Deep Learning Episode 4

Recurrent neural networks

Maxim Borisyak, Alexander Panin, Andrey Ustyuzhanin

Sequential data

- Time series
 - Financial data analysis
 - Demand prediction
 - Predict vehicle breakdown using sensor data
 - Medical sensors e.g. sugar level

- Sound
 - Speech recognition
 - Text to speech
 - Music generation
 - Music recommendation
 - •

- Text
 - Generating tweets, poetry
 - Sentiment analysis
 - See last lecture :)
- Spatio-temporal
 - Video
 - Precipitation maps
 - Ultrasonography

Could go on all day

Time series @finance

Data:

- Stock indices
- Commodities
- Forex

Objectives:

- Portfolio management
- Volatility targeting
- Estimating true value

• . . .

Time series @finance

Data:

- Stock indices
- Commodities
- Forex

Objectives:

- Portfolio management
- Volatility targeting
- Estimating true value

- ~ trading stuff
- ~ evaluating risk

• . . .

Natural language as time series

Data:

- Literature
- Conversation
- Tweets
- Book scans
- Speech

Objective:

Learn P(text)

$$P(text) = P(w_0, w_1, ..., w_n) = P(w_0) \cdot P(w_1|w_0) \cdot P(w_2|w_1w_0) \cdot ... \cdot P(w_n|...)$$

Why learning it?

- Detect languages as P(text|language)
- Sentiment analysis P(text|happy)
- Any text analysis you can imagine
- Generate texts!
 - Cool article http://bit.ly/1K610le
 - Generating clickbait: http://bit.ly/21cZM70

Actual distribution

$$P(text) = P(w_0, w_1, ..., w_n) = P(w_0) \cdot P(w_1|w_0) \cdot P(w_2|w_1w_0) \cdot ... \cdot P(w_n|...)$$

Bag of words assumption (independent words)

$$P(text) = P(w_0, w_1, ..., w_n) = P(w_0) \cdot P(w_1) \cdot P(w_2) \cdot ... \cdot P(w_n)$$

Anything better?

Actual distribution

$$P(text) = P(w_0, w_1, ..., w_n) = P(w_0) \cdot P(w_1|w_0) \cdot P(w_2|w_1w_0) \cdot ... \cdot P(w_n|...)$$

• Bag of words assumption (independent words)

$$P(text) = P(w_0, w_1, ..., w_n) = P(w_0) \cdot P(w_1) \cdot P(w_2) \cdot ... \cdot P(w_n)$$

Markov assumption

$$P(text) = P(w_0, w_1, ..., w_n) = P(w_0) \cdot P(w_1|w_0) \cdot P(w_2|w_1) \cdot ... \cdot P(w_n|w_{n-1})$$

also 3-gram, 5-gram, 100-gram

Can we learn* arbitrarily long dependencies?

* without infinitely many parameters

Hidden Markov Models: what's hidden

Hidden Markov Models: what is hidden

Recurrent neural network: one step

Recurrent neural network: one step

Zoom-out of previous slide

We use **same weight matrices** for all steps

$$h_0 = \overline{0}$$

$$h_1 = \sigma (W_{hid} \cdot h_0 + W_{inp} \cdot x_0 + b)$$

$$h_2 = ?$$

$$\begin{array}{c} h_0 = \overline{0} \\ h_1 = \sigma(W_{hid} \cdot h_0 + W_{inp} \cdot x_0 + b) \\ h_2 = \sigma(W_{hid} \cdot h_1 + W_{inp} \cdot x_1 + b) = \sigma(W_{hid} \cdot \sigma(W_{hid} \cdot h_0 + W_{inp} \cdot x_0 + b) + W_{inp} \cdot x_1 + b) \\ h_{i+1} = \sigma(W_{hid} \cdot h_i + W_{inp} \cdot x_i + b) \\ \textbf{h0} \qquad \textbf{h1} \qquad \textbf{h2} \qquad \textbf{h3} \\ \\ \textbf{h0} \qquad \textbf{h1} \qquad \textbf{h2} \qquad \textbf{h3} \\ \\ \textbf{embed} \qquad \textbf{embed} \qquad \textbf{embed} \qquad \textbf{embed} \\ \\ \times 0 = \text{"the"} \qquad \times 1 = \text{"cat"} \qquad \times 2 = \text{"sat"} \qquad \times 3 = \text{"on"} \qquad \underset{23}{23} \end{array}$$

