Smart Homiez: Home DER Optimization

Talia Arauzo, Chitra Dangwal, Weixin Li, Dimitris Vlachogiannis, Karl Walter

Motivation & Background

- How can we optimize the energy consumption of in-home energy devices?
- What are the opportunities and benefits of co-optimization?

PV - Modeling

$$PV_{kw} = A_{panels} * S_{module} * \eta_{panels}$$

$$A_{panels} = n_{panels} * A_{panel}$$

$$S_{module} = GHI * \sin(\frac{\alpha + \beta}{\alpha})$$

$$\alpha = 90 - \phi + \delta$$

$$\delta = 23.45 * \sin\left(\frac{360}{365} * (284 + d)\right)$$

 PV_{kw} : power produced by solar photovoltaic (PV) array [kW]

Ananels: area of PV panels [m2]

 S_{module} : irradiant normal to surface of PV modules [kW / m²]

η_{panels}: efficiency of PV

 n_{panels} : number of PV panels

 A_{panel} : area of single PV panel

GHI: global horizontal irradiance [kW / m²]

α: elevation angle [radians]

 β : tilt of module [radians]

d: day of year []

φ: latitude of Berkeley [radians]

 δ : declination angle [radians]

PV - Results

Water Heater - Modeling

- Model water temperature in water heater
 - Based on "Appliance Commitment for Household Load Scheduling" by Du & Lu
 - o 50 gal heater
 - Thermal dynamics incorporated
 - Exogenous household hot water demands
- Simplifying assumptions
 - Output water temperature is satisfactory for user
 - Water demands are constant
 - Heat transferring process is instantaneous

T(t)	Temperature inside the water heater		
T_{loss}	Temperature loss caused by temperature difference		
Tin	Temperature of cold water flowing into the tank		
d(t)	Volume of water usage		
E_{input}	Energy change used to heat water		

Water Heater - Optimization

Objective Function:

$$\min_{u(t),T(t)} \sum_{t=1}^{n} (p(t) \cdot Q \cdot u(t) \cdot dt) + \frac{1}{2} \alpha \left[\max_{T(t)} (0, -T(t+1) + T_{min}) \right]^{2}$$
Cost Function
Penalty Function: $T(t+1) \ge T_{min}$

Constraints:

1) Initial temp:	$T(0) = T_0$
------------------	--------------

2) Max temp:
$$T(t+1) \le T_{max}$$

3) Temp + demand:
$$T(t+1) = e^{\frac{-\Delta t}{RC}} \left[\frac{M - d(t)}{M} T(t) + \frac{d(t)}{M} T_{in} \right] + \beta QR \left(1 - e^{\frac{-\Delta t}{RC}} \right) u(t)$$

Factors		
Penalty Function	$\alpha = 1$	
Input Matrix	β = 10,000	

Variables				
Temperature [°C]	T(t)			
State [0,1]	u(t)			
TOU Pricing [\$/kWh]	p(t)			
Demand [gal]	d(t)			

Physical Parameters			
Thermal Resistance	R = 1.52 °C/kW		
Thermal Capacitance	C = 863.4 kWh/°C		
Heat Capacity	Q = 4 kW		
Heater Mass	M = 50 gal		
Initial Temperature	To = 60 °C		
Minimum Temperature	$T_{min} = 55$ °C		
Maximum Temperature	$T_{\text{max}} = 65 ^{\circ}\text{C}$		
Input Temperature	Tin = 25 °C		

Water Heater - Results: \$0.91/day

Water Demands:

- 1. Shower (24 gal): 9-9:15 am
- 2. Washing machine (30 gal): 6-6:45 pm

HVAC - Modeling

Modelling Outlook:

- Thermal Model → Complexity can vary with amount of details being modelled
- Incorporation of no. of sources of heat gain and loss
- Simplified Model: Simplifying assumptions

 o 1 state thermal model chosen

 - Lowers the complexity of the in-depth physical model
 - Maintaining overall accuracy 0

Therr	nal Model	HVAC input			
$C\frac{dT_{in}}{dt} = \frac{1}{R_i} (T_{out} - T_{in}) + \emptyset_{H/A} + A(1-p)\emptyset_{ir} + n_{ac} V_{house} \rho_{air} C2(T_{out} - T_{in})/3600$					
	Heat lost/gained to ambient		Solar energy gained	Air exchanges with the outside	

Variables		
Outdoor	T _{out} (t)	
temperature [°C]	- 041(-7	
Indoor temperature $T_{in}(t)$		
[°C]	(-)	
Thermal energy flow	$\emptyset_{ir}(t)$	
from the sun [kW]	~ II(0)	
Thermal energy flow	$\mathcal{O}_{H/A}(t) = P_{heat} z_{heat}$	
of the HVAC [kW]	∞11/A(t)—1 lleatElleat	
On/Off state of	Zheat	
HVAC [0,1]	Lheat	

Fig. 1. Thermal modeling of a building.

HVAC - Optimization

Discrete Model: $T(t_{k+1}) = A_d T(t_k) + B_d u(t_k)$

Model Input:

$$u(t_k) = \begin{bmatrix} T_{out}(t_k) \\ \emptyset_{H/A}(t_k) \\ \emptyset_{ir}(t_k) \end{bmatrix}$$

$$\begin{cases} A_d = e^{A\Delta t} = e^{\left(-\frac{1}{CR} - \frac{n_{ac}V_{house}\rho_{air}C_2}{3600C}\right)\Delta t} \\ B_d = \frac{1}{C} \left[\frac{1}{R} + \frac{n_{ac}V_{house}\rho_{air}C_2}{3600} \quad 1 \quad A(1-p)\right] \frac{1}{\left(-\frac{1}{CR} - \frac{n_{ac}V_{house}\rho_{air}C_2}{3600C}\right)} \left(e^{\left(-\frac{1}{CR} - \frac{n_{ac}V_{house}\rho_{air}C_2}{3600C}\right)\Delta t} - 1\right) \end{cases}$$

Model Optimization: For specified heating power, optimize the variable "z(t)" i.e. ON/OFF state of HVAC $\phi_{H/A}(t_k) = P_{heat}z(t_k)$

Objective function:

$$\min_{z(t)} \sum_{t=1}^{n} p(t) \cdot P_{heat} \cdot z(t)$$

1. Initial condition

$$T(0) = T_0$$

Constraints:

2. Max temp.

$$T(t_k) \le T_{max}$$

. Minimum temp.

$$T(t_k) \geq T_{min}$$

$\mathcal{L}(k) = \mathcal{L}(k)$				
Physical Parameters				
Capacity of the total indoor air's heat	C=8.12 [kWh/°C] C2=1214.4/ρ _{air} [J/(kg*°C)]			
Heating power of the HVAC [kW]	P _{heat} =60*A _{floor} /1000			
Total resistance against heat flow [°C/kW]	R _t =8.02			
Area of the floor/window [m²]	$A_{ m window}$ =4 $A_{ m floor}$ =100			
Volume of the house [m³]	$V_{ m house}$ =300			
Part of the irradiation of sun directly observed by window	P=0.995			
Air density [kg/m³]	$ ho_{ m air}=1.2$			
Number of air change of the house [1/hr]	n_{air} =0.35			
Minimum temperature	T_{\min} =20			
Maximum temperature	$T_{max}=24$			
Initial temperature	T ₀ =21			

HVAC - Results: \$7.99/day

Next Steps

1

Co-Optimize: Limit consumption to solar production, i.e., $E_{WH} + E_{HVAC} \le \beta E_{solar}$

2

Explore Robust Optimization: Investigate using uncertain demand scenarios

Thank you!

Questions?

