Rank-74052 over GF(8)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^3 + X_0^2 X_3 + X_1^2 X_2 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over GF(8) is 1244172878

General information

Number of lines	2
Number of points	65
Number of singular points	1
Number of Eckardt points	0
Number of double points	1
Number of single points	16
Number of points off lines	48
Number of Hesse planes	0
Number of axes	0
Type of points on lines	9^{2}
Type of lines on points	$2, 1^{16}, 0^{48}$

Singular Points

The surface has 1 singular points:

$$0: P_2 = \mathbf{P}(0,0,1,0) = \mathbf{P}(0,0,1,0)$$

The 2 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4680} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4680} = \mathbf{Pl}(0, 0, 0, 1, 0, 0)_{17}$$

$$\ell_1 = \left[\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]_{4744} = \left[\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]_{4744} = \mathbf{Pl}(0, 1, 0, 0, 0, 0)_1$$

Rank of lines: (4680, 4744)

Rank of points on Klein quadric: (17, 1)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 1 Double points: The double points on the surface are:

$$P_3 = (0,0,0,1) = \ell_0 \cap \ell_1$$

Single Points

The surface has 16 single points: The single points on the surface are:

9: $P_{138} = (0,0,1,1)$ lies on line ℓ_1
10: $P_{201} = (0, 0, 2, 1)$ lies on line ℓ
11: $P_{265} = (0,0,3,1)$ lies on line ℓ
$12: P_{329} = (0,0,4,1)$ lies on line ℓ
13: $P_{393} = (0,0,5,1)$ lies on line ℓ
$14: P_{457} = (0,0,6,1)$ lies on line ℓ
15: $P_{521} = (0,0,7,1)$ lies on line ℓ

The single points on the surface are:

Points on surface but on no line

The surface has 48 points not on any line: The points on the surface but not on lines are:

$0: P_{22} = (3, 1, 1, 0)$	$11: P_{167} = (6, 3, 1, 1)$
$1: P_{24} = (5, 1, 1, 0)$	$12: P_{180} = (3, 5, 1, 1)$
$2: P_{25} = (6, 1, 1, 0)$	13: $P_{181} = (4, 5, 1, 1)$
$3: P_{30} = (3, 2, 1, 0)$	$14: P_{183} = (6, 5, 1, 1)$
$4: P_{48} = (5, 4, 1, 0)$	15: $P_{188} = (3, 6, 1, 1)$
$5: P_{73} = (6,7,1,0)$	$16: P_{190} = (5, 6, 1, 1)$
$6: P_{147} = (2, 1, 1, 1)$	17: $P_{192} = (7, 6, 1, 1)$
$7: P_{149} = (4, 1, 1, 1)$	$18: P_{212} = (3, 1, 2, 1)$
$8: P_{152} = (7, 1, 1, 1)$	$19: P_{218} = (1, 2, 2, 1)$
$9: P_{163} = (2,3,1,1)$	$20: P_{220} = (3, 2, 2, 1)$
$10: P_{166} = (5, 3, 1, 1)$	$21: P_{226} = (1, 3, 2, 1)$

```
22: P_{229} = (4, 3, 2, 1)
                                                                  36: P_{445} = (4, 6, 5, 1)
23: P_{261} = (4,7,2,1)
                                                                  37: P_{452} = (3,7,5,1)
24: P_{287} = (6, 2, 3, 1)
                                                                  38: P_{478} = (5, 2, 6, 1)
                                                                  39: P_{488} = (7, 3, 6, 1)
25: P_{303} = (6,4,3,1)
26: P_{307} = (2, 5, 3, 1)
                                                                  40: P_{496} = (7, 4, 6, 1)
                                                                  41: P_{518} = (5, 7, 6, 1)
27: P_{323} = (2,7,3,1)
28: P_{342} = (5, 1, 4, 1)
                                                                  42: P_{535} = (6, 1, 7, 1)
29: P_{352} = (7, 2, 4, 1)
                                                                  43 : P_{555} = (2, 4, 7, 1)
30: P_{362} = (1, 4, 4, 1)
                                                                  44: P_{570} = (1, 6, 7, 1)
31: P_{366} = (5, 4, 4, 1)
                                                                  45: P_{571} = (2, 6, 7, 1)
32: P_{370} = (1, 5, 4, 1)
                                                                  46: P_{578} = (1, 7, 7, 1)
33: P_{376} = (7, 5, 4, 1)
                                                                  47: P_{583} = (6, 7, 7, 1)
34: P_{413} = (4, 2, 5, 1)
35: P_{428} = (3, 4, 5, 1)
```

