Structured Splittings of $\Omega SU(n)$ and Snaith's Construction of Periodic Complex Bordism

Jeremy Hahn and Allen Yuan

July 8, 2017

Contents

1	Introduction	1
2	Filtered and Graded Ring Spectra	1
3	The (Segal-Mitchell-Richter?) Filtration on $\Omega SU(n)$	2
4	An \mathbb{A}_{∞} -splitting by Weiss Calculus 4.1 Weiss Calculus	
5	An \mathbb{E}_2 -splitting in Complex Cobordism	3
6	Obstructions to a general \mathbb{E}_2 -splitting	3
7	Snaith's Construction of Periodic Complex Bordism	3
8	Miscellaneous stuff here	3

1 Introduction

Write this last after we have filled in all the theorems with complete proofs.

2 Filtered and Graded Ring Spectra

Here we review a framework from [?] for studying graded and filtered objects. The reader is referred to [?] for a more thorough treatment and all proofs.

Let \mathcal{C} be a stable ∞ -category. Denote by $\mathbb{Z}_{\geq 0}$ the poset of non-negative integers, and by $\mathbb{Z}_{\geq 0}^{ds}$ the corresponding discrete category. The reader is warned that our numbering conventions are opposite the ones in [?].

Definition 2.1. Let $\mathbf{Gr}(\mathcal{C})$ denote the functor category $\mathrm{Fun}(\mathbb{Z}^{ds}_{\geq 0}, \mathcal{C})$. We shall refer to $\mathbf{Gr}(\mathcal{C})$ as the category of graded objects in \mathcal{C} . Its objects can be thought of as sequences $X_0, X_1, X_2, \dots \in \mathcal{C}$.

Definition 2.2. Let $\mathbf{Fil}(\mathcal{C})$ denote the functor category $\mathrm{Fun}(\mathbb{Z}_{\geq 0}, \mathcal{C})$. We shall refer to \mathbf{Fil} as the category of filtered spectra. Its objects can be thought of as sequences $Y_0 \longrightarrow Y_1 \longrightarrow Y_2 \longrightarrow \cdots$ of spectra filtering $\mathrm{colim}_i Y_i$.

The obvious map $\mathbb{Z}_{\geq 0}^{ds} \longrightarrow \mathbb{Z}_{\geq 0}$ induces a restriction functor res : **Fil** \longrightarrow **Gr**. The restriction is right adjoint to a functor $I: \mathbf{Gr} \longrightarrow \mathbf{Fil}$ given by left Kan extension. The functor I can be thought of as taking a graded spectrum X_0, X_1, X_2, \cdots to the filtered spectrum $X_0 \longrightarrow X_0 \oplus X_1 \longrightarrow X_0 \oplus X_1 \oplus X_2 \longrightarrow \cdots$. There is also an associated graded functor $\mathrm{gr}: \mathbf{Fil} \longrightarrow \mathbf{Gr}$ such that the composite $\mathrm{gr} \circ I: \mathbf{Gr} \longrightarrow \mathbf{Gr}$ is an equivalence.

The categories \mathbf{Gr} and \mathbf{Fil} are given symmetric monoidal structures via the Day convolution; we denote the operation in both cases by \otimes . The unit \mathbb{S}^{gr} of \otimes in graded spectra is S^0 in degree 0 and * otherwise; the unit \mathbb{S}^{fil} in filtered spectra is $I\mathbb{S}^{gr}$.

The functors I and gr can be given symmetric monoidal structures such that the composite $\operatorname{gr} \circ I : \operatorname{\mathbf{Gr}} \longrightarrow \operatorname{\mathbf{Gr}}$ is a symmetric monoidal equivalence. It follows in particular that they extend to functors on between the categories of \mathbb{E}_n algebras in $\operatorname{\mathbf{Gr}}$ and $\operatorname{\mathbf{Fil}}$. Thus, given an \mathbb{E}_n algebra Y in filtered spectra, we obtain a canonical \mathbb{E}_n structure on its associated graded $\operatorname{gr}(Y)$. Conversely, given $X \in \operatorname{Alg}_{\mathbb{E}_n}(\operatorname{\mathbf{Fil}})$

Definition 2.3. An object $X \in Alg_{\mathbb{E}_n}(\mathbf{Fil})$ is called \mathbb{E}_n -split if it is in the essential image of I.

