Des îles et des espèces

En suivant Wallace

Dans l'introduction de son livre "Island Life" paru en 1881, le célèbre naturaliste Alfred Russel Wallace nous rapporte deux faits important qui justifient l'importance de l'examen de la répartition géographique des espèces (Wallace, 1881). Premièrement, il montre, à travers un grand nombre d'exemple, que l'éloignemnet de deux régions du monde n'est pas suffiant pour conclure quand à l'éloignement de leur composition faunistique et floristique. Ainsi, bien que séparés par des miliers de kilomètres, la composition taxonomiques des arbres et oiseaux du Japon sont bien plus porches que les compositions taxonomiques des îles îles indonesiennes Bali et Lombok séparées pourtant de quelques dizaines de kilomètres seulement. De plus, en s'appuyant les différences des faunes brésiliennes et africanes sous des latitudes similaires, il souligne la faiblesse du pouvoir préductif des variables climatiques pour décire les compositions fauniques. Au-dela des faits, ces comparaisons incitent à la reflexion : en deux points de la Terre, quels sont les mécanismes qui amènent à une ressembblandce ou non des écosystème dans leur compousiotn taxonomique. Son ouvrage se réclame d'une tentative de compréhension des raisons sous-jacentes à ces faits et il reconnait toujours dans cette introduction la difficulté majeure pour arriver à une telle compréhension :

« Many years study of this class of subjects has convinced me that there is no short abd easy method of dealing with them; because they are, in their very nature, the visible outcome and residual product of the whole past history of the earth. »

La réponse apportée par Wallace est la suivante : une connaissance encyclopédique de la distribution des êtres vivants à travers le monde permet de relier les différents îles aux grands ensembles régionnaux biologiques (que nous appelons aujourd'hui écozones). Il est intéressant de noter que le nom de Wallace est associé à la ligne séparant l'écozone indomalaise de l'écozone australienne (qui sépare notamment Bali et Lomonk citées plus haut) à la suite de ces travaux publiés en 1860 (Wallace, 1860). Ces regroupemnets géographiques fondés sur la proximité taxonimique est la traduction que les distributions des espèces renflètent en partie une phylogénie des êtres vivants et sont alors autant d'arguments en faveur de la théorie de l'évolution. L'éclaircissement substantiel des répartitions géographiques des êtres vivants par l'évolution se double d'un obstacle épistémologique important : si l'explication ultime de la présence d'une espèce en un point donné est le produit d'une série de contingences historiques, sur quoi bâtir une théorie de la biogéographie? Comment s'abstraire des singularités pour trouver des règles? Pour aller chercher ces règles, il fallut attendre les travaux du milieu du XXème et particulièrement la fructuseuse rencontre du mathématicien et biologiste Robert Helmer MacArthur et de l'enthomologiste Edward Osborne Wilson qui conduit à l'élaboration d'une théorie de la biogéographie insulaire publiée en 1967 sur laquelle je reviendrai abondammnent tout au long de mon introduction (MacArthur and Wilson, 1967). Leurs travaux théoriques ont été menés afin de dépasser les explications de la distribution uniquement en terme d'histoire naturelle comme ils l'indiquent eux même au dernier chapitre de leur

¹Wallace a publié en 1858 un article *On the Tendency of Varieties to Depart Indefinitely From the Original Type* qui témoigne très clairement que ses idées sur les varitions temporelles des espèces étaient très proche de celle de Charles Robert Darwin a qui il avait d'ailleurs envoyé le manuscipt (Wallace, 1858).

livre de 1967:

« Biogeography has long remained in a natural history phase, accumulating information about the distribution of species and higher taxa and the taxonomic composition of biotas. Interpretative reasoning has been largely directed to the solution of special problems connected with the histories of individuals taxa and biotas. Without doubt this descriptive activity will continue to be of fundamental importance to the science, one of the most physically adventurous of all scientific entreprises and, in the richness of the detail it unfolds, esthetically pleasing. But biogeography is also in a position to enter an equally interesting experimental and thereotical phase. »

Les auteurs affirmeent ainsi la distributions des espèces doit sortir du royaumes des contingences pour devenir un objet de science au sens ou il peut et doit être manipulé aussi bien expérimentalement que par l'abstraction mathématique. Pour ce qui est du travail expérimental, le plus marquent demeur celui entreprit par Wilson avec son doctorant qui est aujourd'hui le célèbre écologue Daniel Simberloff aui ont directement testé la validité de la théorie des îles six petits îlots de mangrove dans la Bay de Floride (Simberloff and Wilson, 1969). La travail d'abstraction mathématique a été surtout celui de MacArthur qui est contenue dans les dévelopments mathématiques de la prolongée dans les annexes de son livre de 1972 (MacArthur, 1972). Leurs efforts conjugués ont donné le jour à une vision générale et puissante dans laquelle la présence sur une île donnée est le résultat de processus stochastique de colonisation et de contraintes locales conduisant à des extinction contrebalacant les colonisations et amenant ainsi à un équilibre en terme de richesse spécifique sur l'île. Ils ont alors montré que le charactère statique des distributions d'espèces étaient le résultat d'une dynamique qui pouvait être montré empiriquement et éclairait les données existente. Leur désir de fonder une biogéographie de l'espèce (terme donnée à l'avant-dernière phrase de leur livre de 1967) est l'aspiration à mettre davantage de processus écologique pour améliorer la connaissance du vivant sans pour atant nier l'importance des processus évolutifs.

Une des pi Je tiens ici à disuter de notion clef pour lesquelles je donne des discussions volontairemnt courtes. Ce ne sont pas ces définitions qui m'intéressent mais leur articlion que je développe jutse après.

- 1. **Ecologie** : étude des relations entre les êtres vivants et de leur interaction avec leur habitat et des relations entre elles.
- 2. **Evolution** : étude des variations temporelle du vivant
- 3. Espèces : un ensemble identifié sur une base génétique qui échange et se reproduit (si sexués)
- 4. **Populations** : groupe d'individus d'une même espèces
- 5. **Biogéographie** : étude des distributions des espèces.

Il y a une intrication profonde entre l'écologie et l'évolution qui sont deux facettes difficielemnt séparable de la biologie. Les trois aphorismes célèbres repris par Schoener (2011a) en témoignent dans :

«Dobzhansky notoriously said in 1964: Nothing in biology makes sense except in the light of evolution. »

« This was supplanted half a century later by Grant and Grant's(2): Nothing in evolutionary biology makes sense except in the light of ecology. »

Pelletier et al.(12) quickly followed with « Nothing in evolution or ecology makes sense except in the light of the other. »

La conpréhension de l'écologie ne peut être faite sans une compréhension de l'évolution et inversement. Un parallèle fort existe entre l'histoire et la biogéographie et il est difficile de faire une bonne histoire sans comprendre les contraintes géographiques qui sont souvent le moteur de cette derrnière. L'écologie est à la biologie ce que l'écologie est aux sciences humaine de même que l'évolution est la partie historque de la biogéographique : il est très riche de croiser les regards. Cette vision spatiale de l'écology est ancrée dans la pensée de MacArthur et Wilson dans la préfcae de 1967 :

« Now we both call ourselves biogeographers and are unable to see any real distinction between biogeography and ecology. »

Pour des questions d'échelles il y a une distribution avec la biogeographies car les règles comportenemtales d'une sous papitlation ne sont pas étudiées au même échelle que la distribution d'écehlles. Néanmoins il existe une très grande variabilités de la taille des sistirbution pour des individus de tailles ne variant pas d'un grand nomdre d'ordre de grandeur on parleera de macroécologie même sir écoogie global (*Global ecology and Biogeography* est le titre d'un des journaux prestigieux de la discipline et je ne m'explique pas la différence entre les deux termes)

La différence que je vois entre le terme écologie et biogégrpahie est que les travuax portent sur les ranges que l'on peut relier assez aisément à tout autre champ de l'écologie mais que les infornations de l'inforation est une analyse parmis d'autre. On pet par exemle pensé aux développement récent de la génétique à l'échelles du paysgae qui donne une infornation très complémetare et révelles beaucoup de chose (Manel et al., 2003).

La compréhension de la répartion géogrpahique des espces s'articlue autour de quatre composante essentielle : les variables climatiques / biotiques les capacités de dispersion l'articuclation est bien détaillé dans dans la remière partie de Peterson et al. (2011).

Quelles informations renferment les distributions d'espèces?

Je pense que cette question permet de parcourir l'étude du lien entre le vivant et l'espace qu'est la biogéographie. Non seulemnent elle est une invitation à découvir les raisons de la présence de telle ou telle organisme à tel ou tel endroit, mais elle suggère dans le même temps que certaines informations ne sont pas données par la répartion géographique des espèces. Wallace, MacArthur et Wilson ont apporté des éléments de réponse essentiel à cette question. Wallace a montré que la distribution reflètait au moins partiellement les liens de parenté entre les esèces. MacArthur et Wilson ont suggérés des processus écologiques dynamiques pour expliquer la présence d'une espèce dans un endroit donné. Examiner les distribtions entre espèces est demande alors de s'en nourrir pour ce qu'elles sont mais aussi d'avoir une connassance biologique fine pour envisager les mécanismes qui sont les moteurs des occupations spatiales actuelles.

Cette idée de regarder les distributions d'espèces et de les confronter à la connaisssance biologique est reprise tout au long de son livre de MacArthur de 1972 au chapitre 2 où il propose un cadre mathématique pour comprendre l'impact de la prédation et de la compétition qui fonde des prinicpes sur les conséquences des interactions en termes de ségréaton spatiale avec par exemple l'idée que deux compétiteurs soit ne paeuvent pas co-occuré ou que sur une zone restreinte séparant leur deux distribution (MacArthur, 1972). D'ailleurs il parlera dans se même ouvrage de la distribution en damier (*checkerboard*) des espèces en compétition qui sera approfondie et quantifié par Jared Diamond (Diamond, 1975) qui déclenchera le débat sur les outils nécessaires les présence non aléatoires d'espèces (Connor and Simberloff, 1979).

