

# Logistic Regression

강필성 고려대학교 산업경영공학부 pilsung\_kang@korea.ac.kr

#### • 다중 선형 회귀분석

✓ 수치형 설명변수 X와 종속변수 Y간의 관계를 선형으로 가정하고 이를 가장 잘 표현할수 있는 회귀 계수를 추정

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 \cdots + \beta_d x_d + \epsilon$$

unexplained

$$\hat{y} = \hat{\beta_0} + \hat{\beta_1} x_1 + \hat{\beta_2} x_2 \cdots + \hat{\beta_d} x_d$$

coefficients



### • 예시 I

✓ 33명의 성인 여성에 대한 나이와 혈압 사이의 관계

| Age | SBP | Age | SBP | Age | SBP |
|-----|-----|-----|-----|-----|-----|
| 22  | 131 | 41  | 139 | 52  | 128 |
| 23  | 128 | 41  | 171 | 54  | 105 |
| 24  | 116 | 46  | 137 | 56  | 145 |
| 27  | 106 | 47  | 111 | 57  | 141 |
| 28  | 114 | 48  | 115 | 58  | 153 |
| 29  | 123 | 49  | 133 | 59  | 157 |
| 30  | 117 | 49  | 128 | 63  | 155 |
| 32  | 122 | 50  | 183 | 67  | 176 |
| 33  | 99  | 51  | 130 | 71  | 172 |
| 35  | 121 | 51  | 133 | 77  | 178 |
| 40  | 147 | 51  | 144 | 81  | 217 |





### • 예시 2

✔ 연속형 변수가 아닌 이진형<sup>Binary</sup> 변수인 Cancer Diagnosis를 사용한다면?

| Age | CD | Age | CD | Age | CD |
|-----|----|-----|----|-----|----|
| 22  | 0  | 40  | 0  | 54  | 0  |
| 23  | 0  | 41  | 1  | 55  | 1  |
| 24  | 0  | 46  | 0  | 58  | 1  |
| 27  | 0  | 47  | 0  | 60  | 1  |
| 28  | 0  | 48  | 0  | 60  | 0  |
| 30  | 0  | 49  | 1  | 62  | 1  |
| 30  | 0  | 49  | 0  | 65  | 1  |
| 32  | 0  | 50  | 1  | 67  | 1  |
| 33  | 0  | 51  | 0  | 71  | 1  |
| 35  | 1  | 51  | 1  | 77  | 1  |
| 38  | 0  | 52  | 0  | 81  | 1  |
|     |    |     |    |     |    |



- 0/1의 이진 값이 아닌 확률값을 종속 변수로 사용한다면?
  - ✓ 선형회귀분석의 우변의 범위에 대한 제한이 없기 때문에 종속변수(좌변) 역시 범위의 제한을 받지 않으므로 적절하지 않음

$$\hat{y} = \hat{\beta_0} + \hat{\beta_1} x_1 + \hat{\beta_2} x_2 + \dots + \hat{\beta_d} x_d$$

$$P(y = 1) = \hat{\beta_0} + \hat{\beta_1} x_1 + \hat{\beta_2} x_2 + \dots + \hat{\beta_d} x_d$$



- 0/1의 이진 값이 아닌 확률값을 종속 변수로 사용한다면?
  - ✓ 선형회귀분석의 우변의 범위에 대한 제한이 없기 때문에 종속변수(좌변) 역시 범위의 제한을 받지 않으므로 적절하지 않음



#### • 목적

✔ 이진형(0/I)의 형태를 갖는 종속변수(분류문제)에 대해 회귀식의 형태로 모형을 추정하는 것

#### • 속성

- ✓ 종속변수 Y 자체를 그대로 사용하는 것이 아니라 Y에 대한 로짓 함수logit function를 회귀 식의 종속변수로 사용
- ✓ 로짓함수는 설명변수의 선형결합으로 표현될 수 있음
- ✓ 로짓함수의 값은 종속변수에 대한 성공 확률로 역산될 수 있으며, 이는 따라서 분류 문 제에 적용할 수 있음

2010 World Cup Betting Odds



- 승산 (Odds)
  - ✓ p: 성공 범주(class = I)에 속할 확률

$$Odds = \frac{p}{1-p}$$

- 이전 예시에 대해
  - ✓ 스페인의 우승 odds는 2/9이므로 스페인의 우승 확률은 2/II임
  - ✓ 대한민국의 우승 odds는 I/250 이므로 대한민국의 우승확률은 I/251 ≒ 0.00398 (0.398%)임
  - ✓ I,000년을 살면 대한민국이 월드컵에서 한 번 우승하는 모습을 목격할 수 있음

• 확률값이 0부터 I로 변화함에 따라 승산Odds은 0부터 무한대의 값을 가짐



- Odds의 한계
  - ✓ 여전히 범위에 대한 제약이 존재함: 0 < odds < ∞</p>
  - ✓ 비대칭성Asymmetric
- Odds에 로그를 취하자

$$log(Odds) = log\left(\frac{p}{1-p}\right)$$

- ✓ 드디어 범위에 대한 제약이 없어짐: ∞ < log(odds) < ∞</p>
- ✔ 대칭성 확보
- ✔ 성공확률 p가 작으면 음수값을 갖고,성공확률 p가 크면 양수값을 가짐

• 확률값이 0부터 I까지 변화함에 따라 로그 승산은 -∞ ~ ∞의 값을 가지며 대칭임



## 로지스틱 회귀분석: Equation

#### • 로지스틱 회귀분석 식

✓ Log Odds를 이용한 회귀분석 식

$$log(Odds) = log\left(\frac{p}{1-p}\right) = \hat{\beta_0} + \hat{\beta_1}x_1 + \hat{\beta_2}x_2 + \dots + \hat{\beta_d}x_d$$

✓ 양변에 로그를 취하면

$$\frac{p}{1-p} = e^{\hat{\beta_0} + \hat{\beta_1}x_1 + \hat{\beta_2}x_2 \dots + \hat{\beta_d}x_d}$$

✓ 성공확률에 대한 식으로 표현

$$p = \frac{1}{1 + e^{-(\hat{\beta_0} + \hat{\beta_1}x_1 + \hat{\beta_2}x_2 \cdots + \hat{\beta_d}x_d)}} = \sigma(\mathbf{x}|\beta)$$

# 로지스틱 회귀분석: Equation

• 로지스틱 회귀분석 식

Logistic Regression 선형식



### 로지스틱 회귀분석: 학습

#### • 로지스틱 회귀분석에서 회귀 계수의 추정

✓ 동일한 데이터셋에 대해 다음과 같이 두 가지의 로지스틱 회귀분석 모형이 존재한다고 하면 어떤 모형이 현재 데이터를 더 잘 설명하는 모형인가?

