Convergence and Linear Speed-Up in Stochastic Federated Learning

(or: Taming Heterogeneity in Federated Linear Stochastic Approximation)

Paul Mangold (CMAP, École polytechnique)

ICCOPT 2025 – Federated optimization and learning algorithms

July 23rd, 2025

Federated Learning

Collaborative optimization problem

$$\min_{x \in \mathbb{R}^d} \frac{1}{N} \sum_{c=1}^N f_c(x) \quad , \quad f_c(x) = \mathbb{E}_{Z \sim D_c}[F_c(x; Z)]$$

Central Challenges: data and computational heterogeneity

+ slow and difficult-to-establish communication

I. Federated Averaging

Federated Averaging¹

$$x^* \in \operatorname{arg\,min}_{x \in \mathbb{R}^d} \frac{1}{N} \sum_{c=1}^N \mathbb{E}_Z[F_c(x; Z)]$$

At each global iteration

- For c = 1 à N in parallel
 - Receive $x^{(t)}$, set $x_c^{(t,0)} = x^{(t)}$
 - For h = 0 to H 1

$$x_c^{(t,h+1)} = x_c^{(t,h)} - \gamma \nabla F_c(x_c^{(t,h)}; Z_c^{(t,h+1)})$$

Aggregate local models

$$x^{(t+1)} = \frac{1}{N} \sum_{c=1}^{N} x_c^{(t,H)}$$

¹B. McMahan et al. "Communication-efficient learning of deep networks from decentralized data". In: AISTATS. 2017.

Federated Averaging¹

$$x^* \in \operatorname{arg\,min}_{x \in \mathbb{R}^d} \frac{1}{N} \sum_{c=1}^N \mathbb{E}_Z[F_c(x; Z)]$$

At each global iteration

- For c = 1 à N in parallel
 - Receive $x^{(t)}$, set $x_c^{(t,0)} = x^{(t)}$
 - For h = 0 to H 1

$$x_c^{(t,h+1)} = x_c^{(t,h)} - \gamma \nabla F_c(x_c^{(t,h)}; Z_c^{(t,h+1)})$$

Aggregate local models

$$x^{(t+1)} = \frac{1}{N} \sum_{c=1}^{N} x_c^{(t,H)}$$

With deterministic gradients:

¹B. McMahan et al. "Communication-efficient learning of deep networks from decentralized data". In: AISTATS. 2017.

(For *L*-smooth, μ -strongly convex functions)

¹X. Lian et al. "Can decentralized algorithms outperform centralized algorithms? a case study for decentralized parallel SGD". In: NeurIPS (2017).

 $^{^2}$ A. Khaled and C. Jin. "Faster federated optimization under second-order similarity". In: arXiv (2022).

³J. Wang et al. "On the Unreasonable Effectiveness of Federated Averaging with Heterogeneous Data". In: *TMLR* (2024).

(For *L*-smooth, μ -strongly convex functions)

• first-order¹:
$$\zeta = \frac{1}{N} \sum_{c=1}^{N} \left\| \nabla f_c(x^*) - \nabla f(x^*) \right\|^2$$

¹X. Lian et al. "Can decentralized algorithms outperform centralized algorithms? a case study for decentralized parallel SGD". In: NeurIPS (2017).

²A. Khaled and C. Jin. "Faster federated optimization under second-order similarity". In: arXiv (2022).

 $^{^3}$ J. Wang et al. "On the Unreasonable Effectiveness of Federated Averaging with Heterogeneous Data". In: TMLR (2024).

(For *L*-smooth, μ -strongly convex functions)

- first-order¹: $\zeta = \frac{1}{N} \sum_{c=1}^{N} \left\| \nabla f_c(x^*) \nabla f(x^*) \right\|^2$
- second-order²: $\zeta = \frac{1}{N} \sum_{c=1}^{N} \left\| \nabla_c^2 f(x^*) \nabla^2 f(x^*) \right\|^2$

¹X. Lian et al. "Can decentralized algorithms outperform centralized algorithms? a case study for decentralized parallel SGD". In: NeurIPS (2017).

²A. Khaled and C. Jin. "Faster federated optimization under second-order similarity". In: arXiv (2022).

³J. Wang et al. "On the Unreasonable Effectiveness of Federated Averaging with Heterogeneous Data". In: *TMLR* (2024).

