# Wine Quality Evaluation

Yula Ko, Farzana Manjra, Natalia Gomez, Victoria Wayda, JiaRui (Jesse) Shao

**Data Diggers** 

# Introduction

#### Determine what makes a "good" wine

We plan to determine which chemical properties make a wine 'good' by utilizing various methods. We believe the target audience that may find this useful could be anyone else who

is looking to determine the quality of wine based on these variables.

# Overview

Intro to this data

Visualize the data

**Logistic Regression** 

K-NN

Conclusion 06

# INTRODUCTION TO THIS DATA

# Introduction

#### The Variables

| Fixed Acidity        | Volatile Acidity | Citric Acid         |
|----------------------|------------------|---------------------|
| Residual Sugar       | Chlorides        | Free Sulfur Dioxide |
| Total Sulfur Dioxide | Density          | рН                  |
| Sulphates            | Alcohol          | Quality             |

- 12 Variables
- 1,599 Observations
- Quality = Response Variable

# **Data Description**

- Fixed Acidity most acids in wine that do not evaporate easily
- Volatile Acidity amount of acetic acid, unpleasant taste
- Citric Acid preservative that can add a fresh taste
- Residual Sugar amount of sugar after fermentation stops
- Chlorides amount of salt
- Free Sulfur Dioxide prevents oxidation
- Total Sulfur Dioxide preservative that can affect the taste
- Density dependant on alcohol and sugar content
- pH how acidic the wine is
- Sulphates contributes to SO2 levels, preservative, fresh taste
- Alcohol the percentage of alcoholic content
- Output Variable(Y-response): Quality

# VISUALIZATION OF THE DATASET

## **Bar Chart**



# **Summary Statistics**

|        | Fixed Acidity | Volatile Acidity | Citric Acid | Residual Sugar | Chlorides | Free Sulfur Dioxide |
|--------|---------------|------------------|-------------|----------------|-----------|---------------------|
| Mean   | 8.32          | 0.53             | 0.27        | 2.54           | 0.09      | 15.87               |
| Min    | 4.60          | 0.12             | 0.00        | 0.90           | 0.01      | 1.00                |
| Max    | 15.90         | 1.58             | 1.00        | 15.50          | 0.61      | 72.00               |
| Median | 7.90          | 0.52             | 0.26        | 2.20           | 0.08      | 14.00               |
| SD     | 1.74          | 0.18             | 0.19        | 1.40           | 0.05      | 10.46               |
| Median | 7.90          | 0.52             | 0.26        | 2.20           | 0.08      | 14.00               |

|        | Total Sulfur Dioxide | Density | рН   | Sulphates | Alcohol |
|--------|----------------------|---------|------|-----------|---------|
| Mean   | 46.47                | 0.99    | 3.31 | 0.66      | 10.42   |
| Min    | 6.00                 | 0.99    | 2.74 | 0.33      | 8.40    |
| Max    | 289.00               | 1.00    | 4.01 | 2.00      | 14.90   |
| Median | 38.00                | 0.99    | 3.31 | 0.62      | 10.20   |
| SD     | 32.89                | 0.00    | 0.15 | 0.17      | 1.07    |

# Correlation



# **Correlation**



# **Correlation Matrix Heatmap**



- Red = positive correlation
- Blue = negative correlation

1.0

0.5

-0.5

-1.0

- Numbers closer to 1 or -1 mean higher correlation, 0 means no correlation
- Above .70 or below -.70 means highly correlated

# **Box Plots**



# **Box Plots**



# LOGISTIC REGRESSION

# **Logistic Regression**

Model 1

| Coefficients         | P-value      |
|----------------------|--------------|
| (Intercept)          | 0.58890      |
| Alcohol              | < 2e-16 ***  |
| Fixed Acidity        | 0.16736      |
| Volatile Acidity     | 1.79e-11 *** |
| Citric Acid          | 0.02354 *    |
| Residual Sugar       | 0.30351      |
| Chlorides            |              |
| 0.01259 *            | ree Sulfur   |
| Dioxide 0.00698 *    | *            |
| Total Sulfur Dioxide | 1.29e-08 *** |
| Density              | 0.53024      |
| рН                   | 0.59717      |
| Sulphates            | 6.36e-10 *** |

