

Copyright@2023. Acadential. All rights reserved.

# Section 7. 활성 함수 (Activation Function)

변정현

# 목치

ACADENTIAL

Copyright © 2023. Acadential. All rights reserved.

- 섹션 7. 활성 함수 (Activation Function)
- 섹션 8. 최적화 (Optimization)
- 섹션 9. PyTorch로 만들어보는 Fully Connected NN
- 섹션 10. 정규화 (Regularization)
- 섹션 11. 학습 속도 스케쥴러 (Learning Rate Scheduler)
- 섹션 12. 초기화 (Initialization)
- 섹션 13. 표준화 (Normalization)

# Recap from previous Chapters

Copyright©2023. Acadential. All rights reserved.



이번 강의에서는 "Activation Function" (활성화 함수)가 무엇인지 살펴보자!

# Objective 학습목표

Copyright@2023. Acadential. All rights reserved.

- Activation function의 정의와 역할 이해
- Activation function이 Non-linear decision boundary을 학습하는데 필요한 이유
- Activation function의 종류들
  - Sigmoid
  - Tanh
  - ReLU
  - Leaky ReLU
  - ELU
  - Softmax
- 각 Activation function 종류의 장단점



Copyright@2023. Acadential. All rights reserved.

# 7-1. Non-linear한 Activation Function이 필요한 이유

# **Activation Functions**

Copyright © 2023. Acadential. All rights reserved.

#### What are Activation Functions?

Activation Function  $\sigma$  = Layer와 layer 사이에 위치한 non-linear function (비선형 함수)



Activation function은 왜 필요한가?

#### ACADENTIAL

Copyright@2023. Acadential. All rights reserved.



Activation function은 왜 필요한가?

Copyright©2023. Acadential. All rights reserved.

왜냐하면 non-linear한 activation function을 사용함으로서 뉴럴넷은 non-linear한 decision boundary을 그릴 수 있기 때문이다!

# **Activation Functions**

Activation function은 왜 필요한가?

Copyright©2023. Acadential. All rights reserved.

왜냐하면 non-linear한 activation function을 사용함으로서 뉴럴넷은 non-linear한 decision boundary을 그릴 수 있기 때문이다!

그리고 linear한 activation function을 사용하면 아무리 많은 Layer들을 쌓아도 Single Layer Neural Network에 불과하다.

#### Activation function은 왜 필요한가?



#### ACADENTIAL

Copyright@2023. Acadential. All rights reserved.

Copyright © 2023. Acadential. All rights reserved.

# **Activation Functions**



$$\mathbf{y} = \mathbf{W}_3 \mathbf{h}_2 + \mathbf{b}_3$$

#### Activation Functions Copyright@2023. Acadential. All rights reserved.



$$\mathbf{y} = \mathbf{W}_3 \mathbf{h}_2 + \mathbf{b}_3$$
$$= \mathbf{W}_3 (\mathbf{W}_2 \mathbf{h}_1 + \mathbf{b}_2) + \mathbf{b}_3$$

Copyright © 2023. Acadential. All rights reserved.

# **Activation Functions**



$$\mathbf{y} = W_3 \mathbf{h}_2 + \mathbf{b}_3$$
  
=  $W_3 (W_2 \mathbf{h}_1 + \mathbf{b}_2) + \mathbf{b}_3$   
=  $W_3 (W_2 (W_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2) + \mathbf{b}_3$ 

Copyright@2023. Acadential. All rights reserved.

### **Activation Functions**



$$y = W_3 h_2 + b_3$$

$$= W_3 (W_2 h_1 + b_2) + b_3$$

$$= W_3 (W_2 (W_1 x + b_1) + b_2) + b_3$$

$$= W_3 W_2 W_1 x + (W_3 W_2 b_1 + W_3 b_2 + b_3)$$

Copyright@2023. Acadential. All rights reserved.

