Inference of **gene regulatory networks** from scRNA-Seq data benefits from prior knowledge.

A graph structured prior can be incorporated using graph autoencoders.

Scan to download a digital copy of the poster.

Institute of Epigenetics and Stem Cells Institute of Computational Biology

Institute of Functional Epigenetics

Introduction

Genes are interacting in complex network structures. The computational reconstruction of such Gene Regulatory Networks (GRN) in the representation of graphs from sequencing data, remains a very important and challenging task. While individual gene interactions may be experimentally detected and validated by, e.g., knockout experiments, this approach lacks the scalability to infer large interaction networks

References

[1] T. N. Kipf, M. Welling, Variational Graph Auto-Encoders, NIP Workshop on Bayesian Deep Learning (2016)

[2] M. Stone et al, Identifying strengths and weaknesses of methods for computational network inference from single cel RNA-seq data (2021)

[3] J. Wang et al, Inductive inference of gene regulatory network using supervised and semi-supervised graph neural networks, Computational and structural biotechnology journal (2020)

Methodology

Here we use a Variational Graph Autoencoder (VGAE) to complete partly known GRNs borrowing information from RNA sequencing data sets. This selfsupervised machine learning method uses a given incomplete GRN as prior knowledge to better predict missing gene interactions.

The model is based on the graph autoencoder proposed by T. Kipf 2016:

- Encoder: two layers of graph convolutional layers (GCN)
- Decoder: simple dot product
- Loss function: crossentropy loss of the resulting adjacency matrix to the prior knowledge graph

Results

The model outperforms methods that don't use prior knowledge.
For the benchmarked DREAM5 data sets it achieved comparable performance to the GRGNN method by Wang et al 2020.

Dataset	Species	Cell type	Benchmark Algorithm	Prior knowledge	Test set	Benchmark AUPR	AUPR [0-1]
Gasch et al 2017	Yeast		SCODE	GAE: 99%		0.06	0.2
Jackson et al 2020	Yeast		Pearson			0.04	0.32
Tran et al 2019 (A2S)	Mouse	ESC	SILGGM	Benchmark: 0%	imbalanced	0.1	0.45
Tran et al 2019 (FBS)	Mouse	ESC	SILGGM			0.1	0.42
Dataset	Species	Cell type	Benchmark Algorithm	Prior knowledge	Test set	Benchmark AUROC	AUROC [0-1]
DREAM5 challenge Marbach et. al. 2012	E. coli		GRGNN Wang et al 2020	67%	balanced	0.9	0.88
	Yeast					0.88	0.85

${\bf Acknowledgement}$

Marco Stock is supported by the Helmholtz Association under the joint research school "Munich School for Data Science - MUDS".

VI

Self-supervised completion of gene regulatory networks using graph autoencoders

4UOS TLM