第 5 章 α : 定积分的概念与性质

数学系 梁卓滨

2019-2020 学年 I

Outline

1. 定积分的概念

2. 定积分的性质

We are here now...

1. 定积分的概念

2. 定积分的性质

矩形形面积

矩形形面积

5a 定积分

$$A = \sum \Delta A_i \qquad f(\xi_i) \Delta x_i$$

$$A = \sum \Delta A_i \approx \sum f(\xi_i) \Delta x_i$$

$$A = \sum \Delta A_i \approx \sum f(\xi_i) \Delta x_i$$

$$A = \sum \Delta A_i \approx \sum f(\xi_i) \Delta x_i$$

$$x_0 = a$$
 x_1 x_2 x_{i-1} ξ_i x_i x_{n-1} $b = x_n$

$$f(\xi_i)\Delta x_i$$

$$x_0 = a$$
 x_1 x_2 x_{i-1} ξ_i x_i x_{n-1} $b = x_n$

$$\sum_i f(\xi_i) \Delta x_i$$

$$x_0 = a$$
 x_1 x_2 x_{i-1} ξ_i x_i x_{n-1} $b = x_n$

$$\lim_{\Delta x \to 0} \sum_{i} f(\xi_i) \Delta x_i$$

定义 设 f(x) 是定义在区间 [a, b] 上的函数,

$$x_0 = a$$
 x_1 x_2 x_{i-1} ξ_i x_i x_{n-1} $b = x_n$

如果极限

$$\lim_{\Delta x \to 0} \sum_{i} f(\xi_i) \Delta x_i$$

存在,则称 f(x) 在 [a, b] 上可积,

定义 设 f(x) 是定义在区间 [a, b] 上的函数,

$$x_0 = a$$
 x_1 x_2 x_{i-1} ξ_i x_i x_{n-1} $b = x_n$

如果极限

$$\lim_{\Delta x \to 0} \sum_{i} f(\xi_i) \Delta x_i$$

存在,则称 f(x) 在 [a, b] 上可积,称为 f(x) 在 [a, b] 上的积分,记作 $\int_a^b f(x) dx$,

定义 设 f(x) 是定义在区间 [a, b] 上的函数,

$$x_0 = a$$
 x_1 x_2 x_{i-1} ξ_i x_i x_{n-1} $b = x_n$

如果极限

$$\lim_{\Delta x \to 0} \sum_{i} f(\xi_i) \Delta x_i$$

存在,则称 f(x) 在 [a, b] 上可积,称为 f(x) 在 [a, b] 上的积分,记作 $\int_a^b f(x) dx$,即

$$\int_{a}^{b} f(x)dx := \lim_{\Delta x \to 0} \sum_{i} f(\xi_{i}) \Delta x_{i}$$

定义 设 f(x) 是定义在区间 [a, b] 上的函数,

$$x_0 = a$$
 x_1 x_2 x_{i-1} ξ_i x_i x_{n-1} $b = x_n$

如果极限

$$\lim_{\Delta x \to 0} \sum_{i} f(\xi_i) \Delta x_i$$

存在,则称 f(x) 在 [a, b] 上可积,称为 f(x) 在 [a, b] 上的积分,记作 $\int_a^b f(x) dx$,即

$$\int_{a}^{b} f(x)dx := \lim_{\Delta x \to 0} \sum_{i} f(\xi_{i}) \Delta x_{i}$$

其中

● "∫": 积分号; "f(x)": 被积函数; "f(x)dx": 被积表达式

定义 设 f(x) 是定义在区间 [a, b] 上的函数,

$$x_0 = a$$
 x_1 x_2 x_{i-1} ξ_i x_i x_{n-1} $b = x_n$

如果极限

$$\lim_{\Delta x \to 0} \sum_{i} f(\xi_i) \Delta x_i$$

存在,则称 f(x) 在 [a, b] 上可积,称为 f(x) 在 [a, b] 上的积分,记作 $\int_a^b f(x) dx$,即

$$\int_{a}^{b} f(x)dx := \lim_{\Delta x \to 0} \sum_{i} f(\xi_{i}) \Delta x_{i}$$

其中

5a 定积分

- "∫": 积分号; "f(x)": 被积函数; "f(x)dx": 被积表达式
- "[a, b]": 积分区间;"a": 积分下限;"b": 积分上限;

• 定积分 $\int_a^b f(x) dx$ 是一个数

• 定积分 $\int_a^b f(x) dx$ 是一个数,所以

$$\frac{d}{dx} \int_{a}^{b} f(x) dx =$$

• 定积分 $\int_a^b f(x)dx$ 是一个数,所以

$$\frac{d}{dx}\int_a^b f(x)dx = 0.$$

• 定积分 $\int_a^b f(x)dx$ 是一个数,所以

$$\frac{d}{dx}\int_{a}^{b}f(x)dx=0.$$

区别不定积分 $\int f(x)dx$ 的导数

$$\frac{d}{dx}\int f(x)dx =$$

• 定积分 $\int_a^b f(x)dx$ 是一个数,所以

$$\frac{d}{dx}\int_{a}^{b}f(x)dx=0.$$

区别不定积分 $\int f(x)dx$ 的导数

$$\frac{d}{dx}\int f(x)dx = f(x).$$

• 定积分 $\int_a^b f(x)dx$ 是一个数,所以

$$\frac{d}{dx}\int_{a}^{b}f(x)dx=0.$$

区别不定积分 $\int f(x)dx$ 的导数

$$\frac{d}{dx}\int f(x)dx = f(x).$$

• 定积分 $\int_a^b f(x)dx$ 中,a < b.

