The method of Hadamard-de la Vallée-Poussin

Daniel Miller

August 7, 2016

We follow Deligne's Weil II. Let Γ be a group isomorphic to either \mathbf{R} or \mathbf{Z} , ω_1 a non-trivial quasi-character $\omega_1 \colon \Gamma \to \mathbf{R}^+$. Let G a locally compact group which is an extension of Γ by a compact group G° . Let Σ be a countably infinite set, $(x_v)_{v \in \Sigma} \subset G^{\natural}$ a family of conjugacy classes in G. We assume:

A' If $\Gamma \simeq \mathbf{R}$, the extension G is trivial.

The following hypothesis is automatically true:

A" If $\Gamma \simeq \mathbf{Z}$, the center of G maps to a subgroup of finite index in Γ .

For $s \in \mathbf{C}$, put $\omega_s = \omega_1^s$. Write also ω_s for the composite map $G \to \Gamma \to \mathbf{C}^{\times}$, and put $\mathrm{N}v = \omega_{-1}(x_v)$. If $\Gamma \simeq \mathbf{Z}$, write q and deg the number > 1 such that the isomorphism between Γ and \mathbf{Z} such that $\omega_1(\gamma) = q^{-\deg(\gamma)}$. One has $\omega_s = \omega_{s+2\pi i \log q}$. Writing deg for the composite map $G \to \Gamma^{\deg} \to \mathbf{Z}$, we have $\deg(v) = \deg(x_v)$.

Let g be an element of the center of G with non-trivial image in Γ . It exists by hypothesis. A complex representation $\tau \colon G \to \operatorname{GL}(V)$ is unitarisable if and only if $\tau(g)$ is: a g-invariant Hermitian structure yields a G-invariant structure by integration on the compact group $G/g^{\mathbf{Z}}$. If τ is irreducible, then $\tau(g)$ is a scalar, so there exists a unique real number σ such that $|\tau(g)| = \omega_{\sigma}(g)$, and $\tau \cdot \omega_{-\sigma}$ is unitarizable. We call σ the real part $\Re \tau$ of τ . We have $\Re(\tau \omega_s) = \Re(\tau) + \Re(s)$.

Let \widetilde{G} the set of isomorphism classes of irreducible representations of G, and \widehat{G} the set of unitary such representations. The sets $\{\tau\omega_s:s\in\mathbf{C}\}$ form a partition of \widetilde{G} , and the application $s\mapsto\tau\omega_s$ identifies $\{\tau\omega_s\}$ with the quotient of \mathbf{C} by a discrete subgroup of $i\mathbf{R}$ if $\Gamma\simeq\mathbf{Z}$, and with \mathbf{C} if $\Gamma\simeq\mathbf{R}$. We give \widetilde{G} the structure of a Riemann surface via the disjoint union of these quotients.

B' For each $v \in \Sigma$, Nv > 1.

B" The infinite product $\prod_{v \in \Sigma} (1 - Nv^{-s})^{-1}$ converges absolutely for $\Re s > 1$.

For $\Gamma \simeq \mathbf{Z}$, these conditions tells us that $\deg(v) > 0$, and, for each $\epsilon > 0$:

$$\#\{v : \deg(v) = n\} = O(q^{(1+\epsilon)n}).$$

The hypothesis (B") tells us that for $\tau \in \widetilde{G}$, the infinite product

$$L(\tau) = \prod_{v \in \Sigma} \det(1 - \tau(x_v))^{-1}$$

converges absolutely for $\Re(\tau) > 1$. Each factor is holomorphic in τ for $\Re(\tau) > 0$, and $L(\tau)$ is holomorphic for $\Re(\tau) > 1$. We put $L(\tau, s) = L(\tau \omega_s)$.

For a representation τ not necessarily irreducible, we define $L(\tau)$ and $L(\tau,s)$ as above. Put $L'(\tau) = \frac{\mathrm{d}}{\mathrm{d}s} L(\tau,s)\big|_{s=0}$. On the domain of convergence:

$$-\frac{L'}{L}(\tau) = \sum_{v \in \Sigma, n > 0} \log(\mathrm{N}v) \operatorname{tr} \tau(x_v^n).$$

We can generalize this to τ a virtual representation, i.e. an element of the Grothendieck group of representations of G. For τ unitary and σ real > 1, $\omega_{\sigma}\tau$ in the domain of convergence, we get

$$-\frac{L'}{L}(\omega_{\sigma}\tau) = \sum_{v \in \Sigma, n > 0} (\log(\mathrm{N}v)(\mathrm{N}v)^{-n\sigma}) \operatorname{tr} \tau(x_v^n).$$

