

MACHINE LEARNING

Machine Learning is the field of study that gives computers the capability to learn without being explicitly programmed.

https://static.javatpoint.com/tutorial/machine-learning/images/introductionto-machine-learning2.png

Real time applications of ML

https://www.javatpoint.com/applications-of-machine-learning

Techniques

https://mobidev.biz/blog/5-essential-machine-learning-techniques

Scikit Learn library

https://towardsdatascience.com/best-python-libraries-for-machine-learning-and-deep-learning-b0bd40c7e8c

Regression vs Classification

- Regression algorithms are used to predict the continuous values.
- Classification algorithms are used to predict or Classify the discrete values.

https://www.javatpoint.com/regression-vs-classification-in-machine-learning

Least Square Method

To find the best fit line that represents the relationship between an independent and dependent variable.

https://medium.com/analytics-vidhya/ordinary-least-square-ols-method-for-linear-regression-ef8ca10aadfc

Linear Regression

It shows a linear relationship between a dependent (y) and one or more independent (y) variables.

https://www.javatpoint.com/linear-regression-in-machine-learning

Mathematical Intuition

- Cost function: It measures how a linear regression model is performing.
- Gradient Descent: To minimize the MSE by calculating the gradient of the cost function.
- Model Performance: Process of finding the best model out of various models.

Ordinary Least Square Method

Estimates the parameters in a regression model by minimizing the sum of the squared residuals.

https://statisticsbyjim.com/glossary/ordinary-least-squares/
#:~:text=Ordinary%20least%20squares%2C%20or%20linear,and%20the%20corresponding%20fitted%20values

List of Popular Dataset Websites

- Google's Datasets Search Engine https://datasetsearch.research.google.com/
- 2. Kaggle Datasets https://www.kaggle.com/datasets
- 3. Data Government of India https://www.data.gov.in
- 4. Earth Data https://earthdata.nasa.gov/
- Amazon and Microsoft Datasets, Azure and AWS
 https://registry.opendata.aws/
 https://azure.microsoft.com/en-us/services/open-datasets/
- 6. Data World https://data.world/
- 7. Lionbridge AI Datasets https://lionbridge.ai/datasets/
- 8. UCI Machine Learning Repository https://archive.ics.uci.edu/ml/datasets.php

Linear Regression Implementation

Import the Libraries

```
# importing the Linear Regression Model from Scikit Learn
from sklearn.linear_model import LinearRegression
```

Initialize our Linear Regression model

```
# initialize the Linear Regression model
regression= LinearRegression()
```

Fitting the Linear Regression Model

```
# fit the linear regression model
regression.fit(X_train,y_train)
```

Predict the test set Result

```
# Predict the Regression model
y_pred = regression.predict(X_test)
```


Linear Regression Evaluation Techniques

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \widehat{y}|$$

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2$$

Where,

$$\hat{y} = predicted \ value \ of \ y$$

 $\overline{y} = mean \ value \ of \ y$

https://www.datatechnotes.com/2019/02/regression-model-accuracy-mae-mse-rmse.html

Azure ML No Code Platform

A cloud service that allows building no-code machine learning models through a drag and drop visual interface.

https://docs.microsoft.com/en-us/azure/machine-learning/overview-what-is-azure-ml?WT.mc_id=aiml-0000-abornst

Azure ML Studio Briefing

Web-based integrated development environment (IDE) for developing data experiments.

https://studio.azureml.net/

© Edunet Foundation. All rights reserved.

Microsoft Azure workspace

Training a ML model

Regression model with Azure ML Studio

Logistic Regression

Supervised Learning technique.

Predict the categorical dependent variable using a given set of independent

variables.

https://www.javatpoint.com/logistic-regression-in-machine-learning

Logistic Regression model with ML Studio

REFERENCES

- 1. https://www.geeksforgeeks.org/machine-learning/
- 2. https://www.javatpoint.com/regression-vs-classification-in-machine-learning
- 3. https://www.javatpoint.com/linear-regression-in-machine-learning
- 4. https://medium.com/analytics-vidhya/role-of-distance-metrics-in-machine-learning-e43391a6bf2e
- 5. https://www.datasciencecentral.com/profiles/blogs/understanding-the-applications-of-probability-in-machine-learning

THANK YOU