

Computer Networks

IP Forwarding and Address Allocation

Amitangshu Pal
Computer Science and Engineering
IIT Kanpur

IP forwarding

Package Forwarding in a Postal System

Postal analogy:

6 packages need to be sent in these addresses

- UP, Prayagraj, Barrister Mullah Colony, Swati
- <u>UP</u>, Kanpur, Kalyanpur, Amit
- West Bengal, Kharagpur, Inda, Manoj
- West Bengal, Durgapur, Mahatma Gandhi Rd, Prakash
- Maharashtra, Pune, Shivaji Nagar, Vivek
- Maharashtra, Nasik, Old Agra Road, Anand

Src: https://pxhere.com/en/photo/1625663

Destination prefix	Next hop
UP	Lucknow flight
West Bengal	Kolkata flight
Maharashtra	Mumbai flight

IP Forwarding

- IP addresses on a network belongs to the same prefix
- Nodes use a forwarding table that lists the prefixes and the corresponding next hop/link interface
 - Improves scalability → reduces the forwarding table size

Prefix	Next hop/interface
223.1.1.0/24	223.1.1.4
223.1.2.0/24	223.1.2.9
223.1.3.0/24	223.1.3.27

IP Forwarding

Destination Address Range	Link Interface
11001000 00010111 000 <mark>10000 00000000</mark>	n
11001000 00010111 000 <mark>10000 00000</mark> 100 through	3
11001000 00010111 000 <mark>10000 00000</mark> 111	
11001000 00010111 000 <mark>11000 11111111</mark>	
11001000 00010111 000 <mark>11001 00000000</mark> through	2
11001000 00010111 000 <mark>11111 11111111</mark>	2
otherwise	3

But what happens if ranges don't divide up so nicely?

Prefixes in a forwarding table might overlap

Longest prefix match

When looking for forwarding table entry for given destination address, use longest address prefix (most specific entry) that matches destination address

Destination Address Range	Link interface
11001000 00010111 00010 *** *******	0
11001000 00010111 00011000 *******	1
11001000 00010111 00011 *** *******	2
otherwise	3

Examples:

11001000 00010111 00010110 10100001 which interface?

11001000 00010111 00011000 10101010 which interface?

200.23.16.0

Prefixes in a forwarding table might overlap

Longest prefix match

Examples:

When looking for forwarding table entry for given destination address, use longest address prefix (most specific entry) that matches destination address

Destination Address Range	Link interface
11001000 00010111 00010 *** *******	0
11001000 000 0111 00011000 *******	1
11001000 match! 00011 *** ******	2
otherwise	3
11001000 00010111 00010110 10100001	which interface?
11001000 00010111 00011000 10101010	which interface?

Prefixes in a forwarding table might overlap

Longest prefix match

When looking for forwarding table entry for given destination address, use longest address prefix (most specific entry) that matches destination address

Destination Address Range	Link interface
11001000 00010111 00010 *** ******	0
11001000 00010111 00011000 ******	1
11001000 00010111 00011 *** ******	2
otherwise	3
6 1 1	

Examples

match!
11001000 00010111 0001110 10100001 which interface?

11001000 00010111 0001110 00 101010 which interface?

Prefixes in a forwarding table might overlap

Longest prefix match

When looking for forwarding table entry for given destination address, use longest address prefix (most specific entry) that matches destination address

Destination Address Range	Link interface
11001000 00010111 00010 *** *******	0
11001000 00010111 00011000 ******	1
11001000 000 0111 00011 *** *******	2
otherwise match!	3

Examples:

which interface?

which interface?

Package Forwarding in a Postal System

Postal analogy:

6 packages need to be sent in these addresses

- UP, Prayagraj, Barrister Mullah Colony, Swati
- <u>UP</u>, Kanpur, Kalyanpur, Amit
- West Bengal, Kharagpur, Inda, Manoj
- West Bengal, Durgapur, Mahatma Gandhi Rd, Prakash
- Maharashtra, Pune, Shivaji Nagar, Vivek
- Maharashtra, Nasik, Old Agra Road, Anand

Src: https://pxhere.com/en/photo/1625663

Destination prefix	Next hop
UP	Lucknow flight
UP, Prayagraj	Prayagraj flight
West Bengal	Kolkata flight
Maharashtra	Mumbai flight

- Longest prefix matching: Often performed using ternary content addressable memories (TCAMs)
 - Content addressable: Present address to TCAM → retrieve address in one clock cycle, regardless of table size
 - Cisco Catalyst: ~1M routing table entries in TCAM

