

Sequential Monte Carlo methods

Lecture 3 – Monte Carlo and importance sampling

Thomas Schön, Uppsala University 2017-08-24

Outline - Lecture 3

Aim: Motivate and introduce the Monte Carlo idea and derive importance sampling.

Outline:

- 1. Why do we need Monte Carlo?
- 2. The Monte Carlo idea
- 3. Importance sampling
- 4. Ex. joint filtering using importance sampling

1/16

Why do we need Monte Carlo methods?

Probabilistic modelling often produce intractable optimization and/or integration problems.

Recall the nonlinear filtering problem or consider the computation of a point estimate via **expectation**, e.g. the conditional mean

$$\widehat{x}_{t \mid t} = \mathbb{E}[X_t \mid y_{1:t}] = \int x_t p(x_t \mid y_{1:t}) dx_t.$$

Monte Carlo methods are **computational solutions** where the distributions of interest are approximated by a large number of *N* random samples called particles.

Common test functions

Hence, Monte Carlo methods can be used to solve integrals like

$$\mathbb{E}[\varphi(X) \mid y_{1:t}] = \int \varphi(x) p(x \mid y_{1:T}) dx$$

Common test functions $\varphi(x)$ include:

- Conditional mean $\varphi(x) = x$ (previous slide)
- Indicator function $\varphi(x) = I(x > \vartheta)$ for some threshold ϑ , which provides an estimate of tail probabilities (modelling e.g. extreme events).
- Covariances and other higher order moments.
- ...

The Monte Carlo idea (I/II)

Let $X \sim \pi(x)$, where we refer to $\pi(x)$ as the **target density**.

(Very) restrictive assumption: Assume that we have N samples $\{x^i\}_{i=1}^N$ from the target density $\pi(x)$, making up an **empirical** approximation

$$\widehat{\pi}^{N}(x) = \sum_{i=1}^{N} \frac{1}{N} \delta_{x^{i}}(x).$$

Allows for the following approximation of the integral,

$$\mathbb{E}_{\pi}[\varphi(X)] = \int \varphi(x)\pi(x)dx \approx \int \varphi(x)\sum_{i=1}^{N} \frac{1}{N} \delta_{x^{i}}(x)dx = \frac{1}{N}\sum_{i=1}^{N} \varphi(x^{i})$$

$$\int + \delta \to \sum$$
"

4/16

The Monte Carlo idea (II/II)

The integral

$$I(\varphi) = \mathbb{E}_{\pi}[\varphi(X)] = \int \varphi(x)\pi(x)\mathsf{d}x$$

is approximated by

$$\widehat{I}_N(\varphi) = \frac{1}{N} \sum_{i=1}^N \varphi(x^i).$$

The strong law of large numbers tells us that

$$\widehat{I}_{\mathcal{N}}(\varphi) \xrightarrow{\text{a.s.}} I(\varphi), \qquad \mathcal{N} \to \infty,$$

and the central limit theorem states that

$$\frac{\sqrt{N}\left(\widehat{I}_{N}(\varphi)-I(\varphi)\right)}{\sigma_{\varphi}}\stackrel{\mathrm{d}}{\longrightarrow}\mathcal{N}\left(0,1\right),\qquad N\to\infty.$$

5/16

The Monte Carlo idea – toy illustration

$$\pi(x) = 0.3\mathcal{N}(x \mid 2, 2) + 0.7\mathcal{N}(x \mid 9, 19)$$

Obvious problem: In general we are **not** able to directly sample from the density we are interested in.

Importance sampling

Importance sampling – proposal distribution

The **proposal distribution**¹ is chosen by the user:

- 1. It should be simple to sample from and
- 2. we require q(x) > 0 for all x where $\pi(x) > 0$

Idea: Chose the **proposal** density q(x) such that it is easy to generate samples from it and somehow **compensate** for the mismatch between the target and the proposal.

7/16

Self-normalized importance sampling

Point-wise evaluation of the target

It is often the case that the target density $\pi(x)$ can only be evaluated "up to an unknown normalization constant Z",

$$\pi(x) = \frac{\widetilde{\pi}(x)}{Z}$$

where $\widetilde{\pi}(x)$ can be evaluated for any x, but the constant Z is unknown.

Ex. (nonlinear joint filtering problem) The target density given by $\pi(x) = p(x_{0:t} | y_{1:t})$ and we have

$$\underbrace{p(x_{0:t} \mid y_{1:t})}_{\pi(x)} = \underbrace{\frac{\overbrace{p(x_{0:t}, y_{1:t})}^{\widetilde{\pi}(x)}}_{p(y_{1:t})}}_{T},$$

where we can evaluate $\widetilde{\pi}(x) = p(x_{0:t}, y_{1:t})$ point-wise, but $Z = p(y_{1:t})$ is intractable in general.

8/16

Self-normalized importance sampling

Insert

$$\pi(\mathbf{x}) = \frac{\widetilde{\pi}(\mathbf{x})}{Z}$$

into the importance sampling integral results in

$$I(\varphi) = \mathbb{E}[\varphi(X)] = \int \varphi(x) \frac{\widetilde{\pi}(x)}{Zq(x)} q(x) dx = \frac{1}{Z} \int \varphi(z) \underbrace{\frac{\widetilde{\pi}(x)}{q(x)}}_{=\omega(x)} q(x) dx$$

Hence, the importance sampling estimator is

$$\widetilde{I}^{N}(\varphi) = \frac{1}{NZ} \sum_{i=1}^{N} \widetilde{w}^{i} \varphi(x^{i}),$$

where $\widetilde{w}^i = \omega(x^i)$.

