Definition 3.11

Poisson probability distribution of random variable *Y*:

$$p(y) = \frac{\lambda^y}{y!} e^{-\lambda}$$

Theorem 3.11

Expected value of Poisson distribution:

$$E(Y) = \mu = \lambda$$

Variance of Poisson distribution:

$$V(Y) = \sigma^2 = \lambda$$

Theorem 3.14

Tchebysheff's Theorem for random variable Y, mean μ , and variance σ^2 . For any constant k > 0:

$$P(|Y - \mu| < k\sigma) \ge 1 - \frac{1}{k^2}$$
 OR $P(|Y - \mu| \ge k\sigma) \le \frac{1}{k^2}$

Definition 4.1

Distribution function of *Y* (any random variable):

$$F(y) = P(Y \le y)$$
 for all $-\infty < y < \infty$

Theorem 4.1

Properties of a distribution function:

1.
$$F(-\infty) \equiv \lim_{y \to -\infty} F(y) = 0$$

2. $F(\infty) \equiv \lim_{y \to \infty} F(y) = 1$

2.
$$F(\infty) \equiv \lim_{y \to \infty} F(y) = 1$$

3. F(y) is a nondecreasing function of y.

Definition 4.2

If F(y) is continuous on $-\infty < y < \infty$, Y is a continuous random variable.

Definition 4.3

Probability density function of Y:

$$f(y) = \frac{dF(y)}{dy} = F'(y)$$

Theorem 4.2

Properties of a density function f(y):

- 1. $f(y) \ge 0$ for all $-\infty < y < \infty$
- $2. \int_{-\infty}^{\infty} f(y) dy = 1$

Theorem 4.3

If Y has a density function f(y) and bounds a < b, the probability that Y is on interval [a, b]:

$$P(a \le Y \le b) = \int_a^b f(y)dy$$

Definition 4.5

Expected value of continuous random variable Y:

$$E(Y) = \int_{-\infty}^{\infty} y f(y) dy$$

Theorem 4.4

Expected value of continuous random variable Y:

$$E[g(Y)] = \int_{-\infty}^{\infty} g(y)f(y)dy$$

Theorem 4.5

Let c be a constant, g(Y), $g_1(Y)$... $g_k(Y)$ be functions of Y.

- 1. E(c) = c
- 2. E(cg(Y) = cE[g(Y)]
- 3. $E(g_1(Y) + g_2(Y) + \dots + g_k(Y)) = E[g_1(Y)] + E[g_2(Y)] + \dots + E[g_k(Y)]$

Definition 4.6

Y has a continuous uniform probability distribution if its density function is:

$$f(y) = \begin{cases} \frac{1}{\theta_2 - \theta_1}, & \theta_1 \le y \le \theta_2 \\ 0, & elsewhere \end{cases}$$

Theorem 4.6

If $\theta_1 < \theta_2$ and Y is uniformly distributed on (θ_1, θ_2) , then:

1.
$$E(Y) = \mu = \frac{\theta_1 + \theta_2}{2}$$

2.
$$V(Y) = \sigma^2 = \frac{(\theta_2 - \theta_1)^2}{12}$$

Definition 4.8

Y has normal probability distribution if its density function is:

$$f(y) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(y-\mu)^2/(2\sigma^2)} \text{ when } \sigma > 0, \ -\infty < \mu < \infty, \text{ and } -\infty < y < \infty$$

Theorem 4.7

Expected value of normally distributed random variable Y:

$$E(Y) = \mu$$

Variance of normally distributed random variable Y:

$$V(Y) = \sigma^2$$

Definition 4.9

Y has a gamma distribution with parameters $\alpha > 0$ and $\beta > 0$ if the density function is:

$$f(y) = \begin{cases} \frac{y^{\alpha - 1}e^{-y/\beta}}{\beta^{\alpha}\Gamma(\alpha)}, & 0 \le y < \infty \\ 0, & elsewhere \end{cases}, \text{ where } \Gamma(\alpha) \int_0^{\infty} y^{\alpha - 1}e^{-y}dy$$