(For L-smooth, μ -strongly convex functions)

- first-order¹: $\zeta = \frac{1}{N} \sum_{c=1}^{N} \left\| \nabla f_c(x^*) \nabla f(x^*) \right\|^2$
- second-order²: $\zeta = \frac{1}{N} \sum_{c=1}^{N} \left\| \nabla_c^2 f(x^*) \nabla^2 f(x^*) \right\|^2$
- average drift³: $\zeta = \left\| \frac{1}{NH} \sum_{c=1}^{N} \sum_{h=0}^{H-1} \nabla f(x_c^{(h)}) \nabla f(x^\star) \right\|^2$

¹X. Lian et al. "Can decentralized algorithms outperform centralized algorithms? a case study for decentralized parallel SGD". In: NeurIPS (2017).

²A. Khaled and C. Jin. "Faster federated optimization under second-order similarity". In: arXiv (2022).

³J. Wang et al. "On the Unreasonable Effectiveness of Federated Averaging with Heterogeneous Data". In: *TMLR* (2024).

(For *L*-smooth, μ -strongly convex functions)

Choose your favorite heterogeneity measure

- first-order¹: $\zeta = \frac{1}{N} \sum_{c=1}^{N} \left\| \nabla f_c(x^*) \nabla f(x^*) \right\|^2$
- second-order²: $\zeta = \frac{1}{N} \sum_{c=1}^{N} \left\| \nabla_c^2 f(x^\star) \nabla^2 f(x^\star) \right\|^2$
- average drift³: $\zeta = \left\| \frac{1}{NH} \sum_{c=1}^{N} \sum_{h=0}^{H-1} \nabla f(x_c^{(h)}) \nabla f(x^\star) \right\|^2$

Show **convergence to a neighborhood** of x^*

$$\|x^{(T)} - x^{\star}\|^2 \lesssim (1 - \gamma \mu)^{HT} \|x^{(0)} - x^{\star}\|^2 + \chi(\gamma, H, \zeta)$$
 (for some function χ)

¹X. Lian et al. "Can decentralized algorithms outperform centralized algorithms? a case study for decentralized parallel SGD". In: NeurIPS (2017).

²A. Khaled and C. Jin. "Faster federated optimization under second-order similarity". In: arXiv (2022).

³J. Wang et al. "On the Unreasonable Effectiveness of Federated Averaging with Heterogeneous Data". In: TMLR (2024).

When the number of local iterations increases, bias incrases

When the number of local iterations increases, bias incrases **Remark:** It seems that iterates converge in some way?

Federated Averaging as Fixed Point Iteration

Remark that, starting with $x_c^{(t)}, y_c^{(t)} \in \mathbb{R}^d$,

$$x_c^{(t,h+1)} - y_c^{(t,h+1)} = x_c^{(t,h)} - y_c^{(t,h)} - \gamma(\nabla f_c(x_c^{(t,h)}) - \nabla f_c(y_c^{(t,h)}))$$

Thus

$$||x_c^{(t+1)} - y_c^{(t+1)}|| \le (1 - \gamma \mu)^H ||x_c^{(t)} - y_c^{(t)}||$$

¹G. Malinovskiy et al. "From local SGD to local fixed-point methods for federated learning". In: ICML. 2020.

Federated Averaging as Fixed Point Iteration

Remark that, starting with $x_c^{(t)}, y_c^{(t)} \in \mathbb{R}^d$,

$$x_c^{(t,h+1)} - y_c^{(t,h+1)} = x_c^{(t,h)} - y_c^{(t,h)} - \gamma(\nabla f_c(x_c^{(t,h)}) - \nabla f_c(y_c^{(t,h)}))$$

Thus

$$||x_c^{(t+1)} - y_c^{(t+1)}|| \le (1 - \gamma \mu)^H ||x_c^{(t)} - y_c^{(t)}||$$

⇒ deterministic FedAvg converges to a unique point¹

¹G. Malinovskiy et al. "From local SGD to local fixed-point methods for federated learning". In: ICML. 2020.

Open Question: What about the Stochastic Case?

Open Question: What about the Stochastic Case?

Open Question: What about the Stochastic Case?