The normalization constant Z is still problematic.

9/16

¹a.k.a. importance distribution or instrumental distribution.

Self-normalized importance sampling

The normalization constant is given by the following integral

$$Z=\int \widetilde{\pi}(x)\mathrm{d}x,$$

which we can approximate using our samples $\{x^i\}_{i=1}^N$ from q(x). The result is

$$Z = \int \frac{\widetilde{\pi}(x)}{q(x)} q(x) dx \approx \frac{1}{N} \sum_{i=1}^{N} \widetilde{w}^{i}$$

The self-normalized importance sampling estimate is obtained by inserting this into $\widetilde{I}^N(\varphi)$,

$$\widetilde{I}^{N}(\varphi) = \sum_{i=1}^{N} w^{i} \varphi(x^{i}), \qquad w^{i} = \frac{\widetilde{w}^{i}}{\sum_{j=1}^{N} \widetilde{w}^{j}}$$

10/16

Self-normalized importance sampling

Algorithm 1 Importance sampler

- 1. Sample $x^i \sim q(x)$.
- 2. Compute the weights $\widetilde{w}^i = \widetilde{\pi}(x^i)/q(x^i)$.
- 3. Normalize the weights $w^i = \widetilde{w}^i / \sum_{j=1}^N \widetilde{w}^j$.

Each step is carried out for i = 1, ..., N.

The convergence of the resulting approximation $\widehat{\pi}^N(x) = \sum_{i=1}^N w^i \delta_{x^i}(x)$ is since long well established.

The fact that we are sampling from a user-chosen proposal distribution q(x) is corrected for by the weights, which accounts for the discrepancy between the proposal q(x) and the target $\pi(x)$.

11/16

The importance of a good proposal density

$$q_2(x) = \mathcal{N}(x \mid 1, 20)$$
 (dashed)

50 000 samples were used in both simulations.

Lesson learned: It is important to be careful in selecting the proposal distribution.

Ex) Importance sampling of the joint filtering PDF

Problem statement: Use importance sampling to compute the joint filtering PDF $p(x_{1:t} | y_{1:t})$ for $(x = x_{1:t}, \pi(x) = p(x_{1:t} | y_{1:t}))$

$$X_{t+1} | (X_t = x_t) \sim p(x_{t+1} | x_t),$$
 $X_{t+1} = f(X_t) + V_t,$
 $Y_t | (X_t = x_t) \sim p(y_t | x_t),$ $Y_t = g(X_t) + E_t,$
 $X_0 \sim p(x_0).$ $X_0 \sim p(x_0).$

Key challenge: Nontrivial to design proposal distributions for high-dimensional problems. Here the dimension of the space \mathcal{X}^t grows with t! $(x_t \in \mathcal{X})$.

Ex) Importance sampling of the joint filtering pdf

Idea: Reuse computations over time by exploiting the sequential structure of the SSM via a proposal distribution that factorizes as

$$q(x_{0:t} \mid y_{1:t}) = q(x_0) \prod_{s=1}^t q(x_s \mid x_{0:s-1}, y_{1:s}) = q(x_0) \prod_{s=1}^t q(x_s \mid x_{s-1}, y_s)$$

Next we derive the weight function

$$\omega_{t}(x_{0:t}) = \frac{\widetilde{\pi}(x_{0:t})}{q(x_{0:t})} = \frac{p(x_{0:t}, y_{1:t})}{q(x_{0:t} | y_{1:t})} = \dots$$

$$= \frac{p(y_{t} | x_{t})p(x_{t} | x_{t-1})}{q(x_{t} | x_{t-1}, y_{t})} \underbrace{\frac{p(x_{0:t-1}, y_{1:t-1})}{q(x_{0:t-1} | y_{1:t-1})}}_{\omega_{t-1}(x_{0:t-1})}$$

Hence, the weights can also be computed sequentially

$$\widetilde{w}_t = \frac{p(y_t \mid x_t)p(x_t \mid x_{t-1})}{q(x_t \mid x_{t-1}, y_t)}\widetilde{w}_{t-1}$$

14/16

A few concepts to summarize lecture 3

Monte Carlo method: Computational method making use of random sampling to obtain numerical solutions.

Target density: The probability density function that we are interested in.

Empirical approximation: An approximation of a distribution made up of weighted samples.

Importance sampling: A general technique for estimating properties of some target distribution when we only have access to samples from a distribution that is different from the target distribution.

Proposal distribution: A user-chosen distribution that it should be simple to sample from.

Sequential importance sampling: An importance sampler where the proposal distribution is defined sequentially and where the weights can be evaluated sequentially.

Ex) Importance sampling of the joint filtering pdf

Sequential importance sampling: New samples are proposed sequentially and weights are computed sequentially.

Show stopper: It can be shown that the variance of the weights will grow unboundedly (weight degeneracy).

Practical consequence of weight degeneracy: after some time there will only be one weight with non-zero value (more in lecture 5).

Next lecture we will derive a working importance sampler by directly target the (marginal) filtering density $p(x_t | y_{1:t})$.

Note that the dimension of x_t is fixed, whereas the dimension of $p(x_{0:t} | y_{1:t})$ grows with t.

15/16