L'analyse de l'information des distributions est à mener à différentes échelles spatiales et temporelles. Comme le relève MacArthur, c'est en trouvant des phénomènes répétés que l'on peut aller vers la généralisation mais la répétition spatiale et aussi temporelle de de phénomène qui s'exprinent eux même a des échelles diff.rentes ainsi, distributions d'espèces est un repose aussi sur une analyse à différentes échelles Quelle est le lien entre le lien entre les variables abiotiques et. Il faut avoir alors des s'armées de connaissance relative à différentes échelles les messages sont à checher dans l'évolution (données fossiles) au temps courts (séries temporelles) à des échelles fines et larges. Ces études peuvent réveler que tous les processus ne s'exprinent pas de la même manière à toutes les échelles (McGill, 2010). En tout les points ou une population local parvient à ce maintenir fût-elle éteinte que génération après, il faut reconnaitre que l'ensemble des facteurs présents lui permettent d'y être. Dans ma thèse je propose aussi de regarder la réuniom de certaine distribution comme celui du set de proie, range emboité.

Enjeux de la connaisssance de la répartition géographique des espèces

Les enjeux fondamentaux ont été évoqués plus haut : les observations et la compréhension des causes profondes de la géométrie et la dynamique des aires de répartitions des espèces ont déjà amené à des découvertes majeures en écologie et en évolution. La phase d'expérience et de Théorie décite par MacArthur et Wilson se poursuit et l'espoint se tourne vers la possibilité d'obtenir des prédictions fiabkes sur les aires de répartitions futures d'une espèce données. Ce problème est d'autant plus pesant dans la litérature en biogéograhique dans le contexte actuel des changements globaux. En biogéograhie, les changements climatiques ont canalisés l'attention et les chercheurs constatent l'ampleur à laquelle la biodiversité mondiale est affectée par ces derniers (Koh, 2004, Bellard et al. (2012)). Le volonté d'anticiper où seront les espèces demain a également engendré un effort de développemnet d'outils statistiques essentiellement centrés sur la correlation entre les variables abiotiques et occurrence des espèces (Elith et al., 2006).

En choississant de parler de telle ou telle espèce, nous glissons rapidement à des enjeux sociaux et économiques évidents. Ainsi, pour un pays comme la France, comprendre les impacts des changements climatiques sur la productions du vin est un enjeu central, prédiction de contractions des aires de production favorables dans les grandes régions viticoles (Hannah et al., 2013), on peut aisément deviner ou seront les grands vignobles de demain à de multiple conséquences économiques sur les cours des vins, les millésimes, le prix de ces terres agricole. Pour prendre un exemple québécois,

on parler d'un autre prodiot emblématque : le sirop d'érable. Le réchauffement climatique conduit à une remonté vers le nord de l,aire de répartiton ou sernt les érablières de demain avec un porblème de possibilité de migration qui demande des mesure concrète d'acconpagnmement de migration. Je finirais par un troisième exemple celui souvent mis en édicende de la perte des pollinisteur. Pas moins de quatres grandes classes de facteur affectet à fdifférentes échelles, chagemnt dans l'utilisatueris accompagnée d'utilisaion parfois massive de pesticide de la famille des néonicotinoïdes affaiblissant les colonies, les changements climatoquers, de nouveau pathogenès, l'arrivée d'espèce invacsive [@]et le changement d'espèce. l'accarien parasite *Varroa destructoa* veteur de nombreux virus (Vanbergen, 2013). Les deus derniers sont très intéressants car ils peuvent être analysé en terme de en terme de sistiubuion d'espèce et les cons.quence seront aussi sur la distribution d'espèces.

Malgré leurs performances, les modèles de distribution actuels utilisés pour construire les scénarios de biodiversité de demain souffrent vraisemblablement d'un manque de théorie sous-jacents et un besoin d'aller vers une biogéographie plus mécanisitique (Lomolino, 2000, Beck et al. (2012)). C'est certainement la voie la plus cohérent malgrès les défis tecnhique et théorique qu'elle soulève du diversité des mécanimses qui influence les distribution d'espèce et la complexité pour comprendre leurs interactions. L'aller retour entre les performances de nos modèles et la théorie me semble capital. Seulement manipulé des ranges d'espèces est compliqué et avoir un type d'espèces comme modèle est délicat. Passage par la théorie et le travail de modélisation.

Travail théorique et modélisation

Avant d'attaquer dans les détails l'ensemble des forces qui animnent la sistributions des espèces, je tiens à pursuivre de manière générale ma pensée sur l'importance de la théorie et du travail de modèlisation.

in silico. Dans cette introduciotn je ne peux donc pas faore l'impasse sur une mise en contexte générale de la biogéogrpahie avec ces apports historiques ces contraintes mais aussi l'age dans lequel nous sommes et les défis mais aussi toutes les aspects d'ordres computationnelle parler de modélisations de ces enjeux et valoriser les modèles thérqies fondamentaux qui s'éloignent parfois de la éalité mais sans jamsi la déconsidérer.

Rassembler et intégrer des faits

rassembler des connaisance puis trouver avec un minimum plausuvle rasoir d'Occam et principe de parcimonie ce ne veut pas dire que c'est simple une hypothèse en plus essayer qu'elle explique plus d'efait. Des approches corrélatives passé du cadre corrélative au mécanisme

Finalemnt se problème est aussi lié au problème d'échelle de travail! il y a un problème d'échelle

Quand on se tourne vers les sciences de l'écomomie il y a un bon jeus de mots que j'ai entendu sous deux formes : -Les physiciens oont 5 règles pour expliquer 95% univers et les 95 rèle pour 5% - Les économistes ont pédit 12 des trois dernière crises éconimoqe et une compléxité une légère jalousie des physiciens se serait qui ont des théories qui ont prédi des objets à une époque où pas les moyens de faire les intslallation surtout avec les triomphes récents de la découverte expéimentale Boson de Higgs et de la double détection des ondes grvitationelles Rassurons nous les physiciens ont encore bien des parties sonmbres àexplorer : matière noire et energie noire et du boulot en masse pour ecologues / economistes peut-être que les foralimes que nous empreintons à ces disciplines ne sont pas les bons... Comme dit le phylodophe Sachs dans sa biodiversité c'est trop historiques qu'un concepte comme le fitness n,est peutêtre pas bien mis en equation dans une forme physique

Cadre de dévelopement des idées

Un acte d'abstarction pour des défis très concret

ce n'est pas objectif, c'est se placer dans un cadre et c'est une façon de contruire le raisonemet. Exemple on peut vouloir modéliser la robabiliter d'interaction et alors uon peut commenceer par une probabilité de rencontre qui est simplemnt la probabiliter de se detecter mais qui pourrait être calcluer de manière complexe ou alors juste un paramètre.

Il y a différent niveau la modelisation a pour but de donner une idée mais n'oublions as qu'il existe une progression, un raffinement et qu'ultimement, le réalisme de la simulation permet d'obetnir préscisement le phénomène données et on peut aller très loin à partor d'imagination d'un aller retour entre le réel et l'espace dans lequel on se place pour modéliser.

Dans la préface de son livre Food webs Kevin McCann écrit :

«It just so happens that some people find it easier to think about things in terms of x's and y's, and other in terms rabbits of and lynx. »(Préface, McCann (2011))

et on ne doit pas utiliser les mathématques pour se cacher derrière un jargon dans la seul valeur serait d'être ésotérique et d'être attentif (May, 2004). Juste our développer

the virtue of mathematics in such a context is that it forces clarity and precision upon the conjecture, thus enabling meaningful comparison between the consequences of basics assumptions and the empirical facts. Here mathematics is seen in its quintesence: no more, but no less, than a way to think clealy."(p. 791, (May, 2004))

Nouvelles prédictions

La développement théorique des évidences c'est le triomphe de Higgs et de Einstein si les premiers developemnts sont correctes alors on devrait avoir pour corrolaire ça ca et ça. Ma démarche un peu différente mais aussi prédiction qui semnble marcher.

'The types of questions we pose and the types of observations we make bear witness to our preconceptions. There is no way to get rid of them. There is nothing wrong with this, but we should be aware of it. When we look around us we

actually see mirrors of our ideas. We can try to change ourselves on the basis of what we see, but we cannot do without the projections we impose on reality. Observations and statements span the full range from facts via interpretation to abstract ideas. The more abstract the idea, the more important the mirror effect.' Kojjman

Tentatove de modéliser toutes les espèces à l'échelles de la terre entière alors qu'on est capable de généres dynamiques chaotiques à partir d'une seule espèces. Attention je ne veux pas dire que les premières tentatives sont vaines et je ne méprends pas sur la dynamque chaotique, j'indique simplement que s'il y a des cas de population isolés où a dynaqieu ne peut être connu à sans une précision initiale sur les coniditon initiales on peut se demander comment cela peut être extrapoller. Mais la enocre il y qeulques chsoses d'intéressant conneitre abondance compotioon excate peucvent être connu à une èchelle de temps courte = métérolge alors peut-être qu'au échelle plus large des entité plus grande = climatologie de la biodiversité!

approhe modulaire => rupture de symétrie

J'explore quelques dualié propre à l'acte de modélisation que j'applique ultiment au champd e la biogéogroahie

Distributions d'espèces, les forces en présence

Biogéographie historique

La dominante du livre de Wallace est la dérivation et dès que le cadre concpetuel de l'écolution est sur bien tout semble faire grand sens. Le cadre majeur de l'interpreétation est le résulats de porcessus profone et long les même indices que Wegener pour faire le théorie des plaques : la ressemblance d'espèce très éloignées. L'études des îles à aussi de deéterminer quelles îles apparyienne écozone ()littéralement la région indienne et australienne) (Wallace, 1860) c'est ainsi que la ligne décozones que sont l'indomalais et l'australasien. Il s'agit en fait de la toile de fond du cardre dans lequel se passe 'hitroie avant de comprnr quel et quel queles sont les grands mouvment qui ont ét en présence depuis les miliers d'années qui ont vu la dérive des continents jusqu'aux compréhension de Wegener de la tectonique des plaques. Dans un article pau en 2011, Joachim Hortal et collègue ont démontrés que l'abondance d warm-adapted group for whom temperature is a well- known constrain

Biensur l'histoir ce décline à différentes échelle stemporelle et pour comprendre les discturbution on peut ademttre une certaine histoire commune sans pour autant dire que la compréhension fine va pkus loin que la représention de différents taxons radiation et c'est finalemnt ce qui strucvutr le pool d'espèces. Parlons de l'histoire à l'échelle depuis la dernière glaciation, elle laisse son empreinte et alors qu'il du dernier Maximum glacier qui a occuré il ya 21000 ans est rpofindément marqueé dans la diversité des bouzier (Hortal et al., 2011) limite actuelle avec le 0°C montre. Aisi il y avait un ensemble d'espèce de bouzier concentré réfugié qau sud et qui se sont dispoersé vers el nord et l'examen pylogénétique montre un groupe particulier qui clairemnt identifié par des reuves phylogénétique.

