Exercises

Computational Intelligence Lab

SS 2017

Series 4 Solutions (Optimization)

Machine Learning Institute

Dept. of Computer Science, ETH Zürich

Prof. Dr. Thomas Hofmann

Web http://cil.inf.ethz.ch/

Problem 1 (Lagrange Dual Problem for a Linear Program):

1. Recall $\mathbf{x} \in \mathbb{R}^m$, and $A \in \mathbb{R}^{p \times m}$. The Lagrangian is defined as

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = \mathbf{c}^T \mathbf{x} - \sum_{i=1}^m \lambda_i x_i + \boldsymbol{\nu}^T (A\mathbf{x} - \mathbf{b}) = -\mathbf{b}^T \boldsymbol{\nu} + (\mathbf{c} + A^T \boldsymbol{\nu} - \boldsymbol{\lambda})^T \mathbf{x}$$

where $\lambda \in \mathbb{R}^m$ and $\nu \in \mathbb{R}^p$. Note that later on, we'll be interested in values of the Lagrangian where $\lambda \geq 0$, however, $L(\mathbf{x}, \lambda, \nu)$ is well defined for arbitrary values λ, ν .

2. The dual function is defined as

$$d(\boldsymbol{\lambda}, \boldsymbol{\nu}) \ = \ \inf_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \ = \ -\mathbf{b}^T \boldsymbol{\nu} + \inf_{\mathbf{x}} (A^T \boldsymbol{\nu} - \boldsymbol{\lambda} + \mathbf{c})^T \mathbf{x}$$

3. The analytical expression for the dual function $d(\lambda, \nu)$ is $d(\lambda, \nu) = -\infty$ except when $A^T \nu - \lambda + \mathbf{c} = 0$, in which case it is $-\mathbf{b}^T \nu$:

$$d(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \begin{cases} -\mathbf{b}^T \boldsymbol{\nu} & \text{if } A^T \boldsymbol{\nu} - \boldsymbol{\lambda} + \mathbf{c} = 0 \\ -\infty & \text{otherwise.} \end{cases}$$

4. The Lagrange dual problem of the standard form LP is to maximize the dual function d subject to $\lambda \geq 0$:

Because d is finite only when $A^T \nu - \lambda + \mathbf{c} = 0$, we can form an equivalent problem by making these constraints explicit:

$$\label{eq:local_equation} \begin{split} \underset{\boldsymbol{\lambda}, \boldsymbol{\nu}}{\text{maximize}} & & -\mathbf{b}^T \boldsymbol{\nu} \\ \text{subject to} & & A^T \boldsymbol{\nu} - \boldsymbol{\lambda} + \mathbf{c} = 0 \\ & & & \boldsymbol{\lambda} \geq 0. \end{split}$$

This is a linear program again. Finally, we can eliminate the λ variable by observing $\lambda = A^T \nu + c$, which then leads to the dual linear program to the input problem:

$$\label{eq:local_problem} \begin{aligned} & \underset{\boldsymbol{\nu}}{\text{maximize}} & & -\mathbf{b}^T\boldsymbol{\nu} \\ & \text{subject to} & & A^T\boldsymbol{\nu} + \mathbf{c} \geq 0. \end{aligned}$$

This resulting dual linear program has m inequality constraints - as many as the original problem had variables.

Problem 2 (Dual Function is a Lower Bound on $f(\mathbf{x}^{\star})$):

Recall that the general convex optimization problem was given in the following form:

minimize
$$f(\mathbf{x})$$

subject to $g_i(\mathbf{x}) \le 0, \quad i = 1, ..., m$
 $h_j(\mathbf{x}) = 0, \quad j = 1, ..., p$

We will here show a stronger statement (as given in the lecture slides). We will show that if $\lambda \geq 0$ (and ν arbitrary), then

$$d(\lambda, \nu) \le f(\tilde{\mathbf{x}})$$
 for any feasible point $\tilde{\mathbf{x}}$ (1)

(and 'feasible' meaning that $\tilde{\mathbf{x}}$ satisfies all constraints $g_i(.)$ and $h_i(.)$).

