Exponential growth

- $N(t) = lambda^t * N_0$
- Pop sizes at time t and 0 (N(t) and No)
- Lambda is per capita rate of increase
- $N(t)=N_0e^{rt}$
- where r is the exponential growth parameter
- N₀ is the starting population
- t is the time elapsed
- r=0 if the population is constant, r>0 if population is increasing, r<0 if the population is decreasing.

Logistic growth

- $dN/dT=r_{max}N(K-N)/K$
- dN/dT=r_{max}*(1-(N/K)) * N

$$\frac{dN}{dt} = rN \qquad \frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right)$$

From exponential growth to logistic growth

Leslie Matrix (after Patrick Leslie, 1948)

discrete, age-structured model of population growth

$$\begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix}_{t+1} = \begin{pmatrix} b_1 & b_2 & b_3 \\ s_1 & 0 & 0 \\ 0 & s_2 & 0 \end{pmatrix} \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix}_t$$
 column matrix, $t+1$ matrix column matrix, t

Transition (Leslie) matrix

Age	Age This Year		
Next	1	2	3
Year			
1	b_1	b_2	b_3
2	s_1	0	0
3	0	S_2	0

here, 3 ages = 3 rows & 3 columns (3 x 3 matrix)

Example calculation, Leslie matrix

$$\begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix}_{t+1} = \begin{pmatrix} 0 & 2 & 3 \\ 0.2 & 0 & 0 \\ 0 & 0.3 & 0 \end{pmatrix} \begin{pmatrix} 100 \\ 50 \\ 20 \end{pmatrix}_t$$

Lotka-Volterra

- $dN_1/dt = r_1N_1[(K_1-N_1-\alpha N_2)/K_1]$
- $dN_2/dt = r_2N_2[(K_2-N_2-8N_1)/K_2]$

State-space graphs help to track population trajectories (and assess stability) predicted by models

Mapping state-space trajectories onto single population trajectories

Lotka-Volterra Model

Remember that equilibrium solutions require dN/dt = 0

Species 1:
$$N_1 = K_1 - \alpha N_2$$

Therefore:

When
$$N_2 = 0$$
, $N_1 = K_1$

When
$$N_1 = 0$$
, $N_2 = K_1/\alpha$

Gotelli Page 104-106