РК2 Крайчиков Олег Денисович

Импорт библиотек

```
import numpy as np
In [29]:
          import pandas as pd
          import seaborn as sns
          import matplotlib.pyplot as plt
          from pandas.plotting import scatter matrix
          import warnings
          warnings.filterwarnings('ignore')
          sns.set(style="ticks")
          %matplotlib inline
          from sklearn.model_selection import train_test_split
          from sklearn.preprocessing import LabelEncoder
         data = pd.read csv('kar.csv')
In [30]:
         data.head()
In [88]:
                ID
                           Name Age
                                      Nationality Overall Potential Club
Out[88]:
                                                                  6
          0 158023
                          L. Messi
                                       Argentina
                                                            94
                                  31
                                                   94
             20801 Cristiano Ronaldo
                                                                123
                                  33
                                        Portugal
                                                   94
                                                            94
          2 190871
                        Neymar Jr
                                                                 20
                                  26
                                          Brazil
                                                   92
                                                            93
           193080
                          De Gea
                                  27
                                          Spain
                                                   91
                                                            93
                                                                139
          4 192985
                      K. De Bruyne
                                  27
                                                                 13
                                        Belgium
                                                   91
                                                            92
In [32]: parts = np.split(data, [10], axis=1)
          data = parts[0]
In [63]:
          data.dtypes
Out[63]: ID
                         Int64
         Name
                       string
         Age
                        Int64
         Nationality string
         Overall
                        Int64
         Potential
                         Int64
         Club
                         string
         dtype: object
In [61]: data = data.convert_dtypes()
         data.isnull().sum()
In [77]:
Out[77]: ID
                         0
         Name
                         0
         Age
                         0
         Nationality
                        0
         Overall
                        0
         Potential
                        0
         Club
         dtype: int64
In [64]: data.dtypes
```

```
Out[64]: ID
                         Int64
         Name
                        string
         Age
                         Int64
         Nationality string
         Overall
                         Int64
         Potential
                        Int64
         Club
                        string
         dtype: object
         le = LabelEncoder()
In [95]:
          le.fit(data.Name)
          data.Name = le.transform(data.Name)
In [96]: data.head()
                ID Name Age Nationality Overall Potential Club
Out[96]:
          0 158023
                                   9632
                    9632
                          31
                                            94
                                                    94
                                                          6
          1 20801
                    3153
                          33
                                   3153
                                            94
                                                    94
                                                        123
          2 190871 12508
                          26
                                  12508
                                           92
                                                    93
                                                         20
          3 193080
                                   4136
                    4136
                          27
                                            91
                                                    93
                                                        139
          4 192985
                    8617
                                   8617
                          27
                                           91
                                                    92
                                                         13
In [75]: data.isnull().sum()
          # проверим есть ли пропущенные значения
Out[75]: ID
                         0
         Name
                         0
                         0
         Age
         Nationality
                         0
         Overall
                         0
         Potential
                        0
         Club
         dtype: int64
In [97]: | data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 18207 entries, 0 to 18206
         Data columns (total 7 columns):
          # Column Non-Null Count Dtype
          ---
                            -----
          0
                            18207 non-null Int64
              ID
                            18207 non-null int32
          1
              Name
          2
                            18207 non-null Int64
              Age
             Nationality 18207 non-null int32
          3
             Overall 18207 non-null Int64
Potential 18207 non-null Int64
Club 18207 non-null int32
          4
                            18207 non-null int32
          6 Club
         dtypes: Int64(4), int32(3)
         memory usage: 853.6 KB
In [98]: data.head()
                ID Name Age Nationality Overall Potential Club
Out[98]:
          0 158023
                    9632
                                   9632
                                                          6
                          31
                                            94
                                                    94
             20801
                    3153
                           33
                                   3153
                                            94
                                                    94
                                                        123
```

2 190871 12508

12508

92

93

20

26

```
    3
    193080
    4136
    27
    4136
    91
    93
    139

    4
    192985
    8617
    27
    8617
    91
    92
    13
```

```
In [99]: #Построим корреляционную матрицу
fig, ax = plt.subplots(figsize=(15,7))
sns.heatmap(data.corr(method='pearson'), ax=ax, annot=True, fmt='.2f')
```

