Chapter 23

 Problem: given a connected, undirected, weighted graph G(V,E) and a weight function w: E-> R

• Problem: given a connected, undirected, weighted graph, find a spanning tree T that connects all V of minimal weight

• Answer:

Figure 1: Minimum spanning tree.

• Here we have two different MSTs for the same graph with equal costs and edge weights

- MSTs satisfy two powerful properties:
 - Optimal substructure
 - An optimal tree is composed of optimal subtrees
 - Greedy choice
 - A locally optimal choice is globally optimal

Optimal subtree property

- Optimal substructure property: an optimal tree is composed of optimal subtrees
 - Let T be an MST of G with an edge (u,v) in the middle
 - Removing (u,v) partitions T into two trees T_1 and T_2

Optimal subtree property

• Claim: T_1 is an MST of $G_1 = (V_1, E_1)$, and T_2 is an MST of $G_2 = (V_2, E_2)$

Optimal subtree property

- Proof: cut and paste
- w(T) = w(u,v) + w(T₁) + w(T₂)
 (There can't be a better tree than T₁ or T₂, or T would be suboptimal)

Greedy Choice

- A locally optimal choice is globally optimal
- Thm:
 - Let T be MST of G, and let $A \subseteq E(T)$
 - Let S be a subset of V such that E(S,V-S) has no intersection with A
- Let (u,v) be min-weight edge connecting S to V-S Then there is an MST of G, T' such that $A \subseteq E(T')$ and $(u,v) \in T'$

Algorithms for MST

- Kruskal's algorithm
 - Based on the idea of connected components
 - Starts with a forrest, and always adds to the forrest the min edge that connects two different components
- Prim's algorithm
 - Starts with a tree, and always adds to the tree the min edge not yet in the tree

Algorithms for MST

- Kruskal's algorithm
 - Based on the idea of connected components
 - Disjoint sets
 - Starts with a forest, and always adds to the forest the min edge that connects two different components
- Prim's algorithm
 - Starts with a tree, and always adds to the tree the min edge not yet in the tree
 - Priority queues

Disjoint-Set Data Structures

- Want a data structure to support disjoint sets
 - Collection of disjoint sets $S = \{S_i\}, S_i \cap S_j = \emptyset$
- Need to support following operations:
 - MakeSet(x): $S = S \cup \{\{x\}\}$
 - Union(S_i, S_j): $S = S \{S_i, S_j\} \cup \{S_i \cup S_j\}$
 - FindSet(X): return $S_i \in S$ such that $x \in S_i$
- Before discussing implementation details, we look at Kruskal's algorithm

```
Kruskal()
   T = \emptyset;
   for each v \in V
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
      if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
   T = \emptyset;
                                 25
                                            5
   for each v \in V
                                      13
                         21
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                        19
   T = \emptyset;
                                    25
                                               5
   \quad \text{for each } v \ \in \ V
                                         13
                           21
       MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
           T = T \cup \{\{u,v\}\};
           Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
   T = \emptyset;
                                 25
                                            5
   for each v \in V
                                      13
                         21
      MakeSet(v);
 sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
   T = \emptyset;
                                 25
                                            5
   for each v \in V
                                      13
                         21
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
   T = \emptyset;
                                 25
                                            5
   for each v \in V
                                      13
                         21
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                          2?
                                     19
   T = \emptyset;
                                 25
                                            5
   for each v \in V
                                       13
                         21
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
   T = \emptyset;
                                 25
                                            5
   for each v \in V
                                      13
                         21
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
   T = \emptyset;
                                 25
                                            5?
   for each v \in V
                                      13
                         21
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
   T = \emptyset;
                                 25
   for each v \in V
                                      13
                         21
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
   T = \emptyset;
                    8?
                                 25
   for each v \in V
                                      13
                         21
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
   T = \emptyset;
                                 25
   for each v \in V
                                      13
                         21
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
   T = \emptyset;
                                 25
   for each v \in V
                                      13
                         21
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
   T = \emptyset;
                                 25
   for each v \in V
                                      13
                         21
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
   T = \emptyset;
                                 25
   for each v \in V
                                      13?
                         21
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
   T = \emptyset;
                                 25
   for each v \in V
                         21
                                      13
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
                          14?
   T = \emptyset;
                                 25
   for each v \in V
                         21
                                      13
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
   T = \emptyset;
                                 25
   for each v \in V
                         21
                                      13
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
                                     17?
   T = \emptyset;
                                 25
   for each v \in V
                         21
                                      13
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                    19?
   T = \emptyset;
                                 25
   for each v \in V
                         21
                                      13
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
   T = \emptyset;
                                 25
   for each v \in V
                         21?
                                      13
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
   T = \emptyset;
                                 25?
   for each v \in V
                         21
                                      13
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
   T = \emptyset;
                                 25
   for each v \in V
                         21
                                      13
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
Run the algorithm:
Kruskal()
                                     19
   T = \emptyset;
                                 25
   for each v \in V
                         21
                                      13
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
      if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

Correctness Of Kruskal's Algorithm

- Sketch of a proof that this algorithm produces an MST for T:
 - Assume algorithm is wrong: result is not an MST
 - Then algorithm adds a wrong edge at some point
 - If it adds a wrong edge, there must be a lower weight edge to connect the subtrees
 - But algorithm chooses lowest weight joining two different components
 - Take S equal to one of the components and apply the theorem.