Given an \mathbb{E}_n -split filtered spectrum X, we can recover the underlying graded spectrum by taking the associated graded.

3 The (Segal-Mitchell-Richter?) Filtration on $\Omega SU(n)$

I believe Mitchell shows in [?] that the filtration is filtered \mathbb{A}_{∞} . We need to check this.

Conjecture 3.1. The filtration is \mathbb{E}_2 .

I guess now we know this is just true. We should probably thank Jacob for bringing to our attention that this conjecture of Mahowald is actually well-known by geometric representation theorists.

4 An \mathbb{A}_{∞} -splitting by Weiss Calculus

In this section, we extend the methods of [?] to produce \mathbb{A}_{∞} stable splittings of Stiefel manifolds.

4.1 Weiss Calculus

Let \mathcal{J} be the ∞ -category which is the nerve of the topological category whose objects are finite dimensional complex vector spaces equipped with a Hermitian inner product and whose morphisms are spaces of linear isometries.

4.2 General splitting machinery

Let [n] denote the linearly ordered set of integers $0 \le i \le n$. Define $\mathbf{Fil}_n = \mathrm{Fun}([n], \mathrm{Sp}^{\mathcal{J}})$ and $\mathbf{Cofil}_n = \mathrm{Fun}([n]^{\mathrm{op}}, \mathrm{Sp}^{\mathcal{J}})$. These categories admit functors to $\mathrm{Sp}^{\mathcal{J}}$ by taking colimit and limit, respectively. Let $\mathcal{C}_n = \mathbf{Fil}_n \times_{\mathrm{Sp}^{\mathcal{J}}} \mathbf{Cofil}_n$. Finally, let $\mathbf{Gr}_n = \mathrm{Fun}([n]^{\mathrm{ds}}, \mathrm{Sp}^{\mathcal{J}})$ where $[n]^{\mathrm{ds}}$ denotes the underlying discrete category. We have the following lemma:

Lemma 4.1. For all integers n > 0, there is a fully faithful functor $i_n : \mathbf{Gr}_{n+1} \longrightarrow \mathcal{C}_n$.

Proof. An element of C_n is given by a sequence of maps The proof is by induction.

We may then take inverse limits to get a category $\mathcal{C}_{\infty} = \mathbf{Fil}(\mathrm{Sp}^{\mathcal{J}}) \times_{\mathrm{Sp}^{\mathcal{J}}} \mathbf{Cofil}(\mathrm{Sp}^{\mathcal{J}})$ and a functor $i : \mathbf{Gr} \longrightarrow \mathcal{C}_{\infty}$.

Corollary 4.1.1. The functor i is fully faithful.

Proof.

at the end, restrict connectivity so that it's monoidal

5 An \mathbb{E}_2 -splitting in Complex Cobordism

Let R denote any \mathbb{E}_2 -ring spectrum with even-concentrated homotopy groups. I claim that any \mathbb{A}_{∞} -morphism $\Omega SU(n) \to R$ lifts to an \mathbb{E}_2 -morphism.

The argument is inspired by [?]

Proof. The obstructions live in $H_*(\Omega SU(n); \pi_{*+1}(R))$, and no matter the value of $\pi_{*+1}(R)$ this is 0.

Corollary 5.0.1. If R is the relevant split MU- \mathbb{E}_2 -algebra, this yields an MU- \mathbb{E}_2 -algebra equivalence $\Omega SU(n) \wedge MU \to R$ by adjunction from the \mathbb{E}_2 -map $\Omega SU(n) \to R$.

