Becoming a data ninja with dplyr

major data manipulation verbs

Verb	Usage
filter	Keep matching row criteria
summarize	reduces summary values calculated
mutate	add new variables to existing data frame
select	select columns by name
arrange	reorder rows

df <- data.frame(ID = 1:5,
GENDER = c("MALE", "MALE", "FEMALE", "MALE", "FEMALE"),
WT = c(70, 76, 60, 64, 68))</pre>

ID	GENDER	WT
1	MALE	70
2	MALE	76
3	FEMALE	60
4	MALE	64
5	FEMALE	68

Verb	Usage
filter	Keep matching row criteria
summarize	reduces summary values calculated
mutate	add new variables to existing data frame
select	select columns by name
arrange	reorder rows

filter(df, GENDER == "FEMALE")

ID	GENDER	WT
1	MALE	70
2	MALE	76
3	FEMALE	60
4	MALE	64
5	FEMALE	68

WT

LE 60

common dplyr filter (subset) operators

operator	meaning
==, !=	equal, not equal
>, >=	greater than, greater than or equal to
<, <=	less than, less than or equal to
is.na, !is.na	is NA, not NA
!duplicated	only first value
%in%	in specified values

filter seperator	base equivalent	meaning
,	&	and
		or

filter(df, ID %in% c(1, 3, 5))

ID	GENDER	WT
1	MALE	70
2	MALE	76
3	FEMALE	60
4	MALE	64
5	FEMALE	68

filter(df, GENDER == "MALE", WT > 70)

ID	GENDER	WT
1	MALE	70
2	MALE	76
3	FEMALE	60
4	MALE	64
5	FEMALE	68

filter(df, GENDER == "FEMALE" | WT < 70)</pre>

ID	GENDER	WT
1	MALE	70
2	MALE	76
3	FEMALE	60
4	MALE	64
5	FEMALE	68

chaining and grouped operations

chaining with

%>%

```
call_A() %>% call_B(arg1, ...) %>% call_C(arg1, ...)
```

%>% is pronounced 'then'

> Theoph %>% filter(!duplicated(Subject)) %>% head()

```
Subject Wt Dose Time conc
     1 79.6 4.02 0 0.74
     2 72.4 4.40 0 0.00
     3 70.5 4.53 0 0.00
     4 72.7 4.40
                   0 0.00
     5 54.6 5.86
                   0 0.00
     6 80.0 4.00
                   0 0.00
```

split-apply-combine -> group_by

https://jakevdp.github.io/figures/split-apply-combine.svg

Verb	Usage
filter	Keep matching row criteria
summarize	reduces summary values calculated
mutate	add new variables to existing data frame
select	select columns by name
arrange	reorder rows

df %>% summarize(meanWT = mean(WT))

ID	GENDER	WT
1	MALE	70
2	MALE	76
3	FEMALE	60
4	MALE	64
5	FEMALE	68

summarize(df, meanWT = mean(WT))

df %>% group_by(GENDER) %>% summarize(meanWT = mean(WT))

ID	GENDER	WT
1	MALE	70
2	MALE	76
3	FEMALE	60
4	MALE	64
5	FEMALE	68

GENDER	meanWT
MALE	70
FEMALE	64

df %>% group_by(GENDER) %>% summarize(meanWT = mean(WT), n = n())

ID	GENDER	WT	
1	MALE	70	
2	MALE	76	
3	FEMALE	60	
4	MALE	64	
5	FEMALE	68	

Verb	Usage
filter	Keep matching row criteria
summarize	reduces summary values calculated
mutate	add new variables to existing data frame
select	select columns by name
arrange	reorder rows

df %>% mutate(meanWT = mean(WT))

