An Introduction to Coding Theory Nate Black

Clemson University Graduate Student Seminar November 2, 2011

Introduction 2 / 35

A small Indian village on one hill

Introduction 3 / 35

An Indian scout on another hill

Introduction 4 / 35

Communicating via smoke signals

Introduction 5 / 35

Problem: noise

Introduction 6 / 35

Problem: efficiency

Introduction 7 / 35

Outline

- 1. Background Information
- 2. Error Correcting Codes
- 3. Efficiency via Compression
- 4. Applications

History

- 1948: A Mathematical Theory of Communication by Claude Shannon
- 1952: A Method for the Construction of Minimum-Redundancy Codes by David Huffman
- 1960: Reed-Solomon Codes introduced
- 1970: Goppa Codes introduced
- 1980s: Algebraic Geometry Codes popularized

History

- 1948: A Mathematical Theory of Communication by Claude Shannon
- 1952: A Method for the Construction of Minimum-Redundancy Codes by David Huffman
- 1960: Reed-Solomon Codes introduced
- 1970: Goppa Codes introduced
- 1980s: Algebraic Geometry Codes popularized

History

• 1948: A Mathematical Theory of Communication by Claude Shannon

- 1952: A Method for the Construction of Minimum-Redundancy Codes by David Huffman
- 1960: Reed-Solomon Codes introduced
- 1970: Goppa Codes introduced
- 1980s: Algebraic Geometry Codes popularized

History

• 1948: A Mathematical Theory of Communication by Claude Shannon

- 1952: A Method for the Construction of Minimum-Redundancy Codes by David Huffman
- 1960: Reed-Solomon Codes introduced
- 1970: Goppa Codes introduced
- 1980s: Algebraic Geometry Codes popularized

History

• 1948: A Mathematical Theory of Communication by Claude Shannon

- 1952: A Method for the Construction of Minimum-Redundancy Codes by David Huffman
- 1960: Reed-Solomon Codes introduced
- 1970: Goppa Codes introduced
- 1980s: Algebraic Geometry Codes popularized

General Communication Model

- The **encoding alphabet**, *A*, is a set of symbols used to encode information.
- A code, C, is a subset of A*, (i.e. all words over the alphabet A).
 The elements in this subset are called the codewords of C.
- A **block code** is a code where $C \subseteq A^n$.
- Decoding is the process of obtaining the original message from the received message.
- A **linear code**, is a block code where the subset C is a linear subspace of A^n . This additional structure makes decoding easier.

- The **encoding alphabet**, *A*, is a set of symbols used to encode information.
- A **code**, C, is a subset of A^* , (i.e. all words over the alphabet A). The elements in this subset are called the **codewords** of C.
- A **block code** is a code where $C \subseteq A^n$.
- Decoding is the process of obtaining the original message from the received message.
- A **linear code**, is a block code where the subset C is a linear subspace of A^n . This additional structure makes decoding easier.

- The **encoding alphabet**, *A*, is a set of symbols used to encode information.
- A **code**, C, is a subset of A^* , (i.e. all words over the alphabet A). The elements in this subset are called the **codewords** of C.
- A **block code** is a code where $C \subseteq A^n$.
- Decoding is the process of obtaining the original message from the received message.
- A **linear code**, is a block code where the subset C is a linear subspace of A^n . This additional structure makes decoding easier.

- The **encoding alphabet**, *A*, is a set of symbols used to encode information.
- A code, C, is a subset of A*, (i.e. all words over the alphabet A).
 The elements in this subset are called the codewords of C.
- A **block code** is a code where $C \subseteq A^n$.
- **Decoding** is the process of obtaining the original message from the received message.
- A **linear code**, is a block code where the subset C is a linear subspace of A^n . This additional structure makes decoding easier.

- The **encoding alphabet**, *A*, is a set of symbols used to encode information.
- A **code**, C, is a subset of A^* , (i.e. all words over the alphabet A). The elements in this subset are called the **codewords** of C.
- A **block code** is a code where $C \subseteq A^n$.
- **Decoding** is the process of obtaining the original message from the received message.
- A **linear code**, is a block code where the subset C is a linear subspace of A^n . This additional structure makes decoding easier.

