K-Means Algorithm for Clustering

Here is the pseudocode for implementing a K-means algorithm.

Input: Algorithm K-Means (K number of clusters, D list of data points)

- Choose K number of random data points as initial centroids (cluster centers).
- 2. Repeat till cluster centers stabilize:
 - a. Allocate each point in D to the nearest of Kth centroids.
 - b. Compute centroid for the cluster using all points in the cluster.

Advantages and Disadvantages of K-Means Algorithm

Advantages of K-Means Algorithm

- 1. K-means algorithm is simple, easy to understand, and easy to implement.
- 2. It is also efficient, in which the time taken to cluster K-means rises linearly with the number of data points.
- 3. No other clustering algorithm performs better than K-means.

A

Disadvantages of K-Means Algorithm

- 1. The user needs to specify an initial value of K.
- 2. The process of finding the clusters may not converge.
- 3. It is not suitable for discovering clusters that are not hyper ellipsoids or hyper spheres).

X	Υ
X 2	4
2	4 6 [△]
5	6
4	7
4 8	3
6	6
	2
5 5	7
6 4	3
4	4

K-Means Algorithm for Clustering

Iteration	-	1
-----------	---	---

C1 - Seed Point1 - (1, 5)

C2 - Seed Point2 - (4, 1)

C3 - Seed Point3 - (8, 4)

$$D = \sqrt{((x_2 - x_1)^2 + (y_2 - y_1)^2)}$$

C1 – Centroid – (2.66, 5.66)

C2 - Centroid - (4.5, 3)

C3 - Centroid - (6, 5)

			Distance to	0	Cluster
X	Υ	(1, 5)	(4, 1)	(8, 4)	Number
2	4	1.41	3.61	6.00	C1
2	6	1.41	5.39	6.32	C1
5	6	4.12	5.10	3.61	C3
4	7	3.61	6.00	5.00	C1
8	3	7.28	4.47	1.00	C3
6	6	5.10	5.39	2.83	C3
5	2	5.00	1.41	3.61	C2
5	7	4.47	6.08	4.24	C3
6	3	5.39	2.83	2.24	C3
4	4	3.16	3.00	4.00	C2

K-Means Algorithm for Clustering

			Dist	tance to		Cluster
<u>Iteration - 2</u>	X	Υ	(2.66, 5.66)	(4.5, 3)	(6, 5)	Number
C1 – Centroid – (2.66, 5.66)	2	4	1.79	2.69	4.12	C1
C2 – Centroid – (4.5, 3) C3 – Centroid – (6, 5)	2	6	0.74	3.91	4.12	C1
es centrola (0,5)	5	6	2.36	3.04	1.41	C3
	4	7	1.90	4.03	2.83	C1
C1 – Centroid – (2.66, 5.66)	8	3	5.97	3.5	2.83	C3
C2 – Centroid – (5, 3)	6	6	3.36	3.35	1	C3
C3 – Centroid – (6, 5.5)	5	2	4.34	1.12	3.16	C2
	5	7	2.70	4.03	2.24	C3
	6	3	4.27	1.5	2	C2
	4	4	2.13	1.12	2.24	C2

			Dis	tance to		Cluster
<u>Iteration - 3</u>	X	Υ	(2.66, 5.66)	(5, 3)	(6, 5.5)	Number
C1 – Centroid – (2.66, 5.66)	2	4	1.79	3.16	4.27	C1 🔓
C2 – Centroid – (5, 3) C3 – Centroid – (6, 5.5)	2	6	0.74	4.24	4.03	C1
C5 CENTION (0, 5.5)	5	6	2.36	3.00	1.12	C3
	4	7	1.90	4.12	2.50	C1
C1 – Centroid – (2.66, 5.66)	8	3	5.97	3.00	3.20	C2
C2 – Centroid – (5.75, 3)	6	6	3.36	3.16	0.50	C3
C3 – Centroid – (5.33, 6.33)	5	2	4.34	1.00	3.64	C2
	5	7	2.70	4.00	1.80	C3
	6	3	4.27	1.00	2.50	C2
	4	4	2.13	1.41	2.50	C2

