Limits on Control Surfaces Deflection

the control surface angles to be received on an Analog Channel from 0-5V on our 10bit ADC

"Control Surface Deflection"	"min"	"max"
δ_{e}	-30 °	+30 °
$\delta_{ m r}$	-30°	+30 °
$oldsymbol{\delta_{a}}$	-30°	+30°

Ranges for the output Channels from 0-5V

"OutputChannel"	"min"	"max"
a_x	-5 g	+5 g
a_y	-5 g	+5 g
a_z	–5 g	+5 g
р	-50°/s	+50 °/s
q	-50°/s	+50 °/s
r	-50°/s	+50 °/s
$oldsymbol{\phi}$	-90 °	+90°
Θ	-90°	+90 °
ψ	-180°	+180 °
ΔV_{T}	$-0.25U_o$	+0.25 U _o
α	-30 °	+30 °
β	-30 °	+30 °
Δh	-60 m	+ 60 m

Note:

¹⁻ for $\triangle V_T$, change in speed not anticipated to change ± 25% from the trim speed (Linearization point)

²⁻ for Δh -> resolution of typical sensor \sim = 50 cm for 1 bit, so 255 bits \sim = +-60m