• 定积分 $\int_a^b f(x)dx$ 是一个数,所以

$$\frac{d}{dx}\int_{a}^{b}f(x)dx=0.$$

区别不定积分 $\int f(x)dx$ 的导数

$$\frac{d}{dx}\int f(x)dx = f(x).$$

• 定积分 $\int_a^b f(x) dx$ 中,a < b. 规定

$$\int_{b}^{a} f(x) dx =$$

• 定积分 $\int_a^b f(x)dx$ 是一个数,所以

$$\frac{d}{dx}\int_{a}^{b}f(x)dx=0.$$

区别不定积分 $\int f(x)dx$ 的导数

$$\frac{d}{dx}\int f(x)dx = f(x).$$

• 定积分 $\int_a^b f(x) dx$ 中, $\alpha < b$. 规定

$$\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx.$$

• 定积分 $\int_a^b f(x) dx$ 是一个数,所以

$$\frac{d}{dx}\int_{a}^{b}f(x)dx=0.$$

区别不定积分 $\int f(x)dx$ 的导数

$$\frac{d}{dx}\int f(x)dx = f(x).$$

• 定积分 $\int_a^b f(x) dx$ 中,a < b. 规定

$$\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx.$$

例如
$$\int_{10}^{3} f(x) dx =$$

• 定积分 $\int_a^b f(x)dx$ 是一个数,所以

$$\frac{d}{dx}\int_{a}^{b}f(x)dx=0.$$

区别不定积分 $\int f(x)dx$ 的导数

$$\frac{d}{dx}\int f(x)dx = f(x).$$

• 定积分 $\int_a^b f(x) dx$ 中,a < b. 规定

$$\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx.$$

例如 $\int_{10}^{3} f(x) dx = -\int_{3}^{10} f(x) dx$.

• 定积分 $\int_a^b f(x) dx$ 是一个数,所以

$$\frac{d}{dx}\int_a^b f(x)dx = 0.$$

区别不定积分 $\int f(x)dx$ 的导数

$$\frac{d}{dx}\int f(x)dx = f(x).$$

• 定积分 $\int_a^b f(x)dx$ 中,a < b. 规定

$$\int_{a}^{a} f(x)dx = -\int_{a}^{b} f(x)dx.$$

例如 $\int_{10}^{3} f(x)dx = -\int_{3}^{10} f(x)dx$.

• 规定:
$$\int_{a}^{a} f(x) dx = 0$$

5a 定积分

• 定积分 $\int_a^b f(x) dx$ 是一个数,所以

$$\frac{d}{dx}\int_{a}^{b}f(x)dx=0.$$

区别不定积分 $\int f(x)dx$ 的导数

$$\frac{d}{dx}\int f(x)dx = f(x).$$

• 定积分 $\int_a^b f(x)dx$ 中,a < b. 规定

$$\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx.$$

例如 $\int_{10}^{3} f(x) dx = -\int_{3}^{10} f(x) dx$.

• 规定: $\int_{\alpha}^{\alpha} f(x) dx = 0$,例如 $\int_{2}^{2} f(x) dx = 0$

• 若极限 $\lim_{\Delta x \to 0} \sum_i f(\xi_i) \Delta x_i$ 不存在,则定积分 $\int_a^b f(x) dx$ 也就不存在.

• 若极限 $\lim_{\Delta x \to 0} \sum_i f(\xi_i) \Delta x_i$ 不存在,则定积分 $\int_a^b f(x) dx$ 也就不存在.

问题

• 何时极限 $\lim_{\substack{\Lambda \times \to 0 \\ \Lambda \times \to 0}} \sum_i f(\xi_i) \Delta x_i$ 存在?

• 若极限 $\lim_{\Delta x \to 0} \sum_i f(\xi_i) \Delta x_i$ 不存在,则定积分 $\int_a^b f(x) dx$ 也就不存在.

问题

- 何时极限 $\lim_{\Delta Y \to 0} \sum_i f(\xi_i) \Delta x_i$ 存在?
- 或者说,何时定积分 $\int_a^b f(x) dx$ 存在? (f(x) 何时可积?)

• 若极限 $\lim_{\Delta x \to 0} \sum_i f(\xi_i) \Delta x_i$ 不存在,则定积分 $\int_a^b f(x) dx$ 也就不存在.

问题

- 何时极限 $\lim_{\Delta Y \to 0} \sum_i f(\xi_i) \Delta x_i$ 存在?
- 或者说,何时定积分 $\int_a^b f(x) dx$ 存在? (f(x) 何时可积?)

定理 如果函数 f(x) 在 [a, b] 上连续,则 $\int_a^b f(x) dx$ 存在.

• 若极限 $\lim_{\Delta x \to 0} \sum_i f(\xi_i) \Delta x_i$ 不存在,则定积分 $\int_a^b f(x) dx$ 也就不存在.

问题

- 何时极限 $\lim_{\Delta Y \to 0} \sum_i f(\xi_i) \Delta x_i$ 存在?
- 或者说,何时定积分 $\int_a^b f(x)dx$ 存在? (f(x) 何时可积?)

定理 如果函数 f(x) 在 [a, b] 上连续,则 $\int_a^b f(x) dx$ 存在.

定理 如果函数 f(x) 在 [a, b] 上有界,且除去有限个点外连续,则 $\int_a^b f(x) dx$ 存在.

当 $f(x) \ge 0$ 时,

当 $f(x) \ge 0$ 时,

当 $f(x) \ge 0$ 时,

例1 右图曲边梯形面积,用定积分表示是

当f(x)≥0时,

例1 右图曲边梯形面积,用定积分表示是

$$A = \int_{-1}^{2} (x^3 - x + 2) dx$$

例 2 计算
$$\int_a^b 1 dx$$

$$\int_{a}^{b} 1 dx$$

例2 计算
$$\int_a^b 1 dx$$

$$\int_{a}^{b} 1 dx = \lim_{\Delta x \to 0} \sum_{i} f(\xi_{i}) \Delta x_{i}$$

例2 计算
$$\int_a^b 1 dx$$

$$\int_{a}^{b} 1 dx = \lim_{\Delta x \to 0} \sum_{i} f(\xi_{i}) \Delta x_{i}$$
$$= 1 \cdot \Delta x_{i}$$

$$\int_{a}^{b} 1 dx = \lim_{\Delta x \to 0} \sum_{i} f(\xi_{i}) \Delta x_{i}$$
$$= \lim_{\Delta x \to 0} \sum_{i} 1 \cdot \Delta x_{i} =$$

$$\int_{a}^{b} 1 dx = \lim_{\Delta x \to 0} \sum_{i} f(\xi_{i}) \Delta x_{i}$$
$$= \lim_{\Delta x \to 0} \sum_{i} 1 \cdot \Delta x_{i} = (b - a)$$

$$\int_{a}^{b} 1 dx = \lim_{\Delta x \to 0} \sum_{i} f(\xi_{i}) \Delta x_{i}$$
$$= \lim_{\Delta x \to 0} \sum_{i} 1 \cdot \Delta x_{i} = \lim_{\Delta x \to 0} (b - a) =$$

$$\int_{a}^{b} 1 dx = \lim_{\Delta x \to 0} \sum_{i} f(\xi_{i}) \Delta x_{i}$$

$$= \lim_{\Delta x \to 0} \sum_{i} 1 \cdot \Delta x_{i} = \lim_{\Delta x \to 0} (b - a) = b - a$$

