EXERCICE 1.★

Soit $(u_n)_{n\geqslant 0}\in\mathbb{R}^{\mathbb{N}}$ telle que les suites

$$(u_{2n})_{n\geqslant 0}$$
, $(u_{2n+1})_{n\geqslant 0}$ et $(u_{3n})_{n\geqslant 0}$

convergent. Prouver que $(\mathfrak{u}_n)_{n\geqslant 0}$ converge.

EXERCICE 2.

Pour $x \in \mathbb{R}$, on note $\{x\} = x - [x]$ la partie fractionnaire de x. Montrer que la suite $(\{\sqrt{n}\})$ n'admet pas de limite.

EXERCICE 3.

Soient $(a_n), (b_n), (c_n)$ trois suites réelles telles que $a_n + b_n + c_n$ tend vers 0 et $e^{a_n} + e^{b_n} + e^{c_n}$ tend vers 3. Montrer que les suites $(a_n), (b_n), (c_n)$ convergent.

EXERCICE 4.

Soient (u_n) et (v_n) deux suites de nombres réels et $\mathfrak p$ et $\mathfrak q$ deux entiers naturels impairs tels que

$$\lim_{n \to +\infty} u_n + v_n = 0$$
$$\lim_{n \to +\infty} u_n^p - v_n^q = 0$$

Montrer que $\lim_{n\to+\infty} u_n = \lim_{n\to+\infty} v_n = 0$.

EXERCICE 5.*

Soit $(\phi_n)_{n\geqslant 0}$ la suite définie par $\phi_0=0$, $\phi_1=1$ et

$$\forall n \geqslant 0, \quad \phi_{n+2} = \phi_{n+1} + \phi_n.$$

- 1. Exprimer ϕ_n en fonction de n.
- **2.** Montrer que $\forall n \geqslant 0$,

$$\phi_{n+1}^2 = \phi_n \phi_{n+2} + (-1)^n$$
.

3. Déduire de tout ce qui précède que la suite de terme général

$$\sum_{k=1}^{n} \frac{(-1)^k}{\phi_k \phi_{k+1}}$$

converge vers une limite ℓ à préciser.

EXERCICE 6.

Soit $(u_n)_{n\geq 0}$ une suite définie par $u_0, u_1 > 0$ et $\forall n \geq 0$,

$$u_{n+2} = \frac{2u_{n+1}u_n}{u_{n+1} + u_n}.$$

Exprimer u_n en fonction de n puis étudier la convergence de la suite.

EXERCICE 7.

Soit $(\mathfrak{u}_n)_{n\geqslant 0}$ une suite définie par $\mathfrak{u}_0,\mathfrak{u}_1>0$ et $\forall n\geqslant 0$,

$$u_{n+2} = (u_{n+1}u_n^2)^{\frac{1}{3}}.$$

Exprimer u_n en fonction de n puis étudier la convergence de la suite.

EXERCICE 8.

Pour chacune des suites $(u_n)_{n\in\mathbb{N}}$ récurrentes linéaires d'ordre deux suivantes, calculer u_n en fonction de n.

- 1. $u_0 = -1$, $u_1 = 1$ et $u_{n+2} = \frac{3}{2}u_{n+1} \frac{1}{2}u_n$;
- **2.** $u_0 = 1$, $u_1 = 9$ et $u_{n+2} = u_{n+1} \frac{1}{4}u_n$;
- **3.** $v_0 = 0$, $v_1 = 1$ et $v_{n+2} = v_{n+1} + v_n$;
- 4. $u_0 = 1$, $u_1 = 1$ et $u_{n+2} = 6u_{n+1} 8u_n$.

EXERCICE 9.

Soit (u_n) la suite définie par ses deux premiers termes $u_0=0$ et $u_1\in]0,1[$ et par la relation de récurrence $u_{n+2}=\sqrt{u_{n+1}}+\sqrt{u_n}$.

- 1. Montrer que (u_n) est croissante.
- 2. Montrer que (u_n) converge et déterminer sa limite.

EXERCICE 10.

