H2 Further Mathematics Summary Notes

 ${\bf Nousername SG}$

 $March\ 6,\ 2023$

Contents

0	Assumed Knowledge	3
	0.1 Algebra	3
	0.2 Trigonometry	4
1	Graphing Techniques	5
	1.1 Graph Features	5
	1.2 Types of Graphs	6
	1.3 Linear Transformations	9
	1.4 Conic Sections	10
	1.5 Parametric Equations	12
2	Equations & Inequalities	13
3	Functions	13
4	Sequences & Series	14
5	Vectors	14
6	Recurrence Relations	15

0 Assumed Knowledge

0.1 Algebra

0.1.1 Completing the Square

$$ax^{2} + bx + c = a\left(x + \frac{b}{2a}\right)^{2} + c - a\left(\frac{b}{2a}\right)^{2}$$

$$\operatorname{Min}/\operatorname{Max} \operatorname{Point} \to \left(-\frac{b}{2a}, c - a\left(\frac{b}{2a}\right)^2\right)$$

0.1.2 Nature of Roots

 $Discriminant < 0 \implies \text{No Real Roots}$

 $Discriminant = 0 \implies 2$ Equal Roots

 $Discriminant > 0 \implies 2$ Distinct Roots

0.1.3 Vieta's Formulas (Degree of 2)

Suppose that $\alpha + \beta$ are the two roots of $ax^2 + bx + c = 0$, $a \neq 0$

Sum of roots = $\alpha + \beta = -\frac{b}{a}$

Product of roots = $\alpha\beta = \frac{c}{a}$

0.1.4 General Vieta's formulas

0.1.5 Polymonials

Expansions:

$$(a \pm b)^{2} = a^{2} \pm 2ab + b^{2}$$

$$(a \pm b)^{3} = a^{3} \pm 3a^{2}b + 3ab^{2} \pm b^{3}$$

$$a^{2} - b^{2} = (a + b)(a - b)$$

$$a^{3} \pm b^{3} = (a \pm b)(a^{2} \mp ab + b^{2})$$

Binomial Formula:

$$(a+b)^n = \sum_{r=0}^n \binom{n}{r} a^{n-r} (b)^r$$

0.1.6 Partial Fractions

$$\begin{split} \frac{f(x)}{(ax+b)(cx+d)} &= \frac{A}{ax+b} + \frac{B}{cx+d} \,,\, A,B \in \mathbb{R} \\ \frac{f(x)}{(ax+b)(cx+d)^2} &= \frac{A}{ax+b} + \frac{B}{cx+d} + \frac{C}{(cx+d)^2} \,,\, A,B,C \in \mathbb{R} \\ \frac{f(x)}{(ax+b)(cx^2+d)} &= \frac{A}{ax+b} + \frac{Bx+C}{cx^2+d} \,,\, A,B,C \in \mathbb{R} \end{split}$$

0.1.7 Factor & Remainder Theorem

Given a polynomial f(x),

If
$$f\left(\frac{b}{a}\right) = 0$$
, $a, b \in \mathbb{R}, a \neq 0$, $(ax - b)$ is **factor** of $f(x)$

If
$$f\left(\frac{b}{a}\right)=c,\ a,b\in\mathbb{R}, a\neq 0$$
, the **remainder** of $f(x)$ divided by $(ax-b)$ is c

0.1.8 Logarithmic & Exponential

In General: $y = a^x \iff x = log_a(y), a > 0, a \neq 1$

Exponential	Logarithmic
$\forall x \in \mathbb{R}, f(x) > 0$	$D_f = \mathbb{R}^+$
y-intercept : $y = 1$	x-intercept : $x = 1$
y = 0 is an asymptote	x = 0 is an asymptote
f(x) is increasing for $a > 1$	f(x) is increasing for $a > 1$
f(x) is decreasing for	f(x) is decreasing for
0 < a < 1	0 < a < 1

Rules of Indices	Laws of Logarithm
If $a, b, m \in \mathbb{R}^+$	If $a, m, n \in \mathbb{R}^+$, $a > 0$, $a \neq 1$
$a^m * a^n = a^{m+n}$	$\log_a mn = \log_a m + \log_a n$
$a^m \div a^n = a^{m-n}$	$\log_a \frac{m}{n} = \log_a m - \log_a n$
$\left(a^{m}\right)^{n} = a^{mn}$	$\log_a m^n = n \log_a m$
$a^m * b^m = (a+b)^m$	$\log_n m = \frac{\log_a m}{\log_a n}$
$a^m \div b^m = \left(\frac{a}{b}\right)^m$	

0.1.9 Modulus

Generally, the modulus function is defined as

$$|f(x)| = \begin{cases} f(x) & \text{if } x \ge 0\\ -f(x) & \text{if } x < 0 \end{cases}$$

