pyrpipe report

file name:pyrpipe_logs/2020-01-22-18_14_47_pyrpipe.log

Summary

Time start: 2020-01-22 18:14:47 Time end: 2020-01-22 23:56:24

Total time: 5:41:37

Num commands: 15

Num failed commands: 1

Num passed commands: 14

Total programs: 7

Programs: trim galore, prefetch, stringtie, fasterg-dump, gffread, plncpro

predict,STAR

Details

command

prefetch -0 /pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/testDir/ maize/SRR3098746 SRR3098746

stdout

```
2020-01-22T23:14:50 prefetch.2.10.0: 1) Downloading 'SRR3098746'...
2020-01-22T23:14:50 prefetch.2.10.0: Downloading via https...
2020-01-22T23:23:00 prefetch.2.10.0: https download succeed 2020-01-22T23:23:00 prefetch.2.10.0: 1) 'SRR3098746' was downloaded successfully 2020-01-22T23:23:00 prefetch.2.10.0: 'SRR3098746' has 0 unresolved dependencies
```

Program	Return code	Start	Runtime	Version
prefetch		20-01-22 18:14:49	0:08:11	/pylon5/mc5pl7p/usingh/lib/ sratoolkit.2.10.0- centos_linux64/bin/prefetch : 2.10.0

prefetch -0 /pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/testDir/ maize/SRR3098745 SRR3098745

stdout

```
2020-01-22T23:23:01 prefetch.2.10.0: 1) Downloading 'SRR3098745'...
2020-01-22T23:23:01 prefetch.2.10.0: Downloading via https...
2020-01-22T23:28:35 prefetch.2.10.0 int: timeout exhausted while reading file within network system module - Cannot KStreamRead: https://sra-downloadb.be-md.ncbi.nlm.nih.gov/sos2/sra-pub-run-7/SRR3098745/SRR3098745.1
2020-01-22T23:28:35 prefetch.2.10.0: https://sra-download failed 2020-01-22T23:28:35 prefetch.2.10.0: 1) failed to download SRR3098745
```

stderr

Program	Return code	Start	Runtime	Version
prefetch	3	20-01-22 18:23:00	0:05:35	/pylon5/mc5pl7p/usingh/lib/ sratoolkit.2.10.0- centos_linux64/bin/prefetch : 2.10.0

command

prefetch -0 /pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/testDir/ maize/SRR3098744 SRR3098744

stdout

2020-01-22T23:28:38 prefetch.2.10.0: 1) Downloading

```
'SRR3098744'...
2020-01-22T23:28:38 prefetch.2.10.0: Downloading via https...
2020-01-22T23:35:21 prefetch.2.10.0: https download succeed 2020-01-22T23:35:21 prefetch.2.10.0: 1) 'SRR3098744' was downloaded successfully 2020-01-22T23:35:21 prefetch.2.10.0: 'SRR3098744' has 0 unresolved dependencies
```

stderr

Program	Return code	Start	Runtime	Version
prefetch	0	20-01-22 18:28:35	0:06:46	/pylon5/mc5pl7p/usingh/lib/ sratoolkit.2.10.0- centos_linux64/bin/prefetch : 2.10.0

command

fasterq-dump -e 20 -f -t /pylon5/mc5pl7p/usingh/urmi/ pyrpipeTest/testDir/maize -0 /pylon5/mc5pl7p/usingh/urmi/ pyrpipeTest/testDir/maize/SRR3098746 -o SRR3098746.fastq / pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/testDir/maize/ SRR3098746/SRR3098746.sra

stdout

spots read : 85,732,311
reads read : 171,464,622
reads written : 171,464,622

stderr

Program	Return code	Start	Runtime	Version
fasterq-dump	0	20-01-22 18:35:21	0:01:15	

command

trim_galore --cores 10 --paired -o /pylon5/mc5pl7p/usingh/ urmi/pyrpipeTest/testDir/maize/SRR3098746 /pylon5/mc5pl7p/ usingh/urmi/pyrpipeTest/testDir/maize/SRR3098746/ SRR3098746_1.fastq /pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/ testDir/maize/SRR3098746/SRR3098746_2.fastq Using an excessive number of cores has a diminishing return! It is recommended not to exceed 8 cores per trimming process (you asked for 10 cores). Please consider re-specifying Path to Cutadapt set as: 'cutadapt' (default)

Cutadapt seems to be working fine (tested command 'cutadapt
--version')

Cutadapt version: 2.6

Cutadapt seems to be using Python 3! Proceeding with multicore enabled Cutadapt using 10 cores

Parallel gzip (pigz) detected. Proceeding with multicore (de)compression using 10 cores

No quality encoding type selected. Assuming that the data provided uses Sanger encoded Phred scores (default)

Output will be written into the directory: /pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/testDir/maize/SRR3098746/

AUTO-DETECTING ADAPTER TYPE

Attempting to auto-detect adapter type from the first 1 million sequences of the first file (>> /pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/testDir/maize/SRR3098746/SRR3098746 1.fastq <<)

Found perfect matches for the following adapter sequences:

Adapter type Count Sequence Sequences

analysed Percentage

Illumina 10739 AGATCGGAAGAGC 1000000 1.07 smallRNA 0 TGGAATTCTCGG 1000000 0.00

Nextera 0 CTGTCTCTTATA 1000000 0.00

Using Illumina adapter for trimming (count: 10739). Second best hit was smallRNA (count: 0)

Writing report to '/pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/
testDir/maize/SRR3098746/
SRR3098746 1.fastq trimming report.txt'