Capactés de dispersion et structure du payasage et échanges de gènes

La vie telle que nous la connaissons pérennise l'information accumulée au cours du temps via à un support moléculaire, l'ADN. Cette molécule peut 1- renfermer une plasticité phénotypique offrant aux espèces des possibilités pour faire face aux stress environnementaux et 2- subir des altérations, des mutations, dont le relative avantage apporté peut assurer une survie accrue. Les espèces sont donc elles-mêmes porteuses potentielles de réponses face aux changement actuels [?, ?]. La plasticité phénotypique permet une réaction rapide des espèces à des changements environnementaux soudains. Tingley et al. 2009 ont ainsi montré que sur 53 espèces d'oiseaux étudiés dans la Sierra Nevada, 48 ont colonisé de nouveaux sites où les conditions de température et de précipitations leur étaient plus favorables [?]. Les mutations sont quant à elles des évènements relativement rares qui interviennent potentiellement à chaque génération, leur fréquence est donc dépendante, en premier lieu du temps de génération mais aussi de la tolérance des systèmes de réplication du matériel génétique. Pour des espèces aux temps de génération court, les processus micro-évolutifs peuvent donc être déterminants. Ainsi, Balanyá et al. 2009 ont montré des changements notables dans le génotype de *Drosophila subobscura* en 24 années avec des génotypes de basses latitudes plus répandus en réponses au changements climatiques.

Il est capital de ne pas oublier les processus évolutifs dans un modèle de biogéographie afin d'envisager correctement la biodiversité de demain [?, ?]. La nature des processus à prendre en compte est dépendante de l'échelle de temps considérée. Ainsi, si l'on souhaite retracer l'histoire évolutive d'une région, les aspects adaptatifs relevant de la micro-évolution sont moins pertinents que les processus évolutifs de longue portée modifiant profondément les espèces. Il faut, à ce propos, rappeler que l'évolution peut conduire à un enrichissement du pool d'espèce d'une région donnée [?, ?]. Les mutations accumulées dans une population isolée géographiquement peuvent conduire à une incompatibilité reproductive avec les populations du pool dont elle est issue. Il y a alors spéciation, la biodiversité est augmentée. A court terme, les processus longs de spéciation peuvent être occultés mais prendre en compte les phénomènes d'adaptation et les processus d'évolution des espèces au temps de générations court est important. Il est aussi important de distinguer les réponses phénotypiques des réponses évolutives, les premières pouvant être plus rapide mais à porter moindre que les secondes plus lentes [?].

Il ne s'agit pas simplement du reflet des capacités individuelles de mouvement mais bien d'une propriété à l'échelle de l'espèces

De manière générale, l'espèce doit pouvoir répondre à l'ensemble de ses dépenses énergétiques pour survivre et éventuellement se reproduire [?]. La dernière condition n'est pas indispensable : la présence d'une espèce peut résulter d'une permanente colonisation [?]. Cet espace des variables environnementales dans lequel une survie d'une population est possible, nous l'appellerons niche écologique. Ce terme est l'objet de vif débat [?] que nous éviterons en rappelant la définition employé. Nous palerons ici de niche fondamentale pour désigner l'ensemble des variables *scenopoetiques* et niche réalisée lorsque la composante biotique intervient, même indirectement.

• L'engoument pour les îles est aussi une facilité dans le comprendre les ocntraintes et relié clairemnt les îles aux continent

- Metapopultion ont montré que différents porblème oour abirder (Leibold et al., 2004)
- Par essence stochatique
- diversité => crombie crombie 1946 diversité d'habitat and coexitence (article repis dan MacArthur). => faarine and tube + broken caripopse de blé
- expéreice de défoliation expérience reprise
- exemple des bonobs

Toujour dans ce sont finalement des

Structure fine

Environnement abiotique et distribution des espèces

Dans le chapitre 6 de son livre de 1972 *Geographical Ecology* MacArthur (1972) présente l'importance des contraintes climatiques à travers l'exemple de l'aire de répartition du cactus Saguaro (*Cereus giganteus* dans le livre mais aujourd'hui *Carnegiea gigantea*, http://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=506151). Ce résident du désert de Sonora est sensible au gel et ne peut resister à une exposition de quelques dizaines d'heures au gel. Cette contrainte physiologique explique bien les limites nord et est de sa répartition. Pour la limite sud (la limite à l'ouest étant l'océan pacifique), il semble que l'abondance des pluie hivernale ne lui soit pas favorable. Ces résulats semble confirmer ar des travaux récents qui prédise un changement et ajoutent que le l'augnetation du feu pourrait avoir des conséquences négatives sur cette expansion (Springer et al., 2015). Cette démarche de recherche active des limites climatiques recoupée aux limites phuysiologiques est la détermination de la niche fundamnetal. Cette approche a été poussé à son paroxysme dans l'article de Kearney et Porter sur le petit gecko australien nocturne *Heteronotia binoei* (Kearney and Porter, 2004). Ils ont montrés qu'en combinant des mesures physiologiques (dont le taux métaboliques au repos, le température cumulées nécessaire au bon développement des oeufs et des mesures de températures charactéristiques) avec des données climatiques, les rpobbailités d'observations et les obsevatuons corrélaient et que cela fondait la démarche prédictive de s'apuyer sur les scénarios de changement climatiques pour aller essayer de comprender les réaprtitions futures.

Cette approche s'apparentent à la recherche de facteurs limitants qui sont le reflets de contrinate physiologiques. On peut encore cité l'exemple fourni par Engelbrecht et al. (2007) qui ont montrés qu'au niveau du Panama la distribution local et régionale de 48 espèces d'arbres étaint bien expliqué par la sensibilité à la sécheresse, donc à une variation dans la disponibilité d'une ressource. Ces corrélations convaincantes fondent les modèles de distributions d'espéces (SDM enréférence au terme anglais utilisé souvent dans le reste de la thèse) qui cherche à faire correspondre les variables climatiques aux données de co-occurrence (Elith et al., 2006, Elith and Leathwick (2009)). Le succès récents de ces apporches a l'abondance des données climatiques comme cellles porposées librement par WorldClim (données disponible en ligne http://worldclim.org, Hijmans et al. (2005)) et la relative faciliter d'abtonr des données

de co-occurrence qui tentent à être égalment disponble en ligne comme le portail de données sur la biodiversité à l'échelle mondiale GBIF (Global Biodiversity Information Facility, http://www.gbif.org) malgré des biais lié à des efforts différents dans les différentes régions du globe (Beck et al., 2014). Le succès repose sur les besooin prédictif dans un contexte de changement climatique qui conduisent à un effort de recherche important dans le domaine [?, ?].

La niche fundamnetale est une contrainte de premier plan directemnt lié aux relation des un ancrage important de la biogéographie. La théorie doit non seulement permettre de comprendre mais aussi les articluations avec les autres composante de la biogéographie que je détaille ci-dessous. Importance théorique

Réseaux d'interactions : interdépendance des espèces

Dans le même chapitre 6 de *Geographical Ecology* MacArthur parle clairement de la contrainte biotique notamment du rôle que peu avoir la compétition pour comprendre la distribution des espèces. la prédation et la compétition ont été très vote envisagée Il reprend l'exemple donnée par Brown en 1971 de l'exclusion compétitive de deux espèces de de tamias, *Eutamias dorsalis* et *E. umbrinus*, dans les forêts d'altitude (au dess-su des déserts) de pins et de junipers (*pinyon-juniper woodland* woodland) du Sud outes des Etats-Unis. L'article de Brown montre bien comment une différence comportementale peu engendré une séparation des distirubution locales. Ainsi, l'aggressivité de *Eutamias dorsalis* lui est favorable dans les forêts clersemés où son compétiteur doit dépensé beacoup d'énergie pour se réfuugié dand un arbre de basse altidue alors que l'abondance des arbres le rend inefficace, le compétiteur plus facilemnent y échappe. Ainsi la segregation locale des deux espèces reflète bien une interaction biotique et donc l'information contenu dans la distrbution est aussi de nature très précise : competiton pour ressources et comprtanemnt.

Au-delà de la competition, l'écologie des réseaux actuelle nous montre à quel point il est difficile de concevoir les espèces comme indépendantes, elles sont reliés par des relations de très diverses natures. Les relations trophiques sont les plus évidentes, mais il existe aussi une myriade d'interaction non trophiques qui affectent aussi utlimement la démographie des espèces (voir Kéfi et al. (2012) pour une relexion autour et une classification de ces interactions) et il existe actuellemnt aucun argument solide justifiant la primauté d'un tyoe d'interaction sur les autres. Récemment, les interactions trophiques et non-trophiques ont été exhaustivement analysées pour 104 espèces des écosystèmes interdidaux rocheux de la partie centrale de la côte chilienne révélant ainsi que les interactions non-trophiques y étaient globalemnent plus abondantes et concentrées sur les bas niveau trophques (Kéfi et al., 2015). La compréhension fine des lines qui existent entre les êtres vivants est un ressort essentiel pour obtenir des théories puissantes sur la dynamique des populations à placer au coeur de la biogéograohie comme le mentionnait MacArthur et Wilson au dernier paragraphe de leur Théorie de la Biogeographi insulaire par ces mots :

«In short, biogrography appears to us ti hace develope to the extent taht it cam be reformulated in terms of the first pricnciples of population ecology and genetics. »

Le débat majeur autour de la relation entre la diversité et la stabilité des écosystèmes au regard de la structure des réseaux (May, 1973, Allesina and Tang (2012).) doivent être aussi regardé en terme de conséquence sur le changement

de réoartition des espèces. Le débat c'est construit autour d'argymemnt mathématqieu qui ont considérablement enrichit l'écologue (McCann, 2000) La représentation en réseau de ces interactions est un outil puissant pour synthétiser la complexité des écosystèmes (???, Pascual and Dunne (2006)). Avce une seule matrice Ils sont représentés par la matrice de communauté qui résume l'effet démographique des espèces par pair. Cette matrice renferme des informations précieuses telles que la connectance (mesure du nombre de liens constatés rapporté au nombre de liens possibles), la topologie des interactions entre espèces [?] et les effets indirects (Wootton, 1994, Montoya et al. (2009)).