#### **Activation Functions**



$$y = W_3 h_2 + b_3$$

$$= W_3 (W_2 h_1 + b_2) + b_3$$

$$= W_3 (W_2 (W_1 x + b_1) + b_2) + b_3$$

$$= W_3 W_2 W_1 x + (W_3 W_2 b_1 + W_3 b_2 + b_3)$$

$$= W'x + b'$$

#### Activation Functions Copyright@2023. Acadential. All rights reserved.



$$y = W_{3}h_{2} + b_{3}$$

$$= W_{3}(W_{2}h_{1} + b_{2}) + b_{3}$$

$$= W_{3}(W_{2}(W_{1}x + b_{1}) + b_{2}) + b_{3}$$

$$= W_{3}W_{2}W_{1}x + (W_{3}W_{2}b_{1} + W_{3}b_{2} + b_{3})$$

$$= W'x + b'$$



Copyright © 2023. Acadential. All rights reserved.

# **Activation Functions**

Activation function은 왜 필요한가?

"linear한 activation function을 사용하면 아무리 많은 Layer들을 쌓아도 Single Layer Neural Network에 불과하다."

# **Activation Functions**

Activation function은 왜 필요한가?

Copyright©2023. Acadential. All rights reserved.

왜냐하면 non-linear한 activation function을 사용함으로서 뉴럴넷은 non-linear한 decision boundary을 그릴 수 있기 때문이다!

**But HOW?** 



Copyright@2023. Acadential. All rights reserved.

# Neural Network은 Non-linear Decision Boundary을 어떻게 학습할까?



Copyright@2023. Acadential. All rights reserved.

#### How does NN learn non-linear decision boundary?

먼저 Neural Network Layer을 구성하는 각 요소들이 어떤 역할과 의미를 가지는지 이 해해보자.

$$\mathbf{h} = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$$



Copyright © 2023. Acadential. All rights reserved.

#### How does NN learn non-linear decision boundary?

$$\mathbf{h} = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$$

- Wx
  - 행렬 (Matrix)와 벡터 (vector)을 서로 곱하는 것
  - 의미 = input vector x에 Affine transformation을 적용하는 것.
  - Affine transformation = input space 상에서의 **격자의 크기가 일정하거나 균일하게 바뀌는** 변화

# **Activation Functions**

Copyright © 2023. Acadential. All rights reserved.

#### How does NN learn non-linear decision boundary?

#### Wx

- input vector x에 Affine transformation 을 적용하는 것.
- input space 상에서의 **격자가 일정하거나 균 일하게 바뀌는** 변환
- 예시:
  - Rotation (회전)
  - Dilation (확대)
  - Shear (전단)







gif 출처: Khan academy



Copyright©2023. Acadential. All rights reserved.

#### How does NN learn non-linear decision boundary?

$$\mathbf{h} = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$$

- $\cdot$  + b
  - bias vector **b**을 더해주는 것.
  - 의미 = 평행 이동 (translation) 시키는 것.



Copyright@2023. Acadential. All rights reserved.

#### How does NN learn non-linear decision boundary?

- $\cdot + \mathbf{b}$
- bias vector **b**을 더해주는 것.
- 의미 = **평행 이동 (translation)** 시키는 것.



gif 출처: Khan academy



Copyright © 2023. Acadential. All rights reserved.

#### How does NN learn non-linear decision boundary?

Wx + b

• 종합적으로 보았을때, 다음과 같다!



gif 출처: Khan academy



Copyright@2023. Acadential. All rights reserved.

#### How does NN learn non-linear decision boundary?

$$\mathbf{h} = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$$

- $\sigma(\cdot)$ 
  - non-linear한 activation function을 적용하는 것.
  - 의미
    - 격자가 휘거나 뒤틀리는 변환을 적용하는 것.
    - 격자가 일정하지 않은 변환



Copyright©2023. Acadential. All rights reserved.

#### How does NN learn non-linear decision boundary?

$$\mathbf{h} = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$$

- $\sigma(\cdot)$ 
  - non-linear한 activation function을 적용하는 것.
  - 의미
    - 격자가 휘거나 뒤틀리는 변환을 적용하는 것.
    - 격자가 일정하지 않은 변환

어느 지점에서는 공간이 상대적으로 더 많이 "왜곡 / 뒤틀리고"

혹은 어느 지점에서는 상대적으로 덜 **"왜곡 / 뒤틀리는 변환**"



Copyright@2023. Acadential. All rights reserved.

