Zadanie 5

5.1 Opis problemu:

Znaleźć metodą bisekcji wartości zmiennej x, dla której przecinają się wykresy funkcji $y=3\,x$ i $y=e^x$. Wymagana dokładność obliczeń: $\delta=10^{-4}$, $\epsilon=10^{-4}$.

5.2 Rozwiązanie

Możemy sprowadzić ten problem do rozwiązania problemu znalezienia pierwiastków funkcji: $f(x)=3\,x-e^x$. Jak wiemy metoda bisekcji pozwala nam na znalezienie tylko jednego pierwiastka. Jednak my potrzebuje uzyskać oba pierwiastki. Zatem w pętli będziemy sprawdzać różne kontrolując wyniki zwracane przez funkcję. Zaczniemy od przedziału [-4,-3] i będziemy go przesuwać o 1 w prawo. Będziemy tak robić aż do przedziału [4,5].

5.3 Wyniki

r	V	it	err
0.619140625	9.066320343276146e-5	9	0
1.5120849609375	7.618578602741621e-5	13	0

5.4 Wnioski

Program znajduje dwa miejsca zerowe z dokładnością podaną jako parametry. Dodatkowo możemy zauważyć, że aby wyliczyć drugie miejsce zerowe potrzeba więcej iteracji.