CAN WE DETECT HEART ATTACK FROM PAIN INDUCED SKIN SYMPATHETIC NERVE ACTIVITY SIGNALS?

MERVE BEGÜM TERZİ, ORHAN ARIKAN, ADNAN ABACI, SALİH TOPAL

Department of Electrical and Electronics Engineering, Bilkent University Department of Cardiology, Faculty of Medicine, Gazi University

MOTIVATION

- ECG has been an important part of clinical practice for diagnosis of various cardiovascular diseases by detecting electrical signals from heart.
- Diagnostic information in ECG is contained below 150 Hz, therefore American Heart Association recommends bandwidth of 0.5 Hz to 150 Hz for monitoring of ECG signals.
- In conventional ECG devices, higher frequency signals that contain activities of skeletal muscle (EMG) and nervous system are eliminated by this filtering.
- Recent studies showed that it is possible to non-invasively record higher frequency signals in humans, called skin sympathetic nerve activity (SKNA), by using equipment which has wide frequency bandwidth and high sampling rate [1].

DATASET CONSTRUCTION

- GU-ECG database is a clinical research study performed to determine transient ECG changes during coronary artery occlusion caused by PTCA.
- Coronary artery occlusion during PTCA induces AMI and produces ST segment and T wave changes in ECG [2].
- GU-ECG simulates heart attack, hence it serves as excellent testbed for development of various AMI detection techniques.
- It is largest database documenting high frequency ECG changes during AMI.

- It is constructed by acquiring wideband recordings from AMI patients diagnosed by cardiologists at Gazi University, Faculty of Medicine.
- It includes ECG recordings of 108 patients acquired before and during PTCA by using equipment with wide frequency bandwidth and high sampling rate.
- Before PTCA, pre-inflation recordings were acquired at rest prior to catheter insertion to coronary arteries.
- During PTCA, inflation recordings during balloon inflation in major coronary artery were acquired.

PROBLEM DEFINITION

 \diamond Electrical signals obtained from skin surface y_i contains sympathetic nerve activity (SKNA), motor and sensory nerve activities, skeletal muscle activity (EMG) and myocardial activity (ECG).

$$y_i(t) = c_i(t) + q_i(t) + m_i(t) + n_i(t)$$
, $i = 1,...,N$

SKNA will be delayed and will decrease in amplitude as it moves away from its source, which can be modeled by using amplitude and delay parameters.

$$q_i(t) = \alpha_i q(t - \tau_i)$$
, $0 < \alpha_i < 1$

Assumption: SKNA is uncorrelated with sensory and motor nerve activities and EMG.

Robust estimation of SKNA for known amplitude and delay parameters:

$$\widehat{q}(t) = \frac{\sum_{i=1}^{N} \alpha_i \, y_i(t+\tau_i)}{\sum_{i=1}^{N} \alpha_i^2}$$

CONCLUSION

- ❖ By using state-of-the-art signal processing and machine learning methods, developed technique detects anomalies in SKNA and ECG, hence it provides additional diagnostic information to ECG for reliable diagnosis of AMI.
- ❖ Proposed technique simultaneously detects anomalies in SKNA and ECG, which considerably increases detection performance of AMI.
- * Thus, it can provide significant decrease in mortality rates of ischemic heart diseases.
- ❖ It can expand application of ECG to simultaneously detect SKNA anomalies to perform robust detection of various cardiovascular diseases.

ACKNOWLEDGEMENT

We would like to thank Prof. Adnan Abacı, Asst. Prof. Salih Topal and Asst. Prof. Mustafa Candemir for their skillful assistance in the field of cardiology and neurology.

METHODOLOGY

PROPOSED AMI DETECTION TECHNIQUE

This study proposes a new technique which detects anomalies in SKNA and ECG by using state-of-the-art signal processing and machine learning methods to perform robust detection of AMI.

SIGNAL CONDITIONING TECHNIQUE

of signal conditioning technique to wideband recordings on GU-ECG database which are acquired before and during AMI.

For increasing cut-off frequencies of filter:

Heart Rate

Absolute SKNA

- EMG signals are eliminated, which increased specificity of SKNA recording.
- However, majority of SKNA is filtered out, which

- There is an increase in SKNA during AMI.
- ❖ Increase in SKNA is associated with ST/T
- SKNA of a patient during cardiac arrythmia [3].

Maximum SKNA

FEATURE EXTRACTION TECHNIQUE

Novel feature extraction technique which obtains discriminative SKNA and ECG features that are critical for robust detection of AMI is developed.

Average SKNA

SKNA of a patient before and during AMI obtained by implemention of proposed technique to GU-ECG database.

ECG of a patient before and during AMI obtained by implemention of proposed technique to GU-ECG database.

CLASSIFICATION TECHNIQUE

- Supervised learning technique based on artificial neural networks (ANN) which uses discriminative SKNA and ECG features to perform robust detection of AMI is developed.
- Feed-forward ANN consists of input layer with six input units, hidden layer and output layer with one output unit.

- Idyor With one odepat differ	
PERFORMANCE MEASURES	PERFORMANCE RESULTS (%)
Accuracy	86.5
Detection Rate	89.1
False Alarm Probability	18
Positive Predictive Value	90.2
Negative Predictive Value	76.8
Specificity	82

Performance results of proposed technique with optimum ANN, discriminative SKNA and ECG features over GU-ECG database indicate that technique provides highly reliable detection of AMI.

REFERENCES

[1] M. B. Terzi, O. Arıkan, S. Topal and A. Abaci, "Detection of Myocardial Ischaemia based on Artificial Neural Networks and Skin Sympathetic Nerve Activity", EasyChair, 2019. [2] A. Abaci, M. B. Terzi, M. Candemir, M. Dedeoglu, O. Arikan, "GU-ECG Database: ECGs Recorded During Acutely Induced Myocardial Ischaemia", Mendeley Data, v3, 2020. [3] M. B. Terzi and O. Arikan, "Anomaly Detection Technique Based on Sympathetic Nerve Activity for Detection of Cardiac Arrhythmia", 28th Signal Processing and Communications Applications Conference (SIU), Gaziantep, Turkey, 2020.