#### How does NN learn non-linear decision boundary?

 $\sigma(\cdot)$ 

- non-linear한 activation function
   을 적용하는 것.
- 의미 = input space의 격자가 휘거 나 뒤틀리는 변환을 적용하는 것.





Copyright@2023. Acadential. All rights reserved.

#### How does NN learn non-linear decision boundary?

$$\mathbf{h} = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$$

위 변환을 종합해서 visualize해 보면 예시로 오른쪽과 같을 수 있다!



gif 출처: srome.github.io



Copyright © 2023. Acadential. All rights reserved.

#### How does NN learn non-linear decision boundary?

$$\mathbf{h} = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$$

위 식이 X을 어떻게 변환 하는지 이해했다.

그렇다면 Neural Network은 어떻게 빨간색과 파란색의 label을 구분하는 **Decision boundary을 어떻게 학습하는 것일까?** 





Copyright © 2023. Acadential. All rights reserved.

#### How does NN learn non-linear decision boundary?

#### 2차원 공간에서의 변환



from keras.models import Sequential from keras.layers import Dense, Activation

```
model = Sequential()
model.add(Dense(2, activation='tanh', input_dim=2))
model.add(Dense(2, activation='tanh'))
model.add(Dense(1, activation='sigmoid'))
sgd = keras.optimizers.SGD(lr=0.001)
model.compile(optimizer=sgd,
        loss='mse',
        metrics=['accuracy'])
```





Copyright@2023. Acadential. All rights reserved.

#### How does NN learn non-linear decision boundary?

#### 3차원 공간에서의 변환





gif 출처: srome.github.io



Copyright@2023. Acadential. All rights reserved.

#### How does NN learn non-linear decision boundary?

#### 4차원 공간에서의 변환



```
model = Sequential()
model.add(Dense(4, activation='tanh', input_di
model.add(Dense(2, activation='tanh'))
model.add(Dense(1, activation='sigmoid'))
sgd = keras.optimizers.SGD(Ir=0.005)
model.compile(optimizer=sgd,
        loss='mse',
        metrics=['accuracy'])
```



gif 출처: srome.github.io

# **Activation Functions**

Copyright © 2023. Acadential. All rights reserved.

#### How does NN learn non-linear decision boundary?

#### Summary:

- $\mathbf{h} = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$ 에서 일련의 " $\mathbf{W}\mathbf{x}$ 의 affine transformation" (확장, 회전, 전단)와 " $\cdot$  +  $\mathbf{b}$ 의 평행 이동", " $\sigma(\cdot)$ 의 비선형 변환"을 수행함.
- 그리고
  - 1. 더 많은 layer 들을 쌓고 ("공간을 여러번 접고 펼치고 당기는 것")
  - 2. 더 많은 neuron (즉, 더 큰 dimensional한 space 상에서 변환하는 것)
- 더 복잡한  $\mathbf{X} \rightarrow y$ 의 mapping을 학습할 수 있다.



Copyright © 2023. Acadential. All rights reserved.

# 7-2. Activation Function의 종류 및 역할

#### Activation function example

- Sigmoid
- Tanh
- ReLU
- Leaky ReLU
- ELU
- Softmax

#### ACADENTIAL

Copyright@2023. Acadential. All rights reserved.



Copyright@2023. Acadential. All rights reserved.

## Activation Function Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- (-∞, ∞) 범위의 인풋값 *x*을 0~1 사이의 값으로 변환하준다.
- 뇌의 뉴론과 비교를 해보면
  - $\sigma(x) = 1$ : neuron이 다음 뉴론에 전기 신호를 보내는 것 (activated)
  - $\sigma(x) = 0$ : 보내지 않는 것 (not activated)



## Activation Function Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- Sigmoid 함수의 단점 1:
  - 양 끝 부분의 지점에서 Gradient가 거의 0에 가 깝다. (saturation)
  - 즉, weight가 너무 크거나 작으면 해당 weight 에 대한 gradient은 0에 가깝고 학습 속도가 매우 느릴 수 있다.





