Přepinání kontextu

pátek 11. října 2024 12:05

Přepínání kontextu, plánovače OS a plánování CPU

Přepinání kontextu

- Operace přepnutí z jednoho běžícího procesu na druhý
 - o Opakuje se mnohokrát za sekundu
 - Vytváří iluzi paralelního běhu
- Podporují všechny multitaskingové OS
- Dochází k němu i při obsluze přerušení nebo změně režimu (privilegovaný vs. uživatelský)

PCB - Process Control block

- Změnu provádí dispatcher na základě scheduleru
 - Plánování CPU -> plánovací algoritmy -> fronty
- HW varianta
 - Rychlejší
 - Problém se správným uložením všech registrů
- SW varianta
 - Nejčastější
 - Pomalejší -> vyšší režie
- Řídící blok procesu
- o Task Control Block / Task Structure
- Dynamická datová struktura obsahující nejnutnější informace pro správu a běh procesu
- Každý proces má svou PCB
- Umístěna v privilegovaném režimu
 - Chráněna před přístupem uživatelů a dalšími procesy
- Kopie registrů pro jejich pozdější načtení (EIP, ESP)
- Priorita
- Účtovací informace
 - o Doba běhu, poslední spuštění
- Alokovaná IO zařízení

Fronty procesů

- Fronta ukazatelů na první a poslední PCB
- Procesy mezi fronty migrují
- Synchronizace a urychlení práce

Krátkodobý plánovač

- Short Term, operační plánovač, plánování procesoru, dispatcher
- Vybírá, který proces bude využívat uvolněný CPU -> extrémně rychlý
- 2 základní fronty
 - o Ready
 - o IO Event

Dlouhodobý plánovač

- Long Term, plánovač úloh (job scheduler), strategický plánovač
- Aktivován zřídka
 - Sekund až minuty
 - o Nemusí být rychlý
- Vhodná kombinace několika úloh náročných na IO operace a CPU
 - Dávkové zpracování
- V interaktivních systémech se prakticky nepoužívá a degraduje na přímé předání práce krátkodobému plánovači

Střednědobý plánovač

- Mid term, taktický plánovač
- Vybírá, který proces odloží z OP na swap oddíl a naonak
 - Swap out/ swap in
 - Spolupracuje se správcem hlavní paměti
- Dva nové stavy
 - o Swap waiting
 - o Swap ready

Dispatcher a dlouhodobý plánovač

Střednědobý plánovač

Životní fáze procesu - 7 stavů

Plánovaní CPU

- Scheduler se rozhoduje, kterému procesu přidělí procesor na základě:
 - a. Ukončení procesu
 - b. Změně stavu procesu z Run do Ready
 - c. Změně stavu procesu z Run do Wait
 - d. Změně stavu procesu z Wait do Ready
- Preemptivní o a, b, d
- Nepreemptivní
 - o a, c, d

Cíle planování CPU

- Využití CPU
 - o Maximalizace kontinuální činnosti CPU
- Propustnost
- Maximalizace přirozeně ukončených procesů za jednotku času - Doba čekání
- Minimalizace doby čekání procesu na CPU - Doba obrátky
- Minimalizace potřebné doby pro provedení konkrétního procesu Doba odpovědí
- Minimalizace doby, která uběhne od vyvolání požadavku na spuštění procesu po jeho první reakci (např. výpis na terminál)

Preemptivní VS Nepreemptivní

TQ - Time Quantum

- OS má plnou kontrolu nad procesem
 Kdykoliv může odebrat CPU

 - Kontrola také nad všemi přidělenými prostředky
 - o Algoritmy: SRTF, PS, RR, MFQS
- Většinou po uplynutí přidělené doby (TQ)
 Interní časovač -> přerušení
- Složitější implementace OS Nutnost HW podpory v CPU
- Windows NT (32bit), Linux, Mac OS X, Unix

Nepreemptivní

- OS nemá plnou kontrolu nad procesem
 - o Proces využívá CPU, jak dlouho potřebuje
 - o OS nemůže odebrat CPU procesu
 - o Problém s chybným programem -> nevrátí řízení OS -> zamrznutí
- Algoritmy: FCFS, SJF
- Využití v tzv. Uzavřených systémech
- Všechny procesy jsou předem známé, včetně jejich vlastností Windows 3.x/95/98 (16bit), Mac OS

