# Atos APR03

MA.013.00-05/10 Manual de comunicação 2010



Este manual não pode ser reproduzido, total ou parcialmente, sem autorização por escrito da **Schneider Electric**.

Seu conteúdo tem caráter exclusivamente técnico/informativo e a **Schneider Electric** se reserva no direito, sem qualquer aviso prévio, de alterar as informações deste documento.

## Termo de Garantia

A **Schneider Electric Brasil Ltda**. assegura ao comprador deste produto, garantia contra qualquer defeito de material ou de fabricação, que nele apresentar no prazo de 360 dias contados a partir da emissão da nota fiscal de venda.

A **Schneider Electric Brasil Ltda.** restringe sua responsabilidade à substituição de peças defeituosas, desde que o critério de seu Departamento de Assistência Técnica, se constate falha em condições normais de uso. A garantia não inclui a troca gratuita de peças ou acessórios que se desgastem naturalmente com o uso, cabos, chaves, conectores externos e relés. A garantia também não inclui fusível, baterias e memórias regraváveis tipo EPROM.

A Schneider Electric Brasil Ltda. declara a garantia nula e sem efeito se este produto sofrer qualquer dano provocado por acidentes, agentes da natureza, uso em desacordo com o manual de instruções, ou por ter sido ligado à rede elétrica imprópria, sujeita a flutuações excessivas, ou com interferência eletromagnética acima das especificações deste produto. A garantia será nula se o equipamento apresentar sinais de ter sido consertado por pessoa não habilitada e se houver remoção e/ou alteração do número de série ou etiqueta de identificação.

A **Schneider Electric Brasil Ltda.** somente obriga-se a prestar os serviços referidos neste termo de garantia em sua sede em São Paulo - SP, portanto, compradores estabelecidos em outras localidades serão os únicos responsáveis pelas despesas e riscos de transportes (ida e volta).

#### Serviço de Suporte Schneider Electric

A **Schneider Electric** conta com um grupo de técnicos e engenheiros especializados aptos para fornecer informações e posicionamentos comerciais, esclarecer dúvidas técnicas, facilitar e garantir serviços técnicos com qualidade, rapidez e segurança..

Com o objetivo de criar um canal de comunicação entre a **Schneider Electric** e seus usuários, criamos um serviço denominado **AssisT**. Este serviço centraliza as eventuais dúvidas e sugestões, visando a excelência dos produtos e serviços comercializados pela **Schneider Electric**.

Este serviço está permanentemente disponível com uma cobertura horária das 7h30m às 18h, com informações sobre plantão de atendimento técnico durante os fins de semana e feriados, tudo que você precisa fazer é ligar para 0800 7289 110. O AssisT apresentará rapidamente a melhor solução, valorizando o seu precioso tempo.



Para contato com a Schneider Electric utilize o endereço e telefones mostrados atrás deste Manual.

## Índice

| CAPÍTULO 1             | 9  |
|------------------------|----|
| Introdução             | 9  |
| Mensagem               | 9  |
| CAPÍTULO 2             | 11 |
| Comandos               | 11 |
| ACK                    | 11 |
| PBYT                   | 11 |
| BYT                    | 11 |
| PVAR                   | 12 |
| VAR                    | 12 |
| PBLOC                  | 12 |
| BLOC                   | 13 |
| BBROAD                 | 13 |
| CAPÍTULO 3             | 15 |
| Operação de Transporte | 15 |
| CAPÍTULO 4             | 17 |
| Erros de Comunicação   | 17 |

## Introdução

Para executar a troca de dados com outros equipamentos, os controladores programáveis Atos MPC4004, Atos MPC6006 e Atos Expert BF possuem um canal de comunicação RS485. Este canal de comunicação pode ser utilizado, por exemplo, para trocar dados entre um PC compatível e um controlador programável ou utilizá-lo como uma saída de dados de um controlador programável para uma impressora serial.

O protocolo APR03 é baseado no princípio mestre-escravo, onde o controlador programável é um de 31 escravos. Escravos somente podem transmitir, quando eles recebem um comando do mestre para isso. O mestre deve controlar o acesso ao barramento.

| Dados técnicos      |                          |  |  |  |  |
|---------------------|--------------------------|--|--|--|--|
| Comunicação         | Assíncrono (half-duplex) |  |  |  |  |
| Baudrate            | 1200 a 57600             |  |  |  |  |
| Número de bits      | 8                        |  |  |  |  |
| Número de stop bits | 1                        |  |  |  |  |
| Paridade            | Nenhuma                  |  |  |  |  |

## Mensagem

O formato apresentado abaixo não inclui os bytes que são inseridos para efeito de transporte (bytes 5A e 5B e desmembramento de bytes 50, 5A e 5B). Veja a seção 4.

