Blatt Nr. 05/1 Name: Bauer, Aaron

Regression II

- A.) Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,063855
3	0,090867
4	0,110600
5	0,128902
6	0,142784
7	0,156086
8	0,168945
9	0,180609
10	0,192097
11	0,201928
12	0,211783
13	0,221661
14	0,230233
15	0,238069

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/2 Name: Baumbach, Jonas

Regression II

- **A.)** Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,064174
3	0,091091
4	0,110784
5	0,129060
6	0,142927
7	0,156217
8	0,169065
9	0,180722
10	0,192203
11	0,202028
12	0,211880
13	0,221753
14	0,230321
15	0,238155

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/3 Name: Becher, Nicolas

Regression II

- A.) Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,064490
3	0,091315
4	0,110968
5	0,129218
6	0,143070
7	0,156347
8	0,169186
9	0,180835
10	0,192309
11	0,202129
12	0,211976
13	0,221845
14	0,230410
15	0,238240

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/4 Name: Beck, Jannis

Regression II

- A.) Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,064806
3	0,091538
4	0,111152
5	0,129376
6	0,143212
7	0,156478
8	0,169306
9	0,180948
10	0,192415
11	0,202230
12	0,212072
13	0,221937
14	0,230498
15	0,238326

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/5 Name: Bös, Cedric

Regression II

- **A.)** Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,065120
3	0,091760
4	0,111335
5	0,129533
6	0,143354
7	0,156608
8	0,169427
9	0,181060
10	0,192521
11	0,202331
12	0,212168
13	0,222028
14	0,230587
15	0,238411

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/6 Name: Büttner, Nico

Regression II

- A.) Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,065432
3	0,091982
4	0,111518
5	0,129690
6	0,143496
7	0,156738
8	0,169547
9	0,181173
10	0,192627
11	0,202432
12	0,212264
13	0,222120
14	0,230675
15	0,238497

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/7 Name: Chen, Jiuli

Regression II

- **A.)** Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,065743
3	0,092204
4	0,111701
5	0,129847
6	0,143638
7	0,156868
8	0,169667
9	0,181285
10	0,192732
11	0,202532
12	0,212360
13	0,222212
14	0,230763
15	0,238582

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/8 Name: Deibl, Nino

Regression II

- **A.)** Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,066052
3	0,092425
4	0,111883
5	0,130004
6	0,143780
7	0,156998
8	0,169787
9	0,181398
10	0,192838
11	0,202633
12	0,212456
13	0,222304
14	0,230852
15	0,238668

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/9 Name: Deißenberger, Fabian

Regression II

- A.) Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,066360
3	0,092645
4	0,112065
5	0,130161
6	0,143922
7	0,157128
8	0,169907
9	0,181510
10	0,192944
11	0,202734
12	0,212552
13	0,222395
14	0,230940
15	0,238753

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/10 Name: Englert, Lisa

Regression II

- A.) Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,066667
3	0,092865
4	0,112247
5	0,130318
6	0,144064
7	0,157257
8	0,170027
9	0,181623
10	0,193049
11	0,202834
12	0,212648
13	0,222487
14	0,231028
15	0,238839

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/11 Name: Gottschalk, Paul

Regression II

- A.) Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,066972
3	0,093084
4	0,112428
5	0,130474
6	0,144205
7	0,157387
8	0,170147
9	0,181735
10	0,193155
11	0,202935
12	0,212744
13	0,222579
14	0,231117
15	0,238924

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/12 Name: Grimmer, Lukas

Regression II

- A.) Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,067276
3	0,093303
4	0,112610
5	0,130630
6	0,144346
7	0,157516
8	0,170267
9	0,181847
10	0,193261
11	0,203035
12	0,212840
13	0,222670
14	0,231205
15	0,239009

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/13 Name: Hammerl, Jonas

Regression II

- **A.)** Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,067578
3	0,093521
4	0,112791
5	0,130786
6	0,144488
7	0,157646
8	0,170387
9	0,181959
10	0,193366
11	0,203135
12	0,212935
13	0,222762
14	0,231293
15	0,239094

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/14 Name: Hoffmann, Erik

Regression II

- **A.)** Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,067879
3	0,093739
4	0,112971
5	0,130942
6	0,144629
7	0,157775
8	0,170506
9	0,182071
10	0,193471
11	0,203236
12	0,213031
13	0,222853
14	0,231381
15	0,239180

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/15 Name: Hollemann, Stephan

Regression II

- **A.)** Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,068179
3	0,093956
4	0,113152
5	0,131097
6	0,144769
7	0,157904
8	0,170626
9	0,182183
10	0,193577
11	0,203336
12	0,213127
13	0,222945
14	0,231469
15	0,239265

