МП-31 Захаров Дмитро

Викладач: Гиря Н.П.

§ Відображення #2. Варіант 5 §

Задача 1: Лінійно-дробове відображення

Умова. Знайти образ області при заданому відображенні:

$$\mathcal{D} = \{ z \in \mathbb{C} : |z| < 1 \land \text{Im}(z) > 0 \}, \ \omega(z) = \frac{1}{z}$$
 (1.1)

Розв'язок. Наша область \mathcal{D} – верхня одинична півкуля (або кругова луночка). Вона обмежена дугою γ та відрізком [-1,1] ($\partial \mathcal{D} = \gamma \cup [-1,1]$). Отже, для того щоб визначити образ, потрібно дослідити, як змінюються дуга та відрізок під дією ω .

Відрізок. Маємо дійсні числа x від -1 до 1, вони перетворяться на дійсну множину $\mathbb{R} \setminus (-1,1)$ під дією відображення $x \mapsto \frac{1}{x}$.

Дуга. Тут ситуація цікавіша. Особлива точка z=0 не лежить на γ , тому дуга перетвориться на іншу дугу. Оскільки $\forall z \in \gamma: |\omega(z)| = \frac{1}{|z|} = 1$, то знову ж таки маємо дугу на одиничній кулі. Причому, $\omega(e^{i\varphi}) = e^{-i\varphi}$, тобто ω просто діє як оператор спряження $z \mapsto \overline{z}$ – таким чином, ми отримуємо нижню півкулю.

Отже, наша границя образу поки виглядає приблизно як це показано на Рисунку 1. Залишилося визначитися з тим, де знаходиться сама область. Для цього підставимо якусь точку з області \mathcal{D} , наприклад $z=\frac{i}{2}$. Тоді $\omega(\frac{i}{2})=\frac{2}{i}=-2i$ — лежить у нижній напівплощині. Отже, замальовувати ми маємо так, як це показано на Рисунку 2.

Задача 2: Експоненційне відображення

Умова. Знайти образ області при заданому відображенні:

$$\mathcal{D} = \{ z \in \mathbb{C} : -1 < \text{Re}(z) < 0, -1 < \text{Im}(z) < 0 \}, \ \omega(z) = e^z$$
 (2.1)

Рис. 1: Границя $\partial \omega(\mathcal{D})$. Червоним показано $\omega(\gamma)$, а синім $\omega([-1,1])$.

Рис. 2: Зеленим показано шуканий образ $\omega(\mathcal{D})$.

Рис. 3: Границя $\partial \omega(\mathcal{D})$. Різними кольорами відмічено різні сторони квадрату.

Розв'язок. Маємо квадрат $[-1,0] \times [-1,0]$ на комплексній площині. Тому, розіб'ємо $\partial \mathcal{D} = \gamma_X^+ \cup \gamma_Y^+ \cup \gamma_X^- \cup \gamma_Y^-$, де γ_X^+, γ_X^- права і ліва вертикальні сторони квадрату, відповідно, а γ_Y^+, γ_Y^- верхня і нижня сторони. Розглянемо кожну сторону окремо.

Сторона γ_X^+ . Можемо параметризувати її як z(t)=it для $t\in [-1,0],$ тому $\omega(z(t))=e^{it}$ – дає дугу кола від $e^{-i}=\cos 1-i\sin 1$ до 1 з величиною кута в один радіан.

Сторона γ_Y^+ . Маємо параметризацію відрізку z(t) = t для $t \in [-1, 0] \leftarrow$ (ліворуч). Відображення має вигляд $\omega(z(t)) = e^t$, а тому образом буде дійсний відрізок від 1 до $\frac{1}{a}$.

Сторона γ_{X}^{-} . Параметризуємо z(t) = -1 + it для $t \in [-1,0] \leftarrow$ (вниз). Тоді відображення $\omega(z(t)) = e^{-1+it} = \frac{1}{e} \cdot e^{it}$ – маємо коло радіусу $\frac{1}{e}$ від точки $\frac{1}{e} \cdot e^{-i} = \frac{\cos 1}{e} - \frac{\sin 1}{e}$ до $\frac{1}{e}$.

