Concurrent Programming: Synchronizing threads: 1. The Mutual Exclusion Problem

Synchronizing Threads

- Shared variables are handy...
- ...but introduce the possibility of nasty synchronization errors.

badcnt.c: Improper Synchronization

```
/* Global shared variable */
volatile long cnt = 0; /* Counter */
int main(int argc, char **argv)
    long niters:
    pthread_t tid1, tid2;
    niters = atoi(argv[1]);
    Pthread_create(&tid1, NULL,
        thread, &niters);
    Pthread_create(&tid2, NULL,
        thread, &niters);
    Pthread_join(tid1, NULL);
    Pthread_join(tid2, NULL);
    /* Check result */
    if (cnt != (2 * niters))
        printf("B00M! cnt=%ld\n", cnt);
    else
        printf("OK cnt=%ld\n", cnt);
    exit(0);
                                  badcnt.c
```

badcnt.c: Improper Synchronization

```
/* Global shared variable */
volatile long cnt = 0; /* Counter */
int main(int argc, char **argv)
    long niters:
    pthread_t tid1, tid2;
    niters = atoi(argv[1]);
    Pthread_create(&tid1, NULL,
        thread, &niters);
    Pthread_create(&tid2, NULL,
        thread, &niters);
    Pthread_join(tid1, NULL);
    Pthread_join(tid2, NULL);
    /* Check result */
    if (cnt != (2 * niters))
        printf("B00M! cnt=%ld\n", cnt);
    else
        printf("OK cnt=%ld\n", cnt);
    exit(0);
                                  badcnt.c
```

```
$ ./badcnt 10000
OK cnt=20000
$ ./badcnt 10000
BOOM! cnt=13051
$
```

cnt should equal 20,000.

What went wrong?

(would also fail: ./badcnt 1)

Assembly Code for Counter Loop

C code for counter loop in thread i

```
for (i = 0; i < niters; i++)
    cnt++;</pre>
```

Asm code for thread i

```
movq (%rdi), %rcx
    testq %rcx,%rcx
                               H_i: Head
    ile .L2
    movl $0, %eax
.L3:
                               L;: Load cnt
    movq cnt(%rip),%rdx
                               Ui: Update cnt
    addq $1, %rdx
                               S<sub>i</sub>: Store cnt
    movq %rdx, cnt(%rip)
    addq $1, %rax
    cmpq %rcx, %rax
                               T_i: Tail
    jne
           .L3
.L2:
```

Concurrent Execution

- Key idea: In general, any sequentially consistent interleaving is possible, but some give an unexpected result!
 - I_i denotes that thread i executes instruction I
 - %rdx_i is the content of %rdx in thread i's context

i (thread)	instr _i	$%$ rd x_1	%rdx ₂	cnt	
1	H ₁	-	-	0	Thread 1
1	L_1	0	-	0	critical section
1	U_1	1	-	0	critical section
1	S ₁	1	-	1	Thread 2
2	H_2	-	-	1	critical section
2	L ₂	-	1	1	
2	U_2	-	2	1	
2	S ₂	-	2	2	
2	T ₂	-	2	2	
1	T_1	1	_	2	

Concurrent Execution

- Key idea: In general, any sequentially consistent interleaving is possible, but some give an unexpected result!
 - I_i denotes that thread i executes instruction I
 - %rdx_i is the content of %rdx in thread i's context

i (thread)	instr _i	$%$ rd x_1	%rdx ₂	cnt		
1	H ₁	-	-	0		Thread 1
1	L ₁	0	-	0		critical section
1	U_1	1	-	0		circical section
1	S ₁	1	-	1		Thread 2
2	H ₂	-	-	1		critical section
2	L ₂	-	1	1		
2	U_2	-	2	1		
2	S ₂	-	2	2		
2	T ₂	-	2	2		
1	T_1	1	-	2	OK	

