# Assignment 3 - Fuzzy and Neuro-Fuzzy Systems

Grupo 1 - Diogo A. Rosário (uc<br/>2023185395), Arthur N. Itacarambi (nº2020115569) Universidade de Coimbra - FCT - Prof. António Dourado Pereira Correia



## 1 Parte A - Fuzzy Control

#### 1.1 Introdução

Nesta seção do relatório, delinearemos o processo de construção dos controladores que incorporam 9, 25 e 49 regras. Destacaremos as etapas cruciais do design, desde a seleção inicial das regras até a sintonização dos parâmetros, proporcionando uma visão abrangente do nosso método de construção.

Além disso, apresentaremos os resultados obtidos. Cada controlador será avaliado com base em métricas específicas, incluindo desempenho tanto em situações com perturbação quanto na ausência desta. Essa análise permitirá uma compreensão aprofundada do impacto das diferentes quantidades de regras na eficácia geral do sistema.

Finalmente, conduziremos uma análise abrangente dos resultados obtidos, considerando especialmente o desempenho dos melhores controladores.

#### 1.2 Criação dos Controladores

Foram desenvolvidos dois tipos de controladores difusos: Mamdani e Sugeno, utilizando as ferramentas disponibilizadas pelo *Matlab (Fuzzy Logic)*. Foram criados controladores com duas diferentes funções de associação: triangular (trimf) e gaussiana (gaussmf). Além disso, é importante salientar que cada controlador possui dois inputs, que correspondem ao erro e à derivada do erro, e um output. Para cada tipo de controlador, foram utilizados três tipos de regras diferentes, conforme representado na tabela abaixo, com 9, 25 e 49 regras distintas.

| $e_k$ | N | ZE | Р |
|-------|---|----|---|
| N     | N | N  | Z |
| ZE    | N | Z  | Р |
| P     | Z | Р  | Р |

| $e_k \setminus$ | IND | 143 | ZL | гэ | гв |
|-----------------|-----|-----|----|----|----|
| NB              | NB  | NB  | NB | NS | ZE |
| NS              | NB  | NB  | NS | ZE | PS |
| ZE              | NB  | NS  | ZE | PS | PB |
| PS              | NS  | ZE  | PS | PB | PB |
| PB              | ZE  | PS  | PB | PB | PB |

(a) Tabela de 9 regras

(b) Tabela de 25 regras

|   | $e_k$ | ŇΒ | NM | NS | ZE | PS | PM | РВ |
|---|-------|----|----|----|----|----|----|----|
| ļ | NB    | NB | NB | NB | NB | NM | NS | ZE |
|   | NM    | NB | NB | NB | NM | NS | ZE | PS |
|   | NS    | NB | NB | NM | NS | ZE | PS | PM |
|   | ZE    | NB | NM | NS | ZE | PS | PM | РВ |
|   | PS    | NM | NS | ZE | PS | PM | PB | РВ |
|   | PM    | NS | ZE | PS | PM | РВ | РВ | РВ |
|   | РВ    | ZE | PS | PM | PB | PB | PB | PB |

(c) Tabela de 49 regras

Figure 1: Tabelas de regras

Estas são as definições das siglas utilizadas para representar diferentes valores nos controladores difusos:

- N = Negativo
- NB = Negativo Grande
- NM = Negativo Médio
- NS = Negativo Pequeno
- $\bullet$  ZE = Zero
- PS = Positivo Pequeno
- PM = Positivo Médio
- PB = Positivo Grande
- P = Positivo

Também é relevante observar que, para todos os controladores, as regras foram ligadas utilizando o operador AND. Por último, como método de defuzzificação, foi adotado o método "centroid" nos controladores do tipo Mamdani e o método "wtaver" nos controladores Sugeno.

#### 1.3 Sistema

$$\frac{5}{s^3 + 5s^2 + 9s + 5}$$

Figure 2: Função de Transferência

O sistema delineado no diagrama a seguir visa observar e avaliar os efeitos das regras mencionadas na seção 1.2 deste relatório sobre diversos tipos de sinais, fazendo uso da função de transferência fornecida. Na parte superior esquerda do diagrama, encontra-se um gerador de sinal capaz de produzir três tipos distintos de sinais: sinusoidal, quadrático e dente de serra. O sinal gerado é então processado na seção central do diagrama e sujeito a avaliação na parte inferior do mesmo.

