사물인터넷 개론 팀프로젝트 수행 보고서

작품과제명	제한구역 내의 디지털 메모를 활용한 스마트 출입 시스템
	ㅇ 과제 선정 배경
	- 아두이노 스타터 키트의 부품을 최대한 활용하여 일상생활에서의 사소한
	문제를 해결하고 편리성을 추구하고자 함.
	- 모두가 연구실 구성원으로서 평소 연구실에서의 불편한 부분인 문 수동 개
	폐, 외부인 방문 여부 파악, 내부 인원 파악을 해소하고자 함.
과제 개요	ㅇ 과제의 필요성
	- 자리에서 원격으로 문을 열어줄 수 있으므로, 외부인이 연구실에 방문했을
	때, 문을 수동으로 열어주어야 하는 번거로움 해결.
	- 연구실에 아무도 없을 때, 외부인이 방문 시 메모를 통해 연락처를 남길 수
	있음. 이를 통해 누가 방문했는지 파악 가능.
	- 외부에서 내부에 몇 명이 있는지 알 수 있고, 초인종 기능을 통해 내부에서
	누가 왔는지 파악 가능.
	o 과제 구성
	- 여러 개의 모듈과 부품을 사용하고, RFID 출입 기록 기능과 메모 기능을
	분리하기 위해 아두이노 2개를 사용함.
	- 아두이노 1(RFID, 1채널 7세그먼트, LED, 도어락, Tact Switch):
	1) 아두이노 1의 회로를 구현하기 위한 포트 수가 부족하여 시프트 레지스터를
	활용하여 사용 가능한 포트 수를 확보함.
	2) RFID 카드별 ID 값을 불러와 해당 ID 값에 사용자를 1명씩 등록함.
	3) 내부 인원수 종합을 위해 RFID 카드별로 값을 따로 증감시키고 종합하여
	동일한 카드가 2번 찍히면 1채널 7세그먼트 값이 감소하는 식으로 코딩.
	- 아두이노 2(LCD, 4*4 키패드, 부저, LED):
과제 내용	1) 아두이노 2로 메모와 초인종 기능을 구현하기 위해 키패드의 숫자(번호), A
	(입력 준비), B(재입력), C(입력 완료), D(초인종)로 구현
	2) 메모 중 번호 입력을 잘못하는 경우를 대비하여 저장 취소 기능(C) 구현
	3) 초인종을 누르면 2번 버저가 울리고, LED가 켜짐
	- 아두이노 1의 모든 구성품은 문 내부에 설치함.
	- 아두이노 2의 키패드는 문 외부에 설치하고, LCD, 부저, LED는 문 내부에
	설치함.
	- 출입문의 유리를 통하여 LCD, RFID, RFID 작동 LED, 1채널 7세그먼트를
	볼 수 있음.
	- 스위치를 통하여 문을 열 수 있음.

- 과제 주요 특징
- 총 4가지 상황을 가정하여 상황별로 실험을 진행함.

상황 1) 미등록된 사용자가 RFID를 사용할 때:

RFID에 적색 LED가 켜지고, 시리얼 모니터에 '미승인된 사용자'로 식별.

상황 2) 등록된 사용자가 RFID를 사용할 때:

RFID에 녹색 LED가 켜지고 1채널 7세그먼트 값이 1 증가며 도어락이 열림. 동일한 RFID 카드를 두 번 찍을 시(나갈 때) 1채널 7세그먼트 값이 1 감소하며 도어락이 열림.

시리얼 모니터에 RFID 카드 ID에 해당하는 사용자 이름과 함께 내부 인원수가 증가함.

상황 3) 내부에 사람이 있고, 외부인이 초인종을 누를 때:

키패드 D를 누르면 내부에서 부저가 2번 울리고 LED가 켜짐.

아두이노 2 시리얼 모니터에 '띵동~'이라는 글자가 출력되고, 아두이노 1 시리얼 모니터에 'Door Open, Door Close, 내부 인원'이 출력됨.

상황 4) 내부에 사람이 없고, 외부인이 메모를 남길 때:

키패드 A를 눌러 메모 입력 준비를 하고, 전화번호를 눌러 메모를 남김.

번호를 잘못 누른 경우 키패드 B를 눌러 재입력을 함.

전화번호를 다 적고 키패드 C를 눌러 연락처를 저장함.

LCD와 시리얼 모니터에 누르는 번호가 출력됨.

- RFID 카드 ID 값을 등록하여 인증된 사람만 출입 가능하고, ID 값을 활용하여 출입 인원과 시간이 자동으로 기록됨. 보안 사고 및 도난 발생 시 해당 데이터를 사후 처리에 활용. 또한 출퇴근 기록부로도 사용 가능.
- 폐쇄망을 사용하다 보니 보안성을 가지고 있어, 연구실뿐만 아니라 전파 사용이 불가한 지역, 군대, 등의 제한구역 내에서의 사용이 가능함.

결과물의 활용방안 및 기대효과

- 내부 구성원이 원격으로 본인 자리에서 출입문을 열어줄 수 있음.
- 보안성을 약화하고 활용도를 높이자면, 와이파이 혹은 블루투스 등의 단거리 무선 통신 기술을 활용하여 전파 범위 내에서 어디서든 원격으로 문을 제어하고, 메모를 확인할 수 있음.
- 아파트, 일반 가정집, 사무실 등에서 활용 가능함.
- 우편을 전자 메일로 받듯이 디지털 메모를 활용하여 명함, 연락처 메모 등을 디지털화하여 정보를 남길 수 있음.

수행 방법	구분	성명	과제 참여 내용(역할)
	팀장	김승현	아두이노 1(1채널 7세그먼트, 도어락, REID, Tact Switch, Shift
			Register) 회로 구성 및 코드 구현, 실험 환경 세팅
	팀원	강종규	아두이노 2(LCD, 4*4 키패드, 부저, LED) 회로 구성, 틴커캐드
			회로 구성
	팀원	이준기	아두이노 2(LCD, 4*4 키패드, 부저, LED) 회로 구성 및 코드
			구현, 작동 흐름도 구성
	선거 최선 미 패기		

결과물