Компьютерное Зрение Лекция №6, осень 2021

Введение в задачи машинного обучения

Историческая справка

год	СОБЫТИЕ
1763	Опубликовано эссе Томаса Байеса, представляющее работу, лежащую в основе Теоремы Байеса.
1805	Лежандр описывает метод наименьших квадратов.
1812	Лаплас публикует работу, в которой определена Теорема Байеса.
1913	Андрей Марков описывает метод, позже называемый «Цепи Маркова».
1950	Алан Тьюринг предлагает концепцию Машинного обучения, предвещающую генетические алгоритмы.
1957	Розенблат изобретает perceptron.
1967	Изобретен метод ближайших соседей
1970	Seppo Linnainmaa публикует общий метод автоматического дифференцирования (AD)
1986	Seppo Linnainmaa применяе обратный режим автоматического дифференцирования

Постановка задачи машинного обучения

Задача: восстановить сложную зависимость по конечному числу примеров

Матрица «объекты-признаки»

Датасет с задержками рейсов.

	Month	DayofMonth	DayOfWeek	DepTime	UniqueCarrier	Origin	Dest	Distance	dep_delayed_15min
0	c-8	c-21	c-7	1934	AA	ATL	DFW	732	N
1	c-4	c-20	c-3	1548	US	PIT	MCO	834	N
2	c-9	c-2	c-5	1422	XE	RDU	CLE	416	N
3	c-11	c-25	c-6	1015	00	DEN	MEM	872	N
4	c-10	c-7	c-6	1828	WN	MDW	OMA	423	Υ

Матрица «объекты-признаки»

Датасет с задержками рейсов.

	Month	DayofMonth	DayOfWeek	DepTime	UniqueCarrier	Origin	Dest	Distance	dep_delayed_15min	
0	c-8	c-21	c-7	1934	AA	ATL	DFW	732	N	
1	c-4	c-20	c-3	1548	US	PIT	MCO	834	N	
2	c-9	c-2	c-5	1422	XE	RDU	CLE	416	N	
3	c-11	c-25	c-6	1015	00	DEN	MEM	872	N	
4	c-10	c-7	c-6	1828	WN	MDW	OMA	423	Υ	
	4 C-10 C-7 C-6 1828 WIN WIN OWA 423 Y									

Признаки

Матрица «объекты-признаки»

Датасет с задержками рейсов.

		Month	DayofMonth	DayOfWeek	DepTime	UniqueCarrier	Origin	Dest	Distance	dep_delayed_15min
	0	c-8	c-21	c-7	1934	AA	ATL	DFW	732	N
	1	c-4	c-20	c-3	1548	US	PIT	MCO	834	N
	2	c-9	c-2	c-5	1422	XE	RDU	CLE	416	N
	3	c-11	c-25	c-6	1015	00	DEN	MEM	872	N
	4	c-10	c-7	c-6	1828	WN	MDW	OMA	423	Υ

Объекты (прецеденты)

Матрица «объекты-признаки»

Датасет с задержками рейсов.

	Month	DayofMonth	DayOfWeek	DepTime	UniqueCarrier	Origin	Dest	Distance	dep_delayed_15min
0	c-8	c-21	c-7	1934	AA	ATL	DFW	732	N
1	c-4	c-20	c-3	1548	US	PIT	MCO	834	N
2	c-9	c-2	c-5	1422	XE	RDU	CLE	416	N
3	c-11	c-25	c-6	1015	00	DEN	MEM	872	N
4	c-10	c-7	c-6	1828	WN	MDW	OMA	423	Υ

Целевая переменная

Признаки

Признаковое описание объекта - Вектор:

$$x_i = \{d_1, d_2, d_3, \dots d_n\}$$

Множество значений признака

$$d_j \in D_j$$

Бинарные признаки

 $D_j = \{0, 1\}$

В нашем примере: Целевая переменная

Категориальные признаки

D_j - упорядоченное множество

В нашем примере: Локация отправления Локация прибытия

Вещественные признаки

 $D_j = \mathbb{R}^m$

В нашем примере: Расстояние

Где взять данные?

