Natural Language Processing

Tutorial 4: POS tagging and HMM

Dr. Sun Aixin

Question I

- Find one tagging error in each of the following sentences that are tagged with the Penn Treebank tagset:
 - How/WRB do/VBP I/PRP get/VB to/TO Singapore/NN
 - 2. Do/VBP you/PRP have/VB any/DT vacancies/NN
 - 3. This/DT room/NN is/VBZ too/JJ noisy/JJ
 - 4. Can/VB you/PRP give/VB me/PRP another/DT room/NN

Penn TreeBank POS Tagset

Review

Tag	Description	Example	Tag	Description	Example	Tag	Description	Example
CC	coord. conj.	and, but, or	NNP	proper noun, sing.	IBM	TO	"to"	to
CD	cardinal number	one, two	NNPS	proper noun, plu.	Carolinas	UH	interjection	ah, oops
DT	determiner	a, the	NNS	noun, plural	llamas	VB	verb base	eat
EX	existential 'there'	there	PDT	predeterminer	all, both	VBD	verb past tense	ate
FW	foreign word	mea culpa	POS	possessive ending	'S	VBG	verb gerund	eating
IN	preposition/	of, in, by	PRP	personal pronoun	I, you, he	VBN	verb past partici-	eaten
	subordin-conj						ple	
JJ	adjective	yellow	PRP\$	possess. pronoun	your, one's	VBP	verb non-3sg-pr	eat
JJR	comparative adj	bigger	RB	adverb	quickly	VBZ	verb 3sg pres	eats
JJS	superlative adj	wildest	RBR	comparative adv	faster	WDT	wh-determ.	which, that
LS	list item marker	1, 2, One	RBS	superlatv. adv	fastest	WP	wh-pronoun	what, who
MD	modal	can, should	RP	particle	ир, off	WP\$	wh-possess.	whose
NN	sing or mass noun	llama	SYM	symbol	+,%, &	WRB	wh-adverb	how, where

Answer I

- How/WRB do/VBP I/PRP get/VB to/TO Singapore/NN
 - Singapore/NNP
- Do/VBP you/PRP have/VB any/DT vacancies/NN
 - vacancies/NNS
- This/DT room/NN is/VBZ too/JJ noisy/JJ
 - too/RB
- Can/VB you/PRP give/VB me/PRP another/DT room/NN
 - Can/MD

Ī	Tag	Description	Example	Tag	Description	Example	Tag	Description	Example
	CC	coord. conj.	and, but, or	NNP	proper noun, sing.	IBM	ТО	"to"	to
	CD	cardinal number	one, two	NNPS	proper noun, plu.	Carolinas	UH	interjection	ah, oops
	DT	determiner	a, the	NNS	noun, plural	llamas	VB	verb base	eat
	EX	existential 'there'	there	PDT	predeterminer	all, both	VBD	verb past tense	ate
	FW	foreign word	mea culpa	POS	possessive ending	'S	VBG	verb gerund	eating
	IN	preposition/	of, in, by	PRP	personal pronoun	I, you, he	VBN	verb past partici-	eaten
		subordin-conj						ple	
	JJ	adjective	yellow	PRP\$	possess. pronoun	your, one's	VBP	verb non-3sg-pr	eat
	JJR	comparative adj	bigger	RB	adverb	quickly	VBZ	verb 3sg pres	eats
	JJS	superlative adj	wildest	RBR	comparative adv	faster	WDT	wh-determ.	which, that
	LS	list item marker	1, 2, One	RBS	superlatv. adv	fastest	WP	wh-pronoun	what, who
	MD	modal	can, should	RP	particle	ир, off	WP\$	wh-possess.	whose
	NN	sing or mass noun	llama	SYM	symbol	+,%, &	WRB	wh-adverb	how, where

Question 2

Compute the best tag sequence for "I want to race" using the Viterbi algorithm with the provided HMM parameters, i.e., the transition probability and the word likelihood probabilities

	VB	TO	NN	PPSS
<s></s>	.019	.0043	.041	.067
VB	.0038	.035	.047	.0070
TO	.83	0	.00047	0
NN	.0040	.016	.087	.0045
PPSS	.23	.00079	.0012	.00014

	I	want	to	race
VB	0	.0093	0	.00012
TO	0	0	.99	0
NN	0	.000054	0	.00057
PPSS	.37	0	0	0

