Applied Functional Analysis - Exercise sheet 5

Mateusz Dzitkowski, 249777

Exercise 1

We are presented with the following function

$$u(x)=\int_0^1 K(x,y)f(y)dy,$$

for $x \in (0,1)$, and

$$K(x,y) = egin{cases} rac{1}{T}y(1-x), y \in [0,x], \ rac{1}{T}x(1-y), y \in [x,1]. \end{cases}$$

We have

$$egin{align} u(x)&=rac{1}{T}igg((1-x)\int_0^xyf(y)dy+x\int_x^1(1-y)f(y)dyigg),\ u'(x)&=rac{1}{T}igg(\int_0^1yf(y)dy+\int_x^1f(y)dyigg),\ u''(x)&=-rac{1}{T}f(x), \end{aligned}$$

rearranging, we get

$$Tu''(x) + f(x) = 0,$$

or

$$f(x) = -Tu''(x).$$

moreover, it is apparent from the definition of u, that u(0) = u(1) = 0.

Now let $u(x)=(x-1)\sin(x)$, and let a small perturbation be defined as $n_\delta(x)=\delta(x-1)\sin\left(\frac{x}{\delta}\right)$, and define $u_\delta(x)=u(x)+n_\delta(x)$. We have

$$||u-u_\delta||=||n_\delta||, \ ||f-f_\delta||=T||n_\delta''||.$$

Let's now compute the L^2 and L^∞ norms of both of these:

$$\begin{aligned} ||u-u_{\delta}||_{L^{2}}^{2} &= \int_{0}^{1} \left| \delta \sin \left(\frac{x}{\delta} \right) \right|^{2} dx = \frac{\delta^{2}}{24} \left(3\delta^{3} \sin \left(\frac{2}{\delta} \right) - 6\delta^{2} + 4 \right), \\ ||f-f_{\delta}||_{L^{2}}^{2} &= \int_{0}^{1} \left| T \left(\frac{1}{\delta} (x-1) \sin \left(\frac{x}{\delta} \right) - \cos \left(\frac{x}{\delta} \right) \right) \right|^{2} dx = T^{2} \left(\frac{1}{6\delta^{2}} + \frac{1}{8} \sin \left(\frac{2}{\delta} \right) + \frac{3}{4} \right), \\ ||u-u_{\delta}||_{L^{\infty}} &= \max_{0 \leq x \leq 1} \left| \delta(x-1) \sin \left(\frac{x}{\delta} \right) \right| \leq \delta, \\ ||f-f_{\delta}||_{L^{\infty}} &= \max_{0 \leq x \leq 1} \left| T \left(\frac{1}{\delta} (x-1) \sin \left(\frac{x}{\delta} \right) - \cos \left(\frac{x}{\delta} \right) \right) \right| \geq \\ &\geq \left| \max_{0 \leq x \leq 1} \left(\frac{T}{\delta} (x-1) \sin \left(\frac{x}{\delta} \right) \right) - \max_{0 \leq x \leq 1} \left(T \cos \left(\frac{x}{\delta} \right) \right) \right| \geq T \left| -\frac{1}{\delta} - 1 \right| = \\ &= T \left(\frac{1}{\delta} + 1 \right). \end{aligned}$$

As we can see, in both cases, L^2 , and L^∞ , the norm of $u-u_\delta$ approaches zero when δ approaches zero, on the other hand the norm of $f-f_\delta$ gets arbitrarily large when δ approaches zero, this means that the problem of finding f when we have perturbations in initial data u is ill-posed.

Now, we shall see some graphs illustrating the problem at hand. First, we can see all the functions of interest: u,u_{δ},f , and f_{δ} . For simplicity we take T=1, and we plot the functions with $\delta=0.005$, where applicable. For all plots and computations we use discretisation of the [0,1] interval into N=1000 equally spaced points.

Now, to show the convergence and divergence of norms, we calculate the L^2 and L^∞ norms numerically for various values of δ :

As we can see, $||u-u_{\delta}||=||n_{\delta}||$ stay small when δ approaches zero, on the other hand $||f-f_{\delta}||=||n_{\delta}''||$ explode as δ gets smaller.

