Surveillance simulation equations

May 2020

 $S_{t+1} - S_t = -S_t \lambda$ $E_{t+1} - E_t = S_t \lambda - mE_t$

	· · · ·	()
=	$\alpha m E_t - (\psi_A + \gamma_A) I_{At}$	(3)
=	$\psi_A I_{At} - \gamma_A A_{At}$	(4)
=	$(1-\alpha)mE_t - (\sigma_P + \psi_P)I_{Pt}$	(5)
=	$\psi_P I_{Pt} - \sigma_P A_{Pt}$	(6)
=	$\sigma_P I_{Pt} - (\sigma_M + \psi_M + \gamma_M) I_{Mt}$	(7)
=	$\sigma_P A_{Pt} + \psi_M I_{Mt} - (\sigma_M + \gamma_M) A_{Mt}$	(8)
=	$\sigma_M I_{Mt} - (\gamma_C + \psi_C + \mu_C) I_{Ct}$	(9)
=	$\psi_C I_{Ct} + \sigma_M A_{Mt} - (\gamma_C + \mu_C) A_{Ct}$	(10)
=	$\gamma_A I_{At} + \gamma_M I_{Mt} + \gamma_C I_{Ct}$	(11)
=	$\gamma_A A_{At} + \gamma_M A_{Mt} + \gamma_C A_{Ct}$	(12)
=	$\mu_C I_{Ct}$	(13)
=	$\mu_C A_{Ct}$	(14)
+I	$\frac{I_M + I_C) + r(A_A + A_P + A_M + A_C)}{N}$	(15)
$\sigma = \text{Progression rates between infectious compartments}$		(16)
$\gamma = \text{Recovery rates}$		(17)
$\psi = Ascertainment rates$		(18)
$\mu = \text{Death rates}$		(19)
		(20)
	= = = = = = = = = = = = = = = = = = =	$\begin{split} \gamma &= \text{Recovery rates} \\ \psi &= \text{Ascertainment rates} \end{split}$

(1) (2)