Методы машинного обучения. Регуляризация в тематическом моделировании

Воронцов Константин Вячеславович www.MachineLearning.ru/wiki?title=User:Vokov вопросы к лектору: k.v.vorontsov@yandex.ru

материалы курса: github.com/MSU-ML-COURSE/ML-COURSE-23-24 орг.вопросы по курсу: ml.cmc@mail.ru

ВМК МГУ • 12 марта 2024

Содержание

- 🚺 Вероятностное тематическое моделирование
 - Постановка задачи и приложения
 - Максимизация на единичных симплексах
 - Аддитивная регуляризация тематических моделей
- Регуляризаторы и модальности
 - Разреживание и сглаживание
 - Мультимодальные тематические модели
 - Классификация и регрессия на текстах
- Оправо по право право по право прав
 - Связи между словами
 - Связи между документами
 - Связи между темами

Задача тематического моделирования

Дано: коллекция текстовых документов

- ullet W, D, T конечные множества термов, документов, тем
- ullet n_{dw} частота терма $w\in W$ в документе $d\in D$

Найти: вероятностную тематическую модель (ВТМ)

$$p(w|d) = \sum_{t \in T} p(w|x|t) p(t|d) = \sum_{t \in T} \phi_{wt} \theta_{td}$$

где $\phi_{wt} = p(w|t)$, $\theta_{td} = p(t|d)$ — параметры модели

Критерий: максимум логарифма правдоподобия

$$L(\Phi,\Theta) = \ln \prod_{d,w} \frac{p(w|d)^{n_{dw}}}{p(w|d)^{n_{dw}}} = \sum_{d \in D} \sum_{w \in d} n_{dw} \ln \sum_{\substack{t \in T}} \phi_{wt} \theta_{td} \to \max_{\Phi,\Theta}$$

при ограничениях $\phi_{wt}\geqslant 0$, $\sum_{w}\phi_{wt}=1$, $\theta_{td}\geqslant 0$, $\sum_{t}\theta_{td}=1$

Hofmann T. Probabilistic Latent Semantic Indexing. ACM SIGIR, 1999.

Несколько интерпретаций постановки задачи ВТМ

- 1. Вероятностная языковая модель p(w|d)
- 2. Мягкая би-кластеризация по кластерам-темам $t \in T$ как документов: p(t|d), так и термов: $p(t|w) = p(w|t) \frac{p(t)}{p(w)}$
- 3. Векторные представления (эмбединги) вероятностные, интерпретируемые, разреженные: $p(t|d), p(t|w), p(t|d,w), \dots$
- 4. Автокодировщик документов в тематические эмбединги:

кодировщик:
$$f_{\Phi}:\left(\hat{p}(w|d)=\frac{n_{dw}}{n_d}\right) \to \left(p(t|d)=\theta_d\right)$$
 декодировщик: $g_{\Phi}:\theta_d\to\Phi\theta_d$ задача реконструкции: $\sum_d n_d \mathsf{KL}\big(\hat{p}(w|d) \bigm\| \langle \phi_w,\theta_d\rangle\big)\to \min_{\Phi,\Theta}$

5. **Матричное разложение** — низкоранговое, неотрицательное (стохастическое), приближённое: $\left(\frac{n_{dw}}{n_d}\right) \approx \Phi\Theta$

Некорректно поставленная задача матричного разложения

Низкоранговое стохастическое матричное разложение:

Если Φ,Θ — решение, то стохастические Φ',Θ' — тоже решения

- $\Phi'\Theta' = (\Phi S)(S^{-1}\Theta)$, rank S = |T|
- ullet $L(\Phi',\Theta')=L(\Phi,\Theta)$ линейно не зависимые решения
- $L(\Phi', \Theta') \geqslant L(\Phi, \Theta) \varepsilon$ приближённые решения

Регуляризация необходима для доопределения решения Аддитивная регуляризация: сумма нескольких регуляризаторов

Некоторые приложения тематического моделирования

разведочный поиск в электронных библиотеках

мультимодальный поиск текстов и изображений

поиск тематического контента в соцсетях

анализ банковских транзакционных данных

детектирование и трекинг новостных сюжетов

управлением диалогом в разговорном интеллекте

Задача максимизации функции на единичных симплексах

Пусть $\Omega=(\omega_j)_{j\in J}$ — набор нормированных неотрицательных векторов $\omega_j=(\omega_{ij})_{i\in I_j}$ различных размерностей $|I_j|$:

$$\Omega = \left(egin{array}{c} \egin{array}{c} egin{array}{c} \egin{array}{c} \egin$$