- Let $A = \{a, b, ... z\}$, and $C = \{aaa | a \in A\}$.
- Encode a message m by repeating each letter 3 times.
- Decode a received message by taking the most repeated character as the intended character. If they are all different, then output?.
- Example:
 - The sender encodes math as a sequence of 4 words {mmm, aaa, ttt, hhh}.
 - The received messages are {msm, aaa, qtt, hrh} due to some noise
 - The decoder successfully recovers the message math.

- Let $A = \{a, b, ... z\}$, and $C = \{aaa | a \in A\}$.
- Encode a message *m* by repeating each letter 3 times.
- Decode a received message by taking the most repeated character as the intended character. If they are all different, then output?.
- Example:
 - The sender encodes math as a sequence of 4 words {mmm. aaa.ttt. hhh}.
 - The received messages are {msm, aaa, qtt, hrh} due to some noise
 in the channel
 - The decoder successfully recovers the message math.

- Let $A = \{a, b, ... z\}$, and $C = \{aaa | a \in A\}$.
- Encode a message m by repeating each letter 3 times.
- Decode a received message by taking the most repeated character as the intended character. If they are all different, then output?.
- Example:
 - The sender encodes math as a sequence of 4 words {mmm, aaa, ttt, hhh}.
 - The received messages are {msm, aaa, qtt, hrh} due to some noise in the channel
 - The decoder successfully recovers the message math.

- Let $A = \{a, b, ... z\}$, and $C = \{aaa | a \in A\}$.
- Encode a message m by repeating each letter 3 times.
- Decode a received message by taking the most repeated character as the intended character. If they are all different, then output?.
- Example:
 - The sender encodes math as a sequence of 4 words {mmm, aaa, ttt, hhh}.
 - The received messages are {msm, aaa, qtt, hrh} due to some noise in the channel
 - The decoder successfully recovers the message *math*.

- Let $A = \{a, b, ... z\}$, and $C = \{aaa | a \in A\}$.
- Encode a message m by repeating each letter 3 times.
- Decode a received message by taking the most repeated character as the intended character. If they are all different, then output ?.
- Example:
 - The sender encodes math as a sequence of 4 words {mmm, aaa, ttt, hhh}.
 - The received messages are {msm, aaa, qtt, hrh} due to some noise in the channel
 - The decoder successfully recovers the message math.

- Let $A = \{a, b, ... z\}$, and $C = \{aaa | a \in A\}$.
- Encode a message m by repeating each letter 3 times.
- Decode a received message by taking the most repeated character as the intended character. If they are all different, then output ?.
- Example:
 - The sender encodes math as a sequence of 4 words {mmm, aaa, ttt, hhh}.
 - The received messages are {msm, aaa, qtt, hrh} due to some noise in the channel
 - The decoder successfully recovers the message math.

- Suppose the received messages were {msm, aaa, sts, hrq}.
- The decoder would return the message mas?.
- Decoding notes:
 - The decoder identified and corrected 1 error for m.
 - The decoder identified but couldn't correct the errors for h
 - ullet The decoder did not identify the errors for t and actually returned
 - a wrong answer, s

- Suppose the received messages were {msm, aaa, sts, hrq}.
- The decoder would return the message mas?.
- Decoding notes:
 - The decoder identified and corrected 1 error for m.
 - The decoder identified but couldn't correct the errors for h
 - The decoder did not identify the errors for t and actually returned
 - a wrong answer, s

- Suppose the received messages were {msm, aaa, sts, hrq}.
- The decoder would return the message mas?.
- Decoding notes:
 - The decoder identified and corrected 1 error for m.
 - The decoder identified but couldn't correct the errors for h
 - The decoder did not identify the errors for t and actually returned a wrong answer, s.

- Suppose the received messages were {msm, aaa, sts, hrq}.
- The decoder would return the message mas?.
- Decoding notes:
 - The decoder identified and corrected 1 error for m.
 - The decoder identified but couldn't correct the errors for h.
 - The decoder did not identify the errors for t and actually returned a wrong answer, s.

- Suppose the received messages were {msm, aaa, sts, hrq}.
- The decoder would return the message mas?.
- Decoding notes:
 - The decoder identified and corrected 1 error for m.
 - The decoder identified but couldn't correct the errors for h.
 - The decoder did not identify the errors for t and actually returned a wrong answer, s.

