B. Tech. Degree III Semester Regular/Supplementary Examination January 2023

CS/TT 19-202-0303 DISCRETE COMPUTATIONAL STRUCTURES

(2019 Scheme)

Time: 3 Hours

Maximum Marks: 60

Course Outcome

On successful completion of the course, the students will be able to:

- CO1: Use logical notation to define and reason mathematically about the fundamental data types and structures used in computer algorithms.
- CO2: Summarise mathematical notations and concepts in discrete mathematics that is essential for computing.
- CO3: Construct proofs using direct proof, proof by contraposition, proof by contradiction and proof by resolution and by mathematical induction.
- CO4: Familiarise mathematical reasoning and proof strategies,
- CO5: Identify and apply the counting principle.
- CO6: Apply graph theory to solve real world problems.
- CO7: Interpret the conceptual background needed to identify structures of algebraic nature and discover, prove and properties about them.

Bloom's Taxonomy Levels (BL): L1 – Remember, L2 – Understand, L3 – Apply, L4 – Analyze, L5 – Evaluate, L6 – Create

PO - Programme Outcome

	PART A		المالية المالية		
1	(Answer ALL questions) $(8 \times 3 = 24)$	Marks	BL	CO	PO
I. (a)	Show that $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ is a tautology.	3	L2	2.	1,2,3,4, 8
(6)	Consider f, g and h are functions on set of integers. $f(x) = x + 2$, $g(x) = x^2$ and $h(x) = 3x$. Find foh, hog and fogoh.	3	L1	4	1,2,2,3, 4,5, 8
46)	Write an algorithm to find the largest element in a finite sequence.	3	L2	1	1,2,3,4, 8
(d)	What is the minimum number of students required in a class to be sure that atleast six will receive the same grade, if there is five possible grades A, B, C, D and E?	3	L1	5	1,2,3,8
(d)	Find the adjacency and incidence matrix for the following graph.	(3)	L1	6	1,2,3,4, 8

		NA.	Marks	BL	CO	PO
	(f)	Convert the given expression into binary tree $a * b / c \oplus e / f \oplus g \oplus k \ominus x * y$.	,3	L3	6	12,3,4,8
	(g)	Show that set N of natural numbers is a semigroup under the operation $x * y = max(x, y)$.	3	LI	7	12,3,4,8
	(h)	Define lattice and distributive lattice. Write an example for each.	[2 3	L1	7	1,2,3,4, 8
		PART B				
UL/	(a)	$(4 \times 12 = 48)$ Show that $n^3 + 2n$ is divisible by 3 for all $n \ge 1$ using mathematical induction.		L1	3	1,2,3,4, 5, 8 1,2,3,4,
-	(b)	Let $A = \{1, 2, 3, 4\}$ and R be a relation on A given by	6	L4	- 4	1,2,3,4, 5,8
		$R = \{(1, 1), (1, 3), (2, 2), (2, 4), (3, 1), (3, 3), (4, 2), (4, 4)\}.$				3,0
		Check whether R is reflexive, symmetric, transitive and antisymmetric OR				¥ ,
III.	(a)	Use mathematical Induction to prove that $1 + 3 + 5 + \dots + (2n-1) = n^2$ for all $n \ge 1$.	6	Ll	3	1,2,3,4, 5,8
	(b)	Show that the following argument is valid. "If today is Tuesday, then I have a test in mathematics or English. If my English professor is sick, then I will not have a test in English. Today is Tuesday and my English professor is sick. Therefore I have a test in Mathematics".		L2	3.	1,2,2,4, 5, 8
IV.	(a)	Solve the recurrence relation $2a_r - 5a_{r-1} + 2a_{r-2} = 0$ with initial conditions $a_0 = 0$ and $a_1 = 1$.	8	L3	5	1,2,3,8
	(b)	State Pigeon Hole principle. Show that among any 11 numbers there exist atleast two numbers with same unit digit. OR	4	L2	5	1,2,3, 8
Ø.	(a)	Solve the recurrence relation $a_r - 4a_{r-1} + 4a_{r-2} = 0$ with initial conditions $a_0 = 1$ and $a_1 = 6$.	8	L3	5	1,2,3, 8
	(b)	Write a recursive algorithm to find the n th Fibonacci number.	4	L2	1	1,2,3,4,
VI.	(a)	Write Dijkstra's algorithm. Find the shortest path from A to F using the above algorithm.	6	L1	6	1,2,3,4,
	(b)	Determine whether the following graphs are isomorphic or not.	6	L3	3	1,2,3,4,
		WARRENDER WASHING TRINGS OF THE POTT OF A ALL TO THE CONTROL OF THE POTT OF THE CONTROL OF THE C	· s			5,8

PO CO BL Marks 1,2,3,4,8 1 6 LI State Kruskal's algorithm. Find minimum spanning tree of the (a) below given graph using Kruskal's algorithm.

State and explain different tree traversal methods and perform L2 1,2,3,4,8 different tree traversals for the given binary tree.

7 1,2,3,4,8 L3 8 $D_{50} = \{1, 2, 4, 5, 10, 20, 25, 50\}$ and VIII. Consider the set ordering divisibility. Draw the Hasse Diagram and find upper bounds, lower bounds, infimum and supremum of the set $B = \{5, 10\}.$ 7 Consider an algebraic system (G, *) where G is set of all non -zero LI 1,2,3,4,8 4 real numbers and * is a binary operation defined by a*b=(ab)/2. Show that (G, *) is an abelian group. OR L3 7 1,2,3,4,8 Let A be the set of factors of a particular positive integer m and ≤ 8

be the relation divides. Draw a Hasse Diagram for m = 12(i)

L1

7

1,2,3,4,8

(ii) m = 45.

Define a semigroup. Consider an algebraic system (A, *) where (b) $A = \{1, 3, 5, 7, \ldots\}$, the set of all positive odd integers and * is a binary multiplication operation. Determine whether (A, *) is a semigroup.

Blooms's Taxonomy Levels L1 - 39%, L2 - 22%, L3 - 34%, L4 - 5%.