Atividades previstas para este Notebook:

- 1. Carregar a tabela olist_ibge_v13
- 2. Ajustá-lo para ter um modelo aplicado a si.

Criar variável target.

Aplicar Label Encoder nas variáveis categóricas.

- 3. Aplicar Scaling nas variáveis com valores maiores do que 1.
- 4. Balancear a base utilizando-se do SMOTE over-Sampling

1 - Importação de bibliotecas necessárias

In [1]:

```
import pandas as pd
import numpy as np
pd.options.display.float_format = '{:,.2f}'.format
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
# pd.options.display.max_columns = 100
```

2 - Importação da tabela 'olist_ibge_v13'

```
In [2]:
```

```
olist_ibge_v13 = pd.read_excel('olist_ibge_v13.xlsx', sheet_name = "Sheet1", header = 0, in
```

In [3]:

```
olist_ibge_v13.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 92935 entries, 0 to 92934
Data columns (total 19 columns):
    Column
                           Non-Null Count
                                           Dtype
    _____
                            -----
_ _ _
                                           ____
    Unnamed: 0
                                           int64
 0
                           92935 non-null
 1
    order id
                           92935 non-null object
 2
    product_id
                           92935 non-null object
 3
    seller_id
                           92935 non-null object
 4
    product_category_name 92935 non-null object
 5
    sigla state
                           92935 non-null object
                           92935 non-null object
 6
    seller_sigla_state
 7
    review_score
                           92935 non-null
                                           int64
 8
    qtde_boleto
                           92935 non-null int64
    qtde_credit_card
                           92935 non-null int64
 10 qtde_debit_card
                           92935 non-null int64
    qtde_voucher
 11
                           92935 non-null int64
                           92935 non-null float64
 12
    soma_payment
                           92935 non-null int64
 13
    qtde_installments
    AR_MUN_2018
                           92935 non-null float64
 14
    POPULAÇÃO ESTIMADA
 15
                           92935 non-null int64
 16
    PIB
                           92935 non-null float64
 17
    gini
                           92935 non-null float64
                           92935 non-null
 18 dias
                                           float64
dtypes: float64(5), int64(8), object(6)
memory usage: 13.5+ MB
```

2.1 - Deletar a coluna 'Unnamed: 0'

Ela é um ruído que sempre surge ao importarmos um arquivo para um DataFrame

```
In [4]:
    olist_ibge_v14 = olist_ibge_v13.drop(['Unnamed: 0'], axis=1)

In [5]:
    olist_ibge_v14.shape, olist_ibge_v13.shape

Out[5]:
    ((92935, 18), (92935, 19))
```

In [6]:

```
olist_ibge_v14.head()
```

Out[6]:

	product_id	order_id	
12b9676b00f60f3b700	418d480693f2f01e9cf4568db0346d28	50ba38c4dc467baab1ea2c8c7747934d	0
4371b634e0efc0e22b09	1081ae52311daac87fb54ba8ce4670ac	d99e6849f7676dade195f20c26f0eb4f	1
579891617139df7d867 ⁻	c1aabbb6f4caec9f5bf7cd80519d6cc0	0a9a43ac5fe59c6c4bee2a8f9b9fcce8	2
f9244d45189d3a360549	0a9b9a871ffaec6c0198334558a6c6a1	3f1294f87d79b57f5d55ba7b80c3d94f	3
0df3984f9dfb3d49ac63	d47821b10559fffaefcf3e57d2b5ff76	6c12feac9a308e1382d9b19cca7f20b2	4
•			4

2.2 - Criar coluna target para 'olist_ibge_v14'

```
A partir de 'review_score'.

Chamada 'humor'
```

In [7]:

```
olist_ibge_v14.columns
```

Out[7]:

In [8]:

```
# Nova coluna chamada 'humor' será 0 (zero), quando review_score for de 1 a 3, ou 1 (um), q
a = {1:0, 2:0, 3:0 , 4:1, 5:1}
olist_ibge_v14['humor'] = olist_ibge_v14['review_score'].map(a)
```

```
In [9]:
```

```
olist_ibge_v14.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 92935 entries, 0 to 92934
Data columns (total 19 columns):
     Column
                            Non-Null Count
                                            Dtype
     -----
                            -----
- - -
     order_id
 0
                            92935 non-null
                                            object
 1
     product_id
                            92935 non-null
                                            object
 2
     seller_id
                            92935 non-null
                                            object
 3
     product_category_name 92935 non-null
                                            object
 4
     sigla_state
                            92935 non-null object
 5
     seller_sigla_state
                            92935 non-null
                                            object
 6
     review_score
                            92935 non-null
                                            int64
 7
     qtde_boleto
                            92935 non-null
                                             int64
 8
     qtde_credit_card
                            92935 non-null
                                            int64
 9
     qtde_debit_card
                            92935 non-null
                                            int64
 10
    qtde_voucher
                            92935 non-null
                                            int64
     soma_payment
                            92935 non-null
                                            float64
                            92935 non-null
                                            int64
 12
     qtde_installments
                                            float64
 13
     AR_MUN_2018
                            92935 non-null
     POPULAÇÃO ESTIMADA
                            92935 non-null
                                            int64
 14
 15
     PIB
                            92935 non-null float64
 16
     gini
                            92935 non-null
                                            float64
 17
    dias
                            92935 non-null
                                            float64
 18 humor
                            92935 non-null
                                             int64
dtypes: float64(5), int64(8), object(6)
memory usage: 13.5+ MB
In [10]:
olist_ibge_v14['humor'].unique()
Out[10]:
array([1, 0], dtype=int64)
In [11]:
qtde_humores = olist_ibge_v14.groupby('humor')['order_id'].count()
In [12]:
df_qtde_humores = pd.DataFrame(qtde_humores)
In [13]:
df qtde humores
Out[13]:
       order_id
humor
     0
         19868
     1
         73067
```

```
In [14]:
```

```
print(73067+19868)
```

92935

In [15]:

```
print(19868*100/92935)
```

21.378382740625167

In [16]:

```
print(73067*100/92935)
```

78.62161725937483

In [17]:

```
olist_ibge_v14.head()
```

Out[17]:

	product_id	order_id	
12b9676b00f60f3b700	418d480693f2f01e9cf4568db0346d28	50ba38c4dc467baab1ea2c8c7747934d	0
4371b634e0efc0e22b09	1081ae52311daac87fb54ba8ce4670ac	d99e6849f7676dade195f20c26f0eb4f	1
579891617139df7d867	c1aabbb6f4caec9f5bf7cd80519d6cc0	0a9a43ac5fe59c6c4bee2a8f9b9fcce8	2
f9244d45189d3a360549	0a9b9a871ffaec6c0198334558a6c6a1	3f1294f87d79b57f5d55ba7b80c3d94f	3
0df3984f9dfb3d49ac63	d47821b10559fffaefcf3e57d2b5ff76	6c12feac9a308e1382d9b19cca7f20b2	4

In [18]:

```
crosstab = pd.crosstab(olist_ibge_v14['dias'], olist_ibge_v14['humor'], margins = True)
```

In [19]:

crosstab.head()

Out[19]:

Hullion	U	

dias			
0.53	0	1	1
0.78	1	0	1
0.86	1	0	1
0.86	1	0	1
0.80	Λ	1	1

In [20]:

```
olist_ibge_v14.describe()
```

Out[20]:

	review_score	qtde_boleto	qtde_credit_card	qtde_debit_card	qtde_voucher	soma_payme
count	92,935.00	92,935.00	92,935.00	92,935.00	92,935.00	92,935
mean	4.15	0.20	0.77	0.02	0.06	160
std	1.29	0.40	0.43	0.12	0.41	219
min	1.00	0.00	0.00	0.00	0.00	0
25%	4.00	0.00	1.00	0.00	0.00	62
50%	5.00	0.00	1.00	0.00	0.00	105
75%	5.00	0.00	1.00	0.00	0.00	177
max	5.00	1.00	2.00	2.00	25.00	13,664
4						+

In [21]:

Deletar 'qtde_boleto', por correlação de -0.9 com 'qtde_credit_card', e 'POPULAÇAO ESTIMA
Deletar 'order_id' por ser somente chave primária e 'review_score', pois já temos oriunda
olist_ibge_v15 = olist_ibge_v14.drop(['qtde_boleto', 'POPULAÇÃO ESTIMADA', 'order_id', 'rev

In [22]:

olist_ibge_v15.shape, olist_ibge_v14.shape

Out[22]:

