Notes on the book: $A tiyah \ and \ Macdonald, \ Introduction \ to \\ Commutative \ Algebra$

Meng-Gen Tsai plover@gmail.com

August 6, 2021

Contents

Chapter 1: Rings and Ideals					3
Exercise 1.1					3
Exercise 1.2					3
Exercise 1.3					6
Exercise 1.4					7
Exercise 1.5					7
Supplement 1.5.1					9
Exercise 1.6					10
Exercise 1.7					11
Exercise 1.8					11
Exercise 1.9					12
Exercise 1.10					12
Exercise 1.11. (Boolean ring)					13
Exercise 1.12					13
Construction of an algebraic closure of a field (E. Artin)					14
Exercise 1.13					14
Exercise 1.14					15
The prime spectrum of a ring					15
Exercise 1.15					15
Exercise 1.16					17
Exercise 1.17					18
Exercise 1.18					22
Exercise 1.19					23
Exercise 1.20					23
Exercise 1.21					25

napter 2: Modules	28
Exercise 2.1	28
Exercise 2.2	30
Exercise 2.3	31
Exercise 2.4	32
Exercise 2.5	33
Exercise 2.8	34
Evercise 2.0	3/1

Chapter 1: Rings and Ideals

Exercise 1.1.

Let x be a nilpotent element of A. Show that 1 + x is a unit of A. Deduce that the sum of a nilpotent element and a unit is a unit.

Proof.

(1) Suppose $x^m = 0$ for some odd integer $m \ge 0$. Then

$$1 = 1 + x^m = (1+x)(1-x+x^2-\dots+(-1)^{m-1}x^{m-1}),$$

or 1 + x is a unit.

(2) If u is any unit and x is any nilpotent, $u + x = u \cdot (1 + u^{-1}x)$ is a product of two units (using that $u^{-1}x$ is nilpotent and applying (1)) and hence a unit again.

Proof (Proposition 1.9).

- (1) The nilradical is a subset of the Jacobson radical.
 - (a) The nilradical $\mathfrak N$ of A is the intersection of all the prime ideals of A by Proposition 1.8.
 - (b) The Jacobson radical $\mathfrak J$ of A is the intersection of all the maximal ideals of A by definition.
- (2) By Proposition 1.9, $x \in \mathfrak{J}$ if and only if 1 xy is a unit in A for all $y \in A$. So $1 + x = 1 (-x) \cdot 1$ is a unit in A since x is a nilpotent and \mathfrak{J} is an ideal.

Exercise 1.2.

Let A be a ring and let A[x] be the ring of polynomials in an indeterminate x, with coefficients in A. Let $f = a_0 + a_1x + \cdots + a_nx^n \in A[x]$. Prove that

- (i) f is a unit in A[x] if and only if a_0 is a unit in A and a_1, \ldots, a_n are nilpotent. (Hint: If $b_0 + b_1x + \cdots + b_mx^m$ is the inverse of f, prove by induction on r that $a_r^{r+1}b_{m-r} = 0$. Hence show that a_n is nilpotent, and then use Exercise 1.1.)
- (ii) f is nilpotent if and only if a_0, a_1, \ldots, a_n are nilpotent.

- (iii) f is a zero-divisor if and only if there exists $a \neq 0$ such that af = 0. (Hint: Choose a polynomial $g = b_0 + b_1 x + \cdots + b_m x^m$ of least degree m such that fg = 0. Then $a_n b_m = 0$, hence $a_n g = 0$ (because $a_n g$ annihilates f and has degree < m). Now show by induction that $a_{n-r}g = 0$ $(0 \leq r \leq n)$.)
- (iv) f is said to be **primitive** if $(a_0, a_1, \ldots, a_n) = (1)$. Prove that if $f, g \in A[x]$, then fg is primitive if and only if f and g are primitive.

Proof of (i).

- (1) (\Leftarrow) holds by Exercise 1.1.
- (2) (\Longrightarrow) There exists the inverse g of f, say $g = b_0 + b_1 x + \cdots + b_m x^m$ satisfying 1 = fg. Clearly, $1 = a_0 b_0$, or a_0 is a unit in A. Also,

$$0 = a_n b_m,$$

$$0 = a_n b_{m-1} + a_{n-1} b_m,$$

$$0 = a_n b_{m-2} + a_{n-1} b_{m-1} + a_{n-2} b_m,$$

A direct computing shows that

$$0 = a_n^1 b_m,$$

$$0 = a_n (a_n b_{m-1} + a_{n-1} b_m)$$

$$= a_n^2 b_{m-1} + a_{n-1} a_n b_m$$

$$= a_n^2 b_{m-1},$$

$$0 = a_n^2 (a_n b_{m-2} + a_{n-1} b_{m-1} + a_{n-2} b_m)$$

$$= a_n^3 b_{m-2} + a_{n-1} a_n^2 b_{m-1} + a_{n-2} a_n^2 b_m$$

$$= a_n^3 b_{m-2},$$
...

So we might have $a_n^{r+1}b_{m-r} = 0$ for r = 0, 1, 2, ..., m.

- (3) Show that $a_n^{r+1}b_{m-r}=0$ for $r=0,1,2,\ldots,m$ by induction on r.
 - (a) As r = 0, $a_n b_m = 0$ by comparing the coefficient of fg = 1 at x^{n+m} .
 - (b) For any r > 0, comparing the coefficient of fg = 1 at x^{n+m-r} ,

$$0 = a_n b_{m-r} + a_{n-1} b_{m-r+1} + \dots + a_{n-r} b_m.$$

Multiplying by a_n^r on the both sides,

$$0 = a_n^{r+1} b_{m-r} + a_{n-1} a_n^r b_{m-r+1} + \dots + a_{n-r} a_n^r b_m$$

= $a_n^{r+1} b_{m-r}$.

by the induction hypothesis.

- (4) a_n is a nilpotent. Putting r = m in $a_n^{r+1}b_{m-r} = 0$ and get $a_n^{m+1}b_0 = 0$. Notice that b_0 is a unit, $a_n^{m+1} = 0$, or a_n is a nilpotent.
- (5) Consider $f a_n x^n = a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$, a polynomial $\in A[x]$ of degree n-1. Note that f is a unit and $a_n x^n$ is a nilpotent. By Exercise 1.1, $f a_n x^n$ is a unit too. Applying the (2)(3)(4) again, a_{n-1} is a nilpotent as n-1>0, that is, applying descending induction on n then yields the desired property.

Proof of (ii).

- (1) (\() holds since the nilradical of any ring is an ideal.
- (2) (\Longrightarrow) $f^N=0$ for some N>0. So $0=f^N=a_0^n+\cdots+a_n^Nx^{nN}$. Compare the coefficient in the lowest term to get $a_0^N=0$, or a_0 is a nilpotent.
- (3) Note that $f a_0 = a_1 x + \dots + a_n x^n \in A[x]$ is nilpotent since f and a_0 are nilpotent. $f a_0$ is a nilpotent too. Continue the same argument in (2), the result is established.

Proof of (iii).

- (1) (\Leftarrow) holds trivially.
- (2) (\Longrightarrow) Pick a polynomial $g = b_0 + b_1 x + \cdots + b_m x^m$ of least degree m such that fg = 0. Especially, $a_n b_m = 0$.
- (3) Consider

$$a_n g = a_n b_0 + \dots + a_n b_{m-1} x^{m-1} + a_n b_m x^m$$

= $a_n b_0 + \dots + a_n b_{m-1} x^{m-1}$

(since $a_n b_m = 0$). $a_n g$ is a polynomial over A of having degree strictly less than m. Notice that $f \cdot (a_n g) = a_n \cdot (fg) = 0$. By minimality of m, $a_n g = 0$.

- (4) Induction on the degree n of f.
 - (a) As n = 0, $f = a_0$. There exists $b_m \neq 0$ such that $b_m f = b_m a_0 = 0$ by (2).
 - (b) For any zero-divisor f of degree n, there is a polynomial $g = b_0 + b_1 x + \cdots + b_m x^m$ of least degree m such that fg = 0. By (2)(3),

$$(f - a_n x^n) \cdot g = fg - a_n x^n g$$
$$= 0 - 0$$
$$= 0.$$

That is, $f - a_n x^n$ is a zero-divisor of degree n - 1. By the induction hypothesis, there exists $b_m \neq 0$ such that $b_m(f - a_n x^n) = 0$. So $b_m f = b_m(f - a_n x^n) + b_m a_n x^n = 0 + 0 = 0$.

(c) By (a)(b), (\Longrightarrow) holds by mathematical induction.

Proof of (iv). Note that

- (1) $f \notin \mathfrak{m}[x]$ for any maximal ideal \mathfrak{m} of A if and only if f is primitive.
- (2) For any maximal ideal \mathfrak{m} of A, A/\mathfrak{m} is a field (or an integral domain).
- (3) A[x] is an integral domain if A is an integral domain.
- (4) $A[x]/\mathfrak{m}[x] \cong (A/\mathfrak{m})[x]$ as a ring isomorphism.

Hence,

f,g: primitive $\iff f,g\notin \mathfrak{m}[x]$ for any maximal ideal \mathfrak{m} $\iff f,g\neq 0$ in $(A/\mathfrak{m})[x]$ for any maximal ideal \mathfrak{m} $\iff fg\neq 0$ in $(A/\mathfrak{m})[x]$ for any maximal ideal \mathfrak{m} $\iff fg\notin \mathfrak{m}[x]$ for any maximal ideal \mathfrak{m} $\iff fg:$ primitive.