Soit (u_n) la suite définie par ses deux premiers termes $u_0, u_1 \in]0,1[$ et par la relation de récurrence $u_{n+2} = \frac{\sqrt{u_{n+1}} + \sqrt{u_n}}{2}$.

- 1. Montrer que pour tout $n \in \mathbb{N}$, $u_n \in]0,1[$.
- 2. On pose $\nu_n=\min(u_n,u_{n+1})$ pour tout $n\in\mathbb{N}.$ Montrer que (ν_n) est croissante.
- **3.** Montrer que $v_{n+2} \ge \sqrt{v_n}$ pour tout $n \in \mathbb{N}$.
- 4. En déduire la convergence et la limite de (u_n) .

EXERCICE 11.

Déterminer le terme général de la suite (u_n) définie par $u_0=0,\,u_1=1+4i$ et pour tout $n\in\mathbb{N},\,u_{n+2}=(3-2i)u_{n+1}-(5-5i)u_n.$

EXERCICE 12.

On considère la suite (u_n) définie par $u_0, u_1 \in \mathbb{R}_+$ et par la relation de récurrence

$$\forall n \in \mathbb{N}^*, \ u_{n+1} = \frac{u_n^2}{1 + u_n u_{n-1}}$$

Montrer que (u_n) converge et déterminer sa limite.

EXERCICE 13.★

Étudier le comportement asymptotique des suites définies respectivement par,

1.
$$a_n = \left\lfloor \frac{n}{5} \right\rfloor - \frac{n}{5}$$
;

$$2. b_n = \sum_{k=1}^n \cos\left(\frac{k\pi}{5}\right);$$

3.
$$c_n = \cos\left(\frac{n^2 - 3n + 1}{n + 2}\pi\right)$$
.

EXERCICE 14.★★

Soient $n \ge 1$ et

$$H_n = \sum_{k=1}^n \frac{1}{k}.$$

- 1. Montrer que $(H_n)_{n\geqslant 1}$ est croissante. Quelle alternative en déduit-on quant au comportement asymptotique de $(H_n)_{n\geqslant 1}$?
- 2. Montrer que $\forall n \geqslant 1$,

$$H_{2n}-H_n\geqslant \frac{1}{2}.$$

Décrire le comportement de $(H_n)_{n\geq 1}$.

EXERCICE 15.

Soient $(u_n)_{n\in\mathbb{N}}$, $(\alpha_n)_{n\in\mathbb{N}^*}$ et $(\beta_n)_{n\in\mathbb{N}^*}$ les suites définies par :

$$\forall n \in \mathbb{N}^*, \quad u_n = \sqrt{n} - \lfloor \sqrt{n} \rfloor, \quad \alpha_n = u_{n^2},$$

- $\beta_n = u_{n^2 + 3n}.$
- 1. Donner une expression simple de α_n , pour tout $n \in \mathbb{N}^*$. En déduire la convergence et la limite de $(\alpha_n)_{n \in \mathbb{N}^*}$.
- **2.** Etude de $(\beta_n)_{n \in \mathbb{N}^*}$.
 - **a.** Etablir que $\forall n \in \mathbb{N}^*$, $(n+1)^2 \le n^2 + 3n < (n+2)^2$.
 - **b.** En déduire une expression *simple* de β_n pour tout $n \in \mathbb{N}^*$.
 - c. Etablir la convergence et calculer la limite de $(\beta_n)_{n\in\mathbb{N}^*}$.
- **3.** La suite $(u_n)_{n\in\mathbb{N}}$ converge-t-elle?

EXERCICE 16.

Soit $\alpha \in \mathbb{R} \setminus \pi\mathbb{Z}$. On étudie ici les suites $(\mathfrak{u}_n)_{n \in \mathbb{N}}$ et $(\nu_n)_{n \in \mathbb{N}}$ définies par $\mathfrak{u}_n = \sin(n\alpha)$ et $\nu_n = \cos(n\alpha)$.