#### Model A

| 고객 | 대출이용 | P(Y=I) | P(Y=0) |
|----|------|--------|--------|
| I  | I    | 0.908  | 0.092  |
| 2  | 0    | 0.201  | 0.799  |
| 3  | I    | 0.708  | 0.292  |
| 4  | 0    | 0.214  | 0.786  |
| 5  | I    | 0.955  | 0.045  |
| 6  | 0    | 0.017  | 0.983  |
| 7  | I    | 0.807  | 0.193  |
| 8  | 0    | 0.126  | 0.874  |
| 9  | İ    | 0.937  | 0.063  |
| 10 | 0    | 0.068  | 0.932  |

Model B

| 고객 | 대출이용 | P(Y=I) | P(Y=0) |
|----|------|--------|--------|
|    |      | 0.557  | 0.443  |
| 2  | 0    | 0.425  | 0.575  |
| 3  | I    | 0.604  | 0.396  |
| 4  | 0    | 0.387  | 0.613  |
| 5  |      | 0.615  | 0.385  |
| 6  | 0    | 0.356  | 0.644  |
| 7  | I    | 0.406  | 0.594  |
| 8  | 0    | 0.508  | 0.492  |
| 9  | I    | 0.704  | 0.296  |
| 10 | 0    | 0.325  | 0.675  |

✓ 실제 정답이 I일 때 I 범주로 예측할 확률이 높고 실제 정답이 0일 때 0범주로 예측할 확률이 높으므로 Model A가 더 우수한 모형임

## 로지스틱 회귀분석: 학습

### • 로지스틱 회귀분석에서 회귀 계수의 추정

#### ✓ 우도 함수Likelihood function

- 개별 객체의 우도 함수는 해당 학습 데이터가 정답 범주에 속할 확률 (Glass I의 우도 함수 값은 0.908, Glass 2의 우도 함수 값은 0.799)
- 데이터의 생성 과정이 독립임을 가정할 수 있을 때, 전체 데이터셋의 우도 함수는 개별 객체의 우도 함수를 모두 곱한 값임
- 일반적으로 데이터셋의 우도 함수는 매우 작은 값을 가지므로(I보다 작은 소수가 계속 곱해지 므로) 로그 우도 함수를 주로 사용

#### Model A

| 고객 | 대출이용 | P(Y=I) | P(Y=0) |
|----|------|--------|--------|
| ı  | I    | 0.908  | 0.092  |
| 2  | 0    | 0.201  | 0.799  |
| 3  | I    | 0.708  | 0.292  |
| 4  | 0    | 0.214  | 0.786  |
| 5  | l    | 0.955  | 0.045  |
| 6  | 0    | 0.017  | 0.983  |
| 7  | I    | 0.807  | 0.193  |
| 8  | 0    | 0.126  | 0.874  |
| 9  | Ī    | 0.937  | 0.063  |
| 10 | 0    | 0.068  | 0.932  |

### 로지스틱 회귀분석: 학습

### • 로지스틱 회귀분석에서 회귀 계수의 추정

✓ 우도 함수Likelihood function

#### Model A

| 고객 | 대출이용 | P(Y=I) | P(Y=0) | 우도       | 로그 우도   |
|----|------|--------|--------|----------|---------|
| I  | I    | 0.908  | 0.092  | 0.908    | -0.0965 |
| 2  | 0    | 0.201  | 0.799  | 0.799    | -0.2244 |
| 3  | I    | 0.708  | 0.292  | 0.708    | -0.3453 |
| 4  | 0    | 0.214  | 0.786  | 0.786    | -0.2408 |
| 5  | I    | 0.955  | 0.045  | 0.955    | -0.0460 |
| 6  | 0    | 0.017  | 0.983  | 0.983    | -0.0171 |
| 7  | I    | 0.807  | 0.193  | 0.807    | -0.2144 |
| 8  | 0    | 0.126  | 0.874  | 0.874    | -0.1347 |
| 9  | I    | 0.937  | 0.063  | 0.937    | -0.0651 |
| 10 | 0    | 0.068  | 0.932  | 0.932    | -0.0704 |
|    |      |        |        | 0.233446 | -0.1455 |

#### Model B

|    |      |        | •      | •        |         |
|----|------|--------|--------|----------|---------|
| 고객 | 대출이용 | P(Y=I) | P(Y=0) | 우도       | 로그 우도   |
| 1  | l    | 0.557  | 0.443  | 0.557    | -0.5852 |
| 2  | 0    | 0.425  | 0.575  | 0.575    | -0.5534 |
| 3  | I    | 0.604  | 0.396  | 0.604    | -0.5042 |
| 4  | 0    | 0.387  | 0.613  | 0.613    | -0.4894 |
| 5  | l    | 0.615  | 0.385  | 0.615    | -0.4861 |
| 6  | 0    | 0.356  | 0.644  | 0.644    | -0.4401 |
| 7  | I    | 0.406  | 0.594  | 0.406    | -0.9014 |
| 8  | 0    | 0.508  | 0.492  | 0.492    | -0.7093 |
| 9  | Ī    | 0.704  | 0.296  | 0.704    | -0.3510 |
| 10 | 0    | 0.325  | 0.675  | 0.675    | -0.3930 |
|    |      |        |        | 0.004458 | -0.5413 |

- ✔ Model A의 (로그) 우도 함수가 Model B의 (로그) 우도 함수보다 큼
- ✔ Model A가 Model B보다 데이터셋을 더 잘 설명하는 모델

# 로지스틱 회귀분석: 학습 (Optional)

- 최대 우도 추정법<sup>Maximum likelihood estimation (MLE)</sup>
  - ✓ 학습 데이터의 개별 객체들이 갖는 label에 대한 확률을 극대화 하자
  - ✓ i번째 객체에 대한 우도 함수

$$P(\mathbf{x}_i, y_i | \boldsymbol{\beta}) = \begin{cases} \sigma(\mathbf{x}_i | \boldsymbol{\beta}), & if \ y_i = 1\\ 1 - \sigma(\mathbf{x}_i | \boldsymbol{\beta}), & if \ y_i = 0 \end{cases}$$

✓ 출력변수가 I과 0임을 고려하여 다음과 같이 변형 가능

$$P(\mathbf{x}_i, y_i | \boldsymbol{\beta}) = \sigma(\mathbf{x}_i | \boldsymbol{\beta})^{y_i} (1 - \sigma(\mathbf{x}_i | \boldsymbol{\beta}))^{1 - y_i}$$