方法一 (定义)

$$\int_{a}^{b} 1 dx = \lim_{\Delta x \to 0} \sum_{i} f(\xi_{i}) \Delta x_{i}$$

$$= \lim_{\Delta x \to 0} \sum_{i} 1 \cdot \Delta x_{i} = \lim_{\Delta x \to 0} (b - a) = b - a$$

方法二 (几何)

方法一 (定义)

$$\int_{a}^{b} 1 dx = \lim_{\Delta x \to 0} \sum_{i} f(\xi_{i}) \Delta x_{i}$$

$$= \lim_{\Delta x \to 0} \sum_{i} 1 \cdot \Delta x_{i} = \lim_{\Delta x \to 0} (b - a) = b - a$$

方法二 (几何)
$$\int_a^b 1 dx$$
 是右图矩形的面积,

所以

方法一 (定义)

$$\int_{a}^{b} 1 dx = \lim_{\Delta x \to 0} \sum_{i} f(\xi_{i}) \Delta x_{i}$$

$$= \lim_{\Delta x \to 0} \sum_{i} 1 \cdot \Delta x_{i} = \lim_{\Delta x \to 0} (b - a) = b - a$$

方法二 (几何) $\int_a^b 1 dx$ 是右图矩形的面积,

所以

$$\int_{a}^{b} 1 dx = b - a$$

解(利用几何意义)

解(利用几何意义)

 \mathbf{F} (利用几何意义) $\int_0^1 x dx$ 是如图三角形的面积,所以

 \mathbf{F} (利用几何意义) $\int_0^1 x dx$ 是如图三角形的面积,所以

 \mathbf{F} (利用几何意义) $\int_0^1 x dx$ 是如图三角形的面积,所以

$$\int_{0}^{1} x dx = \frac{1}{2} \cdot 1 \cdot 1 = \frac{1}{2}$$

We are here now...

1. 定积分的概念

2. 定积分的性质

(1)
$$\int_a^b [k \cdot f(x)] dx = k \int_a^b f(x) dx$$
, $(\forall k \in \mathbb{R})$

(2)
$$\int_a^b [f(x) \pm g(x)] dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx,$$

(1)
$$\int_a^b [k \cdot f(x)] dx = k \int_a^b f(x) dx$$
, $(\forall k \in \mathbb{R})$

(2)
$$\int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$
,

(对多个函数也成立)

(1)
$$\int_a^b [k \cdot f(x)] dx = k \int_a^b f(x) dx$$
, $(\forall k \in \mathbb{R})$

(2)
$$\int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$
,

(对多个函数也成立)

证明:

$$\int_a^b [k \cdot f(x)] dx$$

(1)
$$\int_a^b [k \cdot f(x)] dx = k \int_a^b f(x) dx$$
, $(\forall k \in \mathbb{R})$

(2)
$$\int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$
,

(对多个函数也成立)

证明:

$$\int_{a}^{b} [k \cdot f(x)] dx = \lim_{\Delta x \to 0} \sum_{i=1}^{n} [k f(\xi_{i})] \cdot \Delta x_{i} =$$

(1)
$$\int_a^b [k \cdot f(x)] dx = k \int_a^b f(x) dx$$
, $(\forall k \in \mathbb{R})$

(2)
$$\int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$
,

(对多个函数也成立)

$$\int_{a}^{b} [k \cdot f(x)] dx = \lim_{\Delta x \to 0} \sum_{i=1}^{n} [k f(\xi_{i})] \cdot \Delta x_{i} = \lim_{\Delta x \to 0} k \sum_{i=1}^{n} f(\xi_{i}) \cdot \Delta x_{i}$$

(1)
$$\int_a^b [k \cdot f(x)] dx = k \int_a^b f(x) dx$$
, $(\forall k \in \mathbb{R})$

(2)
$$\int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$
,

(对多个函数也成立)

$$\int_{a}^{b} [k \cdot f(x)] dx = \lim_{\Delta x \to 0} \sum_{i=1}^{n} [k f(\xi_{i})] \cdot \Delta x_{i} = \lim_{\Delta x \to 0} k \sum_{i=1}^{n} f(\xi_{i}) \cdot \Delta x_{i}$$
$$= k \lim_{\Delta x \to 0} \sum_{i=1}^{n} f(\xi_{i}) \cdot \Delta x_{i}$$

(1)
$$\int_a^b [k \cdot f(x)] dx = k \int_a^b f(x) dx$$
, $(\forall k \in \mathbb{R})$

(2)
$$\int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$
,

(对多个函数也成立)

$$\int_{a}^{b} [k \cdot f(x)] dx = \lim_{\Delta x \to 0} \sum_{i=1}^{n} [k f(\xi_{i})] \cdot \Delta x_{i} = \lim_{\Delta x \to 0} k \sum_{i=1}^{n} f(\xi_{i}) \cdot \Delta x_{i}$$
$$= k \lim_{\Delta x \to 0} \sum_{i=1}^{n} f(\xi_{i}) \cdot \Delta x_{i} = k \int_{a}^{b} f(x) dx$$

(1)
$$\int_a^b [k \cdot f(x)] dx = k \int_a^b f(x) dx$$
, $(\forall k \in \mathbb{R})$

