Part 2: Data cleaning

#

> We have cleaned the files now we have to treat the missing
values we found in rest of the columns.

> This time we will import from the cleaned csv files

Missing value treatment

permalink 0 name 1 homepage_url 5058 category_list 3148 status 0 6958 country_code 8547 state_code 8030 region city 8028 founded_at 15221 dtype: int64

acyper inco-

- # > create a master data frame for ease of analysis
- # > we can use pd.merge to merge on company_permalink column
- # > after merging we can drop any one of the permalink column as
 they are redundant

Percent missing value in merged dataframe

permalink	0.000000
name	0.000870
homepage_url	5.336280
category_list	2.966533
status	0.000000
country_code	7.549435
state_code	9.522484
region	8.844792
city	8.842182
founded_at	17.852265
<pre>funding_round_permalink</pre>	0.000000
<pre>funding_round_type</pre>	0.000000
funding_round_code	72.909725
funded_at	0.000000
raised_amount_usd	17.390321
dtype: float64	

```
# Clearly, the column ```funding_round_code``` is useless (with
about 73% missing values).
  Also, for the business objectives given, the columns
  ```homepage_url```, ```founded_at```,
  ```state_code```, ```region``` and ```city``` need not be used.
```

Dropping columns

permalink	0.00
name	0.00
category_list	2.97
status	0.00
country_code	7.55
<pre>funding_round_permalink</pre>	0.00
funding_round_type	0.00
funded_at	0.00
raised_amount_usd	17.39
d+vno. floa+64	

dtype: float64

After dropping

Missing columns include category_list, country_code and raised amount usd.

We can not simply delete these columns as category_list will be used for merging with the mapping file.

country_code and raised_amount_usd are useful from business
perspective.

We have to carefully tread through the raised_amount_usd column as it has about 17% missing values

Raised_amount_column

count	9.495900e+04
mean	1.042687e+07
std	1.148212e+08
min	0.000000e+00
25%	3.225000e+05
50%	1.680511e+06
75%	7.000000e+06
max	2.127194e+10

Name: raised_amount_usd, dtype: float64

The mean amount of funding is 10 million USD. The median is about 1.7 million USD.

The highest amount invested is about 21.7 billion USD The data is highly skewed and has very large outliers. This clearly inflate the mean.

This suggests we have no other option but to delete the missing values in raised_amount_usd as we can not impute them with mean or median

After deleting the null entries in raised_amount and country_codes ,

imputing Tell_it_in name in names row. And deleting null rows in category_list we get clean data which we save to .csv files

<class 'pandas.core.frame.DataFrame'> Int64Index: 88529 entries, 0 to 114947 Data columns (total 9 columns):

#	Column	Non–Nu	ıll Count	Dtype
0	permalink	88529	non-null	object
1	name	88529	non-null	object
2	category_list	88529	non-null	object
3	status	88529	non-null	object
4	country_code	88529	non-null	object
5	<pre>funding_round_permalink</pre>	88529	non-null	object
6	funding_round_type	88529	non-null	object
7	funded_at	88529	non-null	object
8	raised_amount_usd	88529	non-null	float64
dtvn	es: $float64(1)$ object(8)			

dtypes: float64(1), object(8)

We have treated all the missing values. Now we have 88529 out of 114948 entries left after clean-up.

We have about 78% of our initial data. Which is low but as the data has ~89K entries, we can do some solid analysis to them. Now we can put the cleaned master data to a csv file