The search space of F1 contains 2^n solutions.

Therefore, the probability of finding the optimal search point is $\frac{1}{2^n}$.

Let $m=2^{n/2}$; the probability that an optimal search point is found within the budget 'm' fitness evaluations is:

$$P(success\ in\ m) = 1 - \left(1 - \frac{1}{2^n}\right)^m$$

Using the general inequality $1 - x \le e^{-x}$ for all x:

$$1 - \left(1 - \frac{1}{2^n}\right)^m \le \exp\left(-\frac{m}{2^n}\right)$$

Plug in $m = 2^{n/2}$:

$$1 - \left(1 - \frac{1}{2^n}\right)^m \le \exp\left(-\frac{2^{\frac{n}{2}}}{2^n}\right)$$

$$= \exp\left(-2^{\frac{n}{2} - n}\right)$$

$$= \exp\left(-2^{-\frac{n}{2}}\right)$$

$$\therefore 1 - \left(1 - \frac{1}{2^n}\right)^{2^{n/2}} \approx \exp\left(-2^{-n/2}\right)$$

For large n, $2^{-n/2}$ is tiny, so:

$$1 - \left(1 - \frac{1}{2^n}\right)^{2^{n/2}} \le \exp(-2^{-n/2}) \approx 1 - 2^{-n/2} \approx 1$$

Thus:

$$P(success in 2^{n/2}) = 1 - P(miss in 2^{n/2}) = 1 - 2^{-\frac{n}{2}}$$

Since $1-2^{-n}=1-e^{-\Omega(n)}$, with probability at least $1-e^{-\Omega(n)}$, the probability that an optimal search point cannot be located within the first $2^{n/2}$ fitness evaluations is very close to 1. Therefore, random search requires at least $2^{n/2}$ fitness evaluations to have a non-negligible chance to locate an optimal search point on F1.