Let mu be a measure on G^{\natural} . For each virtual unitary representation τ of G, we put

$$\widehat{\mu}(\tau) = \int \operatorname{tr} \tau \, \mathrm{d}\mu.$$

The integral converges if the total mass $|\mu| < \infty$. We call the function $\tau \mapsto \widehat{\mu}(\tau)$ the Fourier transform of μ . If we don't require that τ be unitary, we call it the Fourier-Laplace transform. If μ is positive with finite total mass, we have for each unitary virtual representation ρ :

$$\widehat{\mu}(\rho \otimes \overline{\rho}) \geqslant 0$$
 (for $\mu \geqslant 0$).

We see that, for each $\sigma>1$, $\Lambda_{\sigma}(\tau)=-\frac{L'}{L}(\omega_{\sigma}\tau)$ is the Fourier transform of the positive measure with finite total mass:

$$\mu_{\sigma} = \sum_{v \in \Sigma, n > 0} \log(\mathrm{N}v) \mathrm{N}v^{-n\sigma} \delta_{x_v^n}.$$

on G. For each virtual unitary representation ρ , with real character ≥ 0 , one has $\Lambda_{\sigma}(\rho) \geq 0$ for $\sigma > 1$; in particular, for each unitary virtual representation ρ , one has:

$$\Lambda_{\sigma}(\rho \otimes \bar{\rho}) \geqslant 0$$
 (for $\sigma > 1$).

For $\tau \in \widehat{G}$, let $\nu(\tau)$ be the order of the pole (or opposite of the order of zero) of L at $\tau\omega_1$. We extend ν to an additive function on the Grothendieck group of G. For τ in this group, the function $-\frac{L'}{L}(\tau\omega_s)$ has at most simple poles, and the residue at $\tau\omega_1$ is $\nu(\tau)$. We get that for each unitary virtual representation of G:

$$\nu(\rho\otimes\bar{\rho})\geqslant 0.$$

It is classic that the non-vanishing of $L(\tau)$ on $\Re(\tau) = 1$ implies the equidistribution of the x_v . The case where $\Gamma \simeq \mathbf{R}$ is treated in detail in Serre's *Abelian l-adic representations and elliptic curves*. We treat here the case where $\Gamma \simeq \mathbf{Z}$. Assume the following:

C The function $L(\tau)$ admits a meromorphic continuation to $\Re \tau \geqslant 1$; on this domain at has a simple pole at ω_1 , and at the other pole, it does not vanish on $\Re(\tau) = 1$.

D $\Gamma \simeq \mathbf{Z}$.

Let z be a central element of G, with degree d>0. The space G^{\natural} is the quotient of G by the compact group $G/g^{\mathbf{Z}}$ acting by interior automorphisms. It is the disjoint union of G_n^{\natural} , where G_n^{\natural} is the set of conjugacy classes of degree n, and multiplication by z^k induces an isomorphism from G_n^{\natural} to G_{n+kd}^{\natural} .

Consider the following measure on G^{\natural} :

$$\mu^{\natural} = \sum_{v \in \Sigma, n > 0} \deg(v) q^{-n \deg(v)} \delta_{x_v^n},$$

where

- dg = the Haar measure, where G° has volume 1,
- μ_0 = the product of dg with the characteristic function of $\{\omega_{-1} > 1\}$.
- μ_0^{\natural} the projection of μ_0 onto G^{\natural} .

Prop. If (C) and (D) are true, the Fourier-Laplace transform of $\mu^{\natural} - \mu_0^{\natural}$ (which converges for $\tau \in \widehat{G}$ with $\Re(\tau) > 0$) extends to a holomorphic function on $\{\Re \tau > 0\}$.

The Fourier–Laplace transform of μ is $-\frac{1}{\log q}\frac{L'}{L}(\omega_1\tau)$. That of μ_0^{\natural} vanishes away from ω_s , where it has value $\frac{q^{-s}}{1-q^{-s}}$. On the domain $\{\Re \tau \geq 0\}$, both $\widehat{\mu}^{\natural}$ and $\widehat{\mu}_0^{\natural}$ are meromorphic, with a simple pole with residue $1/\log q$ at ω_0 . The proposition follows.

Theorem: assuming (C) and (D), for each i, the measure $z^{-n}\mu^{\natural}|_{G_{i+nd}^{\natural}}$ on G_i^{\natural} converges weakly to $z^{-n}\mu_0^{\natural}|_{G_{i+nd}^{\natural}}$ as $n \to \infty$.