Planche nº 25. Structures

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice nº 1 (***T)

Sur \mathbb{R}^2 , on définit une loi * par

$$\forall ((x,y),(x',y')) \in \left(\mathbb{R}^2\right)^2, \ (x,y) * (x',y') = \left(x + x', y e^{x'} + y' e^{-x}\right).$$

- 1) Montrer que $(\mathbb{R}^2, *)$ est un groupe non abélien.
- 2) Trouver les application f dérivables sur \mathbb{R} telles que $\{(x, f(x)), x \in \mathbb{R}\}$ soit un sous-groupe de $(\mathbb{R}^2, *)$.

Exercice nº 2 (***T)

Sur] -1,1[, on définit une loi * par

$$\forall (x,y) \in (]-1,1[)^2, (x,y)*(x',y') = \frac{x+y}{1+xy}.$$

Montrer que (]-1,1[,*) est un groupe commutatif.

Exercice nº 3 (*IT)

- 1) Montrer que U est un sous-groupe de (\mathbb{C}^*, \times) (où U est l'ensemble des nombres complexes de module 1).
- 2) Montrer que pour tout entier naturel non nul n, U_n est un sous-groupe de (U, \times) (où U_n est l'ensemble des racines n-èmes de l'unité).

Exercice nº 4 (**T)

Sur E un ensemble.

- 1) Montrer que $(\mathcal{P}(\mathsf{E}), \Delta)$ est un groupe commutatif.
- 2) Montrer que $(\mathscr{P}(\mathsf{E}), \Delta, \cap)$ est un anneau commutatif.

Exercice no 5 (**T)

 $\mathrm{Montrer\ que}\ \left(\left\{\alpha+b\sqrt{2},\ (\alpha,b)\in\mathbb{Q}^2\right\},+,\times\right)\ \mathrm{est\ un\ corps\ commutatif.}$

Exercice nº 6 (***I) (Sous groupes de $(\mathbb{Z}, +)$)

- 1) Soient a un entier relatif puis $G = a\mathbb{Z}$. Montrer que G est un sous-groupe de $(\mathbb{Z}, +)$.
- 2) Réciproquement, montrer que tous les sous-groupes de $(\mathbb{Z},+)$ sont de la forme $\mathfrak{a}\mathbb{Z}$ où $\mathfrak{a}\in\mathbb{Z}$ (considérer, s'il existe, $\mathfrak{a}=\mathrm{Min}\mathsf{G}\cap\mathbb{Z}_+^*$).

Exercice nº 7 (****I) (Sous groupes de $(\mathbb{R}, +)$)

1) Montrer que les sous groupes du groupe $(\mathbb{R},+)$ sont soit de la forme $\mathfrak{a}\mathbb{Z}$, \mathfrak{a} réel donné, soit denses dans \mathbb{R} . Indication : pour G sous-groupe donné de $(\mathbb{R},+)$, non réduit à $\{0\}$, considérer $\mathfrak{a}=\mathrm{Inf}\;(G\cap]0;+\infty[)$ puis envisager les deux cas $\mathfrak{a}=0$ et $\mathfrak{a}>0$.

(Rappel: G est dense dans \mathbb{R} si et seulement si : $(\forall x \in \mathbb{R}, \forall \varepsilon > 0, \exists y \in G/|y-x| < \varepsilon)$.

- 2) Application 1. Montrer que $\{a + b\sqrt{2}, (a, b) \in \mathbb{Z}^2\}$ est dense dans \mathbb{R} .
- 3) Application 2 (groupe des périodes d'une fonction).
 - a) Soit f une fonction définie sur \mathbb{R} à valeurs dans \mathbb{R} . Montrer que l'ensemble des périodes de f est un sous groupe de $(\mathbb{R}, +)$ (ce sous-groupe est réduit à $\{0\}$ si f n'est pas périodique).
 - b) Montrer qu'une fonction continue sur \mathbb{R} qui admet 1 et $\sqrt{2}$ pour périodes, est constante sur \mathbb{R} .
 - c) Trouver une fonction dont le groupe des périodes est dense dans \mathbb{R} mais n'est pas égal à \mathbb{R} .