

RED HAT EMEA TECH EXCHANGE VIENNA, AUSTRIA | 23-27 SEPT, 2019

THE POWER OF

Share · Solve · Create

Building data streaming applications with Apache Kafka on OpenShift using AMQ Streams

Paolo Patierno
Principal Software Engineer

Stanislav Knot Software Engineer

apiVersion: redhat/v1 kind: PrincipalSoftwareEngineer metadata: name: Paolo Patierno namespace: Red Hat, Messaging & IoT team annotations: eclipse/committer: Vert.x, Hono & Paho microsoft/mvp: Azure & IoT labels: family: dad of two, husband of one sports: running, swimming, motogp, vr46, ssc napoli spec: replicas: 1 containers: - image: patiernohub.io/paolo:latest

Paolo PatiernoPrincipal Software Engineer

apiVersion: redhat/v1 kind: SoftwareEngineer metadata: name: Stanislav Knot namespace: Red Hat, Messaging & IoT team annotations: activemq/artemis: committer labels: hobbies: 3D graphics, Unity programming, sports spec: replicas: 1 containers: - image: knothub.io/stanislav:latest

Stanislav Knot Software Engineer

Agenda

1. Apache Kafka on OpenShift 3. Apache Kafka Streams

- Challenges
- AMQ Streams operator
- Demo

- Introduction
- Demo

2. Apache Kafka Connect

- Introduction
- Change Data Capture & Debezium
- Demo

4. Apache Kafka HTTP Bridge

- Why? Use cases
- API & endpoints
- Demo

Scenario

Apache Kafka on OpenShift: AMQ Streams

The challenges

& & kafka

A Kafka cluster requires ...

... a stable broker identity and network address

... a way for brokers to discover each other

... durable state and storage recovery

... brokers accessible from clients, directly

... and we also have Zookeeper

OpenShift provides ...

... Statefulsets for stable identity and network
... together with Headless services for discovery
... Services for accessing the cluster
... Secrets and ConfigMaps for configurations
... PersistentVolume and PersistentVolumeClaim
for durable storage

Welcome to Strimzi

Open source project licensed under Apache License 2.0

CNCF Sandbox project

Focuses on running Apache Kafka on Kubernetes and OpenShift

- Container images for Apache Kafka and Apache Zookeeper
- Operators for managing and configuring Kafka clusters, topics or users

Provides Kubernetes-native experience

Kafka cluster, topic and user as Kubernetes custom resources

Red Hat AMQ Streams

Part of the Red Hat AMQ Suite

AMQ Streams on OCP

- Running Apache Kafka on OpenShift Container Platform
- Based on the upstream Strimzi project

AMQ Streams on RHEL

• Running Apache Kafka on "bare metal"

CONFIDENTIAL INTERNAL USE 2019 RED HAT TECH EXCHANGE

Deploy the Apache Kafka cluster, creating topics and users

Apache Kafka Connect & Debezium

Apache Kafka Connect

Framework for transferring data between Kafka and other data systems

Addresses more requirements against using just consumer/producer

- Data conversion (serialization)
- Parallelism/scaling
- Load balancing
- Fault tolerance/failover
- General management

Connector plugins are deployed into Kafka Connect cluster

- Well defined API for creating new connectors (with Sink/Source)
- Apache Kafka itself includes only FileSink and FileSource plugins
- Many additional plugins are available outside of Apache Kafka

Apache Kafka Connect

Debezium

Change Data Capture (CDC) connectors for Kafka Connect

Connects to DB, reads transaction log and publish to Kafka

- Supported DB are MySQL, PostgreSQL, MongoDB and SQL Server
- The Kafka messages can be send for example in JSON format

Makes it easy to integrate DB based applications into Kafka

- No need to write data to DB and send to Kafka
- Use cases like, for example, microservices integration and data replication

Debezium

Debezium- Use cases

- Update or invalidate caches
- Data replication
- Microservices data exchange
- Enable streaming queries
- Update CQRS read models
- Enable full-text search via Elasticsearch, ...