```
What will affect the running time?
Kruskal()
   T = \emptyset;
   for each v \in V
      MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
          T = T \cup \{\{u,v\}\};
          Union(FindSet(u), FindSet(v));
```

```
What will affect the running time?
Kruskal()
                                                 1 Sort
                                    O(V) MakeSet() calls
   T = \emptyset;
                                     O(E) FindSet() calls
   for each v \in V
                                      O(V) Union() calls
                            (Exactly how many Union()s?)
       MakeSet(v);
   sort E by increasing edge weight w
   for each (u,v) \in E (in sorted order)
       if FindSet(u) ≠ FindSet(v)
           T = T \cup \{\{u,v\}\};
           Union(FindSet(u), FindSet(v));
```

Kruskal's Algorithm: Running Time

- To summarize:
 - Sort edges: O(E lg E)
 - O(V) MakeSet()'s
 - O(E) FindSet()'s
 - O(V) Union()'s
- Upshot:
 - Best disjoint-set union algorithm makes above 3 operations take $O(E \cdot \alpha(E, V))$, α almost constant
 - Overall thus O(E lg V)

Disjoint Sets (Chapter 21)

- So how do we implement disjoint-set union?
 - Naïve implementation: use a linked list to represent each set:

- MakeSet(): ??? time
- o FindSet(): ??? time
- Union(A,B): "copy" elements of A into B: ??? time

Disjoint Set Union

- So how do we implement disjoint-set union?
 - Naïve implementation: use a linked list to represent each set:

- MakeSet(): O(1) time
- FindSet(): O(1) time
- Union(A,B): "copy" elements of A into B: O(A) time
- How long will n Union()'s take?

Disjoint Set Union: Analysis

- Worst-case analysis: O(n²) time for n Union's
- Improvement: always copy smaller into larger
 - Maintains the length of the list
 - Weighted union heuristic
 - Union can still take $\Omega(n)$
- However, a sequence of m Make_Set, Union and FindSet operations, n of which are Make_Set, takes O(m + nlg n) (Theorm 21.1)

Disjoint-set union

 Another way to implement disjoint-set unions, and which is more efficient: Disjoint-set forests

Disjoint-set forests

- 2 heuristics make the operations efficient:
 - Union by rank
 - Path compression (FindSet)

In this case, a sequence of m Make_Set, Union and FindSet operations, n of which are Make_Set, takes O(m α(n)) (proof-Section 21.4)

Algorithms for MST

- Kruskal's algorithm
 - Based on the idea of connected componentsDisjoint sets
 - Starts with a forest, and always adds to the forest the min edge that connects two different components
- Prim's algorithm
 - Starts with a tree, and always adds to the tree the min edge not yet in the tree
 - Priority queues