Src: https://www.ciscopress.com/articles/article.asp?p=2264831&seqNum=2

Host Forwarding

- Hosts send the remote traffic to its nearest router
- 0.0.0.0/0 includes all IP addresses

1 1 1 1 1 1 1 1	1 1 1 1	11111	11111111	1 1 1 1 1 1	Broadcast on the local network
Network		1111		1111	Broadcast on a distant network
127		(A	nything)		Loopback

Prefix	Next hop
My network prefix	Send directly to that destination
0.0.0.0/0	Send to the router

ctive Routes:				
Network Destination	n Netmask	Gateway	Interface	Metric
0.0.0.0	0.0.0.0	172.27.16.254	172.27.17.157	291
127.0.0.0	255.0.0.0	On-link	127.0.0.1	331
127.0.0.1	255.255.255.255	On-link	127.0.0.1	331
127.255.255.255	255.255.255.255	On-link	127.0.0.1	331
172.27.0.0	255.255.0.0	On-link	172.27.17.157	291
172.27.17.157	255.255.255.255	On-link	172.27.17.157	291
172.27.255.255	255.255.255.255	On-link	172.27.17.157	291
224.0.0.0	240.0.0.0	On-link	127.0.0.1	331
224.0.0.0	240.0.0.0	On-link	172.27.17.157	291
255.255.255.255	255.255.255.255	On-link	127.0.0.1	331
255.255.255.255	255.255.255.255	On-link	172.27.17.157	291

How To Obtain IP Address?

IP Addresses: How to Get One?

That's actually two questions:

- 1. How does a host get IP address within its network (host part of address)?
- 2. How does a network get IP address for itself (network part of address)

How does host get IP address?

- Hard-coded by sysadmin in config file (e.g., /etc/rc.config in UNIX)
- DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server
 - "Plug-and-play"

DHCP Client-Server Scenario

DHCP Client-Server Scenario

DHCP: Dynamic Host Configuration Protocol

DHCP overview:

- Host broadcasts DHCP discover msg [optional]
- DHCP server responds with DHCP offer msg [optional]
- Host requests IP address: DHCP request msg
- DHCP server sends address: DHCP ack msg

DHCP: More Than IP Addresses

DHCP can return more than just allocated IP address on subnet:

- Address of first-hop router for client
- Name and IP address of DNS sever
- Network mask (indicating network versus host portion of address)

DHCP Example

- Connecting laptop will use DHCP to get IP address, address of firsthop router, address of DNS server
- DHCP REQUEST message encapsulated in UDP, encapsulated in IP, encapsulated in Ethernet
- Ethernet frame broadcast (dest: FFFFFFFFFFFFF) on LAN, received at router running DHCP server
- Ethernet demux'ed to IP demux'ed, UDP demux'ed to DHCP

DHCP Example

- DCP server formulates DHCP ACK containing client's IP address, IP address of first-hop router for client, name & IP address of DNS server
- Encapsulated DHCP server reply forwarded to client, demuxing up to DHCP at client
- Client now knows its IP address, name and IP address of DNS server, IP address of its first-hop router

How Does Networks Get IP addresses?

Q: How does network get subnet part of IP address?

A: Gets allocated portion of its provider ISP's address space

```
ISP's block 11001000 00010111 00010000 00000000 200.23.16.0/20
```

ISP can then allocate out its address space in 8 blocks:

Hierarchical Addressing: Route Aggregation

Hierarchical addressing allows efficient advertisement of routing information:

Hierarchical Addressing: More Specific Routes

Organization 1 moves from ISP-A to ISP-B

ISP-B now advertises a more specific route to Organization 1

Hierarchical Addressing: More Specific Routes

- Organization 1 moves from ISP-A to ISP-B
- ISP-B now advertises a more specific route to Organization 1

How ISPs Get IP Addresses?

ICANN: Internet Corporation for Assigned Names and Numbers http://www.icann.org/

- Allocates IP addresses, through 5 regional registries (RRs) (who may then allocate to local registries)
- Manages DNS root zone, including delegation of individual TLD (.com, .edu , ...) management

Src: https://commons.wikimedia.org/wiki/File:IPv6 Prefix Assignment Example-en.svg

Src: https://commons.wikimedia.org/wiki/File:Regional Internet Registries world map.svg

IPv4 Addressing: Concluding Remarks

Are there enough 32-bit IP addresses?

- ICANN allocated last chunk of IPv4 addresses to RRs in 2011
- NAT helps IPv4 address space exhaustion
- IPv6 has 128-bit address space

Src: https://commons.wikimedia.org/wiki/File:IPv4_IANA_and_RIR_exhaustion_time_line-en.svg