Universidade do Minho

Mestrado Integrado em Engenharia informática

Mdio

Grupo 39

Modelos Determinísticos de Investigação Operacional Trabalho Prático 3

Janeiro 2020

Ana Margarida Campos A85166

Tânia Rocha A85176

Ana Catarina Gil A85266

Índice

Introdução	3
PARTE 0	
Apresentação da nova rede	
Caminho Crítico	
Diagrama de Gantt	
PARTE 1	
Formulação do Problema	
Apresentação dos ficheiros Input e Output	
Apresentação do plano de execução	8
Validação de Resultados	8
PARTE 2	10
Formulação do Problema	10
Apresentação dos ficheiros Input e Output	10
Apresentação do plano de execução	11
Validação de Resultados	11
Conclusão	14

Introdução

Este trabalho foi proposto pelos docentes da unidade curricular de Modelos Determinísticos de Investigação Operacional.

Este refere-se a um projeto composto por atividades em que nos é dado o tempo de duração associado a cada uma e o respetivo grafo, sendo repartido em 3 partes.

O objetivo é realizar o projeto na menor duração possível, tendo como restrições a limitação de recursos e a decisão de como as durações das atividades devem ser reduzidas, de modo a realizar o projeto numa nova duração desejada, com um custo suplementar mínimo.

PARTE 0

Apresentação da nova rede

O maior número do nosso grupo é o 85266. Posto isto, tal como descrito no enunciado, era necessário remover determinadas atividades, que no nosso caso é apenas a atividade 6.

De seguida é apresentado o grafo resultante:

Figura 1 - Grafo Resultante

Caminho Crítico

Como auxilio, para achar o caminho crítico, correspondente ao caminho mais longo entre o vértice que define o início do projeto e o vértice que define o fim do projeto, foi necessário recorrer ao software LPSolve.

Parâmetros: Duração em cada arco.

Restrições: As restrições traduzem a conservação do fluxo em cada vértice, ou seja, o número de unidades que entra no vértice j deve ser igual ao número de unidades que dele saem.

Função Objetivo: Como queremos maximizar o caminho, construímos uma função linear que soma todas as variáveis de decisão associadas ao seu custo.

```
/* Objective function */
max: 4 x01 + 4 x04 + 6 x12 + 7 x23 + 2 x3f + 9 x42 + 9 x45 + 4 x53 +
4 x5f + 6 x74 + 6 x78 + 4 x85 + 4 x89 + 2 x9f + 8 x108 + 8 x1011 + 7 x119;

/* Variable bounds */
vertice_i: xi0 + xi7 + xi10 = 1;
vertice_0: xi0 = x01 + x04;
vertice_1: x01 = x12;
vertice_2: x12 + x42 = x23;
vertice_3: x23 + x53 = x3f;
vertice_4: x04 + x74 = x42 + x45;
vertice_5: x45 + x85 = x53 + x5f;
vertice_7: xi7 = x74 + x78;
vertice_9: x89 + x119 = x85 + x89;
vertice_10: xi10 = x108 + x1011;
vertice_11: x1011 = x119;
```

Variables	result
	24
x01	0
x04	0
x12	0
x23	1
x3f	1
x42	1
x45	0
x53	0
x5f	0
×74	1
x78	0
x85	0
x89	0
x9f	0
x108	0
x1011	0
x119	0
xiO	0
xi7	1
xi10	0

Figura 2- Input no LPSolve

Figura 3 - Output do LPSolve

Após estes resultados, verificamos que o caminho crítico corresponde às atividades 7,4,2 e 3, com uma duração de 24 unidades de tempo.

Diagrama de Gantt

Para a construção do diagrama de Gantt, foi também necessário recorrer ao LPSolve com o objetivo de minimizar o tempo de execução total do projeto obedecendo a todas as precedências.

Variável de decisão: ti : tempo de inicio da atividade i.

Parâmetros: Duração em cada arco.

Restrições: As restrições traduzem as relações de precedência entre as atividades.

A função ti + di designa o tempo de conclusão da atividade i.

Função Objetivo: Como queremos minimizar o tempo de execução, minimizados a variável tf, uma vez que esta representa o tempo final.

```
/* função objectivo */
min: tf ;
/* restrições */
arco_01: t1 >= t0 + 4 ;
arco_12: t2 >= t1 + 6 ;
arco_23: t3 >= t2 + 7;
arco_i0: t0 >= ti + 0 ;
arco_04: t4 >= t0 + 4
arco_42: t2 >= t4 + 9
arco_53: t3 >= t5 + 4
arco_3f: tf >= t3 + 2 ;
arco_45: t5 >= t4 + 9
arco 5f: tf >= t5 +
arco_74: t4 >= t7 + 6;
arco_85: t5 >= t8 + 4 ;
arco_9f: tf >= t9 + 2 ;
arco_67: t7 >= ti + 0 ;
arco_78: t8 >= t7 + 6;
arco_89: t9 >= t8 + 4 ;
arco_610: t10 >= ti + 0 ;
arco_108: t8 >= t10 + 8 ;
arco_119: t9 >= t11 + 7;
arco 1011: t11 >= t10 + 8;
```

Variables 🔺	result
	24
tO	0
tt	4
t10	0
t11	8
t2	15
t3	22
t4	6
t5	15
t7	0
t8	8
t9	15
tf	24
ti	0

Figura 5 - Input do LPSolve

Figura 4 - Output do LPSolve

Como observado na figura 4, a duração do projeto é 24 unidades de tempo.

De seguida, está apresentado o diagrama de Gantt resultante:

Figura 6 - Diagrama de Gantt

Como já era de esperar, os resultados obtidos presentes nas figuras 2 e 4 são iguais, ou seja, o caminho mais longo é também o caminho com o menor tempo necessário para completar a execução do projeto.

PARTE 1

Formulação do Problema

Tal como pedido no enunciado, foram escolhidas três atividades que decorrem em paralelo. Para auxiliar esta escolha, baseamo-nos no diagrama de Gantt exibido no capítulo anterior, escolhendo, portanto, as atividades 0, 7 e 10.

Com vista a sequenciar a execução destas tarefas decidimos adicionar restrições de não simultaneidade.

Para isso, começamos por criar variáveis binárias do tipo:

Representadas por y0710, y0107, y7010, y7100, y1007 e y1070, cada uma delas associadas às seis sequências alternativas possíveis de utilização do equipamento partilhado.

De forma a garantir que apenas uma destas sequências é satisfeita, o somatório de todas a variáveis binarias é igual a 1.

Apresentação dos ficheiros Input e Output

```
/* função objectivo */
min: tf;

/* restrições */
y0710+y0107+y7010+y7100+y1007+y1070=1;
arco_01: t1 >= t0 + 4;
arco_12: t2 >= t1 + 6;
arco_13: t3 >= t2 + 7;
arco_i0: t0 = ti + 0*y0710 + 0*y0107+ + 6*y7010 + 8*y1007 + 14*y7100 + 14*y1070;
arco_04: t4 >= t0 + 4;
arco_12: t2 >= t4 + 9;
arco_13: t3 >= t5 + 4;
arco_13: t5 >= t4 + 9;
arco_13: t5 >= t4 + 9;
arco_13: t5 >= t4 + 9;
arco_14: t4 >= t7 + 6;
arco_15: t5 >= t4 + 9;
arco_16: t5 >= t4 + 9;
arco_17: t7 = ti + 0*y7010 + 0*y7100 + 4*y0710 + 8*y1070 + 12*y0107+ 12*y1007;
arco_18: t5 >= t8 + 4;
arco_19: t5 >= t1 + 7;
arco_10: t10 = ti + 0*y1007 + 0*y1070 + 6*y7100 + 4*y0107+ + 10*y0710+ 10*y7010;
arco_108: t5 >= t10 + 8;
bin y0710,y0107,y7010,y7100,y1007,y1070;
int ti,t0,t1,t2,t3,t4,t5,t7,t8,t5,t10,t11,tf;
```

Figura 8 - Input no LPSolve

Variables	MILP	result
	28	28
tf	28	28
t3	26	26
t9	25	25
t5	22	22
t2	19	19
t8	18	18
t11	18	18
t1	13	13
t4	10	10
t10	10	10
t7	4	4
y0710	1	1
y0107	0	0
y7010	0	0
y7100	0	0
y1007	0	0
y1070	0	0
tO	0	0
ti	0	0

Figura 7 - Output do LPSolve

Como observado na figura 7, a duração do projeto passou a ser 28 unidades de tempo.

Apresentação do plano de execução

De seguida, está apresentado o diagrama de Gantt resultante dos dados obtidos anteriormente:

Figura 9 – Diagrama de Gantt

Comparando ambos os diagramas de Gantt representados pelas figuras 6 e 9, neste último reparamos que as atividades 0, 7 e 10 já não ocorrem paralelamente, mas sim sequencialmente, tal como era esperado.

Validação de Resultados

```
arco_01: t1 >= t0 + 4; \Leftrightarrow 13 >= 0 + 4 \checkmark

arco_12: t2 >= t1 + 6; \Leftrightarrow 19 >= 13 + 6 \checkmark

arco_23: t3 >= t2 + 7; \Leftrightarrow 26 >= 19 + 4 \checkmark

arco_i0: t0 = ti + 0*y0710 + 0*y0107+ + 6*y7010 + 8*y1007 + 14*y7100 + 14*y1070;

\Leftrightarrow 0 = 0 + 0 + 0 + 0 + 0 + 0 + 0 \checkmark

arco_04: t4 >= t0 + 4; \Leftrightarrow 10 >= 0 + 4 \checkmark

arco_42: t2 >= t4 + 9; \Leftrightarrow 19 >= 10 + 9 \checkmark

arco_3f: tf >= t3 + 2; \Leftrightarrow 28 >= 26 + 2 \checkmark

arco_45: t5 >= t4 + 9; \Leftrightarrow 22 >= 10 + 9 \checkmark

arco_5f: tf >= t5 + 4; \Leftrightarrow 28 >= 22 + 4 \checkmark
```

```
arco_74: t4 >= t7 + 6; \Leftrightarrow 10 >= 4 + 6 \checkmark

arco_85: t5 >= t8 + 4; \Leftrightarrow 22 >= 18 + 4 \checkmark

arco_9f: tf >= t9 + 2; \Leftrightarrow 28 >= 25 + 2 \checkmark

arco_67: t7 = ti + 0*y7010 + 0*y7100 + 4*y0710 + 8*y1070 + 12*y0107+ + 12*y1007;

\Leftrightarrow 4 = 0 + 0 + 0 + 4 + 0 + 0 + 0 \checkmark

arco_78: t8 >= t7 + 6; \Leftrightarrow 18 >= 4 + 6 \checkmark

arco_89: t9 >= t8 + 4; \Leftrightarrow 25 >= 18 + 4 \checkmark

arco_610: t10 = ti + 0*y1007 + 0*y1070+ 6*y7100 + 4*y0107+ + 10*y0710+ 10*y7010;

\Leftrightarrow 10 = 0 + 0 + 0 + 0 + 0 + 10 + 0 \checkmark

arco_108: t8 >= t10 + 8; \Leftrightarrow 18 >= 10 + 8 \checkmark

arco_1011: t11 >= t10 + 8; \Leftrightarrow 18 >= 10 + 8 \checkmark

y0710+y0107+y7010+y7100+y1007+y1070=1; \Leftrightarrow 1 + 0 + 0 + 0 + 0 + 0 = 1 \checkmark
```

Substituindo na função objetivo:

PARTE 2

Formulação do Problema

Nesta parte temos como objetivo decidir como devem ser reduzidas as durações das atividades, de modo a realizar o projeto na nova duração desejada com um custo suplementar mínimo.

Variável de decisão: rji: redução do custo j para a atividade i.

ti : tempo de início da atividade i.

Parâmetros: Custo de cada rij e o custo normal para cada atividade.

Restrições: ti >= ti - r1i - r2i + di, a função ti - rji + di designa o tempo de conclusão da atividade i após a redução do custo j.

Função Objetivo: Como queremos minimizar o custo associado à redução das durações das atividades, construímos uma função linear que soma todas as variáveis de decisão do tipo rji, associando-as ao seu custo.

