Synchronous Counter [1]

Synchronous Counter

เป็นวงจรนับที่มีการควบคุมการทำงาน Flip-Flop ทุกตัวที่อยู่ใน วงจรให้ทำงานพร้อมกัน (ใช้สัญญาณ clock ที่เป็นสัญญาณควบคุมการ ทำงานตัวเดียวกัน) ทำให้ Flip-Flop ทุกตัวทำงานพร้อมกัน และหาก Flip-Flop แต่ละตัวมีเวลาในการทำงานเท่ากัน Output ของการนับจะ เปลี่ยนไปพร้อมกัน

ข้อคืของ Synchronous Counter ก็คือเวลาในการทำงานของวงจรที่ เท่ากับ Flip-Flop ตัวเดียวหรือตัวที่ใช้เวลามากที่สุด และความผิดพลาด ที่อาจจะเกิดขึ้นน้อยลง

Synchronous Counter [2]

• ตัวอย่างวงจร 4-Bit Binary Synchronous Counter

Synchronous Counter

- การทำงานของวงจรนั้นเป็นการควบคุมให้ค่าเอาต์พุตที่เกิดขึ้น
 เปลี่ยนไปตามที่ต้องการ ฉะนั้นเราต้องเข้าใจการควบคุมนี้ เช่นหาก
 ต้องการให้ค่าเอาต์พุตของ Flip-Flop เปลี่ยนค่าจาก 0 เป็น 1 จะต้อง
 ป้อนอินพุตอย่างไร ซึ่งค่าอินพุตที่จะป้อนนี้จะแตกต่างไปตามชนิดของ
 Flip-Flop เช่น กรณีของ D-Flip-Flop เราป้อนค่า D เท่ากับ 1 แต่ถ้า
 เป็น JK Flip-Flop เราป้อนค่า J=1 และ K=0 หรือ J=1 และ K=1 ก็ได้
- ในการใช้งานทั่วไปเรานิยมใช้ Preset-Clear JK Flip-Flop

Truth Table for a negative edge-triggered JK flip-flop

PRESET	CLEAR	J	K	C	Q	\overline{Q}	
0	1	X	X	X	1	0	Set State
1	0	X	X	X	0	1	Reset State
0	0	X	X	X	1	1	Unused State
1	1	0	1	\leftarrow	0	1	
1	1	1	0	—	1	0	
1	1	0	0	X	Q	\overline{Q}	Unchanged State
1	1	1	1		Tog	ggle	

Truth Table for a negative edge-triggered JK flip-flop

Before Clock	After Clock	Before	Clock
Q	Q	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

การออกแบบ Synchronous Counter

- 1. สร้างตารางค่าการนับ (เอาท์พุต) ที่ต้องการ
- 2. สร้างตารางความจริงสำหรับหาค่า Input (J และK) ของ Flip Flop ทุกตัวจาก Output ที่กำหนด และ ตารางการเปลี่ยนแปลงของ Flip Flop (หากใช้ JK FF)
- 3. น้ำตารางความจริงที่ได้มาหาค่า Input ของ Flip Flop ทุกตัว (ในรูปสมการ) โดย ใช้ Boolean Algebra / Karnaugh Map
- 4. นำสมการที่ได้มาสร้างวงจร

ตัวอย่างการออกแบบ [1]

- การออกแบบ 3-Bit Binary Synchronous Counter
- สร้างตารางค่าการนับที่ต้องการ
 - สร้างตารางการเปลี่ยนแปลง Output (Q) ของ Flip-Flop ทุกตัว

$$0 -> 1$$

. . .

_

	P.S.			N.S.			
Q_C	Q_B	Q_A	Q_C	Q_B	Q_A		
0	0	0	0	0	1		
0	0	1	0	1	0		
0	1	0	0	1	1		
0	1	1	1	0	0		
1	0	0	1	0	1		
1	0	1	1	1	0		
1	1	0	1	1	1		
1	1	1	0	0	0		

ตัวอย่างการออกแบบ [1]

- การออกแบบ 3-Bit Binary Synchronous Counter
- 2. สร้างตารางความจริงสำหรับหาค่า Input (J และK) ของ Flip Flop ทุกตัวจาก Output ที่กำหนด และ ตารางการเปลี่ยนแปลงของ Flip Flop

ตัวอย่างการออกแบบ [2]