0.2 Trigonometry

0.2.1 Trigo Ratios for a General Angle

$$\sin \theta = \frac{g}{r}$$
 $\csc \theta = \frac{r}{g}$
 $\cos \theta = \frac{b}{r}$ $\sec \theta = \frac{r}{b}$
 $\tan \theta = \frac{g}{b}$ $\cot \theta = \frac{b}{g}$

0.2.2 Principal Values

$$\begin{aligned} -\frac{\pi}{2} & \leq \sin^{-1} x \leq \frac{\pi}{2} \text{ where } x \in [-1, 1] \\ 0 & \leq \sin^{-1} x \leq \pi \text{ where } x \in [-1, 1] \\ -\frac{\pi}{2} & < \tan^{-1} x < \frac{\pi}{2} \text{ where } x \in \mathbb{R} \end{aligned}$$

0.2.3 Graphs of Trigo Functions

0.2.4 Sine & Cosine Rules

Given any triangle with sides of length a, b, c and opposite angles A, B, C

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2(b)(c)\cos A$$
$$\cos A = \frac{b^2 + c^2 - a^2}{2(b)(c)}$$

0.2.5 R-Formula

A Sum or difference of Sines and cosines can be represented with a single trig function if they have the same angles

$$a \sin \theta \pm b \cos \theta = \sin (\theta \pm \alpha)$$
$$a \cos \theta \mp b \cos \theta = \cos (\theta \pm \alpha)$$

$$R = \sqrt{a^2 + b^2} \ \& \ \alpha = \tan^{-1} \left(\frac{b}{a}\right)$$

0.2.6 Basic Identities

Area of Triangle =
$$\frac{1}{2}(a)(b) \sin \theta$$

 $\sin^2 \theta + \cos^2 \theta = 1$
 $\tan^2 \theta + 1 = \sec^2 \theta$
 $\cot^2 \theta + 1 = \csc^2 \theta$

0.2.7 Sum of Angles

$$\sin(A \pm B) = \sin(A)\cos(B) \pm \cos(A)\sin(B)$$

$$\cos(A \pm B) = \cos A \cos(B) \mp \sin(A)\sin(B)$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan(A)\tan(B)}$$

$$\sin 2A = 2\sin(A)\cos(A)$$

$$\cos 2A = \cos^2(A) \mp \sin^2(A)$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2(A)}$$

0.2.8 Fator & Reverse Factor Theorem

$$\sin A + \sin B = 2 \sin \left[\frac{1}{2} (A + B) \right] \cos \left[\frac{1}{2} (A - B) \right]$$

$$\sin A - \sin B = 2 \cos \left[\frac{1}{2} (A + B) \right] \sin \left[\frac{1}{2} (A - B) \right]$$

$$\cos A + \cos B = 2 \cos \left[\frac{1}{2} (A + B) \right] \cos \left[\frac{1}{2} (A - B) \right]$$

$$\cos A - \cos B = 2 \sin \left[\frac{1}{2} (A + B) \right] \sin \left[\frac{1}{2} (A - B) \right]$$

$$\sin(A + B)\cos(A - B) = \frac{1}{2}(\sin 2A + \sin 2B)$$

$$\cos(A + B)\sin(A - B) = \frac{1}{2}(\sin 2A - \sin 2B)$$

$$\cos(A + B)\cos(A - B) = \frac{1}{2}(\cos 2A + \cos 2B)$$

$$\sin(A + B)\sin(A - B) = -\frac{1}{2}(\cos 2A - \cos 2B)$$

1 Graphing Techniques

1.1 Graph Features

1.1.1 Basic characteristics

Axial Intercepts

x - intercept : y = 0y - intercept : x = 0

Stationary Points

Stationary points are points on a curve where

$$\left. \frac{dy}{dx} \right|_{x=k} = 0, \, k \in \mathbb{R}$$

The Nature of the stationary point can be determined by using the second or first derivative tests

Asymptotes

A Line or curve that a function approaches arbitrarily close to

Horizontal: when $x \to \infty$, $y \to a$, where $a \in \mathbb{R}$ $\therefore y = a$ Vertical: when $y \to \infty$, $x \to b$, where $b \in \mathbb{R}$ $\therefore x = b$ Oblique: when $x \to \infty$, $y \to cx + d$, where $c, d \in \mathbb{R}$ $\therefore y = cx + d$

A Horizontal Asymptote can be cut through, but vertical asymptotes will never be passed through

1.1.2 Symmetry

Symmetric about the x-axis

If (x, y) is a point on the curve, (x, -y) will also be a point on the curve

^{*}Not in MF26

Symmetric about the y-axis (Even Functions)

