

Parcial III modelamiento procesos

Autores Alejandro D.J Gomez F. Steven Sanchez C.

Capítulo 1

Desarrollo del Modelo

1.1. Información suministrada.

Figura 1.1: Proceso producción de metanol.

Flujo de Hidrógeno: 1176 [lt/s] Flujo de Gases: 185.5 [lt/s]

Se definen las reacciones en el tanque como:

$$CO + 2H_2 \rightarrow CH_3OH$$
 (1.1)

$$CO_2 + H_2 \to CO + H_2O \tag{1.2}$$

1.2. Notación empleada

Se emplea la siguiente notación por comodidad para el desarrollo de las ecuaciones:

- lacksquare A:CO (Monóxido de carbono)
- $\blacksquare B: H_2 \text{ (Hidrógeno)}$
- $C: CH_3OH$ (Metanol)
- $\bullet \ D: CO_2$ (Dióxido de carbono)
- $E: H_2O$ (Agua)

1.3. Sistema: Reactor

Teniendo en cuenta las reacciones (1.1) y (1.2) y considerando las velocidades de reacción a partir del enunciado, se obtienen las velocidades de reacción.

$$r_C = r_1 = k_1 C_A C_B^2 (1.3)$$

$$r_A = r_E = r_2 = k_2 C_D C_B (1.4)$$

Siendo r_C y r_A la velocidad con la que se produce el CH_3OH (metanol) y el CO (monóxido de carbono) respectivamente.

A partir de la reacción (1.1) y la ecuación (1.3), se obtiene la relación para las velocidades con la que se disuelve los reactivos asociados, respecto a la velocidad del producto:

$$\frac{r_{A \to C}}{1} = \frac{r_{B \to C}}{2} = \frac{r_C}{1} \tag{1.5}$$

Como ejemplo, se interpreta $r_{A\to C}$ como la velocidad con la que se consume el reactivo A para producir C.

El mismo análisis se realiza a partir de la reacción (1.2) y la ecuación (1.4):

$$\frac{r_{D \to A}}{1} = \frac{r_{B \to A}}{1} = \frac{r_A}{1} = \frac{r_E}{1} \tag{1.6}$$

La siguiente expresión permite obtener la concentración másica a partir de la fracción másica:

$$c_i = y_i * \rho_{mezcla} \tag{1.7}$$

Y la expresión para convertirla a la concentración molar sería:

$$C_i = \frac{c_i}{\omega_i} \tag{1.8}$$

Para obtener la densidad del hidrógeno, se considera la ecuación de gas ideal:

$$PV = \frac{MRT}{\omega} \tag{1.9}$$

Siendo ω el peso molecular, M la masa, R la constante universal de los gases, T la temperatura del gas y P la presión. También se puede obtener la siguiente expresión a partir de (1.10) para obtener la densidad del hidrógeno ρ_{H_2} :

$$\rho_{H_2} = \rho_B = \frac{P_{H_2}\omega_{H_2}}{RT_{H_2}} \tag{1.10}$$

Los valores de presión P_{H_2} , temperatura T_{H_2} son entregados en el enunciado del problema. El peso molecular del hidrógeno (H_2) , es $\omega_{H_2}=2$ [g/mol].

1.3.1. Balance de moles por componentes

Para el hidrógeno puro, la concentración de entrada es $C_{B0} = \rho_{H_2}$.

Se define F_1 como el flujo de B, y F_2 como el flujo de los gases considerados para el análisis $(A \ y \ D)$. Además, se define V como el volumen del reactor, el cual no varia, por lo tanto tenemos que el flujo de salida del mismo es $F_{out} = F_1 + F_2$

Para la concentración de A:

$$\frac{d(C_A V)}{dt} = F_{in1} C_{A0} - F_{out} C_A - r_{A \to C} V + r_A V
\frac{dC_A}{dt} = \frac{F_{in1} C_{A0}}{V} - \frac{F_{out1} C_A}{V} - r_{A \to C} + r_A$$
(1.11)

Para la concentración de B:

$$\frac{d(C_B V)}{dt} = F_{in2} C_{B0} - F_{out} C_B - r_{B \to C} V - r_{B \to A} V
\frac{dC_B}{dt} = \frac{F_{in2} C_{B0}}{V} - \frac{F_{out} C_B}{V} - r_{B \to C} - r_{B \to A} \tag{1.12}$$

Para la concentración de C:

$$\frac{d(C_C V)}{dt} = -F_{out}C_C + r_C V$$

$$\frac{dC_C}{dt} = -\frac{F_{out}C_C}{V} + r_C$$
(1.13)