((92935, 15), (92935, 19))

```
In [23]:
```

```
olist_ibge_v15.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 92935 entries, 0 to 92934
Data columns (total 15 columns):
    Column
                           Non-Null Count Dtype
     _____
                            -----
    product_id
 0
                           92935 non-null object
 1
    seller_id
                           92935 non-null object
 2
    product_category_name 92935 non-null object
 3
    sigla_state
                           92935 non-null object
 4
    seller_sigla_state
                           92935 non-null object
 5
    qtde credit card
                           92935 non-null
                                          int64
 6
    qtde_debit_card
                           92935 non-null int64
 7
    qtde_voucher
                           92935 non-null
                                           int64
 8
    soma_payment
                           92935 non-null float64
    qtde_installments
                           92935 non-null int64
                           92935 non-null float64
 10
    AR_MUN_2018
    PIB
                           92935 non-null float64
                           92935 non-null float64
 12
    gini
    dias
                           92935 non-null float64
 13
 14 humor
                           92935 non-null
                                           int64
dtypes: float64(5), int64(5), object(5)
memory usage: 10.6+ MB
```

In [24]:

```
olist_ibge_v15.head()
```

Out[24]:

	product_id	seller_id	product_category_nam
0	418d480693f2f01e9cf4568db0346d28	12b9676b00f60f3b700e83af21824c0e	cool_stı
1	1081ae52311daac87fb54ba8ce4670ac	4371b634e0efc0e22b09b52907d9d469	esporte_laz
2	c1aabbb6f4caec9f5bf7cd80519d6cc0	579891617139df7d8671d373f0669622	livros_interesse_ger
3	0a9b9a871ffaec6c0198334558a6c6a1	f9244d45189d3a3605499abddeade7d5	eletroportate
4	d47821b10559fffaefcf3e57d2b5ff76	0df3984f9dfb3d49ac6366acbd3bbb85	beleza_sauc
4			•

Importação da biblioteca LabelEncoder

In [25]:

```
from sklearn.preprocessing import LabelEncoder
```

Chamando o objeto

In [26]:

```
le = LabelEncoder()
```

Verificando o obieto le

```
In [27]:
le
Out[27]:
LabelEncoder()
```

Aplicação do objeto aos dados categóricos de 'olist_ibge_v14'

```
In [28]:
le_product_id = le.fit_transform(olist_ibge_v14['product_id'])

In [29]:
le_seller_id = le.fit_transform(olist_ibge_v14['seller_id'])

In [30]:
le_product_category_name = le.fit_transform(olist_ibge_v14['product_category_name'])

In [31]:
le_sigla_state = le.fit_transform(olist_ibge_v14['sigla_state'])

In [32]:
le_seller_sigla_state = le.fit_transform(olist_ibge_v14['seller_sigla_state'])
```

Exibição do array le_sigla_state

```
le_sigla_state é um array.

Portanto, será necessário transformá-lo em dataframe.
```

Aliás, vamos transformar em array os 05 (cinco) conjuntos gerados acima cujos nomes são 'le_qualquer_coisa'

```
In [33]:
le_sigla_state
Out[33]:
array([10, 10, 10, ..., 9, 9, 23])
In [34]:
df_le_product_id = pd.DataFrame(le_product_id,columns = ['le_product_id'])
```

```
In [35]:

df_le_seller_id = pd.DataFrame(le_seller_id,columns = ['le_seller_id'])

In [36]:

df_le_product_category_name = pd.DataFrame(le_product_category_name,columns = ['le_product_
In [37]:

df_le_sigla_state = pd.DataFrame(le_sigla_state,columns = ['le_sigla_state'])

In [38]:

df_le_seller_sigla_state = pd.DataFrame(le_seller_sigla_state,columns = ['le_seller_sigla_s'])
```

Exibição das linhas iniciais dos DataFrame do LabelEncoder.

```
In [39]:
```

```
df_le_product_id.head()
```

