뤼카-레머 소수 판별법

Student ID: 20170616

Name: 정희진

1. 서론

오늘날 사람들은 큰 소수를 찾기 위해 노력하고 있다. 큰 소수를 찾으면 수업시간에 배웠던 것처럼 암호학에서 큰 역할을 할 수 있다. 어떤 수가 소수인지를 결정하는 방법은 여러가지가 있지만 그 숫자가 커질수록 소수인지 판별하기 위한 계산은 훨씬 많아지고 이를 계산하기 위한 시간도 많아진다. 따라서 시간복잡도가 보다 낮은 알고리즘을 찾아야 한다. 이 보고서에는 어떤 메르센 수가 소수인지를 판별할 수 있는 뤼카-레머 소수 판별법에 대해 소개를 할 것이다. 현대에알려진 큰 소수는 메르센 소수인 경우가 많다.

2. 메르센 소수란 무엇인가

메르센 수는 2의 거듭제곱에서 1이 모자란 수를 가리킨다.

 $M_n = 2^n - 1$ (n은 0 또는 자연수)

다음 수들은 메르센 수를 나타낸다.

0, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, 32767, 65535, 131071, 262143, 524287, 1048575, 2097151, 4194303, 8388607, 16777215, 33554431, 67108863, 134217727, 268435455, 536870911, 1073741823, 2147483647, 4294967295

여기서 메르센 소수란 메르센 수이면서 소수인 수를 말한다. 다음은 메르센 소수를 나타낸다.

3, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951, 618970019642690137449562111, 162259276829213363391578010288127, 170141183460469231731687303715884105727

메르센 수에 관한 여러가지 이론들이 있는데, 그중 하나는 다음과 같다.

메르센 수 $(M_n = 2^n - 1)$ 가 소수면 n은 소수다.

증명을 하면 다음과 같다.

n이 0,1일때는 메르센 수가 각각 0,1이다.

 $n \ge 2$ 일 때는 먼저 n이 합성수라고 가정한다. 그렇다면 n = ab (a,b는 1보다 큰 자연수)로 나타낼 수 있다. 그러면

 $M_n = 2^n - 1 = 2^{ab} - 1 = (2^a - 1)((2^a)^{b-1} + (2^a)^{b-2} + \dots + 2^a + 1)$ 따라서 메르센 수 M_n 은 합성수가 된다. 어떤 명제가 참이면 그 대우 또한 참이므

로 메르센 수 $(M_n = 2^n - 1)$ 가 소수면 n은 소수이다.

3. 뤼카-레머 소수 판별법이란 무엇인가

루카-레머 소수 판별법은 어떤 메르센 수가 소수인지를 알 수 있게 해준다. 이는 메르센 수 $(M_n=2^n-1)$ 에서 n이 홀수인 소수일 때만 적용가능하다. 참고로 위에서 메르센 수가 소수면 n은 소수라고 증명하였다. 따라서 n이 0, 1일때는 메르센 수가 각각 0, 1로 소수가 아니고, n이 합성수 일 때는 메르센 수가 합성수가된다. 또한 n이 2(짝수인 소수)일 때는 메르센 수는 $M_n=2^2-1=3$ 이 되므로 소수라는 것을 알 수 있다. 따라서 위와 같은 사실과 더불어 뤼카-레머 소수 판별법을 이용하면 n의 값에 상관 없이 임의의 메르센 수가 소수인지 아닌지를 판별할 수 있게 된다.

이제 뤼카-레머 판별법에 대해 알아보자. 어떤 메르센 수 $(M_n = 2^n - 1, n)$ 홀수인 소수)가 있다고 생각하자. 그리고 수열 S_i 를 다음과 같이 정의하자.

$$S_{i} = \begin{cases} 4 & (i = 0 일 \text{ 때}) \\ S_{i-1}^{2} - 2 & (i > 0 일 \text{ 때}) \end{cases}$$

다음 수들은 수열 S_i 를 나타낸 것이다.

4, 14, 194, 37634, 1416317954, 2005956546822746114, 4023861667741036022825635656102100994,

161914627211156717817775590701205136649585901254991585143293087409 75788034

" $S_{n-2} \equiv 0 \pmod{M_n}$ " 와 " M_n 는 소수"는 동치이다. 따라서 어떤 메르센 수가 소수인지 판별하기 위해 $S_{n-2} \equiv 0 \pmod{M_n}$ 인지를 확인하면 된다.

위와 같은 판별법이 왜 맞는지 증명을 해보자 $(S_{n-2} \equiv 0 \pmod{M_n})$ 이면 M_n 는 소수임을 증명).