(2)
$$\int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$
,

(对多个函数也成立)

$$\int_{a}^{b} [k \cdot f(x)] dx = \lim_{\Delta x \to 0} \sum_{i=1}^{n} [k f(\xi_{i})] \cdot \Delta x_{i} = \lim_{\Delta x \to 0} k \sum_{i=1}^{n} f(\xi_{i}) \cdot \Delta x_{i}$$
$$= k \lim_{\Delta x \to 0} \sum_{i=1}^{n} f(\xi_{i}) \cdot \Delta x_{i} = k \int_{a}^{b} f(x) dx$$

$$\int_{a}^{b} [f(x) \pm g(x)] dx = \lim_{\Delta x \to 0} \sum_{i=1}^{n} [f(\xi_i) \pm g(\xi_i)] \cdot \Delta x_i = \cdots$$

$$\int_0^1 \left(3x - 10\sin x + \frac{1}{1+x^2}\right) dx$$

$$\int_0^1 \left(3x - 10\sin x + \frac{1}{1+x^2} \right) dx$$

$$= \int_0^1 3x dx - \int_0^1 10\sin x dx + \int_0^1 \frac{1}{1+x^2} dx$$

$$\int_{0}^{1} \left(3x - 10\sin x + \frac{1}{1+x^{2}} \right) dx$$

$$= \int_{0}^{1} 3x dx - \int_{0}^{1} 10\sin x dx + \int_{0}^{1} \frac{1}{1+x^{2}} dx$$

$$= 3 \int_{0}^{1} x dx - 10 \int_{0}^{1} \sin x dx + \int_{0}^{1} \frac{1}{1+x^{2}} dx$$

$$\int_{0}^{1} \left(3x - 10\sin x + \frac{1}{1+x^{2}} \right) dx$$

$$= \int_{0}^{1} 3x dx - \int_{0}^{1} 10\sin x dx + \int_{0}^{1} \frac{1}{1+x^{2}} dx$$

$$= 3 \int_{0}^{1} x dx - 10 \int_{0}^{1} \sin x dx + \int_{0}^{1} \frac{1}{1+x^{2}} dx = \dots$$

假设 a, b, c 为任意常数(不管大小关系如何),总成立

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

假设 a, b, c 为任意常数(不管大小关系如何),总成立

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

仅以 " $f(x) \ge 0$,a < c < b" 情形验证:

假设 a, b, c 为任意常数(不管大小关系如何),总成立

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

仅以 " $f(x) \ge 0$,a < c < b" 情形验证:

假设 α , b, c 为任意常数(不管大小关系如何),总成立

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

仅以 " $f(x) \ge 0$, $\alpha < c < b$ " 情形验证:

 $\int_{0}^{b} f(x) dx$

= 大曲边梯形面积

假设 α , b, c 为任意常数(不管大小关系如何),总成立

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

仅以 " $f(x) \ge 0$, $\alpha < c < b$ " 情形验证:

 $\int_{a}^{b} f(x) dx$ = 大曲边梯形面积 $= A_1 + A_2$

假设 α , b, c 为任意常数(不管大小关系如何),总成立

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

仅以 " $f(x) \ge 0$, $\alpha < c < b$ " 情形验证:

$$\int_{a}^{b} f(x)dx$$
= 大曲边梯形面积
$$= A_{1} + A_{2}$$

$$= \int_{a}^{c} f(x)dx + \int_{a}^{b} f(x)dx$$

例1 已知 $\int_{-12}^{-5} f(x) dx = -6$, $\int_{-5}^{1} f(x) dx = 12$, 求 $\int_{-12}^{1} 3f(x) dx$

例1 已知
$$\int_{-12}^{-5} f(x) dx = -6$$
, $\int_{-5}^{1} f(x) dx = 12$, 求 $\int_{-12}^{1} 3f(x) dx$

$$\int_{-12}^{1} 3f(x)dx =$$

例1 已知
$$\int_{-12}^{-5} f(x) dx = -6$$
, $\int_{-5}^{1} f(x) dx = 12$, 求 $\int_{-12}^{1} 3f(x) dx$

$$\int_{-12}^{1} 3f(x)dx = 3 \int_{-12}^{1} f(x)dx =$$

例1 已知
$$\int_{-12}^{-5} f(x) dx = -6$$
, $\int_{-5}^{1} f(x) dx = 12$, 求 $\int_{-12}^{1} 3f(x) dx$

$$\int_{-12}^{1} 3f(x)dx = 3 \int_{-12}^{1} f(x)dx = 3 \left(\int_{-12}^{-5} f(x)dx + \int_{-5}^{1} f(x)dx \right)$$

例1 已知
$$\int_{-12}^{-5} f(x) dx = -6$$
, $\int_{-5}^{1} f(x) dx = 12$, 求 $\int_{-12}^{1} 3f(x) dx$

$$\int_{-12}^{1} 3f(x)dx = 3 \int_{-12}^{1} f(x)dx = 3 \left(\int_{-12}^{-5} f(x)dx + \int_{-5}^{1} f(x)dx \right)$$
$$= 3 \cdot (-6 + 12)$$

例1 已知
$$\int_{-12}^{-5} f(x) dx = -6$$
, $\int_{-5}^{1} f(x) dx = 12$, 求 $\int_{-12}^{1} 3f(x) dx$

$$\int_{-12}^{1} 3f(x)dx = 3 \int_{-12}^{1} f(x)dx = 3 \left(\int_{-12}^{-5} f(x)dx + \int_{-5}^{1} f(x)dx \right)$$
$$= 3 \cdot (-6 + 12) = 18$$

例1 已知
$$\int_{-12}^{-5} f(x) dx = -6$$
, $\int_{-5}^{1} f(x) dx = 12$, 求 $\int_{-12}^{1} 3f(x) dx$

$$\int_{-12}^{1} 3f(x)dx = 3 \int_{-12}^{1} f(x)dx = 3 \left(\int_{-12}^{-5} f(x)dx + \int_{-5}^{1} f(x)dx \right)$$
$$= 3 \cdot (-6 + 12) = 18$$