Exercise 1.3.

Generalize the results of Exercise 1.2 to a polynomial ring $A[x_1, \ldots, x_r]$ in several indeterminates.

Generalization. Let

$$f = \sum_{(i)} a_{(i)} x^{(i)} \in A[x_1, \dots, x_r]$$

where $\sum_{(i)}$ is the summation over $(i) = (i_1, \dots, i_r)$ with $i_1 + \dots + i_r = n$. Then

- (i) f is a unit in $A[x_1, \ldots, x_r]$ if and only if $a_{(0)}$ is a unit in A and all other $a_{(i)}$ are nilpotent.
- (ii) f is nilpotent if and only if all $a_{(i)}$ are nilpotent.
- (iii) f is a zero-divisor if and only if there exists $a \neq 0$ such that af = 0.
- (iv) If $f, g \in A[x_1, \ldots, x_r]$, then fg is primitive if and only if f and g are primitive.

Proof. Use the mathematical induction to prove (i)(ii)(iii) and apply the same argument in Exercise 1.2 (iv) to prove (iv). \Box

Exercise 1.4.

In the ring A[x], the Jacobson radical is equal to the nilradical.

Proof.

(1) The nilradical \mathfrak{N} is a subset of the Jacobson radical \mathfrak{J} . It suffices to show that $\mathfrak{J} \subseteq \mathfrak{N}$.

(2)

$$f \in \mathfrak{J}$$
 $\iff 1 - fy$ is a unit in $A[x]$ for all $y \in A[x]$ (Proposition 1.9) $\implies 1 - xf$ is a unit in $A[x]$ $(y = x)$ $\implies All$ coefficients of f are nilpotent (Exercise 1.2 (i)) $\implies f$ is nilpotent $\implies f \in \mathfrak{N}$.

Exercise 1.5.

Let A be a ring and let A[[x]] be the ring of formal power series $f = \sum_{n=0}^{\infty} a_n x^n$ with coefficients in A. Show that

- (i) f is a unit in A[[x]] if and only if a_0 is a unit in A.
- (ii) If f is nilpotent, then a_n is nilpotent for all $n \ge 0$. Is converse true? (See Exercise 7.2.)
- (iii) f belongs to the Jacobson radical of A[[x]] if and only if a_0 belongs to the Jacobson radical of A.
- (iv) The contraction of a maximal ideal \mathfrak{m} of A[[x]] is a maximal ideal of A, and \mathfrak{m} is generated by \mathfrak{m}^c and x.
- (v) Every prime ideal of A is the contraction of a prime ideal of A[[x]].

Proof of (i).

- (1) (\Longrightarrow) If $g = \sum_{n=0}^{\infty} b_n x^n$ is an inverse of f, then fg = 1 implies that $a_0 b_0 = 1$ so that a_0 is a unit in A.
- (2) (\Leftarrow) Our goal is to find $g = \sum_{n=0}^{\infty} b_n x^n$ such that the Cauchy product $fg = \sum_{n=0}^{\infty} c_n x^n$ is equal to $1 \in A[x]$. Here $c_n = \sum_{r=0}^n a_r b_{n-r}$. By the assumption we have that $c_0 = 1$ and $c_1 = c_2 = \cdots = 0$. Hence

$$b_0 = a_0^{-1}$$

$$b_1 = -a_0^{-1} a_1 b_0$$
...

 $b_n = a_0^{-1} \sum_{r=1}^n a_r b_{n-r}$

by induction.

Proof of (ii).

- (1) The proof is the same as Exercise 1.2 (ii).
- (2) The converse is true if A is Noetherian (by Exercise 7.2).
- (3) The converse is not always true. Take

$$A = \mathbb{F}_2[t, t^{-2}, t^{-2^2}, \ldots]/(t)$$

and

$$f(x) = \sum_{n=1}^{\infty} a_n x^n = \sum_{n=1}^{\infty} t^{-2^n} x^n \in A[x].$$

Note that A is not Noetherian and all a_n are nilpotent in A. To show f is not nilpotent in A[x], it suffices to show that f^{2^r} is not equal to zero for all positive integers r.

(4) Note that \mathbb{F}_2 is a field of characteristic 2. So

$$f^{2^r} = \sum_{n=1}^{\infty} a_n^{2^r} x^n = \sum_{n=1}^{\infty} t^{2^{r-n}} x^n = \sum_{n=r+1}^{\infty} t^{2^{r-n}} x^n \neq 0$$

for all r.

Proof of (iii).

f in the Jacobson radical of A[[x]]

$$\iff$$
 1 - fg \in A[[x]] is unit for all $g = \sum_{n=0}^{\infty} b_n x^n \in$ A[[x]] (Proposition 1.9)

$$\iff$$
 1 - $a_0b_0 \in A$ is unit for all $b_0 \in A$ ((i))

 \iff a_0 belongs to the Jacobson radical of A. (Proposition 1.9)

Proof of (iv).

- (1) Note that x = 0 + x belongs to the Jacobson radical of A[[x]] since 0 obviously belongs to the Jacobson radical of A (by (iii)).
- (2) So $x \in \mathfrak{m}$ or $(x) \subseteq \mathfrak{m}$ for any maximal ideal in A[[x]]. So it is clear that $\mathfrak{m} = \mathfrak{m}^c + (x)$.
- (3) Moreover, \mathfrak{m}^c is a maximal ideal since $A/\mathfrak{m}^c \cong A[[x]]/\mathfrak{m}$ is a field.

Proof of (v).

- (1) Similar to (iv). Suppose \mathfrak{p} is a prime ideal of A. Let $\mathfrak{q} = \mathfrak{p} + (x)$ be an ideal of A[[x]].
- (2) $\mathfrak{q}^c = \mathfrak{p}$ clearly. Besides, \mathfrak{q}^c is a prime ideal since

$$A[[x]]/\mathfrak{q}^c \cong A/\mathfrak{p}$$

is an integral domain.

Supplement 1.5.1.

(Exercise II.1.2 in the textbook: Jrgen Neukirch, Algebraic Number Theory.) A p-adic integer $a = a_0 + a_1p + a_2p^2 + \cdots$ is a unit in the ring \mathbb{Z}_p if and only if $a_0 \neq 0$.

Proof.

(1) (\Longrightarrow) If $b = b_0 + b_1 p + b_2 p^2 + \cdots$ is an inverse of a, then ab = 1 implies that $a_0 b_0 = 1$ so that a_0 is a unit in $\mathbb{Z}/p\mathbb{Z}$ or $a_0 \neq 0$.

(2) (\Leftarrow) Our goal is to find

$$b = b_0 + b_1 p + b_2 p^2 + \dots \in \mathbb{Z}_p$$

such that the Cauchy product

$$ab = c_0 + c_1 p + c_2 p^2 + \cdots$$

is equal to $1 \in \mathbb{Z}_p$. Here $c_n = \sum_{\nu=0}^n a_{\nu} b_{n-\nu}$. By the assumption we have that $c_0 = 1$ and $c_1 = c_2 = \cdots = 0$. Hence

$$b_0 = a_0^{-1}$$

$$b_1 = -a_0^{-1} a_1 b_0$$
...

 $b_n = a_0^{-1} \sum_{\nu=1}^n a_{\nu} b_{n-\nu}$

. .

by induction.

Exercise 1.6.

A ring A is such that every ideal not contained in the nilradical contains a nonzero idempotent (that is, an element e such that $e^2 = e \neq 0$). Prove that the nilradical and Jacobson radical of A are equal.

Proof.

- (1) $\mathfrak{N} \subseteq \mathfrak{J}$ clearly.
- (2) Since

$$a \notin \mathfrak{N} \Longrightarrow (a) \not\subseteq \mathfrak{N}$$
 \Longrightarrow there exists a nonzero idempotent $e \in (a)$
 $\Longrightarrow e = ar$ for some $r \in A$
 $\Longrightarrow 0 = e - e^2 = e(1 - e) = ar(1 - ar)$
 $\Longrightarrow 1 - ar$ is a zero-divisor, not a unit
 $\Longrightarrow a \notin \mathfrak{J}$, (Proposition 1.9)

we have $\mathfrak{J} \subseteq \mathfrak{N}$.

Exercise 1.7.

Let A be a ring in which every element satisfies $x^n = x$ for some n > 1 (depending on x). Show that every prime ideal in A is maximal.

Proof. It suffices to show that for any prime ideal \mathfrak{p} in A, A/\mathfrak{p} is a field.

- (1) Take any $0 \neq \overline{x} \in A/\mathfrak{p}$, which is represented by $x \in A \mathfrak{p}$. By assumption there exists $n \geq 2$ such that $x^n = x$. So $\overline{x}^n = \overline{x}$ or $\overline{x}(\overline{x}^{n-1} 1) = 0$.
- (2) Since \mathfrak{p} is prime, A/\mathfrak{p} is a integral domain. That is, $\overline{x} = 0$ (impossible) or $\overline{x}^{n-1} 1 = 0$. Write $\overline{x} \cdot \overline{x}^{n-2} = 1$ in A/\mathfrak{p} . So \overline{x}^{n-2} is an inverse of $\overline{x} \neq 0$ in A/\mathfrak{p} , which implies that A/\mathfrak{p} is a field (since \overline{x} is arbitrary).
- (3) A/\mathfrak{p} is a field if and only if \mathfrak{p} is maximal.

Exercise 1.8.

Let A be a ring $\neq 0$. Show that the set of prime ideals of A has minimal elements with respect to inclusion.

