

Sequence Listing

<130> P2630P1C4

<150> 09/918585

<151> 2001-07-30

<150> 60/062250

<151> 1997-10-17

<150> 60/064249

<151> 1997-11-03

<150> 60/065311

<151> 1997-11-13

<150> 60/066364

<151> 1997-11-21

<150> 60/077450

<151> 1998-03-10

<150> 60/077632

<151> 1998-03-11

<150> 60/077641

<151> 1998-03-11

- <150> 60/077649 <151> 1998-03-11
- <150> 60/077791
- <151> 1998-03-12
- <150> 60/078004
- <151> 1998-03-13
- <150> 60/078886
- <151> 1998-03-20
- <150> 60/078936
- <151> 1998-03-20
- <150> 60/078910
- <151> 1998-03-20
- <150> 60/078939
- <151> 1998-03-20
- <150> 60/079294
- <151> 1998-03-25
- <150> 60/079656
- <151> 1998-03-26
- <150> 60/079664
- <151> 1998-03-27
- <150> 60/079689
- <151> 1998-03-27
- <150> 60/079663
- <151> 1998-03-27
- <150> 60/079728
- <151> 1998-03-27
- <150> 60/079786
- <151> 1998-03-27
- <150> 60/079920
- <151> 1998-03-30
- <150> 60/079923
- <151> 1998-03-30
- <150> 60/080105
- <151> 1998-03-31
- <150> 60/080107
- <151> 1998-03-31
- <150> 60/080165
- <151> 1998-03-31
- <150> 60/080194

- <151> 1998-03-31
- <150> 60/080327
- <151> 1998-04-01
- <150> 60/080328
- <151> 1998-04-01
- <150> 60/080333
- <151> 1998-04-01
- <150> 60/080334
- <151> 1998-04-01
- <150> 60/081070
- <151> 1998-04-08
- <150> 60/081049
- <151> 1998-04-08
- <150> 60/081071
- <151> 1998-04-08
- <150> 60/081195
- <151> 1998-04-08
- <150> 60/081203
- <151> 1998-04-09
- <150> 60/081229
- <151> 1998-04-09
- <150> 60/081955
- <151> 1998-04-15
- <150> 60/081817
- <151> 1998-04-15
- <150> 60/081819
- <151> 1998-04-15
- <150> 60/081952
- <151> 1998-04-15
- <150> 60/081838
- <151> 1998-04-15
- <150> 60/082568
- <151> 1998-04-21
- <150> 60/082569
- <151> 1998-04-21
- <150> 60/082704
- <151> 1998-04-22
- <150> 60/082804
- <151> 1998-04-22

<150> 60/082700 <151> 1998-04-22 <150> 60/082797 <151> 1998-04-22 <150> 60/082796 <151> 1998-04-23 <150> 60/083336 <151> 1998-04-27 <150> 60/083322 <151> 1998-04-28 <150> 60/083392 <151> 1998-04-29 <150> 60/083495 <151> 1998-04-29 <150> 60/083496 <151> 1998-04-29 <150> 60/083499 <151> 1998-04-29 <150> 60/083545 <151> 1998-04-29 <150> 60/083554 <151> 1998-04-29 <150> 60/083558 <151> 1998-04-29 <150> 60/083559 <151> 1998-04-29 <150> 60/083500 <151> 1998-04-29 <150> 60/083742 <151> 1998-04-30 <150> 60/084366 <151> 1998-05-05 <150> 60/084414 <151> 1998-05-06 <150> 60/084441 <151> 1998-05-06 <150> 60/084637 <151> 1998-05-07

<150> 60/084639

- <151> 1998-05-07
- <150> 60/084640
- <151> 1998-05-07
- <150> 60/084598
- <151> 1998-05-07
- <150> 60/084600
- <151> 1998-5-07
- <150> 60/084627
- <151> 1998-05-07
- <150> 60/084643
- <151> 1998-05-07
- <150> 60/085339
- <151> 1998-05-13
- <150> 60/085338
- <151> 1998-05-13
- <150> 60/085323
- <151> 1998-05-13
- <150> 60/085582
- <151> 1998-05-15
- <150> 60/085700
- <151> 1998-05-15
- <150> 60/085689
- <151> 1998-05-15
- <150> 60/085579
- <151> 1998-05-15
- <150> 60/085580
- <151> 1998-05-15
- <150> 60/085573
- <151> 1998-05-15
- <150> 60/085704
- <151> 1998-05-15
- <150> 60/085697
- <151> 1998-05-15
- <150> 60/086023
- <151> 1998-05-18
- <150> 60/086430
- <151> 1998-05-22
- <150> 60/086392
- <151> 1998-05-22

<150> 60/086486 <151> 1998-05-22 <150> 60/086414 <151> 1998-05-22 <150> 60/087208 <151> 1998-05-28 <150> 60/087106 <151> 1998-05-28 <150> 60/087098 <151> 1998-05-28 <150> 60/091010 <151> 1998-06-26 <150> 60/090863 <151> 1998-06-26 <150> 60/091359 <151> 1998-07-01 <150> 60/094651 <151> 1998-07-30 <150> 60/100038 <151> 1998-09-11 <150> 60/109304 <151> 1998-11-20 <150> 60/113296 <151> 1998-12-22 <150> 60/113621 <151> 1998-12-23 <150> 60/123957 <151> 1999-03-12 <150> 60/126773 <151> 1999-03-29 <150> 60/130232 <151> 1999-04-21 <150> 60/131022 <151> 1999-04-26 <150> 60/131445 <151> 1999-04-28 <150> 60/134287 <151> 1999-05-14

<150> 60/139557

- <151> 1999-06-16
- <150> 60/141037
- <151> 1999-06-23
- <150> 60/142680
- <151> 1999-07-07
- <150> 60/145698
- <151> 1999-07-26
- <150> 60/146222
- <151> 1999-07-28
- <150> 60/162506
- <151> 1999-10-29
- <150> 09/040220
- <151> 1998- 03-17
- <150> 09/105413
- <151> 1998-06-26
- <150> 09/168978
- <151> 1998-10-07
- <150> 09/184216
- <151> 1998-11-02
- 1202, 2000 22 02
- <150> 09/187368 <151> 1998-11-06
- <150> 09/202054
- <151> 1998-12-07
- <150> 09/218517
- <151> 1998-12-22
- <150> 09/254465
- <151> 1999-03-05
- <150> 09/265686
- <151> 1999-03-10
- <150> 09/267213
- <151> 1999-03-12
- <150> 09/284291
- <151> 1999-04-12
- <150> 09/311832
- <151> 1999-05-14
- <150> 09/380137
- <151> 1999-08-25
- <150> 09/380138
- <151> 1999-08-25

- <150> 09/380142 <151> 1999-08-25
- <150> 09/709238
- <151> 2000-11-08
- <150> 09/723749
- <151> 2000-11-27
- <150> 09/747259
- <151> 2000-12-20
- <150> 09/816744
- <151> 2001-03-22
- <150> 09/816920
- <151> 2001-03-22
- <150> 09/854280
- <151> 2001-05-10
- <150> 09/854208
- <151> 2001-05-10
- <150> 09/872035 <151> 2001-06-01
- <150> 09/874503
- <151> 2001-06-05
- <150> 09/882636
- <151> 2001-06-14
- <150> 09/886342
- <151> 2001- 06-19
- <150> PCT/US98/21141
- <151> 1998-10-07
- <150> PCT/US98/24855
- <151> 1998-11-20
- <150> PCT/US99/00106
- <151> 1999-01-05
- <150> PCT/US99/05028
- <151> 1999-03-08
- <150> PCT/US99/05190
- <151> 1999-03-10
- <150> PCT/US99/10733
- <151> 1999-05-14
- <150> PCT/US99/12252
- <151> 1999-06-02
- <150> PCT/US99/28313

- <151> 1999-11-30
- <150> PCT/US99/28551
- <151> 1999-12-02
- <150> PCT/US99/28565
- <151> 1999-12-02
- <150> PCT/US99/30095
- <151> 1999-12-16
- <150> PCT/US99/31243
- <151> 1999-12-30
- <150> PCT/US99/31274
- <151> 1999-12-30
- <150> PCT/US00/00219
- <151> 2000-05-01
- <150> PCT/US00/00277
- <151> 2000-01-06
- <150> PCT/US00/00376
- <151> 2000-01-06
- <150> PCT/US00/03565
- <151> 2000-02-11
- <150> PCT/US00/04341
- <151> 2000-02-18
- <150> PCT/US00/05841
- <151> 2000-03-02
- <150> PCT/US00/07532
- <151> 2000-03-21
- <150> PCT/US00/05004
- <151> 2000-02-24
- <150> PCT/US00/06319
- <151> 2000-03-10
- <150> PCT/US00/08439
- <151> 2000-03-30
- <150> PCT/US00/13705
- <151> 2000-05-17
- <150> PCT/US00/14042
- <151> 2000-05-22
- <150> PCT/US00/14941
- <151> 2000-05-30
- <150> PCT/US00/15264
- <151> 2000-06-02

- <150> PCT/US00/20710
- <151> 2000-07-28
- <150> PCT/US00/23328
- <151> 2000-08-24
- <150> PCT/US00/32678
- <151> 2000-12-01
- <150> PCT/US00/34956
- <151> 2000-12-20
- <150> PCT/US01/06520
- <151> 2001-02-28
- <150> PCT/US01/09552
- <151> 2001-03-22
- <150> PCT/US01/17092
- <151> 2001-05-25
- <150> PCT/US01/17800
- <151> 2001-06-01
- <150> PCT/US01/19692
- <151> 2001-06-20
- <150> PCT/US01/21066
- <151> 2001-06-29
- <150> PCT/US01/21735
- <151> 2001-07-09
- <160> 624
- <210> 1
- <211> 1743
- <212> DNA
- <213> Homo sapiens
- <400> 1
- ccaggtccaa ctgcacctcg gttctatcga ttgaattccc cggggatcct 50
- ctagagatcc ctcgacctcg acccacgcgt ccgccaagct ggccctgcac 100
- ggctgcaagg gaggctcctg tggacaggcc aggcaggtgg gcctcaggag 150
- gtgcctccag gcggccagtg ggcctgaggc cccagcaagg gctagggtcc 200
- atetecagte ecaggacaca geageggeea ecatggeeac geetgggete 250
- cagcagcatc agcagcccc aggaccgggg gaggcacagg tggcccccac 300
- cacceggagg ageageteet geeeetgtee gggggatgae tgatteteet 350
- ccgccaggcc acccagagga gaaggccacc ccgcctggag gcacaggcca 400
- tgaggggctc tcaggaggtg ctgctgatgt ggcttctggt gttggcagtg 450

ggcggcacag agcacgccta ccggcccggc cgttagggtg tgtgctgtcc 500 egggeteacg gggaecetgt etecgagteg ttegtgeage gtgtgtacea 550 gcccttcctc accacctgcg acgggcaccg ggcctgcagc acctaccgaa 600 ccatttatag gaccgcctac cgccgcagcc ctgggctggc ccctgccagg 650 cctcgctacg cgtgctgccc cggctggaag aggaccagcg ggcttcctgg 700 ggcctgtgga gcagcaatat gccagccgcc atgccggaac ggagggagct 750 qtqtccaqcc tqqccqctqc cqctqccctq caqqatqqcq qqqtqacact 800 tgccagtcag atgtggatga atgcagtgct aggaggggg gctgtcccca 850 gcgctgcatc aacaccgccg gcagttactg gtgccagtgt tgggaggggc 900 acagcctgtc tgcagacggt acactctgtg tgcccaaggg agggcccccc 950 agggtggccc ccaacccgac aggagtggac agtgcaatga aggaagaagt 1000 gcagaggctg cagtccaggg tggacctgct ggaggagaag ctgcagctgg 1050 tgctggcccc actgcacage ctggcctcgc aggcactgga gcatgggctc 1100 ceggaceeeg geageeteet ggtgeactee tteeageage teggeegeat 1150 cgactccctg agcgagcaga tttccttcct ggaggagcag ctggggtcct 1200 gctcctgcaa gaaagactcg tgactgccca gcgccccagg ctggactgag 1250 cccctcacgc cgccctgcag cccccatgcc cctgcccaac atgctggggg 1300 tccagaagcc acctcggggt gactgagcgg aaggccaggc agggccttcc 1350 teettteet eeteeette eeteggagg gteeceagae eetggeatgg 1400 gatgggctgg gattttttt gtgaatccac ccctggctac ccccaccctg 1450 gttaccccaa cggcatccca aggccaggtg ggccctcagc tgagggaagg 1500 tacgagttcc cctgctggag cctgggaccc atggcacagg ccaggcagcc 1550 cqqaqqctqq qtqqqqctc aqtqqqqqct qctqcctqac ccccaqcaca 1600 aaaaaaaagg gcggccgcga ctctagagtc gacctgcaga agcttggccg 1700 ccatggccca acttgtttat tgcagcttat aatggttaca aat 1743

<210> 2

<211> 295

<212> PRT

<213> Homo sapiens

<400> 2

Met Thr Asp Ser Pro Pro Pro Gly His Pro Glu Glu Lys Ala Thr Pro Pro Gly Gly Thr Gly His Glu Gly Leu Ser Gly Gly Ala Ala Asp Val Ala Ser Gly Val Gly Ser Gly Arg His Arg Ala Arg Leu Pro Ala Arg Pro Leu Gly Cys Val Leu Ser Arg Ala His Gly Asp Pro Val Ser Glu Ser Phe Val Gln Arg Val Tyr Gln Pro Phe Leu Thr Thr Cys Asp Gly His Arg Ala Cys Ser Thr Tyr Arg Thr Ile Tyr Arg Thr Ala Tyr Arg Arg Ser Pro Gly Leu Ala Pro Ala Arg Pro Arg Tyr Ala Cys Cys Pro Gly Trp Lys Arg Thr Ser Gly Leu 110 115 120 Pro Gly Ala Cys Gly Ala Ala Ile Cys Gln Pro Pro Cys Arg Asn Gly Gly Ser Cys Val Gln Pro Gly Arg Cys Arg Cys Pro Ala Gly Trp Arg Gly Asp Thr Cys Gln Ser Asp Val Asp Glu Cys Ser Ala Arg Arg Gly Gly Cys Pro Gln Arg Cys Ile Asn Thr Ala Gly Ser Tyr Trp Cys Gln Cys Trp Glu Gly His Ser Leu Ser Ala Asp Gly Thr Leu Cys Val Pro Lys Gly Gly Pro Pro Arg Val Ala Pro Asn Pro Thr Gly Val Asp Ser Ala Met Lys Glu Glu Val Gln Arg Leu Gln Ser Arg Val Asp Leu Leu Glu Glu Lys Leu Gln Leu Val Leu Ala Pro Leu His Ser Leu Ala Ser Gln Ala Leu Glu His Gly Leu Pro Asp Pro Gly Ser Leu Leu Val His Ser Phe Gln Gln Leu Gly Arg Ile Asp Ser Leu Ser Glu Gln Ile Ser Phe Leu Glu Glu Gln 285 Leu Gly Ser Cys Ser Cys Lys Lys Asp Ser

290 295

```
<210> 3
    <211> 21
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 3
     tggagcagca atatgccagc c 21
    <210> 4
    <211> 22
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 4
     ttttccactc ctgtcgggtt gg 22
    <210> 5
    <211> 46
    <212> DNA
    <213> Artificial Sequence
Œ
H
    <223> Synthetic oligonucleotide probe
I
    <400> 5
뉴
     ggtgacactt gccagtcaga tgtggatgaa tgcagtgcta ggaggg 46
    <210> 6
    <211> 2945
    <212> DNA
    <213> Homo sapiens
U
<400> 6
     cgctcgcccc gtcgcccctc gcctccccgc agagtcccct cgcggcagca 50
     gatgtgtgtg gggtcagccc acggcgggga ctatggtgaa attcccggcg 100
     ctcacgcact actggcccct gatccggttc ttggtgcccc tgggcatcac 150
     caacatagcc atcgacttcg gggagcaggc cttgaaccgg ggcattgctg 200
     ctgtcaagga ggatgcagtc gagatgctgg ccagctacgg gctggcgtac 250
     tccctcatga agttcttcac gggtcccatg agtgacttca aaaatgtggg 300
     cctggtgttt gtgaacagca agagagacag gaccaaagcc gtcctgtgta 350
     tggtggtggc aggggccatc gctgccgtct ttcacacact gatagcttat 400
```

agtgatttag gatactacat tatcaataaa ctgcaccatg tggacgagtc 450

ggtggggagc aagacgagaa gggccttcct gtacctcgcc gcctttcctt 500 tcatggacgc aatggcatgg acccatgctg gcattctctt aaaacacaaa 550 tacagtttcc tggtgggatg tgcctcaatc tcagatgtca tagctcaggt 600 tgtttttgta gccattttgc ttcacagtca cctggaatgc cgggaqcccc 650 tgctcatccc gatcctctcc ttgtacatgg gcgcacttgt gcgctgcacc 700 accetgtgee tgggetacta caagaacatt cacgacatca teeetgacag 750 aagtggcccg gagctggggg gagatgcaac aataagaaag atgctgagct 800 tetggtggee tttggeteta attetggeea cacagagaat cagteggeet 850 attgtcaacc tctttgtttc ccgggacctt ggtggcagtt ctgcagccac 900 agaggcagtg gcgattttga cagccacata ccctgtgggt cacatgccat 950 acggctggtt gacggaaatc cgtgctgtgt atcctgcttt cgacaagaat 1000 aaccccagca acaaactggt gagcacgagc aacacagtca cggcagccca 1050 catcaagaag ttcaccttcg tctgcatggc tctgtcactc acgctctgtt 1100 tegtgatgtt ttggacacce aacgtgtetg agaaaatett gatagacate 1150 atoggagtgg actttgcctt tgcagaactc tqtqttqttc ctttqcqqat 1200 cttctccttc ttcccagttc cagtcacagt gagggcgcat ctcaccgggt 1250 ggctgatgac actgaagaaa accttcgtcc ttgcccccag ctctgtgctg 1300 cggatcatcg tectcatege cageetegtg gteetaceet acetgggggt 1350 geacggtgcg accetgggcg tgggctccct cetggcgggc tttgtgggag 1400 aatccaccat ggtcgccatc gctgcgtgct atgtctaccg gaagcagaaa 1450 aagaagatgg agaatgagtc ggccacggag ggggaagact ctgccatgac 1500 agacatgcct ccgacagagg aggtgacaga catcgtggaa atgagagagg 1550 agaatgaata aggcacggga cgccatgggc actgcaggga cggtcagtca 1600 ggatgacact tcggcatcat ctcttccctc tcccatcgta ttttgttccc 1650 ttttttttgt tttgttttgg taatgaaaga ggccttgatt taaaggtttc 1700 gtgtcaattc tctagcatac tgggtatgct cacactgacg gggggaccta 1750 gtgaatggtc tttactgttg ctatgtaaaa acaaacgaaa caactgactt 1800 catacccctg cctcacgaaa acccaaaaga cacagctgcc tcacggttga 1850 cgttgtgtcc tcctccctg gacaatctcc tcttggaacc aaaggactgc 1900

agetgtgcca tegegeeteg gteaccetge acageaggee acagactete 1950 ctgtcccct tcatcgctct taagaatcaa caggttaaaa ctcggcttcc 2000 tttgatttgc ttcccagtca catggccqta caaaqagatq qaqccccqqt 2050 ggcctcttaa atttcccttc tgccacggag ttcgaaacca tctactccac 2100 acatgcagga ggcgggtggc acgctgcagc ccggagtccc cgttcacact 2150 gaggaacgga gacctgtgac cacagcaggc tgacagatgg acagaatctc 2200 ccgtagaaag gtttggtttg aaatgccccg ggggcagcaa actgacatgg 2250 ttgaatgata gcatttcact ctgcgttctc ctagatctga gcaagctgtc 2300 agttctcacc cccaccgtgt atatacatga gctaactttt ttaaattgtc 2350 acaaaagcgc atctccagat tccagacct gccgcatgac ttttcctgaa 2400 ggcttgcttt tccctcgcct ttcctgaagg tcgcattaga gcgagtcaca 2450 tggagcatcc taactttgca ttttagtttt tacagtgaac tgaagcttta 2500 agteteatee ageattetaa tgeeaggttg etgtagggta aettttgaag 2550 tagatatatt acctggttct gctatcctta gtcataactc tgcggtacag 2600 gtaattgaga atgtactacg gtacttccct cccacaccat acgataaagc 2650 aagacatttt ataacgatac cagagtcact atgtggtcct ccctgaaata 2700 acgcattcga aatccatgca gtgcagtata tttttctaag ttttggaaag 2750 caggtttttt cctttaaaaa aattatagac acggttcact aaattgattt 2800 agtcagaatt cctagactga aagaacctaa acaaaaaaat attttaaaga 2850 tataaatata tgctgtatat gttatgtaat ttattttagg ctataataca 2900 tttcctattt tcgcattttc aataaaatgt ctctaataca aaaaa 2945

<210> 7

<211> 492

<212> PRT

<213> Homo sapiens

<400> 7

Met Val Lys Phe Pro Ala Leu Thr His Tyr Trp Pro Leu Ile Arg
1 5 10 15

Phe Leu Val Pro Leu Gly Ile Thr Asn Ile Ala Ile Asp Phe Gly 20 25 30

Glu Gln Ala Leu Asn Arg Gly Ile Ala Ala Val Lys Glu Asp Ala 35 40 45

Val Glu Met Leu Ala Ser Tyr Gly Leu Ala Tyr Ser Leu Met Lys

				50					55					60
Phe	Phe	Thr	Gly	Pro 65	Met	Ser	Asp	Phe	Lys 70	Asn	Val	Gly	Leu	Val 75
Phe	Val	Asn	Ser	Lys 80	Arg	Asp	Arg	Thr	Lys 85	Ala	Val	Leu	Cys	Met 90
Val	Val	Ala	Gly	Ala 95	Ile	Ala	Ala	Val	Phe 100	His	Thr	Leu	Ile	Ala 105
Tyr	Ser	Asp	Leu	Gly 110	Tyr	Tyr	Ile	Ile	Asn 115	Lys	Leu	His	His	Val 120
Asp	Glu	Ser	Val	Gly 125	Ser	Lys	Thr	Arg	Arg 130	Ala	Phe	Leu	Tyr	Leu 135
Ala	Ala	Phe	Pro	Phe 140	Met	Asp	Ala	Met	Ala 145	Trp	Thr	His	Ala	Gly 150
Ile	Leu	Leu	Lys	His 155	Lys	Tyr	Ser	Phe	Leu 160	Val	Gly	Суз	Ala	Ser 165
Ile	Ser	Asp	Val	Ile 170	Ala	Gln	Val	Val	Phe 175	Val	Ala	Ile	Leu	Leu 180
His	Ser	His	Leu	Glu 185	Cys	Arg	Glu	Pro	Leu 190	Leu	Ile	Pro	Ile	Leu 195
Ser	Leu	Tyr	Met	Gly 200	Ala	Leu	Val	Arg	Cys 205	Thr	Thr	Leu	Cys	Leu 210
Gly	Tyr	Tyr	Lys	Asn 215	Ile	His	Asp	Ile	Ile 220	Pro	Asp	Arg	Ser	Gly 225
Pro	Glu	Leu	Gly	Gly 230	Asp	Ala	Thr	Ile	Arg 235	Lys	Met	Leu	Ser	Phe 240
Trp	Trp	Pro	Leu	Ala 245	Leu	Ile	Leu	Ala	Thr 250	Gln	Arg	Ile	Ser	Arg 255
Pro	Ile	Val	Asn	Leu 260	Phe	Val	Ser	Arg	Asp 265	Leu	Gly	Gly	Ser	Ser 270
Ala	Ala	Thr	Glu	Ala 275	Val	Ala	Ile	Leu	Thr 280	Ala	Thr	Tyr	Pro	Val 285
Gly	His	Met	Pro	Tyr 290	Gly	Trp	Leu	Thr	Glu 295	Ile	Arg	Ala	Val	Tyr 300
Pro	Ala	Phe	Asp	Lys 305	Asn	Asn	Pro.	Ser	Asn 310	Lys	Leu	Val	Ser	Thr 315
Ser	Asn	Thr	Val	Thr 320	Ala	Ala	His	Ile	Lys 325	Lys	Phe	Thr	Phe	Val 330
Cys	Met	Ala	Leu	Ser 335	Leu	Thr	Leu	Cys	Phe 340	Val	Met	Phe	Trp	Thr 345

Pro Asn Val Ser Glu Lys Ile Leu Ile Asp Ile Ile Gly Val Asp Phe Ala Phe Ala Glu Leu Cys Val Val Pro Leu Arg Ile Phe Ser 375 Phe Phe Pro Val Pro Val Thr Val Arg Ala His Leu Thr Gly Trp 380 385 Leu Met Thr Leu Lys Lys Thr Phe Val Leu Ala Pro Ser Ser Val 405 Leu Arg Ile Ile Val Leu Ile Ala Ser Leu Val Val Leu Pro Tyr 415 Leu Gly Val His Gly Ala Thr Leu Gly Val Gly Ser Leu Leu Ala 425 430 435 Gly Phe Val Gly Glu Ser Thr Met Val Ala Ile Ala Ala Cys Tyr Val Tyr Arg Lys Gln Lys Lys Met Glu Asn Glu Ser Ala Thr 460

Glu Gly Glu Asp Ser Ala Met Thr Asp Met Pro Pro Thr Glu Glu 475

Val Thr Asp Ile Val Glu Met Arg Glu Glu Asn Glu

<210> 8 <211> 535 <212> DNA <213> Homo sapiens

<220>

<221> unsure

<222> 33, 66, 96, 387

<223> unknown base

<400> 8

cctgacagaa gtgccccgga gctgggggag atncaacatt aagaagatgc 50 tgagcttctg gtgccntttg gctctaattc tggccacaca gagaancagt 100 cggcctattg tcaacctctt tgtttcccgg gaccttggtg gcagttctgc 150 agccacagag gcagtggcga ttttgacagc cacataccct gtgggtcaca 200 tgccatacgg ctggttgacg gaaatccgtg ctgtgtatcc tgctttcgac 250 aagaataacc ccagcaacaa actggtgagc acqagcaaca cagtcacqqc 300 ggcccacatc aagaagttca ccttcgtctg catggctctg tcactcacgc 350 tctgtttcgt gatgttttgg acacccaacg tgtctgngaa aatcttgata 400 gacatcatcg gagtggactt tgcctttgca gaactctqtq ttqttccttt 450

```
DOOVETOT TOTECT
```

```
gcggatcttc tccttcttcc cagttccagt cacagtgagg gcgcatctca 500
 ccgggtggct gatgacactg aagaaaacct tcgtc 535
<210> 9
<211> 434
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 32, 54, 80, 111, 117, 122, 139, 193, 205, 221, 226, 228, 273,
      293, 296, 305, 336, 358, 361
<223> unknown base
<400> 9
 tgacggaatc ccgggctggg tatcctggtt tngacaagat aaacccccag 50
 caanaaattg gggagcaggg caaaacagtn acgggcagcc cacatcaaga 100
 agttcacctt ngtttgnatg gntctgtcaa ctcacgctnt gtttcgtgat 150
 gttttggaca cccaaagtgt ttgagaaaat tttgatagac atnatcggag 200
 tggantttgc ctttgcagaa ntttgngntg ttcctttqcg gattttctcc 250
 tttttcccag ttccagtcac agngagggcg catctcaccg ggnggntgat 300
 gacantgaag aaaacctttg teettgeece cagetntttg gtgeggatea 350
 ttgtcctnat ngccagcctt gtggtcctac cctacctggg ggtgcacggt 400
 gcgaccctgg gcgtgggttc cctcctggcg ggca 434
<210> 10
<211> 154
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 33, 49, 68, 83, 90, 98, 119
<223> unknown base
<400> 10
 tattcccagt tccggtcacg gggagggcgc atntcaccgg gtggctgang 50
 acactgaaga aaaccttngt ccttgccccc agntttgtgn tgcggatnat 100
 cgtcctcatc gccagcctng tggtcctacc ctacctgggg gtgcacgqtg 150
agac 154
<210> 11
<211> 24
<212> DNA
<213> Artificial Sequence
```

```
<220>
    <223> Synthetic oligonucleotide probe
    <400> 11
     ctgatccggt tcttggtgcc cctg 24
    <210> 12
    <211> 18
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 12
     gctctgtcac tcacgctc 18
    <210> 13
    <211> 18
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 13
     tcatctctc cctctccc 18
    <210> 14
    <211> 18
    <212> DNA
    <213> Artificial Sequence
J
<223> Synthetic oligonucleotide probe
1
    <400> 14
    ccttccgcca cggagttc 18
LT.
    <210> 15
<211> 24
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    ggcaaagtcc actccgatga tgtc 24
   <210> 16
    <211> 24
    <212> DNA
   <213> Artificial Sequence
   <223> Synthetic oligonucleotide probe
```

```
<400> 16
gcctgctgtg gtcacaggtc tccg 24
<210> 17
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 17
tcggggagca ggccttgaac cggggcattg ctgctgtcaa ggagg 45
<210> 18
<211> 1901
<212> DNA
<213> Homo sapiens
<400> 18
gccccgcgcc cggcgccggg cgcccgaagc cgggagccac cgccatgggg 50
gcctgcctgg gagcctgctc cctgctcagc tgcgcqtcct gcctctqcqq 100
ctctgcccc tgcatcctgt gcaqctgctg ccccgccagc cgcaactcca 150
ccgtgagccg cctcatcttc acgttcttcc tcttcctggg ggtgctggtg 200
tecateatta tgetgagece gggegtggag agteagetet acaagetgee 250
ctgggtgtgt gaggagggg ccgggatccc caccgtcctg cagggccaca 300
tcgactgtgg ctccctgctt ggctaccgcg ctgtctaccg catgtgcttc 350
gccacggcgg ccttcttctt cttctttttc accctgctca tgctctgcgt 400
gagcagcage egggaceece gggetgeeat ecagaatggg ttttggttet 450
ttaagttcct gatcctggtg ggcctcaccg tgggtgcctt ctacatccct 500
gacggeteet teaceaacat etggttetae tteggegteg tgggeteett 550
cctcttcatc ctcatccagc tggtgctgct catcgacttt gcgcactcct 600
ggaaccagcg gtggctgggc aaggccgagg agtgcgattc ccgtgcctgg 650
tacgcaggcc tettettett cacteteete ttetaettge 'tgtegatege 700
ggccgtggcg ctgatgttca tgtactacac tgagcccagc ggctgccacg 750
agggcaaggt cttcatcagc ctcaacctca ccttctgtgt ctgcgtgtcc 800
gctgcaggcc tcggtcatca ccctctacac catgtttgtc acctggtcag 900
```

ccctatccag tatccctgaa cagaaatgca accccattt gccaacccag 950

ctgggcaacg agacagttgt ggcaggcccc gagggctatg agacccagtg 1000 gtgggatgcc ccgagcattg tgggcctcat catcttcctc ctgtgcaccc 1050 tcttcatcag tctgcgctcc tcagaccacc ggcaggtgaa cagcctgatg 1100 cagaccgagg agtgcccacc tatgctagac gccacacagc agcagcagca 1150 gcaggtggca gcctgtgagg gccgggcctt tgacaacgag caggacggcg 1200 teacetacag etacteette tteeacttet geetggtget ggeeteactg 1250 cacgtcatga tgacgctcac caactggtac aagcccggtg agacccggaa 1300 gatgatcagc acgtggaccg ccgtgtgggt gaagatctgt gccagctggg 1350 cagggetget cetetacetg tggaccetgg tagecceaet ceteetgege 1400 aaccgcgact tcagctgagg cagcctcaca gcctgccatc tqqtqcctcc 1450 tgccacctgg tgcctctcgg ctcggtgaca gccaacctgc cccctcccca 1500 caccaatcag ccaggetgag ccccaccc tgccccaget ccaggacetg 1550 cccctgagcc gggccttcta gtcgtagtgc cttcagggtc cqaggagcat 1600 caggeteetg cagageeeca tececeegee acacecacae ggtggagetg 1650 cctcttcctt cccctcctcc ctgttgccca tactcaqcat ctcgqatqaa 1700 agggctccct tgtcctcagg ctccacggga gcggggctgc tggagagagc 1750 ggggaactcc caccacagtg gggcatccgg cactgaagcc ctggtgttcc 1800 tggtcacgtc ccccagggga ccctgcccc ttcctggact tcqtqcctta 1850 ctgagtctct aagacttttt ctaataaaca agccagtgcg tgtaaaaaaa 1900 a 1901

<210> 19 <211> 457

<212> PRT

<213> Homo sapiens

<400> 19

Met Gly Ala Cys Leu Gly Ala Cys Ser Leu Leu Ser Cys Ala Ser 1 5 10 15

Cys Leu Cys Gly Ser Ala Pro Cys Ile Leu Cys Ser Cys Cys Pro 20 25 30

Ala Ser Arg Asn Ser Thr Val Ser Arg Leu Ile Phe Thr Phe Phe 35 40 45

Leu Phe Leu Gly Val Leu Val Ser Ile Ile Met Leu Ser Pro Gly 50 55 60

Val Glu Ser Gln Leu Tyr Lys Leu Pro Trp Val Cys Glu Glu Gly Ala Gly Ile Pro Thr Val Leu Gln Gly His Ile Asp Cys Gly Ser Leu Leu Gly Tyr Arg Ala Val Tyr Arg Met Cys Phe Ala Thr Ala Ala Phe Phe Phe Phe Phe Thr Leu Leu Met Leu Cys Val Ser 110 120 115 Ser Ser Arg Asp Pro Arg Ala Ala Ile Gln Asn Gly Phe Trp Phe 130 Phe Lys Phe Leu Ile Leu Val Gly Leu Thr Val Gly Ala Phe Tyr 140 Ile Pro Asp Gly Ser Phe Thr Asn Ile Trp Phe Tyr Phe Gly Val Val Gly Ser Phe Leu Phe Ile Leu Ile Gln Leu Val Leu Leu Ile Asp Phe Ala His Ser Trp Asn Gln Arg Trp Leu Gly Lys Ala Glu Glu Cys Asp Ser Arg Ala Trp Tyr Ala Gly Leu Phe Phe Thr Leu Leu Phe Tyr Leu Leu Ser Ile Ala Ala Val Ala Leu Met Phe 215 Met Tyr Tyr Thr Glu Pro Ser Gly Cys His Glu Gly Lys Val Phe Ile Ser Leu Asn Leu Thr Phe Cys Val Cys Val Ser Ile Ala Ala Val Leu Pro Lys Val Gln Asp Ala Gln Pro Asn Ser Gly Leu Leu Gln Ala Ser Val Ile Thr Leu Tyr Thr Met Phe Val Thr Trp Ser Ala Leu Ser Ser Ile Pro Glu Gln Lys Cys Asn Pro His Leu Pro Thr Gln Leu Gly Asn Glu Thr Val Val Ala Gly Pro Glu Gly Tyr 315 Glu Thr Gln Trp Trp Asp Ala Pro Ser Ile Val Gly Leu Ile Ile Phe Leu Leu Cys Thr Leu Phe Ile Ser Leu Arg Ser Ser Asp His Arg Gln Val Asn Ser Leu Met Gln Thr Glu Glu Cys Pro Pro Met

	350		355	360							
Leu Asp Ala Thr	Gln Gln G 365	Gln Gln Gln	Gln Val Ala 370	a Ala Cys Glu 375							
Gly Arg Ala Phe	Asp Asn G	Glu Gln Asp	Gly Val Th	r Tyr Ser Tyr 390							
Ser Phe Phe His	Phe Cys I 395	Leu Val Leu	Ala Ser Let 400	His Val Met 405							
Met Thr Leu Thr	Asn Trp T 410	Tyr Lys Pro	Gly Glu Th: 415	r Arg Lys Met 420							
Ile Ser Thr Trp	Thr Ala V 425	Val Trp Val	Lys Ile Cys 430	s Ala Ser Trp 435							
Ala Gly Leu Leu	Leu Tyr I 440	Leu Trp Thr	Leu Val Ala 445	a Pro Leu Leu 450							
Leu Arg Asn Arg	Asp Phe S	Ser									
<210> 20 <211> 24 <212> DNA <213> Artificial Sequence											
<220> <223> Synthetic oligonucleotide probe											
<400> 20 gccgcctcat cttcacgttc ttcc 24											
<210> 21 <211> 20 <212> DNA <213> Artificial Sequence											
<220> <223> Synthetic oligonucleotide probe											
<400> 21 tcatccagct ggtgctgctc 20											
<210> 22 <211> 20 <212> DNA <213> Artificial Sequence											
<220> <223> Synthetic oligonucleotide probe											
<400> 22 cttcttccac ttctgcctgg 20											
<210> 23 <211> 18											

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 23
 cctgggcaaa aatgcaac 18
<210> 24
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 24
 caggaatgta gaaggcaccc acgg 24
<210> 25
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 25
 tggcacagat cttcacccac acgg 24
<210> 26
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 26
 tgtccatcat tatgctgagc ccgggcgtgg agagtcagct ctacaagctg 50
<210> 27
<211> 1351
<212> DNA
<213> Homo sapiens
<400> 27
 gagcgaggcc ggggactgaa ggtgtgggtg tcgagccctc tggcagaggg 50
ttaacctggg tcaaatgcac ggattctcac ctcgtacagt tacgctctcc 100
cgcggcacgt ccgcgaggac ttgaagtcct gagcgctcaa gtttgtccgt 150
aggtcgagag aaggccatgg aggtgccgcc accggcaccg cggagctttc 200
tctgtagagc attgtgccta tttccccgag tctttgctgc cgaagctgtg 250
```

actgccgatt cggaagtcct tgaggagcgt cagaagcggc ttccctacgt 300 cccagagccc tattacccgg aatctggatg ggaccgcctc cgggagctgt 350 ttggcaaaga tgaacagcag agaatttcaa aggaccttgc taatatctgt 400 aagacggcag ctacagcagg catcattggc tgggtgtatg ggggaatacc 450 agettttatt catgetaaac aacaatacat tgagcagage caggcagaaa 500 tttatcataa ccggtttgat gctgtgcaat ctgcacatcg tgctgccaca 550 cgaggettea ttegttatgg etggegetgg ggttggagaa etgeagtgtt 600 tgtgactata ttcaacacag tgaacactag tctgaatgta taccgaaata 650 aagatgcctt aagccatttt gtaattgcag gagctgtcac gggaagtctt 700 tttaggataa acgtaggcct gcgtggcctg gtggctggtg gcataattgg 750 agecttgetg ggcactcetg taggaggeet getgatggca tttcagaagt 800 acqctqqtqa qactqttcaq qaaaqaaaac aqaaqqatcq aaaqqcactc 850 catgagctaa aactggaaga gtggaaaggc agactacaag ttactgagca 900 cctccctgag aaaattgaaa gtagtttacg ggaagatgaa cctgagaatg 950 atgctaagaa aattgaagca ctgctaaacc ttcctagaaa cccttcagta 1000 atagataaac aagacaagga ctgaaagtgc tctgaacttg aaactcactg 1050 gagagetgaa gggagetgee atgteegatg aatgeeaaca gaeaggeeac 1100 tctttggtca gcctgctgac aaatttaagt gctggtacct gtggtggcag 1150 tggcttgctc ttgtcttttt cttttctttt taactaagaa tggggctgtt 1200 ttaatctatc aatatatgca tacatggata tatccaccca cctagatttt 1300 aagcagtaaa taaaacattt cgcaaaagat taaagttgaa ttttacagtt 1350

<210> 28

t 1351

<211> 285

<212> PRT

<213> Homo sapiens

<400> 28

Met Glu Val Pro Pro Pro Ala Pro Arg Ser Phe Leu Cys Arg Ala 1 5 10 15

Leu Cys Leu Phe Pro Arg Val Phe Ala Ala Glu Ala Val Thr Ala 20 25 30

Asp Ser Glu Val Leu Glu Glu Arg Gln Lys Arg Leu Pro Tyr Val Pro Glu Pro Tyr Tyr Pro Glu Ser Gly Trp Asp Arg Leu Arg Glu Leu Phe Gly Lys Asp Glu Gln Gln Arg Ile Ser Lys Asp Leu Ala Asn Ile Cys Lys Thr Ala Ala Thr Ala Gly Ile Ile Gly Trp Val Tyr Gly Gly Ile Pro Ala Phe Ile His Ala Lys Gln Gln Tyr Ile Glu Gln Ser Gln Ala Glu Ile Tyr His Asn Arg Phe Asp Ala Val 110 115 120 Gln Ser Ala His Arg Ala Ala Thr Arg Gly Phe Ile Arg Tyr Gly 130 Trp Arg Trp Gly Trp Arg Thr Ala Val Phe Val Thr Ile Phe Asn 140 Thr Val Asn Thr Ser Leu Asn Val Tyr Arg Asn Lys Asp Ala Leu Ser His Phe Val Ile Ala Gly Ala Val Thr Gly Ser Leu Phe Arg 170 Ile Asn Val Gly Leu Arg Gly Leu Val Ala Gly Gly Ile Ile Gly Ala Leu Leu Gly Thr Pro Val Gly Gly Leu Leu Met Ala Phe Gln Lys Tyr Ala Gly Glu Thr Val Gln Glu Arg Lys Gln Lys Asp Arg Lys Ala Leu His Glu Leu Lys Leu Glu Glu Trp Lys Gly Arg Leu Gln Val Thr Glu His Leu Pro Glu Lys Ile Glu Ser Ser Leu Arg Glu Asp Glu Pro Glu Asn Asp Ala Lys Lys Ile Glu Ala Leu Leu Asn Leu Pro Arg Asn Pro Ser Val Ile Asp Lys Gln Asp Lys Asp

275

cggaagtccc ttgaggagcg tcagaagcgg cttccctacg tcccagagcc 50

280

<210> 29

<211> 324

<212> DNA

<213> Homo sapiens

<400> 29

<213> Artificial Sequence

<223> Synthetic oligonucleotide probe

<220>

```
ctattacccg gaatctggat gggaccgctc cgggagctgt ttggcaaaga 100
 tgaacagcag agaatttcaa aggaccttgc taatatctgt aagacggcag 150
 ctacagcagg catcattggc tgggtgtatg ggggaatacc agcttttatt 200
 catgctaaac aacaatacat tgagcagagc caggcagaaa tttatcataa 250
 ccggtttgat gctgtgcaat ctgcacatcg tgctgccaca cqaqqcttca 300
 ttcgttcatg gctggcgccg aacc 324
<210> 30
<211> 377
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 262, 330, 371
<223> unknown base
<400> 30
 tcaagtttgt ccgtaggtcg agagaaggcc atggaggtgc cgccaccggc 50
 accgcggagc ttttttctgt agagcattgt qcctatttcc ccqaqttttt 100
 gctgccgaag ctgtgactgc cgattcggaa gtccttgagg agcgtcagaa 150
 gcggcttccc tacgtcccag agccctatta cccggaattt ggatgggacc 200
 gcctccggga gctgtttggc aaagatgaac agcagagaat ttcaaaggac 250
 cttgctgata tntgtaagac ggcagctaca gcaggcatca ttggctgggt 300
 gtatggggga ataccagctt ttattcatgn taaacaacaa tacattgagc 350
 agagccaggc agaaatttat nataacc 377
<210> 31
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 31
tcgtacagtt acgctctccc 20
<210> 32
<211> 20
<212> DNA
```

```
<400> 32
cttgaggagc gtcagaagcg 20
<210> 33
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 33
ataacgaatg aagcctcgtg 20
<210> 34
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 34
gctaatatct gtaagacggc agctacagca ggcatcattg 40
<210> 35
<211> 1819
<212> DNA
<213> Homo sapiens
<400> 35
 gageegeege egegegege eegegeactg cageeceagg eeeeggeeee 50
 ccacccacgt ctgcgttgct gccccgcctg ggccaggccc caaaggcaag 100
 gacaaagcag ctgtcaggga acctccgccg gagtcgaatt tacgtgcagc 150
 tgccggcaac cacaggttcc aagatggttt gcgggggctt cgcgtgttcc 200
 aagaactgcc tgtgcgccct caacctgctt tacaccttgg ttagtctgct 250
 gctaattgga attgctgcgt ggggcattgg cttcgggctg atttccagtc 300
 teegagtggt eggegtggte attgeagtgg geatettett gtteetgatt 350
 gctttagtgg gtctgattgg agctgtaaaa catcatcagg tgttgctatt 400
 tttttatatg attattctgt tacttgtatt tattgttcag ttttctgtat 450
 cttgcgcttg tttagccctg aaccaggagc aacagggtca gcttctggag 500
 gttggttgga acaatacggc aagtgctcga aatgacatcc agagaaatct 550
 aaactgctgt gggttccgaa gtgttaaccc aaatgacacc tgtctggcta 600
 gctgtgttaa aagtgaccac tcgtgctcgc catgtgctcc aatcatagga 650
 gaatatgctg gagaggtttt gagatttgtt ggtggcattg gcctgttctt 700
```

cagttttaca gagatectgg gtgtttgget gaeetacaga tacaggaace 750 agaaagaccc ccgcgcgaat cctagtgcat tcctttgatg agaaaacaag 800 gaagatttcc tttcgtatta tgatcttgtt cactttctgt aattttctgt 850 taagctccat ttgccagttt aaggaaggaa acactatctg gaaaagtacc 900 ttattgatag tggaattata tatttttact ctatgtttct ctacatgttt 950 ttttctttcc gttgctgaaa aatatttgaa acttgtggtc tctgaagctc 1000 ggtggcacct ggaatttact gtattcattg tcggqcactg tccactgtqq 1050 cctttcttag catttttacc tgcagaaaaa ctttgtatgg taccactgtg 1100 ttggttatat ggtgaatctg aacgtacatc tcactggtat aattatatgt 1150 agcactgtgc tgtgtagata gttcctactg gaaaaagagt ggaaatttat 1200 taaaaatcaga aagtatgaga tootgttatg ttaaqggaaa tooaaattoo 1250 caattttttt tggtcttttt aggaaagatt gttgtggtaa aaagtgttag 1300 tataaaaatg ataatttact tgtagtcttt tatgattaca ccaatgtatt 1350 ctagaaatag ttatgtctta ggaaattgtg gtttaatttt tgacttttac 1400 aggtaagtgc aaaggagaag tggtttcatg aaatgttcta atgtataata 1450 acatttacct tcagcctcca tcagaatgga acgagttttg agtaatcagg 1500 aagtatatct atatgatctt gatattgttt tataataatt tgaagtctaa 1550 aagactgcat ttttaaacaa gttagtatta atgcgttggc ccacgtagca 1600 aaaagatatt tgattatett aaaaattgtt aaatacegtt tteatgaaat 1650 ttctcagtat tgtaacagca acttgtcaaa cctaagcata tttgaatatg 1700 atctcccata atttgaaatt gaaatcgtat tgtgtggctc tgtatattct 1750 gttaaaaaat taaaggacag aaacctttct ttgtgtatgc atgtttgaat 1800 taaaagaaag taatggaag 1819

```
<210> 36
```

<211> 204

<212> PRT

<213> Homo sapiens

<400> 36

Met Val Cys Gly Gly Phe Ala Cys Ser Lys Asn Cys Leu Cys Ala

Leu Asn Leu Leu Tyr Thr Leu Val Ser Leu Leu Leu Ile Gly Ile 20 25 30

Ala Ala Trp Gly Ile Gly Phe Gly Leu Ile Ser Ser Leu Arg Val 35 40 45

Val Gly Val Val Ile Ala Val Gly Ile Phe Leu Phe Leu Ile Ala 50 55 60

Leu Val Gly Leu Ile Gly Ala Val Lys His His Gln Val Leu Leu 65 70 75

Phe Phe Tyr Met Ile Ile Leu Leu Leu Val Phe Ile Val Gln Phe 80 85 90

Ser Val Ser Cys Ala Cys Leu Ala Leu Asn Gln Glu Gln Gly
95 100 105

Gln Leu Leu Glu Val Gly Trp Asn Asn Thr Ala Ser Ala Arg Asn 110 115 120

Asp Ile Gln Arg Asn Leu Asn Cys Cys Gly Phe Arg Ser Val Asn 125 130 135

Pro Asn Asp Thr Cys Leu Ala Ser Cys Val Lys Ser Asp His Ser 140 145 150

Cys Ser Pro Cys Ala Pro Ile Ile Gly Glu Tyr Ala Gly Glu Val 155 160 165

Leu Arg Phe Val Gly Gly Ile Gly Leu Phe Phe Ser Phe Thr Glu 170 175 180

Ile Leu Gly Val Trp Leu Thr Tyr Arg Tyr Arg Asn Gln Lys Asp 185 190 195

Pro Arg Ala Asn Pro Ser Ala Phe Leu 200

<210> 37

<211> 390

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 20, 35, 61, 83, 106, 130, 133, 187, 232, 260, 336

<223> unknown base

<400> 37

tgattggagc tgtaaaaaan tcttcaggtg ttgtnattt tttatatgat 50 tattctgtaa nttgtatta ttgttcagtt ttntgtatct tgcgcttgtt 100 tagccntgaa ccaggagcaa cagggtcagn ttntggaggt tggttggaac 150 aatacggcaa gtgctcgaaa tgacatccag agaaatntaa actgctgtgg 200 gttccgaagt gttaacccaa atgacacctg tntggctagc tgtgttaaaa 250 gtgaccactn gtgctcgcca tgtgctccaa tcataggaga atatgctgga 300

gaggttttga gatttgttgg tggcattggc ctgttnttca gttttacaga 350 gatcctgggt gtttggctga cctacagata caggaaccag 390 <210> 38 <211> 566 <212> DNA <213> Homo sapiens <220> <221> unsure <222> 27 <223> unknown base <400> 38 aatcccaaat tccccaattt ttttggnctt tttagggaaa gatgtgttgt 50 ggtaaaaagt gttagtataa aaatgataat ttacttgtag tcttttatga 100 ttacaccaat gtattctaga atagttatgt cttaggaaat tgtggtttaa 150 tttttgactt ttacaggtaa gtgcaaagga gaagtggttt catgaaatgt 200 tetaatgtat aataacattt acetteagee teecateaga atggaacgag 250 ttttgagtaa tccaggaagt atatctatat gatcttgata ttgttttata 300

tctaatgtat aataacattt accttcagcc tcccatcaga atggaacgag 250
ttttgagtaa tccaggaagt atatctatat gatcttgata ttgttttata 300
taatttgaag tctaaaagac tgcatttta aacaagttag tattaatgcg 350
ttggcccacg tagcaaaaag atatttgatt atcttaaaaa ttgttaaata 400
ccgttttcat gaaagttctc agtattgtaa cagcaacttg tcaaacctaa 450
gcatatttga atatgatctc ccataatttg aaattgaaat cgtattgtgt 500
ggaggaaatg gcaatcttat gtgtgctgaa ggacacagta agagcaccaa 550
gttgtgcccc acttgc 566
<210> 39

<211> 264 <212> DNA <213> Homo sapiens <220> <221> unsure <222> 84-85, 206 <223> unknown base

<400> 39
 atgattattc tgttacttgt atttattgtt cagttttatg gtatcttgcg 50
 cttgtttagc ccctgaaacc aggagcaaca gggnncagct tcctggaggt 100
 tggttggcaa caatcacggc caagtgactc cgcaaatgac atcccagaga 150
 aatcctaaac tgctgtgggt tccgaagtgt taacccaaat gacacctgtc 200

```
tggctngctg tgttaaaagt gaccactcgt gctcgccatg tgctccaatc 250
 ataggagaat atgc 264
<210> 40
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 40
 acccacgtct gcgttgctgc c 21
<210> 41
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 41
gagaatatgc tggagagg 18
<210> 42
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 42
aggaatgcac taggattcgc gcgg 24
<210> 43
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
ggccccaaag gcaaggacaa agcagctgtc agggaacctc cgccg 45
<210> 44
<211> 2061
<212> DNA
<213> Homo sapiens
<400> 44
cagtcaccat gaagctgggc tgtgtcctca tggcctgggc cctctacctt 50
tcccttggtg tgctctgggt ggcccagatg ctactggctg ccagttttga 100
```

gacgctgcag tgtgagggac ctgtctgcac tgaggagagc agctgccaca 150 cggaggatga cttgactgat gcaagggaag ctggcttcca ggtcaaggcc 200 tacactttca gtgaaccctt ccacctgatt gtgtcctatg actggctgat 250 cctccaaggt ccagccaagc cagtttttga aggggacctg ctggttctgc 300 gctgccaggc ctggcaagac tggccactga ctcaggtgac cttctaccga 350 gatggctcag ctctgggtcc ccccgggcct aacagggaat tctccatcac 400 cgtggtacaa aaggcagaca gcgggcacta ccactgcagt ggcatcttcc 450 agagecetgg teetgggate ceagaaacag catetqttqt qqctateaca 500 gtccaagaac tgtttccagc gccaattctc agagctgtac cctcagctga 550 accccaagca ggaagcccca tgaccctgag ttgtcagaca aagttgcccc 600 tgcagaggtc agctgcccgc ctcctcttct ccttctacaa ggatggaagg 650 atagtgcaaa gcagggggct ctcctcagaa ttccagatcc ccacagcttc 700 agaagatcac teegggteat aetggtgtga ggeageeact gaggaeaace 750 aagtttggaa acagagcccc cagctagaga tcagagtgca gggtgcttcc 800 agetetgetg caccteceae attgaateea geteeteaga aateagetge 850 tocaggaact geteetgagg aggeeettgg geetetgeet eegeegeeaa 900 ccccatcttc tgaggatcca ggcttttctt ctcctctggg gatgccagat 950 cctcatctgt atcaccagat gggccttctt ctcaaacaca tgcaggatgt 1000 gagagteete eteggteace tgeteatgga gttgagggaa ttatetggee 1050 accagaagcc tgggaccaca aaggctactg ctgaatagaa gtaaacagtt 1100 catccatgat ctcacttaac caccccaata aatctgattc tttattttct 1150 cttcctgtcc tgcacatatg cataagtact tttacaagtt gtcccagtgt 1200 agaattagag tttagctata attgtgtatt ctctcttaac acaacagaat 1300 tctgctgtct agatcaggaa tttctatctg ttatatcgac cagaatgttg 1350 tgatttaaag agaactaatg gaagtggatt gaatacagca gtctcaactg 1400 ggggcaattt tgcccccag aggacattgg gcaatqtttg gagacatttt 1450 ggtcattata cttggggggt tgggggatgg tgggatgtgt gtctactggc 1500 atccagtaaa tagaagccag gggtgccqct aaacatccta taatqcacag 1550

ggcagtaccc cacaacgaaa aataatctgg cccaaaatgt cagttgtact 1600 gagtttgaga aaccccagcc taatgaaacc ctaggtgttg ggctctggaa 1650 tgggactttg tcccttctaa ttattatctc tttccagcct cattcagcta 1700 ttcttactga cataccagtc tttagctggt gctatggtct gttctttagt 1750 tctagtttgt atcccctcaa aagccattat gttgaaatcc taatccccaa 1800 ggtgatggca ttaagaagtg ggcctttggg aagtgattag atcaggagtg 1850 cagagccctc atgattagga ttagtgccct tatttaaaaa ggccccagag 1900 agctaactca cccttccacc atatgaggac gtggcaagaa gatgacatgt 1950 atgagaacca aaaaacagct gtcgccaaac accgactctg tcgttgcctt 2000 gatcttgaac ttccagcctc cagaactatg agaaataaaa ttctggttgt 2050 ttgtagccta a 2061

<210> 45 <211> 359 <212> PRT

<213> Homo sapiens

<400> 45
Met Lys Len Gly Cys Val Len Met Ala

Met Lys Leu Gly Cys Val Leu Met Ala Trp Ala Leu Tyr Leu Ser 1 5 10 15

Leu Gly Val Leu Trp Val Ala Gln Met Leu Leu Ala Ala Ser Phe 20 25 30

Glu Thr Leu Gln Cys Glu Gly Pro Val Cys Thr Glu Glu Ser Ser 35 40 45

Cys His Thr Glu Asp Asp Leu Thr Asp Ala Arg Glu Ala Gly Phe 50 55 60

Gln Val Lys Ala Tyr Thr Phe Ser Glu Pro Phe His Leu Ile Val 65 70 75

Ser Tyr Asp Trp Leu Ile Leu Gln Gly Pro Ala Lys Pro Val Phe 80 85 90

Glu Gly Asp Leu Leu Val Leu Arg Cys Gln Ala Trp Gln Asp Trp
95 100 105

Pro Leu Thr Gln Val Thr Phe Tyr Arg Asp Gly Ser Ala Leu Gly

Pro Pro Gly Pro Asn Arg Glu Phe Ser Ile Thr Val Val Gln Lys 125 130 135

Ala Asp Ser Gly His Tyr His Cys Ser Gly Ile Phe Gln Ser Pro 140 145 150

Gly	Pro	Gly	Ile	Pro 155	Glu	Thr	Ala	Ser	Val 160	Val	Ala	Ile	Thr	Val 165
Gln	Glu	Leu	Phe	Pro 170	Ala	Pro	Ile	Leu	Arg 175	Ala	Val	Pro	Ser	Ala 180
Glu	Pro	Gln	Ala	Gly 185	Ser	Pro	Met	Thr	Leu 190	Ser	Cys	Gln	Thr	Lys 195
Leu	Pro	Leu	Gln	Arg 200	Ser	Ala	Ala	Arg	Leu 205	Leu	Phe	Ser	Phe	Tyr 210
Lys	Asp	Gly	Arg	Ile 215	Val	Gln	Ser	Arg	Gly 220	Leu	Ser	Ser	Glu	Phe 225
Gln	Ile	Pro	Thr	Ala 230	Ser	Glu	Asp	His	Ser 235	Gly	Ser	Tyr	Trp	Cys 240
Glu	Ala	Ala	Thr	Glu 245	Asp	Asn	Gln	Val	Trp 250	Lys	Gln	Ser	Pro	Gln 255
Leu	Glu	Ile	Arg	Val 260	Gln	Gly	Ala	Ser	Ser 265	Ser	Ala	Ala	Pro	Pro 270
Thr	Leu	Asn	Pro	Ala 275	Pro	Gln	Lys	Ser	Ala 280	Ala	Pro	Gly	Thr	Ala 285
Pro	Glu	Glu	Ala	Pro 290	Gly	Pro	Leu	Pro	Pro 295	Pro	Pro	Thr	Pro	Ser 300
Ser	Glu	Asp	Pro	Gly 305	Phe	Ser	Ser	Pro	Leu 310	Gly	Met	Pro	Asp	Pro 315
His	Leu	Tyr	His	Gln 320	Met	Gly	Leu	Leu	Leu 325	Lys	His	Met	Gln	Asp 330
Val	Arg	Val	Leu	Leu 335	Gly	His	Leu	Leu	Met 340	Glu	Leu	Arg	Glu	Leu 345
Ser	Gly	His	Gln	Lys 350	Pro	Gly	Thr	Thr	Lys 355	Ala	Thr	Ala	Glu	
/21A														

- <210> 46
- <211> 18
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 46
- tgggctgtgt cctcatgg 18
- <210> 47
- <211> 18
- <212> DNA
- <213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 47
 tttccagcgc caattctc 18
<210> 48
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 48
 agttcttgga ctgtgatagc cac 23
<210> 49
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 49
 aaacttggtt gtcctcagtg gctg 24 .
<210> 50
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 50
 gtgagggacc tgtctgcact gaggagagca gctgccacac ggagg 45
<210> 51
<211> 2181
<212> DNA
<213> Homo sapiens
<400> 51
cccacgcgtc cgcccacgcg tccgcccacg ggtccgccca cgcgtccggg 50
 ccaccagaag tttgagcctc tttggtagca ggaggctgga agaaaggaca 100
 gaagtagctc tggctgtgat ggggatctta ctgggcctgc tactcctggg 150
gcacctaaca gtggacactt atggccgtcc catcctggaa gtgccagaga 200
gtgtaacagg accttggaaa ggggatgtga atcttccctg cacctatgac 250
cccctgcaag gctacaccca agtcttggtg aagtggctgg tacaacgtgg 300
```

ctcagaccct gtcaccatct ttctacgtga ctcttctgga gaccatatcc 350

agcaggcaaa gtaccagggc cgcctgcatg tgagccacaa ggttccagga 400 gatgtatccc tccaattgag caccetggag atggatgace ggagccacta 450 cacgtgtgaa gtcacctggc agactcctga tggcaaccaa gtcgtgagag 500 ataagattac tgagctccgt gtccagaaac tctctgtctc caagcccaca 550 gtgacaactg gcagcggtta tggcttcacg gtgccccagg gaatgaggat 600 tagcetteaa tgeeaggete ggggttetee teccateagt tatatttggt 650 ataagcaaca gactaataac caggaaccca tcaaagtagc aaccctaagt 700 accttactct tcaagcctgc ggtgatagcc gactcaggct cctatttctg 750 cactgccaag ggccaggttg gctctgagca gcacagcgac attgtgaagt 800 ttgtggtcaa agactcctca aagctactca agaccaagac tgaggcacct 850 acaaccatga catacccctt gaaagcaaca tctacagtga agcagtcctg 900 ggactggacc actgacatgg atggctacct tggagagacc agtgctgggc 950 caggaaagag cctgcctgtc tttgccatca tcctcatcat ctccttgtgc 1000 tgtatggtgg tttttaccat ggcctatatc atgctctgtc ggaagacatc 1050 ccaacaagag catgtctacg aagcagccag gtaagaaagt ctctcctctt 1100 ccatttttga ccccgtccct gccctcaatt ttgattactg gcaggaaatg 1150 tggaggaagg ggggtgtggc acagacccaa tcctaaggcc ggaggccttc 1200 agggtcagga catagctgcc ttccctctct caggcacctt ctgaggttgt 1250 tttggccctc tgaacacaaa ggataattta gatccatctg ccttctgctt 1300 ccagaatccc tgggtggtag gatcctgata attaattggc aagaattgag 1350 gcagaagggt gggaaaccag gaccacagcc ccaagtccct tcttatgggt 1400 ggtgggctct tgggccatag ggcacatgcc agagaggcca acgactctgg 1450 agaaaccatg agggtggcca tcttcgcaag tggctgctcc agtgatgagc 1500 caacttccca gaatctgggc aacaactact ctgatgagcc ctgcatagga 1550 caggagtacc agatcatcgc ccagatcaat ggcaactacg cccgcctgct 1600 ggacacagtt cctctggatt atgagtttct ggccactgag ggcaaaagtg 1650 tctgttaaaa atgccccatt aggccaggat ctgctgacat aattgcctag 1700 teagteettg cettetgeat ggeettette eetgetaeet etetteetgg 1750 atageceaaa gtgteegeet aceaacaetg gageegetgg gagteaetgg 1800

ctttgcctg gaatttgcca gatgcatcte aagtaageca getgetggat 1850 ttggetetgg geeettetag tatetetgee gggggettet ggtaeteete 1900 tetaaatace agagggaaga tgeeeatage actaggaett ggteateatg 1950 cetacagaca etatteaact ttggeatett geeaceagaa gaceegaggg 2000 aggeteaget etgeeagete agaggaeeag etatateeag gateatttet 2050 etttetteag ggeeagaeag ettttaattg aaattgttat tteacaggee 2100 agggtteagt tetgeteete eactataagt etaatgttet gaetetetee 2150 tggtgeteaa taaatateta ateataaeag e 2181

<210> 52 <211> 321 <212> PRT

<213> Homo sapiens

<400> 52

Met Gly Ile Leu Leu Gly Leu Leu Leu Gly His Leu Thr Val 1 5 10 15

Asp Thr Tyr Gly Arg Pro Ile Leu Glu Val Pro Glu Ser Val Thr 20 25 30

Gly Pro Trp Lys Gly Asp Val Asn Leu Pro Cys Thr Tyr Asp Pro 35 40 45

Leu Gln Gly Tyr Thr Gln Val Leu Val Lys Trp Leu Val Gln Arg
50 55 60

Gly Ser Asp Pro Val Thr Ile Phe Leu Arg Asp Ser Ser Gly Asp
65 70 75

His Ile Gln Gln Ala Lys Tyr Gln Gly Arg Leu His Val Ser His 80 85 90

Lys Val Pro Gly Asp Val Ser Leu Gln Leu Ser Thr Leu Glu Met 95 100 105

Asp Asp Arg Ser His Tyr Thr Cys Glu Val Thr Trp Gln Thr Pro 110 115 120

Asp Gly Asn Gln Val Val Arg Asp Lys Ile Thr Glu Leu Arg Val 125 130 135

Gln Lys Leu Ser Val Ser Lys Pro Thr Val Thr Thr Gly Ser Gly
140 145 150

Tyr Gly Phe Thr Val Pro Gln Gly Met Arg Ile Ser Leu Gln Cys 155 160 165

Gln Ala Arg Gly Ser Pro Pro Ile Ser Tyr Ile Trp Tyr Lys Gln 170 175 180

```
Gln Thr Asn Asn Gln Glu Pro Ile Lys Val Ala Thr Leu Ser Thr
                 185
 Leu Leu Phe Lys Pro Ala Val Ile Ala Asp Ser Gly Ser Tyr Phe
                 200
 Cys Thr Ala Lys Gly Gln Val Gly Ser Glu Gln His Ser Asp Ile
 Val Lys Phe Val Val Lys Asp Ser Ser Lys Leu Leu Lys Thr Lys
 Thr Glu Ala Pro Thr Thr Met Thr Tyr Pro Leu Lys Ala Thr Ser
 Thr Val Lys Gln Ser Trp Asp Trp Thr Thr Asp Met Asp Gly Tyr
                 260
 Leu Gly Glu Thr Ser Ala Gly Pro Gly Lys Ser Leu Pro Val Phe
                 275
                                      280
 Ala Ile Ile Leu Ile Ile Ser Leu Cys Cys Met Val Val Phe Thr
                 290
 Met Ala Tyr Ile Met Leu Cys Arg Lys Thr Ser Gln Gln Glu His
 Val Tyr Glu Ala Ala Arg
<210> 53
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 53
tatccctcca attgagcacc ctgg 24
<210> 54
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 54
gtcggaagac atcccaacaa g 21
<210> 55
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Synthetic oligonucleotide probe
<400> 55
 cttcacaatg tcgctgtgct gctc 24
<210> 56
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 56
 agccaaatcc agcagctggc ttac 24
<210> 57
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 57
tggatgaccg gagccactac acgtgtgaag tcacctggca gactcctgat 50
<210> 58
<211> 2458
<212> DNA
<213> Homo sapiens
<400> 58
 gcgccgggag cccatctgcc cccaggggca cggggcgcgg ggccggctcc 50
cgcccggcac atggctgcag ccacctcgcg cgcaccccga ggcgccgcqc 100
 ccagctcgcc cgaggtccgt cggaggcgcc cggccgcccc ggagccaagc 150
 agcaactgag cggggaagcg cccgcgtccg gggatcggga tgtccctcct 200
 ccttctcctc ttgctagttt cctactatgt tggaaccttg gggactcaca 250
 ctgagatcaa gagagtggca gaggaaaagg tcactttgcc ctgccaccat 300
caactggggc ttccagaaaa agacactctg gatattgaat ggctgctcac 350
cgataatgaa gggaaccaaa aagtggtgat cacttactcc agtcgtcatg 400
tctacaataa cttgactgag gaacagaagg gccgagtggc ctttgcttcc 450
aatttcctgg caggagatgc ctccttgcag attgaacctc tgaagcccag 500
tgatgagggc cggtacacct gtaaggttaa gaattcaggg cgctacgtgt 550
ggagccatgt catcttaaaa gtcttagtga gaccatccaa gcccaagtgt 600
gagttggaag gagagctgac agaaggaagt gacctgactt tgcagtgtga 650
```

gtcatcctct ggcacagagc ccattgtgta ttactggcag cgaatccgag 700 agaaagaggg agaggatgaa cgtctgcctc ccaaatctag gattgactac 750 aaccaccctg gacgagttct gctgcagaat cttaccatgt cctactctgg 800 actgtaccag tgcacagcag gcaacqaaqc tqqqaaqqaa aqctqtqtqq 850 tgcgagtaac tgtacagtat gtacaaagca tcqqcatqqt tqcaqqaqca 900 gtgacaggca tagtggctgg agccctgctg attttcctct tqqtqtqqct 950 gctaatccga aggaaagaca aagaaagata tgaggaagaa gagagaccta 1000 atgaaattcg agaagatgct gaagctccaa aagcccgtct tgtgaaaccc 1050 ageteetett ceteaggete teggagetea egetetggtt etteeteeac 1100 tcgctccaca gcaaatagtg cctcacgcag ccagcggaca ctgtcaactg 1150 acgcagcacc ccagccaggg ctggccaccc aggcatacag cctagtgggg 1200 ccagaggtga gaggttctga accaaagaaa gtccaccatg ctaatctgac 1250 caaagcagaa accacacca gcatgatccc cagccagagc agagccttcc 1300 aaacggtctg aattacaatg gacttgactc ccacgctttc ctaggagtca 1350 gggtctttgg actcttctcg tcattggagc tcaagtcacc agccacacaa 1400 ccagatgaga ggtcatctaa gtagcagtga gcattgcacg gaacagattc 1450 agatgagcat tttccttata caataccaaa caagcaaaag gatgtaagct 1500 gattcatctg taaaaaggca tcttattgtg cctttagacc agagtaaggg 1550 aaagcaggag tccaaatcta tttgttgacc aggacctgtg gtgagaaggt 1600 tggggaaagg tgaggtgaat atacctaaaa cttttaatgt gggatatttt 1650 gtatcagtgc tttgattcac aattttcaag aggaaatggg atgctgtttg 1700 taaattttct atgcatttct gcaaacttat tggattatta gttattcaga 1750 cagtcaagca gaacccacag ccttattaca cctgtctaca ccatgtactg 1800 agctaaccac ttctaagaaa ctccaaaaaa ggaaacatgt gtcttctatt 1850 ctgacttaac ttcatttgtc ataaggtttg gatattaatt tcaaggggag 1900 ttgaaatagt gggagatgga gaagagtgaa tgagtttctc ccactctata 1950 ctaatctcac tatttgtatt gagcccaaaa taactatgaa aggagacaaa 2000 aatttgtgac aaaggattgt gaagagcttt ccatcttcat qatqttatqa 2050 ggattgttga caaacattag aaatatataa tqqaqcaatt qtqqatttcc 2100

cctcaaatca gatgcctcta aggactttcc tgctagatat ttctggaagg 2150
agaaaataca acatgtcatt tatcaacgtc cttagaaaga attcttctag 2200
agaaaaaggg atctaggaat gctgaaagat tacccaacat accattatag 2250
tctcttcttt ctgagaaaat gtgaaaccag aattgcaaga ctgggtggac 2300
tagaaaggga gattagatca gttttctctt aatatgtcaa ggaaggtagc 2350
cgggcatggt gccaggcacc tgtaggaaaa tccagcaggt ggaggttgca 2400
gtgagccgag attatgccat tgcactccag cctgggtgac agagcggac 2450
tccgtctc 2458

<210> 59 <211> 373 <212> PRT <213> Homo sapiens

<400> 59

Met Ser Leu Leu Leu Leu Leu Leu Val Ser Tyr Tyr Val Gly
1 5 10 15

Thr Leu Gly Thr His Thr Glu Ile Lys Arg Val Ala Glu Glu Lys 20 25 30

Val Thr Leu Pro Cys His His Gln Leu Gly Leu Pro Glu Lys Asp
35 40 45

Thr Leu Asp Ile Glu Trp Leu Leu Thr Asp Asn Glu Gly Asn Gln
50 55 60

Lys Val Val Ile Thr Tyr Ser Ser Arg His Val Tyr Asn Asn Leu 65 70 75

Thr Glu Glu Gln Lys Gly Arg Val Ala Phe Ala Ser Asn Phe Leu 80 85 90

Ala Gly Asp Ala Ser Leu Gln Ile Glu Pro Leu Lys Pro Ser Asp 95 100 105

Glu Gly Arg Tyr Thr Cys Lys Val Lys Asn Ser Gly Arg Tyr Val 110 115 120

Trp Ser His Val Ile Leu Lys Val Leu Val Arg Pro Ser Lys Pro 125 130 135

Lys Cys Glu Leu Glu Gly Glu Leu Thr Glu Gly Ser Asp Leu Thr
140 145 150

Leu Gln Cys Glu Ser Ser Ser Gly Thr Glu Pro Ile Val Tyr Tyr 155 160 165

Trp Gln Arg Ile Arg Glu Lys Glu Gly Glu Asp Glu Arg Leu Pro 170 175 180

Pro	Lys	Ser	Arg	Ile 185	Asp	Tyr	Asn	His	Pro 190	Gly	Arg	Val	Leu	Leu 195
Gln	Asn	Leu	Thr	Met 200	Ser	Tyr	Ser	Gly	Leu 205	Tyr	Gln	Суз	Thr	Ala 210
Gly	Asn	Glu	Ala	Gly 215	Lys	Glu	Ser	Суз	Val 220	Val	Arg	Val	Thr	Val 225
Gln	Tyr	Val	Gln	Ser 230	Ile	Gly	Met	Val	Ala 235	Gly	Ala	Val	Thr	Gly 240
Ile	Val	Ala	Gly	Ala 245	Leu	Leu	Ile	Phe	Leu 250	Leu	Val	Trp	Leu	Leu 255
Ile	Arg	Arg	Lys	Asp 260	Lys	Glu	Arg	Tyr	Glu 265	Glu	Glu	Glu	Arg	Pro 270
Asn	Glu	Ile	Arg	Glu 275	Asp	Ala	Glu	Ala	Pro 280	Lys	Ala	Arg	Leu	Val 285
Lys	Pro	Ser	Ser	Ser 290	Ser	Ser	Gly	Ser	Arg 295	Ser	Ser	Arg	Ser	Gly 300
Ser	Ser	Ser	Thr	Arg 305	Ser	Thr	Ala	Asn	Ser 310	Ala	Ser	Arg	Ser	Gln 315
Arg	Thr	Leu	Ser	Thr 320	Asp	Ala	Ala	Pro	Gln 325	Pro	Gly	Leu	Ala	Thr 330
Gln	Ala	Tyr	Ser	Leu 335	Val	Gly	Pro	Glu	Val 340	Arg	Gly	Ser	Glu	Pro 345
Lys	Lys	Val	His	His 350	Ala	Asn	Leu	Thr	Lys 355	Ala	Glu	Thr	Thr	Pro 360
Ser	Met	Ile	Pro	Ser 365	Gln	Ser	Arg	Ala	Phe 370	Gln	Thr	Val		
<210 <211 <212 <213	> 24 > DNA		cial	Sequ	ience	.								
<220> <223>		thet	ic o	oligo	nucl	.eoti	.de p	orobe)					
<400> ccac		ıca ç	gcago	caac	g aa	igc 2	24							

- <210> 61
- <211> 24
- <212> DNA
- <213> Artificial Sequence
- <223> Synthetic oligonucleotide probe

<400> 61 actaggctgt atgcctgggt gggc 24 <210> 62 <211> 43 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 62 gtatgtacaa agcatcggca tggttgcagg agcagtgaca qgc 43 <210> 63 <211> 3534 <212> DNA <213> Homo sapiens <400> 63 gtcgttcctt tgctctctcg cgcccagtcc tcctccctgg ttctcctcag 50 ccgctgtcgg aggagagcac ccggagacgc gggctgcagt cgcggcggct 100 teteceegee tgggeggeet egeegetggg eaggtgetga gegeecetag 150 agectecett geogeeteec teetetgeec ggeogeagea gtgeacatgg 200 ggtgttggag gtagatgggc tcccggcccg ggaggcggcg gtggatgcgg 250 cgctgggcag aagcagccgc cgattccagc tgccccgcgc gccccqqqcq 300 cccctgcgag tccccggttc agccatgggg acctctccga gcagcagcac 350 cgccctcgcc tcctgcagcc gcatcgcccg ccgagccaca gccacgatga 400 tcgcgggctc ccttctcctg cttggattcc ttagcaccac cacagctcag 450 ccagaacaga aggcctcgaa tctcattggc acataccgcc atgttgaccg 500 tgccaccggc caggtgctaa cctgtgacaa gtgtccagca ggaacctatg 550 tetetgagea ttgtaceaac acaageetge gegtetgeag cagttgeeet 600 gtggggacct ttaccaggca tgagaatggc atagagaaat gccatgactg 650 tagtcagcca tgcccatggc caatgattga gaaattacct tgtgctgcct 700 tgactgaccg agaatgcact tgcccacctg gcatgttcca gtctaacgct 750 acctgtgccc cccatacggt gtgtcctgtg ggttggggtg tgcggaagaa 800 agggacagag actgaggatg tgcggtgtaa gcagtgtgct cggggtacct 850 tctcagatgt gccttctagt gtgatgaaat gcaaagcata cacagactgt 900

ctgagtcaga acctggtggt gatcaagccg gggaccaagg agacagacaa 950

cgtctgtggc acactcccgt ccttctccag ctccacctca ccttcccctg 1000 gcacagccat ctttccacgc cctgagcaca tggaaaccca tgaagtccct 1050 tectecaett atgtteceaa aggeatgaae teaacagaat ecaaetette 1100 tgcctctgtt agaccaaagg tactgagtag catccaggaa gggacagtcc 1150 ctgacaacac aagctcagca agggggaagg aagacgtgaa caagaccctc 1200 ccaaaccttc aggtagtcaa ccaccagcaa ggcccccacc acagacacat 1250 cctgaagctg ctgccgtcca tggaggccac tgggggcgag aagtccagca 1300 cgcccatcaa gggccccaag aggggacatc ctagacagaa cctacacaag 1350 cattttgaca tcaatgagca tttgccctgg atgattgtgc ttttcctgct 1400 gctggtgctt gtggtgattg tggtgtgcag tatccggaaa agctcgagga 1450 ctctgaaaaa ggggccccgg caggatccca gtgccattgt ggaaaaggca 1500 gggctgaaga aatccatgac tccaacccag aaccgggaga aatggatcta 1550 ctactgcaat ggccatggta tcgatatcct gaagcttgta gcagcccaag 1600 tgggaagcca gtggaaagat atctatcagt ttctttgcaa tgccagtgag 1650 agggaggttg ctgctttctc caatgggtac acaqccgacc acgagcgggc 1700 ctacgcagct ctgcagcact ggaccatccg gggccccgag gccagcctcg 1750 cccagctaat tagcgccctg cgccagcacc ggagaaacga tgttgtggag 1800 aagattcgtg ggctgatgga agacaccacc cagctggaaa ctgacaaact 1850 ageteteceg atgagececa geoegettag eeegageece atececagee 1900 ccaacgcgaa acttgagaat tccgctctcc tgacggtgga gccttcccca 1950 caggacaaga acaagggctt cttcqtqqat qaqtcqqaqc cccttctccq 2000 ctgtgactct acatccagcg gctcctccgc gctgagcagg aacggttcct 2050 ttattaccaa agaaaagaag gacacagtgt tgcggcaggt acgcctggac 2100 ccctgtgact tgcagcctat ctttgatgac atgctccact ttctaaatcc 2150 tgaggagctg cgggtgattg aagagattcc ccaggctgag gacaaactag 2200 accggctatt cgaaattatt ggagtcaaga gccaggaagc cagccagacc 2250 ctcctggact ctgtttatag ccatcttcct gacctgctgt agaacatagg 2300 gatactgcat tctggaaatt actcaattta gtggcagggt ggttttttaa 2350 ttttcttctg tttctgattt ttgttgtttg gggtgtgtgt gtgtgtttgt 2400

gtgtgtgtgt gtgtgtgt gtgtgtgtgt gtttaacaga gaatatggcc 2450 agtgcttgag ttctttctcc ttctctctct ctctttttt tttaaataac 2500 tettetggga agttggttta taageetttg ceaggtgtaa etgttgtgaa 2550 atacccacca ctaaagtttt ttaagttcca tattttctcc attttgcctt 2600 cttatgtatt ttcaagatta ttctgtgcac tttaaattta cttaacttac 2650 cataaatgca gtgtgacttt tcccacacac tggattgtga ggctcttaac 2700 ttcttaaaag tataatggca tcttgtgaat cctataagca gtctttatgt 2750 ctcttaacat tcacacctac tttttaaaaa caaatattat tactattttt 2800 attattgttt gtcctttata aattttctta aagattaaga aaatttaaga 2850 ccccattgag ttactgtaat gcaattcaac tttgagttat cttttaaata 2900 tgtcttgtat agttcatatt catggctgaa acttgaccac actattgctg 2950 attgtatggt tttcacctgg acaccgtgta gaatgcttga ttacttgtac 3000 tettettatg ctaatatget etgggetgga gaaatgaaat ceteaageea 3050 tcaggatttg ctatttaagt ggcttgacaa ctggqccacc aaagaacttg 3100 aacttcacct tttaggattt gagctgttct ggaacacatt gctgcacttt 3150 ggaaagtcaa aatcaagtgc cagtggcgcc ctttccatag agaatttgcc 3200 cagctttgct ttaaaagatg tcttgttttt tatatacaca taatcaatag 3250 gtccaatctg ctctcaaggc cttggtcctg gtgggattcc ttcaccaatt 3300 actttaatta aaaatggctg caactgtaag aacccttgtc tgatatattt 3350 gcaactatgc tcccatttac aaatgtacct tctaatgctc agttgccagg 3400 ttccaatgca aaggtggcgt ggactccctt tgtgtgggtg gggtttgtgg 3450 gtagtggtga aggaccgata tcagaaaaat gccttcaagt gtactaattt 3500 attaataaac attaggtgtt tgttaaaaaa aaaa 3534

<210> 64

<211> 655

<212> PRT

<213> Homo sapiens

<400> 64

Met Gly Thr Ser Pro Ser Ser Ser Thr Ala Leu Ala Ser Cys Ser 1 10 15

Arg Ile Ala Arg Arg Ala Thr Ala Thr Met Ile Ala Gly Ser Leu
20 25 30

Leu Leu Gly Phe Leu Ser Thr Thr Ala Gln Pro Glu Gln Lys Ala Ser Asn Leu Ile Gly Thr Tyr Arg His Val Asp Arg Ala Thr Gly Gln Val Leu Thr Cys Asp Lys Cys Pro Ala Gly Thr Tyr Val Ser Glu His Cys Thr Asn Thr Ser Leu Arg Val Cys Ser Ser Cys Pro Val Gly Thr Phe Thr Arg His Glu Asn Gly Ile Glu Lys Cys His Asp Cys Ser Gln Pro Cys Pro Trp Pro Met Ile Glu Lys 110 115 Leu Pro Cys Ala Ala Leu Thr Asp Arg Glu Cys Thr Cys Pro Pro 125 Gly Met Phe Gln Ser Asn Ala Thr Cys Ala Pro His Thr Val Cys 140 Pro Val Gly Trp Gly Val Arg Lys Lys Gly Thr Glu Thr Glu Asp Val Arg Cys Lys Gln Cys Ala Arg Gly Thr Phe Ser Asp Val Pro 170 Ser Ser Val Met Lys Cys Lys Ala Tyr Thr Asp Cys Leu Ser Gln Asn Leu Val Val Ile Lys Pro Gly Thr Lys Glu Thr Asp Asn Val Cys Gly Thr Leu Pro Ser Phe Ser Ser Ser Thr Ser Pro Ser Pro Gly Thr Ala Ile Phe Pro Arg Pro Glu His Met Glu Thr His Glu Val Pro Ser Ser Thr Tyr Val Pro Lys Gly Met Asn Ser Thr Glu Ser Asn Ser Ser Ala Ser Val Arg Pro Lys Val Leu Ser Ser Ile Gln Glu Gly Thr Val Pro Asp Asn Thr Ser Ser Ala Arg Gly Lys 285 Glu Asp Val Asn Lys Thr Leu Pro Asn Leu Gln Val Val Asn His Gln Gln Gly Pro His His Arg His Ile Leu Lys Leu Leu Pro Ser Met Glu Ala Thr Gly Gly Glu Lys Ser Ser Thr Pro Ile Lys Gly

				320					325					330
Pro	Lys	Arg	Gly	His 335	Pro	Arg	Gln	Asn	Leu 340	His	Lys	His	Phe	Asp 345
Ile	Asn	Glu	His	Leu 350	Pro	Trp	Met	Ile	Val 355	Leu	Phe	Leu	Leu	Leu 360
Val	Leu	Val	Val	Ile 365	Val	Val	Cys	Ser	Ile 370	Arg	Lys	Ser	Ser	Arg 375
Thr	Leu	Lys	Lys	Gly 380	Pro	Arg	Gln	Asp	Pro 385	Ser	Ala	Ile	Val	Glu 390
Lys	Ala	Gly	Leu	Lys 395	Lys	Ser	Met	Thr	Pro 400	Thr	Gln	Asn	Arg	Glu 405
Lys	Trp	Ile	Tyr	Tyr 410	Cys	Asn	Gly	His	Gly 415	Ile	Asp	Ile	Leu	Lys 420
Leu	Val	Ala	Ala	Gln 425	Val	Gly	Ser	Gln	Trp 430	Lys	Asp	Ile	Tyr	Gln 435
Phe	Leu	Суз	Asn	Ala 440	Ser	Glu	Arg	Glu	Val 445	Ala	Ala	Phe	Ser	Asn 450
Gly	Tyr	Thr	Ala	Asp 455	His	Glu	Arg	Ala	Tyr 460	Ala	Ala	Leu	Gln	His 465
Trp	Thr	Ile	Arg	Gly 470	Pro	Glu	Ala	Ser	Leu 475	Ala	Gln	Leu	Ile	Ser 480
Ala	Leu	Arg	Gln	His 485	Arg	Arg	Asn	Asp	Val 490	Val	Glu	Lys	Ile	Arg 495
Gly	Leu	Met	Glu	Asp 500	Thr	Thr	Gln	Leu	Glu 505	Thr	Asp	Lys	Leu	Ala 510
Leu	Pro	Met	Ser	Pro 515	Ser	Pro	Leu	Ser	Pro 520	Ser	Pro	Ile	Pro	Ser 525
Pro	Asn	Ala	Lys	Leu 530	Glu	Asn	Ser	Ala	Leu 535	Leu	Thr	Val	Glu	Pro 540
Ser	Pro	Gln	Asp	Lys 545	Asn	Lys	Gly	Phe	Phe 550	Val	Asp	Glu	Ser	Glu 555
Pro	Leu	Leu	Arg	Cys 560	Asp _.	Ser	Thr	Ser	Ser 565	Gly	Ser	Ser	Ala	Leu 570
Ser	Arg	Asn	Gly	Ser 575	Phe	Ile	Thr	Lys	Glu 580	Lys	Lys	Asp	Thr	Val 585
Leu	Arg	Gln	Val	Arg 590	Leu	Asp	Pro	Cys	Asp 595	Leu	Gln	Pro	Ile	Phe 600
Asp	Asp	Met	Leu	His 605	Phe	Leu	Asn	Pro	Glu 610	Glu	Leu	Arg	Val	Ile 615

```
Glu Glu Ile Pro Gln Ala Glu Asp Lys Leu Asp Arg Leu Phe Glu
 Ile Ile Gly Val Lys Ser Gln Glu Ala Ser Gln Thr Leu Leu Asp
                 635
 Ser Val Tyr Ser His Leu Pro Asp Leu Leu
                 650
<210> 65
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 65
 gtagcagtgc acatggggtg ttgg 24
<210> 66
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 66
 accgcacatc ctcagtctct gtcc 24
<210> 67
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
acgatgateg egggeteect teteetgett ggatteetta geaccaceae 50
<210> 68
<211> 2412
<212> DNA
<213> Homo sapiens
<400> 68
atgggaagcc agtaacactg tggcctacta tctcttccgt ggtgccatct 50
acatttttgg gactcgggaa ttatgaggta gaggtggagg cggagccgga 100
tgtcagaggt cctgaaatag tcaccatggg ggaaaatgat ccgcctgctg 150
ttgaagcccc cttctcattc cgatcgcttt ttggccttga tgatttgaaa 200
```

ataagtcctg ttgcaccaga tgcagatgct gttqctqcac agatcctqtc 250

actgctgcca ttgaagtttt ttccaatcat cgtcattggg atcattgcat 300 tgatattagc actggccatt ggtctgggca tccacttcga ctgctcaggg 350 aagtacagat gtcgctcatc ctttaagtgt atcgagctga tagctcgatg 400 tgacggagtc tcggattgca aagacgggga ggacgagtac cgctqtqtcc 450 gggtgggtgg tcagaatgcc gtgctccagg tgttcacagc tgcttcgtgg 500 aagaccatgt gctccgatga ctggaagggt cactacgcaa atgttgcctg 550 tgcccaactg ggtttcccaa gctatgtgag ttcagataac ctcagagtga 600 gctcgctgga ggggcagttc cgggaggagt ttgtgtccat cgatcacctc 650 ttgccagatg acaaggtgac tgcattacac cactcagtat atgtgaggga 700 gggatgtgcc tctggccacg tggttacctt gcagtgcaca gcctgtggtc 750 atagaagggg ctacagctca cgcatcgtgg gtggaaacat gtccttgctc 800 tegeagtgge cetggeagge cageetteag ttecaggget accaectgtg 850 cgggggctct gtcatcacgc ccctgtggat catcactgct gcacactgtg 900 tttatgactt gtacctcccc aagtcatgga ccatccaggt gggtctagtt 950 tecetgttgg acaatecage eccateceae ttggtggaga agattgteta 1000 ccacagcaag tacaagccaa agaggctggg caatqacatc qcccttatqa 1050 agctggccgg gccactcacg ttcaatgaaa tgatccagcc tgtgtgcctg 1100 cccaactctg aagagaactt ccccgatgga aaagtgtgct ggacgtcagg 1150 atggggggcc acagaggatg gaggtgacgc ctcccctgtc ctgaaccacg 1200 cggccgtccc tttgatttcc aacaagatct gcaaccacag ggacgtgtac 1250 ggtggcatca tetececete catgetetge gegggetace tgaegggtgg 1300 cgtggacagc tgccaggggg acagcggggg gcccctggtg tgtcaaqaga 1350 ggaggctgtg gaagttagtg ggagcgacca qctttgqcat cqqctqcqca 1400 gaggtgaaca agcctggggt gtacacccgt gtcacctcct tcctggactg 1450 gatccacgag cagatggaga gagacctaaa aacctgaaga ggaaggggac 1500 aagtageeae etgagtteet gaggtgatga agacageeeg atecteeeet 1550 ggactcccgt gtaggaacct gcacacgagc agacaccctt ggagctctga 1600 gttccggcac cagtagcagg cccgaaagag gcaccettce atetgattce 1650 agcacaacct tcaagctgct ttttgttttt tgttttttg aggtggagtc 1700

tegetetgtt geceaggetg gagtgeagtg gegaaatece tgeteaetge 1750
ageeteeget teeetggtte aagegattet ettgeeteag etteeetag 1800
agetgggace acaggtgeee gecaccaca ecaactaatt tttgtattt 1850
tagtagagae agggttteae eatgttggee aggetgetet eaaacceetg 1900
aceteaaatg atgtgeetge tteageetee eacagtgetg ggattacagg 1950
catgggeeae eacgeetage eteacgetee ttteetgatet teactaagaa 2000
caaaagaage ageaaettge aagggeggee ttteeeactg gteeatetgg 2050
tttteetee agggtettge aaaatteetg aegagataag eagttatgtg 2100
aceteaegtg eaaageeaee aacageeaet eagaaaagae geaceageee 2150
agaagtgeag aactgeagte actgeaegt tteateteta ggggaecagaa 2200
ceaaacceae eetttetaet teeaagaett attteaeat gtggggaggt 2250
taatetagga atgaetegt taaggeetat ttteatgatt teettgtage 2300
atttggtget tgaegtatta ttgteettg atteeaaata atatgttee 2350
tteeeteatt gtetggegtg tetgegtgga etggtgaegt gaateaaaat 2400
catecactga aa 2412

<210> 69

<211> 453

<212> PRT

<213> Homo sapiens

<400> 69

Met Gly Glu Asn Asp Pro Pro Ala Val Glu Ala Pro Phe Ser Phe
1 5 10 15

Arg Ser Leu Phe Gly Leu Asp Asp Leu Lys Ile Ser Pro Val Ala 20 25 30

Pro Asp Ala Asp Ala Val Ala Ala Gln Ile Leu Ser Leu Leu Pro
35 40 45

Leu Lys Phe Phe Pro Ile Ile Val Ile Gly Ile Ile Ala Leu Ile 50 55 60

Leu Ala Leu Ala Ile Gly Leu Gly Ile His Phe Asp Cys Ser Gly
65 70 75

Lys Tyr Arg Cys Arg Ser Ser Phe Lys Cys Ile Glu Leu Ile Ala 80 85 90

Arg Cys Asp Gly Val Ser Asp Cys Lys Asp Gly Glu Asp Glu Tyr
95 100 105

Arg Cys Val Arg Val Gly Gly Gln Asn Ala Val Leu Gln Val Phe

				110					115					120
Thr	Ala	Ala	Ser	Trp 125	Lys	Thr	Met	Суз	Ser 130	Asp	Asp	Trp	Lys	Gly 135
His	Tyr	Ala	Asn	Val 140	Ala	Суз	Ala	Gln	Leu 145	Gly	Phe	Pro	Ser	Tyr 150
Val	Seŗ	Ser	Asp	Asn 155	Leu	Arg	Val	Ser	Ser 160	Leu	Glu	Gly	Gln	Phe 165
Arg	Glu	Glu	Phe	Val 170	Ser	Ile	Asp	His	Leu 175	Leu	Pro	Asp	Asp	Lys 180
Val	Thr	Ala	Leu	His 185	His	Ser	Val	Tyr	Val 190	Arg	Glu	Gly	Суз	Ala 195
Ser	Gly	His	Val	Val 200	Thr	Leu	Gln	Суѕ	Thr 205	Ala	Cys	Gly	His	Arg 210
Arg	Gly	Tyr	Ser	Ser 215	Arg	Ile	Val	Gly	Gly 220	Asn	Met	Ser	Leu	Leu 225
Ser	Gln	Trp	Pro	Trp 230	Gln	Ala	Ser	Leu	Gln 235	Phe	Gln	Gly	Tyr	His 240
Leu	Cys	Gly	Gly	Ser 245	Val	Ile	Thr	Pro	Leu 250	Trp	Ile	Ile	Thr	Ala 255
Ala	His	Cys	Val	Tyr 260	Asp	Leu	Tyr	Leu	Pro 265	Lys	Ser	Trp	Thr	Ile 270
Gln	Val	Gly	Leu	Val 275	Ser	Leu	Leu	Asp	Asn 280	Pro	Ala	Pro	Ser	His 285
Leu	Val	Glu	Lys	11e 290	Val	Tyr	His	Ser	Lys 295	Tyr	Lys	Pro	Lys	Arg 300
Leu	Gly	Asn	Asp	Ile 305	Ala	Leu	Met	Lys	Leu 310	Ala	Gly	Pro	Leu	Thr 315
Phe	Asn	Glu	Met	11e 320	Gln	Pro	Val	Cys	Leu 325	Pro	Asn	Ser	Glu	Glu 330
Asn	Phe	Pro	Asp	Gly 335	Lys	Val	Cys	Trp	Thr 340	Ser	Gly	Trp	Gly	Ala 345
Thr	Glu	Asp	Gly	Gly 350	Asp _.	Ala	Ser	Pro	Val 355	Leu	Asn	His	Ala	Ala 360
Val	Pro	Leu	Ile	Ser 365	Asn	Lys	Ile	Cys	Asn 370	His	Arg	Asp	Val	Tyr 375
Gly	Gly	Ile	Ile	Ser 380	Pro	Ser	Met	Leu	Cys 385	Ala	Gly	Tyr	Leu	Thr 390
Gly	Gly	Val	Asp	Ser 395	Cys	Gln	Gly	Asp	Ser 400	Gly	Gly	Pro	Leu	Val 405

<212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe

tacacgtccc tgtggttgca gatc 24
<210> 72

<211> 50 <212> DNA <213> Artificial Sequence

_

<223> Synthetic oligonucleotide probe

<400> 72 cgttcaatgc agaaatgatc cagcctgtgt gcctgcccaa ctctgaagag 50

<210> 73 <211> 3305 <212> DNA <213> Homo sapiens

<400> 73
 cccacgcgtc cgtcctagtc cccgggccaa ctcggacagt ttgctcattt 50
 attgcaacgg tcaaggctgg cttgtgccag aacggcgcgc gcgcgcgcac 100
 gcacgcacac acacgggggg aaacttttt aaaaatgaaa ggctagaaga 150
 gctcagcggc ggcgcgggcg ctgcgcgagg gctccggagc tgactcgccg 200

ctgcaatgcc accacctgta ccctgaagcc ggacgctgtg tgcgcacatg 1700 ggctgtgctg tgaagactgc cagctgaagc ctgcaggaac agcgtgcagg 1750 gactecagea actectgtga ceteceagag ttetgeaeag gggeeageee 1800 tcactgccca gccaatgtgt acctgcacga tgggcactca tgtcaggatg 1850 tggacggcta ctgctacaat ggcatctgcc agactcacga gcagcagtgt 1900 gtcacgctct ggggaccagg tgctaaacct gcccctggga tctgctttga 1950 gagagtcaat tctgcaggtg atccttatgg caactgtggc aaagtctcga 2000 agagttcctt tgccaaatgc gagatgagag atgctaaatg tggaaaaatc 2050 cagtgtcaag gaggtgccag ccggccagtc attggtacca atgccgtttc 2100 catagaaaca aacatccctc tgcagcaagg aggccggatt ctgtgccggg 2150 ggacccacgt gtacttgggc gatgacatgc cggacccagg gcttgtgctt 2200 gcaggcacaa agtgtgcaga tggaaaaatc tgcctgaatc gtcaatgtca 2250 aaatattagt gtetttgggg tteaegagtg tgeaatgeag tgeeaeggea 2300 gaggggtgtg caacaacagg aagaactgcc actgcgaggc ccactgggca 2350 cctcccttct gtgacaagtt tggctttgga ggaagcacag acagcggccc 2400 catccggcaa gcagaagcaa ggcaggaagc tgcagagtcc aacagggagc 2450 gcggccaggg ccaggagccc gtgggatcgc aggagcatgc gtctactgcc 2500 tcactgacac tcatctgagc cctcccatga catggagacc gtgaccagtg 2550 ctgctgcaga ggaggtcacg cgtccccaag gcctcctgtg actggcagca 2600 ttgactctgt ggctttgcca tcgtttccat gacaacagac acaacacagt 2650 tctcggggct caggaggga agtccagcct accaggcacg tctgcagaaa 2700 cagtgcaagg aagggcagcg acttcctggt tgagcttctg ctaaaacatg 2750 gacatgette agtgetgete etgagagagt ageaggttae caetetggea 2800 ggccccagcc ctgcagcaag gaggaagagg actcaaaagt ctggcctttc 2850 actgagecte cacageagtg ggggagaage aagggttggg cecagtgtee 2900 cettteccea gtgacacete ageettggea geeetgatga etggtetetg 2950 gctgcaactt aatgctctga tatggctttt agcatttatt atatgaaaat 3000 agcagggttt tagtttttaa tttatcagag accctgccac ccattccatc 3050 tccatccaag caaactgaat ggcaatgaaa caaactggag aagaaggtag 3100

gagaaagggc ggtgaactct ggctctttgc tgtggacatg cgtgaccagc 3150 agtactcagg tttgagggtt tgcagaaagc cagggaaccc acagagtcac 3200 caacccttca tttaacaagt aagaatgtta aaaagtgaaa acaatgtaag 3250 agcctaactc catccccgt ggccattact gcataaaata gagtgcattt 3300 gaaat 3305

<210> 74

<211> 735

<212> PRT

<213> Homo sapiens

<400> 74

Met Ala Ala Arg Pro Leu Pro Val Ser Pro Ala Arg Ala Leu Leu 1 5 10 15

Leu Ala Leu Ala Gly Ala Leu Leu Ala Pro Cys Glu Ala Arg Gly
20 25 30

Val Ser Leu Trp Asn Gln Gly Arg Ala Asp Glu Val Val Ser Ala 35 40 45

Ser Val Arg Ser Gly Asp Leu Trp Ile Pro Val Lys Ser Phe Asp 50 55 60

Ser Lys Asn His Pro Glu Val Leu Asn Ile Arg Leu Gln Arg Glu
65 70 75

Ser Lys Glu Leu Ile Ile Asn Leu Glu Arg Asn Glu Gly Leu Ile 80 85 90

Ala Ser Ser Phe Thr Glu Thr His Tyr Leu Gln Asp Gly Thr Asp 95 100 105

Val Ser Leu Ala Arg Asn Tyr Thr Gly His Cys Tyr Tyr His Gly
110 115 120

His Val Arg Gly Tyr Ser Asp Ser Ala Val Ser Leu Ser Thr Cys 125 130 135

Ser Gly Leu Arg Gly Leu Ile Val Phe Glu Asn Glu Ser Tyr Val 140 145 150

Leu Glu Pro Met Lys Ser Ala Thr Asn Arg Tyr Lys Leu Phe Pro 155 160 165

Ala Lys Lys Leu Lys Ser Val Arg Gly Ser Cys Gly Ser His His
170 175 180

Asn Thr Pro Asn Leu Ala Ala Lys Asn Val Phe Pro Pro Pro Ser 185 190 195

Gln Thr Trp Ala Arg Arg His Lys Arg Glu Thr Leu Lys Ala Thr 200 205 210

Lys Tyr Val Glu Leu Val Ile Val Ala Asp Asn Arg Glu Phe Gln Arg Gln Gly Lys Asp Leu Glu Lys Val Lys Gln Arg Leu Ile Glu 230 240 Ile Ala Asn His Val Asp Lys Phe Tyr Arg Pro Leu Asn Ile Arg Ile Val Leu Val Gly Val Glu Val Trp Asn Asp Met Asp Lys Cys 265 270 Ser Val Ser Gln Asp Pro Phe Thr Ser Leu His Glu Phe Leu Asp 280 Trp Arg Lys Met Lys Leu Leu Pro Arg Lys Ser His Asp Asn Ala 290 295 Gln Leu Val Ser Gly Val Tyr Phe Gln Gly Thr Thr Ile Gly Met Ala Pro Ile Met Ser Met Cys Thr Ala Asp Gln Ser Gly Gly Ile 320 Val Met Asp His Ser Asp Asn Pro Leu Gly Ala Ala Val Thr Leu Ala His Glu Leu Gly His Asn Phe Gly Met Asn His Asp Thr Leu 350 Asp Arg Gly Cys Ser Cys Gln Met Ala Val Glu Lys Gly Gly Cys Ile Met Asn Ala Ser Thr Gly Tyr Pro Phe Pro Met Val Phe Ser Ser Cys Ser Arg Lys Asp Leu Glu Thr Ser Leu Glu Lys Gly Met Gly Val Cys Leu Phe Asn Leu Pro Glu Val Arg Glu Ser Phe Gly Gly Gln Lys Cys Gly Asn Arg Phe Val Glu Glu Glu Glu Glu Cys 435 Asp Cys Gly Glu Pro Glu Glu Cys Met Asn Arg Cys Cys Asn Ala Thr Thr Cys Thr Leu Lys Pro Asp Ala Val Cys Ala His Gly Leu 465 Cys Cys Glu Asp Cys Gln Leu Lys Pro Ala Gly Thr Ala Cys Arg Asp Ser Ser Asn Ser Cys Asp Leu Pro Glu Phe Cys Thr Gly Ala 495 Ser Pro His Cys Pro Ala Asn Val Tyr Leu His Asp Gly His Ser

<400> 75

				500					505					510
Cys	Gln	Asp	Val	Asp 515	Gly	Туr	Cys	Tyr	Asn 520	Gly	Ile	Cys	Gln	Thr 525
His	Glu	Gln	Gln	Cys 530	Val	Thr	Leu	Trp	Gly 535	Pro	Gly	Ala	Lys	Pro 540
Ala	Pro	Gly	Ile	Cys 545	Phe	Glu	Arg	Val	Asn 550	Ser	Ala	Gly	Asp	Pro 555
Tyr	Gly	Asn	Cys	Gly 560	Lys	Val	Ser	Lys	Ser 565	Ser	Phe	Ala	Lys	Cys 570
Glu	Met	Arg	Asp	Ala 575	Lys	Суѕ	Gly	Lys	Ile 580	Gln	Суѕ	Gln	Gly	Gly 585
Ala	Ser	Arg	Pro	Val 590	Ile	Gly	Thr	Asn	Ala 595	Val	Ser	Ile	Glu	Thr 600
Asn	Ile	Pro	Leu	Gln 605	Gln	Gly	Gly	Arg	Ile 610	Leu	Cys	Arg	Gly	Thr 615
His	Val	Tyr	Leu	Gly 620	Asp	Asp	Met	Pro	Asp 625	Pro	Gly	Leu	Val	Leu 630
Ala	Gly	Thr	Lys	Cys 635	Ala	Asp	Gly	Lys	Ile 640	Cys	Leu	Asn	Arg	Gln 645
Cys	Gln	Asn	Ile	Ser 650	Val	Phe	Gly	Val	His 655	Glu	Cys	Ala	Met	Gln 660
Cys	His	Gly	Arg	Gly 665	Val	Cys	Asn	Asn	Arg 670	Lys	Asn	Cys	His	Cys 675
Glu	Ala	His	Trp	Ala 680	Pro	Pro	Phe	Cys	Asp 685	Lys	Phe	Gly	Phe	Gly 690
Gly	Ser	Thr	Asp	Ser 695	Gly	Pro	Ile	Arg	Gln 700	Ala	Glu	Ala	Arg	Gln 705
Glu	Ala	Ala	Glu	Ser 710	Asn	Arg	Glu	Arg	Gly 715	Gln	Gly	Gln	Glu	Pro 720
Val	Gly	Ser	Gln	Glu 725	His	Ala	Ser	Thr	Ala 730	Ser	Leu	Thr	Leu	Ile 735
<210> <211> <212> <213>	> 483 > DNA	1	npien	ns					٠					
<220> <221> <222> <223>	uns 30,	94,			6, 1	.63,	179,	193	3, 36	59, 3	71,	381,	390	, 473

<400> 77

<210> 79

```
tcccaaggct tcttggatgg cagatgattn tggggttttg cattgtttcc 50
 ctgacaacga aaacaaaaca gttttggggg ttcaggaggg gaantccagc 100
 ctacccagga agtttgcaga aacagtgcaa ggaagggcag ganttcctgg 150
 ttgagntttt tgntaaaaca tggacatgnt tcagtgctgc tcntqaqaqa 200
 gtagcaggtt accaettttg gcaggceeca geeetgeage aaggaggaag 250
 aggactcaaa agtttggcct ttcactgagc ctccacagca qtqqqqqaqa 300
 agcaagggtt gggcccagtg tcccctttcc ccagtgacac ctcagccttg 350
 gcagccctga taactggtnt ntggctgcaa nttaatgctn tgatatggct 400
 tttagcattt attatatgaa aatagcaggg ttttagtttt taatttatca 450
 gagaccetge cacceattee atntecatee aag 483
<210> 76
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
```

```
<220>
<223> Synthetic oligonucleotide probe
<400> 76
  gtctcagcac gtgttctggt ctcaggg 27
<210> 77
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
```

<210> 78 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 78 tacctgcacg atgggcac 18

<211> 18 <212> DNA <213> Artificial Sequence

catgagcatg tgcacggc 18

```
<220>
     <223> Synthetic oligonucleotide probe
     <400> 79
     cactgggcac ctcccttc 18
     <210> 80
     <211> 26
     <212> DNA
     <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 80
     ctccaggctg gtctccaagt ccttcc 26
    <210> 81
    <211> 24
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 81
O
     tccctgttgg actctgcagc ttcc 24
<210> 82
    <211> 19
    <212> DNA
上
    <213> Artificial Sequence
.
4
-
    <220>
Ē
    <223> Synthetic oligonucleotide probe
    <400> 82
     cttcgctggg aagagtttg 19
Uī
    <210> 83
    <211> 50
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
     gtgcaaccaa cagatacaaa ctcttcccag cgaagaagct gaaaagcgtc 50
    <210> 84
    <211> 1714
    <212> DNA
    <213> Homo sapiens
    <400> 84
     catcctgcaa catggtgaaa ccacgcctgg ctaattttgt tgtatttttg 50
```


- <210> 85
- <211> 67
- <212> PRT
- <213> Homo sapiens
- <400> 85

Met Gly Lys Gly Met Val Ala Met Leu Ile Leu Gly Leu Leu 1 5 10 15

Leu Ala Leu Leu Pro Val Gln Val Ser Ser Phe Val Pro Leu
20 25 30

Thr Ser Met Pro Glu Ala Thr Ala Ala Glu Thr Thr Lys Pro Ser 35 40 45

Asn Ser Ala Leu Gln Pro Thr Ala Gly Leu Leu Val Val Leu Leu 50 55 60

Ala Leu Leu His Leu Tyr His
65

- <210> 86
- <211> 23
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 86

acgggcacac tggatcccaa atg 23

- <210> 87
- <211> 29
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 87

ggtagagatg tagaagggca agcaagacc 29

- <210> 88
- <211> 50
- <212> DNA
- <213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 88
gctccctacc cqtqcaqqtt tcttcatttq ttcctttaac caqtatqccq 50
<210> 89
<211> 2956
<212> DNA
<213> Homo sapiens
<400> 89
 gccgcggcga gagcgcgccc agccccgccg cgatgcccgc gcgcccagga 50
cgcctcctcc cgctgctggc ccggccggcg gccctgactg cgctgctgct 100
 gctgctgctg ggccatggcg gcggcgggc ctggggcgcc cgggcccagg 150
 aggcggcggc ggcggcggcg gacgggcccc ccgcggcaga cggcgaggac 200
 ggacaggacc cgcacagcaa gcacctgtac acggccgaca tgttcacgca 250
 egggatecag agegeegege acttegteat gttettegeg ceetggtgtg 300
 gacactgcca gcggctgcag ccgacttgga atgacctggg agacaaatac 350
 aacagcatgg aagatgccaa agtctatgtg gctaaagtgg actgcacggc 400
 ccactccgac gtgtgctccg cccagggggt gcgaggatac cccaccttaa 450
 agcttttcaa gccaggccaa gaagctgtga agtaccaggg tcctcgggac 500
 ttccagacac tggaaaactg gatgctgcag acactgaacg aggagccagt 550
 gacaccagag ccggaagtgg aaccgcccag tgcccccgag ctcaagcaag 600
ggctgtatga gctctcagca agcaactttg agctgcacgt tgcacaaggc 650
gaccacttta tcaagttctt cgctccgtgg tgtggtcact gcaaagccct 700
 ggctccaacc tgggagcagc tggctctggg ccttgaacat tccgaaactg 750
tcaagattgg caaggttgat tgtacacagc actatgaact ctgctccgga 800
aaccaggttc gtggctatcc cactettctc tggttccgaq atgggaaaaa 850
ggtggatcag tacaagggaa agcgggattt ggagtcactg agggagtacg 900
tggagtcgca gctgcagcgc acagagactg gagcgacgga gaccgtcacg 950
ccctcagagg ccccggtgct ggcagctgag cccgaggctg acaagggcac 1000
tgtgttggca ctcactgaaa ataacttcga tgacaccatt gcagaaggaa 1050
taaccttcat caagttttat gctccatggt gtggtcattg taagactctg 1100
gctcctactt gggaggaact ctctaaaaag gaattccctg gtctggcggg 1150
```

ggtcaagatc gccgaagtag actgcactgc tgaacggaat atctgcagca 1200 agtattcggt acgaggctac cccacgttat tgcttttccg aggagggaag 1250 aaagtcagtg agcacagtgg aggcagagac cttgactcgt tacaccgctt 1300 tgtcctgagc caagcgaaag acgaacttta ggaacacagt tggaggtcac 1350 ctctcctgcc cagctcccgc accctgcgtt taggagttca gtcccacaga 1400 ggccactggg ttcccagtgg tggctgttca gaaagcagaa catactaagc 1450 gtgaggtatc ttctttgtgt gtgtgttttc caagccaaca cactctacag 1500 attetttatt aagttaagtt tetetaagta aatgtgtaae teatggteae 1550 tgtgtaaaca ttttcagtgg cgatatatcc cctttgacct tctcttgatg 1600 aaatttacat ggtttccttt gagactaaaa tagcgttgag ggaaatgaaa 1650 ttgctggact atttgtggct cctgagttga gtgattttgg tgaaagaaag 1700 cacatccaaa gcatagttta cctgcccacg agttctggaa aggtggcctt 1750 gtggcagtat tgacgttcct ctgatcttaa ggtcacagtt gactcaatac 1800 tgtgttggtc cgtagcatgg agcagattga aatgcaaaaa cccaccctc 1850 tggaagatac cttcacggcc gctgctggag cttctgttgc tgtgaatact 1900 teteteagtg tgagaggtta geegtgatga aageagegtt aettetgace 1950 gtgcctgagt aagagaatgc tgatgccata actttatgtg tcgatacttg 2000 tcaaatcagt tactgttcag gggatccttc tgtttctcac ggggtgaaac 2050 atgtctttag ttcctcatgt taacacgaag ccagagccca catgaactgt 2100 tggatgtctt ccttagaaag ggtaggcatg gaaaattcca cgaggctcat 2150 tctcagtatc tcattaactc attgaaagat tccagttgta tttgtcacct 2200 ggggtgacaa gaccagacag gctttcccag gcctgggtat ccagggaggc 2250 tetgeageee tgetgaaggg ceetaactag agttetagag tttetgatte 2300 tgtttctcag tagtcctttt agaggcttgc tatacttggt ctgcttcaag 2350 gaggtcgacc ttctaatgta tgaagaatgg gatgcatttg atctcaagac 2400 caaagacaga tgtcagtggg ctgctctggc cctggtgtgc acggctgtgg 2450 cagctgttga tgccagtgtc ctctaactca tgctgtcctt gtgattaaac 2500 acctctatct cccttgggaa taagcacata caggcttaag ctctaagata 2550 gataggtgtt tgtcctttta ccatcgagct acttcccata ataaccactt 2600

tgcatccaac actettcace cacetcccat acgcaagggg atgtggatac 2650 ttggcccaaa gtaactggtg gtaggaatct tagaaacaag accacttata 2700 ctgtctgtct gaggcagaag ataacagcag catetcgace agcetctgce 2750 ttaaaggaaa tetttattaa teacgtatgg tteacagata attettttt 2800 taaaaaaace caacetccta gagaagcaca actgtcaaga gtettgtaca 2850 cacaacttca getttgcate acgagtettg tattccaaga aaatcaaagt 2900 ggtacaattt gtttgttac actatgatac tttctaaata aactetttt 2950 ttttaa 2956

<210> 90

<211> 432

<212> PRT

<213> Homo sapiens

<400> 90

Met Pro Ala Arg Pro Gly Arg Leu Leu Pro Leu Leu Ala Arg Pro 1 5 10 15

Ala Ala Leu Thr Ala Leu Leu Leu Leu Leu Gly His Gly Gly 20 25 30

Gly Gly Arg Trp Gly Ala Arg Ala Gln Glu Ala Ala Ala Ala Ala 35 40 45

Ala Asp Gly Pro Pro Ala Ala Asp Gly Glu Asp Gly Gln Asp Pro
50 55 60

His Ser Lys His Leu Tyr Thr Ala Asp Met Phe Thr His Gly Ile
65 70 75

Gln Ser Ala Ala His Phe Val Met Phe Phe Ala Pro Trp Cys Gly 80 85 90

His Cys Gln Arg Leu Gln Pro Thr Trp Asn Asp Leu Gly Asp Lys 95 100 105

Tyr Asn Ser Met Glu Asp Ala Lys Val Tyr Val Ala Lys Val Asp 110 115 120

Cys Thr Ala His Ser Asp Val Cys Ser Ala Gln Gly Val Arg Gly 125 130 135

Tyr Pro Thr Leu Lys Leu Phe Lys Pro Gly Gln Glu Ala Val Lys
140 145 150

Tyr Gln Gly Pro Arg Asp Phe Gln Thr Leu Glu Asn Trp Met Leu 155 160 165

Gln Thr Leu Asn Glu Glu Pro Val Thr Pro Glu Pro Glu Val Glu 170 175 180

				_										
Pro	Pro	Ser	Ala	Pro 185	Glu	Leu	Lys	Gln	Gly 190	Leu	Tyr	Glu	Leu	Ser 195
Ala	Ser	Asn	Phe	Glu 200	Leu	His	Val	Ala	Gln 205	Gly	Asp	His	Phe	Ile 210
Lys	Phe	Phe	Ala	Pro 215	Trp	Cys	Gly	His	Cys 220	Lys	Ala	Leu	Ala	Pro 225
Thr	Trp	Glu	Gln	Leu 230	Ala	Leu	Gly	Leu	Glu 235	His	Ser	Glu	Thr	Val 240
Lys	Ile	Gly	Lys	Val 245	Asp	Cys	Thr	Gln	His 250	Tyr	Glu	Leu	Суз	Ser 255
Gly	Asn	Gln	Val	Arg 260	Gly	Tyr	Pro	Thr	Leu 265	Leu	Trp	Phe	Arg	Asp 270
Gly	Lys	Lys	Val	Asp 275	Gln	Tyr	Lys	Gly	Lys 280	Arg	Asp	Leu	Glu	Ser 285
Leu	Arg	Glu	Tyr	Val 290	Glu	Ser	Gln	Leu	Gln 295	Arg	Thr	Glu	Thr	Gly 300
Ala	Thr	Glu	Thr	Val 305	Thr	Pro	Ser	Glu	Ala 310	Pro	Val	Leu	Ala	Ala 315
Glu	Pro	Glu	Ala	Asp 320	Lys	Gly	Thr	Val	Leu 325	Ala	Leu	Thr	Glu	Asn 330
Asn	Phe	Asp	Asp	Thr 335	Ile	Ala	Glu	Gly	Ile 340	Thr	Phe	Ile	Lys	Phe 345
Tyr	Ala	Pro	Trp	Cys 350	Gly	His	Cys	Lys	Thr 355	Leu	Ala	Pro	Thr	Trp 360
Glu	Glu	Leu	Ser	Lys 365	Lys	Glu	Phe	Pro	Gly 370	Leu	Ala	Gly	Val	Lys 375
Ile	Ala	Glu	Val	Asp 380	Cys	Thr	Ala	Glu	Arg 385		Ile		Ser	Lys 390
Tyr	Ser	Val	Arg	Gly 395	Tyr	Pro	Thr	Leu	Leu 400	Leu	Phe	Arg	Gly	Gly 405
Lys	Lys	Val [·]	Ser	Glu 410	His	Ser	Gly	Gly	Arg 415	Asp	Leu	Asp	Ser	Leu 420
His	Arg	Phe	Val	Leu 425	Ser	Gln	Ala	Lys	Asp 430	Glu	Leu			
/2105	01													
<210>														
<211><211>														
~/. / >	1/1/1/4													

<212> DNA <213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

```
atgttcttcg cgccctggtg 20
    <210> 92
    <211> 21
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 92
     ccaagccaac acactctaca g 21
    <210> 93
    <211> 24
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 93
     aagtggtcgc cttgtgcaac gtgc 24
    <210> 94
    <211> 23
    <212> DNA
    <213> Artificial Sequence
    <220>
-
    <223> Synthetic oligonucleotide probe
L
     ggtcaaaggg gatatatcgc cac 23
    <210> 95
    <211> 49
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 95
    gcatggaaga tgccaaagtc tatgtggcta aagtggactg cacggccca 49
    <210> 96
    <211> 1016
    <212> DNA
    <213> Homo sapiens
    <400> 96
    cttttctgag gaaccacagc aatgaatggc tttgcatcct tqcttcgaag 50
    aaaccaattt atcctcctgg tactatttct tttgcaaatt cagagtctgg 100
```

<400> 91

gtctggatat tgatagccgt cctaccgctg aagtctgtgc cacacacaca 150

atttcaccag gacccaaagg agatgatggt gaaaaaggag atccaggaga 200 agagggaaag catggcaaag tgggacgcat ggggccgaaa ggaattaaag 250 gagaactggg tgatatggga gatcagggca atattggcaa gactgggccc 300 attgggaaga agggtgacaa aggggaaaaa ggtttgcttg gaatacctgg 350 agaaaaaggc aaagcaggta ctgtctgtga ttgtggaaga taccggaaat 400 ttgttggaca actggatatt agtattgctc ggctcaagac atctatgaag 450 tttgtcaaga atgtgatagc agggattagg gaaactgaag agaaattcta 500 ctacatcgtg caggaagaga agaactacag ggaatcccta acccactgca 550 ggattcgggg tggaatgcta gccatgccca aggatgaagc tgccaacaca 600 ctcatcgctg actatgttgc caagagtggc ttctttcggg tgttcattgg 650 cgtgaatgac cttgaaaggg agggacagta catgtccaca gacaacactc 700 cactgcagaa ctatagcaac tggaatgagg gggaacccag cgacccctat 750 ggtcatgagg actgtgtgga gatgctgagc tctggcagat ggaatgacac 800 agagtgccat cttaccatgt actttgtctg tgagttcatc aagaagaaaa 850 agtaacttcc ctcatcctac gtatttgcta ttttcctgtg accgtcatta 900 cagttattgt tatccatcct ttttttcctg attgtactac atttgatctg 950 agtcaacata gctagaaaat gctaaactga ggtatggagc ctccatcatc 1000 aaaaaaaaa aaaaaa 1016

<210> 97

<211> 277

<212> PRT

<213> Homo sapiens

<400> 97

Met Asn Gly Phe Ala Ser Leu Leu Arg Arg Asn Gln Phe Ile Leu
1 5 10

Leu Val Leu Phe Leu Leu Gln Ile Gln Ser Leu Gly Leu Asp Ile 20 25 30

Asp Ser Arg Pro Thr Ala Glu Val Cys Ala Thr His Thr Ile Ser 35 40 45

Pro Gly Pro Lys Gly Asp Asp Gly Glu Lys Gly Asp Pro Gly Glu
50 55 60

Glu Gly Lys His Gly Lys Val Gly Arg Met Gly Pro Lys Gly Ile 65 70 75

Lys Gly Glu Leu Gly Asp Met Gly Asp Gln Gly Asn Ile Gly Lys

				80					85					90
Thr	Gly	Pro	Ile	Gly 95	Lys	Lys	Gly	Asp	Lys 100	Gly	Glu	Lys	Gly	Leu 105
Leu	Gly	Ile	Pro	Gly 110	Glu	Lys	Gly	Lys	Ala 115	Gly	Thr	Val	Cys	Asp 120
Cys	Gly	Arg	Tyr	Arg 125	Lys	Phe	Val	Gly	Gln 130	Leu	Asp	Ile	Ser	Ile 135
Ala	Arg	Leu	Lys	Thr 140	Ser	Met	Lys	Phe	Val 145	Lys	Asn	Val	Ile	Ala 150
Gly	Ile	Arg	Glu	Thr 155	Glu	Glu	Lys	Phe	Tyr 160	Tyr	Ile	Val	Gln	Glu 165
Glu	Lys	Asn	Tyr	Arg 170	Glu	Ser	Leu	Thr	His 175	Суѕ	Arg	Ile	Arg	Gly 180
Gly	Met	Leu	Ala	Met 185	Pro	Lys	Asp	Glu	Ala 190	Ala	Asn	Thr	Leu	Ile 195
Ala	Asp	Tyr	Val	Ala 200	Lys	Ser	Gly	Phe	Phe 205	Arg	Val	Phe	Ile	Gly 210
Val	Asn	Asp	Leu	Glu 215	Arg	Glu	Gly	Gln	Tyr 220	Met	Ser	Thr	Asp	Asn 225
Thr	Pro	Leu	Gln	Asn 230	Tyr	Ser	Asn	Trp	Asn 235	Glu	Gly	Glu	Pro	Ser 240
Asp	Pro	Tyr	Gly	His 245	Glu	Asp	Cys	Val	Glu 250	Met	Leu	Ser	Ser	Gly 255
Arg	Trp	Asn	Asp	Thr 260	Glu	Cys	His	Leu	Thr 265	Met	Tyr	Phe	Val	Cys 270
Glu	Phe	Ile	Lys	Lys 275	Lys	Lys								
<2102 <2112 <2122 <2132	> 24 > DNA		cial	Sequ	ience	è								
<220> <223>		ıthet	ic c	oligo	nucl	.eoti	.de p	robe						
<400> cgct		at g	ıttgo	caaç	ja gt	gg 2	24 .							
<210><211><211><212><213>	> 24 > DNA		ial:	Sequ	ence									
<220>	•													

```
<223> Synthetic oligonucleotide probe
<400> 99
 gatgatggag gctccatacc tcag 24
<210> 100
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 100
gtgttcattg gcgtgaatga ccttgaaagg gagggacagt acatgttcac 50
<210> 101
<211> 2574
<212> DNA
<213> Homo sapiens
<400> 101
 ggttctatcg attcgaattc ggccacactg gccggatcct ctagagatcc 50
 ctcgacctcg acccacgcgt ccgctgctct ccgcccgtgt ggagtggtgg 100
 gggcctgggt gggaatgggc gtgtgccagc gcacgcgcgc tccctggaag 150
gagaagtete agetagaacg ageggeeeta ggttttegga agggaggate 200
 agggatgttt gcgagcggct ggaaccagac ggtgccgata gaggaagcgg 250
 gctccatggc tgccctcctg ctgctgcccc tgctgctgtt gctaccgctg 300
ctgctgctga agctacacct ctggccgcag ttgcgctggc ttccggcgga 350
cttggccttt gcggtgcgag ctctgtgctg caaaagggct cttcgagctc 400
gcgccctggc cgcggctgcc gccgacccgg aaggtcccga ggggggctqc 450
agcctggcct ggcgcctcgc ggaactggcc cagcagcgcg ccgcgcacac 500
ctttctcatt cacggctcgc ggcgctttag ctactcagag gcggagcgcg 550
agagtaacag ggctgcacgc gccttcctac gtgcgctagg ctgggactgg 600
ggacccgacg gcggcgacag cggcgagggg agcgctggag aaggcqagcq 650
ggcagcgccg ggagccggag atgcagcggc cggaagcggc gcggagtttg 700
ccggagggga cggtgccgcc agaggtggag gagccgccgc ccctctgtca 750
cctggagcaa ctgtggcgct gctcctcccc gctggcccag agtttctgtg 800
gctctggttc gggctggcca aggccggcct gcgcactgcc tttgtgccca 850
```

eegeeetgeg eeggggeeee etgetgeaet geeteegeag etgeggegeg 900

cgcgcgctgg tgctggcgcc agagtttctg gagtccctgg agccggacct 950 gcccgccctg agagccatgg ggctccacct gtgggctgca ggcccaggaa 1000 cccaccctgc tggaattagc gatttgctgg ctgaagtgtc cgctgaagtg 1050 gatgggccag tgccaggata cctctcttcc ccccaqagca taacagacac 1100 gtgcctgtac atcttcacct ctggcaccac gggcctcccc aaggctgctc 1150 ggatcagtca tctgaagatc ctgcaatgcc agggcttcta tcagctgtgt 1200 ggtgtccacc aggaagatgt gatctacctc qccctcccac tctaccacat 1250 gtccggttcc ctgctgggca tcgtgggctg catgggcatt ggggccacag 1300 tggtgctgaa atccaagttc tcggctggtc agttctggga agattgccag 1350 cagcacaggg tgacggtgtt ccagtacatt ggggagctgt gccgatacct 1400 tgtcaaccag ccccgagca aggcagaacg tggccataag gtccggctgg 1450 cagtgggcag cgggctgcgc ccagatacct gggagcgttt tgtgcgqcqc 1500 ttcgggcccc tgcaggtgct ggagacatat ggactgacag agggcaacgt 1550 ggccaccatc aactacacag gacagcgggg cgctgtgggg cgtgcttcct 1600 ggctttacaa gcatatette ceetteteet tgattegeta tgatgteace 1650 acaggagage caatteggga ceeceagggg caetqtatgg ceacatetee 1700 aggtgagcca gggctgctgg tggccccggt aagccagcag tccccattcc 1750 tgggctatgc tggcgggcca gagctggccc aggggaagtt gctaaaggat 1800 gtcttccggc ctggggatgt tttcttcaac actggggacc tgctggtctg 1850 cgatgaccaa ggttttctcc gcttccatga tcgtactgga gacaccttca 1900 ggtggaaggg ggagaatgtg gccacaaccg aggtggcaga ggtcttcgag 1950 gccctagatt ttcttcagga ggtgaacgtc tatggagtca ctgtgccagg 2000 gcatgaaggc agggctggaa tggcagccct agttctgcgt ccccccacg 2050 ctttggacct tatgcagctc tacacccacg tgtctgagaa cttgccacct 2100 tatgcccggc cccgattcct caggctccag gagtctttgg ccaccacaga 2150 gaccttcaaa cagcagaaag ttcggatggc aaatgagggc ttcgacccca 2200 gcaccetgte tgacceactg tacgttetgg accaqqetgt aggtgcetac 2250 ctgcccctca caactgcccg gtacagcgcc ctcctggcag gaaaccttcg 2300 aatctgagaa cttccacacc tgaggcacct gagagaggaa ctctgtgggg 2350

tgggggccgt tgcaggtgta ctgggctgtc agggatcttt tctataccag 2400 aactgcggtc actatttgt aataaatgtg gctggagctg atccagctgt 2450 ctctgaccta aaaaaaaaa aaaaaaaaa aaaaaaaaa ggcggccgcg 2500 actctagagt cgacctgcag tagggataac agggtaataa gcttggccgc 2550 catggcccaa cttgtttatt gcag 2574

<210> 102

<211> 730

<212> PRT

<213> Homo sapiens

<400> 102

Met Gly Val Cys Gln Arg Thr Arg Ala Pro Trp Lys Glu Lys Ser 1 5 10 15

Gln Leu Glu Arg Ala Ala Leu Gly Phe Arg Lys Gly Gly Ser Gly 20 25 30

Met Phe Ala Ser Gly Trp Asn Gln Thr Val Pro Ile Glu Glu Ala 35 40 45

Gly Ser Met Ala Ala Leu Leu Leu Leu Pro Leu Leu Leu Leu 50 55 60

Pro Leu Leu Leu Lys Leu His Leu Trp Pro Gln Leu Arg Trp
65 70 75

Leu Pro Ala Asp Leu Ala Phe Ala Val Arg Ala Leu Cys Cys Lys 80 85 90

Arg Ala Leu Arg Ala Arg Ala Leu Ala Ala Ala Ala Ala Asp Pro 95 100 105

Glu Gly Pro Glu Gly Gly Cys Ser Leu Ala Trp Arg Leu Ala Glu 110 115 120

Leu Ala Gln Gln Arg Ala Ala His Thr Phe Leu Ile His Gly Ser 125 130 135

Arg Arg Phe Ser Tyr Ser Glu Ala Glu Arg Glu Ser Asn Arg Ala 140 145 150

Ala Arg Ala Phe Leu Arg Ala Leu Gly Trp Asp Trp Gly Pro Asp 155 160 165

Gly Gly Asp Ser Gly Glu Gly Ser Ala Gly Glu Gly Glu Arg Ala 170 175 180

Ala Pro Gly Ala Gly Asp Ala Ala Gly Ser Gly Ala Glu Phe 185 190 195

Ala Gly Gly Asp Gly Ala Ala Arg Gly Gly Gly Ala Ala Ala Pro 200 205 210

Leu Ser Pro Gly Ala Thr Val Ala Leu Leu Pro Ala Gly Pro Glu Phe Leu Trp Leu Trp Phe Gly Leu Ala Lys Ala Gly Leu Arg 230 Thr Ala Phe Val Pro Thr Ala Leu Arg Arg Gly Pro Leu Leu His Cys Leu Arg Ser Cys Gly Ala Arg Ala Leu Val Leu Ala Pro Glu Phe Leu Glu Ser Leu Glu Pro Asp Leu Pro Ala Leu Arg Ala Met Gly Leu His Leu Trp Ala Ala Gly Pro Gly Thr His Pro Ala Gly Ile Ser Asp Leu Leu Ala Glu Val Ser Ala Glu Val Asp Gly Pro Val Pro Gly Tyr Leu Ser Ser Pro Gln Ser Ile Thr Asp Thr Cys 320 330 Leu Tyr Ile Phe Thr Ser Gly Thr Thr Gly Leu Pro Lys Ala Ala 335 Arg Ile Ser His Leu Lys Ile Leu Gln Cys Gln Gly Phe Tyr Gln 350 Leu Cys Gly Val His Gln Glu Asp Val Ile Tyr Leu Ala Leu Pro Leu Tyr His Met Ser Gly Ser Leu Leu Gly Ile Val Gly Cys Met 380 Gly Ile Gly Ala Thr Val Val Leu Lys Ser Lys Phe Ser Ala Gly 395 Gln Phe Trp Glu Asp Cys Gln Gln His Arg Val Thr Val Phe Gln Tyr Ile Gly Glu Leu Cys Arg Tyr Leu Val Asn Gln Pro Pro Ser Lys Ala Glu Arg Gly His Lys Val Arg Leu Ala Val Gly Ser Gly Leu Arg Pro Asp Thr Trp Glu Arg Phe Val Arg Arg Phe Gly Pro Leu Gln Val Leu Glu Thr Tyr Gly Leu Thr Glu Gly Asn Val Ala Thr Ile Asn Tyr Thr Gly Gln Arg Gly Ala Val Gly Arg Ala Ser Trp Leu Tyr Lys His Ile Phe Pro Phe Ser Leu Ile Arg Tyr Asp

				500					505					510
Val	Thr	Thr	Gly	Glu 515	Pro	Ile	Arg	Asp	Pro 520	Gln	Gly	His	Cys	Met 525
Ala	Thr	Ser	Pro	Gly 530	Glu	Pro	Gly	Leu	Leu 535	Val	Ala	Pro	Val	Ser 540
Gln	Gln	Ser	Pro	Phe 545	Leu	Gly	Tyr	Ala	Gly 550	Gly	Pro	Glu	Leu	Ala 555
Gln	Gly	Lys	Leu	Leu 560	Lys	Asp	Val	Phe	Arg 565	Pro	Gly	Asp	Val	Phe 570
Phe	Asn	Thr	Gly	Asp 575	Leu	Leu	Val	Cys	Asp 580	Asp	Gln	Gly	Phe	Leu 585
Arg	Phe	His	Asp	Arg 590	Thr	Gly	Asp	Thr	Phe 595	Arg	Trp	Lys	Gly	Glu 600
Asn	Val	Ala	Thr	Thr 605	Glu	Val	Ala	Glu	Val 610	Phe	Glu	Ala	Leu	Asp 615
Phe	Leu	Gln	Glu	Val 620	Asn	Val	Tyr	Gly	Val 625	Thr	Val	Pro	Gly	His 630
Glu	Gly	Arg	Ala	Gly 635	Met	Ala	Ala	Leu	Val 640	Leu	Arg	Pro	Pro	His 645
Ala	Leu	Asp	Leu	Met 650	Gln	Leu	Tyr	Thr	His 655	Val	Ser	Glu	Asn	Leu 660
Pro	Pro	Tyr	Ala	Arg 665	Pro	Arg	Phe	Leu	Arg 670	Leu	Gln	Glu	Ser	Leu 675
Ala	Thr	Thr	Glu	Thr 680	Phe	Lys	Gln	Gln	Lys 685	Val	Arg	Met	Ala	Asn 690
Glu	Gly	Phe	Asp	Pro 695	Ser	Thr	Leu	Ser	Asp 700	Pro	Leu	Tyr	Val	Leu 705
Asp	Gln	Ala	Val	Gly 710	Ala	Tyr	Leu	Pro	Leu 715	Thr	Thr	Ala	Arg	Tyr 720
Ser	Ala	Leu	Leu	Ala 725	Gly	Asn	Leu	Arg	Ile 730					
<210> 103 <211> 22 <212> DNA <213> Artificial Sequence														
<220> <223> Synthetic oligonucleotide probe														
<400> 103 gagagccatg gggctccacc tg 22														

```
<210> 104
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 104
 ggagaatgtg gccacaac 18
<210> 105
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
 gccctggcac agtgactcca tagacg 26
<210> 106
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 106
atccacttca gcggacac 18
<210> 107
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 107
 ccagtgccag gatacctctc ttccccccag agcataacag acacg 45
<210> 108
<211> 2579
<212> DNA
<213> Homo sapiens
<400> 108
cctgtgttaa gctgaggttt cccctagatc tcgtatatcc ccaacacata 50
 cctccacgca cacacatccc caagaacctc gagctcacac caacagacac 100
 acgcgcgcat acacactcgc tetegettgt ceatetecet eccgggggag 150
 ccggcgcgcg ctcccacctt tgccgcacac tccggcgagc cgagcccgca 200
```

gcgctccagg attctgcggc tcggaactcg gattgcagct ctgaaccccc 250 atggtggttt tttaaacact tcttttcctt ctcttcctcg ttttgattgc 300 accgtttcca tctgggggct agaggagcaa ggcagcagcc ttcccagcca 350 gcccttgttg gcttgccatc gtccatctgg cttataaaag tttgctgagc 400 gcagtccaga gggctgcgct gctcgtcccc tcggctggca gaagggggtg 450 acgetgggca geggegagga gegegeeget geetetggeg ggetttegge 500 ttgaggggca aggtgaagag cgcaccggcc gtggggttta ccgagctgga 550 tttgtatgtt gcaccatgcc ttcttggatc ggggctgtga ttcttcccct 600 cttggggctg ctgctctccc tccccqccqq qqcqqatqtq aaqqctcqqa 650 gctgcggaga ggtccgccag gcgtacggtg ccaagggatt cagcctggcg 700 gacatcccct accaggagat cgcaggggaa cacttaagaa tctgtcctca 750 ggaatataca tgctgcacca cagaaatgga agacaagtta agccaacaaa 800 gcaaactcga atttgaaaac cttgtggaag agacaagcca ttttgtgcgc 850 accacttttg tgtccaggca taagaaattt gacgaatttt tccgagagct 900 cctggagaat gcagaaaagt cactaaatga tatgtttgta cggacctatg 950 gcatgctgta catgcagaat tcagaagtct tccaggacct cttcacagag 1000 ctgaaaaggt actacactgg gggtaatgtg aatctggagg aaatgctcaa 1050 tgacttttgg gctcggctcc tggaacggat gtttcagctg ataaaccctc 1100 agtatcactt cagtgaagac tacctggaat gtgtgagcaa atacactgac 1150 cageteaage catttggaga egtgeeeegg aaaetgaaga tteaggttae 1200 ccgcgccttc attgctgcca ggacctttgt ccaggggctg actgtgggca 1250 gagaagttgc aaaccqaqtt tccaaggtca qcccaacccc agggtgtatc 1300 cgtgccctca tgaagatgct gtactgccca tactgtcggg ggcttcccac 1350 tgtgaggccc tgcaacaact actgtctcaa cgtcatgaag ggctgcttgg 1400 caaatcaggc tgacctcgac acagagtgga atctgtttat agatgcaatg 1450 ctcttggtgg cagagcgact ggaggggcca ttcaacattg agtcggtcat 1500 ggacccgata gatgtcaaga tttctgaagc cattatgaac atgcaagaaa 1550 acagcatgca ggtgtctgca aaggtctttc agggatgtgg tcagcccaaa 1600 cctgctccag ccctcagatc tgcccgctca gctcctgaaa attttaatac 1650

acgtttcagg ccctacaatc ctgaggaaag accaacaact gctgcaggca 1700 caagcttgga ccggctggtc acagacataa aagaqaaatt gaagctctct 1750 aaaaaggtct ggtcagcatt accctacact atctgcaagg acgagagcgt 1800 gacageggge acgtecaacg aggaggaatg etggaacggg cacagcaaag 1850 ccagatactt gcctgagatc atgaatgatg ggctcaccaa ccagatcaac 1900 aatcccgagg tggatgtgga catcactcgg cctgacactt tcatcagaca 1950 gcagattatg gctctccgtg tgatgaccaa caaactaaaa aacgcctaca 2000 atggcaatga tgtcaatttc caggacacaa gtgatgaatc cagtggctca 2050 gggagtggca gtgggtgcat ggatgacgtg tgtcccacgg agtttgagtt 2100 tgtcaccaca gaggcccccg cagtggatcc cgaccggaga gaggtggact 2150 cttctgcagc ccagcgtggc cactccctgc tctcctggtc tctcacctgc 2200 attgtcctgg cactgcagag actgtgcaga taatcttggg tttttggtca 2250 gatgaaactg cattttagct atctgaatgg ccaactcact tcttttctta 2300 cactettgga caatggacca tgccacaaaa acttaccgtt ttctatgaga 2350 agagagcagt aatgcaatct gcctcccttt ttgttttccc aaagagtacc 2400 gggtgccaga ctgaactgct tcctctttcc ttcagctatc tgtggggacc 2450 ttgtttattc tagagagaat tcttactcaa atttttcgta ccaggagatt 2500 ttcttacctt catttgcttt tatgctgcag aagtaaagga atctcacgtt 2550 gtgagggttt tttttttctc atttaaaat 2579

<210> 109

<211> 555

<212> PRT

<213> Homo sapiens

<400> 109

Met Pro Ser Trp Ile Gly Ala Val Ile Leu Pro Leu Leu Gly Leu 1 5 10 15

Leu Leu Ser Leu Pro Ala Gly Ala Asp Val Lys Ala Arg Ser Cys 20 25 30

Gly Glu Val Arg Gln Ala Tyr Gly Ala Lys Gly Phe Ser Leu Ala 35 40 45

Asp Ile Pro Tyr Gln Glu Ile Ala Gly Glu His Leu Arg Ile Cys
50 55 60

Pro Gln Glu Tyr Thr Cys Cys Thr Thr Glu Met Glu Asp Lys Leu 65 70 75

Ser	Gln	Gln	Ser	Lys 80	Leu	Glu	Phe	Glu	Asn 85	Leu	Val	Glu	Glu	Thr 90
Ser	His	Phe	Val	Arg 95	Thr	Thr	Phe	Val	Ser 100	Arg	His	Lys	Lys	Phe 105
Asp	Glu	Phe	Phe	Arg 110	Glu	Leu	Leu	Glu	Asn 115	Ala	Glu	Lys	Ser	Leu 120
Asn	Asp	Met	Phe	Val 125	Arg	Thr	Tyr	Gly	Met 130	Leu	Tyr	Met	Gln	Asn 135
Ser	Glu	Val	Phe	Gln 140	Asp	Leu	Phe	Thr	Glu 145	Leu	Lys	Arg	Tyr	Tyr 150
Thr	Gly	Gly	Asn	Val 155	Asn	Leu	Glu	Glu	Met 160	Leu	Asn	Asp	Phe	Trp 165
Ala	Arg	Leu	Leu	Glu 170	Arg	Met	Phe	Gln	Leu 175	Ile	Asn	Pro	Gln	Tyr 180
His	Phe	Ser	Glu	Asp 185	Tyr	Leu	Glu	Cys	Val 190	Ser	Lys	Tyr	Thr	Asp 195
Gln	Leu	Lys	Pro	Phe 200	Gly	Asp	Val	Pro	Arg 205	Lys	Leu	Lys	Ile	Gln 210
Val	Thr	Arg	Ala	Phe 215	Ile	Ala	Ala	Arg	Thr 220	Phe	Val	Gln	Gly	Leu 225
Thr	Val	Gly	Arg	Glu 230	Val	Ala	Asn	Arg	Val 235	Ser	Lys	Val	Ser	Pro 240
Thr	Pro	Gly	Cys	Ile 245	Arg	Ala	Leu	Met	Lys 250	Met	Leu	Tyr	Суз	Pro 255
Tyr	Суѕ	Arg	Gly	Leu 260	Pro	Thr	Val	Arg	Pro 265	Cys	Asn	Asn	Tyr	Cys 270
Leu	Asn	Val	Met	Lys 275	Gly	Cys	Leu	Ala	Asn 280	Gln	Ala	Asp	Leu	Asp 285
Thr	Glu	Trp	Asn	Leu 290	Phe	Ile	Asp	Ala	Met 295	Leu	Leu	Val	Ala	Glu 300
Arg	Leu	Glu	Gly	Pro 305	Phe	Asn	Ile [°]	Glu	Ser 310	Val	Met	Asp	Pro	Ile 315
Asp	Val	Lys	Ile	Ser 320	Glu	Ala	Ile	Met	Asn 325	Met	Gln	Glu	Asn	Ser 330
Met	Gln	Val	Ser	Ala 335	Lys	Val	Phe	Gln	Gly 340	Cys	Gly	Gln	Pro	Lys 345
Pro	Ala	Pro	Ala	Leu 350	Arg	Ser	Ala	Arg	Ser 355	Ala	Pro	Glu	Asn	Phe 360
Asn	Thr	Arg	Phe	Arg	Pro	Tyr	Asn	Pro	Glu	Glu	Arg	Pro	Thr	Thr

	365		370	375								
Ala Ala Gly Thr	Ser Leu As 380	sp Arg Leu	Val Thr Asp 385	Ile Lys Glu 390								
Lys Leu Lys Leu	Ser Lys Ly 395	ys Val Trp	Ser Ala Leu 400	Pro Tyr Thr 405								
Ile Cys Lys Asp	Glu Ser Va 410	al Thr Ala	Gly Thr Ser 415	Asn Glu Glu 420								
Glu Cys Trp Asn	Gly His Se	er Lys Ala	Arg Tyr Leu 430	Pro Glu Ile 435								
Met Asn Asp Gly	Leu Thr As	sn Gln Ile	Asn Asn Pro 445	Glu Val Asp 450								
Val Asp Ile Thr	Arg Pro As 455	sp Thr Phe	Ile Arg Gln 460	Gln Ile Met 465								
Ala Leu Arg Val	Met Thr As	sn Lys Leu	Lys Asn Ala 475	Tyr Asn Gly 480								
Asn Asp Val Asn	Phe Gln As	sp Thr Ser	Asp Glu Ser 490	Ser Gly Ser 495								
Gly Ser Gly Ser	Gly Cys Me 500	et Asp Asp	Val Cys Pro 505	Thr Glu Phe 510								
Glu Phe Val Thr	Thr Glu Al 515	la Pro Ala	Val Asp Pro 520	Asp Arg Arg 525								
Glu Val Asp Ser	Ser Ala Al 530	la Gln Arg	Gly His Ser 535	Leu Leu Ser 540								
Trp Ser Leu Thr	Cys Ile Va 545	al Leu Ala	Leu Gln Arg 550	Leu Cys Arg 555								
<210> 110 <211> 21 <212> DNA <213> Artificial	Sequence											
<220> <223> Synthetic oligonucleotide probe												
<223> Synthetic oligonucleotide probe <400> 110 aagcgtgaca gcgggcacgt c 21												
<210> 111 <211> 24 <212> DNA <213> Artificial Sequence												
<220> <223> Synthetic oligonucleotide probe												
<400> 111												

tgcacagtct ctgcagtgcc cagg 24 <210> 112 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 112 gaatgctgga acgggcacag caaagccaga tacttgcctg 40 <210> 113 <211> 4649 <212> DNA <213> Homo sapiens <400> 113 cggacgcgtg ggcggacgcg tgggcaaaag aactcggagt gccaaagcta 50 aataagttag ctgagaaaac gcacgcagtt tgcagcgcct gcgccgggtg 100 cgccaactac gcaaagacca agcgggctcc gcgcggaccg gccgcggggc 150 tagggacccg gctttggcct tcaggctccc tagcagcggg gaaaaggaat 200 tgctgcccgg agtttctgcg gaggtggagg gagatcagga aacggcttct 250 tecteactic geogeotygt gagtgteggg gagattggca aacgeetagg 300 aaaggactgg ggaaaatagc cctgggaaag tggagaaggt gatcaggagg 350 tccacttcgc agttctttcc aggtgtgggg accgcaggac agacggccga 450 tecegeegee eteegtacea geaeteeeag gagagteage etegeteeee 500 aacgtcgagg gcgctctggc cacgaaaagt tcctgtccac tgtgattctc 550 aatteettge ttggtttttt tetecagaga aettttgggt ggagatatta 600 acttttttct ttttttttt ccttggtgga aqctgctcta gggaggggg 650 aggaggagga gaaagtgaaa tgtgctgqaq aagagcgagc cctccttgtt 700 cttccggagt cccatccatt aagccatcac ttctggaaga ttaaagttgt 750 cggacatggt gacagctgag aggagaggag gatttcttgc caggtggaga 800 gtcttcaccg tctgttgggt gcatgtgtgc gcccgcagcg gcgcggggcg 850 cgtggttctc cgcgtggagt ctcacctggg acctgagtga atggctccca 900 ggggctgtgc ggggcatccg cctccgcctt ctccacaggc ctgtgtctgt 950

cctggaaaga tgctagcaat gggggcgctg gcaggattct ggatcctctg 1000

cctcctcact tatggttacc tgtcctgggg ccaggcctta gaagaggagg 1050 aagaaggggc cttactagct caagctggag agaaactaga gcccagcaca 1100 acttccacct cccagcccca tctcattttc atcctagcgg atgatcaggg 1150 atttagagat gtgggttacc acggatctga gattaaaaca cctactcttg 1200 acaagctcgc tgccgaagga gttaaactgg agaactacta tgtccaqcct 1250 atttgcacac catccaggag tcagtttatt actggaaagt atcagataca 1300 caccggactt caacattcta tcataagacc tacccaaccc aactgtttac 1350 ctctggacaa tgccacccta cctcagaaac tgaaggaggt tggatattca 1400 acgcatatgg tcggaaaatg gcacttgggt tttaacagaa aagaatgcat 1450 gcccaccaga agaggatttg ataccttttt tggttccctt ttgggaagtg 1500 gggattacta tacacactac aaatgtgaca gtcctgggat gtgtggctat 1550 gacttqtatg aaaacqacaa tqctqcctqq qactatqaca atqqcatata 1600 ctccacacag atgtacactc agagagtaca gcaaatctta gcttcccata 1650 accccacaaa gcctatattt ttatatactg cctatcaagc tgttcattca 1700 ccactgcaag ctcctggcag gtatttcgaa cactaccgat ccattatcaa 1750 cataaacagg agaagatatg ctgccatgct ttcctgctta gatgaagcaa 1800 tcaacaacgt gacattggct ctaaagactt atggtttcta taacaacagc 1850 attatcattt actcttcaga taatggtggc cagcctacgg caggagggag 1900 taactggcct ctcagaggta gcaaaggaac atattgggaa ggagggatcc 1950 gggctgtagg ctttgtgcat agcccacttc tgaaaaacaa gggaacagtg 2000 tgtaaggaac ttgtgcacat cactgactgg taccccactc tcatttcact 2050 ggctgaagga cagattgatg aggacattca actagatggc tatgatatct 2100 gggagaccat aagtgagggt cttcgctcac cccgagtaga tattttgcat 2150 aacattgacc cctatacacc aaggcaaaaa atggctcctg ggcagcaggc 2200 tatgggatct ggaacactgc aatccagtca gccatcagag tgcagcactg 2250 gaaattgett acaggaaatc ctggctacag cgactgggtc ccccctcagt 2300 ctttcagcaa cctgggaccg aaccggtggc acaatgaacg gatcaccttg 2350 tcaactggca aaagtgtatg gcttttcaac atcacagccg acccatatga 2400 gagggtggac ctatctaaca ggtatccagg aatcgtgaag aagctcctac 2450

ggaggetete acagtteaac aaaactgeag tgeeggteag gtateeecc 2500 aaagacccca gaagtaaccc taggctcaat ggaggggtct ggggaccatg 2550 gtataaagag gaaaccaaga aaaagaagcc aagcaaaaat caggctgaga 2600 aaaagcaaaa gaaaagcaaa aaaaagaaga agaaacagca gaaagcagtc 2650 tcaggtaaac cagcaaattt ggctcgataa tatcgctggc ctaagcgtca 2700 ggcttgtttt catgctgtgc cactccagag acttctgcca cctgqccqcc 2750 acactgaaaa ctgtcctgct cagtgccaag gtgctactct tgcaagccac 2800 acttagagag agtggagatg tttatttctc tcqctccttt agaaaacqtq 2850 gtgagtcctg agttccactg ctgtgcttca gtcaactgac caaacactgc 2900 tttgaattat aggaggagaa caataaccta ccatccqcaa qcatqctaat 2950 ttgatggaag ttacagggta gcatgattaa aactaccttt gataaattac 3000 agtcaaagat tgtgtcacct caaaggcctt gaagaatata ttttcttggt 3050 gaatttttgt atgtctgtca tatgacactt gggtttttta attaattcta 3100 ttttatatat ataaatatat gtttcttttc ctgtgaaaag ctgtttttct 3150 cacatgtgaa cagcttgcac ctcattttac catgcgtgag ggaatggcaa 3200 ataagaatgt ttgagcacac tgcccacaat gaatgtaact attttctaaa 3250 cactttacta gaagaacatt tcagtataaa aaacctaatt tatttttaca 3300 gaaaaatatt ttgttgtttt tataaaaagt tatgcaaatg acttttattt 3350 caagcactgt aatactataa attaatgtaa tactgtgtga attcagacta 3450 taaaaaacat cattcagaaa actttataat cgtcattgtt caatcaagat 3500 tttgaatgta ataagatgaa tatattcctt acaaattact tggaaattca 3550 atgtttgtgc agagttgaga caactttatt gtttctatca taaactattt 3600 atgtatetta attattaaaa tgatttaett tatggeacta gaaaatttae 3650 tgtggctttt ctgatctaac ttctagctaa aattgtatca ttggtcctaa 3700 aaaataaaaa totttactaa taggcaattg aaggaatggt ttgctaacaa 3750 ccacagtaat ataatatgat tttacagata gatgcttccc cttggctatg 3800 acatggagaa agattttccc ataataataa ctaatattta tattaggttg 3850 gtgcaaaact agttgcggtt tttcccatta aaagtaataa ccttactctt 3900

<210> 114

<211> 515

<212> PRT

<213> Homo sapiens

<400> 114

Met Ala Pro Arg Gly Cys Ala Gly His Pro Pro Pro Pro Ser Pro 1 5 10 15

Gln Ala Cys Val Cys Pro Gly Lys Met Leu Ala Met Gly Ala Leu 20 25 30

Ala Gly Phe Trp Ile Leu Cys Leu Leu Thr Tyr Gly Tyr Leu Ser
35 40 45

Trp Gly Gln Ala Leu Glu Glu Glu Glu Glu Gly Ala Leu Leu Ala 50 55 60

Gln Ala Gly Glu Lys Leu Glu Pro Ser Thr Thr Ser Thr Ser Gln
65 70 75

Pro His Leu Ile Phe Ile Leu Ala Asp Asp Gln Gly Phe Arg Asp 80 85 90

Val Gly Tyr His Gly Ser Glu Ile Lys Thr Pro Thr Leu Asp Lys 95 100 105

Leu Ala Ala Glu Gly Val Lys Leu Glu Asn Tyr Tyr Val Gln Pro

				110					115					120
Ile	Cys	Thr	Pro	Ser 125	Arg	Ser	Gln	Phe	Ile 130	Thr	Gly	Lys	Tyr	Gln 135
Ile	His	Thr	Gly	Leu 140	Gln	His	Ser	Ile	Ile 145	Arg	Pro	Thr	Gln	Pro 150
Asn	Cys	Leu	Pro	Leu 155	Asp	Asn	Ala	Thr	Leu 160	Pro	Gln	Lys	Leu	Lys 165
Glu	Val	Gly	Tyr	Ser 170	Thr	His	Met	Val	Gly 175	Lys	Trp	His	Leu	Gly 180
Phe	Asn	Arg	Lys	Glu 185	Cys	Met	Pro	Thr	Arg 190	Arg	Gly	Phe	Asp	Thr 195
Phe	Phe	Gly	Ser	Leu 200	Leu	Gly	Ser	Gly	Asp 205	Tyr	Tyr	Thr	His	Tyr 210
Lys	Cys	Asp	Ser	Pro 215	Gly	Met	Cys	Gly	Tyr 220	Asp	Leu	Tyr	Glu	Asn 225
Asp	Asn	Ala	Ala	Trp 230	Asp	Tyr	Asp	Asn	Gly 235	Ile	Tyr	Ser	Thr	Gln 240
Met	Tyr	Thr	Gln	Arg 245	Val	Gln	Gln	Ile	Leu 250	Ala	Ser	His	Asn	Pro 255
Thr	Lys	Pro	Ile	Phe 260	Leu	Tyr	Thr	Ala	Tyr 265	Gln	Ala	Val	His	Ser 270
Pro	Leu	Gln	Ala	Pro 275	Gly	Arg	Tyr	Phe	Glu 280	His	Tyr	Arg	Ser	Ile 285
Ile	Asn	Ile	Asn	Arg 290	Arg	Arg	Tyr	Ala	Ala 295	Met	Leu	Ser	Суз	Leu 300
Asp	Glu	Ala	Ile	Asn 305	Asn	Val	Thr	Leu	Ala 310	Leu	Lys	Thr	Tyr	Gly 315
Phe	Tyr	Asn	Asn	Ser 320	Ile	Ile	Ile	Tyr	Ser 325	Ser	Asp	Asn	Gly	Gly 330
Gln	Pro	Thr	Ala	Gly 335	Gly	Ser	Asn	Trp	Pro 340	Leu	Arg	Gly	Ser	Lys 345
Gly	Thr	Tyr	Trp	Glu 350	Gly	Gly	Ile	Arg	Ala 355	Val	Gly	Phe	Val	His 360
Ser	Pro	Leu	Leu	Lys 365	Asn	Lys	Gly	Thr	Val 370	Cys	Lys	Glu	Leu	Val 375
His	Ile	Thr	Asp	Trp 380	Tyr	Pro	Thr	Leu	Ile 385	Ser	Leu	Ala	Glu	Gly 390
Gln	Ile	Asp	Glu	Asp 395	Ile	Gln	Leu	Asp	Gly 400	Tyr	Asp	Ile	Trp	Glu 405

```
Thr Ile Ser Glu Gly Leu Arg Ser Pro Arg Val Asp Ile Leu His
                                      415
 Asn Ile Asp Pro Tyr Thr Pro Arg Gln Lys Met Ala Pro Gly Gln
 Gln Ala Met Gly Ser Gly Thr Leu Gln Ser Ser Gln Pro Ser Glu
 Cys Ser Thr Gly Asn Cys Leu Gln Glu Ile Leu Ala Thr Ala Thr
 Gly Ser Pro Leu Ser Leu Ser Ala Thr Trp Asp Arg Thr Gly Gly
 Thr Met Asn Gly Ser Pro Cys Gln Leu Ala Lys Val Tyr Gly Phe
                                      490
 Ser Thr Ser Gln Pro Thr His Met Arg Gly Trp Thr Tyr Leu Thr
                                      505
 Gly Ile Gln Glu Ser
<210> 115
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 115
cccaacccaa ctgtttacct ctgg 24
<210> 116
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 116
ctctctgagt gtacatctgt gtgg 24
<210> 117
<211> 53
<212> DNA
<213> Artificial Sequence
```

<223> Synthetic oligonucleotide probe

Ö

H

₫

hi

 \vdash

<220>

<221> unsure <222> 33

<223> unknown base

510

85

```
<400> 117
 gccaccctac ctcagaaact gaaggaggtt ggntattcaa cgcatatggt 50
cgg 53
<210> 118
<211> 2260
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 2009, 2026, 2033, 2055, 2074, 2078, 2086
<223> unknown base
<400> 118
 cggacgcgtg ggtgcgagtg gagcggagga cccgagcggc tgaggagaga 50
ggaggcggcg gcttagctgc tacggggtcc ggccggcgcc ctcccgaggg 100
gggctcagga ggaggaagga ggacccgtgc gagaatgcct ctgccctgga 150
gccttgcgct cccgctgctg ctctcctggg tggcaggtgg tttcgggaac 200
gcggccagtg caaggcatca cgggttgtta gcatcggcac gtcagcctgg 250
ggtctgtcac tatggaacta aactggcctg ctgctacqqc tqqaqaaqaa 300
acagcaaggg agtctgtgaa gctacatgcg aacctggatg taagtttggt 350
gagtgcgtgg gaccaaacaa atgcagatgc tttccaggat acaccgggaa 400
aacctgcagt caagatgtga atgagtgtgg aatgaaaccc cggccatgcc 450
aacacagatg tgtgaataca cacggaagct acaagtgctt ttgcctcagt 500
ggccacatgc tcatgccaga tgctacgtgt gtgaactcta ggacatgtgc 550
catgataaac tgtcagtaca gctgtgaaga cacagaagaa gggccacagt 600
gcctgtgtcc atcctcagga ctccgcctgg ccccaaatgg aagagactgt 650
ctagatattg atgaatgtgc ctctggtaaa gtcatctgtc cctacaatcg 700
aagatgtgtg aacacatttg gaagctacta ctgcaaatgt cacattggtt 750
tcgaactgca atatatcagt ggacgatatg actgtataga tataaatgaa 800
tgtactatgg atagccatac gtgcagccac catgccaatt gcttcaatac 850
ccaagggtcc ttcaagtgta aatgcaagca gggatataaa ggcaatggac 900
ttcggtgttc tgctatccct gaaaattctg tgaaggaagt cctcagagca 950
cctggtacca tcaaagacag aatcaagaag ttgcttgctc acaaaaacag 1000
```

catgaaaaag aaggcaaaaa ttaaaaatgt taccccagaa cccaccagga 1050

ctcctacccc taaggtgaac ttgcagccct tcaactatga agagatagtt 1100 tccagaggcg ggaactctca tggaggtaaa aaagggaatg aagagaaatg 1150 aaagaggggc ttgaggatga gaaaagagaa qagaaaqccc tgaagaatga 1200 catagaggag cgaagcctgc gaggagatgt gtttttccct aaggtgaatg 1250 aagcaggtga attcggcctg attctggtcc aaaggaaaqc qctaacttcc 1300 aaactggaac ataaagattt aaatatctcg gttgactgca gcttcaatca 1350 tgggatctgt gactggaaac aggatagaga agatgatttt gactggaatc 1400 ctgctgatcg agataatgct attggcttct atatggcagt tccggccttg 1450 gcaggtcaca agaaagacat tggccgattg aaacttctcc tacctgacct 1500 gcaaccccaa agcaacttct gtttgctctt tgattaccgg ctggccggag 1550 acaaagtcgg gaaacttcga gtgtttgtga aaaacagtaa caatgccctg 1600 gcatgggaga agaccacgag tgaggatgaa aagtggaaga cagggaaaat 1650 tcagttgtat caaggaactg atgctaccaa aagcatcatt tttgaagcag 1700 aacgtggcaa gggcaaaacc ggcgaaatcg cagtggatgg cgtcttgctt 1750 gtttcaggct tatgtccaga tagcctttta tctgtggatg actgaatgtt 1800 actatettta tatttgaett tgtatgteag tteeetggtt tttttgatat 1850 tgcatcatag gacctctggc attttagaat tactagctga aaaattgtaa 1900 tgtaccaaca gaaatattat tgtaagatgc ctttcttgta taagatatgc 1950 caatatttgc tttaaatatc atatcactgt atcttctcag tcatttctga 2000 atctttccnc attatattat aaaatntgga aangtcagtt tatctccct 2050 cctcngtata tctgatttgt atangtangt tgatgngctt ctctctacaa 2100 catttctaga aaatagaaaa aaaagcacag agaaatgttt aactgtttga 2150 ctcttatgat acttcttgga aactatgaca tcaaaqataq acttttgcct 2200 aagtggctta gctgggtctt tcatagccaa acttgtatat ttaattcttt 2250 gtaataataa 2260

<210> 119

<211> 338

<212> PRT

<213> Homo sapiens

<400> 119

Met Pro Leu Pro Trp Ser Leu Ala Leu Pro Leu Leu Ser Trp
1 5 10 10

Val Ala Gly Gly Phe Gly Asn Ala Ala Ser Ala Arg His His Gly Leu Leu Ala Ser Ala Arg Gln Pro Gly Val Cys His Tyr Gly Thr Lys Leu Ala Cys Cys Tyr Gly Trp Arg Arg Asn Ser Lys Gly Val Cys Glu Ala Thr Cys Glu Pro Gly Cys Lys Phe Gly Glu Cys Val Gly Pro Asn Lys Cys Arg Cys Phe Pro Gly Tyr Thr Gly Lys Thr Cys Ser Gln Asp Val Asn Glu Cys Gly Met Lys Pro Arg Pro Cys Gln His Arg Cys Val Asn Thr His Gly Ser Tyr Lys Cys Phe Cys Leu Ser Gly His Met Leu Met Pro Asp Ala Thr Cys Val Asn Ser Arg Thr Cys Ala Met Ile Asn Cys Gln Tyr Ser Cys Glu Asp Thr Glu Glu Gly Pro Gln Cys Leu Cys Pro Ser Ser Gly Leu Arg Leu Ala Pro Asn Gly Arg Asp Cys Leu Asp Ile Asp Glu Cys Ala Ser Gly Lys Val Ile Cys Pro Tyr Asn Arg Arg Cys Val Asn Thr Phe Gly Ser Tyr Tyr Cys Lys Cys His Ile Gly Phe Glu Leu Gln Tyr Ile Ser Gly Arg Tyr Asp Cys Ile Asp Ile Asn Glu Cys Thr Met Asp Ser His Thr Cys Ser His His Ala Asn Cys Phe Asn Thr Gln 240 Gly Ser Phe Lys Cys Lys Cys Lys Gln Gly Tyr Lys Gly Asn Gly Leu Arg Cys Ser Ala Ile Pro Glu Asn Ser Val Lys Glu Val Leu 270 Arg Ala Pro Gly Thr Ile Lys Asp Arg Ile Lys Lys Leu Leu Ala His Lys Asn Ser Met Lys Lys Lys Ala Lys Ile Lys Asn Val Thr 300 Pro Glu Pro Thr Arg Thr Pro Thr Pro Lys Val Asn Leu Gln Pro

5 310

315

Phe Asn Tyr Glu Glu Ile Val Ser Arg Gly Gly Asn Ser His Gly 320 325 330

Gly Lys Lys Gly Asn Glu Glu Lys 335

<210> 120

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 120

cctcagtggc cacatgctca tg 22

<210> 121

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

99

J.,

M

Ū

⊨≟

Uī

<223> Synthetic oligonucleotide probe

<400> 121

ggctgcacgt atggctatcc atag 24

<210> 122

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 122

gataaactgt cagtacagct gtgaagacac agaagaaggg ccacagtgcc 50

<210> 123

<211> 1199

<212> DNA

<213> Homo sapiens

<400> 123

gggagctgct gctgtggctg ctggtgctgt gcgcgctgct cctgctcttg 50

gtgcagctgc tgcgcttcct gagggctgac ggcgacctga cgctactatg 100

ggccgagtgg cagggacgac gcccagaatg ggagctgact gatatggtgg 150

tgtgggtgac tggagcctcg agtggaattg gtgaggagct ggcttaccag 200

ttgtctaaac taggagtttc tcttgtgctg tcagccagaa gagtgcatga 250

gctggaaagg gtgaaaagaa gatgcctaga gaatqqcaat ttaaaagaaa 300

aagatatact tgttttgccc cttgacctga ccgacactgg ttcccatgaa 350 gcggctacca aagctgttct ccaggagttt ggtagaatcg acattctggt 400 caacaatggt ggaatgtccc agcgttctct gtgcatggat accagcttgg 450 atgtctacag aaagctaata gagcttaact acttagggac ggtgtccttg 500 acaaaatgtg ttctgcctca catgatcgag aggaagcaag gaaagattgt 550 tactgtgaat agcatcctgg gtatcatatc tgtacctctt tccattggat 600 actgtgctag caagcatgct ctccggggtt tttttaatgg ccttcgaaca 650 gaacttgcca catacccagg tataatagtt tctaacattt gcccaggacc 700 tgtgcaatca aatattgtgg agaattccct agctggagaa gtcacaaaga 750 ctataggcaa taatggagac cagtcccaca agatgacaac cagtcgttgt 800 gtgcggctga tgttaatcag catggccaat gatttgaaag aagtttggat 850 ctcagaacaa cctttcttgt tagtaacata tttgtggcaa tacatgccaa 900 cctgggcctg gtggataacc aacaagatgg ggaagaaaag gattgagaac 950 tttaagagtg gtgtggatgc agactettet tattttaaaa tetttaagac 1000 aaaacatgac tgaaaagagc acctgtactt ttcaagccac tggagggaga 1050 aatggaaaac atgaaaacag caatcttctt atgcttctga ataatcaaag 1100 actaatttgt gattttactt tttaatagat atgactttgc ttccaacatg 1150 gaatgaaata aaaaataaat aataaaagat tgccatgaat cttgcaaaa 1199

<210> 124

<211> 289

<212> PRT

<213> Homo sapiens

<400> 124

Met Val Val Trp Val Thr Gly Ala Ser Ser Gly Ile Gly Glu Glu 1 5 10 15

Leu Ala Tyr Gln Leu Ser Lys Leu Gly Val Ser Leu Val Leu Ser
20 25 30

Ala Arg Arg Val His Glu Leu Glu Arg Val Lys Arg Arg Cys Leu
35 40 45

Glu Asn Gly Asn Leu Lys Glu Lys Asp Ile Leu Val Leu Pro Leu
50 55 60

Asp Leu Thr Asp Thr Gly Ser His Glu Ala Ala Thr Lys Ala Val
65 70 75

Leu Gln Glu Phe Gly Arg Ile Asp Ile Leu Val Asn Asn Gly Gly

				80					85					90
Met	Ser	Gln	Arg	Ser 95	Leu	Cys	Met	Asp	Thr 100	Ser	Leu	Asp	Val	Tyr 105
Arg	Lys	Leu	Ile	Glu 110	Leu	Asn	Tyr	Leu	Gly 115	Thr	Val	Ser	Leu	Thr 120
Lys	Суз	Val	Leu	Pro 125	His	Met	Ile	Glu	Arg 130	Lys	Gln	Gly	Lys	Ile 135
Val	Thr	Val	Asn	Ser 140	Ile	Leu	Gly	Ile	Ile 145	Ser	Val	Pro	Leu	Ser 150
Ile	Gly	Tyr	Cys	Ala 155	Ser	Lys	His	Ala	Leu 160	Arg	Gly	Phe	Phe	Asn 165
Gly	Leu	Arg	Thr	Glu 170	Leu	Ala	Thr	Tyr	Pro 175	Gly	Ile	Ile	Val	Ser 180
Asn	Ile	Cys	Pro	Gly 185	Pro	Val	Gln	Ser	Asn 190	Ile	Val	Glu	Asn	Ser 195
Leu	Ala	Gly	Glu	Val 200	Thr	Lys	Thr	Ile	Gly 205	Asn	Asn	Gly	Asp	Gln 210
Ser	His	Lys	Met	Thr 215	Thr	Ser	Arg	Cys	Val 220	Arg	Leu	Met	Leu	Ile 225
Ser	Met	Ala	Asn	Asp 230	Leu	Lys	Glu	Val	Trp 235	Ile	Ser	Glu	Gln	Pro 240
Phe	Leu	Leu	Val	Thr 245	Tyr	Leu	Trp	Gln	Tyr 250	Met	Pro	Thr	Trp	Ala 255
Trp	Trp	Ile	Thr	Asn 260	Lys	Met	Gly	Lys	Lys 265	Arg	Ile	Glu	Asn	Phe 270
Lys	Ser	Gly	Val	Asp 275	Ala	Asp	Ser	Ser	Tyr 280	Phe	Lys	Ile	Phe	Lys 285
Thr	Lys	His	Asp											
<2103 <2113 <2123 <2133	> 19 > DN	A	cial	Sequ	ience	e								
	<220> <223> Synthetic oligonucleotide probe													
<400> 125 gcaatgaact gggagctgc 19														
<210><211><211>	19													

```
<213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 126
     ctgtgaatag catcctggg 19
    <210> 127
    <211> 20
    <212> DNA
   <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 127
     cttttcaagc cactggaggg 20
    <210> 128
    <211> 24
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
<400> 128
     ctgtagacat ccaagctggt atcc 24
    <210> 129
    <211> 23
4
    <212> DNA
H
    <213> Artificial Sequence
H
<223> Synthetic oligonucleotide probe
    <400> 129
UT
     aagagtctgc atccacacca ctc 23
    <210> 130
    <211> 46
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
     acctgacgct actatgggcc gagtggcagg gacgacgccc agaatg 46
    <210> 131
    <211> 2365
    <212> DNA
    <213> Homo sapiens
    <400> 131
```


ctcatcctgc atggagccta cacccacct gaggggggct acgacatggc 1500 cetcetgetg etggeeeage etgtgaeact gggageeage etgeggeeee 1550 tetgeetgee ctateetgae caccacetge etgatgggga gegtggetgg 1600 gttctgggac gggcccgccc aggagcaggc atcagctccc tccagacagt 1650 gcccgtgacc ctcctggggc ctagggcctg cagccqqctq catqcaqctc 1700 ctgggggtga tggcagccct attctgccgg ggatggtgtg taccagtgct 1750 gtgggtgagc tgcccagctg tgagggcctg tctggggcac cactggtgca 1800 tgaggtgagg ggcacatggt tcctggccgg gctgcacaqc ttcqqaqatq 1850 cttgccaagg cccgccagg ccgqcqqtct tcaccqcqct ccctqcctat 1900 gaggactggg tcagcagttt ggactggcag gtctacttcg ccgaggaacc 1950 agagecegag getgageetg gaagetgeet ggecaacata agecaaceaa 2000 ccagctgctg acaggggacc tggccattct caggacaaga gaatgcaggc 2050 aggcaaatgg cattactgcc cctgtcctcc ccaccctgtc atgtgtgatt 2100 ccaggcacca gggcaggccc agaagcccag cagctgtggg aaggaacctq 2150 cctggggcca caggtgccca ctccccaccc tqcaqqacaq qqqtqtctqt 2200 ggacactccc acacccaact ctgctaccaa gcaggcgtct cagctttcct 2250 cctcctttac tctttcagat acaatcacgc cagccacgtt gttttgaaaa 2300 tttctttttt tggggggcag cagttttcct ttttttaaac ttaaataaat 2350 tgttacaaaa taaaa 2365

<210> 132

<211> 571

<212> PRT

<213> Homo sapiens

<400> 132

Met Leu Leu Ser Ser Leu Val Ser Leu Ala Gly Ser Val Tyr Leu
1 5 10 15

Ala Trp Ile Leu Phe Phe Val Leu Tyr Asp Phe Cys Ile Val Cys 20 25 30

Ile Thr Thr Tyr Ala Ile Asn Val Ser Leu Met Trp Leu Ser Phe
35 40 45

Arg Lys Val Gln Glu Pro Gln Gly Lys Ala Lys Arg His Gly Asn 50 55 60

Thr Val Pro Gly Glu Trp Pro Trp Gln Ala Ser Val Arg Arg Gln
65 70 75

				365					370					375
Thr	Arg	Pro	Glu	Glu 380	Trp	Gly	Leu	Lys	Gln 385	Leu	Ile	Leu	His	Gly 390
Ala	Tyr	Thr	His	Pro 395	Glu	Gly	Gly	Tyr	Asp 400	Met	Ala	Leu	Leu	Leu 405
Leu	Ala	Gln	Pro	Val 410	Thr	Leu	Gly	Ala	Ser 415	Leu	Arg	Pro	Leu	Cys 420
Leu	Pro	Tyr	Pro	Asp 425	His	His	Leu	Pro	Asp 430	Gly	Glu	Arg	Gly	Trp 435
Val	Leu	Gly	Arg	Ala 440	Arg	Pro	Gly	Ala	Gly 445	Ile	Ser	Ser	Leu	Gln 450
Thr	Val	Pro	Val	Thr 455	Leu	Leu	Gly	Pro	Arg 460	Ala	Cys	Ser	Arg	Leu 465
His	Ala	Ala	Pro	Gly 470	Gly	Asp	Gly	Ser	Pro 475	Ile	Leu	Pro	Gly	Met 480
Val	Суз	Thr	Ser	Ala 485	Val	Gly	Glu	Leu	Pro 490	Ser	Cys	Glu	Gly	Leu 495
Ser	Gly	Ala	Pro	Leu 500	Val	His	Glu	Val	Arg 505	Gly	Thr	Trp	Phe	Leu 510
Ala	Gly	Leu	His	Ser 515	Phe	Gly	Asp	Ala	Cys 520	Gln	Gly	Pro	Ala	Arg 525
Pro	Ala	Val	Phe	Thr 530	Ala	Leu	Pro	Ala	Tyr 535	Glu	Asp	Trp	Val	Ser 540
Ser	Leu	Asp	Trp	Gln 545	Val	Tyr	Phe	Ala	Glu 550	Glu	Pro	Glu	Pro	Glu 555
Ala	Glu	Pro	Gly	Ser 560	Cys	Leu	Ala	Asn	Ile 565	Ser	Gln	Pro	Thr	Ser 570
Cys														
<210><211><211><212><213>	> 24 > DNA	Y	ial	Sequ	ience	<u>.</u>			. •					
<213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe														
<400> 133 cctgtgctgt gcctcgagcc tgac 24														
<210> 134 <211> 24 <212> DNA														

```
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 134
gtgggcagca gttagcaccg cctc 24
<210> 135
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 135
ggctggcatc atcagctttg catcaagctg tgcccaggag gacgc 45
<210> 136
<211> 1998
<212> DNA
<213> Homo sapiens
<400> 136
 egggeegeee eeggeeeea ttegggeegg geetegetge ggeggegaet 50
gagccaggct gggccgcgtc cctgagtccc agagtcggcg cggcgcggca 100
ggggcagcct tccaccacgg ggagcccagc tgtcagccgc ctcacaggaa 150
gatgctgcgt cggcggggca gccctggcat gggtgtgcat gtgggtgcag 200
ccctgggagc actgtggttc tgcctcacag gagccctgga ggtccaggtc 250
cctgaagacc cagtggtggc actggtgggc accgatgcca ccctgtgctg 300
ctccttctcc cctgagcctg gcttcagcct ggcacagctc aacctcatct 350
ggcagctgac agataccaaa cagctggtgc acagctttgc tgagggccag 400
gaccagggca gegeetatge caacegeaeg gecetettee eggacetget 450
ggcacagggc aacgcatccc tgaggctgca gcgcgtgcgt gtgqcqqacq 500
agggcagett cacetgette gtgagcatee gggatttegg cagegetgee 550
gtcagcctgc aggtggccgc tccctactcg aagcccagca tgaccctgga 600
gcccaacaag gacctgcggc caggggacac ggtgaccatc acgtgctcca 650
gctaccaggg ctaccctgag gctgaggtgt tctggcagga tgggcagggt 700
gtgcccctga ctggcaacgt gaccacgtcg cagatggcca acgagcaggg 750
cttgtttgat gtgcacagcg tcctgcgggt ggtqctqqqt qcqaatqqca 800
```

cctacagctg cctggtgcgc aaccccgtgc tgcagcagga tgcgcacrgc 850

tctgtcacca tcacagggca gcctatgaca ttccccccag aggccctgtg 900 ggtgaccgtg gggctgtctg tctgtctcat tgcactgctg gtggccctgg 950 ctttcgtgtg ctggagaaag atcaaacaga gctgtgagga ggagaatgca 1000 ggagctgagg accaggatgg ggagggagaa ggctccaaga cagccctqca 1050 gcctctgaaa cactctgaca gcaaagaaga tgatggacaa gaaatagcct 1100 gaccatgagg accagggage tgetacecet cectacaget cetacectet 1150 ggctgcaatg gggctgcact gtgagccctg cccccaacag atgcatcctg 1200 ctctgacagg tgggctcctt ctccaaagga tgcgatacac agaccactgt 1250 gcagccttat ttctccaatg gacatgattc ccaagtcatc ctgctgcctt 1300 ttttcttata gacacaatga acagaccacc cacaacctta gttctctaag 1350 tcatcctgcc tgctgcctta tttcacagta catacatttc ttagggacac 1400 agtacactga ccacatcacc accetettet tecagtgetg cgtggaccat 1450 ctggctgcct tttttctcca aaagatgcaa tattcagact gactgacccc 1500 ctgccttatt tcaccaaaga cacgatgcat agtcaccccq gccttqtttc 1550 tccaatggcc gtgatacact agtgatcatg ttcaqccctq cttccacctq 1600 catagaatct tttcttctca gacagggaca gtgcggcctc aacatctcct 1650 ggagtctaga agctgtttcc tttcccctcc ttcctccctg ccccaagtga 1700 agacagggca gggccaggaa tgctttgggg acaccgaggg gactgcccc 1750 cacccccacc atggtgctat tctggggctg gggcagtctt ttcctggctt 1800 gcctctggcc agctcctggc ctctggtaga gtgagacttc agacgttctg 1850 atgccttccg gatgtcatct ctccctgccc caggaatgga agatgtgagg 1900 acttctaatt taaatgtggg actcggaggg attttgtaaa ctgggggtat 1950 attttgggga aaataaatgt ctttgtaaaa aaaaaaaaa aaaaaaaa 1998

```
<210> 137
```

<211> 316

<212> PRT

<213> Homo sapiens

<220>

<221> unsure

<222> 233

<223> unknown amino acid

<400> 137

Met Leu Arg Arg Gly Ser Pro Gly Met Gly Val His Val Gly

1				5					10					15
Ala	Ala	Leu	Gly	Ala 20	Leu	Trp	Phe	Cys	Leu 25	Thr	Gly	Ala	Leu	Glu 30
Val	Gln	Val	Pro	Glu 35	Asp	Pro	Val	Val	Ala 40	Leu	Val	Gly	Thr	Asp 45
Ala	Thr	Leu	Cys	Cys 50	Ser	Phe	Ser	Pro	Glu 55	Pro	Gly	Phe	Ser	Leu 60
Ala	Gln	Leu	Asn	Leu 65	Ile	Trp	Gln	Leu	Thr 70	Asp	Thr	Lys	Gln	Leu 75
Val	His	Ser	Phe	Ala 80	Glu	Gly	Gln	Asp	Gln 85	Gly	Ser	Ala	Tyr	Ala 90
Asn	Arg	Thr	Ala	Leu 95	Phe	Pro	Asp	Leu	Leu 100	Ala	Gln	Gly	Asn	Ala 105
Ser	Leu	Arg	Leu	Gln 110	Arg	Val	Arg	Val	Ala 115	Asp	Glu	Gly	Ser	Phe 120
Thr	Cys	Phe	Val	Ser 125	Ile	Arg	Asp	Phe	Gly 130	Ser	Ala	Ala	Val	Ser 135
Leu	Gln	Val	Ala	Ala 140	Pro	Tyr	Ser	Lys	Pro 145	Ser	Met	Thr	Leu	Glu 150
Pro	Asn	Lys	Asp	Leu 155	Arg	Pro	Gly	Asp	Thr 160	Val	Thr	Ile	Thr	Cys 165
Ser	Ser	Tyr	Gln	Gly 170	Tyr	Pro	Glu	Ala	Glu 175	Val	Phe	Trp	Gln	Asp 180
Gly	Gln	Gly	Val	Pro 185	Leu	Thr	Gly	Asn	Val 190	Thr	Thr	Ser	Gln	Met 195
Ala	Asn	Glu	Gln	Gly 200	Leu	Phe	Asp	Val	His 205	Ser	Val	Leu	Arg	Val 210
Val	Leu	Gly	Ala	Asn 215	Gly	Thr	Tyr	Ser	Cys 220	Leu	Val	Arg	Asn	Pro 225
Val	Leu	Gln	Gln	Asp 230	Ala	His	Xaa	Ser	Val 235	Thr	Ile	Thr	Gly	Gln 240
Pro	Met	Thr	Phe	Pro 245	Pro	Glu	Ala	Leu	Trp 250	Val	Thr	Val	Gly	Leu 255
Ser	Val	Суѕ	Leu	Ile 260	Ala	Leu	Leụ	Val	Ala 265	Leu	Ala	Phe	Val	Cys 270
Trp	Arg	Lys	Ile	Lys 275	Gln	Ser	Cys	Glu	Glu 280	Glu	Asn	Ala	Gly	Ala 285
Glu	Asp	Gln	Asp	Gly 290	Glu	Gly	Glu	Gly	Ser 295	Lys	Thr	Ala	Leu	Gln 300

```
Pro Leu Lys His Ser Asp Ser Lys Glu Asp Asp Gly Gln Glu Ile
305 310 315
```

Ala

```
<210> 138
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 138
 ctggcacagc tcaacctcat ctgg 24
<210> 139
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 139
 gctgtctgtc tgtctcattg 20
<210> 140
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 140
ggacacagta tactgaccac 20
<210> 141
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 141
tgcgaaccag gcagctgtaa gtgc 24
<210> 142
<211> 24
<212> DNA
<213> Artificial Sequence
```

<223> Synthetic oligonucleotide probe

```
<400> 142
 tggaagaaga gggtggtgat gtgg 24
<210> 143
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 143
 cagctgacag acaccaaaca gctggtgcac agtttcaccg aaggc 45
<210> 144
<211> 2336
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 1620, 1673
<223> unknown base
<400> 144
 ttcgtgaccc ttgagaaaag agttggtggt aaatgtgcca cgtcttctaa 50
 gaagggggag teetgaaett gtetgaagee ettgteegta ageettgaae 100
 tacgttctta aatctatgaa gtcgagggac ctttcgctgc ttttgtaggg 150
 acttctttcc ttgcttcagc aacatgaggc ttttcttgtg gaacgcggtc 200
 ttgactctgt tcgtcacttc tttgattggg gctttgatcc ctgaaccaga 250
 agtgaaaatt gaagttotoo agaagcoatt catotgocat cgcaagacca 300
 aaggagggga tttgatgttg gtccactatg aaggctactt agaaaaggac 350
 ggctccttat ttcactccac tcacaaacat aacaatggtc agcccatttg 400
gtttaccctg ggcatcctgg aggctctcaa aggttgggac cagggcttga 450
aaggaatgtg tgtaggagag aagagaaagc tcatcattcc tcctgctctg 500
ggctatggaa aagaaggaaa aggtaaaatt cccccagaaa gtacactgat 550
atttaatatt gatctcctgg agattcgaaa tggaccaaga tcccatgaat 600
cattccaaga aatggatctt aatgatgact ggaaactctc taaagatgag 650
gttaaagcat atttaaagaa ggagtttgaa aaacatggtg cggtggtgaa 700
tgaaagtcat catgatgctt tggtggagga tatttttgat aaagaagatg 750
aagacaaaga tgggtttata tctgccagag aatttacata taaacacgat 800
```

gagttataga gatacatcta cccttttaat atagcactca tctttcaaga 850

gagggcagtc atctttaaag aacattttat ttttatacaa tgttctttct 900 tgctttgttt tttattttta tatatttttt ctgactccta tttaaagaac 950 cccttaggtt tctaagtacc catttctttc tgataagtta ttgggaagaa 1000 aaagctaatt ggtctttgaa tagaagactt ctggacaatt tttcactttc 1050 acagatatga agctttgttt tactttctca cttataaatt taaaatgttg 1100 caactgggaa tataccacga catgagacca ggttatagca caaattagca 1150 ccctatattt ctgcttccct ctattttctc caagttagag gtcaacattt 1200 gaaaagcctt ttgcaatagc ccaaggcttg ctattttcat gttataatga 1250 aatagtttat gtgtaactgg ctctgagtct ctgcttgagg accagaggaa 1300 aatggttgtt ggacctgact tgttaatggc tactgcttta ctaaggagat 1350 gtgcaatgct gaagttagaa acaaggttaa tagccaggca tggtggctca 1400 tgcctgtaat cccagcactt tgggaggctg aggcgggcgg atcacctgag 1450 gttgggagtt cgagaccagc ctgaccaaca cggagaaacc ctatctctac 1500 taaaaataca aagtagcccg gcgtggtgat gcgtgcctgt aatcccagct 1550 acccaggaag getgaggegg cagaateaet tgaaccegag geegaggttg 1600 cggtaagccg agatcacctn cagcctggac actctgtctc gaaaaaagaa 1650 aagaacacgg ttaataccat atnaatatgt atgcattgag acatgctacc 1700 taggacttaa gctgatgaag cttggctcct agtgattggt ggcctattat 1750 gataaatagg acaaatcatt tatgtgtgag tttctttgta ataaaatgta 1800 tcaatatgtt atagatgagg tagaaagtta tatttatatt caatatttac 1850 ttcttaaggc tagcggaata tccttcctgg ttctttaatg ggtagtctat 1900 agtatattat actacaataa cattgtatca taagataaag tagtaaacca 1950 gtctacattt tcccatttct gtctcatcaa aaactgaagt tagctgggtg 2000 tggtggctca tgcctgtaat cccagcactt tgggggccaa ggagggtgga 2050 tcacttgaga tcaggagttc aagaccagcc tggccaacat ggtgaaacct 2100 tgtctctact aaaaatacaa aaattagcca ggcgtggtgg tgcacacctg 2150 tagtcccagc tactcgggag gctgagacag gagatttgct tgaacccggg 2200 aggcggaggt tgcagtgagc caagattgtg ccactgcact ccagcctggg 2250 tgacagagca agactccatc tcaaaaaaaa aaaaaagaag cagacctaca 2300

gcagctacta ttgaataaat acctatcctg gatttt 2336

```
<210> 145
```

<211> 211

<212> PRT

<213> Homo sapiens

<400> 145

Met Arg Leu Phe Leu Trp Asn Ala Val Leu Thr Leu Phe Val Thr 1 5 10 15

Ser Leu Ile Gly Ala Leu Ile Pro Glu Pro Glu Val Lys Ile Glu
20 25 30

Val Leu Gln Lys Pro Phe Ile Cys His Arg Lys Thr Lys Gly Gly 35 40 45

Asp Leu Met Leu Val His Tyr Glu Gly Tyr Leu Glu Lys Asp Gly
50 55 60

Ser Leu Phe His Ser Thr His Lys His Asn Asn Gly Gln Pro Ile
65 70 75

Trp Phe Thr Leu Gly Ile Leu Glu Ala Leu Lys Gly Trp Asp Gln
80 85 90

Gly Leu Lys Gly Met Cys Val Gly Glu Lys Arg Lys Leu Ile Ile 95 100 105

Pro Pro Ala Leu Gly Tyr Gly Lys Glu Gly Lys Gly Lys Ile Pro 110 115 120

Pro Glu Ser Thr Leu Ile Phe Asn Ile Asp Leu Leu Glu Ile Arg 125 130 135

Asn Gly Pro Arg Ser His Glu Ser Phe Gln Glu Met Asp Leu Asn 140 145 150

Asp Asp Trp Lys Leu Ser Lys Asp Glu Val Lys Ala Tyr Leu Lys 155 160 165

Lys Glu Phe Glu Lys His Gly Ala Val Val Asn Glu Ser His His
170 175 180

Asp Ala Leu Val Glu Asp Ile Phe Asp Lys Glu Asp Glu Asp Lys 185 190 195

Asp Gly Phe Ile Ser Ala Arg Glu Phe Thr Tyr Lys His Asp Glu 200 205 210

Leu

<210> 146

<211> 26

<212> DNA

<213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 146
 ctttccttgc ttcagcaaca tgaggc 26
<210> 147
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 147
 gcccagagca ggaggaatga tgagc 25
<210> 148
<211> 49
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
 gtggaacgcg gtcttgactc tgttcgtcac ttctttgatt ggggctttg 49
<210> 149
<211> 2196
<212> DNA
<213> Homo sapiens
<400> 149
 aataaagctt ccttaatgtt gtatatgtct ttgaagtaca tccgtgcatt 50
 tttttttagc atccaaccat tcctcccttg tagttctcgc cccctcaaat 100
 caccetetee egtageeeac eegactaaca teteagtete tgaaaatgea 150
 cagagatgcc tggctacctc gccctgcctt cagcctcacg gggctcagtc 200
 tctttttctc tttggtgcca ccaggacgga gcatggaggt cacagtacct 250
 gccaccctca acgtcctcaa tggctctgac gcccgcctgc cctgcacctt 300
 caactcctgc tacacagtga accacaaaca gttctccctg aactggactt 350
 accaggagtg caacaactgc tctgaggaga tgttcctcca gttccgcatg 400
 aagatcatta acctgaagct ggagcggttt caagaccgcg tggagttctc 450
 agggaacccc agcaagtacg atgtgtcggt gatgctgaga aacgtgcagc 500
cggaggatga ggggatttac aactgctaca tcatgaaccc ccctgaccgc 550
 caccgtggcc atggcaagat ccatctgcag gtcctcatgg aagagccccc 600
```


cgtgtgcctg taatcccage tatttgggag getgaggcag gagaatcgct 2100 tgagcccggg aagcagaggt tgcagtgaac tgagatagtg atagtgccac 2150 tgcaattcag cctgggtgac atagagagac tccatctcaa aaaaaa 2196

<210> 150

<211> 215

<212> PRT

<213> Homo sapiens

<400> 150

Met His Arg Asp Ala Trp Leu Pro Arg Pro Ala Phe Ser Leu Thr 1 5 10 15

Gly Leu Ser Leu Phe Phe Ser Leu Val Pro Pro Gly Arg Ser Met
20 25 30

Glu Val Thr Val Pro Ala Thr Leu Asn Val Leu Asn Gly Ser Asp 35 40 45

Ala Arg Leu Pro Cys Thr Phe Asn Ser Cys Tyr Thr Val Asn His
50 55 60

Lys Gln Phe Ser Leu Asn Trp Thr Tyr Gln Glu Cys Asn Asn Cys
65 70 75

Ser Glu Glu Met Phe Leu Gln Phe Arg Met Lys Ile Ile Asn Leu 80 85 90

Lys Leu Glu Arg Phe Gln Asp Arg Val Glu Phe Ser Gly Asn Pro 95 100 105

Ser Lys Tyr Asp Val Ser Val Met Leu Arg Asn Val Gln Pro Glu 110 115 120

Asp Glu Gly Ile Tyr Asn Cys Tyr Ile Met Asn Pro Pro Asp Arg 125 130 135

His Arg Gly His Gly Lys Ile His Leu Gln Val Leu Met Glu Glu 140 145 150

Pro Pro Glu Arg Asp Ser Thr Val Ala Val Ile Val Gly Ala Ser 155 160 165

Val Gly Gly Phe Leu Ala Val Val Ile Leu Val Leu Met Val Val 170 175 180

Lys Cys Val Arg Arg Lys Lys Glu Gln Lys Leu Ser Thr Asp Asp 185 190 195

Leu Lys Thr Glu Glu Glu Gly Lys Thr Asp Gly Glu Gly Asn Pro
200 205 210

Asp Asp Gly Ala Lys 215

<210> 151

ctacatcatg aacccccc 368

```
<211> 524
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 103, 233
<223> unknown base
<400> 151
 gttgtatatg tcctgaagta catccgtgca ttttttttag catccaacca 50
 tectecettg tagttetege ecceteaaat cacettetee ettageceae 100
 conactaaca totoagtoto tgaaaatgca cagagatgco tggotacoto 150
 gccctgcctt cagcctcacg gggctcagtc tctttttctc tttggtgcca 200
 ccaggacgga gcatggaggt ccacagtacc tgnccaccct caacgtcctc 250
 aatggctctg acgcccgcct gccctgccct tcaactcctg ctacacaqtg 300
 aaccacaaac agttctccct gaactggact taccaggagt gcaacaactg 350
 ctctgaggag atgttcctcc agttccgcat gaagatcatt aacctgaagc 400
 tggagcggtt tcaagaccgc gtggagttct cagggaaccc cagcaagtac 450
 gatgtgtcgg tgatgctgag aaacqtqcag ccgqagqatg aqqqqattta 500
 caactgctac atcatgaacc cccc 524
<210> 152
<211> 368
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 56, 123
<223> unknown base
<400> 152
 tcacggggct catctctttt tctctttggt gcccaccagg acggagcatg 50
gaggincaca taccigccac ccicaacgic cicaatggci tigacgcccg 100
cctgccctgc accttcaact ccngctacac agtgaaccac aaacagttct 150
ccctgaactg gatttaccag gagtgcaaca actggctctg aggagatgtt 200
cctccagttc ccgcatggaa gatcatttaa cctgaaagct ggaagcggtt 250
ttcaagaacc gcgtggaagt ttctcaggga accccagcaa gtacgatgtg 300
tcggtgatgc tgagaaacgt gcagccggag gatgagggga tttacaactg 350
```

```
<210> 153
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 153
 acggagcatg gaggtccaca gtac 24
<210> 154
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 154
 gcacgtttct cagcatcacc gac 23
<210> 155
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 155
 cgcctgccct gcaccttcaa ctcctgctac acagtgaacc acaaacagtt 50
<210> 156
<211> 2680
<212> DNA
<213> Homo sapiens
<400> 156
tgcggcgacc gtcgtacacc atgggcctcc acctccgccc ctaccgtgtg 50
 gggctgctcc cggatggcct cctgttcctc ttgctgctgc taatgctgct 100
 cgcggaccca gcgctcccgg ccggacgtca cccccagtg gtgctggtcc 150
 ctggtgattt gggtaaccaa ctggaagcca agctggacaa gccgacagtg 200
 gtgcactacc tctgctccaa gaagaccgaa agctacttca caatctggct 250
gaacctggaa ctgctgctgc ctgtcatcat tgactgctgg attgacaata 300
tcaggctggt ttacaacaaa acatccaggg ccacccagtt tcctgatggt 350
gtggatgtac gtgtccctgg ctttgggaag accttctcac tggagttcct 400
ggaccccagc aaaagcagcg tgggttccta tttccacacc atgqtqqaqa 450
gccttgtggg ctggggctac acacggggtg aggatgtccg aggggctccc 500
```


cccccagtcc cgcaggctgt gttccagggg ccctgattcc ctcggatgtg 2000 ctattggccc caggactgaa gctgcctccc ttcaccctgg gactgtggtt 2050 ccaaggatga gagcaggggt tggagccatg gccttctggg aacctatgga 2100 gaaagggaat ccaaggaagc agccaaggct gctcgcagct tccctgagct 2150 gcacctcttg ctaaccccac catcacactg ccaccctgcc ctagggtctc 2200 actagtacca agtgggtcag cacagggctg aggatggggc tcctatccac 2250 cctggccagc acccagcta gtgctgggac tagccagaa acttgaatgg 2300 gaccctgaga gagccagggg tcccctgagg ccccctagg ggctttctgt 2350 ctgccccagg gtgctccatg gatctccctg tggcagcagg catggagagt 2400 cagggctgc ttcatggcag taggctctaa gtgggtgact ggccacaggc 2450 cgagaaaagg gtacagcctc taggtgggt tcccaaagac gccttcaggc 2500 tggactgagc tgctccca cagggtttct gtgcagctgg atttctctg 2550 ttgcatcact gcctgcccc tgtccccca agcgtttct tgtcctgag tggccccaca 2600 tggggctctg agcagctgt atctggatc tggcaataaa agaaaaaaa aaaaaaaaa 2680

<210> 157

<211> 412

<212> PRT

<213> Artificial

<400> 157

Met Gly Leu His Leu Arg Pro Tyr Arg Val Gly Leu Leu Pro Asp 1 5 10 15

Gly Leu Leu Phe Leu Leu Leu Leu Met Leu Leu Ala Asp Pro 20 25 30

Ala Leu Pro Ala Gly Arg His Pro Pro Val Val Leu Val Pro Gly

Asp Leu Gly Asn Gln Leu Glu Ala Lys Leu Asp Lys Pro Thr Val 50 55 60

Val His Tyr Leu Cys Ser Lys Lys Thr Glu Ser Tyr Phe Thr Ile
65 70 75

Trp Leu Asn Leu Glu Leu Leu Leu Pro Val Ile Ile Asp Cys Trp
80 85 90

Ile Asp Asn Ile Arg Leu Val Tyr Asn Lys Thr Ser Arg Ala Thr 95 100 105

Gln Phe Pro Asp Gly Val Asp Val Arg Val Pro Gly Phe Gly Lys

				110					115					120
Thr	Phe	Ser	Leu	Glu 125	Phe	Leu	Asp	Pro	Ser 130	Lys	Ser	Ser	Val	Gly 135
Ser	Tyr	Phe	His	Thr 140	Met	Val	Glu	Ser	Leu 145	Val	Gly	Trp	Gly	Tyr 150
Thr	Arg	Gly	Glu	Asp 155	Val	Arg	Gly	Ala	Pro 160	Tyr	Asp	Trp	Arg	Arg 165
Ala	Pro	Asn	Glu	Asn 170	Gly	Pro	Tyr	Phe	Leu 175	Ala	Leu	Arg	Glu	Met 180
Ile	Glu	Glu	Met	Tyr 185	Gln	Leu	Tyr	Gly	Gly 190	Pro	Val	Val	Leu	Val 195
Ala	His	Ser	Met	Gly 200	Asn	Met	Tyr	Thr	Leu 205	Tyr	Phe	Leu	Gln	Arg 210
Gln	Pro	Gln	Ala	Trp 215	Lys	Asp	Lys	Tyr	Ile 220	Arg	Ala	Phe	Val	Ser 225
Leu	Gly	Ala	Pro	Trp 230	Gly	Gly	Val	Ala	Lys 235	Thr	Leu	Arg	Val	Leu 240
Ala	Ser	Gly	Asp	Asn 245	Asn	Arg	Ile	Pro	Val 250	Ile	Gly	Pro	Leu	Lys 255
Ile	Arg	Glu	Gln	Gln 260	Arg	Ser	Ala	Val	Ser 265	Thr	Ser	Trp	Leu	Leu 270
Pro	Tyr	Asn	Tyr	Thr 275	Trp	Ser	Pro	Glu	Lys 280	Val	Phe	Val	Gln	Thr 285
Pro	Thr	Ile	Asn	Tyr 290	Thr	Leu	Arg	Asp	Tyr 295	Arg	Lys	Phe	Phe	Gln 300
Asp	Ile	Gly	Phe	Glu 305	Asp	Gly	Trp	Leu	Met 310	Arg	Gln	Asp	Thr	Glu 315
Gly	Leu	Val	Glu	Ala 320	Thr	Met	Pro	Pro	Gly 325	Val	Gln	Leu	His	Cys 330
Leu	Tyr	Gly	Thr	Gly 335	Val	Pro	Thr	Pro	Asp 340	Ser	Phe	Tyr	Tyr	Glu 345
Ser	Phe	Pro	Asp	Arg 350	Asp _.	Pro	Lys	Ile	Cys 355	Phe	Gly	Asp	Gly	Asp 360
Gly	Thr	Val	Asn	Leu 365	Lys	Ser	Ala	Leu	Gln 370	Суѕ	Gln	Ala	Trp	Gln 375
Ser	Arg	Gln	Glu	His 380	Gln	Val	Leu	Leu	Gln 385	Glu	Leu	Pro	Gly	Ser 390
Glu	His	Ile	Glu	Met 395	Leu	Ala	Asn	Ala	Thr 400	Thr	Leu	Ala	Tyr	Leu 405

Lys Arg Val Leu Leu Gly Pro <210> 158 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 158 ctggggctac acacggggtg agg 23 <210> 159 <211> 24 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 159 ggtgccgctg cagaaagtag agcg 24 <210> 160 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 160 gccccaaatg aaaacgggcc ctacttcctg gccctccgcg agatg 45 <210> 161 <211> 1512 <212> DNA <213> Homo sapiens <400> 161 cggacgcgtg ggcggacgcg tgggggggg gcagcggcgg cgacggcgac 50 atggagagcg gggcctacgg cgcggccaag gcgggcggct ccttcgacct 100 gcggcgcttc ctgacgcagc cgcaggtggt ggcgcgcgcc gtgtgcttgg 150 tcttcgcctt gatcgtgttc tcctgcatct atggtgaggg ctacagcaat 200 gcccacgagt ctaagcagat gtactgcgtg ttcaaccgca acgaggatgc 250 ctgccgctat ggcagtgcca tcggggtgct ggccttcctg gcctcggcct 300

tcttcttggt ggtcgacgcg tatttccccc agatcagcaa cgccactgac 350

cgcaagtacc tggtcattgg tgacctgctc ttctcagctc tctggacctt 400

cctgtggttt gttggtttct gcttcctcac caaccagtgg gcagtcacca 450 acccgaagga cgtgctggtg ggggccgact ctgtgagggc agccatcacc 500 ttcagcttct tttccatctt ctcctggggt gtgctggcct ccctggccta 550 ccagcgctac aaggctggcg tggacgactt catccagaat tacgttgacc 600 ccactccgga ccccaacact gcctacgcct cctacccagg tgcatctgtg 650 gacaactacc aacagccacc cttcacccag aacgcggaga ccaccgaggg 700 ctaccagccg cccctgtgt actgagtggc ggttagcgtg ggaaggggga 750 cagagaggc cctccctct gccctggact ttcccatcag cctcctggaa 800 ctgccagccc ctctcttca cctgttccat cctgtgcagc tgacacacag 850 ctaaggagcc tcatagcctg gcgggggctg gcagagccac accccaagtg 900 cctgtgccca gagggcttca gtcagccgct cactcctcca gqqcactttt 950 aggaaagggt ttttagctag tgtttttcct cgcttttaat gacctcagcc 1000 ccgcctgcag tggctagaag ccagcaggtg cccatgtgct actgacaagt 1050 gcctcagctt cccccggcc cgggtcaggc cgtgggagcc gctattatct 1100 gcgttctctg ccaaagactc gtgggggcca tcacacctgc cctgtgcagc 1150 ggagccggac caggetettg tgteeteact caggtttget teceetqtge 1200 ccactgctgt atgatctggg ggccaccacc ctgtgccggt ggcctctggg 1250 ctgcctcccg tggtgtgagg gcggggctgg tgctcatggc acttcctcct 1300 tgctcccacc cctggcagca gggaagggct ttgcctgaca acacccagct 1350 ttatgtaaat attctgcagt tgttacttag gaagcctggg gagggcaggg 1400 gtgccccatg gctcccagac tctgtctgtg ccgagtgtat tataaaatcg 1450 tgggggagat gcccggcctg ggatgctgtt tggagacgga ataaatgttt 1500 tctcattcaa ag 1512

<210> 162

<211> 224

<212> PRT

<213> Homo sapiens

<400> 162

Met Glu Ser Gly Ala Tyr Gly Ala Ala Lys Ala Gly Gly Ser Phe
1 5 10 15

Asp Leu Arg Arg Phe Leu Thr Gln Pro Gln Val Val Ala Arg Ala 20 25 30

Val Cys Leu Val Phe Ala Leu Ile Val Phe Ser Cys Ile Tyr Gly Glu Gly Tyr Ser Asn Ala His Glu Ser Lys Gln Met Tyr Cys Val Phe Asn Arg Asn Glu Asp Ala Cys Arg Tyr Gly Ser Ala Ile Gly Val Leu Ala Phe Leu Ala Ser Ala Phe Phe Leu Val Val Asp Ala Tyr Phe Pro Gln Ile Ser Asn Ala Thr Asp Arg Lys Tyr Leu Val Ile Gly Asp Leu Leu Phe Ser Ala Leu Trp Thr Phe Leu Trp Phe 110 115 Val Gly Phe Cys Phe Leu Thr Asn Gln Trp Ala Val Thr Asn Pro Lys Asp Val Leu Val Gly Ala Asp Ser Val Arg Ala Ala Ile Thr 140 Phe Ser Phe Phe Ser Ile Phe Ser Trp Gly Val Leu Ala Ser Leu Ala Tyr Gln Arg Tyr Lys Ala Gly Val Asp Asp Phe Ile Gln Asn 170 Tyr Val Asp Pro Thr Pro Asp Pro Asn Thr Ala Tyr Ala Ser Tyr Pro Gly Ala Ser Val Asp Asn Tyr Gln Gln Pro Pro Phe Thr Gln 200 Asn Ala Glu Thr Thr Glu Gly Tyr Gln Pro Pro Pro Val Tyr 215 <210> 163 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 163 tggtcttcgc cttgatcgtg ttct 24 <210> 164

- <211> 20
- <212> DNA
- <213> Artificial Sequence
- <223> Synthetic oligonucleotide probe

```
<400> 164
 gtgtactgag cggcggttag 20
<210> 165
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 165
 ctgaaggtga tggctgccct cac 23
<210> 166
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 166
 ccaggaggct catgggaaag tcc 23
<210> 167
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
 ccacgagtct aagcagatgt actgcgtgtt caaccgcaac gaggatgcct 50
<210> 168
<211> 3143
<212> DNA
<213> Homo sapiens
<400> 168
 gagecaceta ecetgeteeg aggecaggee tgeagggeet categgecag 50
 agggtgatca gtgagcagaa ggatgcccgt ggccgaggcc ccccaggtgg 100
 ctggcgggca gggggacgga ggtgatggcg aggaagcgga gccagagggg 150
 atgttcaagg cctgtgagga ctccaagaga aaagcccggg gctacctccg 200
 cctggtgccc ctgtttgtgc tgctggccct gctcgtgctg gcttcggcgg 250
 gggtgctact ctggtatttc ctagggtaca aggcggaggt gatggtcagc 300
 caggtgtact caggcagtct gcgtgtactc aatcgccact tctcccagga 350
 tettaceege egggaateta gtgeetteeg eagtgaaace geeaaageee 400
```

agaagatgct caaggagctc atcaccagca cccgcctggg aacttactac 450 aactccagct ccgtctattc ctttggggag ggacccctca cctgcttctt 500 ctggttcatt ctccaaatcc ccgagcaccg ccggctgatg ctgagccccg 550 aggtggtgca ggcactgctg gtggaggagc tgctgtccac agtcaacagc 600 tcggctgccg tcccctacag ggccgagtac gaagtggacc ccgagggcct 650 agtgatectg gaagecagtg tgaaagacat agetgeattg aattecacge 700 tgggttgtta ccgctacagc tacgtgggcc agggccaggt cctccggctg 750 aaggggcctg accacctggc ctccagctgc ctgtggcacc tgcagggccc 800 caaggacctc atgctcaaac tccggctgga gtggacgctg gcagagtgcc 850 gggaccgact ggccatgtat gacgtggccg ggcccctgga gaagaggctc 900 atcacctcgg tgtacggctg cagccgccag gagcccgtgg tggaggttct 950 ggcgtcgggg gccatcatgg cggtcgtctg gaagaagggc ctgcacaqct 1000 actacgaccc cttcgtgctc tccgtgcagc cggtggtctt ccaggcctgt 1050 gaagtgaacc tgacgctgga caacaggctc gactcccagg gcgtcctcag 1100 caccegtae tteeceaget actaetegee ceaaacceae tgeteetgge 1150 acctcacggt geoctetetg gactacgget tggccetetg gtttgatgee 1200 tatgcactga ggaggcagaa gtatgatttg ccgtgcaccc agggccagtg 1250 gacgatccag aacaggaggc tgtgtggctt gcgcatcctg cagccctacg 1300 ecgagaggat eccegtggtg gecaeggeeg ggateaceat caactteace 1350 teccagatet eceteacegg geceggtgtg egggtgeact atggettgta 1400 caaccagteg gaccectgee etggagagtt eetetgttet gtgaatggae 1450 tetgtgteec tgcetgtgat ggggteaagg actgeeceaa eggeetggat 1500 gagagaaact gcgtttgcag agccacattc cagtqcaaaq aqqacaqcac 1550 atgcatctca ctgcccaagg tctgtgatgg gcagcctgat tgtctcaacg 1600 gcagcgatga agagcagtgc caggaagggg tgccatgtgg gacattcacc 1650 ttccagtgtg aggaccggag ctgcgtgaag aagcccaacc cgcagtgtga 1700 tgggcggccc gactgcaggg acggctcgga tgaggagcac tgtgactgtg 1750 gcctccaggg cccctccagc cgcattgttg gtggagctgt gtcctccgag 1800 ggtgagtggc catggcaggc cagcctccag gttcggggtc gacacatctg 1850

tgggggggcc ctcatcgctg accgctgggt gataacagct gcccactgct 1900 tccaggagga cagcatggcc tccacggtgc tgtggaccgt gttcctgggc 1950 aaggtgtggc agaactcgcg ctggcctgga gaggtgtcct tcaaggtgag 2000 ccgcctgctc ctgcacccgt accacgaaga ggacagccat gactacgacg 2050 tggcgctgct gcagctcgac cacccggtgg tgcgctcgqc cqccgtqcqc 2100 cccgtctgcc tgcccgcgcg ctcccacttc ttcgagcccg gcctgcactg 2150 ctggattacg ggctggggcg ccttgcgcga gggcgcccc atcagcaacg 2200 ctctgcagaa agtggatgtg cagttgatcc cacaggacct gtgcagcgag 2250 gcctatcgct accaggtgac gccacgcatg ctgtgtgccg gctaccgcaa 2300 gggcaagaag gatgcctgtc agggtgactc aggtggtccg ctggtgtgca 2350 aggeacteag tggeegetgg tteetggegg ggetggteag etggggeetg 2400 ggctgtggcc ggcctaacta cttcggcgtc tacacccgca tcacagqtqt 2450 gatcagctgg atccagcaag tggtgacctg aggaactgcc cccctgcaaa 2500 gcagggccca cctcctggac tcagagagcc cagggcaact gccaagcagg 2550 gggacaagta ttctggcggg gggtggggga gagagcaggc cctgtqqtqq 2600 caggaggtgg catcttgtct cgtccctgat gtctgctcca gtgatggcag 2650 gaggatggag aagtgccagc agctgggggt caagacgtcc cctgaggacc 2700 caggeccaca eccagecett etgeeteeca attetetete etcegteece 2750 ttcctccact gctgcctaat gcaaggcagt ggctcagcag caaqaatgct 2800 ggttctacat cccgaggagt gtctgaggtg cgccccactc tqtacagagg 2850 ctgtttgggc agccttgcct ccagagagca gattccagct tcggaagccc 2900 ctggtctaac ttgggatctg ggaatggaag gtgctcccat cggaggggac 2950 cctcagagcc ctggagactg ccaggtgggc ctgctgccac tgtaagccaa 3000 aaggtgggga agtcctgact ccagggtcct tgccccaccc ctgcctgcca 3050 cctgggccct cacagcccag accetcactg ggaggtgage teagetgece 3100

<210> 169

<211> 802

<212> PRT

<213> Homo sapiens

<400> 169

Met Pro Val Ala Glu Ala Pro Gln Val Ala Gly Gly Gln Gly Asp Gly Gly Asp Gly Glu Glu Ala Glu Pro Glu Gly Met Phe Lys Ala Cys Glu Asp Ser Lys Arg Lys Ala Arg Gly Tyr Leu Arg Leu Val Pro Leu Phe Val Leu Leu Ala Leu Leu Val Leu Ala Ser Ala Gly 50 Val Leu Leu Trp Tyr Phe Leu Gly Tyr Lys Ala Glu Val Met Val Ser Gln Val Tyr Ser Gly Ser Leu Arg Val Leu Asn Arg His Phe Ser Gln Asp Leu Thr Arg Arg Glu Ser Ser Ala Phe Arg Ser Glu Thr Ala Lys Ala Gln Lys Met Leu Lys Glu Leu Ile Thr Ser Thr Arg Leu Gly Thr Tyr Tyr Asn Ser Ser Ser Val Tyr Ser Phe Gly 135 Glu Gly Pro Leu Thr Cys Phe Phe Trp Phe Ile Leu Gln Ile Pro Glu His Arg Arg Leu Met Leu Ser Pro Glu Val Val Gln Ala Leu Leu Val Glu Glu Leu Leu Ser Thr Val Asn Ser Ser Ala Ala Val Pro Tyr Arg Ala Glu Tyr Glu Val Asp Pro Glu Gly Leu Val Ile Leu Glu Ala Ser Val Lys Asp Ile Ala Ala Leu Asn Ser Thr Leu Gly Cys Tyr Arg Tyr Ser Tyr Val Gly Gln Gly Gln Val Leu Arg Leu Lys Gly Pro Asp His Leu Ala Ser Ser Cys Leu Trp His Leu Gln Gly Pro Lys Asp Leu Met Leu Lys Leu Arg Leu Glu Trp Thr 255 Leu Ala Glu Cys Arg Asp Arg Leu Ala Met Tyr Asp Val Ala Gly Pro Leu Glu Lys Arg Leu Ile Thr Ser Val Tyr Gly Cys Ser Arg 285 Gln Glu Pro Val Val Glu Val Leu Ala Ser Gly Ala Ile Met Ala

				290					295					300
Val	Val	Trp	Lys	Lys 305	Gly	Leu	His	Ser	Tyr 310	Tyr	Asp	Pro	Phe	Val 315
Leu	Ser	Val	Gln	Pro 320	Val	Val	Phe	Gln	Ala 325	Cys	Glu	Val	Asn	Leu 330
Thr	Leu	Asp	Asn	Arg 335	Leu	Asp	Ser	Gln	Gly 340	Val	Leu	Ser	Thr	Pro 345
Tyr	Phe	Pro	Ser	Tyr 350	Tyr	Ser	Pro	Gln	Thr 355	His	Суѕ	Ser	Trp	His 360
Leu	Thr	Val	Pro	Ser 365	Leu	Asp	Tyr	Gly	Leu 370	Ala	Leu	Trp	Phe	Asp 375
Ala	Tyr	Ala	Leu	Arg 380	Arg	Gln	Lys	Tyr	Asp 385	Leu	Pro	Cys	Thr	Gln 390
Gly	Gln	Trp	Thr	Ile 395	Gln	Asn	Arg	Arg	Leu 400	Cys	Gly	Leu	Arg	Ile 405
Leu	Gln	Pro	Tyr	Ala 410	Glu	Arg	Ile	Pro	Val 415	Val	Ala	Thr	Ala	Gly 420
Ile	Thr	Ile	Asn	Phe 425	Thr	Ser	Gln	Ile	Ser 430	Leu	Thr	Gly	Pro	Gly 435
Val	Arg	Val	His	Tyr 440	Gly	Leu	Tyr	Asn	Gln 445	Ser	Asp	Pro	Cys	Pro 450
Gly	Glu	Phe	Leu	Cys 455	Ser	Val	Asn	Gly	Leu 460	Cys	Val	Pro	Ala	Cys 465
Asp	Gly	Val	Lys	Asp 470	Cys	Pro	Asn	Gly	Leu 475	Asp	Glu	Arg	Asn	Cys 480
Val	Cys	Arg	Ala	Thr 485	Phe	Gln	Cys	Lys	Glu 490	Asp	Ser	Thr	Cys	Ile 495
Ser	Leu	Pro	Lys	Val 500	Cys	Asp	Gly	Gln	Pro 505	Asp	Cys	Leu	Asn	Gly 510
Ser	Asp	Glu	Glu	Gln 515	Cys	Gln	Glu	Gly	Val 520	Pro	Cys	Gly	Thr	Phe 525
Thr	Phe	Gln	Cys	Glu 530	Asp	Arg	Ser	Cys	Val 535	Lys	Lys	Pro	Asn	Pro 540
Gln	Cys	Asp	Gly	Arg 545	Pro	Asp	Cys _.	Arg	Asp 550	Gly	Ser	Asp	Glu	Glu 555
His	Cys	Asp	Cys	Gly 560	Leu	Gln	Gly	Pro	Ser 565	Ser	Arg	Ile	Val	Gly 570
Gly	Ala	Val	Ser	Ser 575	Glu	Gly	Glu	Trp	Pro 580	Trp	Gln	Ala	Ser	Leu 585

Gln Val Arg Gly Arg His Ile Cys Gly Gly Ala Leu Ile Ala Asp Arg Trp Val Ile Thr Ala Ala His Cys Phe Gln Glu Asp Ser Met 615 Ala Ser Thr Val Leu Trp Thr Val Phe Leu Gly Lys Val Trp Gln Asn Ser Arg Trp Pro Gly Glu Val Ser Phe Lys Val Ser Arg Leu 635 640 645 Leu Leu His Pro Tyr His Glu Glu Asp Ser His Asp Tyr Asp Val 650 Ala Leu Leu Gln Leu Asp His Pro Val Val Arg Ser Ala Ala Val 665 Arg Pro Val Cys Leu Pro Ala Arg Ser His Phe Phe Glu Pro Gly 680 690 Leu His Cys Trp Ile Thr Gly Trp Gly Ala Leu Arg Glu Gly Gly 695 705 Pro Ile Ser Asn Ala Leu Gln Lys Val Asp Val Gln Leu Ile Pro Gln Asp Leu Cys Ser Glu Ala Tyr Arg Tyr Gln Val Thr Pro Arg Met Leu Cys Ala Gly Tyr Arg Lys Gly Lys Lys Asp Ala Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Lys Ala Leu Ser Gly Arg 765 Trp Phe Leu Ala Gly Leu Val Ser Trp Gly Leu Gly Cys Gly Arg Pro Asn Tyr Phe Gly Val Tyr Thr Arg Ile Thr Gly Val Ile Ser 790

Trp Ile Gln Gln Val Val Thr 800

<210> 170

<211> 1327

<212> DNA

<213> Homo sapiens

<400> 170

gcacccaggg ccagtggacg atccagaaca ggaggctgtg tggcttgcgc 50 atcctgcagc cctacgccga gaggatcccc gtggtggcca cggccgggat 100 caccatcaac ttcacctccc agatctccct caccgggccc ggtgtgcggg 150 tgcactatgg cttgtacaac cagtcggacc cctgccctgg agagttcctc 200

tgttctgtga atggactctg tgtccctgcc tgtgatgggg tcaaggactg 250 ccccaacggc ctggatgaga gaaactgcgt ttgcagagcc acattccagt 300 qcaaagagga cagcacatgc atctcactgc ccaaggtctg tgatgggcag 350 cctgattgtc tcaacggcag cgatgaagag cagtgccagg aaggggtgcc 400 atgtgggaca ttcaccttcc agtgtgagga ccggagctgc gtgaagaagc 450 ccaacccgca gtgtgatggg cggcccgact gcaqqqacqq ctcqqatqaq 500 gagcactgtg actgtggcct ccagggcccc tccagccgca ttgttggtgg 550 agctgtgtcc tccgagggtg agtggccatg gcaggccagc ctccaggttc 600 ggggtcgaca catctgtggg ggggccctca tcgctgaccg ctgggtgata 650 acagetgeec actgetteea ggaggaeage atggeeteea eggtgetgtg 700 gaccgtgttc ctgggcaagg tgtggcagaa ctcgcgctgg cctqqaqaqq 750 tgtccttcaa ggtgagccgc ctgctcctgc acccgtacca cgaagaggac 800 agccatgact acgacgtggc gctgctqcaq ctcgaccacc cggtggtgcg 850 ctcggccgcc gtgcgccccg tctgcctgcc cgcgcgctcc cacttcttcg 900 agcccggcct gcactgctgg attacgggct ggggcgcctt gcgcgagggc 950 ggccccatca gcaacgctct gcagaaagtg gatgtgcagt tgatcccaca 1000 ggacctgtgc agcgaggcct atcgctacca ggtgacgcca cgcatgctgt 1050 gtgccggcta ccgcaagggc aagaaggatg cctgtcaggg tgactcaggt 1100 ggtccgctgg tgtgcaaggc actcagtggc cgctggttcc tgqcqqqqct 1150 ggtcagctgg ggcctgggct gtggccggcc taactacttc ggcgtctaca 1200 cccgcatcac aggtgtgatc agctggatcc agcaagtggt gacctgagga 1250 actgccccc tgcaaagcag ggcccacctc ctggactcag agagcccagg 1300 gcaactgcca agcaggggga caagtat 1327

<210> 171

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 171

taacagctgc ccactgcttc cagg 24

<210> 172

```
ISSTELL LOISOI
```

```
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 172
 taatccagca gtgcaggccg gg 22
<210> 173
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 173
 atggcctcca cggtgctgtg gaccgtgttc ctgggcaagg tgtggcagaa 50
<210> 174
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 174
 tgcctatgca ctgaggaggc agaag 25
<210> 175
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 175
 aggcagggac acagagtcca ttcac 25
<210> 176
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
 agtatgattt gccgtgcacc cagggccagt ggacgatcca gaacaggagg 50
<210> 177
<211> 1510
<212> DNA
<213> Homo sapiens
```

<400> 177 ggacgagggc agatetegtt etggggcaag cegttgacae tegeteeetg 50 ccaccgcccg ggctccgtgc cgccaagttt tcattttcca ccttctctgc 100 ctccagtccc ccagccctg gccgagagaa gggtcttacc ggccgggatt 150 gctggaaaca ccaagaggtg gtttttgttt tttaaaactt ctgtttcttg 200 ggaggggtg tggcggggca ggatgagcaa ctccgttcct ctgctctgtt 250 tctggagcct ctgctattgc tttgctgcgg ggagccccgt accttttggt 300 ccagagggac ggctggaaga taagctccac aaacccaaag ctacacagac 350 tgaggtcaaa ccatctgtga ggtttaacct ccgcacctcc aaggacccag 400 agcatgaagg atgctacctc tccgtcggcc acagccagcc cttagaagac 450 tgcagtttca acatgacagc taaaaccttt ttcatcattc acggatggac 500 gatgagcggt atctttgaaa actggctgca caaactcgtg tcagccctgc 550 acacaagaga gaaagacgcc aatgtagttg tggttgactg gctcccctg 600 gcccaccagc tttacacgga tgcggtcaat aataccaggg tggtgggaca 650 cagcattgcc aggatgctcg actggctgca ggagaaggac gattttctc 700 tegggaatgt ceaettgate ggetaeagee teggagegea egtggeeggg 750 tatgcaggca acttcgtgaa aggaacggtg ggccgaatca caggtttgga 800 tectgeeggg eccatgiting aaggggeega catecacaag aggetetete 850 cggacgatgc agattttgtg gatgtcctcc acacctacac gcgttccttc 900 ggcttgagca ttggtattca gatgcctgtg ggccacattg acatctaccc 950 caatgggggt gacttccagc caggctgtgg actcaacgat gtcttgggat 1000 caattgcata tggaacaatc acagaggtgg taaaatgtga gcatgagcga 1050 gccgtccacc tctttgttga ctctctggtg aatcaggaca agccgagttt 1100 tgccttccag tgcactgact ccaatcgctt caaaaagggg atctgtctga 1150 gctgccgcaa gaaccgttgt aatagcattg gctacaatgc caagaaaatg 1200 aggaacaaga ggaacagcaa aatgtaccta aaaacccggg caggcatgcc 1250 tttcagaggt aaccttcagt ccctggagtg tccctgagga aggcccttaa 1300 tacctccttc ttaataccat gctgcagagc agggcacatc ctagcccagg 1350 agaagtggcc agcacaatcc aatcaaatcg ttgcaaatca gattacactg 1400 tgcatgtcct aggaaaggga atctttacaa aataaacagt gtggacccct 1450

<210> 178

<211> 354

<212> PRT

<213> Homo sapiens

<400> 178

Met Ser Asn Ser Val Pro Leu Leu Cys Phe Trp Ser Leu Cys Tyr
1 10 15

Cys Phe Ala Ala Gly Ser Pro Val Pro Phe Gly Pro Glu Gly Arg

Leu Glu Asp Lys Leu His Lys Pro Lys Ala Thr Gln Thr Glu Val
35 40 45

Lys Pro Ser Val Arg Phe Asn Leu Arg Thr Ser Lys Asp Pro Glu
50 55 60

His Glu Gly Cys Tyr Leu Ser Val Gly His Ser Gln Pro Leu Glu
65 70 75

Asp Cys Ser Phe Asn Met Thr Ala Lys Thr Phe Phe Ile Ile His
80 85 90

Gly Trp Thr Met Ser Gly Ile Phe Glu Asn Trp Leu His Lys Leu
95 100 105

Val Ser Ala Leu His Thr Arg Glu Lys Asp Ala Asn Val Val 110 115 120

Val Asp Trp Leu Pro Leu Ala His Gln Leu Tyr Thr Asp Ala Val 125 130 135

Asn Asn Thr Arg Val Val Gly His Ser Ile Ala Arg Met Leu Asp 140 145 150

Trp Leu Gln Glu Lys Asp Asp Phe Ser Leu Gly Asn Val His Leu 155 160 165

Ile Gly Tyr Ser Leu Gly Ala His Val Ala Gly Tyr Ala Gly Asn 170 175 180

Phe Val Lys Gly Thr Val Gly Arg Ile Thr Gly Leu Asp Pro Ala 185 190 195

Gly Pro Met Phe Glu Gly Ala Asp Ile His Lys Arg Leu Ser Pro 200 205 210

Asp Asp Ala Asp Phe Val Asp Val Leu His Thr Tyr Thr Arg Ser 215 220 225

Phe Gly Leu Ser Ile Gly Ile Gln Met Pro Val Gly His Ile Asp 230 235 240

Ile Tyr Pro Asn Gly Gly Asp Phe Gln Pro Gly Cys Gly Leu Asn Asp Val Leu Gly Ser Ile Ala Tyr Gly Thr Ile Thr Glu Val Val 260 Lys Cys Glu His Glu Arg Ala Val His Leu Phe Val Asp Ser Leu Val Asn Gln Asp Lys Pro Ser Phe Ala Phe Gln Cys Thr Asp Ser 290 Asn Arg Phe Lys Lys Gly Ile Cys Leu Ser Cys Arg Lys Asn Arg Cys Asn Ser Ile Gly Tyr Asn Ala Lys Lys Met Arg Asn Lys Arg 320 325 330 Asn Ser Lys Met Tyr Leu Lys Thr Arg Ala Gly Met Pro Phe Arg 335 345 Gly Asn Leu Gln Ser Leu Glu Cys Pro 350

<210> 179
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe

<400> 179 gtgagcatga gcgagccgtc cac 23

<210> 180 <211> 26 <212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 180 gctattacaa cggttcttgc ggcagc 26

<210> 181 <211> 44 <212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 181

ttgactctct ggtgaatcag gacaagccga gttttgcctt ccag 44

<210> 182

<211> 3240 <212> DNA

<213> Homo sapiens

<400> 182 cggacgcgtg ggcggacgcg tgggcctggg caaggqccqq ggcgccqgqc 50 egagecacet etteceetee eeegetteee tgtegegete egetggetgg 100 acgcgctgga ggagtggagc agcacccggc cggccctggg ggctgacagt 150 cggcaaagtt tggcccgaag aggaagtggt ctcaaaccc qqcaqqtqqc 200 gaccaggeca gaccagggge getegetgee tgegggeggg etgtaggega 250 gggcgcgccc cagtgccgag acccggggct tcaggagccg gccccgggag 300 agaagagtgc ggcggcggac ggagaaaaca actccaaagt tggcgaaagg 350 caccgcccct actcccgggc tgccgccgcc tccccgcccc cagccctggc 400 atccagagta cgggtcgagc ccgggccatg gagccccct ggggaggcgg 450 caccagggag cctgggcgcc cggggctccg ccgcgacccc atcgggtaga 500 ccacagaage teegggacee tteeggeace tetggacage ccaggatget 550 gttggccacc ctcctcctcc tcctccttgg aggcgctctg gcccatccag 600 accggattat ttttccaaat catgcttgtg aggacccccc agcagtgctc 650 ttagaagtgc agggcacctt acagaggccc ctggtccggg acagccgcac 700 ctcccctgcc aactgcacct ggctcatcct gggcagcaag gaacagactg 750 tcaccatcag gttccagaag ctacacctgg cctgtggctc agagcgctta 800 accetaeget ecceteteea gecaetgate tecetgtgtg aggeacetee 850 cagccctctg cagctgcccg ggggcaacgt caccatcact tacagctatg 900 ctggggccag agcacccatg ggccagggct tcctgctctc ctacagccaa 950 gattggctga tgtgcctgca ggaagagttt cagtgcctga accaccgctg 1000 tgtatctgct gtccagcgct gtgatggggt tgatgcctgt ggcgatggct 1050 ctgatgaagc aggttgcagc tcagacccct tccctggcct gaccccaaga 1100 eccgtecect ecctgeettg caatgteace ttggaggact tetatggggt 1150 cttctcctct cctggatata cacacctagc ctcagtctcc cacccccagt 1200 cctgccattg gctgctggac ccccatgatg gccggcggct ggccgtgcgc 1250 ttcacagccc tggacttggg ctttggagat gcagtgcatg tgtatgacgg 1300 ccctgggccc cctgagagct cccgactact gcgtagtctc acccacttca 1350

gcaatggcaa ggctgtcact gtggagacac tgtctggcca ggctgttgtg 1400 tectaceaea cagttgettg gageaatggt egtggettea atgeeaecta 1450 ccatgtgcgg ggctattgct tgccttggga cagaccctgt ggcttaggct 1500 ctggcctggg agctggcgaa ggcctaggtg agcqctqcta cagtqagqca 1550 cagcgctgtg acggctcatg ggactgtgct gacggcacaq atqaggagga 1600 ctgcccaggc tgcccacctg gacacttccc ctgtggggct gctggcacct 1650 ctggtgccac agcctgctac ctgcctgctg accgctgcaa ctaccagact 1700 ttctgtgctg atggagcaga tgagagacgc tgtcggcatt gccagcctgg 1750 caatttccga tgccgggacg agaagtgcgt gtatgagacg tgggtgtgcg 1800 atgggcagcc agactgtgcg gacggcagtg atgagtggga ctgctcctat 1850 gttctgcccc gcaaggtcat tacagctgca gtcattggca gcctagtgtg 1900 eggeetgete etggteateg eeetgggetg cacetgeaag etetatqeea 1950 ttcgcaccca ggagtacage atetttgece eceteteecg gatggagget 2000 gagattgtgc agcagcaggc acccecttee taegggeage teattgeeca 2050 gggtgccatc ccacctgtag aagactttcc tacagagaat cctaatgata 2100 actcagtgct gggcaacctg cgttctctgc tacagatctt acqccaqqat 2150 atgactccag gaggtggccc aggtgcccgc cgtcgtcagc ggggccgctt 2200 gatgcgacgc ctggtacgcc gtctccgccg ctggggcttg ctccctcgaa 2250 ccaacaccc ggctcgggcc tctgaggcca gatcccaggt cacaccttct 2300 gctgctcccc ttgaggccct agatggtggc acaggtccag cccgtgaggg 2350 cggggcagtg ggtgggcaag atggggagca ggcaccccca ctgcccatca 2400 aggeteecet eccatetget ageaegtete eageeceeae tactgteect 2450 gaagccccag ggccactgcc ctcactgccc ctagagccat cactattqtc 2500 tggagtggtg caggccctgc gaggccgcct gttgcccagc ctggggcccc 2550 caggaccaac ccggagcccc cctggacccc acacagcagt cctggccctg 2600 gaagatgagg acgatgtgct actggtgcca ctggctgagc cgggggtgtg 2650 ggtagctgag gcagaggatg agccactgct tacctgaggg gacctggggg 2700 ctctactgag gcctctcccc tgggggctct actcatagtg gcacaacctt 2750 ttagaggtgg gtcagcctcc cctccaccac ttccttccct gtccctqqat 2800

ttcagggact tggtgggcct cccgttgacc ctatgtagct gctataaagt 2850 taagtgtccc tcaggcaggg agagggctca cagagtctcc tctgtacgtg 2900 gccatggcca gacaccccag tcccttcacc accacctgct ccccacgcca 2950 ccaccatttg ggtggctgtt tttaaaaagt aaagttctta gaggatcata 3000 ggtctggaca ctccatcctt gccaaacctc tacccaaaag tggccttaag 3050 caccggaatg ccaattaact agagaccctc cagcccccaa ggggaggatt 3100 tgggcagaac ctgaggttt gccatccaca atccctccta cagggcctgg 3150 ctcacaaaaa gagtgcaaca aatgcttcta ttccatagct acggcattgc 3200 tcagtaagtt gaggtcaaaa ataaaggaat catacatctc 3240

<210> 183

<211> 713

<212> PRT

<213> Homo sapiens

<400> 183

Met Leu Leu Ala Thr Leu Leu Leu Leu Leu Gly Gly Ala Leu
1 5 10 15

Ala His Pro Asp Arg Ile Ile Phe Pro Asn His Ala Cys Glu Asp 20 25 30

Pro Pro Ala Val Leu Leu Glu Val Gln Gly Thr Leu Gln Arg Pro 35 40 45

Leu Val Arg Asp Ser Arg Thr Ser Pro Ala Asn Cys Thr Trp Leu 50 55 60

Ile Leu Gly Ser Lys Glu Gln Thr Val Thr Ile Arg Phe Gln Lys
65 70 75

Leu His Leu Ala Cys Gly Ser Glu Arg Leu Thr Leu Arg Ser Pro 80 85 90

Leu Gln Pro Leu Ile Ser Leu Cys Glu Ala Pro Pro Ser Pro Leu 95 100 105

Gln Leu Pro Gly Gly Asn Val Thr Ile Thr Tyr Ser Tyr Ala Gly 110 115 120

Ala Arg Ala Pro Met Gly Gln Gly Phe Leu Leu Ser Tyr Ser Gln 125 130 135

Asp Trp Leu Met Cys Leu Gln Glu Glu Phe Gln Cys Leu Asn His 140 145 150

Arg Cys Val Ser Ala Val Gln Arg Cys Asp Gly Val Asp Ala Cys 155 160 165

Gly Asp Gly Ser Asp Glu Ala Gly Cys Ser Ser Asp Pro Phe Pro

				170					175					180
Gly	Leu	Thr	Pro	Arg 185	Pro	Val	Pro	Ser	Leu 190	Pro	Суѕ	Asn	Val	Thr 195
Leu	Glu	Asp	Phe	Tyr 200	Gly	Val	Phe	Ser	Ser 205	Pro	Gly	Tyr	Thr	His 210
Leu	Ala	Ser	Val	Ser 215	His	Pro	Gln	Ser	Cys 220	His	Trp	Leu	Leu	Asp 225
Pro	His	Asp	Gly	Arg 230	Arg	Leu	Ala	Val	Arg 235	Phe	Thr	Ala	Leu	Asp 240
Leu	Gly	Phe	Gly	Asp 245	Ala	Val	His	Val	Tyr 250	Asp	Gly	Pro	Gly	Pro 255
Pro	Glu	Ser	Ser	Arg 260	Leu	Leu	Arg	Ser	Leu 265	Thr	His	Phe	Ser	Asn 270
Gly	Lys	Ala	Val	Thr 275	Val	Glu	Thr	Leu	Ser 280	Gly	Gln	Ala	Val	Val 285
Ser	Tyr	His	Thr	Val 290	Ala	Trp	Ser	Asn	Gly 295	Arg	Gly	Phe	Asn	Ala 300
Thr	Tyr	His	Val	Arg 305	Gly	Tyr	Cys	Leu	Pro 310	Trp	Asp	Arg	Pro	Cys 315
Gly	Leu	Gly	Ser	Gly 320	Leu	Gly	Ala	Gly	Glu 325	Gly	Leu	Gly	Glu	Arg 330
Cys	Tyr	Ser	Glu	Ala 335	Gln	Arg	Суз	Asp	Gly 340	Ser	Trp	Asp	Суз	Ala 345
Asp	Gly	Thr	Asp	Glu 350	Glu	Asp	Суѕ	Pro	Gly 355	Cys	Pro	Pro	Gly	His 360
Phe	Pro	Суз	Gly	Ala 365	Ala	Gly	Thr	Ser	Gly 370	Ala	Thr	Ala	Cys	Tyr 375
Leu	Pro	Ala	Asp	Arg 380	Cys	Asn	Tyr	Gln	Thr 385	Phe	Суз	Ala	Asp	Gly 390
Ala	Asp	Glu	Arg	Arg 395	Cys	Arg	His	Cys	Gln 400	Pro	Gly	Asn	Phe	Arg 405
Cys	Arg	Asp	Glu	Lys 410	Суз	Val	Tyr	Glu	Thr 415	Trp	Val	Суз	Asp	Gly 420
Gln	Pro	Asp	Суз	Ala 425	Asp	Gly	Ser	Asp	Glu 430	Trp	Asp	Суз	Ser	Tyr 435
Val	Leu	Pro	Arg	Lys 440	Val	Ile	Thr	Ala	Ala 445	Val	Ile	Gly	Ser	Leu 450
Val	Суѕ	Gly	Leu	Leu 455	Leu	Val	Ile	Ala	Leu 460	Gly	Cys	Thr	Cys	Lys 465

Leu Tyr Ala Ile Arg Thr Gln Glu Tyr Ser Ile Phe Ala Pro Leu Ser Arg Met Glu Ala Glu Ile Val Gln Gln Ala Pro Pro Ser Tyr Gly Gln Leu Ile Ala Gln Gly Ala Ile Pro Pro Val Glu Asp Phe Pro Thr Glu Asn Pro Asn Asp Asn Ser Val Leu Gly Asn Leu 515 520 Arg Ser Leu Leu Gln Ile Leu Arg Gln Asp Met Thr Pro Gly Gly 530 535 Gly Pro Gly Ala Arg Arg Gln Arg Gly Arg Leu Met Arg Arg 550 Leu Val Arg Arg Leu Arg Arg Trp Gly Leu Leu Pro Arg Thr Asn Thr Pro Ala Arg Ala Ser Glu Ala Arg Ser Gln Val Thr Pro Ser Ala Ala Pro Leu Glu Ala Leu Asp Gly Gly Thr Gly Pro Ala Arg Glu Gly Gly Ala Val Gly Gly Gln Asp Gly Glu Gln Ala Pro Pro Leu Pro Ile Lys Ala Pro Leu Pro Ser Ala Ser Thr Ser Pro Ala Pro Thr Thr Val Pro Glu Ala Pro Gly Pro Leu Pro Ser Leu Pro Leu Glu Pro Ser Leu Leu Ser Gly Val Val Gln Ala Leu Arg Gly Arg Leu Leu Pro Ser Leu Gly Pro Pro Gly Pro Thr Arg Ser Pro Pro Gly Pro His Thr Ala Val Leu Ala Leu Glu Asp Glu Asp Asp Val Leu Leu Val Pro Leu Ala Glu Pro Gly Val Trp Val Ala Glu Ala Glu Asp Glu Pro Leu Leu Thr

- <210> 184
- <211> 20
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe

```
<400> 184
     ggctgtcact gtggagacac 20
    <210> 185
    <211> 18
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 185
     gcaaggtcat tacagctg 18
    <210> 186
    <211> 23
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 186
     agaacatagg agcagtccca ctc 23
    <210> 187
    <211> 23
    <212> DNA
    <213> Artificial Sequence
面
    <220>
Ð
    <223> Synthetic oligonucleotide probe
    <400> 187
     tgcctgctgc tgcacaatct cag 23
<210> 188
    <211> 45
    <212> DNA
M
    <213> Artificial Sequence
---
    <223> Synthetic oligonucleotide probe
    <400> 188
     ggctattgct tgccttggga cagaccctgt ggcttaggct ctggc 45
    <210> 189
    <211> 663
    <212> DNA
    <213> Homo sapiens
    <400> 189
     cgagctgggc gagaagtagg ggagggcggt gctccgccgc ggtggcggtt 50
     gctatcgctt cgcagaacct actcaggcag ccagctgaga agagttgagg 100
```

gaaagtgctg ctgctgggtc tgcagacgcg atggataacg tgcagccqaa 150

aataaaacat cgccccttct gcttcagtgt gaaaggccac gtgaagatgc 200
tgcggctggc actaactgtg acatctatga cctttttat catcgcacaa 250
gcccctgaac catatattgt tatcactgga tttgaagtca ccgttatctt 300
attttcata cttttatatg tactcagact tgatcgatta atgaagtggt 350
tattttggcc tttgcttgat attatcaact cactggtaac aacagtattc 400
atgctcatcg tatctgtgtt ggcactgata ccagaaacca caacattgac 450
agttggtgga ggggtgtttg cacttgtgac agcagtatgc tgtcttgccg 500
acggggccct tatttaccgg aagcttctgt tcaatcccag cggtccttac 550
cagaaaaagc ctgtgcatga aaaaaaagaa gttttgtaat tttatattac 600
tttttagttt gatactaagt attaaacata tttctgtatt cttccaaaaa 650
aaaaaaaaaa aaa 663

<210> 190

<211> 152

<212> PRT

<213> Homo sapiens

<400> 190

Met Asp Asn Val Gln Pro Lys Ile Lys His Arg Pro Phe Cys Phe 1 5 10 15

Ser Val Lys Gly His Val Lys Met Leu Arg Leu Ala Leu Thr Val 20 25 30

Thr Ser Met Thr Phe Phe Ile Ile Ala Gln Ala Pro Glu Pro Tyr 35 40 45

Ile Val Ile Thr Gly Phe Glu Val Thr Val Ile Leu Phe Phe Ile 50 55 60

Leu Leu Tyr Val Leu Arg Leu Asp Arg Leu Met Lys Trp Leu Phe
65 70 75

Trp Pro Leu Leu Asp Ile Ile Asn Ser Leu Val Thr Thr Val Phe
80 85 90

Met Leu Ile Val Ser Val Leu Ala Leu Ile Pro Glu Thr Thr 95 100 105

Leu Thr Val Gly Gly Val Phe Ala Leu Val Thr Ala Val Cys
110 115 120

Cys Leu Ala Asp Gly Ala Leu Ile Tyr Arg Lys Leu Leu Phe Asn

Pro Ser Gly Pro Tyr Gln Lys Lys Pro Val His Glu Lys Lys Glu 140 145 150 Val Leu

```
<210> 191
<211> 495
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 78, 212, 234, 487
<223> unknown base
<400> 191
 gggcgagaag taggggaggg cgtgttccgc cgcggtggcg gttgctatcg 50
 ttttgcagaa cctactcagg cagccagntg agaagagttg agggaaagtg 100
 ctgctgctgg gtctgcagac gcgatggata acgtgcagcc gaaaataaaa 150
 catcgcccct tctgcttcag tgtgaaaggc cacgtgaaga tgctgcggct 200
 ggcactaact gngacatcta tgaccttttt tatnatcgca caagcccctg 250
 aaccatatat tgttatcact ggatttgaag tcaccgttat cttatttttc 300
 atacttttat atgtactcag acttgatcga ttaatgaagt ggttattttg 350
 gcctttgctt gatattatca actcactqqt aacaacaqta ttcatqctca 400
 tcgtatctgt gttggcactg ataccagaaa ccacaacatt gacagttggt 450
 ggaggggtgt ttgcacttgt gacagcagta tgctgtnttg ccgac 495
<210> 192
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 192
 cgttttgcag aacctactca ggcag 25
<210> 193
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 193
 cctccaccaa ctgtcaatgt tgtgg 25
<210> 194
<211> 40
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 194
aaagtgctgc tgctgggtct gcagacgcga tggataacgt 40
<210> 195
<211> 1879
<212> DNA
<213> Homo sapien
<400> 195
ggaccggcta ggctgggcgc gcccccgggg ccccgccgtg ggcatgggcg 100
cactggcccg ggcgctgctg ctgcctctgc tggcccagtg gctcctgcgc 150
geogeology agetggeole egegeoltte acgetgeole teegggtgge 200
cgcggccacg aaccgcgtag ttgcgcccac cccgggaccc gggacccctg 250
ccgagcgcca cgccgacggc ttggcgctcg ccctggagcc tgccctggcg 300
tececegegg gegeegeeaa ettettggee atggtagaea aeetgeaggg 350
ggactctggc cgcggctact acctggagat gctgatcggg accccccgc 400
agaagctaca gattctcgtt gacactggaa gcagtaactt tgccgtggca 450
ggaaccccgc actcctacat agacacgtac tttgacacag agaggtctag 500
cacataccgc tccaagggct ttgacgtcac agtgaagtac acacaaggaa 550
gctggacggg cttcgttggg gaagacctcg tcaccatccc caaaggcttc 600
aatacttctt ttcttgtcaa cattgccact atttttgaat cagagaattt 650
ctttttgcct gggattaaat ggaatggaat acttggccta gcttatgcca 700
cacttgccaa gccatcaagt tctctggaga ccttcttcga ctccctggtg 750
acacaagcaa acatccccaa cgttttctcc atgcagatgt gtggagccgg 800
cttgcccgtt gctggatctg ggaccaacgg aggtagtctt gtcttgggtg 850
gaattgaacc aagtttgtat aaaggagaca tctggtatac ccctattaag 900
gaagagtggt actaccagat agaaattctg aaattggaaa ttggaggcca 950
aagccttaat ctggactgca gagagtataa cgcagacaag gccatcgtgg 1000
acagtggcac cacgctgctg cgcctgcccc agaaggtgtt tgatgcggtg 1050
```

gtggaagctg tggcccgcgc atctctgatt ccagaattct ctgatggttt 1100

ctggactggg tcccagctgg cgtgctggac gaattcggaa acaccttggt 1150 cttacttccc taaaatctcc atctacctga gagacgagaa ctccagcagg 1200 teatteegta teacaateet geeteagett tacatteage ceatgatggg 1250 ggccggcctg aattatgaat gttaccgatt cggcatttcc ccatccacaa 1300 atgcgctggt gatcggtgcc acggtgatgg agggcttcta cgtcatcttc 1350 gacagagccc agaagagggt gggcttcgca gcgagcccct gtgcagaaat 1400 tgcaggtgct gcagtgtctg aaatttccgg gcctttctca acagaggatg 1450 tagccagcaa ctgtgtcccc gctcagtctt tgagcgagcc cattttgtgg 1500 attgtgtcct atgcgctcat gagcgtctgt ggagccatcc tecttgtctt 1550 aatcgtcctg ctgctgctgc cgttccggtg tcagcgtcgc ccccgtgacc 1600 ctgaggtcgt caatgatgag tcctctctgg tcagacatcg ctggaaatga 1650 atagecagge etgaceteaa geaaceatga acteagetat taagaaaate 1700 acatttccag ggcagcagcc gggatcgatg gtggcgcttt ctcctgtgcc 1750 caccegtett caatetetgt tetgeteeca gatgeettet agatteactg 1800 tcttttgatt cttgattttc aagctttcaa atcctcccta cttccaagaa 1850 aaataattaa aaaaaaaact tcattctaa 1879

<210> 196

<211> 518

<212> PRT

<213> Homo sapien

<400> 196

Met Gly Ala Leu Ala Arg Ala Leu Leu Pro Leu Leu Ala Gln
1 5 10 15

Trp Leu Leu Arg Ala Ala Pro Glu Leu Ala Pro Ala Pro Phe Thr 20 25 30

Leu Pro Leu Arg Val Ala Ala Ala Thr Asn Arg Val Val Ala Pro
35 40 45

Thr Pro Gly Pro Gly Thr Pro Ala Glu Arg His Ala Asp Gly Leu 50 55 60

Ala Leu Ala Leu Glu Pro Ala Leu Ala Ser Pro Ala Gly Ala Ala
65 70 75

Asn Phe Leu Ala Met Val Asp Asn Leu Gln Gly Asp Ser Gly Arg 80 85 90

Gly Tyr Tyr Leu Glu Met Leu Ile Gly Thr Pro Pro Gln Lys Leu
95 100 105

Gln	Ile	Leu	Val	Asp 110	Thr	Gly	Ser	Ser	Asn 115	Phe	Ala	Val	Ala	Gly 120
Thr	Pro	His	Ser	Tyr 125	Ile	Asp	Thr	Tyr	Phe 130	Asp	Thr	Glu	Arg	Ser 135
Ser	Thr	Tyr	Arg	Ser 140	Lys	Gly	Phe	Asp	Val 145	Thr	Val	Lys	Tyr	Thr 150
Gln	Gly	Ser	Trp	Thr 155	Gly	Phe	Val	Gly	Glu 160	Asp	Leu	Val	Thr	Ile 165
Pro	Lys	Gly	Phe	Asn 170	Thr	Ser	Phe	Leu	Val 175	Asn	Ile	Ala	Thr	Ile 180
Phe	Glu	Ser	Glu	Asn 185	Phe	Phe	Leu	Pro	Gly 190	Ile	Lys	Trp	Asn	Gly 195
Ile	Leu	Gly	Leu	Ala 200	Tyr	Ala	Thr	Leu	Ala 205	Lys	Pro	Ser	Ser	Ser 210
Leu	Glu	Thr	Phe	Phe 215	Asp	Ser	Leu	Val	Thr 220	Gln	Ala	Asn	Ile	Pro 225
Asn	Val	Phe	Ser	Met 230	Gln	Met	Суз	Gly	Ala 235	Gly	Leu	Pro	Val	Ala 240
Gly	Ser	Gly	Thr	Asn 245	Gly	Gly	Ser	Leu	Val 250	Leu	Gly	Gly	Ile	Glu 255
Pro	Ser	Leu	Tyr	Lys 260	Gly	Asp	Ile	Trp	Tyr 265	Thr	Pro	Ile	Lys	Glu 270
Glu	Trp	Tyr	Tyr	Gln 275	Ile	Glu	Ile	Leu	Lys 280	Leu	Glu	Ile	Gly	Gly 285
Gln	Ser	Leu	Asn	Leu 290	Asp	Cys	Arg	Glu	Tyr 295	Asn	Ala	Asp	Lys	Ala 300
Ile	Val	Asp	Ser	Gly 305	Thr	Thr	Leu	Leu	Arg 310	Leu	Pro	Gln	Lys	Val 315
Phe	Asp	Ala	Val	Val 320	Glu	Ala	Val	Ala	Arg 325	Ala	Ser	Leu	Ile	Pro 330
Glu	Phe	Ser	Asp	Gly 335	Phe	Trp	Thr	Gly	Ser 340	Gln	Leu	Ala	Cys	Trp 345
Thr	Asn	Ser	Glu	Thr 350	Pro	Trp	Ser	Tyr	Phe 355	Pro	Lys	Ile	Ser	Ile 360
Tyr	Leu	Arg	Asp	Glu 365	Asn	Ser	Ser	Arg	Ser 370	Phe	Arg	Ile	Thr	Ile 375
Leu	Pro	Gln	Leu	Tyr 380	Ile	Gln	Pro	Met	Met 385	Gly	Ala	Gly	Leu	Asn 390
Tyr	Glu	Cys	Tyr	Arg	Phe	Gly	Ile	Ser	Pro	Ser	Thr	Asn	Ala	Leu

				395					400					405
Val	Ile	Gly	Ala	Thr 410	Val	Met	Glu	Gly	Phe 415	Tyr	Val	Ile	Phe	Asp 420
Arg	Ala	Gln	Lys	Arg 425	Val	Gly	Phe	Ala	Ala 430	Ser	Pro	Cys	Ala	Glu 435
Ile	Ala	Gly	Ala	Ala 440	Val	Ser	Glu	Ile	Ser 445	Gly	Pro	Phe	Ser	Thr 450
Glu	Asp	Val	Ala	Ser 455	Asn	Cys	Val	Pro	Ala 460	Gln	Ser	Leu	Ser	Glu 465
Pro	Ile	Leu	Trp	Ile 470	Val	Ser	Tyr	Ala	Leu 475	Met	Ser	Val	Cys	Gly 480
Ala	Ile	Leu	Leu	Val 485	Leu	Ile	Val	Leu	Leu 490	Leu	Leu	Pro	Phe	Arg 495
Cys	Gln	Arg	Arg	Pro 500	Arg	Asp	Pro	Glu	Val 505	Val	Asn	Asp	Glu	Ser 510
Ser	Leu	Val	Arg	His 515	Arg	Trp	Lys							
<210: <211: <212: <213:	> 21 > DN	F	cial	Sequ	ience	•								
<213> Artificial Sequence <220>														
<223>	<223> Synthetic oligonucleotide probe													
<400> cgca	-		acaga	ttct	c g	21								
<210>		3												
<211><212>	DNA													
<213>	> Art	ific	cial	Sequ	ence	;								
<220> <223>		thet	ic c	oligo	nucl	.eoti	.de p	robe	<u>:</u>					
<400> ggaa			ıgcca	aagc	: 19									
<210>)												
<211><212>														
<213>			ial	Sequ	ence	:	•							
<220>														
<223>	Syn	thet	ic o	ligo	nucl	eoti	de p	robe						
<400> ggat			acaa	ctat	a 20				•					
2200	9	J- 4	goud	Jugu	9 20									

```
<211> 19
     <212> DNA
     <213> Artificial Sequence
     <220>
    <223> Synthetic oligonucleotide probe
    <400> 200
     gccttggctc gttctcttc 19
    <210> 201
    <211> 18
     <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 201
     ggtcctgtgc ctggatgg 18
    <210> 202
    <211> 22
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
a
    <400> 202
     gacaagacta cctccgttgg tc 22
Ф
⊨
    <210> 203
    <211> 24
<u>|-</u>
    <212> DNA
    <213> Artificial Sequence
IT
    <223> Synthetic oligonucleotide probe
    <400> 203
     tgatgcacag ttcagcacct gttg 24
    <210> 204
    <211> 47
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 204
     cgctccaagg gctttgacgt cacagtgaag tacacacaag gaagctg 47
    <210> 205
    <211> 1939
    <212> DNA
```

<210> 200

<213> Homo sapiens

<400> 205 cgcctccgcc ttcggaggct gacgccccg ggcgccgttc caggcctgtg 50 cagggcggat cggcagccgc ctggcggcga tccagggcgg tgcggggcct 100 gggcgggagc cgggaggcgc ggccggcatg gaggcgctgc tgctgggcgc 150 ggggttgctg ctgggcgctt acgtgcttgt ctactacaac ctqqtgaaqq 200 ccccgccgtg cggcggcatg ggcaacctgc ggggccgcac ggccgtggtc 250 acgggcgcca acagcggcat cggaaagatg acggcgctgg agctggcgcg 300 ccggggagcg cgcgtggtgc tggcctgccg cagccaggag cgcggggagg 350 cggctgcctt cgacctccgc caggagagtg ggaacaatga ggtcatcttc 400 atggccttgg acttggccag tctggcctcg gtgcgggcct ttgccactgc 450 ctttctgagc tctgagccac ggttggacat cctcatccac aatgccggta 500 teagtteetg tggceggace egtgaggegt ttaacetget gettegggtg 550 aaccatatcg gtccctttct gctgacacat ctgctgctgc cttgcctgaa 600 ggcatgtgcc cctagccgcg tggtggtggt agcctcagct gcccactgtc 650 ggggacgtct tgacttcaaa cgcctggacc gcccagtggt gggctggcgg 700 caggagetge gggcatatge tgacactaag etggetaatg tactgtttge 750 ccgggagete gecaaceage ttgaggeeae tggegteaee tgetatgeag 800 cccacccagg gcctgtgaac tcggagctgt tcctgcgcca tgttcctgga 850 tggctgcgcc cacttttgcg cccattggct tggctggtgc tccgggcacc 900 aagagggggt gcccagacac ccctgtattg tgctctacaa gagggcatcg 950 agcccctcag tgggagatat tttgccaact gccatgtgga agaggtgcct 1000 ccagctgccc gagacgaccg ggcagcccat cggctatggg aggccagcaa 1050 gaggctggca gggcttgggc ctggggagga tgctgaaccc gatgaagacc 1100 cccagtctga ggactcagag gccccatctt ctctaagcac ccccaccct 1150 gaggagccca cagtttctca accttacccc agccctcaga gctcaccaga 1200 tttgtctaag atgacgcacc gaattcaggc taaagttgag cctgagatcc 1250 agctctccta accctcaggc caggatgctt gccatggcac ttcatggtcc 1300 ttgaaaacct cggatgtgtg tgaggccatg ccctggacac tgacgggttt 1350 gtgatcttga cctccgtggt tactttctgg ggccccaagc tgtgccctgg 1400

acatetett teetggttga aggaataatg ggtgattatt tetteetgag 1450 agtgacagta accecagatg gagagatagg ggtatgetag acactgtget 1500 teteggaaat ttggatgtag tattteeagg ecceaceett attgattetg 1550 ateagetetg gageagage agggagtttg caatgtgatg eactgeeaae 1600 attgagaatt agtgaactga teeetttgea acegtetage taggtagtta 1650 aattaceee atgttaatga ageggaatta ggeteeegag etaagggaet 1700 egeetagggt eteacagtga gtaggagga ggeetgggat etgaaceeaa 1750 gggtetgagg ecagggeega etgeegtaag atgggtgetg agaagtgagt 1800 eagggeaggg eagetggtat eggagteee eatgggagta aggggaegee 1850 tteegggegg atgeegeaa aaaaaaaaa aaaaaaaaa 1939

<210> 206

<211> 377

<212> PRT

<213> Homo sapiens

<400> 206

Met Glu Ala Leu Leu Gly Ala Gly Leu Leu Gly Ala Tyr

1 5 10 15

Val Leu Val Tyr Tyr Asn Leu Val Lys Ala Pro Pro Cys Gly Gly 20 25 30

Met Gly Asn Leu Arg Gly Arg Thr Ala Val Val Thr Gly Ala Asn 35 40 45

Ser Gly Ile Gly Lys Met Thr Ala Leu Glu Leu Ala Arg Arg Gly
50 55 60

Ala Arg Val Val Leu Ala Cys Arg Ser Gln Glu Arg Gly Glu Ala 65 70 75

Ala Ala Phe Asp Leu Arg Gln Glu Ser Gly Asn Asn Glu Val Ile 80 85 90

Phe Met Ala Leu Asp Leu Ala Ser Leu Ala Ser Val Arg Ala Phe 95 100 105

Ala Thr Ala Phe Leu Ser Ser Glu Pro Arg Leu Asp Ile Leu Ile 110 115 120

His Asn Ala Gly Ile Ser Ser Cys Gly Arg Thr Arg Glu Ala Phe 125 130 135

Asn Leu Leu Arg Val Asn His Ile Gly Pro Phe Leu Leu Thr 140 145 150 His Leu Leu Pro Cys Leu Lys Ala Cys Ala Pro Ser Arg Val Val Val Val Ala Ser Ala Ala His Cys Arg Gly Arg Leu Asp Phe Lys Arg Leu Asp Arg Pro Val Val Gly Trp Arg Gln Glu Leu Arg Ala Tyr Ala Asp Thr Lys Leu Ala Asn Val Leu Phe Ala Arg Glu 210 200 205 Leu Ala Asn Gln Leu Glu Ala Thr Gly Val Thr Cys Tyr Ala Ala His Pro Gly Pro Val Asn Ser Glu Leu Phe Leu Arg His Val Pro 230 235 Gly Trp Leu Arg Pro Leu Leu Arg Pro Leu Ala Trp Leu Val Leu Arg Ala Pro Arg Gly Gly Ala Gln Thr Pro Leu Tyr Cys Ala Leu Gln Glu Gly Ile Glu Pro Leu Ser Gly Arg Tyr Phe Ala Asn Cys His Val Glu Glu Val Pro Pro Ala Ala Arg Asp Asp Arg Ala Ala His Arg Leu Trp Glu Ala Ser Lys Arg Leu Ala Gly Leu Gly Pro Gly Glu Asp Ala Glu Pro Asp Glu Asp Pro Gln Ser Glu Asp Ser Glu Ala Pro Ser Ser Leu Ser Thr Pro His Pro Glu Glu Pro Thr Val Ser Gln Pro Tyr Pro Ser Pro Gln Ser Ser Pro Asp Leu Ser Lys Met Thr His Arg Ile Gln Ala Lys Val Glu Pro Glu Ile Gln 375

Leu Ser

- <210> 207
- <211> 24
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 207
- cttcatggcc ttggacttgg ccag 24

```
<210> 208
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 208
acgccagtgg cctcaagctg gttg 24
<210> 209
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 209
ctttctgagc tctgagccac ggttggacat cctcatccac aatgc 45
<210> 210
<211> 3716
<212> DNA
<213> Homo sapiens
<400> 210
 ggaggagaca gcctcctggg gggcaggggt tccctgcctc tgctgctcct 50
 gctcatcatg ggaggcatgg ctcaggactc cccgccccag atcctagtcc 100
 acceccagga ccagetgtte cagggeeetg geeetgeeag gatgagetge 150
 caagectcag gecagecace teccaecate egetggttge tgaatgggea 200
 gcccctgagc atggtgcccc cagacccaca ccacctcctg cctgatggga 250
 cccttctgct gctacagccc cctgcccggg gacatgccca cgatggccag 300
 gccctgtcca cagacctggg tgtctacaca tgtgaggcca gcaaccggct 350
 tggcacggca gtcagcagag gcgctcggct gtctgtggct gtcctccggg 400
 aggatttcca gatccagcct cgggacatgg tggctgtggt gggtgagcag 450
 tttactctgg aatgtgggcc gccctggggc cacccagagc ccacagtctc 500
 atggtggaaa gatgggaaac ccctggccct ccagcccgga aggcacacag 550
 tgtccggggg gtccctgctg atggcaagag cagagaagag tgacgaaggg 600
acctacatgt gtgtggccac caacagcgca ggacataggg agagccgcgc 650
agcccgggtt tccatccagg agccccagga ctacacggag cctgtggagc 700
```

ttctggctgt gcgaattcag ctggaaaatg tgacactgct gaacccggat 750

caccacagge teectectee atcetgetge cagcageee catececate 2250 cttagcccct gcagtccccc tagcccccag qcctcttccc tctctqqccc 2300 cageceaget tecagtegee tgtecagete etcaetgtea tecetggggg 2350 aggatcaaga cagcgtgctg acccctgagg aggtagccct gtqcttggaa 2400 ctcagtgagg gtgaggagac tcccaggaac agcgtctctc ccatgccaag 2450 ggctccttca cccccacca cctatgggta catcagcgtc ccaacagcct 2500 cagagttcac ggacatgggc aggactggag gaggggtggg gcccaagggg 2550 ggagtettge tgtgcccace teggceetge etcaceecca eecceagega 2600 gggctcctta gccaatggtt ggggctcagc ctctqaggac aatgccqcca 2650 gcgccagagc cagccttgtc agctcctccg atggctcctt cctcgctgat 2700 gctcactttg cccgggccct ggcagtggct gtggatagct ttggtttcgg 2750 tctagagccc agggaggcag actgcgtctt catagatgcc tcatcacctc 2800 cctccccacg ggatgagatc ttcctgaccc ccaacctctc cctgcccctg 2850 tgggagtgga ggccagactg gttggaagac atggaggtca gccacaccca 2900 gcggctggga agggggatgc ctccctggcc ccctgactct cagatctctt 2950 cccagagaag tcagctccac tgtcgtatgc ccaaggctgg tgcttctcct 3000 gtagattact cctgaaccgt gtccctgaga cttcccagac gggaatcaga 3050 accacttete etgtecacce acaagacetg ggetgtggtg tgtgggtett 3100 ggcctgtgtt tctctgcagc tggggtccac cttcccaagc ctccagagag 3150 ttctccctcc acgattgtga aaacaaatga aaacaaaatt agagcaaagc 3200 tgacctggag ccctcaggga gcaaaacatc atctccacct gactcctagc 3250 cactgettte teetetgtge catecactee caccaceagg ttgttttgge 3300 ctgaggagca gecetgeetg etgetettee eccaecattt ggateaeagg 3350 aagtggagga gccagaggtg cctttgtgga ggacagcagt ggctgctggg 3400 agagggctgt ggaggaagga gcttctcgga gccccctctc agccttacct 3450 gggcccctcc tctagagaag agctcaactc tctcccaacc tcaccatgga 3500 aagaaaataa ttatgaatgo cactgaggoa ctgaggooot acctcatgoo 3550 aaacaaaggg ttcaaggctg ggtctagcga ggatgctgaa ggaagggagg 3600 tatgagaccg taggtcaaaa gcaccatcct cgtactgttg tcactatgag 3650

cttaagaaat ttgataccat aaaatggtaa aaaaaaaaa aaaaaaaaa 3700 aaaaaaaaaa aaaaaa 3716

<210> 211

<211> 985

<212> PRT

<213> Homo sapiens

<400> 211

Met Gly Gly Met Ala Gln Asp Ser Pro Pro Gln Ile Leu Val His 1 5 10 15

Pro Gln Asp Gln Leu Phe Gln Gly Pro Gly Pro Ala Arg Met Ser
20 . 25 30

Cys Gln Ala Ser Gly Gln Pro Pro Pro Thr Ile Arg Trp Leu Leu
35 40 45

Asn Gly Gln Pro Leu Ser Met Val Pro Pro Asp Pro His His Leu
50 55 60

Leu Pro Asp Gly Thr Leu Leu Leu Gln Pro Pro Ala Arg Gly
65 70 75

His Ala His Asp Gly Gln Ala Leu Ser Thr Asp Leu Gly Val Tyr 80 85 90

Thr Cys Glu Ala Ser Asn Arg Leu Gly Thr Ala Val Ser Arg Gly 95 100 105

Ala Arg Leu Ser Val Ala Val Leu Arg Glu Asp Phe Gln Ile Gln
110 115 120

Pro Arg Asp Met Val Ala Val Val Gly Glu Gln Phe Thr Leu Glu 125 130 135

Cys Gly Pro Pro Trp Gly His Pro Glu Pro Thr Val Ser Trp Trp
140 145 150

Lys Asp Gly Lys Pro Leu Ala Leu Gln Pro Gly Arg His Thr Val 155 160 165

Ser Gly Gly Ser Leu Leu Met Ala Arg Ala Glu Lys Ser Asp Glu 170 175 180

Gly Thr Tyr Met Cys Val Ala Thr Asn Ser Ala Gly His Arg Glu 185 190 195

Ser Arg Ala Ala Arg Val Ser Ile Gln Glu Pro Gln Asp Tyr Thr 200 205 210

Glu Pro Val Glu Leu Leu Ala Val Arg Ile Gln Leu Glu Asn Val 215 220 225

Thr Leu Leu Asn Pro Asp Pro Ala Glu Gly Pro Lys Pro Arg Pro 230 235 240

Ala Val Trp Leu Ser Trp Lys Val Ser Gly Pro Ala Ala Pro Ala Gln Ser Tyr Thr Ala Leu Phe Arg Thr Gln Thr Ala Pro Gly Gly 260 Gln Gly Ala Pro Trp Ala Glu Glu Leu Leu Ala Gly Trp Gln Ser Ala Glu Leu Gly Gly Leu His Trp Gly Gln Asp Tyr Glu Phe Lys Val Arg Pro Ser Ser Gly Arg Ala Arg Gly Pro Asp Ser Asn Val Leu Leu Leu Arg Leu Pro Glu Lys Val Pro Ser Ala Pro Pro Gln 320 330 Glu Val Thr Leu Lys Pro Gly Asn Gly Thr Val Phe Val Ser Trp 335 Val Pro Pro Pro Ala Glu Asn His Asn Gly Ile Ile Arg Gly Tyr 350 360 Gln Val Trp Ser Leu Gly Asn Thr Ser Leu Pro Pro Ala Asn Trp 365 Thr Val Val Gly Glu Gln Thr Gln Leu Glu Ile Ala Thr His Met 380 Pro Gly Ser Tyr Cys Val Gln Val Ala Ala Val Thr Gly Ala Gly Ala Gly Glu Pro Ser Arg Pro Val Cys Leu Leu Glu Gln Ala Met Glu Arg Ala Thr Gln Glu Pro Ser Glu His Gly Pro Trp Thr Leu Glu Gln Leu Arg Ala Thr Leu Lys Arg Pro Glu Val Ile Ala Thr Cys Gly Val Ala Leu Trp Leu Leu Leu Gly Thr Ala Val Cys Ile His Arg Arg Arg Ala Arg Val His Leu Gly Pro Gly Leu Tyr Arg Tyr Thr Ser Glu Asp Ala Ile Leu Lys His Arg Met Asp His Ser Asp Ser Gln Trp Leu Ala Asp Thr Trp Arg Ser Thr Ser Gly Ser Arg Asp Leu Ser Ser Ser Ser Ser Leu Ser Ser Arg Leu Gly Ala Asp Ala Arg Asp Pro Leu Asp Cys Arg Arg Ser Leu

				530					535					540
Leu	Ser	Trp	Asp	Ser 545	Arg	Ser	Pro	Gly	Val 550	Pro	Leu	Leu	Pro	Asp 555
Thr	Ser	Thr	Phe	Tyr 560	Gly	Ser	Leu	Ile	Ala 565	Glu	Leu	Pro	Ser	Ser 570
Thr	Pro	Ala	Arg	Pro 575	Ser	Pro	Gln	Val	Pro 580	Ala	Val	Arg	Arg	Leu 585
Pro	Pro	Gln	Leu	Ala 590	Gln	Leu	Ser	Ser	Pro 595	Cys	Ser	Ser	Ser	Asp 600
Ser	Leu	Суз	Ser	Arg 605	Arg	Gly	Leu	Ser	Ser 610	Pro	Arg	Leu	Ser	Leu 615
Ala	Pro	Ala	Glu	Ala 620	Trp	Lys	Ala	Lys	Lys 625	Lys	Gln	Glu	Leu	Gln 630
His	Ala	Asn	Ser	Ser 635	Pro	Leu	Leu	Arg	Gly 640	Ser	His	Ser	Leu	Glu 645
Leu	Arg	Ala	Cys	Glu 650	Leu	Gly	Asn	Arg	Gly 655	Ser	Lys	Asn	Leu	Ser 660
Gln	Ser	Pro	Gly	Ala 665	Val	Pro	Gln	Ala	Leu 670	Val	Ala	Trp	Arg	Ala 675
Leu	Gly	Pro	Lys	Leu 680	Leu	Ser	Ser	Ser	Asn 685	Glu	Leu	Val	Thr	Arg 690
His	Leu	Pro	Pro	Ala 695	Pro	Leu	Phe	Pro	His 700	Glu	Thr	Pro	Pro	Thr 705
Gln	Ser	Gln	Gln	Thr 710	Gln	Pro	Pro	Val	Ala 715	Pro	Gln	Ala	Pro	Ser 720
Ser	Ile	Leu	Leu	Pro 725	Ala	Ala	Pro	Ile	Pro 730	Ile	Leu	Ser	Pro	Cys 735
Ser	Pro	Pro	Ser	Pro 740	Gln	Ala	Ser	Ser	Leu 745	Ser	Gly	Pro	Ser	Pro 750
Ala	Ser	Ser	Arg	Leu 755	Ser	Ser	Ser	Ser	Leu 760	Ser	Ser	Leu	Gly	Glu 765
Asp	Gln	Asp	Ser	Val 770	Leu _.	Thr	Pro	Glu	Glu 775	Val	Ala	Leu	Суз	Leu 780
Glu	Leu	Ser	Glu	Gly 785	Glu	Glu	Thr	Pro	Arg 790	Asn	Ser	Val	Ser	Pro 795
Met	Pro	Arg	Ala	Pro 800	Ser	Pro	Pro	Thr	Thr 805	Tyr	Gly	Tyr	Ile	Ser 810
Val	Pro	Thr	Ala	Ser 815	Glu	Phe	Thr	Asp	Met 820	Gly	Arg	Thr	Gly	Gly 825

<211> 50 <212> DNA

Gly Val Gly Pro Lys Gly Gly Val Leu Leu Cys Pro Pro Arg Pro 830 Cys Leu Thr Pro Thr Pro Ser Glu Gly Ser Leu Ala Asn Gly Trp 845 855 Gly Ser Ala Ser Glu Asp Asn Ala Ala Ser Ala Arg Ala Ser Leu Val Ser Ser Ser Asp Gly Ser Phe Leu Ala Asp Ala His Phe Ala 875 880 Arg Ala Leu Ala Val Ala Val Asp Ser Phe Gly Phe Gly Leu Glu 890 Pro Arg Glu Ala Asp Cys Val Phe Ile Asp Ala Ser Ser Pro Pro 905 Ser Pro Arg Asp Glu Ile Phe Leu Thr Pro Asn Leu Ser Leu Pro Leu Trp Glu Trp Arg Pro Asp Trp Leu Glu Asp Met Glu Val Ser His Thr Gln Arg Leu Gly Arg Gly Met Pro Pro Trp Pro Pro Asp Ser Gln Ile Ser Ser Gln Arg Ser Gln Leu His Cys Arg Met Pro 970 Lys Ala Gly Ala Ser Pro Val Asp Tyr Ser <210> 212 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 212 gaagggacct acatgtgtgt ggcc 24 <210> 213 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 213 actgacette cagetgagee acae 24 <210> 214

```
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 214
 aggactacac ggagcctgtg gagcttctqq ctqtqcqaat tcaqctqqaa 50
<210> 215
<211> 2749
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 1869, 1887
<223> unknown base
<400> 215
 ctcccacggt gtccagcgcc cagaatgcgg cttctggtcc tgctatgggg 50
 ttgcctgctg ctcccaggtt atgaagccct ggagggccca gaggaaatca 100
 gcgggttcga aggggacact gtgtccctgc agtgcaccta cagggaagag 150
 ctgagggacc accggaagta ctggtqcagg aagggtggga tcctcttctc 200
 tcgctgctct ggcaccatct atgcagaaga agaaggccag gagacaatga 250
 agggcagggt gtccatccgt gacagccgcc aggagctctc gctcattgtg 300
 accetgtgga acctcaccet gcaagacget ggggagtact ggtgtggggt 350
 cgaaaaacgg ggccccgatg agtctttact gatctctctg ttcgtctttc 400
 caggaccetg etgteetece teceettete ceaeetteca geetetgget 450
 acaacacgcc tgcagcccaa ggcaaaagct cagcaaaccc agcccccagg 500
 attgacttct cctgggctct acccggcagc caccacagcc aagcagggga 550
 agacaggggc tgaggcccct ccattgccag ggacttccca gtacgggcac 600
gaaaggactt ctcagtacac aggaacctct cctcacccag cgacctctcc 650
 tectgeaggg agetecegee ecceeatgea getggaetee aceteageag 700
aggacaccag tccagctctc agcagtggca gctctaagcc cagggtgtcc 750
atcccgatgg tccgcatact ggccccagtc ctggtgctgc tgagccttct 800
gtcagccgca ggcctgatcg ccttctgcag ccacctgctc ctgtggagaa 850
aggaagctca acaggccacg gagacacaga qqaacgagaa qttctqqctc 900
tcacgcttga ctgcggagga aaaqqaaqcc ccttcccaqg cccctqaqqq 950
```

ggacgtgatc tcgatgcctc ccctccacac atctgaggag gagctgggct 1000

<210> 216

<211> 332

<212> PRT

<213> Homo sapiens

<400> 216

Met Arg Leu Leu Val Leu Leu Trp Gly Cys Leu Leu Leu Pro Gly 1 5 10 15

Tyr Glu Ala Leu Glu Gly Pro Glu Glu Ile Ser Gly Phe Glu Gly
20 25 30

Asp Thr Val Ser Leu Gln Cys Thr Tyr Arg Glu Glu Leu Arg Asp 35 40 45

His Arg Lys Tyr Trp Cys Arg Lys Gly Gly Ile Leu Phe Ser Arg
50 55 60

Cys Ser Gly Thr Ile Tyr Ala Glu Glu Glu Glu Glu Glu Thr Met
65 70 75

Lys Gly Arg Val Ser Ile Arg Asp Ser Arg Gln Glu Leu Ser Leu 80 85 90

Ile Val Thr Leu Trp Asn Leu Thr Leu Gln Asp Ala Gly Glu Tyr
95 100 105

Trp Cys Gly Val Glu Lys Arg Gly Pro Asp Glu Ser Leu Leu Ile 110 115 120

Ser Leu Phe Val Phe Pro Gly Pro Cys Cys Pro Pro Ser Pro Ser 125 130 135

Pro Thr Phe Gln Pro Leu Ala Thr Thr Arg Leu Gln Pro Lys Ala 140 145 150

Lys Ala Gln Gln Thr Gln Pro Pro Gly Leu Thr Ser Pro Gly Leu 155 160 165

Tyr Pro Ala Ala Thr Thr Ala Lys Gln Gly Lys Thr Gly Ala Glu 170 175 180

Ala Pro Pro Leu Pro Gly Thr Ser Gln Tyr Gly His Glu Arg Thr 185 190 195

Ser Gln Tyr Thr Gly Thr Ser Pro His Pro Ala Thr Ser Pro Pro

				200					205					210
Ala	Gly	Ser	Ser	Arg 215	Pro	Pro	Met	Gln	Leu 220	Asp	Ser	Thr	Ser	Ala 225
Glu i	Asp	Thr	Ser	Pro 230	Ala	Leu	Ser	Ser	Gly 235	Ser	Ser	Lys	Pro	Arg 240
Val :	Ser	Ile	Pro	Met 245	Val	Arg	Ile	Leu	Ala 250	Pro	Val	Leu	Val	Leu 255
Leu :	Ser	Leu	Leu	Ser 260	Ala	Ala	Gly	Leu	Ile 265	Ala	Phe	Суз	Ser	His 270
Leu :	Leu	Leu	Trp	Arg 275	Lys	Glu	Ala	Gln	Gln 280	Ala	Thr	Glu	Thr	Gln 285
Arg i	Asn	Glu	Lys	Phe 290	Trp	Leu	Ser	Arg	Leu 295	Thr	Ala	Glu	Glu	Lys 300
Glu i	Ala	Pro	Ser	Gln 305	Ala	Pro	Glu	Gly	Asp 310	Val	Ile	Ser	Met	Pro 315
Pro :	Leu	His	Thr	Ser 320	Glu	Glu	Glu	Leu	Gly 325	Phe	Ser	Lys	Phe	Val 330
Ser 1	Ala													
<211><212><213><223>	<210> 217 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe													
<400>			acct	acaç	gg ga	ag 2	24							
<211> <212>	<210> 218 <211> 24 <212> DNA <213> Artificial Sequence													
<220> <223>	Syn	thet	ic c	oligo	nucl	.eoti	.de p	robe	: .					
<400> ctgtd			tgct	tggc	t gt	gg 2	24							
<210> <211> <212> <213>	47 DNA		ial	Sequ	ence	:								
<220> <223>	Syn	thet	ic c	ligo	nucl	eoti	de p	robe	:					

<400> 219 ggtgcaggaa gggtgggatc ctcttctctc gctgctctgg ccacatc 47 <210> 220 <211> 950 <212> DNA <213> Homo sapiens <400> 220 ttgtgactaa aagctggcct agcaggccag ggagtgcagc tgcaggcgtg 50 ggggtggcag gagccgcaga gccagagcag acagccgaga aacaggtgga 100 cagtgtgaaa gaaccagtgg tctcgctctg ttgcccaggc tagagtgtac 150 tggcgtgatc atagctcact gcagcctcag actcctggac ttgagaaatc 200 ctcctgcctt agcctcctgc atatctggga ctccaggggt gcactcaagc 250 cctgtttctt ctccttctgt gagtggacca cggaggctgg tgagctgcct 300 gtcatcccaa agctcagctc tgagccagag tggtggtggc tccacctctq 350 ccgccggcat agaagccagg agcagggctc tcagaaggcg gtggtgccca 400 gctgggatca tgttgttggc cctggtctgt ctgctcagct gcctgctacc 450 ctccagtgag gccaagctct acggtcgttg tgaactggcc agagtgctac 500 atgacttcgg gctggacgga taccggggat acagcctggc tgactgggtc 550 tgccttgctt atttcacaag cggtttcaac gcagctgctt tggactacga 600 ggctgatggg agcaccaaca acgggatctt ccagatcaac agccggaggt 650 ggtgcagcaa cctcaccccg aacgtcccca acgtgtgccg gatgtactgc 700 tcagatttgt tgaatcctaa tctcaaggat accgttatct gtgccatgaa 750 gataacccaa gagcctcagg gtctgggtta ctgggaggcc tqqagqcatc 800 actgccaggg aaaagacctc actgaatggg tggatggctg tgacttctag 850 gatggacgga accatgcaca gcaggctggg aaatgtggtt tggttcctga 900 cctaggcttg ggaagacaag ccagcgaata aaggatggtt gaacgtgaaa 950 <210> 221 <211> 146 <212> PRT <213> Homo sapiens <400> 221

Met Leu Leu Ala Leu Val Cys Leu Leu Ser Cys Leu Leu Pro Ser 1 5 10 15

Ser Glu Ala Lys Leu Tyr Gly Arg Cys Glu Leu Ala Arg Val Leu 20 25 30

His Asp Phe Gly Leu Asp Gly Tyr Arg Gly Tyr Ser Leu Ala Asp 40 Trp Val Cys Leu Ala Tyr Phe Thr Ser Gly Phe Asn Ala Ala Ala Leu Asp Tyr Glu Ala Asp Gly Ser Thr Asn Asn Gly Ile Phe Gln Ile Asn Ser Arg Arg Trp Cys Ser Asn Leu Thr Pro Asn Val Pro Asn Val Cys Arg Met Tyr Cys Ser Asp Leu Leu Asn Pro Asn Leu Lys Asp Thr Val Ile Cys Ala Met Lys Ile Thr Gln Glu Pro Gln 110 115 Gly Leu Gly Tyr Trp Glu Ala Trp Arg His His Cys Gln Gly Lys 135

Asp Leu Thr Glu Trp Val Asp Gly Cys Asp Phe 140

<210> 222 <211> 24 <212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 222 gggatcatgt tgttggccct ggtc 24

<210> 223 <211> 23 <212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

gcaaggcaga cccagtcagc cag 23

<210> 224 <211> 45

<212> DNA

<213> Artificial Sequence

<223> Synthetic oligonucleotide probe

<400> 224

ctgcctgcta ccctccaagt gaggccaagc tctacggtcg ttgtg 45

<210> 225

<211> 2049 <212> DNA

<213> Homo sapiens

<400> 225 agccgctgcc ccgggccggg cgcccgcggc ggcaccatga gtccccgctc 50 gtgcctgcgt tcgctgcgcc tcctcgtctt cgccgtcttc tcagccgccg 100 cgagcaactg gctgtacctg gccaagctgt cgtcggtggg gagcatctca 150 gaggaggaga cgtgcgagaa actcaagggc ctgatccaga ggcaggtgca 200 gatgtgcaag cggaacctgg aagtcatgga ctcggtgcgc cgcggtgccc 250 agctggccat tgaggagtgc cagtaccagt tccggaaccg gcgctggaac 300 tgctccacac tcgactcctt gcccgtcttc ggcaaggtgg tgacgcaagg 350 gactegggag geggeetteg tgtaegeeat etetteggea ggtgtggeet 400 ttgcagtgac gcgggcgtgc agcagtgggg agctggagaa gtgcggctgt 450 gacaggacag tgcatggggt cagcccacag ggcttccagt ggtcaggatg 500 ctctgacaac atcgcctacg gtgtggcctt ctcacagtcg tttgtggatg 550 tgcgggagag aagcaagggg gcctcgtcca gcagagccct catgaacctc 600 cacaacaatg aggccggcag gaaggccatc ctgacacaca tgcgggtgga 650 atgcaagtgc cacggggtgt caggctcctg tgaggtaaag acgtgctggc 700 gagccgtgcc gcccttccgc caggtgggtc acgcactgaa ggagaagttt 750 gatggtgcca ctgaggtgga gccacgccgc gtgggctcct ccagggcact 800 ggtaccacgc aacgcacagt tcaagccgca cacagatgag gacctggtgt 850 acttggagcc tagccccgac ttctgtgagc aggacatgcg cagcggcgtg 900 ctgggcacga ggggccgcac atgcaacaag acgtccaagg ccatcgacgg 950 ctgtgagctg ctgtgctgtg gccgcggctt ccacacggcg caggtggagc 1000 tggctgaacg ctgcagctgc aaattccact ggtgctgctt cgtcaagtgc 1050 cggcagtgcc agcggctcgt ggagttgcac acgtgccgat gaccgcctgc 1100 ctagccctgc gccggcaacc acctagtggc ccagggaagg ccgataattt 1150 aaacagtctc ccaccaccta ccccaagaga tactggttgt attttttgtt 1200 ctggtttggt ttttgggtcc tcatgttatt tattgccgaa accaggcagg 1250 caaccccaag ggcaccaacc agggcctccc caaagcctgg gcctttgtgg 1300 etgecactga ccaaagggac ettgetegtg cegetggetg eeegcatgtg 1350

<210> 226

<211> 351

<212> PRT

<213> Homo sapiens

<400> 226

Met Ser Pro Arg Ser Cys Leu Arg Ser Leu Arg Leu Leu Val Phe
1 5 10 15

Ala Val Phe Ser Ala Ala Ala Ser Asn Trp Leu Tyr Leu Ala Lys 20 25 30

Leu Ser Ser Val Gly Ser Ile Ser Glu Glu Glu Thr Cys Glu Lys
35 40 40

Leu Lys Gly Leu Ile Gln Arg Gln Val Gln Met Cys Lys Arg Asn
50 55 60

Leu Glu Val Met Asp Ser Val Arg Arg Gly Ala Gln Leu Ala Ile 65 70 75

Glu Glu Cys Gln Tyr Gln Phe Arg Asn Arg Arg Trp Asn Cys Ser 80 85 90

Thr Leu Asp Ser Leu Pro Val Phe Gly Lys Val Val Thr Gln Gly
95 100 105

Thr Arg Glu Ala Ala Phe Val Tyr Ala Ile Ser Ser Ala Gly Val 110 115 120

Ala Phe Ala Val Thr Arg Ala Cys Ser Ser Gly Glu Leu Glu Lys Cys Gly Cys Asp Arg Thr Val His Gly Val Ser Pro Gln Gly Phe Gln Trp Ser Gly Cys Ser Asp Asn Ile Ala Tyr Gly Val Ala Phe Ser Gln Ser Phe Val Asp Val Arg Glu Arg Ser Lys Gly Ala Ser 170 Ser Ser Arg Ala Leu Met Asn Leu His Asn Asn Glu Ala Gly Arg Lys Ala Ile Leu Thr His Met Arg Val Glu Cys Lys Cys His Gly 210 Val Ser Gly Ser Cys Glu Val Lys Thr Cys Trp Arg Ala Val Pro Pro Phe Arg Gln Val Gly His Ala Leu Lys Glu Lys Phe Asp Gly 230 Ala Thr Glu Val Glu Pro Arg Arg Val Gly Ser Ser Arg Ala Leu Val Pro Arg Asn Ala Gln Phe Lys Pro His Thr Asp Glu Asp Leu 260 270 Val Tyr Leu Glu Pro Ser Pro Asp Phe Cys Glu Gln Asp Met Arg 275 Ser Gly Val Leu Gly Thr Arg Gly Arg Thr Cys Asn Lys Thr Ser 290 295 300 Lys Ala Ile Asp Gly Cys Glu Leu Leu Cys Cys Gly Arg Gly Phe 305 His Thr Ala Gln Val Glu Leu Ala Glu Arg Cys Ser Cys Lys Phe 320 325 His Trp Cys Cys Phe Val Lys Cys Arg Gln Cys Gln Arg Leu Val 335 340

Glu Leu His Thr Cys Arg 350

<210> 227

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 227

gctgcagctg caaattccac tgg 23

```
<210> 228
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 228
 tggtgggaga ctgtttaaat tatcggcc 28
<210> 229
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 229
 tgcttcgtca agtgccggca gtgccagcgg ctcgtggagt t 41
<210> 230
<211> 1355
<212> DNA
<213> Homo sapiens
<400> 230
 cggacgcgtg ggcggacgcg tgggcggacg cgtgggcgga cgcgtgggct 50
 gggtgcctgc atcgccatgg acaccaccag gtacagcaag tggggcggca 100
 gctccgagga ggtccccgga gggccctggg gacgctgggt gcactggagc 150
 aggagacccc tcttcttggc cctggctgtc ctggtcacca cagtcctttg 200
ggctgtgatt ctgagtatcc tattgtccaa ggcctccacg gagcgcgcgg 250
cgctgcttga cggccacgac ctgctgagga caaacgcctc gaagcagacg 300
gcggcgctgg gtgccctgaa ggaggaggtc ggagactgcc acaqctqctq 350
ctcggggacg caggcgcagc tgcagaccac gcgcgcggag cttggggagg 400
cgcaggcgaa gctgatggag caggagagcg ccctgcggga actgcgtgag 450
cgcgtgaccc agggcttggc tgaagccggc agggccgtg aggacgtccg 500
cactgagetg tteegggege tggaggeegt gaggeteeag aacaacteet 550
gcgagccgtg ccccacgtcg tggctgtcct tcgagggctc ctgctacttt 600
ttctctgtgc caaagacgac gtgggcggcg gcgcaggatc actgcgcaga 650
tgccagcgcg cacctggtga tcgttggggg cctggatgag cagggcttcc 700
tcactcggaa cacgcgtggc cgtggttact ggctgggcct gagggctgtg 750
```

cgccatctgg gcaaggttca gggctaccag tgggtggacg gagtctctct 800 cagcttcagc cactggaacc agggagagcc caatgacgct tggggggggg 850 agaactgtgt catgatgctg cacacggggc tgtgggaacga cgcaccgtgt 900 gacagcgaga aggacggctg gatctgtgag aaaaggcaca actgctgacc 950 ccgccagtg ccctggagcc gcgcccattg cagcatgtcg tatcctgggg 1000 gctgctcacc tccctggctc ctggagctga ttgccaaaga gttttttct 1050 tcctcatcca ccgctgctga gtctcagaaa cacttggccc aacatagccc 1100 tgtccagccc agtgcctggg ctctgggacc tccatgccga cctcatccta 1150 actccactca cgcagaccca acctaacctc cactagctcc aaaatccctg 1200 ctcctgcgtc cccgtgatat gcctccactt ctctcctaa ccaaggttag 1250 gtgactgagg actggagctg tttggtttc tcgcatttc caccaaactg 1300 gaagctgtt ttgcagcctg aggaagcatc aataaatat tgagaaatga 1350 aaaaa 1355

<210> 231 <211> 293 <212> PRT <213> Homo sapiens

<400> 231

Met Asp Thr Thr Arg Tyr Ser Lys Trp Gly Gly Ser Ser Glu Glu 1 5 10 15

Val Pro Gly Gly Pro Trp Gly Arg Trp Val His Trp Ser Arg Arg 20 25 30

Pro Leu Phe Leu Ala Leu Ala Val Leu Val Thr Thr Val Leu Trp
35 40 45

Ala Val Ile Leu Ser Ile Leu Leu Ser Lys Ala Ser Thr Glu Arg
50 55 60

Ala Ala Leu Leu Asp Gly His Asp Leu Leu Arg Thr Asn Ala Ser
65 70 75

Lys Gln Thr Ala Ala Leu Gly Ala Leu Lys Glu Glu Val Gly Asp 80 85 90

Cys His Ser Cys Cys Ser Gly Thr Gln Ala Gln Leu Gln Thr Thr 95 100

Arg Ala Glu Leu Gly Glu Ala Gln Ala Lys Leu Met Glu Glu 110 115 120

Ser Ala Leu Arg Glu Leu Arg Glu Arg Val Thr Gln Gly Leu Ala 125 130 135

<212> DNA

Glu Ala Gly Arg Gly Arg Glu Asp Val Arg Thr Glu Leu Phe Arg Ala Leu Glu Ala Val Arg Leu Gln Asn Asn Ser Cys Glu Pro Cys Pro Thr Ser Trp Leu Ser Phe Glu Gly Ser Cys Tyr Phe Phe Ser Val Pro Lys Thr Thr Trp Ala Ala Ala Gln Asp His Cys Ala Asp 185 Ala Ser Ala His Leu Val Ile Val Gly Gly Leu Asp Glu Gln Gly 200 205 Phe Leu Thr Arg Asn Thr Arg Gly Arg Gly Tyr Trp Leu Gly Leu 215 220 Arg Ala Val Arg His Leu Gly Lys Val Gln Gly Tyr Gln Trp Val 230 Asp Gly Val Ser Leu Ser Phe Ser His Trp Asn Gln Gly Glu Pro Asn Asp Ala Trp Gly Arg Glu Asn Cys Val Met Met Leu His Thr Gly Leu Trp Asn Asp Ala Pro Cys Asp Ser Glu Lys Asp Gly Trp Ile Cys Glu Lys Arg His Asn Cys 290 <210> 232 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 232 gcgagaactg tgtcatgatg ctgc 24 <210> 233 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 233 gtttctgaga ctcagcagcg gtgg 24 <210> 234 <211> 50

```
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 234
caccgtgtga cagcgagaag gacggctgga tctgtgagaa aaggcacaac 50
<210> 235
<211> 1847
<212> DNA
<213> Homo sapiens
<400> 235
gccaggggaa gagggtgatc cgacccgggg aaggtcgctg ggcagggcga 50
gttgggaaag cggcagcccc cgccgccccc gcagcccctt ctcctccttt 100
ctcccacgtc ctatctgcct ctcgctggag gccaggccgt gcaqcatcqa 150
agacaggagg aactggagcc tcattggccg gcccggggcg ccggcctcgg 200
gcttaaatag gagctccggg ctctggctgg gacccgaccg ctqccqqccq 250
cgctcccgct gctcctgccg ggtgatggaa aaccccaqcc cqqccqccqc 300
cctgggcaag gccctctgcg ctctcctcct qqccactctc qqcqccqccq 350
gccagcctct tgggggagag tccatctgtt ccgccagagc cccggccaaa 400
tacagcatca ccttcacggg caagtggagc cagacggcct tccccaagca 450
gtaccccctg ttccgccccc ctgcgcagtg gtcttcgctg ctgggggccg 500
cgcatagete egactacage atgtggagga agaaccagta eqteaqtaac 550
gggctgcgcg actttgcgga gcgcggcgag gcctgggcqc tgatgaagga 600
gatcgaggcg gcgggggagg cgctgcagag cqtqcacqag qtqttttcqq 650
egecegeegt eeceagegge acegggeaga egteggegga getggaggtg 700
cagcgcaggc actcgctggt ctcgtttgtg gtgcgcatcg tqcccaqccc 750
cgactggttc gtgggcgtgg acagcctgga cctgtgcgac ggggaccgtt 800
ggcgggaaca ggcggcgctg gacctgtacc cctacgacgc cgggacggac 850
ageggettea cetteteete ecceaaette gecaecatee egeaggaeae 900
ggtgaccgag ataacgtcct cctctcccag ccacccggcc aactccttct 950
actaccegeg getgaaggee etgeeteeca tegecagggt gacactgetg 1000
cggctgcgac agagccccag ggccttcatc cctcccqccc caqtcctqcc 1050
cagcagggac aatgagattg taqacagcgc ctcagttcca gaaacgccgc 1100
```

<210> 236

<211> 331

<212> PRT

<213> Homo sapiens

<400> 236

Met Glu Asn Pro Ser Pro Ala Ala Ala Leu Gly Lys Ala Leu Cys
1 5 10 15

Ala Leu Leu Leu Ala Thr Leu Gly Ala Ala Gly Gln Pro Leu Gly 20 25 30

Gly Glu Ser Ile Cys Ser Ala Arg Ala Pro Ala Lys Tyr Ser Ile 35 40 45

Thr Phe Thr Gly Lys Trp Ser Gln Thr Ala Phe Pro Lys Gln Tyr
50 55 60

Pro Leu Phe Arg Pro Pro Ala Gln Trp Ser Ser Leu Leu Gly Ala 65 70 75

Ala His Ser Ser Asp Tyr Ser Met Trp Arg Lys Asn Gln Tyr Val 80 85 90

Ser Asn Gly Leu Arg Asp Phe Ala Glu Arg Gly Glu Ala Trp Ala 95 100 105

Leu Met Lys Glu Ile Glu Ala Ala Gly Glu Ala Leu Gln Ser Val

				110					115					120
His	Glu	Val	Phe	Ser 125	Ala	Pro	Ala	Val	Pro 130	Ser	Gly	Thr	Gly	Gln 135
Thr	Ser	Ala	Glu	Leu 140	Glu	Val	Gln	Arg	Arg 145	His	Ser	Leu	Val	Ser 150
Phe	Val	Val	Arg	Ile 155	Val	Pro	Ser	Pro	Asp 160	Trp	Phe	Val	Gly	Val 165
Asp	Ser	Leu	Asp	Leu 170	Суз	Asp	Gly	Asp	Arg 175	Trp	Arg	Glu	Gln	Ala 180
Ala	Leu	Asp	Leu	Tyr 185	Pro	Tyr	Asp	Ala	Gly 190	Thr	Asp	Ser	Gly	Phe 195
Thr	Phe	Ser	Ser	Pro 200	Asn	Phe	Ala	Thr	Ile 205	Pro	Gln	Asp	Thr	Val 210
Thr	Glu	Ile	Thr	Ser 215	Ser	Ser	Pro	Ser	His 220	Pro	Ala	Asn	Ser	Phe 225
Tyr	Tyr	Pro	Arg	Leu 230	Lys	Ala	Leu	Pro	Pro 235	Ile	Ala	Arg	Val	Thr 240
Leu	Leu	Arg	Leu	Arg 245	Gln	Ser	Pro	Arg	Ala 250	Phe	Ile	Pro	Pro	Ala 255
Pro	Val	Leu	Pro	Ser 260	Arg	Asp	Asn	Glu	Ile 265	Val	Asp	Ser	Ala	Ser 270
Val	Pro	Glu	Thr	Pro 275	Leu	Asp	Cys	Glu	Val 280	Ser	Leu	Trp	Ser	Ser 285
Trp	Gly	Leu	Cys	Gly 290	Gly	His	Cys	Gly	Arg 295	Leu	Gly	Thr	Lys	Ser 300
Arg	Thr	Arg	Tyr	Val 305	Arg	Val	Gln	Pro	Ala 310	Asn	Asn	Gly	Ser	Pro 315
Cys	Pro	Glu	Leu	Glu 320	Glu	Glu	Ala	Glu	Cys 325	Val	Pro	Asp	Asn	Cys 330
Val														
<210><211><211><212><213>	22 DN <i>P</i>	1	ial	Sequ	ience	:								
<220> <223>		thet	ic c	ligo	nucl	eoti	.de p	robe	:	•				
<400> cago			ıgggg	aaga	ıg gg	22								

```
romtor "tormor
```

```
<210> 238
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 238
 caggactcgc tacgtccg 18
<210> 239
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 239
 cagoccotto tootcottto tooc 24
<210> 240
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 240
 gcagttatca gggacgcact cagcc 25
<210> 241
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 241
ccagcgagag gcagatag 18
<210> 242
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 242
 cggtcaccgt gtcctgcggg atg 23
<210> 243
<211> 42
<212> DNA
```

```
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 243
 cagoccotto toctootto toccaoqtoo tatotqooto to 42
<210> 244
<211> 1894
<212> DNA
<213> Homo sapiens
<400> 244
 ggcggcgtcc gtgaggggct cctttgggca ggggtagtgt ttggtgtccc 50
 tgtcttgcgt gatattgaca aactgaagct ttcctgcacc actggactta 100
 aggaagagtg tactcgtagg cggacagctt tagtggccgg ccggccgctc 150
 tcatccccg taaggagcag agtcctttgt actgaccaag atgagcaaca 200
 tetacateca ggageeteee aegaatggga aggttttatt gaaaactaca 250
 gctggagata ttgacataga gttgtggtcc aaagaagctc ctaaagcttg 300
 cagaaatttt atccaacttt gtttggaagc ttattatgac aataccattt 350
 ttcatagagt tgtgcctggt ttcatagtcc aaggcggaga tcctactggc 400
 acagggagtg gtggagagtc tatctatgga gcgccattca aagatgaatt 450
 tcattcacgg ttgcgtttta atcggagagg actggttgcc atggcaaatg 500
 ctggttctca tgataatggc agccagtttt tcttcacact gggtcgagca 550
 gatgaactta acaataagca taccatcttt ggaaaggtta caggggatac 600
 agtatataac atgttgcgac tgtcagaagt agacattgat gatgacgaaa 650
 gaccacataa tccacacaaa ataaaaagct gtgaggtttt gtttaatcct 700
 tttgatgaca tcattccaag ggaaattaaa aggctgaaaa aagagaaacc 750
 agaggaggaa gtaaagaaat tgaaacccaa aggcacaaaa aattttagtt 800
 tactttcatt tggagaggaa gctgaggaag aagaggagga agtaaatcga 850
 gttagtcaga gcatgaaggg caaaagcaaa agtagtcatg acttgcttaa 900
 ggatgatcca catctcagtt ctgttccagt tgtagaaagt gaaaaaggtg 950
 atgcaccaga tttagttgat gatggagaag atgaaagtgc agagcatgat 1000
 gaatatattg atggtgatga aaagaacctg atgagagaaa gaattgccaa 1050
```

aaaattaaaa aaggacacaa gtgcgaatgt taaatcagct ggagaaggag 1100

aagtggagaa gaaatcagtc agccgcagtg aagagctcag aaaagaagca 1150 agacaattaa aacgggaact cttagcagca aaacaaaaaa aagtagaaaa 1200 tgcagcaaaa caagcagaaa aaagaagtga agaggaagaa gcccctccag 1250 atggtgctgt tgccgaatac agaagagaaa agcaaaagta tgaagctttg 1300 aggaagcaac agtcaaagaa gggaacttcc cgggaagatc agacccttgc 1350 actgctgaac cagtttaaat ctaaactcac tcaaqcaatt gctgaaacac 1400 ctgaaaatga cattcctgaa acagaagtag aagatgatga aggatggatg 1450 tcacatgtac ttcagtttga ggataaaagc agaaaagtga aagatgcaag 1500 catgcaagac tcagatacat ttgaaatcta tgatcctcgg aatccagtga 1550 ataaaagaag gagggaagaa agcaaaaagc tgatgagaga gaaaaaagaa 1600 agaagataaa atgagaataa tgataaccag aacttgctgg aaatgtgcct 1650 acaatggcct tgtaacagcc attgttccca acagcatcac ttaggggtgt 1700 gaaaagaagt atttttgaac ctgttgtctg gttttgaaaa acaattatct 1750 tgttttgcaa attgtggaat gatgtaagca aatgcttttg gttactggta 1800 catgtgtttt ttcctagctg accttttata ttgctaaatc tgaaataaaa 1850

<210> 245

<211> 472

<212> PRT

<213> Homo sapiens

<400> 245

Met Ser Asn Ile Tyr Ile Gln Glu Pro Pro Thr Asn Gly Lys Val 1 5 10 15

Leu Leu Lys Thr Thr Ala Gly Asp Ile Asp Ile Glu Leu Trp Ser
20 25 30

Lys Glu Ala Pro Lys Ala Cys Arg Asn Phe Ile Gln Leu Cys Leu
35 40 45

Glu Ala Tyr Tyr Asp Asn Thr Ile Phe His Arg Val Val Pro Gly
50 55 60

Phe Ile Val Gln Gly Gly Asp Pro Thr Gly Thr Gly Ser Gly Gly
75

Glu Ser Ile Tyr Gly Ala Pro Phe Lys Asp Glu Phe His Ser Arg 80 85 90

Leu Arg Phe Asn Arg Arg Gly Leu Val Ala Met Ala Asn Ala Gly 95 100 105

Ser	His	Asp	Asn	Gly 110	Ser	Gln	Phe	Phe	Phe 115	Thr	Leu	Gly	Arg	Ala 120
Asp	Glu	Leu	Asn	Asn 125	Lys	His	Thr	Ile	Phe 130	Gly	Lys	Val	Thr	Gly 135
Asp	Thr	Val	Tyr	Asn 140	Met	Leu	Arg	Leu	Ser 145	Glu	Val	Asp	Ile	Asp 150
Asp	Asp	Glu	Arg	Pro 155	His	Asn	Pro	His	Lys 160	Ile	Lys	Ser	Cys	Glu 165
Val	Leu	Phe	Asn	Pro 170	Phe	Asp	Asp	Ile	Ile 175	Pro	Arg	Glu	Ile	Lys 180
Arg	Leu	Lys	Lys	Glu 185	Lys	Pro	Glu	Glu	Glu 190	Val	Lys	Lys	Leu	Lys 195
Pro	Lys	Gly	Thr	Lys 200	Asn	Phe	Ser	Leu	Leu 205	Ser	Phe	Gly	Glu	Glu 210
Ala	Glu	Glu	Glu	Glu 215	Glu	Glu	Val	Asn	Arg 220	Val	Ser	Gln	Ser	Met 225
Lys	Gly	Lys	Ser	Lys 230	Ser	Ser	His	Asp	Leu 235	Leu	Lys	Asp	Asp	Pro 240
His	Leu	Ser	Ser	Val 245	Pro	Val	Val	Glu	Ser 250	Glu	Lys	Gly	Asp	Ala 255
Pro	Asp	Leu	Val	Asp 260	Asp	Gly	Glu	Asp	Glu 265	Ser	Ala	Glu	His	Asp 270
Glu	Tyr	Ile	Asp	Gly 275	Asp	Glu	Lys	Asn	Leu 280	Met	Arg	Glu	Arg	Ile 285
Ala	Lys	Lys	Leu	Lys 290	Lys	Asp	Thr	Ser	Ala 295	Asn	Val	Lys	Ser	Ala 300
Gly	Glu	Gly	Glu	Val 305	Glu	Lys	Lys	Ser	Val 310	Ser	Arg	Ser	Glu	Glu 315
Leu	Arg	Lys	Glu	Ala 320	Arg	Gln	Leu	Lys	Arg 325	Glu	Leu	Leu	Ala	Ala 330
Lys	Gln	Lys	Lys	Val 335	Glu	Asn	Ala	Ala	Lys 340	Gln	Ala	Glu	Lys	Arg 345
Ser	Glu	Glu	Glu	Glu 350	Ala	Pro	Pro	Asp	Gly 355	Ala	Val	Ala	Glu	Tyr 360
Arg	Arg	Glu	Lys	Gln 365	Lys	Tyr	Glu	Ala	Leu 370	Arg	Lys	Gln	Gln	Ser 375
Lys	Lys	Gly	Thr	Ser 380	Arg	Glu	Asp	Gln	Thr 385	Leu	Ala	Leu	Leu	Asn 390
Gln	Phe	Lys	Ser	Lys	Leu	Thr	Gln	Ala	Ile	Ala	Glu	Thr	Pro	Glu

```
TOTIOL LOITOY
```

400 405 Asn Asp Ile Pro Glu Thr Glu Val Glu Asp Asp Glu Gly Trp Met Ser His Val Leu Gln Phe Glu Asp Lys Ser Arg Lys Val Lys Asp 425 Ala Ser Met Gln Asp Ser Asp Thr Phe Glu Ile Tyr Asp Pro Arg Asn Pro Val Asn Lys Arg Arg Glu Glu Ser Lys Lys Leu Met Arg Glu Lys Lys Glu Arg Arg <210> 246 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 246 tgcggagatc ctactggcac aggg 24 <210> 247 <211> 18 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 247 cgagttagtc agagcatg 18 <210> 248 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 248 cagatggtgc tgttgccg 18 <210> 249 <211> 29 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe

```
<400> 249
 caactggaac aggaactgag atgtggatc 29
<210> 250
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 250
 ctggttcagc agtgcaaggg tctg 24
<210> 251
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 251
 cctctccgat taaaacgc 18
<210> 252
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 252
 gagaggactg gttgccatgg caaatgctgg ttctcatgat aatgg 45
<210> 253
<211> 2456
<212> DNA
<213> Homo sapiens
<400> 253
 cgccgccgtt ggggctggaa gttcccgcca ggtccgtqcc gggcgagaga 50
 gatgctgccc ggcccgcctc ggctttgagg cgagagaagt gtcccagacc 100
 cattlegect tgctgacggc gtcgagccct ggccagacat gtccacaggg 150
 ttctccttcg ggtccgggac tctgggctcc accaccgtgg ccgccggcgg 200
 gaccagcaca ggcggcgttt tctccttcgg aacgggaacg tctagcaacc 250
 cttctgtggg gctcaatttt ggaaatcttg gaagtacttc aactccagca 300
 actacatctg ctccttcaag tggttttgga accgggctct ttggatctaa 350
 acctgccact gggttcactc taggaggaac aaatacaggt gccttgcaca 400
```


<210> 254

<211> 545

<212> PRT

<213> Homo sapiens

<400> 254

Met Ser Thr Gly Phe Ser Phe Gly Ser Gly Thr Leu Gly Ser Thr 1 5 10 15

Thr Val Ala Ala Gly Gly Thr Ser Thr Gly Gly Val Phe Ser Phe 20 25 30

Gly Thr Gly Thr Ser Ser Asn Pro Ser Val Gly Leu Asn Phe Gly
35 40 45

Asn Leu Gly Ser Thr Ser Thr Pro Ala Thr Thr Ser Ala Pro Ser 50 55 60

Ser Gly Phe Gly Thr Gly Leu Phe Gly Ser Lys Pro Ala Thr Gly
65 70 75

Phe Thr Leu Gly Gly Thr Asn Thr Gly Ala Leu His Thr Lys Arg 80 85 90

Pro Gln Val Val Thr Lys Tyr Gly Thr Leu Gln Gly Lys Gln Met 95 100 105

His Val Gly Lys Thr Pro Ile Gln Val Phe Leu Gly Val Pro Phe 110 115 120

Ser Arg Pro Pro Leu Gly Ile Leu Arg Phe Ala Pro Pro Glu Pro 125 130 135

Pro Glu Pro Trp Lys Gly Ile Arg Asp Ala Thr Thr Tyr Pro Pro Gly Trp Ser Leu Ala Leu Ser Pro Gly Trp Ser Ala Val Ala Arg 160 Ser Arg Leu Thr Ala Thr Ser Ala Ser Arg Val Gln Ala Ser Leu Leu Pro Gln Pro Leu Ser Val Trp Gly Tyr Arg Cys Leu Gln Glu 185 190 Ser Trp Gly Gln Leu Ala Ser Met Tyr Val Ser Thr Arg Glu Arg Tyr Lys Trp Leu Arg Phe Ser Glu Asp Cys Leu Tyr Leu Asn Val Tyr Ala Pro Ala Arg Ala Pro Gly Asp Pro Gln Leu Pro Val Met Val Trp Phe Pro Gly Gly Ala Phe Ile Val Gly Ala Ala Ser Ser Tyr Glu Gly Ser Asp Leu Ala Ala Arg Glu Lys Val Val Leu Val Phe Leu Gln His Arg Leu Gly Ile Phe Gly Phe Leu Ser Thr Asp Asp Ser His Ala Arg Gly Asn Trp Gly Leu Leu Asp Gln Met Ala Ala Leu Arg Trp Val Gln Glu Asn Ile Ala Ala Phe Gly Gly Asp Pro Gly Asn Val Thr Leu Phe Gly Gln Ser Ala Gly Ala Met Ser Ile Ser Gly Leu Met Met Ser Pro Leu Ala Ser Gly Leu Phe His Arg Ala Ile Ser Gln Ser Gly Thr Ala Leu Phe Arg Leu Phe Ile Thr Ser Asn Pro Leu Lys Val Ala Lys Lys Val Ala His Leu Ala Gly Cys Asn His Asn Ser Thr Gln Ile Leu Val Asn Cys Leu Arg Ala Leu Ser Gly Thr Lys Val Met Arg Val Ser Asn Lys Met Arg Phe Leu Gln Leu Asn Phe Gln Arg Asp Pro Glu Glu Ile Ile Trp 410 420 Ser Met Ser Pro Val Val Asp Gly Val Val Ile Pro Asp Asp Pro

				425					430					435
Leu	Val	Leu	Leu	Thr 440	Gln	Gly	Lys	Val	Ser 445	Ser	Val	Pro	Tyr	Leu 450
Leu	Gly	Val	Asn	Asn 455	Leu	Glu	Phe	Asn	Trp 460	Leu	Leu	Pro	Tyr	Asn 465
Ile	Thr	Lys	Glu	Gln 470	Val	Pro	Leu	Val	Val 475	Glu	Glu	Tyr	Leu	Asp 480
Asn	Val	Asn	Glu	His 485	Asp	Trp	Lys	Met	Leu 490	Arg	Asn	Arg	Met	Met 495
Asp	Ile	Val	Gln	Asp 500	Ala	Thr	Phe	Val	Tyr 505	Ala	Thr	Leu	Gln	Thr 510
Ala	His	Tyr	His	Arg 515	Glu	Thr	Pro	Met	Met 520	Gly	Ile	Суз	Pro	Ala 525
Gly	His	Ala	Thr	Thr 530	Arg	Met	Lys	Ser	Thr 535	Cys	Ser	Trp	Ile	Leu 540
Pro	Gln	Glu	Trp	Ala 545										
<210> 255 <211> 23 <212> DNA <213> Artificial Sequence														
<220> <223> Synthetic oligonucleotide probe														
<400> aggt			aggag	gtcct	g gg	gg 23	3							
<211><212>	aggtgcctgc aggagtcctg ggg 23 <210> 256 <211> 24 <212> DNA <213> Artificial Sequence													
<220> <223>		nthet	ic o	oligo	nucl	.eoti	.de p	orobe)					
<400> ccac			agco	gaag	ja to	jcc 2	24							
<210><211><211><212><213>	45 DN	1	ial	Sequ	ence	<u>:</u>								
<220> <223>		thet	ic c	oligo	nucl	.eoti	.de p	robe	:					
<400> gaac			gtgg	ctgc	g ct	tcag	cgag	gac	tgtc	tgt	acct	g 45	ı	

- <210> 258 <211> 2764 <212> DNA
- <213> Homo sapiens

<400> 258 gagaacaggc ctgtctcagg caggccctgc gcctcctatg cggagatgct 50 actgccactg ctgctgtcct cgctgctggg cgggtcccag gctatggatg 100 ggagattctg gatacgagtg caggagtcag tgatggtqcc ggagggcctg 150 tgcatctctg tgccctgctc tttctcctac ccccgacaaq actggacagg 200 gtctacccca gcttatggct actggttcaa agcagtgact gagacaacca 250 agggtgctcc tgtggccaca aaccaccaga gtcgagaggt ggaaatgagc 300 acceggggcc gattecaget cactggggat cccgccaagg ggaactgctc 350 cttggtgatc agagacgcgc agatgcagga tgagtcacag tacttctttc 400 gggtggagag aggaagctat gtgacatata atttcatgaa cgatgggttc 450 tttctaaaag taacagtgct cagcttcacg cccagacccc aggaccacaa 500 caccgacete acetgecatg tggaettete cagaaaqqqt qtqaqeqeac 550 agaggaccgt ccgactccgt gtggcctatg cccccagaga ccttgttatc 600 agcatttcac gtgacaacac gccagccctg gagccccagc cccagggaaa 650 tgtcccatac ctggaagccc aaaaaggcca gttcctgcgg ctcctctgtg 700 ctgctgacag ccagcccct gccacactga gctgggtcct gcagaacaga 750 gtcctctcct cgtcccatcc ctggggccct agacccctgg ggctggagct 800 gcccggggtg aaggctgggg attcagggcg ctacacctgc cqaqcgqaqa 850 acaggettgg eteccageag egageeetgg acetetetgt geagtateet 900 ccagagaacc tgagagtgat ggtttcccaa gcaaacagga cagtcctgga 950 aaaccttggg aacggcacgt ctctcccagt actggagggc caaagcctgt 1000 gcctggtctg tgtcacacac agcagccccc cagccaggct gagctggacc 1050 cagaggggac aggttctgag ccctcccag ccctcagacc ccggggtcct 1100 ggagetgeet egggtteaag tggageaega aggagagtte acetgeeaeg 1150 ctcggcaccc actgggctcc cagcacgtct ctctcagcct ctccgtgcac 1200 tataagaagg gactcatctc aacggcattc tccaacggag cgtttctggg 1250 aatcggcatc acggctcttc ttttcctctg cctggccctg atcatcatga 1300

agattctacc gaagagacgg actcagacag aaaccccgag gcccaggttc 1350 teceggeaca geaegateet ggattacate aatgtggtee egaeggetgg 1400 ccccctggct cagaagcgga atcagaaagc cacaccaaac agtcctcgga 1450 cccctcctcc accaggtgct ccctccccag aatcaaagaa gaaccagaaa 1500 aagcagtatc agttgcccag tttcccagaa cccaaatcat ccactcaagc 1550 cccagaatcc caggagagcc aagaggagct ccattatgcc acgctcaact 1600 tcccaggcgt cagacccagg cctgaggccc ggatgcccaa gggcacccag 1650 gcggattatg cagaagtcaa gttccaatga gggtctctta ggctttagga 1700 ctgggacttc ggctagggag gaaggtagag taagaggttg aagataacag 1750 agtgcaaagt ttccttctct ccctctctct ctctctttct ctctctctct 1800 ctctttctct ctcttttaaa aaaacatctg gccagggcac agtggctcac 1850 gcctgtaatc ccagcacttt gggaggttga ggtgggcaga tcgcctgagg 1900 tegggagtte gagaecagee tggecaaett ggtgaaaeee egtetetaet 1950 aaaaatacaa aaattagctg ggcatggtgg caggcgcctg taatcctacc 2000 tacttgggaa getgaggeag gagaateaet tgaaeetggg agaeggaggt 2050 tgcagtgagc caagatcaca ccattgcacg ccagcctggg caacaaagcg 2100 agactccatc tcaaaaaaaa aatcctccaa atgggttggg tgtctgtaat 2150 cccagcactt tgggaggcta aggtgggtgg attgcttgag cccaggagtt 2200 cgagaccagc ctgggcaaca tggtgaaacc ccatctctac aaaaaataca 2250 aaacatagct gggcttggtg gtgtgtgcct gtagtcccag ctgtcagaca 2300 tttaaaccag agcaactcca tctggaatag gagctgaata aaatgaggct 2350 gagacctact gggctgcatt ctcagacagt ggaggcattc taagtcacag 2400 gatgagacag gaggtccgta caagatacag gtcataaaga ctttgctgat 2450 aaaacagatt gcagtaaaga agccaaccaa atcccaccaa aaccaagttg 2500 gccacgagag tgacctctgg tcgtcctcac tgctacactc ctgacagcac 2550 catgacagtt tacaaatgcc atggcaacat caggaagtta cccgatatgt 2600 cccaaaaggg ggaggaatga ataatccacc ccttgtttag caaataagca 2650 agaaataacc ataaaagtgg gcaaccagca gctctaggcg ctgctcttgt 2700 ctatggagta gccattcttt tgttccttta ctttcttaat aaacttgctt 2750

tcaccttaaa aaaa 2764

<210> 259

<211> 544

<212> PRT

<213> Homo sapiens

<400> 259

Met Leu Leu Pro Leu Leu Ser Ser Leu Leu Gly Gly Ser Gln
1 5 10 15

Ala Met Asp Gly Arg Phe Trp Ile Arg Val Gln Glu Ser Val Met
20 25 30

Val Pro Glu Gly Leu Cys Ile Ser Val Pro Cys Ser Phe Ser Tyr 35 40 45

Pro Arg Gln Asp Trp Thr Gly Ser Thr Pro Ala Tyr Gly Tyr Trp
50 55 60

Phe Lys Ala Val Thr Glu Thr Thr Lys Gly Ala Pro Val Ala Thr
65 70 75

Asn His Gln Ser Arg Glu Val Glu Met Ser Thr Arg Gly Arg Phe 80 85 90

Gln Leu Thr Gly Asp Pro Ala Lys Gly Asn Cys Ser Leu Val Ile 95 100 105

Arg Asp Ala Gln Met Gln Asp Glu Ser Gln Tyr Phe Phe Arg Val 110 115 120

Glu Arg Gly Ser Tyr Val Thr Tyr Asn Phe Met Asn Asp Gly Phe 125 130 135

Phe Leu Lys Val Thr Val Leu Ser Phe Thr Pro Arg Pro Gln Asp 140 145 150

His Asn Thr Asp Leu Thr Cys His Val Asp Phe Ser Arg Lys Gly 155 160 165

Val Ser Ala Gln Arg Thr Val Arg Leu Arg Val Ala Tyr Ala Pro 170 175 180

Arg Asp Leu Val Ile Ser Ile Ser Arg Asp Asn Thr Pro Ala Leu 185 190 195

Glu Pro Gln Pro Gln Gly Asn Val Pro Tyr Leu Glu Ala Gln Lys 200 205 210

Gly Gln Phe Leu Arg Leu Leu Cys Ala Ala Asp Ser Gln Pro Pro 215 220 225

Ala Thr Leu Ser Trp Val Leu Gln Asn Arg Val Leu Ser Ser Ser 230 235 240

His Pro Trp Gly Pro Arg Pro Leu Gly Leu Glu Leu Pro Gly Val 245 250 255

Lys	Ala	Gly	Asp	Ser 260	Gly	Arg	Tyr	Thr	Cys 265	Arg	Ala	Glu	Asn	Arg 270
Leu	Gly	Ser		Gln 275	Arg	Ala	Leu	Asp	Leu 280	Ser	Val	Gln	Tyr	Pro 285
Pro	Glu	Asn	Leu	Arg 290	Val	Met	Val	Ser	Gln 295	Ala	Asn	Arg	Thr	Val 300
Leu	Glu	Asn	Leu	Gly 305	Asn	Gly	Thr	Ser	Leu 310	Pro	Val	Leu	Glu	Gly 315
Gln	Ser	Leu	Cys	Leu 320	Val	Cys	Val	Thr	His 325	Ser	Ser	Pro	Pro	Ala 330
Arg	Leu	Ser	Trp	Thr 335	Gln	Arg	Gly	Gln	Val 340	Leu	Ser	Pro	Ser	Gln 345
Pro	Ser	Asp	Pro	Gly 350	Val	Leu	Glu	Leu	Pro 355	Arg	Val	Gln	Val	Glu 360
His	Glu	Gly	Glu	Phe 365	Thr	Суз	His	Ala	Arg 370	His	Pro	Leu	Gly	Ser 375
Gln	His	Val	Ser	Leu 380	Ser	Leu	Ser	Val	His 385	Tyr	Lys	Lys	Gly	Leu 390
Ile	Ser	Thr	Ala	Phe 395	Ser	Asn	Gly	Ala	Phe 400	Leu	Gly	Ile	Gly	Ile 405
Thr	Ala	Leu	Leu	Phe 410	Leu	Суѕ	Leu	Ala	Leu 415	Ile	Ile	Met	Lys	Ile 420
Leu	Pro	Lys	Arg	Arg 425	Thr	Gln	Thr	Glu	Thr 430	Pro	Arg	Pro	Arg	Phe 435
Ser	Arg	His	Ser	Thr 440	Ile	Leu	Asp	Tyr	Ile 445	Asn	Val	Val	Pro	Thr 450
Ala	Gly	Pro	Leu	Ala 455	Gln	Lys	Arg	Asn	Gln 460	Lys	Ala	Thr	Pro	Asn 465
Ser	Pro	Arg	Thr	Pro 470	Pro	Pro	Pro	Gly	Ala 475	Pro	Ser	Pro	Glu	Ser 480
Lys	Lys	Asn	Gln	Lys 485	Lys	Gln	Tyr	Gln	Leu 490	Pro	Ser	Phe	Pro	Glu 495
Pro	Lys	Ser	Ser	Thr 500	Gln	Ala	Pro	Glu	Ser 505	Gln	Glu	Ser	Gln	Glu 510
Glu	Leu	His	Tyr	Ala 515	Thr	Leu	Asn	Phe	Pro 520	Gly	Val	Arg	Pro	Arg 525
Pro	Glu	Ala	Arg	Met 530	Pro	Lys	Gly	Thr	Gln 535	Ala	Asp	Tyr	Ala	Glu 540
Val	Lys	Phe	Gln											

```
<210> 260
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 260
caaagcctgc gcctggtctg tg 22
<210> 261
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 261
ttctggagcc cagagggtgc tgag 24
<210> 262
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 262
ggagctgcca cccattcaaa tggagcacga aggagagttc acctg 45
<210> 263
<211> 2857
<212> DNA
<213> Homo sapiens
<400> 263
 tgaagagtaa tagttggaat caaaagagtc aacgcaatga actgttattt 50
 actgctgcgt tttatgttgg gaattcctct cctatggcct tgtcttggag 100
 caacagaaaa ctctcaaaca aagaaagtca agcagccagt gcgatctcat 150
 ttgagagtga agcgtggctg ggtgtggaac caattttttg taccagagga 200
 aatgaatacg actagtcatc acatcggcca gctaagatct gatttagaca 250
 atggaaacaa ttctttccag tacaagcttt tgggagctgg agctggaagt 300
 acttttatca ttgatgaaag aacaggtgac atatatgcca tacagaagct 350
 tgatagagag gagcgatccc tctacatctt aagagcccag gtaatagaca 400
```

tcgctactgg aagggctgtg gaacctgagt ctgagtttgt catcaaagtt 450

tcggatatca atgacaatga accaaaattc ctagatgaac cttatgaggc 500 cattgtacca gagatgtctc cagaaggaac attagttatc caggtgacag 550 caagtgatgc tgacgatccc tcaagtggta ataatqctcq tctcctctac 600 agettacttc aaggecagec atatttttct gttgaaccaa caacaggagt 650 cataagaata tottotaaaa tqqataqaqa actqoaaqat qaqtattqqq 700 taatcattca agccaaggac atgattggtc agccaggagc gttgtctgga 750 acaacaagtg tattaattaa actttcagat gttaatgaca ataagcctat 800 atttaaagaa agtttatacc gcttgactgt ctctgaatct gcacccactg 850 ggacttctat aggaacaatc atggcatatg ataatgacat aggagagaat 900 gcagaaatgg attacagcat tgaagaggat gattcgcaaa catttgacat 950 tattactaat catgaaactc aagaaggaat agttatatta aaaaagaaag 1000 tggattttga gcaccagaac cactacggta ttagagcaaa agttaaaaac 1050 catcatgttc ctgagcagct catgaagtac cacactgagg cttccaccac 1100 tttcattaag atccaggtgg aagatgttga tgagcctcct cttttcctcc 1150 ttccatatta tgtatttgaa gtttttgaag aaaccccaca gggatcattt 1200 gtaggcgtgg tgtctgccac agacccagac aataggaaat ctcctatcag 1250 gtattctatt actaggagca aagtgttcaa tatcaatgat aatggtacaa 1300 tcactacaag taactcactg gatcgtgaaa tcagtgcttg gtacaaccta 1350 agtattacag ccacagaaaa atacaatata gaacagatct cttcgatccc 1400 actgtatgtg caagttotta acatcaatga toatgotoot gagttototo 1450 aatactatga gacttatgtt tgtgaaaatg caggctctgg tcaggtaatt 1500 cagactatca gtgcagtgga tagagatgaa tccatagaag agcaccattt 1550 ttactttaat ctatctgtag aagacactaa caattcaagt tttacaatca 1600 tagataatca agataacaca gctgtcattt tgactaatag aactggtttt 1650 aaccttcaag aagaacctgt cttctacatc tccatcttaa ttgccgacaa 1700 tggaatcccg tcacttacaa gtacaaacac ccttaccatc catgtctgtg 1750 actgtggtga cagtgggagc acacagacct gccagtacca ggagcttgtg 1800 ctttccatgg gattcaagac agaagttatc attgctattc tcatttgcat 1850 tatgatcata tttgggttta tttttttgac tttgggttta aaacaacgga 1900

gaaaacagat tctatttcct gagaaaaqtq aaqatttcaq aqaqaatata 1950 ttccaatatg atgatgaagg gggtggagaa gaagatacag aggcctttga 2000 tatagcagag ctgaggagta gtaccataat qcqqqaacqc aaqactcqqa 2050 aaaccacaag cgctgagatc aggagcctat acaggcagtc tttgcaagtt 2100 ggccccgaca gtgccatatt caggaaattc attctggaaa agctcgaaga 2150 agctaatact gateegtgtg ecceteettt tgatteette cagacetacg 2200 cttttgaggg aacagggtca ttagctggat ccctgagctc cttagaatca 2250 gcagtctctg atcaggatga aagctatgat taccttaatg agttgggacc 2300 tcgctttaaa agattagcat gcatgtttgg ttctgcagtg cagtcaaata 2350 attagggctt tttaccatca aaatttttaa aagtgctaat gtgtattcga 2400 acccaatggt agtcttaaag agttttgtgc cctggctcta tggcggggaa 2450 agccctagtc tatggagttt tctgatttcc ctggagtaaa tactccatgg 2500 ttattttaag ctacctacat gctgtcattg aacagagatg tggggagaaa 2550 tgtaaacaat cagctcacag gcatcaatac aaccagattt gaagtaaaat 2600 aatgtaggaa gatattaaaa gtagatgaga ggacacaaga tgtagtcgat 2650 ccttatgcga ttatatcatt atttacttag gaaagagtaa aaataccaaa 2700 cgagaaaatt taaaggagca aaaatttgca agtcaaatag aaatgtacaa 2750 atcgagataa catttacatt tctatcatat tgacatgaaa attgaaaatg 2800 tatagtcaga gaaattttca tgaattattc catgaagtat tgtttccttt 2850 atttaaa 2857

<210> 264

<211> 772

<212> PRT

<213> Homo sapiens

<400> 264

Met Asn Cys Tyr Leu Leu Leu Arg Phe Met Leu Gly Ile Pro Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Leu Trp Pro Cys Leu Gly Ala Thr Glu Asn Ser Gln Thr Lys Lys
20 25 30

Val Lys Gln Pro Val Arg Ser His Leu Arg Val Lys Arg Gly Trp 35 40 45

Val Trp Asn Gln Phe Phe Val Pro Glu Glu Met Asn Thr Thr Ser 50 55 60

His His Ile Gly Gln Leu Arg Ser Asp Leu Asp Asn Gly Asn Asn Ser Phe Gln Tyr Lys Leu Leu Gly Ala Gly Ala Gly Ser Thr Phe Ile Ile Asp Glu Arg Thr Gly Asp Ile Tyr Ala Ile Gln Lys Leu Asp Arg Glu Glu Arg Ser Leu Tyr Ile Leu Arg Ala Gln Val Ile Asp Ile Ala Thr Gly Arg Ala Val Glu Pro Glu Ser Glu Phe Val Ile Lys Val Ser Asp Ile Asn Asp Asn Glu Pro Lys Phe Leu Asp Glu Pro Tyr Glu Ala Ile Val Pro Glu Met Ser Pro Glu Gly Thr Leu Val Ile Gln Val Thr Ala Ser Asp Ala Asp Asp Pro Ser Ser 170 175 Gly Asn Asn Ala Arg Leu Leu Tyr Ser Leu Leu Gln Gly Gln Pro Tyr Phe Ser Val Glu Pro Thr Thr Gly Val Ile Arg Ile Ser Ser 200 Lys Met Asp Arg Glu Leu Gln Asp Glu Tyr Trp Val Ile Ile Gln Ala Lys Asp Met Ile Gly Gln Pro Gly Ala Leu Ser Gly Thr Thr 230 Ser Val Leu Ile Lys Leu Ser Asp Val Asn Asp Asn Lys Pro Ile Phe Lys Glu Ser Leu Tyr Arg Leu Thr Val Ser Glu Ser Ala Pro Thr Gly Thr Ser Ile Gly Thr Ile Met Ala Tyr Asp Asn Asp Ile Gly Glu Asn Ala Glu Met Asp Tyr Ser Ile Glu Glu Asp Asp Ser Gln Thr Phe Asp Ile Ile Thr Asn His Glu Thr Gln Glu Gly Ile Val Ile Leu Lys Lys Lys Val Asp Phe Glu His Gln Asn His Tyr Gly Ile Arg Ala Lys Val Lys Asn His His Val Pro Glu Gln Leu Met Lys Tyr His Thr Glu Ala Ser Thr Thr Phe Ile Lys Ile Gln

				350					355					360
Val	Glu	Asp	Val	Asp 365	Glu	Pro	Pro	Leu	Phe 370	Leu	Leu	Pro	Tyr	Tyr 375
Val	Phe	Glu	Val	Phe 380	Glu	Glu	Thr	Pro	Gln 385	Gly	Ser	Phe	Val	Gly 390
Val	Val	Ser	Ala	Thr 395	Asp	Pro	Asp	Asn	Arg 400		Ser	Pro	Ile	Arg 405
Tyr	Ser	Ile	Thr	Arg 410	Ser	Lys	Val	Phe	Asn 415	Ile	Asn	Asp	Asn	Gly 420
Thr	Ile	Thr	Thr	Ser 425	Asn	Ser	Leu	Asp	Arg 430	Glu	Ile	Ser	Ala	Trp 435
Tyr	Asn	Leu	Ser	Ile 440	Thr	Ala	Thr	Glu	Lys 445	Tyr	Asn	Ile	Glu	Gln 450
Ile	Ser	Ser	Ile	Pro 455	Leu	Tyr	Val	Gln	Val 460	Leu	Asn	Ile	Asn	Asp 465
His	Ala	Pro	Glu	Phe 470	Ser	Gln	Tyr	Tyr	Glu 475	Thr	Tyr	Val	Cys	Glu 480
Asn	Ala	Gly	Ser	Gly 485	Gln	Val	Ile	Gln	Thr 490	Ile	Ser	Ala	Val	Asp 495
Arg	Asp	Glu	Ser	Ile 500	Glu	Glu	His	His	Phe 505	Tyr	Phe	Asn	Leu	Ser 510
Val	Glu	Asp	Thr	Asn 515	Asn	Ser	Ser	Phe	Thr 520	Ile	Ile	Asp	Asn	Gln 525
Asp	Asn	Thr	Ala	Val 530	Ile	Leu	Thr	Asn	Arg 535	Thr	Gly	Phe	Asn	Leu 540
Gln	Glu	Glu	Pro	Val 545	Phe	Tyr	Ile	Ser	Ile 550	Leu	Ile	Ala	Asp	Asn 555
Gly	Ile	Pro	Ser	Leu 560	Thr	Ser	Thr	Asn	Thr 565	Leu	Thr	Ile	His	Val 570
Cys	Asp	Cys	Gly	Asp 575	Ser	Gly	Ser	Thr	Gln 580	Thr	Cys	Gln	Tyr	Gln 585
Glu	Leu	Val	Leu	Ser 590	Met	Gly	Phe	Lys	Thr 595	Glu	Val	Ile	Ile	Ala 600
Ile	Leu	Ile	Суѕ	Ile 605	Met	Ile	Ile _.	Phe	Gly 610	Phe	Ile	Phe	Leu	Thr 615
Leu	Gly	Leu	Lys	Gln 620	Arg	Arg	Lys	Gln	Ile 625	Leu	Phe	Pro	Glu	Lys 630
Ser	Glu	Asp	Phe	Arg 635	Glu	Asn	Ile	Phe	Gln 640	Tyr	Asp	Asp	Glu	Gly 645

Gly Gly Glu Glu Asp Thr Glu Ala Phe Asp Ile Ala Glu Leu Arg 660
Ser Ser Thr Ile Met Arg Glu Arg Lys Thr Arg Lys Thr Thr Ser 675
Ala Glu Ile Arg Ser Leu Tyr Arg Gln Ser Leu Gln Val Gly Pro 680
Asp Ser Ala Ile Phe Arg Lys Phe Ile Leu Glu Lys Leu Glu Glu Glu Arg Arg Arg Arg Dro Cys Ala Pro Pro Phe Asp Ser Leu Gln Thr 720
Tyr Ala Phe Glu Gly Thr Gly Ser Leu Ala Gly Ser Leu Gln Tyr Asp Tyr Leu Glu Glu Ser Ala Val Ser Asp Gln Asp Glu Ser Tyr Asp Tyr Leu 750
Asn Glu Leu Gly Pro Arg Phe Lys Arg Leu Ala Cys Met Phe Gly 765

Ser Ala Val Gln Ser Asn Asn 770

- <210> 265
- <211> 349
- <212> DNA
- <213> Homo sapiens
- <220>
- <221> unsure
- <222> 24, 60, 141, 226, 228, 249, 252
- <223> unknown base
- <400> 265

atttcaaggc cagccatatt tttntgttga accaacaaca ggagtcataa 50 gaatattttn taaaatggat agagaactgc aagatgagta ttgggtaatc 100 attcaagcca aggacatgat tggtcagcca ggagcgttgt ntggaacaac 150 aagtgtatta attaaacttt cagatgttaa tgacaataag cctatattta 200 aagaaagttt ataccgcttg actgtntntg aatctgcacc cactgggant 250 tntataggaa caatcatggc atatgataat gacataggag agaatgcaga 300 aatggattac agcattgaag aggatgattc gcaaacattt gacattatt 349

- <210> 266
- <211> 25
- <212> DNA
- <213> Artificial Sequence

<220>

```
<223> Synthetic oligonucleotide probe
<400> 266
 cttgactgtc tctgaatctg caccc 25
<210> 267
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 267
 aagtggtgga agcctccagt gtgg 24
<210> 268
<211> 52
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 268
 ccactacggt attagagcaa aagttaaaaa ccatcatggt tcctggagca 50
 qc 52
<210> 269
<211> 2747
<212> DNA
<213> Homo sapiens
<400> 269
 gcaacctcag cttctagtat ccagactcca gcgccgcccc gggcgcggac 50
 cccaaccccg acccagaget tetecagegg eggegeageg ageagggete 100
 cccgccttaa cttcctccgc ggggcccagc caccttcggg aqtccgqqtt 150
 gcccacctgc aaactctccg ccttctgcac ctgccacccc tgagccagcg 200
 egggeeeeg agegagteat ggeeaacgeg gggetgeage tgttgggett 250
 cattetegee tteetgggat ggateggege categteage actgeeetge 300
 cccagtggag gatttactcc tatgccggcg acaacatcgt gaccgcccag 350
 gccatgtacg aggggctgtg gatgtcctgc gtgtcgcaga gcaccgggca 400
 gatccagtgc aaagtctttg actccttgct gaatctgagc agcacattgc 450
 aagcaacccg tgccttgatg gtggttggca tcctcctggg agtgatagca 500
atctttgtgg ccaccgttgg catgaagtgt atgaagtgct tggaagacga 550
tgaggtgcag aagatgagga tggctgtcat tgggggtgcg atatttcttc 600
```

ttgcaggtct ggctatttta gttgccacag catggtatgg caatagaatc 650 gttcaagaat tctatgaccc tatgacccca gtcaatgcca ggtacgaatt 700 tggtcaggct ctcttcactg gctgggctgc tgcttctctc tgccttctgg 750 gaggtgccct actttgctgt tcctgtcccc gaaaaacaac ctcttaccca 800 acaccaagge cetatecaaa acetgeacet teeageggga aagactaegt 850 gtgacacaga ggcaaaagga gaaaatcatg ttgaaacaaa ccgaaaatgg 900 acattgagat actatcatta acattaggac cttagaattt tgggtattgt 950 aatctgaagt atggtattac aaaacaaaca aacaaacaaa aaacccatgt 1000 gttaaaatac tcagtgctaa acatggctta atcttatttt atcttctttc 1050 ctcaatatag gagggaagat ttttccattt gtattactgc ttcccattga 1100 gtaatcatac tcaaatgggg gaaggggtgc tccttaaata tatataqata 1150 tgtatatata catgtttttc tattaaaaat agacagtaaa atactattct 1200 cattatgttg atactagcat acttaaaata tctctaaaat aggtaaatgt 1250 atttaattcc atattgatga agatgtttat tggtatattt tctttttcgt 1300 cettatatae atatgtaaca gteaaatate atttactett etteattage 1350 tttgggtgcc tttgccacaa gacctagcct aatttaccaa ggatgaattc 1400 tttcaattct tcatgcgtgc ccttttcata tacttatttt attttttacc 1450 ataatcttat agcacttgca tcgttattaa gcccttattt gttttgtgtt 1500 tcattggtct ctatctcctg aatctaacac atttcatagc ctacatttta 1550 gtttctaaag ccaagaagaa tttattacaa atcagaactt tggaggcaaa 1600 tetttetgea tgaccaaagt gataaattee tgttgacett eecacacaat 1650 ccctgtactc tgacccatag cactcttgtt tgctttgaaa atatttgtcc 1700 aattgagtag ctgcatgctg ttcccccagg tgttgtaaca caactttatt 1750 gattgaattt ttaagctact tattcatagt tttatatccc cctaaactac 1800 ctttttgttc cccattcctt aattgtattg ttttcccaag tgtaattatc 1850 atgcgtttta tatcttccta ataaggtgtg gtctgtttgt ctgaacaaag 1900 tgctagactt tctggagtga taatctggtg acaaatattc tctctgtagc 1950 tgtaagcaag tcacttaatc tttctacctc ttttttctat ctgccaaatt 2000 gagataatga tacttaacca gttagaagag gtagtgtgaa tattaattag 2050

ttttatattac tcttattctt tgaacatgaa ctatgcctat gtagtgtctt 2100 tatttgctca gctggctgag acactgaaga agtcactgaa caaaacctac 2150 acacgtacct tcatgtgatt cactgccttc ctctctac cagtctattt 2200 ccactgaaca aaacctacac acataccttc atgtggttca gtgccttcct 2250 ctctctacca gtctatttcc actgaacaaa acctacgcac ataccttcat 2300 gtggctcagt gccttcctct ctctaccagt ctatttccat tctttcagct 2350 gtgtctgaca tgtttgtgct ctgttccatt ttaacaactg ctcttacttt 2400 tccagtctgt acagaatgct atttcacttg agcaagatga tgtaatggaa 2450 agggtgttgg cactggtgct tggagacctg gatttgagtc ttggtgctat 2500 cttcatctgt aagcggtgtt tggaagacctg ttggatctgc aagcttattg 2550 cttcatctgt aagcggtggt ttgtaattcc tgatcttcc acctcacagt 2600 gatgttgtg ggatccagtg agatagaata catgtaagtg tggttttgta 2650 atttaaaaaag tgctatacta agggaaagaa ttgaagaata aactgcatac 2700 gttttggtgt tgcttttcaa atgtttgaaa ataaaaaaaa tgttaag 2747

<210> 270

<211> 211

<212> PRT

<213> Homo sapiens

<400> 270

Met Ala Asn Ala Gly Leu Gln Leu Leu Gly Phe Ile Leu Ala Phe 1 5 10 15

Leu Gly Trp Ile Gly Ala Ile Val Ser Thr Ala Leu Pro Gln Trp 20 25 30

Arg Ile Tyr Ser Tyr Ala Gly Asp Asn Ile Val Thr Ala Gln Ala 35 40 45

Met Tyr Glu Gly Leu Trp Met Ser Cys Val Ser Gln Ser Thr Gly
50 55 60

Gln Ile Gln Cys Lys Val Phe Asp Ser Leu Leu Asn Leu Ser Ser 65 70 75

Thr Leu Gln Ala Thr Arg Ala Leu Met Val Val Gly Ile Leu Leu 80 85 90

Gly Val Ile Ala Ile Phe Val Ala Thr Val Gly Met Lys Cys Met
95 100 105

Lys Cys Leu Glu Asp Asp Glu Val Gln Lys Met Arg Met Ala Val 110 $\,$ 115 $\,$ 120

Ile Gly Gly Ala Ile Phe Leu Leu Ala Gly Leu Ala Ile Leu Val 125 130 135

Ala Thr Ala Trp Tyr Gly Asn Arg Ile Val Gln Glu Phe Tyr Asp 140 145 150

Pro Met Thr Pro Val Asn Ala Arg Tyr Glu Phe Gly Gln Ala Leu 155 160 165

Phe Thr Gly Trp Ala Ala Ala Ser Leu Cys Leu Leu Gly Gly Ala 170 175 180

Leu Leu Cys Cys Ser Cys Pro Arg Lys Thr Thr Ser Tyr Pro Thr 185 190 195

Pro Arg Pro Tyr Pro Lys Pro Ala Pro Ser Ser Gly Lys Asp Tyr 200 205 210

Val

<210> 271

<211> 564

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 21, 69, 163, 434, 436, 444

<223> unknown base

<400> 271

ttctggccaa acccgggct ncagctgttg ggcttcatct cgccttcctg 50 ggatggatcg gcgccatcnt cacactgccc ttccccagtg gaggatttta 100 ctccctatgc tggcgacaac atcgtgaccg cccagcccat gtacgagggg 150 ctgtggatgt ccngcgtgtc gcagagcacc gggcagatcc agtgcaaagt 200 ctttgactcc ttgctgaatc tgagcagcac attgcaagca acccgtgcct 250 tgatggtggt tggcatcctc ctgggagtga tagcaatctt tgtggccacc 300 gttggcatga agtgtatgaa gtgcttggaa gacgatgagg tgcagaagat 350 gaggatggct gtcattgggg gcgcgatatt tcttcttgca ggtctggcta 400 ttttagttgc cacagcatgg tatggcaata gaancnttca acanttctat 450 gaccctatga ccccagtcaa tgccaggtac gaatttggtc aggetctctt 500

cactggctgg gctgctgctt ctctctgcct tctgggaggt gccctacttt 550

<210> 272 <211> 498

gctgttcctg tccc 564

```
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 30, 49, 102, 141, 147, 171, 324-325, 339-341
<223> unknown base
<400> 272
 accettgace caacgeggee eccegacegn tteatggeea aacgegggne 50
 tccagctgtt gggcttcatt ctccccttcc tgggatggac cggcgcccat 100
 cntcagcact gccctgcccc agtggaggat ttactcctat nccqqcnaca 150
 acatcgtgac cgcccaggcc ntgtacgagg ggctgtggat gtcctgcgtg 200
 tcgcagagca ccgggcagat ccagtgcaaa gtctttgact cccttgctga 250
 atctgagcag cacattgcaa gcaacccgtg ccttgatggt ggttggcatc 300
 ctcctgggag tgatagcaat cttnntggcc accgttgtnn ntqaaqtqta 350
 tgaagtgctt ggaagacgat gaggtgcaga agatgaggat ggctgtcatt 400
 gggggcgcga tatttcttct tgcaggtctg gctattttag ttgccacagc 450
 atggtatggc aatagaatcg ttcaagaatt ctatgaccct atgaccga 498
<210> 273
<211> 552
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 25, 57, 67, 94-95, 116, 152, 165, 212, 233, 392-394
<223> unknown base
<400> 273
 gggcccgacc attatccaac cgggntcact gttggctcat ctccctcctg 50
 gatgaancgc gccatcntca gactccctgc cccatggaga tttnncctat 100
 gctggcgaca acatcntgac ccccagccat gtacgagggg ctttgaacgt 150
 engegtgteg caganeaceg ggeagateca gtgeaaagte tttgaeteet 200
 tgctgaatct gngcagcaca ttgcagcaac ccntgccctg atggtggttg 250
 gcatcctcct gggagtgata gcaatctttg tggccaccgt tggcatgaag 300
 tgtatgaagt gcttggaaga cgatgaggtg cagaagatga gqatgqctqt 350
 cattgggggc gcgatatttc ttcttgcagg tctggctatt tnnngttgcc 400
```

acagcatggt atggcaatag aatcgttcaa gaattctatg accctatgac 450

```
cccagtcaat gccaggtacg aatttggtca ggctctcttc actggctggg 500
 ctgctgcttc tctctgcctt ctgggaggtg ccctactttg ctgttcctgc 550
ga 552
<210> 274
<211> 526
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 25, 50, 60, 123, 127, 370, 395, 397-398, 402-403, 405-407
<223> unknown base
<400> 274
atteteceet cetggatgga tegeneeace gteacattge etteeceean 50
 tggaggattn actcctatgc tggcgacaac atcgtgaccc cccaggccat 100
 ttaccgaggg gctttggatg tcntgcntgt cgcagagcac cgggcagatc 150
 ccagtgcaaa gtctttgact ccttgctgaa tctgagcagc acattgcaag 200
 caacccgtgc cttgatgggg ttggcatcct cctgggagtg atagcaacct 250
 ttgtggccac cgttggcatg aagtgtatga agtgcttgga agacgatgag 300
 gtgccagaag atgaggatgg ctgtcattgg gggcgcgata tttcttgttg 350
 caggtctggc tattttagtn gccacagcat ggtatggcaa tagantnntt 400
 cnngnnntct atgaccctat gaccccagtc aatgccaggt acgaatttgg 450
 teaggetete tteactgget gggetgetge ttetetetge ettetgggag 500
 gtgccctact ttgctgttcc tgtccc 526
<210> 275
<211> 398
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 22, 61, 91, 144, 238-239, 262, 265-266, 271, 274
<223> unknown base
<400> 275
agagcaccgg cagatcccag tncaaagtct ttgacccttg ctgaatctga 50
gcagcacatt ncaagcaacc ccttgccttg aaggtggttg ncatccccc 100
```

tgggagtgaa tagcaatctt tgtggccacc gttggcatga agtntatgaa 150

gtgcttggaa gacgatgagg tgcagaagat gaggatggct gtcattgggg 200

```
gcgcgatatt tcttcttgca ggtctggcta ttttagtnnc cacagcatgg 250
 tatggcaata gnatnnttcg nggnttctat gaccctatga ccccagtcaa 300
 tgccaggtac gaatttggtc aggctctctt cactggctgg gctgctgctt 350
 ctctctgcct tctgggaggt gccctacttt gctgttcctg tccccgaa 398
<210> 276
<211> 495
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 39, 58, 130, 234, 314, 364, 427, 450, 461, 476
<223> unknown base
<400> 276
 agcaatgccc tgcccccagt ggaggattaa ttcctatgnt ggggacaaca 50
 ttgtgacngc ccaggccatg tacgggggc tgtggatgtc ctgcgtgtcg 100
 cagagcaccg ggcagatcca gtgcaaagtn tttgactcct tgctgaattt 150
 gagcagcaca ttgcaagcaa cccgtgcctt gatggtggtt ggcatcttcc 200
 tgggagtgat agcaatcttt gtggccaccg tggnaatgaa gtgtatgaag 250
 tgcttggaag acgatgaggt gcagaagatg aggatggctg tcattggggg 300
 cgcgatattt cttnttgcag gtctggctat tttagttgcc acagcatggt 350
 atggcaatag aatngttcaa gaattttatg accctatgac cccagtcaat 400
 gccaggtacg aatttggtca ggctttnttc actggctggg ctgctgcttn 450
 tttctgcctt ntgggaggtg ccctantttg ctgttcctgc gaacc 495
<210> 277
<211> 200
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 34, 87, 138, 147, 163, 165-166, 172
<223> unknown base
<400> 277
tcataggggg gcgcgatatt ttttcttgca ggtntggtta ttttagttgc 50
 cacagcatgg tatggcaata gaatcgttca agaattntat gaccctatga 100
```

ccccagtcaa tgccaggtac gaatttggtc aggctctntt cactggntgg 150

gctgctgctt ctntnngcct tntqqqaqqt qccctacttt qctqttcctq 200

```
<210> 278
<211> 542
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 26, 43, 55, 77, 198, 361-362, 391-392, 396
<223> unknown base
<400> 278
 ttcctgggat ggatccgccc ccatcntcac atgccctgcc ccntggagat 50
 ttacncctat gctggcgaac aacatcntga ccgcccaggc catgtacgag 100
 gggctgtgga atgtcctgcg tgtcccagag caccgggcag atccagtgca 150
 aagtetttga eteettgetg aatetgagea geacattgea ageaacentg 200
 ccttgatggt ggttggcatc ctcctgggag tgatagcaat ctttgtggcc 250
 accgttggca tgaaagtgta tgaagtgctt ggaagacgat gaggtgcaga 300
 agatgaggat ggctgtcatt gggggcgcga tatttcttct tgcaggtctg 350
 gctattttag nngccacagc atggtatggc aatcagaccc nntcanaaac 400
 tctatgaccc tatgacccca gtcaatgcca ggtacgaatt tggtcaggct 450
 ctcttcactg gctgggctgc tgcttctctc tgccttctgg gaggtgccct 500
 actttgctgt tcctgtcccc gaaaaacaac ctcttaccca cg 542
<210> 279
<211> 548
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 90, 115, 147, 228, 387
<223> unknown base
<400> 279
 cggggctgca gctgttgggc ttcatctcgc ttcctgggat ggaatcggcg 50
 ccatcgtcag cactgccctg ccccatggag gatttactcn tatgctggcg 100
 acaacatcgt gaccncccag gccatgtacg aggggctgtg gatgtcngcg 150
 tgtcgcagag caccgggcag atccagtgca aagtctttga ctccttgctg 200
aatctgagca gcacattgca agcaaccntg ccttgatggt ggttggcatc 250
```

ctcctgggag tgatagcaat ctttgtggcc accgttggca tgaagtgtat 300

gaagtgcttg gaagacgatg aggtgcagaa gatgaggatg gctgtcattg 350

```
ggggcgcgat atttcttctt gcaggtctgg ctatttntag ttgccacagc 400
 atggtatggc aatagaatcg ttcaagaatt ctatgaccct atgaccccag 450
 tcaatgccag gtacgaattt ggtcaggctc tcttcactgg ctgggctgct 500
 gcttctctct gccttctggg aggtgcccta ctttgctgtt cctgcgaa 548
<210> 280
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 280
 cgagcgagtc atggccaacg c 21
<210> 281
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 281
 gtgtcacacg tagtctttcc cgctgg 26
<210> 282
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 282
ctgcagctgt tgggcttcat tctcqccttc ctqqqatqqa tcq 43
<210> 283
<211> 2285
<212> DNA
<213> Homo sapiens
<400> 283
 gcgtgccgtc agctcgccgg gcaccgcggc ctcgccctcg ccctccgccc 50
 ctgcgcctgc accgcgtaga ccgaccccc cctccagcgc gcccacccgg 100
 tagaggaccc ccgcccgtgc cccgaccggt ccccgccttt ttgtaaaact 150
 taaagcgggc gcagcattaa cgcttcccgc cccggtgacc tctcaggggt 200
ctccccgcca aaggtgctcc gccgctaagg aacatggcga aggtggagca 250
```

ggtcctgagc ctcgagccgc agcacgagct caaattccga ggtcccttca 300

ccgatgttgt caccaccaac ctaaagcttg gcaacccgac agaccgaaat 350 gtgtgtttta aggtgaagac tacagcacca cgtaggtact gtgtgaggcc 400 caacagcgga atcatcgatg caggggcctc aattaatgta tctgtgatgt 450 tacagccttt cgattatgat cccaatgaga aaagtaaaca caagtttatg 500 gttcagtcta tgtttgctcc aactgacact tcagatatgg aagcagtatg 550 gaaggaggca aaaccggaag accttatgqa ttcaaaactt aqatqtqtq 600 ttgaattgcc agcagagaat gataaaccac atgatgtaga aataaataaa 650 attatatcca caactgcatc aaagacagaa acaccaatag tgtctaagtc 700 tctgagttct tctttggatg acaccgaagt taagaaggtt atggaagaat 750 gtaagaggct gcaaggtgaa gttcagaggc tacgggagga gaacaagcag 800 ttcaaggaag aagatggact gcggatgagg aagacagtgc agagcaacag 850 ccccatttca gcattagccc caactgggaa ggaagaaggc cttagcaccc 900 ggctcttggc tctggtggtt ttgttcttta tcgttggtgt aattattggg 950 aagattgcct tgtagaggta gcatgcacag gatggtaaat tggattggtg 1000 gatccaccat atcatgggat ttaaatttat cataaccatg tgtaaaaaga 1050 aattaatgta tgatgacatc tcacaggtct tgcctttaaa ttacccctcc 1100 ctgcacacac atacacagat acacacaca aaatataatg taacgatctt 1150 ttagaaagtt aaaaatgtat agtaactgat tgagggggaa aaagaatgat 1200 ctttattaat gacaagggaa accatgagta atgccacaat ggcatattgt 1250 aaatgtcatt ttaaacattg gtaggccttg gtacatgatg ctggattacc 1300 tetettaaaa tgacaeeett eetegeetgt tggtgetgge eettggggag 1350 ctggagccca gcatgctggg gagtgcggtc agctccacac agtagtcccc 1400 acgtggccca ctcccggccc aggctgcttt ccgtgtcttc agttctgtcc 1450 aagccatcag ctccttggga ctgatgaaca gagtcagaag cccaaaggaa 1500 ttgcactgtg gcagcatcag acgtactcgt cataagtgag aggcgtgtgt 1550 tgactgattg acccagcgct ttggaaataa atggcagtgc tttgttcact 1600 taaagggacc aagctaaatt tgtattggtt catgtagtga agtcaaactg 1650 ttattcagag atgtttaatg catatttaac ttatttaatg tatttcatct 1700 catgttttct tattgtcaca agagtacagt taatgctgcg tgctgctgaa 1750

ctctgttggg tgaactggta ttgctgctgg agggctgtgg gctcctctgt 1800 ctctggagag tctggtcatg tggaggtggg gtttattggg atgctggaga 1850 agagctgcca ggaagtgtt tttctgggtc agtaaataac aactgtcata 1900 gggagggaaa ttctcagtag tgacagtcaa ctctaggtta cctttttaa 1950 tgaagagtag tcagtcttct agattgttct tataccacct ctcaaccatt 2000 actcacactt ccagcgcca ggtccaagtc tgagcctgac ctccccttgg 2050 ggacctagcc tggagtcagg acaaatggat cgggctgcag agggttagaa 2100 gcgagggcac cagcagttgt gggtgggag caagggaaga gagaaactct 2150 tcagcgaatc ctctagtac tagttgagag tttgactgtg aattaatttt 2200 atgccataaa agaccaaccc agttctgtt gactatgtag catcttgaaa 2250 agaaaaatta taataaagcc ccaaaattaa gaaaa 2285

<210> 284

<211> 243

<212> PRT

<213> Homo sapiens

<400> 284

Met Ala Lys Val Glu Gln Val Leu Ser Leu Glu Pro Gln His Glu 1 5 10

Leu Lys Phe Arg Gly Pro Phe Thr Asp Val Val Thr Thr Asn Leu 20 25 30

Lys Leu Gly Asn Pro Thr Asp Arg Asn Val Cys Phe Lys Val Lys
35 40 45

Thr Thr Ala Pro Arg Arg Tyr Cys Val Arg Pro Asn Ser Gly Ile
50 55 60

Ile Asp Ala Gly Ala Ser Ile Asn Val Ser Val Met Leu Gln Pro 65 70 75

Phe Asp Tyr Asp Pro Asn Glu Lys Ser Lys His Lys Phe Met Val 80 85 90

Gln Ser Met Phe Ala Pro Thr Asp Thr Ser Asp Met Glu Ala Val 95 100 105

Trp Lys Glu Ala Lys Pro Glu Asp Leu Met Asp Ser Lys Leu Arg 110 115 120

Cys Val Phe Glu Leu Pro Ala Glu Asn Asp Lys Pro His Asp Val 125 130 135

Glu Ile Asn Lys Ile Ile Ser Thr Thr Ala Ser Lys Thr Glu Thr 140 145 150

Pro Ile Val Ser Lys Ser Leu Ser Ser Ser Leu Asp Asp Thr Glu
155 160 165

Val Lys Lys Val Met Glu Glu Cys Lys Arg Leu Gln Gly Glu Val 170 175 180

Gln Arg Leu Arg Glu Glu Asn Lys Gln Phe Lys Glu Glu Asp Gly 185 190 195

Leu Arg Met Arg Lys Thr Val Gln Ser Asn Ser Pro Ile Ser Ala 200 205 210

Leu Ala Pro Thr Gly Lys Glu Glu Gly Leu Ser Thr Arg Leu Leu 215 220 225

Ala Leu Val Val Leu Phe Phe Ile Val Gly Val Ile Ile Gly Lys 230 235 240

Ile Ala Leu

<210> 285

<211> 418

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 40, 53, 68, 119, 134, 177-178, 255

<223> unknown base

<400> 285

gtcagtcttc tagattgtcc ttatcccacc tttcaaccan tactcacatt 50 tcnagcgccc aggtccangt ctgagcctga cttccccttg gggacctagc 100 ctggagtcag gacaatggnt cgggctgcag aggnttagaa gcgagggcac 150 cagcagtttt gggtgggag caagggnnga gagaaactct tcagcgaatc 200 cttctagtac tagttgagag tttgactgtg aattaatttt atgccataaa 250 agacnaaccc agttctgttt gactatgtag catcttgaaa agaaaaatta 300 taataaagcc ccaaaattaa gaattctttt gtcattttgt cacatttgct 350 ctatgggggg aattattatt ttatcatttt tattattttg ccattggaag 400

gttaacttta aaatgagc 418

<210> 286

<211> 543

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 73, 97

<220>

<221> unsure

<223> unknown base

```
<223> unknown base
<400> 286
 tattgtaaag gccattttaa accattggta ggccttggta catgatgctg 50
 gattacctcc ttaaatgaca conttecteg cetgttggtg etggeenttg 100
 gggagctgga gccccagcat gctggggagt gcggtcagct ccacacagta 150
 gtccccacgt ggcccactcc cggcccaggc tgctttccgt gtcttcagtt 200
 ctgtccaagc catcagctcc ttgggactga tgaacagagt cagaagccca 250
 aaggaattgc cactgtggca gcatcagacg tactcgtcat aagtgagagg 300
 cgtgtgttga ctgattgacc cagcgctttg gaaataaatg gcagtgcttt 350
 gttcacttaa agggaccaag ctaaattgta ttggttcatg tagtgaagtc 400
 aaactgttat tcagagatgt ttaatgcata tttaacttat ttaatgtatt 450
 tcatctcatg ttttcttatt gtcacaagag tacagttaat gctgcgtgct 500
 gctgaactct gttgggtgaa ctggtattgc tgctggaggg ctg 543
<210> 287
<211> 270
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 38, 64, 72, 164, 198, 200, 220, 222, 229, 242
<223> unknown base
<400> 287
 ccctggtggt tttgttcttt aattcgttgg tgtaattntt gggaagattg 50
 cttgtagagg tagnatgcac cnggctggta aattggattg gtggatccac 100
 catatccatg ggatttaaat ttatcataac catgtgtaaa aagaaattaa 150
 tgtatgatga catntcacag gtattgcctt taaattaccc atccctgnan 200
 acacatacac agatacacan anacaaatnt aatgtaacga tnttttagaa 250
 agttaaaaat gtatagtaac 270
<210> 288
<211> 428
<212> DNA
<213> Homo sapiens
```

<222> 35, 116, 129, 197, 278, 294, 297, 349, 351

```
<400> 288
 ggtggcccat tcccggccca ggctgctttc cggtnttcag ttctgtccaa 50
 gccatcagct ccttgggact gatgaacaga gtcagaagcc caaaggaatt 100
 gcactgtggc agcatnagac gtacttgtna taagtgagag gcgtgtgttg 150
 actgattgac ccagcgcttt ggaaataaat qqcaqtqctt tqttcantta 200
 aagggaccaa gctaaatttg tattggttca tgtagtgaag tcaaactqtt 250
attcagagat gtttaatgca tatttaantt atttaatgta tttnatntca 300
 tgttttctta ttgtcacaag agtacagtta atgctgcgtg ctgctgaant 350
 ntgttgggtg aactggtatt gctgctggag ggctgtgggc tcctctgtct 400
 ttggagagtc tggtcatgtg gaggtggg 428
<210> 289
<211> 320
<212> DNA
<213> Homo sapiens
<400> 289
 tgctttccgt gtcttcagtt ctgtccaagc catcagctcc ttgggacttg 50
 atgaacagag tcagaagccc aaaggaattg cactgtggca gcatcagacg 100
 tactcgtcat aagtgagagg cgtgtgttga ctgattgacc cagcgctttg 150
 gaaataaatg gcagtgcttt gttcacttaa agggaccaag ctaaatttgt 200
 attggttcat gtagtgaagt caaactgtta ttcagagatg tttaatgcat 250
 atttaactta tttaatgtat ttcatctcat gttttcttat tgtcacaaga 300
 gtacagttaa tgctgcgtgc 320
<210> 290
<211> 609
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 57, 60, 186, 235, 244, 304, 339, 355, 359, 361, 387, 432, 441,
      447, 481, 513, 532, 584, 598
<223> unknown base
<400> 290
aaacctttaa aagttgaggg gaaaagaatg atcctttatt aatgacaagg 50
gaaaccntgn gtaatgccac aatggcatat tgtaaatgtc attttaaaca 100
ttggtaggcc ttggtacatg atgctggatt acctctctta aaatgacacc 150
```

cttcctcgcc tgttggtgct ggcccttggg gagctngagc ccagcatgct 200

- <210> 291
- <211> 493
- <212> DNA
- <213> Homo sapiens
- <400> 291
- ggcccttggg gagctggagc ccagcatgct ggggagtgcg gtcagctcca 50 cacagtagtc cccacgtggc ccactcccgg cccaggctgc tttccgtgtc 100 ttcagttctg tccaagccat cagctccttg ggactgatga acagagtcag 150 aagcccaaag gaattgcact gtggcagcat cagacgtact cgtcataagt 200 gagaggcgtg tgttgactga ttgacccagc gctttggaaa taaatggcag 250 tgctttgttc acttaaaggg accaagctaa atttgtattg gttcatgtag 300 tgaagtcaaa ctgttattca gagatgttta atgcatattt aacttattta 350 atgtattca tctcatgtt tcttattgtc acaagagtac agttaatgct 400 gcgtgctgct gaactctgtt gggtgaactg gtattgctgc tggagggctg 450 tgggctcctc tgtctctgga gagtctggtc atgtggaggt ggg 493
- <210> 292
- <211> 27
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 292
- gcaccaccgt aggtacttgt gtgaggc 27
- <210> 293
- <211> 23
- <212> DNA

- <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 293 aaccaccaga gccaagagcc qqq 23 <210> 294 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 294 cagcggaatc atcgatgcag gggcctcaat taatgtatct gtgatgttac 50 <210> 295 <211> 2530 <212> DNA <213> Homo sapiens
- <400> 295 gcgagctccg ggtgctgtgg cccggccttg gcggggcggc ctccggctca 50 ggctggctga gaggctccca gctgcagcgt ccccgcccgc ctcctcggga 100 gctctgatct cagctgacag tgccctcggg gaccaaacaa gcctggcagg 150 gtctcacttt gttgcccagg ctggagttca gtgccatgat catggtttac 200 tgcagccttg acctcctggg ttcaagcgat cctgctgagt agctgggact 250 acaggacaaa attagaagat caaaatggaa aatatgctgc tttggttgat 300 atttttcacc cctgggtgga ccctcattga tggatctgaa atggaatggg 350 attttatgtg gcacttgaga aaggtacccc ggattgtcag tgaaaggact 400 ttccatctca ccagccccgc atttgaggca gatgctaaga tgatggtaaa 450 tacagtgtgt ggcatcgaat gccagaaaga actcccaact cccagccttt 500 ctgaattgga ggattatctt tcctatgaga ctgtctttga gaatggcacc 550 cgaaccttaa ccagggtgaa agttcaagat ttggttcttg agccgactca 600 aaatatcacc acaaagggag tatctgttag gagaaagaga caggtgtatg 650 gcaccgacag caggttcagc atcttggaca aaaggttctt aaccaatttc 700 cctttcagca cagctgtgaa gctttccacg ggctgtagtg gcattctcat 750 ttcccctcag catgttctaa ctgctgccca ctgtgttcat gatggaaagg 800 actatgtcaa agggagtaaa aagctaaggg tagggttgtt gaagatgagg 850

cttcacaaat tatgaatgat catgtgttga aagccacatt attttatgct 2350 atacattcta tgtatgaggt gctacatttt taggacaaag aattctgtaa 2400 tctttttcaa gaaagagtct ttttctcctt gacaaaatcc agcttttgta 2450 tgaggactat agggtgaatt ctctgattag taattttaga tatgtccttt 2500 cctaaaaatg aataaaattt atgaatatga 2530

<210> 296

<211> 413

<212> PRT

<213> Homo sapiens

<400> 296

Met Glu Asn Met Leu Leu Trp Leu Ile Phe Phe Thr Pro Gly Trp 1 5 10 15

Thr Leu Ile Asp Gly Ser Glu Met Glu Trp Asp Phe Met Trp His
20 25 30

Leu Arg Lys Val Pro Arg Ile Val Ser Glu Arg Thr Phe His Leu 35 40 45

Thr Ser Pro Ala Phe Glu Ala Asp Ala Lys Met Met Val Asn Thr 50 55 60

Val Cys Gly Ile Glu Cys Gln Lys Glu Leu Pro Thr Pro Ser Leu 65 70 75

Ser Glu Leu Glu Asp Tyr Leu Ser Tyr Glu Thr Val Phe Glu Asn 80 85 90

Gly Thr Arg Thr Leu Thr Arg Val Lys Val Gln Asp Leu Val Leu 95 100 105

Glu Pro Thr Gln Asn Ile Thr Thr Lys Gly Val Ser Val Arg Arg 110 115 120

Lys Arg Gln Val Tyr Gly Thr Asp Ser Arg Phe Ser Ile Leu Asp 125 130 135

Lys Arg Phe Leu Thr Asn Phe Pro Phe Ser Thr Ala Val Lys Leu 140 145 150

Ser Thr Gly Cys Ser Gly Ile Leu Ile Ser Pro Gln His Val Leu 155 160 165

Thr Ala Ala His Cys Val His Asp Gly Lys Asp Tyr Val Lys Gly
170 175 180

Ser Lys Lys Leu Arg Val Gly Leu Leu Lys Met Arg Asn Lys Ser 185 190

Gly Gly Lys Lys Arg Arg Gly Ser Lys Arg Ser Arg Arg Glu Ala 200 205 210

- <210> 297
- <211> 24
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 297
- gcatctgcag gagagagcga aggg 24
- <210> 298
- <211> 24
- <212> DNA
- <213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 298
catcgttccc gtgaatccag aggc 24
<210> 299
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 299
gaagggaggc cttcctttca gtggacccgg gtcaagaata cccac 45
<210> 300
<211> 1869
<212> DNA
<213> Homo sapiens
<400> 300
 aatgtgagag gggctgatgg aagctgatag gcaggactgg agtgttagca 50
 ccagtactgg atgtgacagc aggcagagga gcacttagca gcttattcag 100
 tgtccgattc tgattccggc aaggatccaa gcatggaatg ctgccgtcgg 150
 gcaactcctg gcacactgct cctctttctg gctttcctgc tcctgagttc 200
caggaccgca cgctccgagg aggaccggga cggcctatgg gatgcctggg 250
gcccatggag tgaatgctca cgcacctgcg ggggaggggc ctcctactct 300
ctgaggcgct gcctgagcag caagagctgt gaaggaagaa atatccgata 350
cagaacatgc agtaatgtgg actgcccacc agaagcaggt gatttccqaq 400
ctcagcaatg ctcagctcat aatgatgtca agcaccatgg ccagttttat 450
gaatggcttc ctgtgtctaa tgaccctgac aacccatgtt cactcaagtg 500
ccaagccaaa ggaacaaccc tggttgttga actagcacct aaggtcttag 550
atggtacgcg ttgctataca gaatctttgg atatgtgcat cagtggttta 600
tgccaaattg ttggctgcga tcaccagctg ggaagcaccg tcaaggaaga 650
taactgtggg gtctgcaacg gagatgggtc cacctgccgg ctggtccgag 700
ggcagtataa atcccagctc tccgcaacca aatcggatga tactgtggtt 750
gcacttccct atggaagtag acatattcgc cttgtcttaa aaggtcctga 800
tcacttatat ctggaaacca aaaccctcca ggggactaaa ggtgaaaaca 850
gtctcagctc cacaggaact ttccttgtgg acaattctag tgtggacttc 900
```

cagaaatttc cagacaaaga gatactgaga atggctggac cactcacagc 950 agatttcatt gtcaagattc gtaactcggg ctccqctgac agtacagtcc 1000 agttcatctt ctatcaaccc atcatccacc gatggaggga gacggatttc 1050 tttccttgct cagcaacctg tggaggaggt tatcagctga catcggctga 1100 gtgctacgat ctgaggagca accgtgtggt tgctgaccaa tactgtcact 1150 attacccaga gaacatcaaa cccaaaccca agcttcagga gtgcaacttg 1200 gatcettgte cagecagtga eggatacaag cagatcatge ettatgacet 1250 ctaccatccc cttcctcggt gggaggccac cccatggacc gcgtgctcct 1300 cctcgtgtgg ggggggcatc cagagccggg cagtttcctg tgtgqaggag 1350 gacatccagg ggcatgtcac ttcagtggaa gagtggaaat gcatgtacac 1400 ccctaagatg cccatcgcgc agccctgcaa catttttgac tgccctaaat 1450 ggctggcaca ggagtggtct ccgtgcacag tgacatgtgg ccagggcctc 1500 agataccgtg tggtcctctg catcgaccat cgaggaatgc acacaggagg 1550 ctgtagccca aaaacaaagc cccacataaa agaggaatgc atcgtaccca 1600 ctccctgcta taaacccaaa gagaaacttc cagtcgaggc caagttgcca 1650 tggttcaaac aagctcaaga gctagaagaa ggagctgctg tgtcagagga 1700 gccctcgtaa gttgtaaaag cacagactgt tctatatttg aaactgtttt 1750 gtttaaagaa agcagtgtct cactggttgt agctttcatg ggttctgaac 1800 taagtgtaat catctcacca aagctttttg gctctcaaat taaagattga 1850 ttagtttcaa aaaaaaaaa 1869

<210> 301

<211> 525

<212> PRT

<213> Homo sapiens

<400> 301

Met Glu Cys Cys Arg Arg Ala Thr Pro Gly Thr Leu Leu Leu Phe
1 10 15

Leu Ala Phe Leu Leu Ser Ser Arg Thr Ala Arg Ser Glu Glu
20 25 30

Asp Arg Asp Gly Leu Trp Asp Ala Trp Gly Pro Trp Ser Glu Cys 35 40 45

Ser Arg Thr Cys Gly Gly Gly Ala Ser Tyr Ser Leu Arg Arg Cys
50 55 60

Leu Ser Ser Lys Ser Cys Glu Gly Arg Asn Ile Arg Tyr Arg Thr Cys Ser Asn Val Asp Cys Pro Pro Glu Ala Gly Asp Phe Arg Ala Gln Gln Cys Ser Ala His Asn Asp Val Lys His His Gly Gln Phe Tyr Glu Trp Leu Pro Val Ser Asn Asp Pro Asp Asn Pro Cys Ser 110 Leu Lys Cys Gln Ala Lys Gly Thr Thr Leu Val Val Glu Leu Ala Pro Lys Val Leu Asp Gly Thr Arg Cys Tyr Thr Glu Ser Leu Asp Met Cys Ile Ser Gly Leu Cys Gln Ile Val Gly Cys Asp His Gln Leu Gly Ser Thr Val Lys Glu Asp Asn Cys Gly Val Cys Asn Gly Asp Gly Ser Thr Cys Arg Leu Val Arg Gly Gln Tyr Lys Ser Gln Leu Ser Ala Thr Lys Ser Asp Asp Thr Val Val Ala Leu Pro Tyr 210 Gly Ser Arg His Ile Arg Leu Val Leu Lys Gly Pro Asp His Leu Tyr Leu Glu Thr Lys Thr Leu Gln Gly Thr Lys Gly Glu Asn Ser 235 240 Leu Ser Ser Thr Gly Thr Phe Leu Val Asp Asn Ser Ser Val Asp Phe Gln Lys Phe Pro Asp Lys Glu Ile Leu Arg Met Ala Gly Pro 265 270 Leu Thr Ala Asp Phe Ile Val Lys Ile Arg Asn Ser Gly Ser Ala 280 Asp Ser Thr Val Gln Phe Ile Phe Tyr Gln Pro Ile Ile His Arg Trp Arg Glu Thr Asp Phe Phe Pro Cys Ser Ala Thr Cys Gly Gly Gly Tyr Gln Leu Thr Ser Ala Glu Cys Tyr Asp Leu Arg Ser Asn 320 Arg Val Val Ala Asp Gln Tyr Cys His Tyr Tyr Pro Glu Asn Ile 335

Lys Pro Lys Pro Lys Leu Gln Glu Cys Asn Leu Asp Pro Cys Pro

				350					355					360
Ala	Ser	Asp	Gly	Tyr 365	Lys	Gln	Ile	Met	Pro 370	Tyr	Asp	Leu	Tyr	His 375
Pro	Leu	Pro	Arg	Trp 380	Glu	Ala	Thr	Pro	Trp 385	Thr	Ala	Суз	Ser	Ser 390
Ser	Cys	Gly	Gly	Gly 395	Ile	Gln	Ser	Arg	Ala 400	Val	Ser	Суз	Val	Glu 405
Glu	Asp	Ile	Gln	Gly 410	His	Val	Thr	Ser	Val 415	Glu	Glu	Trp	Lys	Cys 420
Met	Tyr	Thr	Pro	Lys 425	Met	Pro	Ile	Ala	Gln 430	Pro	Суѕ	Asn	Ile	Phe 435
Asp	Суз	Pro	Lys	Trp 440	Leu	Ala	Gln	Glu	Trp 445	Ser	Pro	Cys	Thr	Val 450
Thr	Суз	Gly	Gln	Gly 455	Leu	Arg	Tyr	Arg	Val 460	Val	Leu	Cys	Ile	Asp 465
His .	Arg	Gly	Met	His 470	Thr	Gly	Gly	Cys	Ser 475	Pro	Lys	Thr	Lys	Pro 480
His	Ile	Lys	Glu	Glu 485	Cys	Ile	Val	Pro	Thr 490	Pro	Cys	Tyr	Lys	Pro 495
Lys (Glu	Lys	Leu	Pro 500	Val	Glu	Ala	Lys	Leu 505	Pro	Trp	Phe	Lys	Gln 510
Ala	Gln	Glu	Leu	Glu 515	Glu	Gly	Ala	Ala	Val 520	Ser	Glu	Glu	Pro	Ser 525
<210> 302 <211> 1533 <212> DNA <213> Homo sapiens														
<400> cgga			gcgg	cggc	t go	ggaa	ctcc	: cgt	ggag	ggg	ccgg	ıtggg	jcc 5	50
ctcg	ggco	tg a	caga	tggc	a gt	ggcc	actg	cgg	cggc	agt	acto	gccg	rct 1	.00
ctgggcgggg cgctgtggct ggcggcccgc cggttcgtgg ggcccagggt 150														
ccago	cggc	tg c	gcag	aggo	g gg	gaco	ccgg	cct	catg	cac	ggga	agac	tg 2	00
tgct	gato	ac c	gggg	cgaa	c ag	cggc	ctgg	gcc	gcgc	cac	ggcc	gccg	ag 2	:50
ctact	gcg	cc t	ggga	gcgc	g gg	tgat	catg	ggc	tgcc	ggg	accg	cgcg	cg 3	00
cgccg	gagg	ag g	cggc	gggt	c ag	ctcc	gccg	cga	gctc	cgc	cagg	ccgc	gg 3	50
agtgo	egge	сс а	gagc	ctgg	c gt	cago	gggg	tgg	gcga	gct	cata	gtcc	gg 4	00

gagctggacc tegecteget gegeteggtg egegeettet geeaggaaat 450

gctccaggaa gagcctaggc tggatgtctt gatcaataac gcagggatct 500 tccagtgccc ttacatgaag actgaagatg ggtttgagat gcagttcgga 550 gtgaaccatc tggggcactt tctactcacc aatcttctcc ttggactcct 600 caaaagttca gctcccagca ggattgtggt agtttcttcc aaactttata 650 aatacggaga catcaatttt gatgacttga acagtgaaca aagctataat 700 aaaagctttt gttatagccg gagcaaactg gctaacattc tttttaccag 750 ggaactagcc cgccgcttag aaggcacaaa tgtcaccgtc aatgtgttgc 800 atcctggtat tgtacggaca aatctgggga ggcacataca cattccactg 850 ttggtcaaac cactcttcaa tttggtgtca tgggcttttt tcaaaactcc 900 agtagaaggt gcccagactt ccatttattt ggcctcttca cctgaggtag 950 aaggagtgtc aggaagatac tttggggatt qtaaaqaqqa aqaactqttq 1000 cccaaagcta tggatgaatc tgttgcaaga aaactctggg atatcagtga 1050 agtgatggtt ggcctgctaa aataggaaca aggagtaaaa qagctgttta 1100 taaaactgca tatcagttat atctgtgatc aggaatggtg tggattgaga 1150 acttgttact tgaagaaaaa gaattttgat attggaatag cctqctaaga 1200 ggtacatgtg ggtattttgg agttactgaa aaattatttt tgggataaga 1250 gaatttcagc aaagatgttt taaatatata tagtaagtat aatgaataat 1300 aagtacaatg aaaaatacaa ttatattgta aaattataac tgggcaagca 1350 tggatgacat attaatattt gtcagaatta agtgactcaa agtgctatcg 1400 agaggttttt caagtatctt tgagtttcat ggccaaagtg ttaactagtt 1450 ttactacaat gtttggtgtt tgtgtggaaa ttatctgcct ggtgtgtgca 1500 cacaagtctt acttggaata aatttactgg tac 1533

<210> 303

<211> 336

<212> PRT

<213> Homo sapiens

<400> 303

Met Ala Val Ala Thr Ala Ala Ala Val Leu Ala Ala Leu Gly Gly
1 5 10 15

Ala Leu Trp Leu Ala Ala Arg Arg Phe Val Gly Pro Arg Val Gln 20 25 30

Arg Leu Arg Arg Gly Gly Asp Pro Gly Leu Met His Gly Lys Thr
35 40 45

208

```
<210> 304
<211> 521
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 20, 34, 62, 87, 221, 229
<223> unknown base
<400> 304
 ggggattgta aagaggaagn actgtgccca aagntatgga tgaatctgtt 50
 gcaagaaaat tntgggatat cagtgaagtg atggttngcc tgctaaaata 100
 ggaacaagga gtaaaagagc tgtttataaa actgcatatc agttatatct 150
 gtgatcagga atggtgtgga ttgagaactt gttacttgaa gaaaaagaat 200
 tttgatattg gaatagcctg ntaagaggna catgtgggta ttttggagtt 250
 actgaaaaat tatttttggg ataagagaat ttcagcaaag atgttttaaa 300
 tatatatagt aagtataatg aataataagt acaatgaaaa atacaattat 350
 attgtaaaat tataactggg caagcatgga tgacatatta atatttgtca 400
 gaattaagtg actcaaagtg ctatcgagag gtttttcaag tatctttgag 450
 tttcatggcc aaagtgttaa ctagttttac tacaatgttt ggtgtttgtg 500
 tggaaattat ctgcctggct t 521
<210> 305
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 305
 ccaggaaatg ctccaggaag agcc 24
<210> 306
<211> 26
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 306
 gcccatgaca ccaaattgaa gagtgg 26
<210> 307
```

```
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 307
aacgcaggga tcttccagtg cccttacatg aagactgaag atggg 45
<210> 308
<211> 1523
<212> DNA
<213> Homo sapiens
<400> 308
 gagaggacga ggtgccgctg cctggagaat cctccgctgc cgtcggctcc 50
cggagcccag ccctttccta acccaaccca acctagccca gtcccagccg 100
ccagcgcctg tccctgtcac ggaccccagc gttaccatgc atcctgccgt 150
cttcctatcc ttacccgacc tcagatgctc ccttctgctc ctggtaactt 200
gggtttttac tcctgtaaca actgaaataa caagtcttgc tacagagaat 250
atagatgaaa ttttaaacaa tgctgatgtt gctttagtaa atttttatqc 300
tgactggtgt cgtttcagtc agatgttgca tccaattttt gaggaagctt 350
ccgatgtcat taaggaagaa tttccaaatg aaaatcaagt agtgtttgcc 400
agagttgatt gtgatcagca ctctgacata gcccagagat acaggataag 450
caaataccca accctcaaat tgtttcgtaa tgggatgatg atgaagagag 500
aatacagggg tcagcgatca gtgaaagcat tggcagatta catcaggcaa 550
caaaaaagtg accccattca agaaattcgg gacttagcag aaatcaccac 600
tcttgatcgc agcaaaagaa atatcattgg atattttgag caaaaggact 650
cggacaacta tagagttttt gaacgagtag cgaatatttt gcatgatgac 700
tgtgcctttc tttctgcatt tggggatgtt tcaaaaccgg aaagatatag 750
tggcgacaac ataatctaca aaccaccagg gcattctgct ccggatatgg 800
tgtacttggg agctatgaca aattttgatg tgacttacaa ttggattcaa 850
gataaatgtg ttcctcttgt ccgagaaata acatttgaaa atggagagga 900
attgacagaa gaaggactgc cttttctcat actctttcac atgaaagaag 950
atacagaaag tttagaaata ttccagaatg aagtagctcg gcaattaata 1000
agtgaaaaag gtacaataaa ctttttacat gccgattgtg acaaatttag 1050
```

<210> 309 <211> 406 <212> PRT

<213> Homo sapiens

<400> 309

Met His Pro Ala Val Phe Leu Ser Leu Pro Asp Leu Arg Cys Ser 1 5 10 15

Leu Leu Leu Val Thr Trp Val Phe Thr Pro Val Thr Thr Glu
20 25 30

Ile Thr Ser Leu Ala Thr Glu Asn Ile Asp Glu Ile Leu Asn Asn 35 40 45

Ala Asp Val Ala Leu Val Asn Phe Tyr Ala Asp Trp Cys Arg Phe
50 55 60

Ser Gln Met Leu His Pro Ile Phe Glu Glu Ala Ser Asp Val Ile
65 70 75

Lys Glu Glu Phe Pro Asn Glu Asn Gln Val Val Phe Ala Arg Val 80 85 90

Asp Cys Asp Gln His Ser Asp Ile Ala Gln Arg Tyr Arg Ile Ser 95 100 105

Lys Tyr Pro Thr Leu Lys Leu Phe Arg Asn Gly Met Met Lys 110 115 120

Arg Glu Tyr Arg Gly Gln Arg Ser Val Lys Ala Leu Ala Asp Tyr
125
130

Ile Arg Gln Gln Lys Ser Asp Pro Ile Gln Glu Ile Arg Asp Leu 140 145 150

Ala Glu Ile Thr Thr Leu Asp Arg Ser Lys Arg Asn Ile Ile Gly
155 160 165

Leu

<210> 310

<211> 182

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<400> 312

tgagaggcct ctctggaagt tg 22

```
<222> 36, 48
<223> unknown base
<400> 310
 attaaggaag aatttccaaa tgaaaatcaa gtagtntttg ccagagtnga 50
 ttgtgatcag cactctgaca tagcccagag atacaggata agcaaatacc 100
 caaccctcaa attqtttcqt aatqqqatqa tqatqaaqaq aqaatacaqq 150
 ggtcagcgat cagtgaaagc attggcagat ta 182
<210> 311
<211> 598
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 38, 59, 140, 169, 174, 183, 282-283, 294-295, 319, 396
<223> unknown base
<400> 311
 agaggeetet etggaagttg teeegggtgt tegeegengg ageeegggte 50
 gagaggacna ggtgccgctg cctggagaat cctccgctgc cgtcggctcc 100
 eggageeeag ceettteeta acceaaceea acetageeen gteeeageeg 150
 ccagcgcctg tccctgtcnc ggancccagc gtnaccatgc atcctgccgt 200
 cttcctatcc ttacccgacc tcagatgctc ccttctgctc ctggtaactt 250
 gggtttttac tcctgtaaca actgaaataa cnngtcttga tacnnagaat 300
 atagatgaaa ttttaaacna tgctgatgtg gctttagtca atttttatgc 350
 tgactggtgt cgtttcagtc agatgtggca tccaattttt gaggangctt 400
 ccgatgtcat taaggaagaa tttccaaatg aaaatcaagt agtgtttgcc 450
 agagttgatt gtgatcagca ctctgacata gcccagagat acaggataag 500
 caaataccca accetcaaat tgtttcgtaa tgggatgatg atgaagagag 550
 aatacagggg tcagcgatca gtgaaagcat tggcagatta catcaggc 598
<210> 312
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
```

```
<210> 313
    <211> 19
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 313
     gtcagcgatc agtgaaagc 19
    <210> 314
    <211> 20
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 314
     ccagaatgaa gtagctcggc 20
    <210> 315 -
    <211> 20
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 315
     ccgactcaaa atgcattgtc 20
Ø
|--
    <210> 316
    <211> 19
<u>|--</u>
    <212> DNA
    <213> Artificial Sequence
    <220>
Uī
    <223> Synthetic oligonucleotide probe
<400> 316
     catttggcag gaattgtcc 19
    <210> 317
    <211> 18
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 317
     ggtgctatag gccaaggg 18
    <210> 318
    <211> 24
    <212> DNA
```

```
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 318
 ctgtatctct gggctatgtc agag 24
<210> 319
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 319
 ctacatataa tggcacatgt cagcc 25
<210> 320
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 320
 cgtcttccta tccttacccg acctcagatg ctcccttctg ctcctg 46
<210> 321
<211> 1333
<212> DNA
<213> Homo sapiens
<400> 321
 gcccacgcgt ccgatggcgt tcacqttcgc ggccttctgc tacatqctqq 50
 egetgetget cactgeegeg etcatettet tegecatttg geacattata 100
 gcatttgatg agctgaagac tgattacaag aatcctatag accagtgtaa 150
 taccctgaat ccccttgtac tcccagagta cctcatccac gctttcttct 200
 gtgtcatgtt tctttgtgca gcagagtggc ttacactggg tctcaatatg 250
 cccctcttgg catatcatat ttggaggtat atgagtagac cagtgatgag 300
 tggcccagga ctctatgacc ctacaaccat catgaatgca gatattctag 350
 catattgtca gaaggaagga tggtgcaaat tagcttttta tcttctagca 400
 tttttttact acctatatgg catgatctat gttttggtga gctcttagaa 450
 caacacacag aagaattggt ccagttaagt gcatgcaaaa agccaccaaa 500
 tgaagggatt ctatccagca agatcctgtc caagagtagc ctgtggaatc 550
```

tgatcagtta ctttaaaaaa tgactcctta ttttttaaat gtttccacat 600 ttttgcttgt ggaaagactg ttttcatatg ttatactcag ataaagattt 650 taaatggtat tacgtataaa ttaatataaa atgattacct ctggtgttga 700 caggittgaa citgcactic ttaaqqaaca qccataatcc tctqaatqat 750 gcattaatta ctgactgtcc tagtacattg gaagcttttg tttataggaa 800 cttgtagggc tcattttggt ttcattgaaa cagtatctaa ttataaatta 850 gctgtagata tcaggtgctt ctgatgaagt gaaaatgtat atctgactag 900 tgggaaactt catgggtttc ctcatctgtc atgtcgatga ttatatatgg 950 atacatttac aaaaataaaa agcgggaatt ttcccttcgc ttgaatatta 1000 tccctgtata ttgcatgaat gagagatttc ccatatttcc atcagagtaa 1050 taaatatact tgctttaatt cttaagcata agtaaacatg atataaaaat 1100 atatgctgaa ttacttgtga agaatgcatt taaagctatt ttaaatgtgt 1150 ttttatttgt aagacattac ttattaagaa attggttatt atgcttactg 1200 ttctaatctg gtggtaaagg tattcttaag aatttgcagg tactacagat 1250 tttcaaaact gaatgagaga aaattgtata accatcctgc tgttccttta 1300 gtgcaataca ataaaactct gaaattaaga ctc 1333

<210> 322

<211> 144

<212> PRT

<213> Homo sapiens

<400> 322

Met Ala Phe Thr Phe Ala Ala Phe Cys Tyr Met Leu Ala Leu Leu 1 5 10 15

Leu Thr Ala Ala Leu Ile Phe Phe Ala Ile Trp His Ile Ile Ala 20 25 30

Phe Asp Glu Leu Lys Thr Asp Tyr Lys Asn Pro Ile Asp Gln Cys 35 40 45

Asn Thr Leu Asn Pro Leu Val Leu Pro Glu Tyr Leu Ile His Ala 50 55 60

Phe Phe Cys Val Met Phe Leu Cys Ala Ala Glu Trp Leu Thr Leu 65 70 75

Gly Leu Asn Met Pro Leu Leu Ala Tyr His Ile Trp Arg Tyr Met 80 85 90

Ser Arg Pro Val Met Ser Gly Pro Gly Leu Tyr Asp Pro Thr Thr 95 100 105

```
Ile Met Asn Ala Asp Ile Leu Ala Tyr Cys Gln Lys Glu Gly Trp
 Cys Lys Leu Ala Phe Tyr Leu Leu Ala Phe Phe Tyr Tyr Leu Tyr
                 125
                                                          135
 Gly Met Ile Tyr Val Leu Val Ser Ser
                 140
<210> 323
<211> 477
<212> DNA
<213> Homo sapiens
<400> 323
 attatagcat ttgatgagct gaagactgat tacaagatcc tatagaccag 50
 tgtaataccc tgaatcccct tgtactccca gagtacctca tccacqcttt 100
 cttctgtgtc atgtttcttt gtgcagcaga gtggcttaca ctgggtctca 150
 atatgcccct cttggcatat catatttgga ggtatatgag tagaccagtg 200
 atgagtggcc caggactcta tgaccctaca accatcatga atgcagatat 250
 tctagcatat tgtcagaagg aaggatggtg caaattagct ttttatcttc 300
 tagcattttt ttactaccta tatggcatga tctatgtttt ggtgagctct 350
 tagaacaaca cacagaagaa ttggtccagt taagtgcatg caaaaagcca 400
 ccaaatgaag ggattctatc cagcaagatc ctgtccaaga gtagcctgtg 450
 gaatctgatc agttacttta aaaaatg 477
<210> 324
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 324
 tgtaaaacga cggccagtta aatagacctg caattattaa tct 43
<210> 325
<211> 41
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 325
caggaaacag ctatgaccac ctgcacacct gcaaatccat t 41
<210> 326
```

```
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 326
gtgcagcaga gtggcttaca 20
<210> 327
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 327
actggaccaa ttcttctgtg 20
<210> 328
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 328
gatattctag catattgtca gaaggaagga tggtgcaaat tagct 45
<210> 329
<211> 1174
<212> DNA
<213> Homo sapiens
<400> 329
cggacgcgtg ggggaaaccc ttccgagaaa acagcaacaa gctgagctgc 50
tgtgacagag gggaacaaga tggcggcgcc gaaggggagc ctctgggtga 100
ggacccaact ggggctcccg ccgctgctgc tgctgaccat ggccttggcc 150
ggaggttcgg ggaccgcttc ggctgaagca tttgactcgg tcttgggtga 200
tacggcgtct tgccaccggg cctgtcagtt gacctacccc ttgcacacct 250
accetaagga agaggagttg tacgcatgte agagaggttg caggetgttt 300
tcaatttgtc agtttgtgga tgatggaatt gacttaaatc gaactaaatt 350
ggaatgtgaa tetgeatgta cagaagcata tteecaatet gatgagcaat 400
atgcttgcca tcttggttgc cagaatcagc tgccattcgc tgaactgaga 450
caagaacaac ttatgtccct gatgccaaaa atgcacctac tctttcctct 500
```

aactottgtg aggtcattot ggagtgacat gatggactoc gcacagagct 550 totalaacoto ttoatggact tittatotto aagcogatga cggaaaaata 600 gttatattoc agtotaagco agaaatocag tacgcaccac atttggagca 650 ggagcotaca aatttgagag aatcatotot aagcaaaatg tootatotgo 700 aaatgagaaa ttoacaagcg cacaggaatt ttottgaaga tggagaaagt 750 gatggottt taagatgoot otototaac totgggtgga tittaactac 800 aactottgto ototoggga tggtattgot ttggatttgt tgtgcaactg 850 ttgotacago tgtggagcag tatgttoot otgagaagct gagtatotat 900 ggtgacttgg agttatgaa tgaacaaaag ctaaacagat atccagotto 950 ttotottgtg gttgttagat otaaacaga agatcatgaa gaagcagggc 1000 ototacotac aaaagtgaat ottgotcatt otgaaatta agcattttto 1050 ttttaaaaag caagtgtaat agacatcaa aattccacto otcatagagc 1100 ttttaaaaag tactcaaatc tgtg 1174

<210> 330

<211> 323

<212> PRT

<213> Homo sapiens

<400> 330

Met Ala Ala Pro Lys Gly Ser Leu Trp Val Arg Thr Gln Leu Gly
1 5 10 15

Leu Pro Pro Leu Leu Leu Thr Met Ala Leu Ala Gly Gly Ser 20 25 30

Gly Thr Ala Ser Ala Glu Ala Phe Asp Ser Val Leu Gly Asp Thr 35 40 45

Ala Ser Cys His Arg Ala Cys Gln Leu Thr Tyr Pro Leu His Thr 50 55 60

Tyr Pro Lys Glu Glu Glu Leu Tyr Ala Cys Gln Arg Gly Cys Arg
65 70 75

Leu Phe Ser Ile Cys Gln Phe Val Asp Asp Gly Ile Asp Leu Asn 80 85

Arg Thr Lys Leu Glu Cys Glu Ser Ala Cys Thr Glu Ala Tyr Ser

Gln Ser Asp Glu Gln Tyr Ala Cys His Leu Gly Cys Gln Asn Gln 110 115 120

<210> 331

<211> 351

<212> DNA

<213> Homo sapiens

<400> 331

ttgggtgata cggcgtcttg ccaccgggcc tgtcagttga cctaccctt 50 gcacacctac cctaaggaag aggagttgta cgcatgtcag agaggttgca 100 ggctgttttc aatttgtcag tttgtggatg atggaattga cttaaatcga 150 actaaattgg aatgtgaatc tgcatgtaca gaagcatatt cccaatctga 200 tgagcaatat gcttgccatc ttggttgcca gaatcagctg ccattcgctg 250

```
tttcctctaa ctctggtgag gtcattctgg agtgacatga tggactccgc 350
<210> 332
<211> 562
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 47
<223> unknown base
<400> 332
 cacactggcc ggatctttta gagtcctttg accttgacca agggtcngga 50
 aaacagcaac aagctgagct gctgtgacag agggaacaag atggcggcgc 100
 cgaagggagc ctttgggtga ggacccaact ggggctcccg ccgctgctgc 150
 tgctgaccat ggccttggcc ggaggttcgg ggaccgcttc ggctgaagca 200
 tttgactcgg tcttgggtga tacggcgtct tgccaccggg cctgtcagtt 250
 gacctacccc ttgcacacct accctaagga agaggagttg tacgcatgtc 300
  agagaggttg caggctgttt tcaatttgtc agtttgtgga tgatggaatt 350
 gacttaaatc gaactaaatt ggaatgtgaa tctgcatgta cagaagcata 400
 ttcccaatct gatgagcaat atgcttgcca tcttggttgc cagaatcagc 450
 tgccattcgc tgaactgaga caagaacaac ttatgtccct gatgccaaaa 500
 atgcacctac tettteetet aactetggtg aggteattet ggagtgacat 550
 gatggactcc gc 562
<210> 333
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<<223> Synthetic oligonucleotide probe
<400> 333
 acaagctgag ctgctgtgac ag 22
<210> 334
<211> 22
<212> DNA
<213> Artificial Sequence
```

<223> Synthetic oligonucleotide probe

aactgagaca agaacaactt atgtccctga tgccaaaaat gcacctactc 300

```
<400> 334
 tgattctggc aaccaagatg gc 22
<210> 335
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 335
atggccttgg ccggaggttc ggggaccgct tcggctgaag 40
<210> 336
<211> 1885
<212> DNA
<213> Homo sapiens
<400> 336
 gcgaggtggc gatcgctgag aggcaggagg gccgaggcgg gcctgggagg 50
cggcccggag gtggggcgcc gctggggccg gcccgcacqq qcttcatctq 100
agggcgcacg gcccgcgacc gagcgtgcgg actggcctcc caagcgtggg 150
gcgacaagct gccggagctg caatgggccg cggctgggga ttcttqtttq 200
gcctcctggg cgccgtgtgg ctgctcagct cgggccacgg agaggagcag 250
cccccggaga cagcggcaca gaggtgcttc tgccaggtta gtggttactt 300
ggatgattgt acctgtgatg ttgaaaccat tgatagattt aataactaca 350
ggcttttccc aagactacaa aaacttcttg aaagtgacta ctttaggtat 400
tacaaggtaa acctgaagag gccgtgtcct ttctggaatg acatcagcca 450
gtgtggaaga agggactgtg ctgtcaaacc atgtcaatct gatgaagttc 500
ctgatggaat taaatctgcg agctacaagt attctgaaga agccaataat 550
ctcattgaag aatgtgaaca agctgaacga cttggagcag tggatgaatc 600
tctgagtgag gaaacacaga aggctgttct tcagtggacc aagcatgatg 650
attcttcaga taacttctgt gaagctgatg acattcagtc ccctgaagct 700
gaatatgtag atttgcttct taatcctgag cgctacactg gttacaaggg 750
accagatgct tggaaaatat ggaatgtcat ctacgaagaa aactgtttta 800
agccacagac aattaaaaga cctttaaatc ctttggcttc tggtcaaggg 850
acaagtgaag agaacacttt ttacagttgg ctagaaggtc tctgtgtaga 900
aaaaagagca ttctacagac ttatatctgg cctacatgca agcattaatg 950
```

tggggacaca acattacaga atttcaacag cgatttgatg gaattttgac 1050 tgaaggagaa ggtccaagaa ggcttaagaa cttgtatttt ctctacttaa 1100 tagaactaag ggctttatcc aaagtgttac cattcttcga gcgcccagat 1150 tttcaactct ttactggaaa taaaattcag gatgaggaaa acaaaatgtt 1200 acttctggaa atacttcatg aaatcaagtc atttcctttg cattttgatg 1250 agaattcatt ttttgctggg gataaaaaag aagcacacaa actaaaggag 1300 gactttcgac tgcattttag aaatatttca agaattatgg attgtgttgg 1350 ttgttttaaa tgtcgtctgt ggggaaagct tcagactcag ggtttgggca 1400 ctgctctgaa gatcttattt tctgagaaat tgatagcaaa tatgccagaa 1450 agtggaccta gttatgaatt ccatctaacc agacaagaaa tagtatcatt 1500 attcaacgca tttggaagaa tttctacaag tgtgaaagaa ttagaaaact 1550 tcaggaactt gttacagaat attcattaaa gaaaacaagc tgatatgtgc 1600 ctgtttctgg acaatggagg cgaaagagtg gaatttcatt caaaggcata 1650 atagcaatga cagtettaag ccaaacattt tatataaagt tgettttgta 1700 aaggagaatt atattgtttt aagtaaacac atttttaaaa attgtgttaa 1750 gtetatgtat aatactactg tgagtaaaag taatacttta ataatgtggt 1800 acaaatttta aagtttaata ttgaataaaa ggaggattat caaattaaaa 1850 aaaaaaaaa aaaaaaaaa aaaaa 1885

<210> 337

<211> 468

<212> PRT

<213> Homo sapiens

<400> 337

Met Gly Arg Gly Trp Gly Phe Leu Phe Gly Leu Leu Gly Ala Val

Trp Leu Leu Ser Ser Gly His Gly Glu Glu Gln Pro Pro Glu Thr
20 25 30

Ala Ala Gln Arg Cys Phe Cys Gln Val Ser Gly Tyr Leu Asp Asp 35 40 45

Cys Thr Cys Asp Val Glu Thr Ile Asp Arg Phe Asn Asn Tyr Arg
50 55 60

Leu Phe Pro Arg Leu Gln Lys Leu Leu Glu Ser Asp Tyr Phe Arg
65 70 75

	365	370	375
Glu Asp Phe Arg	Leu His Phe 380	Arg Asn Ile Ser Ar 385	g Ile Met Asp 390
Cys Val Gly Cys	Phe Lys Cys 395	Arg Leu Trp Gly Ly 400	s Leu Gln Thr 405
Gln Gly Leu Gly	Thr Ala Leu 410	Lys Ile Leu Phe Se 415	r Glu Lys Leu 420
Ile Ala Asn Met	Pro Glu Ser 425	Gly Pro Ser Tyr Gl	u Phe His Leu 435
Thr Arg Gln Glu	Ile Val Ser 440	Leu Phe Asn Ala Ph	e Gly Arg Ile 450
Ser Thr Ser Val	Lys Glu Leu 455	Glu Asn Phe Arg Ass 460	n Leu Leu Gln 465
Asn Ile His			

- <210> 338
- <211> 507
- <212> DNA
- <213> Homo sapiens
- <220>
- <221> unsure
- <222> 101, 263, 376, 397, 426
- <223> unknown base
- <400> 338

gctggaaata tggatgtcat ctacgagaaa ctgttttaag ccacagacaa 50 ttaaaagacc tttaaatcct ttggcttctg gtcaagggac aagtgaagag 100 nacacttttt acagttggct agaaggtctc tgtgtagaaa aaagagcatt 150 ctacagactt atatctggcc tacatgcaag cattaatgtg catttgagtg 200 caagatatct tttacaagag acctggttag aaaagaaatg gggacacaac 250 attacagaat ttnaacagcg atttgatgga atttgactg aaggagaagg 300 tccaagaagg cttaagaact tgtatttct ctacttaata gaactaaggg 350 ctttatccaa agtgttacca ttcttngagc gcccagattt tcaactnttt 400 actggaaata aaattcagga tgaggnaaac aaaatgttac ttttggaaat 450 acttcatgaa atcaagtcat ttcctttgca ttttgatgag aattcatttt 500 tttgctg 507

<210> 339

<211> 20

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 339
aagctgccgg agctgcaatg 20
<210> 340
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 340
ttgcttctta atcctgagcg c 21
<210> 341
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 341
aaaggaggac tttcgactgc 20
<210> 342
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 342
agagattcat ccactgctcc aagtcg 26
<210> 343
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 343
tgtccagaaa caggcacata tcagc 25
<210> 344
<211> 50
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic oligonucleotide probe
<400> 344
 agacagcggc acagaggtgc ttctgccagg ttagtggtta cttggatgat 50
<210> 345
<211> 1486
<212> DNA
<213> Homo sapiens
<400> 345
 cggacgcgtg ggcggacgcg tgggcggacg cgtgggttgg gagggggcag 50
 gatgggaggg aaagtgaaga aaacagaaaa ggagagggac agaggccaga 100
 ggacttctca tactggacag aaaccgatca ggcatggaac tccccttcgt 150
 cactcacctg ttcttgcccc tggtgttcct gacaggtctc tgctccccct 200
 ttaacctgga tgaacatcac ccacgcctat tcccagggcc accagaagct 250
 gaatttggat acagtgtctt acaacatgtt gggggtggac agcgatggat 300
 gctggtgggc gccccctgqq atqggccttc aqgcqaccqq aqqqqqacq 350
 tttatcgctg ccctgtaggg ggggcccaca atgccccatg tgccaagggc 400
 cacttaggtg actaccaact gggaaattca tctcatcctg ctgtgaatat 450
 gcacctgggg atgtctctgt tagagacaga tggtgatggg ggattcatgg 500
 tgagctaagg agagggtggt ggcagtgtct ctgaaggtcc ataaaagaaa 550
 aaagagaagt gtggtaaggg aaaatggtct gtgtggaggg gtcaaggagt 600
 taaaaaccct agaaagcaaa aggtaggtaa tgtcagggag tagtcttcat 650
 gcctccttca actgggagca tgttctgagg gtgccctccc aagcctggga 700
 gtaactattt cececateee eaggeetgtg cecetetetg gtetegtget 750
 tgtggcaget ctgtcttcag ttctqggata tqtqcccqtq tqqatqcttc 800
 attccagcct cagggaagcc tggcacccac tgcccaacgt gagccagagg 850
aaggctgagt acttggttcc cagaaggaga tactgggtgg gaaaaagatg 900
gggcaaagcg gtatgatgcc tggcaaaggg cctgcatggc tatcctcatt 950
gctacctaat gtgcttgcaa aagctccatg tttcctaaca gattcagact 1000
cctggccagg tgtggtggcc cacacctgta attctagcac tttgggaggc 1050
caaggtgggc agatcacttg aggtcaggag ttcaagacca gcctggccaa 1100
catggtgaaa ctccatctct actaaaaaaa aaaaaataca aaaattagct 1150
```

gggtgcgcta gtgcatgcct gtaatctcat ctactcggga ggctaagaca 1200 ggagactctc acttcaaccc aggaggtgga ggttgcggtg agccaagatt 1250 gtgcctctgc actctagcgt gggtgacaga gtaagcgaga ctccatctca 1300 aaaataataa taataataat tcagactcct tatcaggagt ccatgatctg 1350 gcctggcaca gtaactcatg cctgtaatcc caacattttg ggaggccaac 1400 gcaggaggat tgcttgaggt ctggaggttt gagaccagcc tgggcaacat 1450 agaaagaccc catctctaaa taaatgtttt aaaaat 1486

<210> 346

<211> 124

<212> PRT

<213> Homo sapiens

<400> 346

Met Glu Leu Pro Phe Val Thr His Leu Phe Leu Pro Leu Val Phe 1 5 10 15

Leu Thr Gly Leu Cys Ser Pro Phe Asn Leu Asp Glu His His Pro
20 25 30

Arg Leu Phe Pro Gly Pro Pro Glu Ala Glu Phe Gly Tyr Ser Val 35 40 45

Leu Gln His Val Gly Gly Gln Arg Trp Met Leu Val Gly Ala 50 55 60

Pro Trp Asp Gly Pro Ser Gly Asp Arg Arg Gly Asp Val Tyr Arg 65 70 75

Cys Pro Val Gly Gly Ala His Asn Ala Pro Cys Ala Lys Gly His 80 85 90

Leu Gly Asp Tyr Gln Leu Gly Asn Ser Ser His Pro Ala Val Asn 95 100 105

Met His Leu Gly Met Ser Leu Leu Glu Thr Asp Gly Asp Gly Gly 110 115 120

Phe Met Val Ser

<210> 347

<211> 509

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 22

<223> unknown base

<400> 347

ttgccattgg gaggggcag gatgggaggg aaagtgaaga aaacagaaaa 100 ggagagggac agaggccaga ggacttctca tactggacag aaaccgatca 150 ggcatggaac tccccttcgt cactcacctg ttcttgcccc tggtgttcct 200 gacaggtctc tgctcccct ttaacctgga tgaacatcac ccacgcctat 250 tcccagggcc accagaagct gaatttggat acagtgtctt acaacatgtt 300 gggggtggac agcgatggat gctggtggcc gcccctggg atgggcctcc 350 aggcgaccgg agggggacg tttatcgctg ccctgtaggg ggggcccaca 400 atgccccatg tgcaaaggc cacttaggtg actaccaact gggaaattca 450 tctcatcctg ctgtgaatat gcacctgggg atgtctcttt tagagacaga 500 tggtgatgg 509

- <210> 348 <211> 23
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 348
- agggacagag gccagaggac ttc 23
- <210> 349
- <211> 24
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 349
- caggtgcata ttcacagcag gatg 24
- <210> 350
- <211> 45
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 350
- ggaactcccc ttcgtcactc acctgttctt gcccctggtg ttcct 45
- <210> 351
- <211> 2056
- <212> DNA

<213> Homo sapiens

<400> 351 aaagttacat tttctctgga actctcctag gccactccct gctgatgcaa 50 catctgggtt tgggcagaaa ggagggtgct tcggagcccg ccctttctga 100 gcttcctggg ccggctctag aacaattcag gcttcgctgc gactcagacc 150 tcagctccaa catatgcatt ctgaagaaag atggctgaga tggacagaat 200 gctttatttt ggaaagaaac aatgttctag gtcaaactga gtctaccaaa 250 tgcagacttt cacaatggtt ctagaagaaa tctggacaag tcttttcatg 300 tggtttttct acgcattgat tccatgtttg ctcacagatg aagtggccat 350 tctgcctgcc cctcagaacc tctctgtact ctcaaccaac atgaagcatc 400 tettgatgtg gageceagtg ategegeetg gagaaacagt gtactattet 450 gtcgaatacc agggggagta cgagagcctg tacacgagcc acatctggat 500 ccccagcagc tggtgctcac tcactgaagg tcctgagtgt gatgtcactg 550 atgacatcac ggccactgtg ccatacaacc ttcgtgtcag ggccacattg 600 ggctcacaga cctcagcctg gagcatcctg aagcatccct ttaatagaaa 650 ctcaaccatc cttacccgac ctgggatgga gatcaccaaa gatggcttcc 700 acctggttat tgagctggag gacctggggc cccagtttga gttccttgtg 750 gcctactgga ggagggagcc tggtgccgag gaacatgtca aaatggtgag 800 gagtgggggt attccagtgc acctagaaac catggagcca ggggctgcat 850 actgtgtgaa ggcccagaca ttcgtgaagg ccattgggag gtacagcgcc 900 ttcagccaga cagaatgtgt ggaggtgcaa ggagaggcca ttcccctggt 950 actggccctg tttgcctttg ttggcttcat gctgatcctt gtggtcgtgc 1000 cactgttcgt ctggaaaatg ggccggctgc tccagtactc ctgttgcccc 1050 gtggtggtcc tcccagacac cttgaaaata accaattcac cccagaagtt 1100 aatcagctgc agaagggagg aggtggatgc ctgtgccacg gctgtgatgt 1150 ctcctgagga actcctcagg gcctggatct cataggtttg cggaagggcc 1200 caggtgaagc cgagaacctg gtctgcatga catggaaacc atgaggggac 1250 aagttgtgtt tctgttttcc gccacggaca agggatgaga gaagtaggaa 1300 gagcctgttg tctacaagtc tagaagcaac catcagaggc agggtggttt 1350 gtctaacaga acactgactg aggcttaggg gatgtgacct ctagactggg 1400 <210> 352

<211> 311

<212> PRT

<213> Homo sapiens

<400> 352

Met Gln Thr Phe Thr Met Val Leu Glu Glu Ile Trp Thr Ser Leu 1 5 10 15

Phe Met Trp Phe Phe Tyr Ala Leu Ile Pro Cys Leu Leu Thr Asp 20 25 30

Glu Val Ala Ile Leu Pro Ala Pro Gln Asn Leu Ser Val Leu Ser
35 40 45

Thr Asn Met Lys His Leu Leu Met Trp Ser Pro Val Ile Ala Pro 50 55 60

Gly Glu Thr Val Tyr Tyr Ser Val Glu Tyr Gln Gly Glu Tyr Glu
65 70 75

Ser Leu Tyr Thr Ser His Ile Trp Ile Pro Ser Ser Trp Cys Ser 80 85 90

Leu Thr Glu Gly Pro Glu Cys Asp Val Thr Asp Asp Ile Thr Ala 95 100 105

Thr Val Pro Tyr Asn Leu Arg Val Arg Ala Thr Leu Gly Ser Gln
110 115 120

Thr	Ser	Ala	Trp	Ser 125	Ile	Leu	Lys	His	Pro 130	Phe	Asn	Arg	Asn	Ser 135
Thr	Ile	Leu	Thr	Arg 140	Pro	Gly	Met	Glu	Ile 145	Thr	Lys	Asp	Gly	Phe 150
His	Leu	Val	Ile	Glu 155	Leu	Glu	Asp	Leu	Gly 160	Pro	Gln	Phe	Glu	Phe 165
Leu	Val	Ala	Tyr	Trp 170	Arg	Arg	Glu	Pro	Gly 175	Ala	Glu	Glu	His	Val 180
Lys	Met	Val	Arg	Ser 185	Gly	Gly	Ile	Pro	Val 190	His	Leu	Glu	Thr	Met 195
Glu	Pro	Gly	Ala	Ala 200	Tyr	Суз	۷al	Lys	Ala 205	Gln	Thr	Phe	Val	Lys 210
Ala	Ile	Gly	Arg	Tyr 215	Ser	Ala	Phe	Ser	Gln 220	Thr	Glu	Cys	Val	Glu 225
Val	Gln	Gly	Glu	Ala 230	Ile	Pro	Leu	Val	Leu 235	Ala	Leu	Phe	Ala	Phe 240
Val	Gly	Phe	Met	Leu 245	Ile	Leu	Val	Val	Val 250	Pro	Leu	Phe	Val	Trp 255
Lys	Met	Gly	Arg	Leu 260	Leu	Gln	Tyr	Ser	Cys 265	Cys	Pro	Val	Val	Val 270
Leu	Pro	Asp	Thr	Leu 275	Lys	Ile	Thr	Asn	Ser 280	Pro	Gln	Lys	Leu	Ile 285
Ser	Суѕ	Arg	Arg	Glu 290	Glu	Val	Asp	Ala	Cys 295	Ala	Thr	Ala	Val	Met 300
Ser	Pro	Glu	Glu	Leu 305	Leu	Arg	Ala	Trp	Ile 310	Ser				

<210> 353

<211> 864

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 654, 711, 748, 827

<223> unknown base

<400> 353

tectgetgat geacatetgg gtttggeaa aggaggttge ttegageege 50 cetttetage tteetggeeg getetagaae aatteagget tegetgegae 100 tagaceteag etceaacata tgeattetga agaaagatgg etgagatgae 150 agaatgettt attttggaaa gaaacaatgt tetaggteaa aetgagteta 200

<211> 50 <212> DNA

<213> Artificial Sequence

<223> Synthetic oligonucleotide probe

ccaaatgcag actttcacaa tggttctaga agaaatctgg acaagtcttt 250 tcatgtggtt tttctacgca ttgattccat gtttgctcac agatgaagtg 300 gccattctgc ctgcccctca gaacctctct gtactctcaa ccaacatgaa 350 gcatctcttg atgtggagcc cagtgatcqc qcctqqaqaa acaqtqtact 400 attctgtcga ataccagggg gagtacgaga gcctgtacac gagccacatc 450 tggatcccca gcagctggtg ctcactcact gaaggtcctg agtgtgatgt 500 cactgatgac atcacggcca ctgtgccata caacctttgt gtcagggcca 550 cattgggctc acagacctca gcctggagca tcctgaagca tccctttaat 600 agaaactcaa ccatccttac ccgacctggg atggagatca ccaaagatgg 650 cttncacctg gttattgagc tggaggacct ggggccccag tttgagttcc 700 ttgtggccta ntggaggagg ggcgaacccc ttgcggcgca aggggttngc 750 gaaccccttg cggccgctgg ggtatctctc gagaaaagag aggcccaata 800 tgacccacat actcaatatg gacgaantgc tattgtccac ctgtttgagt 850 ggcgctgggt tgat 864 <210> 354 <211> 23 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 354 aggetteget gegactagae etc 23 <210> 355 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 355 ccaggtcggg taaggatggt tgag 24 <210> 356

<400> 356
tttctacgca ttgattccat gtttgctcac agatgaagtg gccattctgc 50

<210> 357 <211> 1670

<212> DNA

<213> Homo sapiens

<400> 357

cccacgcgtc cgcccacgcg tccgagggac aagagagaag agagactgaa 50 acagggagaa gaggcaggag aggaggaggt ggggagagca cgaagctgga 100 ggccgacact gagggaggc gggaggaggt gaagaaggag agaggggaga 150 agaggcagga gctggaaagg agagaggag gaggaggagg agatgcggga 200 tggagacctg gagttaggtg gcttgggaga gcttaatgaa aagagaacgg 250 agaggaggtg tgggttagga accaagaggt agccctgtgg gcagcagaag 300 gctgagagga gtaggaagat caggagctag agggagactg gagggttccg 350 aagagtgggt ttgaagggcg gatctcagtc cctggctgct ttggcatttg 450 gggaactggg actccctgtg gggaggagag gaaagctgga agtcctggag 500 ggacagggtc ccagaaggag gggacagagg agctgagaga ggggggcagg 550 gcgttgggca ggggtccctc ggaggcctcc tggggatggg ggctgcagct 600 cgtctgagcg cccctcgagc gctggtactc tgggctgcac tgggggcagc 650 agctcacatc ggaccagcac ctgaccccga ggactggtgg agctacaagg 700 ataatctcca gggaaacttc gtgccagggc ctcctttctg gggcctggtg 750 aatgcagcgt ggagtctgtg tgctgtgggg aagcggcaga gccccgtgga 800 tgtggagctg aagagggttc tttatgaccc ctttctgccc ccattaaggc 850 tcagcactgg aggagagaag ctccggggaa ccttgtacaa caccggccga 900 catgtctcct tcctgcctgc accccgacct gtggtcaatg tgtctggagg 950 teceeteett tacageeace gaeteagtga aetgeggetg etgtttggag 1000 ctcgcgacgg agccggctcg gaacatcaga tcaaccacca gggcttctct 1050 gctgaggtgc agctcattca cttcaaccag gaactctacg ggaatttcag 1100 cgctgcctcc cgcggcccca atggcctggc cattctcagc ctctttgtca 1150 acgttgccag tacctctaac ccattcctca gtcgcctcct taaccgcgac 1200 accatcactc gcatctccta caagaatgat gcctactttc ttcaagacct 1250

gagcctggag ctcctgttcc ctgaatcctt cggcttcatc acctatcagg 1300 gctctctcag caccccgccc tgctccgaga ctgtcacctg gatcctcatt 1350 gaccgggccc tcaatatcac ctcccttcag atgcactccc tgagactcct 1400 gagccagaat cctccatctc agatcttcca gagcctcagc ggtaacagcc 1450 ggcccctgca gcccttggcc cacagggcac tgaggggcaa cagggacccc 1500 cggcaccccg agaggcgctg ccgaggcccc aactaccgcc tgcatgtgga 1550 tggtgtcccc catggtcgct gagactcccc ttcgaggatt gcacccgccc 1600 gtcctaagcc tcccacaag gcgaggggag ttacccctaa aacaaagcta 1650 ttaaagggac agaatactta 1670

<210> 358

<211> 328

<212> PRT

<213> Homo sapiens

<400> 358

Met Gly Ala Ala Ala Arg Leu Ser Ala Pro Arg Ala Leu Val Leu 1 5 10 15

Trp Ala Ala Leu Gly Ala Ala Ala His Ile Gly Pro Ala Pro Asp 20 25 30

Pro Glu Asp Trp Trp Ser Tyr Lys Asp Asn Leu Gln Gly Asn Phe 35 40 45

Val Pro Gly Pro Pro Phe Trp Gly Leu Val Asn Ala Ala Trp Ser 50 55 60

Leu Cys Ala Val Gly Lys Arg Gln Ser Pro Val Asp Val Glu Leu
65 70 75

Lys Arg Val Leu Tyr Asp Pro Phe Leu Pro Pro Leu Arg Leu Ser 80 85 90

Thr Gly Gly Glu Lys Leu Arg Gly Thr Leu Tyr Asn Thr Gly Arg 95 100 105

His Val Ser Phe Leu Pro Ala Pro Arg Pro Val Val Asn Val Ser 110 115 120

Gly Gly Pro Leu Leu Tyr Ser His Arg Leu Ser Glu Leu Arg Leu 125 130 135

Leu Phe Gly Ala Arg Asp Gly Ala Gly Ser Glu His Gln Ile Asn 140 145 150

His Gln Gly Phe Ser Ala Glu Val Gln Leu Ile His Phe Asn Gln 155 160 165

Glu Leu Tyr Gly Asn Phe Ser Ala Ala Ser Arg Gly Pro Asn Gly

	170		175	180						
Leu Ala Ile Leu	Ser Leu P	he Val Asn	Val Ala Ser 190	Thr Ser Asn 195						
Pro Phe Leu Ser	Arg Leu L	eu Asn Arg	Asp Thr Ile	Thr Arg Ile 210						
Ser Tyr Lys Asn	Asp Ala T	yr Phe Leu	Gln Asp Leu 220	Ser Leu Glu 225						
Leu Leu Phe Pro	Glu Ser Pl 230	he Gly Phe	Ile Thr Tyr 235	Gln Gly Ser 240						
Leu Ser Thr Pro	Pro Cys So 245	er Glu Thr	Val Thr Trp 250	Ile Leu Ile 255						
Asp Arg Ala Leu	Asn Ile Th	hr Ser Leu	Gln Met His 265	Ser Leu Arg 270						
Leu Leu Ser Gln	Asn Pro Pro 275	ro Ser Gln	Ile Phe Gln 280	Ser Leu Ser 285						
Gly Asn Ser Arg	Pro Leu G. 290	ln Pro Leu	Ala His Arg 295	Ala Leu Arg 300						
Gly Asn Arg Asp	Pro Arg H	is Pro Glu	Arg Arg Cys 310	Arg Gly Pro 315						
Asn Tyr Arg Leu	His Val A: 320	sp Gly Val	Pro His Gly 325	Arg						
<210> 359 <211> 24 <212> DNA <213> Artificial	Sequence									
<220> <223> Synthetic of	oligonucle	otide probe	:							
<400> 359 tctgctgagg tgca	gctcat tcad	c 24								
<210> 360 <211> 24 <212> DNA <213> Artificial Sequence										
<220> <223> Synthetic oligonucleotide probe										
<400> 360 gaggetetgg aagat	cctgag atg	g 24								
<210> 361 <211> 50 <212> DNA <213> Artificial Sequence										

```
<220>
<223> Synthetic oligonucleotide probe
<400> 361
gcctctttgt caacgttgcc agtacctcta acccattcct cagtcqcctc 50
<210> 362
<211> 3038
<212> DNA
<213> Homo sapiens
<400> 362
 ggcgcctggt tctgcgcgta ctggctgtac ggagcaggag caagaggtcg 50
 ccgccagcct ccgccgccga gcctcgttcg tgtccccgcc cctcgctcct 100
 gcagctactg ctcagaaacg ctggggcgcc caccctggca gactaacgaa 150
 gcagctccct tcccacccca actgcaggtc taattttgga cgctttgcct 200
 gccatttctt ccaggttgag ggagccgcag aggcggaggc tcgcgtattc 250
 ctgcagtcag cacccacgtc gcccccggac gctcggtgct caggcccttc 300
 gegagegggg ctctccgtct geggtccctt gtgaaggctc tgggcggctg 350
 cagaggccgg ccgtccggtt tggctcacct ctcccaggaa acttcacact 400
 ggagagccaa aaggagtgga agagcctgtc ttggagattt tcctggggaa 450
 atcctgaggt cattcattat gaagtgtacc gcgcgggagt ggctcagagt 500
 aaccacagtg ctgttcatgg ctagagcaat tccagccatg gtggttccca 550
 atgccacttt attggagaaa cttttggaaa aatacatgga tgaggatggt 600
 gagtggtgga tagccaaaca acgagggaaa agggccatca cagacaatga 650
 catgcagagt attttggacc ttcataataa attacgaagt caggtgtatc 700
 caacagcctc taatatggag tatatgacat gggatgtaga gctggaaaga 750
tctgcagaat cctgggctga aagttgcttg tgggaacatg gacctqcaag 800
cttgcttcca tcaattggac agaatttggg agcacactgg ggaagatata 850
ggcccccgac gtttcatgta caatcgtggt atgatgaagt gaaagacttt 900
agctacccat atgaacatga atgcaaccca tattgtccat tcaggtgttc 950
tggccctgta tgtacacatt atacacaggt cgtgtgggca actagtaaca 1000
gaatcggttg tgccattaat ttgtgtcata acatgaacat ctgggggcag 1050
atatggccca aagctgtcta cctggtgtgc aattactccc caaagggaaa 1100
ctggtggggc catgccctt acaaacatgg gcggccctgt tctgcttgcc 1150
```

cacctagttt tggaggggc tgtagagaaa atctgtgcta caaagaaggg 1200 tcagacaggt attatccccc tcgagaagag gaaacaaatg aaatagaacg 1250 acagcagtca caagtccatg acacccatgt ccggacaaga tcagatgata 1300 gtagcagaaa tgaagtcata agcgcacagc aaatqtccca aattqtttct 1350 tgtgaagtaa gattaagaga tcagtgcaaa ggaacaacct gcaataggta 1400 cgaatgtcct gctggctgtt tggatagtaa agctaaagtt attggcagtg 1450 tacattatga aatgcaatcc agcatctqta qaqctqcaat tcattatqqt 1500 ataatagaca atgatggtgg ctgggtagat atcactagac aaggaagaaa 1550 gcattatttc atcaagtcca atagaaatgg tattcaaaca attggcaaat 1600 atcagtctgc taattccttc acagtctcta aagtaacagt tcaggctgtg 1650 acttgtgaaa caactgtgga acagctctgt ccatttcata agcctgcttc 1700 acattgccca agagtatact gtcctcgtaa ctgtatgcaa gcaaatccac 1750 attatgctcg tgtaattgga actcgagttt attctgatct gtccagtatc 1800 tgcagagcag cagtacatgc tggagtggtt cgaaatcacg gtggttatgt 1850 tgatgtaatg cctgtggaca aaagaaagac ctacattgct tcttttcaqa 1900 atggaatett eteagaaagt ttacagaate eteeaggagg aaaggeatte 1950 agagtgtttg ctgttgtgtg aaactgaata cttggaagag gaccataaag 2000 actattccaa atgcaatatt tctgaatttt gtataaaact gtaacattac 2050 tgtacagagt acatcaacta ttttcagccc aaaaaggtgc caaatgcata 2100 taaatcttga taaacaaagt ctataaaata aaacatggga cattagcttt 2150 gggaaaagta atgaaaatat aatggtttta gaaatcctgt gttaaatatt 2200 gctatatttt cttagcagtt atttctacag ttaattacat agtcatgatt 2250 gttctacgtt tcatatatta tatggtgctt tgtatatgcc actaataaaa 2300 tgaatctaaa cattgaatgt gaatggccct cagaaaatca tctagtgcat 2350 ttaaaaataa tcgactctaa aactgaaaga aaccttatca cattttcccc 2400 agttcaatgc tatgccatta ccaactccaa ataatctcaa ataattttcc 2450 acttaataac tgtaaagttt ttttctgtta atttaggcat atagaatatt 2500 aaattctgat attgcacttc ttattttata taaaataatc ctttaatatc 2550 caaatgaatc tgttaaaatg tttgattcct tgggaatggc cttaaaaata 2600

aatgtaataa agtcagagtg gtggtatgaa aacattccta gtgatcatgt 2650 agtaaatgta gggttaagca tggacagcca gagctttcta tgtactgtta 2700 aaattgaggt cacatattt cttttgtatc ctggcaaata ctcctgcagg 2750 ccaggaagta taatagcaaa aagttgaaca aagatgaact aatgtattac 2800 attaccattg ccactgattt ttttaaatg gtaaatgacc ttgtatataa 2850 atattgccat atcatggtac ctataatggt gatatatttg tttctatgaa 2900 aaatgtattg tgctttgata ctaaaaatct gtaaaatgtt agttttggta 2950 atttttttc tgctggtgga tttacatatt aaatttttc tgctggtgga 3000 taaacattaa aattaatcat gtttcaaaaa aaaaaaaa 3038

<210> 363

<211> 500

<212> PRT

<213> Homo sapiens

<400> 363

Met Lys Cys Thr Ala Arg Glu Trp Leu Arg Val Thr Thr Val Leu 1 5 10 15

Phe Met Ala Arg Ala Ile Pro Ala Met Val Val Pro Asn Ala Thr 20 25 30

Leu Leu Glu Lys Leu Glu Lys Tyr Met Asp Glu Asp Gly Glu
35 40 45

Trp Trp Ile Ala Lys Gln Arg Gly Lys Arg Ala Ile Thr Asp Asn
50 55 60

Asp Met Gln Ser Ile Leu Asp Leu His Asn Lys Leu Arg Ser Gln
65 70 75

Val Tyr Pro Thr Ala Ser Asn Met Glu Tyr Met Thr Trp Asp Val 80 85 90

Glu Leu Glu Arg Ser Ala Glu Ser Trp Ala Glu Ser Cys Leu Trp 95 100 105

Glu His Gly Pro Ala Ser Leu Leu Pro Ser Ile Gly Gln Asn Leu 110 115 120

Gly Ala His Trp Gly Arg Tyr Arg Pro Pro Thr Phe His Val Gln 125 130 135

Ser Trp Tyr Asp Glu Val Lys Asp Phe Ser Tyr Pro Tyr Glu His

Glu Cys Asn Pro Tyr Cys Pro Phe Arg Cys Ser Gly Pro Val Cys 155 160 165

Thr His Tyr Thr Gln Val Val Trp Ala Thr Ser Asn Arg Ile Gly

				170					175					180
Cys	Ala	Ile	Asn	Leu 185		His	Asn	Met	Asn 190		Trp	Gly	Gln	Ile 195
Trp	Pro	Lys	Ala	Val 200		Leu	Val	Суз	Asn 205		Ser	Pro	Lys	Gly 210
Asn	Trp	Trp	Gly	His 215	Ala	Pro	Tyr	Lys	His 220	Gly	Arg	Pro	Суз	Ser 225
Ala	Cys	Pro	Pro	Ser 230	Phe	Gly	Gly	Gly	Cys 235	Arg	Glu	Asn	Leu	Cys 240
Tyr	Lys	Glu	Gly	Ser 245	Asp	Arg	Tyr	Tyr	Pro 250	Pro	Arg	Glu	Glu	Glu 255
Thr	Asn	Glu	Ile	Glu 260	Arg	Gln	Gln	Ser	Gln 265	Val	His	Asp	Thr	His 270
Val	Arg	Thr	Arg	Ser 275	Asp	Asp	Ser	Ser	Arg 280	Asn	Glu	Val	Ile	Ser 285
Ala	Gln	Gln	Met	Ser 290	Gln	Ile	Val	Ser	Cys 295	Glu	Val	Arg	Leu	Arg 300
Asp	Gln	Cys	Lys	Gly 305	Thr	Thr	Cys	Asn	Arg 310	Tyr	Glu	Cys	Pro	Ala 315
Gly	Cys	Leu	Asp	Ser 320	Lys	Ala	Lys	Val	Ile 325	Gly	Ser	Val	His	Tyr 330
Glu	Met	Gln	Ser	Ser 335	Ile	Cys	Arg	Ala	Ala 340	Ile	His	Tyr	Gly	Ile 345
Ile	Asp	Asn	Asp	Gly 350	Gly	Trp	Val	Asp	Ile 355	Thr	Arg	Gln	Gly	Arg 360
Lys	His	Tyr	Phe	Ile 365	Lys	Ser	Asn	Arg	Asn 370	Gly	Ile	Gln	Thr	Ile 375
Gly	Lys	Tyr	Gln	Ser 380	Ala	Asn	Ser	Phe	Thr 385	Val	Ser	Lys	Val	Thr 390
Val	Gln	Ala	Val	Thr 395	Cys	Glu	Thr	Thr	Val 400	Glu	Gln	Leu	Cys	Pro 405
Phe	His	Lys	Pro	Ala 410	Ser	His	Cys	Pro	Arg 415	Val	Tyr	Cys	Pro	Arg 420
Asn	Cys	Met	Gln	Ala 425	Asn	Pro	His	Tyr	Ala 430	Arg	Val	Ile	Gly	Thr 435
Arg	Val	Tyr	Ser	Asp 440	Leu	Ser	Ser	Ile	Cys 445	Arg	Ala	Ala	Val	His 450
Ala	Gly	Val	Val	Arg 455	Asn	His	Gly	Gly	Tyr 460	Val	Asp	Val	Met	Pro 465

<212> DNA

<213> Artificial Sequence

```
Val Asp Lys Arg Lys Thr Tyr Ile Ala Ser Phe Gln Asn Gly Ile
                 470
 Phe Ser Glu Ser Leu Gln Asn Pro Pro Gly Gly Lys Ala Phe Arg
 Val Phe Ala Val Val
<210> 364
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 364
 ggacagaatt tgggagcaca ctgg 24
<210> 365
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 365
 ccaagagtat actgtcctcg 20
<210> 366
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 366
 agcacagatt ttctctacag ccccc 25
<210> 367
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 367
 aaccactcca gcatgtactg ctgc 24
<210> 368
<211> 50
```

```
<220>
<223> Synthetic oligonucleotide probe
<400> 368
ccattcaggt gttctggccc tgtatgtaca cattatacac aggtcgtgtg 50
<210> 369
<211> 1685
<212> DNA
<213> Homo sapiens
<400> 369
ccaccgacgg cgcagccgga gccagcagag ccggaaggcg cgccccgggc 100
agagaaagcc gagcagagct gggtggcgtc tccgggccgc cgctccgacg 150
ggccagegee etececatgt ecetgeteee aegeegegee eeteeggtea 200
gcatgaggct cctggcggcc gcgctgctcc tgctgctgct ggcqctgtac 250
accgcgcgtg tggacgggtc caaatgcaag tgctcccgga agggacccaa 300
gatccgctac agcgacgtga agaagctgga aatgaagcca aagtacccgc 350
actgcgagga gaagatggtt atcatcacca ccaagagcgt gtccaggtac 400
cgaggtcagg agcactgcct gcaccccaag ctgcagagca ccaagcgctt 450
catcaagtgg tacaacgcct ggaacgagaa gcgcagggtc tacgaagaat 500
agggtgaaaa acctcagaag ggaaaactcc aaaccagttg ggagacttgt 550
gcaaaggact ttgcagatta aaaaaaaaaa aaaaaaaaa aaaaaaaaa 600
aaaaaaaaa aaagcctttc tttctcacag gcataagaca caaattatat 650
attgttatga agcacttttt accaacqqtc aqtttttaca ttttataqct 700
gcgtgcgaaa ggcttccaga tgggagaccc atctctcttg tgctccagac 750
ttcatcacag gctgcttttt atcaaaaagg ggaaaactca tgcctttcct 800
ttttaaaaaa tgcttttttg tatttgtcca tacqtcacta tacatctqaq 850
ctttataagc gcccgggagg aacaatgagc ttggtggaca catttcattg 900
cagtgttgct ccattcctag cttgggaagc ttccgcttag aggtcctggc 950
gcctcggcac agctgccacg ggctctcctg ggcttatggc cggtcacagc 1000
ctcagtgtga ctccacagtg gcccctgtag ccgggcaagc aggagcaggt 1050
ctctctgcat ctgttctctg aggaactcaa gtttggttgc caqaaaaatg 1100
tgcttcattc ccccctggtt aatttttaca caccctagga aacatttcca 1150
```

agatectgtg atggegagae aaatgateet taaagaaggt gtggggtett 1200 teceaacetg aggatteetg aaaggtteac aggtteaata titaatgett 1250 cagaagcatg tgaggttccc aacactgtca gcaaaaacct taggagaaaa 1300 cttaaaaata tatgaataca tgcgcaatac acagctacag acacacattc 1350 tgttgacaag ggaaaacctt caaagcatgt ttctttccct caccacaaca 1400 gaacatgcag tactaaagca atatatttgt gattccccat gtaattcttc 1450 aatgttaaac agtgcagtcc tctttcgaaa gctaagatga ccatgcgccc 1500 tttcctctgt acatataccc ttaagaacgc cccctccaca cactgccccc 1550 cagtatatgc cgcattgtac tgctgtgtta tatgctatgt acatgtcaga 1600 aaccattagc attgcatgca ggtttcatat tctttctaag atggaaagta 1650 ataaaatata tttgaaatgt aaaaaaaaaa aaaaa 1685

<210> 370 <211> 111

<212> PRT

<213> Homo sapiens

<400> 370

Met Ser Leu Leu Pro Arg Ala Pro Pro Val Ser Met Arg Leu

Leu Ala Ala Leu Leu Leu Leu Leu Ala Leu Tyr Thr Ala 20 25

Arg Val Asp Gly Ser Lys Cys Lys Cys Ser Arg Lys Gly Pro Lys

Ile Arg Tyr Ser Asp Val Lys Lys Leu Glu Met Lys Pro Lys Tyr 50

Pro His Cys Glu Glu Lys Met Val Ile Ile Thr Thr Lys Ser Val

Ser Arg Tyr Arg Gly Gln Glu His Cys Leu His Pro Lys Leu Gln 80

Ser Thr Lys Arg Phe Ile Lys Trp Tyr Asn Ala Trp Asn Glu Lys 100 105

Arg Arg Val Tyr Glu Glu 110

<210> 371

<211> 22

<212> DNA

<213> Artificial Sequence

<2:20>

```
<223> Synthetic oligonucleotide probe
<400> 371
 cagcgccctc cccatgtccc tg 22
<210> 372
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 372
tcccaactgg tttggagttt tccc 24
<210> 373
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 373
 ctccggtcag catgaggctc ctggcggccg ctgctcctgc tgctg 45
<210> 374
<211> 3113
<212> DNA
<213> Homo sapiens
<400> 374
 gccccaggga ctgctatggc ttcctttgtt gttcaccccg gtctgcgtca 50
 tgttaaactc caatgtcctc ctgtggttaa ctgctcttgc catcaagttc 100
 acceteattg acageeaage acagtateea gttgteaaca caaattatgg 150
 caaaatccgg ggcctaagaa caccgttacc caatgagatc ttgggtccag 200
 tggagcagta cttaggggtc ccctatgcct cacccccac tggagagagg 250
 cggtttcagc ccccagaacc cccgtcctcc tggactggca tccgaaatac 300
 tactcagttt gctgctgtgt gcccccagca cctggatgag agatccttac 350
tgcatgacat gctgcccatc tggtttaccg ccaatttgga tactttgatg 400
acctatgttc aagatcaaaa tgaagactgc ctttacttaa acatctacgt 450
gcccacggaa gatggagcca acacaaagaa aaacgcagat gatataacga 500
gtaatgaccg tggtgaagac gaagatattc atgatcagaa cagtaagaag 550
cccgtcatgg tctatatcca tgqqqqatct tacatqqaqq qcaccqqcaa 600
catgattgac ggcagcattt tggcaagcta cggaaacgtc atcgtgatca 650
```

ccattaacta ccgtctggga atactagggt ttttaagtac cggtgaccag 700 gcagcaaaag gcaactatgg gctcctggat cagattcaag cactgcggtg 750 gattgaggag aatgtgggag cctttggcgg ggaccccaag agagtgacca 800 tetttggete gggggetggg geeteetgtg teageetgtt gaeeetgtee 850 cactactcag aaggtctctt ccagaaggcc atcattcaga gcggcaccgc 900 cctgtccagc tgggcagtga actaccagcc ggccaagtac actcggatat 950 tggcagacaa ggtcggctgc aacatgctgg acaccacgga catggtagaa 1000 tgcctgcgga acaagaacta caaggagctc atccagcaga ccatcacccc 1050 ggccacctac cacatagcct tcgggccggt gatcgacggc gacgtcatcc 1100 cagacgaccc ccagatcctg atggagcaag gcgagttcct caactacgac 1150 atcatgctgg gcgtcaacca aggggaaggc ctgaagttcg tggacgqcat 1200 cgtggataac gaggacggtg tgacgcccaa cgactttgac ttctccgtgt 1250 ccaacttcgt ggacaacctt tacggctacc ctgaagggaa agacactttg 1300 cgggagacta tcaagttcat gtacacagac tgggccgata aggaaaaccc 1350 ggagacgcgg cggaaaaccc tggtggctct ctttactgac caccagtggg 1400 tggcccccgc cgtggccgcc gacctgcacg cgcagtacgg ctcccccacc 1450 tacttctatg ccttctatca tcactgccaa agcgaaatga agcccagctg 1500 ggcagattcg gcccatggtg atgaggtccc ctatgtcttc ggcatcccca 1550 tgatcggtcc caccgagctc ttcagttgta acttttccaa gaacgacgtc 1600 atgctcagcg ccgtggtcat gacctactgg acgaacttcg ccaaaactgg 1650 tgatccaaat caaccagttc ctcaggatac caagttcatt cacacaaaac 1700 ccaaccgctt tgaagaagtg gcctggtcca agtataatcc caaagaccag 1750 ctctatctgc atattggctt gaaacccaga gtgagagatc actaccgggc 1800 aacgaaagtg getttetggt tggaactegt teeteatttg cacaacttga 1850 acgagatatt ccagtatgtt tcaacaacca caaaggttcc tccaccagac 1900 atgacatcat ttccctatgg cacccggcga tctcccgcca agatatggcc 1950 aaccaccaaa cgcccagcaa tcactcctgc caacaatccc aaacactcta 2000 aggaccetca caaaacaggg cetgaggaca caactgteet cattgaaace 2050 aaacgagatt attccaccga attaagtgtc accattgccg tcggggcgtc 2100

gctcctcttc ctcaacatct tagcttttgc ggcgctgtac tacaaaaagg 2150 acaagaggcg ccatgagact cacaggcgcc ccagtcccca gagaaacacc 2200 acaaatgata tegeteacat eeagaaegaa gagateatgt etetgeagat 2250 gaagcagctg gaacacgatc acgagtgtga gtcgctgcag gcacacgaca 2300 cactgagget cacetgeeg ceagactaca eceteaeget gegeeggteg 2350 ccagatgaca tcccacttat gacgccaaac accatcacca tgattccaaa 2400 cacactgacg gggatgcagc ctttgcacac ttttaacacc ttcagtggag 2450 gacaaaacag tacaaattta ccccacggac attccaccac tagagtatag 2500 ctttgcccta tttcccttcc tatccctctg ccctacccgc tcagcaacat 2550 agaagaggga aggaaagaga gaaggaaaga qagagagaaa gaaagtetee 2600 agaccaggaa tgtttttgtc ccactgactt aagacaaaaa tgcaaaaagg 2650 cagtcatccc atcccggcag accettatcg ttggtgtttt ccagtattac 2700 aagatcaact tctgaccctg tgaaatgtga gaagtacaca tttctgttaa 2750 aataactgct ttaagatctc taccactcca atcaatgttt agtgtgatag 2800 gacatcacca tttcaaggcc ccgggtgttt ccaacgtcat ggaagcagct 2850 gacacttctg aaactcagcc aaggacactt gatatttttt aattacaatg 2900 gaagtttaaa catttettte tgtgccacae aatggatgge teteettaag 2950 tgaagaaaga gtcaatgaga ttttgcccag cacatggagc tgtaatccag 3000 agagaaggaa acgtagaaat ttattattaa aagaatggac tgtgcagcga 3050 aatctgtacg gttctgtgca aagaggtgtt ttgccagcct gaactatatt 3100 taagagactt tgt 3113

<210> 375

<211> 816

<212> PRT

<213> Homo sapiens

<400> 375

Met Leu Asn Ser Asn Val Leu Leu Trp Leu Thr Ala Leu Ala Ile 1 5 10 15

Lys Phe Thr Leu Ile Asp Ser Gln Ala Gln Tyr Pro Val Val Asn 20 25 30

Thr Asn Tyr Gly Lys Ile Arg Gly Leu Arg Thr Pro Leu Pro Asn 35 40 45

Glu Ile Leu Gly Pro Val Glu Gln Tyr Leu Gly Val Pro Tyr Ala

				50					55					60
Ser	Pro	Pro	Thr	Gly 65	Glu	Arg	Arg	Phe	Gln 70	Pro	Pro	Glu	Pro	Pro 75
Ser	Ser	Trp	Thr	Gly 80	Ile	Arg	Asn	Thr	Thr 85	Gln	Phe	Ala	Ala	Val 90
Cys	Pro	Gln	His	Leu 95	Asp	Glu	Arg	Ser	Leu 100	Leu	His	Asp	Met	Leu 105
Pro	Ile	Trp	Phe	Thr 110	Ala	Asn	Leu	Asp	Thr 115	Leu	Met	Thr	Tyr	Val 120
Gln	Asp	Gln	Asn	Glu 125	Asp	Cys	Leu	Tyr	Leu 130	Asn	Ile	Tyr	Val	Pro 135
Thr	Glu	Asp	Gly	Ala 140	Asn	Thr	Lys	Lys	Asn 145	Ala	Asp	Asp	Ile	Thr 150
Ser	Asn	Asp	Arg	Gly 155	Glu	Asp	Glu	Asp	Ile 160	His	Asp	Gln	Asn	Ser 165
Lys	Lys	Pro	Val	Met 170	Val	Tyr	Ile	His	Gly 175	Gly	Ser	Tyr	Met	Glu 180
Gly	Thr	Gly	Asn	Met 185	Ile	Asp	Gly	Ser	Ile 190	Leu	Ala	Ser	Tyr	Gly 195
Asn	Val	Ile	Val	Ile 200	Thr	Ile	Asn	Tyr	Arg 205	Leu	Gly	Ile	Leu	Gly 210
Phe	Leu	Ser	Thr	Gly 215	Asp	Gln	Ala	Ala	Lys 220	Gly	Asn	Tyr	Gly	Leu 225
Leu	Asp	Gln	Ile	Gln 230	Ala	Leu	Arg	Trp	Ile 235	Glu	Glu	Asn	Val	Gly 240
Ala	Phe	Gly	Gly	Asp 245	Pro	Lys	Arg	Val	Thr 250	Ile	Phe	Gly	Ser	Gly 255
Ala	Gly	Ala	Ser	Cys 260	Val	Ser	Leu	Leu	Thr 265	Leu	Ser	His	Tyr	Ser 270
Glu	Gly	Leu	Phe	Gln 275	Lys	Ala	Ile	Ile	Gln 280	Ser	Gly	Thr	Ala	Leu 285
Ser	Ser	Trp	Ala	Val 290	Asn	Tyr	Gln	Pro	Ala 295	Lys	Tyr	Thr	Arg	Ile 300
Leu	Ala	Asp	Lys	Val 305	Gly	Cys	Asn	Met	Leu 310	Asp	Thr	Thr	Asp	Met 315
Val	Glu	Cys	Leu	Arg 320	Asn	Lys	Asn	Tyr	Lys 325	Glu	Leu	Ile	Gln	Gln 330
Thr	Ile	Thr	Pro	Ala 335	Thr	Tyr	His	Ile	Ala 340	Phe	Gly	Pro	Val	Ile 345

Asp	Gly	Asp	Val	Ile 350	Pro	Asp	Asp	Pro	Gln 355	Ile	Leu	Met	Glu	Gln 360
Gly	Glu	Phe	Leu	Asn 365	Tyr	Asp	Ile	Met	Leu 370	Gly	Val	Asn	Gln	Gly 375
Glu	Gly	Leu	Lys	Phe 380	Val	Asp	Gly	Ile	Val 385	Asp	Asn	Glu	Asp	Gly 390
Val	Thr	Pro	Asn	Asp 395	Phe	Asp	Phe	Ser	Val 400	Ser	Asn	Phe	Val	Asp 405
Asn	Leu	Tyr	Gly	Tyr 410	Pro	Glu	Gly	Lys	Asp 415	Thr	Leu	Arg	Glu	Thr 420
Ile	Lys	Phe	Met	Tyr 425	Thr	Asp	Trp	Ala	Asp 430	Lys	Glu	Asn	Pro	Glu 435
Thr	Arg	Arg	Lys	Thr 440	Leu	Val	Ala	Leu	Phe 445	Thr	Asp	His	Gln	Trp 450
Val	Ala	Pro	Ala	Val 455	Ala	Ala	Asp	Leu	His 460	Ala	Gln	Tyr	Gly	Ser 465
Pro	Thr	Tyr	Phe	Tyr 470	Ala	Phe	Tyr	His	His 475	Суз	Gln	Ser	Glu	Met 480
Lys	Pro	Ser	Trp	Ala 485	Asp	Ser	Ala	His	Gly 490	Asp	Glu	Val	Pro	Tyr 495
Val	Phe	Gly	Ile	Pro 500	Met	Ile	Gly	Pro	Thr 505	Glu	Leu	Phe	Ser	Cys 510
Asn	Phe	Ser	Lys	Asn 515	Asp	Val	Met	Leu	Ser 520	Ala	Val	Val	Met	Thr 525
Tyr	Trp	Thr	Asn	Phe 530	Ala	Lys	Thr	Gly	Asp 535	Pro	Asn	Gln	Pro	Val 540
Pro	Gln	Asp	Thr	Lys 545	Phe	Ile	His	Thr	Lys 550	Pro	Asn	Arg	Phe	Glu 555
Glu	Val	Ala	Trp	Ser 560	Lys	Tyr	Asn	Pro	Lys 5 6 5	Asp	Gln	Leu	Tyr	Leu 570
His	Ile	Gly	Leu	Lys 575	Pro	Arg	Val	Arg	Asp 580	His	Tyr	Arg	Ala	Thr 585
Lys	Val	Ala	Phe	Trp 590	Leu	Glu	Leu	Val	Pro 595	His	Leu	His	Asn	Leu 600
Asn	Glu	Ile	Phe	Gln 605	Tyr	Val	Ser	Thr	Thr 610	Thr	Lys	Val	Pro	Pro 615
Pro	Asp	Met	Thr	Ser 620	Phe	Pro	Tyr	Gly	Thr 625	Arg.	Arg	Ser	Pro	Ala 630
Lys	Ile	Trp	Pro	Thr	Thr	Lys	Arg	Pro	Ala	Ile	Thr	Pro	Ala	Asn

	635		640	645							
Asn Pro Lys His	Ser Lys As 650	p Pro His	Lys Thr Gly 655	Pro Glu Asp 660							
Thr Thr Val Leu	Ile Glu Th	r Lys Arg	Asp Tyr Ser 670	Thr Glu Leu 675							
Ser Val Thr Ile	Ala Val Gl 680	y Ala Ser	Leu Leu Phe 685	Leu Asn Ile 690							
Leu Ala Phe Ala	Ala Leu Ty 695	r Tyr Lys	Lys Asp Lys 700	Arg Arg His 705							
Glu Thr His Arg	Arg Pro Se 710	r Pro Gln	Arg Asn Thr 715	Thr Asn Asp 720							
Ile Ala His Ile	Gln Asn Gl 725	u Glu Ile	Met Ser Leu 730	Gln Met Lys 735							
Gln Leu Glu His	Asp His Gl 740	u Cys Glu	Ser Leu Gln 745	Ala His Asp 750							
Thr Leu Arg Leu	Thr Cys Pr 755	o Pro Asp	Tyr Thr Leu 760	Thr Leu Arg 765							
Arg Ser Pro Asp	Asp Ile Pr 770	o Leu Met	Thr Pro Asn 775	Thr Ile Thr 780							
Met Ile Pro Asn	Thr Leu Th	r Gly Met	Gln Pro Leu 790	His Thr Phe 795							
Asn Thr Phe Ser	Gly Gly Gl 800	n Asn Ser	Thr Asn Leu 805	Pro His Gly 810							
His Ser Thr Thr	Arg Val 815										
<210> 376 <211> 25 <212> DNA <213> Artificial	Sequence										
<220> <223> Synthetic oligonucleotide probe											
<400> 376 ggcaagctac ggaaacgtca tcgtg 25											
<210> 377 <211> 25 <212> DNA <213> Artificial Sequence											
<220> <223> Synthetic	oligonucleo	tide probe	e								
<400> 377											

aacccccgag ccaaaagatg gtcac 25

- <210> 378
- <211> 47
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 378
- gtaccggtga ccaggcagca aaaggcaact atgggctcct ggatcag 47
- <210> 379
- <211> 2461
- <212> DNA
- <213> Homo sapiens
- <400> 379
- gggaaagatg gcggcgactc tgggacccct tgggtcgtgg cagcagtggc 50
- ggcgatgttt gtcggctcgg gatgggtcca ggatgttact ccttcttctt 100
- ttgttggggt ctgggcaggg gccacagcaa gtcggggcgg gtcaaacgtt 150
- cgagtacttg aaacgggagc actcgctgtc gaagccctac cagggtgtgg 200
- gcacaggcag ttcctcactg tggaatctga tgggcaatgc catggtgatg 250
- acccagtata tecgeettae eccagatatg caaagtaaac agggtgeett 300
- gtggaaccgg gtgccatgtt tcctgagaga ctgggagttg caggtgcact 350
- tcaaaatcca tggacaagga aagaagaatc tgcatgggga tggcttggca 400
- atctggtaca caaaggatcg gatgcagcca gggcctgtgt ttggaaacat 450
- ggacaaattt gtggggctgg gagtatttgt agacacctac cccaatgagg 500
- agaagcagca agagcgggta ttcccctaca tctcagccat ggtgaacaac 550
- ggctccctca gctatgatca tgagcgggat gggcggccta cagagctggg 600
- aggetgeaca gecattgtcc geaatettea ttacgacace ttectggtga 650
- ttcgctacgt caagaggcat ttgacgataa tgatggatat tgatggcaag 700
- catgagtgga gggactgcat tgaagtgccc ggagtccgcc tgccccgcgg 750
- ctactacttc ggcacctcct ccatcactgg ggatctctca gataatcatg 800
- atgtcatttc cttgaagttg tttgaactga cagtggagag aaccccagaa 850
- gaggaaaagc tccatcgaga tgtgttcttg ccctcagtgg acaatatgaa 900
- gctgcctgag atgacagctc cactgccgcc cctgagtggc ctggccctct 950
- tcctcatcgt ctttttctcc ctggtgtttt ctgtatttgc catagtcatt 1000

ggccgccatg g 2461

<210> 380

<211> 348

<212> PRT

<213> Homo sapiens

<400> 380

Met Ala Ala Thr Leu Gly Pro Leu Gly Ser Trp Gln Gln Trp Arg
1 5 10 15

Arg Cys Leu Ser Ala Arg Asp Gly Ser Arg Met Leu Leu Leu Leu 20 25 30

Leu Leu Gly Ser Gly Gln Gly Pro Gln Gln Val Gly Ala Gly
35 40 45

Gln Thr Phe Glu Tyr Leu Lys Arg Glu His Ser Leu Ser Lys Pro
50 55 60

Tyr Gln Gly Val Gly Thr Gly Ser Ser Ser Leu Trp Asn Leu Met
65 70 75

Gly Asn Ala Met Val Met Thr Gln Tyr Ile Arg Leu Thr Pro Asp 80 85 90

Met Gln Ser Lys Gln Gly Ala Leu Trp Asn Arg Val Pro Cys Phe 95 100 105

Leu Arg Asp Trp Glu Leu Gln Val His Phe Lys Ile His Gly Gln 110 115 120

Gly Lys Lys Asn Leu His Gly Asp Gly Leu Ala Ile Trp Tyr Thr 125 130 135

Lys Asp Arg Met Gln Pro Gly Pro Val Phe Gly Asn Met Asp Lys
140 145 150

Phe Val Gly Leu Gly Val Phe Val Asp Thr Tyr Pro Asn Glu Glu 155 160 165

Lys Gln Gln Glu Arg Val Phe Pro Tyr Ile Ser Ala Met Val Asn 170 175 180

Asn Gly Ser Leu Ser Tyr Asp His Glu Arg Asp Gly Arg Pro Thr 185 190 190

Glu Leu Gly Gly Cys Thr Ala Ile Val Arg Asn Leu His Tyr Asp 200 205 210

Thr Phe Leu Val Ile Arg Tyr Val Lys Arg His Leu Thr Ile Met 215 220 225

Met Asp Ile Asp Gly Lys His Glu Trp Arg Asp Cys Ile Glu Val 230 235 240

Pro Gly Val Arg Leu Pro Arg Gly Tyr Tyr Phe Gly Thr Ser Ser 245 250 255

```
HOWFULL TOTOP
```

```
Ile Thr Gly Asp Leu Ser Asp Asn His Asp Val Ile Ser Leu Lys
                 260
                                      265
 Leu Phe Glu Leu Thr Val Glu Arg Thr Pro Glu Glu Glu Lys Leu
                 -275
 His Arg Asp Val Phe Leu Pro Ser Val Asp Asn Met Lys Leu Pro
                                      295
 Glu Met Thr Ala Pro Leu Pro Pro Leu Ser Gly Leu Ala Leu Phe
                 305
 Leu Ile Val Phe Phe Ser Leu Val Phe Ser Val Phe Ala Ile Val
                 320
                                      325
 Ile Gly Ile Ile Leu Tyr Asn Lys Trp Gln Glu Gln Ser Arg Lys
                                                           345
 Arg Phe Tyr
<210> 381
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 381
 ccttgggtcg tggcagcagt gg 22
<210> 382
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 382
cactctccag gctgcatgct cagg 24
<210> 383
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
gtcaaacgtt cgagtacttg aaacgggagc actcgctgtc gaagc 45
<210> 384
<211> 3150
<212> DNA
<213> Homo sapiens
```

	_			_	
<400> 384 ccgagccggg	cgcgcagcga	cggagctggg	gccggcctgg	gaccatgggc	50
gtgagtgcaa	tctacggatc	agtctctgat	ggtgggtcgt	taacctcagt	100
ggggactcca	agatttccat	gaagaaaatc	agttgtcttc	attcaagaat	150
tggggtctgg	ctcagaattc	ctgcagctgg	tgaaaatctg	ttttctagaa	200
gaggtttaat	taatgcctgc	agtctgacat	gttcccgatt	tgaggtgaaa	250
ccatgaagag	aaaatagaat	acttaataat	gcttttccgc	aaccgcttct	300
tgctgctgct	ggccctggct	gcgctgctgg	cctttgtgag	cctcagcctg	350
cagttcttcc	acctgatccc	ggtgtcgact	cctaagaatg	gaatgagtag	400
caagagtcga	aagagaatca	tgcccgaccc	tgtgacggag	ccccctgtga	450
cagaccccgt	ttatgaagct	cttttgtact	gcaacatccc	cagtgtggcc	500
gagcgcagca	tggaaggtca	tgccccgcat	cattttaagc	tggtctcagt	550
gcatgtgttc	attcgccacg	gagacaggta	cccactgtat	gtcattccca	600
aaacaaagcg	accagaaatt	gactgcactc	tggtggctaa	caggaaaccg	650
tatcacccaa	aactggaagc	tttcattagt	cacatgtcaa	aaggatccgg	700
agcctctttc	gaaagcccct	tgaactcctt	gcctctttac	ccaaatcacc	750
cattgtgtga	gatgggagag	ctcacacaga	caggagttgt	gcagcatttg	800
cagaacggtc	agctgctgag	ggatatctat	ctaaagaaac	acaaactcct	850
gcccaatgat	tggtctgcag	accagctcta	tttagagacc	actgggaaaa	900
gccggaccct	acaaagtggg	ctggccttgc	tttatggctt	tctcccagat	950
tttgactgga	agaagattta	tttcaggcac	cagccaagtg	cgctgttctg	1000
ctctggaagc	tgctattgcc	cggtaagaaa	ccagtatctg	gaaaaggagc	1050
agcgtcgtca	gtacctccta	cgtttgaaaa	acagccagct	ggagaagacc	1100
tacggggaga	tggccaagat	cgtggatgtc	cccaccaagc	agcttagagc	1150
tgccaacccc	atagactcca	tgctctgcca	cttctgccac	aatgtcagct	1200
ttccctgtac	cagaaatggc	tgtgttgaca	tggagcactt	caaggtaatt	1250
aagacccatc	agatcgagga	tgaaagggaa	agacgggaga	agaaattgta	1300
cttcgggtat	tctctcctgg	gtgcccaccc	catcctgaac	caaaccatcg	1350
gccggatgca	gcgtgccacc	gagggcagga	aagaagagct	ctttgccctc	1400
tactctgctc	atgatgtcac	tctgtcacca	gttctcagtg	ccttgggcct	1450

ttcagaagcc aggttcccaa ggtttgcagc caggttgatc tttgagcttt 1500 ggcaagacag agaaaagccc agtgaacatt ccgtccggat tctttacaat 1550 ggcgtcgatg tcacattcca cacctctttc tgccaagacc accacaagcg 1600 ttctcccaag cccatgtgcc cgcttgaaaa cttgqtccqc tttqtqaaaa 1650 gggacatgtt tgtagccctg ggtggcagtg gtacaaatta ttatgatgca 1700 tgtcacaggg aaggattcta aaaggtatgc agtacagcag tatagaatcc 1750 atgccaatac agagcatagg gaaaggtcca cttctagttt tqtctqttac 1800 taagggtaga agattattgc tttttaaagg ctaaatattg tttgtgggaa 1850 ccacagatgg ttggggttga acagtaagca cattgctgca atgtggtacg 1900 tgaattgctt ggtacaaaat ggccagttca cagaggaata gaaggtactt 1950 tatcatagcc agacttcgct tagaatgcca gaataatata gttcaagacc 2000 tgaagttgcc aatccaagtt tgcactcttc tggcctgccc catgttacta 2050 tgtgatggaa ccagcacacc tcaaccaaaa ttttttaat cttagacatt 2100 tttaccttgt ccttgttaag aatttcttga agtgatttat ctaaaataaa 2150 ggttggcaaa ctttttctgt aaagggccag attgtaaata tttcaqactq 2200 tgtggaccaa aaggccacat acagtctctg tcataactac tcaactctgt 2250 ttctgaagca ggaaagccac cacagacagt acataaagga atatgtgtag 2300 ctgggttccc aggccagaca aaacagatgg tgaccagact tqqcccctqq 2350 gctgtagttt gctgacccct catctaaaaa ataggctata ctacaattgc 2400 acttccagca ctttgagaac gagttgaata ccaagaatta ttcaatggtt 2450 cctccagtaa cttctgctag aaacacagaa tttggtctgt atctgacact 2500 agaacaaaac ttgagggtaa ataaacattg aattagaatg aatcatagaa 2550 aactgattag aagaatactt gatgtttatg atgattgtgg tacaagatag 2600 ttttaagtat gttctaaata tttgtctgct gtagtctatt tgctgtatat 2650 gctgaaattt ttgtatgcca tttagtattt ttatagttta ggaaaatatt 2700 ttctaagacc agttttagat gactcttatt cctgtagtaa tattcaattt 2750 gctgtacctg cttggtggtt agaaggaggc tagaagatga attcaggcac 2800 tttcttccaa taaaactaat tatggctcat tccctttgac aagctgtaga 2850 actggattca tttttaaacc attttcatca gtttcaaatg gtaaattctg 2900

attgatttt aaatgcgttt ttggaagaac tttgctatta ggtagtttac 2950 agatctttat aaggtgttt atatattaga agcaattata attacatctg 3000 tgattctctga actaatggtg ctaattcaga gaaatggaaa gtgaaagtga 3050 gattctctgt tgtcatcggc attccaactt tttctctttg tttttgtcca 3100 gtgttgcatt tgaatatgtc tgttctata aataaattt ttaagaataa 3150

<210> 385

<211> 480

<212> PRT

<213> Homo sapiens

<400> 385

Met Leu Phe Arg Asn Arg Phe Leu Leu Leu Leu Ala Leu Ala Ala 1 5 10 15

Leu Leu Ala Phe Val Ser Leu Ser Leu Gln Phe Phe His Leu Ile 20 25 30

Pro Val Ser Thr Pro Lys Asn Gly Met Ser Ser Lys Ser Arg Lys
35 40 45

Arg Ile Met Pro Asp Pro Val Thr Glu Pro Pro Val Thr Asp Pro 50 55 60

Val Tyr Glu Ala Leu Leu Tyr Cys Asn Ile Pro Ser Val Ala Glu 65 70 75

Arg Ser Met Glu Gly His Ala Pro His His Phe Lys Leu Val Ser 80 85 90

Val His Val Phe Ile Arg His Gly Asp Arg Tyr Pro Leu Tyr Val 95 100 105

Ile Pro Lys Thr Lys Arg Pro Glu Ile Asp Cys Thr Leu Val Ala 110 115 120

Asn Arg Lys Pro Tyr His Pro Lys Leu Glu Ala Phe Ile Ser His 125 130 135

Met Ser Lys Gly Ser Gly Ala Ser Phe Glu Ser Pro Leu Asn Ser 140 145 150

Leu Pro Leu Tyr Pro Asn His Pro Leu Cys Glu Met Gly Glu Leu
155 160

Thr Gln Thr Gly Val Val Gln His Leu Gln Asn Gly Gln Leu Leu 170 175 180

Arg Asp Ile Tyr Leu Lys Lys His Lys Leu Leu Pro Asn Asp Trp
185 190 195

Ser Ala Asp Gln Leu Tyr Leu Glu Thr Thr Gly Lys Ser Arg Thr 200 205 210

<212> DNA

<213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 386
 ccaagcaget tagageteca gace 24
<210> 387
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 387
ttccctatgc tctgtattgg catgg 25
<210> 388
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
gccacttctg ccacaatgtc agctttccct gtaccagaaa tggctgtgtt 50
<210> 389
<211> 3313
<212> DNA
<213> Homo sapiens
<400> 389
 aaaaaaagctc actaaagttt ctattagagc gaatacggta gatttccatc 50
cccttttgaa gaacagtact gtggagctat ttaagagata aaaacgaaat 100
atcctttctg ggagttcaag attgtgcagt aattggttag gactctgagc 150
gccgctgttc accaatcggg gagagaaaag cggagatcct gctcgccttg 200
cacgcgcctg aagcacaaag cagatagcta ggaatgaacc atccctggga 250
gtatgtggaa acaacggagg agctctgact tcccaactgt cccattctat 300
gggcgaagga actgctcctg acttcagtgg ttaagggcag aattgaaaat 350
aattctggag gaagataaga atgattcctg cgcgactgca ccqqqactac 400
aaagggcttg tcctgctggg aatcctcctg gggactctgt gggagaccgg 450
atgcacccag atacgctatt cagttccgga agagctggag aaaggctcta 500
gggtgggcga catctccagg gacctggggc tggagccccg ggagctcgcg 550
gagcgcggag tccgcatcat ccccagaggt aggacgcagc ttttcgccct 600
```


<210> 390

<211> 916

<212> PRT

<213> Homo sapiens

<400> 390

Met Ile Pro Ala Arg Leu His Arg Asp Tyr Lys Gly Leu Val Leu Leu Gly Ile Leu Leu Gly Thr Leu Trp Glu Thr Gly Cys Thr Gln Ile Arg Tyr Ser Val Pro Glu Glu Leu Glu Lys Gly Ser Arg Val Gly Asp Ile Ser Arg Asp Leu Gly Leu Glu Pro Arg Glu Leu Ala Glu Arg Gly Val Arg Ile Ile Pro Arg Gly Arg Thr Gln Leu Phe Ala Leu Asn Pro Arg Ser Gly Ser Leu Val Thr Ala Gly Arg Ile Asp Arg Glu Glu Leu Cys Met Gly Ala Ile Lys Cys Gln Leu Asn Leu Asp Ile Leu Met Glu Asp Lys Val Lys Ile Tyr Gly Val Glu 110 Val Glu Val Arg Asp Ile Asn Asp Asn Ala Pro Tyr Phe Arg Glu 130 Ser Glu Leu Glu Ile Lys Ile Ser Glu Asn Ala Ala Thr Glu Met 140 Arg Phe Pro Leu Pro His Ala Trp Asp Pro Asp Ile Gly Lys Asn Ser Leu Gln Ser Tyr Glu Leu Ser Pro Asn Thr His Phe Ser Leu 170 Ile Val Gln Asn Gly Ala Asp Gly Ser Lys Tyr Pro Glu Leu Val Leu Lys Arg Ala Leu Asp Arg Glu Glu Lys Ala Ala His His Leu 200 Val Leu Thr Ala Ser Asp Gly Gly Asp Pro Val Arg Thr Gly Thr Ala Arg Ile Arg Val Met Val Leu Asp Ala Asn Asp Asn Ala Pro 230 Ala Phe Ala Gln Pro Glu Tyr Arg Ala Ser Val Pro Glu Asn Leu 255 Ala Leu Gly Thr Gln Leu Leu Val Val Asn Ala Thr Asp Pro Asp Glu Gly Val Asn Ala Glu Val Arg Tyr Ser Phe Arg Tyr Val Asp Asp Lys Ala Ala Gln Val Phe Lys Leu Asp Cys Asn Ser Gly Thr

				290					295					300
Ile	Ser	Thr	Ile	Gly 305	Glu	Leu	Asp	His	Glu 310	Glu	Ser	Gly	Phe	Tyr 315
Gln	Met	Glu	Val	Gln 320	Ala	Met	Asp	Asn	Ala 325	Gly	Tyr	Ser	Ala	Arg 330
Ala	Lys	Val	Leu	Ile 335	Thr	Val	Leu	Asp	Val 340	Asn	Asp	Asn	Ala	Pro 345
Glu	Val	Val	Leu	Thr 350	Ser	Leu	Ala	Ser	Ser 355	Val	Pro	Glu	Asn	Ser 360
Pro	Arg	Gly	Thr	Leu 365	Ile	Ala	Leu	Leu	Asn 370	Val	Asn	Asp	Gln	Asp 375
Ser	Glu	Glu	Asn	Gly 380	Gln	Val	Ile	Суз	Phe 385	Ile	Gln	Gly	Asn	Leu 390
Pro	Phe	Lys	Leu	Glu 395	Lys	Ser	Tyr	Gly	Asn 400	Tyr	Tyr	Ser	Leu	Val 405
Thr	Asp	Ile	Val	Leu 410	Asp	Arg	Glu	Gln	Val 415	Pro	Ser	Tyr	Asn	Ile 420
Thr	Val	Thr	Ala	Thr 425	Asp	Arg	Gly	Thr	Pro 430	Pro	Leu	Ser	Thr	Glu 435
Thr	His	Ile	Ser	Leu 440	Asn	Val	Ala	Asp	Thr 445	Asn	Asp	Asn	Pro	Pro 450
Val	Phe	Pro	Gln	Ala 455	Ser	Tyr	Ser	Ala	Tyr 460	Ile	Pro	Glu	Asn	Asn 465
Pro	Arg	Gly	Val	Ser 470	Leu	Val	Ser	Val	Thr 475	Ala	His	Asp	Pro	Asp 480
Суз	Glu	Glu	Asn	Ala 485	Gln	Ile	Thr	Tyr	Ser 490	Leu	Ala	Glu	Asn	Thr 495
Ile	Gln	Gly	Ala	Ser 500	Leu	Ser	Ser	Tyr	Val 505	Ser	Ile	Asn	Ser	Asp 510
Thr	Gly	Val	Leu	Tyr 515	Ala	Leu	Ser	Ser	Phe 520	Asp	Tyr	Glu	Gln	Phe 525
Arg	Asp	Leu	Gln	Val 530	Lys	Val	Met	Ala	Arg 535	Asp	Asn	Gly	His	Pro 540
Pro	Leu	Ser	Ser	Asn 545	Val	Ser	Leụ	Ser	Leu 550	Phe	Val	Leu	Asp	Gln 555
Asn	Asp	Asn	Ala	Pro 560	Glu	Ile	Leu	Tyr	Pro 565	Ala	Leu	Pro	Thr	Asp 570
Gly	Ser	Thr	Gly	Val 575	Glu	Leu	Ala	Pro	Arg 580	Ser	Ala	Glu	Pro	Gly 585

Tyr	Leu	Val	Thr	Lys 590	Val	Val	Ala	Val	Asp 595	Arg	Asp	Ser	Gly	Gln 600
Asn	Ala	Trp	Leu	Ser 605	Tyr	Arg	Leu	Leu	Lys 610	Ala	Ser	Glu	Pro	Gly 615
Leu	Phe	Ser	Val	Gly 620	Leu	His	Thr	Gly	Glu 625	Val	Arg	Thr	Ala	Arg 630
Ala	Leu	Leu	Asp	Arg 635	Asp	Ala	Leu	Lys	Gln 640	Ser	Leu	Val	Val	Ala 645
Val	Gln	Asp	His	Gly 650	Gln	Pro	Pro	Leu	Ser 655	Ala	Thr	Val	Thr	Leu 660
Thr	Val	Ala	Val	Ala 665	Asp	Ser	Ile	Pro	Gln 670	Val	Leu	Ala	Asp	Leu 675
Gly	Ser	Leu	Glu	Ser 680	Pro	Ala	Asn	Ser	Glu 685	Thr	Ser	Asp	Leu	Thr 690
Leu	Tyr	Leu	Val	Val 695	Ala	Val	Ala	Ala	Val 700	Ser	Суз	Val	Phe	Leu 705
Ala	Phe	Val	Ile	Leu 710	Leu	Leu	Ala	Leu	Arg 715	Leu	Arg	Arg	Trp	His 720
Lys	Ser	Arg	Leu	Leu 725	Gln	Ala	Ser	Gly	Gly 730	Gly	Leu	Thr	Gly	Ala 735
Pro	Ala	Ser	His	Phe 740	Val	Gly	Val	Asp	Gly 745	Val	Gln	Ala	Phe	Leu 750
Gln	Thr	Tyr	Ser	His 755	Glu	Val	Ser	Leu	Thr 760	Thr	Asp	Ser	Arg	Lys 765
Ser	His	Leu	Ile	Phe 770	Pro	Gln	Pro	Asn	Tyr 775	Ala	Asp	Met	Leu	Val 780
Ser	Gln	Glu	Ser	Phe 785	Glu	Lys	Ser	Glu	Pro 790	Leu	Leu	Leu	Ser	Gly 795
Asp	Ser	Val	Phe	Ser 800	Lys	Asp	Ser	His	Gly 805	Leu	Ile	Glu	Val	Ser 810
Leu	Tyr	Gln	Ile	Phe 815	Phe	Leu	Phe	Phe	Phe 820	Asn	Cys	Ser	Val	Ser 825
Gln	Ala	Gly	Val	Gln 830	Arg	Tyr	Asp	His	Ser 835	Ser	Leu	Arg	Pro	Gln 840
Thr	Pro	Arg	Leu	Lys 845	Gln	Leu	Ser	His	Leu 850	Cys	Leu	Arg	Cys	Asn 855
Arg	Asp	Tyr	Arg	Cys 860	Lys	Pro	Pro	Thr	Val 865	Cys	Leu	Ser	Ile	Tyr 870
Leu	Ser	Ile	Tyr	Leu	Ser	Ile	Tyr	Leu	Ser	Ile	Tyr	Leu	Leu	Leu

880 885 Ser Cys Thr Asp Gly Ser Leu Thr Pro Val Ile Pro Val Leu Trp 890 Glu Ala Glu Ala Gly Gly Ser Pro Glu Val Gly Ser Leu Arg Pro 915 Ala <210> 391 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 391 teegtetetg tgaacegeee cae 23 <210> 392 <211> 24 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 392 ctcgggcgca ttgtcgttct ggtc 24 <210> 393 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 393 ccgactgtga aagagaacgc cccagatcca cttgttcccc 40 <210> 394 <211> 999 <212> DNA <213> Homo sapiens <400> 394 cccaggctct agtgcaggag gagaaggagg aggagcagga ggtggagatt 50 cccagttaaa aggctccaga atcgtgtacc aggcagagaa ctgaagtact 100 ggggcctcct ccactgggtc cgaatcagta ggtgaccccg ccctqgatt 150

ctggaagacc tcaccatggg acgcccccga cctcgtgcgg ccaagacgtg 200

gatgttcctg ctcttgctgg ggggagcctg ggcaggacac tccagggcac 250 aggaggacaa ggtgctgggg ggtcatgagt gccaacccca ttcgcagcct 300 tggcaggcgg ccttgttcca gggccagcaa ctactctgtg gcggtgtcct 350 tgtaggtggc aactgggtcc ttacagctgc ccactgtaaa aaaccgaaat 400 acacagtacg cctgggagac cacagcctac agaataaaga tggcccagag 450 caagaaatac ctgtggttca gtccatccca cacccctgct acaacagcag 500 cgatgtggag gaccacaacc atgatctgat gcttcttcaa ctgcgtgacc 550 aggcatccct ggggtccaaa gtgaagccca tcagcctggc agatcattgc 600 acccagectg gecagaagtg caccgtetea ggetggggca etgteaceag 650 tccccgagag aattttcctg acactctcaa ctgtgcagaa gtaaaaatct 700 ttccccagaa gaagtgtgag gatgcttacc cggggcagat cacagatggc 750 atggtctgtg caggcagcag caaaggggct gacacgtgcc agggcqattc 800 tggaggcccc ctggtgtgtg atggtgcact ccagggcatc acatcctqqq 850 gctcagaccc ctgtgggagg tccgacaaac ctggcgtcta taccaacatc 900 tgccgctacc tggactggat caagaagatc ataggcagca agggctgatt 950 ctaggataag cactagatct cccttaataa actcacaact ctctggttc 999

<210> 395

<211> 260

<212> PRT

<213> Homo sapiens

<400> 395

Met Gly Arg Pro Arg Pro Arg Ala Ala Lys Thr Trp Met Phe Leu
1 5 10 15

Leu Leu Gly Gly Ala Trp Ala Gly His Ser Arg Ala Gln Glu
20 25 30

Asp Lys Val Leu Gly Gly His Glu Cys Gln Pro His Ser Gln Pro 35 40 45

Trp Gln Ala Ala Leu Phe Gln Gly Gln Gln Leu Leu Cys Gly Gly
50 55 60

Val Leu Val Gly Gly Asn Trp Val Leu Thr Ala Ala His Cys Lys
65 70 75

Lys Pro Lys Tyr Thr Val Arg Leu Gly Asp His Ser Leu Gln Asn 80 85 90

Lys Asp Gly Pro Glu Gln Glu Ile Pro Val Val Gln Ser Ile Pro 95 100 105

<212> DNA

His Pro Cys Tyr Asn Ser Ser Asp Val Glu Asp His Asn His Asp 110 Leu Met Leu Leu Gln Leu Arg Asp Gln Ala Ser Leu Gly Ser Lys 130 Val Lys Pro Ile Ser Leu Ala Asp His Cys Thr Gln Pro Gly Gln Lys Cys Thr Val Ser Gly Trp Gly Thr Val Thr Ser Pro Arg Glu Asn Phe Pro Asp Thr Leu Asn Cys Ala Glu Val Lys Ile Phe Pro 170 Gln Lys Lys Cys Glu Asp Ala Tyr Pro Gly Gln Ile Thr Asp Gly 195 Met Val Cys Ala Gly Ser Ser Lys Gly Ala Asp Thr Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Asp Gly Ala Leu Gln Gly Ile 220 215 225 Thr Ser Trp Gly Ser Asp Pro Cys Gly Arg Ser Asp Lys Pro Gly Val Tyr Thr Asn Ile Cys Arg Tyr Leu Asp Trp Ile Lys Lys Ile 255 Ile Gly Ser Lys Gly <210> 396 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 396 cagcctacag aataaagatg gccc 24 <210> 397 <211> 24 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 397 ggtgcaatga tctgccaggc tgat 24 <210> 398 <211> 48

```
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 398
agaaatacct gtggttcagt ccatcccaaa ccctgctac aacagcag 48
<210> 399
<211> 2236
<212> DNA
<213> Homo sapiens
<400> 399
 ggcgccggtg caccgggcgg gctgagcgcc tcctgcggcc cggcctgcgc 50
 gccccggccc gccgcgccgc ccacgcccca accccggccc gcgcccccta 100
 gececegeee gggeeegege eegegeeege geceaggtga gegeteegee 150
 cgccgcgagg ccccgccccg gcccgcccc gcccqcccc ggccqqcqqq 200
 ggaaccgggc ggattcctcg cgcgtcaaac cacctgatcc cataaaacat 250
 teatectece ggeggeeege getgegageg eccegeeagt ecqegeegee 300
 geogeocteg coetgtgege cetgegege etgegeacce geggeeegag 350
 cccagccaga gccgggcgga gcggagcgcg ccgagcctcg tcccqcqqcc 400
 gggccggggc cgggccgtag cggcggcgcc tggatgcgga cccggccqcq 450
 gggagacggg cgcccgcccc gaaacgactt tcagtccccg acgcgccccg 500
cccaaccct acgatgaaga gggcgtccgc tggagggagc cggctgctgg 550
catgggtgct gtggctgcag gcctggcagg tggcagcccc atgcccaggt 600
gcctgcgtat gctacaatga gcccaaggtg acgacaagct gcccccagca 650
gggcctgcag gctgtgcccg tgggcatccc tgctgccagc cagcqcatct 700
 tectgeaegg caacegeate tegeatgtge cagetgeeag etteegtgee 750
tgccgcaacc tcaccatcct gtggctgcac tcgaatgtgc tggcccgaat 800
tgatgcggct gccttcactg gcctggccct cctggagcag ctggacctca 850
gcgataatgc acagctccgg tctgtggacc ctgccacatt ccacggcctg 900
ggccgcctac acacgctgca cctggaccgc tgcggcctgc aggagctggg 950
cccggggctg ttccgcggcc tggctgccct qcaqtacctc tacctqcaqq 1000
```

acaacgcgct gcaggcactg cctgatgaca ccttccgcga cctgggcaac 1050

ctcacacacc tcttcctgca cggcaaccgc atctccagcg tgcccgagcg 1100

cgccttccgt gggctgcaca gcctcgaccg tctcctactg caccagaacc 1150 gcgtggccca tgtgcacccg catgccttcc gtgaccttgg ccgcctcatg 1200 acactetate tgtttgccaa caatetatea gegetgeeca etgaggeeet 1250 ggcccccctg cgtgccctgc agtacctgag gctcaacgac aacccctggg 1300 tgtgtgactg ccgggcacgc ccactctggg cctgqctgca gaagttccqc 1350 ggctcctcct ccgaggtgcc ctgcagcctc ccgcaacqcc tqqctqqccq 1400 tgacctcaaa cgcctagctg ccaatgacct qcaqqqctqc qctqtqqcca 1450 ccggccctta ccatcccatc tggaccggca gggccaccga tgaggagccg 1500 ctggggcttc ccaagtgctg ccagccagat gccgctgaca aggcctcagt 1550 actggagect ggaagaccag cttcggcagg caatgcgctg aagggacgcg 1600 tgccgcccgg tgacagcccg ccgggcaacg gctctggccc acggcacatc 1650 aatgactcac cctttgggac tctgcctggc tctgctgagc ccccqctcac 1700 tgcagtgcgg cccgagggct ccgagccacc agggttcccc acctcgggcc 1750 ctcgccggag gccaggctgt tcacgcaaga accgcacccg cagccactgc 1800 cgtctgggcc aggcaggcag cggggtggc gggactggtg actcagaagg 1850 ctcaggtgcc ctacccagcc tcacctgcag cctcaccccc ctgggcctgg 1900 cgctggtgct gtggacagtg cttgggccct gctgaccccc agcggacaca 1950 agagcgtgct cagcagccag gtgtgtgtac atacggggtc tctctccacg 2000 ccgccaagcc agccgggcgg ccgacccgtg gggcaggcca ggccaggtcc 2050 tecetgatgg aegectgeeg eeegecacee ceateteeae eccateatgt 2100 ttacagggtt cggcggcagc gtttgttcca gaacgccqcc tcccacccag 2150 atcgcggtat atagagatat gcattttatt ttacttgtgt aaaaatatcg 2200 gacgacgtgg aataaagagc tcttttctta aaaaaa 2236

<210> 400

<211> 473

<212> PRT

<213> Homo sapiens .

<400> 400

Met Lys Arg Ala Ser Ala Gly Gly Ser Arg Leu Leu Ala Trp Val 1 5 10 15

Leu Trp Leu Gln Ala Trp Gln Val Ala Ala Pro Cys Pro Gly Ala 20 25 30

Cys Val Cys Tyr Asn Glu Pro Lys Val Thr Thr Ser Cys Pro Gln Gln Gly Leu Gln Ala Val Pro Val Gly Ile Pro Ala Ala Ser Gln Arg Ile Phe Leu His Gly Asn Arg Ile Ser His Val Pro Ala Ala Ser Phe Arg Ala Cys Arg Asn Leu Thr Ile Leu Trp Leu His Ser Asn Val Leu Ala Arg Ile Asp Ala Ala Ala Phe Thr Gly Leu Ala Leu Leu Glu Gln Leu Asp Leu Ser Asp Asn Ala Gln Leu Arg Ser 120 Val Asp Pro Ala Thr Phe His Gly Leu Gly Arg Leu His Thr Leu His Leu Asp Arg Cys Gly Leu Gln Glu Leu Gly Pro Gly Leu Phe 150 Arg Gly Leu Ala Ala Leu Gln Tyr Leu Tyr Leu Gln Asp Asn Ala Leu Gln Ala Leu Pro Asp Asp Thr Phe Arg Asp Leu Gly Asn Leu 175 Thr His Leu Phe Leu His Gly Asn Arg Ile Ser Ser Val Pro Glu 190 Arg Ala Phe Arg Gly Leu His Ser Leu Asp Arg Leu Leu Leu His 200 205 210 Gln Asn Arg Val Ala His Val His Pro His Ala Phe Arg Asp Leu 220 Gly Arg Leu Met Thr Leu Tyr Leu Phe Ala Asn Asn Leu Ser Ala 230 Leu Pro Thr Glu Ala Leu Ala Pro Leu Arg Ala Leu Gln Tyr Leu Arg Leu Asn Asp Asn Pro Trp Val Cys Asp Cys Arg Ala Arg Pro Leu Trp Ala Trp Leu Gln Lys Phe Arg Gly Ser Ser Ser Glu Val 280 Pro Cys Ser Leu Pro Gln Arg Leu Ala Gly Arg Asp Leu Lys Arg Leu Ala Ala Asn Asp Leu Gln Gly Cys Ala Val Ala Thr Gly Pro Tyr His Pro Ile Trp Thr Gly Arg Ala Thr Asp Glu Glu Pro Leu

				320					325					330
Gly	Leu	Pro	Lys	Cys 335	Cys	Gln	Pro	Asp	Ala 340	Ala	Asp	Lys	Ala	Ser 345
Val	Leu	Glu	Pro	Gly 350	Arg	Pro	Ala	Ser	Ala 355	Gly	Asn	Ala	Leu	Lys 360
Gly	Arg	Val	Pro	Pro 365	Gly	Asp	Ser	Pro	Pro 370	Gly	Asn	Gly	Ser	Gly 375
Pro	Arg	His	Ile	Asn 380	Asp	Ser	Pro	Phe	Gly 385	Thr	Leu	Pro	Gly	Ser 390
Ala	Glu	Pro	Pro	Leu 395	Thr	Ala	Val	Arg	Pro 400	Glu	Gly	Ser	Glu	Pro 405
Pro	Gly	Phe	Pro	Thr 410	Ser	Gly	Pro	Arg	Arg 415	Arg	Pro	Gly	Суз	Ser 420
Arg	Lys	Asn	Arg	Thr 425	Arg	Ser	His	Cys	Arg 430	Leu	Gly	Gln	Ala	Gly 435
Ser	Gly	Gly	Gly	Gly 440	Thr	Gly	Asp	Ser	Glu 445	Gly	Ser	Gly	Ala	Leu 450
Pro	Ser	Leu	Thr	Cys 455	Ser	Leu	Thr	Pro	Leu 460	Gly	Leu	Ala	Leu	Val 465
Leu	Trp	Thr	Val	Leu 470	Gly	Pro	Суѕ							
<210	> 403	1.												
<2112														
<2123 <2133			-i-1	C0.00	1000									
\213/	AL	L111(JIAI	Sequ	rence	=								
<2203 <2233		nthet	cic o	oligo	onucl	Leoti	ide p	orobe)					
<400	> 400	l												
tggd	ctgc	cct c	gcagt	tacct	c ta	acc 2	24							
<210>	> 402	2												
<211		-												
<212		-		_										
<213>	> Art	titio	cıal	Sequ	ience	9			•					
<220>				٠										
<223>	> Syr	nthet	ic o	oligo	onucl	Leoti	ide p	robe)					
<400>	402	2					-							
ccct	gcag	ggt d	catto	ggcag	gc ta	agg 2	24							
<210>	403	3												
<211>														
<212>			. 1 . 7	0										
<213>	, ALL	.1[10	rpgr	sea	ience	•								

<220>

<223> Synthetic oligonucleotide probe <400> 403 aggcactgcc tgatgacacc ttccgcgacc tgggcaacct cacac 45 <210> 404 <211> 2738 <212> DNA <213> Homo sapiens <400> 404 ggaagtccac ggggagcttg gatgccaaag ggaggacggc tgggtcctct 50 ggagaggact actcactggc atatttctga ggtatctgta gaataaccac 100 agcctcagat actggggact ttacagtccc acagaaccgt cctcccagga 150 agctgaatcc agcaagaaca atggaggcca gcgggaagct catttgcaga 200 caaaggcaag teettttte ettteteett ttgggettat etetggeggg 250 cgcggcggaa cctagaagct attctgtggt ggaggaaact qagqqcaqct 300 cctttgtcac caatttagca aaggacctgg gtctggagca gagggaattc 350 tccaggcggg gggttagggt tgtttccaga gggaacaaac tacatttgca 400 gctcaatcag gagaccgcgg atttgttgct aaatgagaaa ttggaccgtg 450 aggatctgtg cggtcacaca gagccctgtg tgctacgttt ccaagtgttg 500 ctagagagtc ccttcgagtt ttttcaagct gagctgcaag taatagacat 550 aaacgaccac tctccagtat ttctggacaa acaaatgttg gtgaaagtat 600 cagagagcag tecteetggg actacgttte etetgaagaa tgeegaagae 650 ttagatgtag gccaaaacaa tattqagaac tatataatca gccccaactc 700 ctattttcgg gtcctcaccc gcaaacgcag tgatggcagg aaatacccag 750 agctggtgct ggacaaagcg ctggaccgag aggaagaagc tgagctcagg 800 ttaacactca cagcactgga tggtggctct ccgcccagat ctggcactgc 850 tcaggtctac atcgaagtcc tggatgtcaa cgataatgcc cctgaatttg 900 agcagccttt ctatagagtg cagatctctg aggacagtcc ggtaggcttc 950 ctggttgtga aggtctctgc cacggatgta qacacaggag tcaacggaga 1000 gatttcctat tcacttttcc aagcttcaga agagattggc aaaaccttta 1050 agatcaatcc cttgacagga gaaattgaac taaaaaaaca actcgatttc 1100 gaaaaacttc agtcctatga agtcaatatt gaggcaagag atgctggaac 1150

cttttctgga aaatgcaccg ttctgattca agtgatagat gtgaacgacc 1200 atgccccaga agttaccatg tctgcattta ccagcccaat acctgagaac 1250 gcgcctgaaa ctgtggttgc acttttcagt gtttcagatc ttgattcagg 1300 agaaaatggg aaaattagtt gctccattca ggaggatcta cccttcctcc 1350 tgaaatccgc ggaaaacttt tacaccctac taacqqaqaq accactaqac 1400 agagaaagca gagcggaata caacatcact atcactgtca ctgacttggg 1450 gacccctatg ctgataacac agctcaatat gaccgtgctg atcgccgatg 1500 tcaatgacaa cgctcccgcc ttcacccaaa cctcctacac cctgttcgtc 1550 cgcgagaaca acagccccgc cctgcacatc cgcagcgtca gcgctacaga 1600 cagagactca ggcaccaacg cccaggtcac ctactcgctg ctgccgcccc 1650 aggaccegea cetgececte acatecetgg tetecateaa egeggacaac 1700 ggccacctgt tcgccctcag gtctctggac tacgaggccc tqcaggggtt 1750 ccagttccgc gtgggcgctt cagaccacgg ctccccggcg ctgagcagcg 1800 aggcgctggt gcgcgtggtg gtgctggacg ccaacgacaa ctcgcccttc 1850 gtgctgtacc cgctgcagaa cggctccgcg ccctgcaccg agctggtgcc 1900 ccgggcggcc gagccgggct acctggtgac caaggtggtg gcggtggacg 1950 gcgactcggg ccagaacgcc tggctgtcgt accagctgct caaggccacg 2000 gageteggte tgtteggegt gtgggegeae aatggegagg tgegeaeege 2050 caggetgetg agegagegeg acgeggeeaa geacaggetg gtggtgetgg 2100 tcaaggacaa tggcgagcct ccgcgctcgg ccaccgccac gctgcacgtg 2150 ctcctggtgg acggcttctc ccagccctac ctgcctctcc cggaggcggc 2200 cccgacccag gcccaggccg acttgctcac cgtctacctq gtqqtqqcqt 2250 tggcctcggt gtcttcgctc ttcctctttt cggtgctcct gttcgtggcg 2300 gtgcggctgt gtaggaggag cagggcggcc tcggtgggtc gctgcttggt 2350 gcccgagggc ccccttccag gcatcttgt ggacatgagc ggcaccagga 2400 ccctatccca gagctaccag tatgaggtgt gtctggcagg aggctcaggg 2450 accaatgagt tcaagttcct gaagccgatt atccccaact tccctcccca 2500 gtgccctggg aaagaaatac aaggaaattc taccttcccc aataactttq 2550 ggttcaatat tcagtgacca tagttgactt ttacattcca taggtatttt 2600

attttgtggc atttccatgc caatgtttat ttcccccaat ttgtgtgtat 2650 gtaatattgt acggatttac tcttgatttt tctcatgttc tttctccctt 2700 tgttttaaag tgaacattta cctttattcc tggttctt 2738

<210> 405

<211> 798

<212> PRT

<213> Homo sapiens

<400> 405

Met Glu Ala Ser Gly Lys Leu Ile Cys Arg Gln Arg Gln Val Leu 1 5 10 15

Phe Ser Phe Leu Leu Gly Leu Ser Leu Ala Gly Ala Ala Glu 20 25 30

Pro Arg Ser Tyr Ser Val Val Glu Glu Thr Glu Gly Ser Ser Phe
35 40 45

Val Thr Asn Leu Ala Lys Asp Leu Gly Leu Glu Gln Arg Glu Phe
50 55 60

Ser Arg Arg Gly Val Arg Val Val Ser Arg Gly Asn Lys Leu His
65 70 75

Leu Gln Leu Asn Gln Glu Thr Ala Asp Leu Leu Leu Asn Glu Lys 80 85 90

Leu Asp Arg Glu Asp Leu Cys Gly His Thr Glu Pro Cys Val Leu 95 100 105

Arg Phe Gln Val Leu Leu Glu Ser Pro Phe Glu Phe Phe Gln Ala 110 115 120

Glu Leu Gln Val Ile Asp Ile Asn Asp His Ser Pro Val Phe Leu 125 130 135

Asp Lys Gln Met Leu Val Lys Val Ser Glu Ser Ser Pro Pro Gly
140 145 150

Thr Thr Phe Pro Leu Lys Asn Ala Glu Asp Leu Asp Val Gly Gln
• 155 160 165

Asn Asn Ile Glu Asn Tyr Ile Ile Ser Pro Asn Ser Tyr Phe Arg 170 175 180

Val Leu Thr Arg Lys Arg Ser Asp Gly Arg Lys Tyr Pro Glu Leu 185 190 195

Val Leu Asp Lys Ala Leu Asp Arg Glu Glu Glu Ala Glu Leu Arg
200 205 210

Leu Thr Leu Thr Ala Leu Asp Gly Gly Ser Pro Pro Arg Ser Gly 215 220 225

Thr Ala Gln Val Tyr Ile Glu Val Leu Asp Val Asn Asp Asn Ala

				230					235					240
Pro	Glu	Phe	Glu	Gln 245	Pro	Phe	Tyr	Arg	Val 250	Gln	Ile	Ser	Glu	Asp 255
Ser	Pro	Val	Gly	Phe 260	Leu	Val	Val	Lys	Val 265	Ser	Ala	Thr	Asp	Val 270
Asp	Thr	Gly	Val	Asn 275	Gly	Glu	Ile	Ser	Tyr 280	Ser	Leu	Phe	Gln	Ala 285
Ser	Glu	Glu	Ile	Gly 290	Lys	Thr	Phe	Lys	Ile 295	Asn	Pro	Leu	Thr	Gly 300
Glu	Ile	Glu	Leu	Lys 305	Lys	Gln	Leu	Asp	Phe 310	Glu	Lys	Leu	Gln	Ser 315
Tyr	Glu	Val	Asn	Ile 320	Glu	Ala	Arg	Asp	Ala 325	Gly	Thr	Phe	Ser	Gly 330
Lys	Cys	Thr	Val	Leu 335	Ile	Gln	Val	Ile	Asp 340	Val	Asn	Asp	His	Ala 345
Pro	Glu	Val	Thr	Met 350	Ser	Ala	Phe	Thr	Ser 355	Pro	Ile	Pro	Glu	Asn 360
Ala	Pro	Glu	Thr	Val 365	Val	Ala	Leu	Phe	Ser 370	Val	Ser	Asp	Leu	Asp 375
Ser	Gly	Glu	Asn	Gly 380	Lys	Ile	Ser	Cys	Ser 385	Ile	Gln	Glu	Asp	Leu 390
Pro	Phe	Leu	Leu	Lys 395	Ser	Ala	Glu	Asn	Phe 400	Tyr	Thr	Leu	Leu	Thr 405
Glu	Arg	Pro	Leu	Asp 410	Arg	Glu	Ser	Arg	Ala 415	Glu	Tyr	Asn	Ile	Thr 420
Ile	Thr	Val	Thr	Asp 425	Leu	Gly	Thr	Pro	Met 430	Leu	Ile	Thr	Gln	Leu 435
Asn	Met	Thr	Val	Leu 440	Ile	Ala	Asp	Val	Asn 445	Asp	Asn	Ala	Pro	Ala 450
Phe	Thr	Gln	Thr	Ser 455	Tyr	Thr	Leu	Phe	Val 460	Arg	Glu	Asn	Asn	Ser 465
Pro	Ala	Leu	His	Ile 470	Arg	Ser	Val	Ser	Ala 475	Thr	Asp	Arg	Asp	Ser 480
Gly	Thr	Asn	Ala	Gln 485	Val	Thr	Tyr	Ser	Leu 490	Leu	Pro	Pro	Gln	Asp 495
Pro	His	Leu	Pro	Leu 500	Thr	Ser	Leu	Val	Ser 505	Ile	Asn	Ala	Asp	Asn 510
Gly	His	Leu	Phe	Ala 515	Leu	Arg	Ser	Leu	Asp 520	Tyr	Glu	Ala	Leu	Gln 525

Gly	Phe	Gln	Phe	Arg 530	Val	Gly	Ala	Ser	Asp 535	His	Gly	Ser	Pro	Ala 540
Leu	Ser	Ser	Glu	Ala 545	Leu	Val	Arg	Val	Val 550	Val	Leu	Asp	Ala	Asn 555
Asp	Asn	Ser	Pro	Phe 560	Val	Leu	Tyr	Pro	Leu 565	Gln	Asn	Gly	Ser	Ala 570
Pro	Cys	Thr	Glu	Leu 575	Val	Pro	Arg	Ala	Ala 580	Glu	Pro	Gly	Tyr	Leu 585
Val	Thr	Lys	Val	Val 590	Ala	Val	Asp	Gly	Asp 595	Ser	Gly	Gln	Asn	Ala 600
Trp	Leu	Ser	Tyr	Gln 605	Leu	Leu	Lys	Ala	Thr 610	Glu	Leu	Gly	Leu	Phe 615
Gly	Val	Trp	Ala	His 620	Asn	Gly	Glu	Val	Arg 625	Thr	Ala	Arg	Leu	Leu 630
Ser	Glu	Arg	Asp	Ala 635	Ala	Lys	His	Arg	Leu 640	Val	Val	Leu	Val	Lys 645
Asp	Asn	Gly	Glu	Pro 650	Pro	Arg	Ser	Ala	Thr 655	Ala	Thr	Leu	His	Val 660
Leu	Leu	Val	Asp	Gly 665	Phe	Ser	Gln	Pro	Tyr 670	Leu	Pro	Leu	Pro	Glu 675
Ala	Ala	Pro	Thr	Gln 680	Ala	Gln	Ala	Asp	Leu 685	Leu	Thr	Val	Tyr	Leu 690
Val	Val	Ala	Leu	Ala 695	Ser	Val	Ser	Ser	Leu 700	Phe	Leu	Phe	Ser	Val 705
Leu	Leu	Phe	Val	Ala 710	Val	Arg	Leu	Cys	Arg 715	Arg	Ser	Arg	Ala	Ala 720
Ser	Val	Gly	Arg	Cys 725	Leu	Val	Pro	Glu	Gly 730	Pro	Leu	Pro	Gly	His 735
Leu	Val	Asp	Met	Ser 740	Gly	Thr	Arg	Thr	Leu 745	Ser	Gln	Ser	Tyr	Gln 750
Tyr	Glu	Val	Cys	Leu 755	Ala	Gly	Gly	Ser	Gly 760	Thr	Asn	Glu	Phe	Lys 765
Phe	Leu	Lys	Pro	Ile 770	Ile	Pro	Asn	Phe	Pro 775	Pro	Gln	Cys	Pro	Gly 780
Lys	Glu	Ile	Gln	Gly 785	Asn	Ser	Thr	Phe	Pro 790	Asn	Asn	Phe	Gly	Phe 795
Asn	Ile	Gln												

<210> 406

```
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 406
ctgagaacgc gcctgaaact gtg 23
<210> 407
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 407
agcgttgtca ttgacatcgg cg 22
<210> 408
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 408
ttagttgctc cattcaggag gatctaccct tcctcctgaa atccgcggaa 50
<210> 409
<211> 1379
<212> DNA
<213> Homo sapiens
<400> 409
acceaegegt eegeceaege gteegeceae gegteegeee acgegteege 50
gcgtagccgt gcgccgattg cctctcggcc tgggcaatgg tcccggctgc 100
cggtcgacga ccgccccgcg tcatgcggct cctcggctgg tggcaagtat 150
tgctgtgggt gctgggactt cccgtccgcg gcgtggaggt tgcagaggaa 200
agtggtcgct tatggtcaga ggagcagcct gctcaccctc tccaggtggg 250
ggctgtgtac ctgggtgagg aggagctcct gcatgacccg atgggccagg 300
acagggcagc agaagaggcc aatgcggtgc tggggctgga cacccaaggc 350
gatcacatgg tgatgctgtc tgtgattcct ggggaagctg aggacaaagt 400
gagttcagag cctagcggcg tcacctgtgg tgctggagga gcggaggact 450
caaggtgcaa cgtccgagag agccttttct ctctggatgg cgctggagca 500
```

cacttccctg acagagaaga ggagtattac acagagccag aagtggcgga 550 atctgacgca gccccgacag aggactccaa taacactgaa agtctgaaat 600 ccccaaaggt gaactgtgag gagagaaaca ttacaggatt agaaaatttc 650 actctgaaaa ttttaaatat gtcacaggac cttatggatt ttctgaaccc 700 aaacggtagt gactgtactc tagtcctgtt ttacaccccg tggtgccgct 750 tttctgccag tttggcccct cactttaact ctctgccccg ggcatttcca 800 caggtttggc accgtagctg ttcctaatat tttattattt caaggagcta 900 aaccaatggc cagatttaat catacagatc gaacactgga aacactgaaa 950 atcttcattt ttaatcagac aggtatagaa gccaagaaga atgtggtggt 1000 aactcaagcc gaccaaatag gccctcttcc cagcactttg ataaaaagtg 1050 tggactggtt gcttgtattt tccttattct ttttaattag ttttattatg 1100 tatgctacca ttcgaactga gagtattcgg tggctaattc caggacaaga 1150 gcaggaacat gtggagtagt gatggtctga aagaagttgg aaagaggaac 1200 ttcaatcctt cgtttcagaa attagtgcta cagtttcata cattttctcc 1250 agtgacgtgt tgacttgaaa cttcaggcag attaaaagaa tcatttgttg 1300 aacaactgaa tgtataaaaa aattataaac tggtgtttta actagtattg 1350 caataagcaa atgcaaaaat attcaatag 1379

<210> 410

<211> 360

<212> PRT

<213> Homo sapiens

<400> 410

Met Val Pro Ala Ala Gly Arg Arg Pro Pro Arg Val Met Arg Leu 1 5 10 15

Leu Gly Trp Trp Gln Val Leu Leu Trp Val Leu Gly Leu Pro Val
20 25 30

Arg Gly Val Glu Val Ala Glu Glu Ser Gly Arg Leu Trp Ser Glu
35 40 45

Glu Gln Pro Ala His Pro Leu Gln Val Gly Ala Val Tyr Leu Gly
50 55 60

Glu Glu Glu Leu Leu His Asp Pro Met Gly Gln Asp Arg Ala Ala 65 70 75

Glu Glu Ala Asn Ala Val Leu Gly Leu Asp Thr Gln Gly Asp His

Ser Ser Glu Pro Ser Gly Val Thr Cys Gly Ala Ala Gly Ala His Phe Pro Asp Arg Glu Glu Glu Tyr Tyr Thr Gly Pro Glu Ala His Phe Pro Asp Ala Pro Tyr Tyr					80					85					90
Asp Ser Arg Cys Asn Val Arg Glu Ser Leu Phe Ser Leu Asp Gly 135 Ala Gly Ala His Phe Pro Asp Arg Glu Glu Glu Tyr Tyr Thr Glu 145 Pro Glu Val Ala Glu Ser Asp Ala Ala Pro Thr Glu Asp Ser Asr 165 Asn Thr Glu Ser Leu Lys Ser Pro Lys Val Asn Cys Glu Glu Arg 175 Asn Ile Thr Gly Leu Glu Asn Phe Thr Leu Lys Ile Leu Asn Met 195 Ser Gln Asp Leu Met Asp Phe Leu Asn Pro Asn Gly Ser Asp Cys 200 Thr Leu Val Leu Phe Tyr Thr Pro Trp Cys Arg Phe Ser Ala Ser 225 Leu Ala Pro His Phe Asn Ser Leu Pro Arg Ala Phe Pro Ala Leu 235 Arg Phe Gly Thr Val Ala Val Pro Asn Ile Leu Leu Phe Gln Gly 270 Ala Lys Pro Met Ala Arg Phe Asn His Thr Asp Arg Thr Leu Glu 285 Thr Leu Lys Ile Phe Ile Phe Asn Gln Thr Gly Ile Glu Ala Lys 290 Lys Asn Val Val Val Thr Gln Ala Asp Trp Leu Leu Val Phe Ser Leu 330 Phe Phe Leu Ile Ser Phe Ile Met Tyr Ala Thr Ile Arg Thr Glu 345 Ser Ile Arg Trp Leu Ile Pro Gly Gln Glu Glu His Val Glu 360 (210> 411	Met	Val	Met	Leu		Val	Ile	Pro	Gly		Ala	Glu	Asp	Lys	Val 105
Ala Gly Ala His Phe Pro Asp Arg Glu Glu Glu Tyr Tyr Thr Glu 140 Pro Glu Val Ala Glu Ser Asp Ala Ala Pro Thr Glu Asp Ser Asm 155 Asn Thr Glu Ser Leu Lys Ser Pro Lys Val Asn Cys Glu Glu Arg 175 Asn Ile Thr Gly Leu Glu Asn Phe Thr Leu Lys Ile Leu Asn Met 185 Ser Gln Asp Leu Met Asp Phe Leu Asn Pro Asn Gly Ser Asp 210 Thr Leu Val Leu Phe Tyr Thr Pro Trp Cys Arg Phe Ser Ala Ser 225 Leu Ala Pro His Phe Asn Ser Leu Pro Asn Ala Phe Pro Ala Leu 230 His Phe Leu Ala Leu Asp Ala Ser Gln His Ser Ser Leu Ser Thr 260 Ala Lys Pro Met Ala Arg Phe Asn His Thr Asp Arg Thr Leu Glu 285 Thr Leu Lys Ile Phe Ile Phe Asn Gln Thr Gly Ile Glu Ala Lys 290 Lys Asn Val Val Val Thr Gln Ala Asp Trp Leu Leu Val Phe Ser Leu 330 Phe Phe Leu Ile Ser Phe Ile Met Tyr Ala Thr Ile Arg Thr Glu 345 Ser Ile Arg Trp Leu Ile Pro Gly Gln Glu Glu His Val Glu 360 (210) 411	Ser	Ser	Glu	Pro		Gly	Val	Thr	Cys			Gly	Gly	Ala	Glu 120
Pro Glu Val Ala Glu Ser Asp Ala Ala Pro Thr Glu Asp Ser Asr Asn Thr Glu Ser Leu Lys Ser Pro Lys Val Asn Cys Glu Glu Arg 170 Asn Ile Thr Gly Leu Glu Asn Phe Thr Leu Lys Ile Leu Asn Met 190 Ser Gln Asp Leu Met Asp Phe Leu Asn Pro Asn Gly Ser Asp Cys 200 Thr Leu Val Leu Phe Tyr Thr Pro Trp Cys Arg Phe Ser Ala Ser 220 Leu Ala Pro His Phe Asn Ser Leu Pro Arg Ala Phe Pro Ala Leu 230 Arg Phe Gly Thr Val Ala Val Pro Asn Ile Leu Leu Phe Gln Gly 270 Ala Lys Pro Met Ala Arg Phe Asn His Thr Asp Arg Thr Leu Glu 285 Thr Leu Lys Ile Phe Ile Phe Asn Gln Thr Gly Ile Glu Ala Lys 290 Lys Asn Val Val Val Thr Gln Ala Asp Trp Leu Leu Val Pro Ser Leu Pro 330 Phe Phe Leu Ile Ser Phe Ile Met Tyr Ala Thr Ile Arg Thr Glu 345 Ser Ile Arg Trp Leu Ile Pro Gly Gln Glu Glu Glu His Val Glu 3660 <col/> 411	Asp	Ser	Arg	Cys		Val	Arg	Glu	Ser		Phe	Ser	Leu	Asp	Gly 135
Asn Thr Glu Ser Leu Lys Ser Pro Lys Val Asn Cys Glu Glu Arg 170 Asn Ile Thr Gly Leu Glu Asn Phe Thr Leu Lys Ile Leu Asn Met 185 Ser Gln Asp Leu Met Asp Phe Leu Asn Pro Asn Gly Ser Asp Cys 210 Thr Leu Val Leu Phe Tyr Thr Pro Trp Cys Arg Phe Ser Ala Ser 225 Leu Ala Pro His Phe Asn Ser Leu Pro Arg Ala Phe Pro Ala Leu 230 Arg Phe Leu Ala Leu Asp Ala Ser Gln His Ser Ser Leu Ser Thr 265 Arg Phe Gly Thr Val Ala Val Pro Asn Ile Leu Leu Phe Gln Gly 270 Ala Lys Pro Met Ala Arg Phe Asn His Thr Asp Arg Thr Leu Glu 275 Thr Leu Lys Ile Phe Ile Phe Asn Gln Thr Gly Ile Glu Ala Lys 290 Lys Asn Val Val Val Thr Gln Ala Asp Gln Ile Gly Pro Leu Pro 315 Ser Thr Leu Ile Lys Ser Val Asp Trp Leu Leu Val Phe Ser Leu 330 Phe Phe Leu Ile Ser Phe Ile Met Tyr Ala Thr Ile Arg Thr Glu 335 Ser Ile Arg Trp Leu Ile Pro Gly Gln Glu Glu His Val Glu 360 <col/> 411	Ala	Gly	Ala	His		Pro	Asp	Arg	Glu		Glu	Tyr	Tyr	Thr	Glu 150
Asn Ile Thr Gly Leu Glu Asn Phe Thr Leu Lys Ile Leu Asn Met 195 Ser Gln Asp Leu Met Asp Phe Leu Asn Pro Asn Gly Ser Asp Cys 200 Thr Leu Val Leu Phe Tyr Thr Pro Trp Cys Arg Phe Ser Ala Ser 225 Leu Ala Pro His Phe Asn Ser Leu Pro Arg Ala Phe Pro Ala Leu 230 His Phe Leu Ala Leu Asp Ala Ser Gln His Ser Ser Leu Ser Thr 245 Arg Phe Gly Thr Val Ala Val Pro Asn Ile Leu Leu Phe Gln Gly 270 Ala Lys Pro Met Ala Arg Phe Asn Gln Thr Gly Ile Glu Ala Lys 290 Lys Asn Val Val Val Thr Gln Ala Asp Gln Ile Gly Pro Leu Pro 300 Phe Phe Leu Ile Ser Phe Ile Met Tyr Ala Thr Ile Arg Thr Glu 335 Ser Ile Arg Trp Leu Ile Pro Gly Gln Glu Glu Glu His Val Glu 350 (<210> 411	Pro	Glu	Val	Ala		Ser	Asp	Ala	Ala		Thr	Glu	Asp	Ser	Asn 165
Ser Gln Asp Leu Met Asp Phe Leu Asn Pro Asn Gly Ser Asp Cys 210 Thr Leu Val Leu Phe Tyr Thr Pro Trp Cys Arg Phe Ser Ala Ser 225 Leu Ala Pro His Phe Asn Ser Leu Pro Arg Ala Phe Pro Ala Leu 240 His Phe Leu Ala Leu Asp Ala Ser Gln His Ser Ser Leu Ser Thr 255 Arg Phe Gly Thr Val Ala Val Pro Asn Ile Leu Leu Phe Gln Gly 270 Ala Lys Pro Met Ala Arg Phe Asn His Thr Asp Arg Thr Leu Glu 285 Thr Leu Lys Ile Phe Ile Phe Asn Gln Thr Gly Ile Glu Ala Lys 290 Lys Asn Val Val Val Thr Gln Ala Asp Trp Leu Leu Val Phe Ser Leu 330 Phe Phe Leu Ile Ser Phe Ile Met Tyr Ala Thr Ile Arg Thr Glu 345 Ser Ile Arg Trp Leu Ile Pro Gly Gln Glu Gln Glu His Val Glu 360 <<210> 411	Asn	Thr	Glu	Ser		Lys	Ser	Pro	Lys		Asn	Cys	Glu	Glu	Arg 180
Thr Leu Val Leu Phe Tyr Thr Pro Trp Cys Arg Phe Ser Ala Ser 225 Leu Ala Pro His Phe Asn Ser Leu Pro Arg 235 Arg Phe Leu Ala Leu Asp Ala Ser Gln His Ser Ser Leu Ser Thr 255 Arg Phe Gly Thr Val Ala Val Pro Asn Ile Leu Leu Phe Gln Gly 270 Ala Lys Pro Met Ala Arg Phe Asn His Thr Asp Arg Thr Leu Glu 285 Thr Leu Lys Ile Phe Ile Phe Asn Gln Thr Gly Ile Glu Ala Lys 290 Lys Asn Val Val Val Thr Gln Ala Asp Gln Ile Gly Pro Leu Pro 305 Ser Thr Leu Ile Lys Ser Val Asp Trp Leu Glu 225 Ser Ile Arg Trp Leu Ile Pro Gly Gln Glu Gln Glu His Val Glu 360 Ser Ile Arg Trp Leu Ile Pro Gly Gln Glu Gln Glu His Val Glu 360	Asn	Ile	Thr	Gly		Glu	Asn	Phe	Thr		Lys	Ile	Leu	Asn	Met 195
Leu Ala Pro His Phe Asn Ser Leu Pro Arg Ala Phe Pro Ala Leu 230 His Phe Leu Ala Leu Asp Ala Ser Gln His Ser Ser Leu Ser Thr 255 Arg Phe Gly Thr Val Ala Val Pro Asn Ile Leu Leu Phe Gln Gly 270 Ala Lys Pro Met Ala Arg Phe Asn His Thr Asp Arg Thr Leu Glu 285 Thr Leu Lys Ile Phe Ile Phe Asn Gln Thr 295 Lys Asn Val Val Val Thr Gln Ala Asp Gln Ile Gly Pro Leu Pro 305 Ser Thr Leu Ile Lys Ser Val Asp Trp Leu Leu Val Phe Ser Leu 330 Phe Phe Leu Ile Ser Phe Ile Met Tyr Ala Thr Ile Arg Thr Glu 345 Ser Ile Arg Trp Leu Ile Pro Gly Gln Glu Glu His Val Glu 360 <<210> 411	Ser	Gln	Asp	Leu		Asp	Phe	Leu	Asn		Asn	Gly	Ser	Asp	Cys 210
His Phe Leu Ala Leu Asp Ala Ser Gln His Ser Ser Leu Ser Thr 255 Arg Phe Gly Thr Val Ala Val Pro Asn Ile Leu Leu Phe Gln Gly 270 Ala Lys Pro Met Ala Arg Phe Asn His Thr Asp Arg Thr Leu Glu 285 Thr Leu Lys Ile Phe Ile Phe Asn Gln Thr Gly 295 Lys Asn Val Val Val Thr Gln Ala Asp Gln Ile Gly Pro Leu Pro 315 Ser Thr Leu Ile Lys Ser Val Asp Trp Leu Gly Ile Gly Pro Leu 330 Phe Phe Leu Ile Ser Phe Ile Met Tyr Ala Thr Ile Arg Thr Glu 345 Ser Ile Arg Trp Leu Ile Pro Gly Gln Glu Gln Glu His Val Glu 360 <<210> 411	Thr	Leu	Val	Leu		Tyr	Thr	Pro	Trp		Arg	Phe	Ser	Ala	Ser 225
Arg Phe Gly Thr Val Ala Val Pro Asn Ile Leu Leu Phe Gln Gly 270 Ala Lys Pro Met Ala Arg Phe Asn His Thr 280 Asp Arg Thr Leu Glu 285 Thr Leu Lys Ile Phe Ile Phe Asn Gln Thr Gly 11e Glu Ala Lys 295 Lys Asn Val Val Val Thr Gln Ala Asp Gln Ile Gly Pro Leu Pro 315 Ser Thr Leu Ile Lys Ser Val Asp Trp Leu Leu Val Phe Ser Leu 325 Phe Phe Leu Ile Ser Phe Ile Met Tyr Ala Thr Ile Arg Thr Glu 345 Ser Ile Arg Trp Leu Ile Pro Gly Gln Glu Gln Glu His Val Glu 360 <210> 411	Leu	Ala	Pro	His		Asn	Ser	Leu	Pro		Ala	Phe	Pro	Ala	Leu 240
Ala Lys Pro Met Ala Arg Phe Asn His Thr Asp Arg Thr Leu Glu 285 Thr Leu Lys Ile Phe 1le Phe Asn Gln Thr Gly Ile Glu Ala Lys 300 Lys Asn Val Val Val Thr Gln Ala Asp Gln Ile Gly Pro Leu Pro 315 Ser Thr Leu Ile Lys Ser Val Asp Trp Leu Leu Val Phe Ser Leu 320 Phe Phe Leu Ile Ser Phe Ile Met Tyr Ala Thr Ile Arg Thr Glu 345 Ser Ile Arg Trp Leu Ile Pro Gly Gln Glu Gln Glu His Val Glu 360 <210> 411	His	Phe	Leu	Ala	Leu 245	Asp	Ala	Ser	Gln		Ser	Ser	Leu	Ser	Thr 255
Thr Leu Lys Ile Phe Ile Phe Asn Gln Thr Gly Ile Glu Ala Lys 300 Lys Asn Val Val Val Thr Gln Ala Asp Gln Ile Gly Pro Leu Pro 310 Ser Thr Leu Ile Lys Ser Val Asp Trp Leu Leu Val Phe Ser Leu 320 Phe Phe Leu Ile Ser Phe Ile Met Tyr Ala Thr Ile Arg Thr Glu 335 Ser Ile Arg Trp Leu Ile Pro Gly Gln Glu Gln Glu His Val Glu 350 <210> 411	Arg	Phe	Gly	Thr		Ala	Val	Pro	Asn		Leu	Leu	Phe	Gln	Gly 270
Lys Asn Val Val Val Thr Gln Ala Asp Gln Ile Gly Pro Leu Pro 315 Ser Thr Leu Ile Lys Ser Val Asp Trp Leu Leu Val Phe Ser Leu 320 Phe Phe Leu Ile Ser Phe Ile Met Tyr Ala Thr Ile Arg Thr Glu 335 Ser Ile Arg Trp Leu Ile Pro Gly Gln Glu Gln Glu His Val Glu 350 <210> 411	Ala	Lys	Pro	Met		Arg	Phe	Asn	His		Asp	Arg	Thr	Leu	Glu 285
Ser Thr Leu Ile Lys Ser Val Asp Trp Leu Leu Val Phe Ser Leu 320 Phe Phe Leu Ile Ser Phe Ile Met Tyr Ala Thr Ile Arg Thr Glu 335 Ser Ile Arg Trp Leu Ile Pro Gly Gln Glu Gln Glu His Val Glu 350 <210> 411	Thr	Leu	Lys	Ile		Ile	Phe	Asn	Gln		Gly	Ile	Glu	Ala	Lys 300
320 325 330 Phe Phe Leu Ile Ser Phe Ile Met Tyr Ala Thr Ile Arg Thr Glu 335 Ser Ile Arg Trp Leu Ile Pro Gly Gln Glu Gln Glu His Val Glu 350 355 360 <210> 411	Lys	Asn	Val	Val		Thr	Gln	Ala	Asp		Ile	Gly	Pro	Leu	Pro 315
335 340 345 Ser Ile Arg Trp Leu Ile Pro Gly Gln Glu Gln Glu His Val Glu 350 355 360 <210> 411	Ser	Thr	Leu	Ile		Ser	Val	Asp	Trp		Leu	Val	Phe	Ser	Leu 330
350 355 360 <210> 411	Phe	Phe	Leu	Ile		Phe	Ile	Met _.	Tyr		Thr	Ile	Arg	Thr	Glu 345
	Ser	Ile	Arg	Trp		Ile	Pro	Gly	Gln		Gln	Glu	His	Val	Glu 360
<i>`````````````````````````````````````</i>			L												

<210> 413 <211> 24

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 411
 cacagagcca gaagtggcgg aatc 24
<210> 412
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 412
ccacatgttc ctgctcttgt cctgg 25
<210> 413
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 413
cggtagtgac tgtactctag tcctgtttta caccccgtgg tgccq 45
<210> 414
<211> 1196
<212> DNA
<213> Homo sapiens
<400> 414
cccggctccg ctccctctgc cccctcgggg tcgcgcgccc acqatqctqc 50
agggccctgg ctcgctgctg ctgctcttcc tcgcctcqca ctqctqcctq 100
ggctcggcgc gcgggctctt cctctttggc cagcccgact tctcctacaa 150
gcgcagcaat tgcaagccca tcccggtcaa cctgcagctg tgccacggca 200
tcgaatacca gaacatgcgg ctgcccaacc tgctgggcca cgagaccatg 250
aaggaggtgc tggagcaggc cggcgcttgg atcccgctgg tcatgaagca 300
gtgccacccg gacaccaaga agttcctgtg ctcgctcttc gcccccgtct 350
gcctcgatga cctagacgag accatccagc catgccactc gctctgcgtg 400
caggtgaagg accgctgcgc cccggtcatg tccgccttcg qcttcccctq 450
gcccgacatg cttgagtgcg accgtttccc ccaggacaac gacctttgca 500
tececetege tageagegae caecteetge cagecacega ggaageteea 550
```

aaggtatgtg aagcetgcaa aaataaaaat gatgatgaca acgacataat 600 ggaaacgett tgtaaaaatg attttgcact gaaaataaaa gtgaaggaga 650 taacctacat caaccgagat accaaaatca tcctggagac caagagcaag 700 accatttaca agctgaacgg tgtgtccgaa agggacctga agaaatcggt 750 getgtggete aaagacaget tgcagtgcac ctgtgaggag atgaacgaca 800 tcaacgegee ctatctggte atgggacaga aacagggtgg ggagctggtg 850 atcacctcgg tgaagcggtg gcagaagggg cagagaggt tcaagcgcat 900 ctecegeage atcegcaage tgcagtgeta gtcceggcat cetgatgget 950 ccgacaggee tgetccagag cacggetgac catttctget caggettee 1000 agetcecgtt ceccaagcac actectaget getccagtet cagectggge 1050 agetteecee tgeetttge acgtttgcat ceccagcatt teetgagtta 1100 taaggecaca ggagtggata getgtttca cectaaaggaa aageccacce 1150 gaatettgta gaaatattca aactaataaa atcatgaata ttttaa 1196

<210> 415

<211> 295

<212> PRT

<213> Homo sapiens

<400> 415

Met Leu Gln Gly Pro Gly Ser Leu Leu Leu Leu Phe Leu Ala Ser 1 5 10 15

His Cys Cys Leu Gly Ser Ala Arg Gly Leu Phe Leu Phe Gly Gln
20 25 30

Pro Asp Phe Ser Tyr Lys Arg Ser Asn Cys Lys Pro Ile Pro Val 35 40

Asn Leu Gln Leu Cys His Gly Ile Glu Tyr Gln Asn Met Arg Leu 50 55 60

Pro Asn Leu Gly His Glu Thr Met Lys Glu Val Leu Glu Gln 65 70 75

Ala Gly Ala Trp Ile Pro Leu Val Met Lys Gln Cys His Pro Asp 80 85 90

Thr Lys Lys Phe Leu Cys Ser Leu Phe Ala Pro Val Cys Leu Asp 95 100 105

Asp Leu Asp Glu Thr Ile Gln Pro Cys His Ser Leu Cys Val Gln
110 115 120

Val Lys Asp Arg Cys Ala Pro Val Met Ser Ala Phe Gly Phe Pro 125 130 135


```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 418
ctcttcctct ttggccagcc cgacttctcc tacaagcgca gaattgc 47
<210> 419
<211> 1830
<212> DNA
<213> Homo sapiens
<400> 419
gtggaggccg ccgacgatgg cggggccgac ggaggccgag acggggttgg 50
ccgagcccg ggccctgtgc gcgcagcggg gccaccgcac ctacgcgcgc 100
cgctgggtgt tcctgctcgc gatcagcctg ctcaactgct ccaacgccac 150
gctqtqqctc agctttqcac ctqtqqctqa cqtcattqct qaqqacttqq 200
 tcctgtccat ggagcagatc aactggctgt cactggtcta cctcgtggta 250
tecaceceat ttggcgtggc ggccatetgg atectggact ecgteggget 300
ccgtgcggcg accatcctgg gtgcgtggct gaactttgcc gggagtgtgc 350
tacgcatggt gccctgcatg gttgttggga cccaaaaccc atttgccttc 400
ctcatgggtg gccagagcct ctgtgccctt gcccagagcc tggtcatctt 450
ctctccagcc aagctggctg ccttgtggtt cccagagcac cagcgagcca 500
cggccaacat gctcgccacc atgtcgaacc ctctgggcgt ccttgtggcc 550
aatgtgctgt cccctgtgct ggtcaagaag ggtgaggaca ttccgttaat 600
gctcggtgtc tataccatcc ctgctggcgt cgtctgcctg ctgtccacca 650
tetgeetgtg ggagagtgtg ceeeccacce egeeetetge eggggetgee 700
agctccacct cagagaagtt cctggatggg ctcaagctgc agctcatgtg 750
gaacaaggcc tatgtcatcc tggctgtgtg cttgggggga atgatcggga 800
tetetgecag etteteagee etcetggage agateetetg tgeaagegge 850
cactccagtg ggttttccgg cctctqtqqc qctctcttca tcacqtttqq 900
gatcctgggg gcactggctc tcggccccta tgtggaccgg accaagcact 950
```

tcactgaggc caccaagatt ggcctgtgcc tgttctctct ggcctgcgtg 1000

ecetttgeee tggtgteeca getgeaggga eagaceettg eeetggetge 1050

cacctgctcg ctgctcgggc tgtttggctt ctcggtgggc cccgtggcca 1100

tggagttggc ggtcgagtgt tccttcccg tgggggaggg ggctgccaca 1150 ggcatgatct ttgtgctggg gcaggccgag ggaatactca tcatgctggc 1200 aatgacggca ctgactgtgc gacgctcgga gccgtccttg tccacctgcc 1250 agcaggggga ggatccactt gactggacag tgtctctgct gctgatggcc 1300 ggcctgtgca ccttcttcag ctgcatcctg gcggtcttct tccacacccc 1350 ataccggcgc ctgcaggccg agtctggga gccccctcc acccgtaacg 1400 ccgtgggcgg cgcagactca gggccgggtg tggaccgagg gggagcagga 1450 agggctggg tcctggggc cagcaggcc cagcagggcg actccggag gggagcagga 1500 gggggcctcg ctagaggac ccagaggcc cgggagccc caccagcct 1550 gccaccgagc gactcccgt gcgcaaggcc cagcaggcc cagcagccc caccagcct 1550 gccaccgagc gcagactcg aggcagggc cagcaggcc cagcagcca cggttattga 1650 cccggctgg tctcactcct ccttctcct cccgtgggtg atcacgtagc 1700 tgagcgcctt gtagtccagg ttgcccgca catcgatga ggcgaactgg 1750 aacatctggt ccacctgcg gcgggggcga aagggctcct tgcgggctcc 1800 gggagcgaat tacaagcgc cacctgaaaa 1830

<210> 420

<211> 560

<212> PRT

<213> Homo sapiens

<400> 420

Met Ala Gly Pro Thr Glu Ala Glu Thr Gly Leu Ala Glu Pro Arg
1 5 10 15

Ala Leu Cys Ala Gln Arg Gly His Arg Thr Tyr Ala Arg Arg Trp
20 25 30

Val Phe Leu Leu Ala Ile Ser Leu Leu Asn Cys Ser Asn Ala Thr 35 40 45

Leu Trp Leu Ser Phe Ala Pro Val Ala Asp Val Ile Ala Glu Asp 50 55 60

Leu Val Leu Ser Met Glu Gln Ile Asn Trp Leu Ser Leu Val Tyr
65 70 75

Leu Val Val Ser Thr Pro Phe Gly Val Ala Ala Ile Trp Ile Leu 80 85 90

Asp Ser Val Gly Leu Arg Ala Ala Thr Ile Leu Gly Ala Trp Leu
95 100 105

Asn Phe Ala Gly Ser Val Leu Arg Met Val Pro Cys Met Val Val

				110					115					120
Gly	Thr	Gln	Asn	Pro 125	Phe	Ala	Phe	Leu	Met 130	Gly	Gly	Gln	Ser	Leu 135
Cys	Ala	Leu	Ala	Gln 140	Ser	Leu	Val	Ile	Phe 145	Ser	Pro	Ala	Lys	Leu 150
Ala	Ala	Leu	Trp	Phe 155	Pro	Glu	His	Gln	Arg 160	Ala	Thr	Ala	Asn	Met 165
Leu	Ala	Thr	Met	Ser 170	Asn	Pro	Leu	Gly	Val 175	Leu	Val	Ala	Asn	Val 180
Leu	Ser	Pro	Val	Leu 185	Val	Lys	Lys	Gly	Glu 190	Asp	Ile	Pro	Leu	Met 195
Leu	Gly	Val	Tyr	Thr 200	Ile	Pro	Ala	Gly	Val 205	Val	Cys	Leu	Leu	Ser 210
Thr	Ile	Суз	Leu	Trp 215	Glu	Ser	Val	Pro	Pro 220	Thr	Pro	Pro	Ser	Ala 225
Gly	Ala	Ala	Ser	Ser 230	Thr	Ser	Glu	Lys	Phe 235	Leu	Asp	Gly	Leu	Lys 240
Leu	Gln	Leu	Met	Trp 245	Asn	Lys	Ala	Tyr	Val 250	Ile	Leu	Ala	Val-	Cys 255
Leu	Gly	Gly	Met	Ile 260	Gly	Ile	Ser	Ala	Ser 265	Phe	Ser	Ala	Leu	Leu 270
Glu	Gln	Ile	Leu	Cys 275	Ala	Ser	Gly	His	Ser 280	Ser	Gly	Phe	Ser	Gly 285
Leu	Суз	Gly	Ala	Leu 290	Phe	Ile	Thr	Phe	Gly 295	Ile	Leu	Gly	Ala	Leu 300
Ala	Leu	Gly	Pro	Tyr 305	Val	Asp	Arg	Thr	Lys 310	His	Phe	Thr	Glu	Ala 315
Thr	Lys	Ile	Gly	Leu 320	Cys	Leu	Phe	Ser	Leu 325	Ala	Cys	Val	Pro	Phe 330
Ala	Leu	Val	Ser	Gln 335	Leu	Gln	Gly	Gln	Thr 340	Leu	Ala	Leu	Ala	Ala 345
Thr	Cys	Ser	Leu	Leu 350	Gly	Leu	Phe	Gly	Phe 355	Ser	Val	Gly	Pro	Val 360
Ala	Met	Glu	Leu	Ala 365	Val	Glu	Cys _.	Ser	Phe 370	Pro	Val	Gly	Glu	Gly 375
Ala	Ala	Thr	Gly	Met 380	Ile	Phe	Val	Leu	Gly 385	Gln	Ala	Glu	Gly	Ile 390
Leu	Ile	Met	Leu	Ala 395	Met	Thr	Ala	Leu	Thr 400	Val	Arg	Arg	Ser	Glu 405

<212> DNA

Pro Ser Leu Ser Thr Cys Gln Gln Gly Glu Asp Pro Leu Asp Trp 410 Thr Val Ser Leu Leu Met Ala Gly Leu Cys Thr Phe Phe Ser 425 Cys Ile Leu Ala Val Phe Phe His Thr Pro Tyr Arg Arg Leu Gln 445 Ala Glu Ser Gly Glu Pro Pro Ser Thr Arg Asn Ala Val Gly Gly 455 Ala Asp Ser Gly Pro Gly Val Asp Arg Gly Gly Ala Gly Arg Ala Gly Val Leu Gly Pro Ser Thr Ala Thr Pro Glu Cys Thr Ala Arg 485 Gly Ala Ser Leu Glu Asp Pro Arg Gly Pro Gly Ser Pro His Pro Ala Cys His Arg Ala Thr Pro Arg Ala Gln Gly Pro Ala Ala Thr 515 Asp Ala Pro Ser Arg Pro Gly Arg Leu Ala Gly Arg Val Gln Ala 530 Ser Arg Phe Ile Asp Pro Ala Gly Ser His Ser Ser Phe Ser Ser 545 550 Pro Trp Val Ile Thr 560 <210> 421 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 421 agcttctcag ccctcctgga gcag 24 <210> 422 <211> 25 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 422 cgggtcaata aacctggacg cttgg 25 <210> 423 <211> 43

```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 423
 tatgtggacc ggaccaagca cttcactgag gccaccaaga ttg 43
<210> 424
<211> 4313
<212> DNA
<213> Homo sapiens
<400> 424
 gtcccacatc ctgctcaact gggtcaggtc cctcttagac cagctcttgt 50
 ccatcatttg ctgaagtgga ccaactagtt ccccagtagg gggtctcccc 100
 tggcaattct tgatcggcgt ttggacatct cagatcgctt ccaatgaaga 150
 tggccttgcc ttggggtcct gcttgtttca taatcatcta actatgggac 200
 aaggttgtgc cggcagctct gggggaagga gcacggggct gatcaagcca 250
 tccaggaaac actggaqqac ttqtccaqcc ttqaaaqaac tctaqtqqtt 300
 tetgaateta geceaettgg eggtaageat gatgeaaett etgeaaette 350
 tgctggggct tttggggcca ggtggctact tatttctttt aggggattgt 400
 caggaggtga ccactctcac ggtgaaatac caagtgtcag aggaagtgcc 450
 atctggtaca gtgatcggga agctgtccca ggaactgggc cgggaggaga 500
 ggcggaggca agctggggcc gccttccagg tgttgcagct gcctcaggcg 550
 ctccccattc aggtggactc tgaggaaggc ttgctcagca caggcaggcg 600
 gctggatcga gagcagctgt gccgacagtg ggatccctgc ctggtttcct 650
 ttgatgtgct tgccacaggg gatttggctc tgatccatgt ggagatccaa 700
 gtgctggaca tcaatgacca ccagccacgg tttcccaaag gcgagcagga 750
 gctggaaatc tctgagagcg cctctctgcg aacccggatc cccctggaca 800
 gagetettga eccagacaea ggeeetaaea eeetgeaeae etacaetetg 850
 tctcccagtg agcactttgc cttggatgtc attgtgggcc ctgatgagac 900
 caaacatgca gaactcatag tggtgaagga gctggacagg gaaatccatt 950
 cattttttga tctggtgtta actgcctatg acaatgggaa ccccccaag 1000
```

tcaggtacca gettggtcaa ggtcaacgte ttggacteca atgacaatag 1050

ccctgcgttt gctgagagtt cactggcact ggaaatccaa gaagatgctg 1100

cacctggtac gcttctcata aaactgaccg ccacagaccc tgaccaaggc 1150 cccaatgggg aggtggagtt cttcctcagt aagcacatgc ctccagaggt 1200 gctggacacc ttcagtattg atgccaagac aggccaggtc attctgcgtc 1250 gacctctaga ctatgaaaag aaccctgcct acgaggtgga tgttcaggca 1300 agggacctgg gtcccaatcc tatcccagcc cattgcaaag ttctcatcaa 1350 ggttctggat gtcaatgaca acatcccaag catccacgtc acatgggcct 1400 cccagccatc actggtgtca gaagctcttc ccaaggacag ttttattgct 1450 cttgtcatgg cagatgactt ggattcagga cacaatggtt tggtccactg 1500 ctggctgagc caagagctgg gccacttcag gctgaaaaga actaatggca 1550 acacatacat gttgctaacc aatgccacac tggacagaga gcagtggccc 1600 aaatataccc tcactctgtt agcccaagac caaggactcc agcccttatc 1650 agccaagaaa cagctcagca ttcagatcag tgacatcaac gacaatgcac 1700 ctgtgtttga gaaaagcagg tatgaagtct ccacgcggga aaacaactta 1750 ccctctcttc acctcattac catcaaggct catgatgcag acttgggcat 1800 taatggaaaa gtctcatacc gcatccagga ctccccagtt gctcacttag 1850 tagctattga ctccaacaca ggagaggtca ctgctcagag gtcactgaac 1900 tatgaagaga tggccggctt tgagttccag gtgatcgcag aggacagcgg 1950 gcaacccatg cttgcatcca gtgtctctgt gtgggtcagc ctcttggatg 2000 ccaatgataa tgccccagag gtggtccagc ctgtgctcag cgatggaaaa 2050 gccagcctct ccgtgcttgt gaatgcctcc acaggccacc tgctggtgcc 2100 catcgagact cccaatggct tgggcccagc gggcactgac acacctccac 2150 tggccactca cagctcccgg ccattccttt tgacaaccat tgtggcaaga 2200 gatgcagact cgggggcaaa tggagagccc ctctacagca tccgcaatgg 2250 aaatgaagcc cacctcttca tcctcaaccc tcatacgggg cagctgttcg 2300 tcaatgtcac caatgccagc agectcattg ggagtgagtg ggagctggag 2350 atagtagtag aggaccaggg aagcccccc ttacagaccc gagccctgtt 2400 gagggtcatg tttgtcacca gtgtggacca cctgagggac tcagcccgca 2450 agcctggggc cttgagcatg tcgatgctga cggtgatctg cctggctgta 2500 ctgttgggca tcttcgggtt gatcctggct ttgttcatgt ccatctgccg 2550

ctgatgctac ccccacagag gaggcaagag ccccaggact aacagctgac 4050 tgaccaaagc agccccttgt aagcagctct gagtcttttg gaggacaggg 4100 acggtttgtg gctgagataa gtgtttcctg gcaaaacata tgtggagcac 4150 aaagggtcag tcctctggca gaacagatgc cacggagtat cacaggcagg 4200 aaagggtggc cttcttgggt agcaggagtc agggggctgt accctggggg 4250 tgccaggaaa tgctctctga cctatcaata aaggaaaagc agtaaaaaaa 4300 aaaaaaaaaa aaa 4313

<210> 425

<211> 1184

<212> PRT

<213> Homo sapiens

<400> 425

Met Met Gln Leu Leu Gln Leu Leu Gly Leu Leu Gly Pro Gly
1 5 10 15

Gly Tyr Leu Phe Leu Leu Gly Asp Cys Gln Glu Val Thr Thr Leu 20 25 30

Thr Val Lys Tyr Gln Val Ser Glu Glu Val Pro Ser Gly Thr Val 35 40 45

Ile Gly Lys Leu Ser Gln Glu Leu Gly Arg Glu Glu Arg Arg 50 55 60

Gln Ala Gly Ala Ala Phe Gln Val Leu Gln Leu Pro Gln Ala Leu
65 70 75

Pro Ile Gln Val Asp Ser Glu Glu Gly Leu Leu Ser Thr Gly Arg 80 85 90

Arg Leu Asp Arg Glu Gln Leu Cys Arg Gln Trp Asp Pro Cys Leu 95 100 105

Val Ser Phe Asp Val Leu Ala Thr Gly Asp Leu Ala Leu Ile His 110 115 120

Val Glu Ile Gln Val Leu Asp Ile Asn Asp His Gln Pro Arg Phe 125 130 135

Pro Lys Gly Glu Gln Glu Leu Glu Ile Ser Glu Ser Ala Ser Leu 140 145 150

Arg Thr Arg Ile Pro Leu Asp Arg Ala Leu Asp Pro Asp Thr Gly
155 160 165

Pro Asn Thr Leu His Thr Tyr Thr Leu Ser Pro Ser Glu His Phe 170 175 180

Ala Leu Asp Val Ile Val Gly Pro Asp Glu Thr Lys His Ala Glu 185 190 195

Leu	Ile	Val	Val	Lys 200	Glu	Leu	Asp	Arg	Glu 205	Ile	His	Ser	Phe	Phe 210
Asp	Leu	Val	Leu	Thr 215	Ala	Tyr	Asp	Asn	Gly 220	Asn	Pro	Pro	Lys	Ser 225
Gly	Thr	Ser	Leu	Val 230	Lys	Val	Asn	Val	Leu 235	Asp	Ser	Asn	Asp	Asn 240
Ser	Pro	Ala	Phe	Ala 245	Glu	Ser	Ser	Leu	Ala 250	Leu	Glu	Ile	Gln	Glu 255
Asp	Ala	Ala	Pro	Gly 260	Thr	Leu	Leu	Ile	Lys 265	Leu	Thr	Ala	Thr	Asp 270
Pro	Asp	Gln	Gly	Pro 275	Asn	Gly	Glu	Val	Glu 280	Phe	Phe	Leu	Ser	Lys 285
His	Met	Pro	Pro	Glu 290	Val	Leu	Asp	Thr	Phe 295	Ser	Ile	Asp	Ala	Lys 300
Thr	Gly	Gln	Val	Ile 305	Leu	Arg	Arg	Pro	Leu 310	Asp	Tyr	Glu	Lys	Asn 315
Pro	Ala	Tyr	Glu	Val 320	Asp	Val	Gln	Ala	Arg 325	Asp	Leu	Gly	Pro	Asn 330
Pro	Ile	Pro	Ala	His 335	Cys	Lys	Val	Leu	Ile 340	Lys	Val	Leu	Asp	Val 345
Asn	Asp	Asn	Ile	Pro 350	Ser	Ile	His	Val	Thr 355	Trp	Ala	Ser	Gln	Pro 360
Ser	Leu	Val	Ser	Glu 365	Ala	Leu	Pro	Lys	Asp 370	Ser	Phe	Ile	Ala	Leu 375
Val	Met	Ala	Asp	Asp 380	Leu	Asp	Ser	Gly	His 385	Asn	Gly	Leu	Val	His 390
Cys	Trp	Leu	Ser	Gln 395	Glu	Leu	Gly	His	Phe 400	Arg	Leu	Lys	Arg	Thr 405
Asn	Gly	Asn	Thr	Tyr 410	Met	Leu	Leu	Thr	Asn 415	Ala	Thr	Leu	Asp	Arg 420
Glu	Gln	Trp	Pro	Lys 425	Tyr	Thr	Leu	Thr	Leu 430	Leu	Ala	Gln	Asp	Gln 435
Gly	Leu	Gln	Pro	Leu 440	Ser	Ala	Lys	Lys	Gln 445	Leu	Ser	Ile	Gln	Ile 450
Ser	Asp	Ile	Asn	Asp 455	Asn	Ala	Pro	Val	Phe 460	Glu	Lys	Ser	Arg	Tyr 465
Glu	Val	Ser	Thr	Arg 470	Glu	Asn	Asn	Leu	Pro 475	Ser	Leu	His	Leu	Ile 480
Thr	Ile	Lys	Ala	His	Asp	Ala	Asp	Leu	Gly	Ile	Asn	Gly	Lys	Val

				-										
				485					490					495
Ser	Tyr	Arg	Ile	Gln 500	Asp	Ser	Pro	Val	Ala 505	His	Leu	Val	Ala	Ile 510
Asp	Ser	Asn	Thr	Gly 515	Glu	Val	Thr	Ala	Gln 520	Arg	Ser	Leu	Asn	Tyr 525
Glu	Glu	Met	Ala	Gly 530	Phe	Glu	Phe	Gln	Val 535	Ile	Ala	Glu	Asp	Ser 540
Gly	Gln	Pro	Met	Leu 545	Ala	Ser	Ser	Val	Ser 550	Val	Trp	Val	Ser	Leu 555
Leu	Asp	Ala	Asn	Asp 560	Asn	Ala	Pro	Glu	Val 565	Val	Gln	Pro	Val	Leu 570
Ser	Asp	Gly	Lys	Ala 575	Ser	Leu	Ser	Val	Leu 580	Val	Asn	Ala	Ser	Thr 585
Gly	His	Leu	Leu	Val 590	Pro	Ile	Glu	Thr	Pro 595	Asn	Gly	Leu	Gly	Pro 600
Ala	Gly	Thr	Asp	Thr 605	Pro	Pro	Leu	Ala	Thr 610	His	Ser	Ser	Arg	Pro 615
Phe	Leu	Leu	Thr	Thr 620	Ile	Val	Ala	Arg	Asp 625	Ala	Asp	Ser	Gly	Ala 630
Asn	Gly	Glu	Pro	Leu 635	Tyr	Ser	Ile	Arg	Asn 640	Gly	Asn	Glu	Ala	His 645
Leu	Phe	Ile	Leu	Asn 650	Pro	His	Thr	Gly	Gln 655	Leu	Phe	Val	Asn	Val 660
Thr	Asn	Ala	Ser	Ser 665	Leu	Ile	Gly	Ser	Glu 670	Trp	Glu	Leu	Glu	Ile 675
Val	Val	Glu	Asp	Gln 680	Gly	Ser	Pro	Pro	Leu 685	Gln	Thr	Arg	Ala	Leu 690
Leu	Arg	Val	Met	Phe 695	Val	Thr	Ser	Val	Asp 700	His	Leu	Arg	Asp	Ser 705
Ala	Arg	Lys	Pro	Gly 710	Ala	Leu	Ser	Met	Ser 715	Met	Leu	Thr	Val	Ile 720
Суѕ	Leu	Ala	Val	Leu 725	Leu	Gly	Ile	Phe	Gly 730	Leu	Ile	Leu	Ala	Leu 735
Phe	Met	Ser	Ile	Cys 740	Arg	Thr	Glu	Lys	Lys 745	Asp	Asn	Arg	Ala	Tyr 750
Asn	Cys	Arg	Glu	Ala 755	Glu	Ser	Thr	Tyr	Arg 760	Gln	Gln	Pro	Lys	Arg 765
Pro	Gln	Lys	His	Ile 770	Gln	Lys	Ala	Asp	Ile 775	His	Leu	Val	Pro	Val 780

<400> 428

<210> 429 <211> 2037

1070 1075 1080 Thr Glu Glu Pro Arg Thr Phe Gln Thr Phe Gly Lys Ala Glu Ala 1085 Pro Glu Leu Ser Pro Thr Gly Thr Arg Leu Ala Ser Thr Phe Val 1100 1105 Ser Glu Met Ser Ser Leu Leu Glu Met Leu Glu Gln Arg Ser 1115 1120 Ser Met Pro Val Glu Ala Ala Ser Glu Ala Leu Arg Arg Leu Ser 1130 1135 Val Cys Gly Arg Thr Leu Ser Leu Asp Leu Ala Thr Ser Ala Ala 1145 1150 Ser Gly Met Lys Val Gln Gly Asp Pro Gly Gly Lys Thr Gly Thr 1160 Glu Gly Lys Ser Arg Gly Ser Ser Ser Ser Ser Arg Cys Leu 1175 1180 <210> 426 <211> 24 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 426 gtaagcacat gcctccagag gtgc 24 <210> 427 <211> 24 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 427 gtgacgtgga tgcttgggat gttg 24 <210> 428 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe

tggacacctt cagtattgat gccaagacag gccaggtcat tctgcgtcga 50

<212> DNA <213> Homo sapiens

<400> 429 cggacgcgtg ggcggacgcg tqqqqqaqaq ccqcaqtccc qqctqcaqca 50 cctgggagaa ggcagaccgt gtgaggggqc ctgtqqcccc aqcgtqctgt 100 ggcctcgggg agtgggaagt ggaggcagga gccttcctta cacttcgcca 150 tgagtttcct catcgactcc agcatcatga ttacctccca gatactattt 200 tttggatttg ggtggctttt cttcatgcgc caattgttta aagactatga 250 gatacgtcag tatgttgtac aggtgatctt ctccgtgacg tttgcatttt 300 cttgcaccat gtttgagctc atcatctttg aaatcttagg agtattgaat 350 agcagctccc gttattttca ctggaaaatg aacctgtgtg taattctgct 400 gatcctggtt ttcatggtgc ctttttacat tggctatttt attgtgagca 450 atatecgact actgeataaa caacgactge tttttteetg tetettatgg 500 ctgaccttta tgtatttctt ctggaaacta ggagatccct ttcccattct 550 cagcccaaaa catgggatct tatccataga acagctcatc agccgggttg 600 gtgtgattgg agtgactctc atggctcttc tttctggatt tggtgctgtc 650 aactgcccat acacttacat gtcttacttc ctcaggaatg tgactgacac 700 ggatatteta gecetggaac ggegactget geaaaceatg gatatgatea 750 taagcaaaaa gaaaaggatg gcaatggcac ggagaacaat gttccagaag 800 ggggaagtgc ataacaaacc atcaggtttc tggggaatga taaaaagtgt 850 taccacttca gcatcaggaa gtgaaaatct tactcttatt caacaggaag 900 tggatgcttt ggaagaatta agcaggcagc tttttctgga aacagctgat 950 ctatatgcta ccaaggagag aatagaatac tccaaaacct tcaaggggaa 1000 atattttaat tttcttggtt actttttctc tatttactgt gtttggaaaa 1050 ttttcatggc taccatcaat attgtttttg atcgagttgg gaaaacggat 1100 cctgtcacaa gaggcattga gatcactgtg aattatctgg gaatccaatt 1150 tgatgtgaag ttttggtccc aacacatttc cttcattctt gttggaataa 1200 tcatcgtcac atccatcaga ggattgctga tcactcttac caagttcttt 1250 tatgccatct ctagcagtaa gtcctccaat gtcattgtcc tgctattagc 1300 acagataatg ggcatgtact ttgtctcctc tgtgctgctg atccgaatga 1350

gtatgccttt agaataccgc accataatca ctgaagtcct tggagaactg 1400 cagttcaact tctatcaccg ttggtttgat gtgatcttcc tggtcagcgc 1450 tctctctagc atactcttcc tctatttggc tcacaaacag gcaccagaga 1500 agcaaatggc accttgaact taagcctact acagactgtt agaggccagt 1550 ggtttcaaaa tttagatata agagggggga aaaatggaac cagggcctga 1600 cattttataa acaaacaaaa tgctatggta gcattttca ccttcatagc 1650 atactccttc cccgtcaggt gatactatga ccatgagtag catcagccag 1700 aacatgagag ggagaactaa ctcaagacaa tactcagcag agagcatccc 1750 gtgtggatat gaggctggtg tagaggcgga gaggagccaa gaaactaaag 1800 gtgaaaaata cactggaact ctggggcaag acatgtctat ggtagctgag 1850 ccaaacacgt aggattccc ttaaagtt cacatggaaa aggttatagc 1900 tttgccttga gattgactca ttaaaatcag agactgtaac aaaaaaaaa 1950 aaaaaaaaaa agggcggccg cgactctaga gtcgacctgc agaagcttgg 2000 ccgccatggc ccaacttgtt tattgcagct tataatg 2037

<210> 430

<211> 455

<212> PRT

<213> Homo sapiens

<400> 430

Met Ser Phe Leu Ile Asp Ser Ser Ile Met Ile Thr Ser Gln Ile 1 5 10 15

Leu Phe Phe Gly Phe Gly Trp Leu Phe Phe Met Arg Gln Leu Phe 20 25 30

Lys Asp Tyr Glu Ile Arg Gln Tyr Val Val Gln Val Ile Phe Ser 35 40 45

Val Thr Phe Ala Phe Ser Cys Thr Met Phe Glu Leu Ile Ile Phe 50 55 60

Glu Ile Leu Gly Val Leu Asn Ser Ser Ser Arg Tyr Phe His Trp
65 70 75

Lys Met Asn Leu Cys Val Ile Leu Leu Ile Leu Val Phe Met Val 80 85 90

Pro Phe Tyr Ile Gly Tyr Phe Ile Val Ser Asn Ile Arg Leu Leu 95 100 105

His Lys Gln Arg Leu Leu Phe Ser Cys Leu Leu Trp Leu Thr Phe 110 115 120

415 420 Phe Tyr His Arg Trp Phe Asp Val Ile Phe Leu Val Ser Ala Leu 425 430 Ser Ser Ile Leu Phe Leu Tyr Leu Ala His Lys Gln Ala Pro Glu 440 445 Lys Gln Met Ala Pro <210> 431 <211> 407 <212> DNA <213> Homo sapiens <220> <221> unsure <222> 78, 81, 113, 157, 224, 297 <223> unknown base <400> 431 catgggaagt ggagccggag ccttccttac actcgccatg agtttcctca 50 tcgactccag catcatgatt acctcccnga nactattttt tggatttggg 100 tggcttttct tcngcgccaa tgtttaaaga ctatgagata cgtcagtatg 150 ttgtacnggt gatcttctcc gtgacgtttg ccatttcttg caccatgttt 200 gagctcatca tctttgaaat cttnggagta ttgaatagca gctcccgtta 250 ttttcactgg aaaatgaacc tgtgtgtaat tctgctgatc ctggttntca 300 tggtgccttt ttacattggc tattttattg tgagcaatat ccgactactg 350 cataaacaac gactgctttt ttcctgtctc ttatggctga cctttatgta 400 tttccag 407 <210> 432 <211> 457 <212> DNA <213> Homo sapiens <220> <221> unsure <222> 31, 66, 81-82, 84, 122, 184, 187, 232, 241, 400, 424, 427, 434 <223> unknown base <400> 432 gtgttgccct tggggaggg aaggggagcc nggccctttc ctaaaatttg 50 gccaagggtt tctttnttga attccgggtt nngnatacct tcccaqaaaa 100

tattttttgg atttggggta gntttttttc atgcgccaat tgtttaaaga 150

ctatgagata cgtcagtatg ttgtacaggt gatnttntcc gtgacgtttg 200

cattiticity caccatgitt gageteatea intitigaaat nitaggagta 250

gggcctccgg gatttgctac ctttttggct ccctgctcgt cgaactgctc 100

ttctcacggg ctgtcgcctt caatctggac gtgatgggtg ccttgcgcaa 150

ggagggcgag ccaggcagcc tcttcggctt ctctgtggcc ctgcaccggc 200

gtatacttgg accccatggc tgtggtggca gaaggagtgc cctggtgggt 3150 catcctcctg gctgtactgg ctgggctgct ggtgctagca ctgctggtgc 3200 tgctcctgtg gaagatggga ttcttcaaac gggcgaagca ccccgaggcc 3250 accgtgcccc agtaccatgc ggtgaagatt cctcgggaag accgacagca 3300 gttcaaggag gagaagacgg gcaccatcct gaggaacaac tqqqqcaqcc 3350 eccggeggga gggeeeggat geacaeeeea teetggetge tgaegggeat 3400 cccgagctgg gccccgatgg gcatccaggg ccaggcaccg cctaggttcc 3450 catgtcccag cetggcetgt ggetgecete catecettee ceagagatgg 3500 ctccttggga tgaagaggt agaqtgggct gctqqtqtcq catcaaqatt 3550 tggcaggatc ggcttcctca ggggcacaga cctctcccac ccacaaqaac 3600 tecteceace caactteece ttagagtget gtgagatgag agtgggtaaa 3650 tcagggacag ggccatgggg tagggtgaga agggcagggg tqtcctqatq 3700 caaaggtggg gagaagggat cctaatccct tcctctccca ttcaccctgt 3750 gtaacaggac cccaaggacc tgcctccccg gaagtgcctt aacctagagg 3800 gtcggggagg aggttgtgtc actgactcag gctgctcctt ctctaqtttc 3850 contested to the transfer of the contested to the contest a 3951

<210> 437

<211> 1141

<212> PRT

<213> Homo sapiens

<400> 437

Met Ala Gly Ala Arg Ser Arg Asp Pro Trp Gly Ala Ser Gly Ile
1 5 10 15

Cys Tyr Leu Phe Gly Ser Leu Leu Val Glu Leu Leu Phe Ser Arg 20 25 30

Ala Val Ala Phe Asn Leu Asp Val Met Gly Ala Leu Arg Lys Glu
35 40 45

Gly Glu Pro Gly Ser Leu Phe Gly Phe Ser Val Ala Leu His Arg 50 55 60

Gln Leu Gln Pro Arg Pro Gln Ser Trp Leu Leu Val Gly Ala Pro
65 70 75

Gln Ala Leu Ala Leu Pro Gly Gln Gln Ala Asn Arg Thr Gly Gly

85 90 Leu Phe Ala Cys Pro Leu Ser Leu Glu Glu Thr Asp Cys Tyr Arg Val Asp Ile Asp Gln Gly Ala Asp Met Gln Lys Glu Ser Lys Glu 120 Asn Gln Trp Leu Gly Val Ser Val Arg Ser Gln Gly Pro Gly Gly Lys Ile Val Thr Cys Ala His Arg Tyr Glu Ala Arg Gln Arg Val 140 150 Asp Gln Ile Leu Glu Thr Arg Asp Met Ile Gly Arg Cys Phe Val Leu Ser Gln Asp Leu Ala Ile Arg Asp Glu Leu Asp Gly Glu 180 Trp Lys Phe Cys Glu Gly Arg Pro Gln Gly His Glu Gln Phe Gly 190 Phe Cys Gln Gln Gly Thr Ala Ala Phe Ser Pro Asp Ser His 205 210 Tyr Leu Leu Phe Gly Ala Pro Gly Thr Tyr Asn Trp Lys Gly Thr Ala Arg Val Glu Leu Cys Ala Gln Gly Ser Ala Asp Leu Ala His 235 Leu Asp Asp Gly Pro Tyr Glu Ala Gly Glu Lys Glu Gln Asp Pro Arg Leu Ile Pro Val Pro Ala Asn Ser Tyr Phe Gly Phe Ser 260 270 Ile Asp Ser Gly Lys Gly Leu Val Arg Ala Glu Glu Leu Ser Phe 280 Val Ala Gly Ala Pro Arg Ala Asn His Lys Gly Ala Val Val Ile 290 295 300 Leu Arg Lys Asp Ser Ala Ser Arg Leu Val Pro Glu Val Met Leu 305 Ser Gly Glu Arg Leu Thr Ser Gly Phe Gly Tyr Ser Leu Ala Val 320 325 Ala Asp Leu Asn Ser Asp Gly Trp Pro Asp Leu Ile Val Gly Ala Pro Tyr Phe Phe Glu Arg Gln Glu Glu Leu Gly Gly Ala Val Tyr Val Tyr Leu Asn Gln Gly Gly His Trp Ala Gly Ile Ser Pro Leu 370 375

Arg Leu Cys Gly Ser Pro Asp Ser Met Phe Gly Ile Ser Leu Ala 380 Val Leu Gly Asp Leu Asn Gln Asp Gly Phe Pro Asp Ile Ala Val Gly Ala Pro Phe Asp Gly Asp Gly Lys Val Phe Ile Tyr His Gly Ser Ser Leu Gly Val Val Ala Lys Pro Ser Gln Val Leu Glu Gly Glu Ala Val Gly Ile Lys Ser Phe Gly Tyr Ser Leu Ser Gly Ser Leu Asp Met Asp Gly Asn Gln Tyr Pro Asp Leu Leu Val Gly Ser Leu Ala Asp Thr Ala Val Leu Phe Arg Ala Arg Pro Ile Leu His Val Ser His Glu Val Ser Ile Ala Pro Arg Ser Ile Asp Leu Glu Gln Pro Asn Cys Ala Gly Gly His Ser Val Cys Val Asp Leu Arg Val Cys Phe Ser Tyr Ile Ala Val Pro Ser Ser Tyr Ser Pro Thr 515 Val Ala Leu Asp Tyr Val Leu Asp Ala Asp Thr Asp Arg Arg Leu 530 Arg Gly Gln Val Pro Arg Val Thr Phe Leu Ser Arg Asn Leu Glu Glu Pro Lys His Gln Ala Ser Gly Thr Val Trp Leu Lys His Gln His Asp Arg Val Cys Gly Asp Ala Met Phe Gln Leu Gln Glu Asn 575 580 Val Lys Asp Lys Leu Arg Ala Ile Val Val Thr Leu Ser Tyr Ser Leu Gln Thr Pro Arg Leu Arg Arg Gln Ala Pro Gly Gln Gly Leu 605 Pro Pro Val Ala Pro Ile Leu Asn Ala His Gln Pro Ser Thr Gln 620 Arg Ala Glu Ile His Phe Leu Lys Gln Gly Cys Gly Glu Asp Lys Ile Cys Gln Ser Asn Leu Gln Leu Val His Ala Arg Phe Cys Thr

Arg Val Ser Asp Thr Glu Phe Gln Pro Leu Pro Met Asp Val Asp

				665					670					675
Gly	Thr	Thr	Ala	Leu 680	Phe	Ala	Leu	Ser	Gly 685	Gln	Pro	Val	Ile	Gly 690
Leu	Glu	Leu	Met	Val 695	Thr	Asn	Leu	Pro	Ser 700	Asp	Pro	Ala	Gln	Pro 705
Gln	Ala	Asp	Gly	Asp 710	Asp	Ala	His	Glu	Ala 715	Gln	Leu	Leu	Val	Met 720
Leu	Pro	Asp	Ser	Leu 725	His	Tyr	Ser	Gly	Val 730	Arg	Ala	Leu	Asp	Pro 735
Ala	Glu	Lys	Pro	Leu 740	Суз	Leu	Ser	Asn	Glu 745	Asn	Ala	Ser	His	Val 750
Glu	Суѕ	Glu	Leu	Gly 755	Asn	Pro	Met	Lys	Arg 760	Gly	Ala	Gln	Val	Thr 765
Phe	Tyr	Leu	Ile	Leu 770	Ser	Thr	Ser	Gly	Ile 775	Ser	Ile	Glu	Thr	Thr 780
Glu	Leu	Glu	Val	Glu 785	Leu	Leu	Leu	Ala	Thr 790	Ile	Ser	Glu	Gln	Glu 795
Leu	His	Pro	Val	Ser 800	Ala	Arg	Ala	Arg	Val 805	Phe	Ile	Glu	Leu	Pro 810
Leu	Ser	Ile	Ala	Gly 815	Met	Ala	Ile	Pro	Gln 820	Gln	Leu	Phe	Phe	Ser 825
Gly	Val	Val	Arg	Gly 830	Glu	Arg	Ala	Met	Gln 835	Ser	Glu	Arg	Asp	Val 840
Gly	Ser	Lys	Val	Lys 845	Tyr	Glu	Val	Thr	Val 850	Ser	Asn	Gln	Gly	Gln 855
Ser	Leu	Arg	Thr	Leu 860	Gly	Ser	Ala	Phe	Leu 865	Asn	Ile	Met	Trp	Pro 870
His	Glu	Ile	Ala	Asn 875	Gly	Lys	Trp	Leu	Leu 880	Tyr	Pro	Met	Gln	Val 885
Glu	Leu	Glu	Gly	Gly 890	Gln	Gly	Pro	Gly	Gln 895	Lys	Gly	Leu	Суз	Ser 900
Pro	Arg	Pro	Asn	Ile 905	Leu	His	Leu	Asp	Val 910	Asp	Ser	Arg	Asp	Arg 915
Arg	Arg	Arg	Glu	Leu 920	Glu	Pro	Pro	Glu	Gln 925	Gln	Glu	Pro	Gly	Glu 930
Arg	Gln	Glu	Pro	Ser 935	Met	Ser	Trp	Trp	Pro 940	Val	Ser	Ser	Ala	Glu 945
Lys	Lys	Lys	Asn	Ile 950	Thr	Leu	Asp	Cys	Ala 955	Arg	Gly	Thr	Ala	Asn 960

Cys Val Val Phe Ser Cys Pro Leu Tyr Ser Phe Asp Arg Ala Ala 975

Val Leu His Val Trp Gly Arg Leu Trp Asn Ser Thr Phe Leu Glu 980

Glu Tyr Ser Ala Val Lys Ser Leu Glu Val Ile Val Arg Ala Asn 995 1000 1005

Ile Thr Val Lys Ser Ser Ile Lys Asn Leu Met Leu Arg Asp Ala 1010 1015 1020

Ser Thr Val Ile Pro Val Met Val Tyr Leu Asp Pro Met Ala Val 1025 1030 1035

Val Ala Glu Gly Val Pro Trp Trp Val Ile Leu Leu Ala Val Leu 1040 1045 1050

Ala Gly Leu Leu Val Leu Ala Leu Leu Val Leu Leu Leu Trp Lys 1055 1060 1065

Met Gly Phe Phe Lys Arg Ala Lys His Pro Glu Ala Thr Val Pro 1070 1075 1080

Gln Tyr His Ala Val Lys Ile Pro Arg Glu Asp Arg Gln Gln Phe 1085 1090 1095

Lys Glu Glu Lys Thr Gly Thr Ile Leu Arg Asn Asn Trp Gly Ser 1100 1105 1110

Pro Arg Arg Glu Gly Pro Asp Ala His Pro Ile Leu Ala Ala Asp 1115 1120 1125

Gly His Pro Glu Leu Gly Pro Asp Gly His Pro Gly Pro Gly Thr 1130 1135 1140

Ala

<210> 438

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 438

ggctgacacc gcagtgctct tcag 24

<210> 439

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

```
<400> 439
 gctgctgggg actgcaatgt agct 24
<210> 440
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 440
 catcctccat gtctcccatg aggtctctat tgctccacga agcatc 46
<210> 441
<211> 1964
<212> DNA
<213> Homo sapiens
<400> 441
 cgcgccgggc gcagggagct gagtggacgg ctcgagacgg cggcgcgtgc 50
 agcageteca gaaagcageg agttggeaga geagggetge atttecagea 100
 ggagctgcga gcacagtgct ggctcacaac aagatgctca aggtgtcagc 150
 cgtactgtgt gtgtgtgcag ccgcttggtg cagtcagtct ctcgcagctg 200
 ccgcggcggt ggctgcagcc ggggggcggt cggacggcgg taattttctg 250
 gatgataaac aatggctcac cacaatctct cagtatgaca aggaagtcgg 300
 acagtggaac aaattccgag acgaagtaga ggatgattat ttccgcactt 350
 ggagtccagg aaaacccttc gatcaggctt tagatccagc taaggatcca 400
 tgcttaaaga tgaaatgtag tcgccataaa gtatgcattg ctcaagattc 450
 tcagactgca gtctgcatta gtcaccggag gcttacacac aggatgaaag 500
 aagcaggagt agaccatagg cagtggaggg gtcccatatt atccacctgc 550
 aagcagtgcc cagtggtcta tcccagccct gtttgtggtt cagatggtca 600
tacctactct tttcagtgca aactagaata tcaggcatgt gtcttaggaa 650
aacagatctc agtcaaatgt gaaggacatt gcccatgtcc ttcagataag 700
cccaccagta caagcagaaa tgttaagaga gcatgcagtg acctggagtt 750
cagggaagtg gcaaacagat tgcgggactg gttcaaggcc cttcatgaaa 800
gtggaagtca aaacaagaag acaaaaacat tgctgaggcc tgagagaagc 850
agattcgata ccagcatctt gccaatttgc aaggactcac ttggctggat 900
gtttaacaga cttgatacaa actatgacct gctattggac cagtcagagc 950
```

tcagaagcat ttaccttgat aagaatgaac agtgtaccaa ggcattcttc 1000 aattottgtg acacatacaa ggacagttta atatotaata atgagtggtg 1050 ctactgcttc cagagacagc aagacccacc ttgccagact gagctcagca 1100 atattcagaa gcggcaaggg gtaaagaagc tcctaggaca gtatatcccc 1150 ctgtgtgatg aagatggtta ctacaagcca acacaatgtc atggcagtgt 1200 tggacagtgc tggtgttg acagatatgg aaatgaagtc atgggatcca 1250 gaataaatgg tgttgcagat tgtgctatag attttgagat ctccggagat 1300 tttgctagtg gcgattttca tgaatggact gatgatgagg atgatgaaga 1350 cgatattatg aatgatgaag atgaaattga agatgatgat gaagatgaag 1400 gggatgatga tgatggtggt gatgaccatg atgtatacat ttgattgatg 1450 acagttgaaa tcaataaatt ctacatttct aatatttaca aaaatgatag 1500 cctatttaaa attatcttct tccccaataa caaaatgatt ctaaacctca 1550 catatatttt gtataattat ttgaaaaatt gcagctaaag ttatagaact 1600 ttatgtttaa ataagaatca tttgctttga gtttttatat tccttacaca 1650 aaaagaaaat acatatgcag tctagtcaga caaaataaag ttttgaagtg 1700 ctactataat aaatttttca cgagaacaaa ctttgtaaat cttccataag 1750 caaaatgaca gctagtgctt gggatcgtac atgttaattt tttgaaagat 1800 aattctaagt gaaatttaaa ataaataaat ttttaatgac ctgggtctta 1850 aggatttagg aaaaatatgc atgctttaat tgcatttcca aagtagcatc 1900 ttgctagacc tagatgagtc aggataacag agagatacca catgactcca 1950 aaaaaaaaa aaaa 1964

<210> 442

<211> 436

<212> PRT

<213> Homo sapiens

<400> 442

Met Leu Lys Val Ser Ala Val Leu Cys Val Cys Ala Ala Ala Trp
1 5 10 15

Cys Ser Gln Ser Leu Ala Ala Ala Ala Ala Val Ala Ala Gly
20 25 30

Gly Arg Ser Asp Gly Gly Asn Phe Leu Asp Asp Lys Gln Trp Leu
35 40 45

Thr Thr Ile Ser Gln Tyr Asp Lys Glu Val Gly Gln Trp Asn Lys

				50					55					60
Phe	Arg	Asp	Glu	Val 65	Glu	Asp	Asp	Tyr	Phe 70	Arg	Thr	Trp	Ser	Pro 75
Gly	Lys	Pro	Phe	Asp 80	Gln	Ala	Leu	Asp	Pro 85	Ala	Lys	Asp	Pro	Cys 90
Leu	Lys	Met	Lys	Cys 95	Ser	Arg	His	Lys	Val 100	Cys	Ile	Ala	Gln	Asp 105
Ser	Gln	Thr	Ala	Val 110	Cys	Ile	Ser	His	Arg 115	Arg	Leu	Thr	His	Arc 120
Met	Lys	Glu	Ala	Gly 125	Val	Asp	His	Arg	Gln 130	Trp	Arg	Gly	Pro	Ile 135
Leu	Ser	Thr	Cys	Lys 140	Gln	Суз	Pro	Val	Val 145	Tyr	Pro	Ser	Pro	Val
Cys	Gly	Ser	Asp	Gly 155	His	Thr	Tyr	Ser	Phe 160	Gln	Суѕ	Lys	Leu	Glu 165
Tyr	Gln	Ala	Cys	Val 170	Leu	Gly	Lys	Gln	Ile 175	Ser	Val	Lys	Суз	Glu 180
Gly	His	Cys	Pro	Cys 185	Pro	Ser	Asp	Lys	Pro 190	Thr	Ser	Thr	Ser	Arg 195
Asn	Val	Lys	Arg	Ala 200	Суз	Ser	Asp	Leu	Glu 205	Phe	Arg	Glu	Val	Ala 210
Asn	Arg	Leu	Arg	Asp 215	Trp	Phe	Lys	Ala	Leu 220	His	Glu	Ser	Gly	Ser 225
Gln	Asn	Lys	Lys	Thr 230	Lys	Thr	Leu	Leu	Arg 235	Pro	Glu	Arg	Ser	Arg 240
Phe	Asp	Thr	Ser	Ile 245	Leu	Pro	Ile	Cys	Lys 250	Asp	Ser	Leu	Gly	Trp 255
Met	Phe	Asn	Arg	Leu 260	Asp	Thr	Asn	Tyr	Asp 265	Leu	Leu	Leu	Asp	Gln 270
Ser	Glu	Leu	Arg	Ser 275	Ile	Tyr	Leu	Asp	Lys 280	Asn	Glu	Gln	Cys	Thr 285
Lys	Ala	Phe	Phe	Asn 290	Ser	Cys	Asp	Thr	Týr 295	Lys	Asp	Ser	Leu	Ile 300
Ser	Asn	Asn	Glu	Trp 305	Cys	Tyr	Cys	Phe	Gln 310	Arg	Gln	Gln	Asp	Pro 315
Pro	Cys	Gln	Thr	Glu 320	Leu	Ser	Asn	Ile	Gln 325	Lys	Arg	Gln	Gly	Val 330
Lys	Lys	Leu	Leu	Gly 335	Gln	Tyr	Ile	Pro	Leu 340	Cys	Asp	Glu	Asp	Gly 345

<212> DNA

<213> Homo sapiens

```
Tyr Tyr Lys Pro Thr Gln Cys His Gly Ser Val Gly Gln Cys Trp
                 350
 Cys Val Asp Arg Tyr Gly Asn Glu Val Met Gly Ser Arg Ile Asn
                 365
 Gly Val Ala Asp Cys Ala Ile Asp Phe Glu Ile Ser Gly Asp Phe
 Ala Ser Gly Asp Phe His Glu Trp Thr Asp Asp Glu Asp Asp Glu
 Asp Asp Ile Met Asn Asp Glu Asp Glu Ile Glu Asp Asp Asp Glu
 Asp Glu Gly Asp Asp Asp Gly Gly Asp Asp His Asp Val Tyr
                 425
 Ile
<210> 443
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 443
 cagcaatatt cagaagcggc aaggg 25
<210> 444
<211> 28
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 444
catcatggtc atcaccacca tcatcatc 28
<210> 445
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
ggttactaca agccaacaca atgtcatggc agtgttggac agtgctgg 48
<210> 446
<211> 3617
```

<400> 446 cagactccag atttccctgt caaccacgag gagtccagag aggaaacgcg 50 gagcggagac aacagtacct gacgcctctt tcagcccggg atcgccccag 100 cagggatggg cgacaagatc tggctgccct tccccgtgct ccttctggcc 150 getetgeete eggtgetget geetggggeg geeggettea eacetteeet 200 cgatagcgac ttcaccttta cccttcccgc cggccagaag gagtgcttct 250 accageceat geeectgaag geetegetgg agategagta ceaagtttta 300 gatggagcag gattagatat tgatttccat cttgcctctc cagaaggcaa 350 aaccttagtt tttgaacaaa gaaaatcaga tggagttcac actgtagaga 400 ctgaagttgg tgattacatg ttctgctttg acaatacatt cagcaccatt 450 tctgagaagg tgattttctt tgaattaatc ctggataata tgggagaaca 500 ggcacaagaa caagaagatt ggaagaaata tattactggc acagatatat 550 tggatatgaa actggaagac atcctggaat ccatcaacag catcaagtcc 600 agactaagca aaagtgggca catacaaatt ctgcttagag catttgaagc 650 tcgtgatcga aacatacaag aaagcaactt tgatagagtc aatttctggt 700 ctatggttaa tttagtggtc atggtggtgg tgtcagccat tcaagtttat 750 atgctgaaga gtctgtttga agataagagg aaaagtagaa cttaaaactc 800 caaactagag tacgtaacat tgaaaaatga ggcataaaaa tgcaataaac 850 tgttacagtc aagaccatta atggtcttct ccaaaatatt ttgagatata 900 aaagtaggaa acaggtataa ttttaatgtg aaaattaagt cttcactttc 950 tgtgcaagta atcctgctga tccagttgta cttaagtgtg taacaggaat 1000 attttgcaga atataggttt aactgaatga agccatatta ataactgcat 1050 tttcctaact ttgaaaaatt ttgcaaatgt cttaggtgat ttaaataaat 1100 gagtattggg cctaattgca acaccagtct gtttttaaca ggttctatta 1150 cccagaactt ttttgtaaat gcggcagtta caaattaact gtggaagttt 1200 tcagttttaa gttataaatc acctgagaat tacctaatga tggattgaat 1250 aaatetttag actacaaaag cecaaetttt etetatttae atatgeatet 1300 ctcctataat gtaaatagaa taatagcttt gaaatacaat taggtttttg 1350 agatttttat aaccaaatac atttcagtgt aacatattag cagaaagcat 1400 tagtctttgt actttgctta cattcccaaa agctgacatt ttcacgattc 1450

taccatataa aaacgataat tgctttattt ggaaaagaat ttaggaatac 2950
taaggacaat tattttata gacaaagtaa aaagacagat atttaagagg 3000
cataaccaaa aaagcaaaac ttgtaaacag agtaaaaatc tttaatattt 3050
ctaaagacat actgtttatc tgcttcatat gctttttta atttcactat 3100
tccatttcta aattaaagtt atgctaaatt gagtaagctg tttatcactt 3150
aacagctcat tttgtcttt tcaatataca aattttaaaa atactacaat 3200
atttaactaa ggcccaaccg atttccataa tgtagcagtt accgtgttca 3250
cctcacacta aggcctagag tttgctctga tatgcatttg gatgattaat 3300
gttatgctgt tctttcatgt gaatgtcaag acatggaggg tgtttgtaat 3350
tttatggtaa aattaatcct tcttacacat aatggtgtct taaaattgac 3400
aaaaaatgag cacttacaat tgtatgtctc ctcaaatgaa gattctttat 3450
gtgaaatttt aaaagacatt gattccgcat gtaaggattt ttcatctgaa 3500
gtacaataat gcacaatcag tgttgctcaa actgctttat acttataaac 3550
agccatctta aataagcaac gtattgtgag tactgatatg tatataataa 3600
aaattatcaa aggaaaa 3617

<210> 447

<211> 229

<212> PRT

<213> Homo sapiens

<400> 447

Met Gly Asp Lys Ile Trp Leu Pro Phe Pro Val Leu Leu Leu Ala 1 5 10 15

Ala Leu Pro Pro Val Leu Leu Pro Gly Ala Ala Gly Phe Thr Pro
20 25 30

Ser Leu Asp Ser Asp Phe Thr Phe Thr Leu Pro Ala Gly Gln Lys
35 40 45

Glu Cys Phe Tyr Gln Pro Met Pro Leu Lys Ala Ser Leu Glu Ile 50 55 60

Glu Tyr Gln Val Leu Asp Gly Ala Gly Leu Asp Ile Asp Phe His
65 70 75

Leu Ala Ser Pro Glu Gly Lys Thr Leu Val Phe Glu Gln Arg Lys 80 85 90

Ser Asp Gly Val His Thr Val Glu Thr Glu Val Gly Asp Tyr Met 95 100 105

Phe Cys Phe Asp Asn Thr Phe Ser Thr Ile Ser Glu Lys Val Ile

				110					115					120
Phe	Phe	Glu	Leu	Ile 125	Leu	Asp	Asn	Met	Gly 130	Glu	Gln	Ala	Gln	Glu 135
Gln	Glu	Asp	Trp	Lys 140	Lys	Tyr	Ile	Thr	Gly 145	Thr	Asp	Ile	Leu	Asp 150
Met	Lys	Leu	Glu	Asp 155	Ile	Leu	Glu	Ser	Ile 160	Asn	Ser	Ile	Lys	Ser 165
Arg	Leu	Ser	Lys	Ser 170	Gly	His	Ile	Gln	Ile 175	Leu	Leu	Arg	Ala	Phe 180
Glu	Ala	Arg	Asp	Arg 185	Asn	Ile	Gln	Glu	Ser 190	Asn	Phe	Asp	Arg	Val 195
Asn	Phe	Trp	Ser	Met 200	Val	Asn	Leu	Val	Val 205	Met	Val	Val	Val	Ser 210
Ala	Ile	Glņ	Val	Tyr 215	Met	Leu	Lys	Ser	Leu 220	Phe	Glu	Asp	Lys	Arg 225
Lys	Ser	Arg	Thr											
<210> 448 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe														
<400>	448	3				ga 23)LOD6	-					
<210><211><211><212><213>	23 DN	Ą	cial	Sequ	ience	è								
<220> <223>		thet	ic c	oligo	nucl	.eoti	de p	robe	:					
<400> gtct			tcat	atco	a at	a 23	3		_					
<210> <211> <212> <213>	43 DN	1	ial	Sequ	ience	:	-							
<220> <223>		thet	ic c	ligo	nucl	.eoti	.de p	robe	!					-
<400> ccag			acgg	ggaa	g gg	cago	caga	tct	tgtc	gcc	cat	43		

<210> 451 <211> 859 <212> DNA <213> Homo sapiens

<400> 451 ccatccctga gatcttttta taaaaaaccc agtctttgct gaccagacaa 50 agcataccag atctcaccag agagtcgcag acactatgct gcctcccatg 100 gccctgccca gtgtgtcctg gatgctgctt tcctgcctca ttctcctgtg 150 tcaggttcaa ggtgaagaaa cccagaagga actgccctct ccacggatca 200 gctgtcccaa aggctccaag gcctatggct ccccctgcta tgccttgttt 250 ttgtcaccaa aatcctggat ggatgcagat ctggcttgcc agaagcggcc 300 ctctggaaaa ctggtgtctg tgctcagtgg ggctgaggga tccttcgtgt 350 cctccctggt gaggagcatt agtaacagct actcatacat ctggattggg 400 ctccatgacc ccacacaggg ctctgagcct gatggagatg gatgggagtg 450 gagtagcact gatgtgatga attactttgc atgggagaaa aatccctcca 500 ccatcttaaa ccctggccac tgtgggagcc tgtcaagaag cacaggattt 550 ctgaagtgga aagattataa ctgtgatgca aagttaccct atgtctgcaa 600 gttcaaggac tagggcaggt gggaagtcag cagcctcagc ttggcqtqca 650 gctcatcatg gacatgagac cagtgtgaag actcaccctg gaagagaata 700 ttctccccaa actgccctac ctgactacct tgtcatgatc ctccttcttt 750 ttcctttttc ttcaccttca tttcaggctt ttctctgtct tccatgtctt 800

<210> 452 <211> 175 <212> PRT <213> Homo sapiens

aaaaaaaaa 859

<400> 452

Met Leu Pro Pro Met Ala Leu Pro Ser Val Ser Trp Met Leu Leu 1 5 10 15

Ser Cys Leu Ile Leu Cys Gln Val Gln Gly Glu Glu Thr Gln 20 25 30

Lys Glu Leu Pro Ser Pro Arg Ile Ser Cys Pro Lys Gly Ser Lys
35 40 45

Ala Tyr Gly Ser Pro Cys Tyr Ala Leu Phe Leu Ser Pro Lys Ser

50 55 60

Trp Met Asp Ala Asp Leu Ala Cys Gln Lys Arg Pro Ser Gly Lys
65 70 75

Leu Val Ser Val Leu Ser Gly Ala Glu Gly Ser Phe Val Ser Ser 80 85 90

Leu Val Arg Ser Ile Ser Asn Ser Tyr Ser Tyr Ile Trp Ile Gly
95 100 105

Leu His Asp Pro Thr Gln Gly Ser Glu Pro Asp Gly Asp Gly Trp
110 115 120

Glu Trp Ser Ser Thr Asp Val Met Asn Tyr Phe Ala Trp Glu Lys 125 130 135

Asn Pro Ser Thr Ile Leu Asn Pro Gly His Cys Gly Ser Leu Ser 140 145 150

Arg Ser Thr Gly Phe Leu Lys Trp Lys Asp Tyr Asn Cys Asp Ala 155 160 165

Lys Leu Pro Tyr Val Cys Lys Phe Lys Asp 170 175

<210> 453

<211> 550

<212> DNA

<213> Homo sapiens

<400> 453

tggggtgaga gcacagagga gtgggccggg accatgcggg ggacgcggct 100 ggcgctcctg gcgctggtgc tggctgcctg cggagagctg gcgccggccc 150 tgcgctgcta cgtctgtccg gagcccacag gagtgtcgga ctgtgtcacc 200 atcgccacct gcaccacaa cgaaaccatg tgcaagacca cactctactc 250 ccgggagata gtgtacccct tccaggggga ctccacggtg accaagtcct 300 gtgccagcaa gtgtaagccc tcggatgtgg atggcatcgg ccagaccctg 350 cccgtgtcct gctgcaatac tgagctgtc aatgtagacg gggcgcccgc 400 tctgaacagc ctccactgcg gggccctcac gctcctcca ctcttgagcc 450 tccgactgta gagtcccgc ccaccccat ggccctatgc ggcccagccc 500

<210> 454

<211> 125

<212> PRT

<213> Homo sapiens

Net Arg Gly Thr Arg Leu Ala Leu Leu Ala Leu Val Leu Ala Ala 15

Cys Gly Glu Leu Ala Pro Ala Leu Arg Cys Tyr Val Cys Pro Glu 30

Pro Thr Gly Val Ser Asp Cys Val Thr Ile Ala Thr Cys Thr Thr 45

Asn Glu Thr Met Cys Lys Thr Thr Leu Tyr 55

Lys Cys Lys Pro Ser Asp Ser Thr Val Thr Lys Ser Cys Ala Ser 75

Lys Cys Lys Pro Ser Asp Val Asp Gly Ile Gly Gln Thr Leu Pro 80

Val Ser Cys Cys Asn Thr Glu Leu Cys Asn 100

Ala Leu Asn Ser Leu His Cys Gly Ala Leu Thr Leu Thr Leu Pro 105

Leu Ser Leu Arg Leu 125

<210> 455 <211> 1518 <212> DNA <213> Homo sapiens

<400> 455
ctgcagtcag gactctggga ccgcaggggg ctcccggacc ctgactctgc 50
agccgaaccg gcacggtttc gtggggaccc aggcttgcaa agtgacggtc 100
attttctctt tctttctccc tcttgagtcc ttctgagatg atggctctgg 150
gcgcagcggg agctacccgg gtctttgtcg cgatggtagc ggcggctctc 200
ggcggccacc ctctgctggg agtgagcgcc accttgaact cggttctcaa 250
ttccaacgct atcaagaacc tgccccacc gctgggcggc gctgcggggc 300
acccaggctc tgcagtcagc gccgcgcgg gaatcctgta cccgggcggg 350
aataagtacc agaccattga caactaccag ccgtacccgt gcgcagagga 400
cgaggagtgc ggcactgatg agtactgcc tagtcccacc cgcggagggg 450
acgcaggcgt gcaaatctgt ctcgcctgca ggaagcgccg aaaacgctgc 500
atgcgtcacg ctatgtgctg ccccgggaat tactgcaaaa atggaatatg 550
tgtgtcttct gatcaaaatc atttccgagg agaaattgag gaaaccatca 600

ctgaaagctt tggtaatgat catagcacct tggatgggta ttccagaaga 650 accaccttgt cttcaaaaat gtatcacacc aaaggacaag aaggttctgt 700 ttgtctccgg tcatcagact gtgcctcagg attgtgttgt gctagacact 750 tctggtccaa gatctgtaaa cctgtcctga aagaaggtca agtgtgtacc 800 aagcatagga gaaaaggctc tcatggacta gaaatattcc agcgttgtta 850 ctgtggagaa ggtctgtctt gccggataca gaaagatcac catcaagcca 900 gtaattette taggetteae acttgteaga gacactaaae cagetateea 950 aatgcagtga actcctttta tataatagat gctatgaaaa ccttttatga 1000 ccttcatcaa ctcaatccta aggatataca agttctgtgg tttcagttaa 1050 gcattccaat aacaccttcc aaaaacctgg agtgtaagag ctttgtttct 1100 ttatggaact cccctgtgat tgcagtaaat tactgtattg taaattctca 1150 gtgtggcact tacctgtaaa tgcaatgaaa cttttaatta tttttctaaa 1200 ggtgctgcac tgcctatttt tcctcttgtt atgtaaattt ttgtacacat 1250 tgattgttat cttgactgac aaatattcta tattgaactg aagtaaatca 1300 tttcagctta tagttcttaa aagcataacc ctttacccca tttaattcta 1350 gagtctagaa cgcaaggatc tcttggaatg acaaatgata ggtacctaaa 1400 atgtaacatg aaaatactag cttattttct gaaatgtact atcttaatgc 1450 ttaaattata tttcccttta ggctgtgata gtttttgaaa taaaatttaa 1500 catttaaaaa aaaaaaaa 1518

<210> 456

<211> 266

<212> PRT

<213> Homo sapiens

<400> 456

Met Met Ala Leu Gly Ala Ala Gly Ala Thr Arg Val Phe Val Ala 1 5 10 15

Met Val Ala Ala Leu Gly Gly His Pro Leu Leu Gly Val Ser 20 25 30

Ala Thr Leu Asn Ser Val Leu Asn Ser Asn Ala Ile Lys Asn Leu 35 40 45

Pro Pro Pro Leu Gly Gly Ala Ala Gly His Pro Gly Ser Ala Val
50 55 60

Ser Ala Ala Pro Gly Ile Leu Tyr Pro Gly Gly Asn Lys Tyr Gln
65 70 75

Thr Ile Asp Asn Tyr Gln Pro Tyr Pro Cys Ala Glu Asp Glu Glu Cys Gly Thr Asp Glu Tyr Cys Ala Ser Pro Thr Arg Gly Gly Asp 95 Ala Gly Val Gln Ile Cys Leu Ala Cys Arg Lys Arg Lys Arg 115 Cys Met Arg His Ala Met Cys Cys Pro Gly Asn Tyr Cys Lys Asn 125 135 Gly Ile Cys Val Ser Ser Asp Gln Asn His Phe Arg Gly Glu Ile 140 145 Glu Glu Thr Ile Thr Glu Ser Phe Gly Asn Asp His Ser Thr Leu Asp Gly Tyr Ser Arg Arg Thr Thr Leu Ser Ser Lys Met Tyr His Thr Lys Gly Gln Glu Gly Ser Val Cys Leu Arg Ser Ser Asp Cys 195 Ala Ser Gly Leu Cys Cys Ala Arg His Phe Trp Ser Lys Ile Cys 205 Lys Pro Val Leu Lys Glu Gly Gln Val Cys Thr Lys His Arg Arg 215 220 225 Lys Gly Ser His Gly Leu Glu Ile Phe Gln Arg Cys Tyr Cys Gly 235 Glu Gly Leu Ser Cys Arg Ile Gln Lys Asp His His Gln Ala Ser 245 250 255 Asn Ser Ser Arg Leu His Thr Cys Gln Arg His 260 265 <210> 457 <211> 638 <212> DNA <213> Homo sapiens <220> <221> unsure <222> 30, 123, 133, 139, 180, 214, 259, 282, 308, 452, 467, 471, 473, 509, 556 <223> unknown base <400> 457 tgtgtttccc tgcagtcaga atttgggacn gcaggggttc ccggacctga 50 ttttgcagcg gaacgggaag gttttgtggg acccaggttg aaatgacggt 100 cattttttt tctttctcct tcnggagtcc ttntgagang atggttttgg 150

gcgcagcggg agctaacccg gttttttgtn gcgatggtag cggcggtttt 200

<210> 458

<211> 4040

<212> DNA

<213> Homo sapiens

<400> 458

gaggaaccta coggtacogg cogogogotg gtagtogoog gtgtggctgc 50 acctcaccaa tcccgtgcgc cgcggctggg ccgtcggaga gtgcgtgtgc 100 ttctctcctg cacgcggtgc ttgggctcgg ccaggcgggg tccgccgcca 150 gggtttgagg atgggggagt agctacagga agcgaccccg cgatggcaag 200 gtatattttt gtggaatgaa aaggaagtat tagaaatgag ctgaagacca 250 ttcacagatt aatatttttq qqqacaqatt tqtqatqctt qattcaccct 300 tgaagtaatg tagacagaag ttctcaaatt tgcatattac atcaactgga 350 accagcagtg aatcttaatg ttcacttaaa tcagaacttg cataagaaag 400 agaatgggag tctggttaaa taaagatgac tatatcagag acttgaaaag 450 gatcattctc tgttttctga tagtgtatat ggccatttta gtgggcacag 500 atcaggattt ttacagttta cttggagtgt ccaaaactgc aagcagtaga 550 gaaataagac aagctttcaa gaaattggca ttgaagttac atcctgataa 600 aaacccgaat aacccaaatg cacatggcga ttttttaaaa ataaatagag 650 catatgaagt actcaaagat gaagatctac ggaaaaagta tgacaaatat 700 ggagaaaagg gacttgagga taatcaaggt ggccagtatg aaagctggaa 750 ctattatcgt tatgattttg gtatttatga tgatgatcct gaaatcataa 800 cattggaaag aagagaattt gatgctgctg ttaattctgg agaactgtgg 850

tttgtaaatt tttactcccc aggctgttca cactgccatg atttagctcc 900 cacatggaga gactttgcta aaqaagtgga tgggttactt cgaattggag 950 ctgttaactg tggtgatgat agaatgcttt gccgaatgaa aggagtcaac 1000 agctatccca gtctcttcat ttttcggtct ggaatggccc cagtgaaata 1050 tcatggagac agatcaaagg agagtttagt gagttttgca atgcagcatg 1100 ttagaagtac agtgacagaa ctttggacag gaaattttgt caactccata 1150 caaactgctt ttgctgctgg tattggctgg ctgatcactt tttgttcaaa 1200 aggaggagat tgtttgactt cacagacacg actcaggctt agtggcatgt 1250 tgtttctcaa ctcattggat gctaaagaaa tatatttgga agtaatacat 1300 aatcttccag attttgaact actttcggca aacacactag aggatcgttt 1350 ggctcatcat cggtggctgt tattttttca ttttqqaaaa aatqaaaatt 1400 caaatgatcc tgagctgaaa aaactaaaaa ctctacttaa aaatgatcat 1450 attcaagttg gcaggtttga ctgttcctct gcaccagaca tctgtagtaa 1500 tctgtatgtt tttcagccgt ctctagcagt atttaaagga caaggaacca 1550 aagaatatga aattcatcat ggaaagaaga ttctatatga tatacttgcc 1600 tttgccaaag aaagtgtgaa ttctcatgtt accacgcttg gacctcaaaa 1650 ttttcctgcc aatgacaaag aaccatggct tgttgatttc tttgccccct 1700 ggtgtccacc atgtcgagct ttactaccag agttacgaag agcatcaaat 1750 cttctttatg gtcagcttaa gtttggtaca ctagattgta cagttcatga 1800 gggactctgt aacatgtata acattcaggc ttatccaaca acagtggtat 1850 tcaaccagtc caacattcat gagtatgaag gacatcactc tgctgaacaa 1900 atcttggagt tcatagagga tcttatgaat ccttcagtgg tctcccttac 1950 acccaccacc ttcaacgaac tagttacaca aagaaaacac aacgaagtct 2000 ggatggttga tttctattct ccgtggtgtc atccttgcca agtcttaatg 2050 ccagaatgga aaagaatggc ccggacatta actggactga tcaacgtggg 2100 cagtatagat tgccaacagt atcattcttt ttgtgcccag gaaaacqttc 2150 aaagataccc tqaqataaqa ttttttcccc caaaatcaaa taaaqcttat 2200 cagtatcaca gttacaatgg ttggaatagg gatgcttatt ccctgagaat 2250 ctggggtcta ggatttttac ctcaagtatc cacagatcta acacctcaga 2300

ctttcagtga aaaagttcta caagggaaaa atcattgggt gattgatttc 2350 tatgctcctt ggtgtggacc ttgccagaat tttgctccag aatttgagct 2400 cttggctagg atgattaaag gaaaagtgaa agctggaaaa gtagactgtc 2450 aggettatge teagacatge cagaaagetg ggateaggge etatecaact 2500 gttaagtttt atttctacga aagagcaaag agaaattttc aagaagagca 2550 gataaatacc agagatgcaa aagcaatcgc tgccttaata agtgaaaaat 2600 tggaaactct ccgaaatcaa ggcaagagga ataaggatga actttgataa 2650 tgttgaagat gaagaaaaag tttaaaagaa attctgacag atgacatcag 2700 aagacaccta tttagaatgt tacatttatg atgggaatga atgaacatta 2750 tettagaett geagttgtae tgeeagaatt atetacagea etggtgtaaa 2800 agaagggtct gcaaactttt tctgtaaagg gccggtttat aaatatttta 2850 gactttgcag gctataatat atggttcaca catgagaaca agaatagagt 2900 catcatgtat tctttgttat ttgcttttaa caacctttaa aaaatattaa 2950 aacgattctt agctcagagc catacaaaag taggctggat tcagtccatg 3000 gaccatagat tgctgtcccc ctcgacggac ttataatgtt tcaggtggct 3050 ggcttgaaca tgagtctgct gtgctatcta cataaatgtc taagttgtat 3100 aaagtccact ttcccttcac gttttttggc tgacctgaaa agaggtaact 3150 tagtttttgg tcacttgttc tcctaaaaat gctatcccta accatatatt 3200 tatatttcgt tttaaaaaca cccatgatgt ggcacagtaa acaaaccctg 3250 ttatgctgta ttattatgag gagattcttc attgttttct ttccttctca 3300 aaggttgaaa aaatgctttt aatttttcac agccgagaaa cagtgcagca 3350 gtatatgtgc acacagtaag tacacaaatt tgagcaacag taagtgcaca 3400 aattotgtag tttgotgtat catocaggaa aacotgaggg aaaaaaatta 3450 tagcaattaa ctgggcattg tagagtatcc taaatatgtt atcaagtatt 3500 tagagttcta tattttaaag atatatgtgt tcatgtattt tctgaaattg 3550 ctttcataga aattttccca ctgatagttg atttttgagg catctaatat 3600 ttacatattt gccttctgaa ctttgttttg acctgtatcc tttatttaca 3650 ttgggttttt ctttcatagt tttggttttt cactcctgtc cagtctattt 3700 attattcaaa taggaaaaat tactttacag gttgttttac tgtagcttat 3750

aatgatactg tagttattcc agttactagt ttactgtcag agggctgcct 3800 ttttcagata aatattgaca taataactga agttatttt ataagaaaat 3850 caagtatata aatctaggaa agggatcttc tagtttctgt gttgtttaga 3900 ctcaaagaat cacaaatttg tcagtaacat gtagttgttt agttataatt 3950 cagagtgtac agaatggtaa aaattccaat cagtcaaaag aggtcaatga 4000 attaaaaggc ttgcaacttt ttcaaaaaaa aaaaaaaaa 4040

<210> 459

<211> 747

<212> PRT

<213> Homo sapiens

<400> 459

Met Gly Val Trp Leu Asn Lys Asp Asp Tyr Ile Arg Asp Leu Lys 1 5 10 15

Arg Ile Ile Leu Cys Phe Leu Ile Val Tyr Met Ala Ile Leu Val 20 25 30

Gly Thr Asp Gln Asp Phe Tyr Ser Leu Leu Gly Val Ser Lys Thr 35 40 45

Ala Ser Ser Arg Glu Ile Arg Gln Ala Phe Lys Lys Leu Ala Leu
50 55 60

Lys Leu His Pro Asp Lys Asn Pro Asn Asn Pro Asn Ala His Gly 65 70 75

Asp Phe Leu Lys Ile Asn Arg Ala Tyr Glu Val Leu Lys Asp Glu 80 85 90

Asp Leu Arg Lys Lys Tyr Asp Lys Tyr Gly Glu Lys Gly Leu Glu
95 100 105

Asp Asn Gln Gly Gly Gln Tyr Glu Ser Trp Asn Tyr Tyr Arg Tyr 110 115 120

Asp Phe Gly Ile Tyr Asp Asp Pro Glu Ile Ile Thr Leu Glu 125 130 135

Arg Arg Glu Phe Asp Ala Ala Val Asn Ser Gly Glu Leu Trp Phe 140 145 150

Val Asn Phe Tyr Ser Pro Gly Cys Ser His Cys His Asp Leu Ala 155 160 165

Pro Thr Trp Arg Asp Phe Ala Lys Glu Val Asp Gly Leu Leu Arg 170 175 180

Ile Gly Ala Val Asn Cys Gly Asp Asp Arg Met Leu Cys Arg Met 185 190 195

Lys Gly Val Asn Ser Tyr Pro Ser Leu Phe Ile Phe Arg Ser Gly

				200					205					210
Met	Ala	Pro	Val	Lys 215	Tyr	His	Gly	Asp	Arg 220	Ser	Lys	Glu	Ser	Leu 225
Val	Ser	Phe	Ala	Met 230	Gln	His	Val	Arg	Ser 235	Thr	Val	Thr	Glu	Leu 240
Trp	Thr	Gly	Asn	Phe 245	Val	Asn	Ser	Ile	Gln 250	Thr	Ala	Phe	Ala	Ala 255
Gly	Ile	Gly	Trp	Leu 260	Ile	Thr	Phe	Cys	Ser 265	Lys	Gly	Gly	Asp	Cys 270
Leu	Thr	Ser	Gln	Thr 275	Arg	Leu	Arg	Leu	Ser 280	Gly	Met	Leu	Phe	Leu 285
Asn	Ser	Leu	Asp	Ala 290	Lys	Glu	Ile	Tyr	Leu 295	Glu	Val	Ile	His	Asn 300
Leu	Pro	Asp	Phe	Glu 305	Leu	Leu	Ser	Ala	Asn 310	Thr	Leu	Glu	Asp	Arg 315
Leu	Ala	His	His	Arg 320	Trp	Leu	Leu	Phe	Phe 325	His	Phe	Gly	Lys	Asn 330
Glu	Asn	Ser	Asn	Asp 335	Pro	Glu	Leu	Lys	Lys 340	Leu	Lys	Thr	Leu	Leu 345
Lys	Asn	Asp	His	Ile 350	Gln	Val	Gly	Arg	Phe 355	Asp	Суз	Ser	Ser	Ala 360
Pro	Asp	Ile	Cys	Ser 365	Asn	Leu	Tyr	Val	Phe 370	Gln	Pro	Ser	Leu	Ala 375
Val	Phe	Lys	Gly	Gln 380	Gly	Thr	Lys	Glu	Tyr 385	Glu	Ile	His	His	Gly 390
Lys	Lys	Ile	Leu	Tyr 395	Asp	Ile	Leu	Ala	Phe 400	Ala	Lys	Glu	Ser	Val 405
Asn	Ser	His	Val	Thr 410	Thr	Leu	Gly	Pro	Gln 415	Asn	Phe	Pro	Ala	Asn 420
Asp	Lys	Glu	Pro	Trp 425	Leu	Val	Asp	Phe	Phe 430	Ala	Pro	Trp	Cys	Pro 435
Pro	Cys	Arg	Ala	Leu 440	Leu	Pro	Glu	Leu	Arg 445	Arg	Ala	Ser	Asn	Leu 450
Leu	Tyr	Gly	Gln	Leu 455	Lys	Phe	Gly _,	Thr	Leu 460	Asp	Cys	Thr	Val	His 465
Glu	Gly	Leu	Cys	Asn 470	Met	Tyr	Asn	Ile	Gln 475	Ala	Tyr	Pro	Thr	Thr 480
Val	Val	Phe	Asn	Gln 485	Ser	Asn	Ile	His	Glu 490	Tyr	Glu	Gly	His	His 495

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

```
<400> 460
 actocccagg ctgttcacac tgcc 24
<210> 461
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 461
 gatcagccag ccaataccag cagc 24
<210> 462
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 462
 gtggtgatga tagaatgctt tgccgaatga aaggagtcaa cagctatccc 50
<210> 463
<211> 1818
<212> DNA
<213> Homo sapiens
<400> 463
 agacagtacc tcctccctag gactacacaa ggactgaacc agaaggaaga 50
 ggacagagca aagccatgaa catcatccta gaaatccttc tgcttctgat 100
 caccatcatc tactcctact tggagtcgtt ggtgaagttt ttcattcctc 150
 agaggagaaa atctgtggct ggggagattg ttctcattac tggagctggg 200
 catggaatag gcaggcagac tacttatgaa tttgcaaaac gacagagcat 250
 attggttctg tgggatatta ataagcgcgg tgtggaggaa actgcagctg 300
 agtgccgaaa actaggcgtc actgcgcatg cgtatgtggt agactgcagc 350
 aacagagaag agatctatcg ctctctaaat caggtgaaga aagaagtggg 400
 tgatgtaaca atcgtggtga ataatgctgg gacagtatat ccaqccgatc 450
 ttctcagcac caaggatgaa gagattacca agacatttga ggtcaacatc 500
 ctaggacatt tttggatcac aaaagcactt cttccatcga tgatggagag 550
 aaatcatggc cacatcgtca cagtggcttc agtgtgcggc cacgaaggga 600
 ttccttacct catcccatat tgttccagca aatttgccgc tgttggcttt 650
 cacagaggtc tgacatcaga acttcaggcc ttgggaaaaa ctggtatcaa 700
```

aacctcatgt ctctgcccag tttttgtgaa tactgggttc accaaaaatc 750 caagcacaag attatggcct gtattggaga cagatgaagt cgtaagaagt 800 ctgatagatg gaatacttac caataagaaa atgatttttg ttccatcgta 850 tatcaatatc tttctgagac tacagaagtt tcttcctgaa cgcgcctcag 900 cgattttaaa tcgtatgcag aatattcaat ttgaagcagt ggttggccac 950 aaaatcaaaa tgaaatgaat aaataagctc cagccagaga tgtatgcatg 1000 ataatgatat gaatagtttc gaatcaatgc tgcaaagctt tatttcacat 1050 tttttcagtc ctgataatat taaaaacatt ggtttggcac tagcagcagt 1100 caaacgaaca agattaatta cctgtcttcc tgtttctcaa gaatatttac 1150 gtagtttttc ataggtctgt ttttcctttc atgcctctta aaaacttctg 1200 tgcttacata aacatactta aaaggttttc tttaagatat tttatttttc 1250 catttaaagg tggacaaaag ctacctccct aaaagtaaat acaaagagaa 1300 cttatttaca cagggaaggt ttaagactgt tcaagtagca ttccaatctg 1350 tagccatgcc acagaatatc aacaagaaca cagaatgagt gcacagctaa 1400 gagatcaagt ttcagcaggc agctttatct caacctggac atattttaag 1450 attcagcatt tgaaagattt ccctagcctc ttcctttttc attagcccaa 1500 aacggtgcaa ctctattctg gactttatta cttgattctg tcttctgtat 1550 aactetgaag tecaceaaaa gtggaeeete tatattteet eeettttat 1600 agtcttataa gatacattat gaaaggtgac cgactctatt ttaaatctca 1650 gaattttaag ttctagcccc atgataacct ttttctttgt aatttatgct 1700 ttcatatatc cttggtccca gagatgttta gacaatttta ggctcaaaaa 1750 ttaaagctaa cacaggaaaa ggaactgtac tggctattac ataagaaaca 1800 atggacccaa gagaagaa 1818

<210> 464

<211> 300

<212> PRT

<213> Homo sapiens

<400> 464

Met Asn Ile Ile Leu Glu Ile Leu Leu Leu Ile Thr Ile Ile 1 5 10 15

Tyr Ser Tyr Leu Glu Ser Leu Val Lys Phe Phe Ile Pro Gln Arg
20 25 30

<210> 465

<211> 1547

<212> DNA

<213> Homo sapiens

<400> 465 cggcggcggc tgcgggcgcg aggtgagggg cgcgaggtga ggggcgcgag 50 gttcccagca ggatgccccg gctctgcagg aagctgaagt gagaggcccg 100 gagagggeee agecegeeeg gggeaggatg aceaaggeee ggetgtteeg 150 gctgtggctg gtgctggggt cggtgttcat gatcctgctg atcatcgtgt 200 actgggacag cgcaggcgcc gcgcacttct acttgcacac gtccttctct 250 aggccgcaca cggggccgcc gctgcccacg cccgggccgg acagggacag 300 ggageteacg geegaeteeg atgtegaega gtttetggae aagtttetea 350 gtgctggcgt gaagcagagc gaccttccca gaaaggagac ggagcagccg 400 cctgcgccgg ggagcatgga ggagagcgtg agaggctacg actggtcccc 450 ggagcgtgct gcggggcttc tgcgccaact ccagcctggc cttccccacc 550 aaggagegeg cattegaega cateeceaac teggagetga gecacetgat 600 cgtggacgac cggcacgggg ccatctactg ctacgtgccc aaggtggcct 650 gcaccaactg gaagegegtg atgategtge tgageggaag cetgetgeae 700 egeggtgege ectaeegega eeegetgege ateeegegeg ageaegtgea 750 caacgccagc gcgcacctga ccttcaacaa gttctggcgc cgctacggga 800 ageteteceg ceaceteatg aaggteaage teaagaagta caccaagtte 850 ctcttcgtgc gcgacccctt cgtgcgcctg atctccgcct tccgcagcaa 900 gttcgagctg gagaacgagg agttctaccg caagttcgcc gtgcccatgc 950 tgcggctgta cgccaaccac accagcctgc ccgcctcggc gcgcgaggcc 1000 ttccgcgctg gcctcaaggt gtccttcgcc aacttcatcc agtacctgct 1050 ggacccgcac acggagaagc tggcgccctt caacgagcac tggcggcagg 1100 tgtaccgcct ctgccacccg tgccagatcg actacgactt cgtggggaag 1150 ctggagactc tggacgagga cgccgcgcag ctgctgcagc tactccaggt 1200 ggaccggcag ctccgcttcc ccccgagcta ccggaacagg accgccagca 1250 gctgggagga ggactggttc gccaagatcc ccctggcctg gaggcagcag 1300 ctgtataaac tctacgaggc cgactttgtt ctcttcggct accccaagcc 1350 cgaaaacctc ctccgagact gaaagctttc gcgttgcttt ttctcgcgtg 1400 cctggaacct gacgcacgcg cactccagtt tttttatgac ctacgatttt 1450

<210> 466

<211> 414

<212> PRT

<213> Homo sapiens

<400> 466

Met Thr Lys Ala Arg Leu Phe Arg Leu Trp Leu Val Leu Gly Ser
1 5 10 15

Val Phe Met Ile Leu Leu Ile Ile Val Tyr Trp Asp Ser Ala Gly
20 25 30

Ala Ala His Phe Tyr Leu His Thr Ser Phe Ser Arg Pro His Thr
35 40 45

Gly Pro Pro Leu Pro Thr Pro Gly Pro Asp Arg Asp Arg Glu Leu
50 55 60

Thr Ala Asp Ser Asp Val Asp Glu Phe Leu Asp Lys Phe Leu Ser 65 70 75

Ala Gly Val Lys Gln Ser Asp Leu Pro Arg Lys Glu Thr Glu Gln 80 85 90

Pro Pro Ala Pro Gly Ser Met Glu Glu Ser Val Arg Gly Tyr Asp 95 100 105

Trp Ser Pro Arg Asp Ala Arg Arg Ser Pro Asp Gln Gly Arg Gln
110 115 120

Gln Ala Glu Arg Arg Ser Val Leu Arg Gly Phe Cys Ala Asn Ser 125 130 135

Ser Leu Ala Phe Pro Thr Lys Glu Arg Ala Phe Asp Asp Ile Pro 140 145 150

Asn Ser Glu Leu Ser His Leu Ile Val Asp Asp Arg His Gly Ala 155 160 165

Ile Tyr Cys Tyr Val Pro Lys Val Ala Cys Thr Asn Trp Lys Arg 170 175 180

Val Met Ile Val Leu Ser Gly Ser Leu Leu His Arg Gly Ala Pro 185 190 195

Tyr Arg Asp Pro Leu Arg Ile Pro Arg Glu His Val His Asn Ala 200 205 210

Ser Ala His Leu Thr Phe Asn Lys Phe Trp Arg Arg Tyr Gly Lys 215 220 225

Leu Ser Arg His Leu Met Lys Val Lys Leu Lys Lys Tyr Thr Lys 230 235 240

<210> 467 <211> 1071 <212> DNA

<213> Homo sapiens

<400> 467
tcgggccaga attcggcacg aggcggcacg agggcgacgg cctcacgggg 50
ctttggaggt gaaagaggcc cagagtagag agaagagag accgacgtac 100
acgggatggc tacgggaacg cgctatgccg ggaaggtggt ggtcgtgacc 150
gggggcgggc gcggcatcgg agctgggatc gtgcgcgct tcgtgaacag 200
cggggcccga gtggttatct gcgacaagga tgagtctggg ggccgggccc 250
tggagcagga gctccctgga gctgtcttta tcctctgtga tgtgactcag 300
gaagatgatg tgaagaccct ggttctgag accatccgcc gatttggccg 350
cctggattgt gttgtcaaca acgctggcca ccacccaccc ccacagaggc 400

ctgaggagac ctctgccag ggattccgcc agctgctgga gctgaaccta 450 ctggggacgt acaccttgac caagctcgcc ctccctacc tgcggaagag 500 tcaagggaat gtcatcaaca tctccagcct ggtgggggca atcggccagg 550 cccaggcagt tccctatgtg gccaccaagg gggcagtaac agccatgacc 600 aaagctttgg ccctggatga aagtccatat ggtgtccgag tcaactgtat 650 ctcccagga aacatctgga ccccgctgtg ggaggagctg gcagccttaa 700 tgccagaccc tagggccaca atccgagagg gcatgctggc ccagccactg 750 ggccgcatgg gccagcccgc tgaggtcgg gctgcggcag tgttcctggc 800 ctccgaagcc aacttctgca cgggcattga actgctcgt acggggggtg 850 cagagctggg gtacgggtg aaggccagtc ggagcaccc cgtggacgcc 900 cccgatatcc cttcctgatt tctctcattt ctacttggg cccccttcct 950 aggactctcc caccccaaac tccaacctgt atcagatgca ccgggtcacc ctgcaggttc 1050 ccctaaaaaac gatttgcagc c 1071

<210> 468

<211> 270

<212> PRT

<213> Homo sapiens

<400> 468

Met Ala Thr Gly Thr Arg Tyr Ala Gly Lys Val Val Val Val Thr 1 5 10 15

Gly Gly Gly Arg Gly Ile Gly Ala Gly Ile Val Arg Ala Phe Val 20 25 30

Asn Ser Gly Ala Arg Val Val Ile Cys Asp Lys Asp Glu Ser Gly
35 40 45

Gly Arg Ala Leu Glu Gln Glu Leu Pro Gly Ala Val Phe Ile Leu 50 55 60

Cys Asp Val Thr Gln Glu Asp Asp Val Lys Thr Leu Val Ser Glu
65 70 75

Thr Ile Arg Arg Phe Gly Arg Leu Asp Cys Val Val Asn Asn Ala 80 85 90

Gly His His Pro Pro Pro Gln Arg Pro Glu Glu Thr Ser Ala Gln 95 100 105

Gly Phe Arg Gln Leu Leu Glu Leu Asn Leu Leu Gly Thr Tyr Thr 110 115 120

<210> 469 <211> 687 <212> DNA

<213> Homo sapiens

<400> 469
aggcgggcag cagctgcagg ctgaccttgc agcttggcgg aatggactgg 50
cctcacaacc tgctgtttct tcttaccatt tccatcttcc tggggctggg 100
ccagcccagg agccccaaaa gcaagaggaa ggggcaaggg cggcctgggc 150
ccctggcccc tggccctcac caggtgccac tggacctggt gtcacggatg 200
aaaccgtatg cccgcatgga ggagtatgag aggaacatcg aggagatggt 250
ggcccagctg aggaacagct cagagctggc ccagagaaag tgtgaggtca 300
acttgcagct gtggatgtcc aacaagagga gcctgtctcc ctggggctac 350
agcatcaacc acgacccag ccgtatcccc gtggacctgc cggaggcacg 400
gtgcctgtgt ctgggctgtg tgaacccctt caccatgcag gaggaccgca 450
gcatggtgag cgtgccggtg ttcagccagg ttcctgtgc ccgccgcctc 500
tgcccgccac cgccccgcac agggccttgc cgccagcgcg cagtcatgga 550

gaccatcgct gtgggctgca cctgcatctt ctgaatcacc tggcccagaa 600 gccaggccag cagcccgaga ccatcctcct tgcacctttg tgccaagaaa 650 ggcctatgaa aagtaaacac tgacttttga aagcaag 687

<210> 470

<211> 180

<212> PRT

<213> Homo sapiens

<400> 470

Met Asp Trp Pro His Asn Leu Leu Phe Leu Leu Thr Ile Ser Ile
1 5 10 15

Phe Leu Gly Leu Gly Gln Pro Arg Ser Pro Lys Ser Lys Arg Lys
20 25 30

Gly Gln Gly Arg Pro Gly Pro Leu Ala Pro Gly Pro His Gln Val
35 40 40

Pro Leu Asp Leu Val Ser Arg Met Lys Pro Tyr Ala Arg Met Glu
50 55 60

Glu Tyr Glu Arg Asn Ile Glu Glu Met Val Ala Gln Leu Arg Asn
65 70 75

Ser Ser Glu Leu Ala Gln Arg Lys Cys Glu Val Asn Leu Gln Leu 80 85 90

Trp Met Ser Asn Lys Arg Ser Leu Ser Pro Trp Gly Tyr Ser Ile 95 100 105

Asn His Asp Pro Ser Arg Ile Pro Val Asp Leu Pro Glu Ala Arg 110 115 120

Cys Leu Cys Leu Gly Cys Val Asn Pro Phe Thr Met Gln Glu Asp 125 130 135

Arg Ser Met Val Ser Val Pro Val Phe Ser Gln Val Pro Val Arg 140 145 150

Arg Arg Leu Cys Pro Pro Pro Pro Arg Thr Gly Pro Cys Arg Gln
155 160 165

Arg Ala Val Met Glu Thr Ile Ala Val Gly Cys Thr Cys Ile Phe 170 175 180

<210> 471

<211> 2368

<212> DNA

<213> Homo sapiens

<400> 471

gcgccgcag gcgtaggcgg ggtggccctt gcgtctcccg cttccttgaa 50
aaacccggcg ggcgagcgag gctgcgggcc ggccgctgcc cttccccaca 100

ctccccgccg agaagcctcg ctcggcgccc aacatggcgg gtgggcgctg 150 eggeeegeag ctaaeggege teetggeege etggategeg getgtggegg 200 cgacggcagg cecegaggag geegegetge egeeggagea gageegggte 250 cageccatga eegectecaa etggaegetg gtgatggagg gegagtggat 300 gctgaaattt tacgccccat ggtgtccatc ctgccagcag actgattcag 350 aatgggaggc ttttgcaaag aatggtgaaa tacttcagat cagtgtgggg 400 aaggtagatg tcattcaaga accaggtttg agtggccgct tctttgtcac 450 cactetecea geattttte atgeaaagga tgggatatte egeegttate 500 gtggcccagg aatcttcgaa gacctgcaga attatatctt agagaagaaa 550 tggcaatcag tcgagcctct gactggctgg aaatccccag cttctctaac 600 gatgtctgga atggctggtc tttttagcat ctctggcaag atatggcatc 650 ttcacaacta tttcacagtg actcttggaa ttcctgcttg gtgttcttat 700 gtgtttttcg tcatagccac cttggttttt ggccttttta tgggtctggt 750 cttggtggta atatcagaat gtttctatgt gccacttcca aggcatttat 800 ctgagcgttc tgagcagaat cggagatcag aggaggctca tagagctgaa 850 cagttgcagg atgcggagga ggaaaaagat gattcaaatg aagaagaaaa 900 caaagacagc cttgtagatg atgaagaaga gaaagaagat cttggcgatg 950 aggatgaagc agaggaagaa gaggaggagg acaacttggc tqctgqtqtq 1000 gatgaggaga gaagtgaggc caatgatcag qqqcccccaq qaqaqqacqq 1050 tgtgacccgg gaggaagtag agcctgagga ggctgaagaa ggcatctctg 1100 agcaaccctg cccagctgac acagaggtgg tggaagactc cttgaggcag 1150 cgtaaaagtc agcatgctga caagggactg tagatttaat gatgcgtttt 1200 caagaataca caccaaaaca atatgtcagc ttccctttgg cctgcagttt 1250 gtaccaaatc cttaattttt cctgaatgag caagcttctc ttaaaagatg 1300 ctctctagtc atttggtctc atggcagtaa gcctcatgta tactaaggag 1350 agtcttccag gtgtgacaat caggatatag aaaaacaaac gtagtgttgg 1400 gatctgtttg gagactggga tgggaacaag ttcatttact taggggtcag 1450 agagtetega ecagaggagg ceatteceag tectaateag caeetteeag 1500 agacaagget geaggeeetg tgaaatgaaa geeaageagg ageettgget 1550

cctgagcatc cccaaagtgt aacgtagaag ccttgcatcc ttttcttgtg 1600 taaagtattt atttttgtca aattgcagga aacatcaggc accacagtgc 1650 atgaaaaatc tttcacagct agaaattgaa agggccttgg gtatagagag 1700 cageteagaa gteateeeag eeetetgaat eteetgtget atgttttatt 1750 tcttaccttt aatttttcca gcatttccac catgggcatt caggctctcc 1800 acactettea etattatete ttggteagag gaeteeaata acageeaggt 1850 ttacatgaac tgtgtttgtt cattctgacc taaggggttt agataatcag 1900 taaccataac ccctgaagct gtgactgcca aacatctcaa atgaaatgtt 1950 gtggccatca gagactcaaa aggaagtaag gattttacaa gacagattaa 2000 aaaaaaattg ttttgtccaa aatatagttg ttgttgattt ttttttaagt 2050 tttctaagca atattttca agccagaagt cctctaagtc ttgccagtac 2100 gggttccctg ggtcttgaac tactttaata ataactaaaa aaccacttct 2200 gattttcctt cagtgatgtg cttttggtga aagaattaat gaactccagt 2250 acctgaaagt gaaagatttg attttgtttc catcttctgt aatcttccaa 2300 agaattatat ctttgtaaat ctctcaatac tcaatctact gtaagtaccc 2350 agggaggcta atttcttt 2368

<210> 472

<211> 349

<212> PRT

<213> Homo sapiens

<400> 472

Met Ala Gly Gly Arg Cys Gly Pro Gln Leu Thr Ala Leu Leu Ala 1 5 10 15

Ala Trp Ile Ala Ala Val Ala Ala Thr Ala Gly Pro Glu Glu Ala 20 25 30

Ala Leu Pro Pro Glu Gln Ser Arg Val Gln Pro Met Thr Ala Ser 35 40 45

Asn Trp Thr Leu Val Met Glu Gly Glu Trp Met Leu Lys Phe Tyr
50 55 60

Ala Pro Trp Cys Pro Ser Cys Gln Gln Thr Asp Ser Glu Trp Glu
65 70 75

Ala Phe Ala Lys Asn Gly Glu Ile Leu Gln Ile Ser Val Gly Lys 80 85 90

Val	Asp	Val	Ile	Gln 95	Glu	Pro	Gly	Leu	Ser 100	Gly	Arg	Phe	Phe	Val 105
Thr	Thr	Leu	Pro	Ala 110	Phe	Phe	His	Ala	Lys 115	Asp	Gly	Ile	Phe	Arg 120
Arg	Tyr	Arg	Gly	Pro 125	Gly	Ile	Phe	Glu	Asp 130	Leu	Gln	Asn	Tyr	Ile 135
Leu	Glu	Lys	Lys	Trp 140	Gln	Ser	Val	Glu	Pro 145	Leu	Thr	Gly	Trp	Lys 150
Ser	Pro	Ala	Ser	Leu 155	Thr	Met	Ser	Gly	Met 160	Ala	Gly	Leu	Phe	Ser 165
Ile	Ser	Gly	Lys	Ile 170	Trp	His	Leu	His	Asn 175	Tyr	Phe	Thr	Val	Thr 180
Leu	Gly	Ile	Pro	Ala 185	Trp	Cys	Ser	Tyr	Val 190	Phe	Phe	Val	Ile	Ala 195
Thr.	Leu	Val	Phe	Gly 200	Leu	Phe	Met	Gly	Leu 205	Val	Leu	Val	Val	Ile 210
Ser	Glu	Cys	Phe	Tyr 215	Val	Pro	Leu	Pro	Arg 220	His	Leu	Ser	Glu	Arg 225
Ser	Glu	Gln	Asn	Arg 230	Arg	Ser	Glu	Glu	Ala 235	His	Arg	Ala	Glu	Gln 240
Leu	Gln	Asp	Ala	Glu 245	Glu	Glu	Lys	Asp	Asp 250	Ser	Asn	Glu	Glu	Glu 255
Asn	Lys	Asp	Ser	Leu 260	Val	Asp	Asp	Glu	Glu 265	Glu	Lys	Glu	Asp	Leu 270
Gly	Asp	Glu	Asp	Glu 275	Ala	Glu	Glu	Glu	Glu 280	Glu	Glu	Asp	Asn	Leu 285
Ala	Ala	Gly	Val	Asp 290	Glu	Glu	Arg	Ser	Glu 295	Ala	Asn	Asp	Gln	Gly 300
Pro	Pro	Gly	Glu	Asp 305	Gly	Val	Thr	Arg	Glu 310	Glu	Val	Glu	Pro	Glu 315
Glu	Ala	Glu	Glu	Gly 320	Ile	Ser	Glu	Gln	Pro 325	Cys	Pro	Ala	Asp	Thr 330
Glu	Val	Val	Glu	Asp 335	Ser	Leu	Arg	Gln	Arg 340	Lys	Ser	Gln	His	Ala 345

Asp Lys Gly Leu

<210> 473 <211> 24 <212> DNA <213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 473
 gtccagccca tgaccgcctc caac 24
<210> 474
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 474
ctctcctcat ccacaccagc agcc 24
<210> 475
<211> 44
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
 gtggatgctg aaattttacg ccccatggtg tccatcctgc cagc 44
<210> 476
<211> 2478
<212> DNA
<213> Homo sapiens
<400> 476
 atctggttga actacttaag cttaatttgt taaactccgg taagtaccta 50
gcccacatga tttgactcag agattctctt ttgtccacag acagtcatct 100
caggggcaga aagaaaagag ctcccaaatg ctatatctat tcaggggctc 150
 tcaagaacaa tggaatatca tcctgattta gaaaatttgg atgaagatgg 200
atatactcaa ttacacttcg actctcaaag caataccagg atagctgttg 250
tttcagagaa aggatcgtgt gctgcatctc ctccttggcg cctcattgct 300
gtaattttgg gaatcctatg cttggtaata ctggtgatag ctgtggtcct 350
gggtaccatg ggggttcttt ccagcccttg tcctcctaat tggattatat 400
atgagaagag ctgttatcta ttcagcatgt cactaaattc ctgggatgga 450
agtaaaagac aatgctggca actgggctct aatctcctaa agatagacag 500
ctcaaatgaa ttgggattta tagtaaaaca agtgtcttcc caacctgata 550
attcattttg gataggcctt tctcggcccc agactgaggt accatggctc 600
```

tgggaggatg gatcaacatt ctcttctaac ttatttcaga tcagaaccac 650 agctacccaa gaaaacccat ctccaaattq tqtatqqatt cacqtqtcaq 700 tcatttatga ccaactgtgt agtgtgccct catatagtat ttgtgagaag 750 aagttttcaa tqtaaqaqqa aqqqtqqaqa aqqaqaqaqa aatatqtqaq 800 gtagtaagga ggacagaaaa cagaacagaa aagagtaaca gctgaggtca 850 agataaatgc agaaaatgtt tagagagctt ggccaactgt aatcttaacc 900 aagaaattga agggagaggc tgtgatttct gtatttgtcg acctacaggt 950 aggctagtat tatttttcta gttagtagat ccctagacat ggaatcaggg 1000 cagccaagct tgagttttta ttttttattt atttatttt ttgagatagg 1050 gtctcacttt gttacccagg ctggagtgca gtggcacaat ctcgactcac 1100 tgcagctatc tctcgcctca gcccctcaag tagctgggac tacaggtgca 1150 tgccaccatg ccaggctaat ttttggtgtt ttttgtagag actgggtttt 1200 gccatgttga ccaagetggt ctctaactcc tgggcttaag tgatctgccc 1250 gccttggcct cccaaagtgc tgggattaca gatgtgagcc accacacctg 1300 gccccaagct tgaattttca ttctgccatt gacttggcat ttaccttggg 1350 taagccataa gcgaatctta atttctggct ctatcagagt tgtttcatgc 1400 tcaacaatgc cattgaagtg cacggtgtgt tgccacgatt tgaccctcaa 1450 cttctagcag tatatcagtt atgaactgag ggtgaaatat atttctgaat 1500 agctaaatga agaaatggga aaaaatcttc accacagtca gagcaatttt 1550 attattttca tcagtatgat cataattatg attatcatct tagtaaaaag 1600 caggaactcc tactttttct ttatcaatta aatagctcag agagtacatc 1650 tgccatatct ctaatagaat ctttttttt ttttttttt tttgagacag 1700 agtttcgctc ttgttgccca ggctggagtg caacggcacg atctcggctc 1750 accgcaacct ccgcccctg ggttcaagca attctcctgc ctcagcctcc 1800 caagtagetg ggattacagt caggcaccac cacaccegge taattttgta 1850 tttttttagt agagacaggg tttctccatg tcggtcaggg tagtcccgaa 1900 ctcctgacct caagtgatct gcctgcctcg gcctcccaag tgctgggatt 1950 acaggogtga gocactgoac coagoctaga atottgtata atatgtaatt 2000 gtagggaaac tgctctcata ggaaagtttt ctgcttttta aatacaaaaa 2050

<210> 477 <211> 201

<212> PRT

<213> Homo sapiens

<400> 477

Met Glu Tyr His Pro Asp Leu Glu Asn Leu Asp Glu Asp Gly Tyr
1 5 10 15

Thr Gln Leu His Phe Asp Ser Gln Ser Asn Thr Arg Ile Ala Val 20 25 30

Val Ser Glu Lys Gly Ser Cys Ala Ala Ser Pro Pro Trp Arg Leu 35 40 45

Ile Ala Val Ile Leu Gly Ile Leu Cys Leu Val Ile Leu Val Ile
50 55 60

Ala Val Val Leu Gly Thr Met Gly Val Leu Ser Ser Pro Cys Pro
65 70 75

Pro Asn Trp Ile Ile Tyr Glu Lys Ser Cys Tyr Leu Phe Ser Met 80 85 90

Ser Leu Asn Ser Trp Asp Gly Ser Lys Arg Gln Cys Trp Gln Leu 95 100 105

Gly Ser Asn Leu Leu Lys Ile Asp Ser Ser Asn Glu Leu Gly Phe 110 115 120

Ile Val Lys Gln Val Ser Ser Gln Pro Asp Asn Ser Phe Trp Ile 125 130 135

Gly Leu Ser Arg Pro Gln Thr Glu Val Pro Trp Leu Trp Glu Asp 140 145 150

Gly Ser Thr Phe Ser Ser Asn Leu Phe Gln Ile Arg Thr Thr Ala 155 160 165

Thr Gln Glu Asn Pro Ser Pro Asn Cys Val Trp Ile His Val Ser

175 180 Val Ile Tyr Asp Gln Leu Cys Ser Val Pro Ser Tyr Ser Ile Cys 190

185

200

Glu Lys Lys Phe Ser Met

<213> Artificial Sequence

<210> 478 <211> 27 <212> DNA

- atcctcccag agccatggta cctc 24
- <210> 481 <211> 51
- <212> DNA
- <213> Artificial Sequence
- <220>

H

- <223> Synthetic oligonucleotide probe
- ccaaggatag ctgttgtttc agagaaagga tcgtgtgctg catctcctcc 50
- t 51
- <210> 482
- <211> 3819
- <212> DNA
- <213> Homo sapiens

tetetgeeet ggeetgeett gteaceattg cegeetacet etgeteeagg 1500 gtgcccctgc cgtgcaggag gaaacctcgg gactacacca tcaaggtgca 1550 catgaacctg ctgctggccg tcttcctgct ggacacgagc ttcctgctca 1600 gcgagccggt ggccctgaca ggctctgagg ctggctgccg agccagtgcc 1650 atcttcctgc acttctccct gctcacctgc ctttcctgga tgggcctcga 1700 ggggtacaac ctctaccgac tcgtggtgga ggtctttggc acctatqtcc 1750 ctggctacct actcaagctg agcgccatgg gctggggctt ccccatcttt 1800 ctggtgacgc tggtggccct ggtggatgtg gacaactatg gccccatcat 1850 cttggctgtg cataggactc cagagggcgt catctaccct tccatgtgct 1900 ggatccggga ctccctggtc agctacatca ccaacctggg cctcttcagc 1950 ctggtgtttc tgttcaacat ggccatgcta gccaccatgg tggtgcagat 2000 cctgcggctg cgccccaca cccaaaagtg gtcacatgtg ctgacactgc 2050 tgggcctcag cctggtcctt ggcctgccct gggccttgat cttcttctcc 2100 tttgcttctg gcaccttcca gcttgtcgtc ctctaccttt tcagcatcat 2150 cacctccttc caaggettee teatetteat etggtactgg teeatgegge 2200 tgcaggcccg gggtggcccc tcccctctga agagcaactc agacagcgcc 2250 aggeteecea teageteggg cageaceteg tecageegea tetaggeete 2300 cagcccacct gcccatgtga tgaagcagag atgcggcctc gtcgcacact 2350 geetgtggee eeegageeag geeeageeee aggeeagtea geegeagaet 2400 ttggaaagcc caacgaccat ggagagatgg qccgttgcca tggtggacgg 2450 actcccgggc tgggcttttg aattggcctt ggggactact cggctctcac 2500 tcagctccca cgggactcag aagtgcgccg ccatgctgcc tagggtactg 2550 tccccacatc tgtcccaacc cagctggagg cctggtctct ccttacaacc 2600 cctgggccca gccctcattg ctgggggcca ggccttggat cttgagggtc 2650 tggcacatcc ttaatcctgt gcccctgcct gggacagaaa tgtggctcca 2700 gttgctctgt ctctcgtggt caccctgagg gcactctgca tcctctgtca 2750 ttttaacctc aggtggcacc cagggcgaat ggggcccagg gcagaccttc 2800 agggccagag ccctggcgga ggagaggccc tttgccagga gcacagcagc 2850 agetegecta cetetgagee caggeeecet ecetecetea geeececagt 2900

ceteceteca tettecetgg ggttetecte eteteceagg geeteettge 2950 tccttcgttc acagctgggg gtccccgatt ccaatgctgt tttttgggga 3000 gtggtttcca ggagctgcct ggtgtctgct gtaaatgttt gtctactgca 3050 caagectegg cetgeceetg agecaggete ggtacegatg egtgggetgg 3100 gctaggtccc tctgtccatc tgggcctttg tatgagctgc attgcccttg 3150 ctcaccctga ccaagcacac gcctcagagg ggccctcagc ctctcctgaa 3200 gccctcttgt ggcaagaact gtggaccatg ccagtcccgt ctggtttcca 3250 teccaecact ecaaggactg agactgaect ectetggtga caetggeeta 3300 gagectgaca etetectaag aggttetete caageceeca aatageteea 3350 ggcgccctcg gccgcccatc atggttaatt ctgtccaaca aacacacacg 3400 ggtagattgc tggcctgttg taggtggtag ggacacagat gaccgacctg 3450 gtcactcctc ctgccaacat tcagtctggt atgtgaggcg tgcgtgaagc 3500 aagaactcct ggagctacag ggacagggag ccatcattcc tgcctgggaa 3550 tcctggaaga cttcctgcag gagtcagcgt tcaatcttga ccttgaagat 3600 gggaaggatg ttctttttac gtaccaattc ttttgtcttt tgatattaaa 3650 aagaagtaca tgttcattgt agagaatttg gaaactgtag aagagaatca 3700 aaaaaaaaa aaaaaaaaa 3819

<210> 483

<211> 693

<212> PRT

<213> Homo sapiens

<400> 483

Met Thr Pro Gln Ser Leu Leu Gln Thr Thr Leu Phe Leu Leu Ser
1 10 15

Leu Leu Phe Leu Val Gln Gly Ala His Gly Arg Gly His Arg Glu 20 25 30

Asp Phe Arg Phe Cys Ser Gln Arg Asn Gln Thr His Arg Ser Ser 35 40 45

Leu His Tyr Lys Pro Thr Pro Asp Leu Arg Ile Ser Ile Glu Asn
50 55 60

Ser Glu Glu Ala Leu Thr Val His Ala Pro Phe Pro Ala Ala His
65 70 75

Pro	Ala	Ser	Arg	Ser 80	Phe	Pro	Asp	Pro	Arg 85	Gly	Leu	Tyr	His	Phe 90
Суз	Leu	Tyr	Trp	Asn 95	Arg	His	Ala	Gly	Arg 100	Leu	His	Leu	Leu	Tyr 105
Gly	Lys	Arg	Asp	Phe 110	Leu	Leu	Ser	Asp	Lys 115	Ala	Ser	Ser	Leu	Leu 120
Cys	Phe	Gln	His	Gln 125	Glu	Glu	Ser	Leu	Ala 130	Gln	Gly	Pro	Pro	Leu 135
Leu	Ala	Thr	Ser	Val 140	Thr	Ser	Trp	Trp	Ser 145	Pro	Gln	Asn	Ile	Ser 150
Leu	Pro	Ser	Ala	Ala 155	Ser	Phe	Thr	Phe	Ser 160	Phe	His	Ser	Pro	Pro 165
His	Thr	Ala	Ala	His 170	Asn	Ala	Ser	Val	Asp 175	Met	Cys	Glu	Leu	Lys 180
Arg	Asp	Leu	Gln	Leu 185	Leu	Ser	Gln	Phe	Leu 190	Lys	His	Pro	Gln	Lys 195
Ala	Ser	Arg	Arg	Pro 200	Ser	Ala	Ala	Pro	Ala 205	Ser	Gln	Gln	Leu	Gln 210
Ser	Leu	Glu	Ser	Lys 215	Leu	Thr	Ser	Val	Arg 220	Phe	Met	Gly	Asp	Met 225
Val	Ser	Phe	Glu	Glu 230	Asp	Arg	Ile	Asn	Ala 235	Thr	Val	Trp	Lys	Leu 240
Gln	Pro	Thr	Ala	Gly 245	Leu	Gln	Asp	Leu	His 250	Ile	His	Ser	Arg	Gln 255
Glu	Glu	Glu	Gln	Ser 260	Glu	Ile	Met	Glu	Tyr 265	Ser	Val	Leu	Leu	Pro 270
Arg	Thr	Leu	Phe	Gln 275	Arg	Thr	Lys	Gly	Arg 280	Ser	Gly	Glu	Ala	Glu 285
Lys	Arg	Leu	Leu	Leu 290	Val	Asp	Phe	Ser	Ser 295	Gln	Ala	Leu	Phe	Gln 300
Asp	Lys	Asn	Ser	Ser 305	Gln	Val	Leu	Gly	Glu 310	Lys	Val	Leu	Gly	Ile 315
Val	Val	Gln	Asn	Thr 320	Lys	Val	Ala	Asn	Leu 325	Thr	Glu	Pro	Val	Val 330
Leu	Thr	Phe	Gln	His 335	Gln	Leu	Gln	Pro	Lys 340	Asn	Val	Thr	Leu	Gln 345
Cys _.	Val	Phe	Trp	Val 350	Glu	Asp	Pro	Thr	Leu 355	Ser	Ser	Pro	Gly	His 360
Trp	Ser	Ser	Ala	Gly	Cys	Glu	Thr	Val	Arg	Arg	Glu	Thr	Gln	Thr

				365					370					375
Ser	Cys	Phe	Суз	Asn 380	His	Leu	Thr	Tyr	Phe 385	Ala	Val	Leu	Met	Val 390
Ser	Ser	Val	Glu	Val 395	Asp	Ala	Val	His	Lys 400	His	Tyr	Leu	Ser	Leu 405
Leu	Ser	Tyr	Val	Gly 410	Суз	Val	Val	Ser	Ala 415	Leu	Ala	Суѕ	Leu	Val 420
Thr	Ile	Ala	Ala	Tyr 425	Leu	Cys	Ser	Arg	Val 430	Pro	Leu	Pro	Суѕ	Arg 435
Arg	Lys	Pro	Arg	Asp 440	Tyr	Thr	Ile	Lys	Val 445	His	Met	Asn	Leu	Leu 450
Leu	Ala	Val	Phe	Leu 455	Leu	Asp	Thr	Ser	Phe 460	Leu	Leu	Ser	Glu	Pro 465
Val	Ala	Leu	Thr	Gly 470	Ser	Glu	Ala	Gly	Cys 475	Arg	Ala	Ser	Ala	Ile 480
Phe	Leu	His	Phe	Ser 485	Leu	Leu	Thr	Cys	Leu 490	Ser	Trp	Met	Gly	Leu 495
Glu	Gly	Tyr	Asn	Leu 500	Tyr	Arg	Leu	Val	Val 505	Glu	Val	Phe	Gly	Thr 510
Tyr	Val	Pro	Gly	Tyr 515	Leu	Leu	Lys	Leu	Ser 520	Ala	Met	Gly	Trp	Gly 525
Phe	Pro	Ile	Phe	Leu 530	Val	Thr	Leu	Val	Ala 535	Leu	Val	Asp	Val	Asp 540
Asn	Tyr	Gly	Pro	Ile 545	Ile	Leu	Ala	Val	His 550	Arg	Thr	Pro	Glu	Gly 555
Val	Ile	Tyr	Pro	Ser 560	Met	Cys	Trp	Ile	Arg 565	Asp	Ser	Leu	Val	Ser 570
Tyr	Ile	Thr	Asn	Leu 575	Gly	Leu	Phe	Ser	Leu 580	Val	Phe	Leu	Phe	Asn 585
Met	Ala	Met	Leu	Ala 590	Thr	Met	Val	Val	Gln 595	Ile	Leu	Arg	Leu	Arg 600
Pro	His	Thr	Gln	Lys 605	Trp	Ser	His	Val	Leu 610	Thr	Leu	Leu	Gly	Leu 615
Ser	Leu	Val	Leu	Gly 620	Leu	Pro	Trp	Ala	Leu 625	Ile	Phe	Phe	Ser	Phe 630
Ala	Ser	Gly	Thr	Phe 635	Gln	Leu	Val	Val	Leu 640	Tyr	Leu	Phe	Ser	Ile 645
Ile	Thr	Ser	Phe	Gln 650	Gly	Phe	Leu	Ile	Phe 655	Ile	Trp	Tyr	Trp	Ser 660

Met Arg Leu Gln Ala Arg Gly Gly Pro Ser Pro Leu Lys Ser Asn 665 670 675

Ser Asp Ser Ala Arg Leu Pro Ile Ser Ser Gly Ser Thr Ser Ser 680 685 690

Ser Arg Ile

- <210> 484
- <211> 516
- <212> DNA
- <213> Homo sapiens
- <220>
- <221> unsure
- <222> 68, 70, 84, 147
- <223> unknown base
- <400> 484

tgcctggcct gccttgtcaa caatgccgct tactctgctt ccaggttgcc 50 ctgccttgca gaggaaancn tcgggactac accntcaagt gcacatgaac 100 ctgctgctgg ccgtcttcct gctggacacg agcttcctgc tcagcgnagc 150 cggtggccct gacaggctct gaaggctggc tgccgagcca gtgccatctt 200 cctgcacttc tcctgctcac ctgcctttcc tggatggcc tcgaggggta 250 caacctctac cgactcgtgg tggaggtctt tggcacctat gtccctggct 300 acctactcaa gctgagcgc atgggctgg gcttccccat ctttctggtg 350 acgctggtgg ccctggtgga tgtggacaac tatggcccca tcatcttggc 400 tgtgcatagg actccagagg gcgtcatcta cccttccatg tgctggatcc 450 gggactccct ggtcagctac atcaccaacc tgggcctctt cagcctggtg 500

- <210> 485
- <211> 22
- <212> DNA
- <213> Artificial Sequence

tttctgttca acatgg 516

- <220>
- <223> Synthetic oligonucleotide probe
- <400> 485
- ggcattggag cagtgctggg tg 22
- <210> 486
- <211> 24
- <212> DNA
- <213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 486
tggaggccta gatgcggctg gacg 24
<210> 487
<211> 2849
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 2715
<223> unknown base
<400> 487
cggacgcgtg ggcggacgcg tgggcggacg cgtgggcgga cqcqtqqqct 50
ggttcaggtc caggttttgc tttgatcctt ttcaaaaact ggagacacag 100
aagagggctc taggaaaaag ttttggatgg gattatgtgg aaactaccct 150
gegattetet getgecagag caggetegge gettecacec caqtqcaqce 200
ttcccctggc ggtggtgaaa gagactcggg agtcgctgct tccaaagtgc 250
ccgccgtgag tgagctctca ccccagtcag ccaaatgagc ctcttcgggc 300
ttctcctgct gacatctgcc ctggccggcc agagacaggg gactcaggcg 350
gaatccaacc tgagtagtaa attccagttt tccagcaaca aggaacagaa 400
cggagtacaa gatcctcagc atgagagaat tattactgtg tctactaatg 450
gaagtattca cagcccaagg tttcctcata cttatccaag aaatacggtc 500
ttggtatgga gattagtagc agtagaggaa aatgtatgga tacaacttac 550
gtttgatgaa agatttgggc ttgaagaccc agaagatgac atatgcaagt 600
atgattttgt agaagttgag gaacccagtg atggaactat attagggcgc 650
tggtgtggtt ctggtactgt accaggaaaa cagatttcta aaggaaatca 700
aattaggata agatttgtat ctgatgaata ttttccttct gaaccagggt 750
tetgeateca etacaacatt gteatgecae aatteacaga agetgtgagt 800
ccttcagtgc taccccttc agctttgcca ctggacctgc ttaataatqc 850
tataactgcc tttagtacct tggaagacct tattcgatat cttgaaccag 900
agagatggca gttggactta gaagatctat ataggccaac ttggcaactt 950
cttggcaagg cttttgtttt tggaagaaaa tccagagtgg tggatctgaa 1000
ccttctaaca gaggaggtaa gattatacag ctgcacacct cgtaacttct 1050
```


gcttcctgat aaagcgtgct gtgctgtgca gtaggaacac atcctattta 2550 ttgtgatgtt gtggtttat tatcttaaac tctgttccat acacttgtat 2600 aaatacatgg atattttat gtacagaagt atgtctctta accagttcac 2650 ttattgtact ctggcaattt aaaagaaaat cagtaaaata ttttgcttgt 2700 aaaatgctta atatngtgcc taggttatgt ggtgactatt tgaatcaaaa 2750 atgtattgaa tcatcaaata aaagaatgtg gctattttgg ggagaaaatt 2800 aaaaaaaaaa aaaaaaaaa aggtttaggg ataacagggt aatgcggcc 2849

<210> 488

<211> 345

<212> PRT

<213> Homo sapiens

<400> 488

Met Ser Leu Phe Gly Leu Leu Leu Leu Thr Ser Ala Leu Ala Gly 1 5 10 15

Gln Arg Gln Gly Thr Gln Ala Glu Ser Asn Leu Ser Ser Lys Phe 20 25 30

Gln Phe Ser Ser Asn Lys Glu Gln Asn Gly Val Gln Asp Pro Gln
35 40 45

His Glu Arg Ile Ile Thr Val Ser Thr Asn Gly Ser Ile His Ser 50 55 60

Pro Arg Phe Pro His Thr Tyr Pro Arg Asn Thr Val Leu Val Trp
65 70 75

Arg Leu Val Ala Val Glu Glu Asn Val Trp Ile Gln Leu Thr Phe 80 85 90

Asp Glu Arg Phe Gly Leu Glu Asp Pro Glu Asp Asp Ile Cys Lys 95 100 105

Tyr Asp Phe Val Glu Val Glu Glu Pro Ser Asp Gly Thr Ile Leu 110 115 120

Gly Arg Trp Cys Gly Ser Gly Thr Val Pro Gly Lys Gln Ile Ser 125 130 135

Lys Gly Asn Gln Ile Arg Ile Arg Phe Val Ser Asp Glu Tyr Phe 140 145 150

Pro Ser Glu Pro Gly Phe Cys Ile His Tyr Asn Ile Val Met Pro 155 160 165

Gln Phe Thr Glu Ala Val Ser Pro Ser Val Leu Pro Pro Ser Ala 170 175 180

Leu Pro Leu Asp Leu Leu Asn Asn Ala Ile Thr Ala Phe Ser Thr 185 190 195

<220>

Leu Glu Asp Leu Ile Arg Tyr Leu Glu Pro Glu Arg Trp Gln Leu 200 Asp Leu Glu Asp Leu Tyr Arg Pro Thr Trp Gln Leu Leu Gly Lys Ala Phe Val Phe Gly Arg Lys Ser Arg Val Val Asp Leu Asn Leu Leu Thr Glu Glu Val Arg Leu Tyr Ser Cys Thr Pro Arg Asn Phe 245 Ser Val Ser Ile Arg Glu Glu Leu Lys Arg Thr Asp Thr Ile Phe 265 Trp Pro Gly Cys Leu Leu Val Lys Arg Cys Gly Gly Asn Cys Ala 275 Cys Cys Leu His Asn Cys Asn Glu Cys Gln Cys Val Pro Ser Lys Val Thr Lys Lys Tyr His Glu Val Leu Gln Leu Arg Pro Lys Thr 305 Gly Val Arg Gly Leu His Lys Ser Leu Thr Asp Val Ala Leu Glu His His Glu Glu Cys Asp Cys Val Cys Arg Gly Ser Thr Gly Gly 335 345 <210> 489 <211> 21 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 489 acttctcagt gtccataagg g 21 <210> 490 <211> 40 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe gaactaaaga gaaccgatac cattttctgg ccaggttgtc 40 <210> 491 <211> 20 <212> DNA <213> Artificial Sequence

<223> Synthetic oligonucleotide probe <400> 491 caccacagcg tttaaccagg 20 <210> 492 <211> 20 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 492 acaacaggca cagttcccac 20 <210> 493 <211> 21 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 493 ggcggaatcc aacctgagta g 21 <210> 494 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 494 gcggctatcc tcctgtgctc 20 <210> 495 <211> 3283 <212> DNA <213> Homo sapiens <400> 495 gacctctaca ttccattttg gaagaagact aaaaatggtg tttccaatgt 100 ggacactgaa gagacaaatt cttatccttt ttaacataat cctaatttcc 150 aaactccttg gggctagatg gtttcctaaa actctgccct gtgatgtcac 200 tctggatgtt ccaaagaacc atgtgatcgt ggactgcaca gacaagcatt 250 tgacagaaat tcctggaggt attcccacga acaccacgaa cctcaccctc 300 accattaacc acataccaga catctcccca gcgtcctttc acagactgga 350

ccatctggta gagatcgatt tcagatgcaa ctgtgtacct attccactgg 400 ggtcaaaaaa caacatgtgc atcaagaggc tgcagattaa acccagaagc 450 tttagtggac tcacttattt aaaatccctt tacctggatg gaaaccagct 500 actagagata ccgcagggcc tcccgcctag cttacagctt ctcagccttq 550 aggccaacaa catcttttcc atcagaaaag agaatctaac agaactggcc 600 aacatagaaa tactctacct gggccaaaac tgttattatc gaaatccttg 650 ttatgtttca tattcaatag agaaagatgc cttcctaaac ttgacaaagt 700 taaaagtgct ctccctgaaa gataacaatg tcacagccgt ccctactgtt 750 ttgccatcta ctttaacaga actatatctc tacaacaaca tgattgcaaa 800 aatccaagaa gatgatttta ataacctcaa ccaattacaa attcttgacc 850 taagtggaaa ttgccctcgt tgttataatg ccccatttcc ttgtgcgccg 900 tgtaaaaata attotocoot acagatocot gtaaatgott ttgatgogot 950 gacagaatta aaagttttac gtctacacag taactctctt cagcatgtgc 1000 ccccaagatg gtttaagaac atcaacaaac tccaggaact ggatctgtcc 1050 caaaacttct tggccaaaga aattggggat gctaaatttc tgcattttct 1100 ccccagcctc atccaattgg atctgtcttt caattttgaa cttcaggtct 1150 atcgtgcatc tatgaatcta tcacaagcat tttcttcact gaaaagcctg 1200 aaaattctgc ggatcagagg atatgtcttt aaagagttga aaagctttaa 1250 cctctcgcca ttacataatc ttcaaaatct tgaagttctt gatcttggca 1300 ctaactttat aaaaattgct aacctcagca tgtttaaaca atttaaaaga 1350 ctgaaagtca tagatctttc agtgaataaa atatcacctt caggagattc 1400 aagtgaagtt ggcttctgct caaatgccag aacttctgta gaaagttatg 1450 aaccccaggt cctggaacaa ttacattatt tcagatatga taagtatgca 1500 aggagttgca gattcaaaaa caaagaggct tctttcatgt ctgttaatga 1550 aagctgctac aagtatgggc agaccttgga tctaagtaaa aatagtatat 1600 tttttgtcaa gtcctctgat tttcagcatc tttctttcct caaatgcctg 1650 aatctgtcag gaaatctcat tagccaaact cttaatggca gtgaattcca 1700 acctttagca gagctgagat atttggactt ctccaacaac cggcttgatt 1750 tactccattc aacagcattt gaagagcttc acaaactgga agttctggat 1800

ataagcagta atagccatta ttttcaatca gaaggaatta ctcatatgct 1850 aaactttacc aagaacctaa aggttctgca gaaactgatg atgaacgaca 1900 atgacatete tteeteeace ageaggacea tggagagtga gtetettaga 1950 actctggaat tcagaggaaa tcacttagat gttttatgga gagaaggtga 2000 taacagatac ttacaattat tcaaqaatct qctaaaatta qaqqaattaq 2050 acatetetaa aaatteeeta agtttettge ettetggagt tittgatggt 2100 atgcctccaa atctaaagaa tctctctttg gccaaaaatg ggctcaaatc 2150 tttcagttgg aagaaactcc agtgtctaaa gaacctggaa actttggacc 2200 tcagccacaa ccaactgacc actgtccctg agagattatc caactgttcc 2250 gaagtatttt ctacaagatg ccttccagtt gcgatatctg gatctcagct 2350 caaataaaat ccagatgatc caaaagacca gcttcccaga aaatgtcctc 2400 aacaatctga agatgttgct tttgcatcat aatcggtttc tgtgcacctg 2450 tgatgctgtg tggtttgtct ggtgggttaa ccatacggag gtgactattc 2500 cttacctggc cacagatgtg acttgtgtgg ggccaggagc acacaagggc 2550 caaagtgtga tctccctgga tctgtacacc tgtgagttag atctgactaa 2600 cctgattctg ttctcacttt ccatatctgt atctctcttt ctcatggtga 2650 tgatgacage aagtcacete tatttetggg atgtgtggta tatttaceat 2700 ttctgtaagg ccaagataaa ggggtatcag cgtctaatat caccagactg 2750 ttgctatgat gcttttattg tgtatgacac taaagaccca gctgtgaccg 2800 agtgggtttt ggctgagctg gtggccaaac tggaaqaccc aaqaqaqaaa 2850 cattttaatt tatgtctcga ggaaagggac tggttaccag ggcagccagt 2900 tetggaaaac ettteecaga geatacaget tageaaaaag acagtgtttg 2950 tgatgacaga caagtatgca aagactgaaa attttaagat agcattttac 3000 ttgtcccatc agaggeteat ggatgaaaaa gttgatgtga ttatettgat 3050 atttettgag aagecettte agaagteeaa gtteeteeag eteeggaaaa 3100 ggctctgtgg gagttctgtc cttgagtggc caacaaaccc gcaagctcac 3150 ccatacttct ggcagtgtct aaagaacgcc ctggccacag acaatcatgt 3200 ggcctatagt caggtgttca aggaaacggt ctagcccttc tttgcaaaac 3250

acaactgcct agtttaccaa ggagaggcct ggc 3283

<210> 496 <211> 1049

<212> PRT

<213> Homo sapiens

<400> 496

Met Val Phe Pro Met Trp Thr Leu Lys Arg Gln Ile Leu Ile Leu

Phe Asn Ile Ile Leu Ile Ser Lys Leu Leu Gly Ala Arg Trp Phe

Pro Lys Thr Leu Pro Cys Asp Val Thr Leu Asp Val Pro Lys Asn

His Val Ile Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro

Gly Gly Ile Pro Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn

His Ile Pro Asp Ile Ser Pro Ala Ser Phe His Arg Leu Asp His

Leu Val Glu Ile Asp Phe Arg Cys Asn Cys Val Pro Ile Pro Leu

Gly Ser Lys Asn Asn Met Cys Ile Lys Arg Leu Gln Ile Lys Pro 110 115

Arg Ser Phe Ser Gly Leu Thr Tyr Leu Lys Ser Leu Tyr Leu Asp 130

Gly Asn Gln Leu Leu Glu Ile Pro Gln Gly Leu Pro Pro Ser Leu 140 145

Gln Leu Leu Ser Leu Glu Ala Asn Asn Ile Phe Ser Ile Arg Lys

Glu Asn Leu Thr Glu Leu Ala Asn Ile Glu Ile Leu Tyr Leu Gly 170

Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Tyr Val Ser Tyr Ser Ile 185

Glu Lys Asp Ala Phe Leu Asn Leu Thr Lys Leu Lys Val Leu Ser 200

Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Val Leu Pro Ser

Thr Leu Thr Glu Leu Tyr Leu Tyr Asn Asn Met Ile Ala Lys Ile

Gln Glu Asp Asp Phe Asn Asn Leu Asn Gln Leu Gln Ile Leu Asp 245 250 255

Leu	Ser	Gly	Asn	Cys 260	Pro	Arg	Cys	Tyr	Asn 265	Ala	Pro	Phe	Pro	Cys 270
Ala	Pro	Cys	Lys	Asn 275	Asn	Ser	Pro	Leu	Gln 280	Ile	Pro	Val	Asn	Ala 285
Phe	Asp	Ala	Leu	Thr 290	Glu	Leu	Lys	Val	Leu 295	Arg	Leu	His	Ser	Asn 300
Ser	Leu	Gln	His	Val 305	Pro	Pro	Arg	Trp	Phe 310	Lys	Asn	Ile	Asn	Lys 315
Leu	Gln	Glu	Leu	Asp 320	Leu	Ser	Gln	Asn	Phe 325	Leu	Ala	Lys	Glu	Ile 330
Gly	Asp	Ala	Lys	Phe 335	Leu	His	Phe	Leu	Pro 340	Ser	Leu	Ile	Gln	Leu 345
Asp	Leu	Ser	Phe	Asn 350	Phe	Glu	Leu	Gln	Val 355	Tyr	Arg	Ala	Ser	Met 360
Asn	Leu	Ser	Gln	Ala 365	Phe	Ser	Ser	Leu	Lys 370	Ser	Leu	Lys	Ile	Leu 375
Arg	Ile	Arg	Gly	Tyr 380	Val	Phe	Lys	Glu	Leu 385	Lys	Ser	Phe	Asn	Leu 390
Ser	Pro	Leu	His	Asn 395	Leu	Gln	Asn	Leu	Glu 400	Val	Leu	Asp	Leu	Gly 405
Thr	Asn	Phe	Ile	Lys 410	Ile	Ala	Asn	Leu	Ser 415	Met	Phe	Lys	Gln	Phe 420
Lys	Arg	Leu	Lys	Val 425	Ile	Asp	Leu	Ser	Val 430	Asn	Lys	Ile	Ser	Pro 435
Ser	Gly	Asp	Ser	Ser 440	Glu	Val	Gly	Phe	Cys 445	Ser	Asn	Ala	Arg	Thr 450
Ser	Val	Glu	Ser	Tyr 455	Glu	Pro	Gln	Val	Leu 460	Glu	Gln	Leu	His	Tyr 465
Phe	Arg	Tyr	Asp	Lys 470	Tyr	Ala	Arg	Ser	Cys 475	Arg	Phe	Lys	Asn	Lys 480
Glu	Ala	Ser	Phe	Met 485	Ser	Val	Asn	Glu	Ser 490	Суз	Tyr	Lys	Tyr	Gly 495
Gln	Thr	Leu	Asp	Leu 500	Ser	Lys	Asn	Ser	Ile 505	Phe	Phe	Val	Lys	Ser 510
Ser	Asp	Phe	Gln	His 515	Leu	Ser	Phe	Leu	Lys 520	Cys	Leu	Asn	Leu	Ser 525
Gly	Asn	Leu	Ile	Ser 530	Gln	Thr	Leu	Asn	Gly 535	Ser	Glu	Phe	Gln	Pro 540
Leu	Ala	Glu	Leu	Arg	Tyr	Leu	Asp	Phe	Ser	Asn	Asn	Arg	Leu	Asp

				545					550					555
Leu	Leu	His	Ser	Thr 560	Ala	Phe	Glu	Glu	Leu 565	His	Lys	Leu	Glu	Val 570
Leu	Asp	Ile	Ser	Ser 575	Asn	Ser	His	Tyr	Phe 580	Gln	Ser	Glu	Gly	Ile 585
Thr	His	Met	Leu	Asn 590	Phe	Thr	Lys	Asn	Leu 595	Lys	Val	Leu	Gln	Lys 600
Leu	Met	Met	Asn	Asp 605	Asn	Asp	Ile	Ser	Ser 610	Ser	Thr	Ser	Arg	Thr 615
Met	Glu	Ser	Glu	Ser 620	Leu	Arg	Thr	Leu	Glu 625	Phe	Arg	Gly	Asn	His 630
Leu	Asp	Val	Leu	Trp 635	Arg	Glu	Gly	Asp	Asn 640	Arg	Tyr	Leu	Gln	Leu 645
Phe	Lys	Asn	Leu	Leu 650	Lys	Leu	Glu	Glu	Leu 655	Asp	Ile	Ser	Lys	Asn 660
Ser	Leu	Ser	Phe	Leu 665	Pro	Ser	Gly	Val	Phe 670	Asp	Gly	Met	Pro	Pro 675
Asn	Leu	Lys	Asn	Leu 680	Ser	Leu	Ala	Lys	Asn 685	Gly	Leu	Lys	Ser	Phe 690
Ser	Trp	Lys	Lys	Leu 695	Gln	Суз	Leu	Lys	Asn 700	Leu	Glu	Thr	Leu	Asp 705
Leu	Ser	His	Asn	Gln 710	Leu	Thr	Thr	Val	Pro 715	Glu	Arg	Leu	Ser	Asn 720
Cys	Ser	Arg	Ser	Leu 725	Lys	Asn	Leu	Ile	Leu 730	Lys	Asn	Asn	Gln	Ile 735
Arg	Ser	Leu	Thr	Lys 740	Tyr	Phe	Leu	Gln	Asp 745	Ala	Phe	Gln	Leu	Arg 750
Tyr	Leu	Asp	Leu	Ser 755	Ser	Asn	Lys	Ile	Gln 760	Met	Ile	Gln	Lys	Thr 765
Ser	Phe	Pro	Glu	Asn 770	Val	Leu	Asn	Asn	Leu 775	Lys	Met	Leu	Leu	Leu 780
His	His	Asn	Arg	Phe 785	Leu	Суз	Thr	Cys	Asp 790	Ala	Val	Trp	Phe	Val 795
Trp	Trp	Val	Asn	His 800	Thr	Glu	Val	Thr	Ile 805	Pro	Tyr	Leu	Ala	Thr 810
Asp	Val	Thr	Cys	Val 815	Gly	Pro	Gly	Ala	His 820	Lys	Gly	Gln	Ser	Val 825
Ile	Ser	Leu	Asp	Leu 830	Tyr	Thr	Cys	Glu	Leu 835	Asp	Leu	Thr	Asn	Leu 840

<210> 497

<211> 4199

<212> DNA

<213> Homo sapiens

<400> 497

gggtaccatt ctgcgctgct gcaagttacg gaatgaaaaa ttagaacaac 50 agaaacatgg aaaacatgtt ccttcagtcg tcaatgctga cctgcatttt 100 cctgctaata tctggttcct gtgagttatg cgccgaagaa aattttcta 150 gaagctatcc ttgtgatgag aaaaagcaaa atgactcagt tattgcagag 200 tgcagcaatc gtcgactaca ggaagttccc caaacggtgg gcaaatatgt 250

gacagaacta gacctgtctg ataatttcat cacacacata acgaatgaat 300 catttcaagg gctgcaaaat ctcactaaaa taaatctaaa ccacaacccc 350 aatgtacagc accagaacgg aaatcccggt atacaatcaa atggcttgaa 400 tatcacagac ggggcattcc tcaacctaaa aaacctaagg gagttactgc 450 ttgaagacaa ccagttaccc caaataccct ctggtttgcc agagtctttg 500 acagaactta gtctaattca aaacaatata tacaacataa ctaaaqaqqq 550 catttcaaga cttataaact tgaaaaatct ctatttggcc tggaactgct 600 attttaacaa agtttgcgag aaaactaaca tagaagatgg agtatttgaa 650 acgctgacaa atttggagtt gctatcacta tctttcaatt ctctttcaca 700 cgtgccaccc aaactgccaa gctccctacg caaacttttt ctgagcaaca 750 cccagatcaa atacattagt gaagaagatt tcaagggatt gataaattta 800 acattactag atttaagcgg gaactgtccg aggtgcttca atgccccatt 850 tecatgegtg cettgtgatg gtggtgette aattaatata gategttttg 900 cttttcaaaa cttgacccaa cttcgatacc taaacctctc tagcacttcc 950 ctcaggaaga ttaatgctgc ctggtttaaa aatatgcctc atctgaaggt 1000 gctggatctt gaattcaact atttagtggg agaaatagtc tctggggcat 1050 ttttaacgat gctgccccgc ttagaaatac ttgacttgtc ttttaactat 1100 ataaagggga gttatccaca gcatattaat atttccagaa acttctctaa 1150 acttttgtct ctacgggcat tgcatttaag aggttatgtg ttccaggaac 1200 tcagagaaga tgatttccag cccctgatgc agcttccaaa cttatcgact 1250 atcaacttgg gtattaattt tattaagcaa atcgatttca aacttttcca 1300 aaatttctcc aatctggaaa ttatttactt gtcagaaaac agaatatcac 1350 cgttggtaaa agatacccgg cagagttatg caaatagttc ctctttcaa 1400 cgtcatatcc ggaaacgacg ctcaacagat tttgagtttg acccacattc 1450 gaacttttat catttcaccc gtcctttaat aaagccacaa tgtgctgctt 1500 atggaaaagc cttagattta agcctcaaca gtattttctt cattgggcca 1550 aaccaatttg aaaatcttcc tgacattgcc tgtttaaatc tgtctgcaaa 1600 tagcaatgct caagtgttaa gtggaactga attttcagcc attcctcatg 1650 tcaaatattt ggatttgaca aacaatagac tagactttga taatgctagt 1700

gctcttactg aattgtccga cttggaagtt ctagatctca gctataattc 1750 acactatttc agaatagcag gcgtaacaca tcatctagaa tttattcaaa 1800 atttcacaaa tctaaaagtt ttaaacttga gccacaacaa catttatact 1850 ttaacagata agtataacct ggaaagcaag tccctggtag aattagtttt 1900 cagtggcaat cgccttgaca ttttgtggaa tgatgatgac aacaggtata 1950 tctccatttt caaaggtctc aagaatctga cacgtctgga tttatccctt 2000 aataggctga agcacatccc aaatgaagca ttccttaatt tgccagcgag 2050 tctcactgaa ctacatataa atgataatat gttaaagttt tttaactgga 2100 cattactcca gcagtttcct cgtctcgagt tgcttgactt acgtggaaac 2150 aaactactct ttttaactga tagcctatct gactttacat cttcccttcg 2200 gacactgctg ctgagtcata acaggatttc ccacctaccc tctggctttc 2250 tttctgaagt cagtagtctg aagcacctcg atttaagttc caatctgcta 2300 aaaacaatca acaaatccgc acttgaaact aagaccacca ccaaattatc 2350 tatgttggaa ctacacggaa acccctttga atgcacctgt gacattggag 2400 atttccgaag atggatggat gaacatctga atgtcaaaat tcccagactg 2450 gtagatgtca tttgtgccag tcctggggat caaagaggga agagtattgt 2500 gagtctggag ctaacaactt gtgtttcaga tgtcactgca gtgatattat 2550 ttttcttcac gttctttatc accaccatgg ttatgttggc tgccctggct 2600 caccatttgt tttactggga tgtttggttt atatataatg tgtgtttagc 2650 taaggtaaaa ggctacaggt ctctttccac atcccaaact ttctatqatq 2700 cttacatttc ttatgacacc aaagatgcct ctgttactga ctgggtgata 2750 aatgagetge getaceaeet tgaagagage egagacaaaa aegtteteet 2800 ttgtctagag gagagggatt gggacccggg attggccatc atcgacaacc 2850 tcatgcagag catcaaccaa agcaagaaaa cagtatttgt tttaaccaaa 2900 aaatatgcaa aaagctggaa ctttaaaaca gctttttact tggctttgca 2950 gaggctaatg gatgagaaca tggatgtgat tatatttatc ctgctggagc 3000 cagtgttaca gcattctcag tatttgaggc tacggcagcg gatctgtaag 3050 agctccatcc tccagtggcc tgacaacccg aaggcagaag gcttgttttg 3100 gcaaactctg agaaatgtgg tcttgactga aaatgattca cggtataaca 3150

atatgtatgt cgattccatt aagcaatact aactgacqtt aagtcatgat 3200 ttcgcgccat aataaagatg caaaggaatg acatttctgt attagttatc 3250 tattgctatg taacaaatta tcccaaaact tagtggttta aaacaacaca 3300 tttgctggcc cacagttttt gagggtcagg agtccaggcc cagcataact 3350 gggtcctctg ctcagggtgt ctcagaggct qcaatgtagg tqttcaccag 3400 agacataggc atcactgggg tcacactcat gtggttgttt tctggattca 3450 attoctoctg ggotattggo caaaggotat actoatgtaa gocatgogag 3500 cctctcccac aaggcagctt gcttcatcag agctagcaaa aaagagaggt 3550 tgctagcaag atgaagtcac aatcttttgt aatcgaatca aaaaagtgat 3600 atctcatcac tttggccata ttctatttgt tagaagtaaa ccacaggtcc 3650 caccagetee atgggagtga ceaceteagt ecagggaaaa cagetgaaga 3700 ccaagatggt gagctctgat tgcttcagtt ggtcatcaac tattttccct 3750 tgactgctgt cctgggatgg cctgctatct tgatgataga ttgtgaatat 3800 caggaggcag ggatcactgt ggaccatctt agcagttgac ctaacacatc 3850 ttcttttcaa tatctaagaa cttttgccac tgtgactaat ggtcctaata 3900 ttaagctgtt gtttatattt atcatatatc tatggctaca tggttatatt 3950 atgctgtggt tgcgttcggt tttatttaca gttgctttta caaatatttg 4000 ctgtaacatt tgacttctaa ggtttagatg ccatttaaga actgagatgg 4050 atagctttta aagcatcttt tacttcttac cattttttaa aagtatqcag 4100 ctaaattcga agcttttggt ctatattgtt aattgccatt gctgtaaatc 4150 ttaaaatgaa tgaataaaaa tgtttcattt tacaaaaaaa aaaaaaaaa 4199

<210> 498

<211> 1041

<212> PRT

<213> Homo sapiens

<400> 498

Met Glu Asn Met Phe Leu Gln Ser Ser Met Leu Thr Cys Ile Phe 1 5 10 15

Leu Leu Ile Ser Gly Ser Cys Glu Leu Cys Ala Glu Glu Asn Phe 20 25 30

Ser Arg Ser Tyr Pro Cys Asp Glu Lys Lys Gln Asn Asp Ser Val
35 40 40

Ile Ala Glu Cys Ser Asn Arg Arg Leu Gln Glu Val Pro Gln Thr

				50					55					60
Val	Gly	Lys	Tyr	Val 65	Thr	Glu	Leu	Asp	Leu 70	Ser	Asp	Asn	Phe	Ile 75
Thr	His	Ile	Thr	Asn 80	Glu	Ser	Phe	Gln	Gly 85	Leu	Gln	Asn	Leu	Th:
Lys	Ile	Asn	Leu	Asn 95	His	Asn	Pro	Asn	Val 100	Gln	His	Gln	Asn	Gl ₃ 105
Asn	Pro	Gly	Ile	Gln 110	Ser	Asn	Gly	Leu	Asn 115	Ile	Thr	Asp	Gly	Ala 120
Phe	Leu	Asn	Leu	Lys 125	Asn	Leu	Arg	Glu	Leu 130	Leu	Leu	Glu	Asp	Asr 135
Gln	Leu	Pro	Gln	Ile 140	Pro	Ser	Gly	Leu	Pro 145	Glu	Ser	Leu	Thr	Glu 150
Leu	Ser	Leu	Ile	Gln 155	Asn	Asn	Ile	Tyr	Asn 160	Ile	Thr	Lys	Glu	Gl ₃ 165
Ile	Ser	Arg	Leu	Ile 170	Asn	Leu	Lys	Asn	Leu 175	Tyr	Leu	Ala	Trp	Asr 180
Суз	Tyr	Phe	Asn	Lys 185	Val	Cys	Glu	Lys	Thr 190	Asn	Ile	Glu	Asp	Gl ₃ 195
Val	Phe	Glu	Thr	Leu 200	Thr	Asn	Leu	Glu	Leu 205	Leu	Ser	Leu	Ser	Phe 210
Asn	Ser	Leu	Ser	His 215	Val	Pro	Pro	Lys	Leu 220	Pro	Ser	Ser	Leu	Arc 225
Lys	Leu	Phe	Leu	Ser 230	Asn	Thr	Gln	Ile	Lys 235	Tyr	Ile	Ser	Glu	Glu 240
Asp	Phe	Lys	Gly	Ĺeu 245	Ile	Asn	Leu	Thr	Leu 250	Leu	Asp	Leu	Ser	Gly 255
Asn	Cys	Pro	Arg	Cys 260	Phe	Asn	Ala	Pro	Phe 265	Pro	Cys	Val	Pro	Cys 270
Asp	Gly	Gly	Ala	Ser 275	Ile	Asn	Ile	Asp	Arg 280	Phe	Ala	Phe	Gln	Asn 285
Leu	Thr	Gln	Leu	Arg 290	Tyr	Leu	Asn	Leu	Ser 295	Ser	Thr	Ser	Leu	Arg 300
Lys	Ile	Asn	Ala	Ala 305	Trp	Phe	Lys _.	Asn	Met 310	Pro	His	Leu	Lys	Val 315
Leu	Asp	Leu	Glu	Phe 320	Asn	Tyr	Leu	Val	Gly 325	Glu	Ile	Val	Ser	Gly 330
Ala	Phe	Leu	Thr	Met 335	Leu	Pro	Arg	Leu	Glu 340	Ile	Leu	Asp	Leu	Ser 345

Phe	Asn	Tyr	Ile	Lys 350	Gly	Ser	Tyr	Pro	Gln 355	His	Ile	Asn	Ile	Ser 360
Arg	Asn	Phe	Ser	Lys 365	Leu	Leu	Ser	Leu	Arg 370	Ala	Leu	His	Leu	Arg 375
Gly	Tyr	Val	Phe	Gln 380	Glu	Leu	Arg	Glu	Asp 385	Asp	Phe	Gln	Pro	Leu 390
Met	Gln	Leu	Pro	Asn 395	Leu	Ser	Thr	Ile	Asn 400	Leu	Gly	Ile	Asn	Phe 405
Ile	Lys	Gln	Ile	Asp 410	Phe	Lys	Leu	Phe	Gln 415	Asn	Phe	Ser	Asn	Leu 420
Glu	Ile	Ile	Tyr	Leu 425	Ser	Glu	Asn	Arg	Ile 430	Ser	Pro	Leu	Val	Lys 435
Asp	Thr	Arg	Gln	Ser 440	Tyr	Ala	Asn	Ser	Ser 445	Ser	Phe	Gln	Arg	His 450
Ile	Arg	Lys	Arg	Arg 455	Ser	Thr	Asp	Phe	Glu 460	Phe	Asp	Pro	His	Ser 465
Asn	Phe	Tyr	His	Phe 470	Thr	Arg	Pro	Leu	Ile 475	Lys	Pro	Gln	Суз	Ala 480
Ala	Tyr	Gly	Lys	Ala 485	Leu	Asp	Leu	Ser	Leu 490	Asn	Ser	Ile	Phe	Phe 495
Ile	Gly	Pro	Asn	Gln 500	Phe	Glu	Asn	Leu	Pro 505	Asp	Ile	Ala	Cys	Leu 510
Asn	Leu	Ser	Ala	Asn 515	Ser	Asn	Ala	Gln	Val 520	Leu	Ser	Gly	Thr	Glu 525
Phe	Ser	Ala	Ile	Pro 530	His	Val	Lys	Tyr	Leu 535	Asp	Leu	Thr	Asn	Asn 540
Arg	Leu	Asp	Phe	Asp 545	Asn	Ala	Ser	Ala	Leu 550	Thr	Glu	Leu	Ser	Asp 555
Leu	Glu	Val	Leu	Asp 560	Leu	Ser	Tyr	Asn	Ser 565	His	Tyr	Phe	Arg	Ile 570
Ala	Gly	Val	Thr	His 575	His	Leu	Glu	Phe	Ile 580	Gln	Asn	Phe	Thr	Asn 585
Leu	Lys	Val	Leu	Asn 590	Leu	Ser	His	Asn	Asn 595	Ile	Tyr	Thr	Leu	Thr 600
Asp	Lys	Tyr	Asn	Leu 605	Glu	Ser	Lys	Ser	Leu 610	Val	Glu	Leu	Val	Phe 615
Ser	Gly	Asn	Arg	Leu 620	Asp	Ile	Leu	Trp	Asn 625	Asp	Asp	Asp	Asn	Arg 630
Tyr	Ile	Ser	Ile	Phe	Lys	Gly	Leu	Lys	Asn	Leu	Thr	Arg	Leu	Asp

				635					640					645
Leu	Ser	Leu	Asn	Arg 650	Leu	Lys	His	Ile	Pro 655	Asn	Glu	Ala	Phe	Leu 660
Asn	Leu	Pro	Ala	Ser 665	Leu	Thr	Glu	Leu	His 670	Ile	Asn	Asp	Asn	Met 675
Leu	Lys	Phe	Phe	Asn 680	Trp	Thr	Leu	Leu	Gln 685	Gln	Phe	Pro	Arg	Leu 690
Glu	Leu	Leu	Asp	Leu 695	Arg	Gly	Asn	Lys	Leu 700	Leu	Phe	Leu	Thr	Asp 705
Ser	Leu	Ser	Asp	Phe 710	Thr	Ser	Ser	Leu	Arg 715	Thr	Leu	Leu	Leu	Ser 720
His	Asn	Arg	Ile	Ser 725	His	Leu	Pro	Ser	Gly 730	Phe	Leu	Ser	Glu	Val 735
Ser	Ser	Leu	Lys	His 740	Leu	Asp	Leu	Ser	Ser 745	Asn	Leu	Leu	Lys	Thr 750
Ile	Asn	Lys	Ser	Ala 755	Leu	Glu	Thr	Lys	Thr 760	Thr	Thr	Lys	Leu	Ser 765
Met	Leu	Glu	Leu	His 770	Gly	Asn	Pro	Phe	Glu 775	Cys	Thr	Cys	Asp	Ile 780
Gly	Asp	Phe	Arg	Arg 785	Trp	Met	Asp	Glu	His 790	Leu	Asn	Val	Lys	Ile 795
Pro	Arg	Leu	Val	Asp 800	Val	Ile	Cys	Ala	Ser 805	Pro	Gly	Asp	Gln	Arg 810
Gly	Lys	Ser	Ile	Val 815	Ser	Leu	Glu	Leu	Thr 820	Thr	Cys	Val	Ser	Asp 825
Val	Thr	Ala	Val	Ile 830	Leu	Phe	Phe	Phe	Thr 835	Phe	Phe	Ile	Thr	Thr 840
Met	Val	Met	Leu	Ala 845	Ala	Leu	Ala	His	His 850	Leu	Phe	Tyr	Trp	Asp 855
Val	Trp	Phe	Ile	Tyr 860	Asn	Val	Cys	Leu	Ala 865	Lys	Val	Lys	Gly	Tyr 870
Arg	Ser	Leu	Ser	Thr 875	Ser	Gln	Thr	Phe	Tyr 880	Asp	Ala	Tyr	Ile	Ser 885
Tyr	Asp	Thr	Lys	Asp 890	Ala	Ser	Vaļ	Thr	Asp 895	Trp	Val	Ile	Asn	Glu 900
Leu	Arg	Tyr	His	Leu 905	Glu	Glu	Ser	Arg	Asp 910	Lys	Asn	Val	Leu	Leu 915
Суѕ	Leu	Glu	Glu	Arg 920	Asp	Trp	Asp	Pro	Gly 925	Leu	Ala	Ile	Ile	Asp 930

```
Asn Leu Met Gln Ser Ile Asn Gln Ser Lys Lys Thr Val Phe Val
 Leu Thr Lys Lys Tyr Ala Lys Ser Trp Asn Phe Lys Thr Ala Phe
 Tyr Leu Ala Leu Gln Arg Leu Met Asp Glu Asn Met Asp Val Ile
 Ile Phe Ile Leu Leu Glu Pro Val Leu Gln His Ser Gln Tyr Leu
                 980
                                      985
 Arg Leu Arg Gln Arg Ile Cys Lys Ser Ser Ile Leu Gln Trp Pro
                 995
                                     1000
 Asp Asn Pro Lys Ala Glu Gly Leu Phe Trp Gln Thr Leu Arg Asn
                1010
                                     1015
 Val Val Leu Thr Glu Asn Asp Ser Arg Tyr Asn Asn Met Tyr Val
                1025
                                     1030
                                                         1035
 Asp Ser Ile Lys Gln Tyr
<210> 499
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 499
 taaagaccca gctgtgaccg 20
<210> 500
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 500
 atccatgagc ctctgatggg 20
<210> 501
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
```

atttatgtct cgaggaaagg gactggttac cagggcagcc agttc 45

O

Ū

H

ļ..b

1

Uī

<400> 501

<210> 502

364

```
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 502
 gccgagacaa aaacgttctc c 21
<210> 503
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 503
 catccatgtt ctcatccatt agcc 24
<210> 504
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
 tcgacaacct catgcagagc atcaaccaaa gcaagaaaac agtatt 46
<210> 505
<211> 1738
<212> DNA
<213> Homo sapiens
<400> 505
 ccaggtccaa ctgcacctcg gttctatcga ttgaattccc cqqqqatcct 50
 ctagagatec etegaceteg acceaegegt eegecaaget ggeeetgeac 100
 ggctgcaagg gaggctcctg tggacaggcc aggcaggtgg gcctcaggag 150
 gtgcctccag gcggccagtg ggcctgaggc cccagcaagg gctagggtcc 200
 atctccagtc ccaggacaca gcagcggcca ccatggccac gcctgggctc 250
 cagcagcatc agcagcccc aggaccgggg aggcacaggt ggcccccacc 300
 acceggagga geageteetg eccetgteeg ggggatgaet gatteteete 350
cgccaggcca cccagaggag aaggccaccc cgcctggagg cacaggccat 400
gaggggctct caggaggtgc tgctgatgtg gcttctggtg ttggcagtgg 450
gcggcacaga gcacgcctac cggcccggcc gtagggtgtg tgctgtccqg 500
```

gctcacgggg accetgtctc cgagtcgttc gtgcagcgtg tgtaccagcc 550 cttcctcacc acctgcgacg ggcaccgggc ctgcagcacc taccgaacca 600 totataggac cgcctaccgc cgcaqccctq qqctqqcccc tqccaqqcct 650 cgctacgcgt gctgcccgg ctggaagagg accagcgggc ttcctggggc 700 ctgtggagca gcaatatgcc agccgccatg ccggaacqga qqqaqctgtq 750 tccagcctgg ccgctgccgc tgccctgcag gatggcgggg tgacacttgc 800 cagtcagatg tggatgaatg cagtgctagg agggggggct gtccccagcg 850 ctgcatcaac accgccggca gttactggtg ccagtgttgg gaggggcaca 900 gcctgtctgc agacggtaca ctctgtgtgc ccaagggagg gccccccagg 950 gtggccccca acccgacagg agtggacagt gcaatgaagg aagaagtgca 1000 gaggctgcag tccagggtgg acctgctgga ggagaagctg cagctggtgc 1050 tggccccact gcacagcctg gcctcgcagg cactggagca tgggctcccg 1100 gaccceggea geeteetggt geacteette cagcageteg geegeatega 1150 ctccctgagc gagcagattt ccttcctgga ggagcagctg gggtcctgct 1200 cetgeaagaa agactegtga etgeceageg eeceaggetg gaetgageee 1250 ctcacgccgc cctgcagccc ccatgcccct qcccaacatq ctqqqqtcc 1300 agaagccacc tcggggtgac tgagcggaag gccaggcagg gccttcctcc 1350 tetteeteet eccetteete gggaggetee ecagaceetg geatgggatg 1400 ggctgggatc ttctctgtga atccacccct ggctaccccc accctggcta 1450 ccccaacggc atcccaaggc caggtgggcc ctcagctgag ggaaggtacg 1500 agctccctgc tggagcctgg gacccatggc acaggccagg cagcccggag 1550 gctgggtggg gcctcagtgg gggctgctgc ctgaccccca gcacaataaa 1600 aaagggcggc cgcgactcta gagtcgacct gcagaagctt ggccgccatg 1700 gcccaacttg tttattgcag cttataatgg ttacaaat 1738

<210> 506

<211> 273

<212> PRT

<213> Homo sapiens

<400> 506

Met Arg Gly Ser Gln Glu Val Leu Leu Met Trp Leu Leu Val Leu 1 5 10 15

Ala Val Gly Gly Thr Glu His Ala Tyr Arg Pro Gly Arg Arg Val Cys Ala Val Arg Ala His Gly Asp Pro Val Ser Glu Ser Phe Val Gln Arg Val Tyr Gln Pro Phe Leu Thr Thr Cys Asp Gly His Arg Ala Cys Ser Thr Tyr Arg Thr Ile Tyr Arg Thr Ala Tyr Arg Arg Ser Pro Gly Leu Ala Pro Ala Arg Pro Arg Tyr Ala Cys Cys Pro Gly Trp Lys Arg Thr Ser Gly Leu Pro Gly Ala Cys Gly Ala Ala Ile Cys Gln Pro Pro Cys Arg Asn Gly Gly Ser Cys Val Gln Pro Gly Arg Cys Arg Cys Pro Ala Gly Trp Arg Gly Asp Thr Cys Gln 125 130 Ser Asp Val Asp Glu Cys Ser Ala Arg Arg Gly Gly Cys Pro Gln 145 Arg Cys Ile Asn Thr Ala Gly Ser Tyr Trp Cys Gln Cys Trp Glu 160 Gly His Ser Leu Ser Ala Asp Gly Thr Leu Cys Val Pro Lys Gly Gly Pro Pro Arg Val Ala Pro Asn Pro Thr Gly Val Asp Ser Ala Met Lys Glu Glu Val Gln Arg Leu Gln Ser Arg Val Asp Leu Leu Glu Glu Lys Leu Gln Leu Val Leu Ala Pro Leu His Ser Leu Ala Ser Gln Ala Leu Glu His Gly Leu Pro Asp Pro Gly Ser Leu Leu Val His Ser Phe Gln Gln Leu Gly Arg Ile Asp Ser Leu Ser Glu Gln Ile Ser Phe Leu Glu Glu Gln Leu Gly Ser Cys Ser Cys Lys

Lys Asp Ser

<210> 507 <211> 1700

<212> DNA

<213> Homo sapiens

260

265

<400> 507					
gccaggcagg	tgggcctcag	gaggtgcctc	caggcggcca	gtgggcctga	50
ggccccagca	agggctaggg	tccatctcca	gtcccaggac	acagcagcgg	100
ccaccatggc	cacgcctggg	ctccagcagc	atcagagcag	cccctgtggt	150
tggcagcaaa	gttcagcttg	gctgggcccg	ctgtgagggg	cttcgcgcta	200
cgccctgcgg	tgtcccgagg	gctgaggtct	cctcatcttc	tccctagcag	250
tggatgagca	acccaacggg	ggcccgggga	ggggaactgg	ccccgaggga	300
gaggaacccc	aaagccacat	ctgtagccag	gatgagcagt	gtgaatccag	350
gcagccccca	ggaccgggga	ggcacaggtg	gcccccacca	cccggaggag	400
cagctcctgc	ccctgtccgg	gggatgactg	attctcctcc	gccaggccac	450
ccagaggaga	aggccacccc	gcctggaggc	acaggccatg	aggggctctc	500
aggaggtgct	gctgatgtgg	cttctggtgt	tggcagtggg	cggcacagag	550
cacgcctacc	ggcccggccg	tagggtgtgt	gctgtccggg	ctcacgggga	600
ccctgtctcc	gagtcgttcg	tgcagcgtgt	gtaccagccc	ttcctcacca	650
cctgcgacgg	gcaccgggcc	tgcagcacct	accgaaccat	ctataggacc	700
gcctaccgcc	gcagccctgg	gctggcccct	gccaggcctc	gctacgcgtg	750
ctgccccggc	tggaagagga	ccagcgggct	tcctggggcc	tgtggagcag	800
caatatgcca	gccgccatgc	cggaacggag	ggagctgtgt	ccagcctggc	850
cgctgccgct	gccctgcagg	atggcggggt	gacacttgcc	agtcagatgt	900
ggatgaatgc	agtgctagga	ggggcggctg	tccccagcgc	tgcatcaaca	950
ccgccggcag	ttactggtgc	cagtgttggg	aggggcacag	cctgtctgca	1000
gacggtacac	tctgtgtgcc	caagggaggg	cccccaggg	tggcccccaa	1050
cccgacagga	gtggacagtg	caatgaagga	agaagtgcag	aggctgcagt	1100
ccagggtgga	cctgctggag	gagaagctgc	agctggtgct	ggccccactg	1150
cacagcctgg	cctcgcaggc	actggagcat	gggctcccgg	accccggcag	1200
cctcctggtg	cactccttcc	agcagctcgg	ccgcatcgac	tccctgagcg	1250
agcagatttc	cttcctggag	gagcagctgg	ggtcctgctc	ctgcaagaaa	1300
gactcgtgac	tgcccagcgc	tccaggctgg	actgagcccc	tcacgccgcc	1350
ctgcagcccc	catgcccctg	cccaacatgc	tgggggtcca	gaagccacct	1400
cggggtgact	gagcggaagg	ccaggcaggg	ccttcctcct	cttcctcctc	1450

cccttcctcg ggaggetccc cagaccctgg catgggatgg gctgggatct 1500 tetetgtgaa tecacccetg getaccccca ecetggetae eceaacggca 1550 teccaaggee aggtggacce teagetgagg gaaggtacga getecetget 1600 ggageetggg acceatggea caggeeagge ageeeggagg etgggtgggg 1650 eetcagtggg ggetgetgee tgaccccag cacaataaaa atgaaacgtg 1700

<210> 508

<211> 273

<212> PRT

<213> Homo sapiens

<400> 508

Met Arg Gly Ser Gln Glu Val Leu Leu Met Trp Leu Leu Val Leu 1 5 10 15

Ala Val Gly Gly Thr Glu His Ala Tyr Arg Pro Gly Arg Arg Val 20 25 30

Cys Ala Val Arg Ala His Gly Asp Pro Val Ser Glu Ser Phe Val
35 40 45

Gln Arg Val Tyr Gln Pro Phe Leu Thr Thr Cys Asp Gly His Arg
50 55 60

Ala Cys Ser Thr Tyr Arg Thr Ile Tyr Arg Thr Ala Tyr Arg Arg 75

Ser Pro Gly Leu Ala Pro Ala Arg Pro Arg Tyr Ala Cys Cys Pro 80 85 90

Gly Trp Lys Arg Thr Ser Gly Leu Pro Gly Ala Cys Gly Ala Ala 95 100 105

Ile Cys Gln Pro Pro Cys Arg Asn Gly Gly Ser Cys Val Gln Pro 110 115 120

Gly Arg Cys Arg Cys Pro Ala Gly Trp Arg Gly Asp Thr Cys Gln 125 130 135

Ser Asp Val Asp Glu Cys Ser Ala Arg Arg Gly Gly Cys Pro Gln 140 145 150

Arg Cys Ile Asn Thr Ala Gly Ser Tyr Trp Cys Gln Cys Trp Glu 155 160 165

Gly His Ser Leu Ser Ala Asp Gly Thr Leu Cys Val Pro Lys Gly
170 175 180

Gly Pro Pro Arg Val Ala Pro Asn Pro Thr Gly Val Asp Ser Ala 185 190 195

Met Lys Glu Glu Val Gln Arg Leu Gln Ser Arg Val Asp Leu Leu 200 205 210

Glu Glu Lys Leu Gln Leu Val Leu Ala Pro Leu His Ser Leu Ala 215 220 225

Ser Gln Ala Leu Glu His Gly Leu Pro Asp Pro Gly Ser Leu Leu 230 235 240

Val His Ser Phe Gln Gln Leu Gly Arg Ile Asp Ser Leu Ser Glu 245 250 255

Gln Ile Ser Phe Leu Glu Glu Gln Leu Gly Ser Cys Ser Cys Lys 260 265 270

Lys Asp Ser

<210> 509

<211> 1538

<212> DNA

<213> Homo sapiens

<400> 509

cccacgcgtc cgaagctggc cctgcacggc tgcaagggag gctcctgtgg 50 acaggccagg caggtgggcc tcaggaggtg cctccaggcg gccagtgggc 100 ctgaggcccc agcaagggct agggtccatc tccagtccca ggacacagca 150 gcggccacca tggccacgcc tgggctccag cagcatcagc agcccccagg 200 accggggagg cacaggtggc ccccaccacc cggaggagca gctcctgccc 250 ctgtccgggg gatgactgat tctcctccgc caggccaccc agaggagaag 300 gccaccccgc ctggaggcac aggccatgag gggctctcag gaggtgctgc 350 tgatgtggct tctggtgttg gcagtgggcg gcacagagca cgcctaccgg 400 cccggccgta gggtgtgtgc tgtccgggct cacggggacc ctgtctccga 450 gtcgttcgtg cagcgtgtgt accagccctt cctcaccacc tgcgacgggc 500 accgggcctg cagcacctac cgaaccatct ataggaccgc ctaccgccqc 550 agccctgggc tggcccctgc caggcctcgc tacgcgtqct qccccqqctq 600 gaagaggacc agcgggcttc ctggggcctg tggagcagca atatgccagc 650 cgccatgccg gaacggaggg agctgtgtcc agcctggccg ctgccgctgc 700 cctgcaggat ggcggggtga cacttgccag tcagatgtgg atgaatgcag 750 tgctaggagg ggcggctgtc cccagcgctg cgtcaacacc gccggcagtt 800 actggtgcca gtgttgggag gggcacagcc tgtctgcaga cggtacactc 850 tgtgtgccca agggagggcc ccccagggtg gcccccaacc cgacaggagt 900 ggacagtgca atgaaggaag aagtgcagag gctgcagtcc agggtggacc 950

tgctggagga gaagctgcag ctggtgctgg ccccactgca cagcctggcc 1000
tcgcaggcac tggagcatgg gctcccggac cccggcagcc tcctggtgca 1050
ctccttccag cagctcggcc gcatcgactc cctgagcgag cagatttcct 1100
tcctggagga gcagctgggg tcctgctct gcaagaaaga ctcgtgactg 1150
cccagcgccc caggctggac tgagcccctc acgccgcct gcagcccca 1200
tgcccctgcc caacatgctg ggggtccaga agccacctcg gggtgactga 1250
gcggaaggcc aggcagggcc ttcctcctc tcctcccc cttcctcggg 1300
aggctccca gaccctggca tgggatggc tgggatcttc tctgtgaatc 1350
cacccctggc tacccccacc ctggctaccc caacggcatc ccaaggccag 1400
gtgggccctc agctgagga aggtacgagc tccctgctgg agcctgggac 1450
ccatggcaca ggccaggcag cccggaggct gggtgggcc tcagtggggg 1500
ctgctgcctg acccccagca caataaaaat gaaacgtg 1538

<210> 510 <211> 273

<212> PRT

<213> Homo sapiens

<400> 510

Met Arg Gly Ser Gln Glu Val Leu Leu Met Trp Leu Leu Val Leu 1 5 10 15

Ala Val Gly Gly Thr Glu His Ala Tyr Arg Pro Gly Arg Arg Val 20 25 30

Cys Ala Val Arg Ala His Gly Asp Pro Val Ser Glu Ser Phe Val
35 40 45

Gln Arg Val Tyr Gln Pro Phe Leu Thr Thr Cys Asp Gly His Arg
50 55 60

Ala Cys Ser Thr Tyr Arg Thr Ile Tyr Arg Thr Ala Tyr Arg Arg
65 70 75

Ser Pro Gly Leu Ala Pro Ala Arg Pro Arg Tyr Ala Cys Cys Pro 80 85 90

Gly Trp Lys Arg Thr Ser Gly Leu Pro Gly Ala Cys Gly Ala Ala 95 100 105

Ile Cys Gln Pro Pro Cys Arg Asn Gly Gly Ser Cys Val Gln Pro 110 115 120

Gly Arg Cys Arg Cys Pro Ala Gly Trp Arg Gly Asp Thr Cys Gln 125 130 135

Ser Asp Val Asp Glu Cys Ser Ala Arg Arg Gly Gly Cys Pro Gln

				140					145					150
Arg	Cys	Val	Asn	Thr 155	Ala	Gly	Ser	Tyr	Trp 160	Суѕ	Gln	Cys	Trp	Glu 165
Gly	His	Ser	Leu	Ser 170	Ala	Asp	Gly	Thr	Leu 175	Cys	Val	Pro	Lys	Gly 180
Gly	Pro	Pro	Arg	Val 185	Ala	Pro	Asn	Pro	Thr 190	Gly	Val	Asp	Ser	Ala 195
Met	Lys	Glu	Glu	Val 200	Gln	Arg	Leu	Gln	Ser 205	Arg	Val	Asp	Leu	Leu 210
Glu	Glu	Lys	Leu	Gln 215	Leu	Val	Leu	Ala	Pro 220	Leu	His	Ser	Leu	Ala 225
Ser	Gln	Ala	Leu	Glu 230	His	Gly	Leu	Pro	Asp 235	Pro	Gly	Ser	Leu	Leu 240
Val	His	Ser	Phe	Gln 245	Gln	Leu	Gly	Arg	Ile 250	Asp	Ser	Leu	Ser	Glu 255
Gln	Ile	Ser	Phe	Leu 260	Glu	Glu	Gln	Leu	Gly 265	Ser	Cys	Ser	Cys	Lys 270
Lys	Asp	Ser									-			
<210>		-												
<211> <212>														
<213>			ial	Sequ	ence)								
<220>														
<223>		thet	ic o	oligo	nucl	.eoti	de r	robe)					
<400>	511													
tgga	gcag	rca a	tato	gccaç	ic c	21								
<210>	512	<u>:</u>												
<211>														
<212>				_										
<213>	Art	ific	ial	Sequ	ence	:								
<220>														
<223>	Syn	thet	ic c	oligo	nucl	eoti	.de p	robe						
<400>	512													
tttt	ccac	tc c	tgtc	gggt	t gg	22								
<210>	513	i					•							
<211>	46													
<212> <213>			ial	Semi	ence									
	43E C	***	-GT	sequ	GIICE									
<220> <223>	Svn	thet	ic o	liao	חווכו	eoti	de n	robe						
-														

```
<400> 513
ggtgacactt gccagtcaga tgtggatgaa tgcagtgcta ggaggg 46
<210> 514
<211> 2690
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 2039-2065
<223> unknown base
<400> 514
ggttgccaca gctggtttag ggccccqacc actggggccc cttgtcagga 50
ggagacagcc tcccggcccg gggaggacaa gtcgctgcca cctttgqctg 100
ccgacgtgat tccctgggac ggtccgtttc ctgccgtcag ctgccggccg 150
agttgggtct ccgtgtttca ggccggctcc cccttcctgg tctcccttct 200
cccgctgggc cggtttatcg ggaggagatt gtcttccagg gctagcaatt 250
ggacttttga tgatgtttga cccagcggca ggaatagcag gcaacgtgat 300
ttcaaagctg ggctcagcct ctgtttcttc tctcgtgtaa tcgcaaaacc 350
cattttggag caggaattcc aatcatgtct gtgatggtgg tgagaaagaa 400
ggtgacacgg aaatgggaga aactcccagg caggaacacc ttttgctgtg 450
atggccgcgt catgatggcc cggcaaaagg gcattttcta cctgaccctt 500
ttcctcatcc tggggacatg tacactcttc ttcgcctttg agtgccgcta 550
cctggctgtt cagctgtctc ctgccatccc tgtatttgct gccatgctct 600
teettttete catggetaca etgttgagga ecagetteag tgaecetgga 650
gtgattcctc gggcgctacc agatgaagca gctttcatag aaatggagat 700
agaagctacc aatggtgcgg tgccccaggg ccagcgacca ccgcctcgta 750
tcaagaattt ccagataaac aaccagattg tgaaactgaa atactgttac 800
acatgcaaga tetteeggee teecegggee teccattgca geatetgtga 850
caactgtgtg gagcgcttcg accatcactg cccctgggtg gggaattgtg 900
ttggaaagag gaactaccgc tacttctacc tcttcatcct ttctctccc 950
ctcctcacaa tctatgtctt cgccttcaac atcgtctatg tggccctcaa 1000
atctttgaaa attggcttct tggagacatt gaaagaaact cctggaactg 1050
ttctagaagt cctcatttgc ttctttacac tctggtccgt cqtgggactg 1100
```

actggatttc atactttcct cgtggctctc aaccagacaa ccaatgaaga 1150 catcaaagga tcatggacag ggaagaatcg cgtccagaat ccctacagcc 1200 atggcaatat tgtgaagaac tgctgtgaag tgctgtgtgg ccccttgccc 1250 cccagtgtgc tggatcgaag gggtattttg ccactggagg aaagtggaag 1300 tcgacctccc agtactcaag agaccagtag cagcctcttg ccacagagcc 1350 cagcccccac agaacacctg aactcaaatg agatgccgga ggacagcagc 1400 actocogaag agatgocaco tocagagoco coagagocac cacaggaggo 1450 agctgaagct gagaagtagc ctatctatgg aagagacttt tgtttgtgtt 1500 taattagggc tatgagagat ttcaggtgag aagttaaacc tgagacagag 1550 agcaagtaag ctgtcccttt taactgtttt tctttggtct ttagtcaccc 1600 agttgcacac tggcattttc ttgctgcaag cttttttaaa tttctgaact 1650 caaggcagtg gcagaagatg tcagtcacct ctgataactg gaaaaatggg 1700 tctcttgggc cctggcactg gttctccatg gcctcagcca cagggtcccc 1750 ttggaccccc tctcttccct ccagatccca gccctcctgc ttggggtcac 1800 tggtctcatt ctggggctaa aagtttttga qactgqctca aatcctccca 1850 agctgctgca cgtgctgagt ccagaggcag tcacagagac ctctggccag 1900 gggatcctaa ctgggttctt ggggtcttca ggactgaaga ggaqqqaqaq 1950 tggggtcaga agattctcct ggccaccaag tgccagcatt gcccacaaat 2000 ccttttagga atgggacagg taccttccac ttgttgtann nnnnnnnnn 2050 nnnnnnnnn nnnnttgtt tttccttttg actcctgctc ccattaggag 2100 caggaatggc agtaataaaa gtctgcactt tggtcatttc ttttcctcag 2150 aggaagcccg agtgctcact taaacactat cccctcaqac tccctqtqtq 2200 aggcctgcag aggccctgaa tgcacaaatg ggaaaccaag gcacagagag 2250 geteteetet ceteteetet eeceegatgt acceteaaaa aaaaaaaaat 2300 gctaaccagt tettecatta ageetegget qaqtqaqqqa aaqeecaqea 2350 ctgctgccct ctcgggtaac tcaccctaag gcctcggccc acctctggct 2400 atggtaacca cactgggggc ttcctccaag ccccgctctt ccagcacttc 2450 caccggcaga gtcccagagc cacttcaccc tgggggtggg ctgtggcccc 2500 cagtcagctc tgctcaggac ctgctctatt tcagggaaga agatttatgt 2550

attatatgtg gctatatttc ctagagcacc tgtgttttcc tctttctaag 2600 ccagggtcct gtctggatga cttatgcggt gggggagtgt aaaccggaac 2650 ttttcatcta tttgaaggcg attaaactgt gtctaatgca 2690

<210> 515

<211> 364

<212> PRT

<213> Homo sapiens

<400> 515

Met Ser Val Met Val Val Arg Lys Lys Val Thr Arg Lys Trp Glu

1 5 10 15

Lys Leu Pro Gly Arg Asn Thr Phe Cys Cys Asp Gly Arg Val Met
20 25 30

Met Ala Arg Gln Lys Gly Ile Phe Tyr Leu Thr Leu Phe Leu Ile 35 40 45

Leu Gly Thr Cys Thr Leu Phe Phe Ala Phe Glu Cys Arg Tyr Leu
50 55 60

Ala Val Gln Leu Ser Pro Ala Ile Pro Val Phe Ala Ala Met Leu 65 70 75

Phe Leu Phe Ser Met Ala Thr Leu Leu Arg Thr Ser Phe Ser Asp 80 85 90

Pro Gly Val Ile Pro Arg Ala Leu Pro Asp Glu Ala Ala Phe Ile 95 100 105

Glu Met Glu Ile Glu Ala Thr Asn Gly Ala Val Pro Gln Gly Gln
110 115 120

Arg Pro Pro Pro Arg Ile Lys Asn Phe Gln Ile Asn Asn Gln Ile 125 130 135

Val Lys Leu Lys Tyr Cys Tyr Thr Cys Lys Ile Phe Arg Pro Pro 140 145 150

Arg Ala Ser His Cys Ser Ile Cys Asp Asn Cys Val Glu Arg Phe 155 160 165

Asp His His Cys Pro Trp Val Gly Asn Cys Val Gly Lys Arg Asn 170 175 180

Tyr Arg Tyr Phe Tyr Leu Phe Ile Leu Ser Leu Ser Leu Leu Thr 185 190 195

Ile Tyr Val Phe Ala Phe Asn Ile Val Tyr Val Ala Leu Lys Ser 200 205 210

Leu Lys Ile Gly Phe Leu Glu Thr Leu Lys Glu Thr Pro Gly Thr 215 220 225

Val Leu Glu Val Leu Ile Cys Phe Phe Thr Leu Trp Ser Val Val

230 235 240 Gly Leu Thr Gly Phe His Thr Phe Leu Val Ala Leu Asn Gln Thr 245 Thr Asn Glu Asp Ile Lys Gly Ser Trp Thr Gly Lys Asn Arg Val 260 Gln Asn Pro Tyr Ser His Gly Asn Ile Val Lys Asn Cys Cys Glu 275 Val Leu Cys Gly Pro Leu Pro Pro Ser Val Leu Asp Arg Arg Gly 295 300 Ile Leu Pro Leu Glu Glu Ser Gly Ser Arg Pro Pro Ser Thr Gln 310 Glu Thr Ser Ser Leu Leu Pro Gln Ser Pro Ala Pro Thr Glu 320 325 His Leu Asn Ser Asn Glu Met Pro Glu Asp Ser Ser Thr Pro Glu 335 345 Glu Met Pro Pro Pro Glu Pro Pro Glu Pro Pro Gln Glu Ala Ala 350 Glu Ala Glu Lys <210> 516 <211> 255 <212> DNA <213> Homo sapiens <220> <221> unsure <222> 36, 38, 88, 118, 135, 193, 213, 222 <223> unknown base <400> 516 aaaaccctgt atttttaca atgcaaatag acaatnancc tggaggtctt 50 tgaattaggt attataggga tggtggggtt gattttntt cctggaggct 100 tttggctttg gactctcnct ttctcccaca gagcncttcg accatcactg 150 cccctgggtg gggaattgtg ttggaaagag gaactaccgc tanttctacc 200 tetteateet tintetetee enceteacaa tetatgiett egeetteaac 250 atcgt 255 <210> 517 <211> 24 <212> DNA <213> Artificial Sequence <220>

```
<223> Synthetic oligonucleotide probe
<400> 517
 caacgtgatt tcaaagctgg gctc 24
<210> 518
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 518
 gcctcgtatc aagaatttcc 20
<210> 519
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 519
 agtggaagtc gacctccc 18
<210> 520
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 520
ctcacctgaa atctctcata gccc 24
<210> 521
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 521
cgcaaaaccc attttgggag caggaattcc aatcatgtct gtgatggtgg 50
<210> 522
<211> 1679
<212> DNA
<213> Homo sapiens
<400> 522
gttgtgtcct tcagcaaaac agtggattta aatctccttg cacaagcttg 50
agagcaacac aatctatcag gaaagaaaga aagaaaaaaa ccgaacctga 100
```

M

caaaaaagaa gaaaaagaag aagaaaaaaa atcatgaaaa ccatccagcc 150 aaaaatgcac aattctatct cttgggcaat cttcacgggg ctggctgctc 200 tgtgtctctt ccaaggagtg cccgtgcgca gcggagatgc caccttcccc 250 aaagctatgg acaacgtgac ggtccggcag ggggagagcg ccaccctcag 300 gtgcactatt gacaaccggg tcacccgggt ggcctggcta aaccgcagca 350 ccatcctcta tgctgggaat gacaagtggt gcctggatcc tcgcgtggtc 400 cttctgagca acacccaaac gcagtacagc atcgagatcc agaacgtgga 450 tgtgtatgac gagggccctt acacctgctc ggtgcagaca gacaaccacc 500 caaagacctc tagggtccac ctcattgtgc aagtatctcc caaaattgta 550 gagatttctt cagatatctc cattaatgaa gggaacaata ttagcctcac 600 ctgcatagca actggtagac cagagcctac ggttacttqq agacacatct 650 ctcccaaagc ggttggcttt gtgagtgaag acgaatactt ggaaattcag 700 ggcatcaccc gggagcagtc aggggactac gagtgcagtg cctccaatga 750 cgtggccgcg cccgtggtac ggagagtaaa ggtcaccgtg aactatccac 800 catacatttc agaagccaag ggtacaggtg tccccgtggg acaaaagggg 850 acactgcagt gtgaagcctc agcagtcccc tcagcagaat tccagtggta 900 caaggatgac aaaagactga ttgaaggaaa gaaaggggtg aaagtggaaa 950 acagacettt ceteteaaaa eteatettet teaatgtete tgaacatgae 1000 tatgggaact acacttgcgt ggcctccaac aagctgggcc acaccaatgc 1050 cagcatcatg ctatttggtc caggggcgt cagcgaggtg agcaacggca 1100 cgtcgaggag ggcaggctgc gtctggctgc tgcctcttct ggtcttgcac 1150 ctgcttctca aattttgatg tgagtgccac ttccccaccc gggaaaggct 1200 geegecacea ecaceaceaa eacaacagea atggeaacae egacageaae 1250 caatcagata tatacaaatg aaattagaag aaacacagcc tcatqqqaca 1300 gaaatttgag ggaggggaac aaagaatact ttgggggggaa aagagtttta 1350 aaaaagaaat tgaaaattgc cttgcagata tttaggtaca atggagtttt 1400 cttttcccaa acgggaagaa cacagcacac ccggcttgga cccactgcaa 1450 gctgcatcgt gcaacctctt tggtgccagt gtgggcaagg gctcagcctc 1500 tetgeceaca gagtgecece aegtggaaca ttetggaget ggecatecea 1550

aattcaatca gtccatagag acgaacagaa tgagaccttc cggcccaagc 1600 gtggcgctgc gggcactttg gtagactgtg ccaccacggc gtgtgttgtg 1650 aaacgtgaaa taaaaagagc aaaaaaaaa 1679

<210> 523

<211> 344

<212> PRT

<213> Homo sapiens

<400> 523

Met Lys Thr Ile Gln Pro Lys Met His Asn Ser Ile Ser Trp Ala 1 5 10 15

Ile Phe Thr Gly Leu Ala Ala Leu Cys Leu Phe Gln Gly Val Pro
20 25 30

Val Arg Ser Gly Asp Ala Thr Phe Pro Lys Ala Met Asp Asn Val 35 40 45

Thr Val Arg Gln Gly Glu Ser Ala Thr Leu Arg Cys Thr Ile Asp
50 55 60

Asn Arg Val Thr Arg Val Ala Trp Leu Asn Arg Ser Thr Ile Leu 65 70 75

Tyr Ala Gly Asn Asp Lys Trp Cys Leu Asp Pro Arg Val Val Leu 80 85 90

Leu Ser Asn Thr Gln Thr Gln Tyr Ser Ile Glu Ile Gln Asn Val 95 100 105

Asp Val Tyr Asp Glu Gly Pro Tyr Thr Cys Ser Val Gln Thr Asp

Asn His Pro Lys Thr Ser Arg Val His Leu Ile Val Gln Val Ser 125 130 135

Pro Lys Ile Val Glu Ile Ser Ser Asp Ile Ser Ile Asn Glu Gly
140 145 150

Asn Asn Ile Ser Leu Thr Cys Ile Ala Thr Gly Arg Pro Glu Pro 155 160 165

Thr Val Thr Trp Arg His Ile Ser Pro Lys Ala Val Gly Phe Val 170 175 180

Ser Glu Asp Glu Tyr Leu Glu Ile Gln Gly Ile Thr Arg Glu Gln 185 190 195

Ser Gly Asp Tyr Glu Cys Ser Ala Ser Asn Asp Val Ala Ala Pro 200 205 210

Val Val Arg Arg Val Lys Val Thr Val Asn Tyr Pro Pro Tyr Ile 215 220 225

Ser Glu Ala Lys Gly Thr Gly Val Pro Val Gly Gln Lys Gly Thr

		•										
		230					235					240
Leu Gln C	ys Glu	Ala 245	Ser	Ala	Val	Pro	Ser 250	Ala	Glu	Phe	Gln	Trp 255
Tyr Lys A	sp Asp	Lys 260	Arg	Leu	Ile	Glu	Gly 265	Lys	Lys	Gly	Val	Lys 270
Val Glu A	sn Arg	Pro 275	Phe	Leu	Ser	Lys	Leu 280	Ile	Phe	Phe	Asn	Val 285
Ser Glu H	is Asp	Tyr 290	Gly	Asn	Tyr	Thr	Cys 295	Val	Ala	Ser	Asn	Lys 300
Leu Gly H	is Thr	Asn 305	Ala	Ser	Ile	Met	Leu 310	Phe	Gly	Pro	Gly	Ala 315
Val Ser G	lu Val	Ser 320	Asn	Gly	Thr	Ser	Arg 325	Arg	Ala	Gly	Суз	Val 330
Trp Leu L	eu Pro	Leu 335	Leu	Val	Leu	His	Leu 340	Leu	Leu	Lys	Phe	
<210> 524 <211> 503 <212> DNA <213> Homo	sapier	ıs										
<400> 524 gaaaaaaaa	t catga	aaac	c at	ccaç	gccaa	a aaa	atgca	acaa	ttct	atct	ct !	50
tgggcaatc	t tcaco	gggg	t go	gctgo	ctctq	, tgt	ctct	tcc	aagg	gagto	jcc :	100
cgtgcgcag	c ggaga	itgco	a co	ette	ccaa	ago	ctato	ggac	aaco	gtgad	gg :	150
tccggcagg	g ggaga	gcgc	c ac	cct	caggt	gca	ctat	tga	caac	cggg	gtc :	200
acccgggtg	g cctgg	ctaa	a co	gcag	gcaco	ato	ctct	atg	ctg	gaat	ga :	250
caagtggtg	c ctgga	tcct	c go	gtgg	gtcct	tct	gago	caac	acco	caaac	gc :	300
agtacagca	t cgaga	tcca	ıg aa	cgt	gato	, tgt	atga	acga	gggc	cctt	ac :	350
acctgctcg	g tgcag	acag	a ca	acca	accca	aag	jacct	cta	gggt	ccac	ct 4	400
cattgtgca	a gtato	tccc	a aa	atto	gtaga	gat	ttct	tca	gata	tcto	ca 4	150
ttaatgaag	g gaaca	atat	t ag	ccto	acct	gca	tago	aac	tggt	agac	ca 5	500
gag 503												
<210> 525 <211> 2602 <212> DNA <213> Homo	sapien	s										
<400> 525												

<400> 525 atggctggtg acggcggggc cgggcagggg accggggccg cggcccggga 50

gatatgattg gtttcccaga ctttatcctg gagcccaaag agctggatga 1550 tgtttatgac gggtacgaaa tttctgaaga ttctttcttc caaaacatgt 1600 tgaatttgta caacttctct qccaaqqtta tqqctqacca qctccqcaaq 1650 cctcccaqcc gagaccaqtq gagcatgacc ccccaqacaq tqaatqccta 1700 ctaccttcca actaagaatg agatcgtctt ccccgctggc atcctgcagg 1750 cccccttcta tgcccgcaac caccccaagg ccctgaactt cggtggcatc 1800 ggtgtggtca tgggccatga gttgacgcat gcctttgatg accaagggcg 1850 cgagtatgac aaagaaggga acctgcggcc ctggtggcag aatgagtccc 1900 tggcagcctt ccggaaccac acggcctgca tggaggaaca gtacaatcaa 1950 taccaggtca atggggagag gctcaacggc cgccagacgc tggggggagaa 2000 cattactgac aacgggggc tgaaggctgc ctacaatgct tacaaagcat 2050 ggctgagaaa gcatggggag gagcagcaac tgccagccgt ggggctcacc 2100 aaccaccage tettettegt gggatttgce caggtgtggt geteggteeg 2150 cacaccagag ageteteacg aggggetggt gaccgaccc cacagcectg 2200 cccgcttccg cgtgctgggc actctctcca actcccgtga cttcctgcgg 2250 cacttegget geeetgtegg etececeatg aacceaggge agetgtgtga 2300 ggtgtggtag acctggatca ggggagaaat ggccagctgt caccagacct 2350 ggggcagctc tcctgacaaa gctgtttgct cttgggttgg gaggaagcaa 2400 atgcaagctg ggctgggtct agtccctccc ccccacaggt gacatgagta 2450 cagaccetee teaateacea cattqtqcet etqetttqqq qqtqcecetq 2500 cctccagcag agcccccacc attcactgtg acatctttcc gtgtcaccct 2550 gcctggaaga ggtctgggtg gggaggccag ttcccatagg aaggagtctg 2600 cc 2602

<210> 526

<211> 736

<212> PRT

<213> Homo sapiens

<400> 526

Met Asn Val Ala Leu Gln Glu Leu Gly Ala Gly Ser Asn Val Gly 1 5 10 15

Phe Gln Lys Gly Thr Arg Gln Leu Leu Gly Ser Arg Thr Gln Leu 20 25 30

Glu Leu Val Leu Ala Gly Ala Ser Leu Leu Leu Ala Ala Leu Leu Leu Gly Cys Leu Val Ala Leu Gly Val Gln Tyr His Arg Asp Pro Ser His Ser Thr Cys Leu Thr Glu Ala Cys Ile Arg Val Ala Gly Lys Ile Leu Glu Ser Leu Asp Arg Gly Val Ser Pro Cys Glu Asp Phe Tyr Gln Phe Ser Cys Gly Gly Trp Ile Arg Arg Asn Pro Leu Pro Asp Gly Arg Ser Arg Trp Asn Thr Phe Asn Ser Leu Trp Asp 115 Gln Asn Gln Ala Ile Leu Lys His Leu Leu Glu Asn Thr Thr Phe Asn Ser Ser Ser Glu Ala Glu Gln Lys Thr Gln Arg Phe Tyr Leu Ser Cys Leu Gln Val Glu Arg Ile Glu Glu Leu Gly Ala Gln Pro Leu Arg Asp Leu Ile Glu Lys Ile Gly Gly Trp Asn Ile Thr Gly 180 Pro Trp Asp Gln Asp Asn Phe Met Glu Val Leu Lys Ala Val Ala Gly Thr Tyr Arg Ala Thr Pro Phe Phe Thr Val Tyr Ile Ser Ala 205 210 Asp Ser Lys Ser Ser Asn Ser Asn Val Ile Gln Val Asp Gln Ser 220 Gly Leu Phe Leu Pro Ser Arg Asp Tyr Tyr Leu Asn Arg Thr Ala 235 Asn Glu Lys Val Leu Thr Ala Tyr Leu Asp Tyr Met Glu Glu Leu 250 Gly Met Leu Gly Gly Arg Pro Thr Ser Thr Arg Glu Gln Met Gln Gln Val Leu Glu Leu Glu Ile Gln Leu Ala Asn Ile Thr Val 280 Pro Gln Asp Gln Arg Arg Asp Glu Glu Lys Ile Tyr His Lys Met 295 300 Ser Ile Ser Glu Leu Gln Ala Leu Ala Pro Ser Met Asp Trp Leu 305 Glu Phe Leu Ser Phe Leu Leu Ser Pro Leu Glu Leu Ser Asp Ser

				320					325					330
Glu	Pro	Val	Val	Val 335	Tyr	Gly	Met	Asp	Tyr 340	Leu	Gln	Gln	Val	Ser 345
Glu	Leu	Ile	Asn	Arg 350	Thr	Glu	Pro	Ser	Ile 355	Leu	Asn	Asn	Tyr	Leu 360
Ile	Trp	Asn	Leu	Val 365	Gln	Lys	Thr	Thr	Ser 370	Ser	Leu	Asp	Arg	Arg 375
Phe	Glu	Ser	Ala	Gln 380	Glu	Lys	Leu	Leu	Glu 385	Thr	Leu	Tyr	Gly	Thr 390
Lys	Lys	Ser	Cys	Val 395	Pro	Arg	Trp	Gln	Thr 400	Суз	Ile	Ser	Asn	Thr 405
Asp	Asp	Ala	Leu	Gly 410	Phe	Ala	Leu	Gly	Ser 415	Leu	Phe	Val	Lys	Ala 420
Thr	Phe	Asp	Arg	Gln 425	Ser	Lys	Glu	Ile	Ala 430	Glu	Gly	Met	Ile	Ser 435
Glu	Ile	Arg	Thr	Ala 440	Phe	Glu	Glu	Ala	Leu 445	Gly	Gln	Leu	Val	Trp 450
Met	Asp	Glu	Lys	Thr 455	Arg	Gln	Ala	Ala	Lys 460	Glu	Lys	Ala	Asp	Ala 465
Ile	Tyr	Asp	Met	Ile 470	Gly	Phe	Pro	Asp	Phe 475	Ile	Leu	Glu	Pro	Lys 480
Glu	Leu	Asp	Asp	Val 485	Tyr	Asp	Gly	Tyr	Glu 490	Ile	Ser	Glu	Asp	Ser 495
Phe	Phe	Gln	Asn	Met 500	Leu	Asn	Leu	Tyr	Asn 505	Phe	Ser	Ala	Lys	Val 510
Met	Ala	Asp	Gln	Leu 515	Arg	Lys	Pro	Pro	Ser 520	Arg	Asp	Gln	Trp	Ser 525
Met	Thr	Pro	Gln	Thr 530	Val	Asn	Ala	Tyr	Tyr 535	Leu	Pro	Thr	Lys	Asn 540
Glu	Ile	Val	Phe	Pro 545	Ala	Gly	Ile	Leu	Gln 550	Ala	Pro	Phe	Tyr	Ala 555
Arg	Asn	His	Pro	Lys 560	Ala	Leu	Asn	Phe	Gly 565	Gly	Ile	Gly	Val	Val 570
Met	Gly	His	Glu	Leu 575	Thr	His	Ala	Phe	Asp 580	Asp	Gln	Gly	Arg	Glu 585
Tyr	Asp	Lys	Glu	Gly 590	Asn	Leu	Arg	Pro	Trp 595	Trp	Gln	Asn	Glu	Ser 600
Leu	Ala	Ala	Phe	Arg 605	Asn	His	Thr	Ala	Cys 610	Met	Glu	Glu	Gln	Tyr 615

 Asn
 Gln
 Tyr
 Gln
 Val
 Asn
 Gly
 Glu
 Arg
 Leu
 Asn
 Gly
 Asn
 Gly
 Gly
 Gly
 Leu
 Lys
 Ala
 Ala
 Tyr
 G45

 Asn
 Ala
 Tyr
 Lys
 Ala
 Trp
 Leu
 Arg
 Lys
 His
 Gly
 Glu
 Glu
 Gln
 G66

 Leu
 Pro
 Ala
 Val
 Gly
 Leu
 Thr
 Asn
 His
 Gln
 Leu
 Phe
 Val
 G19

 Phe
 Ala
 Gln
 Val
 Trp
 Cys
 Ser
 Val
 Arg
 Thr
 Pro
 G1n
 Leu
 Phe
 Val
 G19
 G1y
 G1y

Trp

<210> 527 <211> 4308 <212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 1478, 3978, 4057-4058, 4070

<223> unknown base

<400> 527
gcccggccct ccgccctccg cactccgcc tccctcctc cgccgctcc 50

cgcgccctcc tccctccctc ctcccagct gtcccgttcg cgtcatgccg 100

agcctcccgg ccccgcggc cccgctgctg ctcctcgggc tgctgctgct 150

cggctcccgg ccggcccgcg gcgccggcc agagccccc gtgctgcca 200

tccgttctga gaaggagccg ctgcccgttc ggggagcggc aggtaggtgg 250

gcgcccgggg gaggcgcggg cggggagtcg ggctcgggc gagtcagcgc 300

cagcccggag ggggcgcgg gcgcaggtgg ctcggcgg cgggcgccc 350

ggagggtggg cgggggcaga agggcgcgt gcctgggac cgggacccgc 400

gggcagcccc cggggcgca cacggcga gctgggcagc ggcctccagc 450

caagcccgtc cccgcaggct gcaccttcgg cgggaaggtc tatgccttgg 500

agcagcccca gagaccagaa ctgatccaga gctggagaaa gaagccgaag 3500 gctcttaggg agcagccaga gggccaagtg accaagagga tqqqqcctqa 3550 gctggggaag gggtggcatc gaggaccttc ttgcattctc ctqtgggaag 3600 eccagtgeet ttgeteetet gteetgeete taeteeeace eccactacet 3650 ctgggaacca cagctccaca agggggagag gcagctgggc cagaccgagg 3700 tcacagccac tccaagtcct gccctgccac cctcggcctc tgtcctggaa 3750 gccccacccc tttcttcctg tacataatgt cactggcttg ttgggatttt 3800 taatttatct tcactcagca ccaagggccc cggacactcc actcctgctg 3850 cccctgagct gagcagagtc attattggag agttttgtat ttattaaaac 3900 atttettttt cagtetttgg geatgaggtt ggetetttgt ggeeaggaae 3950 ctgagtgggg cctggtggag aaggggcnga gagtaggagg tgagagagag 4000 gagetetgae aettggggag etgaaagaga eetggagagg eagaggatag 4050 cgtggcnntt ggctggcatn cctgggttcc gcagagggc tggggatggt 4100 tcttgagatg gtctagagac tcaagaattt agggaagtag aagcaggatt 4150 ttgactcaag tttagtttcc cacatcgctg gcctgtttgc tqacttcatg 4200 tttgaagttg ctccagagag agaatcaaag gtgtcaccag cccctctctc 4250 cctccttccc ttcccttccc tttctttccc tcccctcccc tcccctcccc 4300 tccctcc 4308

<210> 528

<211> 1285

<212> DNA

<213> Homo sapiens

<400> 528

ggccgagcgg gggtgctgcg cggcggccgt gatggctggt gacggcgggg 50 ccgggcaggg gaccggggc gcggcccggg agcgggccag ctgccgggag 100 ccctgaatca ccgcctggcc cgactccacc atgaacgtcg cgctgcagga 150 gctgggagct ggcagcaacg tgggattcca gaaggggaca agacagctgt 200 taggctcacg cacgcagctg gagctggtct tagcaggtgc ctctctactg 250 ctggctgcac tgcttctggg ctgccttgtg gccctagggg tccagtacca 300 cagagaccca tcccacagca cctgccttac agaggcctgc attcgagtgg 350

ctggaaaaat cctggagtcc ctggaccgag gggtqaqccc ctgtqaqqac 400 ttttaccagt tctcctgtgg gggctggatt cggaggaacc ccctqcccqa 450 tgggcgttct cgctggaaca ccttcaacag cctctgggac caaaaccaqq 500 ccatactgaa gcacctgett gaaaacacca cettcaacte cagcagtgaa 550 gctgagcaga agacacagcg cttctaccta tcttgcctac aggtggagcg 600 cattgaggag ctgggagccc agccactgag agacctcatt gagaagattg 650 gtggttggaa cattacgggg ccctgggacc aggacaactt tatggaggtg 700 ttgaaggcag tagcagggac ctacagggcc accccattct tcaccqtcta 750 catcagtgcc gactctaaga gttccaacag caatgttatc caggtggacc 800 agtotgggot otttotgood totogggatt actacttaaa cagaactgoo 850 aatgagaaag taaggaacat etteegaace eecateeeta eeeetggetg 900 agctgggctg atccctgttg acttttccct ttgccaaggg tcagagcagg 950 gaaggtgage etateetgte acetagtgaa caaactgeee eteetttett 1000 ttcctcttat tcttctagta ggtttcatag acacctactg tgtgccaggt 1100 ccagtggggg aattcggaga tataagtttc cgagccattg ccacaggaag 1150 cgttcagtgt cgatgggttc atggacctag ataggctgat aacaaagctc 1200 acaagagggt cctgaggatt caggagagac ttatggagcc agcaaagtct 1250 tectgaagag attgeatttg agecaggtee tgtag 1285

<210> 529

<211> 1380

<212> DNA

<213> Homo sapiens

<400> 529

atgoctacta cettecaact aagaatgaga tegtetteee egetggeate 50 etgeaggeee cettetatge eegeaaceae eecaaggeee tgaacttegg 100 tggcateggt gtggteatgg gecatgagtt gaegeatgee tttgatgace 150 aagggegega gtatgacaaa gaagggaace tgeggeeetg gtggcagaat 200 gagteeetgg eageetteeg gaaceacaeg geetgeatgg aggaacagta 250 caateaatae eaggteaatg gggagagget eaaeggeege eagaegetgg 300 gggagaacat tgetgacaac ggggggetga aggetgeeta eaatgettae 350

```
aaagcatggc tgagaaagca tggggaggag cagcaactgc cagccgtggg 400
 gctcaccaac caccagctct tcttcgtggg atttgcccag gtgtggtgct 450
 eggteegeac accagagage teteacgagg ggetggtgac egaceeceac 500
 agccctgccc gcttccgcgt gctgggcact ctctccaact cccgtgactt 550
 cctgcggcac ttcggctgcc ctgtcggctc ccccatgaac ccagggcagc 600
 tgtgtgaggt gtggtagacc tggatcaggg gagaaatggc cagctgtcac 650
 cagacctggg gcagctctcc tgacaaagct gtttgctctt gggttgggag 700
 gaagcaaatg caagctgggc tgggtctagt ccctccccc cacaggtgac 750
 atgagtacag accetectea ateaceaeat tgtgeetetg etttgggggt 800
 gcccctgcct ccagcagagc ccccaccatt cactgtgaca tctttccgtg 850
 tcaccctgcc tggaagaggt ctgggtgggg aggccagttc ccataggaag 900
 gagtetgeet ettetgteee eaggeteact eageetggeg geeatgggge 950
 ctgccgtgcc tgccccactg tgacccacag gcctgggtgg tgtacctcct 1000
 ggacttetee ceaggeteae teagtgegea ettaggggtg gacteagete 1050
 tgtctggctc accctcacgg gctaccccca cctcaccctg tgctccttgt 1100
 gccactgctc ccagtgctgc tgctgacctt cactgacagc tcctagtgga 1150
 agcccaaggg cctctgaaag cctcctgctg cccactgttt ccctgggctg 1200
 agaggggaag tgcatatgtg tagcgggtac tggttcctgt gtcttagggc 1250
 acaagcctta gcaaatgatt gattctccct ggacaaagca ggaaagcaga 1300
 tagagcaggg aaaaggaaga acagagttta tttttacaga aaagagggtg 1350
 ggagggtgtg gtcttggccc ttataggacc 1380
<210> 530
<211> 39
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
```

- <212> DNA
- <220>
- <400> 530
- gaagcagtgc agccagcagt agagaggcac ctgctaaga 39
- <210> 531
- <211> 24
- <212> DNA
- <213> Artificial Sequence

```
<220>
    <223> Synthetic oligonucleotide probe
    <400> 531
     acgcagctgg agctggtctt agca 24
    <210> 532
    <211> 24
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 532
     ggtactggac ccctagggcc acaa 24
    <210> 533
    <211> 21
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 533
    cctcccagcc gagaccagtg g 21
    <210> 534
    <211> 21
    <212> DNA
    <213> Artificial Sequence
Ø
1
    <220>
    <223> Synthetic oligonucleotide probe
\vdash
   <400> 534
ggtcctataa gggccaagac c 21
   <210> 535
   <211> 44
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
    <210> 536
   <211> 16
   <212>. DNA
   <213> Artificial Sequence
   <223> Synthetic oligonucleotide probe
```

```
<400> 536
     cggacgcgtg ggtcga 16
    <210> 537
    <211> 21
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 537
     cggccgtgat ggctggtgac g 21
    <210> 538
    <211> 20
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 538
     ggcagactcc ttcctatggg 20
    <210> 539
    <211> 21
    <212> DNA
    <213> Artificial Sequence
đ
    <220>
    <223> Synthetic oligonucleotide probe
Ø
H
    <400> 539
     ggcacttcat ggtccttgaa a 21
    <210> 540
    <211> 22
    <212> DNA
I
    <213> Artificial Sequence
<223> Synthetic oligonucleotide probe
    <400> 540
    cggatgtgtg tgaggccatg cc 22
    <210> 541
    <211> 24
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 541
     gaaagtaacc acggaggtca agat 24
```

```
<210> 542
    <211> 21
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 542
     cctcctccga gactgaaagc t 21
    <210> 543
    <211> 22
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 543
     tcgcgttgct ttttctcgcg tg 22
    <210> 544
    <211> 17
    <212> DNA
    <213> Artificial Sequence
<220>
    <223> Synthetic oligonucleotide probe
    <400> 544
     gcgtgcgtca ggttcca 17
    <210> 545
æ
    <211> 19
⊨≒
    <212> DNA
    <213> Artificial Sequence
U
    <223> Synthetic oligonucleotide probe
    <400> 545
     cgttcgtgca gcgtgtgta 19
    <210> 546
    <211> 22
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 546
     cttcctcacc acctgcgacg gg 22
    <210> 547
    <211> 23
    <212> DNA
```

```
<213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 547
     ggtaggcggt cctatagatg gtt 23
    <210> 548
    <211> 23
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 548
     agatgtggat gaatgcagtg cta 23
    <210> 549
    <211> 24
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
ø
    <400> 549
     atcaacaccg ccggcagtta ctgg 24
    <210> 550
<211> 23
    <212> DNA
H
    <213> Artificial Sequence
ļ-t
    <223> Synthetic oligonucleotide probe
    <400> 550
Uī
     acagagtgta ccgtctgcag aca 23
    <210> 551
    <211> 19
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 551
     agcctcctgg tgcactcct 19
    <210> 552
    <211> 25
    <212> DNA
    <213> Artificial Sequence
```

Φ

<220>

```
<223> Synthetic oligonucleotide probe
<400> 552
 cgactccctg agcgagcaga tttcc 25
<210> 553
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 553
 gctgggcagt cacgagtctt 20
<210> 554
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 554
 aatcctccat ctcagatctt ccag 24
<210> 555
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 555
cctcagcggt aacagccggc c 21
<210> 556
<211> 15
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 556
tgggccaagg gctgc 15
<210> 557
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 557
```

Ð

<u>L</u>

M

```
tggtggataa ccaacaagat gg 22
    <210> 558
    <211> 34
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 558
     gagtctgcat ccacaccact cttaaagttc tcaa 34
    <210> 559
    <211> 24
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 559
     caggtgctct tttcagtcat gttt 24
    <210> 560
    <211> 21
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 560
⊨₌
     tggccattct caggacaaga g 21
H
    <210> 561
    <211> 26
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> synthetic oligonucleotide probe
    <400> 561
     cagtaatgcc atttgcctgc ctgcat 26
    <210> 562
    <211> 19
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 562
     tgcctggaat cacatgaca 19
    <210> 563
```

Ū

UT

```
<211> 20
    <212> DNA
    <213> Artificial Sequence
    <223> synthetic oligonucleotide probe
    <400> 563
     tgtggcacag acccaatcct 20
    <210> 564
    <211> 21
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 564
     gaccctgaag gcctccggcc t 21
    <210> 565
    <211> 23
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 565
     gagagagga aggcagctat gtc 23
Ø
    <210> 566
    <211> 21
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 566
    cagcccctct ctttcacctg t 21
    <210> 567
    <211> 25
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
   <400> 567
    ccatcctgtg cagctgacac acagc 25
   <210> 568
   <211> 20
   <212> DNA
   <213> Artificial Sequence
```

```
<220>
    <223> Synthetic oligonucleotide probe
    <400> 568
     gccaggctat gaggctcctt 20
    <210> 569
    <211> 23
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 569
     ttcaagttcc tgaagccgat tat 23
    <210> 570
    <211> 23
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 570
     ccaacttccc tccccagtgc cct 23
    <210> 571
    <211> 26
    <212> DNA
Ø
    <213> Artificial Sequence
⊨⊾
    <223> Synthetic oligonucleotide probe
<u>L</u>
    <400> 571
     ttggggaagg tagaatttcc ttgtat 26
Uī
    <210> 572
    <211> 20
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 572
     cccttctgcc tcccaattct 20
    <210> 573
    <211> 24
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
```

acttgtgaca gcagtatgct gtctt 25

```
<210> 579
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 579
aagcttctgt tcaatcccag cggtcc 26
<210> 580
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 580
 atgcacaggc tttttctggt aa 22
<210> 581
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 581
gcaggaaacc ttcgaatctg ag 22
<210> 582
<211> 29
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 582
 acacctgagg cacctgagag aggaactct 29
<210> 583
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 583
gacageceag tacacetgea a 21
<210> 584
<211> 21
<212> DNA
```

```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 584
 gacggctgga tctgtgagaa a 21
<210> 585
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 585
 cacaactgct gaccccgccc a 21
<210> 586
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 586
ccaggatacg acatgctgca 20
<210> 587
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 587
aaactccaac ctgtatcaga tgca 24
<210> 588
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 588
cccccaagcc cttagactct aagcc 25
<210> 589
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
```

₽

LIT

```
<223> Synthetic oligonucleotide probe
<400> 589
 .gacccggcac cttgctaac 19
<210> 590
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 590
 ggacggtcag tcaggatgac a 21
<210> 591
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 591
 ttcggcatca tctcttccct ctccc 25
<210> 592
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 592
acaaaaaaa gggaacaaaa tacga 25
<210> 593
<211> 28
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 593
ctttgaatag aagacttctg gacaattt 28
<210> 594
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 594
```

Ф

H

```
ttgcaactgg gaatatacca cgacatgaga 30
<210> 595
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 595
 tagggtgcta atttgtgcta taacct 26
<210> 596
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 596
 ggctctgagt ctctgcttga 20
<210> 597
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 597
 tccaacaacc attttcctct ggtcc 25
<210> 598
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 598
 aagcagtagc cattaacaag tca 23
<210> 599
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 599
```

caagcgtcca ggtttattga 20

<210> 600

ij

Ü

FF

ļ...b

```
<212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 600
     gactacaagg cgctcagcta 20
    <210> 601
    <211> 21
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 601
     ccggctgggt ctcactcctc c 21
    <210> 602
    <211> 19
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
Õ
    <400> 602
     cgttcgtgca gcgtgtgta 19
ű
    <210> 603
H
    <211> 22
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
L
    <400> 603
     cttcctcacc acctgcgacg gg 22
    <210> 604
    <211> 23
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 604
    ggtaggcggt cctatagatg gtt 23
    <210> 605
    <211> 23
    <212> DNA
    <213> Artificial Sequence
```

<211> 20

```
<220>
<223> Synthetic oligonucleotide probe
<400> 605
 agatgtggat gaatgcagtg cta 23
<210> 606
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 606
 atcaacaccg ccggcagtta ctgg 24
<210> 607
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
 acagagtgta ccgtctgcag aca 23
<210> 608
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 608
agcctcctgg tgcactcct 19
<210> 609
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 609
 cgactccctg agcgagcaga tttcc 25
<210> 610
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
```

<400> 610 gctgggcagt cacgagtctt 20 <210> 611 <211> 2840 <212> DNA <213> Homo Sapien <400> 611 cccacgcgtc cgagccgccc gagaattaga cacactccgg acgcggccaa 50 aagcaaccga gaggaggga ggcaaaaaaca ccgaaaaaca aaaaqaqaqa 100 aacaacaccc aacaactggg gtggggggaa gaaagaaaga aaagaaaccc 150 ctgtggcgcg ccgcctggtt cccgggaaga ctcgccagca ccagggggtg 250 ggggagtgcg agctgaaagc tgctggagag tgagcagccc tagcagggat 300 ggacatgatg ctgttggtgc agggtgcttg ttgctcgaac cagtggctgg 350 cggcggtgct cctcagcctg tgctgcctgc taccctcctg cctcccggct 400 ggacagagtg tggacttccc ctgggcggcc gtggacaaca tgatggtcag 450 aaaaggggac acggcggtgc ttaggtgtta tttggaagat ggagcttcaa 500 agggtgcctg gctgaaccgg tcaagtatta tttttgcggg aggtgataag 550 tggtcagtgg atcctcgagt ttcaatttca acattgaata aaagggacta 600 cagcctccag atacagaatg tagatgtgac agatgatggc ccatacacgt 650 gttctgttca gactcaacat acacccagaa caatgcaggt gcatctaact 700 gtgcaagttc ctcctaagat atatgacatc tcaaatgata tgaccgtcaa 750 tgaaggaacc aacgtcactc ttacttgttt ggccactggg aaaccagagc 800 cttccatttc ttggcgacac atctccccat cagcaaaacc atttgaaaat 850 ggacaatatt tggacattta tggaattaca agggaccagg ctggggaata 900 tgaatgcagt gcggaaaatg ctgtgtcatt cccagatgtg aggaaagtaa 950 aagttgttgt caactttgct cctactattc aggaaattaa atctggcacc 1000 gtgacccccg gacgcagtgg cctgataaga tgtgaaggtg caggtgtgcc 1050 gcctccagcc tttgaatggt acaaaggaga gaagaagctc ttcaatggcc 1100 aacaaggaat tattattcaa aattttagca caagatccat tctcactgtt 1150 accaacgtga cacaggagca cttcggcaat tatacctgtg tggctgccaa 1200 caagctaggc acaaccaatg cgagcctgcc tcttaaccct ccaagtacag 1250

cccagtatgg aattaccggg agcgctgatg ttctttctc ctgctggtac 1300 cttgtgttga cactgtcctc tttcaccagc atattctacc tgaagaatgc 1350 cattctacaa taaattcaaa gacccataaa aggcttttaa ggattctctg 1400 aaagtgctga tggctggatc caatctggta cagtttgtta aaagcagcgt 1450 gggatataat cagcagtgct tacatgggga tgatcgcctt ctgtagaatt 1500 gctcattatg taaatacttt aattctactc ttttttgatt agctacatta 1550 ccttgtgaag cagtacacat tgtccttttt ttaagacgtg aaagctctga 1600 aattactttt agaggatatt aattgtgatt tcatgtttgt aatctacaac 1650 ttttcaaaag cattcagtca tggtctgcta ggttgcaggc tgtagtttac 1700 aaaaacgaat attgcagtga atatgtgatt ctttaaggct gcaatacaag 1750 cattcagttc cctgtttcaa taagagtcaa tccacattta caaagatgca 1800 tttttttttt ttttgataaa aaagcaaata atattgcctt cagattattt 1850 cttcaaaata taacacatat ctaqattttt ctgcttqcat qatattcaqq 1900 tttcaggaat gagccttgta atataactgg ctgtgcagct ctgcttctct 1950 ttcctgtaag ttcagcatgg gtgtgccttc atacaataat atttttctct 2000 ttgtctccaa ctaatataaa atgttttgct aaatcttaca atttgaaagt 2050 aaaaataaac cagagtgatc aagttaaacc atacactatc tctaagtaac 2100 gaaggagcta ttggactgta aaaatctctt cctgcactga caatggggtt 2150 tgagaatttt gccccacact aactcagttc ttgtgatgag agacaattta 2200 ataacagtat agtaaatata ccatatgatt tctttagttg tagctaaatg 2250 ttagatccac cgtgggaaat cattcccttt aaaatgacag cacagtccac 2300 tcaaaggatt gcctagcaat acagcatctt ttcctttcac tagtccaagc 2350 caaaaatttt aagatgattt gtcagaaagg gcacaaagtc ctatcaccta 2400 atattacaag agttggtaag cgctcatcat taattttatt ttgtggcagg 2450 tattatgaca gtcgacctgg agggtatgga tatggatatg gacgttccag 2500 agactataat ggcagaaacc agggtggtta tgaccgctac tcaggaggaa 2550 attacagaga caattatgac aactgaaatg agacatgcac ataatataga 2600 tacacaagga ataatttctg atccaggatc qtccttccaa atgqctqtat 2650 ttataaaggt ttttggagct gcactgaagc atcttatttt atagtatatc 2700

aaccttttgt ttttaaattg acctgccaag gtagctgaag accttttaga 2750 cagttccatc tttttttta aattttttct gcctatttaa agacaaatta 2800 tgggacgttt gtcaaaaaaa aaaaaaaaa aaaaaaaaa 2840

<210> 612

<211> 352

<212> PRT

<213> Homo Sapien

<400> 612

Met Met Leu Leu Val Gln Gly Ala Cys Cys Ser Asn Gln Trp Leu

1 10 15

Ala Ala Val Leu Leu Ser Leu Cys Cys Leu Leu Pro Ser Cys Leu
20 25 30

Pro Ala Gly Gln Ser Val Asp Phe Pro Trp Ala Ala Val Asp Asn 35 40 45

Met Met Val Arg Lys Gly Asp Thr Ala Val Leu Arg Cys Tyr Leu
50 55 60

Glu Asp Gly Ala Ser Lys Gly Ala Trp Leu Asn Arg Ser Ser Ile 65 70 75

Ile Phe Ala Gly Gly Asp Lys Trp Ser Val Asp Pro Arg Val Ser 80 85 90

Ile Ser Thr Leu Asn Lys Arg Asp Tyr Ser Leu Gln Ile Gln Asn 95 100 105

Val Asp Val Thr Asp Asp Gly Pro Tyr Thr Cys Ser Val Gln Thr 110 115 120

Gln His Thr Pro Arg Thr Met Gln Val His Leu Thr Val Gln Val 125 130 135

Pro Pro Lys Ile Tyr Asp Ile Ser Asn Asp Met Thr Val Asn Glu 140 145 150

Gly Thr Asn Val Thr Leu Thr Cys Leu Ala Thr Gly Lys Pro Glu 155 160 165

Pro Ser Ile Ser Trp Arg His Ile Ser Pro Ser Ala Lys Pro Phe 170 175 180

Glu Asn Gly Gln Tyr Leu Asp Ile Tyr Gly Ile Thr Arg Asp Gln
185 190 195

Ala Gly Glu Tyr Glu Cys Ser Ala Glu Asn Ala Val Ser Phe Pro 200 205 210

Asp Val Arg Lys Val Lys Val Val Val Asn Phe Ala Pro Thr Ile 215 220 225

Gln Glu Ile Lys Ser Gly Thr Val Thr Pro Gly Arg Ser Gly Leu

	230			235			240				
Ile Arg Cy	s Glu Gly 245	Ala Gly	Val Pro	Pro Pro 250	Ala Phe	Glu	Trp 255				
Tyr Lys Gl	y Glu Lys 260	Lys Leu	Phe Asn	Gly Gln 265	Gln Gly	Ile	Ile 270				
Ile Gln As	n Phe Ser 275	Thr Arg	Ser Ile	Leu Thr 280	Val Thr	Asn	Val 285				
Thr Gln Gl	u His Phe 290	Gly Asn	Tyr Thr	Cys Val 295	Ala Ala	Asn	Lys 300				
Leu Gly Th	r Thr Asn 305	Ala Ser	Leu Pro	Leu Asn 310	Pro Pro	Ser	Thr 315				
Ala Gln Ty	r Gly Ile 320	Thr Gly	Ser Ala	Asp Val 325	Leu Phe	Ser	Cys 330				
Trp Tyr Le	u Val Leu 335	Thr Leu	Ser Ser	Phe Thr 340	Ser Ile	Phe	Tyr 345				
Leu Lys As	n Ala Ile 350	Leu Gln									
<210> 613 <211> 1797 <212> DNA <213> Homo Sapien											
<400> 613 agtggttcga	tgggaagga	t ctttct	tccaa gt	ggttcctc	ttgaggg	raq 5	50				
catttctgct											
aaataagaaa	attctcaag	g aggac	gaget et	tgagtgag	acccaaca	ag 1	150				
ctgcttttca	ccaaattgc	a atggaç	geett te	gaaatcaa	tgttccaa	ag 2	200				
cccaagagga	gaaatgggg	t gaactt	ctcc ct	agctgtgg	tggtcatc	ta 2	250				
cctgatcctg	ctcaccgct	g gcgctg	ggct gc	tggtggtc	caagttct	ga 3	300				
atctgcaggc	gcggctccg	g gtcctg	ggaga tg	tatttcct	caatgaca	ct 3	350				
ctggcggctg	aggacagco	c gtcctt	ctcc tt	gctgcagt	cagcacac	cc 4	00				
tggagaacac	ctggctcag	g gtgcat	cgag gc	tgcaagtc	ctgcaggc	cc 4	150				
aactcacctg											
aacttcactc	agaacccag	g gatgtt	caga at	caaaggtg	aacaaggc	gc 5	50				

cccaggtctt caaggtcaca agggggccat gggcatgcct ggtgcccctg 600

gcccgccggg accacctgct gagaagggag ccaagggggc tatgggacga 650

gatggagcaa caggcccctc gggaccccaa ggcccaccgg gagtcaaggg 700 agaggeggge etecaaggae eecagggtge tecagggaag caaggageea 750 ctggcacccc aggaccccaa ggagagaagg gcagcaaagg cgatgggggt 800 ctcattggcc caaaagggga aactggaact aagggagaga aaggagacct 850 gggtctccca ggaagcaaag gggacagggg catgaaagga gatgcagggg 900 tcatggggcc tcctggagcc caggggagta aaggtgactt cgggaggcca 950 ggcccaccag gtttggctgg ttttcctgga gctaaaqqaq atcaaqqaca 1000 acctggactg cagggtgttc cgggccctcc tggtgcagtg ggacacccag 1050 gtgccaaggg tgagcctggc agtgctggct cccctgggcg agcaggactt 1100 ccagggagcc ccgggagtcc aggagccaca ggcctgaaag gaagcaaagg 1150 ggacacagga cttcaaggac agcaaggaag aaaaggagaa tcaggagttc 1200 caggccctgc aggtgtgaag ggagaacagg ggagcccagg gctggcaggt 1250 cccaagggag cccctggaca agctggccag aagggagacc agggagtgaa 1300 aggatettet ggggageaag gagtaaaggg agaaaaaggt gaaagaggtg 1350 aaaactcagt gtccgtcagg attgtcggca gtagtaaccg aggccgggct 1400 gaagtttact acagtggtac ctgggggaca atttqcqatq acqagtggca 1450 aaattotgat gocattgtot totgoogoat gotgggttac tocaaaggaa 1500 gggccctgta caaagtggga gctggcactg ggcagatctg gctggataat 1550 gttcagtgtc ggggcacgga gagtaccctg tggagctgca ccaagaatag 1600 ctggggccat catgactgca gccacgagga ggacgcaggc gtggagtgca 1650 gcgtctgacc cggaaaccct ttcacttctc tgctcccgag gtgtcctcgg 1700 gctcatatgt gggaaggcag aggatctctg aggagttccc tqqqqacaac 1750 tgagcagcct ctggagaggg gccattaata aagctcaaca tcattga 1797

<210> 614

<211> 520

<212> PRT

<213> Homo Sapien

<400> 614

Met Arg Asn Lys Lys Ile Leu Lys Glu Asp Glu Leu Leu Ser Glu
1 5 10 15

Thr Gln Gln Ala Ala Phe His Gln Ile Ala Met Glu Pro Phe Glu 20 25 30

Ile Asn Val Pro Lys Pro Lys Arg Arg Asn Gly Val Asn Phe Ser Leu Ala Val Val Ile Tyr Leu Ile Leu Leu Thr Ala Gly Ala Gly Leu Leu Val Val Gln Val Leu Asn Leu Gln Ala Arg Leu Arg Val Leu Glu Met Tyr Phe Leu Asn Asp Thr Leu Ala Ala Glu Asp 80 Ser Pro Ser Phe Ser Leu Leu Gln Ser Ala His Pro Gly Glu His Leu Ala Gln Gly Ala Ser Arg Leu Gln Val Leu Gln Ala Gln Leu 115 Thr Trp Val Arg Val Ser His Glu His Leu Leu Gln Arg Val Asp 130 Asn Phe Thr Gln Asn Pro Gly Met Phe Arg Ile Lys Gly Glu Gln Gly Ala Pro Gly Leu Gln Gly His Lys Gly Ala Met Gly Met Pro Gly Ala Pro Gly Pro Pro Gly Pro Pro Ala Glu Lys Gly Ala Lys Gly Ala Met Gly Arg Asp Gly Ala Thr Gly Pro Ser Gly Pro Gln Gly Pro Pro Gly Val Lys Gly Glu Ala Gly Leu Gln Gly Pro Gln Gly Ala Pro Gly Lys Gln Gly Ala Thr Gly Thr Pro Gly Pro Gln Gly Glu Lys Gly Ser Lys Gly Asp Gly Gly Leu Ile Gly Pro Lys Gly Glu Thr Gly Thr Lys Gly Glu Lys Gly Asp Leu Gly Leu Pro 255 Gly Ser Lys Gly Asp Arg Gly Met Lys Gly Asp Ala Gly Val Met Gly Pro Pro Gly Ala Gln Gly Ser Lys Gly Asp Phe Gly Arg Pro Gly Pro Pro Gly Leu Ala Gly Phe Pro Gly Ala Lys Gly Asp Gln Gly Gln Pro Gly Leu Gln Gly Val Pro Gly Pro Pro Gly Ala Val 305 315 Gly His Pro Gly Ala Lys Gly Glu Pro Gly Ser Ala Gly Ser Pro

				320					325					330
Gly	Arg	Ala	Gly	Leu 335	Pro	Gly	Ser	Pro	Gly 340	Ser	Pro	Gly	Ala	Thr 345
Gly	Leu	Lys	Gly	Ser 350	Lys	Gly	Asp	Thr	Gly 355	Leu	Gln	Gly	Gln	Gln 360
Gly	Arg	Lys	Gly	Glu 365	Ser	Gly	Val	Pro	Gly 370	Pro	Ala	Gly	Val	Lys 375
Gly	Glu	Gln	Gly	Ser 380	Pro	Gly	Leu	Ala	Gly 385	Pro	Lys	Gly	Ala	Pro 390
Gly	Gln	Ala	Gly	Gln 395	Lys	Gly	Asp	GÌn	Gly 400	Val	Lys	Gly	Ser	Ser 405
Gly	Glu	Gln	Gly	Val 410	Lys	Gly	Glu	Lys	Gly 415	Glu	Arg	Gly	Glu	Asn 420
Ser	Val	Ser	Val	Arg 425	Ile	Val	Gly	Ser	Ser 430	Asn	Arg	Gly	Arg	Ala 435
Glu	Val	Tyr	Tyr	Ser 440	Gly	Thr	Trp	Gly	Thr 445	Ile	Cys	Asp	Asp	Glu 450
Trp	Gln	Asn	Ser	Asp 455	Ala	Ile	Val	Phe	Cys 460	Arg	Met	Leu	Gly	Tyr 465
Ser	Lys	Gly	Arg	Ala 470	Leu	Tyr	Lys	Val	Gly 475	Ala	Gly	Thr	Gly	Gln 480
Ile	Trp	Leu	Asp	Asn 485	Val	Gln	Суз	Arg	Gly 490	Thr	Glu	Ser	Thr	Leu 495
Trp	Ser	Суз	Thr	Lys 500	Asn	Ser	Trp	Gly	His 505	His	Asp	Cys	Ser	His 510
Glu	Glu	Asp	Ala	Gly 515	Val	Glu	Cys	Ser	Val 520					
/21A	> 615													
	> 641													

<211> 647 <212> DNA <213> Homo Sapien

<400> 615

cccacgcgtc cgaaggcaga caaaggttca tttgtaaaga agctccttcc 50 agcacctcct ctcttctcct tttgcccaaa ctcacccagt gagtgtgagc 100 atttaagaag catcctctgc caagaccaaa aggaaagaag aaaaagggcc 150 aaaagccaaa atgaaactga tggtacttgt tttcaccatt gggctaactt 200

tgctgctagg agttcaagcc atgcctgcaa atcgcctctc ttgctacaga 250 aagatactaa aagatcacaa ctgtcacaac cttccggaag gagtagctga 300

cctgacacag attgatgtca atgtccagga tcatttctgg gatgggaagg 350 gatgtgagat gatctgttac tgcaacttca gcgaattgct ctgctgccca 400 aaagacgttt tctttggacc aaagatctct ttcgtgattc cttgcaacaa 450 tcaatgagaa tcttcatgta ttctggagaa caccattcct gatttcccac 500 aaactgcact acatcagtat aactgcattt ctagtttcta tatagtgcaa 550 tagagcatag attctataaa ttcttacttg tctaagacaa gtaaatctgt 600 gttaaacaag tagtaataaa agttaattca atctaaaaaa aaaaaaa 647

<210> 616

<211> 98

<212> PRT

<213> Homo Sapien

<400> 616

Met Lys Leu Met Val Leu Val Phe Thr Ile Gly Leu Thr Leu Leu 1 5 10 15

Leu Gly Val Gln Ala Met Pro Ala Asn Arg Leu Ser Cys Tyr Arg
20 25 30

Lys Ile Leu Lys Asp His Asn Cys His Asn Leu Pro Glu Gly Val
35 40 45

Ala Asp Leu Thr Gln Ile Asp Val Asn Val Gln Asp His Phe Trp
50 55 60

Asp Gly Lys Gly Cys Glu Met Ile Cys Tyr Cys Asn Phe Ser Glu
65 70 75

Leu Leu Cys Cys Pro Lys Asp Val Phe Phe Gly Pro Lys Ile Ser 80 85 90

Phe Val Ile Pro Cys Asn Asn Gln

<210> 617

<211> 2558

<212> DNA

<213> Homo Sapien

<400> 617

gggtggttta taaaatcctc caatgaagct actaacatta ctccaaagca 350 taatatgaaa gcatttttgg atgaattgaa agctgagaac atcaagaagt 400 tettacataa ttttacacag ataccacatt tagcaggaac agaacaaaac 450 tttcagcttg caaagcaaat tcaatcccag tggaaagaat ttggcctgga 500 ttctgttgag ctagctcatt atgatgtcct gttgtcctac ccaaataaga 550 ctcatcccaa ctacatctca ataattaatg aagatggaaa tgagattttc 600 aacacatcat tatttgaacc acctecteca ggatatgaaa atgtttegga 650 tattgtacca cctttcagtg ctttctctcc tcaaggaatg ccagagggcg 700 atctagtgta tgttaactat gcacqaactg aagacttctt taaattggaa 750 cgggacatga aaatcaattg ctctgggaaa attgtaattg ccagatatgg 800 gaaagttttc agaggaaata aggttaaaaa tgcccagctg gcaggggcca 850 aaggagtcat tetetactee gaccetgetg actaetttge teetgqqqtq 900 aagtcctatc cagacggttg gaatcttcct ggaggtggtg tccagcgtgg 950 aaatatccta aatctgaatg gtgcaggaga ccctctcaca ccaggttacc 1000 cagcaaatga atatgcttat aggcgtggaa ttgcagaggc tgttggtctt 1050 ccaagtattc ctgttcatcc aattggatac tatgatgcac agaagctcct 1100 agaaaaaatg ggtggctcag caccaccaga tagcagctgg agaggaagtc 1150 tcaaagtgcc ctacaatgtt ggacctggct ttactggaaa cttttctaca 1200 caaaaagtca agatgcacat ccactctacc aatgaagtga cgagaattta 1250 caatgtgata ggtactctca gaggagcagt ggaaccagac agatatgtca 1300 ttctgggagg tcaccgggac tcatgggtgt ttggtggtat tgaccctcag 1350 agtggagcag ctgttgttca tgaaattgtg aggagctttg gaacactgaa 1400 aaaggaaggg tggagaccta gaagaacaat tttgtttgca aqctgggatg 1450 cagaagaatt tggtcttctt ggttctactg agtgggcaga ggagaattca 1500 agactectte aagagegtgg egtggettat attaatgetg acteatetat 1550 agaaggaaac tacactctga gagttgattg tacaccgctg atgtacagct 1600 tggtacacaa cctaacaaaa gagctgaaaa gccctgatga aggctttgaa 1650 ggcaaatctc tttatgaaag ttggactaaa aaaagtcctt ccccaqagtt 1700 cagtggcatg cccaggataa gcaaattggg atctggaaat gattttgagg 1750

tgttcttcca acgacttgga attgcttcag gcagagcacg gtatactaaa 1800 aattgggaaa caaacaaatt cagcggctat ccactgtatc acagtgtcta 1850 tgaaacatat gagttggtgg aaaagtttta tgatccaatg tttaaatatc 1900 acctcactgt ggcccaggtt cgaggaggga tggtgtttga gctagccaat 1950 tccatagtgc tcccttttga ttgtcgagat tatgctgtag ttttaagaaa 2000 gtatgctgac aaaatctaca gtatttctat gaaacatcca caggaaatga 2050 agacatacag tgtatcattt gattcacttt tttctgcagt aaagaatttt 2100 acagaaattq cttccaagtt cagtgagaga ctccaggact ttgacaaaag 2150 caacccaata gtattaagaa tgatgaatga tcaactcatg tttctggaaa 2200 gagcatttat tgatccatta gggttaccag acaggccttt ttataggcat 2250 gtcatctatg ctccaagcag ccacaacaag tatgcagggg agtcattccc 2300 aggaatttat gatgctctgt ttgatattga aagcaaagtg gacccttcca 2350 aggcctgggg agaagtgaag agacagattt atgttgcagc cttcacagtg 2400 caggcagctg cagagacttt gagtgaagta gcctaagagg attttttaga 2450 gaatccgtat tgaatttgtg tggtatgtca ctcagaaaga atcgtaatgg 2500 gtatattgat aaattttaaa attggtatat ttgaaataaa gttgaatatt 2550 atatataa 2558

<210> 618

<211> 750

<212> PRT

<213> Homo Sapien

<400> 618

Met Trp Asn Leu Leu His Glu Thr Asp Ser Ala Val Ala Thr Ala 1 5 10 15

Arg Arg Pro Arg Trp Leu Cys Ala Gly Ala Leu Val Leu Ala Gly 20 25 30

Gly Phe Phe Leu Leu Gly Phe Leu Phe Gly Trp Phe Ile Lys Ser 35 40 45

Ser Asn Glu Ala Thr Asn Ile Thr Pro Lys His Asn Met Lys Ala 50 55 60

Phe Leu Asp Glu Leu Lys Ala Glu Asn Ile Lys Lys Phe Leu His
65 70 75

Asn Phe Thr Gln Ile Pro His Leu Ala Gly Thr Glu Gln Asn Phe 80 85 90

Gln	Leu	Ala	Lys	Gln 95	Ile	Gln	Ser	Gln	Trp 100	Lys	Glu	Phe	Gly	Leu 105
Asp	Ser	Val	Glu	Leu 110	Ala	His	Tyr	Asp	Val 115	Leu	Leu	Ser	Tyr	Pro 120
Asn	Lys	Thr	His	Pro 125	Asn	Tyr	Ile	Ser	Ile 130	Ile	Asn	Glu	Asp	Gly 135
Asn	Glu	Ile	Phe	Asn 140	Thr	Ser	Leu	Phe	Glu 145	Pro	Pro	Pro	Pro	Gly 150
Tyr	Glu	Asn	Val	Ser 155	Asp	Ile	Val	Pro	Pro 160	Phe	Ser	Ala	Phe	Ser 165
Pro	Gln	Gly	Met	Pro 170	Glu	Gly	Asp	Leu	Val 175	Tyr	Val	Asn	Tyr	Ala 180
Arg	Thr	Glu	Asp	Phe 185	Phe	Lys	Leu	Glu	Arg 190	Asp	Met	Lys	Ile	Asn 195
Cys	Ser	Gly	Lys	Ile 200	Val	Ile	Ala	Arg	Tyr 205	Gly	Lys	Val	Phe	Arg 210
Gly	Asn	Lys	Val	Lys 215	Asn	Ala	Gln	Leu	Ala 220	Gly	Ala	Lys	Gly	Val 225
Ile	Leu	Tyr	Ser	Asp 230	Pro	Ala	Asp	Tyr	Phe 235	Ala	Pro	Gly	Val	Lys 240
Ser	Tyr	Pro	Asp	Gly 245	Trp	Asn	Leu	Pro	Gly 250	Gly	Gly	Val	Gln	Arg 255
Gly	Asn	Ile	Leu	Asn 260	Leu	Asn	Gly	Ala	Gly 265	Asp	Pro	Leu	Thr	Pro 270
Gly	Tyr	Pro	Ala	Asn 275	Glu	Tyr	Ala	Tyr	Arg 280	Arg	Gly	Ile	Ala	Glu 285
Ala	Val	Gly	Leu	Pro 290	Ser	Ile	Pro	Val	His 295	Pro	Ile	Gly	Tyr	Tyr 300
Asp	Ala	Gln	Lys	Leu 305	Leu	Glu	Lys	Met	Gly 310	Gly	Ser	Ala	Pro	Pro 315
Asp	Ser	Ser	Trp	Arg 320	Gly	Ser	Leu	Lys	Val 325	Pro	Tyr	Asn	Val	Gly 330
Pro	Gly	Phe	Thr	Gly 335	Asn	Phe	Ser	Thr	Gln 340	Lys	Val	Lys	Met	His 345
Ile	His	Ser	Thr	Asn 350	Glu	Val	Thr	Arg	Ile 355	Tyr	Asn	Val	Ile	Gly 360
Thr	Leu	Arg	Gly	Ala 365	Val	Glu	Pro	Asp	Arg 370	Tyr	Val	Ile	Leu	Gly 375
Gly	His	Arg	Asp	Ser	Trp	Val	Phe	Gly	Gly	Ile	Asp	Pro	Gln	Ser

				380					385					390
Gly	Ala	Ala	Val	Val 395	His	Glu	Ile	Val	Arg 400	Ser	Phe	Gly	Thr	Leu 405
Lys	Lys	Glu	Gly	Trp 410	Arg	Pro	Arg	Arg	Thr 415	Ile	Leu	Phe	Ala	Ser 420
Trp	Asp	Ala	Glu	Glu 425	Phe	Gly	Leu	Leu	Gly 430	Ser	Thr	Glu	Trp	Ala 435
Glu	Glu	Asn	Ser	Arg 440	Leu	Leu	Gln	Glu	Arg 445	Gly	Val	Ala	Tyr	Ile 450
Asn	Ala	Asp	Ser	Ser 455	Ile	Glu	Gly	Asn	Tyr 460	Thr	Leu	Arg	Val	Asp 465
Cys	Thr	Pro	Leu	Met 470	Tyr	Ser	Leu	Val	His 475	Asn	Leu	Thr	Lys	Glu 480
Leu	Lys	Ser	Pro	Asp 485	Glu	Gly	Phe	Glu	Gly 490	Lys	Ser	Leu	Tyr	Glu 495
Ser	Trp	Thr	Lys	Lys 500	Ser	Pro	Ser	Pro	Glu 505	Phe	Ser	Gly	Met	Pro 510
Arg	Ile	Ser	Lys	Leu 515	Gly	Ser	Gly	Asn	Asp 520	Phe	Glu	Val	Phe	Phe 525
Gln	Arg	Leu	Gly	Ile 530	Ala	Ser	Gly	Arg	Ala 535	Arg	Tyr	Thr	Lys	Asn 540
Trp	Glu	Thr	Asn	Lys 545	Phe	Ser	Gly	Tyr	Pro 550	Leu	Tyr	His	Ser	Val 555
Tyr	Glu	Thr	Tyr	Glu 560	Leu	Val	Glu	Lys	Phe 565	Tyr	Asp	Pro	Met	Phe 570
Lys	Tyr	His	Leu	Thr 575	Val	Ala	Gln	Val	Arg 580	Gly	Gly	Met	Val	Phe 585
Glu	Leu	Ala	Asn	Ser 590	Ile	Val	Leu	Pro	Phe 595	Asp	Суз	Arg	Asp	Tyr 600
Ala	Val	Val	Leu	Arg 605	Lys	Tyr	Ala	Asp	Lys 610	Ile	Tyr	Ser	Ile	Ser 615
Met	Lys	His	Pro	Gln 620	Glu _.	Met	Lys	Thr	Tyr- 625	Ser	Val	Ser	Phe	Asp 630
Ser	Leu	Phe	Ser	Ala 635	Val	Lys	Asn	Phe	Thr 640	Glu	Ile	Ala	Ser	Lys 645
Phe	Ser	Glu	Arg	Leu 650	Gln	Asp	Phe	Asp	Lys 655	Ser	Asn	Pro	Ile	Val 660
Leu	Arg	Met	Met	Asn 665	Asp	Gln	Leu	Met	Phe 670	Leu	Glu	Arg	Ala	Phe 675

```
Ile Asp Pro Leu Gly Leu Pro Asp Arg Pro Phe Tyr Arg His Val
 Ile Tyr Ala Pro Ser Ser His Asn Lys Tyr Ala Gly Glu Ser Phe
                 695
                                      700
 Pro Gly Ile Tyr Asp Ala Leu Phe Asp Ile Glu Ser Lys Val Asp
 Pro Ser Lys Ala Trp Gly Glu Val Lys Arg Gln Ile Tyr Val Ala
                                      730
 Ala Phe Thr Val Gln Ala Ala Glu Thr Leu Ser Glu Val Ala
                 740
<210> 619
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 619
 agatgtgaag gtgcaggtgt gccg 24
<210> 620
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 620
 gaacatcagc gctcccggta attcc 25
<210> 621
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 621
 ccagcctttg aatggtacaa aggagagaag aagctcttca atggcc 46
<210> 622
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
```

F.

Ū

ū

UT

<400> 622

ccaaactcac ccagtgagtg tgagc 25

