0.$$

Lösungsansatz Der Lösungsansatz für homogene DGL basiert auf einer Eigenwertberechnung über das charakteristische Polynom. Man berechne die Eigenwerte $\lambda_1, \ldots, \lambda_l$ mit Vielfachheiten c_1, \ldots, c_l durch Lösen von $a_n \lambda^n + \cdots + a_0 \lambda^0 = 0$. Es gilt jetzt:

$$f(x) = \sum_{i=1}^{l} \sum_{j=1}^{c_l} k_{i,j} x^{j-1} e^{\lambda_l x}$$

$$= k_{1,0}e^{\lambda_1 x} + k_{1,1}xe^{\lambda_1 x} + \dots + k_{1,c_1-1}x^{c_1-1}e^{\lambda_l x} + \dots$$

Partikuläre Lösung für Anfangswertproblem Haben wir auch $f(0) = w_0, f'(0) = w_1, \ldots, f^{(n)}(0) = w_n$ gegeben, können wir die Koeffizienten $k_{i,j}$ wie folgt ausrechnen. Durch Lösen des folgenden Gleichungssystems erhalten wir dann die entsprechenden Koeffizienten.

$$\begin{pmatrix} f(0) \\ \vdots \\ f^{(n)}(0) \end{pmatrix} = \begin{pmatrix} w_0 \\ \vdots \\ w_n \end{pmatrix}$$

3.3 Differential rechnung in \mathbb{R}^n

4 Formeln und Tafeln

Hier ist alles nur aufgelistet, für Begründungen an der jeweiligen Stelle nachgucken!

4.1 Rechentricks

4.1.1 Fakultät, Binomialkoeffizienten

$$n! = n \cdot (n-1) \cdot \dots \cdot 1, n \in \mathbb{N}$$
$$\binom{n}{k} = \frac{n!}{k!(n-k!)} = \binom{n}{n-k}, \ 0 \le k \le n$$

4.1.2 Mitternachtsformel

$$ax^{2} + bx + c = 0 \iff x_{1,2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

4.1.3 Partialbruchzerlegung

Sonderfall Nenner Grad zwei

$$B = \frac{a_z x + b_z}{(a_1 x + b_1)(a_2 x + b_2)} = \frac{u}{(a_1 x + b_1)} + \frac{v}{(a_2 x + b_2)},$$

mit $ua_1 + va_2 = a_z \wedge ub_1 + vb_2 = b_z$

Allgemeiner Fall Betrachte den Bruch $\frac{z(x)}{n(x)}$, wobei z,n Polynome mit Grad n,m sind.

Fall 1:
$$n \ge m$$
 Dividiere $\frac{z(x)}{n(x)} = v(x) + \frac{u(x)}{n(x)}$. Ist $u(x) \ne 0$, so

fahre mit $\frac{u(x)}{n(x)}$ wie in Fall 2 weiter, sonst sind wir fertig.

Fall 2: n < m Faktorisiere n(x) in seine i Nullstellen: $n(x) = (x-x_1)^{r_1} \cdot (x-x_2)^{r_2} \cdot \dots \cdot (x-x_i)^{r_i}$. Jetzt lösen wir das folgende Gleichungssystem durch Ausmultiplikation.

$$\frac{a_1}{(x-x_1)^{r_1}} + \frac{a_2}{(x-x_2)^{r_2}} + \dots + \frac{a_i}{(x-x_i)^{r_i}} = \frac{z(x)}{n(x)}$$

4.1.4 Ungleichungen

- (1) $a < b \iff a + c < b + c$, genauso für $\leq, =, >, \geq$
- (2) $a < b \land c > 0 \iff \frac{a}{a} < \frac{b}{a}$
- (3) $a < b \land c < 0 \iff \frac{a}{c} > \frac{b}{c}$
- (4) $|a+b| \le |a| + |b| Dreiecksungleichung$
- (5) $|x \cdot y| \le ||x|| \cdot ||y||, x, y \in \mathbb{R}^n$ Cauchy-Schwarz-Ungleichung
- (6) $2|x \cdot y| \le \epsilon x^2 + \frac{1}{\epsilon} y^2, \epsilon > 0$ Young-Ungleichung

4.1.5 Exponentialfunktion und Potenzen

Exponential function Im Folgenden gilt $x \in \mathbb{R}$.