Error Correcting Codes 13 / 35

Error Correcting Codes

Error Correcting Codes 14 / 35

Linear Codes

- Normally we are interested in linear codes over finite fields such as $\mathbb{F}_2 = \{0,1\}.$
- Notation: If a linear code C is a k-dimensional subspace of A^n with minimum distance d, then we say C is an [n, k, d] linear code.

Error Correcting Codes 14 / 35

Linear Codes

- Normally we are interested in linear codes over finite fields such as $\mathbb{F}_2 = \{0,1\}.$
- Notation: If a linear code C is a k-dimensional subspace of A^n with minimum distance d, then we say C is an [n, k, d] linear code.

Error Correcting Codes 15 / 35

The Generator Matrix

Let $\{\mathbf{c}_1, \mathbf{c}_2, \dots \mathbf{c}_k\}$ be a basis for C, the k dimensional subspace of \mathbb{F}^n , where

$$\mathbf{c}_i = (c_{i,1}, c_{i,2}, \ldots, c_{i,n})$$

is an *n*-vector. Then define the $k \times n$ matrix G as follows:

$$G = \begin{bmatrix} \mathbf{c}_1 \\ \mathbf{c}_2 \\ \vdots \\ \mathbf{c}_k \end{bmatrix} = \begin{bmatrix} c_{1,1} & c_{1,2} & \dots & c_{1,n} \\ c_{2,1} & c_{2,2} & \dots & c_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{k,1} & c_{k,2} & \dots & c_{k,n} \end{bmatrix}.$$

This matrix is called the generating matrix for C since $C = \{vG \mid v \in \mathbb{F}^k\}$ (i.e. all \mathbb{F} -linear combinations of the rows of G).

Error Correcting Codes 16 / 35

The Parity Check Matrix

Another related matrix which can be used to define the code C is the $(n-k) \times n$ matrix H of rank n-k called the parity check matrix. This matrix is the solution to the following matrix equation:

$$GH^{\mathsf{T}} = \mathbf{0}_{k \times (n-k)},$$

and can be used in decoding received messages.

Error Correcting Codes 17 / 35

The Parity Check Matrix

Note that since every codeword, \mathbf{v} , can be written as $\mathbf{u}G = \mathbf{v}$ this implies that

$$\mathbf{v}H^{\mathsf{T}} = \mathbf{u}GH^{\mathsf{T}} = \mathbf{u}\mathbf{0}_{k\times(n-k)} = \mathbf{0}_{1\times(n-k)}.$$

Also, since the rank of H is n-k and $\{\mathbf{c}_1, \mathbf{c}_2, \dots \mathbf{c}_k\} \subseteq C$ is a linearly independent set of size k with $\mathbf{c}_i H^\mathsf{T} = \mathbf{0}_{1 \times (n-k)}$ we conclude that C is precisely the left null space of H^T and thus we have the following useful property:

$$\mathbf{v}H^{\mathsf{T}} = \mathbf{0}_{1\times(n-k)} \text{ iff } \mathbf{v} \in C.$$

Error Correcting Codes 18 / 35

Definition

- Encoding: Given $\mathbf{u} \in \mathbb{F}^k$ produce the corresponding codeword, $\mathbf{v} = \mathbf{u}G$.
- **Decoding**: Given $\mathbf{w} \in \mathbb{F}^n$ find the closest codeword, $\mathbf{c} \in C$.

Decoding Terms

Definition (Haming Weight)

Let $\mathbf{e} \in \mathbb{F}^n$, where \mathbb{F} is a finite field. Then the hamming weight of \mathbf{e} , denoted $H(\mathbf{e})$ is the number of non-zero positions in \mathbf{e} .

Definition (Haming Distance)

Let $\mathbf{x}, \mathbf{y} \in \mathbb{F}^n$, where \mathbb{F} is a finite field. Then the hamming distance between \mathbf{x} and \mathbf{y} , denoted $H(\mathbf{x}, \mathbf{y})$ is the number of positions where \mathbf{x} and \mathbf{y} disagree. Thus, $H(\mathbf{x}, \mathbf{y}) = H(\mathbf{x} - \mathbf{y})$.

Examples

- If $\mathbf{x} = (0, 8, 1, 1, 2, 0, 0, 8)$, then $H(\mathbf{x}) = 5$.
- If y = (1, 1, 0, 2, 2, 0, 1, 1), then H(x, y) = 6.