Il y a cependant deux problémes majeurs - abndance des interactions - la distribution de mais ce signal disparait si l'on considère une avec un grain plus grossier (voir section échelle). et abondance des interactions ne sont peut être pass distincable

Retro action des processus évolutifs vers une synthèse Schoener (2011b)

Les processus évolutifs peuvent être favorisés par les changements environnementaux mais également par les interactions entre espèces [?]. Les étroites relations entre espèces peuvent favoriser ou contraindre les réponses évolutifs, qui elles-mêmes peuvent altérées ces interactions, il existe de fait des rétroactions permanentes entre évolution et écologie [?]. Yoshida et al. 2003 montrent que la réponse des algues vertes unicellulaires *Chlorella vulgaris* aux rotifères *Brachionus calyciflorus* conduit à un changement dans la fréquence et la phase des cycles de la dynamiques proie prédateur [?]. L'ensemble des trois éléments jusqu'ici évoqués (environnement abiotique, interaction, évolution) peuvent également être étroitement associé. Grant et Grant 2006 rapportent le cas de la compétition entre trois espèces de pinsons (dits de Darwin) sur l'ile de Daphne (Galapagos) qui engendre une modification de la taille de leurs becs. Cette évolution liée à la compétition est elle même reliée à l'environnement abiotique car, par l'abondance ou l'absence de précipitations, il détermine la disponibilité des ressources et donc l'intensité de la compétition [?]. A travers cet exemple, nous comprenons l'importance d'inclure l'ensemble des différents processus pour construire un modèle intégratif en biogéographie. Un tel modèle serait capable, par exemple, de renseigner les risques d'exclusion compétitive dans l'exemple décrit par Grant et Grant.

vers une systhèse Schoener (2011b) => interaction de ces processus.

Interactions des forces Synthèse des mécanismes et des enjeux autour d'un exemple récent

Exemple histroqies les Pinsons de darwin (cdf mon devis.) Les processus évolutifs peuvent être favorisés par les changements environnementaux mais également par les interactions entre espèces [?]. Les étroites relations entre espèces peuvent favoriser ou contraindre les réponses évolutifs, qui elles-mêmes peuvent altérées ces interactions, il existe de fait des rétroactions permanentes entre évolution et écologie [?]. Yoshida *et al.* 2003 montrent que la réponse des algues vertes unicellulaires *Chlorella vulgaris* aux rotifères *Brachionus calyciflorus* conduit à un changement dans la fréquence et la phase des cycles de la dynamiques proie prédateur [?]. L'ensemble des trois éléments jusqu'ici évoqués (environnement abiotique, interaction, évolution) peuvent également être étroitement associé. Grant et Grant 2006 rapportent le cas de la compétition entre trois espèces de pinsons (dits de Darwin) sur l'ile de Daphne (Galapagos)

qui engendre une modification de la taille de leurs becs. Cette évolution liée à la compétition est elle même reliée à l'environnement abiotique car, par l'abondance ou l'absence de précipitations, il détermine la disponibilité des ressources et donc l'intensité de la compétition [?]. A travers cet exemple, nous comprenons l'importance d'inclure l'ensemble des différents processus pour construire un modèle intégratif en biogéographie. Un tel modèle serait capable, par exemple, de renseigner les risques d'exclusion compétitive dans l'exemple décrit par Grant et Grant.

Avant de nouer tous ces mécanimses dont on bien comprendre je vais nouer leur interacton autour d'un exemple Je vais illustrer mon propos avec 2 (3?) récurrent exemple (mais d'autres aussi) le cas du Frelon asiqtieu (anglais : Yellow-legged horne, *Vespa velutina*). Importance pour impact dans sur les abaeilles domestiques mais très peu sur la faune locale et les oiseaux migrateurs dans le nord

L'introduction aux chapitres de ma thèse sera articulée autour de la question fondamnetal esuivant de variation de co-variation / difficultés d'apprécier la proportions relative des différents mécanismes / mécanismes de coexistence coexistence vs co-occurrence variabilité quelle espoir de généralisation Crombie repris dans Macarthur => coexistence Problème de coexistence => non reproductibilité des ranges / stochasticité des ranges Frelon asiatiques => degat sur la nouvelle faune local msiaune augmentation ++ du nombre de liens... reconfigurations des réseaux locaux. => ou est le cuyrseur dans l'hstoire (evolution) ou la geographie (l'ecologie) A quel point est-il pertinent d'évaluer le range d'une espèce sur juste une île. Un problème d'identification. classique experience de perte de la biodiv => et hope une histoire différenteds

Ce sont ce que sont appelées le modèle de distribution qui furent un temps appelé enveloppe climatque En guise de réponse, les SDM deviennent plus intégrateurs et de nouvelles approches émergent [?]. Ainsi, Guisan et Rahbek 2011 proposent une démarche alliant les prédictions faîtes par les MDE sur un ensemble d'espèces et celles données par une approche de modélisation macroécologiques s'appuyant sur des règles de coexistence dans une unité géographique donnée [?].

Difficulté de lier l'ensemble des facteurs en poésence.

La questions derière est quels seront les écosystèmes de demain et on a bsoin d'un cadre théorique puissant pour y arriver.

Cadre théorique de la thèse

Les développemnents que j'ai entrepris durant ma thèse sont des tentative pour ancréer les interactions entre les epsèces au coeur de la théorie de MacAArthur et Wilson je vais reprendre ici quelques grandes idées théorique en Biogéogaphie autour et des developpments récents. Ma thèse s'inscrit dans la poursuite de ces questions sur la distribution des ranges et j'artiuclerai la suirte de mon introduction autour de l'interrogagtion suivante : Quelles infornations renferment les distributions d'espèces. Pour apporter le maximum d'élément de réponse à cette question, je commencerai apr apporter les mécanismes en présence au travers de différérents ecemple avant de passer plus de temps sur la cadre conceptuel

en Biogéograohie pour aboutir sur l'importance des interactions sur les distribution d'espèces. Dans cette section je dévelope le

Le coeur de la théorie des îles, une vision puissante de la génèse des distributions d'espèces

pas tellemnt de math surtout des idées et surtout le point je décrit pour arriber à l'équation cetrale et montre comment chauqe élément est apporté par la théorie.

La théorie proposée par MacArthur et Wilson est à la fois simple mais particulièremnet puissante. Considérons un large territoir, un continent et une île. Sur le continent, se trouve un ensemble d'espèces qui peuvent coloniser l'île en question. Une fois sur l'île, une espèce peut aussi s'éteindre. Plus le nombre d'espèce sur l'île est grand plus le nombre d'extinction est élevée. Les deux processus se contrebalaçant menant à un équilibre synmaique qui contraint le nombre d'espèce. Ce sont les caractértistques de l'île qui en dicte la richesse de l'île (voir figure).

Il y a une forme de hasard et de nécéssité qui fait echo à l'ouvre de Monod. Alors que ce dernier évoque les mutations comme source de hasard ici l'évènemnent de colonisation peut être interprété comme une évènemnet puremnet stochaistique dans le sens la prédiction qu'on peut en faire est sur la fréquence mais récurent et donc sur lequel on avoir une infornation sur dsa répétition. La nécessité est alors l'insertion éclogique réussi ou non le maintinet de la popultaion locale dans les contraintes écologiques donnée. Les extinctions locales sont donc le résultat de la nécessité.

Le balamncement des forces conduit à un équilibre, il y a donc quelques choses de prédictifs cette idée et forte et qu cet équilibre est finalemnt indépendant de la nature des espèces. En fait c'est une idée forte. IL y a une forme d'équivalence écologique des espèces qui ne nient pas que les espèces sont différentes mais qui prend l'échelle à lauqelle elle suffit pour expliquer ça distriubution une entité qui colonise et s'insère dans des résauex locale. En fait le besoin de plus de caractétristique intervient pour une connaissance plus fine du stystème qui en contre partie empêche une généralisation.

« Yet, in the context of their model, species could be treated as "gray boxes" (sensu H. T. Odum, personal communication to MVL, 1977); we know that they are different, but those differences presumably are not essential to explaining patterns in species richness under a hypothesis of dynamic equilibrium. »

Le lien avec l'aire area and number $S=CA^z$ ($z\in[0.2,0.35]$) mais des exeptions C taxon dependance similarité avec les relations allometriques sample nom isolé même relation mais z différent ui a eu des conséquence sur la vision de la conservation avec le calcul de la taille des zones de répartition. Mettre les espèces en gris pour es rassembler et savoir ou les particluarisé dans l'explication fine... On rassemble mais on peut partcularis.

Le travail remarquable de MacArthur et Wilson [?] est l'un des cadres les plus robustes de la biogéographie actuelle. Plus de 40 ans après la parution de leur livre, la Théorie de la Biogéographie des Iles (abrégée dans la suite TBI) est encore une entrée bien adaptée en biogéographie et le point de départ de nombreux travaux [?, ?, ?]. L'idée majeure de la TBI est simple et puissante : étant donné une île colonisable par un ensemble d'espèces depuis un continent voisin, la diversité locale résulte de la balance entre 1- la colonisation depuis le continent et 2- les extinctions locales.