Deploy PostgreSQL, Kafka Connect and Debezium

Apache Kafka Streams

Stream processing

It's a wild west out there

- Streaming data platform
 - Apache Kafka
- Streams processing frameworks
 - Apache Spark (Streaming)
 - Apache Samza
 - Apache Flink
 - 0 ...

Let's use just one

Apache Kafka + Kafka Streams API

Kafka Streams

- Stream processing framework, just a Java lib!
- Streams are Kafka topics (as input and output)
- Scaling the stream application horizontally
- Creates a topology of processing nodes (filter, map, join etc) acting on a stream
 - Low level processor API
 - High level DSL
- Using "internal" topics (when re-partitioning is needed or for "stateful" transformations)

Deploy Kafka Streams application

Apache Kafka HTTP Bridge

Why HTTP to Apache Kafka?

No native Apache Kafka client implementation for your language

- HTTP is pretty simple to use
- Quite often the best choice for mobile applications

All Apache Kafka brokers have to be accessible from clients

- For security reasons you wouldn't want that
- Using a more controlled HTTP "single" entry point

IoT solutions

- Constrained devices, too many TCP connections to Apache Kafka
- "Always on" connection doesn't save battery
- Just send/receive when needed with HTTP

HTTP bridge

- In Tech Preview in AMQ Streams 1.2, GA in 1.3 (in October)
- Available on RHEL and on OCP
 - On OCP deployed through the Cluster Operator
 - On RHEL installed and configured manually
- Used to access Apache Kafka using HTTP REST API
 - Tries to maintain compatibility with the Confluent REST proxy
 - Implements only selected features (for now!)
- AMQP bridge (part of the same upstream code) is not supported!

Deployed by Cluster Operator

HTTP bridge - Producers

- The Bridge allows to produce and consume messages
 - Supported formats are JSON and Binary
 - JSON messages can be produced and consumed directly
 - Binary messages can be used also for other formats such as String, it will just be Base64 encoded
- Producers are mostly straight forward
 - o POST to /topics/{topicname}
 - Content-Type header is important

HTTP bridge - Consumers

- Consumers are more complicated
- They are stateful
 - Create a consumer with a POST to /consumers/{groupid}
 - Subscribe to topics with a POST to /consumers/{groupid}/instances/{name}/subscription
 - Consume messages with a GET to /consumers/{groupid}/instances/{name}/records
 - o Delete the consumer with a DELETE to /consumers/{groupid}/instances/{name}
- The statefulness is needed to handle the consumer groups, rebalances etc.
- But it makes scaling complicated
 - For consumers, only 1 replica should be used
 - Multiple separate and independent bridges can be setup to scale

HTTP bridge - Security

- Connecting to Kafka supports our standard set of protocols
 - o mTLS, SASL-SCRAM-SHA, SASL-PLAIN
- The HTTP interface is currently unsecured
 - No encryption (TLS), no authentication
 - API Gateways (3Scale)
 - Network policies
- More security features will be planned for the next releases

Deploy the Kafka HTTP bridge and devices

Bonus module:
IoT dashboard
with InfluxDB
and Grafana

IoT dashboard

- InfluxDB
 - o ... as time-series database for ingested data
 - o ... as datasource for a Grafana dashboard
- Apache Camel based application for "routing" ingested and enriched data to the InfluxDB database

Deploy InfluxDB and Apache Camel application

Resources

- AMQ Streams: https://access.redhat.com/products/red-hat-amg#streams
- Strimzi: https://strimzi.io
- Debezium: https://debezium.io/
- Apache Kafka: https://kafka.apache.org/
- CNCF Sandbox projects: https://www.cncf.io/sandbox-projects/
- Workshop: https://github.com/ppatierno/rhte-2019

Code for Attendance + Session Survey

REGION - TIME

- In the mobile app, go to the My
 Attendance page by clicking "More" at the bottom navigation bar
- 2. On the *My Attendance* page, please enter the below PIN code in the designated box

MGDK

3. Tap Save to submit your PIN

Thank you

Red Hat is the world's leading provider of enterprise open source software solutions. Award-winning support, training, and consulting services make Red Hat a trusted adviser to the Fortune 500.