ID	GENDER	WT	
1	MALE	70	
2	MALE	76	
3	FEMALE	60	
4	MALE	64	
5	FEMALE	68	

ID	GENDER	WT	meanWT
1	MALE	70	67.6
2	MALE	76	67.6
3	FEMALE	60	67.6
4	MALE	64	67.6
5	FEMALE	68	67.6

df %>% group_by(GENDER) %>% mutate(meanWT = mean(WT))

ID	GENDER	WT	
1	MALE	70	
2	MALE	76	
3	FEMALE	60	
4	MALE	64	
5	FEMALE	68	

ID	GENDER	WT	meanWT
1	MALE	70	70
2	MALE	76	70
3	FEMALE	60	64
4	MALE	64	70
5	FEMALE	68	64

ID	GENDER	WT
1	MALE	70
2	MALE	76
3	FEMALE	60
4	MALE	64
5	FEMALE	68

ID	GENDER	WT	meanWT	mWT_LB
1	MALE	70	70	154
2	MALE	76	70	154
3	FEMALE	60	64	140.8
4	MALE	64	70	154
5	FEMALE	68	64	140.8

df %>%
mutate(ISM = ifelse(GENDER == "MALE", 1, 0))

ID	GENDER	WT	ID	GENDER	WT	ISM
1	MALE	70	1	MALE	70	1
2	MALE	76	2	MALE	76	1
3	FEMALE	60	3	FEMALE	60	0
4	MALE	64	4	MALE	64	1
5	FEMALE	68	5	FEMALE	68	0

Verb	Usage
filter	Keep matching row criteria
summarize	reduces summary values calculated
mutate	add new variables to existing data frame
select	select columns by name
arrange	reorder rows

df2 %>% select(ID, WT)

ID	GENDER	WT	meanWT	
1	MALE	70	67.6	
2	MALE	76	67.6	
3	FEMALE	60	67.6	
4	MALE	64	67.6	
5	FEMALE	68	67.6	

ID	WT
1	70
2	76
3	60
4	64
5	68

df2 %>% select(GENDER:meanWT)

ID	GENDER	WT	meanWT
1	MALE	70	67.6
2	MALE	76	67.6
3	FEMALE	60	67.6
4	MALE	64	67.6
5	FEMALE	68	67.6

GENDER	WT	meanWT
MALE	70	67.6
MALE	76	67.6
FEMALE	60	67.6
MALE	64	67.6
FEMALE	68	67.6

df %>% select(<function>(<values>))

df with the following columns:

WEIGHT WEIGHT_KG MEAN_WEIGHT O	0CC1 0CC2	OCC3 OCC4	HEIGHT
--------------------------------	-----------	-----------	--------

function	meaning	example	columns selected
starts_wi th	names start with	starts_with("WEIGHT"))	WEIGHT, WEIGHT_KG
ends_with	names ends with	<pre>ends_with("GHT")</pre>	WEIGHT, MEAN_WEIGHT, HEIGHT
contains	names contains	contains("EI")	WEIGHT, WEIGHT_KG, MEAN_WEIGHT, HEIGHT
matches	regular expression matching	matches("_")	WEIGHT_KG, MEAN_WEIGHT
num_range	specify range of columns with consistent names with numeric suffix	num_range("OCC",1:3)	OCC1, OCC2, OCC3

```
test_select <-
data.frame("WEIGHT" =0, "WEIGHT_KG"=0,
"MEAN_WEIGHT"=0, "OCC1"=0, "OCC2"=0,
    "OCC3"=0, "OCC4"=0, "HEIGHT"=0)</pre>
test_select %>% select(starts_with("WEIGHT"))
test_select %>% select(matches("_"))
test_select %>% select(num_range("OCC", 1:3))
```

df2 %>% select(ID, WEIGHT = WT)

ID	GENDER	WT	meanWT
1	MALE	70	67.6
2	MALE	76	67.6
3	FEMALE	60	67.6
4	MALE	64	67.6
5	FEMALE	68	67.6

df2 %>% rename(WEIGHT = WT)

