COMP3211/COMP9211 COMPUTER ARCHITECTURE

https://tutorcs.com

Lecturer: Hui Annie Guo We Chat: cstutorcs

h.guo@unsw.edu.au

K17-501F

Lecture overview

- Topics
 - Course overview
 - Introduction to ISA Assignment Project Exam Help
- Suggested reading tutorcs.com
 - Course outline eChat: cstutorcs
 - Available on course website
 - H&P Chapter 2

Course overview

- What is the course about?
- Aims of the course
- · Course organization Project Exam Help
- Assessments https://tutorcs.com
- Other information

What is this course about?

- This course is about:
 - How a computer works
 - How a computer is designed Assignment Project Exam Help

https://tutorcs.com

What is the course about? (cont.)

- Computer system: HW+SW
 - Application software
 - For end users
 - · Often writtenignment Peroject Exam Help
 - For productivity and portability
 https://tutorcs.com
 - Compiler: translates | L. programs to machine code
 - Operating System: provides services
 - Handling input/output
 - Managing memory and storage
 - Scheduling tasks & resources
 - Hardware
 - Programmable digital system
 - Processor, memory, I/O controllers

What is the course about? (cont.)

Hardware

Inside processor

e.g. AMD Barcelona: 4 processor cores

What is computer architecture?

- Frederick P. Brooks:
 - Computer architecture, like other architecture, is the art of determining the needs of the user of a structure and there designing to meet those needs as effectively as possible within economic and technological constraints.

What is computer architecture? (cont.)

- Computer architecture typically includes
 - ISA (instruction set architecture)
 - Machine organization Assignment Project Exam Help

https://tutorcs.com

ISA

- Is the interface between HW and SW of a computer system. It defines attributes/functions
 Assignment Project Exam Help
 needed by the software programmer and

 - to be implemented/by toarcdware

Machine organization

 Is about how functions/features are implemented.

Assignment Project Exam Help

https://tutorcs.com

ISA & organization

- A family of machines can often share a basic ISA
 - To provide code compatibility
 Assignment Project Exam Help

 E.g. Intel x86 family
- However, orglamizationrwaries significantly between machine versions WeChat: cstutorcs
- Modern instruction set architectures
 - CISC (Complex Instruction Set Computer)
 - e.g. VAX, PDP-11, x86, 6800
 - RISC (Reduced Instruction Set Computer)
 - e.g. SPARC, PowerPC, RISC-V, AVR, ARM, MIPS

Course outcomes

- By completing the course, you will be
 - Able to explain
 - How hardware makes the software execution possible,
 - How the period mance of haldware computer system is evaluated,
 - How the computer architecture affects the overall computer system performance
 - system performance
 WeChat: cstutorcs
 Competent to apply typical design approaches and techniques in designing a simple RISC processor for a given application
 - Capable of describing your design with a hardware description language and evaluate the design with a simulation tool.

How is the course organized?

- Lectures
 - Two 2-hour lectures each week
 - Weeks 1-5, Weeks 7-10 (excl. public holiday)
 - Topics Assignment Project Exam Help
 - ISA design
 - Processor https://tutorcs.com
 - Memory hierarchy
 - · Parallel processing hardware torcs
- Tutorials/Labs (TLB)
 - One-hour tutorial and 2-hour lab
- Lectures and TLB classes are run in MS Teams
 - The general team structure is given in next slide

How is the course run with MS Teams?

- General team structure
 - Total five teams

How is the course run with MS Teams? (cont.)

- Team COMP3211_21T1, consisting of two channels
 - For lecture, consultation and general administration
 - Each meeting will be started by the lecturer
 - · Join the Aceting when you speth and the property started the p

How is the course run with MS Teams? (cont.)

- Team COMP3211_21T1_TLB_xxx, consisting of
 - Individual channels for each lab group
 - To be created by the lab tutor after all lab groups are formed in Week 1
 - There are up to 4 channels Assignment Project Exam Help
 Two assessment groups

 - For peel assessment https://tutorcs.com
 See an example in the next slide

Form a lab group

- In your lab class this week (Week 1), find your group members
 - Typical four members per group
 Assignment Project Exam Help

 If required, five-members/group is permitted:
- Add your group to the rexcenfile provided in the file folder of your team. We Chat: cstutores
 - Instructions are also available in the lab spec of this week.

