LTM Enhancement for COVID-19 Modeling

< CSE 8803 >

Dylan Small, Tejas Pradeep, & Anjana Chamarthi December 5, 2023

Motivation/Introduction

- Addressing a Global Challenge
 - critical need for advancing modeling in understanding and predicting the spread of COVID-19
- Improving Predictive Models
 - limitations with existing models (and need for a more nuanced approach to capture disease spread complexity)
- Innovating with Linear Threshold Model (LTM)
 - LTM enhancement to better account for individual-level variability in susceptibility to infection
- Combining LTM with SIR and other models
 - refining predictive accuracy
- Aiding public health decisions & strategies (practical significance of data-driven approach)

Problem Definition

Simulate the spread of COVID-19 pandemic by integrating LTMs with more complex epidemiological models

Linear Threshold Model (LTM) Overview

- Basic Principle
 - describes how individuals in a network adopt new behaviors based on their **neighbor's influence** (can vary, represented by weights in network)
- Individual Binary Choices (to adopt or not to adopt)
- Threshold Concept
 - specific proportion of neighbors who must adopt a behavior before they will follow
- Cumulative Influence
 - individual behavior changes only when cumulative influence of neighbors exceeds their threshold
- Useful in predicting behavior spread

Methodology

1. Network Representation

a. Create a graph structure (50 connected nodes to represent US states and physical distances between them as edge weights)

2. Influence Calculation

- a. Assign thresholds randomly
- b. Initialize set of active/inactive nodes

3. Iterative Spread Process

- a. Repeat activation process until no new activations occur
- 4. **Model Layering** (combining with SI, SIR, & SIRS models)
 - Integrate LTM thresholds and activations as a measure of infection rate and transmission probabilities

5. Simulation and Enhancement

a. Modify SIR rates based on LTM dynamics to reflect social influence on disease spread

6. Validation

5

Data

- Weekly Epidemiological Snapshot
 - COVID-19 figures across United States, YYYY-MM-DD format
- Comprehensive Data Aggregation
 - Collected new and cumulative confirmed cases, deaths, recoveries, and tests
- Calculating Infection and Recovery Rates
 - Utilized new cases and deaths data to determine infected and recovered population percentages for modeling
- Data Source and Reporting
 - o from CDC
- Split into 80/20 training & validation sets

Experiments Overview

- Compare loss, normalized errors, and correlation coefficients to determine which model combination simulates the COVID-19 data most accurately
- Model Evaluation: weighted mean-squared-error (MSE)

	With LTM	Without LTM
SI Model	?	?
SIR Model	?	?
SIRS Model	?	?

Experiment - SI Model (LTM vs. non LTM)

Experiment - SI Model (LTM vs. non LTM)

Experiment - SIR Model (LTM vs. non LTM)

Experiment - SIR Model (LTM vs. non LTM)

Experiment - SIRS Model (LTM vs. non LTM)

Experiment - SIRS Model (LTM vs. non LTM)

Best Results

Validation MSE scores for various model combinations

	LTM	No LTM
SIR	0.0098	0.0093
SI	0.00216	0.0027
SIRS	0.00138	0.00757

Figure 1: SIRS with LTM: actual infected population % v.s predicted infected population %. MSE = 0.00138

1

Conclusion

- Augmenting SIR model with real-world data can significantly increase accuracy
- LTM model which highlighted **mobility was an influential factor** predicting disease spread
- LTM combined with SIRS model produced best results

Future Work

- Incorporate an enhanced dataset to better capture mobility between states
 - Ex: likelihood of travel between states, # of flights between states
- Improve SIRS Model
 - add in a factor to delay re-infections due to immunity provided by a prior infection
- Including vaccination data to help gain insights on how and where vaccinations can be best deployed

Thank you! Q & A