FedAvg (with stochastic gradients) converges!¹

(For thrice derivable, L-smooth, μ -strongly convex functions)

- FedAvg converges to a stationary distribution $\pi^{(\gamma,H)}$
 - denoting $x^{(t)} \sim \psi_{x^{(t)}}$, we have

$$\mathcal{W}_2(\psi_{\mathsf{x}^{(t)}};\pi^{(\gamma,H)}) \leq (1-\gamma\mu)^{Ht} \mathcal{W}_2(\psi_{\mathsf{x}^{(0)}};\pi^{(\gamma,H)})$$

- where W_2 is the second order Wasserstein distance

¹P. Mangold et al. "Refined Analysis of Constant Step Size Federated Averaging and Federated Richardson-Romberg Extrapolation". In: AISTATS. 2025.

FedAvg (with stochastic gradients) converges!¹

(For thrice derivable, L-smooth, μ -strongly convex functions)

- FedAvg converges to a stationary distribution $\pi^{(\gamma,H)}$
- FedAvg's iterates covariance is

$$\int (x - x^*)(x - x^*)^{\top} \pi^{(\gamma, H)}(\mathrm{d}x) = \left| \frac{\gamma}{N} \mathbf{A} C(x^*) \right| + O(\gamma^{3/2} H)$$

¹P. Mangold et al. "Refined Analysis of Constant Step Size Federated Averaging and Federated Richardson-Romberg Extrapolation". In: AISTATS. 2025.

Linear speed-up! radients) converges!1 FedAvg (trongly convex functions) variance decreases in 1/Nvariance scales in γ FedAvg conver • FedAvg's iterates covariance is $\int (x-x^{\star})(x-x^{\star})^{\top}\pi^{(\gamma,H)}(\mathrm{d}x) = \left|\frac{\gamma}{N}AC(x^{\star})\right| + O(\gamma^{3/2}H)$

¹P. Mangold et al. "Refined Analysis of Constant Step Size Federated Averaging and Federated Richardson-Romberg Extrapolation". In: AISTATS. 2025.

FedAvg (with stochastic gradients) converges!¹

(For thrice derivable, L-smooth, μ -strongly convex functions)

- FedAvg converges to a stationary distribution $\pi^{(\gamma,H)}$
- FedAvg's iterates covariance is
- We can now give an exact expansion of the bias

$$\int x \pi^{(\gamma,H)}(\mathrm{d}x) = x^* + \frac{\gamma(H-1)}{2N} \sum_{c=1}^N \nabla^2 f(x^*)^{-1} (\nabla^2 f_c(x^*) - \nabla^2 f(x^*)) \nabla f_c(x^*)$$
$$- \frac{\gamma}{2N} \nabla^2 f(x^*)^{-1} \nabla^3 f(x^*) \mathbf{A} C(x^*) + O(\gamma^{3/2} H)$$

¹P. Mangold et al. "Refined Analysis of Constant Step Size Federated Averaging and Federated Richardson-Romberg Extrapolation". In: AISTATS, 2025.

FedAvg (with stochastic gradients) converges 11

Heterogeneity bias

I CUAVE S ILCIALES COVALIANCE IS

Stochasticity bias

vanishes when $\nabla^2 f_c(x^*) = \nabla^2 f(x^*)$ or when $\nabla f_c(x^*) = \nabla f(x^*)$ tribut $A = (I \otimes \nabla^2 f(x^*) + \nabla^2 f(x^*) \otimes I)^{-1}$ tribut $C(x^*)$ is ∇F^Z 's covariance at x^*

• We can now give an exact expansion of the bias

$$\int x \pi^{(\gamma,H)}(\mathrm{d}x) = x^* + \frac{\gamma(H-1)}{2N} \sum_{c=1}^N \nabla^2 f(x^*)^{-1} (\nabla^2 f_c(x^*) - \nabla^2 f(x^*)) \nabla f_c(x^*)$$
$$- \frac{\gamma}{2N} \nabla^2 f(x^*)^{-1} \nabla^3 f(x^*) \mathbf{A} C(x^*) + O(\gamma^{3/2} H)$$

¹P. Mangold et al. "Refined Analysis of Constant Step Size Federated Averaging and Federated Richardson-Romberg Extrapolation". In:

Correcting the Bias

Novel Algorithm: Federated Richardson-Romberg Extrapolation

Run FedAvg twice:

- with step size γ : global iterates $x_{\gamma}^{(t)}$
- with step size 2γ : global iterates $x_{2\gamma}^{(t)}$

We can combine the iterates

$$\chi_{\mathsf{RR}}^{(t)} = 2x_{\gamma}^{(t)} - x_{2\gamma}^{(t)}$$

Correcting the Bias

Novel Algorithm: Federated Richardson-Romberg Extrapolation

Numerical Illustration: FedAvg

Blue: FedAvg, Orange: Scaffold, Green: Federated Richardson-Romberg

II. Correcting heterogeneity: Scaffold

Scaffold
$$x^* \in \operatorname{arg\,min}_{x \in \mathbb{R}^d} \frac{1}{N} \sum_{c=1}^N \mathbb{E}_Z[F_c(x; Z)]$$

(*without global step size)

At each global iteration

- For c=1 to N in parallel
 - Receive $x^{(t)}$, set $x_c^{(t,0)} = x^{(t)}$
 - For h = 0 to H 1

$$x_c^{(t,h+1)} = x_c^{(t,h)} - \gamma \left(\nabla F_c(x_c^{(t,h)}; Z_c^{(t,h+1)}) + \xi_c^{(t)} \right)$$

Aggregate models, update control variates

$$x^{(t+1)} = \frac{1}{N} \sum_{c=1}^{N} x_c^{(t,H)}$$

$$\xi_c^{(t+1)} = \xi_c^{(t)} + \frac{1}{\gamma H} (x_c^{t,H} - x^{(t+1)})$$

¹S. P. Karimireddy et al. "Scaffold: Stochastic controlled averaging for federated learning". In: ICML, 2020.

Scaffold¹

$$x^{\star} \in \operatorname{arg\,min}_{x \in \mathbb{R}^d} \frac{1}{N} \sum_{c=1}^{N} \mathbb{E}_{Z}[F_c(x; Z)]$$

(*without global step size)

At each global iteration

- For c = 1 to N in parallel
 - Receive $x^{(t)}$, set $x_c^{(t,0)} = x^{(t)}$
 - For h = 0 to H 1

$$x_c^{(t,h+1)} = x_c^{(t,h)} - \gamma \left(\nabla F_c(x_c^{(t,h)}; Z_c^{(t,h+1)}) + \xi_c^{(t)} \right)$$

Aggregate models, update control variates

$$x^{(t+1)} = \frac{1}{N} \sum_{c=1}^{N} x_c^{(t,H)}$$

$$\xi_c^{(t+1)} = \xi_c^{(t)} + \frac{1}{\gamma H} (x_c^{t,H} - x^{(t+1)})$$

ightarrow No more heterogeneity bias!

¹S. P. Karimireddy et al. "Scaffold: Stochastic controlled averaging for federated learning". In: ICML. 2020.

(For *L*-smooth, μ -strongly convex functions with $\nabla^3 f(x)$ bounded by Q)

- Scaffold converges if $\gamma HL \leq 1$, towards a distribution $\pi^{(\gamma,H)}$
 - denoting $(x^{(t)}, \xi_{1:N}^{(t)}) \sim \psi_{(x^{(t)}, \xi_{1:N}^{(t)})}$, we have

$$\mathcal{W}_{2}(\psi_{(\mathbf{x}^{(t)},\xi_{1:N}^{(t)})};\pi^{(\gamma,H)}) \leq (1-\gamma\mu)^{Ht}\mathcal{W}_{2}(\psi_{(\mathbf{x}^{(t)},\xi_{1:N}^{(t)})};\pi^{(\gamma,H)})$$

- where W_2 is the second order Wasserstein distance

¹P. Mangold et al. "Scaffold with Stochastic Gradients: New Analysis with Linear Speed-Up". In: ICML. 2025.

(For *L*-smooth, μ -strongly convex functions with $\nabla^3 f(x)$ bounded by Q)

- Scaffold converges if $\gamma HL < 1$, towards a distribution $\pi^{(\gamma,H)}$
- Scaffold's variance is close to FedAvg's variance

$$\int (x - x^{\star})(x - x^{\star})^{\top} \pi^{(\gamma, H)}(\mathrm{d}x, \mathrm{d}\Xi) = \boxed{\frac{\gamma}{N} AC(x^{\star})} + O(\gamma^{3/2})$$

¹P. Mangold et al. "Scaffold with Stochastic Gradients: New Analysis with Linear Speed-Up". In: ICML. 2025.