Incorrect ordering: two threads increment the counter, but the result is 1 instead of 2

i (thread)	instr _i	$%$ rd x_1	%rdx ₂	cnt
1	H ₁	-	-	0
1	L ₁	0	-	0
1	$U_\mathtt{1}$	1	-	0
2	H ₂	-	-	0
2	L ₂	-	0	0
1	S ₁	1	-	1
1	T ₁	1	-	1
2	U ₂	-	1	1
2	S ₂	-	1	1
2	T ₂	_	1	1

Oops

i (thread)	instr _i	$%$ rd x_1	%rdx ₂	cnt
1	H ₁			
1	L_1			
2	H_2			
2	L_2			
2	U_2			
2	S ₂			
1	U ₁			
1	S ₁			
1	T ₁			
2	T ₂			

i (thread)	instr _i	$%$ rd x_1	%rdx ₂	cnt
1	H_1			0
1	L_1			
2	H_2			
2	L_2			
2	U_2			
2	S ₂			
1	U ₁			
1	S ₁			
1	T ₁			
2	T ₂			

i (thread)	instr _i	$%$ rd x_1	$%$ rd x_2	cnt
1	H ₁			0
1	L_1	0		
2	H_2			
2	L_2			
2	U_2			
2	S ₂			
1	U ₁			
1	S ₁			
1	T ₁			
2	T ₂			

i (thread)	instr _i	$%$ rd x_1	$%$ rd x_2	cnt
1	H ₁			0
1	L_1	0		
2	H_2			
2	L_2		0	
2	U_2			
2	S ₂			
1	$U_{\scriptscriptstyle 1}$			
1	S ₁			
1	T ₁			
2	T ₂			

i (thread)	instr _i	$%$ rd x_1	%rdx ₂	cnt
1	H_1			0
1	L_1	0		
2	H ₂			
2	L ₂		0	
2	U ₂		1	
2	S ₂			
1	U ₁			
1	S ₁			
1	T ₁			
2	T ₂			

i (thread)	instr _i	$%$ rd x_1	%rdx ₂	cnt
1	H ₁			0
1	L ₁	0		
2	H_2			
2	L ₂		0	
2	U ₂		1	
2	S ₂		1	
1	U ₁			
1	S ₁			
1	T ₁			
2	T ₂			

i (thread)	instr _i	$%$ rd x_1	%rdx ₂	cnt
1	H ₁			0
1	L ₁	0		
2	H_2			
2	L ₂		0	
2	U ₂		1	
2	S ₂		1	1
1	U ₁			
1	S ₁			
1	T ₁			
2	T ₂			

i (thread)	instr _i	$%$ rd x_1	$%$ rd x_2	cnt
1	H_1			0
1	L_1	0		
2	H_2			
2	L_2		0	
2	U_2		1	
2	S ₂		1	1
1	U ₁	1		
1	S_1			
1	T ₁			
2	T ₂			

i (thread)	instr _i	$%$ rd x_1	$%$ rd x_2	cnt
1	H ₁			0
1	L ₁	0		
2	H_2			
2	L ₂		0	
2	U ₂		1	
2	S ₂		1	1
1	U ₁	1		
1	S₁	1		
1	T ₁			
2	T ₂			

i (thread)	instr _i	$%$ rd x_1	%rdx ₂	cnt
1	H ₁			0
1	L ₁	0		
2	H ₂			
2	L ₂		0	
2	U ₂		1	
2	S ₂		1	1
1	U ₁	1		
1	S ₁	1		1
1	T ₁			
2	T ₂			

i (thread)	instr _i	$%$ rd x_1	%rdx ₂	cnt
1	H ₁			0
1	L ₁	0		
2	H ₂			
2	L ₂		0	
2	U_2		1	
2	S ₂		1	1
1	U ₁	1		
1	S ₁	1		1
1	T ₁			1
2	T ₂			

i (thread)	instr _i	$%$ rd x_1	$%$ rd x_2	cnt
1	H ₁			0
1	L_1	0		
2	H_2			
2	L_2		0	
2	U_2		1	
2	S ₂		1	1
1	U_1	1		
1	S ₁	1		1
1	T ₁			1
2	T ₂			1

