Introduction to Bayesian Computation

Dr. Jarad Niemi

STAT 544 - Iowa State University

March 21, 2017

Bayesian computation

Goals:

- $E_{\theta|y}[h(\theta)|y] = \int h(\theta)p(\theta|y)d\theta$
- $p(y) = \int p(y|\theta)p(\theta)d\theta = E_{\theta}[p(y|\theta)]$

Approaches:

- Deterministic approximation
- Monte Carlo approximation
 - Theoretical justification
 - Gridding
 - Inverse CDF
 - Accept-reject

Numerical integration

Deterministic methods where

$$E[h(\theta)|y] = \int h(\theta)p(\theta|y)d\theta \approx \sum_{S=1}^{S} w_s h\left(\theta^{(s)}\right) p\left(\theta^{(s)}|y\right)$$

and

- $\theta^{(s)}$ are selected points,
- w_s is the weight given to the point $\theta^{(s)}$, and
- the error can be bounded.
- Monte Carlo (simulation) methods where

$$E[h(\theta)|y] = \int h(\theta)p(\theta|y)d\theta \approx \sum_{S=1}^{S} w_s h\left(\theta^{(s)}\right)$$

and

- $\theta^{(s)} \stackrel{iid}{\sim} g(\theta)$ (for some proposal distribution g),
- $w_s = p(\theta^{(s)}|y)/q(\theta^{(s)}),$
- and we have SLLN and CLT.

Example: Normal-Cauchy model

Let $Y \sim N(\theta, 1)$ with $\theta \sim Ca(0, 1)$. The posterior is

$$p(\theta|y) \propto p(y|\theta)p(\theta) \propto \frac{\exp(-(y-\theta)^2/2)}{1+\theta^2} = q(\theta|y)$$

which is not a known distribution. We might be interested in

1. normalizing this posterior, i.e. calculating

$$q(y) = \int q(\theta|y)d\theta$$

2. or in calculating the posterior mean, i.e.

$$E[\theta|y] = \int \theta p(\theta|y) d\theta = \int \theta \frac{q(\theta|y)}{q(y)} d\theta.$$

Normal-Cauchy: marginal likelihood

```
y = 1 # Data
```

```
q = function(theta,y,log=FALSE) {
  out = -(y-theta)^2/2-log(1+theta^2)
  if (log) return(out)
  return(exp(out))
}

# Find marginal likelihood for y
w = 0.1
theta = seq(-5,5,by=w)+y
(py = sum(q(theta,y)*w))  # gridding based approach

[1] 1.305608

integrate(function(x) q(x,y), -Inf, Inf) # numerical integration

1.305609 with absolute error < 0.00013</pre>
```

Normal-Cauchy: distribution

```
curve(q(x,y), -5, 5, n=1001)
points(theta,rep(0,length(theta)), cex=0.5, pch=19)
segments(theta,0,theta,q(theta,y))
```


Posterior expectation

$$E[h(\theta)|y) \approx \sum_{s=1}^{S} w_{s} h\left(\theta^{(s)}\right) p\left(\left.\theta^{(s)}\right| y\right) = \sum_{s=1}^{S} w_{s} h\left(\theta^{(s)}\right) \frac{p\left(\left.\theta^{(s)}\right| y\right)}{p(y)}$$

```
h = function(theta) theta
sum(w*h(theta)*q(theta,y)/py)
```

[1] 0.5542021

Posterior expectation as a function of observed data

Monte Carlo integration

Consider evaluating the integral

$$E[h(\theta)] = \int_{\Theta} h(\theta)p(\theta)d\theta$$

using the Monte Carlo estimate

$$\hat{h}_J = \frac{1}{J} \sum_{j=1}^J h\left(\theta^{(j)}\right)$$

where $\theta^{(j)} \stackrel{ind}{\sim} g(\theta)$. We know

- SLLN: \hat{h}_J converges almost surely to $E[h(\theta)]$.
- CLT: if h^2 has finite expectation, then

$$\hat{h}_J \stackrel{d}{\to} N(E[h(\theta)], v_J)$$

where

$$v_J = \frac{1}{J} Var[h(\theta)] \approx \frac{1}{J^2} \sum_{j=1}^{J} \left[h\left(\theta^{(j)}\right) - \hat{h}_J \right]^2.$$

