

REDACTED VERSION

European Offshore Wind Markets

Attractiveness Report

June 2023

The Amun European Explorer Pack

The number 1 wind valuation software

We are offering a free time-limited trail of the Amun European Explorer Pack with the **European Offshore Wind Markets Attractiveness Report**, providing you with crucial market information on the European market, and enabling you to make the most of the opportunities identified in this report. Simply plug in your site-specific data and see the forecasted returns to discover precisely where your next project should be.

Asset-specific revenue forecasts in minutes

Superior analytics for site and opportunity selection

Judge your market entry perfectly and only develop the best sites

Access wind and production profiles for any site using Aurora's proprietary **Amun Wind Atlases**

Fully quantify the **merchant exposure** of your wind site in any of our regions

Compare any hypothetical wind farm to Aurora's fleetwide expectations

Free time-limited access with your purchase of the report

What can Amun be used for?

Market Entry

Auction Support

Investment Selection

Site Scanning

Trusted by industry leaders:

O low carbon

Lurus Energy

Agenda

- I. <u>Executive Summary</u>
- II. Renewables Market Drivers
- III. Market Size, Composition and Outlook
- IV. Policy & Regulatory Environment
- V. Financial Variable Inputs
- VI. Government Support Auction Forecasts
- VII. Project Economics
- VIII. Appendix

VERSION

This is a redacted sample of the European Offshore Wind Markets Attractiveness Report.

If you are interested in the full report, contact Alex Hutcheson, (alex.hutcheson@auroraer.com).

This report assesses the attractiveness of investing in offshore wind across 21 European markets, based on eight metrics

The overall market attractiveness score for each European offshore wind market covers three categories and nine metrics, which are set out in detail in this report.

Categories and metrics	Weighting	Rationale	Source of data
Market size, composition & outlook	%		
1 Offshore wind deployment to 2030	%	Indicates expected future market size in the medium term	Aurora fundamental modelling*
2 Offshore wind buildout in 2022	%	Reflects recent trends and market activity	Aurora analysis*
Policy environment	%		
4 Announced offshore wind targets in 2030	%	Demonstrates policy ambition for RES deployment over the medium term	Aurora analysis*
5 Historical auctioned capacity	%	Indicates track record of government support for RES build-out (and market size for refinancing)	Aurora analysis*
6 Planned auctioned offshore wind capacity until 2030	%	Indicates expected government support for RES build-out	Aurora analysis*
Policy risks - support schemes, permitting, grid connection	%	Reflects effect of key policy and regulatory risks on project development	Aurora analysis*
Project economics	%		
8 Indicative fully merchant net IRR for project starting in 2030	%	Captures the commercial viability of new build fully merchant projects for final investment decisions in 2030 to capture cannibalisation effects in different markets	Aurora fundamental modelling*

(*) Detailed country data <u>available</u> in Aurora's Power and Renewables Market subscriptions.

The most attractive European market for Offshore Wind is xxxx , followed by and

Installed capacity of offshore wind across Europe currently stands at 28 GW, making up 4.2% of total installed capacity. It is projected to grow by more than 3x to reach 114 GW by 2030, requiring EUR 197 billion CAPEX investment.

Due to changes in policy and project economics and have improved in the ranking and the

Region	Current rank (Apr-23)	Previous rank (Mar-22)	Highlights and key changes
	1		
	2		
	3		
R	4	AC	TED VERSION
	6		
	7		
	8		
	9		
	10		

Agenda

- I. <u>Executive Summary</u>
- II. Renewables Market Drivers
- III. Market Size, Composition and Outlook
- IV. Policy & Regulatory Environment
- V. Financial Variable Inputs
- VI. Government Support Auction Forecasts
- **VII.** Project Economics
- VIII. Appendix

VERSION

This is a redacted sample of the European Offshore Wind Markets Attractiveness Report.

If you are interested in the full report, contact Alex Hutcheson, (alex.hutcheson@auroraer.com).