La TBI est une métaphore, le cas simple d'un territoire isolé (l'île) où les flux d'individus depuis le pool d'espèce régional (le continent) sont facilement représentables. Le modèle peut être étendu à de nombreux cas où un territoire isolé est colonisé par les organismes à proximité, par exemple après un incendie ou une fragmentation de l'habitat [?]. Plus généralement, on peut adapter un tel modèle à un territoire quelconque avec l'hypothèse que le pool régional d'espèces est indépendant des conditions locales (aucune rétroaction de la communauté locale sur le pool régional). Ainsi, ce modèle a déjà été utilisé avec succès par Gravel *et al.* 2011 pour l'élaboration de leur théorie trophique de la biogéographie des îles [?].

La force de ce modèle théorique réside dans son élégance : avec très peu de processus invoqués, la TBI donne un cadre cohérent, biologiquement fondé pour comprendre la répartition locale de la biodiversité à la lumière de la richesse spécifique régionale. Au travers d'une équation simple (1), la TBI mêle ainsi subtilement les processus régionaux et locaux. Ainsi, la diversité locale S, s'enrichit par colonisation, c, depuis un pool continental d'espèce P et s'appauvrit par extinctions locale e.

$$\frac{dS}{dt} = c(P - S) - eS \tag{1}$$

Un telle vision imbriquant deux échelles de processus est aujourd'hui bien partagée. Il est en effet reconnu que la composition d'une communauté à l'échelle locale (S) est influencée par des facteurs biotiques et abiotiques (dont les conséquences sont capturées par e), mais également par les processus régionaux tels que l'histoire évolutive des espèces (qui façonne P) et la dispersion des individus (c) [?, ?].

La TIB tient également sa notoriété des nombreuses prédictions supportées par les faits [?]. En reliant la géographie physique des îles aux processus de colonisation et d'extinction, les auteurs démontrent la puissance de leur vision. Pour cela, ils admettent que le taux de colonisation des espèces dépend de la distance entre l'île et le continent. De plus, en considérant que la taille de l'île conditionne les ressources et donc l'extinction. Ils parviennent alors à prédire, pour un groupe d'espèces donné, une relation pertinente entre taille de l'île, distance de l'île et richesse spécifique [?]. Pour une île dont la superficie et la distance au continent sont connues, au cours du temps, le nombre d'espèces sur l'île accroît, de fait le nombre de nouvelles espèces potentielles diminuent (P étant constant), la colonisation diminue donc. De même, la richesse de l'île étant accrue, le risque d'extinction est plus élevé. Les forces d'extinction et de colonisation s'annulent alors pour un nombre d'espèce précis : la richesse spécifique à l'équilibre (figure ??). L'idée que la biodiversité atteint un équilibre à relier à la taille du territoire considéré a également été massivement utilisée en biologie de la conservation. En augmentant progressivement la taille de l'île, on obtient effectivement une relation entre aire et diversité [?, ?]. Cette relation a été appliquée pour estimer la richesse spécifique de divers territoires [?], déterminer ainsi des aires de protection [?, ?] et estimer des taux d'extinction [?].

Validation de la théorie

L'empreinte historique de la Théorie de la Biogéographie des Iles de MacArthur et Wilson

Dans leur livre *The Theory of Island Biogeography*, MacArthur et Wilson indique dans leur préface qu'il ne pensait pas que leur résisterait longtemps surtout quand elle serait testé empiriquement :

We do not seriously believe that that the particular formulations advanced in in the chapters to follow will fit for very long the exacting results of future empirical investigation. (péface de l'édition de 1967)

Et pourtant fort près de 50 ans après la parution de leur ouvrage, la vision distilé est toujours aussi vive en témoigne le livre paru en 2010 *The Theory of Island Biogeography Revisited* (Losos and Ricklefs, 2010) et la reve par Warren et collègue (Warren et al., 2015) qui montre bien que les île ont servie de moèdeles et que la vision est un point les travaux sont capitale.

Le terme des îles est centraled mais il s'agit bien d'une théorie de la biogéogroahie. reflète aussi l'importance des îles dans l'édification d'une théorie isolation lux de migraotion simple / assemblage moins nombreux / conséquence d'une manipultion limité à l'île / 5% mais répétable ? / un oacth isolé et peut être que flux au île (Simberloff, 1974) Pourquoi les îles en fait isolé flux et gros contraste mailand - island alors qu'elles sontproches.. Les îles qui occupent le coeur de l'ouvrage de Wallace et de MAcArthur et Wilson ont été essentiel poour comprendre les processus qui forme la sitributn des espèces. Elle sosn tproches du continent et peuvent être si différenetes la nature eotique des piles à forcer les auteurs à comprendre l'origine de leur singularit.é et ces sur ces bout de terre isolé qu'ils ont trouv.s des réposnes historques ais ausso spataile qui a parmis d'aller vers des dévelppemnt encore aujourd'hui très actis. La quête de cees honmes et de bien d'autres reste finalemnt de comprendre pourquoi les espèces sont ou elles sont et de comproendre ce qui les amanerner la. Meilleur explication pour des arrangemnets spatiaux singuliers sont des processus temporels. Faire émerger des règles mon apport amener des interactions.

Preston 1962 a lié species abundance et => impact enorme sur la conservation et encore aujourd'hui bien que simplifié les calculs permettent de comprendredsimplementr dans quelles directions nous allons [article NewYork Times] Malgré la 50 ans de depuis la publication du Livre et premier articles a lasuorise de auiteure eux meme => publications récentes qui repartent de la théorie des îles ; l'ecolet Warren et gravel and all

Dans la réédition de 2001 [] Wilson rappelle que le problème :

"The flaws of the book lie in its oversimplification and incompleteness, which are endemic to most efforts at theory and synthesis."

Diminuer la composante historque à la recherche de loi et j'ajouterais aussi simple soit elle raffiner par la suite

Figure 1: La Théorie de la biogéographie des Îles. L'évolution des taux de colonisation et d'extinction est présentée pour deux îles aux caractéristiques différentes. Les tailles relatives des îles et les distances qui les séparent du continent sont schématisées à droite du graphique, les couleurs associent les îles à leurs courbes respectives. Le pool d'espèce régional (P) est constitué de 100 espèces, les taux de colonisation et d'extinction sont exprimés en terme de probabilité d'évènement. Les points où colonisation et extinction s'équilibrent sont marqué par les symboles en gris.

La théorie des métapopulations

=> chapitre de Hanski

La théorie neutre de l'écologie et le débat qu'elle soulève

Ecological equivalence des individus OK mais peut-être que l'abondance des interactions expliques aussi

=> chapitre dans revisited

Problème si explication alternatives possibles alors on n'est pas obligé de mettre pour expliquer quoi que ce soit. De plus savons nous si c'est discernable ??? Si le deux relation aire espèce sont différentes d'un groupe à l'autre alors oui... Mais sinon... Non.

Oppositon à la niche.

(Chapitre 8 TIB first paragraph)

Le concept récent de biodiversité. However ecological equivalence in "the niche is a mapping of population dynamics onto this space" (???) vers le fonctionnemt des ecosystèmes levier d'action vers une approche plus utilitariste mais qui donne uns certaine proximité avec les eécosytèmes Loreau et al. (2001)

Aller plus loin, Enjeux théoriques

L'effort théorique nécessaire en biogéographie porte sur l'intégration ordonnée de concepts clés issus de différents champs de l'écologie [?]. Ainsi, alors que les conditions climatiques et plus généralement la géographie physique sont classiquement évoquées pour expliquer la répartition des espèces [?], les interactions entre espèces sont quant à elles souvent occultées. De même, bien que les processus évolutifs soient souvent évoqués comme déterminants majeurs de la diversité des espèces [?], leurs effets à court terme sont souvent ignorés [?] dans les scénarios décrivant la biodiversité de demain [?]. La difficulté principale est alors de produire des modèles (théoriques en première instance) qui intègrent l'ensemble des processus et les relations qu'ils entretient [?] tout en gardant une relative simplicité. Une théorie intégrative en biogéographie pourrait être le meilleur point d'ancrage pour construire de nouvelles approches appliquées. Avec une telle théorie en main, nous pourrions aller vers l'enjeux majeurs de ces dernières années en biogéographie : relâcher les hypothèses que les modèles classiques de répartitions des espèces d'aujourd'hui utilisent (notamment en occultant les interactions) pour prédire la biodiversité de demain [?].

Dans le projet ici présenté, nous proposons de construire des modèles théoriques plus intégratifs en repartant d'un modèle théorique classique, celui de la théorie de la biogéographie des îles proposée par MacArthur et Wilson [?]. Dans un premier temps, nous y ajoutons les interactions entre espèces et une relation explicite avec l'environnement abiotique au travers d'une approche communauté centrée qui étend le modèle classique. Dans un second temps, nous combinons une approche population centrée et les processus évolutifs pour une biogéographie insulaire plus mécaniste.

Enfin, au regard des enjeux que soulève le rôle des interactions entre espèces dans la construction de la biodiversité, nous réfléchissons sur l'inférence d'espèces interdépendantes.

différentes théories pour différentes échelles ??

De part son pouvoir explicatif et son élégance, le modèle de MacArthur et Wilson est un point de départ approprié pour construire des modèles plus intégratifs en intégrant explicitement des processus écologiques et évolutifs. Cette idée n'est pas nouvelle et les auteurs de la TIB ont étudié un certain nombre de processus écologiques. Notamment, ils ont intégré les phénomènes de spéciation [?] et réfléchis sur l'importance des interactions quant à la répartition des espèces [?]. Néanmoins, dans le modèle classique, l'ensemble de ces aspects sont absents, l'idée que les processus écologiques importent peu aux larges échelles domine. Nous allons, dans ce projet, à l'encontre de cette idée et proposons de construire des modèles intégratifs qui étendent la TIB.

isolation / faune particulière des îles

Le rôle des interactions dans la distributiondes espèces

L'objet central de ma thèse est l'introduction de ma thèse est d'essayer de regrader la théorie de la biogéographie et notamment quelles onfornatiosn 'écologie des réseayx peurt ameenr de la lumière sur la théorie. Dans cette dernière partie de mon introduction, je présente avec pkus de délément l'importance de l'intriduction des onteractions dans une théorie de la biogéographi. Cela me permettra d'introduire nes contributions qui seront détaillées dans ma thèse.