(For L-smo

Linear speed-up!

Is with $\nabla^3 f(x)$ bounded by Q

variance decreases in 1/N• Scaffold conve variance scales in γ

stribution $\pi^{(\gamma,H)}$

• Scaffold's variance is close to redays s variance

$$\int (x - x^{\star})(x - x^{\star})^{\top} \pi^{(\gamma, H)}(\mathrm{d}x, \mathrm{d}\Xi) = \boxed{\frac{\gamma}{N} A C(x^{\star})} + O(\gamma^{3/2})$$

¹P. Mangold et al. "Scaffold with Stochastic Gradients: New Analysis with Linear Speed-Up". In: ICML, 2025.

(For *L*-smooth, μ -strongly convex functions with $\nabla^3 f(x)$ bounded by Q)

- Scaffold converges if $\gamma HL < 1$, towards a distribution $\pi^{(\gamma,H)}$
- Scaffold's variance is close to FedAvg's variance
- Scaffold removes heterogeneity bias

$$\int x \pi^{(\gamma,H)}(\mathrm{d}x,\mathrm{d}\Xi) = x^* - \left| \frac{\gamma}{2N} \nabla^2 f(x^*)^{-1} \nabla^3 f(x^*) \mathbf{A} C(x^*) \right| + O(\gamma^{3/2})$$

⇒ but it is still biased

¹P. Mangold et al. "Scaffold with Stochastic Gradients: New Analysis with Linear Speed-Up". In: ICML. 2025.

(For L-smooth, μ -strongly convex funct

Stochasticity bias remains

- Scaffold converges if $\gamma HL \leq 1$, towards a
- Scaffold's variance is close to FedAvg's v
- $A = (I \otimes \nabla^2 f(x^*) + \nabla^2 f(x^*) \otimes I)^{-1}$ $C(x^*)$ is ∇F^Z 's covariance at x^*

Scaffold removes heterogeneity bias

$$\int x \pi^{(\gamma,H)}(\mathrm{d}x,\mathrm{d}\Xi) = x^* - \left| \frac{\gamma}{2N} \nabla^2 f(x^*)^{-1} \nabla^3 f(x^*) \mathbf{A} C(x^*) \right| + O(\gamma^{3/2})$$

⇒ but it is still biased

¹P. Mangold et al. "Scaffold with Stochastic Gradients: New Analysis with Linear Speed-Up". In: ICML. 2025.

Scaffold converges to the right point

... and its variance is similar to FedAvg!

Scaffold converges to the right point

... and its variance is similar to FedAvg!

Bounding the Covariance

Define covariance matrices

$$\bar{\Sigma}^{x} \stackrel{\Delta}{=} \int (x - x_{\star})^{\otimes 2} \pi^{(\gamma, H)} (\mathrm{d}x, \mathrm{d}\Xi)$$

$$\bar{\Sigma}^{\xi}_{(c, c')} \stackrel{\Delta}{=} \int (\xi_{c} - \xi_{c}^{\star}) (\xi_{c'} - \xi_{c}^{\star})^{\top} \pi^{(\gamma, H)} (\mathrm{d}x, \mathrm{d}\Xi)$$

$$\bar{\Sigma}^{x, \xi}_{(c)} \stackrel{\Delta}{=} \int (x - x_{\star}) (\xi_{c} - \xi_{c}^{\star})^{\top} \pi^{(\gamma, H)} (\mathrm{d}x, \mathrm{d}\Xi)$$