É crucial observar que, na porção superior direita do diagrama, estão presentes duas perturbações que serão empregadas para verificar se o sistema é capaz de recuperar o sinal após desvios significativos. Este arranjo proporciona uma análise abrangente do desempenho do sistema diante de diferentes tipos de sinais e perturbações, permitindo uma avaliação criteriosa da eficácia das regras mencionadas na seção 1.2 do relatório.



Figure 3: Sistema Fuzzy

## 1.4 Resultados

#### ${\bf 1.4.1} \quad Mamdani$

| Mamdani - Wave From SINE |              |                |                |                           |                                   |                           |                                   |  |  |  |
|--------------------------|--------------|----------------|----------------|---------------------------|-----------------------------------|---------------------------|-----------------------------------|--|--|--|
|                          |              |                |                | Without Pe                | rturbance                         | Perti                     | Perturbance                       |  |  |  |
| Membership Functions     | Nº Rules Sca | Scale Factor 1 | Scale Factor 2 | Integral Squared<br>Error | Integral Square<br>Control Action | Integral Squared<br>Error | Integral Square<br>Control Action |  |  |  |
|                          | 9            | 0.16           | 224            | 3.688                     | 102.4                             | 5.323                     | 101.6                             |  |  |  |
| gaussmf                  | 25           | 0.02           | 80             | 1.956                     | 104.7                             | 3.405                     | 105.1                             |  |  |  |
|                          | 49           | 0,01           | 80             | 0.4528                    | 104.6                             | 2.366                     | 97.57                             |  |  |  |
|                          | 9            | 0.089          | 256            | 1.747                     | 104.3                             | 3.1712                    | 101.5                             |  |  |  |
| trimf                    | 25           | 0.008          | 80             | 0.4141                    | 105                               | 2.449                     | 98.76                             |  |  |  |
|                          | 49           | 0.005          | 80             | 0.8882                    | 104                               | 2.99                      | 97.33                             |  |  |  |

Figure 4: Resultados dos controladores Mamdani com representação sinusoidal

| Mamdani - Wave From SQUARE |                     |                |                |                           |                                   |                           |                                   |  |  |  |  |
|----------------------------|---------------------|----------------|----------------|---------------------------|-----------------------------------|---------------------------|-----------------------------------|--|--|--|--|
|                            | Without Perturbance |                |                |                           | Perturbance                       |                           |                                   |  |  |  |  |
| Membership Functions       | Nº Rules            | Scale Factor 1 | Scale Factor 2 | Integral Squared<br>Error | Integral Square<br>Control Action | Integral Squared<br>Error | Integral Square<br>Control Action |  |  |  |  |
|                            | 9                   | 0.02           | 2000           | 31.86                     | 186.1                             | 37.8                      | 297.6                             |  |  |  |  |
| gaussmf                    | 25                  | 0.05           | 25             | 24.48                     | 198                               | 26.43                     | 318.4                             |  |  |  |  |
|                            | 49                  | 0.01           | 70             | 24.4                      | 198.1                             | 25.95                     | 317.5                             |  |  |  |  |
|                            | 9                   | 0.07           | 100            | 29.24                     | 191.6                             | 35.47                     | 304.9                             |  |  |  |  |
| trimf                      | 25                  | 0.01           | 30             | 31.63                     | 189.8                             | 35.42                     | 302.5                             |  |  |  |  |
|                            | 49                  | 0.04           | 15             | 25.38                     | 197.4                             | 27.63                     | 315.7                             |  |  |  |  |

