Manipulation de champs avec SALOME

Anthony GEAY (CEA/DEN), Guillaume Boulant (EDF/R&D)

Journée des Utilisateurs de SALOME (Mardi 15 novembre 2011)

La manipulation de champs

Une définition

- « Accéder aux valeurs des champs de manière sélective (composante, temps, zone géométrique) pour l'utilisation dans des opérations mathématiques (essentiellement)»
- Champ : grandeur physique dont la valeur dépend de l'espace et du temps = F(r,t)

Quelques situations d'usage

- Pré-traitement : création d'un champ sur une zone géométrique pour modéliser un chargement ou des conditions aux limites
- Inter-traitement : projection de champs entre maillages par interpolation aux interfaces
- Post-traitement : calcul des grandeurs d'intérêt à partir des données brutes
- Recalage : changement d'échelle, d'unité, rotation, translation
- Analyse de la qualité : extraction de mailles et de champs en fonction d'un critère
- Visualisation : sous-échantillonnage spatial et/ou temporel

Dans le cadre technique de SALOME

Un modèle de donnée

- Modèle MED (Modèle d'Échange de Donnée) qui décrit les maillages et les champs
- Connu au travers de son implémentation de persistance med «fichier»

Une bibliothèque logicielle (C++, python)

- Aperçu de l'interface de programmation (API) de MED «mémoire»
- Architecture des composants (MEDCoupling, MEDLoader, REMAPPER)

Une interface graphique (module SALOME)

Pour la mise en œuvre des cas d'usage principaux

Présentation d'aujourd'hui

Un premier exemple d'utilisation de l'API

Addition de champs définis sur un même maillage

```
1 from MEDLoader import MEDLoader, ON NODES
 3 medfilename = "timeseries.med" # med source filename
 4 meshname = "Grid_80x80" # name of the support mesh
 5 dimrestriction = 0
                               # 0=no restriction
 6 fieldname = "Pulse"
                               # name of the field series
 8 # Load the support mesh
 9 mesh = MEDLoader.ReadUMeshFromFile(medfilename, meshname, dimrestriction)
11 # Load the field at timestamps 3
12 iteration, order = (3,-1) # timestamps to consider
13 p3=MEDLoader.ReadField(ON NODES, medfilename, meshname, dimrestriction,
                         fieldname,iteration,order)
15 p3.setMesh(mesh)
17 # Load the field at timestamps 4
18 iteration, order = (4,-1) # timestamps to consider
19 p4=MEDLoader.ReadField(ON NODES, medfilename, meshname, dimrestriction,
                         fieldname,iteration,order)
21 p4.setMesh(mesh)
23 result = p3+p4
24 result.setName("p3+p4")
26 outfilename = "addition.med"
27 MEDLoader.WriteField(outfilename, result, True)
```


Autres applications de cet exemple

Changement d'échelle, toute combinaison linéaire de champs

Exemple 2 : Projection d'un champ entre deux maillages

■ Entrée : champ sur un maillage source + maillage cible

■ Sortie : le champ est crée sur le maillage cible par interpolation P0P0 (entre cellules)

```
from MEDLoader import *
 2 from MEDCouplingRemapper import *
 4 # Read the source mesh and create a field on it
 5 msource = MEDLoader.ReadUMeshFromFile("meshsource.med","meshsource",0)
 7 equation = "319.*cos(((x)*(x)*3+(y-0.52)*(y-0.52)+(z-0.1)*(z-0.1))*7)"
 8 fsource=msource.fillFromAnalytic(ON CELLS, 1, equation)
 9 fsource.setName("Temperature")
10 fsource.setNature(ConservativeVolumic)
12 # Read the target mesh
13 mtarget = MEDLoader.ReadUMeshFromFile("meshtarget.med","meshtarget",0)
15 # Remapper of type POPO (interpolation from cells to cells)
16 remap = MEDCouplingRemapper()
17 remap.prepare(msource,mtarget,"P0P0")
18
19 defaultValue = 1e100
20 ftarget = remap.transferField(fsource,defaultValue)
21 ftarget.setName("Temperature")
23 outfilehame = "createsource fieldtarget.med"
24 MEDLoader.WriteField(outfilename,ftarget,True)
```

Types d'interpolation disponibles :

- P0P0, P1P0, P0P1, P1P1
- 1D, 2Dcurve, 2D, 3Dsurf, 3D
- Pour P0P0 : + (2Dcurve,2D) et (3Dsurf, 3D)

