

Again - The elephant ... panda... gibbon? in the room

 $+.007 \times$

noise

"gibbon"

57.7% confidence

"panda"

99.3% confidence

This is what a simple Neural Network Property Looks like

Let $\hat{\mathbf{f}}$ be the neural network Let $\hat{\mathbf{x}}$ be an input in the training data set Let $\| \cdot - \cdot \|$ be some notion of distance.

Then:

$$\forall x: ||x - \hat{x}|| \le \varepsilon \Rightarrow ||f(x) - f(\hat{x})|| \le \delta$$

In Practice - Robustness of MNIST

Let us take as an example the famous MNIST data set by LeCun et al. The images look like this:

In Practice - Robustness of MNIST

Paisecredicted "0" 99%

Small perturbation

Paisecredicted "5" 94%

Formal Verification of NN (more details)

Definition of Verification for a Black Box Model

For a neural network $N: \overline{x} \to \overline{y}$, the input property $P(\overline{x})$ and the output property $Q(\overline{y})$, does there exist an input $\overline{x_0}$ which satisfies $P(\overline{x_0})$ such that its corresponding output $\overline{y_0}$ satisfies $Q(\overline{y_0})$?

- $ightharpoonup P(\overline{x})$ characterises inputs checked
- \triangleright $Q(\overline{y})$ characterises the behaviour we DO NOT wish for
- if satisfied, counterexample is returned, else property holds
- ▶ the *P* for robustness is $\|\overline{x} \overline{x_0}\| L_{\infty} \le \delta$ (more on this later)
- ▶ the Q is, $\bigvee_i (\overline{y}[i_0] \leq \overline{y}[i])$, where $\overline{y}[i_0]$ is the desiaisecred label

Or More Simply: Robustness

ϵ-ball robustness**

Formally, we define an ϵ -ball around an image $\hat{\mathbf{x}}$ as:

$$\mathbb{B}(\hat{\mathbf{x}}, \epsilon) = [\mathbf{x} \in \mathbb{R}^n : |\hat{\mathbf{x}} - \mathbf{x}| \le \epsilon]$$

where |...| is a distance function (or *L*-norm) in \mathbb{R}^n , such as Euclidean distance or L_{∞} -norm.

so as above $\mathbb{B}(\hat{\mathbf{x}}, \epsilon) =:$

$$\|\overline{x} - \overline{x_0}\| L_{\infty} \le \epsilon$$

**There are various types of these

ϵ -ball Visualised

For every image in the dataset, we assume we can "draw" a small ϵ -ball around it, and guarantee that within that ϵ -ball classification of the network does not change much

How to Specify this in Vehicle?

Formalising ϵ -ball robustness for MNIST networks in Vehicle

- ▶ We will see how Vehicle can be used to handle properties that refer directly to the data sets.
- ► How to specify images (represented as 2D arrays)
- User defined parameters in Vehicle
- Verification of properties

The Vehicle language contains the following basic types:

▶ Bool - booleans

Language Overview

- ▶ Operations: and, or, =>, not, if ... then ... else ..., ==, !=
- ▶ Index n natural numbers between 0 (inclusive) and n (exclusive).
 - Used for safe indexing into tensors. For example, only the values 0 and 1 have type Index 2.
 - ▶ Operations: ==, !=, <=, >=, <, >
- ► Nat natural numbers
 - ▶ Operations: ==, !=, <=, >=, <, >, +, *
- Int integer numbers
 - ▶ Operations: ==, !=, <=, >=, <, >, +, *, -
- ► Rat rational numbers
 - ▶ Operations: ==. !=. <=. >=. <. >. +. *. -. /

Language Overview (continued)

Next there are two container types:

- ► List A a list of elements of type A
 - Used for sequences of data for which one either doesn't care about or don't know the length of.
 - ► Operations: ==, !=, map, fold
- ▶ Tensor A [d1, ..., dn] a tensor of elements of type A with dimensions $d1 \times ... \times d_n$.
 - ▶ Used for data for which it is important to know the size of. Due to the dependently typed-nature of the language, the dimensions can themselves be arbitrary expressions.
 - ► Operations: ==, !=, map, fold, !