- (1) $e^x := Exp(x)$, definiert über Reihe, siehe unten.
- (2) $e^x > 0, \forall x \in \mathbb{R}$
- (3) $e^{-x} = \frac{1}{x}$
- (4) $e^0 = 1, e^1 = e \approx 2.718281$
- $(5) e^{-\infty} = 0, e^{\infty} = \infty$
- (6) $e^{ix} = \cos(x) + i\sin(x) Eulerformel$
- (7) $e^{i\pi} = -1 Euleridentit \ddot{a}t$
- (8) $e^{-1}(x) = \ln(x)$ also $e^{\ln(x)} = x = \ln(e^x)$.

Potenzen Im Folgenden gilt $a, b, n, m \in \mathbb{R}$.

- (1) $a^x = e^{\ln(a)^x} = e^{\ln(a)x}$
- $(2) \ a^{n+m} = a^n a^m$
- (3) $a^{nm} = (a^n)^m = a^{(n^m)}$
- $(4) (ab)^n = a^n b^n$
- $(5) \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$

Wurzeln Im Folgenden gilt $a, b, n, m \in \mathbb{R}$.

- (1) $\sqrt[n]{a} := a^{\frac{1}{n}}$
- $(2) ⁿ\sqrt{ab} = \sqrt[n]{a} \sqrt[n]{b}$
- (3) $\sqrt[m]{\sqrt[n]{a}} = \sqrt[nm]{a}$
- $(4) \quad \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$

4.1.6 Logarithmen

Im Folgenden gilt $a, r, x, y \in \mathbb{R}$.

- (1) $\ln(x) := Exp^{-1}(x)$, also x > 0.
- (2) ln(1) = 0, ln(e) = 1
- (3) $\log_a(x) := \frac{\ln(x)}{\ln(a)}$
- (4) $\log_a(\infty) = \infty$
- (5) $\log_a(xy) = \log_a(x) + \log_a(y)$
- (6) $\log_a(\frac{1}{x}) = -\log_a(x)$
- (7) $\log_a(x^r) = n \log_a(x)$
- (8) $\log_a(x \pm y) = \log_a(x) + \log_a(1 \pm \frac{y}{x})$

4.1.7 Komplexe Zahlen ℂ

Sei $a, b \in \mathbb{R}, c \in \mathbb{C}$.

- (1) $c := a + ib = \Re(a) + i\Im(b)$
- $(2) \ \overline{c} = a ib$
- (3) $z_0 + z_1 := (a_0 + a_1) + i(b_0 + b_1)$
- (4) $z_0 \cdot z_1 := (a_0 a_1 b_0 b_1) + i(a_0 b_1 + a_1 b_0)$
- (5) $|z|^2 = z \cdot \overline{z} = a^2 + b^2$

4.2 Trigonometrische Funktionen

- (1) $\sin(x) := \sum_{0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$
- (2) $\cos(x) := \sum_{0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$
- (3) $tan(x) := \frac{\sin(x)}{\cos(x)}$
- (4) $\cos(x) + i\sin(x) = e^{ix}$
- (5) $\sin(a)^2 + \cos(a)^2 = 1$
- (6) $\sin(a \pm b) = \sin(a)\cos(b) \pm \cos(a)\sin(b)$
- (7) $\cos(a \pm b) = \cos(a)\cos(b) \mp \sin(a)\sin(b)$
- (8) $\tan(a \pm b) = \frac{\tan(a) \pm \tan(b)}{1 \mp \tan(a) \tan(b)}$
- $(9) \sin(2a) = 2\sin(a)\cos(a)$
- $(10) \cos(2a) = 2\sin(a)\cos(a)$

- (11) $\tan(2a) = \cos(a)^2 \sin(a)^2 = 2\cos(a)^2 1 = 1 2\sin(a)^2$
- (12) $\sin(a \pm \frac{\tau}{4}) = \sin(a \pm \frac{\pi}{2}) = \pm \cos(a)$
- (13) $\cos(a \pm \frac{\tau}{4}) = \cos(a \pm \frac{\pi}{2}) = \mp \sin(a)$
- (14) $\sin(a \pm \frac{\tau}{2}) = \sin(a \pm \pi) = -\sin(a)$
- (15) $\cos(a \pm \frac{\tau}{2}) = \cos(a \pm \pi) = -\cos(a)$