SUMMARISING RUN PARAMETERS

Input filename: /pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/

testDir/maize/SRR3098746/SRR3098746 1.fastq

Trimming mode: paired-end

Trim Galore version: 0.6.4 dev

Cutadapt version: 2.6

Python version: 3.6.3 :: Intel Corporation

Number of cores used for trimming: 10

Quality Phred score cutoff: 20

Quality encoding type selected: ASCII+33

```
Adapter sequence: 'AGATCGGAAGAGC' (Illumina TruSeg, Sanger
iPCR; auto-detected)
Maximum trimming error rate: 0.1 (default)
Minimum required adapter overlap (stringency): 1 bp
Minimum required sequence length for both reads before a
sequence pair gets removed: 20 bp
Cutadapt seems to be fairly up-to-date (version 2.6).
Setting -i 10
Writing final adapter and quality trimmed output to
SRR3098746 1 trimmed.fg
 >>> Now performing quality (cutoff '-q 20') and adapter
trimming in a single pass for the adapter sequence:
'AGATCGGAAGAGC' from file /pylon5/mc5pl7p/usingh/urmi/
pyrpipeTest/testDir/maize/SRR3098746/SRR3098746 1.fastg <<</pre>
10000000 sequences processed
20000000 sequences processed
30000000 sequences processed
40000000 sequences processed
50000000 sequences processed
60000000 sequences processed
70000000 sequences processed
80000000 sequences processed
This is cutadapt 2.6 with Python 3.6.3
Command line parameters: -j 10 -e 0.1 -g 20 -0 1 -a
AGATCGGAAGAGC /pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/
testDir/maize/SRR3098746/SRR3098746 1.fastq
Processing reads on 10 cores in single-end mode ...
Finished in 200.35 s (2 us/read; 25.67 M reads/minute).
=== Summary ===
Total reads processed:
                                   85,732,311
Reads with adapters:
                                   21,391,002 (25.0%)
Reads written (passing filters): 85,732,311 (100.0%)
Total basepairs processed: 10,802,271,186 bp
Quality-trimmed:
                 131,091,920 bp (1.2%)
Total written (filtered): 10,608,673,685 bp (98.2%)
=== Adapter 1 ===
Sequence: AGATCGGAAGAGC; Type: regular 3'; Length: 13;
Trimmed: 21391002 times.
No. of allowed errors:
0-9 bp: 0; 10-13 bp: 1
Bases preceding removed adapters:
 A: 27.4%
```

C: 32.4% G: 22.5% T: 17.6%

none/other: 0.1%

Overview of removed sequences

	w or remo					
length	count	expect	max.err			
1	13192893	3	2143307	7.8	0	13192893
2	5112936	5358269	. 4	0	5112936	
3	1098625	1339567	. 4	0	1098625	
2 3 4	389713	334891.8		0	389713	
	113158	83723.0		113158		
6	98100	20930.7	0	98100	J	
5 6 7	89746	5232.7		89746		
			0			
8	78166	1308.2	0	78166	010	
9	50635	327.0	0	49825		
10	94576	81.8	1	92306		
11	31106	20.4	1	29945		
12	56660	5.1	1	55404		
13	70914	1.3	1	69391	1523	
14	33934	1.3	1	33115	819	
15	63389	1.3	1	62005	1384	
16	23403	1.3	1	22731	672	
17	45683	1.3	1	44411		
18	62366	1.3	1	61084		
19	22113	1.3	1	21452		
20	52382	1.3	1	51374		
21	25385	1.3	1	24745		
22	33807	1.3	1	33092		
23	40007	1.3	1	39201		
24	22327	1.3	1	21772		
25	49372	1.3	1	48554		
26	5074	1.3	1	4842		
27	31287	1.3	1	30612		
28	38546	1.3	1	37871		
29	14784	1.3	1	14436	348	
30	28962	1.3	1	28580	382	
31	14838	1.3	1	14560	278	
32	29229	1.3	1	28768	461	
33	9613	1.3	1	9425	188	
34	21462	1.3	1	21113		
35	9728	1.3	1	9505 2		
36	21908	1.3	1	21635		
37	4881	1.3	1	4773		
38	14504	1.3	1	14250		
39	13204	1.3	1	12954		
40	10913	1.3	1	10625		
41	11776	1.3	1	11562		
42	10515	1.3	1	10350		
43	13334	1.3	1	13175		
44	3805	1.3	1	3698		
45	5264	1.3	1	5176 8	88	

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67	2136 6800 3946 6945 3233 5023 1915 4105 4279 3798 1079 2741 2841 1079 2676 1571 939 2064 1698 882 1218 1146	1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2070 66 6693 107 3868 78 6840 105 3166 67 4956 67 1871 44 4021 84 4192 87 3724 74 1028 51 2688 53 2788 53 1037 42 2636 40 1526 45 874 65 2014 50 1636 62 796 86 1157 61 1081 65
61	1571	1.3	1	1526 45
62	939	1.3	1	874 65
63	2064	1.3	1	2014 50
65	882	1.3	1	796 86
66	1218	1.3		1157 61
68 69 70 71	1164 1217 1183 1266	1.3 1.3 1.3	1 1 1	1044 120 1064 153 996 187 947 319
72 73 74 75	1345 1718 2634 11847	1.3 1.3 1.3	1 1 1	956 389 951 767 956 1678 1175 10672
76	11015	1.3	1	3209 7806
77	6050	1.3	1	1577 4473
78	3394	1.3	1	545 2849
79	1928	1.3	1	232 1696
80	1256	1.3	1	154 1102
81	718	1.3	1	120 598
82	528	1.3	1	107 421
83	374	1.3	1	75 299
84	308	1.3	1	76 232
85	303	1.3	1	76 227
86	267	1.3	1	67 200
87	260	1.3	1	72 188
88	191	1.3	1	41 150
89 90 91 92 93	194 191 167 123 136	1.3 1.3 1.3 1.3	1 1 1 1	54 140 50 141 56 111 32 91 47 89
94	126	1.3	1	35 91
95	144	1.3	1	42 102
96	146	1.3	1	36 110
97	117	1.3	1	25 92

98	122	1.3	1	24 98
99	137	1.3	1	41 96
100	119	1.3	1	32 87
101	106	1.3	1	20 86
102	114	1.3	1	24 90
103	102	1.3	1	23 79
104	101	1.3	1	22 79
105	83	1.3	1	15 68
106	86	1.3	1	18 68
107	87	1.3	1	18 69
108	89	1.3	1	11 78
109	64	1.3	1	19 45
110	83	1.3	1	10 73
111	71	1.3	1	6 65
112	88	1.3	1	18 70
113	98	1.3	1	17 81
114	97	1.3	1	21 76
115	83	1.3	1	19 64
116	74	1.3	1	15 59
117	78	1.3	1	10 68
118	84	1.3	1	8 76
119	102	1.3	1	6 96
120	122	1.3	1	9 113
121	151	1.3	1	12 139
122	182	1.3	1	7 175
123	267	1.3	1	7 260
124	414	1.3	1	7 407
125	856	1.3	1	5 851
126	9495	1.3	1	33 9462

RUN STATISTICS FOR INPUT FILE: /pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/testDir/maize/SRR3098746/SRR3098746_1.fastq

85732311 sequences processed in total

The length threshold of paired-end sequences gets evaluated later on (in the validation step)

Writing report to '/pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/testDir/maize/SRR3098746/ SRR3098746 2.fastq trimming report.txt'