ID	GENDER	WT	meanWT
1	MALE	70	67.6
2	MALE	76	67.6
3	FEMALE	60	67.6
4	MALE	64	67.6
5	FEMALE	68	67.6

Verb	Usage
filter	Keep matching row criteria
summarize	reduces summary values calculated
mutate	add new variables to existing data frame
select	select columns by name
arrange	reorder rows

df %>% arrange(WT)

ID	GENDER	WT
1	MALE	70
2	MALE	76
3	FEMALE	60
4	MALE	64
5	FEMALE	68

ID	GENDER	WT
3	FEMALE	60
4	MALE	64
5	FEMALE	68
1	MALE	70
2	MALE	76

df %>% arrange(desc(WT))

ID	GENDER	WT
1	MALE	70
2	MALE	76
3	FEMALE	60
4	MALE	64
5	FEMALE	68

ID	GENDER	WT
2	MALE	76
1	MALE	70
5	FEMALE	68
4	MALE	64
3	FEMALE	60

dosing_df <- data.frame(ID = 1:2, TIME =0, AMT = 100, MDV = 1)
sample_df <- data.frame(expand.grid(ID = 1:2, TIME = seq(0, 2,
1),</pre>

AMT = 0, MDV = 0)

df3 <- bind_rows(sample_df, dosing_df)</pre>

* expand.grid is a very handy
function for generating
permutations

^{*} MDV = missing dependent variable - a nonmem-style flag column

ID	TIME	AMT	MDV
1	0	0	0
2	0	0	0
1	1	0	0
2	1	0	0
1	2	0	0
2	2	0	0
1	0	100	1
2	0	100	1

df3 %>% arrange(ID, TIME)

ID	TIME	AMT	MDV	ID	TI
1	0	0	0	1	(
2	0	0	0	1	(
1	1	0	0	1	-
2	1	0	0	1	4
1	2	0	0	2	(
2	2	0	0	2	(
1	0	100	1	2	
2	0	100	1	2	

ID	TIME	AMT	MDV
1	0	0	0
1	Θ	100	1
1	1	0	0
1	2	0	0
2	0	0	0
2	0	100	1
2	1	0	0
2	2	0	0

df3 %>% arrange(ID, TIME, desc(MDV))

				_		
ID	TIME	AMT	MDV		ID	172
1	0	0	0		1	
2	Θ	0	0		1	
1	1	0	0		1	
2	1	0	0	-	1	•
1	2	0	0		2	
2	2	0	0		2	
1	0	100	1		2	
2	0	100	1		2	

ID	TIME	AMT	MDV
1	0	100	1
1	0	0	0
1	1	0	0
1	2	0	0
2	0	100	1
2	0	0	0
2	1	0	0
2	2	0	0

minor data manipulation verbs

Verb	Usage
distinct	Keep all distinct elements per key
slice	return certain rows by number, group aware. Must be integer values
rename	rename columns
transmute	similar to mutate, however all columns not involved in calculation (either grouping or explicit calculations) are dropped

Theoph %>%

Theoph %>% distinct(Subject) distinct(Subject, .keep_all = TRUE)

Subject	
3	
6	
7	
8	
11	

Subject	Wt	Dose	Time	conc
3	70.5	4.53	0	0.00
6	80.0	4.00	0	0.00
7	64.6	4.95	0	0.15
8	70.5	4.53	0	0.00
11	65.0	4.92	0	0.00

Theoph %>%
group_by(Subject) %>%
slice(1:2)

Subject	Wt	Dose	Time	conc
6	80.0	4.00	0.00	0.00
6	80.0	4.00	0.27	1.29
7	64.6	4.95	0.00	0.15
7	64.6	4.95	0.25	0.85
8	70.5	4.53	0.00	0.00
8	70.5	4.53	0.25	3.05
11	65.0	4.92	0.00	0.00
11	65.0	4.92	0.25	4.86
3	70.5	4.53	0.00	0.00
3	70.5	4.53	0.27	4.40

