AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

1-34. (canceled)

- 35. (new) A method for the production of a biomolecular complex, said method comprising the steps of:
- i) synthesis of a molecular combination of a first functional element (FE_1) and a first binding element (BE_1), BE_1 comprising a nucleotide sequence that binds to a first target molecule or area (T_1),
- ii) synthesis of a molecular combination of FE_1 and a second binding element (BE₂), BE₂ comprising a nucleotide sequence that binds to a second target molecule or area (T₂),
- iii) synthesis of a molecular combination of a second functional element (FE_2) and BE_1 ,
 - iv) synthesis of a molecular combination of and BE_{2} ,
- v) synthesis of a linker molecule (L) comprising a nucleic acid connecting T_1 and T_2 and having a pre-determined physical property, and
- vi) reacting the linker molecule L with the molecular combination of steps i) and iv), or of steps ii) and iii), to obtain self-assembly of the molecular combination to the linker molecule L in the a desired configuration in solution,

to produce said biomolecular complex comprising FE_1 and FE_2 , wherein each of FE_1 and FE_2 is attached to one of BE_1 and BE_2 , each of BE_1 and BE_2 is attached to one of T_1 and T_2 , and T_1 and T_2 are connected to each other by L (FE-BE- T_1 -L- T_2 -BE-FE).

- **36.** (new) The method according to claim 35, further comprising synthesis of at least one second linker molecule (1) connecting FE_1 or FE_2 with BE_1 or BE_2 , and reacting the second linker molecule 1 in step vi) to produce the biomolecular complex wherein FE_1 or FE_2 are attached to BE_1 or BE_2 through the second linker molecule 1 (FE-1-BE).
- 37. (new) The method according to claim 36, wherein the second linker molecule 1 is a nucleic acid polymer having a predetermined physical property.
- 38. (new) The method according to claim 35, further comprising repeating steps i) iv) for functional elements other than FE_1 and FE_2 , and binding elements other than BE_1 and BE_2 , and forming separate stock solutions of the molecular combinations of steps i) iv), and wherein in step vi) L is reacted with the molecular combinations from the stock solutions.
- 39. (new) A method for the production of a biomolecular
 complex, said method comprising:

- (a) providing separate solutions of first functional elements (FE_1), each FE_1 adapted to specifically attach to a first binding element (BE_1), and BE_1 adapted to specifically attach to a first target molecule or area (T_1),
- (b) providing separate solutions of second functional elements (FE $_2$), each FE $_2$ adapted to specifically attach to a second binding element (BE $_2$), and BE $_2$ adapted to specifically attach to a second target molecule or area (T $_2$),
- (c) providing separate solutions of said binding elements BE_1 and BE_2 , each binding element comprising a nucleotide sequence,
- (d) providing separate solutions of linker molecules(L), each linker molecule comprising a nucleic acid moleculehaving a distinct physical property,
- (e) reacting FE_1 of step (a) with at least one of BE_1 and BE_2 of step (c) to form a first functional element/binding element combination (FE_1 -BE),
- (f) reacting FE_2 of step (b) with at least one of BE_1 and BE_2 of step (c), other than the binding element used in step (e), to form a second functional element/binding element combination (FE_2 -BE),
- (g) optionally, separately repeating steps (e) and (f) for each of said first functional elements and said second functional elements,

- (h) reacting each linker molecule L from step (d) with T_1 and T_2 , each of T_1 and T_2 comprising a target sequence capable of specific binding to BE_1 and BE_2 of steps (e) and (f),
- (i) reacting FE_1 -BE and FE_2 -BE of steps (e) and (f) with each linker molecule L reacted with T_1 and T_2 of step (h) to form a combination of functional elements attached to binding elements and target molecules (FE_1 -BE- T_1 -L- T_2 -BE- FE_2), and
- (j) repeating steps (h) and (i) in order to form a library of combinations of functional elements attached to binding elements and target molecules (FE-BE-T-L-T-BE-FE),

to produce said biomolecular complex comprising $FE_{\rm 1}$ and $FE_{\rm 2}\textsc{,}$ wherein:

 FE_1 is specifically attached to a binding element, and the binding element is specifically attached to T_1 ,

 FE_2 is specifically attached to a binding element, and the binding element is specifically attached to T_2 , and

 $\ensuremath{T_1}$ and $\ensuremath{T_2}$ are attached by at least one linker molecule (L).

40. (new) The method according to claim 39, wherein L further comprises a marker or label chosen among a reporter gene, a radioactive label, and a fluorescent label.

Appln. No. 10/505,336 Docket No. 1506-1075

- 41. (new) The method according to claim 39, wherein at least one of BE_1 and BE_2 comprise peptide nucleic acids (PNA) sequences.
- **42.** (**new**) The method according to claim 39, wherein FE_1 and FE_2 are chosen among a natural or synthetic peptide, a lipid, a glycoprotein, a receptor ligand, and a fraction thereof, or any combination thereof.
- 43. (new) The method according to claim 39, wherein in at least one of steps e) and f) at least one of FE_1 and FE_2 is attached to BE_1 or BE_2 through a second linker molecule (1).
- **44. (new)** The method according to claim 43, wherein the second linker molecule 1 is a nucleic acid polymer having a predetermined physical property.