IF2130 – Organisasi dan Arsitektur Komputer

sumber: Greg Kesden, CMU 15-213, 2012

Representasi Informasi: Floating Point

Today: Floating Point

- Background: Fractional binary numbers
- ▶ IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Fractional binary numbers

What is 1011.101₂?

Fractional Binary Numbers

- Representation
 - ▶ Bits to right of "binary point" represent fractional powers of 2
 - Represents rational number: $\sum b_k \times 2^k$

$$k=-j$$

Fractional Binary Numbers: Examples

Value Representation

5 3/4
 2 7/8
 101.11₂
 10.111₂
 1.0111₂

Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.1111111...2 are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$
 - Use notation 1.0ε

Representable Numbers

- Limitation #1
 - \triangleright Can only exactly represent numbers of the form $x/2^k$
 - Other rational numbers have repeating bit representations
 - Value Representation
 - ► I/3 0.01010101[01]...₂
 - ► I/5 0.001100110011[0011]...₂
 - ► I/I0 0.0001100110011[0011]...₂
- Limitation #2
 - Just one setting of decimal point within the w bits
 - Limited range of numbers (very small values? very large?)

Today: Floating Point

- ▶ Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- ▶ Rounding, addition, multiplication
- Floating point in C
- Summary

IEEE Floating Point

▶ IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by numerical concerns

- Nice standards for rounding, overflow, underflow
- Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

Numerical Form:

$$(-1)^{s} M 2^{E}$$

- Sign bit s determines whether number is negative or positive
- ▶ Significand M normally a fractional value in range [1.0,2.0).
- **Exponent** *E* weights value by power of two

Encoding

- MSB s is sign bit s
- exp field encodes E (but is not equal to E)
- frac field encodes M (but is not equal to M)

S	exp	frac
---	-----	------

Precision options

Single precision: 32 bits

Double precision: 64 bits

Extended precision: 80 bits (Intel only)

S	ехр	frac
1	15-bits	63 or 64-bits

"Normalized" Values

- ▶ When: $\exp \neq 000...0$ and $\exp \neq 111...1$
- \blacktriangleright Exponent coded as a *biased* value: E = Exp Bias
 - Exp: unsigned value exp
 - ▶ $Bias = 2^{k-1} 1$, where k is number of exponent bits
 - ▶ Single precision: I27 (Exp: I...254, E: -126...I27)
 - ▶ Double precision: I023 (Exp: I...2046, E: -1022...1023)
- ▶ Significand coded with implied leading I: M = 1.xxx...x₂
 - xxx...x: bits of frac
 - Minimum when frac=000...0 (M = 1.0)
 - Maximum when frac=111...1 ($M = 2.0 \varepsilon$)
 - Get extra leading bit for "free"

Normalized Encoding Example

```
Value: Float F = 15213.0;

> 15213<sub>10</sub> = |||0||0||0||0|<sub>2</sub>

= |.||0||0||0||0|<sub>2</sub> x 2<sup>13</sup>
```

Significand

```
M = 1.\frac{1101101101_{2}}{1101101101101}_{2}
frac= \frac{1101101101101}{00000000000}_{2}
```

Exponent

```
E = 13
Bias = 127
Exp = 140 = 10001100_{2}
```

Result:

0 10001100 1101101101101000000000

Denormalized Values

- Condition: exp = 000...0
- Exponent value: E = -Bias + I (instead of E = 0 Bias)
- ▶ Significand coded with implied leading 0: $M = 0.xxx...x_2$
 - xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - ▶ Represents zero value
 - Note distinct values: +0 and −0 (why?)
 - ▶ exp = 000...0, frac ≠ 000...0
 - Numbers closest to 0.0
 - Equispaced

Special Values

- ▶ Condition: exp = 111...1
- Case: exp = 111...1, frac = 000...0
 - ▶ Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - ► E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case: exp = 111...1, $frac \neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - ▶ E.g., sqrt(-1), $\infty \infty$, $\infty \times 0$

Visualization: Floating Point Encodings

Today: Floating Point

- ▶ Background: Fractional binary numbers
- ▶ IEEE floating point standard: Definition
- ▶ Example and properties
- ▶ Rounding, addition, multiplication
- Floating point in C
- ▶ Summary

Tiny Floating Point Example

▶ 8-bit Floating Point Representation

- the sign bit is in the most significant bit
- the next four bits are the exponent, with a bias of 7
- the last three bits are the frac