Line Intersection Graph

 $\begin{array}{c|c} 0 \ 1 \\ \hline 0 \ 0 \ 1 \\ 1 \ 1 \ 0 \end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1
in point	P_3

 ${\bf Line~1~intersects}$

Line	ℓ_0
in point	P_3

The surface has 65 points:

The points on the surface are:

$0: P_1 = (0, 1, 0, 0)$	$22: P_{167} = (6, 3, 1, 1)$	$44: P_{362} = (1, 4, 4, 1)$
$1: P_2 = (0,0,1,0)$	$23: P_{180} = (3, 5, 1, 1)$	$45: P_{366} = (5, 4, 4, 1)$
$2: P_3 = (0,0,0,1)$	$24: P_{181} = (4, 5, 1, 1)$	$46: P_{370} = (1, 5, 4, 1)$
$3: P_{22} = (3, 1, 1, 0)$	$25: P_{183} = (6, 5, 1, 1)$	$47: P_{376} = (7, 5, 4, 1)$
$4: P_{24} = (5, 1, 1, 0)$	$26: P_{188} = (3, 6, 1, 1)$	$48: P_{393} = (0, 0, 5, 1)$
$5: P_{25} = (6, 1, 1, 0)$	$27: P_{190} = (5, 6, 1, 1)$	$49: P_{413} = (4, 2, 5, 1)$
$6: P_{30} = (3, 2, 1, 0)$	$28: P_{192} = (7, 6, 1, 1)$	$50: P_{428} = (3, 4, 5, 1)$
$7: P_{48} = (5, 4, 1, 0)$	$29: P_{201} = (0, 0, 2, 1)$	$51: P_{445} = (4, 6, 5, 1)$
$8: P_{73} = (6,7,1,0)$	$30: P_{212} = (3, 1, 2, 1)$	$52: P_{452} = (3, 7, 5, 1)$
9: $P_{82} = (0, 1, 0, 1)$	$31: P_{218} = (1, 2, 2, 1)$	$53: P_{457} = (0, 0, 6, 1)$
$10: P_{90} = (0, 2, 0, 1)$	$32: P_{220} = (3, 2, 2, 1)$	$54: P_{478} = (5, 2, 6, 1)$
$11: P_{98} = (0, 3, 0, 1)$	$33: P_{226} = (1, 3, 2, 1)$	$55: P_{488} = (7, 3, 6, 1)$
$12: P_{106} = (0, 4, 0, 1)$	$34: P_{229} = (4, 3, 2, 1)$	$56: P_{496} = (7, 4, 6, 1)$
$13: P_{114} = (0, 5, 0, 1)$	$35: P_{261} = (4,7,2,1)$	$57: P_{518} = (5, 7, 6, 1)$
$14: P_{122} = (0, 6, 0, 1)$	$36: P_{265} = (0,0,3,1)$	$58: P_{521} = (0, 0, 7, 1)$
$15: P_{130} = (0, 7, 0, 1)$	$37: P_{287} = (6, 2, 3, 1)$	$59: P_{535} = (6, 1, 7, 1)$
$16: P_{138} = (0,0,1,1)$	$38: P_{303} = (6,4,3,1)$	$60: P_{555} = (2, 4, 7, 1)$
$17: P_{147} = (2, 1, 1, 1)$	$39: P_{307} = (2, 5, 3, 1)$	$61: P_{570} = (1, 6, 7, 1)$
$18: P_{149} = (4, 1, 1, 1)$	$40: P_{323} = (2, 7, 3, 1)$	$62: P_{571} = (2, 6, 7, 1)$
$19: P_{152} = (7, 1, 1, 1)$	$41: P_{329} = (0,0,4,1)$	$63: P_{578} = (1, 7, 7, 1)$
$20: P_{163} = (2, 3, 1, 1)$	$42: P_{342} = (5, 1, 4, 1)$	$64: P_{583} = (6, 7, 7, 1)$
$21: P_{166} = (5, 3, 1, 1)$	$43: P_{352} = (7, 2, 4, 1)$	