Задача максимизации функции $f(\Omega)$ на единичных симплексах:

$$egin{cases} f(\Omega)
ightarrow \max_{\Omega}; \ \sum_{i \in I_j} \omega_{ij} = 1, \quad j \in J; \ \omega_{ij} \geqslant 0, \quad i \in I_j, \quad j \in J. \end{cases}$$

Необходимые условия экстремума и метод простых итераций

Операция нормировки вектора:
$$p_i = \operatorname{norm}_{i \in I}(x_i) = \frac{\max(x_i, 0)}{\sum_k \max(x_k, 0)}$$

Лемма. Пусть $f(\Omega)$ непрерывно дифференцируема по Ω . Если ω_j — вектор локального экстремума задачи $f(\Omega) \to \max$ и $\exists i : \omega_{ij} \frac{\partial f}{\partial \omega_{ii}} > 0$, то ω_j удовлетворяет системе уравнений

$$\omega_{ij} = \operatorname{norm}_{i \in I_j} \left(\omega_{ij} \frac{\partial f}{\partial \omega_{ij}} \right).$$

- Численное решение системы методом простых итераций
- ullet Векторы $\omega_i=0$ отбрасываются как вырожденные решения
- Итерации похожи на градиентную оптимизацию:

$$\omega_{ij} := \omega_{ij} + \eta \frac{\partial f}{\partial \omega_{ii}},$$

но учитывают ограничения и не требуют подбора шага η

Напоминания. Условия Каруша-Куна-Таккера

Задача математического программирования:

$$\begin{cases} f(x) \to \min_{x}; \\ g_{i}(x) \leqslant 0, & i = 1, \dots, m; \\ h_{j}(x) = 0, & j = 1, \dots, k. \end{cases}$$

Необходимые условия. Если x — точка локального минимума, то существуют множители μ_i , $i=1,\ldots,m$, λ_i , $j=1,\ldots,k$:

$$\begin{cases} \frac{\partial \mathscr{L}}{\partial x} = 0, & \mathscr{L}(x; \mu, \lambda) = f(x) + \sum\limits_{i=1}^{m} \mu_i g_i(x) + \sum\limits_{j=1}^{k} \lambda_j h_j(x); \\ g_i(x) \leqslant 0; & h_j(x) = 0; \text{ (исходные ограничения)} \\ \mu_i \geqslant 0; & \text{ (двойственные ограничения)} \\ \mu_i g_i(x) = 0; & \text{ (условие дополняющей нежёсткости)} \end{cases}$$

Доказательство леммы о максимизации на симплексах

Задача:
$$f(\Omega) o\max_{\Omega};\quad \sum\limits_{i\in I_i}\omega_{ij}=1,\quad \omega_{ij}\geqslant 0,\quad i\in I_j,\quad j\in J.$$

Функция Лагранжа:

$$\mathscr{L}(\Omega; \mu, \lambda) = -f(\Omega) + \sum_{j \in J} \lambda_j \left(\sum_{i \in I_j} \omega_{ij} - 1 \right) - \sum_{j \in J} \sum_{i \in I_j} \mu_{ij} \omega_{ij}.$$

Условия Каруша-Куна-Таккера для вектора ω_i :

$$\frac{\partial f(\Omega)}{\partial \omega_{ij}} = \lambda_j - \mu_{ij}, \quad \mu_{ij}\omega_{ij} = 0, \quad \mu_{ij} \geqslant 0.$$

Умножим обе части первого равенства на ω_{ii} :

$$A_{ij} \equiv \omega_{ij} \frac{\partial f(\Omega)}{\partial \omega_{ij}} = \omega_{ij} \lambda_j.$$

Согласно условию леммы $\exists i : A_{ii} > 0$. Значит, $\lambda_i > 0$.

Если $\frac{\partial f(\Omega)}{\partial \omega_{ii}} < 0$ для некоторого i, то $\mu_{ij} > 0 \ \Rightarrow \ \omega_{ij} = 0$.

