Name: Maggie.

1. Find the order of (3, 15) in $\mathbb{Z}_4 \times \mathbb{Z}_{18}$.

+ The identity Vic (the identity Vis (0,0). the order of 3 in Zq is 4, the order of 15 in Z18 is b. and lam(4.6)=10, so the order of (3.15) is

2. An equivalence relation on the set $\{1, 2, 3, 4, 5\}$ creates the partition $\{\{1, 2, 3\}, \{4\}, \{5\}\}$. Give the relation matrix.

Since every partition let the relation denoted

creates equivalent classes,

We know that

1R2. 2R3. 3R1. 4R4, IRI.

creating the equivalent classes

[1] = {1,2,3}

[4] = {4}

3. For each of the following either explain why the graph cannot exist or draw a graph with the given property.

(a) A tree with seven vertices and seven edges.

The tree dos does not exist. Because for a tree the with e edges and vertices,

e= v-1 get 7 = 7-1=6 150 it can't exist.

(b) A simple bipartite graph on six vertices with an Eulerian circuit and a Hamiltonian cycle.

A graph has on Eulerian circuit off all degrees are even. However, for a graph to have a Hamiltonian excle, the bipartite graph should have a partition of vertices s.t the number of vertices are the same. which means then should be 3 vertices on each side

If
$$N_1 \neq N_2$$
, where $f(n_1) = f(n_2)$.

If $N_1 \neq N_2$, where $f(n_1) = f(n_2)$.

 $f(n_1) = f(n_2)$.

Then $f(n_1) = f(n_2)$.

Then $f(n_1) \neq f(n_2)$.

 $f(n_1) \neq f(n_2)$.

Thus, $f(n_2) \neq f(n_2)$.

Let
$$Ax=0$$
.

 $(123)x = (0)$

which has AM :

 $(123)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)(0)$
 $(246)($

when
$$f(n) = 0.6N$$
 $f(n) = n + 1 = 0.$
 $N = -1.$

thowever, $A \notin N$,

Thus, there is no

preimage for $f(n) = 0.$

which means f is

hot surjective \Box .

$$\begin{array}{l} x_1 = -2s - 3t. \\ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} s + \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix} t, site R \\ \\ \text{therefore, } & \text{Mull sp} A & = sp_{0} \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix} \end{pmatrix} \\ \text{and } & \text{nullity} + \text{vank} = \text{number of } \\ & \text{Vank} = 3 - 2 = 1 \\ & \text{Columnes,} \\ \\ \text{the row space of } & A \text{ is } s (1, 2, 3) \\ \text{which has rank} = 1. \\ \text{which confirms that} \\ & \text{the rank} & \text{Columns} \\ \\ \text{the rank} & \text{Confirms that} \\ \\ \text{the rank} & \text{Columns} \\ \\ \text{the rank} & \text{Columns}$$

7. The relation \sim is defined on \mathbb{Z}^+ by $x \sim y$ if x + y is even. Prove that \sim is an equivalence relation and give the equivalence classes. 3 If xny, ynx Let x, y, Z E Zt. X+y, y+ & are Since X+X=2X both even which is Mays even, then (x+y)+(y+2) XNX, and Nis reflexive. If xny, xty is even. = X+Z+24 even. fand thus ytx = x+y is even. The egul. Classes rewrite as arre and youx, which memis X+4 = 5-24 [1] = { all odd positive for some even number ~ is m symmetric [2] = fall even positive KEZI. integers? so the RHS is even 8. Use the mean value theorem to find $a, b \in \mathbb{Q}$ so that $a < \sqrt[3]{10} < b$. and thus LHS must also Define function f: Q > Q. by be even, which means $f(x) = \sqrt[3]{x}$. XNZ. and n is which is both continuous and transitive. differentiable on Q. . As Nis reflexive, and thus MVT applies: $\exists c \in \mathbb{Q}^* \text{ s.t. } f'(c) = \frac{f(b) - f(a)}{b - a}$ Symphetric and transitive, it is an equiv. relation [let b=10. a=8. f(b) = f(a) + f'(c) (b-a). f(10)= f(8) +f'(c) @(10-8). 1/10 = 2 +2f'(c) c €]8,10[and $f(x) = (X^{\frac{1}{3}})' = \frac{1}{3}X^{-\frac{2}{3}} = \frac{1}{3\sqrt[3]{x^2}}$ < = 1/102 < f'(c) < = 1/3/182 So that $\frac{1}{27} < f'(c) < \frac{1}{12}$ and Disince f'(c)=

