RNA-seq differential expression analysis

bioconnector.org/workshops

Agenda

- · Our data: source, pre-processing, structure
- Importing & exploring data
- Processing and analysis with DESeq2
 - Structuring the count data and metadata
 - Running the analysis
 - Extracting results
- Data visualization
- Alternative approaches

What this class is *not*

- This is not an introductory R class. Pre-requisites:
 - Basic R skills: data frames, packages, importing data, saving results
 - Manipulating data with dplyr and %>%
 - Tidy data & advanced manipulation
 - Data Visualization with ggplot2
- This is **not** a statistics course.
- This is **not** a comprehensive RNA-seq theory/practice course. Refer to the Conesa 2016 and Soneseson 2015 references on the workshop website.
 - We only discuss a simple 2-group design (treated vs. control).
 - Complex designs, multifactorial experiments, interactions, batch effects, etc.
 - Transcriptome assembly & reference-free approaches
 - Upstream analysis...

What this class is *not*

- · This class does not cover upstream pre-processing.
- Sequence read QA/QC
- Our quantitation path: (Kallisto/Salmon + txImport):
 - "Alignment-free" transcript abundance estimation
 - Gene-level abundance summarization
- Alternative path 1 (STAR + featureCounts):
 - Spliced alignment to genome
 - Counting reads overlapping exons
- Alternative path 2 (Tophat+Cufflinks; HISAT+StringTie):
 - Spliced alignment to genome
 - Transcriptome assembly
 - Transcript abundance estimation

Course website: bioconnector.org

- Data
- Setup instructions
- Lessons dropdown: RNA-seq: airway
- · ? dropdown: FAQs, resources, etc.

Our data: Background

- Himes et al. "RNA-Seq Transcriptome Profiling Identifies CRISPLD2 as a Glucocorticoid Responsive Gene that Modulates Cytokine Function in Airway Smooth Muscle Cells." *PLoS ONE*. 2014 Jun 13;9(6):e99625. PMID: 24926665.
- Glucocorticoids inhibit inflammatory processes, used to treat asthma because of antiinflammatory effects on airway smooth muscle (ASM) cells.
- RNA-seq to profile gene expression changes in 4 ASM cell lines treated w/ dexamethasone (synthetic glucocorticoid).
- Results: many differentially expressed genes. Focus on CRISPLD2
 - Encodes a secreted protein involved in lung development
 - SNPs in CRISPLD2 in previous GWAS associated w/ inhaled corticosteroid resistance and bronchodilator response in asthma patients.
 - Confirmed the upregulated CRISPLD2 w/ qPCR and increased protein expression w/ Western blotting.
- They analyzed with Tophat and Cufflinks. We're taking a different approach with DESeq2. See recommended reading and resources page for more info.

Data pre-processing

- Analyzing RNA-seq data starts with sequencing reads.
- Many different approaches, see references on class website.
- Our workflow (previously done):
 - Reads downloaded from GEO (GSE:GSE52778)
 - Quantify transcript abundance (kallisto).
 - Summarize to gene-level abundance length-scaled counts (txlmport).
- Our starting point is a count matrix: each cell indicates the number of reads originating from a particular gene (in rows) for each sample (in columns).

Data structure: counts + metadata

<u>countData</u>

gene	ctrl_1	ctrl_2	exp_1	exp_1
geneA	10	11	56	45
geneB	0	0	128	54
geneC	42	41	59	41
geneD	103	122	1	23
geneE	10	23	14	56
geneF	0	1	2	0

<u>colData</u>

id	treatment	sex	
ctrl_1	control	male	
ctrl_2	control	female	
exp_1	treatment	male	
exp_2	treatment	female	

Sample names:

countData is the count matrix (number of reads coming from each gene for each sample) **colData** describes metadata about the *columns* of countData

First column of colData must match column names of countData (-1st)

Counting is (relatively) easy:

Problem: transcript length bias

Transcript quantification: kallisto

- Don't need a basepair-to-basepair alignment. Only need to know abundance.
- Kallisto determines which transcripts are compatible with the reads (and their abundance).

Bray, N. L., Pimentel, H., Melsted, P., & Pachter, L. (2016). Near-optimal probabilistic RNA-seq quantification. Nature biotechnology, 34(5), 525-527.

Gene-level summarization: txlmport

- Differential gene expression (c/f transcript):
 - More powerful
 - More accurate
 - More interpretable

· Gene-level summaries from transcript abundance estimates are more

accurate than simple counts.

Coverage

Isoform A

Isoform B

Soneson, C., Love, M. I., & Robinson, M. D. (2015). Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research.

Getting Started

- · Go to **bioconnector.org**. Hit the **data** link on the top navbar. Download the following files, save them somewhere on your computer you can easily find. E.g., create a new folder on your desktop called airway and save it there, or move them to your project directory.
 - airway_scaledcounts.csv
 - airway_metadata.csv
 - annotables_grch38.csv
- Using project management: Open your .Rproj file to start R running in the same folder as the data. File New file R script. Save this file as airway_analysis.R.
- Not using project management: Open RStudio. File New file R script. Save this file as
 airway_analysis.R in the same folder as the data. Quit RStudio, then double-click the R script to
 open R running in that folder.)
- Load the data:

```
library(tidyverse)
rawcounts <- read_csv("airway_rawcounts.csv")
metadata <- read_csv("airway_metadata.csv")</pre>
```