Examples

- If $\mathbf{x} = (0, 8, 1, 1, 2, 0, 0, 8)$, then $H(\mathbf{x}) = 5$.
- If y = (1, 1, 0, 2, 2, 0, 1, 1), then H(x, y) = 6.

Decoding: Geometric Picture

Minimum Distance

Definition (Minimum Distance)

The minimum distance, d, of a code, C, is given by $d = \min (\{H(\mathbf{u}, \mathbf{v}) \mid \mathbf{u} \neq \mathbf{v} \text{ and } \mathbf{u}, \mathbf{v} \in C\}).$

- If C is a linear code then we have $H(\mathbf{u}, \mathbf{v}) = H(\mathbf{u} \mathbf{v}, 0)$, since we can perform a distance preserving linear translation.
- Hence, for a linear code C, $d = min(\{H(\mathbf{w}, \mathbf{0}) \mid \mathbf{w} \in C\})$, and the minimum distance is the same as the minimum Hamming weight of all codewords.
- A code with minimum distance d can correct up to $\frac{d}{2}$ errors

Minimum Distance

Definition (Minimum Distance)

The minimum distance, d, of a code, C, is given by $d = \min \{ \{ H(\mathbf{u}, \mathbf{v}) \mid \mathbf{u} \neq \mathbf{v} \text{ and } \mathbf{u}, \mathbf{v} \in C \} \}$.

- If C is a linear code then we have $H(\mathbf{u}, \mathbf{v}) = H(\mathbf{u} \mathbf{v}, 0)$, since we can perform a distance preserving linear translation.
- Hence, for a linear code C, $d = min(\{H(\mathbf{w}, \mathbf{0}) \mid \mathbf{w} \in C\})$, and the minimum distance is the same as the minimum Hamming weight of all codewords.
- A code with minimum distance d can correct up to $\frac{d}{2}$ errors.

Minimum Distance

Definition (Minimum Distance)

The minimum distance, d, of a code, C, is given by $d = \min \{ \{ H(\mathbf{u}, \mathbf{v}) \mid \mathbf{u} \neq \mathbf{v} \text{ and } \mathbf{u}, \mathbf{v} \in C \} \}$.

- If C is a linear code then we have $H(\mathbf{u}, \mathbf{v}) = H(\mathbf{u} \mathbf{v}, 0)$, since we can perform a distance preserving linear translation.
- Hence, for a linear code C, $d = min(\{H(\mathbf{w}, \mathbf{0}) \mid \mathbf{w} \in C\})$, and the minimum distance is the same as the minimum Hamming weight of all codewords.
- A code with minimum distance d can correct up to $\frac{d}{2}$ errors.

Minimum Distance

Definition (Minimum Distance)

The minimum distance, d, of a code, C, is given by $d = \min \{ \{ H(\mathbf{u}, \mathbf{v}) \mid \mathbf{u} \neq \mathbf{v} \text{ and } \mathbf{u}, \mathbf{v} \in C \} \}$.

- If C is a linear code then we have $H(\mathbf{u}, \mathbf{v}) = H(\mathbf{u} \mathbf{v}, 0)$, since we can perform a distance preserving linear translation.
- Hence, for a linear code C, $d = min(\{H(\mathbf{w}, \mathbf{0}) \mid \mathbf{w} \in C\})$, and the minimum distance is the same as the minimum Hamming weight of all codewords.
- A code with minimum distance d can correct up to $\frac{d}{2}$ errors.

Singleton Bound

Theorem (Singleton Bound)

Let C be an [n, k, d] linear code. Then $d \le n - (k - 1)$.

Singleton Bound

Theorem (Singleton Bound)

Let C be an [n, k, d] linear code. Then $d \le n - (k - 1)$.

Unambiguous Decoding

Definition (Unambiguous Decoding)

For an [n, k, d] code and input $\mathbf{w} \in \mathbb{F}^n$, find the codeword, if it exists, within the ball of radius $r = \left| \frac{d-1}{2} \right|$ centered around \mathbf{w} .

List Decoding

Definition (List Decoding)

For an [n, k, d] code and input $\mathbf{w} \in \mathbb{F}^n$, find all codewords, if any exist, within the ball of radius $r > \left| \frac{d-1}{2} \right|$ centered around \mathbf{w} .

Maximum Likelihood Decoding

Definition (Maximum Likelihood Decoding)

For an [n, k, d] code and input $\mathbf{w} \in \mathbb{F}^n$, find the closest codeword to \mathbf{w} with respect to the Hamming distance.