 $\omega=2+\sqrt{3},\overline{\omega}=2-\sqrt{3}$ 라고 하자. 그렇다면 다음과 같은 이유로 $S_i=\omega^{2^i}+\overline{\omega}^{2^i}$ 이다.

$$S_0 = \omega^{2^0} + \overline{\omega}^{2^0} = (2 + \sqrt{3}) + (2 - \sqrt{3}) = 4$$

i = n - 1일 때 $S_i = \omega^{2^i} + \overline{\omega}^{2^i}$ 이 성립한다고 가정하자.

$$S_{n} = S_{n-1}^{2} - 2$$

$$= \left(\omega^{2^{n-1}} + \overline{\omega}^{2^{n-1}}\right)^{2} - 2$$

$$= \omega^{2^{n}} + \overline{\omega}^{2^{n}} + 2(\omega \overline{\omega})^{2^{n-1}} - 2$$

$$= \omega^{2^{n}} + \overline{\omega}^{2^{n}}$$

i=n일 때 $S_i=\omega^{2^i}+\overline{\omega}^{2^i}$ 이 성립하므로 모든 i에 대해 $S_i=\omega^{2^i}+\overline{\omega}^{2^i}$ 이다. $S_{n-2}\equiv 0\pmod{M_n}$ 이라고 가정하자. 그렇다면,

$$\omega^{2^{n-2}} + \overline{\omega}^{2^{n-2}} = kM_n \ (k - 정수)$$
 $\omega^{2^{n-2}} = kM_n - \overline{\omega}^{2^{n-2}}$
 $(\omega^{2^{n-2}})^2 = kM_n\omega^{2^{n-2}} - (\omega\overline{\omega})^{2^{n-2}}$
 $\omega^{2^{n-1}} = kM_n\omega^{2^{n-2}} - 1$

 M_n 가 합성수라하고 q를 M_n 의 가장 작은 소수인 인수라고 하자. M_n 은 홀수이므로 q>2이다. Z_q 를 modulo q의 정수 집합, $X=\{a+b\sqrt{3}|a,b\in Z_q\}$ 라고 하자. q>2이므로 $\omega\in X$ 이다. 다음으로 X안에서의 곱셈을 다음과 같이 정의하자.

 $(a+\sqrt{3}b)(c+\sqrt{3}d)=[(ac+3bd)mod\ q]+\sqrt{3}[(ad+bc)mod\ q]$ 따라서 X의 원소와 X의 원소를 위의 곱셈에 따라 곱하면 그 결과도 X의 원소가된다. X^* 는 X의 원소들의 역수들로 이루어진 집합이라고 하자.X의 원소인 0은 역수가 없으므로 $|X^*| \leq |X|-1=q^2-1$ 이다. $M_n\equiv 0 \pmod q$, $\omega\in X$ 이므로

$$\begin{aligned} k M_n \omega^{2^{n-2}} &= 0 \text{ in } X \\ \omega^{2^{n-1}} &= -1 \text{ in } X \\ \omega^{2^n} &= 1 \text{ in } X \\ \omega \omega^{2^{n-1}} &= 1 \text{ in } X \end{aligned}$$

따라서 ω 는 $\omega^{2^{n-1}}$ 의 역수이고 $\omega \in X^*$ 이다. $\omega^{2^n}=1$ in X이고 $\omega^{2^{n-1}}=-1$ in X이므로 ω 의 차수는 2^n 이다. 원소의 차수는 집합의 차수보다 같거나 작으므로

$$2^n \le |X^*| \le q^2 - 1 < q^2$$

q는 M,의 가장 작은 소수인 인수이므로

$$q^2 \le M_n = 2^n - 1$$

 $2^{n} < 2^{n} - 1$ 은 모순이므로 M_{n} 은 소수이다.

역으로 M_n 이 소수면 $S_{n-2}\equiv 0\pmod{M_n}$ 임을 증명할 수 있는 방법도 있지만 위증명만으로도 $S_{n-2}\equiv 0\pmod{M_n}$ 을 이용해 소수임을 판별할 수 있으므로 증명을 나타내지 않았다.

뤼카-레머 소수 판별법의 시간 복잡도는 $O(n^3)$ 이다. 하지만 n-bit의 두 수를 곱하기 위해서 Schönhage—Strassen algorithm이나 Fürer's algorithm을 사용하면 시간복잡도를 더 줄일 수 있을 것이다.

4) GIMPS란 무엇인가

GIMPS란 Great Internet Mersenne Prime Search의 소프트웨어를 이용해 메르센소수를 찾은 프로젝트이다. 현재까지 발견된 메르센 소수는 다음과 같다.

