U.S. Patent Application Serial No. 09/939,716 Amendment filed December 9, 2008 Reply to OA dated October 28, 2008

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

3

4

5

6

8

10

11

12

13

14

Claims 1-16 (canceled).

Claim 17 (previously presented): An optical transmitter comprising;

an input terminal for accepting an electrical binary signal,

an electrical-optical conversion means for converting an electrical signal to an optical signal,

an amplifier for amplifying an input signal applied to said input terminal to level requested

for operating said electrical-optical conversion means, and applying the amplified electrical signal

to said electrical-optical conversion means,

said electrical-optical conversion means having a traveling wave type electrode operating to

restrict bandwidth of an output light of said electrical-optical conversion means,

wherein

said electrical-optical conversion means is a Mach Zehnder light intensity modulator having

a traveling wave type electrode,

bandwidth of optical output of said Mach Zehnder light intensity modulator is restricted by

using mismatching of phase velocity of electric wave propagating on said traveling wave type

electrode and optical wave propagating in an optical waveguide having refractive index depending

-3-

U.S. Patent Application Serial No. **09/939,716** Amendment filed December 9, 2008 Reply to OA dated October 28, 2008

upon electrical field generated by said electric wave,

16

17

18

19

20

21

22

23

24

25

2

3

5

6

a precoding means is provided at an input stage of said amplifier,

said precoding means provides an output which is the same as the previous output when an input binary digital signal is 0, and an output which differs from the previous output when an input digital signal is 1, and

said traveling wave type electrode is designed so that phase change of optical wave propagating in said optical waveguide depending upon said electrical field has waveforms of a ternary duobinary signal,

wherein modulation efficiency of said Mach Zehnder light intensity modulator at f0/2 is always larger than that at frequency higher than f0/2, where f0 is clock frequency of said electrical binary signal.

Claims 18-23 (canceled).

Claim 24: (currently amended): An optical transmitter comprising:

an input terminal for accepting an electrical binary signal,

an electrical-optical conversion means for converting an electrical signal to an optical signal,

an amplifier for amplifying an input signal applied to said input terminal to level requested

for operating said electrical-optical conversion means, and applying the amplified electrical signal

to said electrical-optical conversion means,

U.S. Patent Application Serial No. **09/939,716** Amendment filed December 9, 2008 Reply to OA dated October 28, 2008

said electrical-optical conversion means having a traveling wave type electrode operating to restrict bandwidth of an output light of said electrical-optical conversion means,

wherein

7

8

10

11

12

13

14

15

16

17

18

19

20

21

22

23

said electrical-optical conversion means is a Mach Zehnder light intensity modulator having a traveling wave type electrode,

bandwidth of optical output of said Mach Zehnder light intensity modulator is restricted because of loss of said traveling wave type electrode electrode,

a precoding means is provided at an input stage of said amplifier,

said precoding means provides an output which is the same as the previous output when an input binary digital signal is 0, and an output which differs from the previous output when an input digital signal is 1, and

said traveling wave type electrode is designed so that phase change of optical wave propagating in said optical waveguide depending upon said electrical field has waveforms of a ternary duobinary signal,

wherein modulation efficiency of said Mach Zehnder light intensity modulator at f0/2 is always larger than that at frequency higher than f0/2, where f0 is clock frequency of said electrical binary signal.

* * * *