Exercise 2

We are presented with a problem of calculating the derivative of noisy data, that is

$$f_\delta(x) = f(x) + n_\delta(x),$$

for
$$x\in(0,1)$$
, and $f_\delta(0)=f(0)=0=f_\delta(1)=f(1)=0$, with

$$n_\delta(x) = \sqrt{2}\delta\sin(2\pi kx)$$

with a fixed, small δ . Obviously we have

$$||f-f_\delta||=||n_\delta||, \ ||f'-f'_\delta||=||n'_\delta||,$$

so, calculating the L^2 and L^∞ norms we get (omitting the messy details this time)

$$||f-f_\delta||_2^2 = ||n_\delta||_2^2 = \delta^2 \left(1 - rac{\sin(4\pi k)}{4\pi k}
ight), \ ||f'-f_\delta'||_2^2 = ||n_\delta'||_2^2 = \pi^2 k^2 \delta^2, \ ||f-f_\delta||_\infty = ||n_\delta||_\infty = \sqrt{2}\delta, \ ||f'-f_\delta'||_\infty = ||n_\delta'||_\infty = 2\sqrt{2}\pi k\delta.$$

Again, we have the same situation as in the first exercise, where the norm of the difference $f-f_\delta$ stays small, due to δ being small, even when k goes to infinity. On the other hand, the norm of the difference $f'-f'_\delta$ diverges to infinity when k goes to infinity. This proves that the problem of differentiating noisy data is ill-posed.

Let's estimate the error that we introduce when calculating the derivatives numerically using Euler central difference scheme, that is, let's estimate

$$E_f = \left| f'(x) - rac{f(x+h) - f(x-h)}{2h}
ight|.$$

We know that $f(x+h)=f(x)+hf'(x)+\frac{h^2}{2}f''(\xi_+)$, where $\xi_+\in[x,x+h]$, and that $f(x-h)=f(x)-hf'(x)+\frac{h^2}{2}f''(\xi_-)$, where $\xi_-\in[x-h,x]$. From that we get

$$\left|rac{1}{2}\left|f'(x)-rac{f(x+h)-f(x)}{h}
ight|\leq \left|f'(x)-rac{f(x+h)-f(x)}{h}
ight|\leq rac{h}{2}|f''(\xi_+)|, \ rac{1}{2}\left|f'(x)-rac{f(x)-f(x-h)}{h}
ight|\leq \left|f'(x)-rac{f(x)-f(x-h)}{h}
ight|\leq rac{h}{2}|f''(\xi_-)|,$$

and, using the triangle equality we obtain a rough estimate

$$E_f = \left| f'(x) - rac{f(x+h) - f(x-h)}{2h}
ight| = \left| rac{f'(x)}{2} - rac{f(x+h) - f(x)}{2h} + rac{f'(x)}{2} - rac{f(x) - f(x-h)}{2h}
ight| \leq \ rac{h}{2} |f''(\xi_+)| + rac{h}{2} |f''(\xi_-)| \leq h |f''(\xi)|,$$

where $\xi \in [x-h,x+h]$. Directly substituting our f and f_δ into this inequality we get

$$egin{split} E_f & \leq h \left| -4\pi^2 \sin(2\pi \xi)
ight| \leq 4\pi^2 h, \ E_{f_\delta} & \leq h \left| -4\pi^2 sin(2\pi \xi) - 4\sqrt{2}\pi^2 \delta k^2 \sin(2\pi k \xi)
ight| \leq h \left(4\pi^2 + 4\sqrt{2}\pi^2 \delta k^2
ight). \end{split}$$

We can thus see from this, that the first error stays low, and gets lower with more fine-grained discretisation. On the other hand, the error $E_{f_{\delta}}$ grows with increasing k, and so diverges to infinity when k diverges to infinity.