How about this ordering?

i (thread)	instr _i	$%$ rd x_1	$%$ rd x_2	cnt
1	H ₁			0
1	L ₁	0		
2	H_2			
2	L ₂		0	
2	U ₂		1	
2	S ₂		1	1
1	U ₁	1		
1	S ₁	1		1
1	T ₁			1
2	T ₂			1

Oops!

How about this ordering?

i (thread)	instr _i	$%$ rd x_1	%rdx ₂	cnt
1	H_1			0
1	L_1	0		
2	H_2			
2	L_2		0	
2	U_2		1	
2	S ₂		1	1
1	U ₁	1		
1	S ₁	1		1
1	T ₁			1
2	T ₂			1

Oops!

We can analyze the behavior using a progress graph

Progress Graphs

.

A progress graph depicts the discrete execution state space of concurrent threads.

Each axis corresponds to the sequential order of instructions in a thread.

Each point corresponds to a possible *execution state* (Inst₁, Inst₂).

E.g., (L₁, S₂) denotes state where thread 1 has completed L₁ and thread 2 has completed S₂.

Thread 2

A *trajectory* is a sequence of legal state transitions that describes one possible concurrent execution of the threads.

Example:

H1, L1, U1, H2, L2, S1, T1, U2, S2, T2

Thread 2

A *trajectory* is a sequence of legal state transitions that describes one possible concurrent execution of the threads.

Example:

H1, L1, U1, H2, L2, S1, T1, U2, S2, T2

Thread 2

A trajectory is a sequence of legal state transitions that describes one possible concurrent execution of the threads.

Example:

H1, L1, U1, H2, L2, S1, T1, U2, S2, T2

Thread 2

A trajectory is a sequence of legal state transitions that describes one possible concurrent execution of the threads.

Example:

H1, L1, U1, H2, L2, S1, T1, U2, S2, T2

Thread 2

A *trajectory* is a sequence of legal state transitions that describes one possible concurrent execution of the threads.

Example:

Thread 2

A *trajectory* is a sequence of legal state transitions that describes one possible concurrent execution of the threads.

Example:

Thread 2

A *trajectory* is a sequence of legal state transitions that describes one possible concurrent execution of the threads.

Example:

Thread 2

A *trajectory* is a sequence of legal state transitions that describes one possible concurrent execution of the threads.

Example:

Thread 2

A trajectory is a sequence of legal state transitions that describes one possible concurrent execution of the threads.

Example:

H1, L1, U1, H2, L2, S1, T1, U2, S2, T2

Thread 2

A *trajectory* is a sequence of legal state transitions that describes one possible concurrent execution of the threads.

Example:

Thread 2

A *trajectory* is a sequence of legal state transitions that describes one possible concurrent execution of the threads.

Example:

H1, L1, U1, H2, L2, S1, T1, U2, S2, T2

Critical Sections and Unsafe Regions

L, U, and S form a *critical*section with respect to the shared variable cnt

Critical Sections and Unsafe Regions

L, U, and S form a *critical*section with respect to the shared variable cnt

L, U, and S form a critical section with respect to the shared variable cnt

Instructions in critical sections (wrt some shared variable) should not be interleaved

Enforcing Mutual Exclusion

- Question: How can we guarantee a safe trajectory?
- Answer: We must synchronize the execution of the threads so that they can never have an unsafe trajectory
 - i.e., need to guarantee mutually exclusive access for each critical section.
- Classic solution: Semaphores (Edsger Dijkstra, 1962)
- Other approaches (out of our scope)
 - Mutex and condition variables (Pthreads)
 - Monitors (Java)
 - C++11 atomic variables