4.3 Hyperbelfunktionen

- (1) $\sinh(x) := \frac{1}{2}(e^x e^{-x}) = -i\sin(ix)$
- (2) $\cosh(x) := \frac{1}{2}(e^x + e^{-x}) = \cos(ix)$
- (3) $\tan(x) := \frac{\sin(x)}{\cos(x)} = 1 \frac{2}{e^{2x} + 1}$
- (4) $\operatorname{arcsinh}(x) := \sinh^{-1}(x) = \ln(x + \sqrt{x^2 + 1})$
- (5) $\operatorname{arccosh}(x) := \cosh^{-1}(x) = \ln(x + \sqrt{x^2 1})$
- (6) $\operatorname{arctanh}(x) := \tanh^{-1}(x) = \frac{1}{2}\ln(\frac{1+x}{1-x})$

4.4 Folgen mit Grenzwerten

Folgende Folgen sind sortiert nach "Wachstumsschnelligkeit".

$$(1), (\ln(n)), (n^a), (q^n), (n!), (n^n) \text{ mit } a > 0, q > 1.$$

Im Folgenden ist $a_n \to a$ gleichbedeutend mit $\lim_{n \to \infty} a_n = a$. Außerdem seien $a, k \in \mathbb{R}$ Konstanten.

Konvergente Folgen

- (1) $\sqrt[n]{a} \to 1$, $\sqrt[n]{n} \to 1$, $a \ge 0$
- (2) $\frac{n}{\sqrt[n]{n!}} \to e, \frac{\sqrt[n]{n!}}{n} \to \frac{1}{e}$
- $(3) \left(\frac{n+1}{n}\right)^n \to e$
- $(4) (1 + \frac{a}{n})^n \to e^a$
- (5) $(a^n n^k)^n \to 0, |a| < 1$
- (6) $n(\sqrt[n]{a} 1) \to ln(a), a > 0$

Divergente Folgen

$$(\sqrt[n]{n!}), (\frac{n^n}{n!}), (\frac{a^n}{n^k})$$

Bernoullische Ungleichung

$$\forall x \ge -1, n \in \mathbb{N} : (1+x)^n \ge 1 + nx$$

4.5 Reihen mit Grenzwerten

Sei mal \sum_{n_0} Abkürzung für $\sum_{n=n_0}^{\infty}$

- (1) $\sum_{1} \frac{1}{n}$ divergiert harmonische Reihe
- (2) $\sum_{1} (-1)^n \frac{1}{n} = \ln(\frac{1}{2})$ alternierende harmonische Reihe
- (3) $\sum_{1} \frac{1}{n^a}$ konvergiert für a > 1, sonst divergent.
- (4) $\sum_{0} q^{n} = \frac{1}{1-q}, |q| < 1$ geometrische Reihe
- (5) $\sum_{0} q^{n} = \frac{1}{1+a}, |q| < 1$ alternierende geometrische Reihe
- (6) $\sum_{1} \frac{1}{n^2} = \frac{\pi^2}{6}$

Partialsummen

- (1) $\sum_{i=0}^{n} i = \frac{n(n-1)}{2} kleiner Gau\beta$
- (2) $\sum_{i=0}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1)$
- (3) $\sum_{i=0}^{n} i^3 = \frac{1}{4}n^2(n+1)^2$
- (4) $\sum_{i=0}^{n} q^{n} = \frac{1-q^{n+1}}{1-q}$

4.6 Ableitungen

4.6.1 Rechenregeln

- (1) (f(x) + g(x))' = f'(x) + g'(x)
- (2) (f(x)g(x))' = f'(x)g(x) + f(x)g'(x)
- (3) $\left(\frac{z(x)}{n(x)}\right)' = \frac{z(x)n'(x) z'(x)n(x)}{n(x)^2}$
- (4) $(g \circ f)'(x) = (g(f(x)))' = f'(x)g'(f(x))$

4.7 Ableitungstafel

4.7.1 Polynome und Wurzeln

- (1) $x^a \rightarrow ax^{a-1}$
- (2) $\frac{1}{x^a} = x^{-a} \to -ax^{-a-1} = \frac{-a}{x^{a+1}}$
- (3) $\sqrt[a]{x^b} = x^{\frac{b}{a}} \to \frac{b}{a} x^{\frac{b}{a}-1}$

4.7.2 Exponenten und Logarithmen

- (1) $e^{ax} \rightarrow ae^{ax}$
- (2) $e^{x^a} \to ax^{a-1}e^{x^a}$
- (3) $a^x = e^{\ln(a)^x} = e^{\ln(a)x} \to \ln(a) \cdot a^x$
- (4) $x^x \to (1 + \ln(x))x^x$
- (5) $x^{x^a} \to (1 + a \ln(x)) x^{x^a + a 1}$
- (6) $\ln(x) \to \frac{1}{x}$
- (7) $\log_a(x) = \frac{1}{\ln(a)} \ln(x) \to \frac{1}{\ln(a)x}$