$$\begin{array}{l} h_0 = \overline{0} \\ h_1 = \sigma \left(W_{hid} \cdot h_0 + W_{inp} \cdot x_0 + b \right) \\ h_2 = \sigma \left(W_{hid} \cdot h_1 + W_{inp} \cdot x_1 + b \right) = \sigma \left(W_{hid} \cdot \sigma \left(W_{hid} \cdot h_0 + W_{inp} \cdot x_0 + b \right) + W_{inp} \cdot x_1 + b \right) \\ h_{i+1} = \sigma \left(W_{hid} \cdot h_i + W_{inp} \cdot x_i + b \right) \\ P(t_4) = softmax \left(W_{out} \cdot h_3 + b_{out} \right) \\ \\ P(t_4) = softmax \left(W_{out} \cdot h_3 + b_{out} \right) \\ \\ + \left(W_{out} \cdot h_3 + b_{out} \right)$$

Backpropagation through time

Truncated BPTT

What is layer, again?

Layers

Where to stick more layers?

More layers

Too f**king complicated

2-layer RNN

BPTT again

$$\frac{\partial Loss}{\partial w} = \frac{\partial Loss}{\partial P(t_4)} \cdot \frac{\partial P(t_4)}{\partial h_3} \cdot (?!)$$
Chain rule unroll embed embed embed embed $x0$ ="the" x_1 ="cat" x_2 ="sat" x_3 ="on" x_3 ="on" x_3 ="on"

$$\frac{\partial Loss}{\partial w} = \frac{\partial Loss}{\partial P(t_4)} \cdot \frac{\partial P(t_4)}{\partial h_3} \cdot (\frac{\partial h_3}{\partial w} \cdot \frac{\partial P(t_4)}{\partial w}) \cdot (\frac{\partial h_3}{\partial w} \cdot \frac{\partial P(t_4)}{\partial w} \cdot \frac{\partial P(t_4)}$$

$$\frac{\partial Loss}{\partial w} = \frac{\partial Loss}{\partial P(t_4)} \cdot \frac{\partial P(t_4)}{\partial h_3} \cdot (\frac{\partial h_3}{\partial w} + \frac{\partial h_3}{\partial h_2} \cdot \frac{\partial h_2}{\partial w} \qquad \qquad ...)$$
Chain rule unroll
$$v0 = v_1 + v_2 + v_3 + v_4 + v_4 + v_4 + v_4 + v_4 + v_5 + v_4 +$$

$$\frac{\partial Loss}{\partial w} = \frac{\partial Loss}{\partial P(t_4)} \cdot \frac{\partial P(t_4)}{\partial h_3} \cdot (\frac{\partial h_3}{\partial w} + \frac{\partial h_3}{\partial h_2} \cdot \frac{\partial h_2}{\partial w} + \frac{\text{Your}}{\text{guess?}} \cdot)$$

$$\text{Chain rule unroll}$$

$$\text{embed}$$

$$\text{embed}$$

$$\text{embed}$$

$$\text{vo="the"}$$

$$\text{vo="the"}$$

$$\text{vo="the"}$$

$$\text{vo}$$

$$\frac{\partial Loss}{\partial w} = \frac{\partial Loss}{\partial P(t_4)} \cdot \frac{\partial P(t_4)}{\partial h_3} \cdot (\frac{\partial h_3}{\partial w} + \frac{\partial h_3}{\partial h_2} \cdot \frac{\partial h_2}{\partial w} + \frac{\partial h_3}{\partial h_2} \cdot \frac{\partial h_2}{\partial h_1} \cdot \frac{\partial h_1}{\partial w} + \dots)$$

$$\frac{\partial Loss}{\partial w} = \frac{\partial Loss}{\partial P(t_4)} \cdot \frac{\partial P(t_4)}{\partial h_3} \cdot (\frac{\partial h_3}{\partial w} + \frac{\partial h_3}{\partial h_2} \cdot \frac{\partial h_2}{\partial w} + \frac{\partial h_3}{\partial h_2} \cdot \frac{\partial h_2}{\partial h_1} \cdot \frac{\partial h_1}{\partial w} + \dots)$$

