Sl231b: Matrix Computations

Lecture 19: Singular Value Decomposition

Yue Qiu

qiuyue@shanghaitech.edu.cn

School of Information Science and Technology ShanghaiTech University

Nov. 18, 2021

MIT Lab, Yue Qiu SI231b; Matrix Computations, Shanghai Tech S Nov. 18, 2021 1 / 1

Main Results

Any matrix $A \in \mathbb{R}^{m \times n}$ admits a singular value decomposition (SVD)

$$A = U\Sigma V^T$$

where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal, and $\Sigma \in \mathbb{R}^{m \times n}$ has $[\Sigma]_{ij} = 0$ for all $i \neq j$ and $[\Sigma]_{ii} = \sigma_i$ for all i, with $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_{\min\{m,n\}} \geq 0$.

- ▶ matrix 2-norm: $\|A\|_2 = \sigma_1$
- let r be the number of nonzero σ_i 's, partition $U = [U_1 \ U_2]$, $V = [V_1 \ V_2]$ with $U_1 \in \mathbb{R}^{m \times r}$ and $V_1 \in \mathbb{R}^{n \times r}$, and let $\tilde{\Sigma} = \operatorname{diag}(\sigma_1, \ldots, \sigma_r)$
 - rank(A) = r
 - ullet pseudo-inverse: $\mathsf{A}^\dagger = \mathsf{V}_1 ilde{\mathbf{\Sigma}}^{-1} \mathsf{U}_1^T$
 - LS solution: $x_{LS} = A^{\dagger}y + \eta$ for any $\eta \in \mathcal{R}(V_2)$
 - orthogonal projection: $P_A = U_1 U_1^T$

MIT Lab, Yue Qiu SI231b: Matrix Computations, ShanghaiTech Nov. 18, 2021

Main Results

Low-rank Approximation

Given $A \in \mathbb{R}^{m \times n}$ and $k \in \{1, ..., \min\{m, n\}\}$, the problem

$$\min_{\mathsf{B}\in\mathbb{R}^{m\times n},\ \mathsf{rank}(\mathsf{B})\leq k}\ \|\mathsf{A}-\mathsf{B}\|_2^2$$

has an optimal solution given by $\mathsf{B}^\star = \sum_{i=1}^k \sigma_i \mathsf{u}_i \mathsf{v}_i^\mathsf{T}$. Or equivalently, B^\star gives the best rank k approximation of A while using the matrix 2-norm to optimize $\|\mathsf{A} - \mathsf{B}\|^2$.

MIT Lab, Yue Qiu Si231b: Matrix Computations, Shanghai Tech Nov. 18, 2021

Singular Value Decomposition

Theorem. Given any $A \in \mathbb{R}^{m \times n}$, there exists a 3-tuple (U, Σ, V) with $U \in \mathbb{R}^{m \times m}$, $\Sigma \in \mathbb{R}^{m \times n}$ and $V \in \mathbb{R}^{n \times n}$ such that

$$A = U\Sigma V^T$$
,

U and V are orthogonal, and Σ takes the form

$$[\mathbf{\Sigma}]_{ij} = \left\{ \begin{array}{ll} \sigma_i, & i = j \\ 0, & i \neq j \end{array} \right., \qquad \sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_p \geq 0, \ p = \min\{m, n\}.$$

- ▶ the above decomposition is called the singular value decomposition (SVD)
- $ightharpoonup \sigma_i$ is called the *i*th singular value
- \triangleright u_i and v_i are called the *i*th left and right singular vectors, resp.
- ▶ the following notations may be used to denote singular values of a given A

$$\sigma_{\max}(\mathsf{A}) = \sigma_1(\mathsf{A}) \geq \sigma_2(\mathsf{A}) \geq \ldots \geq \sigma_p(\mathsf{A}) = \sigma_{\min}(\mathsf{A})$$

