## Derivatives

 $D_x e^x = e^x$  $D_x \sin(x) = \cos(x)$  $D_x \cos(x) = -\sin(x)$  $D_x \tan(x) = \sec^2(x)$  $D_x \cot(x) = -\csc^2(x)$  $D_x \sec(x) = \sec(x) \tan(x)$  $D_x \csc(x) = -\csc(x) \cot(x)$  $D_x \sec(x) = -\csc(x)\cot(x)$   $D_x \sin^{-1} = \frac{1}{\sqrt{1-x^2}}, x \in [-1, 1]$   $D_x \cos^{-1} = \frac{-1}{\sqrt{1-x^2}}, x \in [-1, 1]$   $D_x \tan^{-1} = \frac{1}{1+x^2}, \frac{-\pi}{2} \le x \le \frac{\pi}{2}$   $D_x \sec^{-1} = \frac{1}{|x|\sqrt{x^2-1}}, |x| > 1$  $D_x \sinh(x) = \cosh(x)$  $D_x \cosh(x) = \sinh(x)$  $D_x \tanh(x) = \operatorname{sech}^2(x)$  $D_x \coth(x) = -\operatorname{csch}^2(x)$  $D_x \operatorname{sech}(x) = -\operatorname{sech}(x) \tanh(x)$  $D_x \operatorname{csch}(x) = -\operatorname{csch}(x) \operatorname{coth}(x)$  $\begin{aligned} &D_x csch(x) = -csch(x) \coth(x) \\ &D_x \sinh^{-1} = \frac{1}{\sqrt{x^2 + 1}} \\ &D_x \cosh^{-1} = \frac{-1}{\sqrt{x^2 - 1}}, x > 1 \\ &D_x \tanh^{-1} = \frac{1}{1 - x^2} - 1 < x < 1 \\ &D_x sech^{-1} = \frac{1}{x\sqrt{1 - x^2}}, 0 < x < 1 \\ &D_x \ln(x) = \frac{1}{x} \end{aligned}$ 

## Integrals

 $\int \frac{1}{x} dx = \ln|x| + c$  $\int e^x dx = e^x + c$  $\int a^{x} dx = \frac{1}{\ln a} a^{x} + c$   $\int e^{ax} dx = \frac{1}{a} e^{ax} + c$   $\int \frac{1}{\sqrt{1-x^{2}}} dx = \sin^{-1}(x) + c$  $\int \frac{1}{1+x^2} dx = \tan^{-1}(x) + c$  $\int \frac{1}{x\sqrt{x^2 - 1}} dx = \sec^{-1}(x) + c$  $\int \sinh(x)dx = \cosh(x) + c$  $\int \cosh(x)dx = \sinh(x) + c$  $\int \tanh(x)dx = \ln|\cosh(x)| + c$  $\int \tanh(x) \operatorname{sech}(x) dx = -\operatorname{sech}(x) + c$  $\int \operatorname{sech}^2(x) dx = \tanh(x) + c$  $\int c \operatorname{sch}(x) \coth(x) dx = -c \operatorname{sch}(x) + c$  $\int \tan(x)dx = -\ln|\cos(x)| + c$  $\int \cot(x)dx = \ln|\sin(x)| + c$  $\int \cos(x)dx = \sin(x) + c$  $\int \sin(x)dx = -\cos(x) + c$  $\int \frac{1}{\sqrt{a^2 - u^2}} dx = \sin^{-1}(\frac{u}{a}) + c$  $\int \frac{1}{a^2 + u^2} dx = \frac{1}{a} \tan^{-1} \frac{u}{a} + c$  $\int \ln(x)dx = (x\ln(x)) - x + c$ 

#### **U-Substitution**

Let u = f(x) (can be more than one

Determine:  $du = \frac{f(x)}{dx} dx$  and solve for

Then, if a definite integral, substitute the bounds for u = f(x) at each bounds Solve the integral using u.