Out[39]:

	le_product_id
0	7841
1	1976
2	22780
3	1247
4	25080

In [40]:

```
df_le_seller_id.head()
```

Out[40]:

	le_seller_id
0	207
1	769
2	1011
3	2810
4	160

In [41]:

```
df_le_product_category_name.head()
```

Out[41]:

le_product_	_category_	name
-------------	------------	------

0			26
1			32
2			48
3			31
4			11

In [42]:

```
df_le_sigla_state.head()
```

Out[42]:

	le_sigla_state
0	10
1	10
2	10
3	8
4	10

In [43]:

```
df_le_seller_sigla_state.head()
```

Out[43]:

	le_seller_sigla_state
0	18
1	21
2	15
3	21
	_

Junção dos dataframes 'le_qualquer_coisa' com 'olist_ibge_vxx'

Deleção dos campos que foram codificados

```
In [49]:
olist_ibge_v21 = olist_ibge_v20.drop(columns=['product_id', 'seller_id', 'product_category_

In [50]:
olist_ibge_v21.shape, olist_ibge_v20.shape, olist_ibge_v15.shape
Out[50]:
((92935, 15), (92935, 20), (92935, 15))
```

In [51]:

```
olist_ibge_v21.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 92935 entries, 0 to 92934
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	qtde_credit_card	92935 non-null	int64
1	qtde_debit_card	92935 non-null	int64
2	qtde_voucher	92935 non-null	int64
3	soma_payment	92935 non-null	float64
4	<pre>qtde_installments</pre>	92935 non-null	int64
5	AR_MUN_2018	92935 non-null	float64
6	PIB	92935 non-null	float64
7	gini	92935 non-null	float64
8	dias	92935 non-null	float64
9	humor	92935 non-null	int64
10	le_product_id	92935 non-null	int32
11	le_seller_id	92935 non-null	int32
12	<pre>le_product_category_name</pre>	92935 non-null	int32
13	le_sigla_state	92935 non-null	int32
14	le_seller_sigla_state	92935 non-null	int32
	, , , , ,		

dtypes: float64(5), int32(5), int64(5)

memory usage: 8.9 MB

In [52]:

olist_ibge_v21.head()

Out[52]:

	qtde_credit_card	qtde_debit_card	qtde_voucher	soma_payment	qtde_installments	AR_MUN
0	1	0	0	219.63	10	3
1	1	0	0	135.59	1	3
2	0	0	0	58.28	1	3
3	1	0	0	1,025.52	8	1,0
4	1	0	0	220.97	4	1,8
4						•

```
In [53]:
```

```
olist_ibge_v21.isna().sum()
```

Out[53]:

qtde_credit_card 0 qtde_debit_card 0 qtde_voucher 0 soma_payment 0 qtde_installments 0 AR_MUN_2018 0 PIB 0 gini 0 dias 0 humor 0 le_product_id 0 le_seller_id le_product_category_name 0 le_sigla_state le_seller_sigla_state 0 dtype: int64

In [54]:

print(73067+19868)

92935

In [55]:

print(19868*100/92935)

21.378382740625167

In [56]:

print(73067*100/92935)

78.62161725937483

SCALING

In [57]:

```
merged = olist_ibge_v21.copy()
```

In [58]:

```
from sklearn.preprocessing import MinMaxScaler

# Scale only columns that have values greater than 1
to_scale = [col for col in olist_ibge_v21.columns if olist_ibge_v21[col].max() > 1]
mms = MinMaxScaler()
scaled = mms.fit_transform(merged[to_scale])
scaled = pd.DataFrame(scaled, columns=to_scale)

# Replace original columns with scaled ones
for col in scaled:
    merged[col] = scaled[col]

merged.head()
```

Out[58]:

	qtde_credit_card	qtde_debit_card	qtde_voucher	soma_payment	qtde_installments	AR_MUN
0	0.50	0.00	0.00	0.02	0.42	_
1	0.50	0.00	0.00	0.01	0.04	
2	0.00	0.00	0.00	0.00	0.04	
3	0.50	0.00	0.00	0.08	0.33	
4	0.50	0.00	0.00	0.02	0.17	
4						>

In [59]:

```
merged.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 92935 entries, 0 to 92934

Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	qtde_credit_card	92935 non-null	float64
1	qtde_debit_card	92935 non-null	float64
2	qtde_voucher	92935 non-null	float64
3	soma_payment	92935 non-null	float64
4	<pre>qtde_installments</pre>	92935 non-null	float64
5	AR_MUN_2018	92935 non-null	float64
6	PIB	92935 non-null	float64
7	gini	92935 non-null	float64
8	dias	92935 non-null	float64
9	humor	92935 non-null	int64
10	le_product_id	92935 non-null	float64
11	le_seller_id	92935 non-null	float64
12	<pre>le_product_category_name</pre>	92935 non-null	float64
13	le_sigla_state	92935 non-null	float64
14	le_seller_sigla_state	92935 non-null	float64

dtypes: float64(14), int64(1)

memory usage: 10.6 MB

In [60]:

merged.head()

