For i in 1 to n we have $y_i(s)$ where $s \in S$ - functional response For j in 1 to p we have functional covariates $x_{ij}(t)$ where $t \in T_j$

Functional response	Functional covariate 1	j	Functional covariate <i>p</i>
$y_1(s)$	$x_{11}(t)$		$x_{p1}(t)$
$y_2(s)$	$x_{12}(t)$		$x_{p2}(t)$
i			
$y_n(s)$	$x_{1n}(t)$		$x_{pn}(t)$

Concurrent functional linear model

Assumption:

1.
$$T_j = S$$

Model:

$$y_i(s) = \alpha(s) + \sum_{i=1}^{p} x_{ij}(s)\psi_j(s) + e_i(s)$$

 $\alpha(s)$ - functional intercept

 $\psi_i(s)$ - functional regressor coefficients

 $e_i(s)$ - functional zero-mean error

Non concurrent (More general approach)

Assumption:

1.
$$T_i \neq S$$

Model:

$$y_i(s) = \alpha(s) + \sum_{j=1}^{p} \int x_{ij}(t)\psi_j(t,s) + e_i(s)$$

? We are not really interested in it cause for us $T_i = S$ (1)

Historical functional linear model

Assumption:

1.
$$T_i = S$$

Model:

$$T(s) = \{t \in T : t < s\}$$

$$y_i(s) = \alpha(s) + \sum_{j=1}^{p} \int_{T(s)} x_{ij}(t) \psi_j(t, s) + e_i(s)$$

? Note (2)

? Интегральное уравнение но ядро $\psi_j(t,s)$ наоборот неизвестно (Неоднородное уравнение Фредгольма второго рода)?

Introduced model

? Motivation (3)

? Каждый эксперимент независимый или мы просто добавляем дозу?

Our model

$$y_i(d) = \sum_{j=1}^p k_{ji}(d)\beta_j(d) + e(d) \text{ or can be written as } y_i(d) = \sum_{j=1}^p k_{ij}(d)\beta_j(d) + e_i(d)$$

* So domains of $y_i($ *) and $k_{ij}($ *) with $\beta_j($ *) are the same. We can use **Concurrent functional linear model**

Sparsity ?Note (4)

^{*} Do we need other model (non concurrent or historical)?