

# Compléments sur les probabilités

\*\*\*

# 1. Somme de deux variables aléatoires

### 1.1 1<sup>re</sup> définition

### Définition 1.

Soit X et Y deux variables aléatoires associées à une même expérience d'univers fini  $\Omega$  et a un réel. X+Y et aX sont deux variables aléatoires définies sur  $\Omega$  qui prennent comme valeur pour un événement donné respectivement : la . . . . . . . . . . . des valeurs de X et Y et le . . . . . . . . . . de a par X.

### ★★ Exemple.

On lance deux dés, l'un tétraédrique numéroté de 1 à 4 et l'autre cubique numéroté de 1 à 6. On appelle X et Y les variables aléatoires associées respectivement aux résultats du dé tétraédrique et du dé cubique.







- $\bigstar$  Remarque : on peut généraliser la somme de variable aléatoires à n variables.

# 1.2 Linéarité de l'espérance et additivité de la variance

### Théorème 1.

Soit X et Y deux variables aléatoires d'un univers  $\Omega$  et a un réel.

• Linéarité de l'espérance : E(X+Y)=E(X)+E(Y) et E(aX)=aE(X)

Si les variables X et Y sont **indépendantes** :

• Additivité de la variance : V(X+Y)=V(X)+V(Y) et  $V(aX)=a^2V(X)$ 

 $\bigstar$  Remarque : on considérera l'indépendance des variables au sens intuitif du terme c'est à dire que le résultat de X n'influe pas sur le résultat de Y comme dans le lancement de deux dés.

 $\bigstar \bigstar$  Exemple. Prendre l'exemple initial en calculant E(X+Y), E(2X), V(X+Y) et V(2X).

- $\bigstar$  Remarque : on peut généraliser ces résultats à la somme de n variables.
- 2. Somme de variables identiques et indépendantes
- 2.1 Décomposition d'une variable aléatoire suivant une loi binomiale

### Théorème 2.

Soit n variables aléatoires indépendantes  $X_1, X_2, \ldots, X_n$  suivant la même loi de Bernoulli  $\mathscr{B}(p)$ . La variable aléatoire  $S_n = X_1 + X_2 + \ldots + X_n$  suit alors la loi binomiale  $\mathscr{B}(n,p)$ .

★★ Exemple. Soit  $X_i$  suivant une loi de Bernoulli  $\mathcal{B}(0,13)$  pour  $i \in [1; 10]$ , alors  $S_{10} = X_1 + X_2 + \ldots + X_{10}$  suit la loi binomiale  $\mathcal{B}(10; 0, 13)$ .

# Théorème 3.

Toute variable aléatoire X suivant la loi binomiale  $\mathcal{B}(n,p)$  peut se décomposer en **une somme** de n variables indépendantes  $S_n$ .

 $S_n = X_1 + X_2 + \ldots + X_n$  où  $X_i$  avec  $i \in [1; n]$  suit une même loi de Bernoulli  $\mathscr{B}(p)$ .

★ Remarque : ce théorème permet de démontrer l'expression de l'espérance et de la variance d'une loi binomiale  $\mathcal{B}(n,p)$ . En effet si X suit la loi binomiale  $\mathcal{B}(n,p)$ , on peut décomposer X en somme de n variables indépendantes suivant la loi de Bernoulli  $\mathcal{B}(p)$  d'espérance p et de variance p(1-p).

# 2.2 Échantillon d'une variable aléatoire

### Définition 2.

Soit une variable X suivant une loi de probabilité.