1. Montrer pour tout n les relations suivantes :

$$\left\{ \begin{array}{ll} u_{n+1} & = & \sin(\alpha)\nu_n + \cos(\alpha)u_n \\ \nu_{n+1} & = & \cos(\alpha)\nu_n - \sin(\alpha)u_n \end{array} \right.$$

En déduire que si $(u_n)_{n\in\mathbb{N}}$ converge vers un réel ℓ , alors $(v_n)_{n\in\mathbb{N}}$ converge vers le réel $\frac{\ell(1-\cos(\alpha))}{\sin(\alpha)}$, et que si $(v_n)_{n\in\mathbb{N}}$ converge vers un réel ℓ' , alors

$$(u_n)_{n\in\mathbb{N}} \text{ converge vers le réel } \frac{\ell'\big(\cos(\alpha)-1\big)}{\sin(\alpha)}.$$

2. On suppose que les deux suites sont convergentes de limites respectives ℓ et ℓ' . Montrer grâce à la question précédente que $\ell = \ell' = 0$. En calculant par ailleurs $\ell^2 + \ell'^2$, aboutir à une contradiction.

En conclure que les deux suites sont divergentes.

Exercice 17.

Si $(u_n)_{n\geqslant 1}$ est une suite réelle à termes positifs, on lui associe la suite $(v_n)_{n\geqslant 1}$ définie par

$$v_n = \sqrt{u_1 + \sqrt{u_2 + \dots + \sqrt{u_n}}}.$$

- 1. Montrer que la suite $(\nu_n)_{n\geqslant 1}$ est croissante.
- **2.** Prouver que si la suite $(u_n)_{n\geqslant 1}$ est constante, alors $(v_n)_{n\geqslant 1}$ est convergente.
- 3. Que peut-on dire de $(v_n)_{n\geqslant 1}$ si $(u_n)_{n\geqslant 1}$ est majorée?

EXERCICE 18.

On considère une suite réelle (u_n) bornée. On pose $v_n = \sup_{p \geqslant n} u_p$ et $w_n = \inf_{p \geqslant n} u_p$.

- 1. Déterminer le sens de variation des suites (v_n) et (w_n) .
- 2. En déduire que (v_n) et (w_n) sont convergentes.
- 3. Montrer que (u_n) converge si et seulement si $\lim_{n\to +\infty} v_n w_n = 0$.

EXERCICE 19.★★

C'est une application classique du lemme de Césaro.

1. Soient $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ et $\ell\in\overline{\mathbb{R}}$ tels que

$$\lim_{n\to+\infty}(u_{n+1}-u_n)=l.$$

Montrer que

$$\lim_{n\to+\infty}\frac{u_n}{n}=\ell.$$

2. Soient $(u_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs et $\ell\in\overline{\mathbb{R}}$ tels que

$$\lim_{n\to+\infty}\frac{u_{n+1}}{u_n}=\ell.$$

Montrer que

$$\lim_{n \to +\infty} \sqrt[n]{u_n} = \ell.$$

3. Étudier le comportement asymptotique des suites de termes généraux

$$a_n = \binom{2n}{n}^{1/n}$$
 et $b_n = \frac{\sqrt[n]{n!}}{n}$.

EXERCICE 20.★

Etudier le comportement asymptotique de suites de termes généraux

- 1. $\alpha_n = \frac{1}{n} \sum_{k=1}^n \left(\frac{k-1}{k} \right)^k$;
- **2.** $\beta_n = \left(\prod_{k=1}^n k^{1/k}\right)^{1/n}$.

EXERCICE 21.

Soit (u_n) la suite définie par :

$$\begin{cases} u_0 > 0 \\ u_{n+1} = u_n + \frac{1}{u_n} \end{cases}$$

Déterminer la limite de u_n ainsi qu'un équivalent.

EXERCICE 22.

Soient a et b deux réels tels que 0 < a < b. On définit deux suites (u_n) et (ν_n) par :

$$\begin{cases} u_0 = a \\ \forall n \in \mathbb{N}, \ u_{n+1} = \frac{1}{2} \left(u_n + \sqrt{u_n v_n} \right) \end{cases} \begin{cases} v_0 = b \\ \forall n \in \mathbb{N}, \ v_{n+1} = \frac{1}{2} \left(v_n + \sqrt{u_n v_n} \right) \end{cases}$$

- 1. Montrer que les suites (u_n) et (v_n) convergent vers une limite commune $l \in \mathbb{R}$.
- 2. Soit x et y deux réels tels que 0 < x < y. Montrer que $\frac{1}{y} \leqslant \frac{\ln y \ln x}{y x} \leqslant \frac{1}{x}$.
- 3. Montrer que la suite de terme général $c_n = \frac{\nu_n u_n}{\ln \nu_n \ln u_n}$ est bien définie puis montrer que la suite (c_n) est constante.
- 4. En déduire la valeur de l.