Same general form as IEEE Format

- normalized, denormalized
- representation of 0, NaN, infinity

Dynamic Range (Positive Only)

Denormalized	0	0000 0000 0000	001	-6 -6	0 1/8*1/64 2/8*1/64	·	closest to zero
numbers	 0	0000	110	-6	6/8*1/64		
		0000		-6	7/8*1/64	·	largest denorm
		0001		-6 -6	8/8*1/64 9/8*1/64	·	smallest norm
	_	0110 0110		-1 -1	14/8*1/2 15/8*1/2	•	closest to I below
Normalized	_	0111		0	8/8*1		
numbers	_	0111		0	9/8*1 10/8*1	9/8 10/8	closest to I above
	_	1110 1110		7 7	14/8*128 15/8*128		largest norm
	0	1111	000	n/a	inf		-

Distribution of Values

- ▶ 6-bit IEEE-like format
 - e = 3 exponent bits
 - ▶ f = 2 fraction bits
 - Bias is $2^{3-1}-1 = 3$

Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

▶ 6-bit IEEE-like format

- e = 3 exponent bits
- ▶ f = 2 fraction bits
- ▶ Bias is 3

Special Properties of the IEEE Encoding

- FP Zero Same as Integer Zero
 - \rightarrow All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider -0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - ► Normalized vs. infinity

Today: Floating Point

- ▶ Background: Fractional binary numbers
- ▶ IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point Operations: Basic Idea

- $\triangleright x \times_f y = Round(x \times y)$
- Basic idea
 - First compute exact result
 - Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

Rounding Modes (illustrate with \$ rounding)

•		\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
	Towards zero	\$ I	\$	\$1	\$2	-\$
	► Round down (¬∞)	\$ I	\$	\$	\$2	-\$2
	▶ Round up (+∞)	\$2	\$2	\$2	\$3	-\$ I
	Nearest Even(default)\$I	\$2	\$2	\$2	-\$2

Closer Look at Round-To-Even

Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
 - Round so that least significant digit is even
- E.g., round to nearest hundredth

```
1.23499991.23(Less than half way)1.23500011.24(Greater than half way)1.23500001.24(Half way—round up)1.24500001.24(Half way—round down)
```


Rounding Binary Numbers

Binary Fractional Numbers

- "Even" when least significant bit is 0
- "Half way" when bits to right of rounding position = 100...2

Examples

▶ Round to nearest 1/4 (2 bits right of binary point)

Value Value	Binary	Rounded	Action	Rounded
2 3/32	10.000112	10.00_{2}	(<1/2—down)	2
2 3/16	10.00110_2	10.012	(>1/2—up)	2 1/4
2 7/8	10.111002	11.00_{2}	(I/2—up)	3
2 5/8	10.10100_2	10.10_{2}	(1/2—down)	2 1/2

FP Multiplication

- $(-1)^{s1} M1 2^{E1} \times (-1)^{s2} M2 2^{E2}$
- \triangleright Exact Result: $(-1)^s M 2^E$
 - ▶ Sign *s*: *s1* ^ *s2*
 - Significand M: $M1 \times M2$
 - Exponent E: E1 + E2

Fixing

- ▶ If $M \ge 2$, shift M right, increment E
- If *E* out of range, overflow
- Round M to fit frac precision

Implementation

Biggest chore is multiplying significands

Floating Point Addition

- $(-1)^{s1} M1 2^{E1} + (-1)^{s2} M2 2^{E2}$
 - Assume E1 > E2
- \triangleright Exact Result: $(-1)^s M 2^E$
 - ▶Sign *s*, significand *M*:
 - ▶ Result of signed align & add
 - Exponent *E*: *E1*

- Fixing
 - If $M \ge 2$, shift M right, increment E
 - if M < I, shift M left k positions, decrement E by k
 - Overflow if *E* out of range
 - ▶ Round *M* to fit **frac** precision

Today: Floating Point

- ▶ Background: Fractional binary numbers
- ▶ IEEE floating point standard: Definition
- Example and properties
- ▶ Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point in C

- C Guarantees Two Levels
 - •float single precision
 - double double precision
- Conversions/Casting
 - Casting between int, float, and double changes bit representation
 - ▶ double/float → int
 - ▶ Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - ▶ int → double
 - Exact conversion, as long as int has ≤ 53 bit word size
 - ▶ int → float
 - Will round according to rounding mode

