

DS(ML)B: Data Science (& Machine Learning) for Business

Profs. Anton Ovchinnikov, Theos Evgeniou, Spyros Zoumpoulis

Sessions 05-06

Introduction to Classification

Plan for the day – Learning objectives

- Conceptual introduction to classification: what/why/metrics
- Data science methodologies for classification:
 - Stats: logistic regression (generalized linear model, glm) + stepAIC variable selection
 - Machine Learning:
 - « mother of all methods », CART (classification and regression tree)
 - « derivartives » of CART: randomforest, gradient boosting machines (xgboost)
 - in Session 0708: additional methods: regularizations (LASSO, Ridge), support vector machines (SVM)
- Application:
 - Customer Churn case [perhaps the most common business application of DS&ML]
 - Scholastic Travel Company (STC) case: part (A) today, continue with (B) in Tutorial 2

What is classification, and why do we need it?

- In sessions 1-4 we considered a task of predicting a quantity (price of a diamond, electricity rate, number of website users)
- But an equally* common task is to predict an outcome of an event + understand actionable drivers
- Binary outcomes ("events"):
 - Will a customer churn? Will a customer default on a loan?
 - Will an employee/student accept a job/school offer
- Multi-nomial outcomes:
 - Will a person walk/drive/bike/take a public transit?
 - Will a customer buy iPhone X/8/8+/nothing?

Predicting events: what if "Y" is categorical?

- Examples of categorical dependent variable? Pre-class reading?
- Customer choice:
 - Business school "D" versus "H" as a function of GMAT score

If we know GMAT, can we predict choice?

- 4	A	В	C
1	ID	GMAT	Choice
2	1	655	D
3	2	660	D
4	3	660	D
5	4	662	D
6	5	662	D
7	6	674	D
8	7	676	D
9	8	680	D
10	9	680	D
11	10	682	D
12	11	683	D
13	12	687	Н
14	13	687	D
15	14	689	D
16	15	692	D
17	16	696	Н
18	17	700	Н
19	18	701	D
20	19	703	D
21	20	708	Н
22	21	708	D
		ı	

Predicting choice: Regression?

Step one: Transform D/H into a dummy variable (0,1)

• Step two: Run a (linear) regression

Predicting choice: Regression?

• Step one: Transform D/H into a dummy variable (0,1)

- Step two: Run a (linear) regression
 - How should we interpret the Y variable?
 - E.g. for GMAT=700, Y = 0.4... [of what?]
 - What about GMAT = 650?

Multiple Regi	Multiple	R-Square	Adjusted	StErr of		
Summary	R	N-Square	R-Square	Estimate		
	0.6385	0.4076	0.3897	0.392249		
	Degrees of	Sum of	Mean of	F-Ratio	p-Value	
ANOVA Table	Freedom	Squares	Squares	1-hacio	p-value	
Explained	1	3.494068	3.494068	22.7095	< 0.0001	
Unexplained	33	5.07736	0.153859			
	Coefficient	Standard	t-Value	p-Value	Confidence	Interval 95%
Regression Ta	Coefficient	Error	t-value	p-value	Lower	Upper
Constant	-7.72912	1.713126	-4.5117	< 0.0001	-11.2145	-4.24374
GMAT	0.011619	0.002438	4.7654	< 0.0001	0.006659	0.01658

Predicting **Probability** of Choice: Logistic Regression

- It is natural to interpret the "Y" variable in the preceding example as a probability of choice
 - Hence we are predicting the probability of choice, not the choice itself
- But linear model is not suitable to predict probabilities (e.g., because it cannot guarantee probability >0 or <1)
- Logit model (hence "logistic" regression) is one such model
 - The term "logit" refers to the Log of odds prob/(1-prob).
 - Logit is not the only model used to model choice; another popular model is called "probit"

```
Prob(A is chosen from set of S alternatives) = \frac{\exp(utility of A)}{\sum \exp(utilites of all alternatives)}
```

"utility of A" = linear function of various variables

Logistic/Logit Model

General form:

$$Prob(A is chosen from set of S alternatives) = \frac{\exp(utility of A)}{\sum \exp(utilites of all alternatives)}$$

- Here "all" might also include an alternative to do/buy nothing
- With only two alternatives:

$$Prob(A is chosen over B) = \frac{\exp(utility \ of \ A)}{\exp(utility \ of \ A) + \exp(utility \ of \ B)}$$

• Further, since only relative utility matters, we can [arbitrarily] normalize $utility\ of\ B=0$, and then noting that exp(0)=1

$$Prob(A is chosen over B) = \frac{\exp(utility \ of \ A)}{1 + \exp(utility \ of \ A)}$$

