

# Functions on path space and applications

IMANOL PEREZ

Mathematical Institute University of Oxford

Seminar



#### Functions on paths



- ▶ Let  $V \cong \mathbb{R}^d$  with  $d \ge 1$ .
- ▶ I will talk about a rough path perspective to real-valued functions on paths:

$$C([0,T];V) \to \mathbb{R}.$$

# Applications: machine learning





# Applications: finance



- ► Financial derivatives are essentially functions  $F: C([0,T];V) \to \mathbb{R}$ .
- ► A classical problem is to find the *price* of the financial derivative *F*, which is given by

$$\mathbb{E}^{\mathbb{Q}}[F(X)]$$

for some probability measure  $\mathbb{Q}$ .

#### Tensor algebra



# Definition (Extended tensor algebra)

The extended tensor algebra over V, denoted by  $\mathcal{T}((V))$ , is defined by

$$T((V)) := \{a = (a_0, a_1, \ldots, a_k, \ldots) : a_k \in V^{\otimes k} \text{ for each } k \in \mathbb{N}\}.$$

It is an algebra with the sum + and the product  $\otimes$ .



# Definition (Truncated tensor algebra)

Let  $n \ge 1$ . The truncated tensor algebra of order n over V is the subalgebra

$$T^n(V) := \bigoplus_{k=0}^n V^{\otimes k} \hookrightarrow T((V)).$$



# Definition (Signature of a path)

Let  $X:[0,T]\to V$  be a continuous path such that the integrations below make sense. We define the *signature* of X by

$$\mathbb{X}_{s,t}^{<\infty} := (1,\mathbb{X}_{s,t}^1,\ldots,\mathbb{X}_{s,t}^k,\ldots) \in \textit{T}((\textit{V})) \quad \text{for } 0 \leq s \leq t \leq \textit{T},$$

where

$$\mathbb{X}_{s,t}^k := \int_{s < u_1 < \dots < u_k < t} dX_{u_1} \otimes \dots \otimes dX_{u_k} \in V^{\otimes k}.$$

The truncated signature of order n is defined by

$$\mathbb{X}_{s,t}^{\leq n} := (1, \mathbb{X}_{s,t}^1, \dots, \mathbb{X}_{s,t}^n) \in T^n(V).$$



- ▶ If X has bounded variation, the integrals can be understood in the sense of Riemann–Stieltjes.
- ► If *X* is a semimartingale, we can define the integrals in the sense of Itô or Stratonovich.



# Example

For paths of bounded variation,

▶  $X_{0,T}^1$  is just the increment of the path,  $X_T - X_0 \in V$ .



#### Example

For paths of bounded variation,

- ▶  $X_{0,T}^1$  is just the increment of the path,  $X_T X_0 \in V$ .
- $ightharpoonup \mathbb{X}^2_{0,T} \in V^{\otimes 2}$  is the Lévy area of X.



# Example

For paths of bounded variation,

- ▶  $X_{0,T}^1$  is just the increment of the path,  $X_T X_0 \in V$ .
- $ightharpoonup \mathbb{X}^2_{0,T} \in V^{\otimes 2}$  is the Lévy area of X.
- ► Higher order terms of the signature capture other features of the trajectory of *X*.



# Definition (Geometric p-rough paths)

Let  $1 \leq p < \infty$ . Denote by  $G\Omega_p([0, T]; V)$  the closure (on a certain metric space) of the truncated signatures of order  $\lfloor p \rfloor$  of paths with bounded variation.



# Definition (Geometric *p*-rough paths)

Let  $1 \le p < \infty$ . Denote by  $G\Omega_p([0, T]; V)$  the closure (on a certain metric space) of the truncated signatures of order  $\lfloor p \rfloor$  of paths with bounded variation.

Denote by  $\widetilde{G\Omega}_p([0,T];V) \subset G\Omega_p([0,T];\mathbb{R}\times V)$  the closure of the truncated signatures of order  $\lfloor p \rfloor$  of the paired paths  $(t,X_t)$ , with  $X:[0,T]\to V$  a continuous path of bounded variation.



- ► The signature of a semimartingale in the sense of Stratonovich is a geometric rough path.
- ► The signature defined in the sense of Itô, however, is not a geometric rough path.



► The full signature on [0, T] of a geometric rough path fully characterises the path up to *tree-like equivalences* (Boedihardjo et al., 2016).



- ► The full signature on [0, T] of a geometric rough path fully characterises the path up to *tree-like equivalences* (Boedihardjo et al., 2016).
- ▶ If we consider the pair process  $(t, X_t)$  instead of  $X_t$ , then its signature is unique.



- ► The full signature on [0, T] of a geometric rough path fully characterises the path up to *tree-like equivalences* (Boedihardjo et al., 2016).
- ▶ If we consider the pair process  $(t, X_t)$  instead of  $X_t$ , then its signature is unique.
- Linear functions on signatures form an algebra (Lyons et al., 2004).



- ► The full signature on [0, T] of a geometric rough path fully characterises the path up to *tree-like equivalences* (Boedihardjo et al., 2016).
- ▶ If we consider the pair process  $(t, X_t)$  instead of  $X_t$ , then its signature is unique.
- Linear functions on signatures form an algebra (Lyons et al., 2004).
- ▶ Hence, by Stone–Weierstrass, linear functions on signatures are dense on continuous functions ((Fawcett, 2002), (Levin et al., 2016)).



We would like to study continuous functions  $G: C([0, T]; V) \to \mathbb{R}$  using signatures.



- We would like to study continuous functions  $G: C([0,T];V) \to \mathbb{R}$  using signatures.
- ▶ G induces a continuous function  $F : \widetilde{G\Omega}_{P}([0, T]; V) \to \mathbb{R}$ .



- We would like to study continuous functions  $G: C([0, T]; V) \to \mathbb{R}$  using signatures.
- ▶ *G* induces a continuous function  $F : \widetilde{G\Omega}_{\mathcal{P}}([0, T]; V) \to \mathbb{R}$ .
- ▶ Hence, we will consider continuous functions on  $\widetilde{G\Omega}_p$ .



# Theorem (Density of linear functions on the signature)

Let  $F: \mathcal{K} \to \mathbb{R}$  be continuous, where  $\mathcal{K} \subset \widetilde{G\Omega}_p([0, T]; V)$  is compact. Let  $\varepsilon > 0$ . Then, there exists  $\ell \in T((\mathbb{R} \times V))^*$  such that

$$|F(X) - \langle \ell, X_{0,T}^{<\infty} \rangle| < \varepsilon \quad \forall X \in \mathcal{K}.$$



- ▶ Signatures transform nonlinear relationships into linear ones.
- Hence, signatures convert the problem of dealing with complex and possibly unknown nonlinear functions on paths into a linear regression problem.
- ► This has been leveraged on applications in machine learning, finance, etc.



Thank you!