[Homework 1] Review of Probability Theory

Probability Space of Tossing Coins

Let us construct the probability space of tossing an infinite sequence of independent fair coins. Let $\Omega=\{0,1\}^{\mathbb{N}}$. We can write each $\omega\in\Omega$ as an infinite sequence $\omega=(\omega_1,\omega_2,\ldots)$ where $\omega_i\in\{0,1\}$.

1. Let $n \in \mathbb{N}$. For every $s = (s_1, \ldots, s_n) \in \{0,1\}^n$, let

$$C_s = \left\{ \omega \in \Omega \mid \omega_1 = s_1, \ldots, \omega_n = s_n
ight\}.$$

Prove that for every $n\in\mathbb{N}$, the collection $\{C_s\}_{s\in\{0,1\}^n}$ forms a partition of Ω .

- 2. Let \mathcal{F}_n be the σ -algebra generated by $\{C_s\}_{s\in\{0,1\}^n}$ (that is, the minimal σ -algebra containing sets in $\{C_s\}_{s\in\{0,1\}^n}$). Note that \mathcal{F}_n is called the σ -algebra of tossing n coins. Prove that there exists a bijection between \mathcal{F}_n and $2^{\{0,1\}^n}$.
- 3. Prove that $\mathcal{F}_1\subsetneq\mathcal{F}_2\subsetneq\dots$ is increasing. The collection $\{\mathcal{F}_n\}_{n\geq 1}$ is called a *filtration*.
- 4. Let $\mathcal{F}_\infty=igcup_{n\geq 1}\mathcal{F}_n$. Prove that \mathcal{F}_∞ is an algebra [1] (not necessarily a σ -algebra) and $\mathcal{F}_\infty
 eq 2^\Omega$.
- 5. Let $\mathcal{B}(\Omega) \triangleq \sigma(\mathcal{F}_{\infty})$ be the minimal σ -algebra containing \mathcal{F}_{∞} . Prove that for any $\omega \in \Omega$, it holds that $\{\omega\} \in \mathcal{B}(\Omega) \setminus \mathcal{F}_{\infty}$.
- 6. Prove that for every $A\in\mathcal{F}_\infty$, there exist some $n\in\mathbb{N}$ and $s_1,\ldots,s_k\in\{0,1\}^n$ such that $A=C_{s_1}\cup\cdots\cup C_{s_k}$. Although the choice of n might not be unique, prove that the value $\frac{k}{2^n}$ only depends on A.
- 7. Prove that there exists a unique probability measure $P:\mathcal{B}(\Omega) o [0,1]$ satisfying for every $A\in\mathcal{F}_\infty$, $P(A)=rac{k}{2^n}$ where k and n are defined in the last question.

Then $(\Omega, \mathcal{B}(\Omega), P)$ is our probability space for tossing coins, and it is isomorphic to the Lebesgue measure on [0, 1].

8. Formalize $X \sim \mathtt{Geom}(1/2)$ in this probability space.

Conditional Expectation

- 1. Let X be a random variable and $f:\mathbb{R}\to\mathbb{R}$ be a measurable function (that is, for every borel set $A\in\mathscr{R}$, $f^{-1}(A)\in\mathscr{R}$). We usually use f(X) to denote the random variable: $\omega\in\Omega\mapsto f(X(\omega))\in\mathbb{R}$. Prove that f(X) is $\sigma(X)$ -measurable.
- 2. Let Y,Y' be two random variables such that $\sigma(Y)=\sigma(Y')$. Prove that $\mathbf{E}\left[X\mid Y\right]=\mathbf{E}\left[X\mid Y'\right]$.
- 3. The fact you just proved should convince you that the conditional expectation $\mathbf{E}\left[X\mid Y\right]$ only depends on the σ -algebra $\sigma(Y)$ (but not the value of Y). Let Ω be the set of outcomes and $X:\Omega\to\mathbb{R}$ be a random variable. Let $\mathcal F$ be a σ -algebra on Ω . Can you define the notation $\mathbf{E}\left[X\mid \mathcal F\right]$?
- 4. (The coarser always wins) Let $\mathcal{F}_1, \mathcal{F}_2$ be two σ -algebra such that $\mathcal{F}_1 \subseteq \mathcal{F}_2$ and $X: \Omega \to \mathbb{R}$ be a random variable. Prove that $\mathbf{E}\left[\mathbf{E}\left[X\mid \mathcal{F}_1\right]\mid \mathcal{F}_2\right] = \mathbf{E}\left[\mathbf{E}\left[X\mid \mathcal{F}_2\right]\mid \mathcal{F}_1\right] = \mathbf{E}\left[X\mid \mathcal{F}_1\right].$
 - 1. A set $\mathcal F$ is an algebra if for every $A,B\in\mathcal F$, it holds $A^c\in\mathcal F$ and $A\cup B\in\mathcal F$.