Decarbonisation efforts to date have driven strong growth in offshore wind capacity, rising to GW over the last decade

Renewable capacity buildout is driven by four key factors which cut across government policy and market forces

Power demand in Europe is expected

The key objectives of EU's energy policy framework have long supported the buildout of renewables across the continent

The REPowerEU plan details key measures to reduce Russian reliance and fast forward the clean transition across five main pillars

Despite falling gas prices in the 2020s, rising carbon prices increase the costs of thermal assets, which

Source: Aurora Energy Research CONFIDENTIAL 13

Increasing buildout of low cost renewables will push thermal plants out of merit more often

Source: Aurora Energy Research CONFIDENTIAL 14

...but even in a Net Zero scenario, dispatchable technologies exposed

Government support schemes are still the biggest driver of offshore wind build-out across most of Europe

Existing and expected offshore wind support schemes

Impact of CfDs, PPAs and revenue cap on merchant business models

Sources: Aurora Energy Research CONFIDENTIAL 16

Agenda

- **Executive Summary**
- **Renewables Market Drivers**
- III. Market Size, Composition and Outlook
- **Policy & Regulatory Environment**
- Financial Variable Inputs
- Government Support Auction Forecasts
- **VII.** Project Economics
- **VIII.** <u>Investment Strategies</u>
- IX. Appendix

This is a redacted sample of the European Offshore Wind Markets Attractiveness Report.

If you are interested in the full report, contact Alex Hutcheson, (alex.hutcheson@auroraer.com).

The potential for offshore wind development in Europe depends on average wind speeds and sea depths, and is higher for floating wind

7,700 GW extractable offshore wind potential is available in Europe, most of which is concentrated in Great Britain and Norway

GW

AUR 😂 RA

Fixed and floating offshore wind potential in Europe, Only territorial waters with wind speed > 7m/s at 100m shown Fixed and floating offshore wind technical energy potential in Europe by country³

Floating offshore wind is gaining momentum across Europe and could unlock further deployment potential

Source: Aurora Energy Research

The UK, Norway, France, and Italy all have executed planned floating offshore leasing rounds

CONFIDENTIAL 21 Sources: Aurora Energy Research

Floating offshore wind can leverage existing wind turbine and flotation technologies to access greater water depths and wind speeds

European countries have set ambitious renewables deployment targets, with the EU itself targeting GW offshore wind by 2030

Installed renewables capacity by 2030 - country targets¹

Required capacity additions compared to currently installed offshore wind capacity

GW

Floating Offshore Wind 🔚 Estimated Offshore wind target 2030

GW offshore wind by 2030, requiring GW or **Europe targets** around x7 further capacity deployment

AUR 😂 RA

2030 REPower EU target RES share of gross final energy consumption

Achieved in 2021, surpassing the 20% target

Net Zero Central

CONFIDENTIAL 24 Source: Aurora Energy Research

Aurora's central case sees further growth of offshore wind driven by ambitious decarbonisation targets

Installed offshore wind capacity 2022, 2030 and 2050 – Aurora Central & Net Zero scenarios

AUR 😂 RA

Source: Aurora Energy Research CONFIDENTIAL 25

These new capacity additions represent a potential cumulative investment AUR RA opportunity in Europe of up to **Section** €bn between 2022-50

Total CAPEX spend on offshore wind

A substantial pipeline exists across all countries within Europe, , which have **GW** and **GW**, respectively particularly and

Agenda

- **Executive Summary**
- **Renewables Market Drivers**
- Market size, Composition and Outlook
- **Policy & Regulatory Environment**
 - 1. Planning
 - 2. Seabed Leasing
 - 3. Government Support Schemes
 - 4. Grid Connection
- **Financial Variable Inputs**
- **Government Support Auction Forecasts**
- **VII.** Project Economics

- VIII. Investment Strategies
- IX. Appendix

This is a redacted sample of the European Offshore Wind Markets Attractiveness Report. If you are interested in the full report, contact Alex Hutcheson, (alex.hutcheson@auroraer.com).

Offshore Wind projects require several policy and regulatory hurdles to be met through each stage of development process

The permitting phase is characterised by

Sources: Aurora Energy Research

Agenda

- **Executive Summary**
- **Renewables Market Drivers**
- Market Size, Composition and Outlook
- IV. Policy & Regulatory Environment
 - 1. Planning
 - 2. Seabed Leasing
 - 3. Government Support Schemes
 - 4. Grid Connection
- **Financial Variable Inputs**
- **Government Support Auction Forecasts**
- **VII.** Project Economics

- VIII. Investment Strategies
- IX. Appendix

This is a redacted sample of the European Offshore Wind Markets Attractiveness Report. If you are interested in the full report, contact Alex Hutcheson, (alex.hutcheson@auroraer.com).