# 로지스틱 회귀분석: 학습 (Optional)

- 최대 우도 추정법<sup>Maximum likelihood estimation (MLE)</sup>
  - ✓ 학습 데이터셋의 객체들이 독립적으로 발생됨을 가정할 경우 전체 데이터 셋에 대한 우도 함수는 다음과 같이 표현됨

$$L(\mathbf{X}, \mathbf{y}|\boldsymbol{\beta}) = \prod_{i=1}^{N} P(\mathbf{x}_i, y_i|\boldsymbol{\beta}) = \prod_{i=1}^{N} \sigma(\mathbf{x}_i|\boldsymbol{\beta})^{y_i} (1 - \sigma(\mathbf{x}_i|\boldsymbol{\beta}))^{1-y_i}$$

✔ 양변에 로그를 취하면

$$\log L(\mathbf{X}, \mathbf{y}|\boldsymbol{\beta}) = \sum_{i=1}^{N} \left( y_i \log \left( \sigma(\mathbf{x}_i|\boldsymbol{\beta}) \right) + (1 - y_i) \log (1 - \sigma(\mathbf{x}_i|\boldsymbol{\beta})) \right)$$

- ✔ 우도함수와 로그-우도함수는 회귀계수 β에 대해 비선형이므로 선형회귀분석과 같이 명시적인 해가 존재하지 않음
  - Conjugate gradient 등의 최적화 알고리즘을 차용하여 해를 구함

# 기울기 하강: Gradient Descent

• 눈을 가린 채로 산에서 가장 낮은 곳을 찾아가기



### 기울기 하강: Gradient Descent

- 기울기 하강<sup>Gradient descent algorithm</sup>
  - ✓ 파란색 선: 미지수 w의 변화에 따른 목적함수 값의 변화
  - ✓ 검은색 점: 현재 해의 위치
  - ✓ 화살표: 목적함수를 최적화하기 위해 미지수 w가 이동해야 하는 방향



### 기울기 하강: Gradient Descent

- 비용함수를 현재의 가중치 값(w)에 대해 I차 미분을 수행한 뒤 아래의 절차를 따름
  - ✓ I차 미분 값(gradient)이 0인가?
    - 그렇다: 현재의 가중치 값이 최적! → 학습 종료
    - 아니다: 현재의 가중치 값이 최적이 아님 → 좀 더 학습해봐
  - ✓ <u>I차 미분 값(gradient)가 0이 아닐 경우 어떻게 해야 좀 더 잘하는 퍼셉트론을 만들 수 있는가?</u>
    - I차 미분 값(gradient)의 부호에 대한 반대 방향으로 가중치를 이동
  - ✓ 반대 방향으로 얼마나 움직여야 하는가?
    - 그건 잘 모름...
    - 조금씩 적당히(???) 움직여보고 그 다음에 다시 gradient를 구해보자
    - 하다 보면 되겠지...

## 기울기 하강: Gradient Descent (optional)

- 기울기 하강: Gradient descent algorithm
  - ✓ 함수의 테일러 전개

$$f(w + \Delta w) = f(w) + \frac{f'(w)}{1!} \Delta w + \frac{f''(w)}{2!} (\Delta w)^2 + \cdots$$

✓ 목적함수가 최소화인 경우 함수의 I차 미분 값(gradient)이 0이 아니면 Gradient의 반대 방향으로 이동해야 목적함수의 값을 감소시킬 수 있음

$$w_{new}=w_{old}$$
 -  $\alpha f'(w), \quad {\rm where} \ 0<\alpha<1.$  얼마만큼 갈 것인가?

✓ 이동 후의 새로운 함수 값은 이동 전의 함수 값보다 작음

$$f(w_{new}) = f(w_{old} - \alpha f'(w_{old})) \cong f(w_{old}) - \alpha |f'(w)|^2 < f(w_{old})$$

## 로지스틱 회귀분석: 성공 확률

#### • 성공 확률

✓ 회귀계수가 추정되고 나면 주어진 설명변수집합에 대한 성공확률을 다음과 같이 계산 할 수 있음

$$P(y=1) = \frac{1}{1 + e^{-(\hat{\beta_0} + \hat{\beta_1}x_1 + \hat{\beta_2}x_2 + \dots + \hat{\beta_d}x_d)}}$$



# 로지스틱 함수의 의미

### • 실제 상황에서는

✓ 특정 변수에 대한 확률 값은 선형이 아닌 S-커브 형태를 따르는 경우가 많음



### 로지스틱 함수의 의미

• 이진분류를 위한 cut-off 설정



- ✓ 일반적으로 0.5가 주로 사용됨
- ✓ 사전확률을 고려한 cut-off나 검증데이터의 정확도를 최대화하는 cut-off 등이 사용될수도 있음

- 로지스틱 회귀분석 회귀계수의 의미
  - ✓ 선형 회귀분석 회귀식

$$\hat{y} = \hat{\beta_0} + \hat{\beta_1} x_1 + \hat{\beta_2} x_2 \cdots + \hat{\beta_d} x_d$$

- ✔ 선형 회귀분석에서의 회귀계수는 해당 변수가 1 증가함에 따른 종속변수의 변화량
- ✓ 로지스틱 회귀분석 회귀식

$$log(Odds) = log(\frac{p}{1-p}) = \hat{\beta_0} + \hat{\beta_1}x_1 + \hat{\beta_2}x_2 + \dots + \hat{\beta_d}x_d$$

$$p = \frac{1}{1 + e^{-(\hat{\beta_0} + \hat{\beta_1}x_1 + \hat{\beta_2}x_2 + \dots + \hat{\beta_d}x_d)}}$$

✓ 로지스틱 회귀분석에서의 회귀계수는 해당 변수가 1 증가함에 따른 로그 승산의 변화량

- 승산 비율: Odds Ratio
  - ✓ 로지스틱 회귀분석에서 나머지 변수는 모두 고정시킨 상태에서 한 변수를 I만큼 증가 시켰을 때 변화하는 Odds의 비율
  - ✓ Odds ratio:

$$\frac{odds(x_1 + 1, \dots, x_d)}{odds(x_1, \dots, x_d)} = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1(x_1 + 1) + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_d x_d}}{e^{\hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_d x_d}} = e^{\hat{\beta}_1}$$