Тогда
$$\omega_{ij}\lambda_j=(A_{ij})_+;\;\lambda_j=\sum\limits_i(A_{ij})_+\;\Rightarrow\;\omega_{ij}=\mathop{\mathsf{norm}}_i(A_{ij}).$$

ARTM: аддитивная регуляризация тематических моделей

Максимизация логарифма правдоподобия с регуляризатором:

$$\sum_{d,w} n_{dw} \ln \sum_{t \in T} \phi_{wt} \theta_{td} + R(\Phi, \Theta) \rightarrow \max_{\Phi, \Theta}; \quad R(\Phi, \Theta) = \sum_{i} \tau_{i} R_{i}(\Phi, \Theta)$$

ЕМ-алгоритм: метод простой итерации для системы уравнений

E-шаг:
$$\begin{cases} p_{tdw} \equiv p(t|d,w) = \underset{t \in T}{\mathsf{norm}} \left(\phi_{wt} \theta_{td} \right) \\ \phi_{wt} = \underset{w \in W}{\mathsf{norm}} \left(n_{wt} + \phi_{wt} \frac{\partial R}{\partial \phi_{wt}} \right), \quad n_{wt} = \sum_{d \in D} n_{dw} p_{tdw} \\ \theta_{td} = \underset{t \in T}{\mathsf{norm}} \left(n_{td} + \theta_{td} \frac{\partial R}{\partial \theta_{td}} \right), \quad n_{td} = \sum_{w \in d} n_{dw} p_{tdw} \end{cases}$$

Воронцов К. В. Аддитивная регуляризация тематических моделей коллекций текстовых документов. Доклады РАН, 2014.

Доказательство (по лемме о максимизации на симплексах)

Применим лемму к log-правдоподобию с регуляризатором:

$$f(\Phi,\Theta) = \sum_{d,w} n_{dw} \ln \sum_{t \in T} \phi_{wt} \theta_{td} + R(\Phi,\Theta) \rightarrow \max_{\Phi,\Theta}$$

$$\begin{split} \phi_{wt} &= \underset{w \in W}{\mathsf{norm}} \bigg(\phi_{wt} \frac{\partial f}{\partial \phi_{wt}} \bigg) = \underset{w \in W}{\mathsf{norm}} \bigg(\underbrace{\phi_{wt}}_{d \in D} n_{dw} \frac{\theta_{td}}{p(w|d)} + \phi_{wt} \frac{\partial R}{\partial \phi_{wt}} \bigg) = \\ &= \underset{w \in W}{\mathsf{norm}} \bigg(\sum_{d \in D} n_{dw} p_{tdw} + \phi_{wt} \frac{\partial R}{\partial \phi_{wt}} \bigg); \\ \theta_{td} &= \underset{t \in T}{\mathsf{norm}} \bigg(\theta_{td} \frac{\partial f}{\partial \theta_{td}} \bigg) = \underset{t \in T}{\mathsf{norm}} \bigg(\underbrace{\theta_{td}}_{w \in W} n_{dw} \frac{\phi_{wt}}{p(w|d)} + \theta_{td} \frac{\partial R}{\partial \theta_{td}} \bigg) = \\ &= \underset{t \in T}{\mathsf{norm}} \bigg(\sum_{w \in d} n_{dw} p_{tdw} + \theta_{td} \frac{\partial R}{\partial \theta_{td}} \bigg). \end{split}$$

Байесовская и классическая регуляризация

Байесовский вывод апостериорного распределения $p(\Omega|X)$ (громоздкий, приближённый) ради точечной оценки Ω :

$$\begin{array}{l} \mathsf{Posterior}(\Omega|X,\gamma) \, \propto \, p(X|\Omega) \, \underset{\Omega}{\mathsf{Prior}}(\Omega|\gamma) \\ \Omega := \mathop{\mathsf{arg\,max}}_{\Omega} \, \mathsf{Posterior}(\Omega|X,\gamma) \end{array}$$

Максимизация апостериорной вероятности (MAP) даёт точечную оценку Ω напрямую, без вывода Posterior:

$$\Omega := \arg\max_{\Omega} \bigl(\ln p(X|\Omega) + \ln \mathsf{Prior}(\Omega|\gamma) \bigr)$$

Многокритериальная аддитивная регуляризация (ARTM) обобщает MAP на любые регуляризаторы и их комбинации:

$$\Omega := \arg\max_{\Omega} \left(\ln p(X|\Omega) + \sum_{i=1} \tau_i R_i(\Omega) \right)$$