Back to Our Example: School H Versus D

Let $utility \ of \ D = 0$ [arbitrarily]

Let $utility \ of \ H = a + b * GMAT$

We can then express the probabilities of choices as a function of a and b

...and estimate utility coefficients a and b – "fit" the logistic regression model

	Α	В	С	D	E	F	G	J
1		uH=a+l	o*GMAT		1 = 1	a=	-48	F4//4 . F4)
2				=\$G\$2+	-\$G\$1*B	b=	0.07	=F4/(1+F4)
3	ID	GMAT	Choice	Dummy	uH \	EXP(uH)	Prob(H is chosen)	
4	1	655	D	0	-2.1500	0.1165	0.1043	
5	2	660	D	0	-1.8000	0.1653	0.1419	
6	3	660	D	0	-1.8000	0.1653	0.1419	
7	4	662	D	0	-1.6600	0.1901	0.1598	
8	5	662	D	0	-1.6600	0.1901	0.1598	
9	6	674	D	0	-0.8200	0.4404	0.3058	
10	7	676	D	0	-0.6800	0.5066	0.3363	
11	8	680	D	0	-0.4000	0.6703	0.4013	
12	9	680	D	0	-0.4000	0.6703	0.4013	
13	10	682	D	0	-0.2600	0.7711	0.4354	
14	11	683	D	0	-0.1900	0.8270	0.4526	
15	12	687	Н	1	0.0900	1.0942	0.5225	
16	13	687	D	0	0.0900	1.0942	0.5225	
17	14	689	D	0	0.2300	1.2586	0.5572	l.
18	15	692	D	0	0.4400	1.5527	0.6083	
19	16	696	Н	1	0.7200	2.0544	0.6726	
20	17	700	Н	1	1.0000	2.7183	0.7311	
21	18	701	D	0	1.0700	2.9154	0.7446	
22	19	703	D	0	1.2100	3.3535	0.7703	
23	20	708	Н	1	1.5600	4.7588	0.8264	
								•

Estimating Utility Coefficients: Maximum Likelihood Estimation (MLE)

- For ID1:
 - Actual choice: D
 - Predicted probability of choosing H is 0.1043
 - Hence the likelihood that ID1 indeed chooses D in our model is 1-0.1043=0.8957
- For ID2: Choice is D, predicted prob(H)=0.1419, hence the likelihood is 0.8581
- The likelihood of ID1 choosing D and ID2 choosing D is 0.8957*0.8581, etc...
- We would like to select model coefficients a and b to maximize likelihood (Maximum Likelihood Estimation, MLE)
- Note:
 - With many data points such product will be very small - inconvenient for optimization
 - However, Log (X*Y*Z)=Log(X)+Log(Y)+Log(Z)
- Hence instead of maximizing likelihood, we maximize log-likelihood (LL)

A	Α	В	С	D	G	Н	1	J
1		uH=a+l	b*GMAT		-48	=F4/(1+F4)	=IF(D4=1,G4,1-G4)
2					0.07			=LN(H4)
3	ID	GMAT	Choice	Dummy	Prob(H is chosen).	Likelihood	Log(Łikelihood)	(LIV(IIT)
4	-1	655>	D	0	0.1043	0.8957	-0.1102	
5	2	660	D	0	0.1419	0.8581	-0.1530	
6	3	660	D	0	0.1419	0.8581	-0.1530	
7	4	662	D	0	0.1598	0.8402	-0.1741	
8	5	662	D	0	0.1598	0.8402	-0.1741	
9	6	674	D	0	0.3058	0.6942	-0.3649	
10	7	676	D	0	0.3363	0.6637	-0.4099	
11	8	680	D	0	0.4013	0.5987	-0.5130	
12	9	680	D	0	0.4013	0.5987	-0.5130	
13	10	682	D	0	0.4354	0.5646	-0.5716	
14	11	683	D	0	0.4526	0.5474	-0.6027	
15	12	687	Н	1	0.5225	0.5225	-0.6492	
16	13	687	D	0	0.5225	0.4775	-0.7392	
17	14	689	D	0	0.5572	0.4428	-0.8147	
18	15	692	D	0	0.6083	0.3917	-0.9372	
19	16	696	Н	1	0.6726	0.6726	-0.3966	
20	17	700	Н	1	0.7311	0.7311	-0.3133	
21	18	701	D	0	0.7446	0.2554	-1.3649	
22	19	703	D	0	0.7703	0.2297	-1.4710	
23	20	708	Н	1	0.8264	0.8264	-0.1907	

