Wednesday Update

Managing Different Image sizes

Current Preprocessing: Removing images smaller than 2KB

Need medical perspective on this threshold

Approach #1: Resize before CNN (perplexity)

- Pro: Very compute **efficient**
- Con: Can make artifacts (upscaling)/hide patterns (downscaling), pre-CNN distortion

Approach #2: Adaptive Pooling (perplexity)

- Pro: moderate compute,compression late in CNN
- Con: Compression proportional to image size, not cell size

Approach #3: FCN U- Net (perplexity)

- Pro: Compression of a single cell is consistent no matter image size
- Con: High compute, difficult and slow training

Better size handling but more compute

Preprocessing

Pytorch

Tensorflow

Pytorch normalizes across
the entire data set, based on
mean and variance values set
for each channel

- TF normalizes image by image, in this case so that the overall image mean pixel value is 0 and variance is 1

```
transforms. Resize(256), for each channel value set image value set transforms. Resize(256), transforms. CenterCrop(224), transforms. ToTensor(), transforms. Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

])
```

```
def preprocess(image_path, label):
    img = tf.io.read_file(image_path)
    img = tf.image.decode_png(img, channels=3) # Renders image into a 8-bit integer tensor and converts to RGB (3-channel)
    img = tf.image.resize(img, [256, 256]) # Resize to 256 x 256 array
    img = tf.image.central_crop(img, central_fraction=224/256) # Crop out center 224 x 224 pixels to finish resizing
    img = tf.cast(img, tf.float32) / 255.0 # Cast each tensor to float type and normalize
    img = tf.image.per_image_standardization(img) # Standardize each image to have mean 0 and variance 1
    return img, label
```

Preprocessing - Visual Differences

Preprocessing - Resizing

Resize

The Resize transform (see also resize()) resizes an image.

resized_imgs = [v2.Resize(size=size)(orig_img) for size in (30, 50, 100, orig_img.size)]
plot([orig_img] + resized_imgs)

- the transform will scale the shorter side of the image to that size while preserving the aspect ratio
- The longer side is resized proportionally so the entire image keeps the same aspect ratio, just smaller or larger overall
- If original images are high resolution, downsampling them so that the shorter side is 256 should still retain enough detail after interpolation
- If original images have very low resolution, then resizing (i.e., upscaling them) to 256 could indeed cause a pixelated effect.

https://pytorch.org/vis ion/main/auto_exam ples/transforms/plot_ transforms illustratio ns.html#sphx-glr-aut o-examples-transfor ms-plot-transforms-ill ustrations-py

+ G

+ P

+ A

+ R

Preprocessing - Padding

Pad +

The Pad transform (see also pad()) pads all image borders with some pixel values.

```
padded_imgs = [v2.Pad(padding=padding)(orig_img) for padding in (3, 10, 30, 50)]
plot([orig_img] + padded_imgs)
```


Padding

- Instead of a CenterCrop, pad the image to preserve the original resolution and avoids clipping details at the edges
- Define a custom transform that pads an image to a square shape without cropping any of the original content, resizing into uniform 224x224 after
- Plan to introduce padding before resizing, maintain the spatial structure of the original image

https://pytorch.org/vis ion/main/auto_exam ples/transforms/plot_ transforms illustratio ns.html#sphx-glr-aut o-examples-transfor ms-plot-transforms-ill ustrations-py

Training Transformation Ideas

Stain Normalization

- Reduce color variability
- Help focus on morphology
- May not be effective on smaller datasets collected from similar labs/sources

Randomized Horizontal Flipping

- Horizontal because vertical will affect epithelium structure, which is important in learning

Randomized Rotations

- Increase variance
- May distort morphological features

Randomized Cropping

- Again, introduces variance
- May eliminate learning epithelium-wide structures, which is important

Class Imbalance

Explains why models are having a hard time predicting the benign class, overfitting

```
# Create PNGDataset instances for train, validation, and test
train_dataset = PNGDataset(train_patches, labels, transform=transform)
val_dataset = PNGDataset(val_patches, labels, transform=transform)
test_dataset = PNGDataset(test_patches, labels, transform=transform)

sum(train_dataset.labels)/len(train_dataset.labels)

0.7442116868798236
```

- Training on 74 % high-grade class images
- Last quarter's model attempted randomoversampler, demonstrated overfitting

