Trabajo Práctico 1

Métodos de búsqueda Desinformados e Informados

Britos, Nicolás - 59.529

Griggio, Juan - 59.092

Roca, Agustín - 59.160

Introducción

Objetivos

- Aplicación de métodos de búsqueda desinformados e informados en el juego de Sokoban
- Comparar distintos métodos de búsqueda
- Diseñar y comparar heurísticas

Desarrollo del trabajo

Métodos de búsqueda

Desinformados:

• BFS: óptimo y completo

• DFS: no óptimo y completo

• <u>IDDFS:</u> óptimo y completo

Informados:

 GGS: no óptimo y completo si repite estados

 <u>A*:</u> óptimo si la heurística es admisible y completo si tiene ramificación finita y costo mayor que un ε > 0

<u>IDA*:</u> igual que A*

Siempre usaremos distancia Manhattan:

$$d = |p1.x - p2.x| + |p1.y - p2.y|$$

- Más fácil y rápido de calcular
- No tiene en cuenta obstáculos
 -> estima de menos
- Estima mejor que distancia euclidiana

Mínima suma de distancias de la combinación entre cajas a objetivos distintos

- + (distancia del jugador a la caja más cercana 1)
 - No asigna varias cajas a un mismo objetivo
 - Tiene en cuenta al jugador
 - No tiene en cuenta obstáculos
 - Admisible

Combinación:

- Azul = 3 + 1
- Amarillo = 4 + 0

Mínima(Combinación) = 4

Distancia de jugador a caja más cercana - 1 = 1

$$H_1(N) = 4 + 1 = 5$$

Suma de las distancias de cada caja a su objetivo más cercano no ocupado

- No tiene en cuenta cajas que ya están sobre un objetivo
- Puede asignar dos cajas a un mismo objetivo
- No tiene en cuenta la distancia del jugador a las cajas
- No tiene en cuenta obstáculos
- Admisible

$$H_2(N) = 4$$

Suma de las distancias de cada caja a su objetivo más cercano no ocupado + (distancia del jugador a la caja más cercana - 1)

- No tiene en cuenta cajas que ya están sobre un objetivo
- Puede asignar dos cajas a un mismo objetivo
- Tiene en cuenta la distancia del jugador a las cajas
- No tiene en cuenta obstáculos
- Admisible

$$H_3(N) = 4 + 1 = 5$$

Mapas de prueba

Resultados

Resultados - Tiempos, mapa 1

Resultados - Tiempos, mapa 2

Resultados - Tiempos, mapa 3

Resultados - Movimientos, mapa 1

Resultados - Movimientos, mapa 2

Resultados - Movimientos, mapa 3

Resultados - Nodos expandidos, mapa 1

Resultados - Nodos expandidos, mapa 2

Resultados - Nodos expandidos, mapa 3

Resultados - Nodos en frontera, mapa 1

Resultados - Nodos en frontera, mapa 2

Resultados - Nodos en frontera, mapa 3

Conclusiones

Conclusiones

- GGS y DFS son los más rápidos, pero ninguno de los dos es óptimo
- IDDFS es el más lento
- Al considerar deadlock, la cantidad de nodos expandidos y el tiempo para encontrar la solución disminuyen considerablemente
- La efectividad de las heurísticas elegidas dependen de la geometría del mapa
- Existe un trade-off entre costo de la solución y el tiempo en hallarla