



Figure 1

$\varphi$



(a)

(b)

Figure 2





Negative Lens Effect

(a)



Positive Lens Effect

(b)

Figure 3

**Figure 4**







**Figure 6**

Figure 7



These frequency components at the Fourier plane...  
...produce this moiré fringe pattern In the image plane  
Effect of the slit in the Fourier plane, on the Image plane.



**Moiré Deflectogram – Air Slit**

- Camera does not resolve fringes.
- Imperfect gratings cause secondary fringes.

(a) (b)

**Moiré Deflectogram Apodized Slit**

- Very different intensity pattern.

(c)



**Normalized Pattern**

- All fringe slope information across the profile has equal weighting.
- Proportional to 2<sup>nd</sup> wavefront derivative.

(c)

**Macroscopic Fringe Deflectogram for Comparison**

- Typical deflectogram (camera resolves fringes)

(d)

**Figure 8**



**Moiré Deflectogram -- Air Slit**

- Camera does not resolve fringes.
- Imperfect gratings cause secondary fringes.

(a)

**Moiré Deflectogram -- Apodized Slit**

- Very different intensity pattern
- Looks like a 3D surface illuminated from the upper left.

(b)



**Normalized Pattern**

- All fringe slope information across the profile has equal weighting.

(c)

**Figure 9**