Exercice 23.★★

Soient p et q deux réels strictement positifs tels que p+q=1 et p>q. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites de réels telles que

$$\forall n \in \mathbb{N}, \quad \left\{ \begin{array}{lcl} u_{n+1} & = & pu_n & + & qv_n \\ v_{n+1} & = & pv_n & + & qu_n \end{array} \right.$$

- 1. Montrer que les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes.
- **2.** Calculer la limite commune de $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$.

EXERCICE 24.★★

Soient 0 < a < b, $(u_n)_{n\geqslant 0}$ et $(v_n)_{n\geqslant 0}$ les suites définies par $u_0=a,\, v_0=b$ et $\forall n\geqslant 0,$

$$u_{n+1} = \sqrt{u_n v_n} \quad \mathrm{et} \quad v_{n+1} = \frac{u_n + v_n}{2}.$$

Prouver que les suites sont adjacentes. Leur limite commune s'appelle $la\ moyenne$ arithmético-géométrique de α et b, on ne cherchera pas à la calculer!

EXERCICE 25.**

Quelques calculs de moyennes.

1. Soient a et b deux réels strictement positifs. Montrer que

$$\frac{2}{a+b} \leqslant \frac{1}{2} \left[\frac{1}{a} + \frac{1}{b} \right].$$

2. Soient $0 < b_0 \le a_0$ et $(a_n)_{n \ge 0}$, $(a_n)_{n \ge 0}$ les deux suites définies par

$$\forall n \geqslant 0$$
, $a_{n+1} = \frac{1}{2} \left[a_n + b_n \right]$

et

$$\frac{1}{b_{n+1}} = \frac{1}{2} \left[\frac{1}{a_n} + \frac{1}{b_n} \right].$$

Montrer que $\forall n \geq 0$,

$$b_n \leqslant b_{n+1} \leqslant a_{n+1} \leqslant a_n$$
.

3. Montrer que $\forall n \geq 0$,

$$0\leqslant a_n-b_n\leqslant \frac{a_0-b_0}{2^n}.$$

- 4. En déduire que les deux suites sont adjacentes.
- 5. Calculer $\mathfrak{a}_n\mathfrak{b}_n$ puis en déduire la valeur de la limite commune des deux suites.

EXERCICE 26.★

Posons pour tout $n \ge 2$ et tout $x \in \mathbb{R}$,

$$P_n(x) = x^n - nx + 1.$$

- 1. Montrer que P_n possède une unique racine sur l'intervalle [0,1] que l'on notera \mathfrak{u}_n .
- 2. Déterminer le signe de $P_n(u_{n+1})$. En déduire que $(u_n)_{n\geqslant 2}$ est décroissante.
- 3. Montrer que $(u_n)_{n\geqslant 2}$ converge vers une limite $\ell\in\mathbb{R}$ que l'on précisera.
- 4. Déterminer un équivalent de $u_n \ell$.

EXERCICE 27.★

Soit $n \in \mathbb{N}$, montrer que la fonction définuie sur \mathbb{R} par

$$x \longmapsto g_n(x) = x^n + x - 1$$

admet un unique zéro positif noté a_n . Etudier la convergence de la suite $(a_n)_{n\in\mathbb{N}}$.

EXERCICE 28.**

Montrer que, pour tout $n \ge 3$, l'équation

$$x - n \ln(x) = 0$$

admet deux racines distinctes sur]0, $+\infty$ [notées $u_n < v_n$.

- 1. Etudier la monotonie des suites $(u_n)_{n\geqslant 3}$ et $(v_n)_{n\geqslant 3}$
- **2.** Etudier le comportement asymptotique des suites $(u_n)_{n\geqslant 3}$ et $(v_n)_{n\geqslant 3}$.