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/16 Name: Hoxha, Lyra

Regression II

- A.) Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,068477
3	0,094173
4	0,113332
5	0,131253
6	0,144910
7	0,158033
8	0,170745
9	0,182295
10	0,193682
11	0,203436
12	0,213222
13	0,223036
14	0,231557
15	0,239350

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/17 Name: Jansen, Theodor

Regression II

- **A.)** Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,068774
3	0,094389
4	0,113511
5	0,131408
6	0,145051
7	0,158162
8	0,170865
9	0,182407
10	0,193787
11	0,203537
12	0,213318
13	0,223128
14	0,231645
15	0,239435

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Name: Karunaikumar, Pooshwikaa Regression II

- A.) Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,069070
3	0,094605
4	0,113691
5	0,131563
6	0,145191
7	0,158291
8	0,170984
9	0,182518
10	0,193892
11	0,203637
12	0,213414
13	0,223219
14	0,231733
15	0,239520

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/19 Name: Kauppert, Florian

Regression II

- **A.)** Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,069364
3	0,094820
4	0,113870
5	0,131718
6	0,145332
7	0,158420
8	0,171103
9	0,182630
10	0,193998
11	0,203737
12	0,213509
13	0,223310
14	0,231821
15	0,239606

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/20 Name: Klupp, Björn

Regression II

- A.) Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,069658
3	0,095035
4	0,114049
5	0,131873
6	0,145472
7	0,158548
8	0,171222
9	0,182742
10	0,194103
11	0,203837
12	0,213605
13	0,223402
14	0,231909
15	0,239691

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/21 Name: Köberlein, Kai

Regression II

- A.) Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,069950
3	0,095249
4	0,114227
5	0,132027
6	0,145612
7	0,158677
8	0,171341
9	0,182853
10	0,194208
11	0,203937
12	0,213700
13	0,223493
14	0,231997
15	0,239776

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/22 Name: Kropfgans, Hans

Regression II

- A.) Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,070241
3	0,095463
4	0,114406
5	0,132182
6	0,145752
7	0,158805
8	0,171460
9	0,182965
10	0,194313
11	0,204037
12	0,213795
13	0,223584
14	0,232085
15	0,239861

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/23 Name: Lagerbauer, Daniel

Regression II

- A.) Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,070530
3	0,095676
4	0,114584
5	0,132336
6	0,145892
7	0,158934
8	0,171579
9	0,183076
10	0,194418
11	0,204137
12	0,213891
13	0,223675
14	0,232173
15	0,239946

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/24 Name: Marbaise, Sonja

Regression II

- A.) Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,070819
3	0,095889
4	0,114762
5	0,132490
6	0,146031
7	0,159062
8	0,171698
9	0,183187
10	0,194522
11	0,204236
12	0,213986
13	0,223766
14	0,232261
15	0,240031

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/25 Name: Mass, Agnessa

Regression II

- A.) Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,071106
3	0,096101
4	0,114939
5	0,132643
6	0,146171
7	0,159190
8	0,171816
9	0,183299
10	0,194627
11	0,204336
12	0,214081
13	0,223857
14	0,232348
15	0,240116

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/26 Name: Mehler, Iannis

Regression II

- A.) Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,071392
3	0,096313
4	0,115116
5	0,132797
6	0,146310
7	0,159318
8	0,171935
9	0,183410
10	0,194732
11	0,204436
12	0,214176
13	0,223948
14	0,232436
15	0,240200

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/27 Name: Meurer, Nils

Regression II

- **A.)** Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,071677
3	0,096525
4	0,115293
5	0,132951
6	0,146450
7	0,159446
8	0,172054
9	0,183521
10	0,194837
11	0,204536
12	0,214272
13	0,224039
14	0,232524
15	0,240285

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/28 Name: Miksch, Daniel

Regression II

- A.) Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,071961
3	0,096736
4	0,115470
5	0,133104
6	0,146589
7	0,159574
8	0,172172
9	0,183632
10	0,194941
11	0,204635
12	0,214367
13	0,224130
14	0,232611
15	0,240370

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/29 Name: Munne, Sophia

Regression II

- A.) Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,072244
3	0,096946
4	0,115646
5	0,133257
6	0,146728
7	0,159702
8	0,172290
9	0,183743
10	0,195046
11	0,204735
12	0,214462
13	0,224221
14	0,232699
15	0,240455

