jhTAlib

Joost Hoeks

2019-03-17

Contents

jhTAlib	2
Depends only on	2
Docs	2
Install	3
Update	3
Examples	3
Example 1	3
Example 2	3
Example 3	4
Example 4	4
Example 5	4
Example 6	4
Example 7	5
Example 8	5
Example 9	5
Example 10	5
Test	5
Reference	6
Behavioral Techniques	6
Cycle Indicators	8
Data	9
Event Driven	10
Experimental	11
General	12
Information	14
Math Functions	14
Momentum Indicators	19
Overlap Studies	23
Pattern Recognition	26
Price Transform	29
Statistic Functions	30
Uncategorised	33

Volatility Indicators	 33 34
${ m jhTAlib}$	
Technical Analysis Library Time-Series	
You can use and import it for your:	
• Technical Analysis Software	
• Charting Software	
• Backtest Software	
• Trading Robot Software	
• Trading Software in general	
Work in progress	
Depends only on • The Python Standard Library	
Docs	
• .html	
• .epub	
• .json	
• .odt	
• .pdf	
• .rst	
• .rtf	
• .xml	

Install

```
From PyPI:
$ [sudo] pip3 install jhtalib
From source:
$ git clone https://github.com/joosthoeks/jhTAlib.git
$ cd jhTAlib
$ [sudo] pip3 install -e .
Update
From PyPI:
$ [sudo] pip3 install --upgrade jhtalib
From source:
$ cd jhTAlib
$ git pull [upstream master]
Examples
$ cd example/
Example 1
$ python3 example-1-plot.py
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/\\
example/example-1-plot.ipynb
```

Example 2

\$ python3 example-2-plot.py

or

https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-2-plot.ipynb

Example 3

\$ python3 example-3-plot.py

or

https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-3-plot.ipynb

Example 4

\$ python3 example-4-plot-quandl.py

or

https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-4-plot-quandl.ipynb

Example 5

\$ python3 example-5-plot-quandl.py

or

https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-5-plot-quandl.ipynb

Example 6

\$ python3 example-6-plot-quandl.py

or

https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-6-plot-quandl.ipynb

<pre>\$ python3 example-7-quand1-2-df.py</pre>
or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-7-quandl-2-df.ipynb
Example 8
<pre>\$ python3 example-8-alphavantage-2-df.py</pre>
or
$https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-8-alphavantage-2-df.ipynb \\ \underline{\hspace{2cm}}$
Example 9
<pre>\$ python3 example-9-cryptocompare-2-df.py</pre>
or
$https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-9-cryptocompare-2-df.ipynb\\ ___$
Example 10
DF NumPy Pandas
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-10-df-numpy-pandas.ipynb
Test
<pre>\$ cd test/ \$ python3 test.py</pre>

Example 7

import jhtalib as jhta Behavioral Techniques ATH | All Time High | DONE • dict of lists = jhta.ATH(df, price='High') LMC | Last Major Correction | DONE • dict of lists = jhta.LMC(df, price='Low') PP | Pivot Point | DONE • dict of lists = jhta.PP(df) • https://en.wikipedia.org/wiki/Pivot_point_(technical_analysis) FIBOPR | Fibonacci Price Retracements | DONE • dict of lists = jhta.FIBOPR(df, price='Close') FIBTR | Fibonacci Time Retracements | GANNPR | W. D. Gann Price Retracements | DONE • dict of lists = jhta.GANNPR(df, price='Close') GANNTR | W. D. Gann Time Retracements |

Reference

JDN Julian Day Number DONE	
• jdn = jhta.JDN(utc_year, utc_month, utc_day)	
• https://en.wikipedia.org/wiki/Julian_day	
JD Julian Date DONE	
 jd = jhta.JD(utc_year, utc_month, utc_day, ut utc_second) 	c_hour, utc_minute,
$\bullet \ \ https://en.wikipedia.org/wiki/Julian_day$	
SUNC Sun Cycle	
MERCURYC Mercury Cycle •	
VENUSC Venus Cycle •	
EARTHC Earth Cycle	
MARSC Mars Cycle	