PLSA и LDA — две самые известные тематические модели

PLSA: probabilistic latent semantic analysis [Hofmann, 1999] (вероятностный латентный семантический анализ):

$$R(\Phi,\Theta)=0.$$

М-шаг — частотные оценки условных вероятностей:

$$\phi_{wt} = \underset{w}{\mathsf{norm}} (n_{wt}), \qquad \theta_{td} = \underset{t}{\mathsf{norm}} (n_{td}).$$

LDA: latent Dirichlet allocation (латентное размещение Дирихле):

$$R(\Phi,\Theta) = \sum_{t,w} (\beta_w - 1) \ln \phi_{wt} + \sum_{d,t} (\alpha_t - 1) \ln \theta_{td}.$$

М-шаг — частотные оценки с поправками $\beta_w > 0$, $\alpha_t > 0$:

$$\phi_{wt} = \underset{w}{\mathsf{norm}} (n_{wt} + \beta_w - 1), \qquad \theta_{td} = \underset{t}{\mathsf{norm}} (n_{td} + \alpha_t - 1).$$

Hofmann T. Probabilistic latent semantic indexing. SIGIR 1999. Blei D., Ng A., Jordan M. Latent Dirichlet Allocation. NIPS-2001. JMLR 2003.

Распределение Дирихле

Гипотеза. Вектор-столбцы $\phi_t = (\phi_{wt})$ и $\theta_d = (\theta_{td})$ порождаются распределениями Дирихле, $\alpha \in \mathbb{R}^{|T|}$, $\beta \in \mathbb{R}^{|W|}$:

$$\operatorname{Dir}(\phi_t|\beta) = \frac{\Gamma(\beta_0)}{\prod\limits_{w} \Gamma(\beta_w)} \prod\limits_{w} \phi_{wt}^{\beta_w-1}, \quad \phi_{wt} > 0; \quad \beta_0 = \sum\limits_{w} \beta_w, \ \beta_w > 0;$$

$$\operatorname{Dir}(\theta_d|\alpha) = \frac{\Gamma(\alpha_0)}{\prod_{t} \Gamma(\alpha_t)} \prod_{t} \theta_{td}^{\alpha_t - 1}, \quad \theta_{td} > 0; \quad \alpha_0 = \sum_{t} \alpha_t, \ \alpha_t > 0;$$

Пример. Распределение $Dir(\theta|\alpha)$ при $|T|=3, \ \theta, \alpha \in \mathbb{R}^3$

$$\alpha_1 = \alpha_2 = \alpha_3 = 0.1$$

$$\alpha_1 = \alpha_2 = \alpha_3 = 1$$

$$\alpha_1 = \alpha_2 = \alpha_3 = 10$$

Пример. Выборки из трёх 10-мерных векторов $heta \sim \mathsf{Dir}(heta | lpha)$

Максимизация апостериорной вероятности для модели LDA

Совместное правдоподобие данных и модели:

$$\ln \prod_{d \in D} \prod_{w \in d} p(w, d|\Phi, \Theta)^{n_{dw}} \prod_{t \in T} \mathsf{Dir}(\phi_t|\beta) \prod_{d \in D} \mathsf{Dir}(\theta_d|\alpha) \to \max_{\Phi, \Theta}$$

Регуляризатор — логарифм априорного распределения:

$$R(\Phi, \Theta) = \sum_{t,w} (\beta_w - 1) \ln \phi_{wt} + \sum_{d,t} (\alpha_t - 1) \ln \theta_{td}$$

М-шаг — сглаженные или разреженные частотные оценки:

$$\phi_{wt} = \underset{w}{\mathsf{norm}} \left(n_{wt} + \beta_w - 1 \right), \qquad \theta_{td} = \underset{t}{\mathsf{norm}} \left(n_{td} + \alpha_t - 1 \right).$$

при $eta_w>1$, $lpha_t>1$ — сглаживание,

при $0<eta_{\it w}<1$, $0<lpha_{\it t}<1$ — слабое разреживание,

при $\beta_w = 1$, $\alpha_t = 1$ априорное распределение равномерно, PLSA.