Note: Since an optimal \mathbf{x}^* must of course be feasible this statement will imply that $d(\lambda, \nu) \leq f(\mathbf{x}^*)$, as asked in the exercise.

Proof: Let $\tilde{\mathbf{x}}$ be a feasible point for the problem, i.e., $g_i(\tilde{\mathbf{x}}) \leq 0$ and $h_j(\tilde{\mathbf{x}}) = 0$. Then, using that the Lagrange multipliers λ corresponding to the inequality constraints do satisfy $\lambda \geq 0$, we have

$$\sum_{i=1}^{m} \lambda_i g_i(\tilde{\mathbf{x}}) + \sum_{j=1}^{p} \nu_j h_j(\tilde{\mathbf{x}}) \le 0,$$

since each term in the first sum is nonpositive, and each term in the second sum is zero, and therefore

$$L(\tilde{\mathbf{x}}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = f(\tilde{\mathbf{x}}) + \sum_{i=1}^{m} \lambda_i g_i(\tilde{\mathbf{x}}) + \sum_{j=1}^{p} \nu_j h_j(\tilde{\mathbf{x}}) \leq f(\tilde{\mathbf{x}}).$$

Hence

$$d(\pmb{\lambda}, \pmb{\nu}) \ = \ \inf_{\mathbf{x}} L(\mathbf{x}, \pmb{\lambda}, \pmb{\nu}) \ \leq \ L(\tilde{\mathbf{x}}, \pmb{\lambda}, \pmb{\nu}) \ \leq \ f(\tilde{\mathbf{x}}).$$

As this holds for any feasible \tilde{x} , it will also hold for an optimal x^* , as we mentioned above.

Problem 3 (Convexity):

- a) yes
- b) no. (For example, take a point on the circle and its negative, and observe that their mid-point is not in the set)
- c) no, it's \leq
- d) no. (For example, take a point $(\mathbf{u}, \mathbf{v}) = ([-1, 1], [1, -1])$ and consider its negative. Then observe that at their mid-point, we have a strictly higher function value, violating convexity of the function)

Problem 4 (SGD for Collaborative Filtering):

Consider the given objective function as a sum

$$f(\mathbf{U}, \mathbf{Z}) = \frac{1}{|\Omega|} \sum_{(d,n) \in \Omega} \underbrace{\frac{1}{2} \left[\mathbf{X}_{dn} - (\mathbf{U}\mathbf{Z}^T)_{dn} \right]^2}_{f_{d,n}}$$

and $\mathbf{U} \in Q_1 := \mathbb{R}^{D \times K}$, $\mathbf{Z} \in Q_2 := \mathbb{R}^{N \times K}$.

• Stochastic Gradient: For one fixed element (d,n) of the sum, we derive the gradient entry (d',k) of \mathbf{U} , that is $\frac{\partial}{\partial u_{d',k}} f_{d,n}(\mathbf{U},\mathbf{Z})$, and analogously for the \mathbf{Z} part.

$$\frac{\partial}{\partial u_{d',k}} f_{d,n}(\mathbf{U},\mathbf{Z}) = \begin{cases} -\big[\mathbf{X}_{dn} - (\mathbf{U}\mathbf{Z}^T)_{dn}\big]v_{n,k} & \text{if } d' = d \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{\partial}{\partial v_{n',k}} f_{d,n}(\mathbf{U},\mathbf{Z}) = \begin{cases} - \left[\mathbf{X}_{dn} - (\mathbf{U}\mathbf{Z}^T)_{dn} \right] u_{d,k} & \text{if } n' = n \\ 0 & \text{otherwise} \end{cases}$$

• Full Gradient: We have access to all elements $(d,n)\in\Omega$, so we can calculate the partial derivatives of the full gradient for all $(d,n)\in\Omega$. For one specific $(d,n)\in\Omega$, the partial derivatives are the same as that in the stochastic gradient above.