A mensagem neste protocolo tem o seguinte formato:

| Byte f/e  | Paridade |
|-----------|----------|
| Fffeeeeee | Р        |
| 1 byte    | 1 byte   |

O byte f/e contém a função da mensagem e o endereço do ponto da rede, dispostos da seguinte maneira:

| Byte f/e              |   |   |   |   |   |   |   |   |
|-----------------------|---|---|---|---|---|---|---|---|
| Valor f f f e e e e e |   |   |   |   |   |   |   |   |
| Bit                   | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

eeeee é o número da estação de destino - (00 to 1FH, onde 00 é reservado para o mestre)

Os comandos possíveis são:

| Comando                        | f | f | <u>f</u> |
|--------------------------------|---|---|----------|
| VAR – Envia variável           | 0 | 0 | 0        |
| PVAR – Pede variável           | 0 | 0 | 1        |
| BBROAD – envia bloco broadcast | 0 | 1 | 0        |
| BYT – Envia byte               | 0 | 1 | 1        |
| BLOC – Envia bloco             | 1 | 0 | 0        |
| PBYT – Pede byte               | 1 | 0 | 1        |
| ACK – Reconhecimento           | 1 | 1 | 0        |
| PBLOC – Pede bloco             | 1 | 1 | 1        |

Bit 7 6 5 (do byte f/e)

O conteúdo da mensagem é dependente do comando:

No caso de ACK não há conteúdo.

No caso de PBYT e PVAR é um endereço de dois bytes.

No caso de BYT é um endereço de dois bytes e um dado de um byte.

No caso de PBLOC é endereço de dois bytes e um byte indicando o número de bytes do bloco.

No caso de VAR é um endereço de dois bytes e dois bytes de dados.

No caso de BLOC é um endereço de dois bytes, um byte indicando o número de bytes e de n bytes de dados.

A paridade é a paridade longitudinal (XOR) de todos os bytes da mensagem excluindo os marcadores de início e fim de mensagem (5A e 5B)

#### **Comandos**

#### **ACK**

| Byte f/e | Paridade |
|----------|----------|
| 110eeeee | Р        |
| 1 byte   | 1 byte   |

O mestre usa esta mensagem como um teste de comunicação. O escravo usa este comando como resposta a um ACK, BYT, VAR ou a um BLOC enviado pelo mestre.

#### **PBYT**

| Byte f/e | Conteúdo |         | Paridade |
|----------|----------|---------|----------|
| 101eeeee | MSB ADD  | LSB ADD | Р        |
| 1 byte   | 1 byte   | 1 byte  | 1 byte   |

Esta mensagem é enviada pelo mestre e indica o pedido de um byte. O escravo nunca envia uma mensagem PBYT.

#### **BYT**

| Byte f/e | Conteúdo |         |        | Paridade |
|----------|----------|---------|--------|----------|
| 011eeeee | MSB ADD  | LSB ADD | DATA   | Р        |
| 1 byte   | 1 byte   | 1 byte  | 1 byte | 1 byte   |

Esta mensagem é enviada pelo mestre quando este quer mudar o valor de uma posição de memória do escravo. O escravo envia esta mensagem como resposta a um PBYT.

#### **PVAR**

| Byte f/e | Conteúdo |         | Paridade |
|----------|----------|---------|----------|
| 001eeeee | MSB ADD  | LSB ADD | Р        |
| 1 byte   | 1 byte   | 1 byte  | 1 byte   |

Esta mensagem é enviada pelo mestre e indica o pedido de uma variável, correspondente aos bytes armazenados em MSB ADD / LSB ADD ("END" / END+1"). O escravo nunca envia uma mensagem PVAR.

#### **VAR**

| Byte f/e | Conteúdo |         |        |        | Paridade |
|----------|----------|---------|--------|--------|----------|
| 000eeeee | MSB ADD  | LSB ADD | DATA 1 | DATA 2 | Р        |
| 1 byte   | 1 byte   | 1 byte  | 1 byte | 1 byte | 1 byte   |

Esta mensagem é enviada pelo mestre quando este quer mudar o valor de uma variável (2 bytes de memória) do escravo. O escravo envia esta mensagem como resposta a um PVAR.

#### **PBLOC**

| Byte f/e | Conteúdo |         |         | Paridade |
|----------|----------|---------|---------|----------|
| 111eeeee | MSB ADD  | LSB ADD | N bytes | Р        |
| 1 byte   | 1 byte   | 1 byte  | 1 byte  | 1 byte   |

Esta mensagem é enviada pelo mestre quando este pede um bloco de dados alocados a partir de MSB ADD / LSB ADD. O número máximo de bytes (n bytes) é 8. O escravo nunca envia uma mensagem PBLOC.