Обобщение LDA: регуляризатор сглаживания и разреживания

Общий вид регуляризатора сглаживания и разреживания:

$$R(\Phi,\Theta) = \beta_0 \sum_{t \in T} \sum_{w \in W} \beta_{wt} \ln \phi_{wt} + \alpha_0 \sum_{d \in D} \sum_{t \in T} \alpha_{td} \ln \theta_{td} \rightarrow \max,$$

где $eta_0>0, \;\; lpha_0>0$ — коэффициенты регуляризации, $eta_{\it wt}, \; lpha_{\it td}$ — параметры, задаваемые пользователем:

- $\beta_{wt} > 0$, $\alpha_{td} > 0$ сглаживание
- ullet $eta_{wt} < 0$, $lpha_{td} < 0$ разреживание

Возможные применения сглаживания и разреживания:

- задать фоновые темы с общей лексикой языка
- задать шумовую тему для нетематичных термов
- задать псевдо-документ с ключевыми термами темы
- скорректировать состав термов и документов темы

Разделение тем на предметные и фоновые

Предметные темы S содержат термины предметной области, $p(w|t),\ p(t|d),\ t\in S$ — разреженные, существенно различные Фоновые темы B содержат слова общей лексики, $p(w|t),\ p(t|d),\ t\in B$ — существенно отличные от нуля

Регуляризатор декоррелирования тем

Цель: усилить различность тем; выделить в каждой теме лексическое ядро, отличающее её от других тем; вывести слова общей лексики из предметных тем в фоновые.

Минимизируем ковариации между вектор-столбцами ϕ_t :

$$R(\Phi) = -\frac{\tau}{2} \sum_{t \in T} \sum_{s \in T \setminus t} \sum_{w \in W} \phi_{wt} \phi_{ws} \to \max.$$

Подставляем в формулы М-шага, получаем ещё один вариант разреживания — контрастирование строк матрицы Φ (малые вероятности ϕ_{wt} в строке становятся ещё меньше):

$$\phi_{wt} = \underset{w}{\mathsf{norm}} \Big(n_{wt} - \tau \phi_{wt} \sum_{s \in T \setminus t} \phi_{ws} \Big).$$

Tan Y., Ou Z. Topic-weak-correlated latent Dirichlet allocation. 2010

Тема может порождать термы различных модальностей: p(слово|t), p(n-грамма|t),

Тема может порождать термы различных модальностей: p(слово|t), p(n-грамма|t), p(автор|t), p(время|t), p(источник|t),

Тема может порождать термы различных модальностей: p(слово|t), p(n-грамма|t), p(автор|t), p(время|t), p(источник|t), p(объект|t),

Тема может порождать термы различных модальностей: p(слово|t), p(n-грамма|t), p(автор|t), p(время|t), p(источник|t), p(объект|t), p(ссылка|t),

Тема может порождать термы различных модальностей: $p(\mathsf{словo}|t)$, p(n-грамма|t), $p(\mathsf{автор}|t)$, $p(\mathsf{время}|t)$, $p(\mathsf{источник}|t)$, $p(\mathsf{объект}|t)$, $p(\mathsf{ссылка}|t)$, $p(\mathsf{баннер}|t)$,

Тема может порождать термы различных модальностей: $p(\mathsf{словo}|t)$, p(n-грамма|t), $p(\mathsf{автор}|t)$, $p(\mathsf{время}|t)$, $p(\mathsf{источник}|t)$, $p(\mathsf{объект}|t)$, $p(\mathsf{ссылка}|t)$, $p(\mathsf{баннер}|t)$, $p(\mathsf{пользователь}|t)$

Тема может порождать термы различных модальностей: $p(\mathsf{словo}|t)$, p(n-грамма|t), $p(\mathsf{автор}|t)$, $p(\mathsf{время}|t)$, $p(\mathsf{источник}|t)$, $p(\mathsf{объект}|t)$, $p(\mathsf{ссылка}|t)$, $p(\mathsf{баннер}|t)$, $p(\mathsf{пользователь}|t)$

<u>Мульт</u>имодальная ARTM

W^m — словарь токенов m-й модальности, $m \in M$

Максимизация суммы log правдоподобий с регуляризацией:

$$\sum_{\mathbf{m} \in \mathbf{M}} \tau_{\mathbf{m}} \sum_{d \in D} \sum_{\mathbf{w} \in \mathbf{W}^{\mathbf{m}}} n_{d\mathbf{w}} \ln \sum_{t \in T} \phi_{\mathbf{w}t} \theta_{td} + R(\Phi, \Theta) \ \rightarrow \ \max_{\Phi, \Theta}$$