SUMMARISING RUN PARAMETERS

Input filename: /pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/

testDir/maize/SRR3098746/SRR3098746_2.fastq

Trimming mode: paired-end

Trim Galore version: 0.6.4 dev

Cutadapt version: 2.6

Python version: 3.6.3 :: Intel Corporation

Number of cores used for trimming: 10

Quality Phred score cutoff: 20

Quality encoding type selected: ASCII+33

```
Adapter sequence: 'AGATCGGAAGAGC' (Illumina TruSeg, Sanger
iPCR; auto-detected)
Maximum trimming error rate: 0.1 (default)
Minimum required adapter overlap (stringency): 1 bp
Minimum required sequence length for both reads before a
sequence pair gets removed: 20 bp
Cutadapt seems to be fairly up-to-date (version 2.6).
Setting -j -j 10
Writing final adapter and quality trimmed output to
SRR3098746 2 trimmed.fg
 >>> Now performing quality (cutoff '-q 20') and adapter
trimming in a single pass for the adapter sequence:
'AGATCGGAAGAGC' from file /pylon5/mc5pl7p/usingh/urmi/
pyrpipeTest/testDir/maize/SRR3098746/SRR3098746 2.fastg <<</pre>
10000000 sequences processed
20000000 sequences processed
30000000 sequences processed
40000000 sequences processed
50000000 sequences processed
60000000 sequences processed
70000000 sequences processed
80000000 sequences processed
This is cutadapt 2.6 with Python 3.6.3
Command line parameters: -j 10 -e 0.1 -g 20 -0 1 -a
AGATCGGAAGAGC /pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/
testDir/maize/SRR3098746/SRR3098746 2.fastq
Processing reads on 10 cores in single-end mode ...
Finished in 197.75 s (2 us/read; 26.01 M reads/minute).
=== Summary ===
Total reads processed:
                                   85,732,311
Reads with adapters:
                                   21,262,166 (24.8%)
Reads written (passing filters): 85,732,311 (100.0%)
Total basepairs processed: 10,802,271,186 bp
Quality-trimmed: 206,049,532 bp (1.9%)
Total written (filtered): 10,533,933,416 bp (97.5%)
=== Adapter 1 ===
Sequence: AGATCGGAAGAGC; Type: regular 3'; Length: 13;
Trimmed: 21262166 times.
No. of allowed errors:
0-9 bp: 0; 10-13 bp: 1
Bases preceding removed adapters:
 A: 30.3%
```

C: 24.9% G: 30.0% T: 14.8%

none/other: 0.0%

Overview of removed sequences

length	count	expect	max.err	error	СО	unts	
1	1155850	•	21433077			0	11558505
2	7023316	5358269	. 4	0		7023316	
2 3 4	820195	1339567	. 4	0		820195	
	240848	334891.8	3	0		240848	
5	138298	83723.0	0	138298	3		
5 6 7	104106	20930.7	0	104106	5		
	134985	5232.7	0	134985	5		
8	66205	1308.2	0	66205			
9	16805	327.0	0	15264	15	541	
10	112019	81.8	1	107082			
11		20.4	1	7965 3			
12	91518		1	88212			
13	16178		1	14909			
14		1.3	1	96361			
15	29918	1.3	1	28799			
16	17937	1.3	1	16981			
17	87866	1.3	1	85018			
18	6390	1.3	1	5864 5			
19	68018	1.3	1	66435			
20	32789	1.3	1	32002			
21	2049	1.3	1	1743 3			
22	37629	1.3	1	36382			
23	36520	1.3	1	35215			
24	71308	_	1	69427			
25	17821	1.3	1	17213			
26	24906	1.3	1	24289			
27	3932	1.3	1	3631 3			
28	42457	1.3	1	41727			
29	2339	1.3	1	2109 2			
30	42208	1.3	1	41388			
31	3777	1.3	1	3556 2			
32	27739	1.3	1	27216			
33	19306	1.3	1	18835			
34	4352	1.3	1	4112 2			
35	24939	1.3	1	24423	_	_	
36	6747	1.3	1	6463 2			
37	13986	1.3	1	13647		_	
38	17084	1.3	1	16744	_	_	
39	8819	1.3	1	8590 2			
40	6307	1.3	1	6029 2			
41	11286	1.3	1	11000			
42	15099	1.3	1	14830		59	
43	890	1.3	1	768 12			
44	8117	1.3	1	7916 2			
45	11792	1.3	1	11518	27	4	

46	4590	1.3	1	4472 118
47	2649	1.3	1	2524 125
48	4913	1.3	1	4808 105
49	6011	1.3	1	5857 154
50	2633	1.3	1	2536 97
51	8081	1.3	1	7923 158
52	3254	1.3	1	3153 101
				2005 103
53	2108	1.3	1	
54	1492	1.3	1	1412 80
55	3210	1.3	1	3062 148
56	1954	1.3	1	1854 100
57	2671	1.3	1	2550 121
58	1937	1.3	1	1834 103
	2113		1	1993 120
59		1.3		
60	2050	1.3	1	1931 119
61	2028	1.3	1	1850 178
62	2082	1.3	1	1825 257
63	2057	1.3	1	1773 284
64	1954	1.3	1	1590 364
65	2117	1.3	1	1485 632
66	2859	1.3	1	1500 1359
67	18586	1.3	1	1927 16659
68	15630	1.3	1	8000 7630
69	5371	1.3	1	1597 3774
70	2308	1.3	1	424 1884
71	1421	1.3	1	181 1240
72	769	1.3	1	133 636
73	585	1.3	1	100 485
74	427	1.3	1	85 342
75	319	1.3	1	75 244
76	331	1.3	ī	91 240
77	253	1.3	1	70 183
78	214	1.3	1	65 149
79	240	1.3	1	81 159
80	211	1.3	1	67 144
81	240	1.3	1	66 174
82	219	1.3	ī	79 140
83			1	49 158
	207	1.3		
84	186	1.3	1	70 116
85	175	1.3	1	61 114
86	140	1.3	1	53 87
87	145	1.3	1	51 94
88	159	1.3	1	46 113
89				
	116	1.3	1	30 86
90	120	1.3	1	43 77
91	137	1.3	1	43 94
92	106	1.3	1	25 81
93	141	1.3	1	37 104
94	115	1.3	1	30 85
95	128	1.3	1	38 90
96	109	1.3	1	42 67
97	111	1.3	1	20 91

```
98
       77
               1.3
                               15 62
                       1
99
       99
               1.3
                       1
                               30 69
       99
                       1
                               18 81
100
               1.3
                               17 70
101
       87
               1.3
                       1
                               16 57
102
       73
               1.3
                       1
                       1
103
       74
               1.3
                               16 58
104
       110
               1.3
                       1
                               13 97
               1.3
                               9 83
       92
                       1
105
       92
               1.3
                       1
                               7 85
106
       93
               1.3
                       1
                               6 87
107
108
       87
               1.3
                       1
                               5 82
               1.3
                       1
                              2 78
109
       80
       65
               1.3
                       1
                              6 59
110
111
       75
               1.3
                       1
                              2 73
112
       91
               1.3
                       1
                               4 87
113
       76
               1.3
                       1
                              1 75
                       1
114
       79
               1.3
                               2 77
115
       91
               1.3
                      1
                               3 88
               1.3
                       1
                               2 91
116
       93
117
       96
               1.3
                      1
                              1 95
               1.3
                       1
118
       95
                              0 95
                              3 141
119
       144
               1.3
                      1
               1.3
                       1
                              3 128
120
       131
                     1
               1.3
121
       143
                              1 142
                             1 217
               1.3
                      1
122
       218
123
       318
               1.3
                      1
                              2 316
               1.3
                       1
                              1 406
124
       407
125
               1.3
                       1
       790
                               2 788
               1.3
                       1
                               21 7549
126
       7570
```