Results: School H Versus D example

	Α	В	С	D	Е	F	G	Н	I	J	K		L	М	N	0	P	Q	R	S	T	U	V	W	X
1		uH=a+l	b*GMAT		I a I i dia	a=	-48.47108126		TE(D. 1.01.1.01)												Logistic Regression for Dummy				
2				=\$G\$2+	\$G\$1*B	b=	0.068326197	_	IF(D4=1,G4,1-G4)			1			•	• •	••	• •	• • •	•	Summary Measures				
3	ID	GMAT	Choice	Dummy	uH \	EXP(uH)	Prob(H is chosen)	Likelihood	Log(Likelihood)	l	e								1000	-	Null Deviance	47.80356733			
4	1	655	D	0	-3.7174	0.0243	0.0237	0.9763	-0.0240		9	8.0									Model Deviance	30.96154543			
5	2	660	D	0	-3.3758	0.0342	0.0331	0.9669	-0.0336		-5										Improvement	16.8420219			
6	3	660	D	0	-3.3758	0.0342	0.0331	0.9669	-0.0336		of	0.6									p-Value	< 0.0001			
7	4	662	D	0	-3.2391	0.0392	0.0377	0.9623	-0.0384		>														
8	5	662	D	0	-3.2391	0.0392	0.0377	0.9623	-0.0384		≝	0.4										Coefficient	Standard	Wald	p-Value
9	6	674	D	0	-2.4192	0.0890	0.0817	0.9183	-0.0853		jq										Regression Coefficients	Coefficient	Error	Value	p-value
10	7	676	D	0	-2.2826	0.1020	0.0926	0.9074	-0.0971		po	0.2			and the second						Constant	-48.47037424	15.38526195	-3.150441923	0.0016
11	8	680	D	0	-2.0093	0.1341	0.1182	0.8818	-0.1258		S.	0.2			and the same of th						GMAT	0.068325198	0.021740921	3.142700311	0.0017
12	9	680	D	0	-2.0093	0.1341	0.1182	0.8818	-0.1258		-	0													
13	10	682	D	0	-1.8726	0.1537	0.1332	0.8668	-0.1430			U					-					1	0	Percent	
14	11	683	D	0	-1.8043	0.1646	0.1413	0.8587	-0.1524			6	50	670	6	90	710	7	730	750	Classification Matrix			Correct	
15	12	687	Н	1	-1.5310	0.2163	0.1778	0.1778	-1.7268							GM/	۸Т				1	11	4	73.33%	
16	13	687	D	0	-1.5310	0.2163	0.1778	0.8222	-0.1958							GIVIA	41				0	3	17	85.00%	
17	14	689	D	0	-1.3943	0.2480	0.1987	0.8013	-0.2215																
40		coo	_	_																					

$$Prob(H \ is \ chosen|GMAT) = \frac{\exp(utility \ of \ H)}{1 + \exp(utility \ of \ H)} = \frac{\exp(-48,47 + 0,0683 * GMAT)}{1 + \exp(-48,47 + 0,0683 * GMAT)}$$

With GMAT=700:

- Utility of H = -48,47+0,0683*700 = -0,66 [why is it negative?]
- Prob of $H = \exp(-0.66)/(1+\exp(-0.66)) = 0.5168/1.5168 = 0.34$

Logistic Regression in R: School H vs D example


```
ChoiceData <- read.csv(file.choose()) #load data
str(ChoiceData) #make sure that the field types are interpreted correctly (as
numbers/integers, factors, etc.)
Logistic_Model <-glm(Choice ~ GMAT, data = ChoiceData, family="binomial"(link="logit"))
#logistic regression is part of the "generalized linear models" family, hence glm
summary(Logistic_Model) #summary of the model
par(mfrow=c(1,4)) # This command sets the plot window to show 1 row of 4 plots
plot(Logistic Model) # check the model using diagnostic plots
predict (Logistic_Model, newdata=data.frame("GMAT"=700), type="response") #predict the
probability of choice as a function of GMAT; type="link" will predict the utility
call:
glm(formula = Choice ~ GMAT, family = binomial(link = "logit"),
   data = ChoiceData)
Deviance Residuals:
  Min
        10 Median
-2.1298 -0.5889 -0.2593 0.6726 1.8584
Coefficients:
         Estimate Std. Error z value Pr(>|z|)
(Intercept) -48.47108 15.38544 -3.150 0.00163 **
         GMAT
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> predict(Logistic_Model, newdata=data.frame("GMAT"=700),type="response")
#predict the probability of choice as a function of GMAT
      1
0.3446266
```

Logit models are rather accurate Nested MNL, beer sales, 35m observations, <500 variables [prices, promos...]