(IV) Policy and Regulatory Environment: Planning

km², With assigned the largest area to offshore wind development among the analysed countries

AUR 😂 RA

MSP ¹	Country	What is the relevant MSP	When was it adopted	When was it last updated	Area dedicated to offshore wind development	Undeveloped offshore capacity ³

(IV) Policy and Regulatory Environment: Planning

dedicated around % of their Exclusive Economic Both Zone to offshore wind development

AUR 😂 RA

MSP 1	Country	What is the relevant MSP	When was it adopted	When was it last updated	Area dedicated to offshore wind development	Undeveloped offshore capacity ³
	R	LDA		Ш		-RS

1. Planning: Many, but not all, countries offer an option to select sites outside the government-led framework

Vind farm development →	Zone identification	Site selection	Site investigation	Permitting
DF			/FDCI	
KE				
Governmental Agencies	Transmission System Operator Privat	e Developer		

Sources: Aurora Energy Research CONFIDENTIAL 35

1. Planning: In most markets, projects can only be developed in zones identified by the government – exceptions are

Wind farm development →	Zone identification	Site selection	Site investigation	Permitting
DE	MACT		/EDCI/	
RL	DAGI			
Governmental Agencies	Transmission System Operator Priva	ate Developer		

Sources: Aurora Energy Research CONFIDENTIAL 36

Region	Positives and nuances of the development process					
	√ ×					
	<u>~</u> ✓					
	<u>*</u>					
	× × DACTED / EDC / N					
	*DACIED VERSION					
	✓ ×					
	√ x					
	✓					
	✓					
	×					

Source: Aurora Energy Research CONFIDENTIAL 37

High uncertainty for development processes in and , due to the lack of planning frameworks for offshore wind

Source: Aurora Energy Research

Agenda

- **Executive Summary**
- **Renewables Market Drivers**
- Market Size, Composition and Outlook
- **Policy & Regulatory Environment**
 - 1. Planning
 - 2. Seabed Leasing
 - 3. Government Support Schemes
 - 4. Grid Connection
- **Financial Variable Inputs**
- **Government Support Auction Forecasts**
- **VII.** Project Economics

- VIII. <u>Investment Strategies</u>
- IX. Appendix

This is a redacted sample of the European Offshore Wind Markets Attractiveness Report. If you are interested in the full report, contact Alex Hutcheson, (alex.hutcheson@auroraer.com).

2. Sea bed leasing: Most countries tender sea bed leases – either combined with government support or subsidy-free

Sources: Aurora Energy Research CONFIDENTIAL 40

Great Britain: ScotWind winners comprised of an array of industry players, including

AUR 😂 RA

Net leasing right capacity secured in ScotWind as a % by company

Comparing option fee payments Between TCE Round 4 and CES ScotWind¹ £million (nominal)

Great Britain: The Crown Estate and Crown Estate Scotland could award GW of floating offshore wind leasing rights by the end of 2023 up to

Great Britain: Crown Estate Scotland signed agreements with wind in its

GW offshore A∪R 👄 RA

France: By 2031, offshore wind projects are planned to be developed in four regions, with a combined capacity of **GW**

1. Seabed leasing: Countries are ranked according to their seabed lease frameworks and track record

Criteria	High Project Risk	Medium Project Risk	Low Project Risk	Not Applicable
Seabed leasing framework				
Track record				
R	EDAC	JED	VERS	ION

Sources: Aurora Energy Research CONFIDENTIAL 45

Sea bed lease procurement:

can increase project risk

Source: Aurora Energy Research

Agenda

- **Executive Summary**
- **Renewables Market Drivers**
- Market Size, Composition and Outlook
- **Policy & Regulatory Environment**
 - 1. Planning
 - 2. Seabed Leasing
 - 3. Government Support Schemes
 - 4. Grid Connection
- **Financial Variable Inputs**
- **Government Support Auction Forecasts**
- **VII. Project Economics**

- VIII. <u>Investment Strategies</u>
- IX. Appendix

This is a redacted sample of the European Offshore Wind Markets Attractiveness Report. If you are interested in the full report, contact Alex Hutcheson, (alex.hutcheson@auroraer.com).

Offshore wind in Europe has historically been brought to market by CfDs; some developers have shifted to merchant routes to market

Source: Aurora Energy Research

For most countries in Europe, the final support scheme terms and conditions for offshore wind will be a two-way CfD

Region	Past scheme	Future scheme ¹	Neg. price risk	Indexation	Contract length	Comb. with GC ²	Auction announced ³	CtD
								CfD Two-way
	-							contract-for- difference
								FIPT
								Feed-in premium
	-							Expectation based on official
								an nouncements
	-							
	-							

At least GW of offshore wind capacity is set to be procured through committed auctions to 2030

AUR 😂 RA

Comments

AUR 😂 RA

Sources: Aurora Energy Research CONFIDENTIAL 51

Recent offshore wind auctions across Europe have seen

Key nuances of the government support auctions across different countries in Europe (1/2)