#### Integration by Parts $\int u dv = uv - \int v du$

## Fns and Identities

$$\sin(\cos^{-1}(x)) = \sqrt{1 - x^2}$$
  
 $\cos(\sin^{-1}(x)) = \sqrt{1 - x^2}$ 

## Trig Identities

 $\sin^2(x) + \cos^2(x) = 1$  $1 + \tan^2(x) = \sec^2(x)$  $1 + \cot^2(x) = \csc^2(x)$  $\sin(x \pm y) = \sin(x)\cos(y) \pm \cos(x)\sin(y)$  $\cos(x \pm y) = \cos(x)\cos(y) \pm \sin(x)\sin(y)$  $\tan(x \pm y) = \frac{\tan(x) \pm \tan(y)}{1 \mp \tan(x) \tan(y)}$  $\sin(2x) = 2\sin(x)\cos(x)$  $\cos(2x) = \cos^2(x) - \sin^2(x)$  $\cosh(n^2 x) - \sinh^2 x = 1$  $1 + \tan^2(x) = \sec^2(x)$  $1 + \cot^2(x) = \csc^2(x)$  $\sin^{2}(x) = \frac{1 - \cos(2x)}{2}$   $\cos^{2}(x) = \frac{1 + \cos(2x)}{2}$   $\tan^{2}(x) = \frac{1 - \cos(2x)}{1 + \cos(2x)}$  $\sin(-x) = -\sin(x)$  $\cos(-x) = \cos(x)$  $\tan(-x) = -\tan(x)$ 

# Calculus 3 Concepts

### Cartesian coords in 3D

given two points:  $(x_1, y_1, z_1)$  and  $(x_2, y_2, z_2)$ , Distance between them:  $\sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2}$ Midpoint:  $(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2})$ Sphere with center (h,k,l) and radius r:  $(x-h)^2 + (y-k)^2 + (z-l)^2 = r^2$ 

### Vectors

Vector:  $\vec{u}$ Unit Vector:  $\hat{u}$ Magnitude:  $||\vec{u}|| = \sqrt{u_1^2 + u_2^2 + u_3^2}$ Unit Vector:  $\hat{u} = \frac{\vec{u}}{||\vec{u}||}$ 

#### **Dot Product**

 $\vec{u} \cdot \vec{v}$ 

Produces a Scalar (Geometrically, the dot product is a vector projection)  $\vec{u} = \langle u_1, u_2, u_3 \rangle$  $\vec{v} = \langle v_1, v_2, v_3 \rangle$  $\vec{u} \cdot \vec{v} = \vec{0}$  means the two vectors are Perpendicular  $\theta$  is the angle between  $\vec{u} \cdot \vec{v} = ||\vec{u}|| \, ||\vec{v}|| \cos(\theta)$  $\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$ NOTE:  $\hat{u} \cdot \hat{v} = \cos(\theta)$  $||\vec{u}||^2 = \vec{u} \cdot \vec{u}$  $\vec{u} \cdot \vec{v} = 0$  when  $\perp$ Angle Between  $\vec{u}$  and  $\vec{v}$ :  $\theta = \cos^{-1}(\frac{\vec{u} \cdot \vec{v}}{||\vec{u}|| ||\vec{v}||})$ 

Projection of  $\vec{u}$  onto  $\vec{v}$ :  $pr_{\vec{v}}\vec{u} = (\frac{\vec{u} \cdot \vec{v}}{||\vec{v}||^2})\vec{v}$ 

#### Cross Product

 $\vec{u} \times \vec{v}$ 

Produces a Vector

(Geometrically, the cross product is the area of a paralellogram with sides  $||\vec{u}||$ and  $||\vec{v}||$ 

$$\vec{u} = \langle u_1, u_2, u_3 \rangle$$
$$\vec{v} = \langle v_1, v_2, v_3 \rangle$$

$$\vec{u} \times \vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

 $\vec{u}\times\vec{v}=\vec{0}$  means the vectors are paralell

### Lines and Planes

#### Equation of a Plane

 $(x_0, y_0, z_0)$  is a point on the plane and  $\langle A, B, C \rangle$  is a normal vector

$$\begin{array}{l} A(x-x_0)+B(y-y_0)+C(z-z_0)=0\\ \langle A,B,C\rangle\cdot\langle x-x_0,y-y_0,z-z_0\rangle=0\\ Ax+By+Cz=D \text{ where}\\ D=Ax_0+By_0+Cz_0 \end{array}$$