Similar to Theorem 1.3.

Proof (Zorn's Lemma).

- (1) Let Σ be the set of all prime ideals of A.
- (2) Order Σ by \supseteq , that is, $\mathfrak{p} \leq \mathfrak{q}$ if $\mathfrak{p} \supseteq \mathfrak{q}$.
- (3) Σ is not empty, since every ring $A \neq 0$ has at least one maximal ideal (or prime ideal) (Theorem 1.3).
- (4) To apply Zorn's lemma we must show that every chain in Σ has a lower bound in Σ ; let then (\mathfrak{p}_{α}) be a chain of prime ideals in Σ , so that for each pair of indices α , β we have either $\mathfrak{p}_{\alpha} \subseteq \mathfrak{p}_{\beta}$ or $\mathfrak{p}_{\beta} \subseteq \mathfrak{p}_{\alpha}$. Let $\mathfrak{p} = \bigcap_{\alpha} \mathfrak{p}_{\alpha}$.
- (5) Show that \mathfrak{p} is a prime ideal. Clearly \mathfrak{p} is an ideal. Given any $xy \in \mathfrak{p}$ and $x \notin \mathfrak{p}$. So xy is in all prime ideals \mathfrak{p}_{α} . By assumption $x \notin \mathfrak{p}$, there is some β such that $x \notin \mathfrak{p}_{\beta}$, or $x \notin \mathfrak{p}_{\alpha}$ whenever $\alpha \geq \beta$. So $y \in \mathfrak{p}_{\alpha}$ whenever $\alpha \geq \beta$. Since $y \in \mathfrak{p}_{\beta}$, $y \in \mathfrak{p}_{\gamma}$ whenever $\beta \geq \gamma$. Therefore, $y \in \mathfrak{p}_{\alpha}$ for all α , or $y \in \mathfrak{p}$, or \mathfrak{p} is prime.

Exercise 1.9.

Let \mathfrak{a} be an ideal \neq (1) in a ring A. Show that $\mathfrak{a} = r(\mathfrak{a}) \iff \mathfrak{a}$ is an intersection of prime ideals.

Proof.

- (1) (\Longrightarrow). By Proposition 1.14, $\mathfrak{a} = r(\mathfrak{a})$ is the intersection of the prime ideals which contain \mathfrak{a} .
- $(2) \ (\Longleftrightarrow).$

$$\begin{split} \mathfrak{a} &= \bigcap \{ \mathfrak{p} \in \text{some subset of } \operatorname{Spec}(A) \} \\ &= \bigcap \{ \mathfrak{p} \in \operatorname{some subset of } \operatorname{Spec}(A) : \mathfrak{p} \supseteq \mathfrak{a} \} \\ &\supseteq \bigcap \{ \mathfrak{p} \in \operatorname{Spec}(A) : \mathfrak{p} \supseteq \mathfrak{a} \} \\ &= r(\mathfrak{a}) \\ &\supseteq \mathfrak{a}. \end{split}$$

Exercise 1.10.

Let A be a ring, \mathfrak{N} its nilradical. Show the following are equivalent:

- (i) A has exactly one prime ideal;
- (ii) every element of A is either a unit or nilpotent;
- (iii) A/\mathfrak{N} is a field.

Proof.

 A/\mathfrak{N} is a field

 $\Longrightarrow \mathfrak{N}$ is a maximal ideal

 $\Longrightarrow \mathfrak{p} = \mathfrak{N}$ for every prime ideal \mathfrak{p} (Proposition 1.8)

 $\Longrightarrow A$ has exactly one prime ideal \mathfrak{p}

 $\Longrightarrow \mathfrak{p} = \mathfrak{N}$

 $\Longrightarrow A$ has exactly one maximal ideal \mathfrak{p}

 \Longrightarrow Given any $a \in A$, a is a unit or $a \in \mathfrak{p} = \mathfrak{N}$. (Corollary 1.5)

 $\Longrightarrow A/\mathfrak{N}$ is a field.

Exercise 1.11. (Boolean ring)

A ring A is **Boolean** if $x^2 = x$ for all $x \in A$. In a Boolean ring A, show that

- (i) 2x = 0 for all $x \in A$;
- (ii) every prime ideal \mathfrak{p} is maximal, and A/\mathfrak{p} is a field with two elements;
- (iii) every finitely generated ideal in A is principal.

Proof of (i). Note that $2x = x + x = (x + x)^2 = (2x)^2 = 4x^2 = 4x$. So 2x = 0. \Box

Proof of (ii). Same as Exercise 1.7 with n=2. \square

Proof of (iii).

- (1) By induction, it suffices to show that if $\mathfrak{a} = (x, y)$ is an ideal in A, then $\mathfrak{a} = (z)$ for some $z \in A$.
- (2) Take z = x + y + xy. $(z) \subseteq \mathfrak{a}$ obviously.
- (3) Conversely, note that

$$x = x^2 = x(z - y - xy) = xz - \underbrace{xy - \underbrace{x^2y}_{=xy}}^{=2xy = 0} = xz \in (z).$$

Also $y \in (z)$ similarly. So $\mathfrak{a} \subseteq (z)$ and thus $\mathfrak{a} = (z)$ is principal.

Exercise 1.12.

A local ring contains no idempotent $\neq 0, 1$.

Proof.

- (1) If e is an idempotent $\neq 0, 1$ in a local ring A with the maximal ideal \mathfrak{m} , then by definition 0 = e(1 e) shows that both $e \neq 0$ and $1 e \neq 0$ are not unit.
- (2) Thus $e \in \mathfrak{m}$ and $1 e \in \mathfrak{m}$. So 1 = (1 e) + e is a unit in \mathfrak{m} , which is absurd.

Construction of an algebraic closure of a field (E. Artin)

Exercise 1.13.

Let K be a field and let Σ be the set of all irreducible monic polynomials f in one indeterminate with coefficients in K. Let A be the polynomial ring over K generated by indeterminates x_f , one for each $f \in \Sigma$. Let \mathfrak{a} be the ideal of A generated by the polynomials $f(x_f)$ for all $f \in \Sigma$. Show that $\mathfrak{a} \neq (1)$.

Let \mathfrak{m} be a maximal ideal of A containing \mathfrak{a} and let $K_1 = A/\mathfrak{m}$. Then K_1 is an extension field of K in which each $f \in \Sigma$ has a root. Repeat the construction with K_1 in place of K, obtaining a field K_2 , and so on. Let $L = \bigcup_{n=1}^{\infty} K_n$. Then L is a field in which each $f \in \Sigma$ splits completely into linear factors. Let \overline{K} be the set of all elements of L which are algebraic over K. Then \overline{K} is an algebraic closure of K.

Proof.

(1) Show that $\mathfrak{a} \neq (1)$. (Reductio ad absurdum) If $\mathfrak{a} = (1)$, then we can write

$$1 = \sum_{i=1}^{n} g_i(x) f_i(x_{f_i}) \in A$$

where $x = (x_{f_1}, \dots, x_{f_n}, x_{g_1}, \dots, x_{g_r})$ is a tuple with finitely many indeterminates. It is possible since it is a finite sum.

(2) Let L be an algebraic extension of K such that each f_i has a root $a_i \in L$ (i = 1, ..., n).

(3) Take $x = (a_1, \ldots, a_n, 0, \ldots, 0)$ in the equation $1 = \sum_{i=1}^n g_i(x) f_i(x_{f_i})$ to get

$$1 = \sum_{i=1}^{n} g_i(a_1, \dots, a_n, 0, \dots, 0) f_i(a_i)$$
$$= \sum_{i=1}^{n} g_i(a_1, \dots, a_n, 0, \dots, 0) \cdot 0$$
$$= 0.$$

which is absurd.

Exercise 1.14.

In a ring A, let Σ be the set of all ideals in which every element is a zero-divisor. Show that the set Σ has maximal elements and that every maximal element of Σ is a prime ideal. Hence the set of zero-divisors in A is a union of prime ideals.

Proof.

- (1) Suppose $1 \neq 0$.
- (2) Show that the set Σ has maximal elements. Order Σ by inclusion. Σ is not empty, since $0 \in \Sigma$. To apply Zorn's lemma we must show that every chain in Σ has an upper bound in Σ ; let then (\mathfrak{a}_{α}) be a chain of ideals in Σ , so that for each pair of indices α , β we have either $\mathfrak{a}_{\alpha} \subseteq \mathfrak{a}_{\beta}$ or $\mathfrak{a}_{\beta} \subseteq \mathfrak{a}_{\alpha}$.
- (3) Let $\mathfrak{a} = \bigcup_{\alpha} \mathfrak{a}_{\alpha}$. Then \mathfrak{a} is an ideal and every element of \mathfrak{a} is a zero-divisor. Hence $\mathfrak{a} \in \Sigma$, and \mathfrak{a} is an upper bound of the chain. Hence by Zorn's lemma, Σ has maximal elements.
- (4) Show that every maximal element of Σ is a prime ideal. Let \mathfrak{p} be a maximal element in Σ . Suppose $x, y \notin \mathfrak{p}$. Then there are non-zero-divisors in $\mathfrak{p}+(x)$ and $\mathfrak{p}+(y)$, and their product is an element of $\mathfrak{p}+(xy)$ that is again a non-zero-divisor. So $xy \notin \mathfrak{p}$.
- (5) Hence the set of zero-divisors in A is a union of prime ideals (by the construction in (2) and the result of (4)).

The prime spectrum of a ring

Exercise 1.15.