	2 ^p -1	Digits	Date Discovered	Discovered By	20	24,423-1	1,332	1961 Nov 03	Alexander Hurwitz	39	2 ^{13,466,917} .	4,053,946	2001 Nov 14	GIMPS / Michael Cameron
,	22-1		c. 500 BCE	Ancient Greek mathematicians	21	29,689-1	2,917	1963 May 11	Donald B. Gillies		20,996,011			
					22	29,941-1	2,993	1963 May 16	Donald B. Gillies	40	1	6,320,430	2003 Nov 17	GIMPS / Michael Shafer
2	2 ³ -1		c. 500 BCE	Ancient Greek mathematicians	23	211,213-1	3,376	1963 Jun 02	Donald B. Gillies	41	224,036,583.	7 225 722	2004 May 15	GIMPS / Josh Findley
3	2 ⁵ -1	2	c. 275 BCE	Ancient Greek mathematicians	24	219,937_1	6.002	1971 Mar 04	Bryant Tuckerman	**	1	7,233,733	2001 May 15	dani 3 / 303ii i ilidicy
4	2 ⁷ -1	3	c. 275 BCE	Ancient Greek mathematicians	-	221,701_1	-,		Landon Curt Noll & Laura Nickel	42	2 ^{25,964,951} -	7.816.230	2005 Feb 18	GIMPS / Martin Nowak
5	2 ¹³ -1	4	1456	Anonymous	25		-,	1978 Oct 30			1	-,,		
6	217-1	6	1588	Pietro Cataldi	26	2 ^{23,209} -1	6,987	1979 Feb 09	Landon Curt Noll	43	230,402,457.	9,152,052	2005 Dec 15	GIMPS / Curtis Cooper & Steven Boone
7	2 ¹⁹ -1	6	1588	Pietro Cataldi	27	244,497-1	13,395	1979 Apr 08	Harry Lewis Nelson & David Slowinski	-	-32.582.657.			GIMPS / Curtis Cooper & Steven
8	231-1	10	1772	Leonhard Euler	28	286,243_1	25,962	1982 Sep 25	David Slowinski	44	1	9,808,358	2006 Sep 04	Boone
9	2 ⁶¹ -1	19	1883	Ivan Mikheevich Pervushin	29	2110,503-1	33,265	1988 Jan 28	Walter Colquitt & Luke Welsh	45	237,156,667	11,185,272	2008 Sep 06	GIMPS / Hans-Michael Elvenich
10	289-1	27	1911 Jun	R. E. Powers	30	2132,049-1	39,751	1983 Sep 19	David Slowinski	-	n42,643,801			
11	2107-1	33	1914 Jun 11	R. E. Powers	31	2216,091-1	65,050	1985 Sep 01	David Slowinski	46	1	12,837,064	2009 Jun 04	GIMPS / Odd M. Strindmo
12	2127-1	39	1876 Jan 10	Édouard Lucas	32	2756,839_1	227,832	1992 Feb 19	David Slowinski & Paul Gage	47	2 ^{43,112,609}	12,978,189	2008 Aug 23	GIMPS / Edson Smith
13	2 ⁵²¹ -1	157	1952 Jan 30	Raphael M. Robinson	33	2859,433_1	258,716	1994 Jan 04	David Slowinski & Paul Gage	_	257,885,161.		-	
14	2 ⁶⁰⁷ -1	183	1952 Jan 30	Raphael M. Robinson	34	21,257,787_1	378.632	1996 Sep 03	David Slowinski & Paul Gage	48*	1	17,425,170	2013 Jan 25	GIMPS / Curtis Cooper
15	21,279-1	386	1952 Jun 25	Raphael M. Robinson	35	21,398,269_1		1996 Nov 13	GIMPS / Joel Armengaud	49*	274,207,281.	22 220 540	2016 Jan 07	CTMPC / Code Code
16	22,203-1	664	1952 Oct 07	Raphael M. Robinson	-					49*	1	22,338,618	2016 Jan 07	GIMPS / Curtis Cooper
17	22,281_1	687	1952 Oct 09	Raphael M. Robinson	36	2 ^{2,976,221} -1		1997 Aug 24	GIMPS / Gordon Spence	50*	2 ^{77,232,917} -	23.249.425	2017 Dec 26	GIMPS / Jon Pace
18	23,217_1	969	1957 Sep 08	Hans Riesel	37	23,021,377-1	909,526	1998 Jan 27	GIMPS / Roland Clarkson		1	20,210,120		0.000
19	24,253_1		1961 Nov 03	Alexander Hurwitz	38	2 ^{6,972,593} -1	2,098,960	1999 Jun 01	GIMPS / Nayan Hajratwala	51*	2 ^{82,589,933} .	24,862,048	2018 Dec 07	GIMPS / Patrick Laroche
	2 /1	1,201			.—									

다음 그래프는 각 연도마다 찾은 메르센 소수를 나타낸다(세로축은 $M_n=2^n-1$ 에서 n을 나타낸다). 그래프가 일차함수와 가까운 형태로 나타나므로 각 연도마다 몇 자리의 메르센 소수가 발견될지 예측할 수 있다.

참고문헌

- 1) https://en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer_primality_test
- 2) https://oeis.org/A003010
- 3) https://en.wikipedia.org/wiki/Mersenne_prime
- 4) https://oeis.org/A000225
- 5) https://oeis.org/A000668
- 6) https://en.wikipedia.org/wiki/Order_(group_theory)
- 7) https://ko.wikipedia.org/wiki/GIMPS
- 8) https://www.mersenne.org/primes/