Graph Attention Networks

Lab Intern 이준모

Contents

- 1. Introduction
- 2. Self-Attention
- 3. GAT Architecture & Comparison to related work
- 4. Experiment
- 5. Evaluation
- 6. Conclusion & Future work

Introduction - (1)

Convolutional Neural Networks (CNNs)

- Good at image classification, machine translation
- But, only in Grid Structure
- Cannot apply to 3D mesh, social network

Tabian, I.; Fu, H.; Sharif Khodaei, Z. A Convolutional Neural Network for Impact Detection and Characterization of Complex Composite Structures. Sensors 2019, 19, 4933.

Graph Neural Networks (GNN)

- Appeared in Gori et al. (2005)
- Introduced as Generalized version of RNN
- Can directly deal with a more general graphs

https://perfectial.com/blog/graph-neural-networks-and-graph-convolutional-networks/

Introduction – (2)

Spectral Representation		Spatial Representation		
•	Convolution operation defined in Fourier domain	 Define convolutions directly on the grap on groups of spatially close neighbors 	h,	
•	Can not be directly applied to a graph with different structure	 Impressive performance across several large-scale datasets 		
•	Ex) Spectral Graph CNN (Bruna et al. ICLR 2015)	• Ex) GraphSAGE (Hamilton et al. NIPS 2017)		

Graph Attention Networks(GAT)

- Inspired by self-attention structure of transformer (Vaswani et al. NIPS 2017)
- Apply to Node Classification
- Compute the hidden representations of each node in the graph by a self-attention strategy

Self-Attention

- Loss of Information (by fixed vector)
- Vanishing gradient

- Pronoun is depend on context
- Numerically indicate which of the input elements should be considered important

Characteristics of Self-Attention in Graph

- Efficient operation by parallel computing
- Can be Applied to graph nodes having different degrees by specifying arbitrary weights to neighbors
- Directly applicable to inductive learning problems

Reference from: https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html">https://wikidocs.net/24996, https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

GAT Architecture - (1)

Describing a Single graph attentional layer

- Sole layer utilized throughout all of the GAT structure
- Closely follows the work of Bahdanau et al. (2015)

Notation Definitio	n		
Input to layer	Output to layer	Linear Transformation	Self-Attention Transformation
Set of Node Features	Set of New Node Features	Transform input feature into higher-level features	Define Self-Attention Transformation after Linear Transformation
$\mathbf{h} = \{ \vec{h}_1, \vec{h}_2, \dots, \vec{h}_N \}$ $\vec{h}_i \in \mathbb{R}^F$	$\mathbf{h}' = \{ \vec{h}_1', \vec{h}_2', \dots, \vec{h}_N' \}$ $\vec{h}_i' \in \mathbb{R}^{F'}$	$\mathbf{W} \in \mathbb{R}^{F' imes F}$	$a: \mathbb{R}^{F'} \times \mathbb{R}^{F'} \to \mathbb{R}$
N : number of Nodes	N : number of Nodes	W : weight matrix	
F : number of Node's Features	F': number of Output Node's Features		

Reference from : https://thejb.ai/gat/

GAT Architecture - (2)

Attention Coefficients

• Defined as $e_{ij} = a(\mathbf{W} \vec{h}_i, \mathbf{W} \vec{h}_j)$: The importance of node j's features to node i

Masked Attention

• Compute e_{ij} for nodes $j \in \mathcal{N}_i$, where \mathcal{N}_i is some neighborhood of node i (include i itself)

Normalized Attention Coefficients

- Defined as $\alpha_{ij} = \operatorname{softmax}_j(e_{ij}) = \frac{\exp(e_{ij})}{\sum_{k \in \mathcal{N}_i} \exp(e_{ik})}$ \because to make coefficients easily comparable
- In this experiments, a is a single-layer feedforward neural network

$$\alpha_{ij} = \frac{\exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T [\mathbf{W} \vec{h}_i || \mathbf{W} \vec{h}_j]\right)\right)}{\sum_{k \in \mathcal{N}_i} \exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T [\mathbf{W} \vec{h}_i || \mathbf{W} \vec{h}_i]\right)\right)}$$

 $ec{\mathbf{a}} \in \mathbb{R}^{2F'}$: a weight vector

LeakyReLU: activation function

where \cdot^T represents transposition and \parallel is the concatenation operation

Reference from : https://thejb.ai/gat/

GAT Architecture - (3)

Output Layers

• Defined as $ec{h}_i' = \sigma\left(\sum_{j\in\mathcal{N}_i} lpha_{ij} \mathbf{W} ec{h}_j
ight)$ σ : Activation function (Use ELU)

Multi-head Attention

• Defined as $\vec{h}_i' = \prod_{k=1}^K \sigma \left(\sum_{j \in \mathcal{N}_i} \alpha_{ij}^k \mathbf{W}^k \vec{h}_j \right)$ K independent attention mechanisms + Concatenation \cdot to stabilize the learning process of self-attention Output will consist of KF' features for each node

Final(Prediction) Layers

• Defined as $\vec{h}_i' = \sigma \left(\frac{1}{K} \sum_{k=1}^K \sum_{j \in \mathcal{N}_i} \alpha_{ij}^k \mathbf{W}^k \vec{h}_j \right)$ Average attention values instead of concatenating σ : Activation function (Use Softmax or Logistic)

Reference from : https://thejb.ai/gat/

GAT Architecture – (4)

Summary

Veličković, Petar, et al. "Graph attention networks." arXiv preprint arXiv:1710.10903 (2017).

