Neural Nets

1: Neural Nets

Neural Nets

Linear combination of features

$$b + w1 * x1 + w2 * x2 + ... + wp * xp$$

Non-linear activation (e.g. wx -> [-1, 1])

$$f(b + w1 * x1 + w2 * x2 + ... + wp * xp)$$

- Pass outputs on as inputs (multi-layer nets)
 - This gives non-linear decision boundaries
 - This gives a non-convex problem :(

Neural Nets

Linear combination of features

$$b + w1 * x1 + w2 * x2 + ... + wp * xp$$

Non-linear activation

Non-linear activation:

Once linear
 combination
 exceeds a cutoff
 dramatic change
 in behavior

Non-linear activation:

Once linear
 combination
 exceeds a cutoff
 dramatic change
 in behavior

Q: why use nonlinear activation instead of a *step activation* (no transition)?

Q: why use nonlinear activation instead of *linear* activation?

off	Off	Transition	On	even more on
-----	-----	------------	----	-----------------

Example: Logistic Regression

Linear combination of features (log-odds), passed into sigmoid activation function to get *p*.

$$\ell odds = \log \frac{p}{1-p} = x_1 \beta_1 + \dots + x_m \beta_m$$

$$\implies p = \exp(\ell odds) / (1 + \exp(\ell odds)))$$

Layering for nonlinearity

Single layer nets (e.g. logistic regression)
 can make linear decisions:

Layering for nonlinearity

- Multi-layer nets can approximate any function, i.e. can do any nonlinear separation.
 - Downside: the optimization problem is nonconvex
 - ODownside: you may need *lots* of nodes / layers

Y = sigmoid(bias + X1w1 + X2w2)

bias = -15 (intercept)

W

X 1	X2	Y
0	0	0
0	1	1
1	0	1
1	1	1
?	?	

Y = sigmoid(bias + X1w1 + X2w2)

bias = -15

(intercept)

W

X 1	X2	WX + bias	Y
0	0	-15	~0
0	1	5	~1
1	0	5	~1
1	1	25	~1
+20	+20		

Either X being active enough to turn on Y

Neural Net AND

Y = sigmoid(bias + X1w1 + X2w2)

bias = -15

(intercept)

W

X 1	X2	Y
0	0	0
0	1	0
1	0	0
1	1	1
?	?	_

Neural Net AND

Y = sigmoid(bias + w1X1 + w2X2)

bias = -15 (intercept)

W

X1	X2	WX + bias	Y
0	0	-15	~0
0	1	-5	~0
1	0	-5	~0
1	1	5	~1
+10	+10		

Need both X to be active to turn on Y

can't do it with one layer

0.9	1	_
0.9- 0.8- 0.7- 0.6- 0.5- 0.4- 0.3- 0.2- 0.1-		
0.7	4	-
0.6	$1 + e^{-x}$	-
0.5	/	-
0.4		-
0.3		-
0.2		-
0.1		-
0		
-	0	
	U	

W

X 1	X2	Y
0	0	0
0	1	1
1	0	1
1	1	0
?	?	

insert layer that does AND, OR (we know how to make AND and OR operations!)

X1	X2	X1& X2	X1 X2	Y
0	0	0	0	0
0	1	0	1	1
1	0	0	1	1
1	1	1	1	0
?	?	?	?	

assume we have outputs of AND and OR layer...

Y = sigmoid(bias + w1A1 + w2A2)

A1:= X1&X2	A2:= X1 X2	Y
0	0	0
0	1	1
0	1	1
1	1	0
?	?	

W

assume we have outputs of AND and OR layer...

Y = sigmoid(bias + w1A1 + w2A2)

bias = -15 (intercept)

W

A1:= X1&X2	A2:= X1 X2	Wias	Y
0	0	-15	~0
0	1	5	~1
0	1	5	~1
1	1	-5	~0
-10	+20		

The OR alone can turn Y on, but the AND disables it.

Neural net computation

- In practice: many layers, many nodes, very non-convex
 - Lots of calculations
 - ■Many nodes
 - ■Try lots of starting values
 - Parallel computing (most nodes don't interact with each other)
 - ■e.g. for XOR, could compute AND, OR in parallel

Backpropagation briefly

- •Perceptron:
 - oFind error, update parameters so error might get fixed
- •Back-propagation:
 - Neural nets fit using gradient descent
 - oBP also finds an error, at the output layer, then it sends it backwards through the neural net