Сторона γ_Y^- . Параметризуємо z(t)=t-i для $t\in[-1,0]$ (праворуч). Тоді відображення $\omega(z(t))=e^{t-i}=e^t(\cos 1-i\sin 1)$ — маємо відрізок від $\frac{\cos 1}{e}-\frac{i\sin 1}{e}$ до $\cos 1-i\sin 1$.

Звучить це достатньо неінтуїтивно, тому намалюємо: маємо Рисунок 3. Залишилося обрати, де замальовувати область. Легше взяти точку за областю: наприклад, нехай $z_0 = 100$. Тоді, $\omega(z_0) = e^{100}$ — точка явно опинилася за областю. Це означає, що точки всередині області залишаються в області, а тому замальовувати треба всередині. Результат зображено на Рисунку 4.

Рис. 4: Шуканий образ, відмічений зеленим.

Рис. 5: Серія перетворень, спосіб 1.

Задача 3: Придумати відображення

Умова. Знайти функцію, яка здійснює конформне відображення області на верхню напівплощину Im(z) > 0 (двома способами).

$$\mathcal{D} = \{ z \in \mathbb{C} : z \neq [-2, 5] \}$$

$$(3.1)$$

Розв'язок.

Спосіб 1. Ідейно: спочатку перетворимо \mathcal{D} на множину $z \neq (0, +\infty)$, а далі перетворенням $z \mapsto \sqrt{z}$ завершимо все.

Отже, шукаємо таке лінійне-дробове перетворення, що зробить наступні відповідності: $-2\mapsto 0, 5\mapsto +\infty$. В якості такого перетворення візьмемо $\omega_1(z):=\frac{z+2}{5-z}$. Далі застосувавши перетворення $\omega_2(z):=\sqrt{z}$ переведемо $z\neq (0,+\infty)$ у множину $\mathrm{Im}(z)>0$. Отже, $\omega(z)=\omega_2\circ\omega_1(z)=\sqrt{\frac{z+2}{5-z}}$. Весь процес зображено на Рисунку 5.

Спосіб 2. Ідейно: переводимо спочатку \mathcal{D} у відрізок $z \neq [-1,1]$, далі у $z \neq \mathbb{R} \setminus [-1,1]$, а після цього застосуємо обернену функцію Жуковського.

Отже, спочатку зведемо $z \neq [-2,5]$ у $z \neq [-1,1]$. Для цього, наприклад, застосуємо лінійне перетворення $\omega_1(z) = \frac{2}{7}\left(z-\frac{3}{2}\right) = \frac{2z-3}{7}$ — легко побачити, що ми при цьому відобразимо $-2 \mapsto -1, 5 \mapsto 1$.

Далі, застосуємо відображення $\omega_2(z) = \frac{1}{z}$, що відобразить $z \neq [-1, 1]$ на $z \neq \mathbb{R} \setminus [-1, 1]$. Далі залишається лише застосувати обернену функцію Жуковського $\omega_3(z) = z + \sqrt{z^2 - 1}$, що перетворить все на шукану напівплощину $\operatorname{Im}(z) > 0$. Весь процес зображено на Рисунку 6. Компануємо все у купу:

$$\omega(z) = \omega_3 \circ \omega_2 \circ \omega_1(z) = \omega_3 \left(\frac{7}{2z - 3}\right) = \frac{7}{2z - 3} + \sqrt{\left(\frac{7}{2z - 3}\right)^2 - 1}$$
 (3.2)

Відповідь. Або
$$\omega(z)=\sqrt{\frac{z+2}{5-z}}$$
, або $\omega(z)=\frac{7}{2z-3}+\sqrt{\frac{49}{(2z-3)^2}-1}$.

Рис. 6: Серія перетворень, спосіб