ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 21 luglio 2016

Esercizio A

$R_1 = 2 \text{ k}\Omega$	$R_{10}=3\ k\Omega$	V _{cc} ↑ V _{cc} ↑	
$R_2 = 7 \text{ k}\Omega$	$R_{11} = 4 \text{ k}\Omega$	$R_1 \geqslant R_3 \geqslant V_{cc} \uparrow V_{cc}$	
$R_4=850\;\Omega$	$R_{12} = 50 \Omega$	C_1 C_2 C_3 C_4 C_5	
$R_5 = 3200 \Omega$	$R_{13} = 50 \text{ k}\Omega$	Q_1 R_7 Q_2 Q_3	
$R_6 = 5900 \Omega$	$C_1 = 10 \text{ nF}$	V_1 \downarrow $R_2 \geqslant R_4 \geqslant$ R_6 \downarrow R_6 \downarrow R_{12} \downarrow R_{12}	-
$R_7 = 100 \Omega$	$C_2 = 15 \text{ nF}$	R_{9} R_{13}	+ V _u
$R_8 = 10 k \Omega$	$C_3 = 33 \text{ nF}$		חלות
$R_9 = 55 \ k\Omega$	$V_{CC} = 18 \text{ V}$		

 Q_1 è un transistore BJT BC179A resistivo con $h_{re} = h_{oe} = 0$; per gli altri parametri forniti dal costruttore si utilizzino i valori tipici o, in loro assenza, i valori massimi; Q_2 è un transistore MOS a canale n resistivo, con la corrente di drain in saturazione data da $I_{DS} = k(V_{GS} - V_T)^2$ con k = 0.5 mA/ V^2 e $V_T = 1V$. Con riferimento all'amplificatore in figura:

- 1) Calcolare il valore della resistenza R_3 in modo che, in condizioni di riposo, la tensione sul drain di Q_2 sia 12 V; si ipotizzi di trascurare la corrente di base di Q_1 rispetto alla corrente che scorre nella resistenza R_1 . Determinare, inoltre, il punto di riposo dei transistori e verificare la saturazione di Q_2 . (R: $R_3 = 1650 \,\Omega$)
- 2) Determinare V_U/V_i alle frequenze per le quali C_1 , C_2 e C_3 possono essere considerati dei corto circuiti. (R: $V_U/V_i = -1.22$)
- 3) (<u>Solo per 12 CFU</u>) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: f_{z1} =0 Hz; f_{p1} =10268 Hz; f_{z2} =1798 Hz; f_{p2} =2700 Hz; f_{z3} =0 Hz; f_{p3} =95.5 Hz)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \left(\overline{\overline{A} + B}\right)\left(\overline{C} + \overline{D} E\right) + \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} \overline{D} E$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori.

Esercizio C

$R_1 = 50 \Omega$	$R_5 = 1 \text{ k}\Omega$
$R_2 = 100 \Omega$	$R_6 = 2 \text{ k}\Omega$
$R_3 = 8950 \Omega$	C = 220 nF
$R_4 = 1 \text{ k}\Omega$	$V_{CC} = 6 V$

Il circuito IC_1 è un NE555 alimentato a \mathbf{V}_{CC} = $\mathbf{6V}$; Q_1 ha una R_{on} = 0 e V_T = 1V; Q_2 e Q_3 hanno una R_{on} = 0 e V_T = -1V; l'inverter è ideale. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: f = 8406 Hz)