Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No. ENRICS 30 40 39

Faculty of Engineering / Science End Sem (Odd) Examination Dec-2022

BC3BS05 / CS3BS04 / IT3BS01 Discrete Mathematics

Programme: B.Tech.

Branch/Specialisation: CSE / IT /

/B.Sc.

Computer Science

Duration: 3 Hrs.

Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

- Q.1 The trivial subset of set $X=\{a, b, c\}$ is 1 (b) $\{\emptyset, X\}$ (a) X $(c) \{\emptyset\}$ (d) None of these ii. Let A and B be two disjoint sets then $|A \cup B|$ -(a) $|A \cup B| = |A| + |B|$ (b) $|A \cup B| = |A| - |B|$ (c) $|A \cup B| = |A||B|$ (d) None of these If $f: X \to Y$ and A, B are two subsets of Y theniii. 1 (a) $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$ (b) $f'(A \cup B) = f^{-1}(A) \cap f^{-1}(B)$ (c) $f^{-1}(A \cap B) = f^{-1}(A) \cup f^{-1}(B)$ (d) None of these
 - iv. The number of maximal elements in the set {1,2,3,4,5} under 1 relation divisibility is-
 - (a) 2
- (b) n
- (c) 3
- (d) None of these
- v. In group $G = \{1, -1, i, -i\}$ order of element i with respect to 1 multiplication is-
 - (a) 1 (b) 2
- (c) 4
- (d) None of these
- vi. Let I be a set of integers under addition operation H is subgroup of even integers then elements in coset of H in G is-
 - (a) $\{0,\pm 1,\pm 2....\}$
 - (b) {1,2,3}
 - (c) $\{0,\pm 1,\pm 2....\}$ and $\{1,2,3....\}$
 - (d) None of these

R	vi	i. Which is planar graph?			1	
		(a) K_4 (b) K_5	(c) K_6	(d) None of these	1	
	vi	ii. The degree of pendant verter	x is-		1	
			(c) 3	(d) 2		
	ix.	The homogeneous solution roots of axillary equation are	of $a_r + Aa_{r-1}$ real and distinct	$_{-1} + Ba_{r-2} = 0$, when	1	
		(a) $c_1 m_1^r + c_2 m_2^r$	(b) $(c_1 + rc_2)$	m^r		
		(c) $c_1 e^{m1} + c_2 e^{m2}$	(d) None of th	iese		
	X.	In recurrence relation gene	rating function	of sequence ()		
		given by-	g - union	or sequence (y _n) 18	5 1	
		(a) $\sum_{h=0}^{n} y_h t^h$	(b) $\sum_{h=0}^{\infty} y_h t^h$			
0.0		(c) $\sum_{h=0}^{n} y_{h+1} t^{h+1}$	(d) $\sum_{h=0}^{n-1} y_h t^h$			
Q.2		Attempt any two:				
	i.	Define reflexive, symmetric and transitive relation. With example. 5				
	11.					
	•••	x_1, x_2, x_3 are non-negative integers with $0 \le x_i \le 5$, $i=1,2,3,4$ Show that if 5 points are selected:				
	iii.	Pontes are se	ected in a ac-			
		length 1 inch, at least two of inches apart.	the points mus	it be no more than $\sqrt{2}$	5	
Q.3		Attomat				
	i.	Attempt any two:				
		10 15 30)	e divisors of 30	i.e B = { 1 2 2 5 6	5	
		Let B be the set of all positive divisors of 30 i.e $B = \{1, 2, 3, 5, 6, 10, 15, 30\}$ and the operations $+$ and $*$ on B are defined as $a+b$ (B, +, *, ') is Boolean Algebra				
		(B. + * ') is B1	C.F. of a and b	, $a'=30/a$. Prove that		
	ii.	(B, +, *, ') is Boolean Algel	ora.	and those that		
	iii.	ii. Show that the relation "divides" on N is a partial order relation. Change the Boolean function into disjunctive normal form $f(x, y, z) = f(x + (x' + y))^2 f(x + (x' $				
		f(x, y, z) = fx + f(x, y, z)	into disjunctive	normal form	5	
		f(x, y, z) = [x + (x' + y)'].[x -	+ (y'. z')']		,	
Q.4		Attempt any two:				
	i.	If H ₁ and H ₂ are two subgroups				
		If H_1 and H_2 are two subgroup also a subgroup of G but	os of a group (C	G, \circ), then $H_1 \cap H_2$ is	5	
		also a subgroup of G but necessarily a subgroup explain	union of two	subgroups is not		
	ii.	Find all generators in the over	with an examp	le.		
		Find all generators in the cycle multiplication modulo 7.	one group {1,	2, 3, 4, 5, 6} under	5	

	iii.	Prove that every cyclic group is abelian group.	5
Q.5		Attempt any two:	Ī
	i.	Define following with example:	_
		(a) Graph colouring and chromatic number	5
		(b) Vertex disjoint subgraph	
	ii.	Prove that number of edges in a tree with n vertices is $n-1$.	5
	iii.	If the number of vertices in a graph is 10 each of degree 3. Find number of edges and number of regions in the graph.	5
Q.6		Attempt any two:	
	i.	Solve the recurrence relation $a_r + 5a_{r-1} + 5a_{r-2} = 2 + r$	_
	ii.	Find numeric function of generating function: $A(z) = (1+z)^n + (1-z)^n$	5
	iii.	There are 10 students in the class, of which 8 are girls and 2 are	_
		boys. Find the number of ways to select:	5
		(a) 2 girls and 1 boy	
		(b) 1 girl and 2 boys	
		·	
