SPRAWOZDANIE

Modelowanie i symulacja serwomechanizmu

Data	09.10.2018
grupa	Wtorek 12:45
zespół 1	Michał Krzyszczuk Szymon Kuczaty Łukasz Leśny

1.Cel ćwiczenia

Modelowanie i symulacja serwomechanizmu sterowanego regulatorem PID oraz III-położeniowym ze sprzężeniem tachometrycznym przy użyciu środowiska Matlab/Simulink.

2. Wykonanie

a)Regulator PID

Po stworzeniu schematu dostępnego w instrukcji ćwiczenia w punkcie pierwszym, przystąpiliśmy do procedury samostrojenia nastaw regulatora PID, z wykorzystaniem wbudowanych narzędzi pakietu *Simulink*.

Proportional (P): 0.835190564478209

Integral (I): 0.258856891115883

Derivative (D): 0.470043788873332

Filter coefficient (N): 8.66006704700408

Otrzymane nastawy regulatora PID.

Odpowiedź układu z wyłączonym sprzężeniem tachometrycznym

Uchyb regulacji układu z wyłączonym sprzężeniem tachometrycznym

Czas regulacji jest krótki, uchyb regulacji również, jednak występuje przeregulowanie. W celu jego wyeliminowania zostało zastosowane sprzężenie tachometryczne.

Odpowiedź układu oraz uchyb w układzie ze sprzężeniem tachometrycznym

Obserwacje:

- -brak przeregulowania
- -czas regulacji podobny do układu bez sprzężenia

Przetestowaliśmy także różne nastawy regulatora PID czego efekty przedstawiono poniżej

Odpowiedź układu oraz uchyb regulacji dla regulatora PI.

Dokładne parametry PID

b) Następnie zbudowano model regulatora 3 położeniowego

I zbadano jego odpowiedzi zależnie od ustawień strefy martwej i pętli sprzężenia tachometrycznego.

Ustawienia regulatora 3-położeniowego

Odpowiedź układu regulatora 3-położeniowego bez sprzężenia tachometrycznego

Następnie do układu włączono sprzężenie:

Odpowiedź układu regulatora 3-położeniowego z sprzężeniem tachometrycznym

Obserwacje:

- -szybki czas regulacji
- -brak przeregulowania

Wnioski

- Regulując tylko nastawami regulatora PID nie można było wyeliminować przeregulowania w układzie, dopiero zastosowanie sprzężenia tachometrycznego skutkowało poprawą regulacji w tym aspekcie.
- Nastawy autostrojenia okazały się być najbardziej optymalne dla naszego układu spośród stosowanych
- Szerokość strefy martwej bezpośrednio wpływa na uchyb w stanie ustalonym
- Bez sprzężenia tachometrycznego układ stale będzie znajdował się w oscylacjach wokół wartości zadanej (dla regulatora III położeniowego)
- Sprzężenie tachometryczne tak jak poprzednio eliminuje przeregulowanie przez co poprawia regulacje
- Zbyt wysoka wartość wzmocnienia sprzężenia tachometrycznego powodowała znaczne pogorszenie jakości regulacji