ЕМ-алгоритм: метод простой итерации для системы уравнений

Е-шаг:
$$\begin{cases} p_{tdw} = \underset{t \in T}{\mathsf{norm}} \left(\phi_{wt} \theta_{td} \right) \\ \phi_{wt} = \underset{w \in \mathcal{W}^m}{\mathsf{norm}} \left(n_{wt} + \phi_{wt} \frac{\partial R}{\partial \phi_{wt}} \right), \quad n_{wt} = \sum_{d \in D} \tau_{m(w)} n_{dw} p_{tdw} \\ \theta_{td} = \underset{t \in T}{\mathsf{norm}} \left(n_{td} + \theta_{td} \frac{\partial R}{\partial \theta_{td}} \right), \quad n_{td} = \sum_{w \in d} \tau_{m(w)} n_{dw} p_{tdw} \end{cases}$$

K. Vorontsov, O. Frei, M. Apishev et al. Non-Bayesian additive regularization for multimodal topic modeling of large collections. CIKM TM workshop, 2015.

Модальность биграмм улучшает интерпретируемость тем

Коллекция 850 статей конференций ММРО, ИОИ на русском

распознавание об	разов в биоинформатике	теория вычислительной сложности		
unigrams	bigrams	unigrams	bigrams	
объект	задача распознавания	задача	разделять множества	
задача	множество мотивов	множество	конечное множество	
множество	система масок	подмножество	условие задачи	
МОТИВ	вторичная структура	условие	задача о покрытии	
разрешимость	структура белка	класс	покрытие множества	
выборка	распознавание вторичной	решение	сильный смысл	
маска	состояние объекта	конечный	разделяющий комитет	
распознавание	обучающая выборка	число	минимальный аффинный	
информативность	оценка информативности	аффинный	аффинный комитет	
состояние	множество объектов	случай	аффинный разделяющий	
закономерность	разрешимость задачи	покрытие	общее положение	
система	критерий разрешимости	общий	множество точек	
структура	информативность мотива	пространство	случай задачи	
значение	первичная структура	схема	общий случай	
регулярность	тупиковое множество	комитет	задача MASC	

С.Стенин. Мультиграммные аддитивно регуляризованные тематические модели. 2015.

Многоязычные модели параллельных коллекций

Для построения многоязычных тем достаточно иметь парные документы, без выравнивания, без двуязычных словарей!

I. Vulić, W. De Smet, J. Tang, M.-F. Moens. Probabilistic topic modeling in multilingual settings: an overview of its methodology and applications. 2015

Пример. Многоязычная модель Википедии

216 175 русско-английских пар статей. Языки — модальности. Первые 10 слов и их вероятности p(w|t) в %:

Тема №68				Тема №79			
research	4.56	институт	6.03	goals	4.48	матч	6.02
technology	3.14	университет	3.35	league	3.99	игрок	5.56
engineering	2.63	программа	3.17	club	3.76	сборная	4.51
institute	2.37	учебный	2.75	season	3.49	фк	3.25
science	1.97	технический	2.70	scored	2.72	против	3.20
program	1.60	технология	2.30	cup	2.57	клуб	3.14
education	1.44	научный	1.76	goal	2.48	футболист	2.67
campus	1.43	исследование	1.67	apps	1.74	гол	2.65
management	1.38	наука	1.64	debut	1.69	забивать	2.53
programs	1.36	образование	1.47	match	1.67	команда	2.14

Асессор оценил 396 тем из 400 как хорошо интерпретируемые.

Vorontsov, Frei, Apishev, Romov, Suvorova. BigARTM: Open source library for regularized multimodal topic modeling of large collections. AIST-2015.

Пример. Многоязычная модель Википедии

216 175 русско-английских пар статей. Языки — модальности. Первые 10 слов и их вероятности p(w|t) в %:

Тема №88			Тема №251				
opera	7.36	опера	7.82	windows	8.00	windows	6.05
conductor	1.69	оперный	3.13	microsoft	4.03	microsoft	3.76
orchestra	1.14	дирижер	2.82	server	2.93	версия	1.86
wagner	0.97	певец	1.65	software	1.38	приложение	1.86
soprano	0.78	певица	1.51	user	1.03	сервер	1.63
performance	0.78	театр	1.14	security	0.92	server	1.54
mozart	0.74	партия	1.05	mitchell	0.82	программный	1.08
sang	0.70	сопрано	0.97	oracle	0.82	пользователь	1.04
singing	0.69	вагнер	0.90	enterprise	0.78	обеспечение	1.02
operas	0.68	оркестр	0.82	users	0.78	система	0.96

Асессор оценил 396 тем из 400 как хорошо интерпретируемые.