Let A be a ring and let X be the set of all prime ideals of A. For each subset E of A, let V(E) denote the set of all prime ideals of A which contain E. Prove that

- (i) if \mathfrak{a} is the ideal generated by E, then $V(E) = V(\mathfrak{a}) = V(r(\mathfrak{a}))$.
- (ii) $V(0) = X, V(1) = \emptyset$.
- (iii) if $(E_i)_{i \in I}$ is any family of subsets of A, then

$$V\left(\bigcup_{i\in I} E_i\right) = \bigcap_{i\in I} V(E_i).$$

(iv)
$$V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{a}\mathfrak{b}) = V(\mathfrak{a}) \cup V(\mathfrak{b})$$
 for any ideals \mathfrak{a} , \mathfrak{b} of A .

The results show that the sets V(E) satisfy the axioms for closed sets in a topological space. The resulting topology is called the **Zariski topology**. The topological space X is called the **prime spectrum** of A, and is written $\operatorname{Spec}(A)$.

Note that if $E_1 \subseteq E_2$, then $V(E_1) \supseteq V(E_2)$.

Proof of (i).

- (1) Show that $V(E) = V(\mathfrak{a})$.
 - (a) Show that $V(E) \subseteq V(\mathfrak{a})$. Given any $\mathfrak{p} \in V(E)$, $\mathfrak{p} \supseteq E$. For any $a \in \mathfrak{a}$, since \mathfrak{a} is generated by E, we can write a as a finite sum $a = \sum \alpha \beta$ where $\alpha \in A$ and $\beta \in E$. Since $E \subseteq \mathfrak{p}$, all $\beta \in \mathfrak{p}$. Since \mathfrak{p} is an ideal, $a = \sum \alpha \beta \in \mathfrak{p}$. That is, $\mathfrak{p} \supseteq \mathfrak{a}$, or $\mathfrak{p} \in V(\mathfrak{a})$.
 - (b) $V(E) \supseteq V(\mathfrak{a})$ since $\mathfrak{a} \supseteq E$.
- (2) Show that $V(\mathfrak{a}) = V(r(\mathfrak{a}))$.
 - (a) Show that $V(\mathfrak{a}) \subseteq V(r(\mathfrak{a}))$. Given any $\mathfrak{p} \in V(\mathfrak{a})$,

$$\mathfrak{p} \in V(\mathfrak{a}) \Longrightarrow \mathfrak{p} \supseteq \mathfrak{a}$$
 $\Longrightarrow \mathfrak{p} \supseteq \text{the intersection of the primes ideals } \mathfrak{p} \supseteq \mathfrak{a}$
 $\Longrightarrow \mathfrak{p} \supseteq r(\mathfrak{a}) \text{ (by Proposition 1.14)}$
 $\Longrightarrow \mathfrak{p} \in V(r(\mathfrak{a})).$

(b) $V(\mathfrak{a}) \supseteq V(r(\mathfrak{a}))$ since $r(\mathfrak{a}) \supseteq \mathfrak{a}$.

Proof of (ii).

- (1) $V(1) = \emptyset$ since no prime ideal contains 1 by definition.
- (2) V(0) = X since 0 is in every ideal (especially in every prime ideal).

Proof of (iii).

$$\begin{split} \mathfrak{p} \in V \left(\bigcup_{i \in I} E_i \right) & \Longleftrightarrow \mathfrak{p} \supseteq \bigcup_{i \in I} E_i \\ & \Longleftrightarrow \mathfrak{p} \supseteq E_i \text{ for all } i \in I \\ & \Longleftrightarrow \mathfrak{p} \in V(E_i) \text{ for all } i \in I \\ & \Longleftrightarrow \mathfrak{p} \in \bigcap_{i \in I} V(E_i). \end{split}$$

Lemma. For any $\mathfrak{p} \supseteq \mathfrak{ab}$, $\mathfrak{p} \supseteq \mathfrak{a}$ or $\mathfrak{p} \supseteq \mathfrak{b}$.

Proof of Lemma.

- (1) If $\mathfrak{p} \supseteq \mathfrak{a}$. We are done.
- (2) If $\mathfrak{p} \not\supseteq \mathfrak{a}$, there exists $a \in \mathfrak{a} \mathfrak{p}$. So for any $b \in \mathfrak{b}$, $b \in \mathfrak{p}$ since $ab \in \mathfrak{ab} \subseteq \mathfrak{p}$ and \mathfrak{p} is a prime ideal, that is, $\mathfrak{p} \supseteq \mathfrak{b}$.

By (1)(2), $\mathfrak{p} \supseteq \mathfrak{a}$ or $\mathfrak{p} \supseteq \mathfrak{b}$. \square

Proof of (iv).

- (1) Show that $V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{a}\mathfrak{b})$.
 - (a) $V(\mathfrak{a} \cap \mathfrak{b}) \subseteq V(\mathfrak{ab})$ since $\mathfrak{ab} \subseteq \mathfrak{a} \cap \mathfrak{b}$.
 - (b) Show that $V(\mathfrak{a} \cap \mathfrak{b}) \supseteq V(\mathfrak{ab})$. Given any $\mathfrak{p} \in V(\mathfrak{ab})$, $\mathfrak{p} \supseteq \mathfrak{ab}$. By Lemma, $\mathfrak{p} \supseteq \mathfrak{a}$ or $\mathfrak{p} \supseteq \mathfrak{b}$. Notice that $\mathfrak{a} \supseteq \mathfrak{a} \cap \mathfrak{b}$ and $\mathfrak{b} \supseteq \mathfrak{a} \cap \mathfrak{b}$. In any case, $\mathfrak{p} \supseteq \mathfrak{a} \cap \mathfrak{b}$, $\mathfrak{p} \in V(\mathfrak{a} \cap \mathfrak{b})$.
- (2) Show that $V(\mathfrak{ab}) = V(\mathfrak{a}) \cup V(\mathfrak{b})$.
 - (a) Show that $V(\mathfrak{ab}) \subseteq V(\mathfrak{a}) \cup V(\mathfrak{b})$. Given any $\mathfrak{p} \in V(\mathfrak{ab})$, $\mathfrak{p} \supseteq \mathfrak{ab}$. By Lemma, $\mathfrak{p} \supseteq \mathfrak{a}$ or $\mathfrak{p} \supseteq \mathfrak{b}$, $\mathfrak{p} \in V(\mathfrak{a})$ or $\mathfrak{p} \in V(\mathfrak{b})$, $\mathfrak{p} \in V(\mathfrak{a}) \cup V(\mathfrak{b})$.
 - (b) Show that $V(\mathfrak{ab}) \supseteq V(\mathfrak{a}) \cup V(\mathfrak{b})$. Given any $\mathfrak{p} \in V(\mathfrak{a}) \cup V(\mathfrak{b})$, $\mathfrak{p} \in V(\mathfrak{a})$ or $\mathfrak{p} \in V(\mathfrak{b})$, $\mathfrak{p} \supseteq \mathfrak{a}$ or $\mathfrak{p} \supseteq \mathfrak{b}$. Notice that $\mathfrak{a} \supseteq \mathfrak{ab}$ and $\mathfrak{b} \supseteq \mathfrak{ab}$. In any cases, $\mathfrak{p} \supseteq \mathfrak{ab}$, or $\mathfrak{p} \in V(\mathfrak{ab})$.

Exercise 1.16.

Draw pictures of $\operatorname{Spec}(\mathbb{Z})$, $\operatorname{Spec}(\mathbb{R})$, $\operatorname{Spec}(\mathbb{C}[x])$, $\operatorname{Spec}(\mathbb{R}[x])$, $\operatorname{Spec}(\mathbb{Z}[x])$.

Proof.

- (1) Show that $\operatorname{Spec}(\mathbb{Z}) = \{(0)\} \cup \{(p) : p \text{ is a rational prime}\}$. Note that \mathbb{Z} is a PID. So all non-trivial prime ideals are of the form (π) where π is irreducible.
- (2) Show that $Spec(\mathbb{R}) = \{(0)\}$. Note that \mathbb{R} is a field.

Exercise 1.17.

For each $f \in A$, let X_f denote the complement of V(f) in $X = \operatorname{Spec}(A)$. The sets X_f are open. Show that they form a basis of open sets for the Zariski topology, and that

- (i) $X_f \cap X_g = X_{fg}$.
- (ii) $X_f = \emptyset \iff f$ is nilpotent.
- (iii) $X_f = X \iff f$ is a unit.
- (iv) $X_f = X_g \iff r((f)) = r((g)).$
- (v) X is quasi-compact (compact), that is, every open covering of X has a finite subcovering.
- (vi) More generally, each X_f is quasi-compact.
- (vii) An open subset of X is quasi-compact if and only if it is a finite union of sets X_f .

The sets X_f are called basic open sets of $X = \operatorname{Spec}(A)$.

(Hint: To prove (v), remark that it is enough to consider a covering of X by basic open sets $X_{f_i} (i \in I)$. Show that the f_i generate the unit ideal and hence that there is an equation of the form

$$1 = \sum_{i \in J} g_i f_i \quad (g_i \in A)$$

where J is some finite subset of I. Then the $X_{f_i} (i \in J)$ cover X.)