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/30 Name: Öffner, Raphael

Regression II

- **A.)** Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,072525
3	0,097156
4	0,115823
5	0,133410
6	0,146867
7	0,159829
8	0,172409
9	0,183854
10	0,195150
11	0,204835
12	0,214557
13	0,224312
14	0,232787
15	0,240540

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/31 Name: Pastuschka, Tim

Regression II

- A.) Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,072806
3	0,097366
4	0,115999
5	0,133562
6	0,147005
7	0,159957
8	0,172527
9	0,183965
10	0,195255
11	0,204934
12	0,214652
13	0,224403
14	0,232874
15	0,240624

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/32 Name: Patzwald, Lara

Regression II

- A.) Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,073085
3	0,097575
4	0,116174
5	0,133715
6	0,147144
7	0,160084
8	0,172645
9	0,184076
10	0,195359
11	0,205033
12	0,214747
13	0,224494
14	0,232962
15	0,240709

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/33 Name: Penny, Sean

Regression II

- A.) Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,073364
3	0,097784
4	0,116350
5	0,133867
6	0,147283
7	0,160211
8	0,172763
9	0,184186
10	0,195463
11	0,205133
12	0,214842
13	0,224585
14	0,233049
15	0,240794

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/34 Name: Rech, Victor

Regression II

- A.) Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,073641
3	0,097992
4	0,116525
5	0,134020
6	0,147421
7	0,160339
8	0,172881
9	0,184297
10	0,195568
11	0,205232
12	0,214937
13	0,224676
14	0,233137
15	0,240878

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/35 Name: Reuß, Erik

Regression II

- A.) Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,073918
3	0,098200
4	0,116699
5	0,134172
6	0,147559
7	0,160466
8	0,172999
9	0,184407
10	0,195672
11	0,205332
12	0,215031
13	0,224766
14	0,233224
15	0,240963

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/36 Name: Rieger, Daniel

Regression II

- A.) Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,074193
3	0,098407
4	0,116874
5	0,134324
6	0,147697
7	0,160593
8	0,173117
9	0,184518
10	0,195776
11	0,205431
12	0,215126
13	0,224857
14	0,233311
15	0,241048

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/37 Name: Römer, Jakob

Regression II

- A.) Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,074467
3	0,098614
4	0,117048
5	0,134475
6	0,147835
7	0,160720
8	0,173235
9	0,184628
10	0,195880
11	0,205530
12	0,215221
13	0,224948
14	0,233399
15	0,241132

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/38 Name: Röpke, Ludwig

Regression II

- A.) Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,074740
3	0,098821
4	0,117222
5	0,134627
6	0,147973
7	0,160846
8	0,173352
9	0,184739
10	0,195984
11	0,205629
12	0,215316
13	0,225038
14	0,233486
15	0,241217

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/39 Name: Schäberle, Joanna

Regression II

- A.) Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,075013
3	0,099027
4	0,117396
5	0,134778
6	0,148111
7	0,160973
8	0,173470
9	0,184849
10	0,196088
11	0,205728
12	0,215410
13	0,225129
14	0,233573
15	0,241301

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/40 Name: Schlagenhauf, Larissa

Regression II

- A.) Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,075284
3	0,099233
4	0,117570
5	0,134929
6	0,148248
7	0,161100
8	0,173587
9	0,184959
10	0,196192
11	0,205827
12	0,215505
13	0,225219
14	0,233661
15	0,241386

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/41 Name: Schneidereit, Noah

Regression II

- **A.)** Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,063855
3	0,090867
4	0,110600
5	0,128902
6	0,142784
7	0,156086
8	0,168945
9	0,180609
10	0,192097
11	0,201928
12	0,211783
13	0,221661
14	0,230233
15	0,238069

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/42 Name: Schomburg, Daniel

Regression II

- **A.)** Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,064174
3	0,091091
4	0,110784
5	0,129060
6	0,142927
7	0,156217
8	0,169065
9	0,180722
10	0,192203
11	0,202028
12	0,211880
13	0,221753
14	0,230321
15	0,238155

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/43 Name: Seelmann, Josef

Regression II

- A.) Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,064490
3	0,091315
4	0,110968
5	0,129218
6	0,143070
7	0,156347
8	0,169186
9	0,180835
10	0,192309
11	0,202129
12	0,211976
13	0,221845
14	0,230410
15	0,238240

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/44 Name: Spitzner, Joshua

Regression II

- A.) Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,064806
3	0,091538
4	0,111152
5	0,129376
6	0,143212
7	0,156478
8	0,169306
9	0,180948
10	0,192415
11	0,202230
12	0,212072
13	0,221937
14	0,230498
15	0,238326