Logit models are rather accurate Nested MNL, beer sales, 35m observations, <500 variables [prices, promos...]

Back to classification: threshold and metrics

- For models with continuous quantities we discussed multiple metrics:
 r², MAPE, (R)MSE
- For classification models we need other metrics, that account for the fact that the predicted object is an event:
 - 1. Confusion matrix and its measures
 - 2. ROC ("receiver operating characteristic") curve
 - 3. AUC ("area under curve) and Gini coefficient
 - 4. Lift chart / Gains chart
- All metrics rely on Threshold rule: IF(Prob > T, then "Yes", otherwise "No")
 that converts from probability to events/classification

https://en.wikipedia.org/wiki/Sensitivity and specificity

Confusion Matrix [customer retention example]

	Actual Retained	Actual Not Retained
Predicted Retained	a (TP)	b (FP)
Predicted Not Retained	c (FN)	d (TN)

TP stands for True Positive
FN stands for False Negative, etc.

https://en.wikipedia.org/wiki/Sensitivity and specificity

Confusion Matrix [customer retention example]

	Actual Retained	Actual Not Retained		
Predicted Retained	a (TP)	b (FP)	Positive Predictive Value a/(a+b)	
Predicted Not Retained	c (FN)	d (TN)	Negative Predictive Value d/(c+d)	_
·	Sensitivity [TPR] a/(a+c)	Specificity [TNR] d/(b+d)		

https://en.wikipedia.org/wiki/Sensitivity_and_specificity

Confusion Matrix [customer retention example]

	Actual Retained	Actual Not Retained	
Predicted Retained	a (TP)	b (FP)	Positive Predictive Value a/(a+b)
Predicted Not Retained	c (FN)	d (TN)	Negative Predictive Value
	Sensitivity [TPR]	Specificity [TNR]	Overall measure: Accuracy=(a+d)/(a+b+c+d)
		I	Misclassification error = 1- accuracy

ROC Curve: Where are errors made?

 Varying threshold T and plotting the [sensitivity, 1-specificity] points leads to a curve called "ROC" ["receiver operating characteristic", from analyzing radar signals during WWII]

AUC (Area Under Curve)

^{*}context specific (driverless car vs fin. instrument)

Gini Coefficient

Gini coefficient (index, ratio):

Common measure of income distribution, named after the Italian statistician's 1912 paper

- Gini = B/(A+B)
- Note that AUC = B+C
- Because A+B+C=1, A+B=C=1/2:
- Gini = 2*AUC-1

Lift Chart / Gains Chart

- Lift is a metric of how much better a model does compared to just guessing.
- It evaluates cumulative model performance (especially relevant in marketing analytics)
- Example:
 - 20% of random customers correspond to 20% of those who are retained: random lift at 20th percentile = 20/20=1
 - if 20% of the "best" customers per the model correspond to 45% of all retained customers, then model lift at 20^{th} percentile = 45/20 = 2.25

Now lets practice STC(A) case

- What is the case about?
- What do we need to do?
- What do we have with the case?
 - 1. Data
 - "Dirty data" data with some inaccuracies and omissions. Need to "clean" first.
 [This data is already pre-cleaned, BTW]
 - High-dimensional and "rare" categories [why is this a problem?]
 - 2. Data dictionary detailed description of the data fields SUPER important document in any data analytics project
 - What does "Single.Grade.Trip.Flag" mean?
 - What does "Is.Non.Annual" mean?
 - What does "SPR.New.Existing" mean?
 - What does "FPP" "FRP", PAX" mean?

Mapping in Tableau (practice on your own)

STC (A) Case: Data *versus* Prediction Task

- It is now spring 2013 and we want to predict which of our current (i.e. year 2012) customers will be retained in 2013
- What kind of data we have/need to best mimic that task?

STC (A) Case: Data *versus* Prediction Task (continued...)

- Key idea: The database will contain mode data that you know when you are making your prediction task
- Need to be very careful not to use data you learn concurrently with the outcome of your prediction
 - If not done, this is called "Target Leakage" a major problem in analytics

STC (A) Case: Training versus Testing Data

How can we mimic the 2013 prediction task with 2011/12 data?

