Systèmes de n équations linéaires à p inconnues

Mathématiques pour l'informatique 1

Université de Mons - Faculté des Sciences

2018-2019

Notations

Matrices échelonnées

Méthode de Gauss

Notations

Système de n équations linéaires à p inconnues :

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1p}x_p = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2p}x_p = b_2 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{np}x_p = b_n \end{cases}$$

Écriture matricielle :

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2p} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{np} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

Écriture condensée : Ax = b avec $A \in \mathbb{R}^{n \times p}$, $x \in \mathbb{R}^{p \times 1}$ et $b \in \mathbb{R}^{n \times 1}$.

S Bridoux TIMONS Systèmes linéaires 2018-2010 3 / 12

Notations Matrices échelonnées Méthode de Gauss

Exemple

Système de 5 équations linéaires à 4 inconnues :

$$\begin{cases} 10y - 4z + w = 1 \\ x + 4y - z + w = 2 \\ 3x + 2y + z + 2w = 5 \\ -2x - 8y + 2z - 2w = -4 \\ x - 6y + 3z = 1 \end{cases}$$

Écriture matricielle :

$$\begin{pmatrix} 0 & 10 & -4 & 1 \\ 1 & 4 & -1 & 1 \\ 3 & 2 & 1 & 2 \\ -2 & -8 & 2 & -2 \\ 1 & -6 & 3 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 5 \\ -4 \\ 1 \end{pmatrix}$$

Écriture condensée : Ax = b avec $A \in \mathbb{R}^{5 \times 4}$, $x \in \mathbb{R}^{4 \times 1}$ et $b \in \mathbb{R}^{5 \times 1}$.

Bridoux UMONS Systèmes linéaires 2018-2019 2 / 12

Notations

Matrices échelonnées

Méthode de Gauss

Notations

Matrice augmentée du système :

$$[A|b] = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1p} & b_1 \\ a_{21} & a_{22} & \dots & a_{2p} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{np} & b_n \end{pmatrix}$$

Dans l'exemple, la matrice augmentée est :

$$[A|b] = \begin{pmatrix} 0 & 10 & -4 & 1 & 1 \\ 1 & 4 & -1 & 1 & 2 \\ 3 & 2 & 1 & 2 & 5 \\ -1 & -8 & 2 & -2 & -4 \\ 1 & -6 & 3 & 0 & 1 \end{pmatrix}$$

S.Bridoux UMONS Systèmes linéaires 2018-2019 4 / 1

Notations Matrices échelonnées Méthode de Gauss

Matrices échelonnées — introduction

Résolvez les systèmes suivants :

$$\begin{cases} 2x + y - z = 1 \\ x + y + z = 6 \\ -x - y + z = 0 \end{cases}$$
 et
$$\begin{cases} x + y + z = 6 \\ y + 3z = 11 \\ z = 3 \end{cases}$$

Que constatez-vous? Lequel des deux systèmes est le plus simple à résoudre?

Idée : Pour résoudre un système de n équations linéaires à p inconnues, on remplace le système donné par un nouveau système dont l'ensemble des solutions est le même que le système initial mais qui est plus simple à résoudre.

S.Bridoux UMONS Systèmes linéaires 2018-2019 5 / 1

Notations

Matrices échelonnées

Méthode de Gauss

Matrices échelonnées

Méthode de Gauss

Toute matrice peut être transformée par des opérations élémentaires en une matrice échelonnée.

Théorème

Si on transforme la matrice augmentée [A|b] d'un système Ax = b en une matrice échelonnée $[A^*|b^*]$, on obtient les équations d'un nouveau système $A^*x = b^*$ qui possède le même ensemble de solutions que le système initial.

Notations Matrices échelonnées Méthode de Gauss

Matrices échelonnées

Définition

Une **matrice échelonnée** est une matrice qui possède les caractéristiques suivantes :

- Si une ligne ne contient pas que des zéros, alors le premier élément non nul de cette ligne, appelé pivot, est 1.
- Les lignes qui ne contiennent que des zéros sont groupées au bas de la matrice.
- Dans chaque ligne, le premier élément non nul est situé à droite du premier élément non nul de la ligne précédente.