Again, we leave the graphs for the end of the exercise. We will again use discretisation with N=1000 equally spaced points. All of the following plots use $\delta=0.01$. First we plot f with f_{δ} , and f' with f_{δ}' to illustrate the issue. We use K=70 here.

We will also show the norms of $f-f_\delta$, and $f'-f'_\delta$ with respect to increasing k.

As we can see, the norms of $f-f_\delta$ stay about constant, with some numerical anomalies here and there, but the norms of $f'-f'_\delta$ grow linearly, as predicted by the computations, with k.

We will also illustrate the bounds on the errors that we get from numerical differentiation. Here we arbitrarily take k=70:

Exercise 3

We are presented with a Fredholm integral equation of the form

$$u(x)=\int_0^1 K(x,y)f(y)dy,$$

for $x\in(0,1)$. The function f represents the true image, kernel K characterises the blurring effect, and u is the blurred image. We wish to recover f from a previously blurred image u. Assume that the kernel K is a gaussian kernel, that is

$$K(x,y) = rac{1}{\sigma\sqrt{2\pi}} \mathrm{exp}\left(-rac{1}{2\sigma^2}(x-y)^2
ight),$$

where $\sigma > 0$ is a parameter. Let's approximate the equation by constructing vectors

$$egin{aligned} ec{x} &= \left[x_1, x_2, \dots, x_M
ight]^T, \ ec{y} &= \left[y_1, y_2, \dots, y_N
ight]^T, \ ec{u} &= \left[u(x_1), u(x_2), \dots, u(x_M)
ight]^T, \ ec{f} &= \left[f(y_1), f(y_2), \dots, f(y_N)
ight]^T, \end{aligned}$$

and the matrix

$$A = [w_j K(x_i, y_j)]_{M \times K}.$$

The equation now becomes

$$Aec{f}=ec{u}.$$

Let's calculate the condition number of some matrices A for various numbers of N. Let's fix $\sigma=0.05$, and M=500. The plots of $\log(C(A_N))$, where C(A) is the condition number of A, are displayed below.

Ns are varying from 2 to 1000, we can see a peak at N=500, where the matrix becomes a square matrix. Also the curve changes regime at N=60, N=270, and N=915.

We can see that the matrix is ill-conditioned due to its enormous condition number, even for small N, so we will not be able to find the vector \vec{f} from our linear system.

We will use a method of truncated singular value decomposition. We factorise the matrix A as

$$A = U\Sigma V$$
,

where U and V are square unitary matrices, and Σ is a rectangular diagonal matrix. Due to the fact that Σ contains very small numbers we choose a cutoff point a. We then "invert" the matrix A as follows

$$A^{-1} = (U\Sigma V)^{-1} = V^{-1}\Sigma^{-1}U^{-1} = V^{T}\Sigma^{-1}U^{T},$$

since the transpose of a unitary matrix is its inverse. To "invert" Σ we decide on a cutoff point a, and we set $\Sigma_{m,n}^{-1}$ to be $\frac{1}{\Sigma_{m,n}}$ if $\Sigma_{m,n}>a$, and 0 otherwise. We can then find \vec{f} with

$$ec{f} = A^{-1} ec{u}.$$

Assume that f(x) = H(x - 0.3) - H(x - 0.5), where H is the Heavyside function. We will obtain u by directly convolving f and K, then we will get f back using the described discretisation scheme. Below are the plots of original f, calculated u, and f recovered by solving the inverse problem numerically, for various parameters.

N = 3000, M = 4000, sigma = 0.3, cutoff = 1e-10

Also, just for fun, I included a few cases where I modified f a little bit:

$$f(x) = H(x-0.3) - H(x-0.5) + H(x-0.9) + 3x$$

$$f(x) = H(x-0.2) + H(x-0.5) + H(x-0.7) + H(x-0.9)$$

N = 3000, M = 4000, sigma = 0.02, cutoff = 1e-10

$$f(x) = -x + \sin(8x) + H(x - 0.2) + H(x - 0.5) - H(x - 0.8)$$

As we can see the discretisation and the singular value decomposition do a really good job at deblurring the images.