Proof of basis. It is equivalent to Exercise 1.15 (iii). Given any open set O in X. Write $O = X - V(\mathfrak{a})$ for some ideal \mathfrak{a} of A. Since

$$V(\mathfrak{a}) = V\left(\bigcup_{f \in \mathfrak{a}} (f)\right) = \bigcap_{f \in \mathfrak{a}} V(f),$$

we have

$$O = X - V(\mathfrak{a}) = X - \bigcap_{f \in \mathfrak{a}} V(f) = \bigcup_{f \in \mathfrak{a}} (X - V(f)) = \bigcup_{f \in \mathfrak{a}} X_f,$$

or any open set is a union of basic open sets. \square

Proof of (i). $X_f \cap X_g = X_{fg} \iff V(f) \cup V(g) = V(fg)$ holds by Exercise 1.15 (iv). \square

Proof of (ii).

$$X_f = \emptyset \iff V(f) = X$$

 $\iff f \in \mathfrak{p} \text{ for all prime ideal } \mathfrak{p} \text{ of } A$
 $\iff f \in \mathfrak{N}, \text{ the nilradical of } A \text{ (Proposition 1.8)}$
 $\iff f \text{ is nilpotent (Proposition 1.7)}$

Proof of (ii)(Using (iv)).

$$X_f = \emptyset \iff X_f = X_0$$
 (Exercise 15(ii))
 $\iff r(f) = r(0)$ ((iv))
 $\iff f \in r(f) = r(0)$
 $\iff f^m = 0 \text{ for some } m > 0$
 $\iff f \text{ is nilpotent}$

Proof of (iii).

$$X_f = X \iff V(f) = \emptyset$$

 $\iff f \notin \mathfrak{p} \text{ for all prime ideal } \mathfrak{p} \text{ of } A$
 $\iff f \text{ is unit (Corollary 1.5)}$

Proof of (iii)(Using (iv)).

$$X_f = X \iff X_f = X_1$$
 (Exercise 15(ii))
 $\iff r(f) = r(1)$ ((iv))
 $\iff f \in r(f) = r(1)$
 $\iff f^m = 1 \text{ for some } m > 0$
 $\iff f \text{ is unit}$

Proof of (iv).

(1) Show that
$$X_f \subseteq X_g \iff r((f)) \subseteq r((g))$$
. Actually,

$$X_{f} \subseteq X_{g} \Longrightarrow V(f) \supseteq V(g)$$

$$\Longrightarrow \{ \mathfrak{p} \in \operatorname{Spec}(A) : \mathfrak{p} \supseteq (f) \} \supseteq \{ \mathfrak{p} \in \operatorname{Spec}(A) : \mathfrak{p} \supseteq (g) \}$$

$$\Longrightarrow \bigcap_{(f) \subseteq \mathfrak{p} \in \operatorname{Spec}(A)} \mathfrak{p} \subseteq \bigcap_{(g) \subseteq \mathfrak{p} \in \operatorname{Spec}(A)} \mathfrak{p}$$

$$\stackrel{1.14}{\Longrightarrow} r(f) \subseteq r(g)$$

$$\Longrightarrow V(r(f)) \supseteq V(r(g))$$

$$\Longrightarrow V(f) \supseteq V(g)$$

$$\Longrightarrow X_{f} \subseteq X_{g}.$$

(2) By (1),

$$X_f \subseteq X_g \iff r((f)) \subseteq r((g)),$$

 $X_f \supseteq X_g \iff r((f)) \supseteq r((g)).$

Hence,

$$X_f = X_g \Longleftrightarrow r((f)) = r((g)).$$

Proof of (v). Notice that it is enough to consider a covering of X by basic open sets $X_{f_i} (i \in I)$.

(1) Since X is covered by $X_{f_i} (i \in I)$,

$$X = \bigcup_{i \in I} X_{f_i} \Longrightarrow X - V(1) = \bigcup_{i \in I} (X - V(f_i))$$

$$\Longrightarrow V(1) = \bigcap_{i \in I} V(f_i)$$

$$\Longrightarrow V(1) = V\left(\sum_{i \in I} f_i\right)$$

$$\Longrightarrow r(1) = r\left(\sum_{i \in I} f_i\right).$$

Hence, $1 \in r(1) = r\left(\sum_{i \in I} f_i\right)$ can be expressed as

$$1 = 1^m = \sum_{j \in J} g_j f_j$$

where *J* is a finite subset of *I* and $g_j \in A$. That is, $(1) = \sum_{j \in J} f_j$.

(2) Hence, $V(1) = V\left(\sum_{j \in J} f_j\right)$. Therefore, X is covered by finite subcovering $\{X_{f_i}\}(j \in J)$.

Proof of $(v)(Using\ (vi))$. Since $X=X_1,\ X$ is quasi-compact by (vi). \square

Proof of (vi). Notice that it is enough to consider a covering of X_f by basic open sets $X_{f_i} (i \in I)$.

(1) Since X_f is covered by $X_{f_i} (i \in I)$,

$$X_f = \bigcup_{i \in I} X_{f_i} \Longrightarrow X - V(f) = \bigcup_{i \in I} (X - V(f_i))$$

$$\Longrightarrow V(f) = \bigcap_{i \in I} V(f_i)$$

$$\Longrightarrow V(f) = V\left(\sum_{i \in I} f_i\right)$$

$$\Longrightarrow r(f) = r\left(\sum_{i \in I} f_i\right).$$

Hence, $f \in r(f) = r\left(\sum_{i \in I} f_i\right)$ can be expressed as

$$f^m = \sum_{j \in J} g_j f_j$$

where *J* is a finite subset of *I* and $g_j \in A$. That is, $f^m \in \sum_{j \in J} f_j$.

- (2) Show that $V\left(\sum_{j\in J} f_j\right) = V(f)$.
 - (a) (\subseteq) For any prime ideal $\mathfrak{p} \supseteq \sum_{j \in J} f_j$, $f^m \in \mathfrak{p}$ or $f \in \mathfrak{p}$ (since \mathfrak{p} is prime). So $\mathfrak{p} \supseteq (f)$, or $V\left(\sum_{j \in J} f_j\right) \subseteq V(f)$.
 - (b) (⊇)

$$\sum_{j \in J} f_j \subseteq \sum_{i \in I} f_i \Longrightarrow V\left(\sum_{j \in J} f_j\right) \supseteq V\left(\sum_{i \in I} f_i\right) = V(f).$$

(3) Therefore, X_f is covered by finite subcovering $\{X_{f_i}\}(j \in J)$.

Proof of $(vi)(Using\ (v))$. Exercise 3.21 (i) shows that X_f is the spectrum of A_f . By (v), X_f is quasi-compact. \square

Proof of (vii).

(1) (\Longrightarrow) Given an open subset O. Since X_f form a basis of open sets,

$$O = \bigcup_{f \in \mathfrak{a}} X_f$$
 for some ideal \mathfrak{a} of A

Especially, $\{X_f\}_{f\in\mathfrak{a}}$ is an open covering of O. Since O is quasi-compact, there exists a finite subcovering $\{X_f\}_{f\in J}$ of O, where J is a finite subset of \mathfrak{a} (as a set). That is, $O=\bigcup_{f\in J}X_f$ is a finite union of sets X_f .

(2) (\iff) Since X_f is quasi-compact, any finite union of quasi-compact sets is quasi-compact again.

Exercise 1.18.

For psychological reasons it is sometimes convenient to denote a prime ideal of A by a letter such as x or y when thinking of it as a point of $X = \operatorname{Spec}(A)$. When thinking of x as a prime ideal of A, we denote it by \mathfrak{p}_x (logically, of course, it is the same thing). Show that

- (i) The set $\{x\}$ is closed (we say that x is a "closed point") in Spec(A) if and only if \mathfrak{p}_x is maximal;
- (ii) $\overline{\{x\}} = V(\mathfrak{p}_x);$
- (iii) $y \in \overline{\{x\}}$ if and only if $\mathfrak{p}_x \subseteq \mathfrak{p}_y$;
- (iv) X is a T_0 -space (this means that if x, y are distinct points of X, then either there is a neighborhood of x which does not contain y, or else there is a neighborhood of y which does not contain x).

Proof of (i).

(1)

Proof of (ii).

(1)

Proof of (iii).

(1)

Proof of (iv).

(1)

Exercise 1.19.

A topological space X is said to be irreducible if $X \neq \emptyset$ and if every pair of non-empty open sets in X intersect, or equivalently if every non-empty open set is dense in X. Show that $\operatorname{Spec}(A)$ is irreducible if and only if the nilradical of A is a prime ideal.

Proof. Use the notations in Proposition 1.7 and Exercise 1.17.

```
\begin{array}{l} \operatorname{Spec}(A) \text{ is irreducible} \\ \Longleftrightarrow X_f \cap X_g \neq \varnothing \text{ for nonempty } X_f, X_g \in \operatorname{Spec}(A) \\ \Longleftrightarrow X_{fg} \neq \varnothing \text{ for nonempty } X_f, X_g \in \operatorname{Spec}(A) \\ \Longleftrightarrow fg \notin \mathfrak{N} \text{ for } f, g \notin \mathfrak{N} \\ \Longleftrightarrow \mathfrak{N} \text{ is prime.} \end{array} \tag{Exercise 1.17 (ii)}
```

Exercise 1.20.

Let X be a topological space.

- (i) If Y is an irreducible subspace of X, then the closure \overline{Y} of Y in X is irreducible.
- (ii) Every irreducible subspace of X is contained in a maximal irreducible subspace.
- (iii) The maximal irreducible subspaces of X are closed and cover X. They are called the irreducible components of X. What are the irreducible components of a Hausdorff space?
- (iv) If A is a ring and $X = \operatorname{Spec}(A)$, then the irreducible components of X are the closed sets $V(\mathfrak{p})$, where \mathfrak{p} is a minimal prime ideal of A (Exercise 1.8).

