فصل سوم

توانرسانی و ریشهگیری

فهرست مطالب

٣	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•		•	•	•	•	•	•	•		•	•	وانرساني	·
۵																														یشهگیری	_

توانرساني

۱. اعداد زیر را از کوچک به بزرگ مرتب کنید.

$$\left(-\frac{1}{r}\right)^{-1} \qquad \left(-\frac{1}{r}\right)^{-1} \qquad \left(-\frac{r}{r}\right)^{-r} \qquad \left(-\frac{r}{r}\right)^{-r}$$

۲. به جای x چه عددی باید قرار گیرد؟

$$\mathbf{r}^{-1 \cdot 7} - \mathbf{r}^{-1 \cdot 7} + \mathbf{r}^{-1 \cdot \circ} - \mathbf{r}^{-11} = \mathbf{r}^{-11} x$$

۳. کدام یک از دو عدد زیر بزرگتر است؟

$$\frac{\zeta_{L,+}}{\zeta_{L,+}} \qquad \frac{\zeta_{L,+}}{\zeta_{L,+}}$$

- ۴. اگر $\mathbb{Z}
 ightarrow n$ و $n \in \mathbb{Z}$ ، آنگاه مقدار n را بیابید.
- ه. اگر $r^{-x}=a=r^{-x}$ و a چه رابطهای با هم خواهند داشت؟
 - $a \in \mathbb{R}$, $m, n \in \mathbb{N}$ گر. اگر.
 - $a^m + a^n = a^{m+n}$ الف مثالي بيابيد كه
 - $a^m + a^n = a^{mn}$ ب مثالی بیابید که
- ال می دانیم که سه عدد متفاوتِ x و y عضو مجموعهی $\{ \Upsilon, \Upsilon, \Upsilon, \Upsilon, \Lambda \}$ هستند، به طوری که x^y بیشترین و میدار ممکن شده است. مقدار عددی هر یک از x و y را بیابید.
 - در هر مورد همه mها و nها و nها یی را بیابید که رابطه ی $m^n = \Upsilon^{r}$ درست باشد.
 - $m, n \in \mathbb{N}$ (الف)
 - $m, n \in \mathbb{Z}$ (ب

 \mathbf{P} . با کمک (یک یا چند) پرانتزگذاری، از عدد داده شده به چند عدد متفاوت می توان دست یافت؟ \mathbf{r}^{6}

د و y چه اعدادی هستند؟ x . λ

$$\mathsf{Tr}^{\mathsf{r}^{\mathsf{r}}} = \mathsf{Tr}^{\mathsf{r}} x = \mathsf{F}^{\mathsf{r}^{\mathsf{r}}}$$

به جای A، مثالی بزنید که:

«قسمت غیراعشاری A^{n} ، عددی اول شود.»

بد نیست از یک ماشین حساب مهندسی کمک بگیرید.

۱۲. کدام یک بزرگ تر است؟

471 481

 $n^{r \cdot \cdot} < \Delta^{r \cdot \cdot}$ بزرگترین عدد طبیعی n را بیابید بهطوری که ، $n^{r \cdot \cdot}$

ریشهگیری

۱. حاصل عبارتهای زیر را به دست آورید.

$$\sqrt[r]{-(-\mathsf{V})^{-\varsigma}}$$
 (الف

$$\sqrt{(\pi^{r}-1\circ)^{r}}$$
 (ب

$$\sqrt{\frac{\Lambda^{1\circ} + \Upsilon^{1\circ}}{\Lambda^{7} + \Lambda^{11}}} \ (\epsilon$$

$$(\sqrt{7}-\sqrt{8})^7$$
 (2

$$(\sqrt[7]{T} - \sqrt[7]{T})((\sqrt[7]{T})^{T} + \sqrt[7]{T}\sqrt[7]{T} + (\sqrt[7]{T})^{T})$$
 (a)

$$\frac{7\sqrt{\Lambda} - \sqrt{\Delta^{\circ}} + 7\sqrt{1\Lambda} + \sqrt{187}}{\sqrt{7^{\circ}}} \ (,$$

۲. مخرج کسرهای زیر را گویا کنید.