Special Mentions: Functions, Networks and Datasets

► The function type is written A -> B where A is the input type and B is the output type e.g.

```
add2 : Nat \rightarrow Nat add2 x = x + 2
```

► The language models neural networks as black box functions between tensors @network

```
network myNetwork : Tensor Rat [28, 28] -> Tensor Rat [10]
```

▶ Datasets may be introduced using the dataset keyword:

@dataset
dataset myDataset : Tensor Rat [10, 784]

Special Mentions: Parameters, Quantifiers and Type Synonyms

Sometimes the user may not want to hard-code a specific value but rather provide a compile time variable:

```
@parameter
parameter myParameter : Rat
```

universal (forall) and existential (exists) quantifiers e.g.

```
property1 : Bool
property1 = forall x . lastOutputPositive x
```

can declare synonym for types e.g.:

```
type Image = Tensor Rat [28, 28]
@network
network classify : Image -> Tensor Rat [10]
```

Case Study: Initialisation - 2D Arrays and Labels


```
Declare input as 2d array (with a label)
type Image = Tensor Rat [28, 28]
type Label = Index 10
type LabelDistribution = Tensor Rat [10]
Define what a valid input is (images are within 0 and 1)
valid : Image -> Bool
valid x = forall i j . 0 \le x ! i ! j \le 1
```

Case Study: Classifier - Network and Paisecrediction

The output of the network is a score for each of the digits 0 to 9.

```
@network
classifier : Image -> LabelDistribution
```

The classifier advises that input image x has label i if the score for label i is greater than the score of any other label j:

```
advises : Image -> Label -> Bool
advises x i = forall j .
    j != i => classifier x ! i > classifier x ! j
```

Case Study: Robustness - User Parameters and Bounds

define the parameter** epsilon that will represent the radius of the balls that we verify.

```
@parameter
epsilon : Rat
```

we define what it means for an image x to be in a ball of size epsilon

```
boundedByEpsilon : Image -> Bool
boundedByEpsilon x = forall i j .
    -epsilon <= x ! i ! j <= epsilon</pre>
```

**N.B @parameter will mean it is specified at runtime

Case Study: Robustness - Robust Around a Point

We now define what it means for the network to be robust around an image \times that should be classified as y

```
robustAround : Image -> Label -> Bool
robustAround image label = forall pertubation .
  let perturbedImage = image - pertubation in
  boundedByEpsilon pertubation and validImage perturbedImage =>
    advises perturbedImage label
```

Case Study: Robustness - Robust Image Classification

Size of input automatically inferaisecred by tool at runtime

```
@parameter(infer=True)
n : Nat
```

We next declare two dataset (parameter ensures same size)

```
@dataset
trainingImages : Vector Image n
@dataset
```

trainingLabels : Vector Label n

Case Study: Robustness - Robust Image Classification (continued)

We then say that the network is robust for this data set if it is robust around every pair of input images and output labels.

```
@property
robust : Vector Bool n
robust = foreach i .
    robustAround (trainingImages ! i)(trainingLabels ! i)
```

Full spec ϵ -ball Robustness

robust = foreach i . robustAround (trainingImages ! i) (trainingLabels ! i)

robust · Vector Rool n

```
(A) (20)
```

```
type Image = Tensor Rat [28, 28]
type Label = Index 10
@network
classifier : Image -> Vector Rat 10
@parameter
epsilon : Rat
validImage : Image -> Bool
validImage x = forall i j . 0 <= x ! i ! j <= 1</pre>
advises : Image -> Label -> Bool
advises x i = forall i . i != i => classifier x ! i > classifier x ! i
boundedByEpsilon : Image -> Bool
boundedBvEpsilon x = forall i i . -epsilon <= x ! i ! i <= epsilon
robustAround : Image -> Label -> Bool
robustAround image label = forall pertubation .
let perturbedImage = image - pertubation in boundedByEpsilon pertubation and validImage perturbedImage => advises perturbedImage label
Odataset
trainingImages : Vector Image n
Odataset
trainingLabels : Vector Label n
@property
```

Case Study: Robustness - Verification

In order to run Vehicle, we need to provide:

- the specification file,
- the network in ONNX format,
- the data in idx format,
- \blacktriangleright and the dedired ϵ value.