例 2 已知
$$\int_{-12}^{-5} f(x) dx = -6$$
, $\int_{2}^{-5} f(x) dx = -13$,求 $\int_{-12}^{2} f(x) dx$

例1 已知
$$\int_{-12}^{-5} f(x) dx = -6$$
, $\int_{-5}^{1} f(x) dx = 12$, 求 $\int_{-12}^{1} 3f(x) dx$

$$\int_{-12}^{1} 3f(x)dx = 3 \int_{-12}^{1} f(x)dx = 3 \left(\int_{-12}^{-5} f(x)dx + \int_{-5}^{1} f(x)dx \right)$$
$$= 3 \cdot (-6 + 12) = 18$$

例 2 已知
$$\int_{-12}^{-5} f(x) dx = -6$$
, $\int_{2}^{-5} f(x) dx = -13$,求 $\int_{-12}^{2} f(x) dx$

$$\int_{-12}^{2} f(x) dx =$$

例1 已知
$$\int_{-12}^{-5} f(x) dx = -6$$
, $\int_{-5}^{1} f(x) dx = 12$, 求 $\int_{-12}^{1} 3f(x) dx$

$$\int_{-12}^{1} 3f(x)dx = 3 \int_{-12}^{1} f(x)dx = 3 \left(\int_{-12}^{-5} f(x)dx + \int_{-5}^{1} f(x)dx \right)$$
$$= 3 \cdot (-6 + 12) = 18$$

例2 已知
$$\int_{-12}^{-5} f(x) dx = -6$$
, $\int_{2}^{-5} f(x) dx = -13$,求 $\int_{-12}^{2} f(x) dx$

$$\int_{-12}^{2} f(x)dx = \int_{-12}^{-5} f(x)dx + \int_{-5}^{2} f(x)dx$$

例1 已知
$$\int_{-12}^{-5} f(x) dx = -6$$
, $\int_{-5}^{1} f(x) dx = 12$,求 $\int_{-12}^{1} 3f(x) dx$

$$\int_{-12}^{1} 3f(x)dx = 3 \int_{-12}^{1} f(x)dx = 3 \left(\int_{-12}^{-5} f(x)dx + \int_{-5}^{1} f(x)dx \right)$$
$$= 3 \cdot (-6 + 12) = 18$$

例 2 已知
$$\int_{-12}^{-5} f(x) dx = -6$$
, $\int_{2}^{-5} f(x) dx = -13$,求 $\int_{-12}^{2} f(x) dx$

$$\int_{-12}^{2} f(x)dx = \int_{-12}^{-5} f(x)dx + \int_{-5}^{2} f(x)dx$$
$$= \int_{-12}^{-5} f(x)dx - \int_{-5}^{-5} f(x)dx = \int_{-12}^{-5} f(x)dx = \int$$

例 1 已知
$$\int_{-12}^{-5} f(x) dx = -6$$
, $\int_{-5}^{1} f(x) dx = 12$,求 $\int_{-12}^{1} 3f(x) dx$

$$\int_{-12}^{1} 3f(x)dx = 3 \int_{-12}^{1} f(x)dx = 3 \left(\int_{-12}^{-5} f(x)dx + \int_{-5}^{1} f(x)dx \right)$$
$$= 3 \cdot (-6 + 12) = 18$$

回
$$3 \cdot (-6+12) = 18$$

$$= 3 \cdot (-6+12) = 18$$
例 2 已知 $\int_{-12}^{-5} f(x) dx = -6$, $\int_{2}^{-5} f(x) dx = -13$,求 $\int_{-12}^{2} f(x) dx$

 $\int_{-2}^{2} f(x)dx = \int_{-2}^{-5} f(x)dx + \int_{-5}^{2} f(x)dx$

$$= \int_{-12}^{-5} f(x)dx - \int_{2}^{-5} f(x)dx = -6 - (-13)$$

例 1 已知
$$\int_{-12}^{-5} f(x) dx = -6$$
, $\int_{-5}^{1} f(x) dx = 12$,求 $\int_{-12}^{1} 3f(x) dx$

$$\int_{-12}^{1} 3f(x)dx = 3 \int_{-12}^{1} f(x)dx = 3 \left(\int_{-12}^{-5} f(x)dx + \int_{-5}^{1} f(x)dx \right)$$

$$= 3 \cdot (-6 + 12) = 18$$

$$= 3 \cdot (-6+12) = 18$$
例 2 已知 $\int_{-12}^{-5} f(x) dx = -6$, $\int_{2}^{-5} f(x) dx = -13$, 求 $\int_{-12}^{2} f(x) dx$

$$\int_{-12}^{2} f(x)dx = \int_{-12}^{-5} f(x)dx + \int_{-5}^{2} f(x)dx$$
$$= \int_{-12}^{-5} f(x)dx - \int_{-5}^{-5} f(x)dx = -6 - (-13) = 7$$

5a 定积分

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx \qquad (a \le b)$$

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx \qquad (a \le b)$$

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx \qquad (a \le b)$$

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx \qquad (a \le b)$$

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx \qquad (a \le b)$$

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx \qquad (a \le b)$$

$$\int_{a}^{b} g(x)dx \ge \int_{a}^{b} f(x)dx$$

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx \qquad (a \le b)$$

以 " $0 \le f(x) \le g(x)$ " 情形为例说明:

正好是 y = f(x) 与 y = g(x) 围成图形面积

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx \qquad (a \le b)$$

以 " $0 \le f(x) \le g(x)$ " 情形为例说明:

正好是 y = f(x) 与 y = g(x) 围成图形面积

例1 比较以下积分的大小

$$\int_{0}^{1} x dx = \int_{0}^{1} x^{2} dx; \int_{1}^{2} x dx = \int_{1}^{2} x^{2} dx$$

