

Day 35

DIY

Q1. Problem Statement: Linear Regression

Load the housing_price.csv dataset to a DataFrame and perform the following tasks:

The dataset contains only numeric data, and the median house value column is our target variable, so with the help of linear regression, build a model that can predict accurate house prices. Perform the below tasks and build a model:

- 1. Load the *housing_price* dataset into DataFrame
- 2. Find the null value and drop then, If any
- 3. Split data into two DataFrames x and y based on dependent and independent variables
- 4. Split x and y into 80% training set and 20% testing set. Set the random state to 10. Call the LinearRegression model, then fit the model using train data
- 5. Print the R2 value, coefficient, and intercept
- 6. Compare actual and predicted values.
- 7. Print the final summary

Dataset:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value
0	-114.31	34.19	15	5612	1283	1015	472	1.4936	66900
1	-114.47	34.40	19	7650	1901	1129	463	1.8200	80100
2	-114.56	33.69	17	720	174	333	117	1.6509	85700
3	-114.57	33.64	14	1501	337	515	226	3.1917	73400
4	-114.57	33.57	20	1454	326	624	262	1.9250	65500

Sample Output:

3. Split data into two DataFrame x and y based on dependent and independent variables

```
independent data
[[-114.31 34.19
[-114.47 34.4
                   15.
                          ... 1015.
                                       472.
                                                 1.4936]
                    19.
                           ... 1129.
                                       463.
                                                 1.82 ]
[-114.56
                                                 1.65091
         33.69
                    17.
                          ... 333.
                                      117.
[-124.3 41.84
                    17. ... 1244. 456.
                                                3.0313]
[-124.3
                          ... 1298.
                                      478.
                                                 1.9797]
          41.8
                   19.
[-124.35
          40.54
                   52.
                          ... 806.
                                                 3.0147]]
                                      270.
dependent data
[ 66900 80100 85700 ... 103600 85800 94600]
```

4. Split x and y into train and test data set based on test size as 0.2 and random state as 10

```
x_train and x_test dataset shape (13600, 8) (3400, 8) y_{train} and y_{test} dataset shape (13600,) (3400,)
```

6. Print R2 vallue, coefficient and intercept

```
R2 value: 0.6484403017760402

coefficient:
  [-4.34225673e+04 -4.34584915e+04 1.15417922e+03 -8.34683693e+00 1.14234465e+02 -3.87425498e+01 5.04252279e+01 4.02554220e+04]

intercept: -3635200.010897698
```

7. Compare actual and predicted values.

	Actual	Predicted
0	96100	-8475.675202
1	500001	490876.394233
2	177200	112662.107990
3	55000	218093.753334
4	220800	207600.925885
5	158300	121540.170888
6	37900	180602.126583
7	115600	104694.108104
8	359700	310765.123759
9	203300	265864.990208

8. Print the final summary

Dep. Variable:			V				0.641	
Model:	.ubic.	OLS		'			0.641	
Method:		Least Squares		9 .			3798.	
Date:	We	Wed, 30 Mar 2022		Prob (F-statistic):			0.00	
Time:		15:27:55		Log-Likelihood:			-2.1365e+05	
No. Obser	vations:	17000		AIC:		4.273e+05		
Df Residu	als:	16991		BIC:		4.274e+05		
Df Model:			8					
Covariano	, ,	nonrob						
=======	coef	std err	=====	t	P> t	[0.025	0.975]	
const	-3.621e+06	6.92e+04	-52	.312	0.000	-3.76e+06	-3.48e+06	
x1	-4.314e+04	789.568	- 54	.637	0.000	-4.47e+04	-4.16e+04	
x2	-4.293e+04	745.804	- 57	.556	0.000	-4.44e+04	-4.15e+04	
x 3	1150.6949	47.577	24	.186	0.000	1057.438	1243.951	
x4	-8.3783		-9			-10.069		
x5	117.6485	7.687						
х6	-38.4888	1.186		.456			-36.164	
x7	45.4360	8.445	_	.380	0.000			
x8	4.051e+04	368.172		.022	0.000	3.98e+04		
Omnibus:					n-Watson:		1.162	
Prob(Omnibus): Skew:					e-Bera (JB)) :	15559.395 0.00	
Skew: Kurtosis:			094	Prob(JB): Cond. No.			0.00 5.14e+05	
				Cona.			3.140+03	