Peel assessment

- For each lab, a TLB class is randomly divided into two groups
 - All members in a group assess each other's work.
 Assignment Project Exam Help
 An assessment form will be provided

https://tutorcs.com

Tutorials

- Questions will be released after the second lecture each week

 - Mainly in the form of quizzes

 Assignment Project Exam Help
 Available in Moodle, a link is provided on the course website
 - The solutions will be discussed in the tutorial class of the following week
- · Assessment distributions
 - Quizzes (50%)
 - Tutorial class participation (50%)

Labs

- Three labs
- Xilinx Vivado
- For modelling and simulation of hardware designs Assignment Project Exam Help
 Assessment distribution
- - Lab work markspiveht By your peers (90%)
 - Contribution to the assessment (10%)
 - Add-on benefit: learn from each other

Assignment

- Application specific processor design
 - Done in lab groups
- Assessment distribution Assignment Project Exam Help
 - lab demonstration (50%)
 - Assessed by https://tutorcs.com
 - group presentation (30%)
 cstutores
 - Assessed by all course members
 - Report (20%)
 - Assessed by lecturer

Overall assessment distribution

- Assignment
 - **20%**
- Lab

Assignment Project Exam Help

• 20%

• Tutorial https://tutorcs.com

· 10%

WeChat: cstutorcs

 For the group work, there may be some adjustments if members in a group have very unbalanced contributions

Overall assessment distribution (cont.)

- Final exam (online)
 - 2 hours
 - · 50%

Assignment Project Exam Help

- To pass the course etuyorus must have
 - final result >=\\(\frac{\partial}{2}\)(\quad \quad \
 - final exam >= 40 (out of 100)

Staff

- Annie Guo
 - h.guo@unsw.edu.au
 - Consultation: 3-5pm Fri.
 Assignment Project Exam Help
 For face-to-face consultation, please make an appointment.
- Brian Udugarhtaps://tutorcs.com
 - b.udugama@unsw.edu.au WeChat: cstutorcs
- Kenny Dow
 - h.dow@unsw.edu.au

Textbook and references

Textbook

- Computer Organization and Design: The Hardware/Software Interface, D.A. Patterson and J.L. Hennessy, 5th Ed., Morgan Kaufmann, 2014
 - Print: https://www.bookshop.unsw.edu.au/details.cgi?ITEMN0=9780124077263
 - Digital: https://unsw.bookshop.vitalsource.com/products/-v9780124078864
- References and software tool
 - See the course website festallist of references and downloadable software
- Lecture notes
 - Posted each week before lecture
- Lecture recordings
 - Available after each lecture

Support

- Course website
 - http://www.cse.unsw.edu.au/~cs3211
 - Regularly check the Notices page for the course administration announcements.

https://tutorcs.com

- Course staff WeChat: cstutorcs
 - The staff contact information can also be found on course website

Assignment Project Exam Help

https://tutorcs.com

INTRODUCTION TO INSTRUCTION Assignment Project Exam Help SET ARCHITECTURE AND DESIGN

https://tutorcs.com

Lecturer: Hui Annie Guo WeChat: cstutorcs

h.guo@unsw.edu.au

K17-501F

Lecture overview

- What is instruction set architecture?
- Four design principles
- Typical designissues and guidelines
- MIPS instruction set https://tutorcs.com

ISA - interface between HW/SW

Levels of representation

 $v[k] \leftarrow \rightarrow v[k+1]$


```
temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;
```


Assignment Project Exam Help

Assembly Language Program

https://tut<mark>or.e.s.com</mark>

sw \$15, 4(\$2)

Assemble Chat: cstutorcs

Machine Language Program

 0000
 1001
 1100
 0110
 1010
 1111
 0101
 1000

 1010
 1111
 0101
 1000
 0000
 1001
 1100
 0110

 1100
 0110
 1010
 1111
 0101
 1000
 0000
 1001

 0101
 1000
 0000
 1001
 1100
 0110
 1010
 1111

Machine Interpretation

Control Signal Specification

0

0

Execution cycle

0000 1001 1100 0110 1010 1111 0101 1000 1010 1111 0101 1000 0000 1001 1100 0110 1100 0110 1010 1111 0101 1000 0000 1001 0101 1000 0000 1001 1100 0110 1010 1111

ISA: what are needed?