Para la concentración de D:

$$\frac{d(C_D V)}{dt} = F_{in} C_{D0} - F_{out} C_D - r_{D \to A} V$$

$$\frac{dC_D}{dt} = \frac{F_{in} C_{D0}}{V} - \frac{F_{out} C_D}{V} - r_{D \to A}$$
(1.14)

Para la concentración de E:

$$\frac{d(C_E V)}{dt} = -F_{out}C_E + r_E V$$

$$\frac{dC_E}{dt} = -\frac{F_{out}C_E}{V} + r_E$$
(1.15)

1.3.2. Balance de Energía

Ecuación general para el balance de energía, usando el método corto visto en clase:

$$\frac{dH_1}{dt} = \sum \dot{n}_{in}\hat{H}_{in} - \sum \dot{n}_{out}\hat{H}_{out} + \dot{Q} - \sum r_i \Delta \hat{H}_{ri}V$$
(1.16)

$$H_1 = M_B C p_B (T_1 - T_{ref}) + M_{mezcla} C p_{mezcla} (T_1 - T_{ref})$$
(1.17)

$$\dot{Q} = UA(T_{op} - T_{ref}) \tag{1.18}$$

Siendo T_1 la temperatura de operación, M_B la masa del hidrógeno y M_{mezcla} de la mezcla, Cp_{mezcla} y Cp_B el calor especifico de la mezcla y del hidrógeno, respectivamente. Expandiendo la ecuación (1.18), obtenemos:

$$\frac{dT_1}{dt} = \frac{F_{in1}\rho_B \hat{H}_1 + F_{in2}\rho_{mezcla}\hat{H}_2 - F_{out}(\sum C_i \hat{H}_i) + \dot{Q} - r_1 \Delta \hat{H}_{r1}V - r_2 \Delta \hat{H}_{r2}V}{(\rho_{mezcla}Cp_{mezcla} + \rho_B Cp_B)V}$$
(1.19)

Se resalta que $\Delta \hat{H}_{r1}$ (endotérmica) y $\Delta \hat{H}_{r2}$ (exotérmica) son entregados en el enunciado del problema. Además:

$$\hat{H}_i = Cp_i(T_1 - T_{amb}); \quad \forall i \in \{A, B, C, D, E\}$$
 (1.20)

$$\hat{H}_1 = Cp_{mezcla}(T_{mezcla0} - T_{ref}) \tag{1.21}$$

$$\hat{H}_2 = Cp_B(T_{B0} - T_{ref}) \tag{1.22}$$

$$\frac{dHc}{dt} = \dot{m}_1 \hat{H}_1 - \dot{m}_2 \hat{H}_2 - \dot{m}_3 \hat{H}_3 + \dot{Q}$$
 (1.23)

Para los calores específicos, los valores fueron consultados en las siguientes referencias:

- El Cp_A (monóxido de carbono) fue consultado en [1].
- \bullet El Cp_B (hidrógeno puro) fue consultado en [1].
- El Cp_C (metanol) fue consultado en [2].
- El Cp_D (dióxido de carbono) fue consultado en [1].
- El Cp_E (agua) fue consultado en [3].

El sistema de ecuaciones obtenido es:

$$\frac{dC_{A}}{dt} = \frac{F_{in1}C_{A0}}{V} - \frac{F_{out}C_{A}}{V} - r_{A \to C} + r_{A}$$

$$\frac{dC_{B}}{dt} = \frac{F_{in2}C_{B0}}{V} - \frac{F_{out}C_{B}}{V} - r_{B \to C} - r_{B \to A}$$

$$\frac{dC_{C}}{dt} = -\frac{F_{out}C_{C}}{V} + r_{C}$$

$$\frac{dC_{D}}{dt} = \frac{F_{in1}C_{D0}}{V} - \frac{F_{out}C_{D}}{V} - r_{D \to A}$$

$$\frac{dC_{E}}{dt} = -\frac{F_{out}C_{E}}{V} + r_{E}$$

$$\frac{dT_{1}}{dt} = \frac{F_{in1}\rho_{B}\hat{H}_{1} + F_{in2}\rho_{mezcla}\hat{H}_{2} - F_{out}(\sum C_{i}\hat{H}_{i}) + \dot{Q} - r_{1}\Delta\hat{H}_{r1}V - r_{2}\Delta\hat{H}_{r2}V}{(\rho_{mezcla}Cp_{mezcla} + \rho_{B}Cp_{B})V}$$
(1.24)