Key idea:

- Leave out some 2011/12 data and "pretend" as if it is a 2013 data [holdout]
- Use the rest of 2011/12 data [training] to build models, and assess quality of their predictions on the holdout

Now lets practice STC(A) case

- Files on portal:
 - R-code 0506 R code -- STC (A) Logistic.R
 - CSV data 0506 CSV data -- STC(A) data_numerical dates.csv
 - BTW, how to generate the CSV datafile from an Excel case exhibit?
- The general structure of the code has the following steps:
 - 1. Packages & libraries: package for managing packages, pacman
 - 2. Load data
 - 3. "Clean" data: formats, missing values (custom function fixNAs) + combine rare categories (table function to explore + custom function)
 - 4. Split the dataset into testing vs training randomly
 - 5. Run ("train") a model on the <u>training</u> data: stepAIC variable selection
 - 6. Obtain model prediction for the testing data
 - 7. Obtain metrics (confusion matrix + metrics, ROC curve, AUC, lift chart) for the testing data

Missing values

- VERY often, some of the data entries will be missing
- What should we do about it?
- Ignore? Bad idea: missing is often not random
- Fix missing values:
 - Categorical variables [easy] <u>add</u> a missing category
 - Continuous variables [harder]:
 - replace (with 0/mean/ median)
 - <u>impute</u> (create a separate mini-model to predict the missing values based on what's not missing)
- + add a "surrogate" dummy for each missing value

AA	AB	AC	AD	AE	AF	AG	AH	Al	AJ	AK
Poverty Co	Region	CRM Segn	School Ty	Parent Me	Parent Me	Parent Me	MDR Low	MDR High	Total Scho	Income Le
В	Southern	4	PUBLIC	1	***************************************		K	5	927	Q
С	Other	10	PUBLIC	1	***********	########	7	8	850	Α
С	Other	10	PUBLIC	1	########		6	8	955	0
	Other	7	CHD	0					0	
D	Other	10	PUBLIC	1	########		6	8	720	С
С	Other	8	PUBLIC	1	########		10	12	939	I
	Other	8	Catholic	1	########		9	12	225	G
	Other	7	CHD	1	9/8/2010				0	
	Other	5	CHD	1	9/8/2010		6	12	500	K
	Houston	5	Private no	1	***************************************		PK	8	635	K
	Other	10	CHD	1	9/9/2010		K	12	746	0
	Other	10	CHD	1	************		PK	8	650	L
A	Northern	5	PUBLIC	1	########		6	8	670	Q
В	Northern	5	PUBLIC	1		9/1/2010	6	8	750	L
	Northern	7	PUBLIC	1		9/9/2010			0	P5
В	Other	6	PUBLIC	1	**********	########	6	8	753	1

Handling missing values: custom function "fixNAs"

```
# Crete a function to fix NAs
fixNAs<-function(data frame) {</pre>
integer reac<-0 # Define reactions to Nas for different classes of variables as shown in your data str
factor reac<-"FIXED NA"
character reac<-"FIXED NA"
date reac<-as.Date("1900-01-01")
for (i in 1 : ncol(data frame)) {  # Loop through columns, apply the defined reaction + create surrogate
    if (class(data_frame[,i]) %in% c("numeric", "integer")) {
      if (any(is.na(data frame[,i]))){
        data frame[,paste0(colnames(data frame)[i]," surrogate")]<-</pre>
          as.factor(ifelse(is.na(data_frame[,i]),"1","0"))
        data_frame[is.na(data_frame[,i]),i]<-integer_reac</pre>
    } else
                                                                                    Do you need to know
      if (class(data frame[,i]) %in% c("factor")) {
        if (any(is.na(data frame[,i]))){
                                                                                     how to write such
          data_frame[,i]<-as.character(data_frame[,i])</pre>
                                                                                    custom functions?
          data frame[,paste0(colnames(data frame)[i]," surrogate")]<-</pre>
            as.factor(ifelse(is.na(data frame[,i]),"1","0"))
                                                                                     NO!
          data frame[is.na(data frame[,i]),i]<-factor reac
                                                                                     But you certainly can
          data frame[,i]<-as.factor(data frame[,i])</pre>
      } else {
                                                                                     copy-paste this function
        if (class(data_frame[,i]) %in% c("character")) {
          if (any(is.na(data frame[,i]))){
                                                                                     and use it any time you
            data_frame[,paste0(colnames(data_frame)[i],"_surrogate")]<-</pre>
                                                                                    need to deal with
              as.factor(ifelse(is.na(data frame[,i]),"1","0"))
            data frame[is.na(data frame[,i]),i]<-character reac
                                                                                     missing values
        } else {
          if (class(data_frame[,i]) %in% c("Date")) {
            if (any(is.na(data frame[,i]))){
              data_frame[,paste0(colnames(data_frame)[i],"_surrogate")]<-</pre>
                as.factor(ifelse(is.na(data frame[,i]),"1","0"))
              data_frame[is.na(data_frame[,i]),i]<-date_reac</pre>
                                                                            } } }
                                                                                   return (data_frame)
```