JUPITERC Jup	oiter Cycle	
SATURNC Satu	ırn Cycle	
URANUSC Ura	anus Cycle	-
NEPTUNEC No	eptune Cycle	
PLUTOC Pluto	Cycle	
MOONC Moon	Cycle	-
Cycle Indicators HT_DCPERIOD •	Hilbert Transform - Dominant	Cycle Period
HT_DCPHASE	Hilbert Transform - Dominant C	ycle Phase

HT_PHASOR Hilbert Transform - Phasor Components •
HT_SINE Hilbert Transform - SineWave •
HT_TRENDLINE Hilbert Transform - Instantaneous Trendline •
HT_TRENDMODE Hilbert Transform - Trend vs Cycle Mode •
TS Trend Score DONE • list = jhta.TS(df, n, price='Close') • https://www.fmlabs.com/reference/default.htm?url=TrendScore.htm
Data CSV2DF CSV file 2 DataFeed DONE • dict of tuples = jhta.CSV2DF(csv_file_path)
CSVURL2DF CSV file url 2 DataFeed DONE • dict of tuples = jhta.CSVURL2DF(csv_file_url)

DF2CSV | DataFeed 2 CSV file | DONE • csv file = jhta.DF2CSV(df, csv_file_path) DF2DFREV | DataFeed 2 DataFeed Reversed | DONE • dict of tuples = jhta.DF2DFREV(df) DF2DFWIN | DataFeed 2 DataFeed Window | DONE • dict of tuples = jhta.DF2DFWIN(df, start=0, end=10) DF_HEAD | DataFeed HEAD | DONE • dict of tuples = jhta.DF_HEAD(df, n=5) DF_TAIL | DataFeed TAIL | DONE • dict of tuples = jhta.DF_TAIL(df, n=5) DF2HEIKIN_ASHI | DataFeed 2 Heikin-Ashi DataFeed | DONE • dict of tuples = jhta.DF2HEIKIN_ASHI(df) **Event Driven** ASI | Accumulation Swing Index (J. Welles Wilder) | DONE • list = jhta.ASI(df, L) • book: New Concepts in Technical Trading Systems

• list = jhta.SI(df, L)
• book: New Concepts in Technical Trading Systems
Experimental
JH_SAVGP Swing Average Price - previous Average Price DONE
• list = jhta.JH_SAVGP(df)
W. GANGDG G . A . D A . D G
JH_SAVGPS Swing Average Price - previous Average Price Summation DONE
• list = jhta.JH_SAVGPS(df)
JH_SCO Swing Close - Open DONE
• list = jhta.JH_SCO(df)
JH_SCOS Swing Close - Open Summation DONE
• list = jhta.JH_SCOS(df)
JH_SMEDP Swing Median Price - previous Median Price DONE
• list = jhta.JH_SMEDP(df)
jh_SMEDPS Swing Median Price - previous Median Price Summation DONE
• list = jhta.JH_SMEDPS(df)

SI | Swing Index (J. Welles Wilder) | DONE

JH_SPP | Swing Price - previous Price | DONE • list = jhta.JH_SPP(df, price='Close') JH_SPPS | Swing Price - previous Price Summation | DONE • list = jhta.JH_SPPS(df, price='Close') JH_STYPP | Swing Typical Price - previous Typical Price | DONE • list = jhta.JH_STYPP(df) JH_STYPPS | Swing Typical Price - previous Typical Price Summation | DONE • list = jhta.JH_STYPPS(df) JH_SWCLP | Swing Weighted Close Price - previous Weighted Close Price | DONE • list = jhta.JH_SWCLP(df) JH_SWCLPS | Swing Weighted Close Price - previous Weighted Close Price Summation | DONE • list = jhta.JH_SWCLPS(df) General NORMALIZE | Normalize | DONE • list = jhta.NORMALIZE(df, price_max='High', price_min='Low',

• https://machinelearningmastery.com/normalize-standardize-time-series-data-python/

price='Close')

STANDARDIZE | Standardize | DONE

- list = jhta.STANDARDIZE(df, price='Close')
- $\bullet \ \ https://machinelearning mastery.com/normalize-standardize-time-series-data-python/$

SPREAD | Spread | DONE

• list = jhta.SPREAD(df1, df2, price1='Close', price2='Close')