Reemplazando las expresiones obtenidas en las ecuaciones de (1.3) a (1.6) en (1.24):

$$\frac{dC_A}{dt} = \frac{F_{in1}C_{A0}}{V} - \frac{F_{out}C_A}{V} - k_1C_AC_B^2 + k_2C_DC_B$$

$$\frac{dC_B}{dt} = \frac{F_{in2}C_{B0}}{V} - \frac{F_{out}C_B}{V} - 2k_1C_AC_B^2 - k_2C_DC_B$$

$$\frac{dC_C}{dt} = -\frac{F_{out}C_C}{V} + k_1C_AC_B^2$$

$$\frac{dC_D}{dt} = \frac{F_{in1}C_{D0}}{V} - \frac{F_{out}C_D}{V} - k_2C_DC_B$$

$$\frac{dC_E}{dt} = -\frac{F_{out}C_E}{V} + k_2C_DC_B$$

$$\frac{dT_1}{dt} = \frac{F_{in1}\rho_B\hat{H}_1 + F_{in2}\rho_{mezcla}\hat{H}_2 - F_{out}(\sum C_i\hat{H}_i) + \dot{Q} - r_1\Delta\hat{H}_{r1}V - r_2\Delta\hat{H}_{r2}V}{(\rho_{mezcla}Cp_{mezcla} + \rho_BCp_B)V}$$
(1.25)

1.4. Sistema: Condensador

Para el análisis sobre el condensador, se considera flujo másico de entrada en el mismo como \dot{n}_{in} y los flujos de salida como \dot{n}_{CEout} para el flujo de metanol-agua condensados (producto) y \dot{n}_{out} para los gases no condensados. Así se determina, que el flujo de entrada se puede expresar como:

$$\dot{n}_{in} = \dot{n}_{CEin} + \dot{n}_{gases} \tag{1.26}$$

Siendo \dot{n}_{CEin} el flujo de metanol-agua a la entrada del condensador, y \dot{n}_{gases} como el flujo de gases no condensados (otros gases). Para el flujo de salida de gases del condensador se tiene:

$$\dot{n}_{out} = \dot{n}_{CEout} + \dot{n}_{gases} \tag{1.27}$$

Siendo \dot{n}_{CEout} el flujo de metanol-agua que no se condensa, y \dot{m}_{gases} como el flujo de gases no condensados (otros gases).

Realizando un balance de moles total sobre el gas dentro del condensador se obtiene:

$$\frac{dN_{gases}}{dt} = \dot{n}_{in} - \dot{n}_{out} - \dot{n}_{CE_{liq}} \tag{1.28}$$

Se realizan las siguientes suposiciones para simplificar el diseño del modelo:

- Presión en el condensador se asume como constante.
- Volumen del gas en el condensador se asume constante.

Con los elementos mencionados anteriormente, se asume que no hay acumulación de gases en el sistema, por lo tanto:

$$\frac{dN_{gases}}{dt} = 0 = \dot{n}_{in} - \dot{n}_{out} - \dot{n}_{CE_{liq}} \tag{1.29}$$

Y reemplazando las expresiones (1.26) y (1.27) en (1.29) obtenemos:

$$\dot{n}_{CEin} = \dot{n}_{CEout} + \dot{n}_{CE_{liq}} \tag{1.30}$$

También definimos las fracciones molares:

$$y_C = \frac{N_C}{N_{CE}} \tag{1.31}$$

$$y_E = \frac{N_E}{N_{CE}} \tag{1.32}$$

1.4.1. Balance de moles por componentes

Realizando un balance por componente, para la concentración de agua-metanol:

$$\frac{d(VC_{CE})}{dt} = C_{CE0}F_{in} - C_{CE}F_{out} - \dot{n}_{liq}$$

$$\tag{1.33}$$

De esta manera se busca un modelo que represente la dinámica para concentración de agua-metanol en el condensador.

$$\frac{dC_{CE}}{dt} = \frac{C_{CE0}F_{in}}{V} - \frac{C_{CE}F_{out}}{V} - \frac{\dot{n}_{liq}}{V} \tag{1.34}$$

Para el agua y metanol por separado:

$$\frac{dN_C}{dt} = \dot{n}_{Cin} - \dot{n}_{Cout} - \dot{n}_{Cliq} \tag{1.35}$$

$$\frac{dN_E}{dt} = \dot{n}_{Ein} - \dot{n}_{Eout} - \dot{n}_{Eliq} \tag{1.36}$$

Para el agua y metanol por separado:

$$\frac{dN_C}{dt} = \dot{n}_{Cin} - \dot{n}_{Cout} - \dot{n}_{Cliq} \tag{1.37}$$

$$\frac{dN_E}{dt} = \dot{n}_{Ein} - \dot{n}_{Eout} - \dot{n}_{Eliq} \tag{1.38}$$

Empleando las fracciones molares definidas en (1.31) y (1.32) en (1.37) y (1.38) respectivamente:

$$N_{CE}\frac{dy_C}{dt} = \dot{n}_{Cin} - y_C(\dot{n}_{CE_{Cout}} - \dot{n}_{liq})$$
(1.39)

$$N_{CE}\frac{dy_E}{dt} = \dot{n}_{Ein} - y_E(\dot{n}_{CE_{Cout}} - \dot{n}_{liq})$$
(1.40)