EXERCICE 29.

- 1. Montrer que pour $n \in \mathbb{N}^*$, l'équation $x^n + x^{n-1} + \cdots + x 1 = 0$ admet une unique solution strictement positive notée a_n .
- **2.** Montrer que la suite (a_n) est strictement décroissante.
- 3. Montrer que $\lim_{n\to+\infty} a_n = \frac{1}{2}$.

EXERCICE 30.

- 1. Montrer que pour $n \in \mathbb{N}$, l'équation $\tan x = x$ admet une unique solution u_n dans l'intervalle $\left] -\frac{\pi}{2} + n\pi, \frac{\pi}{2} + n\pi \right[$.
- 2. Déterminer un équivalent de (u_n) .
- 3. On pose $\nu_n = u_n n\pi$ pour tout $n \in \mathbb{N}$. Déterminer la limite l de (ν_n) .
- 4. Déterminer un équivalent de (v_n-l) . En déduire un développement asymptotique à 3 termes de (u_n) .

EXERCICE 31.

- 1. Montrer que pour tout $n \in \mathbb{N}^*$, l'équation $\cos x = nx$ possède une unique solution $x_n \in [0,1].$
- 2. Déterminer la limite de (x_n) .
- 3. Etudier la monotonie de (x_n) .
- **4.** Etablir que $x_n \sim_{n \to +\infty} \frac{1}{n}$.
- 5. Déterminer un équivalent de $x_n \frac{1}{n}$.

EXERCICE 32.

- 1. Montrer que pour tout entier $n \ge 2$, l'équation $x = \ln x + n$ admet deux solutions sur \mathbb{R}_+^* . On note x_n la plus petite et y_n la plus grande de ces deux solutions.
- **2.** a. Montrer que $\lim_{n \to +\infty} x_n = 0$.
 - **b.** Montrer que $x_n \sim e^{-n}$.
 - c. On pose $u_n = x_n e^{-n}$ pour $n \ge 2$. Montrer que $u_n \sim e^{-2n}$.
 - d. Déterminer un équivalent simple de $u_n e^{-2n}$.
- 3. a. Montrer que $\lim_{n\to+\infty} y_n = +\infty$.
 - **b.** Montrer que $y_n \sim_{n \to +\infty} n$.
 - c. On pose $\nu_n=y_n-n$ pour $n\geqslant 2.$ Montrer que $\nu_n\underset{_{n\rightarrow +\infty}}{\sim}\ln n.$
 - $\mathbf{d.}\,$ Déterminer un équivalent simple de $\nu_n \ln n.$

EXERCICE 33.★

1. Montrer que $\forall k \geqslant 1$,

$$\frac{1}{k+1} \leqslant \int_{k}^{k+1} \frac{\mathrm{d}u}{u} \leqslant \frac{1}{k}.$$

2. En déduire qu'il existe $\gamma \in [0, 1]$ tel que

$$\lim_{n\to +\infty} \bigg(\sum_{k=1}^n \frac{1}{k} - \ln(n) \bigg) = \gamma.$$

EXERCICE 34.

On pose, pour tout entier naturel n non nul,

$$u_n = \sum_{k=n}^{2n} \frac{1}{k}.$$

Etablir à l'aide d'un encadrement que $(u_n)_{n\geqslant 1}$ converge vers $\ln(2)$.

EXERCICE 35.

 $\begin{array}{l} {\rm Soient}\; (\mathfrak{a}_n)\; {\rm et}\; (\mathfrak{b}_n)\; {\rm deux}\; {\rm suites}\; \text{r\'eelles}\; {\rm convergeant}\; \text{respectivement}\; \text{vers}\; \mathfrak{a}\; {\rm et}\; \mathfrak{b}.\\ {\rm Montrer}\; {\rm que}\; \frac{\mathfrak{a}_0\mathfrak{b}_n+\mathfrak{a}_1\mathfrak{b}_{n-1}+\dots+\mathfrak{a}_{n-1}\mathfrak{b}_1+\mathfrak{a}_n\mathfrak{b}_0}{n+1} \underset{\scriptscriptstyle n\to +\infty}{\longrightarrow} \mathfrak{a}\mathfrak{b}. \end{array}$

EXERCICE 36.

