A.I. BINGO

Gotten a weather forecast from a website or used a weather app	Sent a voice-to-text message	Used an online search engine like Google or Bing	Seen a Google autofill search result	Had a writing assignment graded by a computer
Dataset:	Dataset:	Dataset:	Dataset:	Dataset:
Prediction:	Prediction:	Prediction:	Prediction:	Prediction:
Used "safe search" on Google	Seen a suggested response on Gmail to an email	Used a Snapchat filter (what's your favorite?)	Played a motion-sensitive video game e.g. Mario Party, Nintendo, Wii U, etc.	Had an Emoji suggested instead of a word e.g. "lol" is replaced for an Emoji smiley face
Dataset:	Dataset:	Dataset:	Dataset:	Dataset:
Prediction:	Prediction:	Prediction:	Prediction:	Prediction:
Seen a sponsored product on Google or Amazon e.g. "since you bought, we thought you might like"	Had an email go to your spam folder (was it actually spam?)		Clicked on an Instagram ad (what kinds of ads do you normally see on the app compared to your partner?)	Seen news articles suggested in a news app (what kinds of articles do you normally see compared to your partner?)
Dataset:	Dataset:	LVEE	Dataset:	Dataset:
Prediction:	Prediction:		Prediction:	Prediction:
Had an email labeled as "important" Seen a suggested ad on (if so, what for? How doe compare to what ads you sees?)	Seen a suggested ad on Snapchat (if so, what for? How does this compare to what ads your partner sees?)	Had a text auto-completed or used autocorrect	Listened to a recommended song on Spotify (what kind of music do you usually get recommended compared to your partner?)	Seen a recommended product on Facebook (if so, what for?)
Dataset:	Dataset:	Dataset:	Dataset:	Dataset:
Prediction:	Prediction:	Prediction:	Prediction:	Prediction:
Seen a "nudge" reminder on Gmail to respond to an email	Used a fingerprint to unlock a device or opened a device with your face	Used a map app to find a path to a destination	Used an app to recognize a song playing	Communicated with a customer service bot
Dataset:	Dataset:	Dataset:	Dataset:	Dataset:
Prediction:	Prediction:	Prediction:	Prediction:	Prediction:

Name:	Date:

Introduction to Supervised Machine Learning Activity

Description

In this exercise, you will learn about the three components of an artificial intelligence (AI) system.

Instructions

- 1. Go to https://drive.google.com/drive/u/1/folders/1PGO3lu_4hztRAyCPK4g8AVQtk79A79j3, download the cat-dog data to your computer.
- 2. Go to: https://teachablemachine.withgoogle.com/
- 3. Click "Get Started → Image Project → Standard image model"

Identify the three parts of an AI system in the teachable machine as discussed in class:

Steps to add training dataset:

 Click "Class 1 → Upload → Choose images from your files"
2. Locate the training dataset in your hard drive.
3. Click "dog" and select all images. Click open.
4. Repeat with cat images for Class 2.
<u>Train Model</u>
<u>Add test data</u>
What is the output? What happens when you select a test image other than cat and dog?
What happens if you only train on one class (say dog)?
What happens if you decrease the number of images in the training dataset?

Name: Date:	
-------------	--

Machine Learning with Python Activity

Description

In this exercise, you will learn how to do clustering and classification using Python.

Instructions

A. Iris Clustering and Classification

- Go to Google Colab (https://colab.research.google.com/) and create a new notebook

 New notebook
- 2. Follow the tutorial in slides to build k-means clustering model and logistic regression model on the Iris data.
 - a. What results do you have?

B. Animal Image Classification

- Click the shared link
 (https://drive.google.com/drive/folders/1wCgMlwlguegGmxBvhbxdcJE1vRHeOwPT?u
 sp=drive_link) and sign in to your Google Drive.
- 2. Click the folder name animal-img, then go to **Organize** → **Add shortcut**, and add the shortcut to **My Drive**.

Add shortcut to "animal-img"

Suggested	Starred	All locations	
My Drive			Add
Shared dri	ves		
Computer	S		
Shared wit	th me		

- 3. Build the image classifier:
 - a. Go to Google Colab (https://colab.research.google.com/) and create a new notebook.
 - b. Import required libraries

```
import tensorflow as tf
from tensorflow.keras import layers, models
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
```

c. Mount Google Drive and load the datasets

```
from google.colab import drive
drive.mount('/content/drive')
train dir = '/content/drive/MyDrive/animal-img/train'
test dir = '/content/drive/MyDrive/animal-img/test'
IMG SIZE = (128, 128)
BATCH SIZE = 32
train ds = tf.keras.preprocessing.image dataset from directory(
    train dir,
   image size=IMG SIZE,
   batch size=BATCH SIZE
)
test ds = tf.keras.preprocessing.image dataset from directory(
   test dir,
   image size=IMG SIZE,
   batch size=BATCH SIZE
)
class names = train ds.class names
print("Detected Classes:", class names)
```

d. Build the model

```
base_model = tf.keras.applications.MobileNetV2(
    input_shape=IMG_SIZE + (3,),
    include_top=False,
    weights='imagenet'
)
base_model.trainable = False  # Freeze for now

model = tf.keras.Sequential([
    layers.Rescaling(1./255, input_shape=IMG_SIZE + (3,)),
    base_model,
    layers.GlobalAveragePooling2D(),
    layers.Dropout(0.3),
    layers.Dense(128, activation='relu'),
    layers.Dropout(0.3),
    layers.Dense(len(class_names), activation='softmax')
])
```

e. Set optimizer and loss function

f. Train the model

4. Test the model

```
test images = []
test labels = []
for image, label in test ds.unbatch():
    test images.append(image)
    test labels.append(label)
test images = np.array(test images)
test labels = np.array(test labels)
# Prompt user for a class name
print("Available classes:", class names)
selected class = input("Enter a class name from the list above: ").strip()
# Get class index and filter images
class index = class names.index(selected class)
indices = np.where(test labels == class index)[0]
# Predict labels for all selected images
predicted labels = []
for idx in indices:
    img = tf.expand dims(test images[idx], axis=0)
    pred = model.predict(img, verbose=0)
    predicted labels.append(np.argmax(pred))
# Plot the images
plt.figure(figsize=(15, 8))
for i, idx in enumerate(indices):
    plt.subplot(3, int(np.ceil(len(indices) / 3)), i + 1)
    plt.imshow(test images[idx].astype("uint8"))
    plt.axis('off')
    true label = class names[test labels[idx]]
    pred label = class names[predicted labels[i]]
    plt.title(f"T: {true label}\nP: {pred label}\", fontsize=9)
plt.tight layout()
plt.show()
```

- a. Which classes have lower prediction accuracy?
- b. Find the misclassified images in the test data. Can you guess why they were incorrectly predicted?

Name:	Date:

Can Al Really Code?

Description

In this exercise, you will ask ChatGPT to write simple Python code.

Instructions

You can work in group or individually and ask ChatGPT to write simple Python programs to solve following problems:

- 1. Convert temperatures from Fahrenheit to Celsius.
- 2. Calculates the sum of numbers from 1 to 100.
- 3. Create a text-based adventure game.