- Google Dataset Search. Dataset Search позволяет по ключевому слову искать датасеты по всей Сети.
- <u>Kaggle</u>. Площадка для соревнований по машинному обучению с множеством интересных датасетов. В <u>списке</u> датасетов можно найти разные нишевые экземпляры от <u>оценок рамена</u> до <u>баскетбольных данных</u>

 <u>NCAA</u> и <u>базы лицензий на домашних животных в Сиэтле</u>.
- <u>UCI Machine Learning Repository</u>. Один из старейших источников датасетов в Сети и первое место, куда стоит заглянуть в поиске интересных датасетов. Хотя они добавляются пользователями и потому имеют различную степень «чистоты», большинство из них очищены. Данные можно скачивать сразу, без регистрации.
- VisualData. Датасеты для компьютерного зрения, разбитые по категориям. Доступен поиск.
- Find Datasets | CMU Libraries. Коллекция датасетов, предоставленная университетом Карнеги Меллон.

Больше датасетов: https://tproger.ru/translations/the-best-datasets-for-machine-learning-and-data-science/

Формальная постановка задачи

Дана обучающая выборка (объекты независимы):

$$X_m = \{ (x_1, y_1), ..., (x_m, y_m) \}$$

Для задачи регрессии - Целевая переменная задана вещественным числом $(x_1,y_1)\in\mathbb{R}^m\times\mathbb{Y},\,\mathbb{Y}=\mathbb{R}$

Для задачи классификации - Целевая переменная задана конечным числом меток $(x_1,y_1)\in\mathbb{R}^m\times\mathbb{Y},\,\mathbb{Y}=\{-1;\,1\}$

Задать такую функцию f(x) от вектора признаков x, которое выдает ответ для любого возможного наблюдения x

$$f(\mathbf{x}): \mathbb{X} \to \mathbb{Y}$$

Основная гипотеза МО: Схожим объектам соответствуют схожие объекты

Выбор модели

Формальная постановка задачи

Метрики качества в задачах регрессии

Средняя квадратичная ошибка (Mean Squared Error, MSE):

$$MSE = \frac{1}{l} \sum_{i=1}^{l} (f(x_i) - y_i)^2$$

Предсказание модели для объекта x_i

Средняя абсолютная ошибка (Mean Absolute Error, MAE):

$$MAE = \frac{1}{l} \sum_{i=1}^{l} |f(x_i) - y_i|$$

Значение целевой переменной для объекта x_i

Метрики качества в задачах регрессии

Коэффициент детерминации (R2):

$$R^2 = 1 - rac{\sum_{i=1}^l (f(x_i) - y_i)^2}{\sum_{i=1}^l (y_i - \overline{y})^2}$$
 , где $\overline{y} = \sum_{i=1}^l y_i$

Другие полезные метрики:

Квантильная регрессия
Mean Absolute Percentage Error

Матрица ошибок (confusion matrix):

		Actual class				
		Yes	No			
Predicted	Yes	True Positive (TP)	False Positive (FP)			
class	No	False Negative (FN)	True Negative (TN)			

Матрица ошибок (confusion matrix):

		Actual class		
		Yes	No	
Predicted	Yes	90	20	
class	No	10	50	

Выборка: Всего 170 Положительного класса 100 Отрицательного класса 70

Прогноз: Положительного класса 110 Отрицательного класса 60

Матрица ошибок (confusion matrix):

		Actual class			
		Yes	No		
Predicted	Yes	True Positive (TP)	False Positive (FP)		
class	No	False Negative (FN)	True Negative (TN)		

Доля правильных ответов (accuracy):

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Матрица ошибок (confusion matrix):

		Actual class		
		Yes	No	
Predicted	Yes	True Positive (TP)	False Positive (FP)	
class	No	False Negative (FN)	True Negative (TN)	

	TP + TN
accuracy =	$\overline{TP + TN + FP + FN}$

Actual class

True Negativ	ve (TN)		
		Yes	No
Predicted	Yes	90	20
class	No	10	50

Матрица ошибок (confusion matrix):

Матрица ошибок (confusion matrix):			Actual class	
			Yes	No
	Predicted	Yes	True Positive (TP)	False Positive (FP)
	class	No	False Negative (FN)	True Negative (TN)

Точность (precision):

$$precision = \frac{TP}{TP + FP}$$

Доля объектов, предсказанных как положительные, действительно является положительными.