RUN STATISTICS FOR INPUT FILE: /pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/testDir/maize/SRR3098746/SRR3098746_2.fastq

85732311 sequences processed in total

The length threshold of paired-end sequences gets evaluated later on (in the validation step)

Validate paired-end files SRR3098746_1_trimmed.fq and SRR3098746_2_trimmed.fq file_1: SRR3098746_1_trimmed.fq, file_2: SRR3098746_2_trimmed.fq

>>>> Now validing the length of the 2 paired-end infiles: SRR3098746_1_trimmed.fq and SRR3098746_2_trimmed.fq <<<< Writing validated paired-end Read 1 reads to SRR3098746_1_val_1.fq Writing validated paired-end Read 2 reads to SRR3098746_2_val_2.fq

Total number of sequences analysed: 85732311

Number of sequence pairs removed because at least one read was shorter than the length cutoff (20 bp): 464084 (0.54%)

Deleting both intermediate output files SRR3098746_1_trimmed.fq and SRR3098746_2_trimmed.fq

stderr

Program	Return code	Start	Runtime	Version
trim_galore	0	20-01-22 18:36:39	0:13:02	Quality-/Adapter-/RRBS-/ Speciality-Trimming [powered by Cutadapt] version 0.6.4_dev Last update: 24 09 2019

command

fasterq-dump -e 20 -f -t /pylon5/mc5pl7p/usingh/urmi/ pyrpipeTest/testDir/maize -0 /pylon5/mc5pl7p/usingh/urmi/ pyrpipeTest/testDir/maize/SRR3098744 -o SRR3098744.fastq / pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/testDir/maize/ SRR3098744/SRR3098744.sra

stdout

spots read : 92,170,823
reads read : 184,341,646
reads written : 184,341,646

stderr

Program	Return code	Start	Runtime	Version
fasterq-dump	0	20-01-22 18:49:41	0:01:29	

command

trim_galore --cores 10 --paired -o /pylon5/mc5pl7p/usingh/ urmi/pyrpipeTest/testDir/maize/SRR3098744 /pylon5/mc5pl7p/ usingh/urmi/pyrpipeTest/testDir/maize/SRR3098744/ SRR3098744 1.fastg /pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/ testDir/maize/SRR3098744/SRR3098744 2.fastq

stdout

Using an excessive number of cores has a diminishing return! It is recommended not to exceed 8 cores per trimming process (you asked for 10 cores). Please consider re-specifying Path to Cutadapt set as: 'cutadapt' (default) Cutadapt seems to be working fine (tested command 'cutadapt --version')

Cutadapt version: 2.6

Cutadapt seems to be using Python 3! Proceeding with multicore enabled Cutadapt using 10 cores

Parallel gzip (pigz) detected. Proceeding with multicore (de)compression using 10 cores

No quality encoding type selected. Assuming that the data provided uses Sanger encoded Phred scores (default)

Output will be written into the directory: /pylon5/mc5pl7p/ usingh/urmi/pyrpipeTest/testDir/maize/SRR3098744/

AUTO-DETECTING ADAPTER TYPE

Attempting to auto-detect adapter type from the first 1 million sequences of the first file (>> /pylon5/mc5pl7p/ usingh/urmi/pyrpipeTest/testDir/maize/SRR3098744/ SRR3098744 1.fastg <<)

Found perfect matches for the following adapter sequences:

Adapter type Count Sequence Sequences

analysed Percentage 9450 AGATCGGAAGAGC Illumina 1000000 0.95 smallRNA TGGAATTCTCGG 1000000 0.00

CTGTCTCTTATA 1000000 0.00 Nextera 0

Using Illumina adapter for trimming (count: 9450). Second best hit was smallRNA (count: 1)

Writing report to '/pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/ testDir/maize/SRR3098744/ SRR3098744 1.fastq trimming report.txt'