Definite integral

Suppose you are interested in evaluating

$$I = \int_0^1 e^{-\theta^2/2} d\theta.$$

Then set

- $h(\theta) = e^{-\theta^2/2}$ and
- $p(\theta) = 1$, i.e. $\theta \sim \mathsf{Unif}(0,1)$.

and approximate by a Monte Carlo estimate via

- 1. For j = 1, ..., J,
 - a. sample $\theta^{(j)} \sim Unif(0,1)$ and
 - b. calculate $h\left(\theta^{(j)}\right)$.
- 2. Calculate

$$I \approx \frac{1}{J} \sum_{j=1}^{J} h(\theta^{(j)}).$$

Monte Carlo sampling randomly infills

200 samples 0.0 0.4 8.0

х

Strong law of large numbers

Monte Carlo estimate

Central limit theorem

Monte Carlo estimate

Infinite bounds

Suppose $\theta \sim N(0,1)$ and you are interested in evaluating

$$E[\theta] = \int_{-\infty}^{\infty} \theta \frac{1}{\sqrt{2\pi}} e^{-\theta^2/2} d\theta$$

Then set

- $h(\theta) = \theta$ and
- $g(\theta) = \phi(\theta)$, i.e. $\theta \sim N(0, 1)$.

and approximate by a Monte Carlo estimate via

- 1. For j = 1, ..., J,
 - a. sample $\theta^{(j)} \sim N(0,1)$ and
 - b. calculate $h(\theta^{(j)})$.
- 2. Calculate

$$E[\theta] \approx \frac{1}{J} \sum_{j=1}^{J} h(\theta^{(j)}).$$

Non-uniform sampling

Monte Carlo estimate

Monte Carlo estimate

Monte Carlo approximation via gridding

Rather than approximate p(y) and then $E[\theta|y]$ via deterministic gridding (all w_i are equal), we can use the grid as a discrete approximation to the posterior, i.e.

$$p(\theta|y) \approx \sum_{i=1}^{N} p_i \delta_{\theta_i}(\theta)$$
 $p_i = \frac{q(\theta_i|y)}{\sum_{j=1}^{N} q(\theta_j|y)}$

where $\delta_{\theta_i}(\theta)$ is the Dirac delta function, i.e.

$$\delta_{\theta_i}(\theta) = 0 \,\forall \, \theta \neq \theta_i \qquad \int \delta_{\theta_i}(\theta) d\theta = 1.$$

This discrete approximation to $p(\theta|y)$ can be used to approximate the expectation $E[h(\theta)|y]$ deterministically or via simulation, i.e.

$$E[h(\theta)|y] \approx \sum_{i=1}^{N} p_i h(\theta_i) \qquad E[h(\theta)|y] \approx \frac{1}{S} \sum_{s=1}^{S} h\left(\theta^{(s)}\right)$$

where $\theta^{(s)} \sim \sum_{i=1}^{N} p_i \delta_{\theta_i}(\theta)$ (with replacement).

Example: Normal-Cauchy model

```
y = 1 # Data
# Small number of grid locations
theta = seq(-5,5,length=1e2+1)+y; p = q(theta,y)/sum(q(theta,y)); sum(p*theta)
[1] 0.5542021
mean(sample(theta,prob=p,replace=TRUE))
[1] 0.6118812
# Large number of grid locations
theta = seq(-5,5,length=1e6+1)+y; p = q(theta,y)/sum(q(theta,y)); sum(p*theta)
[1] 0.5542021
mean(sample(theta,1e2,prob=p,replace=TRUE)) # But small MC sample
[1] 0.598394
# Truth
post_expectation(1)
```

[1] 0.5542021

Inverse cumulative distribution function

Definition

The cumulative distribution function (cdf) of a random variable X is defined by

$$F_X(x) = P_X(X \le x)$$
 for all x .

Lemma

Let X be a random variable whose cdf is F(x) and you have access to the inverse cdf of X, i.e. if

$$u = F(x) \implies x = F^{-1}(u).$$

If $U \sim Unif(0,1)$, then $X = F^{-1}(U)$ is a simulation from the distribution for X.

Inverse CDF

Standard normal CDF

Exponential example

For example, to sample $X \sim Exp(1)$,

- 1. Sample $U \sim Unif(0,1)$.
- 2. Set $X = -\log(1-U)$, or $X = -\log(U)$.