- $\checkmark$   $\mathbf{x_l}$ 이  $\mathbf{I}$  증가하게 되면 성공에 대한 승산 비율이  $e^{eta_l}$  만큼 변화함
  - 회귀 계수가 양수 → 변수가 증가하면 성공 확률이 **증가 (성공범주와 양의 상관관계)**
  - 회귀 계수가 음수 → 변수가 증가하면 성공 확률이 <mark>감소 (성공범주와 음의 상관관계</mark>)

$$\frac{p}{1-p} = e^{\hat{\beta_0} + \hat{\beta_1} x_1 + \hat{\beta_2} x_2 \dots + \hat{\beta_d} x_d}$$

#### • 로지스틱 회귀분석 결과 및 해석

✓ 로지스틱 회귀분석을 수행하고 나면 선형 회귀분석과 유사하게 다음과 같은 표를 결과 로 얻을 수 있음

$$p = \frac{1}{1 + e^{-(\hat{\beta_0} + \hat{\beta_1}x_1 + \hat{\beta_2}x_2 \dots + \hat{\beta_d}x_d)}}$$

| Input variables    | Coefficient  | Std. Error | p-value    | Odds        |
|--------------------|--------------|------------|------------|-------------|
| Constant term      | -13.20165825 | 2.46772742 | 0.00000009 | *           |
| Age                | -0.04453737  | 0.09096102 | 0.62439483 | 0.95643985  |
| Experience         | 0.05657264   | 0.09005365 | 0.5298661  | 1.05820346  |
| Income             | 0.0657607    | 0.00422134 | 0          | 1.06797111  |
| Family             | 0.57155931   | 0.10119002 | 0.00000002 | 1.77102649  |
| CCAvg              | 0.18724874   | 0.06153848 | 0.00234395 | 1.20592725  |
| Mortgage           | 0.00175308   | 0.00080375 | 0.02917421 | 1.00175464  |
| Securities Account | -0.85484785  | 0.41863668 | 0.04115349 | 0.42534789  |
| CD Account         | 3.46900773   | 0.44893095 | 0          | 32.10486984 |
| Online             | -0.84355801  | 0.22832377 | 0.00022026 | 0.43017724  |
| CreditCard         | -0.96406376  | 0.28254223 | 0.00064463 | 0.38134006  |
| EducGrad           | 4.58909273   | 0.38708162 | 0          | 98.40509796 |
| EducProf           | 4.52272701   | 0.38425466 | 0          | 92.08635712 |

#### • 로지스틱 회귀분석 결과 및 해석

#### ✓ 회귀계수<sup>Coefficient</sup>

- 로지스틱 회귀분석에서 각 변수에 대응하는 베타값임
- 선형회귀분석에서는 해당 변수가 I단위 증가할 때 종속변수의 변화량을 의미하나,로지스틱 회귀분석에서는 해당 변수가 I단위 증가할 때 로그승산비의 변화량을 의미
- 양수이면 성공확률과 양의 상관관계, 음수이면 성공 확률과 음의 상관관계

| Input variables    | Coefficient  | Std. Error | p-value    | Odds        |
|--------------------|--------------|------------|------------|-------------|
| Constant term      | -13.20165825 | 2.46772742 | 0.00000009 | *           |
| Age                | -0.04453737  | 0.09096102 | 0.62439483 | 0.95643985  |
| Experience         | 0.05657264   | 0.09005365 | 0.5298661  | 1.05820346  |
| Income             | 0.0657607    | 0.00422134 | 0          | 1.06797111  |
| Family             | 0.57155931   | 0.10119002 | 0.00000002 | 1.77102649  |
| CCAvg              | 0.18724874   | 0.06153848 | 0.00234395 | 1.20592725  |
| Mortgage           | 0.00175308   | 0.00080375 | 0.02917421 | 1.00175464  |
| Securities Account | -0.85484785  | 0.41863668 | 0.04115349 | 0.42534789  |
| CD Account         | 3.46900773   | 0.44893095 | 0          | 32.10486984 |
| Online             | -0.84355801  | 0.22832377 | 0.00022026 | 0.43017724  |
| CreditCard         | -0.96406376  | 0.28254223 | 0.00064463 | 0.38134006  |
| EducGrad           | 4.58909273   | 0.38708162 | 0          | 98.40509796 |
| EducProf           | 4.52272701   | 0.38425466 | 0          | 92.08635712 |

#### • 로지스틱 회귀분석 결과 및 해석

#### ✔ 유의확률p-value

- 로지스틱 회귀분석에서 해당 변수가 통계적으로 유의미한지 여부를 알려주는 지표
- 0에 가까울수록 모델링에 중요한 변수이며, I에 가까울수록 유의미하지 않은 변수임
- 특정 유의수준( $\alpha$ )을 설정하여 해당 값 미만의 변수만을 사용하여 다시 로지스틱 회귀분석을 구축하는 것도 가능함 (주로  $\alpha=0.05$  사용)

#### ✔ 유의확률p-value

- 로지스틱 회귀분석에서 해당 변수가 통계적으로 유의미<mark>한지 여부를 알려</mark>주는 지표
- 0에 가까울수록 모델링에 중요한 변수이며, I에 가까울수<mark>록 유의미하지 않</mark>은 변수임
- 특정 유의수준( $\alpha$ )을 설정하여 해당 값 미만의 변수만을 사용하여 다시 로지스틱 회귀분석 구축하는 것도 가능함 (주로  $\alpha=0.05$  사용)

### • 로지스틱 회귀분석 결과 및 해석

- ✔승산 비율<sup>Odds Ratio</sup>
  - 나머지 변수는 모두 고정시킨 상태에서 한 변수를 I만큼 증가시켰을 때 변화하는 Odds의 비율

| Input variables    | Coefficient  | Std. Error | p-value    | Odds        |
|--------------------|--------------|------------|------------|-------------|
| Constant term      | -13.20165825 | 2.46772742 | 0.00000009 | *           |
| Age                | -0.04453737  | 0.09096102 | 0.62439483 | 0.95643985  |
| Experience         | 0.05657264   | 0.09005365 | 0.5298661  | 1.05820346  |
| Income             | 0.0657607    | 0.00422134 | 0          | 1.06797111  |
| Family             | 0.57155931   | 0.10119002 | 0.00000002 | 1.77102649  |
| CCAvg              | 0.18724874   | 0.06153848 | 0.00234395 | 1.20592725  |
| Mortgage           | 0.00175308   | 0.00080375 | 0.02917421 | 1.00175464  |
| Securities Account | -0.85484785  | 0.41863668 | 0.04115349 | 0.42534789  |
| CD Account         | 3.46900773   | 0.44893095 | 0          | 32.10486984 |
| Online             | -0.84355801  | 0.22832377 | 0.00022026 | 0.43017724  |
| CreditCard         | -0.96406376  | 0.28254223 | 0.00064463 | 0.38134006  |
| EducGrad           | 4.58909273   | 0.38708162 | 0          | 98.40509796 |
| EducProf           | 4.52272701   | 0.38425466 | 0          | 92.08635712 |