SUMMARISING RUN PARAMETERS

Input filename: /pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/

testDir/maize/SRR3098744/SRR3098744 1.fastq

Trimming mode: paired-end

Trim Galore version: 0.6.4 dev

Cutadapt version: 2.6

Python version: 3.6.3 :: Intel Corporation

```
Number of cores used for trimming: 10
Quality Phred score cutoff: 20
Quality encoding type selected: ASCII+33
Adapter sequence: 'AGATCGGAAGAGC' (Illumina TruSeg, Sanger
iPCR; auto-detected)
Maximum trimming error rate: 0.1 (default)
Minimum required adapter overlap (stringency): 1 bp
Minimum required sequence length for both reads before a
sequence pair gets removed: 20 bp
Cutadapt seems to be fairly up-to-date (version 2.6).
Setting -i 10
Writing final adapter and quality trimmed output to
SRR3098744 1 trimmed.fg
  >>> Now performing quality (cutoff '-q 20') and adapter
trimming in a single pass for the adapter sequence:
'AGATCGGAAGAGC' from file /pylon5/mc5pl7p/usingh/urmi/
pyrpipeTest/testDir/maize/SRR3098744/SRR3098744 1.fastg <<</pre>
10000000 sequences processed
20000000 sequences processed
30000000 sequences processed
40000000 sequences processed
50000000 sequences processed
60000000 sequences processed
70000000 sequences processed
80000000 sequences processed
90000000 sequences processed
This is cutadapt 2.6 with Python 3.6.3
Command line parameters: -j 10 -e 0.1 -g 20 -0 1 -a
AGATCGGAAGAGC /pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/
testDir/maize/SRR3098744/SRR3098744 1.fastq
Processing reads on 10 cores in single-end mode ...
Finished in 214.22 s (2 us/read; 25.82 M reads/minute).
=== Summary ===
                                    92,170,823
Total reads processed:
                                   23,552,072 (25.6%)
Reads with adapters:
Reads written (passing filters): 92,170,823 (100.0%)
Total basepairs processed: 11,613,523,698 bp
Quality-trimmed:
                            106,029,323 bp (0.9%)
Total written (filtered): 11,443,573,255 bp (98.5%)
=== Adapter 1 ===
Sequence: AGATCGGAAGAGC; Type: regular 3'; Length: 13;
Trimmed: 23552072 times.
No. of allowed errors:
```

```
0-9 bp: 0; 10-13 bp: 1
Bases preceding removed adapters:
  A: 27.3%
  C: 31.6%
  G: 22.5%
  T: 18.6%
  none/other: 0.0%
Overview of removed sequences
length
        count
                          max.err error counts
                 expect
1
         14510201
                          23042705.8
                                            0
                                                     14510201
2
         5810228 5760676.4
                                   0
                                            5810228
3
        1241422 1440169.1
                                   0
                                            1241422
4
        432848
                 360042.3
                                   0
                                            432848
5
        134720
                 90010.6 0
                                   134720
6
        93190
                 22502.6 0
                                   93190
7
        89969
                 5625.7
                          0
                                   89969
8
                 1406.4
        65179
                          0
                                   65179
9
        62171
                 351.6
                          0
                                   61148 1023
10
                 87.9
        86505
                          1
                                   84050 2455
11
        36022
                 22.0
                          1
                                   34725 1297
12
                 5.5
                          1
                                   60854 1605
        62459
                          1
13
        63202
                 1.4
                                   61554 1648
                 1.4
                          1
                                   39786 1171
14
        40957
                 1.4
15
        55176
                          1
                                   53743 1433
16
                 1.4
                          1
                                   31838 990
        32828
17
                 1.4
                          1
                                   40901 1192
        42093
                 1.4
                          1
                                   49417 1238
18
        50655
19
        31203
                 1.4
                          1
                                   30339 864
20
                          1
                                   39990 984
                 1.4
        40974
21
        33552
                 1.4
                          1
                                   32773 779
                                   35585 885
22
         36470
                 1.4
                          1
23
                          1
        30988
                 1.4
                                   30308 680
24
                 1.4
                          1
                                   26962 680
         27642
25
                          1
        37290
                 1.4
                                   36635 655
26
         14824
                 1.4
                          1
                                   14488 336
27
                 1.4
                          1
                                   25730 539
         26269
28
                 1.4
                          1
                                   28008 524
         28532
29
                 1.4
                          1
                                   18652 385
        19037
                                   21708 359
30
                 1.4
                          1
         22067
31
                 1.4
                          1
                                   18153 367
        18520
                                   23417 407
32
                 1.4
                          1
         23824
33
        10400
                 1.4
                          1
                                   10167 233
                                   15111 321
34
                 1.4
                          1
        15432
35
                 1.4
                          1
                                   19967 283
         20250
36
                          1
                                   5903 171
        6074
                 1.4
37
        16645
                 1.4
                          1
                                   16412 233
38
        6575
                 1.4
                          1
                                   6426 149
39
                          1
        11146
                 1.4
                                   10954 192
40
         11345
                 1.4
                          1
                                   11103 242
41
        8966
                 1.4
                          1
                                   8790 176
```

42	7025	1.4	1	6910 115
43	11531	1.4	1	11374 157
44	3758	1.4	1	3642 116
45	5037	1.4	1	4938 99
46	3420	1.4	1	3313 107
47	5164	1.4	1	5048 116
48	4451	1.4	1	4323 128
49	5231	1.4	1	5086 145
50	3799	1.4	1	3681 118
51	4087	1.4	1	3975 112
52	3088	1.4	1	3010 78
53	3464	1.4	1	3368 96
54	3185	1.4	1	3069 116
55	3689	1.4	1	3579 110
56	1309	1.4	1	1240 69
57	2588	1.4	1	2505 83
57 58				
	2160	1.4	1	2094 66
59	1631	1.4	1	1579 52
60	2373	1.4	1	2322 51
61	1459	1.4	1	1400 59
62	1354	1.4	1	1296 58
63	1915	1.4	1	1856 59
64	1438	1.4	1	1389 49
65	1087	1.4	1	1025 62
66	1293	1.4	1	1230 63
67	1077	1.4	1	1017 60
68	1056	1.4	1	995 61
69	1143	1.4	1	1051 92
70	1093	1.4	1	961 132
71	1013	1.4	1	872 141
72	1119	1.4	1	865 254
73	1256	1.4	1	863 393
74	1852	1.4	1	951 901
75	9184	1.4	1	1105 8079
76	8395	1.4	1	3093 5302
77	5164	1.4	1	1773 3391
78	3653	1.4	1	767 2886
79	2559	1.4	1	476 2083
80	1380	1.4	1	297 1083
81	869	1.4	1	236 633
82	627	1.4	1	179 448
83	368	1.4	1	127 241
84	349	1.4	1	128 221
85	301	1.4	1	112 189
86	308	1.4	1	109 199
87	236	1.4	1	77 159
88	224	1.4	1	76 148
89	180	1.4	1	65 115
90	202	1.4	1	67 135
91	175	1.4	1	47 128
92	204	1.4	1	68 136
93	152	1.4	1	55 97
33	132	± 1 1	_	55 57

94	158	1.4	1	60 98
95	183	1.4	1	51 132
96	159	1.4	1	36 123
97	145	1.4	1	41 104
98	148	1.4	1	35 113
99	111	1.4	1	35 76
100	122	1.4	1	28 94
101	138	1.4	1	35 103
102	162	1.4	1	37 125
103	124	1.4	1	21 103
104	130	1.4	1	32 98
105	85	1.4	1	18 67
106	130	1.4	1	36 94
107	143	1.4	1	23 120
108	106	1.4	1	21 85
109	91	1.4	1	20 71
110	128	1.4	1	24 104
111	107	1.4	1	22 85
112	93	1.4	1	18 75
113	114	1.4	1	23 91
114	105	1.4	1	18 87
115	127	1.4	1	21 106
116	127	1.4	1	21 106
117	113	1.4	1	16 97
118	127	1.4	1	14 113
119	137	1.4	1	7 130
120	139	1.4	1	7 132
121	186	1.4	1	17 169
122	220	1.4	1	14 206
123	378	1.4	1	22 356
124	494	1.4	1	16 478
125	1054	1.4	1	42 1012
126	8763	1.4	1	167 8596