However, it is argued that applying bio-climatic models at macro-scales, where climatic influences on species distributions are shown to be dominant, can minimize the impact of biotic interactions. Indeed, the fact that a number of bioclimatic models have been highly successful at simulating current species distributions at certain scales is in fundamental disagreement with the proposition that species distributions cannot be adequately defined by climatic factors alone. (Pearson and Dawson, 2003)

We will never be able to predict the future with accuracy, but we need a strategy for using existing knowledge and bioclimatic modeling to improve understanding of the likely effects of future climate on biodiversity. (Araujo and Rahbek, 2006).

Interaction et biogeographie

Accent sur les cascading effect est surtout un problème de l'instabiilté (???) Il ya aussi l'article perturbant de Säterberg et al. (2013) qui montre que le fait qu'une espèce soit (ex. pêche) peut conduirte à des extinctions d'autres espèces lié dans le réseau... Ces deux exemple montrent que les interactions peuvent mener à des problèmes de prédicitons et donc porblèmes sur prévoir les services ecosystémiques et c'est appuyer par Cahill et al. (2013) qui nous indique en somme

que le changemnr des interactiosn bioiqtess ets la voie privilégié d'extintionciton dans un contexte de chanegnmtn climatique

On nous fait miroiter que finalement que l'érosion de la biodiversité est dramatiques et le ressort actuel pour faire un levier face à cela c'est les services ecosystémiques qui sont actuelelemet l'argument choc pour renforcer la production de la nature. Il y a un côté pervers qui est la financiarisation et la substituabilité l'argent oeut alors être utilisée pour intervertir ou alors remplacer un type d'écisystème par un autre ailleurs... En fait on a l'impressonq ue c'est pus un principe de précaution qui erst invoquer et ultimement il est vraisemblable que la destruction de la nature tel que nous la connaissons soit dans le future un générateur de conflit.... et uttiment on a a craindre de faire un panete invivable pour nous mêm.

Mais les changement sont des remplacemnt et pour la conservation on peut se demander les startégie. Dans son arctile 'Don't juge a species on their origin' Mark Davis prend à revers un sertain nombre d'idée recu et souligne que les effects des invedeurs peuvent être positives Davis et al. (2011).

Les ramges comme un fait (wallace chap 2) des espèces avec des larges avec des grandes ranges Loddigésie admirable (*Loddigesia mirabilis*) seul collibris de son genre vs Lièvre variable (*Lepus timidus*) nomnbre d'espèce dans un genre vaire beaucoup => un autre indice de solution pas fructifiées... Pithacia Monathus vs Pithecia pythecia separé par une rivière Geographical Ecology => patterns in the distribution of species 2 espèces proches des ranges très séparéed => species Bonobo et cChimpanzés

L'évolution = le hasard et la nécessité est un moteur de la répartiton mais aussi la composante historiqe de la biologie. Cette dimension fascinante implique aussi nous focalisé sur des explications singulière souvent pas évident qui permettent de conformer le type de facteurs impliqué dans la variation des ranges mais nous amène pas encore à trouver des règles précices.

Wallace conclut :28 qu'une théorie générale doit tenir compte des variation range et proximité des espèces porches et des overlapp.

Both competition and predation appear now to be much more important in biogeography than peopl had formely guesses

chap 2 geographical ecology

il prend comme exemple la compétition entre oiseau et un manque de ressource pour une année partiuculièremnet sévère et que 19 and pas assez pour voir et il conclut que

This is the main reason most evidence for competition is from biogepgraphers.

Distributiin des fauvettes Crateroscelis robusta et C.runa

Mais le porblème étant que le signal n'est visible que si on a des données sur 20 and.

Le problème

Parallèle entre information des traits sur le régime allimentaire et l'information dans les ranegs est-ce cela qui conduit les ecologistes à être des statisticuencs. et l'info dans l'ADN

la question a été pourquoi il y a autant d'espèces mais je pense qu'un equestion légèremnet différentes n'a pas été assez invextie : pourquoi peuvent-elles être si nombreuse.... La limite est toujours OK si assez pour 2 ou plus.

Interactions écologique et TIB

(:154) "Does the environment dictate the structure of the community, or are the species a fairly random assemblage?

A few decades ago it as fashionable for ecologist to study communities in the arctic on the grounds that these would be very simple communities and hence easy to understand. Many excellent ecologists still follow this belied, but there are others who feel that it may be easier to understand the extremely complex communities. This sounds paradoxical: How can a more complex communities by easier to understand? A possible answer might be that complex community has has strong interactions among species so that the lives of the separate species are less independent than in a simple community. Where there is greater interdependence, patterns may be more conspicuous."

Oubli de ce facteur important de

Ls SMDS...

Les interactions intra et inter spécifiques constituent un facteur rapidement pressenti comme responsable de la distribution spatiale des espèces [?]. L'interdépendance des espèces conditionne, en effet, l'aspect favorable de l'environnement au sens large (biotique et abiotique). Ainsi Godsoe *et al.* 2012, mettent en équations le caractère favorable de l'environnement pour une espèce donnée en terme de probabilité de présence d'une autre espèce et de la nature de leur interaction [?]. De même, Holt et Barfield 2009 montrent l'impact de la prédation sur la répartition d'espèces en compétition [?] insistant ainsi sur le rôle majeur des interactions. Davis *et al.* 1998 ont montrés que, pour trois drosophiles en compétition, l'effet d'un parasitoïde n'est pas le même le long d'un gradient selon que les espèces sont seules ou ensemble [?]. Récemment, des efforts ont été réalisés pour mettre en évidence l'importance de l'interdépendance des espèces dans les données aux larges échelles spatiales [?]. On trouve actuellement dans la littérature une grande motivation pour les intégrer dans les modèles de distribution d'espèces [?, ?]. Des efforts théoriques sont encore nécessaires pour arriver à de telles approches. Néanmoins, rapprocher différents champs de l'écologie peut s'avérer d'une utilité majeure. Jabot et Bascompte [?] 2012, ont d'ailleurs montré l'importance des interactions pour comprendre la distribution des espèces en rapprochant écologie des réseaux et un modèle de metacommunauté. De même Gravel *et al.* 2011 [?] introduise l'interdépendance proie-prédateur dans le modèle classique de MacArthur et Wilson menant aux prémices d'une théorie trophique de la biogéographie des îles.

L'ajout des interactions dans un modèle incluant l'environnement abiotique interroge la relation que les deux processus entretiennent. Si les espèces n'ont pas les mêmes performances dans différents milieux du fait de leur physiologie, pour les mêmes espèces considérées, les réseaux n'ont pas de raison d'être identiques d'un milieu à un autre. C'est sur ce fait que Poisot *et al.* 2012 ont proposé une mesure de dissimilarité des réseaux [?]. Defossez *et al.* montrent que les interactions négatives entre l'hêtre commun (*Fagus Sylvaitca*) et les micro-organismes du sol diminuent avec l'altitude [?]. Ainsi, les contraintes biotiques sont à relier à l'environnement [?, ?] et un modèle intégratif doit donner un cadre cohérent à ces rétroactions entre processus. Enfin, l'importance des interactions est à mettre en relation avec l'échelle considérée [?]. Pour deux espèces en interaction, plus l'échelle d'étude est large, moins les effets des interactions locales sont susceptibles d'être capturés, le pouvoir explicatif de la présence d'une espèce sur l'autre peut être alors discutable [?]. Comprendre quels sont les processus à prendre en compte aux différentes échelles spatio-temporelles et comprendre comment le changement d'échelle affecte nous prédictions est aussi un véritable challenge en biogéographie [?].

Intégrations des contraintes biotiques et de la théorie à la recherche de signaux de d'intéraction

Dans ma thèse j'ai oassé du temps à essayer de mettre au point un modèke qui donnait de la substace aux idées de MacArthur et Wilson een etandant le travai initié par Gravel et collègues pour aller plus loin dans la compréhension des effets joints des interactions et des contraintes abiotiques. C'est aussi ce qui m'a animé pour en mettre en place la compréhesin dans les données de co-occurrence avant d'aller m'y confronter frongalemnet. Ma dernière intergtaion a Été de trouver des pistes pour allerr plus loin dans la théorie et explorer des pistes que je n'avais pas encore dxplorer mais qui seront à court terme les directions que je souhaite explorer.

Étendre la théorie de MacArthur et Wilson

Comprendre les conséquence en terme de co-occurrece

Abondance des données

Les atouts actuels de la biogéographie sont 1- une quantité importante d'information relative aux présences d'espèces et au climat et 2- des modèles corrélatifs puissants qui décrivent précisément le lien entre l'espèce et son environnement abiotique. Le terme abiotique peut prêter à confusion dans la mesure où les espèces elles-mêmes peuvent modifier des variables dîtes abiotiques. Par exemple, les végétaux peuvent avoir un grand impact sur les variables abiotiques locales comme la température et l'humidité du sol [?]. Certains auteurs font une distinction précise en utilisant les termes de scenopoetiques pour les variables environnementales sur lesquels les espèces ne peuvent influer et de dynamiquement liées pour les autres [?]. Nous occulterons volontairement ces-dernières, l'environnement abiotique dont il est ici

question n'est donc pas dynamiquement lié aux espèces.

Potential interactions

Vespa aussi au Amérqieu la densit. des traffic...

Multi couche de distrobution dans le cas du frelon asiatique Villemant et al. (???) ont montrés que superposition du genre *Vespa* et notamment au niveau asiatique énormément aisin l'inférence se fait sur des données qui comporte une empreinte de condition et localemnt éteinte alors que possiblement comtraite qui ne seront pas en France...

Décrire l'organisation spatiale des êtres vivants et en comprendre les mécanismes sous-jacents, tels sont les objectifs ambitieux de la biogéographie [?]. Cette discipline a récemment percolée au sein de la société civile via le concept de biodiversité. Le regard des citoyens se posent attentivement sur le devenir de la biodiversité dans le contexte actuel des changements globaux. La biogéographie, par son essence, peut apporter des réponses à ce questionnement ambiant [?]. Cependant, pour y parvenir, des défis techniques et théoriques majeurs restent à surmonter [?].