#### • Geometric interpretation

✔ 로지스틱 회귀분석은 d차원의 데이터를 구분하는 (d-I)차원의 초평면을 찾는 것으로 이해할 수 있음



$$y = \frac{1}{\left(1 + \exp(-\beta^{T} x)\right)} \qquad \begin{pmatrix} y \to 1 & if & \beta^{T} x \to \infty \\ y = \frac{1}{2} & if & \beta^{T} x = 0 \\ y \to 0 & if & \beta^{T} x \to -\infty \end{pmatrix}$$

## 로지스틱 회귀분석: 예시

#### • 신용카드 연체 예측



$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}.$$



$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X.$$

#### 로지스틱 회귀분석: 예시

#### • 신용카드 연체 예측: 단변량 로지스틱 회귀분석

|           | Coefficient | Std. Error | Z-statistic | P-value  |
|-----------|-------------|------------|-------------|----------|
| Intercept | -10.6513    | 0.3612     | -29.5       | < 0.0001 |
| balance   | 0.0055      | 0.0002     | 24.9        | < 0.0001 |

What is our estimated probability of **default** for someone with a balance of \$1000?

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 1000}}{1 + e^{-10.6513 + 0.0055 \times 1000}} = 0.006$$

With a balance of \$2000?

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 2000}}{1 + e^{-10.6513 + 0.0055 \times 2000}} = 0.586$$

#### 로지스틱 회귀분석: 예시

• 신용카드 연체 예측: 다변량 로지스틱 회귀분석

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$
$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

|              | Coefficient | Std. Error | Z-statistic | P-value  |
|--------------|-------------|------------|-------------|----------|
| Intercept    | -10.8690    | 0.4923     | -22.08      | < 0.0001 |
| balance      | 0.0057      | 0.0002     | 24.74       | < 0.0001 |
| income       | 0.0030      | 0.0082     | 0.37        | 0.7115   |
| student[Yes] | -0.6468     | 0.2362     | -2.74       | 0.0062   |

- 지금까지의 로지스틱 회귀분석은 이범주 분류Binary classification를 풀기 위한 방식임
  - ✓ Q) 범주가 3개 이상인 다범주 분류에는 로지스틱 회귀분석을 어떻게 적용할 수 있을까?



#### • 다항 로지스틱 회귀분석

- ✓ 기준<sup>Baseline</sup>이 되는 범주를 설정하고 이 범주 대비 다른 범주가 발생할 로그 승산을 회귀 식으로 추정
- ✔ 예시) 범주가 3개인 분류 문제의 경우 아래 두 개의 회귀식에 대한 회귀 계수를 추정
  - 범주 3대비 범주 I의 발생 확률에 대한 로지스틱 회귀분석

$$log\left(\frac{p(y=1)}{p(y=3)}\right) = \hat{\beta}_{10} + \hat{\beta}_{11}x_1 + \hat{\beta}_{12}x_2 + \dots + \hat{\beta}_{1d}x_d = \hat{\beta}_{1}^T \mathbf{x}$$

■ 범주 3 대비 범주 2의 발생 확률에 대한 로지스틱 회귀분석

$$log\left(\frac{p(y=2)}{p(y=3)}\right) = \hat{\beta}_{20} + \hat{\beta}_{21}x_1 + \hat{\beta}_{22}x_2 + \dots + \hat{\beta}_{2d}x_d = \hat{\beta}_{2}^T \mathbf{x}$$

#### • 다항 로지스틱 회귀분석

- ✓ 왜 범주는 3개인데 2개의 모형만 학습하는가? (일반화하면 K개의 범주가 있을 때, (K-I)개의 모형만 학습하는 이유는?
  - 각 범주에 속할 확률의 합은 항상 I이므로 나머지 K번째 범주에 대한 확률은 자동으로 산출됨

$$\frac{p(y=1)}{p(y=3)} = e^{\boldsymbol{\beta}_{1}^{T} \mathbf{x}} \qquad \frac{p(y=2)}{p(y=3)} = e^{\boldsymbol{\beta}_{2}^{T} \mathbf{x}}$$

$$p(y = 1) + p(y = 2) + p(y = 3) = 1$$

$$p(y=3) \times e^{\beta_{1}^{T} \mathbf{x}} + p(y=3) \times e^{\beta_{2}^{T} \mathbf{x}} + p(y=3) = 1$$

$$p(y=3) = \frac{1}{1 + e^{\beta_{1}^{T} \mathbf{x}} + e^{\beta_{2}^{T} \mathbf{x}}}$$

- 다항 로지스틱 회귀분석에서의 회귀계수 분석
  - ✔ 개별 모형에 대해서 회귀 계수와 이에 대한 유의확률을 산출할 수 있음
    - Total phenols, Flavanoids, Monflavanoid penols, Hue, OD280~ 변수는 I vs. 3, 2 vs. 3에서 모두 유의미한 변수로 나타남
    - Ash., Proanthocyanins 변수는 범주 I과 3을 구분할 때는 유의미하지 않으나 2와 3을 구분할 때 매우 유의미함

|                                 |             | I vs 3  |             | 2 vs 3  |
|---------------------------------|-------------|---------|-------------|---------|
|                                 | Coefficient | p-value | Coefficient | p-value |
| (Intercept)                     | -223.7894   | 0.0000  | 340.9326    | 0.0000  |
| Alcohol.2                       | 19.6193     | 0.7880  | -35.2596    | 0.6828  |
| Malic.acid.                     | 1.0581      | 0.9228  | -0.3022     | 0.9899  |
| Ash.                            | 14.6800     | 0.3881  | -204.7437   | 0.0000  |
| Alcalinity.of.ash.              | -20.3881    | 0.8815  | -2.2832     | 0.9864  |
| Magnesium.                      | 2.0553      | 0.9975  | 2.1132      | 0.9974  |
| Total.phenols.                  | -169.4205   | 0.0000  | -40.3325    | 0.0000  |
| Flavanoids.                     | 193.7935    | 0.0000  | 16.2013     | 0.0188  |
| Nonflavanoid.phenols            | 93.5409     | 0.0000  | 214.1837    | 0.0000  |
| Proanthocyanins.                | 15.5178     | 0.1453  | 115.3184    | 0.0000  |
| Color.intensity.                | -16.6775    | 0.4212  | -11.5066    | 0.7671  |
| Hue                             | -50.0008    | 0.0000  | 352.7617    | 0.0000  |
| OD280.OD3   5.of.diluted.wines. | 75.2435     | 0.0000  | 84.2914     | 0.0000  |
| Proline.                        | -0.0120     | 1.0000  | -0.2899     | 0.9999  |

- 예시: 성별 분류
  - ✔ 한 사람의 체지방률만을 이용하여 남성/여성 분류



✔ 단순 분류기: 체지방률이 20보다 크면 여성으로, 작으면 남성으로 분류



✔ 위 분류기의 성능을 어떻게 평가할 것인가?