例1 比较以下积分的大小

$$\int_0^1 x dx = \int_0^1 x^2 dx; \int_1^2 x dx = \int_1^2 x^2 dx$$

M:
$$\int_0^1 x dx \quad \int_0^1 x^2 dx$$
$$\int_1^2 x dx \quad \int_1^2 x^2 dx$$

$$\int_0^1 x dx = \int_0^1 x^2 dx; \int_1^2 x dx = \int_1^2 x^2 dx$$

$$\int_0^1 x dx > \int_0^1 x^2 dx$$
$$\int_1^2 x dx \qquad \int_1^2 x^2 dx$$

$$\int_0^1 x dx = \int_0^1 x^2 dx; \int_1^2 x dx = \int_1^2 x^2 dx$$

$$\int_0^1 x dx > \int_0^1 x^2 dx$$
$$\int_1^2 x dx \qquad \int_1^2 x^2 dx$$

$$\int_0^1 x dx = \int_0^1 x^2 dx; \int_1^2 x dx = \int_1^2 x^2 dx$$

$$\int_0^1 x dx > \int_0^1 x^2 dx$$
$$\int_1^2 x dx < \int_1^2 x^2 dx$$

$$\int_0^1 x dx = \int_0^1 x^2 dx; \int_1^2 x dx = \int_1^2 x^2 dx$$

$$\int_{0}^{1} x dx > \int_{0}^{1} x^{2} dx$$
$$\int_{1}^{2} x dx < \int_{1}^{2} x^{2} dx$$

$$\int_{0}^{1} x dx = \int_{0}^{1} x^{2} dx; \int_{1}^{2} x dx = \int_{1}^{2} x^{2} dx$$

解: 当 $0 \le x \le 1$ 时 $x \ge x^2$, 且不恒相等, 所以 $\int_0^1 x dx > \int_0^1 x^2 dx$ $\int_1^2 x dx < \int_1^2 x^2 dx$

$$\int_{0}^{1} x dx = \int_{0}^{1} x^{2} dx; \int_{1}^{2} x dx = \int_{1}^{2} x^{2} dx$$

解: 当 $0 \le x \le 1$ 时 $x \ge x^2$, 且不恒相等, 所以 $\int_0^1 x dx > \int_0^1 x^2 dx$ 当 $1 \le x \le 2$ 时 $x \le x^2$, 且不恒相等, 所以 $\int_1^2 x dx < \int_1^2 x^2 dx$

$$\int_{-1}^{3} x^2 + 1 dx \qquad \int_{-1}^{3} 2x + 4 dx.$$

$$\int_{-1}^{3} x^2 + 1 dx \qquad \int_{-1}^{3} 2x + 4 dx.$$

$$\int_{-1}^{3} x^2 + 1 dx \qquad \int_{-1}^{3} 2x + 4 dx.$$

$$\int_{-1}^{3} x^2 + 1 dx \qquad \int_{-1}^{3} 2x + 4 dx.$$

$$\int_{-1}^{3} x^2 + 1 dx \qquad \int_{-1}^{3} 2x + 4 dx.$$

$$\int_{-1}^{3} x^2 + 1 dx \qquad \int_{-1}^{3} 2x + 4 dx.$$

$$\int_{-1}^{3} x^2 + 1 dx < \int_{-1}^{3} 2x + 4 dx.$$

$$\int_{-1}^{3} x^2 + 1 dx < \int_{-1}^{3} 2x + 4 dx.$$

$$\int_2^4 \frac{1}{x} dx \qquad \int_2^4 \frac{1}{4} x dx.$$

$$\int_2^4 \frac{1}{x} dx \qquad \int_2^4 \frac{1}{4} x dx.$$

$$\int_2^4 \frac{1}{x} dx \qquad \int_2^4 \frac{1}{4} x dx.$$

$$\int_2^4 \frac{1}{x} dx \qquad \qquad \int_2^4 \frac{1}{4} x dx.$$

$$\int_2^4 \frac{1}{x} dx < \int_2^4 \frac{1}{4} x dx.$$

$$\int_{-\frac{\pi}{2}}^{0} e^{x} \sin x dx = \int_{0}^{\frac{\pi}{2}} e^{x} \sin x dx$$

$$\int_{-\frac{\pi}{2}}^{0} e^{x} \sin x dx = \int_{0}^{\frac{\pi}{2}} e^{x} \sin x dx$$

解:

$$\int_{-\frac{\pi}{2}}^{0} e^{x} \sin x dx < \int_{-\frac{\pi}{2}}^{0} 0 dx$$

$$\int_{-\frac{\pi}{2}}^{0} e^{x} \sin x dx = \int_{0}^{\frac{\pi}{2}} e^{x} \sin x dx$$

解:

$$\int_{-\frac{\pi}{2}}^{0} e^{x} \sin x dx < \int_{-\frac{\pi}{2}}^{0} 0 dx \qquad \int_{0}^{\frac{\pi}{2}} 0 dx < \int_{0}^{\frac{\pi}{2}} e^{x} \sin x dx$$

$$\int_0^{\frac{\pi}{2}} 0 dx < \int_0^{\frac{\pi}{2}} e^x \sin x dx$$

$$\int_{-\frac{\pi}{2}}^{0} e^{x} \sin x dx = \int_{0}^{\frac{\pi}{2}} e^{x} \sin x dx$$

解:

$$\int_{-\frac{\pi}{2}}^{0} e^{x} \sin x dx < \int_{-\frac{\pi}{2}}^{0} 0 dx = 0 = \int_{0}^{\frac{\pi}{2}} 0 dx < \int_{0}^{\frac{\pi}{2}} e^{x} \sin x dx$$

$$m(b-a) \le \int_a^b f(x)dx \le M(b-a).$$

设f(x)在[a, b]上最大值为M,最小值为m,则

$$m(b-a) \le \int_a^b f(x)dx \le M(b-a).$$

证明

$$f(x) \leq M$$

$$f(x) \geq m$$

$$m(b-a) \le \int_a^b f(x)dx \le M(b-a).$$

$$\int_{a}^{b} f(x) dx \le \int_{a}^{b} M dx$$

$$f(x) \geq m$$

$$m(b-a) \le \int_a^b f(x)dx \le M(b-a).$$

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} Mdx = M \int_{a}^{b} 1dx$$
$$f(x) \ge m$$

$$m(b-a) \le \int_a^b f(x)dx \le M(b-a).$$

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} Mdx = M \int_{a}^{b} 1dx = M(b-a)$$

$$f(x) \geq m$$

$$m(b-a) \le \int_a^b f(x)dx \le M(b-a).$$

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} Mdx = M \int_{a}^{b} 1dx = M(b-a)$$
$$\int_{a}^{b} f(x)dx \ge \int_{a}^{b} mdx$$