$$\frac{\partial Loss}{\partial w} = \frac{\partial Loss}{\partial P(t_4)} \cdot \frac{\partial P(t_4)}{\partial h_3} \cdot (\frac{\partial h_3}{\partial w} + \frac{\partial h_3}{\partial h_2} \cdot \frac{\partial h_2}{\partial w} + \frac{\partial h_3}{\partial h_2} \cdot \frac{\partial h_2}{\partial h_1} \cdot \frac{\partial h_1}{\partial w} + \dots)$$

$$\frac{\partial Loss}{\partial w} = \frac{\partial Loss}{\partial P(t_4)} \cdot \frac{\partial P(t_4)}{\partial h_3} \cdot (\frac{\partial h_3}{\partial w} + \frac{\partial h_3}{\partial h_2} \cdot \frac{\partial h_2}{\partial w} + \frac{\partial h_3}{\partial h_2} \cdot \frac{\partial h_2}{\partial h_1} \cdot \frac{\partial h_1}{\partial w} + \dots)$$

$$\frac{\partial Loss}{\partial w} = \frac{\partial Loss}{\partial P(t_4)} \cdot \frac{\partial P(t_4)}{\partial h_3} \cdot (\frac{\partial h_3}{\partial w} + \frac{\partial h_3}{\partial h_2} \cdot \frac{\partial h_2}{\partial w} + \frac{\partial h_3}{\partial h_2} \cdot \frac{\partial h_2}{\partial h_1} \cdot \frac{\partial h_1}{\partial w} + \dots)$$

$$\frac{\partial Loss}{\partial w} = \frac{\partial Loss}{\partial P(t_4)} \cdot \frac{\partial P(t_4)}{\partial h_3} \cdot (\frac{\partial h_3}{\partial w} + \frac{\partial h_3}{\partial h_2} \cdot \frac{\partial h_2}{\partial w} + \frac{\partial h_3}{\partial h_2} \cdot \frac{\partial h_1}{\partial h_1} \cdot \frac{\partial h_1}{\partial w} + \dots)$$

$$\frac{\partial Loss}{\partial w} = \frac{\partial Loss}{\partial P(t_4)} \cdot \frac{\partial P(t_4)}{\partial h_3} \cdot (\frac{\partial h_3}{\partial w} + \frac{\partial h_3}{\partial h_2} \cdot \frac{\partial h_2}{\partial w} + \frac{\partial h_3}{\partial h_2} \cdot \frac{\partial h_1}{\partial h_1} \cdot \frac{\partial h_1}{\partial w} + \dots)$$

$$\frac{\partial Loss}{\partial w} = \frac{\partial Loss}{\partial P(t_4)} \cdot \frac{\partial P(t_4)}{\partial h_3} \cdot (\frac{\partial h_3}{\partial w} + \frac{\partial h_3}{\partial w} \cdot \frac{\partial h_2}{\partial w} + \frac{\partial h_3}{\partial h_2} \cdot \frac{\partial h_1}{\partial w} + \dots)$$

$$\frac{\partial Loss}{\partial w} = \frac{\partial Loss}{\partial w} \cdot \frac{\partial P(t_4)}{\partial w} \cdot \frac{\partial h_3}{\partial w} \cdot \frac{\partial h_3}{\partial$$

Gradient explosion and vanishing

$$h_{i+1} = \sigma (W_{hid} \cdot h_i + W_{inp} \cdot x_i + b)$$

$$\frac{\partial Loss}{\partial w} = \frac{\partial Loss}{\partial P(t_4)} \cdot \frac{\partial P(t_4)}{\partial h_3} \cdot \left(\frac{\partial h_3}{\partial w} + \frac{\partial h_3}{\partial h_2} \cdot \frac{\partial h_2}{\partial w} + \frac{\partial h_3}{\partial h_2} \cdot \frac{\partial h_2}{\partial h_2} \cdot \frac{\partial h_2}{\partial h_1} \cdot \frac{\partial h_2}{\partial w} + \dots\right)$$