Vorontsov, Frei, Apishev, Romov, Suvorova. BigARTM: Open source library for regularized multimodal topic modeling of large collections. AIST-2015.

Тематическая модель multi-label категоризации

Обучающие данные: С — множество классов (категорий);

$$C_d \subseteq C$$
 — классы, к которым d относится;

 $C_d'\subseteq C$ — классы, к которым d не относится.

$$p(c|d) = \sum\limits_{t \in \mathcal{T}} \phi_{ct} heta_{td}$$
 — линейная модель классификации

Правдоподобие вероятностной модели бинарных данных:

$$\begin{split} R(\Phi,\Theta) &= \tau \sum_{d \in D} \sum_{c \in C_d} \ln \sum_{t \in T} \phi_{ct} \theta_{td} + \\ &+ \tau \sum_{d \in D} \sum_{c \in C_d'} \ln \Bigl(1 - \sum_{t \in T} \phi_{ct} \theta_{td}\Bigr) \ \to \ \max \end{split}$$

При $C_d'=arnothing$, $n_{dc}=[c\in C_d]$ это правдоподобие модальности C.

Rubin T. N., Chambers A., Smyth P., Steyvers M. Statistical topic models for multi-label document classification. 2012.

Регуляризатор для задач регрессии

 $y_d \in \mathbb{R}$ для всех документов d — обучающие данные.

$$E(y|d) = \sum\limits_{t \in T} v_t heta_{td}$$
 — линейная модель регрессии, $v \in \mathbb{R}^{|T|}$.

Регуляризатор — среднеквадратичная ошибка (МНК):

$$R(\Theta, v) = -\tau \sum_{d \in D} \left(y_d - \sum_{t \in T} v_t \theta_{td} \right)^2 \to \max$$

Подставляем, получаем формулы М-шага:

$$\theta_{td} = \underset{t \in T}{\text{norm}} \Big(n_{td} + \tau v_t \theta_{td} \Big(y_d - \sum_{t \in T} v_t \theta_{td} \Big) \Big);$$
$$v = (\Theta \Theta^{\mathsf{T}})^{-1} \Theta y.$$

Sokolov E., Bogolubsky L. Topic Models Regularization and Initialization for Regression Problems // CIKM-2015 Workshop on Topic Models. ACM.

Примеры задач регрессии на текстах

```
MovieReview [Pang, Lee, 2005]
d — текст отзыва на фильм
y_d — рейтинг фильма (1..5), поставленный автором отзыва
Salary (kaggle.com: Adzuna Job Salary Prediction)
d — описание вакансии, предлагаемой работодателем
y_d — годовая зарплата
Yelp (kaggle.com: Yelp Recruiting Competition)
d — отзыв (на ресторан, отель, сервис и т.п.)
y_d — число голосов «useful», которые получит отзыв
Прогнозирование скачков цен на финансовых рынках
d — текст новости
y_d — изменение цены в последующие 10–60 минут
```

B. Pang, L. Lee. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales // ACL, 2005.

Модели сети слов WTM, WNTM для коротких текстов

Идея: моделировать не документы, а связи между словами. d_u — псевдо-документ, объединение всех контекстов слова u (контекст — короткое сообщение / предложение / окно $\pm h$ слов) n_{uw} — число вхождений слова w в псевдо-документ d_u .

Тематическая модель контекстов, разложение $W \times W$ -матрицы:

$$p(w|d_u) = \sum_{t \in T} p(w|t)p(t|d_u) = \sum_{t \in T} \phi_{wt}\theta_{tu}$$

Максимизация логарифма правдоподобия:

$$\sum_{u,w \in W} n_{uw} \log \sum_{t \in T} \phi_{wt} \theta_{tu} \to \max_{\Phi,\Theta}$$

Berlin Chen. Word Topic Models for spoken document retrieval and transcription. ACM Trans., 2009.

Yuan Zuo, Jichang Zhao, Ke Xu. Word Network Topic Model: a simple but general solution for short and imbalanced texts. 2014.

WN-ARTM на задачах семантической аналогии слов

Два подхода к синтезу векторных представлений слов:

- WN-ARTM: интерпретируемые разреженные компоненты
- word2vec: интерпретируемые векторные операции

Операция	Результат WN-ARTM	Результат word2vec	
king – boy + girl	<i>queen</i> , princess, lord, prince	<i>queen</i> , princess, regnant, kings	
moscow – russia + spain	<i>madrid</i> , barcelona, aires, buenos	<i>madrid</i> , barcelona, valladolid, malaga	
india – russia + ruble	<i>rupee</i> , birbhum, pradesh, madhaya	<i>rupee</i> , rupiah, devalued, debased	
cars — car + computer	computers, software, servers, implementations	computers, software, hardware, microcomputers	

A.Potapenko, A.Popov, K.Vorontsov. Interpretable probabilistic embeddings: bridging the gap between topic models and neural networks. AINL-6, 2017.