- 정오 행렬<sup>Confusion Matrix</sup>
  - ✓ 실제 범주와 예측된 범주를 이용하여 생성한 2X2 행렬



✔ 위 결과에 대한 정오 행렬은 다음과 같이 생성됨

| Confusion Matrix |           | Pred | icted |
|------------------|-----------|------|-------|
| Confusio         | on Matrix | F    | М     |
| A 24.12.I        | F         | 4    |       |
| Actual           | М         | 2    | 3     |

#### • 정오 행렬<sup>Confusion Matrix</sup>

✔ 정오행렬을 통해 다음과 같이 다양한 분류 성능 평가 지표를 계산할 수 있음

| Confusion Matrix |           | Predicted       |                 |
|------------------|-----------|-----------------|-----------------|
| Confusio         | on Maurix | I(+)            | 0(-)            |
| A atual          | l (+)     | n <sub>II</sub> | n <sub>10</sub> |
| Actual           | 0(-)      | n <sub>01</sub> | n <sub>00</sub> |

- 민감도(Sensitivity), true positive, 재현율(recall) = n<sub>11</sub>/(n<sub>11</sub>+n<sub>10</sub>)
- 특이도(Specificity, true negative) =  $n_{00}/(n_{01}+n_{00})$
- 정밀도(Precision) = n<sub>11</sub>/(n<sub>11</sub>+n<sub>01</sub>)
- 제1종 오류(Type I error, false negative) = n<sub>10</sub>/(n<sub>11</sub>+n<sub>10</sub>)
- 제2종 오류(Type II error, false positive) = n<sub>01</sub>/(n<sub>01</sub>+n<sub>00</sub>)

#### • 정오 행렬<sup>Confusion Matrix</sup>

✔ 정오행렬을 통해 다음과 같이 다양한 분류 성능 평가 지표를 계산할 수 있음

| Confusion Matrix |           | Predicted       |                 |
|------------------|-----------|-----------------|-----------------|
| Confusio         | on Maurix | I(+)            | 0(-)            |
| Actual           | l (+)     | n <sub>II</sub> | n <sub>10</sub> |
| Actual           | 0(-)      | n <sub>01</sub> | n <sub>00</sub> |

- 오분류율(Misclassification error) = (n<sub>01</sub>+n<sub>10</sub>)/(n<sub>11</sub>+n<sub>10</sub>+n<sub>01</sub>+n<sub>00</sub>)
- 정분류율(Accuracy = I-misclassification error) = (n<sub>11</sub>+n<sub>00</sub>)/(n<sub>11</sub>+n<sub>10</sub>+n<sub>01</sub>+n<sub>11</sub>)

■ 균형 정확도 (Balanced correction rate) = 
$$\sqrt{\frac{n_{11}}{n_{11} + n_{10}} \cdot \frac{n_{00}}{n_{01} + n_{00}}}$$

■ FI measure (정밀도와 재현율의 조화평균) = 
$$F1$$
 measure =  $\frac{2 \times \text{Recall} \times \text{Precision}}{\text{Recall} + \text{Precision}}$ 

#### • 정오 행렬<sup>Confusion Matrix</sup>

✔ 이전 예시에서 여성(F)을 I(+) 범주로 정의할 경우

| Confusion Matrix |           | Pred | icted |
|------------------|-----------|------|-------|
| Confusio         | on Matrix | F M  |       |
| A atual          | F         | 4    | I     |
| Actual           | М         | 2    | 3     |



- Sensitivity: 4/5 = 0.8, Specificity: 3/5 = 0.6
- Recall: 4/5 = 0.8, Precision: 4/6 = 0.67
- Type I error: I/5 = 0.2, Type II error: 2/5 = 0.4
- Misclassification error: (1+2)/(4+1+2+3) = 0.3, accuracy = 0.7
- Balanced correction rate: sqrt(0.8\*0.6) = 0.69
- FI measure: (2\*0.8\*0.67)/(0.8+0.67) = 0.85

- 분류 알고리즘의 Cut-off 설정
  - ✓ 새로운 분류기: 체지방률이 θ보다 크면 여성으로 분류



✔ 레코드들을 체지방률의 내림차순으로 정렬



✔ 분류를 위한 최적의 cut-off를 어떻게 설정할 것인가?

#### • 분류 알고리즘의 Cut-off 설정

✔ 다양한 Cut-off에 따른 분류 성능 비교

| No. | 체지방률 | 성별 |
|-----|------|----|
| I   | 28.6 | F  |
| 2   | 25.4 | M  |
| 3   | 24.2 | F  |
| 4   | 23.6 | F  |
| 5   | 22.7 | F  |
| 6   | 21.5 | M  |
| 7   | 19.9 | F  |
| 8   | 15.7 | M  |
| 9   | 10.0 | M  |
| 10  | 8.9  | M  |
|     |      |    |

• If  $\theta = 24$ ,

| Confusion Matrix |           | Predicted |   |
|------------------|-----------|-----------|---|
| Confusio         | on Maurix | F         | М |
| Actual           | , F       | 2         | 3 |
| Actual           | М         | I         | 4 |

- Misclassification error: 0.4
- Accuracy: 0.6
- Balanced correction rate: 0.57
- FI measure = 0.5

#### • 분류 알고리즘의 Cut-off 설정

✔ 다양한 Cut-off에 따른 분류 성능 비교

| 체지방률 | 성별                                                                   |
|------|----------------------------------------------------------------------|
| 28.6 | F                                                                    |
| 25.4 | M                                                                    |
| 24.2 | F                                                                    |
| 23.6 | F                                                                    |
| 22.7 | F                                                                    |
| 21.5 | M                                                                    |
| 19.9 | F                                                                    |
| 15.7 | M                                                                    |
| 10.0 | M                                                                    |
| 8.9  | M                                                                    |
|      | 28.6<br>25.4<br>24.2<br>23.6<br>22.7<br>21.5<br>19.9<br>15.7<br>10.0 |