设f(x)在[a, b]上最大值为M,最小值为m,则

$$m(b-a) \le \int_a^b f(x)dx \le M(b-a).$$

证明

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} Mdx = M \int_{a}^{b} 1dx = M(b-a)$$
$$\int_{a}^{b} f(x)dx \ge \int_{a}^{b} mdx = m \int_{a}^{b} 1dx$$

设f(x)在[a, b]上最大值为M,最小值为m,则

$$m(b-a) \le \int_a^b f(x)dx \le M(b-a).$$

证明

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} Mdx = M \int_{a}^{b} 1dx = M(b-a)$$
$$\int_{a}^{b} f(x)dx \ge \int_{a}^{b} mdx = m \int_{a}^{b} 1dx = m(b-a)$$

设f(x)在[a, b]上最大值为M,最小值为m,则

$$m(b-a) \le \int_a^b f(x)dx \le M(b-a).$$

证明

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} Mdx = M \int_{a}^{b} 1dx = M(b-a)$$
$$\int_{a}^{b} f(x)dx \ge \int_{a}^{b} mdx = m \int_{a}^{b} 1dx = m(b-a)$$

定积分的中值定理 假设 f(x) 在 [a, b] 上连续,则存在 $\xi \in (a, b)$,使

$$\int_{a}^{b} f(x)dx = f(\xi)(b-a).$$

设f(x)在[a,b]上最大值为M,最小值为m,则

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a).$$

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} Mdx = M \int_{a}^{b} 1dx = M(b-a)$$
$$\int_{a}^{b} f(x)dx \ge \int_{a}^{b} mdx = m \int_{a}^{b} 1dx = m(b-a)$$

定积分的中值定理 假设 f(x) 在 [a, b] 上连续,则存在 $\xi \in (a, b)$,使

$$\int_{a}^{b} f(x)dx = f(\xi)(b-a).$$

简证 $\frac{1}{b-a}\int_a^b f(x)dx \in (m,M)$

设f(x)在[a, b]上最大值为M,最小值为m,则

$$m(b-a) \le \int_a^b f(x)dx \le M(b-a).$$

证明

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} Mdx = M \int_{a}^{b} 1dx = M(b-a)$$
$$\int_{a}^{b} f(x)dx \ge \int_{a}^{b} mdx = m \int_{a}^{b} 1dx = m(b-a)$$

定积分的中值定理 假设 f(x) 在 [a, b] 上连续,则存在 ξ ∈ (a, b),使

$$\int_{a}^{b} f(x)dx = f(\xi)(b-a).$$

简证 $\frac{1}{b-a} \int_a^b f(x) dx \in (m, M) \Rightarrow$ 连续函数介值定理得证.

设f(x)在[a, b]上最大值为M,最小值为m,则

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a).$$

证明

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} Mdx = M \int_{a}^{b} 1dx = M(b-a)$$
$$\int_{a}^{b} f(x)dx \ge \int_{a}^{b} mdx = m \int_{a}^{b} 1dx = m(b-a)$$

定积分的中值定理 假设 f(x) 在 [a, b] 上连续,则存在 $\xi \in (a, b)$,使

$$\int_{a}^{b} f(x)dx = f(\xi)(b-a).$$

= m或M?

简证 $\frac{1}{b-a} \int_a^b f(x) dx \in (m, M) \Rightarrow$ 连续函数介值定理得证.

定积分几何意义II

当
$$f \le 0$$
时, $\int_a^b f(x)dx$

当
$$f \le 0$$
时, $\int_a^b f(x)dx = -$ 曲边梯形面积

当 $f \le 0$ 时, $\int_a^b f(x)dx = -$ 曲边梯形面积

当 $f \le 0$ 时, $\int_a^b f(x)dx = -$ 曲边梯形面积

当 $f \le 0$ 时, $\int_a^b f(x)dx = -$ 曲边梯形面积

设函数 f(x) 定义在区间 [-a, a] 上,

设函数 f(x) 定义在区间 [-a, a] 上,

f(x) 为偶函数

设函数 f(x) 定义在区间 [-a, a] 上,

f(x) 为偶函数

f(x) 为奇函数

设函数 f(x) 定义在区间 [-a, a] 上,

• 若f(-x) = f(x), $x \in [-a, a]$, 则f(x)为偶函数

f(x) 为 奇函数

设函数 f(x) 定义在区间 [-a, a] 上,

• 若f(-x) = f(x), $x \in [-a, a]$, 则f(x)为偶函数

• 若f(-x) = -f(x), $x \in [-a, a]$, 则f(x)为奇函数

性质 设 f(x) 是 [-a, a] 上的连续 偶函数,则

$$\int_{-a}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx \stackrel{\text{or}}{=} 2 \int_{-a}^{0} f(x)dx.$$

性质 设 f(x) 是 [-a, a] 上的连续 偶函数,则

$$\int_{-a}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx \stackrel{\text{or}}{=} 2 \int_{-a}^{0} f(x)dx.$$

