Задача 1. Проверка на простоту

Источник: базовая Имя входного файла: input.txt Имя выходного файла: output.txt Ограничение по времени: 1 секунда Ограничение по памяти: разумное

Во входном файле записано целое число N ($1 \le N \le 10\,000$).

В выходной файл нужно вывести слово YES, если N является простым, и слово NO в противном случае.

По определению, простым числом называется целое число, большее 1, которое делится нацело только на себя и на 1.

Пример

input.txt	output.txt
5	YES
4	NO

Пояснение к примеру

Число 5 простое, а число $4 = 2 \times 2$ составное.

Задача 2. Простые числа (по определению)

Источник: основная Имя входного файла: input.txt Имя выходного файла: output.txt Ограничение по времени: 1 секунда Ограничение по памяти: разумное

Задано натуральное число N.

Необходимо найти все простые числа, не превосходящие заданного N, и вывести их в порядке возрастания.

Формат входных данных

Во входном файле записано одно натуральное число $N~(2\leqslant N\leqslant 10^6)$.

Формат выходных данных

В выходной файл необходимо вывести в порядке возрастания через пробел все простые числа, не превосходящие N.

Пример

input.txt	output.txt
23	2 3 5 7 11 13 17 19 23

Задача 3. Решето Эратосфена

Источник: основная Имя входного файла: input.txt Имя выходного файла: output.txt Ограничение по времени: 1 секунда Ограничение по памяти: разумное

Задано натуральное число N. Необходимо найти все простые числа, не превосходящие заданного N и вывести их в порядке возрастания. Использовать алгоритм «Решето Эрато-сфена»:

- Шаг 0. Образовать из целых чисел от 2 до N множество . Для моделирования множества использовать массив. Выбрать в нем минимальный по значению элемент K (это 2).
- Шаг 1. Удалить из множества все числа, большие K, которые делятся на K без остатка. Это все числа, отстоящие друг от друга на K, начиная с числа K^2 .
- Шаг 2. Переменной K присвоить значение следующего минимального элемента из множества (это будет следующее простое число). Если $K^2 \leq N$, то перейти на Шаг 1.
 - Шаг 3. Выдать значения всех элементов множества M в возрастающем порядке.

Формат входных данных

Во входном файле записано одно натуральное число N ($2 \le N \le 10^6$).

Формат выходных данных

В выходной файл необходимо вывести в порядке возрастания через пробел все простые числа, не превосходящие N.

Пример

input.txt	output.txt
23	2 3 5 7 11 13 17 19 23

Задача 4. Проверка на простоту +

Источник: повышенной сложности

Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 2 секунды*
Ограничение по памяти: разумное

Найдите все простые числа, меньшие N.

Формат входных данных

В первой строке входного файла содержатся два целых числа: N — диапазон, в котором нужно найти все простые числа и Q — количество запросов в файле ($10 \leqslant N \leqslant 20\,000\,000$, $1 \leqslant Q \leqslant 200\,000$).

В каждой из следующих Q строк содержится по одному целому числу X, для которого нужно вывести, простое оно или нет $(0 \le X < N)$.

Формат выходных данных

В выходной файл нужно вывести Q ответов, по одному в каждой строке. Каждый ответ — это само число, указанное в запросе, и слово **prime** или **not**, в зависимости то того, является число простым или нет.

Пример

input.txt	output.txt
10 8	0 not
0	1 not
1	2 prime
2	4 not
4	7 prime
7	5 prime
5	6 not
6	9 not
9	