Connecting Coq theorem prover to GAP

Vladimir Komendantsky Alexander Konovalov Steve Linton

University of St Andrews, UK

SCIEnce/CICM'10

Motivation

What can interactive TP and CAS do for each other

Related work

Brief background on interactive theorem proving

Type systems The SSReflect hierarchy

Our development

Our development regarding the SSReflect hierarchy

MOTIVATION

Possible development tracks of a Cog-CAS interface

- 1. CAS as a hint engine for Coq
- 2. CAS as a proof engine for Cog
- 3. prove in Coq correctness of CAS algorithms

The particular CAS we are working with:

GAP – Groups, Algorithms, Programs

http://www.gap-system.org/

Mechanisms, introduced in proof assistants to improve the type inference algorithm:

- canonical structures.
- type classes,
- pullbacks,
- unification hints (Asperti): $\frac{\vec{Y}_x := \vec{H}}{P = Q}$

Problem

MOTIVATION

Provide suitable hints for the unification procedure underlying type inference. How useful would be to employ the CAS as a search tool to generate hints?

Motivation 2: Proof engine

 Admit GAP results. (Good scenario, although with limitations.)

Example

MOTIVATION

Automatically generate an axiom, e.g.,

Axiom isoG : $G \setminus E_n(35)$.

if we asked GAP to find a group isomorphic to a given Coq group G and the result was the Coq group $E_n(35)$.

 Prove GAP results (something Coq does not know in advance but can prove if a hint is received from GAP).

Example

As above, but ask Coq user to prove the generated statements, i.e.,

Lemma isoG : G \iso $E_n(35)$.

followed by user or automated proof and Qed, or proof is impossible.

Motivation 3: Correctness of GAP algorithms

Frequently, GAP standard library functions rely on side effects produced by other functions:

MOTIVATION 00000

Motivation 3: Correctness of GAP algorithms

Frequently, GAP standard library functions rely on side effects produced by other functions:

```
#M Size( <G> ) . . . . for cyclotomic matrix group not known to be finite
InstallMethod( Size,
   "cyclotomic matrix group not known to be finite",
   [ IsCyclotomicMatrixGroup ],
   function(G)
   if IsFinite(G) then
      return Size( G ): # now G knows it is finite
   else
       return infinity;
   fi:
end);
```

Let's use side effects!

A formal model of algorithm implementation **would** imply a formal model of its specification

```
##
   IsFinite( G ) . . . . . . . . . . . IsFinite for cyclotomic matrix group
##
InstallMethod( IsFinite, "cyclotomic matrix group", [ IsCyclotomicMatrixGroup ],
function(G)
    local lat, ilat, grp, mat;
    # if not rational, use the nice monomorphism into a rational matrix group
    if not IsRationalMatrixGroup(G) then
        return IsFinite( Image( NiceMonomorphism( G ) ));
   fi:
    # if not integer, choose basis in which it is integer
    if not IsIntegerMatrixGroup( G ) then
        lat := InvariantLattice( G ):
        if lat = fail then return false: fi:
        ilat := lat^-1; grp := G^(ilat); IsFinite( grp );
        # IsFinite may have set the size, so we save it;
        # <code omitted>
        # IsFinite may have set an invariant quadratic form
        # <code omitted>
        return IsFinite( grp );
    else
        return IsFinite( G ); # now G knows it is integer
    fi:
end ):
```

Related work

- J. Harrison and L. Théry: HOL–Maple
- H. Herbelin, M. Mayero, D. Delahaye: "Maple mode" for Coq.
- S. Ould-Biha: prototype external tactic coq_gap in C.
- . . .
- Calculus of explicit substitutions (Cézar Muñoz):
 "proofs as terms" ⇒ "partial proofs as partial terms"
 typed partially specified λ-terms are built stepwise at the same time as partial proofs.

Background

Theorem proving can be done using procedural or declarative scripting languages.

- Based on higher-order Curry-Howard correspondence in the Calculus of Inductive Constructions (an extension of F_{ω}):
 - Procedural and declarative proof scripts produce λ -terms (also called proof terms).
 - Incomplete proofs are λ -terms with typed placeholders denoting missing subproofs.
- Library is made of definitions and proofs, both being λ -terms.
- Mathematical formulas can be typeset using ambiguous notations (especially complete implementation in **Matita**).