#### Equation of a line

A line requires a Direction Vector  $\vec{u} = \langle u_1, u_2, u_3 \rangle$  and a point  $(x_1, y_1, z_1)$ 

a parameterization of a line could be:

$$x = u_1t + x_1$$

$$y = u_2t + y_1$$
$$z = u_3t + z_1$$

## Distance from a Point to a Plane

The distance from a point  $(x_0, y_0, z_0)$  to a plane Ax+By+Cz=D can be expressed by the formula:

$$d = \frac{|Ax_0 + By_0 + Cz_0 - D|}{\sqrt{A^2 + B^2 + C^2}}$$

## Coord Sys Conv

### Cylindrical to Rectangular

 $x = r \cos(\theta)$  $y = r \sin(\theta)$ 

z = z

## Rectangular to Cylindrical

 $r = \sqrt{x^2 + y^2}$  $\tan(\theta) = \frac{y}{x}$ z = z

### Spherical to Rectangular

 $x = \rho \sin(\phi) \cos(\theta)$ 

 $y = \rho \sin(\phi) \sin(\theta)$ 

## $z = \rho \cos(\phi)$

#### Rectangular to Spherical

 $\rho = \sqrt{x^2 + y^2 + z^2}$  $\tan(\theta) = \frac{y}{r}$ 

## $\cos(\phi) = \frac{x}{\sqrt{x^2 + y^2 + z^2}}$ Spherical to Cylindrical

 $r = \rho \sin(\phi)$  $\theta = \theta$ 

#### $z = \rho \cos(\phi)$ Cylindrical to Spherical

 $\rho = \sqrt{r^2 + z^2}$  $\theta = \theta$ 

 $\cos(\phi) = \frac{z}{\sqrt{r^2 + z^2}}$ 

### Surfaces

## Ellipsoid

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{a^2} = 1$ 

# Hyperboloid of One Sheet

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ (Major Axis: z because it follows - )



#### Hyperboloid of Two Sheets

 $\frac{z^2}{c^2} - \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ 

(Major Axis: Z because it is the one not subtracted)



## Elliptic Paraboloid

 $z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ 

(Major Axis: z because it is the variable NOT squared)



#### Hyperbolic Paraboloid

(Major Axis: Z axis because it is not squared)

$$z = \frac{y^2}{b^2} - \frac{x^2}{a^2}$$



#### Elliptic Cone

(Major Axis: Z axis because it's the only one being subtracted)

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{a^2} = 0$$



#### Cylinder

1 of the variables is missing  $(x-a)^2 + (y-b^2) = c$ (Major Axis is missing variable)

#### Partial Derivatives

Partial Derivatives are simply holding all other variables constant (and act like constants for the derivative) and only taking the derivative with respect to a given variable.

Given z=f(x,y), the partial derivative of z with respect to x is:

$$\begin{split} &f_x(x,y) = z_x = \frac{\partial z}{\partial x} = \frac{\partial f(x,y)}{\partial x} \\ &\text{likewise for partial with respect to y:} \\ &f_y(x,y) = z_y = \frac{\partial z}{\partial y} = \frac{\partial f(x,y)}{\partial y} \end{split}$$

For  $f_{xyy}$ , work "inside to outside"  $f_x$  then  $f_{xy}$ , then  $f_{xyy}$   $f_{xyy} = \frac{\partial^3 f}{\partial^2 y \partial x},$ For  $\frac{\partial^3 f}{\partial^2 y \partial x}$ , work right to left in the

$$f_{xyy} = \frac{\partial^3 f}{\partial^2 y \partial x},$$

#### Gradients

The Gradient of a function in 2 variables is  $\nabla f = \langle f_x, f_y \rangle$ 

The Gradient of a function in 3 variables is  $\nabla f = \langle f_x, f_y, f_z \rangle$ 

## Chain Rule(s)

Take the Partial derivative with respect to the first-order variables of the function times the partial (or normal) derivative of the first-order variable to the ultimate variable you are looking for summed with the same process for other first-order variables this makes sense for. Example:

let x = x(s,t), y = y(t) and z = z(x,y). z then has first partial derivative:  $\frac{\partial z}{\partial x}$  and  $\frac{\partial z}{\partial y}$ 

x has the partial derivatives:

 $\frac{\partial x}{\partial s}$  and  $\frac{\partial \hat{x}}{\partial t}$ 

and y has the derivative:

In this case (with z containing x and y as well as x and y both containing s and t), the chain rule for  $\frac{\partial z}{\partial s}$  is  $\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s}$ 

The chain rule for  $\frac{\partial z}{\partial t}$  is  $\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{dy}{dt}$ 

Note: the use of "d" instead of " $\partial$ " with the function of only one independent variable

## Limits and Continuity

#### Limits in 2 or more variables

Limits taken over a vectorized limit just evaluate separately for each component of the limit.