Theorem 4.8

Expected value of normally distributed random variable Y:

$$E(Y) = \mu = \alpha \beta$$

Variance of normally distributed random variable Y:

$$V(Y) = \sigma^2 = \alpha \beta^2$$

Definition 4.11

Y has an exponential distribution with parameter $\beta > 0$ if the density function is:

$$f(y) = \begin{cases} \frac{1}{\beta} e^{-y/\beta}, & 0 \le y < \infty \\ 0, & elsewhere \end{cases}$$

Theorem 4.10

Expected value of exponentially distributed random variable Y:

$$E(Y) = \mu = \beta$$

Variance of exponentially distributed random variable Y:

$$V(Y) = \sigma^2 = \beta^2$$

Definition 5.1

Joint probability function of Y_1 and Y_2 :

$$p(y_{\mathrm{1}},y_{\mathrm{2}}) = p(Y_{\mathrm{1}} = y_{\mathrm{1}},Y_{\mathrm{2}} = y_{\mathrm{2}})$$
 when $-\infty < y_{\mathrm{1}},y_{\mathrm{2}} < \infty$

Theorem 5.1

If Y_1 and Y_2 have joint probability function, then:

1.
$$p(y_1, y_2) \ge 0$$

2.
$$\sum_{y_1,y_2} p(y_1,y_2) = 1$$

Definition 5.2

Joint distribution function of Y_1 and Y_2 :

$$p(y_1, y_2) = P(Y_1 \le y_1, Y_2 \le y_2)$$
 when $-\infty < y_1, y_2 < \infty$

Definition 5.2

Jointly continuous random variables Y_1 and Y_2 :

$$F(y_1, y_2) = \int_{-\infty}^{y_1} \int_{-\infty}^{y_2} f(t_1, t_2) dt_2 dt_1$$

Theorem 5.2

If Y_1 and Y_2 have joint distribution function, then:

1.
$$F(-\infty, -\infty) = F(-\infty, y_2) = F(y_1, -\infty) = 0$$

2.
$$F(\infty, \infty) = 1$$

3.
$$f(y1, y2) \ge 0$$

4.
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(y_1, y_2) dy_1 dy_2$$

Definition 5.4

Marginal probability function of Y_1 and Y_2 :

$$p_1(y_1) = \sum_{all \ y_2} p(y_1, y_2)$$
 AND $p_2(y_2) = \sum_{all \ y_1} p(y_1, y_2)$

Marginal density function of Y_1 and Y_2 :

$$f_1(y_1) = \int_{-\infty}^{\infty} f(y_1, y_2) dy_2$$
 AND $f_2(y_2) = \int_{-\infty}^{\infty} f(y_1, y_2) dy_1$

Definition 5.5

Conditional discrete probability function of Y_1 and Y_2 :

$$p(y_1|y_2) = P(Y_1 = y_1|Y_2 = y_2) = \frac{P(Y_1 = y_1|Y_2 = y_2)}{P(Y_2 = y_2)} = \frac{p(y_1,y_2)}{p_2(y_2)} \text{ when } p2(y2) > 0$$

Definition 5.6

Conditional distribution function of Y_1 and Y_2 :

$$p(y_1|y_2) = P(Y_1 = y_1|Y_2 = y_2)$$

Definition 5.7

Conditional density of Y_1 , given $Y_2 = y_2$

$$f(y_1|y_2) = \frac{f(y_1,y_2)}{f_2(y_2)}$$

Conditional density of Y_2 , given $Y_1 = y_1$

$$f(y_2|y_1) = \frac{f(y_1,y_2)}{f_1(y_1)}$$

Definition 5.8

Joint distribution variables Y_1 and Y_2 are independent if and only if

$$F(y_1, y_2) = F_1(y_1)F_2(y_2)$$
 for every (y_1, y_2) .

Otherwise, Y_1 and Y_2 are dependent.

Theorem 5.4

Marginal probability variables Y_1 and Y_2 are independent if and only if

$$p(y_1, y_2) = p_1(y_1)p_2(y_2)$$
 for every (y_1, y_2) .

Otherwise, Y_1 and Y_2 are dependent.

Marginal density variables Y_1 and Y_2 are independent if and only if

$$f(y_1, y_2) = f_1(y_1)f_2(y_2)$$
 for every (y_1, y_2) .

Otherwise, Y_1 and Y_2 are dependent.