Prova scritta - 8 febbraio 2021

- 1. Indicare se le seguenti affermazioni sono vere o false, giustificando la risposta. Risposte non giustificate non saranno valutate.
 - (i) $X = \{x2x \mid x \in \{0,1\}^* \text{ e } |x| \le 2\}$ è regolare.
 - (ii) $Y = \{x2x \mid x \in \{0, 1\}^*\}$ è regolare.
 - (iii) Se $L \cup M$ è regolare, allora L e M sono regolari.
- 2. Sia L l'insieme delle stringhe su $\{a,b\}$ che iniziano con la lettera b oppure che hanno lunghezza pari.
 - i) Fornire una espressione regolare che denota L.
 - ii) Esibire un DFA che riconosce L giustificando la risposta.
- 3. Fornire il diagramma di stato di una macchina di Turing deterministica a singolo nastro M che riconosca il linguaggio $L(M) = \{w \in \{a,b\}^* \mid w \text{ ha lunghezza pari e termina con } b\}.$
- 4. (a) Fornire con precisione e completezza le definizioni delle classi NP e co-NP.
 - (b) Supponiamo di sapere con certezza che il linguaggio X non appartiene a NP. Possiamo affermare che X appartiene a co-NP? Motivare la risposta, cioè fornire una dimostrazione o un controesempio.
 - (c) Siano X e Y due linguaggi su un alfabeto Σ . Provare che se $\overline{X} \leq_P X$ allora
 - -X ∈ NP \cap co-NP
 - oppure X non appartiene né a NP né a co-NP.