Une liste de variables indépendantes  $(X_1, X_2, \dots, X_n)$  suivant cette même loi est appelée **échantillon** de taille n associé à X

On pose  $S_n = X_1 + X_2 + \ldots + X_n$  et  $M_n = \frac{S_n}{n}$ , on a alors:

$$E(S_n) = nE(X), \quad E(M_n) = E(X) \text{ et } V(S_n) = nV(X), \quad V(M_n) = \frac{V(X)}{n}$$

- $\bigstar$  Remarque : plus la taille n de l'échantillon est grand plus la variance de  $M_n$  est petite donc plus la valeur de  $M_n$  se rapproche de l'espérance de X.
- $\bigstar \bigstar$  Exemple. Soit X une variable aléatoire dont la loi de probabilité est donnée par le tableau suivant. On considère un échantillon  $(X_1, X_2, \dots, X_n)$  de la loi suivie par X et la variable aléatoire moyenne  $M_n$ :

| $x_i$      | -10   | 5    | 20   |
|------------|-------|------|------|
| $p(X=x_i)$ | 0, 25 | 0,55 | 0, 2 |

Déterminons la taille de l'échantillon n à partir de laquelle la variance de  $M_n$  devient inférieure à 0,05.

# 3. Concentration et loi des grands nombres

# 3.1 Inégalité de Bienaymé-Tchebychev

### Théorème 4.

Soit X une variable aléatoire d'espérance  $\mu$  et de variance V.

$$\forall \delta \in ]0; +\infty[, p(|X - \mu| \geqslant \delta) \leqslant \frac{V}{\delta^2}$$

★ Remarque : la probabilité que X se trouve en dehors de l'intervalle  $[\mu - \delta; \mu + \delta]$  est inférieur à  $\frac{V}{\delta^2}$ . Cette inégalité conduit à la loi des grands nombres.

 $\bigstar \bigstar$  Exemple. La taille moyenne d'une femme française est de 1,65 m et la variance est évaluée à 0,0025. Majorons la proportion des femmes françaises dont la taille est inférieure ou égale à 1,55 ou supérieure ou égale à 1,75.

Soit  $T_F$  la variable aléatoire associée à la taille d'une femme française. On a donc  $\mu = 1,65$  et V = 0,0025.



# 3.2 Application à un intervalle de rayon de k fois l'écart-type

### Théorème 5.

Soit X une variable aléatoire d'espérance  $\mu$  et d'écart-type  $\sigma$ .

$$\forall k \in \mathbb{N}^*, p(|X - \mu| \geqslant k\sigma) \leqslant \frac{1}{k^2}$$

### **★★** Exemple.

Sur une roue de loterie il y a 4 secteurs rouges sur 10.

On fait tourner 20 fois la roue en notant par X le nombre de fois où la roue tombe sur un secteur rouge.

La variable aléatoire X suit alors la loi binomiale  $\mathcal{B}(20; 0, 4)$ .

Majorons la probabilité que X soit en dehors de l'intervalle centrée en  $\mu$  et de rayon  $2\sigma$ .



# 3.3 Inégalité de concentration

### Théorème 6.

Soit  $(X_1, X_2, ..., X_n)$  un échantillon de variables aléatoires d'espérance  $\mu$  et de variance V et  $M_n$  la variable aléatoire moyenne de cet échantillon.

$$\forall \delta \in ]0; +\infty[, p(|M_n - \mu| \geqslant \delta) \leqslant \frac{V}{n\delta^2}$$

 $\bigstar \bigstar$  Exemple. On prend un dé tétraédrique bien équilibré dont on a déterminé l'espérance  $\mu=2,5$  et la variance V=1,25.

Combien de lancers du dé tétraédrique doit-on faire pour s'assurer au seuil de 95 % que la moyenne des résultats des lancers est dans l'intervalle [2,45;2,55]?

# 3.4 Loi des grands nombres

### Théorème 7.

Soit  $(X_1, X_2, \dots, X_n)$  un échantillon de variables aléatoires d'espérance  $\mu$  et  $M_n$  la variable aléatoire moyenne de cet échantillon.

$$\forall \delta \in ]0; +\infty[, \lim_{n \to +\infty} p(|M_n - \mu| \geqslant \delta) = 0$$

 $\bigstar$  Remarque : pour un  $\delta$  donné aussi petit soit-il, la limite de la probabilité que  $M_n$  soit en dehors de l'intervalle  $[\mu - \delta; \mu + \delta]$  est nulle.

Ce théorème montre de façon rigoureuse, que lorsqu'on lance un grand nombre de fois une pièce de monnaie bien équilibrée, on a une chance sur deux en moyenne que la pièce tombe sur « pile » ou sur « face ».