Theoph %>%
group_by(Subject) %>%
slice(c(1, n()))

Subject	Wt	Dose	Time	conc
6	80.0	4.00	0.00	0.00
6	80.0	4.00	23.85	0.92
7	64.6	4.95	0.00	0.15
7	64.6	4.95	24.22	1.15
8	70.5	4.53	0.00	0.00
8	70.5	4.53	24.12	1.25
11	65.0	4.92	0.00	0.00
11	65.0	4.92	24.08	0.86
3	70.5	4.53	0.00	0.00
3	70.5	4.53	24.17	1.05

Theoph %>% rename(ID = Subject)

ID	Wt	Dose	Time	conc
3	70.5	4.53	0.00	0.00
3	70.5	4.53	0.27	4.40

Ifelse() vs case_when()

```
race <- data.frame(</pre>
    id=1:5,
    racen=c(0:3,6)
race %>%
                                     5
mutate(
racec = ifelse(racen==0,"Caucasian",
ifelse(racen==1,"Black",
ifelse(racen==2, "Asian",
ifelse(racen==3,"Hispanic","missing")))
```

```
idracenracec10Caucasian21Black32Asian43Hispanic5NAmissing
```

Ifelse() vs case_when()

```
race %>%
mutate(
  racec = case_when(
    racen == 0 ~ "Caucasian",
    racen == 1 ~ "Black",
    racen == 2 ~ "Asian",
    racen == 3 ~ "Hispanic",
    racen == 4 ~ "Other",
    TRUE ~ "missing"
```

id	racen	racec
1	0	Caucasian
2	1	Black
3	2	Asian
4	3	Hispanic
5	NA	missing

```
race %>%
race %>%
                             mutate(
mutate(
                               racec = case_when(
racec = ifelse(
                                 racen == 0 ~ "Caucasian",
       racen==0,"Caucasian",
                                 racen == 1 ~ "Black",
ifelse(racen==1,"Black",
                                 racen == 2 ~ "Asian",
ifelse(racen==2,"Asian",
                                 racen == 3 ~ "Hispanic",
ifelse(racen==3,"Hispanic",
                                 TRUE ~ "missing"
"missing")
))))
```

id	racen	raceifelse	racecasewhen
1	0	Caucasian	Caucasian
2	1	Black	Black
3	2	Asian	Asian
4	3	Hispanic	Hispanic
5	NA	NA	missing

```
race %>%
mutate(
racec =
ifelse(is.na(racen), "missing",
ifelse(racen==0, "Caucasian",
ifelse(racen==1,"Black",
ifelse(racen==2, "Asian",
ifelse(racen==3,"Hispanic",
"missing")
)))))
```

dplyr joins

Join	Usage
inner_join	return all rows from x where there are matching values in y, and all columns from x and y.
left_join	return all rows from x, and all columns from x and y.
semi_join	return all rows from x where there are matching values in y, keeping just columns from x.
anti_join	return all rows from x where there are not matching values in y, keeping just columns from x.
full_join	returns all rows and columns from x and y, with NA values for non-matching values from either.

^{*} A semi join differs from an inner join because an inner join will return one row of x for each matching row of y, where a semi join will never duplicate rows of x

```
idtime <- data.frame(expand.grid(ID = as.numeric(1:3),
   TIME = c(0,1))) %>% arrange(ID)
idwt <- data.frame(ID = c(1, 2, 4), WT = c(70, 80, 75))</pre>
```

ID	TIME		
1	0	_	
1	1	ID	WT
2	0	1	70
2	1	2	80
3	0	4	75
3	1	i	dwt
	<u> </u>		

<join>(x_df,y_df)

INNER JOIN

idtime/idwt => in both

ID	TIME		
1	0	ID	WT
1	1	1	70
2	0	2	80
2	1	4	75
3	0	i	dwt
3	1		
idtime			

inner_join(idtime, idwt)