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/45 Name: Stolz, Eduard

Regression II

- A.) Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,065120
3	0,091760
4	0,111335
5	0,129533
6	0,143354
7	0,156608
8	0,169427
9	0,181060
10	0,192521
11	0,202331
12	0,212168
13	0,222028
14	0,230587
15	0,238411

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/46 Name: Suppes, Maxim

Regression II

- A.) Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,065432
3	0,091982
4	0,111518
5	0,129690
6	0,143496
7	0,156738
8	0,169547
9	0,181173
10	0,192627
11	0,202432
12	0,212264
13	0,222120
14	0,230675
15	0,238497

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/47 Name: Tan, Jun Wei

Regression II

- A.) Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,065743
3	0,092204
4	0,111701
5	0,129847
6	0,143638
7	0,156868
8	0,169667
9	0,181285
10	0,192732
11	0,202532
12	0,212360
13	0,222212
14	0,230763
15	0,238582

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/48 Name: Uder, Anne

Regression II

- A.) Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,066052
3	0,092425
4	0,111883
5	0,130004
6	0,143780
7	0,156998
8	0,169787
9	0,181398
10	0,192838
11	0,202633
12	0,212456
13	0,222304
14	0,230852
15	0,238668

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/49 Name: Volpert, Moritz

Regression II

- A.) Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,066360
3	0,092645
4	0,112065
5	0,130161
6	0,143922
7	0,157128
8	0,169907
9	0,181510
10	0,192944
11	0,202734
12	0,212552
13	0,222395
14	0,230940
15	0,238753

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/50 Name: Wagner, Jonas

Regression II

- A.) Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,066667
3	0,092865
4	0,112247
5	0,130318
6	0,144064
7	0,157257
8	0,170027
9	0,181623
10	0,193049
11	0,202834
12	0,212648
13	0,222487
14	0,231028
15	0,238839

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/51 Name: Waldmann, Richard

Regression II

- **A.)** Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,066972
3	0,093084
4	0,112428
5	0,130474
6	0,144205
7	0,157387
8	0,170147
9	0,181735
10	0,193155
11	0,202935
12	0,212744
13	0,222579
14	0,231117
15	0,238924

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/52 Name: Willers, Marvin

Regression II

- A.) Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,067276
3	0,093303
4	0,112610
5	0,130630
6	0,144346
7	0,157516
8	0,170267
9	0,181847
10	0,193261
11	0,203035
12	0,212840
13	0,222670
14	0,231205
15	0,239009

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/53 Name: Wolf, Erik

Regression II

- **A.)** Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,067578
3	0,093521
4	0,112791
5	0,130786
6	0,144488
7	0,157646
8	0,170387
9	0,181959
10	0,193366
11	0,203135
12	0,212935
13	0,222762
14	0,231293
15	0,239094

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/54 Name: Ziegler, Julius

Regression II

- **A.)** Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,067879
3	0,093739
4	0,112971
5	0,130942
6	0,144629
7	0,157775
8	0,170506
9	0,182071
10	0,193471
11	0,203236
12	0,213031
13	0,222853
14	0,231381
15	0,239180

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.

Blatt Nr. 05/55 Name: Ziegler, Moritz

Regression II

- **A.)** Leiten Sie einen allgemeinen Ausdruck zur Bestimmung der Fehler der Koeffizienten bei der linearen Regression mit Polynomen für das in der Vorlesung besprochene Beispiel (*m* = 3) her!
- **B.)** In einer einfachen Messung soll die Fallbeschleunigung *g* bestimmt werden. Dazu wurde ein Lochblech gefertigt, das jeweils im Abstand von 2,0 cm regelmäßige Bohrungen besitzt. Dieses Blech wird nun im Experiment händisch frei durch eine Lichtschranke fallen gelassen, welche jeweils die Zeiten, bei denen eine Bohrung das Signal frei gibt, registriert und an einen Computer weitergibt. Den Zeitnullpunkt markiert das Passieren der ersten Bohrung durch die Lichtschranke. Es ergeben sich folgende Werte:

Bohrung	Zeit (s)
1	0
2	0,068179
3	0,093956
4	0,113152
5	0,131097
6	0,144769
7	0,157904
8	0,170626
9	0,182183
10	0,193577
11	0,203336
12	0,213127
13	0,222945
14	0,231469
15	0,239265

Warum ist es in diesem Fall nicht sinnvoll, eine Linearisierung der Daten vorzunehmen?

Werten Sie diese Daten direkt mittels linearer Regression aus und geben Sie Fallbeschleunigung g mit Fehler an! Geben Sie dazu Ihre wesentlichen Schritte an.