INSEAI

Further technical R remarks: all vars and combining categories

Running a model with all variables included (use "dot or independent variables:

```
glm(Retained.in.2012.~ data=training, family="binomial"(link="logit")) # for
logistic
ctree_tree<-ctree(Retained.in.2012. data=training) # for CART</pre>
```

Combining categories (this example, with less than 10 datapoints):

```
combinerarecategories<-function(data_frame, mincount) { #custom function to
combine rare categories
  for (i in 1 : ncol(data_frame)) {
        a<-data_frame[,i]
        replace <- names(which(table(a) < mincount))
        levels(a) [levels(a) %in% replace] <-
paste("Other", colnames(data_frame)[i], sep=".")
        data_frame[,i]<-a     }
return(data_frame) }
STCdata<-combinerarecategories(STCdata, 10) #combine categories with <10 values
in STCdata into "Other"</pre>
```

Variable selection

- In the world of "Big Data" 000s of variables can be easily engineered/created (e.g., through interactions)
- How to select which variables should be in the model?
- Forward/Backward/Stepwise regressions:
- Main idea (forward example):
 - Find which single X is most correlated with Y, add X1 to the model.
 - Given that X1 is already in the model, find which other variable adds most explanatory power. Add X2 and re-estimate the model.
 - Repeat until no variable can be added
- Today: stepAIC ["Akaike information criterion"]
 - stepAIC(model_logistic,direction = c("both"),trace = 1)
- Session 07-08: LASSO/Ridge penalties for many variables ("regularizations")

How "good" is our model?

Model diagnositcs plot (model_logistic_stepwiseAIC)

How "good" is our model?

Model diagnositcs plot (model_logistic_stepwiseAIC)

STC(A) results confusion matrix

> confusionMatrix(logistic_classification,testing\$Retained.in.2012.,positive = "1") #Display confusion matrix
Confusion Matrix and Statistics

```
Reference
                                              Our model is ~80%
Prediction 0 1
        0 151 71
                                              accurate
        1 45 233
             Accuracy: 0.768
               95% CI: (0.7285, 0.8043)
   No Information Rate: 0.608
   P-Value [Acc > NIR] : 2.293e-14
                Kappa: 0.5245
Mcnemar's Test P-Value : 0.02028
           Sensitivity: 0.7664
                                            Accuracy is balanced
          Specificity: 0.7704
        Pos Pred Value: 0.8381
        Neg Pred Value: 0.6802
           Prevalence: 0.6080
        Detection Rate: 0.4660
  Detection Prevalence: 0.5560
     Balanced Accuracy: 0.7684
      'Positive' Class : 1
```

STC(A) results ROC curve and AUC

INSEAD

*full data + advanced pre-processing

AUC = 89% ~ "Excellent"

STC(A) results ROC curve and AUC

Where is 1.6 coming from?

On average 60.73% of customers are retained. So from the a decile of the testing data (50 customers), ~30 are expected to be retained.

But in the top decile, all 50 were retained, we see this from the ROC curve [how?], which is 50/30~1.6 times more than average

Intermediate summary: classification metrics, logistic regression and STC(A) case

- Classification ~ predicting events
- STC(A) case: need to predict which customers will purchase next year
- Logistic regression: predicting the probability of a purchase
- R "tricks":
 - "Cleaning" dirty data: fixing types, missing values and combining rare categories
 - Stepwise variable selection
 - · Cross-validation: training the model on one subset of data, testing on another
- STC(A) case results so far with logistic regression:
 - Pretty good: overall accuracy ~80%, very few errors on top and bottom 30% of customers; clear guidance to marketing/operations
 - Structure of the model (significant variables) give insight into why some customers may not purchase

Next: CART classification and regression tree

- Main idea: set of questions (business/decision rules) which partition data into pockets ("clusters") with similar characteristics
- These rules/questions form a tree-like graphic:
- Example: surviving the Titanic crash
 - #s in parenthesis: (prob. survive, % of data)
- Several way to "build" trees
 - We will look at two:
 - Conditional inference, ctree
 - Recursive partitioning, rpart
- CART is a "mother" (father?;) of many machine learning methods, e.g., random forest, gradient boosting machines (xgboost) [time-permitting or Session 0708]

