CSER 2207: Numerical Analysis

Lecture-8 Interpolation and Polynomial Approximation

Dr. Mostak Ahmed
Associate Professor
Department of Mathematics, JnU

Forward Difference

If $y_0, y_1, y_2, ..., y_n$ denote a set of values of y, then $y_1 - y_0, y_2 - y_1, ..., y_n - y_{n-1}$ are called the *differences* of y. Denoting these differences by $\Delta y_0, \Delta y_1, ..., \Delta y_{n-1}$ respectively, we have

$$\Delta y_0 = y_1 - y_0, \qquad \Delta y_1 = y_2 - y_1, ..., \qquad \Delta y_{n-1} = y_n - y_{n-1},$$

where Δ is called the forward difference operator and $\Delta y_0, \Delta y_1, ...,$ are called first forward differences. The differences of the first forward differences

$$\Delta^{2} y_{0} = \Delta y_{1} - \Delta y_{0} = y_{2} - y_{1} - (y_{1} - y_{0})$$

$$= y_{2} - 2y_{1} + y_{0},$$

$$\Delta^{3} y_{0} = \Delta^{2} y_{1} - \Delta^{2} y_{0} = y_{3} - 2y_{2} + y_{1} - (y_{2} - 2y_{1} + y_{0})$$

$$= y_{3} - 3y_{2} + 3y_{1} - y_{0}$$

$$\Delta^{4} y_{0} = \Delta^{3} y_{1} - \Delta^{3} y_{0} = y_{4} - 3y_{3} + 3y_{2} - y_{1} - (y_{3} - 3y_{2} + 3y_{1} - y_{0})$$

$$= y_{4} - 4y_{3} + 6y_{2} - 4y_{1} + y_{0}.$$

Newton's Forward Difference Interpolation Formula

Given the set of (n+1) values, viz., (x_0, y_0) , (x_1, y_1) , (x_2, y_2) ,..., (x_n, y_n) , of x and y, it is required to find $y_n(x)$, a polynomial of the nth degree such that y and $y_n(x)$ agree at the tabulated points. Let the values of x be equidistant, i.e. let

$$x_i = x_0 + ih$$
, $i = 0, 1, 2, ..., n$.

Since $y_n(x)$ is a polynomial of the nth degree, it may be written as

$$y_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + a_3(x - x_0)(x - x_1)(x - x_2) + \cdots + a_n(x - x_0)(x - x_1)(x - x_2) + \cdots$$
(3.9)

9/23/2022

Cont...

Imposing now the condition that y and $y_n(x)$ should agree at the set of tabulated points, we obtain

$$a_0 = y_0; \ a_1 = \frac{y_1 - y_0}{x_1 - x_0} = \frac{\Delta y_0}{h}; \ a_2 = \frac{\Delta^2 y_0}{h^2 2!}; \ a_3 = \frac{\Delta^3 y_0}{h^3 3!}; \dots; \ a_n = \frac{\Delta^n y_0}{h^n n!};$$

Setting $x = x_0 + ph$ and substituting for $a_0, a_1, ..., a_n$, Eq. (3.9) gives

$$y_n(x) = y_0 + p\Delta y_0 + \frac{p(p-1)}{2!}\Delta^2 y_0 + \frac{p(p-1)(p-2)}{3!}\Delta^3 y_0 + \cdots$$

$$+\frac{p(p-1)(p-2)...(p-n+1)}{n!}\Delta^{n}y_{0},$$
(3.10)

which is Newton's forward difference interpolation formula and is useful for interpolation near the beginning of a set of tabular values.