#### **BLOC**

| Byte f/e | Conteúdo |         |         |                     | Paridade |
|----------|----------|---------|---------|---------------------|----------|
| 100eeeee | MSB ADD  | LSB ADD | N bytes | dado 1 dado 2dado n | Р        |
| 1 byte   | 1 byte   | 1 byte  | 1 byte  | n bytes             | 1 byte   |

Esta mensagem é enviada pelo mestre quando este quer mudar o valor de um bloco de dados ( n bytes de memória) do escravo. DADO 1 é armazenado em ADD, DADO 2 é armazenado em ADD+1 e assim sucessivamente . O número máximo de bytes (n bytes) é 8.

O escravo envia esta mensagem como resposta a um PBLOC.

#### **BBROAD**

| Byte f/e | Conteúdo |         |         |                     | Paridade |
|----------|----------|---------|---------|---------------------|----------|
| 010xxxxx | MSB ADD  | LSB ADD | N bytes | dado 1 dado 2dado n | Р        |
| 1 byte   | 1 byte   | 1 byte  | 1 byte  | n bytes             | 1 byte   |

Esta mensagem é enviada pelo mestre quando este quer mudar o valor de um bloco de dados ( n bytes de memória) *de todos os escravos*. DADO 1 é armazenado em ADD, DADO 2 é armazenado em ADD+1 e assim sucessivamente *em cada um dos escravos*. Para este comando o valor eeeee não tem significado. O número máximo de bytes (n bytes) é 8. Não há resposta ACK do escravo para um comando BBROAD

## Operação de Transporte

Antes de ser transmitida, a mensagem recebe um tratamento para incluir um marcador de início (5A) e fim de mensagem (5B) e para trocar eventuais bytes de endereço ou dados de valor 5A, 50 ou 50, para evitar confusão entre dados e marcadores de inicio e fim de mensagem.

A mensagem é verificada e as seguintes substituições são efetuadas:

5A é trocado por 50 0A 5B é trocado por 50 0B 50 é trocado por 50 00

Durante a operação de recepção, o destinatário deve receber uma mensagem completa (tudo o que está entre um 5A e um 5B, não incluindo estes) e recompor os bytes desdobrados, 50 0A por 5A; 50 0B por 5B; 50 00 por 50. Só então as tarefas relativas à interpretação da mensagem devem ser efetuadas (nesta ordem: checagem da paridade, checagem do endereço na rede, identificação do comando, interpretação do conteúdo).

## Erros de Comunicação

Neste protocolo o NACK não é definido. A resposta a uma falha de comunicação é o silêncio.

As falhas de comunicação possíveis são (do nível mais baixo para o mais alto):

- Erro do nível físico. Paridade, stop bits, etc...
- Mensagem interrompida: se um marcador de inicio de mensagem foi encontrado (5A) quando um marcador de fim de mensagem (5B) era esperado.
  - Erro de paridade longitudinal.
- Erro de destinatário. Na realidade, isto não é um erro, mas o efeito é o mesmo. Todos os escravos não destinatários considerarão como um erro.
  - II Organização de dados para os controladores programáveis Atos MPC4004, Atos MPC6006 e Atos Expert BF

Os controladores programáveis Atos MPC4004, Atos MPC6006 e Atos Expert BF têm endereçamento de memória hexadecimal e os dados podem ser BCD, hexadecimal ou ASCII.

Os controladores Atos MPC4004, Atos MPC6006 e Atos Expert BF trabalham com dois tipos de dados:

- Flags Internos: representam estados ON ou OFF.
- Registros: Words (16 bits) que podem representar dados decimais (0000 a 9999), dados hexadecimais (0000 to FFFF) ou strings ASCII.

#### FLAGS INTERNOS Faixa 0000h a 03FFh



Obs.: bits 6 e 7 não podem ser alterados

**REGISTROS** 

Endereço 0400h e acima

| Byte Par | Byte Ímpar |
|----------|------------|
| MSB      | LSB        |

#### Exemplo:

Carregando o dado 1000h no Registro 400h teremos: 10h em 0400h e 00h em 0401h.

Como exemplo, temporizadores são dados BCD. Para troca de dados com o supervisório, este deve permitir a configuração (se o registro tem que ser convertido ou não).

No exemplo acima, 1000h no Registro 0400h corresponde ao temporizador 0 ajustado com o tempo de 10.00 s