Out[60]:

	qtde_credit_card	qtde_debit_card	qtde_voucher	soma_payment	qtde_installments	AR_MUN
0	0.50	0.00	0.00	0.02	0.42	
1	0.50	0.00	0.00	0.01	0.04	
2	0.00	0.00	0.00	0.00	0.04	
3	0.50	0.00	0.00	0.08	0.33	
4	0.50	0.00	0.00	0.02	0.17	
4						>

In [61]:

```
# Parada para avaliação
```

O dataframe normalizado é o 'merged', que tem os campos que já tinha valores entre 0 e 1.

O dataframe 'scaled' tem somente as colunas que foram normalizados e, portanto, tem um nú

Separar as explicativas da variável 'target' (variável alvo, a ser prevista).

In [62]:

```
explicativas = merged.drop(columns=['humor'])
target = merged['humor']
```

In [63]:

explicativas.head()

Out[63]:

	qtde_credit_card	qtde_debit_card	qtde_voucher	soma_payment	qtde_installments	AR_MUN
0	0.50	0.00	0.00	0.02	0.42	
1	0.50	0.00	0.00	0.01	0.04	
2	0.00	0.00	0.00	0.00	0.04	
3	0.50	0.00	0.00	0.08	0.33	
4	0.50	0.00	0.00	0.02	0.17	
4						•

In [64]:

explicativas.dtypes

Out[64]:

qtde_credit_card float64 qtde_debit_card float64 qtde_voucher float64 soma_payment float64 qtde_installments float64 AR_MUN_2018 float64 PIB float64 float64 gini dias float64 le_product_id float64 le_seller_id float64 le_product_category_name float64 le_sigla_state float64 le_seller_sigla_state float64 dtype: object

In [65]:

target.head()

Out[65]:

0 1 1 1

231

Name: humor, dtype: int64

Criação de dataframe com variaveis selecionadas

Todas as variáveis selecionadas, exceto as de alta cardinalidade.

In [66]:

```
# Rodaremos os modelos com variáveis explicativas definidas no título do notebook.

expl = explicativas[[ 'dias', 'soma_payment', 'le_product_id', 'le_seller_id', 'le_product_id')
expl.head()
```

Out[66]:

	dias	soma_payment	le_product_id	le_seller_id	le_product_category_name	PIB	AR_MUN_2
0	0.10	0.02	0.26	0.07	0.36	0.00	
1	0.03	0.01	0.07	0.27	0.44	0.00	
2	0.04	0.00	0.76	0.35	0.67	0.00	
3	0.14	0.08	0.04	0.97	0.43	0.00	
4	0.02	0.02	0.83	0.06	0.15	0.00	

In [67]:

```
expl.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 92935 entries, 0 to 92934
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	dias	92935 non-null	float64
1	soma_payment	92935 non-null	float64
2	le_product_id	92935 non-null	float64
3	le_seller_id	92935 non-null	float64
4	<pre>le_product_category_name</pre>	92935 non-null	float64
5	PIB	92935 non-null	float64
6	AR_MUN_2018	92935 non-null	float64
7	gini	92935 non-null	float64
8	qtde_credit_card	92935 non-null	float64
9	qtde_debit_card	92935 non-null	float64
10	qtde_voucher	92935 non-null	float64
11	qtde_installments	92935 non-null	float64
12	le_sigla_state	92935 non-null	float64
13	le_seller_sigla_state	92935 non-null	float64
dtyp	es: float64(14)		

Separação em treino e teste

memory usage: 9.9 MB

In [68]:

USO DO SMOTE

pip install imbalanced-learn

SMOTE