6 Obstructions to a general \mathbb{E}_2 -splitting

Suppose there is a map $\Sigma_+^{\infty}\Omega SU(n) \to \Sigma_+^{\infty}\mathbb{CP}^{n-1}$. This is adjoint to a double loop map $\Omega SU(n) \to GL_1(\Sigma_+^{\infty}\mathbb{CP}^{n-1})$ which lands in the component $SL_1(\Sigma_+^{\infty}\mathbb{CP}^{n-1}) \simeq \Omega^2 \Sigma^2 \mathbb{CP}^{n-1}$. BLAH BLAH

7 Snaith's Construction of Periodic Complex Bordism

A classical theorem of Snaith [?] gives an equivalence of homotopy commutative ring spectra

$$\Sigma_+^{\infty} BU[\beta^{-1}] \simeq MUP.$$

The equivalence arises from considering the total MU-Chern class map $BU \longrightarrow GL_1(MUP)$. It is known from [?] that the total Chern class in integral homology is not an infinite loop map. It follows from the existence of an \mathbb{E}_{∞} map $MUP \longrightarrow H\mathbb{Z}P$ from periodic complex bordism to periodic integral homology that Snaith's equivalence is not an equivalence of \mathbb{E}_{∞} ring spectra. The following theorem refines this observation:

Theorem 7.1. The equivalence $\Sigma_{+}^{\infty}BU[\beta^{-1}] \simeq MUP$ is \mathbb{E}_{2} but not \mathbb{E}_{3} .

Proof. Proof goes here \Box

Comment now about GepnerSnaith. We should cite at some point here or the introduction all of [?], [?], and the Snaith book with the original splitting.

8 Miscellaneous stuff here

It would be nice to at some point deal with showing the associated graded E_2 structure of BU is the thom spectrum VMU(n). I've directly pasted in some writing from a previous argument I claimed, but it definitely uses that $\coprod BU(n)$ is an E_2 algebra over $\mathbb{Z}_{\geq 0}$ which I never got straight an actual proof of.

Proposition 8.1. The associated graded of $\Sigma_{+}^{\infty}BU$ is E_2 equivalent to the Thom spectrum $\bigvee MU(n)$.

Proof. Let R = BU with its natural filtration, and let $R^{\oplus} = \coprod BU(n)$ with its natural filtration. Let M be the (E_{∞}) filtered spectrum which is MU(n) in degree n, and all maps are 0. In other words, $\bigvee MU(n)$ with its natural filtration is I(res(M)).

We begin with a filtered E_{∞} map $z: R^{\oplus} \longrightarrow I(res(M))$ coming from the zero section. Then, R^{\oplus} comes with the structure of an E_2 algebra over $\mathbb{Z}^{fil}_{\geq 0}$. In fact, I(res(M)) has a trivial structure as an E_{∞} -algebra over $\mathbb{Z}^{fil}_{\geq 0}$ via the augmentation $\mathbb{Z}^{fil}_{\geq 0} \longrightarrow S^{0,fil} \longrightarrow I(res(M))$. We may then tensor z along the augmentation to get a map of E_2 filtered spectra $z': R \longrightarrow I(res(M))$.

There is a canonical equivalence $I(res(M)) \otimes \mathbb{A} \simeq M$ because M is in the image of $\mathbb{A} \otimes I(-)$ (that is, all the maps in the filtration of M were zero). As such, M acquires a canonical structure as an \mathbb{A} algebra such that the map $M \otimes \mathbb{A} \longrightarrow M$ is a map of E_2 rings (in fact I think it's E_{∞} ?).

Finally, we observe that we may tensor z' with \mathbb{A} and compose with the multiplication map to get an E_2 map $R \otimes A \longrightarrow M \otimes A \longrightarrow M$ which is the right thing up to homotopy, so it's an equivalence.

What is $\Sigma_+^{\infty} \Omega SU(n)[\beta^{-1}]$, by the way? Is it related to a periodic version of the X(n)-filtration of MU??