## Strategies to show limit exists

1. Plug in Numbers, Everything is Fine

2. Algebraic Manipulation

-factoring/dividing out

-use trig identites

3. Change to polar coords  $if(x,y) \rightarrow (0,0) \Leftrightarrow r \rightarrow 0$ 

### Strategies to show limit DNE

1. Show limit is different if approached from different paths

 $(x=y, x=y^2, etc.)$ 

2. Switch to Polar coords and show the limit DNE.

### Continunity

A fn, z = f(x, y), is continuous at (a,b)

 $f(a,b) = \lim_{(x,y)\to(a,b)} f(x,y)$ Which means:

- 1. The limit exists
- 2. The fn value is defined
- 3. They are the same value

#### **Directional Derivatives**

Let z=f(x,y) be a fuction, (a,b) ap point in the domain (a valid input point) and  $\hat{u}$  a unit vector (2D).

The Directional Derivative is then the derivative at the point (a,b) in the direction of  $\hat{u}$  or:

 $D_{\vec{n}}f(a,b) = \hat{u} \cdot \nabla f(a,b)$ This will return a scalar. 4-D version:  $D_{\vec{u}}f(a,b,c) = \hat{u} \cdot \nabla f(a,b,c)$ 

## Tangent Planes

let F(x,y,z) = k be a surface and P = $(x_0, y_0, z_0)$  be a point on that surface. Equation of a Tangent Plane:  $\nabla F(x_0, y_0, z_0) \cdot \langle x - x_0, y - y_0, z - z_0 \rangle$ 

## Approximations

let z = f(x, y) be a differentiable function total differential of f = dz $dz = \nabla f \cdot \langle dx, dy \rangle$ 

This is the approximate change in z The actual change in z is the difference in z values:

 $\Delta z = z - z_1$ 

### Maxima and Minima

### Internal Points

1. Take the Partial Derivatives with respect to X and Y  $(f_x \text{ and } f_y)$  (Can use gradient)

2. Set derivatives equal to 0 and use to solve system of equations for x and y 3. Plug back into original equation for z. Use Second Derivative Test for whether points are local max, min, or saddle

#### Second Partial Derivative Test

1. Find all (x,y) points such that  $\nabla f(x,y) = \vec{0}$ 

2. Let  $D = f_{xx}(x, y) f_{yy}(x, y) - f_{xy}^2(x, y)$ IF (a) D > 0 AND  $f_{xx} < 0$ , f(x,y) is local max value

(b) D > 0 AND  $f_{xx}(x, y) > 0$  f(x,y) is local min value

(c) D < 0, (x,y,f(x,y)) is a saddle point (d) D = 0, test is inconclusive

3. Determine if any boundary point gives min or max. Typically, we have to parametrize boundary and then reduce to a Calc 1 type of min/max problem to

#### The following only apply only if a boundary is given

1. check the corner points

2. Check each line  $(0 \le x \le 5)$  would give x=0 and x=5)

On Bounded Equations, this is the global min and max...second derivative test is not needed.

## Lagrange Multipliers

Given a function f(x,y) with a constraint g(x,y), solve the following system of equations to find the max and min points on the constraint (NOTE: may need to also find internal points.):  $\nabla f = \lambda \nabla q$ g(x,y) = 0(orkifgiven)

### **Double Integrals**

With Respect to the xy-axis, if taking an integral.