## Activation Function Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- Sigmoid 함수의 단점 2:
  - Sigmoid 함수의 중심이 되는 값은 0이 아니라
     0.5이고 Sigmoid 함수의 출력값은 항상 양수이다.
  - 따라서, sigmoid로 학습할시 지그재그로 움직이 는 경향을 보일수 있다!





## Activation Function tanh

$$\tanh(x) = 2\sigma(2x) - 1 = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

- $(-\infty, \infty)$  범위의 인풋값 x을 -1~1 사이의 값으로 변환해준다.
- Sigmoid 함수와 마찬가지로 양 끝 부분에서 Gradient가 아주 작아지지만 0을 중심값으로 가진다.





$$ReLU(x) = max(0,x)$$

#### 장점:

- Sigmoid, Tanh 함수들에 비해서 SGD의 학 습 수렴 속도가 빠르다.
- Sigmoid, Tanh에 비해서 saturation의 문제 로부터 비교적 자유롭다.



Copyright@2023. Acadential. All rights reserved.

## Activation function ReLU

- ReLU 함수가 사용되는 Neural Network의 예시:
  - VGG (image classification)
  - DenseNet (image classification)
- 주로 Neural Network의 앞, 중간 단계에서 자주 사용된다.

$$ReLU(x) = max(0,x)$$

#### 단점:

- x < 0에 대해서는 Gradient가 0이다.
- 이는 "dead" neuron의 문제점을 야기한다.



**ReLU** function



#### "dead" neuron이란

- ReLU $(w \cdot x + b)$ 에서
- **만약에** 모델이 학습하는 과정에서  $b \ll 0$
- 즉, 매우 작은 음수의 값을 가지도록 bias term b을 학습 가정.

#### "dead" neuron이란

- ReLU $(w \cdot x + b)$ 에서
- 만약에 모델이 학습하는 과정에서  $b \ll 0$
- 즉, 매우 작은 음수의 값을 가지도록 bias term b을 학습을 하게되면
- $w \cdot x$ 와는 상관없이 ReLU $(w \cdot x + b) < 0$ 이 되어버리고
- 기울기는  $\nabla_w \text{ReLU}(w \cdot x + b) = 0$

45

#### "dead" neuron이란

- ReLU $(w \cdot x + b)$ 에서
- 만약에 모델이 학습하는 과정에서  $b \ll 0$
- 즉, 매우 작은 음수의 값을 가지도록 bias term b을 학습을 하게되면
- $w \cdot x$ 와는 상관없이 ReLU $(w \cdot x + b) < 0$ 이 되어버리고
- 기울기는  $\nabla_w \text{ReLU}(w \cdot x + b) = 0$
- 따라서  $w \to w \lambda \cdot \frac{df(w,x)}{dw}^{=0}$
- 해당 뉴론의 weight에 대한 기울기는 항상 0이 되어버려 w가 바뀌지 않고 그대로 "죽어버리는" 문제점을 의미한다!

## Activation Function Leaky ReLU

LeakyReLU(x) = max(0.1x, x)

- ReLU의 "dead" neuron 문제점을 해결하기 위해서 제안됨.
- $x \ll 0$ 에 대해서도 non-zero Gradient값을 가진다!





ELU(
$$x$$
) =  $x$  if  $x > 0$  
$$\alpha(e^x - 1)$$
 else

- ELU의 경우 x < 0에 대해서도 non-zero gradient을 가진다.
- 하지만  $x \ll 0$ 에 대해서는 saturate하여 gradient가 0에 수렴한다.





## Activation Function Softmax

Copyright@2023. Acadential. All rights reserved.

Softmax

Softmax(x, T)<sub>i</sub> = 
$$\frac{e^{x_i/T}}{\sum_{j=0} e^{x_j/T}}$$

• 사용 목적: Neural Network의 마지막 classification layer에서 output한 logit의 값을 normalization 해주는 역할.