4.7.3 Trigonometrische Funktionen

- $(1) \sin(x) \to \cos(x)$
- (2) $\cos(x) \to -\sin(x)$
- (3) $\sin(ax+b) \rightarrow a\cos(ax+b)$
- (4) $\tan(x) \to \frac{1}{(\cos(x))^2}$
- (5) $\arcsin(x) \to \frac{1}{\sqrt{1-x^2}}$
- (6) $\arccos(x) \to \frac{-1}{\sqrt{1-x^2}}$
- (7) $\arctan(x) \to \frac{1}{x^2+1}$
- (8) $\sinh(x) \to \cosh(x)$
- (9) $\cosh(x) \to \sinh(x) \neq -\sinh(x)!$
- (10) $\tanh(x) \to \frac{1}{(\cosh(x))^2}$
- (11) $\operatorname{arcsinh}(x) \to \frac{1}{\sqrt{x^2+1}}$
- (12) $\operatorname{arccosh}(x) \to \frac{1}{\sqrt{x-1}\sqrt{x+1}}$
- (13) $\operatorname{arctanh}(x) \to \frac{1}{1-x^2}$

4.8 Unbestimmte Integrale

4.8.1 Rechenregeln

- (1) $\int (f(x) + g(x))dx = \int f(x)dx + \int g(x)dx$
- (2) $\int af(x)dx = a \int f(x)dx$
- (3) $\int u'(x)v(x)dx = u(x)v(x) \int u(x)v'(x)dx$
- (4) $\int f(g(x))g'(x)dx = \int f(x)dx$
- (5) $\int f(ax+b)dx = \frac{1}{a}F(x+b)$
- (6) $\int \frac{f'(x)}{f(x)} dx = \ln(|f(x)|)$
- (7) $\int f'(x)f(x)dx = \frac{1}{2}f(x)^2$
- (8) $\int |f(x)| dx = |\int f(x) dx|$

4.8.2 Polynome und Wurzeln

- $(1) \int x^a dx = \frac{x^{a+1}}{a+1}$
- (2) $\int \frac{1}{x^a} dx = \int x^{-a} dx = \frac{x^{-a+1}}{-a+1} = -\frac{a-1}{x^{a-1}}, a \neq 1$
- (3) $\int \sqrt[a]{x^b} dx = \int x^{\frac{b}{a}} dx \to \frac{x^{\frac{b}{a}+1}}{\frac{b}{a}+1} = \frac{a}{b+a} \sqrt[a]{x^{b+a}}$

4.8.3 Exponenten und Logarithmen

- (1) $\int e^{ax} dx = \frac{1}{a} e^{ax}$
- $(2) \int xe^x dx = (x-1)e^x$
- (3) $\int a^x dx = \int e^{\ln(a)x} dx = \frac{1}{\ln(a)} a^x$
- (4) $\int \frac{1}{x} dx = \ln(x)$
- $(5) \int \ln(x) dx = x(\ln(x) 1)$

4.8.4 Trigonometrische Funktionen

- $(1) \int \sin(x) dx = -\cos(x)$
- (2) $\int \cos(x)dx = \sin(x)$
- (3) $\int \sin(ax+b)dx = -\frac{1}{a}\cos(ax+b)$
- $(4) \int \tan(x) dx = -\ln(|\cos(x)|)$
- (5) $\int \arcsin(x) dx = x \arcsin(x) + \sqrt{1 x^2}$
- (6) $\int \arccos(x) dx = x \arccos(x) \sqrt{1 x^2}$
- (7) $\int \arctan(x)dx = x\arctan(x) \frac{1}{2}\ln 1 + x^2$
- (8) $\int \sinh(x) dx = \cosh(x)$
- (9) $\int \cosh(x) dx = \sinh(x) \neq -\sinh(x)$
- (10) $\int \tanh(x)dx = \ln(\cosh(x))$
- (11) $\int \operatorname{arcsinh}(x)dx = x \operatorname{arcsinh}(x) + \sqrt{x^2 + 1}$
- (12) $\int \operatorname{arccosh}(x)dx = x \operatorname{arccosh}(x) + \sqrt{x-1}\sqrt{x+1}$
- (13) $\int \operatorname{arctanh}(x)dx = x \operatorname{arctanh}(x) + \frac{1}{2}\ln(1-x^2)$

4.9 Hilfen für Diff'rechnung in \mathbb{R}^n