

Algebra II Übungsblatt 3

Abgabe: 08.05.2020 bis 12:15 per email an algebra2@math.uni-hannover.de

Aufgabe 3.1 (3+4+3 Punkte)

Jeder Gruppe G kann man nach dem Lemma 1.17 die abelsche Gruppe $G^{ab} := G/K(G)$ zuordnen, wobei K(G) := [G, G] die Kommutatoruntergruppe von G ist.

- (a) Beweisen Sie: Ist $f: G \to H$ ein Gruppenhomomorphismus, so gibt es einen eindeutig bestimmten induzierten Gruppenhomomorphismus abelscher Gruppen $f^{ab}: G^{ab} \to H^{ab}$. (**Tipp:** Benutzen Sie das Lemma 1.23!)
- (b) Beweisen Sie: Für den induzierten Gruppenhomomorphismus gilt:
 - (i) $(\mathrm{id}_G)^{ab} = \mathrm{id}_{G^{ab}}$.
 - (ii) $(g \circ f)^{ab} = g^{ab} \circ f^{ab}$ für zwei Gruppenhomomorphismen $f: G \to H$ und $g: H \to K$.
- (c) Beweisen Sie: Ist der Gruppenhomomorphismus $f: G \to H$ surjektiv, so ist auch der induzierte Gruppenhomomorphismus $f^{ab}: G^{ab} \to H^{ab}$ surjektiv.

Aufgabe 3.2 (5+5 Punkte)

- (a) Beweisen Sie, dass die Gruppe S_4 auflösbar ist. (Tipp: Betrachten Sie eine Kette von Untergruppen, für die die Eigenschaften wie in Satz 1.22 erfüllt sind.)
- (b) Sei K ein Körper und $B(3,K) \subset GL(3,K)$ die Gruppe der invertierbaren oberen Dreiecksmatrizen. Beweisen Sie, dass B(3, K) auflösbar ist.

Aufgabe 3.3 (2+2+1+2+3 Punkte)

Sei $f(x) \in \mathbb{Q}[x]$ vom Grad n mit einfachen Nullstellen $\alpha_1, \dots, \alpha_n$ im Zerfällungskörper E, Δ_f die Diskriminante von f(x) und $\sqrt{\Delta_f} := \prod_{1 \le i < j \le n} (\alpha_i - \alpha_j)$. Das Element $\sigma \in \operatorname{Gal}(f(x); \mathbb{Q})$ entspreche der Permutation $\pi_{\sigma} \in S_n$ der Indizes der Nullstellen, d.h. $\sigma(\alpha_i) = \alpha_{\pi_{\sigma}(i)}$ für alle i.

(a) Beweisen Sie: Es gilt $\sigma(\sqrt{\Delta_f}) = \operatorname{sign}(\pi_\sigma) \sqrt{\Delta_f}$.

Identifiziere nun $Gal(f(x); \mathbb{Q})$ mit der entsprechenden Untergruppe von S_n .

- (b) Beweisen Sie: Es gilt $Fix(E, Gal(f(x); \mathbb{Q}) \cap A_n) = \mathbb{Q}(\sqrt{\Delta_f})$.
- (c) Folgern Sie aus (b): $\sqrt{\Delta_f} \in \mathbb{Q} \Leftrightarrow \operatorname{Gal}(f(x); \mathbb{Q})$ ist Untergruppe von A_n .
- (d) Beweisen Sie: Ist f(x) irreduzibel und vom Grad 3, so ist $Gal(f(x); \mathbb{Q}) \in \{\mathbb{Z}_3, S_3\}$ und $Gal(f(x); \mathbb{Q}) \cong$ $\mathbb{Z}_3 \Leftrightarrow \sqrt{\Delta_f} \in \mathbb{Q}.$
- (e) Bestimmen Sie $Gal(f(x); \mathbb{Q})$ für

(i)
$$f(x) = x^3 - 3x + 1$$
. (ii) $f(x) = x^3 - 3x + 2$. (iii) $f(x) = x^3 + 6x + 2$.

(ii)
$$f(x) = x^3 - 3x + 2$$
.

(iii)
$$f(x) = x^3 + 6x + 2$$
.

Aufgabe 3.4 (10 Punkte)

Sei K ein Körper, $n \in \mathbb{N}$ mit ggt(n, char(K)) = 1 und w die Anzahl der n-ten Einheitswurzeln in K. Beweisen Sie: Für $f(x) = x^n - a \in K[x]$ gilt:

$$Gal(f(x); K)$$
 ist abelsch \Leftrightarrow Es gibt ein $b \in K$ mit $b^n = a^w$.