Key nuances of the government support auctions across different countries in Europe (2/2)

Source: Aurora Energy Research

We evaluate the project risk associated with support schemes based on auction and support characteristics

Criteria	High Project Risk	Medium Project Risk	Low Project Risk	Not Applicable
Auction volumes as market %				
Contract length				
Payment structure	LUAC	JIED	VEK5	
Indexation ¹				

CONFIDENTIAL 55 Sources: Aurora Energy Research

In the and , offshore wind operators are likely exposed to the highest level of project and regulatory risk

Comments

Source: Aurora Energy Research

Agenda

- **Executive Summary**
- **Renewables Market Drivers**
- Market Size, Composition and Outlook
- **Policy & Regulatory Environment**
 - 1. Planning
 - 2. Seabed Leasing
 - 3. Government Support Schemes
 - 4. Grid connection
- **Financial Variable Inputs**
- **Government Support Auction Forecasts**
- **VII.** Project Economics

- VIII. Investment Strategies
- IX. Appendix

This is a redacted sample of the European Offshore Wind Markets Attractiveness Report. If you are interested in the full report, contact Alex Hutcheson, (alex.hutcheson@auroraer.com).

Developers in and risk with respect to the grid delivery model

Grid delivery models

 Developer is responsible to build, own and operate the transmission grid augmentation up to the onshore point of connection

are exposed to the highest

- Developer is responsible to build the offshore transmission grid augmentation
- Sells it to the TSO¹ afterwards, which is responsible for the operation

X Key risks

 TSO builds, owns and operates transmission grid infrastructure, up to the offshore wind substation

Key risks

✗ Key risks

Developer

TSO

3. Grid Connections: In most countries, the TSO is responsible for building the grid connection up to the substation

Comments

Private Developer

Transmission System Operator

3. Grid Connections: There have been various grid delivery models adopted

Comments

Energy Islands propose a

Source: Aurora Energy Research CONFIDENTIAL 61

The North Sea Energy Island in the North Sea is

Planned set-up of the North Sea Energy Island

Planned process of the energy island in the North Sea

Key nuances of grid access across different countries in Europe (1/2)

Countries	Positives and nuances
Belgium	
Croatia	
Denmark	
Estonia	TOACTED VEDCIONI
Finland	DACIED VERSION
France	
Germany	
Greece	
Great Britain	
Italy	

Source: Aurora Energy Research

Key nuances of grid access across different countries in Europe (2/2)

Region	Positives and nuances
Ireland	
Latvia	
Lithuania	
Netherlands	TO ACTED VEDGIONI
Norway	TOACILO VLINDIUIN
Poland	
Portugal	
Romania	
Spain	
Sweden	

Source: Aurora Energy Research CONFIDENTIAL 64

3. Grid Access: Countries are ranked according to their grid delivery model and grid connection and congestion risks

Criteria	High Project Risk	Medium Project Risk	Low Project Risk	Not Applicable
Grid delivery model				
Track record			\/FDC	
Grid congestion	LUAC	, I L D	VEK5	

CONFIDENTIAL 65 Sources: Aurora Energy Research

3. Grid Access: Scarcity and restrictions around grid connections further complicate offshore deployment particularly in

Source: Aurora Energy Research CONFIDENTIAL 66

Agenda

- **Executive Summary**
- **Renewables Market Drivers**
- Market Size, Composition and Outlook
- **Policy & Regulatory Environment**
- Financial Variable Inputs
 - Costs
 - ii. Generation
 - iii. Revenues
- **VI.** Government Support Auction Forecasts
- **VII.** Project Economics
- **VIII.** Investment Strategies
- IX. Appendix

This is a redacted sample of the European Offshore Wind Markets Attractiveness Report. If you are interested in the full report, contact Alex

Hutcheson, (alex.hutcheson@auroraer.com).

A number of financial indicators can illustrate the financial performance of merchant offshore wind projects

Agenda

- **Executive Summary**
- **Renewables Market Drivers**
- Market Size, Composition and Outlook
- **Policy & Regulatory Environment**
- Financial Variable Inputs
 - 1. Costs

 - 3. Revenues
- **Government Support Auction Forecasts**
- **VII.** Project Economics
- VIII. Investment Strategies
- IX. Appendix

This is a redacted sample of the European Offshore Wind Markets Attractiveness Report.

If you are interested in the full report, contact Alex Hutcheson, (alex.hutcheson@auroraer.com).

Aurora creates an internal view of renewables cost trajectories based on modelling and client feedback

Between 2010 and 2020, the levelised costs of electricity generated has declined by more than % for onshore wind, offshore wind, and solar PV. These developments have led renewables to the verge of market parity. However, the timing and the extent to which this occurs will largely depend on how cost declines and technological improvements continue.