Operations

What basic operations are

Instruction Assignment Project Exam Help

Data type and size

https://tutorcs.com • **Operands**

Wellow:many and where to find?

- Instruction format and encoding
 - How to represent an instruction?
- Next instruction
 - Branch? Any condition?

Instruction set architecture design

Goal:

- The instruction set should be easy to implement, good for performance, and possibly more Assignment Project Exam Help
- Four design principles:com
 - Smaller is faster Chat: cstutorcs
 - Simplicity favors regularity
 - Make the common case fast
 - Good design demands a compromise

MIPS example of four design principles

- Simple (simplicity favors regularity)
 - MIPS instructions are all 32 bits in size
 - Arithmetic instructions always have three operands
 - ArithmeticAcperationstaPerperfoFixed phleepisters
- Small (smaller is faster)
 - MIPS has a small register file of only 32 registers, each with 32 bits
- Compromise (good design demands a compromise)
 - MIPS has three instruction formats
- Optimizing common case (making a common occurrence fast)
 - Immediate values are provided in I-type instructions

General purpose registers

- Like memory and stack, general purpose registers can hold variables.
 - Compared to memory, registers help
 Assignment Project Exam Help
 Improve performance
 - Register is faster than memory
 https://tutorcs.com
 - Reduce code size
 - since register takes fewer bits than memory location
 - Compared to stack, registers are easy to use
 - e.g., (A*B) (C*D) (E*F), multiplications can be done in any order, whereas with the stack they can't.

MIPS integer registers

- R0-R31 or \$0-\$31
- They are also divided into groups for special uses.

```
16
                                      s0
                                        callee saves
   zero constant 0
       reserved soignment Project Exam Help
       expression evaluation & 23 s7
2
   v0
3
       function results
                                  24 t8
                                          temporary
                  WeChat: cstytores
       arguments
4
5
                                         reserved for OS kernel
   a1
                                  26
6
   a2
                                  27
                                     k1
   a3
                                         Pointer to global area
                                  28
                                      gp
8
       temporary: caller saves
   t0
                                  29
                                      sp
                                         Stack pointer
                                         Frame pointer
                                  30
                                      fp
                                  31
                                         Return Address (HW)
```

Memory addressing

- Most machines use byte address
- Two issues of multi-byte objects stored in memory: Assignment Project Exam Help
 - Endianness
 - The order of thetips: It but out the memory
 - Alignment
 - The boundary of the multi-byte object in the memory

Endianness and alignment

- For a word of multi-bytes
 - Big Endian:

 - address of most significant byte = word address
 Most significant byte = word address
 Most significant byte = word address
 - IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA https://tutorcs.com
 - Little Endian:
 - address of leastwignificant byta of word address
 - Least significant byte stored first
 - Intel 80x86, DEC Vax, DEC Alpha (Windows NT)
 - Alignment:
 - words fall on addresses that are multiple of their size.

Possible addressing modes

Addressing mode	Example	Meaning
Immediate	Add R4,#3	R4 ← R4+3
Register	Add R4,R3	R4← R4+R3
Direct or absolutes	sigamrantoPnoje	ctifixam Mehp1001]
Register indirect	Adeps://Rivorcs	.c641 R4+Mem[R1]
Displacement	Add R4.100(R1) WeChat: cstu	R4 ← R4+Mem[100+R1]
Indexed / Base	Add R3,(R1+R2)	$R3 \leftarrow R3+Mem[R1+R2]$
Auto-increment	Add R1,(R2)+	$R1 \leftarrow R1+Mem[R2]; R2 \leftarrow R2+d$
Auto-decrement	Add R1,–(R2)	R2 ← R2-d; R1 ← R1+Mem[R2]
Scaled	Add R1,100(R2)[R	3] R1 ← R1+Mem[100+R2+R3*d]
Memory indirect	Add R1,@(R3)	$R1 \leftarrow R1+Mem[Mem[R3]]$

Which modes to use?