Chercher des signaux de co-occurrence

gecko australien généraliste Heteronotia binoei => alors peut être que ça marche bien mais sur une espèce spécialiste ??

Information dans les distributions

Dépasser les questionnemnet sur les espèces

Aller de l'avant

DEB

Espoir sur la

Le travail de Gotelli *et al.* est également un exemple de démarche intégrative où un nombre important de processus peuvent être inclus via un système de combinaison de scénarios et tester par simulations stochastiques [?]. Enfin, en construisant des réseaux basés sur la cooccurrence des espèces, Araújo *et al.* revisitent le problème de l'interdépendance des espèces [?] : ils s'interrogent sur la résistance des réseaux de cooccurrence obtenus face aux futurs changement climatiques, ils mettent ainsi en évidence des risques accrus de perte des espèces les moins connectés (celles qui cooccurrent moins). Ces travaux témoignent de la volonté d'une biogéographie intégrative.

22

C'est impressionnant de voir comment un auteur en repartant de simple considération telle que la taile le volume peut arriver à construire une théorie à la fois simple, fondée et predictive. mettant de la cohérence dansune accumulation de fait.

=> problème SDMS quand inférencefait sur les données d'espèces la force c'est d'avoir des mesures ++ et indépendante quelquee part c'est vrai mais la source d'inforation est très brouillé et on peut se demander se que l'on peut obtenir comme infornation....

Traits fonctionnels

Les traits fonctionnels sont des propriétés mesurables sur les organismes en relation avec leurs performances et leur rôle dans l'écosystème [?]. Les traits étudiés peuvent être de différentes natures, 1-morphologiques : taille de différentes parties du corps, position des yeux, taille des oeufs chez les organismes ovipares, taille des graines pour les végétaux, 2- physiologiques : taux métaboliques de bases, stœchiométrie (rapport de la concentration entre divers éléments qui compose l'organismes) [?, ?, ?]. Un ensemble approprié de ces propriétés peut être un outil puissant pour décrire un ensemble d'espèce dans un même espace. Leur proximité dans l'espace des traits est alors un indice précieux d'une proximité fonctionnelle. Ainsi, à l'aide de 13 traits ecomorphlogiques, Albouy et al. 2011 parviennent à prédire les guildes trophiques de 35 espèces de poissons de la Méditerranée [?]. Edwards et al. 2013 montrent que l'effet saisonnier sur une communauté de phytoplancton dans la Manche peut être capturé à l'aide de traits décrivant : le taux maximal de croissance, la compétitivité pour la lumière et l'azote [?]. La distribution des traits fonctionnels au sein de la biodiversité est aussi une entrée de choix pour réfléchir quand à la fragilité potentielle des fonctions remplies par les écosystèmes [?]. %DG: je comprends cette citation de Mouillot, mais juste une mise en garde contre ce type de référence. Mouillot se base sur l'hypothèse que les traits nous informent du fonctionnement, sans jamais documenter cette relation. Ce qui est souvent le cas, et par conséquent contribue à bâtir des mythes dans la littérature qui à l'occasion ne sont pas toujours bien appuyés. L'approche par traits est un bel exemple, on a édifié rapidement une structure conceptuelle sur les traits, mais on n'a pas solidement appuyé le concept sur de bonnes bases empiriques.

L'approche de la biodiversité par les traits fonctionnels est plus quantitative que l'approche taxonomique et permet de déduire un grand nombre de propriétés en se passant de la connaissance de leur identité. Ainsi McGill, dans son article d'opinion de 2006, propose une approche nouvelle de l'écologie des communautés qui transforme les questions centrées autour des espèces par des questions qui interrogent la répartition et la variabilité des traits [?]. L'emploi des traits fonctionnels est en fait un appel à une écologie plus mécaniste, qui se penche sur la physiologie des organismes, en prend les faits les plus importants (relativement au problème traité) pour les placer dans un espace de traits commun. Cette approche est aussi en lien avec la controversée théorie métabolique en écologie [?, ?]. Dans cette théorie un certain nombre de grandeurs (comme le taux métabolique) sont reliées à la biomasse corporelles de l'adulte, fournissant ainsi en un seul trait de nombreuses relations pour des groupes d'organismes très différents. Par ces nouvelles approches, l'espérance de s'extraire de la seule identité des espèces est accrue, l'idée d'avoir des règles générales se concrétise.

Dans une théorie intégrative de la biogéographie, les traits fonctionnels peuvent être un pivot très intéressant pour rassembler les différents concepts que nous avons développés dans les paragraphes précédents. Les traits peuvent tout d'abord être mis en relation avec le milieu abiotique. Le taux métabolique ou encore la sensibilité à la sécheresse sont des indices performant pour décrire la survie dans un milieu donné [?, ?] que l'on peut capturer sous forme de traits. Kearney *et al.* 2010 propose une approche prometteuse dans laquelle, l'environnement physique, la disponibilité des ressources et la dynamique énergétique sont reliées par les traits fonctionnelles le tout aboutissant à un modèle de distribution très mécanistes. La structure d'un réseaux peut également être dérivée à partir de l'espace des traits. Dans leur méthode proposée cette année, Gravel *et al.* infèrent les paramètres du modèle de niche de Williams et Martinez [?] à partir des relations de masse du corps entre proie et prédateurs [?]. Ils sont alors en mesure de dériver un réseau global pour un ensemble d'espèce donné. Enfin, en tant qu'expression phénotypique, les traits fonctionnels sont soumis aux processus évolutifs. Sur les temps longs, l'expression de l'évolution résulte en la modification progressive des traits qui se répercute sur l'ensemble des propriétés qui en découle. Ainsi la considération d'une modification des traits est une approche simple et réaliste pour introduire les processus évolutifs et leurs conséquences [?, ?].

La niche c'est quoi on en a deux definition ultr classique mais elles sont très porblématiques. Il y a des tentatives de synthèse mais le problèmes est toujours là.

Partir du development de la niche et des hypotheses clef comme l'heterogeneité spatiale qui peut accroitre la biodiversité un exemple c'est les ecoulemnents à petites faible echelles de l'hydrologie niche hdrologique à fable échelles Letten et al. (2015) repartition hydrologique les hypothèses sont que qui explique celon les différentes besoin des espèces (principes de la niche) que besoin différentes me répartition des espèces. Cette idées est

A large espes répartition de la biodiversité on quantifie la différence depuis les mesures classiques Simpson, alpha gamma beta qui sont étendues au réseau Poisot et al. (2012). Mais quand on chnage d'echelle on arrive rarement à quelques choses de concluant pour l'integration des interactions. Pourtant il ya des exemples convaicant comme celui de Gitelli.

Les interactions c'est quoi ce qu'on en fait. Les interactions quelles pourrait être leur conséquence à large échelle ?

Mais au-dela de cela il yt a un besoin de règles. L,écoligies cherche ces règles et essayes de faire le max sans trip de succès. Les traits sont un gran despoir. On a besoinde rule on reste descriptive il y a des relation EH-Bioversité, SAR, Diversité-équilibre diversité fonctionnenemnt qui sont partielelemnt reliées et des théries débat theories neutre theéor de la niche Stein et al. (2014). Dans cette review Stein et al. (2014) montre que vegettaion est inportnates ce qui eimplique des inbteractions. Théorie allométrique prometteuse en ce sens qu'elle loi physiques. Différents concept autrour d'une même notion sur plusieurs paradigme pour une même notion sur les metacommunity Leibold et al. (2004) il peuvent co-exister mais faudrait les savoir ce qui fait qu'on a pus l'un ou l'autr.

La puissance de la Biogéographie est aussi sont implications dans des cas très concrets Cirtwill and Stouffer (2015) mais aussi ne puissance exploratoire théoriques Gravel et al. (2011) Cazelles et al. (2015) des îles l'idée des interactions à déjà montré ça pertinence sur plusieurs exemples. Cirtwill and Stouffer (2015)

La bonne unité d'analyse ? D'où parti r?

Generalist consumers should typically be weakly coupled to any one of their prey populations because, when feeding on many different species, they cannot be strongly coupled to any one of them Murdoch et al. (2002)

Allesina, S., Tang, S., 2012. Stability criteria for complex ecosystems. Nature 483, 205-208. doi:10.1038/nature10832

Araujo, M.B., Rahbek, C., 2006. How Does Climate Change Affect Biodiversity? Science 313, 1396–1397. doi:10.1126/science.1131758

Beck, J., Ballesteros-Mejia, L., Buchmann, C.M., Dengler, J., Fritz, S.A., Gruber, B., Hof, C., Jansen, F., Knapp, S., Kreft, H., Schneider, A.-K., Winter, M., Dormann, C.F., 2012. What's on the horizon for macroecology? Ecography 35, 001–011. doi:10.1111/j.1600-0587.2012.07364.x

Beck, J., Böller, M., Erhardt, A., Schwanghart, W., 2014. Spatial bias in the GBIF database and its effect on modeling species' geographic distributions. Ecological Informatics 19, 10–15. doi:10.1016/j.ecoinf.2013.11.002

Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., Courchamp, F., 2012. Impacts of climate change on the future of biodiversity. Ecology letters 15, 365–377. doi:10.1111/j.1461-0248.2011.01736.x

Cahill, A.E., Aiello-Lammens, M.E., Fisher-Reid, M.C., Hua, X., Karanewsky, C.J., Ryu, H.Y., Sbeglia, G.C., Spagnolo, F., Waldron, J.B., Warsi, O., Wiens, J.J., 2013. How does climate change cause extinction? Proceedings. Biological sciences / The Royal Society 280, 20121890. doi:10.1098/rspb.2012.1890

Cazelles, K., Mouquet, N., Mouillot, D., Gravel, D., 2015. On the integration of biotic interaction and environmental constraints at the biogeographical scale. Ecography n/a–n/a. doi:10.1111/ecog.01714

Cirtwill, A.R., Stouffer, D.B., 2015. Knowledge of predator-prey interactions improves predictions of immigration and extinction in island biogeography. Global Ecology and Biogeography n/a–n/a. doi:10.1111/geb.12332

Connor, E.F., Simberloff, D., 1979. The Assembly of Species Communities: Chance or Competition? Ecology 60, 1132. doi:10.2307/1936961

Davis, M. a, Chew, M.K., Hobbs, R.J., Lugo, A.E., Ewel, J.J., Vermeij, G.J., Brown, J.H., Rosenzweig, M.L., Gardener, M.R., Carroll, S.P., Thompson, K., Pickett, S.T. a, Stromberg, J.C., Del Tredici, P., Suding, K.N., Ehrenfeld, J.G., Grime, J.P., Mascaro, J., Briggs, J.C., 2011. Don't judge species on their origins. Nature 474, 153–4. doi:10.1038/474153a

Diamond, J.M., 1975. Assembly of species communities, in: Cody, M.L., Diamond, J.M. (Eds.), Ecology and Evolution of Communities. Harvard University Press, Cambridge, Massachusetts, USA., pp. 342–444.