性质 设 f(x) 是 [-a, a] 上的连续 偶函数,则

$$\int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx \stackrel{\text{or}}{=} 2\int_{-a}^{0} f(x)dx.$$

$$\therefore \int_0^a f(x)dx = \int_{-a}^0 f(x)dx$$

性质 设 f(x) 是 [-a, a] 上的连续 偶函数,则

$$\int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx \stackrel{\text{or}}{=} 2\int_{-a}^{0} f(x)dx.$$

$$\therefore \int_0^a f(x)dx = \int_{-a}^0 f(x)dx$$

性质 设 f(x) 是 [-a, a] 上的连续 偶函数,则

$$\int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx \stackrel{\text{or}}{=} 2\int_{-a}^{0} f(x)dx.$$

$$\therefore \int_0^a f(x)dx = \int_{-a}^0 f(x)dx$$

$$\therefore \int_{a}^{a} f(x)dx = 大曲边梯形面积$$

性质 设 f(x) 是 [-a, a] 上的连续 偶函数,则

$$\int_{-a}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx \stackrel{\text{or}}{=} 2 \int_{-a}^{0} f(x)dx.$$

$$\therefore \int_0^a f(x)dx = \int_{-a}^0 f(x)dx$$

$$\therefore \int_{-a}^{a} f(x)dx =$$
 大曲边梯形面积
$$= 2 \int_{0}^{a} f(x)dx$$

性质 设 f(x) 是 [-a, a] 上的连续 偶函数,则

$$\int_{-a}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx \stackrel{\text{or}}{=} 2 \int_{-a}^{0} f(x)dx.$$

$$\therefore \int_0^a f(x)dx = \int_{-a}^0 f(x)dx$$

$$\therefore \int_{a}^{a} f(x)dx = 大曲边梯形面积$$

性质 设 f(x) 是 [-a, a] 上的连续 奇函数,则

$$\int_{-a}^{a} f(x)dx = 0.$$

性质 设 f(x) 是 [-a, a] 上的连续 奇函数,则

$$\int_{-a}^{a} f(x) dx = 0.$$

性质 设 f(x) 是 [-a, a] 上的连续 奇函数,则

$$\int_{-a}^{a} f(x)dx = 0.$$

$$\int_{-a}^{a} f(x)dx = \int_{-a}^{0} f(x)dx + \int_{0}^{a} f(x)dx$$

性质 设 f(x) 是 [-a, a] 上的连续 奇函数,则

$$\int_{-a}^{a} f(x) dx = 0.$$

$$\int_{-a}^{a} f(x)dx = \int_{-a}^{0} f(x)dx + \int_{0}^{a} f(x)dx$$

性质 设 f(x) 是 [-a, a] 上的连续 奇函数,则

$$\int_{-a}^{a} f(x) dx = 0.$$

$$\int_{-a}^{a} f(x)dx = \int_{-a}^{0} f(x)dx + \int_{0}^{a} f(x)dx$$
$$= -A + A$$

性质 设 f(x) 是 [-a, a] 上的连续 奇函数,则

$$\int_{-a}^{a} f(x) dx = 0.$$

$$\int_{-a}^{a} f(x)dx = \int_{-a}^{0} f(x)dx + \int_{0}^{a} f(x)dx$$
$$= -A + A$$
$$= 0$$

解 由于被积函数是奇函数,积分区间是关于原点对称,所以积分值为零.

解由于被积函数是奇函数,积分区间是关于原点对称,所以积分值为零.

例2 计算定积分 $\int_{-1}^{1} (x - \sqrt{1 - x^2})^2 dx$

解由于被积函数是奇函数,积分区间是关于原点对称,所以积分值为零.

例 2 计算定积分
$$\int_{-1}^{1} (x - \sqrt{1 - x^2})^2 dx$$

$$\int_{-1}^{1} \left(x - \sqrt{1 - x^2} \right)^2 dx = \int_{-1}^{1} x^2 - 2x\sqrt{1 - x^2} + \left(\sqrt{1 - x^2} \right)^2 dx$$

解由于被积函数是奇函数,积分区间是关于原点对称,所以积分值为零.

例 2 计算定积分
$$\int_{-1}^{1} (x - \sqrt{1 - x^2})^2 dx$$

$$\int_{-1}^{1} \left(x - \sqrt{1 - x^2} \right)^2 dx = \int_{-1}^{1} x^2 - 2x\sqrt{1 - x^2} + \left(\sqrt{1 - x^2} \right)^2 dx$$
$$= \int_{-1}^{1} 1 - 2x\sqrt{1 - x^2} dx$$

解由于被积函数是奇函数,积分区间是关于原点对称,所以积分值为零.

例 2 计算定积分 $\int_{-1}^{1} (x - \sqrt{1 - x^2})^2 dx$

$$\int_{-1}^{1} \left(x - \sqrt{1 - x^2} \right)^2 dx = \int_{-1}^{1} x^2 - 2x\sqrt{1 - x^2} + \left(\sqrt{1 - x^2} \right)^2 dx$$
$$= \int_{-1}^{1} 1 - 2x\sqrt{1 - x^2} dx$$
$$= \int_{-1}^{1} 1 dx - \int_{-1}^{1} 2x\sqrt{1 - x^2} dx$$

例1 计算定积分
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{x^3}{\cos^2 x} dx$$
, $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^{2019} \ln(1+x^2) dx$

解 由于被积函数是奇函数,积分区间是关于原点对称,所以积分值为零.

例 2 计算定积分
$$\int_{-1}^{1} (x - \sqrt{1 - x^2})^2 dx$$

$$\int_{-1}^{1} \left(x - \sqrt{1 - x^2} \right)^2 dx = \int_{-1}^{1} x^2 - 2x\sqrt{1 - x^2} + \left(\sqrt{1 - x^2} \right)^2 dx$$
$$= \int_{-1}^{1} 1 - 2x\sqrt{1 - x^2} dx$$
$$= \int_{-1}^{1} 1 dx - \int_{-1}^{1} 2x\sqrt{1 - x^2} dx$$
$$= 2 - 0$$

例 1 计算定积分
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{x^3}{\cos^2 x} dx$$
, $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^{2019} \ln(1+x^2) dx$

解 由于被积函数是奇函数,积分区间是关于原点对称,所以积分值为零.

例 2 计算定积分
$$\int_{-1}^{1} (x - \sqrt{1 - x^2})^2 dx$$

$$\int_{-1}^{1} \left(x - \sqrt{1 - x^2} \right)^2 dx = \int_{-1}^{1} x^2 - 2x\sqrt{1 - x^2} + \left(\sqrt{1 - x^2} \right)^2 dx$$
$$= \int_{-1}^{1} 1 - 2x\sqrt{1 - x^2} dx$$
$$= \int_{-1}^{1} 1 dx - \int_{-1}^{1} 2x\sqrt{1 - x^2} dx$$
$$= 2 - 0$$

= 2