Data Mining Machine Learning Pattern Recognition

데이타마이닝 연구실 박정희

Knowledge Discovery process

- Lots of data is being collected and stored at enormous speeds
- Computers have become cheaper and more powerful
- Non-trivial extraction of implicit, previously unknown and potentially useful information from data

Origins of Data Mining

 Draws ideas from machine learning/AI, pattern recognition, statistics, and database systems

Example: Hiring new employees

- Problem: Who would leave within a year?
- Data collection
 - All employee information
- Classifier modeling
- Perform prediction for a new data sample

FEATURES

(attributes, variables, characteristics...)

feature # 2, e.g., gender or character

Major Tasks

- Classification
- Clustering
- Association Rule Discovery
- Regression
- Outlier Detection
- Sequential Pattern Discovery
- ...

Classification

- Given a collection of records,
 - Each record contains a set of *attributes*
 - one of the attributes is the *class*.
- Find a model for class attribute as a function of the values of other attributes.
- Goal: <u>Previously unseen</u> records should be assigned a class as accurately as possible.

Illustrating Classification Task

Test Set

Decision Tree

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single 125K		No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Training Data

Model: Decision Tree

Apply Model to Test Data

Construction of decision tree

An example: Class 1 = red, Class 2 = blue.

Construction of decision tree

An example: Class 1 = red, Class 2 = blue.

k-nearest neighbors classifier

- Basic idea:
 - If it walks like a duck, quacks like a duck, then it's probably a duck

Artificial Neural Networks

Support Vector Machines

Other possible solutions

Support Vector Machines

Find hyperplane maximizes the margin => B1 is better than B2

Clustering

 Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

K-means Clustering

- Partitional clustering approach
- Each cluster is associated with a centroid (or center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The basic algorithm is very simple

- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

Example of K-means clustering

Association Rule Mining

 Given a set of transactions, find rules that will <u>predict the</u> occurrence of an item based on the occurrences of other <u>items</u> in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Association Rule

An implication expression of the form $X \rightarrow Y$, where X and Y are itemsets

Example of Association Rules

```
{Diaper} \rightarrow {Beer},

{Milk, Bread} \rightarrow {Eggs,Coke},

{Beer, Bread} \rightarrow {Milk},
```

Dimension reduction

features

A1	A2	А3	 	 С
10				Υ
21				N
13				Υ
14				N
15				Υ
10				Υ
:				
:				
:				

dimenion reduction (차원감소)

B1	B2	 С
•		Υ
		Ν
:		Υ
:		Ν
:		Υ
•		Υ

• dimension: the number of features

Low Dimensional Embedding of High-Dimensional Data

Why Dimension reduction?

- Reduce the dimensionality of high dimensional data
- Identify new meaningful underlying features
- The computational overhead of the subsequent processing stages is reduced
- Reduce noise effects
- Visualization of the data

Applications: Face recognition

Streaming data mining

- Data stream is a sequence of data samples which is continuously generated over time
- Concept drift
- underlying data distribution may be changed
- the concept of interest can be moved
- How to detect concept drift?
- How to adapt classification models incrementally?

reference

- Introduction to data mining, P.Tan and M.
 Steinbach and V. Kumar, Addison wesley, 2006
- Pattern Recognition and Machine Learning, Lucy Kuncheva, School of Computer Science, Bangor University