Decoding

Why Maximum Likelihood Decoding?

	vector components	distance
Received vector:	[1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1]	
Codeword 1:	[1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1]	3
Codeword 2:	[1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0]	4

Efficiency via Compression

- Suppose **X** is a random variable taking on values from a finite set given by some fixed distribution.
- What is the most efficient way to encode the values that X takes on?
- Every language has a certain amount of redundancy built into it.

Definition (Entropy

$$H(\mathbf{X}) = -\sum_{\mathbf{x} \in \mathbf{Y}} \mathbf{Pr}[\mathbf{x}] \log_2(\mathbf{Pr}[\mathbf{x}])$$

- Suppose **X** is a random variable taking on values from a finite set given by some fixed distribution.
- What is the most efficient way to encode the values that X takes on?
- Every language has a certain amount of redundancy built into it.

Definition (Entropy

$$H(\mathbf{X}) = -\sum_{\mathbf{x} \in \mathbf{Y}} \mathbf{Pr}[\mathbf{x}] \log_2(\mathbf{Pr}[\mathbf{x}])$$

- Suppose X is a random variable taking on values from a finite set given by some fixed distribution.
- What is the most efficient way to encode the values that X takes on?
- Every language has a certain amount of redundancy built into it.

Definition (Entropy

$$H(\mathbf{X}) = -\sum_{\mathbf{x} \in \mathbf{Y}} \mathbf{Pr}[\mathbf{x}] \log_2(\mathbf{Pr}[\mathbf{x}])$$

- Suppose **X** is a random variable taking on values from a finite set given by some fixed distribution.
- What is the most efficient way to encode the values that X takes on?
- Every language has a certain amount of redundancy built into it.

Definition (Entropy)

$$H(\mathbf{X}) = -\sum_{\mathbf{x} \in \mathbf{Y}} \mathbf{Pr}[\mathbf{x}] \log_2(\mathbf{Pr}[\mathbf{x}])$$

Variable Length Codes

- We don't have to use the same size for each encoding of a message, as long as we can distinguish where one message ends and another begins.
- If we know that some messages occur more often, then we should use the fewest number of symbols possible to represent them.
- We should save the longest number of symbols for those messages that occur infrequently.

Variable Length Codes

- We don't have to use the same size for each encoding of a message, as long as we can distinguish where one message ends and another begins.
- If we know that some messages occur more often, then we should use the fewest number of symbols possible to represent them.
- We should save the longest number of symbols for those messages that occur infrequently.

Variable Length Codes

- We don't have to use the same size for each encoding of a message, as long as we can distinguish where one message ends and another begins.
- If we know that some messages occur more often, then we should use the fewest number of symbols possible to represent them.
- We should save the longest number of symbols for those messages that occur infrequently.

Huffman Encoding

- Suppose **X** takes on the values a, b, c with probability $\frac{1}{2}, \frac{1}{4}, \frac{1}{4}$ respectively.
- We could encode them as follows:

$$a \rightarrow 0$$
 $b \rightarrow 10$
 $c \rightarrow 11$

which would result in saving 1 character half of the time.

Huffman Encoding

- Suppose **X** takes on the values a, b, c with probability $\frac{1}{2}, \frac{1}{4}, \frac{1}{4}$ respectively.
- We could encode them as follows:

$$\begin{array}{ccc} a & \rightarrow & 0 \\ b & \rightarrow & 10 \\ c & \rightarrow & 11 \end{array}$$

which would result in saving 1 character half of the time.

Huffman Encoding

The symbols are stored in a frequency-sorted binary tree and the encoding is based off the "path" to the symbol.

Text: "this is an example of a huffman tree"

- Deep Space probe photos
- ISBN numbers and credit card numbers
- CDs
- Cryptography

- Deep Space probe photos
- ISBN numbers and credit card numbers
- CDs
- Cryptography

- Deep Space probe photos
- ISBN numbers and credit card numbers
- CDs
- Cryptography

- Deep Space probe photos
- ISBN numbers and credit card numbers
- CDs
- Cryptography

References

- Wikipedia (www.wikipedia.org)
- My Master's Project
- Various books from the library

Thanks for attending. If you are interested in this topic consider taking MTHSC 856 this spring.