Proof of (i).

(1) Y is irreducible if and only if Y cannot be represented as the union of two proper closed subspaces.

 \forall nonempty open sets U_1 and $U_2, U_1 \cap U_2 \neq \emptyset$

 \iff \forall nonempty open sets U_1 and $U_2, X - (U_1 \cap U_2) \neq X$

 $\iff \forall \text{ nonempty open sets } U_1 \text{ and } U_2, (X-U_1) \cup (X-U_2) \neq X$

 $\iff \forall$ proper closed sets Y_1 and $Y_2, Y_1 \cup Y_2 \neq X$

 \iff $\not\equiv$ proper closed sets Y_1 and $Y_2, Y_1 \cup Y_2 = X$.

(2) If \overline{Y} were reducible, there are two closed set Y_1 and Y_2 such that

$$\overline{Y} \subseteq Y_1 \cup Y_2, \qquad \overline{Y} \not\subseteq Y_i (i=1,2).$$

- (a) $Y \subseteq \overline{Y} \subseteq Y_1 \cup Y_2$.
- (b) $Y \nsubseteq Y_i (i = 1, 2)$. If not, $Y \subseteq Y_i$ for some i. Take closure to get $\overline{Y} \subseteq \overline{Y_i} = Y_i$ (since Y_i is closed), contrary to the assumption.

By (a)(b), Y is reducible, which is absurd.

Proof of (ii).

- (1) This is a standard application of Zorn's lemma.
- (2) Suppose Y is an irreducible subspace of X. Let Σ be the set of all irreducible subspaces of X containing Y. Order Σ by inclusion. Σ is not empty, since $Y \in \Sigma$. To apply Zorn's lemma we must show that every chain in Σ has an upper bound in Σ ; let then (Y_{α}) be a chain in Σ . Let $Z = \bigcup_{\alpha} Y_{\alpha}$. $Z \supseteq Y$ clearly.
- (3) Show that Z is irreducible. Given two non-empty open sets U and V contained in $Z = \bigcup_{\alpha} Y_{\alpha}$. Then $U \cap Y_{\alpha} \neq \emptyset$ and $V \cap Y_{\beta} \neq \emptyset$ for some α, β . Since (Y_{α}) is a chain, we might have $V \cap Y_{\alpha} \supseteq V \cap Y_{\beta} \neq \emptyset$ if $\beta \leq \alpha$. (The case $\alpha \leq \beta$ is similar.) So $U \cap V \cap Z \supseteq U \cap V \cap Y_{\alpha} \neq \emptyset$ since Z contains an irreducible subspace Y_{α} in X.
- (4) Hence $Z \in \Sigma$, and Z is an upper bound of the chain (Y_{α}) . Hence by Zorn's lemma Σ has a maximal element.

Proof of (iii).

(1) Show that the maximal irreducible subspaces of X are closed. Suppose Y is a maximal irreducible subspaces of X. So \overline{Y} of Y in X is irreducible (by part (i)). The maximality of Y implies that $Y = \overline{Y}$.

- (2) Show that the maximal irreducible subspaces of X cover X. Note that each element $P \in X$ forms an irreducible subset $\{P\}$ and thus $\{P\}$ is contained in one irreducible component (by (ii)).
- (3) One point subsets are the irreducible components of a Hausdorff space.

Proof of (iv).

(1)

Exercise 1.21.

Let $\phi: A \to B$ be a ring homomorphism. Let $X = \operatorname{Spec}(A)$ and $Y = \operatorname{Spec}(B)$. If $\mathfrak{q} \in Y$, then $\phi^{-1}(\mathfrak{q})$ is a prime ideal of A, i.e., a point of X. Hence ϕ induces a mapping $\phi^*: Y \to X$. Show that

- (i) If $f \in A$ then $\phi^{*-1}(X_f) = Y_{\phi(f)}$, and hence that ϕ^* is continuous.
- (ii) If \mathfrak{a} is an ideal of A, then $\phi^{*-1}(V(\mathfrak{a})) = V(\mathfrak{a}^e)$.
- (iii) If \mathfrak{b} is an ideal of B, then $\overline{\phi^*(V(\mathfrak{b}))} = V(\mathfrak{b}^c)$.
- (iv) If ϕ is surjective, then ϕ^* is a homeomorphism of Y onto the closed subset $V(\ker(\phi))$ of X. (In particular, $\operatorname{Spec}(A)$ and $\operatorname{Spec}(A/\mathfrak{N})$ (where \mathfrak{N} is the nilradical of A) are naturally homeomorphic.)
- (v) If ϕ is injective, then $\phi^*(Y)$ is dense in X. More precisely, $\phi^*(Y)$ is dense in X if and only if $\ker(\phi) \subseteq \mathfrak{N}$.
- (vi) Let $\psi: B \to C$ be another ring homomorphism. Then $(\psi \circ \phi)^* = \phi^* \circ \psi^*$.
- (vii) Let A be an integral domain with just one nonzero prime ideal \mathfrak{p} , and let K be the field of fractions of A. Let $B = (A/\mathfrak{p}) \times K$. Define $\phi : A \to B$ by $\phi(x) = (\overline{x}, x)$, where \overline{x} is the image of x in A/\mathfrak{p} . Show that ϕ^* is bijective but not a homeomorphism.

Proof of (i). Since

$$\mathbf{q} \in Y_{\phi(f)} = Y - V(\phi(f))$$

$$\iff \mathbf{q} \notin V(\phi(f)) = \{\text{all prime ideals in } B \text{ containing } \phi(f)\}$$

$$\iff \phi(f) \notin \mathbf{q}$$

$$\iff f \notin \phi^{-1}(\mathbf{q})$$

$$\iff \phi^{-1}(\mathbf{q}) \notin V(f) = \{\text{all prime ideals in } A \text{ containing } f\}$$

$$\iff \phi^*(\mathbf{q}) = \phi^{-1}(\mathbf{q}) \in X_f,$$

 ϕ^* is continuous. \Box

Proof of (ii).

(1) Use the same notation of Proposition 1.17. Show that

$$\mathfrak{b}^c \supseteq \mathfrak{a} \Longleftrightarrow \mathfrak{b} \supseteq \mathfrak{a}^e$$
.

Suppose $\mathfrak{b}^c\supseteq\mathfrak{a}$, then $\mathfrak{b}^{ce}\supseteq\mathfrak{a}^e$. Proposition 1.17 (i) suggests that $\mathfrak{b}\supseteq\mathfrak{b}^{ce}\supseteq\mathfrak{a}^e$. The converse is similar.

(2) So

$$\begin{split} \mathfrak{q} &\in \phi^{*-1}(V(\mathfrak{a})) \\ \iff \phi^*(\mathfrak{q}) \in V(\mathfrak{a}) = \{\text{all prime ideals containing }\mathfrak{a}\} \\ \iff \phi^*(\mathfrak{q}) \supseteq \mathfrak{a} \\ \iff \mathfrak{q}^c \supseteq \mathfrak{a} \\ \iff \mathfrak{q} \supseteq \mathfrak{a}^e \\ \iff \mathfrak{q} \in V(\mathfrak{a}^e) = \{\text{all prime ideals containing }\mathfrak{a}^e\}. \end{split}$$

Proof of (iii).

- (1) Might assume that $\mathfrak{b} = r(\mathfrak{b})$ is radical by Exercise 1.15 (i).
- (2) Show that $\overline{\phi^*(V(\mathfrak{b}))} \supseteq V(\mathfrak{b}^c)$. Write $\overline{\phi^*(V(\mathfrak{b}))} = V(\mathfrak{a})$ for some radical ideal \mathfrak{a} in A since $\overline{\phi^*(V(\mathfrak{b}))}$ is closed. So

$$\begin{split} V(\mathfrak{a}^e) &= \phi^{*-1}(V(\mathfrak{a})) = \phi^{*-1}(\overline{\phi^*(V(\mathfrak{b}))}) \supseteq V(\mathfrak{b}) \\ \Longrightarrow r(\mathfrak{a}^e) \subseteq r(\mathfrak{b}) \\ \Longrightarrow r(\mathfrak{a})^e \subseteq r(\mathfrak{a}^e) \subseteq r(\mathfrak{b}) \\ \Longrightarrow \mathfrak{a}^e \subseteq \mathfrak{b} \\ \Longrightarrow \mathfrak{a} \subseteq \mathfrak{b}^c \\ \Longrightarrow V(\mathfrak{a}) \supseteq V(\mathfrak{b}^c). \end{split}$$

(3) Show that $\overline{\phi^*(V(\mathfrak{b}))} \subseteq V(\mathfrak{b}^c)$. It suffices to show that $\phi^*(V(\mathfrak{b})) \subseteq V(\mathfrak{b}^c)$ since $V(\mathfrak{b}^c)$ is closed. Suppose $\mathfrak{p} \in \phi^*(V(\mathfrak{b}))$. Then there is $\mathfrak{q} \in V(\mathfrak{b})$ such that

$$\mathfrak{p} = \phi^*(\mathfrak{q}) = \mathfrak{q}^c \supseteq \mathfrak{b}^c.$$

So $\mathfrak{p} \in V(\mathfrak{b}^c)$.

Proof of (iv).

(1)

Proof of (v).