Notations

Matrices échelonnées

Méthode de Gauss

Transformations élémentaires sur les lignes d'une matrice

■ Permuter les lignes L_i et L_j .

Notation : $L_i \leftrightarrow L_j$

■ Multiplier tous les éléments de la ligne L_i par un réel α non nul.

Notation : $L_i \leftarrow \alpha L_i$

■ Ajouter à la ligne L_i un multiple non nul de la ligne L_j .

Notation : $L_i \leftarrow L_i + \alpha L_i$

S.Bridoux UMONS Systèmes linéaires 2018-2019 7 / 12 S.Bridoux UMONS Systèmes linéaires 2018-2019 8 / 12

Méthode de Gauss

Ignorer les éventuelles premières colonnes de zéros.

$$\begin{pmatrix}
0 & 0 & 2 & 4 & 2 \\
0 & 3 & 6 & 9 & 3 \\
0 & 2 & 1 & 0 & 1 \\
0 & -1 & 0 & 1 & 4
\end{pmatrix}$$

Faire apparaître un élément non nul sur la 1^{re} ligne de la 1^{re} colonne non nulle en permutant les lignes.

$$\begin{pmatrix} 0 & 3 & 6 & 9 & 3 \\ 0 & 0 & 2 & 4 & 2 \\ 0 & 2 & 1 & 0 & 1 \\ 0 & -1 & 0 & 1 & 4 \end{pmatrix} \qquad L_1 \leftrightarrow L_2$$

S.Bridoux UMONS

Systèmes linéaires

2018-2019

019 9

Notations Matrices échelonnées

Méthode de Gauss

Méthode de Gauss

Répéter les opérations 1, 2, 3 et 4 sur les lignes suivantes.

$$\begin{pmatrix} 0 & 1 & 2 & 3 & 1 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & -3 & -6 & -1 \\ 0 & 0 & 2 & 4 & 5 \end{pmatrix} \qquad L_2 \leftarrow L_2/2$$

$$\begin{pmatrix} 0 & 1 & 2 & 3 & 1 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 3 \end{pmatrix} \qquad L_3 \leftarrow L_3 + 3L_2$$

$$L_4 \leftarrow L_4 - 2L_2$$

$$\begin{pmatrix} 0 & 1 & 2 & 3 & 1 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \qquad L_3 \leftarrow L_3/2$$

$$L_4 \leftarrow L_4/3$$

Méthode de Gauss

Notations

Diviser la 1^{re} ligne par son premier élément non nul.

$$\begin{pmatrix} 0 & 1 & 2 & 3 & 1 \\ 0 & 0 & 2 & 4 & 2 \\ 0 & 2 & 1 & 0 & 1 \\ 0 & -1 & 0 & 1 & 4 \end{pmatrix} \qquad L_1 \leftarrow L_1/3$$

Ajouter aux autres lignes un multiple convenable de la 1^{re} ligne pour amener des zéros dans la première colonne non nulle.

$$\begin{pmatrix} 0 & 1 & 2 & 3 & 1 \\ 0 & 0 & 2 & 4 & 2 \\ 0 & 0 & -3 & -6 & -1 \\ 0 & 0 & 2 & 4 & 5 \end{pmatrix} \qquad L_3 \leftarrow L_3 - 2L_1 \\ L_4 \leftarrow L_4 + L_1$$

S.Bridoux UMONS

Notations

systemes imeaire

018 2010 10

Matrices échelonnées

Méthode de Gauss

Méthode de Gauss

$$\begin{pmatrix} 0 & 1 & 2 & 3 & 1 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \qquad L_4 \leftarrow L_4 - L_3$$

 Bridoux UMONS
 Systèmes linéaires
 2018-2019
 11 / 12
 S.Bridoux UMONS
 Systèmes linéaires
 2018-2019
 12 / 12