RUN STATISTICS FOR INPUT FILE: /pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/testDir/maize/SRR3098744/SRR3098744_1.fastq

92170823 sequences processed in total

The length threshold of paired-end sequences gets evaluated later on (in the validation step)

Writing report to '/pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/
testDir/maize/SRR3098744/
SRR3098744 2.fastq trimming report.txt'

SUMMARISING RUN PARAMETERS

Input filename: /pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/

testDir/maize/SRR3098744/SRR3098744_2.fastq

Trimming mode: paired-end

Trim Galore version: 0.6.4 dev

Cutadapt version: 2.6

```
Python version: 3.6.3 :: Intel Corporation
Number of cores used for trimming: 10
Quality Phred score cutoff: 20
Ouality encoding type selected: ASCII+33
Adapter sequence: 'AGATCGGAAGAGC' (Illumina TruSeg, Sanger
iPCR; auto-detected)
Maximum trimming error rate: 0.1 (default)
Minimum required adapter overlap (stringency): 1 bp
Minimum required sequence length for both reads before a
sequence pair gets removed: 20 bp
Cutadapt seems to be fairly up-to-date (version 2.6).
Setting -j -j 10
Writing final adapter and quality trimmed output to
SRR3098744 2 trimmed.fq
 >>> Now performing quality (cutoff '-q 20') and adapter
trimming in a single pass for the adapter sequence:
'AGATCGGAAGAGC' from file /pylon5/mc5pl7p/usingh/urmi/
pyrpipeTest/testDir/maize/SRR3098744/SRR3098744 2.fastg <<</pre>
10000000 sequences processed
20000000 sequences processed
30000000 sequences processed
40000000 sequences processed
50000000 sequences processed
60000000 sequences processed
70000000 sequences processed
80000000 sequences processed
90000000 sequences processed
This is cutadapt 2.6 with Python 3.6.3
Command line parameters: -j 10 -e 0.1 -q 20 -0 1 -a
AGATCGGAAGAGC /pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/
testDir/maize/SRR3098744/SRR3098744 2.fastq
Processing reads on 10 cores in single-end mode ...
Finished in 214.07 s (2 us/read; 25.83 M reads/minute).
=== Summary ===
Total reads processed:
                                    92,170,823
                                    22,417,052 (24.3%)
Reads with adapters:
Reads written (passing filters): 92,170,823 (100.0%)
Total basepairs processed: 11,613,523,698 bp
Quality-trimmed:
                           186,415,642 bp (1.6%)
Total written (filtered): 11,364,862,692 bp (97.9%)
=== Adapter 1 ===
Sequence: AGATCGGAAGAGC; Type: regular 3'; Length: 13;
Trimmed: 22417052 times.
```

```
No. of allowed errors:
0-9 bp: 0; 10-13 bp: 1
Bases preceding removed adapters:
  A: 31.4%
  C: 24.6%
  G: 28.3%
  T: 15.7%
  none/other: 0.0%
Overview of removed sequences
length
         count
                  expect
                           max.err error counts
                           23042705.8
                                                      12169032
         12169032
1
                                             0
2
         7535213 5760676.4
                                             7535213
                                    0
3
         831524
                  1440169.1
                                    0
                                             831524
4
         291075
                  360042.3
                                    0
                                             291075
5
         171719
                  90010.6 0
                                    171719
6
         105099
                  22502.6 0
                                    105099
7
         137323
                  5625.7
                           0
                                    137323
8
         55681
                  1406.4
                           0
                                    55681
9
                                    23611 1729
         25340
                  351.6
                           0
10
         113308
                  87.9
                           1
                                    108103 5205
                                    6216 3675
11
                  22.0
         9891
                           1
12
         82903
                  5.5
                           1
                                    79400 3503
                  1.4
                           1
                                    23479 1606
13
         25085
                  1.4
14
         91895
                           1
                                    88301 3594
15
         22230
                  1.4
                           1
                                    21080 1150
                  1.4
                           1
16
         29592
                                    28217 1375
                                    78817 2789
17
                  1.4
                           1
         81606
18
         6254
                  1.4
                           1
                                    5606 648
                           1
19
                  1.4
                                    63462 1984
         65446
20
                  1.4
                           1
                                    33813 1101
         34914
21
                  1.4
                           1
                                    2540 369
         2909
                           1
22
                  1.4
                                    33619 1298
         34917
23
                                    31581 1315
                  1.4
                           1
         32896
24
         63855
                  1.4
                           1
                                    61709 2146
25
         14579
                  1.4
                           1
                                    13937 642
26
                  1.4
                           1
         22214
                                    21481 733
27
                  1.4
                           1
                                    6821 480
         7301
28
                  1.4
                           1
         40437
                                    39289 1148
29
                  1.4
                           1
                                    1807 301
         2108
30
                  1.4
                           1
         36408
                                    35355 1053
31
                  1.4
                           1
                                    3641 299
         3940
32
         23660
                  1.4
                           1
                                    22955 705
                                    17518 564
33
                  1.4
                           1
         18082
34
                  1.4
                           1
         5631
                                    5319 312
35
                           1
         21464
                  1.4
                                    20815 649
36
         6259
                  1.4
                           1
                                    5910 349
                           1
37
         11647
                  1.4
                                    11221 426
                           1
38
         14175
                  1.4
                                    13738 437
39
         7493
                  1.4
                           1
                                    7201 292
                           1
40
         8248
                  1.4
                                    7853 395
```