Figure 5: Resultados dos controladores Mamdani com representação quadrada

| Mamdani - Wave From SAWTOOTH |          |                |                |                           |                                   |                           |                                   |  |  |  |
|------------------------------|----------|----------------|----------------|---------------------------|-----------------------------------|---------------------------|-----------------------------------|--|--|--|
|                              |          |                |                | Without Pe                | rturbance                         | Perturbance               |                                   |  |  |  |
| Membership Functions         | Nº Rules | Scale Factor 1 | Scale Factor 2 | Integral Squared<br>Error | Integral Square<br>Control Action | Integral Squared<br>Error | Integral Square<br>Control Action |  |  |  |
|                              | 9        | 0.2            | 55             | 12.44                     | 29.54                             | 14.35                     | 101.3                             |  |  |  |
| gaussmf                      | 25       | 0.05           | 30             | 8.873                     | 62.04                             | 10.92                     | 81.79                             |  |  |  |
|                              | 49       | 0,02           | 30             | 9.069                     | 58.81                             | 12.36                     | 76.39                             |  |  |  |
|                              | 9        | 0.2            | 65             | 8.096                     | 69.45                             | 9.414                     | 93.14                             |  |  |  |
| trimf                        | 25       | 0.01           | 30             | 11.71                     | 57.59                             | 14.86                     | 78.11                             |  |  |  |
|                              | 49       | 0,2            | 6.45           | 7,487                     | 64,57                             | 10,08                     | 80,08                             |  |  |  |

Figure 6: Resultados dos controladores Mamdani com representação sawtooth



Figure 7: Representação do melhor resultado sinusoidal sem perturbação



Figure 8: Representação do melhor resultado sinusoidal com perturbação



Figure 9: Representação do melhor resultado quadrado sem perturbação



Figure 10: Representação do melhor resultado quadrado com perturbação



Figure 11: Representação do melhor resultado sawtooth sem perturbação



Figure 12: Representação do melhor resultado sawtooth com perturbação

#### 1.4.2 Sugeno

| Sugeno - Wave From SINE |          |                |                |                           |                                   |                           |                            |  |  |
|-------------------------|----------|----------------|----------------|---------------------------|-----------------------------------|---------------------------|----------------------------|--|--|
| Without Perturbance     |          |                |                |                           | Perturbance                       | Perturbance Perturbance   |                            |  |  |
| Membership Functions    | Nº Rules | Scale Factor 1 | Scale Factor 2 | Integral<br>Squared Error | Integral Square<br>Control Action | Integral<br>Squared Error | Integral<br>Square Control |  |  |
|                         |          |                |                | Squared Error             | CONTROL ACTION                    | Squareu Error             | Action                     |  |  |
|                         | 9        | 0,08           | 15             | 0,7056                    | 104,4                             | 2,77                      | 97,94                      |  |  |
| gaussmf                 | 25       | 0,08           | 12             | 0,9772                    | 104,2                             | 3,146                     | 96,33                      |  |  |
|                         | 49       | 0,12           | 9,4            | 0,7062                    | 104,3                             | 2,599                     | 98,59                      |  |  |
|                         | 9        | 0,118          | 9,4            | 0,282                     | 104,7                             | 2,001                     | 97,5                       |  |  |
| trimf                   | 25       | 0,12           | 7,98           | 0,3781                    | 104,7                             | 2,203                     | 97,49                      |  |  |
|                         | 49       | 0,15           | 6,78           | 0,3355                    | 104,7                             | 2,118                     | 97,43                      |  |  |

Figure 13: Resultados dos controladores Sugeno com representação sinusoidal

| Sugeno - Wave From SQUARE |          |                |                |                           |                                   |                           |                            |  |  |
|---------------------------|----------|----------------|----------------|---------------------------|-----------------------------------|---------------------------|----------------------------|--|--|
|                           |          |                |                | Without                   | Perturbance                       | Pertu                     | rbance                     |  |  |
| Membership Functions      | Nº Rules | Scale Factor 1 | Scale Factor 2 | Integral<br>Squared Error | Integral Square<br>Control Action | Integral<br>Squared Error | Integral<br>Square Control |  |  |
|                           |          |                |                | Squareu Error             | CONTROL ACTION                    | Squareu Error             | Action                     |  |  |
|                           | 9        | 0,07           | 15             | 22,63                     | 197,1                             | 25,67                     | 315,6                      |  |  |
| gaussmf                   | 25       | 0,08           | 9              | 26,81                     | 194,5                             | 29,68                     | 311,3                      |  |  |
|                           | 49       | 0,11           | 8,8            | 20,36                     | 206,3                             | 22,87                     | 327,3                      |  |  |
|                           | 9        | 0,1            | 8,5            | 23,47                     | 201,4                             | 25,43                     | 320,7                      |  |  |
| trimf                     | 25       | 0,13           | 8,12           | 21,71                     | 203,7                             | 23,73                     | 324,2                      |  |  |
|                           | 49       | 0,15           | 6,35           | 23,18                     | 202,1                             | 25,62                     | 321,7                      |  |  |

