Lab 8: Tables in R

2024-05-24

We have talked previously about summarizing data into aesthetic visuals, or graphs. But sometimes, what is important cannot be transformed into a pleasing picture, and requires a *table*.

Today we will discuss how to create tables that succinctly convey the desired information.

Tables

We will focus on the following types of tables today:

- 1. Summary tables: show summary statistics of data
- 2. Regression tables: report the results of one or multiple regressions

Summary Tables

Frequency Statistics

```
# Use the fivethirtyeight package
library(pacman)
p_load(fivethirtyeight, tidyverse) # tidyverse for cleaning
# Data on Congress members from the 113th congress (2013 - 2015)
age_data = congress_age %>% filter(congress == 113)
table(age data$party, age data$chamber)
##
##
       house senate
##
         202
                 57
     D
           0
                  2
##
     Ι
         237
##
     R
                 46
```

This is nice! But it can look better. Let's make a table reporting the average age for each party within each chamber of Congress.

```
# new package: gt
p_load(gt)

age_table = age_data %>%
  group_by(chamber, party) %>%
  summarize(average_age = mean(age)) %>%
  pivot_wider(
   names_from = chamber,
   values_from = average_age
)
```

```
## `summarise()` has grouped output by 'chamber'. You can override using the
## `.groups` argument.
```

```
age_table
## # A tibble: 3 x 3
   party house senate
   <chr> <dbl> <dbl>
## 1 D
           59.1
                 61.2
## 2 R
           54.8
                  61.0
## 3 I
           NA
                  70.0
# make a gt object
age_table = age_table %>% gt()
age_table
```

party	house	senate
D	59.08020	61.21930
\mathbf{R}	54.77173	60.98913
I	NA	70.05000

Much better! We can make more changes:

- Add a title
- Capitalize the first letter of each word
- Write out the full name of each party (D \rightarrow Democrat, etc.)
- Change the number of decimals to 2 for each entry

```
# from the gt packages
age_table %>%

# title
tab_header( title = "Average Age of Congress Members by Party and Chamber",
    subtitle = "In the 133th Congress") %>%

# capitalize first word
cols_label(party = "Party", house = "House", senate = "Senate") %>%

# full party names
text_case_match("D" ~ "Democrat", "R" ~ "Republican", "I" ~ "Independent") %>%

# decimals
fmt_number(decimals = 2)
```

Average Age of Congress Members by Party and Chamber In the 133th Congress

Party	House	Senate
Democrat	59.08	61.22
Republican	54.77	60.99
Independent	NA	70.05

Regression Tables

One of the most common types of tables you'll have in presentations, reports, or research papers are those reporting the results of a regression (or multiple regressions).

For this example, we will use the candy_rankings dataset also from the fivethirtyeight package. It contains survey data from over 250,000 random match-ups between candies, the percent that each candy "won," and information on each candy (including if it contains chocolate, comes in a bar form, is fruity, etc.)

Suppose we want to know if having chocolate or peanuts/almonds makes a candy more likely to be chosen, or if the combination of chocolate and peanuts is more important. We can do this with two regressions:

 $winpercent \sim chocolate + peanutyal mondy$

 $winpercent \sim chocolate + peanuty almondy + chocolate \times peanuty almondy$

tab_model() function This produces an HTML output, so it won't look pretty if you knit to a PDF. However, it looks good when using it in an R script file or knitting to HTML.

```
# From package: sjPlot
p_load(sjPlot)

# Basic table
tab_model(reg_1, reg_2)
```

winpercent

winpercent

Predictors

Estimates

CI

р

Estimates

CI

р

(Intercept)

41.82

38.60 - 45.05

< 0.001

42.46

```
39.25 - 45.67
```

< 0.001

 ${\bf chocolateTRUE}$

16.62

11.37 - 21.88

< 0.001

14.82

9.42 - 20.23

< 0.001

peanutyalmondyTRUE

7.62

0.60 - 14.64

0.034

-7.60

-23.32 - 8.11

0.339

 ${\bf chocolate TRUE} \times {\bf peanuty almondy TRUE}$

18.82

1.35 - 36.30

0.035

Observations

85

85

R2 / R2 adjusted

0.437 / 0.423

0.467 / 0.448

Multiple adjustments can be made

- show.se = (TRUE / FALSE, whether to show standard errors of estimates)
- show.stat = (TRUE / FALSE, whether to show t-statistic)
- show.ci = (TRUE / FALSE, whether to show confidence interval)
- show.p = (TRUE / FALSE, whether to show p-value)
- pred.labels = c("list names of predictor variable(s)")
- dv.labels = c("list names of dependent variable(s)")
- string.pred = "Name for *Predictors* column"
- string.ci = "Name for CI column"
- string.p = "Name for p column"

Let's use some of these options to make our table prettier

- 1. Show estimates, standard errors, and p-value
- 2. Rename variables to "Chocolate," "Nuts," and "Chocolate and Nuts." Also change the dependent variable to "Win Percent"
- 3. Rename columns appropriately

Win Percent

Win Percent

Variables

Estimates

Std. Err.

p

Estimates

Std. Err.