9. Let G be the group of 2×2 matrices under addition and $H = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a+d=0 \right\}$. Prove that H < G. welling the 3-step subgroup test to prove let (ab), (ef) EH. atd = 0, e+h=0, -a-d=(atd) (ab)+(ef)=(ate bif)
(cd)+(gh)=(ctg dth) Since are toth = (a+d)+ (eth) =0. and thus inverse (ate bef) EH, and of is closed exists & (a b SH c = b + aSince $\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ Therefore. by the 3and 0+0=0. (00) EH Step subgroup test. and it is the identity and stace H = G, 3. $\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} -a & -b \\ -c & -d \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ and since the set $f: G \to G'$ is a group homomorphism with $a \in G$. If a has finite order prove |f(a)| divides |a|. because Suppose a has order n. i.e. |a|=n. ((a b) | a+d + 0] EH f(an) = f(e) = e'. where e' is the identity in G' on the orther other hand, which means. f(an) =[f(a)] o n=mgg+0=mgg. So [f(a)] = e'. and mn. i.e. Ifas suppose. |fca) = m. i.e. [f(a)] = e' and $n = m \cdot q_9 + r$. g.reZ, osrcm. then [f(a)] =[f(a)] mater = [f(a)] ma. [f(a)] = e'.[f(a)]' = e' and since |f(w)=m and lo erem. r has to be O.

Solutions to FM2 Test #2

- 1. The order of the element in the direct product is the least common multiple of the component orders. Now the order of 3 in \mathbb{Z}_4 is 4 and the order of 15 in \mathbb{Z}_{18} is 6. We conclude that the order of (3,15) in $\mathbb{Z}_4 \times \mathbb{Z}_{18}$ is $\operatorname{lcm}(4,6) = 12$.
- 2. The relation matrix is $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ where A is the 3×3 matrix of ones, B is the 3×2 zero matrix, C is the 2×3 zero matrix and D is the 2×2 identity matrix.
- 3. (a) In a tree |E| = |V| 1. Since $7 \neq 7 1$, there is no such tree. (b) The cycle graph C_6 satisfies the criteria.
- 4. See your notes.
- 5. Suppose $f(n_1) = f(n_2)$. Then $n_1 + 1 = n_2 + 1$ or equivalently $n_1 = n_2$. Hence f is not injective. There is no $n \in \mathbb{N}$ satisfying f(n) = 0. Hence f is not surjective.
- 6. Observe matrix A has only one independent row vector, so rank(A) = 1, and so nullity(A) = 3-1=2. The null space is the span of the vectors $-2\vec{i}+\vec{j}$ and $-3\vec{j}+\vec{k}$.
- 7. We wish to show that \sim is reflexive, symmetric and transitive.
 - i For any $x \in \mathbb{Z}^+$, x + x = 2x, which is even. So \sim is reflexive.
 - ii If $x \sim y$ then x + y is even but then y + x is even, which implies $y \sim x$. So \sim is symmetric.
 - iii Suppose $x \sim y$ and $y \sim z$. Then x + y is even and y + z is even. So their sum x + 2y + z is also even, from which it follows that x + z is even. So \sim is transitive.

We conclude that \sim is an equivalence relation. There are two equivalence classes [1] and [2], namely the odd and even positive integers.

8. Using MVT in the form f(b) = f(a) + f'(c)(b-a) with a = 8, b = 10 and $f(x) = \sqrt[3]{10}$ gives $\sqrt[3]{10} = 2 + 2f'(c)$ where $c \in [8, 10[$. Next $f'(x) = \frac{1}{3}x^{-2/3}$. Now observe

$$\frac{1}{3} \cdot 27^{-2/3} < \frac{1}{3} \cdot 10^{-2/3} < f'(c) < \frac{1}{3} \cdot 8^{-2/3},$$

whence 1/27 < f'(c) < 1/12. Hence $56/27 < \sqrt[3]{10} < 13/6$.

9. The *trace* of a matrix is the sum of the elements on the main diagonal. So H is the set of 2×2 matrices with zero trace.

We use the 3-step subgroup test.

- i Since trace(A + B) = trace(A) + trace(B), we conclude H is closed under addition.
- ii The trace of the zero matrix is zero. So H contains the zero matrix, which is the additive identity.
- iii The additive inverse of A is -A. Since $\operatorname{trace}(-A) = -\operatorname{trace}(A)$, we conclude $-A \in H$.

Now note that $I \notin H$ since trace(I) = 2. So H is a proper subset of G and H < G as required.

10. Let f(a) = a', f(e) = e' and let the order of a be n. By homomorphism $f(a^n) = (a')^n$. But $f(a^n) = f(e) = e'$ as the image of the identity in G is the identity in G' by a standard homomorphism result. So $f(a')^n = e'$. This means the order of a' in G' is finite, say m. Now by the division algorithm n = mq + r where $0 \le r < m$. So $(a')^n = [(a')^m]^q (a')^r$, whence $(a')^r = e'$. Since m was the order of a', it is the least positive integer m for which $(a')^m = e'$, so r = 0. Hence m divides n, and we are done.