Figure 14: Resultados dos controladores Sugeno com representação quadrada

| Sugeno - Wave From SAWTOOTH |          |                |                |                           |                                   |                           |                                      |  |  |  |
|-----------------------------|----------|----------------|----------------|---------------------------|-----------------------------------|---------------------------|--------------------------------------|--|--|--|
|                             |          |                |                | Without                   | Perturbance                       | Perturbance               |                                      |  |  |  |
| Membership Functions        | Nº Rules | Scale Factor 1 | Scale Factor 2 | Integral<br>Squared Error | Integral Square<br>Control Action | Integral<br>Squared Error | Integral<br>Square Control<br>Action |  |  |  |
|                             | 9        | 0,09           | 13             | 8,754                     | 61,02                             | 11,38                     | 77,8                                 |  |  |  |
| gaussmf                     | 25       | 0,1            | 9,2            | 8,578                     | 61,47                             | 11                        | 78,88                                |  |  |  |
|                             | 49       | 0,11           | 9,1            | 8,025                     | 63,71                             | 10,25                     | 81,33                                |  |  |  |
|                             | 9        | 0,09           | 9,3            | 8,765                     | 61,97                             | 11,02                     | 78,44                                |  |  |  |
| trimf                       | 25       | 0,14           | 7,12           | 8,298                     | 62,69                             | 10,14                     | 78,9                                 |  |  |  |
|                             | 49       | 0,16           | 8,65           | 7,416                     | 64,93                             | 9,143                     | 81,14                                |  |  |  |

Figure 15: Resultados dos controladores Sugeno com representação sawtooth



Figure 16: Representação do melhor resultado sinusoidal sem perturbação



Figure 17: Representação do melhor resultado sinusoidal com perturbação



Figure 18: Representação do melhor resultado quadrado sem perturbação



Figure 19: Representação do melhor resultado quadrado com perturbação



Figure 20: Representação do melhor resultado sawtooth sem perturbação



Figure 21: Representação do melhor resultado sawtooth com perturbação

#### 1.5 Conclusões

A avaliação da performance dos nossos controladores baseou-se na consideração dos valores dos integrais quadrados do erro e do desvio da trajetória do gráfico de output em relação à referência. Adicionalmente, realizou-se um equilíbrio entre esses dados e a taxa de esforço do controlador, tendo em conta parâmetros como o máximo da ação do controlador e o integral quadrado da ação de mesmo.

Considerando os controladores Mamdani desenvolvidos, os resultados mais promissores foram obtidos com as seguintes configurações: Mamdani - sinusoidal - trimf 25 regras, Mamdani - quadradática - gaussiano - 49 regras e Mamdani - sawtooth - trimf - 49 regras.

Por outro lado, os resultados mais otimizados dos controladores Sugeno foram os seguintes: Sugeno - sinusoidal - trimf - 9 regras, Sugeno - quadradática - gaussiano - 49 regras e sawtooth - trimf - 49 regras.

Ao compararmos agora o desempenho dos controladores com base na sua membership function, constatamos que, globalmente, as funções gaussiana e triangular exibem uma performance semelhante. Adicionalmente, é digno de nota que o sistema demonstrou eficácia na gestão da perturbação.Para além disso, observamos que a nossa função de transferência apresenta um desempenho superior na manipulação do sinal sinusoidal.

Em contraste, observamos que a nossa função de transferência não conseguiu adaptar-se de forma satisfatória ao sinal quadrático.

## 2 Parte B - Neuro-Fuzzy Systems for modelling dynamic processes

#### 2.1 Introdução

Na segunda parte deste trabalho, o propósito centra-se na aplicação de sistemas Neuro-Fuzzy para modelar sistemas dinâmicos. Nestes sistemas, a saída está frequentemente condicionada a instantes temporais anteriores, isto é, além de depender das entradas no presente, esses sistemas também estão vinculados a entradas e saídas passadas.

Posteriormente, através da utilização de técnicas de agrupamento (clustering), é possível obter as regras.