MIT Lab, Yue Qiu Sizilb: Matrix Computations; Shanghai Tech Nov. 18, 2021

Different Ways of Representing SVD

▶ partitioned form: let r be the number of nonzero singular values, and note $\sigma_1 \ge \dots \sigma_r > 0$, $\sigma_{r+1} = \dots = \sigma_p = 0$. Then,

$$\mathsf{A} = \begin{bmatrix} \mathsf{U}_1 & \mathsf{U}_2 \end{bmatrix} \begin{bmatrix} \tilde{\boldsymbol{\Sigma}} & \mathsf{0} \\ \mathsf{0} & \mathsf{0} \end{bmatrix} \begin{bmatrix} \mathsf{V}_1^T \\ \mathsf{V}_2^T \end{bmatrix},$$

where

- $\tilde{\Sigma} = \operatorname{diag}(\sigma_1, \ldots, \sigma_r)$
- $U_1 = [u_1, \dots, u_r] \in \mathbb{R}^{m \times r}, U_2 = [u_{r+1}, \dots, u_m] \in \mathbb{R}^{m \times (m-r)}$
- $V_1 = [v_1, \dots, v_r] \in \mathbb{R}^{n \times r}, V_2 = [v_{r+1}, \dots, v_n] \in \mathbb{R}^{n \times (n-r)}$
- economic SVD: $A = U_1 \tilde{\Sigma} V_1^T$
- outer-product form: $A = \sum_{i=1}^{r} \sigma_i u_i v_i^T$

MIT Lab, Yue Qiu

SVD and Eigenvalue Decomposition

From the SVD $A = U\Sigma V^T$, we see that

$$\mathsf{A}\mathsf{A}^\mathsf{T} = \mathsf{U}\mathsf{D}_1\mathsf{U}^\mathsf{T}, \qquad \mathsf{D}_1 = \mathbf{\Sigma}\mathbf{\Sigma}^\mathsf{T} = \mathrm{diag}(\sigma_1^2, \dots, \sigma_p^2, \underbrace{0, \dots, 0}_{m-p \text{ zeros}}) \tag{*}$$

$$\mathsf{A}^{\mathsf{T}}\mathsf{A} = \mathsf{V}\mathsf{D}_{2}\mathsf{V}^{\mathsf{T}}, \qquad \mathsf{D}_{2} = \mathbf{\Sigma}^{\mathsf{T}}\mathbf{\Sigma} = \mathrm{diag}(\sigma_{1}^{2}, \ldots, \sigma_{p}^{2}, \underbrace{0, \ldots, 0}_{n-p \text{ zeros}}) \tag{**}$$

Observations:

- \blacktriangleright (*) and (**) are the eigenvalue decompositions of AA^T and A^TA , resp.
- ▶ the left singular vector matrix U of A is the eigenvector matrix of AA^T
- \triangleright the right singular vector matrix V of A is the eigenvector matrix of A^TA
- ▶ the squares of nonzero singular values of A, $\sigma_1^2, \dots, \sigma_r^2$, are the nonzero eigenvalues of both AA^T and A^TA .

MIT Lab, Yue Qiu SSS 1231bs Matrix Computations, Shanghal Tech SS Nov. 18, 2021

SVD and Four Fundamental Subspaces

Figure 1: Four fundamental subspaces

In lecture 3, we have learnt that for $A \in \mathbb{R}^{m \times n}$

- $ightharpoonup \mathcal{R}(\mathsf{A}) \perp \mathcal{N}(\mathsf{A}^\mathsf{T}), \text{ and } \mathcal{R}(\mathsf{A}) \oplus \mathcal{N}(\mathsf{A}^\mathsf{T}) = \mathbb{R}^m$
- $ightharpoonup \mathcal{R}(\mathsf{A}^\mathsf{T}) \perp \mathcal{N}(\mathsf{A})$, and $\mathcal{R}(\mathsf{A}^\mathsf{T}) \oplus \mathcal{N}(\mathsf{A}) = \mathbb{R}^n$

MIT Lab, Yue Qiu SI231b: Matrix Computations, Shanghai Tech Nov. 18, 2021

SVD and Four Fundamental Subspaces

Property: The following properties hold:

(a)
$$\mathcal{R}(A) = \mathcal{R}(U_1)$$
, $\mathcal{R}(A)^{\perp} = \mathcal{N}(A^{T}) = \mathcal{R}(U_2)$;

(b)
$$\mathcal{R}(A^T) = \mathcal{R}(V_1)$$
, $\mathcal{R}(A^T)^{\perp} = \mathcal{N}(A) = \mathcal{R}(V_2)$;

(c) rank(A) = r (the number of nonzero singular values).

Requires a proof.

Note:

- ▶ SVD can be used as a numerical tool to compute basis of $\mathcal{R}(A)$, $\mathcal{R}(A)^{\perp}$, $\mathcal{R}(A^{T})$, $\mathcal{N}(A)$
- we have previously learnt the following properties
 - $rank(A^T) = rank(A)$
 - $\dim \mathcal{N}(A) = n \operatorname{rank}(A)$

By SVD, the above properties are easily seen to be true.

