Steps for Mobile Application Penetration testing of DIVA-Beta APK

1. Setting Up the Android Emulator in Android Studio:

- First, I open Android Studio and navigate to the AVD Manager (Android Virtual Device Manager).
- o I create a new virtual device by choosing a hardware profile that suits my testing needs, like a Pixel device.
- o Then, I select a system image (preferably the latest stable Android version) and finalize the setup by naming the device and customizing any necessary settings.
- o Once the emulator is set up, I start it to ensure it's working correctly.

2. Installing the DIVA-Beta APK Using Windows PowerShell:

- o After launching the emulator, I navigate to the folder where the diva-beta.apk is stored on my Windows machine.
- o I open Windows PowerShell in that directory by right-clicking and selecting "Open PowerShell window here."
- o I use the command adb install diva-beta.apk to install the APK on the running emulator.
- I verify the installation by checking the app drawer in the emulator for the DIVA app.

3. Decompiling the APK with JADX-GUI:

- o I open JADX-GUI on my Windows machine.
- o Using the GUI, I load the diva-beta.apk file.
- o I explore the decompiled source code, focusing on the activity files, manifest, and any other critical components that might reveal vulnerabilities.
- o I take notes on any suspicious code patterns, hard-coded credentials, or weak cryptographic practices.

4. Extracting Stored Logs Using PowerShell:

- o I return to PowerShell and run the command adb logcat > logs.txt to capture the log output from the Android emulator.
- o This command saves all the logs to a file named logs.txt in the current directory.
- o I analyze the logs for any sensitive information that might be exposed, such as unencrypted data, user credentials, or application errors that could be exploited.

5. Performing SQL Injection to Bypass Login:

- With the app running on the emulator, I identify any input fields, especially login forms, that might be vulnerable to SQL injection.
- o I attempt to inject common SQL payloads, such as 'OR '1'='1 in the username and password fields.
- o I monitor the app's behavior, checking if it bypasses authentication and grants access to restricted areas.
- o I document my findings, noting down the specific payloads that were successful.

6. Other Necessary Steps:

o **Exploring Insecure Data Storage**: I use adb shell to explore the file system of the emulator and check if the app stores sensitive data insecurely, such as unencrypted user data or hard-coded keys.

o **Examining App Permissions**: I review the app's permissions in the AndroidManifest.xml file (decompiled using JADX-GUI) to identify any overpermissions that could be exploited.

7. Final Documentation and Reporting:

- o After completing all the tests, I compile a detailed report that includes my methodology, findings, screenshots, and any recommendations for mitigating the identified vulnerabilities.
- o This report is essential for conveying the risks and necessary fixes to the development team.

These steps ensure that I thoroughly assess the security posture of the DIVA-Beta APK, identifying potential vulnerabilities that could be exploited by malicious actors.