- It is too expensive to implement all of possible addressing modes
- How to decide which to use? Assignment Project Exam Help
 - Via analysis and profiling
 - See example https://tutorcs.com

WeChat: cstutorcs

Example:

- Three programs measured on the VAX machine that has all addressing modes implemented
 - Addressing mode usage

```
disAssignment ProjectsExam Help immediate: 33% avg, 17% to 43% register indirect: 13% avg, 3% to 24% scaled: https://tutokcs.com/w to 16% memory indirect: 3% avg, 1% to 6% misc: WeChat: 2% avg, 0% to 3%
```

- displacement & immediate: 75%
- displacement & immediate & register indirect: 88%
- Constant value sizes
 - For displacement, 12-16 bits: 99%
 - For immediate 8-16 bits: , 99%

Instruction format

- Instruction formats can be categorized based on the instruction width.
 - Varied
 - Assignment Project Exam Help

 Each instruction uses its own required width

https://tutorcs.com

- Fixed
 - · All instruction share satisfactors
- Hybrid
 - Instructions are divided into several groups
 - · Instructions in each group have a fixed width

Instruction format: some design strategies

- If code size is most important

 - use variable width instructions
 as in some embedded apps
- · If performance is most important,
 - use fixed width instructions
 - E.g. MIPS WeChat: cstutorcs
- Embedded machines added optional mode to execute subset of wide instructions (Thumb, **MIPS16)**
 - To trade between performance and density

MIPS instruction set architecture

- We'll be working with the MIPS instruction set architecture
 - A typical RISC ISA

 Assignment Project Exam Help

 Used by many computer system designers
 - - ATI Technologies Brogades Brogades Metern Nintendo, Cisco, Silicon Graphics, Sony, ...

WeChat: cstutorcs

Features of MIPS ISA

- All instructions are of 32 bits
 - in 3 formats
- Arithmetic and logic operations are always performed and logic operations are always
 - reg-reg AL instructions
- Having 32 x 32-bit integer registers and 32 FP registers
 WeChat: cstutorcs
- Single address mode for accessing data in memory
 - base + displacement
- Simple branch conditions
 - compare two registers for equal/not equal

MIPS 3 instruction formats

MIPS 5 addressing modes / 3 instruction formats

 $\leftarrow 6 \rightarrow \leftarrow 5 \rightarrow \leftarrow 5 \rightarrow \leftarrow 5 \rightarrow \leftarrow 6 \rightarrow$ 1. Register (direct) op rd sh Destination is rd (e.g. addition) register 2. Immediate To immediate House ination is rt QPOINTINS (e.g. increment) 3. Base+index ophttprs://ttutoreddresen (e.g. array access) **Memory** data 4. PC-relative address op rs rt (e.g. branch) Memory (x4)PC instruction 5. Pseudodirect address op (e.g. jump) Memory instruction concatenation

MIPS arithmetic instructions

Instruction	Example	Meaning	Comments
add	add \$1,\$2,\$3	\$1 = \$2 + \$3	3 operands;
subtract	sub \$1,\$2,\$3	\$1 = \$2 - \$3	3 operands;
add immediate	Adds 128A 199e 1	nt\$P=r\$3iece Exa	ann de la company de la compan
add unsigned	addu \$1,\$2,\$3	\$1 = \$2 + \$3	3 operands;
add imm. unsign.	addiu \$1,\$2,10	, , \$1 = \$2 + 10	+ constant;
subtract unsign.	subu \$ ḥ\$2 \$\$:/	/tutgecs3com	3 operands;
multiply	mult \$2,\$3	Hi, Lo = 2×3	64-bit signed product
multiply unsign.	multu\$2\\$3	aHi, Lo=\$2,x\$3	64-bit unsigned product
divide	div \$2,\$3	at, <u>estu</u> ; 3,105	Lo = quotient, Hi = remainder
		Hi = \$2 mod \$3	
divide unsign.	divu \$2,\$3	$Lo = $2 \div $3,$	Unsigned quotient & remainder
_		Hi = \$2 mod \$3	
move from Hi	mfhi \$1	\$1 = Hi	Used to get copy of Hi
move from Lo	mflo \$1	\$1 = Lo	Used to get copy of Lo