- Many sigmoids near 0 or 1
 - Gradients → 0
 - Not training for long-term dependencies
- Many nonzero values
 - Derivative stacks to >1
 - Gradients → inf
 - Weights → shit

RNN step

RNN step

$$update(x_i, h_{i-1}) = tanh(W_{hid}^{update} \cdot h_{i-1} + W_{inp}^{update} \cdot x_i + b^{update})$$

$$update(x_i, h_{i-1}) = tanh(W_{hid}^{update} \cdot h_{i-1} + W_{inp}^{update} \cdot x_i + b^{update})$$

$$forget(x_i, h_{i-1}) = \sigma(W_{hid}^{forget} \cdot h_{i-1} + W_{inp}^{forget} \cdot x_i + b^{forget})$$

$$update(x_i, h_{i-1}) = tanh(W_{hid}^{update} \cdot h_{i-1} + W_{inp}^{update} \cdot x_i + b^{update})$$

$$forget(x_i, h_{i-1}) = \sigma(W_{hid}^{forget} \cdot h_{i-1} + W_{inp}^{forget} \cdot x_i + b^{forget})$$

How to compute h new?

$$update(x_i, h_{i-1}) = tanh(W_{hid}^{update} \cdot h_{i-1} + W_{inp}^{update} \cdot x_i + b^{update})$$

$$forget(x_i, h_{i-1}) = \sigma(W_{hid}^{forget} \cdot h_{i-1} + W_{inp}^{forget} \cdot x_i + b^{forget})$$

$$h_i(x_i, h_{i-1}) = forget(x_i, h_{i-1}) \cdot h_{i-1} + update(x_i, h_{i-1})$$

LSTM

2 hidden states:

- Cell ("private" state)
- Output ("public" state)

4 blocks:

- Update
- Forget gate
- Input gate
- Output gate

LSTM

$$i_{t} = Sigm(\theta_{xi}x_{t} + \theta_{hi}h_{t-1} + b_{i})$$

$$f_{t} = Sigm(\theta_{xf}x_{t} + \theta_{hf}h_{t-1} + b_{f})$$

$$o_{t} = Sigm(\theta_{xo}x_{t} + \theta_{ho}h_{t-1} + b_{o})$$

$$g_{t} = Tanh(\theta_{xg}x_{t} + \theta_{hg}h_{t-1} + b_{g})$$

$$c_{t} = f_{t} \otimes c_{t-1} + i_{t} \otimes g_{t}$$

$$h_{t} = o_{t} \otimes Tanh(c_{t})$$

LSTM

$$i_{t} = Sigm(\theta_{xi}x_{t} + \theta_{hi}h_{t-1} + b_{i})$$

$$f_{t} = Sigm(\theta_{xf}x_{t} + \theta_{hf}h_{t-1} + b_{f})$$

$$o_{t} = Sigm(\theta_{xo}x_{t} + \theta_{ho}h_{t-1} + b_{o})$$

$$g_{t} = Tanh(\theta_{xg}x_{t} + \theta_{hg}h_{t-1} + b_{g})$$

$$c_{t} = f_{t} \otimes c_{t-1} + i_{t} \otimes g_{t}$$

$$h_{t} = o_{t} \otimes Tanh(c_{t})$$

GRU

Okay, the gradients no longer vanish

except they still do, if only slower

But how do we deal with exploding grads?

Ideas?

Gradient clipping

At each time tick,

- check if grad abs value is more than ... 5?
- If so, clip it
 - large positive is now 5,
 - large negative is now -5
- How large is too large?
 - Reduce clipping threshold until explosions disappear

Gradient clipping

Where do I clip?

- Clip each element of $\delta L/\delta w$
- Clip each element of $\delta h_{i+1}/\delta h_i$
- Clip whole $\delta L/\delta w$ by norm
 - If $\left\| \frac{\delta L}{\delta w} \right\| > 5$, scale $\left\| \frac{\delta L}{\delta w} \right\| \left\| \frac{\delta L}{\delta w} \right\| \cdot 5$

Generating stuff

Easy:

- Names, small phrases
- Orthographically correct delirium

Medium:

- Grammatically coherent text
- Resembling particular author

Hard:

- C/C++ source code
- Music
- Organic molecules
- LaTex articles
- Your course projects

Nuff

Coding time!

