Elektronikpraktikum Auswertung: Versuch 2

Gruppe 1 Patrick Heuer Benjamin Lotter

- Bestimmung des Widerstands durch Messung von Strom und Spannung
- Strommessung = Spannungsmessung an bekanntem Widerstand

• Problem: Erdschleife

Aufgabe 1 Bestimmung von komplexem Widerstand und Phase

• Problem: Erdschleife

• Lösung: Erdungen aufeinander legen

• Abfall über Bauteil: "Math function 2 - 1"

Aufgabe 1 Kondensator

	1	U	φ
Kondensator (100 <i>nF</i>)	$113\mu A$	167 <i>mV</i>	_87°

Aufgabe 1

	1	U	φ
Kondensator (100 <i>nF</i>)	$113\mu A$	167 <i>mV</i>	−87°
Spule (100 <i>mH</i>)	$139\mu A$	95 <i>mV</i>	72°

Aufgabe 1 Widerstand

	1	U	φ
Kondensator (100 <i>nF</i>)	$113\mu A$	167 <i>mV</i>	-87°
Spule (100 <i>mH</i>)	$139\mu A$	95 <i>mV</i>	72°
Widerstand $(1k\Omega)$	$104 \mu A$	100 <i>mV</i>	4 °

Aufgabe 1 Auswertung

• Komplexer Widerstand: $Z = \frac{U}{I} (\cos(\varphi) + i \sin(\varphi))$

	Messwert	Theorie
Z_C	$77.35 - i1475.85 \Omega$	$-i1592\Omega$
Z_L	$211.20 + i650.00 \Omega$	i629Ω
Z_R	968.51 - i67.72 Ω	$1k\Omega$

Aufgabe 1 Auswertung

• Komplexer Widerstand: $Z = \frac{U}{I} (\cos(\varphi) + i \sin(\varphi))$

	Messwert	Theorie
Z_C	$77.35 - i1475.85 \Omega$	$-i1592\Omega$
Z_L	$211.20 + i650.00 \Omega$	i629Ω
Z_R	968.51 - i67.72 Ω	$1k\Omega$

•
$$C = -i\frac{1}{2\pi f Z_C}$$
 und $L = \frac{Z_L}{i2\pi f}$:

$$C \approx 108 - i5.64 nF$$

 $L \approx 103.45 - i33.61 mH$

	Theorie	Messung
$\varphi_{\mathcal{C}}$	−90°	-87°
φ_{L}	90°	72°
φ_R	0°	4°

- Gründe für Abweichung:
 - ohmscher Widerstand der Bauteile
 - Widerstand in Messgeräten
 - Messungenauigkeit

Tiefpassfilter 1. Ordnung

Tiefpassfilter 1. Ordnung

Tiefpassfilter 1. Ordnung

- Bode Diagramm: Auftragung Dämpfung über Frequenz
- Visualisierung von Dämpfung
- Dezibel:

$$V^* = 20 \log_{10} \left(\frac{U_2}{U_1} \right)$$

- Hoch-, Tief-, Sperr-, Bandpassfilter
- Unterdrückung von Frequenzbereichen
- Ordnung gibt an wie stark die Dämpfung ausfällt: 1. Ordnung: 6db pro Oktave, 2. Ordnung 12dB pro Oktave etc.
- nichtlineares Verhalten

• Erwarteter Verlauf:

$$V=20\log_{10}\left(rac{1}{\sqrt{1+(\omega\mathit{CR})^2}}
ight)$$

• Erwarteter Verlauf:

$$arphi = -\arctan\left(\omega CR
ight)$$

- 3dB-Frequenz: linearer Abfall des Signals
- Theoretische Grenzfrequenz: $f_{c_T} = \frac{1}{2\pi CR} \approx 1591.55 Hz$
- ullet Aus Bode Diagramm bei dB=3.185845: $f_{c_T}pprox 1656Hz$

• Bestimmung der Steigung:

- Fit Wert: $-19.12 \frac{dB}{Dekade} = -5.74 \frac{dB}{Oktave}$
- Theoretischer Wert: $-20 \frac{dB}{Dekade} = -6 \frac{dB}{Oktave}$

Erwarteter Verlauf:

$$V = 20 \log_{10} \left(\frac{\omega CR}{\sqrt{1 + (\omega CR)^2}} \right)$$

• Erwarteter Verlauf:

$$\varphi = \arctan\left(\frac{1}{\omega CR}\right)$$

Aufgabe 2 Hochpass 1. Ordnung

- Theoretische Grenzfrequenz: $f_{c_T} = \frac{1}{2\pi CR} = 1591.55 Hz$
- Aus Bode Diagramm bei dB=-3.398500: $f_{c_T} pprox 1656 Hz$
- Fit Wert: $18.08 \frac{dB}{Dekade} = 5.42 \frac{dB}{Oktave}$
- Theoretischer Wert: $20 \frac{dB}{Dekade} = 6 \frac{dB}{Oktave}$

