PARCIAL 3

12 de junio de 2025

En todos los ejercicios se deben explicar los pasos que se siguen en la resolución.

El código python utilizado en la resolución de los ejercicios marcados con "▶" se deberá subir a moodle para su evaluación. El envío deberá contar con las siguientes características.

- Enviar un solo archivo, que deberá llamarse apellido_nombre_parcial3.py o apellido_nombre_parcial3.ipynb.
- El archivo deberá contener las funciones ejercicio1(), ejercicio2(), etc., con las resoluciones correspondientes a los ejercicios considerados, y la ejecución del programa deberá mostrar en pantalla las respuestas solicitadas.
- Está permitido usar los códigos desarrollados en los prácticos.

Ejercicio 1: Para la cadena de Markov (X_t) representada en el siguiente diagrama:

- a) Dar la matriz de transición.
- b) Determinar los estados recurrentes, transitorios, absorbentes y periódicos.
- c) Determinar las clases comunicantes y decidir si la cadena es o no irreducible.
- d) Para el estado {3} determinar el tiempo medio de alcance desde cada uno de los estados.
- e) Calcular $P(X_6 = 1 \mid X_2 = 0)$.

Ejercicio 2: Los tiempos entre arribos de clientes a una estación están dados según los siguientes datos usando el archivo datos.txt o la siguiente lista.

15.22860536	40.60145536	33.67482894	44.03841737	15.69560109
16.2321714	25.02174735	30.34655637	3.3181228	5.69447539
10.1119561	49.10266584	3.6536329	35.82047148	3.37816632
36.72299321	50.67085322	3.25476304	20.12426236	20.2668814
17.49593589	2.70768636	14.77332745	1.72267967	23.34685662
8.46376635	9.18330789	9.97428217	2.33951729	137.51657441
9.79485269	10.40308179	1.57849658	6.26959703	4.74251574
1.53479053	34.74136011	27.47600572	9.1075566	1.88056595
27.59551348	6.82283137	12.45162807	28.01983651	0.36890593
7.82520791	3.17626161	46.91791271	38.08371186	41.10961135

- a) Diseñar una prueba de hipótesis usando el estadístico de Kolmogorov Smirnov, para determinar si los datos provienen de una distribución exponencial con $\lambda=0.05$
- b) Calcular el valor del estadístico.
- c) Determine si la hipótesis nula es rechazada o no, con un nivel de rechazo del 4%. Para esto, utilizar simulaciones con variables uniformes.
- d) ▶ Determine si la hipótesis nula es rechazada o no, con un nivel de rechazo del 0.04 %, esta vez simulando variables que verifiquen la hipótesis nula.

Ejercicio 3: En un experimento se lanzan 5 monedas y se cuenta el número de caras que se observan. El experimento se repite 1000 veces y se obtienen los siguientes resultados:

Cantidad de caras	0	1	2	3	4	5
Frecuencia observada	38	144	342	287	164	25

- a) Diseñar una prueba de hipótesis usando el test chi-cuadrado para determinar si las observaciones se corresponden con una distribución Bin(5, p), con p desconocido.
- b) Escribir la expresión del estadístico y calcularlo, y determinar p-valor.
- c) Estimar el p-valor usando 1 000 simulaciones. Explicar en papel el procedimiento usado.
- d) Determinar si la hipótesis nula es rechazada o no, con un nivel de rechazo del 5 %.

Ejercicio 4: Estimar mediante el método de Monte Carlo el valor de la siguiente integral:

$$I = \int_{2}^{3} e^{-x} \cdot (1 - x^{4}) \, dx$$

- a) \blacktriangleright Obtener mediante simulación en computadora el valor de la estimación \overline{I} deteniendo la simulación cuando el semi-ancho del intervalo de confianza del 95 % sea justo inferior a 0.001 y asegurando un mínimo de 100 simulaciones.
- b) \blacktriangleright Indique cuál es el número de simulaciones N_s necesarias en la simulación anterior y complete con los valores obtenidos la siguiente tabla (usando 4 decimales):

N^o de sim.	$ar{I}$	S	IC(95 %)
1 000			
5 000			
7 000			
$N_s =$			