2019-2020 学年第一学期线性代数期末考试

- 一. (12分)回答问题:
- 1. 矩阵 $A_{m\times n}$ 等价于矩阵 $B_{m\times n}$ 的定义是:
- 2. 矩阵 $A_{n\times n}$ 相似于矩阵 $B_{n\times n}$ 的定义是:
- 3. 实矩阵 $A_{n\times n}$ 是正交矩阵的定义,或者充要条件是:
- 4. 实矩阵 $A_{n\times n}$ 是对称正定矩阵的定义,或者充要条件是:
- 二. (24分)填空:
- 1. 设矩阵 $A_{n\times n}$ 对应特征值 λ_0 的 3 个线性无关的特征向量为 $\alpha_1,\alpha_2,\alpha_3$,常数 k_1,k_2,k_3 满足什么条件时, $k_1\alpha_1+k_2\alpha_2+k_3\alpha_3$ 也是 A 的特征向量.
- 2. 将3阶行列式 D_1 的第1列的 2 倍加到第2列得到的行列式记为 D_2 ,再对换 D_2 的第2行与第3行得到的行列式记为 D_3 ,那么 D_1 和 D_2 及 D_3 的数值关系是什么?
- 3. 设矩阵 $A_{3\times 3}$ 的特征值互不相同,且 $\det A = 0$,则 $\operatorname{rank} A =$
- 4. 设 A 为 2 阶 方 阵, 2 维 列 向 量 组 α_1,α_2 线 性 无 关, 且 满 足 $A\alpha_1=0$, $A\alpha_2=2\alpha_1+\alpha_2$,则 A 的全体特征值是
- 5. 设矩阵 $A_{3\times 3}$ 的各行元素之和是 3,且 $\det A = 9$,则 A 的伴随矩阵 A^* 的各行元素之和是
- 6. 设线性方程组 $A_{(n+1)\times n}x=b$ 有唯一解,划分 $A=\begin{pmatrix}A_1\\A_2\end{pmatrix}$,其中 A_1 为 $2\times n$ 矩阵, A_2 为 $(n-1)\times n$ 矩阵,则齐次方程组 $A_2x=0$ 的基础解系中含解向量的个数的范围是

$$\Xi$$
. (10 分) 计算行列式 $D_n = \begin{vmatrix} 2 & 1 & & & \\ 1 & 2 & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & 2 & 1 \\ & & & 1 & 2 \end{vmatrix}$ $(n > 1)$

提示: D_n 的第一行 $(2 \ 1 \ 0 \ \cdots \ 0)=(1+1 \ 0+1 \ 0+0 \ \cdots \ 0+0)$

更多考试真题请扫码获取

四. (16 分) 已知
$$\beta = \begin{pmatrix} 0 \\ 0 \\ 0 \\ a-1 \end{pmatrix}$$
 可由 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 2 \\ 4 \\ 2 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ a \\ a^2 \\ 1 \end{pmatrix}$ 线性表示,求

数 a 及全体表示式.

五.(16分)已知 A 为实对称矩阵,二次型 $f(x_1,x_2,x_3) = x^T A x$ 在正交变换 x = Q y 下的标准型为 $2y_1^2 + 2y_2^2$,且 Q 的第 3 列为 $\left(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}\right)^T$.

- 1) 求矩阵 A 及 Q;
- 2) 求方程 $f(x_1, x_2, x_3) = 0$ 的解.

六. (14 分) 在向量空间 \mathbf{R}^3 中,基(I) $\alpha_1,\alpha_2,\alpha_3$ 与基(II) β_1,β_2,β_3 满足

$$\beta_1 = \alpha_1 + \alpha_2$$
, $\beta_1 + \beta_2 = \alpha_2 + \alpha_3$, $\beta_2 + \beta_3 = \alpha_3$

- 1) 求由基(I)改变为基(II)的过渡矩阵;
- 2) 求 $\alpha = \beta_1 + 2\beta_2 + 3\beta_3$ 在基(I)下的坐标.

七. (8分) 设 $\alpha_1, \dots, \alpha_m$ 为n维列向量组,令 $A = \alpha_1 \alpha_1^T + \dots + \alpha_m \alpha_m^T$.

- 1) 证明 rank A≤m;
- 2) 如果 $\alpha_1, \dots, \alpha_m$ 线性相关,证明 rank A < m.