Comparison to related work

vs GCN

- GAT allows for assigning different importances to nodes of a same neighborhood
- -> Improve Model Capacity
- Analyzing the learned attentional weights lead to benefits in interpretability

Attention Mechanism

- This is applied in a shared manner to all edges in graph
- -> Learning can proceed without access to the global graph structure
 - > The graph is not required to be undirected
 - Directly applicable to inductive learning
 - ➤ Effective Computation and be flexible to graph variations

Layer

- GAT Layer leverages sparse matrix operations -> reduce storage complexity -> larger graph
- Framework supports mm for rank-2 tensor -> limits the batching capabilities -> Future Work!

Experiment

Mishra, Pushkar, et al. "Node masking: Making graph neural networks generalize and scale better." arXiv preprint arXiv:2001.07524 (2020).

Experiment

Table 1: Summary of the datasets used in our experiments.

	Cora	Citeseer	Pubmed	PPI
Task	Transductive	Transductive	Transductive	Inductive
# Nodes	2708 (1 graph)	3327 (1 graph)	19717 (1 graph)	56944 (24 graphs)
# Edges	5429	4732	44338	818716
# Features/Node	1433	3703	500	50
# Classes	7	6	3	121 (multilabel)
# Training Nodes	140	120	60	44906 (20 graphs)
# Validation Nodes	500	500	500	6514 (2 graphs)
# Test Nodes	1000	1000	1000	5524 (2 graphs)

Nodes	Publications	Publications	Publications	Protein
Edges	Citation Network	Citation Network	Citation Network	Interaction
Features	Unique Words	Unique Words	Unique Words	Positional gene sets/motif gene set/ immunological signatures
Classes	Label	Label	Label	Protein roles

Reference from : https://linqs.soe.ucsc.edu/data

Evaluation

Transductive Learning	Inductive Learning		
• Two-layer GAT model	• Three-layer GAT model		
 First Layer : K = 8 attention heads computing F'= 8 features with ELU 	 First Two Layer: K = 4 attention heads computing F'= 256 features with ELU 		
 Second Layer: a single attention head computes C classes by a softmax 	 Final Layer: K = 6 attention heads computing 121 classes by a logistic sigmoid 		
• L_2 Regularization & Dropout	• No L_2 Regularization & Dropout		

Transductive	
GCN-64* corresponds to the best GCN result computing 64 hidden feature	ares (using ReLU or ELU).
Table 2: Summary of results in terms of classification accuracies, for C	Cora, Citeseer and Pubmed.

Transactive			
Method	Cora	Citeseer	Pubmed
MLP	55.1%	46.5%	71.4%
ManiReg (Belkin et al., 2006)	59.5%	60.1%	70.7%
SemiEmb (Weston et al., 2012)	59.0%	59.6%	71.7%
LP (Zhu et al., 2003)	68.0%	45.3%	63.0%
DeepWalk (Perozzi et al., 2014)	67.2%	43.2%	65.3%
ICA (Lu & Getoor, 2003)	75.1%	69.1%	73.9%
Planetoid (Yang et al., 2016)	75.7%	64.7%	77.2%
Chebyshev (Defferrard et al., 2016)	81.2%	69.8%	74.4%
GCN (Kipf & Welling, 2017)	81.5%	70.3%	79.0%
MoNet (Monti et al., 2016)	$81.7 \pm 0.5\%$	_	$78.8\pm0.3\%$
GCN-64*	$81.4 \pm 0.5\%$	$70.9 \pm 0.5\%$	79.0 \pm 0.3%
GAT (ours)	$83.0 \pm 0.7\%$	$72.5 \pm 0.7\%$	$79.0 \pm 0.3\%$

Table 3: Summary of results in terms of micro-averaged F1 scores, for the PPI dataset. GraphSAGE* corresponds to the best GraphSAGE result we were able to obtain by just modifying its architecture. Const-GAT corresponds to a model with the same architecture as GAT, but with a constant attention mechanism (assigning same importance to each neighbor; GCN-like inductive operator).

Inductive			
Method	PPI		
Random	0.396		
MLP	0.422		
GraphSAGE-GCN (Hamilton et al., 2017)	0.500		
GraphSAGE-mean (Hamilton et al., 2017)	0.598		
GraphSAGE-LSTM (Hamilton et al., 2017)	0.612		
GraphSAGE-pool (Hamilton et al., 2017)	0.600		
GraphSAGE*	0.768		
Const-GAT (ours)	0.934 ± 0.006		
GAT (ours)	0.973 ± 0.002		

Veličković, Petar, et al. "Graph attention networks." arXiv preprint arXiv:1710.10903 (2017).

Feature Representations

t-SNE plot of the computed feature representations of GAT (first hidden layer)

Color = class of Node

Edge thickness = aggregated normalized attention coefficients

Veličković, Petar, et al. "Graph attention networks." arXiv preprint arXiv:1710.10903 (2017).

Conclusion & Future Work

Conclusion

New Convolution-style Neural Networks on graph-structured data by masked self-attentional layers

- 1. Computationally efficient
- 2. Allowing for assigning different importances to different nodes within a neighborhood
- 3. Inductive Learning

Future Work

- 1. Overcoming the Practical Problem (Handling larger batch sizes)
- 2. Use attention mechanism to analyze on the model interpretability
- 3. Extend the method to perform graph classification
- 4. Extend the model to incorporate edge features

Any Questions?