Soit p un entier supérieur ou égal à 2. Pour $n \in \mathbb{N}^*$, on pose $u_n = \binom{n+p}{n}^{-1}$ et $S_n = \sum_{k=1}^n u_k$.

- 1. Montrer que pour tout $n \in \mathbb{N}^*$, $(n+p+1)u_{n+1} = (n+1)u_n$.
- **2.** Montrer que $S_n = \frac{1}{p-1} (1 (n+p+1)u_{n+1})$.
- **3.** On pose $v_n = (n+p)u_n$ pour $n \in \mathbb{N}^*$. Montrer que (v_n) converge vers 0.
- 4. En déduire que (S_n) converge et donner sa limite en fonction de p.

EXERCICE 37.

Etudier la convergence de la suite de terme général $u_n = \sum_{k=1}^n \left(\frac{k}{n}\right)^n.$

EXERCICE 38.

Pour $n \in \mathbb{N}^*$, on pose

$$u_n = \left(\sum_{k=1}^n \frac{1}{k}\right) - \ln n$$

- 1. Montrer que $\ln(1+x) \le x$ pour tout $x \in]-1, +\infty[$.
- **2.** En déduire que pour tout $p \in \mathbb{N}^*$,

$$\frac{1}{p+1} \leqslant \ln(p+1) - \ln(p) \leqslant \frac{1}{p}$$

- 3. Déterminer le sens de variation de (u_n) .
- 4. Montrer que (u_n) converge vers un réel $\gamma \in [0,1]$.

Exercice 39.★

Calcul d'un produit infini.

1. Montrer que $\forall u \geq 0$,

$$u-\frac{u^2}{2}\,\leqslant \ln(1+u)\leqslant u.$$

2. En déduire que la suite de terme général

$$u_n = \prod_{k=1}^n \left(1 + \frac{k}{n^2}\right)$$

converge vers une limite ℓ à préciser.

Exercice 40.★

Pour tout x réel et tout entier naturel n, on pose

$$P_n(x) = \prod_{k=0}^n (x^{2^k} + 1).$$

- 1. Simplifier l'expression de $P_n(x)$.
- **2.** Etudier la convergence de la suite $(P_n(x))_{n\in\mathbb{N}}$.

EXERCICE 41.

Encadrement d'un produit.

1. Prouver que $\forall x \ge 1$,

$$\frac{x(x+1)}{(2x+1)^2} \leqslant \frac{1}{4}.$$

2. Etudier la convergence de la suite de terme général

$$u_n = \prod_{k=0}^n \frac{k(k+1)}{(2k+1)^2}.$$

Exercice 42. \star

Etudier la convergence de la suite de terme général

$$u_n = \left[\prod_{k=0}^n \binom{n}{k} \right]^{1/n^3}.$$

EXERCICE 43.

On pose $\mathfrak{u}_n = \frac{1\times 3\times 5\times \cdots \times (2n-1)}{2\times 4\times 6\times \cdots \times (2n)} \text{ pour } n\in \mathbb{N}^*.$

- 1. Exprimer u_n à l'aide de factorielles.
- **2.** Montrer que (u_n) converge.
- 3. Soit $\nu_n=(n+1)u_n^2$ pour $n\in\mathbb{N}^*$. Montrer que (ν_n) converge. En déduire la limite de (u_n) .

EXERCICE 44.

Soit $z \in \mathbb{C}$ tel que |z| < 1. Montrer que

$$\lim_{n \to +\infty} \prod_{k=0}^{n} (1 + z^{2^{k}}) = \frac{1}{1 - z}$$

EXERCICE 45.★★

Prouver que

$$\sum_{k=0}^{n} k! \sim n!.$$

EXERCICE 46.★

Déterminer un équivalent de la suite définie par

$$S_n = \sum_{k=0}^n \sqrt{k}.$$

EXERCICE 47.

Soit x > 0. On définit une suite de réels $(u_n)_{n \geqslant 1}$ par $u_1 = x$ et $u_{n+1} = \frac{1 + u_n}{n + u_n^2}$ pour tout $n \geqslant 1$.