#### 2.2 Função Discreta

Para a determinação da nossa função discreta, utilizamos a função c2dm do MATLAB, adotando o modelo de discretização "zoh". Inicialmente, procedemos ao cálculo dos zeros da nossa função, os quais foram [-2+i, -2-i, -1+i]. Posteriormente, determinamos o valor do time sample, fixado em 0.1, resultando na seguinte função discreta.

$$\frac{0.0002z^2 + 0.0011z + 0.0003}{z^3 - 2.5261z^2 + 2.1154z - 0.5877}$$

Figure 22: Função Discreta

#### 2.3 Criação do Dataset

Posteriormente, foi desenvolvido um modelo Simulink incorporando a nossa função discreta, com o propósito de gerar valores de entrada de forma aleatória e determinar os correspondentes valores de saída.



Figure 23: Modelo Simulink

Foram adquiridos valores temporais para cada instante, os quais foram utilizados na construção de uma matriz de 7 colunas. A última coluna dessa matriz representa o nosso alvo (target), enquanto as seis colunas anteriores correspondem às características (features). Por fim, os dados contidos nesta matriz foram divididos em dois grupos distintos: o conjunto de treino, que detém 70% dos dados, e o conjunto de teste, que compreende os restantes 30%.

#### 2.4 Sistema

Por último, procedeu-se à elaboração do diagrama Simulink para a avaliação do desempenho dos sistemas concebidos. Recorreu-se, uma vez mais, às formas de onda fundamentais: senusoidal, quadradática e sawtooth, com uma amplitude de 1 e uma frequência de 1 rad/s. Em simultâneo, procedeu-se à modificação do time sample dos blocos para 0.1 segundos



Figure 24: Sistema Simulink

#### 2.5 Regras



Figure 25: Regras do clustering Gridpartion



Figure 26: Regras do clustering Fuzzy c-means



Figure 27: Regras do clustering Subtractive

#### 2.6 Resultados

Procedeu-se, assim, ao cálculo dos resultados, nomeadamente do "Mean Square Error (MSE)" para os distintos controladores concebidos. Os resultados obtidos foram os seguintes:

| Tipo de Clustering | Tipo de Treino  | $N^{\underline{o}}$ de Regras | MSE         |
|--------------------|-----------------|-------------------------------|-------------|
| Gridpartion        | Backpropagation | 4                             | 8.6763e-05  |
| Gridpartion        | Hybrid          | 4                             | 3.3108e-10  |
| Fuzzy-c-means      | Backpropagation | 64                            | 0.0108      |
| Fuzzy-c-means      | Hybrid          | 64                            | 0.0067      |
| Substractive       | Backpropagation | 4                             | 5.2609 e-05 |
| Substractive       | Hybrid          | 4                             | 6.6062e-11  |

Table 1: MSE dos controladores

#### 2.6.1 Grid-Partion



Figure 28: Backpropagation, 4 regras, sinusoidal



Figure 29: Backpropagation, 4 regras, quadrática



Figure 30: Backpropagation, 4 regras, sawtooth



Figure 31: Hybrid, 4 regras, sinusoidal



Figure 32: Hybrid, 4 regras, quadrática



Figure 33: Hybrid, 4 regras, sawtooth

## 2.6.2 Fuzzy c-means



Figure 34: Backpropagation, 64 regras, sinusoidal



Figure 35: Backpropagation, 64 regras, quadrática



Figure 36: Backpropagation, 64 regras, sawtooth



Figure 37: Hybrid, 64 regras, sinusoidal



Figure 38: Hybrid, 64 regras, quadrática



Figure 39: Hybrid, 64 regras, sawtooth

## 2.6.3 Subtractive



Figure 40: Backpropagation, 4 regras, sinusoidal



Figure 41: Backpropagation, 4 regras, quadrática



Figure 42: Backpropagation, 4 regras, sawtooth



Figure 43: Hybrid, 4 regras, sinusoidal



Figure 44: Hybrid, 4 regras, quadrática



Figure 45: Hybrid, 4 regras, sawtooth

### 2.7 Conclusões

Concluímos, face aos resultados obtidos, que para a nossa função de transferência, os controladores que demonstram resultados muito positivos são aqueles criados utilizando os métodos de *clustering* do tipo *Gridpartition* e *subtractive*. Em contraste, o método de *clustering Fuzzy-c-means* revelou-se relativamente menos eficaz.