ID	TIME	WT
1	0	70
1	1	70
2	0	80
2	1	80

ID	WT	TIME
1	70	0
1	70	1
2	80	0
2	80	1

inner_join(idwt, idtime)

LEFT JOIN

idtime/idwt => in both

ID	TIME			lef	t_j	oin(id	time,	idwt)			
1	0	ID	WT		ID	TIME	WT		ID	WT	TIME
1	1	1	70		1	0	70		1	70	0
2	0	2	80		1	1	70		1	70	1
2	1	4	75		2	0	80		2	80	0
3	0	i	dwt		2	1	80		2	80	1
3	1				3	0	NA		4	75	NA
i	dtime				3	1	NA	left_j	oin	(idwt	t, idt

SEMI JOIN

idtime/idwt => in both

semi_join(idtime, idwt)

ID	TIME
1	0
1	1
2	0
2	1

semi_join(idwt, idtime)

ANTI JOIN

idtime/idwt => in both

TIME ID WT 75 anti_join(idwt, idtime)

FULL JOIN

idtime/idwt => in both

full_join(idtime, idwt)

ID	TIME				
1	0	ID	WT		
1	1	1	70		
2	0	2	80		
2	1	4	75		
3	0	i	dwt		
3	1				
idtime					

ID	TIME	WT
1	0	70
1	1	70
2	0	80
2	1	80
3	0	NA
3	1	NA
4	NA	75

ID	WT	TIME
1	70	0
1	70	1
2	80	0
2	80	1
3	NA	0
3	NA	1
4	75	NA

full_join(idwt, idtime)

Operate on a selection of variables

```
df <- data.frame(ID = 1:5,
GENDER = c("MALE", "MALE", "FEMALE", "MALE", "FEMALE"),
WT = c(70, 76, 60, 64, 68),
AGE = c(55,52,48,37,70))</pre>
```

ID	GENDER	WT	AGE
1	MALE	70	55
2	MALE	76	52
3	FEMALE	60	48
4	MALE	64	37
5	FEMALE	68	70

_all — apply an operation on all variables

```
df %>%
group_by(GENDER) %>%
select(-ID) %>%
summarise_all(mean)
```

GENDER	WT	AGE
FEMALE	64	59
MALE	70	48

_at — apply an operation on a subset of variables

```
df %>%
group_by(GENDER) %>%
summarise_at(vars(WT,AGE),mean)
```

GENDER	WT	AGE
FEMALE	64	59
MALE	70	48

_at — apply an operation on a subset of variables

```
df %>% group_by(GENDER) %>%
summarise_at(vars(WT,AGE),funs(mean,median,n())) %>%
select(GENDER,
contains("mean"),
ends_with("median"),
everything())
```

GENDER	WT_mean	AGE_mean	WT_median	AGE_median	WT_n	AGE_n
FEMALE	64	59	64	59	2	2
MALE	70	48	70	52	3	3

_if — apply an operation on the subset of variables for which a predicate function returns TRUE

```
df %>% select(-ID) %>%
summarise_if(is.numeric, funs(mean, median))
```

WT_mean	AGE_mean	WT_median	AGE_median
67.6	52.4	68	52

windows functions

- "A window function is a variation on an aggregation function."
- •Where an aggregation function, like sum() and mean(), takes n inputs and return a single value
- •a window function <u>returns n values</u>

cumsum()	row_number()	lead()
cummin()	<pre>min_rank()</pre>	lag()
cummax()	dense_rank()	
cumall()	cume_dist()	
cumany()	<pre>percent_rank()</pre>	
cummean()	ntile()	

df %>%
 mutate(cum_max = cummax(event))

visit	event	cum_max
1	1	1
2	3	3
3	5	5
4	4	5
5	4	5
6	2	5
7	7	7
8	6	7
9	6	7
10	4	7