A partir de (1.41) se obtiene:

$$\dot{n}_{CEout} = \dot{n}_{CEin} - \dot{n}_{liq} \tag{1.41}$$

Reemplazando (1.41) en (1.39) y (1.40):

$$\frac{dy_C}{dt} = \frac{\dot{n}_{Cin} - y_C(\dot{n}_{CEin} - 2\dot{n}_{liq})}{N_{CE}}$$

$$\frac{dy_E}{dt} = \frac{\dot{n}_{Ein} - y_E(\dot{n}_{CEin} - 2\dot{n}_{liq})}{N_{CE}}$$
(1.42)

$$\frac{dy_E}{dt} = \frac{\dot{n}_{Ein} - y_E(\dot{n}_{CEin} - 2\dot{n}_{liq})}{N_{CE}} \tag{1.43}$$

Para N_{CE} se define como:

$$N_{CE} = N_C + N_E \tag{1.44}$$

Los valores de N_C y N_E pueden obtenerse a partir de las concentraciones del flujo de entrada en el condensador, que provienen de la planta anterior, empleando el volumen del condensador V_{cond} , es decir:

$$N_C = V_{cond}C_C$$

$$N_E = V_{cond}C_E$$
(1.45)

Para el caso de los flujos de entrada \dot{n}_{Cin} y \dot{n}_{Ein} , se obtiene a partir del flujo de salida de la planta anterior:

$$\dot{n}_{C_{in}} = F_{out}C_C
\dot{n}_{E_{in}} = F_{out}C_E
\dot{n}_{CE_{in}} = F_{out}(C_C + C_E)$$
(1.46)

1.4.2. Balance de energía

Se usa la ecuación para el balance de energía térmica:

$$\frac{dH_{CE}}{dt} = \dot{n}_{CE_{in}}\hat{H}_{in} - \dot{n}_{CE_{out}}\hat{H}_{out} - \dot{n}_{liq}\hat{H}_{liq} + \dot{Q}_{cond}$$

$$\tag{1.47}$$

Definimos los términos para (1.47):

$$\dot{n}_{CE_{in}}\hat{H}_{in} = \dot{n}_{C_{in}}\hat{H}_{C_{in}} + \dot{n}_{E_{in}}\hat{H}_{E_{in}}
\dot{n}_{CE_{out}}\hat{H}_{out} = \dot{n}_{C_{out}}\hat{H}_{C_{out}} + \dot{n}_{E_{out}}\hat{H}_{E_{out}} = \dot{n}_{CE_{out}}(y_C\hat{H}_{C_{out}} + y_E\hat{H}_{E_{out}})
\dot{n}_{liq}\hat{H}_{liq} = \dot{n}_{C_{liq}}\hat{H}_{C_{liq}} + \dot{n}_{E_{liq}}\hat{H}_{E_{liq}} = \dot{n}_{liq}(y_C\hat{H}_{C_{liq}} + y_E\hat{H}_{E_{liq}})$$
(1.48)

Además:

$$\hat{H}_{C_{in}} = Cp_C(T_1 - T_{ref})$$

$$\hat{H}_{E_{in}} = Cp_E(T_1 - T_{ref})$$

$$\hat{H}_{C_{out}} = Cp_C(T_{op} - T_{ref})$$

$$\hat{H}_{E_{out}} = Cp_E(T_{op} - T_{ref})$$

$$(1.49)$$

Para el caso de $\hat{H}_{C_{liq}}$ y $\hat{H}_{E_{liq}}$, se usa el coeficiente de cambio de fase:

$$\hat{H}_{C_{liq}} = \lambda_C$$

$$\hat{H}_{E_{liq}} = \lambda_E$$
(1.50)

Al haber un cambio de fase, se asume que la temperatura de operación es constante, por lo tanto, para la ecuación (1.47):

$$0 = \dot{n}_{CE_{in}} \hat{H}_{in} - \dot{n}_{CE_{out}} (y_C \hat{H}_{C_{out}} + y_E \hat{H}_{E_{out}}) - \dot{n}_{liq} (y_C \hat{H}_{C_{liq}} + y_E \hat{H}_{E_{liq}}) + \dot{Q}_{cond}$$
 (1.51)