Mathematically, f(x) = f(-x)

Symmetric about the origin (Odd Functions)

Mathematically, f(x) = -f(x)

1.2 Types of Graphs

1.2.1 Power Functions

General Power Function : $f(x) = ax^n$, $a \in \mathbb{R}^+$

When n is an even positive integer

Function Type: Even Function

Common Points : (-1, a), (0, 0), (1, a)

When n is an odd positive integer, $n \geq 3$

Function Type: Odd Function

Common Points: (-1, -a), (0, 0), (1, a)

When n is an even negative integer

Function Type : Even Function $% \left(-1\right) =-1$

Common Points: (-1, a), (0, 0), (1, a)

Horizontal Asymptote : y = 0

Vertical Vertical : x = 0

When n is an odd negative integer

Function Type : Odd Function

Common Points: (-1, -a), (0, 0), (1, a)

Horizontal Asymptote : y = 0Vertical Vertical : x = 0

When $n \in \mathbb{Q}$ in the form $\frac{1}{k}$ Such that k is an even positive integer

Common Points: (0,0), (1,a)

When $n \in \mathbb{Q}$ in the form $\frac{1}{k}$ Such that k is an odd positive integer

Function Type: Odd Function

Common Points: (-1, -a), (0, 0), (1, a)

1.2.2 Piecewise Functions

Different intervals each has a different definition

$$f(x) = \begin{cases} H(x), & \text{if } a \le x < b \\ G(x), & \text{if } b \le x < c \\ Q(x), & \text{Otherwise} \end{cases}$$

When the function is **discontinuous** between intervals, A **Solid** dot is used if the point is on the interval, an **empty** is used if it isn't

When the function is **Continuous** between intervals, dots are not needed

1.2.3 Periodic Functions

A function that repeats itself after an interval, Mathematically, $f(x + \alpha) = f(x)$, where $\alpha \in \mathbb{R}$

In this example, the function f(x) had an interval of $0 \le x < a$

1.2.4 Rational Functions Quadratic Over Linear Functions A rational function is in the form $y = \frac{p(x)}{q(x)}$, where p(x), q(x) $y = \frac{ax^2 + bx + c}{dx + f} \implies y = px + q + \frac{r}{dx + f}$ are polynomials

Types of Rational Functions

Degree of p(x) < Degree of q(x)

y = 0 is the Horizontal Asymptote

Solutions to q(x) = 0 will yield the Vertical Asymptote(s)

Degree of $p(x) \ge$ Degree of q(x)

Degree of
$$p(x) \ge$$
 Degree of $q(x)$

$$y = \frac{p(x)}{q(x)} \equiv y = h(x) + \frac{r(x)}{q(x)}, \text{ where } deg(r(x)) < deg(q(x))$$

$$y = h(x) \text{ is the Oblique Asymptote}$$

y = h(x) is the Oblique Asymptote

Solutions to q(x) = 0 will yield the Vertical Asymptote(s)

Rectangular Hyperbola

Rectangular Hyperbola :
$$y = \frac{ax+b}{cx+d} \implies y = p + \frac{ax+b}{cx+d}$$

where $c \neq 0, x \neq -\frac{d}{c}$. The possible curve shapes are

The Function is first to be rationalized by long division,

the Asymptotes and graph features can be found with the information above

$$\int y = \frac{ax^2 + bx + c}{dx + f} \implies y = px + q + \frac{r}{dx + f}$$

One Oblique Asymptote : y = px + q

One Vertical Asymptote : $x = -\frac{f}{d}$

Case 1: Two Turning Points

Case 2: No Turning Points

Linear Over Quadratic Functions

$$y = \frac{dx + f}{ax^2 + bx + c} \implies y = 0 + dx + fax^2 + bx + c$$

One Horizontal Asymptote : y = 0

Vertical Asymptote(s) : Solve for denominator = 0

 \mid Solutions = Asymptote(s)

Example: When there are 2 Vertical Asymptotes

1.2.5 Reciprocal Functions

	1
y = f(x)	$y = \frac{1}{f(x)}$
x-intercept : $x = a$	Vertical Asymptote :
	x = a
*Vertical Asymptote :	*x-intercept : $x = a$
x = a	
(a,b)	$**\left(a, \frac{1}{b}\right)$
Local Maxima : (a, b)	Local Minima : ** $\left(a, \frac{1}{b}\right)$
Local Minima : (a, b)	Local Maxima:
	$**\left(a, \frac{1}{b}\right)$
Horizontal Asymptote:	Horizontal Asymptote:
y = b	$y = \frac{1}{b}$
Oblique Asymptote :	Horizontal Asymptote:
y = ax + b	y = 0
f(x) is increasing	$\frac{1}{f(x)}$ is decreasing
f(x) is decreasing	$\frac{1}{f(x)}$ is increasing

