Sequências

Prof. Eanes Torres Pereira

FMCC2

Roteiro

1. Sequências

2. Relações de Recorrência

Sequências - Introdução

- Uma sequência é uma estrutura discreta usada para representar listas ordenadas.
- Os termos de uma sequência podem ser especificados fornecendo uma fórmula para cada termo da sequência.
- Outra forma de especificar uma sequência é por meio de uma relação de recorrência.
- É possível também determinar uma fórmula fechada para os termos de uma sequência definida via uma relação de recorrência.

Sequências Relações de Recorrência

Sequências - Definição

- ► Uma sequência é uma função de um subconjunto do conjunto dos inteiros para um conjunto S.
- ▶ Geralmente, o subconjunto dos inteiros usado é {0,1,2,3,...} ou {1,2,3,...}
- ▶ Usamos a notação a_n para denotar a imagem do inteiro n.
- ► Chamamos *a_n* de termo da sequência.

Sequências

▶ Exemplo. Considere a sequência $\{a_n\}$, em que $a_n = \frac{1}{n}$. A lista de termos dessa sequência , começando com a_1 , começa com os termos: $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$

Sequências Relações de Recorrência

Sequências

- ▶ **Definição**. Uma progressão geométrica é uma sequência da forma $a, ar, ar^2, ..., ar^n, ...$
- ▶ em que o termo inicial *a* e a razão são números reais.
- ▶ Exemplo. As sequências $\{b_n\}$ com $b_n = (-1)^n$, $\{c_n\}$, com $c_n = 2, 5^n$ e $\{d_n\}$ com $d_n = 6.(1/3)^n$ são progressões geométricas com termo inicial e razão iguais a 1 e -1; 2 e 5; e 6 e 1/3, respectivamente, se começarmos com n = 0.

Sequências

- ▶ **Definição**. Uma progressão aritmética é uma sequência da forma a, a + d, a + 2d, ..., a + nd, ...
- ► em que o termo inicial a e o termo diferença d são números reais.
- ▶ Exemplo. A sequência s_n com $s_n = -1 + 4n$ é uma progressão aritmética com termo inicial igual a -1 e razão igual a 4, se começarmos com n=0. A lista de termos $s_0, s_1, s_2, s_3, \ldots$ começa com: -1, 3, 7, ...

Roteiro

1. Sequências

2. Relações de Recorrência

Relações de Recorrência - Definição

- ► Uma relação de recorrência para a sequência {a_n} é uma equação que expressa a_n em função de um ou mais dos termos anteriores da sequência. Uma sequência é chamada uma solução da relação de recorrência se seus termos satisfazem a relação de recorrência.
- ► Dizemos que uma relação de recorrência define recursivamente uma sequência.

- Exemplo. Seja {a_n} uma sequência que satisfaz a relação de recorrência a_n = a_{n-1} + 3 para n = 2,3,4,... e suponha que a₁ = 2. Quais são os valores de a₂, a₃ e a₄?
 Solução. Vemos da relação de recorrência que a₁ = a₀ + 3 = 2 + 3 = 5. Segue que a₂ = 5 + 3 = 8 e a₃ = 8 + 3 = 11.
- ► Exercício. Seja a_n uma sequência que satisfaz a relação de recorrência $a_n = a_{n-1} a_{n-2}$ para n = 2, 3, 4, ... e suponha que $a_0 = 3$ e $a_1 = 5$. Quais são os valores de a_2 e a_3 ?

- ► Exemplo. Resolva a relação de recorrência e a condição inicial do Exemplo anterior.
- ► Solução. Usando substituição-para-a-frente:

$$a_2 = 2 + 3$$

 $a_3 = (2 + 3) + 3 = 2 + 3.2$
 $a_4 = (2 + 2.3) + 3 = 2 + 3.3$
podemos concluir que:

►
$$a_n = 2 + 3(n-1)$$

Solução. Usando substituição-para-trás:

$$a_n = a_{n-1} + 3$$

= $(a_{n-2} + 3) + 3 = a_{n-2} + 3.2$
= $(a_{n-3} + 3) + 3.2 = a_{n-3} + 3.3$
podemos concluir que:

$$a_n=2+3(n-1)$$

► A cada iteração, obtemos o próximo termo na sequência somando 3 ao termo anterior. Obtemos o n-ésimo termo após n-1 iterações da relação de recorrência. Portanto, somamos 3(n-1) ao termo inicial $a_0=2$ para obter a_n . Isto nos dá a fórmula fechada $a_n = 2 + 3(n-1)$.

▶ Exercício. Prove por indução que a fórmula fechada para a relação de recorrência do exemplo anterior é $a_n = 2 + 3(n-1)$.

Exercícios

Para as sequências abaixo, encontre uma relação de recorrência e uma fórmula fechada para a sequência (com exceção do exerc. 4), prove por indução a fórmula fechada.

- 1. 1, 1/2, 1/4, 1/8, 1/16, ...
- 2. 1, 3, 5, 7, 9, ...
- 3. 1, -1, 1, -1, 1, ...
- 4. Como podemos produzir os termos de uma sequência se os primeiros 10 termos são: 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5?
- 5. 5, 11, 17, 23, 29, 35, 41, 47, 52, 59, ...
- 6. 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, Essa sequência é chamada de **Sequência de Lucas**.

Respostas

- 1. relação de recorrência: $a_n=\frac{a_{n-1}}{2}$, $a_1=1$; fórmula fechada: $a_n=\frac{1}{2^{n-1}}$.
- 2. relação de recorrência: $a_1 = 1$, $a_n = a_{n-2} + 2$; fórmula fechada: $a_n = 1 + 2 \cdot (n-1)$.
- 3. relação de recorrência: $a_1 = 1$, $a_n = a_{n-1} \cdot (-1)$; fórmula fechada: $a_1 = 1$, $a_n = (-1)^{n+1}$.
- cada número aparece uma quantidade de vezes correspondente a seu valor.
- 5. relação de recorrência: $a_1 = 5$, $a_n = a_{n-1} + 6$; fórmula fechada: $a_n = 5 + 6(n-1)$.
- 6. $a_1 = 1, a_2 = 3, an = a_{n-1} + a_{n-2}$. A fórmula fechada está fora do escopo desta disciplina¹.

¹Para uma demonstração ver:

Exercícios - Definições Recursivas

1. Dê uma definição recursiva para a sequência $\{a_n\}$, n=1, 2, 3,

... se:

1.1
$$a_n = 6n$$

1.2
$$a_n = 2n + 1$$

1.3
$$a_n = 10^n$$

1.4
$$a_n = 5$$

Obs.: pode haver mais de uma resposta correta para cada questão.

Respostas - Definições Recursivas

1. Algumas possíveis definições recursivas são:

1.1
$$a_{n+1} = a_n + 6$$
 para $n > 1$ e $a_1 = 6$.

1.2
$$a_{n+1} = a_n + 2$$
 para $n \ge 1$ e $a_1 = 3$.

1.3
$$a_{n+1} = 10a_n$$
 para $n > 1$ e $a_1 = 10$.

1.4
$$a_{n+1} = a_n$$
 para $n \ge 1$ e $a_1 = 10$
1.4 $a_{n+1} = a_n$ para $n > 1$ e $a_1 = 5$.

Obs.: pode haver mais de uma resposta correta para cada questão.

Referência

Matemática Discreta e suas Aplicações, Kenneth Rosen.