STC(A), ctree CART

Remarks:

- ctree is slow and takes lots of memory when dealing with high-dimensional categorical data: combine categories [next slide] or shrink training set
- Resultant tree:

STC(A) results: ctree CART

INSEAD

```
Confusion Matrix and Statistics
```

Reference Prediction 0 1 0 129 35 1 67 269

Accuracy: 0.796

95% CI: (0.758, 0.8305)

No Information Rate : 0.608 P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.5593 Mcnemar's Test P-Value : 0.002144

> Sensitivity: 0.8849 Specificity: 0.6582 Pos Pred Value: 0.8006 Neg Pred Value: 0.7866 Prevalence: 0.6080

Detection Rate : 0.5380 Detection Prevalence : 0.6720 Balanced Accuracy : 0.7715

'Positive' Class : 1

Disbalanced: much better at predicting who will purchase: under 10% mistakes in top 60%

File: 0506 R code -- STC (A) CART.R

STC(A), rpart CART

Remarks:

- Unlike ctree, rpart methodology relies on a user-specified "cost paramter" (cp) to decide how to prune the tree
 - High cp: small tree, possible loss of precision on training and testing
 - Low cp: large tree, better fit on testing, but overfitting on training

Interpretation?

STC(A), rpart CART

Remarks:

- Unlike ctree, rpart methodology relies on a user-specified "cost paramter" (cp) to decide how to prune the tree
 - High cp: small tree, possible loss of precision on training and testing
 - Low cp: large tree, better fit on training, but overfitting on testing
- Which cp to use?
- plotcp(rpart_tree) # rule of thumb: pick the largest cp at which error crosses dotted line ("confidence interval)

 size of tree
- In our case, 0.028~0.0036

STC(A) results: rpart CART with cp=0.007

• Interpretation? Does the tree "make sense"?

STC(A) results: rpart CART with cp=0.007


```
Confusion Matrix and Statistics
```

Reference Prediction 0 1 0 123 36 1 73 268

Accuracy: 0.782

95% CI: (0.7432, 0.8174)

No Information Rate : 0.608 P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.5268 Mcnemar's Test P-Value : 0.0005644

> Sensitivity: 0.8816 Specificity: 0.6276 Pos Pred Value: 0.7859 Neg Pred Value: 0.7736 Prevalence: 0.6080

Detection Rate : 0.5360 Detection Prevalence : 0.6820 Balanced Accuracy : 0.7546

'Positive' Class : 1

False positive rate

Do we know how to interpret these results?

File: 0506 R code -- STC (A) CART.R

Exercise TODO at home: first-hand glance at overfitting

- Create a table of AUCs for the rpart method using various cps on both training and testing data
- Do you observe that while on training the AUC improves the lower cp you use?
 - Why? A: the tree becomes more elaborate.
- But what happens on testing data?
 - Do you observe that those elaborate trees preform worse - exactly because they too elaborately capture the nuances of the training data, which may not be present in testing.
- That's overfitting!

ср	AUC _{testing}	AUC _{training}
0.1	0.735768	0.730846
0.05	0.783994	0.7806043
0.01	0.783994	0.8281842
0.005	0.8070875	
0.001	0.8070875	0.9386828
0.0005	0.7989729	0.9418476
0.0001	0.7989729	0.9418476

[Optional/Time-permitting] additional methods

- CART-based
 - randomforest
 - gradient boosting machines (xgboost)
- Session 07-08
 - regularizations (LASSO/Ridge)
 - support vector machines (SVM)
 - artificial neural networks (ANN)

Random Forest

- Key idea: Fit many trees to different samples of data, then ensemble them
- Note: No need for a separate testing data; as it "rotates" with each new tree
- In addition to simply making a prediction, random forest provides an important insight into which variables show up in many trees - "important variables"

- Why does this work?
 - "Wisdom of Crowds"
 - Decision-making by a committee: Parliament vs Dictator, Board vs CEO

Variable Importance

STC(A) results: randomforest

8

bucket

10

```
Confusion Matrix and Statistics
                                                                     0
          Reference
                                                                     8.0
Prediction 0 1
                                                                 True positive rate
         0 163 82
                                                                     ø,
         1 33 222
                                                                     o
                                                                     4
                Accuracy: 0.77
                  95% CI: (0.7306, 0.8062)
    No Information Rate: 0.608
                                                                     0.2
    P-Value [Acc > NIR] : 1.062e-14
                                                                               AUC = 85,4% ~ "Very Good"/"Excellent"
                                                                     0.0
                   Kappa: 0.538
 Mcnemar's Test P-Value: 7.605e-06
                                                                                   0.2
                                                                                             0.4
                                                                                                       0.6
                                                                                                                8.0
                                                                                                                          1.0
             Sensitivity: 0.7303
                                          Do we know how to interpret these results?
                                                                                            False positive rate
             Specificity: 0.8316
         Pos Pred Value: 0.8706
         Neg Pred Value: 0.6653
             Prevalence: 0.6080
                                                                 Cumulative lift
         Detection Rate: 0.4440
   Detection Prevalence: 0.5100
      Balanced Accuracy: 0.7809
       'Positive' Class: 1
                                                                      0
```