Terms and types

 λ -terms

$$\Lambda ::= \mathcal{V} \mid (\Lambda \Lambda) \mid (\lambda \mathcal{V}.\Lambda)$$

Types

$$T ::= V \mid (T \rightarrow T) \mid (\forall V.T)$$

Type inference rules of System F (polymorphism)

Var
$$\overline{\Gamma \vdash x : \Gamma(x)}$$

App
$$\frac{\Gamma \vdash t : A \to B \qquad \Gamma \vdash u : A}{\Gamma \vdash t \ u : B}$$

Abs
$$\frac{\Gamma; \ x : A \vdash t : B}{\Gamma \vdash (\lambda x . t) : A \to B}$$
 $x \notin Dom(\Gamma)$

Inst
$$\frac{\Gamma \vdash t : \forall x.A}{\Gamma \vdash t : A[x := u]}$$

$$\mathsf{Gen}_{\mathsf{x}} \quad \frac{\mathsf{I} \vdash \mathsf{t} : \mathsf{A}}{\mathsf{\Gamma} \vdash \mathsf{t} : \forall \mathsf{x}.\mathsf{A}}$$

$$x \notin FTV(\Gamma)$$

Types and typability

Background

System F (Girard and Reynolds): types with universal quantifiers, *explicitly* typed (Church-style).

Undecidability result: J. Wells, 1994

System F, Curry-style: types are derived for pure lambda terms. Typability and type checking for System F (Curry-style) are equivalent and undecidable.

Corollary

Any System F (Curry-style) type inference algorithm is non-terminating or incomplete.

System F_{ω} is an inductively defined family of systems where, for $n \geq 0$, F_n admits

- the type Type of types, that is, Type $\in F_n$,
- the type of functions from types to types $A \rightarrow B$ where $A \in F_{n-1}$ and $B \in F_n$.

Then, F_{ω} is defined to be

$$\bigcup_{0 \le i} F_i$$

Term levels in Cog-like proof assistants

1. fully specified terms: CIC terms

$$\forall a: \mathbb{Z}, \ eq \ \mathbb{Z} \ a \ (Zplus \ a \ Z0)$$

2. partially specified terms: CIC terms with omitted subterms

$$\forall a: \mathbb{Z}, eq ?_1 a (Zplus ?_2 Z0)$$

3. content level terms: compact, overloaded human-oriented encoding with abstract syntactic structure

$$\forall a, a = _ + 0$$

4. presentation level terms: formatting structure; finite, non-extendible language (e.g., MathML for printing, TeX-like for editing)

The choice of formalised mathematical structures: SSReflect's packed classes

- Formalisation of mathematical concepts in type theory is not straightforward!
- There may be several ways to formalise a concept, and one is required to choose the most appropriate way.
- De Bruijn factor: formalised proof / paper proof (in lines of text)
- Formalise informal maths without making explicit too much information.
- Structures with inheritance: shared carrier and unification.

Algebraic hierarchy in SSReflect

Packed classes and mixins (Zmodule example)

Legend

 T_1 inherits from (coerces to)

Packed classes and mixins (Zmodule example) cont.

```
Zmodule
         basic algebraic structure
          type for Zmodule structure
type
Mixin
          constructs the mixin containing the definition of a Zmodule
pack M
          packs the mixin M and builds a Zmodule of type type.
Record mixin_of (M : Type) : Type := Mixin {
  zero : M:
  opp : M -> M:
  add : M \rightarrow M \rightarrow M;
  : associative add;
  : commutative add:
  _ : left_id zero add;
  _ : left_inverse zero opp add
}.
Record class_of (M : Type) : Type :=
  Class { base :> Choice.class_of M; ext :> mixin_of M }.
Record type : Type := Pack {sort :> Type; _ : class_of sort; _ : Type}.
Definition class cT := let: Pack _ c _ := cT return class_of cT in c.
Definition pack := let k T c m := Pack (@Class T c m) T in Choice.unpack k.
```

Our development

•00

Implementation: Use a communication protocol

SCSCP - Symbolic Computation Software Composability Protocol

http://www.symbolic-computation.org/scscp

 A computer algebra system may offer services over network and a client may employ them.

 All messages in the protocol are represented as OpenMath objects, using the new Content Dictionaries scscp1 and scscp2, developed for this purpose.

Implementation by

- Ltac (tactic language of Coq),
- reflection (that is, definition of a model of GAP in Coq),
- possibly, GAP instrumentation.

Summary

We are...

- working with a particular kind of mathematical structures in Type Theory: the packed classes of SSReflect (constructive Finite Group Theory library);
- currently implementing a prototype hint engine for Cog that employs GAP as a source of background knowledge:
 - higher-level (content-oriented) interaction with GAP;
 - support for packed classes is being developed.

We are...

- working with a particular kind of mathematical structures in Type Theory: the packed classes of SSReflect (constructive Finite Group Theory library);
- currently implementing a prototype hint engine for Coq that employs GAP as a source of background knowledge:
 - higher-level (content-oriented) interaction with GAP;
 - support for packed classes is being developed.

Thank you!