Ipercolesterolemia Alterazioni del metabolismo del colesterolo

Indice

1	Processo malato			
	1.1	Recettore per le LDL	1	
	1.2	Difetti	2	
	Alterazioni metaboliche			
	2.1	Epatocita	2	
	2.2	Epatocita	3	
3	Terapia			
	3.1	Dietetica	4	
	3.2	Farmacologica	4	

1 Processo malato

L'ipercolesterolemia familiare è una patologia metabolica dovuta a difetti del recettore delle lipoproteine a bassa densità (LDL).

1.1 Recettore per le LDL

LDLr è una glicoproteina a singola catena dotata di:

- una sola elica transmembrana
- un'estremità C-terminale citoplasmatica
- $\bullet\,$ un'estremità ${\bf N\text{-}terminale}$ protesa nell'ambiente cellulare

L'estremità N-terminale presenta i siti di legame per **apoB-100** e **apoE-100**, le due apolipoproteine espresse dalle **LDL** e VLDL che ne mediano il riconoscimento e la **internalizzazione** da parte delle cellule epatiche e periferiche dotate del recettore. In particolare, è il **fegato** a svolgere il catabolismo della maggior parte delle LDL

In particolare, è il **fegato** a svolgere il catabolismo della maggior parte delle LDL circolanti (75%).

1.2 Difetti

La disfunzione che causa l'ipercolesterolemia può interessare vari aspetti della costituzione e attività di LDLr:

- il difetto più frequente è il calo del numero di recettori funzionanti, dovuto a una mutazione non-senso del gene per esso codificante. L'ipercolesterolemia familiare è una patologia autosomica dominante, in quanto l'eterozigote, pur avendo un solo allele mutato, non produce quantità sufficiente di LDLr funzionante per catabolizzare il colesterolo in circolo.
- in altri casi la patologia è dovuta a **mutazioni senso** che producono LDLr con **difetti nel legame** con le lipoproteine
- talvolta il difetto risiede nel **meccanismo di trasporto** della glicoproteina che, seppur correttamente sintetizzata, non raggiunge la **membrana cellulare**
- infine, mutazioni di LDLr possono compromettere la regione C-terminale, fondamentale per l'internalizzazione del complesso LDL-recettore

2 Alterazioni metaboliche

L'esito del difetto di LDLr è una significativa difficoltà nella ricaptazione delle LDL plasmatiche da parte degli epatociti.

Per questo motivo, tali lipoproteine cariche di colesterolo restano nel sangue invece che venire internalizzate e degradate. Ciò ha fondamentalmente due conseguenze sul metabolismo del colesterolo:

- calo della degradazione
- aumento della sintesi

I due fenomeni concorrono ad aumentare il livello di colesterolo plasmatico.

2.1 Epatocita

La normale internalizzazione delle LDL porta ad aumento della quota di colesterolo intracellulare, che viene in gran parte **smaltito** grazie alla degradazione ad **acidi biliari** secreti nella **bile**.

L'accumulo di colesterolo nel citoplasma ha inoltre l'importante significato di **prevenire** ulteriore sintesi del composto, mediante inibizione dell'enzima regolatore HMG-CoA reduttasi.

L'inibizione è mediata dagli intermedi **ossisteroli**, che stimolano la **proteolisi** di HMG-CoA reduttasi e mantengono presso il reticolo endoplasmico il **fattore di trascrizione SREBP**.

Nell'ipercolesterolemia l'assunzione del colesterolo plasmatico non può avvenire, e quindi la concentrazione intracellulare rimane bassa.

Di conseguenza, manca l'inibizione di HMG-CoA reduttasi e di SREBP, il quale migra nel nucleo attivando la trascrizione della reduttasi stessa e di altri enzimi correlati alla sintesi di colesterolo.

In sintesi, dato il mancato equilibrarsi del colesterolo intracellulare con quello plasmatico, gli epatociti continuano a sintetizzarlo anche in presenza di eccesso nel sangue.

2.2 Sangue

La diminuzione della frazione di colesterolo degradata, unita all'aumento della sua sintesi per assenza di regolazione negativa, causa l'ipercolesterolemia propriamente detta.

Essa è genericamente definita come un tasso di colesterolo plasmatico superiore a 240 mg/dL, rispetto ad un valore consigliato inferiore a 200 mg/dL.

L'eccesso di colesterolo ematico, trasportato dalle LDL, tende ad essere **ceduto a ma- crofagi** collocati nello **strato subendoteliale delle arterie**.

Il processo di internalizzazione ed esterificazione da parte dei macrofagi è efficace in quanto mediato anche da **vie LDLr-indipendenti**, e **non regolate negativamente** dal contenuto cellulare di colesterolo.

I macrofagi carichi di lipidi, denominati cellule schiumose, possono provocare:

- rigonfiamento della parete dei vasi
- aggregazione piastrinica, con liberazione di PDGF che induce proliferazione delle cellule muscolari lisce

• accumulo di lipidi e fibrosi dei vasi conseguente a morte dei macrofagi

Tale quadro clinico, definito *aterosclerosi*, è una condizione predisponente ad **infarti** ed **ischemie**, data la restrizione del lume vasale e la possibilità di distacco di **trombi** dalle placche.

3 Terapia

3.1 Dietetica

È possibile ottenere un abbassamento della colesterolemia mediante riduzione dell'apporto dietetico del lipide.

L'introduzione giornaliera di **non più di 300 mg** di colesterolo, unita alla riduzione dell'introito calorico assoluto e della **quota relativa di lipidi** al **30%**, consente di controllare parte delle problematiche ponderali e cardiocircolatorie connesse alla patologia. Inoltre è consigliato che circa **due terzi** dell'apporto di grassi sia dato da lipidi **mono-o polinsaturi**.

3.2 Farmacologica

Colestiramina e colestipolo sono due farmaci che sequestrano i sali biliari, promuovendone l'escrezione e quindi la risintesi epatica. Si ottiene quindi un aumento di:

- assunzione delle LDL da parte del fegato
- escrezione fecale di colesterolo

Le statine sono una classe di agenti inibitori di HMG-CoA reduttasi, e quindi della sintesi endogena di colesterolo.

Nuove strategie sono mirate all'inibizione dell'assunzione intestinale del composto, mediante inibitori del trasportatore NPC1L1, e alla rimozione della modulazione negativa di LDLr attuata da PCSK9.

Per i casi di ipercolesterolemia a base genetica sono in studio vettori del gene corretto del recettore delle LDL.

Riferimenti bibliografici

- [1] David L. Nelson, Michael M. Cox, Lehninger principles of biochemistry, Freeman, W. H. Company, 6th edition, 2012.
- [2] Thomas M. Devlin, *Biochimica con aspetti chimico-farmaceutici*, EdiSES, 7^a edizione, 2011.
- [3] Alessandra Bertoni, Corso di Biochimica II, CdLM in Medicina e Chirurgia, Università del Piemonte Orientale, Anno accademico 2017-2018.