- Other techniques to try
 - Weighted Loss Functions and Focal Loss
 - Assigns penalty for misclassifying minority class examples
 - Synthetic Sample Generation:
 - synthetic oversampling methods like SMOTE, create new, diverse minority class examples.

```
def oversample_dataset(dataset):
    # Get all labels from the dataset
    labels = [label for _, label in dataset]

# Initialize RandomOverSampler
    oversampler = RandomOverSampler(random_state=42)

# Resample the indices of the dataset
    resampled_indices, _ = oversampler.fit_resample(np.arange(len(dataset)).reshape(-1, 1), labels)

# Create a new dataset with the resampled indices
    resampled_dataset = [dataset[i[0]] for i in resampled_indices]

    return resampled_dataset

# Apply oversampling to the training dataset
    train_dataset_resampled = oversample_dataset(train_dataset)

# Create DataLoaders using the PNGDataset instances
# benefits of using DataLoaders: num_workers for parallel processing (when one is training other is getting pre
# collate for for padding patches to the same dimensions when there are slight variations despite resizing
```

ML Workflow: Data Collection


```
# #Define filtering function
> def filter(input_folder, output_base_folder): ...
# Define a function to group patches by case number
> def group_patches(patch_dir): ...
# Define a custom dataset class for loading PNG images
> class PNGDataset(Dataset): ...
```

Ng, Frederick & Jiang, Runqing & Chow, James. (2020). Predicting radiation treatment planning evaluation parameter using artificial intelligence and machine learning. IOP SciNotes. 1. 014003. 10.1088/2633-1357/ab805d.

ML Workflow: Preprocessing


```
# Resize all patch images to 256x256
transform = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# Possible data augmentation for training data
train transform = transforms.Compose([
    transforms.RandomResizedCrop(224),
    transforms.RandomHorizontalFlip(),
    transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406],
                         std=[0.229, 0.224, 0.225])
])
```

ML Workflow: Tuning and Validation


```
# Define function to validate the model
def validation(model, criterion, val loader): ...
def save_checkpoint(model, arch, checkpoint_dir, epoch): ...
 # Define Training Function
> def train model(model, optimizer, criterion, train loader, val loader, arch, checkpoint dir, epochs=5, start epoch=0):
 # Loss function and gradient descent
 criterion = nn.CrossEntropyLoss()
 optimizer = optim.Adam(model.fc.parameters(), lr=0.001)
 # Freeze all convolutional layers (optional)
 for param in model.parameters():
     param.requires_grad = False
 # Unfreeze just the final FC layer (optional)
 for param in model.fc.parameters():
     param.requires_grad = True
 # Replace the final fully connected layer
 num classes = 2
 num ftrs = model.fc.in features
 model.fc = nn.Linear(num_ftrs, num_classes)
```

ML Workflow: Evaluation

Model	Accuracy	Notes
DenseNet	0.76	Last Quarter (Margaret) • 7 epochs • Trained everything
AlexNet	0.66	Last Quarter (Nathan) Best of many iterations Not recommended
ResNet50	0.68	Last Quarter (Sharon) • Bad at predicting Benign patches
VGGNet	0.67	This Quarter (Jeffrey) • Slightly better at predicting Benign
ResNet50	0.75	This Quarter (Jeffrey) ■ Added training transformation
EfficientNetB2	0.72	This Quarter (Harvey) ■ Added training transformation

ML Workflow: Next Steps

- Try new patches
- Implement Rohan's preprocessing steps
- Try oversampling
- Different pooling methods
- Additional data augmentation

Things that might not be worthwhile

- Training entire CNN from scratch (not freezing any layers)
- AlexNet
- Oversampling (maybe)

Appendix

EfficientNet Notes

- Pre-trained on ImageNet dataset
- Faster training:
 - "EfficientNet-B0 achieves 77.1% top-1 accuracy on ImageNet with only 5.3M parameters, while ResNet-50 achieves 76.0% top-1 accuracy with 26M parameters. Additionally, the B-7 model performs at par with Gpipe, but with way fewer parameters (66M vs 557M)" viso.ai

EfficientNet Details

- Currently: only training fully-connected layers of ResNet, DenseNet, EfficientNet on our classifications
 - Freezing Convolutional Layer and deep layers to speed up training
 - Parameters of frozen layers are trained on ImageNet images, which may not be the best (strawberries, cars, etc.)

EfficientNet Layers and Trainable Status