Despejando los terminos que acompañan a n_{liq} obtenemos:

$$\dot{n}_{liq}(y_C\lambda_C + y_E\lambda_E) = \dot{n}_{CE_{in}}\hat{H}_{in} - \dot{n}_{CE_{out}}(y_C\hat{H}_{Cout} + y_E\hat{H}_{E_{out}}) + \dot{Q}_{cond}$$

$$(1.52)$$

Empleando las ecuaciones () y () en () obtenemos:

$$\dot{n}_{liq}(y_C \lambda_C + y_E \lambda_E) = \dot{n}_{CE_{in}} \hat{H}_{in} - (\dot{n}_{CE_{in}} - \dot{n}_{liq})(y_C \hat{H}_{C_{out}} + y_E \hat{H}_{E_{out}}) + \dot{Q}_{cond}$$
(1.53)

Empleando las ecuaciones () y () en () obtenemos:

$$\dot{n}_{liq} = \frac{\dot{n}_{CE_{in}} \hat{H}_{in} - \dot{n}_{CE_{in}} (y_C \hat{H}_{C_{out}} + y_E \hat{H}_{E_{out}}) + \dot{Q}_{cond}}{(y_C \lambda_C + y_E \lambda_E) - (y_C \hat{H}_{C_{out}} + y_E \hat{H}_{E_{out}})}$$
(1.54)

Definimos el calor \dot{Q}_{cond} :

$$\dot{Q}_{cond} = UA(T_{op} - T_{ref}) \tag{1.55}$$

Reemplazando los términos obtenidos en la expresión de 1.53, obtenemos la expresión final para \dot{n}_{liq} :

$$\dot{n}_{liq} = \frac{\dot{n}_{C_{in}} \hat{H}_{C_{in}} + \dot{n}_{E_{in}} \hat{H}_{E_{in}} - \dot{n}_{CE_{in}} (y_C \hat{H}_{C_{out}} + y_E \hat{H}_{E_{out}}) - UA(T_{op} - T_{ref})}{(y_C \lambda_C + y_E \lambda_E) - (y_C \hat{H}_{C_{out}} + y_E \hat{H}_{E_{out}})}$$
(1.56)

1.5. Resultados

Los valores y parámetros empleados en la simulación, en un tiempo de 50 segundos, respetaron las definiciones aquí realizadas.

1.5.1. Resultados en el reactor

Para esta sección, se emplearon los valores iniciales entregados en el problema, para dar inicio a la simulación.

$$X_0 = \begin{bmatrix} \frac{0.6\rho_{mezcla}}{\omega_a}, & \frac{\rho_{H_2}}{\omega_{H_2}}, & 0, & \frac{0.3\rho_{CO_2}}{\omega_{CO_2}}, & 0, & T_{op} \end{bmatrix}^T$$
 (1.57)

Donde:

$$X = [C_A C_B C_C C_D C_E T 1]^T \tag{1.58}$$

Se emplea el sistema de ecuaciones del reactor:

$$f_{1} = \frac{dC_{A}}{dt} = \frac{F_{in1}C_{A0}}{V} - \frac{F_{out}C_{A}}{V} - k_{1}C_{A}C_{B}^{2} + k_{2}C_{D}C_{B}$$

$$f_{2} = \frac{dC_{B}}{dt} = \frac{F_{in2}C_{B0}}{V} - \frac{F_{out}C_{B}}{V} - 2k_{1}C_{A}C_{B}^{2} - k_{2}C_{D}C_{B}$$

$$f_{3} = \frac{dC_{C}}{dt} = -\frac{F_{out}C_{C}}{V} + k_{1}C_{A}C_{B}^{2}$$

$$f_{4} = \frac{dC_{D}}{dt} = \frac{F_{in1}C_{D0}}{V} - \frac{F_{out}C_{D}}{V} - k_{2}C_{D}C_{B}$$

$$f_{5} = \frac{dC_{E}}{dt} = -\frac{F_{out}C_{E}}{V} + k_{2}C_{D}C_{B}$$

$$f_{6} = \frac{dT_{1}}{dt} = \frac{F_{in1}\rho_{B}\hat{H}_{1} + F_{in2}\rho_{mezcla}\hat{H}_{2} - F_{out}(\sum C_{i}\hat{H}_{i}) + \dot{Q} - r_{1}\Delta\hat{H}_{r1}V - r_{2}\Delta\hat{H}_{r2}V}{(\rho_{mezcla}Cp_{mezcla} + \rho_{B}Cp_{B})V}$$

$$(1.59)$$

Se analiza la dinámica sobre el sistema obtenido, empleando el software Matlab, como se ilustra en la Figura 1.2.

