

Plinius: Secure and Persistent Machine Learning Model Training

Peterson Yuhala¹ Pascal Felber¹ Valerio Schiavoni¹ Alain Tchana²

¹University of Neuchâtel, Switzerland ²ENS Lyon, France

Context and Problem

Context

PM

Intel SGX

Architecture

Architectur

Evaluation

- Increasing popularity of cloud-based ML services (e.g., Amazon ML, MS Azure AI).
- Security and privacy issues, i.e., sensitive training data and models.
- DRAM scalability issues and high-access times of secondary storage = bottlenecks for ML.
- · We need practical solutions to both problems.

Intel SGX

Context

Intel SGX

PM Architecture

Evaluation

- We solve security issues with TEEs (e.g., Intel SGX).
- Secure *enclaves*: no system functionality, *i.e.*, system calls
- Legacy applications must be re-written/partitioned.

Persistent Memory

Context Intel SGX

PM

Architecture

Evaluation

- We use persistent memory (PM) to solve DRAM/storage related issues. PM is:
 - Byte-addressable (like DRAM), and accessed via Load/Store.
 - Fast (low-latency, faster than SSD)
 - Persistent (like SSD)
 - Higher capacity than DRAM

How to use PM

Context Intel SGX

PM

Architecture Evaluation

Conclusion

 Like secondary storage: no program changes but smaller performance improvements.

 Leverage byte-addressability: requires program changes but better performance.

Plinius in a nutshell

Context Intel SGX

PM

Architecture Evaluation

Conclusion

Plinius ports a PM and ML library into SGX.

- It leverages the byte-addressability of PM for fast access to data in PM.
- Models trained in the enclave are mirrored to/from PM.

Plinius Architecture

Context Intel SGX

PM

Architecture

Evaluation

Plinius Workflow

Context Intel SGX

PM

Architecture

Evaluation

Main Evaluation Goals

Context

Intel SGX

PM

Architecture

Evaluation

- How does Plinius improve save/restore performance ?
- How scalable is Plinius with varying model sizes?

Evaluation

Context

Intel SGX

PM

Architecture

Evaluation

Conclusion

 Emulated PM + real SGX server: saves 3.5× and restores 2.5× faster vs SSD.

Evaluation

Context

Intel SGX

PM

Architecture

Evaluation

Conclusion

 Performance drops at the EPC limit due to page swapping operations.

Evaluation

Context

Intel SGX

PM

Architecture

Evaluation

Conclusion

 Real PM + sim SGX server: saves 3.2× and restores 3.7× faster vs SSD.

Conclusion

Context Intel SGX PM

Architecture

Evaluation

- Plinius is the first framework to leverage SGX for security and PM for fault tolerance.
- We leverage a mirroring mechanism for fault tolerance.
- Model and training data in memory → near instantaneous recovery after crashes.
- Test Plinius on github:

