Lenguajes Formales: Examen Final Diciembre (10/12/24)

- 1) Sean $L_1 = {\lambda}$, $L_2 = {aa, ab, bb}$, $L_3 = {\lambda, aa, bb}$ y $L_4 = \emptyset$, definidos sobre ${a,b}$. Marcar V o F:
 - a) $L_1 \cup L_2 = \{ aa, ab, bb \}$
 - b) $L_1 \cap L_4 = \emptyset$
 - c) $L_2 \cap L_3 = \{ aa, bb \}$
 - d) $L_1 L_3 = \{ \lambda \}$
- 2) Marcar si las siguientes afirmaciones son Verdaderas o Falsas:
 - a. El lenguaje $L=\{0^{2n+1} 1^{3j}, para n, j>=1\}$ es regular, con alfabeto $\{0,1\}$.
 - b. Considere el lenguaje $\{\lambda\}$. ¿Es posible diseñar una ER para este lenguaje?
 - c. La ER (aaa)* (bbb)* corresponde al lenguaje $L=\{x/x=a^{3j} b^{3j} para j>=0\}$.
 - d. La ER (((ab)*)* | λ) es equivalente a la ER: (a* | b*)
- 3) Diseñe la ER del lenguaje L={while, for, if, then, else}, con alfabeto {i,f,t,h,e,n,l,s,w,h,o,r,i}

- 4) Marcar verdadero o falso:
 - a. El lenguaje de los identificadores de un lenguaje de programación puede ser aceptado por un AF.
 - b. Un Autómata finito es un modelo que solamente reconoce lenguajes finitos.
 - c. Las cadenas del lenguaje L={ $x/x=0^i 1^i 0^i 1^i$ para 0<= i <= 2} pueden ser aceptadas por un AF.
 - d. Si puedo construir un AF que reconozca un lenguaje L, puedo construir un AF que reconozca L^R.
- 5) Marcar si las siguientes afirmaciones son Verdaderas o Falsas, y <u>justificar</u> su respuesta:
- **a**. El lenguaje: L={ x / x \in {a,b,c } / x=a²ⁿc o x=a^{2m}b, para n,m>=0}, puede ser reconocido por un AP y un AF.
- **b**. Dado el lenguaje: Cadenas que tienen estructura xx⁻¹, donde x pertenece a {0,1}⁺. ¿Puedo diseñar una GIC para generar las cadenas de este lenguaje?
- **c**. Se tiene 2 GIC, G_1 y G_2 que generan los lenguajes L_1 y L_2 respectivamente. ¿Puede diseñar la GIC del lenguaje L_1 U L_2 ? ¿Cómo se diseñaría esa gramática?
- **d**. La gramática G=<{S,A}, {a,b}, S, P>, donde P: $S \to AA$, $A \to AAA \mid a \mid bA \mid Ab$ Genera las cadenas bbabaaba y bbaab.
- 6) Dado el siguiente lenguaje: $L = \{a^r b^s c^t d^u r, s, t, u > = 1 tal que r + t = s + u \}$ Determine si las siguientes afirmaciones son verdaderas o falsas.
 - a) El lenguaje definido es de tipo 3 de la Clasificación de Chomsky.
 - b) El autómata de menor potencia que reconoce las cadenas del lenguaje es el Autómata con Pila.
 - c) Las cadenas del lenguaje pueden generarse con una Gramática Independiente de Contexto.
 - d) La cadena mínima del lenguaje es abcd.
- 7) Marcar si las siguientes afirmaciones son Verdaderas o Falsas:
- a) Puedo escribir la sintaxis de todas las sentencias de un lenguaje de programación con una GIC.
- b) Si un compilador da "Error, constante fuera de rango", es un error sintáctico.
- c) El lenguaje natural es un lenguaje formal.
- d) Dada la siguiente definición BNF: <expr> → <expr> <expr> + | <expr> <expr> * | a | b | c, la cadena abc*+ pertenece al lenguaje.

8) Dado el parser LL correspondiente a la gramática: G = <{S, A}, { (,), \$ }, S, P}, donde S es el axioma, las

producciones P: $S \rightarrow A$ \$

$$A \rightarrow (A) \mid ()$$

Responder Verdadero o Falso:

- a) La cadena ((()))\$ es aceptada por el parser LL.
- b) Si se ejecuta el parser LL para hacer el análisis sintáctico de la cadena (())()\$, el parser llega al estado final q3 y acepta la cadena.
- c) El árbol de parsing, en el parser LL, se arma desde la cadena hasta el axioma.
- d) El parser LL lee la cadena de entrada de izquierda a derecha y produce una derivación por la derecha.

9) Sea la siguiente gramática:

 $E \rightarrow EOE$

 $E \rightarrow id \mid cte$

 $0 \rightarrow + | - | * | /$

- a) ¿De qué tipo es la gramática definida? Justifique.
- b) ¿Es ambigua? Justifique.
- c) Busque una hilera válida de 7 símbolos como mínimo y realice el árbol de derivación correspondiente.
- d) ¿Qué pasaría si implementa esta gramática en un compilador para las expresiones aritméticas? Justifique.

10) Sea la siguiente máquina de Turing: MT= $\{q0, q1, q2, q3, q4, q5, q6, q7\}, \{a, d, e\}, \{X, A, a, d, e, \quad \}, \{e7}\}>$

Marque las cadenas que acepta la MT:

- a) aaaaaaadddeeee
- b) aaadddeee
- c) aaadeeee
- d) aaaaeeee