Logit의 개수 = 10

### **Activation Function**

Copyright©2023. Acadential. All rights reserved.

Neuron의 개수 = D

#### Softmax

10개 class에 대한 classification task을 예로 들어보자. 마지막 layer에서 출력된 예측값은 다음과 같다.

$$\hat{\mathbf{y}} = \mathbf{W}\mathbf{h} + \mathbf{b}$$

 $\hat{\mathbf{y}} \in \mathbb{R}^{10}$ ,  $\mathbf{h} \in \mathbb{R}^D$ ,  $\mathbf{b} \in \mathbb{R}^{10}$ ,  $\mathbf{W} \in \mathbb{R}^{D \times 10}$ 

이때 CE Loss $(\hat{\mathbf{y}}, \mathbf{y})$ 을 계산하고 싶다고 했을때,  $\hat{y}_j$ 은 [0, 1] 사이의 값이어야 한다.

#### 참고:

• 주로 마지막 layer에서 (Softmax 취하기 전에) 출력된 값을 logit이라고 부른다.





$$\hat{\mathbf{y}} = \mathbf{W}\mathbf{h} + \mathbf{b} = \sum_{i} w_{ji} \cdot h_i + b_i$$



## Activation Function Softmax

Copyright@2023. Acadential. All rights reserved.

$$\hat{\mathbf{y}} = \mathbf{W}\mathbf{h} + \mathbf{b}$$











### Activation Function Copyright@2023. Acadential. All rights reserved

### Softmax - What does temperature T does?

Softmax

Softmax(x, T)<sub>i</sub> = 
$$\frac{e^{x_i}(T)}{\sum_{j=0} e^{x_j}(T)}$$

#### Temperature T의 효과:

- T가 높을수록 softmax의 출력값들이 더 "넓게", "고르게" 퍼진다.
- T가 낮을수록 softamx의 출력값들이 더 "좁게", "쏠린다".

### **Activation Function** Softmax

#### 참고 사항:

- T 값이 달라도 Argmax을 취했을시 결과는 같다.
- T 값이 달라도 총합은 1로 모두 동일하다.

$$T = 0.01$$





#### Before Softmax



Copyright © 2023. Acadential. All rights reserved.

$$T = 5$$



Entropy = 1.04 e-14



T=1

Entropy = 0.989



Entropy = 2.21



### 참고 사항: What is Entropy?

Copyright@2023. Acadential. All rights reserved.

Entropy(
$$\mathbf{p}$$
) =  $-\sum_{i} p_{i} \log(p_{i})$ 

- Entropy = 불확실성에 대한 정도 (measure of uncertainty)
- Entropy가 높을수록 불확실성이 높고 (probability distribution이 넓게 퍼져있다)
- Entropy가 낮을수록 불확실성이 낮은 것 (probability distribution이 쏠려있다)
- Temperature가 낮을수록 → Softmax logit의 분포가 쏠린다 → Entropy가 낮다
- Temperature가 높을수록 → Softmax logit의 분포가 넓게 퍼진다 → Entropy가 높다



Copyright © 2023. Acadential. All rights reserved.

# 7-3. Pytorch로 구현해보는 Activation Function



Copyright@2023. Acadential. All rights reserved.

## 7-4. Section 7 요약

Copyright © 2023. Acadential. All rights reserved.

### Section Summary

#### **Activation Function**

(Non-linear) Activation Function은 non-linear한 복잡한 decision boundary을 학습하기 위해 필요하다!

Copyright © 2023. Acadential. All rights reserved.

### Section Summary

- (Non-linear) Activation Function은 non-linear한 복잡한 decision boundary을 학습하기 위해 필요하다!
- Activation Function의 non-linearity 덕분에 feature space을 "휘고, 꺽거나, 왜곡시 켜서" non-linear한 decision boundary을 그려낼 수 있다.

Copyright © 2023. Acadential. All rights reserved.