41	9166	1.4	1	8853 313
42	12958	1.4	1	12603 355
43			1	1164 137
	1301	1.4		
44	6602	1.4	1	6381 221
45	10196	1.4	1	9883 313
46	3629	1.4	1	3457 172
47	2815	1.4	1	2639 176
48	5270	1.4	1	5094 176
49	4281	1.4	1	4123 158
50	3466	1.4	1	3303 163
51	7116	1.4	1	6898 218
52	3000	1.4	1	2855 145
53	1973	1.4	1	1853 120
54			1	1565 113
	1678	1.4		
55	3011	1.4	1	2849 162
56	2072	1.4	1	1941 131
57	2244	1.4	1	2111 133
58	2080	1.4	1	1957 123
59	1886	1.4	1	1772 114
			1	1857 127
60	1984	1.4		
61	1916	1.4	1	1726 190
62	1911	1.4	1	1715 196
63	1852	1.4	1	1613 239
64	1765	1.4	1	1486 279
65	1963	1.4	1	1486 477
66	2473		1	1479 994
		1.4		
67	14715	1.4	1	1735 12980
68	14201	1.4	1	7932 6269
69	4906	1.4	1	1771 3135
70	2119	1.4	1	516 1603
71	1234	1.4	1	201 1033
72	737	1.4	1	182 555
73	599	1.4	1	125 474
74	423	1.4	1	117 306
75	326	1.4	1	97 229
76	333	1.4	1	114 219
77	254	1.4	1	83 171
78	238	1.4	1	88 150
70 79	249	1.4	1	86 163
80	213	1.4	1	71 142
81	235	1.4	1	75 160
82	215	1.4	1	91 124
83	221	1.4	1	67 154
84	191	1.4	1	78 113
85	202	1.4	1	67 135
86	176	1.4	1	70 106
87	156	1.4	1	58 98
88	184	1.4	1	51 133
89	157	1.4	1	51 106
90	166	1.4	1	36 130
91	138		1	36 102
		1.4		
92	130	1.4	1	42 88

```
1.4
93
        158
                          1
                                   41 117
94
        160
                 1.4
                          1
                                   53 107
95
                          1
                                   44 87
        131
                 1.4
                                   20 100
96
        120
                 1.4
                          1
                          1
                                  29 125
97
        154
                 1.4
                                   27 64
98
                          1
        91
                 1.4
99
        109
                 1.4
                          1
                                   22 87
                          1
                                  25 88
100
        113
                 1.4
                          1
                                   17 80
101
        97
                 1.4
                 1.4
                          1
                                   20 80
102
        100
103
        107
                 1.4
                          1
                                   13 94
                 1.4
                          1
                                  22 103
104
        125
                 1.4
                          1
                                  8 93
105
        101
106
        91
                 1.4
                          1
                                   10 81
107
        110
                 1.4
                          1
                                   10 100
108
        132
                 1.4
                          1
                                  11 121
                          1
109
        120
                 1.4
                                   10 110
110
        88
                 1.4
                          1
                                  4 84
                                  6 85
                          1
111
        91
                 1.4
112
        99
                 1.4
                          1
                                  4 95
                          1
                                  9 82
113
        91
                 1.4
                 1.4
114
        76
                          1
                                  3 73
                 1.4
                          1
                                  5 111
115
        116
                 1.4
                          1
                                  5 105
116
        110
                 1.4
                          1
                                  3 121
117
        124
118
        123
                 1.4
                          1
                                  4 119
        160
                 1.4
                          1
                                  5 155
119
                 1.4
                          1
120
        166
                                  4 162
                 1.4
                          1
                                  1 181
121
        182
                          1
122
        256
                 1.4
                                  9 247
        347
                          1
123
                 1.4
                                  9 338
                          1
                                  5 411
124
        416
                 1.4
125
                 1.4
                          1
                                  3 912
        915
126
                          1
                 1.4
                                  29 6965
        6994
```

RUN STATISTICS FOR INPUT FILE: /pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/testDir/maize/SRR3098744/SRR3098744_2.fastq

92170823 sequences processed in total The length threshold of paired-end sequences gets evaluated later on (in the validation step)

Validate paired-end files SRR3098744_1_trimmed.fq and SRR3098744_2_trimmed.fq file_1: SRR3098744_1_trimmed.fq, file_2: SRR3098744 2 trimmed.fq

>>>> Now validing the length of the 2 paired-end infiles: SRR3098744_1_trimmed.fq and SRR3098744_2_trimmed.fq <<<< Writing validated paired-end Read 1 reads to SRR3098744_1_val_1.fq

```
Writing validated paired-end Read 2 reads to SRR3098744_2_val_2.fq

Total number of sequences analysed: 92170823
```

Number of sequence pairs removed because at least one read was shorter than the length cutoff (20 bp): 469354 (0.51%)

Deleting both intermediate output files SRR3098744_1_trimmed.fq and SRR3098744_2_trimmed.fq

stderr

Program	Return code	Start	Runtime	Version
trim_galore	0	20-01-22 18:51:10	0:13:56	Quality-/Adapter-/RRBS-/ Speciality-Trimming [powered by Cutadapt] version 0.6.4_dev Last update: 24 09 2019

command

STAR --outFilterType BySJout --runThreadN 8 --outSAMtype BAM SortedByCoordinate --genomeDir /pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/testDir/maize/maize_data/starindex --readFilesIn /pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/testDir/maize/SRR3098746/SRR3098746_1_trimgalore.fastq /pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/testDir/maize/SRR3098746/SRR3098746_2_trimgalore.fastq --outFileNamePrefix /pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/testDir/maize/SRR3098746/

stdout

```
Jan 22 19:05:07 ..... started STAR run

Jan 22 19:05:07 ..... loading genome

Jan 22 19:05:40 ..... started mapping

Jan 22 20:47:54 ..... finished mapping

Jan 22 20:47:57 ..... started sorting BAM

Jan 22 20:52:21 ..... finished successfully
```

Program	Return code	Start	Runtime	Version
STAR	0	20-01-22 19:05:07	1:47:28	2.7.3a

stringtie -G maize_data/Zea_mays.B73_RefGen_v4.46.gtf -p 25 o /pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/testDir/maize/
SRR3098746/Aligned.sortedByCoord.out_stringtie.gtf /pylon5/
mc5pl7p/usingh/urmi/pyrpipeTest/testDir/maize/SRR3098746/
Aligned.sortedByCoord.out.bam

stdout

stderr

Program	Return code	Start	Runtime	Version
stringtie	0	20-01-22 20:52:36	0:20:09	2.0.3

command

STAR --outFilterType BySJout --runThreadN 8 --outSAMtype BAM SortedByCoordinate --genomeDir /pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/testDir/maize/maize_data/starindex -- readFilesIn /pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/testDir/maize/SRR3098744/SRR3098744_1_trimgalore.fastq /pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/testDir/maize/SRR3098744/SRR3098744_2_trimgalore.fastq --outFileNamePrefix /pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/testDir/maize/SRR3098744/

stdout

Jan	22	21:12:45	 started STAR run
Jan	22	21:12:45	 loading genome
Jan	22	21:13:25	 started mapping
Jan	22	23:01:59	 finished mapping
Jan	22	23:02:01	 started sorting BAM
Jan	22	23:06:09	 finished successfully