Newton's Backward Difference Interpolation Formula

Instead of assuming $y_n(x)$ as in (3.9) if we choose it in the form

$$y_n(x) = a_0 + a_1(x - x_n) + a_2(x - x_n)(x - x_{n-1}) .$$

$$+ a_3(x - x_n)(x - x_{n-1})(x - x_{n-2}) + \cdots$$

$$+ a_n(x - x_n)(x - x_{n-1})...(x - x_1).$$

and then impose the condition that y and $y_n(x)$ should agree at the tabulated points $x_n, x_{n-1}, ..., x_2, x_1, x_0$, we obtain (after some simplification)

$$y_n(x) = y_n + p\nabla y_n + \frac{p(p+1)}{2!}\nabla^2 y_n + \dots + \frac{p(p+1)\dots(p+n-1)}{n!}\nabla^n y_n,$$
 (3.14)

where $p = (x - x_n)/h$.

This is Newton's backward difference interpolation formula and it uses tabular values to the left of y_n . This formula is therefore useful for interpolation near the end of the tabular values.

Example

Example 3.4 Find the cubic polynomial which takes the following values: y(1) = 24, y(3) = 120, y(5) = 336, and y(7) = 720. Hence, or otherwise, obtain the value of y(8).

We form the difference table:

Here h = 2. With $x_0 = 1$, we have x = 1 + 2p or p = (x - 1)/2. Substituting this value of p in Eq. (3.10), we obtain

$$y(x) = 24 + \frac{x-1}{2}(96) + \frac{\left(\frac{x-1}{2}\right)\left(\frac{x-1}{2}-1\right)}{2}(120) + \frac{\left(\frac{x-1}{2}\right)\left(\frac{x-1}{2}-1\right)\left(\frac{x-1}{2}-2\right)}{6}(48)$$
$$= x^3 + 6x^2 + 11x + 6.$$

To determine y(8), we observe that p = 7/2. Hence, formula (3.10) gives:

$$y(8) = 24 + \frac{7}{2}(96) + \frac{(7/2)(7/2 - 1)}{2}(120) + \frac{(7/2)(7/2 - 1)(7/2 - 2)}{6}(48) = 990.$$

Extrapolation

Note: This process of finding the value of y for some value of x outside the given range is called extrapolation and this example demonstrates the fact that if a tabulated function is a polynomial, then both interpolation and extrapolation would give exact values.

9/23/2022

Example

Example 3.6 Values of x (in degrees) and $\sin x$ are given in the following table:

x (in degrees)	$\sin x$		
15	0.2588190		
20	0.3420201		
25	0.4226183		
30	0.5		
35	0.5735764		
40	0.6427876		

Determine the value of sin 38°.

Solution

The	difference t	able is				•
X	sin X	Δ	Δ ²	Δ ³	· 4	Δ^5
15	0.2588190	0.0832011				-
20	0.3420201	0.0805982	-0.0026029	-0.0006136		
25	0.4226183	0.0773817	-0.0032165	-0.0005888	0.0000248	0.00000
30	0.5	0.0735764	-0.0038053	-0.0005599	0.0000289	0.000004
35	0.5735764	0.0692112	-0:0043652	-0.0003399		
40	0.6427876	0.0002112				

Cont...

To find sin 38°, we use Newton's backward difference formula with $x_n = 40$ and x = 38. This gives

$$p = \frac{x - x_n}{h} = \frac{38 - 40}{5} = -\frac{2}{5} = -0.4.$$

Hence, using formula (3.14), we obtain

$$y(38) = 0.6427876 - 0.4 (0.0692112) + \frac{-0.4(-0.4 - 1)}{2} (-0.0043652)$$

$$+ \frac{(-0.4)(-0.4 + 1)(-0.4 + 2)}{6} (-0.0005599)$$

$$+ \frac{(-0.4)(-0.4 + 1)(-0.4 + 2)(-0.4 + 3)}{24} (0.0000289)$$

$$+ \frac{(-0.4)(-0.4 + 1)(-0.4 + 2)(-0.4 + 3)(-0.4 + 4)}{120} (0.0000041)$$

$$= 0.6427876 - 0.02768448 + 0.00052382 + 0.00003583$$

$$-0.00000120$$

$$= 0.6156614.$$

Thank You