Figura 1.2: Simulación realizada considerando los valores iniciales dados por el problema.

Considerando el enunciado del problema, se debe considerar la salida del reactor como la productividad P_r definida por:

$$P_r = F_{out}C_{CH_3OH} = (F_{in1} + F_{in2})C_C (1.60)$$

El resultado de la simulación considerando la salida definida por (1.60) se ilustra en la Figura 1.3

Figura 1.3: Simulación realizada considerando los valores iniciales dados por el problema.

1.5.2. Linealización

Se define el sistema lineal a obtener como:

$$\dot{X} = AX + BU
Y = CX + DU$$
(1.61)

Los estados se definen como:

$$X = \begin{bmatrix} C_A & C_B & C_C & C_D & C_E & T_1 \end{bmatrix}^T \tag{1.62}$$

Las entrada del sistema se define como:

$$U = \begin{bmatrix} F_{in1} \\ F_{in2} \end{bmatrix} \tag{1.63}$$

Se calcula el Jacobiano sobre el sistema de ecuaciones diferenciales definido en las ecuaciones (1.59) y la salida por la expresión (1.60):

Definimos $\frac{\delta k_1}{\delta T_1}$ y $\frac{\delta k_2}{\delta T_1}$:

$$\frac{\delta k_1}{\delta T_1} = \frac{A_{11} exp\left(A_{21} - \frac{A_{31}}{T_1}\right)}{T_1^2}
\frac{\delta k_2}{\delta T_1} = \frac{A_{12} exp\left(A_{22} - \frac{A_{32}}{T_1}\right)}{T_1^2}$$
(1.64)

Para f_1 :

$$\frac{\delta f_1}{\delta C_A} = \frac{-F_{out}}{V} - k_1 C_B^2$$

$$\frac{\delta f_1}{\delta C_B} = -2k_1 C_A C_B + k_2 C_D$$

$$\frac{\delta f_1}{\delta C_C} = 0$$

$$\frac{\delta f_1}{\delta C_D} = k_2 C_B$$

$$\frac{\delta f_1}{\delta C_E} = 0$$

$$\frac{\delta f_1}{\delta C_E} = 0$$

$$\frac{\delta f_1}{\delta T_1} = -\frac{\delta k_1}{\delta T_1} C_A C_B^2 + \frac{\delta k_2}{\delta T_1} C_D C_B C_B^2$$
(1.65)

Para f_2 :

$$\frac{\delta f_2}{\delta C_A} = -2k_1 C_B^2$$

$$\frac{\delta f_2}{\delta C_B} = -\frac{F_{out}}{V} - 4k_1 C_A C_B + k_2 C_D$$

$$\frac{\delta f_2}{\delta C_C} = 0$$

$$\frac{\delta f_2}{\delta C_D} = -k_2 C_B$$

$$\frac{\delta f_2}{\delta C_E} = 0$$

$$\frac{\delta f_2}{\delta C_E} = 0$$

$$\frac{\delta f_2}{\delta T_1} = -2\frac{\delta k_1}{\delta T_1} C_A C_B^2 - \frac{\delta k_2}{\delta T_1} C_D C_B$$
(1.66)

Para f_3 :

$$\frac{\delta f_3}{\delta C_A} = k_1 C_B^2$$

$$\frac{\delta f_3}{\delta C_B} = 2k_1 C_A C_B$$

$$\frac{\delta f_3}{\delta C_C} = -\frac{F_{out}}{V}$$

$$\frac{\delta f_3}{\delta C_D} = 0$$

$$\frac{\delta f_3}{\delta C_E} = 0$$

$$\frac{\delta f_3}{\delta T_1} = \frac{\delta k_1}{\delta T_1} C_A C_B^2$$
(1.67)

Para f_4 :

$$\frac{\delta f_4}{\delta C_A} = 0$$

$$\frac{\delta f_4}{\delta C_B} = -k_2 C_D$$

$$\frac{\delta f_4}{\delta C_C} = 0$$

$$\frac{\delta f_4}{\delta C_D} = -\frac{F_{out}}{V}$$

$$\frac{\delta f_4}{\delta C_E} = 0$$

$$\frac{\delta f_4}{\delta C_E} = 0$$

$$\frac{\delta f_4}{\delta T_1} = -\frac{\delta k_2}{\delta T_1} C_D C_B$$
(1.68)