Main Idea

- > We also have a matrix.
 - Each column— a time 't' (observation)
 - Each row a state 'i'
 - For each cell $v_t[i]$, we compute the probability of the **best path** to the cell
- \triangleright the **Viterbi path probability** at time t for state i
 - there are |Q| number of paths from t-1 to $v_t[i]$
 - if we know the best path to each cell in t-1, or $v_{t-1}[j]$
 - $arg \max_{j} v_{t-1}[j] \times P(i|j) \times P(s_t|i)$

Viterbi Example

Required computations

(This figure does not show the backtrace pointers)

	VB	TO	NN	PPSS
<s></s>	.019	.0043	.041	.067
VB	.0038	.035	.047	.0070
TO	.83	0	.00047	0
NN	.0040	.016	.087	.0045
PPSS	.23	.00079	.0012	.00014

	I	want	to	race
VB	0	.0093	0	.00012
TO	0	0	.99	0
NN	0	.000054	0	.00057
PPSS	.37	0	0	0

					end
NN	p(NN < s >) * p(I NN) = 0				
TO	0				
VB	0				
PPSS	p(PPSS < s >) * p(I PPSS) = 0.067 * 0.37 = 0.02479				
start					
	I	want	to	race	

	VB	TO	NN	PPSS
<s></s>	.019	.0043	.041	.067
VB	.0038	.035	.047	.0070
TO	.83	0	.00047	0
NN	.0040	.016	.087	.0045
PPSS	.23	.00079	.0012	.00014

	I	want	to	race
VB	0	.0093	0	.00012
TO	0	0	.99	0
NN	0	.000054	0	.00057
PPSS	.37	0	0	0

					end
NN	0	$.02479 \times p(NN PPSS) * p(want NN) =$ $/.02479 \times .0012 \times .000054 =$ 0.0000000160639			
ТО	0	0			
VB	0	$.02479 \times p(VB PPSS) \times p(want VB) =$ $.02479 \times .23 \times .0093 =$ 0.00005302581			
PPSS	0.02479	0			
start 🛎	, e e e e e e				
	1	want	to	race	

	VB	ТО	NN	PPSS
<s></s>	.019	.0043	.041	.067
VB	.0038	.035	.047	.0070
TO	.83	0	.00047	0
NN	.0040	.016	.087	.0045
PPSS	.23	.00079	.0012	.00014

	I	want	to	race
VB	0	.0093	0	.00012
TO	0	0	.99	0
NN	0	.000054	0	.00057
PPSS	.37	0	0	0

					end
NN	0	1.6×10^{-9}	0		
ТО	0	0	$\max \left(1.6 \times 10^{-9} \times p(TO NN),\right)$ $5.3 \times 10^{-5} \times p(TO VB)$ $* p(to TO) =$ $\max(1.6 \times 10^{-9} \times .016, 5.3 \times 10^{-5} \times .035)$ $* .99 = 1.84 \times 10^{-6}$		
VB	0	5.3×10^{-5}	0		
PPSS	0.02479	0	0		
start	**********				
	I	want	to	race	

	VB	TO	NN	PPSS
<s></s>	.019	.0043	.041	.067
VB	.0038	.035	.047	.0070
TO	.83	0	.00047	0
NN	.0040	.016	.087	.0045
PPSS	.23	.00079	.0012	.00014

	I	want	to	race
VB	0	.0093	0	.00012
TO	0	0	.99	0
NN	0	.000054	0	.00057
PPSS	.37	0	0	0

					end
NN	0	1.6 × 10 ⁻⁹	0	$1.84 \times 10^{-6} \times p(NN TO) \times p(race NN) =$ $1.84 \times 10^{-6} \times .00047 \times .00057$ $= 4.92 \times 10^{-14}$	
ТО	0	0	1.84×10^{-6}	0	
VB	0	5.3×10^{-5}	0	$1.84 \times 10^{-6} \times p(VB TO) \times p(race VB) =$ $1.84 \times 10^{-6} \times .83 \times .00012 = 1.83 \times 10^{-10}$	
PPSS	0.02479	0	0	0	
start *	*******				
	1	want	to	race	

	VB	ТО	NN	PPSS
<s></s>	.019	.0043	.041	.067
VB	.0038	.035	.047	.0070
TO	.83	0	.00047	0
NN	.0040	.016	.087	.0045
PPSS	.23	.00079	.0012	.00014