- Testsignal: Dreiecksspannung + Sinussignal
- Problem: Schwierigkeit bei automatischer Bestimmung der Amplitude - Sinus ist "schräg" und wandert

- Lösung 1: Vorschaltung eines Hochpassfilters
- \bullet Dreickspannung ist niedrigfrequentes Signal \to wird herausgefiltert

- Frequenz: f = 51.9Hz
- Amplitude: $\hat{U} = 86 mV$

- Lösung 2: Eingang auf AC-Modus
- eingebauter Hochpassfilter
- Verwendung zum Filtern niedrigfrequenter Störungen

Aufgabe 3 Sprungantwort des Hochpassfilters

- Klassische Aufladekurve des Kondensators
- Charakteristische Zeit: $\tau = R \cdot C = 0.1 ms$
- gemessene Zeit: $au = -rac{t}{\ln\left(1-rac{U(t)}{U_0}
 ight)} = 0.096 ms$

Aufgabe 4

- Durch kompliziertere Schaltungen können schärfere Frequenztrennungen erreicht werden
- Beim Tiefpass wurde fälschlicherweise eine Spule mit $L = 100 \, mH$ verwendet

- Einbau von Spule
- Erwarteter Verlauf

$$\frac{U_{out}}{U_{in}} = \frac{1}{1 - \omega^2 LC}$$

Aufgabe 4 Tiefpass Bode-Diagram

- ullet Unerwünschte Asymptote bei $\omega=\sqrt{rac{1}{LC}}$
- Schwinkreis ohne Dämpfung
 Gruppe 1 Patrick Heuer Benjamin Lotter

- Zusätzlicher Widerstand
- Erwarteter Verlauf

$$\frac{U_{out}}{U_{in}} = \frac{Z_C}{Z_C + Z_L + R} = \frac{1}{\sqrt{\omega^4 L^2 C^2 + \omega^2 R^2 C^2 - 2\omega^2 L C + 1}}$$

Aufgabe 4 Tiefpass mit Widerstand

- keine Asymptote
- Peak vor Abfall ist deutlich kleiner
- R dämpft den Schwingkreis

Aufgabe 4 Sperrkreisfilter

$$\frac{U_{out}}{U_{in}} = \frac{|Z_R|}{\left|\frac{1}{\frac{1}{Z_C} + \frac{1}{Z_L}} + Z_R\right|} = \frac{R}{\sqrt{\left(\frac{\omega L}{\omega^2 C L + 1}\right)^2 + R^2}}$$

- Filtert einzelne Frequenz raus: $f \approx 16 kHz$
- Theorie: $f = \frac{1}{2\pi\sqrt{16}} = 15.91 kHz$

Aufgabe 5

• Untersuchung des Signalverhaltens bei Koaxialkabeln

Aufgabe 5 Signalgeschwindigkeit

- Kabelende wird offen gelassen
- Beobachtung: Zwei Pulse hintereinander durch Signalreflexion am offenen Kabelende

Aufgabe 5 Signalgeschwindigkeit

- Signal wird am offenen Kabelende reflektiert
- Signalgeschwindigkeit: $v = \frac{20m}{100ns} = 2 \cdot 10^8 ms^{-1}$

Aufgabe 5 Abschlusswiderstand

- Kabelende wird mit Potentiometer abgeschlossen
- Widerstand wird variiert

Aufgabe 5 Abschlusswiderstand

- Kabelende wird mit Potentiometer abgeschlossen
- Widerstand wird variiert

Aufgabe 5 Abschlusswiderstand

- Kabelende wird mit Potentiometer abgeschlossen
- Widerstand wird variiert

• Auslöschung des Signals bei $R=53.62\Omega$

ullet Kabel wird mit 50Ω abgeschlossen o Auslöschung des Signals

- Abschlusswiderstand kann Signal abdämpfen und auslöschen
- längere Impulssignale können sich überlagern

	Messwerte	Datenblatt
V	$2\cdot 10^8 ms^{-1}$	$2\cdot 10^8 ms^{-1}$
C'	93.249 <i>pFm</i> ⁻¹	$100.7 pFm^{-1}$
L'	$268.1 nHm^{-1}$	keine Angabe
R	53.62Ω	50Ω

• Kabel wird an Kanal des Oszilloskops angeschlossen

Aufgabe 5 Einfache Laufzeit

- Erklärung:
 - Kabel kommt an Kanal 1 an (gelb)
 - Kabel kommt an Kanal 2 an (grün)
 - Kabel wird an Kanal 2 reflektiert und wird in Kanal 1 (gelb) gemessen

Aufgabe 5 Einfache Laufzeit

• Kanal 2 wird mit Abschlusswiderstand abgeschlossen

ullet Abschlusswiderstand löscht Signal aus o keine Reflexion

Aufgabe 5 Dämpfung

• 100m Kabel wird mit Sinusspannung untersucht

Aufgabe 5

- Kabel wirkt wie Tiefpassfilter
- Phase oszilliert stark ab 10⁶Hz