A Nichrome wire 88 cm long and 0.25 mm in diameter is connected to a $\begin{tabular}{ll} V/m \\ \begin{tabular}{ll} V/m \\ \begin{tabular}{ll} Iii \\ \begin{tabular}{ll} V/m \\ \end{tabular}$ The electron current in the first circuit (Nichrome) is i_1 . The electron current in the first circuit (Nichrome) is i_1 .	er, and same mobile elect	ron density but with	n electron mobility	4 times as larç	ge as that of Ni	chrome. Now wha	it is the electri
		,					
Pourt One							
$F = \frac{emf}{L}$							
= 1.705 Vm							
Part Two							
Sawe as part one							
Part Three							
$I_1 = hAN_1E_1$ $I_2 = hAN_2E_2$							
$L_2 - NAN_2 L_2$ $NA = \frac{I_1}{ V_1 E_1}$							
$DA = D_1E_1$ $DA = D_2$							
$NA = \frac{\Gamma_2}{N_2 E_2}$ $\frac{\Gamma_1}{N_1 E_1} = \frac{\Gamma_2}{N_2 E_2}$							
102 22							

(a) In the figure, suppose $V_C - V_F = 2$ volts, and $V_D - V_F = 8.5$ volts. What is the potential difference $V_C - V_D$?

(b) If the element between C and D is a battery, is the + end of the battery at C or at D?

O + end is at C

 \bigcirc + end is at D