► SVD is also used as a numerical tool to compute the rank of a matrix.

Induced matrix *p*-norm from the vector *p*-norm

$$\|A\|_p = \max_{x \neq 0} \frac{\|Ax\|_p}{\|x\|_p} = \max_{\|x\|_p = 1} \|Ax\|_p$$

p = 2: matrix 2-norm or spectral norm

$$\|\mathsf{A}\|_2 = \sigma_{\max}(\mathsf{A}).$$

Proof:

▶ for any x with $||x||_2 < 1$,

$$\begin{split} \|\mathsf{A}\mathsf{x}\|_2^2 &= \|\mathsf{U}\mathbf{\Sigma}\mathsf{V}^\mathsf{T}\mathsf{x}\|_2^2 = \|\mathbf{\Sigma}\mathsf{V}^\mathsf{T}\mathsf{x}\|_2^2 \\ &\leq \sigma_1^2 \|\mathsf{V}^\mathsf{T}\mathsf{x}\|_2^2 = \sigma_1^2 \|\mathsf{x}\|_2^2 \leq \sigma_1^2 \end{split}$$

 $\|Ax\|_2 = \sigma_1$ if we choose $x = v_1$

Implication to linear transformation: let y=Ax be a linear transformation maps x to y. Under the constraint $\|x\|_2=1$, the system output $\|y\|_2^2$ is maximized when x is chosen as the 1st right singular vector.

Illustration of Matrix 2-Norm

Figure 2: Linear transformation by nonsingular matrix A

When $A \in \mathbb{R}^{m \times n}$ is of full rank and $m \ge n$,

- ▶ $\|Ax\|_2 \ge \sigma_{\min}(A)\|x\|_2$ (hands-on exercise)
- ► can you use Figure 1 to help to understand?

MIT Lab, Yue Qiu Si231b: Matrix Computations, ShanghaiTech Nov. 18, 2021

10 / 13

Properties of Matrix 2-Norm

- $\|AB\|_2 \le \|A\|_2 \|B\|_2$
 - in fact, $\|AB\|_p \le \|A\|_p \|B\|_p$ for any $p \ge 1$
- $\|Ax\|_2 \le \|A\|_2 \|x\|_2$
 - a special case of the 1st property
- ▶ $\|QAW\|_2 = \|A\|_2$ for any orthogonal Q, W
 - we also have $\|QAW\|_F = \|A\|_F$ for any orthogonal Q, W
- ▶ $||A||_2 \le ||A||_F \le \sqrt{p}||A||_2$ (here $p = \min\{m, n\}$)
 - proof: $\|\mathbf{A}\|_F = \|\mathbf{\Sigma}\|_F = \sqrt{\sum_{i=1}^p \sigma_i^2}$, and $\sigma_1^2 \leq \sum_{i=1}^p \sigma_i^2 \leq p\sigma_1^2$
- lacktriangle let A be square and nonsingular. Then, $\|\mathsf{A}^{-1}\|_2 = 1/\sigma_{\min}(\mathsf{A})$

MIT Lab, Yue Qiu SI231b: Matrix Computations, Shanghai Tech Nov. 18, 2021

11 / 13

Schatten p-Norm

The function

$$f(A) = \left(\sum_{i=1}^{\min\{m,n\}} \sigma_i(A)^p\right)^{1/p}, \qquad p \geq 1,$$

defines a matrix norm and is called the Schatten *p*-norm. Here $\sigma_i(A)$ $(i = 1, 2, \dots, p)$ are the singular values of A.

Nuclear norm:

$$\|\mathsf{A}\|_* = \sum_{i=1}^{\min\{m,n\}} \sigma_i(\mathsf{A})$$

- ▶ a special case of the Schatten p-norm
- ▶ finds applications in rank approximation, e.g., for compressive sensing and matrix completion [Recht-Fazel-Parrilo'10]
- B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM Review, vol. 52, no. 3, pp. 471–501, 2010.

MIT Lab, Yue Qiu Sl231b: Matrix Computations, Shanghai Tech Nov. 18, 2021

12 / 13

Readings

You are supposed to read

► Gene H. Golub and Charles F. Van Loan. *Matrix Computations*, Johns Hopkins University Press, 2013.

Chapter 2.4.

MIT Lab, Yue Qiu Si231b: Matrix Computations, Shanghai Tech Nov. 18, 2021