Expansion of Covariance

$$\begin{split} \bar{\boldsymbol{\Sigma}}^{\boldsymbol{x}} &= \frac{\gamma}{N} \boldsymbol{A} \mathcal{C}(\boldsymbol{x}_{\star}) + O(\gamma^{2} H + \gamma^{3/2}) \\ \bar{\boldsymbol{\Sigma}}^{\boldsymbol{x},\boldsymbol{\xi}}_{(c)} &= \frac{\gamma}{N} \boldsymbol{A} \mathcal{C}(\boldsymbol{x}_{\star}) (\nabla^{2} f_{c}(c) \boldsymbol{x}_{\star} - \nabla^{2} f(\boldsymbol{x}_{\star})) + \frac{\gamma}{N} \left(\mathcal{C}_{c}(\boldsymbol{x}_{\star}) - \mathcal{C}(\boldsymbol{x}_{\star}) \right) + O(\gamma^{2} H + \gamma^{3/2}) \\ \bar{\boldsymbol{\Sigma}}^{\boldsymbol{\xi}}_{(c,c)} &= (1 - \frac{2}{N}) \frac{1}{H} \mathcal{C}_{c}(\boldsymbol{x}_{\star}) + \frac{1}{NH} \mathcal{C}(\boldsymbol{x}_{\star}) + O(\gamma) \\ \bar{\boldsymbol{\Sigma}}^{\boldsymbol{\xi}}_{(c,c')} &= \frac{1}{NH} (\mathcal{C}(\boldsymbol{x}_{\star}) - \mathcal{C}_{c}(\boldsymbol{x}_{\star}) - \mathcal{C}_{c'}(\boldsymbol{x}_{\star})) + O(\gamma) \end{split}$$

where

$$\mathbf{A} \stackrel{\Delta}{=} (Id \otimes \nabla^2 f(x_{\star}) + \nabla^2 f(x_{\star}) \otimes Id)^{-1}$$

$$\mathcal{C}_c(x_{\star}) \stackrel{\Delta}{=} \mathbb{E} \left[\left(\nabla F_c^{Z_c}(x_{\star}) - \nabla f_c(x_{\star}) \right)^{\otimes 2} \right] \mathcal{C}(x_{\star}) \stackrel{\Delta}{=} \frac{1}{N} \sum_{i=1}^{N} \mathcal{C}_c(x_{\star})$$

New Convergence Rate for Scaffold

(For *L*-smooth, μ -strongly convex functions with $\nabla^3 f(x)$ bounded by Q)

$$\mathbb{E}\left[\|x^{(T)} - x^{\star}\|^{2}\right] \lesssim \left(1 - \frac{\gamma\mu}{4}\right)^{HT} \left\{\|x^{(0)} - x^{\star}\|^{2} + 2\gamma^{2}H^{2}\zeta^{2} + \frac{\sigma_{\star}^{2}}{L\mu}\right\} + \frac{\gamma}{N\mu}\sigma_{\star}^{2} + \frac{\gamma^{3/2}Q}{\mu^{5/2}}\sigma_{\star}^{3} + \frac{\gamma^{3}HQ^{2}}{\mu^{3}}\sigma_{\star}^{4}$$

where

- $\sigma_{\star}^2 = \mathbb{E}[\frac{1}{N}\sum_{c=1}^{N}\|\nabla F_c^Z(x^{\star}) \nabla f_c(x^{\star})\|^2$ is the variance at x^{\star}
- $\zeta^2 = \frac{1}{N} \sum_{c=1}^{N} \|\nabla f_c^Z(x^*)\|^2$ measures gradient heterogeneity

Linear Speed-Up!

As long as N is not too large, one can obtain $\mathbb{E}\left[\|x^{(T)} - x^{\star}\|^2\right] \leq \epsilon^2$ with

$$\# ext{grad per client} = \widetilde{O}\Big(rac{\sigma_{\star}^2}{m{N}\mu^2\epsilon^2}\log\Big(rac{1}{\epsilon}\Big)\Big)$$

Conclusion

- FedAvg and Scaffold converge (even with stochastic gradients)
- This allows to derive new analyses for these problems, with exact first-order expression for bias
- And we proved that Scaffold has:
 - variance similar to FedAvg's variance
 - linear speed-up in the number of clients!!
- But: Scaffold is still biased
 - ⇒ Need for algorithms tailored for FL and stochasticity!

Thank you!

Check the papers:

- P. Mangold et al. "Refined Analysis of Constant Step Size Federated Averaging and Federated Richardson-Romberg Extrapolation". In: AISTATS. 2025
- P. Mangold et al. "Scaffold with Stochastic Gradients: New Analysis with Linear Speed-Up". In: ICML. 2025

Find this presentation on my website:

• https://pmangold.fr/research.php?page=talks