				Distance to	0	Cluster
<u>Iteration - 4</u>	X	Υ	(2.66, 5.66)	(5.75, 3)	(5.33, 6.33)	Number
C1 – Centroid – (2.66, 5.66)	2	4	1.79	3.88	4.06	C1
C2 – Centroid – (5.75, 3) C3 – Centroid – (5.33, 6.33)	2	6	0.74	4.80	3.35	C1
C5 - Centrola - (5.55, 6.55)	5	6	2.36	3.09	0.47	C3
	4	7	1.90	4.37	1.49	C3
C1 – Centroid – (2, 5)	8	3	5.97	2.25	4.27	C2
C2 – Centroid – (5.75, 3)	6	6	3.36	3.01	0.75	C3
C3 – Centroid – (5, 6.5)	5	2	4.34	1.25	4.34	C2
	5	7	2.70	4.07	0.75	C3
	6	3	4.27	0.25	3.40	C2
	4	4	2.13	2.02	2.68	C2

				Distance to		Cluster	
<u>Iteration - 5</u>	X	Υ	(2, 5)	(5.75, 3)	(5, 6.5)	Number	
C1 – Centroid – (2, 5)	2	4	1.00	3.88	3.91	C1	
C2 – Centroid – (5.75, 3) C3 – Centroid – (5, 6.5)	2	6	1.00	4.80	3.04	C₽	
C5 CCHILOID (5, 0.5)	5	6	3.16	3.09	0.50	C3	
	4	7	2.83	4.37	1.12	C3	
No movement of data Points	8	3	6.32	2.25	4.61	C2	
Hence these are the final	6	6	4.12	3.01	1.12	C3	
positions	5	2	4.24	1.25	4.50	C2	
	5	7	3.61	4.07	0.50	C3	
	6	3	4.47	0.25	3.64	C2	
	4	4	2.24	2.02	2.69	C2	

K-Means Clustering – Solved Example

- · Suppose that the data mining task is to cluster points into three clusters,
- · where the points are
- A1(2, 10), A2(2, 5), A3(8, 4), B1(5, 8), B2(7, 5), B3(6, 4), C1(1, 2), C2(4, 9).
- · The distance function is Euclidean distance.
- Suppose initially we assign A1, B1, and C1 as the center of each cluster, respectively.

K-Means Clustering – Solved Example

Initial Centroids:

A1: (2, 10)

B1: (5, 8)

C1: (1, 2)

New Centroids:

A1: (2, 10) ~

B1: (6, 6) —

C1: (1.5, 3.5) ~

D	ata Poir	atc			Distar	nce to			Cluster	New
Da	ita Poli	11.5	2	10	5	8	1	2	Cluster	Cluster
A1	2	10	0.	00	3.	61	8.06		1	
A2	2	5	5.	5.00		24	3.:	3.16		
А3	8	4	8.	8.49		5.00		7.28		
B1	5	8	3.	3.61 0.0		00	7.:	21	2	
B2	7	5	7.	7.07 3.61		6.71		2		
В3	6	4	7.21		4.12		5.39		2	
C1	1	2	8.06		7.:	7.21		0.00		
C2	4	9	2.	24	1.4	1.41		7.62		

$$d(p_1, p_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

K-Means Clustering – Solved Example

Current Centroids

A1: (2, 10) B1: (6, 6)

C1: (1.5, 3.5)

New (Cent	tro	d	s:
-------	------	-----	---	----

A1: (3, 9.5) -

B1: (6.5, 5.25)