CP | Comparative Performance | DONE

- list = jhta.CP(df1, df2, price1='Close', price2='Close')

CRSI | Comparative Relative Strength Index | DONE

- list = jhta.CRSI(df1, df2, n, price1='Close', price2='Close')
- https://www.fmlabs.com/reference/default.htm?url=RSIC.htm

CS | Comparative Strength | DONE

- list = jhta.CS(df1, df2, price1='Close', price2='Close')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=CompStrength.htm$

HR | Hit Rate / Win Rate | DONE

- float = jhta.HR(hit_trades_int, total_trades_int)
- http://traderskillset.com/hit-rate-stock-trading/

PLR | Profit/Loss Ratio | DONE

- float = jhta.PLR(mean_trade_profit_float, mean_trade_loss_float)
- $\bullet \ \ https://www.investopedia.com/terms/p/profit_loss_ratio.asp$

EV | Expected Value | DONE

- float = jhta.EV(hitrade_float, mean_trade_profit_float, mean_trade_loss_float)
- $\bullet \ \ https://en.wikipedia.org/wiki/Expected_value$

POR | Probability of Ruin (Table of Lucas and LeBeau) | DONE

- int = jhta.POR(hitrade_float, profit_loss_ratio_float)
- book: Computer Analysis of the Futures Markets

Information

INFO | Print df Information | DONE

• print = jhta.INFO(df, price='Close')

INFO_TRADES | Print Trades Information | DONE

• print = jhta.INFO_TRADES(profit_trades_list, loss_trades_list)

Math Functions

EXP | Exponential | DONE

• list = jhta.EXP(df, price='Close')

```
LOG | Logarithm | DONE
  • list = jhta.LOG(df, price='Close')
LOG10 | Base-10 Logarithm | DONE
  • list = jhta.LOG10(df, price='Close')
SQRT | Square Root | DONE
  • list = jhta.SQRT(df, price='Close')
ACOS | Arc Cosine | DONE
  • list = jhta.ACOS(df, price='Close')
ASIN | Arc Sine | DONE
  • list = jhta.ASIN(df, price='Close')
ATAN | Arc Tangent | DONE
  • list = jhta.ATAN(df, price='Close')
COS | Cosine | DONE
  • list = jhta.COS(df, price='Close')
SIN | Sine | DONE
  • list = jhta.SIN(df, price='Close')
```

TAN | Tangent | DONE • list = jhta.TAN(df, price='Close') ACOSH | Inverse Hyperbolic Cosine | DONE • list = jhta.ACOSH(df, price='Close') ASINH | Inverse Hyperbolic Sine | DONE • list = jhta.ASINH(df, price='Close') ATANH | Inverse Hyperbolic Tangent | DONE • list = jhta.ATANH(df, price='Close') COSH | Hyperbolic Cosine | DONE • list = jhta.COSH(df, price='Close') SINH | Hyperbolic Sine | DONE • list = jhta.SINH(df, price='Close') TANH | Hyperbolic Tangent | DONE • list = jhta.TANH(df, price='Close') PI | Mathematical constant PI | DONE • float = jhta.PI()

E Mathematical constant E DONE
• float = jhta.E()
TAU Mathematical constant TAU DONE • float = jhta.TAU()
PHI Mathematical constant PHI DONE • float = jhta.PHI()
CEIL Ceiling DONE
• list = jhta.CEIL(df, price='Close')
FLOOR Floor DONE • list = jhta.FLOOR(df, price='Close')
DEGREES Radians to Degrees DONE
• list = jhta.DEGREES(df, price='Close')
RADIANS Degrees to Radians DONE • list = jhta.RADIANS(df, price='Close')
$ADD \mid Addition \; High + Low \mid DONE$
,
• list = jhta.ADD(df)

DIV Division High / Low DONE • list = jhta.DIV(df)
MAX Highest value over a specified period DONE • list = jhta.MAX(df, n, price='Close')
MIN Lowest value over a specified period DONE • list = jhta.MIN(df, n, price='Close')
MININDEX Index of lowest value over a specified period •
MINMAX Lowest and Highest values over a specified period •
MINMAXINDEX Indexes of lowest and highest values over a specified period •
MULT Multiply High * Low DONE • list = jhta.MULT(df)

