

Corrigé du devoir maison n°2

Exercice 1

Reprenons la courbe de l'énoncé :

On met $\sqrt{\sqrt{2}^2 + \sqrt{2}^2} = \sqrt{4} = 2$ en facteur : pour tout $x \in \mathbb{R}$,

$$f(x) = \sqrt{2}\cos(3x) + \sqrt{2}\sin(3x) = 2\left(\frac{\sqrt{2}}{2}\cos(3x) + \frac{\sqrt{2}}{2}\sin(3x)\right) = 2\left(\cos\frac{\pi}{4}\cos(3x) + \sin\frac{\pi}{4}\sin(3x)\right) = 2\cos\left(3x - \frac{\pi}{4}\right).$$

On en déduit:

- la période est $?^1 = \frac{2\pi}{3}$.
- l'amplitude est 2 = 2. on peut écrire $f(x) = 2\cos\left[3\left(x \frac{\pi}{12}\right)\right]$, donc la courbe est décalée de $\frac{\pi}{12}$ unité vers la droite par rapport à la courbe d'équation $y = 2\cos(3x)$. On a donc $3^3 = \frac{\pi}{12}$.

Exercice 2

On étudie $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto 2\cos^2 x - 2\cos x - 1$.

- 1. $\forall x \in \mathbb{R}$, $f(-x) = 2(\cos(-x))^2 2\cos(-x) 1 = 2(\cos x)^2 2\cos x 1 = f(x)$, donc f est paire
 - $\forall x \in \mathbb{R}, f(x+2\pi) = 2(\cos(x+2\pi))^2 2\cos(x+2\pi) 1 = 2(\cos x)^2 2\cos x 1 = f(x), \overline{\text{donc} f \text{ est } 2\pi\text{-p\'eriodique}}$

Comme f est 2π -périodique, on peut l'étudier sur $[-\pi;\pi]$; et comme elle est paire, on peut réduire l'étude à l'intervalle $I = [0; \pi]$.

2. On commence par calculer la dérivée.

Pour dériver $x \mapsto (\cos x)^2$, on applique la formule $(u^n)' = nu'u^{n-1}$ avec

$$u(x) = \cos x$$
, $u'(x) = -\sin x$, $n = 2$.

On obtient, pour tout $x \in I$:

$$f'(x) = 2 \times 2(-\sin x)(\cos x)^{2-1} - 2(-\sin x) - 0 = -4\sin x\cos x + 2\sin x = 2\sin x(-2\cos x + 1).$$

On résout ensuite dans *I* les équations $\sin x = 0$ et $-2\cos x + 1 = 0$ ($\iff \cos x = \frac{1}{2}$).

- Les solutions dans $[0; \pi]$ de l'équation $\sin x = 0$ sont x = 0 et $x = \pi$.
- L'unique solution dans $[0; \pi]$ de l'équation $\cos x = \frac{1}{2}$ est $x = \frac{\pi}{3}$.

Enfin on construit le tableau de variations et le tableau de signe :

x	0		$\frac{\pi}{3}$		π
sin x	0	+		+	0
$-2\cos x + 1$		-	0	+	
f'(x)	0	_	0	+	0
f(x)	-1		$-\frac{3}{2}$, 3

On obtient le signe dans chaque case en remplaçant par une valeur de x. Par exemple, pour la ligne $-2\cos x + 1$:

- $-2\cos 0 + 1 = -2 \times 1 + 1 = -1 \ominus$
- $-2\cos\pi + 1 = -2 \times (-1) + 1 = 3 \oplus$

Pour compléter l'extrémité des flèches, on cal-

- $f(0) = 2(\cos 0)^2 2\cos 0 1 = 2 \times 1^2 2 \times 1 1 =$
- $\begin{array}{c} -1 \\ \bullet \ f\left(\frac{\pi}{3}\right) = 2\left(\cos\frac{\pi}{3}\right)^2 2\cos\frac{\pi}{3} 1 = 2 \times \left(\frac{1}{2}\right)^2 2 \times \\ \frac{1}{2} 1 = -\frac{3}{2} \\ \bullet \ f(\pi) = 2(\cos\pi)^2 2\cos\pi 1 = 2 \times (-1)^2 2 \times \\ \end{array}$
- 3. On commence par tracer en rouge (et sur un petit intervalle) les tangentes aux points d'abscisses 0, $\frac{\pi}{3}$ et π (horizontales). On trace ensuite la courbe sur l'intervalle $[0;\pi]$, en respectant les tangentes et le tableau de variations. Enfin, on complète par parité et par périodicité.

Exercice 3

- 1. Soit $t \in \mathbb{R}$.
 - $\cos t = 0 \iff \left(\exists k \in \mathbb{Z}, \ t = \frac{\pi}{2} + k\pi\right)$ (points rouges sur la figure ci-dessous).
 - $\cos(2t) = 0 \iff \left(\exists j \in \mathbb{Z}, \ 2t = \frac{\pi}{2} + j\pi\right) \iff \left(\exists j \in \mathbb{Z}, \ t = \frac{\pi}{4} + \frac{j\pi}{2}\right) \text{ (points bleus)}.$

L'ensemble des solutions dans $\mathbb R$ de l'une ou l'autre des deux équations est donc

$$S = \left\{ \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z} \right\} \cup \left\{ \frac{\pi}{4} + \frac{j\pi}{2} \mid j \in \mathbb{Z} \right\}.$$

2. Pour tout $t \in \mathbb{R} \setminus S$:

$$\tan(2t) = \frac{\sin(2t)}{\cos(2t)} = \frac{2\sin t \cos t}{\cos^2 t - \sin^2 t} = \frac{(2\sin t \cos t) \times \frac{1}{\cos^2 t}}{(\cos^2 t - \sin^2 t) \times \frac{1}{\cos^2 t}} = \frac{2\frac{\sin t}{\cos t}}{1 - \frac{\sin^2 t}{\cos^2 t}} = \frac{2\tan t}{1 - \tan^2 t}.$$

Remarque : Le calcul ci-dessus n'a de sens que pour $t \in \mathbb{R} \setminus S$ (c'est-à-dire quand $\cos t \neq 0$ et $\cos(2t) \neq 0$).

3. On prend $t = \frac{\pi}{8}$ dans la question précédente, on a donc $2t = 2 \times \frac{\pi}{8} = \frac{\pi}{4}$. On remplace :

$$\tan\frac{\pi}{4} = \frac{2\tan\frac{\pi}{8}}{1 - \tan^2\frac{\pi}{8}}.$$

Sachant que $\tan \frac{\pi}{4} = 1$, on obtient une équation d'inconnue $\tan \frac{\pi}{8}$. On pose donc $x = \tan \frac{\pi}{8}$ et on résout :

$$1 = \frac{2x}{1 - x^2} \iff 1 - x^2 = 2x \iff 0 = x^2 + 2x - 1.$$

Avec la méthode pour les équations du 2^d degré, on obtient deux racines : $x_1 = -1 - \sqrt{2}$, $x_2 = -1 + \sqrt{2}$. Or $\tan \frac{\pi}{8} > 0$, $\cot 0 < \frac{\pi}{8} < \frac{\pi}{2}$, donc

$$\tan\frac{\pi}{8} = \sqrt{2} - 1.$$