

Computersystemsicherheit

Prof. Marc Fischlin, Wintersemester 18/19

08 Zusammenfassung

Rückblick: "Erwartete" Themen

Bedrohungsanalyse **Zertifikate** vernetzte Systeme Angriffszenarien Schutzziele +Signaturen **√** 05 Schutzmechanismen **√** 03 **(** ✓ 01-07) Spectre **DDoS √** 06 Bluetooth Kryptographie **Datenschutz ✓** 02+03 Passwörter Sicherheitslücken **√** 04 **(** ✓ 01-07) Betriebssystemsicherheitsschichten/ Containersysteme **Buffer Overflows** SQL-Injection **(** ✓ 06) **√** 06 **√** 07 **Exploits** Mindesanforderung/ **(** ✓ 01-07) Authentifizierung ..Konvention" Rechtslage **√** 04

Übersicht

01 Einleitung

Confidentiality

C.I.A. Availability

Threats
Vulnerabilities
Consequences
Exploit
Countermeasures

01 Einleitung

03 Digitale Signaturen

04 Authentisierung und Autorisierung

05 Netzwerksicherheit

06 Betriebssystem-Sicherheit

07 Web-Sicherheit

Weitere Themen

Abdeckung weiterer Themenbereiche

	02 Verschlüs- selung	03 Signaturen	04 Auth+Aut	05 Netzwerke	06 Betriebs- systeme	07 Web
Privacy & Anonymität		Abstreit- barkeit		TOR		
Usability			Passwörter Phishing		Malware Buffer Overflows	TLS-API
Availability		Prüfsummen	CAPTCHAs	(D)DoS		

Weiterführendes Beispiel für Privacy: Datenanalysen

extrahiere Information wie durchschnittliche Ausgaben, ohne Privacy des jeweiligen Kunden zu verletzen

www.computerwoche.de, 29.Juli 2016

Differential Privacy

Beispiel: bestimme durchschnittliche Größe

Name	Größe
Alice	185 cm
Bob	169 cm
Carrol	176 cm

Datenbank DB* = entferne einen Eintrag

Prinzip der Differential Privacy:

Verrausche Antwort, so dass individueller Eintrag quasi keinen Einfluss mehr hat

Datenbank-Algorithmus Algo is differentially private, wenn für alle DB*=DB \ {Element} gilt:

Pr [Algo(DB) liefert Antwort a] ≈ Pr [Algo(DB*) liefert Antwort a]

Weiterführendes Beispiel für Usability

Warum reagieren Anwender falsch auf Warnungen?

Warum entwickeln Programmierer unsichere Lösungen?

. .

www.theguardian.com, 25.Februar 2015

Weiterführendes Beispiel für Availability

Availability

Verfügbarkeit des Systems (in Prozent der Laufzeit)

MTTF = Mean Time To Failure
MTTR = Mean Time To Recovery
Availability = MTTF / (MTTF + MTTR)

Reliability

Zuverlässigkeit des Systems (Wahrscheinlichkeit, dass das System funktioniert)

Beispiel: Redundanz (siehe nächste Folie)

Reliability

Beispiel: Redundant Arrays of Independent Disks (RAID)

RAID 0 (Stripping)

RAID 1

RAID 5

"Reißverschluss"

"Duplizieren"

"Verteilen und Paritätsbits"

halbiert Geschwindkeit (parallel)

verdoppelt Speicherbedarf leicht erhöhter Speicherbedarf, verbessert Geschwindigkeit

	RAID 0	RAID 1	RAID 5
Ausfallwskeit	1-(1-p) ²	p ²	1-[4p(1-p) ³ +(1-p) ⁴]
Beispiel p=1%	1,99%	0,01%	0,059%

p = (unabhängige) Ausfallwahrscheinlichkeit einer Platte

Ende der Vorlesung