Source: Aurora Energy Research CONFIDENTIAL 70

By 2060, total CAPEX for fixed offshore wind will decrease by meaching meaching meaching meaching meaching meaching meaching meaching meach mea

Sources: Aurora Energy Research CONFIDENTIAL 71

CAPEX varies across Europe, primarily driven by differences in grid connection charges, as well as infrastructure & development costs

Source: Aurora Energy Research CONFIDENTIAL 72

Currently, OPEX costs for floating offshore wind is

Sources: Aurora Energy Research CONFIDENTIAL 73

Imbalance costs vary across regions, with highest average costs in at €/MWh and the lowest costs in at €/MWh

What are imbalance costs?

Main drivers for imbalance costs in different countries

Offshore Wind — — EU average

Source: Aurora Energy Research CONFIDENTIAL 74

Agenda

- **Executive Summary**
- **Renewables Market Drivers**
- Market Size, Composition and Outlook
- **Policy & Regulatory Environment**
- Financial Variable Inputs
 - 1. Costs
 - 2. Generation
 - 3. Revenues
- **Government Support Auction Forecasts**
- **VII.** Project Economics
- **VIII.** <u>Investment Strategies</u>
- IX. Appendix

This is a redacted sample of the European Offshore Wind Markets Attractiveness Report.

If you are interested in the full report, contact Alex Hutcheson, (alex.hutcheson@auroraer.com).

Fleet wide average 1 Load factor range

Load factors are

(*) Detailed country wind data available in <u>Amun</u>.

Source: Aurora Energy Research

Curtailment levels

Source: Aurora Energy Research CONFIDENTIAL 77

Agenda

- **Executive Summary**
- **Renewables Market Drivers**
- Market Size, Composition and Outlook
- **Policy & Regulatory Environment**
- Financial Variable Inputs
 - 1. Costs
 - 2. Generation
 - 3. Revenues
- **VI.** Government Support Auction Forecasts
- **VII.** Project Economics
- VIII. <u>Investment Strategies</u>
- IX. Appendix

This is a redacted sample of the European Offshore Wind Markets Attractiveness Report.

If you are interested in the full report, contact Alex Hutcheson, (alex.hutcheson@auroraer.com).

Renewables capture price formation is based on marginal pricing and driven by several factors including demand and commodity prices

Source: Aurora Energy Research

The generation mix and load factors affect baseload market prices and capture price discounts across Europe

Sources: Aurora Energy Research CONFIDENTIAL 80

Markets with a large pipeline of projects, such as reflect a larger range of site-specific capture prices

AUR 😂 RA

Sources: Aurora Energy Research CONFIDENTIAL 81

Other revenues: GO prices are expected to reach between €/MWh and €/MWh by 2040, depending on demand growth and willingness to pay

AUR 😂 RA

Forecast as of January 2023

Source: Aurora Energy Research CONFIDENTIAL 82

Agenda

- **Executive Summary**
- **Renewables Market Drivers**
- Market Size, Composition and Outlook
- **Policy & Regulatory Environment**
- Financial Variable Inputs
- **Government Support Auction Forecasts**
 - 1. Assumptions
 - 2. Auction Forecasts
 - CfD Auctions
 - ii. Zero bid Auctions
- **VII.** Project Economics

- VIII. Investment Strategies
- IX. Appendix

This is a redacted sample of the European Offshore Wind Markets Attractiveness Report. If you are interested in the full report, contact Alex Hutcheson, (alex.hutcheson@auroraer.com).

To simulate the outcome of two-way CfD auctions, we take into account plant- $A \cup R \supseteq R A$ specific economics and the subsidy regulation to calculate minimum bids

Source: Aurora Energy Research CONFIDENTIAL 84

We simulate auction prices for those markets in which there is an identifiable pipeline of projects, and announced auction volumes

AUR 😂 RA

Agenda

- **Executive Summary**
- **Renewables Market Drivers**
- Market Size, Composition and Outlook
- **Policy & Regulatory Environment**
- Financial Variable Inputs
- Government Support Auction Forecasts
 - 1. Assumptions
 - 2. Auction Forecasts
 - i. CfD Regional Auctions
 - ii. Zero bid Auctions
- **VII. Project Economics**

- VIII. Investment Strategies
- IX. Appendix

This is a redacted sample of the European Offshore Wind Markets Attractiveness Report.

If you are interested in the full report, contact Alex Hutcheson, (alex.hutcheson@auroraer.com).