### Section Summary

- (Non-linear) Activation Function은 non-linear한 복잡한 decision boundary을 학습하기 위해 필요하다!
- Activation Function의 non-linearity 덕분에 feature space을 "휘고, 꺽거나, 왜곡시 켜서" non-linear한 decision boundary을 그려낼 수 있다.
  - non-linearity 덕분에 feature space의 각 grid은 non-uniform하게 변형된다!

### Section Summary

#### Copyright@2023. Acadential. All rights reserved.

- (Non-linear) Activation Function은 non-linear한 복잡한 decision boundary을 학습하기 위해 필요하다!
- Activation Function의 non-linearity 덕분에 feature space을 "휘고, 꺽거나, 왜곡시 켜서" non-linear한 decision boundary을 그려낼 수 있다.
  - non-linearity 덕분에 feature space의 각 grid은 non-uniform하게 변형된다!
- linear한 activation function을 사용하면 아무리 많은 Layer들을 쌓아도 Single Layer Neural Network에 불과하다!

Copyright © 2023. Acadential. All rights reserved.

### Section Summary

- 다음과 같은 Activation function의 종류들을 살펴보았다!
  - Sigmoid
  - Tanh
  - ReLU
  - Leaky ReLU
  - ELU
  - Softmax

Copyright@2023. Acadential. All rights reserved.

| Activation Function 종  |                                                                                                         |                                                                                                    |                                                                                                 |
|------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Activation i unction a | 장점                                                                                                      | 단점                                                                                                 | Comment                                                                                         |
| Sigmoid                |                                                                                                         | 단점 1: Gradient saturation<br>단점 2: Sigmoid 함수의 출력값은 항상 양<br>수이다. SGD 학습시 지그재그로 움직이는<br>경향을 보일수 있다! | 범위: $(-\infty, +\infty) \rightarrow (0,1)$                                                      |
| Tanh                   | 장점 1: 중심값이 0이다. (Sigmoid의) 지<br>그재그로 움직이는 문제 해소                                                         | 단점 1: Gradient Saturation                                                                          | 범위: $(-\infty, +\infty) \rightarrow (-1,1)$                                                     |
| ReLU                   | 장점 1: Sigmoid, Tanh 함수들에 비해서<br>SGD의 학습 수렴 속도가 빠르다.<br>장점 2: Sigmoid, Tanh에 비해서<br>saturation의 문제 일부 해소 | 단점 1:<br>x < 0에 대해서는 Gradient가 0이다.<br>"dead" neuron의 문제점을 야기한다.                                   | CNN에서 많이 사용됨.                                                                                   |
| Leaky ReLU             | (ReLU의 장점)<br>장점 3:<br>Dead Neuron의 문제점 해소                                                              |                                                                                                    | CNN에서 많이 사용됨.                                                                                   |
| ELU                    | (ReLU의 장점)<br>장점 3:<br>Dead Neuron의 문제점 일부 해소                                                           | 단점 1:<br>x << 0 에 대해서는 Gradient가 0이다.<br>이 때는 Dead Neuron의 문제점 발생함.                                | CNN에서 많이 사용됨.                                                                                   |
| SoftMax                |                                                                                                         |                                                                                                    | Neural Network의 마지막<br>classification layer에서 사용됨<br>output한 logit의 값을 normalization<br>해주는 역할. |



Copyright@2023. Acadential. All rights reserved.

## Next Up!

### Next Up!

#### Initialization



출처: Visualizing the Loss Landscape of Neural Nets (NeurIPS 2018)



### Next Up!

#### Initialization

모델의 weight가 어떻게 initialize되었는가에 따라 모델의 최종 성능에 영향을 끼친다! Loss A에서 initialize되면 Local minima에 빠진다. B에서 initialize되면 Global minimum에 도달할 수 있다! B **Local Minimum Global minimum**  $\mathcal{X}$ 

출처: Visualizing the Loss Landscape of Neural Nets (NeurIPS 2018)



## Next Up! Initialization

다음 Chapter에서는 initialization에 대해서 살펴보자!