```
In [69]:
```

```
Requirement already satisfied: imbalanced-learn in c:\users\gastao\anaconda3
\lib\site-packages (0.8.0)
Requirement already satisfied: scikit-learn>=0.24 in c:\users\gastao\anacond
a3\lib\site-packages (from imbalanced-learn) (0.24.2)
Requirement already satisfied: joblib>=0.11 in c:\users\gastao\anaconda3\lib
\site-packages (from imbalanced-learn) (0.17.0)
Requirement already satisfied: scipy>=0.19.1 in c:\users\gastao\anaconda3\li
b\site-packages (from imbalanced-learn) (1.5.2)
Requirement already satisfied: numpy>=1.13.3 in c:\users\gastao\anaconda3\li
b\site-packages (from imbalanced-learn) (1.19.2)
Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\gastao\anaco
nda3\lib\site-packages (from scikit-learn>=0.24->imbalanced-learn) (2.1.0)
Note: you may need to restart the kernel to use updated packages.
In [70]:
from imblearn.over_sampling import SMOTE
sm = SMOTE(random_state=42)
expl sm, target sm = sm.fit resample(expl, target)
print(f'''Shape de expl antes do SMOTE: {expl.shape}
Shape de expl após SMOTE: {expl_sm.shape}''')
print('\nBalance of positive and negative classes (%):')
target sm.value counts(normalize=True) * 100
Shape de expl antes do SMOTE: (92935, 14)
Shape de expl após SMOTE: (146134, 14)
Balance of positive and negative classes (%):
Out[70]:
    50.00
1
    50.00
Name: humor, dtype: float64
```

Treinamento e Teste da Base com Smote

Separação em treino e teste

```
In [71]:
```

Gradient Boosting - simplificado

```
In [72]:
#1
gb_dict = {"criterion": ["friedman_mse", "mae"],
    'random_state': [1967]
In [73]:
gb_dict
Out[73]:
{'criterion': ['friedman_mse', 'mae'], 'random_state': [1967]}
In [74]:
#2
from sklearn.model_selection import GridSearchCV
In [75]:
#3
from sklearn.ensemble import GradientBoostingClassifier
gb = GradientBoostingClassifier(random_state=42)
In [76]:
gb
Out[76]:
GradientBoostingClassifier(random state=42)
In [77]:
gb_grid = GridSearchCV(estimator=gb,
                                            # parametro a ser utilizado. No caso, Gradient B
                      param grid=gb dict, # nome do dicionario com parametros
                      scoring='accuracy', # parametro de validação: acurácia
                      cv=10)
                                            # numero de partições do conjunto de treino a se
```