•	High - Low DONE	
• list = jhta.S	UB(df)	
SUM Summation	•	
• list = jhta.S	UM(df, n, price='Close')	
Momentum Indica	tors	
ADX Average Div	rectional Movement Index	
-		
ADXR Average I	Directional Movement Index Ratin	ng
APO Absolute P	rice Oscillator DONE	
• list = jhta.A	PO(df, n_fast, n_slow, price='Cl	ose')
• https://www.fm	llabs.com/reference/default.htm?url=F	PriceOscillator.htm
AROON Aroon		
AROONOSC Aro	oon Oscillator	

BOP Balance Of Power •	
CCI Commodity Channel Index •	
CMO Chande Momentum Oscillator	
DX Directional Movement Index	
<pre>IMI Intraday Momentum Index DONE • list = jhta.IMI(df) • https://www.fmlabs.com/reference/default.htm?url=1</pre>	${ m MI.htm}$
$\label{eq:macd} \textbf{MACD} \mid \textbf{Moving Average Convergence/Divergence}$ •	l
MACDEXT MACD with controllable MA type	
	nce Fix 12/26

MFI Money Flow Index •	
MINUS_DI Minus Directional Indicator •	
MINUS_DM Minus Directional Movement •	
MOM Momentum DONE • list = jhta.MOM(df, n, price='Close') • https://www.fmlabs.com/reference/default.htm?url=N	Momentum.htm
PLUS_DI Plus Directional Indicator •	
PLUS_DM Plus Directional Movement •	
PPO Percentage Price Oscillator	
ROC Rate of Change DONE • list = jhta.ROC(df, n, price='Close')	

ROCP Rate of Change Percentage DONE
• list = jhta.ROCP(df, n, price='Close')
ROCR Rate of Change Ratio DONE
• list = jhta.ROCR(df, n, price='Close')
ROCR100 Rate of Change Ratio 100 scale DONE
• list = jhta.ROCR100(df, n, price='Close')
$\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=RateOfChange.htm$
RSI Relative Strength Index DONE
• list = jhta.RSI(df, n, price='Close')
• https://www.fmlabs.com/reference/default.htm?url=rsi.htm
STOCH Stochastic DONE
• list = jhta.STOCH(df, n, price='Close')
$\bullet \ \text{https://www.fmlabs.com/reference/default.htm?url=Stochastic.htm}$
STOCHF Stochastic Fast
STOCHRSI Stochastic Relative Strength Index •

TRIX 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA •
ULTOSC Ultimate Oscillator •
WILLR Williams' %R DONE
 list = jhta.WILLR(df, n) https://www.fmlabs.com/reference/default.htm?url=WilliamsR.htm
Overlap Studies
BBANDS Bollinger Bands DONE
• dict of lists = jhta.BBANDS(df, n, f=2)
• https://www.fmlabs.com/reference/default.htm?url=Bollinger.htm
BBANDW Bollinger Band Width DONE
• list = jhta.BBANDW(df, n, f=2)
• https://www.fmlabs.com/reference/default.htm?url=BollingerWidth.htm
DEMA Double Exponential Moving Average •
EMA Exponential Moving Average •

ENVP | Envelope Percent | DONE • dict of lists = jhta.ENVP(df, pct=.01, price='Close') $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=EnvelopePct.htm$ KAMA | Kaufman Adaptive Moving Average | MA | Moving Average | MAMA | MESA Adaptive Moving Average | MAVP | Moving Average with Variable Period | MIDPOINT | MidPoint over period | DONE • list = jhta.MIDPOINT(df, n, price='Close') • http://www.tadoc.org/indicator/MIDPOINT.htm MIDPRICE | MidPoint Price over period | DONE

• list = jhta.MIDPRICE(df, n)