- (1) It suffices to show that $\phi^*(Y)$ is dense in X if and only if $\ker(\phi) \subseteq \mathfrak{N}$.
- (2)

$$\begin{split} \phi^*(Y) \text{ is dense in } X \\ &\iff X = \overline{\phi^*(Y)} = \overline{\phi^*(V(0))} = V(0^c) = V(\ker \phi) \\ &\iff \ker \phi \text{ is contained in every prime ideal of } A \\ &\iff \ker \phi \subseteq \mathfrak{N}. \end{split}$$

Proof of (vi).

$$(\psi \circ \phi)^*(\mathfrak{p}) = (\psi \circ \phi)^{-1}(\mathfrak{p}) = \phi^{-1}(\psi^{-1}(\mathfrak{p})) = \phi^*(\psi^*(\mathfrak{p})) = (\phi^* \circ \psi^*)(\mathfrak{p})$$

for every prime ideal $\mathfrak p$ in $\operatorname{Spec}(C)$. \square

Proof of (vii).

(1)

Chapter 2: Modules

Exercise 2.1.

Show that $(\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z}) = 0$ if m, n are coprime.

It suffices to show that

$$(\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z}) \cong \mathbb{Z}/d\mathbb{Z}$$

where d is the greatest common divisor of m and n.

Outlines.

(1) Define $\widetilde{\varphi}$ by

 $\widetilde{\varphi}$ is well-defined and \mathbb{Z} -bilinear.

(2) By the universal property, $\widetilde{\varphi}$ factors through a \mathbb{Z} -bilinear map

$$\varphi: (\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z}) \to \mathbb{Z}/d\mathbb{Z}$$

(such that $\varphi(x \otimes y) = \widetilde{\varphi}(x, y)$).

(3) To show that φ is isomorphic, might find the inverse map $\psi : \mathbb{Z}/d\mathbb{Z} \to (\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z})$ of φ . Define ψ by

 ψ is well-defined and \mathbb{Z} -linear.

- (4) $\psi \circ \varphi = id$.
- (5) $\varphi \circ \psi = id$.

Proof of (1).

(a) $\widetilde{\varphi}$ is well-defined. Say x' = x + am for some $a \in \mathbb{Z}$ and y' = y + bn for some $b \in \mathbb{Z}$. Then $x'y' - xy = yam + xbn + abmn \in \mathbb{Z}/d\mathbb{Z}$. That is, $\widetilde{\varphi}$ is independent of coset representative.

- (b) $\widetilde{\varphi}$ is \mathbb{Z} -bilinear.
 - (i) For any $\lambda \in \mathbb{Z}$, $\widetilde{\varphi}(\lambda x, y) = \widetilde{\varphi}(x, \lambda y) = \lambda \widetilde{\varphi}(x, y)$. In fact, $\widetilde{\varphi}(\lambda(x + m\mathbb{Z}), y + n\mathbb{Z}) = \widetilde{\varphi}(\lambda x + m\mathbb{Z}, y + n\mathbb{Z}) = \lambda xy + d\mathbb{Z},$ $\widetilde{\varphi}(x + m\mathbb{Z}, \lambda(y + n\mathbb{Z})) = \widetilde{\varphi}(x + m\mathbb{Z}, \lambda y + n\mathbb{Z}) = \lambda xy + d\mathbb{Z},$ $\widetilde{\varphi}(x_1 + m\mathbb{Z}, y + n\mathbb{Z}) = \lambda(xy + d\mathbb{Z}) = \lambda xy + d\mathbb{Z}.$

(ii)
$$\widetilde{\varphi}(x_1 + x_2, y) = \widetilde{\varphi}(x_1, y) + \widetilde{\varphi}(x_2, y)$$
. In fact,

$$\widetilde{\varphi}((x_1 + x_2) + m\mathbb{Z}, y + n\mathbb{Z}) = (x_1 + x_2)y + d\mathbb{Z},$$

$$\widetilde{\varphi}(x_1 + m\mathbb{Z}, y + n\mathbb{Z}) + \widetilde{\varphi}(x_2 + m\mathbb{Z}, y + n\mathbb{Z}) = (x_1y + d\mathbb{Z}) + (x_2y + d\mathbb{Z})$$

$$= (x_1 + x_2)y + d\mathbb{Z}.$$

(iii) $\widetilde{\varphi}(x, y_1 + y_2) = \widetilde{\varphi}(x, y_1) + \widetilde{\varphi}(x, y_2)$. Similar to (ii).

Proof of (3).

(a) ψ is well-defined. Say z' = z + cd for some $c \in \mathbb{Z}$. Note that $d = \alpha m + \beta n$ for some $\alpha, \beta \in \mathbb{Z}$. Thus

$$\psi(z'+d\mathbb{Z}) = \psi(z+cd+d\mathbb{Z})$$

$$= \psi(z+c(\alpha m+\beta n)+d\mathbb{Z})$$

$$= (z+c(\alpha m+\beta n)+m\mathbb{Z})\otimes (1+n\mathbb{Z})$$

$$= (z+c\beta n+m\mathbb{Z})\otimes (1+n\mathbb{Z})$$

$$= (z+m\mathbb{Z})\otimes (1+n\mathbb{Z})+(c\beta n+m\mathbb{Z})\otimes (1+n\mathbb{Z})$$

$$= \psi(z+d\mathbb{Z})+(1+m\mathbb{Z})\otimes (c\beta n+n\mathbb{Z})$$

$$= \psi(z+d\mathbb{Z}).$$

- (b) ψ is \mathbb{Z} -linear.
 - (i) For any $\lambda \in \mathbb{Z}$, $\psi(\lambda z) = \lambda \psi(z)$. In fact,

$$\psi(\lambda(z+d\mathbb{Z})) = \psi(\lambda z + d\mathbb{Z}) = (\lambda z + m\mathbb{Z}) \otimes (1+n\mathbb{Z}),$$
$$\lambda \psi(z+d\mathbb{Z}) = \lambda((z+m\mathbb{Z}) \otimes (1+n\mathbb{Z})) = (\lambda z + m\mathbb{Z}) \otimes (1+n\mathbb{Z}).$$

(ii) $\psi(z_1 + z_2) = \psi(z_1) + \psi(z_2)$.

$$\psi((z_1+z_2)+d\mathbb{Z}) = (z_1+z_2+m\mathbb{Z}) \otimes (1+n\mathbb{Z}),$$

$$\psi(z_1+d\mathbb{Z}) + \psi(z_2+d\mathbb{Z}) = (z_1+m\mathbb{Z}) \otimes (1+n\mathbb{Z}) + (z_2+m\mathbb{Z}) \otimes (1+n\mathbb{Z})$$

$$= (z_1+z_2+m\mathbb{Z}) \otimes (1+n\mathbb{Z}).$$

Proof of (4). For any $(x + m\mathbb{Z}) \otimes (y + n\mathbb{Z}) \in (\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z})$,

$$\psi(\varphi((x+m\mathbb{Z})\otimes(y+n\mathbb{Z}))) = \psi(xy+d\mathbb{Z})$$
$$= (xy+m\mathbb{Z})\otimes(1+n\mathbb{Z})$$
$$= (x+m\mathbb{Z})\otimes(y+n\mathbb{Z}).$$

Proof of (5). For any $z + d\mathbb{Z} \in \mathbb{Z}/d\mathbb{Z}$,

$$\varphi(\psi(z+d\mathbb{Z})) = \varphi((z+m\mathbb{Z}) \otimes (1+n\mathbb{Z}))$$
$$= z+d\mathbb{Z}.$$

Exercise 2.2.

Let A be a ring, $\mathfrak a$ an ideal, M an A-module. Show that $(A/\mathfrak a) \otimes_A M$ is isomorphic to $M/\mathfrak a M$. (Hint: Tensor the exact sequence $0 \to \mathfrak a \to A \to A/\mathfrak a \to 0$ with M.

Proof (Hint). There is a natural exact sequence E:

$$E:0\to \mathfrak{a}\xrightarrow{i} A\xrightarrow{\pi} A/\mathfrak{a}\to 0$$

where i is the inclusion map (and π is the projection map). Tensor E with M:

$$E': \mathfrak{a} \otimes_A M \xrightarrow{i \otimes 1} A \otimes_A M \xrightarrow{\pi \otimes 1} (A/\mathfrak{a}) \otimes_A M \to 0$$

is exact, or

$$(A/\mathfrak{a}) \otimes_A M \cong A \otimes_A M/\mathrm{im}(i \otimes 1).$$

By Proposition 2.14, There is an unique isomorphism $A \otimes_A M \to M$ defined by $a \otimes x \mapsto ax$. This isomorphism sends $\operatorname{im}(i \otimes 1)$ to $\mathfrak{a}M$. Therefore,

$$(A/\mathfrak{a}) \otimes_A M \cong M/\mathfrak{a}M.$$

Proof (Brute-force).

(1) Define $\widetilde{\varphi}$ by

 $\widetilde{\varphi}$ is well-defined and A-bilinear.

(2) By the universal property, $\widetilde{\varphi}$ factors through a A-bilinear map

$$\varphi: A/\mathfrak{a} \otimes_A M \to M/\mathfrak{a}M$$

(such that $\varphi(a \otimes x) = \widetilde{\varphi}(a, x)$).

(3) To show that φ is isomorphic, might find the inverse map $\psi: M/\mathfrak{a}M \to A/\mathfrak{a} \otimes_A M$ of φ . Define ψ by

$$\psi: \quad M/\mathfrak{a}M \xrightarrow{\qquad \qquad} A/\mathfrak{a} \otimes_A M$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$x + \mathfrak{a}M \longmapsto (1 + \mathfrak{a}) \otimes x.$$

 ψ is well-defined and A-linear.