```
In [78]:
```

```
gb_grid
```

Out[78]:

#4

```
In [79]:
```

```
gb_grid.fit(x_treino, y_treino)
C:\Users\gastao\anaconda3\lib\site-packages\sklearn\ensemble\_gb.py:1118: Fu
tureWarning: criterion='mae' was deprecated in version 0.24 and will be remo
ved in version 1.1 (renaming of 0.26). Use criterion='friedman_mse' or 'mse'
instead, as trees should use a least-square criterion in Gradient Boosting.
  warnings.warn("criterion='mae' was deprecated in version 0.24 and "
C:\Users\gastao\anaconda3\lib\site-packages\sklearn\ensemble\_gb.py:1118: Fu
tureWarning: criterion='mae' was deprecated in version 0.24 and will be remo
ved in version 1.1 (renaming of 0.26). Use criterion='friedman_mse' or 'mse'
instead, as trees should use a least-square criterion in Gradient Boosting.
  warnings.warn("criterion='mae' was deprecated in version 0.24 and "
C:\Users\gastao\anaconda3\lib\site-packages\sklearn\ensemble\_gb.py:1118: Fu
tureWarning: criterion='mae' was deprecated in version 0.24 and will be remo
ved in version 1.1 (renaming of 0.26). Use criterion='friedman_mse' or 'mse'
instead, as trees should use a least-square criterion in Gradient Boosting.
  warnings.warn("criterion='mae' was deprecated in version 0.24 and "
C:\Users\gastao\anaconda3\lib\site-packages\sklearn\ensemble\_gb.py:1118: Fu
tureWarning: criterion='mae' was deprecated in version 0.24 and will be remo
ved in version 1.1 (renaming of 0.26). Use criterion='friedman_mse' or 'mse'
instead, as trees should use a least-square criterion in Gradient Boosting.
  warnings.warn("criterion='mae' was deprecated in version 0.24 and "
C:\Users\gastao\anaconda3\lib\site-packages\sklearn\ensemble\_gb.py:1118: Fu
tureWarning: criterion='mae' was deprecated in version 0.24 and will be remo
ved in version 1.1 (renaming of 0.26). Use criterion='friedman mse' or 'mse'
instead, as trees should use a least-square criterion in Gradient Boosting.
  warnings.warn("criterion='mae' was deprecated in version 0.24 and "
C:\Users\gastao\anaconda3\lib\site-packages\sklearn\ensemble\_gb.py:1118: Fu
tureWarning: criterion='mae' was deprecated in version 0.24 and will be remo
ved in version 1.1 (renaming of 0.26). Use criterion='friedman_mse' or 'mse'
instead, as trees should use a least-square criterion in Gradient Boosting.
  warnings.warn("criterion='mae' was deprecated in version 0.24 and "
C:\Users\gastao\anaconda3\lib\site-packages\sklearn\ensemble\_gb.py:1118: Fu
tureWarning: criterion='mae' was deprecated in version 0.24 and will be remo
ved in version 1.1 (renaming of 0.26). Use criterion='friedman_mse' or 'mse'
instead, as trees should use a least-square criterion in Gradient Boosting.
  warnings.warn("criterion='mae' was deprecated in version 0.24 and "
C:\Users\gastao\anaconda3\lib\site-packages\sklearn\ensemble\ gb.py:1118: Fu
tureWarning: criterion='mae' was deprecated in version 0.24 and will be remo
ved in version 1.1 (renaming of 0.26). Use criterion='friedman_mse' or 'mse'
instead, as trees should use a least-square criterion in Gradient Boosting.
  warnings.warn("criterion='mae' was deprecated in version 0.24 and "
C:\Users\gastao\anaconda3\lib\site-packages\sklearn\ensemble\ gb.py:1118: Fu
tureWarning: criterion='mae' was deprecated in version 0.24 and will be remo
ved in version 1.1 (renaming of 0.26). Use criterion='friedman mse' or 'mse'
instead, as trees should use a least-square criterion in Gradient Boosting.
  warnings.warn("criterion='mae' was deprecated in version 0.24 and "
C:\Users\gastao\anaconda3\lib\site-packages\sklearn\ensemble\ gb.py:1118: Fu
tureWarning: criterion='mae' was deprecated in version 0.24 and will be remo
ved in version 1.1 (renaming of 0.26). Use criterion='friedman_mse' or 'mse'
instead, as trees should use a least-square criterion in Gradient Boosting.
 warnings.warn("criterion='mae' was deprecated in version 0.24 and "
```

Out[79]:

Out[81]:

0.7799850376524222

0.784980399440822

```
'random_state': [1967]},
scoring='accuracy')
```

```
In [80]:
#5
gb_grid.best_params_
Out[80]:
{'criterion': 'friedman_mse', 'random_state': 1967}
In [81]:
gb_grid.best_score_
```

Importação da biblioteca - cálculo da acurácia

```
In [82]:
from sklearn.metrics import accuracy_score
```

Acurácia de treino - Gradient Boosting

Acurácia de teste - Gradient Boosting

A acurácia de teste está muito próxima à acurácia de treino, o que mostra que o modelo está perfomando bem.

In [85]:

Out[85]:

0.7804566501676513

In [86]:

```
from sklearn.metrics import classification_report
```

In [87]:

```
print(classification_report(y_treino,gb_grid.predict(x_treino)))
```

	precision	recall	f1-score	support
0	0.86	0.68	0.76	51018
1	0.74	0.89	0.81	51275
accuracy			0.78	102293
macro avg	0.80	0.78	0.78	102293
weighted avg	0.80	0.78	0.78	102293

In [88]:

```
print(classification_report(y_teste,gb_grid.predict(x_teste)))
print ("A acurácia da previsão é ", accuracy_score(y_teste,gb_grid.predict(x_teste)))
```

	precision	recall	f1-score	support
0 1	0.85 0.73	0.68 0.88	0.76 0.80	22049 21792
accuracy macro avg weighted avg	0.79 0.79	0.78 0.78	0.78 0.78 0.78	43841 43841 43841

A acurácia da previsão é 0.7804566501676513

In [89]:

```
#matriz de confusão
from sklearn import metrics
cnf_matrix = metrics.confusion_matrix(y_teste, gb_grid.predict(x_teste))
```

In [90]:

```
#matriz de confusão
import itertools
from matplotlib import pyplot as plt
def plot_confusion_matrix(cm, classes,
                          normalize=False,
                          title='Confusion matrix',
                          cmap=plt.cm.Blues):
    .....
   This function prints and plots the confusion matrix.
   Normalization can be applied by setting `normalize=True`.
   if normalize:
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
   plt.imshow(cm, interpolation='nearest', cmap=cmap)
   plt.title(title)
   plt.colorbar()
   tick_marks = np.arange(len(classes))
   plt.xticks(tick_marks, classes, rotation=45)
   plt.yticks(tick_marks, classes)
   fmt = '.2f' if normalize else 'd'
   thresh = cm.max() / 2.
   for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, format(cm[i, j], fmt),
                 horizontalalignment="center";
                 color="red" if cm[i, j] > thresh else "black")
   plt.ylabel('True label')
   plt.xlabel('Predicted label')
   plt.tight_layout()
```

In [91]:

In [92]:

```
tn = cnf_matrix[0,0]
tp = cnf_matrix[1,1]
fn = cnf_matrix[1,0]
fp = cnf_matrix[0,1]
recall = tp/(tp+fn)
precisão = tp/(tp+fp)
accuracy = (tp+tn)/(tp+tn+fp+fn)
```

In [93]:

```
print (recall)
print (precisão)
print (accuracy)
```

- 0.8822503671071953
- 0.731443789233403
- 0.7804566501676513

In [94]:

In [95]:

```
tn = cnf_matrix[1,1]
tp = cnf_matrix[0,0]
fn = cnf_matrix[0,1]
fp = cnf_matrix[1,0]
recall = tp/(tp+fn)
precisão = tp/(tp+fp)
accuracy = (tp+tn)/(tp+tn+fp+fn)
```

Complementação Mário - Matriz de Confusão, Sensibilidade, Especificidade e Feature importances

```
In [96]:
```

```
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
```

```
In [97]:
```

Out[97]:

```
array([[14990, 7059], [ 2566, 19226]], dtype=int64)
```

In [98]:

```
sensitivity1 = cm1[0,0]/(cm1[0,0]+cm1[0,1])

specificity1 = cm1[1,1]/(cm1[1,0]+cm1[1,1])
```

In [99]:

Gradient Boosting com SMOTE

```
O recall da classe 0 é : 0.68
A precisão da classe 0 é : 0.85
A ACURÁCIA DA PREVISÃO é : 0.78
A sensitibilidade da classe 0 : 0.68
A especificidade da classe 0 : 0.88
```

In [100]:

```
gb_grid.best_estimator_.feature_importances_
```

Out[100]:

```
array([0.32959869, 0.00852865, 0.00252828, 0.01009843, 0.1294032, 0.04663085, 0.0098079, 0.0049921, 0.00720813, 0. 0.04390501, 0.28485935, 0.05253168, 0.0699077])
```

In [101]:

```
a=pd.concat([pd.Series(x_teste.columns), pd.Series(gb_grid.best_estimator_.feature_importan
```

```
In [102]:
```

```
print('Feature Importance')
a
```

Feature Importance

Out[102]:

	0	1
0	dias	0.33
1	soma_payment	0.01
2	le_product_id	0.00
3	le_seller_id	0.01
4	le_product_category_name	0.13
5	PIB	0.05
6	AR_MUN_2018	0.01
7	gini	0.00
8	qtde_credit_card	0.01
9	qtde_debit_card	0.00
10	qtde_voucher	0.04
11	qtde_installments	0.28
12	le_sigla_state	0.05
13	le_seller_sigla_state	0.07

In [103]:

```
print('Gradient Boosting Feature Importance com SMOTE')
print (a.sort_values(by=1, ascending=False))
```

```
Gradient Boosting Feature Importance com SMOTE
```

```
0
                         dias 0.33
11
           qtde installments 0.28
4
    le_product_category_name 0.13
13
       le_seller_sigla_state 0.07
12
              le_sigla_state 0.05
5
                          PIB 0.05
10
                qtde_voucher 0.04
                le seller id 0.01
3
6
                 AR_MUN_2018 0.01
1
                soma_payment 0.01
            qtde_credit_card 0.01
8
                         gini 0.00
7
2
               le_product_id 0.00
9
             qtde_debit_card 0.00
```

In []: