Optoelectronics Designer's Catalog

LED Lamps and Indicators

LED Light Bars and Bar Graph Arrays

LED Displays

Infrared Products

Hewlett-Packard: A Leader in Components

A Brief Sketch

Founded in 1961, and headquartered in San Jose, California, the Hewlett-Packard Company's Components Group is the world's largest independent supplier of communications components. Today the group has approximately 9500 employees, and had fiscal 1995 revenues of \$856 million.

The Components Group incorporates three major divisions-Optoelectronics, Optical Communication and Communications Componentsand serves six major markets: communications, computer/ office, industrial, transportation. consumer and government/ military, Included in the Components Group's extensive line of more than 9,000 components are visible and infrared LED lamps; visible LED displays, light bars and arrays; Infrared Data Association (IrDA)-compliant infrared transceiver modules; fiber-optic transceivers, transmitters and receivers meeting most of today's industry standards; motion control devices; optocouplers and related optically-isolated control components; bar-code scanners; RF and microwave semiconductors; and communications amplifiers and

assemblies. HP offers the world's brightest LEDs and is a technical leader for visible III-V products.

The Components Group markets products through a sales force of 300 technically-educated sales professionals located in about 40 countries. HP components are also sold through a worldwide distributor network with more than 150 locations. Altogether, 95 percent of sales revenues are from customers external to HP.

The Components Group maintains five marketing centers worldwide in San Jose, California; Boeblingen, Germany; Tokyo, Japan; Frimley, UK; and Singapore. Each is fully staffed with product application and support engineers and each is responsible for regional decision making. A design center in Tokyo is specifically chartered to develop products for the Japanese market.

Local decision-making is central to HP's transnational business strategy which focuses on customer satisfaction. In addition to providing the right product with superior quality and reliability, the Components Group strives to ensure worldwide product availability,

accurate on-time delivery and upto-date technical information for its customers.

Quality and Reliability

Quality and reliability are very important concepts to Hewlett-Packard in maintaining the commitment to product performance.

At Hewlett-Packard, quality is integral to product development, manufacturing, and final introduction. HP's commitment to quality means that there is a continuous process of improvement and tightening of quality standards. Manufacturing quality circles and quality testing programs are important ingredients in HP products.

Reliability testing is also required for the introduction of new HP components. Lifespan calculations in "mean-time-between-failure" (MTBF) terms are published and available as reliability data sheets. HP's stringent reliability testing assures long component lifetimes and consistent product performance.

The body of this book is printed on recycled paper.

About This Catalog

About This Catalog

To help you choose and design with Hewlett-Packard optoelectronic components, this catalog contains detailed product specifications. The catalog is divided into four product sections:

- 1. LED Lamps and Indicators
- 2. LED Light Bars and Bar Graph Arrays
- 3. LED Displays
- 4. Infrared Products

How to Find the Right Information

- The Table of Contents helps you locate the product sections as well as the selection guides for each product section.
- The Alphanumeric Index (p. iv) lists every component in this catalog and the page number on which the corresponding data sheet is located.

 Selection Guides at the beginning of each of the four product sections allow you to quickly select products most suitable for your application and also list the page number on which the corresponding data sheet is located.

Following the product sections is a complete listing of available application notes and briefs which can be easily obtained. The final section contains sales and service information.

How to Order

To order any component in this catalog, call your nearest HP authorized distributor or HP sales office.

A complete listing of HP authorized distributors is located on page 6-3. These distributors can offer off-the-shelf delivery for most HP components.

Service and Support

For technical assistance or to find out the location of your nearest HP sales office, distributor or representative call (US and Canada only): 1-800-235-0312 or 408-654-8675.

Elsewhere in the world, call your local sales office located in your telephone directory. Ask for a Components representative.

For Additional Information

For additional technical literature not available in this catalog, try our fax-back service (US and Canada only) at: 1-800-450-9455.

Elsewhere in the world, call your local HP sales office located in your telephone directory. Ask for a Components representative.

Information regarding
Hewlett-Packard Components
Group products is available on
the World Wide Web via the
Hewlett-Packard home page at:
http://www.hp.com/
or directly at:
http://www.hp.com/go/
components/

Table of Contents

Alphanumeric Index	iv
LED Lamps and Indicators	1-1
Introduction	
Selection Guide	1-4
LED Light Bars and Bar Graph Arrays	2-1
Introduction	
Selection Guide	
LED Displays	3-1
Introduction	
Selection Guide	
LED Glass/Ceramic Displays	
Introduction	
Selection Guide	3-209
Infrared Products	4-1
Introduction	
Selection Guide	4-3
Design Guide	
Applications	5-1
Sales and Service	6-1
Ordering Information, After-Sales Service	6-2
Authorized Distributor & Representative List	6-3

Alphanumeric Index

HCMS-2000 3-156	HCMS-2712 3-100
HCMS-2001 3-156	HCMS-2713 3-100
HCMS-2002 3-156	HCMS-2714 3-100
HCMS-2003 3-156	HCMS-2720 3-100
HCMS-2004 3-156	HCMS-2721 3-100
HCMS-2010 3-240	HCMS-2722 3-100
HCMS-2011 3-240	HCMS-2723 3-100
HCMS-2012 3-240	HCMS-2724 3-100
HCMS-2013 3-240	HCMS-2901 3-109
HCMS-2300 3-156	HCMS-2902 3-109
HCMS-2301 3-156	HCMS-2903 3-109
HCMS-2302 3-156	HCMS-2904 3-109
HCMS-2303 3-156	HCMS-2905 3-109
HCMS-2304 3-156	HCMS-2911 3-109
HCMS-2310 3-240	HCMS-2912 3-109
HCMS-2311 3-240	HCMS-2913 3-109
HCMS-2312 3-240	HCMS-2914 3-109
HCMS-2313 3-240	HCMS-2915 3-109
HCMS-2314 3-240	HCMS-2921 3-109
HCMS-2351 3-240	HCMS-2922 3-109
HCMS-2352 3-240	HCMS-2923 3-109
HCMS-2353 3-240	HCMS-2924 3-109
HCMS-2354 3-240	HCMS-2925 3-109
HCMS-2700 3-100	HCMS-2961 3-109
HCMS-2701 3-100	HCMS-2962 3-109
HCMS-2702 3-100	HCMS-2963 3-109
HCMS-2703 3-100	HCMS-2964 3-109
HCMS-2704 3-100	HCMS-2965 3-109
HCMS-2710 3-100	HCMS-2971 3-109
HCMS-2711 3-100	HCMS-2972 3-109

Bold = New Product

HCMS-2973 3-109	HDSP-2112	. 3-140
HCMS-2974 3-109	HDSP-2113	. 3-140
HCMS-2975 3-109	HDSP-2131	. 3-224
HDLA-2416 3-164	HDSP-2132	. 3-224
HDLG-2416 3-164	HDSP-2133	. 3-224
HDLO-2416 3-164	HDSP-2179	. 3-224
HDLR-2416 3-164	HDSP-2310	. 3-211
HDLS-24163-164	HDSP-2311	. 3-211
HDLU-2416 3-164	HDSP-2312	. 3-211
HDLY-2416 3-164	HDSP-2313	. 3-210
HDSP-07603-193	HDSP-2351	. 3-210
HDSP-07613-193	HDSP-2352	. 3-210
HDSP-07623-193	HDSP-2353	. 3-210
HDSP-07633-193	HDSP-2450	. 3-211
HDSP-07703-193	HDSP-2451	. 3-211
HDSP-0771 3-193	HDSP-2452	. 3-211
HDSP-0772 3-193	HDSP-2453	. 3-211
HDSP-0781 3-256	HDSP-2490	3-15
HDSP-0782 3-256	HDSP-2491	3-15
HDSP-0783 3-256	HDSP-2492	3-15
HDSP-07843-256	HDSP-2493	3-15
HDSP-0791 3-256	HDSP-2500	. 3-140
HDSP-0792 3-256	HDSP-2501	
HDSP-0793	HDSP-2502	
HDSP-0794	HDSP-2503	
HDSP-08603-193	HDSP-2530	. 3-125
HDSP-0861 3-193	HDSP-2531	. 3-125
HDSP-0862 3-193	HDSP-2532	. 3-125
HDSP-08633-193	HDSP-2533	. 3-125
HDSP-0881 3-256	HDSP-2534	. 3-125
HDSP-0882 3-256	HDSP-3350	3-28
HDSP-08833-256	HDSP-3351	3-28
HDSP-08843-256	HDSP-3353	3-28
HDSP-09603-193	HDSP-3356	3-28
HDSP-0961 3-193	HDSP-3400	3-92
HDSP-09623-193	HDSP-3401	3-92
HDSP-09633-193	HDSP-3403	3-92
HDSP-0981 3-256	HDSP-3405	3-92
HDSP-0982 3-256	HDSP-3406	3-92
HDSP-09833-256	HDSP-3530	
HDSP-09843-256	HDSP-3531	3-42
HDSP-20103-211	HDSP-3533	
HDSP-21073-140	HDSP-3536	
HDSP-2110	HDSP-3600	
HDSP-2111 3-140	HDSP-3601	

HDSP-36033-50	HDSP-53083-84
HDSP-36063-50	HDSP-5321 3-84
HDSP-37303-42	HDSP-53233-84
HDSP-37313-42	HDSP-5401 3-200
HDSP-37333-42	HDSP-5403 3-200
HDSP-37363-42	HDSP-5501 3-84
HDSP-39003-92	HDSP-5503
HDSP-39013-92	HDSP-5507
HDSP-3903 3-92	HDSP-55083-84
HDSP-3905 3-92	HDSP-5521 3-84
HDSP-39063-92	HDSP-5523 3-84
HDSP-4030 3-42	HDSP-5531
HDSP-4031 3-42	HDSP-5533
HDSP-4033 3-42	HDSP-5537
HDSP-4036	HDSP-5538
nDSr-4030 3-42	nD5r-9990 9-42
HDSP-41303-42	HDSP-5551 3-28
HDSP-4131 3-42	HDSP-55533-28
HDSP-4133 3-42	HDSP-55573-28
HDSP-41363-42	HDSP-55583-28
HDSP-4200 3-92	HDSP-5601 3-84
HDSP-4201 3-92	HDSP-56033-84
HDSP-42033-92	HDSP-56073-84
HDSP-42053-92	HDSP-5608
HDSP-42063-92	HDSP-56213-84
HDSP-4401 3-200	HDSP-56233-84
TTD CD 1100	**************************************
HDSP-4403	HDSP-5701
HDSP-4501	HDSP-5703
HDSP-4503	HDSP-5707
HDSP-4600	HDSP-5708
HDSP-4601	HDSP-5721 3-84
HDSP-4603	HDSP-57233-84
HDSP-4606	HDSP-5731
HDSP-4701 3-200	HDSP-5733
HDSP-4703	HDSP-5737 3-42
HDSP-48202-23	HDSP-57383-42
	11221 0100 1111111111111111111111111111
HDSP-48302-23	HDSP-66503-213
HDSP-4832 2-23	HDSP-66513-213
HDSP-48362-23	HDSP-66523-213
HDSP-48402-23	HDSP-66533-213
HDSP-4850 2-23	HDSP-73013-66
HDSP-5101 3-200	HDSP-73023-66
HDSP-5103	HDSP-7303
HDSP-5301	HDSP-7304
HDSP-5303	HDSP-7307
HDSP-53073-84	HDSP-7308 3-66

HDSP-7401 3-66	HDSP-A807	
HDSP-74023-66	HDSP-A808	
HDSP-74033-66	HDSP-A901	
HDSP-74043-66	HDSP-A903	. 3-28
HDSP-74073-66	HDSP-A907	. 3-28
HDSP-74083-66	HDSP-A908	. 3-28
HDSP-7501 3-66	HDSP-E100	
HDSP-75023-66	HDSP-E101	
HDSP-7503	HDSP-E103	
HDSP-7504	HDSP-E108	
11201 1001	11201 2100	. 0 20
HDSP-75073-66	HDSP-E150	3-50
HDSP-7508	HDSP-E151	
HDSP-7511	HDSP-E153	
HDSP-7513	HDSP-E156	
HDSP-7517	HDSP-F001	
11DSF-1311 5-20	11DSF-F001	. 5-14
HDSP-7518	HDSP-F003	27/
HDSP-7801 3-66	HDSP-F007	
HDSF-7801 3-66	HDSP-F007	
HDSP-7803	HDSP-F011	
HDSP-7804	HDSP-F013	. 3-18
HDSP-7807	HDSP-F101	0.00
HDSP-7808	HDSP-F103	
HDSP-8600	HDSP-F107	
HDSP-8601	HDSP-F108	
HDSP-86033-92	HDSP-F111	. 3-18
HDOD OGOT	HDSP-F113	0.10
HDSP-8605		
HDSP-8606	HDSP-F151	
HDSP-A011	HDSP-F153	
HDSP-A013	HDSP-F157	
HDSP-A101	HDSP-F158	. 3-74
HDSP-A103	HDSP-F161	0.10
HDSP-A107	HDSP-F163	
HDSP-A108	HDSP-F201	
HDSP-A111	HDSP-F203	
HDSP-A113 3-18	HDSP-F207	. 3-74
HDSP-A151	HDSP-F208	9.74
HDSP-A151	HDSP-F211	
	HDSP-F211 HDSP-F213	
HDSP-A157		
HDSP-A158	HDSP-F301	
HDSP-A211 3-18	HDSP-F303	. <i>3-14</i>
HDSP-A213	HDSP-F307	974
	UDGD E306	. 3-74
HDSP-A511	HDSP-F308	
HDSP-A513	HDSP-F401	
HDSP-A801	HDSP-F403	
HDSP-A803	HDSP-F407	. 3-74

HDSP-F4083-74	HDSP-H211 3-18
HDSP-F5013-74	HDSP-H213 3-18
HDSP-F5033-74	HDSP-H511 3-18
HDSP-F5073-74	HDSP-H513 3-18
HDSP-F5083-74	HDSP-K011 3-18
HDSP-F5113-18	HDSP-K013 3-18
HDSP-F5133-18	HDSP-K111 3-18
HDSP-G001 3-74	HDSP-K113 3-18
HDSP-G003 3-74	HDSP-K121 3-28
HDSP-G011 3-18	HDSP-K123
HDSP-G013 3-18	HDSP-K211 3-18
HDSP-G101 3-28	HDSP-K213 3-18
HDSP-G103 3-28	HDSP-K511 3-18
HDSP-G111 3-18	HDSP-K513
HDSP-G113 3-18	HDSP-K701
HDSP-G151 3-74	HDSP-K703
HDSP-G153 3-74	HDSP-L101 3-200
HDSP-G161 3-18	HDSP-L1033-200
HDSP-G163 3-18	HDSP-L201 3-200
HDSP-G201 3-74	HDSP-M101 3-200
HDSP-G203 3-74	HDSP-M1033-200
HDSP-G211 3-18	HDSP-N100
HDSP-G213 3-18	HDSP-N101
HDSP-G3013-74	HDSP-N103
HDSP-G303 3-74	HDSP-N105 3-28
HDSP-G401 3-74	HDSP-N106
HDSP-G403 3-74	HDSP-N150
HDSP-G501 3-74	HDSP-N151 3-92
HDSP-G503 3-74	HDSP-N153 3-92
HDSP-G511 3-18	HDSP-N155 3-92
HDSP-G513 3-18	HDSP-N156 3-92
HDSP-H011 3-18	HDSP-U001
HDSP-H013 3-18	HDSP-U003 3-58
HDSP-H101	HDSP-U011
HDSP-H103	HDSP-U013 3-58
HDSP-H107	HDSP-U101
HDSP-H108	HDSP-U103 3-58
HDSP-H111	HDSP-U111 3-58
HDSP-H113	HDSP-U113
HDSP-H151	HDSP-U201 3-58
HDOD HIEO	HDSP-U203
HDSP-H153	
HDSP-H157	HDSP-U211
HDSP-H158	HDSP-U213
HDSP-H161	HDSP-U301
HDSP-H163	HDSP-U303 3-58

HLMA-GH20 1-3
HLMA-GH22 1-3
HLMA-GJ15 1-33
HLMA-GJ17 1-3
HLMA-GL15 1-3
HLMA-GL17 1-3
HLMA-GL20
HLMA-GL22 1-3
HLMA-KH00 1-3'
HLMA-KL00
HLMA-PH00 1-16
HLMA-PL00
HLMA-QH00
HLMA-QL00
HLMP-0104
HLMP-0300 1-149
HLMP-0301
HLMP-0400
HLMP-0401
HLMP-0503
HLMP-0504 1-149
HLMP-0800 1-15'
HLMP-1300 1-134
HLMP-1301 1-134
HLMP-1302 1-134
HLMP-13201-123
HLMP-1321 1-128
HLMP-1340 1-83
HLMP-1385 1-134
HLMP-1400 1-134
HLMP-14011-13
HLMP-1402 1-134
HLMP-1420 1-128
HLMP-1421 1-128
HLMP-1440 1-83
HLMP-1485 1-13a
HLMP-1503 1-134
HLMP-1520
HLMP-1521
HLMP-1523
HLMP-1540 1-8
HLMP-1585
HLMP-1600
HLMP-1601
HLMP-1620

HLMP-1621 1-113	HLMP-3400 1-94
HLMP-1640 1-113	HLMP-3401 1-94
HLMP-1641 1-113	HLMP-3415 1-88
HLMP-1700 1-108	HLMP-3416 1-88
HLMP-1719 1-108	HLMP-3450 1-101
HLMP-1790 1-108	HLMP-3451 1-101
HLMP-2300	HLMP-3465 1-101
HLMP-2350 2-8	HLMP-3466
HLMP-2400	HLMP-3490
HLMP-2450	HLMP-35021-94
11IIII -2490	1111411 -5502 1-54
HLMP-25002-8	HLMP-35071-94
HLMP-2550	HLMP-3517
HLMP-2598	HLMP-3519
HLMP-2599	HLMP-3553 1-101
HLMP-2600	HLMP-3554 1-101
HLMP-20002-8	HLWP-3004 1-101
HLMP-26202-8	HLMP-3567 1-101
	HLMP-3568 1-101
HLMP-2635	
HLMP-2655	HLMP-3590 1-83
HLMP-2670	HLMP-3600 1-113
HLMP-2685 2-8	HLMP-3601 1-113
HLMP-2700	HLMP-3650 1-113
HLMP-27202-8	HLMP-3651 1-113
HLMP-2735 2-8	HLMP-36801-113
HLMP-27552-8	HLMP-3681 1-113
HLMP-2770 2-8	HLMP-3750 1-83
HLMP-2785 2-8	HLMP-37621-94
HLMP-2800 2-8	HLMP-38501-83
HLMP-2820 2-8	HLMP-3862 1-94
HLMP-2835 2-8	HLMP-3950 1-83
HLMP-2855 2-8	HLMP-3962 1-94
HLMP-2870 2-8	HLMP-4000 1-157
HLMP-2885 2-8	HLMP-4100 1-8
HLMP-2898 2-30	HLMP-4101 1-8
HLMP-2899 2-30	HLMP-4700 1-108
HLMP-2950 2-8	HLMP-4719 1-108
HLMP-2965 2-8	HLMP-4740 1-108
HLMP-3300 1-94	HLMP-5029 1-120
HLMP-3301 1-94	HLMP-6000 1-174
HLMP-3315 1-88	HLMP-6001 1-174
HLMP-3316 1-88	HLMP-6203 1-174
HLMP-3350 1-101	HLMP-6204 1-174
HLMP-3351 1-101	HLMP-6205 1-174
HLMP-3365 1-101	HLMP-6206 1-174
HLMP-3366 1-101	HLMP-6208 1-174
HLMP-3390	HLMP-6300

HLMP-6305 1-174	HLMP-D1011-66
HLMP-6400 1-174	HLMP-D1051-66
HLMP-6405 1-174	HLMP-D115 1-49
HLMP-6500 1-174	HLMP-D1201-49
HLMP-6505 1-174	HLMP-D1501-71
HLMP-66001-174	HLMP-D1551-71
HLMP-6620 1-174	HLMP-D400
HLMP-6653 1-174	HLMP-D401
HLMP-6654 1-174	HLMP-D600
HLMP-6655	HLMP-D640
HLMP-6656 1-174	HLMP-DB001-62
HLMP-6658 1-174	HLMP-DB15
HLMP-6700	HLMP-J100
HLMP-6720	HLMP-J105
HLMP-6753	HLMP-J150
HLMP-6754 1-174	HLMP-J155 1-124
HLMP-6755 1-174	HLMP-K101 1-66
HLMP-6756 1-174	HLMP-K105 1-66
HLMP-6758 1-174	HLMP-K150 1-71
HLMP-6800 1-174	HLMP-K155 1-71
HLMP-6820 1-174	HLMP-K400 1-134
HLMP-6853 1-174	HLMP-K401 1-134
HLMP-6854 1-174	HLMP-K402 1-134
HLMP-6855 1-174	HLMP-K600 1-134
HLMP-6856 1-174	HLMP-K640 1-83
HLMP-6858 1-174	HLMP-P102 1-174
HLMP-7000 1-174	HLMP-P105 1-174
HLMP-7019 1-174	HLMP-P106 1-168
HLMP-7040 1-174	HLMP-P1561-168
HLMP-8100	HLMP-P202 1-174
HLMP-81021-44	HLMP-P205 1-174
HLMP-8103	HLMP-P302 1-174
HLMP-8109	HLMP-P305 1-174
HLMP-8115	HLMP-P402
HLMP-8205	HLMP-P405
HLMP-8209 1-75	HLMP-P502 1-174
HLMP-8305	HLMP-P505
HLMP-8309	HLMP-P605
HLMP-8405	HLMP-Q101 1-174
HLMP-8409 1-75	HLMP-Q1051-174
HLMP-8505 1-75	HLMP-Q1021-168
HLMP-8509 1-75	HLMP-Q106 1-168
HLMP-8605 1-75	HLMP-Q1501-174
HLMP-C100 1-44	HLMP-Q152 1-168
HLMP-C110 1-44	HLMP-Q1551-174

HLMP-Q156 1-168	HSDL-4220	4-48
HLMP-Q4001-174	HSDL-4230	4-48
HLMP-Q6001-174	HSDL-4400	4-68
HLMP-R100 1-149	HSDL-4420	4-68
HLMP-S100 1-153	HSDL-5400	4-68
HLMP-S200 1-153	HSDL-5420	4-68
HLMP-S201 1-153	HSDL-7000	4-43
HLMP-S300 1-153	HSDL-8000	4-3
HLMP-S301 1-153	HSMA-T425	1-199
HLMP-S400 1-153	HSMA-T525	1-199
HLMP-S401 1-153	HSMA-T625	
HLMP-S500 1-153	HSMA-T725	
HLMP-S501 1-153	HSMD-C650	
HLMP-S600 1-153	HSMD-C670	
HLMP-T200 2-19	HSMD-T400	1-204
HLMP-T300 2-19	HSMD-T425	1 100
HLMP-T400	HSMD-1425 HSMD-T500	
HLMP-T500	HSMD-T525	
HLMP-V100	HSMD-1626	
HLMP-V500 1-56	HSMD-T625	
1-50	HSMD-1025	1-199
HLMP-VH00 1-56	HSMD-T700	1-204
HLMP-VL00 1-56	HSMD-T725	
HLMT-CL00	HSME-T400	
HLMT-CH00 1-37	HSME-T500	1-204
HLMT-DL00 1-37	HSME-T600	
HLMT-DH00 1-37	HSME-T700	
HLMT-PH00 1-161	HSMF-C655	
HLMT-PL00 1-161	HSMG-C650	
HLMT-QH00 1-161	HSMG-C670	
HLMT-QL001-161	HSMG-T400	1-204
HMDL-24163-209	HSMG-T500	1 204
HPDL-1414	HSMG-T600	
HPDL-24163-175	HSMG-T700	
HPWA-DH00	HSMH-C650	
HPWA-DL00	HSMH-C670	
11 WA-DLOV1-29	115M111-0070	1-212
HPWA-MH00 1-25	HSMH-T400	1-204
HPWA-ML00 1-25	HSMH-T500	1-204
HPWR-M300 1-25	HSMH-T600	1-204
HLWT-DH00 1-25	HSMH-T700	1-204
HPWT-DL00	HSMJ-T425	1-199
TINTE MANAGE	TIGAL I TIPAP	
HPWT-MH00	HSMJ-T525	
HPWT-ML00	HSMJ-T625	
HSDL-1000	HSMJ-T725	
HSDL-1001	HSMS-C650	
HSDL-1100 4-61	HSMS-C670	. 1-212

 $\mathbf{Bold} = \mathbf{New} \ \mathbf{Product}$

HSMS-T4001-204	5082-7626 3-50
HSMS-T5001-204	5082-7650 3-50
HSMS-T6001-204	5082-76513-50
HSMS-T7001-204	5082-7653 3-50
HSMY-C6501-212	5082-7656
HSMY-C6701-212	5082-76603-50
HSMY-T4001-204	5082-7661 3-50
HSMY-T5001-204	5082-7663 3-50
HSMY-T6001-204	5082-7666
HSMY-T7001-204	5082-7730
4N513-249	5082-77313-50
4N52	5082-7736
4N53 3-249	5082-7740
4N54 3-249	5082-7750
5082-7300	5082-7751
5082-73023-187	5082-77563-50
5082-73043-187	5082-7760
5082-7340 3-187	
5082-7610	
5082-76113-50	
5082-7613	
5082-7616	
5082-7620 3-50	
5082-7621	
5000 7600	

Solid State	Display Intensity and Color	Option 103	T-1 Rt. Angle,
Selections			3 Element Array 1-147
Option S01	Intensity and Color	Option 104	T-1 Rt. Angle,
	Selected Displays 3-13		4 Element Array 1-147
Option S02	Intensity and Color	Option 105	T-1 Rt. Angle,
_	Selected Displays 3-13	_	5 Element Array 1-147
Option S20	Intensity and Color	Option 106	T-1 Rt. Angle,
	Selected Displays 3-13	-	6 Element Array 1-147
		Option 107	T-1 Rt. Angle,
Lead Bend	Options, Subminiature Lamps	_	7 Element Array 1-147
Option 011	Tape and Reel,	Option 108	T-1 Rt. Angle,
	1500 Lamps per Reel 1-188		8 Element Array 1-147
Option 012	Gull Wing Array,		
	Bulk Packaging 1-188	Panel Moun	t Options
Option 013	Gull Wing Array,	Option 007	High Profile T-13/4 w/HLMP-0104
	Shipping Tube 1-188		Clip & Ring1-122
Option 021	Yoke Lead, Tape and Reel,	Option 010	T-13/4 Rt. Angle,
	1500 Lamps per Reel 1-188		Leads Sheared Even 1-118
Option 022	Yoke Lead,	Option 100	T-1 ³ / ₄ Rt. Angle,
	Bulk Packaging 1-188		Leads Unsheared Uneven 1-118
Option 031	Z-Bend, Tape and Reel,	Option 101	T-1 Rt. Angle,
	1500 Lamps per Reel 1-188		Leads Sheared Even 1-145
Option 032	Z-Bend, Bulk Packaging 1-188	Option 010	T-1 Rt. Angle,
Option 1L1	2.54 mm (0.100 in) Rt. Angle		Leads Unsheared Uneven 1-145
	Bend, Long Leads 1-188	Option 010	Subminiature Rt. Angle 1-197
Option 1S1	2.54 mm (0.100 in) Rt. Angle		
	Bend, Short Leads1-188	Tape and Re	eel Options
Option 2L1	5.08 mm (0.200 in) Rt. Angle	Option 001	$T-1^3/4$, 5 mm (0.197 in)
	Bend, Long Leads 1-188		Formed Leads,
Option 2S1	5.08 mm (0.200 in) Rt. Angle		1300 Lamps per Reel 1-140
	Bend, Short Leads1-188	Option 001	T-1, 5 mm (0.197 in)
			Formed Leads,
	ntensity and Color Binning Options		1800 Lamps per Reel 1-140
Option S02	This option provides the selection	Option 002	$T-1^{3}/4$, 5mm (0.197 in)
	of lamps from two adjacent		Formed Leads,
	luminous intensity		1300 Lamps per Reel 1-140
	categories1-219	Option 002	T-1, 5mm (0.197 in)
Option S20	Devices selected to two		Formed Leads,
	color bin categories1-219		1800 Lamps per Reel 1-140
Option S22	Devices selected to two		
	IV categories and two		Bars Standard Options
	color bin categories1-219	Option S02	Devices Selected to
			Two (2) ly Categories 2-33
	and Panel Mount Options	Option S22	Devices Selected to
Option 102	T-1 Rt. Angle,		Two (2) ly Categories
2 Element A	2 Element Array 1-147		and Two (2) Color
			Bin Categories2-33

LED Lamps and Indicators

- AlInGaP Lamps
- AlGaAs Lamps
- General Purpose Lamps
- Special Purpose Lamps

LED Lamps

Hewlett-Packard has expanded its families of LED lamps to include a wide selection from general purpose GaP devices to high brightness AlInGaP devices. High brightness AlInGaP light emitting material technology is now packaged into devices capable of providing the light output necessary for outdoor applications of all kinds.

New High Brightness SunPower Series LEDs

HP's new AS and TS AlInGaP (Absorbing Substrate and Transparent Substrate Aluminum Indium Gallium Phosphide) LEDs, trade named SunPower Series LEDs, are available in both through hole and SMT packages.

New Revolutionary SunPower-Series, Super Flux LEDs

Newly developed, low thermal resistance, high flux output LED lamps are now available. These new devices allow operation at higher than normal drive currents, producing sufficient light output to reduce the quantity of lamps in existing designs. The HPWA-DX00/-MX00 series incorporates

AS AlInGaP LED technology. The HPWT-DX00/-MX00 series incorporates TS AlInGaP LED technology for those applications requiring the ultimate in light output performance. Popular applications for these newly developed Super Flux LED devices are interior and exterior automotive lighting, moving message panel displays, and those applications incorporating light guides.

New SunPower Series T-13/4. (5 mm) Precision Optical Performance AlInGaP LED Lamps These new precision optical performance LED lamp devices produce the necessary outdoor luminance for roadway signs and traffic signals that must be easily seen by motorists in both bright sunlight and adverse weather conditions. These devices also are ideal for full matrix outdoor advertising signs, displaying both messages and graphics. These **Precision Optical** replacement for incandescent and

Performance T-13/4, 5 mm AlInGaP lamps are direct quartz halogen-fiber optic technologies.

Brightest SunPower Series SMT LEDs in the World

Packaging HP's new AlInGaP LED technology into a broad selection of surface mount technology (SMT) packages provide light output performance unmatched in the industry for demanding surface mount applications. These new advanced SMT LED devices provide designers with high brightness indicator options on pc board assemblies where SMT is the primary pc board assembly technology. The HLMT-Q100 is the world's first 1 candela SMT LED indicator device, bright enough to replace subminiature incandescent lamps at comparable cost. In many instances, designers may find these new AlInGaP SMT LED devices will easily replace through hole LED components, with the same or better optical performance.

Visible LED Device Classifications with Respect to the European CENELEC EN60825-1 Standard

The 1996 revised European CENELEC EN60825-1 Standard requires manufacturers to determine if eve safety labels should be placed on their products that contain certain high luminance LED devices. Not all LED devices produce sufficient luminance to require eye safety labeling. Only certain LED device types utilizing the new high performance LED technologies may require end product safety labeling. The need to place eve safety labeling on a products using LED devices is dependent upon the product design and the use conditions for the LEDs. The criterion for eve safety labeling is the luminous output of LED devices in end products compared against an Accessible Emission Limit (AEL).

LED devices are classified in the IEC 825-1 and CENELEC EN60825-1 Standards as either AEL Class 1 or AEL Class 2 depending upon the luminous output of the device compared against the AEL intensity for that device. Most LED devices are classified as AEL Class 1 devices. End products that utilize AEL Class 1 LED devices do not require eye safety labeling on the product. However, AEL Class 1 notification is required in the product's user documentation. Some LED devices utilizing the new high performance LED technologies can produce sufficient luminance to be classified as Class 2 devices. Those end products that utilize Class 2 LED devices may require eye safety labeling, depending upon the drive conditions, filtering, and other design parameters.

Hewlett-Packard provides eye safety labeling on the shipment packaging for LED products that are measured to be AEL Class 2 LED devices when driven at the data sheet maximum dc drive current. It is the responsibility of the manufacturer of products utilizing AEL Class 2 LED devices to comply with the requirements of the IEC 825-1 and CENELEC EN60825-1 Standards and properly label products according to their measured classification.

EYE SAFETY INFORMATION

These LED devices are measured to be AEL Class 2 LED Products per IEC 825-1 and CENELEC EN60825-1 Standards when operated at the maximum data sheet dc drive current. For eye safety, do not stare into the light beam of these LED devices at close range.

For additional information on Hewlett-Packard LED devices with regard to the IEC 825-1 and CENELEC EN60825-1 Standards, request Application Brief I-015 through your local sales office.

For information on AEL values, LED classifications, and product labeling per the CENELEC EN 60825-1 Standard, refer to Hewlett-Packard Application Brief I-015.

Visible LED Devices and Eye Safety with Respect to MPE Values as Defined in the European IEC 825-1 Standard

Under normal use conditions, LED luminance and eye safety is usually not a concern. LED devices are safe for normal viewing in final product assemblies where eye safety considerations have been included in the design of those products and those products are utilized under normal intended use conditions.

Some LED devices utilizing new high performance LED technologies can product sufficient luminance to raise a concern for eve safety when viewed under nonnormal use conditions. The criteria for evaluating the luminous output of LED devices and eve safety are Maximum Permissible Exposure (MPE) values defined in the European IEC-825-1 Standard. Viewing an LED device at the MPE test conditions is considered to have the possibility of causing eve injury to an observer when the high luminance of an LED device exceeds the MPE value for that device. Manufacturers utilizing high luminance LED devices in their products should take into account eye safety in the intended use and design of those products.

For information on MPEs and eye safety, refer to Hewlett-Packard Application Brief I-009.

Super Flux LEDs

	Device		Karri	Descriptio	n ···	Typical Luminous Flux	Viewing Angle	Typical Forward Voltage	Page
Package Outline	Drawing	Part No.	Color, λ _d	Package	Lens	@ 70 mA	20 ¹ /2	@ 70 mA	No.
	New!	HPWR-M300	TS AIGaAs Red 643 nm	Square with 4 Leads	Untinted, Nondiffused, 3 mm Dia.	800 mlm	90°	2.25 V	1-25
	New!	HPWA-MH00	AS AllnGaP		Dome	1250 mlm	90°	2.25 V	1 :
{} {}	New!	HPWA-DH00	Red-Orange 615 nm		-		60°		
ַ ע ע	New!	HPWA-ML00	AS AllnGaP			1250 mlm	90°		
	New!	HPWA-DL00	Amber 590 nm				60°		
	New!	HPWT-MH00	TS AllnGaP			2500 mlm	70°	2.65 V	
	New!	HPWT-DH00	Red-Orange 617 nm				40°		
	New!	HPWT-ML00	TS AllnGaP			2500 mlm	70°		
	New!	HPWT-DL00	Amber 592 nm	, .			40°		

T-13/4 (5 mm) High Performance AllnGaP LED Lamps

Device	Sunpower LED Lamps		Description	Typical Luminous Intensity	Viewing Angle	Typical Forward Voltage	Page
Package Outline Drawing	Part No.	Color, λ _d	Lens	@ 20 mA	20 ¹ / ₂	@ 20 mA	No.
New!	HLMT-CL00	Amber 592 nm	Untinted, Nondiffused	8300 mcd	8°	2.0 V	1-37
New!	HLMT-CH00	Red-Orange 617 nm		9000 mcd			
New!	HLMT-DL00	Amber 592 nm		1500 mcd	24°		
New!	HLMT-DH00	Red-Orange 617 nm		1800 mcd			
	HLMA-CL00	Amber 590 nm		3500 mcd	7°	1.9 V	1
•	HLMA-CH00	Red-Orange 615 nm		3500 mcd		,	
	HLMA-DL00	Amber 590 nm		800 mcd	24°		
	HLMA-DH00	Red-Orange 615 nm		600 mcd		s for	
	HLMA-DG00	Red-Orange 622 nm		500 mcd			

T-13/4 (5 mm) Precision Optical Performance AllnGaP LED Lamps

	Device	Sunpower Series LEDs	D	escription		Typical Luminous Intensity	Viewing Angle	Typical Forward Voltage	Page
Package (Outline Drawing	Part No.	Color, λ_d	Lens	*	@ 20 mA	201/2	@ 20 mA	No.
	New!	HLMA-CL20	Amber	Untinted,	Α	4000 mcd	8°	1.9 V	1-31
	New!	HLMA-GL20	592 nm	Nondiffused	В				
\cap	New!	HLMA-CL22			С				
滿	New!	HLMA-GL22			D				į
11	New!	HLMA-CH20	Red-Orange		Α	4000 mcd			
	New!	HLMA-GH20	617 nm		В				
	New!	HLMA-CH22	1		С				
	New!	HLMA-GH22			D				
	New!	HLMA-CL15	Red		Α	1700 mcd			
Α	B New!	HLMA-GL15	630 nm		В				
	New!	HLMA-CL17			С				
\cap	○ New!	HLMA-GL17			D				
₩	New!	HLMA-CJ15	Amber		Α	1300 mcd	15°		
##	++ New!	HLMA-GJ15	590 nm		. В	E			
	New!	HLMA-CJ17			С				
	New!	HLMA-GJ17			D				
	New!	HLMA-CH15	Red-Orange		Α	1300 mcd			
- u	New!	HLMA-GH15	617 nm		В				
С	D New!	HLMA-CH17			С				
	New!	HLMA-GH17			D				
	New!	HLMA-CG15	Red		Α	800 mcd			
	New!	HLMA-GG15	622 nm		В				
	New!	HLMA-CG17]		C				
	New!	HLMA-GG17			D				

^{*}Denotes package configuration.

T-13/4 (5 mm) High Performance AllnGaP, Tinted Diffused, LED Lamps

Device		De	scription	Typical Luminous Intensity	Viewing Angle	Typical Forward Voltage	Page
Package Outline Drawing	Part No.	Color, λ _d	Lens	@ 20 mA	2θ ¹ /2	@ 20 mA	No.
New!	HLMA-DL05	Amber 592 nm	Tinted, Diffused	100 mcd	65°	1.9 V	1-49
New!	HLMA-DH05	Red-Orange 615 nm					

T-13/4 (5 mm) High Performance TS AlGaAs Red LED Lamps

Device			Description		Viewing Angle	Typical Forward Voltage	Page
Package Outline Drawing	Part No.	Color, λ_d	Lens	Intensity @ 20 mA	20 ¹ /2	@ 20 mA	No.
	HLMP-8103	Deep Red	Untinted,	3000 mcd	7°	1.85 V	1-44
·	HLMP-8102	644 nm	Nondiffused	2000 mcd	7	1 to 1	
	HLMP-8100			1000 mcd	19°		ľ
	HLMP-C100			750 mcd	30°		
	HLMP-C110			400 mcd	40°		

T-13/4 (5 mm) High Performance TS AlGaAs, Tinted Diffused, Red LED Lamps

Dev	ice		Desc	ription	ens @ 20 mA 20 1/2 @ 20 mA nted, 250 mcd 40° 1.85 V	Page		
Package Outline Drawing		Part No.	Color, λ_d	Lens	,			No.
	New!	HLMP-D115	Deep Red	Tinted,	250 mcd	40°	1.85 V	1-49
	New!	HLMP-D120	644 nm	Diffused	350 mcd	25°		

T-13/4 (5 mm) Wide Viewing Angle, High Intensity LED Lamps

Device		Description	Description			Typical Forward Voltage	Page
Package Outline Drawing	Part No.	Color, λ _d	Lens	Intensity @ 40 mA	Angle 2θ ¹ /2	@ 40 mA	No.
Neu	! HLMA-VL00	AS AlinGaP Amber 592 nm	Untinted, Nondiffused	460 mcd	60° Horizontal,	1.90 V	1-56
Neu	! HLMA-VH00	AS AllnGaP Red-Orange 615 nm			30° Vertical		
Neu Neu	! HLMP-V100	TS AlGaAs Deep Red 644 nm		1000 mcd		1.85 V	
Neu	! HLMP-V500	GaP Green 570 nm		270 mcd		2.2 V	

T-13/4 (5 mm) SiC Blue LED Lamps

Device		Description		Typical Luminous Intensity	Viewing Angle	Typical Forward Voltage	Page
Package Outline Drawing	e Drawing Part No.		Lens	@ 20 mA	2θ ¹ /2	@ 20 mA	No.
	HLMP-DB00	Blue	Diffused	3 mcd	38°	3.5 V	1-62
	HLMP-DB15	480 nm	Untinted, Nondiffused	12 mcd	15°		

T-13/4 (5 mm) High Intensity DH AlGaAs LED Lamps

Device		Description		Typical Luminous Intensity	Viewing Angle	Typical Forward Voltage	Page
Package Outline Drawing	Part No.	Color, λ_d	Lens	@ 20 mA	2θ ¹ /2	@ 20 mA	No.
	HLMP-D101	Deep Red 637 nm	Tinted, Diffused	70 mcd	65°	1.8 V	1-66
	HLMP-D105		Untinted, Nondiffused	240 mcd	24°		

T-13/4 (5 mm) Low Current DH AlGaAs Lamps

Device	Device		Description		Viewing Angle	Typical Forward Voltage	Page
Package Outline Drawing	Part No.	Color, λ_d	Lens	Intensity @ 1 mA	2θ ¹ /2	@ 1 mA	No.
	HLMP-D150	Deep Red 637 nm	Tinted, Diffused	3 mcd	65°	1.6 V	1-71
	HLMP-D155		Untinted, Nondiffused	10 mcd	24°		

T-13/4 (5 mm) Very High Intensity DH AlGaAs Lamps*

Device		Desc	ription	Typical Luminous Intensity	Viewing Angle	Typical Forward Voltage	Page
Package Outline Drawing	Part No.	Color, λ_d	Lens	@ 20 mA	2θ ¹ /2	@ 20 mA	No.
<u>_</u>	HLMP-4100	Deep Red	Untinted,	750 mcd	8°	1.8 V	*
	HLMP-4101	637 nm	Nondiffused	1000 mcd			

^{*}Contact your local Hewlett-Packard components sales representative for information regarding these products.

T-13/4 (5 mm) Super Ultra-Bright LED Lamps

Device		Description		Typical Luminous	Viewing	Typical Forward	Dawa
Package Outline Drawing	Part No.	Color, λ_d	Lens	Intensity @ 20 mA	Angle 201/2	Voltage @ 20 mA	Page No.
	HLMP-8115	DH AlGaAs	Aspheric	1000 mcd	10°	1.8 V	1-75
	HLMP-8109	Deep Red 637 nm	Dome,	500 mcd	20°		
	HLMP-8205	GaAsP/GaP	Untinted, Nondiffused	350 mcd	10°	1.9 V	
	HLMP-8209	HER 626 nm	Nonumusea	260 mcd	20°		
· · ·	HLMP-8305	GaAsP/GaP		350 mcd	10°	2.1 V	
	HLMP-8309	Yellow 585 nm		260 mcd	20°		
	HLMP-8405	GaAsP/GaP	1	350 mcd	10°	1.9 V	
	HLMP-8409	Orange 602 nm		260 mcd	20°		
	HLMP-8505	GaP/GaP		400 mcd	10°	2.2 V	
	HLMP-8509	Green 569 nm		300 mcd	20°		
	HLMP-8605	GaP/GaP		75 mcd	10°		
		Emerald Green 560 nm					

T-13/4 (5 mm) Ultra-Bright LED Lamps

Device	Device		Description			Typical Forward Voltage	Page
Package Outline Drawing	Part No.	Color, λ_d	Lens	Intensity @ 20 mA	Angle 201/2	@ 20 mA	No.
	HLMP-3750	GaAsP/GaP HER 626 nm	Standard Dome	125 mcd	24°	1.9 V	1-83
	HLMP-3850	GaAsP/GaP Yellow 585 nm	Untinted, Nondiffused	140 mcd		2.1 V	
	HLMP-3950	GaP/GaP Green 569 nm		140 mcd	·	2.2 V	
	HLMP-D640	GaP/GaP Emerald Green 558 nm		21 mcd			
	HLMP-3390	GaAsP/GaP HER 626 nm	Low Profile Aspheric	55 mcd	32°	1.9 V	
	HLMP-3490	GaAsP/GaP Yellow 585 nm	Dome, Untinted,			2.1 V	
	HLMP-3590	GaP/GaP Green 569 nm	Nondiffused			2.2 V	

T-13/4 (5 mm) High Intensity LED Lamps

Device		Description	Typical Luminous	Viewing	Typical Forward		
Package Outline Drawing	Part No.	Color, λ_d	Lens	Intensity @ 10 mA	Angle 2θ ¹ /2	Voltage @ 20 mA	Page No.
	HLMP-3315	GaAsP/GaP	Tinted,	40 mcd	35°	1.9 V	1-88
	HLMP-3316	HER 626 nm	Nondiffused	60 mcd			
	HLMP-3415	GaAsP/GaP		40 mcd		2.0 V	
	HLMP-3416	Yellow 585 nm	1	50 mcd			
	HLMP-3517	GaP/GaP	1	50 mcd	24°	2.1 V	
	HLMP-3519	Green 569 nm		70 mcd			

T-13/4 (5 mm) Diffused LED Lamps

Device		Description	Description			Typical Forward Voltage	Page
Package Outline Drawing	Part No.	Color, λ_d	Lens	Intensity @ 10 mA	Angle 2θ1/2	@ 20 mA	No.
	HLMP-3300	GaAsP/GAP	Tinted,	3.5 mcd	60°	1.9 V	1-94
	HLMP-3301	HER 626 nm	Diffused	7 mcd			
	HLMP-3762			12 mcd]		
	HLMP-D400	GaAsP/GaP		3.5 mcd		2.0 V	
	HLMP-D401	Orange 602 nm		7 mcd			
	HLMP-3400	GaAsP/GaP		4 mcd		i	
	HLMP-3401	Yellow 585 nm		8 mcd	1		
	HLMP-3862			12 mcd]		
	HLMP-3502	GaP/GaP		2.4 mcd]	2.1 V	
	HLMP-3507	Green 569 nm		5.2 mcd			
	HLMP-3962			14 mcd]		
	HLMP-D600	GaP/GaP Emerald Green 558 nm		3 mcd			

T-13/4 (5 mm) Low Profile LED Lamps (Non-Diffused)

Device		Description		Typical Luminous	Viewing	Typical Forward	B
Package Outline Drawing	Part No.	Color, λ _d	Lens	Intensity @ 10 mA	Angle 2θ ¹ /2	Voltage @ 20 mA	Page No.
	HLMP-3365	GaAsP/GaP	Aspheric	10 mcd	45°	1.9 V	1-101
	HLMP-3366	HER 626 nm	Dome,	18 mcd			
	HLMP-3465	GaAsP/GaP	Tinted,	12 mcd		2.0 V	
	HLMP-3466	Yellow 585 nm	Nondiffused	18 mcd			
	HLMP-3567	GaP/GaP		7 mcd	40°.	2.1 V	
	HLMP-3568	Green 569 nm		15 mcd			

T-13/4 (5 mm) Low Profile LED Lamps (Diffused)

Device		Description		Typical Luminous	Viewing	Typical	Domo
Package Outline Drawing	Part No.	Color, λ_d	Lens	Intensity @ 10 mA	Angle 2θ ¹ /2	Forward Voltage	Page No.
	HLMP-3350	GaAsP/GaP	Aspheric,	3.5 mcd	50°	1.9 V	1-101
	HLMP-3351	HER 626 nm	Tinted,	7 mcd		@ 10 mA	
	HLMP-3450	GaAsP/GaP	Diffused	4 mcd		2.0 V	
	HLMP-3451	Yellow 585 nm		10 mcd		@ 10 mA	
	HLMP-3553	GaP/GaP		3.2 mcd		2.1 V	
	HLMP-3554	Green 569 nm	4.5	10 mcd		@ 10 mA	

T-13/4 (5 mm) Low Current LED Lamps

Device		Description		Typical Luminous	Viewing	Typical Forward	D
Package Outline Drawing	Part No.	Color, λ_d	Lens	Intensity Angle @ 2 mA 201/2		Voltage @ 2 mA	Page No.
	HLMP-4700	GaAsP/GaP HER 626 nm	Tinted, Diffused	2.3 mcd	50°	1.8 V	1-108
	HLMP-4719	GaAsP/GAP Yellow 585 nm		2.1 mcd		1.9 V	
	HLMP-4740	GaP/GaP Green 569 nm		2.3 mcd		1.8 V	

T-13/4 (5 mm) 5 Volt, 12 Volt, Integrated Resistor LED Lamps

Device		Description	on	Typical	Viewing	Typical	
Package Outline Drawing	Part No.	Color, λ _d	Lens	Luminous Intensity	Angle 2θ ¹ /2	Current, Voltage	Page No.
	HLMP-3600	GaAsP/GaP HER 626 nm	Tinted, Diffused	8 mcd @ 5 V	60°	10 mA @ 5 V	1-113
	HLMP-3601			8 mcd @ 12 V		13 mA @ 12 V	
	HLMP-3650	GaAsP/GaP Yellow 585 nm		8 mcd @ 5 V		10 mA @ 5 V	
	HLMP-3651		*	8 mcd @ 12 V		13 mA @ 12 V	
	HLMP-3680	GaP/GaP Green 569 nm		8 mcd @ 5 V		10 mA @ 5 V	
	HLMP-3681			8 mcd @ 12 V		13 mA @ 12 V	

T-13/4 (5 mm) Bicolor LED Lamps

Device		Description		Typical Luminous Intensity	Viewing Angle	Typical Forward Current	Page
Package Outline Drawing	Part No.	Color, λ_d	Lens	@ 10 mA	20 ¹ /2	@ 10 mA	No.
	HLMP-4000	GaAsP/GaP HER 626 nm	Untinted, Diffused	5 mcd	65°	1.9 V	1-157
		GaP/GaP Green 569 nm		8 mcd		2.1 V	

T-13/4 (5 mm) LED Lamp Mounting Hardware

Device			Page
Package Outline Drawing	Part No.	Description	No.
	HLMP-5029	Right Angle Mount Housing	1-120
	HLMP-0104	Panel Mount Clip and Retaining Ring	1-122

T-1 (3 mm) High Performance AS AllnGaP LED Lamps

Device		Description		Typical Luminous Intensity	Viewing	Typical Forward Voltage	Page
Package Outline Drawing	Part No.	Color, λ _d	Lens	@ 20 mA	Angle 2θ ¹ /2	@ 20 mA	No.
	HLMA-KL00	AllnGaP Amber 590 nm	Untinted, Nondiffused	200 mcd	45°	1.9 V	1-37
	HLMA-KH00	AllnGaP Red-Orange 615 nm]				

T-1 (3 mm) High Performance TS AlGaAs Red LED Lamps

Device	Device		Description		Typical Luminous	Viewing Angle	Typical Forward Voltage	Page
Package Outline Drawing		Part No.	Color, λ_d	Lens	Intensity	2θ ¹ /2	@ 20 mA	No.
	New!	HLMP-J105	Deep Red 644 nm	Untinted, Nondiffused	340 mcd @ 20 mA	45°	1.9 V	1-124
	New!	HLMP-J155 Low Current			6 mcd @ 0.5 mA		1.6 V	
	New!	HLMP-J100		Tinted, Diffused	175 mcd @ 20 mA	55°	1.9 V	
	New!	HLMP-J150 Low Current			3 mcd @ 0.5 mA		1.6 V	

T-1 (3 mm) High Intensity DH AlGaAs Red LED Lamps

Device		Description		Typical Luminous	Viewing	Typical Forward	Dama
Package Outline Drawing	Part No.	Color, λ _d	Lens	Intensity @ 20 mA	Angle 2θ ¹ /2	Voltage @ 20 mA	Page No.
	HLMP-K101	Deep Red 637 nm	Tinted, Diffused	45 mcd	60°	1.8 V	1-66
	HLMP-K105		Untinted, Nondiffused	65 mcd	45°		

T-1 (3 mm) Low Current DH AlGaAs Red LED Lamps

Device		Description		Typical Luminous	Viewing	Typical Forward Voltage	Paga
Package Outline Drawing	Part No.	Color, λ_{d}	Lens	Intensity @ 1 mA	Angle 2θ ¹ /2	@ 1 mA	Page No.
	HLMP-K150	Deep Red 637 nm	Tinted, Diffused	2 mcd	60°	1.6 V	1-71
· Ur	HLMP-K155		Untinted, Nondiffused	3 mcd	45°		

T-1 (3 mm) Ultra-Bright LED Lamps

Device	Device		Description		Viewing Angle	Typical Forward	Page
Package Outline Drawing	Part No.	Color, λ_d	Lens	Intensity @ 20 mA	201/2	Voltage @ 20 mA	No.
	HLMP-1340	GaAsP/GaP HER 626 nm	Untinted, Nondiffused	45 mcd	45°	1.9 V	1-83
	HLMP-1440	GaAsP/GaP Yellow 585 nm				2.1 V	
	HLMP-1540	GaP/GaP Green 569 nm	-			2.2 V	
	HLMP-K640	GaP/GaP Emerald Green 560 nm		21 mcd	j.		

T-1 (3 mm) High Intensity LED Lamps

Device	Device		Description		Viewing Angle	Typical Forward Voltage	Page
Package Outline Drawing	Part No.	Color, λ_d	Lens	Intensity @ 10 mA	201/2	@ 10 mA	No.
	HLMP-1320	GaAsP/GaP HER 626 nm	Untinted, Nondiffused	30 mcd	45°	1.9 V	1-128
CIF.	HLMP-1321	•	Tinted, Nondiffused				
	HLMP-1420	GaAsP/GaP Yellow 585 nm	Untinted, Nondiffused	15 mcd		2.0 V	
	HLMP-1421		Tinted, Nondiffused				
	HLMP-1520	GaP/GaP Green 596 nm	Untinted, Nondiffused	22 mcd		2.1 V	
	HLMP-1521		Tinted, Nondiffused				

T-1 (3 mm) Diffused LED Lamps

Device		Description	Description		Viewing Angle	Typical Forward Voltage	Page
Package Outline Drawing	Part No.	Color, λ_d	Lens	Intensity @ 10 mA	2 θ ¹ / ₂	@ 10 mA	No.
	HLMP-1300	GaAsP/GaP	Tinted,	5 mcd	60°	1.9 V	1-134
	HLMP-1301	HER 626 nm	Diffused	5.5 mcd			
	HLMP-1302			7 mcd			
	HLMP-1385			11 mcd			
	HLMP-K400	GaAsP/GaP		5 mcd		1.9 V	
	HLMP-K401	Orange 602 nm		5.5 mcd			
	HLMP-K402			7 mcd			
	HLMP-1400	GaAsP/GaP		5 mcd		2.0 V	
	HLMP-1401	Yellow 585 nm		6 mcd	1		
	HLMP-1402			7 mcd			
	HLMP-1485			10 mcd			
	HLMP-1503	GaP/GaP		5 mcd		2.1 V	
	HLMP-1523	Green 569 nm		7 mcd			
	HLMP-1585			8.5 mc	1		
	HLMP-K600	GaP/GaP		4.5 mcd		2.1 V	
		Emerald Green 560 nm					

T-1 (3 mm) Low Current LED Lamps

Device		Description		Typical Luminous Intensity	Viewing	Typical Forward Voltage	Page
Package Outline Drawing	Part No.	Color, λ_d	Lens	@ 20 mA	Angle 2θ ¹ /2	@ 2 mA	No.
	HLMP-1700	GaAsP/GaP HER 626 nm	Tinted, Diffused	2.1 mcd	50°	1.8 V	1-108
<u> </u>	HLMP-1719	GaAsP/GaP Yellow 585 nm		1.6 mcd		1.9 V	
	HLMP-1790	GaP/GaP Green 569 nm		2.1 mcd		1.8 V	

T-1 (3 mm) 5 Volt, 12 Volt, Integrated Resistor LED Lamps

Device		Descripti	on	Typical Luminous	Viewing Angle	Typical	Domo
Package Outline Drawing	Part No.	Color, λ_d	Lens	Intensity	2θ ¹ /2	Current, Voltage	Page No.
	HLMP-1600	GaAsP/GaP HER 626 nm	Tinted, Diffused	8 mcd @ 5 V		10 mA @ 5 V	1-113
	HLMP-1601			8 mcd @ 12 V		13 mA @ 12 V	
	HLMP-1620	GaAsP/GaP Yellow 585 nm	Accounts	8 mcd @ 5 V		10 mA @ 5 V	
	HLMP-1621			8 mcd @ 12 V		13 mA @ 12 V	
	HLMP-1640	GaP/GaP Green 569 nm		8 mcd @ 5 V		10 mA @ 5 V	
	HLMP-1641			8 mcd @ 12 V		13 mA @ 12 V	

T-13/4 (5 mm) and T-1 (3 mm) Tape and Reel Options

Device						
Package Outline Drawing	Option No.	Description				
	001	T-13/4, with 5 mm (0.197 in) Formed Leads, 1300 Lamps per Reel.	1-140			
5 mm (0.197 in) Formed Leads		T-1, with 5 mm (0.197 in) Formed Leads, 1800 Lamps per Reel.				
	002	T-13/4, with 2.54 mm (0.100 in) Straight Leads, 1300 Lamps per Reel.				
2.54 mm (0.100 in) Straight Leads		T-1, with 2.54 mm (0.100 in) Straight Leads, 1800 Lamps per Reel.				

T-1 (3 mm) Right Angle LED Indicator Array Options

Device			
Package Outline Drawing	Option Code	Description	Page No.
	102	2-Element Array	1-147
	103	3-Element Array	
	104	4-Element Array	
Ø Ø Ø	105	5-Element Array	
<u> </u>	106	6-Element Array	
ע ט ט ט ט ט ט ט ט	107	7-Element Array	
	108	8-Element Array	

2.5 mm X 7.6 mm Rectangular LED Lamps

Device		Description		Typical Luminous Intensity	Viewing	Typical Forward Voltage	Dogo
Package Outline Drawing	Part No.	Color, λ_d	Lens	@ 20 mA	Angle 2θ ¹ /2	@ 20 mA	Page No.
	HLMP-R100	DH AlGaAs Red 637 nm	Tinted, Diffused	11 mcd	100°	1.6 V	1-149
	HLMP-0300	GaAsP/GaP	1	2.5 mcd		1.9 V	
	HLMP-0301	HER 626 nm		5.3 mcd			
	HLMP-0400	GaAsP/GaP		2.5 mcd		2.1 V	
	HLMP-0401	Yellow 585 nm		5 mcd			
r.	HLMP-0503	GaP/GaP		2.5 mcd		2.2 V	
	HLMP-0504	Green 569 nm		8 mcd			

2 mm x 5 mm Rectangular LED Lamps

Device	Device		Description		Viewing Angle	Typical Forward Voltage	Page
Package Outline Drawing	Part No.	Color, λ_d	Lens	Intensity @ 20 mA	2θ ¹ /2	@ 20 mA	No.
	HLMP-S100	DH AlGaAs Deep Red 637 nm	Tinted, Diffused	7.5 mcd	110°	1.8 V	1-153
	HLMP-S200	GaAsP/Ga		3.5 mcd		1.9 V	
	HLMP-S201	HER 626 nm		7.5 mcd			
	HLMP-S400	GaAsP/GaP	1	3.5 mcd		3	
	HLMP-S401	Orange 602 nm		7.5 mcd]		
	HLMP-S300	GaAsP/GaP		2.1 mcd		2.1 V	
	HLMP-S301	Yellow 585 nm		4 mcd			
	HLMP-S500	GaP/GaP		4 mcd]	2.2 V	
	HLMP-S501	Green 569 nm		8 mcd		1	
	HLMP-S600	GaP/GaP Emerald Green 560 nm		3 mcd			

2 mm x 5 mm Rectangular Bicolor LED Lamps

Device	Device		Description		Viewing Angle	Typical Forward Current	Page
Package Outline Drawing	Part No.	Color, λ_d	Lens	Intensity @ 20 mA	20 ¹ /2	@ 10 mA	No.
	HLMP-0800	GaAsP/GaP HER 626 nm	Untinted, Diffused	3.5 mcd	100°	1.9 V	1-157
		GaP/GaP Green 569 nm		4 mcd		2.1 mA	

Subminiature High Performance AllnGaP LED Lamps

Devi	Device		Descriptio	on	Typical Luminous Intensity	Viewing Angle	Typical Forward Voltage	Page
Package Outline Drav	ving	Part No.	Color, λ_d	Lens	@ 20 mA	2 θ ¹ /2	@ 20 mA	No.
	New!	HLMT-QL00	TS AllnGaP Amber 591 nm	Dome, Untinted,	1000 mcd	15°	1.9 V	1-161
	New!	HLMA-QL00	As AllnGaP Amber 591 nm	Nondiffused	500 mcd		2.0 V	
	New!	HLMT-QH00	TS AllnGaP Red Orange 615 nm		800 mcd		1.9 V	
	New!	HLMA-QH00	AS AllnGaP Red Orange 615 nm		500 mcd		2.0 V	
	New!	HLMT-PL00	TS AllnGaP Amber 591 nm	Flat Top, Untinted,	150 mcd	125°	1.9 V	
	New!	HLMA-PL00	AS AllnGaP Amber 591 nm	Nondiffused	75 mcd		2.0 V	
	New!	HLMT-PH00	TS AllnGaP Red Orange 615 nm		120 mcd		1.9 V	
	New!	HLMA-PH00	AS AllnGaP Red Orange 615 nm		75 mcd		2.0 V	

Subminiature High Performance TS AlGaAs Red LED Lamps

Device	Device Description		ption	Typical Luminous Intensity	Viewing Angle	Typical Forward Voltage	Page
Package Outline Drawing	Part No.	Color, λ_d	Lens	@ 20 mA	20 ¹ /2	@ 20 mA	No.
New!	HLMP-Q106	Deep Red 644 nm	Dome, Untinted, Nondiffused	530 mcd	15°	1.9 V	1-168
New!	HLMP-Q102		Dome, Tinted, Diffused	160 mcd	35°		
New!	HLMP-P106		Flat Top, Untinted, Nondiffused	130 mcd	75°		

Subminiature Low Current TS AlGaAs Red LED Lamps

Device			Description	Description			Typical Forward Voltage	Page
Package Outline Draw	/ing	Part No.	Color, λ_d	Lens	Intensity @ 0.5 mA	Angle 201/2	@ 0.5 mA	No.
	New!	HLMP-Q156	Deep Red 644 nm	Dome, Untinted, Nondiffused	7 mcd	15°	1.6 V	1-168
	New!	HLMP-Q152		Dome, Tinted, Diffused	2 mcd	35°		
	New!	HLMP-P156		Flat Top, Untinted, Nondiffused	2 mcd	75°		

Subminiature Dome LED Lamps

Device		Description	Typical Luminous Intensity	Viewing Angle	Typical Forward Voltage	Page	
Package Outline Drawing	Part No.	Color, λ_d	Lens	@ 10 mA	20 ¹ /2	@ 10 mA	No.
	HLMP-6000	GaAsP Red	Dome,	1.2 mcd	90°	1.6 V	1-174
	HLMP-6001	640 nm	Tinted,	3.2 mcd			
	HLMP-Q101	DH AlGaAs Deep Red 637 nm	Diffused	45 mcd @ 20 mA		1.8 V @ 20 mA	
	HLMP-6300	GaAsP/GaP HER 626 nm		7 mcd		1.8 V	
	HLMP-Q400	GaAsP/GaP Orange 602 nm		3 mcd		1.9 V	
	HLMP-6400	GaAsP/GaP Yellow 585 nm				2.0 V	
	HLMP-6500	GaP/GaP Green 569 nm				2.1 V	
	HLMP-Q600	GaP/GaP Emerald Green 560 nm		1.5 mcd		2.2 V	
	HLMP-Q105	DH AlGaAs Deep Red 637 nm	Dome, Untinted,	55 mcd @ 20 mA	28°	1.8 V @ 20 mA	
	HLMP-6305	GaAsP/GaP HER 626 nm	Nondiffused	12 mcd		1.8 V	
	HLMP-6405	GaAsP/GaP Yellow 585 nm				2.0 V	
	HLMP-6505	GaP/GaP Green 569 nm				2.1 V	

Subminiature Flat Top LED Lamps

Device		Description	Description			Typical Forward Voltage	Page
Package Outline Drawing	Part No.	Color, λ_d	Lens	Intensity @ 10 mA	Angle 2θ ¹ /2	@ 10 mA	No.
	HLMP-P105	DH AlGaAs Deep Red 637 nm	Flat Top Untinted,	30 mcd @ 20 mA	125°	1.8 V @ 20 mA	1-174
	HLMP-P205	GaAsP/GaP HER 626 nm	Nondiffused	5 mcd		1.8 V	
	HLMP-P405	GaAsP/GaP Orange 602 nm		4 mcd		1.9 V	
	HLMP-P305	GaAsP/GaP Yellow 585 nm		4 mcd		2.0 V	
	HLMP-P505	GaP/GaP Green 569 nm		5 mcd		2.1 V	
	HLMP-P605	GaP/GaP Emerald Green 560 nm		1.5 mcd		2.2 V	
	HLMP-P102	DH AlGaAs Deep Red 637 nm	Flat Top, Untinted,	20 mcd @ 20 mA	125°	1.8 V @ 20 mA	
	HLMP-P202	GaAsP/GaP HER 626 nm	Diffused	5 mcd		1.8 V	
	HLMP-P402	GaAsP/GaP Orange 602 nm		4 mcd		1.9 V	
	HLMP-P302	GaAsP/GaP Yellow 585 nm		3 mcd		2.0 V	
	HLMP-P502	GaP/GaP Green 569 nm		6 mcd		2.1 V	

Subminiature Low Current LED Lamps

Device		Descripti	on	Typical Luminous	Viewing Angle	Typical Forward	Page
Package Outline Drawing	Part No.	Color, λ_d	Lens	Intensity	201/2	Voltage	No.
	HLMP-Q150	DH AlGaAs Deep Red 637 nm	Dome, Tinted, Diffused	1.8 mcd @ 1 mA	90°	1.6 V @ 1 mA	1-174
	HLMP-Q155		Dome, Untinted, Nondiffused	4 mcd @ 1 mA	28°		
	HLMP-7000	GaAsP/GaP HER 626 nm	Dome, Tinted,	1 mcd @ 2 mA	90°	1.8 V @ 10 mA	
	HLMP-7019	GaAsP/GaP Yellow 585 nm	Diffused	0.6 mcd @ 2 mA		2.0 V @ 10 mA	
	HLMP-7040	GaP/GaP Green 569 nm		0.6 mcd @ 2 mA			

Subminiature Resistor LED Lamps

Device		Descript	tion	Typical Luminous	Viewing	Typical Forward	D
Package Outline Drawing	Part No.	Color, λ _d	Lens	Intensity @ 5.0 V	Angle 2θ ¹ /2	Current @ 5.0 V	Page No.
	HLMP-6600	GaAsP/GaP	Dome,	5 mcd	90°	10 mA	1-174
	HLMP-6620	HER 626 nm	Tinted,	2 mcd	1	4 mA	
4	HLMP-6700	GaAsP/GaP	Diffused	5 mcd		10 mA	1
\cap	HLMP-6720	Yellow 585 nm		2 mcd		4 mA	1
	HLMP-6800	GaP/GaP	1	5 mcd		10 mA	
	HLMP-6820	Green 569 nm		2 mcd		4 mA	

Subminiature LED Lamp Arrays

Device			Description	Typical Luminous Intensity	Viewing Angle	Typical Forward Current	Page	
Package Outline Drawing	Part No.	*	Color, λ_d	Lens	@ 10 mA	2θ ¹ /2	@ 10 mA	No.
	HLMP-6203	3	GaAsP	Dome,	1.2 mcd	90°	1.6 V	1-174
	HLMP-6204	4	Red 640 nm	Tinted,				
	HLMP-6205	5		Diffused				
	HLMP-6206	6						
	HLMP-6208	8						
	HLMP-6653	3	GaAsP/GaP		3 mcd		1.8 V	
	HLMP-6654	4	HER 626 nm					1
	HLMP-6655	5						
	HLMP-6656	6						
	HLMP-6658	8						
	HLMP-6753	3	GaAsP/GaP		3 mcd		2.0 V	
	HLMP-6754	4	Yellow 585 nm					
	HLMP-6755	5						
	HLMP-6756	6						
	HLMP-6758	8						
	HLMP-6853	3	GaP/GaP		3 mcd		2.0 V	
	HLMP-6854	4	Green 569 nm					
	HLMP-6855	5						
	HLMP-6856	6						
	HLMP-6858	8						

^{*}Number of LED Emitters per Array

Standard SMT and Through Hole Lead Bend Options for Subminiature LED Lamps

Device			
Package Outline Drawing	Option Code	Description	Page No.
	011	SMT Gull Wing Lead, Lamp, Tape and Reel, 1500 Lamps per Reel.	1-188
	012	SMT Gull Wing Lead, Lamp, Bulk Packaging.	
	013	SMT Gull Wing Lead, Array, Shipping Tube.]
-A-TA-	021	SMT Yoke Lead, Lamp, Tape and Reel, 1500 Lamps per Reel.	
\Box	022	SMT Yoke Lead, Lamp, Bulk Packaging.	
	031	SMT Z-Bend Lead, Lamp, Tape and Reel, 1500 Lamps per Reel.	
7	032	SMT Z-Bend Lead, Lamp, Bulk Packaging.	
A	1L1	Through Hole, 2.54 mm (0.100 in) Right Angle Bend, Long Leads.	
A	1S1	Through Hole, 2.54 mm (0.100 in) Right Angle Bend, Short Leads.	
rên .	2L1	Through Hole, 5.08 mm (0.200 in) Right Angle Bend, Long Leads.	1
r A	2S1	Through Hole, 5.08 mm (0.200 in) Right Angle Bend, Short L.	

Surface Mount High Performance AllnGaP LED Indicators

Device	·		Description		Typical Luminous Intensity	Viewing Angle	Typical Forward Voltage	Page
Package Outline Drawing	Part No.	Color, λ_d	Package	Lens	@ 10 mÁ	2 θ ¹ /2	@ 10 mA	No.
New!	HSMA-T425	Amber 590 nm	12 mm Tape, 7" reel, 2000 devices	Flat Circle, Untinted, Nondiffused	25 mcd	120°	1.9 V	1-199
New!	HSMA-T525		12 mm Tape, 13" reel, 8000 devices					
New!	HSMA-T625		8 mm Tape, 7" reel, 2000 devices					
New!	HSMA-T725		8 mm Tape, 13" reel, 8000 devices	-			!	
New!	HSMD-T425	Orange 603 nm	12 mm Tape, 7" reel, 2000 devices					
New!	HSMD-T525		12 mm Tape, 13" reel, 8000 devices					
New!	HSMD-T625		8 mm Tape, 7" reel, 2000 devices					
New!	HSMD-T725		8 mm Tape, 13" reel, 8000 devices				-	
New!	HSMJ-T425	Red- Orange 615 nm	12 mm Tape, 7" reel, 2000 devices				'	
New!	HSMJ-T525		12 mm Tape, 13" reel, 8000 devices					
New!	HSMJ-T625		8 mm Tape, 7" reel, 2000 devices					
New!	HSMJ-T725		8 mm Tape, 13" reel, 8000 devices					

Surface Mount LED Indicators

Device			Description		Typical Luminous Intensity	Viewing Angle	Typical Forward Voltage	Page
Package Outline Drawing	Part No.	Color, λ_d	Package	Lens	@ 10 mA	2θ ¹ /2	@ 10 mA	No.
	HSMH-T400	DH AlGaAs Deep Red 637 nm	12 mm Tape, 7" reel, 2000 devices	Flat Circle, Untinted, Nondiffused	17 mcd	120°	1.8 V	1-204
	HSMH-T500		12 mm Tape, 13" reel, 8000 devices					
	HSMH-T600		8 mm Tape, 7" reel, 2000 devices					
	HSMH-T700		8 mm Tape, 13" reel, 8000 devices					
	HSMS-T400	GaAsP/GaP HER 626 nm	12 mm Tape, 7" reel, 2000 devices		6 mcd		1.9 V	
	HSMS-T500		12 mm Tape, 13" reel, 8000 devices					
	HSMS-T600		8 mm Tape, 7" reel, 2000 devices					
	HSMS-T700		8 mm Tape, 13" reel, 8000 devices					
	HSMD-T400	GaAsP/GaP Orange 602 nm	12 mm Tape, 7" reel, 2000 devices		5 mcd		1.9 V	
	HSMD-T500		12 mm Tape, 13" reel, 8000 devices					
	HSMD-T600		8 mm Tape, 7" reel, 2000 devices					
	HSMD-T700		8 mm Tape, 13" reel, 8000 devices					

Surface Mount LED Indicators (contd.)

Device		4	Description			Viewing Angle	Typical Forward Voltage	Page
Package Outline Drawing	Part No.	Color, λ_d	Package	Lens	@ 10 mA	2 0 ¹ /2	@ 10 mA	No.
	HSMY-T400	GaAsP/GaP Yellow 585 nm	12 mm Tape, 7" reel, 2000 devices	Flat Circle, Untinted, Nondiffused	5 mcd	120°	2.0 V	1-204
	HSMY-T500	·	12 mm Tape, 13" reel, 8000 devices					
	HSMY-T600		8 mm Tape, 7" reel, 2000 devices		,			
	HSMY-T700		8 mm Tape, 13" reel, 8000 devices					
	HSMG-T400	GaP/GaP Green 572 nm	12 mm Tape, 7" reel, 2000 devices		10 mcd		2.0 V	
	HSMG-T500		12 mm Tape, 13" reel, 8000 devices					
	HSMG-T600		8 mm Tape, 7" reel, 2000 devices					
	HSMG-T700		8 mm Tape, 13" reel, 8000 devices					
New!	HSME-T400	GaP/GaP Emerald Green	12 mm Tape, 7" reel, 2000 devices		1.5 mcd	:	2.2 V	
New!	HSME-T500	560 nm	12 mm Tape, 13" reel, 8000 devices			:		
New!	HSME-T600		8 mm Tape, 7" reel, 2000 devices					
New!	HSME-T700		8 mm Tape, 13" reel, 8000 devices					

Surface Mount Chip LEDs

Device			Typical Luminous Intensity	Viewing Angle	Typical Forward Voltage	Page		
Package Outline Drawing	Part No.	Color, λ_d	Package Size	Lens	@ 20 mA	201/2	@ 20 mA	No.
	HSMH-C650	DH AlGaAs Deep Red	1206	Cube, Diffused	16 mcd	155°	1.8 V	1-212
	HSMH-C670	637 nm	805					
	HSMS-C650	GaAsP/GaP HER	1206		5 mcd		1.9 V	
	HSMS-C670	626 nm	805					
-C670 (805)	HSMD-C650	GaAsP/GaP Orange	1206]	4 mcd		2.1 V	
	HSMD-C670	604 nm	805	1				
	HSMY-C650	GaAsP/GaP Yellow	1206		5 mcd		2.1 V	
	HSMY-C670	584 nm	805					
-C650 (1206)	HSMG-C650	GaP/GaP Green	1206		9 mcd		2.2 V	
	HSMG-C670	571 nm	805	1	•			
-C655 (1210)	HSMF-C655	Bicolor HER 626 nm Green 571 nm	1210		5 mcd 9 mcd		1.9 V 2.2 V	

T-13/4 (5 mm), T-1 (3 mm), and Subminiature LED Lamp Mounting Options

Device			
Package Outline Drawing	Option No.	Description	Page No.
	007	T-13/4 Standard Dome, with HLMP-0104 Clip and Ring.	1-122
	010	T-13/4 Standard Dome, Right Angle, Leads Sheared Even.	1-118
	100	T-1¾ Standard Dome, Right Angle, Leads Unsheared, Uneven. Anode Longer.	1
	101	T-1, Right Angle, Leads Sheared Even.	1-145
	010	T1, Right Angle, Leads Unsheared, Uneven, Anode Longer.	
	010	Subminiature Right Angle, Leads Sheared Even.	1-197

Emitter Components*

Device		Description		
Package Outline Drawing	Part No.	Package	Features	Page No.
-	HEMT-6000	Subminiature 700 nm Deep Red High Intensity Emitter	Visible (Near IR) emission facilitates alignment. Compatible with most silicon phototransistors and photodiodes.	-
	HEMT-3301	T-13/4 (5 mm) 940 nm IR High Radiant Emitter	Efficiency at low currents. Radiated spectrum matches response of silicon photodetectors.	*
	HEMT-1001	T-1 (3 mm) 940 nm IR High Radiant Emitter	Non-saturated, high radiant flux output.	

^{*}Contact your local Hewlett-Packard components sales representative for information regarding these products.

Standard Intensity and Color Binning Options for LED Lamps

Device		
Option Code	Description	Page No.
S02	This option provides the selection of lamps from two adjacent luminous intensity, I _v , categories.	1-219
S20	Devices selected to two color bin, λ_d , categories.	-
S22	Devices selected to two luminous intensity, I_{ν} , categories and two color bin, λ_d , categories.	

Super Flux LEDs

Technical Data

SunPower Series
HPWA-MH00 HPWT-MH00
HPWA-DH00 HPWT-DH00
HPWA-ML00 HPWT-ML00
HPWA-DL00 HPWT-DL00
HPWR-M300

Benefits

- Fewer LEDs Required
- Lowers Total System Cost

Features

- · High Flux Output
- Designed for High Current Operation
- Low Thermal Resistance
- Low Profile
- Meets SAE/ECE/JIS Automotive Color Requirements
- Packaged in Tubes for Use with Automatic Pick and Place Equipment

Applications

- Automotive Exterior Lighting
- Moving Message Panels

- Small and Large Area Displays
- · Backlighting

Description

This revolutionary package design allows the lighting designer to reduce the number of LEDs required and provide a more uniform and unique illuminated appearance than with existing LED solutions. This is possible through the package's efficient optical design and high-current capabilities. The low profile package can be easily coupled to reflectors or lenses to efficiently distribute light and provide the desired illuminated appearance.

This product family employs red, red-orange, and amber LED

materials, which allow designers to match the color of popular lighting applications, such as automotive tail, stop, and turn signal lamps, and area displays. Included in this family is the world's brightest amber LED material, which is ideal for area displays and general backlighting applications.

Device Selection Guide

Part Number	LED Color	Total Flux ϕ_{v} (mlm) @ 70 mA ^[1] Typ.	Viewing Angle $2\theta^{1/2}$ (Degrees) Typ.
HPWR-M300	TS AlGaAs Red	800	90
HPWA-MH00	AS AlInGaP Red-Orange	1250	90
HPWA-DH00			60
HPWA-ML00	AS AlInGaP Amber	1250	90
HPWA-DL00			60
HPWT-MH00	TS AlInGaP Red-Orange	2500	70
HPWT-DH00			40
HPWT-ML00	TS AlInGaP Amber	2500	70
HPWT-DL00			40

- 1. ϕ_{V} is the total luminous flux output as measured with an integrating sphere.
- $2.\,\,\theta^{1/2}$ is the off axis angle from optical centerline where the luminous intensity is $^{1/2}$ the on-axis value.

Outline Drawing

Absolute Maximum Ratings at $T_A = 25$ °C

Parameter	HPWR-M300	HPWA-MX00/DX00	HPWT-MX00/DX00	Units		
DC Forward Current ^[1]	70	70[2,3]	70[2,3]	mA		
Power Dissipation	161	147	193	mW		
Reverse Voltage ($I_R = 100 \mu A$)	10	10	10	V		
Operating Temperature Range	-40 to +100	-40 to +100	-40 to +100	°C		
Storage Temperature	-55 to +100	-55 to +100	-55 to +100	°C		
High Temperature Chamber		125℃, 2 hrs. ma	х.			
LED Junction Temperature		125℃				
Solder Conditions						
Preheat Temperature	100℃					
Solder Temperature	260°C for 5 seconds [1.5 mm (0.06 in.) below seating plane]					

- 1. Derate linearly as shown in Figure 4a and 4b.
- 2. Drive Currents between 10 mA and 30 mA are recommended for best long term performance.
- 3. Operation at currents below 10 mA is not recommended, please contact your Hewlett-Packard sales representative.

Optical Characteristics at $T_A = 25$ °C

Part Number	Total Flux		φ _v (mlm) @ 70 mA ^[1] Min. Typ.		Peak Wavelength λ _{peak} (nm) Typ.	Color, Dominant Wavelength $\lambda_{\rm d}$ (nm)[2] Typ.	Total Included Angle $\theta_{0.90 \text{ V}}$ (Degrees)[3] Typ.	$\begin{tabular}{ll} Luminous \\ Intensity/\\ Total Flux \\ I_v (mcd)/\phi_v (mlm) \\ Typ. \end{tabular}$
HPWR-M300	500	800	655	643	95	0.7		
HPWA-MH00	500	1250	621	615	95	0.6		
HPWA-DH00					75	0.85		
HPWA-ML00	500	1250	592	590	95	0.6		
HPWA-DL00					75	0.85		
HPWT-MH00	990	2500	626	617	100	0.6		
HPWT-DH00					70	1.25		
HPWT-ML00	990	2500	594	592	100	0.6		
HPWT-DL00					70	1.25		

Notes:

- 1. ϕ_v is the total luminous flux output as measured with an integrating sphere.
- 2. The dominant wavelength is derived from the CIE Chromaticity Diagram and represents the color of the device.
- 3. $\theta_{0.90\ V}$ is the included angle at which 90% of the total luminous flux is captured.

Electrical Characteristics at $T_A = 25$ °C

			Reverse Breakdown V_R (Volts) @ $I_R = 100 \mu A$		$\label{eq:capacitance} \begin{split} & C \ (pF) \\ & V_F = 0, \\ & f = 1 \ MHz \end{split}$	Thermal Resistance Rθ _{J-PIN} (°C/W)	Speed of Response τ_s (ns)[1]	
Part Number	Min.	Тур.	Max.	Min.	Typ.	Тур.	Typ.	Typ.
HPWR-M300	2.01	2.25	2.75	10	20	20	155	45
HPWA-MH00/DH00	2.01	2.25	2.75	10	20	40	155	13
HPWA-ML00/DL00	2.01	2.25	2.75	10	20	40	155	13
HPWT-MH00/DH00	2.25	2.65	3.00	10	20	40	125	13
HPWT-ML00/DL00	2.25	2.65	3.00	10	20	40	125	13

^{1.} t_s is the time constant, $e^{-t/\tau s}$.

Figure 1. Relative Intensity vs. Wavelength.

Figure 2. Forward Current vs. Forward Voltage.

Figure 3a. HPWR-M300 Relative Luminous Flux vs. Forward Current.

Figure 3b. HPWA/HPWT-XX00 Relative Luminous Flux vs. Forward Current.

Figure 4a. HPWR-M300/HPWA-XX00 Maximum DC Forward Current vs. Ambient Temperature.

Figure 4b. HPWT-XX00 Maximum DC Forward Current vs. Ambient Temperature.

Figure 5a. HPWR-M300, HPWA-MX00 Relative Luminous Intensity vs. Off Axis Angle.

Figure 5b. HPWT-MX00 Relative Luminous Intensity vs. Off Axis Angle.

Figure 5c. HPWA-DX00 Relative Luminous Intensity vs. Off Axis Angle.

Figure 5d. HPWT-DX00 Relative Luminous Intensity vs. Off Axis Angle.

Figure 6a. HPWR-M300/HPWA-XX00 Percent Total Luminous Flux vs. Total Included Angle.

Figure 6b. HPWT-XX00 Percent Total Luminous Flux vs. Total Included Angle.

T-13/4 (5 mm) Precision Optical Performance AlInGaP LED Lamps

Technical Data

SunPower Series HLMA-CHXX/CJXX/ CLXX/CGXX HLMA-GHXX/GJXX/ GLXX/GGXX

Features

- Well Defined Spatial Radiation Patterns
- Viewing Angles: 8°, 15°
- High Luminous Output
- Colors: 590 nm Amber 605 nm Portland Orange 615 nm Reddish-Orange 622 nm Red
- High Operating Temperature: T_J LED = +130°C
- Superior Resistance to Moisture
- Four Package Options: With or Without Flange Base; With or Without Lead Stand-Offs

Benefits

- Viewing Angles Match Outdoor Sign Requirements
- Colors Meet Automotive and Pedestrian Signal Specifications
- Superior Performance in Outdoor Environments
- Suitable for Autoinsertion onto PC Boards

Applications

- Traffic Management: Pedestrian Signals Work Zone Warning Lights Variable Message Signs
- Commercial Outdoor Advertising: Signs Marquees
- Automotive: Exterior and Interior Lights

Description

These precision performance lamps utilize the absorbing substrate aluminum indium gallium phosphide (AS AlInGaP) LED technology. The luminous flux produced by AS AlInGaP technology provides sufficient light output for readability in sunlight. AS AlInGaP LED technology provides extremely stable light output over very long periods of time.

These LED lamps are untinted, nondiffused, T-13/4 packages incorporating second generation

optics producing well defined spatial radiation patterns at specific viewing cone angles.

These lamps are made with an advanced optical grade epoxy, offering superior high temperature and high moisture resistance performance in outdoor signal and sign applications. The high maximum LED junction temperature limit of +130°C enables high temperature operation in bright sunlight conditions. The package epoxy contains both uv-a and uv-b inhibitors to reduce the effects of long term exposure to direct sunlight.

These lamps are available in four package options to give the designer flexibility with device mounting.

Device Selection Guide

Part	Viewing Angle,	Color, Dominant	Inter	inous nsity, d), ^[1,2]	Total Flux,	Leads with		
Number	2θ ¹ /2 (Deg.), ^[5]	Wavelength,	, ,) mA	@ 20 mA,	Stand-	Flanged	Package
HLMA-	Тур.	λ_d (nm),[4] Typ.	Min.	Typ.	Тур.	Offs	Base	Drawing
CL20	8	Amber, 590	1600	4000	400	No	Yes	A
GL20	8	Amber, 590	1600	4000	400	No	No	В
CL22	8	Amber, 590	1600	4000	400	Yes	Yes	С
GL22	8	Amber, 590	1600	4000	400	Yes	No	D
CH20	8	Red-Orange, 615	1400	4000	300	No	Yes	A
GH20	8	Red-Orange, 615	1400	4000	300	No	No	В
CH22	8	Red-Orange, 615	1400	4000	300	Yes	Yes	C
GH22	8	Red-Orange, 615	1400	4000	300	Yes	No	D
CL15	15	Amber, 590	700	1700	400	No	Yes	Α
GL15	15	Amber, 590	700	1700	400	No	No	В
CL17	15	Amber, 590	700	1700 -	400	Yes	Yes	С
GL17	15	Amber, 590	700	1700	400	Yes	No	D .
CJ15 ^[6]	15	Orange, 605	500	1300	350	No	Yes	A
GJ15 ^[6]	15	Orange, 605	500	1300	350	No	No	В
CJ17 ^[6]	15	Orange, 605	500	1300	350	Yes	Yes	С
GJ17 ^[6]	15	Orange, 605	500	1300	350	Yes	No	D
CH15	15	Red-Orange, 615	500	1300	300	No	Yes	A
GH15	15	Red-Orange, 615	500	1300	300	No	No	В
CH17	15	Red-Orange, 615	500	1300	300	Yes	Yes	C
GH17	15	Red-Orange, 615	500	1300	300	Yes	No	D .
CG15	15	Red, 622	290	800	200	No	Yes	A
GG15	15	Red, 622	290	800	200	No	No	. B
CG17	15	Red, 622	290	800	200	Yes	Yes	C
GG17	15	Red, 622	290	800	200	Yes	No	D

- 1. The luminous intensity is measured on the mechanical axis of the lamp package.
- 2. The optical axis is closely aligned with the package mechanical axis.
- 3. ϕ_v is the total luminous flux output as measured by an integrating sphere.
- 4. The dominant wavelength, λ_d , is derived from the CIE Chromaticity Diagram and represents the color of the lamp.
- 5. $\theta_{1/2}$ is the off-axis angle where the luminous intensity is one half the on-axis intensity.
- 6. These 15°, Portland Orange lamps are specifically designed for use in the HAND symbol of pedestrian signals.

Package Dimensions

 \mathbf{C}

- 1. ALL DIMENSIONS ARE IN MILLIMETERS (INCHES).

- 1. ALL DIMENSIONS ARE IN MILLIMETERS (INCHES).

 2. LEADS ARE MILD STEEL, SOLDER DIPPED.

 3. TAPERS SHOWN AT TOP OF LEADS (BOTTOM OF LAMP PACKAGE) INDICATE AN EPOXY MENISCUS THAT MAY EXTEND ABOUT 1 mm (0.040 in.) DOWN THE LEADS.

 4. RECOMMENDED PC BOARD HOLE DIAMETERS:

 LAMP PACKAGES AND B WITHOUT STAND-OFFS: FLUSH MOUNTING AT BASE OF LAMP PACKAGES = 1.1437.067 (0.044/0.042).

 LAMP PACKAGES CAND D WITH STAND-OFFS: MOUNTING AT LEAD STAND-OFFS = 0.985/0.889 (0.038/0.035).

 5. FOR DOME HEIGHTS ABOVE LEAD STAND-OFF SEATING PLANE, d, LAMP PACKAGES C AND D, SEE TABLE.

5.00 ± 0.20

(0.197 ± 0.008)

8.71 ± 0.20 (0.343 ± 0.008)

1.14 ± 0.20 (0.045 ± 0.008)

(ф-ф)
2.54 ± 0.38 (0.100 ± 0.015)

PART NO.	d
HLMA-XX22	12.37 ± 0.25 (0.487 ± 0.010)
HLMA-XX17	12.42 ± 0.25 (0.489 ± 0.010)

Absolute Maximum Ratings at $T_A = 25$ °C

DC Forward Current ^[1,2,5,6]	50 mA
Peak Forward Current ^[2,3]	
Average Forward Current (at $I_{PEAK} = 100 \text{ mA}$, f	$f \ge 1 \text{ kHz})^{[3]} \dots 45 \text{ mA}$
Transient Forward Current (10 µs Pulse)[4]	500 mA
Reverse Voltage ($I_R = 100 \mu A$)	5 V
LED Junction Temperature	
Operating Temperature	40°C to +100°C
Storage Temperature	40°C to +120°C
Soldering Temperature	260°C for 5 seconds
[1.59 mm (0.060 in.) below seating plane]	

Notes:

- 1. Derate linearly as shown in Figure 4.
- For long term performance with minimal light output degradation, drive currents at or less than 30 mA are recommended.
- 3. Refer to Figure 5 for pulsed operating conditions.
- 4. The transient peak current is the maximum non-recurring pulse over a 10 µs duration that the device can withstand without damage to the LED die or wire bond.
- Drive currents between 10 mA and 30 mA are recommended for best long term performance.
- Operation at currents below 10 mA is not recommended, please contact your Hewlett-Packard sales representative.

Electrical/Optical Characteristics at $T_A = 25$ °C

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Forward Voltage	V_{F}		1.9	2.4	V	$I_F = 20 \text{ mA}$
Reverse Voltage	$V_{ m R}$	5	20		V	I _R 100 μA
Peak Wavelength:						
Amber ($\lambda_d = 590 \text{ nm}$)	$\lambda_{ ext{PEAK}}$		592		nm	Peak of Wavelength
Portland Orange ($\lambda_d = 605 \text{ nm}$)			609			Spectral Distribution
Red-Orange ($\lambda_d = 615 \text{ nm}$)			621			
Red ($\lambda_d = 622 \text{ nm}$)			630			
Spectral Halfwidth:						
Amber	$\Delta\lambda_{1/2}$		17		nm	Wavelength Width at
Portland Orange	_,_		17			Spectral Distribution
Red-Orange			18			¹ / ₂ Power Point
Red			20			
Speed of Response	$ au_{ m S}$		13		ns	Exponential Time
,						Constant, e ^{-t/} 's
Capacitance	C		40		pF	$V_F = 0$, $f = 1$ MHz
Thermal Resistance	Rθ _{J-PIN}		237		°C/W	LED Junction-to-
,						Cathode Lead
Luminous Efficacy[1]						
Amber	$\eta_{ m v}$		480		lm/W	Emitted Luminous
Portland Orange			370			Power/Emitted
Red-Orange			263		,	Radiant Power
Red			197			and the second s

^{1.} The radiant intensity, I_e , in watts per steradian, may be found from the equation $I_e = I_v/\eta_v$, where I_v is the luminous intensity in candelas and η_v is the luminous efficacy in lumens/watt.

Figure 1. Relative Intensity vs. Wavelength.

Figure 2. Forward Current vs. Forward Voltage.

Figure 3. Relative Luminous Intensity vs. Forward Current.

Figure 4. Maximum Forward Current vs. Ambient Temperature. Derating Based on $T_{JMAX}=130^{\circ}C$.

Figure 5. Maximum Average Current vs. Peak Forward Current.

Figure 6. Spatial Radiation Pattern for 8° Viewing Angle Lamps.

Figure 7. Spatial Radiation Pattern for 15° Viewing Angle Lamps.

T-13/4 (5 mm), T-1 (3 mm), High Performance AlInGaP LED Lamps

Technical Data

SunPower Series HLMA-CX00 Series HLMA-DX00 Series HLMA-KX00 Series HLMT-CX00 Series HLMT-DX00 Series

Features

- Outstanding LED Material Efficiency
- High Light Output over a Wide Range of Currents
- Low Electrical Power Dissipation
- CMOS/MOS Compatible
- Colors: 590/592 nm Amber, 615/617 nm and 622 nm Reddish-Orange
- · Variety of Packages Available

Applications

- Outdoor Message Boards
- Safety Lighting Equipment
- Signaling Applications
- Emitter for Emitter/ Detector Applications
- Changeable Message Signs
- Portable Equipment
- Medical Equipment
- Automotive Lighting
- Alternative to Incandescent Lamps

Description

These untinted, non-diffused, solid state lamps utilize the latest absorbing/transparent substrate aluminum indium gallium phosphide (AS/TS AlInGaP) LED technology. These materials have a very high luminous efficiency, capable of producing high light output over a wide range of drive currents. In addition, these LED lamps are at wavelengths ranging from amber to reddish orange and at viewing angles ranging from 7 to 45 degrees.

Package Dimensions

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETERS (INCHES).

2. THE LEADS ARE MILD STEEL, SOLDER DIPPED.

3. AN EPOXY MENISCUS MAY EXTEND ABOUT 1 MM (0.040")
DOWN THE LEADS, UNLESS OTHERWISE NOTED.

Absolute Maximum Ratings at $T_A = 25$ °C

(T-1 ³ /4 Package)	
DC Forward Current ^[1,4,5]	50 mA
Peak Forward Current ^[2]	200 mA
Time Average Input Power ^[2]	103 mW
Transient Forward Current ^[3] (10 µs Pulse)	500 mA
Reverse Voltage ($I_R = 100 \mu\text{A}$)	5 V
Operating Temperature Range	40 to 100°C
Storage Temperature	40 to 120℃
Junction Temperature	130℃
Soldering Temperature	. 260°C for 5 seconds
[1.59 mm (0.06 in.) below seating plane]

Notes:

- 1. Derate linearly as shown in Figure 4.
- 2. Any pulsed operation cannot exceed the Absolute Max Peak Forward Current or the Max Allowable Time Average Power as specified in Figure 5.
- The transient peak current is the maximum nonrecurring peak current the device can withstand without damaging the LED die and wire bonds.
- 4. Drive Currents between $\overline{10}$ and 30 mA are recommended for best long term performance.
- Operation at currents below 10 mA is not recommended, please contact your Hewlett-Packard sales representative.

- 1. Derate linearly as shown in Figure 4.
- Any pulsed operation cannot exceed the Absolute Max Peak Forward Current or the Max Allowable Time Average Power as specified in Figure 5.
- The transient peak current is the maximum nonrecurring peak current the device can withstand without damaging the LED die and wire bonds.
- Drive Currents between 10 mA and 30 mA are recommended for best long term performance.
- Operation at currents below 10 mA is not recommended, please contact your Hewlett-Packard sales representative.

Optical Characteristics at $T_A = 25$ °C

TS-AlInGaP T-13/4

Part Number	Luminous Intensity I_V (mcd) @ 20 mA $^{[1]}$		Intensity I _V (mcd) @ 20 mA ^[1]		Peak Wavelength λ _{peak} (nm)	Color, Dominant Wavelength $\lambda_d^{[2]}$ (nm)	Viewing Angle $2\theta^{1/2}$ Degrees[3]	Luminous Efficacy η _v	Package
HLMT-	Min.	Тур.	Typ.	Typ.	Тур.	(lm/w)	Drawing		
CL00 ^[1]	2600	8300	594	592	8	480	A		
CH00 ^[1]	2900	9000	623	617	8	263			
DL00 ^[4]	450	1500	594	592	24	480	В		
DH00 ^[4]	500	1800	623	617	24	263			

Notes:

- 1. The luminous intensity, I_V , is measured at the peak of the spatial radiation pattern which may not be aligned with the mechanical axis of the lamp package.
- 2. The dominant wavelength, λ_d , is derived from the CIE Chromaticity Diagram and represents the color of the device.
- 3. $\theta_{1/2}$ is the off-axis angle where the luminous intensity is 1/2 the peak intensity.
- 4. The luminous intensity, I_v, is measured at the mechanical axis of the lamp package. The actual peak of the spatial radiation pattern may not be aligned with this axis.

AS-AlInGaP T-13/4

Part Number HLMA-	Luminous Intensity I _V (mcd) @ 20 mA ^[1] Min. Typ.		Peak Wavelength \(\lambda_{\text{peak}}\) (nm) Typ.	$\begin{array}{c} \textbf{Color,}\\ \textbf{Dominant}\\ \textbf{Wavelength}\\ \lambda_d^{[2]} \ (\textbf{nm})\\ \textbf{Typ.} \end{array}$	Viewing Angle $2\theta^1/2$ Degrees[3] Typ.	Luminous Efficacy η _v (lm/w)	Package Drawing
CL00 ^[1]	1000	3500	592	590	7	480	A
CH00 ^[1]	1000	3500	621	615	7	263	
DL00 ^[4]	300	800	592	590	24	480	В
DH00 ^[4]	290	600	621	615	24	263	
DG00 ^[4]	290	500	630	622	24	197	

Notes:

- 1. The luminous intensity, I_V, is measured at the peak of the spatial radiation pattern which may not be aligned with the mechanical axis of the lamp package.
- 2. The dominant wavelength, λ_d , is derived from the CIE Chromaticity Diagram and represents the color of the device.
- 3. $\theta_{1/2}$ is the off-axis angle where the luminous intensity is 1/2 the peak intensity.
- 4. The luminous intensity, I_v, is measured at the mechanical axis of the lamp package. The actual peak of the spatial radiation pattern may not be aligned with this axis.

AS-AlInGaP T-1

Part Number HLMA-	Inte I _V (1	inous nsity ncd) mA ^[1] Typ.	Peak Wavelength λ _{peak} (nm) Typ.	$\begin{array}{c} \textbf{Color,} \\ \textbf{Dominant} \\ \textbf{Wavelength} \\ \lambda_d^{[2]} \text{ (nm)} \\ \textbf{Typ.} \end{array}$	Viewing Angle $2\theta^{1/2}$ Degrees ^[3] Typ.	Luminous Efficacy $\eta_{\rm v}$ (lm/w)	Package Drawing
KL00	35	200	592	590	45	480	C
KH00	35	200	621	615	45	263	

- 1. The luminous intensity, I_{ν} , is measured at the mechanical axis of the lamp package. The actual peak of the spatial radiation pattern may not be aligned with this axis.
- 2. The dominant wavelength, λ_d , is derived from the CIE Chromaticity Diagram and represents the color of the device.
- 3. $\theta_{1/2}$ is the off-axis angle where the luminous intensity is 1/2 the peak intensity.

Electrical Characteristics at $T_A = 25\,^{\circ}\!\mathrm{C}$ TS-AlInGaP T-1 $^{3/4}$

Part Number HLMT-	Vol: V _F (V	ward tage /olts) : 20 mA Max.	$\begin{tabular}{ll} Reverse \\ Breakdown \\ V_R \ (Volts) \\ @ \ I_R = 100 \ \mu A \\ Min. \ \ Typ. \\ \end{tabular}$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Thermal Resistance R _{J-PIN} (°C/W)	$\begin{array}{c} \textbf{Speed of} \\ \textbf{Response} \\ \tau_{\mathbf{s}} \ (\textbf{ns}) \\ \textbf{Time Constant} \\ e^{-t/\tau \mathbf{s}} \\ \textbf{Typ.} \end{array}$
CL00	2.0	2.4	5	25	70	210	13	
CH00	2.0	2.4	5	25	70	210	13	
DL00	2.0	2.4	5	25	70	260	13	
DH00	2.0	2.4	5	25	70	260	13	

AS-AlInGaP T-13/4

Part Number HLMA-	Vol V _F (V	ward tage Volts) = 20 mA Max.	$\begin{tabular}{ll} Reverse \\ Breakdown \\ V_R \ (Volts) \\ @ \ I_R = 100 \ \mu A \\ Min. \ \ Typ. \\ \end{tabular}$		$\label{eq:Capacitance} \begin{split} & Capacitance \\ & C \ (pF) \\ & V_F = 0, \\ & f = 1 \ MHz \\ & Typ. \end{split}$	Thermal Resistance Rθ _{J-PIN} (°C/W)	$\begin{array}{c} \textbf{Speed of} \\ \textbf{Response} \\ \tau_{s} \ (\textbf{ns}) \\ \textbf{Time Constant} \\ e^{-t/\tau s} \\ \textbf{Typ.} \end{array}$
CL00	1.9	2.4	5	25	40	210	13
CH00	1.9	2.4	5	25	40	210	13
DL00	1.9	2.4	5	25	40	260	13
DH00	1.9	2.4	5	25	40	260	13
DG00	1.9	2.4	5	25	40	260	13

AS-AlInGaP T-1

Part Number HLMA-	Vol V _F (V	ward tage /olts) : 20 mA Max.	Breal V _R (verse kdown Volts) 100 μΑ Τyp.	Capacitance $C (pF)$ $V_F = 0,$ $f = 1 MHz$ $Typ.$	Thermal Resistance R _{J-PIN} (°C/W)	$\begin{array}{c} \textbf{Speed of} \\ \textbf{Response} \\ \tau_{\textbf{s}} \ (\textbf{ns}) \\ \textbf{Time Constant} \\ e^{-t/\tau \textbf{s}} \\ \textbf{Typ.} \end{array}$
KL00	1.9	2.4	5	25	40	290	13
KH00	1.9	2.4	5	25	40	290	13

Figure 1. Relative Intensity vs. Wavelength.

Figure 2a. Forward Current vs. Forward Voltage, AS-AlInGaP.

Figure 2b. Forward Current vs. Forward Voltage, TS-AlInGaP.

Figure 3. Relative Luminous Intensity vs. Forward Current. Derating Based on T,MAX.

Figure 4a. Maximum DC Current vs. Ambient Temperature for AS T-1³/4 Lamps. Derating Based on T,MAX = 130°C.

Figure 4b. Maximum DC Current vs. Ambient Temperature for TS T-1³/4 Lamps. Derating Based on T₃MAX = 130°C.

Figure 4c. Maximum Forward Current vs. Ambient Temperature for T-1 Lamps. Derating Based on $T_1Max=110\ {\rm ^{\circ}C}$.

Figure 5. Maximum Average Current vs. Peak Forward Current.

Figure 6. Normalized Luminous Intensity vs. Angular Displacement, HLMT-CH00/CL00.

Figure 7. Normalized Luminous Intensity vs. Angular Displacement, HLMA-DG00/-DH00/-DL00.

Figure 8. Normalized Luminous Intensity vs. Angular Displacement, HLMA-KH00/-KL00.

T-13/4 (5 mm) High Performance TS AlGaAs Red LED Lamps

Description

These T-13/4, untinted. nondiffused lamps utilize a

technology, transparent

highly optimized LED material

LED technology has a very high

producing high light output over

luminous efficiency, capable of

a wide range of drive currents

(500 µA to 50 mA). The color is

a flip-chip LED technology, die attached to the anode lead and wire bonded to the cathode lead.

deep red at a dominant wavelength of 644 nm. TS AlGaAs is

substrate aluminum gallium

arsenide (TS AlGaAs). This

Technical Data

HLMP-810X Series HLMP-C100 HLMP-C110

Features

- Exceptional Brightness
- Outstanding LED Material **Efficiency**
- High Light Output Over a Wide Range of Drive Currents
- Viewing Angle: Narrow or Wide
- Low Forward Voltage
- Low Power Dissipation
- CMOS/MOS Compatible
- Red Color

Package Dimensions

11.3 ± 0.5 (0.445 ± 0.020) 1.17 ± 0.15 (0.046 ± 0.006) 0.64 SQUARE (0.025) NOMINAL

HLMP-8102/-8103

HLMP-C100/-C110

HLMP-8100

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETERS/INCHES.
2. THE LEADS ARE MILLD STEEL, SOLDER DIPPED.

3. AN EPOXY MENISCUS MAY EXTEND ABOUT 1 mm (0.040") DOWN THE LEADS, UNLESS OTHERWISE NOTED.

Axial Luminous Intensity and Viewing Angle at T_A = 25°C

Part Number HLMP-	Minimum Intensity (mcd) @ 20 mA	Typical Intensity (mcd) @ 20 mA	Typical Radiant Intensity (mW/sr) @ 20 mA	2θ ¹ / ₂ [1] Degrees
8103	2000	3000	35.3	7
8102	1400	2000	23.5	7
8100	290	1000	11.8	19
C100	290	750	8.8	30
C110	200	400	4.7	40

 $1. \theta 1/2$ is the off axis angle from optical centerline where the luminous intensity is 1/2 the on-axis value.

Absolute Maximum Ratings at $T_A = 25^{\circ}C$

Peak Forward Current ^[2]	300 mA
Average Forward Current (@ I _{PEAK} = 300 mA) [1,2] 30 mA
DC Forward Current ^[3]	50 mA
Power Dissipation	100 mW
Reverse Voltage (I _R =100 μA)	5 V
Transient Forward Current (10 µs Pulse)[4]	500 mA
Operating Temperature Range	55 to +100°C
Storage Temperature Range	55 to +100°C
LED Junction Temperature	110°C
Lead Soldering Temperature	
[1.6 mm (0.063 in.) from body]	260°C for 5 seconds

- 1. Maximum I_{AVG} at f = 1 kHz, DF = 10%.

- 2. Refer to Figure 6 to establish pulsed operating conditions.
 3. Derate linearly as shown in Figure 5.
 4. The transient peak current is the maximum non-recurring peak current the device can withstand without damaging the LED die and wire bonds. It is not recommended that the device be operated at peak currents above the Absolute Maximum Peak Forward Current.

Electrical/Optical Characteristics at $T_A = 25$ °C

Description	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Forward Voltage	V_{F}		1.85	2.4	V	$I_F = 20 \text{ mA}$
Reverse Voltage	V_{R}	5.0	20.0		V	$I_R = 100 \mu A$
Peak Wavelength	$\lambda_{ ext{PEAK}}$		654		nm	
Dominant Wavelength ^[1]	$\lambda_{ m d}$		644		nm	19
Spectral Line Halfwidth	Δλ1/2		18		nm	
Speed of Response	$ au_{ m S}$		45		ns	Exponential Time Constant, e ^{-t/τ}
Capacitance	C		20		pF	$V_F = 0$, $f = 1$ MHz
Thermal Resistance HLMP-810X	$ m R heta_{J ext{-PIN}}$		210		°C/W	Junction-to-Anode Lead
HLMP-C1X0			237			
Luminous Efficacy ^[2]	η_{v}		85		lm/W	

Notes: 1. The dominant wavelength, λ_d , is derived from the CIE chromaticity diagram and represents the color of the device. 2. The radiant intensity, I_e , in watts per steradian, may be found from the equation $I_e = I_V/\eta_V$, where I_V is the luminous intensity in candelas and η_V is luminous efficacy in lumens/watt

Figure 1. Relative Intensity vs. Wavelength.

VF - FORWARD VOLTAGE - V

Figure 2. Forward Current vs. Forward Voltage.

Figure 3. Relative Luminous Intensity vs. DC Forward Current.

Figure 4. Relative Efficiency vs. Peak Forward Current.

Figure 5. Maximum Forward DC Current vs. Ambient Temperature. Derating Based on TJMAX = 110°C.

Figure 6. Maximum Average Current vs. Peak Forward Current.

Figure 7. Relative Luminous Intensity vs. Angular Displacement. HLMP-8103 and HLMP-8102.

Figure 8. Relative Luminous Intensity vs. Angular Displacement. HLMP-8100.

Figure 9. Relative Luminous Intensity vs. Angular Displacement. HLMP-C100.

Figure 10. Relative Luminous Intensity vs. Angular Displacement. HLMP-C110.

T-13/4 (5 mm), T-1 (3 mm), High Performance, Tinted, Diffused, AlInGaP, and TS AlGaAs Red LED Lamps

Technical Data

HLMA-DX05 Series HLMA-KX05 Series HLMP-D1XX Series HLMP-J100/J150 Series

Features

- High Light Output Over a Wide Range of Currents
- Popular T-1 and T-1 ³/₄ Packages
- Choice of Three Colors Amber Reddish-Orange Deep Red
- Wide Viewing Angles
- Long Life: Solid State Technology
- · Available on Tape and Reel

Applications

- Outdoor Message Boards
- Automotive Lighting
- Portable Equipment
- Medical Equipment
- Changeable Message Signs

Description

The HLMA-D/KXXX series tinted, diffused, solid state lamps utilize the newly developed aluminum indium gallium phosphide (AlInGaP) LED technology. This technology has a very high luminous efficiency, capable of producing high light output over a wide range of drive currents. These LED lamps are available with a choice of two colors, 592

nm amber and 615 nm reddishorange, and with two viewing angles, 65° and 60°.

The HLMP-D/JXXX series tinted, diffused solid state lamps utilize the highly optimized transparent substrate aluminum gallium arsenide (TS AlGaAs) LED technology. This technology has a very high luminous efficiency,

Device Selection Guide

Package Description	Viewing Angle 201/2	Amber $\lambda_d = 592 \text{ nm}$	Reddish- Orange $\lambda_d = 615 \text{ nm}$	Deep Red $\lambda_d = 644 \text{ nm}$	Package Outline
T-13/4 (5 mm), Tinted, Diffused, Standard Current	65°	HLMA- DL05	HLMA- DH05		A
T-1 (3 mm), Tinted, Diffused, Standard Current	60°	HLMA- KL05	HLMA- KH05		В
T-1¾ (5 mm), Tinted, Diffused, Standard Current	40°			HLMP- D115	A
T-1¾ (5 mm), Tinted, Diffused, Standard Current	25°			HLMP- D120	A
T-1 (3 mm), Tinted, Diffused, Standard Current	55°			HLMP- J100	С
T-1 (3 mm), Tinted, Diffused, Diffused, Low Current	55°			HLMP- J150	С

capable of producing high light output over the wide range of drive currents from $500~\mu A$ to 50~mA. The color is deep red at a

dominant wavelength of 644 nm. TS AlGaAs is a flip-chip LED technology, die attached to the anode lead and wire bonded to

the cathode lead. Available viewing angles are 25°, 40°, and 55°.

HLMA-DL05/DH05/Kl05/KH05 AlInGaP Lamps Absolute Maximum Ratings at $T_A = 25$ °C

Parameter	HLMA- DL05	HLMA- DH05	HLMA- KL05	HLMA- KH05	Units	
DC Forward Current ^[1,3,4]	50	50	50	50	mA	
Peak Forward Current ^[2]	200	200	200	200	mA	
Average Input Power ^[2]	103	103	103	103	mW	
Reverse Voltage ($I_R = 100 \mu A$)	5	5	. 5	5	v	
Operating Temperature Range	-40 to +100	-40 to +100	-40 to +100	-40 to +100	°C	
Storage Temperature Range	-55 to +100	-55 to +100	-55 to +100	-55 to +100	. ℃	
Junction Temperature		1	10		C	
Soldering Temperature [1.59 mm (0.06 in.) below seating plane]	260°C for 5 second					

- 1. Derate linearly as shown in Figure 4.
- 2. Any pulsed operation cannot exceed the Absolute Max Peak Forward current as specified in Figure 5.
- 3. Drive currents between 10 mA and 30 mA are recommended for best long term performance.
- 4. Operation at currents below 10 mA is not recommended, please contact your Hewlett-Packard sales representative.

Optical Characteristics at $T_A = 25$ °C

Part Number HLMA-	$\begin{array}{c c} \textbf{Luminous} \\ \textbf{Intensity} \\ \textbf{I_V} (\textbf{mcd}) \\ @ \textbf{20 mA}^{[1]} \\ \textbf{Min.} & \textbf{Typ.} \end{array}$		Peak Wavelength λ _{peak} (nm) Typ.	Color, Dominant Wavelength $\lambda_d^{[2]}$ (nm) Typ.	Viewing Angle $2 \theta^{1/2}$ Degrees ^[3] Typ.	Luminous Efficacy η _v (lm/w)
DL05	35	100	594	592	65	480
DH05	35	100	621	615	65	263
KL05	35	100	594	592	60	480
KH05	35	100	621	615	60	263

Notes:

- 1. ϕ_v is the total luminous flux output as measured with an integrating sphere.
- 2. The dominant wavelength, λ_d , is derived from the CIE Chromaticity Diagram and represents the color of the device.
- 3. $\theta^{1/2}$ is the off-axis angle where the luminous intensity is 1/2 the peak intensity.

Electrical Characteristics at $T_A = 25$ °C

Part Number HLMA-	Volt V _F (V	vard tage folts) 20 mA	Break V _R (V	erse down olts) 100 µA Typ.	Capacitance C (pF) $V_F = 0$, $f = 1 \text{ mHz}$ Typ.	Thermal Resistance Rθ _{J-PIN} (°C/W)	Speed of Response ts (ns) Time Constant e-t/ts Typ.
DL05	1.9	2.4	5	25	60	260	13
DH05	1.9	2.4	5	25	60	260	13
KL05	1.9	2.4	5	25	60	290	13
KH05	1.9	2.4	5	25	60	290	13

Figure 1. Relative Intensity vs. Wavelength.

Figure 2. Forward Current vs. Forward Voltage.

Figure 3. Relative Luminous Intensity vs. Forward Current.

Figure 4. Maximum Forward Current vs. Ambient Temperature. Derating Based on $T_{\rm J}$ Max = $110\,^{\circ}{\rm C}.$

Figure 5. Maximum Average Current vs. Peak Forward Current.

Figure 6. Spatial Radiation Pattern for HLMA-DL05/DH05 65° Lamps.

Figure 7. Spatial Radiation Pattern for HLMA-KL05/KH05 60° Lamps.

HLMP-D115/D120/J100/J150 TS AlGaAs Red Lamps Absolute Maximum Ratings at $T_A = 25\,^{\circ}\text{C}$

Parameter	HLMP- D115	HLMP- D120	HLMP- J100	HLMP- J150	Units	
DC Forward Current ^[1]	50	50	50	50	mA	
Peak Forward Current ^[2]	300	300	300	300	mA	
Average Input Power ^[2]	100	100	100	100	mW	
Reverse Voltage ($I_R = 100 \mu A$)	5	5	5	5	V	
Operating Temperature Range	-55 to +100	-55 to +100	-55 to +100	-55 to +100	°C	
Storage Temperature Range	-55 to +100	-55 to +100	-55 to +100	-55 to +100	°C	
Junction Temperature			110		°C	
Soldering Temperature [1.59 mm (0.06 in.) below seating plane]	260°C for 5 second					

Notes:

- 1. Derate linearly as shown in Figure 12.
- 2. Any pulsed operation cannot exceed the Absolute Max Peak Forward current as specified in Figure 13.

Optical Characteristics at $T_A = 25$ °C

Part Number HLMP-			Wavelength λ _{peak} (nm)	Color, Dominant Wavelength $\lambda_d^{[2]}$ (nm) Typ.	Viewing Angle $2~\theta_{1/2}$ Degrees ^[3] Typ.	Luminous Efficacy η _ν (lm/w)
D115	138	250	654	644	40	85
D120	138	350	654	644	25	85
J100	39	175	654	644	55	85
J150	1.3	3.0	654	644	55	85

Notes:

- $1.\;\phi_v$ is the total luminous flux output as measured with an integrating sphere.
- 2. The dominant wavelength, λ_d , is derived from the CIE Chromaticity Diagram and represents the color of the device.
- 3. $\theta_{1/2}$ is the off-axis angle where the luminous intensity is 1/2 the peak intensity.

Electrical Characteristics at $T_A = 25$ °C

Part Number	Volt V _F (V @ I _F =	ward tage Volts) 20 mA	Reverse Breakdown V_R (Volts) @ $I_R = 100 \mu A$		$\label{eq:capacitance} \begin{split} & C \ (pF) \\ & V_F = 0 \\ & f = 1 \ mHz \end{split}$	Thermal Resistance	Speed of Response ts (ns) Time Constant e-t/ts
HLMP-	Min.	Тур.	Min.	Тур.	Тур.	Rθ _{J-PIN} (°C/W)	Тур.
D115	1.85	2.4	5	20	20	260	45
D120	1.85	2.4	5	20	20	260	45
J100	1.85	2.4	5	20	20	290	45
J150	1.6	1.9	5	20	20	290	45

Figure 8. Relative Intensity vs. Wavelength.

Figure 9. Forward Current vs. Forward Voltage.

Figure 10. Relative Luminous Intensity vs. DC Forward Current.

Figure 11. Relative Efficiency vs. Peak Forward Current.

Figure 12. Maximum Forward Current vs. Ambient Temperature. Derating Based on T_J Max = 110°C.

Figure 13. Maximum Average Current vs. Peak Forward Current.

Figure 14. Spatial Radiation Pattern for 40° HLMP-D115 Lamp.

Figure 15. Spatial Radiation Pattern for 25° HLMP-D120 Lamp.

Figure 16. Spatial Radiation Pattern for 55° HLMP-J100-J150 Lamps.

T-13/4 (5 mm), Wide Viewing Angle, High Intensity LED Lamps

Technical Data

HLMA-VH00 HLMA-VL00 HLMP-V100 HLMP-V500

Features

- Outstanding LED Material Efficiency
- Extremely Wide Horizontal Viewing Angle
- High Light Output over a Wide Range of Currents
- Untinted, Non-diffused Lens
- Choice of Four Colors: 644 nm Red, 590 nm Amber, 570 nm Green, and 615 nm Orange

Description

These high intensity LED lamps provide the user with an extremely wide 60° (horizontal) by 30° (vertical) oval shaped radiation pattern. Available in TS AlGaAs red, AlInGaP amber, AlInGaP orange, and GaP green colors, these untinted non-diffused T-1³/4 (5 mm) LEDs are an excellent choice for outdoor applications requiring an extremely wide field of vision and high brightness.

Applications

- Outdoor Message Boards
- Safety Lighting Equipment
- Changeable Message Signs
- Alternative to Incandescent Lamps

Outline Drawing

 5.59 ± 0.25

Device Selection Guide

Amber $\lambda_d = 590 \text{ nm}$	$\begin{array}{c} \textbf{Red-Orange} \\ \lambda_{d} = 615 \ \textbf{nm} \end{array}$	$\begin{array}{c} \text{Red} \\ \lambda_{\text{d}} = 644 \text{ nm} \end{array}$	Green $\lambda_d = 570 \text{ nm}$
HLMA-VL00	HLMA-VH00	HLMP-V100	HLMP-V500

NOTES:

1. LEAD ORIENTATION:

DEVICE TYPE	CENTER LEAD	OUTER LEADS
HLMP-V100	COMMON ANODE	CATHODE
HLMP-V500	COMMON CATHODE	ANODE
HLMA-VL00	COMMON CATHODE	ANODE
HLMA-VH00	COMMON CATHODE	ANODE

2. ALL DIMENSIONS ARE IN MM (INCHES).

Absolute Maximum Ratings at $T_A = 25$ °C

Parameter	HLMA-VL00	HLMA-VH00	HLMP-V100	HLMP-V500	Units
DC Forward Current ^[1,3]	60[4,5]	60[4,5]	60	50	mA
Peak Forward Current ^[2,3]	400	400	600	180	mA
Average Input Power ^[2]	120	120	120	110	mW
Reverse Voltage ($I_R = 200 \mu A$)	5	5	5	5	V
Operating Temperature Range	-40 to +100	-40 to +100	-55 to +85	-20 to +100	°C
Storage Temperature Range	-55 to +100	-55 to +100	-55 to +100	-55 to +100	°C
Junction Temperature		1	10		℃
Soldering Temperature [1.59 mm (0.06 in.) below seating plane]		260	°C for 5 seconds	5	

Notes:

- 1. Derate linearly as shown in Figure 5.
- 2. Any pulsed operation cannot exceed the Absolute Max Peak Forward Current or the Max Allowable Average Power as specified in
- 3. Specified with both die powered simultaneously.
- 4. Drive Currents between 10 mA and 30 mA are recommended for best long term performance.
- 5. Operation at currents below 10 mA is not recommended, please contact your Hewlett-Packard sales representative.

Optical Characteristics at $T_A = 25$ °C

Part Number	Inte I _V (r	inous nsity ncd) mA ^[1] Typ.	Peak Wavelength λ _{peak} (nm) Typ.	Color, Dominant Wavelength $\lambda_d^{[2]}$ (nm) Typ.	Viewing Angle 2θ ¹ /2 Degrees ^[3] Typ.	Luminous Efficacy η_V (lm/w)
HLMA-VL00	212	460	592	590	60° horizontal	480
HLMA-VH00	200	460	621	615	30° vertical	263
HLMP-V100	500	1000	654	644	60° horizontal 30° vertical	85
HLMP-V500	112	270	568	570	60° horizontal 30° vertical	595

Notes:

- $1. \ The \ luminous \ intensity, \ I_V, \ is \ measured \ at \ the \ mechanical \ axis \ of \ the \ lamp \ package. \ The \ actual \ peak \ of \ the \ spatial \ radiation \ pattern \ p$ may not be aligned with this axis.
- The dominant wavelength, λ_d , is derived from the CIE Chromaticity Diagram and represents the color of the device. 3. 2 $\theta_{1/2}$ is the off-axis angle where the luminous intensity is 1/2 the on-axis intensity.

Electrical Characteristics at $T_A = 25$ °C

Part Number	$\begin{tabular}{ll} Forward \\ Voltage \\ V_F \mbox{ (Volts)} \\ \begin{tabular}{ll} @ I_F = 40 \mbox{ mA} \\ \mbox{ Typ.} & \mbox{ Max.} \\ \end{tabular}$		$\begin{tabular}{ll} Reverse \\ Breakdown \\ V_R \mbox{ (Volts)} \\ \mbox{$@$ I_R = 200 μA} \\ \mbox{Min.} \end{tabular}$	$\label{eq:continuous} \begin{split} & C \ (pF) \\ & C \ (pF) \\ & V_F = 0, \\ & f = 1 \ MHz \\ & Typ. \end{split}$	Thermal Resistance R0 _{J-PIN} (°C/W)	$\begin{array}{c} \text{Speed of Response} \\ \tau_s \text{ (ns)} \\ \text{Time Constant} \\ \text{e}^{\text{-t/rs}} \\ \text{Typ.} \end{array}$
HLMA-VL00	1.90	2.4	5	120	100	13
HLMA-VH00	1.90	2.4	5	120	100	13
HLMP-V100	1.85	2.4	5	50	115	26
HLMP-V500	2.20	3.0	5	20	100	171

Figure 2a. Forward Current vs. Forward Voltage, HLMA-VL00/VH00.

Figure 2b. Forward Current vs. Forward Voltage, HLMP-V100.

Figure 2c. Forward Current vs. Forward Voltage, HLMP-V500.

Figure 3. Relative Luminous Intensity vs. Forward Current.

Figure 4a. Relative Efficiency vs. Peak Forward Current, HLMA-VL00/VH00.

Figure 4b. Relative Efficiency vs. Peak Forward Current, HLMP-V100.

Figure 4c. Relative Efficiency vs. Peak Forward Current, HLMP-V500.

Figure 5a. Maximum Forward DC Current vs. Ambient Temperature, HLMA-VL00/VH00.

Figure 5b. Maximum Forward DC Current vs. Ambient Temperature, HLMP-V100.

Figure 5c. Maximum Forward DC Current vs. Ambient Temperature, HLMP-V500.

Figure 6a. Maximum Allowable Average Power vs. Ambient Temperature, HLMA-VL00/VH00.

Figure 6b. Maximum Allowable Average Power vs. Ambient Temperature, HLMP-V100.

Figure 6c. Maximum Allowable Average Power vs. Ambient Temperature, HLMP-V500.

Figure 7a. Relative Intensity vs. Angle, HLMA-VL00/VH00 Horizontal Axis.

Figure 7b. Relative Intensity vs. Angle, HLMA-VL00/VH00 Vertical Axis.

Figure 8a. Relative Intensity vs. Angle, HLMP-V100 Horizontal Axis.

Figure 8b. Relative Intensity vs. Angle, HLMP-V100 Vertical Axis.

Figure 9a. Relative Intensity vs. Angle, HLMP-V500 Horizontal Axis.

Figure 9b. Relative Intensity vs. Angle, HLMP-V500 Vertical Axis.

T-13/4 (5 mm) SiC Blue LED Lamps

Technical Data

HLMP-DB00 HLMP-DB15

Features

- Silicon Carbide Technology
- 481 nm Blue Color
- Viewing Angles: Narrow and Wide
- CMOS/MOS Compatible

Applications

- Moving Message Signs
- Automotive Interior Lighting
- Front Panel Status Indicator
- Medical Instrumentation

Description

These untinted diffused and nondiffused T-1³/4 LED blue lamps utilize single crystal silicon carbide technology. The color is an 80% saturated blue with a dominant wavelength of 481 nanometers. The HLMP-DB00 is a 38 degree cone angle diffused lamp for use in moving message panel signs or as a front panel indicator. The HLMP-DB15 is a nondiffused lamp with a 15 degree cone angle that may be used for backlighting legends or as a blue wavelength emitter.

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS (INCHES). 2. THE LEADS ARE MILD STEEL, SOLDER DIPPED.
- 2. THE LEADS ARE MILD STEEL, SOLDER DIPPED.

 3. AN EPOXY MENISCUS MAY EXTEND ABOUT 1 mm (0.040") DOWN THE LEADS.

HLMP-DB15

HLMP-DB00

Absolute Maximum Ratings at $T_A = 25$ °C

DC Forward Current ^[1]	50 mA
Peak Forward Current ^[2]	
Average Forward Current (@ $I_{PEAK} = 100 \text{ mA}$, $f = 1 \text{ KHz}$) ^[2]	40 mA
LED Junction Temperature	110°C
Transient Forward Current (10 µs Pulse)[3]	500 mA
Reverse Voltage ($I_R = 100 \mu\text{A}$)	
Operating Temperature Range	55 to 85℃
Storage Temperature Range	55 to 100°C
Lead Soldering Temperature (1.59 mm [0.063 in.] from body)	260°C for 5 seconds

Notes:

- 1. Derate linearly as shown in Figure 5.
- 2. Refer to Figure 6 to establish pulsed operating conditions.
- 3. The transient peak current is the maximum non-recurring peak current the device can withstand without damaging the LED die and wire bonds. Operating the device at peak currents above the absolute Maximum Peak Forward Current is not recommended.

Optical Characteristics at $T_A = 25$ °C

Part Number HLMP-	Inte I _v (1	inous nsity mcd) 0 mA ^[1] Typ.	Radiant Intensity I _e (µW/sr) @ 20 mA Typ.	Total Flux \$\phi_{v}\$ (mlm) @ 20 mA ^[2] Typ.	Color, Dominant Wavelength $\lambda_d^{[3]}$ (nm) Typ.	Peak Wavelength λ _{PEAK} (nm) Typ.	Viewing Angle $2\theta^{1/2}$ Degrees ^[4] Typ.
DB00	1.0	3.0	23.1	2.0	480	470	38
DB15	6.3	12.0	93.3	2.0	480	470	15

Notes:

- 1. The luminous intensity, I_{v} , is measured at the peak of the spatial radiation pattern which may not be aligned with the geometric axis of the lamp package.
- $2.\ \phi_v$ is the total luminous flux output as measured with an integrating sphere.
- 3. The dominant wavelength, λ_d , is derived from the CIE Chromaticity Diagram and represents the color of the device.
- 4. $\theta_{1/2}$ is the off-axis angle where the luminous intensity is 1/2 the peak intensity.

Electrical Characteristics at $T_A = 25$ °C

Volt V _F (V	ward tage Jolts) 20 mA Max.	Revo Break V _R (V @ I _R = Min.	down olts)	$\begin{array}{c} \text{Speed of Response} \\ \tau_s \text{ (ns)} \\ \text{Time Constant} \\ e^{\text{-t}/\tau}_s \\ \text{Typ.} \end{array}$	$\label{eq:capacitance} \begin{split} & C \ (pF) \\ & V_F = 0, \\ & f = 1 \ MHz \\ & Typ. \end{split}$	Thermal Resistance Rθ _{J-PIN} (°C/W) Junction to Cathode Lead
3.5	4.0	5.0	45.0	500	97	260

Figure 1. Relative Intensity vs. Wavelength.

Figure 2. Forward Current vs. Forward Voltage.

Figure 3. Relative Luminous Intensity vs. dc Forward Current.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 5. Maximum dc Current vs. Ambient Temperature. Derating Based on T_J Max. = 110 $^{\circ}$ C.

Figure 6. Time Average Current vs. Peak Forward Current as a Function of Pulsed Refresh Rate, f (Hz).

Figure 7. Normalized Luminous Intensity vs. Angular Displacement, ${\it HLMP-DB00}$.

Figure 8. Normalized Luminous Intensity vs. Angular Displacement HLMP-DB15.

T-1³/₄ (5 mm), T-1 (3 mm), High Intensity, Double Heterojunction AlGaAs Red LED Lamps

Technical Data

HLMP-D101/D105 HLMP-K101/K105

Features

- Exceptional Brightness
- Wide Viewing Angle
- Outstanding Material Efficiency
- Low Forward Voltage
- CMOS/MOS Compatible
- TTL Compatible
- Deep Red Color

Applications

- Bright Ambient Lighting Conditions
- Moving Message Panels
 Package Dimensions

• General Use

• Portable Equipment

Description
These solid state LED lamps utilize newly developed double heterojunction (DH) AlGaAs/GaAs material technology. This LED material has outstanding light output efficiency over a wide range of drive currents. The color is deep red at the dominant wavelength of 637 nanometres. These lamps may be DC or pulse driven to achieve desired light

output.

5.06 (0.200) 4.57 (0.180) 9.19 (0.362) 8.43 (0.332) 0.89 (0.025) 0.64 (0.025) 0.45 (0.018) SQUARE NOMINAL 1.27 (0.050) NOM. 1.27 (0.050) 0.45 (0.025) 0.45 (0.025)

NOTES: A

1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).

2. AN EPOXY MINISCUS MAY EXTEND ABOUT

1 mm (0.040") DOWN THE LEADS.

1-66

12.44 (_480)
11.68 (_480)
11.68 (_480)
11.68 (_480)
11.15 (_045)
0.88 (_035)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0.64 (_025)
0

В

Axial Luminous Intensity and Viewing Angle @ 25°C

Part Number			I _v (mcd) @ 20 mA		Package	
HLMP-	Package Description	Min.	Тур.	$2\theta^{1/2[1]}$ Degrees	Outline	
D101	T-1 ³ / ₄ Red Tinted Diffused	35	70	65	A	
D105	T-13/4 Red Untinted, Non-diffused	90	240	24	В	
K101	T-1 Red Tinted Diffused	22	45	60	C	
K105	T-1 Red Untinted Non-diffused	35	65	45	С	

Note:

Absolute Maximum Ratings at $T_A = 25$ °C

Peak Forward Current ^[1,2]	300 mA
Average Forward Current ^[2]	
DC Current ^[3]	
Power Dissipation	87 mW
Reverse Voltage ($I_R = 100 \mu A$)	5 V
Transient Forward Current (10 µs Pulse) ^[4]	
LED Junction Temperature	110°C
Operating Temperature Range	20 to +100°C
Storage Temperature Range	55 to +100°C
Lead Soldering Temperature [1.6 mm (0.063 in.) from body]	260°C for 5 seconds

- 1. Maximum I_{PEAK} at f = 1 kHz, DF = 6.7%.
- 2. Refer to Figure 6 to establish pulsed operating conditions.
- 3. Derate linearly as shown in Figure 5.
- 4. The transient peak current is the maximum non-recurring peak current the device can withstand without damaging the LED die and wire bonds. It is not recommended that the device be operated at peak currents beyond the Absolute Maximum Peak Forward Current.

^{1.} $\theta_{1/2}$ is the off axis angle from lamp centerline where the luminous intensity is $^{1}\!/_{2}$ the on-axis value.

Electrical/Optical Characteristics at $T_A = 25$ °C

Symbol	Description	Min.	Тур.	Max.	Unit	Test Condition
$V_{\rm F}$	Forward Voltage		1.8	2.2	v	$I_F = 20 \text{ mA}$
V_{R}	Reverse Breakdown Voltage	5.0	15.0		V	$I_R = 100 \mu\text{A}$
$\lambda_{ m p}$	Peak Wavelength		645		nm	Measurement at Peak
$\lambda_{ m d}$	Dominant Wavelength		637	7	nm	Note 1
$\Delta \lambda^{1/2}$	Spectral Line Halfwidth		20		nm	
$ au_{ m S}$	Speed of Response		30		ns	Exponential Time Constant, e ^{-t} /T _S
С	Capacitance		30		pF	$V_F = 0$, $f = 1$ MHz
$R\theta_{J-PIN}$	Thermal Resistance		$\begin{array}{c} 260^{[3]} \\ 210^{[4]} \\ 290^{[5]} \end{array}$		°C/W	Junction to Cathode Lead
$\eta_{ m V}$	Luminous Efficacy		80		Im/W	Note 2

- 1. The dominant wavelength, λ_d , is derived from the CIE chromaticity diagram and represents the color of the device.
- 2. The radiant intensity, I_e , in watts per steradian, may be found from the equation $I_e = I_V/\eta_V$, where I_V is the luminous intensity in candelas and η_V is luminous efficacy in lumens/watt.
- 3. HLMP-D101.
- 4. HLMP-D105.
- 5. HLMP-K101/-K105.

Figure 1. Relative Intensity vs. Wavelength.

Figure 2. Forward Current vs. Forward Voltage.

Figure 3. Relative Luminous Intensity vs. DC Forward Current.

Figure 5. Maximum Forward DC Current vs. Ambient Temperature. Derating Based on $T_{\rm J}$ MAX = 110 $^{\circ}{\rm C}.$

Figure 7. Relative Luminous Intensity vs. Angular Displacement. HLMP-D101.

Figure 4. Relative Efficiency vs. Peak Forward Current.

Figure 6. Maximum Tolerable Peak Current vs. Peak Duration (I $_{\rm PEAK}$ MAX Determined from Temperature Derated I $_{\rm DC}$ MAX).

Figure 8. Relative Luminous Intensity vs. Angular Displacement. HLMP-K101.

Figure 10. Relative Luminous Intensity vs. Angular Displacement. HLMP-K105.

HLMP-D150/D155 HLMP-K150/K155

T-1³/₄ (5 mm), T-1 (3 mm), Low Current, Double Heterojunction AlGaAs Red LED Lamps

Technical Data

Features

- Minimum Luminous Intensity Specified at 1 mA
- High Light Output at Low Currents
- Wide Viewing Angle
- Outstanding Material Efficiency
- Low Power/Low Forward Voltage
- CMOS/MOS Compatible
- TTL Compatible
- Deep Red Color

Package Dimensions

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).

2. AN EPOXY MINISCUS MAY EXTEND ABOUT

1 mm (0.040") DOWN THE LEADS.

Applications

- Low Power Circuits
- Battery Powered Equipment
- Telecommunication Indicators

Description

These solid state LED lamps utilize newly developed double heterojunction (DH) AlGaAs/GaAs material technology. This LED material has outstanding light output efficiency at very low drive currents. The color is deep red at the dominant wavelength of 637 nanometres. These lamps are

ideally suited for use in applications where high light output is required with minimum power output.

Axial Luminous Intensity and Viewing Angle @ 25°C

Part Number		I _v (mcd) @	I _v (mcd) @ 1 mA DC		Package
HLMP-	Package Description	Min.	Тур.	$2\theta^{1/2}$ [1] Degrees	Outline
D150	T-1 ³ / ₄ Red Tinted Diffused	1.3	3	65	A
D155	T-1 ³ / ₄ Red Untinted, Non-diffused	5.4	10	24	В
K150	T-1 Red Tinted Diffused	1.3	2	60	C
K155	T-1 Red Untinted Non-diffused	2.1	3	45	C

Note:

1. $\theta^{1/2}$ is the off axis angle from lamp centerline where the luminous intensity is 1/2 the on-axis value.

Absolute Maximum Ratings at $T_A = 25$ °C

Peak Forward Current ^[1]	300 mA
Average Forward Current	20 mA
DC Current ^[2]	30 mA
Power Dissipation	87 mW
Reverse Voltage ($I_R = 100 \mu A$)	5 V
Transient Forward Current (10 µs Pulse)[3]	500 mA
LED Junction Temperature	
Operating Temperature Range	20 to +100°C
Storage Temperature Range	55 to +100°C
Lead Soldering Temperature [1.6 mm (0.063 in.) from body]	260°C for 5 seconds

- 1. Maximum $I_{\mbox{\scriptsize PEAK}}$ at f = 1 kHz, DF = 6.7%.
- 2. Derate linearly as shown in Figure 4.
- 3. The transient peak current is the maximum non-recurring peak current the device can withstand without damaging the LED die and wire bonds. It is not recommended that the device be operated at peak currents beyond the Absolute Maximum Peak Forward Current.

Electrical/Optical Characteristics at $T_A = 25$ °C

Symbol	Description	Min.	Тур.	Max.	Unit	Test Condition
$V_{\rm F}$	Forward Voltage		1.6	1.8	V	$I_F = 1 \text{ mA}$
V_{R}	Reverse Breakdown Voltage	5.0	15.0		V	$I_R = 100 \mu\text{A}$
$\lambda_{ m p}$	Peak Wavelength		645		nm	Measurement at Peak
$\lambda_{ m d}$	Dominant Wavelength		637		nm	Note 1
$\Delta \lambda^{1/2}$	Spectral Line Halfwidth		20		nm	
$ au_{ m S}$	Speed of Response		30		ns	Exponential Time Constant, e^{-t}/T_S
С	Capacitance		30		pF	$V_F = 0$, $f = 1$ MHz
$ m R heta_{J ext{-PIN}}$	Thermal Resistance		$260^{[3]} \\ 210^{[4]} \\ 290^{[5]}$		°C/W	Junction to Cathode Lead
η_{V}	Luminous Efficacy		80		Im/W	Note 2

- 1. The dominant wavelength, λ_d , is derived from the CIE chromaticity diagram and represents the color of the device.
- 2. The radiant intensity, I_e , in watts per steradian, may be found from the equation $I_e = l_V/\eta_V$, where I_V is the luminous intensity in candelas and η_V is luminous efficacy in lumens/watt.
- 3. HLMP-D150.
- 4. HLMP-D155.
- 5. HLMP-K150/-K155.

Figure 1. Relative Intensity vs. Wavelength.

Figure 2. Forward Current vs. Forward Voltage.

Figure 3. Relative Luminous Intensity vs. DC Forward Current.

Figure 4. Maximum Forward DC Current vs. Ambient Temperature. Derating Based on $T_{\rm J}$ Max. = 110 $^{\rm o}\! C.$

Figure 5. Relative Luminous Intensity vs. Angular Displacement. HLMP-D150.

Figure 6. Relative Luminous Intensity vs. Angular Displacement. HLMP-K150.

Figure 7. Relative Luminous Intensity vs. Angular Displacement. HLMP-D155.

Figure 8. Relative Luminous Intensity vs. Angular Displacement. HLMP-K155.

T-13/4 Super Ultra-Bright LED Lamps

Technical Data

HLMP-8115 HLMP-8109 HLMP-8205 HLMP-8209 HLMP-8305 HLMP-8309 HLMP-8405 HLMP-8509 HLMP-8605

Features

- Very High Intensity
- Narrow and Medium Viewing Angles
- Untinted, Nondiffused Lens
- Choice of Five Colors
- Sturdy Leads with Seating Plane Tabs

Description

These untinted, nondiffused solid state lamps are designed with special internal optics to give a very high luminous intensity within a well defined viewing angle. The LED materials used within these devices is specifically grown to assure the high light output performance these lamps provide.

Device Selection Guide

LED Color	Part Number	Typical Luminous Intensity (mcd @ 20 mA dc)	201/2 Viewing Angle
DH AS AlGaAs	HLMP-8115	1000	10°
	HLMP-8109	500	20°
High Efficiency Red	HLMP-8205	350	10°
	HLMP-8209	260	20°
Yellow	HLMP-8305	350	10°
	HLMP-8309	260	20°
Orange	HLMP-8405	350	10°
	HLMP-8409	260	20°
High Performance Green	HLMP-8505	400	10°
	HLMP-8509	300	20°
Emerald Green	HLMP-8605	75	10°

5964-9370E

Package Dimensions

- NOTES:

 1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).

 2. THE LEADS ARE MILD STEEL, SOLDER DIPPED.

 3. AN EPOXY MENISCUS MAY EXTEND ABOUT 1 mm (0.040") DOWN THE LEADS.

Absolute Maximum Ratings at $T_A = 25^{\circ}C$

DH AS AlGaAs Red	High Efficiency Red and Orange	Yellow	High Performance Green/Emerald Green	Units		
30	30	20	30	mA		
300	90	60	90	mA		
20	25	20	25	mA		
500	500	500	500	mA		
5	5	5	5	·v		
110	110	110	110	℃		
-20 to +100	-20 to +100					
-55 to +100 °C						
	260°C for 5 seconds					
	AlGaAs Red 30 300 20 500 5 110	AlGaAs Red and Orange 30 30 300 90 20 25 500 500 5 5 110 110 -20 to +100 -55 to +100	AlGaAs Red Efficiency Red and Orange Yellow 30 30 20 300 90 60 20 25 20 500 500 500 5 5 5 110 110 110 -20 to +100 -55 to +100	AlGaAs Red Efficiency Red and Orange Yellow Performance Green/Emerald Green 30 30 20 30 300 90 60 90 20 25 20 25 500 500 500 500 5 5 5 5 110 110 110 110 -20 to +100 -55 to +100 -20 to +100		

- 1. See Figure 5 for maximum current derating vs. ambient temperature.
 2. See Figure 6 for maximum peak current vs. pulse duration and allowable duty factor.
- 3. The transient peak current is the maximum non-recurring peak current the device can withstand without damaging the LED die and wire bond. Do not operate these lamps at peak currents above the Absolute Maximum Peak Forward Current.

Electrical/Optical Characteristics $T_A = 25$ °C

DH AS AlGaAs HLMP-8115/8109

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Luminous Intensity HLMP-8115 HLMP-8109	I_{v}	500 200	1000 500		mcd	$I_{\mathrm{F}} = 20 \; \mathrm{mA}$
Forward Voltage	V_{F}		1.8	2.2	v	$I_F = 20 \text{ mA}$
Reverse Breakdown Voltage	V_{R}	5.0	15.0		V	$I_R = 100 \mu A$
Included Angle Between Half Intensity Points HLMP-8115 HLMP-8109	$2 heta_{1/2}$		10 20		Deg.	
Total Luminous Flux	ϕ_{d}		120		mlm	$I_F = 20 \text{ mA}$
Peak Wavelength	$\lambda_{ ext{PEAK}}$		645		nm	Measured at Peak
Dominant Wavelength ^[1]	$\lambda_{ m d}$		637		nm	
Spectral Line Half Width	$\Delta\lambda_{1/2}$		20		nm	
Speed of Response	$ au_{ m s}$		30		ns	Time Constant, e ^{-t/τ} s
Capacitance	С		30		pF	$V_F = 0$, $f = 1$ MHz
Thermal Resistance	$R\theta_{J-LEAD}$		210		°C/W	LED Junction-to- Cathode Lead
Luminous Efficacy ^[2]	$\eta_{ m v}$		80		lm/W	

High Efficiency Red HLMP-8205/8209

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Luminous Intensity HLMP-8205 HLMP-8209	I_{v}	200 90	350 260		mcd	$I_{\rm F} = 20 \text{ mA}$
Forward Voltage	V_{F}		1.9	2.6	v	$I_F = 20 \text{ mA}$
Reverse Breakdown Voltage	V_R	5.0	30.0		V	$I_R = 100 \mu A$
Included Angle Between Half Intensity Points HLMP-8205 HLMP-8209	$2 heta_{1/2}$		10 20		Deg.	
Total Luminous Flux	$\phi_{\rm v}$		45		mlm	$I_F = 20 \text{ mA}$
Peak Wavelength	$\lambda_{ ext{PEAK}}$		635		nm	Measured at Peak
Dominant Wavelength ^[1]	$\lambda_{ m d}$		626		nm	
Spectral Line Half Width	$\Delta\lambda_{1/2}$		40		nm	
Speed of Response	$ au_{ m s}$		90		ns	
Capacitance	· C		11		pF	$V_F = 0$, $f = 1 \text{ MHz}$
Thermal Resistance	$R\theta_{J-LEAD}$		210		°C/W	LED Junction-to- Cathode Lead
Luminous Efficacy ^[2]	$\eta_{ m v}$		145		lm/W	

Yellow HLMP-8305/8309

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Luminous Intensity HLMP-8305 HLMP-8309	I_{v}	212 96	350 260		mcd	$I_{\mathrm{F}} = 20 \; \mathrm{mA}$
Forward Voltage	$V_{\rm F}$		2.1	2.6	v	$I_F = 20 \text{ mA}$
Reverse Breakdown Voltage	V_{R}	5.0	30.0		v	$I_R = 100 \mu\text{A}$
Included Angle Between Half Intensity Points HLMP-8305 HLMP-8309	$2\theta_{1/2}$		10 20		Deg.	
Total Luminous Flux	$\phi_{ m v}$	-	45		mlm	$I_F = 20 \text{ mA}$
Peak Wavelength	$\lambda_{ ext{PEAK}}$		583		nm	Measured at Peak
Dominant Wavelength ^[1]	$\lambda_{ m d}$		585		nm	
Spectral Line Half Width	$\Delta\lambda_{1/2}$		36		nm	1
Speed of Response	$ au_{ m s}$,	90		ns	
Capacitance	С		15		pF	$V_F = 0$, $f = 1$ MHz
Thermal Resistance	$R\theta_{J ext{-LEAD}}$		210		°C/W	LED Junction-to- Cathode Lead
Luminous Efficacy ^[2]	$\eta_{ m v}$		500		lm/W	

Orange HLMP-8405/8409

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Luminous Intensity HLMP-8405 HLMP-8409	$I_{\rm v}$	200 90	350 260		mcd	$I_{\mathrm{F}} = 20 \; \mathrm{mA}$
Forward Voltage	$V_{\rm F}$		1.9	2.6	v	$I_F = 20 \text{ mA}$
Reverse Breakdown Voltage	V_{R}	5.0	30.0		V	$I_R = 100 \mu A$
Included Angle Between Half Intensity Points HLMP-8405 HLMP-8409	$2\theta_{1/2}$		10 20		Deg.	
Total Luminous Flux	$\phi_{ m v}$		45		mlm	$I_F = 20 \text{ mA}$
Peak Wavelength	$\lambda_{ ext{PEAK}}$		600		nm	Measured at Peak
Dominant Wavelength ^[1]	$\lambda_{ m d}$	4	602		nm	
Spectral Line Half Width	$\Delta\lambda_{1/2}$		40		nm	
Speed of Response	$ au_{ m s}$		280		ns	
Capacitance	C		4		pF	$V_F = 0$, $f = 1$ MHz
Thermal Resistance	$R\theta_{J-LEAD}$,	210		°C/W	LED Junction-to- Cathode Lead
Luminous Efficacy ^[2]	$\eta_{ m v}$		380		lm/W	

High Performance Green HLMP-8505/8509

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Luminous Intensity HLMP-8505 HLMP-8509	I_{v}	170 111	400 300		mcd	$I_{\rm F} = 20~{\rm mA}$
Forward Voltage	$V_{\rm F}$		2.2	3.0	V	$I_F = 20 \text{ mA}$
Reverse Breakdown Voltage	V_{R}	5.0	30		V	$I_R = 100 \mu\text{A}$
Included Angle Between						
Half Intensity Points HLMP-8505 HLMP-8509	$2\theta_{1/2}$		10 20		Deg.	
Total Luminous Flux	φ _v		115		mlm	$I_F = 20 \text{ mA}$
Peak Wavelength	$\lambda_{ ext{PEAK}}$		568		nm	Measured at Peak
Dominant Wavelength ^[1]	λ_{d}		570		nm	
Spectral Line Half Width	$\Delta\lambda_{1/2}$		28		nm	
Speed of Response	$ au_{ m s}$		260		ns	·
Capacitance	С		18		pF	$V_F = 0$, $f = 1$ MHz
Thermal Resistance	$R\theta_{J ext{-LEAD}}$		210		°C/W	LED Junction-to- Cathode Lead
Luminous Efficacy ^[2]	$\eta_{\rm v}$		595		lm/W	

Notes:

- 1. The dominant wavelength, λ_d , is derived from the CIE Chromaticity Diagram and represents the color of the device.
- 2. The radiant intensity, I_e , in watts per steradian, may be found from the equation $I_e = I_v/\eta_v$, where I_v is the luminous intensity in candelas and η_v is the luminous efficacy in lumens/watt.

Emerald Green HLMP-8605^[1]

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Luminous Intensity HLMP-8605	$I_{\rm v}$	69	75		mcd	$I_F = 20 \text{ mA}$
Forward Voltage	V_{F}		2.2	3.0	V	$I_F = 20 \text{ mA}$
Reverse Breakdown Voltage	V _R	5.0	30		V	$I_R = 100 \mu\text{A}$
Included Angle Between Half Intensity Points HLMP-8605	$2\theta_{1/2}$		10		Deg.	
Peak Wavelength	$\lambda_{ ext{PEAK}}$		558		nm	Measured at Peak
Dominant Wavelength ^[2]	$\lambda_{ m d}$		560		nm	
Spectral Line Half Width	$\Delta\lambda_{1/2}$		24		nm	
Speed of Response	$ au_{ m s}$		3100		ns	
Capacitance	C		35		pF	$V_F = 0$, $f = 1$ MHz
Thermal Resistance	$R\theta_{J-LEAD}$		210		°C/W	LED Junction-to- Cathode Lead
Luminous Efficacy ^[3]	η_{v}		656		lm/W	

- 1. Please refer to Application Note 1061 for information comparing standard green and emerald green light output degradation.
- 2. The dominant wavelength, λ_d , is derived from the CIE Chromaticity Diagram and represents the color of the device.
- 3. The radiant intensity, I_e , in watts per steradian, may be found from the equation $I_e = I_v/\eta_v$, where I_v is the luminous intensity in candelas and η_v is the luminous efficacy in lumens/watt.

Figure 1. Relative Intensity vs. Wavelength.

Figure 2. Forward Current vs. Forward Voltage (Non-Resistor Lamp).

Figure 3. Relative Luminous Intensity vs. Forward Current.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 5. Maximum Forward dc Current vs. Ambient Temperature. Derating Based on $T_1MAX=110\,^{\circ}C$.

Figure 6. Maximum Tolerable Peak Current vs. Pulse Duration. ($I_{\rm DC}$ MAX as per MAX Ratings).

Figure 7. Relative Luminous Intensity vs. Angular Displacement. HLMP-8115/-8X05.

Figure 8. Relative Luminous Intensity vs. Angular Displacement. HLMP-8X09.

T-13/4 (5 mm), T-1 (3 mm), Ultra-Bright LED Lamps

Technical Data

HLMP-3750, -3850, -3950 HLMP-3390, -3490, -3590 HLMP-1340, -1440, -1540 HLMP-D640 HLMP-K640

Features

- Improved Brightness
- Improved Color Performance
- Available in Popular T-1 and T-13/4 Packages
- New Sturdy Leads
- IC Compatible/Low Current Capability
- Reliable and Rugged
- Choice of 3 Bright Colors High Efficiency Red High Brightness Yellow High Performance Green

Applications

- Lighted Switches
- Backlighting Front Panels
- Light Pipe Sources
- Keyboard Indicators

Description

These clear, non-diffused lamps out-perform conventional LED lamps. By utilizing new higher intensity material, we achieve superior product performance.

The HLMP-3750/-3390/-1340 Series Lamps are Gallium Arsenide Phosphide on Gallium Phosphide red light emitting diodes. The HLMP-3850/

-3490/-1440 Series are Gallium Arsenide Phosphide on Gallium Phosphide yellow light emitting diodes. The HLMP-3950/-3590/ -1540/-D640/-K640 Series Lamps are Gallium Phosphide green light emitting diodes.

Axial Luminous Intensity and Viewing Angle @ 25°C

Part		I _v (mcd) @ 20 mA DC				
Number HLMP-	Package Description	Color	Min.	Тур.	$2\theta^{1/2}$ [1]	Package Outline
3750	T-13/4	HER	90	125	24°	A
3850		Yellow	96	140	24°	A
3950		Green	111	140	24°	A
D640 ^[2]		Emerald Green	6.7	21	24°	D
3390	T-13/4 Low Profile	HER	35	55	32°	В
3490		Yellow	37	55	32°	В
3590		Green	40	55	. 32°	В
1340	T-1	HER	22	45	45°	C
1440		Yellow	23	45	45°	C
1540		Green	27	45	45°	C
K640 ^[2]		Emerald Green	4.2	21	45°	C

- 1. $\theta^{1/2}$ is the typical off-axis angle at which the luminous intensity is half the axial luminous intensity.
- 2. Please refer to Application Note 1061 for information comparing standard green and emerald green light output degradation.

Absolute Maximum Ratings at $T_A = 25$ °C

Parameter	Red	Yellow	Green/Emerald Green	Units
Peak Forward Current	90	60	90	mA
Average Forward Current ^[1]	25	20	25	mA
DC Current ^[2]	30	20	30	mA
Transient Forward Current ^[3] (10 μs Pulse)	500	500	500	mA
Reverse Voltage ($I_R = 100 \mu A$)	5	5 ,	5	v
LED Junction Temperature	110	110	110	℃
Operating Temperature Range	-55 to +100	-55 to +100	-20 to +100	.℃
Storage Temperature Range			-55 to +100	
Lead Soldering Temperature [1.6 mm (0.063 in.) from body]		260°C fo	r 5 seconds	

1. ALL DIMENSIONS ARE IN MILLIMETERS (INCHES).
2. AN EPOXY MENISCUS MAY EXTEND ABOUT 1 mm (0.40") DOWN THE LEADS.

- 1. See Figure 2 to establish pulsed operating conditions.
- 2. For Red and Green series derate linearly from 50°C at 0.5 mA/°C. For Yellow series derate linearly from 50°C at 0.2 mA/°C.
- 3. The transient peak current is the maximum non-recurring peak current the devices can withstand without damaging the LED die and wire bonds. It is not recommended that the device be operated at peak currents beyond the Absolute Maximum Peak Forward Current.

Electrical/Optical Characteristics at $T_A = 25^{\circ}C$

Symbol	Description	T-1 ³ /4	T-1 ³ / ₄ Low Dome	T-1	Min.	Тур.	Max.	Units	Test Conditions
$\lambda_{ ext{PEAK}}$	Peak Wavelength	3750 3850 3950 D640	3390 3490 3590	1340 1440 1540 K640		635 583 565 558		nm	Measurement at Peak
$\lambda_{ m d}$	Dominant Wavelength	3750 3850 3950 D640	3390 3490 3590	1340 1440 1540 K640		626 585 569 560		nm	Note 1
$\Delta\lambda^{1/2}$	Spectral Line Halfwidth	3750 3850 3950 D640	3390 3490 3590	1340 1440 1540 K640		40 36 28 24		nm	
$ au_{ m S}$	Speed of Response	3750 3850 3950 D640	3390 3490 3590	1340 1440 1540 K640		90 90 500 3100		ns	
С	Capacitance	3750 3850 3950 D640	3390 3490 3590	1340 1440 1540 K640		11 15 18 35		pF	$V_F = 0$, $f = 1$ MHz
$R\theta_{J-PIN}$	Thermal Resistance	3750 3850 3950 D640	3390 3490 3590	1340 1440 1540 K640		210 210 210 510 290 290 290 290		°C/W	Junction to Cathode Lead
$V_{ m F}$	Forward Voltage	3750 3850 3950 D640	3390 3490 3590	1340 1440 1540 K640	1.5 1.5 1.5	1.9 2.1 2.2 2.2	2.6 2.6 3.0 3.0	V	I _F = 20 mA (Figure 3)
V_R	Reverse Breakdown Voltage	3750 3850 3950 D640	3390 3490 3590	1340 1440 1540 K640	5.0			v	$I_{\mathrm{F}}=100~\mu\text{A}$
ην	Luminous Efficacy	3750 3850 3950 D640	3390 3490 3590	1340 1440 1540 K640		145 500 595 655		lumens watt	Note 2

^{1.} The dominant wavelength, λ_d , is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

^{2.} The radiant intensity, I_e , in watts per steradian, may be found from the equation $I_e = I_V/\eta_V$, where I_V is the luminous intensity in candelas and η_V is the luminous efficacy in lumens/watt.

Red, Yellow, and Green

Figure 1. Relative Intensity vs. Wavelength.

Figure 2. Maximum Tolerable Peak Current vs. Pulse Duration. (I_{DC} MAX as per MAX Ratings).

Figure 4. Relative Luminous Intensity vs. Forward Current.

Figure 3. Forward Current vs. Forward Voltage.

Figure 5. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 6. Relative Luminous Intensity vs. Angular Displacement. T-1 $^3/4$ Lamp.

Figure 7. Relative Luminous Intensity vs. Angular Displacement. T-1 $^3/_4$ Low Profile Lamp.

Figure 8. Relative Luminous Intensity vs. Angular Displacement. T-1 Lamp.

T-1³/₄ (5 mm) High Intensity LED Lamps

Technical Data

HLMP-331X Series HLMP-341X Series HLMP-351X Series

Features

- High Intensity
- Choice of 3 Bright Colors High Efficiency Red Yellow High Performance Green
- Popular T-1³/₄ Diameter Package
- Selected Minimum Intensities
- Narrow Viewing Angle
- General Purpose Leads

- Reliable and Rugged
- Available on Tape and Reel

Description

This family of T-1³/₄ nondiffused LED lamps is specially designed for applications requiring higher on-axis intensity than is achievable with a standard lamp. The light generated is focused to a narrow beam to achieve this effect.

Selection Guide

Part Number HLMP-	Description	Minimum Intensity (mcd) at 10 mA	Color (Material)
3315	Illuminator/ Point Source	13.8	High Efficiency Red (GaAsP on GaP)
3316	Illuminator/ High Brightness	22	(Gansi on Gai)
3415	Illuminator/ Point Source	9.2	Yellow (GaAsP on GaP)
3416	Illuminator/ High Brightness	14.7	
3517	Illuminator/ Point Source	6.7	Green (GaP)
3519	Illuminator/ High Brightness	10.6	

Package Dimensions

NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
2. AN EPOXY MENISCUS MAY EXTEND ABOUT 1mm
(.040") DOWN THE LEADS.

Electrical Characteristics at $T_A = 25$ °C

Symbol	Description	Device HLMP-	Min.	Тур.	Max.	Units	Test Conditions
I_{V}	Luminous Intensity	3315 3316	13.8 22	40.0 60.0		mcd	$I_{\rm F}$ = 10 mA (Figure 3)
		3415 3416	9.2 14.7	40.0 50.0		mcd	$I_F = 10 \text{ mA (Figure 8)}$
		3517 3519	6.7 10.6	50.0 70.0		mcd	$I_{\rm F}$ = 10 mA (Figure 13)
$2\theta^{1/2}$	Including Angle Between Half	3315 3316		35 35		Deg.	I _F = 10 mA See Note 1 (Figure 6)
	Luminous Intensity Points	3415 3416		35 35		Deg.	$I_F = 10 \text{ mA}$ See Note 1 (Figure 11)
		3517 3519		24 24		Deg.	I _F = 10 mA See Note 1 (Figure 16)
$\lambda_{ ext{PEAK}}$	Peak Wavelength	331X 341X 351X		635 583 565		nm	Measurement at Peak (Figure 1)
$\Delta\lambda_{1/2}$	Spectral Line Halfwidth	331X 341X 351X		40 36 28	-	nm	
$\lambda_{ m d}$	Dominant Wavelength	331X 341X 351X		626 585 569		nm	See Note 2 (Figure 1)
$ au_{ m s}$	Speed of Response	331X 341X 351X		90 90 500		ns	
C	Capacitance	331X 341X 351X		11 15 18		pF	$V_{\rm F}=0; f=1 \text{ MHz}$
$ m R heta_{J ext{-PIN}}$	Thermal Resistance	331X 341X 351X		260		°C/W	Junction to Cathode Lead
$V_{ m F}$	Forward Voltage	331X 341X 351X		1.9 2.0 2.1	2.4 2.4 2.7	V	$I_F = 10 \text{ mA (Figure 2)}$ $I_F = 10 \text{ mA (Figure 7)}$ $I_F = 10 \text{ mA (Figure 12)}$
V_{R}	Reverse Breakdown Volt.	All	5.0			v	$I_R = 100 \mu\text{A}$
$\eta_{ m V}$	Luminous Efficacy	331X 341X 351X		145 500 595		lumens Watt	See Note 3

^{1.} $\theta_{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.

^{2.} The dominant wavelength, λ_d , is derived from the CIE chromaticity diagram and represents the single wavelength which defines the

color of the device. 3. Radiant intensity, I_e , in watts/steradian, may be found from the equation $I_e = I_v/\eta_v$, where I_v is the luminous intensity in candelas and η_v is the luminous efficacy in lumens/watt.

Absolute Maximum Ratings at $T_A = 25$ °C

Parameter	331X Series	341X Series	351X Series	Units
Peak Forward Current	90	60	90	mA
Average Forward Current ^[1]	25	20	25	mA
DC Current ^[2]	30	20	30	mA
Power Dissipation ^[3]	135	85	135	mW
Reverse Voltage ($I_R = 100 \mu A$)	5	5	5	V
Transient Forward Current ^[4] (10 µsec Pulse)	500	500	500	mA
LED Junction Temperature	110	110	110	℃
Operating Temperature Range	-55 to +100	-55 to +100	-20 to +100	°C
Storage Temperature Range			-55 to +100	
Lead Soldering Temperature [1.6 mm (0.063 in.) from body]		260°C for	5 seconds	

- 1. See Figure 5 (Red), 10 (Yellow), or 15 (Green) to establish pulsed operating conditions.
- 2. For Red and Green series derate linearly from 50°C at 0.5 mA/°C. For Yellow series derate linearly from 50°C at 0.2 mA/°C.
- 3. For Red and Green series derate power linearly from 25°C at 1.8 mW/°C. For Yellow series derate power linearly from 50°C at 1.6 mW/°C.
- 4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

Figure 1. Relative Intensity vs. Wavelength.

High Efficiency Red HLMP-331X Series

Figure 2. Forward Current vs. Forward Voltage Characteristics.

Figure 3. Relative Luminous Intensity vs. DC Forward Current.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.

Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration (I_{DC} MAX as per MAX Ratings).

Figure 6. Relative Luminous Intensity vs. Angular Displacement.

Yellow HLMP-341X Series

Figure 7. Forward Current vs. Forward Voltage Characteristics.

Figure 8. Relative Luminous Intensity vs. DC Forward Current.

Figure 9. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration (I_{DC} MAX as per MAX Ratings).

Figure 11. Relative Luminous Intensity vs. Angular Displacement.

Green HLMP-351X Series

Figure 12. Forward Current vs. Forward Voltage Characteristics.

Figure 13. Relative Luminous Intensity vs. DC Forward Current.

Figure 14. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.

Figure 15. Maximum Tolerable Peak Current vs. Pulse Duration (I_{DC} MAX as per MAX Ratings).

Figure 16. Relative Luminous Intensity vs. Angular Displacement. T-1³/₄

T-13/4 (5 mm) Diffused LED Lamps

Technical Data

HLMP-3300 Series HLMP-3400 Series HLMP-3500 Series HLMP-3762 HLMP-3862 HLMP-3962 HLMP-D400 Series HLMP-D600

Features

- High Intensity
- Choice of 4 Bright Colors
 High Efficiency Red
 Orange
 Yellow
 High Performance Green
- Popular T-1³/₄ Diameter Package
- Selected Minimum Intensities
- Wide Viewing Angle
- General Purpose Leads

- · Reliable and Rugged
- Available on Tape and Reel

Description

This family of T-1³/4 tinted, diffused LED lamps is widely used in general purpose indicator applications. Diffusants, tints, and optical design are balanced to yield superior light output and wide viewing angles. Several intensity choices are available in each color for increased design flexibility.

Selection Guide

Part Number HLMP-	Application	Minimum Intensity (mcd) at 10 mA	Color (Material)
3300	General Purpose	2.1	High Efficiency Red (GaAsP on GaP)
3301	High Ambient	5.4	
3762	Premium Lamp	8.6	
D400	General Purpose	2.1	Orange (GaAsP on GaP)
D401	High Ambient	5.4	
3400	General Purpose	2.2	Yellow (GaAsP on GaP)
3401	High Ambient	5.7	
3862	Premium Lamp	9.2	
3502	General Purpose	1.6	Green (GaP) 565 nm
3507	High Ambient	4.2	
3962	Premium Lamp	10.6	
D600 ^[1]	General Purpose	1.0	Emerald Green (GaP) 558 nm

^{1.} Please refer to Application Note 1061 for information comparing standard green and emerald green light output degradation.

Package Dimensions

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).

2. AN EPOXY MENISCUS MAY EXTEND ABOUT 1mm (.040") DOWN THE LEADS.

Optical/Electrical Characteristics at T_A = 25 $^{\circ}\mathrm{C}$

Symbol	Parameter	Device HLMP-	Min.	Тур.	Max.	Units	Test Conditions
I _V	Luminous Intensity	High Efficiency Red 3300 3301 3762	2.1 5.4 8.6	3.5 7.0 12.0		mcd	$I_{\mathrm{F}} = 10 \; \mathrm{mA}$
		Orange D400 D401	2.1 5.4	3.5 7.0			
		Yellow 3400 3401 3862	2.2 5.7 9.2	4.0 8.0 12.0			
		Green 3502 3507 3962	1.6 4.2 10.6	2.4 5.2 14.0			
	•	Emerald Green D600	1.0	3.0			
2θ ¹ / ₂	Included Angle Between Half Luminous Intensity Points	High Efficiency Red Orange Yellow Green Emerald Green		60 60 60 60		Deg.	$I_F = 10 \text{ mA}$ See Note 1
$\lambda_{ ext{PEAK}}$	Peak Wavelength	High Efficiency Red Orange Yellow Green Emerald Green		635 600 583 565 558		nm	Measurement at Peak

Optical/Electrical Characteristics at $T_A = 25$ °C (cont.)

Symbol	Parameter	Device HLMP-	Min.	Тур.	Max.	Units	Test Conditions
$\Delta\lambda_{1/2}$	Spectral Line Halfwidth	HER/Orange Yellow Green Emerald Green		40 36 28 24		nm :	
$\lambda_{ m d}$	Dominant Wavelength	High Efficiency Red Orange Yellow Green Emerald Green		626 602 585 569 560		nm	See Note 2
$ au_{ m s}$	Speed of Response	High Efficiency Red Orange Yellow Green Emerald Green		90 280 90 500 560		ns	
С	Capacitance	High Efficiency Red Orange Yellow Green Emerald Green		11 4 15 18 3100	,	pF	$V_F = 0;$ f = 1 MHz
$R\theta_{J-PIN}$	Thermal Resistance	All		260		°C/W	Junction to Cathode Lead
V_{F}	Forward Voltage	HER/Orange Yellow Green Emerald Green		1.9 2.0 2.1 2.1	2.4 2.4 2.7 2.7	V	$I_{\rm F} = 10~{\rm mA}$
V_{R}	Reverse Breakdown Voltage	All	5.0			V	$I_R = 100 \mu\text{A}$
$\eta_{ m V}$	Luminous Efficacy	High Efficiency Red Orange Yellow Green Emerald Green		145 380 500 595 656		lumens Watt	See Note 3

^{1.} $\theta^{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity. 2. The dominant wavelength, λ_d , is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

^{3.} Radiant intensity, I_e , in Watts/steradian, may be found from the equation $I_e = I_v/\eta_v$, where I_v is the luminous intensity in candelas and η_v is the luminous efficacy in lumens/Watt.

Absolute Maximum Ratings at $T_A = 25$ °C

Parameter	HER/Orange	Yellow	Green/ Emerald Green	Units			
Peak Forward Current	90	60	90	mA			
Average Forward Current ^[1]	25	20	25	mA			
DC Current ^[2]	30	20	30	mA			
Power Dissipation ^[3]	135	85	135	mW			
Reverse Voltage ($I_R = 100 \mu A$)	5	5	5	V			
Transient Forward Current ^[4] (10 µsec Pulse)	500	500	500	mA			
LED Junction Temperature	110	110	110	°C			
Operating Temperature Range	-55 to +100	-55 to +100	-20 to +100	°C			
Storage Temperature Range			-55 to +100				
Lead Soldering Temperature [1.6 mm (0.063 in.) from body]	260°C for 5 seconds						

- 1. See Figure 5 (Red/Orange), 10 (Yellow), or 15 (Green) to establish pulsed operating conditions.
- 2. For Red, Orange and Green series derate linearly from 50°C at 0.5 mA/°C. For Yellow series derate linearly from 50°C at 0.2 mA/°C.
- 3. 1.8 mW/°C. For Yellow series derate power linearly from 50°C at 1.6 mW/°C.
- 4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

Figure 1. Relative Intensity vs. Wavelength.

T-13/4 High Efficiency Red, Orange Diffused Lamps

Figure 2. Forward Current vs. Forward Voltage Characteristics.

Figure 3. Relative Luminous Intensity vs. DC Forward Current.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.

Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. (I_{DC} MAX as per MAX Ratings).

Figure 6. Relative Luminous Intensity vs. Angular Displacement.

T-13/4 Yellow Diffused Lamps

Figure 7. Forward Current vs. Forward Voltage Characteristics.

Figure 8. Relative Luminous Intensity vs. Forward Current.

Figure 9. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration. (I_{DC} MAX as per MAX Ratings).

Figure 11. Relative Luminous Intensity vs. Angular Displacement.

T-13/4 Green/Emerald Green Diffused Lamps

Figure 12. Forward Current vs. Forward Voltage Characteristics.

Figure 13. Relative Luminous Intensity vs. DC Forward Current.

PEAK TEAK COMMENT TEM EED - IIIA

Figure 14. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.

Figure 15. Maximum Tolerable Peak Current vs. Pulse Duration. (I_{DC} MAX as per MAX Ratings).

Figure 16. Relative Luminous Intensity vs. Angular Displacement.

T-13/4 (5 mm) Low Profile LED Lamps

Technical Data

HLMP-335X Series HLMP-336X Series HLMP-345X Series HLMP-346X Series HLMP-355X Series HLMP-356X Series

Features

- · High Intensity
- Low Profile: 5.8 mm (0.23 in.) Nominal
- T-13/4 Diameter Package
- Diffused and Non-diffused Types
- General Purpose Leads
- IC Compatible/Low Current Requirements
- Reliable and Rugged

Description

The HLMP-335X/-336X Series are Gallium Arsenide Phosphide on Gallium Phosphide High Efficiency Red Light Emitting Diodes.

The HLMP-345X/-346X Series are Gallium Arsenide Phosphide on Gallium Phosphide Yellow Light Emitting Diodes.

The HLMP-355X/-356X Series are Gallium Phosphide Green Light Emitting Diodes.

The Low Profile T-1³/₄ package provides space savings and is excellent for backlighting applications.

Package Dimensions

Selection Guide

Part Number		Minimum Intensity @	# 1
HLMP-	Application	10 mA (mcd)	Lens
3350	Indicator – General Purpose	2.1	Tinted Diffused Wide Angle
3351	Indicator – High Brightness	5.4	HER
3365	General Purpose Point Source	8.6	Tinted Non-diffused Narrow Angle
3366	Indicator – High Brightness	13.8	HER
3450	Indicator – General Purpose	2.2	Tinted Diffused Wide Angle
3451	Indicator – High Brightness	5.7	Yellow
3465	General Purpose Point Source	5.7	Tinted Non-diffused Narrow Angle
3466	Indicator – High Brightness	9.2	Yellow
3553	Indicator – General Purpose	1.6	Tinted Diffused Wide Angle
3554	Indicator – High Brightness	6.7	Green
3567	General Purpose Point Source	4.2	Tinted Non-diffused Narrow Angle
3568	Indicator – High Brightness	10.6	Green

High Efficiency Red HLMP-335X/-336X Series Electrical Specifications at $T_A = 25$ °C

	- A		,		r		,
Symbol	Description	Device HLMP-	Min.	Тур.	Max.	Units	Test Conditions
I_V	Axial Luminous Intensity	3350 3351 3365 3366	2.1 5.4 8.6 13.8	3.5 7.0 10.0 18.0		mcd	$I_F = 10 \text{ mA}$ (Figure 8)
2 θ ¹/2	Including Angle Between Half Luminous Intensity Points	3350 3351 3365 3366		50 50 45 45		Deg.	Note 1 (Figure 11)
$\lambda_{ ext{PEAK}}$	Peak Wavelength			635		nm	Measurement at Peak (Figure 1)
$\lambda_{ m d}$	Dominant Wavelength			626		nm	Note 2
$\Delta \lambda_{1/2}$	Spectral Line Halfwidth			40		nm	
$ au_{ m s}$	Speed of Response			90		ns	
С	Capacitance			11		pF	$V_F = 0$; $f = 1 \text{ MHz}$
$ m R heta_{J ext{-PIN}}$	Thermal Resistance			260		°C/W	Junction to Cathode Lead
$V_{ m F}$	Forward Voltage			1.9	2.4	V	I _F = 10 mA (Figure 7)
V_{R}	Reverse Breakdown Voltage		5.0			V	$I_R = 100 \mu\text{A}$
$\eta_{ m V}$	Luminous Efficacy			145		lm/W	Note 3

- 1. $\theta^{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
- 2. Dominant wavelength, λ_d , is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
- 3. Radiant Intensity, I_e , in watts/steradian may be found from the equation $I_e = I_v/\eta_v$, where I_v is the luminous intensity in candelas and η_v is the luminous efficacy in lumens/watt.

Figure 7. Forward Current vs. Forward Voltage.

Figure 8. Relative Luminous Intensity vs. Forward Current.

Figure 9. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration. (I_{DC} MAX as per MAX Ratings).

Figure 11. Relative Luminous Intensity vs. Angular Displacement.

Yellow HLMP-345X/-346X Series Electrical Specifications at $T_A = 25$ °C

Symbol	Description	Device HLMP-	Min.	Тур.	Max.	Units	Test Conditions
I_V	Axial Luminous Intensity	3450 3451 3465 3466	2.2 5.7 5.7 9.2	4.0 10.0 12.0 18.0		mcd	I _F = 10 mA (Figure 13)
$2\theta_{1/2}$	Including Angle Between Half Luminous Intensity Points	3450 3451 3465 3466		50 50 45 45		Deg.	Note 1 (Figure 16)
$\lambda_{ ext{PEAK}}$	Peak Wavelength			583		nm	Measurement at Peak (Figure 1)
$\lambda_{ m d}$	Dominant Wavelength			585		nm	Note 2
$\Delta \lambda_{1/2}$	Spectral Line Halfwidth			36		nm	
$ au_{ m s}$	Speed of Response	-		90		ns	
С	Capacitance			15		pF	$V_F = 0$; $f = 1$ MHz
$R\theta_{J ext{-PIN}}$	Thermal Resistance			260		°C/W	Junction to Cathode Lead
$V_{ m F}$	Forward Voltage			2.0	2.4	v	I _F = 10 mA (Figure 12)
V_{R}	Reverse Breakdown Voltage		5.0			V	$I_R = 100 \mu\text{A}$
$\eta_{ m V}$	Luminous Efficacy			500		lm/W	Note 3

- 1. θ /2 is the off-axis angle at which the luminous intensity is half the axial luminous intensity. 2. Dominant wavelength, λ_d , is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color
- 3. Radiant Intensity, I_e , in watts/steradian may be found from the equation $I_e = I_v/\eta_v$, where I_v is the luminous intensity in candelas and $\eta_{\boldsymbol{v}}$ is the luminous efficacy in lumens/watt.

Figure 12. Forward Current vs. Forward Voltage.

Figure 13. Relative Luminous Intensity vs. Forward Current.

Figure 14. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 15. Maximum Tolerable Peak Current vs. Pulse Duration. (I_{DC} MAX as per MAX Ratings).

Figure 16. Relative Luminous Intensity vs. Angular Displacement.

Green HLMP-355X/-356X Series Electrical Specifications at $T_A = 25^{\circ}C$

Symbol	Description	Device HLMP-	Min.	Тур.	Max.	Units	Test Conditions
${ m I}_{ m V}$	Axial Luminous Intensity	3553 3554 3567 3568	1.6 6.7 4.2 10.6	3.2 10.0 7.0 15.0		mcd	I _F = 10 mA (Figure 18)
$2 heta_{1/2}$	Including Angle Between Half Luminous Intensity Points	3553 3554 3567 3568		50 50 40 40		Deg.	Note 1 (Figure 21)
$\lambda_{ ext{PEAK}}$	Peak Wavelength			565		nm	Measurement at Peak (Figure 1)
$\lambda_{ m d}$	Dominant Wavelength			569		nm	Note 2
$\Delta\lambda_{1/2}$	Spectral Line Halfwidth			28		nm	
$\tau_{ m s}$	Speed of Response			500		ns	
C	Capacitance			18		pF	$V_F = 0$; $f = 1$ MHz
$ m R heta_{J ext{-PIN}}$	Thermal Resistance			260		°C/W	Junction to Cathode Lead
$V_{ m F}$	Forward Voltage			2.1	2.7	v	I _F = 10 mA (Figure 17)
V_{R}	Reverse Breakdown Voltage		5.0			V	$I_R = 100 \mu\text{A}$
$\eta_{ m V}$	Luminous Efficacy			595		lm/W	Note 3

- 1. $\theta_{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
- 2. Dominant wavelength, λ_d , is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
- 3. Radiant Intensity, I_e , in watts/steradian may be found from the equation $I_e = I_v \eta_v$, where I_v is the luminous intensity in candelas and η_v is the luminous efficacy in lumens/watt.

Figure 17. Forward Current vs. Forward Voltage.

Figure 18. Relative Luminous Intensity vs. Forward Current.

Figure 19. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 20. Maximum Tolerable Peak Current vs. Pulse Duration. ($I_{\rm DC}$ MAX as per MAX Ratings).

Figure 21. Relative Luminous Intensity vs. Angular Displacement.

$T-1^{3}/4$ (5 mm), T-1 (3 mm), Low **Current LED Lamps**

Technical Data

HLMP-4700, -4719, -4740 HLMP-1700, -1719, -1790

Features

- Low Power
- High Efficiency
- CMOS-MOS Compatible
- TTL Compatible
- Wide Viewing Angle
- Choice of Package Styles
- Choice of Colors

Applications

- Low Power DC Circuits
- Telecommunications **Indicators**

- Portable Equipment
- Keyboard Indicators

Description

These tinted diffused LED lamps are designed and optimized specifically for low DC current operation. Luminous intensity and forward voltage are tested at 2 mA to assure consistent brightness at TTL output current levels.

Package Dimensions

OTES: ALL DIMENSIONS ARE IN MILLIMETRES (INCHES). AN EPOXY MINISCUS MAY EXTEND ABOUT 1 mm (0.040") DOWN THE LEADS.

HLMP-4700, -4719, -4740

HLMP-1700, -1719, -1790

Low Current Lamp Selection Guide

		Color	
Size	HER HLMP-	Yellow HLMP-	Green HLMP-
T-1 ³ /4	4700	4719	4740
T-1	1700	1719	1790

Axial Luminous Intensity and Viewing Angle @ 25°C

Part			I _V (mcd) @ 2 mA DC			Package
Number HLMP-	Package Description	Color	Min.	Тур.	$2\theta^{1/2}[1]$	Outline
4700 4719 4740	T-1 ³ / ₄ Tinted Diffused	Red Yellow Green	1.3 0.9 1.0	2.3 2.1 2.3	50°	A
1700 1719 1790	T-1 Tinted Diffused	Red Yellow Green	0.8 0.9 1.0	2.1 1.6 2.1	50°	В

Note:

 $1. \theta^{1/2}$ is the typical off-axis angle at which the luminous intensity is half the axial luminous intensity.

Electrical/Optical Characteristics at $T_A = 25$ °C

Symbol	Description	T-13/4	T-1	Min.	Тур.	Max.	Units	Test Conditions
$ m V_{F}$	Forward Voltage	4700 4719 4740	1700 1719 1790		1.8 1.9 1.8	2.0 2.5 2.2	V	2 mA
$V_{ m R}$	Reverse Breakdown Voltage	4700 4719 4740	1700 1719 1790	5.0 5.0 5.0			V.	$I_R = 50 \mu\text{A}$
$\lambda_{ m d}$	Dominant Wavelength	4700 4719 4740	1700 1719 1790		626 585 569		nm	Note 1
$\Delta\lambda_{1/2}$	Spectral Line Halfwidth	4700 4719 4740	1700 1719 1790		40 36 28	-0	nm	
$ au_{\mathbf{S}}$	Speed of Response	4700 4719 4740	1700 1719 1790		90 90 500		ns	÷.
C	Capacitance	4700 4719 4740	1700 1719 1790		11 15 18		pF	$V_F = 0,$ f = 1 MHz
$R\theta_{ ext{J-PIN}}$	Thermal Resistance	4700 4719 4740	1700 1719 1790		260 ^[3] 290 ^[4]		°C/W	Junction to Cathode Lead
$\lambda_{ ext{PEAK}}$	Peak Wavelength	4700 4719 4740	1700 1719 1790		635 583 565		nm	Measurement at peak
ην	Luminous Efficacy	4700 4719 4740	1700 1719 1790		145 500 595		lumens watt	Note 2

^{1.} The dominant wavelength, λ_d , is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

^{2.} The radiant intensity, I_e , in watts per steradian, may be found from the equation $I_e = I_V/\eta_V$, where I_V is the luminous intensity in candelas and η_V is luminous efficacy in lumens/watt.

^{3.} T-13/4.

^{4.} T-1.

Absolute Maximum Ratings

Parameter	Maxim	um Rating	Units	
Power Dissipation (Derate linearly from 92°C at 1.0 mA/°C)	Red Yellow Green	24 36 24	mW	
DC and Peak Forward Current		7	mA	
Transient Forward Current (10 µs Pulse) ^[1]	5	mA		
Reverse Voltage ($I_R = 50 \mu A$)	5	5.0	v	
Operating Temperature Range	Red/Yellow Green	-55°C to 100°C -20°C to 100°C		
Storage Temperature Range	-55°C to +100°C			
Lead Soldering Temperature [1.6 mm (0.063 in.) from body]	260℃	for 5 seconds		

Note:

1. The transient peak current is the maximum non-recurring peak current the devices can withstand without damaging the LED die and wire bonds. It is not recommended that the device be operated at peak currents beyond the Absolute Maximum Peak Forward Current.

Figure 1. Relative Intensity vs. Wavelength.

Figure 2. Forward Current vs. Forward Voltage.

Figure 3. Relative Luminous Intensity vs. Forward Current.

Figure 4. Relative Luminous Intensity vs. Angular Displacement for $T-1^3/4$ Lamp.

Figure 5. Relative Luminous Intensity vs. Angular Displacement for T-1 Lamp.

T-1³/₄ (5 mm), T-1 (3 mm), 5 Volt, 12 Volt, Integrated Resistor LED Lamps

Technical Data

HLMP-1600, HLMP-1601 HLMP-1620, HLMP-1621 HLMP-1640, HLMP-1641 HLMP-3600, HLMP-3601 HLMP-3650, HLMP-3651 HLMP-3680, HLMP-3681

Features

- Integral Current Limiting Resistor
- TTL Compatible Requires no External Current Limiter with 5 Volt/12 Volt Supply
- Cost Effective Saves Space and Resistor Cost
- Wide Viewing Angle
- Available in All Colors Red, High Efficiency Red, Yellow, and High Performance Green in T-1 and T-1³/₄ Packages

Description

The 5 volt and 12 volt series lamps contain an integral current limiting resistor in series with the LED. This allows the lamp to be driven from a 5 volt/12 volt source without an external current limiter. The red LEDs are made from GaAsP on a GaAs substrate. The High Efficiency Red and Yellow devices use GaAsP on a GaP substrate.

The green devices use GaP on a GaP substrate. The diffused lamps provide a wide off-axis viewing angle.

The T-13/4 lamps are provided with sturdy leads suitable for wire wrap applications. The T-13/4 lamps may be front panel mounted by using the HLMP-0103 clip and ring.

Package Dimensions

Figure A. T-1 Package.

OTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES). 2. AN EPOXY MENISCUS MAY EXTEND ABOUT 1mm
 - (.040") DOWN THE LEADS:

Figure B. T-13/4 Package.

Selection Guide

	Part Number		Operating	I _v n	I _v mcd		Package
Color	HLMP-	Package	Voltage	Min.	Тур.	2 θ ¹ / ₂ [1]	Outline
High	1600	T-1 Tinted Diffused	5	2.1	8.0	60°	A
Efficiency Red	1601		12				
nea	3600	T-13/4 Tinted Diffused	5]		60°	В
	3601		12				
Yellow	1620	T-1 Tinted Diffused	5	2.2	8.0	60°	A
	1621		12				
	3650	T-13/4 Tinted Diffused	5			60°	В
	3651	at a	12				
High	1640	T-1 Tinted Diffused	5	1.6	8.0	60°	A , .
Performance Green	1641	•	12				
Green	3680	T-13/4 Tinted Diffused	5			60°	В
	3681		12				

Absolute Maximum Ratings at $T_A = 25$ °C

	Red/HER/ Yellow 5 Volt Lamps	Red/HER/ Yellow 12 Volt Lamps	Green 5 Volt Lamps	Green 12 Volt Lamps
DC Forward Voltage (T _A = 25°C)	7.5 Volts ^[2]	15 Volts ^[3]	7.5 Volts ^[2]	15 Volts ^[3]
Reverse Voltage ($I_R = 100 \mu A$)	5 Volts	5 Volts	5 Volts	5 Volts
Operating Temperature Range	-40°C to 85°C	-40°C to 85°C	-20°C to 85°C	-20°C to 85°C
Storage Temperature Range	-55℃ to 100℃	-55℃ to 100℃	-55°C to 100°C	-55℃ to 100℃
Lead Soldering Temperature		260℃ for	5 seconds	

- Notes: 2. Derate from $T_A = 50^{\circ}C$ at 0.071 V/°C, see Figure 3. 3. Derate from $T_A = 50^{\circ}C$ at 0.086 V/°C, see Figure 4.

^{1.} $\theta_{1/2}$ is the off-axis angle at which the luminous intensity is $^{1}\!/_{2}$ the axial luminous intensity.

Electrical/Optical Characteristics at $T_A = 25^{\circ}C$

		Efi	High ficiency	Red		Yellow			Green			Test
Symbol	Description	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	Condition
$\lambda_{ m P}$	Peak Wavelength		635			583			565		nm	
λ_{d}	Dominant Wavelength		626			585			569		nm	Note 4
$\Delta\lambda^1/2$	Spectral Line Halfwidth		40			36			28		nm	
$R\theta_{J ext{-PIN}}$	Thermal Resistance		290			290			290	ı	°C/W	Junction to Cathode Lead (Note 6)
. Rθ _{J-PIN}	Thermal Resistance		210			210			210		°C/W	Junction to Cathode Lead (Note 7)
$I_{\mathbf{F}}$	Forward Current 12 V Devices		13	20		13	20		13	20	mA	$V_F = 12 \text{ V}$
$I_{\mathbf{F}}$	Forward Current 5 V Devices		10	15		10	15		10	15	mA	$V_{\rm F} = 5 \text{ V}$
η_{V}	Luminous Efficacy		145			500			595		lumen /Watt	Note 2
V_{R}	Reverse Breakdown Voltage	5.0			5.0			5.0			v	$I_R = 100 \mu\text{A}$

- 4. The dominant wavelength, λ_d , is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
- 5. Radiant intensity, I_e , in watts/steradian, may be found from the equation $I_e = I_V/\eta_V$, where I_V is the luminous intensity in candelas and η_V is the luminous efficacy in lumens/Watt.
- 6. For Figure A package type.
- 7. For Figure B package type.

Figure 1. Forward Current vs. Applied Forward Voltage. 5 Volt Devices.

Figure 3. Maximum Allowed Applied Forward Voltage vs. Ambient Temperature $R\theta_{JA}=175\,^{\circ}\text{C/W.}$ 5 Volt Devices.

Figure 2. Forward Current vs. Applied Forward Voltage. 12 Volt Devices.

Figure 4. Maximum Allowed Applied Forward Voltage vs. Ambient Temperature $R\theta_{JA}=175\,^\circ\!\text{C/W}.$ 12 Volt Devices.

Figure 4. Relative Luminous Intensity vs. Angular Displacement for T-1 Package.

Figure 5. Relative Luminous Intensity vs. Angular Displacement for $T-1^3/4$ Package.

Figure 6. Relative Luminous Intensity vs. Applied Forward Voltage. 5 Volt Devices.

Figure 7. Relative Luminous Intensity vs. Applied Forward Voltage. 12 Volt Devices.

T-13/4 (5 mm) Right Angle LED Indicator Options

Technical Data

Option 010 Option 100

Features

- Ideal for Card Edge Status Indication
- Package Design Allows Flush Seating on a PC Board
- May be Side Stacked on 6.35 mm (0.25") Centers
- LEDs Available in Four Colors, With or Without Integrated Current Limiting Resistor in T-13/4 Tinted Diffused Packages
- Housing Meets UL9V-0 Flammability Rating
- Additional Catalog Lamps Available as Options

Description

The T-13/4 Option 010 and 100 series of Right Angle Indicators are industry standard status indicators that incorporate a T-13/4 LED lamp in a black plastic right angle mount housing. The indicators are available in

Package Dimensions

standard Red, High Efficiency Red, Yellow, or High Performance Green with or without an integrated current limiting resistor. These products are designed to be used as back panel diagnostic indicators and card edge logic status indicators.

Ordering Information

To order T-13/4 high dome lamps with right angle mount housing, select the base part number and

add the option code 010 or 100. For example: HLMP-3750 option 010.

All Hewlett-Packard T-1³/4 highdome lamps are available in right angle housing. Contact your local Hewlett-Packard Sales Office or authorized components distributor for additional ordering information.

The Plastic right angle housing may be purchased separately as part number HLMP-5029.

Absolute Maximum Ratings and Electrical/ Optical Characteristics

The absolute maximum ratings and device characteristics are identical to those of the T-1³/₄ LED lamps. For information about these characteristics, see the data sheets of the equivalent T-1³/₄ LED lamp.

T-13/4 (5 mm) Right Angle Mount Housing

Technical Data

HLMP-5029 Option 010 Option 100

Features

- Fits Any HP High Dome T-13/4 LED Lamp
- Snap-In Fit Makes Mounting Simple
- High Contrast Black Plastic
- May be Ordered with Mounted T-1³/4 Lamp as an Option

Description

The HLMP-5029 is a black plastic right angle housing which mates with Hewlett-Packard high dome T-13/4 lamps. The leads should be prebent 90° as shown prior to snapping into the right angle housing.

The housing material is high temperature nylon capable of with standing temperatures up to +150 °C.

Physical Dimensions

As an option, T-1³/4 lamps may be ordered pre-mounted into the HLMP-5029 housing with leads bent down 90° and sheared to length, see table. To order, select the lamp base, part number and affix the desired option code. For example, the HLMP-3300 HER lamp may be ordered pre-mounted into the HLMP-5029 housing with leads shared to an even length. The part number for this option is: **HLMP-3300 Option 010**.

T-13/4 (5 mm) Panel Mount Clip and Retaining Ring

Technical Data

Option 007 (HLMP-0104)

Description

The Option 007 (HLMP-0104) is a black plastic mounting clip and retaining ring. It is designed to panel mount Hewlett-Packard Solid State high profile T-13/4 size lamps. This clip and ring combination is intended for installation in instrument panels from 1.52 mm (0.060") to 3.18 mm (0.125") thick. For panels greater than 3.18 mm (0.125") counterboring is required to the 3.18 mm (0.125") thickness.

Mounting Instructions

- Drill a 6.35/6.53 (0.250/0.257 in.) dia. hole in the panel.
 Deburr but do not chamfer the edges of the hole.
- 2. Press the panel clip into the hole from the front of the panel.
- 3. Press the LED into the clip from the back. Use blunt long nose pliers to push on the LED. Do not use force on the LED leads. A tool such as a nut driver may be used to press on the clip.

Note: Clip and retaining ring are also available for T-1 package, from a non-HP source. Please contact Interconsal Association, 2584 Wyandotte Way, Mountain View, CA for additional information. Telephone: (408) 745-0161.

4. Slip a plastic retaining ring onto the back of the clip and press tight using tools such as two nut drivers.

Ordering Information

T-13/4 High Dome LED Lamps can be purchased to include clip and

ring by adding Option Code 007 to the device catalog part number.

Example: To order the HLMP-3300 including clip and ring, order as follows: HLMP-3300 Option 007.

T-1 (3 mm) High Performance TS AlGaAs Red LED Lamps

Technical Data

HLMP-J100 HLMP-J105 HLMP-J150 HLMP-J155

Features

- High Light Output over a Wide Range of Currents (500 μA to 50 mA)
- Popular T-1 Package
- Low Forward Voltage
- Low Power Dissipation
- Deep Red Color
- Long Life: Solid State Reliability
- Wide Viewing Angles
- Available on Tape and Reel

Applications

- Outdoor Message Boards
- Automotive Lighting
- Portable Equipment
- Safety Lighting Equipment
- Medical Equipment
- Changeable Message Signs

Package Dimensions

Description

The T-1 solid state lamps utilize a highly optimized LED material technology, transparent substrate aluminum gallium arsenide (TS AlGaAs). This LED technology has a very high luminous efficiency, capable of producing high light output over a wide range of drive currents (500 µA to 50 mA). The color is deep red at a dominant wavelength of 644 nm. TS AlGaAs is a flip-chip LED technology, die attached to the anode lead and wire bonded to the cathode lead.

Device Selection Guide

Package Description	Viewing Angle $2 heta^{1/2}$	Deep Red $\lambda_d = 644 \text{ nm}$	Typical I_V (mcd) $I_F = 20$ mA	$\begin{array}{c} {\rm Typical} \\ {\rm I_V~(mcd)} \\ {\rm I_F = 0.5~mA} \end{array}$
T-1 (3 mm), Untinted, Non-diffused, Standard Current	45°	HLMP-J105	340	-
T-1 (3 mm), Untinted, Non-diffused, Low Current	45°	HLMP-J155	_	6
T-1 (3 mm), Tinted, Diffused, Standard Current	55°	HLMP-J100	175	_
T-1, (3 mm), Tinted, Diffused, Low Current	55°	HLMP-J150	_	3

Absolute Maximum Ratings

Peak Forward Current ^[2]	300 mA
Average Forward Current (@ $I_{PEAK} = 300 \text{ mA})^{[1,2]}$] 30 mA
DC Forward Current[3]	50 mA
Power Dissipation	100 mW
Reverse Voltage ($I_R = 100 \mu A$)	5 V
Transient Forward Current (10 µs Pulse) ^[4]	500 mA
Operating Temperature Range	55 to +100℃
Storage Temperature Range	55 to +100℃
LED Junction Temperature	110℃
Solder Temperature	260°C for 5 seconds
[1.6 mm (0.063 in.) from body]	

Notes:

- 1. Maximum I_{AVG} at f=1 kHz, DF = 10%.
- 2. Refer to Figure 6 to establish pulsed operating conditions.
- 3. Derate linearly as shown in Figure 5.
- 4. The transient peak current is the maximum non-recurring peak current the device can withstand without damaging the LED die and wire bonds. It is not recommended that the device be operated at peak currents above the Absolute Maximum Peak Forward Current.

Optical Characteristics at $T_A = 25$ °C

Part	Inter I _V (n	nous nsity ncd) mA ^[1]	Total Flux \$\phi_v\$ (mlm) \$\tilde{w}\$ 20 mA ^[2]	Peak Wavelength λ _{PEAK} (nm)	Color, Dominant Wavelength $\lambda_d^{[3]}$ (nm)	Viewing Angle $2\theta^{1/2}$ (Degrees)[4]	Luminous Efficacy η _v
Number	Min.	Тур.	Typ.	Typ.	Typ.	Typ.	(lm/w)
HLMP-J105	56.4	340	280	654	644	45	85
HLMP-J100	35.2	175		654	644	55	85

Optical Characteristics at $T_A = 25$ °C

Part Number (Low	Inte	nous nsity ncd) mA ^[1]	Total Flux	Peak Wavelength λ _{PEAK} (nm)	Color, ZDominant Wavelength $\lambda_d^{[3]}$ (nm)	Viewing Angle $2\theta^{1/2}$ (Degrees)[4]	Luminous Efficacy
Current)	Min.	Тур.	Typ.	Тур.	Тур.	Typ.	(lm/w)
HLMP-J155	2.1	6.0	37.2	654	644	45	85
HLMP-J150	1.3	3.0		654	644	55	85

- 1. The luminous intensity, I_V , is measured at the mechanical axis of the lamp package. The actual peak of the spatial radiation pattern may not be aligned with this axis.
- 2. ϕ_{V} is total luminous flux output as measured with an integrating sphere.
- 3. The dominant wavelength, $\hat{\lambda}_{tl}$, is derived from the CIE Chromaticity Diagram and represents the color of the device.
- 4. $\theta^{1/2}$ is the off-axis angle where the luminous intensity is 1/2 the peak intensity.

Electrical Characteristics at $T_A = 25$ °C

Part	Vol V _F (V	ward tage Volts) : 20 mA	Break V _R (V	erse kdown /olts) 100 µA	$\label{eq:capacitance} \begin{split} & Capacitance \\ & C \ (pF) \\ & V_F = 0, \\ & f = 1 \ MHz \end{split}$	Thermal Resistance	Speed of Response τ_s (ns) Time Constant e^{-t/τ_s}
Number	Тур.	Max.	Min.	Тур.	Тур.	Rθ _{J-PIN} (°C/W)	Тур.
HLMP-J105	1.9	2.4	5	20	20	290	45
HLMP-J100	1.9	2.4	5	20	20	290	45

Electrical Characteristics at $T_A = 25$ °C

Part Number (Low	Vol V _F (ward tage Volts) 0.5 mA	Break V _R (V	erse kdown /olts) 100 µA	Capacitance $C (pF)$ $V_F = 0,$ $f = 1 MHz$	Thermal Resistance	Speed of Response τ_s (ns) Time Constant e^{-t/τ_s}
Current)	Typ.	Max.	Min.	Typ.	Тур.	Rθ _{J-PIN} (°C/W)	Typ.
HLMP-J155	1.6	1.9	5	20	20	290	45
HLMP-J150	1.6	1.9	5	20	20	290	45

Figure 1. Relative Intensity vs. Wavelength.

Figure 2. Forward Current vs. Forward Voltage.

Figure 3. Relative Luminous Intensity vs. DC Forward Current.

30 Rθ_{JA} = 400° C/W

Rθ_{JA} = 550° C/W

10 0 20 40 60 80 100

T_A – AMBIENT TEMPERATURE – °C

Figure 4. Relative Efficiency vs. Peak Forward Current.

Figure 5. Maximum Forward DC Current vs. Ambient Temperature. Derating Based on $T_{JMAX} = 110$ °C.

Figure 6. Maximum Average Current vs. Peak Forward Current.

Figure 7. Normalized Luminous Intensity vs. Angular Displacement. HLMP-J105/J155.

Figure 8. Normalized Luminous Intensity vs. Angular Displacement. HLMP-J100/J150.

T-1 (3 mm) High Intensity LED Lamps

Technical Data

HLMP-132X Series HLMP-142X Series HLMP-152X Series

Features

- · High Intensity
- Choice of 3 Bright Colors High Efficiency Red Yellow
- High Performance Green
 Popular T-1 Diameter
- Package
- Selected Minimum Intensities
- Narrow Viewing Angle

- General Purpose Leads
- · Reliable and Rugged
- Available on Tape and Reel

Description

This family of T-1 lamps is specially designed for applications requiring higher on-axis intensity than is achievable with a standard lamp. The light generated is focused to a narrow beam to achieve this effect.

Package Dimensions

NOTES: 1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES). 2. AN EPOXY MENISCUS MAY EXTEND ABOUT 1mm (0.040") DOWN THE LEADS.

Selection Guide

Part Number HLMP-	Description	Minimum Intensity (mcd) at 10 mA	Color (Material)
1320	Untinted Nondiffused	8.6	High Efficiency Red (GaAsP on GaP)
1321	Tinted Nondiffused	8.6	
1420	Untinted Nondiffused	9.2	Yellow (GaAsP on GaP)
1421	Tinted Nondiffused	9.2	
1520	Untinted Nondiffused	6.7	Green (GaP)
1521	Tinted Nondiffused	6.7	

Absolute Maximum Ratings at $T_A = 25$ °C

Parameter	Red	Yellow	Green	Units
Peak Forward Current	90	60	90	mA
Average Forward Current ^[1]	25	20	25	mA
DC Current ^[2]	30.	20	30	mA
Power Dissipation[3]	135	85	135	mW
Reverse Voltage ($I_R = 100 \mu A$)	5	5	5	V
Transient Forward Current ^[4] (10 µsec Pulse)	500	500	500	mA
LED Junction Temperature	110	110	110	°C
Operating Temperature Range	-55 to +100	-55 to +100	-20 to +100	°C
Storage Temperature Range			-55 to +100	
Lead Soldering Temperature [1.6 mm (0.063 in.) from body]		260°C for	5 seconds	

- 1. See Figure 5 (Red), 10 (Yellow), or 15 (Green) to establish pulsed operating conditions.
- 2. For Red and Green series derate linearly from 50°C at 0.5 mA/°C. For Yellow series derate linearly from 50°C at 0.2 mA/°C.
- 3. For Red and Green series derate power linearly from 25°C at 1.8 mW/°C. For Yellow series derate power linearly from 50°C at 1.6 mW/°C.
- 4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

Electrical Characteristics at $T_A = 25$ °C

Symbol	Description	Device HLMP-	Min.	Тур.	Max.	Units	Test Conditions
I_V	Luminous Intensity	1320 1321	8.6 8.6	30 30		mcd	$I_F = 10 \text{ mA}$ (Figure 3)
		1420 1421	9.2 9.2	15 15		mcd	I _F = 10 mA (Figure 8)
		1520 1521	6.7 6.7	22 22		mcd	I _F = 10 mA (Figure 3)
$2\theta^{1/2}$	Including Angle Between Half Luminous Intensity Points	All		45		Deg.	$I_F = 10 \text{ mA}$ See Note 1 (Figures 6, 11, 16, 21)
$\lambda_{ ext{PEAK}}$	Peak Wavelength	132X 142X 152X		635 583 565		nm	Measurement at Peak (Figure 1)
$\Delta\lambda_{1/2}$	Spectral Line Halfwidth	132X 142X 152X		40 36 28		nm	
$\lambda_{ m d}$	Dominant Wavelength	132X 142X 152X		626 585 569		nm	See Note 2 (Figure 1)
$ au_{ m s}$	Speed of Response	132X 142X 152X	,	90 90 500		ns	
С	Capacitance	132X 142X 152X		11 15 18		pF	$V_F = 0$; $f = 1 \text{ MHz}$
$R\theta_{J ext{-PIN}}$	Thermal Resistance	All		290		°C/W	Junction to Cathode Lead
$V_{ m F}$	Forward Voltage	132X 142X 152X		1.9 2.0 2.1	2.4 2.4 2.7	V	$I_{\rm F} = 10 \text{ mA}$
$V_{ m R}$	Reverse Breakdown Voltage	All	5.0			V	$I_R = 100 \mu A$
ην	Luminous Efficacy	132X 142X 152X		145 500 595		lumens Watt	See Note 3

Notes

^{1.} $\theta^{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.

^{2.} The dominant wavelength, λ_d , is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

^{3.} Radiant intensity, l_e , in watts/steradian, may be found from the equation $I_e = l_v/\eta_v$, where l_v is the luminous intensity in candelas and η_v is the luminous efficacy in lumens/watt.

Figure 1. Relative Intensity vs. Wavelength.

T-1 High Efficiency Red Non-Diffused

Figure 2. Forward Current vs. Forward Voltage Characteristics.

Figure 3. Relative Luminous Intensity vs. DC Forward Current.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.

Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. (I_{DC} MAX as per MAX Ratings).

Figure 6. Relative Luminous Intensity vs. Angular Displacement.

T-1 Yellow Non-Diffused

Figure 7. Forward Current vs. Forward Voltage Characteristics.

Figure 8. Relative Luminous Intensity vs. Forward Current.

Figure 9. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration. ($I_{DC}MAX$ as per MAX Ratings).

Figure 11. Relative Luminous Intensity vs. Angular Displacement.

T-1 Green Non-Diffused

Figure 12. Forward Current vs. Forward Voltage Characteristics.

Figure 13. Relative Luminous Intensity vs. Forward Current.

Figure 14. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.

Figure 15. Maximum Tolerable Peak Current vs. Pulse Duration. ($I_{\rm DCMAX}$ as per MAX Ratings).

Figure 16. Relative Luminous Intensity vs. Angular Displacement.

T-1 (3 mm) Diffused LED Lamps

Technical Data

HLMP-130X Series HLMP-1385 HLMP-140X Series HLMP-1485 HLMP-1503

HLMP-1523

HLMP-1585

HLMP-K40X Series

HLMP-K600

Features

- High Intensity
- Choice of 4 Bright Colors
 High Efficiency Red
 Orange
 Yellow
 High Performance Green
- Popular T-1 Diameter Package
- Selected Minimum Intensities
- Wide Viewing Angle
- General Purpose Leads

· Reliable and Rugged

• Available on Tape and Reel

Description

This family of T-1 lamps is widely used in general purpose indicator applications. Diffusants, tints, and optical design are balanced to yield superior light output and wide viewing angles. Several intensity choices are available in each color for increased design flexibility.

Package Dimensions

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).

2. AN EPOXY MENISCUS MAY EXTEND ABOUT 1mm (0.040") DOWN THE LEADS.

Part Number HLMP-	Application	Minimum Intensity (mcd) at 10 mA	Color (Material)
1300	General Purpose	1.3	High Efficiency
1301	General Purpose	2.1	Red (CoAsB on
1302	High Ambient	3.4	(GaAsP on GaP)
1385	Premium Lamp	8.6	
K400	General Purpose	1.3	Orange
K401	High Ambient	2.1	(GaAsP on
K402	Premium Lamp	3.4	GaP)
1400	General Purpose	1.4	Yellow
1401	General Purpose	2.2	(GaAsP on
1402	High Ambient	3.6	GaP)
1485	Premium Lamp	5.7	
1503	General Purpose	1.0	Green
1523	High Ambient	2.6	(GaP)
1585	Premium Lamp	4.2]
K600 ^[1]	General Purpose	1.0	Emerald Green (GaP)

Note:

 Please refer to Application Note 1061 for information comparing standard green and emerald green light output degradation.

Absolute Maximum Ratings at $T_A = 25$ °C

Parameter	HER/Orange	Yellow	Green	Units
Peak Forward Current	. 90	60	90	mA
Average Forward Current ^[1]	25	20	25	mA
DC Current ^[2]	30	20	30	mA
Reverse Voltage ($I_R = 100 \mu A$)	5	5	5	V
Transient Forward Current ^[4] (10 µsec Pulse)	500	500	500	mA
LED Junction Temperature	110	110	110	°C
Operating Temperature Range	-55 to +100	-55 to +100	-20 to +100	°C
Storage Temperature Range			-55 to +100	
Lead Soldering Temperature [1.6 mm (0.063 in.) from body]		260°C for 5 s	seconds	

Notes:

- 1. See Figure 5 (HER/Orange), 10 (Yellow), or 15 (Green/Emerald Green) to establish pulsed operating conditions.
- 2. For Red, Orange, and Green series derate linearly from 50°C at 0.5 mA/°C. For Yellow series derate linearly from 50°C at 0.2 mA/°C.
- 3. For Red, Orange, and Green series derate power linearly from 25°C at 1.8 mW/°C. For Yellow series derate power linearly from 50°C at 1.6 mW/°C.
- 4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

Electrical Characteristics at $T_A = 25$ °C

Symbol	Description	Device HLMP-	Min.	Тур.	Max.	Units	Test Conditions
I _V	Luminous Intensity	High Efficiency Red 1300 1301 1302 1385	1.3 2.1 3.4 8.6	5.0 5.5 7.0 11.0		mcd	$I_{\mathrm{F}} = 10 \; \mathrm{mA}$
		Orange K400 K401 K402	1.3 2.1 3.4	5.0 5.5 7.0			
		Yellow 1400 1401 1402 1485	1.4 2.2 3.6 5.7	5.0 6.0 7.0 10.0			
		Green 1503 1523 1585	1.0 2.6 4.2	5.0 7.0 8.5			·
		Emerald Green K600	1.0	4.5			

Electrical Characteristics at $T_A = 25$ °C (cont.)

Symbol	Description	Device HLMP-	Min.	Тур.	Max.	Units	Test Conditions
2θ ¹ /2	Included Angle Between Half Luminous Intensity Points	All		60		Deg.	I _F = 10 mA See Note 1
$\lambda_{ ext{PEAK}}$	Peak Wavelength	High Efficiency Red Orange Yellow Green Emerald Green		635 600 583 565 558		nm	Measurement at Peak
$\lambda_{ m d}$	Dominant Wavelength	High Efficiency Red Orange Yellow Green Emerald Green		626 602 585 569 560		nm	See Note 2
$\Delta\lambda_{1/2}$	Spectral Line Halfwidth	High Efficiency Red Yellow Green Emerald Green		40 36 28 24		nm	
$ au_{ m s}$	Speed of Response	High Efficiency Red Orange Yellow Green Emerald Green		90 280 90 500 3100		ns	
C	Capacitance	High Efficiency Red Orange Yellow Green Emerald Green		11 4 15 18 35		pF	$V_F = 0;$ f = 1 MHz
$R\theta_{\text{J-PIN}}$	Thermal Resistance	All		290		°C/W	Junction to Cathode Lead
$V_{\!F}$	Forward Voltage	HER/Orange Yellow Green Emerald Green	1.5 1.5 1.5	1.9 2.0 2.1 2.1	2.4 2.4 2.7 2.7	V	$I_F = 10 \text{ mA}$
V_R	Reverse Breakdown Voltage	All	5.0			V	$I_R = 100 \mu\text{A}$
$\eta_{ m V}$	Luminous Efficacy	High Efficiency Red Orange Yellow Green Emerald Green		145 380 500 595 655		lumens Watt	See Note 3

Notes

- 1. $\theta^{1}/2$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
- 2. The dominant wavelength, λ_d , is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
- 3. Radiant intensity, I_e , in watts/steradian, may be found from the equation $I_e = I_v/\eta_v$, where I_v is the luminous intensity in candelas and η_v is the luminous efficacy in lumens/watt.

Figure 1. Relative Intensity vs. Wavelength.

T-1 High Efficiency Red, Orange Diffused Lamps

Figure 2. Forward Current vs. Forward Voltage Characteristics.

Figure 3. Relative Luminous Intensity vs. DC Forward Current.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.

Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. (I_{DC} MAX as per MAX Ratings).

Figure 6. Relative Luminous Intensity vs. Angular Displacement.

T-1 Yellow Diffused Lamps

Figure 7. Forward Current vs. Forward Voltage Characteristics.

Figure 8. Relative Luminous Intensity vs. Forward Current.

Figure 9. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration. (I_{DC} MAX as per MAX Ratings).

Figure 11. Relative Luminous Intensity vs. Angular Displacement.

T-1 Green/Emerald Green Diffused Lamps

Figure 12. Forward Current vs. Forward Voltage Characteristics.

Figure 13. Relative Luminous Intensity vs. Forward Current.

Figure 14. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.

Figure 15. Maximum Tolerable Peak Current vs. Pulse Duration. (I_{DC} MAX as per MAX Ratings).

Figure 16. Relative Luminous Intensity vs. Angular Displacement.

Tape and Reel Options for $T-1^3/4$ (5 mm), T-1 (3 mm), LED Lamps

Technical Data

Option 001 Option 002

Features

- Compatible with Radial Lead Automatic Insertion
 Equipment
- Meets Dimensional Specifications of IEC Publication 286 and ANSI/EIA Standard RS-468 for Tape and Reel
- Reel Packaging Simplifies Handling and Testing
- T-1 and T-1 ³/₄ LED Lamps Available Packaged on Tape and Reel
- 5 mm (0.197 inch) Formed Lead and 2.54 mm (0.100 inch) Straight Lead Spacing Available

Description

T-1 and T-13/4 LED lamps are available on tape and reel as specified by the IEC Publication 286 and ANSI/EIA Standard RS-468. The Option 001 lamp devices have formed leads with 5 mm (0.197 inch) spacing for automatic insertion into PC boards by radial lead insertion equipment. The Option 002 lamp devices have straight leads with 2.54 mm (0.100 inch) spacing, packaged on tape and reel for ease of handling. T-1 lamps are packaged 1800/reel. T-13/4 lamps are packaged 1300/reel.

Ordering Information

To order LED lamps packaged on tape and reel, include the appropriate option code along with the device catalog part number. Example: to order the HLMP-3300 on tape and reel with formed leads (5 mm lead spacing) order as follows: HLMP-3300 Option 001. Minimum order quantities vary by part number. Orders must be placed in reel increments. Please contact your local Hewlett-Packard sales office or franchised Hewlett-Packard distributor for a complete list of lamps available on tape and reel.

LED lamps with 0.46 mm (0.018 inch) square leads with 5 mm (0.197 inch) lead spacing are recommended for use with automatic insertion equipment. Caution: Hewlett-Packard does

not recommend T-1 package, option 002 LEDs for auto-insertion. The force exerted on the LED lead frame during the cut and clinch operation of auto-insertion may result in cracking of the lamp epoxy dome which results in catastrophic failure. It is suggested that insertion machine compatibility be confirmed.

Device Selection Guide

Option	Description
001	Tape and reel, 5 mm (0.197 inch) formed leads.
002	Tape and reel, 2.54 mm (0.100 inch) straight leads.

Package	Quantity/Reel	Order Increments
T-1	1800	1800
T-1 ³ / ₄	1300	1300

Absolute Maximum Ratings and Electrical/ Optical Characteristics

The absolute maximum ratings, mechanical dimension tolerances and electrical/optical characteristics for lamps packaged on tape and reel are identical to the basic catalog device. Refer to the basic data sheet for the specified values.

Notes:

- 1. Minimum leader length at either end of tape is 3 blank part spaces.
- 2. Silver saver paper is used as the interlayer for silver plated lead devices.
- 3. The maximum number of consecutive missing lamps is 3.
- 4. In accordance with EIA and IEC specs, the anode lead leaves the reel first.
- 5. Drawings apply to devices with 0.46 mm (0.018 inch) square leads only. Contact Hewlett-Packard Sales Office for dimensions of 0.635 mm (0.025 inch) square lead devices.

Tape and Reel LED Configurations

Figure 1. T-1 High Profile Lamps, Option 001.

Figure 3. T-1 Low Profile Lamps, Option 001.

Figure 2. T-1 High Profile Lamps, Option 002.

Figure 4. T-1 Low Profile Lamps, Option 002.

Tape and Reel LED Configurations (cont.)

Figure 5. T-13/4 High Profile Lamps, Option 001.

Figure 6. T-13/4 High Profile Lamps, Option 002.

Figure 7. T-13/4 Low Profile Lamps, Option 001.

Figure 8. T-13/4 Low Profile Lamps, Option 002.

Dimensional Specifications for Tape and Reel

Item	Option 001	002	Symbol	Specification	Notes
T1 High Profile Body Height	A	Ü	A1	4.70 (0.185) 4.19 (0.165)	
Body Diameter			D1	3.18 (0.125) 2.67 (0.105)	
Component Height			H1	25.7 (1.012) Max.	
Tl Low Profile Body Height	A	A	A2	3.73 (0.147) 3.23 (0.127)	
Body Diameter			D2	3.05 (0.120) 2.79 (0.110)	
Component Height			H2	24.7 (0.974) Max.	
T1 ³ /4 High Profile Body Height	A		A3	9.19 (0.362) 8.43 (0.332)	
Body Diameter			D3	5.08 (0.200) 4.32 (0.170)	
Component Height			Н3	30.2 (1.189) Max.	
T1 ³ /4 Low Profile Body Height	A	A	A4	6.35 (0.250) 5.33 (0.210)	
Body Diameter			D4	5.08 (0.200) 4.32 (0.170)	
Component Height			H4	27.4 (1.079) Max.	
Lead Wire Thickness			d	0.45 (0.018)	Square Leads
Pitch of Component			P	13.7 (0.539) 11.7 (0.461)	
Feed Hole Pitch			P ₀	12.9 (0.508) 12.5 (0.492)	Cumulative error: 1.0 mm/20 pitches
Feed Hole Center to Lea	ad Center		P1	4.55 (0.179) 3.15 (0.124)	Measure at crimp bottom 5.78/3.68 (0.227/0.1448) for straight leads
Hole Center to Compon	ent Center		P2	7.35 (0.289) 5.35 (0.211)	
Lead to Lead Distance			F	5.40 (0.213) 4.90 (0.193)	2.54 (0.100) nominal for straight leads
Component Alignment,	Front-rear		Δh	0 ± 1.0 (0.039)	Figure 9
Tape Width			W	18.5 (0.728) 17.5 (0.689)	
Hold Down Tape Width			\mathbf{w}_{o}	15.3 (0.602) 12.0 (0.472)	
Hole Position			W1	9.75 (0.384) 8.50 (0.335)	

Dimensional Specifications for Tape and Reel (cont.)

Item Option 001 002	Symbol	Specification	Notes
Hold Down Tape Position	W2	2.54 (0.100) Max.	
Height of Component from Hole Center	Н	21.0 (0.827) 20.0 (0.787)	
Lead Clinch Height	H _O	16.5 (0.650) 15.5 (0.610)	
Feed Hole Diameter	D _O	4.20 (0.165) 3.80 (0.150)	
Total Tape Thickness	t	0.90 (0.035) 0.50 (0.020)	Paper thickness: 0.55 (0.022) 0.45 (0.018) Figure 9
Length of Snipped Lead	L	11.0 (0.433) Max.	. ,
Lead Length Under Hold Down Tape	I1	14.5 (0.571) Min.	

Note:

1. Dimensions in millimetres (inches) maximum/minimum.

Figure 9. Front to Rear Alignment and Tape Thickness, Typical All Device Types.

FOR 3 2 1 SEC.

Figure 10. Device Retention Tests and Specifications.

Figure 11. Reel Configuration and Labeling.

T-1 (3 mm) Right Angle LED Indicators

Technical Data

Option 010 Option 101

Features

- Ideal for Card Edge Status Indication
- Package Design Allows Flush Seating on a PC Board
- May be Side Stacked on 4.57 mm (0.18") Centers
- Up to 8 Units May be Coupled for a Horizontal Array Configuration with a Common Coupling Bar (See T-1 Right Angle Array Data Sheet)
- LEDs Available in All LED Colors, With or Without Integrated Current Limiting Resistor in T-1 Packages
- Easy Flux Removal Design

- Housing Material Meets UL 94V-0 Rating
- Additional Catalog Lamps Available as Options

Description

Hewlett-Packard T-1 Right Angle Indicators are industry standard status indicators that incorporate a T-1 LED lamp in a black plastic right angle mount housing. The indicators are available in Standard Red, High Efficiency Red, Orange, Yellow, and High Performance Green, with or without an integrated current limiting resistor. These products are designed to be used as back

panel diagnostic indicators and card edge logic status indicators.

Ordering Information

To order other T-1 High Dome Lamps in Right Angle Housings in addition to the parts indicated above, select the base part number and add the option code

Package Dimensions

5964-9376E

010 or 101, depending on the lead length desired. For example, by ordering HLMP-1302 Option 010, you would receive the long lead option. By ordering HLMP-1302 Option 101, you would receive the short lead option.

Arrays made by connecting two to eight single Right Angle Indicators with a Common Coupling Bar are available. Ordering information for arrays may be found on the T-1 Right Angle Array data sheet.

Absolute Maximum Ratings and Other Electrical/Optical Characteristics

The absolute maximum ratings and typical device characteristics are identical to those of the T-1 LED lamps. For information about these characteristics, see the data sheets of the equivalent T-1 LED lamp.

T-1 (3 mm) Right Angle LED Indicator Array Options

Technical Data

Option 102, 103, 104, 105, 106, 107, 108

Features

- Ideal for PC Board Status Indication
- Standard 4 Element Configuration
- Easy Handling
- Easy Flux Removal
- Housing Meets UL 94V-O Flammability Rating
- Other Catalog Lamps Available

Description

These T-1 right angle arrays incorporate standard T-1 lamps for a good balance of viewing angle and intensity. Single units are held together by a plastic tie bar. The leads of each member of the array are spaced on 2.54 mm (0.100 in.) centers. Lead spacing between adjacent lamps in the array is on 2.03 mm (0.080 in.) centers. These products are

Package Dimensions

OPTION NO.	ARRAY LENGTH	OPTION NO.	ARRAY LENGTH	OPTION NO.	ARRAY LENGTH
#102	9.65 (0.380) 8.79 (0.346)	#105	23.14 (0.911) 22.73 (0.895)	#106	36.70 (1.445) 36.45 (1.435)
#103	14.22 (0.560) 13.36 (0.526)	#106	27.71 (1.091) 27.31 (1.075)		
#104	18.57 (0.731) 18.16 (0.715)	#107	32.28 (1.271) 31.88 (1.255)		

designed to be used as back panel diagnostic indicators and logic status indicators on PC boards.

Ordering Information

Use the option code 102 through 108 in addition to the base part number to order these arrays. Example: HLMP-1300 option 102. Arrays from 2 to 8 elements

in length and special lamp color combinations within an array are available. Please contact your nearest Hewlett-Packard Components representative for ordering information on these special items.

Absolute Maximum Ratings and Other Electrical/Optical Characteristics

The absolute maximum ratings and typical device characteristics are identical to those of the T-1 LED lamps. For information about these characteristics, see the data sheets of the equivalent T-1 LED lamp.

2.5 mm x 7.6 mm Rectangular LED Lamps

Technical Data

HLMP-R100 HLMP-0300/0301 HLMP-0400/0401 HLMP-0503/0504

Features

- Rectangular Light Emitting Surface
- Flat High Sterance Emitting Surface
- Stackable on 2.54 mm (0.100 inch) Centers
- Ideal as Flush Mounted Panel Indicators
- Ideal for Backlighting Legends
- Long Life: Solid State Reliability
- Choice of 4 Bright Colors
 DH AS AlGaAs Red
 High Efficiency Red
 Yellow
 High Performance Green
- IC Compatible/Low Current Requirements

Description

The HLMP-R100, -030X, -040X, -050X are solid state lamps encapsulated in a radial lead rectangular epoxy package. They utilize a tinted, diffused epoxy to provide high on-off contrast and a flat high intensity emitting surface. Borderless package design allows creation of uninterrupted light emitting areas.

The HLMP-R100 uses a double heterojunction (DH) absorbing substrate (AS) aluminum gallium arsenide (AlGaAs) red LED chip in a light red epoxy package. This combination produces outstanding light output over a wide range of drive currents.

The HLMP-0300 and -0301 have a high efficiency red GaAsP on GaP LED chip in a light red epoxy package.

The HLMP-0400 and -0401 provide a yellow GaAsP on GaP LED chip in a yellow epoxy package.

The HLMP-0503 and -0504 provide a green GaP LED chip in a green epoxy package.

Package Dimensions

- 1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
- 2. AN EPOXY MENISCUS MAY EXTEND ABOUT 1 mm (0.040") DOWN THE LEADS.
 3. THERE IS A MAXIMUM 1° TAPER FROM BASE TO TOP OF LAMP.

Axial Luminous Intensity

	Part	I _v (mcd) @ 20 mA DC		
Color	Number	Min.	Тур.	
DH AlGaAs Red	HLMP-R100	3.4	11.0	
High Efficiency	HLMP-0300	1.3	2.5	
Red	HLMP-0301	2.1	5.3	
Yellow	HLMP-0400	1.4	2.5	
Tenow	HLMP-0401	3.6	5.0	
High Performance	HLMP-0503	1.6	2.5	
Green	HLMP-0504	2.6	8.0	

Absolute Maximum Ratings at $T_A = 25$ °C

Parameter	HLMP- R100	HLMP- 0300/-0301	HLMP- 0400/0401	HLMP- 0503/-0504	Units
Peak Forward Current	300	90	60	90	mA
Average Forward Current ^[1]	20	25	20	25	mA
DC Current ^[2]	30	30	20	30	mA
Power Dissipation	87	135	85	135	mW
Reverse Voltage ($I_R = 100 \mu A$)	5	5	5	5	V
Transient Forward Current ^[3] (10 µs Pulse)	500	500	500	500	mA
Operating Temperature Range	-20 to +100	-55 to	-55 to	-20 to +100	°C
Storage Temperature Range	-55 to +100	+100	+100	90 25 30 135 5 500 -20 to +100 -55 to +100	
Lead Soldering Temperature (1.6 mm [0.063 in.] from body)		26	60°C for 5 secon	ds	

Notes

1. See Figure 5 to establish pulsed operating conditions.

2. For AlGaAs Red, Red, and Green Series derate linearly from 50°C at 0.5 mA/°C. For Yellow Series derate linearly from 50°C at 0.2 mA/°C

3. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak current beyond the peak forward current listed in the Absolute Maximum Ratings.

Electrical/Optical Characteristics at $T_A=25^{\circ}\!\mathrm{C}$

		HL	MP-R	100		HLMP 800/-08			HLMP 400/-04			HLMF 503/-0			Test
Sym.	Description	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units	Conditions
$2\theta_{_{1/2}}$	Included Angle Between Half Luminous Intensity Points		100			100			100			100		Deg.	Note 1. Fig. 6
λ_{p}	Peak Wavelength		645			635			583			565		nm	Measurement at Peak
$\lambda_{\mathbf{d}}$	Dominant Wavelength		637			626			585			569		nm	Note 2
$\Delta\lambda_{1/2}$	Spectral Line Halfwidth		20			40			36			28		nm	
τ_{s}	Speed of Response		30			90			90			500		ns	
С	Capacitance		30			16			18			18		pF	$V_F = 0;$ f = 1 MHz
$R\theta_{\text{J-PIN}}$	Thermal Resistance		260			260			260			260		°C/W	Junction to Cathode Lead
V _F	Forward Voltage		1.8	2.2		1.9	2.6		2.1	2.6		2.2	3.0	v	$\begin{array}{l} \rm I_{_F} = 20 \; mA \\ \rm Figure \; 2. \end{array}$
V _R	Reverse Breakdown Voltage	5.0			5.0		:	5.0			5.0			V	$I_R = 100 \mu\text{A}$
$\eta_{\rm v}$	Luminous Efficacy		80			145			500			595		lm/W	Note 3

- Notes: 1. $\theta_{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity. 2. The dominant wavelength, λ_d , is derived from the CIE chromaticity diagram and represents the single wavelength which defines the
- is the luminous efficacy in lumens/watt. See found from the equation $I_e = I_v/\eta_v$, where I_v is the luminous intensity in candelas and η_v is the luminous efficacy in lumens/watt.

Figure 1. Relative Intensity vs. Wavelength.

Figure 2. Forward Current vs. Forward Voltage. V_F (300 mA) for AlGaAs Red = 2.6 Volts Typical.

Figure 3. Relative Luminous Intensity vs. Forward Current.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current. η_v (300 mA) for AlGaAs Red = 0.7.

Figure 5. Maximum Tolerable Peak Current vs. Peak Duration (I $_{\rm PEAK}$ MAX Determined from Temperature Derated I $_{\rm DC}$ MAX).

Figure 6. Relative Luminous Intensity vs. Angular Displacement.

2 mm x 5 mm Rectangular LED Lamps

Technical Data

HLMP-S100 HLMP-S20X Series HLMP-S30X Series HLMP-S40X Series HLMP-S50X Series HLMP-S600

Features

- Rectangular Light Emitting Surface
- Excellent for Flush Mounting on Panels
- Choice of Five Bright Colors
- Long Life: Solid State Reliability
- Excellent Uniformity of Light Output

Description

The HLMP-S100, -S200, -S300,

-S400, -S500, S600 are epoxy encapsulated lamps in rectangular packages which are easily stacked in arrays or used for discrete front panel indicators. Contrast and light uniformity are enhanced by a special epoxy diffusion and tinting process.

The HLMP-S100 uses double heterojunction (DH) absorbing substrate (AS) aluminum gallium arsenide (AlGaAs) LEDs to produce outstanding light output

Package Dimensions

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS (INCHES)
 2. AN EPOXY MENISCUS MAY EXTEND ABOUT
- 1 mm (0.040") DOWN THE LEADS.

 3. THERE IS A MAXIMUM 1° TAPER FROM
- 3. THERE IS A MAXIMUM 1° TAPER FROM BASE TO THE TOP OF LAMP.

Electrical/Optical Characteristics at $T_{\Lambda} = 25^{\circ}C$

Sym.	Description	Device HLMP-	Min.	Тур.	Max.	Units	Test Conditions
$I_{\rm v}$	Luminous	AlGaAs Red			-	mcd	$I_F = 20 \text{ mA}$
	Intensity	S100	3.4	7.5			
		High Efficiency Red					1.00
		S200	2.1	3.5			
		S201	3.4	7.5			
		Orange					
		S400	2.1	3.5			
		S401	3.4	7.5			
		Yellow					
		S300	1.4	2.1			
		S301	2.2	4.0			
		Green					
		S500	2.6	4.0			
		S501	4.2	8.0			,
		Emerald Green					
		S600 ^[4]	1.0	3.0			1 April 1
$2\theta_{1/2}$	Included Angle	All		110		Deg.	$I_F = 20 \text{ mA}$
	Between Half	4		1.			See Note 1
	Luminous Intensity Points	,	l .				
λ_{PEAK}	Peak Wavelength	AlGaAs Red	-	645		nm	Measurement at
		High Efficiency Red	· ·	635		-	Peak
		Orange Yellow		600 583			
		Green		565			, * ·
	4	Emerald Green		558			
$\lambda_{ m d}$	Dominant	AlGaAs Red		637		nm	See Note 2
	Wavelength	High Efficiency Red		626			Time const, e⁻t/ts
		Orange Yellow		602 585			
		Green		569			
		Emerald Green		560			
$ au_{ m s}$	Speed of	AlGaAs Red		30		ns	
- 5	Response	High Efficiency Red		90			\$ P. C.
		Orange		280			
		Yellow Green	l	90 500			
	1:	Emerald Green		3100			
C	Capacitance	AlGaAs Red		30		pF	$V_F = 0$; $f = 1$ MHz
	Capacitance	High Efficiency Red		11	[pr	VF - 0, 1 - 1 M112
		Orange		4			
		Yellow		15			
		Green Emerald Green		18 35			
			-	ļ			
$R\theta_{J-PIN}$	Thermal	All		260		°C/W	Junction to Cathode
	Resistance						Lead at Seating Plane
7.7	D177 1	AIG A D I	1.0	1.0	0.0	**	<u> </u>
V_{F}	Forward Voltage	AlGaAs Red	1.6	1.8 1.9	$\frac{2.2}{2.6}$	V	$I_F = 20 \text{ mA}$
		HER/Orange Yellow	1.5	$\frac{1.9}{2.1}$	$\frac{2.6}{2.6}$		
		Green/Emerald	1.5	2.2	3.0	1	
		Green					
V_{R}	Reverse Break-	All	5.0	<u> </u>		v	$I_R = 100 \mu\text{A}$
· 14	down Voltage		5.0	1		,	

Electrical/Optical Characteristics at $T_A = 25^{\circ}C$ (cont'd)

Sym.	Description	Device HLMP-	Min.	Тур.	Max.	Units	Test Conditions
$\eta_{ m V}$	Luminous Efficacy	AlGaAs Red High Efficiency Red Orange Yellow Green Emerald Green		80 145 380 500 595 656		lumens/ watt	See Note 3

Notes:

- 1. $\theta_{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
- 2. The dominant wavelength, λ_d , is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
- 3. Radiant intensity, I_e , in watts/steradian, may be found from the equation $I_e = I_v/\eta_v$, where I_v is the luminous intensity in candelas and η_v is the luminous efficacy in lumens/watt.
- 4. Please refer to Application Note 1061 for information comparing standard green and emerald green light output degradation.

Absolute Maximum Ratings at $T_A = 25$ °C

Parameter	AlGaAs Red	High Efficiency Red/Orange	Yellow	Green/ Emerald Green	Units
Peak Forward Current	300	90	60	90	mA
Average Forward Current[1]	20	25	20	25	mA
DC Current ^[2]	30	30	20	30	mA
Transient Forward Current ^[3] (10 µsec Pulse)		500)		mA
LED Junction Temperature	110	110	110	110	$^{\circ}\!\mathrm{C}$
Operating Temperature Range	-20 to +100	-55 to +100	-55 to +100	-20 to +100	°C
Storage Temperature Range	-55 to +100	-99 to +100	-55 10 +100	-55 to +100	C
Lead Soldering Temperature [1.6 mm (0.063 in.) below seating plane]		260°C for	5 seconds		

Notes:

- 1. See Figure 5 to establish pulsed operating conditions.
- For AlGaAs Red, Red, Orange, and Green series derate linearly from 50°C at 0.5 mA/°C. For Yellow series derate linearly from 50°C at 0.34 mA/°C.
- 3. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wire bond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

Figure 1. Relative Intensity vs. Wavelength.

HER YELLOW GREEN

1.5

AIGAAS RED

1.0

Figure 2. Forward Current vs. Forward Voltage Characteristics. $V_{\rm F}$ (300 mA) for AlGaAs Red = 2.6 Volts Typical.

Figure 3. Relative Luminous Intensity vs. DC Forward Current.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. LED Peak Current. ην (300 mA) for AlGaAs Red = 0.7.

HER, Orange, Yellow, and Green

tp — PULSE DURATION — μs

Figure 5. Maximum Tolerable Peak Current vs. Peak Duration. (I $_{\rm PEAK}$ MAX Determined from Temperature Derated I $_{\rm DC}$ MAX).

 ${\bf Figure~6.~Relative~Luminous~Intensity~vs.~Angular~Displacement.}$

T-1³/₄, 2 mm X 5 mm Rectangular Bicolor LED Lamps High Efficiency Red/ High Performance Green

Technical Data

HLMP-4000 HLMP-0800

Features:

- Two Color (Red, Green) Operation
- (Other Two LED Color Combinations Available)
- Three Leads with One Common Cathode
- Option of Straight or Spread Lead Configurations
- Diffused, Wide Visibility Lens

Description

The T-1 3/4 HLMP-4000 and 2 mm by 5 mm rectangular HLMP-0800 are three leaded bicolor light sources designed for a variety of applications where dual state illumination is required in the same package. There are two LED chips, high efficiency red (HER), and high performance green (Green), mounted on a central common cathode lead for maximum on-axis viewability. Colors between HER and Green can be generated by independently pulse width modulating the LED chips.

Other Bicolor Combinations

Other bicolor combinations are available:

- HER/yellow
- HER/green
- DH AlGaAs red/green. Contact your local Hewlett-Packard Components Field Sales representative for details.

Package Dimensions

HLMP-4000

HLMP-0800

ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
 AN EPOXY MENISCUS MAY EXTEND ABOUT 1 mm
 (0.040") DOWN THE LEADS.

Package Dimensions, continued

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETERS (INCHES).

2. AN EPOXY MENISCUS MAY EXTEND ABOUT

1 MM (0.040") DOWN THE LEADS.

Absolute Maximum Ratings at $T_A = 25$ °C

Parameter	High Efficiency Red/Green	Units
Peak Forward Current	90	mA
Average Forward Current ^[1,2] (Total)	25	mA
DC Current ^[2,4] (Total)	30	mA
Power Dissipation ^[3,5] (Total)	135	mW
Operating Temperature Range	-20 to +85	°C
Storage Temperature Range	-55 to +100	
Reverse Voltage ($I_R = 100 \mu A$)	5	v
Transient Forward Current ^[6] (10 µsec Pulse)	500	mA
Lead Soldering Temperature [1.6 mm (0.063 in.) below seating plane]	260°C for 5 seco	onds

- 1. See Figure 5 to establish pulsed operating conditions.
- 2. The combined simultaneous current must not exceed the maximum.
- 3. The combined simultaneous power must not exceed the maximum.
- 4. For HER and Green derate linearly from 50°C at 0.5 mA/°C.
- 5. For HER and Green derate linearly from 25°C at 1.8 mW/°C.
- 6. The transient peak current is the maximum non-recurring current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

Electrical/Optical Characteristics at $T_A = 25$ °C

		Red			Green				Test
Sym.	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Units	Conditions
I _v	Luminous Intensity HLMP-4000	2.1	5		4.2	8		med	$I_F = 10 \text{ mA}$
	HLMP-0800	2.1	3.5		2.6	4.0		nicu	$I_F = 20 \text{ mA}$
λ_{PEAK}	Peak Wavelength		635			565		nm	
λ_{d}	Dominant Wavelength ^[1]		626			569			
$\tau_{\rm s}$	Speed of Response		90			500		ns	
С	Capacitance		11			18		pF	$V_F = 0$, $f = 1$ MHz
$V_{\rm F}$	Forward Voltage		1.9	2.4		2.1	2.7	V	$I_F = 10 \text{ mA}$
$V_{ m R}$	Reverse Breakdown Voltage	5			5			V	$I_R = 100 \mu\text{A}$
$R\theta_{J-PIN}$	Thermal Resistance		260		260			°C/W	Junction to Cathode Lead
2θ ½	Included Angle Between Half Luminous Intensity Points ^[2]								
20 72	HLMP-4000		65	1		65		Deg.	$I_F = 10 \text{ mA}$
	HLMP-0800		100			100		Deg.	$I_F = 20 \text{ mA}$
ην	Luminous Efficacy ^[3]		145			595		Lumen/ Watt	

- 1. The dominant wavelength, λ_d , is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
- 2. $\theta l/z$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity. 3. Radiant intensity, I_e , in watts steradian, may be found from the equation $I_e = I_v/\eta_v$ where I_v is the luminous intensity in candelas and η_v is the luminous efficacy in lumens/watt.

Figure 1. Relative Intensity vs. Wavelength.

Figure 2. Forward Current vs. Forward Voltage Characteristics.

Figure 3. Relative Luminous Intensity vs. DC Forward Current.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.

Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. (I_{DC} MAX as per MAX Ratings).

Figure 6. Relative Luminous Intensity vs. Angular Displacement for the HLMP-4000.

Figure 7. Relative Luminous Intensity vs. Angular Displacement for the HLMP-0800.

Subminiature High Performance AlInGaP LED Lamps

Technical Data

SunPower Series
HLMA-PH00 HLMT-PH00
HLMA-PL00 HLMT-PL00
HLMA-QH00 HLMT-QH00
HLMA-QL00 HLMT-QL00

Features

- Subminiature Flat Top Package Ideal for Backlighting and Light Piping Applications
- Subminiature Dome Package Nondiffused Dome for High Brightness
- Wide Range of Drive Currents
- Colors: 590 nm Amber, 615 nm Reddish-Orange
- Ideal for Space Limited Applications
- Axial Leads
- Available with Lead Configurations for Surface Mount and Through Hole PC Board Mounting

Description Flat Top Package

The HLMX-PXXX flat top lamps use an untinted, nondiffused, truncated lens to provide a wide radiation pattern that is necessary for use in backlighting applications. The flat top lamps are also ideal for use as emitters in light pipe applications.

Dome Packages

The HLMX-QXXX dome lamps use an untinted, nondiffused lens to provide a high luminous intensity within a narrow radiation pattern.

Lead Configurations

All of these devices are made by encapsulating LED chips on axial lead frames to form molded epoxy subminiature lamp packages. A variety of package configuration options is available. These include special surface mount lead configurations, gull wing, yoke lead, or Z-bend. Right angle lead bends at 2.54 mm (0.100 inch) and 5.08 mm (0.200 inch) center spacing are available for through hole mounting. For more information refer to Standard SMT and Through Hole Lead Bend Options for Subminiature LED Lamps data sheet.

Technology

These subminiature solid state lamps utilize one of the two newly

developed aluminum indium gallium phosphide (AlInGaP) LED technologies, either the absorbing substrate carrier technology (AS = HLMA-Devices) or the transparent substrate carrier technology (TS = HLMT-Devices). The TS HLMT-Devices are especially effective in very bright ambient lighting conditions. The colors 590 nm amber and 615 nm reddish-orange are available with viewing angles of 15° for the domed devices and 125° for the flat top devices.

Device Selection Guide

Package Description	Viewing Angle $2 heta^1/_2$	Amber $\lambda_d = 590 \text{ nm}$	Reddish-Orange $\lambda_d = 615 \text{ nm}$	Package Outline
Domed, Nondiffused Untinted	28°	HLMA-QL00 HLMT-QL00	HLMA-QH00 HLMT-QH00	B
Flat Top, Nondiffused, Untinted	125°	HLMA-PL00 HLMT-PL00	HLMA-PH00 HLMT-PH00	A

Package Dimensions

(A) Flat Top Lamps

(B) Domed Lamps, Diffused and Nondiffused

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS (INCHES).
- 2. PROTRUDING SUPPORT TAB IS CONNECTED TO CATHODE LEAD.

Absolute Maximum	Ratings at $T_A = 25^{\circ}C$
HLMA-QL00/QH00/PL00)/PH00

HLMA-QLOO/QHOO/FLOO/FHOO
Peak Forward Current ^[2]
Average Forward Current ($I_{PEAK} = 200 \text{ mA}$) ^[1,2]
DC Forward Current ^[3,5,6]
Power Dissipation
HLMT-QL00/QH00/PL00/PH00
Peak Forward Current ^[2] 100 mA
Average Forward Current ($I_{PEAK} = 100 \text{ mA}$)[1,2]
DC Forward Current ^[3,5,6]
Power Dissipation
All Devices
Reverse Voltage ($I_R = 100 \mu A$)
Reverse Voltage ($I_R = 100~\mu A$)
Reverse Voltage ($I_R = 100 \mu A$)
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
Reverse Voltage ($I_R = 100~\mu A$)
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
Reverse Voltage ($I_R = 100 \mu A$) 5 V Transient Forward Current ($10 \mu s Pulse$) $^{[5]}$ 500 mA Operating Temperature Range -40 to +100°C Storage Temperature Range -55 to +100°C LED Junction Temperature 110°C Lead Soldering Temperature
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
Reverse Voltage ($I_R = 100~\mu A$) 5 V Transient Forward Current ($10~\mu s$ Pulse) $^{[5]}$ 500 mA Operating Temperature Range -40 to +100°C Storage Temperature Range -55 to +100°C LED Junction Temperature 110°C Lead Soldering Temperature [1.6 mm (0.063 in.) from body 260°C for 5 seconds SMT Reflow Soldering Temperatures

Notes:

- 1. Maximum I_{AVG} at $f=1\ kHz$.
- 2. Refer to Figure 6 to establish pulsed operating conditions.
- 3. Derate linearly as shown in Figure 4.
- 4. The transient peak current is the maximum non-recurring peak current these devices can withstand without damaging the LED die and wire bonds. Operation at currents above Absolute Maximum Peak Forward Current is not recommended.
- 5. Drive currents between 5 mA and 30 mA are recommended for best long term performance.
- Operation at currents below 5 mA is not recommended, please contact your Hewlett-Packard sales representative.

Figure 1. Proper Right Angle Mounting to a PC Board to Prevent Protruding Cathode Tab from Shorting to Anode Connection.

Optical Characteristics at $T_A = 25$ °C

Part Number	Luminous Intensity I_V (mcd) @ 20 mA ^[1]		Intensity I _V (mcd) @ 20 mA ^[1]		Intensity I _V (mcd) @ 20 mA ^[1]		Intensity I_V (mcd) @ 20 mA ^[1]		Total Flux \$\phi_V (mlm)\$ @ 20 mA[2]	Peak Wavelength λ _{peak} (nm)	Color, Dominant Wavelength $\lambda_d^{[3]}$ (nm)	Viewing Angle $2 \; heta_{1/2}$ Degrees $[4]$	Luminous Efficacy $\eta_{\rm v}^{[5]}$
HLMA-	Min.	Тур.	Тур.	Тур.	Тур.	Тур.	(lm/w)						
QL00	135	500	250	592	590	15	480						
QH00	135	500	250	621	615	15	263						
PL00	23	75	250	592	590	125	480						
PH00	22	75	250	621	615	125	263						
HLMT-													
QL00	300	1000	800	592	590	15	480						
QH00	290	800	800	621	615	15	263						
PL00	46	150	800	592	590	125	480						
PH00	35	120	800	621	615	125	263						

Notes:

- 1. The luminous intensity, I_v , is measured at the mechanical axis of the lamp package. The actual peak of the spatial radiation pattern may not be aligned with this axis.
- 2. ϕ_v is the total luminous flux output as measured with an integrating sphere.
- 3. The dominant wavelength, λ_{cb} is derived from the CIE Chromaticity Diagram and represents the color of the device. 4. $\theta_{1/2}$ is the off-axis angle where the liminous intensity is 1/2 the peak intensity.
- 5. Radiant intensity, I_{ν} , in watts/steradian, may be calculated from the equation $I_{\nu} = I_{\nu}/\eta_{\nu}$, where I_{ν} is the luminous intensity in candelas and η_v is the luminous efficacy in lumens/watt.

Figure 1. Relative Intensity vs. Wavelength. All Devices.

Electrical Characteristics at $T_A = 25^{\circ}\!\mathrm{C}$

Part	Forward Voltage V _F (Volts)		Break V _R (V	erse kdown Volts)	Capacitance $C (pF)$ $V_F = 0$,	Thermal	Speed of Response τ_s (ns) Time Constant	
Number		20 mA	@ $I_R = 100 \mu A$		f = 1 MHz	Resistance	$\mathbf{e}^{\mathbf{-t}/ au_{\mathbf{s}}}$	
HLMA-	Typ.	Max.	Min.	Тур.	Тур.	Rθ _{J-PIN} (°C/W)	Тур.	
QL00	1.9	2.4	5	25	40	170	13	
QH00	1.9	2.4	5	25	40	170	13	
PL00	1.9	2.4	5	25	40	170	13	
PH00	1.9	2.4	5	25	40	170	13	
HLMT-								
QL00	2.0	2.4	5	20	70	170	13	
QH00	2.0	2.4	5	20	70	170	13	
PL00	2.0	2.4	5	20	70	170	13	
PH00	2.0	2.4	5	20	70	170	13	

100 90 90 80 70 70 80 60 50 40 30 20 20 1.5 2.0 2.5 3.0 3.5 V_F - FORWARD VOLTAGE - V

Figure 2a. Forward Current vs. Forward Voltage. HLMA-QL00/QH00/ PL00/PH00.

Figure 2b. Forward Current vs. Forward Voltage. HLMT-QL00/QH00/ PL00/PH00.

Figure 3a. Relative Luminous Intensity vs. DC Forward Current, HLMA-QL00/QH00/PL00/PH00.

Figure 3b. Relative Luminous Intensity vs. DC Forward Current. HLMT-QL00/QH00/PL00/PH00.

Figure 4. Maximum Forward Current vs. Ambient Temperature for HLMA-/HLMT-QL00/QH00/PL00/PH00. Derating Based on T,MAX = 110 °C.

Figure 5a. Maximum Average Current vs. Peak Forward Current for HLMA-QL00/QH00/PL00/PH00.

Figure 5b. Maximum Average Current vs. Peak Forward Current for HLMT-QL00/QH00/PL00/PH00.

Figure 6. Relative Luminous Intensity vs. Angular Displacement for HLMA-/HLMT-QL00/-QH00.

Figure 7. Relative Luminous Intensity vs. Angular Displacement for HLMA-/HLMT-PL00/-PH00.

Subminiature High Performance TS AlGaAs Red LED Lamps

Technical Data

Dome Packages

The HLMP-QXXX Series dome lamps, for use as indicators, use a tinted, diffused lens to provide a wide viewing angle with high on-off contrast ratio. High brightness lamps use an untinted, nondiffused lens to provide a high luminous intensity within a narrow radiation pattern.

Lead Configurations

All of these devices are made by encapsulating LED chips on axial lead frames to form molded epoxy subminiature lamp packages. A variety of package configuration options is available. These include special surface mount lead configurations, gull wing, voke lead, or Zbend. Right angle lead bends at 2.54 mm (0.100 inch) and 5.08 mm (0.200 inch) center spacing are available for through hole mounting. For more information refer to Standard SMT and Through Hole Lead Bend Options for Subminiature LED Lamps data sheet.

HLMP-P106/P156 HLMP-Q10X/Q15X

Features

- Subminiature Flat Top **Package** Ideal for Backlighting and
 - **Light Piping Applications**
- Subminiature Dome **Package** Diffused Dome for Wide Viewing Angle Non-diffused Dome for High
- Wide Range of Drive **Currents** 500 µA to 50 mA

Brightness

- Ideal for Space Limited Applications
- Axial Leads
- Available with lead configurations for Surface Mount and Through Hole **PC Board Mounting**

Description Flat Top Package

The HLMP-PXXX Series flat top lamps use an untinted, nondiffused, truncated lens to provide a wide radiation pattern that is necessary for use in backlighting applications. The flat top lamps are also ideal for use as emitters in light pipe applications.

Technology

These subminiature solid state lamps utilize a highly optimized LED material technology. transparent substrate aluminum gallium arsenide (TS AlGaAs). This LED technology has a very high luminous efficiency, capable of producing high light output over a wide range of drive currents (500 µA) to 50 mA). The color is deep red at a dominant wavelength of 644 nm deep red. TS AlGaAs is a flip-chip LED technology, die attached to the anode lead and wire bonded to the cathode lead. Available viewing angles are 75°, 35°, and 15°.

Device Selection Guide

Package Description	$\begin{array}{c} \textbf{Viewing Angle} \\ \textbf{2} \ \theta_{1/2} \end{array}$	Deep Red R _d = 644 nm	Typical Iv $I_f = 500 \mu a$	Typical Iv I _f = 20 mA	Package Outline
Domed, Diffused Tinted, Standard Current	35	HLMP-Q102		160	В
Domed, Diffused Tinted, Low Current	35	HLMP-Q152	2		В
Domed, Nondiffused Untinted, Standard Current	15	HLMP-Q106		530	В
Domed, Nondiffused Untinted, Low Current	15	HLMP-Q156	7	·	В
Flat Top, Nondiffused, Untinted, Standard Current	75	HLMP-P106		130	A
Flat Top, Nondiffused Untinted, Low Current	75	HLMP-P156	2		A

Package Dimensions

A) Flat Top Lamps

^{*} REFER TO FIGURE 1 FOR DESIGN CONCERNS.

B) Diffused and Nondiffused Dome Lamps

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
- 2. PROTRUDING SUPPORT TAB IS CONNECTED TO ANODE LEAD.
- 3. LEAD POLARITY FOR THESE TS AIGaAS SUBMINIATURE LAMPS IS OPPOSITE TO THE LEAD POLARITY OF SUBMINIATURE LAMPS USING OTHER LED TECHNOLOGIES.

Figure 1. Proper Right Angle Mounting to a PC Board to Prevent Protruding Anode Tab from Shorting to Cathode Connection.

Absolute Maximum Ratings at $T_A = 25^{\circ}C$

Peak Forward Current ^[2]	300 mA
Average Forward Current (@ I _{PEAK} = 300 mA) ^[1,5]	^{2]} 30 mA
DC Forward Current ^[3]	50 mA
Power Dissipation	100 mW
Reverse Voltage ($I_R = 100 \mu A$)	5 V
Transient Forward Current (10 µs Pulse)[4]	500 mA
Operating Temperature Range	55 to +100°C
Storage Temperature Range	55 to +100°C
LED Junction Temperature	110°C
Lead Soldering Temperature	
[1.6 mm (0.063 in.) from body	.260°C for 5 seconds
Reflow Soldering Temperatures	
Convective IR 235°C Peak, above	183°C for 90 seconds
Vapor Phase	215°C for 3 minutes

- 1. Maximum $I_{\rm AVG}$ at f = 1 kHz, DF = 10%. 2. Refer to Figure 7 to establish pulsed operating conditions.
- 3. Derate linearly as shown in Figure 6.
- 4. The transient peak current is the maximum non-recurring peak current the device can withstand without damaging the LED die and wire bonds. It is not recommended that the device be operated at peak currents above the Absolute Maximum Peak Forward Current.

Optical Characteristics at $T_A = 25$ °C

Part Number HLMP-	Inte I _V (r	inous nsity ncd) mA ^[1] Typ.	Total Flux \$\rightarrow_{V}\$ (mlm) \$\tilde{Q}\$ 20 mA\$^[2] Typ.	$\phi_{ m V}$ (mlm) Wavelength $20~{ m mA}^{[2]}$ $\lambda_{ m peak}$ (nm)		Viewing Angle $2\theta^{1/2}$ Degrees ^[4] Typ.	Luminous Efficacy $\eta_{\mathbf{v}}^{[5]}$ $(\mathbf{lm/w})$
Q106	56	530	280	654	644	15	85
Q102	22	160	-	654	644	35	85
P106	22	130	280	654	644	75	85

Optical Characteristics at $T_A = 25^{\circ}C$

			71				
Part Number (Low Current) HLMP-	Inte I _V (1	inous nsity ncd) mA ^[1] Typ.	Total Flux	$\begin{array}{c} \text{Peak} \\ \text{Wavelength} \\ \lambda_{\text{peak}} \left(\text{nm} \right) \\ \text{Typ.} \end{array}$	$\begin{array}{c} \textbf{Color,} \\ \textbf{Dominant} \\ \textbf{Wavelength} \\ \lambda_{d}^{[3]} (\textbf{nm}) \\ \textbf{Typ.} \end{array}$	Viewing Angle $2\theta^{1/2}$ Degrees ^[4] Typ.	Luminous Efficacy η _v ^[5] (lm/w)
Q156	2.1	7	10.5	654	644	15	85
Q152	1.3	2	-	654	644	35	85
P156	0.6	2	10.5	654	644	75	85

Notes:

- 1. The luminous intensity, Iv, is measured at the mechanical axis of the lamp package. The actual peak of the spatial radiation pattern may not be aligned with this axis.
- 2. ϕ_v is the total luminous flux output as measured with an integrating sphere.
- 3. The dominant wavelength, λ_d , is derived from the CIE Chromaticity Diagram and represents the color of the device.
- 4. $\theta^{1/2}$ is the off-axis angle where the liminous intensity is 1/2 the peak intensity.
- 5. Radiant intensity, I_v , in watts/steradian, may be calculated from the equation $I_v = I_v/\eta_v$, where I_v is the luminous intensity in candelas and η_v is the luminous efficacy in lumens/watt.

Electrical Characteristics at $T_A = 25$ °C

Part Number HLMP-	Vol V _F (ward ltage Volts) 20 mA Max.	Break V _R (verse kdown Volts) 100 µA Typ.	$\label{eq:capacitance} \begin{split} &Capacitance\\ &C~(pF)\\ &V_F=0,\\ &f=1~MHz\\ &Typ. \end{split}$	Thermal Resistance Rθ _{J.PIN} (°C/W)	Speed of Response $ au_s$ (ns) Time Constant e^{-t/τ_s} Typ.
Q106	1.9	2.4	5	20	20	170	45
Q102	1.9	2.4	5	20	20	170	45
P106	1.9	2.4	5	20	20	170	45

Electrical Characteristics at $T_A = 25$ °C

Part Number (Low Current) HLMP-	Vol V _F (V	ward tage Volts) 0.5 mA Max.	Break V _R (V	erse kdown Volts) 100 µA Typ.	$\label{eq:capacitance} \begin{split} &Capacitance\\ &C~(pF)\\ &V_F=0,\\ &f=1~MHz\\ &Typ. \end{split}$	Thermal Resistance Rθ _{J-PIN} (°C/W)	$\begin{array}{c} \textbf{Speed of Response} \\ \tau_s \ (\textbf{ns}) \\ \textbf{Time Constant} \\ e^{\text{t}/\tau_s} \\ \textbf{Typ.} \end{array}$		
Q156	1.6	1.9	- 5	20	20	170	45		
Q152	1.6	1.9	5	20	20	170	45		
P156	1.6	1.9	5	20	20	170	45		

Figure 2. Relative Intensity vs. Wavelength.

Figure 3. Forward Current vs. Forward Voltage.

Figure 4. Relative Luminous Intensity vs. DC Forward Current.

Figure 5. Relative Efficiency vs. Peak Forward Current.

Figure 6. Maximum Forward DC Current vs. Ambient Temperature. Derating Based on $T_JMAX = 110^{\circ}C$.

Figure 7. Maximum Average Current vs. Peak Forward Current.

Figure 8. HLMP-Q106/-Q156.

Figure 9. HLMP-Q102/-Q152

Figure 10. HLMP-P106/-P156.

Subminiature LED Lamps

Technical Data

HLMP-PXXX Series HLMP-QXXX Series HLMP-6XXX Series HLMP-70XX Series

Features

• Subminiature Flat Top Package

Ideal for Backlighting and Light Piping Applications

• Subminiature Dome Package

Diffused Dome for Wide Viewing Angle Nondiffused Dome for High Brightness

- Arrays
- TTL and LSTTL Compatible 5 Volt Resistor Lamps
- Available in Six Colors
- Ideal for Space Limited Applications
- Axial Leads
- Available with Lead Configurations for Surface Mount and Through Hole PC Board Mounting

Description

Flat Top Package

The HLMP-PXXX Series flat top lamps use an untinted, non-diffused, truncated lens to provide a wide radiation pattern that is necessary for use in backlighting applications. The flat top lamps are also ideal for use as emitters in light pipe applications.

Dome Packages

The HLMP-6XXX Series dome lamps for use as indicators use a tinted, diffused lens to provide a wide viewing angle with a high on-off contrast ratio. High brightness lamps use an untinted, nondiffused lens to provide a high luminous intensity within a narrow radiation pattern.

Arrays

The HLMP-66XX Series subminiature lamp arrays are available in lengths of 3 to 8 elements per array. The luminous intensity is matched within an array to assure a 2.1 to 1.0 ratio.

Resistor Lamps

The HLMP-6XXX Series 5 volt subminiature lamps with built in current limiting resistors are for use in applications where space is at a premium.

Lead Configurations

All of these devices are made by encapsulating LED chips on axial lead frames to form molded epoxy subminiature lamp packages. A variety of package configuration options is available. These include special

surface mount lead configurations, gull wing, yoke lead or Zbend. Right angle lead bends at 2.54 mm (0.100 inch) and 5.08 mm (0.200 inch) center spacing are available for through hole mounting. For more information refer to Standard SMT and Through Hole Lead Bend Options for Subminiature LED Lamps data sheet.

Device Selection Guide Part Number: HLMP-XXXX

Standard Red	DH AS AlGaAs Red	High Efficiency Red	Orange	Yellow	High Perf. Green	Emerald Green	Device D	escription ^[1]	Device Outline Drawing
	P105	P205	P405	P305	P505	P605		Vondiffused,	A
	P102	P202	P402	P302	P502		Untinted, Diffused, Flat Top		В
6000/6001	Q101	6300	Q400	6400	6500	Q600	Tinted, Diff	fused	
	Q105	6305		6405	6505		Untinted, N High Brigh	Iondiffused, tness	
	Q150	7000		7019	7040		Tinted, Diffused, Low Current		В
	Q155						Nondiffused Current	l, Low	
		6600		6700	6800		Tinted, Diff Resistor, 5		
		6620		6720	6820		Diffused, R 4 mA	esistor, 5 V,	
6203		6653		6753	6853		3 Element	Matched	
6204		6654		6754	6854		4 Element	Array, Tinted,	
6205		6655		6755	6855		5 Element	Diffused "	С
6206		6656		6756	6856		6 Element		
6208		6658		6758	6858	144	8 Element		

Package Dimensions

(A) Flat Top Lamps

1. ALL DIMENSIONS ARE IN MILLIMETERS (INCHES).
2. PROTRUDING SUPPORT TAB IS CONNECTED TO CATHODE LEAD.

*Refer to Figure 1 for design concerns.

Package Dimensions (cont.)

(B) Diffused and Nondiffused

NOTES:

- ALL DIMENSIONS ARE IN MILLIMETERS (INCHES).
 PROTRUDING SUPPORT TAB IS CONNECTED TO CATHODE LEAD.

*Refer to Figure 1 for design concerns.

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS (INCHES).
 2. PROTRUDING SUPPORT TAB IS CONNECTED TO CATHODE LEAD.
- CATHODE TAB NO. ANODE DOWN. YES. CATHODE DOWN.

Figure 1. Proper Right Angle Mounting to a PC Board to Prevent Protruding Cathode Tab from Shorting to Anode Connection.

Absolute Maximum Ratings at $T_A = 25^{\circ}C$

Parameter	Standard Red	DH AS AlGaAs Red	High Eff. Red	Orange	Yellow	High Perf. Green	Emerald Green	Units
DC Forward Current ^[1]	50	30	30	30	20	30	30	mA
Peak Forward Current ^[2]	1000	300	90	90	60	90	90	mA
DC Forward Voltage (Resistor Lamps Only)			6		6	6	6	V
Reverse Voltage ($I_R = 100 \mu A$)	5	5	5	5	5	5	5	v
Transient Forward Current ^[3] (10 µs Pulse)	2000	500	500	500	500	500	500	mA
Operating Temperature Range: Non-Resistor Lamps	-55 to +100	-40 to +100		-55 to +1	.00	-40 to +100	-20 to +100	°C
Resistor Lamps				-40 to +	85) to 85	
Storage Temperature Range				-55 to +100)			°C
For Thru Hole Devices Wave Soldering Temperature [1.6 mm (0.063 in.) from body]			26	0°C for 5 S	econds			•
For Surface Mount Devices: Convective IR			235	5°C for 90 S	econds			
Vapor Phase			215	5°C for 3 M	inutes			

^{1.} See Figure 5 for current derating vs. ambient temperature. Derating is not applicable to resistor lamps.

2. Refer to Figure 6 showing Max. Tolerable Peak Current vs. Pulse Duration to establish pulsed operating conditions.

3. The transient peak current is the maximum non-recurring peak current the device can withstand without failure. Do not operate these lamps at this high current.

Electrical/Optical Characteristics, $T_A = 25^{\circ}C$

Standard Red

Device HLMP-	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
6000			0.5	1.2			,
6001	Luminous Intensity ^[1]	I_v	1.3	3.2		mcd	$I_{\rm F} = 10 \text{ mA}$
6203 to 6208			0.5	1.2			
	Forward Voltage	V_{F}	1.4	1.6	2.0	v	$I_F = 10 \text{ mA}$
All	Reverse Breakdown Voltage	$V_{_{\mathrm{R}}}$	5.0	12.0		V	$I_R = 100 \ \mu A$
P005	Included Angle Between	001/		125		J	
All Others	Half Intensity Points ^[2]	201/2		90		Deg.	
	Peak Wavelength	$\lambda_{ ext{peak}}$		655		nm	
	Dominant Wavelength ^[3]	λ_{d}		640		nm	
	Spectral Line Half Width	$\Delta\lambda_{1/2}$		24		nm	
All	Speed of Response	$ au_{ m s}$		15		ns	
	Capacitance	С		100		pF	$V_{\rm F} = 0$; $f = 1 \text{ MHz}$
	Thermal Resistance	$ m R heta_{J ext{-PIN}}$		170		°C/W	Junction-to-Cathode Lead
	Luminous Efficacy ^[4]	η_{v}		65		lm/W	

DH AS AlGaAs Red

Device HLMP-	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
P102			4.0	20.0			
P105			8.6	30.0			
Q101			22.0	45.0			$I_F = 20 \text{ mA}$
Q105	Luminous Intensity	I_v	22.0	55.0		mcd	
Q150			1.0	1.8			$I_{\rm p} = 1 \text{ mA}$
Q155			2.0	4.0			- F
Q101				1.8	2.2		$I_{\rm p} = 20 \text{ mA}$
P205/P505 Q101/Q105	Forward Voltage	$V_{_{ m F}}$		1.8	2.2	v	1 _F = 20 mA
Q150/Q155				1.6	1.8		$I_F = 1 \text{ mA}$
All	Reverse Breakdown Voltage	V _R	5.0	15.0		V	$I_R = 100 \mu A$
P105				125			
Q101/Q150	Included Angle Between	201/2		90		Deg.	
Q105/Q155	Half Intensity Points ^[2]			28			
	Peak Wavelength	$\lambda_{ ext{peak}}$		645		nm	Measured at Peak
	Dominant Wavelength[3]	λ_{d}		637		nm	
	Spectral Line Half Width	$\Delta\lambda_{1/2}$		20	:	nm	
All	Speed of Response	$\tau_{_{\mathrm{s}}}$		30		ns	Exponential Time Constant; e ^{-t/ts}
	Capacitance	C		30		pF	$V_F = 0$; $f = 1 \text{ MHz}$
	Thermal Resistance	$\mathrm{R} \theta_{\mathrm{J-PIN}}$		170		°C/W	Junction-to Cathode Lead
	Luminous Efficacy ^[4]	$\eta_{ m v}$		80		lm/W	

High Efficiency Red

Device HLMP-	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
P202			1.0	5.0			,
P205	,		1.0	8.0			
6300			1.0	10.0			$I_F = 10 \text{ mA}$
6305			3.4	24.0			
7000	Luminous Intensity ^[1]	$\mathbf{I_v}$	0.4	1.0		mcd	$I_F = 2 \text{ mA}$
6600			1.3	5.0			$V_{\rm F} = 5.0 \text{ Volts}$
6620			0.8	2.0			
6653 to 6658			1.0	3.0			$I_F = 10 \text{ mA}$
All	Forward Voltage (Nonresistor Lamps)	$V_{_{ m F}}$	1.5	1.8	3.0	v	$I_F = 10 \text{ mA}$
6600	Forward Current	_		9.6	13.0		
6620	(Resistor Lamps)	$\mathbf{I_{F}}$		3.5	5.0	mA	$V_{\rm F} = 5.0 \text{ V}$
All	Reverse Breakdown Voltage	V _R	5.0	30.0		V	$I_R = 100 \mu A$
P205				125		4.	
6305	Included Angle Between	201/2		28		Deg.	
All Diffused	Half Intensity Points ^[2]			90			
	Peak Wavelength	$\lambda_{ ext{PEAK}}$		635		nm	Measured at Peak
	Dominant Wavelength ^[3]	λ_{d}		626		nm	
	Spectral Line Half Width	$\Delta\lambda_{_{1/2}}$		40		nm	
All	Speed of Response	τ,		90		ns	
	Capacitance	C		11		pF	$V_F = 0$; $f = 1 \text{ MHz}$
	Thermal Resistance	$ m R\theta_{J ext{-PIN}}$		170		°C/W	Junction-to-Cathode Lead
	Luminous Efficacy ^[4]	$\eta_{\rm v}$		145		lm/W	

Orange

Device HLMP-	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
P402			1.0	4.0			
P405	Luminous Intensity	I_v	1.0	6		mcd	$I_F = 10 \text{ mA}$
Q400			1.0	8			
	Forward Voltage	$V_{_{\mathrm{F}}}$	1.5	1.9	3.0	V	$I_F = 10 \text{ mA}$
All	Reverse Breakdown Voltage	$V_{_{\mathrm{R}}}$	5.0	30.0		V	$I_R = 100 \mu A$
P405	Included Angle Between 125	D					
Q400	Half Intensity Points ^[2]	201/2		90		Deg.	
	Peak Wavelength	$\lambda_{ ext{peak}}$		600		nm	
	Dominant Wavelength ^[3]	λ_{d}		602		nm	Measured at Peak
	Spectral Line Half Width	$\Delta\lambda_{_{1/2}}$		40		nm	
All	Speed of Response	$\tau_{_{ m s}}$		260		ns	
	Capacitance	C		4		pF	$V_{\rm F} = 0$; $f = 1 \text{ MHz}$
	Thermal Resistance	$ m R\theta_{J-PIN}$		170		°C/W	Junction-to-Cathode Lead
	Luminous Efficacy ^[4]	$\eta_{_{\mathrm{v}}}$		380		lm/W	

Yellow

Device HLMP-	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
P302	. ,		1.0	3.0			
P305			1.0	4.0			I _v = 10 mA
6400			1.0	9.0			I _F = 10 IIIA
6405	Luminous Intensity ^[1]	I_v	3.6	20		mcd	
7019			0.4	0.6			$I_F = 2 \text{ mA}$
6700			1.4	5.0			$V_{\rm F}$ = 5.0 Volts
6720	÷		0.9	2.0			
6753 to 6758			1.0	3.0			$I_{\rm F} = 10 \text{ mA}$
All	Forward Voltage (Nonresistor Lamps)	$V_{_{ m F}}$		2.0	2.4	V	I _F = 10 mA
6700	- 1a	_		9.6	13.0		V _F = 5.0 V
6720	Forward Current (Resistor Lamps)	$\mathbf{I}_{\mathbf{F}}$		3.5	5.0	mA	
All	Reverse Breakdown Voltage	V _R	5.0	50.0		V	
P305				125			
6405	Included Angle Between Half Intensity Points ^[2]	201/2		28		Deg.	
All Diffused	Than inventity 1 only			90			
	Peak Wavelength	$\lambda_{ ext{PEAK}}$		583		nm	Measured at Peak
	Dominant Wavelength[3]	λ_{d}		585		nm	
	Spectral Line Half Width	$\Delta\lambda_{1/2}$		36		nm	
All	Speed of Response	$\tau_{ m s}$		90		ns	
	Capacitance	С		15		pF	$V_{\rm F} = 0$; $f = 1 \text{ MHz}$
	Thermal Resistance	$R\theta_{ ext{J-PIN}}$		170		°C/W	Junction-to-Cathode Lead
	Luminous Efficacy ^[4]	$\eta_{\rm v}$		500		lm/W	

High Performance Green

Device HLMP-	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
P502			1.0	3.0			
P505			1.0	5.0			
6500			1.0	7.0			$I_F = 10 \text{ mA}$
6505			4.2	20.0			
7040	Luminous Intensity ^[1]	I_v	0.4	0.6		mcd	$I_F = 2 \text{ mA}$
6800			1.6	5.0			$V_{\rm F} = 5.0 \text{ Volts}$
6820			0.8	2.0			
6853 to 6858			1.0	3.0			$I_{\rm F} = 10 \text{ mA}$
All	Forward Voltage (Nonresistor Lamps)	$V_{_{\rm F}}$		2.1	2.7	V	$I_{\rm F} = 10 \text{ mA}$
6800	D 10	$\mathbf{I}_{_{\mathbf{F}}}$		9.6	13.0	mA	W FOW
6820	Forward Current (Resistor Lamps)			3.5	5.0		$V_F = 5.0 \text{ V}$
All	Reverse Breakdown Voltage	V_{R}	5.0	50.0		V	$I_R = 100 \ \mu A$
P505				125			
6505	Included Angle Between Half Intensity Points ^[2]	201/2		28		Deg.	·
All Diffused				90			
	Peak Wavelength	$\lambda_{ ext{peak}}$		565		nm	
	Dominant Wavelength[3]	λ_{d}		569		nm	
	Spectral Line Half Width	$\Delta\lambda_{_{1/2}}$		28		nm	
All	Speed of Response	$ au_{ m s}$		500		ns	
	Capacitance	C		18		pF	$V_{\rm F} = 0$; $f = 1 \text{ MHz}$
	Thermal Resistance	$ m R\theta_{J-PIN}$		170		°C/W	Junction-to-Cathode Lead
	Luminous Efficacy ^[4]	$\eta_{_{\mathrm{v}}}$		595		lm/W	

^{1.} The luminous intensity for arrays is tested to assure a 2.1 to 1.0 matching between elements. The average luminous intensity for an array determines its light output category bin. Arrays are binned for luminous intensity to allow I_v matching between

^{2.} $\theta/2$ is the off-axis angle where the luminous intensity is half the on-axis value. 3. Dominant wavelength, λ_d , is derived from the CIE Chromaticity Diagram and represents the single wavelength that defines the

^{4.} Radiant intensity, I_e , in watts/steradian, may be calculated from the equation $I_e = I_v/\eta_v$, where I_v is the luminous intensity in candelas and η_v is the luminous efficacy in lumens/watt.

Emerald Green^[1]

Device HLMP-	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
P605	Luminous Intensity	I_v	1.0	1.5		mcd	$I_{\rm F} = 10 \text{ mA}$
Q600			1.0	1.5			
	Forward Voltage	$V_{_{ m F}}$		2.2	3.0	V	$I_F = 10 \text{ mA}$
	Reverse Breakdown Voltage	V_{R}	5.0			V	$I_R = 100 \ \mu A$
P605	Included Angle Between	201/2	125		D		
Q600	Half Intensity Points ^[2]	20-72		90		Deg.	
	Peak Wavelength	$\lambda_{ ext{peak}}$		558		nm	,
	Dominant Wavelength ^[3]	λ_{d}		560		nm	Measured at Peak
P605/	Spectral Line Half Width	$\Delta\lambda_{1/2}$		24		nm	
Q600	Speed of Response	$\tau_{ m s}$		3100		ns	
	Capacitance	C		35		pF	$V_F = 0$; $f = 1 \text{ MHz}$
	Thermal Resistance	$\mathrm{R} heta_{\mathrm{J-PIN}}$		170		°C/W	Junction-to-Cathode Lead
	Luminous Efficacy ^[4]	$\eta_{\rm v}$		656		lm/W	

Note:
1. Please refer to Application Note 1061 for information comparing stnadard green and emerald green light outtut degradation.

Figure 1. Relative Intensity vs. Wavelength.

Figure 2. Forward Current vs. Forward Voltage. (Non-Resistor Lamp)

Figure 3. Relative Luminous Intensity vs. Forward Current. (Non-Resistor Lamp)

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current (Non-Resistor Lamps).

Figure 5. Maximum Forward dc Current vs. Ambient Temperature. Derating Based on T_j MAX = 110 $^{\circ}$ C (Non-Resistor Lamps).

Figure 6. Maximum Tolerable Peak Current vs. Pulse Duration. (I_{DC} MAX as per MAX Ratings) (Non-Resistor Lamps).

Figure 7. Resistor Lamp Forward Current vs. Forward Voltage.

Figure 8. Resistor Lamp Luminous Intensity vs. Forward Voltage.

Figure 9. Relative Intensity vs. Angular Displacement.

Standard SMT and Through Hole Lead Bend Options for Subminiature LED Lamps

Technical Data

Option 011, 012, 013, 021, 022, 031, 032, 1L1, 1S1, 2L1, 2S1

Features

- Surface Mount Lead Configurations
- Right Angle Lead Bend for Through Hole Mounting
- Tape and Reel in Accordance with ANSI/EIA RS-481 Specifications

Description

Subminiature lamps (HLMP-PXXX, HLMP-Q1XX, HLMP-6XXX, HLMP-70XX) are available with the above standard options. Subminiature Lamps with Options 01X, 02X and 03X are suitable for surface mount applications and their leads are formed with gull wing, yoke bend and Z bend respectively. They are available in Tape and Reel (compatible to ANSI/EIA RS-481), bulk or arrays in a shipping tube. Option 1X1 and 2X1 are right angle lead bends suitable for through hole applications.

Ordering Information

To order Subminiature Lamps packaged with these standard options, include the appropriate option code along with the device catalog part number. Example: to order the HLMP-P005 with Option 011 gull wing leads in 12 mm embossed tape on 178 mm (7 inch) diameter reels, with 1500 lamps per reel; order as follows: HLMP-P005 Option 011. Order quantities must be placed in reel increments only. Orders for partial reels will not be accepted. For additional information, please contact your local Hewlett-Packard sales office or franchised distributor for assistance.

5964-9351E

Selection Guide

Option Code	Package Configuration					
011	Gull Wing Leads, 12 mm 1500 Parts per Reel ^[1]	Tape on 7 in. Dia. Reel,	Surface Mount Lead	A, I, M		
012	Gull Wing Lead, Bulk Pac	kaging, Quantity of 500 Parts[3]	Configurations			
013	Gull Wing Leads, Arrays,	Shipping Tube, Quantity see Figure J		B, J		
014	Gull Wing Leads, 12 mm 6000 Parts per Reel ^[1]		A, I, M			
021	Yoke Leads, 12 mm Tape 1500 Parts per Reel ^[1]	on 7 in. Dia. Reel		С, К, М		
022	Yoke Leads, Bulk Packagi	ing, Quantity of 500 Parts ^[2]				
024	Yoke Leads, 12 mm Tape 6000 Parts per Reel ^[1]	on 13 in. Dia. Reel,				
031	Z-Bend Leads, 12 mm Tap 1500 Parts per Reel ^[1]	pe on 7 in. Dia. Reel		D, L, M		
032	Z-Bend Leads, Bulk Packa	aging, Quantity of 500 Parts ^[2]				
034	Z-Bend Leads, 12 mm Tap 6000 Parts per Reel ^[1]		,			
1L1	2.54 mm (0.100 inch)	0.100 inch) Long Leads; 10.4 mm (0.410 in.)		E		
1S1	Center Lead Spacing	Bends for	F			
2L1	5.08 mm (0.200 inch)	Long Leads; 9.2 mm (0.364 in.)	Through Hole	G		
2S1	Center Lead Spacing	Short Leads; 3.7 mm (0.145 in.)	Mounting	Н		

Notes:

- 1. SMT lamps are supplied in 12 mm embossed carrier tape. Minimum order is for one full reel, either 7 inch or 13 inch. All other order quantities must be in reel increments only. Orders for partial reels are not accepted.
- 3. Vapor barrier bags are used for bulk packaging.

Package Dimensions, Lead Bend Options

(A) Individual Lamp, Gull Wing Lead, Option 011, 012, and 014

ALL DIMENSIONS ARE IN MILLIMETRES (INCHES)

(B) Subminiature Array, Gull Wing Lead, Option 013

ALL DIMENSIONS ARE IN MILLIMETRES (INCHES)

(1) DUE TO SHEARING PROCESS, LEAD WIDTH AT END MAY VARY 0.483 mm/0.663 mm.

(C) Individual Lamp, "Yoke" Lead, Options 021, 022, and 024

(D) Individual Lamp, Z-Bend Lead, Option 031, 032, and 034

(E) Individual Lamp or Array, Rt. Angle Bend Option 1L1

ALL DIMENSIONS ARE IN MILLIMETRES (INCHES)

(F) Individual Lamp or Array, Rt. Angle Bend Option 1S1

ALL DIMENSIONS ARE IN MILLIMETRES (INCHES)

(G) Individual Lamp or Array, Rt. Angle Bend Option 2L1

ALL DIMENSIONS ARE IN MILLIMETRES (INCHES)

(H) Individual Lamp or Array, Rt. Angle Bend Option 2S1

${\bf Package\ Dimensions:\ Surface\ Mount\ Tape\ and\ Reel\ Options}$

(I) 12 mm Tape and Reel, Gull Wing Lead

(J) Array Shipping Tube, Gull Wing Lead

HLMP-	ELEMENTS PER ARRAY	OF ARRAYS PER TUBE
6XX3	3	53
6XX4	4	40
6XX5	5	32
6XX6	6	26
6XX8	8	20

(K) 12 mm Tape and Reel, "Yoke" Lead

(L) 12 mm Tape and Reel, Z-Bend Lead

	Reel Dimensions Per ANSI/EIA Standard RS-481.	All Dimensions Are in Millimeters (Inches).		
	7 inch Reel	13 Inch Reel		
A	$178.0 \pm 2.0 (7.0 \pm 0.08)$ Dia.	330 (12.9) Dia. Max.		
C	13.0 (0.512) Dia. Typ.	13.0 (0.512) Dia. Typ.		
N	50.0 (1.97) Min.	100.0 (3.93) Min.		
T	18.4 (0.72) mMax.	18.4 (0.72) Max.		

All Dimensions

Embossed Carrier

	Tape Dimensions Per ANSI/EIA Standard RS-481.	Are in Millimeters (Inches).			
	Gull Wing Dome	Gull Wing Flat Top	Yoke Dome	Z-Bend Dome	Yoke and Z-Bend Flat Top
D	1.55 (0.061 ± 0.002) Dia.	1.55 (0.061 ± 0.002) Dia.	1.55 (0.061 ± 0.002) Dia.	1.55 (0.061 0.002) Dia.	1.55 (0.061 ± 0.002) Dia.
D_1	1.0 (0.039) Dia. Min.	N/A (No Push Pin Hole)	N/A (No Push Pin Hole)	N/A (No Push Pin Hole)	N/A (No Push Pin Hole)
D_2	20.2 (0.795) Dia. Min.	20.2 (0.795) Dia. Min.	20.2 (0.795) Dia. Min.	20.2 (0.795) Dia. Min.	20.2 (0.795) Dia. Min.
Е	1.75 ± 0.1 (0.069)	1.75 ± 0.1 (0.069)	1.75 ± 0.1 (0.069)	$1.75 \pm 0.1 (0.069)$	1.75 ± 0.1 (0.069)
F	3.23 (0.127 ± 0.002)	$3.23~(0.127\pm~0.002)$	$3.23~(0.127\pm~0.002)$	$3.23 \ (0.127 \pm 0.002)$	3.23 (0.127 ± 0.002)
K ₀	$3.05 \pm 0.1 (0.120)$ Typ.	$2.54 \pm 0.1 (0.100)$ Typ.	$3.05 \pm 0.1 (0.120)$ Typ.	$2.97 \pm 0.1 (0.117)$ Typ.	3.05 ± 0.1 (0.120) Typ.
P	4.0 (0.157) Typ.	4.0 (0.157) Typ.	4.0 (0.157) Typ.	4.0 (0.157) Typ.	4.0 (0.157) Тур.
P ₀	4.0 (0.157) Typ.	4.0 (0.157) Тур.	4.0 (0.157) Тур.	4.0 (0.157) Тур.	4.0 (0.157) Typ.
P_2	$2.0 (0.079 \pm 0.002)$	$2.0 \ (0.079 \pm \ 0.002)$	$2.0\ (0.079 \pm\ 0.002)$	$2.0 (0.079 \pm 0.002)$	$2.0 \ (0.079 \pm \ 0.002)$
t	0.3 (0.012) Тур.	0.3 (0.012) Тур.	0.3 (0.012) Тур.	0.3 (0.012) Typ.	0.3 (0.012) Typ.
W	$12.0 \pm 0.3 (0.472 \pm 0.012)$	$12.0 \pm 0.3 (0.472 \pm 0.012)$	$12.0 \pm 0.3 (0.472 \pm 0.012)$	$12.0 \pm 0.3 (0.472 \pm 0.012)$	12.0 ± 0.3 (0.472 ± 0.012)

Subminiature Right Angle LED Indicators

Technical Data

Option 010

Features

- Ideal for PC Board Status Indication
- Side Stackable on 2.54 mm (0.100 in.) Centers
- Available in Four Colors
- Housing Meets UL 94V-O Flammability Rating
- Additional Catalog Lamps Available as Options

Description

The Hewlett-Packard series of Subminiature Right Angle Indicators are industry standard status indicators that incorporate tinted diffused LED lamps in black plastic housings. The 2.54 mm (0.100 in.) wide packages may be side stacked for maximum board space

savings. The silver plated leads are in line on 2.54 mm (0.100 in.) centers, a standard spacing that makes the PC board layout straight-forward. These products are designed to be used as back panel diagnostic indicators and logic status indicators on PC boards.

Package Dimensions

5964-9421E

Ordering Information

To order Subminiature Right Angle indicators, order the base part number and add the option code 010. Example: HLMP-6300 option 010. For price and delivery on Resistor Subminiature Right Angle Indicators and other subminiature LEDs not indicated above, please contact your nearest HP Components representative.

Absolute Maximum Ratings and Other Electrical/Optical Characteristics

The absolute maximum ratings and typical device characteristics are identical to those of the Subminiature lamps. For information about these characteristics, see the data sheets of the equivalent Subminiature lamp.

Surface Mount High Performance AlInGaP LED Indicators

Technical Data

SunPower Series HSMA-TX25 HSMD-TX25 HSMJ-TX25

Features

- Outstanding LED Material Efficiency
- Exceptional Light Output Over a Wide Range of Drive Currents
- Colors: 590 nm Amber, 603 nm Orange, and 615 nm Reddish-Orange
- Compatible with Automatic Placement Equipment
- Compatible with Convective IR, Vapor Phase Reflow, and TTW Solder Processes
- Packaged in 12 mm or 8 mm Tape on 7" or 13" Diameter Reels
- EIA Standard Package
- Low Package Profile
- Non-diffused Package Excellent for Backlighting and Coupling to Light Pipes

Description

The LED material used in these devices is the very efficient absorbing Substrate aluminum indium gallium phosphide (AS AlInGaP), capable of producing high light output over a wide range of drive currents.

These solid state surface mount indicators are designed with a flat top and sides to be easily handled by automatic placement equipment. A glue pad is provided for adhesive mounting processes. They are compatible with convective IR and vapor phase reflow soldering, through the wave (TTW) soldering, and conductive epoxy attachment processes.

The package size and configuration conform to the EIA-535.

BAAC standard specification for case size 3528 tantalum capacitors. The folded leads permit dense placement and provide an external solder joint for ease of inspection.

These devices are non-diffused, providing high intensity for applications such as backlighting, light pipe illumination, and front panel indication.

Device Selection Guide

Amber $\lambda_d = 590 \text{ nm}$	Orange $\lambda_d = 603 \text{ nm}$	Reddish-Orange $\lambda_d = 615 \text{ nm}$	Description
HSMA-T425	HSMD-T425	HSMJ-T425	12 mm Tape, 7" Reel, 2000 Devices
HSMA-T525	HSMD-T525	HSMJ-T525	12 mm Tape, 13" Reel, 8000 Devices
HSMA-T625	HSMD-T625	HSMJ-T625	8 mm Tape, 7" Reel, 2000 Devices
HSMA-T725	HSMD-T725	HSMJ-T725	8 mm Tape, 13" Reel, 8000 Devices

5964-9352E

Package Dimensions

Tape and Reel Specifications

Hewlett Packard surface mount LEDs are packaged tape and reel in accordance with EIA-481A, Taping of Surface Mount Components for Automatic Placement. This packaging system is compatible with tapefed automatic pick and place systems. Each reel is sealed in a vapor barrier bag for added protection. Bulk packaging in vapor barrier bags is available upon special request.

Absolute Maximum Ratings at $T_A = 25$ °C

DC Forward Current ^[1,4,5]	50 mA
Peak Forward Current ^[2]	200 mA
Average Forward Current	45 mA
$(at I_{PEAK} = 200 \text{ mA}, f \ge 1 \text{ KHz})^{[2]}$	
Transient Forward Current (10 µs Pulse)[3]	500 mA
Reverse Voltage ($I_R = 100 \mu\text{A}$)	5 V
LED Junction Temperature	95℃
Operating Temperature Range	40°C to +85°C
Storage Temperature Range	40°C to +85°C
Reflow Soldering Temperatures	
Convective IR235°C Peak, abov	re 183℃ for 90 seconds
Vapor Phase	215°C for 3 minutes

Notes:

- 1. Derate linerally as shown in Figure 4.
- 2. Refer to Figure 5 to establish pulsed operating conditions.
- The transient peak current is the maximum non-recurring peak current the device can withstand without damaging the LED die and wire bonds.
- $4.\ Drive$ currents between $5\ mA$ and $30\ mA$ are recommended for best long term performance.
- 5. Operation at currents below 5 mA is not recommended, please contact your Hewlett-Packard sales representative.

Optical Characteristics at $T_A = 25$ °C

Part Number			Peak Wavelength λ _{PEAK} (nm) Τyp.	Color, Dominant Wavelength $\lambda_d^{[1]}$ (nm) Typ.	Viewing Angle $2 \; \theta_{1/2}$ Degrees ^[2] Typ.	Luminous Efficacy η _v (lm/w)
HSMA-TX25	10	25	592	590	120	480
HSMD-TX25	10	25	607	603	120	370
HSMJ-TX25	10	25	621	615	120	263

Notes:

- 1. The dominant wavelength, λ_d , is derived from the CIE Chromaticity Diagram and represents the color of the device.
- 2. $\theta_{1/2}$ is the off-axis angle where the luminous intensity is 1/2 the peak intensity.

Electrical Characteristics at $T_A = 25$ °C

Part	Forward Voltage V _F (Volts) @ I _F = 10 mA		Reverse Breakdown V _R (Volts) @ I _R = 100 µA		Capacitance $C (pF)$ $V_F = 0,$ $f = 1 MHz$	Thermal Resistance	Speed of Response $ au_{\mathbf{s}}$ (ns) Time Constant $\mathrm{e}^{\mathrm{-t/\tau}_{\mathbf{s}}}$
Number	Тур.	Max.	Min.	Тур.	Typ.	Rθ _{J-PIN} (°C/W)	Тур.
HSMA-TX25	1.9	2.4	5	25	40	180	13
HSMD-TX25	1.9	2.4	5	25	40	180	13
HSMJ-TX25	1.9	2.4	5	25	40	180	13

Figure 1. Relative Intensity vs. Wavelength.

Figure 2. Forward Current vs. Forward Voltage.

Figure 3. Relative Luminous Intensity vs. Forward Current.

Figure 4. Maximum Forward Current vs. Ambient Temperature. Derating Based on T_J Max = 95°C.

Figure 5. Maximum Average Current vs. Peak Forward Current.

Figure 6. Relative Intensity vs. Angular Displacement.

Recommended Printed Circuit Board Attachment Pad Geometries

INFRARED/VAPOR PHASE REFLOW SOLDERING

COMPONENT LOCATION ON PAD

CONDUCTIVE ATTACHMENT

COMPONENT LOCATION ON PAD

NOTE: ALL DIMENSIONS ARE IN MILLIMETERS (INCHES).

Convective IR Reflow Soldering

For information on convective IR reflow soldering, refer to the Supplement to Application Note 1060, Surface Mounting SMT LED Components.

Surface Mount LED Indicator

Technical Data

HSMD-TX00 HSME-TX00 HSMG-TX00 HSMH-TX00 HSMS-TX00 HSMY-TX00

Features

- Compatible with Automatic Placement Equipment
- Compatible with Infrared and Vapor Phase Reflow Solder Processes
- Packaged in 12 mm or 8 mm tape on 7" or 13" Diameter Reels
- EIA Standard Package
- Low Package Profile
- Nondiffused Package Excellent for Backlighting and Coupling to Light Pipes

Description

These solid state surface mount indicators are designed with a flat top and sides to be easily handled by automatic placement equipment. A glue pad is provided for adhesive mounting processes. They are compatible with convective IR and vapor phase reflow soldering and conductive epoxy attachment processes.

The package size and configuration conform to the EIA-535 BAAC standard specification for case size 3528 tantalum capacitors. The folded leads

permit dense placement and provide an external solder joint for ease of inspection.

These devices are nondiffused, providing high intensity for applications such as backlighting, light pipe illumination, and front panel indication.

Device Selection Guide

DH AS AlGaAs Red HSMH-	High Efficiency Red HSMS-	Orange HSMD-	Yellow HSMY-	High Performance Green HSMG-	Emerald Green HSME-	Description
T400	T400	T400	T400	T400	T400	12 mm Tape, 7" Reel, 2000 Devices
T500	Т500	T500	T500	T500	T500	12 mm Tape, 13" Reel, 8000 Devices
T600	Т600	Т600	T600	Т600	T600	8 mm Tape, 7" Reel, 2000 Devices
T700	Т700	T700	T700	T700	T700	8 mm Tape, 13" Reel, 8000 Devices

Package Dimensions

Tape and Reel Specifications

Hewlett Packard surface mount LEDs are packaged tape and reel in accordance with EIA-481A, Taping of Surface Mount Components for Automatic Placement. This packaging system is compatible with tapefed automatic pick and place systems. Each reel is sealed in a vapor barrier bag for added protection. Bulk packaging in vapor barrier bags is available upon special request.

Absolute Maximum Ratings at $T_A = 25$ °C

Parameter	DH AS AlGaAs Red	High Efficiency Red	Orange	Yellow	High Perf. Green	Emerald Green	Units					
DC Forward Current ^[1]	30	30	30	30	30	30	mA .					
Peak Forward Current ^[2]	300	90	90	60	90	90	mA					
Average Forward Current ^[2]	20	25	25	20	25	25	mA					
LED Junction Temperature		95										
Transient Forward Current ^[3]												
(10 µs Pulse)			500				mA					
Reverse Voltage $(I_R = 100 \text{ mA})$			5				V					
Operating Temperature Range		-40 to +85										
Storage Temperature Range		-40 to +85										
Reflow Soldering Temperature Convective IR Vapor Phase		235℃			235°C Peak, above 185°C for 90 seconds.							

- 1. Derate dc current linearly from 50°C: For AlGaAs red, high efficiency red, and green devices at 0.67 mA/°C. For yellow devices at 0.44 mA/°C.
- 2. Refer to Figure 5 showing Maximum Tolerable Peak Current vs. Pulse duration to establish pulsed operating conditions.
- 3. The transient peak current is the maximum non-recurring peak current the device can withstand without damaging the LED die and wire bond. The device should not be operated at peak currents above the Absolute Maximum Peak Forward Current.

Electrical/Optical Characteristics at $T_A = 25$ °C

DH AS AlGaAs Red HSMH-TX00

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Luminous Intensity	$I_{\rm v}$	9.0	17.0		mcd	$I_F = 10 \text{ mA}$
Forward Voltage	$V_{\rm F}$		1.8	2.2	v	$I_F = 10 \text{ mA}$
Reverse Breakdown Voltage	V_R	5.0	15.0		· v	$I_R = 100 \mu A$
Included Angle Between Half Intensity Points ^[1]	$2\theta_{1/2}$		120		deg.	
Peak Wavelength	$\lambda_{ ext{PEAK}}$		645		nm	
Dominant Wavelength ^[2]	$\lambda_{ m d}$		637		nm	
Spectral Line Half Width	$\Delta\lambda_{1/2}$		20		nm	
Speed of Response	$ au_{ m s}$		30		ns	Time Constant, e⁻t/र₅
Capacitance	C		30		pF	$V_F = 0$, $f = 1$ MHz
Thermal Resistance	$R\theta_{J-pin}$		180		°C/W	Junction-to-Cathode
Luminous Efficacy[3]	$\eta_{\rm v}$		80		lm/W	

High Efficiency Red HSMS-TX00

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Luminous Intensity	$I_{\rm v}$	2.0	6.0		mcd	$I_F = 10 \text{ mA}$
Forward Voltage	V_{F}		1.9	2.5	v	$I_F = 10 \text{ mA}$
Reverse Breakdown Voltage	V _R	5.0	30.0		v	$I_R = 100 \mu\text{A}$
Included Angle Between Half Intensity Points ^[1]	$2\theta_{1/2}$		120		deg.	
Peak Wavelength	$\lambda_{ ext{PEAK}}$		635		nm	
Dominant Wavelength ^[2]	$\lambda_{ m d}$		626		nm	
Spectral Line Half Width	$\Delta\lambda_{1/2}$		40		nm	
Speed of Response	τ_{s}		90		ns	Time Constant, e ^{-t/τ} s
Capacitance	С		11		pF	$V_F = 0$, $f = 1$ MHz
Thermal Resistance	$R\theta_{J ext{-pin}}$		160		°C/W	Junction-to-Cathode
Luminous Efficacy[3]	$\eta_{\rm v}$		145		lm/W	

- 1. $\theta_{1/2}$ is the off-axis angle where the luminous intensity is half the on-axis value. 2. The dominant wavelength, λ_d , is derived from the CIE Chromaticity Diagram and represents the color of the device.
- 3. The radiant intensity, I_e , in watts per steradian, may be found from the equation $I_e = I_v/\eta_v$, where I_v is the luminous intensity in candelas and η_{ν} is luminous efficacy in lumens/watt.

Orange HSMD-TX00

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Luminous Intensity	I _v	1.5	5.0		mcd	$I_F = 10 \text{ mA}$
Forward Voltage	V_{F}		1.9	2.5	v	$I_F = 10 \text{ mA}$
Reverse Breakdown Voltage	V_{R}	5.0	30.0		v	$I_R = 100 \mu\text{A}$
Included Angle Between Half Intensity Points ^[1]	2θ ¹ / ₂		120		deg.	
Peak Wavelength	$\lambda_{ ext{PEAK}}$		600		nm	
Dominant Wavelength ^[2]	λ_{d}		602		nm	
Spectral Line Half Width	$\Delta\lambda_{1/2}$		40		nm	
Speed of Response	$ au_{ m s}$		260		ns	Time Constant, e ^{-t/τ} s
Capacitance	C		4		pF	$V_F = 0$, $f = 1$ MHz
Thermal Resistance	$R\theta_{J ext{-pin}}$		160		°C/W	Junction-to-Cathode
Luminous Efficacy[3]	$\eta_{\rm v}$		380		lm/W	

Yellow HSMY-TX00

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Luminous Intensity	I _v	2.0	5.0		mcd	$I_F = 10 \text{ mA}$
Forward Voltage	$V_{\rm F}$		2.0	2.5	v	$I_F = 10 \text{ mA}$
Reverse Breakdown Voltage	V_{R}	5.0	50.0		v	$I_R = 100 \mu\text{A}$
Included Angle Between Half Intensity Points ^[1]	2 0 ¹ / ₂		120		deg.	
Peak Wavelength	$\lambda_{ ext{PEAK}}$		583		nm	
Dominant Wavelength ^[2]	λ_d .		585		nm	
Spectral Line Half Width	$\Delta\lambda_{1/2}$		36		nm	
Speed of Response	$ au_{ m s}$		90		ns	Time Constant, e ^{-t/τ} s
Capacitance	C		15		pF	$V_F = 0$, $f = 1$ MHz
Thermal Resistance	$R\theta_{J ext{-pin}}$		160		°C/W	Junction-to-Cathode
Luminous Efficacy[3]	$\eta_{\rm v}$		500		lm/W	

- $1.\ \theta^{1}\!/\!_{2}$ is the off-axis angle where the luminous intensity is half the on-axis value.
- 2. The dominant wavelength, λ_d , is derived from the CIE Chromaticity Diagram and represents the color of the device.
- 3. The radiant intensity, I_e , in watts per steradian, may be found from the equation $I_e = I_v/\eta_v$, where I_v is the luminous intensity in candelas and η_v is luminous efficacy in lumens/watt.

High Performance Green HSMG-TX00

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Luminous Intensity	$I_{\rm v}$	4.0	10.0		mcd	$I_F = 10 \text{ mA}$
Forward Voltage	$V_{\rm F}$		2.0	2.5	v	$I_F = 10 \text{ mA}$
Reverse Breakdown Voltage	$V_{\rm R}$	5.0	50.0		V	$I_R = 100 \mu A$
Included Angle Between Half Intensity Points ^[1]	$2\theta^{1/2}$		120		deg.	
Peak Wavelength	$\lambda_{ ext{PEAK}}$		570		nm	
Dominant Wavelength ^[2]	$\lambda_{ m d}$		572		nm	
Spectral Line Half Width	$\Delta\lambda_{1/2}$		28		nm	
Speed of Response	$\tau_{\rm s}$		500		ns	Time Constant, e ^{-t/τ} s
Capacitance	С		18	i	pF	$V_F = 0$, $f = 1$ MHz
Thermal Resistance	$R\theta_{J ext{-pin}}$		160	l	°C/W	Junction-to-Cathode
Luminous Efficacy ^[3]	$\eta_{\rm v}$		595		lm/W	

Notes:

- 1. $\theta_{1/2}$ is the off-axis angle where the luminous intensity is half the on-axis value.
- 2. The dominant wavelength, λ_d , is derived from the CIE Chromaticity Diagram and represents the color of the device.
- 3. The radiant intensity, I_e , in watts per steradian, may be found from the equation $I_e = I_v/\eta_v$, where I_v is the luminous intensity in candelas and η_v is luminous efficacy in lumens/watt.

Emerald Green HSME-TX00

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Luminous Intensity	$I_{\rm v}$	1.0	1.5		mcd	$I_F = 10 \text{ mA}$
Forward Voltage	$V_{\rm F}$		2.2	2.27	V	$I_F = 10 \text{ mA}$
Reverse Breakdown Voltage	V _R	5.0	50.0		V	$I_R = 100 \mu A$
Included Angle Between Half Intensity Points ^[1]	$2\theta^{1/2}$		120		deg.	
Peak Wavelength	$\lambda_{ ext{PEAK}}$	i	558		nm	
Dominant Wavelength ^[2]	$\lambda_{ m d}$		560		nm	
Spectral Line Half Width	$\Delta\lambda_{1/2}$		28		nm	
Speed of Response	$\tau_{ m s}$		500		ns	Time Constant, e ^{-t/τ} s
Capacitance	С		52		pF	$V_F = 0$, $f = 1$ MHz
Thermal Resistance	$R\theta_{J ext{-pin}}$		120		°C/W	Junction-to-Cathode
Luminous Efficacy ^[3]	$\eta_{ m v}$		680		lm/W	

- $1.\;\theta^{1}\!/\!2$ is the off-axis angle where the luminous intensity is half the on-axis value.
- 2. The dominant wavelength, λ_d , is derived from the CIE Chromaticity Diagram and represents the color of the device.
- 3. The radiant intensity, I_{ev} in watts per steradian, may be found from the equation $I_{e} = I_{v}/\eta_{v}$, where I_{v} is the luminous intensity in candelas and η_{v} is luminous efficacy in lumens/watt.
- 4. Refer to Application Note 1061 for information comparing high performance green with emerald green light output degradation.

Figure 1. Relative Intensity vs. Wavelength.

Figure 2. Forward Current vs. Forward Voltage.

Figure 3. Relative Luminous Intensity vs. Forward Current.

HER, ORANGE, YELLOW.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration (I_{DC} MAX per MAX Ratings).

Figure 6. Relative Intensity vs. Angular Displacement.

Surface Mount Chip LEDs

Technical Data

HSMX-C650 HSMX-C670 HSMF-C655

Features

- Small Size
- Industry Standard Footprint
- Low Profile
- Tinted, Diffused Optics
- Compatible with IR Solder Process
- Five Colors and Bicolor Available
- Available in 8 mm Tape on 7" (178 mm) Diameter Reels

Applications

- Push-Button Backlighting
- LCD Backlighting
- Symbol Backlighting
- Front Panel Indicator

Description

These single and bicolor LEDs are designed in an industry standard package for ease of handling and use. Five different LED colors are available in two compact, low profile, single color packages. The 3.2 x 1.6 mm is an excellent all around package, and the small 2.0 x 1.25 mm package is designed for applications where space is limited. The single color LEDs have

tinted diffused optics. The bicolor package is untinted, diffused.

The small size, low 1.1 mm profile and wide viewing angle make these LEDs excellent for backlighting applications and front panel illumination. They are compatible with IR reflow soldering processes.

Device Selection Guide

Footprint (mm)	DH AlGaAs Red	High Efficiency Red	Orange	Yellow	Green	Bicolor HER- Green
3.20 x 1.60	HSMH-C650	HSMS-C650	HSMD-C650	HSMY-C650	HSMG-C650	
2.00 x 1.25	HSMH-C670	HSMS-C670	HSMD-C670	HSMY-C670	HSMG-C670	
3.20 x 2.70						HSMF-C655

HSMX-C650 Series

[1206]

HSMX-C670 Series

[1210]

Absolute Maximum Ratings at $T_A = 25^{\circ}C$

Parameter	HSMX-C650 HSMF-C655	HSMX-C670	Units			
DC Forward Current ^[1]	25	20	mA			
Power Dissipation	65	50	mW			
Reverse Voltage ($I_R = 100 \mu A$)	5	5	v			
LED Junction Temperature	95	95	°C			
Operating Temperature Range	-25 to +80	-25 to +80	°C			
Storage Temperature Range	-30 to +85	-30 to +85	°C			
Soldering Temperature	See SMT reflow soldering profile, Figure 6					

Notes:

1. Derate linearly as shown in Figure 4 for temperatures above 25°C.

Optical Characteristics at $T_A = 25^{\circ}C$

Part Number	Color	Inter I _V (r	inous nsity ncd) 0 mA ^[1] Typ.	$\begin{array}{c} \textbf{Peak} \\ \textbf{Wavelength} \\ \lambda_{\textbf{peak}} \ (\textbf{nm}) \\ \textbf{Typ.} \end{array}$	Color, Dominant Wavelength $\lambda_d^{[2]}$ (nm) Typ.	$egin{array}{c} ext{Viewing} & ext{Angle} & ext{2} & ext{0}^{1}\!/_{2} & ext{Degrees}^{[3]} & ext{Typ.} & ext{Typ.$
HSMH-C650 HSMH-C670	DH AlGaAs Red	6.3	16.0	650	639	155
HSMS-C650 HSMS-C670	High Efficiency Red	1.6	5.0	639	626	155
HSMD-C650 HSMD-C670	Orange	1.6	4.0	606	604	155
HSMY-C650 HSMY-C670	Yellow	1.6	5.0	584	586	155
HSMG-C650 HSMG-C670	Green	4.0	9.0	566	571	155
HSMF-C655	High Efficiency Red	1.6	5.0	639	626	155
	Green	4.0	9.0	566	571	155

- 1. The luminous intensity, I_V , is measured at the peak of the spatial radiation pattern which may not be aligned with the mechanical axis of the lamp package.
- 2. The dominant wavelength, $\hat{\lambda}_d$, is derived from the CIE Chromaticity Diagram and represents the perceived color of the device.
- 3. θ 1/2 is the off-axis angle where the luminous intensity is 1/2 the peak intensity.
- 4. Chip LEDs are supplied in 8 mm embossed tape on 178 mm (7 in.) diameter reels, with 3000 devices per reel. Minimum order quantity and order incremenets are in quantity of reels only.

Electrical Characteristics at $T_A = 25^{\circ}C$

Part Number	Color	$\begin{tabular}{ll} Forward \\ Voltage \\ V_F \ (Volts) \\ @ \ I_F = 20 \ mA \\ Typ. & \ Max. \end{tabular}$		$\begin{array}{c} Reverse \\ Breakdown \\ V_R \ (Volts) \\ @ \ I_R = 100 \ \mu A \\ Min. \end{array}$	$\label{eq:capacitance} \begin{split} &Capacitance\\ &C~(pF)\\ &V_F=0,\\ &f=1~MHz\\ &Typ. \end{split}$	Thermal Resistance R _{0J-PIN} (°C/W)					
HSMH-C650 HSMH-C670	DH AlGaAs Red	1.8	2.2	5	46	460 300					
HSMS-C650 HSMS-C670	High Efficiency Red	1.9	2.6	5	4.0	400 250					
HSMD-C650 HSMD-C670	Orange	2.1	2.6	5	4.0	400 250					
HSMY-C650 HSMY-C670	Yellow	2.1	2.6	5	3.0	400 250					
HSMG-C650 HSMG-C670	Green	2.2	3.0	5	8.0	400 250					
HSMF-C655	High Efficiency Red	1.9	2.6	5	3.7	325					
	Green	2.2	3.0	5	6.3	325					

Figure 1. Relative Intensity vs. Wavelength.

Figure 2. Forward Current vs. Forward Voltage.

Figure 3. Relative Luminous Intensity vs. DC Forward Current.

Figure 4. Maximum DC Current vs. Ambient Temperature.

Figure 6. Recommended SMT Reflow Soldering Profile.

Figure 8. Reeling Orientation.

Figure 7. Recommended Solder Patterns.

Figure 9. Reel Dimensions.

NOTE: ALL DIMENSIONS IN MILLIMETERS (INCHES).

Figure 10. Tape Dimensions.

Figure 11. Tape Leader and Trailer Dimensions.

Standard Intensity and Color Binning Options for LED Lamps

Technical Data

Option S02, S20, S22

HLMP-1440

Description

Due to applications that require tightly matched devices, Hewlett-Packard has developed several standard options to service these requirements.

Option S02 consists of devices which are selected to two Iv categories. All color bins of the base parts (yellow and green devices) fulfill the color requirements of these products.

Option S20 consists of devices which are selected to two color bins. All Iv bins of the base parts fulfill the Iv requirements of these products.

Option S22 consists of devices which are selected to two Iv categories and two color bin categories.

Ordering Information

To order LED indicators with these standard options, order the base part number and add the option code (S02, S20, S22). For any base part number that does not appear in the following lists, please consult your local Hewlett-Packard representative or your local franchise distributor.

Option S02 – Partial base part number list:

HLMP-D101

IIIIIII -DIOI
HLMP-D105
HLMP-D150
HLMP-D155
HLMP-D401
HLMP-K100
HLMP-K101
HLMP-K105
HLMP-K150
HLMP-K155
HLMP-K402
HLMP-L250
HLMP-R100
HLMP-S200
HLMP-S300
HLMP-S400
HLMP-S500
HLMP-T200
HLMP-T300
HLMP-T500
HLMP-0300
HLMP-0400
HLMP-0503
HLMP-0800
HLMP-1002
HLMP-1100
HLMP-1120
HLMP-1301
HLMP-1302
HLMP-1320
HLMP-1321
HLMP-1340
HLMP-1385
HLMP-1402

HLMP-1421

HLMP-1485 HLMP-1521 HLMP-1523 HLMP-1540 HLMP-1550 HLMP-1585 HLMP-1600 HLMP-1601 HLMP-1620 HLMP-1640 HLMP-1700 HLMP-1719 HLMP-1790 HLMP-3001 HLMP-3002 HLMP-3301 HLMP-3316 HLMP-3351 HLMP-3401 HLMP-3416 HLMP-3451 HLMP-3502 HLMP-3507 HLMP-3517 HLMP-3519 HLMP-3554 HLMP-3600 HLMP-3650 HLMP-3680 HLMP-3744 HLMP-3750 HLMP-3810 HLMP-3850 HLMP-3860 HLMP-3910 HLMP-3950 HLMP-3960

HLMP-4000	HLMP-8110	OPTION S22 - Partial base
HLMP-4600	HLMP-8115	part number list:
HLMP-4700	HLMP-8205	
HLMP-4719	HLMP-8209	HLMP-S301
HLMP-4740	HLMP-8305	HMLP-S500
HLMP-5030	HLMP-8309	HLMP-T300
HLMP-5040	HLMP-8320	HLMP-T500
HLMP-5050	HLMP-8405	HLMP-0401
HLMP-5060	HLMP-8409	HLMP-0504
HLMP-5070	HLMP-8505	HLMP-1402
HLMP-5080	HLMP-8509	HLMP-1440
HLMP-6001	HLMP-8510	HLMP-1523
HLMP-6300	HLMP-8520	HLMP-1620
HLMP-6305		HLMP-1719
HLMP-6400	OPTION S20 - Partial base	HLMP-3401
HLMP-6500	part number list:	HLMP-3450
HLMP-6505		HLMP-3850
HLMP-7000	HLMP-1620	HLMP-3862
HLMP-7019	HLMP-1640	HLMP-4719
HLMP-7040	HLMP-3400	
HLMP-8109	HLMP-3651	

LED Light Bars and Bar Graph Arrays

LED Light Bars and Arrays

LED Light Bars are Hewlett-Packard's innovative solution to fixed message annunciation. The large, uniformly illuminated light emitting surface may be used for backlighting legends or simple indicators. Four distinct colors are offered: AlGaAs red, high efficiency red, yellow, and high performance green with two bicolor combinations. The AlGaAs Red Light Bars provide exceptional brightness at very low drive currents for those applications where portability and battery backup are important considerations. Each of the eight X-Y stackable package styles offers one, two, or four light emitting surfaces. Along with this family of stackable light bars, HP also provides a single chip light bar for high brightness indication of small areas. Panel Mounts are also available for all devices.

In addition to light bars, HP offers effective analog message annunciation with the 10-element LED Bar Graph Arrays. These bar graph arrays eliminate the matching and alignment problems

commonly associated with arrays of discrete LED indicators. Each device offers easy to handle packages that are compatible with standard DIP sockets. The 10-element Bar Graph Array is available in standard red, AlGaAs red, high efficiency red, yellow, and high performance green. The multicolor 10-element arrays have high efficiency red, yellow, and green LEDs in one package. The package is X-Y stackable, with a unique interlock allowing easy end-to-end alignment.

LED Light Bars

Device			Description		Typical Luminous Intensity	Typical Forward Voltage	Page
Package Outline Drawing	Part No.	Color	Package	Lens	@ 20 mA	@ 20 mA	No.
	HLMP-2300	High Efficiency Red	4 Pin In-Line; 0.100" Centers; 0.400"L x 0.195"W x 0.245"H	Diffused	23 mcd	2.0 V	2-8
	HLMP-2400	Yellow		Diffused	20 mcd	2.1 V	
	HLMP-2500	Green		Green Diffused	25 mcd	2.2 V	
	HLMP-2350	High Efficiency Red	8 Pin In-Line; 0.100" Centers; 0.800"L x 0.195"W x 0.245"H	Diffused	45 mcd	2.0 V	
	HLMP-2450	Yellow		Diffused	38 mcd	2.1 V	
	HLMP-2550	Green		Green Diffused	50 mcd	2.2 V	
	HLMP-2600	High Efficiency Red	0.400"W x 0.245"H	Diffused	22 mcd	2.0 V	
	HLMP-2700	Yellow	Dual Arrangement	Diffused	18 mcd	2.1 V	
	HLMP-2800	Green	,	Green Diffused	25 mcd	2.2 V	
	HLMP-2620	High Efficiency Red	0.400"W x 0.245"H	Diffused	25 mcd	2.0 V	
	HLMP-2720	Yellow	Quad Arrangement	Diffused	18 mcd	2.1 V	
	HLMP-2820	Green		Green Diffused	25 mcd	2.2 V	
	HLMP-2635	High Efficiency Red	0.400"W x 0.245"H	Diffused	45 mcd	2.0 V	
	HLMP-2735	Yellow	Dual Bar Arrangement	Diffused	35 mcd	2.1 V	
	HLMP-2835	Green		Green Diffused	50 mcd	2.2 V	

LED Light Bars (Continued)

Device			Description			Typical Forward Voltage	Page	
Package Outline Drawing	Part No.	Color	Package	Lens	Intensity @ 20 mA	@ 20 mA	No.	
	HLMP-2655	High Efficiency Red	8 Pin DIP; 0.100" Centers; 0.400"L x 0.400"W x 0.245"H Square Arrangement	Diffused	43 mcd	2.0 V	2-8	
	HLMP-2755	Yellow	Square Arrangement	Diffused	35 mcd	2.1 V		
	HLMP-2855	Green		Green Diffused	50 mcd	2.2 V		
	HLMP-2670	High Efficiency Red	16 Pin DIP; 0.100" Centers; 0.800"L x 0.400"W x 0.245"H Dual Square	Diffused	45 mcd	2.0 V		
	HLMP-2770	Yellow	Arrangement	Diffused	35 mcd	2.1 V		
	HLMP-2870	Green	:	Green Diffused	50 mcd	2.2 V		
	HLMP-2685	High Efficiency Red	16 Pin DIP; 0.100" Centers; 0.800"L x 0.400"W x 0.245"H Single Bar Arrangement	Diffused	80 mcd	2.0 V		
	HLMP-2785	Yellow	Olligie Dai Alfaligellietii	Diffused	70 mcd	2.1 V		
	HLMP-2885	Green		Green Diffused	100 mcd	2.2 V		

DH AlGaAs Low Current LED Light Bars

Device		1			Typical Luminous Intensity	Typical Forward Voltage	Page
Package Outline Drawing	Part No.	Color Package		Lens	@ 3 mA	@ 3mA	No.
	HLCP-A100	AlGaAs Red	4 Pin In-Line; 0.100" Centers; 0.400"L x 0.195"W x 0.245"H	Diffused	7.5 mcd	1.6 V	2-8
	HLCP-B100	AlGaAs Red	8 Pin In-Line; 0.100" Centers; 0.800"L x 0.195"W x 0.245"H	Diffused	15.0 mcd		

DH AlGaAs Low Current LED Light Bars (Continued)

Device			Description		Typical Luminous Intensity	Typical Forward Voltage	Page
Package Outline Drawing	Part No.	Color	Package	Lens	@ 3 mA	@ 3 mA	No.
	HLCP-D100	AlGaAs Red	8 Pin DIP; 0.100" Centers; 0.400"L x 0.400"W x 0.245"H Dual Arrangement	Diffused	7.5 mcd	1.6 V	2-8
	HLCP-E100	AlGaAs Red	16 Pin DIP; 0.100" Centers; 0.800"L x 0.400"W x 0.245"H Quad Arrangement	Diffused	7.5 mcd		
	HLCP-F100	AlGaAs Red	16 Pin DIP; 0.100" Centers; 0.800"L x 0.400"W x 0.245"H Dual Bar Arrangement	Diffused	15.0 mcd		
	HLCP-C100	AlGaAs Red	8 pin DIP; 0.100" Centers; 0.400"L x 0.400"W x 0.245"H Square Arrangement	Diffused	15.0 mcd		
	HLCP-G100	AlGaAs Red	16 Pin DIP; 0.100" Centers; 0.800"L x 0.400"W x 0.245"H Dual Square Arrangement	Diffused	15.0 mcd		
	HLCP-H100	AlGaAs Red	16 Pin DIP; 0.100" Centers; 0.800"L x 0.400"W x 0.245"H Single Bar Arrangement	Diffused	30.0 mcd		

LED Bicolor Light Bars

Device			Description	Typical Luminous Intensity	Typical Forward Voltage	Page	
Package Outline Drawing	Part No.	Color	Package	Lens	@ 20 mA	@ 20 mA	No.
	HLMP-2950	High Efficiency Red/ Yellow	8 Pin DIP; 0.100" Centers; 0.400"L x 0.400"W x 0.245"H Square Arrangement	Diffused	HER: 20 mcd Yellow: 12 mcd	HER: 2.0 V Yellow: 2.1 V	2-8
	HLMP-2965	High Efficiency Red/ Green		Diffused	HER: 20 mcd Green: 20 mcd	HER: 2.0 V Green: 2.2 V	

Single Chip LED Light Bar

Device		Description			Typical Luminous		Typical Forward	Page
Package Outline Drawing	Part No.	Color	Package	Lens	Intensity	20 1/2	Voltage	No.
	HLMP-T200	High Efficiency Red (626 nm)	One Chip LED Light Bar	Tinted Diffused	4.8 mcd @ 20 mA	100°	2.2 V @ 20 mA	2-19
	HLMP-T300	Yellow (585 nm)			6.0 mcd @ 20 mA		2.2 V @ 20 mA	
	HLMP-T400	Orange (608 nm)			4.8 mcd @ 20 mA		2.2 V @ 20 mA	
	HLMP-T500	Green (569 nm)			6.0 mcd @ 20 mA		2.3 V @ 20 mA	

LED Bar Graph Arrays

Device	Device		Description		Typical Luminous	Typical Forward	Page
Package Outline Drawing	Part No.	Color	Package	Lens	Intensity	Voltage	No.
	HDSP-4820	Standard Red	20 Pin DIP; 0.100" Centers; 1.0"L x 0.400"W x 0.200"	Diffused	1250 μcd @ 20 mA DC	1.6 V @ 20 mA DC	2-23
	HDSP-4830	High Efficiency Red		Diffused	3500 μcd @ 10 mA DC	2.1 V @ 20 mA DC	
	HDSP-4840	Yellow		Diffused	1900 μcd @ 10 mA DC	2.2 V @ 20 mA DC	
	HDSP-4850	High Performance Green		Green Diffused	1900 μcd @ 10 mA DC	2.1 V @ 10 mA DC	·
	HDSP-4832	Multicolor		Diffused	1900 μcd @ 10 mA DC		
	HDSP-4836	Multicolor		Diffused	1900 μcd @ 10 mA DCC		
	HLCP-J100	AlGaAs Red		Diffused	1000 μcd @ 10 mA	1.6 V @ 1 mA	

Panel Mounts for LED Light Bars

Device			Page
Package Outline Drawing	Part No.	Corresponding Light Bar Module Part Number	No.
	HLMP-2598	HLMP-2350, -2450, -2550, HLCP-B100	2-30
	HLMP-2599	HLMP-2300, -2400, -2500, HLCP-A100	
	HLMP-2898	HLMP-2600, -2700, -2800 -2655, -2755, -2855 -2950, -2965, HLCP-C100, -D100	
	HLMP-2899	HLMP-2620, -2720, -2820, -2635, -2735, -2835 -2670, -2770, -2870 -2685, -2785, -2885 HLCP-E100, -F100, -G100, -H100	

LED Light Bars Standard Options

Option Code	Description	Page No.
S02	Devices Selected to Two (2) lv Categories	2-33
S22	Devices Selected to Two (2) Iv Categories and Two (2) Color Bin Categories	

LED Light Bars

Technical Data

HLCP-A100, -B100, -C100, -D100, -E100, -F100, -G100, -H100

HLMP-2300, -2350, -2400,

-2450, -2500, -2550, -2600,

-2620, -2635, -2655, -2670,

-2685, -2700, -2720, -2735, -2755, -2770, -2785, -2800,

-2820, -2835, -2855, -2870,

-2885, -2950, -2965

Features

- Large Bright, Uniform Light Emitting Areas
- Choice of Colors
- Categorized for Light Output
- Yellow and Green Categorized for Dominant Wavelength
- Excellent ON-OFF Contrast
- X-Y Stackable
- Flush Mountable
- Can be Used with Panel and Legend Mounts
- Light Emitting Surface Suitable for Legend Attachment per Application Note 1012
- HLCP-X100 Series Designed for Low Current Operation
- Bicolor Devices Available

Applications

- Business Machine Message Annunciators
- Telecommunications Indicators
- Front Panel Process Status Indicators
- PC Board Identifiers
- Bar Graphs

Description

The HLCP-X100 and HLMP-2XXX series light bars are rectangular light sources designed for a variety of applications where a large bright source of light is required. These light bars are configured in single-in-line and dual-in-line packages that contain either single or segmented light emitting areas. The AlGaAs Red HLCP-X100 series LEDs use double heterojunction AlGaAs on a GaAs substrate. The HER HLMP-2300/2600 and Yellow HLMP-2400/2700 series LEDs have their p-n junctions diffused into a GaAsP epitaxial layer on a GaP substrate. The Green HLMP-2500/2800 series LEDs use a liquid phase GaP epitaxial layer on a GaP substrate. The bicolor HLMP-2900 series use a combination of HER/Yellow or HER/Green LEDs.

Selection Guide

Ligh	nt Bar P	art Numbe	er		Number			Corresponding
HLCP-		HLMP-		Size of Light Emitting Areas	of Light		Package Outline	Panel and Legend Mount
AlGaAs	HER	Yellow	Green		Emitting Areas			Part No. HLMP-
A100	2300	2400	2500	8.89 mm x 3.81 mm (.350 in. x .150 in.)	1	A	·	2599
B100	2350	2450	2550	19.05 mm x 3.81 mm (.750 in. x .150 in.)	1	В		2598
D100	2600	2700	2800	8.89 mm x 3.81 mm (.350 in. x .150 in.)	2	D		2898
E100	2620	2720	2820	8.89 mm x 3.81 mm (.350 in. x .150 in.)	4	Е		2899
F100	2635	2735	2835	3.81 mm x 19.05 mm (.150 in. x .750 in.)	2	F		2899
C100	2655	2755	2855	8.89 mm x 8.89 mm (.350 in. x .350 in.)	1	С		2898
G100	2670	2770	2870	8.89 mm x 8.89 mm (.350 in. x .350 in.)	2	G		2899
H100	2685	2785	2885	8.89 mm x 19.05 mm (.350 in. x .750 in.)	1	н		2899
	2950	2950		8.89 mm x 8.89 mm (.350 in. x .350 in.)	Bicolor	I		2898
	2965		2965	8.89 mm x 8.89 mm (.350 in. x .350 in.)	Bicolor	I		2898

Package Dimensions

NOTES:

- 1. DIMENSIONS IN MILLIMETRES (INCHES). TOLERANCES ± 0.25 mm (± 0.010 IN.) UNLESS OTHERWISE INDICATED.
- 2. FOR YELLOW AND GREEN DEVICES ONLY.

Internal Circuit Diagrams

PIN FUNCTION					
PIN	A -2300/-2400 -2500/A100	B -2350/-2450 -2550/B100			
1 .	CATHODE a	CATHODE a			
2	ANODE a	ANODE a			
3	CATHODE b	CATHODE b			
4	ANODE b	ANODE b			
5		CATHODE c			
6		ANODE c			
7		CATHODE d			
8		ANODE d			

		,,,			
1 —	•}	<u>ځ</u> ۱	- 16 - 15		
3 — 4 —	<u>。</u>	₹,	-14 -13		
6-	<u>.</u>	奉 ,	- 12 - 11		
8—	4	₹•	- 10 - 9		
FEGH					

PIN	PIN FUNCTION				
• • • •	C, D	E, F, G, H			
1	CATHODE a	CATHODE a			
2	ANODE a	ANODE a			
3	ANODE b	ANODE b			
4	CATHODE b	CATHODE b			
5	CATHODE c	CATHODE c			
6	ANODE c	ANODE c			
7	ANODE d	ANODE d			
8	CATHODE d	CATHODE d			
9		CATHODE e			
10		ANODE e			
11		ANODE f			
12		CATHODE f			
13		CATHODE g			
14		ANODE g			
15		ANODE h			
16		CATHODE h			

	PIN FUNCTION						
PIN	HER	YELLOW/ GREEN					
1	CATHODE a	ANODE e					
2	ANODE a	CATHODE e					
3	ANODE b	CATHODE f					
4	CATHODE b	ANODE f					
5	CATHODE c	ANODE g					
6	ANODE c	CATHODE g					
7	ANODE d	CATHODE h					
8	CATHODE d	ANODE h					

Absolute Maximum Ratings

Parameter	AlGaAs Red HLCP-X100 Series	HER HLMP-2300/ 2600/29XX Series	Yellow HLMP-2400/ 2700/2950 Series	Green HLMP-2500/ 2800/2965 Series
Average Power Dissipated per LED Chip	37 mW ^[1]	135 mW ^[2]	85 mW ^[3]	135 mW ^[2]
Peak Forward Current per LED Chip	45 mA ^[4]	90 mA ^[5]	60 mA ^[5]	90 mA ^[5]
Average Forward Current per LED Chip	15 mA	25 mA	20 mA	25 mA
DC Forward Current per LED Chip	15 mA ^[1]	30 mA ^[2]	25 mA ^[3]	30 mA ^[2]
Reverse Voltage per LED Chip	5 V		6 V ^[6]	
Operating Temperature Range	-20°C to +100°C ^[7]	-40°C to +85°C		–20°C to +85°C
Storage Temperature Range		-40℃ to) +85℃	
Lead Soldering Temperature 1.6 mm (1/16 inch) Below Seating Plane3	260°C for 3 seconds ^[8]			

Notes:

- 1. Derate above 87°C at 1.7 mW/°C per LED chip. For DC operation, derate above 91°C at 0.8 mA/°C.
- 2. Derate above 25°C at 1.8 mW/°C per LED chip. For DC operation, derate above 50°C at 0.5 mA/°C.

 3. Derate above 50°C at 1.8 mW/°C per LED chip. For DC operation, derate above 50°C at 0.5 mA/°C.
- 4. See Figure 1 to establish pulsed operation. Maximum pulse width is 1.5 mS.
- 5. See Figure 6 to establish pulsed operation. Maximum pulse width is 2 mS.
- 6. Does not apply to bicolor parts.
- 8. Maximum tolerable component side temperature is 134°C during solder process.

Electrical/Optical Characteristics at $T_A=25^{\circ}\!\mathrm{C}$ AlGaAs Red HLCP-X100 Series

Parameter	HLCP-	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Luminous Intensity per Lighting Emitting Area ^[1]	A100/D100/E100	I_{V}	3	7.5		mcd	$I_F = 3 \text{ mA}$
	B100/C100/F100/G100		6	15		mcd	
	H100		12	30		mcd	
Peak Wavelength	Peak Wavelength			645		nm	
Dominant Wavelength ^[2]		$\lambda_{ m d}$		637		nm	
Forward Voltage per LED		$V_{\rm F}$		1.8	2.2	v	$I_F = 20 \text{ mA}$
Reverse Breakdown Voltage per LED		V_{R}	5	15		v	$I_R = 100 \mu A$
Thermal Resistance LED Junction-to-Pin		$R\theta_{J-PIN}$		250		°C/W/ LED	

High Efficiency Red HLMP-2300/2600/2900 Series

Parameter	HLMP-	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Luminous Intensity	2300/2600/2620	I_v	6	23		mcd	$I_F = 20 \text{ mA}$
per Lighting Emitting	2350/2635/2655/2670/2950[3]		13	45		mcd	
Area ^[1]	2965[4]		19	45		mcd	
	2685		22	80		mcd	
Peak Wavelength		$\lambda_{_{PEAK}}$		635		nm	
Dominant Wavelength ^[2]		$\lambda_{_{\mathbf{d}}}$		626		nm	
Forward Voltage per LED		$V_{_{\mathrm{F}}}$		2.0	2.6	v	$I_F = 20 \text{ mA}$
Reverse Breakdown Voltage per LED ^[5]		$V_{_{\mathrm{R}}}$	6	15		v	$I_R = 100 \mu\text{A}$
Thermal Resistance LED Junction-to-Pin		$R\theta_{_{J\text{-PIN}}}$		150		°C/W/ LED	

Yellow HLMP-2400/2700/2950 Series

Parameter	HLMP-	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Luminous Intensity	2400/2700/2720	I_v	6	20		mcd	$I_F = 20 \text{ mA}$
per Lighting Emitting	2450/2735/2755/2770/2950[3]		13	38		mcd	
Area ^[1]	2785		26	70		mcd	
Peak Wavelength		$\lambda_{_{\mathrm{PEAK}}}$		583		nm	
Dominant Wavelength ^[2]	Dominant Wavelength ^[2]			585		nm	
Forward Voltage per LED		$V_{_{ m F}}$		2.1	2.6	v	$I_F = 20 \text{ mA}$
Reverse Breakdown Voltage per LED ^[5]		$V_{_{\mathrm{R}}}$	6	15		v	$I_R = 100 \mu\text{A}$
Thermal Resistance LED Junction-to-Pin		$R\theta_{ ext{\tiny J-PIN}}$		150		°C/W/ LED	

High Performance Green HLMP-2500/2800/2965 Series

Parameter	HLMP-	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Luminous Intensity	2500/2800/2820	I_{v}	5	25		mcd	$I_F = 20 \text{ mA}$
per Lighting Emitting Area ^[1]	2550/2835/2855/2870		11	50		mcd	
	2965[4]		25	50		mcd	
	2885		22	100		mcd	,
Peak Wavelength		$\lambda_{_{PEAK}}$		565		nm	
Dominant Wavelength ^[2]		λ_{d}		572		nm	
Forward Voltage per LED		$V_{_{\rm F}}$		2.2	2.6	v	$I_F = 20 \text{ mA}$
Reverse Breakdown Voltage per LED ^[5]		V _R	6	15		v	$I_R = 100 \mu\text{A}$
Thermal Resistance LED Junction-to-Pin		$R\theta_{_{J-PIN}}$		150		°C/W/ LED	

- 1. These devices are categorized for luminous intensity. The intensity category is designated by a letter code on the side of the package.
- 2. The dominant wavelength, λ_{dt} is derived from the CIE chromaticity diagram and is the single wavelength which defines the color of the device. Yellow and Green devices are categorized for dominant wavelength with the color bin designated by a number code on the side of the package.
- 3. This is an HER/Yellow bicolor light bar. HER electrical/optical characteristics are shown in the HER table. Yellow electrical/optical characteristics are shown in the Yellow table.
- 4. This is an HER/Green bicolor light bar. HER electrical/optical characteristics are shown in the HER table. Green electrical/optical characteristics are shown in the Green table.
- 5. Does not apply to HLMP-2950 or HLMP-2965.

AlGaAs Red

Figure 1. Maximum Allowable Peak Current vs. Pulse Duration.

Figure 2. Maximum Allowed DC Current per LED vs. Ambient Temperature, T,MAX = $110\,^{\circ}$ C.

Figure 3. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.

Figure 4. Forward Current vs. Forward Voltage.

Figure 5. Relative Luminous Intensity vs. DC Forward Current.

HER, Yellow, Green

Figure 6. Maximum Allowed Peak Current vs. Pulse Duration.

Figure 7. Maximum Allowable DC Current per LED vs. Ambient Temperature, $T_{_J}\,MAX\,=\,100\,^{\circ}\!C.$

Figure 9. Forward Current vs. Forward Voltage Characteristics.

Figure 8. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.

Figure 10. Relative Luminous Intensity vs. DC Forward Current.

For a detailed explanation on the use of data sheet information and recommended soldering procedures, see Application Notes 1005, 1027, and 1031.

Electrical

These light bars are composed of two, four, or eight light emitting diodes, with the light from each LED optically scattered to form an evenly illuminated light emitting surface.

The anode and cathode of each LED is brought out by separate pins. This universal pinout arrangement allows the LEDs to be connected in three possible configurations: parallel, series, or series parallel. The typical forward voltage values can be scaled from Figures 4 and 9. These values should be used to calculate the current limiting resistor value and typical power consumption. Expected maximum $V_{\rm F}$ values for driver circuit design and maximum power dissipation,

may be calculated using the following V_FMAX models:

AlGaAs Red HLCP-X100 series

$$\begin{split} &V_{F}MAX=1.8~V+I_{Peak}~(20~\Omega)\\ &For: I_{Peak}\leq~20~mA\\ &V_{F}MAX=2.0~V+I_{Peak}~(10~\Omega)\\ &For:~20~mA\leq~I_{Peak}\leq~45~mA \end{split}$$

HER (HLMP-2300/2600/2900), Yellow (HLMP-2400/2700/2900) and Green (HLMP-2500/2800/ 2900) series

 $\begin{array}{l} V_{\rm F}MAX=1.6+I_{\rm Peak}~(50~\Omega)\\ For:~5~mA\leq~I_{\rm Peak}\leq~20~mA\\ V_{\rm F}MAX=1.8+I_{\rm Peak}~(40~\Omega)\\ For:~I_{\rm Peak}\geq~20~mA \end{array}$

The maximum power dissipation can be calculated for any pulsed or DC drive condition. For DC operation, the maximum power dissipation is the product of the maximum forward voltage and the maximum forward current. For pulsed operation, the maximum power dissipation is the product of the maximum forward voltage at the peak forward current times the maximum average forward current. Maximum allowable power dissipation for any given ambient temperature and thermal resistance (Rθ_{J-A}) can be determined by using Figure 2 or 7. The solid line in Figure 2 or 7 ($R\theta_{LA}$ of 600/538 C/W) represents a typical thermal resistance of a device socketed in a printed circuit board. The dashed lines represent achievable thermal resistances that can be obtained through improved thermal design. Once the maximum allowable power dissipation is determined, the maximum pulsed or DC forward current can be calculated.

Optical

Size of Light	Surface Area					
Emitting Area	Sq. Metres	Sq. Feet				
8.89 mm x 8.89 mm	67.74 x 10 ⁻⁶	729.16 x 10 ⁻⁶				
8.89 mm x 3.81 mm	33.87 x 10 ⁻⁶	364.58 x 10 ⁻⁶				
8.89 mm x 19.05 mm	135.48 x 10 ⁻⁶	1458.32 x 10 ⁻⁶				
3.81 mm x 19.05 mm	72.85 x 10 ⁻⁶	781.25 x 10 ⁻⁶				

The radiation pattern for these light bar devices is approximately Lambertian. The luminous sterance may be calculated using one of the two following formulas:

$$L_{v} (cd/m^{2}) = \frac{I_{v} (cd)}{A (m^{2})}$$

$$L_v \text{ (footlamberts)} = \frac{\pi I_v \text{ (cd)}}{A \text{ (ft}^2)}$$

Refresh rates of 1 kHz or faster provide the most efficient operation resulting in the maximum possible time average luminous intensity.

The time average luminous intensity may be calculated using the relative efficiency characteristic of Figure 3 or 8, ηI_{PEAK} , and adjusted for operating ambient temperature. The time average luminous intensity at $T_{\text{A}}=25^{\circ}\text{C}$ is calculated as follows:

$$I_{_{v \text{ TIME AVG}}} = \left[\frac{I_{_{AVG}}}{I_{_{TEST}}} \right] (\eta I_{_{PEAK}}) (I_{_{v}} \text{ Data Sheet})$$

where:

$$\begin{split} \mathbf{I}_{\text{\tiny TEST}} &= 3 \text{ mA for AlGaAs Red} \\ & (\text{HLMP-X000 series}) \\ & 20 \text{ mA for HER,} \\ & \text{Yellow and Green} \\ & (\text{HLMP-2XXX series}) \end{split}$$

Example:

For HLMP-2735 series

$$\eta I_{\text{peak}} = 1.18 \text{ at } I_{\text{peak}} = 48 \text{ mA}$$

$$I_{\text{v TIME AVG}} = \left[\frac{12 \text{ mA}}{20 \text{ mA}}\right] (1.18) (35 \text{ mcd})$$

$$= 25 \text{ mcd}$$

The time average luminous intensity may be adjusted for operating ambient temperature by the following exponential equation:

$$I_v(T_A) = I_V(25^{\circ}C)e^{[K(T_A - 25^{\circ}C)]}$$

Color	K
AlGaAs Red	-0.0095/°C
HER	-0.0131/°C
Yellow	-0.0112/°C
Green	-0.0104/°C

Example:

 I_v (80°C) = (25 mcd)e^[-0.0112 (80-25)] = 14 mcd.

Mechanical

These light bar devices may be operated in ambient temperatures above $+60^{\circ}\text{C}$ without derating when installed in a PC board configuration that provides a thermal resistance pin to ambient value less than $280^{\circ}\text{C/W/LED}$. See Figure 2 or 7 to determine the maximum allowed thermal resistance for the PC board, $R\theta_{PC-A}$, which will permit nonderated operation in a given ambient temperature.

To optimize device optical performance, specially developed plastics are used which restrict the solvents that may be used for cleaning. It is recommended that only mixtures of Freon (F113) and alcohol be used for vapor cleaning processes, with an

immersion time in the vapors of less than two (2) minutes maximum. Some suggested vapor cleaning solvents are Freon TE, Genesolv DES, Arklone A or K. A 60°C (140°F) water cleaning process may also be used, which includes a neutralizer rinse (3% ammonia solution or equivalent), a surfactant rinse (1% detergent solution or equivalent), a hot water rinse and a thorough air dry. Room temperature cleaning may be accomplished with Freon T-E35 or T-P35, Ethanol, Isopropanol or water with a mild detergent.

For further information on soldering LEDs please refer to Application Note 1027.

Single Chip LED Light Bar

Technical Data

HLMP-T200 HLMP-T300 HLMP-T400 HLMP-T500

Features

- Flat Rectangular Light Emitting Surface
- Choice of 4 Bright Colors
- Excellent On/Off Contrast
- Ideal as Flush Mounted Panel Indicators
- Long Life: Solid State Reliability
- Solder Coated Leads

Applications

- Bar Graphs
- Front Panel Status Indicators
- Telecommunications Indicators

- Push Button Illumination
- PC Board Identifiers
- Business Machine Message Annunciators

Description

The HLMP-T200/-T300/-T400/
-T500 light bars are rectangular light sources designed for a variety of applications where this shape and a high sterance are desired. These light bars consist of a rectangular plastic case around an epoxy encapsulated LED lamp. The encapsulant is tinted to match the color of the

emitted light. The flat top surface is exceptionally uniform in light emission and the plastic case eliminates light leakage from the sides of the device.

Package Dimensions

NOTES:

- 1. DIMENSIONS ARE IN MILLIMETRES (INCHES).
- 2. TOLERANCES ARE ±0.25 mm (±0.010 INCH)
 UNLESS OTHERWISE NOTED.

Electrical/Optical Characteristics at $T_A = 25$ °C

Symbol	Description	Device HLMP-	Min.	Тур.	Max.	Units	Test Conditions
I_{V}	Luminous Intensity	High Efficiency Red T200	3.0	4.8		mcd	$I_F = 20 \text{ mA}$
		Orange T400	3.0	4.8			
		Yellow T300	3.0	4.8			
	" , · · · · · · · · · · · · · · · · · ·	Green T500	3.0	6.0			
$2\theta_{1/2}$	Included Angle Between Half Luminous Intensity Points	All		100		Deg.	I _F = 20 mA See Note 1
$\lambda_{ ext{PEAK}}$	Peak Wavelength	High Efficiency Red Orange Yellow Green		635 612 583 565		nm	Measurement at Peak
$\lambda_{ m d}$	Dominant Wavelength	High Efficiency Red Orange Yellow Green		626 608 585 569		nm	See Note 2
$ au_{ m s}$	Speed of Response	High Efficiency Red Orange Yellow Green		350 350 390 870		ns	
C	Capacitance	High Efficiency Red Orange Yellow Green		4 4 8 11		pF	$V_F = 0;$ f = 1 MHz
$ m R heta_{ m JC}$	Thermal Resistance	All		260		°C/W	Junction to Cathode Lead at Seating Plane
$V_{ m F}$	Forward Voltage	HER/Orange Yellow Green	1.5 1.5 1.6	2.2 2.2 2.3	2.6 2.6 2.6	V	I _F = 20 mA
$V_{\rm R}$	Reverse Breakdown Voltage	All	5.0			V	$I_R = 100 \mu A$
$\eta_{ m V}$	Luminous Efficacy	High Efficiency Red Orange Yellow Green		145 262 500 595		lumens Watt	See Note 3

^{1.} $\theta_{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity. 2. The dominant wavelength, λ_d , is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

^{3.} Radiant intensity, I_e , in watts/steradian, may be found from the equation $I_e = l_V/\eta_V$, where I_V is the luminous intensity in candelas and η_{V} is the luminous efficacy in lumens/watt.

Characteristics at $T_A = 25$ °C

Figure 1. Relative Intensity vs. Wavelength.

High Efficiency Red, Orange, Yellow, and Green Light Bars

2.0

RELATIVE LUMINOUS INTENSITY (NORMALIZED AT 20mA) Icc - DC CURRENT PER LED - mA

Figure 2. Forward Current vs. Forward Voltage Characteristics.

Figure 3. Relative Luminous Intensity vs. DC Forward Current.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. LED Peak Current.

Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. (I_{DC} MAX as per MAX Ratings).

Figure 6. Relative Luminous Intensity vs. Angular Displacement.

Absolute Maximum Ratings at $T_A = 25$ °C

Parameter	High Efficiency Red/ Orange	Yellow	Green	Units
Peak Forward Current	90	60	90	mA
Average Forward Current[1]	25	20	25	mA
DC Current ^[2]	30	20	30	mA
Power Dissipation	88	64	88	mW
LED Junction Temperature		110		°C
Operating Temperature Range	-40 to +85	-40 to +85	-20 to +85	°C
Storage Temperature Range	-55 to +100	-55 to +100	-55 to +100	
Reverse Voltage ($I_R = 100 \mu A$)		5	,	V
Transient Forward Current ^[3] (10 µsec Pulse)		500		mA
Lead Soldering Temperature [1.6 mm (0.063 in.) below seating plane]	. 2	60°C for 3 second	ls	÷

Notes:

- 1. See Figure 5 to establish pulsed operating conditions.
- 2. For Red, Orange, and Green derate linearly from 50°C at 0.5 mA/°C. For Yellow derate linearly from 50°C at 0.34 mA/°C.
- 3. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

Optical

The radiation pattern for these light bar devices is approximately Lambertian. The luminous sterance may be calculated using one of the two following formulas:

$$L_{V}\left(\mathrm{cd/m^{2}}\right) =\frac{I_{V}\left(\mathrm{cd}\right) }{A\left(\mathrm{m^{2}}\right) }$$

$$L_V ext{ (footlamberts)} = \frac{\pi I_V ext{ (cd)}}{A ext{ (ft}^2)}$$

Size of light emitting area (A)

- = 3.18 mm x 5.72 mm
- $= 18.19 \times 10^{-6} \text{ m}^2$
- $= 195.8 \times 10^{-6} \text{ ft}^2$

10-Element Bar Graph Array

Technical Data

HLCP-J100 HDSP-4820 HDSP-4830 HDSP-4832

Features

- Custom Multicolor Array Capability
- Matched LEDs for Uniform **Appearance**
- End Stackable
- Package Interlock Ensures **Correct Alignment**
- Low Profile Package
- Rugged Construction
- · Large, Easily Recognizable **Segments**
- · High ON-OFF Contrast, **Segment to Segment**
- Wide Viewing Angle
- Categorized for Luminous Intensity
- HDSP-4832/4836/4840/4850 **Categorized for Dominant** Wavelength
- **HLCP-J100 Operates at Low** Typical Intensity of 1.0 mcd at 1 mA Drive Current

Applications

- Industrial Controls
- Instrumentation
- Office Equipment
- Computer Peripherals
- Consumer Products

Description

These 10-element LED arrays are designed to display information in easily recognizable bar graph form. The packages are end stackable and therefore capable of displaying long strings of information. Use of these bar graph arrays eliminates the alignment, intensity, and color matching problems associated with discrete LEDs. The HDSP-4820/4830/4840/4850 and HLCP-J100 each contain LEDs of one color. The HDSP-4832/4836 are multicolor arrays with High Efficiency Red, Yellow, and High Performance Green LEDs in a single package.

CUSTOM MULTICOLOR ARRAYS ARE AVAILABLE WITH MINIMUM DELIVERY REQUIRE-MENTS. CONTACT YOUR LOCAL DISTRIBUTOR OR HP SALES OFFICE FOR DETAILS.

Package Dimensions

- DIMENSIONS IN MILLIMETERS (INCHES).
 ALL UNTOLERANCED DIMEMSIONS FOR
- REFERENCE ONLY
- 3. HDSP-4832/-4836/-4840/-4850 ONLY.

Absolute Maximum Ratings[7]

Parameter	Red HDSP-4820	AlGaAs Red HLCP-J100	HER HDSP-4830	Yellow HDSP-4840	Green HDSP-4850
Average Power Dissipation per LED $(T_A = 25^{\circ}C)$	63 mW	37 mW	87 mW	50 mW	105 mW
Peak Forward Current per LED	150 mA ^[1]	45 mA ^[2]	90 mA ^[3]	60 mA ^[3]	90 mA ^[3]
DC Forward Current per LED	30 mA ^[4]	15 mA ^[4]	30 mA ^[5]	20 mA ^[5]	30 mA ^[5]
Operating Temperature Range	-40°C to +85°C	-20°C to +100°C	-40°C to	+85°C	-20°C to +85°C
Storage Temperature Range	-40°C to +85°C	-55°C to +100°C	-40°C to	+85°C	
Reverse Voltage per LED	3.0 V	5.0 V		3.0 V	
Lead Soldering Temperature (1.59 mm (1/16 inch) below seating plane) ^[6]		260	0°C for 3 seconds	S[8]	

Notes

- 1. See Figure 1 to establish pulsed operating conditions. Maximum pulse width is 1.5 ms.
- 2. See Figure 2 to establish pulsed operating conditions. Maximum pulse width is 1.5 ms.
- 3. See Figure 8 to establish pulsed operating conditions. Maximum pulse width is $2\ \mathrm{ms}.$
- $4.\ Derate\ maximum\ DC\ current\ for\ Red\ above\ T_A=62^{\circ}C\ at\ 0.79\ mA/^{\circ}C,\ and\ AlGaAs\ Red\ above\ T_A=91^{\circ}C\ at\ 0.8\ mA/^{\circ}C.\ See\ Figure\ 3.$
- 5. Derate maximum DC current for HER above $T_A = 48^{\circ}$ C at 0.58 mA/°C, Yellow above $T_A = 70^{\circ}$ C at 0.66 mA/°C, and Green above $T_A = 37^{\circ}$ C at 0.48 mA/°C. See Figure 9.
- 6. Clean only in water, isopropanol, ethanol, Freon TF or TE (or equivalent), or Genesolve DI-15 (or equivalent).
- Absolute maximum ratings for HER, Yellow, and Green elements of the multicolor arrays are identical to the HDSP-4830/4840/ 4850 maximum ratings.
- 8. Maximum tolerable component side temperature is $134^{\circ}\mathrm{C}$ during solder process.

Internal Circuit Diagram

Pin	Function	Pin	Function
1	Anode a	11	Cathode j
2	Anode b	12	Cathode i
3	Anode c	13	Cathode h
4	Anode d	14	Cathode g
5.	Anode e	15	Cathode f
6	Anode f	16	Cathode e
7	Anode g	17	Cathode d
8	Anode h	18	Cathode c
9	Anode i	19	Cathode b
10	Anode j	20	Cathode a

Multicolor Array Segment Colors

Segment	HDSP-4832 Segment Color	HDSP-4836 Segment Color
a	HER	HER
b	HER	HER
c	HER	Yellow
d	Yellow	Yellow
e	Yellow	Green
f	Yellow	Green
g	Yellow	Yellow
h	Green	Yellow
i	Green	HER
j	Green	HER

Electrical/Optical Characteristics at $T_A=25\,^{\circ}\!C^{[4]}$ Red $\,$ HDSP-4820

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Luminous Intensity per LED (Unit Average) ^[1]	I_{V}	610	1250		μcd	$I_F = 20 \text{ mA}$
Peak Wavelength	$\lambda_{ ext{PEAK}}$		655		nm	
Dominant Wavelength ^[2]	$\lambda_{ m d}$		645		nm	
Forward Voltage per LED	$V_{\rm F}$		1.6	2.0	V	$I_F = 20 \text{ mA}$
Reverse Voltage per LED ^[5]	V_{R}	3	12		V	$I_R = 100 \mu A$
Temperature Coefficient V_F per LED	ΔV_F /°C		-2.0		mV/°C	
Thermal Resistance LED Junction-to-Pin	$R\theta_{J-PIN}$		300		°C/W/LED	

AlGaAs Red HLCP-J100

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Luminous Intensity per LED (Unit Average) ^[1]	I_{V}	600	1000		μcd	$I_F = 1 \text{ mA}$
·			5200			I _F = 20 mA Pk; 1 of 4 Duty Factor
Peak Wavelength	$\lambda_{ ext{PEAK}}$		645		nm	
Dominant Wavelength ^[2]	$\lambda_{ m d}$		637		nm	
Forward Voltage per LED	V_{F}		1.6		V	$I_F = 1 \text{ mA}$
			1.8	2.2		$I_F = 20 \text{ mA}$
Reverse Voltage per LED ^[5]	$V_{ m R}$	5	15		V	$I_R = 100 \mu\text{A}$
Temperature Coefficient V_F per LED	$\Delta V_{F}/^{\circ}C$		-2.0		mV/°C	
Thermal Resistance LED Junction-to-Pin	$R\theta_{J-PIN}$		300		°C/W/LED	

High Efficiency Red HDSP-4830

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Luminous Intensity per LED (Unit Average) ^[1,4]	I_{v}	900	3500		μcd	$I_F = 10 \text{ mA}$
Peak Wavelength	$\lambda_{ ext{PEAK}}$		635		nm	
Dominant Wavelength ^[2]	$\lambda_{ m d}$		626		nm	
Forward Voltage per LED	$V_{\rm F}$		2.1	2.5	V	$I_F = 20 \text{ mA}$
Reverse Voltage per LED ^[5]	V_R	3	30		V	$I_R = 100 \mu\text{A}$
Temperature Coefficient V _F per LED	$\Delta V_{\rm F}/^{\circ}{ m C}$		-2.0		mV/°C	
Thermal Resistance LED Junction-to-Pin	$R\theta_{J-PIN}$		300		°C/W/LED	

Yellow HDSP-4840

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Luminous Intensity per LED (Unit Average) ^[1,4]	I_{V}	600	1900		μcd	$I_F = 10 \text{ mA}$
Peak Wavelength	$\lambda_{ ext{PEAK}}$		583		nm	
Dominant Wavelength ^[2,3]	$\lambda_{ m d}$	581	585	592	nm	
Forward Voltage per LED	$V_{\rm F}$		2.2	2.5	V	$I_F = 20 \text{ mA}$
Reverse Voltage per LED ^[5]	$V_{\rm R}$	3	40		V	$I_{R} = 100 \mu A$
Temperature Coefficient V _F per LED	$\Delta V_{\rm F}/^{\circ}{ m C}$		-2.0		mV/°C	
Thermal Resistance LED Junction-to-Pin	$R\theta_{J-PIN}$		300		°C/W/LED	

Green HDSP-4850

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Luminous Intensity per LED (Unit Average) ^[1,4]	I_{V}	600	1900		μcd	$I_F = 10 \text{ mA}$
Peak Wavelength	$\lambda_{ ext{PEAK}}$		566		nm	·
Dominant Wavelength ^[2,3]	$\lambda_{ m d}$		571	577	nm	
Forward Voltage per LED	$V_{\mathbf{F}}$		2.1	2.5	V	$I_F = 10 \text{ mA}$
Reverse Voltage per LED ^[5]	V_{R}	3	50		V ·	$I_R = 100 \mu\text{A}$
Temperature Coefficient V _F per LED	$\Delta V_{\rm F}/^{\circ}{ m C}$		-2.0		mV/°C	
Thermal Resistance LED Junction-to-Pin	$R\theta_{J-PIN}$		300		°C/W/LED	

Notes:

- 1. The bar graph arrays are categorized for luminous intensity. The category is designated by a letter located on the side of the package.
- 2. The dominant wavelength, λ_d , is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the device.
- 3. The HDSP-4832/-4836/-4840/-4850 bar graph arrays are categorized by dominant wavelength with the category designated by a number adjacent to the intensity category letter. Only the yellow elements of the HDSP-4832/-4836 are categorized for color.
- 4. Electrical/optical characteristics of the High-Efficiency Red elements of the HDSP-4832/-4836 are identical to the HDSP-4830 characteristics. Characteristics of Yellow elements of the HDSP-4832/-4836 are identical to the HDSP-4840. Characteristics of Green elements of the HDSP-4832/-4836 are identical to the HDSP-4850.
- 5. Reverse voltage per LED should be limited to $3.0\,V$ max. for the HDSP-4820/-4830/-4850/-4850/-4832/-4836 and $5.0\,V$ max. for the HLCP-J100.

Red, AlGaAs Red

Figure 1. Maximum Tolerable Peak Current vs. Pulse Duration – Red.

Figure 2. Maximum Tolerable Peak Current vs. Pulse Duration – AlGaAs Red.

Figure 3. Maximum Allowable DC Current vs. Ambient Temperature. $T_{JMAX}=100^{\circ}\mathrm{C}$ for Red and $T_{JMAX}=110^{\circ}\mathrm{C}$ for AlGaAs Red.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 5. Forward Current vs. Forward Voltage.

Figure 6. Relative Luminous Intensity vs. DC Forward Current – Red.

Figure 7. Relative Luminous Intensity vs. DC Forward Current - AlGaAs.

For a Detailed Explanation on the Use of Data Sheet Information and Recommended Soldering Procedures, See Application Note 1005.

HER, Yellow, Green

Figure 8. Maximum Tolerable Peak Current vs. Pulse Duration – HER/Yellow/Green.

Figure 9. Maximum Allowable DC Current vs. Ambient Temperature. $T_{JMAX} = 100^{\circ}C$.

Figure 11. Forward Current vs. Forward Voltage.

Figure 12. Relative Luminous Intensity vs. DC Forward Current.

Figure 10. Relative Efficiency

(Luminous Intensity per Unit

Current) vs. Peak Current.

For a Detailed Explanation on the Use of Data Sheet Information and Recommended Soldering Procedures, See Application Note 1005.

Electrical/Optical

These versatile bar graph arrays are composed of ten light emitting diodes. The light from each LED is optically stretched to form individual elements. The Red (HDSP-4820) bar graph array LEDs use a p-n junction diffused into a GaAsP epitaxial layer on a GaAs substrate. The AlGaAs Red (HLCP-J100) bar graph array LEDs use double heterojunction AlGaAs on a GaAs substrate. HER (HDSP-4830) and Yellow (HDSP-4840) bar graph array LEDs use a GaAsP epitaxial layer on a GaP substrate, Green (HDSP-4850) bar graph array LEDs use liquid phase GaP epitaxial layer on a GaP substrate. The multicolor bar graph arrays (HDSP-4832/4836) have HER, Yellow, and Green LEDs in one package.

These displays are designed for strobed operation. The typical forward voltage values can be scaled from Figures 5 and 11. These values should be used to calculate the current limiting resistor value and typical power consumption. Expected maximum V_F values for driver circuit design and maximum power dissipation may be calculated using the V_{FMAX} models:

Standard Red HDSP-4820 series $V_FMAX = 1.8 \text{ V} + I_{Peak} (10 \Omega)$ For: $I_{Peak} \ge 5 \text{ mA}$

AlGaAs Red HLCP-J100 series $\begin{array}{l} V_F MAX = 1.8 \; V + I_{Peak} \; (20 \; \Omega) \\ For: I_{Peak} \leq \; 20 \; mA \\ V_F MAX = 2.0 \; V + I_{Peak} \; (10 \; \Omega) \\ For: I_{Peak} \geq \; 20 \; mA \end{array}$

HER (HDSP-4830) and Yellow (HDSP-4840) series $V_F MAX = 1.6 + I_{Peak} (45 \ \Omega)$ For: $5 \ mA \le I_{Peak} \le 20 \ mA$ $V_F MAX = 1.75 + I_{Peak} (38 \ \Omega)$ For: $I_{Peak} \ge 20 \ mA$

Green (HDSP-4850) series $V_F MAX = 2.0 + I_{Peak} \ (50 \ \Omega)$ For: $I_{Peak} > 5 \ mA$

Figures 4 and 10 allow the designer to calculate the luminous intensity at different peak and average currents. The following equation calculates intensity at different peak and average currents:

$$\begin{split} I_{V}\!AVG &= (I_{F}\!AVG/I_{F}\!AVG \ DATA \\ SHEET) \eta_{peak})(I_{V}\!DATA \\ SHEET) \end{split}$$

Where:

I_VAVG is the calculated time averaged luminous intensity resulting from I_FAVG.

I_FAVG is the desired time averaged LED current.

 I_FAVG DATA SHEET is the data sheet test current for I_VDATA SHEET.

 $\eta_{\rm peak}$ is the relative efficiency at the peak current, scaled from Figure 4 or 10.

I_V DATA SHEET is the data sheet luminous intensity, resulting from I_FAVG DATA SHEET.

For example, what is the luminous intensity of an HDSP-4830 driven at 50 mA peak 1/5 duty factor?

 $I_FAVG = (50 \text{ mA})(0.2) = 10 \text{ mA}$

$$\begin{split} &I_FAVG\ DATA\ SHEET=10\ mA\\ &\eta_{peak}=1.3\\ &I_V\ DATA\ SHEET=3500\ \mu cd \end{split}$$

Therefore

 $I_V AVG = (10 \text{ mA}/10 \text{ mA})$ (1.3)(3500 µcd) = 4550 µcd

Panel and Legend Mounts for LED Light Bars

Technical Data

HLMP-2598 HLMP-2599 HLMP-2898 HLMP-2899

Features

- Firmly Mounts Light Bars in Panels
- Holds Legends for Front Panel or PC Board Applications^[1]
- One Piece, Snap-in Assembly
- Matte Black Bezel Design Enhances Panel Appearance
- Four Sizes Available
- May Be Installed in a Wide Range of Panel Thicknesses
- Panel Hole Easily Punched or Milled

Description

This series of black plastic bezel mounts is designed to install Hewlett-Packard Light Bars in instrument panels ranging in thickness from 1.52 mm (0.060 inch) to 3.18 mm (0.125 inch). A space has been provided for holding a 0.13 mm (0.005 inch) film legend over the light emitting surface of the light bar module.

Selection Guide

Panel and Legend Mount Part No.		orresponding nt Bar Module Part No.		Packag	e
HLMP-	HLCP-	HLMP-	Panel Hole Installation Dimensions ^[2]	Outlin	e
2598	B100	2350, 2450, 2550	7.62 mm (0.300 inch) x 22.86 mm (0.900 inch)		В
2599	A100	2300, 2400, 2500	7.62 mm (0.300 inch) x 12.70 mm (0.500 inch)		Α
2898	D100 C100	2600, 2700, 2800 2655, 2755, 2855 2950, 2965, 2980	12.70 mm (0.500 inch) x 12.70 mm (0.500 inch)		С
2899	E100 F100 G100 H100	2620, 2720, 2820 2635, 2735, 2835 2670, 2770, 2870 2685, 2785, 2885	12.70 mm (0.500 inch) x 22.86 mm (0.900 inch)		D

Notes:

- $1.\ Application\ Note\ 1012\ addresses\ legend\ fabrication\ options.$
- 2. Allowed hole tolerance: +0.00 mm, -0.13 mm (+0.000 inch, -0.005 inch). Permitted radius: 1.60 mm (0.063 inch).

Package Dimensions

NOTES: 1. DIMENSIONS IN MILLIMETRES (INCHES)
2. UNTOLERANCED DIMENSIONS ARE FOR
REFERENCE ONLY.

Mounting Instructions

- Mill^[3] or punch a hole in the panel. Deburr, but do not chamfer, the edges of the hole.
- 2. Place the front of the mount against a solid, flat surface. A film legend with outside dimensions equal to the outside dimensions of the light bar may be placed in the mount or on the light bar light emitting surface. Press the light bar into the mount until the tabs snap over the back of the light bar^[4]. When inserting the HLMP-2898, align the notched sides of the light bar with the mount sides which do not have the tabs. (See Figure 1.)

3. Applying even pressure to the top of the mount, press the entire assembly into the hole from the front of the panel^[5]. (See Figure 2.)

Note: For thinner panels, the mount may be pressed into the panel first, then the light bar may be pressed into the mount from the back side of the panel.

Suggested Punch Sources

Hole punches may be ordered from one of the following sources:

Danly Machine Corporation Punchrite Division 15400 Brookpark Road Cleveland, OH 44135 (216) 267-1444 Ring Division The Producto Machine Company Jamestown, NY 14701 (800) 828-2216

Porter Precision Products Company 12522 Lakeland Road Santa Fe Springs, CA 90670 (213) 946-1531

Di-Acro Division Houdaille Industries 800 Jefferson Street Lake City, MN 55041 (612) 345-4571

Notes:

- 3. A 3.18 mm (0.125 inch) diameter mill may be used.
- 4. Repetitve insertion of the light bar into mount may cause damage to the mount.
- 5. Repetitive insertion of the mount into the panel will degrade the retention force of the mount.

Installation Sketches

Figure 1. Installation of a Light Bar into a Panel Mount.

Figure 2. Installation of the Light Bar/Panel Mount Assembly into a Front Panel.

LED Light Bars Standard Options

Technical Data

Description

Due to applications that require tightly matched devices, Hewlett-Packard has developed several standard options to service these requirements.

Option S02 consists of devices which are selected to two Iv categories. All color bins of the base parts (yellow and green devices) fulfill the color requirements of these products.

Option S22 consists of devices which are selected to two Iv categories and two color bin categories.

Ordering Information

To order Light Bars with these standard options, order the base part number and add the option code (S02, S22). For any base part number that does not appear in the following lists, please consult your local Hewlett-Packard representative or your local franchise distributor.

Option S02 – Partial base part number list:

HDSP-4820	HLMP-2600
HDSP-4830	HLMP-2620
HDSP-4840	HLMP-2635
HDSP-4850	HLMP-2655
HLCP-A100	HLMP-2670
HLCP-B100	HLMP-2685
HLCP-C100	HLMP-2700
HLCP-D100	HLMP-2720
HLCP-E100	HLMP-2735
HLCP-F100	HLMP-2755
HLCP-G100	HLMP-2770
HLCP-H100	HLMP-2785
HLMP-2300	HLMP-2800
HLMP-2316	HLMP-2820
HLMP-2350	HLMP-2835
HLMP-2400	HLMP-2855
HLMP-2450	HLMP-2870
HLMP-2500	HLMP-2885
HLMP-2550	HLMP-2950

Option S02, S22

OPTION S22 - Partial base part number list:

HLMP-2400	HLMP-2755
HLMP-2500	HLMP-2785
HLMP-2855	HLMP-2885
HLMP-2965	HLMP-2550
HLMP-2450	HDSP-4840
HLMP-2735	HDSP-4850

5963-7039E

LED Displays

- Seven Segment Numeric
- Alphanumeric Hexadecimal
- Glass/Ceramic

LED Displays

Hewlett-Packard's line of LED displays answers all the needs of the designer. From small alphanumeric displays to low cost numeric displays and large dot matrix displays the selection is complete.

Hewlett-Packard's 5X7 dot matrix alphanumeric displays are available in a variety of packages and font sizes, as well as four colors. Many of the newer and most popular products are also now available in AlGaAs Red. This wide diversity of packages, font heights, and colors mean solutions for your diverse applications.

In the intelligent display family look for the HDSP-250X large font eight digit and the HDSP-253X medium font eight digit displays. For high performance, consider the HCMS-29XX small and medium font four, eight, and sixteen digit displays. For your industrial applications the HDSP-665X medium font four character

glass/ceramic displays are also available. These intelligent displays give each customer a wide choice of new products to design into medical equipment, avionics, telecommunications, computer products, industrial or office equipment applications.

Also, part of HP's alphanumeric display line is the large 5X7 dot matrix alphanumeric display family which offers a variety of color selections as well as excellent viewing distances from 12-18 metres. Applications for these displays include industrial machinery and process controllers, weighing scales, computer tape drives, variable message signs, and transportation.

Hewlett-Packard also features a broad line of numeric seven segment displays. Included are low cost, standard red displays to high ambient light displays producing 7.5 mcd/segment. This broad product offering provides a solution to every display need.

They include several sizes in dual digit displays and the Micro Bright line of small package, bright displays.

HP's broad line of numeric seven segment displays is ideal for electronic instrumentation, industrial, weighing scales, point-of-sale terminals, game machines, and appliance applications. In this product line the Double Heterojunction AlGaAs red low current sunlight viewable display family is available in many package sizes. These AlGaAs numeric displays are ideal for battery operated and other low power applications.

Where contrast is important, choose from the following HP seven segment display products: black surface seven segment displays, orange color seven segment displays and the smallest package on the market, the Ultra Mini 8 mm (0.31"). All devices are available as either common anode or common cathode.

8 mm (0.31 inch) Ultra Mini Seven Segment Displays

Device	P/N	Description	Color	Typical I _v	Page No.
(a)	HDSP-U001 HDSP-U003	Common Anode Right Hand Decimal, Light Gray Surface, O Common Cathode Right Hand Decimal, Light Gray Surface, O		1100 µcd @ 20 mA	3-58
	HDSP-U011 HDSP-U013	Common Anode Right Hand Decimal, Black Surface, Δ Common Cathode Right Hand Decimal, Black Surface, Δ			
()•	HDSP-U101 HDSP-U103	Common Anode Right Hand Decimal, Light Gray Surface, O Common Cathode Right Hand Decimal, Light Gray Surface, O	AlGaAs Red	600 μcd @ 1 mA	
	HDSP-U111 HDSP-U113	Common Anode Right Hand Decimal, Black Surface, Δ Common Cathode Right Hand Decimal, Black Surface, Δ			
	HDSP-U201 HDSP-U203	Common Anode Right Hand Decimal, Light Gray Surface, O Common Cathode Right Hand Decimal, Light Gray Surface, O	High Efficiency	980 μcd @ 5 mA	
	HDSP-U211 HDSP-U213	Common Anode Right Hand Decimal, Black Surface, Δ Common Cathode Right Hand Decimal, Black Surface, Δ	Red		
	HDSP-U301 HDSP-U303	Common Anode Right Hand Decimal, Light Gray Surface, O Common Cathode Right Hand Decimal, Light Gray Surface, O	Yellow	480 μcd @ 1 mA	
	HDSP-U311 HDSP-U313	Common Anode Right Hand Decimal, Black Surface, Δ Common Cathode Right Hand Decimal, Black Surface, Δ			
	HDSP-U501 HDSP-U503	Common Anode Right Hand Decimal, Dark Gray Surface, Δ Common Cathode Right Hand Decimal, Dark Gray Surface, Δ	Green	300 mcd @ 10 mA	
	HDSP-U511 HDSP-U513	Common Anode Right Hand Decimal, Black Surface, Δ Common Cathode Right Hand Decimal, Black Surface, Δ			
8.0 mm (0.31 in.) Dual-in-Line	HDSP-U401 HDSP-U403	Common Anode Right Hand Decimal, Light Gray Surface, O Common Cathode Right Hand Decimal, Light Gray Surface, O	Orange	980 μcd @ 5 mA	
0.43" H x 0.28" W x 0.20" D	HDSP-U411 HDSP-U413	Common Anode Right Hand Decimal, Black Surface, Δ Common Cathode Right Hand Decimal, Black Surface, Δ			

 $O = \text{segment is not tinted} \\ \Delta = \text{segment is tinted}$

Black Surface Seven Segment Displays

Device	P/N	Description	Color	Typical I _v	Pag No
(†	HDSP-A011 HDSP-A013	Common Anode Right Hand Decimal, Δ Common Cathode Right Hand Decimal, Δ	Red	1100 μcd @ 20 mA	3-18
+ + 	HDSP-A211 HDSP-A213	Common Anode Right Hand Decimal, Δ Common Cathode Right Hand Decimal, Δ	High Efficiency Red	980 μcd @ 5 mA	
7.62 mm (0.30 in.) Micro Bright	HDSP-A111 HDSP-A113	Common Anode Right Hand Decimal, Δ Common Cathode Right Hand Decimal, Δ	AlGaAs Red	600 μcd @ 1 mA	
Dual-in-Line 0.5" H x 0.3" W x 0.24" D	HDSP-A511 HDSP-A513	Common Anode Right Hand Decimal, Δ Common Cathode Right Hand Decimal, Δ	Green	3000 µcd @ 10 mA	
	HDSP-F011 HDSP-F013	Common Anode Right Hand Decimal, Δ Common Cathode Right Hand Decimal, Δ	Red	1200 µcd @ 20 mA	,
	HDSP-F211 HDSP-F213	Common Anode Right Hand Decimal, Δ Common Cathode Right Hand Decimal, Δ	High Efficiency Red	1200 µcd @ 5 mA	
	HDSP-F111 HDSP-F113	Common Anode Right Hand Decimal, Δ Common Cathode Right Hand Decimal, Δ	AlGaAs Red	650 μcd @ 1 mA	
10.16 mm (0.40 in.)	HDSP-F161 HDSP-F163	Common Anode Right Hand Decimal, Δ Common Cathode Right Hand Decimal, Δ	AlGaAs Red	15.0 mcd @ 20 mA	
Dual-in-Line (Single Digit) 0.51" H x 0.39" W x 0.25" D	HDSP-F511 HDSP-F513	Common Anode Right Hand Decimal, Δ Common Cathode Right Hand Decimal, Δ	Green	3500 µcd @ 10 mA	
	HDSP-G011 HDSP-G013	Two Digit Common Anode Right Hand Decimal, Δ Two Digit Common Cathode Right Hand Decimal, Δ	Red	1200 µcd @ 20 mA	-
	HDSP-G211 HDSP-G213	Two Digit Common Anode Right Hand Decimal, Δ Two Digit Common Cathode Right Hand Decimal, Δ	High Efficiency Red	1200 µcd @ 5 mA	
	HDSP-G111 HDSP-G113	Two Digit Common Anode Right Hand Decimal, Δ Two Digit Common Cathode Right Hand Decimal, Δ	AlGaAs Red	650 µcd @ 1 mA	
	HDSP-G161 HDSP-G163	Two Digit Common Anode Right Hand Decimal, Δ Two Digit Common Cathode Right Hand Decimal, Δ	AlGaAs Red	15.0 mcd @ 20 mA	
10.16 mm (0.40 in.) Dual-in-Line (Dual Digit) 0.51" H x 0.39" W x 0.25" D	HDSP-G511 HDSP-G513	Two Digit Common Anode Right Hand Decimal, Δ Two Digit Common Cathode Right Hand Decimal, Δ	Green	3500 µcd @ 10 mA	

 $O = \text{segment is not tinted} \\ \Delta = \text{segment is tinted}$

Black Surface Seven Segment Displays (cont.)

Device	P/N	Description	Color	Typical I _v	Page No.
	HDSP-H011 HDSP-H013	Common Anode Right Hand Decimal, Δ Common Cathode Right Hand Decimal, Δ	Red	1300 µcd @ 20 mA	3-18
	HDSP-H211 HDSP-H213	Common Anode Right Hand Decimal, Δ Common Cathode Right Hand Decimal, Δ	High Efficiency Red	2800 µcd @ 10 mA	
14.2 mm (0.56 in.)	HDSP-H111 HDSP-H113	Common Anode Right Hand Decimal, Δ Common Cathode Right Hand Decimal, Δ	AlGaAs Red	700 µcd @ 1 mA	
Dual-in-Line (Single Digit) 0.67" H x 0.49" W x 0.31" D	HDSP-H161 HDSP-H163	Common Anode Right Hand Decimal, Δ Common Cathode Right Hand Decimal, Δ	AlGaAs Red	16.0 mcd @ 20 mA	
	HDSP-H511 HDSP-H513	Common Anode Right Hand Decimal, Δ Common Cathode Right Hand Decimal, Δ	Green	2500 µcd @ 10 mA	
	HDSP-K011 HDSP-K013	Two Digit Common Anode Right Hand Decimal, Δ Two Digit Common Cathode Right Hand Decimal, Δ	Red	1300 µcd @ 20 mA	
	HDSP-K211 HDSP-K213	Two Digit Common Anode Right Hand Decimal, Δ Two Digit Common Cathode Right Hand Decimal, Δ	High Efficiency Red	2800 µcd @ 10 mA	
14.2 mm (0.56 in.)	HDSP-K111 HDSP-K113	Two Digit Common Anode Right Hand Decimal, Δ Two Digit Common Cathode Right Hand Decimal, Δ	AlGaAs Red	700 µcd 1 mA	
Dual-in-Line (Dual Digit) 0.67" H x 1.0" W x 0.31" D	HDSP-K511 HDSP-K513	Two Digit Common Anode Right Hand Decimal, Δ Two Digit Common Cathode Right Hand Decimal, Δ	Green	2500 µcd @ 10 mA	

$$\label{eq:delta-def} \begin{split} \mathsf{O} &= \mathsf{segment} \; \mathsf{is} \; \mathsf{not} \; \mathsf{tinted} \\ \Delta &= \mathsf{segment} \; \mathsf{is} \; \mathsf{tinted} \end{split}$$

Low Current Seven Segment Displays

Device	P/N	Description	Color	Typical I _v	Page No.
	HDSP-A101 HDSP-A103 HDSP-A107 HDSP-A108	Common Anode Right Hand Decimal, Light Gray Surface, O Common Cathode Right Hand Decimal, Light Gray Surface, O Common Anode ±1. Overflow, Light Gray Surface, O Common Cathode ±1. Overflow, Light Gray Surface, O	AlGaAs Red	600 μcd @ 1 mA	3-28
	HDSP-7511 HDSP-7513 HDSP-7517 HDSP-7518	Common Anode Right Hand Decimal, Light Gray Surface, O Common Cathode Right Hand Decimal, Light Gray Surface, O Common Anode ±1. Overflow, Light Gray Surface, O Common Cathode ±1. Overflow, Light Gray Surface, O	High Efficiency Red	270 μcd @ 2 mA	
	HDSP-A801 HDSP-A803 HDSP-A807 HDSP-A808	Common Anode Right Hand Decimal, Light Gray Surface, O Common Cathode Right Hand Decimal, Light Gray Surface, O Common Anode ±1. Overflow, Light Gray Surface, O Common Cathode ±1. Overflow, Light Gray Surface, O	Yellow	420 μcd @ 4 mA	
7.62 mm (0.30 in.) Micro Bright Dual-in-Line 0.5" H x 0.3" W x 0.24" D	HDSP-A901 HDSP-A903 HDSP-A907 HDSP-A908	Common Anode Right Hand Decimal, Dark Gray Surface, Δ Common Cathode Right Hand Decimal, Dark Gray Surface, Δ Common Anode ± 1 . Overflow, Dark Gray Surface, Δ Common Cathode ± 1 . Overflow, Dark Gray Surface, Δ	Green	475 μcd @ 4 mA	
10.16 mm (0.40 in.) Dual-in-Line (Single Digit) 0.51" H x 0.39" W x 0.25" D	HDSP-F101 HDSP-F103 HDSP-F107 HDSP-F108 HDSP-G101 HDSP-G103	Common Anode Right Hand Decimal, Light Gray Surface, O Common Cathode Right Hand Decimal, Light Gray Surface, O Common Anode ±1. Overflow, Light Gray Surface, O Common Cathode ±1. Overflow, Light Gray Surface, O Two Digit Common Anode Right Hand Decimal, Light Gray Surface, O Two Digit Common Cathode Right Hand Decimal, Light Gray Surface, O	AlGaAs Red	650 μcd @ 1 mA	

$$[\]label{eq:delta-def} \begin{split} \mathsf{O} &= \mathsf{segment} \; \mathsf{is} \; \mathsf{not} \; \mathsf{tinted} \\ \Delta &= \mathsf{segment} \; \mathsf{is} \; \mathsf{tinted} \end{split}$$

Low Current Seven Segment Displays (cont.)

LOW COLLENG Deven De	J				Τ
Device	P/N	Description	Color	Typical I _v	Page No.
	HDSP-E100 HDSP-E101 HDSP-E103 HDSP-E108	Common Anode Left Hand Decimal, Light Gray Surface, O Common Anode Right Hand Decimal, Light Gray Surface, O Common Cathode Right Hand Decimal, Light Gray Surface, O Universal ±1. Overflow, Light Gray Surface, O	AlGaAs Red	650 μcd @ 1 mA	3-28
10.92 mm (0.43 in.) Dual-in-Line 0.75" H x 0.5" W x 0.25" D	HDSP-3350 HDSP-3351 HDSP-3353 HDSP-3356		High Efficiency Red	300 μcd @ 2 mA	
	HDSP-H101 HDSP-H103 HDSP-H107 HDSP-H108 HDSP-K121 HDSP-K123	Common Anode Right Hand Decimal, Light Gray Surface, O Common Cathode Right Hand Decimal, Light Gray Surface, O Common Anode ±1. Overflow, Light Gray Surface, O Common Cathode ±1. Overflow, Light Gray Surface, O Two Digit Common Anode Right Hand Decimal, Light Gray Surface, O Two Digit Common Cathode Right Hand Decimal, Light Gray Surface, O	AlGaAs Red	700 μcd @ 1 mA	
14.2 mm (0.56 in.) Dual-in-Line (Single Digit) 0.67" H x 0.49" W x 0.31" D	HDSP-5551 HDSP-5553 HDSP-5557 HDSP-5558 HDSP-K701 HDSP-K703	Common Anode Right Hand Decimal, Light Gray Surface, O Common Cathode Right Hand Decimal, Light Gray Surface, O Common Anode ±1. Overflow, Light Gray Surface, O Common Cathode ±1. Overflow, Light Gray Surface, O Two Digit Common Anode Right Hand Decimal, Light Gray Surface, O Two Digit Common Cathode Right Hand Decimal, Light Gray Surface, O	High Efficiency Red	370 μcd @ 2 mA	
20 mm (0.8 in.) Dual-in-Line 1.09" H x 0.78" W x 0.33" D	HDSP-N100 HDSP-N101 HDSP-N103 HDSP-N105 HDSP-N106	Common Anode Left Hand Decimal, Light Gray Surface, O Common Anode Right Hand Decimal, Light Gray Surface, O Common Cathode Right Hand Decimal, Light Gray Surface, O Common Cathode Left Hand Decimal, Light Gray Surface, O Universal ±1. Overflow, Light Gray Surface, O	AlGaAs Red	590 μcd @ 1 mA	

$$\label{eq:delta-def} \begin{split} \mathsf{O} &= \mathsf{segment} \; \mathsf{is} \; \mathsf{not} \; \mathsf{tinted} \\ \Delta &= \mathsf{segment} \; \mathsf{is} \; \mathsf{tinted} \end{split}$$

Seven Segment Displays

Device	P/N	Description	Color	Typical I _v	Pag No.
1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,	HDSP-7301	Common Anode Right Hand Decimal, Light Gray Surface, O	Red	1100 µcd @ 20 mA	3-66
+ / / / / + // / / + // / / / + // / / / · / ·	HDSP-7302	Common Anode Right Hand Decimal, Colon, Light Gray Surface, O			
	HDSP-7303	Common Cathode Right Hand Decimal, Light Gray Surface, O			
	HDSP-7304	Common Cathode Right Hand Decimal, Colon, Light Gray Surface, O			
	HDSP-7307	Common Anode ±1. Overflow, Light Gray Surface, O			
	HDSP-7308	Common Cathode ±1. Overflow, Light Gray Surface, O	1		
	HDSP-A151	Common Anode Right Hand Decimal, Light Gray Surface, O	AlGaAs Red	14 mcd @ 20 mA	
	HDSP-A153	Common Cathode Right Hand Decimal,		,	ŀ
	HDSP-A157	Light Gray Surface, O Common Anode ±1. Overflow, Light Gray Surface, O			
	HDSP-A158	Common Cathode ±1. Overflow, Light Gray Surface, O			
	HDSP-7501	Common Anode Right Hand Decimal, Light Gray Surface, O	High Efficiency	980 μcd @ 5 mA	
	HDSP-7502	Common Anode Right Hand Decimal, Colon,	Red	9 JIIA	
	HDSP-7503	Light Gray Surface, O Common Cathode Right Hand Decimal,			
	HD3F-7503	Light Gray Surface, O			
	HDSP-7504	Common Cathode Right Hand Decimal, Colon, Light Gray Surface, O			
	HDSP-7507	Common Anode ±1. Overflow, Light Gray Surface, O			
	HDSP-7508	Common Cathode ±1. Overflow, Light Gray Surface, O			
	HDSP-7401	Common Anode Right Hand Decimal, Light Gray Surface, O	Yellow	480 μcd @ 5 mA	
	HDSP-7402	Common Anode Right Hand Decimal, Colon, Light Gray Surface, O		00	
	HDSP-7403	Common Cathode Right Hand Decimal,			
	HDSP-7404	Light Gray Surface, O Common Cathode Right Hand Decimal, Colon,			
		Light Gray Surface, O			
	HDSP-7407 HDSP-7408	Common Anode ±1. Overflow, Light Gray Surface, O Common Cathode ±1. Overflow, Light Gray Surface, O			
	HDSP-7408	Common Anode Right Hand Decimal,	Green	3000 µcd	
	LIDOR 7000	Dark Gray Surface, Δ		@ 10 mA	
	HDSP-7802	Common Anode Right Hand Decimal, Colon, Dark Gray Surface, Δ			
	HDSP-7803	Common Cathode Right Hand Decimal,			
7.62 mm (0.3 in.)	HDSP-7804	Dark Gray Surface, ∆ Common Cathode Right Hand Decimal, Colon,			
v.62 mm (0.3 in.) Micro Bright	HUSP-7804	Common Catnode Right Hand Decimal, Colon, Dark Gray Surface, Δ	,		
Dual-in-Line	HDSP-7807	Common Anode ±1. Overflow, Dark Gray Surface, Δ			
0.5" H x 0.3" W x 0.24" D	HDSP-7808	Common Cathode ±1. Overflow, Dark Gray Surface, Δ			

O = segment is not tinted Δ = segment is tinted

Device	P/N	Description	Color	Typical I _v	Page No.
0.16 mm (0.4 in.)	HDSP-F001 HDSP-F003 HDSP-F007 HDSP-F008 HDSP-G001 HDSP-G003	Common Anode Right Hand Decimal, Light Gray Surface, O Common Cathode Right Hand Decimal, Light Gray Surface, O Common Anode ±1. Overflow, Light Gray Surface, O Common Cathode ±1. Overflow, Light Gray Surface, O Two Digit Common Anode Right Hand Decimal, Light Gray Surface, O Two Digit Common Cathode Right Hand Decimal,	Red	1200 μcd @ 20 mA	3-74
Dual-In-Line (Single Digit) 1.51" H x 0.39" W x 0.25" D	HDSP-F151 HDSP-F153 HDSP-F157 HDSP-F158 HDSP-G151 HDSP-G153	Light Gray Surface, O Common Anode Right Hand Decimal, Light Gray Surface, O Common Cathode Right Hand Decimal, Light Gray Surface, O Common Anode ±1. Overflow, Light Gray Surface, O Common Cathode ±1. Overflow, Light Gray Surface, O Two Digit Common Anode Right Hand Decimal, Light Gray Surface, O Two Digit Common Cathode Right Hand Decimal, Light Gray Surface, O	AlGaAs Red	15.0 mcd @ 20 mA	
0.16 mm (0.4 in.) Dual-In-Line (Two Digit 1.67" H x 0.90" W x 0.25" D	HDSP-F201 HDSP-F203 HDSP-F207 HDSP-F208 HDSP-G201 HDSP-G203	Common Anode Right Hand Decimal, Light Gray Surface, O Common Cathode Right Hand Decimal, Light Gray Surface, O Common Anode ±1. Overflow, Light Gray Surface, O Common Cathode ±1. Overflow, Light Gray Surface, O Two Digit Common Anode Right Hand Decimal, Light Gray Surface, O Two Digit Common Cathode Right Hand Decimal, Light Gray Surface, O	High Efficiency Red	1200 μcd @ 5 mA	
	HDSP-F401 HDSP-F403 HDSP-F407 HDSP-F408 HDSP-G401 HDSP-G403	Common Anode Right Hand Decimal, Light Gray Surface, O Common Cathode Right Hand Decimal, Light Gray Surface, O Common Anode ±1. Overflow, Light Gray Surface, O Common Cathode ±1. Overflow, Light Gray Surface, O Two Digit Common Anode Right Hand Decimal, Light Gray Surface, O Two Digit Common Cathode Right Hand Decimal, Light Gray Surface, O	Orange	1200 μcd @ 5 mA	
	HDSP-F301 HDSP-F303 HDSP-F307 HDSP-F308 HDSP-G301 HDSP-G303	Common Anode Right Hand Decimal, Light Gray Surface, O Common Cathode Right Hand Decimal, Light Gray Surface, O Common Anode ±1. Overflow, Light Gray Surface, O Common Cathode ±1. Overflow, Light Gray Surface, O Two Digit Common Anode Right Hand Decimal, Light Gray Surface, O Two Digit Common Cathode Right Hand Decimal, Light Gray Surface, O	Yellow	800 μcd @ 5 mA	
	HDSP-F501 HDSP-F503 HDSP-F507 HDSP-F508 HDSP-G501 HDSP-G503	Common Anode Right Hand Decimal, Dark Gray Surface, Δ Common Cathode Right Hand Decimal, Dark Gray Surface, Δ Common Anode ± 1 . Overflow, Dark Gray Surface, Δ Common Cathode ± 1 . Overflow, Dark Gray Surface, Δ Two Digit Common Anode Right Hand Decimal, Dark Gray Surface, Δ Two Digit Common Cathode Right Hand Decimal, Dark Gray Surface, Δ	Green	3500 μcd @ 10 mA	

 $O = \text{segment is not tinted} \\ \Delta = \text{segment is tinted}$

					Page
Device	P/N	Description	Color	Typical I _v	No.
	5082-7730 5082-7731 5082-7740 5082-7736	Common Anode Left Hand Decimal, Black Surface, Δ Common Anode Right Hand Decimal, Black Surface, Δ Common Cathode Right Hand Decimal, Black Surface, Δ Universal ± 1 . Overflow, Right Hand Decimal, Black Surface, Δ	Red	770 μcd @ 20 mA	3-50
	5082-7610 5082-7611 5082-7613 5082-7616	Common Anode Left Hand Decimal, Red Surface, Δ Common Anode Right Hand Decimal, Red Surface, Δ Common Cathode Right Hand Decimal, Red Surface, Δ Universal ± 1 . Overflow, Right Hand Decimal, Red Surface, Δ	High Efficiency Red	800 μcd @ 5 mA	
	5082-7620 5082-7621 5082-7623 5082-7626	Common Anode Left Hand Decimal, Yellow Surface, Δ Common Anode Right Hand Decimal, Yellow Surface, Δ Common Cathode Right Hand Decimal, Yellow Surface, Δ Universal ± 1 . Overflow, Right Hand Decimal, Yellow Surface, Δ	Yellow	620 μcd @ 5 mA	
7.62 mm (0.3 in.) Dual-in-Line 0.75" H x 0.4" W x 0.18" D	HDSP-3600 HDSP-3601 HDSP-3603 HDSP-3606	Common Anode Left Hand Decimal, Dark Gray Surface, Δ Common Anode Right Hand Decimal, Dark Gray Surface, Δ Common Cathode Right Hand Decimal, Dark Gray Surface, Δ Universal ± 1 . Overflow, Right Hand Decimal, Dark Gray Surface, Δ	Green	2700 μcd @ 10 mA	
· · · + · · +	5082-7750 5082-7751 5082-7760 5082-7756	Common Anode Left Hand Decimal, Red Surface, Δ Common Anode Right Hand Decimal, Red Surface, Δ Common Cathode Right Hand Decimal, Red Surface, Δ Universal ± 1 . Overflow, Right Hand Decimal, Red Surface, Δ	Red	1100 µcd @ 20 mA	
	HDSP-E150 HDSP-E151 HDSP-E153 HDSP-E156	Common Anode Left Hand Decimal, Light Gray Surface, O Common Anode Right Hand Decimal, Light Gray Surface, O Common Cathode Right Hand Decimal, Light Gray Surface, O Universal ±1. Overflow, Right Hand Decimal, Light Gray Surface, O	AlGaAs Red	15.0 mcd @ 20 mA	
	5082-7650 5082-7651 5082-7653 5082-7656	Common Anode Left Hand Decimal, Red Surface, Δ Common Anode Right Hand Decimal, Red Surface, Δ Common Cathode Right Hand Decimal, Red Surface, Δ Universal ± 1 . Overflow, Right Hand Decimal, Red Surface, Δ	High Efficiency Red	1115 μcd @ 5 mA	
	5082-7660 5082-7661 5082-7663 5082-7666	Common Anode Left Hand Decimal, Yellow Surface, Δ Common Anode Right Hand Decimal, Yellow Surface, Δ Common Cathode Right Hand Decimal, Yellow Surface, Δ Universal ± 1 . Overflow, Right Hand Decimal, Yellow Surface, Δ	Yellow	835 μcd @ 5 mA	
10.92 mm (0.43 in.) Dual-in-Line 0.75" H x 0.5" W x 0.25" D	HDSP-4600 HDSP-4601 HDSP-4603 HDSP-4606	Common Anode Left Hand Decimal, Dark Gray Surface, Δ Common Anode Right Hand Decimal, Dark Gray Surface, Δ Common Cathode Right Hand Decimal, Dark Gray Surface, Δ Universal ± 1 . Overflow, Right Hand Decimal, Dark Gray Surface, Δ	Green	4000 μcd @ 10 mA	

 $O = \text{segment is not tinted} \\ \Delta = \text{segment is tinted}$

Device	P/N	Description	Color	Typical I,	Page No.
Jevice Control of the	HDSP-5301 HDSP-5303 HDSP-5307 HDSP-5308 HDSP-5321 HDSP-5323	Common Anode Right Hand Decimal, Light Gray Surface, O Common Cathode Right Hand Decimal, Light Gray Surface, O Common Anode ±1. Overflow, Light Gray Surface, O Common Cathode ±1. Overflow, Light Gray Surface, O Two Digit Common Anode Right Hand Decimal, Light Gray Surface, O Two Digit Common Cathode Right Hand Decimal, Light Gray Surface, O	Red	1300 μcd @ 20 mA	3-84
14.2 mm (0.56 in.) Dual-in-Line (Single Digit) 0.67" H x 0.49" W x 0.31" D	HDSP-H151 HDSP-H153 HDSP-H157 HDSP-H158 HDSP-K121 HDSP-K123	Common Anode Right Hand Decimal, Light Gray Surface, O Common Cathode Right Hand Decimal, Light Gray Surface, O Common Anode ±1. Overflow, Light Gray Surface, O Common Cathode ±1. Overflow, Light Gray Surface, O Two Digit Common Anode Right Hand Decimal, Light Gray Surface, O Two Digit Common Cathode Right Hand Decimal, Light Gray Surface, O	AlGaAs Red	16.0 mcd @ 20 mA	3-28
14.2 mm (0.56 in.) Dual-in-Line (Two Digit) 0.67" H x 1.0" W x 0.31" D	HDSP-5501 HDSP-5503 HDSP-5507 HDSP-5508 HDSP-5521 HDSP-5523	Common Anode Right Hand Decimal, Light Gray Surface, O Common Cathode Right Hand Decimal, Light Gray Surface, O Common Anode ±1. Overflow, Light Gray Surface, O Common Cathode ±1. Overflow, Light Gray Surface, O Two Digit Common Anode Right Hand Decimal, Light Gray Surface, O Two Digit Common Cathode Right Hand Decimal, Light Gray Surface, O	High Efficiency Red	2800 μcd @ 10 mA	3-84
	HDSP-5701 HDSP-5703 HDSP-5707 HDSP-5708 HDSP-5721 HDSP-5723	Common Anode Right Hand Decimal, Light Gray Surface, O Common Cathode Right Hand Decimal, Light Gray Surface, O Common Anode ±1. Overflow, Light Gray Surface, O Common Cathode ±1. Overflow, Light Gray Surface, O Two Digit Common Anode Right Hand Decimal, Light Gray Surface, O Two Digit Common Cathode Right Hand Decimal, Light Gray Surface, O	Yellow	1800 μcd @ 10 mA	
	HDSP-5601 HDSP-5603 HDSP-5607 HDSP-5608 HDSP-5621 HDSP-5623	Common Anode Right Hand Decimal, Dark Gray Surface, Δ Common Cathode Right Hand Decimal, Dark Gray Surface, Δ Common Anode ± 1 . Overflow, Dark Gray Surface, Δ Common Cathode ± 1 . Overflow, Dark Gray Surface, Δ Two Digit Common Anode Right Hand Decimal, Dark Gray Surface, Δ Two Digit Common Cathode Right Hand Decimal, Dark Gray Surface, Δ	Green	2500 μcd @ 10 mA	

$$[\]label{eq:delta-segment} \begin{split} \mathsf{O} &= \mathsf{segment} \; \mathsf{is} \; \mathsf{not} \; \mathsf{tinted} \\ \Delta &= \mathsf{segment} \; \mathsf{is} \; \mathsf{tinted} \end{split}$$

Device	P/N	Description	Color	Typical I _v	Page No.
	HDSP-3400 HDSP-3401 HDSP-3403 HDSP-3405 HDSP-3406	Common Anode Left Hand Decimal, Light Gray Surface, O Common Anode Right Hand Decimal, Light Gray Surface, O Common Cathode Right Hand Decimal, Light Gray Surface, O Common Cathode Left Hand Decimal, Light Gray Surface, O Universal ±1. Overflow, Right Hand Decimal, Light Gray Surface, O	Red	1200 μcd @ 20 mA	3-92
	HDSP-N150 HDSP-N151 HDSP-N153 HDSP-N155 HDSP-N156	Common Anode Left Hand Decimal, Light Gray Surface, O Common Anode Right Hand Decimal, Light Gray Surface, O Common Cathode Right Hand Decimal, Light Gray Surface, O Common Cathode Left Hand Decimal, Light Gray Surface, O Universal ±1. Overflow, Right Hand Decimal, Light Gray Surface, O	AlGaAs Red	14.0 mcd @ 20 mA	
	HDSP-3900 HDSP-3901 HDSP-3903 HDSP-3905 HDSP-3906	Common Anode Left Hand Decimal, Light Gray Surface, O Common Anode Right Hand Decimal, Light Gray Surface, O Common Cathode Right Hand Decimal, Light Gray Surface, O Common Cathode Left Hand Decimal, Light Gray Surface, O Universal ±1. Overflow, Right Hand Decimal, Light Gray Surface, O	High Efficiency Red	7000 µcd @ 100 mA peak 1/5 Duty Factor	
	HDSP-4200 HDSP-4201 HDSP-4203 HDSP-4205 HDSP-4206	Common Anode Left Hand Decimal, Light Gray Surface, O Common Anode Right Hand Decimal, Light Gray Surface, O Common Cathode Right Hand Decimal, Light Gray Surface, O Common Cathode Left Hand Decimal, Light Gray Surface, O Universal ±1. Overflow, Right Hand Decimal, Light Gray Surface, O	Yellow	7000 µcd @ 100 mA peak 1/5 Duty Factor	,
20 mm (0.8 in.)	HDSP-8600 HDSP-8601 HDSP-8603 HDSP-8605	Common Anode Left Hand Decimal, Dark Gray Surface, Δ Common Anode Right Hand Decimal, Dark Gray Surface, Δ Common Cathode Right Hand Decimal, Dark Gray Surface, Δ Common Cathode Left Hand Decimal, Dark Gray Surface, Δ	Green	1500 μcd @ 10 mA	
Dual-in-Line 1.09" H x 0.78" W x 0.33" D	HDSP-8606	Universal ±1. Overflow, Right Hand Decimal, Dark Gray Surface, Δ			

 $O = \text{segment is not tinted} \\ \Delta = \text{segment is tinted}$

High Ambient Light, Seven Segment Displays

Parities	D/N	Beautidae	Typical I _v @ 100 mA Peak	Page
Device	P/N	Description	1/5 Duty Factor	No.
	HDSP-3530	High Efficiency Red, Common Anode, LHDP, Light Gray Surface, O	7100 µcd/seg	3-42
	HDSP-3531	High Efficiency Red, Common Anode, RHDP, Light Gray Surface, O		
	HDSP-3533	High Efficiency Red, Common Cathode, RHDP,		
: <i> = </i> : := :	·	Light Gray Surface, O		
	HDSP-3536	High Efficiency Red, Universal Polarity Overflow Indicator, RHDP,		
L		Light Gray Surface, O		
	HDSP-4030	Yellow, Common Anode, LHDP, Light Gray Surface, O	4500 μcd/seg	
	HDSP-4031	Yellow, Common Anode, RHDP, Light Gray Surface, O		
7.62 mm (0.3 in.)	HDSP-4033	Yellow, Common Cathode, RHDP, Light Gray Surface, O		
Dual-in-Line	HDSP-4036	Yellow, Universal Polarity Overflow Indicator, RHDP,		
0.75" H x 0.4" W x 0.18" D		Light Gray Surface, O		
	HDSP-3730	High Efficiency Red, Common Anode, LHDP, Light Gray Surface, O	10900 μcd/seg	
	HDSP-3731	High Efficiency Red, Common Anode, RHDP, Light Gray Surface, O		
1 n=n n	HDSP-3733	High Efficiency Red, Common Cathode, RHDP,		
		Light Gray Surface, O		
• — • • • • •	HDSP-3736	High Efficiency Red, Universal Polarity Overflow Indicator, RHDP,		
		Light Gray Surface, O		
	HDSP-4130	Yellow, Common Anode, LHDP, Light Gray Surface, O	5000 μcd/seg	
	HDSP-4131	Yellow, Common Anode, RHDP, Light Gray Surface, O		
10.92 mm (0.43 in.)	HDSP-4133	Yellow, Common Cathode, RHDP, Light Gray Surface, O		
Dual-in-Line	HDSP-4136	Yellow, Universal Polarity Overflow Indicator, RHDP,		
0.75" H x 0.5" W x 0.25" D		Light Gray Surface, O		
[+++++] [+++++]	HDSP-5531	High Efficiency Red, Common Anode, RHDP, Light Gray Surface, O	6000 μcd/seg	
	HDSP-5533	High Efficiency Red, Common Cathode, RHDP,	'	
		Light Gray Surface, O		
	HDSP-5537	High Efficiency Red ±1. Common Anode, Light Gray Surface, O		
	HDSP-5538	High Efficiency Red ±1. Common Cathode, Light Gray Surface, O		
	HDSP-5731	Yellow, Common Anode, RHDP, Light Gray Surface, O	5500 μcd/seg	
14.2 mm (0.56 in.)	HDSP-5733	Yellow, Common Cathode, RHDP, Light Gray Surface, O	'	
Dual-in-Line	HDSP-5737	Yellow, ±1. Common Anode, Light Gray Surface, O		
0.67" H x 0.49" W x 0.31" D	HDSP-5738	Yellow, ±1. Common Cathode, Light Gray Surface, O		

O = segment is not tinted

 Δ = segment is tinted

Solid State Display Intensity and Color Selections

Option	Description	Page No.
Option S01 Option S02 Option S20	Intensity and Color Selected Displays	*

^{*}Contact your local Hewlett-Packard sales representative for information regarding this product.

Alphanumeric LED Displays

Device	P/N	Description	Color	Application	Page No.
0000000	HDSP-2110 HDSP-2111 HDSP-2112 HDSP-2113 HDSP-2107	5.0 mm (0.2 in.) 5 x 7 Eight Character Intelligent Display Operating Temperature Range: -45°C to +85°C ASCII Character Set	Orange Yellow High Efficiency Red Green AlGaAs Red	Medical Telecommunications Analytical Equipment Computer Products Office Equipment Industrial Equipment	3-140
0000000	HDSP-2500 HDSP-2501 HDSP-2502 HDSP-2503	7 mm (0.27 in.) ASCII 5 x 7 Eight Character Intelligent Display Operating Temperature Range: -45°C to +85°C	Orange Yellow High Efficiency Red Green	Computer Peripherals Industrial Instrumentation Medical Equipment Portable Data Entry Devices Cellular Phones Telecommunications Test Equipment	
0000000	HDSP-2530 HDSP-2531 HDSP-2532 HDSP-2533 HDSP-2534	5.0 mm (0.2 in.) Eight Character Intelligent Display Operating Temperature Range: -40°C to +85°C	Orange Yellow High Efficiency Red Green AlGaAs Red	Avionics Computer Peripherals Industrial Instrumentation Medical Equipment Portable Data Entry Devices Telecommunications Test Equipment	3-125
	HDLA-2416 HDLG-2416 HDLO-2416 HDLR-2416 HDLS-2416 HDLU-2416 HDLY-2416	5.0 mm (0.2 in.) 5 x 7 Four Character Intelligent Display Operating Temperature Range: -40°C to +85°C	Orange Green High Efficiency Red Red AlGaAs Red (SV) AlGaAs Red (LP) Yellow	Portable Data Entry Devices Industrial Instrumentation Computer Peripherals Telecommunications	3-164
	HPDL-1414 HPDL-2416	2.85 mm (0.112 in.) 4.1 mm (0.16 in.) 16-Segment Four Character Monolithic Intelligent Display Operating Temperature Range: -40°C to +85°C	Red Red	Portable Data Entry Devices Medical Equipment Industrial Instrumentation Computer Peripherals Telecommunications	3-175
	HCMS-2000 HCMS-2001 HCMS-2002 HCMS-2003 HCMS-2004	3.8 mm (0.15 in.) 5 x 7 Four Character Display 12 pin Ceramic DIP 7.6 mm (0.30 in.) Operating Temperature Range: -40°C to +85°C	Red Yellow High Efficiency Red Green Orange	Computer Terminals Business Machines Portable, Hand-held or Mobile Data Entry, Read-out, or Communications	3-156
() () () () () () () () () ()	HCMS-2300 HCMS-2301 HCMS-2302 HCMS-2303 HCMS-2304	5.0 mm (0.20 in.) 5 x 7 Four Character Display 12 pin Ceramic DIP 6.35 mm (0.250 in.) Operating Temperature Range: -40°C to +85°C	Red Yellow High Efficiency Red Green Orange	Avionics Ground Support, Cockpit, Shipboard Systems Medical Equipment Industrial and Process Control Computer Peripherals and Terminals	
	HCMS-2700 HCMS-2701 HCMS-2702 HCMS-2703 HCMS-2704	1 Row of 4 Characters 3.8 mm (0.15 in.) 5 x 7 Dot Matrix, Full ASCII Character Set	Standard Red Yellow High Efficiency Red Green Orange	Telecommunications Instrumentation Medical Instrumentation Business Machines	3-100

Alphanumeric LED Displays (Cont.)

Device	P/N	Description	Color	Application	Page No.
000000	HCMS-2710 HCMS-2711 HCMS-2712 HCMS-2713 HCMS-2714	1 Row of 8 Characters	Standard Red Yellow HER Green Orange		3-100
	HCMS-2720 HCMS-2721 HCMS-2722 HCMS-2723 HCMS-2724	2 Rows of 8 Characters	Standard Red Yellow HER Green Orange		
	HCMS-2901 HCMS-2902 HCMS-2903 HCMS-2904 HCMS-2905	1 Row of 4 Characters 3.8 mm (0.15 in.) 5 x 7 Dot Matrix Fully Integrated Serial-in Display	Yellow HER Green Orange AlGaAs	Telecommunications Portable Data Entry Devices Computer Peripherals Medical Equipment Test Equipment Business Machines	3-109
000000	HCMS-2911 HCMS-2912 HCMS-2913 HCMS-2914 HCMS-2915	1 Row of 8 Characters 3.8 mm (0.15 in.)	Yellow HER Green Orange AlGaAs	Avionics Industrial Controls	
0000000	HCMS-2921 HCMS-2922 HCMS-2923 HCMS-2924 HCMS-2925	2 Rows of 8 Characters 3.8 mm (0.15 in.)	Yellow HER Green Orange AlGaAs		
	HCMS-2961 HCMS-2962 HCMS-2963 HCMS-2964 HCMS-2965	1 Row of 4 Characters 5.0 mm (0.20 in.)	Yellow HER Green Orange AlGaAs	·	
	HCMS-2971 HCMS-2972 HCMS-2973 HCMS-2974 HCMS-2975	1 Row of 8 Characters 5.0 mm (0.20 in.)	Yellow HER Green Orange AlGaAs		
	HDSP-2490 HDSP-2491 HDSP-2492	6.9 mm (0.27 in.) 5 x 7 Four Character Alphanumeric 28 Pin Ceramic 15.24 mm (0.6 in.) DIP with Untinted Glass Lens	Red Yellow High Efficiency Red	High Brightness Ambient Systems Industrial and Process Control Computer Peripherals Ground Support Systems	*
<u> </u>	HDSP-2493	Operating Temperature Range: -20°C to +85°C	High Performance Green	For further information see Application Note 1016.	

^{*}Contact your local Hewlett-Packard sales representative for information regarding this product.

Large Alphanumeric 5 X 7 Displays

Device	P/N	Description	Color	Package	Typical I _v	Page No.
00000 00000 00000 00000 00000 00000	HDSP-4701 HDSP-4703 HDSP-L101 HDSP-L103 HDSP-L201 HDSP-5401 HDSP-5403	Common Row Anode Common Row Cathode Common Row Anode Common Row Anode Common Row Anode Common Row Anode Common Row Cathode	Red Red AlGaAs Red AlGaAs Red High Efficiency Red Green Green	17.3 mm (0.68 in.) Dual-in-Line 0.70 in. H x 0.50 in. W x 0.26 in. D	770 µcd/dot 100 mA peak 1/5 Duty Factor 1650 µcd/dot 10 mA peak 1/5 Duty Factor 2800 µcd/dot 50 mA peak 1/5 Duty Factor 4000 µcd/dot 50 mA peak 1/5 Duty Factor	3-200
00000	HDSP-4401 HDSP-4403 HDSP-M101 HDSP-M103 HDSP-4501 HDSP-5101 HDSP-5103	Common Row Anode Common Row Cathode Common Row Anode Common Row Anode Common Row Cathode Common Row Anode Common Row Anode Common Row Cathode	Red Red AlGaAs Red AlGaAs Red High Efficiency Red High Efficiency Red Green Green	26.5 mm (1.04 in.) Dual-in-Line 1.10 in. H x 0.79 in. W x 0.25 in. D	800 μcd/dot 100 mA peak 1/5 Duty Factor 1850 μcd/dot 10 mA peak 1/5 Duty Factor 3500 μcd/dot 50 mA peak 1/5 Duty Factor 4500 μcd/dot 50 mA peak 1/5 Duty Factor	

Hexadecimal and Dot Matrix Displays

Device	P/N	Description	Package	Application	Page No.
	5082-7300 (A)	Numeric RHDP Built-in Decoder/Driver/Memory	8 Pin Epoxy 15.2 mm (0.6 in.) DIP	General Purpose Market Test Equipment Business Machines Computer Peripherals Avionics	3-187
(A) (B)	5082-7302 (B)	Numeric LHDP Built-in Decoder/Driver/Memory			
	5082-7340 (C)	Hexadecimal Built-in Decoder/Driver/Memory			
(c) (D)	,		·		
	5082-7304 (D)	Over Range ±1	<u> </u>		
7.4 mm (0.29 in.) 4 x 7 Single Digit					

Hexadecimal and Dot Matrix Displays (Cont.)

Device	P/N	Description	Package	Application	Page No.
	HDSP-0760 (A)	Numeric RHDP Built-in Decoder/Driver/Memory	High Efficiency Red Low Power	Military Equipment Ground Support Equipment	3-193
	HDSP-0761 (B)	Numeric LHDP Built-in Decoder/Driver/Memory		Avionics High Reliability	
:: ::	HDSP-0762 (C)	Hexadecimal Built-in Decoder/Driver/Memory		Applications	
	HDSP-0763 (D)	Over Range ±1			
	HDSP-0770 (A)	Numeric RHDP Built-in Decoder/Driver/Memory	High Efficiency Red	High Brightness Ambient Systems Cooling to Shiphood	
	HDSP-0771 (B)	Numeric LHDP Built-in Decoder/Driver/Memory	High Brightness	Cockpit, Shipboard Equipment High Reliability	
'error' 'rruur'	HDSP-0772 (C)	Hexadecimal Built-in Decoder/Driver/Memory		Applications	
7.4 mm (0.29 in.) 4 x 7 Single Digit	HDSP-0860 (A)	Numeric RHDP Built-in Decoder/Driver/Memory	• Fir • Mi • Hi	Business Machines Fire Control Systems Military Equipment High Reliability Applications	
Package: 8 Pin Glass Ceramic 15.2 mm (0.6 in.) DIP	HDSP-0861 (B)	Numeric LHDP Built-in Decoder/Driver/Memory			-
	HDSP-0862 (C)	Hexadecimal Built-in Decoder/Driver/Memory			
	HDSP-0863 (D)	Over Range ±1			
	HDSP-0960 (A)	Numeric RHDP Built-in Decoder/Driver/Memory	High Performance Green	Business Machines Fire Control Systems	
	HDSP-0961 (B)	Numeric LHDP Built-in Decoder/Driver/Memory		Military Equipment High Reliability Applications	
	HDSP-0962 (C)	Hexadecimal Built-in Decoder/Driver/Memory			
	HDSP-0963 (D)	Over Range ±1			

Glass/Ceramic Selection Guide is located on 3-209.

Black Surface Seven Segment Displays

Technical Data

HDSP-AX11/-AX13 Series HDSP-FX11/-FX13 Series HDSP-GX11/-GX13 Series HDSP-HX11/-HX13 Series HDSP-KX11/-KX13 Series

Features

- Black Surface and Color Tinted Epoxy
- Industry Standard Size
- Industry Standard Pinout
- Choice of Character Size 7.6 mm (0.30 in.), 10 mm (0.40 in.), 14.2 mm (0.56 in.)
- Choice of Colors Red, AlGaAs Red, High Efficiency Red (HER), Green
- Excellent Appearance Evenly Lighted Segments ± 50° Viewing Angle

- Design Flexibility
 Common Anode or Common
 Cathode
 Single and Two Digit
- Categorized for Luminous Intensity
 Categorized for Color: Green
 Use of Like Categories Yields a
 Uniform Display
- Excellent for Long Digit String Multiplexing

Description

These devices use industry standard size package and pinout. Available with black surface finish. All devices are available as

either common anode or common cathode.

Typical applications include appliances, channel indicators of TV, CATV converters, game machines, and point of sale terminals.

Devices

Red HDSP-	AlGaAs Red HDSP-	HER HDSP-	Green HDSP-	Description	Package Drawing
A011	A111	A211	A511	7.6 mm Common Anode Right Hand Decimal	A
A013	A113	A213	A513	7.6 mm Common Cathode Right Hand Decimal	В
F011	F111	F211	F511	10 mm Common Anode Right Hand Decimal	С
F013	F113	F213	F513	10 mm Common Cathode Right Hand Decimal	D
G011	G111	G211	G511	10 mm Two Digit Common Anode Right Hand Decimal	Е
G013	G113	G213	G513	10 mm Two Digit Common Cathode Right Hand Decimal	F
H011	H111	H211	H511	14.2 mm Common Anode Right Hand Decimal	G
H013	H113	H213	H513	14.2 mm Common Cathode Right Hand Decimal	Н
K011	K111	K211	K511	14.2 mm Two Digit Common Anode Right Hand Decimal	I
K013	K113	K213	K513	14.2 mm Two Digit Common Cathode Right Hand Decimal	J

Package Dimensions (7.6 mm Series)

Internal Circuit Diagram

.254 (.010) - 1.27 5.08 (.200) - (.050)
А. В

	FUNCTION					
PIN	A	В				
1	ANODE[4]	CATHODE[5]				
2	CATHODE f	ANODE f				
3	CATHODE g	ANODE g				
4	CATHODE •	ANODE e				
5	CATHODE d	ANODE d				
6	ANODE[4]	CATHODE[5]				
7	CATHODE DP	ANODE DP				
8	CATHODE c	ANODE c				
9	CATHODE b	ANODE b				
10	CATHODE a	ANODE a				

NOTES:

- 1. ALL DIMENSIONS IN MILLIMETERS (INCHES).
- 2. MAXIMUM.
- 3. ALL UNTOLERANCED DIMENSIONS ARE FOR REFERENCE ONLY.
- 4. REDUNDANT ANODES.
- 5. REDUNDANT CATHODES.
- 6. FOR HDSP-A511/-A513 ONLY.

Package Dimensions (10 mm Series: Single)

Internal Circuit Diagram

C,D *The Side View of package indicates Country of Origin.

0.25	7.62
(0.010)	(0.300)
	C D

	FUNCTION				
PIN	C	٥			
1	ANODE[4]	CATHODE[5]			
2	CATHODE f	ANODE 1			
3	CATHODE g	ANODE g			
4	CATHODE •	ANODE e			
5	CATHODE d	ANODE d			
6	ANODE[4]	CATHODE[5]			
7	CATHODE DP	ANODE DP			
8	CATHODE c	ANODE c			
9	CATHODE b	ANODE 6			
10	CATHODE a	ANODE a			

NOTES:

- 1. ALL DIMENSIONS IN MILLIMETERS (INCHES).
 2. ALL UNTOLERANCED DIMENSIONS ARE FOR REFERENCE ONLY.
- 3. FOR HDSP-F511/-F513 ONLY. 4. REDUNDANT ANODES.
- 5. REDUNDANT CATHODES.

HOLE PATTERN FOR PCB LAYOUT TO ACHIEVE UNIFORM 0.450 DIGIT TO DIGIT PITCH. FOR HOSP-FXXX TO HDSP-GXXX.

Absolute Maximum Ratings

Troporate Management Imperies							
Description	Red HDSP-X01X Series	AlGaAs Red HDSP-X11X Series	HER HDSP-X21X Series	Green HDSP-X51X Series	Units		
Average Power per Segment or DP	82	37	105	105	mW		
Peak Forward Current per Segment or DP	150 ^[1]	45	90[3]	90[5]	mA		
DC Forward Current per Segment or DP	25 ^[2]	15 ^[7]	30 ^[4]	30[6]	mA		
Operating Temperature Range	-40 to +100	-20 to +100	-40 to	+100	℃		
Storage Temperature Range		-55 to	+100		°C		
Reverse Voltage per Segment or DP		3.0					
Lead Solder Temperature for 3 Seconds (1.60 mm [0.063 in.] below seating plane)		26	60		°C		

Notes:

- 1. See Figure 1 to establish pulsed conditions.
- 2. Derate above 80°C at 0.63 mA/°C (see Figure 2).
- $3. \ \mbox{See}$ Figure 10 to establish pulsed conditions.
- 4. Derate above 53°C at 0.45 mA/°C (see Figure 12).
- 5. See Figure 11 to establish pulsed conditions.
- 6. Derate above 39°C at 0.37 mA/°C (see Figure 12).
- 7. Derate above 91°C at 0.53 mA/°C (see Figure 6).

Electrical/Optical Characteristics at T_A = 25 $^{\circ}\mathrm{C}$

Red

Device Series HDSP-	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
A01X	Luminous Intensity/Segment ^[1,2]	I_V	600	1100		μcd	$I_F = 20 \text{ mA}$
	(Digit Average)			500			$I_F = 10 \text{ mA}$
F01X, G01X			650	1200			$I_F = 20 \text{ mA}$
H01X, K01X			600	1300			$I_{\rm F} = 20 \text{ mA}$
				1400			I _F = 100 mA Peak: 1/5 Duty Factor
All Devices	Forward Voltage/Segment or DP	$V_{\rm F}$		1.6	2.0	v	$I_F = 20 \text{ mA}$
	Peak Wavelength	$\lambda_{ ext{PEAK}}$		655		nm	
	Dominant Wavelength ^[3]	$\lambda_{ m d}$		640		nm	
	Reverse Voltage/Segment or DP ^[4]	V_{R}	3.0	12		v	$I_R = 100 \mu A$
	Temperature Coefficient of $V_F/Segment$ or DP	$\Delta V_{\rm F}/^{\circ}{ m C}$		-2		mV/°C	
A01X	Thermal Resistance LED	$R\theta_{J-PIN}$		200		°C/W/	
F01X, G01X	Junction-to-Pin			320		Seg.	-
H01X, K01X				345			

AlGaAs Red

Device Series HDSP-	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
A11X	Luminous Intensity/Segment ^[1,2] (Digit Average)	I_{V}	315	600		μcd	$I_{\rm F} = 1 \text{ mA}$
	(Digit Average)			3600			$I_F = 5 \text{ mA}$
F11X, G11X			330	650			$I_F = 1 \text{ mA}$
				3900			$I_F = 5 \text{ mA}$
H11X, K11X			400	700			$I_F = 1 \text{ mA}$
				4200			$I_F = 5 \text{ mA}$
All Devices	Forward Voltage/Segment or DP	$V_{\rm F}$		1.6	2.0	V	$I_{\rm F} = 1 \text{ mA}$
				1.7			$I_F = 5 \text{ mA}$
				1.8	22		I _F = 20 mA Peak
	Peak Wavelength	λ_{PEAK}		645		nm	
	Dominant Wavelength ^[3]	λ_{d}		637		nm	
	Reverse Voltage/Segment or DP ^[4]	V_R	3.0	15		v	$I_R = 100 \mu A$
	Temperature Coefficient of V_F /Segment or DP	$\Delta V_{\rm F}/^{\circ}{ m C}$		-2		mV/°C	
A11X	Thermal Resistance LED Junction-to-Pin	$R\theta_{J-PIN}$		255		°C/W/ Seg.	
F11X, G11X				320		~~8.	
H11X, K12X				400			

High Efficiency Red

Device Series HDSP-	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
A21X	Luminous Intensity/Segment ^[1,2] (Digit Average)	I_V	360	980		μcd	$I_{\rm F} = 5 \text{mA}$
				5390			$I_F = 20 \text{ mA}$
F21X, G21X			420	1200			$I_{\rm F} = 5 \text{ mA}$
H21X, K21X			900	2800			$I_F = 10 \text{ mA}$
				3700			I _F = 60 mA Peak: 1/6 Duty Factor
All Devices	Forward Voltage/Segment or DP	$V_{\rm F}$		2.0	2.5	V	$I_F = 20 \text{ mA}$
Devices	Peak Wavelength	λ_{PEAK}		635		nm	
:	Dominant Wavelength ^[3]	$\lambda_{ m d}$		626		nm	
	Reverse Voltage/Segment or DP ^[4]	$V_{\rm R}$	3.0	30		V	$I_R = 100 \mu\text{A}$
	Temperature Coefficient of V _F /Segment or DP	$\Delta V_{\rm F}/^{\circ}{ m C}$		-2		mV/°C	
A21X	Thermal Resistance LED Junction-to-Pin	$R\theta_{J-PIN}$		200		°C/W/ Seg.	
F21X, G21X	·			320			
H21X, K21X				345			

High Performance Green

Device Series HDSP-	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
A51X	Luminous Intensity/Segment ^[1,2] (Digit Average)	I_{V}	860	3000		μcd	$I_{\rm F} = 10 \text{ mA}$
	(Digit Average)			6800			$I_F = 20 \text{ mA}$
F51X, G51X			1030	3500			$I_F = 10 \text{ mA}$
H51X, K51X			900	2500			$I_{\rm F} = 10 \text{ mA}$
	:			3100			I _F = 60 mA Peak: 1/6 Duty Factor
All Devices	Forward Voltage/Segment or DP	$V_{\rm F}$		2.1	2.5	V	$I_F = 10 \text{ mA}$
	Peak Wavelength	$\lambda_{ ext{PEAK}}$		566		nm	
	Dominant Wavelength ^[3,5]	$\lambda_{ m d}$		571	577	nm	
	Reverse Voltage/Segment or DP ^[4]	V_{R}	3.0	50		V	$I_R = 100 \mu\text{A}$
	Temperature Coefficient of V _F /Segment or DP	ΔV_{F} /°C		-2		mV/°C	
A51X	Thermal Resistance LED Junction-to-Pin	Rθ _{J-PIN}		200		°C/W/ Seg.	
F51X, G51X				320		g.	
H51X, G51X				345			* .

Notes

- 1. Case temperature of device immediately prior to the intensity measurement is 25° C.
- 2. The digits are categorized for luminous intensity. The intensity category is designated by a letter on the side of the package.
- 3. The dominant wavelength, λ_d , is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the device.
- 4. Typical specification for reference only. Do not exceed absolute maximum ratings.
- 5. Green (HDSP-A51X/F51X/G51X/H512X/K51X) series displays are categorized for dominant wavelength. The category is designated by a number adjacent to the luminous intensity category letter.

Red

tp - PULSE DURATION - μs

Figure 1. Maximum Tolerable Peak Current vs. Pulse Duration – Red.

Figure 2. Maximum Allowable DC Current vs. Ambient Temperature.

Figure 4. Relative Luminous Intensity vs. DC Forward Current.

Figure 3. Forward Current vs. Forward Voltage.

Figure 5. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

AlGaAs Red

TA - AMBIENT TEMPERATURE - °C

Figure 6. Maximum Allowable Average or DC Current vs. Ambient Temperature.

Figure 8. Relative Luminous Intensity vs. DC Forward Current.

HER, Green

Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration – HER.

Figure 7. Forward Current vs. Forward Voltage.

Figure 9. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 11. Maximum Tolerable Peak Current vs. Pulse Duration – Green.

HER, Green, (cont.)

TA - AMBIENT TEMPERATURE - °C

Figure 12. Maximum Allowable DC Current vs. Ambient Temperature.

Figure 14. Relative Luminous Intensity vs. DC Forward Current.

Contrast Enhancement

For information on contrast enhancement, please see Application Note 1015.

Soldering/Cleaning

For information on soldering LEDs please refer to Application Note 1029.

Electrical/Optical

For more information on electrical/optical characteristics, please see Application Note 1005.

V = - FORWARD VOLTAGE - V

Figure 13. Forward Current vs. Forward Voltage Characteristics.

I PEAK - PEAK FORWARD CURRENT PER SEGMENT - mA

Figure 15. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Low Current Seven Segment Displays

Technical Data

HDSP-335X Series HDSP-555X Series HDSP-751X Series HDSP-A10X Series HDSP-A80X Series HDSP-A90X Series HDSP-E10X Series HDSP-F10X Series HDSP-G10X Series HDSP-H10X Series HDSP-H10X Series HDSP-K12X, K70X Series HDSP-N10X Series

Features

- Low Power Consumption
- Industry Standard Size
- Industry Standard Pinout
- Choice of Character Size 7.6 mm (0.30 in), 10 mm (0.40 in), 10.9 mm (0.43 in), 14.2 mm (0.56 in), 20 mm (0.80 in)
- Choice of Colors
 AlGaAs Red, High Efficiency Red (HER), Yellow, Green
- Excellent Appearance Evenly Lighted Segments ± 50° Viewing Angle
- Design Flexibility
 Common Anode or Common
 Cathode
 Single and Dual Digit
 Left and Right Hand Decimal
 Points
 ± 1. Overflow Character
- Categorized for Luminous Intensity

Yellow and Green Categorized for Color Use of Like Categories Yields a Uniform Display

• Excellent for Long Digit String Multiplexing

Description

These low current seven segment displays are designed for applications requiring low power consumption. They are tested and selected for their excellent low current characteristics to ensure that the segments are matched at low currents. Drive currents as low as 1 mA per segment are available.

Pin for pin equivalent displays are also available in a standard current or high light ambient design. The standard current displays are available in all colors and are ideal for most applications. The high light ambient displays are ideal for sunlight ambients or long string lengths. For additional information see the 7.6 mm Micro Bright Seven Segment Displays, 10 mm Seven Segment Displays, 7.6 mm/10.9 mm Seven Segment Displays. 14.2 mm Seven Segment Displays, 20 mm Seven Segment Displays, or High Light Ambient Seven Segment Displays data sheets.

Devices

AlGaAs HDSP-	HER HDSP-	Yellow HDSP-	Green HDSP-	Description	Package Drawing
A101	7511	A801	A901	7.6 mm Common Anode Right Hand Decimal	A
A103	7513	A803	A903	7.6 mm Common Cathode Right Hand Decimal	В
A107	7517	A807	A907	7.6 mm Common Anode ± 1. Overflow	C
A108	7518	A808	A908	7.6 mm Common Cathode ± 1. Overflow	D
F101				10 mm Common Anode Right Hand Decimal	E
F103				10 mm Common Cathode Right Hand Decimal	F
F107				10 mm Common Anode ± 1. Overflow	G
F108				10 mm Common Cathode ± 1. Overflow	H
G101				10 mm Two Digit Common Anode Right Hand Decimal	X
G103				10 mm Two Digit Common Cathode Right Hand Decimal	Y
E100	3350			10.9 mm Common Anode Left Hand Decimal	I
E101	3351			10.9 mm Common Anode Right Hand Decimal	J
E103	3353			10.9 mm Common Cathode Right Hand Decimal	K
E106	3356			10.9 mm Universal \pm 1. Overflow ^[1]	L
H101	5551			14.2 mm Common Anode Right Hand Decimal	M
H103	5553			14.2 mm Common Cathode Right Hand Decimal	N
H107	5557			14.2 mm Common Anode ± 1. Overflow	0
H108	5558			14.2 mm Common Cathode ± 1. Overflow	P
K121	K701			14.2 mm Two Digit Common Anode Right Hand Decimal	R
K123	K703			14.2 mm Two Digit Common Cathode Right Hand Decimal	S
N100				20 mm Common Anode Left Hand Decimal	Q
N101				20 mm Common Anode Right Hand Decimal	T
N103				20 mm Common Cathode Right Hand Decimal	U
N105				20 mm Common Cathode Left Hand Decimal	V
N106				20 mm Universal \pm 1. Overflow ^[1]	W

Note:

1. Universal pinout brings the anode and cathode of each segment's LED out to separate pins. See internal diagrams L or W.

Package Dimensions

4. REDUNDANT ANODES. 5. REDUNDANT CATHODES.

* The Side View of package indicates Country of Origin.

E, F, G, H

		FUNC	TION	
PIN	E	F	G	н
1	ANODE	CATHODE	ANODE4	CATHODE(e)
2	CATHODE f	ANODE f	CATHODE PLUS	ANODE PLUS
3	CATHODE g	ANODE g	CATHODE MINUS	ANODE MINUS
4	CATHODE .	ANODE .	NC	NC
5	CATHODE d	ANODE d	NC	NC
6	ANODE4	CATHODE	ANODE4	CATHODE(*)
7	CATHODE DP	ANODE DP	CATHODE DP	ANODE DP
	CATHODE c	ANODE c	CATHODE c	ANODE c
9	CATHODE b	ANODE 6	CATHODE b	ANODE 6
10	CATHODE a	ANODE a	NC	NC

NOTES:

- 1. ALL DIMENSIONS IN MILLIMETRES (INCHES).
- 2. ALL UNTOLERANCED DIMENSIONS ARE FOR REFERENCE ONLY.
- 3. FOR YELLOW AND GREEN SERIES PRODUCT ONLY.
- 4. REDUNDANT ANODES.
- 5. REDUNDANT CATHODES.

FRONT VIEW

SIDE VIEW

*The Side View of package indicates Country of Origin.

12.70 (.500) MAX.		_
	5.33 (.210)	6.36 (.250)
4.06 (.160) MIN.		
7.62	0.25 (.010)	

12.70 (.500) MAX.		
4.06 (.160) MIN. 7.62 (.300)	0.25 (.010)	6.36 (.250)

	FUNCTION								
PIN	1.1	J	к	L					
1	CATHODE-a	CATHODE:a	ANODE:	CATHODE-d					
2	CATHODE-f	CATHODE-f	ANODE 1	ANODE-d					
3	ANODE [3]	ANODE [3]	CATHODE 6	NO PIN					
4	NO PIN	NO PIN	NO PIN	CATHODE-c					
5	NO PIN	NO PIN	NO PIN	CATHODE .					
6	CATHODE-dp	NO CONN.[5]	NO CONN.[5]	ANODE:					
7	CATHODE .	CATHODE:	ANODE-	ANODE-c					
8	CATHODE:d	CATHODE-d	ANODE-d	ANODE-dp					
9	NO CONN. [5]	CATHODE-dp	ANODE-dp	CATHODE-dp					
10	CATHODE:c	CATHODE:c	ANODE-c	CATHODE-b					
11	CATHODE:g	CATHODE:g	ANODE-g	CATHODE a					
12	NO PIN	NO PIN	NO PIN	NO PIN					
13	CATHODE-6	CATHODE-6	ANODE-b	ANODE a					
14	ANODE [3]	ANODE 131	CATHODE (6)	ANODE 6					

END VIEW

- 1. ALL DIMENSIONS IN MILLIMETRES (INCHES).
- 2. ALL UNTOLERANCED DIMENSIONS ARE FOR REFERENCE ONLY.
- 3. REDUNDANT ANODES.
- 4. UNUSED dp POSITION.
- 5. SEE INTERNAL CIRCUIT DIAGRAM.
- 6. REDUNDANT CATHODES.
- 7. SEE PART NUMBER TABLE FOR L.H.D.P. AND R.H.D.P. DESIGNATION.

	FUNCTION							
PIN	M,	N	0	Р				
1	CATHODE e	ANODE e	CATHODE c	ANODE c				
2	CATHODE d	ANODE d	ANODE c. d	CATHODE c. d				
3	ANODE[4]	CATHODEI5	CATHODE b	ANODE b				
4	CATHODE c	ANODE c	ANODE a, b, DP	CATHODE a. b. DP				
5	CATHODE DP	ANODE DP	CATHODE DP	ANODE DP				
6	CATHODE b	ANODE b	CATHODE a	ANODE a				
7	CATHODE a	ANODE a	ANODE a, b, DP	CATHODE a. b. DP				
8	ANODEI4I	CATHODE[5]	ANODE c, d	CATHODE c, d				
9	CATHODE 1	ANODE f	CATHODE d	ANODE d				
10	CATHODE g	ANODE g	NO PIN	NO PIN				

NOTES:

- 1. ALL DIMENSIONS IN MILLIMETRES (INCHES).
- 2. MAXIMUM.
- 3. ALL UNTOLERANCED DIMENSIONS ARE FOR REFERENCE ONLY.
- 4. REDUNDANT ANODES.
- 5. REDUNDANT CATHODES.

END VIEW Q, T, U, V, W

Function							
Pin	a	т	U	v	w		
1	NO PIN	NO PIN	NO PIN	NO PIN	NO PIN		
2	CATHODE a	CATHODE a	ANODE a	ANODE a	CATHODE a		
3	CATHODE 1	CATHODE 1	ANODE f	ANODE 1	ANODE d		
4	ANODE [3]	ANODE ^[3]	CATHODE [6]	CATHODE 61	CATHODE d		
5	CATHODE e	CATHODE e	ANODE e	ANODE e	CATHODE c		
6	ANODE 3	ANODE [3]	CATHODE 161	CATHODE 61	CATHODE e		
7	CATHODE dp	NO. CONNEC.	NO. CONNEC.	ANODE dp	ANODE e		
8	NO PIN	NO PIN	NO PIN	NO PIN	CATHODE dp		
9	NO PIN	NO PIN	NO PIN	NO PIN	NO PIN		
10	NO PIN	CATHODE dp	ANODE dp	NO PIN	ANODE dp		
11	CATHODE d	CATHODE d	ANODE d	ANODE d	CATHODE dp		
12	ANODE ^[3]	ANODE[3]	CATHODE 6	CATHODE 161	CATHODE b		
13	CATHODE c	CATHODE c	ANODE c	ANODE c	ANODE b		
14	CATHODE g	CATHODE g	ANODE g	ANODE g	ANODE c		
15	CATHODE b	CATHODE b	ANODE b	ANODE 6	ANODE a		
16	NO PIN	NO PIN	NO PIN	NO PIN	NO PIN		
17	ANODE [3]	ANODE(3)	CATHODE [6]	CATHODE:6:	CATHODE a		
18	NO PIN	NO PIN	NO PIN	NO PIN	NO PIN		

NOTES:

- 1. ALL DIMENSIONS IN MILLIMETRES (INCHES).
- 2. ALL UNTOLERANCED DIMENSIONS ARE FOR REFERENCE ONLY.
- 3. REDUNDANT ANODES.
- 4. UNUSED dp POSITION.
- 5. SEE INTERNAL CIRCUIT DIAGRAM.
- 6. REDUNDANT CATHODES.
- 7. SEE PART NUMBER TABLE FOR L.H.D.P. AND R.H.D.P. DESIGNATION.

TOP END VIEW R, S

*The Side View of package indicates Country of Origin.

FRONT VIEW R, S

TOP END VIEW X, Y

*The Side View of package indicates Country of Origin.

FRONT VIEW X, Y

	Function						
Pin	R,X	S,Y					
1	E CATHODE NO. 1	E ANODE NO. 1					
2	D CATHODE NO. 1	D ANODE NO. 1					
3	C CATHODE NO. 1	C ANODE NO. 1					
4	DP CATHODE NO. 1	DP ANODE NO. 1					
5	E CATHODE NO. 2	E ANODE NO. 2					
6	D CATHODE NO. 2	D ANODE NO. 2					
7	G CATHODE NO. 2	G ANODE NO. 2					
8	C CATHODE NO. 2	C ANODE NO. 2					
9	DP CATHODE NO. 2	DP ANODE NO. 2					
10	B CATHODE NO. 2	B ANODE NO. 2					
11	A CATHODE NO. 2	A ANODE NO .2					
12	F CATHODE NO. 2	F ANODE NO. 2					
13	DIGIT NO. 2 ANODE	DIGIT NO. 2 CATHODE					
14	DIGIT NO. 1 ANODE	DIGIT NO. 1 CATHODE					
15	B CATHODE NO. 1	B ANODE NO. 1					
16	A CATHODE NO. 1	A ANODE NO. 1					
17	G CATHODE NO. 1	G ANODE NO. 1					
18	F CATHODE NO. 1	F ANODE NO. 1					

- NOTES:

 1. DIMENSIONS ARE IN MILLIMETRES (INCHES).

 2. ALL UNTOLERANCED DIMENSIONS ARE FOR REFERENCE ONLY.

 3. WHERE APPLICABLE.

Internal Circuit Diagram

Internal Circuit Diagram (cont.)

HOLE PATTERN FOR PCB LAYOUT TO ACHIEVE UNIFORM 0.450 in. DIGIT TO DIGIT PITCH. FOR HDSP-FXXX TO HDSP-GXXX.

Absolute Maximum Ratings

Description	AlGaAs Red HDSP-A10X/E10X/ H10X/K12X/N10X/ F10X, G10X Series	HER HDSP-751X/ 335X/555X/ K70X Series	Yellow HDSP-A80X Series	Green HDSP-A90X Series	Units
Average Power per Segment or DP	. 37	5	2	64	mW
Peak Forward Current per Segment or DP		45			mA
DC Forward Current per Segment or DP	15[1]		15[2]	,	mA
Operating Temperature Range	-20 to +100		-40 to +100		°C
Storage Temperature Range		-55 to +1	00		°C
Reverse Voltage per Segment or DP		3.0		1-	V
Lead Solder Temperature for 3 Seconds (1.60 mm [0.063 in.] below seating plane)		260			%C .

Notes:

^{1.} Derate above 91°C at 0.53 mA/°C.

^{2.} Derate HER/Yellow above 80°C at 0.38 mA/°C and Green above 71°C at 0.31 mA/°C.

Electrical/Optical Characteristics at T_A = $25^{\circ}\!C$

AlGaAs Red

Device Series HDSP-	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
			315	600			$I_{\rm F} = 1 \text{ mA}$
A10X				3600			$I_F = 5 \text{ mA}$
			330	650		i.	$I_{\rm F} = 1 \text{ mA}$
F10X, G10X				3900		_	$I_F = 5 \text{ mA}$
			390	650			$I_F = 1 \text{ mA}$
E10X	Luminous Intensity/Segment ^[1,2] (Digit Average)	I_V		3900		μcd	$I_F = 5 \text{ mA}$
HION KION			400	700			$I_{\rm F} = 1 \text{ mA}$
H10X, K12X				4200			$I_{\rm F} = 5 \text{ mA}$
N10X			270	590			$I_{\rm F} = 1 \text{ mA}$
NIUX				3500			$I_F = 5 \text{ mA}$
	Forward Voltage/Segment or DP	$ m V_{F}$		1.6		v	$I_F = 1 \text{ mA}$
				1.7			$I_F = 5 \text{ mA}$
				1.8	2.2		$I_{\rm F}=20~{ m mA~Pk}$
All Devices	Peak Wavelength	λ_{PEAK}		645		nm	
	Dominant Wavelength ^[3]	$\lambda_{ m d}$		637		nm	
	Reverse Voltage/Segment or DP ^[4]	V_R	3.0	15		v	$I_R = 100 \text{ mA}$
	Temperature Coefficient of V_F /Segment or DP	ΔV_{F} /°C		-2 mV		mV/°C	
A10X				255			
F10X, G10X				320			
E10X		700		340			
H10X, K12X	Thermal Resistance LED Junction-to-Pin	$R\theta_{J-PIN}$		400		°C/W/Seg	
N10X				430			

High Efficiency Red

Device Series							1, 14
HDSP-	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
751X			160	270	* 3 *	an general	$I_F = 2 \text{ mA}$
101%				1050			$I_F = 5 \text{ mA}$
	Luminous Intensity/Segment ^[1,2]	$I_{ m V}$	200	300		mcd	$I_F = 2 \text{ mA}$
335X, 555X,	(Digit Average)	10	-	1200		nicu	$I_{\mathrm{F}} = 5 \text{ mA}$
K70X			270	370			$I_F = 2 \text{ mA}$
				1480			$I_F = 5 \text{ mA}$
				1.6			$I_F = 2 \text{ mA}$
	Forward Voltage/Segment or DP	$V_{ m F}$		1.7		v	$I_F = 5 \text{ mA}$
				2.1	2.5		$I_F = 20 \text{ mA Pk}$
All Devices	Peak Wavelength	$\lambda_{ ext{PEAK}}$		635		nm	
	Dominant Wavelength ^[3]	λ_{d}		626		nm	
	Reverse Voltage/Segment or DP ^[4]	V_{R}	3.0	30		V	$I_R = 100 \text{ mA}$
	Temperature Coefficient of V_F /Segment or DP	$\Delta V_{ m F}$ /°C		-2		mV/°C	
751X				200			
335X	Thermal Resistance LED	$R\theta_{J ext{-PIN}}$		280		°C/W	
555X, K70X	Junction-to-Pin			345			

Yellow

Device Series							
HDSP-	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
	Luminous Intensity/Segment ^[1,2] (Digit Average)	I_{V}	250	420		mcd	$I_{\rm F} = 4 \text{ mA}$
	(Digit invertige)	I V		1300		nicu	$I_F = 10 \text{ mA}$
				1.7		V	$I_{\rm F} = 4$ mA
A80X	Forward Voltage/Segment or DP	$ m V_{F}$		1.8			$I_F = 5 \text{ mA}$
AOUA				2.1	2.5		$I_{\rm F}=20~{ m mA~Pk}$
	Peak Wavelength	$\lambda_{ ext{PEAK}}$		583		nm	
	Dominant Wavelength ^[3,5]	$\lambda_{ m d}$	581.5	585	592.5	nm	
	Reverse Voltage/Segment or DP ^[4]	V_{R}	3.0	30		V	$I_R = 100 \text{ mA}$
	Temperature Coefficient of V _F /Segment or DP	ΔV_F /°C		-2		mV/°C	
	Thermal Resistance LED Junction-to-Pin	Rθ _{J-PIN}		200		°C/W	

Green

Device Series							
HDSP-	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
	Luminous Intensity/Segment ^[1,2] (Digit Average)	I_{V}	250	475		mcd	$I_F = 4 \text{ mA}$
	(Digit riverage)	IV.		1500		liicu	$I_{\rm F} = 10 \text{ mA}$
				1.9			$I_{\mathrm{F}} = 4 \mathrm{mA}$
A90X	Forward Voltage/Segment or DP	$V_{ m F}$		2.0		V	$I_{\rm F} = 10 \text{ mA}$
ASOA				2.1	2.5		$I_{\mathrm{F}}=20~\mathrm{mA~Pk}$
	Peak Wavelength	λ_{PEAK}		566		nm	
	Dominant Wavelength ^[3,5]	$\lambda_{ m d}$		571	577	nm	
	Reverse Voltage/Segment or DP ^[4]	V_{R}	3.0	30		V	$I_R = 100 \text{ mA}$
	Temperature Coefficient of $V_{\rm F}/{\rm Segment}$ or DP	$\Delta V_{\rm F}$ /°C		-2		mV/°C	
	Thermal Resistance LED Junction-to-Pin	$R\theta_{J-PIN}$		200		°C/W	

Notes:

- Device case temperature is 25°C prior to the intensity measurement.
 The digits are categorized for luminous intensity. The intensity category is designated by a letter on the side of the package.
- 3. The dominant wavelength, λ_d , is derived from the CIE chromaticity diagram and is the single wavelength which defines the color of the
- 4. Typical specification for reference only. Do not exceed absolute maximum ratings.
- 5. The yellow (HDSP-A800) and Green (HDSP-A900) displays are categorized for dominant wavelength. The category is designated by a number adjacent to the luminous intensity category letter. 3-39

AlGaAs Red

50.0 IF - FORWARD CURRENT PER SEGMENT - mA 10.0 5.0 2.0 1.0 0.5 0.1 2.0 V_F - FORWARD VOLTAGE - V

Figure 1. Maximum Allowable Average or DC Current vs. Ambient Temperature.

Figure 2. Forward Current vs. Forward Voltage.

1.2

1.1

1.0 0.9

0.7

1PEAK - RELATIVE EFFICIENCY NORMALIZED TO 1 AT 1 mA

10 20 30 IPEAK - PEAK FORWARD CURRENT PER SEGMENT - MA Figure 4. Relative Efficiency (Luminous Intensity per Unit

Current) vs. Peak Current.

40

0.5 mA 8.0

Figure 3. Relative Luminous Intensity vs. DC Forward Current.

HER, Yellow, Green

40 VELLOW VELLOW 10 O.5. 1.0 1.5 2.0 2.5 3.0

TA - AMBIENT TEMPERATURE - °C

Figure 5. Maximum Allowable Average or DC Current vs. Ambient Temperature.

Figure 6. Forward Current vs. Forward Voltage.

VE - FORWARD VOLTAGE - V

Figure 7. Relative Luminous Intensity vs. DC Forward Current.

Figure 8. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Electrical/Optical

For more information on electrical/optical characteristics, please see Application Note 1005.

Contrast Enhancement

For information on contrast enhancement please see Application Note 1015.

Soldering/Cleaning

Cleaning agents from the ketone family (acetone, methyl ethyl ketone, etc.) and from the

chorinated hydrocarbon family (methylene chloride, trichloroethylene, carbon tetrachloride, etc.) are not recommended for cleaning LED parts. All of these various solvents attack or dissolve the encapsulating epoxies used to form the package of plastic LED parts.

For information on soldering LEDs please refer to Application Note 1027.

Seven Segment Displays for High Light Ambient Conditions

Technical Data

HDSP-3530/-3730/-5530/ -3900 Series HDSP-4030/-4130/-5730/ -4200 Series

Features

- High Light Output
 Typical Intensities of Up to 7.0
 mcd/seg at 100 mA pk 1 of 5
 Duty Factor
- Capable of High Current Drive Excellent for Long Digit String Multiplexing
- Four Character Sizes 7.6 mm, 10.9 mm, 14.2 mm, and 20.3 mm
- Choice of Two Colors High Efficiency Red Yellow
- Excellent Character Appearance Evenly Lighted Segments Wide Viewing Angle Gray Body for Optimum Contrast
- Categorized for Luminous Intensity; Yellow
 Categorized for Color
 Use of Like Categories Yields a Uniform Display
- IC Compatible
- · Mechanically Rugged

Description

The HDSP-3530/-3730/-5530/ -3900 and HDSP-4030/-4130/ -5730/-4200 are 7.6 mm, 10.9 mm/14.2 mm/20.3 mm high efficiency red and yellow displays designed for use in high light ambient condition. The four sizes of displays allow for viewing distances at 3, 6, 7, and 10 meters. These seven segment displays utilize large junction high efficiency LED chips made from GaAsP on a transparent GaP substrate. Due to the large junction area, these displays can be driven at high peak current levels needed for high ambient conditions or many character multiplexed operation.

These displays have industry standard packages, and pin configurations and $\pm\,1$ overflow display are available in all four sizes. These numeric displays are ideal for applications such as Automotive and Avionic Instrumentation, Point of Sale Terminals, and Gas Pump.

Devices

Part No. HDSP-	Color	Description	Package Drawing
3530	High Efficiency Red	7.6 mm Common Anode Left Hand Decimal	A
3531		7.6 mm Common Anode Right Hand Decimal	В
3533		7.6 mm Common Cathode Right Hand Decimal	\mathbf{C}
3536		7.6 mm Universal Overflow ± 1 Right Hand Decimal	D
4030	Yellow	7.6 mm Common Anode Left Hand Decimal	A
4031		7.6 mm Common Anode Right Hand Decimal	В
4033		7.6 mm Common Cathode Right Hand Decimal	\mathbf{C}
4036		7.6 mm Universal Overflow ± 1 Right Hand Decimal	D
3730	High Efficiency Red	10.9 mm Common Anode Left Hand Decimal	E
3731		10.9 mm Common Anode Right Hand Decimal	F
3733		10.9 mm Common Cathode Right Hand Decimal	G
3736		10.9 mm Universal Overflow ± 1 Right Hand Decimal	Н
4130	Yellow	10.9 mm Common Anode Left Hand Decimal	E
4131		10.9 mm Common Anode Right Hand Decimal	F
4133		10.9 mm Common Cathode Right Hand Decimal	G
4136		10.9 mm Universal Overflow ± 1 Right Hand Decimal	H
5531	High Efficiency Red	14.2 mm Common Anode Right Hand Decimal	I
5533	1	14.2 mm Common Cathode Right Hand Decimal	J
5537	Ï	14.2 mm Overflow ± 1 Common Anode	K
5538		14.1 mm Overflow ± 1 Common Cathode	L
5731	Yellow	14.2 mm Common Anode Right Hand Decimal	I
5733		14.2 mm Common Cathode Right Hand Decimal	J
5737		14.2 mm Overflow ± 1 Common Anode	K
5738		14.1 mm Overflow \pm 1 Common Cathode	L
3900	High Efficiency Red	20.3 mm Common Left Hand Decimal	M
3901		20.3 mm Common Anode Right Hand Decimal	N
3903		20.3 mm Common Cathode Right Hand Decimal	О
3905		20.3 mm Common Cathode Left Hand Decimal	P
3906		20.3 mm Universal Overflow $\pm~1$ Right Hand Decimal	Q
4200	Yellow	20.3 mm Common Left Hand Decimal	M
4201		20.3 mm Common Anode Right Hand Decimal	N
4203		20.3 mm Common Cathode Right Hand Decimal	O
4205		20.3 mm Common Cathode Left Hand Decimal	P
4206		20.3 mm Universal Overflow ±1 Right Hand Decimal	Q

Note: Universal pinout brings the anode and cathode of each segment's LED out to separate pins. See internal diagrams D and H.

Absolute Maximum Ratings (All Products)

- 1. See Figure 1 to establish pulsed operating conditions 2. Derate maximum DC current above $T_A=25^{\circ}\mathrm{C}$ at 0.50 mA/°C per segment, see Figure 2.

Package Dimensions (HDSP-3530/-4030 Series)

	FUNCTION								
	Α	В	С	D					
	-3530/-4030	-3531/-4031	-3533/-4033	-3536/-4036					
1	CATHODE-a	CATHODE-a	CATHODE[6]	ANODE-d					
2	CATHODE-f	CATHODE-f	ANODE-f	NO PIN					
3	ANODE[3]	ANODE[3]	ANODE-g	CATHODE-d					
4	NO PIN	NO PIN	ANODE-e	CATHODE-c					
5	NO PIN	NO PIN	ANODE-d	CATHODE-e					
6	CATHODE-dp	NO CONN.[5]	CATHODE[6]	ANODE-e					
7	CATHODE-e	CATHODE-e	ANODE-dp	ANODE-c					
8	CATHODE-d	CATHODE-d	ANODE-c	ANODE-dp					
9	NO CONN.[5]	CATHODE-dp	ANODE-b	NO PIN					
10	CATHODE-c	CATHODE-c	ANODE-a	CATHODE-dp					
11	CATHODE-g	CATHODE-g		CATHODE-b					
12	NO PIN	NO PIN		CATHODE-a					
13	CATHODE-b	CATHODE-b		ANODE-a					
14	ANODE[3]	ANODE[3]		ANODE-b					

Package Dimensions (HDSP-3730/-4130 Series)

н

FRONT VIEW

PIN	FUNCTION							
	E -3730/-4130	F -3731/-4131	G -3733/-4133	H -3736/-4136				
1	CATHODE-a	CATHODE-a	ANODE-a	CATHODE-d				
2	CATHODE-f	CATHODE-f	ANODE-f	ANODE-d				
3	ANODE [3]	ANODE[3]	CATHODE (6)	NO PIN				
4	NO PIN	NO PIN	NO PIN	CATHODE-c				
5	NO PIN	NO PIN	NO PIN	CATHODE-e				
6	CATHODE-dp	NO CONN.[5]	NO CONN.[5]	ANODE-e				
7	CATHODE-8	CATHODE-6	ANODE-e	ANODE-c				
8	CATHODE-d	CATHODE-d	ANODE-d	ANODE-dp				
9	NO CONN. [5]	CATHODE-dp	ANODE-dp	CATHODE-dp				
10	CATHODE-c	CATHODE-c	ANODE-c	CATHODE-b				
11	CATHODE-g	CATHODE-g	ANODE-g	CATHODE-a				
12	NO PIN	NO PIN	NO PIN	NO PIN				
13	CATHODE-b	CATHODE-b	ANODE-b	ANODE-a				
14	ANODE (3)	ANODE[3]	CATHODE [6]	ANODE-b				

Package Dimensions (-5530/-5730 Series)

PIN	FUNCTION								
	I :5531	J 5533	. K 5537	L 5538					
1	CATHODE •	ANODE e	CATHODE c	ANODE c					
2	CATHODE d	ANODE d	ANODE c, d	CATHODE c, d					
3	ANODE(3)	CATHODE (6)	CATHODE b	ANODE b					
4	CATHODE c	ANODE c	ANODE a, b DP	CATHODE a, b, DP					
5	CATHODE DP	ANODE DP	CATHODE DP	ANODE DP					
6	CATHODE b	ANODE b	CATHODE a	ANODE a					
7	CATHODE a	ANODE a	ANODE a, b, DP	CATHODE a, b, DP					
8	ANODE ⁽³⁾	CATHODE (6)	ANODE c, d	CATHODE c, d					
9	CATHODE f	ANODE f	CATHODE d	ANODE d					
10	CATHODE 9	ANODE g	NO PIN(5)	NO PIN(5)					

FRONT VIEW K, L SIDE VIEW I, J, K, L

Package Dimensions (-3900/-4200 Series)

- 1. Dimensions in millimeters and (inches).
- All untoleranced dimensions are for reference only.
 Redundant anodes.
- Unused dp position.
 See Internal Circuit Diagram.
- 7. For HDSP-4030/-4130/-5731/-4200 Series product only.

 8. See part number table for LHDP and RHDP designation.
- 6. Redundant Cathodes.

Internal Circuit Diagram (HDSP-3530/-4030 Series)

Internal Circuit Diagram (HDSP-3730/-4130 Series)

Internal Circuit Diagram (HDSP-5530/-5730 Series)

Internal Circuit Diagram (HDSP-3900/-4200 Series)

Electrical/Optical Characteristics at $T_A = 25$ °C

Parameter	Sym.	Device HDSP-	Min.	Тур.	Max.	Units	Test Condition
Luminous Intensity/	$I_{\rm V}$	3530	1500	4500		μcd	100 mA Pk;
Segment ^[9,10]		3730	1500	5000			1 of 5 Duty Factor
(Digit Average)		5530	2200	7000			
		3900	2200	7000			
		3530		3100		μcd	20 mA DC
		3730		3500			
	ĺ	5530		4800			
		3900		4800			
		4030	1500	4500		μcd	100 mA Pk;
		4130	1500	5000		·	1 of 5 Duty Factor
		5730	2200	7000			
		4200	2200	7000			
		4030		2200		μcd	20 mA DC
		4130		2500			
		5730		3400	İ		
		4200		3400			
Peak Wavelength	$\lambda_{ ext{PEAK}}$	3530/3730/		635		nm	
		5530/3900					
		4030/4130/		583		nm	
		5730/4200					
Dominant Wavelength ^[11,12]	$\lambda_{ m d}$	3530/3730/		626		nm	
(Digit Average)	"	5530/3900					
		4030/4130/	581.5	586	592.5	nm	
		5730/4200	00210		002.0		
Forward Voltage/Seg or D.P.	$V_{ m F}$	All Devices		2.6	3.5	V	$I_F = 100 \text{ mA}$
Reverse Current/Seg or D.P.	I_{R}	All Devices			100	μΑ	$V_{R} = 3.0 \text{ V}$
Temp. Coeff. of V _F /Seg or D.P.	ΔV_F /°C	All Devices		-1.1		mV/°C	$I_F = 100 \text{ mA}$
Thermal Resistance	$R\theta_{J-PIN}$	3530/4030/		282		°C/W/Seg	
LED Junction-to-Pin		3730/4130					
		5530/5730		345		°C/W/Seg	
		3900/4200		375		°C/W/Seg	

Notes:

- 9. Case temperature of the device immediately prior to the intensity measurement is 25° C.
- 10. The digits are categorized for luminous intensity with the intensity category designated by a letter on the side of the package.
- 11. The dominant wavelength, l_d , is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the device
- 12. The yellow displays are categorizes as to dominant wavelength with the category designated by a number adjacent to the intensity category letter.

Figure 1. Maximum Allowed Peak Current vs. Pulse Duration.

Figure 2. Maximum Allowable DC Current per Segment vs. Ambient Temperature.

Figure 5. Relative Luminous Intensity vs. DC Forward Current.

Figure 3. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Segment Current.

Figure 4. Peak Forward Segment Current vs. Peak Forward Voltage.

Electrical

These display devices are composed of eight light emitting diodes, with light from each LED optically stretched to form individual segments and a decimal point.

The devices utilize LED chips which are made from GaAsP on a transparent GaP substrate.

These display devices are designed for strobed operation. The typical forward voltage values, scaled from Figure 4, should be used for calculating the current limiting resistor value and typical power dissipation.

Expected maximum V_F values, for the purpose of driver circuit design and maximum power dissipation, may be calculated using the following V_F MAX models:

 $V_F MAX = 2.15 V + I_{PEAK} (13.5 \Omega)$ For: $I_F \ge 30 \text{ mA}$

 $V_F MAX = 1.9 V + I_{DC} (21.8 \Omega)$ For: 10 mA $\leq I_F \leq 30$ mA

Temperature derated strobed operating conditions are obtained from Figures 1 and 2. Figure 1 relates pulse duration (t_p) , refresh rate (f), and the ratio of maximum peak current to maximum

dc current (I_{PEAK} MAX/I_{DC} MAX). Figure 2 presents the maximum allowed dc current vs. ambient temperature. Figure 1 is based on the principle that the peak junction temperature for pulsed operation at a specified peak current, pulse duration and refresh rate should be the same as the junction temperature at maximum DC operation. Refresh rates of 1 kHz or faster minimize the pulsed junction heating effect of the device resulting in the maximum possible time average luminous intensity.

The time average luminous intensity can be calculated knowing the average forward current and relative efficiency characteristic, $\eta_{|PEAK}$, of Figure 3. Time average luminous intensity for a device case temperature of 25°C, I_V (25°C), is calculated as follows:

$$I_{V}\left(25^{\circ}\mathrm{C}\right) = \left[\frac{I_{AVG}}{20~\text{mA}}\right] \left[\eta_{|\mathrm{PEAK}}\right] \left[I_{V \; \mathrm{DATA \; SHEET}}\right]$$

Example: For HDSP-4030 series

 $\eta_{|PEAK} = 1.00 \text{ at } I_{PEAK} = 100 \text{ mA.}$ For DF = 1/5:

$$I_V (25^\circ) = \left[\frac{20 \text{ mA}}{20 \text{ mA}}\right] [1.00][4.5 \text{ mcd}]$$

= 4.5 mcd/segment

The time average luminous intensity may be adjusted for operating junction temperature by the following exponential equation:

$$I_V (T_J) = I_V (25^{\circ}C) e^{[k(T_J + 25^{\circ}C)]}$$

where
$$T_J = T_A + P_D \cdot R\theta_{J-A}$$

Device	K
-3530/-3730/ -5530/-3900	-0.0131/°C
-4030/-4130/ -5730/-4200	-0.0112/°C

Mechanical

These devices are constructed utilizing a lead frame in a standard DIP package. The LED dice are attached directly to the lead frame. Therefore, the cathode leads are the direct thermal and mechanical stress paths to the LED dice. The absolute maximum allowed junction temperature, T_J MAX, is $105^{\circ}\mathrm{C}$. The maximum power ratings have been established so that the worst case V_F device does not exceed this limit.

Worst case thermal resistance pin-to-ambient is $400^{\circ}\text{C/W/Seg}$ when these devices are soldered into minimum trace width PC boards. When installed in a PC board that provides $R\theta_{\text{PIN-A}}$ less than $400^{\circ}\text{C/W/Seg}$ these displays may be operated at higher average currents as shown in Figure 2.

Optical

The radiation pattern for these devices is approximately Lambertian. The luminous sterance may be calculated using one of the two following formulas.

$$L_{V}(cd/m^{2}) = \frac{I_{V}(cd)}{A(m^{2})}$$

$$L_V(\text{footlamberts}) = \frac{\pi I_V(\text{cd})}{\Delta (\text{fr}^2)}$$

Area/Seg. Area/Seg. Device mm^2 in^2 -3530/-4030 0.0039 2.5 -3730/-4130 4.4 0.0068 -5530/-5730 8.8 0.0137 -3900/-4200 14.9 0.0231

Contrast Enhancement

The objective of contrast enhancement is to optimize display readability. Adequate contrast enhancement can be achieved in indoor applications through luminous contrast techniques. Luminous contrast is the observed brightness of the illuminated segment compared to the brightness of the surround. Appropriate wavelength filters maximize luminous contrast by reducing the amount of light reflected from the area around the display while transmitting most of the light emitted by the segment. These filters are described further in Application Note 1015.

Chrominance contrast can further improve display readability. Chrominance contrast refers to the color difference between the illuminated segment and the surrounding area. These displays are assembled with a gray package and untinted encapsulating epoxy in the segments to improve chrominance contrast of the ON segments. Additional contrast enhancement in bright ambients may be achieved by using a neutral density gray filter such as Panelgraphic Chromafilter Grav 10, or 3M Light Control Film (louvered film).

7.6 mm (0.3 inch)/10.9 mm (0.43 inch) Seven Segment Displays

Technical Data

5082-761X Series 5082-762X Series 5082-765X Series 5082-766X Series 5082-773X Series 5082-7740 5082-775X Series 5082-7760 HDSP-360X Series HDSP-460X Series HDSP-E15X Series

Features

- Industry Standard Size
- Industry Standard Pinout 7.62 mm (0.300 inch) DIP Leads on 2.54 mm (0.100 inch) Centers
- Choice of Colors
 Red, AlGaAs Red, High
 Efficiency Red, Yellow, Green
- Excellent Appearance
 Evenly Lighted Segments
 Gray Package Gives Optimum
 Contrast
 ± 50° Viewing Angle
- Design Flexibility
 Common Anode or
 Common Cathode
 Single Digits
 Left or Right Hand Decimal
 Point
 - ± 1. Overflow Character

Categorized for Luminous Intensity

Yellow and Green Categorized for Color Use of Like Categories Yields a Uniform Display

- High Light Output
- High Peak Current
- Excellent for Long Digit String Multiplexing
- Intensity and Color Selection Available See Intensity and Color Selected Displays Data Sheet
- Sunlight Viewable AlGaAs

Description

The 7.6 mm (0.3 inch) and 10.9 mm (0.43 inch) LED seven

segment displays are designed for viewing distances up to 3 metres (10 feet) and 5 metres (16 feet). These devices use an industry standard size package and pinouts. All devices are available as either common anode or common cathode.

Devices

Red 5082-	AlGaAs ^[1] Red HDSP-	HER ^[1] 5082-	Yellow 5082-	Green HDSP-	Description	Package Drawing
7730		7610	7620	3600	7.6 mm Common Anode Left Hand Decimal	A
7731		7611	7621	3601	7.6 mm Common Anode Right Hand Decimal	В
7740		7613	7623	3603	7.6 mm Common Cathode Right Hand Decimal	С
7736		7616	7626	3606	7.6 mm Universal \pm 1. Overflow Right Hand Decimal ^[2]	D
7750	E150	7650	7660	4600	10.9 mm Common Anode Left Hand Decimal	Е
7751	E151	7651	7661	4601	10.9 mm Common Anode Right Hand Decimal	F
7760	E153	7653	7663	4603	10.9 mm Common Cathode Right Hand Decimal	G
7756	E156	7656	7666	4606	$10.9 \text{ mm Universal} \pm 1. \text{ Overflow Right Hand Decimal}^{[2]}$	н

Notes

- 1. These displays are recommended for high ambient light operation. Please refer to the HDSP-E10X AlGaAs and HDSP-335X HER data sheet for low current operation.
- 2. Universal pinout brings the anode and cathode of each segment's LED out to separate pins. See internal diagram D.

These displays are ideal for most applications. Pin for pin equivalent displays are also available in a low current or high light ambient design. The low current displays are ideal for portable applications. The high light ambient displays are ideal for high light ambients or long string lengths. For additional information see the Low Current Seven Segment Displays, or High Light Ambient Seven Segment Displays data sheets.

Package Dimensions

	FUNCTION								
PIN	A	В	С	D					
1	CATHODE-a	CATHODE-a	NO PIN	ANODE-d					
2	CATHODE-f	CATHODE-f	CATHODE	NO PIN					
3	ANO DE[3]	ANODE[3]	ANODE-f	CATHODE-d					
4	NO PIN	NO PIN	ANODE-g	CATHODE-c					
5	NO PIN	NO PIN	ANODE-e	CATHODE-e					
6	CATHODE-dp	NO CONN.[5]	ANODE-d	ANODE-e					
7	CATHODE-e	CATHODE-e	NO PIN	ANODE-c					
8	CATHODE-d	CATHODE-d	NO PIN	ANODE-dp					
9	NO CONN.[5]	CATHODE-dp	CATHODE(6)	NO PIN					
10	CATHODE-c	CATHODE-c	ANODE-dp	CATHODE-d					
11	CATHODE-g	CATHODE-g	ANODE-c	CATHODE-b					
12	NO PIN	NO PIN	ANODE-b	CATHODE-a					
13	CATHODE-b	CATHODE-b	ANODE-a	ANODE-a					
14	ANODE[3]	ANODE[3]	NO PIN	ANODE-b					

A,B,C,D END

- ONLY.
 3. REDUNDANT
 ANODES.
- 4. UNUSED DP POSITION.
- 5. SEE INTERNAL CIRCUIT DIAGRAM.
- 6. REDUNDANT CATHODE.
- 7. SEE PART NUMBER TABLE FOR L.H.D.P. AND R.H.D.P. DESIGNATION.
- 8. FOR YELLOW AND GREEN DEVICES ONLY.

*The Side View of package indicates Country of Origin.

	FUNCTION							
PIN	E	F	G	Н				
1	CATHODE-s	CATHODE-a	ANODE-a	CATHODE-d				
2	CATHODE-f	CATHODE-f	ANODE-f	ANODE-d				
3	ANODE ⁽³⁾	ANODE ^[3]	CATHODE ⁽⁴⁾	NO PIN				
4	NO PIN	NO PIN	NO PIN	CATHODE-c				
5	NO PIN	NO PIN	NO PIN	CATHODE-e				
6	CATHODE-dp	NO CONN.(9)	NO CONN.[9]	ANODE-				
7	CATHODE-	CATHODE-	ANODE-	ANODE-c				
8	CATHODE-d	CATHODE-d	ANODE-d	ANODE-dp				
9	NO CONN.[9]	CATHODE-dp	ANODE-dp	CATHODE-dp				
10	CATHODE-c	CATHODE-c	ANODE-c	CATHODE-b				
11	CATHODE-g	CATHODE-g	ANODE-g	CATHODE-8				
12	NO PIN	NO PIN	NO PIN	NO PIN				
13	CATHODE-b	CATHODE-b	ANODE-6	ANODE-a				
14	ANODE ⁽³⁾	ANODE(3)	CATHODE[*]	ANODE-b				

NOTE 4

12.70 (.500) MAX. 5.33 6.36 (.210) (.250) 4.06 (.160) (.250)

END VIEW

DATE CODE	2,54 (.100)
SIDE VIE	• •
* The Side View of package i	ndicates Country of Origin

Internal Circuit Diagram

Absolute Maximum Ratings

Description	Red 5082-7700 Series	AlGaAs Red HDSP-E150 Series	HER 5082-7610/ 7650 Series	Yellow 5082-7620/ 7660 Series	Green HDSP-3600/ 4600 Series	Units		
Average Power per Segment or DP	82	96	105	80	105	mW		
Peak Forward Current per Segment or DP	150(1)	160[3]	90[5]	60[7]	30 _(a)	mA		
DC Forward Current per Segment or DP	25[2]	40 ^[4]	30 _[e]	20[8]	3010)	mA		
Operating Temperature Range	-40 to +100	-20 to +100[11]		-40 to +100	· ·	°C		
Storage Temperature Range			-55 to +1	00		°C		
Reverse Voltage per Segment or DP		3.0						
Lead Solder Temperature for 3 Seconds (1.59 mm [0.063 in.] below seating plane	260							

Notes:

- 1. See Figure 1 to establish pulsed conditions.
- 2. Derate above 80°C at 0.63 mA/°C.
- 3. See Figure 2 to establish pulsed conditions.
- 4. Derate above 46°C at 0.54 mA/°C.
- 5. See Figure 7 to establish pulsed conditions.
- 6. Derate above 53°C at 0.45 mA/°C.
- 7. See Figure 8 to establish pulsed conditions.
- 8. Derate above 81°C at 0.52 mA/°C.
- 9. See Figure 9 to establish pulsed conditions.
- 10. Derate above 39°C at 0.37 mA/°C.
- $11.\ For\ operation\ below\ -20^{\circ}C,\ contact\ your\ local\ HP\ components\ sales\ office\ or\ an\ authorized\ distributor.$

Electrical/Optical Characteristics at T_A = 25 $^{\circ}\mathrm{C}$

Red

Device Series	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
5082-773X 5082-774X	Luminous Intensity/Segment ^[1,2] (Digit Average)	$I_{ m V}$	360	770		μcd	$I_{\rm F} = 20 \text{ mA}$
5082-775X 5082-776X			360	1100		μcd	$I_F = 20 \text{ mA}$
	Forward Voltage/Segment or DP	V_{F}		1.6	2.0	v	$I_F = 20 \text{ mA}$
	Peak Wavelength	$\lambda_{ ext{PEAK}}$		655	,	nm	
All	Dominant Wavelength ^[3]	$\lambda_{ m d}$		640		nm	
All	Reverse Voltage/Segment or DP ^[4]	V_{R}	3.0	12		v	$I_R = 100 \mu\text{A}$
	Temperature Coefficient of $V_F/Segment$ or DP	$\Delta V_{\mathrm{F}}/^{\circ}\mathrm{C}$		-2		mV/°C	
	Thermal Resistance LED Junction-to-Pin	$R\theta_{J-PIN}$		280		°C/W/Seg	

AlGaAs Red

Device Series	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
	Luminous Intensity/Segment ^[1,2,5] (Digit Average)	I_{V}	8.5	15.0		mcd	$I_{\rm F} = 20 \text{ mA}$
	Forward Valtage/Segment on DB	V		1.8		v	$I_{\rm F}$ = 20 mA
HDSP-	Forward Voltage/Segment or DP V _F	v _F		2.0	3.0	v	$I_{\rm F} = 100 \text{ mA}$
E15X	Peak Wavelength	$\lambda_{ ext{PEAK}}$		645		nm	
	Dominant Wavelength ^[3]	$\lambda_{ m d}$		637		nm	
	Reverse Voltage/Segment or DP ^[4]	V_{R}	3.0	15		V	$I_R = 100 \mu A$
	Temperature Coefficient of V _F /Segment or DP	$\Delta V_{\mathrm{F}}/^{\circ}\mathrm{C}$		-2		mV/°C	
	Thermal Resistance LED Junction- to-Pin	$R\theta_{J-PIN}$		340		°C/W/Seg	

High Efficiency Red

Device Series	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
5082-761X	Luminous Intensity/Segment[1,2,6]	$I_{ m V}$	340	800		μcd	$I_F = 5 \text{ mA}$
5082-765X	(Digit Average)	IV.	340	1115		μcd	$I_F = 5 \text{ mA}$
	Forward Voltage/Segment or DP	V_{F}		2.1	2.5	V	$I_F = 20 \text{ mA}$
	Peak Wavelength	$\lambda_{ ext{PEAK}}$		635		nm	
All	Dominant Wavelength ^[3]	λ_{d}		626		nm	·
All	Reverse Voltage/Segment or DP ^[4]	V_{R}	3.0	30		V	$I_R = 100 \mu\text{A}$
	Temperature Coefficient of V _F /Segment or DP	ΔV_F /°C		-2		mV/°C	
	Thermal Resistance LED Junction-to-Pin	$R\theta_{J ext{-PIN}}$		280		°C/W	

Yellow

Device Series	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
5082-762X	Luminous Intensity/Segment ^[1,2] (Digit Average)	т	205	620		μcd	$I_F = 5 \text{ mA}$
5082-766X	(Digit Average)	I_V	290	835		μcd	$I_F = 5 \text{ mA}$
	Forward Voltage/Segment or DP	V_{F}		2.2	2.5	V	$I_F = 20 \text{ mA}$
	Peak Wavelength	$\lambda_{ ext{PEAK}}$		583		nm	
All	Dominant Wavelength ^[3,7]	λ_{d}	581.5	586	592.5	nm	
All	Reverse Voltage/Segment or DP[4]	V_R	3.0	40		V	$I_R = 100 \mu A$
	Temperature Coefficient of V_F /Segment or DP	$\Delta V_{\mathrm{F}}/^{\circ}\mathrm{C}$		-2		mV/°C	
	Thermal Resistance LED Junction-to-Pin	$R\theta_{J-PIN}$		280		°C/W/Seg	

High Performance Green

Device Series	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
HDSP-360X	Luminous Intensity/Segment ^[1,2] (Digit Average)	I _V	860	2700		μcd	$I_{\rm F} = 10 \text{ mA}$
HDSP-460X	(Digit inverage)	1	1030	4000		μcd	$I_F = 10 \text{ mA}$
	Forward Voltage/Segment or DP	V_{F}		2.1	2.5	V	$I_F = 10 \text{ mA}$
	Peak Wavelength	$\lambda_{ ext{PEAK}}$		566		nm	
All	Dominant Wavelength ^[3,7]	$\lambda_{ m d}$		571	577	nm	
All	Reverse Voltage/Segment or DP[4]	$V_{\rm R}$	3.0	50		V	$I_R = 100 \mu A$
	Temperature Coefficient of V _F /Segment or DP	$\Delta V_{\mathrm{F}}/^{\circ}\mathrm{C}$		-2		mV/°C	
	Thermal Resistance LED Junction-to-Pin	$ m R\theta_{J ext{-PIN}}$		280		°C/W/Seg	

Notes:

- 1. Device case temperature is 25°C prior to the intensity measurement.
- 2. The digits are categorized for luminous intensity. The intensity category is designated by a letter on the side of the package.
- 3. The dominant wavelength, λ_d , is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the device
- 4. Typical specification for reference only. Do not exceed absolute maximum ratings.
- 5. For low current operation, the AlGaAs HDSP-E10X series displays are recommended. They are tested at 1 mA dc/segment and are pin for pin compatible with the HDSP-E15X series.
- For low current operation, the HER HDSP-335X series displays are recommended. They are tested at 2 mA dc/segment and are pin for pin compatible with the 5082-7650 series.
- 7. The Yellow (5082-7620/7660) and Green (HDSP-3600/4600) displays are categorized for dominant wavelength. The category is designated by a number adjacent to the luminous intensity category letter.

Red, AlGaAs Red

Figure 1. Maximum Tolerable Peak Current vs. Pulse Duration – Red.

Figure 2. Maximum Allowed Peak Current vs. Pulse Duration – AlGaAs Red.

Red, AlGaAs Red (Continued)

TA - AMBIENT TEMPERATURE - °C

Figure 3. Maximum Allowable DC Current vs. Ambient Temperature.

Figure 5. Relative Luminous Intensity vs. DC Forward Current.

160 | RED | AIGAAS RED | AIGA

VF - FORWARD VOLTAGE - V

Figure 4. Forward Current vs. Forward Voltage.

IPEAK - PEAK FORWARD CURRENT PER SEGMENT - mA

Figure 6. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

HER, Yellow, Green

tp - PULSE DURATION - μs

Figure 7. Maximum Tolerable Peak Current vs. Pulse Duration – HER Series.

 $t_{\mbox{\scriptsize p}}$ - PULSE DURATION - μ s

Figure 8. Maximum Tolerable Peak Current vs. Pulse Duration – Yellow Series.

HER, Yellow, Green (Continued)

TA - AMBIENT TEMPERATURE - °C

Figure 9. Allowable Peak Current vs. Pulse Duration - Green Series.

Figure 10. Maximum Allowable DC Current vs. Ambient Temperature.

Figure 11. Forward Current vs. Forward Voltage.

Figure 12. Relative Luminous Intensity vs. DC Forward Current.

Figure 13. Relative Luminous Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Contrast Enhancement

For information on contrast enhancement please see Application Note 1015.

Soldering/Cleaning

For information on soldering LEDs please refer to Application Note 1027.

8 mm (0.31 inch) Ultra Mini Seven Segment Displays

Technical Data

HDSP-U0XX Series HDSP-U1XX Series HDSP-U2XX Series HDSP-U3XX Series HDSP-U4XX Series HDSP-U5XX Series

Features

- Compact Package
- 8 mm (0.31 inch) Character Height
- Choice of Colors
 Wide Range of Colors
- Excellent Appearance
 Evenly Lighted Segments
 Mitered Corners on Segments
 Gray/Black Surface Gives
 Optimum Contrast
 ± 50° Viewing Angle
- Design Flexibility
 Common Anode or Common
 Cathode
 Right Hand Decimal Point

• Categorized for Luminous

Yellow and Green also Categorized for Color Use of Like Categories Yields a Uniform Display

- High Light Output
- High Peak Current
- Excellent for Long Digit String Multiplexing
- Intensity and Color Selection Option

Description

The 8 mm (0.31 inch) LED seven segment displays are HP's most space-efficient character size. They are designed for viewing distances up to 3 metres (10 feet). The numeric devices feature a right hand decimal point. All devices are available as either common anode or common cathode.

Typical applications include appliances, temperature controllers, and digital panel meters.

Devices

Intensity

Red HDSP-	AlGaAs Red HDSP-	HER HDSP-	Orange HDSP-	Yellow HDSP-	Green HDSP-	Description	Circuit Diagram
U001	U101	U201	U401	U301	U501	Common Anode, Right Hand Decimal, Gray Surface	A
U003	U103	U203	U403	U303	U503	Common Cathode, Right Hand Decimal, Gray Surface	В
U011	U111	U211	U411	U311	U511	Common Anode, Right Hand Decimal, Black Surface	A
U013	U113	U213	U413	U313	U513	Common Cathode, Right Hand Decimal, Black Surface	В

- 1. ALL DIMENSIONS IN MILLIMETERS (INCHES).
 2. ALL UNTOLERANCED DIMENSIONS ARE FOR REFERENCE ONLY.
 3. FOR YELLOW AND GREEN SERIES PRODUCT ONLY.

Internal Circuit Diagram

	FUNCTION							
PIN	Α	В						
1	CATHODE a	ANODE a						
2	CATHODE f	ANODE f						
3	CATHODE g	ANODE g						
4	CATHODE e	ANODE e						
5	CATHODE d	ANODE d						
6	CATHODE DP	CATHODE DP						
7	ANODE DP	ANODE DP						
8	CATHODE c	ANODE c						
9	ANODE	CATHODE						
10	CATHODE b	ANODE b						

HDSP-UXXX CIRCUIT

Absolute Maximum Ratings

Description	Red HDSP- U0XX Series	AlGaAs Red HDSP- U1XX Series	HER/Orange HDSP- U2XX/-4XX Series	Yellow HDSP- U3XX Series	Green HDSP- U5XX Series	Units	
Average Power per Segment or DP	82	37	105	80	105	mW	
Peak Forward Current per Segment or DP	150[1]	45[3]	90[5]	60[7]	90 [9]	mA	
DC Forward Current per Segment or DP	25[2]	15 ^[4]	30[6]	20[8]	3010]	mA	
Operating Temperature Range	-25 to +90	-20 to +90	-25	to +90		°C	
Storage Temperature Range			-30 - +90			$^{\infty}$	
Reverse Voltage per Segment or DP	3.0						
Lead Solder Temperature for 3 Seconds (1.60 mm [0.063 in.] below seating plane)	* * * * * * * * * * * * * * * * * * * *		260			°C	

Notes:

- 1. See Figure 1 to establish pulsed conditions.
- 2. Derate above 80°C at 0.63 mA/°C (see figure 3).
- 3. See Figure 2 to establish pulsed conditions.
- 4. No derating over specified temperature range.
- 5. See Figure 7 to establish pulsed conditions.

- 6. Derate above 53°C at 0.45 mA/°C (see figure 10).
- 7. See Figure 8 to establish pulsed conditions.
- 8. Derate above 81°C at 0.52 mA/°C (see figure 10).
- 9. See Figure 9 to establish pulsed conditions.
- 10. Derate above 39°C at 0.37 mA/°C (see figure 10).

Electrical/Optical Characteristics at $T_A = 25$ °C Red

Device Series	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
HDSP-	Luminous Intensity/Segment ^[1,2]	I _V	600	1100		μcd	$I_F = 20 \text{ mA}$
U0XX	(Digit Average)			500			$I_F = 10 \text{ mA}$
	Forward Voltage/Segment or DP	V_{F}		1.6	2.0	V	$I_F = 20 \text{ mA}$
	Peak Wavelength	$\lambda_{ ext{PEAK}}$		655		nm	
	Dominant Wavelength ^[3]	$\lambda_{ m d}$	- 4	640		nm	
	Reverse Voltage/Segment or DP[4]	V _R	3.0	12		v	$I_{R} = 100 \mu A$
	Temperature Coefficient of V _F /Segment or DP	$\Delta V_{\mathrm{F}}/^{\circ}\mathrm{C}$		-2		mV/°C	
	Thermal Resistance LED Junction-to-Pin	$ m R heta_{J ext{-Pin}}$		200		°C/W/ Seg	

AlGaAs Red

Device Series	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
HDSP-	Luminous Intensity/Segment ^[1,2]	I_{V}	315	600		μcd	$I_F = 1 \text{ mA}$
U1XX	(Digit Average)			3600			$I_F = 5 \text{ mA}$
	Forward Voltage/Segment or DP	$V_{\rm F}$		1.6			$I_F = 1 \text{ mA}$
				1.7		v	$I_F = 5 \text{ mA}$
				1.8	2.2		$I_F = 20 \text{ mA}$
	Peak Wavelength	$\lambda_{ ext{PEAK}}$		645		nm	
	Dominant Wavelength ^[3]	$\lambda_{ m d}$		637		nm	
:	Reverse Voltage/Segment or DP ^[4]	V_{R}	3.0	15		V	$I_R = 100 \mu A$
	Temperature Coefficient of V _F /Segment or DP	$\Delta V_{F}/^{\circ}C$		-2		mV/°C	
	Thermal Resistance LED Junction-to-Pin	$R\theta_{J ext{-Pin}}$		255		°C/W/ Seg	

High Efficiency Red

Device							Test
Series	Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
HDSP-	,		360	980		μcd	$I_F = 5 \text{ mA}$
U2XX	(Digit Average)		5390			$I_F = 20 \text{ mA}$	
	Forward Voltage/Segment or DP	$V_{\mathbf{F}}$		2.0	2.5	V	$I_F = 20 \text{ mA}$
	Peak Wavelength	$\lambda_{ ext{PEAK}}$		635		nm	
	Dominant Wavelength ^[3]	$\lambda_{ m d}$		626		nm	
	Reverse Voltage/Segment or DP[4]	V_R	3.0	30		V	$I_R = 100 \mu A$
	Temperature Coefficient of V _F /Segment or DP	$\Delta V_{F}/^{\circ}C$		-2		mV/°C	
	Thermal Resistance LED Junction-to-Pin	$R\theta_{J ext{-Pin}}$		200		°C/W/ Seg	

Orange

Device Series	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
HDSP-	Luminous Intensity/Segment ^[1,2]	I_{V}	360	980		μcd	$I_F = 5 \text{ mA}$
U4XX	(Digit Average)			5390			$I_F = 20 \text{ mA}$
	Forward Voltage/Segment or DP	$V_{\rm F}$		2.0	2.5	V	$I_F = 20 \text{ mA}$
	Peak Wavelength	$\lambda_{ ext{PEAK}}$		600		nm	
	Dominant Wavelength ^[3]	$\lambda_{\mathbf{d}}$		603		nm	
	Reverse Voltage/Segment or DP ^[4]	$V_{\rm R}$	3.0	30		V	$I_R = 100 \mu A$
	Temperature Coefficient of V _F /Segment or DP	$\Delta V_{\rm F}/^{\circ}{ m C}$		-2	-	mV/°C	
	Thermal Resistance LED Junction-to-Pin	$ m R heta_{J ext{-Pin}}$		200	1 1 .	°C/W/ Seg	

Yellow

TCHOW							
Device Series	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
HDSP-	Luminous Intensity/Segment ^[1,2]	I_{V}	225	480		μcd	$I_F = 5 \text{ mA}$
U3XX	(Digit Average)			2740			$I_F = 20 \text{ mA}$
	Forward Voltage/Segment or DP	V_{F}		2.2	2.5	V	$I_F = 20 \text{ mA}$
	Peak Wavelength	$\lambda_{ ext{PEAK}}$		583		nm	
	Dominant Wavelength ^[3,5]	$\lambda_{ m d}$	581.5	586	592.5	nm	
	Reverse Voltage/Segment or DP ^[4]	V_{R}	3.0	50.0		V	$I_R = 100 \mu\text{A}$
·	Temperature Coefficient of V _F /Segment or DP	$\Delta V_{\rm F}/^{\circ}{ m C}$		-2		mV/°C	
	Thermal Resistance LED Junction-to-Pin	$ m R heta_{J ext{-Pin}}$		200		°C/W/ Seg	

High Performance Green

Device Series	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
HDSP-	Luminous Intensity/Segment ^[1,2]	I_{V}	860	3000		μcd	$I_F = 10 \text{ mA}$
U5XX	(Digit Average)			6800	-		$I_F = 20 \text{ mA}$
	Forward Voltage/Segment or DP	$V_{\rm F}$		2.1	2.5	V	$I_F = 10 \text{ mA}$
	Peak Wavelength	$\lambda_{ ext{PEAK}}$		566		nm	
	Dominant Wavelength ^[3,5]	λ_{d}		571		nm	
	Reverse Voltage/Segment or DP ^[4]	V_R	3.0	50.0		V	$I_R = 100 \mu\text{A}$
	Temperature Coefficient of V _F /Segment or DP	$\Delta V_{F}/^{\circ}C$		-2		mV/°C	
	Thermal Resistance LED Junction-to-Pin	$R\theta_{J ext{-Pin}}$		200		°C/W/ Seg	

Notes

- 1. Case temperature of device immediately prior to the intensity measurement is $25^\circ\!\mathrm{C}.$
- 2. The digits are categorized for luminous intensity. The intensity category is designated by a letter on the side of the package.
- 3. The dominant wavelength, λ_d , is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the doring
- 4. Typical specification for reference only. Do not exceed absolute maximum ratings.
- 5. The Yellow (HDSP-U3XX) series and Green (HDSP-U5XX) series displays are categorized for dominant wavelength. The category is designated by a number adjacent to the luminous intensity category letter.

Red, AlGaAs Red

Figure 1. Maximum Tolerable Peak Current vs. Pulse Duration – Red.

Figure 3. Maximum Allowable DC Current vs. Ambient Temperature.

Figure 5. Relative Luminous Intensity vs. DC Forward Current.

Figure 2. Maximum Tolerable Peak Current vs. Pulse Duration - AlGaAs Red.

Figure 4. Forward Current vs. Forward Voltage.

Figure 6. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

HER, Orange, Yellow, Green

Figure 7. Maximum Tolerable Peak Current vs. Pulse Duration – HER, Orange.

Figure 9. Maximum Tolerable Peak Current vs. Pulse Duration – Green.

Figure 8. Maximum Tolerable Peak Current vs. Pulse Duration – Yellow.

Figure 10. Maximum Allowable DC Current vs. Ambient Temperature.

Figure 11. Forward Current vs. Forward Voltage Characteristics.

Figure 12. Relative Luminous Intensity vs. DC Forward Current.

I PEAK - PEAK FORWARD CURRENT PER SEGMENT - mA

Figure 13. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Electrical/Optical

For more information on electrical/optical characteristics, please see Application Note 1005.

Contrast Enhancement

For information on contrast enhancement please see Application Note 1015.

Soldering/Cleaning

Cleaning agents from the ketone family (acetone, methyl ethyl ketone, etc.) and from the chorinated hydrocarbon family (methylene chloride, trichloroethylene, carbon tetrachloride, etc.) are not recommended for cleaning LED parts. All of these various solvents attack or dissolve the encapsulating materials used to form the package of plastic LED parts.

For more information on soldering LEDs please refer to Application Note 1027.

7.6 mm (0.3 inch) Micro Bright Seven Segment Displays

Technical Data

HDSP-730X Series HDSP-731X Series HDSP-740X Series HDSP-750X Series HDSP-780X Series HDSP-A15X Series

Features

- Available with Colon for Clock Display
- Compact Package 0.300 x 0.500 inches Leads on 2.54 mm (0.1 inch) Centers
- Choice of Colors Red, AlGaAs Red, High Efficiency Red, Yellow, Green
- Excellent Appearance Evenly Lighted Segments Mitered Corners on Segments Surface Color Gives Optimum Contrast
 - ± 50° Viewing Angle
- Design Flexibility
 Common Anode or Common
 Cathode

Right Hand Decimal Point ± 1. Overflow Character

• Categorized for Luminous Intensity Yellow and Green Categorized for Color

Use of Like Categories Yields a Uniform Display

- High Light Output
- High Peak Current
- Excellent for Long Digit String Multiplexing
- Intensity and Color Selection Available See Intensity and Color Selected Displays Data Sheet
- Sunlight Viewable AlGaAs

Description

The 7.6 mm (0.3 inch) LED seven segment displays are designed for viewing distances up to 3 metres (10 feet). These devices use an industry standard size package and pinout. Both the numeric and

Devices

Red HDSP-	AlGaAs ^[1] HDSP-	HER ^[1] HDSP-	Yellow ^[1] HDSP-	Green ^[1] HDSP-	Description	Package Drawing
7301	A151	7501	7401	7801	Common Anode Right Hand Decimal	A
7302		7502	7402	7802	Common Anode Right Hand Decimal, Colon	В
7303	A153	7503	7403	7803	Common Cathode Right Hand Decimal	С
7304		7504	7404	7804	Common Cathode Right Hand Decimal, Colon	D
7307	A157	7507	7407	7807	Common Anode ± 1. Overflow	E
7308	A158	7508	7408	7808	Common Cathode ± 1. Overflow	F

Note

^{1.} These displays are recommended for high ambient light operation. Please refer to the HDSP-A10X AlGaAs, HDSP-335X HER, HDSP-A80X Yellow, and HDSP-A90X Green data sheet for low current operation.

± 1. overflow devices feature a right hand decimal point. All devices are available as either common anode or common cathode.

These displays are ideal for most applications. Pin for pin equivalent displays are also available in a low current design. The low current displays are ideal for

portable applications. For additional information see the Low Current Seven Segment Displays.

Package Dimensions

NOTES:
1. ALL DIMENSIONS IN MILLIMETRES (INCHES)
2. MAXIMUM.

- 3. ALL UNTOLERANCED DIF FOR REFERENCE ONLY.
- 4. REDUNDANT ANODES.
 5. REDUNDANT CATHODES.
 6. FOR HDSP-7400/-7800 SERIES PRODUCT ONLY.

	FUNCTION										
PIN	Α	В	С	D	E	F					
1	ANODE[4]	CATHODE COLON	CATHODE [6]	ANODE COLON	ANODE (4)	CATHODE					
2	CATHODE 1	CATHODE f	ANODE f	ANODE f	CATHODE PLUS	ANODE PLUS					
3	CATHODE g	CATHODE g	ANODE g	ANODE g	CATHODE MINUS	ANODE MINUS					
4	CATHODE e	CATHODE e	ANODE .	ANODE e	NC	NC					
5	CATHODE d	CATHODE d	ANODE d	ANODE d	NC	NC					
6	ANODE [4]	ANODE	CATHODE [5]	CATHODE	ANODE [4]	CATHODE [5]					
7	CATHODE DP	CATHODE DP	ANODE DP	ANODE DP	CATHODE DP	ANODE DP					
8	CATHODE c	CATHODE c	ANODE c	ANODE c	CATHODE c	ANODE c					
9	CATHODE 6	CATHODE b	ANODE b	ANODE 6	CATHODE b	ANODE b					
10	CATHODE a	CATHODE a	ANODE a	ANODE a	NC	NC					

Internal Circuit Diagram

Absolute Maximum Ratings

Description	Red HDSP-7300 Series	AlGaAs Red HDSP-A150 Series	HER HDSP-7500 Series	Yellow HDSP-7400 Series	Green HDSP-7800 Series	Units		
Average Power per Segment or DP	82	96	105	80	105	mW		
Peak Forward Current per Segment or DP	·150 ^[1]	160[3]	90[5]	60[7]	90 _[8]	mA		
DC Forward Current per Segment or DP	25[2]	40[4]	30[6] 20[8]		3010]	mA		
Operating Temperature Range	-40 to +100	-20 to +100[11]		-40 to +100	<u> </u>	°C		
Storage Temperature Range			-55 to +	100		°C		
Reverse Voltage per Segment or DP		3.0						
Lead Solder Temperature for 3 Seconds (1.60 mm [0.063 in.] below seating plane)			260			℃		

Notes:

- 1. See Figure 1 to establish pulsed conditions.
- 2. Derate above 80°C at 0.63 mA/°C.
- 3. See Figure 2 to establish pulsed conditions.
- 4. Derate above 46°C at 0.54 mA/°C.
- 5. See Figure 7 to establish pulsed conditions.
- 6. Derate above 53°C at 0.45 mA/°C.

- 7. See Figure 8 to establish pulsed conditions.
- 8. Derate above 81°C at 0.52 mA/°C.
- 9. See Figure 9 to establish pulsed conditions.
- 10. Derate above 39°C at 0.37 mA/°C.
- 11. For operation below -20°C, contact your local HP components sales office or an authorized distributor.

Electrical/Optical Characteristics at $\rm T_A$ = 25 $^{\circ}\rm C$

Red

Device Series HDSP-	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
		Symbol	600	1100	1120221	CHILD	$I_{\rm F} = 20 \text{mA}$
730X	Luminous Intensity/Segment ^[1,2] (Digit Average)	I_{v}		500		μcd	
	(Digit riverage)			500			$I_{\rm F} = 10 \text{ mA}$
	Forward Voltage/Segment or DP	V_{F}		1.6	2.0	V	$I_F = 20 \text{ mA}$
	Peak Wavelength	$\lambda_{ ext{PEAK}}$		655		nm	
	Dominant Wavelength ^[3]	$\lambda_{ m d}$		640		nm	
All	Reverse Voltage/Segment or DP[4]	V_R	3.0	12		V	$I_R = 100 \text{ mA}$
	Temperature Coefficient of V _F /Segment or DP	$\Delta V_{ m F}/^{\circ}{ m C}$		-2		mV/°C	
	Thermal Resistance LED Junction-to-Pin	$R\theta_{J-PIN}$		200		°C/W/Seg	

AlGaAs Red

Device Series HDSP-	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
	Luminous Intensity/Segment ^[1,2,5] (Digit Average)	I_V	6.9	14.0		mcd	$I_{\rm F} = 20 \text{ mA}$
	Forward Voltage/Segment or DP	N/		1.8		V	$I_{\rm F} = 20 \text{ mA}$
	rorward voltage/segment or DP	$V_{ m F}$		2.0	3.0	V	$I_F = 100 \text{ mA}$
A15X	Peak Wavelength	$\lambda_{ ext{PEAK}}$		645		nm	
	Dominant Wavelength ^[3]	$\lambda_{ m d}$		637		nm	
	Reverse Voltage/Segment or DP ^[4]	$V_{\rm R}$	3.0	15.0		V	$I_R = 100 \mu\text{A}$
	Temperature Coefficient of $V_F/Segment$ or DP	$\Delta V_{\rm F}/^{\circ}{ m C}$		-2		mV/°C	
	Thermal Resistance LED Junction-to-Pin	$R\theta_{J-PIN}$		255		°C/W/Seg	

High Efficiency Red

Device Series HDSP-	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
	Luminous Intensity/Segment ^[1,2,6] (Digit Average)	I _V	360	980		μcd	$I_{\rm F} = 5 \text{ mA}$
	(Digit Average)			5390		μcu	$I_F = 20 \text{ mA}$
	Forward Voltage/Segment or DP	V_{F}		2.0	2.5	V	$I_F = 20 \text{ mA}$
750X	Peak Wavelength	$\lambda_{ ext{PEAK}}$		635		nm	
	Dominant Wavelength ^[3]	λ_{d}		626		nm	
	Reverse Voltage/Segment or DP ^[4]	V_{R}	3.0	30		V	$I_R = 100 \mu A$
	Temperature Coefficient of $V_F/Segment$ or DP	$\Delta V_F/^{\circ}C$		-2		mV/°C	
	Thermal Resistance LED Junction-to-Pin	$R\theta_{J-PIN}$		200		°C/W/Seg	

Yellow

Device Series HDSP-	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
	Luminous Intensity/Segment[1,2,7]	,	225	480		uad	$I_F = 5 \text{ mA}$
	(Digit Average)	I _V		2740		μcd	$I_F = 20 \text{ mA}$
	Forward Voltage/Segment or DP	$V_{\rm F}$		2.2	2.5	v	$I_F = 20 \text{ mA}$
740X	Peak Wavelength	$\lambda_{ ext{PEAK}}$		583		nm	
	Dominant Wavelength ^[3,9]	$\lambda_{ m d}$	581.5	586	592.5	nm	
	Reverse Voltage/Segment or DP ^[4]	V _R	3.0	50.0		V	$I_R = 100 \mu\text{A}$
	Temperature Coefficient of V _F /Segment or DP	ΔV_F /°C		-2		mV/°C	
	Thermal Resistance LED Junction-to-Pin	$R\theta_{J-PIN}$		200		°C/W/Seg	

High Performance Green

Device Series HDSP-	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
	Luminous Intensity/Segment ^[1,2,8] (Digit Average)	I _V	860	3000		uad	$I_{\rm F} = 10 \text{ mA}$
	(Digit Average)	1		6800		μcd	$I_F = 20 \text{ mA}$
	Forward Voltage/Segment or DP	V_{F}		2.1	2.5	V	$I_F = 10 \text{ mA}$
780X	Peak Wavelength	$\lambda_{ ext{PEAK}}$		566		nm	
	Dominant Wavelength ^[3,9]	λ_{d}		571	577	nm	
	Reverse Voltage/Segment or DP ^[4]	V_{R}	3.0	50.0		. V	$I_R = 100 \mu\text{A}$
	Temperature Coefficient of V _F /Segment or DP	$\Delta V_{F}/^{\circ}C$		-2		mV/°C	
	Thermal Resistance LED Junction- to-Pin	$R\theta_{J-PIN}$		200		°C/W/Seg	;

Notes:

- 1. Case temperature of device immediately prior to the intensity measurement is 25°C.
- 2. The digits are categorized for luminous intensity. The intensity category is designated by a letter on the side of the package. 3. The dominant wavelength, λ_{dr} is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of
- 4. Typical specification for reference only. Do not exceed absolute maximum ratings.
 5. For low current operation the AlGass HDSP-A101 series displays are recommended.

- 6. For low current operation the HER HDSP-7511 series displays are recommended.
 7. For low current operation the Yellow HDSP-A801 series displays are recommended.
 8. For low current operation the Green HDSP-A901 series displays are recommended.
- 9. The yellow (HDSP-7400) and Green (HDSP-7800) displays are categorized for dominant wavelength. The category is designated by a number adjacent to the luminous intensity category letter.

Red, AlGaAs Red

Figure 1. Maximum Tolerable Peak Current vs. Pulse Duration – Red.

Figure 3. Maximum Allowable DC Current per Segment as a Function of Ambient Temperature.

Figure 5. Relative Luminous Intensity vs. DC Forward Current.

Figure 2. Maximum Allowed Peak Current vs. Pulse Duration – AlGaAs Red.

Figure 4. Forward Current vs. Forward Voltage.

I PEAK - PEAK FORWARD CURRENT PER SEGMENT - MA

Figure 6. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

HER, Yellow, Green

Figure 7. Maximum Tolerable Peak Current vs. Pulse Duration – HER.

Figure 9. Allowable Peak Current vs. Pulse Duration - Green.

Figure 11. Forward Current vs. Forward Voltage Characteristics.

Figure 8. Maximum Tolerable Peak Current vs. Pulse Duration – Yellow.

Figure 10. Maximum Allowable DC Current per Segment as a Function of Ambient Temperature.

Figure 12. Relative Luminous Intensity vs. DC Forward Current.

Figure 13. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Contrast Enhancement

For information on contrast enhancement please see Application Note 1015.

Soldering/Cleaning

Cleaning agents from the ketone family (acetone, methyl ethyl ketone, etc.) and from the chlorinated hydrocarbon family (methylene chloride, trichloroethylene, carbon tetrachloride, etc.) are not recommended for cleaning LED parts. All of these various solvents attack or dissolve the encapsulating epoxies used to form the package of plastic LED parts.

For further information on soldering LEDs please refer to Application Note 1027.

10 mm (0.40 inch) Seven Segment Displays

Technical Data

HDSP-F00X Series HDSP-F15X Series HDSP-F20X Series HDSP-F30X Series HDSP-F40X Series HDSP-G00X Series HDSP-G15X Series HDSP-G20X Series HDSP-G30X Series HDSP-G40X Series HDSP-G40X Series

Features

- Industry Standard Size
- Industry Standard Pinout 7.6 mm (0.3 inch) DIP Single 15.24 mm (0.6 inch) DIP Dual Leads on 2.54 mm (0.1 inch) Centers
- Choice of Colors
 Red, AlGaAs Red, High
 Efficiency Red, Orange, Yellow,
 Green
- Excellent Appearance
 Evenly Lighted Segments
 Mitered Corners on Segments
 Gray Package Gives Optimum
 Contrast
 ± 50° Viewing Angle

Design Flexibility

Common Anode or Common Cathode Single and Dual Digits Right Hand Decimal Point ± 1. Overflow Character

Categorized for Luminous Intensity

Yellow and Green Categorized for Color

Use of Like Categories Yields a Uniform Display

- High Light Output
- High Peak Current
- Excellent for Long Digit String Multiplexing

- Intensity and Color Selection Option
- Sunlight Viewable AlGaAs

Devices

Red HDSP-	AlGaAs Red ^[1] HDSP-	HER HDSP-	Orange HDSP-	Yellow HDSP-	Green HDSP-	Description	Package Drawing
F001	F151	F201	F401	F301	F501	Common Anode Right Hand Decimal	A
F003	F153	F203	F403	F303	F503	Common Cathode Right Hand Decimal	В
F007	F157	F207	F407	F307	F507	Common Anode ± 1. Overflow	С
F008	F158	F208	F408	F308	F508	Common Cathode ± 1. Overflow	D
G001	G151	G201	G401	G301	G501	Two Digit Common Anode Right Hand Decimal	E
G003	G153	G203	G403	G303	G503	Two Digit Common Cathode Right Hand Decimal	F

Note:

^{1.} These displays are recommended for high ambient light operation. Please refer to the HDSP-F10X data sheet for low current operation.

Description

The 10 mm (0.40 inch) LED seven segment displays are HP's most space-efficient character size. They are designed for viewing distances up to 4.5

metres (15 feet). These devices use an industry standard size package and pinout. The dual numeric, single numeric, and \pm 1. overflow devices feature a right hand decimal point. All devices

are available as either common anode or common cathode.

Typical applications include instruments, point of sale terminals, and appliances.

Package Dimensions

TOP END VIEW A, B, C, D

*The End View of package indicates Country of Origin.

DIMENSIONS ARE IN MILLIMETRES (INCHES).
 ALL UNTOLERANCED DIMENSIONS ARE FOR REFERENCE ONLY.
 WHERE APPLICABLE.

Internal Circuit Diagram

		FUN	ICTION	
PIN	Α	В	С	D
1	ANODE[1]	CATHODE[2]	ANODE[1]	CATHODE ^[2]
2	CATHODE f	ANODE f	CATHODE PLUS	ANODE PLUS
3	CATHODEg	ANODE g	CATHODE MINUS	ANODE MINUS
4	CATHODE e	ANODE e	NC	NC
5	CATHODE d	ANODE d	NC	NC
6	ANODE[1]	CATHODE[2]	ANODE ^[1]	CATHODE[2]
7	CATHODE DP	ANODE DP	CATHODE DP	ANODE DP
8	CATHODE c	ANODE c	CATHODE c	ANODE c
9	CATHODE b	ANODE b	CATHODE b	ANODE b
10	CATHODE a	ANODE a	NC	NC

	FUN	CTION
PIN	E	F
1	E CATHODE NO. 1	E ANODE NO. 1
2	D CATHODE NO. 1	D ANODE NO. 1
3	C CATHODE NO. 1	C ANODE NO. 1
4	DP CATHODE NO. 1	DP ANODE NO. 1
5	E CATHODE NO. 2	E ANODE NO. 2
6	D CATHODE NO. 2	D ANODE NO. 2
7	G CATHODE NO. 2	G ANODE NO. 2
8	C CATHODE NO. 2	C ANODE NO. 2
9	CP CATHODE NO. 2	DP ANODE NO. 2
10	B CATHODE NO. 2	B ANODE NO. 2
11	A CATHODE NO. 2	A ANODE NO. 2
12	F CATHODE NO. 2	F ANODE NO. 2
13	DIGIT NO. 2 ANODE	DIGIT NO. 2 CATHODE
14	DIGIT NO. 1 ANODE	DIGIT NO. 1 CATHODE
15	B CATHODE NO. 1	B ANODE NO. 1
16	A CATHODE NO. 1	A ANODE NO. 1
17	G CATHODE NO. 1	G ANODE NO. 1
18	F CATHODE NO. 1	F ANODE NO. 1

- NOTES: 1. REDUNDANT ANODES 2. REDUNDANT CATHODES

Absolute Maximum Ratings

Description	Red HDSP- F00X/G00X Series	AlGaAs Red HDSP- F15X/G15X Series	HER/Orange HDSP- F20X/G20X/ G40X Series	Yellow HDSP- F30X/G30X Series	Green HDSP- F50X/G50X Series	Units			
Average Power per Segment or DP	82	96	105	80	105	mW			
Peak Forward Current per Segment or DP	150[1]	160 ^[3]	90[7]	60[7]	90 _[9]	mA			
DC Forward Current per Segment or DP	25[2]	40[4]	30[6]	20[8]	30[10]	mA			
Operating Temperature Range	-40 to +100	-20 to +100 ^[11]		-40 to +100	<u> </u>	°C			
Storage Temperature Range			-55 to +10	00		°C			
Reverse Voltage per Segment or DP		3.0							
Lead Solder Temperature for 3 Seconds (1.59 mm [0.63 in.] below seating plane)			260						

Notes:

- 1. See Figure 1 to establish pulsed conditions.
- 2. Derate above 80°C at 0.63 mA/°C.
- 3. See Figure 2 to establish pulsed conditions.
- 4. Derate above 46°C at 0.54 mA/°C.
- 5. See Figure 7 to establish pulsed conditions.
- 6. Derate above 53°C at 0.45 mA/°C.

- 7. See Figure 8 to establish pulsed conditions.
- 8. Derate above 81°C at 0.52 mA/°C.
- 9. See Figure 9 to establish pulsed conditions.
- 10. Derate above 39°C at 0.37 mA/°C.
- For operation below -20°C, contact your local HP components sales office or an authorized distributor.

Electrical/Optical Characteristics at $T_A = 25$ °C

Red

Device Series	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
	Luminous Intensity/Segment ^[1,2] (Digit Average)	I_{V}	650	1200		μcd	$I_{\rm F} = 20~{\rm mA}$
	Forward Voltage/Segment or DP	$V_{\rm F}$		1.6	2.0	V	$I_{\rm F} = 20~{\rm mA}$
HDSP-	Peak Wavelength	$\lambda_{ ext{PEAK}}$		655		nm	
F00X/ G00X	Dominant Wavelength ^[3]	λ_{d}		640		nm	
	Reverse Voltage/Segment or DP ^[4]	V_{R}	3.0	12		v	$I_{\mathrm{F}} = 100~\mu\mathrm{A}$
	Temperature Coefficient of V _F /Segment or DP	$\Delta V_{\mathrm{F}}/^{\circ}\mathrm{C}$		-2		mV/°C	
	Thermal Resistance LED Junction-to-Pin	$R\theta_{J-PIN}$		320		°C/W/Seg	

AlGaAs Red

Device Series	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
	Luminous Intensity/Segment ^[1,2,5] (Digit Average)	$I_{ m V}$	7.5	15.0		mcd	$I_{\rm F} = 20~{\rm mA}$
	Forward Voltage/Segment or DP	V_{F}		1.8	2.2	v	I _F = 20 mA
HDSP- F15X/	Peak Wavelength	$\lambda_{ ext{PEAK}}$		645		nm	
G15X	Dominant Wavelength ^[3]	λ_{d}	-	637		nm	
	Reverse Voltage/Segment or DP ^[4]	V_R	3.0	15		V	$I_R = 100 \mu\text{A}$
	Temperature Coefficient of V _F /Segment or DP	ΔV_{F} /°C		-2		mV/°C	
	Thermal Resistance LED Junction-to-Pin	Rθ _{J-PIN}		320		°C/W/Seg	

High Efficiency Red

Device Series	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
	Luminous Intensity/Segment ^[1,2] (Digit Average)	$I_{ m V}$	420	1200		μcd	$I_{\rm F}=5~{ m mA}$
	Forward Voltage/Segment or DP	$V_{ m F}$		2.0	2.5	V	$I_{\rm F} = 20~{\rm mA}$
HDSP- F20X/	Peak Wavelength	$\lambda_{ ext{PEAK}}$		635		nm	
G20X	Dominant Wavelength ^[3]	λ_{d}		626		nm	
	Reverse Voltage/Segment or DP ^[4]	V_R	3.0	30		v	$I_R = 100 \mu A$
	Temperature Coefficient of V _F /Segment or DP	ΔV_{F} /°C		-2		mV/°C	}
	Thermal Resistance LED Junction-to-Pin	Rθ _{J-PIN}		320		°C/W/Seg	

Orange

Device Series	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
	Luminous Intensity/Segment ^[1,2] (Digit Average)	I _v	420	1200		μcd	$I_{\rm F} = 5 \text{ mA}$
	Forward Voltage/Segment or DP	V _F		2.0	2.5	v	$I_F = 20 \text{ mA}$
HDSP-	Peak Wavelength	l _{peak}		600	i	nm	
F40X/ G40X	Dominant Wavelength ^[3]	l _d		603		nm	
	Reverse Voltage/Segment or DP[4]	V _R	3.0	30		v	$I_R = 100 \mu A$
	Temperature Coefficient of $V_{\rm F}$ Segment or DP	$\Delta V_{_{\rm F}}$ /°C		-2		mV/°C	
	Thermal Resistance LED Junction-to-Pin	RI\q _{J-PIN}		320		°C/W/Seg	

Yellow

Device Series	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
	Luminous Intensity/Segment ^[1,2] (Digit Average)	I_{V}	290	800		μcd	$I_{\rm F} = 5~{ m mA}$
	Forward Voltage/Segment or DP	V_{F}		2.2	2.5	V	$I_F = 20 \text{ mA}$
HDSP- F30X/	Peak Wavelength	$\lambda_{ ext{PEAK}}$		583		nm	
G30X	Dominant Wavelength ^[3,6]	λ_{d}	581.5	586	592.5	nm	
	Reverse Voltage/Segment or DP ^[4]	V_{R}	3.0	40		V	$I_R = 100 \mu A$
	Temperature Coefficient of $V_F/Segment$ or DP	ΔV_{F} /°C		-2		mV/°C	
	Thermal Resistance LED Junction-to-Pin	$ m R\theta_{J ext{-PIN}}$		320		°C/W/Seg	

High Performance Green

Device Series	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
	Luminous Intensity/Segment ^[1,2] (Digit Average)	I _V	1030	3500		μcd	$I_{\mathrm{F}} = 10 \; \mathrm{mA}$
	Forward Voltage/Segment or DP	V_{F}		2.1	2.5	V	$I_{\rm F} = 10 \text{ mA}$
HDSP-	Peak Wavelength	λ_{PEAK}		566		nm	
F50X/ G50X	Dominant Wavelength ^[3,6]	λ_{d}		571	577	nm	
	Reverse Voltage/Segment or DP ^[4]	V_{R}	3.0	50		v	$I_R = 100 \mu\text{A}$
	Temperature Coefficient of V _F /Segment or DP	$\Delta V_{ m F}/^{\circ}{ m C}$		-2	-	mV/°C	
	Thermal Resistance LED Junction-to-Pin	$R\theta_{ ext{J-PIN}}$		320		°C/W/Seg	

- 1. Case temperature of device immediately prior to the intensity measurement is $25^{\circ}\!\mathrm{C}.$
- 2. The digits are categorized for luminous intensity. The intensity category is designated by a letter on the side of the package.
- 3. The dominant wavelength, λ_d , is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the device.
- 4. Typical specification for reference only. Do not exceed absolute maximum ratings.

 5. For low current operation, the AlGaAs HDSP-F10X, G10X series displays are recommended. They are tested at 1 mA
- dc/segment and are pin for pin compatible with the HDSP-F15X/G15X series.

 6. The Yellow (HDSP-F30X/G30X) series and Green (HDSP-F50X/G50X) series displays are categorized for dominant wavelength. The category is designated by a number adjacent to the luminous intensity category letter.

RED, AlGaAs Red

Figure 1. Maximum Tolerable Peak Current vs. Pulse Duration - Red.

Figure 3. Maximum Allowable DC Current vs. Ambient Temperature.

Figure 5. Relative Luminous Intensity vs. DC Forward Current.

Figure 2. Maximum Tolerable Peak Current vs. Pulse Duration - AlGaAs Red.

Figure 4. Forward Current vs. Forward Voltage.

Figure 6. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

HER, Orange, Yellow, Green

Figure 7. Maximum Tolerable Peak Current vs. Pulse Duration – HER, Orange.

Figure 9. Maximum Tolerable Peak Current vs. Pulse Duration – Green.

Figure 11. Forward Current vs. Forward Voltage Characteristics.

Figure 8. Maximum Tolerable Peak Current vs. Pulse Duration – Yellow.

Figure 10. Maximum Allowable DC Current vs. Ambient Temperature.

IF - FORWARD CURRENT PER SEGMENT - mA

Figure 12. Relative Luminous Intensity vs. DC Forward Current.

Figure 13. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Contrast Enhancement

For information on contrast enhancement please see Application Note 1015.

Soldering/Cleaning

Cleaning agents from the ketone family (acetone, methyl ethyl ketone, etc.) and from the chlorinated hydrocarbon family (methylene chloride, trichloroethylene, carbon tetrachloride, etc.) are not recommended for cleaning LED parts. All of these various solvents attack or dissolve the encapsulating epoxies used to form the package of plastic LED parts.

For further information on soldering LEDs please refer to Application Note 1027.

14.2 mm (0.56 inch) Seven Segment Displays

Technical Data

HDSP-530X Series HDSP-532X Series HDSP-550X Series HDSP-552X Series HDSP-560X Series HDSP-562X Series HDSP-570X Series HDSP-572X Series HDSP-H15X Series

Features

- Industry Standard Size
- Industry Standard Pinout 15.24 mm (0.6 in.) DIP Leads on 2.54 mm (0.1 in.) Centers
- Choice of Colors Red, AlGaAs Red, High Efficiency Red, Yellow, Green
- Excellent Appearance
 Evenly Lighted Segments
 Mitered Corners on Segments
 Gray Package Gives Optimum
 Contrast
 ± 50° Viewing Angle
- Design Flexibility
 Common Anode or Common
 Cathode
 Single and Dual Digits
 Right Hand Decimal Point
 ± 1. Overflow Character

• Categorized for Luminous Intensity

Yellow and Green Categorized for Color Use of Like Categories Yields a Uniform Display

- High Light Output
- High Peak Current
- Excellent for Long Digit String Multiplexing
- Intensity and Color Selection Option See Intensity and Color Selected Displays Data Sheet
- Sunlight Viewable AlGaAs

Description

The 14.2 mm (0.56 inch) LED seven segment displays are designed for viewing distances up

to 7 metres (23 feet). These devices use an industry standard size package and pinout. Both the numeric and \pm 1 overflow devices feature a right hand decimal point. All devices are available as either common anode or common cathode.

Devices

Red HDSP-	AlGaAs Red HDSP-[1]	HER HDSP-[1]	Yellow HDSP-	Green HDSP-	Description	Package Drawing
5301	H151	5501	5701	5601	Common Anode Right Hand Decimal	A
5303	H153	5503	5703	5603	Common Cathode Right Hand Decimal	В
5307	H157	5507	5707	5607	Common Anode ± 1. Overflow	C
5308	H158	5508	5708	5608	Common Cathode ± 1. Overflow	D
5321		5521	5721	5621	Two Digit Common Anode Right Hand Decimal	E
5323		5523	5723	5623	Two Digit Common Cathode Right Hand Decimal	F

Note:

^{1.} These displays are recommended for high ambient light operation. Please refer to the HDSP-H10X/K12X AlGaAs and HDSP-555X HER data sheet for low current operation.

These displays are ideal for most applications. Pin for pin equivalent displays are also available in a low current design. The low current displays are ideal for portable applications. For additional information see the Low Current Seven Segment Displays data sheet.

Package Dimensions

				FUNCTION		
PIN	Α	В	С	D	E	F
1	CATHODE e	ANODE e	CATHODE c	ANODE c	E CATHODE NO. 1	E ANODE NO. 1
2	CATHODE d	ANODE d	ANODE c, d	CATHODE c, d	D CATHODE NO. 1	D ANODE NO. 1
3	ANODE[3]	CATHODE[4]	CATHODE b	ANODE b	C CATHODE NO. 1	C ANODE NO. 1
4	CATHODE c	ANODE c	ANODE a, b, DP	CATHODE a, b, DP	DP CATHODE NO. 1	DP ANODE NO. 1
5	CATHODE DP	ANODE DP	CATHOPDE DP	ANODE DE	E CATHODE NO. 1	E ANODE NO. 2
6	CATHODE b	ANODE b	CATHODE a	ANODE a	D CATHODE NO. 2	D ANODE NO. 2
7	CATHODE a	ANODE a	ANODE a, b, DP	CATHODE a, b, DP	G CATHODE NO. 2	G ANODE NO. 2
8	ANODE ^[3]	CATHODE ^[4]	ANODE c, d	CATHODE c, d	C CATHODE NO. 2	C ANODE NO. 2
9	CATHODE f	ANODE f	CATHODE d	ANODE d	DP CATHODE NO. 2	DP ANODE NO. 2
10	CATHODE g	ANODE g	NO PIN	NO PIN	B CATHODE NO. 2	B ANODE NO. 2
11					A CATHODE NO. 2	A ANODE NO. 2
12					F CATHODE NO. 2	F ANODE NO. 2
13					DIGIT NO. 2 ANODE	DIGIT NO. 2 CATHODE
14					DIGIT NO. 1 ANODE	DIGIT NO. 1 CATHODE
15					B CATHODE NO. 1	B ANODE NO. 1
16					A CATHODE NO. 1	A ANODE NO. 1
17					G CATHODE NO. 1	G ANODE NO. 1
18					F CATHODE NO. 1	F ANODE NO. 1

NOTES:

- 1. ALL DIMENSIONS IN MILLIMETRES (INCHES).
- 2. ALL UNTOLERANCED DIMENSIONS ARE FOR REFERENCE ONLY.
- 3. REDUNDANT ANODES.
- 4. REDUNDANT CATHODES.
- 5. FOR HDSP-5600/-5700 SERIES PRODUCT ONLY.

Internal Circuit Diagram

Absolute Maximum Ratings

Description	Red HDSP-5300 Series	AlGaAs Red HDSP-H150 Series	HER HDSP-5500 Series	Yellow HDSP-5700 Series	Green HDSP-5600 Series	Units
Average Power per Segment or DP	82	96	105	80	105	mW
Peak Forward Current per Segment or DP	150[1]	160 ^[3]	90[5]	60[7]	90 _[8]	mA
DC Forward Current per Segment or DP	25[2]	40[4]	30[6]	20[8]	3010]	mA
Operating Temperature Range	-40 to +100	-20 to +100 ^[11]	1.	-40 to +100		°C
Storage Temperature Range			-55 to +1	00		°C
Reverse Voltage per Segment or DP			3.0		*	V
Lead Solder Temperature for 3 Seconds (1.60 mm [0.063 in.] below seating plane)			260			°C

Notes

- 1. See Figure 1 to establish pulsed conditions.
- 2. Derate above $80^{\circ}\mathrm{C}$ at 0.63 mA/°C.
- 3. See Figure 2 to establish pulsed conditions.
- 4. Derate above 46°C at 0.54 mA/°C.
- 5. See Figure 7 to establish pulsed conditions.
- 6. Derate above 53°C at 0.45 mA/°C.

- 7. See Figure 8 to establish pulsed conditions.
- 8. Derate above 81°C at 0.52 mA/°C.
- 9. See Figure 9 to establish pulsed conditions.
- 10. Derate above 39°C at 0.37 mA/°C.
- 11. For operation below -20°C, contact your local HP components sales office or an authorized distributor.

Electrical/Optical Characteristics at T_A = 25 $^{\circ}\mathrm{C}$

Red

Device Series HDSP-	Parameter	Symbol	Min.	Trem	Max.	Units	Test Conditions
npsr-	rarameter	Symbol	MIIII.	Тур.	wax.	Units	Test Conditions
	Luminous Intensity/Segment ^[1,2]	I_{V}	600	1300		μcd	$I_F = 20 \text{ mA}$
	(Digit Average)	'		1400		,,,,,	$I_F = 100 \text{ mA Peak}$: 1 of 5 df
53XX	Forward Voltage/Segment or DP	V_{F}		1.6	2.0	v	$I_F = 20 \text{ mA}$
00111	Peak Wavelength	$\lambda_{ ext{PEAK}}$		655		nm	
	Dominant Wavelength ^[3]	$\lambda_{ m d}$		640		nm	
	Reverse Voltage/Segment or DP ^[4]	V_R	3.0	12		v	$I_R = 100 \mu A$
	Temperature Coefficient of V _F /Segment or DP	ΔV_{F} /°C		-2		mV/°C	
	Thermal Resistance LED Junction-to-Pin	Rθ _{J-Pin}		345		°C/W/ Seg	

AlGaAs Red

Device Series						-	
HDSP-	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
	Luminous Intensity/Segment ^[1,2,5] (Digit Average)	$I_{ m V}$	9.1	16.0		mcd	$I_F = 20 \text{ mA}$
	Formand Valtage/Gossmont on DD	v		1.8		v	$I_{\rm F}$ = 20 mA
H15X	Forward Voltage/Segment or DP	$V_{ m F}$		2.0	3.0	V	$I_{\rm F} = 100 \text{ mA}$
111011	Peak Wavelength	$\lambda_{ ext{PEAK}}$		645		nm	
	Dominant Wavelength ^[3]	$\lambda_{\mathbf{d}}$		637		nm	
	Reverse Voltage/Segment or DP ^[4]	V_{R}	3.0	15		V	$I_R = 100 \mu A$
:	Temperature Coefficient of $V_F/Segment$ or DP	ΔV_{F} /°C		-2		mV/°C	
	Thermal Resistance LED Junction-to-Pin	$ m R heta_{J ext{-Pin}}$		400		°C/W/ Seg	

High Efficiency Red

Device Series HDSP-	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
	Luminous Intensity/Segment ^[1,2,6] (Digit Average)	I _V	900	2800		μcd	$I_{\rm F} = 10 \text{ mA}$
				3700		μεα	$I_F = 60 \text{ mA Peak:}$ 1 of 6 df
FFVV	Forward Voltage/Segment or DP	V_{F}		2.1	2.5	v	$I_{\rm F} = 20 \text{ mA}$
55 XX	Peak Wavelength	$\lambda_{ ext{PEAK}}$		635		nm	
	Dominant Wavelength ^[3]	λ_{d}		626		nm	
	Reverse Voltage/Segment or DP ^[4]	V_R	3.0	30		v	$I_R = 100 \mu\text{A}$
	Temperature Coefficient of V _F /Segment or DP	$\Delta V_{F}/^{\circ}C$		-2	-	mV/°C	
	Thermal Resistance LED Junction-to-Pin	$ m R heta_{J ext{-Pin}}$		345		°C/W/ Seg	

Yellow

Device Series HDSP-	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
	Luminous Intensity/Segment ^[1,2]	$I_{ m V}$	600	1800		μcd	$I_{\rm F} = 10 \text{ mA}$
	(Digit Average)	10		2750		μια	I _F = 60 mA Peak: 1 of 6 df
57XX	Forward Voltage/Segment or DP	$ m V_{F}$		2.1	2.5	V	$I_{\rm F} = 20 \text{ mA}$
5777	Peak Wavelength	$\lambda_{ ext{PEAK}}$		583		nm	
	Dominant Wavelength ^[3,7]	$\lambda_{ m d}$	581.5	586	592.5	nm	
	Reverse Voltage/Segment or DP ^[4]	V_{R}	3.0	40		V	$I_R = 100 \mu A$
	Temperature Coefficient of V _F /Segment or DP	ΔV_F /°C		-2		mV/°C	
	Thermal Resistance LED Junction-to-Pin	$ m R heta_{J ext{-Pin}}$		345		°C/W/ Seg	

High Performance Green

Device Series							
HDSP-	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
	Luminous Intensity/Segment ^[1,2] (Digit Average)`	I _V	900	2500		μcd	$I_{\rm F} = 10 \text{ mA}$
				3100		μea	$I_F = 60$ mA Peak: 1 of 6 df
56XX	Forward Voltage/Segment or DP	V_{F}		2.1	2.5	v	$I_F = 10 \text{ mA}$
90AA	Peak Wavelength	$\lambda_{ ext{PEAK}}$		566		nm	
	Dominant Wavelength ^[3,7]	$\lambda_{ m d}$		571	577	nm	
	Reverse Voltage/Segment or DP ^[4]	V_{R}	3.0	50		v	$I_R = 100 \mu\text{A}$
	Temperature Coefficient of V _F /Segment or DP	$\Delta V_{\mathrm{F}}/^{\circ}\mathrm{C}$		-2		mV/°C	
	Thermal Resistance LED Junction-to-Pin	$R\theta_{J-Pin}$		345		°C/W/ Seg	

Notes

- 1. Device case temperature is 25°C prior to the intensity measurement.
- 2. The digits are categorized for luminous intensity. The intensity category is designated by a letter on the side of the package.
- The dominant wavelength, λ_d, is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the device.
- 4. Typical specification for reference only. Do not exceed absolute maximum ratings.
- For low current operation, the AlGaAs HDSP-H10X series displays are recommended. They are tested at 1 mA dc/segment and are pin for pin compatible with the HDSP-H15X series.
- For low current operation, the HER HDSP-555X series displays are recommended. They are tested at 2 mA dc/segment and are pin for pin compatible with the HDSP-550X series.
- 7. The Yellow (HDSP-5700) and Green (HDSP-5600) displays are categorized for dominant wavelength. The category is designated by a number adjacent to the luminous intensity category letter.

Red, AlGaAs Red

Figure 1. Maximum Tolerable Peak Current vs. Pulse Duration – Red.

Figure 2. Maximum Tolerable Peak Current vs. Pulse Duration – AlGaAs Red.

Figure 3. Maximum Allowable DC Current vs. Ambient Temperature.

Figure 5. Relative Luminous Intensity vs. DC Forward Current.

HER, Yellow, Green

Figure 7. Maximum Tolerable Peak Current vs. Pulse Duration – HER.

VF - FORWARD VOLTAGE - V

Figure 4. Forward Current vs. Forward Voltage.

IPEAK - PEAK FORWARD CURRENT PER SEGMENT - mA

Figure 6. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 8. Maximum Tolerable Peak Current vs. Pulse Duration – Yellow.

Figure 9. Maximum Tolerable Peak Current vs. Pulse Duration - Green.

Figure 10. Maximum Allowable DC Current vs. Ambient Temperature.

Figure 11. Forward Current vs. Forward Voltage.

Figure 12. Relative Luminous Intensity vs. DC Forward Current.

Figure 13. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Electrical/Optical

For more information on electrical/optical characteristics, please see Application Note 1005.

Contrast Enhancement

For information on contrast enhancement please see Application Note 1015.

Soldering/Cleaning

Cleaning agents from the ketone family (acetone, methyl ethyl ketone, etc.) and from the chlorinated hydrocarbon family (methylene chloride, trichloro– ethylene, carbon tetrachloride, etc.) are not recommended for cleaning LED parts. All of these various solvents attack or dissolve the encapsulating epoxies used to form the package of plastic LED parts.

For information on soldering LEDs please refer to Application Note 1027.

20 mm (0.8 inch) Seven Segment Displays

Technical Data

HDSP-340X Series HDSP-390X Series HDSP-420X Series HDSP-860X Series HDSP-N15X Series

Features

- Industry Standard Size
- Industry Standard Pinout 15.24 mm (0.6 in.) DIP Leads on 2.54 mm (0.1 in.) Centers
- Choice of Colors Red, AlGaAs Red, High Efficiency Red, Yellow, Green
- Excellent Appearance
 Evenly Lighted Segments
 Mitered Corners on Segments
 Gray Package Gives Optimum
 Contrast
 ± 50° Viewing Angle
- Design Flexibility
 Common Anode or Common
 Cathode
 Left and Right Hand Decimal
 Points
- ± 1. Overflow CharacterCategorized for Luminous Intensity

Yellow and Green Categorized

for Color

Use of Like Categories Yields a Uniform Display

- High Light Output
- High Peak Current
- Excellent for Long Digit String Multiplexing Intensity and Color Selection Option

See Intensity and Color Selected Displays Data Sheet

• Sunlight Viewable AlGaAs

Description

The 20 mm (0.8 inch) LED seven segment displays are designed for viewing distances up to 10 metres (33 feet). These devices use an industry standard size package and pinout. All devices are available as either common anode or common cathode.

These displays are ideal for most applications. Pin for pin equivalent displays are also available in a low current design. The low current displays are ideal for portable applications. For additional information see the Low Current Seven Segment Displays data sheet.

Devices

Red	AlGaAs ^[1]	HER	Yellow	Green		Package
HDSP-	HDSP-	HDSP-	HDSP-	HDSP-	Description	Drawing
3400	N150	3900	4200	8600	Common Anode Left Hand Decimal	A
3401	N151	3901	4201	8601	Common Anode Right Hand Decimal	В
3403	N153	3903	4203	8603	Common Cathode Right Hand Decimal	C
3405	N155	3905	4205	8605	Common Cathode Left Hand Decimal	D
3406	N156	3906	4206	8606	Universal ± 1. Overflow ^[2]	E

Notes:

- 1. These displays are recommended for high ambient light operation. Please refer to the HDSP-N10X AlGaAs data sheet for low current operation.
- 2. Universal pinout brings the anode and cathode of each segment's LED out to separate pins. See internal diagram E.

Package Dimensions

Internal Circuit Diagram

*The Side View of package indicates

Country of Origin.

Absolute Maximum Ratings

Description	Red HDSP-3400 Series	AlGaAs Red HDSP-N150 Series	HER HDSP-3900 Series	Yellow HDSP-4200 Series	Green HDSP-8600 Series	Units	
Average Power per Segment or DP	115	96	105	105	105	mW	
Peak Forward Current per Segment or DP	200[1]	160 ^[3]	135[5]	135[5]	90[7]	mA	
DC Forward Current per Segment or DP	50[2]	40[4]	40[6]	40[6]	30[8]	mA	
Operating Temperature Range	-40 to +100	-20 to +100 ^[9]	-40 to	+100	-40 to +100	°C	
Storage Temperature Range			-55 to +100	,		°C	
Reverse Voltage per Segment or DP			3.0			V	
Lead Solder Temperature for 3 Seconds (1.60 mm [0.063 in.] below seating plane)		260					

- 1. See Figure 1 to establish pulsed conditions.
- 2. Derate above 45°C at 0.83 mA/°C.
- 3. See Figure 2 to establish pulsed conditions.
 4. Derate above 55°C at 0.8 mA/°C.
- 5. See Figure 7 to establish pulsed conditions.

- 6. Derate above 50°C at 0.73 mA/°C.
- 7. See Figure 8 to establish pulsed conditions.
- 8. Derate above 50°C at 0.54 mA/°C.
 9. For operation below -20°C, contact your local HP components sales office or an authorized distributor.

Electrical/Optical Characteristics at $T_A = 25$ °C

Red

Device Series	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
	Luminous Intensity/Segment ^[1,2] (Digit Average)	$I_{ m V}$	500	1200		μcd	$I_{\rm F} = 20 \text{ mA}$
	Forward Voltage/Segment or DP	V_{F}		1.6	2.0	V	$I_F = 20 \text{ mA}$
HDSP- 340X	Peak Wavelength	$\lambda_{ ext{PEAK}}$		655		nm	
340A	Dominant Wavelength ^[3]	$\lambda_{\mathbf{d}}$		640		nm	
	Reverse Voltage/Segment or DP ^[4]	V_{R}	3.0	20		v	$I_R = 100 \mu A$
	Temperature Coefficient of V _F /Segment or DP	ΔV_{F} /°C		-2		mV/°C	
	Thermal Resistance LED Junction-to-Pin	$ m R heta_{J ext{-PIN}}$		375		°C/W	

AlGaAs Red

Device Series	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
ND OD	Luminous Intensity/Segment ^[1,2,5] (Digit Average)	I_{V}	6.0	14.0		mcd	$I_{\rm F} = 20 \text{ mA}$
	Forward Voltage/Segment or DP	$V_{ m F}$		1.8		V	$I_F = 20 \text{ mA}$
	Forward voitage/segment of Di	V F		2.0	3.0	V	$I_{\rm F} = 100 \text{ mA}$
HDSP- N15X	Peak Wavelength	$\lambda_{ ext{PEAK}}$		645		nm	
	Dominant Wavelength[3]	$\lambda_{ m d}$		637		nm	
	Reverse Voltage/Segment or DP ^[4]	V_{R}	3.0	15		V	$I_{R} = 100 \mu A$
	Temperature Coefficient of V _F /Segment or DP	$\Delta V_{F}/^{\circ}C$		-2		mV/°C	
	Thermal Resistance LED Junction-to-Pin	$R\theta_{J ext{-PIN}}$		430		°C/W/ Seg	

High Efficiency Red

Device Series	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
	Luminous Intensity/Segment ^[1,2]	I_{V}	3350	7000		μcd	$I_F = 100$ mA Peak: 1 of 5 df
	(Digit Average)			4800		μcd	$I_{\rm F} = 20 \text{ mA}$
HDSP-	Forward Voltage/Segment or DP	V_{F}		2.6	3.5	V	$I_F = 100 \text{ mA}$
390X	Peak Wavelength	$\lambda_{ ext{PEAK}}$		635		nm	
	Dominant Wavelength ^[3]	$\lambda_{ m d}$		626		nm	
	Reverse Voltage/Segment or DP ^[4]	V_{R}	3.0	25		V	$I_R = 100 \mu\text{A}$
	Temperature Coefficient of V_F /Segment or DP	$\Delta V_{F}/^{\circ}C$		-2		mV/°C	
	Thermal Resistance LED Junction-to-Pin	$R\theta_{J ext{-PIN}}$		375		°C/W/ Seg	

Yellow

Device Series	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
	Luminous Intensity/Segment ^[1,2] (Digit Average)	I _V	2200	7000		μcd	I _F = 100 mA Peak: 1 of 5 df
	(Digit Average)			3400		μcd	$I_F = 20 \text{ mA}$
HDSP-	Forward Voltage/Segment or DP	V_{F}		2.6	3.5	V	$I_F = 100 \text{ mA}$
420X	Peak Wavelength	$\lambda_{ ext{PEAK}}$		583		nm	
	Dominant Wavelength ^[3,6]	λ_{d}	581.5	586	592.5	nm	
	Reverse Voltage/Segment or DP ^[4]	V_{R}	3.0	25.0		v	$I_R = 100 \mu\text{A}$
	Temperature Coefficient of $V_F/Segment$ or DP	ΔV_{F} /°C		-2	,	mV/℃	
	Thermal Resistance LED Junction-to-Pin	$R\theta_{J-PIN}$		375		°C/W/ Seg	

Green

Device Series	Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
	I		680	1500		μcd	$I_F = 10 \text{ mA}$
	Luminous Intensity/Segment ^[1,2] (Digit Average)`	I_V		1960		μcd	$I_F = 50$ mA Peak: 1 of 5 df
	Forward Voltage/Segment or DP	V_{F}		2.1	2.5	V	$I_{\rm F} = 10 \text{ mA}$
HDSP- 860X	Peak Wavelength	$\lambda_{ ext{PEAK}}$		566		nm	
800A	Dominant Wavelength ^[3,6]	λ_d		571	577	nm	
	Reverse Voltage/Segment or DP ^[4]	V_{R}	3.0	50.0		V	$I_R = 100 \mu A$
	Temperature Coefficient of V_F /Segment or DP	ΔV_F /°C		-2		mV/°C	
	Thermal Resistance LED Junction-to-Pin	$R\theta_{J-PIN}$		375		°C/W/ Seg	

- Case temperature of the device immediately prior to the intensity measurement is 25°C.
 The digits are categorized for luminous intensity. The intensity category is designated by a letter on the side of the package.
 The dominant wavelength, λ_d, is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the device.
- 4. Typical specification for reference only. Do not exceed absolute maximum ratings.
- 5. For low current operation, the AlGaAs Red HDSP-N100 series displays are recommended. They are tested at 1 mA dc/segment and are pin for pin compatible with the HDSP-N150 series.
- 6. The Yellow (HDSP-4200) and Green (HDSP-8600) displays are categorized for dominant wavelength. The category is designated by a number adjacent to the luminous intensity category letter.

Red, AlGaAs Red

Figure 1. Maximum Allowable Peak Current vs. Pulse Duration – Red.

Figure 3. Maximum Allowable DC Current vs. Ambient Temperature.

Figure 5. Relative Luminous Intensity vs. DC Forward Current.

Figure 2. Maximum Allowed Peak Current vs. Pulse Duration – AlGaAs Red.

Figure 4. Forward Current vs. Forward Voltage.

Figure 6. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

HER, Yellow, Green

Figure 7. Maximum Allowed Peak Current vs. Pulse Duration – HER, Yellow.

Figure 9. Maximum Allowable DC Current vs. Ambient Temperature.

Figure 11. Relative Luminous Intensity vs. DC Forward Current.

Figure 8. Maximum Allowed Peak Current vs. Pulse Duration – Green.

Figure 10. Forward Current vs. Forward Voltage.

Figure 12. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Contrast Enhancement

For information on contrast enhancement please see Application Note 1015.

Soldering/Cleaning

Cleaning agents from the ketone family (acetone, methyl ethyl ketone, etc.) and from the chlorinated hydrocarbon family (methylene chloride, trichloroethylene, carbon tetrachloride, etc.) are not recommended for cleaning LED parts. All of these various solvents attack or dissolve the encapsulating epoxies used to form the package of plastic LED parts.

For information on soldering LEDs please refer to Application Note 1027.

CMOS 5 x 7 Small Alphanumeric Displays

Technical Data

HCMS-270X Series HCMS-271X Series HCMS-272X Series

Features

- On-Board Low Power CMOS ICs Integrated Shift Registers with Constant Current LED Drivers
- Wide Operating Temperature Range -40°C to +85°C
- Three Package Styles 1 Row of 4 Characters 1 Row of 8 Characters 2 Rows of 8 Characters
- Five LED Colors
 Standard Red
 High Efficiency Red
 Orange
 Yellow
 High Performance Green

 5 x 7 LED Matrix
- Displays Full ASCII Character Set
 • Character Height 3.8 mm (0.15 inch)
- Long Viewing Distance 2.6 Metres (8.6 Feet)
- Wide Viewing Angle X Axis = ±30° Y Axis = ±55°
- Categorized for Luminous Intensity

• Categorized for Color HCMS-2701/-2703 HCMS-2711/-2713 HCMS-2721/-2723

Typical Applications

- Telecommunications Equipment
- Instrumentation
- Medical Instruments
- Business Machines

Device Selection Guide

Part Number	Display Package Style	LED Color
HCMS-2700	1 Row of 4 Characters	Standard Red
-2701		Yellow
-2702		HER
-2703		Green
-2704	•	Orange
HCMS-2710	1 Row of 8 Characters	Standard Red
-2711		Yellow
-2712		HER
-2713		Green
-2714		Orange
HCMS-2720	2 Rows of 8 Characters	Standard Red
-2721		Yellow
-2722		HER
-2723		Green
-2724		Orange

Description

The HCMS-270X series are four character 5x7 dot matrix alphanumeric displays in a dual in-line 12 pin plastic package. The onboard CMOS ICs form a 28 bit shift register.

The HCMS-271X series are eight character 5x7 dot matrix alphanumeric displays in a dual in-line plastic package with 26 pin positions. The on-board CMOS ICs form a 56 bit shift register.

The HCMS-272X series are sixteen character 5x7 dot matrix alphanumeric displays. Each device is assembled by enclosing two HCMS-271X devices in a common lens assembly forming two rows of eight characters. The plastic package has two dual inline rows of 26 pin positions for a total of 52 pin positions. The two on-board CMOS IC 56 bit shift registers for each row are electrically separate from each other.

The on-board CMOS ICs form serial input shift registers with constant current output LED row drivers. Decoded column data is clocked into the shift registers for each refresh cycle. Full character display is accomplished with external column strobing at a refresh rate of 100 Hz or faster.

All of these display devices may be end stacked in the X-direction to form a string of characters of desired length.

Package Dimensions

PIN	FUNCTION	PIN	FUNCTION
1	COLUMN 1	7	DATA OUT
2	COLUMN 2	8	V _B
3	COLUMN 3	9	V _{DD}
4	COLUMN 4	10	CLOCK
5	COLUMN 5	11	GROUND
6	INT. CONNECT*	12	DATA IN

^{*} DO NOT CONNECT OR USE.

NOTES:

1. DIMENSIONS IN MILLIMETRES/INCHES.

ON ALL DIMENSIONS IS 0.38MM (0.015").

3. CHARACTERS ARE CENTERED WITH RESPECT TO LEAD WITHIN 0.13MM (0.005"). 4. LEAD MATERIAL: SOLDER PLATED COPPER ALLOY.

HCMS-270X

NOTES: TYP. NON ACCUM.

1. DIMENSIONS ARE IN MILLIMETRES/INCHES.

2. UNLESS OTHERWISE SPECIFIED,
TOLERANCE IS ± 0.38MM (0.015"),

3. CHARACTERS ARE POSITIONED WITH
RESPECT TO LEADE WITHIN ± 0.13MM (0.005"),

4. LEAD MATERIAL IS SOLDER PLATED COPPER ALLOY.

HCMS-272X

Absolute Maximum Ratings

Supply Voltage V _{DD} to Ground0.3 V to 7	.0 V
Data Input, Clock, Data Output, V _B 0.3 V to	V_{DD}
Column Input Voltage, V _{COL} 0.3 V to	V_{DD}
Free Air Operating Temperature, T _A 40°C to +8	35℃
Storage Temperature, T _S 55°C to +10)0°C
Maximum Allowable Package Power Dissipation, P _D at 55°C ^[1,2]	
HCMS-270X	7 W
HCMS-271X1.67	4 W
HCMS-272X (per 8 character row)	4 W
(total per package 3.348	3 W)
Maximum Solder Temperature	
1.59 mm (0.063") Below Seating Plane, t < 5 sec	30°C
ESD Protection @ 1.5 k Ω , 100 pFV _Z = 4 kV (each	pin)

Notes:

- 1. Maximum allowable power dissipation is derived from $V_{DD}=5.25\ V$ and $V_B=2.4\ V,$ $V_{COL}=3.5\ V,$ 20 LEDs illuminated per character, 20% on-time duty factor.
- 2. See Figure 1 for power derating. Thermal resistance from device V_{DD} pin(s) to ambient through the PC board mounting assembly is assumed to be $R\theta_{PC-A} \le 35$ °C/W per device for the HSMS-270X, ≤ 17.5 °C/W per device for the HCMS-271X, and ≤ 17.5 °C/W per row for the HCMS-272X.

Recommended Operating Conditions, $T_A = -40^{\circ}C$ to $+85^{\circ}C$

Description	Symbol	Minimum	Nominal	Maximum	Unit
Supply Voltage	V_{DD}	4.75	5.0	5.25	V
Data Out Current, Low State	I_{OL}			1.6	mA
Data Out Current, High State	I _{OH}			-0.5	mA
Column Input Voltage	V_{COL}	2.75	3.0	3.5	V
Setup Time	t_{SETUP}	10			ns
Hold Time	$ m t_{HOLD}$	25			ns
Clock Pulse Width High	t _{WH(CLOCK)}	50			ns
Clock Pulse Width Low	t _{WL(CLOCK)}	50			ns
Clock High to Low Transition	t _{THL}			200	ns
Clock Frequency	f_{CLOCK}			5	MHZ

Electrical Characteristics, -40°C to +85°C

Parameter	Symbol	Test Conditions	Min.	Typ.[1]	Max.	Unit
Supply Current, Dynamic ^[2]	$I_{ m DDD}$	$V_{DD} = 5.25 \text{ V}$				
HCMS-270X		$f_{CLOCK} = 5 \text{ MHz}$		6.2	7.8	mA
HCMS-271X		$V_{\rm B} = 0.4 \text{ V}$		12.4	15.6	
HCMS-272X (per row)				15.6	15.6	
Supply Current, Static ^[3]						
HCMS-270X	$I_{ m DDSoff}$	$V_{\rm DD} = 5.25 \rm V$		1.8	2.6	mA
HCMS-271X		$V_B = 0.4 \text{ V}$		3.6	5.2	
HCMS-272X (per row)				3.6	5.2	
HCMS-270X	I _{DDSon}	$V_{DD} = 5.25 \text{ V}$		2.2	6.0	
HCMS-271X		$V_{\rm B} = 2.4 \text{ V}$		4.4	12.0	
HCMS-272X (per row)				4.4	12.0	

Electrical Characteristics, -40°C to +85°C (cont'd.)

Symbol	ymbol Test Conditions		Typ.[1]	Max.	Unit
I_{COL}	$V_{\rm DD} = 5.25$				mA
	$V_{COL} = 3.5 \text{ V}$	1	335	410	
	$V_{\rm B} = 2.4 \text{ V}$		670	820	
			670	820	
V_{IH}	$V_{\rm DD} = 4.75 \text{ V}$	2.0			V
V_{IL}	$V_{DD} = 5.25 \text{ V}$			0.8	V
	$V_{DD} = 5.25 \text{ V}$				μΑ
	$0 < V_I < 5.25 \text{ V}$	-10		+1	
$I_{\rm I}$		-10			
	$V_{DD} = 5.25 \text{ V}$	-20		+1	
	$0 < V_I < 5.25 \text{ V}$	-20			
					ĺ
		-40			
	$V_{DD} = 5.25 \text{ V}$	-80		0	
	$0 < V_B < 5.25 V$	-80	ĺ		
V _{OH}	$V_{DD} = 4.75 \text{ V}$	2.4	4.2		V
	$I_{OH} = -0.5 \text{ mA}$				
	$I_{COL} = 0 \text{ mA}$		İ		
V _{OL}	$V_{\rm DD} = 5.25 \text{ V}$		0.2	0.4	
	$I_{OH} = 1.6 \text{ mA}$				
	$I_{COL} = 0 \text{ mA}$				
	$V_{DD} = 5.0 \text{ V}$				
	$V_{COL} = 3.5 \text{ V}$			-	,
	17.5% DF				
$P_{\rm D}$	$V_{\rm B} = 2.4 \text{ V}$		451		mW
	15 LEDs ON		902		
	Per Character		902		
$R\theta_{J-PIN}$			50		°C/W
			25		
			25		
	V _{IH} V _{IL} I _I V _{OH} V _{OL}	$I_{COL} \qquad V_{DD} = 5.25 \\ V_{COL} = 3.5 \text{ V} \\ V_{B} = 2.4 \text{ V} \qquad V_{DD} = 4.75 \text{ V} \qquad V_{DD} = 5.25 \text{ V} \\ V_{DD} = 5.25 \text{ V} \qquad V_{DD} = 5.25 \text{ V} \\ 0 < V_{I} < 5.25 \text{ V} \qquad 0 < V_{I} < 5.25 \text{ V} \qquad 0 < V_{I} < 5.25 \text{ V} \qquad 0 < V_{I} < 5.25 \text{ V} \qquad 0 < V_{I} < 5.25 \text{ V} \qquad 0 < V_{B} < 5.25 \text{ V} \qquad 0 < V_{DD} = 5.25 \text{ V} \qquad 0 < V_{DD} = 5.25 \text{ V} \qquad 0 < V_{DD} = 5.25 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD} = 5.0 \text{ V} \qquad 0 < V_{DD}$	$I_{COL} \qquad V_{DD} = 5.25 \\ V_{COL} = 3.5 \text{ V} \\ V_{B} = 2.4 \text{ V} \qquad 2.0 \\ V_{IL} \qquad V_{DD} = 4.75 \text{ V} \qquad 2.0 \\ V_{IL} \qquad V_{DD} = 5.25 \text{ V} \\ 0 < V_{I} < 5.25 \text{ V} \qquad -10 \\ I_{I} \qquad V_{DD} = 5.25 \text{ V} \qquad -20 \\ 0 < V_{I} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{I} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{I} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{I} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{I} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_{B} < 5.25 \text{ V} \qquad -20 \\ 0 < V_$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

- 1. All typical values at $V_{\rm DD}$ = 5.0 V, $T_{\rm A}$ = 25°C.
- 2. I_{DD} Dynamic is the IC current while clocking column data through the on-board shift register at a clock frequency of 5 MHz.
- 3. I_{DD} Static is the IC current after column data is loaded and not being clocked through the on-board shift register.
- 4. Four, eight, or sixteen characters are illuminated with a typical ASCII character composed of 15 dots per character.
- 5. The IC junction temperature T_J(IC), is:

 $T_J(IC) = (P_D)(R\theta_{J-PIN} + R\theta_{PC-A}) + T_A$

Where: P_D is the total power into the display for HCMS-270X and HCMS-271X, and the total power into one row of an HCMS-272X display.

$$P_{D} = P(I_{DDSon}) + P(I_{COL})$$

 $\begin{aligned} P_D &= P(I_{DDSon}) + P(I_{COL}) \\ P(I_{DDSon}) &= I_{DDSon}^* V_{DD} \\ P(I_{COL}) &= 5*I_{COL}^* V_{COL}^* n/35*DF \end{aligned}$

n = Quantity of LED dots illuminated per character.

DF = LED on-time duty factor.

The IC junction temperature rise above the temperature of the V_{DD} pin(s), $\Delta T_{J}(IC),$ is:

 $\Delta T_{J}(IC) = (P_{D})(R\theta_{J-PIN})$

The IC junction temperature, T_I(IC), must not exceed +125°C.

Optical Characteristics at $T_A = 25$ °C

Standard Red HCMS-2700/-2710/-2720

Description	Test Conditions	Symbol	Min.	Тур.	Unit
Peak Luminous Intensity per LED	$V_{DD} = 5.0 \text{ V}, V_{COL} = 3.5 \text{ V}$				
(Digit Average) ^[1,5]	$V_B = 2.4 \text{ V}, T_i = 25^{\circ}C^{[3]}$	$ m I_{ m v}$	105	200	μcd
Dominant Wavelength ^[4]		$\lambda_{ m d}$		640	nm
Peak Wavelength		$\lambda_{ ext{PEAK}}$		65	nm

Yellow HCMS-2701/-2711/-2721

Description	Description Test Conditions		Min.	Тур.	Unit
Peak Luminous Intensity per LED	$V_{DD} = 5.0 \text{ V}, V_{COL} = 3.5 \text{ V}$				
(Digit Average) ^[1,5]	$V_B = 2.4 \text{ V}, T_i = 25^{\circ}C^{[3]}$	$\mathbf{I_v}$	400	750	μcd
Dominant Wavelength ^[2,4]		$\lambda_{ m d}$		585	nm
Peak Wavelength		$\lambda_{ ext{PEAK}}$		583	nm

High Efficiency Red HCMS-2702/-2712/-2722

Description	Test Conditions	Symbol	Min.	Тур.	Unit
Peak Luminous Intensity per LED	$V_{DD} = 5.0 \text{ V}, V_{COL} = 3.5 \text{ V}$				
(Digit Average) ^[1,5]	$V_B = 2.4 \text{ V}, T_i = 25^{\circ}C^{[3]}$	I_{v}	400	1430	μcd
Dominant Wavelength ^[4]		$\lambda_{ m d}$		625	nm
Peak Wavelength		$\lambda_{ ext{PEAK}}$		635	nm

High Performance Green HCMS-2703/-2713/-2723

Description	Test Conditions	Symbol	Min.	Тур.	Unit
Peak Luminous Intensity per LED	$V_{DD} = 5.0 \text{ V}, V_{COL} = 3.5 \text{ V}$				
(Digit Average) ^[1,5]	$V_B = 2.4 \text{ V}, T_i = 25^{\circ}\text{C}^{[3]}$	$\mathbf{I_v}$	400	1550	μcd
Dominant Wavelength ^[2,4]		$\lambda_{ m d}$		574	nm
Peak Wavelength		$\lambda_{ ext{PEAK}}$		568	nm

Orange HCMS-2704/-2714/-2724

Description	Test Conditions	Symbol	Min.	Тур.	Unit
Peak Luminous Intensity per LED	$V_{\rm DD} = 5.0 \text{ V}, V_{\rm COL} = 3.5 \text{ V}$,	
(Digit Average) ^[1,5]	$V_B = 2.4 \text{ V}, T_i = 25^{\circ}C^{[3]}$	$ m I_{ m v}$	400	1400	μcd
Dominant Wavelength ^[4]		$\lambda_{ m d}$		602	nm
Peak Wavelength		$\lambda_{ ext{PEAK}}$		600	nm

Notes:

- 1. These displays are categorized for luminous intensity with the intensity category designated by a letter code located on the side of the display package.
- 2. Yellow and high performance green devices are categorized for color with the color category designated by a number code on the side of the display package.
- $3. T_i$ refers to the initial device temperature immediately prior to the light measurement.
- 4. Dominant wavelength, λ_d , is derived from the CIE chromaticity diagram and is that single wavelength which defines the LED color.
- 5. The luminous sterance of the individual LED pixels may be calculated using the following equations:

 $L_v(cd/m^2) = I_v(Candela)*DF/A(Meter^2)$

 $L_v(Footlamberts) = \pi I_v(Candela)*DF/A(Foot^2)$

Where: A = LED pixel area = 3.32×10^{-8} m² or 3.57×10^{-7} ft²

DF = LED on-time duty factor.

Switching Characteristics, $T_A = -40^{\circ}C$ to $+85^{\circ}C$

	Parameter	Condition	Тур.	Max.	Units
ĺ	f _{CLOCK} CLOCK Rate			5	MHz
	t _{PLH} , t _{PHL} Propagation Delay CLOCK to DATA OUT	$C_L = 15 \text{ pF}$ $R_L = 2.4 \text{ k}\Omega$		105	ns
	$t_{ m OFF} \ V_{ m B} (0.4 m V) \ { m to} \ \ { m Display OFF}$		4	5	μs
	t _{ON} V _B (2.4 V) to Display ON		1	2	

Figure 1. Maximum Allowable Power Dissipation vs. Ambient Temperature as a Function of Thermal Resistance IC Junction-to-Ambient, $R\theta_{J,A}$. Operation at $85\,^{\circ}\mathrm{C}$ Assumes a Thermal Resistance for the Printed Circuit Board of $R\theta_{PC-A}=35\,^{\circ}\mathrm{C/W}$ Per Device for the HCMS-270X, $17.5\,^{\circ}\mathrm{C/W}$ Per Device for the HCMS-271X, and $17.5\,^{\circ}\mathrm{C/W}$ Per Row for the HCMS-272X.

Figure 2. Relative Luminous Intensity vs. Display Pin Temperature.

Figure 3. Peak Column Current vs. Column Voltage.

Figure 4. Relative Column Current, I_{COL} , vs. Ambient Temperature.

Electrical Description

Each display device contains four or eight 5x7 LED dot matrix characters and two or four CMOS integrated circuits, as shown in Figure 5. The CMOS integrated circuits form an on-board 28 bit or 56 bit serial-in-parallel-out shift register that will accept standard TTL logic levels. The Data Input pin is connected to bit position 1 and the Data Output pin is connected to bit position 28 (56). The shift register outputs control constant current sinking LED row drivers. The nominal current sink per LED driver is 11 mA. A logic 1 stored in the shift register enables the corresponding LED row driver and a logic 0 stored in the shift register disables the corresponding LED row driver.

The electrical configuration of these CMOS IC alphanumeric displays allows for an effective interface to a display controller circuit that supplies decoded character information. The row data for a given column (one 7 bit byte per character) is loaded (bit serial) into the on-board 28 (56) bit shift register with high to low transitions of the Clock input. To load decoded character information into the display, column data for character 4 (8) is loaded first and the column data for character 1 is loaded last in the following manner. The 7 data bits for column 1, character 4 (8), are loaded into the on-board shift register. Next, the 7 data bits for column 1, character 3 (7), are loaded into the shift register. shifting the character 4 (8) data bits over one character position.

This process is repeated for the other 2 (6) characters until all 28 (56) bits of column data (four or eight 7 bit bytes of character column data) are loaded into the on-board shift register. Then the column 1 input, V_{COL} , pin 1, is energized to illuminate column 1 in all 4 (8) characters. This process is repeated for columns 2, 3, 4, and 5. All of the V_{COL} inputs should be at logic low to insure the display is off when loading data. The display will be blanked when the blanking input V_B is at logic low regardless of the outputs of the shift register or whether one of the V_{COL} inputs is energized.

Refer to Application Note 1016 Using the HDSP-2000 Alphanumeric Display Family for drive circuit information.

Figure 5. Block Diagram of an HCMS-27XX Series LED Alphanumeric Display.

ESD Susceptibility

The HCMS-27XX series displays have an ESD susceptibility ratings of CLASS 3 per DOD-STD-1686 and CLASS B per MIL-STD-883C. It is recommended that normal CMOS handling precautions be observed with these devices.

Soldering and Post Solder Cleaning

For information on soldering and post-solder cleaning of LED Displays, see Application Note 1027: Soldering LED Components.

Contrast Enhancement

When used with the proper contrast enhancement filters, the HCMS-27XX series displays are readable in bright ambients. For information on contrast enhancement, refer to Application Note 1015 Contrast Enhancement Techniques for LED Displays.

High Performance CMOS 5 x 7 Alphanumeric Displays

Technical Data

HCMS-29XX Series

Features

- Easy to Use
- Interfaces Directly with Microprocessors
- 0.15" Character Height in 4, 8, and 16 (2x8) Character Packages
- 0.20" Character Height in 4 and 8 Character Packages
- Rugged X- and Y-Stackable Package
- · Serial Input
- Convenient Brightness Controls
- Wave Solderable
- Offered in Five Colors
- Low Power CMOS Technology
- TTL Compatible

Description

The HCMS-29XX series are high performance, easy to use dot matrix displays driven by on-board CMOS ICs. Each display can be directly interfaced with a microprocessor, thus eliminating the need for cumbersome interface components. The serial IC interface allows higher character count information displays with a minimum of data lines. A variety of colors, font heights, and character counts gives designers a wide range of product choices for their specific applications and the easy to read 5 x 7 pixel format allows the display of uppercase, lower case, Katakana, and custom userdefined characters. These displays are stackable in the x- and ydirections, making them ideal for high character count displays.

Applications

- Telecommunications Equipment
- Portable Data Entry Devices
- Computer Peripherals
- Medical Equipment
- Test Equipment
- Business Machines
- Avionics
- Industrial Controls

Device Selection Guide

Description	AlGaAs HCMS-	HER HCMS-	Orange HCMS-	Yellow HCMS-	Green HCMS-	Package Drawing
1 x 4 0.15" Character	2905	2902	2904	2901	2903	A
1 x 8 0.15" Character	2915	2912	2914	2911	2913	В
2 x 8 0.15" Character	2925	2922	2924	2921	2923	С
1 x 4 0.20" Character	2965	2962	2964	2961	2963	D
1 x 8 0.20" Character	2975	2972	2974	2971	2973	Е

ESD WARNING: STANDARD CMOS HANDLING PRECAUTIONS SHOULD BE OBSERVED TO AVOID STATIC DISCHARGE.

5964-6376E 3-109

NOTES: 1. DIMENSIONS ARE IN mm (INCHES). 2. UNLESS OTHERWISE SPECIFIED, TOLERANCE ON DIMENSIONS IS \pm 0.38 mm (0.015 INCH). 3. LEAD MATERIAL: SOLDER PLATED COPPER ALLOY.

HCMS-290X

NOTES: 1. DIMENSIONS ARE IN mm (INCHES). 2. UNLESS OTHERWISE SPECIFIED, TOLERANCE ON DIMENSIONS IS \pm 0.38 mm (0.015 INCH). 3. LEAD MATERIAL: SOLDER PLATED COPPER ALLOY.

HCMS-291X

- TO LEG. 1. DIMENSIONS ARE IN mm (INCHES). 2. UNLESS OTHERWISE SPECIFIED, TOLERANCE ON DIMENSIONS IS \pm 0.38 mm (0.015 INCH). 3. LEAD MATERIAL: SOLDER PLATED COPPER ALLOY.

HCMS-292X

NOTES

- 1.0 DIMENSIONS ARE IN mm (INCHES). 2. UNLESS OTHERWISE SPECIFIED, THE TOLERANCE ON DIMENSIONS IS \pm 0.38 mm (0.015 INCH).
- 3. LEAD MATERIAL: SOLDER PLATED COPPER ALLOY.

HCMS-296X

NOTES: 1. DIMENSIONS ARE IN mm (INCHES). 2. UNLESS OTHERWISE SPECIFIED, TOLERANCE ON DIMENSIONS IS \pm 0.38 mm (0.015 INCH). 3. LEAD MATERIAL: SOLDER PLATED COPPER ALLOY.

HCMS-297X

Absolute Maximum Ratings

Logic Supply Voltage, V _{LOGIC} to GND _{LOGIC} 0.3 V to 7.0 V	V
LED Supply Voltage, V _{LED} to GND _{LED} 0.3 V to 5.5 V	V
Input Voltage, Any Pin to GND	V
Free Air Operating Temperature Range $T_A^{[1]}$ 40°C to +85°C	\mathbb{C}
Relative Humidity (non-condensing)859	6
Storage Temperature, T_S 55°C to 100°C	\mathbb{C}
Maximum Solder Temperature	
1.59 mm (0.063 in.) Below Seating Plane, t < 5 sec	\mathbb{C}
ESD Protection @ $1.5 \text{ k}\Omega$, 100 pF (each pin)	V
TOTAL Package Power Dissipation at $T_A = 25^{\circ}C^{[2]}$	
4 character 1.2 V	٧
8 character 2.4 V	V
16 character	٧

Notes:

Recommended Operating Conditions over Temperature Range

(-40°C to +85°C)

Parameter	Symbol	Min.	Тур.	Max.	Units
Logic Supply Voltage	V_{LOGIC}	3.0	5.0	5.5	V
LED Supply Voltage	$V_{ m LED}$	4.0	5.0	5.5	V .
$\mathrm{GND}_{\mathrm{LED}}$ to $\mathrm{GND}_{\mathrm{LOGIC}}$	_	-0.3	0	+0.3	V

^{1.} For operation in high ambient temperatures, see Appendix A, Thermal Considerations.

Electrical Characteristics over Operating Temperature Range (- 40° C to + 85° C)

			25℃ = 5.0 V	-40° C < T_A < 85° C 3.0 V < V_{LOGIC} < 5.5 V			
Parameter	Symbol	Тур.	Max.	Min.	Max.	Units	Test Conditions
Input Leakage Current HCMS-290X/296X (4 char) HCMS-291X/297X (8 char) HCMS-292X (16 char)	I _I		+7.5 +15 +15	-2.5 -5.0 -5.0	+50 +100 +100	μА	$V_{IN} = 0 \text{ V to } V_{LOGIC}$
I _{LOGIC} OPERATING HCMS-290X/296X (4 char) HCMS-291X/297X (8 char) HCMS-292X (16 char)	I _{LOGIC} (OPT)	0.4 0.8 0.8	2.5 5 5		5 10 10	mA	$V_{\rm IN} = V_{ m LOGIC}$
I _{LOGIC} SLEEP ^[1] HCMS-290X/296X (4 char) HCMS-291X/297X (8 char) HCMS-292X (16 char)	I _{LOGIC} (SLP)	5 10 10	15 30 30		25 50 50	μА	$V_{\rm IN} = V_{ m LOGIC}$
I _{LED} BLANK HMCS-290X/296X (4 char) HCMS-291X/297X (8 char) HCMS-292X (16 char)	I _{LED} (BL)	0.4 0.8 0.8	1.8 3.5 3.5		2.5 5 5	mA	BL = 0 V
I _{LED} SLEEP ^[1] HCMS-290X/296X (4 char) HCMS 291X/297X (8 char) HCMS-292X (16 char)	I _{LED} (SLP)	1 2 2	3 6 6		50 100 100	μА	
Peak Pixel Current ^[2] HCMS-29X5 (AlGaAs) HCMS-29XX (Other Colors)	I _{PIXEL}	15.4 14.0	17.1 15.9		18.7 17.1	mA mA	V _{LED} = 5.5 V All pixels ON, Average value per pixel
HIGH level input voltage	V _{ih}			2.0		v	4.5 V < V _{LOGIC} < 5.5 V
				0.8 V _{LOGIC}	1	V	$3.0 \text{ V} < \text{V}_{\text{LOGIC}} < 4.5 \text{ V}$
LOW level input voltage	V _{il}				1.1	v	4.5 V < V _{LOGIC} < 5.5 V
					$0.2~V_{LOGIC}$	v	$3.0 \text{ V} < V_{\text{LOGIC}} < 4.5 \text{ V}$
HIGH level output voltage	Voh			2.4		v	$V_{LOGIC} = 4.5 \text{ V},$ $I_{oh} = -40 \mu\text{A}$
				0.8 V _{LOGIC}		v	$3.0 \text{ V} < V_{\text{LOGIC}} < 4.5 \text{ V}$
LOW level output voltage	Vol				0.4	v	$V_{LOGIC} = 5.5 \text{ V},$ $I_{ol} = 1.6 \text{ mA}^{[3]}$
					$0.2~V_{LOGIC}$	v	$3.0 \text{ V} < V_{\text{LOGIC}} < 4.5 \text{ V}$
Thermal Resistance	$R\theta_{J-P}$	70				°C/W	IC junction to pin

Notes:

- 1. In SLEEP mode, the internal oscillator and reference current for LED drivers are off.
- 2. Average peak pixel current is measured at the maximum drive current set by Control Register 0. Individual pixels may exceed this value.
- 3. For the Oscillator Output, I_{ol} = 40 $\mu A.$

Optical Characteristics at $25^{\circ}C^{[1]}$

 $V_{LED} = 5.0 \text{ V}, 50\% \text{ Peak Current}, 100\% \text{ Pulse Width}$

Display Color	Part Number	Luminous Intensity per LED ^[2] Character Average (µcd) Min. Typ.		Peak Wavelength λ _{Peak} (nm) Τyp.	Dominant Wavelength $\lambda_{\mathbf{d}}^{[3]}$ (nm) Typ.
AlGaAs Red	HCMS-29X5	95	230	645	637
High Efficiency Red	HCMS-29X2	29	64	635	626
Orange	HCMS-29X4	29	64	600	602
Yellow	HCMS-29X1	29	64	583	585
Green	HCMS-29X3	57	114	568	574

Notes:

- 1. Refers to the initial case temperature of the device immediately prior to measurement.
- 2. Measured with all LEDs illuminated.
- 3. Dominant wavelength, λ_d , is derived from the CIE chromaticity diagram and represents the single wavelength which defines the perceived LED color.

Electrical Description

Pin Function	Description					
RESET (RST)	Sets Control Register bits to logic low. The Dot Register contents are unaffected by the Reset pin. (logic low = reset; logic high = normal operation).					
DATA IN (D _{IN})	Serial Data input for Dot or Control Register data. Data is entered on the rising edge of the Clock input.					
DATA OUT (D _{OUT})	Serial Data output for Dot or Control Register data. This pin is used for cascading multiple displays.					
CLOCK (CLK)	Clock input for writing Dot or Control Register data. When $\overline{\text{Chip}}$ $\overline{\text{Enable}}$ is logic low, data is entered on the rising Clock edge.					
REGISTER SELECT (RS)	Selects Dot Register (RS = logic low) or Control Register (RS = logic high) as the destination for serial data entry. The logic level of RS is latched on the falling edge of the $\overline{\text{Chip}}$ $\overline{\text{Enable}}$ input.					
CHIP ENABLE (CE)	This input must be a logic low to write data to the display. When $\overline{\text{CE}}$ returns to logic high and CLK is logic low, data is latched to either the LED output drivers or a Control Register.					
OSCILLATOR SELECT (SEL)	Selects either an internal or external display oscillator source. (logic low = External Display Oscillator; logic high = Internal Display Oscillator).					
OSCILLATOR (OSC)	Output for the Internal Display Oscillator (SEL = logic high) or input for an External Display Oscillator (SEL = logic low).					
BLANK (BL)	Blanks the display when logic high. May be modulated for brightness control.					
$\mathrm{GND}_{\mathrm{LED}}$	Ground for LED drivers.					
$\mathrm{GND}_{\mathrm{LOGIC}}$	Ground for logic.					
$ m V_{LED}$	Positive supply for LED drivers.					
V_{LOGIC}	Positive supply for logic.					

AC Timing Characteristics over Temperature Range (-40°C to +85°C)

Timing Diagram Ref. Number	Description	Symbol	4.5 V < V _{LO} Min.	o _{GIC} <5.5 V Max.	V _{LOGIO} Min.	= 3 V Max.	Units
1	Register Select Setup Time to Chip Enable	t _{rss}	10		10		ns
2	Register Select Hold Time to Chip Enable	t _{rsh}	10		10		ns
3	Rising Clock Edge to Falling Chip Enable Edge	t _{clkce}	20		20		ns
4	Chip Enable Setup Time to Rising Clock Edge	t_{ces}	35		55		ns
5	Chip Enable Hold Time to Rising Clock Edge	$t_{\rm ceh}$	20		20		ns
6	Data Setup Time to Rising Clock Edge	t_{ds}	10		10		ns
7	Data Hold Time after Rising Clock Edge	t _{dh}	10		10		ns
8	Rising Clock Edge to D _{OUT} ^[1]	t _{dout}	10	40	10	65	ns
9	Propagation Delay D_{IN} to D_{OUT} Simultaneous Mode for one $IC^{[1,2]}$	t _{doutp}		18		30	ns
10	CE Falling Edge to D _{OUT} Valid	t _{cedo}		25		45	ns
11	Clock High Time	t _{clkh}	80		100		ns
12	Clock Low Time	t _{clkl}	80		100		ns
	Reset Low Time	t _{rstl}	50		50		ns
	Clock Frequency	F _{cyc}		5		4	MHz
	Internal Display Oscillator Frequency	F _{inosc}	80	210	80	210	KHz
	Internal Refresh Frequency	F _{rf}	150	410	150	400	Hz
	External Display Oscillator Frequency	F _{exosc}					
	Prescaler = 1 Prescaler = 8		51.2 410	1000 8000	51.2 410	1000 8000	KHz KHz

Notes

^{1.} Timing specifications increase $0.3~\mathrm{ns}$ per pf of capacitive loading above $15~\mathrm{pF}.$

^{2.} This parameter is valid for Simultaneous Mode data entry of the Control Register.

Display Overview

The HCMS-29XX series is a family of LED displays driven by on-board CMOS ICs. The LEDs are configured as 5 x 7 font characters and are driven in groups of 4 characters per IC. Each IC consists of a 160-bit shift register (the Dot Register), two 7-bit Control Words, and refresh circuitry. The Dot Register contents are mapped on a one-to-one basis to the display. Thus, an individual Dot Register bit uniquely controls a single LED.

8-character displays have two ICs that are cascaded. The Data Out line of the first IC is internally connected to the Data In line of the second IC forming a 320-bit Dot Register. The display's other control and power lines are connected directly to both ICs. In 16-character displays, each row functions as an independent 8-character display with its own 320-bit Dot Register.

Reset

Reset initializes the Control Registers (sets all Control Register bits to logic low) and places the display in the sleep mode. The Reset pin should be connected to the system power-on reset circuit. The Dot Registers are not cleared upon power-on or by Reset. After power-on, the Dot Register contents are random; however, Reset will put the display in sleep mode, thereby blanking the LEDs. The Control Register and the Control Words are cleared to all zeros by Reset.

To operate the display after being Reset, load the Dot Register with logic lows. Then load Control Word 0 with the desired brightness level and set the sleep mode bit to logic high.

Dot Register

The Dot Register holds the pattern to be displayed by the

LEDs. Data is loaded into the Dot Register according to the procedure shown in Table 1 and the Write Cycle Timing Diagram.

First RS is brought low, then $\overline{\text{CE}}$ is brought low. Next, each successive rising CLK edge will shift in the data at the D_{IN} pin. Loading a logic high will turn the corresponding LED on; a logic low turns the LED off. When all 160 bits have been loaded (or 320 bits in an 8-digit display), $\overline{\text{CE}}$ is brought to logic high.

When CLK is next brought to logic low, new data is latched into the display dot drivers. Loading data into the Dot Register takes place while the previous data is displayed and eliminates the need to blank the display while loading data.

Pixel Map

In a 4-character display, the 160-bits are arranged as 20

Table 1. Register Truth Table

Function	CLK	CE	RS
Select Dot Register	Not Rising	1	L
	↑	L	X
Copy Data from Dot Register to Dot Latch	L	Н	X
Select Control Register	Not Rising	1	Н
Load Control Register ^[1]	1	L	X
Latch Data to Control Word 1 ^[2]	L	Н	X

Notes:

- 1. BIT D_0 of Control Word 1 must have been previously set to Low for serial mode or High for simultaneous mode.
- 2. Selection of Control Word 1 or Control Word 0 is set by D_7 of the Control Shift Register. The unselected control word retains its previous value.

NOTE: 1. DATA IS COPIED TO THE CONTROL REGISTER OR THE DOT LATCH AND LED OUTPUTS WHEN TO IS HIGH AND CLK IS LOW.

HCMS-29XX Write Cycle Diagram

columns by 8 rows. This array can be conceptualized as four 5 x 8 dot matrix character locations, but only 7 of the 8 rows have LEDs (see Figures 1 & 2). The bottom row (row 0) is not used. Thus, latch location 0 is never displayed. Column 0 controls the left-most column. Data from Dot Latch locations 0-7 determine whether or not pixels in Column 0 are turned-on or turned-off. Therefore, the lower left pixel is turned-on when a logic high is stored in Dot Latch location 1. Characters are loaded in serially. with the left-most character being loaded first and the right-most character being loaded last. By loading one character at a time and latching the data before loading the next character, the figures will appear to scroll from right to left.

Control Register

The Control Register allows software modification of the IC's operation and consists of two independent 7-bit control words. Bit D_7 in the shift register selects one of the two 7-bit control words. Control Word 0 performs pulse width modulation brightness control, peak pixel current brightness control, and sleep mode. Control Word 1 sets serial/simultaneous data out mode, and external oscillator prescaler. Each function is independent of the others.

Control Register Data Loading

Data is loaded into the Control Register according to the procedure shown in Table 1 and the Write Cycle Timing Diagram. First, RS is brought to logic high and then $\overline{\text{CE}}$ is brought to logic low. Next, each successive rising CLK edge will shift in the data on the D_{IN} pin. Finally, when 8 bits have been loaded, the $\overline{\text{CE}}$ line is brought to logic high. When CLK goes to logic low, new data is copied into the selected control word. Loading data into the Control Register takes place while the previous control word configures the display.

Control Word 0

Loading the Control Register with $D_7 = Logic$ low selects Control Word 0 (see Table 2). Bits D_0 - D_3 adjust the display brightness by pulse width modulating the LED on-time, while Bits D_4 - D_5 adjust the display brightness by changing the peak pixel current. Bit D_6 selects normal operation or sleep mode.

Figure 1.

Figure 2.

Sleep mode (Control Word 0, bit $D_6=$ Low) turns off the Internal Display Oscillator and the LED pixel drivers. This mode is used when the IC needs to be powered up, but does not need to be active. Current draw in sleep mode is nearly zero. Data in the Dot Register and Control Words are retained during sleep mode.

Control Word 1

Loading the Control Register with $D_7 = logic high selects Control Word 1. This Control Word performs two functions: serial/simultaneous data out mode and external oscillator prescale select (see Table 2).$

Serial/Simultaneous Data Output D₀

Bit D_0 of control word 1 is used to switch the mode of $\mathrm{D}_{\mathrm{OUT}}$ between serial and simultaneous data entry during Control Register writes. The default mode (logic low) is the serial $\mathrm{D}_{\mathrm{OUT}}$ mode. In serial mode, $\mathrm{D}_{\mathrm{OUT}}$ is connected to the last bit (D_7) of the Control Shift Register.

Storing a logic high to bit D_0 changes D_{OUT} to simultaneous mode which affects the Control Register only. In simultaneous mode, D_{OUT} is logically connected to $D_{\rm IN}$. This arrangement allows multiple ICs to have their Control Registers written to simultaneously. For example, for N ICs in the serial mode, N * 8 clock pulses are needed to load the same data in all Control Registers.

In the simultaneous mode, N ICs only need 8 clock pulses to load the same data in all Control Registers. The propagation delay from the first IC to the last is N * $t_{\rm DOUTP}$.

External Oscillator Prescaler Bit D₁

Bit D₁ of Control Word 1 is used to scale the frequency of an external Display Oscillator, When this bit is logic low, the external Display Oscillator directly sets the internal display clock rate. When this bit is a logic high, the external oscillator is divided by 8. This scaled frequency then sets the internal display clock rate. It takes 512 cycles of the display clock (or $8 \times 512 = 4096$ cycles of an external clock with the divide by 8 prescaler) to completely refresh the display once. Using the prescaler bit allows the designer to use a higher external oscillator frequency without extra circuitry.

This bit has no affect on the internal Display Oscillator Frequency.

Bits D₂-D₆

These bits must always be programmed to logic low.

Cascaded ICs

Figure 3 shows how two ICs are connected within an HCMS-29XX display. The first IC controls the four left-most characters and the second IC controls the four right-most characters. The Dot

Registers are connected in series to form a 320-bit dot shift register. The location of pixel 0 has not changed. However, Dot Shift Register bit 0 of IC2 becomes bit 160 of the 320-bit dot shift register.

The Control Registers of the two ICs are independent of each other. This means that to adjust the display brightness the same control word must be entered into both ICs, unless the Control Registers are set to simultaneous mode.

Longer character string systems can be built by cascading multiple displays together. This is accomplished by creating a five line bus. This bus consists of \overline{CE} . RS, BL, Reset, and CLK. The display pins are connected to the corresponding bus line. Thus, all $\overline{\text{CE}}$ pins are connected to the $\overline{\text{CE}}$ bus line. Similarly, bus lines for RS, BL, Reset, and CLK are created. Then D_{IN} is connected to the right-most display. DOUT from this display is connected to the next display. The left-most display receives its D_{IN} from the D_{OUT} of the display to its right. D_{OUT} from the left-most display is not used.

Each display may be set to use its internal oscillator, or the displays may be synchronized by setting up one display as the master and the others as slaves. The slaves are set to receive their oscillator input from the master's oscillator output.

Table 2. Control Shift Register

CONTROL WORD 0

L	D	6	\mathbf{D}_{5}	$\mathbf{D_4}$	$\mathbf{D_3}$	$\mathbf{D_2}$	D ₁	$\mathbf{D_0}$			
↑ Bit D ₇ Set Low to Select Control]	PWM Br Con	 rightne itrol	ss	On-Time Oscillator Cycles	Duty Factor (%)	Relative Brightness (%)
Word 0							L H H L L H H L L H H H L H H H H H H H	L H L H L H L H L H L H L H L H L H L H	0 1 2 3 4 5 7 9 11 14 18 22 28 36 48 60	0 0.2 0.4 0.6 0.8 1.0 1.4 1.8 2.1 2.7 3.5 4.3 5.5 7.0 9.4 11.7	0 1.7 3.3 5.0 6.7 8.3 11.7 15 18 23 30 37 47 60 80 100
			Brigh Con H	Current etness etrol	Tyj Pix	pical Perel Curre (mA)	ent	Sca	elative Full ale Current e Brightness, %)		
			L L H	H L H		6.4 9.3 12.8			50 73 (Default at 1 100	Power Up) .
SLI	EEP	MO			SABLES		NAL OS	CILLATO	R-DISPLAY BLANI	ĸ	

SLEEP MODE

L – DISABLES INTERNAL OSCILLATOR-DISPLAY BLANK H – NORMAL OPERATION

CONTROL WORD 1

Figure 3. Cascaded ICs.

Appendix A. Thermal Considerations

Ç

The display IC has a maximum junction temperature of 150°C. The IC junction temperature can be calculated with Equation 1 below.

A typical value for $R\theta_{JA}$ is 100°C/ W. This value is typical for a display mounted in a socket and covered with a plastic filter. The socket is soldered to a .062 in. thick PCB with .020 inch wide, one ounce copper traces.

 P_D can be calculated as Equation 2 below.

Figure 4 shows how to derate the power of one IC versus ambient temperature. Operation at high ambient temperatures may require the power per IC to be reduced. The power consumption can be reduced by changing either the N, I_{PIXEL} , Osc cyc or V_{LED} . Changing V_{LOGIC} has very little impact on the power consumption.

TA - AMBIENT TEMPERATURE - °C

Figure 4.

Equation 1:

 $T_{J}MAX = T_{A} + P_{D} * R\theta_{JA}$

Where:

 $T_IMAX = maximum IC junction temperature$

 T_{A} = ambient temperature surrounding the display

 $R\theta_{IA}$ = thermal resistance from the IC junction to ambient

 P_D = power dissipated by the IC

Equation 2:

 $P_D = (N * I_{PIXEL} * Duty Factor * V_{LED}) + I_{LOGIC} * V_{LOGIC}$

Where:

 P_D = total power dissipation

N = number of pixels on (maximum 4 char * 5 * 7 = 140)

 I_{pixel} = peak pixel current.

Duty Factor = 1/8 * Osccyc/64

Osc cyc = number of ON oscillator cycles per row

 $I_{LOGIC} = IC logic current$

 $V_{LOGIC} = logic supply voltage$

Equation 3:

 $I_{PEAK} = M * 20 * I_{PIXEL}$

Where:

 I_{PEAK} = maximum instantaneous peak current for the display

M = number of ICs in the system

20 = maximum number of LEDs on per IC

 I_{PIXEL} = peak current for one LED

Equation 4:

 $I_{LED}(AVG) = N * I_{PIXEL} * 1/8 * (oscillator cycles)/64$

(see Variable Definitions above)

Appendix B. Electrical Considerations

Current Calculations

The peak and average display current requirements have a significant impact on power supply selection. The maximum peak current is calculated with Equation 3 below.

The average current required by the display can be calculated with Equation 4 below.

The power supply has to be able to supply I_{PEAK} transients and supply $I_{LED}(AVG)$ continuously. The range on V_{LED} allows noise on this supply without significantly changing the display brightness.

V_{LOGIC} and **V**_{LED} Considerations
The display uses two independent electrical systems. One system is used to power the display's logic and the other to power the display's LEDs. These two systems keep the logic supply clean.

Separate electrical systems allow the voltage applied to V_{LED} and V_{LOGIC} to be varied independently. Thus, V_{LED} can vary from 0 to 5.5 V without affecting either the Dot or the Control Registers. V_{LED} can

be varied between 4.0 to 5.5 V without any noticeable variation in light output. However, operating $V_{\rm LED}$ below 4.0 V may cause objectionable mismatch between the pixels and is not recommended. Dimming the display by pulse width modulating $V_{\rm LED}$ is also not recommended.

V_{LOGIC} can vary from 3.0 to 5.5 V without affecting either the displayed message or the display intensity. However, operation below 4.5 V will change the timing and logic levels and operation below 3 V may cause the Dot and Control Registers to be altered.

The logic ground is internally connected to the LED ground by a substrate diode. This diode becomes forward biased and conducts when the logic ground is 0.4 V greater then the LED ground. The LED ground and the logic ground should be connected to a common ground which can withstand the current introduced by the switching LED drivers. When separate ground connections are used, the LED ground can vary from -0.3 V to +0.3 V with respect to the logic ground. Voltages below -0.3 V can cause all the dots to be ON. Voltage above +0.3 V can cause dimming and dot mismatch. The LED ground for the LED drivers can be routed separately from the logic ground until an appropriate ground plane is available. On long interconnections between the display and the host system, voltage drops on the analog ground can be kept from affecting the display logic levels by isolating the two grounds.

Electrostatic Discharge

The inputs to the ICs are protected against static discharge and input current latchup. However, for best results, standard CMOS handling precautions should be used. Before use, the HCMS-29XX should be stored in antistatic tubes or in conductive material. During assembly, a grounded conductive work area should be used and assembly personnel should wear conductive wrist straps. Lab coats made of synthetic material should be avoided since they are prone to static buildup. Input current latchup is caused when the CMOS inputs are subjected to either a voltage below ground $(V_{IN} <$ ground) or to a voltage higher then V_{LOGIC} ($V_{IN} > V_{LOGIC}$) and when a high current is forced into the input. To prevent input current latchup and ESD damage. unused inputs should be connected to either ground or V_{LOGIC} . Voltages should not be applied to the inputs until V_{LOGIC} has been applied to the display.

Appendix C. Oscillator

The oscillator provides the internal refresh circuitry with a signal that is used to synchronize the columns and rows. This ensures that the right data is in the dot drivers for that row. This signal can be supplied from either an external source or the internal source.

A display refresh rate of 100 Hz or faster ensures flicker-free operation. Thus for an external oscillator the frequency should be greater than or equal to 512 x 100 Hz = 51.2 kHz. Operation above 1 MHz without the

prescaler or 8 MHz with the prescaler may cause noticeable pixel to pixel mismatch.

Appendix D. Refresh Circuitry

This display driver consists of 20 one-of-eight column decoders and 20 constant current sources, 1 one-of-eight row decoder and eight row sinks, a pulse width modulation control block, a peak current control block, and the circuit to refresh the LEDs. The refresh counters and oscillator are used to synchronize the columns and rows.

The 160 bits are organized as 20 columns by 8 rows. The IC illuminates the display by sequentially turning ON each of the 8 row drivers. To refresh the display once takes 512 oscillator cycles. Because there are eight row drivers, each row driver is selected for 64 (512/8) oscillator cycles. Four cycles are used to briefly blank the display before the following row is switched on. Thus, each row is ON for 60 oscillator cycles out of a possible 64. This corresponds to the maximum LED on time.

Appendix E. Display Brightness

Two ways have been shown to control the brightness of this LED display: setting the peak current and setting the duty factor. Both values are set in Control Word 0. To compute the resulting display brightness when both PWM and peak current control are used, simply multiply the two relative brightness factors. For example, if Control Register 0 holds the word 1001101, the peak current

Figure 5.

is 73% of full scale (BIT $D_5 = L$, BIT $D_4 = L$) and the PWM is set to 60% duty factor (BIT $D_3 = H$, BIT $D_2 = H$, BIT $D_1 = L$, BIT D_0 = H). The resulting brightness is $44\% (.73 \times .60 = .44)$ of full scale.

The temperature of the display will also affect the LED brightness as shown in Figure 5.

Appendix F. Reference Material

Application Note 1027: Soldering LED Components

Application Note 1015: Contrast Enhancement Techniques for LED Displays

Eight Character 5 mm Smart Alphanumeric Display

Technical Data

HDSP-253X Series

Features

- XY Stackable
- 128 Character ASCII Decoder
- Programmable Functions
- 16 User Definable Characters
- Multi-Level Dimming and Blanking
- TTL Compatible CMOS IC
- Wave Solderable

Applications

- Avionics
- Computer Peripherals
- Industrial Instrumentation
- Medical Equipment
- Portable Data Entry Devices
- Telecommunications
- Test Equipment

Description

The HDSP-253X is ideal for applications where displaying eight or more characters of dot matrix information in an aesthetically pleasing manner is required. These devices are eightdigit, 5 x 7 dot matrix, alphanumeric displays. The 5.0 mm (0.2 inch) high characters are packaged in a 0.300 mm (7.62 inch) 30 pin DIP. The on-board CMOS IC has the ability to decode 128 ASCII characters, which are permanently stored in ROM. In addition, 16 programmable symbols may be stored in onboard RAM. Seven brightness levels provide versatility in adjusting the display intensity and power consumption. The HDSP-253X is designed for stan-

dard microprocessor interface techniques. The display and special features are accessed through a bidirectional eight-bit data bus.

Device Selection Guide

AlGaAs Red	AlGaAs Red HER		Yellow	Green	
HDSP-2534	HDSP-2532	HDSP-2530	HDSP-2531	HDSP-2533	

5964-6377E

Package Dimensions

NOTES

NOTES: 1. DIMENSIONS ARE IN MM (INCHES). 2. UNLESS OTHERWISE SPECIFIED, TOLERANCE ON DIMENSIONS IS \pm 0.25 MM (0.010 IN.). 3. FOR YELLOW AND GREEN DISPLAYS ONLY.

Absolute Maximum Ratings

Supply Voltage, V _{DD} to Ground ^[1] 0.3 V to 7.0 V
Operating Voltage, V _{DD} to Ground ^[2]
Input Voltage, Any Pin to Ground0.3 V to V_{DD} +0.3 V
Free Air Operating Temperature Range, $T_A^{[3]}$ 40°C to + 85°C
Relative Humidity (Non-Condensing)
Storage Temperature Range, T _S 55°C to 100°C
Maximum Solder Temperature
1.59 mm (0.063 in.) Below Seating Plane, t < 5 sec
ESD Protection @ 1.5 kΩ. 100 pF. 4 kV (each pin)

- 1. Maximum Voltage is with no LEDs illuminated.
- 2. 20 dots ON in all locations at full brightness.
- 3. See Thermal Considerations section for information about operation in high temperature ambients.

ESD WARNING: NORMAL CMOS HANDLING PRECAUTIONS SHOULD BE OBSERVED TO AVOID STATIC DISCHARGE.

ASCII Character Set

D5 D4	1 X X 8-F 18 U S E R
D5 D4	1 X X 8-F 16 U S E
0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 X 8-F 16 U 8 E
0000 0 1 2 3 4 5 6 7 0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8-F 16 U 8 E
0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	16 U 8 E
0000 0	U 8 E
0010 2	
0010 2	A
0011 3	200
	D E
0100 4	F
0101 5	N E D
0110 6	C
0111 7	H H
1000 8	R
1001 9	A C T E R S
1010 A	R
1011 B	
1100 C	770
1101 D D D D D D D D D D D D D D D D D D	88
1110 E	
1111 F	

Optical Characteristics at $25^{\circ}C^{[1]}$

 $V_{DD} = 5.0 \text{ V}$ at Full Brightness

		Luminous Intensity Character Average (#) I _V (mcd)		Peak Wavelength	Dominant Wavelength ^[2]	
LED Color	Part Number	Min.	Typ.	- λ _{PEAK} (nm) Typ.	λ _d (nm) Typ.	
AlGaAs Red	HDSP-2534	5.1	25	645	637	
High Eff. Red	HDSP-2532	2.5	7.5	635	626	
Orange	HDSP-2530	2.5	7.5	600	602	
Yellow	HDSP-2531	2.5	7.5	583	585	
Green	HDSP-2533	2.5	7.5	568	574	

- 1. Refers to the initial case temperature of the device immediately prior to measurement. 2. Dominant wavelength, λ_d , is derived from the CIE chromaticity diagram, and represents the single wavelength which defines the color of the device.

Recommended Operating Conditions

Parameter	Symbol	Minimum	Nominal	Maximum	Units
Supply Voltage	V_{DD}	4.5	5.0	5.5	V

Electrical Characteristics over Operating Temperature Range

 $4.5 < V_{DD} < 5.5$ unless otherwise specified

			25℃	25°C			
Parameter	Symbol	Min.	Typ.[1].	Max.[1]	Max.	Units	Test Conditions
Input Leakage (Input without pull-up)	$I_{\rm I}$	-1.0			1.0	μΑ	$\begin{aligned} &V_{IN} = 0 \text{ to } V_{DD} \text{, pins CLK,} \\ &D_0\text{-}D_7 \text{, } A_0\text{-}A_4 \end{aligned}$
Input Current (Input with pull-up)	$ m I_{IP}$	-30	-11	-18	0	μA	$\frac{V_{IN}}{RST} = \frac{0 \text{ to } V_{DD}}{WR}, \frac{\text{pins CLS}}{RD}, \frac{\text{CE}}{CE}, \frac{\text{FL}}{FL}$
I _{DD} Blank	I _{DD} (BL)		0.5	3.0	4.0	mA	$V_{\rm IN} = V_{\rm DD}$
I _{DD} 8 digits 12 dots/char ^[2,3,4] (AlGaAs)	$I_{DD}(V)$		230	295	390	mA	"V" on in all 8 locations
I _{DD} 8 digits 20 dots/char ^[2,3,4] (AlGaAs)	.I _{DD} (#)		330	410	480	mA	"#" on in all 8 locations
I _{DD} 8 digits 12 dots/char ^[2,3,4] (all colors except AlGaAs)	I _{DD} (V)		200	255	330	mA	"V" on in all 8 locations
I _{DD} 8 digits 20 dots/char ^[2,3,4] (all colors except AlGaAs)	I _{DD} (#)		.300	370	430	mA	"#" on in all 8 locations
Input Voltage High	V_{IH}	2.0			V _{DD} +0.3 V	V	
Input Voltage Low	V_{IL}	GND -0.3 V				V	
Output Voltage High	V_{OH}	2.4				V	$V_{\rm DD} = 4.5 \text{ V}, I_{\rm OH} = -40 \mu\text{A}$
Output Voltage Low D ₀ -D ₇	$V_{ m OL}$				0.4	V	$V_{\rm DD} = 4.5 \text{ V}, I_{\rm OL} = 1.6 \text{ mA}$
Output Voltage Low CLK	$V_{ m OL}$				0.4	V	$V_{DD} = 4.5 \text{ V}, I_{OL} = 40 \mu\text{A}$
Thermal Resistance IC Junction-to-PIN	$ m R heta_{J ext{-PIN}}$		16			°C/W	Measured at pin 17

Notes:

^{1.} $V_{DD} = 5.0 \text{ V}.$

^{2.} See Thermal Considerations Section for information about operation in high temperature ambients.

^{3.} Average I_{DD} measured at full brightness. See Table 2 in Control Word Section for I_{DD} at lower brightness levels.

Peak $I_{DD} = 28/15 \text{ x } I_{DD}(\#)$. 4. Maximum I_{DD} occurs at -55°C.

AC Timing Characteristics over Temperature Range

 $V_{DD} = 4.5$ to 5.5 V unless otherwise specified.

Reference Number	Symbol	Description	Min.[1]	Units
1	${ m t}_{ m ACC}$	Display Access Time Write Read	210 230	ns
2	t _{ACS}	Address Setup Time to Chip Enable	10	ns
3	${ m t_{CE}}$	Chip Enable Active Time ^[2, 3] Write Read	140 160	ns
4	$\mathbf{t}_{\mathrm{ACH}}$	Address Hold Time to Chip Enable	20	ns
5	t_{CER}	Chip Enable Recovery Time	60	ns
6	${ m t_{CES}}$	Chip Enable Active Prior to Rising Edge of [2, 3] Write Read	140 160	ns
7	${ m t}_{ m CEH}$	Chip Enable Hold Time to Rising Edge of Read/Write Signal ^[2, 3]	0	ns
8	t _w	Write Active Time	100	ns
9	t_{WD}	Data Valid Prior to Rising Edge of Write Signal	50	ns
10	t_{DH}	Data Write Hold Time	20	ns
11	t_R	Chip Enable Active Prior to Valid Data	160	ns
12	$\mathrm{t_{RD}}$	Read Active Prior to Valid Data	75	ns
13	$\mathrm{t_{DF}}$	Read Data Float Delay	10	ns
	t_{RC}	Reset Active Time ^[4]	300	ns

Notes:

- 1. Worst case values occur at an IC junction temperature of 125°C.
- 2. For designers who do not need to read from the display, the Read line can be tied to V_{DD} and the Write and Chip Enable lines can be tied together.
- 3. Changing the logic levels of the Address lines when $\overline{\text{CE}} = "0"$ may cause erroneous data to be entered into the Character RAM, regardless of the logic levels of the WR and RD lines.
- 4. The display must not be accessed until after 3 clock pulses (110 µs min. using the internal refresh clock) after the rising edge of the reset line.

Symbol	Description	25°C Typical	Minimum ^[1]	Units
Fosc	Oscillator Frequency	57	28	kHz
F _{RF} ^[5]	Display Refresh Rate	256	128	Hz
F _{FL} ^[6]	Character Flash Rate	2	1	Hz
t _{ST} [7]	Self Test Cycle Time	4.6	9.2	sec

Notes:

- 5. $F_{RF} = F_{OSC}/224$. 6. $F_{FL} = F_{OSC}/28,672$. 7. $t_{ST} = 262,144/F_{OSC}$.

Write Cycle Timing Diagram

Read Cycle Timing Diagram

INPUT PULSE LEVELS: 0.6 V TO 2.4 V OUTPUT REFERENCE LEVELS: 0.6 V TO 2.2 V OUTPUT LOADING = 1 TTL LOAD AND 100pF

Electrical Description

Pin Function

Description

RESET (RST, pin 1)

Reset initializes the display.

FLASH (FL, pin 2)

FL low indicates an access to the Flash RAM and is unaffected by the

state of address lines A.-A..

ADDRESS INPUTS $(A_0-A_4, pins 3-6, 10)$

Each location in memory has a distinct address. Address inputs (A₀-A₂) select a specific location in the Character RAM, the Flash RAM or a particular row in the UDC (User-Defined Character) RAM. A₃-A₄ are used to select which section of memory is accessed. Table 1 shows the logic levels needed to access each section of memory.

Table 1. Logic Levels to Access Memory

FL	A ₄	A_3	Section of Memory	$A_2 A_1 A_0$
0	X	X	Flash RAM	Character Address
1	0	0	UDC Address Register	Don't Care
1	0	1	UDC RAM	Row Address
1	1	0	Control Word Register	Don't Care
1	1	1	Character RAM	Character Address

CLOCK SELECT (CLS, pin 11)

This input is used to select either an internal (CLS = 1) or external (CLS = 0)

clock source.

CLOCK INPUT/OUTPUT

(CLK, pin 12)

Outputs the master clock (CLS = 1) or inputs a clock (CLS = 0) for slave

displays.

WRITE (WR, pin 13)

Data is written into the display when the \overline{WR} input is low and the

 $\overline{\text{CE}}$ input is low.

CHIP ENABLE (\overline{CE} , pin 14)

This input must be at a logic low to read or write data to the display and

must go high between each read and write cycle.

READ (\overline{RD} , pin 19)

Data is read from the display when the \overline{RD} input is low and the \overline{CE}

input is low.

DATA Bus

The Data bus is used to read from or write to the display.

 $(D_0-D_7, pins 20, 21, 25-30)$

This is the analog ground for the LED drivers.

GND (SUPPLY) (pin 16) GND (LOGIC) (pin 18)

This is the digital ground for internal logic.

V_{DD} (POWER) (pin 15)

This is the positive power supply input.

Thermal Test (pin 17)

This pin is used to measure the IC junction temperature.

Do not connect.

Figure 1. HDSP-253X Internal Block Diagram.

Display Internal Block Diagram

Figure 1 shows the internal block diagram of the HDSP-253X display. The CMOS IC consists of an 8 byte Character RAM, an 8 bit Flash RAM, a 128 character ASCII decoder, a 16 character UDC RAM, a UDC Address Register, a Control Word Register and the refresh circuitry necessary to synchronize the decoding and

driving of eight 5 x 7 dot matrix characters. The major user accessible portions of the display are listed below:

Flash RAM

User-Defined Character RAM (UDC RAM)

User-Defined Character Address Register (UDC Address Register)

Control Word Register

This RAM stores either ASCII character data or a UDC RAM address.

This is a 1 x 8 RAM which stores Flash data.

This RAM stores the dot pattern for custom characters.

This register is used to provide the address to the UDC RAM when the user is writing or reading a custom character.

This register allows the user to adjust the display brightness, flash individual characters, blink, self test or clear the display.

Character Ram

Figure 2 shows the logic levels needed to access the HDSP-253X Character RAM. During a normal access the \overline{CE} = "0" and either \overline{RD} = "0" or \overline{WR} = "0". However, erroneous data may be written into the Character RAM if the Address lines are unstable when \overline{CE} = "0" regardless of the logic levels of the \overline{RD} or \overline{WR} lines. Address lines A_0 - A_2 are used to select the location in the Character RAM. Two types of data can be stored in each Character RAM location: an ASCII code or a UDC RAM address. Data bit D7 is used to differentiate between the ASCII character and a UDC RAM address. $D_7 = 0$ enables the ASCII decoder and $D_7 = 1$ enables the UDC RAM. Do-D6 are used to input ASCII data and Do-D3 are used to input a UDC address.

Figure 2. Logic Levels to Access the Character RAM.

UDC RAM and UDC Address Register

Figure 3 shows the logic levels needed to access the UDC RAM and the UDC Address Register. The UDC Address Register is eight bits wide. The lower four bits $(D_0\text{-}D_3)$ are used to select one of the 16 UDC locations. The upper four bits $(D_4\text{-}D_7)$ are not used. Once the UDC address has been stored in the UDC Address Register, the UDC RAM can be accessed.

To completely specify a 5 x 7 character requires eight write cycles. One cycle is used to store the UDC RAM address in the UDC Address Register. Seven cycles are used to store dot data in the UDC RAM. Data is entered by rows. One cycle is needed to access each row. Figure 4 shows the organization of a UDC character assuming the symbol to be stored is an "F." A₀-A₂ are used to select the row to be accessed and Do-D4 are used to transmit the row dot data. The upper three bits (D_5-D_7) are ignored. D_0 (least significant bit) corresponds to the right most column of the 5 x 7 matrix and D₄ (most significant bit) corresponds to the left most column of the 5 x 7 matrix.

Flash RAM

Figure 5 shows the logic levels needed to access the Flash RAM. The Flash RAM has one bit associated with each location of the Character RAM. The Flash input is used to select the Flash RAM. Address lines A_3 - A_4 are ignored. Address lines A_0 - A_2 are used to select the location in the Flash RAM to store the attribute. D_0 is used to store or remove the flash attribute. D_0 = "1" stores the attribute and D_0 = "0" removes the attribute.

Figure 3. Logic Levels to Access a UDC Character.

0 = LOGIC 0; 1 = LOGIC 1; * = ILLUMINATED LED.

Figure 4. Data to Load ""F" into the UDC RAM.

When the attribute is enabled through bit 3 of the Control Word and a "1" is stored in the Flash RAM, the corresponding character will flash at approximately 2 Hz. The actual rate is dependent on the clock frequency. For an external clock the flash rate can be calculated by dividing the clock frequency by 28,672.

FLASH RAM ADDRESS

D7	De	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	REMOVE FLASH AT
- u							0	SPECIFIED DIGIT LOCATION
^	^	^	•	^	^	^	1	STORE FLASH AT
								SPECIFIED DIGIT LOCATION

FLASH RAM DATA FORMAT

0 = LOGIC 0; 1 = LOGIC 1; X = DO NOT CARE

Figure 5. Logic Levels to Access the Flash RAM.

Control Word Register

Figure 6 shows how to access the Control Word Register. This is an eight bit register which performs five functions. They are Brightness control, Flash RAM control, Blinking, Self Test and Clear. Each function is independent of the others. However, all bits are updated during each Control Word write cycle.

Brightness (Bits 0-2)

Bits 0-2 of the Control Word adjust the brightness of the display. Bits 0-2 are interpreted as a three bit binary code with code (000) corresponding to maximum brightness and code (111) corresponding to a blanked display. In addition to varying the display brightness, bits 0-2 also vary the average value of IDD. IDD can be calculated at any brightness level by multiplying the percent brightness level by the value of I_{DD} at the 100% brightness level. These values of I_{DD} are shown in Table 2.

Flash Function (Bit 3)

Bit 3 determines whether the flashing character attribute is on or off. When bit 3 is a "1," the output of the Flash RAM is checked. If the content of a location in the Flash RAM is a "1," the associated digit will flash at

NORMAL OPERATION: X IS IGNORED

START SELF TEST; RESULT GIVEN IN X

0 NORMAL OPERATION
1 CLEAR FLASH AND CHARACTER RAMS

CONTROL WORD DATA FORMAT

0 = LOGIC 0: 1 = LOGIC 1: X = DO NOT CARE

Figure 6. Logic Levels to Access the Control Word Register

Table 2. Current Requirements at Different Brightness Levels for All Colors Except AlGaAs

Symbol	$\mathbf{D_2}$	$\mathbf{D_1}$	$\mathbf{D_0}$	% Brightness	$V_{\mathrm{DD}} = 5.0 \mathrm{\ V}$ $25^{\circ}\mathrm{C} \mathrm{\ Typ}.$	Units
I _{DD} (V)	0 0 0 0 1 1 1	0 0 1 1 0 0	0 1 0 1 0 1	100 80 53 40 27 20 13	200 160 106 80 54 40 26	mA mA mA mA mA mA

approximately 2 Hz. For an external clock, the blink rate can be calculated by dividing the clock frequency by 28,672. If the flash enable bit of the Control Word is a "0," the content of the Flash RAM is ignored. To use this function with multiple display systems see the Reset section.

Blink Function (Bit 4)

Bit 4 of the Control Word is used to synchronize blinking of all

eight digits of the display. When this bit is a "1" all eight digits of the display will blink at approximately 2 Hz. The actual rate is dependent on the clock frequency. For an external clock, the blink rate can be calculated by dividing the clock frequency by 28,672. This function will override the Flash function when it is active. To use this function with multiple display systems see the Reset section.

Self Test Function (Bits 5, 6)

Bit 6 of the Control Word Register is used to initiate the self test function. Results of the internal self test are stored in bit 5 of the Control Word. Bit 5 is a read only bit where bit 5 = "1" indicates a passed self test and bit 5 = "0" indicates a failed self test.

Setting bit 6 to a logic 1 will start the self test function. The built-in self test function of the IC consists of two internal routines which exercises major portions of the IC and illuminates all of the LEDs. The first routine cycles the ASCII decoder ROM through all states and performs a checksum on the output. If the checksum agrees with the correct value, bit 5 is set to "1." The second routine provides a visual test of the LEDs using the drive circuitry. This is accomplished by writing checkered and inverse checkered patterns to the display. Each pattern is displayed for approximately 2 seconds.

During the self test function the display must not be accessed. The time needed to execute the self test function is calculated by multiplying the clock period by 262,144. For example, assume a clock frequency of 58 KHz, then the time to execute the self test function frequency is equal to (262,144/58,000) = 4.5 second duration.

At the end of the self test function, the Character RAM is loaded with blanks, the Control Word Register is set to zeros except for bit 5, and the Flash RAM is cleared and the UDC Address Register is set to all ones.

Clear Function (Bit 7)

Bit 7 of the Control Word will clear the Character RAM and the Flash RAM. Setting bit 7 to a "1" will start the clear function. Three clock cycles (110 µs min. using the internal refresh clock) are required to complete the clear function. The display must not be accessed while the display is being cleared. When the clear function has been completed, bit 7 will be reset to a "0." The ASCII character code for a space (20H) will be loaded into the Character RAM to blank the display and the Flash RAM will be loaded with "1"s. The UDC RAM, UDC Address Register and the remainder of the Control Word are unaffected.

Display Reset

Figure 7 shows the logic levels needed to reset the display. The display should be reset on Powerup. The external Reset clears the Character RAM, Flash RAM, Control Word and resets the internal counters. After the rising edge of the Reset signal, three clock cycles (110 µs min. using the internal refresh clock) are required to complete the reset sequence. The display must not be accessed while the display is being reset. The ASCII Character code for a space (20H) will be loaded into the Character RAM to blank the display. The Flash RAM and Control Word Register are loaded with all "0"s. The UDC RAM and UDC Address Register are unaffected. All displays which operate with the same clock source must be simultaneously reset to synchronize the Flashing and Blinking functions.

Mechanical Considerations

The HDSP-253X is assembled by die attaching and wire bonding 280 LED chips and a CMOS IC to a thermally conductive printed circuit board. A polycarbonate lens placed over the pcb creates an air gap over the LED wire bonds. A backfill epoxy seals the display package.

Figure 8 shows the proper method to insert the display by hand. To prevent damage to the LED wire bonds, apply pressure uniformly with fingers located at both ends of the part. Using a tool, shown in Figure 9, such as a screwdriver or pliers to push the display into the printed circuit board or socket may damage the LED wire bonds. The force exerted by a screwdriver is sufficient to push the lens into the LED wire bonds. The bent wire bonds cause shorts or opens that result in catastrophic failure of the LEDs.

0 = LOGIC 0; 1 = LOGIC 1; X = DO NOT CARE NOTE: IF RST, CE AND WR ARE LOW, UNKNOWN DATA MAY BE WRITTEN INTO THE DISPLAY.

Figure 7. Logic Levels to Reset the Display.

Figure 8. Proper Method to Manually Insert a Display.

Figure 9. Improper Method to Manually Insert a Display.

Thermal Considerations

The HDSP-253X can operate from -40°C to +85°C. The display's low thermal resistance allows heat to flow from the CMOS IC to the 24 package pins. Typically, this heat is conducted through the printed

circuit board traces to free air. For most applications, no additional heatsinking is needed. Illuminating all 280 LEDs simultaneously at full brightness is not recommended for continuous operation. However, all 280 LEDs can be illuminated simul-

taneously at full brightness for 10 seconds at 25° C as a lamp test.

The IC has a maximum allowable junction temperature of 150°C. The IC junction temperature can be calculated with the following equation:

$$T_JMAX = T_A + (P_D \times R\theta_{J-A})$$

 $T_{\rm J}MAX$ is the maximum allowable IC junction temperature. $T_{\rm A}$ is the ambient temperature surrounding the display. $P_{\rm D}$ is the power dissipated by the IC.

 $R\theta_{J-A}$ is the thermal resistance from the IC through the display package and printed circuit board to the ambient.

A typical value for $R\theta_{J\text{-}A}$ is $39^{\circ}\text{C/W}.$ This value is typical for a display mounted in a socket and covered with a plastic filter. The socket is soldered to a 0.062 in. thick printed circuit board with 0.020 in. wide one-ounce copper traces.

 P_D can be calculated as follows: $P_D = V_{DD} \; x \; I_{DD} \label{eq:pdf}$

 ${
m V_{DD}}$ is the supply voltage and ${
m I_{DD}}$ is the supply current. ${
m V_{DD}}$ can vary from 4.5 V to 5.5 V. ${
m I_{DD}}$ changes with ${
m V_{DD}}$, temperature, brightness level, and number of on-pixels.

For AlGaAs

$$\begin{split} &I_{DD} \ (\#) = (83.8 \ x \ V_{DD} \ \text{-}0.35 \ x \ T_{J}) \\ &x \ B \ x \ N/8 \\ &I_{DD} (V) = (63 \ x \ V_{DD} \ \text{-}0.79 \ x \ T_{J}) \ x \\ &B \ x \ N/8 \end{split}$$

For the other colors $I_{DD}~(\#) = (75.4~x~V_{DD}~\text{-}0.28~x~T_{\text{J}}) \\ x~B~x~N/8$

 $I_{DD}(V) = (54 \text{ x V}_{DD} - 0.6 \text{ x T}_{J}) \text{ x B}$ x N/8

$$\begin{split} &I_{DD} \ (\text{\#}) \ \text{is the supply current} \\ &using \text{``\#''} \ \text{as the displayed} \\ &character. \\ &I_{DD}(V) \ \text{is the supply current using} \\ &\text{``V''} \ \text{as the displayed character.} \\ &T_{J} \ \text{is the IC junction temperature.} \\ &B \ \text{is the percent brightness level.} \\ &N \ \text{is the number of characters} \\ &illuminated. \end{split}$$

Operation in high temperature ambients may require power derating or heatsinking. Figure 10 shows how to derate the power for an HDSP-253X. You can reduce the power by tighter supply voltage regulation or lowering the brightness level.

Table 3 shows the calculated maximum allowable ambient temperature for several different sets of operating conditions. The

worst case alphanumeric characters (#,@,B) have 20 pixels. Displaying eight 20-pixel characters will not occur in normal operation. Thus, using eight 20-pixel characters to calculate power dissipation will over estimate the power and the IC junction temperature. The average number of pixels per character, supply voltage, brightness level, and number of characters are needed to calculate the power dissipated by the IC. The ambient temperature, power dissipated by the IC, and the thermal resistance are then used to calculate IC junction temperature. The typical alphanumeric character is 15 pixels. For conditions not listed in Table 3. you can calculate the power dissipated by the IC and use Figure 10 to determine the maximum ambient temperature.

Figure 10. Maximum Allowable Power Dissipation vs. Ambient Temperature. $T_JMAX = 150\,^{\circ}C$ or $120\,^{\circ}C$.

Table 3. Maximum Allowable Ambient Temperature for Various Operating Conditions

AlGaAs Red

Character	Number of Characters	Brightness Level	V _{DD} V	I _{DD} mA	P _D W	Rθ _{J-A} °C/W	$T_{A}MAX$ $^{\circ}C$
# (20 dots)	8	100%	5.5	408	2.2	39	64
# (20 dots)	. 8	100%	5.25	387	2.0	39	72
# (20 dots)	8	100%	5.0	366	1.8	39	80
# (20 dots)	7	100%	5.5	357	2.0	39	72
# (20 dots)	6	100%	5.5	306	1.7	39	84
# (20 dots)	8	80%	5.5	327	1.8	39	80
# (20 dots)	8	80%	5.25	310	1.6	39	85
# (20 dots)	8	53%	5.5	216	1.2	39	85
V (12 dots)	8	100%	5.5	228	1.3	39	85

Table 3. Maximum Allowable Ambient Temperature for Various Operating Conditions (cont'd.)

Character	Number of Characters	Brightness Level	V _{DD} V	I _{DD} mA	P _D W	Rθ _{J-A} °C/W	$T_{A}MAX$ °C
# (20 dots)	8	100%	5.5	373	2.0	39	72
# (20 dots)	8	100%	5.25	354	1.9	39	77
# (20 dots)	8	100%	5.0	335	1.67	39	85
# (20 dots)	7	100%	5.5	326	1.8	39	80
# (20 dots)	6	100%	5.5	280	1.5	39	85
# (20 dots)	8	80%	5.5	298	1.6	39	85
V (12 dots)	8	100%	5.5	207	1.1	39	85

The actual IC temperature is easy to measure. Pin 17 is thermally and electrically connected to the IC substrate. The thermal resistance from pin 17 to the IC is 16° C/W. The procedure to measure the IC junction temperature is as follows:

- 1. Measure V_{DD} and I_{DD} for the display. Measure V_{DD} between pins 15 and 16. Measure the current entering pin 15.
- 2. Measure the temperature of pin 17 after 45 minutes. Use an electrically isolated thermal couple probe.
- 3. $T_J(IC) = T_{pin} + V_{DD} \times I_{DD} \times 16^{\circ}C/W$.

All Colors Except AlGaAs Red

Ground Connections

Two ground pins are provided to keep the internal IC logic ground clean. The designer can, when necessary, route the analog ground for the LED drivers separately from the logic ground until an appropriate ground plane is available. On long interconnections between the display and the host system, the designer can keep voltage drops on the analog ground from affecting the display logic levels by isolating the two grounds.

The logic ground should be connected to the same ground potential as the logic interface circuitry. The analog ground and the logic ground should be connected at a common ground which can withstand the current induced by the switching LED drivers.

When separate ground connections are used, the analog ground can vary from -0.3 V to +0.3 V with respect to the logic ground. Voltage below -0.3 V can cause all dots to be on. Voltage above +0.3 V can cause dimming and dot mismatch.

Solder and Post Solder Cleaning

Note: Freon vapors can cause the black paint to peel off the display. See Application Note 1027 for information on soldering and post solder cleaning.

Contrast Enhancement (Filtering)

See Application Note 1015 for information on contrast enhancement.

Eight Character 5 mm and 7 mm Smart Alphanumeric Displays

Technical Data

HDSP-210X Series HDSP-211X Series HDSP-250X Series

Features

- X Stackable (HDSP-21XX)
- XY Stackable (HDSP-250X)
- 128 Character ASCII Decoder
- Programmable Functions
- 16 User Definable Characters
- Multi-Level Dimming and Blanking
- TTL Compatible CMOS IC
- Wave Solderable

Applications

- Computer Peripherals
- Industrial Instrumentation
- Medical Equipment
- Portable Data Entry Devices
- Cellular Phones

- Telecommunications Equipment
- Test Equipment

Description

The HDSP-210X/-211X/-250X series of products is ideal for applications where displaying eight or more characters of dot matrix information in an aesthetically pleasing manner is required. These devices are 8-digit, 5 x 7 dot matrix, alphanumeric displays and are all packaged in a standard 15.24 mm (0.6 inch) 28 pin DIP. The onboard CMOS IC has the ability to decode 128 ASCII characters which are permanently stored in ROM. In addition, 16 programmable symbols may be stored in on-board ROM, allowing consider-

able flexibility for displaying additional symbols and icons. Seven brightness levels provide versatility in adjusting the display intensity and power consumption. The HDSP-210X/-211X/-250X products are designed for standard microprocessor interface techniques. The display and special features are accessed through a bidirectional 8-bit data bus.

Device Selection Guide

Font Height	AlGaAs Red	High Efficiency Red	Orange	Yellow	Green
0.2 inches	HDSP-2107	HDSP-2112	HDSP-2110	HDSP-2111	HDSP-2113
0.27 inches	_	HDSP-2502	HDSP-2500	HDSP-2501	HDSP-2503

Package Dimensions

Pin Function Assignment Table

Pin No.	Function	Pin No.	Function
1	RST	15	GND(SUPPLY)
2	FL	16	GND (LOGIC)
3	A ₀	17	CE
4	A ₁	18	RD
5	A ₂	19	D _o
6	A ₃	20	D ₁
7	DO NOT CONNECT	21	NO PIN
	DO NOT CONNECT	22	NO PIN
9 :	DO NOT CONNECT	23	D ₂
10	A ₄	24	D ₃
11	CLS	25	D ₃ D ₄
12	CLK	26	D _s
13	WR	27	D _a
14	V _{DD}	28	D,

NOTES:

1. DIMENSIONS ARE IN mm (INCHES). 2. UNLESS OTHERWISE SPECIFICE, TOLERANCE ON ALL DIMENSIONS IS \pm 0.25 mm (0.010 INCH). 3. FOR YELLOW AND GREEN DEVICES ONLY.

Absolute Maximum Ratings

0.3 to 7.0 V
5.5 V
0.3 to $V_{\rm DD}$ +0.3 V
45°C to +85°C
55°C to +100°C
85%
260°C
$V_Z = 4 \text{ kV (each pin)}$

Notes:

- 1. Maximum Voltage is with no LEDs illuminated.
- 2. 20 dots ON in all locations at full brightness.
- 3. Maximum supply voltage is 5.25 V for operation above 70°C.

ESD WARNING: STANDARD CMOS HANDLING PRECAUTIONS SHOULD BE OBSERVED TO AVOID STATIC DISCHARGE.

Package Dimensions

ASCII Character Set HDSP-210X, HDSP-211X, HDSP-250X Series

			,											•						
D7			0		0		0		0		0		0		0		0		1	
26 -			۱°,		١°,	0	١,		ľ		١,		١,	,	Ι'.	1	Ι'	, I	X X	
1	D4		j '		'	1	'	0		1		٥		1		۰		1	. ^	x
273	D3 D2 D1 D0	COLUMN		0		,	-	1		3	4		ŧ	;		6	-	,	8-F	
	0000	0				~~~										00000		8888	16	
	0001	1					00000:								9 CC00		00000		U 8 E	
	0010	2				00800		28080								22000			R	
	0011	3				(*,*)*. (*,*)*.			95085						RAPPE		REPRE		D E	
	0100	•	1	SESSE		HARRA		98440		1000		dana		848	9;	2882		SHHEE	FIN	
	0101	5	2005		8888	- 1 112:					(9)5/41-		868		8886		8888E		E	
	0110	6		:3888 :3888		3848		3118 8		3000				888		1862	W		c	
ļ	0111	7	10000		8888		12.5	3600					iir		Hotel.		99165		HAR	
	1000	8		Charles of		196 PKG						2 6							A	
	1001	• •	養養		- M.W.		34				000						Septiminal a	•	T E A	
	1011	<u>^</u> В	J##	100	225			0.00									52		5	
	1100	c		100		.agr	3000				1000 1000 1000 1000			198		F		190		
	1101	D							Pagaig.	ilegi	Pagi.	M				68				
	1110	E		11				FREE		11777		₽61-4				HITTE		rigiPiliai.	i	
	1111	F		Z	elen		rgelier		e e e e		puit		1000		Pirot S		epiten:			
					l								l				1			

Recommended Operating Conditions

Parameter	Symbol	Minimum	Nominal	Maximum	Units
Supply Voltage	$V_{ m DD}$	4.5	5.0	5.5	v

Electrical Characteristics over Operating Temperature Range (-45°C to +85°C) 4.5 V < V_{DD} < 5.5 V, unless otherwise specified

Parameter	Symbol		25°C 5.0 V Max.	$-45^{\circ}\mathrm{C} < \mathrm{T}$ $4.5~\mathrm{V} < \mathrm{V}_{\mathrm{I}}$ Min.	A < + 85°C OD < 5.5 V Max.	Units	Test Conditions
Input Leakage (Input without pullup)	I _{IH}	1 1, 2	w.mg		1.0 -1.0	μА	$\begin{aligned} &V_{\rm IN} = 0 \text{ to } V_{\rm DD},\\ &\text{pins CLK, } D_0\text{-}D_7,\\ &A_0\text{-}A_4 \end{aligned}$
Input Current (Input with pullup)	I _{IPL}	-11	-18	3	-30	μА	$\begin{aligned} V_{\text{IN}} &= 0 \text{ to } V_{\text{DD}}, \\ \underline{\text{pins } \overline{\text{CLS}}, \overline{\text{RST}},} \\ \overline{\text{WR}, \overline{\text{RD}}, \overline{\text{CE}}, \overline{\text{FL}}} \end{aligned}$
I _{DD} Blank	I _{DD} (BLK)	0.5	3.0	•	4.0	mA	$V_{IN} = V_{DD}$
I _{DD} 8 digits 12 dots/character ^[1,2]	I _{DD} (V)	200	255		330	mA	"V" on in all 8 locations
I _{DD} 8 digits 20 dots/character ^[1,2,3,4]	I _{DD} (#)	300	370		430	mA	"#" on in all locations
Input Voltage High	V_{IH}			2.0	V _{DD} +0.3	v	
Input Voltage Low	V _{IL}			GND -0.3 V	0.8	V	
Output Voltage High	V _{OH}			2.4		, V	$V_{DD} = 4.5 \text{ V},$ $I_{OH} = -40 \mu\text{A}$
Output Voltage Low D ₀ -D ₇	V _{OL}				0.4	. V	$V_{\rm DD} = 4.5 \text{ V},$ $I_{\rm OL} = 1.6 \text{ mA}$
Output Voltage Low CLK	V _{OL}				0.4	V	$V_{\rm DD} = 4.5 \text{ V},$ $I_{\rm OL} = 40 \mu\text{A}$
High Level Output Current	I _{OH}				-60	mA	$V_{\rm DD} = 5.0 \text{ V}$
Low Level Output Current	I _{OL}				50	mA	$V_{DD} = 5.0 \text{ V}$
Thermal Resistance IC Junction-to-Case	$ m R heta_{J-C}$. 15				°C/W	

Notes:

Notes:

1. Average I_{DD} measured at full brightness. See Table 2 in Control Word Section for I_{DD} at lower brightness levels. Peak I_{DD} = 28/15 x I_{DD} (#).

2. Maximum I_{DD} occurs at -55°C.

3. Maximum I_{DD}(#) = 355 mA at V_{DD} = 5.25 V and IC T_J = 150°C.

4. Maximum I_{DD}(#) = 375 mA at V_{DD} = 5.5 V and IC T_J = 150°C.

Optical Characteristics at $25^{\circ}C^{^{[1]}}$

 $V_{DD} = 5.0 \text{ V}$ at Full Brightness

	Part	Luminous Intensity Character Average (#) Iv (mcd)		Peak Wavelength ^{\(\lambda_{\text{Peak}}\)} (nm)	Dominant Wavelength λ_d	
Description	Number	Min.	Min. Typ.		(nm)	
AlGaAs	HDSP-2107	5.0	15.0	645	637	
HER	HDSP-2112 -2502	2.5	7.5	635	626	
Orange	HDSP-2110 -2500	2.5	7.5	600	602	
Yellow	HDSP-2111 -2501	2.5	7.5	583	585	
High Performance Green	HDSP-2113 -2503	2.5	7.5	568	574	

Note: 1. Refers to the initial case temperature of the device immediately prior to measurement.

AC Timing Characteristics over Temperature Range (-45°C to +85°C)

 $4.5 \text{ V} < V_{DD} < 5.5 \text{ V}$, unless otherwise specified

Reference Number	Symbol	Description	Min.[1]	Units
1	t _{ACC}	Display Access Time Write Read	210 230	ns
2	t _{ACS}	Address Setup Time to Chip Enable	10	ns
3	$ m t_{CE}$	Chip Enable Active Time ^[2,3] Write Read	140 160	ns
4	t_{ACH}	Address Hold Time to Chip Enable	20	ns
5	$t_{\rm CER}$	Chip Enable Recovery Time	60	ns
6	t_{CES}	Chip Enable Active Prior to Rising Edge of ^[2,3] Write Read	140 160	ns
7	t_{CEH}	Chip Enable Hold Time to Rising Edge of Read/Write Signal ^[2,3]	0	ns
8	t_{W}	Write Active Time	100	ns
9	t_{WSU}	Data Write Setup Time	50	ns
10	t_{WH}	Data Write Hold Time	20	ns
11	t_R	Chip Enable Active Prior to Valid Data	160	ns
12	$t_{ m RD}$	Read Active Prior to Valid Data	75	ns
13	$t_{ m DF}$	Read Data Float Delay	10	ns
	$t_{ m RC}$	Reset Active Time ^[4]	300	ns

Notes:

- 1. Worst case values occur at an IC junction temperature of 150° C.
- 2. For designers who do not need to read from the display, the Read line can be tied to V_{DD} and the Write and Chip Enable lines can be tied together.
- 3. Changing the logic levels of the Address lines when \overline{CE} = "0" may cause erroneous data to be entered into the Character RAM, regardless of the logic levels of the \overline{WR} and \overline{RD} lines.
- 4. The display must not be accessed until after 3 clock pulses (110 μs min. using the internal refresh clock) after the rising edge of the reset line.

AC Timing Characteristics over Temperature Range (-45°C to +85°C)

 $4.5~\mathrm{V} < \mathrm{V}_\mathrm{DD} \, < 5.5~\mathrm{V},$ unless otherwise specified

Symbol	Description	25°C Typ.	Min.[1]	Units
F_{OSC}	Oscillator Frequency	57	28	kHz
F _{RF} ^[2]	Display Refresh Rate	256	128	Hz
F _{FL} [3]	Character Flash Rate	2	1	Hz
t _{ST} [4]	Self Test Cycle Time	4.6	9.2	sec

Notes:

1. Worst case values occur at an IC junction temperature of 150°C. 2. $F_{RF} = F_{OSC}/224$ 3. $F_{FL} = F_{OSC}/28,672$ 4. $t_{ST} = 262,144/F_{OSC}$

Write Cycle Timing Diagram

INPUT PULSE LEVELS - 0.6 V TO 2.4 V

Read Cycle Timing Diagram

Relative Luminous Intensity vs. Temperature

Electrical Description

Pin Function

Description

RESET (RST, pin 1)

Initializes the display.

FLASH (FL, pin 2)

 $\overline{\text{FL}}$ low indicates an access to the Flash RAM and is unaffected by the

state of address lines A_3 - A_4 .

ADDRESS INPUTS $(A_0-A_4, pins 3-6, 10)$

Each location in memory has a distinct address. Address inputs $(A_0$ - $A_2)$ select a specific location in the Character RAM, the Flash RAM or a particular row in the UDC (User-Defined Character) RAM. A_3 - A_4 are used to select which section of memory is accessed. Table 1 shows the logic levels needed to access each section of memory.

Table 1. Logic Levels to Access Memory

Section of Memory	FL	A_4	A ₃	$A_2 A_1 A_0$
Flash RAM	0	X	X	Char. Address
UDC Address Register	1	0	0	Don't Care
UDC RAM	1	0	1	Row Address
Control Word Register	1	1	0	Don't Care
Character RAM	1	1	1	Character Address

CLOCK SELECT (CLS, pin 11)

Used to select either an internal (CLS = 1) or external (CLS = 0) clock source.

CLOCK INPUT/OUTPUT (CLK, pin 12)

Outputs the master clock (CLS = 1) or inputs a clock (CLS = 0) for slave

displays.

WRITE (WR, pin 13)

Data is written into the display when the \overline{WR} input is low and the

CE input is low.

CHIP ENABLE (\overline{CE} , pin 17)

Must be at a logic low to read or write data to the display and must go

high between each read and write cycle.

READ (RD, pin 18)

Data is read from the display when the \overline{RD} input is low and the \overline{CE}

input is low.

DATA Bus (D₀-D₇, pins 19, 20, 23-28)

Used to read from or write to the display.

GND (SUPPLY) (pin 15)

Analog ground for the LED drivers.

GND (LOGIC) (pin 16)

Digital ground for internal logic.

V_{DD} (POWER) (pin 14)

Positive power supply input.

Figure 1. HDSP-210X/-211X/-212X/-250X Internal Block Diagram.

ALPHANUMERIC DISPLAYS

Display Internal Block Diagram

Figure 1 shows the internal block diagram of the HDSP-210X/ -211X/-250X displays. The CMOS IC consists of an 8 byte Character RAM, an 8 bit Flash RAM, a 128 character ASCII decoder, a 16 character UDC RAM, a UDC Address Register, a Control Word Register, and refresh circuitry necessary to synchronize the

decoding and driving of eight 5 x 7 dot matrix characters. The major user-accessible portions of the display are listed below:

Character RAM	This RAM stores either ASCII character data or a UDC RAM address.
Flash RAM	This is a 1 x 8 RAM which stores Flash data.
User-Defined Character RAM (UDC RAM)	This RAM stores the dot pattern for custom characters.
User-Defined Character Address Register (UDC Address Register)	This register is used to provide the address to the UDC RAM when the user is writing or reading a custom character.
Control Word Register	This register allows the user to adjust the display brightness, flash individual characters, blink, self test, or clear the display.

Character Ram

Figure 2 shows the logic levels needed to access the HDSP-210X/-211X/-250X Character RAM. During a normal access, the $\overline{\text{CE}}$ = "0" and either \overline{RD} = "0" or \overline{WR} = "0." However, erroneous data may be written into the Character RAM if the address lines are unstable when $\overline{\text{CE}}$ = "0" regardless of the logic levels of the RD or WR lines. Address lines A₀-A₂ are used to select the location in the Character RAM. Two types of data can be stored in each Character RAM location: an ASCII code or a UDC RAM address. Data bit D₇ is used to differentiate between the ASCII character and a UDC RAM address. $D_7 = 0$ enables the ASCII decoder and $D_7 = 1$ enables the UDC RAM. D₀-D₆ are used to input ASCII data and D₀-D₃ are used to input a UDC address.

CONTROL SIGNALS

CHARACTER RAM DATA FORMAT

DISPLAY 0 = LOGIC 0; 1 = LOGIC 1; X = DO NOT CARE

Figure 2. Logic Levels to Access the Character RAM.

UDC RAM and UDC Address Register

Figure 3 shows the logic levels needed to access the UDC RAM and the UDC Address Register. The UDC Address Register is eight bits wide. The lower four bits $(D_0\text{-}D_3)$ are used to select one of the 16 UDC locations. The upper four bits $(D_4\text{-}D_7)$ are not used. Once the UDC address has been stored in the UDC Address Register, the UDC RAM can be accessed.

To completely specify a 5 x 7 character, eight write cycles are required. One cycle is used to store the UDC RAM address in the UDC Address Register and seven cycles are used to store dot data in the UDC RAM. Data is entered by rows and one cycle is needed to access each row. Figure 4 shows the organization of a UDC character assuming the symbol to be stored is an "F." A₀-A₂ are used to select the row to be accessed and Do-D4 are used to transmit the row dot data. The upper three bits (D_5-D_7) are ignored. D_0 (least significant bit) corresponds to the right most column of the 5 x 7 matrix and D₄ (most significant bit) corresponds to the left most column of the 5 x 7 matrix.

Flash RAM

Figure 5 shows the logic levels needed to access the Flash RAM. The Flash RAM has one bit associated with each location of the Character RAM. The Flash input is used to select the Flash RAM while address lines A_3 - A_4 are ignored. Address lines A_0 - A_2 are used to select the location in the Flash RAM to store the attribute. D_0 is used to store or remove the flash attribute and D_0 = "1" stores the attribute and D_0 = "0" removes the attribute.

RST	ĈĒ	WR	RD	
		0	0	UNDEFINED
	١.	0	1	WRITE TO DISPLAY
' '	٥	1	0	READ FROM DISPLAY
		1	1	UNDEFINED
CC	ONTRO	L SIGN	IALS	

FL	A ₄	A ₃	A ₂	A ₁	A ₀
1	0	0	×	×	x

UDC ADDRESS REGISTER ADDRESS

D ₇	De	D ₅	D ₄	D ₃	D ₂	D ₁	Do
x	x	x	×		UDC	CODE	

UDC ADDRESS REGISTER DATA FORMAT

UDC RAM ADDRESS

Figure 3. Logic Levels to Access a UDC Character.

C O L 1	C O L 2	C O L 3	C 0 L 4	COL5		unc	HFY
D_4	D_3	D ₂	D₁	Do		UDC CHARACTER	CODE
1	1 "	11	- 1'	1	ROW 1	* * * * *	1F
1	Ó	Ó	Ó	Ó	ROW 2	*	10
1	ŏ	ŏ	ŏ	ŏ	ROW 3	*	10
i .	ĭ	ĭ	ĭ	ŏ	ROW 4	* * * *	1Ď
i .	ń	ó	Ó	ŏ	ROW 5	*	10
i	ň	ŏ	ŏ	ŏ	ROW 6	*	iŏ
i	ň	ŏ	ň	ŏ	ROW 7	*	iŏ
İGN	OŘEI		٠	٠	110117		

0 = LOGIC 0; 1 = LOGIC 1; * = ILLUMINATED LED.

Figure 4. Data to Load ""F" into the UDC RAM.

When the attribute is enabled through bit 3 of the Control Word and a "1" is stored in the Flash RAM, the corresponding character will flash at approxi-

mately 2 Hz. The actual rate is dependent on the clock frequency. For an external clock the flash rate can be calculated by dividing the clock frequency by 28,672.

Control Word Register

Figure 6 shows how to access the Control Word Register. This 8-bit register performs five functions: Brightness control, Flash RAM control, Blinking, Self Test, and Clear. Each function is independent of the others; however, all bits are updated during each Control Word write cycle.

Brightness (Bits 0-2)

Bits 0-2 of the Control Word adjust the brightness of the display. Bits 0-2 are interpreted as a three bit binary code with code (000) corresponding to maximum brightness and code (111) corresponding to a blanked display. In addition to varying the display brightness, bits 0-2 also vary the average value of I_{DD} . I_{DD} can be calculated at any brightness level by multiplying the percent brightness level by the value of I_{DD} at the 100% brightness level. These values of I_{DD} are shown in Table 2.

Flash Function (Bit 3)

Bit 3 determines whether the flashing character attribute is on or off. When bit 3 is a"1," the output of the Flash RAM is checked. If the content of a location in the Flash RAM is a "1," the associated digit will flash at

Figure 6. Logic Levels to Access the Control Word Register

Table 2. Current Requirements at Different Brightness Levels $V_{DD} = 5.0 \text{ V}$

Symbol	$\mathbf{D_2}$	\mathbf{D}_1	$\mathbf{D_0}$	% Brightness	Current at 25℃ Typ.	Units
I _{DD} (V)	0	0	0	100	200	mA
	0	0	1	80	160	mA
	0	1	0	53	106	mA
	0	1	1	40	80	mA
	1	0	0	27	54	mA
	1	0	1	20	40	mA
	1	1	0	13	26	mA

approximately 2 Hz. For an external clock, the blink rate can be calculated by driving the clock frequency by 28,672. If the flash enable bit of the Control Word is a "0," the content of the Flash RAM is ignored. To use this function with multiple display systems, see the Display Reset section.

Blink Function (Bit 4)

Bit 4 of the Control Word is used to synchronize blinking of all eight digits of the display. When this bit is a "1" all eight digits of the display will blink at approximately 2 Hz. The actual rate is dependent on the clock frequency. For an external clock, the blink rate can be calculated by dividing the clock frequency by 28,672. This function will override the Flash function when it is active. To use this function with multiple display systems, see the Display Reset section.

Self Test Function (Bits 5, 6)

Bit 6 of the Control Word Register is used to initiate the self test function. Results of the internal self test are stored in bit 5 of the Control Word. Bit 5 is a read only bit where bit 5 = "1" indicates a passed self test and bit 5 = "0" indicates a failed self test.

Setting bit 6 to a logic 1 will start the self test function. The built-in self test function of the IC consists of two internal routines which exercise major portions of the IC and illuminate all of the LEDs. The first routine cycles the ASCII decoder ROM through all states and performs a checksum on the output. If the checksum agrees with the correct value, bit 5 is set to "1." The second routine provides a visual test of the LEDs using the drive circuitry. This is accomplished by writing checkered and inverse checkered patterns to the display. Each pattern is displayed for approximately 2 seconds.

During the self test function the display must not be accessed. The time needed to execute the self test function is calculated by multiplying the clock period by 262,144. For example, assume a clock frequency of 58 KHz, then the time to execute the self test function frequency is equal to (262,144/58,000) = 4.5 second duration.

At the end of the self test function, the Character RAM is loaded with blanks, the Control Word Register is set to zeros except for bit 5, the Flash RAM is cleared, and the UDC Address Register is set to all ones.

Clear Function (Bit 7)

Bit 7 of the Control Word will clear the Character RAM and the Flash RAM. Setting bit 7 to a "1" will start the clear function. Three clock cycles (110 ms minimum using the internal refresh clock) are required to complete the clear function. The display must not be accessed while the display is being cleared. When the clear function has been completed, bit 7 will be reset to a "0." The ASCII character code for a space (20H) will be loaded into the Character RAM to blank the display and the Flash RAM will be loaded with "0"s. The UDC RAM, UDC Address Register, and the remainder of the Control Word are unaffected.

Display Reset

Figure 7 shows the logic levels needed to Reset the display. The display should be Reset on Power-up. The external Reset clears the Character RAM, Flash RAM, Control Word and resets the internal counters. After the rising edge of the Reset signal, three clock cycles (110 μ s minimum using the internal refresh clock) are required to complete the reset sequence. The display must not be accessed while the display is being reset. The ASCII Character code for a

R	ST	CE	WR	ΝĎ	FL	A4-A0	D7-D0
Γ	0	1	x	x	×	×	x

0 = LOGIC 0; 1 = LOGIC 1; X = DO NOT CARE NOTE: IF RST, CE AND WR ARE LOW, UNKNOWN DATA MAY RE WRITTEN INTO THE DISPLAY.

Figure 7. Logic Levels to Reset the Display.

space (20H) will be loaded into the Character RAM to blank the display. The Flash RAM and Control Word Register are loaded with all "0"s. The UDC RAM and UDC Address Register are unaffected. All displays which operate with the same clock source must be simultaneously reset to synchronize the Flashing and Blinking functions.

Mechanical and Electrical Considerations

The HDSP-210X/-211X/-250X are 28 pin dual-in-line packages with 26 external pins. The devices can be stacked horizontally and vertically to create arrays of any size. The HDSP-210X/-211X/-250X are designed to operate continuously from -45°C to +85°C with a maximum of 20 dots on per character at 5.25 V. Illuminating all thirty-five dots at full brightness is not recommended.

The HDSP-210X/-211X/-250X are assembled by die attaching and wire bonding 280 LED chips and a CMOS IC to a thermally conductive printed circuit board. A polycarbonate lens is placed over the PC board creating an air gap over the LED wire bonds. A protective cap creates an air gap over the CMOS IC. Backfill epoxy environmentally seals the display package. This package construction makes the display highly tolerant to temperature cycling and allows wave soldering.

The inputs to the IC are protected against static discharge and input current latchup. However, for best results standard CMOS handling precautions should be used. Prior to use, the HDSP-210X/-211X/-250X should be stored in antistatic tubes or in conductive material. During assembly, a grounded conductive work area should be used, and assembly personnel should wear conductive wrist straps. Lab coats made of synthetic material should be avoided since they are prone to static buildup. Input current latchup is caused when the CMOS inputs are subjected to either a voltage below ground $(V_{IN} < ground)$ or to a voltage higher than V_{DD} ($V_{IN} > V_{DD}$) and when a high current is forced into the input. To prevent input current latchup and ESD damage, unused inputs should be connected either to ground or to V_{DD}. Voltages should not be applied to the inputs until V_{DD} has been applied to the display.

Thermal Considerations

The HDSP-210X/-211X/250X have been designed to provide a low thermal resistance path for the CMOS IC to the 26 package pins. Heat is typically conducted through the traces of the printed circuit board to free air. For most applications no additional heatsinking is required.

Measurements were made on a 32 character display string to determine the thermal resistance of the display assembly. Several display boards were constructed using 0.062 in. thick printed circuit material, and one ounce copper 0.020 in. traces. Some of the device pins were connected to a heatsink formed by etching a copper area on the printed circuit board surrounding the display. A maximally metallized printed circuit board was also evaluated.

The junction temperature was measured for displays soldered directly to these PC boards, displays installed in sockets, and finally displays installed in sockets with a filter over the display to restrict airflow. The results of these thermal resistance measurements, $R\theta_{J-A}$ are shown in Table 3 and include the effects of $R\theta_{LC}$.

Ground Connections

Two ground pins are provided to keep the internal IC logic ground clean. The designer can, when necessary, route the analog ground for the LED drivers separately from the logic ground until an appropriate ground plane is available. On long interconnections between the display and the host system, the designer can keep voltage drops on the analog ground from affecting the display logic levels by isolating the two grounds.

The logic ground should be connected to the same ground potential as the logic interface circuitry. The analog ground and the logic ground should be connected at a common ground

which can withstand the current introduced by the switching LED drivers. When separate ground connections are used, the analog ground can vary from -0.3 V to +0.3 V with respect to the logic ground. Voltage below -0.3 V can cause all dots to be on. Voltage above +0.3 V can cause dimming and dot mismatch.

Soldering and Post Solder Cleaning Instructions for the HDSP-210X/-211X/ -250X

The HDSP-210X/-211X/-250X may be hand soldered or wave soldered with SN63 solder. When hand soldering, it is recommended that an electronically temperature controlled and securely grounded soldering iron be used. For best results, the iron tip temperature should be set at 315°C (600°F). For wave soldering, a rosin-based RMA flux can be used. The solder wave temperature should be set at 245°C ± 5° C (473°F ± 9°F), and the dwell in the wave should be set between 11/2 to 3 seconds for optimum soldering. The preheat temperature should not exceed 105°C (221°F) as measured on the solder side of the PC board.

Table 3. Thermal Resistance, $\theta_{JA},$ Using Various Amounts of Heatsinking Material

Heatsinking Metal per Device sq. in.	W/Sockets W/O Filter (Avg.)	W/O Sockets W/O Filter (Avg.)	W/Sockets W/Filter (Avg.)	Units
0	31	30	35	°C/W
1 .	31	28	33	°C/W
3	30	26	33	°C/W
Max. Metal	29	25	32	°C/W
4 Board Avg	30	27	33	°C/W

ALPHANUMERIC

For additional information on soldering and post solder cleaning, see Application Note 1027, Soldering LED Components.

Contrast Enhancement

The objective of contrast enhancement is to provide good readability in a variety of ambient lighting conditions. For information on contrast enhancement see Application Note 1015, Contrast Enhancement Techniques for LED Displays.

CMOS 5 x 7 Alphanumeric Displays

Technical Data

HCMS-200X Series HCMS-230X Series

Features

• On-Board Low Power CMOS IC:

Integrated Shift Register with Constant Current LED Drivers

- Wide Operating Temperature Range: -40°C to +85°C
- Compact Glass Ceramic
 4 Character Package:
 HCMS-200X Series End
 Stackable
 HCMS-230X Series
 X-Y Stackable
- Five Colors:
 Standard Red
 High Efficiency Red
 Orange
 Yellow
 High Performance Green
- 5 X 7 LED Matrix Displays Full ASCII Set
- Two Character Heights: 3.8mm (0.15 inch) 5.0mm (0.20 inch)
- Wide Viewing Angle: $X Axis = \pm 50^{\circ}$

 $Y Axis = \pm 65^{\circ}$

- Long Viewing Distance: HCMS-200X Series to 2.6 Meters (8.6 Feet) HCMS-230X Series to 3.5 Meters (11.5 Feet)
- Categorized for Luminous Intensity

 HCMS-2001/-2003, HCMS-2301/-2303: Categorized for Color

Typical Applications

- Commercial Avionics
- Instrumentation
- Medical Instruments
- Business Machines

Description

The HCMS-200X and HCMS-230X series are 5x7 LED four character displays contained in 12 pin dual-in-line packages designed for displaying alphanumeric information. The character height for the HCMS-200X series displays is 3.8mm (0.15 inch), and for the

HCMS-230X series displays the character height is 5.0mm (0.20 inch). These displays are available in five LED colors: standard red, high efficiency red, orange, yellow and high performance green. The HCMS-200X series displays are end stackable and the HCMS-230X series displays are end/row stackable.

Display Selection Table

Part Number	Character Size	LED Color
HCMS-2000	3.8 mm (0.15 inch)	Standard Red
HCMS-2001	3.8 mm (0.15 inch)	Yellow
HCMS-2002	3.8 mm (0.15 inch)	High-Efficiency Red
HCMS-2003	3.8 mm (0.15 inch)	High-Performance Green
HCMS-2004	3.8 mm (0.15 inch)	Orange
HCMS-2300	5.0 mm (0.20 inch)	Standard Red
HCMS-2301	5.0 mm (0.20 inch)	Yellow
HCMS-2302	5.0 mm (0.20 inch)	High-Efficiency Red
HCMS-2303	5.0 mm (0.20 inch)	High-Performance Green
HCMS-2304	5.0 mm (0.20 inch)	Orange

ESD WARNING: STANDARD CMOS HANDLING PRECAUTIONS SHOULD BE OBSERVED.

These displays are designed with on-board CMOS integrated circuits for use in applications where conservation of power is important. The two CMOS ICs form an on-board serial-in-parallel-out 28-bit shift register with constant current output LED row drivers. Decoded column data is clocked into the on-board shift register for

each refresh cycle. Full character display is achieved with external column strobing.

Compatibility with HDSP-200X/230X TTL IC Series Displays

The HCMS-200X, HCMS-230X CMOS IC displays are "drop-in" replacements for the equivalent

HDSP-200X, HDSP-230X TTL IC displays, The 12 pin glass/ceramic package configuration, four digit character matrix and pin functions are identical.

Package Dimensions

HCMS-200X Series

HCMS-230X Series

RESPECT TO LEADS WITHIN ±0.13mm (±0.005"). LEAD MATERIAL IS COPPER ALLOY,

SOLDER DIPPED.

Absolute Maximum Ratings

Supply Voltage V _{DD} to Ground	0.3 V to 7.0 V
Data Input, Data Output, V _B	
Column Input Voltage, V _{COL}	0.3 V to V _{DD}
Free Air Operating Temperature Range, T	
Storage Temperature Range, T _s	
Maximum Allowable Package Power Dissipation, P _D ^[1,2]	
HCMS-2000/-2001/-2002/-2003/-2004 at $T_A = 78^{\circ} \tilde{C} \dots$	0.79 Watts
HCMS-2300 at $T_A = 85^{\circ}C$	0.79 Watts
HCMS-2301/-2302/-2303/-2304 at $T_A = 85^{\circ}C$	0.92 Watts
Maximum Solder Temperature	
1.59 mm (0.063") Below Seating Plane, t < 5 sec	260℃
ESD Protection @ 1.5 k Ω , 100 pF V_z	= 4 kV (each pin)

- Notes: 1. Maximum allowable power dissipation is derived from $V_{DD} = 5.25 \text{ V}$, $V_{B} = 2.4 \text{ V}$, $V_{COL} = 3.5 \text{ V}$, 20 LEDs on per character, 20% DF. 2. The power dissipation for these displays should be derated as follows: HCMS-200X series derate above 78°C at 18 mW/°C, $R\theta_{J,A} = 60$ °C/W. HCMS-230X series may be operated without derating up to $T_{A} = 85$ °C,

 $R\theta_{J,A} = 45^{\circ}\text{C/W}$. Deratings based on $R\theta_{PC,A} = 35^{\circ}\text{C/W}$ per display for printed circuit board assembly. See Figure 1 for power derating.

Recommended Operating Conditions over Operating Temperature Range (-40°C to +85°C)

Parameter	Symbol	Min.	Тур.	Max.	Units
Supply Voltage	$V_{_{ m DD}}$	4.75	5.00	5.25	v
Data Out Current, Low State	I _{or}			1.6	mA
Data Out Current, High State	I _{OH}			-0.5	mA.
Column Input Voltage	V _{COL}	2.75	3.0	3.5	v
Setup Time	t _{setup}	10			ns
Hold Time	t _{HOLD}	25			ns
Clock Pulse Width High	t _{wh(CLOCK)}	50			ns
Clock Pulse Width Low	t _{wl(clock)}	50		,	ns
Clock High to Low Transition	t _{THL}			200	ns
Clock Frequency	f _{CLOCK}			5	MHz

Electrical Characteristics over Operating Temperature Range (-40°C to +85°C)

Parameter	Symbol	Test Conditions	Min.	Тур.*	Max.	Units
Supply Current, Dynamic ^[1]	$I_{ m DDD}$	$f_{CLOCK} = 5 \text{ MHz}$		6.2	7.8	mA
Supply Current, Static ^[2]	I _{DDSoff}	$V_{\rm B} = 0.4 \text{ V}$ $V_{\rm B} = 2.4 \text{ V}$		1.8 2.2	2.6 6.0	mA
Column Input Current		$V_{_{\rm B}} = 0.4 \text{ V}$			10	μΑ
HCMS-2000/-2001/-2002/-2003/-2004 HCMS-2300 HCMS-2301/-2302/-2303/-2304	I _{cor}	$V_{B} = 2.4 \text{ V}$ $V_{B} = 2.4 \text{ V}$ $V_{B} = 2.4 \text{ V}$		310 310 360	384 384 451	mA mA
Input Logic High Data, V _B , Clock	V _{IH}	$V_{DD} = 4.75 \text{ V}$	2.0			V
Input Logic Low Data, V_B , Clock	V _{IL}	$V_{DD} = 5.25 \text{ V}$			0.8	V
Input Current Data, Clock V _B	I ₁	$V_{DD} = 5.25 \text{ V} \\ 0 < V_{I} < 5.25 \text{ V} \\ 0 < V_{B} < 5.25 \text{ V}$	-10 -40		+1 0	μА
Data Out Voltage	V _{OH}	$V_{DD} = 4.75 \text{ V}$ $I_{OH} = -0.5 \text{ mA}$ $I_{COL} = 0 \text{ mA}$	2.4	4.2		V
	V _{OL}	$V_{DD} = 5.25 \text{ V}$ $I_{OL} = 1.6 \text{ mA}$ $I_{COL} = 0 \text{ mA}$		0.2	0.4	v
Power Dissipation Per Package ^[3] HCMS-2000/-2001/-2002/-2003/-2004 HCMS-2300 HCMS-2301/-2302/-2303/-2304	P _D	$\begin{aligned} &V_{DD} = 5.0 \text{ V} \\ &V_{COL} = 3.5 \text{ V} \\ &17.5\% \text{ DF} \\ &V_{B} = 2.4 \text{ V} \\ &15 \text{ LEDs ON} \\ &\text{per Character} \end{aligned}$		414 414 481		mW
Thermal Resistance IC Junction-to-Pin ^[4] HCMS-2000/-2001/-2002/-2003/-2004 HCMS-2300/-2301/-2302/-2303/-2304	$ m R heta_{J ext{-PIN}}$			25 10		°C/W

^{*}All typical values specified at $\rm V_{DD}$ = 5.0 V and $\rm T_A$ = 25°C.

Notes:

I_{DD} Dynamic is the IC current while clocking column data through the on-board shift register at a clock frequency of 5MHz, the display is not illuminated.
 I_{DD} Static is the IC current after column data is loaded and not being clocked through the on-board shift register.
 Four characters are illuminated with a typical ASCII character composed of 15 dots per character.
 IC junction temperature T_J(IC) = (P_D)(Rθ_{JPIN} + Rθ_{PC-A}) + T_A.

Optical Characteristics at $T_{_{\rm A}}=25^{\circ}\!\rm C$

Standard Red HCMS-2000/-2300

Description	Symbol	Test Condition	Min.	Typ.*	Max.	Units
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	${ m I}_{ m vPEAK}$	$V_{DD} = 5.0 \text{ V} V_{COL} = 3.5 \text{ V} V_{B} = 2.4 \text{ V} T_{i} = 25^{\circ}\text{C}^{[7]}$	105 130	200 300		μcd
Dominant Wavelength ^[8]	λ_{d}			639		nm
Peak Wavelength	$\lambda_{_{PEAK}}$			655		nm

Yellow HCMS-2001/-2301

Description	Symbol	Test Condition	Min.	Typ.*	Max.	Units
$ \begin{array}{lll} \mbox{Peak Luminous} & \mbox{Intensity per} & \mbox{HCMS-2001} \\ \mbox{LED}_{^{[5,9]}} & \mbox{HCMS-2301} \\ \mbox{(Character Average)} & \end{array} $	${ m I}_{ m vPEAK}$	$V_{DD} = 5.0 \text{ V}$ $V_{COL} = 3.5 \text{ V}$ $V_{B} = 2.4 \text{ V}$ $T_{i} = 25^{\circ}\text{C}^{[7]}$	400 650	750 1140		μcd
Dominant Wavelength ^[6,8]	λ_{d}			585		nm
Peak Wavelength	$\lambda_{ m peak}$			583		nm

High Efficiency Red HCMS-2002/-2302

Description	Symbol	Test Condition	Min.	Typ.*	Max.	Unit
Peak Luminous Intensity per HCMS-2002 LED ^[5,9] HCMS-2302 (Character Average)	${ m I}_{_{ m vPEAK}}$	$V_{DD} = 5.0 \text{ V} \\ V_{COL} = 3.5 \text{ V} \\ V_{B} = 2.4 \text{ V} \\ T_{i} = 25^{\circ}C^{[7]}$	400 650	1430 1430		μed
Dominant Wavelength ^[8]	λ_d			625		nm
Peak Wavelength	$\lambda_{_{\mathrm{PEAK}}}$,		635		nm

High Performance Green HCMS-2003/-2303

Description	Symbol	Test Condition	Min.	Typ.*	Max.	Units
Peak Luminous Intensity per HCMS-2003 LED ^[5,9] HCMS-2303 (Character Average)	${ m I}_{_{ m vPEAK}}$	$V_{DD} = 5.0 \text{ V}$ $V_{COL} = 3.5 \text{ V}$ $V_{B} = 2.4 \text{ V}$ $T_{i} = 25^{\circ}C^{[7]}$	850 1280	1550 2410		μed
Dominant Wavelength ^[6,8]	λ_{d}			574		nm
Peak Wavelength	$\lambda_{ ext{PEAK}}$			568		nm

Orange HCMS-2004/-2304

Description	Symbol	Test Condition	Min.	Тур.*	Max.	Units
Peak Luminous Intensity per HCMS-2004 LED ^[6,9] HCMS-2304 (Character Average)	$I_{_{\mathrm{vPEAK}}}$	$V_{DD} = 5.0 \text{ V}$ $V_{COL} = 3.5 \text{ V}$ $V_{B} = 2.4 \text{ V}$ $T_{i} = 25^{\circ}\text{C}^{[7]}$	400 650	1430 1430		μcd
Dominant Wavelength[8]	λ_{d}			602		nm
Peak Wavelength	$\lambda_{ ext{peak}}$			600		nm

^{*}All typical values specified at V_{DD} = 5.0 V and T_A = 25°C unless otherwise noted.

- 5. These LED displays are categorized for luminous intensity, with the intensity category designated by a letter code on the back of the package.
- 6. The HCMS-2001/-2301 and HCMS-2003/-2303 are categorized for color with the color category designated by a number on the back of the package.
- 7. T_i refers to the initial case temperature of the display immediately prior to the light measurement. 8. Dominant wavelength, λ_d , is derived from the CIE Chromaticity Diagram, and represents the single wavelength which defines the color of the device.
- 9. The luminous sterance of the individual LED pixels may be calculated using the following equations:

$$L_v(cd/m^2) = I_v(Candela)*DF/A(Metre)^2$$
(Footlamberts) = pI_(Candela)*DF/A(Foot)^2

 $L_{\nu}(cd/m^2) = L_{\nu}(Candela)*DF/A(Metre)^2$ $L_{\nu}(Footlamberts) = pL_{\nu}(Candela)*DF/A(Foot)^2$ $Where: A = LED pixel area = 5.3 \times 10^{-8} M^2 \text{ or } 5.8 \times 10^{-7} ft^2$

DF = LED on-time duty factor

Switching Characteristics, $T_A = -40^{\circ}C$ to $+85^{\circ}C$

Parameter	Condition	Тур.	Max.	Units
$\mathbf{f}_{\text{CLOCK}}$ CLOCK Rate			5	MHz
t _{PLH} , t _{PHL} Propagation Delay CLOCK to DATA OUT	$C_{L} = 15 \text{ pF}$ $R_{L} = 2.4 \text{ k}\Omega$		105	ns
$\begin{array}{c} t_{\rm OFF} \\ V_{\rm B} \left(0.4 \; \mathrm{V} \right) \mathrm{to} \\ \mathrm{Display} \; \mathrm{OFF} \\ t_{\rm ON} \\ V_{\rm B} \left(2.4 \; \mathrm{V} \right) \mathrm{to} \\ \mathrm{Display} \; \mathrm{ON} \end{array}$		4	5	μs

Figure 1. Maximum Allowable Power Dissipation vs Ambient Temperature as a Function of Thermal Resistance Junction-to-Ambient, $R\theta_{\rm Ja}$. Derated Operation Assumes $R\theta_{\rm PCA}=35\,^{\circ}{\rm C/W}$ Per Display for the Printed Circuit Board. $T_{\rm J}$ (IC) MAX = 125 $^{\circ}{\rm C}$.

Figure 2. Relative Luminous Intensity vs Display Pin Temperature

Figure 3. Peak Column Current vs Column Voltage

Electrical Description

Each display device contains four 5x7 LED dot matrix characters and two CMOS integrated circuits. as shown in Figure 4. The two CMOS integrated circuits form an on-board 28 bit serial-in-parallelout shift register that will accept standard TTL logic levels. The Data Input, pin 12, is connected to bit position 1 and the Data Output, pin 7, is connected to bit position 28. The shift register outputs control constant current sinking LED row drivers. The nominal current sink per LED driver is 11mA for the HCMS-200X displays, 13 mA for the HCMS-230X. A logic 1 stored in the shift register enables the corresponding LED row driver and a logic 0 stored in the shift register disables the corresponding LED row driver.

The electrical configuration of these CMOS IC alphanumeric displays allows for an effective interface to a display controller circuit that supplies decoded character information. The row data for a given column (one 7 bit byte per character) is loaded (bit serial) into the on-board 28 bit shift register with high to low transitions of the Clock input. To load decoded character information into the display, column data for character 4 is loaded first and the column data for character 1 is loaded last in the following manner. The 7 data bits for column 1, character 4, are loaded into the on-board shift register. Next, the 7 data bits for column 1. character 3, are loaded into the shift register, shifting the character 4 data over one character position. This process is repeated for the other two characters until all 28 bits of column data (four 7 bit bytes of character column data) are loaded into the on-board shift register. Then the column 1 input, \overline{V}_{COL} pin 1, is energized to illuminate column 1 in all four characters. This process is repeated for columns 2, 3, 4 and

5. All $V_{\rm COL}$ inputs should be at logic low to insure the display is off when loading data. The display will be blanked when the blanking input $V_{\rm B}$, pin 8, is at logic low regardless of the outputs of the shift register or whether one of the $V_{\rm COL}$ inputs is energized.

Refer to Application Note 1016 for drive circuit information.

ESD Susceptibility

The HCMS-200X/-230X series displays have an ESD susceptibility ratings of CLASS 3 per DOD-STD-1686 and CLASS B per MIL-STD-883C. It is recommended that normal CMOS handling precautions be observed with these devices.

Figure 4. Block Diagram of an HCMS-2XXX Series LED Alphanumeric Display.

Soldering and Post Solder Cleaning

These displays may be soldered with a standard wave solder process using either an RMA flux and solvent cleaning or an OA flux and aqueous cleaning. For optimum soldering, the solder wave temperature should be 245°C and the dwell time for any display lead passing through the wave should be 1 1/2 to 2 seconds. For more detailed information, refer to Application Note 1027 Soldering LED Components.

Contrast Enhancement

When used with the proper contrast enhancement filters, the HCMS-200X/-230X series displays are readable bright ambients. Refer to Application Note 1029 Luminous Contrast and Sunlight Readability of the HDSP-235X Series Alphanumeric Displays for Military Applications for contrast enhancement in bright ambients. Refer to Application Note 1015 Contrast Enhancement Techniques for LED Displays for information on contrast enhancement in moderate ambients.

Controller Circuits, Power Calculations and Display Dimming

Refer to Application Note 1016 Using the HDSP-2000 Alphanumeric Display Family for information on controller circuits to drive these displays, how to do power calculations and a technique for display dimming.

Four Character 5.0 mm (0.2 inch) Smart 5 x 7 Alphanumeric Displays

Technical Data

HDLX-2416 Series

Features

- Enhanced Drop-in Replacement to HPDL-2416
- Smart Alphanumeric Display Built-in RAM, ASCII Decoder, and LED Drive Circuitry
- CMOS IC for Low Power Consumption
- Software Controlled Dimming Levels and Blank
- 128 ASCII Character Set
- · End-Stackable
- Categorized for Luminous Intensity; Yellow and Green Categorized for Color
- Low Power and Sunlight Viewable AlGaAs Versions
- Wide Operating Temperature Range -40°C to +85°C
- Excellent ESD Protection
- Wave Solderable
- Wide Viewing Angle (50° typ)

Description

These are 5.0 mm (0.2 inch) four character 5×7 dot matrix displays driven by an on-board CMOS IC. These displays are pin for pin compatible with the HPDL-2416. The IC stores and decodes 7 bit ASCII data and displays it using a 5×7 font. Multiplexing circuitry, and drivers are also part of the IC. The IC has fast setup and hold times which makes it easy to interface to a microprocessor.

Absolute Maximum Ratings

Supply Voltage, V _{DD} to Ground ^[1]	0.5 V to 7.0 V
Input Voltage, Any Pin to Ground	$0.5 \text{ V to V}_{DD} + 0.5 \text{ V}$
Free Air Operating Temperature Range, T _A	
Storage Temperature, T _S	
CMOS IC Junction Temperature, T, (IC)	
Relative Humidity (non-condensing) at 65°C	
Maximum Solder Temperature, 1.59 mm	
(0.063 in.) below Seating Plane, $t < 5 sec.$	260°C

ESD Protection, $R = 1.5 \text{ k}\Omega$, $C = 100 \text{ pF} \dots V_7 = 2 \text{ kV}$ (each pin)

Note:

1. Maximum Voltage is with no LEDs illuminated.

Devices:

Standard Red	AlGaAs Red	High Efficiency Red	Orange	Yellow	Green
HDLR-2416	HDLS-2416	HDLO-2416	HDLA-2416	HDLY-2416	HDLG-2416
	HDLU-2416				

ESD WARNING: STANDARD CMOS HANDLING PRECAUTIONS SHOULD BE OBSERVED WITH THE HDLX-2416

The address and data inputs can be directly connected to the microprocessor address and data buses.

The HDLX-2416 has several enhancements over the HPDL-2416. These features include an expanded character set, internal 8 level dimming control, external dimming capability, and individual digit blanking. Finally, the extended functions can be

disabled which allows the HDLX-2416 to operate exactly like an HPDL-2416 by disabling all of the enhancements except the expanded character set.

The difference between the sunlight viewable HDLS-2416 and the low power HDLU-2416 occurs at power-on or at the default brightness level. Following power up, the HDLS-2416 operates at the 100% brightness level, while

the HDLU-2416 operates at the 27% brightness level. Power on sets the internal brightness control (bits 3-5) in the control register to binary code (000). For the HDLS-2416 binary code (000) corresponds to a 100% brightness level, and for the HDLU-2416 binary code (000) corresponds to a 27% brightness level. The other seven brightness levels are identical for both parts.

Package Dimensions

Note	

- 1. Unless otherwise specified, the tolerance on all dimensions is $\pm~0.254$ mm ($\pm~0.010$ ")
- 2. All dimensions are in mm/inches.
- 3. For yellow and green displays only.

Pin No.	Function	Pin No.	Function
1	CE ₁ Chip Enable	10	GND
2	CE ₂ Chip Enable	11	D ₀ Data Input
3	CLR Clear	12	D ₁ Data Input
4	CUE Cursor Enable	13	D ₂ Data Input
5	CU Cursor Select	14	D ₃ Data Input
6	WR Write	15	D ₆ Data Input
7	A ₁ Address Input	16	D ₅ Data Input
8	A ₀ Address Input	17	D ₄ Data Input
9	$ \mathbf{v}_{\mathrm{DD}}^{\mathrm{o}} $	18	BL Display Blank

Character Set

_					· ·														
1			D0	0	1	0	1	0	1	0	1_	0	1	0	1	0	1	0	1
	ASC		D1	0	0	1	1_	0	0	1	1	0	0	1	1_	0	٥	_1_	1
۱ ۲	COD	E.	D2	0	0	0	0	1_	1	1_	1	0	0	0	0	<u> </u>	1	1	1
<u> </u>	т	_	D3	0	0	0	0	0	0	0	0	1	1	1_	1_	1	1	1	1_
D6	D5	D4	Hex	0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
0	0	0	0	**	****		100 110 0010 000 0		:			:::		:		***** **** ***			
0	0	1	1	•		••••	•	•	••••	****				::	*****	*****		***	****
0	1	0	2		•	ii					:	i.	•	100 100 100 100		::	24100	::	•••
0	1	1	3			****	•***	••••	••••	:::	••••		0000	# #	#	•	*****	•	••••
1	0	0	4		:	****			*****				:						****
1	o	1	5				, FINO,			• • • • • • • • • • • • • • • • • • • •			**	•••••		•••	***	•••	40000
1	1	0	6	÷	****	:			****			<u>:-</u> ;	:		i:	***		***	::
1	1	1	7		****	:	9000 900 1000	:		i.,:	Į.,i	*	••••	10000	•	:	•	••••	

NOTES: 1 = HIGH LEVEL 0 = LOW LEVEL **Recommended Operating Conditions**

Parameter	Symbol	Min.	Тур.	Max.	Unit
Supply Voltage	$ m V_{DD}$	4.5	5.0	5.5	V

Electrical Characteristics over Operating Temperature Range

 $4.5 < V_{DD} < 5.5 V$ (unless otherwise specified)

All Devices

			25°	$\mathbf{C}^{\scriptscriptstyle{[1]}}$			
Parameter	Symbol	Min.	Тур.	Max.	Max.	Units	Test Conditions
I _{DD} Blank	I _{DD} (blnk)		1.0		4.0	mA	All Digits Blanked
Input Current	I	-40			10	μΑ	$V_{IN} = 0 \text{ V to V}_{DD}$ $V_{DD} = 5.0 \text{ V}$
Input Voltage High	V _{IH}	2.0			V_{DD}	V	
Input Voltage Low	V _{IL}	GND			0.8	V	

HDLO/HDLA/HDLY/HDLG-2416

			25°	$\mathbf{C}^{[1]}$			
Parameter	Symbol	Min.	Typ.	Max.	Max.	Units	Test Conditions
$I_{ m DD}$ 4 digits 20 dots/character ^[2, 3]	I _{DD} (#)		110	130	160	mA	"#" ON in all four locations
I _{DD} Cursor all dots ON @ 50%	I_{DD} (CU)		92	110	135	mA	Cursor ON in all four locations

HDLS/HDLU-2416

			25	25°C[1]					
Part Number	Parameter	Symbol	Тур.	Max.	Max.	Units	Test Conditions		
HDLS-2416	I _{DD} 4 digits 20 dots/character ^[2,3]	$I_{DD}(\#)$	125	146	180	mA	Four "#" ON in		
HDLU-2416	20 dots/character		34	42	52		an four focations		
HDLS-2416	I _{DD} Cursor all dots	$I_{\rm DD}({\rm CU})$	105	124	154	mA	Four cursors ON		
HDLU-2416	ON @ 50%		29	36	45		in all four locations		

HDLR-2416

			25°	$\mathbf{C}^{[1]}$			
Parameter	Symbol	Min.	Typ.	Max.	Max.	Units	Test Conditions
I _{DD} 4 digits 20 dots/character ^[2,3]	I _{DD} (#)		125	146	180	mA	"#" ON in all four locations
I _{DD} Cursor all dots ON @ 50%	$I_{DD}(CU)$		105	124	154	mA	Cursor ON in all four locations

Notes:

In V $_{\rm DD} = 5.0~{\rm V}$ 2. Average I $_{\rm DD}$ measured at full brightness. Peak I $_{\rm DD} = 28/15~{\rm x}$ Average I $_{\rm DD}(\#)$. 3. I $_{\rm DD}(\#)$ max. = 130 mA for HDLO/HDLA/HDLY/HDLG-2416, 146 mA for HDLR/HDLS-2416, and 42 mA for HDLU-2416 at default brightness, 150 °C IC junction temperature and V $_{\rm DD} = 5.5~{\rm V}$.

Optical Characteristics at 25°C^[1] $V_{DD} = 5.0~V$ at Full Brightness

HDLR-2416

Parameter	Symbol	Min.	Typ.	Units	Test Conditions
Average Luminous Intensity per digit, Character Average	I_{v}	0.5	1.1	mcd	"*" illuminated in all four digits. 19 dots ON
Peak Wavelength	λ_{peak}		655	nm	
Dominant Wavelength[2]	λ _d .		640	nm	

HDLS/HDLU-2416

Part Number	Parameter	Symbol	Min.	Тур.	Units	Test Conditions
HDLS-2416	Average Luminous Intensity per digit,	I_{v}	4.0	12.7	mcd	"*" illuminated in all four digits, 19 dots ON
HDLU-2416	Character Average		1.2	3.1	mcd	per digit.
All	Peak Wavelength	λ_{peak}		645	nm	
	Dominant Wavelength ^[2]	λ_{d}		637	nm	

HDLO-2416

Parameter .	Symbol	Min.	Тур.	Units	Test Conditions
Average Luminous Intensity per digit, Character Average	I _v	1.2	3.5	mcd	"*" illuminated in all four digits. 19 dots ON
Peak Wavelength	$\lambda_{_{\mathrm{PEAK}}}$		635	nm	
Dominant Wavelength ^[2]	λ_{d}		626	nm	

HDLA-2416

Parameter	Symbol	Min.	Тур.	Units	Test Conditions
Average Luminous Intensity per digit, Character Average	I _v	1.2	3.5	mcd	"*" illuminated in all four digits. 19 dots ON
Peak Wavelength	$\lambda_{ ext{peak}}$		600	nm	
Dominant Wavelength[2]	λ_{d}		602	nm	

HDLY-2416

Parameter	Symbol	Min.	Typ.	Units	Test Conditions
Average Luminous Intensity per digit, Character Average	I _v	1.2	3.7	med	*" illuminated in all four digits. 19 dots ON
Peak Wavelength	$\lambda_{ ext{peak}}$		583	nm	
Dominant Wavelength ^[2]	λ_{d}		585	nm	·

HDLG-2416

Parameter	Symbol	Min.	Тур.	Units	Test Conditions
Average Luminous Intensity per digit, Character Average	I_{v}	1.2	5.6	mcd	"*" illuminated in all four digits. 19 dots ON
Peak Wavelength	$\lambda_{_{\mathrm{PEAK}}}$		568	nm	
Dominant Wavelength ^[2]	λ_{d}		574	nm	

Notes:

- 1. Refers to the initial case temperature of the device immediately prior to the light measurement.

 2. Dominant wavelength, λ_{d^i} is derived from the CIE chromaticity diagram, and represents the single wavelength which defines the color of the device.

AC Timing Characteristics over Operating Temperature Range at $V_{\rm DD}$ = 4.5 V

Parameter	Symbol	Min	Units
Address Setup	t _{AS}	10	ns
Address Hold	t _{AH}	40	ns
Data Setup	t _{DS}	50	ns
Data Hold	$t_{ m DH}^{ m DS}$	40	ns
Chip Enable Setup	t _{CES}	0	ns
Chip Enable Hold	t _{CEH}	0	ns
Write Time	$t_{\rm w}$	75	ns
Clear	$t_{CLR}^{"}$	10	μs
Clear Disable	${ m t_{CLRD}}$	1	μs

Timing Diagram

Enlarged Character Font

Notes:

- 1. Unless otherwise specified the tolerance on all dimensions is $\pm~0.254$ mm (0.010")
- 2. Dimensions are in mm (inches).

Electrical Description

Pin Function	Description
Chip Enable $(\overline{\text{CE}}_1 \text{ and } \overline{\text{CE}}_2, \text{ pins 1 and 2})$	$\overline{\text{CE}}_1$ and $\overline{\text{CE}}_2$ must be a logic 0 to write to the display.
Clear (CLR, pin 3)	When $\overline{\text{CLR}}$ is a logic 0 the ASCII RAM is reset to 20hex (space) and the Control Register/ Attribute RAM is reset to 00hex.
Cursor Enable (CUE pin 4)	CUE determines whether the IC displays the ASCII or the Cursor memory. (1 = Cursor, 0 = ASCII).
Cursor Select (CU, pin 5)	CU determines whether data is stored in the ASCII RAM or the Attribute RAM/Control Register. (1 = ASCII, 0 = Attribute RAM/Control Register).
Write (WR, pin 6)	WR must be a logic 0 to store data in the display.
Address Inputs (A ₁ and A ₀ , pins 8 and 7)	${ m A_0^-A_1}$ selects a specific location in the display memory. Address 00 accesses the far right display location. Address 11 accesses the far left location.
Data Inputs $(D_0-D_6, pins 11-17)$	${\rm D_0\text{-}D_6}$ are used to specify the input data for the display.
V _{DD} (pin 9)	${ m V}_{ m DD}$ is the positive power supply input.
GND (pin 10)	GND is the display ground.
Blanking Input (BL, pin 18)	$\overline{\mathrm{BL}}$ is used to flash the display, blank the display or to dim the display.

Display Internal Block Diagram

Figure 1 shows the HDLX-2416 display internal block diagram. The CMOS IC consists of a 4×7 Character RAM, a 2×4 Attribute RAM, a 5 bit Control Register, a 128 character ASCII decoder and the refresh circuitry necessary to synchronize the decoding and driving of four 5×7 dot matrix displays.

Four 7 bit ASCII words are stored in the Character RAM. The IC reads the ASCII data and decodes it via the 128 character ASCII decoder. The ASCII decoder includes the 64 character set of the HPDL-2416, 32 lower case ASCII symbols, and 32 foreign language symbols.

A 5 bit word is stored in the Control Register. Three fields within the Control Register provide an 8 level brightness control, master blank, and extended functions disable.

For each display digit location, two bits are stored in the Attribute RAM. One bit is used to enable a cursor character at each digit location. A second bit is used to individually disable the blanking features at each digit location.

The display is blanked and dimmed through an internal blanking input on the row drivers. Logic within the IC allows the user to dim the display either through the \overline{BL} input or through the brightness control in the control register. Similarly the display can be blanked through the \overline{BL} input, the Master Blank in the Control Register, or the Digit Blank Disable in the Attribute RAM.

Figure 1. Internal Block Diagram

Display Clear

Data stored in the Character RAM, Control Register, and Attribute RAM will be cleared if the clear ($\overline{\text{CLR}}$) is held low for a minimum of 10 μs . Note that the display will be cleared regardless of the state of the chip enables ($\overline{\text{CE}}_1$, $\overline{\text{CE}}_2$). After the display is cleared, the ASCII code for a space (20hex) is loaded into all character RAM locations and 00hex is loaded into all Attribute RAM/Control Register memory locations.

Data Entry

Figure 2 shows a truth table for the HDLX-2416 display. Setting the chip enables $(\overline{\text{CE}}_1, \overline{\text{CE}}_2)$ to logic 0 and the cursor select $(\overline{\text{CU}})$ to logic 1 will enable ASCII data loading. When cursor select $(\overline{\text{CU}})$

is set to logic 0, data will be loaded into the Control Register and Attribute RAM. Address inputs A0-A1 are used to select the digit location in the display. Data inputs Do-De are used to load information into the display. Data will be latched into the display on the rising edge of the WR signal. D_0 - D_6 , A_0 - A_1 , \overline{CE}_1 , \overline{CE}_2 , and \overline{CU} must be held stable during the write cycle to ensure that correct data is stored into the display. Data can be loaded into the display in any order. Note that when A₀ and A₁ are logic 0, data is stored in the right most display location.

Cursor

When cursor enable (CUE) is a logic 1, a cursor will be displayed in all digit locations where a logic

1 has been stored in the Digit Cursor memory in the Attribute RAM. The cursor consists of all 35 dots ON at half brightness. A flashing cursor can be displayed by pulsing CUE. When CUE is a logic 0, the ASCII data stored in the Character RAM will be displayed regardless of the Digit Cursor bits.

Blanking

Blanking of the display is controlled through the \overline{BL} input, the Control Register and Attribute RAM. The user can achieve a variety of functions by using these controls in different combinations, such as full hardware display blank, software blank, blanking of individual characters, and synchronized flashing of individual characters or entire display (by

CUE	BL	CLR	$\overline{\text{CE}}_1$	$\overline{\text{CE}}_2$	WR	CU	A ₁	A ₀	D ₆	D ₅	D ₄	D_3	\mathbf{D}_2	D ₁	D ₀	Function									
0	1	1														Display ASCII									
1	1	1	x	х	х	x	x	x	x	x	x	X	x	v	x	x x	Display Stored Cursor								
х	х	0	Λ	Α	А	Α.	^	Â	. ^	Λ.	^	Α	^	A	A .	Reset RAMs									
х	0	1														Blank Display but do not reset RAMS and Control Register									
						0	0	0	Extended Functions Disable	Intensity Control						Digit Blank Disable 0	Digit Cursor 0	Write to Attribute RAM and Control Register							
						0	0	1	$\begin{array}{c c} 0 = & 000 = 100\%^* \\ \text{Enable} & 001 = 60\% \\ D_1 \cdot D_5 & 010 = 40\% \\ 011 = 27\% \end{array}$		Enable D_1 - D_5 $001 = 609$ $010 = 409$		Enable D_1 - D_5 $001 = 60\%$ $010 = 40\%$		001 = 60% 010 = 40%		001 = 60% 010 = 40%		nable $001 = 60\%$ 010 = 40%		001 = 60% 010 = 40%	0 = Display ON	Digit Blank Disable 1	Digit Cursor 1	$DBD_n = 0$, Allows Digit n to be blanked $DBD_n = 1 \text{ Prevents Digit n}$
Х	х	1	0	0	0	0	1	0	1 = Disable D ₁ -D ₅	10 10 11	100 = 17% 101 = 10% 110 = 7%		100 = 17% 101 = 10% 110 = 7%	101 = 10%	1 = Display Blanked	Digit Blank Disable 2	Digit Cursor 2	from being blanked. DC _n = 0 Removes cursor from							
						0	1	1	D ₀ Always Enabled	11	1 = 39	0		Digiit Blank Disable 3	Digit Cursor 3	Digit n DC _n = 1 Stores cursor at Digit n									
						1	0	0		Digit	0 ASCI	I Data	(Right Most	Character)											
x	x	1	0	0	0	1	0	1		Digit	1 ASCI	I Data				Write to Character RAM									
				ľ	Ů	1	1	. 0		Digit 2 ASCII Data						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
						1	1	1	Digit 3 ASCII Data (Left Most Character)																
			1	х	Х																				
x	х	1	Х	1	Х	х	х	х	х	х	X	х	x	x	х	No Change									
			X	Х	1																				

0 = Logic 0; 1 = Logic 1; X = Do Not Care; * 000 = 27% for HDLU-2416

Figure 2. Display Truth Table

strobing the blank input). All of these blanking modes affect only the output drivers, maintaining the contents and write capability of the internal RAMs and Control Register, so that normal loading of RAMs and Control Register can take place even with the display blanked.

Figure 3 shows how the Extended Function Disable (bit D_6 of the Control Register), Master Blank (bit D_2 of the Control Register), Digit Blank Disable (bit D_1 of the Attribute RAM), and BL input can be used to blank the display.

When the Extended Function Disable is a logic 1, the display can be blanked only with the \overline{BL} input. When the Extended Function Disable is a logic 0, the display can be blanked through the BL input, the Master Blank, and the Digit Blank Disable. The entire display will be blanked if either the \overline{BL} input is logic 0 or the Master Blank is logic 1, providing all Digit Blank Disable bits are logic 0. Those digits with Digit Blank Disable bits a logic 1 will ignore both blank signals and remain ON. The Digit Blank Disable bits allow individual characters to be blanked or flashed in synchronization with the BL input.

EFD	МВ	DBD_n	BL	
0	0	0	0	Display Blanked by BL
0	0	х	1	Display ON
0	Х	1	0	Display Blanked by BL. Individual characters "ON" based on "1" being stored in DBD _n
0	1	0	Х	Display Blanked by MB
0	1	1	1	Display Blanked by MB. Individual characters "ON" based on "1" being stored in DBD _n
1	X	Х	0	Display Blanked by BL
1	х	х	1	Display ON

Figure 3. Display Blanking Truth Table

Dimming

Dimming of the display is controlled through either the \overline{BL} input or the Control Register. A pulse width modulated signal can be applied to the \overline{BL} input to dim the display. A three bit word in the Control Register generates an internal pulse width modulated signal to dim the display. The internal dimming feature is enabled only if the Extended Function Disable is a logic 0.

Bits 3-5 in the Control Register provide internal brightness control. These bits are interpreted as a three bit binary code, with code (000) corresponding to the maximum brightness and code (111) to the minimum brightness. In addition to varying the display brightness, bits 3-5 also vary the average value of $\rm I_{DD}$. $\rm I_{DD}$ can be specified at any brightness level as shown in Table 1.

Table 1. Current Requirements at Different Brightness Levels

Table 1. C	one i. Our ent nequirements at Director Disputates nevers												
Symbol	D ₅	$\mathbf{D_4}$	$\mathbf{D_3}$	Brightness	25°C Typ.	25°C Max.	Max. over Temp.	Units					
I _{DD} (#)	0	0	0	100%	110	130	160	mA					
	0	0	1	60%	66	79	98	mA					
	0	1	0	40%	45	53	66	mA					
	0	1	1	27%	30	37	46	mA					
	1	0	0	17%	20	24	31	mA					
	1	0	1	10%	12	15	20	mA					
	1	1	0	7%	9	11	15	mA					
	1	1	1	3%	4	6	9	mA					

Figure 4. Intensity Modulation Control Using an Astable Multivibrator (reprinted with permission from *Electronics* magazine, Sept. 19, 1974, VNU Business pub. Inc.)

Figure 4 shows a circuit designed to dim the display from 98% to 2% by pulse width modulating the \overline{BL} input. A logarithmic or a linear potentiometer may be used to adjust the display intensity. However, a logarithmic potentiometer matches the response of the human eye and therefore provides better resolution at low intensities. The circuit frequency should be designed to operate at 10~kHz or higher. Lower frequencies may cause the display to flicker.

Extended Function Disable

Extended Function Disable (bit D_6 of the Control Register) disables the extended blanking and dimming functions in the HDLX-2416. If the Extended Function Disable is a logic 1, the internal brightness control, Master Blank, and Digit Blank Disable bits are ignored. However the $\overline{\rm BL}$ input and Cursor control are still active. This allows downward compatibility to the HPDL-2416.

Mechanical and Electrical Considerations

The HDLX-2416 is an 18 pin DIP package that can be stacked horizontally and vertically to create arrays of any size. The HDLX-2416 is designed to operate continuously from -40°C to + 85°C for all possible input conditions.

The HDLX-2416 is assembled by die attaching and wire bonding 140 LEDs and a CMOS IC to a high temperature printed circuit board. A polycarbonate lens is placed over the PC board creating an air gap environment for the LED wire bonds. Backfill epoxy environmentally seals the display package. This package construction makes the display highly tolerant to temperature cycling and allows wave soldering.

The inputs to the CMOS IC are protected against static discharge and input current latchup. However, for best results standard CMOS handling precautions should be used. Prior to use, the HDLX-2416 should be stored in anti-static tubes or conductive material. During assembly a grounded conductive work area should be used, and assembly personnel should wear conductive wrist straps. Lab coats made of synthetic material should be avoided since they are prone to static charge build-up.

Input current latchup is caused when the CMOS inputs are subjected either to a voltage below ground ($V_{in} <$ ground) or to a voltage higher than V_{DD} ($V_{in} >$ V_{DD}) and when a high current is forced into the input. To prevent input current latchup and ESD damage, unused inputs should be

connected either to ground or to V_{DD} . Voltages should not be applied to the inputs until V_{DD} has been applied to the display. Transient input voltages should be eliminated.

Soldering and Post Solder Cleaning Instructions for the HDLX-2416

The HDLX-2416 may be hand soldered or wave soldered with SN63 solder. When hand soldering it is recommended that an electronically temperature controlled and securely grounded soldering iron be used. For best results, the iron tip temperature should be set at 315°C (600°F). For wave soldering, a rosin-based RMA flux can be used. The solder wave temperature should be set at $245^{\circ}\text{C} \pm 5^{\circ}\text{C} (473^{\circ}\text{F} \pm 9^{\circ}\text{F})$, and dwell in the wave should be set between 1 1/2 to 3 seconds for optimum soldering. The preheat temperature should not exceed 110°C (230°F) as measured on the solder side of the PC board.

For further information on soldering and post solder cleaning, see Application Note 1027, *Soldering LED Components*.

Contrast Enhancement

The objective of contrast enhancement is to provide good readability in the end user's ambient lighting conditions. The concept is to employ both luminance and chrominance contrast techniques. These enhance readability by having the OFF-dots blend into the display background and the ONdots vividly stand out against the same background. For additional information on contrast enhancement, see Application Note 1015.

Four Character Smart Alphanumeric Displays

Technical Data

HPDL-1414 HPDL-2416

Features

- Smart Alphanumeric Display Built-in RAM, ASCII Decoder and LED Drive Circuitry
- Wide Operating Temperature Range -40°C to +85°C
- Fast Access Time 160 ns
- Excellent ESD Protection
 Built-in Input Protection Diodes
- CMOS IC for Low Power Consumption
- Full TTL Compatibility Over Operating Temperature Range

 $V_{IL} = 0.8 \text{ V}$ $V_{IH} = 2.0 \text{ V}$

- Wave Solderable
- Rugged Package Construction
- End-Stackable
- Wide Viewing Angle

Typical Applications

- Portable Data Entry Devices
- Medical Equipment

- Process Control Equipment
- Test Equipment
- Industrial Instrumentation
- Computer Peripherals
- Telecommunication Instrumentation

Description

The HPDL-1414 and 2416 are smart, four character, sixteensegment, red GaAsP displays. The HPDL-1414 has a character height of 2.85 mm (0.112"). The HPDL-2416 has a character height of 4.10 mm (0.160"). The on-board CMOS IC contains memory, ASCII decoder, multiplexing circuitry and drivers. The monolithic LED characters are magnified by an immersion lens which increases both character size and luminous intensity. The encapsulated dual-in-line package provides a rugged, environmentally sealed unit.

The HPDL-1414 and 2416 incorporate many improvements over competitive products. They have a wide operating temperature range, very fast IC access time, and improved ESD protection. The displays are also fully TTL compatible, wave solderable, and highly reliable. These displays are ideally suited for industrial and commercial applications where a goodlooking, easy-to-use alphanumeric display is required.

ESD WARNING: STANDARD CMOS HANDLING PRECAUTIONS SHOULD BE OBSERVED WITH THE HPDL-1414 AND HPDL-2416.

Absolute Maximum Ratings

Supply Voltage, V _{DD} to Ground	0.5 V to 7.0 V
Input Voltage, Any Pin to Ground	$-0.5 \text{ V to V}_{DD} + 0.5 \text{ V}$
Free Air Operating Temperature Range, T _A ^[1]	40°C to +85°C
Relative Humidity (non-condensing) at 65°C	90%
Storage Temperature, T _S	40°C to +85°C
Maximum Solder Temperature, 1.59 mm (0.063	in.)
below Seating Plane, $t < 5$ sec	260℃
ESD Protection @ 1.5 k Ω , 100 pF	$V_Z = 2 \text{ kV (each Pin)}$

^{*}All typicals at $T_A = 25$ °C.

Package Dimensions HPDL-1414

NOTES: 1. UNLESS OTHERWISE SPECIFIED, THE TOLERANCE ON ALL DIMENSIONS IS 0.254 mm (0.010 in.). 2. DIMENSIONS IN mm (inches).

HPDL-2416

PIN		PIN	
NO.	FUNCTION	NO.	FUNCTION
1	CE, CHIP ENABLE	10	GND
2	CE, CHIP ENABLE	11	D ₀ DATA INPUT
3	CLR CLEAR	12	D, DATA INPUT
4	CUE CURSOR ENABLE	13	D, DATA INPUT
5	CU CURSOR SELECT	14	D, DATA INPUT
6	WR WRITE	15	D DATA INPUT
7	ADDRESS INPUT A	16	D _s DATA INPUT
8	ADDRESS INPUT A	17	D, DATA INPUT
9	V _{DD}	18	BL DISPLAY BLANK

NOTES: 1. UNLESS OTHERWISE SPECIFIED, THE TOLERANCE ON ALL DIMENSIONS IS 0.254 mm (0.010 in.). 2. DIMENSIONS IN mm (inches).

Recommended Operating Conditions

Parameter	Sym.	Min.	Nom.	Max.	Units
Supply Voltage	$V_{ m DD}$	4.5	5.0	5.5	V

DC Electrical Characteristics over Operating Temperature Range

			25℃	25°C			
Parameter	Sym.	Min.	Тур.	Max.	Max.[1]	Units	Test Conditions
Input Current	I_{IL}						
HPDL-1414			17	30	50	μA	$V_{DD} = 5.0 \text{ V}, \overline{BL} = 0.8 \text{ V}$
HPDL-2416			17	30	40	μA	·
I _{DD} Blank	I _{DD} (BL)						
HPDL-1414			1.2	2.3	4.0	mA	$V_{DD} = 5.0 \text{ V}, \overline{BL} = 0.8 \text{ V}$
HPDL-2416			1.5	3.5	8.0	mA .	
I _{DD} 4 Digits ON							
(10 Segments/digit) ^[2,3]	I_{DD}						
HPDL-1414			70	90	130	mA	$V_{DD} = 5.0 \text{ V}$
HPDL-2416			85	115	170	mA	
I _{DD} 4 Digits ON Cursor ^[4]	I _{DD} (CU)		125	165	232	mA	$V_{DD} = 5.0 \text{ V}$
HPDL-2416		1. 1					
Input Voltage High	V_{IH}	2.0			V_{DD}	V	
Input Voltage Low	V_{IL}	GND			0.8	V	
Power Dissipation ^[5]	P _D						
HPDL-1414			350	450	715	mW	$V_{DD} = 5.0 \text{ V}$
HPDL-2416			425	575	910	mW	

Notes:

- 1. $V_{DD} = 5.5 \text{ V}$. 2. "%" illuminated in all four characters.
- 3. Measured at five seconds.
- 4. Cursor character is sixteen segments and DP ON.
- 5. Power Dissipation = $(V_{DD})(I_{DD})$ for 10 segments ON.

Optical Characteristics at $25^{\circ}C^{[6]}$

Parameter	Sym.	Min.	Тур.	Units	Test Conditions
Peak Luminous Intensity per Digit, 8 segments ON (character average)	I _V Peak				$V_{DD} = 5.0 \text{ V},$ "*" illuminated in all
HPDL-1414		0.4	1.0	mcd	4 digits
HPDL-2416		0.5	1.25	mcd	
Peak Wavelength	λ_{Peak}		655	nm	
Dominant Wavelength	$\lambda_{ m d}$		640	nm	
Off Axis Viewing Angle HPDL-1414			± 40	degrees	
HPDL-2416			±50	degrees	

AC Timing Characteristics over Operating Temperature Range at $V_{\rm CC}$ = 4.5 V

Parameter	Symbol	-20°C t _{MIN}	25°C t _{MIN}	70°C t _{MIN}	Units
Address Setup Time	t_{AS}	90	115	150	ns
Write Delay Time	$t_{ m WD}$	10	15	20	ns
Write Time	$t_{ m W}$	80	100	130	ns
Data Setup Time	$ m t_{DS}$	40	60	80	ns
Data Hold Time	${ m t_{DH}}$	40	45	50	ns
Address Hold Time	t_{AH}	40	45	50	ns
Chip Enable Hold Time ^[1]	t_{CEH}	40	45	50	ns
Chip Enable Setup Time ^[1]	t_{CES}	90	115	150	ns
Clear Time ^[1]	${ m t_{CLR}}$	2.4	3.5	4.0	ms
Access Time		130	160	200	ns
Refresh Rate		420-790	310-630	270-550	Hz

Note:

1. HPDL-2416 only.

Timing Diagram

Character Set

	•	BIT	s	D ₃ D ₂ D ₁ D ₀	0 0 0	0 0 0	0 0 1 0	0 0 1 1	0 1 0	0 1 0	0 1 1 0	0 1 1	1 0 0	1 0 0	1 0 1 0	1 0 1	1 1 0 0	1 1 0 1	1 1 1 0	1 1 1
D	6	D ₅	D ₄	HEX	0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	E
٥		1	0	2	(space)	!	11	H	5	%	8	1	\	>	*	+	/	_	•	/
	1	1	1	3		1	2	T	4	5	6	7	8	9	-	-/	7	11	7	7
[0	0	4	日	A	\mathbb{B}		I	Ε	F	П	\perp	I	J	К	L	M	Z	
	1	0	1	5	P		R	5	Τ	Ш	V	W	X	Y	Z	Е	\]	^	_

Magnified Character Font Description

Relative Luminous Intensity vs. Temperature

Electrical Description Display Internal Block Diagram HPDL-1414

Figure 1 shows the internal block diagram of the HPDL-1414. It consists of two parts: the display LEDs and the CMOS IC. The CMOS IC consists of a four-word ASCII memory, a 64-word character generator, 17 segment drivers, four digit drivers, and the scanning circuitry necessary to multiplex the four monolithic LED characters. In normal

operation, the divide-by-four counter sequentially accesses each of the four RAM locations and simultaneously enables the appropriate display digit driver. The output of the RAM is decoded by the character generator which, in turn, enables the appropriate display segment drivers. Sevenbit ASCII data is stored in RAM. Since the display uses a 64-character decoder, half of the possible 128 input combinations are invalid. For each display location where $D_5 = D_6$ in the

ASCII RAM, the display character is blanked.

Data Entry HPDL-1414

Figure 2 shows a truth table for the HPDL-1414. Data is loaded into the display through the DATA inputs $(D_6\text{-}D_0), ADDRESS$ inputs $(A_1\text{-}A_0),$ and WRITE $(\overline{WR}).$ After a character has been written to memory, the IC decodes the ASCII data, drives the display and refreshes it without any external hardware or software.

Figure 1. HPDL-1414 Internal Block Diagram.

WŘ	A ₁	A ₀	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	DIG ₃	DIG ₂	DIG ₁	DIG
L	L	L	а	а	а	а	а	а	а	NC	NC	NC	Ħ
L	L	Н	ь	b	b	b	b	b	b	NC	NC	B	NC
L	Н	L	С	С	С	С	С	С	С	NC		NC	NC
L	Н	Н	d	d	d	d	d	d	d	D	NC	NC	NC
Н	X	Х	Х	Х	Х	Х	Х	Х	X	Prev Data		y Wri	tten

L = LOGIC LOW INPUT

H = LOGIC HIGH INPUT

X = DON'T CARE

"a" = ASCII CODE CORRESPONDING TO SYMBOL " A"

NC = NO CHANGE

Figure 2. HPDL-1414 Write Truth Table.

Display Internal Block Diagram HPDL-2416

Figure 3 shows the internal block diagram for the HPDL-2416 display. The CMOS IC consists of a four-word ASCII memory, a four-word cursor memory, a 64-word character generator, 17 segment drivers, four digit drivers, and the scanning circuitry necessary to multiplex the four monolithic LED characters. In normal operation, the divide-byfour counter sequentially accesses each of the four RAM locations and simultaneously enables the appropriate display digit driver. The output of the RAM is decoded by the character generator which, in turn, enables the appropriate display segment drivers. For each display location, the cursor enable (CUE) selects whether the data from the ASCII RAM (CUE = 0) or the stored cursor (CUE = 1) is to be displayed. The cursor character is denoted by all sixteen segments and the DP ON. Seven-bit ASCII data is stored in RAM. Since the display utilizes a 64-character

decoder, half of the possible 128 input combinations are invalid. For each display location where $D_5=D_6$ in the ASCII RAM, the display character is blanked. The entire display is blanked when BL=0.

Data is loaded into the display through the data inputs $(D_6 - D_0)$, address inputs (A_1, A_0) , chip enables $(\overline{CE}_1, \overline{CE}_2)$, cursor select (\overline{CU}) , and write (\overline{WR}) . The cursor select (CU) determines whether data is stored in the ASCII RAM $(\overline{CU} = 1)$ or cursor memory $(\overline{CU} = 0)$. When $\overline{CE}_1 = \overline{CE}_2 =$ $\overline{WR} = 0$ and $\overline{CU} = 1$, the information on the data inputs is stored in the ASCII RAM at the location specified by the address inputs (A_1, A_0) . When $\overline{CE}_1 = \overline{CE}_2 = \overline{WR}$ = 0 and \overline{CU} = 0, information on the data input, D_0 , is stored in the cursor at the location specified by the address inputs (A_1, A_0) . If D_0 = 1, a cursor character is stored in the cursor memory. If $D_0 = 0$, a previously stored cursor character will be removed from the cursor memory.

If the clear input (CLR) equals zero for one internal display cycle (4 ms minimum), the data in the ASCII RAM will be rewritten with zeroes and the display will be blanked. Note that the blanking input (BL) must be equal to logical one during this time.

Data Entry HPDL-2416

Figure 4 shows a truth table for the HPDL-2416 display. Setting the chip enables $(\overline{CE}_1, \overline{CE}_2)$ to their low state and the cursor select (\overline{CU}) to its high state will enable data loading. The desired data inputs (D₆-D₀) and address inputs (A_1, A_0) as well as the chip enables $(\overline{CE}_1, \overline{CE}_2)$ and cursor select (CU) must be held stable during the write cycle to ensure that the correct data is stored into the display. Valid ASCII data codes are shown in Figure 1. The display accepts standard sevenbit ASCII data. Note that $D_6 \neq D_5$ for the codes shown in Figure 4. If $D_6 = D_5$ during the write cycle, then a blank will be stored in the display. Data can be loaded into the display in any order. Note that when $A_1 = A_0 = 0$, data is stored in the furthest right-hand display location.

Cursor Entry HPDL-2416

As shown in Figure 4, setting the chip enables $(\overline{CE}_1, \overline{CE}_2)$ to their low state and the cursor select (\overline{CU}) to its low state will enable cursor loading. The cursor character is indicated by the display symbol having all 16 segments and the DP ON. The least significant data input (D_0) , the address inputs (A_1, A_0) , the chip enables (CE_1, CE_2) , and the cursor select (CU) must be held stable during the write cycle to

Figure 3. HPDL-2416 Internal Block Diagram.

ensure that the correct data is stored in the display. If D_0 is in a low state during the write cycle, then a cursor character will be removed at the indicated location. If Do is in a high state during the write cycle, then a cursor character will be stored at the indicated location. The presence or absence of a cursor character does not affect the ASCII data stored at that location. Again, when $A_1 = A_0 = 0$, the cursor character is stored in the furthest right-hand display location.

All stored cursor characters are displayed if the cursor enable

(CUE) is high. Similarly, the stored ASCII data words are displayed, regardless of the cursor characters, if the cursor enable (CUE) is low. The cursor enable (CUE) has no effect on the storage or removal of the cursor characters within the display. A flashing cursor is displayed by pulsing the cursor enable (CUE). For applications not requiring a cursor, the cursor enable (CUE) can be connected to ground and the cursor select (\overline{CU}) can be connected to V_{CC}. This inhibits the cursor function and allows only ASCII data to be loaded into the display.

Display Clear HPDL-2416

As shown in Figure 4, the ASCII data stored in the display will be cleared if the clear (CLR) is held low and the blanking input (BL) is held high for 4 ms minimum. The cursor memory is not affected by the clear (CLR) input. Cursor characters can be stored or removed even while the clear (\overline{CLR}) is low. Note that the display will be cleared regardless of the state of the chip enables $(\overline{CE}_1, \overline{CE}_2)$. However, to ensure that all four display characters are cleared, CLR should be held low for 4 ms following the last write cycle.

Function	BL	CLR	CUE	CU	CE ₁	CE ₂	WR	A ₁	A ₀	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	DIG ₃	DIG ₂	DIG ₁	DIG ₀
Write Data Memory	X	Н	X X	H -OR- H	L L	L	L	LLHH	H	a b c	a b c d	a b c d	a b c d	a b c d	a b c d	a b c	NC NC NC	NC NC L NC	NC B NC NC	NC NC NC
Disable Data Memory Write	X X X	X X X	X X X	H	X X H	X H X	H X X	х	х	X	Х	Х	Х	Х	Х	X	Pre Da	viously ta	Writte	n
Write Cursor	х	Х	Х	L	L	L	L	LLHH	L H L	X X X	X X X	X X X	X X X	X X X	X X X	H H H	NC NC NC	NC NC M NC	NC NC NC	NC NC NC
Clear Cursor	х	Х	Х	L	L	L	L	LLHH	H	X X X	X X X	X X X	X X X	X X X	X X X	L L L	NC NC NC	NC NC NC	NC NC NC	NC NC NC
Disable Cursor Memory	X X X	X X X	X X X	L L	X X H	X H X	H X X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Pre Cur	viously sor	Writte	n

L = LOGIC LOW INPUT

Figure 4a. Cursor/Data Memory Write Truth Table.

Function	BL	CLR	CUE	CU	CE ₁	CE ₂	WR	DIG ₃	DIG ₂	DIG₁	DIGo	
CUE	Н	Н	L	Х	Х	Х	Х	R	B	Ε	D	Display previously written data
	Н	Н	Н	Х	Χ	Х	Х	X	\mathbb{R}	\mathbb{R}	\mathbb{R}	Display previously written cursor
Clear	Н	L	X	Х	Х	Х	X*		[]]	[]]	[]	Clear data memory, cursor memory unchanged
	folio	owing th	LR shoune last \ cleared	WRITE								
Blanking	L	х	Х	Х	Х	Х	Х	[]]		[]]		Blank display, data and cursor" memories unchanged.

Figure 4b. Displayed Data Truth Table.

[&]quot;a" = ASCII CODE CORRESPODING TO SYMBOL "FI"

X = DON'T CARE

H = LOGIC HIGH INPUT NC = NO CHANGE

^{₩ =} CURSOR CHARACTER (ALL SEGMENTS ON)

Display Blank HPDL-2416

As shown in Figure 4, the display will be blanked if the blanking input (BL) is held low. Note that the display will be blanked regardless of the state of the chip enables $(\overline{CE}_1, \overline{CE}_2)$ or write (\overline{WR}) inputs. The ASCII data stored in the display and the cursor memory are not affected by the blanking input. ASCII data and cursor data can be stored even while the blanking input (BL) is low. Note that while the blanking input (\overline{BL}) is low, the clear (\overline{CLR}) function is inhibited. A flashing display can be obtained by applying a low frequency square wave to the blanking input (\overline{BL}) . Because the blanking input (BL) also resets the internal display multiplex counter, the frequency applied to the blanking input (BL) should be much slower than the display multiplex rate. Finally, dimming of the display through the blanking input (BL) is not recommended.

For further application information please consult Application Note 1026.

Optical Considerations/ Contrast Enhancement

The HPDL-1414 and HPDL-2416 displays use a precision aspheric immersion lens to provide excellent readability and low offaxis distortion. For the HPDL-1414, the aspheric lens produces a magnified character height of 2.85 mm (0.112 in.) and a viewing angle of $\pm 40^{\circ}$. For the HPDL-2416, the aspheric lens produces a magnified character height of 4.1 mm (0.160 in.) and a viewing angle of $\pm 50^{\circ}$. These features provide excellent readability at distances up to 1.5 metres (4 feet) for the HPDL-

1414 and 2 metres (6 feet) for the HPDL-2416.

Each HPDL-1414/2416 display is tested for luminous intensity and marked with an intensity category on the side of the display package. To ensure intensity matching for multiple package applications, mixing intensity categories for a given panel is not recommended.

The HPDL-1414/2416 display is designed to provide maximum contrast when placed behind an appropriate contrast enhancement filter. For further information on contrast enhancement, see Hewlett-Packard Application Note 1015.

Mechanical and Electrical Considerations

The HPDL-1414/2416 are dual inline packages that can be stacked horizontally and vertically to create arrays of any size. These displays are designed to operate continuously between -40°C to +85°C with a maximum of 10 segments on per digit.

During continuous operation of all four Cursors the operating temperature should be limited to -40°C to +55°C. At temperatures above +55°C, the maximum number of Cursors illuminated continuously should be reduced as follows: No Cursors illuminated at operating temperatures above 75°C. One Cursor can be illuminated continuously at operating temperatures below 75°C. Two Cursors can be illuminated continuously at operating temperatures below 68°C. Three Cursors can be illuminated continuously at operating temperatures below 60°C.

The HPDL-1414/2416 are assembled by die attaching and wire bonding the four GaAsP/GaAs monolithic LED chips and the CMOS IC to a high temperature printed circuit board. An immersion lens is formed by placing the PC board assembly into a nylon lens filled with epoxy. A plastic cap creates an air gap to protect the CMOS IC. Backfill epoxy environmentally seals the display package. This package construction provides the display with a high tolerance to temperature cycling.

The inputs to the CMOS IC are protected against static discharge and input current latchup. However, for best results standard CMOS handling precautions should be used. Prior to use, the HPDL-1414/2416 should be stored in anti-static tubes or conductive material. During assembly a grounded conductive work area should be used, and assembly personnel should wear conductive wrist straps. Lab coats made of synthetic material should be avoided since they are prone to static charge build-up. Input current latchup is caused when the CMOS inputs are subjected either to a voltage below ground (V_{IN} < ground) or to a voltage higher than V_{DD} ($V_{IN} > V_{DD}$) and when a high current is forced into the input. To prevent input current latchup and ESD damage, unused inputs should be connected either to ground or to V_{DD}. Voltages should not be applied to the inputs until VDD has been applied to the display. Transient input voltages should be eliminated.

Soldering and Post Solder Cleaning Instructions

The HPDL-1414/2416 may be hand soldered or wave soldered with SN63 solder. Hand soldering may be safely performed only with an electronically temperature-controlled and securely grounded soldering iron. For best results, the iron tip temperature should be set at

315°C (600°F). For wave soldering, a rosin-based RMA flux can be used. The solder wave temperature should be 245°C \pm 5°C (473°F \pm 9°F), and the dwell in the wave should be set at $1^1/2$ to 3 seconds for optimum soldering. Preheat temperature should not exceed 93°C (200°F) as measured on the solder side of the PC board.

For further information on soldering and post solder cleaning, see Application Note 1027, Soldering LED Components.

Hexadecimal and Numeric **Indicators**

Technical Data

5082-7300 5082-7302 5082-7304 5082-7340

Features

- Numeric 5082-7300/-7302 0-9, Test State, Minus Sign, Blank States **Decimal Point** 7300 Right Hand D.P. 7302 Left Hand D.P.
- Hexadecimal 5082-7340 0-9, A-F, Base 16 Operation Blanking Control, Conserves Power No Decimal Point
- DTL/TTL Compatible
- Includes Decoder/Driver With 5-Bit Memory

8421 Positive Logic Input

• 4 x 7 Dot Matrix Array Shaped Character, Excellent Readability

- Standard Dual-in-Line **Package Including Contrast** Filter
 - 15.2 mm x 10.2 mm (0.6 inch x 0.4 inch)
- Categorized for Luminous Intensity
 - Assures Uniformity of Light Output From Unit to Unit Within a Single Category

Description

Hewlett-Packard's 5082-7300 series solid state numeric and hexadecimal indicators with onboard decoder/driver and memory provide 7.4 mm (0.29 inch) displays for reliable, low-cost methods of displaying digital information.

The 5082-7300 numeric indicator decodes positive 8421 BCD logic inputs into characters 0-9, a "-" sign, a test pattern, and four blanks in the invalid BCD states. The unit employs a right-hand decimal point.

Package Dimensions

	Func	tion
Pin	5082-7300 and 7302 Numeric	5082-7340 Hexadecimal
1	Input 2	Input 2
2	Input 4	Input 4
3	Input 8	Input 8
4	Decimal Point	Blanking Control
5	Latch Enable	Latch Enable
6	Ground	Ground
7	V _{CC}	V _{CC}
8	Input 1	Input 1

- Notes:
 1. Dimensions in millimeters and
- 2. Unless otherwise specified, the tolerance on all dimensions is ±0.38 mm (± 0.015 inch).
 - Digit center line is -0.25 mm (±0.01 inch) from package center

The 5082-7302 is the same as the 5082-7300, except that the decimal point is located on the left-hand side of the digit.

The 5082-7340 hexadecimal indicator decodes positive 8421 logic inputs into 16 states, 0-9 and A-F. In place of the decimal point

an input is provided for blanking the display (all LEDs off), without losing the contents of the memory. Applications include terminals and computer systems using the base-16 character set.

The 5082-7304 is a $(\pm\,1)$ overrange display including a right-hand decimal point.

Applications

Typical applications include pointof-sale terminals, instrumentation, and computer systems.

Absolute Maximum Ratings

Description	Symbol	Min.	Max.	Unit
Storage Temperature, Ambient	T_{S}	-40	+100	°C
Operating Temperature, Case	T_{C}	-20	+85	°C
V _{CC} Pin Potential to Ground Pin	V_{CC}	-0.5	+7.0	V
Voltage Applied to Input Logic Pins and Decimal Point ^[1]				
Voltage Applied to Latch Enable	$V_{\rm E}$	-0.5	+5.5	V
Voltage Applied to Blanking Control ^[2]	V _B	-0.5	+5.5	V

Notes:

- 1. Decimal point applies only to 7300/7302.
- 2. Applies only to 7340.

Recommended Operating Conditions

Description	Symbol	Min.	Nom.	Max.	Unit
Supply Voltage	V_{CC}	4.5	5.0	5.5	V
Logic Voltage "0" State	V _{IN(0)}	0		0.8	V
Logic Voltage "1" State	V _{IN(1)}	2.0		5.25	V
Latch Enable Voltage – Data Being Entered	$V_{E(0)}$	0		0.8	V
Latch Enable Voltage – Data Not Being Entered	$V_{E(1)}$	2.0		5.25	V
Blanking Control Voltage – Display Not Blanked ^[1]	V _{B(0)}	0		0.8	V
Blanking Control Voltage – Display Blanked ^[1]	V _{B(1)}	3.5		5.25	V

Note:

1. Applies only to 7340.

Electrical/Optical Characteristics ($T_A = -20$ °C to +85 °C, Unless Otherwise Specified)

Description	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Supply Current	I_{CC}	$V_{CC} = 5.5 \text{ V}$		94[1]	170[2]	mA
Power Dissipation	P _T	$V_{CC} = 5.5 \text{ V}$		470[1]	935[2]	mW
Luminous Intensity per LED (Digit Average)[3]	I_{V}	$V_{CC} = 5.5 \text{ V}, T_{C} = 25^{\circ}\text{C}$	32	70		μcd
Minimum Time Data Must Be Presented to Logic Input Prior to Enable Rising	$t_{ m SETUP}$	$ \begin{vmatrix} V_{CC} = 5.0 \text{ V}, V_{E(0)} = 0.4 \text{ V} \\ V_{IN(0)} = 0.4 \text{ V}, V_{E(1)} = 2.4 \text{ V} \\ V_{IN(1)} = 2.4 \text{ V}, T_C = 25 ^{\circ}\text{C} \\ \end{vmatrix} $		30	50	ns
Minimum Time Data Must Be Held After Enable Rises	$t_{ m HOLD}$	$ \begin{array}{l} V_{CC} = 5.0 \; V, V_{E(0)} = 0.4 \; V \\ V_{IN(0)} = 0.4 \; V, V_{E(1)} = 2.4 \; V \\ V_{IN(1)} = 2.4 \; V, T_{C} = 25 ^{\circ} C \end{array} $		30	50	ns
Time Required for 90% Change in Display Luminous Intensity After Change of State of $F_B^{[4]}$	t _{BLANK}	$V_{CC} = 5.0 \text{ V}, T_{C} = 25^{\circ}\text{C}$			500	ns
Blanking Control Current "0" State ^[4]	I _{B(0)}	$V_{CC} = 5.5 \text{ V}, V_{B(0)} = 0.8 \text{ V}$			200	μΑ
Blanking Control Current "1" State ^[4]	I _{B(1)}	$V_{CC} = 5.5 \text{ V}, V_{B(1)} = 4.5 \text{ V}$			2.0	mA
Logic and Latch Enable Currents "0" State	$I_{IN(0)},$ $I_{E(0)}$	$V_{CC} = 5.5 \text{ V}$ $V_{IN}, V_{E} = 0.4 \text{ V}$			-1.6	mA
Logic and Latch Enable Currents "1" State	$I_{IN(1)}, I_{E(1)}$	$V_{CC} = 5.5 \text{ V} $ $V_{IN}, V_{E} = 2.4 \text{ V}$			+250	μA
Peak Wavelength	$\lambda_{ ext{PEAK}}$	$T_C = 25$ °C		655		nm
Spectral Halfwidth	$\Delta \lambda_{1/2}$	$T_C = 25$ °C		30		nm
Weight				0.8		gm

Notes:

- 1. $V_{\rm CC}=5.0$ V with statistical average number of LEDs lit. 2. Worst case condition excluding test state on 5082-7300/-7302.
- 3. The digits are categorized for luminous intensity such that the variation from digit to digit within a category is not discernible to the eye Intensity categories are designated by a letter located on the reverse side of the package contiguous with the Hewlett-Packard logo marking.
- 4. Applies only to -7340.

Truth Table for 5082-7300 Series Devices

Charac	ter			Inp	ut			Character				Inp	uts		
5082- 7300/7302 Numeric	5082- 7340 Hex.	X8	X4	X2	X1	E	B ^[1]	5082- 7300/7302 Numeric	5082- 7340 Hex.	X8	X4	X2	X1	E	B [1]
0	0	L	L	L	L	L		Test	A	Н	L	Н	L	L	L
1	1	L	L	L	Н	L	L	Blank	В	Н	L	Н	Н	L	L
2	2	L	L	Н	Н	L	L	Minus	D	Н	Н	L	Н	L	L
3	3	L	L	Н	Н	L	L	Minus	D	Н	Н	L	Н	L	L
4	4	L	Н	L	L	L	L	Blank	Е	Н	Н	Н	L	L	L
5	5	L	Н	L	Н	L	L	Blank	F	Н	Н	Н	Н	L	L
6	6	L	Н	Н	L	L	L	Hold	Hold	d	d	d	d	Н	d
7	7	L	Н	Н	Н	L	L	_	Blank ^[1]	d	d	d	d	d	Н
8	8	Н	L	L	L	L	L	Decimal pt. on ^[2]	_		D	P _{IN} =	L	•	
9	9	Н	L	L	Н	L	L	Decimal pt. off ^[2]	_		D	$P_{IN} =$	Н		

Notes:

- 1. The blanking control input, B, pertains to the 5082-7340 Hexadecimal Indicator only.
- 2. The decimal point input pertains to the 5082-7300 and -7302 Numeric Indicators only.
- 3. H = logic '1'; L = logic '0'; d = 'don't care.'

Figure 1. Timing Diagram of 5082-7300 Series Logic.

Figure 2. Block Diagram of 5082-7300 Series Logic.

Figure 3. Typical Blanking Control Current vs. Voltage for 5082-7340 Only.

Figure 4. Typical Blanking Control Input Current vs. Ambient Temperature, 5082-7340.

Figure 5. Typical Latch Enable Input Current vs. Voltage for the 5082-7300 Series Devices.

Figure 6. Typical Logic and Decimal Point Input Current vs. Voltage for the 5082-7300 Series Devices. Decimal Point Applies to 5082-7300 and -7302 Only.

			TRU	TH TABLE		
	BCD D			5082-7300/7302	5082-7340	
X8	X ₄	X ₂	X ₁			
L	L	L	L	0	Ü	
L	L	L	н			
L	L	н	L	2	E.	
L	L	н	н			
L	н	L	L	L-J	L	
L	н	L	н	5	5	
L	н	н	L	6	6	
L	н	н	н	"]		
Н	L	L	L	Ö	8	
н	L	L	н	9	9	
н	L	н	L		Ĥ	
н	L	н	Н	(BLANK)	19	
н	н	L	L	(BLANK)	1	
н	н	L	н		D	
н	н	н	L	(BLANK)	E	
н	н	н	н	(BLANK)		
n F	CIMAL	PT [2]	ON		V _{DP} = L	
	Olivine		OFF		V _{DP} = H	
	ABLE [1	1	LOA	AD DATA V _E = L		
ΕN	WRFF.,		LATO	CH DATA VE = H		
BI	ANKIN	2[3]	DISP	PLAY-ON V _B * L		
O.L		-	DISP	LAY-OFF	V _R = H	

Solid State Over Range Character

For display applications requiring a ± , 1, or decimal point designation, the 5082-7304 over range character is available. This display module comes in the same package as the 5082-7300 series numeric indicator and is completely compatible with it.

- 1. H = Logic High; L = Logic Low. With the enable input at logic high changes in BCD input logic levels or D.P. input have no effect upon display memory, displayed character, or D.P.
- 2. The decimal point input, DP pertains only to the 5082-7300 and 5082-7302 displays.
- 3. The blanking control input, B, pertains only to the 5082-7340 hexadecimal display. Blanking input has no effect upon display memory.

Package Dimensions

- NOTES:
 1. DIMENSIONS IN MILLIMETERS AND (INCHES).
 2. UNLESS OTHERWISE SPECIFIED, THE TOLERANCE ON ALL DIMENSIONS IS 20.38 MM (±0,015 INCHES).

SIDE END FUNCTION Numeral One DE Open Oper

5082-7304

Truth Table for 5082-7304

Pin					
Character	1	2, 3	4	8	
+	1	d	d	1	
_	0	d	d	1	
1	d	1	d	d	
Decimal Point	d	d	1	d	
Blank	0	0	0	0	

Notes:

- L: Line switching transistor in Figure 7 cutoff.
- H: Line switching transistor in Figure 7 saturated.
- X: 'Don't care.'

Typical Driving Circuit for 5082-7304

Figure 7.

Absolute Maximum Ratings

Description	Symbol	Min.	Max.	Unit
Storage Temperature, Ambient	$T_{\rm S}$	-40	+100	°C
Operating Temperature, Case	T_{C}	-20	+85	°C
Forward Current, Each LED	I_{F}		10	mA
Reverse Voltage, Each LED	$V_{\rm R}$		4	V

Recommended Operating Conditions

Description	Symbol	Min.	Nom.	Max.	Unit
LED Supply Voltage	$V_{\rm CC}$	4.5	5.0	5.5	V
Forward Current, Each LED	I_{F}		5.0	10	mA

Note:

LED current must be externally limited. Refer to Figure 7 for recommended resistor values.

Recommended Operating Conditions

 $(T_A = -20$ °C to 70°C, Unless Otherwise Specified)

Description	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Forward Voltage per LED	$V_{\rm F}$	$I_F = 10 \text{ mA}$		1.6	2.0	V
Power Dissipation	P_{T}	$I_{\rm F} = 10 \; { m mA}$ All Diodes Lit		250	320	mW
Luminous Intensity per LED (Digit Average)	I_{V}	$I_{\rm F} = 6 \text{ mA}$ $T_{\rm C} = 25 ^{\circ}\text{C}$	32	70		μcd
Peak Wavelength	$\lambda_{ ext{PEAK}}$	$T_C = 25$ °C		655		nm
Dominant Wavelength	$\lambda_{ m d}$	$T_C = 25^{\circ}C$		30		nm
Weight				0.8		gm

For further information concerning electrical and mechanical implementation of the 5082-7300 series devices, please refer to Application Note 934.

Hexadecimal and Numeric Displays for Industrial Applications

Technical Data

HDSP-076X Series HDSP-077X Series HDSP-086X Series HDSP-096X Series

Features

• Three Colors

High-Efficiency Red Yellow

High Performance Green

• Two High-Efficiency Red Options

Low Power High Brightness

• Three Character Options
Numeric
Hexadecimal

Over Range

• Performance Guaranteed over Temperature

- Memory Latch/Decoder/ Driver
- TTL Compatible
- 4 x 7 Dot Matrix Character
- Categorized for Luminous Intensity
- Yellow and Green Categorized for Color

Typical Applications

- Industrial Equipment
- Computer Peripherals
- Instrumentation
- Telecommunication Equipment

Device Selection Guide

Part Number			Front
HDSP-	Color	Description	View
0760	High-Efficiency	Numeric, Right Hand DP	A
0761	Red	Numeric, Left Hand DP	В
0762	Low Power	Hexadecimal	C
0763		Over Range ± 1	D
0770	High-Efficiency	Numeric, Right Hand DP	A
0771	Red	Numeric, Left Hand DP	В
0772	High Brightness	Hexadecimal	C
0763		Over Range ± 1	D
0860	Yellow	Numeric, Right Hand DP	A
0861		Numeric, Left Hand DP	В
0862		Hexadecimal	C
0863		Over Range ± 1	D
0960	Green	Numeric, Right Hand DP	A
0961		Numeric, Left Hand DP	В
0962		Hexadecimal	\mathbf{C}
0963		Over Range ± 1	D

Description

These solid state display devices are designed and tested for use in adverse industrial environments. The character height is 7.4 mm (0.29 inch). The numeric and hexadecimal devices incorporate an on-board IC that contains the data memory, decoder and display driver functions.

The numeric devices decode positive BCD logic into characters "0-9", a "-" sign, decimal point, and a test pattern. The hexadecimal devices decode positive BCD logic into 16 characters, "0-9, A-F." An input is provided on the hexadecimal devices to blank the display (all LEDs off) without losing the contents of the memory.

The over range device displays "±1" and right hand decimal point and is typically driven via external switching transistors.

Package Dimensions

	FUN	CTION	
PIN	NUMERIC	HEXA- DECIMAI	
1	Input 2	Input 2	
2	Input 4	Input 4	
3	Input 8	Input 8	
4	Decimal point	Blanking control	
5	Latch enable	Latch enable	
6	Ground	Ground	
7	V _{CC}	V _{cc}	
8	Input 1	Input 1	

NOTES:

- Dimensions in millimetres and (inches).
 Digit center line is ±0.38 mm (±0.015 inch)
- from package center line.

 3. Unless otherwise specified, the tolerance on all dissertions in 10.28 mm (±0.015 inch). all dimensions is ±0.38 mm (±0.015 inch).

 4. HDSP-0860 and HDSP-0960 series.

Figure 1. Timing Diagram

Figure 2. Logic Block Diagram.

			TRUT	H TABLE	
	BCD DA			NUMERIC	HEXA-
× ₈	X ₄	X ₂	X ₁		DECIMAL
L	L	L	L	Ü	Ü
L	L	L	I		
L	L	н	L		<u> </u>
L	L	н	н		
L	н	L	L	H	- H
L	н	L	н	5	5
L	н	н	L	-6	5
L	н	н	н	7	
н	L	L	L	8	8
н	L	L	н	9	9
н	L	н	L		Ĥ
н	L	н	н	(BLANK)	E
н	н	L	L	(BLANK)	
н	н	L	н		
н	н	н	L	(BLANK)	E.
н	н	н	н	(BLANK)	
DE	ECIMAL	PT. ^[2]	ON		V _{DP} = L
			OFF		V _{DP} = H
EN	NABLE (1)		D DATA	V _E = L
				CH DATA	V _E = H
BL	RI ANKING [3]			LAY-ON	V _B = L
			DISP	LAY-OFF	VB = H

- Notes:

 1. H = Logic High; L = Logic Low. With the enable input at logic high changes in BCD input logic levels have no effect upon display memory, displayed character, or DP.

 2. The decimal point input, DP, pertains only to the numeric displays. 3. The blanking control input, B, pertains only to the hexadecimal displays. Blanking input has no effect upon display memory.

Absolute Maximum Ratings

Description	Symbol	Min.	Max.	Unit
Storage Temperature, Ambient	T_{S}	-65	+100	°C
Operating Temperature, Ambient ^[1]	T _A	-55	+85	°C
Supply Voltage ^[2]	V_{CC}	-0.5	+7.0	V
Voltage Applied to Input Logic, dp and Enable Pins	$V_{\rm I},V_{\rm DP},V_{\rm E}$	-0.5	$V_{\rm CC}$	V
Voltage Applied to Blanking Input ^[2]	V_{B}	-0.5	V_{CC}	V
Maximum Solder Temperature at 1.59 mm (0.062 inch)			260	°C
Below Seating Plane, $t \le 5$ seconds				

Recommended Operating Conditions

		T ===		T	T
Description	Symbol	Min.	Nom.	Max.	Unit
Supply Voltage ^[2]	V_{CC}	4.5	5.0	5.5	V
Operating Temperature, Ambient ^[1]	T_{A}	-55		+85	$^{\circ}\mathrm{C}$
Enable Pulse Width	$t_{ m W}$	100			nsec
Time Data Must Be Held Before Positive Transition of Enable Line	$t_{ m SETUP}$	50			nsec
Time Data Must Be Held After Positive Transition of Enable Line	t _{HOLD}	50			nsec
Enable Pulse Rise Time	t_{TLH}			1.0	msec

Optical Characteristics at $T_A = 25$ °C, $V_{CC} = 5.0 \text{ V}$

Device	Description	Symbol	Min.	Тур.	Max.	Unit
HDSP-0760	Luminous Intensity per LED (Digit Average)[3,4]	I_{V}	65	140		μcd
Series	Peak Wavelength	$\lambda_{ ext{PEAK}}$		635		nm
	Dominant Wavelength ^[5]	λ_{d}		626		nm
HDSP-0770	Luminous Intensity per LED (Digit Average)[3,4]	I_{V}	260	620		μcd
Series	Peak Wavelength	$\lambda_{ ext{PEAK}}$		635		nm
	Dominant Wavelength ^[5]	$\lambda_{ m d}$		626		nm
HDSP-0860	Luminous Intensity per LED (Digit Average)[3,4]	I_{V}	215	490		μcd
Series	Peak Wavelength	$\lambda_{ ext{PEAK}}$		583		nm
	Dominant Wavelength ^[5,6]	$\lambda_{ m d}$		585		nm
HDSP-0960	Luminous Intensity per LED (Digit Average)[3,4]	I_{V}	298	1100		μcd
Series	Peak Wavelength	$\lambda_{ ext{PEAK}}$		568		nm
	Dominant Wavelength ^[5,6]	$\lambda_{ m d}$		574		nm

Notes:

- 1. The nominal thermal resistance of a display mounted in a socket that is soldered onto a printed circuit board is $R\theta_{JA} = 50^{\circ}C/W/de$ device. The device package thermal resistance is $R\theta_{J-PIN} = 15^{\circ}C/W/de$ vice. The thermal resistance device pin-to-ambient through the PC board should not exceed $35^{\circ}C/W/de$ vice for operation at $T_{A} = +85^{\circ}C$.
- 2. Voltage values are with respect to device ground, pin 6.
- 3. These displays are categorized for luminous intensity with the intensity category designated by a letter code located on the back of the display package. Case temperature of the device immediately prior to the light measurement is equal to 25°C.

Electrical Characteristics; $T_A = -55$ °C to +85°C

Description	Symbol	Test Conditions	Min.	Typ. [7]	Max.	Unit
Supply Current HDSP-0760 Series	I_{CC}	$V_{CC} = 5.5 \text{ V}$		78	105	mA
HDSP-0770 Series	- CC	(Characters "5."		120	175	III.
HDSP-0860 Series HDSP-0960 Series		or "B" Displayed)				
Power Dissipation HDSP-0760 Series	P_{T}			390	573	mW
HDSP-0770 Series	1 1			690	963	11111
HDSP-0860 Series HDSP-0960 Series						
Logic, Enable and Blanking Low-Level Input Voltage	V _{IL}	$V_{CC} = 4.5 \text{ V}$			0.8	v
Logic, Enable and Blanking High-Level Input Voltage	V _{IH}		2.0			V
Logic and Enable Low-Level Input Current	I _{IL}	$V_{\rm CC} = 5.5 \mathrm{V}$			-1.6	mA
Blanking Low-Level Input Current	I _{BL}	$V_{\rm IL} = 0.4 \rm V$			-10	μΑ
Logic, Enable and Blanking High-Level	I _{IH}	$V_{\rm CC} = 5.5 \mathrm{V}$			+40	μA
Input Current		$V_{IH} = 2.4 \text{ V}$				
Weight				1.0		gm
Leak Rate					5x10 ⁻⁸	cc/sec

4. The luminous intensity at a specific operating ambient temperature, $I_V(T_A)$ may be approximated from the following exponential equation: I_V ($T_A = I_V$ (25°C) $e^{[k (T_A - 25^{\circ}C)]}$.

Device	K
HDSP-0760 Series	-0.0131/°C
HDSP-0770 Series	
HDSP-0860 Series	-0.0112/°C
HDSP-0960 Series	-0.0104/°C

 $^{5. \} The \ dominant \ wavelength, \ \lambda_{d}, \ is \ derived \ from \ the \ CIE \ Chromaticity \ Diagram \ and \ is \ that \ single \ wavelength \ which \ defines \ the \ color \ of \ the$

 $^{6. \} The \ HDSP-0860 \ and \ HDSP-0960 \ series \ devices \ are \ categorized \ as \ to \ dominant \ wavelength \ with \ the \ category \ designated \ by \ a \ number \ on$ the back of the display package. 7. All typical values at $V_{\rm CC}$ = 5.0 V and $T_{\rm A}$ = 25°C.

Operational Considerations Electrical

These devices use a modified 4 x 7 dot matrix light emitting diode to display decimal/hexadecimal numeric information. The high efficiency red and yellow LEDs are GaAsP epitaxial layer on a GaP transparent substrate. The green LEDs are GaP epitaxial layer on a GaP transparent substrate. The LEDs are driven by constant current drivers, BCD information is accepted by the display memory when the enable line is at logic low and the data is latched when the enable is at logic high. Using the enable pulse width and data setup and hold times listed in the Recommended Operating Conditions allows data to be clocked into an array of

The decimal point input is active low true and this data is latched into the display memory in the same fashion as the BCD data. The decimal point LED is driven by the on-board IC.

The blanking control input on the hexadecimal displays blanks (turns off) the displayed information without disturbing the contents of display memory. The display is blanked at a minimum threshold level of 2.0 volts. When blanked, the display standby power is nominally 250 mW at $T_A = 25$ °C.

Mechanical

The primary thermal path for power dissipation is through the device leads. Therefore, to insure reliable operation up to an ambient temperature of +85°C, it is important to maintain a case-to-ambient thermal resistance of less than 35°C watt/device as measured on top of display pin 3.

For information on soldering and post solder cleaning see Application Note 1027, Soldering LED Components.

Contrast Enhancement

These display devices are designed to provide an optimum ON/OFF contrast when placed behind an appropriate contrast enhancement filter. For further information, please refer to Application Note 1015, Contrast Enhancement Techniques for LED Displays.

Over Range Display

The over range devices display "±1" and decimal point. The character height and package configuration are the same as the numeric and hexadecimal devices. Character selection is obtained via external switching transistors and current limiting resistors.

Package Dimensions

displays at a 6.7 MHz rate.

NOTE: 1.	DIMENSIONS	IN MILLIMETRES	AND (INCHES).

Pin	Function
1	Plus
2	Numeral One
3	Numeral One
4	DP.
5	Open
6	Open
7	Vcc
8	Minus/Plus

	Pin			
Character	1	2,3	4	8
+	1	X	X	1
-	0	X	X	1
1	X	1	X	X
Decimal Point	X	X	1	X
Blank	0	0	0	0

Notes:

- 0: Line switching transistor in Figure 7 cutoff.
- 1: Line switching transistor in Figure 7 saturated.
- X: 'don't care'

Absolute Maximum Ratings

Description	Symbol	Min.	Max.	Unit
Storage Temperature, Ambient	T_{S}	-65	+100	°C
Operating Temperature, Ambient	TA	-55	+85	°C
Forward Current, Each LED	$I_{\mathbf{F}}$		10	mA
Reverse Voltage, Each LED	V_{R}		5	V

Figure 3. Typical Driving Circuit.

Recommended Operating Conditions V_{CC} = 5.0 V

	Forward Current Per	Resistor Value			
Device	LED, mA	$\mathbf{R_1}$	$\mathbf{R_2}$	$\mathbf{R_3}$	
HDSP-0763				i	
Low Power	2.8	1300	200	300	
High Brightness	8	360	47	68	
HDSP-0863	8	360	36	56	
HDSP-0963	8	360	30	43	

Luminous Intensity per LED (Digit Average)^[3,4] at $T_A = 25$ °C

Device	Test Conditions	Min.	Тур.	Units
HDSP-0763	$I_F = 2.8 \text{ mA}$	65	140	μcd
	$I_F = 8 \text{ mA}$		620	μcd
HDSP-0863	$I_F = 8 \text{ mA}$	215	490	μcd
HDSP-0963	$I_F = 8 \text{ mA}$	298	1100	μcd

Electrical Characteristics: $T_A = -55$ °C to +85°C

			Test				
Device	Description	Symbol	Conditions	Min.	Тур.	Max.	Unit
HDSP-0763	Power Dissipation (All LEDs illuminated)	P_{T}	$I_F = 2.8 \text{ mA}$		72		mW
			$I_F = 8 \text{ mA}$		224	282	
	Forward Voltage per LED	$V_{\rm F}$	$I_F = 2.8 \text{ mA}$		1.6		V
			$I_F = 8 \text{ mA}$		1.75	2.2	
HDSP-0863	Power Dissipation (All LEDs illuminated)	P_{T}	$I_F = 8 \text{ mA}$		237	282	mW
	Forward Voltage per LED	$V_{\rm F}$			1.90	2.2	V
HDSP-0963	Power Dissipation (All LEDs illuminated)	P_{T}	$I_F = 8 \text{ mA}$		243	282	mW
	Forward Voltage per LED	V_{F}			1.85	2.2	V

Large 5 X 7 Dot Matrix Alphanumeric Displays 17.3/26.5 mm Character Heights

Technical Data

HDSP-440X Series HDSP-450X Series HDSP-470X Series HDSP-510X Series HDSP-540X Series HDSP-L20X Series HDSP-L20X Series

Features

- Multiple Colors Available
- Large Character Height
- 5 X 7 Dot Matrix Font
- Viewable Up to 18 Meters (26.5 mm Display)
- X-Y Stackable
- Ideal for Graphics Panels
- Available in Common Row Anode and Common Row Cathode Configurations
- AlGaAs Displays Suitable for Low Power or Bright Ambients

Typical Intensity 1650 mcd at 2 mA Average Drive Current

- Categorized for Intensity
- Mechanically Rugged
- Green Categorized for Color

Description

The large 5 X 7 dot matrix alphanumeric display family consists of 26.5 mm (1.04 inch) and 17.3 mm (0.68 inch) character height packages. These devices have excellent viewability; the 26.5 mm character can be read at up to 18 meters (12 meters for the 0.68 inch part).

The 26.5 mm font has a 10.2 mm (0.4 inch) dual-in-line (DIP) configuration, while the 17.3 mm font has an industry standard 7.6 mm (0.3 inch) DIP configuration.

Applications include electronic instrumentation, computer peripherals, point of sale terminals, weighing scales, and industrial electronics.

Devices

Standard Red	AlGaAs Red	High Efficiency Red	High Performance Green	Description
HDSP-4701	HDSP-L101	HDSP-L201	HDSP-5401	17.3 mm Common Row Anode
HDSP-4703	HDSP-L103	HDSP-L203	HDSP-5403	17.3 mm Common Row Cathode
HDSP-4401	HDSP-M101	HDSP-4501	HDSP-5101	26.5 mm Common Row Anode
HDSP-4403	HDSP-M103	HDSP-4503	HDSP-5103	26.5 mm Common Row Cathode

10.16

END VIEW

3. A BLACK DOT ON SCRAMBLER SIDE INDICATES PIN #1. 4. FOR GREEN ONLY.

ROW 2 ANODE NO PIN ROW 1 ANODE

Internal Circuit Diagrams

Absolute Maximum Ratings at 25°C

Description	HDSP-470X/ 440X Series	HDSP-L10X/ M10X Series	HDSP-L20X/ 450X Series	HDSP-540X/ 510X Series		
Average Power per Dot $(T_A = 25^{\circ}C)^{[1]}$	75 mW					
Peak Forward Current per Dot (T _A = 25°C) ^[1,2]	125 mA	125 mA	90 mA	90 mA		
Average Forward Current per Dot $(T_A = 25^{\circ}C)^{[1,3]}$	32 mA	23 mA	15 mA	15 mA		
Operating Temperature Range	-40°C to +85°C	-20°C to +85°C	-40°C to +85°C	-20°C to +85°C		
Storage Temperature Range	-40°C to +85°C					
Lead Solder Temperature (1.59 mm [0.062 in.] below seating plane)		260℃ fo	or 3 s			

Notes

- $1.\ Average\ power\ is\ based\ on\ 20\ dots\ per\ character.\ Total\ package\ power\ dissipation\ should\ not\ exceed\ 1.5\ W.$
- 2. Do not exceed maximum average current per dot.
- 3. For the HDSP-440X/470X series displays, derate maximum average current above 35°C at 0.43 mA/°C. For the HDSP-L10X/M10X series displays, derate maximum average current above 35°C at 0.31 mA/°C. For the HDSP-L20X/450X series and HDSP-540X/510X series displays, derate maximum average current above 35°C at 0.2 mA/°C. This derating is based on a device mounted in a socket having a thermal resistance junction to ambient of 50°C/W per package.

Electrical/Optical Characteristics at T_A = $25\,^{\circ}\mathrm{C}$

Standard Red HDSP-440X/470X Series

Description	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Luminous Intensity/Dot ^[4] (Digit Average)	${ m I}_{ m V}$	100 mA pk: 1 of 5 Duty Factor (20 mA Avg.)				
HDSP-470X (17.3 mm) HDSP-440X (26.5 mm)		-	360 400	770 800		μcd
Peak Wavelength	$\lambda_{ ext{PEAK}}$			655		nm
Dominant Wavelength ^[5]	$\lambda_{ m d}$			640		nm
Forward Voltage	$V_{ m F}$	$I_F = 100 \text{ mA}$		1.8	2.2	V
Reverse Voltage ^[6]	$V_{ m R}$	$I_R = 100 \mu A$	3.0	12		V
Temperature Coefficient of V_F	$\Delta V_{\mathrm{F}}/^{\circ}\mathrm{C}$			-2.0		mV/°C
Thermal Resistance LED Junction-to-Pin per package HDSP-470X	Po			15		°C/W/
HDSP-440X HDSP-440X	$ m R heta_{J ext{-PIN}}$			13		PACK

AlGaAs Red HDSP-L10X/M10X Series

Description	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Luminous Intensity/Dot ^[4] (Digit Average)	$I_{ m V}$	10 mA pk: 1 of 5 Duty Factor (2 mA Avg.)				
HDSP-L10X (17.3 mm)			730	1650		μcd
HDSP-M10X (26.5 mm)			760	1850		,
Luminous Intensity/Dot ^[4] (Digit Average)	$I_{ m V}$	30 mA pk: 1 of 14 Duty Factor (2.1 mA Avg.)				
HDSP-L10X	10	Duty Pactor (2.1 ma Avg.)		1750		und
HDSP-M10X				1980		μcd
Peak Wavelength	$\lambda_{ ext{PEAK}}$			645		nm
Dominant Wavelength ^[5]	$\lambda_{ m d}$			637		nm
Forward Voltage	$V_{ m F}$	I _F = 10 mA		1.7	2.1	V
Reverse Voltage ^[6]	$V_{ m R}$	$I_R = 100 \mu A$	3.0	15.0		V
Temperature Coefficient of V_F	ΔV_F /°C			-2.0		mV/°C
Thermal Resistance LED Junction-to-Pin per package						
HDSP-L10X	$ m R heta_{J-PIN}$			20		°C/W/
HDSP-M10X				18		PACK

High Efficiency Red HDSP-450X/L20X Series

Description	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Luminous Intensity/Dot ^[4] (Digit Average)	I_{V}	50 mA pk: 1 of 5 Duty Factor (10 mA Avg.)	,			
HDSP-L20X (17.3 mm)			1150	2800		μcd
HDSP-450X (26.5 mm)			1400	3500	ł	,
Luminous Intensity/Dot ^[4] (Digit Average)	т	30 mA pk: 1 of 14				
HDSP-L20X	I_{V}	Duty Factor (2.1 mA Avg.)		740		
HDSP-450X				930	-	μcd
Peak Wavelength	$\lambda_{ ext{PEAK}}$			635		nm
Dominant Wavelength ^[5]	$\lambda_{ m d}$			626		nm
Forward Voltage	$V_{ m F}$	$I_F = 50 \text{ mA}$		2.6	3.5	V
Reverse Voltage ^[6]	V_{R}	$I_R = 100 \mu A$	3.0	25.0		V
Temperature Coefficient of V _F	$\Delta V_{\rm F}/^{\circ}{ m C}$			-2.0		mV/°C
Thermal Resistance LED Junction-to-Pin per package HDSP-L20X	$ m R heta_{J ext{-PIN}}$			15		°C/W/
HDSP-450X	3111			13		PACK

High Performance Green HDSP-540X/510X Series

Description	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Luminous Intensity/Dot ^[4] (Digit Average)	I_{V}	50 mA pk: 1 of 5 Duty Factor (10 mA Avg.)				
HDSP-540X (17.3 mm)	·		1290	4000		μcd
HDSP-510X (26.5 mm)			1540	4500		Hea
Luminous Intensity/Dot ^[4]		30 mA pk: 1 of 14				
(Digit Average)	I_{V}	Duty Factor (2.1 mA Avg.)		550		
HDSP-540X				570 630	-	μcd
HDSP-510X	<u> </u>			030	<u> </u>	
Peak Wavelength	$\lambda_{ ext{PEAK}}$			566		nm
Dominant Wavelength ^[5,7]	$\lambda_{ m d}$			571		nm
Forward Voltage	$V_{ m F}$	$I_F = 50 \text{ mA}$		2.6	3.5	V
Reverse Voltage ^[6]	V_{R}	$I_R = 100 \mu A$	3.0	25.0		V
Temperature Coefficient of V _F	$\Delta V_{\rm F}$ /°C			-2.0		mV/°C
Thermal Resistance LED						
Junction-to-Pin per package HDSP-540X	DA		1	15		°C/W/
HDSP-540X HDSP-510X	$R\theta_{J-PIN}$			13	<u> </u>	PACK

- 4. The displays are categorized for luminous intensity with the intensity category designated by a letter on the left hand side of the package. The luminous intensity minimum and categories are determined by computing the numerical average of the individual dot
- 5. The dominant wavelength is derived from the C.I.E. Chromaticity diagram and is that single wavelength which defines the color of the device.
- 6. Typical specification for reference only. Do not exceed absolute maximum ratings.7. The displays are categorized for dominant wavelength with the category designated by a number adjacent to the intensity category

Figure 1. Maximum Allowable Average Current Per Dot as a Function of Ambient Temperature.

40 AIGAAS RED AIGAAS RED AIGAAS RED D 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 V_e - FORWARD VOLTAGE - V

Figure 2. Forward Current vs. Forward Voltage.

Figure 3. Relative Efficiency (Luminous Intensity per Unit Dot) vs. Peak Current per Dot.

Operational Considerations Electrical Description

These display devices are composed of light emitting diodes, with the light from each LED optically stretched to form individual dots.

These display devices are well suited for strobed operation. The typical forward voltage values can be scaled from Figure 2. These values should be used to calculate the current limiting resistor value and the typical power dissipation. Expected maximum V_F values, for driver circuit design and maximum power dissipation, may be calculated using the following $V_F MAX$ models:

$$\begin{split} & \text{Red (HDSP-440X/470X):} \\ & V_F \text{MAX} = 1.55 \text{ V} + I_{PEAK}(6.5 \text{ }\Omega) \\ & \text{For } I_{PEAK} \geq 5 \text{ mA} \\ & \text{AlGaAs Red} \\ & (\text{HDSP-L10X/M10X):} \\ & V_F \text{MAX} = 1.8 \text{ V} + I_{PEAK}(20 \text{ }\Omega) \\ & \text{For } I_{PEAK} \leq 20 \text{ mA} \\ & V_F \text{MAX} = 2.0 \text{ V} + I_{PEAK}(10 \text{ }\Omega) \\ & \text{For } I_{PEAK} \geq 20 \text{ mA} \end{split}$$

HER (HDSP-450X/L20X): $\begin{aligned} V_F MAX &= 1.75 \ V + I_{PEAK}(35 \ \Omega) \\ For \ I_{PEAK} &\geq 5 \ mA \\ Green \ (HDSP-540X/510X): \\ V_F MAX &= 1.75 \ V + I_{PEAK}(38 \ \Omega) \\ For \ I_{PEAK} &\geq 5 \ mA \end{aligned}$

Figure 3 allows the designer to calculate the luminous intensity at different peak and average currents. The following equation calculates intensity at different peak and average currents:

 $I_V AVG = (I_F AVG/I_F AVG DATA SHEET)(\eta_{PEAK})(I_V DATA SHEET)$

Where:

 $I_FAVG \ is the desired time \\ averaged LED current. \\ I_FAVG DATA SHEET is the time \\ averaged data sheet test current \\ for I_VDATA SHEET.$

η_{PEAK} is the relative efficiency at the peak current, scaled from Figure 3. I_V DATA SHEET is the time averaged data sheet luminous intensity, resulting from $I_F AVG$ DATA SHEET.

I_VAVG is the calculated time averaged luminous intensity resulting from I_FAVG.

For example, what is the luminous intensity of an AlGaAs Red (HDSP-L10X) driven at 50 mA peak 1/5 duty factor?

$$\begin{split} I_FAVG &= 50 \text{ mA}*0.2 = 10 \text{ mA} \\ I_FAVG \text{ DATA SHEET} &= 2 \text{ mA} \\ \eta_{PEAK} &= 0.98 \\ I_V \text{ DATA SHEET} &= 1650 \text{ } \mu\text{cd} \end{split}$$

Therefore

 $I_V AVG = (10 \text{ mA/2 mA})(0.98)$ $(1650 \text{ \mucd}) = 8085 \text{ \mucd}$

Thermal Considerations

The device thermal resistance may be used to calculate the junction temperature of the central LED. The equation below calculates the junction temperature of the central (hottest) LED.

$$\begin{split} T_J &= T_A + (P_D)(R\theta_{J\text{-}A})(N) \\ P_D &= (V_FMAX)(I_FAVG) \\ R\theta_{J\text{-}A} &= R\theta_{J\text{-}PIN} + R\theta_{PIN\text{-}A} \end{split}$$

 T_J is the junction temperature of the central LED.

 T_A is the ambient temperature. P_D is the power dissipated by one LED.

N is the number of LEDs ON per character.

 V_FMAX is calculated using the appropriate V_F model.

 $R\theta_{J-A}$ is the package thermal resistance from the central LED to the ambient.

 $R\theta_{J\text{-PIN}}$ is the package thermal resistance from the central LED to pin.

Rθ_{PIN-A} is the package thermal resistance from the pin to the ambient.

For example, what is the maximum ambient temperature an HDSP-L10X can operate with the following conditions:

$$\begin{split} I_{PEAK} &= 125 \text{ mA} \\ I_{F}AVG &= 10 \text{ mA} \\ R\theta_{J-A} &= 50^{\circ}\text{C/W} \\ N &= 35 \\ T_{I}MAX &= 110^{\circ}\text{C} \end{split}$$

$$\begin{split} V_F MAX &= 2.0 \text{ V} + (0.125 \text{ A})(10) \\ &= 3.25 \text{ V} \\ P_D &= (3.25 \text{ V})(0.01 \text{ A}) \\ &= 0.0325 \text{ W} \\ T_A &= 110^{\circ}\text{C} - \\ &= 53^{\circ}\text{C} \end{split}$$

The maximum number of dots ON for the ASCII character set is 20. What is the maximum ambient temperature an HDSP-L10X can operate with the following conditions:

$$\begin{split} I_{PEAK} &= 125 \text{ mA} \\ I_{F}AVG &= 10 \text{ mA} \\ R\theta_{J-A} &= 50^{\circ}\text{C/W} \\ N &= 20 \\ T_{T}MAX &= 110^{\circ}\text{C} \end{split}$$

$$\begin{split} V_F MAX &= 3.25 \text{ V} \\ P_D &= 0.0325 \text{ W} \\ T_A &= 110^{\circ}\text{C} - \\ &= 77^{\circ}\text{C} \end{split}$$

Therefore, the maximum ambient temperature can be increased by reducing the average number of dots ON from 35 to 20 dots ON per display.

Contrast Enhancement

For information on contrast enhancement please see Application Note 1015.

Soldering/Cleaning

For Soldering/Cleaning information on soldering LEDs please refer to Application Note 1027.

LED Glass/Ceramic Displays

LED Glass/Ceramic Displays

In addition to commercial solid state displays, Hewlett-Packard offers a selection of environmentally sealed glass/ceramic packages for industrial and high reliability applications. These packages consist of numeric and hexadecimal displays, 5 x 7 dot matrix alphanumeric displays with extended temperature ranges, and fully intelligent monolithic 16 segment displays

with extended temperature ranges and on board CMOS ICs. Similar to the commercial display product selection, the glass/ ceramic display products are offered in a variety of character sizes and colors: standard red, high efficiency red, yellow, and high performance green. Orange displays are sometimes available upon request.

Integrated numeric and hexadecimal displays (with on-board ICs) solve the designer's decoding/driving problems. They are available in plastic packages for general purpose usage and glass/ceramic packages for industrial applications. This family of displays has been designed for ease of use in a wide range of environments.

Glass/Ceramic Alphanumeric Displays

Device	P/N	Description	Color	Application	Page No.
	HDSP-2131	5.0 mm (0.20 in.) 5 x 7 Eight Character Smart Alphanumeric	Yellow	High Reliability Applications	3-224
	HDSP-2132	Display	High Efficiency Red	Applications • Avionics • I/O Terminals	
	HDSP-2133	32 pin Ceramic 7.62 mm (0.3 in.) DIP with Untinted Glass Lens	High Performance Green	Industrial Equipment	
	HDSP-2179	Operating Temperature Range: -55℃ to +85℃	Orange		
X X X X	HMDL-2416	4.1 mm (0.16 in.) Four Character Monolithic Smart Alphanumeric Display	Standard Red		*
		CMOS IC			
		32 pin Ceramic 15.24 mm (0.6 in.) DIP with Untinted Glass Lens			
		Operating Temperature Range: -55°C to +100°C			
** ** ** ** ** **	HCMS-2351	5.0 mm (0.20 in.) 5 x 7 Four Character Alphanumeric Sunlight	Yellow		3-240
10 10 10 10 10 10 10 10 10 10 10 10 10 1	HCMS-2352		High Efficiency Red		
	HCMS-2353		High Performance Green		
	HCMS-2354	12 pin Ceramic 6.35 mm (0.25 in.) DIP with Untinted Glass Lens	Orange		
		Operating Temperature Range: -55°C to +100°C			

^{*}Contact your local Hewlett-Packard sales representative for information regarding this product.

Glass/Ceramic Alphanumeric Displays (Cont.)

Device	P/N	Description	Color	Application	Page No.
	HCMS-2010	3.7 mm (0.15 in.) 5 x 7 Four Character Alphanumeric	Standard Red, Red Glass Contrast Filter	Extended Temper- ature Applications Requiring High	3-240
	HCMS-2011	CMOS IC	Yellow	Reliability I/O Terminals	
	HCMS-2012	12-pin Ceramic 7.62 mm (0.3 in.) DIP with Glass Lens	High Efficiency Red	• Avionics	
	HCMS-2013	Operating Temperature Range: -55°C to +100°C	High Performance Green		
[en en en en	HCMS-2310	5.0 mm (0.20 in.) 5 x 7 Four Character Alphanumeric	Standard Red		
	HCMS-2311	'	Yellow		
	HCMS-2312	CMOS IC	High Efficiency Red		
	HCMS-2313	12 Pin Ceramic 6.35 mm (0.25 in.) DIP with untinted glass lens	High Performance Green		
	HCMS-2314	Operating Temperature Range: -55°C to +100°C	Orange		
68 CD FO LO LO MA	HDSP-2351	4.87 mm (0.19 in.) 5 x 7 Four Character Alphanumeric Sunlight	Yellow		*
10 0 0 0 0 0	HDSP-2352	Viewable Display	High Efficiency Red		
	HDSP-2353	12 pin Ceramic 6.35 mm (0.25 in.) DIP with Untinted Glass Lens	High Performance Green		
		Operating Temperature Range: -55°C to +100°C			

^{*}Contact your local Hewlett-Packard sales representative for information regarding this product.

Glass/Ceramic Alphanumeric Displays (Cont.)

Device	P/N	Description	Color	Application	Page No.
0000	HDSP-2010	3.7 mm (0.15 in.) 5 x 7 Four Character Alphanumeric 12 pin 7.62 mm (0.3 in.) Ceramic DIP with Red Glass Lens Operating Temperature Range: -40°C to +85°C	Standard Red, Red Glass Contrast Filter	Extended Temper- ature Applications Requiring High Reliability I/O Terminals Avionics Ground Support, Shipboard Systems	*
	HDSP-2310	5.0 mm (0.20 in.) 5 x 7 Four Character Alphanumeric	Standard Red	For further	*
	HDSP-2311	12 Pin Ceramic 6.35 mm (0.25 in.)	Yellow	information see - Application Note 1016.	
[] [] []	HDSP-2312	DIP with Untinted Glass Lens	High Efficiency Red	- Application Note 1010.	
	HDSP-2313	Operating Temperature Range: -55°C to +85°C	High Performance Green		
	HDSP-2450	6.9 mm (0.27 in.) 5 x 7 Four Character Alphanumeric	Standard Red]	*
	HDSP-2451	28 Pin Ceramic 15.24 mm	Yellow		
	HDSP-2452	(0.6 in.) DIP with Untinted	High Efficiency Red		
	HDSP-2453	Operating Temperature Range: -55°C to +85°C	High Performance Green		
	HDSP-6650	5.0 mm (0.20 in.) 5 x 7 Four Character Dot Matrix	Orange]	3-213
	HDSP-6651	Fully Intelligent Display	Yellow		
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	HDSP-6652	18 pin Ceramic 15.24 mm	High Efficiency Red	1	
	HDSP-6653	(0.6 in.) DIP with Untinted Glass Lens	Green	-1	
		Operating Temperature Range: -55℃ to +85℃			

^{*}Contact your local Hewlett-Packard sales representative for information regarding this product.

Glass/Ceramic Hexadecimal and Numeric Dot Matrix Displays

Device	P/N	Description	Package	Applications	Page No.	
لحصح	4N51 (A)	Numeric RHDP Decoder/Driver/Memory	8 Pin Hermetic Built-in 15.2 mm (0.6 in.) DIP with Gold Plated Leads	High Reliability Applications Avionics	3-249	
	4N52 (B)	Numeric LHDP Built-in Decoder/Driver/Memory	GOID FIREU LEAUS	Fire Control Systems Ground Support,		
	4N54 (C)	Hexadecimal Built-in Decoder/Driver/Memory		Shipboard Equipment		
(A)	4N53 (D)	Character Plus/Minus Sign				
	HDSP-0781 (A)	Numeric RHDP, Built-in Decoder/Driver Memory	High Efficiency Red Low Power		3-256	
	HDSP-0782 (B)	Numeric LHDP, Built-in Decoder/Driver Memory				
(B)	HDSP-0783 (D)	Overrange ±1				
ممصو	HDSP-0784 (C)	Hexadecimal, Built-in Decoder/Driver Memory				
	HDSP-0791 (A)	Numeric RHDP, Built-in Decoder/Driver Memory	High Efficiency Red High Brightness	Ground, Airborne, Shipboard Equipment		
	HDSP-0792 (B)	Numeric LHDP, Built-in Decoder/Driver Memory		Fire Control Systems Industrial		
(c)	HDSP-0793 (D)	Overrange ±1				
	HDSP-0794 (C)	Hexadecimal, Built-in Decoder/Driver Memory				
	HDSP-0881 (A)	Numeric RHDP, Built-in Decoder/Driver Memory	Yellow			
(D)	HDSP-0882 (B)	Numeric LHDP, Built-in Decoder/Driver Memory				
1	HDSP-0883 (D)	Overrange ±1	_			
	HDSP-0884 (C)	Hexadecimal, Built-in Decoder/Driver Memory	_			
	HDSP-0981 (A)	Numeric RHDP, Built-in Decoder/Driver Memory	High Performance Green	Ground, Airborne, Shipboard Equipment		
	HDSP-0982 (B)	Numeric LHDP, Built-in Decoder/Driver Memory		Fire Control Systems Industrial		
.4 mm (0.29 in.) x 7 Single Digit	HDSP-0983 (C)	Overrange ±1				
Package 3 Pin Glass/Ceramic 15.2 mm (0.6 in.) DIP	HDSP-0984 (D)	Hexadecimal, Built-in Decoder/Driver Memory				

Four Character 5 mm Glass/ Ceramic 5 x 7 Alphanumeric Displays for Avionic Applications

Technical Data

HDSP-665X Series

Features

- Readable in 8000 fc Daylight with Filter
- Wide 60° Viewing Angle
- Glass/Ceramic Package
- Operating Temperature Range: -55°C to +85°C
- On-Board CMOS IC
- Data RAM, Decoder, LED Drive Circuitry
- 128 ASCII Character Set
- · Dimming and Blanking

Description

These devices are hermetic, 5.0 mm (0.20 in.) high, four character, 5 x 7 dot matrix alphanumeric LED displays designed specifically for use in avionic systems, both commercial and military. These displays are also ideal for use in other non-avionic high reliability and military applications. When used with the proper contrast enhancement filter, these displays are readable in an 8000 fc daylight ambient. Each display has an on-board CMOS IC that decodes and stores 7 bit ASCII data and drives the LED matrix within each charac-

GLASS/CERAMIC DISPLAYS

ter. The IC may be interfaced to a microprocessor by connecting the inputs directly to the microprocessor address and data buses. Display blanking and eight levels of dimming are software controlled.

Device Selection Guide

Yellow	High Efficiency Red	High Performance Green	Orange
HDSP-6651	HDSP-6652	HDSP-6653	HDSP-6650

ESD WARNING: NORMAL CMOS HANDLING PRECAUTIONS SHOULD BE OBSERVED TO AVOID STATIC DISCHARGE.

5964-6386E

Absolute Maximum Ratings

•	
Supply Voltage, V _{DD} to Ground ^[1]	0.5 V to 7.0 V
Input Voltage, Any Pin to Ground	0.5 to V_{DD} +0.5 V
Free Air Operating Temperature Range, TA	55°C to +85°C
Storage Temperature Range, T _S	55°C to +100°C
CMOS IC Junction Temperature, T _J (IC)	+150°C
ESD Protection, $R = 1.5 \text{ k}\Omega$, $C = 100 \text{ pF}$	\dots $V_Z = 4 kV (each pin)$
Maximum Solder Temperature	
at Lead Seating Plane, t < 5 sec	260°C

Note:

1. Maximum voltage is with no LEDs illuminated.

Package Dimensions

HDSP-665X

Notes:

- 1. All dimensions are in mm (inches).
- 2. Unless otherwise specified, tolerance on dimensions is \pm 0.38 mm (\pm 0.015 in.).
- 3. For yellow and green devices only.
- 4. Leads are Alloy 42, solder dipped.

Pin No.	Function	Pin No.	Function
1	CE ₁ Chip Enable	10	GND
2	CE ₂ Chip Enable	11	D ₀ Data Input
3	CLR Clear	12	D ₁ Data Input
4	CUE Cursor Enable	13	D ₂ Data Input
5	CU Cursor Select	14	D ₃ Data Input
6	WR Write	15	D ₆ Data Input
7	A ₁ Address Input	16	D ₅ Data Input
8	A ₀ Address Input	17	D ₄ Data Input
9	$V_{ m DD}$	18	BL Display Blank

Character Set

_							т.			T			т.						
			D0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
	ASCI		D1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
١,	,00	_	D2	0	0	0	0	1	1	1	1	-	0	0	0	1	1	1	1
_	r	_		0	0	0	0	0	0	0	0	1	1	1_	1	1	1	1	1
D6	D5	D4	Hex	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
0	0	0	0	•	**************************************	****	tee 110 110 110 110	****	:	*****		••••				****	-12:11:1	•	•
0	0	1	1	•	1000	••••	•	****		****					*****		::":		• • • • • • • • • • • • • • • • • • • •
0	1	0	2		•	##	•	100			:	•	•	•	•	***	2000	**	.•••
0	1	1	3	****	:	****	•••••	••••	****	•••••	*****		1000 1000 100	** **	#	•	*****	•••	•
1 .	0	0	4		•••	****		****	choca coa		***		***				•••••		
1	0	1	5	•			;,	04000		ij			• • •	*****	•••	•	B8	•••	*****
1	1	0	6	••	****		•••				****	<u>.</u>	:			***	•		
1	1	1	7	****	****		, beer	:	.	 :	! ;!	:::	•	**************************************		•••	•••••	••••	

Notes:

^{1.} High = 1 level. 2. Low = 0 level.

Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit
Supply Voltage	$V_{ m DD}$	4.5	5.0	5.5	V

Electrical Characteristics over Operating Temperature Range

 $4.5 < V_{DD} < 5.5 \text{ V} \text{ (unless otherwise specified)}$

All Devices

			25	°C[1]			
Parameter	Symbol	Min.	Тур.	Max.	Max.	Units	Test Conditions
I _{DD} Blank	I _{DD} (blnk)		1.0	1	4.0	mA	All Digits Blanked
Input Current	I _I	-40			10	μA	$V_{IN} = 0 \text{ V to V}_{DD}$ $V_{DD} = 5.0 \text{ V}$
Input Voltage High	V_{IH}	2.0			V_{DD}	V	
Input Voltage Low	V_{IL}	GND	-		0.8	V	
I _{DD} 4 digits 20 dots/character ^[2,3]	I _{DD} (#)		110	130	160	mA	"#" ON in all four locations
I _{DD} Cursor all dots ON @ 50%	I _{DD} (CU)		92	110	135	mA	Cursor ON in all four locations
Thermal Resistance IC Junction to Pin	$ m R heta_{J ext{-PIN}}$		11			°C/W	IC Junction to GND Pin 10.

Notes:

^{1.} $V_{DD} = 5.0 \text{ V}.$

^{23.} Average I_{DD} measured at full brightness. Peak $I_{DD}=28/15~x$ Average $I_{DD}(\#)$. 3. $I_{DD}(\#)$ max. = 130 mA at full brightness, 150°C IC junction temperature and $V_{DD}=5.5~V$.

Optical Characteristics at 25 $^{\circ}C^{[1]}$ $V_{DD} = 5.0~V$ at Full Brightness

HDSP-6651 Yellow

Parameter	Symbol	Min.	Тур.	Units	Test Conditions		
Average Luminous Intensity per digit, Character Average	I_{V}	3.9	5.0	mcd	"*" illuminated in all four digits. 19 dots ON		
Peak Wavelength	$\lambda_{ ext{PEAK}}$		583	nm			
Dominant Wavelength ^[2]	$\lambda_{ m d}$		585	nm			

HDSP-6652 High Efficiency Red

Parameter	Symbol	Min.	Тур.	Units	Test Conditions		
Average Luminous Intensity per digit, Character Average	I _V	3.9	5.0	mcd	"*" illuminated in all four digits. 19 dots ON		
Peak Wavelength	$\lambda_{ ext{PEAK}}$		635	nm			
Dominant Wavelength ^[2]	$\lambda_{ m d}$		626	nm			

HDSP-6653 Green

Parameter	Symbol	Min.	Тур.	Units	Test Conditions
Average Luminous Intensity per digit, Character Average	I _V	5.55	7.40	mcd	"*" illuminated in all four digits. 19 dots ON
Peak Wavelength	$\lambda_{ ext{PEAK}}$		568	nm	
Dominant Wavelength ^[2]	$\lambda_{ m d}$		572	nm	

HDSP-6650 Orange

Parameter	Symbol	Min.	Тур.	Units	Test Conditions
Average Luminous Intensity per digit, Character Average	I_V	3.9	5.0	mcd	"*" illuminated in all four digits. 19 dots ON
Peak Wavelength	$\lambda_{ ext{PEAK}}$		600	nm	
Dominant Wavelength ^[2]	$\lambda_{ m d}$		602	nm	

- $1. \ Refers \ to \ the \ initial \ case \ temperature \ of \ the \ device \ immediately \ prior \ to \ the \ light \ measurement.$
- 2. Dominant wavelength, l_d , is derived from the CIE chromaticity diagram, and represents the single wavelength which defines the color of the device.

AC Timing Characteristics over Operating Temperature Range at V_{DD} = 4.5 V

Parameter	Symbol	Min.	Units
Address Setup	t _{AS}	10	ns
Address Hold	t _{AH}	40	ns
Data Setup	t_{DS}	50	ns
Data Hold	$t_{ m DH}$	40	ns
Chip Enable Setup	t_{CES}	0	ns
Chip Enable Hold	t_{CEH}	0	ns
Write Time	${ m t_W}$	75	ns
Clear	$t_{\rm CLR}$	10	μs
Clear Disable	t_{CLRD}	1	μs

Timing Diagram

Electrical Description

Pin Function	<u> </u>
rin runction	Description
Chip Enable $(\overline{CE}_1 \text{ and } \overline{CE}_2, \text{ pins } 1 \text{ and } 2)$	$\overline{ ext{CE}}_1$ and $\overline{ ext{CE}}_2$ must be a logic 0 to write to the display.
Clear (CLR, pin 3)	When CLR is a logic 0 the ASCII RAM is reset to 20hex (space) and the Control Register/Attribute RAM is reset to 00hex.
Cursor Enable (CUE pin 4)	CUE determines whether the IC displays the ASCII or the Cursor memory. (1 = Cursor, 0 = ASCII).
Cursor Select (CU, pin 5)	$\overline{\text{CU}}$ determines whether data is stored in the ASCII RAM or the Attribute RAM/Control Register. (1 = ASCII, 0 = Attribute RAM/Control Register).
Write (WR, pin 6)	WR must be a logic 0 to store data in the display.
Address Inputs $(A_1 \text{ and } A_0, \text{ pins } 8 \text{ and } 7)$	A_0 - A_1 selects a specific location in the display memory. Address 00 accesses the far right display location. Address 11 accesses the far left location.
Data Inputs (D ₀ -D ₆ , pins 11-17)	$\mathrm{D}_0\text{-}\mathrm{D}_6$ are used to specify the input data for the display.
V _{DD} (pin 9)	V_{DD} is the positive power supply input.
GND (pin 10)	GND is the display ground.
Blanking Input (BL, pin 18)	BL is used to flash the display, blank the display or to dim the display.

Display Internal Block Diagram

Figure 1 shows the HDSP-665X display internal block diagram. The CMOS IC consists of a 4 x 7 Character RAM, a 2 x 4 Attribute RAM, a 5 bit Control Register, a 128 character ASCII decoder and the refresh circuitry necessary to synchronize the decoding and driving of four 5 x 7 dot matrix characters.

Four 7 bit ASCII words are stored in the Character RAM. The IC reads the ASCII data and decodes it via the 128 character ASCII decoder.

A 5 bit word is stored in the Control Register. Three fields within the Control Register provide an 8 level brightness control, master blank, and extended functions disable.

For each display digit location, two bits are stored in the Attribute RAM. One bit is used to enable a cursor character at each digit location. A second bit is used to individually disable the blanking features at each digit location.

The display is blanked and dimmed through an internal blanking input on the row drivers. Logic within the IC allows the user to dim the display either through the \overline{BL} input or through the brightness control in the control register. Similarly, the display can be blanked through the \overline{BL} input, the Master Blank in the Control Register, or the Digit Blank Disable in the Attribute RAM.

Figure 1. Internal Block Diagram

Display Clear

Data stored in the Character RAM, Control Register, and Attribute \underline{RAM} will be cleared if the clear (\overline{CLR}) is held low for a minimum of 10 μs . Note that the display will be cleared regardless of the state of the chip enables (\overline{CE}_1 , \overline{CE}_2). After the display is cleared, the ASCII code for a space (20H) is loaded into all character RAM locations and 00H is loaded into all Attribute RAM/ Control Register memory locations.

Data Entry

Figure 2 shows the truth table for the HDSP-665X displays. Setting the chip enables $(\overline{\text{CE}}_1, \overline{\text{CE}}_2)$ to logic 0 and the cursor select $(\overline{\text{CU}})$ to logic 1 will enable ASCII data loading. When cursor select $(\overline{\text{CU}})$

is set to logic 0, data will be loaded into the Control Register and Attribute RAM. Address inputs A₀-A₁ are used to select the digit location in the display. Data inputs D_0 - D_6 are used to load information into the display. Data will be latched into the display on the rising edge of the $\overline{\text{WR}}$ signal. D_0 - D_6 , A_0 - A_1 , $\overline{\text{CE}_1}$, $\overline{\text{CE}}_2$, and $\overline{\text{CU}}$ must be held stable during the write cycle to ensure that correct data is stored into the display. Data can be loaded into the display in any order. Note that when A₀ and A₁ are logic 0, data is stored in the right most display location.

Cursor

When cursor enable (CUE) is a logic 1, a cursor will be displayed in all digit locations where a logic

1 has been stored in the Digit Cursor memory in the Attribute RAM. The cursor consists of all 35 dots ON at half brightness. A flashing cursor can be displayed by pulsing CUE. When CUE is a logic 0, the ASCII data stored in the Character RAM will be displayed regardless of the Digit Cursor bits.

Blanking

Blanking of the display is controlled through the $\overline{\mathrm{BL}}$ input, the Control Register and Attribute RAM. The user can achieve a variety of functions by using these controls in different combinations, such as full hardware display blank, software blank, blanking of individ- ual characters, and synchronized

CUE	$\overline{\mathrm{BL}}$	CLR	$\overline{\text{CE}}_1$	$\overline{\text{CE}}_2$	WR	CU	A ₁	A ₀	D_6	D_5	D_4	D_3	D_2	D_1	D ₀	Function
0	1	1														Display ASCII
1	1	1	x	x	x	x	x	x	x	x	х	x	x	х	х	Display Stored Cursor
х	Х	0	1	1	1	11	^	1	, A	21	1	^	1	A	21	Reset RAMs
х	0	1														Blank Display but do not reset RAMS and Control Register
						0	0	0	Extended Functions Disable	Functions Control						Write to Attribute RAM and Control Register
						0	0	1	$\begin{array}{c} 0 = \\ \text{Enable} \\ \text{D}_1\text{-D}_5 \end{array}$	00	00 = 10 $01 = 6$ $10 = 4$ $11 = 2$	0% 0%	0 = Display ON	Digit Blank Disable 1	Digit Cursor 1	DBD _n = 0, Allows Digit n to be blanked
х	х	1	0	0	0	0	1	0	$\begin{array}{c} 1 = \\ \text{Disable} \\ \text{D}_1\text{-D}_5 \end{array}$	10 10 1:	$ \begin{array}{r} 00 = 1 \\ 01 = 1 \\ 00 = 7 \\ 01 = 3 \\ \end{array} $	7% 0% %	1 = Display Blanked	Digit Blank Disable 2	Digit Cursor 2	$DBD_n = 1$ Prevents Digit n from being blanked. $DC_n = 0$ Removes cursor from Digit n
						0	1	1	D ₀ Always Enabled					Digit Blank Disable 3	Digit Cursor 3	DC _n = 1 Stores cursor at Digit n
						1	0	0		Digit	0 ASC	II Data	(Right Mo	st Character)		
x	x	1	0	0	0	1	0	1		Digit	1 ASC	II Data	ı			Write to Character RAM
			Ů			1	1	0		Digit	2 ASC	II Data	1			
						1	1	1		Digit	3 ASC	II Data	(Left Mos	t Character)		
			1	х	х											
х	х	1	Х	1	Х	X	х	х	х	х	х	х	х	x	х	No Change
			X	Х	1											

0 = Logic 0; 1 = Logic 1; X = Do Not Care.

Figure 2. Display Truth Table

flashing of individual characters or entire display (by strobing the blank input). All of these blanking modes affect only the output drivers, maintaining the contents and write capability of the internal RAMs and Control Register, so that normal loading of RAMs and Control Register can take place even with the display blanked.

Figure 3 shows how the Extended Function Disable (bit D_6 of the Control Register), Master Blank (bit D_2 of the Control Register), Digit Blank Disable (bit D_1 of the Attribute RAM), and \overline{BL} input can be used to blank the display.

When the Extended Function Disable is a logic 1, the display can be blanked only with the \overline{BL} input. When the Extended Function Disable is a logic 0, the display can be blanked through the BL input, the Master Blank. and the Digit Blank Disable. The entire display will be blanked if either the BL input is logic 0 or the Master Blank is logic 1. providing all Digit Blank Disable bits are logic 0. Those digits with Digit Blank Disable bits a logic 1 will ignore both blank signals and remain ON. The Digit Blank

EFD	MB	DBD_n	BL	
0,	0	0	0	Display Blanked by BL
0	0	х	1	Display ON
0	х	1	0	Display Blanked by BL. Individual characters "ON" based on "1" being stored in DBD _n
0	1	0	х	Display Blanked by MB
0	1	1	1	Display Blanked by MB. Individual characters "ON" based on "1" being stored in DBD _n
1	х	х	0	Display Blanked by $\overline{\mathrm{BL}}$
1	х	х	1	Display ON

Figure 3. Display Blanking Truth Table

Disable bits allow individual characters to be blanked or flashed in synchronization with the \overline{BL} input.

Dimming

Dimming of the display is controlled through either the \overline{BL} input or the Control Register. A pulse width modulated signal can be applied to the \overline{BL} input to dim the display. A three bit word in the Control Register generates an internal pulse width modulated signal to dim the display. The internal dimming feature is

enabled only if the Extended Function Disable is a logic 0.

Bits 3-5 in the Control Register provide internal brightness control. These bits are interpreted as a three bit binary code, with code (000) corresponding to the maximum brightness and code (111) to the minimum brightness. In addition to varying the display brightness, bits 3-5 also vary the average value of $I_{\rm DD}$. $I_{\rm DD}$ can be specified at any brightness level as shown in Table 1:

Table 1. Current Requirements at Different Brightness Levels

Symbol	$\mathbf{D_5}$	D ₄	$\mathbf{D_3}$	Brightness	25℃ Тур.	25°C Max.	Max. over Temp.	Units
I _{DD} (#)	0	0	0	100%	110	130	160	mA
	0	0	1	60%	66	79	98	mA
	• 0	1	0	40%	45	53	66	mA
	0	1	1	27%	30	37	46	mA
	1	0	0	17%	20	24	31	mA
	1	0	1	10%	12	15	20	mA
	1	1	0	7%	9	11	15	mA
	1	1	1	3%	4	6	9	mA

Figure 4. Intensity Modulation Control Using an Astable Multivibrator (reprinted with permission from *Electronics* magazine, Sept. 19, 1974, VNU Business pub. Inc.)

Figure 4 shows a circuit designed to dim the display from 98% to 2% by pulse width modulating the $\overline{\rm BL}$ input. A logarithmic or a linear potentiometer may be used to adjust the display intensity. However, a logarithmic potentiometer matches the response of the human eye and therefore provides better resolution at low intensities. The circuit frequency should be designed to operate at 10 kHz or higher. Lower frequencies may cause the display to flicker.

Mechanical and Electrical Considerations

These HDSP-665X series displays are 18 pin DIP class ceramic packages designed to meet the rugged reliability requirements of modern day avionic systems.

These displays may be stacked horizontally to form a character string of desired length. These displays are assembled by die attaching and wire bonding 140 LED dice and one CMOS IC to a ceramic substrate. A clear glass window is placed over the LEDs and sealed to form a hermetic air gap cavity. A similar window on the backside of the package forms a hermetic air gap cavity over the CMOS IC. Both windows permit post cap internal visual inspection of the LED dice and CMOS IC.

The inputs to the CMOS IC have protection against electrostatic discharge and input current latchup. However, for best results standard CMOS handling practice and precautions should be used. Prior to use, the HDSP-665X displays should be stored in antistatic or electrically conductive containers.

Input current latchup is caused when the CMOS inputs are subjected to either a voltage below ground (Vin < ground), a higher voltage than V_{DD} ($V_{in} > V_{DD}$), and when a high current is forced into the input. To prevent input current latchup and ESD damage, unused inputs should be connected to either ground or V_{DD}. Do not apply voltages to inputs until V_{DD} has been applied to the display. V_{DD} must be applied to the display prior to applying voltages to inputs in order to prevent latchup. Transient voltages should be eliminated from V_{DD} and data

lines. A 0.1 μF capacitor placed between pin 9 (V_{DD}) and pin 10 (GND) at each display will help eliminate extraneous noise from affecting the ICs. The impedance of the ground return line from pin 10 of each display to the power supply should be as close to zero as possible at a frequency of 200 Hz.

ESD Susceptibility

These displays have an ESD susceptibility rating of CLASS 3 per MIL-HDBK-263A and CLASS 3 per MIL-STD-883C.

Contrast Enhancement Filter Vendors

For information on contrast enhancement, see Application Note 1015, Contrast Enhancement for LED Displays.

Soldering and Post Solder Cleaning

For information on soldering and post solder cleaning, see Application Note 1027 *Soldering LED Components*. These displays are fully compatible with semi-aqueous cleaning processes that use the terpene solvent BIOACT EC-7R.

Night Vision Lighting

With the use of NVG/DV filters, the HDSP-6651/6653/6650 displays may be designed into NVG lighting applications. For further information, refer to Application Note 1030 LED Displays and Indicators and Night Vision Imaging System Lighting.

Eight Character 5.0 mm (0.2 inch) Glass/Ceramic Smart 5 x 7 Alphanumeric Displays for Military Applications

Technical Data

HDSP-2131 HDSP-2132 HDSP-2133 HDSP-2179

Features

- Wide Operating Temperature Range -55°C to +85°C
- Smart Alphanumeric Display
 On-Board CMOS IC
 Built-In RAM
 ASCII Decoder
 LED Drive Circuitry
- 128 ASCII Character Set
- 16 User Definable Characters
- Programmable Features
 Individual Character Flashing
 Full Display Blinking
 Multi-Level Dimming and
 Blanking
 Self Test
 Clear Function
- Read/Write Capability
- Full TTL Compatibility
- HDSP-2131/-2133/-2179 Useable in Night Vision Lighting Applications

- Categorized for Luminous Intensity
- HDSP-2131/2133 Categorized for Color
- Excellent ESD Protection
- Wave Solderable
- X-Y Stackable

Description

The HDSP-2131 (yellow), HDSP-2179 (orange), HDSP-2132 (high efficiency red) and the HDSP-2133 (green) are eight-digit, 5 x 7 dot matrix, alphanumeric displays. The 5.0 mm (0.2 inch) high characters are packaged in a standard 7.64 mm (0.30 inch) 32 pin DIP. The on-board CMOS IC has the ability to decode 128 ASCII characters, which are permanently stored in ROM. In addition, 16 programmable symbols may be stored in an on-board RAM. Seven brightness

levels provide versatility in adjusting the display intensity and power consumption. The HDSP-213X is designed for standard microprocessor interface techniques. The display and special features are accessed through a bidirectional eight-bit data bus. These features make the HDSP-213X ideally suited for applications where a hermetic, low power alphanumeric display is required.

Devices

Yellow	High Efficiency Red	High Performance Green	Orange	
HDSP-2131	HDSP-2132	HDSP-2133	HDSP-2179	

Package Dimensions

Note:

- 1. All dimensions are in mm (inches).
- 2. Unless otherwse specified tolerance is ± 0.30 mm (± 0.015).
- 3. For green and yellow devices only.
- 4. Leads are copper alloy, solder dipped.

Absolute Maximum Ratings	
Supply Voltage, V _{DD} to Ground ^[1]	0.3 to 7.0 V
Operating Voltage, V _{DD} to Ground ^[2]	5.5 V
Input Voltage, Any Pin to Ground	0.3 to $V_{\rm DD}$ +0.3 V
Free Air Operating Temperature Range, T _A	55°C to +85°C
Storage Temperature, T _S	55°C to +100°C
CMOS IC Junction Temperature, T _J (IC)	+150℃
Maximum Solder Temperature	
at Seating Plane, t < 5 sec	260℃
ESD Protection @ $1.5 \text{ k}\Omega$, 100 pF	$V_{\rm Z} = 4 \text{ kV (each pin)}$

Notes

- 1. Maximum voltage is with no LEDs illuminated.
- 2. 20 dots ON in all locations at full brightness.

ESD WARNING: STANDARD CMOS HANDLING PRECAUTIONS SHOULD BE OBSERVED WITH THE HDSP-2131, HDSP-2132, HDSP-2133, AND HDSP-2179.

Character Set

D7		0	Т	0	10		0		0		0		0		0		1	
D6		0	- 1	0	0		0		1		1		1		1		x	
		0	. 1	0		1	1	1	(١ ١	0		1		1	×	
D3 D2 D1 D0			<u>• </u>		1	•		1		۰		1		0		1		x
3 D3 D2 D1 D0	ROW	0		1		2		3	4	1		5	-	8		,	8-	F
0000	0															****	16	
0001	1									***			0000		00000		S E	
0010	2	▓,		₩,				2000						R9336		25000	Ř	
0011	3		₩,				8888		6000s		50102		8888		88888	***	D E F	
0100				æ,								***				332	- 2	
0101	6							₩.	***	***					SECONO		E D	
0111	7						**			***				***	3300 T		CH	
1000			₩,				***		388 388			***			8837		A	
1001	•	**							***								A C T	
1010	A							2000				58663		3203			E R S	
1011	8	5						*					Desire:				•	
1100	С		2000					00000		0000				20000				
1101	D					,	uucc		000		00000		DUCCC		ance			
1110	E	Œ.		Ä,		95 95 95 95 95 95 95 95 95 95 95 95 95 9		2000	Ä	2000		90000		20000		2000		
7177	F	25550		50000														

Recommended Operating Conditions

Parameter	Symbol	Minimum	Nominal	Maximum	Units
Supply Voltage	V_{DD}	4.5	5.0	5.5	V

Electrical Characteristics over Operating Temperature Range

 $4.5 < V_{DD} < 5.5 \text{ V}$ (unless otherwise specified)

Parameter	Symbol	Min.	25°C Typ. ^[1]	25°C Max. ^[1]	Max.[2]	Units	Test Conditions
Input Leakage (Input without pullup)	I	-10.0	238.		+10.0	μА	$\begin{aligned} &V_{IN} = 0 \text{ to } V_{DD}, \\ &\text{pins CLK, } D_0\text{-}D_7, \\ &A_0\text{-}A_4 \end{aligned}$
Input Current (Input with pullup)	I_{IP}	-30.0	11	18	30	μА	$\begin{aligned} V_{IN} &= 0 \text{ to } V_{DD}, \\ \text{pins } &\overline{RST}, \text{ CLS}, \overline{WR}, \\ &\overline{RD}, \overline{CE}, \overline{FL} \end{aligned}$
I _{DD} Blank	I _{DD} (BLK)		0.5	1.5	2.0	mA	$V_{IN} = V_{DD}$
I _{DD} 8 digits 12 dots/character ^[3]	I _{DD} (V)		200	255	330	mA	"V" on in all 8 locations
I _{DD} 8 digits 20 dots/character ^[3]	I _{DD} (#)		300	370	430	mA	"#" on in all 8 locations
Input Voltage High	V _{IH}	2.0			V _{DD} +0.3	V	$V_{\rm DD} = 5.5 \text{ V}$
Input Voltage Low	V _{IL}	GND -0.3 V			0.8	V	$V_{\mathrm{DD}} = 4.5 \mathrm{\ V}$
Output Voltage High	V _{OH}	2.4				v	$V_{\rm DD} = 4.5 \text{ V},$ $I_{\rm OH} = -40 \mu\text{A}$
Output Voltage Low D ₀ -D ₇	V _{OL}				0.4	v	$V_{\rm DD} = 4.5 \text{ V},$ $I_{\rm OL} = 1.6 \text{ mA}$
Output Voltage Low CLK					0.4	v	$V_{DD} = 4.5 \text{ V},$ $I_{OL} = 40 \mu\text{A}$
Thermal Resistance IC Junction-to-PIN	$ m R heta_{J ext{-PIN}}$		11	2		°C/W	

Notes: 1. $V_{DD} = 5.0 \text{ V}$. 2. Maximum I_{DD} occurs at -55°C. 3. Average I_{DD} measured at full brightness. See Table 2 in Control Word Section for I_{DD} at lower brightness levels. Peak $I_{DD} = 28/15 \text{ x}$ Average I_{DD} (#).

Optical Characteristics at 25 $^{\circ}$ C^[4] $V_{DD} = 5.0 \text{ V}$ at Full Brightness

High Efficiency Red HDSP-2132

Description	Symbol	Minimum	Typical	Units
Luminous Intensity Character Average (#)	I_{v}	2.5	7.5	mcd
Peak Wavelength	$\lambda_{ ext{PEAK}}$		635	nm
Dominant Wavelength	λ_{d}		626	nm

Orange HDSP-2179

Description	Symbol	Minimum	Typical	Units
Luminous Intensity Character Average (#)	I _v	2.5	7.5	mcd
Peak Wavelength	$\lambda_{ ext{PEAK}}$		600	nm
Dominant Wavelength	λ _d		602	nm

Yellow HDSP-2131

Description	Symbol	Minimum	Typical	Units
Luminous Intensity Character Average (#)	I _v	2.5	7.5	mcd
Peak Wavelength	$\lambda_{ ext{PEAK}}$		583	nm
Dominant Wavelength	$\lambda_{ m d}$		585	nm

High Performance Green HDSP-2133

Description	Symbol	Minimum	Typical	Units
Luminous Intensity Character Average (#)	I_{v}	2.5	7.5	mcd
Peak Wavelength	$\lambda_{ ext{PEAK}}$		568	nm
Dominant Wavelength	$\lambda_{ m d}$		574	nm

^{4.} Refers to the initial case temperature of the device immediately prior to the light measurement.

AC Timing Characteristics Over Temperature Range

 $\ensuremath{V_{DD}} = 4.5$ to 5.5 V unless otherwise specified.

Reference Number	Symbol	Description	Min.[1]	Units
1	t_{ACC}	Display Access Time		
		Write	210	
		Read	230	ns
2	t_{ACS}	Address Setup Time to Chip Enable	10	ns
3	t_{CE}	Chip Enable Active Time ^[2, 3]		
		Write	140	
		Read	160	ns
4	t _{ACH}	Address Hold Time to Chip Enable	20	ns
5	$t_{\rm CER}$	Chip Enable Recovery Time	60	ns
6	t _{CES}	Chip Enable Active Prior to Rising Edge of [1,2]		
		Write	140	
		Read	160	ns
7	t_{CEH}	Chip Enable Hold Time to Rising Edge of		
	CENT	Read/Write Signal ^[2, 3]	0	ns
8	t_{W}	Write Active Time [2,3]	100	ns
9	t_{WD}	Data Valid Prior to Rising Edge of Write Signal	50	ns
10	t_{DH}	Data Write Hold Time	20	ns
11	t_R	Chip Enable Active Prior to Valid Data	160	ns
12	$t_{ m RD}$	Read Active Prior to Valid Data	75	ns
13	t _{DF}	Read Data Float Delay	10	ns
	$t_{ m RC}$	Reset Active Time ^[4]	300	ns

Notes

- 1. Worst case values occur at an IC junction temperature of 150°C.
- 2. For designers who do not need to read from the display, the Read line can be tied to V_{DD} and the Write and Chip Enable lines can be tied together.
- 3. Changing the logic levels of the Address lines when $\overline{\text{CE}}$ = "0" may cause erroneous data to be entered into the Character RAM, regardless of the logic levels of the $\overline{\text{WR}}$ and $\overline{\text{RD}}$ lines.
- 4. The display must not be accessed until after 3 clock pulses (110 μs min. using the internal refresh clock) after the rising edge of the reset line.

AC Timing Characteristics Over Temperature Range

 $V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$ unless otherwise specified.

Symbol	Description	25°C Typical	Minimum ^[1]	Units
F_{OSC}	Oscillator Frequency	57	28	kHz
F _{RF} ^[5]	Display Refresh Rate	256	128	Hz
F _{FL} [6]	Character Flash Rate	2	1	Hz
t _{ST} [7]	Self Test Cycle Time	4.6	9.2	Sec

 $\begin{aligned} & \textbf{Notes:} \\ & 5.F_{RF} = F_{OSC}/224. \\ & 6.F_{FL} = F_{OSC}/28,672. \\ & 7.t_{ST} = 262,144/F_{OSC}. \end{aligned}$

Write Cycle Timing Diagram

Read Cycle Timing Diagram

INPUT PULSE LEVELS: 0.6 V TO 2.4 V OUTPUT REFERENCE LEVELS: 0.6 V TO 2.2 V OUTPUT LOADING = 1 TTL LOAD AND 100pF

Character Font

Relative Luminous Intensity vs. Temperature

Electrical Description

Pin Function

RESET (RST, pin 5)

Reset initializes the display.

FLASH (FL, pin 27)

FL low indicates an access to the Flash RAM and is unaffected by the

state of address lines A3-A4.

ADDRESS INPUTS (A₀-A₄, pins 28-32)

Each location in memory has a distinct address. Address inputs (A_0-A_2) select a specific location in the Character RAM, the Flash RAM or a particular row in the UDC (User-Defined Character) RAM. A_3-A_4 are used to select which section of memory is accessed. Table 1 shows the logic levels needed to access each section of memory.

Table 1. Logic Levels to Access Memory

FL	A ₄	A_3	Section of Memory	A_2 A_1 A_0
0	X	X	Flash RAM	Character Address
1	0	. 0	UDC Address Register	Don't Care
1	0	1	UDC RAM	Row Address
1	1	0	Control Word Register	Don't Care
1	1	1	Character RAM	Character Address

CLOCK SELECT (CLS, pin 1)

This input is used to select either an internal (CLS = 1) or external (CLS = 0)

clock source.

CLOCK INPUT/OUTPUT (CLK, pin 2)

Outputs the master clock (CLS=1) or inputs a clock (CLS=0) for slave

displays.

WRITE (WR, pin 3)

Data is written into the display when the \overline{WR} input is low and the

CE input is low.

CHIP ENABLE (\overline{CE} , pin 4)

This input must be at a logic low to read or write data to the display and

must go high between each read and write cycle.

READ (RD, pin 6)

Data is read from the display when the \overline{RD} input is low and the \overline{CE}

input is low.

DATA Bus (D₀-D₇, pins 11-14, 19-22)

The Data bus is used to read from or write to the display.

GND_(SUPPLY) (pin 17)

This is the analog ground for the LED drivers.

GND_(LOGIC) (pin 18)

This is the digital ground for internal logic.

 $V_{DD(POWER)}$ (pin 16)

This is the positive power supply input.

Figure 1. HDSP-213X/-2179 Internal Block Diagram.

Display Internal Block Diagram

Figure 1 shows the internal block diagram of the HDSP-213X/-2179 display. The CMOS IC consists of an 8 byte Character RAM, an 8 bit

Flash RAM, a 128 character ASCII decoder, a 16 character UDC RAM, a UDC Address Register, a Control Word Register, and the refresh circuitry necessary to synchronize the decoding and

driving of eight 5 x 7 dot matrix characters. The major user accessible portions of the display are listed below:

Character RAM

Flash RAM

User-Defined Character RAM (UDC RAM)

User-defined Character Address Register (UDC Address Register)

Control Word Register

This RAM stores either ASCII character data or a UDC RAM address.

This is a 1 x 8 RAM which stores Flash data.

This RAM stores the dot pattern for custom characters.

This register is used to provide the address to the UDC RAM when the user is writing or reading a custom character.

This register allows the user to adjust the display brightness, flash individual characters, blink, self test or clear the display.

Character Ram

Figure 2 shows the logic levels needed to access the HDSP-213X Character RAM. During a normal access the \overline{CE} = "0" and either $\overline{RD} = "0"$ or $\overline{WR} =$ "0". However, erroneous data may be written into the Character RAM if the Address lines are unstable when $\overline{CE} = "0"$ regardless of the logic levels of the RD or WR lines. Address lines A₀-A₂ are used to select the location in the Character RAM. Two types of data can be stored in each Character RAM location: an ASCII code or a UDC RAM address. Data bit D_{π} is used to differentiate between an ASCII character and a UDC RAM address. $D_7 = 0$ enables the ASCII decoder and $D_{\nu} = 1$ enables the UDC RAM, Do-D are used to input ASCII data and Do-Do are used to input a UDC address.

Figure 2. Logic Levels to Access the Character RAM.

UDC RAM and UDC Address Register

Figure 3 shows the logic levels needed to access the UDC RAM and the UDC Address Register. The UDC Address Register is eight bits wide. The lower four bits $(D_0$ - $D_3)$ are used to select one of the 16 UDC locations. The upper four bits $(D_4$ - $D_7)$ are not used. Once the UDC address has been stored in the UDC Address Register, the UDC RAM can be accessed.

To completely specify a 5 x 7 character requires eight write cycles. One cycle is used to store the UDC RAM address in the UDC Address Register. Seven cycles are used to store dot data in the UDC RAM. Data is entered by rows. One cycle is needed to access each row. Figure 4 shows the organization of a UDC character assuming the symbol to be stored is an "F." A₀-A₂ are used to select the row to be accessed and D₀-D₄ are used to transmit the row dot data. The upper three bits (D_5-D_7) are ignored. D_0 (least significant bit) corresponds to the right most column of the 5 x 7 matrix and D₄ (most significant bit) corresponds to the left most column of the 5 x 7 matrix.

Flash RAM

Figure 5 shows the logic levels needed to access the Flash RAM. The Flash RAM has one bit associated with each location of the Character RAM. The Flash input is used to select the Flash RAM. Address lines A_3 - A_4 are ignored. Address lines A_0 - A_2 are used to select the location in the Flash RAM to store the attribute. D_0 is used to store or remove the flash attribute and D_0 = "1" stores the attribute and D_0 = "0" removes the attribute.

Figure 3. Logic Levels to Access a UDC Character.

C	С	С	¢	С			
0	0	0	0	0			
L	L	L	L	L			
1	2	3	4	5		UDC	HEX
04	D_3	D_2	D ₁	O ₀		CHARACTER	CODE
1	1	1	1	1	ROW 1		1F
1	0	0	0	0	ROW 2	•	10
1	0	0	0	0	ROW 3	•	10
1	1	1	1	0	ROW 4		10
1	0	0	0	0	ROW 5		10
1	0	0	0	0	ROW 6	•	10
	ñ	0	ò	Ó	ROW 7		10

0 = LOGIC 0; 1 = LOGIC 1; * = ILLUMINATED LED.

Figure 4. Data to Load "F" into the UDC RAM.

When the attribute is enabled through bit 3 of the Control Word and a "1" is stored in the Flash RAM, the corresponding character will flash at approximately 2 Hz.

The actual rate is dependent on the clock frequency. For an external clock the flash rate can be calculated by dividing the clock frequency by 28,672.

FL	A4	A ₃	A ₂	A ₁	A ₀	_
0	x	x		HARAC DDRES		000 = LEFT MOST 111 = RIGHT MOST

FLASH RAM ADDRESS

	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	REMOVE FLASH AT
I	v							0	SPECIFIED DIGIT LOCATION
ı	^	^	^	^	^	^	^	1	STORE FLASH AT
•									SPECIFIED DIGIT LOCATION

ELASH BAM DATA FORMAT

0 = LOGIC 0: 1 = LOGIC 1: X = DO NOT CARE

Figure 5. Logic Levels to Access the Flash RAM.

Control Word Register

Figure 6 shows how to access the Control Word Register. This is an eight bit register which performs five functions. They are Brightness control, Flash RAM control, Blinking, Self Test and Clear. Each function is independent of the others. However, all bits are updated during each Control Word write cycle.

Brightness (Bits 0-2)

Bits 0-2 of the Control Word adjust the brightness of the display. Bits 0-2 are interpreted as a three bit binary code with code (000) corresponding to maximum brightness and code (111) corresponding to a blanked display. In addition to varying the display brightness, bits 0-2 also vary the average value of I_{DD} . I_{DD} can be calculated at any brightness level by multiplying the percent bright-ness level by the value of $I_{\rm DD}$ at the 100% brightness level. These values of I_{DD} are shown in Table 2.

Flash Function (Bit 3)

Bit 3 determines whether the flashing character attribute is on or off. When bit 3 is a "1," the output of the Flash RAM is checked. If the content of a location in the Flash RAM is a "1," the associated digit will flash at

CONTROL WORD ADDRESS

CONTROL WORD DATA FORMAT LOGIC 0: 1 = LOGIC 1: X = DO NOT CARE

Figure 6. Logic Levels to Access the Control Word Register

Table 2. Current Requirements at **Different Brightness Levels**

Symbol	$\mathbf{D_2}$	$\mathbf{D_1}$	$\mathbf{D_0}$	% Brightness	25°C Typical	Units
I _{DD} (V)	0	0	0	100	200	mA
	0	0	1	80	160	mA
	0	1	0	53	106	mA
	0	1	1	40	80	mA
	1	0	0	27	54	mA
	1	0	1	20	40	mA
	1	1	0	13	26	mA ·

approximately 2 Hz. For an external clock, the blink rate can be calculated by driving the clock frequency by 28,672. If the flash enable bit of the Control Word is a "0," the content of the Flash RAM is ignored. To use this function with multiple display systems see the Reset section.

Blink Function (Bit 4)

Bit 4 of the Control Word is used to synchronize blinking of all

eight digits of the display. When this bit is a "1" all eight digits of the display will blink at approximately 2 Hz. The actual rate is dependent on the clock frequency. For an external clock, the blink rate can be calculated by dividing the clock frequency by 28,672. This function will override the Flash function when it is active. To use this function with multiple display systems see the Reset section.

Self Test Function (Bits 5, 6)

Bit 6 of the Control Word Register is used to initiate the self test function. Results of the internal self test are stored in bit 5 of the Control Word. Bit 5 is a read only bit where bit 5 = "1" indicates a passed self test and bit 5 = "0" indicates a failed self test.

Setting bit 6 to a logic 1 will start the self test function. The built-in self test function of the IC consists of two internal routines which exercises major portions of the IC and illuminates all of the LEDs. The first routine cycles the ASCII decoder ROM through all states and performs a checksum on the output. If the checksum agrees with the correct value, bit 5 is set to "1." The second routine provides a visual test of the LEDs using the drive circuitry. This is accomplished by writing checkered and inverse checkered patterns to the display. Each pattern is displayed for approximately 2 seconds.

During the self test function the display must not be accessed. The time needed to execute the self test function is calculated by multiplying the clock period by 262,144. For example, assume a clock frequency of 58 KHz, then the time to execute the self test function frequency is equal to (262,144/58,000) = 4.5 second duration.

At the end of the self test function, the Character RAM is loaded with blanks, the Control Word Register is set to zeros except for bit 5, and the Flash RAM is cleared and the UDC Address Register is set to all ones.

Clear Function (Bit 7)

Bit 7 of the Control Word will clear the Character RAM and the Flash RAM. Setting bit 7 to a "1" will start the clear function. Three clock cycles (110 µs min. using the internal refresh clock) are required to complete the clear function. The display must not be accessed while the display is being cleared. When the clear function has been completed, bit 7 will be reset to a "0." The ASCII character code for a space (20H) will be loaded into the Character RAM to blank the display and the Flash RAM will be loaded with "0"s, The UDC RAM, UDC Address Register, and the remainder of the Control Word are unaffected.

Display Reset

Figure 7 shows the logic levels needed to Reset the display. The display should be Reset on Powerup. The external Reset clears the Character RAM, Flash RAM, Control Word and resets the internal counters. After the rising edge of the Reset signal, three clock cycles (110 µs min. using the internal refresh clock) are required to complete the reset sequence. The display must not be accessed while the display is being reset. The ASCII Character code for a space (20H) will be loaded into the Character RAM to blank the display. The Flash RAM and Control Word Register are loaded with all "0"s. The UDC RAM and UDC Address Register

NOTE: IF RST, CE AND WA ARE LOW, UNKNOWN DATA MAY BE WRITTEN INTO THE DISPLAY.

Figure 7. Logic Levels to Reset the Display.

are unaffected. All displays which operate with the same clock source must be simultaneously reset to synchronize the Flashing and Blinking functions.

Mechanical and Electrical Considerations

The HDSP-213X/-2179 is a 32 pin dual-in-line package with 24 external pins, which can be stacked horizontally and vertically to create arrays of any size. The HDSP-213X/-2179 is designed to operate continuously from -55°C to +85°C with a maximum of 20 dots ON per character. Illuminating all thirty-five dots at full brightness is not recommended.

The HDSP-213X/-2179 is assembled by die attaching and wire bonding 280 LED chips and a CMOS IC to a ceramic substrate. A glass window is placed over the ceramic substrate creating an air gap over the LED wire bonds. A second glass window creates an air gap over the CMOS IC. This package construction makes the display highly tolerant to temperature cycling and allows wave soldering and visual inspection of the IC.

Figure 8. Maximum Power Dissipation vs. Ambient Temperature Derating Based on T,MAX = 125°C.

The inputs to the CMOS IC are protected against static discharge and input current latchup. However, for best results standard CMOS handling precautions should be used. Prior to use, the HDSP-213X should be stored in antistatic packages or conductive material. During assembly, a grounded conductive work area should be used, and assembly personnel should wear conductive wrist straps. Lab coats made of synthetic material should be avoided since they are prone to static charge buildup. Input current latchup is caused when the CMOS inputs are subjected to either a voltage below ground (V_{IN} < ground) or to a voltage higher than V_{DD} ($V_{IN} > V_{DD}$) and when a high current is forced into the input. To prevent input current latchup and ESD damage, unused inputs should be connected either to ground or to V_{DD}. Voltages should not be applied to the inputs until V_{DD} has been applied to the display. Transient input voltages should be eliminated.

Thermal Considerations

The HDSP-213X/-2179 has been designed to provide a low thermal resistance path from the CMOS IC to the 24 package pins. This heat is then typically conducted through the traces of the user's printed circuit board to free air. For most applications no additional heatsinking is required.

The maximum operating IC junction temperature is 150°C. The maximum IC junction temperature can be calculated using the following equation:

$$\begin{split} T_{J}(IC) \ MAX &= T_{A} \\ &+ (P_{D}MAX) \ (R\theta_{J\text{-PIN}} + R\theta_{PIN\text{-}A}) \end{split}$$

Where

 $P_DMAX = (V_{DD}MAX) (I_{DD}MAX)$

 $I_{DD}MAX=370~mA~with~20~dots\\ON~in~eight~character~locations~at\\25^{\circ}C~ambient.~This~value~is~from\\the~Electrical~Characteristics\\table$

 P_D MAX = (5.5 V) (0.370 A) = 2.04 W

Ground Connections

Two ground pins are provided to keep the internal IC logic ground clean. The designer can, when necessary, route the analog ground for the LED drivers separately from the logic ground until an appropriate ground plane is available. On long interconnects between the display and the host system, the designer can keep voltage drops on the analog ground from affecting the display logic levels by isolating the two grounds.

The logic ground should be connected to the same ground potential as the logic interface circuitry. The analog ground and the logic ground should be connected at a common ground which can withstand the current introduced by the switching LED drivers. When separate ground connections are used, the analog ground can vary from -0.3 V to +0.3 V with respect to the logic ground. Voltage below -0.3 V can cause all dots to be on. Voltage above +0.3 V can cause dimming and dot mismatch.

ESD Susceptibility

These displays have ESD susceptibility ratings of CLASS 3 per DOD-STD-1686 and CLASS B per MIL-STD-883C.

Soldering and Post Solder Cleaning Instructions for the HDSP-213X/-2179

The HDSP-213X/-2179 may be hand soldered or wave soldered with SN63 solder. When hand soldering it is recommended that an electronically temperature controlled and securely grounded soldering iron be used. For best results, the iron tip temperature should be set at 315° C (600°F). For wave soldering, a rosin-based RMA flux can be used. The solder wave temperature should be set at $245^{\circ}\text{C} \pm 5^{\circ}\text{C} (473^{\circ}\text{F} \pm 9^{\circ}\text{F})$, and dwell in the wave should be set between $1^{1/2}$ to 3 seconds for optimum soldering. The preheat temperature should not exceed 105°C (221°F) as measured on the solder side of the PC board.

For further information on soldering and post solder cleaning, see Application Note 1027, Soldering LED Components.

Contrast Enhancement

When used with the proper contrast enhancement filters, the HCMS-213X/-2179 series displays are readable daylight ambients. Refer to Application Note 1029 Luminous Contrast and Sunlight Readability of the HDSP-235X Series Alphanumeric Displays for Military Applications for information on contrast enhancement for daylight

ambients. Refer to Application Note 1015 Contrast Enhancement Techniques for LED Displays for information on contrast enhancement in moderate ambients.

Night Vision Lighting

When used with the proper NVG/ DV filters, the HDSP-2131, HDSP-2179 and HDSP-2133 may be used in night vision lighting applications. The HDSP-2131 (yellow), HDSP-2179 (orange) displays are used as master caution and warning indicators. The HDSP-2133 (high performance green) displays are used for general instrumentation. For a list of NVG/DV filters and a discussion on night vision lighting technology, refer to Application Note 1030 LED Displays and Indicators and Night Vision

Imaging System Lighting. An external dimming circuit must be used to dim these displays to night vision lighting levels to meet NVIS radiance requirements. Refer to AN 1039 Dimming HDSP-213X Displays to Meet Night Vision Lighting Levels.

CMOS Extended Temperature Range 5 x 7 Alphanumeric Displays

Technical Data

HCMS-201X Series HCMS-231X HCMS-235X Series

Features

- On-Board Low Power CMOS IC Integrated Shift Register with Constant Current LED Drivers
- Wide Operating Temperature Range -55°C to +100°C
- Compact Glass Ceramic 4
 Character Package
 HCMS-201X Series X-Stackable
 HCMS-231X/-235X
 Series X-Y Stackable
- HCMS-235X Series are Sunlight Viewable
- Five Colors
 Standard Red
 High Efficiency Red
 Orange
 Yellow
 High Performance Green
- 5 x 7 LED Matrix Displays Full ASCII Set
- Two Character Heights 3.8 mm (0.15 inch) 5.0 mm (0.20 inch)

- Wide Viewing Angle X Axis = ±50° Y Axis = +65°
- Long Viewing Distance HCMS-201X Series to 2.6 Meters (8.6 Feet) HCMS-231X/-235X Series to 3.5 Meters (11.5 Feet)
- Categorized for Luminous Intensity
- HCMS-2011/2013
 HCMS-2311/-2313/-2314
 HCMS-2351/-2353/-2354
 Useable in Night Vision
 Lighting Applications
- HCMS-2011/-2013, HCMS-2311/-2313 and HCMS-2351/-2353: Categorized for Color

Typical Applications

- Avionics
- Communications Systems
- Radar Systems
- Fire Control Systems

Description

The HCMS-201X, HCMS-231X and the sunlight viewable HCMS-235X series are 5 x 7 LED four character displays contained in 12 pin dual-in-line packages designed for displaying alphanumeric information. The character height for the HCMS-201X series displays is 3.8 mm (0.15 inch), and for the HCMS-231X and HCMS-235X series displays the character height is 5.0 mm (0.20 inch). The HCMS-201X series displays are available in four LED colors: standard red, high efficiency red, yellow and high performance green. The HCMS-231X series are available in all

ESD WARNING: STANDARD CMOS HANDLING PRECAUTIONS SHOULD BE OBSERVED.

five LED colors. The HCMS-235X series displays are available in four LED colors: high efficiency red, orange, yellow and high performance green. The HCMS-201X series displays are end stackable. The HCMS-231X and HCMS-235X series displays are end/row stackable.

These displays are designed with on-board CMOS integrated circuits for use in applications where conservation of power is important. The two CMOS ICs form an on-board 28-bit serial-in-parallel-out shift register with constant current output LED row drivers. Decoded column data is clocked into the on-board shift register for each refresh cycle. Full character display is achieved with external column strobing.

Compatibility with HDSP-201X/-231X/-235X TTL IC Series Displays

The HCMS-201X, HCMS-231X and HCMS-235X CMOS IC displays are "drop-in" replacements for the equivalent HDSP-201X, HDSP-231X and HDSP-235X TTL IC displays. The 12 pin glass/ceramic package configuration, four digit character matrix and pin functions are identical.

Display Selection Table

Part Number	Character Size	LED Color
HCMS-2010	3.8 mm (0.15 inch)	Standard Red
HCMS-2011	3.8 mm (0.15 inch)	Yellow
HCMS-2012	3.8 mm (0.15 inch)	High-Efficiency Red
HCMS-2013	3.8 mm (0.15 inch)	High-Performance Green
HCMS-2310	5.0 mm (0.20 inch)	Standard Red
HCMS-2311	5.0 mm (0.20 inch)	Yellow
HCMS-2312	5.0 mm (0.20 inch)	High-Efficiency Red
HCMS-2313	5.0 mm (0.20 inch)	High-Performance Green
HCMS-2314	5.0 mm (0.20 inch)	Orange
Sunlight Viewable Displays		
HCMS-2351	5.0 mm (0.20 inch)	Yellow
HCMS-2352	5.0 mm (0.20 inch)	High-Efficiency Red
HCMS-2353	5.0 mm (0.20 inch)	High-Performance Green
HCMS-2354	5.0 mm (0.20 inch)	Orange

Package Dimensions

HCMS-201X Series

HCMS-231X/-235X Series

Absolute Maximum Ratings

11050rate maximum matings
Supply Voltage V_{DD} to Ground0.3 V to 7.0 V
Data Input, Data Output, V_B
Column Input Voltage, V _{COL} 0.3 V to V _{DD}
Free Air Operating Temperature Range, T _A
Storage Temperature Range, T _S 65°C to +125°C
HCMS-2310/-2311/-2312/-2314
HCMS-2351/-2352/-2354
Storage Temperature Range, T_S
HCMS-2010/-2011/-2012/-2013
HCMS-2313
HCMS-2353
Maximum Allowable Package Power Dissipation, P _D [1,2]
HCMS-2010/-2011/-2012/-2013 at $T_A = 83^{\circ}C$ 0.79 Watts
HCMS-2310/-2311/-2312/-2313/-2314 at $T_A = 88^{\circ}C$ 0.92 Watts
HCMS-2351/-2352/-2353/-2354 at $T_A = 71^{\circ}C$ 1.31 Watts
Maximum Solder Temperature
1.59 mm (0.063") Below Seating Plane, $t \le 5$ sec
ESD Protection @ 1.5 k Ω , 100 pfV _Z = 4 kV (each pin)

Notes:

- 1. Maximum allowable power dissipation is derived from $V_{DD} = 5.25 \text{ V}$, $V_{B} = 2.4 \text{ V}$,
- Maximum allowable power dissipation is derived from V_{DD} = 5.25 V, V_B = 2.4 V, V_{COL} = 3.5 V, 20 LEDs ON per character, 20% DF.
 The power dissipation for these displays should be derated as follows: HCMS-201X series derate above 83°C at 17 mW/°C, Rθ_{J-A} = 60°C/W HCMS-231X series derate above 88°C at 22 mW/°C, Rθ_{J-A} = 45°C/W HCMS-235X series derate above 71°C at 23 mW/°C, Rθ_{J-A} = 45°C/W.
 Deratings based on Rθ_{PC-A} = 35°C/W per display for printed circuit board assembly.
 See Figure 1 for power derating based on lower Rθ_{J-A} values.

Recommended Operating Conditions Over Operating Temperature Range (-55°C to +100°C)

Parameter	Symbol	Min.	Тур.	Max.	Units
Supply Voltage	V_{DD}	4.75	5.00	5.25	V
Data Out Current, Low State	I_{OL}			1.6	mA
Data Out Current, High State	I _{OH}			-0.5	mA
Column Input Voltage	V_{COL}	2.75	3.0	3.5	V
Setup Time	t_{SETUP}	10			ns
Hold Time	$t_{ m HOLD}$	25			ns
Clock Pulse Width High	t _{WH(CLOCK)}	50			ns
Clock Pulse Width Low	t _{WL(CLOCK)}	50			ns
Clock High to Low Transition	t _{THL}			200	ns
Clock Frequency	f_{CLOCK}		i	5	MHz

Electrical Characteristics over Operating Temperature Range (-55°C to +100°C)

Parameter	Symbol	Test Conditions	Min.	Typ.*	Max.	Units
Supply Current, Dynamic ^[1]	I_{DDD}	$f_{CLOCK} = 5 \text{ MHz}$		6.2	7.8	mA
Supply Current, Static ^[2]	$\begin{array}{c} I_{DDSoff} \\ I_{DDSon} \end{array}$	$V_{\rm B} = 0.4 \text{ V}$ $V_{\rm B} = 2.4 \text{ V}$		1.8 2.2	2.6 6.0	mA
Column Input Current		$V_{\rm B} = 0.4 \ {\rm V}$			10	μΑ
HCMS-2010/-2011/-2012/-2013 HCMS-2310/-2311/-2312/-2313/-2314 HCMS-2351/-2352/-2353/-2354	I_{COL}	$V_{\rm B} = 2.4 \text{ V} \\ V_{\rm B} = 2.4 \text{ V} \\ V_{\rm B} = 2.4 \text{ V}$		310 360 500	384 451 650	mA mA mA
Input Logic High Data, V _B , Clock	V_{IH}	$V_{\rm DD} = 4.75 \text{ V}$	2.0			v
Input Logic Low Data, V _B , Clock	$V_{\rm IL}$	$V_{DD} = 5.25 \text{ V}$			0.8	V
Input Current Data, Clock V _B	I _I	$\begin{aligned} V_{DD} &= 5.25 \text{ V} \\ 0 &\leq V_{I} \leq 5.25 \text{ V} \\ 0 &\leq V_{B} \leq 5.25 \text{ V} \end{aligned}$	-10 -40		+10	μA
Data Out Voltage	V _{OH}	$V_{\mathrm{DD}} = 4.75 \text{ V}$ $I_{\mathrm{OH}} = -0.5 \text{ mA}$ $I_{\mathrm{COL}} = 0 \text{ mA}$	2.4	4.2		V
	$V_{ m OL}$	$\begin{aligned} \mathrm{V_{DD}} &= 5.25 \ \mathrm{V} \\ \mathrm{I_{OL}} &= 1.6 \ \mathrm{mA} \\ \mathrm{I_{COL}} &= 0 \ \mathrm{mA} \end{aligned}$		0.2	0.4	V
Power Dissipation Per Package ^[3] HCMS-2010/-2011/-2012/-2013 HCMS-2310/-2311/-2312/-2313/-2314 HCMS-2351/-2352/-2353/-2354	P_{D}	$\begin{aligned} &V_{DD} = 5.0 \text{ V} \\ &V_{COL} = 3.5 \text{ V} \\ &17.5\% \text{ DF} \\ &V_{B} = 2.4 \text{ V} \\ &15 \text{ LEDs ON} \\ &\text{per Character} \end{aligned}$		414 481 668		mW
Thermal Resistance IC Junction-to-Pin ^[4] HCMS-2010/-2011/-2012/-2013 HCMS-2310/-2311/-2312/-2313/-2314 HCMS-2351/-2352/-2353/-2354	$ m R heta_{J-PIN}$			25 10 10		°C/W
Leak Rate					5x10 ⁻⁸	cc/sec

^{*}All typical values specified at $V_{DD}=$ 5.0V and $T_{A}=$ 25°C.

Notes:
 I_{DD} Dynamic is the IC current while clocking column data through the on-board shift register at a clock frequency of 5MHz, the display is not illuminated.
 I_{DD} Static is the IC current after column data is loaded and not being clocked through the on-board shift register.
 Four characters are illuminated with a typical ASCII character composed of 15 dots per character.
 IC junction temperature T_J(IC) = (P_D)(Rθ_{J-PIN} + Rθ_{PC-A}) + T_A.

Optical Characteristics at $T_A = 25^{\circ}C$

Standard Red HCMS-2010/-2310

Description	Symbol	Test Condition	Min.	Тур.	Max.	Units
Peak Luminous Intensity per HCMS-2010 LED ^[5,9] HCMS-2310 (Character Average)	I _{vPEAK}	$V_{DD} = 5.0 \text{ V} \\ V_{COL} = 3.5 \text{ V} \\ V_{B} = 2.4 \text{ V} \\ T_{i} = 25^{\circ}\text{C}^{[7]}$	105 220	200 370		μcd
Dominant Wavelength ^[8]	$\lambda_{ m d}$			639		nm
Peak Wavelength	$\lambda_{ ext{PEAK}}$			655		nm

Yellow HCMS-2011/-2311/-2351

Description	Symbol	Test Condition	Min.	Тур.	Max.	Units
Peak Luminous Intensity per HCMS-2011 LED ^[5,9] HCMS-2311 (Character HCMS-2351 Average)	I_{vPEAK}	$V_{DD} = 5.0 \text{ V} \\ V_{COL} = 3.5 \text{ V} \\ V_{B} = 2.4 \text{ V} \\ T_{i} = 25^{\circ}\text{C}^{[7]}$	400 650 2400	750 1140 3400		μcd
Dominant Wavelength ^[6,8]	$\lambda_{ m d}$			585		nm
Peak Wavelength	$\lambda_{ ext{PEAK}}$			583		nm

High Efficiency Red HCMS-2012/-2312/-2352

Description	Symbol	Test Condition	Min.	Тур.	Max.	Units
$ \begin{array}{lll} \mbox{Peak Luminous} \\ \mbox{Intensity per} & \mbox{HCMS-2012} \\ \mbox{LED}^{[5,9]} & \mbox{HCMS-2312} \\ \mbox{(Character} & \mbox{HCMS-2352} \\ \mbox{Average)} \end{array} $	I_{vPEAK}	$V_{DD} = 5.0 \text{ V} \\ V_{COL} = 3.5 \text{ V} \\ V_{B} = 2.4 \text{ V} \\ T_{i} = 25^{\circ}\text{C}^{[7]}$	400 650 1920	1430 1430 2850		μcd
Dominant Wavelength ^[8]	$\lambda_{ m d}$			625		nm
Peak Wavelength	$\lambda_{ ext{PEAK}}$			635		nm

High Performance Green HCMS-2013/-2313/-2353

Description	Symbol	Test Condition	Min.	Тур.	Max.	Units
Peak Luminous Intensity per HCMS-2013 LED ^[5,9] HCMS-2313 (Character HCMS-2353 Average)	${ m I_{vPEAK}}$	$\begin{aligned} V_{DD} &= 5.0 \text{ V} \\ V_{COL} &= 3.5 \text{ V} \\ V_{B} &= 2.4 \text{ V} \\ T_{i} &= 25^{\circ}\text{C}^{[7]} \end{aligned}$	850 1280 2400	1550 2410 3000		μcd
Dominant Wavelength ^[6,8]	$\lambda_{ m d}$			574		nm
Peak Wavelength	$\lambda_{ ext{PEAK}}$			568		nm

Orange HCMS-2314/-2354

Description	Symbol	Test Condition	Min.	Тур.	Max.	Units
Peak Luminous Intensity per LED ^[5,9] HCMS-2314 (Character HCMS-2354 Average)	I _{vPEAK}	$V_{DD} = 5.0 \text{ V} \\ V_{COL} = 3.5 \text{ V} \\ V_{B} = 2.4 \text{ V} \\ T_{i} = 25^{\circ}\text{C}^{[7]}$	650 1920	1430 2850		μcd
Dominant Wavelength ^[8]	$\lambda_{ m d}$			602		nm
Peak Wavelength	$\lambda_{ ext{PEAK}}$			600	,	nm

All typical values specified at V_{DD} = 5.0 V and T_A = 25°C unless otherwise noted.

- 5. These LED displays are categorized for luminous intensity, with the intensity category designated by a letter code on the back of the package.
- 6. The HCMS-2011/-2311/-2351 and HCMS-2013/-2313/-2353 are categorized for color with the color category designated by a number on the back of the package.
- 7. Ti refers to the initial case temperature of the display immediately prior to the light measurement.
- 8. Dominant wavelength, λ_d , is derived from the CIE Chromaticity Diagram, and represents the single wavelength which defines the color of the device.
- 9. The luminous sterance of the individual LED pixels may be calculated using the following equations:

 $L_v(\text{cd/m}^2) = l_v(\text{Candela})*\text{DF/A}(\text{Metre})^2$ $L_v(\text{Footlamberts}) = \pi L_v(\text{Candela})*\text{DF/A}(\text{Foot})^2$

Where: A = LED pixel area = $5.3 \times 10^{-8} M^2$ or $5.8 \times 10^{-7} ft^2$

DF = LED on-time duty factor

Switching Characteristics, $T_A = -55$ °C to +100°C

Parameter	Condition	Тур.	Max.	Units
f_{clock} CLOCK Rate			5	MHz
t _{PLH} , t _{PHL} Propagation Delay CLOCK to DATA OUT	$\begin{aligned} C_L &= 15 \text{ pF} \\ R_L &= 2.4 \text{ k}\Omega \end{aligned}$	-	105	ns
t _{OFF} V _B (0.4 V) to Display OFF t _{ON}		4	5	μs
V _B (2.4 V) to Display ON		1	2	

Figure 1. Maximum Allowable Power Dissipation vs Ambient Temperature as a Function of Thermal Resistance Junction-to-Ambient, $R\theta_{J-A}$. Derated Operation Assumes $R\theta_{PC-A} = 35^{\circ}\text{C/W}$ per Display for Printed Circuit Board. T_J (IC) MAX = 130 $^{\circ}$ C. $R\theta_{J-A}$ ($T_A = 100^{\circ}\text{C}$) = 22 $^{\circ}$ C/W for HCMS-235X Series

- = 22°C/W for HCMS-235X Series = 32°C/W for HCMS-231X Series
- = 38°C/W for HCMS-201X Series.

Figure 2. Relative Luminous Intensity vs Ambient Temperature.

Figure 3. Peak Column Current vs Column Voltage.

Electrical Description

Each display device contains four 5 x 7 LED dot matrix characters and two CMOS integrated circuits, as shown in Figure 4. The two CMOS integrated circuits form an on-board 28 bit serial-inparallel-out shift register that will accept standard TTL logic levels. The Data Input, pin 12, is connected to bit position 1 and the Data Output, pin 7, is connected to bit position 28. The shift register outputs control constant current sinking LED row drivers. The nominal current sink per LED driver is 11 mA for the HCMS-201X displays, 13 mA for the HCMS-231X displays and 18 mA for the HCMS-235X displays. A logic 1 stored in the shift register enables the corresponding LED row driver and a logic 0 stored in the shift register disables the corresponding LED row driver.

The electrical configuration of these CMOS IC alphanumeric displays allows for an effective interface to a display controller circuit that supplies decoded character information. The row data for a given column (one 7 bit byte per character) is loaded (bit serial) into the on-board 28 bit shift register with high to low transitions of the Clock input. To load decoded character information into the display, column data for character 4 is loaded first and the column data for character 1 is loaded last in the following manner. The 7 data bits for column 1, character 4, are loaded into the on-board shift register. Next, the 7 data bits for column 1, character 3, are loaded into the shift register, shifting the character 4 data over one character position. This process is repeated for the other two characters until all 28 bits of column data (four 7 bit bytes of character column data) are loaded into the onboard shift register. Then the column 1 input, V_{COL} pin 1, is energized to illuminate column 1 in all four characters. This process is repeated for columns

2, 3, 4 and 5. All V_{COL} inputs should be at logic low to insure the display is off when loading data. The display will be blanked when the blanking input V_{B} , pin 8, is at logic low regardless of the outputs of the shift register or whether one of the V_{COL} inputs is energized.

Refer to Application Note 1016 for drive circuit information.

ESD Susceptibility

The HCMS-201X/-231X/-235X series displays have an ESD susceptibility ratings of CLASS 3 per DOD-STD-1686 and CLASS B per MIL-STD-883C. It is recommended that normal CMOS handling precautions be observed with these devices.

Soldering and Post Solder Cleaning

These displays may be soldered with a standard wave solder process using either an RMA flux and solvent cleaning or an OA flux and aqueous cleaning. For

Figure 4. Block Diagram of an HCMS-2XXX Series LED Alphanumeric Display.

optimum soldering, the solder wave temperature should be 245°C and the dwell time for any display lead passing through the wave should be 1½ to 2 seconds. For more detailed information, refer to Application *Note 1027 Soldering LED Components*.

Contrast Enhancement

When used with the proper contrast enhancement filters, the HCMS-235X series displays are readable in sunlight and the HCMS-201X/231X series displays are readable in daylight ambients. Refer to Application Note 1029 Luminous Contrast and Sunlight Readability of the HDSP-235X Series Alphanumeric Displays for Military

Applications for information on contrast enhancement for sunlight and daylight ambients. Refer to Application Note 1015 Contrast Enhancement Techniques for LED Displays for information on contrast enhancement in moderate ambients.

Night Vision Lighting

When used with the proper NVG/DV filters, the HCMS-2311/-2351 and HCMS-2133/-2353 displays may be used in night vision lighting applications. The HCMS-2311/-2351 (yellow) displays are used as master caution and warning indicators. The HCMS-2313/-2353 (high performance green) displays are used for general instrumentation. For a

list of NVG/DV filters and a discussion on night vision lighting technology, refer to Application Note 1030 *LED Displays and Indicators and Night Vision Imaging System Lighting*.

Controller Circuits, Power Calculations and Display Dimming

Refer to Application Note 1016 *Using the HDSP-2000 Alphanumeric Display Family* for information on controller circuits to drive these displays, how to do power calculations and a technique for display dimming.

Glass/Ceramic Numeric and Hexadecimal Displays for Industrial Applications

Technical Data

4N51 4N52 4N53 4N54

Features

- Three Character Options Numeric, Hexadecimal, Over Range
- 4 x 7 Dot Matrix Character
- Performance Guaranteed Over Temperature
- High Temperature Stabilized
- Solder Dipped Leads
- Memory Latch/Decoder/ Driver
 TTL Compatible
- Categorized for Luminous Intensity

Description

These standard red solid state displays have a 7.4 mm (0.29 inch) dot matrix character and an on-board IC with data memory latch/decoder and LED drivers in a glass/ceramic package. These devices utilize a solder glass frit seal.

The 4N51 numeric display decodes positive 8421 BCD logic inputs into characters 0-9, a "-" sign, a test pattern, and four blanks in the invalid BCD states. The unit employs a right-hand decimal point.

4N52

Package Dimensions*

ł	10.2 MAX. (0.400)	4N54
į		
1.5 (0.06) 7.4 (0.29)		13.5 (0.53)
		4.8).19)
E	ND VIEW	

SEATING _	3.8	1.5
PLANE		(.135)
1.3 TYP. (.050)		0.5 ±0.08 TY (.020 ±.003 ±0.13 TYP. 10 ±.005)

	FUN	CTION
PIN	4N51 4N52 NUMERIC	4N54 HEXA- DECIMAL
1	Input 2	Input 2
2	Input 4	Input 4
3	Input 8	Input 8
4	Decimal point	Blanking control
5	Latch enable	Latch enable
6	Ground	Ground
7	V _{CC}	V _{CC}
8	Input 1	Input 1

NOTES

- 1. Dimensions in millimetres and (inches).
- Unless otherwise specified, the tolerance
 an all dimensions is + 29mm (+ 015")
- on all dimensions is ±.38mm (±.015")

 3. Digit center line is ±.25mm (±.01")
- from package center line.
- Solder dipped leads.
- See over range package drawing for HP standard marking.

*JEDEC Registered Data.

The 4N52 is the same as the 4N51 except that the decimal point is located on the left side of the digit.

The 4N54 hexadecimal display decodes positive 8421 logic inputs into 16 states, 0-9 and A-F.

In place of the decimal point an input is provided for blanking the display (all LEDs off), without losing the contents of the memory.

The 4N53 is a " \pm 1." overrange display, including a right-hand decimal point.

Absolute Maximum Ratings*

Description	Symbol	Min.	Max.	Unit
Storage Temperature, Ambient	${ m T_S}$	-65	+125	°C
Operating Temperature, Ambient ^[1,2]	T _A	-55	+100	°C
Supply Voltage ^[3]	$V_{\rm CC}$	-0.5	+7.0	V
Voltage Applied to Input Logic, dp and Enable Pins	$V_{\rm I},V_{ m DP},V_{ m E}$	-0.5	V_{CC}	V
Voltage Applied to Blanking Input ^[7]	V_{B}	-0.5	V_{CC}	V
Maximum Solder Temperature at 1.59 mm (0.062 inch)			260	°C
Below Seating Plane; $t \le 5$ Seconds]	1	j

Recommended Operating Conditions*

Description	Symbol	Min.	Nom.	Max.	Unit
Supply Voltage	$V_{\rm CC}$	4.5	5.0	5.5	V
Operating Temperature, Ambient ^[1,2]	T _A	-55		+100	°C
Enable Pulse Width	t _W	100			nsec
Time Data Must Be Held Before Positive Transition of Enable Line	$t_{ m SETUP}$	50			nsec
Time Data Must Be Held After Positive Transition of Enable Line	$t_{ m HOLD}$	50			nsec
Enable Pulse Rise Time	t _{TLH}			200	nsec

^{*}JEDEC Registered Data.

Electrical/Optical Characteristics*

 $T_A = -55$ °C to +100°C, unless otherwise specified

Description	Symbol	Test Conditions	Min.	Typ.[4]	Max.	Unit
Supply Current	$I_{\rm CC}$	$V_{CC} = 5.5 \text{ V}$		112	170	mA
Power Dissipation	P_{T}	(Characters "5." or "B")		560	935	mW
Luminous Intensity per LED (Digit Average) ^[5,6]	$I_{\rm v}$	$V_{CC} = 5.0 \text{ V}, T_A = 25^{\circ}\text{C}$	40	85		μcd
Logic Low-Level Input Voltage	V_{IL}	$V_{CC} = 4.5 \text{ V}$			0.8	V
Logic High-Level Input Voltage	V_{IH}		2.0			V
Enable Low-Voltage; Data Being Entered	$V_{\rm EL}$				0.8	V
Enable High-Voltage; Data Not Being Entered	$V_{\rm EH}$		2.0			V
Blanking Low-Voltage; Display Not Blanked ^[7]	V_{BL}				0.8	V
Blanking High-Voltage; Display Blanked ^[7]	$V_{ m BH}$		3.5			V
Blanking Low-Level Input Current ^[7]	I_{BL}	$V_{\rm CC} = 5.5 \text{ V}, V_{\rm BL} = 0.8 \text{ V}$			50	μΑ
Blanking High-Level Input Current ^[7]	I_{BH}	$V_{\rm CC} = 5.5 \text{ V}, V_{\rm BH} = 4.5 \text{ V}$			1.0	mA
Logic Low-Level Input Current	I_{IL}	$V_{\rm CC} = 5.5 \text{ V}, V_{\rm IL} = 0.4 \text{ V}$			-1.6	mA
Logic High-Level Input Current	I _{IH}	$V_{\rm CC} = 5.5 \text{ V}, V_{\rm IH} = 2.4 \text{ V}$			+100	μA
Enable Low-Level Input Current	I _{EL}	$V_{\rm CC} = 5.5 \text{ V}, V_{\rm EL} = 0.4 \text{ V}$			-1.6	mA
Enable High-Level Input Current	I_{EH}	$V_{\rm CC} = 5.5 \text{ V}, V_{\rm EH} = 2.4 \text{ V}$			+130	μА
Peak Wavelength	$\lambda_{ ext{PEAK}}$	$T_A = 25$ °C		655		nm
Dominant Wavelength ^[8]	$\lambda_{ m d}$	$T_A = 25$ °C		640		nm
Weight**				1.0		gm
Leak Rate					5 x 10 ⁻⁸	cc/sec

Notes:

- 1. Nominal thermal resistance of a display mounted in a socket which is soldered into a printed circuit board: $\Theta_{JA} = 50$ °C/W; $\Theta_{JC} = 15$ °C/W.
- 2. Θ_{CA} of a mounted display should not exceed 35°C/W for operation up to $T_A = +100$ °C.
- 3. Voltage values are with respect to device ground, pin 6.
- 4. All typical values at $V_{CC} = 5.0$ Volts, $T_A = 25$ °C.
- 5. These displays are categorized for luminous intensity with the intensity category designated by a letter located on the back of the display contiguous with the Hewlett-Packard logo marking.
- 6. The luminous intensity at a specific ambient temperature, $I_v(T_A)$, may be calculated from this relationship: $I_v(T_A) = I_{v(25^{\circ}C)}(0.985) \ ^{\circ}(T_A \cdot 25^{\circ}C)$.
- 7. Applies only to 4N54.
- 8. The dominant wavelength, λ_d , is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

^{*}JEDEC Registered Data.

^{**}Non-Registered Data.

Figure 1. Timing Diagram of 4N51-4N54 Series Logic.

Figure 2. Block Diagram of 4N51-4N54 Series Logic.

TRUTH TABLE					
	BCD DA			4N51 AND 4N52	4N54
X8	X ₄	X ₂	X ₁		L
L	L	L	L	Ü	Ü
L	L	L	н		I
L	L	н	L	2	13
L	L	н	н	3	3
L	н	L	L	<u>-</u> -	Li
L	н	L	н	5	5
L	н	н	L	5	5
L	н	н	н	"	
н	L	L	L	8	8
н	L	L	н	9	9
н	L	Н	L	B	Fi
н	L	н	н	(BLANK)	B
н	н	L	L	(BLANK)]
н	н	L	н		0
н	н	н	L	(BLANK)	E
н	н	н	н	(BLANK)	F
DE	CIMAL	PT [2]	ON		V _{DP} = L
			OFF		V _{DP} = H
EN	IABLE [1	1)		D DATA	V _E = L
	INDEE.			CH DATA	V _E = H
BL	ANKIN	G[3]	L	LAY-ON	V _B × L
-		_	DISP	LAY-OFF	V _B = H

Notes:

- H = Logic High; L = Logic Low. With the enable input at logic high changes in BCD input logic levels or D.P. input have no effect upon display memory, displayed character, or D.P.
- The decimal point input, DP, pertains only to the 4N51 and 4N52 displays.
- The blanking control input, B, pertains only to the 4N54 hexadecimal display. Blanking input has no effect upon display memory.

Figure 3. Typical Blanking Control Current vs. Voltage for 4N54.

Figure 4. Typical Blanking Control Input Current vs. Ambient Temperature for 4N54.

Figure 5. Typical Latch Enable Input Current vs. Voltage.

Figure 6. Typical Logic and Decimal Point Input Current vs. Voltage.

Figure 7. Typical Logic and Enable Low Input Current vs. Ambient Temperature.

Figure 8. Typical Logic and Enable High Input Current vs. Ambient Temperature.

Operational Considerations

Electrical

The 4N51-4N54 series devices use a modified 4 x 7 dot matrix of light emitting diodes (LEDs) to display decimal/hexadecimal numeric information. The LEDs are driven by constant current drivers. BCD information is accepted by the display memory when the enable line is at logic low and the data is latched when the enable is at logic high. To avoid the latching of erroneous information, the enable pulse rise time should not exceed 200 nanoseconds. Using the enable pulse width and data setup and hold times listed in the Recommended Operating Conditions allows data to be clocked into an array of displays at a 6.7 MHz rate.

The blanking control input on the 4N54 display blanks (turns off) the displayed hexadecimal information without disturbing the contents of display memory. The display is blanked at a

minimum threshold level of 3.5 volts. This may be easily achieved by using an open collector TTL gate and a pull-up resistor. For example, (1/6) 7416 hexinverter buffer/driver and a 120 ohm pull-up resistor will provide sufficient drive to blank eight displays. The size of the blanking pull-up resistor may be calculated from the following formula, where N is the number of digits:

$$R_{blank} = (V_{CC} - 3.5 \text{ V})/[N (1.0 \text{ mA})]$$

The decimal point input is active low true and this data is latched into the display memory in the same fashion as the BCD data. The decimal point LED is driven by the on-board IC.

The ESD susceptibility of the IC devices is Class A of MIL-STD-883 or Class 2 of DOD-STD-1686 and DOD-HDBK-263.

Mechanical

4N51-4N54 series displays are hermetically tested for use in environments which require a high reliability device. These displays are designed and tested to meet a helium leak rate of 5×10^{-8} cc/sec and a fluorocarbon gross leak bubble test.

These displays may be mounted by soldering directly to a printed circuit board or inserted into a socket. The lead-to-lead pin spacing is 2.54 mm (0.100 inch) and the lead row spacing is 15.24 mm (0.600 inch). These displays may be end stacked with 2.54 mm (0.100 inch) spacing between outside pins of adjacent displays. Sockets such as Augat 324 AG2D (3 digits) or Augat 508 (one digit, right angle mounting) may be used.

The primary thermal path for power dissipation is through the device leads. Therefore, to insure reliable operation up to an ambient temperature of +100°C, it is important to maintain a case-to-ambient thermal resistance of less than 35°C/watt as measured on top of display pin 3.

Soldering

For information on soldering and post solder cleaning, see Application Note 1027 Soldering LED Components.

Preconditioning

4N51-4N54 series displays are 100% preconditioned by 24 hour storage at $125\,^\circ\!\mathrm{C}.$

Contrast Enhancement

The 4N51-4N54 displays have been designed to provide the maximum possible ON/OFF contrast when placed behind an appropriate contrast enhancement filter. For further information see Hewlett-Packard Application Note 1015, Contrast Enhancement for LED Displays.

Solid State Over Range Display

For display applications requiring a \pm , 1, or decimal point designation, the 4N53 over range display is available. This display module comes in the same package as the 4N51-4N54 series numeric display and is completely compatible with it.

Package Dimensions*

Figure 9. Typical Driving Circuit.

TRUTH TABLE

CHARACTER	PIN			
	1	2,3	4	8
+	Н	X	×	Н
-	L	X	X	Н
1	X	Н	X	×
Decimal Point	X	Х	Н	×
Blank	L	L	L	L

NOTES: L: Line switching transistor in Figure 9 cutoff.

H: Line switching transistor in Figure 9 saturated.

X: 'Don't care'

^{*}JEDEC registered data

Electrical/Optical Characteristics*

4N53 ($T_A = -55$ °C to +100°C, Unless Otherwise Specified)

Description	Symbol	Test Conditions	Min	Тур	Max	Unit
Forward Voltage per LED	$V_{\rm F}$	$I_F = 10 \text{ mA}$		1.6	2.0	V
Power Dissipation	P_{T}	$I_F = 10$ mA, all diodes lit		280	320	mW
Luminous Intensity per LED (Digit Average)	I_{F}	$I_{\rm F} = 6 \text{ mA}$ $T_{\rm C} = 25 ^{\circ}\text{C}$	40	85		μcd
Peak Wavelength	λ_{peak}	$T_C = 25$ °C		655		nm
Dominant Wavelength	$\lambda_{ m d}$	$T_C = 25^{\circ}C$		640		nm
Weight**				1.0		gm

Recommended Operating Conditions*

Description	Sym	Min	Nom	Max	Unit
LED Supply Voltage	$V_{\rm CC}$	4.5	5.0	5.5	V
Forward Current, Each LED	I_{F}		5.0	10	mA

Absolute Maximum Ratings*

Description	Symbol	Min	Max	Unit
Storage Temperature, Ambient	T_{S}	-65	+125	$^{\circ}\mathrm{C}$
Operating Temperature, Ambient	T_{A}	-55	+100	$^{\circ}\mathrm{C}$
Forward Current, Each LED	I_{F}		10	mA
Reverse Voltage, Each LED	$V_{\rm R}$		4	V

Note:

LED current must be externally limited. Refer to Figure 9 for recommended resistor values.

^{*}JEDEC Registered Data.

^{**}Non-Registered Data.

Glass/Ceramic Numeric and Hexadecimal Displays for Industrial Applications

Technical Data

HDSP-078X HDSP-079X HDSP-088X HDSP-098X

Features

- Three Character Options Numeric, Hexadecimal, Over Range
- Three Colors

 High Efficiency Red, Yellow,
 High Performance Green
- 4 x 7 Dot Matrix Character
- High Efficiency Red, Yellow and High Performance Green
- Two High Efficiency Red Options Low Power, High Brightness
- Performance Guaranteed Over Temperature
- High Temperature Stabilized
- Memory Latch/Decoder/ Driver
 TTL Compatible

• Categorized for Luminous Intensity

Description

These standard solid state displays have a 7.4 mm (0.29 inch) dot matrix character and an on-board IC with data memory latch/decoder and LED drivers in a glass/ceramic package.

The hermetic HDSP-078X,-079X/-088X displays utilize a solder glass frit seal. The HDSP-098X displays utilize an epoxy glass-to-ceramic seal.

The numeric devices decode positive BCD logic into characters "0-9," a "-" sign, decimal point, and a test pattern. The hexadecimal devices decode

positive BCD logic into 16 characters, "0-9, A-F." An input is provided on the hexadecimal devices to blank the display (all LEDS off) without losing the contents of the memory.

The over range device displays "±1" and right hand decimal point and is typically driven via external switching transistors.

Devices

Part Number HDSP-	Color	Description	Front View
0781	High-Efficiency Red	Numeric, Right Hand DP	A
0782	Low Power	Numeric, Left Hand DP	В
0783		Over Range ± 1	C
0784		Hexadecimal	D
0791	High-Efficiency Red	Numeric, Right Hand DP	A
0792	High Brightness	Numeric, Left Hand DP	В
0793		Over Range ± 1	C
0794		Hexadecimal	D
0881	Yellow	Numeric, Right Hand DP	A
0882		Numeric, Left Hand DP	В
0883		Over Range ± 1	C
0884	:	Hexadecimal	D
0981	High-Performance Green Numeric, Right Hand DP		A
0982		Numeric, Left Hand DP	
0983		Over Range ± 1	C
0984		Hexadecimal	D

Package Dimensions

Figure 1. Timing Diagram.

Figure 2. Block Diagram.

[TRUI	TH TABLE	
	BCD DA	ATA ^[1]		NUMERIC	HEXA-
X8	X ₄	X ₂	X ₁		DECIMAL
L	L	L	L	Ü	Ü
L	L	L	н		
L	L	н	L		<u> </u>
L	L	Н	Н	3	3
L	н	L	L	4	I I
L	н	L	н	5	5
L	н	н	L	- 6	6
L	н	н	н		
н	L	L	L	8	8
н	L	L	н	9	9
н	L	н	L		A
н	L	н	н	(BLANK)	8
н	н	L	L	(BLANK)	
н	н	L	н		D
н	н	н	L	(BLANK)	E.
н	н	н	н	(BLANK)	
DI	ECIMAL	PT.[2]	ON		V _{DP} = L
<u> </u>			OFF		V _{DP} = H
Ef	NABLE (1)	LOAD DATA		V _E = L
			LATCH DATA		V _E = H
В	ANKIN	G[3] DISPLAY-ON V _B = L			
			DISP	LAY-OFF	V _B = H

- Notes:

 1. H = Cogic High; L = Logic Low. With the enable input at logic high changes in BCD input logic levels have no effect upon display memory, displayed character, or DP.

 2. The decimal point input, DP, partains only to the numeric displays.

 3. The blanking control input, B, pertains only to the hexadecimal displays. Blanking input has no effect upon display memory.

Absolute Maximum Ratings

Description	Symbol	Min.	Max.	Unit
Storage Temperature, Ambient				
HDSP-078X/-079X/-088X	$\mathrm{T_{S}}$	-65	+125] ℃
HDSP-098X		-55	+100	
Operating Temperature, Ambient ^[1]	T_{A}	-55	+100	°C
Supply Voltage ^[2]	$ m V_{CC}$	-0.5	+7.0	V
Voltage Applied to Input Logic, dp and Enable Pins	$V_{\rm I},V_{ m DP},V_{ m E}$	-0.5	$V_{\rm CC}$	V
Voltage Applied to Blanking Input ^[2]	$V_{ m R}$	-0.5	$ m V_{CC}$	V
Maximum Solder Temperature at 1.59 mm (0.062 inch)			260	°C
Below Seating Plane; t ≤ 5 Seconds				

Recommended Operating Conditions

Description	Symbol	Min.	Nom.	Max.	Unit
Supply Voltage ^[2]	$V_{\rm CC}$	4.5	5.0	5.5	V
Operating Temperature, Ambient ^[1]	T _A	-55		+100	°C
Enable Pulse Width	t_{W}	100			nsec
Time Data Must Be Held Before Positive Transition of Enable Line	$t_{ m SETUP}$	50			nsec
Time Data Must Be Held After Positive Transition of Enable Line	t _{HOLD}	50			nsec
Enable Pulse Rise Time	t _{TLH}			1.0	msec

Optical Characterstics at $T_A = 25$ °C, $V_{CC} = 5.0 \text{ V}$

Device	Description	Symbol	Min.	Тур.	Max.	Unit
HDSP-078X Series	Luminous Intensity per LED	I_V	65	140		μcd
	(Digit Average) ^[3,4]					
	Peak Wavelength	$\lambda_{ ext{PEAK}}$		635		nm
	Dominant Wavelength ^[5]	$\lambda_{ m d}$		626		nm
HDSP-079X Series	Luminous Intensity per LED (Digit Average) ^[3,4]	I_{V}	260	620		μcd
	Peak Wavelength	$\lambda_{ ext{PEAK}}$		635		nm
	Dominant Wavelength ^[5]	$\lambda_{ m d}$		626		nm
HDSP-088X Series	Luminous Intensity per LED (Digit Average) ^[3,4]	I_V	215	490		μcd
	Peak Wavelength	$\lambda_{ ext{PEAK}}$		583		nm
	Dominant Wavelength ^[5,6]	$\lambda_{ m d}$		585		nm
HDSP-098X Series	Luminous Intensity per LED (Digit Average) ^[3,4]	I_V	298	1100		μcd
	Peak Wavelength	$\lambda_{ ext{PEAK}}$		568		nm
	Dominant Wavelength	$\lambda_{ m d}$		574		nm

Notes:

- 1. The nominal thermal resistance of a display mounted in a socket that is soldered onto a printed circuit board is $R\theta_{JA} = 50^{\circ}\text{C/W/device}$. The device package thermal resistance is $R\theta_{J-PIN} = 15^{\circ}\text{C/W/device}$. The thermal resistance device pin-to-ambient through the PC board should not exceed $35^{\circ}\text{C/W/device}$ for operation up to $T_A = +100^{\circ}\text{C}$.
- 2. Voltage values are with respect to device ground, pin 6.
- 3. These displays are categorized for luminous intensity with the intensity category designated by a letter code located on the back of the display package. Case temperature of the device immediately prior to the light measurement is equal to 25°C.

Electrical/Optical Characteristics

 $T_A = -55^{\circ}C \text{ to } +100^{\circ}C$

De	scription	Symbol	Test Conditions	Min.	Typ.[7]	Max.	Unit
Supply	HDSP-078X Series	I_{CC}	$V_{\rm CC} = 5.5 \text{ V}$		78	105	mA
Current	HDSP-079X/-088X/ -098X Series		Characters "5." or "B" displayed		120	175	
Power	HDSP-078X Series	P_{T}	$V_{CC} = 5.5 \text{ V}$		390	573	mW
Dissipation	HDSP-079X/-088X/ -098X Series		Characters "5." or "B" displayed		690	963	
Logic, Enable Low-Level In	e and Blanking out Voltage	V_{IL}	$V_{\rm CC} = 4.5 \text{ V}$			0.8	V
Logic, Enable Voltage	e High-Level Input	V _{IH}		2.0			V
Blanking High Blanked	h-Voltage; Display	$V_{\rm BH}$		2.3			V
Logic and En Input Current	able Low-Level	I_{IL}	$V_{\rm CC} = 5.5 \text{ V}$			-1.6	mA
Blanking Low	-Level Input Current	$I_{ m BL}$	$V_{IL} = 0.4 \text{ V}$			-10	μA
Logic, Enable High-Level In	e and Blanking put Current	I_{IH}	$V_{CC} = 5.5 \text{ V}$ $V_{IH} = 2.4 \text{ V}$			+40	μA
Weight					1.0		gm
Leak Rate						5 x 10 ⁻⁸	cc/sec

Notes:

4. The luminous intensity at a specific operating ambient temperature, $I_v(T_A)$, may be approximated from the following exponential equation: $I_v(T_A) = I_v(25^{\circ}\text{C}) \, e^{[k(T_A^*25^{\circ}\text{C})]}$.

Device	К
HDSP-078X Series HDSP-079X Series	-0.0131/°C
HDSP-088X Series	-0.0112/°C
HDSP-098X Series	-0.0104/°C

- 5. The dominant wavelength, λ_d , is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
- 6. The HDSP-088X and HDSP-098X series devices are categorized as to dominant wavelength with the category designated by a number on the back of the display package.
- 7. All typical values at $V_{CC} = 5.0 \text{ V}$ and $T_A = 25 ^{\circ}\text{C}$.

Operational Considerations

Electrical

These devices use a modified 4 x 7 dot matrix of light emitting diodes to display decimal/ hexadecimal numeric information. The high efficiency red and yellow displays use GaAsP/GaP LEDs and the high performance green displays use GaP/GaP LEDs. The LEDs are driven by constant current drivers, BCD information is accepted by the display memory when the enable

line is at logic low and the data is latched when the enable is at logic high. Using the enable pulse width and data setup and hold times listed in the Recommended Operating Conditions allows data to be clocked into an array of displays at a 6.7 MHz rate.

The decimal point input is active low true and this data is latched into the display memory in the same fashion as the BCD data. The decimal point LED is driven by the on-board IC.

The blanking control input on the hexadecimal displays blanks (turns off) the displayed information without disturbing the contents of display memory. The display is blanked at a minimum threshold level of 2.0 volts. When blanked, the display standby power is nominally 250 mW at $T_A = 25^{\circ}\text{C}$.

The ESD susceptibility of the IC devices is Class A of MIL-STD-883 or Class 2 of DOD-STD-1686 and DOD-HDBK-263.

Mechanical

These displays are hermetically sealed for use in environments that require a high reliability device. These displays are designed and tested to meet a helium leak rate of 5×10^{-8} cc/sec.

These displays may be mounted by soldering directly to a printed circuit board or insertion into a socket. The lead-to-lead pin spacing is 2.54 mm (0.100 inch) and the lead row spacing is 15.24 mm (0.600 inch). These displays may be end stacked with 2.54 mm (0.100 inch) spacing between outside pins of adjacent displays. Sockets such as Augat 324-AG2D (3 digits) or Augat

508-AG8D (one digit, right angle mounting) may be used.

The primary thermal path for power dissipation is through the device leads. Therefore, to insure reliable operation up to an ambient temperature of +100°C, it is important to maintain a base-to-ambient thermal resistance of less than 35°C watt/device as measured on top of display pin 3.

For further information on soldering and post solder cleaning, see Application Note 1027, Soldering LED Components.

Absolute Maximum Ratings

Description	Symbol	Min	Max	Unit
Storage Temperature, Ambient	$T_{\rm S}$	-65	+125	°C
Operating Temperature, Ambient	T _A	-55	+100	°C
Forward Current, Each LED	I_{F}		10	mA
Reverse Voltage, Each LED	V_{R}		5	V

Preconditioning

These displays are 100% preconditioned by 24 hour storage at 125°C, at 100°C for the HDSP-098X Series.

Contrast Enhancement

These display devices are designed to provide an optimum ON/OFF contrast when placed behind an appropriate contrast enhancement filter. For further information on contrast enhancement, see Application Note 1015, Contrast Enhancement for LED Displays.

Over Range Display

The over range devices display "±1" and decimal point. The character height and package configuration are the same as the numeric and hexadecimal devices. Character selection is obtained via external switching transistors and current limiting resistors.

Package Dimensions

Function
Plus
Numeral One
Numeral One
DP.
Open
Open
Vcc
Minus/Plus

Note:

1. Dimensions in millimetres and (inches).

Figure 3. Typical Driving Circuit.

Luminous Intensity per LED

(Digit Average) at $T_A = 25$ °C

Device	Test Conditions	Min.	Тур.	Units
HDSP-0783	$I_F = 2.8 \text{ mA}$	65	140	μcd
	$I_F = 8 \text{ mA}$		620	μcd
HDSP-0883	$I_F = 8 \text{ mA}$	215	490	μcd
HDSP-0983	$I_F = 8 \text{ mA}$	298	1100	μcd

Recommended Operating Conditions

 $V_{CC} = 5.0 \text{ V}$

		Forward	Forward Resistor Value		ue
D	evice	LED, mA	\mathbf{R}_1	$\mathbf{R_2}$	$\mathbf{R_3}$
HDSP-0783	Low Power	2.8	1300	200	300
	High Brightness	8	360	47	68
HDSP-0883		8	360	36	56
HDSP-0983		8	360	30	43

	Pin					
Character	1	2,3	4	8		
+	1	X	X	1		
_	0	X	X	1		
1	X	1	X	X		
Decimal Point	X	X	1	X		
Blank	0	0	0	0		

Notes:

0: Line switching transistor in Figure 7 cutoff.

1: Line switching transistor in Figure 7 saturated.

X: 'don't care.'

Electrical Characteristics

 $T_A = -55$ °C to +100°C

Device	Description	Symbol	Test Conditions	Min	Тур	Max	Unit
HDSP-0783	Power Dissipation	P_{T}	$I_F = 2.8 \text{ mA}$		72		mW
	(All LEDs Illuminated)		$I_F = 8 \text{ mA}$		224	282	
	Forward Voltage per LED	V_{F}	$I_F = 2.8 \text{ mA}$		1.6		V
			$I_F = 8 \text{ mA}$		1.75	2.2	
HDSP-0883	Power Dissipation (All LEDs Illuminated)	P_{T}	$I_F = 8 \text{ mA}$		237	282	mW
	Forward Voltage per LED	$V_{\rm F}$			1.90	2.2	V
HDSP-0883	Power Dissipation (All LEDs Illuminated)	P_{T}	$I_F = 8 \text{ mA}$		243	282	mW
	Forward Voltage per LED	V_{F}			1.85	2.2	V

Infrared Products

- IrDA Transceivers
- Emitters
- Detectors
- Integrated Circuits

Infrared Products

Infrared communications technology is quickly becoming a de facto feature of computer/ office and communications products. In the future, this communications technology will be key in industrial and medical handheld equipment as well as transportation and consumer products. HP has been in the forefront of IR technology combining superior III/V LED technology, high performance, high speed analog IC devices, and high volume manufacturing processes to produce infrared emitters, detectors, and transceiver modules.

HP's discrete emitter offering includes two versions of a T-13/4 (5 mm) TS AlGaAs 875 nm LED lamp and a two versions of an SMT subminiature 875 TS AlGaAs LED lamp. The HSDL-4220 is a 38 mW/Sr, 30° T-13/4 lamp and the HSDL-4230 is a 75 mW/Sr. 17° T-13/4 lamp. The HSDL-4400 is a series of flat top subminiature LED lamps and the HSDL-4420 is a series of dome top subminiature LED lamps. Under development is a series of IR detectors. The HSDL-5400 is a series of flat top subminiature LED detectors and the HSDL-5420 is a series of dome top subminiature LED detectors.

HP also offers a series of IrDA compliant transceiver modules. The HSDL-1000 is a 115.2 Kb/s, 1 meter minimum distance transceiver module designed to IrDA physical layer specifications. The HSDL-1001 is an IrDA 115.2 Kb/s module with improved electrical performance. This product is designed for low power, fast link turn around applications. This device also offers a shutdown feature for true power saving. This device will be released by July 1996. The HSDL-1100, a faster speed IrDA 4.0 Mb/s transceiver is under development and will be product released in May 1996. Also under development is a smaller form factor transceiver package for both the 115.2 Kb/s and the 4.0 Mb/s products. These products will be available in late 1996.

IrDA Data Link Design Guide Page No. 4-4

IrDA Infrared Transceivers

Part Number	Data Rate Range	Distance Range	Supply Voltage	idle Current	Shut- down Pin		Operating Tempera- ture	Package Size (w x h)	Mounting Options	Applications	Page No.
HSDL-1000 <i>New!</i>	9.6 K- 115.2 K	0 to 1	5	1.1	No	8	0 to 70	15 x 8.75	top/right angle	Notebook/Desktop PCs, FAX, modems PDAs,	4-33
HSDL-1001 New!	9.6 K- 115.2 K	0 to 1	3 to 5	0.17	Yes	0.1	0 to 70	15 x 8.75	top/right angle	mobile/fixed phones, automotive, handheld instruments	4-53
HSDL-1100 New!	9.6 K- 4.0 M	0 to 1	5		No	0.2	0 to 70	15 x 8.75	top/right angle	Notebook/Desktop PCs, printers, scanners, digital cameras	4-61
Units	Baud	m	V	mA		ms	С	mm			

Infrared Emitters

Part Number	Package Size	Viewing Angle	On Axis Intensity	For- ward Voltage	Rise/ Fall Time	Operating Tempera- ture	Mounting Options	Applications	Page No.
HSDL-4220 <i>New!</i>	T-13/4 (5)	30	22	1.50	40	0 to 70	top, right angle	Extended distance to IrDA Ir transceivers, consumer audio/video, automotive	4-48
HSDL-4230 New!	T-13/4 (5)	17	39	1.50	40	0 to 70	top, right angle	industrial handhelds, diffuse IR networks, control, and sensor	
HSDL-4400 New!	Sub- miniature (2x2)	110	4	1.50	40	-40 to 85	SMT top & reverse, thru-hole	Short range IR data links, small handheld, pagers, PCMCIA cards, diagnostics/ programming, board-to-board, smart	4-68
HSDL-4420 <i>New!</i>	Sub- miniature (2x2)	24	18	1.50	40	-40 to 85	SMT top & reverse, thru-hole	cards and sensor	
Units	(mm)	degrees	mW/sr	٧	ns	С			

Note:

Infrared Detectors

Part Number	Package Size	Viewing Angle	Photo Current @ 875 nm	Dark Current	Rise/ Fall Time	Operating Tempera- ture	Mounting Options	Application	Page No.
HSDL-5400 New!	Sub- miniature	110	1.6	2	7.5	-40 to 85	Same as HSDL-4400/4420	Same as Infrared Emitter HSDL-4400/4420	4-68
HSDL-5420 New!	Sub- miniature	28	6.0	2	7.5	-40 to 85	Same as HSDL-4400/4420		
Units		degrees	μΑ	nA	ns	С			

Note:

Infrared ICs

Part Number	Description	Interface to	Operating Temperature	Package	Page No.
HSDL-7000 New!	IrDA 3/16th Modulation IC	HSDL-1000 or HSDL-1001	-10 to 85	8 Pin SMT	4-43
Units			С		

Evaluation Kits

Part Number	Description	Contents
HSDL-8000	IrDA 115.2 Kbps	Contains 2 fully functional PCBs with HSDL-1000 and HSDL-7000. HSDL-4220 and
New!	Evaluation Kit	HSDL-4230 are provided for extended distance applications. Literature-IrDA Design Guide

Where applicable forward current is 50 mA.

^{2.} Where applicable forward current is 1 $\,mW/cm^2.$

IrDA Data Link Design Guide

HP SIR History

Hewlett-Packard has been offering infrared data transfer in its products beginning with the infrared printer port of the HP-41C pocket calculator introduced in 1979. In 1990, HP introduced the HP-48SX calculator, a bi-directional IR port. Finally, with HP's OmniBook 300 sub-notebook and 100LX palmtop computers, introduced in 1992, and the Vectra XM series desktop computers, introduced in May, 1993, HP began to offer a serial infrared port using HP's 115.2 Kb/s Serial Infrared (HP SIR) standard.

Seeing the benefits of an open infrared standard which could allow cableless communication between a variety of devices from many manufacturers. HP was instrumental in the formation of the Infrared Data Association. In September of 1993, HP SIR was adopted by IrDA as its hardware, physical layer standard, and added IrLAP; the link access protocol layer and IrLMP; the link management layer. In addition optional transport protocol layers are also written and are available. IrDA, at that time, was an organization of 40 members. The IrDA standard was designed around a "point and shoot" environment for short distance, 1m, tetherless communication featuring data

integrity, reliability, and low cost. HP began an HP SIR licensing program in 1993 which made the technology available to the public. IrDA has since grown into an organization of over 100 members, representing companies spanning computer and office automation, telecommunications, consumer, automotive, and industrial markets, with representation from around the world. By November, 1994, there were at least four companies demonstrating notebook computers equipped with IrDA-compatible IR ports, three companies demonstrating desktop PCs, one company incorporating an IR port into laser printers, and a company offering an IrDAcompatible adapter for the serial ports of existing PCs. Since then other companies have introduced portable computers with an IrDAcompatible port, and other companies offer adapters for existing printers.

Microsoft supports infrared connectivity in the Messaging Applications Program Interface (MAPI) and Telephony API (TAPI) in Windows 95, and Microsoft WinPad-based PDAs incorporating IrDA compatible IR ports are scheduled for introduction in 1995.

The advantages of this inexpensive and truly portable connectivity is being viewed with great

interest by medical, test and measurement, automotive, transportation and networking companies who have seen the early success of the subnotebook computer and printer users. Designs on the drawing board include drive-through toll booth payment equipment, automotive diagnostic data transfer and keyless entry systems, and at least one national telephone company has outlined plans to incorporate IR ports into hotel and public phones.

In April of 1995, IrDA approved a faster speed standard by voting into place the joint HP, IBM and Sharp proposal for a link which will run at 4 Mb/s, 1.15 Mb/s and be backward compatible to the present 115.2 Kb/s. Transfer of text files and relatively small amounts of information between machines is the primary application with the present 115.2 Kb/products. The release of 4 MB/s and 1.15 Mb/s standard will allow users to move into more data intensive applications such as networking, and the transfer of larger amounts of data that include color graphic files to printers. 10 Mb/s and faster are on the horizon and lead to the possibilities of IR docking stations, multimedia in computing products and very fast data transfer with imaging products. IR is also used in security,

industrial and automotive applications requiring motion sensing or transmission of short packets of data such as in keyless entry. The development of faster, low power IR components will allow more data to be sent over longer distances in products providing much longer battery life than at present. Small form factor. inexpensive devices will allow IR ports to be included in a wide variety of products for such functions as on-line testing, diagnostics, remote programming and other applications, doing away with the need for plugs, connectors and wires which are presently used in such applications.

HP Components Group

HP's Components Group is the largest independent supplier of communications components in the world. The group's charter-to develop semiconductor component solutions that enable the information exchange revolution-advances such strategic technologies as the "information superhighway," the extended desktop and mobile information appliances. These technologies will significantly expand communications and information management capabilities worldwide.

The Components Group, founded more than 30 years ago and headquartered in San Jose, California, employs 8925 people worldwide, and includes three major divisions—the Communication Components, Optical Communication and Optoelectronics Divisions. The HP Components Group serves six major markets: communications, computer/office, industrial,

transportation, consumer and government/military.

Major Product Areas:

- Fiber-optic components for voice, data and video transmission
- Fiber-optic link products for computer data transfer
- Radio frequency (RF) and microwave components for wireless communications
- RF and microwave transistors and integrated circuits for wireless communications
- Light-emitting diode (LED) displays
- LED indicators
- LED high-brightness lamps
- Motion-control products for instruments, industrial equipment, office equipment and printers
- Optocouplers for industrial equipment and motor control
- · Bar-code scanners
- RF and microwave amplifiers for wireless communications
- Infrared emitters, detectors and transceiver modules for the communications and computer/ office markets

Current Leadership Positions:

- #1 worldwide in LED lamps and displays
- World's brightest LEDs
- #1 worldwide in fiber-optic communications transceiver modules
- Technical leader for visible III-V products
- World's broadest fiber optic components product line
- #1 worldwide in optical encoders
- #1 worldwide in photo IC optocouplers
- World's most advanced highspeed silicon bipolar process

Recent advances in band gap engineering, coupled with expertise in optics design and high volume manufacturing have permitted HP to develop products such as the IrDA-compliant transceiver module. III-V advances will continue to focus on developing faster devices without compromising light output, reliability or cost, HP's experience with fiber optic transmitters and receivers as well as bar code scanners provides a wealth of knowledge about designing and manufacturing through-the-air data link solutions.

In addition to III-V materials capabilities, HP's access to high performance, high-speed analog bipolar IC processes is also very important to Components Group products. For example, the serial infrared module contains an IC containing high-sensitivity photo detectors and amplifiers combined with integral logic.

Emitter Technology

Figures 1 and 2 provide a look at the III-V technology for IR emitters. The first two devices on the left represent a much older technology, primarily used for control and sensing applications. These devices are relatively bright, but too slow for data transmission.

The emitter technology on the right represents DH TS AlGaAs (Double Heterojunction Transparent Substrate Aluminum Gallium Arsenide) emitter structure, the technology used in HP's IR transceiver. This technology is superior in optical power and speed, as shown in Figure 2. The TS AlGaAs emitters can be as much as three times as powerful

Figure 1, and 2. IR Emitter Technology.

Figure 1, and 2. IR Emitter Technology.

and ten times faster than GaAs:Si and AlGaAs:Si. The keys to the efficiency of this die is in the band gap engineering which goes into optimizing the ability to generate and allow the light to escape from the junction in the middle of the die, and the removal of the GaAs substrate which acts as a light absorbing medium in earlier technology (absorbing substrate) die.

Manufacturing

These products are assembled in highly-automated facilities with many years of experience in high volume manufacturing. In addition to their high volume manufacturing expertise, these facilities have been leaders in TQM for many years and are ISO 9000 certified. These policies and certification insure the best process control practices takes

place and the highest quality products are shipped.

Future Product Direction

The major thrust of new IR data link products under development will be on increased data rate and efficiency. The III-V expertise will be leveraged to provide customers with the highest speed and efficiency products available at reasonable cost. Active development will also take place in increased integration and cost reduction in the module. HP Components Group is well positioned in these areas because of its in-house capabilities and large manufacturing facilities.

Infrared Data Association (IrDA) Standard

Background

IrDA is an independent organization whose charter is to create interoperable, low cost IR data interconnection standards that support a walk-up, point-to-point user model that is adaptable to a broad range of appliances, computing and communicating devices. The IrDA address and phone number is listed in the appendix under the reference list. Setting standards for IR communication is key to effortless communication between brands and types of equipment. Standards and protocols which can be reasonably and inexpensively implemented is key to promoting the proliferation of IR.

There are a few administrative items when getting involved with the IrDA.

IrDA Membership Fees:

\$3,000 (US) for affiliate membership (standards documents, attend meetings, access to reflector)

\$6,000 for executive membership (same as affiliate plus voting rights)

IrDA Standards Document Fee: \$500 for Standards Document per company

HP Patent Agreement

As part of the HP SIR technology, HP had patented the encode/ decode circuitry and IR receiver minus the PIN photodiode (Figure 3). Acquisition of a license to use the HP patent should be considered by component or subsystem manufacturers that provide components that infringes on the

patent. System manufacturers or OEMs that purchase and implement components utilizing the technology do not need to acquire an HP patent license. The system OEM is relieved of any license requirement as long as one of the components in the system is from a firm that acquired a valid HP License. The license fee is \$5000 and the licensing agent is IrDA. HP's patent only applies to the 115.2 Kb/s standard and license agreements are not required for any higher speed versions, such as the 1.15 Mb/s and 4 Mb/s standard.

IrDA Standard

The IrDA specifications provide guidelines for link access (IrLAP), link management (IrLMP), and for the physical transfer of data bits (Physical Layer Specification) (see Figure 4). IrLAP provides guidelines for the software which looks for other

machines to connect to (sniff). discovers other machines (discover), resolves addressing conflicts, initiates a connection, transfers data, and cleanly disconnects. IrLAP specifies the frame and byte structure of IR packets as well as the error detection methodology for IR communication. Figure 5 shows the block diagram of the IrDA IrLAP function. Within the link connection provided by IrLAP. the functions and applications are managed by IrLMP software. IrLMP assesses the equipment and services available on the connected pieces of equipment, and manages negotiation of parameters such as bit rate, number of BOFs (beginning of frame), and link turn around time. IrLMP then manages the correct transfer of data and information.

Figure 3. IrDA Physical Layer and HP Patent.

Figure 4. IrDA Protocol Stack.

IrDA Physical Layer

The Physical Layer Specification provides guidelines for the physical connection of equipment using IR. The specifications for operating distance, viewing angle, optical power, data rate, and noise immunity enable physical interconnectivity between various brands and types of equipment. The specifications also ensure successful communication in typical environments and minimize interference between IR participants. The physical laver block diagram is shown in Figure 6 and represents the components necessary to implement an IrDA data link. Figures 7 and 8 describe the template for acceptable intensity/incidence versus viewing angle. These parameters as well as others are needed to ensure IrDA compliance at the physical layer.

Figure 5. IrLAP Block Diagram.

Figure 6. IrDA Physical Layer Block Diagram.

Figure 7. Acceptable Optical Output Intensity Range.

Figure 8. Optical High State Acceptable Range.

The IrDA physical layer specification defines the IR communication of a half-duplex link. Some of the key parameters are shown in the table below.

Link Parameters	Specifications		
Communication	half-duplex		
Operating Distance	0 to 1 m		
Data Rate	9.6 to 115.2 Kb/s		
Modulation	3/16		
Bit Error Rate	<10-9		

Transmitter Parameters	Specification		
Peak Wavelength	850 nm to 900 nm		
On-axis Intensity	40 mW/sr to 500 mW/sr		
Optical Half Angle Range	± 15 to ± 30 degrees, see Figure 7		
Pulse Rise/Fall Time	< 600 ns		
Pulse Optical Overshoot	< 25%		
Systematic Jitter	<0.2 μs		

Receiver Parameters	Specification
Incidence in Angular Range	4 μW/cm ² to 500 mW/cm ² , see Figure 8
Half-Angle	>± 15 degrees
Systematic Jitter	<0.2 ms
Latency	<10 ms

The IrDA link is a half-duplex link because of the physical proximity of the optical components. The transmitter and receiver in a point and shoot model are physically close together. When the transmitter is emitting light it saturates its own receiver, thus disabling it from receiving data from another source. A certain amount of time must elapse before the receiver can operate. In this case, <10 ms is required for the receiver to return to its receiving state before the other end of the link starts to send data back. This delay, the period between the time that the transmitter stops sending light pulses and the time the receiver is able to receive data, is called latency, also known as receiver set-up time.

In order for the IrDA link to be robust, certain measures were taken to prevent ambient noise from affecting the link. IrDA specifies the test methods for measuring the data integrity of the link under electromagnetic fields, sunlight, incandescent lighting and fluorescent lighting.

IrDA Compliance

IrDA has a Compliance Trademark and a Service Mark, shown in Figure 9a and 9b. The use of the Service Mark can be used freely on literature and equipment by IrDA members. This mark does not represent IrDA Compliance. The IrDA Compliance Trademark represents Compliance to IrDa Standards. A one-time fee per company of \$500 for IrDA members and \$1000 (U.S. Dollars) for non-IrDA members is required. In addition, the product carrying this trademark must have a valid Implementation Guide For IrDA Compliance and Compliance Certificate on record with IrDA. The full form, as of July 1995, is included in the Appendix for your convenience.

Figure 9a. IrDA Service Mark.

Figure 9b. IrDA Compliance Trademark.

IR Applications

Desktop PC and Notebooks

Many PC systems make use of an I/O chip in to control floppy disk drives, hard disk drives, modems, parallel ports, and other serial ports. Such systems can make use of special I/O chips which can also control the IR link, and will directly interface to the HSDL-1000 for full IrDA communication. I/O chips made by various semiconductor manufacturers including National Semiconductor and Standard Microsystems Corporation (SMC) are designed for IR communication, and are suitable for interface with the HSDL-1000. The following I/O chips are recommended for interface with the HSDL-1000:

- National Semiconductor PC87334VLJ or PC87334VJG
- SMC FDC37C665IR or FDC37C666IR

For any I/O chip, the Configuration Register bits must be set so that the I/O chip is set to operate in the proper modes. The settings should be Half-Duplex, IrDA, SIR, transmit active high, and receive active low where applicable. UART2 is usually enabled by the bit settings.

Special Note for Interface with the National Semiconductor PC87334:

An IR system comprising the HSDL-1000 and the National Semiconductor PC87334 I/O chip performs to IrDA standards when correctly implemented on a printed circuit board according to the board layout guidelines in this design guide. Errorless transmission can be obtained at distances of at least 1 meter between transmitter and receiver. If the PC87334 I/O chip is used with the HSDL-1000, then UART2 is the recommended IR interface. Figure 10 shows the recommended hardware connection:

Figure 10. Schematic of Super I/O and HSDL-1000.

Components Ctx and Rtx are necessary with the PC87334 because during any reset of UART2, PC87334 pin 63 is set high. If Ctx and Rtx is not implemented, and IRTX pin 63 is set high for any significant length of time (>500 ms), then the HSDL-1000's LED would be driven above the Absolute Maximum Rating for average LED current.

Once the hardware is complete, the IR Configuration Register of the PC87334 must be set-up for IR communication. National Semiconductor's BIOS especially for the PC87334 is recommended for this purpose. Following every reset of the PC87334, the IR Configuration Register bits will need to be set-up for IR communication. The IR Configuration Register bits should be set as follows:

Register Bit	Setting	
0	Set to 1 for SIR mode on UART2	
1	Set to 1 for half-duplex mode (IrDA standard)	
3, 2	Set to 01 (bit 3 to 0 and bit 2 to 1) for IR signals on UART2 pins	
4	Set to 0 for IR pulse width fixed at 1.6 μ s Set to 1 for IR pulse width = 3/16 baud period	

UARTs (16550 or Similar)

Many electronic machines such as PDAs, modems, and analytical instruments can make use of 16550 or similar UARTs for I/O interface. The UART signals are 100% duty-cycle (full bit width) and need to be modulated/demodulated for the HSDL-1000 IR transceiver module. The HSDL-7000 Endec (Encode/Decode) chip is recommended for the modulation/demodulation functions. The HSDL-7000 chip requires a 16x Clock or Baudout

signal from the UART in order to determine the baud rate for correctly modulating/demodulating the signal pulses.

The HSDL-7000 provides the modulation of UART-type full-bit-width data into 3/16th-bit-width IrDA type data for IR transmission. The HSDL-7000 also provides demodulation of the HSDL-1000 RXD 3/16th-bit-width output into full bit width UART type data. An IR system using a 16550 UART and the HSDL-7000

Endec can be realized with the connections shown in Figure 11.

The HSDL-7000 requires a 16x Clock or Baudout signal in order to correctly modulate and demodulate the UART and IR signals. The 16x Clock or Baudout signal needs to be 16 times the data rate of the UART data coming into the HSDL-7000. UART's such as the 16550 UART typically provide a 16x Clock/ Baudout signal pin for easy connection to the HSDL-7000.

3/16 Endec Netlist

System designers that do not require the functionality of a full I/O chip, and do not wish to use a discrete UART, often implement the I/O functions into a system ASIC. The modulation/demodulation function required for IR can be incorporated into the system ASIC, so that the ASIC can interface directly with the HSDL-1000 IR transceiver module. The HSDL-7000 Encode/Decode chip can be incorporated into the system ASIC to perform the modulation/demodulation.

The HSDL-7000 Endec netlist is available for ease of incorporation into a system ASIC.

Figure 11. 16550 UART Application Diagram.

Please contact your Hewlett-Packard Component Sales Representative for information regarding the HSDL-1000.

RS-232

Some electronic systems require off-board, or subsystem implementation of IR. If such systems use an RS-232 interface for IR, then IR can be implemented as shown in Figure 12.

The RS-232 implementation would interface to the following

pins: RTS, DTR, TXD, and RXD. Such a system would need software drivers to correctly configure the RTS and DTR signals to convey baud rate information. The software drivers and related hardware are needed to fully implement this solution. Please refer to reference list in the Appendix for contact information.

HSDL-1000 CX3 TXD GND RXD v_{cc} PIN 5 CAN BE USED TO ENABLE/DISABLE THE IR RECEIVER LOW = DISABLED HSDL-7000 BOARD COMPONENTS: CX1 = C1 = .22 µF ± 10% CX2 = C2 = .47 µF ± 20% CX3 = C3 = .1 µF ± 20% AT 0.5 cm MAXIMUM DISTANCE BAUDRATE FROM PIN 3 (CERAMIC). CX4 = C4 = 4.7 μF RI = R1 = 300 Ω ± 5% 1.8432 MHz RAUDRATE R4 = R_{LED} = 8 Ω MAXIMUM HSDL-1000 = HP INFRARED TRANSCEIVER MODULE HSDL-7000 = HP ENDEC CHIP MAX 232 OR LINEAR 232 DTR TXD

Figure 12. RS-232 Interface Diagram.

Microcontrollers

Hewlett-Packard is currently working on a recommendation for the IR interface to such microcontrollers as the Intel 8051 and 8031, or the Motorola HC05, HC08, and HC11. Please contact your local Hewlett-Packard sales representative for current information.

Extended Link Distance

Receiver sensitivity and transmission intensity are the main factors affecting link distance. To extend the link distance, both sensitivity and intensity must be increased on one end of the IR link, or either sensitivity or intensity must be increased on both ends of the IR link. Assume there are two ends of an IR link labeled A and B. If both sensitivity and intensity are increased for end A, then A's transceiver can both receive and transmit at longer distances regardless of what transceiver is at end B. If only transmission intensity is increased for end A. then the transmission intensity of end B must also be increased in order to increase link distance. Otherwise, B's transceiver could move further from A and still receive A's signal, but A could not receive B's transmitted signal at the extended distance. The same is true if only receiver sensitivity is increased.

The HSDL-1000 provides guaranteed errorless data transmission from 0 cm to 1 meter under recommended operating conditions. In typical applications, the link distance can reach 2 meters. Typical link distance can be increased if the transmission intensity is increased at both ends of the IR link. If the LED current pulse amplitude of both ends of the IR link are increased from the recommended 250 mA to 500

mA, the link distance can typically reach as far as 3 m at 115.2 Kb/s, but guaranteed over recommended operating conditions as far as 1.5 meters.

The HSDL-1000 features the ability to drive an external LED for added power, as shown in Figure 13a. The HSDL-4220 IR emitter or the HSDL-4230 IR emitter can be connected in series or in parallel with the HSDL-1000's internal LED. The HSDL-4220 typically provides 190 mW/sr of intensity at a peak pulse current of 250 mA, and has a viewing angle of 30 degrees. The HSDL-4230 typically provides 375 mW/sr of intensity at a peak

pulse current of 250 mA, and has a viewing angle of 17 degrees. Refer to the HSDL-4220 and HSDL-4230 data sheets in the Appendix for more information.

Connection of an external IR LED in parallel with the LED in the HSDL-1000 can be implemented as shown below. Resistors R3 and R4 should be chosen to provide the appropriate LED current as described in the Figure 13b.

The combined intensity of the HSDL-1000 internal LED and the HSDL-4220 or HDSL-4230 external LED can be used to calculate the potential link distance. Link distance is

proportional to the square root of the total intensity of the signal. The table below demonstrates the link distances which can be achieved under typical operating conditions. Guaranteed link distances over the recommended operating range will reduce the link distance.

Transmission signals with less than 20 percent duty cycle can be used to obtain even further link distance. LED pulses of peak amplitude larger than 500 mA can be used if the pulse duty cycle is decreased below 20 percent. The recommended maximum average LED current for the HSDL-1000 is 100 mA. An LED pulse of 500 mA peak amplitude and 20% duty cycle corresponds to 100 mA average LED current. If an IrDA allowable 1.6 us pulse at 9600 bits/second is used (1.53 percent duty cycle), then an LED pulse of 1 amp peak amplitude can be used and still not exceed the 100 mA maximum average LED current.

Successful link communication at 9.6 Kb/s has been demonstrated at distances exceeding 10 meters with an external HSDL-4230 LED connected to the HSDL-1000. Both the HSDL-4230 LED and the HSDL-1000 LED were driven with 1 amp peak amplitude pulses of 1.6 µs pulse width.

Figure 14 demonstrates the effect of receiver sensitivity (μ W/cm²) and transmission intensity (mW/sr) on link distance. For a given receiver sensitivity (40 μ W/cm²) and a given transmission intensity (40 mW/sr), the theoretical link distance in meters can be determined.

COMPONENTS: R3 = LED2 BIAS RESISTOR = 8Ω MAXIMUM R4 = MODULE LED BIAS RESISTOR = 8Ω MAXIMUM LED2 = EXTERNAL LED HSDL4220 OR HSDL4230 RECOMMENDED HSDL4100 = IR TRANSCEIVER MODULE

Figure 13a. Extended Distance Schematic.

Transmitting Devices	LED Pulsed Drive Currents (Ipeak)	Total LED Typical Intensity On-Axis	Typical On-Axis Link Distance
HSDL-1000	250 mA	100 mW/sr	2.0 meters
HSDL-1000	500 mA	200 mW/sr	2.8 meters
HSDL-1000 and HSDL-4220	250 mA each	290 mW/sr	3.4 meters
HSDL-1000 and HSDL-4230	250 mA each	475 mW/sr	4.4 meters

V+ LED Pull-up Supply Voltage (V)	R_{LED} Pull-up Resistor (Ω) (R3 or R4 and Eval Board)	ILED (mA)
4.5	4.3	465
4.5	5.6	357
4.5	6.2	323
4.5	6.8	294
4.5	7.5	266
5.0	5.1	490
5.0	5.6	446
5.0	6.8	368
5.0	7.5	333
5.0	8.2	305
5.0	9.1	275
5.0	10.0	250

ILED = $(V + = 2.5 V)/R_{LED}$.

Figure 13b. HSDL-1000 LED Resistor Selection Table.

Figure 14. Incidence vs. Link Distance vs. Transmit Intensity.

Software Drivers and Application Programs

The following list of manufacturers provides application software and drivers utilizing IR hardware. The addresses and phone numbers are listed in the Appendix under Reference List.

Microsoft (Windows 95)
Puma Technology (Application Software)

Traveling Software (Application Software)

Connexus (Windows Drivers)
Parallax (IR Drivers for PDAs)

HSDL-1000 Design Guidelines

Product Description

Block Diagram

The HSDL-1000 transceiver module performs infrared data transfer compliant to the IrDA physical layer specifications, at data rates up to 115.2 Kb/s. The modular design enables ease of implementation, and ease of compliance to IrDA angular specifications. The design of the receiver circuitry enables error free data transfer at guaranteed link distances from 0 meters (nose to nose) to at least 1 meter.

The HSDL-1000 schematic diagram shows the operation of the HSDL-1000. Both pins of the LED are accessible in order to implement additional LEDs in series or in parallel if desired. A daylight cancellation circuit in the first stage amplifier of the receiver uses CX1 to filter out ambient light. The output of the first stage amplifier is capacitively coupled to the comparator to extract only the AC component of the signal.

Dynamic Range

The wide dynamic range, over 5 orders of magnitude, required by the IrDA physical laver specification necessitates automatic adjustment of the receiver to incoming signal levels. The HSDL-1000 uses feedback and limiting within the first stage amplifier circuitry to enable quick adjustment to incoming signal levels. The amplifier design allows maximum sensitivity for low power signals (4 uW/cm²) and also limits pulse width distortion during high power signals (500 mW/cm²). The realized performance with this special design eliminates the need for any additional automatic gain control, AGC circuitry.

AGC circuitry can be used in an IR receiver to obtain wide dynamic range. The presence of AGC circuitry is not a guarantee that the IrDA specifications will be met. Imprecise design of the AGC circuitry has been shown to lead to bit errors at large signal levels (short IR link distances). The complete IR system should be tested for IrDA compliance at both short (nose-to-nose) and long (1 meter) distances regardless of the design methodology used to obtain wide dynamic range.

Ambient Light

The HSDL-1000 IR transceiver module makes use of several technologies to reduce the interfering effects of ambient light on correct IR signal reception. The package mold compound is tinted with dye to filter out light wavelengths below the IR wavelengths of 850-900 nm. The lens of the detector is designed to focus light within the IrDA viewing angle. The first stage amplifier of the receiver contains daylight cancellation circuitry to eliminate the ambient light portion of incoming signals. HP has ensured robust performance in adverse conditions.

EMI Immunity

The HSDL-1000 has excellent EMI Immunity when board layout is implemented according to the board layout section of this design guide. The EMI Immunity is greater than 200 volts/meter for any square wave noise source, and even higher for sinusoidal noise sources. A 10 volt peakpeak square wave signal source placed 5 cm from the HSDL-1000 would produce EMI of 200 volts/meter.

All IR transceiver solutions require improved ground plane design and capacitive decoupling over standard practices for digital integrated circuits. Any IR transceiver solution, modular or discrete, has both analog functions and digital functions. The analog functions (IR detector, preamplifier) are more sensitive to EMI and power supply noise than typical digital integrated circuits.

Transmitter

The transmitter uses a high speed, high efficiency TS AlGaAs LED, along with a high speed drive circuit to produce high power IR pulses with minimal pulse width distortion. The efficiency of the LED and the package design enable maximum light intensity at the minimum drive current of 250 mA. The speed of the LED and drive circuitry minimize the rise and fall times of the LED signal edges, improving the detection capability of the corresponding IR receiver.

The HSDL-1000's transmitted intensity I_E at 250 mA LED current is guaranteed to be at least 44 mW/sr over the normal operating life of the transceiver module, if the recommended operating conditions are followed. The HSDL-1000 guarantees a minimum intensity of 44 mW/sr, which is 10% above the IrDA minimum of 40 mW/sr. This additional power allows for losses through a cosmetic window of about 10%, so that the minimum IrDA intensity can still be met.

The HSDL-1000 is a fully integrated transceiver. It includes the optics, LED and PIN photodiode, LED driver and receiver circuits in one package. It performs the IR transmit and receive functions for the system. The transmitter side of the HSDL-1000 converts the nominally 3/16th bit width

electrical pulses from the modulator into IR light pulses. On the receiver side, the HSDL-1000 also detects IR light pulses and converts them to TTL level electrical pulses for the demodulator. The block diagram, Figure 17, shows the partitioning an IR system using the HSDL-1000.

Mechanical Considerations

Lead Bend Options
The HSDL-1000 has four leadbend options. See Figure 15.
X01: Module lies flat on the board with the lens facing up from the horizontal board surface.

X02: Module sits upright at the board edge with the lens facing parallel to the horizontal board surface. Module sits with the board plane intersecting the body of the module. All leads point back to the board and are surface mount.

X03: Module sits upright on the board with lens facing parallel to the horizontal board surface. Some leads are surface mount and others are through-hole. Leads point both front and back for stability.

X04: Module sits upright on the board with the lens facing parallel to the horizontal board surface.

All leads are surface mount.

$Pad\ Layout$

Please refer to the HSDL-1000 data sheet for details on package and lead dimensions. The recommended pad layouts for each lead configuration are shown in Figures 16a - 16d.

The leadframe of the HSDL-1000 actually extends on both sides of the package and provides proper centering of the leadframe in the mold. There are four leads on one side and eight leads on the other. The four leads are sheared off after molding, but they are slightly exposed. These leads are still active and caution must be used to avoid contacting these leads to any conductive material.

Figure 16a. Pad Layout Diagram Option #X01.

Figure 16b. Pad Layout Diagram Option #X02.

Figure 16c. Pad Layout Diagram Option #X03.

Figure 16d. Pad Layout Diagram Option #X04.

External Components

The values of the external components CX1, CX2, CX3, CX4, $R_{\rm I}$, $R_{\rm LED}$, Ctx, and Rtx should be chosen according to the recommendation table on the data sheet and the recommended interface circuits in the IR Applications Section.

Figure 17. HSDL-1000 Schematic Diagram and Pinout Description.

Electrical Considerations

Component	Recommendation
CX1	Should not deviate from 0.22 µF, and is crucial to the daylight cancellation circuitry. Merging of received bits may occur if the CX1 value is too large. Loss of receiver
	sensitivity may occur if the CX1 value is too small.
CX2	Should be a minimum of $0.4~\mu F$, and can be higher if feasible to implement on the board.
CX3	Nominally 0.1 μ F and small enough in size to be as close as possible (<0.5 cm) to pins 3 and 5 of the HSDL-1000.
CX4	Should be 4.7 µF minimum, and can be made larger to improve noise immunity.
R_{I}	Nominally 300 ohms.
R _{LED}	Range from 4 to 10 Ω depending upon the board supply voltage V_{CC} . The data sheet requires R_{LED} to be 8 Ω maximum, in order to allow the V_{CC} to drop as low as 4.5 V. A minimum LED current of 250 mA is then guaranteed. R_{LED} should be chosen so that the minimum LED current is 250 mA over the full range of V_{CC} in the actual application. If V_{CC} is guaranteed not to go below 5 V, then a value as high as 10 Ω can be used for R_{LED} . See the HSDL-1000 Source Calibration Table in the IrDA Compliance section for the resulting I_{LED} from various V_{CC}/R_{LED} combinations.
Rtx*	Nominally $2 \text{ k}\Omega$.
Ctx*	Nominally 0.1 μF in order to minimize pulse width distortion while AC coupling the data input.

^{*}Rtx and Ctx are only necessary in applications where the Txd pulse duty cycle is such that the Txd pulse width can be greater than 90 µs, such as interfacing to the National Semiconductor Super I/O chip. Refer to Figure 10.

PCB Layout for Noise Immunity Special attention to the recommended PCB layout guidelines will minimize the effects of EMI (Electro-Magnetic Interference) and PSN (Power Supply Noise) on the performance of the HSDL-1000's receiver. The effects of EMI and PSN can potentially reduce the sensitivity of the HSDL-1000's receiver resulting in reduced link distance. EMI can also generate spurious bits on the receiver output Rxd, when no IR signal is being received. HSDL-1000 evaluation boards which demonstrate the correct board layout, can be obtained from your local Hewlett-Packard Component Sales Representative.

EMI Immunity

EMI is radiated by switched mode power supplies, dc/dc converters, external monitor I/O ports, power ports, or clock generators. The distance of the HSDL-1000 to such EMI sources determines the EMI field strength required by the HSDL-1000 module. The EMI field strength at the HSDL-1000 must be less than the minimum EMI Immunity of the HSDL-1000 in order for error free performance.

EMI field strength is measured in volts/meter. A 200 volt EMI source placed 1 meter from the HSDL-1000 represents a 200 V/m field strength to the HSDL-1000. A 10 volt EMI source placed 5 cm from the HSDL-1000 also represents a 200 V/m field strength to the HSDL-1000.

EMI Immunity is the maximum field strength of EMI that the HSDL-1000 can tolerate while maintaining a receiver BER $< 10^{-9}$. If the EMI Immunity of the HSDL-1000 is 200 V/m

then the distance of the EMI source to the HSDL-1000 must be increased until the EMI field strength is less than 200 V/m at the HSDL-1000 module.

The following recommendations for PCB layout should provide sufficient EMI immunity for error free IR link operation:

- $\begin{array}{l} 1.\ V_{CC} \ by pass \ capacitor \ CX3 \\ should \ be \ ceramic, \ and \\ positioned \ as \ close \ as \ possible \\ to \ the \ module \ (within \ 0.5 \ cm \\ of \ pins \ 3 \ and \ 5 \ of \ the \ module) \end{array}$
- Multi-layer PCB is recommended so that a sufficient ground plane can be properly placed.
- 3. The board underneath the module, and 3 cm in any direction around the module is defined as the critical ground plane zone. The board's ground plane should be maximized in the critical ground plane zone. Any unused board space in the critical ground plane zone should be filled with ground metal. Unused board space is defined as board space not used for other connections/traces.
- 4. The ground plane for the HSDL-1000 should have a very low impedance connection to a clean/noiseless ground node. The noise on the ground node should be 10 mV or less for optimum receiver performance. The HSDL-1000 ground plane connection to board ground should be separated by a high impedance to ground connections of power supplies, digital switching circuits, or other noise sources. The impedance between HSDL-1000 ground and noise source ground can be increased by minimizing the conductive or ground plane paths between them (both number of traces and trace size). An example of this recommended connection is shown in Figure 18a.
- 5. The components recommended for each particular application should be placed within the board area where the HSDL-1000 ground plane has been maximized. CX1, CX2, CX3, and CX4 (if used for the particular application) should be placed as close to the module as possible. The ground plane metal can be extended beyond the critical

Figure 18a. HSDL-1000 Ground Connection.

The table below shows the expected EMI Immunity performance when following the guidelines above.

Signal Source	Frequency	EMI Immunity (V/m)
Square Wave	0 Hz to 10 kHz	≥ 285
Square Wave	10 kHz to 300 kHz	≥ 235
Square Wave	>300 kHz	≥ 305
Sinusoidal	All	≥ 305

ground plane zone in order to accommodate components, or to further improve EMI immunity.

6. All signal or noise sources (power ports, monitor ports, clock generators, switched mode power supplies) should be located at least 5 cm away from the module, and outside of the HDSL-1000 ground plane.

If the peak signal amplitude of a noise source is known, then the EMI field strength at the HSDL-1000 can be calculated in volts/meter. The distance of that source to the HSDL-1000 can be adjusted above or below 5 cm in order to maintain an EMI field strength less than the EMI Immunity.

Compromises in board layout from the recommended layout can result in a significant reduction in EMI immunity. Factors such as increased lead/trace length from pins 3,5 of the HSDL-1000 to CX3 and CX4, or reduced ground plane area, can degrade EMI immunity by 50% or greater. Curves of EMI Immunity versus Frequency for the recommended board layout, and a compromised board layout are shown on Figure 19a.

Power Supply Rejection (PSR) Power supply noise can be coupled into the HSDL-1000's receiver through V_{CC} or ground lines. Power supply ripple is a common example of power supply noise. PSR (Power Supply Rejection) refers to the HSDL-1000's ability to tolerate power supply noise, while maintaining error free operation. Proper PCB layout techniques and external component placement can ensure successful operation with power supply noise present on V_{CC} or ground.

The recommendations for board layout below should provide sufficient PSR for error free IR link operation:

- 1. The least noisy power source available on the application board should be chosen for $V_{\rm CC}$ of the HSDL-1000 module. Biasing $V_{\rm CC}$ of the HSDL-1000 directly from a noisy switched mode power supply line should be avoided.
- 2. The V_{CC} line to the HSDL-1000 module should be filtered sufficiently so that less than 10 mV of noise is present at either pin 3 or pin 5 of the module. The recommended values of CX3 and CX4 should provide

- sufficient filtering in most cases. CX3 and CX4 can be increased in value if more filtering is necessary.
- $3.\ V_{CC}$ bypass capacitor CX3 should be ceramic, and positioned as close as possible to the module (within $0.5\ cm$ of pins $3\ and\ 5$ of the module)
- 4. The board underneath the module, and 3 cm in any direction around the module is defined as the critical ground plane zone. The board's ground plane should be maximized in the critical ground plane zone. Any unused board space in the critical ground plane zone should be filled with ground metal. Unused board space is defined as board space not used for other connections/traces.
- 5. The ground plane for the HSDL-1000 should have a very low impedance connection to a clean/noiseless ground node. The noise on the ground node should be 10 mV or less for optimum receiver performance. The HSDL-1000 ground plane connection to board ground should be separated by a high impedance to ground connections of power supplies, digital switching circuits, or other noise sources. The impedance between HSDL-1000 ground and noise source ground can be increased by minimizing the conductive or ground plane paths between them (both number of traces and trace size). An example of this recommended connection is shown in Figure 18a.

Figure 19a. EMI Immunity vs. Square Wave Noise Signal Frequency.

Figure 19b. Infrared Link Distance versus Power Supply Noise Frequency.

The effect of power supply noise on HSDL-1000 receiver sensitivity is shown Figure 19b. A 1 meter infrared link is constructed with a power supply noise sine wave of 40 mV peakpeak amplitude applied to the V_{CC} pin of the link's receiving HSDL-1000 module. The sine wave is modulated on top of the DC positive supply voltage. The frequency of the sine wave is varied from 1 Hz to 700 kHz for the measurement. The IR link's transmitting LED forward current is adjusted to maintain a link BER ≤ 10-6 for each noise sine

wave frequency at a fixed distance.

The normalized link distance

operating at a BER $\leq 10^{-6}$ is derived from the LED forward current at each frequency and compared to the maximum IR link distance no power supply noise at a BER $\leq 10^{-6}$. Normalized IR link distance $d = \text{sqrt}[(I_{\text{LED}}@\text{no noise})/(I_{\text{LED}}@\text{f})]$ where f = frequency of the noise signal.

Improving EMI Immunity and PSR

If EMI noise or power supply noise are suspected in causing reduced sensitivity or link distance, then the signal on Rxd of the receiving HSDL-1000 should be measured with the link in an idle state (no IR transmission). If bits are observed on Rxd, then noise is coupling into the receiver causing spurious bits on Rxd. The receiving HSDL-1000 should then be biased from a separate clean dc supply (such as a battery). If spurious bits are still observed on Rxd of the receiving HSDL-1000, then the noise is most likely due to EMI. If Rxd looks clean when biased from a separate dc supply, then the noise is most likely V_{CC} or Ground noise.

The first step in improving EMI immunity and Power Supply Rejection is to confirm that the recommended board layout has been followed.

The following steps specifically improve EMI Immunity, but can also improve PSR:

 Increase the ground plane under the HSDL-1000 module.

Extend the ground plane

- further out from the module. For a multi-layer board, use board layers underneath and near the HSDL-1000 for additional ground plane.
- 2. Move CX3 closer to module pins 3 and 5. Increase CX3 from its nominal value (0.1 µF).
- 3. Move CX4 closer to the module, and increase CX3 from its nominal value (4.7 µF).

The following steps specifically improve **PSR**, but can also improve EMI Immunity:

- 1. Connect V_{CC} of the HSDL-1000 to a DC power board trace with measured noise ≤ 10 mV. For a multi-layer board, use one layer underneath and near the HSDL-1000 as V_{CC}, and sandwich that layer between ground connected board layers. For example in a fourlayer PCB, layer 1 (top) contains traces, layer 2 contains ground underneath the module and surrounding areas, layer 3 contains V_{CC}, layer 4 (bottom) contains traces and ground metal.
- If possible, move CX3 closer to module pins 3 and 5. Increase CX3 from its nominal value (0.1 µF).
- 3. If possible, move CX4 closer to the module, and increase CX3 from its nominal value (4.7 µF).
- Connect the ground plane of the HSDL-1000 to a ground node with <10 mV noise.
 Separate the HSDL-1000 connection to ground from

power supply or digital switching circuits connections to ground.

5. Implement a PI filter on V_{CC} as shown in Figure 19c.

Figure 19c. PI Filter.

Optical Port Design

Aperture Dimensions and Orientation

Figure 20 shows a module positioned with respect to the

front panel of a hypothetical product. Dimension 'Y' is the distance between the apex of the receiver side lens and the outside face of the front panel. Dimension 'X' is the distance from the middle of the module to the edge of the IR transparent window. which is defined as the 'Aperture Half Width.' For a given 'Y' design, the Aperture Half Width 'X' must be less than or equal to the value shown in Figure 21. For dimensions greater than 5 mm, the following equation can be used to calculate X: X = 2.87*Y + 7.0.

Window Material Selection
The HSDL-1000 data sheet specifications for Transmitter Radiant

Figure 20. Position of Module with Respect to Product Case.

Recommended Plastic Materials:

Material #	Light Transmission	Haze	Refractive Index
Lexan 141L	88%	.1%	1.586
Lexan 920A	85%	1%	1.586
Lexan 940A	85%	1%	1.586

Note: 920A and 940A are more flame retardant than 141L.

Figure 21. Maximum Aperture Half Width as a Function of Module Depth.

Intensity and for Receiver Input Irradiance allow for 10% light signal loss through a cosmetic window placed in front of the IR transceiver module. The recommended plastic materials for use as a cosmetic window are available from General Electric Plastics, see Reference List in the Appendix for contact information.:

Recommended Dye: Violet #21051 (IR transmissant above 625 nm)

Improved receiver performance in the presence of ambient light (sunlight, fluorescent light, incandescent light) can be attained by indenting the module into the system box by a few millimeters. The overhang of the system box will minimize the amount of direct ambient light that the HSDL-1000 detector sees. The cosmetic window will also help reflect ambient light away from the module.

New Products

HSDL-1001: 115 Kb/s Infrared IrDA Compliant Transceiver
The HSDL-1001 is an improved version of the HSDL-1000. HP plans to offer and support both the HSDL-1000 and HSDL-1001. A preliminary data sheet is located in the Appendix. The following table summarizes the performance enhancements of the HSDL-1001.

HSDL-1100: 1.15/4 Mb/s Infrared IrDA Compliant Transceiver

With the approval of the higher speed (1.15 MB/s and 4 Mb/s) IrDA standard in April, 1995, Hewlett-Packard is designing a transceiver module compliant to this standard, the HSDL-1100. A preliminary data sheet is located in the Appendix.

HSDL-44XX/54XX: IR Emitter and PIN Photodiode in a Subminiature SMT Package
For applications that require small, surface mount, and short distance IrDA-type links, such as pagers and hand held devices, the HSDL-44XX emitter and HSDL-54XX detector may fit your application. A preliminary data sheet is located in the Appendix.

Please consult your local HP Components Sales Representative regarding samples and availability of these future products.

Parameter	HSDL-1000	HSDL-1001		
Supply Voltage	5 V	3 V to 5 V		
Idle I _{CC}	1.1 mA	165 μΑ		
Receiver Latency	8 ms	100 μs		
Shutdown Pin	No	Yes		
External Passive Components	6-8	3-5		
TXD Input Current	4.5 mA	100 μΑ		

IR System Testing IrDA Physical Layer Compliance

Obtaining IrDA compliance for the completed IR system is important not only to permit the use of the IrDA trademark, but in order to guarantee interoperability with equipment produced by other manufacturers. Such interoperability will greatly increase the value of your IR system in the perspective of the end user. Both short distance, nose-to-nose, and long-distance (1 meter), performance should be verified for any proposed IR system seeking to be IrDA compliant. IR components of some manufacturers, advertised as IrDA compatible or compliant, currently do not meet the required performance at both short and long link distances. The HSDL-1000/HSDL-1001 is tested in production in order to guarantee IrDA compliance for both short and long distances.

The modular design of the HSDL-1000/HSDL-1001 enables the system designer to easily meet the IrDA physical layer specifications. The design and guaranteed performance of the HSDL-1000/HSDL-1001 ensures that a correctly designed system will meet all of the IrDA physical

layer specifications. Correct system design includes proper board layout and optical interface as described later in this design guide. The Compliance Tables below demonstrate the guaranteed performance of the HSDL-1000/HSDL-1001 in an IR system, and can be used to complete the Product Declaration

of Compliance form located in the Appendix.

For IR detectors: I_E (mW/sr) = [(Measured Power (mW))* (1 meter/L)²] / (Detector Area (meters²)], where L is the distance, in meters, from the HSDL-1000/HSDL-1001 under test to the IR detector.

IR Transmitter Compliance Table

Active Output Specifications	Measured Value or Check	Specifications	Verification Method
Peak Wavelength	875 nm	850 nm to 900 nm	GBD
Active On-Axis Output Power	>44 mW/sr < 500 mW/sr	40 mW/sr to 500 mW/sr	VBT GBD See Note 1
Half-Angle Where Power is < 40 mW	± 15 to ± 30 degrees 22 degree typical	± 15 to ± 30 degrees	VBT
Optical Rise Time	Typical = 150 ns Maximum = 600 ns	< 600 ns	GBD
Optical Fall Time	Typical = 50 ns Maximum = 600 ns	< 600 ns	GBD
Pulse Overshoot	< 25%	< 25%	GBD
Pulse Jitter	< 200 ns	<200 ns	GBD

GBD = Guaranteed By the Design of the HSDL-1000/HSDL-1001 module. Characterization data has shown that all functionally good units will meet these specifications.

Note:

VBT = Verified by 100% test of production units prior to shipping.

^{1.} Although the HSDL-1000/HSDL-1001 data sheet guarantees a transmitted intensity $I_E \ge 44$ mW/sr within the IrDA viewing angle, verification of the output power of the overall IR system may be necessary. The orientation of the HSDL-1000 in the IR system box with respect to windows and openings, and the window shape and material, could effect I_E . Verification that the overall IR system meets the 40 mW/sr minimum can be accomplished with a simple on-axis I_E test. An IR detector with known area can be placed at 20 cm or greater, on-axis (half-angle = 0), from the IR system window. I_E can be derived from the measured power captured by the detector. The minimum I_E within the IrDA viewing angle occurs on-axis for the HSDL-1000/HSDL-1001. See Figure 7 in the HSDL-1000 data sheet located in the Appendix.

IR Receiver Compliance Table

Active Input Specifications	Yes	No	Verification Method
Receiver correctly generates 0's and 1's when exposed to a pulsed IR signal of 4 μ W/cm ² at 0 degrees	X		See Note 2
Receiver correctly generates 0's and 1's when exposed to a pulsed IR signal of 500 mW/cm ² at 0 degrees	X		VBT
Receiver correctly generates 0's and 1's when exposed to a pulsed IR signal of 4 μ W/cm ² at +15 degrees	X		VBT
Receiver correctly generates 0's and 1's when exposed to a pulsed IR signal of 500 mW/cm^2 at $+15 \text{ degrees}$	X		VBT
Receiver correctly generates 0's and 1's when exposed to a pulsed IR signal of 4 μ W/cm ² at -15 degrees	X		VBT
Receiver correctly generates 0's and 1's when exposed to a pulsed IR signal of 500 mW/cm ² at -15 degrees	X		VBT
Using a jitter free sequence of IR pulses, what is the jitter in the electrical equivalent of those pulses (< 200 ns)	< 200 ns		GBD
Minimum delay after transmit that the receiver receives error free (< 10 ms)	< 10 ms		GBD

 $GBD = Guaranteed \ By the \ Design of the \ HSDL-1000/HSDL-1001 \ module.$ Characterization data has shown that all functionally good units will meet these specifications.

VBT = Verified by 100% test of production units prior to shipping.

Note:

2. Although the HSDL-1000/HSDL-1001 data sheet guarantees correct receiver bit generation when exposed to a pulsed IR signal of $3.6~\mu\text{W/cm}^2$ within the IrDA viewing angle, verification of the overall IR system's performance may be necessary. The orientation of the HSDL-1000/HSDL-1001 in the system box with respect to windows and openings could effect receiver sensitivity. Verification that the overall IR system meets the $4~\mu\text{W/cm}^2$ sensitivity requirement can be accomplished with a simple functional test. A calibrated 40 mW/sr IR source can be placed 1 meter from the system IR window for the functional test. Alternatively, the HSDL-1000/HSDL-1001 module can be used as an IR source, if it is calibrated to 40 mW/sr with a power meter or the calibrated detector used in the transmitter compliance section.

V+ LED Pull-Up Supply Voltage (V)	R_{LED} LED Resistor (Ω)	I _{LED} (mA)	HSDL-1000 Light Source to Device Under Test (Source in Open 25-30°C Environment with NO Cosmetic Window) (meters)
4.5	4.3	465	. 1.73
4.5	5.6	357	1.52
4.5	6.2	323	1.44
4.5	6.8	294	1.38
4.5	7.5	266	1.31
5.0	5.1	490	1.78
5.0	5.6	446	1.69
5.0	6.8	368	1.54
5.0	7.5	333	1.46
5.0	8.2	305	1.40
5.0	9.1	275	1.33
5.0	10.0	250	1.27

The Source to IR System Distance is Calculated as follows:

Source to IR System Distance = (1 meter) * $sqrt[1.61 * (I_{LED}/250 mA)]$ where 1.61 is a calibration factor for the ratio: (Actual HSDL-1000 transmitted intensity I_E at $T_{ambient} = (25-30^{\circ}C)/(40 mW/sr)$.

A rough check of adequate transmitter power can be done using the table below. The light source to device under test distance in the right most column should be easily obtained for any IrDA compliant receiving system. The HSDL-1000/HSDL-1001 source should be at ambient temperature of 25-30°C (i.e. not in a closed system box). Cosmetic windows or filters should not be present in

front of the HSDL-1000/HSDL-1001 source. The functional testing can be conducted at a half-angle of 0 degrees and at a half-angle of \pm 15 degrees.

General System Testing
Post-assembly testing of the
physical layer of the IR system
may be desired in order to
guarantee the performance of
systems shipped to end users.

The testing need only include parameters/functionality that would be effected by variations in the assembly process. A simple file transfer test, including file compare for error checking, could be done at a link distance of 1 meter, and 15 degrees off axis. Such a test would guarantee link distance, angle, sensitivity, and error free transmission of data.

Evaluation Boards

The HSDL-8000 evaluation board contains outputs to interface to Super I/O Chipsets, or UARTs. These evaluation boards utilizes the guidelines outlined in this

designers guide and will be available at the end of the year 1995. Please contact your local Hewlett-Packard Component Sales Representative for more information.

Reference List

Infrared Data Association

IrDA 1776 Ygnacio Valley Road

Walnut Creek, CA 94598

General Electric Plastics

General Electric Plastics One Plastics Ave

Pittsfield, MA 01201

IR Software Application and Driver Manufacturers

Parallax Research

201 Innovation Centre NTU Nanyang Ave.

Singapore 2263

Counterpoint Inc

5975 NW Burgundy Dr.

Corvallis, OR 97330

IrDA Testing

Genoa Technology

5401 Tech Circle Moorpark, CA 93021

Puma Technology

US Puma Technology

3375 Scott Blvd. Suite 300

Santa Clara, CA 95054

Europe Winsoft International, Ltd.

65 High Street

Marlowe, Buckinghampshire, SL71AB, UK

Japan Something Good, International

City Plaza, Shinjuku, Building 2-5-20

Okubo, Shinjuku-ku, Tokyo, 169

Traveling Software

Jim Mantell

18702 North Creek Parkway

Bothell, WA 98011

Phone: (510) 943-6546 FAX: (510) 943-5600

irda@netcom.com

Phone: 800-845-0600 FAX: 413-448-7731

Phone: 65 793 0855

FAX: 65 793 0775

Phone: 541-757-7275 FAX: 541-745-7735

patm@countersys.com

Phone: 805-531-9030 FAX: 805-531-9045

http://www.gentech.com

Phone: (408) 987-0200 FAX: (408) 970-8750

Phone: 44 0 628 88 444

FAX: 44 4 628 478 560

Phone: 03 32 32 0803

FAX: 03 32 32 0963

Phone: 206-483-8088 206-483-1284

FAX:

Implementation Guide for IrDA Compliance IrDA Standards Version 1.0 Copyright 1994

IrDA Physical Layer (IrPHY) Implementation (Mandatory): Please document your results of the following.

Specification Version:		 _	

Active Output Specifications	Measured Value or Check	Specification
Peak wavelength		(850 nm to 900 nm)
Active on-axis output power		(40 <power<500 mw="" sr)<="" td=""></power<500>
Angle where power is <40 mW		(30>angle>15 degrees)
Pulse rise time		(<600 ns)
Pulse fall time		(<600 ns)
Pulse overshoot		(<25%)
Pulse jitter		(<200 ns

^{*}OK to quote LED data sheet and not measure this parameter

Please describe the setup of the testing environment and equipment (i.e. calibration).

Please document your results by checking the appropriate response:

Active Input Specifications	Yes	No
Receiver correctly generates 0's and 1's when exposed to a pulsed IR signal of 4 µW/cm ² at 0 degrees		
Receiver correctly generates 0's and 1's when exposed to a pulsed IR signal of 500 mW/cm ² at 0 degrees		
Receiver correctly generates 0's and 1's when exposed to a pulsed IR signal of 500 mW/cm ² at +15 degrees		

Active Input Specifications (Continued)	Yes	No
Receiver correctly generates		
0's and 1's when exposed to		
a pulsed IR signal of		
$4 \mu W/cm^2$ at -15 degrees		
Receiver correctly generates		
0's and 1's when exposed to		
a pulsed IR signal of		
$500 \text{ mW/cm}^2 \text{ at -} 15 \text{ degrees}$		
Using a jitter free sequence		
of IR pulses, what is the		
jitter in the electrical		
equivalent of those pulses (<200 ns)		
Minimum delay after transmit		
that the receiver receives		
error free (<10 ms)		

What additional features of the specification have you included in the applicant product?

IrDA Link Access Protocol (IrLAP) Implementation (Mandatory)

Please document your results by circling the appropriate response(s):

	Spe	cifica	ation	Ver	sion:
--	-----	--------	-------	-----	-------

Minimal Implementation Only	Yes	No
Secondary Only	Yes	No
Primary and Secondary	Yes	No
Baud Rates Supported (bps)		2400, 9600, 19200, 38400, 57600, 115200
Maximum Turnaround Supported (ms)		500, 250, 100, 50, 25, 10, 5
Data Size Supported (bytes)		64, 128, 256, 512, 1024, 2048
Tx Window Size Supported		1, 2, 3, 4, 5, 6, 7
Rx Window Size Supported		1, 2, 3, 4, 5, 6, 7
Number of ROF Req'd @ 11.5 kbps		48, 24, 12, 5, 3, 2, 1
Minimum Turnaround Time (ms) (Please write)		
Link Disconnect/Threshold time(s)		3/0, 8/3, 12/3, 16/3, 20/3, 25/3, 30/3, 40/3
Primary/Secondary Role Exchange	Yes	No
Sniffing	Yes	No

IrDA Link Management Protocol (IrLMP) Implementation (Mandatory)

Please document your	results by ch	ecking the app	ropriate response(s):

Specification Version:

IrDA Link Management Protocol (IrLMP) Implementation (Continued)

	Yes	No
Minimal Implementation Only		
Exclusive Mode		
Primary/Secondary Exchange		
Sniffing		
Connectionless Data Tx		
Connectionless Data Rx		
IAS Client		
Get Info Base Details		
Get Objects		
Get Value		
Get Value By Class		
Get Object Info		
Get Attribute Names		
IAS		
Get Info Base Details	1	
Get Objects		
Get Value		
Get Value By Class		
Get Object Info		
Get Attribute Names		

nplemented pecification Version	YES	NO	
PnP Attributes Values:		<u> </u>	
Device ID	M. A.		_
Name			
Manufacturer			
Category			
Version			
Status			
Comp Cnt			
Comp #00			
Comp #01			
Comp #02			
Comp #03			

Extend as appropriate.

IrDA Transport Protocol (IrTP) Implementation	on (Optional	al):
Minimal Implementation Only Specification Version:	YES	NO
INTEROPERABILITY STATEMENT		
List other IrDA Compliant devices with which the a	pplicant devic	vice has been demonstrated to interoperate.
List other IrDA Compliant devices with which the a possible please offer your diagnosis of the failure.	pplicant devic	rice has failed to be interoperable. Where
TESTING AND QUALITY ASSURANCE STATM	/ENT	
Briefly describe why you believe this device is compused to ensure IrDA Compliance?		the IrDA standard. What methods have been
Has an independent test suite been used to validate sample results.	this impleme	nentation? If YES, state which suite and attacl
Briefly describe plans for regression tests for subse	equent release	ses.

COMPLIANCE CERTIFICATE

The **Compliance Certificate** must be completed and submitted to Infrared Data Association ("IrDA") for each individual product model on which you intend to utilize the beaming IR and IrDA trademarks ("IrDA Trademarks") as required by the **IrDA Trademark License Agreement** ("Agreement"). Submission of (I) a duly authorized signed **Agreement** (with the appropriate fee) and (ii) a signed Compliance Certificate permits the Primary Licensee and other Affiliated parties defined in the Agreement to (a) use the IrDA trademarks on or in relation to (i.e., packaging, advertising, documentation, etc.) a product that has been herein documented designed to be compliant with the IrDA Standards, a (b) state that their developed and/ or market system level products have been implemented compliant to the most recent version of the IrDA standard specifications. The receipt of the **Agreement** and the **Compliance Certificate** must be acknowledged by IrDA prior to initiating use of the IrDA Trademarks.

The Implementation Guide Procedures for IrDA Compliance is a guide for documentation and does not substitute or release from obligation referral to the IrDA Standards Specifications for full compliancy design. The Primary Licensee is responsible for the testing and confirmation of product compliance including but not limited to contacted components/subcomponents. Accurate completion of the IrDA Physical Layer, IrDA Link Access Protocol; (IrLAP), and the IrDA Link Management Protocol (IrLMP) sections of the standard are mandatory for the authorized use of the IrDA Trademarks.

Applicant Information:			
Trademark License Agre	vement Number:		
Company Name:			
(Primary Licensee)			
Authorized Contact Nam	e:		
Address:			
	Street	City	
State	Zipcode	Country	
Telephone Number:		Facisimile:	
Description of Applican Tiule Version No.))	t Device (Manufacture, M	Model, Revision, Software I	Revision (Manufacturer,
Manufactured by:	Primary Licensee \Box	Affiliated Party \square	$OEM \square$
its behalf, I certify the abo Compliance are truthful ar	ove statements and test resund accurate. I understand the	and properly authorized to ults reflected in the Implementation of that an misrepresentation of sion of permission to utilize	entation Guide for IrDA the facts or false statements
[Type	name]	•	[Signature]
[m	itlal		[Data]

Infrared IrDA® Compliant Transceiver

Technical Data

Features

- Low Cost Infrared Data Link
- Guaranteed to Meet IrDA Physical Layer Specifications

1 cm to 1 Meter Operating Distance 30° Viewing Angle 2.4 KBd to 115.2 KBd Data Rate

- Daylight Cancellation
- Easily Implemented Direct Connection to Various I/O Chips
- Small Form Factor
- Several Lead and Shipping Configurations Available
- Excellent EMI Immunity
 (> 10 V/m)

Applications

• Data Comm: Serial Data Transfer Between:

Notebook Computers Subnotebooks Desktop PCs PDAs Printers Other Peripheral Devices

- Telecom:
- Modem, Fax, Pager, Phone
- Industrial:

Data Collection Devices

• Medical:

Patient and Pharmaceutical Data Collection

Description:

The HSDL-1000 serial infrared module performs low cost, low power, point-to-point, through the air data transfer in a serial, half-duplex mode.

The module has been designed to the IrDA (Infrared Data Association) Physical Layer Specifications. The module is designed to

HSDL-1000

operate from 0 to 1 meter at a data rate of 115.2 Kbd per second at a 30° viewing angle.

The HSDL-1000 contains a high speed, high efficiency TS AlGaAs 875 nm LED, a PIN Silicon photodiode and an integrated circuit. The IC contains an LED driver, amplifiers and a quantizer.

The module is designed to interface directly with selected I/O chips that incorporate logic which performs pulse width modulation/demodulation.

Schematic BUTTRESS

* SIDE BUTTRESS LEADS ARE FOR MECHANICAL STABILITY AND SHOULD NOT BE CONNECTED TO ANY ELECTRICAL POTENTIAL.

Note:

The -B- datum is formed by the two highest points of the combined surface formed by this surface and the corresponding surface of the same lead on the opposite side of the package.

^{*}X position indicates packaging. 0 = tape and reel, 1 = JEDEC standard tray.

Option X04*

DIMENSIONS IN MILLIMETERS (INCHES).

Note:

The -B- datum is formed by the two highest points of the combined surface formed by this surface and the corresponding surface of the same lead on the opposite side of the package.

^{*}X position indicates packaging. 0 = tape and reel, 1 = JEDEC standard tray.

Truth Table

In	puts		Outputs	
TXD	EI [1]	LED	LEDA	RXD
V_{IH}	X	ON	Low	Low ^[2]
$V_{\rm IL}$	EI_{H}	OFF	High	Low ^[2]
V_{IL}	EI_{L}	OFF	High	High

X = Don't care.

Notes:

- 1. ${\it EI}$ received in band light intensity present at detector surface.
- 2. Logic Low is a pulsed response. A receiver output low state V_{OL} (RXD) is not indefinitely maintained, but is instead a pulsed response. The output low state is maintained for a duration dependent on the incident bit pattern and the incident intensity (EI).

Pinout

Pin	Description	Symbol
1	Daylight Cancellation Capacitor	CX1
2	PIN Bypass Capacitor	CX2
3	Supply Voltage	V_{CC}
4	Receiver Data Output	RXD
5	Ground	Gnd
6	Transmitter Data Input	TXD
7	LED Cathode	LEDC
8	LED Anode	LEDA

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Conditions	Fig.
Storage Temperature	T_{S}	-20	85	C		
Operating Temperature	TA	0 .	70	C		
Lead Solder Temperature			260	С	For 10 s (1.6 mm below seating plane)	Reflow Profile
Average LED Current	I _{LED} (DC)		100	mA		
Repetitive Pulsed LED Current	I _{LED} (PK)		500	mA	≤ 90 µs Pulse Width, ≤ 20% Duty Cycle	
Peak LED Current	I _{LED} (RP)		1.0	A	≤ 2 µs Pulse Width, ≤ 10% Duty Cycle	
LED Anode Voltage	V_{LEDA}	-0.5	7.0	V		
LED Cathode Voltage	$V_{ m LEDC}$	-0.5	V_{LEDA}	V		-
Supply Voltage	$V_{\rm CC}$	0	7.0	V		
Transmitter Data Input Voltage	V _{TXD}	-0.5	5.5	·V		
Receiver Data Output Voltage	V_{RXD}	-0.5	$V_{\rm CC}$ + 0.5	V		

Infrared Reflow Profile

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Conditions
Operating Temperature	TA	0°	70°	C	
Supply Voltage	$V_{\rm CC}$	4.5	5.5	V	
Logic High Transmitter Input Voltage	V _{IH} (TXD)	2.5	5.5	V	
Logic Low Transmitter Input Voltage	V _{IL} (TXD)	0.0	0.3	V	
Logic High Receiver Input Irradiance (870 nm)	EI _H	0.0036	500	mW/cm ²	For in-band signals*
Logic Low Receiver Input Irradiance	EI_{L}		0.3	μW/cm ²	For in-band signals*
LED (Logic High) Current Pulse Amplitude	I_{LEDA}	250		mA	For one metre links with daylight filters
Receiver Set-up Time		10		ms	For full sensitivity after transmitting
Signal Rate		2.4	116	Kp/s	
Ambient Light					See IrDA Serial Infrared Physical Layer Link Speci- fication, Appendix A for ambient levels. See Rx TH+ section at the end of this data sheet also.

^{*}Note: An in-band optical signal is a pulse/sequence where the peak wavelength, λp , is defined as $850 \text{ nm} \le \lambda p \le 900 \text{ nm}$, the pulse repetition rate, PRR, is defined as $2.4 \text{ Kp/s} \le PRR \le 115.2 \text{ Kp/s}$ and the pulse width, PW, is defined as $1.6 \text{ s} \le PW \le (3/16)/PRR$.

Electrical & Optical Specifications

Specifications hold over the Recommended Operating Conditions unless otherwise noted. Test Conditions represent worse case values for the parameters under test. Unspecified test condition can be anywhere in their recommended operating range. All typicals are at 25°C and 5V unless otherwise noted.

Paran	neter	Symbol	Min.	Тур.	Max.	Unit	Conditions	Fig.
Receiver Data Output Voltage	Logic Low ^[2]	V _{OL} (RXD) ^[2,3]			0.4	V	$\begin{split} I_{O} &= 0.3 \text{ mA} \\ \text{For In-Band} \\ \text{EI} &\geq 3.6 \mu\text{W/cm}^2; \\ \theta &\leq 15^{\circ} \end{split}$	
	Logic High	V _{OH} (RXD)	V _{CC} -0.5			V	I_{O} = -20 μ A, For In-Band EI \leq 0.3 μ W/cm ²	
Effective Detector Area				0.2		cm ²		
Transmitter	Logic Low	IE_L			0.3	μW/SR	$V_{\rm I} \leq 0.3 \text{ V}$	
Radient Intensity	Logic High Intensity	IE_{H}	44		250	mW/SR	$\begin{split} I_{LEDA} &= 250 \text{ mA}, \\ V_{I} &= 2.5 \text{ V}, \theta \leq 30^{\circ} \end{split}$	4, 6
					40	mW/SR	$I_{LEDA} = 250 \text{ mA},$ $V_{I} = 2.5 \text{ V}; \theta > 60^{\circ}$	
	Peak Wavelength	λρ		875		nm		6
	Spectral Line Half Width	$\Delta\lambda^{1/2}$		35		nm		6
Transmitter	Viewing Angle	θ	30		60	0		7
Receiver		ф	30			0		
Transmitter	Logic Low	$I_{IL}(TXD)$	-1.0		1.0	μA	$Gnd \le V_I \le 0.3 V$	
Data Input Current	Logic High	I _{IH} (TXD)	4.5			mA	$V_{I} = 2.5 \text{ V}$	1
LED Anode On State Voltage	V _{ON} (LEDA)				2.50	V	$\begin{split} I_{LEDA} &= 250 \text{ mA}, \\ T_j &= 25^{\circ}C \end{split}$	1, 3
LED Anode Off State Leakage	I _{LK} (LEDA)	·			100	μΑ	$\begin{aligned} V_{LEDA} &= V_{CC} = 5.5 \text{ V}, \\ V_{I} &= 0.3 \text{V} \end{aligned}$	
Supply Current TXD High	ICC1				1.1	mA	$\begin{aligned} &V_{CC}=5.5,\\ &V_{I}\left(TXD\right)=V_{IH},\\ &I_{LED}=250\text{ mA},\\ &EI=0 \end{aligned}$	11
Supply Current RXD Low ^[2]	ICC2				13	mA	$\begin{aligned} &V_{CC}=5.5,\\ &V_{I}\left(TXD\right)=V_{IL},\\ &EI=500\;mW/cm^2 \end{aligned}$	1
Receiver Peak Sensitivity Wavelength	λp			880		nm		9

Notes

- 1. EI received in band light intensity present at detector surface.
- 2. Pulsed Response Logic Low is a pulsed response. A receiver output low state V_{OL} (RXD) is not indefinitely maintained but is instead a pulsed response. The output low state is maintained for a duration dependent on the incident bit pattern and incident intensity (EI).
- 3. The EI $\geq 3.6 \,\mu\text{W/cm}^2$ condition guarantees the IrDA minimum receiver sensitivity of $4.0 \,\mu\text{W/cm}^2$ while allowing for 10% light loss through a cosmetic window placed in front of the HSDL-1000. (See the Rx TH+ section at the end of this data sheet for information on receiver sensitivity over temperature, and in the presence of ambient light.)

Switching Specifications

Specifications hold over the Recommended Operating Conditions unless otherwise noted. Test Conditions represent worst case values for the parameters under test. Unspecified test conditions can be anywhere in their recommended operating range. All typicals are at 25°C and 5V unless otherwise noted.

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions	Fig.
Transmitter Turn On Time			0.1		μs	$I_{LED} = 250 \text{ mA}, 1.6 \mu \text{s PW}$	13, 14
Transmitter Turn Off Time			0.4	1.0	μs		
Transmitter Rise Time				0.6	μs		
Transmitter Fall Time				0.6	μs		
Receiver Turn On Time			0.4		μs	$EI = 3.6 \mu\text{W/cm}^2, 1.6 \mu\text{s PW}$	15, 16
Receiver Turn Off Time				5.4	μs	EI = 500 mW/cm ² , 1.6 μs PW	
Receiver Rise Time			1.0		μs		
Receiver Fall Time			0.02		μs	$EI = 3.6 \mu\text{W/cm}^2, 1.6 \mu\text{s PW}$	
Receiver Recovery Time				10	ms		

Application Circuit

	,
Component	Recommended Value
$R_{\rm I}$	300 Ohms ± 5%
R_{LED}	8.0 Ohms maximum
CX1	0.22 μF ± 10%
CX2	0.4 μF minimum
CX3	$0.10~\mu F \pm~22\%$. Low inductance is critical
CX4	$4.7\mu\text{F}$ minimum. Larger value is recommended for noisy supplies or environments.

Figure 1. LED Pulse Current Amplitude vs. LEDA Voltage.

Figure 2. LEDA Voltage vs. Temperature.

Figure 3. LED Forward Voltage vs. Temperature.

Figure 4. Transmitted Intensity vs. LED Pulse Amplitude.

Figure 5. Transmitted Intensity vs. Temperature.

Figure 6. Transmitted Intensity vs. Wavelength.

Figure 7. Transmitted Intensity vs. Horizontal Viewing Angle.

Figure 8. Transmitted Intensity vs. Vertical Viewing Angle.

Figure 9. Receiver Responsivity vs. Wavelength.

Figure 10. Receiver Responsivity vs. Viewing Angle.

Figure 11. Supply Current vs. Temperature.

Figure 12. Data Input Current vs. Data Input Voltage.

Figure 13. Transmitted Pulse Width vs. Temperature.

Figure 14. Transmitted Pulse Width vs. Temperature.

Figure 15. Receiver Output Pulse Width vs. Duty Cycle of Received Signal.

Figure 16. Receiver Output Pulse Width vs. Received Light Pulse Width.

Rx TH+ (Receiver On-Threshold)

The maximum receiver onthreshold is equivalent to the minimum receiver sensitivity. Both are terms for the amount of light signal which must be present at the HSDL-1000 detector in order to trigger a low pulse on the receiver output (RXD). The IrDA Physical Layer Specification requires a minimum receiver sensitivity of 4.0 $\mu\text{W/cm}^2$, at a Bit Error Rate of 10^9 , and in the presence of the 10 klux of sunlight, 0-1000 lux of fluorescent

light, or 0-1000 lux of incandescent light. The fluorescent and incandescent specifications require minimum receiver sensitivity with 1000 lux incident onto the horizontal surface of the IR link. The resulting amount of fluorescent or incandescent light actually reaching the detector surface may vary between 0 and 500 lux depending upon the design of the housing around the HSDL-1000 module.

The HSDL-1000 VOL(RXD) specification guarantees a maximum receiver on-threshold of EI = $3.6 \,\mu\text{W/cm}^2$, at a BER $\leq 10^{-9}$, and $T_A = 0.70$ °C. The $EI = 3.6 \,\mu\text{W/cm}^2 \text{ threshold}$ guarantees the IrDA minimum receiver sensitivity of 4.0 uW/cm². while allowing for 10% light loss through a cosmetic window placed in front of the HSDL-1000. The EI = $3.6 \,\mu\text{W/cm}^2$ threshold also guarantees receiver sensitivity with 10 klux of sunlight. 0-500 lux fluorescent light, or 0-500 lux of incandescent light incident on the HSDL-1000 detector surface.

HSDL-1000 Reliability Test Results

Test Name	MIL-STD-883 Reference	Test Conditions	Units Tested	Total Failed
Solder Heat (IR Profile)		See absolute profile	60	0
Solder Heat Resistance		3 times thru IR Profile + 20 Temp. Cycles	60	0
Solder Rework Cycle		Solder iron tip temp. 370°C/700°F Time per lead 1 second # of rework cycles = 4	17	0
Temperature Cycle	1010	-40°C to +100°C, Dwell = 15 Minutes Transfer = 5 Minutes		
		20 Cycles	120	0
		100 Cycles	120	0
Power Temp. Cycle		-40°C/+100°C, Dwell = 15 minutes, Transfer = 5 Minutes, $V_{\rm CC}$ = 5 Vdc, If = 100 mAdc, LED On/Off = 1 Second Total Cycles = 35	60	0
Mechanical Shock	2002 Condition B	2 Blows each X1, X2, Y1, Y2, Z1, Z2 1500 G's, 0.5 msec Pulse	10	0
Vibration Variable Frequency	2007 Condition A	(4) 4 Minute Cycles, X, Y, Z at 50 G's Min., 20 to 2,000 Hz	10	0
Resistance to Solvents	2015	3 one minute immersion Brush after solvent	20	0
High Temp. Operating Life		T_A = 70°C, If = 100 mAdc, V_{CC} = 5 Vdc, Time = 500 hours	60	0
Low Temp. Opearting Life		$T_A = 0$ °C, If = 100 mAdc, $V_{CC} = 5$ Vdc Time = 500 hours	60	0
Wet Operating Life		$T_{A} = 35$ °C, R.H., = 85% If = 100 mAdc $V_{CC} = 5$ V_{CC} , Time = 500 hours	60	0
ESD - Human Body Model	3015	$RI = 1500$ Ohms, $C = 100 \mu F$ Level = 4000 V	10	0
ESD - Machine Model	EIAJ	Rload = 0 Ohms, C = 200 μF Level = 300 V	10	0

Note: At the time of this publication, Light Emitting Diodes (LEDs) that are contained in this product are regulated for eye safety in Europe by the Commission for European Electrotechnical Standardization (CENELEC) EN60825-1. Please refer to Application Briefs I-008, I-009, I-015 for more information.

IR 3/16 Encode/Decode IC

Technical Data

Features

- Compliant with IrDA Physical Layer Specs
- Interfaces with IrDA Compliant HSDL-1000 IR Transceiver
- 1 Micron CMOS Gate Array
- Used in Conjunction with Standard 16550 UART
- Pin Compatible with PLX-1000

Applications Interfaces with HSDL-1000 to perform:

• Serial Half-Duplex Data Transfer Between:

> Notebook Computers Subnotebooks Desktops PCs PDAs Printers Other Peripheral Devices

- Telecom Applications in:
 - Modems
 Fax Machines
 Pagers
 Phones
- Industrial Applications in: Data Collection Devices
- Medical Applications in: Patient and Pharmaceutical Data Collection

Description

The HSDL-7000 performs the modulation/demodulation function used to both encode and decode the electrical pulses from the IR transceiver. These pulses are then sent to a standard UART which has a BAUDOUT signal available externally. This signal is 16 times the selected baud rate. In applications where the 16XCLK is not available, an external means of generating the 16XCLK must be designed.

The HSDL-7000 is comprised of two state machines - the serial IR encode and the serial IR decode blocks. Each of these blocks derives their timing from the 16XCLK input signal from the UART. The Encode block is driven by the negative edge triggered TXD signal from the UART. This initiates the modulation state machine resulting in the 3/16 modulated IR TXD signal which drives the IR transceiver module, HSDL-1000. The IR Decode block is driven by the negative edge triggered IR RCV signal from the HSDL-1000. After this signal is demodulated and stretched, it drives the RCV signal to the UART.

HSDL-7000

Schematic

Pin Out

Pin Description

16XCLK - Positive edge triggered input clock that is set to 16 times the data transmission baud rate. The encode and decode schemes require this signal. The signal is usually tied to a UART's BAUDOUT signal.

TXD - Negative edge triggered input signal; usually tied to a UART's SOUT signal (serial data to be transmitted).

RCV - Output signal which is usually tied to a UART's SIN signal (received serial data).

GND - Chip ground.

 \boldsymbol{NRST} - Active low signal used to reset the decode state machine. This signal can be tied to POR (Power on reset) or $V_{CC}.$ This signal can also be used to disable any data reception.

IR_RCV - A 3/16th pulse width input signal from the HSDL-1000. The signal is a demodulated (pulse stretched) to generate the RCV output signal.

IR_TXD - This signal is the modulated 3/16ths TXD signal which is input to the HSDL-1000.

V_{CC} - Power.

Package Dimensions

NOTE: DIMENSIONS IN MILLIMETERS (INCHES).

Encoding Scheme

The encoder sends a pulse for every space or "0" that is sent on the TXD line. On a high to low transition of the TXD line, the generation of the pulse is delayed

for 7 clock cycles of the 16XCLK before the pulse is set high for 3 clock cycles (or 3/16th of a bit time) and then subsequently pulled low.

Decoding Scheme

A high to low transition of the IR_RXD line from the HSDL-1000 signifies a 3/16th pulse. This pulse is stretched to accommodate 1 bit time (16 clock cycles). Every pulse that is received is

translated into a "0" or space on the RXD line equal to 1 bit time.

Note: The stretched pulse must be at least 3/4 of a bit time in duration to be correctly interpreted by a UART.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Conditions
Storage Temperature	T_{S}	-65	+150	°C	
Operating Temperature	TA	-40	+85	°C	· · ·
Output Current	I_{O}		10	mA	
Power Dissipation	P _{MAX}		0.22	W	
Input/Output Voltage	V _I /V _O	-0.5	$V_{\rm CC} + 0.5$	V	
Power Supply Voltage	$V_{\rm CC}$	-0.5	+6.5	V	

Switching Specifications

 $(V_{CC} = 5 \text{ Volts} \pm 10\%, T_A = -40 \text{ to } +85^{\circ}\text{C})$

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
Toggle Frequency	f _{tog}		120		Mhz	
Propagation Delay Time	t _{pd}		0.5		ns	Internal Gate
	1		1.0		ns	Input Buffer
			2.0		ns	Output Buffer
Output Fall Time	$t_{\rm f}$		1.42		ns	Output Buffer ($C_L = 15 pF$)
Output Rise Time	t _r		1.54		ns	Output Buffer ($C_L = 15 pF$)

Note: f_{tog} represents the maximum internal D-Type Flip Flop toggle rate

Capacitance

 $(V_{CC} = 0 \text{ Volts}, T_A = -40 \text{ to } +85^{\circ}\text{C})$

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
Input Capacitance	C _{IN}		10	20	pF	f = 1 MHz - Unmeasured Pins
Output Capacitance	C _{OUT}		10	20	pF	Returned to 0 Volts
Output Fall Time			10	20	pF	

Recommended Operating Conditions

 $(T_A = -40 \text{ to } +85^{\circ}\text{C})$

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
Supply Voltage	$V_{\rm CC}$	2.7	5.0	5.5	V	CMOS level
Input Voltage	$V_{\rm I}$	0.0		$V_{\rm CC}$	V	CMOS level
Ambient Temperature	T _A	-40		+85	°C	CMOS level
High Level Input Voltage	V_{IH}	$0.7~V_{\rm CC}$		$V_{\rm CC}$	V	CMOS level
Low Level Input Voltage	$V_{\rm IL}$	0.0		$0.3~V_{\rm CC}$	V	CMOS level
Positive Trigger Voltage	$V_{\rm P}$	1.61		4.00	V	CMOS level
Negative Trigger Voltage	V _N	0.55		3.10	V	CMOS level
Hysteresis Voltage	V_{H}	0.50		2.00	V	CMOS level
Power Dissipation	P_{DISS}		4.9	220	mW	$f_{16XCLK} = 2 \text{ MHz}$
Input Rise Time	t _{ri}	·		200	ns	$f_{16XCLK} = 2 \text{ MHz}$
Input Fall Time	t _{fa}			200	ns	$f_{16XCLK} = 2 \text{ MHz}$
Max Clk Frequency (16XCLK)	f _{16XCLK}			2	MHz	
Minimum Pulse Width (IR_TXD)*	t _{mpx}	250			ns	$f_{16XCLK} = 2 \text{ MHz}$

^{*}IrDA Parameters. The Max Clk Frequency represents the maximum clock frequency to drive the HSDL-7000's internal state machine. Under normal circumstances, this clock input should not exceed 16 * 115.2 Kbp/s or 1.8432 MHz. This product can operate at higher clock rates, but the above is the recommended rate.

The Minimum Pulse Width represents the minimum pulse width of the encoded IR_TXD pulse (and the IR_RCV pulse). As per the IrDA specifications, the minimum pulse width of the IR_TXD and IR_RCV pulses should be 3*(1/1.8432~MHz) or $1.63~\mu s$. The minimum pulse width specified for the HSDL-7000 is 250~n s, which is within IrDA specification. Under normal circumstances, the pulse width should not be less than $1.63~\mu s$.

Application Circuits

HSDL-7000 Connection to UART

Note: At the time of this publication, Light Emitting Diodes (LEDs) that are contained in this product are regulated for eye safety in Europe by the Commission for European Electrotechnical Standardization (CENELEC) EN60825-1. Please refer to Application Briefs I-008, I-009, I-015 for more information.

High-Performance T-1¾ (5 mm) TS AlGaAs Infrared (875 nm) Lamp

Technical Data

HSDL-4200 Series HSDL-4220 30° HSDL-4230 17°

Features

- Very High Power TS AlGaAs Technology
- 875 nm Wavelength
- T-13/4 Package
- Low Cost
- Very High Intensity: HSDL-4220 - 38 mW/sr HSDL-4230 - 75 mW/sr
- Choice of Viewing Angle: HSDL-4220 - 30° HSDL-4230 - 17°
- Low Forward Voltage for Series Operation
- High Speed: 40 ns Rise Times

 Copper Leadframe for Improved Thermal and Optical Characteristics

Applications

- Compatible with IrDA SIR Standard
- IR Audio
- IR Telephones
- High Speed IR Communications IR LANs

IR Modems IR Dongles

• Industrial IR Equipment

- IR Portable Instruments
- Interfaces with Crystal Semiconductor CS8130 Infrared Transceiver

Description

The HSDL-4200 series of emitters are the first in a sequence of emitters that are aimed at high power, low forward voltage, and high speed. These emitters utilize the Transparent Substrate, double heterojunction, Aluminum Gallium Arsenide (TS AlGaAs) LED technology. These devices are optimized for speed and efficiency at emission wavelengths of 875 nm. This material produces high radiant efficiency over a wide range of currents up to 500 mA peak current. The HSDL-4200 series of emitters are available in a choice of viewing angles, the HSDL-4230 at 17° and the HSDL-4220 at 30°. Both lamps are packaged in clear T-13/4 (5 mm) packages.

The package design of these emitters is optimized for efficient power dissipation. Copper leadframes are used to obtain better thermal performance than the traditional steel leadframes.

The wide angle emitter, HSDL-4220, is compatible with the IrDA SIR standard and can be used with the HSDL-1000 integrated SIR transceiver.

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit	Reference
Peak Forward Current	${ m I_{FPK}}$		500	mA	[2], Fig. 2b Duty Factor = 20% Pulse Width = 100 μs
Average Forward Current	I_{FAVG}		100	mA	[2]
DC Forward Current	I_{FDC}		100	mA	[1], Fig. 2a
Power Dissipation	P_{DISS}		260	mW	
Reverse Voltage ($I_R = 100 \mu A$)	V_{R}	5		V	
Transient Forward Current (10 µs Pulse)	I_{FTR}		1.0	A	[3]
Operating Temperature	T_{O}	0	70	°C	
Storage Temperature	T_{S}	-20	85	°C	
LED Junction Temperature	$T_{ m J}$		110	°C	
Lead Soldering Temperature [1.6 mm (0.063 in.) from body]			260 for 5 seconds	°C	

Notes:

- 1. Derate linearly as shown in Figure 4.
- 2. Any pulsed operation cannot exceed the Absolute Max Peak Forward Current as specified in Figure 5.
- 3. The transient peak current is the maximum non-recurring peak current the device can withstand without damaging the LED die and the wire bonds.

Electrical Characteristics at 25°C

Parameter	Symbol	Min	Тур	Max	Unit	Condition	Reference
Forward Voltage	$V_{\rm F}$	1.30	1.50	1.70	V	$I_{FDC} = 50 \text{ mA}$	Fig. 2a
		1.40	1.67	1.85		$I_{FDC} = 100 \text{ mA}$	
			2.15			$I_{FPK} = 250 \text{ mA}$	Fig. 2b
Forward Voltage	ΔV/ΔΤ		-2.1		mV/°C	$I_{FDC} = 50 \text{ mA}$	Fig. 2c
Temperature Coefficient			-2.1			$I_{FDC} = 100 \text{ mA}$	
Series Resistance	R_{S}		2.8		ohms	$I_{FDC} = 100 \text{ mA}$	
Diode Capacitance	Co		40		pF	0 V, 1 MHz	
Reverse Voltage	$V_{\rm R}$	5	20		V	$I_R = 100 \mu\text{A}$	
Thermal Resistance, Junction to Pin	$R\theta_{jp}$		110		°C/W		

Optical Characteristics at 25° C

Parameter	Symbol	Min	Тур	Max	Unit	Condition	Reference
Radiant Optical Power							
HSDL-4220	P_{O}		19		mW	$I_{FDC} = 50 \text{ mA}$	
			38			$I_{FDC} = 100 \text{ mA}$	
HSDL-4230	Po		16		mW	$I_{FDC} = 50 \text{ mA}$	
			32			$I_{FDC} = 100 \text{ mA}$	
Radiant On-Axis Intensity							
HSDL-4220	$I_{\rm E}$	22	38	60	mW/sr	$I_{FDC} = 50 \text{ mA}$	Fig. 3a
			76	-	İ	$I_{FDC} = 100 \text{ mA}$	
			190			$I_{FPK} = 250 \text{ mA}$	Fig. 3b
HSDL-4230	$I_{\rm E}$	39	75	131	mW/sr	$I_{FDC} = 50 \text{ mA}$	Fig. 3a
			150			$I_{FDC} = 100 \text{ mA}$	
			375			$I_{FPK} = 250 \text{ mA}$	Fig. 3b
Radiant On-Axis Intensity	$\Delta I_{E}/\Delta T$	-	-0.35		%/°C	$I_{FDC} = 50 \text{ mA}$	
Temperature Coefficient			-0.35			$I_{FDC} = 100 \text{ mA}$	
Viewing Angle							
HSDL-4220	$2\theta_{1/2}$		30		deg	$I_{FDC} = 50 \text{ mA}$	Fig. 6
HSDL-4230	$2\theta_{1/2}$		17		deg	$I_{FDC} = 50 \text{ mA}$	Fig. 7
Peak Wavelength	$\lambda_{ m PK}$	860	875	895	nm	$I_{FDC} = 50 \text{ mA}$	Fig. 1
Peak Wavelength	Δλ/ΔΤ		0.25		nm/°C	$I_{FDC} = 50 \text{ mA}$	
Temperature Coefficient					1		
Spectral Width-at FWHM	Δλ		37		nm	$I_{FDC} = 50 \text{ mA}$	Fig. 1
Optical Rise and Fall	t _r /t _f		40		ns	$I_{FDC} = 50 \text{ mA}$	
Times, 10%-90%							
Bandwidth	f_c		9	,	MHz	$I_F = 50 \text{ mA}$	Fig. 8
						± 10 mA	

Ordering Information

Part Number	Lead Form	Shipping Option		
HSDL-4220	Straight	Bulk		
HSDL-4230	Straight	Bulk		

Figure 1. Relative Radiant Intensity vs. Wavelength.

Figure 2a. DC Forward Current vs. Forward Voltage.

Figure 2b. Peak Forward Current vs. Forward Voltage.

Figure 2c. Forward Voltage vs Ambient Temperature.

Figure 3a. Relative Radiant Intensity vs. DC Forward Current.

Figure 3b. Normalized Radiant Intensity vs. Peak Forward Current.

Figure 4. Maximum DC Forward Current vs. Ambient Temperature. Derated Based on $T_{JMAX}=110^{\circ}C$.

Figure 5. Maximum Peak Forward Current vs. Duty Factor.

Figure 6. Relative Radiant Intensity vs. Angular Displacement HSDL-4220.

Figure 7. Relative Radiant Intensity vs. Angular Displacement HSDL-4230.

Figure 8. Relative Radiant Intensity vs. Frequency.

Note: At the time of this publication, Light Emitting Diodes (LEDs) that are contained in this product are regulated for eye safety in Europe by the Commission for European Electrotechnical Standardization (CENELEC) EN60825-1. Please refer to Application Briefs I-008, I-009, I-015 for more information.

Infrared IrDA® Compliant Transceiver

Preliminary Technical Data*

Features

- Low Cost Infrared Data Link
- Guaranteed to Meet IrDA Physical Laver **Specifications**

1 cm - 1 M Operating Distance 30° Viewing Angle 2.4 Kbd - 115.2 Kbd Data Rate

- Low Latency
- Shutdown Feature
- 3 Volt Operation
- Very Low Static Icc.
- Daylight Cancellation
- Direct Interface to I/O Chips and Glue Logic

Applications

• Serial Half-Duplex Data Transfer Between: **Notebook Computers**

> Subnotebooks Desktop PCs **PDAs Printers** Other Peripheral Devices

Telecom

Modem

Fax Pager

Phones

Industrial

Data Collection Devices

 Medical Patient and Pharmaceutical

HSDL-1001

Description

The HSDL-1001 serial infrared module is a low cost, low power solution to cableless IR communication. The link is a point-topoint, through the air serial, half duplex data transfer medium.

The module has been designed to the Infrared Data Association (IrDA) Physical Layer Specifications. It is designed to operate from 1 cm to 1 meter at a maximum data rate of 115.2 Kbd at a 30° viewing angle.

^{*}This data sheet represents the latest available information at the time of publication (10/1/95). For more current information, please consult with your HP Field Sales Office.

The HSDL-1001 contains a high speed, high efficiency TS AlGaAs 875 nm emitter, a PIN Silicon photodiode and an integrated

circuit. The IC contains an LED driver, amplifiers and a quantizer.

The shutdown feature allows

designers to turn off the receiver by pulsing the shutdown pin. The device draws less than 10 μA when in shutdown mode.

Package Dimensions (continued)

Option X04*

DIMENSIONS IN MILLIMETERS (INCHES).

Truth Table

In	puts		Shutdown	Out	puts	
TXD	$\mathbf{E_{I}^{[1]}}$	LED	SD	LEDA	RXD	
V_{IH}	X	ON	High	Low	Low ^[2]	
V_{IL}	E _{IH}	OFF	High	High	Low ^[2]	
V _{IL}	$\rm E_{IL}$	OFF	High	High	High	
X	X	OFF	Low	High	High	

X = Don't care.

Notes:

- 1. $E_{\rm I}$ received in band light intensity present at detector surface.
- 2. Logic Low is a pulsed response. A receiver output low state V_{OL} (RXD) is not indefinitely maintained, but is instead a pulsed response. The output low state is maintained for a duration dependent on the incident bit pattern and the incident intensity (E_{I}) .

Pinout

Pin	Description	Symbol
1	Shutdown	SD
2	Open	
3	Supply Voltage	$V_{\rm CC}$
4	Receiver Data Output	RXD
5	Ground	Gnd
6	Transmitter Data Input	TXD
7	LED Cathode	LEDC
8	LED Anode	LEDA

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Conditions
Storage Temperature	T_{S}	-20	85	C	
Operating Temperature	TA	0	55	C	
Lead Solder Temperature			260	C	For 10 s (1.6 mm below seating plane)
Average LED Current	I _{LED} (DC)		100	mA	
Repetitive Pulsed LED Current	I _{LED} (PK)		500	mA	≤ 90 µs Pulse Width, ≤ 20% Duty Cycle
Peak LED Current	I _{LED} (RP)		1.0	A	≤ 2 µs Pulse Width, ≤ 10% Duty Cycle
LED Anode Voltage	V_{LEDA}	-0.5	7.0	V	
LED Cathode Voltage	$V_{ m LEDC}$	-0.5	V_{LEDA}	V	·
Supply Voltage	$V_{\rm CC}$	0	7.0	V	·
Transmitter Data Input Voltage	V_{TXD}	-0.5	5.5	V	
Receiver Data Output Voltage	$V_{ m RXD}$	-0.5	$V_{\rm CC}$ + 0.5	V	

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Conditions
Operating Temperature	T _A	0	70	°C	
Supply Voltage	$V_{\rm CC}$	2.7	5.5	V	
Logic High Transmitter Input Voltage	V _{IH} (TXD)	2.5	5.5	V	
Logic Low Transmitter Input Voltage	V _{IL} (TXD)	0.0	0.3	V	
Logic High Receiver Input Irradiance (870 nm)	E_{IH}	0.0036	500	mW/cm ²	For in-band signals*
Logic High Receiver Input Irradiance (950 nm)	E_{IH}	0.005		mW/cm ²	For in-band signals*
Logic Low Receiver Input Irradiance	E_{IL}		0.3	μW/cm ²	For in-band signals*
Transmitter Viewing Angle	$2\theta^{1/2}$	30		deg	
Receiver Viewing Angle	$2\phi^{1/2}$	30		deg	
LED (Logic High) Current Pulse Amplitude	I_{LEDA}	250		mA	For one metre links with daylight filters
Receiver Setup Time		100 μ	500	μsec	For full sensitivity after transmitting
Signal Rate RXD		2.4	116	Kbps	
Ambient Light					See IrDA Serial Infrared Physical Layer Link Speci- fication, Appendix A for ambient levels. See Rx TH+ section at the end of this data sheet also.

^{*}Note: An in-band optical signal is a pulse/sequence where the peak wavelength, λ_p , is defined as $850 \text{ nm} \le \lambda p \le 900 \text{ nm}$, the pulse repetition rate, PRR, is defined as $2.4 \text{ Kp/s} \le PRR \le 115.2 \text{ Kp/s}$ and the pulse width, PW, is defined as $1.6 \text{ s} \le PW \le (3/16)/PRR$.

Shutdown Parameters

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
I _{CC} Shutdown	$I_{\rm CC~SD}$		8	20	μΑ	$V_{\rm CC} = 5 \text{ Volts}$
I _{CC} Shutdown	$I_{\rm CC~SD}$		5	14	μΑ	$V_{\rm CC} = 3 \text{ Volts}$
Shutdown Input Current			5	10	μΑ	$V_{\rm CC} = 5 \text{ Volts}$
Shutdown Input Current			4	8	μΑ	$V_{\rm CC} = 3 \text{ Volts}$
Wake Up Time			40	100	μs	

Electrical & Optical Specifications

Specifications hold over the Recommended Operating Conditions unless otherwise noted. Test Conditions represent worse case values for the parameters under test. Unspecified test conditions can be anywhere in their operating range. All typicals are at 25° C and 5° V unless otherwise noted.

Parar	Parameter		Symbol Min.		Max.	Unit	Conditions
Receiver Data Output Voltage	Logic Low[2]	V _{OL} (RXD)[2,3]	_		0.4	V	$I_{O} = 0.3$ mA, For In-Band $E_{I} \ge 3.6$ μ W/cm ² , $\theta \le 15^{\circ}$
	Logic High	V _{OH} (RXD)	V _{CC} -0.5	·		V	$I_O = -20 \mu A$, For In-Band $E_I \le 0.3 \mu W/cm^2$
Effective Detector Area				0.2		cm ²	
Transmitter	Logic Low	I_{EL}			0.3	μW/SR	$V_{I} \leq 0.3 V$
Radiant Intensity	Logic High Intensity	I_{EH}	44		250	mW/SR	$\begin{split} I_{LEDA} &= 250 \text{ mA}, \\ V_{I} &= 2.5 \text{ V}, \theta \leq 30^{\circ} \end{split}$
	Peak Wavelength	$\lambda_{\mathbf{p}}$		875		nm	
	Spectral Line Half Width	$\Delta\lambda^{1/2}$		35		nm	
Transmitter	Viewing Angle	θ	30		60	deg	
Receiver	Viewing Angle	ф	30			deg	
Transmitter	Logic Low	I _{IL} (TXD)	-1.0		1.0	μΑ	$Gnd \le V_I \le 0.3 V$
Data Input Current	Logic High	I _{IH} (TXD)		100	200	μΑ	$V_{\rm I} = 2.5 \text{ V}, R_{\rm I} = 10 \text{ k}\Omega^{[4]}$
LED Anode On State Voltage	V _{ON} (LEDA)				2.50	V	$I_{LEDA} = 250 \text{ mA},$ $T_j = 25^{\circ}\text{C}$
LED Anode Off State Leakage	I _{LK} (LEDA)				100	μΑ	$\begin{aligned} V_{LEDA} &= V_{CC} = 5.5 \text{ V}, \\ V_{I} &= 0.3 \text{ V} \end{aligned}$
Supply Current TXD High	I_{CC1}				4.5	mA	$\begin{aligned} &V_{CC} = 5.5 \text{ V,} \\ &V_{I} \text{ (TXD)} = V_{IH}, \\ &I_{LED} = 250 \text{ mA, } E_{I} = 0 \end{aligned}$
Supply Current RXD Low ^[2]	I_{CC2}				13.0	mA	$V_{CC} = 5.5 \text{ V},$ $V_{I} (TXD) = V_{IL},$ $E_{I} = 500 \text{ mW/cm}^{2}$
Supply Current (Enabled but Idle)	I _{CC3}			185		μA	$V_{CC} = 5.5 \text{ V},$ $V_{I} \text{ (TXD)} = V_{IL},$ $E_{I} = 0, I_{LED} = 0$
Receiver Peak Sensitivity Wavelength	λ_{p}			880		nm	

Notes

^{1.} E_I - received in band light intensity present at detector surface.

^{2.} Pulsed Response – Logic Low is a pulsed response. A receiver output low state V_{0L} (RXD) is not indefinitely maintained but is instead a pulsed response. The output low state is maintained for a duration dependent on the incident bit pattern and incident intensity (E_I) .

^{3.} The $E_T \ge 3.6~\mu W/cm^2$ condition guarantees the IrDA minimum receiver sensitivity of 4.0 $\mu W/cm^2$ while allowing for 10% light loss through a cosmetic window placed in front of the HSDL-1001.

^{4.} For I_{IH} (TXD) = 350 μA maximum, V_{CC} = 5.0 volts, R_I = 0. If 350 μA can be accommodated, R_I can be removed.

Switching Specifications

Specifications hold over the Recommended Operating Conditions unless otherwise noted. Test Conditions represent worst case values for the parameters under test. Unspecified test conditions can be anywhere in their operating range. All typicals are at 25° C and 5 V unless otherwise noted.

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
Transmitter Turn On Time			0.1		μs	$I_{LED} = 250 \text{ mA}, 1.6 \mu \text{s PW}$
Transmitter Turn Off Time			0.4	1.0	μs	
Transmitter Rise Time				0.6	μs	
Transmitter Fall Time				0.6		
Receiver Turn On Time			0.4		μs	$E_{I} = 3.6 \mu\text{W/cm}^{2}, 1.6 \mu\text{s PW}$
Receiver Turn Off Time				5.4	μs	$E_{\rm I} = 500 \text{mW/cm}^2, 1.6 \mu \text{s PW}$
Receiver Rise Time			1.0		μs	
Receiver Fall Time			0.02			$E_{\rm I} = 3.6 \ \mu \text{W/cm}^2, 1.6 \ \mu \text{s PW}$
Receiver Recovery Time			100		μs	

Application Circuit

Component	Recommended Value					
R_1	$0 \text{ k}\Omega \text{ V}_{\text{CC}} = 5.0 \text{ volts*}$					
R_{LED}	$8.0~\Omega$ maximum					
CX3	$0.10~\mu F \pm 22\%$. Low inductance is critical					
CX4	$4.7~\mu F$ minimum. Larger values recommended for noisy supplies or environments.					

^{*}For $V_{CC} = 3.0 \text{ volts}$, $R_{I} = 0$.

Appendix A. Test Methods

A.1. Background Light and Electromagnetic Field

There are four ambient interference conditions in which the receiver is to operate correctly. The conditions are to be applied separately:

- 1. Electromagnetic field: 3 V/m maximum (refer to IEC 801-3. severity level 3 for details)
- 2. Sunlight: 10 kilolux maximum at the optical port
 This is simulated with an IR source having a peak wavelength within the range 850 nm to 900 nm and a spectral width less than 50 nm biased to provide 490 μW/cm² (with no modulation) at the optical port. The light source faces the optical port.

- This simulates sunlight within the IrDA spectral range. The effect of longer wavelength radiation is covered by the incandescent condition.
- 3. Incandescent Lighting: 1000 lux maximum This is produced with general service, tungsten-filament, gasfilled, inside-frosted lamps in the 60 Watt to 150 Watt range to generate 1000 lux over the horizontal surface on which the equipment under test rests. The light sources are above the test area. The source is expected to have a filament temperature in the 2700 to 3050 degrees Kelvin range and a spectral peak in the 850 nm to 1050 nm range.
- Fluorescent Lighting: 1000 lux maximum
 This is simulated with an IR

source having a peak wavelength within the range 850 nm to 900 nm and a spectral width of less than 50 nm biased and modulated to provide an optical square wave signal (0 µW/cm2 minimum and 0.3 µW/cm² peak amplitude with 10% to 90% rise and fall times less than or equal to 100 ns) over the horizontal surface on which the equipment under test rests. The light sources are above the test area. The frequency of the optical signal is swept over the frequency range from 20 kHz to 200 kHz.

Due to the variety of fluorescent lamps and the range of IR emissions, this condition is not expected to cover all circumstances. It will provide a common floor for IrDA operation.

Note: At the time of this publication, Light Emitting Diodes (LEDs) that are contained in this product are regulated for eye safety in Europe by the Commission for European Electrotechnical Standardization (CENELEC) EN60825-1. Please refer to Application Briefs I-008, I-009, I-015 for more information.

Infrared Transceiver

Preliminary Technical Data

HSDL-1100

Features

- Fast Low Cost Infrared Data Link
- Backward Compatible to Slower Speeds
- Guaranteed to Meet IrDA Physical Layer Specifications
 - 1 cm to 1 Meter Operating Distance
 - $30^{\circ}\,\text{Viewing Angle}$
 - 2 Channels
 - 2.4 Kb/s to 115.2 Kb/s 1.15 Mb/s – 4.0 Mb/s
- ASK, HP-SIR and TV Remote
- Compatible

 Designed to Accommodate
- Light Loss with Cosmetic
 Windows
- No Mode Programming Required

Applications

• Data Communication: Serial Data Transfer Between:

Notebook Computers Subnotebook Computers Desktop PCs Printers Other Peripheral Devices

- Telecom Telephones
- IR LANs

Block Diagram

HSDL-1100 BLOCK DIAGRAM AND APPLICATION CIRCUIT

The HSDL-1100 infrared transceiver provides the interface between logic and IR signals for through-air, serial, half-duplex IR data links and is designed to satisfy the IrDA Physical Layer Specification.

The HSDL-1100 contains a high speed, high efficiency, TS AlGaAs, 870 nm LED, a silicon PIN photodiode and a bipolar, silicon integrated circuit. The IC contains an LED driver and a receiver providing two output

Preliminary Product Disclaimer

These products are under development. Until Hewlett-Packard releases these products for general sales, HP reserves the right at any time to alter prices, specifications, features, capabilities, functions, manufacturing release dates, and even general availability of the product. It is advisable to consult your local HP field sales engineer when considering these products for design-ins and production volumes.

signals, RXD-A for signal rates from 2.4 to 115.2 Kb/s and RXD-B for signal rates of 1.152 and 4.0 Mb/s.

The receiver is designed for maximum sensitivity to IrDA signals and minimum sensitivity to signals outside the IrDA optical wavelength and frequency modulation of interest. A receiver lens magnifies the effective area of the PIN diode to enhance sensitivity. The lens is integral with the molded package and contains a dye which adsorbs visible light. Receiver outputs pulse low when the IR signal is present.

To minimize the amplifier noise figure, bandwidth is constrained to that necessary for IrDA operation. Bias and compliance levels are selected to ensure a smooth change in response to signal power variation over a 54 dB dynamic range (54 dB between close high power signals and far away low power signals). Interfering electrical signals can be capacitively coupled into sensitive areas at the input of the preamp or injected via the power supply. The HSDL-1100 minimizes the exposure to these interfering signals by combining the PIN diode detector and the preamplifier within a hybrid module and integrating the preamplifier. The power supply for the PIN and preamplifier are filtered to attenuate noise conducted from external sources as well as noise generated by internal sources.

The transceiver is designed to interface directly with selected I/O chips that incorporate the modulation/demodulation function.

Table 1. Recommended Application Circuit Components

Component	Recommended Value
R1	$560 \Omega, \pm 5\%, 0.125$ Watt
R2 -	$4.7 \Omega, \pm 5\%, 0.5 \text{ Watt}$
R3[1]	$10 \ \Omega, \pm 5\%, 0.125 \ \text{Watt}$
CX1 ^[2]	$0.47~\mu\text{F}, \pm 10\%, \text{X7R Ceramic}$
CX2	220 pF, ± 10%, X7R Ceramic
CX3	4700 pF, ± 10%, X7R Ceramic
CX4	$0.010~\mu\text{F}, \pm 10\%, \text{X7R Ceramic}$
CX5 ^[2]	$0.47~\mu\text{F}, \pm 20\%, \text{X7R Ceramic} \leq 5~\text{mm}$ lead length
CX6	6.8 μF Tantalum. Larger value recommended for noisy supplies or environments
CX7 ^[3]	$0.47 \mu\text{F}, \pm 20\%, \text{X7R Ceramic}$

Notes:

- In environments with noisy power supplies, supply rejection can be enhanced by including R3 as shown in application circuit on previous page.
- CX1 and CX5 must be placed within 0.7 cm of the HSDL-1100 to obtain optimum noise immunity.
- 3. Only necessary in applications where transmitter switching causes more than a 50 mV ripple on $V_{\rm CC}$.

Truth Table

In	puts	Outputs						
TXD	$\mathbf{E_{I}}$	E _I IE (LED) RXD-A		RXD-B				
V_{IH}	X	High (On)	NV	NV				
$V_{\rm IL}$	E _{IH} [1]	Low (Off)	Low[3]	NV				
$V_{\rm IL}$	E _{IH} [2]	Low (Off)	NV	Low[3]				
V _{IL}	E _{IL}	Low (Off)	High	High				

X = Don't care NV = Not Valid

Notes:

- 1. In-Band EI ≤ 116 Kb/s
- 2. In-Band EI ≥ 1.15 Mb/s
- 3. Logic Low is a pulsed response. The condition is maintained for a duration dependent on pattern and strength of the incident intensity.

Pinout

Pin	Description	Symbol
1	PIN Bypass Capacitor	CX1
2	Ground (Analog)	Gnd
3	Averaging Capacitor	CX4
4	Supply Voltage	$ m V_{CC}$
5	Receiver Data Output – Channel B	RXD-B
6	Ground	Gnd
7	Transmitter Data Input	TXD
8	Receiver Data Output – Channel A	RXD-A
9	Threshold Capacitor	CX3
10	LED Anode	LEDA

Absolute Maximum Ratings[1]

Parameter	Symbol	Min.	Max.	Units	Conditions
Storage Temperature	T_{S}	-20	85	$^{\circ}\mathrm{C}$	
Operating Temperature	T _A	0	70	$^{\circ}\mathrm{C}$	
Lead Solder Temperature			260	$^{\circ}\mathrm{C}$	For 10 s (1.6 mm below seating plane)
Average LED Current	I _{LED} (DC1)		100	mA	
Average LED Current	I _{LED} (DC2)		165	mA	≤ 90 µs Pulse Width, ≤ 25% Duty Cycle
Repetitive Pulsed LED Current	I _{LED} (RP)		660	mA	≤ 90 µs Pulse Width, ≤ 25% Duty Cycle
Peak LED Current	I _{LED} (PK)		1.0	A	≤ 2 µs Pulse Width, ≤ 10% Duty Cycle
LED Anode Voltage	$V_{ m LEDA}$	-0.5	7.0	V	
Supply Voltage	V_{CC}	0	7.0	V	
Transmitter Data Input Voltage	I _{TXD} (DC)	-12	12	mA	
Receiver Data Output Voltage	V _{RXD-A} V _{RXD-B}	-0.5 -0.5	$V_{\rm CC} + 0.5 \\ V_{\rm CC} + 0.5$	V V	

Note:

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Conditions
Operating Temperature	T _A	0	70	°C	
Supply Voltage	V_{CC}	4.75	5.25	V	
Logic High Transmitter Input Voltage	V _{IH} (TXD)	4.25	5.25	V	[2]
Logic Low Transmitter Input Voltage	V _{IL} (TXD)	0.0	0.3	V	[2]
Logic High Receiver Input Irradiance	E _{IH}	0.0036 0.0090	500 500	mW/cm ²	For in-band signals $\leq 116 \text{ Kb/s}^{[1]}$ For in-band signals $\leq 1.15 \text{ M}$
Logic Low Receiver Input Irradiance	$\mathbf{E}_{\mathbf{IL}}$		0.3	μW/cm ²	For in-band signals ^[1]
LED (Logic High) Current Pulse Amplitude	I_{LEDA}	450	660	mA	For one metre links with daylight filters
Receiver Setup Time		1.0		ms	For full sensitivity after transmitting
Receiver Signal Rate RXD-A		2.4	116	Kb/s	
Receiver Signal Rate RXD-B		1	4	Mb/s	
Ambient Light					See IrDA Serial Infrared Physical Layer Link Specification, Appendix A for ambient levels.

Notes:

- 1. An in-band optical signal is a pulse/sequence where the peak wavelength, λp , is defined as $850 \text{ nm} \leq \lambda p \leq 900 \text{ nm}$, and the pulse characteristics are compliant with the IrDA Serial Infrared Physical Layer Link Specification.
- 2. With RI, CXI Input network and where $t_r(V_I)$ and $t_f(V_I) \le 5$ ns. See Application Circuit (Table 1) for component values. The driver gate for this input should be able to source and $\sinh \pm 6$ mA (DC) and ± 50 mA (pk). TXD refers to the node on the driver gate side of R1, CX2 on application circuit.

^{1.} For implementations where case to ambient thermal resistance ≤ 50 °C/W.

Electrical and Optical Specifications

Specifications hold over the Recommended Operating Conditions unless otherwise noted. Test Conditions represent worse case values for the parameters under test. Unspecified test conditions can be anywhere in their operating range. All typicals are at 25° C and 5 V unless otherwise noted.

Parar	neter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Receiver Data Output	Logic Low ^[2]	V _{OL} (RXD-A) ^[2]			0.5	V	$I_O = 1.0$ mA, For in-band $E_I \ge 3.6 \mu \text{W/cm}^2$
Voltage	Logic Low ^[2]	V _{OL} (RXD-B) ^[2]			0.5	V	$I_O = 1.0$ mA, For in-band $E_I \ge 9.0 \mu \text{W/cm}^2$
	Logic High	V _{OH} (RXD-A)	V _{CC} -0.5			V ·	$I_O = -20 \mu A$, For in-band $E_I \le 0.3 \mu W/cm^2$
	Logic High	V _{OH} (RXD-B)	V _{CC} -1.0		,	V	$I_O = -20 \mu A$, For in-band $E_I \le 0.3 \mu W/cm^2$
	Viewing Angle	2φ1/2	30			degree	
Effective Detector Area				0.2		cm ²	
Transmitter	Logic Low	I_{EL}			0.3	μW/SR	$V_{\rm I} \leq~0.3~{ m V}$
Radiant Intensity	Logic High Intensity	I _{EH} [3]	100	180	400	mW/SR	$V_{\rm I} = 2.5$ V, $I_{\rm LEDA} = 450$ mA $T_{\rm A} = 25$ °C
	Peak Wavelength	λρ		875	i	nm	
	Spectral Line Half Width	Δλ1/2		35		nm	
	Viewing Angle	201/2	30			degree	
Transmitter Data Input	Logic Low	$I_{IL}(TXD)$	-1.0		1.0	μА	$Gnd \leq V_I \leq 0.3 V$
Current	Logic High	I _{IH} (TXD)	5.4		6.6	mA	$V_{I} = 4.25 V^{[1]}$
LED Anode On State Voltage	V _{ON} (LEDA				2.54	V	$I_{LEDA} = 450 \text{ mA}, 25^{\circ}\text{C}$ $V_{I} = 4.25 \text{ V}^{[1]}$
LED Anode Off State Leakage	I _{LK} (LEDA)				100	μА	$V_{LEDA} = V_{CC} = 5.25 \text{ V},$ $V_{I} = 0.3 \text{ V}^{[1]}$
Supply Current	I_{CC1}			3	4.5	mA	$V_{CC} = 5.25 \text{ V},$ $V_{I} \text{ (TXD)} = V_{IL}, E_{I} = 0$
Receiver Peak Sensitivity Wavelength	λр			880		nm	·

Notes

^{1.} With R1, CX2 input network. See Application Circuit (Table 1) for component values. TXD refers to driver gate of R1, CX2 on application circuit.

^{2.} Logic Low is a pulsed response. The condition is maintained for a duration dependent on pattern and strength of the incident intensity

^{3.} Min and Typ include a 20% lifetime allowance for degradation in light output of LED. Transmitter intensity decreases with temperature by 0.6% per degree C.

Switching Specifications

Specifications hold over the Recommended Operating Conditions unless otherwise noted. Test Conditions represent worst case values for the parametrs under test. Unspecified test conditions can be anywhere in their operating range. All typicals are at 25° C and 5° V unless otherwise noted.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Transmitter Radiant Intensity		1.5	1.6	1.8	μs	1.6 μs PW, 115.2 Kb/s PRR
Pulse Width		115	125	135	ns	125 ns PW, 4 Mb/s PRR
Transmitter Radiant Intensity Rise and Fall Times	$t_{ m r}({ m IE}), \ t_{ m f}({ m IE})$			40	ns	125 ns PW, 4 Mb/s, PPM
RXD-A Pulse Width		1.0		7.5	μs	[1]
RXD-B Pulse Width		85		165	ns	[2]
Receiver Recovery Time			0.50	1.0	ms	

Notes

- 1. For In-Band signals ≤ 115.2 Kb/s where $3.6~\mu\text{W/cm}^2 \leq ~\text{EIL} \leq ~500~\text{mW/cm}^2.$
- 2. For In-Band signals, 125 ns PW, 4 Mb/s, 4 PPM where 9.0 μ W/cm² $\leq E_{T} \leq 500$ mW/cm².

Appendix A. Test Methods

A.1. Background Light and Electromagnetic Field

There are four ambient interference conditions in which the receiver is to operate correctly. The conditions are to be applied separately:

- 1. Electromagnetic field: 3 V/m maximum (refer to IEC 801-3. severity level 3 for details)
- 2. Sunlight: 10 kilolux maximum at the optical port

This is simulated with an IR source having a peak wavelength within the range 850 nm to 900 nm and a spectral width less than 50 nm biased to provide $490~\mu\text{W/cm}^2$ (with no modulation) at the optical port. The light source faces the optical port.

This simulates sunlight within the IrDA spectral range. The effect of longer wavelength radiation is covered by the incandescent condition.

3. Incandescent Lighting: 1000 lux maximum

This is produced with general service, tungsten-filament, gas-filled, inside-frosted lamps in the 60 Watt to 150 Watt range to generate 1000 lux over the horizontal surface on which the equipment under test rests. The light sources are above the test area. The source is expected to have a filament temperature in the 2700 to 3050 degrees Kelvin range and a spectral peak in the 850 nm to 1050 nm range.

4. Fluorescent Lighting: 1000 lux maximum

This is simulated with an IR source having a peak wave-

length within the range 850 nm to 900 nm and a spectral width of less than 50 nm biased and modulated to provide an optical square wave signal (0 µW/cm² minimum and 0.3 µW/cm² peak amplitude with 10% to 90% rise and fall times less than or equal to 100 ns) over the horizontal surface on which the equipment under test rests. The light sources are above the test area. The frequency of the optical signal is swept over the frequency range from 20 kHz to 200 kHz.

Due to the variety of fluorescent lamps and the range of IR emissions, this condition is not expected to cover all circumstances. It will provide a common floor for IrDA operation.

Note: At the time of this publication, Light Emitting Diodes (LEDs) that are contained in this product are regulated for eye safety in Europe by the Commission for European Electrotechnical Standardization (CENELEC) EN60825-1. Please refer to Application Briefs I-008, I-009, I-015 for more information.

High-Performance IR Emitter and IR PIN Photodiode in Subminiature SMT Package

Technical Data

HSDL-44XX IR Emitter Series HSDL-54XX IR Detector Series

Features

- Subminiature Flat Top and Dome Package Size – 2x2 mm
- IR Emitter 875 nm TS AlGaAs Intensity – 17 mW/sr Speed – 40 ns
- Wide Range of Drive Currents 500 µA to 500 mA
- IR Detector PIN Photodiode High Sensitivity Speed – 7.5 ns
- Flexible Lead Configurations Surface Mount or Through Hole

Applications

- Short Distance IR Links
- IrDA Compatible
- Small Handheld Devices
 Pagers
 Industrial Handhelds
- Diffuse LANs
- Wireless Audio

Description Flat Top Package

The HSDL-4400 Series of flat top IR emitters use an untinted, nondiffused, truncated lens to provide a wide radiation pattern that is useful for short distance communication where alignment of the emitter and detector is not critical. The HSDL-5400 Series of flat top IR detectors uses the same truncated lens design as the HSDL-4400 Series of IR emitters with the added feature of a black tint that acts as an optical filter to reduce the effects of ambient light, such as sun, incandescent and fluorescent light from interfering with the IR signal.

Dome Package

The HSDL-4420 Series of dome IR emitters uses an untinted, nondiffused lens to provide a 24 degree viewing angle with high on-axis intensity. The HSDL-5420 Series of IR detectors uses the same lens design as the HSDL-4420 IR emitter and optical filter used in the HSDL-5400 IR detector.

Lead Configuration

All of these devices are made by encapsulating LED and PIN photodiode chips on axial lead frames to form molded epoxy subminiature packages. A variety of lead configurations is available and includes: surface mount gull wing, yoke lead, or Z-bend and through hole lead bends at 2.54 mm (0.100 inch) center spacing.

Technology

The subminiature solid state emitters utilize a highly optimized LED material, transparent substrate aluminum gallium arsenide, TS AlGaAs. This material has a very high radiant efficiency, capable of producing high light output over a wide range of drive currents and temperature.

Device Selection Guide

IR Emitters

Part Number	Device Description ^[1]	Device Outline Drawing
HSDL-4400	LED, Flat Top, 110 deg	A
HSDL-4420	LED, Dome, 24 deg	В

IR Detectors

Part Number	Device Description ^[1]	Device Outline Drawing
HSDL-5400	PIN Photodiode, Flat Top, 110 deg	C
HSDL-5420	PIN Photodiode, Dome, 28 deg	D

Package Configuration Options

Option Code	Package (Package Outline Drawing		
011	Gull Wing Lead, Tape a	and Reel ^[2]		E, J, M
021	Yoke Lead, Tape and R	Surface	F, K, M	
031	Z-Bend, Tape and Reel	[2]	Mount Lead	G, L, M
1L1	2.54 mm (0.100 in) Center Lead Spacing	Long Leads; 10.4 mm (0.410 in)	Thru Hole Lead	Н
1S1		Short Leads; 3.7 mm (0.145 in)		I
No Option	Straight Leads ^[3]		Prototyping	A, B, C, D

Notes

- 1. IR Emitters have untinted, nondiffused lenses and IR Detectors have black tinted, nondiffused lenses.
- 2. Emitters and detectors are supplied in 12 mm embossed tape on 178 mm (7 inch) diameter reels, with 1500 units per reel. Minimum order quantity and order increment are in quantity of reels only.
- 3. Emitters and detectors are supplied in bulk form in bags of 50 units.

Package Dimensions

(A) Flat Top Emitters

(B) Dome Emitters

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
- 2. PROTRUDING SUPPORT TAB IS CONNECTED TO ANODE LEAD.

 3. LEAD POLARITY FOR THESE TS AIGAAS SUBMINIATURE LAMPS IS OPPOSITE TO THE LEAD POLARITY OF SUBMINIATURE LAMPS USING OTHER LED TECHNOLOGIES. CATHODE STRIPE MARKING IS BLACK.

(C) Flat Top Detectors

(D) Dome Detectors

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS (INCHES).
- 2. PROTRUDING SUPPORT TAB IS CONNECTED TO CATHODE LEAD.
- 3. CATHODE STRIPE MARKING IS SILVER.

Package Dimensions

The following notes affect the package outline drawings E through I.

- 1. The pinout represents the HSDL-54XX IR detectors where the protruding support tab is closest to the anode lead. While the pinout is reversed for the HSDL-44XX
- IR emitters where the protruding support tab is closest to the cathode lead.
- 2. The protruding support tab of the HSDL-54XX is connected to the cathode lead. While the protruding support tab of the HSDL-44XX is connected to the anode lead.

(E) Gull Wing Lead, Option 011

ALL DIMENSIONS ARE IN MILLIMETRES (INCHES)

(F) "Yoke" Lead, Options 021

ALL DIMENSIONS ARE IN MILLIMETRES (INCHES)

(G) Z-Bend Lead, Options 031

ALL DIMENSIONS ARE IN MILLIMETRES (INCHES)

(H) Thru Hole Lead Option 1L1

ALL DIMENSIONS ARE IN MILLIMETRES (INCHES)

(I) Thru Hole Lead Option 1S1

ALL DIMENSIONS ARE IN MILLIMETRES (INCHES)

Package Dimensions: Surface Mount Tape and Reel Options

(J) 12 mm Tape and Reel, Gull Wing Lead, Option 011

At the time of this publication XX/96, Light Emitting Diodes (LEDs) that are contained in this product are regulated for eye safety in Europe by the Commission for European Electrotechnical Standardization (CENELEC) EN60825-1. Please refer to Application Brief I-008 for more information.

(K) 12 mm Tape and Reel, "Yoke" Lead, Option 021

(L) 12 mm Tape and Reel, Z-Bend Lead, Option 031

HSDL-44XX Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit	Ref.
Peak Forward Current (Duty Factor = 20%, Pulse Width = 100 μs)	I_{FPK}		500	mA	Fig. 7, 8
DC Forward Current	I_{FDC}		100	mA	Fig. 6
Power Dissipation	P _{DISS}		180	mW	
Reverse Voltage ($I_R = 100 \mu A$)	V_{R}	5		v	
Transient Forward Current (10 µs Pulse)	I_{FTR}		1.0	A	[1]
Operating Temperature	T _O	-40	85	°C	
Storage Temperature	T_{S}	-55	100	°C	
Junction Temperature	$T_{ m J}$		110	$^{\circ}\mathrm{C}$	
Lead Solder Temperature [1.6 mm (0.063 in.) from body]			260/5 s	$^{\circ}\mathrm{C}$	
Reflow Soldering Temperatures Convection IR Vapor Phase			235/90 s 215/180 s	°C	

Notes:

HSDL-44XX Electrical Characteristics at T_A = 25°C

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition	Ref.
Forward Voltage	$V_{\rm F}$	1.30	1.50	1.70	V	$I_{FDC} = 50 \text{ mA}$	Fig. 2
·		1.40	1.67	1.85		$I_{FDC} = 100 \text{ mA}$	
			2.15			$I_{\text{FPK}} = 250 \text{ mA}$	
Forward Voltage	$\Delta V_F / \Delta T$		-2.1		mV/°C	$I_{FDC} = 50 \text{ mA}$	Fig. 3
Temperature Coefficient			-2.1			$I_{FDC} = 100 \text{ mA}$	
Series Resistance	R_{S}		2.8		Ω	$I_{FDC} = 100 \text{ mA}$	
Diode Capacitance	Co		40		pF	0 V, 1 MHz	
Reverse Voltage	$V_{\rm R}$	5	20		v	$I_R = 100 \mu\text{A}$	
Thermal Resistance, Junction to Pin	$R\theta_{jp}$		170		°C/W		

^{1.} The transient peak current in the maximum nonrecurring peak current the device can withstand without damaging the LED die and the wire bonds.

HSDL-44XX Optical Characteristics at $T_A = 25^{\circ}C$

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition	Ref.
Radiant Optical Power							
HSDL-4400	Po		16 30		mW	$I_{FDC} = 50 \text{ mA}$ $I_{FDC} = 100 \text{ mA}$	
HSDL-4420	Po		16 30		mW	$I_{FDC} = 50 \text{ mA}$ $I_{FDC} = 100 \text{ mA}$	
Radiant On-Axis Intensity							
HSDL-4400	I_{E}	1	3 6 15	8	mW/sr	$\begin{split} \mathrm{I}_{\mathrm{FDC}} &= 50 \; \mathrm{mA} \\ \mathrm{I}_{\mathrm{FDC}} &= 100 \; \mathrm{mA} \\ \mathrm{I}_{\mathrm{FPK}} &= 250 \; \mathrm{mA} \end{split}$	Fig. 4, 5
HSDL-4420	$ m I_E$	9	17 32 85	30	mW/sr	$\begin{split} &I_{FDC} = 50 \text{ mA} \\ &I_{FDC} = 100 \text{ mA} \\ &I_{FPK} = 250 \text{ mA} \end{split}$	Fig. 4, 5
Radiant On-Axis Intensity Temperature Coefficient	$\Delta I_{\rm E}/\Delta T$		-0.35 -0.35		%/°C	$\begin{split} I_{FDC} &= 50 \text{ mA} \\ I_{FDC} &= 100 \text{ mA} \end{split}$	
Viewing Angle							
HSDL-4400	$2\theta_{1/2}$		110		deg	$I_{FDC} = 50 \text{ mA}$	Fig. 9
HSDL-4420	$2\theta_{1/2}$		24		deg	$I_{\rm FDC} = 50 \text{ mA}$	Fig. 10
Peak Wavelength	$\lambda_{ m PK}$	860	875	895	nm	$I_{\rm FDC} = 50 \text{ mA}$	Fig. 1
Peak Wavelength Temperature Coefficient	Δλ/ΔΤ		0.25		nm/°C	$I_{FDC} = 50 \text{ mA}$	
Spectral Width at FWHM	Δλ		37		nm	$I_{\rm FDC} = 50 \text{ mA}$	Fig. 1
Optical Rise and Fall Times, 10%-90%	t _r /t _f		40		ns	$I_{FPK} = 50 \text{ mA}$	
Bandwidth	f_c		9		MHz	$I_{FDC} = 50 \text{ mA}$ ± 10 mA	Fig. 11

HSDL-54XX Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit
Power Dissipation	P _{DISS}		150	mW
Reverse Voltage ($I_R = 100 \mu A$)	V _R		40	V
Operating Temperature	To	-40	85	$^{\circ}\mathrm{C}$
Storage Temperature	T_{S}	-55	100	°C
Junction Temperature	$T_{ m J}$		110	$^{\circ}\mathrm{C}$
Lead Solder Temperature [1.6 mm (0.063 in.) from body]			260/5 s	°C .
Reflow Soldering Temperatures				
Convection IR			235/90 s	$^{\circ}\mathrm{C}$
Vapor Phase			215/180 s	$^{\circ}\mathrm{C}$

HSDL-54XX Electrical Characteristics at $T_A = 25$ °C

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition	Ref.
Forward Voltage	$V_{ m F}$		1.80		V	$I_{FDC} = 50 \text{ mA}$	
Breakdown Voltage	$V_{ m BR}$	40			V	$I_R = 100 \mu A,$ $E_e = 0 \text{ mW/cm}^2$	
Reverse Dark Current	I_{D}		1	5	nA	$V_R = 5 \text{ V},$ $E_e = 0 \text{ mW/cm}^2$	Fig. 12
Series Resistance	R_{S}		2000		Ω	$V_R = 5 \text{ V},$ $E_e = 0 \text{ mW/cm}^2$	
Diode Capacitance	Co		5		pF	$\begin{aligned} &V_R = 0 \text{ V}, \\ &E_e = 0 \text{ mW/cm}^2 \\ &f = 1 \text{ MHz} \end{aligned}$	Fig. 16
Open Circuit Voltage	Voc		375		mV	$E_e = 1 \text{ mW/cm}^2$ $\lambda_{PK} = 875 \text{ nm}$	
Temperature Coefficient of V_{OC}	$\Delta V_{OC}/\Delta T$		-2.2		mV/K	$E_{e} = 1 \text{ mW/cm}^{2}$ $\lambda_{PK} = 875 \text{ nm}$	
Short Circuit Current	I_{SC}					$E_e = 1 \text{ mW/cm}^2$	
HSDL-5400			1.6		μΑ	$\lambda_{PK} = 875 \text{ nm}$	
HSDL-5420			4.3		μA		
Temperature Coefficient of I_{SC}	$\Delta I_{SC}/\Delta T$		0.16		%/K	$\begin{aligned} E_e &= 1 \text{ mW/cm}^2 \\ \lambda_{PK} &= 875 \text{ nm} \end{aligned}$	
Thermal Resistance, Junction to Pin	$R\theta_{jp}$		170		°C/W		1

HSDL-54XX Optical Characteristics at $T_A = 25^{\circ}C$

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition	Ref.
Photocurrent HSDL-5400 HSDL-5420	I_{PH}	0.8	1.6		μА	$\begin{split} E_e &= 1 \text{ mW/cm}^2 \\ \lambda_{PK} &= 875 \text{ nm} \\ V_R &= 5 \text{ V} \end{split}$	Fig. 14, 15
Temperature Coefficient of I_{PH}	$\Delta I_{PH}/\Delta T$	i	0.1		%/K	$E_e = 1 \text{ mW/cm}^2$ $\lambda_{PK} = 875 \text{ nm}$ $V_R = 5 \text{ V}$	Fig. 13
Radiant Sensitive Area	A		0.15		mm^2		
Absolute Spectral Sensitivity	S		0.5		A/W	$\begin{split} E_e &= 1 \text{ mW/cm}^2 \\ \lambda_{PK} &= 875 \text{ nm} \\ V_R &= 5 \text{ V} \end{split}$	
Viewing Angle							
HSDL-5400	$2\theta_{1/2}$		110		deg		Fig. 18
HSDL-5420			28				Fig. 19
Wavelength of Peak Sensitivity	$\lambda_{ m PK}$		875		nm	$E_{e} = 1 \text{ mW/cm}^{2}$ $V_{R} = 5 \text{ V}$	Fig. 17
Spectral Bandwidth	Δλ		770- 1000		nm	$E_e = 1 \text{ mW/cm}^2$ $V_R = 5 \text{ V}$	Fig. 17
Quantum Efficiency	η		70		%	$\begin{split} E_e &= 1 \text{ mW/cm}^2 \\ \lambda_{PK} &= 875 \text{ nm}, \\ V_R &= 5 \text{ V} \end{split}$	
Noise Equivalent Power	NEP		6.2 x 10 ⁻¹⁵		W/Hz ^{1/2}	$V_{R} = 5 \text{ V}$ $\lambda_{PK} = 875 \text{ nm}$	
Detectivity	D		6.3 x 10^{12}		cm* Hz ^{1/2} /W	$V_{R} = 5 V$ $\lambda_{PK} = 875 \text{ nm}$	
Optical Rise and Fall Times, 10%-90%	t _r /t _f		7.5		ns	$V_R = 5 V$ $R_L = 1 k\Omega$ $\lambda_{PK} = 875 \text{ nm}$	
Bandwidth	f_c		50		MHz	$V_{R} = 5 V$ $R_{L} = 1 k\Omega$ $\lambda_{PK} = 875 \text{ nm}$	

Figure 1. Relative Radiant Intensity vs. Wavelength.

Figure 2. Peak Forward Current vs. Forward Voltage.

Figure 3. Forward Voltage vs Ambient Temperature.

Figure 4. Normalized Radiant Intensity vs. Peak Forward Current.

Figure 5. Normalized Radiant Intensity vs. Peak Forward Current (0 to 10 mA).

Figure 6. Maximum DC Forward Current vs. Ambient Temperature. Derated Based on $T_{JMAX} = 110^{\circ}C$.

Figure 7. Maximum Peak Forward Current vs. Duty Factor.

Figure 8. Maximum Peak Forward Current vs. Ambient Temperature. Derated Based on $T_{JMAX} = 110^{\circ}C$.

Figure 9. Relative Radiant Intensity vs. Angular Displacement HSDL-4400.

Figure 10. Relative Radiant Intensity vs. Angular Displacement ${
m HSDL-4420}.$

Figure 11. Relative Radiant Intensity vs. Frequency.

Figure 12. Reverse Dark Current vs. Ambient Temperature.

Figure 13. Relative Reverse Light Current vs. Ambient Temperature.

Figure 14. Reverse Light Current vs. Irradiance

Figure 15. Reverse Light Current vs. Reverse Voltage.

Figure 16. Diode Capacitance vs. Reverse Voltage.

Figure 17. Relative Spectral Sensitivity vs. Wavelength.

Figure 18, Relative Radiant Intensity vs. Angular Displacement. HSDL-5400.

Figure 19. Relative Radiant Intensity vs. Angular Displacement. ${\bf HSDL-5420}.$

Note: At the time of this publication, Light Emitting Diodes (LEDs) that are contained in this product are regulated for eye safety in Europe by the Commission for European Electrotechnical Standardization (CENELEC) EN60825-1. Please refer to Application Briefs I-008, I-009, I-015 for more information.

Applications

Applications

All of the application information listed here is available from your local Hewlett-Packard sales office or nearest Hewlett-Packard authorized distributor or representative (see listing in section 6).

In the US/Canada, technical literature is available from the Hewlett-Packard Components Group fax-back service at: 1-800-450-9455, or from the Components Sales Response Center at: 1-800-235-0312 or 408-654-8675.

LED Lamps/ Indicators

AN 1005 Operational Considerations for LED Lamps and Display Devices

In the design of a display system which incorporates LED lamps and display devices, the objective is to achieve an optimum between light output, power dissipation. reliability, and operating life. The performance characteristics and capabilities of each LED device must be known and understood so that an optimum design can be achieved. The primary source for this information is the LED device data sheet. The data sheet typically contains Electrical/ Optical Characteristics that list the performance of the device and Absolute Maximum Ratings in conjunction with characteristic curves and other data which describe the capabilities of the device. A thorough understanding of this information and its intended use provides the basis for achieving an optimum design. This application note presents an in-depth discussion of the theory

and use of the electrical and optical information contained within a data sheet. Two designs using this information in the form of numerical examples are presented, one for dc operation and one for pulsed (strobed) operation.

Publication No. 5091-9704E

AN 1017 LED Solid State Reliability

Light emitting diode display technology offers many attractive features including multiple display colors, sunlight readability, and a continuously variable intensity adjustment. One of the most common reasons that LED displays are designed into an application, however, is the high level of reliability of the LED display. Hewlett-Packard has taken a leadership role in setting reliability standards for LED displays and documenting reliability performance.

This note explains how to use the reliability data sheets

published for HP LED indicators and displays. It describes the LED indicator and display packages, defines device failures, and discusses parameters affecting useful life, failure rates, and mechanical test performance.

Publication No. 5953-7784

AN 1021 Utilizing LED Lamps Packaged on Tape and Reel

Hewlett-Packard offers many of its LED lamps packaged on tape and reel for radial insertion by automatic equipment during high volume production of PC board assemblies.

This application note is a guide to the use of tape and reel LED lamps in the automatic insertion process. Discussed are the LED lamp tape and reel configuration, the radial lead insertion process, PC board design considerations, a method to maintain LED lamp alignment during soldering, and lamp standoff height information.

Publication No. 5964-3921E

AN 1027

Soldering LED Components

The modern printed circuit board is assembled with a wide variety of semiconductor components. These components may include LED lamps and displays in combination with other components. The quantity of solder connections will be many times the component count. Therefore, the solder connections must be good on the first pass through the soldering process. The effectiveness of the soldering process is a function of the care and attention paid to the details of the process. It is important for display system designers and PC board assembly engineers to understand the aspects of the soldering process and how they relate to LED components to assure high yields.

This application note provides an in-depth discussion on the aspects of the soldering process and how they relate to LED lamps and display components, with the objective of being to serve as a guide towards achieving high yields for solder connections.

Publication No. 5954-0893

AN 1060 Surface Mounting SMT LED Indicator Components

Circuit board assemblies using surface mount technology (SMT) are now common and SMT LED indicators are being used on many of these SMT board assemblies. This application note gives the Standard EIA tape and reel packaging information for SMT LED indicators. Recommended pc board pad layout designs are given for each type of SMT LED component. Automatic placement considerations, solder paste, and Type 2 pc board processing issues are discussed. Recommended temperature profiles are presented for both

convective IR reflow and vapor phase (VPS) reflow soldering processes. A brief discussion of conductive attachment is included. An industry standard rework technique is described in detail.

Publication No. 5091-6704E

AN 1061 Light Output Degradation of Emerald Green Solid State Lamps

Emerald Green material has demonstrated a different light output degradation pattern vs. other IIV materials. Differences include larger standard deviation withini a s ample and suggestions of varied performance from lot-to-lot. This application note reports the observed differences between Standard Green LEDs and Emerald Green LEDs on liught output degradation vs. Time. Design Engineers could tuilize this information in their applications.

Publication No. 5091-7778E

AB 74 Auto-Insertion of Option 002 Tape and Reel LED Lamps

Publication No. 5964-3924E

AB I-004 Reliability of TS AlInGaP LED Lamps in Traffic Signals and Variable Message Signs

Publication No. 5964-6223E

AB I-006 TS AlInGaP LED Amber Lamps for In-Roadway Pedestrian Crosswalk Strobe Lighting

Publication No. 5964-3904E

AB I-007 Projection of Long Term Light Output Performance for AS AllnGaP LED Technology

Publication No. 5964-6228E

AB I-008 IEC 825-1 and CENELEC EN60825, EN60825-1, Standards for Products with

Publication No. 5963-6974E

AB I-009

LED Devices

Visible LED Devices and Eye Safety with Respect to MPE Values Defined in the IEC 825-1 and CENELEC EN60825-1 Standards

Publication No. 5964-3805E

AB I-010

Packaging and Intensity and Color Binning Options for Precision Optical Performance AlInGaP T-1 3/4 LED Lamps

Publication No. 5965-0986E

AB I-011 Full Color LCD Backlighting with LEDs

Publication No. 5963-7545E

AB I-012

Temperature Compensation Circuit for Constant LED Intensity

Publication No. 5963-7544E

AB I-014 LED Technology in Roadway Work Zone Light Emitting

Publication No. 5964-9176E

Safety Devices

AB I-015 Visible LED Device Classifications with Respect to AEL Values as Defined in the European CENELEC EN60825I Standard

Publication No. 5964-9499E

Automotive Applications

AB A02 Benefits of LEDs for Instrument Cluster Lighting

Publication No. 5964-8918E

AB A03 LED Compatibility with Automaotive EMC Transients

Publication No. 5964-8919E

AB A04 LED Lamp Thermal Properties

Publication No. 5964-8921E

LED Displays

AN 1006 Seven Segment LED Display Applications

This application note begins with a detailed explanation of the two basic product lines that Hewlett-Packard offers in the seven segment display market. This discussion includes mechanical construction techniques, character heights, and typical areas of application. The two major display drive techniques, dc and strobed, are covered. The resultant tradeoffs of cost, power, and ease of use are discussed. This is followed by several typical instrument applications including counters, digital voltmeters, and microprocessor interface applications. Several different microprocessor based drive techniques are presented incorporating both the monolithic and the large seven segment LED displays.

The application note contains a discussion of intensity and color considerations made necessary if the devices are to be end stacked. Hewlett-Packard has made several advances in the area of sunlight viewability of LED displays. The

basic theory is discussed and recommendations made for achieving viewability in direct sunlight. Information concerning display mounting, soldering, and cleaning is presented. Finally, an extensive set of tables has been compiled to aid the designer in choosing the correct hardware to match a particular application. These tables include seven segment decoder/drivers, digit drivers, LSI chips designed for use with LEDs, printed circuit board edge connectors, and filtering materials.

Publication No. 5953-0439

AN 1015 Contrast Enhancement Techniques for LED Displays

Contrast enhancement is essential to assure readability of LED displays in a variety of indoor and outdoor ambients. Plastic filters are typically used for contrast enhancement with indoor lighting and glass circular polarized filters are typically used to achieve readability in sunlight ambients.

This application note discusses contrast enhancement technology for both indoor and outdoor ambients, the theory of Discrimination Index and provides a list of tested contrast enhancement filters and filter manufacturers.

Publication No. 5964-6129E

AN 1016 Using the HDSP-2000 Alphanumeric Display Family

The HDSP-2000 family of alphanumeric display products provides the designer with a variety of easy-to-use display modules with on board integrated circuit drivers. The HDSP-2000 family has been expanded to provide three display sizes with

character heights ranging from 3.8 mm (0.15 in.) to 6.9 mm (0.27 in.), four display colors, and both commercial and military versions. These displays can be arranged to create both single line and multiple line alphanumeric panels.

This note is intended to serve as a design and application guide for users of the HDSP-2000 family of alphanumeric display devices. It covers the theory of the device design and operation, considerations for specific circuit designs, thermal management, power derating and heat sinking, and intensity modulation techniques.

Publication No. 5953-7787

AN 1026 Designing with Hewlett-Packard's Smart Display – the HPDL-2416

The trend in LED Alphanumeric displays is to simplify a designer's job as much as possible by incorporating on board character storage, ASCII character generation, and multiplexing within the display. The HPDL-2416 is a four character alphanumeric display which incorporates a 64 character ASCII decoder and an on board CMOS IC to perform these functions. This application note is intended to serve as a design and application guide for users of the HPDL-2416. The information presented will cover electrical description, electrical design considerations, interfacing to micro-processors, preprogrammed message systems, mechanical and electrical handling, and contrast enhancement.

Publication No. 5954-0936

AN 1029 Luminous Contrast and Sunlight Readability of the HDSP-238X Series LED Alphanumeric Displays for Military Applications

Military specifications for avionics and other kinds of electronics that require readability in sunlight use specific definitions for luminous contrast. The concept of chrominance contrast and the theory of Discrimination Index (see Hewlett-Packard Application Note 1015) are not used by the military as a means of determining readability in sunlight. Thus, the military requirements for readability in sunlight are based solely on luminous contrast measurements. This application note discusses the luminous contrasts used by military specifications, describes anti-reflection/circular polarized filters designed for use with the HDSP-238X series sunlight viewable LED displays, and presents luminous contrast data for various HDSP-238X display/ filter combinations.

Publication No. 5963-7154E

AN1030 LED Displays and Indicators and Night Vision Imaging System Lighting

This application note introduces the concept of night vision imaging. It discusses GEN II and GEN III ANVIS and Cat's Eyes night vision goggles. NVG compatibility problems and compatible lighting objectives for aircraft cockpits are discussed. It illustrates the use of NVG filters with high performance green and vellow LEDs to obtain NVG compatibility. Various aspects of MIL-L-85762A, as they apply to LEDs, are discussed. Calculated NVIS Radiance values are presented for high performance

green and yellow LED/NVG/DV filter combinations. A discussion of the U.S. Army's NVG Secure Lighting Program and the objectives of the CECOM SOW are included. Information on dimming LED displays is presented. Daylight readability with NVG/DV filters is also discussed.

Publication No. 5964-3923E

AN 1031 Front Panel Design

In many applications designers are faced with the problem of how to match the perceived brightness of an assortment of seven segment displays, light bars, linear arrays, and lamps on the same front panel. To simplify this problem Hewlett-Packard has introduced S02 option selected parts. S02 option selected parts provide a restricted range of luminous intensity for a given part number. This application note is written as a design guide to matching the perceived brightness of LED displays and lamps on a front panel. The procedure shown in the application note will enable the designer to calculate the needed display drive currents (either dc or pulsed) for a given ambient light level and specified filter. Two technques are explained. The first is how to calculate the drive currents to insure minimum acceptable brightness. The second is how to calculate the drive currents to match the display on the front panel to a known display.

Publication No. 5954-0933

AN 1033 Designing with the HDSP-211X Smart Display Family Hewlett-Packard's smart alphanumeric display, the HDSP-

211X, is built to simplify the user's display design. Each HDSP-211X has an onboard CMOS IC which displays eight characters. All of the IC features are software driven. These features include 128 character ASCII decoder, 16 user-defined symbols, seven brightness levels, flashing characters, a self test, and all of the circuitry needed to decode, drive, and refresh eight 5 x 7 dot matrix characters.

This application note discusses how to interface the HDSP-211X display to either a Motorola 6808 or an Intel 8085 microprocessor. A 32 character display interface is explained for each microprocessor. The note includes a detailed description of the hardware and software. The software illustrates how the user-defined symbols and a string of ASCII characters are loaded into the display.

Publication No. 5954-8424

AN 1039 Dimming HDSP-213X Displays to Meet Night Vision Lighting Levels

Abstract

For normal operation, the seven programmable dimming levels available with the HDSP-213X military grade displays are sufficient. However, the displays must be dimmed well below the lowest available on-board programmable dimming level to meet the requirements for night vision imaging system (NVIS) lighting. This application note describes a circuit that will dim HDSP-213X displays to luminance levels sufficient to meet NVIS lighting requirements.

Publication No. 5952-0708

AB D-001

Design-in Tips for Use with Smart 8-Character Alphanumeric LED Displays

Publication No. 5963-7070E

AB D-002

Interfacing the HCMS-29XX LED Alphanumeric Displays with the Intel 8751H Microcontroller

Publication No. 5963-7071E

AB D-003 HCMS-29XX LED Display Character Set (ASCII and Katakana)

Publication No. 5964-2385E

AB D-004

A Guide to Human Visual Perception and the Optical Characteristics of LED Displays

Publication No. 5963-7073E

AB D-005

Interfacing the HDSP-2XXX LED Alphanumeric Displays with the Intel 8751H Microcontroller

Publication No. 5963-7074E

AB D-006

Determination of Ics Used in the HDSP-211X Displays

Publication No. 5963-7225E

AB D-007

Solutions for Common LED Design Errors in Segmented Display and Multi-Indicator Applications

Publication No. 5963-7069E

AB D-010

Improving Thermal Performance of LED Tiles in Outdoor Large Area Displays

Publication No. 5964-9602E

AB I-008

IEC 825-1 and CENELEC EN60825, EN60825-1, Standards for Products with LED Devices

Publication No. 5963-6974E

AB I-009

Visible LED Devices and Eye Safety with Respect to MPE Values Defined in the IEC 825-I and CENELC EN60825-1 Standards

Publication No. 5964-3805E

AB I-015

Visible LED Device Classifications with Respect to AEL Values as Definedin the European CENELEC EN60825-I Standard

Publication No. 5964-9499E

Infrared Products

AB I-008

IEC 825-1 and CENELEC EN60825, EN60825-1, Standards for Products with LED Devices

Publication No. 5963-6974E

AB I-009

Visible LED Devices and Eye Safety with Respect to MPE Values Defined in the IEC 825-1 and CENELEC EN60825-1 Standards

Publication No. 5964-3805E

AB I-015

Visible LED Device Classifications with Respect to AEL Values as Defined in the European CENELEC EN60825-I Standard

Publication No. 5964-9499E

Sales and Service

Ordering Information, After-Sales Service

How to Order

To order any component in this catalog, call your nearest HP authorized distributor or HP sales office.

A complete listing of HP authorized distributors is located on page 6-3. These distributors can offer off-the-shelf delivery for most HP components.

Service and Support

For technical assistance or to find out the location of your nearest HP sales office, distributor or representative call (US and Canada only): 1-800-235-0312 or 408-654-8675. Elsewhere in the world, call your local sales office located in your telephone directory. Ask for a Components representative.

For Additional Information

For additional technical literature not available in this catalog, try our fax-back service (US and Canada only) at: 1-800-450-9455.

Information regarding Hewlett-Packard Components Group products is available on the World Wide Web via the Hewlett-Packard home page at: http://www.hp.com/ or directly via the Components Group home page at: http://www.hp.com/go/components/

Warranty

- a) HP warrants hardware Products against defects in materials and workmanship (in relation to HP's published minimum/maximum specifications or Customer's specifications expressly accepted in writing by HP) for one year from shipment. This warranty extends only to Customer and not to indirect purchasers or users. If HP receives notice of such defects during the warranty period, HP will, at its option, either repair or replace Products which prove to be defective. If HP is unable. within a reasonable time, to repair or replace any Product to a condition as warranted, Customer will be entitled to a refund of the purchase price upon prompt authorized return of the Product to HP.
- b) Customer will prepay shipping charges (and will pay all duties and taxes) for Products returned to HP for warranty service. For valid warranty claims, HP will reimburse Customer for prepaid freight charges and return Products to Customer at HP's expense.

- c) Unless HP agrees in writing that Customer has configuration control, HP may make process or materials changes affecting the performance or other characteristics of Products. Products supplied after such a change will continue to meet HP's published minimum/maximum specifications, but may not be identical to Products supplied as samples or under prior orders.
- d) The foregoing warranty will not apply to defects resulting from: improper or inadequate maintenance; non-HP software or interfacing; unauthorized modification or misuse; or, operation outside HP's published specifications for the Product.
- e) THE ABOVE WARRANTIES ARE EXCLUSIVE AND NO OTHER WARRANTY, WHETHER WRITTEN OR ORAL, IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

HP Components Authorized Distributor and Representative Directory

Alabama

Allied Electronics 1-800-433-5700

Arrow Electronics 1015 Henderson Rd. Huntsville 35816 (205) 837-6955

Future Electronics 4825 University Ave. Suite 12 Huntsville 35816 (205) 830-2322

Hamilton Hallmark 4890 University Square Suite 1 Huntsville 35816 (205) 837-8700

Newark Electronics 1-800-367-3573

Penstock, Inc. 1-800-PENSTOC

Arizona

Allied Electronics 1-800-433-5700

Arrow Electronics 2415 W. Erie Dr. Tempe 85282 (602) 431-0030

Future Electronics 4636 E. University Dr. Suite 245 Phoenix 85034 (602) 968-7140

Hamilton Hallmark 4637 S. 36th Place Phoenix 85040 (602) 437-1200

Newark Electronics 1-800-367-3573

Penstock, Inc. 8260 E. Raintree Dr. Suite 206 Scottsdale 85260 (602) 998-4442 Penstock-Sertek 2111 East Broadway Rd. Suite 5 Tempe 85282 (602) 894-9405

California

Allied Electronics 1-800-433-5700

Arrow Electronics 26677 W. Agoura Rd. Calabassas 91302 (818) 880-9686

Arrow Electronics 6 Cromwell St. Suite 100 Irvine 92718 (714) 454-4300

Arrow Electronics 167 W. Poplar Porterville 93257 (209) 781-4335

Arrow Electronics 2999 Pacific Commerce Dr. Rancho Dominguez 90221 (310) 639-5393

Arrow Electronics 9511 Ridgehaven Ct. San Diego 92123 (619) 565-4800

Arrow Electronics 1180 Murphy Ave. San Jose 95131 (408) 441-9700

Future Electronics 27489 West Agoura Rd. Suite 300 Agoura Hills 91301 (818) 865-0040

Future Electronics 25B Technology Suite 200 Irvine 92718 (714) 453-1515 Future Electronics 755 Sunrise Ave. Suite 105 Roseville 95661 (916) 783-7877

Future Electronics 5151 Shoreham Place Suite 220 San Diego 92122 (619) 625-2800

Future Electronics 2220 O'Toole Ave. San Jose 95131 (408) 434-1122

Hamilton Hallmark (Corporate Office) 10950 W. Washington Blvd. Culver City 90230 (310) 558-2000

Hamilton Hallmark 140 Technology Drive Suite 400 Irvine 92718 (714) 641-4100

Hamilton Hallmark 580 Menlo Dr. Suite 2 Rocklin 95765 (916) 624-9781

Hamilton Hallmark 4545 Viewridge Ave. San Diego 92123 (619) 571-7540

Hamilton Hallmark 2105 Lundy Ave. San Jose 95131 (408) 435-3500

Hamilton Hallmark 21150 Califa St. Woodland Hills 91327 (818) 594-0404

Newark Electronics 1-800-367-3573 Penstock, Inc. 1401 Highland Ave. Suite 200 Manhattan Beach 90266 (310) 546-8953

Penstock-Sertek, Inc. (Corporate Office) 3481 Old Conejo Rd. Newbury Park, CA 91320 (805) 375-6680

Penstock, Inc. 5850 Oberlin Dr. Suite 208 San Diego 92121 (619) 535-3015

Penstock, Inc. (Corporate Office) 520 Mercury Dr. Sunnyvale 94086 (408) 730-0300

Zeus Electronics 6 Cromwell St. Suite 100 Irvine 92718 (714) 581-4622

Zeus Electronics 6276 San Ignacio Ave. San Jose 95119 (408) 629-4789

Colorado

Allied Electronics 1-800-433-5700

Arrow Electronics 101 Invernes Dr. East Englewood 80112 (303) 799-0258

Future Electronics 12600 West Colfax Ave. Suite B110 Lakewood 80215 (303) 232-2008

Hamilton Hallmark 12503 East Euclid Dr. Suite 20 Englewood 80111 (303) 790-1662 Newark Electronics 1-800-367-3573

Penstock-Sertek, Inc. 12503 E. Euclid Ave. Suite 20 Englewood 80111 (303) 421-7161

Connecticut

Arrow Electronics 860 N. Main St. Wallingford 06492 (203) 265-7741

Future Electronics Westgate Office Center 700 West Johnson Ave. Cheshire 06410 (203) 250-0083

Hamilton Hallmark 1157 Highland Ave. Suite 207 Cheshire 06410 (203) 271-5700

Newark Electronics 1-800-367-3573

Penstock, Inc. 1-800-PENSTOC

Florida

Allied Electronics 1-800-433-5700

Arrow Electronics Summit Executive Suites 13575 58th St. Suite 145 Clearwater 34620 (407) 333-9300

Arrow Electronics 400 Fairway Dr. Suite 201 Deerfield Beach 33441 (305) 429-8200

Arrow Electronics 37 Skyline Dr. Suite 3101 Lake Mary 32746 (407) 333-9300

Future Electronics 237 S. Westmonte Dr. Suite 307 Altamonte Springs 32714 (407) 865-7900

Future Electronics 1400 E. Newport Center Dr. Suite 200 Deerfield Beach 33442 (305) 426-4043 Future Electronics 2200 Tall Pines Dr. Suite 108 Largo 34641 (813) 530-1222

Future Electronics 1435 Market St. Tallahassee 32312 1-800-288-1019

Hamilton Hallmark 3350 NW. 53rd St. Suite 105-107 Ft. Lauderdale 33309 (305) 484-5482

Hamilton Hallmark 10491 72nd St. North Largo 34647 (813) 541-7440

Hamilton Hallmark 7079 University Blvd. Winter Park 32792 1-800-332-8638

Newark Electronics 1-800-367-3573

Penstock, Inc. 1726 E. 7th Ave. Suite 8 Tampa 33605 (813) 247-7556

Zeus Electronics 37 Skyline Dr. Suite 3101 Lake Mary 32746 (407) 333-3055

Georgia

Allied Electronics 1-800-433-5700

Arrow Electronics 4250 E. River Green Pkwy. Duluth 30136 (404) 497-1300

Future Electronics 3150 Holcomb Bridge Rd. Suite 130 Norcross 30071 (404) 441-7676

Hamilton Hallmark 3425 Corporate Way Suite A Duluth 30136

(404) 623-4400 Newark Electronics 1-800-367-3573 Penstock, Inc. 6825 Jimmy Carter Blvd. Suite 1590 Norcross 30071 (404) 951-0300

Illinois

Allied Electronics 1-800-433-5700

Arrow Electronics 1140 West Thorndale Ave. Itasca 60143 (708) 250-0500

Future Electronics 3150 W. Higgins Rd. Suite 160 Hoffman Estates 60195 (708) 882-1255

Hamilton Hallmark 3030 Salt Creek Lane Suite 300 Arlington Heights, 60005 (708) 797-7300

Hamilton Hallmark 1130 Thorndale Ave. Bensenville 60106 (708) 860-7780

Newark Electronics (Corporate Office) 4801 N. Ravenswood Ave. Chicago 60640 1-800-367-3573

Penstock, Inc. 1250 West Northwest Hwy Suite 509 Palatine 60067 (708) 934-3700

Indiana

Allied Electronics 1-800-433-5700

Arrow Electronics 7108 Lake View Pkwy W. Dr. Indianapolis 46268 (317) 299-2071

Future Electronics 8425 Woodfield Crossing Suite 175 Indianapolis 46240 (317) 469-0447

Hamilton Hallmark 655 W. Carmel Dr. Suite 160 Carmel 46032 (317) 575-3535

Newark Electronics 1-800-367-3573 Penstock, Inc. 1-800-PENSTOC

Iowa

Allied Electronics 1-800-433-5700

Hamilton Hallmark 1-800-254-2847

Newark Electronics 1-800-367-3573

Penstock, Inc. 1-800-PENSTOC

Kansas

Allied Electronics 1-800-433-5700

Arrow Electronics 9801 Legler Rd. Lenexa 66219 (913) 451-9542

Future Electronics 8826 Santa Fe Dr. Suite 150 Overland Park 66212 (913) 649-1531

Hamilton Hallmark 9200 Indian Cr. Pkwy. Overland Park 66204 (913) 663-7900

Newark Electronics 1-800-367-3573

Penstock, Inc. 300 S. Clairborne, Suite #A2 Olathe 66062 (913) 829-9330

Kentucky

Allied Electronics 1-800-433-5700

Hamilton Hallmark 1847 Mercer Rd. Suite G Lexington 40511 1-800-235-6039

Newark Electronics 1-800-367-3573

Penstock, Inc. 1-800-PENSTOC

Maryland

Allied Electronics 1-800-433-5700

Arrow Electronics 9800 Patuxent Woods Dr. Suite J Columbia 21046 (301) 596-7800 Future Electronics 6716 Alexander Bell Dr. Suite 101 Columbia 21046 (410) 290-0600

Hamilton Hallmark 7134 Columbia Gateway Dr. Columbia 21046 (410) 720-3400

Newark Electronics 1-800-367-3573

Penstock, Inc. 9881 Broken Land Pkwy. Suite 105 Columbia 21046 (410) 290-3746

Massachusetts

Allied Electronics 1-800-433-5700

Arrow Electronics 25 Upton Dr. Wilmington 01887 (508) 658-0900

Future Electronics 41 Main St. Bolton 01740 (508) 779-3000

Hamilton Hallmark 10D Centennial Dr. Peabody 01960 (508) 532-9893

Newark Electronics 1-800-367-3573

Penstock 60 Burlington Mall Rd. Suite 310 (617) 229-9100

Zeus Electronics 25 Upton Dr. Wilmington 01876 (508) 658-4776

Michigan

Allied Electronics 1-800-433-5700

Arrow Electronics 44720 Helm St. Plymouth 48170 (313) 455-0850

Future Electronics 4505 Broadmoor SE Grand Rapids 49512 (616) 698-6800 Future Electronics 35200 Schoolcraft Rd. Suite 106 Livonia 48150 (313) 261-5270

Hamilton Hallmark 44191 Plymouth Oaks Blvd. Plymouth 48170 (313) 416-5800

Newark Electronics 1-800-367-3573

Penstock, Inc. 1-800-PENSTOC

Minnesota

Allied Electronics 1-800-433-5700

Arrow Advantage 10120A West 76th Eden Prairie, MN 55344 (612) 946-4820

Arrow Electronics 10100 Viking Dr. Suite 100 Eden Prairie 55344 (612) 828-7140

Future Electronics 10025 Valley View Rd. Suite 196 Eden Prairie 55344 (612) 944-2200

Hamilton Hallmark 9401 James Ave., South Suite 140 Bloomington 55431 (612) 881-2600

Newark Electronics 1-800-367-3573

Penstock, Inc. 1-800-PENSTOC

Missouri

Allied Electronics 1-800-433-5700

Future Electronics 12125 Woodcrest Executive Dr. Suite 220 St. Louis 63141 (314) 469-6805

Hamilton Hallmark 3783 Rider Trail South Earth City 63045 (314) 291-5350

Newark Electronics 1-800-367-3573 Penstock, Inc. 1-800-PENSTOC

New Jersey

Allied Electronics 1-800-433-5700

Arrow Electronics 4 East Stow Rd. Unit 11 Marlton 08053 (609) 596-8000

Arrow Electronics 43 Route 46 East Pine Brook 07058 (201) 227-7880

Future Electronics 1259 Route 46 East Parsippany 07054 (201) 299-0400

Hamilton Hallmark One Keystone Ave. Bldg. 36 Cherry Hill 08003 (609) 424-0110

Hamilton Hallmark 10 Lanidex Plaza West Parisippany 07054-2715 (201) 515-5370

Newark Electronics 1-800-367-3573

Penstock, Inc. 160 Littleton Rd. Suite 201 Parsippany 07054 (201) 299-0323

New Mexico

Allied Electronics 1-800-433-5700

Newark Electronics 1-800-367-3573

Penstock-Sertek, Inc. (602) 894-9405

Hamilton Hallmark 2601 Wyoming Blvd. NE Albuquerque 87109 (505) 293-5119

New York

Allied Electronics 1-800-433-5700

Arrow Electronics (Corporate Office) 25 Hub Dr. Melville 11747 (516) 391-1300 (Military) Arrow Electronics 3375 Brighton-Henrietta Townline Rd. Rochester 14609 (716) 427-0300

Future Electronics 801 Motor Pkwy. Hauppauge 11788 (516) 234-4000

Future Electronics 300 Linden Oaks Rochester 14625 (716) 387-9550

Future Electronics 200 Salina Meadows Pkwy. Suite 130 Syracuse 13212 (315) 451-2371

Hamilton Hallmark 390 Rabro Dr. Hauppaugue 11788 (516) 434-7400

Hamilton Hallmark 1057 East Henrietta Rd. Rochester 14623 (716) 475-9130

Newark Electronics 1-800-367-3573

Penstock, Inc. 527 Townline Rd. Suite 200 Hauppage, 07054 (516) 724-9580

Zeus Electronics 100 Midland Ave. Port Chester 10573 (914) 937-7400

North Carolina

Allied Electronics 1-800-433-5700

Arrow Electronics 5240 Green Dairy Rd. Raleigh 27604 (919) 876-3132

Future Electronics 5225 Capital Blvd. 1 North Commerce Center Raleigh 27604 (919) 790-7111

Hamilton Hallmark 5234 Greens Dairy Rd. Raleigh 27604 (919) 872-0712

Newark Electronics 1-800-367-3573 Penstock, Inc. 1-800-PENSTOC

Ohio

Allied Electronics 1-800-433-5700

Arrow Electronics 8200 Washington Village Dr. Suite A Centerville 45458 (513) 435-5563

Arrow Electronics 6573E Cochran Rd. Solon 44139 (216) 248-3990

Future Electronics 1430 Oak Court Suite 203 Beavercreek 45430 (513) 426-0090

Future Electronics 6009 E Landerhaven Dr. Mayfield Heights 44124 (216) 449-6996

Hamilton Hallmark 30775 Bainbridge Rd. Solon 44139 (216) 498-1100

Hamilton Hallmark 777 Dearborn Park Lane Suite L Worthington 43085 (614) 888-3313

Newark Electronics 1-800-367-3573

Penstock, Inc. 1-800-PENSTOC

Oklahoma

Allied Electronics 1-800-433-5700

Arrow Electronics 12111 E. 51st St. Suite 101 Tulsa 74146 (918) 252-7537

Hamilton Hallmark 12206 E. 51st St. Suite 103 Tulsa 74146 (918) 459-6000

Newark Electronics 1-800-367-3573

Penstock, Inc. 1-800-PENSTOC

Oregon

Allied Electronics 1-800-433-5700

Almac/Arrow Electronics 9500 SW Nimbus Ave. Bldg. E Beaverton 97008 (503) 629-8090

Future Electronics Cornell Oaks Corp. Center 15236 NW Greenbrier Pkwy. Beaverton 97006 (503) 645-9454

Hamilton Hallmark 9750 W. S.W. Nimbus Ave. Beaverton 97005 (503) 526-6200

Newark Electronics 1-800-367-3573

Penstock, Inc. 1-800-PENSTOC

Pennsylvania

Allied Electronics 1-800-433-5700

Hamilton Hallmark 1-800-254-2847

Newark Electronics 1-800-367-3573

Penstock, Inc. 40 Croce Lane Coatesville 19320 (215) 383-9536

Texas

Allied Electronics 1-800-433-5700

Allied Electronics 7410 Pebble Dr. Fort Worth 76118 (817) 595-6487

Arrow Electronics 11500 Metric Blvd. Suite 160 Austin 78758 (512) 835-4180

Arrow Electronics 3220 Commander Dr. Carrollton 75006 (214) 380-6464

Arrow Electronics 19416 Park Row Suite 190 Houston 77084 (713) 647-6868 Future Electronics 9020 II Capital of Texas Highway North Suite 610 Austin 78759 (512) 502-0991

Future Electronics 10333 Richmond Ave. Suite 970 Houston 77042

Future Electronics 800 E. Campbell Suite 130 Richardson 75081 (214) 437-2437

(713) 785-1155

Hamilton Hallmark 12211 Technology Blvd. Austin 78727 (512) 258-8848

Hamilton Hallmark 11420 Pagemill Rd. Dallas 75243 (214) 553-4300

Hamilton Hallmark 1406 North 28th Suite 105 Harlington 78550 (210) 412-2047

Hamilton Hallmark 10500 Richmond Ave. Suite 112 Houston 77042 (713) 781-6100

Newark Electronics 1-800-367-3573

Penstock, Inc. 1411 E. Campbell Rd. Suite 400 Dallas, 75081 (214) 479-9215

Zeus Electronics 3220 Commander Dr. Carrollton 75006 (214) 783-7010

Utah

Allied Electronics 1-800-433-5700

Arrow Electronics 1946 W. Parkway Blvd. Salt Lake City 84119 (801) 973-6913

Future Electronics 3450 So. Highland Dr. Suite 301 Salt Lake City 84106 (801) 467-4448 Hamilton Hallmark 1100 East 6600 South Suite 120 Salt Lake City 84121 (801) 266-2022

Newark Electronics 1-800-367-3573

Penstock-Sertek, Inc. 1-800-PENSTOC

Washington

Allied Electronics 1-800-433-5700

Almac/Arrow Electronics 14360 S.E. Eastgate Way Bellevue 98007-6458 (206) 643-9992

Future Electronics 19102 North Creek Pkwy. Suite 118 Bothell 98011 (206) 489-3400

Hamilton Hallmark 8214 154th Ave. Redmond 98052 (206) 882-7000

Newark Electronics 1-800-367-3573

Penstock, Inc. 10800 N.E. 8th St. Suite 805 Bellevue 98004 (206) 454-2371

Wisconsin

Allied Electronics 1-800-433-5700

Arrow Electronics 200 North Patrick Blvd. Suite 100 Brookfield 53045 (414) 792-0150

Future Electronics 250 N. Patrick Blvd. Suite 170 Brookfield 53045 (414) 879-0244

Hamilton Hallmark 2440 South 179th St. New Berlin 53146 (414) 797-7844

Newark Electronics 1-800-367-3573

Penstock, Inc. 1-800-PENSTOC

International

Australia

Avnet VSI Electronics Ptv Ltd[1,2,3,4] Unit 8, 27 College Road Kent Town SA 5067 (61) 8-3620944

Avnet VSI Electronics Ptv Ltd[1,2,3,4] Unit C, 6-8 Lyon Park Road PO Box 888 North Ryde NSW 2113 (61) 2-98781299

Avnet VSI Electronics Pty Ltd[1,2,3,4] Unit 12 Business Park Drive Monash Business Park Notting Hill Vic 3168 (61) 3-5589333

Avnet VSI Electronics Pty Ltd[1,2,3,4] Suite 9, Argyle Place Cnr. Sandgate Road & Argyle Street Breakfast Creek QLD 4010 (61) 7-2625200

Avnet VSI Electronics Pty Ltd[1,2,3,4] 69 Walters Drive Osborne Park WA 6017 (61) 9-2424266

Austria

BFI IBEXSA Elektronik $GmbH^{[2,3]}$ Korbinianstr. 6 85386 Eching (München) (49) 89 319 51 35

EBV Elektronik[1,2] Diefenbachgasse 35/6 1150 Vienna (43) 1 894 1774

ELBATEX GmbH[1,2] Eitnergasse 6 1231 Vienna (43) 1 86642-0

EURODIS Electronics[1,2] Lamezanstrasse 10 1232 Vienna (43) 1 61062

Notes:

- 1. Optoelectronics
- 2. RF Diodes/Transistors
- 3. Microwave and Avantek Products
- 4. Fiberoptics Components

Belarus

RelHard Melnicavte str. 2-709 220004 Minsk +7 172 239 010

Belgium

BFI IBEXSA BV[2,3] PO Box 3019 2130 KA Hoofddorp Netherlands (31) 020 65 31 350

EBV Elektronik[1,2] Excelsiorlaan 35 Avenue Excelsior 35 1930 Zaventem (32) 02 716 00 10

SEI Rodelco N.V./S.A.[1,2] Limburg Strium 243 1780 Wemmel (32) 02 460 05 60

Brazil

Intertek Electronica Ltd.[1,2] Rua Miguel Casagrande, 200 02714-000, Sao Paulo, SP (011) 266-2922

Bulgaria

MACRO Sofia[1,2] 116 Geo Millev Str. BL 57 AP70 1574 SOFIA (359) 2 708140

Canada

Arrow^[1,2] 8544 Baxter Place Burnaby, B.C. V5A 4T4 (604) 421-2333

Arrow 1000 St. Regis Dorval, Quebec H9P 2T5 (514) 421-7411

Arrow^[1,2] 1093 Meyerside Drive Mississauga, Ontario L5T 1M4 (905) 670-7769

Arrow^[1,2] 36 Antares Drive Unit 100 Nepean, Ontario K2E 7W5 (613) 226-6903

Future Electronics[1,2] 2015 32nd N.E., Unit #1 Calgary, Alberta T2E 6Z3 (403) 250 5551

Future Electronics[1,2] 5935 Airport Road, Suite 200 Mississauga, Ontario L4V 1W5 (905) 612 9200

Future Electronics[1,2] 1050 Baxter Road Ottawa, Ontario K2C 3P2 (613) 820 8313

Future Electronics[1,2] 237 Hymus Blyd. Pointe Claire, Quebec H9R 5C7 (514) 694-7710

Future Electronique Inc 1000 Avenue St. Jean Baptiste Suite 100 Quebec, Quebec G2E 5G5 (418) 877-6671

Future Electronics[1,2] 1695 Boundary Road Vancouver, B.C. V5K 4X7 (604) 294-1166

Hamilton/Hallmark[1,2] 8610 Commerce Court Burnaby, BC V5A 4N6 (604) 420-4101

Hamilton/Hallmark[1,2] 151 Superior Blvd. Unit 1-6 Mississauga, Ontario L5T 2L1 (905) 564-6060

Hamilton/Hallmark[1,2] 190 Colonnade Road Nepean, Ontario K2E 7J5 (613) 226-1700

Hamilton/Hallmark[1,2] 7575 Trans Canada Highway Suite 600 Ville St. Laurent, Quebec H4T 1V6 (514) 335-1000

RF/Microwave Distribution 10800 N.E. 8th St. Suite 805 Bellevue, WA 98004

Penstock RF/Microwave Distribution 313 - 260 Hearst Way Kanata, Ont. K2L 3H1 (613) 592-6088

Penstock Inc.[2,3] 1296 Ludbrook Court Mississauga, Ontario L5.L3N9 (905) 403-0724

Penstock RF/Microwave Distribution 500 - 7575 Transcanada Hwy St. Laurent, Quebec H4T 1V6 (514) 333-8837

Czech Republic

GM Electronic[1,2,3] Evropska 73 160-00 Praha 6 (42) 2 316 7202

MACRO Weil s.r.o.[1,2] Bechynova 3 160-00 Praha 6 (42) 2 3112 182

SEI elbatex[1,2] Prechodni 11 140 00 Praha 4 (42) 2 692 8087

Denmark

Arrow-Exatec A/S[1,2,4] Mileparken 20E DK-2740 Skovlunde +45 (44) 92 70 00

Avnet Nortec A/S[1,2] Transformervei 17 DK-2730 Herlev +45 (44) 88 08 00

BFI-IBEXSA Denmark A/S[2,3] Langebiergsvenget 8A, 1.TH DK-4000 Roskilde +45 (46) 75 31 31

Estonia

Arrow-Field Eesti AS[1,2] (tuba 301) Akadeemiatee 19 ee 0026 Tallinn 372-2-588288

Finland

Arrow-Field Ov[1,2] Niittyläntie 5 00620 Helsinki (358) 0 777571

Avnet Nortec Oy[1,2] Itälahdenkatu 18 A 00210 Helsinki (358) 0 613181

France

Arrow Electronique SA[1,2] 73/79 rue des Solets Silic 585 94668 Rungis Cedex (33) 1 49 78 49 78

Avnet-Composants^[1,2] 79, rue Pierre Semard BP 90 92150 CHANTILLON CEDEX

(1) 49 65 25 00

BFI-IBEXSA Electronique SA^[2,3] Division Scie-Dimes 1. rue Lavoisier ZI 91430 Ignv (33) 1 69 33 74 00

EBV Elektronik^[2] Parc Club de la Haute Maison 16, rue Gallilée Cité Descartes 77436 Champs sur Marne (33) 1 64 68 86 00

Elexience^[2,3] 9. rue des Petits Ruisseaux 91370 Verriere le Buisson (33) 1 60 11 94 71

RADIO SPARES Composants[1,2] Rue Norman King **BP 453** 60031 Beauvais Cedex (33) 16 44 84 72 72

SEI S.C.A.I.B. S.A.[1,2] 6 rue Ambroise Croisat ZI des Glaises BP58 91127 Palaiseau Cedex (33) 1 69 19 89 00

Germany

AVNET E2000[1,2] Stahlgruberring 12 81829 München 89 45 110-01

BFI IBEXSA Elektronik $GmbH^{[2,3,4]}$ Korbinianstr. 6 85386 Eching 89 319 76 70

EBV-Electronik GmbH[1,2,3] Hans-Pinsel-Strasse 4 85540 Haar bei München 89 456 10 0

Notes:

1. Optoelectronics

Products

- 2. RF Diodes/Transistors 3. Microwave and Avantek
- 4. Fiberoptics Components

Farnell GmbH^[1,2] Grünwalderweg 30 82041 Deisenhofen 89 613 39 11

Ing.-Büro K.-H. Drever[1,2] Albert-Schweitzer-Ring 36 22045 Hamburg 40 66 952 27-28

SEI Jermyn[1,2] Im Dachsstück 9 65549 Limburg 64 31 508-0

SASCO GmbH[1,2] Hermann-Oberth-Str. 16 85640 Putzbrunn bei München 89 46 11-0

Greece

Micronics Ltd.[1,2,3] 46, Kritis Street 16451 Argyroupolis Athens (30) 1 9914 786

Hong Kong

CET Ltd.[1,2,3,4] 1108-1112 Metroplaza Tower 2 223 Hing Fong Road Kwai Fong (852) 2485-3899

Hungary

EURODIS Electronics[1,2] Lamezanstrasse 10 1232 Vienna Austria (43) 1 61062 115

MACRO Budapest Kft.[1,2] Etele ut 68 1115 Budapest (36) 1 203 0277

SEI elbatex^[1,2] Vaci ut 202 1138 Budapest (36) 1 140 91 94

India

Hinditron Services Pte Ltd[2,3] 33/44A 8th Main Road Rajmahal Vilas Extension Bangalore 560 080 (91) 80-340068/348266

Hinditron Services Pte Ltd[2,3] Industry House 23-B Mahal Industrial Estate Mahakali Caves Road Andheri (East) Bombay 400093 (91) 22-8364560

Skag India[1,4] 22 Richmond Road Bangalore 560025 (91) 80-2270497

Skag India[1,4] 125 Antriksh Bhawan Kasturba Ghandhi Marg New Delhi 110001 (91) 11-6989118

Israel

CMS[2,3] Computation & Measurement Systems Ltd. 11. Hashlosha Street P.O. Box 25089 IL-Tel-Aviv, 67060 (972) 3 537 5055

Gallium[1,4] 11 Hasadna St. 43650 Ra'anana +972 9 982 182

 $Opcom^{[2,3]}$ PO Box 3352 49130 Petach-Tikva +972 3 921 1730

Telsys Ltd.[1,2] Atidim, Industrial Park, Bldg 3 Dvora Hanevia Street, Neve Sharet 61431 Tel-Aviv (972) 3 49 20 01

Avnet EMG Divisione Adelsy[1,2] Via Novara 570 20153 Milano (02) 38 10 31 00

Avnet EMG Divisione De Mico[1,2] Viale Vittorio Veneto 8 20060 Cassina de' Pecchi MI (02) 95 34 36 00

BFI IBEXSA SPA[2,3,4] Via Massena 18 20145 Milano (02) 33 10 05 35

LASI Elettronica S.p.A.[1,2] Viale Fulvio Test 280 20126 Milano (02) 66 10 1370

Silverstar Ltd.[1,2] Viale Fulvio Testi 280 20126 Milano (02) 66 12 51

Japan

Ryoyo Electro Corporation[1,2,3,4] Konwa Bldg. 1-12-22, Tsukiji Chuo-ku, Tokyo 104 (81) 3-3546-5011

Rvovo Electro $Corporation ^{[1,2,3,4]}$ Nagoya AT Bldg. 1-18-22. Nishiki, Naka-ku. Nagoya-shi, Aichi 460 (81) 52-203-0277

Ryoden Trading Co., Limited[1,2,3,4]Shin-Osaka Center Bldg. 4-1-4 Miyahara Yodogawa-Ku Osaka-shi, Osaka 532 (81) 6-399-3436

Ryoden Trading Co., Limited^[1,2,3,4] 3-15-15, Higashi Ikebukuro, Toshima-ku, Tokyo 170 (81) 3-5396-6206

Ryoyo Electro Corporation[1,2,3,4] Nisshin Shokuhin Bldg. 4-1-1, Nishi-Nakajima Yodogawa-ku, Osaka 532 (81) 6-302-5371

Tokyo Electron Limited[1,2,3,4] TBS Broadcasting Center, 5-3-6, Akasaka, Minato-Ku, Tokyo 107 (81) 3-5561-7229

Tokyo Electron Limited[1,2,3,4] Sumitomoseimei Shin-Osaka-Kita Bldg. 4-1-14, Miyahara, Yodogawa-ku, Osaka-shi, Osaka 532 (81) 6-399-0260

Yamada Corporation[1,2,3,4] Shin-Aoyama Bldg. East 1-1-1 Minami-Aoyama Minato-Ku, Tokyo 107 (81) 3-3475-1121

Yamada Corporation[1,2,3,4] Nagoya Kokusai-Center Bldg. 1-47-1, Nakono, Nakamura-Ku Nagoya-shi, Aichi 450 (81) 52-563-6661

Yamada Corporation[2,3] Higobashi Shimizu Bldg. 1-3-7 Tosabori, Nishi-Ku Osaka-shi, Osaka 550 (81) 6-449-1101

Korea

Panwest Co. (REP)^[1,2] Songnam Building Room 213 Seocho-dong-Seocho-ku 1358-6 Seoul (82) 2-5547176

SANGSOO Electronics Co.^{12,31} Suite 303 Kyungho Building 25-2 Yeo euido-Dong Youngdeungpo-ku, Seoul (82) 2-7805360

Malaysia

DCP (M) SDN BHD^[1,2,3,4] 6th Floor Wisma Denko 41 Aboo Sittee Lane 10400 Penang (60) 2281860

ER (Malaysia) Sdn Bhd^[1,2,3,4] 6 Jalan SS 26/6 Taman Mayang Jaya 47301 Petaling Jaya Selangor Darul Ehsan Malaysia (603) 703 8498

ER (Malaysia) Sdn Bhd^[1,2,3,4] 17L 2nd Floor Lebuhraya Batu Lanchang Taman Seri Damai 11600 Penang (604) 6562895

Netherlands

BFI IBEXSA BV^[2,3] PO Box 3019 2130 KA Hoofddorp (31) 020 65 31 350

EBV ELEKTRONIK^[1,2] Planetenbaan 2 3606 AK Maarssenbroek (31) 3465 623 53

SEI Rodelco B.V.^[1,2] Takkebijsters 2 4817 BL Breda (31) 076 78 4911

New Zealand

Avnet VSI (NZ) Ltd^[1,2,3,4] 295 Cashel Street Christchurch (64) 3-3660191

Notes:

- 1. Optoelectronics
- 2. RF Diodes/Transistors
- 3. Microwave and Avantek Products
- 4. Fiberoptics Components

Avnet VSI (NZ) Ltd^[1,2,3,4]
1st Floor, Unit 1
Birchwood Park
477 Hutt Road
Lower Hutt
(64) 4-5273023

Avnet VSI (NZ) Ltd^[1,2,3,4] 274 Church Street Penrose, Auckland (64) 9-6367801

VSI Electronics (NZ) Ltd.^[1,2,3] 274 Church Street Penrose Auckland (64) 9 636 7801

VSI Electronics (NZ) Ltd.^[1,2] 295 Cashel Street Christchurch (64) 3 660-928

VSI Electronics (NZ) Ltd.^[1,2] Flanders Arcade 71 High Street Lower Hutt (64) 4 694-560

Norway

Arrow-Tahonic as^[1,2] Box 4554, Toshow 0404 Oslo +47 2237 8440

Avnet Nortec A/S^[1,2] P.O. Box 123 N-1364 Hvalstad +47 (66) 84 62 10

BFI-IBEXSA Nordic AB^[2,3] Box 7093 S-191 07 Sollentuna Sweden +46 (8) 626 99 00

Farnell Electronic Services^[1,2] P.O. Box 120 N-1001 Oslo +47 (22) 32 12 70

Poland

SEI elbatex^[1,2] Ul. Wilcza 50/52 00-697 Warszawa (48) 2 623 06 02-609

Macropol Ltd.^[1,2] Ul. Bitwy Warszawskej 11 02-366 Warszawa (48) 22 224 337 Meditronik^[1,2,3]
4, Dzika Street
00-194 Warsaw
(48) 2 635 2263

Semicond^[1,2] 35, Podchorazych Str. 0071 Warszawa +48 224 145 85

Puerto Rico

Hamilton Hallmark El Senorail M/S Box 862 San Juan 00926 (809) 760-1158

Russia

DESAGENT^[1,2] Bodepa Square 2 19000 St. Petersburg (7) 812 196 143

NEKLUSOVA^[1,2] ul Zamshina 15 St. Petersburg (7) 812 545 0723

OPTONIKA^[1,2,3] PO Box 69 109542 Moscow (7) 095 305 7738

RADIS/MTUCI^[2,3] Aviamotornaya 8a 105855 Moscow (7) 095 273 8879

Singapore

Dynamar Spore Computer Products Pte Ltd^[1,2,3,4] 5 Loyang Drive Singapore 508936 (65) 5421878

Hi-Tech Business Associates^[1,2,3,4] 48 Hillview Terrace #05-05 Hillview Building Singapore 669269 (65) 7661995

Ryosho Techno (S) Pte Ltd^[1,2,3,4] 396 Alexandra Road #14-02 BP Tower Singapore 119954 (65) 4737118

Ryoyo Electro Spore Pte Ltd^[1,2,3,4] 396 Alexandra Road #14-02 BP Tower Singapore 119954 2769636

Slovak Republic

SEI elbatex^[1,2] Svrcia ul. 3 83259 Bratislava (42) 7 722 137

MACRO Components s.r.o.^[1,2] Vysokoskolakov 6 010-01 Zilina (42) 89 45041/34181

Slovenia

EBV^[1,2] Diefenbachgasse 35/6 1150 Vienna Austria (43) 1 894 1774

IR Electronic^[1,2] Ziherlova ulica 2 61000 Ljubjana (386) 61 222 007

SEI elbatex^[1,2] Stegne 25 61000 Ljubljana (386) 61 195 23 98

So. Africa

Advanced Semiconductor Devices (PTY) Ltd.^[1,2,3,4] P.O. Box 3853 SA-2128 Rivonia (27) 011 444 23 33

Spain

ATD-ARROW C/ ALBASANZ 75 Madrid, 28037 (34) 1 3041534

BFI IBEXSA^[3] Isabel Colbrand S/N Edificio Alpha II Nave 85 Poligono Industrial Fuencarral 28049 Madrid (34) 1 358 8516

Diode^[1,2] C/ Orense 34 28020 Madrid (34) 1 555 3686

SELCO^[1,2]
Sociedad de Electronica y
Componentes S.A.
Crts. N-VI, KM 18.2
Via Servicio, direcc. Villalba
Las Rozas
Madrid 28030
(34) 1 637 1011

Sweden

Arrow-TH:s AB^[1,2] Datavagen 12A 43632 Askim +46 316 83 800

Avnet Nortec AB^[1,2] Box 1830 S-171 27 Solna +46 (8) 629 14 00

BFI-IBEXSA Nordic AB^[2,3] Box 7093 S-191 07 Sollentuna +46 (8) 626 99 00

Farnell Electronics Services^[1,2] Box 1330 S-171 26 Solna +46 (8) 83 00 20

Switzerland

Basix AG^[1,2] Hardturmstr. 181 Postfach 8010 Zürich (41) 01 276 11 11 BFI IBEXSA Elektronik GmbH^[2,3] Korbinianstr. 6 85386 Eching (München) (49) 89 319 51 35

EBV Elektronik AG^[1,2] Vorstadtstrasse 37 8958 Dietikon (41) 1 745 61 61

SEI elbatex^[1,2] Hardstrasse 72 5430 Wettingen (41) 56 275 111

Taiwan (Republic of China)

Morrihan International Inc. ^[1,2] No. 57, 8th Floor Yang Shen Shan Yet Building 337 Fu Hsing North Road Taipei, Taiwan (886) 2 7522200

TECO Enterprise Co., Ltd. 10F, No. 292, Min-Sheng West Road Taipei, Taiwan, Republic of China (886) 2-555976

Thailand

DCP Thailand^[1,2,3,4] 2991/19 Visuthanee, 6th Floor Ladprao Road, SOI 101-103 Klongchan, Bangkapi Bangkok 10240 (66) 2-3760312

ER Thailand^[1,2,3,4] 32 Grand Village Lardprao Road Bangkapi, Bangkok 10310 (66) 2-9337565

Turkey

EMPA ASI^{1,2,3}1 Elektronik Mamulleri Pazarlama A.S. Florya Is Merkezi Besyol Londra Asfalti 34630 Sefakoy - Istanbul (90) 212 599 30 50

United Kingdom

Arrow-Jermyn St. Martins Business Centre Cambridge Road Bedford MK42 OLF (44) 01234 270 777 Avnet Access Ltd. [1,2] Jubilee House Jubilee Road Letchworth Herts SG6 1QH (44) 01462 48 08 88

BFI IBEXSA Electronics Ltd. (2.3.4) Burnt Ash Road Quarry Wood Industrial Estate Aylesford Kent ME20 7NA (44) 01622 88 24 67

Farnell Electronic Services^[1,2] Edinburg Way Harlow, Essex CM20 2DF (44) 01279 44 11 44

Farnell Electronic Components^[1,2] Canal Road Leeds West Yorkshire LS12 2TU (44) 01132 63 63 11

MACRO Group Brunham Lane Slough SL1 6LN (44) 01628 604 383