- 1. Montrer que pour tout $n \ge 1$, $u_n > 0$.
- $2. \ \operatorname{Soit} \ n \geqslant 1. \ \operatorname{Montrer} \ \operatorname{que} \ u_n \geqslant 1 \ \operatorname{implique} \ u_{n+1} \leqslant 1 \ \operatorname{et} \ \operatorname{que} \ u_n \leqslant 1 \ \operatorname{implique} \ u_{n+1} \leqslant \frac{2}{n}.$
- 3. En déduire que pour $n \ge 3$, $u_n \le \frac{2}{n-1}$.
- 4. En déduire que (u_n) converge et donner sa limite.
- 5. Donner un équivalent simple de u_n .
- 6. On pose $\nu_n=n\mathfrak{u}_n-1$ pour $n\geqslant 1$. Exprimer ν_{n+1} en fonction de n et ν_n .
- 7. En déduire un équivalent simple de ν_n .
- 8. En déduire un développement asymptotique à deux termes de u_n .

EXERCICE 48.

Pour tout $n \in \mathbb{N}$, on pose $a_n = \binom{2n}{n}$ et $u_n = \frac{a_n \sqrt{n}}{4^n}$.

- 1. Vérifier la relation $\frac{a_{n+1}}{a_n} = \frac{2(2n+1)}{n+1}$.
- 2. Montrer que la suite (u_n) est croissante.
- 3. Démontrer par récurrence que $u_n \leqslant \sqrt{\frac{n}{2n+1}}$.
- 4. En déduire l'existence d'un réel $K \in \left[\frac{1}{2}, \frac{1}{\sqrt{2}}\right]$ tel que $\binom{2n}{n} \sim K \frac{4^n}{\sqrt{n}}$.

Exercice 49.★

Étudier les suites définies par

$$u_0 \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n}{1 + u_n^2}.$$

Exercice 50.★

Étudier la suite définie par

$$u_{n+1} = \frac{1}{6}(u_n^2 + 8).$$

EXERCICE 51.

Etudier le système dynamique $u_{n+1} = f(u_n)$ défini par la fonction

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \quad x \longmapsto e^{x-1}.$$

EXERCICE 52.

Etudier le système dynamique $u_{n+1} = f(u_n)$ défini par la fonction

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \quad x \longmapsto \arctan(x).$$

EXERCICE 53.

Etudier le système dynamique $u_{n+1}=f(u_n)$ défini par $u_0\geqslant 0$ et la fonction

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \quad x \longmapsto \ln(1+x).$$

EXERCICE 54.

Etudier le système dynamique $u_{n+1} = f(u_n)$ défini $u_0 \in \mathbb{R}$ et la fonction

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 , $x \longmapsto \operatorname{th}(x)$.

EXERCICE 55.

Soit $\alpha\in\mathbb{R}^*.$ On étudie la suite $(\mathfrak{u}_n)_{n\in\mathbb{N}}$ définie par :

$$u_0 = 1$$
 et $\forall n \in \mathbb{N}$, $u_{n+1} = a^{2n}u_n + a^{n^2}$.

- 1. Pour tout $n \in \mathbb{N}$, on pose $v_n = a^{-n^2 + n}u_n$.
 - **a.** Calculer $v_{n+1} v_n$ pour tout $n \in \mathbb{N}$.
 - **b.** Prouver que :

$$\forall n \in \mathbb{N}^*, \quad \nu_n = 1 + \sum_{k=0}^{n-1} \frac{1}{a^k}.$$

- c. En déduire une expression de \mathfrak{u}_n en fonction de \mathfrak{n} et \mathfrak{a} . On discutera suivant les valeurs de \mathfrak{a} .
- **2.** Déterminer, en discutant suivant les valeurs de \mathfrak{a} , le comportement de $(\mathfrak{u}_n)_{n\in\mathbb{N}}$ lorsque \mathfrak{n} tend vers $+\infty$.