<u>Great Britain</u>: If no constraints are breached, all qualified projects are awarded AUR RA their Administrative Strike Price, otherwise, a competitive auction is triggered

CfD AR5 Budget, in monetary terms

Unconstrained Allocation - Pot 1 example, no constraints breached

Budget bid stack £ million, (real 2012)

Constrained Allocation - Pot 1 example, budget breached

Delivery Year Valuation Year —Budget/capacity cap

Great Britain's AR5 auction has £170m budget, with GW of offshore wind AUR RA capacity eligible to participate at average strike price bids of E/MWh

Offshore wind projects eligible for AR5

AR5 minimum strike price bids to range from ___ - __ €/MWh, with an average price of ___ €/MWh across all eligible projects.

Aurora 2023 estimated minimum economic strike price bids €/MWh, real 2022

North Sea

Irish Sea

Celtic Sea

Planning permission granted

Awaiting decision

East Scotland

English Channel & South Coast

Great Britain: If a competitive auction is triggered, strike price bids for offshore wind in AR6 are expected as low as **€/MWh**

AUR 😂 RA

Projects

Projects

CONFIDENTIAL 89 Source: Aurora Energy Research

Great Britain: A low wind year sensitivity can lead to higher returns than Aurora Central for offshore wind, lowering min bids required to recover costs

Wholesale prices tend to be negatively correlated with offshore wind output...

Wholesale price¹

£/MWh (real 2022)

... is likely to be matched with higher capture prices...

Offshore wind uncurtailed capture price £/MWh (real 2022)

... therefore, a low wind year...

Load factor²

...which actually leads to higher wholesale revenues

Offshore wind wholesale gross revenues³

£/kW (real 2022)

Source: Aurora Energy Research

Ireland's ORESS 1 auction awarded contracts to four offshore wind projects, with GW procured and average strike price bids of €/MWh

Six projects were eligible to participate in the first ORESS auction in Ireland, with GW successful across four projects

Offshore wind projects eligible for ORESS 1

Ireland has planned GW worth of additional offshore wind capacity in auctions

Estimated 2024 minimum bid prices¹

€/MWh, real 2022

Lowest	Lowest minimum economic bids by project	
Rank	Projects	
1		
2		
3		
5	ERS	
6		
7		
8		
9		
10		

Poland's 2020 offshore wind policy has been

2025 estimated minimum bid prices 1

€/MWh, real 2022

Lowest minimum economic bids by project	
Rank ²	Projects
1	
2	
3	
4	EDC
5	
6	
7	
8	
9	
10	

Under a two-way CfD, as proposed by the European Commission, €/MWh

Auction year

1		
2		
3		
5	ERS	
6		
7		
8		
9		
10		

AUR 😂 RA

A new draft version of the Italian subsidy scheme FER2 was published in August, allocating GW for floating offshore wind

Italy FER2 draft highlights

Sources: Aurora Energy Research, MiTE

Italy auction bid prices are expected to be highest amongst European regions, due to lower load factors and higher costs

Lowest minimum economic bids by project

Rank ²	Offshore Wind
1	
2	
3	

Capacity MW

2025 Greece minimum bid price stack

2025 Italy minimum bid price stack

€/MWh

€/MWh

Rank ²	Offshore Wind
1	
2	
3	
4	

AUR 😂 RA

Italy

Greece

Capacity MW

Sources: Aurora Energy Research, DCCAE

Offshore wind projects in Spain and France to clear with competitive bids as low as and €/MWh, respectively

AUR 😂 RA

Spain¹

France

Capacity MW

€/MWh

Despite no subsidy support schemes currently in place in Finland and Norway, minimum bid prices could reach as low as €/MWh

AUR RA

Norway

Lowest minimum economic

bids by project

Offshore Wind

Rank²

1

2

3

Capacity MW

Sources: Aurora Energy Research, DCCAE

Sweden has a large pipeline of projects with minimum bids between and €/MWh

	t minimum economic bids by project
Rank ²	Offshore Wind
1	
2	
3	
5	RS
Rank ²	Offshore Wind
1	
2	
3	
4	
-	

5

Capacity MW

Estonia has a large pipeline of projects with auction bids between €/MWh

Estonia

Agenda

- I. <u>Executive Summary</u>
- II. Renewables Market Drivers
- III. Market Size, Composition and Outlook
- IV. Policy & Regulatory Environment
- V. Financial Variable Inputs
- VI. Government Support Auction Forecasts
 - 1. Assumptions
 - 2. Auction Forecasts
 - i. CfD Auctions
 - ii. Zero Bid Auctions
- **VII. Project Economics**

- VIII. <u>Investment Strategies</u>
- IX. Appendix

DVERSION

This is a redacted sample of the European Offshore Wind Markets Attractiveness Report.

