Assignment 2, HT2020 Support Vector Machine - Breast Cancer Detection

Assignment in partial fulfilment of the requirements for the course

Optimisation 1TD184

Department of Information Technology

Marcello Pietro Vendruscolo

Maximise Separation Margin:

$$minimisef(w,b) = \frac{1}{2}w^Tw + C\sum_{i=1}^m \xi_i \qquad \text{Eq. (I)}$$

$$s.t.: y_i(w^Tx_i + b) \ge 1 - \xi_i, i = 1...m, \xi_i \ge 0$$

Quadprog

1. Solver for quadratic objective functions with linear constraints:

Eq. (II)
$$\min_{x} \frac{1}{2} x^{T} H x + f^{T} x \text{ such that } \begin{cases} A \cdot x \leq b, \\ Aeq \cdot x = beq, \\ lb \leq x \leq ub. \end{cases}$$

2. Function call: x = quadprog(H, f, A, b, Aeq, Beq, lb, ub, x0, options)

$$minimisef(w,b) = rac{1}{2} w^T w + C \sum_{i=1}^m \xi_i$$
 Eq.(I)

Eq. (II)
$$\min_{x} \frac{1}{2} x^{T} H x + f^{T} x$$
 such that
$$\begin{cases} A \cdot x \leq b, \\ Aeq \cdot x = beq, \\ lb \leq x \leq ub. \end{cases}$$

s.t.:
$$y_i(w^T x_i + b) \ge 1 - \xi_i, i = 1...m, \xi_i \ge 0$$

From Eq. (I) and Eq. (II) :
$$\begin{cases} \frac{1}{2}w^Tw = \frac{1}{2}x^THx \\ C\sum_{i=1}^m \xi_i = f^Tx \end{cases}$$

From Constraints:
$$\begin{cases} y_i(w^Tx_i+b)+\xi_i\geq 1\\ A\cdot x\leq b \end{cases}$$

$$\begin{cases} \xi_i\geq 0\\ lb\leq x\leq ul \end{cases}$$


```
H = diag([ones(1, n), zeros(1, l + 1)]);
f = [zeros(1,n), 0, C * ones(1,l)]';
%Constraints
p = diag(y_matrix_training) * x_matrix_training;
A = -[p y_matrix_training eye(l)];
c = -ones(l,1);
%Bound
lb = [-inf * ones(n+1,1); zeros(l,1)];
options = optimoptions(@quadprog, 'MaxIterations',500);
z = quadprog(H, f, A, c, [], [], lb, [], [], options);
w = z(1:n,:);
b = z(n+1,:);
eps = z(n+2:end,:)
```


C = 1000: Accuracy ~92.5%

Depends on how the division of the dataset happened (i.e., the randomisation seed)

Predicted Condition

True Condition

Condition Positive Condition Negative (Malignant cells) (Benign cells) Predicted True Positive False positive condition positive Predicted condition False Negative True Negative negative Sensitivity **Specificity** $\sum TruePositive$ $\sum TrueNegative$ \sum Condition Positive \sum ConditionNegative

Why can the confusion matrix sometimes be more meaningful than just the misclassification error?

Accuracy

 $\sum TruePositive + \sum TrueNegative$

 $\sum Total Population$

Thank you