Регуляризатор ⊖ для учёта связей между документами

Цель: улучшить темы, используя ссылки или цитирования (если документы ссылаются друг на друга, то их темы близки):

 n_{dc} — число ссылок из d на c.

Повышаем сходство (скалярные произведения) тематических векторных представлений связанных документов θ_d , θ_c :

$$R(\Theta) = au \sum_{d,c \in D} n_{dc} \, \sum_{t \in T} heta_{td} heta_{tc} o ext{max} \, .$$

Подставляем, получаем ещё один вариант сглаживания:

$$\theta_{td} = \underset{t}{\mathsf{norm}} \Big(n_{td} + \tau \theta_{td} \sum_{c \in D} n_{dc} \theta_{tc} \Big).$$

Laura Dietz, Steffen Bickel, Tobias Scheffer. Unsupervised prediction of citation influences. ICMI-2007

Модели, учитывающие цитирования или гиперссылки

- Учёт ссылок уточняет тематическую модель
- Тематическая модель выявляет влиятельные ссылки

Laura Dietz, Steffen Bickel, Tobias Scheffer. Unsupervised prediction of citation influences. ICML-2007

Иерархические тематические модели

- структура иерархии: дерево / многодольный граф
- направление: снизу вверх / сверху вниз / одновременно
- наращивание: повершинное / послойное

Послойное построение тематической иерархии

Шаг 1. Строим модель с небольшим числом тем.

Шаг k. Пусть модель с множеством тем T уже построена. Строим множество дочерних тем S (subtopics), |S| > |T|.

Родительские темы приближаются смесями дочерних тем:

$$\sum_{t \in T} n_{wt} \ln p(w|t) = \sum_{t \in T} n_{wt} \ln \sum_{s \in S} p(w|s) p(s|t) \ \to \ \max_{\Phi, \Psi},$$

где
$$p(s|t)=\psi_{st}$$
, $\Psi=(\psi_{st})_{S imes T}$ — матрица связей.

Родительская $\Phi^p \approx \Phi \Psi$, отсюда регуляризатор матрицы Φ :

$$R\big(\Phi,\Psi\big) = \tau \sum_{t \in T} \sum_{w \in W} n_{wt} \ln \sum_{s \in S} \phi_{ws} \psi_{st} \ \to \ \max.$$

Родительские темы t — псевдо-документы с частотами слов n_{wt} .

Построение второго уровня иерархии с подтемами S

В коллекцию добавляются |T| псевдодокументов родительских тем с частотами термов $n_{wt} = \tau n_t \phi_{wt}, \ t \in T$

Матрица связей тем с подтемами $\Psi = \left(p(s|t) \right)$ образуется в столбцах матрицы Θ , соответствующих псевдодокументам.

Chirkova N.A., Vorontsov K.V. Additive regularization for hierarchical multimodal topic modeling. JMLDA, 2016.

Иерархический спектр тем (пример: коллекция postnauka.ru)

Д. Федоряка. Технология интерактивной визуализации тематических моделей. 2017.

Резюме

- Тематическое моделирование «мягкая кластеризация», автокодировщик или стохастическое матричное разложение.
- Стандартные методы PLSA и LDA.
- Нестандартные огромное разнообразие регуляризаторов.
- Аддитивная регуляризация для комбинирования моделей.
- Обычно для ТМ используется байесовское обучение.
 Но это избыточно, т.к. на практике по апостериорным распределениям строят лишь точечные оценки Ф, Ө
- В ARTM те же модели выводятся намного проще с помощью леммы о максимизации на симплексах.
- Эта лемма применима далеко за пределами ТМ.

Jordan Boyd-Graber. Applications of Topic Models. 2017.

Rob Churchill, Lisa Singh. The Evolution of Topic Modeling. 2022.

К.В.Воронцов. Вероятностное тематическое моделирование: теория ARTM и проект BigARTM. 2017–2023.

http://www.machinelearning.ru/wiki/images/d/d5/Voron17survey-artm.pdf