Sampling from a univariate truncated distribution

Suppose you wish to sample from $X \sim N(\mu, \sigma^2) \mathrm{I}(a < X < b)$, i.e. a normal random variable with untruncated mean μ and variance σ^2 , but truncated to the interval (a,b). Suppose the untruncated cdf is F and inverse cdf is F^{-1} .

- 1. Calculate endpoints $p_a = F(a)$ and $p_b = F(b)$.
- 2. Sample $U \sim Unif(p_a, p_b)$.
- 3. Set $X = F^{-1}(U)$.

This just avoids having to recalculate the normalizing constant for the pdf, i.e. $1/(F^{-1}(b) - F^{-1}(a))$.

Truncated normal

$$X \sim N(5,9) \mathrm{I}(1 \le X \le 6)$$

Truncated normal

$$X \sim N(5,9) I(1 \le X \le 6)$$

Rejection sampling

Suppose you wish to obtain samples $\theta \sim p(\theta|y)$, rejection sampling performs the following

- 1. Sample a proposal $\theta^* \sim g(\theta)$ and $U \sim Unif(0,1)$.
- 2. Accept $\theta=\theta^*$ as a draw from $p(\theta|y)$ if $U\leq p(\theta^*|y)/Mg(\theta^*)$, otherwise return to step 1.

where M satisfies $M g(\theta) \ge p(\theta|y)$ for all θ .

- For a given proposal distribution $g(\theta)$, the optimal M is $M = \sup_{\theta} p(\theta|y)/g(\theta)$.
- The probability of acceptance is 1/M.

The accept-reject idea is to create an envelope, $M g(\theta)$, above $p(\theta|y)$.

Rejection sampling with unnormalized density

Suppose you wish to obtain samples $\theta \sim p(\theta|y) \propto q(\theta|y)$, rejection sampling performs the following

- 1. Sample a proposal $\theta^* \sim g(\theta)$ and $U \sim Unif(0,1)$.
- 2. Accept $\theta=\theta^*$ as a draw from $p(\theta|y)$ if $U\leq q(\theta^*|y)/M^*g(\theta^*)$, otherwise return to step 1.

where M^* satisfies $M^* g(\theta) \ge q(\theta|y)$ for all θ .

- For a given proposal distribution $g(\theta)$, the optimal M^* is $M^* = \sup_{\theta} q(\theta|y)/g(\theta)$.
- The acceptance probability is $1/M = p(y)/M^*$.

The accept-reject idea is to create an envelope, $M g(\theta)$, above $q(\theta|y)$.

Example: Normal-Cauchy model

If $Y \sim N(\theta, 1)$ and $\theta \sim Ca(0, 1)$, then

$$p(\theta|y) \propto e^{-(y-\theta)^2/2} \frac{1}{(1+\theta^2)}$$

for $\theta \in \mathbb{R}$.

Choose a N(y,1) as a proposal distribution, i.e.

$$g(\theta) = \frac{1}{\sqrt{2\pi}} e^{-(\theta - y)^2/2}$$

with

$$M^* = \sup_{\theta} \frac{q(\theta|y)}{g(\theta)} = \sup_{\theta} \frac{e^{-(y-\theta)^2/2} \frac{1}{(1+\theta^2)}}{\frac{1}{\sqrt{2\pi}} e^{-(\theta-y)^2/2}} = \frac{\sqrt{2\pi}}{(1+\theta^2)} \le \sqrt{2\pi}$$

The acceptance rate is $1/M = p(y)/M^* = 1.643545/\sqrt{2\pi} = 0.656$.

Example: Normal-Cauchy model

Observed acceptance rate was 0.63

Heavy-tailed proposals

Suppose our target is a standard Cauchy and our (proposed) proposal is a standard normal, then

$$\frac{p(\theta|y)}{g(\theta)} = \frac{\frac{1}{\pi(1+\theta^2)}}{\frac{1}{\sqrt{2\pi}}e^{-\theta^2/2}}$$

and

$$\frac{\frac{1}{\pi(1+\theta^2)}}{\frac{1}{\sqrt{2\pi}}e^{-\theta^2/2}} \stackrel{\theta \to \infty}{\longrightarrow} \infty$$

since e^{-a} converges to zero faster than 1/(1+a). Thus, there is no value M such that $M g(\theta) \geq p(\theta|y)$ for all θ .

Bottom line: the condition $M\,g(\theta)\geq p(\theta|y)$ requires the proposal to have tails at least as thick (heavy) as the target.