MIPS logical & shift instructions

Instruction	Example	Meaning	Comment
and	and \$1,\$2,\$3	\$1 = \$2 & \$3	3 reg. operands; Logical AND
or	or \$1,\$2,\$3	\$1 = \$2 \$3	3 reg. operands; Logical OR
xor	Assignme	nts Proposit E	Xamy. berapus; Logical XOR
nor	nor \$1,\$2,\$3	\$1 = ~(\$2 \$3)	3 reg. operands; Logical NOR
and immediate	andi \$1,\$2,100 •	// \$1t&7& \$0cor	n Logical AND reg, constant
or immediate	ori \$1,\$2,10	\$1 = \$2 10	Logical OR reg, constant
xor immediate	xori \$1, \$2,10 WeCl	\$1 = ~\$2 &~10 nat: cstutorc	Logical XOR reg, constant
shift left logical	sll \$1,\$2,10	\$1 = \$2 << 10	Shift left by constant
shift right logical	srl \$1,\$2,10	\$1 = \$2 >> 10	Shift right by constant
shift right arithm.	sra \$1,\$2,10	\$1 = \$2 >> 10	Shift right (sign extend)
shift left logical	sllv \$1,\$2,\$3	\$1 = \$2 << \$3	Shift left by variable
shift right logical	srlv \$1,\$2, \$3	\$1 = \$2 >> \$3	Shift right by variable
shift right arithm.	srav \$1,\$2, \$3	\$1 = \$2 >> \$3	Shift right arith. by variable

MIPS data transfer instructions

Instruction	Example	Meaning	Comment
store word	sw \$3, 500(\$4)	memory[\$4+500] ← \$3	one word
store half	sh \$3, 502(\$2)	memory[\$2+502] ← \$3	half word
store byte	sb \$2,41(\$3)	memory[\$3+41] ← \$2	one byte
load word As	ssignment Proje	ect Exam [[] p _{30]}	one word
load half	lh \$1, 40(\$3)	\$1 ← mem[\$3+40]	half word
load half word unsign.	Interpretation	CS.CO11 ^{\$1} ← mem[\$3+40]	half word
load byte	lb \$1 <mark>,</mark> 40(\$3)	\$1 ← mem[\$3+40]	one byte
load byte unsign.	WeChat: cst	\$1 ← mem[\$3+40] Utorcs	one byte
load upper imm.	lui \$1, 40	\$1 ← 40<<16	

MIPS jump, branch, compare instructions

Instruction	Example	Meaning
branch on equal	beq \$1,\$2,100	if (\$1 == \$2) go to PC+4+100
branch on not eq.	bne \$1,\$2,100	if (\$1!= \$2) go to PC+4+100
set on less than	Assignment slt \$1,\$2,\$3	Project Exam Help if (\$2 < \$3) \$1=1; else \$1=0
set less than imm.	slti \$1,\$2,100	if (\$2 < 100) \$1=1; else \$1=0
set less than uns.	situ \$1,52<mark>95:</mark> //t	Utn \$6 \$3 \$3 \ 9 1 1 ; else \$1=0
set I. t. imm. uns.	sltiu \$1,\$ <mark>2</mark> ,100	if (\$2 < 100) \$1=1; else \$1=0
jump	_{j 1000} WeCha	t: cstutores
jump register	jr \$31	go to \$31
jump and link	jal 10000	\$31 = PC + 4; go to 10000

Homework

- Browse the course website
- Skim through textbook
- · Read the shapterere lated MIRS I SAIp
- Install Xilinx Vivado on your home machine https://tutorcs.com
 - The installation guide and related docs are available on the Resoute page on the course website