^{*} True for \mathbf{most} cases

1.3 Linear Transformations

1.3.1 Translation

$$y = f(x - a)$$

- Translation of the graph f(x) by a units in the direction of the x-axis
- Add a to all of the x-coordinates

$$y = f(x - a)$$

- Translation of the graph f(x) by -a units in the direction of the x-axis
- Subtract a to all of the x-coordinates

$$y = f(x) + a$$
 or $y - a = f(x)$

- Translation of the graph f(x) by a units in the direction of the y-axis
- \bullet Add a to all of the y-coordinates

$$y = f(x) - a$$
 or $y + a = f(x)$

- Translation of the graph f(x) by -a units in the direction of the y-axis
- Subtract a to all of the y-coordinates

^{**} $b \neq 0$

1.3.2 Scaling

$$y = f\left(\frac{x}{a}\right)$$

- Scaling the graph f(x) by a scale factor of a parallel to the x-axis
- \bullet Multiply a to all of the x-coordinates

$$y = af(x)$$
 or $\frac{y}{a} = f(x)$

- Scaling the graph f(x) by a scale factor of a parallel to the y-axis
- Multiply a to all of the y-coordinates

1.3.3 Reflection

$$\underline{y = f(-x)}$$

- Reflecting the graph f(x) about y-axis
- Multiply -1 to all of the x-coordinates

$$y = -f(x)$$

- Reflecting the graph f(x) about x-axis
- Multiply -1 to all of the y-coordinates

1.3.4 Modulus Transformations

$$y = |f(x)|$$

- Reflect the graph f(x) about y-axis for the regions below the x-axis
- Multiply -1 to the *y*-coordinates of the **reflected points**

$$y = f(|x|)$$

- Remove the graph that is in the **negative** x-axis Reflect the remaining graph f(x) about y-axis
- Multiply −1 to the x-coordinates of the reflected points

$$|y| = f(x)$$

- Remove the graph that is in the **negative** y-axis Reflect the remaining graph f(x) about x-axis
- Multiply -1 to the *y*-coordinates of the **reflected points**

1.3.5 Sequence of Tranformations

Suggested Sequence to minimise errors:

- 1. T_x Horizontal Translation
- 2. S_x Horizontal Scaling
- 3. S_y Vertical Scaling
- 4. T_y Vertical Translation

Sequence : $T_x S_x S_y T_y$

1.4 Conic Sections

1.4.1 Ellipses

Standard Form : $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$

Properties

- Center: (h, k)
- Semi-Major-Axis : a
- Semi-Minor-Axis : b
- Symmetrical about x = h & y = k

1.4.2 Circles

Standard Form : $(x - h)^2 + (y - k)^2 = 1$

Properties

• Center: (h, k)

 \bullet Radius : a

• Symmetrical about x = h & y = k

1.4.3 Hyperbolas

Standard Form : $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$

Properties

• Center: (h, k)

 Symmetrical about $x = h \ \& \ y = k$

• Vertices are 'b' units from the center (h, k)Vertically

• Oblique Asymptotes are $y = \pm \frac{b}{a}(x - h) + k$

Standard Form :
$$\frac{(y-k)^2}{b^2} - \frac{(x-h)^2}{a^2} = 1$$

Properties

• Vertexes : $(h, k \pm b)$

• Symmetrical about x = h & y = k

• Vertices are 'a' units from the center (h, k)Horizontally

• Oblique Asymptotes are $y = \pm \frac{b}{a}(x - h) + k$

1.4.4 Parabolas

Standard Form : $(x - h)^2 = 4p(y - k)$

Properties

• Vertex : (h, k)

• Symmetrical about x = h

• If p > 0, $y \ge k \ \forall x (x \in \mathbb{R})$ If p < 0, $y \le k \ \forall x (x \in \mathbb{R})$

Standard Form : $(y - h)^2 = 4p(x - k)$

Properties

• Vertex : (h, k)

• If p > 0, $x \ge h \ \forall y (y \in \mathbb{R})$ If p < 0, $x \le h \ \forall y (y \in \mathbb{R})$

- 1.5 Parametric Equations
- 1.5.1 Sketching Parametric Curves
- 1.5.2 Finding Asymptotes of Parametric Curves
- 1.5.3 Conversion of Parametric to Cartesian Equations

${\bf 2}\quad {\bf Equations}\ \&\ {\bf Inequalities}$

3 Functions

Hello, here is some text without a meaning...

Hello, here is some text without a meaning...

4 Sequences & Series

5 Vectors

Hello, here is some text without a meaning...

Hello, here is some text without a meaning...

6 Recurrence Relations

Hello, here is some text without a meaning...