 $\bullet \ \ http://www.tadoc.org/indicator/MIDPRICE.htm$

MMR Mayer Multiple Ratio DONE
• list = jhta.MMR(df, n=200, price='Close')
$\bullet \ {\rm https://www.theinvestorspodcast.com/bitcoin-mayer-multiple/}$
SAR Parabolic SAR DONE
• list = jhta.SAR(df, af_step=.02, af_max=.2)
• book: New Concepts in Technical Trading Systems
SAREXT Parabolic SAR - Extended
•
SMA Simple Moving Average DONE
• list = jhta.SMA(df, n, price='Close')
$\bullet \ https://www.fmlabs.com/reference/default.htm?url=SimpleMA.htm$
T3 Triple Exponential Moving Average (T3)
<u> </u>
TEMA Triple Exponential Maying Average
TEMA Triple Exponential Moving Average •
TRIMA Triangular Moving Average DONE
• list = jhta.TRIMA(df, n, price='Close')
• https://www.fmlabs.com/reference/default.htm?url=TriangularMA.htm

WMA | Weighted Moving Average •

Pattern Recognition CDL2CROWS | Two Crows | CDL3BLACKCROWS | Three Black Crows | CDL3INSIDE | Three Inside Up/Down | CDL3LINESTRIKE | Three-Line Strike | CDL3OUTSIDE | Three Outside Up/Down | CDL3STARSINSOUTH | Three Stars In The South | CDL3WHITESOLDIERS | Three Advancing White Soldiers | CDLABANDONEDBABY | Abandoned Baby | CDLADVANCEBLOCK | Advance Block | CDLBELTHOLD | Belt-hold | CDLBREAKAWAY | Breakaway | CDLCLOSINGMARUBOZU | Closing Marubozu | CDLCONSEALBABYSWALL | Concealing Baby Swallow | CDLCOUNTERATTACK | Counterattack |

CDLDARKCLOUDCOVER | Dark Cloud Cover |

```
CDLDOJI | Doji |
CDLDOJISTAR | Doji Star |
CDLDRAGONFLYDOJI | Dragonfly Doji |
CDLENGULFING | Engulfing Pattern |
CDLEVENINGDOJISTAR | Evening Doji Star |
CDLEVENINGSTAR | Evening Star |
CDLGAPSIDESIDEWHITE | Up/Down-gap side-by-side white lines
CDLGRAVESTONEDOJI | Gravestone Doji |
CDLHAMMER | Hammer |
CDLHANGINGMAN | Hanging Man |
CDLHARAMI | Harami Pattern |
CDLHARAMICROSS | Harami Cross Pattern |
CDLHIGHWAVE | High-Wave Candle |
CDLHIKKAKE | Hikkake Pattern |
CDLHIKKAKEMOD | Modified Hikkake Pattern |
CDLHOMINGPIGEON | Homing Pigeon |
CDLIDENTICAL3CROWS | Identical Three Crows |
```

```
CDLINNECK | In-Neck Pattern |
CDLINVERTEDHAMMER | Inverted Hammer |
CDLKICKING | Kicking |
CDLKICKINGBYLENGTH | Kicking - bull/bear determined by the
longer marubozu |
CDLLADDERBOTTOM | Ladder Bottom |
CDLLONGLEGGEDDOJI | Long Legged Doji |
CDLLONGLINE | Long Line Candle |
\mathbf{CDLMARUBOZU} \mid \mathbf{Marubozu} \mid
CDLMATCHINGLOW | Matching Low |
CDLMATHOLD | Mat Hold |
CDLMORNINGDOJISTAR | Morning Doji Star |
CDLMORNINGSTAR | Morning Star |
CDLONNECK | On-Neck Pattern |
CDLPIERCING | Piercing Pattern |
CDLRICKSHAWMAN | Rickshaw Man |
CDLRISEFALL3METHODS | Rising/Falling Three Methods |
CDLSEPARATINGLINES | Separating Lines |
```

```
{\bf CDLSHOOTINGSTAR} \mid {\bf Shooting} \ {\bf Star} \mid
CDLSHORTLINE | Short Line Candle |
CDLSPINNINGTOP | Spinning Top |
CDLSTALLEDPATTERN | Stalled Pattern |
CDLSTICKSANDWICH | Stick Sandwich |
CDLTAKURI | Takuri (Dragonfly Doji with very long lower shadow)
CDLTASUKIGAP | Tasuki Gap |
CDLTHRUSTING | Thrusting Pattern |
CDLTRISTAR | Tristar Pattern |
CDLUNIQUE3RIVER | Unique 3 River |
CDLUPSIDEGAP2CROWS | Upside Gap Two Crows |
CDLXSIDEGAP3METHODS | Upside/Downside Gap Three Meth-
ods |
Price Transform
AVGPRICE | Average Price | DONE
  • list = jhta.AVGPRICE(df)
  • https://www.fmlabs.com/reference/default.htm?url=AvgPrices.htm
```