 $\iint dy dx$  is cutting in vertical rectangles.  $\int \int dx dy$  is cutting in horizontal rectangles

#### Polar Coordinates

When using polar coordinates,  $dA = rdrd\theta$ 

### Surface Area of a Curve

let z = f(x, v) be continuous over S (a closed Region in 2D domain) Then the surface area of z = f(x,y) over  $SA = \iint_S \sqrt{f_x^2 + f_y^2 + 1} dA$ 

## Triple Integrals

 $\iiint_{s} f(x, y, z) dv =$  $\int_{a_1}^{a_2} \int_{\phi_1(x)}^{\phi_2(x)} \int_{\psi_1(x,y)}^{\psi_2(x,y)} f(x,y,z) dz dy dx$ Note: dv can be exchanged for dxdydz in any order, but you must then choose your limits of integration according to that order

#### Jacobian Method

 $\iint_{G} f(g(u,v),h(u,v))|J(u,v)|dudv =$  $\iint_{R} f(x,y) dx dy$ 

$$J(u,v) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$

Common Jacobians: Rect. to Cylindrical: r Rect. to Spherical:  $\rho^2 \sin(\phi)$ 

#### Vector Fields

let f(x, y, z) be a scalar field and  $\vec{F}(x, y, z) =$  $M(x, y, z)\hat{i} + N(x, y, z)\hat{j} + P(x, y, z)\hat{k}$  be a vector field, Grandient of  $f = \nabla f = \langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \rangle$ Divergence of  $\vec{F}$ :  $\nabla \cdot \vec{F} = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} + \frac{\partial P}{\partial z}$ 

Curl of  $\vec{F}$ :  $\nabla \times \vec{F} = \begin{vmatrix} \vec{b} \\ \frac{\partial}{\partial x} \\ M \end{vmatrix}$ 

## Line Integrals

C given by  $x = x(t), y = y(t), t \in [a, b]$  $\int_{\mathcal{C}} f(x,y)ds = \int_{a}^{b} f(x(t),y(t))ds$ where  $ds = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$ 

or 
$$\sqrt{1 + (\frac{dy}{dx})^2} dx$$
  
or  $\sqrt{1 + (\frac{dx}{dy})^2} dy$ 

To evaluate a Line Integral,  $\cdot$  get a paramaterized version of the line (usually in terms of t, though in exclusive terms of x or y is ok) · evaluate for the derivatives needed

(usually dy, dx, and/or dt) · plug in to original equation to get in terms of the independant variable

· solve integral

Work

Let  $\vec{F} = M\hat{i} + N\hat{j} + P\hat{k}$  (force) M = M(x, y, z), N = N(x, y, z), P =P(x, y, z)(Literally) $d\vec{r} = dx\hat{i} + dy\hat{j} + dz\hat{k}$ Work  $w = \int_{a} \vec{F} \cdot d\vec{r}$ (Work done by moving a particle over curve C with force  $\vec{F}$ )

## Independence of Path

#### Fund Thm of Line Integrals

C is curve given by  $\vec{r}(t), t \in [a, b]$ ;  $\vec{r}'(t)$  exists. If  $f(\vec{r})$  is continuously differentiable on an open set containing C, then  $\int_{-}^{} \nabla f(\vec{r}) \cdot d\vec{r} = f(\vec{b}) - f(\vec{a})$ 

#### Equivalent Conditions

 $\vec{F}(\vec{r})$  continuous on open connected set D. Then,

 $(a)\vec{F} = \nabla f$  for some fn f. (if  $\vec{F}$  is conservative)

 $\Leftrightarrow$  (b)  $\int_{\mathcal{C}} \vec{F}(\vec{r}) \cdot d\vec{r} i sindep.of pathin D$  $\Leftrightarrow$  (c)  $\int_{-\vec{r}} \vec{F}(\vec{r}) \cdot d\vec{r} = 0$  for all closed paths

#### Conservation Theorem

 $\vec{F} = M\hat{i} + N\hat{j} + P\hat{k}$  continuously differentiable on open, simply connected

 $\vec{F}$  conservative  $\Leftrightarrow \nabla \times \vec{F} = \vec{0}$ (in 2D  $\nabla \times \vec{F} = \vec{0}$  iff  $M_u = N_x$ )

### Green's Theorem

(method of changing line integral for double integral - Use for Flux and Circulation across 2D curve and line integrals over a closed boundary)  $\oint M dy - N dx = \iint_R (M_x + N_y) dx dy$  $\oint Mdx + Ndy = \iint_{B} (N_x - M_y) dx dy$ ·R be a region in xy-plane

·C is simple, closed curve enclosing R (w/ paramerization  $\vec{r}(t)$ )

 $\cdot \vec{F}(x,y) = M(x,y)\hat{i} + N(x,y)\hat{j}$  be continuously differentiable over R∪C.