If you are interested in the full report, contact Alex Hutcheson, (alex.hutcheson@auroraer.com).

Zero bids have been driven by auction design and project economics, however AUR RA EU reforms may see regions forced to adopt 2-way CfD design moving forward

To evaluate projects in a zero-bidding world, European governments have developed point systems based on additional qualitative criteria

Agenda

- I. <u>Executive Summary</u>
- II. Renewables Market Drivers
- III. Market Size, Composition and Outlook
- IV. Policy & Regulatory Environment
- V. Financial Variable Inputs
- VI. Government Support Auction Forecasts
- **VII.** Project Economics
 - 1. LCOEs
 - 2. Brownfield Projects NPVs
 - 3. Greenfield Projects IRRs
 - 4. Co-located Projects

VIII. <u>Investment Strategies</u>

IX. Appendix

CTED VERSION

This is a redacted sample of the European Offshore Wind Markets Attractiveness Report.

If you are interested in the full report, contact Alex Hutcheson, (alex.hutcheson@auroraer.com).

Aurora forecasts LCOEs based on total asset lifetime costs and projected energy output

LCOE expected to decrease over time for offshore wind across all regions for both fixed and floating assets

Fleet average LCOEs Fixed and Floating Offshore Wind 2025, 2030, and 2050 €/MWh (real 2022)

AUR 😂 RA

Source: Aurora Energy Research CONFIDENTIAL 106

Agenda

- I. <u>Executive Summary</u>
- II. Renewables Market Drivers
- III. Market Size, Composition and Outlook
- IV. Policy & Regulatory Environment
- V. Financial Variable Inputs
- VI. Government Support Auction Forecasts
- **VII.** Project Economics
 - 1. LCOEs
 - 2. Brownfield Projects NPVs
 - 3. Greenfield Projects IRRs
 - 4. Co-located Projects

VIII. <u>Investment Strategies</u>

IX. Appendix

CTED VERSION

This is a redacted sample of the European Offshore Wind Markets Attractiveness Report.

If you are interested in the full report, contact Alex Hutcheson, (alex.hutcheson@auroraer.com).

Due to decreasing capture prices and shorter lifetime of assets, the net present value of brownfield assets decreases across all markets

AUR RA

Net Present Value of brownfield projects for 2030, 2035 and 2040 per COD year €mn/MW (real 2022)

2035 2040 2030

Projects in

offer largest investment opportunity, due to

Agenda

- I. <u>Executive Summary</u>
- II. Renewables Market Drivers
- III. Market Size, Composition and Outlook
- IV. Policy & Regulatory Environment
- V. Financial Variable Inputs
- VI. Government Support Auction Forecasts
- VII. Project Economics
 - 1. LCOEs
 - 2. Brownfield Projects NPVs
 - 3. Greenfield Projects IRRs
 - 4. Co-located Projects

VIII. <u>Investment Strategies</u>

IX. Appendix

CTED VERSION

This is a redacted sample of the European Offshore Wind Markets Attractiveness Report.

If you are interested in the full report, contact Alex

Hutcheson, (alex.hutcheson@auroraer.com).

Range of Internal Rate of Returns per country for 2030, 2035 and 2040

Fluctuations in key drivers such as enough to tip projects above or below the hurdle rate

are

Merchant project IRR sensitivities (in 2030)

%, pre-tax (real 2022)

IRR, base case (region)	% (European average)
Load factor (+/- 10%)	
Capture Price (+/- 10%)	
CAPEX (+/- 10%)	DACIE
OPEX ¹ (+/- 10%)	
Lifetime (+/- 3 years)	
GoOs (+/- 10%)	
Imbalance costs (+/- 10%)	

Agenda

- I. <u>Executive Summary</u>
- II. Renewables Market Drivers
- III. Market Size, Composition and Outlook
- IV. Policy & Regulatory Environment
- V. Financial Variable Inputs
- VI. Government Support Auction Forecasts
- **VII.** Project Economics
 - 1. LCOEs
 - 2. Brownfield Projects NPVs
 - 3. Greenfield Projects IRRs
 - 4. Co-located Projects

VIII. Investment Strategies

IX. Appendix

CTED VERSION

This is a redacted sample of the European Offshore Wind Markets Attractiveness Report.

If you are interested in the full report, contact Alex Hutcheson, (alex.hutcheson@auroraer.com).