FCFS - first came first served - FIFO - fronta

- AT arrival time doba, kdy se proces objevil BT burst time Kolik času potřebuje proces
- CT completion time čas, kdy proces se dokončil
- TAT turn around time doba obrátky
 - CT AT
- WT Waiting time
- TAT BT
- VT Visiting time první návštěva procesu na procesor
- RT Reading Time

FCFS - First Come First Served

- Nepreemptivní
- Procesy jsou obsluhovány v pořadí, v jakém přišly do fronty Ready
- Nejjednodušší plánovací algoritmusNevhodné pro OS se sdílením času
- Vyžadována odpověď v přiměřené době - Jeden proces může zablokovat ostatní na delší dobu
- Efekt kolony
- Velká průměrná čekácí doba
- Samostatně se nepoužívá
 - V kombinaci s RR -> MFQS

Proces	AT	BT	СТ	VT	TAT	WT
P0	0	4	4	0	4	0
P1	2	7	11	4	9	2
P2	5	2	13	11	8	6
Р3	6	1	14	13	8	7

SJF - Shortest Job First

- Nepreemptivní
- Přednost mají ty úlohy u nichž je předpoklad nejkratšího běhu
- V případě stejného BT je vybrán dřívější proces
 Hrozí hladovění
- Mnohem menší doba čekání než u FCFS

Willoneth mensi doba cekani nez a r er s											
Proces	AT	BT	CT	VT	TAT	WT					
P0	0	4	4	0	4	0					
P1	2	7	11	4	9	2					
P2	5	2	14	12	9	7					
Р3	6	1	12	11	6	5					
P4	8	3	17	14	9	6					
				M 2	1 - "	11					
				X/Z	144	ΙU					
				0 -	1 71	11					
				,							

SRTF						
Proces	AT	ВТ	BTR	СТ	TAT	
Α	0	7	6,0	23	23	
В	1	5	4,0	13	12	
С	2	3	2,0	6	4	
D	3	1	0	4	1	
E	4	2	0	9	5	
F	5	1	0	7	2	
G	6	4	0	17	11	

SRTF - Shortest remaining time first
- Preemptivní SJF -> SRTF
- Pokud má nově příchozí úloha nejkratší BT, přeruší a nahradí se aktualně probihající proces

- V případě dvou stejných BT, vybráno dle FCFS

Proces	AT	ВТ	BTR	CT	TAT	WT
Α	6	7	0	23	17	
В	5	5	0	16	11	
С	4	3	0	11	7	
D	3	1	0	5	2	
Е	2	2	0	4	2	
F	1	1	0	2	1	

PS - Priority scheduling

- Možnost, jak preemptivního, tak nepreemptivního řešení
- Plánování podle priority

Proces	Priority	AT	BT	BTR	СТ	TAT	VT	WT
P0	2	0	4	3	25	25	0	21
P1	4	1	2	1	22	21	1	19
P2	6	2	3	2	21	19	2	16
Р3	10	3	5	3,0	12	9	3	4
P4	8	4	1	0	19	15	18	14
P5	12	5	4	0	9	4	5	0
P6	9	6	6	0	18	12	12	6
						15		

P0 0-1

P1 1-2

P2 2-3 P3 3-5

P5 5-9

P3 9-12 P6 12-18

P4 18-19

P2 19-21 P1 21-22

P0 22-25

Proces	Priority	AT	ВТ	BTR	СТ	TAT	VT	WT
Α	10	0	6	4,0	22	22	0	18
В	12	1	2	0	25	24	23	22
С	9	2	3	2,0	18	16	2	13
D	4	3	5	3,0	12	9	3	4
Е	11	4	1	0	23	19	22	18
F	2	5	4	0	9	4	5	0
G	6	6	4	0	17	11	12	7

A 0-2 C 2-3

D 3-5 F 5-9

G 12-16 C 16-18

A 18-22 E 22-23

B 23-25

RR - Round Robin

- Plánování cyklickou obsluhou
- Rotační plánováníVhodný pro OS se sdílením času
- Základ tvoří TQ Time Quantum
 - Maximálně po tuto dobu může proces využívat CPU
 Poté zařazen na konec fronty -> fair play planning
 - Skončí-li dříve, nastoupí pustí se dříve další proces
 - o Efektivita -> velké vs. malé TQ
- Preemptivní FCFS s TQ

- Pr		vita -> ve	lké vs. ma Q	•	10/6	<u> </u>	7,9	3
Proces	AT	ВТ	BTR	СТ	TAT	VT	WT	RT
P1	0	4	2,0	8	4	0	4	0
P2	1	5	3,1,0	18	13	2	8	1
Р3	2	2	0	6	4	4	2	2
P4	3	1	0	9	8	8	7	5
P5	4	6	4,2,0	21	15	9	9	5
P6	6	3	1,0	19	16	13	13	7