Program	Return code	Start	Runtime	Version
STAR	0	20-01-22 21:12:45	1:53:37	2.7.3a

stringtie -G maize_data/Zea_mays.B73_RefGen_v4.46.gtf -p 25 -o /pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/testDir/maize/SRR3098744/Aligned.sortedByCoord.out_stringtie.gtf /pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/testDir/maize/SRR3098744/Aligned.sortedByCoord.out.bam

stdout

stderr

Program	Return code	Start	Runtime	Version
stringtie	0	20-01-22 23:06:22	0:19:58	2.0.3

command

gffread -w /pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/testDir/
maize/SRR3098746/transcripts.fa -g maize_data/
Zea_mays.B73_RefGen_v4.dna.toplevel.1_10.fa /pylon5/mc5pl7p/
usingh/urmi/pyrpipeTest/testDir/maize/SRR3098746/
Aligned.sortedByCoord.out stringtie.gtf

stdout

stderr

Program	Return code	Start	Runtime	Version
gffread	0	20-01-22 23:27:18	0:00:09	0.11.5

command

plncpro predict -i /pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/testDir/maize/SRR3098746/transcripts_filter.fa -o /pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/testDir/maize/SRR3098746/plncpro_out -p plncpro_predictions -t 25 -d uniprot/uniprotdb -m monocot model/monocot.model -v -r

stdout

		/ /

Program Return code Start	Runtime Version
---------------------------	-----------------

gffread -w /pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/testDir/
maize/SRR3098744/transcripts.fa -g maize_data/
Zea_mays.B73_RefGen_v4.dna.toplevel.1_10.fa /pylon5/mc5pl7p/
usingh/urmi/pyrpipeTest/testDir/maize/SRR3098744/
Aligned.sortedByCoord.out stringtie.gtf

stdout

stderr

Program	Return code	Start	Runtime	Version
gffread	0	20-01-22 23:42:41	0:00:07	0.11.5

command

plncpro predict -i /pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/testDir/maize/SRR3098744/transcripts_filter.fa -o /pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/testDir/maize/SRR3098744/plncpro_out -p plncpro_predictions -t 25 -d uniprot/uniprotdb -m monocot model/monocot.model -v -r

stdout

11 [91m]		0.2835595776 0.7164404223	
 \		 _ \	I /I

stderr

Program	Return code	Start	Runtime	Version
plncpro predict	0	20-01-22 23:42:49	0:13:35	M[91m

Environment Information

Programs		
name	version	path
trim_galore	Quality-/Adapter-/RRBS-/ Speciality-Trimming [powered by Cutadapt] version 0.6.4_dev Last update: 24 09 2019	/pylon5/mc5pl7p/usingh/lib/ TrimGalore-0.6.5/trim_galore
prefetch	/pylon5/mc5pl7p/usingh/ lib/sratoolkit.2.10.0- centos_linux64/bin/ prefetch : 2.10.0	/pylon5/mc5pl7p/usingh/lib/ sratoolkit.2.10.0- centos_linux64/bin/prefetch
stringtie	2.0.3	/pylon5/mc5pl7p/usingh/lib/ stringtie/ stringtie-2.0.3.Linux_x86_64/ stringtie
fasterq- dump		/pylon5/mc5pl7p/usingh/lib/ sratoolkit.2.10.0- centos_linux64/bin/fasterq- dump
gffread	0.11.5	/pylon5/mc5pl7p/usingh/lib/ gffread/gffread
plncpro predict	\$\mathbb{B}[91m	/pylon5/mc5pl7p/usingh/lib/ myAnacondaInstallation/envs/ pyrpipeTest/bin/plncpro
STAR	2.7.3a	/pylon5/mc5pl7p/usingh/lib/ STAR-2.7.3a/bin/Linux_x86_64/ STAR

System Inform	nation
Time at collection	20-01-22 18:14:47
Python	Python 3.7.5 (default, Oct 25 2019, 15:51:11) [GCC 7.3.0]
Operating system	Linux-3.10.0-957.27.2.el7.x86_64-x86_64-with- centos-7.6.1810-Core
CPU	28 logical CPU cores

sys.modules	
'sys'	
'builtins'	
' frozen importlib'	

'_imp'
'_thread'
'_warnings'
' weakref'
'zipimport'
'_frozen_importlib_external'
'io'
- 'marshal'
'posix'
'encodings'
'codecs'
' codecs'
'encodings.aliases'
'encodings.utf_8'
' signal'
' main '
'encodings.latin_1' 'io'
'abc'
'_abc'
'_bootlocale'
'_locale'
'site'
'os'
'stat'
'_stat'
'posixpath'
'genericpath'
'os.path'
'_collections_abc'
'_sitebuiltins'
'pyrpipe'
'pyrpipe.sra'
'pyrpipe.pyrpipe_utils'
'datetime'
'time'
'math'
' datetime'
'pyrpipe.pyrpipe_engine'
'subprocess'
'signal'
'functools'
' functools'
'collections'
COHECHOHS

'operator'
'_operator'
'keyword'
'heapq'
'_heapq'
'itertools'
'reprlib'
' collections'
'enum'
'types'
'warnings'
'errno'
' posixsubprocess'
'select'
'selectors'
'collections.abc'
'threading'
'traceback'
'linecache'
'tokenize'
're'
'sre_compile'
'_sre'
'sre_parse'
'sre_constants'
'copyreg'
'token'
' weakrefset'
'logging'
'weakref'
'string'
' string'
'atexit'
'platform'
'multiprocessing'
'multiprocessing.context'
'multiprocessing.process'
'multiprocessing.reduction'
'pickle'
'struct'
' struct'
_ _
'_compat_pickle'
'_pickle'
'socket'

'_socket'
'array'
'mp_main'
'json'
'json.decoder'
'json.scanner'
'_json'
'json.encoder'

sys.path

'/pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/testDir/maize'

'/pylon5/mc5pl7p/usingh/lib/myAnacondaInstallation/envs/pyrpipeTest/lib/python37.zip'

'/pylon5/mc5pl7p/usingh/lib/myAnacondaInstallation/envs/pyrpipeTest/lib/python3.7'

'/pylon5/mc5pl7p/usingh/lib/myAnacondaInstallation/envs/pyrpipeTest/lib/python3.7/lib-dynload'

'/pylon5/mc5pl7p/usingh/lib/myAnacondaInstallation/envs/pyrpipeTest/lib/python3.7/site-packages'

'/pylon5/mc5pl7p/usingh/urmi/pyrpipeTest/pyrpipe'