• If  $\theta = 22$ ,

| Confusion Maturity |                  | Predicted |   |
|--------------------|------------------|-----------|---|
| Confusio           | Confusion Matrix |           | М |
| F F                | 4                | I         |   |
| Actual             | М                | I         | 4 |

- Misclassification error: 0.2
- Accuracy: 0.8
- Balanced correction rate: 0.8
- FI measure = 0.8

#### • 분류 알고리즘의 Cut-off 설정

✔ 다양한 Cut-off에 따른 분류 성능 비교

| 체지방률 | 성별                                                                   |
|------|----------------------------------------------------------------------|
| 28.6 | F                                                                    |
| 25.4 | M                                                                    |
| 24.2 | F                                                                    |
| 23.6 | F                                                                    |
| 22.7 | F                                                                    |
| 21.5 | M                                                                    |
| 19.9 | F                                                                    |
| 15.7 | M                                                                    |
| 10.0 | M                                                                    |
| 8.9  | M                                                                    |
|      | 28.6<br>25.4<br>24.2<br>23.6<br>22.7<br>21.5<br>19.9<br>15.7<br>10.0 |

• If  $\theta = 18$ ,

| Confusion Matrix |   | Predicted |   |  |
|------------------|---|-----------|---|--|
|                  |   | F         | М |  |
| Actual           | F | 5         | 0 |  |
|                  | М | 2         | 3 |  |

• Misclassification error: 0.2

• Accuracy: 0.8

• Balanced correction rate: 0.77

• FI measure = 0.83

- 분류 알고리즘의 Cut-off 설정
  - ✔ 일반적으로 분류 알고리즘은 특정 범주에 속할 확률(probability)이나 우도(likelihood) 값을 생성함
  - ✓ 동일한 확률값 하에서도 Cut-off가 어떻게 설정되느냐에 따라서 분류 성능이크게 좌우되는 상황이 발생할 수 있음
  - ✔ 분류 알고리즘간의 정확한 비교를 위해서는 Cut-off에 독립적인 측정 지표가 필요함
  - ✔ 리프트 도표(Lift charts), receiver operating characteristic (ROC) curve 등이 사용

- ROC Curve 예시
  - ✔ Glass 불량 진단 문제:
    - Glass의 불량(NG) 여부를 판별
    - 총 100장의 Glass 중 20장의 Glass가 불량
    - 불량 확률: 0.2
    - Label: I(NG), 0(G)

#### • 특정 분류 알고리즘에 의해 산출된 NG 범주에 속할 확률과 실제 Label 정보

| Glass | P(NG) | Label | Glass | P(NG) | Label | Glass | P(NG) | Label | Glass | P(NG)  | Label |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|
| I     | 0.976 | 1     | 26    | 0.716 |       | 51    | 0.41  | 0     | 76    | 0.186  | 0     |
| 2     | 0.973 | 1     | 27    | 0.676 | 0     | 52    | 0.406 | I     | 77    | 0.183  | 0     |
| 3     | 0.971 | 0     | 28    | 0.672 | 0     | 53    | 0.378 | 0     | 78    | 0.178  | 0     |
| 4     | 0.967 | I     | 29    | 0.662 | 0     | 54    | 0.376 | 0     | 79    | 0.176  | 0     |
| 5     | 0.937 | 0     | 30    | 0.647 | 0     | 55    | 0.362 | 0     | 80    | 0.173  | 0     |
| 6     | 0.936 | I     | 31    | 0.64  | l     | 56    | 0.355 | 0     | 81    | 0.17   | 0     |
| 7     | 0.929 | 1     | 32    | 0.625 | 0     | 57    | 0.343 | 0     | 82    | 0.133  | 0     |
| 8     | 0.927 | 0     | 33    | 0.624 | 0     | 58    | 0.338 | 0     | 83    | 0.12   | 0     |
| 9     | 0.923 | I     | 34    | 0.613 | I     | 59    | 0.335 | 0     | 84    | 0.119  | 0     |
| 10    | 0.898 | 0     | 35    | 0.606 | 0     | 60    | 0.334 | 0     | 85    | 0.112  | 0     |
| П     | 0.863 | I     | 36    | 0.604 | 0     | 61    | 0.328 | 0     | 86    | 0.093  | 0     |
| 12    | 0.862 | I     | 37    | 0.601 | 0     | 62    | 0.313 | 0     | 87    | 0.086  | 0     |
| 13    | 0.859 | 0     | 38    | 0.594 | 0     | 63    | 0.285 | I     | 88    | 0.079  | 0     |
| 14    | 0.855 | 0     | 39    | 0.578 | 0     | 64    | 0.274 | 0     | 89    | s0.071 | 0     |
| 15    | 0.847 | I     | 40    | 0.548 | 0     | 65    | 0.273 | 0     | 90    | 0.069  | 0     |
| 16    | 0.845 | I     | 41    | 0.539 | I     | 66    | 0.272 | 0     | 91    | 0.047  | 0     |
| 17    | 0.837 | 0     | 42    | 0.525 | I     | 67    | 0.267 | 0     | 92    | 0.029  | 0     |
| 18    | 0.833 | 0     | 43    | 0.524 | 0     | 68    | 0.265 | 0     | 93    | 0.028  | 0     |
| 19    | 0.814 | 0     | 44    | 0.514 | 0     | 69    | 0.237 | 0     | 94    | 0.027  | 0     |
| 20    | 0.813 | 0     | 45    | 0.51  | 0     | 70    | 0.217 | 0     | 95    | 0.022  | 0     |
| 21    | 0.793 | I     | 46    | 0.509 | 0     | 71    | 0.213 | 0     | 96    | 0.019  | 0     |
| 22    | 0.787 | 0     | 47    | 0.455 | 0     | 72    | 0.204 | ı     | 97    | 0.015  | 0     |
| 23    | 0.757 | I     | 48    | 0.449 | 0     | 73    | 0.201 | 0     | 98    | 0.01   | 0     |
| 24    | 0.741 | 0     | 49    | 0.434 | 0     | 74    | 0.2   | 0     | 99    | 0.005  | 0     |
| 25    | 0.737 | 0     | 50    | 0.414 | 0     | 75    | 0.193 | 0     | 100   | 0.002  | 0     |

- 정오행렬
  - ✓ Cut-off를 0.9로 설정할 경우
    - NG if P(NG) > 0.9, else G

| Confusion Matrix |   | Predicted |    |  |
|------------------|---|-----------|----|--|
|                  |   | М         | В  |  |
| Actual           | М | 6         | 14 |  |
|                  | В | 3         | 77 |  |



- Misclassification error = 0.17
- Accuracy = 0.83
- ✓ 이 모델은 우수한 분류 모델인가?