	I	want	to	race
VB	0	.0093	0	.00012
VB TO	0	0	.99	0
NN	0	.000054	0	.00057
PPSS	.37	0	0	0

					end
NN	0	1.6 × 10 ⁻⁹	0	$1.84 \times 10^{-6} \times p(NN TO) \times p(race NN) =$ $1.84 \times 10^{-6} \times .00047 \times .00057$ $= 4.92 \times 10^{-14}$	
ТО	0	0	1.84×10^{-6}	0	
VB	0	5.3×10^{-5}	0	$1.84 \times 10^{-6} \times p(VB TO) \times p(race VB) = 1.84 \times 10^{-6} \times .83 \times .00012 = 1.83 \times 10^{-10}$	
PPSS	0.02479	0	0	0	
start *	*******				
	1	want	to	race	

	VB	TO	NN	PPSS
<s></s>	.019	.0043	.041	.067
VB	.0038	.035	.047	.0070
TO	.83	0	.00047	0
NN	.0040	.016	.087	.0045
PPSS	.23	.00079	.0012	.00014

	I	want	to	race
VB	0	.0093	0	.00012
VB TO	0	0	.99	0
NN	0	.000054	0	.00057
PPSS	.37	0	0	0

					end
NN	0	1.6×10^{-9}	0	$1.84 \times 10^{-6} \times p(NN TO) \times p(race NN) =$ $1.84 \times 10^{-6} \times .00047 \times .00057$ $= 4.92 \times 10^{-14}$	
ТО	0	0	1.84×10^{-6}	0	
VB	0	5.3×10^{-5}	0	$1.84 \times 10^{-6} \times p(VB TO) \times p(race VB) = 1.84 \times 10^{-6} \times .83 \times .00012 = 1.83 \times 10^{-10}$	
PPSS	0.02479	0	0	0	
start					
	Ī	want	to	race	

Question 3

- Run the Viterbi algorithm with the HMM below to compute the most likely weather sequences for each of the two observation sequences,
 - **3**12312312
 - 311233112.

Hint 3

					end
Н					
С					
start					
	3	1	2	3	

- >3
- H 0.8 *0.4 (P(3|H)) = 0.32
- C 0.2 *0.1 (P (3|C)) = 0.02

- H max (0.32*0.7*0.2, 0.02*0.4*0.2)
- C max (0.32*0.3*0.5, 0.02*0.6*0.5)
- >2
- >3

Sequence 1: 3 1 2 3 1 2 3 1 2

Sequence 2: 3 1 1 2 3 3 1 1 2.

Decoded states: -Hot--Cold--Cold--Hot--Hot--Cold--Cold--Cold-

Question 4

The Church tagger (1988) is different from the HMM tagger since it incorporates the probability of the tag given the word.

```
■ HMM: p(word|tag) * p(tag|previous n tags)
■ Church: p(tag|word) * p(tag|previous n tags)
```

Interestingly, this use of a kind of "reverse likelihood" has proven to be useful in the modern log-linear approach to machine translation.

Question 4

- As a gedanken-experiment, construct a sentence, a set of tag transition probabilities, and a set of lexical tag probabilities that demonstrate a way in which the HMM tagger can produce a better answer than the Church tagger, and create another example in which the Church tagger is better.
 - Hint: The Church and HMM taggers will perform differently when, given two tags, tag₁ and tag₂:
 - $p(tag_1|word) > p(tag_2|word)$
 - $p(word|tag_1) < p(word|tag_2)$

- A word "manufacturing" is associated with the following probabilities (from a sample of text from Wall Street Journal).
 - P(VBG|manufacturing) = 0.231
 - P(NN|manufacturing) = 0.769
 - P(manufacturing|VBG) = 0.004
 - P(manufacturing|NN) = 0.001
 - So if we are looking at the words, we will expect this word to receive tag NN
 - If we are looking at the tags, we expect this word to be produced more often from VBG state than NN state

- Let's assume P(NN | < s >) = P(VBG | < s >) = 0.5
- Then HMM model will select VBG label
 - P(manufacturing|NN) * P(NN| < s >) = 0.0005
 - P(manufacturing|VBG) * P(VBG| < s >) = 0.002
- Church(1988) Tagger will select NN label
 - P(NN|manufacturing) * P(NN| < s >) = 0.3845
 - P(VGB|manufacturing) * P(VBG| < s >) = 0.1155