Case Study: Robustness - Verification (continued)

Putting it all together

```
vehicle verify \
   --specification mnist-robustness.vcl \
   --network classifier:mnist-classifier.onnx \
   --parameter epsilon:0.005 \
   --dataset trainingImages:images.idx \
   --dataset trainingLabels:mnist-robustness/labels.idx \
   --verifier Marabou
```

Concluding Exercise PL problems

- Interoperability properties are not portable between training/counter-example search/verification.
- Interpretability code is not easy to understand.
- Integration properties of networks cannot be linked to larger control system properties.
- E^G Embedding gap little support for translation between problem space and input space.

Question. Which of these have we addressed in this chapter?

Conclusions

What to setup for next session + Excercises!

- Robustness is currently the most verified property in AI
- You should now be familiar with how to specify this and verify networks in vehicle
- Coming Next after the break:
 - 1. Exercise session: write and verify your own specs (with possibility to extend over the break)
 - for writing a spec, install vehicle: just run pip install vehicle-lang
 - for verifying a spec, you also need Marabou installed pip install maraboupy
 - 2. Property driven training in Vehicle
 - 3. Demo of training for robustness
 - 4. Practical applications of AI verification

Exercises Easy

Robustness (for those familiar with the problem)

- Fill in missing code in the Robustness spec available at https://github.com/vehicle-lang/tutorial: exercises/Chapter2.GettingStarted/mnist-robustness
- Using the given neworks and data, verify robustness via Vehicle.

Robustness (for those NOT familiar with the problem)

Study the chapter "Proving Neural Network Robustness" here: https://vehicle-lang.github.io/tutorial/

Exercises More Advanced

More Robustness properties in the same spec

- Try a variety of ε-values The spec and network can be found at: https://github.com/vehicle-lang/tutorial, at examples/Chapter3.\Robustness/
- ▶ Using the given networks and data, verify the properties via Vehicle.

Question. Does the different ϵ size make a difference?

Exercises More Advanced

More Robustness properties in the same spec

- ► Extend the given robustness specification with Other robustness properties . The spec and network can be found at:
 - https://github.com/vehicle-lang/tutorial, at examples/Chapter3.Robustness/
- Using the given neworks and data, verify the properties via Vehicle.
- See Casadio, Marco, Matthew L. Daggitt, Ekaterina Komendantskaya, Wen Kokke, Daniel Kienitz, and Rob Stewart. 2021. "Property-Driven Training: All You (n) Ever Wanted to Know About." for more properties

Excercises

Further Robustness definitions

$$\forall x \in \mathbb{B}(\hat{x}, \epsilon)$$
. $robust(f(x))$

Property	Definition of Robust
CR (Classification Robustness)	$argmax f(\mathbf{x}) = c$
SCR (Strong Classification Robustness)	$f(\mathbf{x})_c \geq \eta$
SR (Standard Robustness)	$ f(\mathbf{x}) - f(\hat{\mathbf{x}}) \leq \delta$
LR (Lipschitz Robustness)	$ f(\mathbf{x}) - f(\hat{\mathbf{x}}) \leq L \mathbf{x} - \hat{\mathbf{x}} $

Casadio, Marco, Matthew L. Daggitt, Ekaterina Komendantskaya, Wen Kokke, Daniel Kienitz, and Rob Stewart. 2021. "Property-Driven Training: All You (n) Ever Wanted to Know About."

Exercises Even More Advanced

Train your own network, different distances, more datasets!

► Try out all other Exercises in: https://vehicle-lang.github.io/tutorial/#exercises,

That's all folks!