Exercice 56.★★

Soient $0 < \alpha < 1$ et $(u_n)_{n \in \mathbb{N}}$ la suite définie par $0 < u_0 < u_1$ et $\forall n \ge 1$,

$$u_{n+1} = u_n + \alpha^n u_{n-1}.$$

- 1. Prouver que $(\mathfrak{u}_n)_{n\in\mathbb{N}}$ est croissante.
- **2.** Montrer que $\forall n \geq 1$,

$$u_n \leqslant u_1 \prod_{k=0}^{n-1} (1+\alpha^k).$$

3. Justifier que $\forall u \geq 0$,

$$\ln(1+\mathfrak{u}) \leqslant \mathfrak{u}$$
.

En déduire que $(u_n)_{n\in\mathbb{N}}$ est majorée , puis qu'elle converge.

EXERCICE 57.★★

Soient $n \ge 0$ et

$$f_n(x) = \frac{x}{1 + nx^2}.$$

On définit la suite $(x_n)_{n\geqslant 1}$ par $x_1>0$ et

$$\forall n \geqslant 1, \quad x_{n+1} = f_n(x_n).$$

- 1. Montrer que $(x_n)_{n\geqslant 1}$ converge.
- 2. Montrer que $\forall n \ge 2$, $x_n \le 1/n$.
- 3. Montrer que $(nx_n)_{n\geqslant 1}$ est croissante.
- **4.** Montrer que $\forall n \geq 2$,

$$\frac{1}{x_{n+1}} - \frac{1}{x_n} \leqslant 1.$$

5. Trouver un équivalent de x_n .

EXERCICE 58.

On définit une suite (u_n) par $u_1=1$ et la relation de récurrence $u_n=\sqrt{n+u_{n-1}}$ pour tout $n\geqslant 1$.

- 1. Montrer que pour tout $n \in \mathbb{N}^*$, $0 \leqslant \frac{u_n}{\sqrt{n}} \leqslant 2$.
- 2. En déduire que $\left(\frac{u_n}{\sqrt{n}}\right)_{n>1}$ converge et donner sa limite.
- 3. Déterminer la limite de $(u_n \sqrt{n})$.

EXERCICE 59.

Soit $(z_n)_{n\in\mathbb{N}}$ une suite complexe telle que pour tout $n\in\mathbb{N}$

$$z_{n+1} = \frac{z_n + |z_n|}{2}$$

- 1. On note x_n et y_n les parties réelle et imaginaire de z_n .
 - **a.** Déterminer une relation de récurrence liant y_n et y_{n+1} . En déduire la limite de (y_n) .
 - **b.** Déterminer le sens de variation de $(|z_n|)$.
 - c. Déterminer le sens de variation de (x_n) .
 - **d.** En déduire la convergence de (x_n) . On ne cherchera pas à calculer la limite de cette suite.
 - e. En déduire la convergence de (z_n) . Que peut-on dire de sa limite?
 - **f.** Déterminer la limite de (z_n) si $z_0 \in \mathbb{R}_+$ et si $z_0 \in \mathbb{R}_-$.
- 2. On note r_n le module et θ_n l'argument principal (i.e. appartenant à $]-\pi,\pi]$) de z_n .
 - a. En exprimant z_{n+1} sous forme exponentielle, exprimer d'une part r_{n+1} en fonction de r_n et θ_n et d'autre part θ_{n+1} en fonction de θ_n .
 - **b.** Déterminer la limite de (θ_n) .
 - c. Soit $\alpha \in]-\pi,0[\cup]0,\pi[$. En remarquant que pour $\alpha \not\equiv 0[\pi],$ $\cos \alpha = \frac{\sin 2\alpha}{2\sin \alpha},$ donner une expression simplifiée de $S_{\pi} = \prod_{k=1}^{n}\cos\frac{\alpha}{2^k}$ pour
 - $n \in \mathbb{N}^*$. En déduire que (S_n) converge vers $\frac{\sin \alpha}{\alpha}$.
 - **d.** En déduire la limite de (r_n) puis celle de (z_n) en fonction de r_0 et θ_0 .

EXERCICE 60.

On pose $z_n = \exp(i \ln n)$ pour $n \in \mathbb{N}^*$. Montrer que (z_n) diverge.