C1: (1.5, 3.5) ~

	Da	Data Points					Cluster	New			
5:	Da	ita Poli	its	2	10	6	6	1.5 1.5		Cluster	Cluster
	A1	2	10	0.	0.00		66	6.	52	1	1
	A2	2	5	5.00		4.:	12	1.	1.58		3
	A3	8	4	8.49		2.83		6.52		2	2
	B1	5	8	3.	3.61		2.24		5.70		2
	B2	7	5	7.	7.07 1.41		5.70		2	2	
	В3	6	4	7.	7.21		2.00		4.53		2
	C1	1	2	8.06		6.4	6.40		1.58		3
	C2	4	9	2.	24	3.0	3.61		6.04		1

$$d(p_1, p_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

K-Means Clustering - Solved Example

Current Centroids: A1: (3, 9.5) B1: (6.5, 5.25)

64. (4.5. 3.5)

C1: (1.5, 3.5)

New Centroids:

A1: (3.67, 9)

B1: (7, 4.33)

C1: (1.5, 3.5)

[Da	Data Points					Cluster	New			
::	Da	ita Poli	its	3	9.5	6.5	5.25	1.5	3.5	Cluster	Cluster
	A1	2	10	1.	1.12		54	6.52		1	1
	A2	2	5	4.	4.61		51	1.5	1.58		3
	А3	8	4	7.	7.43		1.95		6.52		2
	B1	5	8	2.	50	3.13		5.70		2	1
	B2	7	5	6.	6.02 0.5		56	5.	70	2	2
	В3	6	4	6.	6.26		1.35		4.53		2
	C1	1	2	7.76		6.	6.39		1.58		3
	C2	4	9	1.	12	4.	51	6.04		1	1

$$d(p_1, p_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

K-Means Clustering – Solved Example

Current Centroids:

A1: (3.67, 9) B1: (7, 4.33) C1: (1.5, 3.5)

. Da	Data Points				Distar	nce to			Cluster	New
: Da	ita Poli	its	3.67 9 7 4.33 1.5 3.			3.5	Cluster	Cluster		
-A1	2	10	1.9	94	7.56		6.52		1	1
A2	2	5	4.33		5.	04	1.5	58	3	3
A3	8	4	6.62		1.05		6.52		2	2
-B 1	5	8	1.0	67	4.	4.18		5.70		1
B2	7	5	5.2	21	0.67		5.70		2	2
В3	6	4	5.5	5.52		1.05		4.53		2
C1	1	2	7.49		6.	6.44		1.58		3
_CZ	4	9	0.3	33	5.	5.55		6.04		1

$$d(p_1, p_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

K-Means Clustering Algorithm - Solved Example

 Use K Means clustering to cluster the following data into two groups.

Data Points: { 2, 4, 10, 12, 3, 20, 30, 11, 25 }

- The distance function used is Euclidean distance.
- Initial cluster centroid are M1 = 4 and M2 = 11.

K-Means Clustering Algorithm - Solved Example

Initial Centroids:

M1: 4 M2: 11

Therefore

C1= {2, 4, 3} C2= {10, 12, 20, 30, 11, 25}

New Centroids:

M1: 3 V M2: 18 V

Data	Distar	ice to	Cluster	New Cluster	
Points	M1	M2	Cluster		
2	2	9	C1	T	
4	0	7	C1		
10	6	1	C2		
12	8	1	C2		
3	1	8	C1		
20	16	9	C2		
30	26	19	C2		
11	7	0	C2		
25	21	14	C2		

$$d(x_2, x_1) = \sqrt{(x_2 - x_1)^2}$$

K-Means Clustering Algorithm - Solved Example

Current Centroids:

M1: 3 M2: 18

Therefore

C1= {2, 4, 10, 3} C2= {12, 20, 30, 11, 25}

New Centroids:

M1: 4.75 M2: 19.6

Data	Distar	ice to	Cluster	New Cluster
Points	M1	M2	Cluster	
2	1	16	C1	c ₁ ✓
4	1	14	C1	C1
10	7	8	C2	C1
12	9	6	C2	C2
3	0	15	C1	C1
20	17	2	C2	C2
30	27	12	C2	C2
11	8	7	C2	C2
25	22	7	C2	C2

$$d(x_2, x_1) = \sqrt{(x_2 - x_1)^2}$$

K-Means Clustering Algorithm - Solved Example

Current Centroids:

M1: 4.75 M2: 19.6

Therefore

C1= {2, 4, 10, 11, 12, 3} C2= {20, 30, 25}

New Centroids:

M1: 7 M2: 25

Data Points	Distar M1	nce to	Cluster	New Cluster
2	2.75	17.6	C1.	C1
4	0.75	15.6	C1	C1
10	5.25	9.6	C1	C1
12	7.25	7.6	C2	C1
3	1.75	16.6	C1	C1
20	15.25	0.4	C2	C2
30	25.25	10.4	C2	C2
11	6.25	8.6	C2	C1
25	20.25	5.4	C2	C2

$$d(x_2, x_1) = \sqrt{(x_2 - x_1)^2}$$

Current Centroids:

M1: 7 M2: 25

Final Cluster are:

C1= {2, 4, 10, 11, 12, 3} C2= {20, 30, 25}

Data	9	Distar	ce to	Cluster	New Cluster	
Point	ts	M1	M2	Cluster	New Cluster	
2		5	23	C1	C1	
4		3	21	C1	C1	
10		3	15	C1	C1	
12		5	13	C1	C1	
3		4	22	C1	C1	
20		13	5	C2	C2	
30		23	5	C2	C2	
11		4	14	C1	C1	
25		18	0	C2	C2	

$$d(x_2, x_1) = \sqrt{(x_2 - x_1)^2}$$

K Means Clustering using L1 Distance Euclidean Distance Machine Learning by Dr. M... Common C

Data Point	C1: (4, 0.33, 3)	C2: (0.5, 1.5. 2.5)	Cluster
P1: (1, 2, 3)	4.67	1.5	C2
P2: (0, 1, 2)	5.67	1.5	C2
P3: (3, 0, 5)	3.33	6.5	C1
P4: (4, 1, 3)	0.67	4.5	C1
P5: (5, 0, 1)	3.33	7.5	C1

Solved Example

K-Means Clustering using L1 Distance

· Consider the 5 data points shown below:

P5: (5, 0, 1)

- Apply the Kmeans clustering algorithm, to group those data points into 2 clusters, using the L1 distance measure.
- Consider the initial centroids are C1: (1, 0, 0) and C2: (0, 1, 1).

K-Means Clustering using L1 Distance

L1 distance is just manhattan distance: sum of differences in each dimension – ITERATION 1

Formula: ||x|-x|| + ||y|-y|| + ||z|-z||

Data Point	C1: (1, 0, 0)	C2: (0, 1, 1)	Cluster
P1: (1, 2, 3)	0 + 2 + 3 5 /	4	C2
P2: (0, 1, 2)	1+1+2 4	1	C2
P3: (3, 0, 5)	7	8	C1
P4: (4, 1, 3)	7	6	C2
P5: (5, 0, 1)	5	6	C1

K-Means Clustering using L1 Distance

 L1 distance is just manhattan distance: sum of differences in each dimension - ITERATION 2

		~	
Data Point	C1: (4, 0, 3)	C2: (1.6, 1.3, 2.6)	Cluster
P1: (1, 2, 3)	2+0 5	1.7	C2
P2: (0, 1, 2)	6	2.5	C2
P3: (3, 0, 5)	3	5.3	C1
P4: (4, 1, 3)	1	3.1	C1
P5: (5, 0, 1)	3	6.3	C1

K-Means Clustering using L1 Distance

 L1 distance is just manhattan distance: sum of differences in each dimension - ITERATION 3

Data Point	C1: (4, 0.37, 3)	C2: (0.5, 1.5. 2.5)	Cluster
P1: (1, 2, 3)	341.7 4.67	1.5	C2 √
P2: (0, 1, 2)	5.67	1.5	C2 J
P3: (3, 0, 5)	3.33	6.5	C1
P4: (4, 1, 3)	0.67	4.5	C1
P5: (5, 0, 1)	3.33	7.5	C1