```
MST-Prim(G, w, r)
    Q = V[G]; //elements not in the tree
    for each u \in Q
         key[u] = \infty;
    key[r] = 0; //least weight-edge connecting it to tree
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
             if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                  p[v] = u;
                  key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                           14
         key[u] = \infty;
                                   10
                                                      15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
                                   Run on example graph
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                           14
         key[u] = \infty;
                                    10
                                                       15
    key[r] = 0;
    p[r] = NULL;
                                      \infty
    while (Q not empty)
                                    Run on example graph
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
     for each u \in Q
                            14
         key[u] = \infty;
                                     10
                                                        15
     key[r] = 0;
    p[r] = NULL;
                                       \infty
    while (Q not empty)
                                      Pick a start vertex r
          u = ExtractMin(Q);
          for each v \in Adj[u]
               if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                           14
         key[u] = \infty;
                                    10
                                                       15
    key[r] = 0;
    p[r] = NULL;
                                       \infty
    while (Q not empty)
         u = ExtractMin(Q); Red vertices have been removed from Q
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                           14
         key[u] = \infty;
                                    10
                                                      15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q); Red arrows indicate parent pointers
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                           14
         key[u] = \infty;
                                   10
                                                      15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                           14
         key[u] = \infty;
                                   10
                                                      15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                           14
         key[u] = \infty;
                                   10
                                                      15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                           14
         key[u] = \infty;
                                   10
                                                      15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                           14
         key[u] = \infty;
                                   10
                                                      15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                           14
         key[u] = \infty;
                                   10
                                                      15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                           14
         key[u] = \infty;
                                   10
                                                      15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
                                                      9
    Q = V[G];
    for each u \in Q
                           14
         key[u] = \infty;
                                   10
                                                      15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
                                                      9
    Q = V[G];
    for each u \in Q
                           14
         key[u] = \infty;
                                   10
                                                      15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
                                                      9
    Q = V[G];
    for each u \in Q
                           14
         key[u] = \infty;
                                   10
                                                      15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
                                                      9
    Q = V[G];
    for each u \in Q
                           14
         key[u] = \infty;
                                   10
                                                      15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                           14
         key[u] = \infty;
                                   10
                                                      15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                           14
         key[u] = \infty;
                                   10
                                                      15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                           14
         key[u] = \infty;
                                   10
                                                      15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                           14
         key[u] = \infty;
                                   10
                                                      15
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
         key[u] = \infty;
    key[r] = 0;
                       What is the hidden cost in this code?
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                  p[v] = u;
                  key[v] = w(u,v);
```

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
         key[u] = \infty;
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
         u = ExtractMin(Q);
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                  p[v] = u;
                  DecreaseKey(v, w(u,v));
```

```
MST-Prim(G, w, r)
       Q = V[G];
O(V) for each u \in Q
key[u] = \infty; How often is ExtractMin() called?
key[r] = 0; How often is DecreaseKey() called
                         How often is DecreaseKey() called?
       while (Q not empty)
```

```
MST-Prim(G, w, r)
    Q = V[G];
                          What will be the running time?
    for each u \in Q
                         A: Depends on queue
        key[u] = \infty;
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
        u = ExtractMin(Q);
         for each v \in Adj[u]
             if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                 p[v] = u;
                 key[v] = w(u,v);
```

Analysis

- Time = $\theta(V \times T(ExtractMin) + E \times T(DecreaseKey))$
- Analysis according to Queue implementation:

Q	Textract	Tdecrease	Total
Array	O(V)	O(1)	$O(V^2)$
Binary Heap	O(lg V)	O(lg V)	$O((E+V) \lg V)$
Fib Heap	O(logV)amort	O(1)amort	O(E+VlogV)