Para f_5 :

$$\frac{\delta f_5}{\delta C_A} = 0$$

$$\frac{\delta f_5}{\delta C_B} = k_2 C_D$$

$$\frac{\delta f_5}{\delta C_C} = 0$$

$$\frac{\delta f_5}{\delta C_D} = k_2 C_B$$

$$\frac{\delta f_5}{\delta C_E} = -\frac{F_{out}}{V}$$

$$\frac{\delta f_5}{\delta T_1} = \frac{\delta k_2}{\delta T_1} C_D C_B$$
(1.69)

Para f_6 :

$$\begin{split} \frac{\delta f_{6}}{\delta C_{A}} &= \frac{-F_{out}\hat{H}_{A}}{(\rho_{mezcla}C\rho_{mezcla} + \rho_{B}C\rho_{B})V} \\ \frac{\delta f_{6}}{\delta C_{B}} &= \frac{-F_{out}\hat{H}_{B}}{(\rho_{mezcla}C\rho_{mezcla} + \rho_{B}C\rho_{B})V} \\ \frac{\delta f_{6}}{\delta C_{C}} &= \frac{-F_{out}\hat{H}_{C}}{(\rho_{mezcla}C\rho_{mezcla} + \rho_{B}C\rho_{B})V} \\ \frac{\delta f_{6}}{\delta C_{D}} &= \frac{-F_{out}\hat{H}_{D}}{(\rho_{mezcla}C\rho_{mezcla} + \rho_{B}C\rho_{B})V} \\ \frac{\delta f_{6}}{\delta C_{E}} &= \frac{-F_{out}\hat{H}_{E}}{(\rho_{mezcla}C\rho_{mezcla} + \rho_{B}C\rho_{B})V} \\ \frac{\delta f_{6}}{\delta C_{E}} &= \frac{-F_{out}\hat{H}_{E}}{(\rho_{mezcla}C\rho_{mezcla} + \rho_{B}C\rho_{B})V} \\ \frac{\delta f_{6}}{\delta T_{1}} &= \left(\frac{\delta g_{num}(T_{1})}{\delta T_{1}}g_{den}(T_{1}) - g_{num}(T_{1})\frac{\delta g_{den}(T_{1})}{\delta T_{1}}\right)(g_{den}(T_{1}))^{-2} \end{split}$$

Para el caso f_6 :

$$f_6 = \frac{g_{num}(T_1)}{g_{den}(T_1)} \tag{1.71}$$

donde:

$$g_{num}(T_1) = F_{in1}\rho_B(T_1)\hat{H}_1 + F_{in2}\rho_{mezcla}\hat{H}_2 - F_{out}(\sum C_i(T_1)\hat{H}_i) - r_1(T_1)\Delta\hat{H}_{r1}V - r_2(T_1)\Delta\hat{H}_{r2}V$$

$$g_{den}(T_1) = (\rho_{mezcla}Cp_{mezcla} + \rho_BCp_B)V$$
(1.72)

Para el caso $\frac{\delta f_6}{\delta T_1}$ en (1.70):

$$\frac{\delta g_{num}(T_1)}{\delta T_1} = F_{in1} \hat{H}_1 \frac{\delta \rho_B}{\delta T_1} - F_{out} \left(\sum C p_i \hat{H}_i \right) - \left(\frac{\delta k_1}{\delta T_1} C_A C_B^2 \Delta \hat{H}_{r1} + \frac{\delta k_2}{\delta T_1} C_D C_B \Delta \hat{H}_{r2} \right) V
\frac{\delta g_{den}(T_1)}{\delta T_1} = \frac{\delta \rho_B}{\delta T_1} C p_B V
\frac{\delta \rho_B}{\delta T_1} = -\frac{P_{H_2} \omega_{H_2}}{R(T_{H_2})^2}$$
(1.73)

Se emplea el jacobiano para (1.59):