Summary

- ▶ IEEE Floating Point has clear mathematical properties
- ▶ Represents numbers of form $M \times 2^{E}$
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

Floating Point Puzzles

For each of the following C expressions, either:

• d * d >= 0.0

• (d+f)-d == f

- Argue that it is true for all argument values
- Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither **d** nor **f** is NaN

Interesting Numbers

{single,double}

Description exp frac Numeric Value

> Zero 00...00 00...00 0.0

▶ Smallest Pos. Denorm. $00...00 \quad 00...01 \quad 2^{-\{23,52\}} \times 2^{-\{126,1022\}}$

► Single $\approx 1.4 \times 10^{-45}$

▶ Double $\approx 4.9 \times 10^{-324}$

Largest Denormalized 00...00 | | 1...| | (1.0 - ϵ) x $2^{-\{126,1022\}}$

► Single $\approx 1.18 \times 10^{-38}$

▶ Double ≈ 2.2×10^{-308}

▶ Smallest Pos. Normalized $00...01 \ 00...00 \ 1.0 \times 2^{-\{126,1022\}}$

Just larger than largest denormalized

▶ One 01...11 00...00 1.0

Largest Normalized II...10 II...11 (2.0 – ε) $\times 2^{\{127,1023\}}$

► Single $\approx 3.4 \times 10^{38}$

▶ Double ≈ 1.8×10^{308}

Creating Floating Point Number

Steps

- Normalize to have leading I
- Round to fit within fraction
- Postnormalize to deal with effects of rounding

Case Study

Convert 8-bit unsigned numbers to tiny floating point format Example Numbers

128	10000000
15	00001111
17	00010001
19	00010011
33	00100001
35	00100011
138	10001010
63	00111111

Rounding

1.BBGRXXX

Guard bit: LSB of result

Sticky bit: OR of remaining bits

Round bit: 1st bit removed

Round up conditions

▶ Round = I, Sticky = $I \rightarrow > 0.5$

▶ Guard = I, Round = I, Sticky = $0 \rightarrow \text{Round to even}$

Value	Fraction	GRS	Incr?	Rounded
128	1.0000000	000	N	1.000
15	1.1110000	100	N	1.111
17	1.0001000	010	N	1.000
19	1.0011000	110	Υ	1.010
138	1.0001010	011	Υ	1.001
63	1.1111100	111	ΥΥ	10.000

More Slides

Today: Floating Point

- ▶ Background: Fractional binary numbers
- ▶ IEEE floating point standard: Definition
- Example and properties
- ▶ Rounding, addition, multiplication
- Floating point in C
- Summary

Mathematical Properties of FP Add

- Compare to those of Abelian Group
 - Closed under addition?
 - But may generate infinity or NaN
 - Commutative?
 - Associative?
 - Overflow and inexactness of rounding
 - 0 is additive identity?
 - Every element has additive inverse
 - Except for infinities & NaNs
- Monotonicity
 - ▶ $a \ge b \Rightarrow a+c \ge b+c$?
 - ▶ Except for infinities & NaNs

Mathematical Properties of FP Mult

Compare to Commutative Ring

- Closed under multiplication?
 - But may generate infinity or NaN
- Multiplication Commutative?
- Multiplication is Associative?
 - Possibility of overflow, inexactness of rounding
- I is multiplicative identity?
- Multiplication distributes over addition?
 - Possibility of overflow, inexactness of rounding

Monotonicity

- $a \ge b \& c \ge 0 \Rightarrow a * c \ge b * c?$
 - Except for infinities & NaNs

Normalize

S	ехр	frac
---	-----	------

Requirement

- 1 4-bits 3-bits
- Set binary point so that numbers of form 1.xxxxx
- Adjust all to have leading one
 - Decrement exponent as shift left

Value	Binary	Fraction	Exponent
128	10000000	1.0000000	7
15	00001101	1.1010000	3
17	00010001	1.0001000	4
19	00010011	1.0011000	4
138	10001010	1.0001010	7
63	00111111	1.1111100	5

Postnormalize

Issue

- Rounding may have caused overflow
- ▶ Handle by shifting right once & incrementing exponent

Value	Rounded	Ехр	Adjusted	Result
128	1.000	7		128
15	1.101	3		15
17	1.000	4		16
19	1.010	4		20
138	1.001	7		134
63	10.000	5	1.000/6	64