- (4) $\psi \circ \varphi = id$.
- (5) $\varphi \circ \psi = id$.

Exercise 2.3.

Let A be a local ring, M and N finitely generated A-modules. Prove that if $M \otimes_A N = 0$, then M = 0 or N = 0. (Hint: Let \mathfrak{m} be the maximal ideal, $k = A/\mathfrak{m}$ the residue field. Let $M_k = k \otimes_A M \cong M/\mathfrak{m}M$ by Exercise 2.2. By Nakayama's lemma, $M_k = 0 \Longrightarrow M = 0$. But $M \otimes_A N = 0 \Longrightarrow (M \otimes_A N)_k = 0 \Longrightarrow M_k \otimes_k N_k = 0 \Longrightarrow M_k = 0$ or $N_k = 0$ since M_k , N_k are vector spaces over a field.)

The conclusion might be false if A is not local. For example, Exercise 2.1.

Proof (Hint). Let \mathfrak{m} be the maximal ideal, $k=A/\mathfrak{m}$ the residue field. Let $M_k=k\otimes_A M$.

(1) (Base extension) Show that $(M \otimes_A N)_k = M_k \otimes_k N_k$. In fact, by Proposition 2.14

$$(M \otimes_A N)_k = k \otimes_A (M \otimes_A N)$$

$$= (k \otimes_A M) \otimes_A N$$

$$= M_k \otimes_A N$$

$$= (M_k \otimes_k k) \otimes_A N$$

$$= M_k \otimes_k (k \otimes_A N)$$

$$= M_k \otimes_k N_k.$$

(2)

$$M \otimes_A N = 0 \Longrightarrow (M \otimes_A N)_k = 0$$

 $\Longrightarrow M_k \otimes_k N_k = 0$ ((1))
 $\Longrightarrow M_k = 0 \text{ or } N_k = 0$ (M_k, N_k : vector spaces)
 $\Longrightarrow M/\mathfrak{m}M = 0 \text{ or } M/\mathfrak{m}M = 0$ (Exercise 2.2)
 $\Longrightarrow M = 0 \text{ or } N = 0$. (Nakayama's lemma)

Exercise 2.4.

Let M_i $(i \in I)$ be any family of A-modules, and let M be their direct sum. Prove that M is flat \Leftrightarrow each M_i is flat.

Proof. Given any A-module homomorphism $f: N' \to N$.

(1) Similar to Proposition 2.14(iii), we have two isomorphisms

(a)
$$\varphi: \bigoplus_{i \in I} (N' \otimes M_i) \cong N' \otimes_A \bigoplus_{i \in I} M_i$$

defined by

$$\varphi((x \otimes m_i)_{i \in I}) = x \otimes (m_i)_{i \in I}$$

where $x \in N'$, $m_i \in M_i$ $(i \in I)$.

(b)
$$\psi: N \otimes_A \bigoplus_{i \in I} M_i \cong \bigoplus_{i \in I} (N \otimes M_i)$$

defined by

$$\psi(y \otimes (m_i)_{i \in I}) = (y \otimes m_i)_{i \in I}$$

where $y \in N$, $m_i \in M_i$ $(i \in I)$.

(2) $f: N' \to N$ induces an A-module homomorphism

$$f \otimes \mathrm{id}_M : N' \otimes_A M \to N \otimes_A M.$$

(3) $\psi \circ f \otimes \mathrm{id}_M \circ \varphi$ defines an A-module homomorphism

$$\psi \circ f \otimes \mathrm{id}_M \circ \varphi : \bigoplus_{i \in I} (N' \otimes M_i) \to \bigoplus_{i \in I} (N \otimes M_i)$$

which sends $(x \otimes m_i)_{i \in I}$ to $(f(x) \otimes m_i)_{i \in I}$. That is,

$$\psi \circ f \otimes \mathrm{id}_M \circ \varphi = \bigoplus_{i \in I} f \otimes \mathrm{id}_{M_i}$$

.

(4) Show that M is flat if and only if each M_i is flat. Suppose f is injective.

$$M_i$$
 is flat $\forall i \in I$
 $\iff f \otimes \mathrm{id}_{M_i}$ is injective $\forall i \in I$
 $\iff \bigoplus_{i \in I} f \otimes \mathrm{id}_{M_i}$ is injective (Injectivity)
 $\iff \psi \circ f \otimes \mathrm{id}_{M} \circ \varphi$ is injective ((3))

$$\iff \psi \circ f \otimes \mathrm{id}_M \circ \varphi \text{ is injective} \tag{(3)}$$

$$\iff f \otimes \mathrm{id}_{A} \circ \varphi \text{ is injective} \tag{(3)}$$

$$\iff f \otimes \mathrm{id}_M \text{ is injective}$$
 $(\varphi, \psi \text{ are isomorphic})$

 $\iff M$ is flat.

Exercise 2.5.

Let A[x] be the ring of polynomials in one indeterminate over a ring A. Prove that A[x] is a flat A-algebra. (Hint: Use Exercise 2.4.)

Proof (Hint).

- (1) A is a flat A-module by Proposition 2.14(iv).
- (2) As an A-module,

$$A[x] \cong \bigoplus_{n \in \mathbb{Z}^+} Ax^n \cong \bigoplus_{n \in \mathbb{Z}^+} A$$

(since $Ax^n \cong A$).

(3) By Exercise 2.4, $A[x] \cong \bigoplus_{n \in \mathbb{Z}^+} A$ is flat.

Exercise 2.8.

- (i) If M and N are flat A-modules, then so is $M \otimes_A N$.
- (ii) If B is a flat A-algebra and N is a flat B-module, then N is flat as A-module.

Proof of (i). Given any exact sequence of A-modules $0 \to N_1 \to N_2 \to N_3 \to 0$. Since M is flat,

$$0 \to N_1 \otimes_A M \to N_2 \otimes_A M \to N_3 \otimes_A M \to 0$$

is exact. Since N is flat,

$$0 \to (N_1 \otimes_A M) \otimes_A N \to (N_2 \otimes_A M) \otimes_A N \to (N_3 \otimes_A M) \otimes_A N \to 0$$

is exact. By Proposition 2.14 (ii),

$$0 \to N_1 \otimes_A (M \otimes_A N) \to N_2 \otimes_A (M \otimes_A N) \to N_3 \otimes_A (M \otimes_A N) \to 0$$

is exact, or $M \otimes_A N$ is flat. \square

Proof of (ii). Given any exact sequence of A-modules $0 \to N_1 \to N_2 \to N_3 \to 0$. Since B is a flat A-algebra (A-module),

$$0 \to N_1 \otimes_A B \to N_2 \otimes_A B \to N_3 \otimes_A B \to 0$$

is exact. Since N is a flat B-module,

$$0 \to (N_1 \otimes_A B) \otimes_B N \to (N_2 \otimes_A B) \otimes_B N \to (N_3 \otimes_A B) \otimes_B N \to 0$$

is exact. By "Exercise 2.15" on page 27,

$$0 \to N_1 \otimes_A (B \otimes_B N) \to N_2 \otimes_A (B \otimes_B N) \to N_3 \otimes_A (B \otimes_B N) \to 0$$

is exact. By Proposition 2.14 (iv),

$$0 \to N_1 \otimes_A N \to N_2 \otimes_A N \to N_3 \otimes_A N \to 0$$

is exact, or N is flat. \square

Exercise 2.9.

Let $0 \to M' \to M \to M'' \to 0$ be an exact sequence of A-modules. If M' and M'' are finitely generated, then so is M.

Proof.

(1) Write

$$0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0.$$

Also write

$$x_1, \ldots, x_n$$
 as generators of M' , z_1, \ldots, z_m as generators of M''

(since M' and M'' are finitely generated).

- (2) Since the map $g: M \to M''$ is surjective, there exists $y_j \in M$ such that $g(y_j) = z_j$ for $j = 1, \ldots, m$.
- (3) Show that M is generated by

$$f(x_1),\ldots,f(x_n),y_1,\ldots,y_m.$$

Given any $y \in M$.

$$y \in M \Longrightarrow g(y) \in M''$$

$$\Longrightarrow g(y) = \sum_{j=1}^{m} s_{j}z_{j} \text{ where } s_{j} \in A$$

$$\Longrightarrow g(y) = \sum_{j=1}^{m} s_{j}g(y_{j})$$

$$\Longrightarrow g(y) = g\left(\sum_{j=1}^{m} s_{j}y_{j}\right)$$

$$\Longrightarrow y - \sum_{j=1}^{m} s_{j}y_{j} \in \ker(g) = \operatorname{im}(f)$$

$$\Longrightarrow \exists \ x \in M' \text{ such that } f(x) = y - \sum_{j=1}^{m} s_{j}y_{j}$$

Write $x = \sum_{i=1}^{n} r_i x_i$ where $r_i \in A$. So,

$$y \in M \Longrightarrow f\left(\sum_{i=1}^{n} r_i x_i\right) = y - \sum_{j=1}^{m} s_j y_j$$
$$\Longrightarrow \sum_{i=1}^{n} r_i f(x_i) = y - \sum_{j=1}^{m} s_j y_j$$
$$\Longrightarrow y = \sum_{i=1}^{n} r_i f(x_i) + \sum_{i=1}^{m} s_j y_j.$$

Hence, every $y \in M$ is a linear combination of $f(x_1), \ldots, f(x_n), y_1, \ldots, y_m$, or M is finitely generated (by $f(x_1), \ldots, f(x_n), y_1, \ldots, y_m$).