- 1. The derivative of  $y = x^{\cos x}$  at  $x = \frac{\pi}{2}$  is:
  - a.  $-\ln \frac{\pi}{2}$
  - b.  $-\frac{\pi}{2} \ln \frac{\pi}{2}$
  - c. -1
  - d.  $\frac{-\pi}{2}$
  - e.  $\frac{\pi}{2}$

- 2. A bacteria culture starts with 200 bacteria and grows at a rate proportional to its size. After 2 hours there were 400 bacteria. Find the number of bacteria after 6 hours.
  - a. 800
  - b. 1200
  - c. 1600
  - d. 2000
  - e. 2400

- 3. The value of sinh(ln 3) is:
  - a.  $\frac{2}{3}$
  - b. 0
  - c. 3
  - d.  $\frac{5}{3}$
  - e.  $\frac{4}{3}$

- 4. A ladder 8 feet long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a speed of 2 feet/sec., how fast is the angle between the top of the ladder and the wall changing when this angle is  $\frac{\pi}{6}$ ?
  - a.  $\frac{1}{2\sqrt{3}}$  rad/sec
  - b.  $\frac{1}{2}$  rad/sec
  - c.  $\frac{1}{4}$  rad/sec
  - d.  $\frac{1}{8}$  rad/sec
  - e.  $\frac{\sqrt{3}}{8}$  rad/sec

- 5. Using differentials or a linear approximation, the approximate value of  $\sqrt[4]{79}$  is:
  - a.  $\frac{323}{108}$
  - b.  $\frac{325}{108}$
  - c.  $\frac{11}{4}$
  - d.  $\frac{161}{54}$
  - e.  $\frac{163}{54}$

- 6.  $f(x) = x^2 e^{-x^2}$  is increasing on the interval(s)
  - a.  $(-\infty, -2)$  and (0, 2)
  - b. (0, 2)
  - c. (0,1)
  - d.  $(-\infty, -1)$  and (0, 1)
  - e. (-2,1)

- 7.  $g(x) = \ln(x^2 + 4)$  is concave up on the interval(s)
  - a.  $(-\infty, 2)$  and  $(2, \infty)$
  - b. (-2,0) and (0,2)
  - c. (-2,2)
  - d. (-4,0) and (0,4)
  - e. (-4,4)

- 8. The local maxima for the function  $f(x) = x + 2\cos x$  on the interval  $(-\pi, \pi)$  occur at
  - a.  $x = \frac{\pi}{6}$
  - b.  $x = \frac{\pi}{3}$
  - c.  $x = -\frac{\pi}{6}$
  - d.  $x = \frac{5\pi}{6}$
  - e.  $x = \frac{\pi}{6} \text{ and } x = \frac{5\pi}{6}$

- 9. The absolute maximum value for  $f(x) = x^3 12x + 1$  on [-1, 3] is
  - a. 17
  - b. 12
  - c. 10
  - d. 1
  - e. 14

10. If  $f'(x) = (x+1)^2(x-1)(x+2)$ , which of the following could be the graph of f?

a.

b.



c.



e.





d.



- 11.  $\lim_{x \to 0} \frac{\sin x x}{x^3}$ 
  - a. 3
  - b.  $-\frac{1}{3}$
  - c. 6
  - d.  $-\frac{1}{6}$
  - e. does not exist

- 12.  $\lim_{x \to 0^+} (1 + \frac{2}{x})^{2x}$ 
  - a. 0
  - b. 1
  - c.  $e^2$
  - d.  $e^4$
  - e.  $e^{-2}$