	P.S.			N.S.		(7)	F	3	P	A
Q_C	$Q_{\scriptscriptstyle B}$	$Q_{\scriptscriptstyle A}$	Q_{C}	$Q_{\scriptscriptstyle B}$	$Q_{\scriptscriptstyle A}$	$J_{\scriptscriptstyle C}$	K_{C}	$J_{\scriptscriptstyle B}$	K_{B}	$J_{\scriptscriptstyle A}$	K_A
0	0	0	0	0	1	0	X	0	X	1	X
0	0	1	0	1	0	0	X	1	X	X	1
0	1	0	0	1	1	0	X	X	0	1	X
0	1	1	1	0	0	1	X	X	1	X	1
1	0	0	1	0	1	X	0	0	X	1	X
1	0	1	1	1	0	X	0	1	X	X	1
1	1	0	1	1	1	X	0	X	0	1	X
1	1	1	0	0	0	X	1	X	1	X	1

ตัวอย่างการออกแบบ [3]

• 3. หาค่า Input JA, KA, JB, KB, JC และ KC จากตารางที่ได้จากข้อ 2

$$J_C = AB$$

$$K_C = AB$$

ตัวอย่างการออกแบบ[4]

C	3A	00	01	11	10
()	0	1	X	X
$J_{_B}$]		0	1	X	X

$$J_B = A$$

$$K_B = A$$

ตัวอย่างการออกแบบ [5]

BA	00	01	11	10
0	1	X	X	1
$\frac{J_A}{1}$	1	X	X	1

$$J_A = 1$$

$$K_A = 1$$

ตัวอย่างการออกแบบ [6]

Mod-N Synchronous Counter

• การออกแบบเหมือนการออกแบบวงจร Synchronous Counter ปกติ โดย กำหนดค่าการนับตาม Mod ที่ต้องการ

Mod-5

P.S.			N.S.			
Q_C	$Q_{\scriptscriptstyle B}$	$Q_{\scriptscriptstyle A}$	Q_{C}	$Q_{\scriptscriptstyle B}$	$Q_{\scriptscriptstyle A}$	
0	0	0	0	0	1	
0	0	1	0	1	0	
0	1	0	0	1	1	
0	1	1	1	0	0	
1	0	0	0	0	0	

Mod-6

	P.S.			N.S.			
Q_C	$Q_{\scriptscriptstyle B}$	$Q_{\scriptscriptstyle A}$	Q_{C}	$Q_{\scriptscriptstyle B}$	$Q_{\scriptscriptstyle A}$		
0	0	0	0	0	1		
0	0	1	0	1	0		
0	1	0	0	1	1		
0	1	1	1	0	0		
1	0	0	1	0	1		
1	0	1	0	0	0		

Mod-5 Synchronous Counter

Mod-6 Synchronous Counter

• เป็นวงจรนับที่สามารถนับขึ้น หรือนับลงได้ในวงจรเคียวกัน โดยอาศัยสัญญาณ ควบคุมการทำงานเลือกให้นับขึ้นหรือนับลงในเวลาหนึ่ง ๆ วงจรในลักษณะนี้มี การนำไปใช้หลายในหลายลักษณะ เช่น เป็นตัวแสดงจำนวนรถในที่จอดรถให้ ทราบว่าขณะนั้นที่จอดรถยังมีที่ว่างสำหรับจอดรถได้อีกกี่คัน

CLOCK PULSE	UP	Q_2	Q_1	Q_0	DOWN
0	10	0	0	0	71
i	1/2	0	0	1	
2	V E	0	1	0	3
3	II Č	U (4)	1 0	0	5
5 · · · · · · · · · · · · · · · · · · ·	T C	1	Ŏ O	1)
6	1/6	1	1	0) /
7.	10	1	1	1)/

 การทำงานของวงจรนับขึ้น/นับลงนั้นเป็นการใช้วงจรควบคุมให้ทำงาน ตามอินพุตที่เข้ามา (Clock) และค่าของการควบคุม (Up/Down) หาก ขาควบคุมถูกกำหนดให้เป็นการนับขึ้น อินพุตที่เข้ามาจะทำให้เอาต์พุต ของวงจรมีค่าการนับที่เพิ่มขึ้น แต่หากขาควบคุมถูกกำหนดให้เป็นการ นับลง อินพุตที่เข้ามาจะทำให้เอาต์พุตของวงจรมีค่าการนับที่ลดลง