- 정오행렬
  - ✓ Cut-off를 0.9로 설정할 경우
    - NG if P(NG) > 0.8, else G

| Confusion Matrix |   | Predicted |    |  |
|------------------|---|-----------|----|--|
|                  |   | М         | В  |  |
| Actual           | М | 10        | 10 |  |
|                  | В | 10        | 70 |  |



- Misclassification error = 0.20
- Accuracy = 0.80
- ✓ 이 모델은 이전 모델보다 열등한 모델인가?

- ROC 생성 절차
  - ✓ 모든 개체를 P(interesting class)를 기준으로 내림차순 정렬
  - ✓ 가능한 모든 Cut-off 경우에 대해 True Positive Rate와 False Positive Rate를 계산
    - P(NG)에 동률이 없을 경우 이론적으로 IOI개의 cut-off 설정이 가능
  - ✓ X축이 False Positive Rate, Y축이 True Positive Rate가 되는 2차원 그래프 도시

#### • ROC 생성 절차

✓ 첫 번째 Cut-off 설정

| Glass | P(NG) | Label |  |
|-------|-------|-------|--|
|       |       |       |  |
| I     | 0.976 | I     |  |
| 2     | 0.973 | I     |  |
| 3     | 0.971 | 0     |  |
| 4     | 0.967 | I     |  |
| 5     | 0.937 | 0     |  |

| Confusio | on Matrix   | 예   | 측  |
|----------|-------------|-----|----|
| Comusic  | II I Idulix | NG  | G  |
| 실제       | NG          | 0   | 20 |
|          | G           | - 1 | 80 |

$$TPR = \frac{0}{20} = 0$$

$$FPR = \frac{0}{80} = 0$$

#### • ROC 생성 절차

✓ 두 번째 Cut-off 설정

| Glass | P(NG) | Label | TPR | FPR |
|-------|-------|-------|-----|-----|
|       |       |       | 0   | 0   |
| 1     | 0.976 | I     |     |     |
| 2     | 0.973 | I     |     |     |
| 3     | 0.971 | 0     |     |     |
| 4     | 0.967 | I     |     |     |
| 5     | 0.937 | 0     |     |     |

| Confusio | n Matrix  | 예측 |    |  |
|----------|-----------|----|----|--|
| Comusic  | on racinx | NG | G  |  |
| 시ᅰ       | NG        | I  | 19 |  |
| 크세       |           | 0  | 80 |  |

$$TPR = \frac{1}{20} = 0.05$$

$$FPR = \frac{0}{80} = 0$$

#### • ROC 생성 절차

✓ 세 번째 Cut-off 설정

| Glass | P(NG) | Label | TPR  | FPR |
|-------|-------|-------|------|-----|
|       |       |       | 0    | 0   |
| l     | 0.976 |       | 0.05 | 0   |
| 2     | 0.973 | I     |      |     |
| 3     | 0.971 | 0     |      |     |
| 4     | 0.967 |       |      |     |
| 5     | 0.937 | 0     |      |     |

| 3 | 0.737 | 0 |   |   |
|---|-------|---|---|---|
| • | •     | • | • | • |
| • | •     | • | • | • |
| • | •     | • | • | • |
|   |       |   |   |   |

| Confusion Matrix |              | 예측 |    |  |
|------------------|--------------|----|----|--|
| Comusic          | III I'Idu IX | NG | G  |  |
| 실제               | NG           | 2  | 18 |  |
| 결계               | NG<br>G      | 0  | 80 |  |

$$TPR = \frac{2}{20} = 0.10$$

$$FPR = \frac{0}{80} = 0$$

#### • ROC 생성 절차

✓ 네 번째 Cut-off 설정

| Glass | P(NG) | Label | TPR  | FPR  |
|-------|-------|-------|------|------|
|       |       |       | 0.00 | 0.00 |
|       | 0.976 | I     | 0.05 | 0.00 |
| 2     | 0.973 | I     | 0.10 | 0.00 |
| 3     | 0.971 | 0     |      |      |
| 4     | 0.967 | I     |      |      |
| 5     | 0.937 | 0     |      |      |

| • | • | • | • | • |
|---|---|---|---|---|
| • | • | • | • | • |
| • | • | • | • | • |

| Confusio             | on Matrix | 예측 |    |  |
|----------------------|-----------|----|----|--|
| Confusion Matrix     |           | NG | G  |  |
| 실제                   | NG        | 2  | 18 |  |
| <sup>'</sup> 콘시 <br> | G         | I  | 79 |  |

$$TPR = \frac{2}{20} = 0.10$$

$$FPR = \frac{1}{80} = 0.0125$$

Glass

P(NG)

#### • ROC 생성 절차

- ✓ 모든 가능한 Cut-off 값에 대한 TPR/FPR 계산 완료
- ✓ FPR을 x축으로 하고,TPR을 y축으로 하는 그래프 생성

| Ciass | 1 (1.40) | Label |       |       |
|-------|----------|-------|-------|-------|
|       |          |       | 0.000 | 0.000 |
| 1     | 0.976    |       | 0.050 | 0.000 |
| 2     | 0.973    | l     | 0.100 | 0.000 |
| 3     | 0.971    | 0     | 0.100 | 0.013 |
| 4     | 0.967    |       | 0.150 | 0.013 |
| 5     | 0.937    | 0     | 0.150 | 0.025 |
| 6     | 0.936    |       | 0.200 | 0.025 |
| 7     | 0.929    | l     | 0.250 | 0.025 |
| 8     | 0.927    | 0     | 0.250 | 0.038 |
| •     | •        | •     | •     | •     |
| •     | •        | •     | •     | •     |
| 96    | 0.019    | 0     | 1.000 | 0.950 |
| 97    | 0.015    | 0     | 1.000 | 0.963 |
| 98    | 0.01     | 0     | 1.000 | 0.975 |
| 99    | 0.005    | 0     | 1.000 | 0.988 |
| 100   | 0.002    | 0     | 1.000 | 1.000 |

Label

**TPR** 

**FPR** 

#### • ROC Curve 범위



- Area Under ROC Curve (AUROC)
  - ✔ ROC curve 아래의 면적
  - ✓ 이상적인 분류기는 I의 값을 갖고, 무작위 분류기는 0.5의 값을 가짐
  - ✓ Cut-off에 독립적인 알고리즘 성능 평가 지표로 사용될 수 있음



