RISC-V Single Cycle Architecture II

Muhammad Tahir

Lecture 8

Electrical Engineering Department University of Engineering and Technology Lahore

Contents

Review

- 2 B-type Datapath
- 3 U-type Datapath
- 4 J-type Datapath

• R, I and S type datapath

Review: ISA Supported So Far Cont'd

• R, I and S type datapath and control

Review 00•

Review: ISA Supported So Far Cont'd

B-type: Conditional Branches

イロト 不倒 トイラト イラト

B-type: Conditional Branches Cont'd

clock

B-type: Datapath and Control

B-type: Branch Instruction Example

• B-type: Branch equal (BEQ) instruction

1 : 6	5	5	3	4 : 1	7
imm[12:10:5]	rs2	rs1	func3	imm[4:1:11]	opcode
immediate	rs1	rs2	000	immediate	1100011

- B-imm = signExtend(inst[31], inst[7], inst[30:25], inst[11:8], 1'b0)
- opcode = BRANCH: $pc \leftarrow compare(funct3, rs1, rs2)$? pc + B-imm : pc + 4
- funct3 = BEQ/BNE/BLT/BLTU/BGE/BGEU

B-type: How Branch Equal Instruction Execute

00000000

B-type: Branch Equal Instruction Execution

Datapath for R-, I-, S- and B-type

イロト 不倒 トイラト イラト

RISC-V ISA Supported by R-, I-, S- and B-type

U-type: Immediate Generation

U-type Datapath •000000

clock

U-type: Datapath and Control

U-type: Load Upper Immediate Example

U-type Datapath ○○●○○○○

• U-type: LUI example

20	5	7
imm[31:12]	rd	opcode
immediate	rd	0110111

- U-imm = inst[31:12], 12'b0
- opcode = LUI : $rd \leftarrow U$ -imm
- opcode = AUIPC : $rd \leftarrow pc + U$ -imm

U-type Datapath 0000000

Datapath for R-, I-, S-, B- and U-type

RISC-V ISA Supported by R-, I-, S-, B- and U-type

J-type: Jump Instructions

Unconditional Jumps

J-type: Jump Instructions

clock

J-type: Datapath and Control

Format: J-type

1 : 10 : 1 : 8	5	7
imm[20]:imm[10:1]:imm[11]:imm[19:12]	rd	opcode
immediate	rd	1101111

- J-imm = signExtend(inst[31], inst[19:12], inst[20], inst[30:21], 1'b0)
- opcode = JAL: $rd \leftarrow pc + 4$; $pc \leftarrow pc + J-imm$
- $Jump = \pm 1MB range$

J-type: JAL Instruction Execution

clock

RISC-V ISA Supported by R-, I-, S-, B-, U- and J-type

Single Cycle Datapath

clock

• Read relevant sections of Chapters 2 and 4 of [Patterson and Hennessy, 2017].

• Preparation of this material was partly supported by Lampro Mellon Pakistan.

Patterson, D. and Hennessy, J. (2017).

Computer Organization and Design RISC-V Edition: The Hardware Software Interface.

Morgan Kaufmann.