Model 2

| Coefficients         | P-value      |
|----------------------|--------------|
| (Intercept)          | < 2e-16 ***  |
| Alcohol              | < 2e-16 ***  |
| Volatile Acidity     | 1.24e-11 *** |
| Citric Acid          | 0.45448      |
| Chlorides            | 0.00431 **   |
| Free Sulfur Dioxide  | 0.00566 **   |
| Total Sulfur Dioxide | 6.48e-10 *** |
| Sulphates            | 2.16e-10 *** |
|                      |              |

Model 3

| Coefficients         | P-value      |
|----------------------|--------------|
| (Intercept)          | < 2e-16 ***  |
| Alcohol              | < 2e-16 ***  |
| Volatile Acidity     | 5.60e-15 *** |
| Chlorides            | 0.00202 **   |
| Free Sulfur Dioxide  | 0.00281 **   |
| Total Sulfur Dioxide | 9.95e-11 *** |
| Sulphates            | 2.47e-10 *** |
|                      |              |
|                      |              |

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

# **Holdout Method**

Model 1

|                   | True<br>Bad | True<br>Good |
|-------------------|-------------|--------------|
| Predicted<br>Bad  | 105         | 45           |
| Predicted<br>Good | 27          | 143          |

Model 2

|                   | True<br>Bad | True<br>Good |
|-------------------|-------------|--------------|
| Predicted<br>Bad  | 101         | 41           |
| Predicted<br>Good | 31          | 147          |

Model 3

|                   | True<br>Bad | True<br>Good |
|-------------------|-------------|--------------|
| Predicted<br>Bad  | 101         | 40           |
| Predicted<br>Good | 31          | 148          |

- Accuracy = 77.50%
- Recall = 76.06%

- Accuracy = 77.50%
- Recall = 78.19%

- Accuracy = 77.81%
- Recall = 78.72%

## 10-Fold Cross-Validation

|         | Accuracy |
|---------|----------|
| Model 1 | 74.29%   |
| Model 2 | 74.61%   |
| Model 3 | 74.63%   |

Accuracy for the third model is slightly higher. That indicates the third model is better than the first model and the second model

## The Fitted Model

logit( $\pi$ (y=1|x)= -8.14 + 0.86 alcohol - 2.9 volatile.acidity - 4.42 chlorides + 0.02 free.sulfur.dioxide - 0.02 total.sulfur.dioxide + 2.71 sulphates

#### Coefficient Interpretation:

0.86 tells us when increasing alcohol by one unit, the log odds of good quality is expected to increase by 0.86, with all other predictors held fixed.

good=1 bad=0

## **Odds Ratio**

| (Intercept)             | 2.995201e+98 |
|-------------------------|--------------|
| Alcohol                 | 2.361693e+00 |
| Volatile Acidity        | 5.524713e-02 |
| Chlorides               | 1.202188e-02 |
| Free Sulfur<br>Dioxide  | 1.024149e+00 |
| Total Sulfur<br>Dioxide | 9.826471e-01 |
| Sulphates               | 1.496742e+01 |

#### Interpretation:

- The odds of alcohol equals 2.36
- It means that: holding all other independent variables at a fixed value, for a one unit increase in alcohol, the odds of wine quality good increase by a factor of 2.36;
- Or we can expect to see about 136% increase in the odds of quality good.

# K-NN K NEAREST NEIGHBORS

# K-NN

## K-NN

- The output is qualitative
- An object is classified by a
  majority vote of its neighbors,
  with the object being assigned
  to the class most common
  among its k nearest neighbors



# Confusion Matrix

• K=1

|                | True Bad | True Good |
|----------------|----------|-----------|
| Predicted Bad  | 89       | 39        |
| Predicted Good | 58       | 141       |

- Accuracy = 75.91%
- Recall =78.33%



# **Decision Tree**

# **Decision Tree**



# Decision Tree

# **Confusion Matrix**

|                | True Bad | True Good |
|----------------|----------|-----------|
| Predicted Bad  | 107      | 68        |
| Predicted Good | 25       | 120       |

- Accuracy = 70.94%
- Recall = 63.83%

# Random Forest

# **Random Forest**

- Ensemble Algorithm
- Reduce chances of over-fitting
- Higher model performance or accuracy
- Accuracy = 83.75%



# Random Forest

# Variable importance



# CONCLUSION **HOW TO DETERMINE A GOOD WINE**

# CONCLUSION

# Conclusion

**Logistic Regression** 

Hold-out: 77.81%

Cross Validation: 74.63%



K-NN

75.91%



Classification

Decision Tree: 63.83%

Random Forest: 84.06%



# Thanks for listening

Q&A