р

 ${\bf Intercept}$

41.82

1.62

< 0.001

42.46

1.61

< 0.001

Chocolate

16.62

2.64

< 0.001

14.82

2.72

< 0.001

```
Nuts
7.62
3.53
0.034
-7.60
7.90
0.339
Chocolate and Nuts
18.82
8.78
0.035
Observations
85
85
R2 / R2 adjusted
0.437 / 0.423
0.467 / 0.448
stargazer package Also produces multiple types of output: text, html
p_load(stargazer)
stargazer(reg_1, reg_2, type='text')
##
##
                                         Dependent variable:
##
##
                                             winpercent
##
                                      (1)
                                                           (2)
                                   16.625***
                                                         14.823***
## chocolate
                                    (2.640)
##
                                                         (2.717)
##
## peanutyalmondy
                                    7.623**
                                                          -7.602
                                    (3.529)
                                                          (7.899)
##
##
## chocolateTRUE:peanutyalmondy
                                                          18.824**
                                                          (8.783)
##
##
## Constant
                                   41.825***
                                                         42.459***
##
                                    (1.619)
                                                          (1.612)
```

85

0.437

85

0.467

Observations

R2

```
## Adjusted R2
                                       0.423
                                                             0.448
                                  11.173 (df = 82)
## Residual Std. Error
                                                        10.936 (df = 81)
## F Statistic
                               31.848*** (df = 2; 82) 23.693*** (df = 3; 81)
*p<0.1; **p<0.05; ***p<0.01
To get nice regression tables in an Rmarkdown file, include results = 'asis' in the brackets at the start of
the chunk
# include results='asis' in {}
# type = html
stargazer(reg_1, reg_2, type='html')
Dependent variable:
winpercent
(1)
(2)
chocolate
16.625***
14.823***
(2.640)
(2.717)
peanutyalmondy
7.623**
-7.602
(3.529)
(7.899)
chocolate TRUE: peanuty almondy\\
18.824**
(8.783)
Constant
41.825***
42.459***
(1.619)
(1.612)
Observations
85
85
R2
0.437
```

0.467

```
Adjusted R2
0.423
0.448
Residual Std. Error
11.173 (df = 82)
10.936 (df = 81)
F Statistic
31.848*** (df = 2; 82)
23.693**** (df = 3; 81)
Note:
p < 0.1; p < 0.05; p < 0.01
There are a lot of options for changing the table within the stargazer package.
stargazer(reg_1, reg_2, type='html',
           # add a title
           title = "Candy Regressions",
           # label variables (covariates)
           covariate.labels = c("Chocolate", "Nuts", "Chocolate and Nuts", "Intercept"),
           dep.var.labels = "Win Percent",
           # number of digits in each number
           digits = 2,
           # choose which statistics to keep (n and r-squared)
           keep.stat = c("n","rsq"),
           ci.level=0.90
Candy Regressions
Dependent variable:
Win Percent
(1)
(2)
Chocolate
16.62***
14.82***
(2.64)
(2.72)
Nuts
```

7.62**

```
-7.60
(3.53)
(7.90)
Chocolate and Nuts
18.82**
(8.78)
Intercept
41.82***
42.46***
(1.62)
(1.61)
Observations
85
85
R2
0.44
0.47
Note:
p < 0.1; p < 0.05; p < 0.01
Can also set type = 'latex' to get the table in latex. Speaking of which....
stargazer(reg_1, reg_2, type='latex')
##
## % Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac
## % Date and time: Thu, May 23, 2024 - 10:58:42
## \begin{table}[!htbp] \centering
     \caption{}
##
##
     \label{}
## \begin{tabular}{@{\extracolsep{5pt}}lcc}
## \\[-1.8ex]\hline
## \hline \\[-1.8ex]
## & \multicolumn{2}{c}{\textit{Dependent variable:}} \
## \cline{2-3}
## \[-1.8ex] & \multicolumn{2}{c}{winpercent} \\
## \\[-1.8ex] & (1) & (2)\\
## \hline \\[-1.8ex]
## chocolate & 16.625\$^{***} & 14.823\$^{***} \\
##
     & (2.640) & (2.717) \\
## peanutyalmondy & 7.623$^{**}$ & $-$7.602 \\
    & (3.529) & (7.899) \\
##
##
     & & \\
## chocolateTRUE:peanutyalmondy & & 18.824^{**}
     & & (8.783) \\
```

```
& & \\
##
   Constant & 41.825\$^{***} & 42.459\$^{***} \\
##
     & (1.619) & (1.612) \\
##
     & & \\
##
## \hline \\[-1.8ex]
## Observations & 85 & 85 \\
## R$^{2}$ & 0.437 & 0.467 \\
## Adjusted R$^{2}$ & 0.423 & 0.448 \\
## Residual Std. Error & 11.173 (df = 82) & 10.936 (df = 81) \\
## F Statistic & 31.848\$^{***} (df = 2; 82) & 23.693\$^{***} (df = 3; 81) \\
## \hline
## \hline \\[-1.8ex]
## \textit{Note:} & \multicolumn{2}{r}{$^{*}$p$<$0.1; $^{**}$p$<$0.05; $^{***}$p$<$0.01} \\
## \end{tabular}
## \end{table}
```

Tables in LaTeX

There may be cases in the future where you need a table for something unrelated to data, or it is showing qualitative information that can't be easily turned into a data frame and then into the table. Luckily, LaTeX has us covered! We can make all sorts of tables. Here's how the tables work:

- Start by centering your table with \begin { center } and at the end: \end { center }
- Create the table: $\left\{ \text{begin } \{ \text{ tabular } \} \{ \} \right\}$
 - In the second set of brackets, use a c to denote an individual column, and a \mid (pipe symbol?) to denote a vertical line in the table.
- Use \hline to create a horizontal line
- Use ampersands & to align the lines of your columns
- End each line with \\ to let it know that's the end of that line