PROBLEMAS DE GEOMETRIA LINEAL (dobles grados) Curso 2022/23, hoja 1

- 1) Demostrar que son equivalentes las siguientes definiciones de espacio afín \mathbb{A} con espacio vectorial asociado V:
- a) Existe una aplicación $\varphi: \mathbb{A} \times V \to \mathbb{A}$ (se suele escribir $\varphi(p,v) = p+v$) tal que:
 - (i) (p+v)+v'=p+(v+v') para todo $p \in \mathbb{A}$ y $v,v' \in V$.
 - (ii) Para todo $p \in \mathbb{A}$, la aplicación $\varphi_p: V \to \mathbb{A}$ dada por $\varphi_p(v) = p + v$ es una biyección.
- b) Existe una aplicación $\phi: \mathbb{A} \times \mathbb{A} \to V$ (se suele escribir $\phi(p,q) = \overrightarrow{pq}$) tal que:
 - (i) $\overrightarrow{pr} = \overrightarrow{pq} + \overrightarrow{qr}$ para cualesquiera $p, q, r \in \mathbb{A}$.
 - (ii) Para todo $p \in \mathbb{A}$, la aplicación $\phi_p : \mathbb{A} \to V$ dada por $\varphi_p(q) = \overrightarrow{pq}$ es una biyección.
- 2) Demostrar que, dado un espacio vectorial V, la aplicación $\varphi: V \times V \to V$ definida por $\varphi(v_1, v_2) = v_1 + v_2$ dota a V de estructura de espacio afín.
- 3) Si llamamos aplicación afín entre dos espacios afines a una aplicación $f: \mathbb{A} \to \mathbb{A}'$ tal que existe una aplicación lineal $\vec{f}: V \to V'$ entre los respectivos espacios vectoriales asociados tales que, para todo $p_1, p_2 \in \mathbb{A}$ se satisface $\overrightarrow{f(p_1)f(p_2)} = \vec{f}(\overrightarrow{p_1p_2})$, demostrar:
 - (i) f es biyectiva si y sólo si \vec{f} es biyectiva (en tal caso, se dice que f es una afinidad).
 - (ii) Para cada $v \in V$, la traslación $\tau_v : \mathbb{A} \to \mathbb{A}$ definida por $\tau_v(p) = p + v$ es una afinidad, y se tiene que $\vec{\tau}_v$ es la identidad.
 - (iii) Cualquier afinidad $f:\mathbb{A}\to\mathbb{A}$ tal que \vec{f} es la identidad es una traslación.
- **4)** Sea \mathbb{A} un espacio afín con espacio vectorial asociado V y determinado por $\varphi : \mathbb{A} \times V \to \mathbb{A}$. Fijado $\lambda \in k \setminus \{0\}$, demostrar:
 - (i) Existe un espacio afín \mathbb{A}_{λ} cuyo conjunto de puntos es el mismo que \mathbb{A} y el espacio vectorial asociado también es V, pero para el que la estructura de espacio afín viene dada por la aplicación

$$\varphi_{\lambda}: \mathbb{A}_{\lambda} \times V \to \mathbb{A}_{\lambda}$$

$$(p, v) \mapsto p + \lambda v$$

(en otras palabras, el vector \overrightarrow{pq} en \mathbb{A}_{λ} está definido como λ veces el vector \overrightarrow{pq} de \mathbb{A}).

(ii) La identidad conjuntista $\mathbb{A}_{\lambda} \to \mathbb{A}$ es una afinidad, tomando como aplicación lineal asociada la multiplicación por λ en V.

(*)5) Demostrar que las aplicaciones afines de \mathbb{A}_k^n en sí mismo que mandan los puntos coordenados $(1,0,\ldots,0),\ldots,(0,\ldots,0,1)$ en sí mismos son las aplicaciones de la forma

$$\begin{array}{ccc}
f: \mathbb{A}_k^n & \to & \mathbb{A}_k^n \\
(x_1, \dots, x_n) & \mapsto & (a_1 + (1 - a_1)x_1, \dots, a_n + (1 - a_n)x_n)
\end{array}$$

 $con a_1, \dots, a_n \in k.$

6) Demostrar que, dada una referencia afín $\mathcal{R} = \{p_0, p_1, \dots, p_n\}$ de un espacio afín \mathbb{A} , la aplicación $f_{\mathcal{R}} : \mathbb{A}^n_k \to \mathbb{A}$ definida por

$$f_{\mathcal{R}}(x_1,\ldots,x_n) = p_0 + x_1 \overrightarrow{p_0 p_1} + \ldots + x_n \overrightarrow{p_0 p_n}$$

es una afinidad, y su matriz respecto de \mathcal{R}_c (referencia canónica de \mathbb{A}_k^n) y \mathcal{R} es la matriz identidad. Además, p_0 es imagen de $(0,\ldots,0)$, mientras que, si $i=1,\ldots,n$, entonces p_i es la imagen del i-ésimo punto coordenado. También, \vec{f} manda la base canónica de k^n a la base $\{\overline{p_0p_1},\ldots,\overline{p_0p_n}\}$ del espacio vectorial asociado de \mathbb{A} .

- (*)7) Encontrar la ecuación de la recta proyectiva que pasa por el punto (2:1:-1) y por el punto de intersección de las rectas $X_0 X_1 X_2 = 0$ y $2X_0 + X_1 2X_2 = 0$.
- (*)8) Encontrar el punto de intersección de la recta $2X_0 + X_1 X_2 = 0$ y la recta determinada por los puntos (1:-1:-1) y (2:1:-2).
- (*)9) Determinar si los puntos (2:0:3), (-1:1:2) y (3:1:0) están alineados.
- (*)10) Calcular la ecuación implícita (en las coordenadas u_0, u_1, u_2 del plano dual) del haz de rectas que pasan por el punto de intersección de las rectas $X_0 X_1 + 2X_2 = 0$ y $3X_0 + 2X_1 X_2 = 0$.
- (*)11) Calcular la ecuación implícita de la recta que pasa por el punto de intersección de las rectas $X_0 X_1 + 2X_2 = 0$ y $3X_0 + 2X_1 X_2 = 0$ y por el punto de intersección de intersección de las rectas $3X_0 2X_1 X_2 = 0$ y $2X_0 + 2X_1 + X_2 = 0$.
 - 12) Encontrar los puntos del infinito de las curvas siguientes:

(*)a)
$$Y = X^2 - X + 2$$

(*)b)
$$X^2 - Y^2 = 1$$

(*)c)
$$X^2 + XY + Y^2 = 1$$

$$(*)d) Y = X^3$$

e)
$$Y^2 = X^3$$