Apresentação dos ficheiros Input e Output

```
| // custo associado à redupão das chrações das actividades | min: 200 ril + 600 ril + 1000 ril + 200 ril + 800 ril + 1600 ril + 0 ril + 200 ril + 0 ril + 1000 ril + 600 ril + 1000 ril + 800 ril + 1600 ril + 1000 ril + 0 ril + 1000 ril + 800 ril + 1600 ril + 1000 ril + 1000
```

Variables 🔺	result
	1050
r10	0
r11	0
r110	0
r111	0
r12	0
r13	0,5
r14	0
r15	0
r17	0
r18	0
r19	0
r20	0
r21	0
r210	0
r211	0
r22	1
r23	0,5
r24	1
r25	0
r27	0
r28	0
r29	0
ŧ0	0
t1	4
t10	0
t11	8
t2	14
t3	20
t4	6
t5	14
t7	0
t8	8
t9	15
tf	21
ti	0

Figura 10 - Output LPSolve

Figura 11- Input LPSolve

Como observado na figura 11, a duração do projeto passou a ser 21 unidades de tempo, gastando 1050 UM.

Para isso, foram utilizadas : a redução a custo c1 na atividade 3, a redução a custo c2 na atividade 2, a redução a custo c2 na atividade 3 e a redução a custo c2 na atividade 4.

Apresentação do plano de execução

De seguida, está apresentado o diagrama de Gantt resultante dos dados obtidos anteriormente:

Figura 12- Diagrama de Gantt

Validação de Resultados

arco_01: t1 >= t0 - r10 - r20 + 4
$$\Leftrightarrow$$
 4>=0-0-0+4 \checkmark
arco_12: t2 >= t1 - r11 - r21 + 6 \Leftrightarrow 14>=4-0-0+6 \checkmark
arco_23: t3 >= t2 - r12 - r22 + 7 \Leftrightarrow 20>=14-0-1+7
arco_i0: t0 >= ti + 0 \Leftrightarrow 0>=0+0 \checkmark
arco_04: t4 >= t0 - r10 - r20 + 4 \Leftrightarrow 6>=0-0-0+4 \checkmark
arco_42: t2 >= t4 - r14 - r24 + 9 \Leftrightarrow 14>=6-0-1+9 \checkmark
arco_53: t3 >= t5 - r15 - r25 + 4 \Leftrightarrow 20>=14-0-0+4 \checkmark
arco_3f: tf >= t3 - r13 - r23 + 2 \Leftrightarrow 21>=20-0.5-0.5+2 \checkmark

arco_i7: t7 >= ti+0
$$\Leftrightarrow$$
 0>=0+0 \checkmark

Reduções máximas permitidas:

r10 <= 0.5	⇔ 0<=0.5 √	r20 <= 0.5	⇔ 0<=0.5 √
r11 <= 1	⇔ 0<=1 √	r21 <= 1	⇔ 0<=1 √
r12 <= 3	⇔ 0<=3 ✓	r22 <= 1	⇔ 1<=1 √
r13 <= 0.5	⇔ 0.5<=0.5 √	r23 <= 0.5	⇔ 0.5<=0.5 √
r14 <= 2	⇔ 0<=2 √	r24 <= 1	⇔ 1<=1 √
r15 <= 0.5	⇔ 0<=0.5 √	r25 <= 0.5	⇔ 0<=0.5 √
r17 <= 0	⇔ 0<=0 ✓	r27 <= 0	⇔ 0<=0 ✓
r18 <= 0.5	⇔ 0<=0.5 √	r28 <= 0.5	⇔ 0<=0.5 √
r19 <= 0	⇔ 0<=0 ✓	r29 <= 0	⇔ 0<=0 ✓
r110 <= 0.5	⇔ 0<=0.5 √	r210 <= 0.5	⇔ 0<=0.5 √
r111 <= 1	⇔ 0<=1 √	r211 <= 1	⇔ 0<=1 √

Substituíndo na função objetivo:

+100*0+300*0+500*1+100*0.5+400*1+800*0+0*0+100*0+0*0+500*0+300*0

Conclusão

No desenvolvimento deste trabalho foi-nos permitido a aplicação de diversos conhecimentos adquiridos nas aulas práticas e teóricas desta unidade curricular. Este possibilitou a resolução de soluções ótimas de um grafo que pode ser decomposto num conjunto de atividades com durações determinísticas. Além disso, também nos permitiu aprofundar conhecimentos sobre o método do caminho crítico (*critical path method, CPM*), diagrama de *Gantt* e sobre o balanceamento entre a duração do projeto e o seu custo. Como auxílio à execução deste projeto foi utilizado o software *LPSolve*, utilizado também nos trabalhos anteriormente feitos, que permite a obtenção de soluções ótimas de maneira rápida e eficiente.

Em suma, consideramos que o trabalho cumpre todos os objetivos propostos inicialmente.