$$V = \{v : \forall w (w \in W \to w \not\sqsubseteq v)\} \qquad pref(V) = \{u : \exists v (u \sqsubseteq v \land v \in V)\}$$

$$W \triangleright V = \bigcup_{x \in W} x \triangleright V = \bigcup \min_{\sqsubseteq} \{v : v \in V \land x \sqsubseteq v\}$$

Wegen $x \in W$ und $x \sqsubseteq v$ gilt $\{v : v \in V \land x \sqsubseteq v\} = \emptyset \Rightarrow \bigcup \min_{\sqsubseteq} \{v : v \in V \land x \sqsubseteq v\} = \emptyset$

$$W \cdot X^* \triangleright V = \bigcup_{x \in W \cdot X^*} x \triangleright V = \bigcup_{x \in W \cdot X^*} \min_{\sqsubseteq} \{v : v \in V \land x \sqsubseteq v\} = \emptyset$$

Begründung analog Fall $W \triangleright V$

$$W \triangleright pref(V) = \bigcup_{w \in W} w \triangleright pref(V) = \bigcup_{w \in W} \{v : v \in pref(V) \land w \sqsubseteq v\} = \emptyset$$

 $w \sqsubseteq v$ ist nie erfuellt. Angenommen $v \in pref(V) \land w \sqsubseteq v$, dann kann man v wie folgt verlaengern $v' = v \cdot v''$ mit $v' \in V$, dann waere $v' = w \cdot w' \cdot v''$ mit $w \cdot w' = v$. Dadurch gilt aber $v' \in V \land w \sqsubseteq v' \land w \in W \Rightarrow$ Widerspruch zur Definition.

$$W \cdot X^* \triangleright X^* = \bigcup_{u \in W \cdot X^*} u \triangleright X^* = \bigcup_{u \in W \cdot X^*} \min_{\sqsubseteq} \{w : w \in X^* \land u \sqsubseteq w\}$$
$$= \bigcup_{u \in W \cdot X^*} \min(X^* \cap u \cdot X^*) = \bigcup_{u \in W \cdot X^*} \min(u) = \bigcup_{u \in W \cdot X^*} u = W \cdot X^*$$

$$W \cdot X^* \triangleright W = \bigcup_{u \in W \cdot X^*} u \triangleright W = \bigcup_{u \in W \cdot X^*} \min_{\sqsubseteq} \{w : w \in W \land u \sqsubseteq w\} = \bigcup_{u \in W \cdot X^*} \min(W \cap u \cdot X^*)$$

- 1. Fall: $u \in W \Rightarrow W \cap u \cdot X^* = u$
- 2. Fall: $u \in W \cdot X^+ \Rightarrow W \cap u \cdot X^* = \emptyset$ oder $W \cap u \cdot X^* = u$ wenn $u \in W$

$$\begin{split} \bigcup_{u \in W \cdot X^*} \min(u) &= W \\ pref(V) \triangleright W \cdot X^* &= \bigcup_{u \in pref(V)} u \triangleright W \cdot X^* = \bigcup_{u \in pref(V)} \min_{\sqsubseteq} \{w : w \in W \cdot X^* \wedge u \sqsubseteq w\} \\ &= \bigcup_{u \in pref(V)} \min(W \cdot X^* \cap u \cdot X^*) = \bigcup_{u \in pref(V)} \min(\{w : w \in W \wedge u \sqsubseteq w\}) \\ W \cdot X^* \triangleright pref(V) &= \bigcup_{u \in W \cdot X^*} u \triangleright pref(V) = \bigcup_{u \in W \cdot X^*} \min_{\sqsubseteq} \{w : w \in pref(V) \wedge u \sqsubseteq w\} \\ &= \bigcup_{u \in W \cdot X^*} \min(pref(V) \cap u \cdot X^*) \end{split}$$

 $pref(V)\cap u\cdot X^*=\emptyset,$ Begründung siehe oben $\Rightarrow \bigcup_{u\in W\cdot X^*}\min(\emptyset)=\emptyset$