Exemple 3 : fusion de champs définis sur des domaines distincts

■ Entrée : 3 domaines sur chacun desquels est défini un champ

Sortie: 1 domaine unique avec un champ unique

```
from MEDLoader import *
 3
    it,dt = (-1,-1)
    mesh = MEDLoader.ReadUMeshFromFile("field1.med","DomainMesh 1",0)
    f1 = MEDLoader.ReadField(ON CELLS, "field1.med", "DomainMesh 1", 0, "field1", it, dt)
    f1.setMesh(mesh)
     mesh = MEDLoader.ReadUMeshFromFile("field2.med","DomainMesh 2",0)
    f2 = MEDLoader.ReadField(ON CELLS, "field2.med", "DomainMesh 2", 0, "field2", it, dt)
     f2.setMesh(mesh)
10
11
12
     mesh = MEDLoader.ReadUMeshFromFile("field3.med","DomainMesh 3",0)
13
     f3 = MEDLoader.ReadField(ON CELLS, "field3.med", "DomainMesh 3", 0, "field3", it, dt)
14
     f3.setMesh(mesh)
15
16
     fmerge=MEDCouplingFieldDouble.MergeFields([f1,f2,f3])
    fmerge.setName("merge")
     MEDLoader.WriteField("merge.med",fmerge,True)
```


Architecture des composants

- MEDCoupling : structures de données et interfaces d'échange (CORBA)
- **MEDLoader** : services de lecture et écriture aux formats MED fichier et SAUV (Castem)
- REMAPPER : outils d'interpolation

300 tests C++, 210 tests python, 30 tests CORBA (valgrind 0, no warnings)

Statut actuel

- En cours de développement, prévu à l'intégration dans SALOME 7 (fin 2012)
- Un prototype mis au point sur la base des 8 cas d'usage ci-dessous

Les cas d'utilisation:

- Exemple 1: Explorer des sources de données
- Exemple 2: Rassembler des champs issus de différentes sources
- Exemple 3: Appliquer une opération mathématique sur des champs
- Exemple 4: Comparer des champs issues de différentes sources
- Exemple 5: Créer un champ sur un domaine spatial
- Exemple 7: Créer un champ à partir d'une image to[mp]ographique
- Exemple 8: Continuer l'analyse dans PARAVIS

Exemple 1: Explorer des sources de données

Exemple 2: Rassembler des champs issus de différentes sources

Exemple 3: Appliquer une opération mathématique sur des champs

```
>>> p3
field name (id) = Pulse(3)
mesh name (id) = Grid 80x80 (0)
discretization = ON NODES
(iter, order) = (3,-1)
data source = file:///home/gboulant/development/projets/salome/MEDOP/XMED/xmed/resources/datafiles/timeseries.med
                   # les valeurs de r sont celles du champ p3 augmentées d'un offset de 10
>>> r=p3+10
>>> r2=10*p3 # changement d'échelle d'un facteur 10
>>> r3=2*p3+p4/2 # combinaison linéaire des champs p3 et p4
                   # les valeurs de r4 sont celles de p3 elevées à la puissance 5
>>> r4=pow(p3,5)
>>>
>>> ls
        (id=13, name=lin(Pulse,factor=10,offset=0))
r2
        (id=17, name=fct(Pulse, "abs(u)^5, "-1"))
r4
pЗ
        (id=3, name=Pulse)
        (id=4, name=Pulse)
p4
       (id=16, name=lin(Pulse, factor=2, offset=0)+lin(Pulse, factor=0.5, offset=0
r3
        (id=11, name=testfield2)
t2
        (id=18, name=lin(Pulse, factor=1, offset=10))
>>> view(r3) -
>>>
>>> p3+t2
INF: Addition of Pulse and testfield2
ERR: ERROR: Mesh ids are different for the field operandes Pulse and testfield2
```

Exemple 4: Comparer des champs issues de différentes sources

Exemple 7: Créer un champ à partir d'une image to[pm]ographique

■ Image to[pm]ographique = champ scalaire (niveaux de gris) sur grille cartésienne

Conclusions et perspectives

Conclusions

- Une bibliothèque logicielle (C++,python) utilisable ...
 - ... en « scripting » pour les cas d'usage listés en début de présentation
 - ... en dépendance logicielle d'un code de calcul (MEDCoupling vient sans pré-requis)
 - Déjà disponible en version industrielle dans SALOME 6
- Une interface graphique (module SALOME)
 - Combinaison GUI TUI inspirée des logiciels comme Octave ou Matlab
 - Assister au maximum la sélection des données à manipuler (GUI) pour offrir une syntaxe de commande (TUI) la plus proche de l'écriture formelle

Perspectives

- Distribution « packagée » dans SALOME 7 (début 2013) sous forme du module MED :
 - Bibliothèque MEDMEM à base de MEDCoupling (MEDMEM historique disparaît)
 - Interface Graphique version industrialisée
- En prévision pour l'interface graphique
 - Développement des moyens de sélection des données (groupe de mailles, composantes, souséchantillonnage temporel)
 - Extension de la liste des fonctions mathématique disponibles dans le langage de commande TUI
 - Intégration graphique des outils pour la projection de champs

Fin de la présentation

« Regarde comme les étoiles brillent. Pourtant certaines sont mortes il y a longtemps déjà. Mais elles éclairent encore le ciel, chaque nuit. »

Conte pour enfants