Out[99]: <AxesSubplot:>


```
In [124... X = data.drop(['Overall'], axis = 1)
    Y = data.Overall
    print('Входные данные:\n\n', X.head(), '\n\nВыходные данные:\n\n', Y.head
```

Входные данные:

	ID	Name	Age	Nationality	Potential	Club
0	158023	9632	31	9632	94	6
1	20801	3153	33	3153	94	123
2	190871	12508	26	12508	93	20
3	193080	4136	27	4136	93	139
4	192985	8617	27	8617	92	13

Выходные данные:

Name: Overall, dtype: Int64

In [125... X_train, X_test, Y_train, Y_test = train_test_split(X, Y, random_staprint('Входные параметры обучающей выборки:\n\n', X_train.head(), \
'\n\nВходные параметры тестовой выборки:\n\n', X_test.head(), \
'\n\nВыходные параметры обучающей выборки:\n\n', Y_train.head(), \
'\n\nВыходные параметры тестовой выборки:\n\n', Y_test.head())

Входные параметры обучающей выборки:

	ID	Name	Age	Nationality	Potential	Club
17929	244056	2990	18	2990	66	115
10668	231353	4441	20	4441	77	59
15882	229914	4556	21	4556	62	126
14698	245522	6093	24	6093	62	130

Входные параметры тестовой выборки:

	ID	Name	Age	Nationality	Potential	Club
15885	228381	4404	22	4404	65	144
13652	223146	5267	22	5267	69	145
13522	208771	5540	24	5540	65	126
7814	228388	11612	23	11612	76	132
15904	243243	15269	19	15269	72	153

Выходные параметры обучающей выборки:

```
17929 51

10668 65

15882 58

14698 60

8509 67

Name: Overall, dtype: Int64
```

, 1111

Выходные параметры тестовой выборки:

```
15885 58
13652 62
13522 62
7814 67
15904 58
```

Name: Overall, dtype: Int64

```
In [126... from sklearn.linear_model import LinearRegression
    from sklearn.metrics import mean_absolute_error, mean_squared_error, mean_sq
```

```
In [128... plt.scatter(X_test.Potential, Y_test, marker = 's', label = 'Тестовая
    plt.scatter(X_test.Potential, lr_y_pred, marker = '.', label = 'Предсказо
    plt.legend (loc = 'lower right')
    plt.xlabel ('INSTRUCTION_EXPENDITURE')
    plt.ylabel ('TOTAL_EXPENDITURE')
    plt.show()
```



```
In [136... print('Коэффициент детерминации:', r2_score(Y_test, lr_y_pred))
    print('Средняя абсолютная ошибка:', mean_absolute_error(Y_test, lr_y_pred))
    print('Средняя квадратичная ошибка:', mean_squared_error(Y_test, lr_y_pred))
    print('Median absolute error:', median_absolute_error(Y_test, lr_y_pred))
```

```
Коэффициент детерминации: 0.8467083078866217
Средняя абсолютная ошибка: 2.0961041462500787
Средняя квадратичная ошибка: 7.275976479869679
Median absolute error: 1.7898126738096636
```

```
In [129... from sklearn.ensemble import RandomForestRegressor

In [130... forest_1 = RandomForestRegressor(n_estimators=5, oob_score=True, random_forest_1.fit(X, Y)

Out[130... RandomForestRegressor(n_estimators=5, oob_score=True, random_state=10)

In [131... Y_predict = forest_1.predict(X_test)
    print('Средняя абсолютная ошибка:', mean_absolute_error(Y_test, Y_predict) print('Средняя квадратичная ошибка:', mean_squared_error(Y_test, Y_predict) print('Median absolute error:', median_absolute_error(Y_test, Y_predict))
```

Средняя абсолютная ошибка: 0.4535969247666121 Средняя квадратичная ошибка: 0.6658758923668316 Median absolute error: 0.2000000000000284 Коэффициент детерминации: 0.9859711967787662

```
In [133... plt.scatter(X_test.Potential, Y_test, marker = 'o', label = 'Τεςτοβαπ plt.scatter(X_test.Potential, Y_predict, marker = '.', label = 'Πρεμςκασω plt.legend(loc = 'lower right') plt.xlabel('INSTRUCTION_EXPENDITURE') plt.ylabel('INSTRUCTION_EXPENDITURE') plt.show()
```



```
In []:
```