(Y 7	, /	<i>'</i>	, 1	2	1	′	1	ı	7 -	,	1		Т	0	1		1	1 -	- 1	١	· /	1)	1	
) TQ - 2s	-		Ý		Ç		6 24	q	١	7	1		13	,	15		1	7	U	n	19		2	1
Г	Proces	AT	ВТ	BTR	СТ	TAT	VT	WT	RT																
	Н	5	5	3,1,0	37	32	13	27																	
Ì	I	4	6	4,2,0	36	32	11	26																	
Ì	J	3	7	5,3,1,0	40	37	7	30																	
Ì	K	1	9	7,5,3,1,0	41	41	1	32																	
	L	2	2	0	7	5	5	3																	
ĺ	М	6	3	1,0	30	24	17	21																	
	N	1	8	6,4,2,0	39	38	3	30																	
[K/			1	K /	/	Н	N	М	J	К	I	Н	N	М	J	К	I	Н	N	J	К			
				1/											1	1		1		1				1	

Procvičování

- Priority Scheduling
 Stejné zadání (tabulka), ale obrátit prioritu
 - Čim nižší číslo u prioritz, tím má proces větší přednost
- Round Robin
 - o Stejné zadání (tabulka), ale TQ = 4ms

MQS - Multilevel Queue Scheduling

- Plánování pomocí více front
 - o Procesy se mezi frontami nemohou přesouvat
- Rozdělení procesů do skupin
 - o Interaktivní procesy -> vyšší priorita
 - o Procesy na pozadí -> nižší priorita
 - o Každá skupina má různé nároky na dobu odezvy
 - Plánování v rámci front
- Nutnost existence plánování mezi frontami
 - a. Podle priority s využitím preempce
 - Pokud není předchozí fronta prázdná, nedostane se proces z nižší fronty k CPU
 - b. Časové intervaly pro každou frontu
- Nejvyšší prioritu mají systémové procesy, pak interaktivní, dávkové a nakonec uživatelské

- MFQS Multilevel Feedback Queue Scheduling
 Plánování pomocí více front se zpětnou vazbou
 - Zpětnovazební plánování
 - o Možnost přesunu procesů mezi frontami
 - Jeden z nejvýznamnějších algoritmů plánování CPU
 Většinou využívá kombinace RR-RR-FCFS
 - - Procesy v první frontě mají nejkratší TQ
 - Do této fronty vstoupí každý proces
 - V následující frontě pak mají procesy delší TQ
 Procesy v nižší frontě mohou být vykonány pokud je předchozí fronta prázdná
 - Velmi komplexní
 - Hrozí stárnutí, tzv. Aging
 - Řešením je umělé zvýšení priority
 - Přesun procesu do vyšší fronty
 - Proces z vyšší fronty může preemptivně ukončit proces z nižší fronty
 - o Platí I pro frontu FCFS

RR,RR,FCFS

TQ1 - 10ms, TQ2 = 20ms

Proces	AT	вт	BTR	СТ	TAT	VT	WT	RT
P1	0	12	2,1,0	49	49	0		
P2	8	25	15,0	48	40	10		
Р3	21	33	23,3,0	72	51	21		
P4	30	2	0	33	3	31		

Q1		_	,			
PA	22	P3	94			
Q2	٠,	/				
1	1/2	P1	P3/			
Q3	7					
Pa						

RR,RR,FCFS TQ1 - 17ms. TQ2 = 25ms

Proces AT BT BTR CT TAT VT WT R D 0 53	101-17	1113, 1 QZ	- 231113						
E 17 17 F 34 68 G 51 24 H 28 31	Proces	AT	ВТ	BTR	СТ	TAT	VT	WT	RT
F 34 68 6 6 51 24 6 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	D	0	53						
G 51 24 H 28 31	E	17	17						
H 28 31	F	34	68						
	G	51	24						
I 5 18	Н	28	31						
	I	5	18						

Dodatek

- Guaranteed Scheduling
- Také znám jako "Fair Share"
- Při n uživatelích je čas využití CPU rozdělen jako 1/n
- Lottery Scheduling
- Každému procesu je přidělen tiket
- Periodické losování
- CPU je přiděleno tomu procesu, jež má výherní tiket
- Důležité procesy mohou mít více tiketů
- Kooperativní procesy si mohou předávat tikety