МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Вятский государственный университет»

Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

Проектирование управляющего устройства на базе ПЛИС Altera

Отчет по лабораторной работе № 2 дисциплины «Системы автоматизированного проектирования»

Выполнил студент группы ИВТ-42	/Рзаев А. Э./
Выполнил студент группы ИВТ-42	/Кодачигов А. А./
Выполнил студент группы ИВТ-42	/Бессолицын А. А./
Выполнил студент группы ИВТ-42	/Микрюков А. А./
Проверил доцент кафедры ЭВМ	/Скворцов А.А./

1 Задание на лабораторную работу

При включении питания на индикаторе отображаются записанные в энергонезависимой памяти номер программы и текущий период. Светодиоды должны включаться и выключаться в соответствии с текущей программой и периодом. При нажатии цифровой клавиши на клавиатуре устанавливается (и запоминается в EEPROM) текущая программа. Если программы с данным номером не существует, не должно быть никакой реакции. Клавиши "#" и "¬" модифицируют период. Допустимые значения периода: 0,1 − 1,0 с. Шаг изменения − 0,1 с. При изменении текущий период записывается в EEPROM.

Программы показаны в таблице 1.

Таблица 1 – Программы

Название	Порядок включения светодиодов
	(единица обозначает, что светодиод
	включен).
0. Случайный выбор	Через каждые несколько периодов
	случайно выбирается программа 1 - 8
1. Бегущая единица	1000
	0100
	0010
	0001
2. Бегущая единица (обр.)	0001
	0010
	0100
	1000
3. Чередование	0101
	1010
4. Волна	0000
	1000
	1100
	1110
	1111
	1110
	1100
	1000

5. Волна (обр.)	0000
1 /	0001
	0011
	0111
	1111
	0111
	0011
	0001
6. (Определяется самостоятельно)	1001
	0110
7. (Определяется самостоятельно)	1100
	0011
8. (Определяется самостоятельно)	1100
	0110
	0011

2 Кодирование состояний

Каждая программа является состоянием, для кодирования состояний использовались D-триггеры. Всего 9 состояний, 4 D-триггера. Кодирование состояние осуществляется эвристическим методом. Кодирование состояний представлено в таблице 2.

Таблица 2 – Кодирование состояний

Состояние	Код
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	1000
8	1001

Функции возбуждения триггеров:

$$D3 = 7 v 8;$$

 $D2 = 4 v 5 v 6;$

$$D1 = 2 \text{ v } 3 \text{ v } 6;$$

$$D0 = 1 v 3 v 5 v 8.$$

3 Функциональная схема

Функциональная схема управляющего устройства представлена на рисунке 1.

Рисунок 1 – Функциональная схема

4 Временные диаграммы работы

Временная диаграмма работы управляющего устройства представлена на рисунках 2-3.

Рисунок 2 – Временная диаграмма (программа №3)

Рисунок 3 – Временная диаграмма (программа №2)

Рисунок 4 – Временная диаграмма (программа №2, ускоренная)

5 Выводы

В ходе лабораторной работы было спроектировано управляющее основе Altera Quartus. В ходе лабораторной работы пробная версия, однако её функционала более чем использовалась реализации данного функционала. достаточно ДЛЯ Для отладки устройства Waveform разработанного управляющего использовался Simulation.