$$J_{A} = \begin{bmatrix} \frac{\delta f_{1}}{\delta C_{A}} & \frac{\delta f_{1}}{\delta C_{B}} & \frac{\delta f_{1}}{\delta C_{C}} & \frac{\delta f_{1}}{\delta C_{D}} & \frac{\delta f_{1}}{\delta C_{E}} & \frac{\delta f_{1}}{\delta T_{1}} \\ \frac{\delta f_{2}}{\delta C_{A}} & \frac{\delta f_{2}}{\delta C_{B}} & \frac{\delta f_{2}}{\delta C_{C}} & \frac{\delta f_{2}}{\delta C_{D}} & \frac{\delta f_{2}}{\delta C_{E}} & \frac{\delta f_{2}}{\delta T_{1}} \\ \frac{\delta f_{3}}{\delta C_{A}} & \frac{\delta f_{3}}{\delta C_{B}} & \frac{\delta f_{3}}{\delta C_{C}} & \frac{\delta f_{3}}{\delta C_{D}} & \frac{\delta f_{3}}{\delta C_{E}} & \frac{\delta f_{3}}{\delta T_{1}} \\ \frac{\delta f_{4}}{\delta C_{A}} & \frac{\delta f_{4}}{\delta C_{B}} & \frac{\delta f_{4}}{\delta C_{C}} & \frac{\delta f_{4}}{\delta C_{D}} & \frac{\delta f_{4}}{\delta C_{E}} & \frac{\delta f_{5}}{\delta T_{1}} \\ \frac{\delta f_{5}}{\delta C_{A}} & \frac{\delta f_{5}}{\delta C_{B}} & \frac{\delta f_{5}}{\delta C_{C}} & \frac{\delta f_{5}}{\delta C_{D}} & \frac{\delta f_{5}}{\delta C_{E}} & \frac{\delta f_{5}}{\delta T_{1}} \\ \frac{\delta f_{6}}{\delta C_{A}} & \frac{\delta f_{6}}{\delta C_{B}} & \frac{\delta f_{6}}{\delta C_{C}} & \frac{\delta f_{6}}{\delta C_{D}} & \frac{\delta f_{6}}{\delta C_{E}} & \frac{\delta f_{6}}{\delta T_{1}} \end{bmatrix}$$

$$(1.74)$$

Evaluado en el punto de operación resultante de emplear la función solve de Matlab sobre el sistema de ecuaciones en (1.59):

$$X_{eq} = \begin{bmatrix} 0.05225\\ 0.27364\\ 0.00277\\ 0.00230\\ 0.01154\\ 328.18569 \end{bmatrix}$$

$$(1.75)$$

Evaluando este punto de equilibrio en función que representa la planta, se obtiene como valores los presentados en la Figura 1.4, el cual se considera un valor muy cercano a cero.

ans =

-2.8698592549372253612517981865777e-41

-2.58287332944350282512661836792e-41
6.4571833236087570628165459197999e-42
3.1568451804309478973769780052355e-41

-3.1568451804309478973769780052355e-41
-1.8432795376255558133207923309446e-38

Figura 1.4: Resultados al evaluar en la funcion que representa la planta.

En la Figura (1.5) se obtienen los valores para el sistema lineal propuesto en

```
A =
                                                3.4143
     -0.71678
                   0.014939
                                        0
                                                                   0
                                                                       -3.0015e-05
    -0.072058
                   -0.67957
                                        0
                                                 3.4143
                                                                   0
                                                                       -0.00072053
     0.036029
                   0.013759
                                 -0.68075
                                                                        0.00069051
                                                      0
                  -0.028698
                                                -4.0951
                                                                   0
                                                                        -0.0006605
            0
                                        0
            0
                   0.028698
                                        0
                                                3.4143
                                                             -0.68075
                                                                         0.0006605
      -49.183
                    -11.104
                                                 1263.8
                                                             -15.167
                                                                           -0.6197
                                   -16.49
B =
  -9.5542e-07
                -2.6125e-05
  -0.00013682
                 0.00084534
   -1.385e-06
                 -1.385e-06
   6.8595e-06
                  -1.15e-06
   -5.765e-06
                 -5.765e-06
    -0.001637
                  0.0022545
C =
                                                      0
            0
                                   1361.5
                                                                                  0
D =
      0.00277
                    0.00277
```

Figura 1.5: Resultados al evaluar el punto de operación en la linealización.

1.5.3. Análisis de estabilidad

En la Figura 1.6 se observan los valores propios obtenidos a partir de la matriz A obtenida para la linealización. Se observa que todos sus valores son negativos por lo que se garantiza una estabilidad del sistema.

```
eig_valores_A =

-3.7785
-1.0835
-0.56829
-0.68075
-0.68075
-0.68075
```

Figura 1.6: Valores propios obtenidos de la matriz A evaluada en el punto de equilibrio.

Bibliografía

- [1] OHIO University. *Properties of Various Ideal Gases (at 300 K)*. 2020. URL: https://www.ohio.edu/mechanical/thermo/property_tables/gas/idealgas.html (vid. pág. 4).
- [2] Engineering-ToolBox. Methanol Specific Heat. 2018. URL: https://www.engineeringtoolbox.com/methanol-CH30H-specific-heat-capacity-Cp-Cv-isobaric-isochoric-d_2103.html (vid. pág. 4).
- [3] Engineering-ToolBox. Water Specific Heat. 2018. URL: https://www.engineeringtoolbox.com/specific-heat-capacity-water-d_660.html (vid. pág. 4).