29

MEDPRICE | Median Price | DONE

- list = jhta.MEDPRICE(df)
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=MedianPrices.htm$

TYPPRICE | Typical Price | DONE

- list = jhta.TYPPRICE(df)
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=TypicalPrices.htm$

WCLPRICE | Weighted Close Price | DONE

- list = jhta.WCLPRICE(df)
- $\bullet \ \, \text{https://www.fmlabs.com/reference/default.htm?url=WeightedCloses.} \\ \text{htm}$

Statistic Functions

MEAN | Arithmetic mean (average) of data | DONE

• list = jhta.MEAN(df, n, price='Close')

HARMONIC_MEAN | Harmonic mean of data | DONE

• list = jhta.HARMONIC_MEAN(df, n, price='Close')

MEDIAN | Median (middle value) of data | DONE

• list = jhta.MEDIAN(df, n, price='Close')

MEDIAN_LOW | Low median of data | DONE

• list = jhta.MEDIAN_LOW(df, n, price='Close')

• list = jhta.MEDIAN_HIGH(df, n, price='Close') MEDIAN_GROUPED | Median, or 50th percentile, of grouped data | DONE • list = jhta.MEDIAN_GROUPED(df, n, price='Close', interval=1) MODE | Mode (most common value) of discrete data | DONE • list = jhta.MODE(df, n, price='Close') PSTDEV | Population standard deviation of data | DONE • list = jhta.PSTDEV(df, n, price='Close', mu=None) PVARIANCE | Population variance of data | DONE • list = jhta.PVARIANCE(df, n, price='Close', mu=None) STDEV | Sample standard deviation of data | DONE • list = jhta.STDEV(df, n, price='Close', xbar=None) VARIANCE | Sample variance of data | DONE • list = jhta.VARIANCE(df, n, price='Close', xbar=None)

MEDIAN_HIGH | High median of data | DONE

COV | Covariance | DONE

- float = jhta.COV(list1, list2)
- https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance# Covariance

COVARIANCE | Covariance | DONE

- list = jhta.COVARIANCE(df1, df2, n, price1='Close', price2='Close')

COR | Correlation | DONE

• float = jhta.COR(list1, list2)

CORRELATION | Correlation | DONE

• list = jhta.CORRELATION(df1, df2, n, price1='Close', price2='Close')

PCOR | Population Correlation | DONE

• float = jhta.PCOR(list1, list2)

PCORRELATION | Population Correlation | DONE

• list = jhta.PCORRELATION(df1, df2, n, price1='Close', price2='Close')

BETA | Beta | DONE

- float = jhta.BETA(list1, list2)
- https://en.wikipedia.org/wiki/Beta_(finance)

BETAS | Betas | DONE

- list = jhta.BETAS(df1, df2, n, price1='Close', price2='Close')
- https://en.wikipedia.org/wiki/Beta_(finance)

LSR | Least Squares Regression | DONE

- list = jhta.LSR(df, price='Close', predictions_int=0)
- $\bullet \ \ https://www.mathsisfun.com/data/least-squares-regression.html$

SLR | Simple Linear Regression | DONE

- list = jhta.SLR(df, price='Close', predictions_int=0)
- $\bullet \ \ https://machinelearningmastery.com/implement-simple-linear-regression-scratch-python/$

Uncategorised

Volatility Indicators

ATR | Average True Range | DONE

- list = jhta.ATR(df, n)
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=ATR.htm$

-

NATR | Normalized Average True Range |

TRANGE | True Range | DONE

- list = jhta.TRANGE(df)
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=TR.htm$

Volume Indicators

AD | Chaikin A/D Line | DONE

- list = jhta.AD(df)
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=AccumDist.htm$

ADOSC | Chaikin A/D Oscillator |

•

$OBV \mid On \ Balance \ Volume \mid DONE$

- list = jhta.OBV(df)
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=OBV.htm$

34