$$\frac{1}{\sqrt{\Lambda} + \sqrt{1\Lambda} + \sqrt{2} \cdot + \sqrt{YY}}$$
 (الف

$$\frac{1}{\sqrt[7]{18} - \sqrt[7]{\Delta f} - \sqrt[7]{17A}} \quad (\rightarrow$$

$$\frac{1}{\sqrt{\sqrt[7]{F}}}$$
 ($=$

$$\frac{1}{\sqrt{\sqrt[r]{\Delta r} + \sqrt[r]{r} \Delta \circ}} \ (s$$

۳. از $\mathbb{Z} \in \mathbb{Z}$ و ۳۶ $x^{\mathsf{T}} < x^{\mathsf{T}}$ ، کدامیک از ادعاهای زیر را میتوان نتیجه گرفت؟

$$-\sqrt{\Delta} < x < \sqrt{\Delta}$$
 (الف

$$-\sqrt{\Delta^{\circ}} < x < \sqrt{\Delta^{\circ}}$$
 (ب

۴. پس از امتحان ریاضی پایان ترم اول، نمره ی n نفر از دانش آموزان n ، ۲، ۲، . . . ، ۲۰ شده بود! معلم ریاضی تصمیم گرفت برای کمک به نمره ی دانش آموزان، نمره ی هر کسی را در n ضرب کند و سپس جذر آن را حساب کند و نمره ی جدید به دست آمده را در کارنامه وارد کند.

الف) اگر نمودار داده شده را کامل کنید، نمودار شبیه کدام یک از شکلهای زیر خواهد شد؟

- ب) چه نمرهای/نمرههایی تغییر نمیکنند؟
- ج) چه نمرهای/نمرههایی بیشترین تغییر را میکند؟
- د) چه نمرهای/نمرههایی پس از تغییر اعشار نخواهد داشت؟ (یعنی عددی صحیح خواهد شد.)

- ه) به نظر شما آیا این روش تغییر نمره عادلانه است؟
- ۵. اگر $a < \Delta$ ، آنگاه درستی تساوی زیر را بررسی کنید.

$$\sqrt{(a-\mathbf{F})^{\mathbf{F}}(a-\mathbf{T})^{\mathbf{T}}} = -(a-\mathbf{F})^{\mathbf{T}}(a-\mathbf{T})\sqrt{a-\mathbf{T}}$$

- و $c<\circ$ ، در این صورت عبارتهای زیر را ساده کنید. $b>\circ$ ، $a<\circ$ اگر
 - $\sqrt{a^{\mathsf{r}}b^{\mathsf{a}}c^{\mathsf{r}}}$ (الف
 - $\sqrt[r]{a^{r}b^{\Delta}c^{r}}$ (ب
- ۷. به کمک محاسبه ی زیر می توان $\sqrt[7]{q}$ را تقریب زد. (یعنی ارقام اعشار $\sqrt[7]{q}$ را یکی یکی حساب کرد.) ابتدا می نویسیم:

$$\Lambda < 9 < \Upsilon V$$

$$\mathsf{T} = \sqrt[r]{\mathsf{\Lambda}} < \sqrt[r]{\mathsf{q}} < \sqrt[r]{\mathsf{TV}} = \mathsf{T}$$

, ,....

$$\Upsilon < \sqrt[r]{9} < \Upsilon$$

- الف) با به کارگیری $\sqrt[7]{9 \cdot 9}$ ، اولین رقم اعشار $\sqrt[8]{9}$ را به دست آورید.
 - ب) اولین رقم اعشار $\sqrt[7]{1}$ را به دست آورید.
- د اگر ۱۲۶۱ $\overline{x}=\sqrt{x}$ و $\overline{y}=9$ ، آنگاه \sqrt{xy} چه عددی خواهد شد؟ \sqrt{x}

۹. اگر
$$\overline{x}=\sqrt[4]{x}$$
، آنگاه x چه عددی است؟

$$\sqrt[7]{7} = \sqrt[7]{\sqrt{7}}$$
 . الف) ثابت کنید

$$\sqrt{\sqrt[7]{9}} = \sqrt[7]{7}$$
 نابت کنید (ب

$$((\sqrt[r]{\sqrt[r]{a^{\mathrm{T}}}} = \sqrt[r]{a}))$$

- ۱۱. الف) ثابت کنید $\sqrt[7]{7}$ عددی گنگ است.
- ب) چه اعداد گنگی مکعب صحیح دارند؟
- $(x^{\mathsf{T}} \in \mathbb{Z} \ g \ x \in \mathbb{Q}'$ و یعنی $x \in \mathbb{Z}$ و یعنی (یعنی $x \in \mathbb{Z}$