Полнота (recall):

$$recall = \frac{TP}{TP + FN}$$

Доля положительных объектов, которую выделил классификатор

Матрица ошибок (confusion matrix):			Actual class	
			Yes	No
Pro	Predicted class	Yes	` ′	False Positive (FP)
		No	False Negative (FN)	True Negative (TN)

F-мера:

$$F_{\beta} = (1 + \beta^2) \frac{precision \times recall}{\beta^2 precision + recall}$$

$$F = \frac{2 \times precision \times recall}{precision + recall}$$

ROC AUC

или площадь (Area Under Curve) под кривой ошибок (Receiver Operating Characteristic curve).

Кривая ошибок (Receiver Operating Characteristic curve):

$$TPR = \frac{TP}{TP + FN} = recall$$

$$FPR = \frac{FP}{FP + TN}$$

$$y = \cos(x), x \in [-5, 5]$$

$$y = \cos(x), x \in [-5, 5]$$

$$y=\cos(x)+arepsilon$$
, где $arepsilon=\mathcal{N}\left(0,rac{1}{2}
ight)$, $x\in[-5,5]$

Восстановим зависимость линейной функцией

Восстановим зависимость с помощью полинома 5-ого порядка

Восстановим зависимость с помощью полинома 5-ого порядка

Восстановим зависимость с помощью полинома 11-ого порядка

	MSE	MAE	R2
Линейная модель	0.472	0.586	0.0004
Полином 5-ой степени	0.047	0.179	0.9000
Полином 11-ой степени	0.000	0.000	1.0000

Bias and Variance tradeoff

$$Err(x) = E[(Y - f(x))^2]$$

$$Err(x) = Bias^2 + Variance + IrreducibleError$$

Стратегии валидации

Стратегии валидации

Выбор метрики

Евклидово расстояние ("euclidean")

$$\sqrt{\sum (x-y)^2}$$

Расстояние городских кварталов «манхэттенское расстояние» ("manhattan")

$$\sum |x-y|$$

Расстояние Чебышева "chebyshev"

$$max(x - y)$$

Растояние Минковского "minkowski"

$$(\sum |x-y|^p)^{\frac{1}{p}}$$

k = 6

Веса могут быть выбраны в соответствии с порядком объектов или В соответствии с расстоянием до объектов

k = 6

Веса могут быть выбраны в соответствии с порядком объектов или В соответствии с расстоянием до объектов

$$Z_{\bullet} = \frac{w(x_{(1)}) + w(x_{(2)}) + w(x_{(3)})}{w(x_{(1)}) + w(x_{(2)}) + w(x_{(3)}) + w(x_{(4)}) + w(x_{(5)}) + w(x_{(6)})}$$

$$Z_{\bullet} = \frac{w(x_{(1)}) + w(x_{(2)}) + w(x_{(3)}) + w(x_{(4)})}{w(x_{(4)}) + w(x_{(5)}) + w(x_{(6)})}$$

Гипотеза компактности: если мера сходства объектов введена достаточно удачно, то схожие объекты гораздо чаще лежат в одном классе, чем в разных.

- 1. Вычислить расстояние до каждого из объектов обучающей выборки.
- 2. Отобрать к объектов обучающей выборки, расстояние до которых минимально.
- 3. Класс классифицируемого объекта это класс, наиболее часто встречающийся среди k ближайших соседей.

sklearn.neighbors.KNeighborsRegressor

(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None, **kwargs)

sklearn.neighbors.KNeighborsClassifier

(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None, **kwargs)

Нормирование признаков

Стандартизация признаков

$$z = \frac{x - \min(x)}{\max(x) - \min(x)}$$

$$z = rac{x - \mu(x)}{\mu(x) - \sigma}$$
 ,где

$$z \in [0,1]$$

 μ - Математическое ожидание (среднее)

$$\sigma$$
 - Стандартное отклонение $\sigma = \sqrt{D}$

$$D$$
 - Дисперсия
$$D = \mu(x^2) - \mu(x)^2$$

Рассмотрим описанное выше на практике