Elith, J., H. Graham, C., P. Anderson, R., Dudík, M., Ferrier, S., Guisan, A., J. Hijmans, R., Huettmann, F., R. Leathwick, J., Lehmann, A., Li, J., G. Lohmann, L., A. Loiselle, B., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., McC. M. Overton, J., Townsend Peterson, A., J. Phillips, S., Richardson, K., Scachetti-Pereira, R., E. Schapire, R., Soberón,

J., Williams, S., S. Wisz, M., E. Zimmermann, N., 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29, 129–151. doi:10.1111/j.2006.0906-7590.04596.x

Elith, J., Leathwick, J.R., 2009. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annual Review of Ecology, Evolution, and Systematics 40, 677–697. doi:10.1146/annurev.ecolsys.110308.120159

Engelbrecht, B.M.J., Comita, L.S., Condit, R., Kursar, T. a, Tyree, M.T., Turner, B.L., Hubbell, S.P., 2007. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447, 80–82. doi:10.1038/nature05747

Gravel, D., Bell, T., Barbera, C., Bouvier, T., Pommier, T., Venail, P., Mouquet, N., 2011. Experimental niche evolution alters the strength of the diversity–productivity relationship. Nature 469, 89–92. doi:10.1038/nature09592

Hannah, L., Roehrdanz, P.R., Ikegami, M., Shepard, A.V., Shaw, M.R., Tabor, G., Zhi, L., Marquet, P.a., Hijmans, R.J., 2013. Climate change, wine, and conservation. Proceedings of the National Academy of Sciences 110, 6907–6912. doi:10.1073/pnas.1210127110

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 1965–1978. doi:10.1002/joc.1276

Hortal, J., Diniz-Filho, J.A.F., Bini, L.M., Rodríguez, M.Á., Baselga, A., Nogués-Bravo, D., Rangel, T.F., Hawkins, B.A., Lobo, J.M., 2011. Ice age climate, evolutionary constraints and diversity patterns of European dung beetles. Ecology Letters 14, 741–748. doi:10.1111/j.1461-0248.2011.01634.x

Kearney, M., Porter, W.P., 2004. MAPPING THE FUNDAMENTAL NICHE: PHYSIOLOGY, CLIMATE, AND THE DISTRIBUTION OF A NOCTURNAL LIZARD. Ecology 85, 3119–3131. doi:10.1890/03-0820

Kéfi, S., Berlow, E.L., Wieters, E.A., Joppa, L.N., Wood, S.A., Brose, U., Navarrete, S.A., 2015. Network structure beyond food webs: mapping non-trophic and trophic interactions on Chilean rocky shores. Ecology 96, 291–303. doi:10.1890/13-1424.1

Kéfi, S., Berlow, E.L., Wieters, E.A., Navarrete, S.A., Petchey, O.L., Wood, S.A., Boit, A., Joppa, L.N., Lafferty, K.D., Williams, R.J., Martinez, N.D., Menge, B.A., Blanchette, C.A., Iles, A.C., Brose, U., 2012. More than a meal... integrating non-feeding interactions into food webs. Ecology Letters 15, 291–300. doi:10.1111/j.1461-0248.2011.01732.x

Leibold, M.a., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J.M., Hoopes, M.F., Holt, R.D., Shurin, J.B., Law, R., Tilman, D., Loreau, M., Gonzalez, a., 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7, 601–613. doi:10.1111/j.1461-0248.2004.00608.x

Letten, A.D., Keith, D.a., Tozer, M.G., Hui, F.K., 2015. Fine-scale hydrological niche differentiation through the lens of multi-species co-occurrence models. Journal of Ecology 103, 1264–1275. doi:10.1111/1365-2745.12428

Lomolino, M.V., 2000. A call for a new paradigm of island biogeography. Global Ecology and Biogeography 9, 1-6.

doi:10.1046/j.1365-2699.2000.00185.x

Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J.P., Hector, a, Hooper, D.U., Huston, M. a, Raffaelli, D., Schmid, B., Tilman, D., Wardle, D. a, 2001. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science (New York, N.Y.) 294, 804–8. doi:10.1126/science.1064088

Losos, J.B., Ricklefs, R.E., 2010. The Theory of Island Biogeography Revisited. Princeton University Press, Princeton, NJ.

MacArthur, R.H., 1972. Geographical Ecology: Patterns in the Distribution of Species, Biology / [princeton university press]. Princeton University Press.

MacArthur, R.H., Wilson, E.O., 1967. Theory of Island Biogeography, Princeton landmarks in biology. Princeton University Press, Princeton, NJ.

Manel, S., Schwartz, M.K., Luikart, G., Taberlet, P., 2003. Landscape genetics: Combining landscape ecology and population genetics. Trends in Ecology and Evolution 18, 189–197. doi:10.1016/S0169-5347(03)00008-9

May, R.M., 2004. Uses and abuses of mathematics in biology. Science (New York, N.Y.) 303, 790–3. doi:10.1126/science.1094442

May, R.M., 1973. Stability and complexity in model ecosystems. Monographs in population biology 6, 1–235. doi:10.1109/TSMC.1978.4309856

McCann, K.S., 2011. Food Webs, Monographs in population biology. Princeton University Press.

McCann, K.S., 2000. The diversity-stability debate. Nature 405, 228-33. doi:10.1038/35012234

McGill, B.J., 2010. Ecology. Matters of scale. Science 328, 575-576. doi:10.1126/science.1188528

Montoya, J., Woodward, G., Emmerson, M.C., Solé, R.V., 2009. Press perturbations and indirect effects in real food webs. Ecology 90, 2426–2433. doi:10.1890/08-0657.1

Murdoch, W.W., Kendall, B.E., Nisbet, R.M., Briggs, C.J., McCauley, E., Bolser, R., 2002. Single-species models for many-species food webs. Nature 417, 541–543. doi:10.1038/417541a

Pascual, M., Dunne, J.A., 2006. Ecological Networks: Linking Structure to Dynamics in Food Webs. Oxford University Press.

Pearson, R.G., Dawson, T.P., 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography 12, 361–371. doi:10.1046/j.1466-822X.2003.00042.x

Peterson, A.T., Soberon, J., Pearson, R.G., Martinez-Meyer, E., 2011. Ecological Niches and Geographic Distributions. Princeton University Press, Princeton, NJ.

Poisot, T., Canard, E., Mouillot, D., Mouquet, N., Gravel, D., Jordan, F., 2012. The dissimilarity of species interaction

networks. Ecology letters 15, 1353-61. doi:10.1111/ele.12002

Säterberg, T., Sellman, S., Ebenman, B., 2013. High frequency of functional extinctions in ecological networks. Nature 499, 468–70. doi:10.1038/nature12277

Schoener, T.W., 2011a. The Newest Synthesis: Understanding Ecological Dynamics. Science 331, 426–429. doi:10.1126/science.1193954

Schoener, T.W., 2011b. The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science (New York, N.Y.) 331, 426–9. doi:10.1126/science.1193954

Simberloff, D.S., 1974. Equilibrium Theory of Island Biogeography and Ecology. Annual Review of Ecology and Systematics 5, 161–182. doi:10.1146/annurev.es.05.110174.001113

Simberloff, D.S., Wilson, E.O., 1969. Experimental Zoogeography of Islands: The Colonization of Empty Islands. Ecology 50, 278–296. doi:10.2307/1934856

Springer, A., Swann, D., Crimmins, M., 2015. Climate change impacts on high elevation saguaro range expansion. Journal of Arid Environments 116, 57–62. doi:10.1016/j.jaridenv.2015.02.004

Stein, A., Gerstner, K., Kreft, H., 2014. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters n/a–n/a. doi:10.1111/ele.12277

Vanbergen, A.J., 2013. Threats to an ecosystem service: Pressures on pollinators. Frontiers in Ecology and the Environment 11, 251–259. doi:10.1890/120126

Wallace, A.R., 1881. Island Life: Or, The Phenomena and Causes of Insular Faunas and Floras, Including a Revision and Attempted Solution of the Problem of Geological Climates. Harper & brothers.

Wallace, A.R., 1860. On the Zoological Geography of the Malay Archipelago. Journal of the Proceedings of the Linnean Society of London. Zoology 4, 172–184. doi:10.1111/j.1096-3642.1860.tb00090.x

Wallace, A.R., 1858. On the Tendency of Varieties to depart indefinitely from the Original Type. Proceedings of the Linnean Society Of London 3, 53–62.

Warren, B.H., Simberloff, D., Ricklefs, R.E., Aguilée, R., Condamine, F.L., Gravel, D., Morlon, H., Mouquet, N., Rosindell, J., Casquet, J., Conti, E., Cornuault, J., Fernández-Palacios, J.M., Hengl, T., Norder, S.J., Rijsdijk, K.F., Sanmartín, I., Strasberg, D., Triantis, K.A., Valente, L.M., Whittaker, R.J., Gillespie, R.G., Emerson, B.C., Thébaud, C., 2015. Islands as model systems in ecology and evolution: Prospects fifty years after MacArthur-Wilson. Ecology Letters 18, 200–217. doi:10.1111/ele.12398

Wootton, J.T., 1994. The Nature and Consequences of Indirect Effects in Ecological Communities. Annual Review of Ecology and Systematics 25, 443–466. doi:10.1146/annurev.es.25.110194.002303