VII

An Energy Island can improve the business case by reducing curtailment and offering additional revenue streams

Country 2

Country 1

Co-location of offshore wind, solar and battery

Co-location of offshore wind with electrolyser

Moving to a co-location model involves trade-offs compared to a standalone asset, which differs by asset type and configuration

Co-location of a battery and offshore wind asset in Ireland could increase IRRs by

provides a stable revenue stream while colocation with solar is mostly beneficial to the battery

Agenda

- I. <u>Executive Summary</u>
- II. Renewables Market Drivers
- III. Market Size, Composition and Outlook
- IV. Policy & Regulatory Environment
- V. Financial Variable Inputs
- VI. Government Support Auction Forecasts
- **VII.** Project Economics
- VIII. <u>Investment Strategies</u>
 - 1. Project Values
 - 2. Ownership & Cooperation Structures
- IX. Appendix

This is a redacted sample of the European Offshore Wind Markets Attractiveness Report.

If you are interested in the full report, contact Alex Hutcheson, (alex.hutcheson@auroraer.com).

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Risks

REDACTED VERSION

Accumulated project risks

Even though most risks are contained after increase in project value realised in due to

, largest AUR 😞 RA

Expected value¹ for offshore wind projects at different development stages

% of final project value

Comments

AUR 😂 RA

At present, the biggest investment opportunity is in assets , although this will change as

Agenda

- I. <u>Executive Summary</u>
- II. Renewables Market Drivers
- III. Market Size, Composition and Outlook
- IV. Policy & Regulatory Environment
- V. Finan<mark>cial Va</mark>ri<mark>able Inp</mark>uts

REDACIEL

- **VI.** Government Support Auction Forecasts
- VII. Project Economics
- VIII. <u>Investment Strategies</u>
 - 1. Project Values
 - 2. Ownership & Cooperation Structures

IX. Appendix

CTED VERSION

This is a redacted sample of the European Offshore Wind Markets Attractiveness Report.

If you are interested in the full report, contact Alex

Hutcheson, (<u>alex.hutcheson@auroraer.com</u>).

4

Operational projects are on average owned by parties – with the median owner owning

AUR 😂 RA

Share of offshore wind capacity by number of owners % of capacity

Distribution of ownership shares

% of projects

For investment funds,

are most attractive

Typical investor appetites by project development stage

Majority owner and main cooperation partner

% of European offshore wind capacity

Planning, development & construction phases

Summary main cooperation partner % of European offshore wind capacity

ON

Disclaimer and Copyright

General Disclaimer

This document is provided "as is" for your information only and no representation or warranty, express or implied, is given by Aurora Energy Research Limited and its subsidiaries Aurora Energy Research GmbH and Aurora Energy Research Pty Ltd (together, "Aurora"), their directors, employees agents or affiliates (together, Aurora's "Associates") as to its accuracy, reliability or completeness. Aurora and its Associates assume no responsibility, and accept no liability for, any loss arising out of your use of this document. This document is not to be relied upon for any purpose or used in substitution for your own independent investigations and sound judgment. The information contained in this document reflects our beliefs, assumptions, intentions and expectations as of the date of this document and is subject to change. Aurora assumes no obligation, and does not intend, to update this information.

Forward-looking statements

This document contains forward-looking statements and information, which reflect Aurora's current view with respect to future events and financial performance. When used in this document, the words "believes", "expects", "plans", "may", "will", "would", "could", "should", "anticipates", "estimates", "project", "intend" or "outlook" or other variations of these words or other similar expressions are intended to identify forward-looking statements and information. Actual results may differ materially from the expectations expressed or implied in the forward-looking statements as a result of known and unknown risks and uncertainties. Known risks and uncertainties include but are not limited to: risks associated with political events in Europe and elsewhere, contractual risks, creditworthiness of customers, performance of suppliers and management of plant and personnel; risk associated with financial factors such as volatility in exchange rates, increases in interest rates, restrictions on access to capital, and swings in global financial markets; risks associated with domestic and foreign government regulation, including export controls and economic sanctions; and other risks, including litigation. The foregoing list of important factors is not exhaustive.

Copyright

This document and its content (including, but not limited to, the text, images, graphics and illustrations) is the copyright material of Aurora, unless otherwise stated.

This document is confidential and it may not be copied, reproduced, distributed or in any way used for commercial purposes without the prior written consent of Aurora.

REDACTE

Appendix

Support scheme and auction format only known for established markets and indicative for

Germany has a big auction-pipeline with GW, though only GW would be applicable for government support

Summary of assumptions for two-way CfD calculations

