Aufgal	
a)	ges $=\frac{\partial P}{\partial x}$ damit $Q \stackrel{!}{=} 0$
	Bestimmung von Q =
	$Q = \int_{A} u(A) dA = t \int_{0}^{b} u(y) dy \stackrel{!}{=} 0 \qquad (1)$
	Herleitung My) =
	Aus Impulsbilant in x - Richtung:
	$-\frac{\partial P}{\partial x} + \mu \frac{\partial^2 u}{\partial y^2} = 0$
	$\frac{\partial U}{\partial y} = \frac{1}{M} \frac{\partial P}{\partial x} y + C_1 \qquad \int y$
	$u(y) = \frac{1}{2\mu} \frac{\partial P}{\partial x} y^2 + C_1 y + C_2 \qquad (2)$
	Bestimmung der Integrationskonstanten C1 und C2 über Randwerte
	$u(y=0)=0$ in (2) einserten $c_2=0$
	$u(y=b)=v_0 \xrightarrow{\sim} \frac{1}{2\mu} \frac{\partial p}{\partial x} b^2 + c_1 b = v_0$
	$c_1 = \frac{V_0}{6} - \frac{1}{2\mu} \frac{\partial P}{\partial x}$
	$u(y) = \frac{1}{2\mu} \frac{\partial P}{\partial x} y^2 + \left(\frac{V_0}{b} - \frac{1}{2\mu} \frac{\partial P}{\partial x} b\right) y$
	$Q = t \int_0^b u(y) dy = t \left[\frac{1}{6\mu} \frac{\partial P}{\partial x} y^3 + \frac{V_0}{2b} y^2 - \frac{1}{4\mu} \frac{\partial P}{\partial x} b y^2 \right]$
	$= t \left[\frac{1}{6\mu} \frac{\partial P}{\partial x} b^3 + \frac{1}{2} b - \frac{1}{4\mu} \frac{\partial P}{\partial x} b^3 \right]$
	$= t \left[-\frac{1}{12\mu} \frac{\partial P}{\partial x} b^3 + \frac{V_0}{2} b \right] \stackrel{!}{=} 0$
	$\frac{\partial P}{\partial X} = \frac{6MV_0}{L^2} = \frac{30000}{M}$