File: 0506 R code -- STC (AB) random forest.R

Parameters vs Hyper-Parameters

randomForest

- Recall regression. There were two kinds of "things" to figure out:
- What are the coefficients of the variables? Parameters, learned from data
- How many (which?) variables to include in regression? ← Hyper-parameters, determine how the learning will take place
- In rpart:
 - Complexity parameter cp is a hyperparameter
- **In** randomforest:
 - Number of trees in the forest, size of each tree, number of columns to sample to grow a tree, how sampling works (replacement / no), how voting works, etc.

```
model_forest <- randomForest(Retained.in.2012.~., data=training,
                             type="classification",
                             importance=TRUE,
                             ntree = 500,
                                                    # hyperparameter: number of trees in the forest
                             mtry = 10,
                                                    # hyperparameter: number of random columns to grow each tree
                             nodesize = 10,
maxnodes = 10,
                                                    # hyperparameter: min number of datapoints on the leaf of each tree
                                                   # hyperparameter: maximum number of leafs of a tree
                             cutoff = c(0.5, 0.5) # hyperparameter: how the voting works; (0.5, 0.5) means majority vote
```

- How to find more info/code? help: ?randomForest
- How to determine ("tune") the values of hyper-parameters: grid-search with cross-validation

Gradient Boosted Trees:

xgboost

- <u>Key idea:</u> Notice which data points are not explained well by the existing tree, make those data points more important ("higher weight") and re-fit to describe them better
- Combine variables and add new splits to explain those higher weight data points

- Requires specifying additional hyper-parameters: size of tree ("depth"), learning/decay rate, number of boosting iterations, etc.
- Determined vis grid search with cross-validation;
 - Example: 10 values for size of tree * 10 values for learning rate * 10 values for # of iterations *5-fold cross-validation = 5000 models to run (each time learning model parameters from training data and testing on testing data) → parallel computing(!)

STC(A) results: xgboost


```
Confusion Matrix and Statistics
```

Reference Prediction 0 1 0 143 56 1 53 248

Accuracy: 0.782

95% CI : (0.7432, 0.8174)

No Information Rate : 0.608 P-Value [Acc > NIR] : <2e-16

Карра: 0.5439

Mcnemar's Test P-Value : 0.8481

Sensitivity: 0.8158 Specificity: 0.7296 Pos Pred Value: 0.8239

Neg Pred Value : 0.8239 Prevalence : 0.6080

Detection Rate : 0.4960 Detection Prevalence : 0.6020

Balanced Accuracy : 0.7727

'Positive' Class : 1

Do we know how to interpret these results?

File: 0506 R code -- STC (AB) xgboost.R

CART-like Methods in Excel

Part of XLMiner Pro by Frontline Systems (same company that makes Solver)

Summary of Sessions 5-6

- Large volumes of data about people/behavior increased the importance of an analytical task to predict an outcome of an event:
 - Will a customer churn? Default? Open email? [binary outcome]
 - Which item from a set will the customer choose? (iPhone model, bottle size, transit mode, job offer) [multinomial outcome]
- Predicting events ~ prob → T → classification
- We studied "two-plus" Data Science methods for classification:
 - Logistic regression: build a linear model for utility and an exp transformation to predict the probability of an event
 - CART: build a decision-tree-like structure for describing pockets of data with similar properties wrp the occurrence of the event
 - CART generalizations: random forest and gradient boosting most-commonly used ML models today. Hyper-parameters
- R code templates + some further "tricks"
 - · data cleaning, custom functions, random split into train vs test, stepAIC

Next...

- Tutorial 2:
 - Mid-term R help, specifically on predicting events, STC(B) case
 - Data manipulations in R: dplyr package
- Assignment 2:
 - "Predicting credit defaults", due by Session 07-08; we will discuss A2 in class 0708
 - Note:
 - A2 is harder than A1, budget the time accordingly
 - Reach out to TA if "in trouble"

Europe | Asia | Middle East