Form 1: Flux Across Boundary  $\vec{n}$  = unit normal vector to C

 $\oint_{C} \vec{F} \cdot \vec{n} = \iint_{R} \nabla \cdot \vec{F} dA$  $\Leftrightarrow \oint M dy - N dx = \iint_R (M_x + N_y) dx dy$  Form 2: Circulation Along

Boundary Area of R

 $A = \oint \left(\frac{-1}{2}ydx + \frac{1}{2}xdy\right)$ 

## Gauss' Divergence Thm

(3D Analog of Green's Theorem - Use for Flux over a 3D surface) Let:

 $\vec{F}(x, y, z)$  be vector field continuously differentiable in solid S

·S is a 3D solid  $\cdot \partial S$  boundary of S (A Surface)  $\cdot \hat{n}$ unit outer normal to  $\partial S$ 

 $\iint_{\partial S} \vec{F}(x, y, z) \cdot \hat{n} dS = \iiint_{S} \nabla \cdot \vec{F} dV$ (dV = dxdydz)

## Surface Integrals

·R be closed, bounded region in xy-plane ·f be a fn with first order partial derivatives on R ·G be a surface over R given by z = f(x, y)

g(x, y, z) = g(x, y, f(x, y)) is cont. on R  $\iint_{G} g(x, y, z) dS = \iint_{R} g(x, y, f(x, y)) dS$ where  $dS = \sqrt{f_x^2 + f_y^2 + 1} dy dx$ 

Flux of  $\vec{F}$  across G  $\iint_G \vec{F} \cdot n dS = \iint_R [-Mf_x - Nf_y + P] dx dy$  where:  $\cdot \vec{F}(x, y, z) =$  $M(x,y,z)\hat{i} + N(x,y,z)\hat{j} + P(x,y,z)\hat{k}$  $\cdot$ G is surface f(x,y)=z $\cdot \vec{n}$  is upward unit normal on G. f(x,y) has continuous  $1^{st}$  order partial

## Unit Circle

(cos, sin)

derivatives

## Other Information

 $\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$  Where a Cone is defined as  $z = \sqrt{a(x^2 + y^2)}$ In Spherical Coordinates,  $\phi = \cos^{-1}(\sqrt{\frac{a}{1+a}})$ 

Right Circular Cylinder:  $V = \pi r^2 h, SA = \pi r^2 + 2\pi r h$  $\lim_{n \to \inf} (1 + \frac{m}{n})^{pn} = e^{\frac{2\pi n}{p}}$ Law of Cosines:  $a^2 = b^2 + c^2 - 2bc(\cos(\theta))$ 

### Stokes Theorem

·S be a 3D surface  $\cdot \vec{F}(x,y,z) =$ 

 $M(x, y, z)\hat{i} + N(x, y, z)\hat{j} + P(x, y, z)\hat{l}$ ·M,N,P have continuous 1<sup>st</sup> order partial derivatives

·C is piece-wise smooth, simple, closed, curve, positively oriented

 $\cdot \hat{T}$  is unit tangent vector to C. Then.

 $\oint \vec{F}_c \cdot \hat{T} dS = \iint_c (\nabla \times \vec{F}) \cdot \hat{n} dS =$  $\iint_{R} (\nabla \times \vec{F}) \cdot \vec{n} dx dy$ Remember:  $\oint \vec{F} \cdot \vec{T} ds = \int (M dx + N dy + P dz)$ 

(0,1) $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$  $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$  $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$  $\left(-\frac{\sqrt{3}}{2},\frac{1}{2}\right)$ 90° 120° 150° (-1,0)(1,0)180° 360° 210° 330 (0, -1)

> Originally Written By Daniel Kenner for MATH 2210 at the University of Utah. Source code available at https://github.com/keytotime/Calc3\_CheatSheet Thanks to Kelly Macarthur for Teaching and Providing Notes.