ADVANCED PLACEMENT CHEMISTRY EQUATIONS AND CONSTANTS

ATOMIC STRUCTURE

$$E = hv$$
 $c = \lambda v$
 $\lambda = \frac{h}{mv}$ $p = mv$
 $E_n = \frac{-2.178 \times 10^{-18}}{n^2}$ joule

EQUILIBRIUM

$$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]}$$

$$K_{b} = \frac{[OH^{-}][HB^{+}]}{[B]}$$

$$K_{w} = [OH^{-}][H^{+}] = 1.0 \times 10^{-14} @ 25^{\circ}C$$

$$= K_{a} \times K_{b}$$

$$pH = -\log [H^{+}], pOH = -\log [OH^{-}]$$

$$14 = pH + pOH$$

$$pH = pK_{a} + \log \frac{[A^{-}]}{[HA]}$$

$$pOH = pK_{b} + \log \frac{[HB^{+}]}{[B]}$$

$$pK_{a} = -\log K_{a}, pK_{b} = -\log K_{b}$$

$$K_{p} = K_{c}(RT)^{\Delta n},$$

where Δn = moles product gas - moles reactant gas

THERMOCHEMISTRY/KINETICS

$$\Delta S^{\circ} = \sum S^{\circ} \text{ products } -\sum S^{\circ} \text{ reactants}$$

 $\Delta H^{\circ} = \sum \Delta H_{f}^{\circ} \text{ products } -\sum \Delta H_{f}^{\circ} \text{ reactants}$
 $\Delta G^{\circ} = \sum \Delta G_{f}^{\circ} \text{ products } -\sum \Delta G_{f}^{\circ} \text{ reactants}$

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$
$$= -RT \ln K = -2.303 RT \log K$$
$$= -n \mathcal{F} E^{\circ}$$

$$\Delta G = \Delta G^{\circ} + RT \ln Q = \Delta G^{\circ} + 2.303 RT \log Q$$

$$q = mc\Delta T$$

$$C_p = \frac{\Delta H}{\Delta T}$$

$$\ln[A]_{t} - \ln[A]_{0} = -kt$$

$$\frac{1}{[A]_{t}} - \frac{1}{[A]_{0}} = kt$$

$$\ln k = \frac{-E_a}{R} \left(\frac{1}{T}\right) + \ln A$$

$$E = \text{energy}$$
 $v = \text{velocity}$

$$v =$$
frequency $n =$ principal quantum number

$$\lambda$$
 = wavelength m = mass

$$p = momentum$$

Speed of light,
$$c = 3.0 \times 10^8 \,\mathrm{m \, s^{-1}}$$

Planck's constant,
$$h = 6.63 \times 10^{-34} \text{ J s}$$

Boltzmann's constant,
$$k = 1.38 \times 10^{-23} \text{ J K}^{-1}$$

Avogadro's number =
$$6.022 \times 10^{23} \text{ mol}^{-1}$$

Electron charge,
$$e = -1.602 \times 10^{-19}$$
 coulomb

1 electron volt per atom = 96.5 kJ mol^{-1}

Equilibrium Constants

 K_a (weak acid)

 K_b (weak base)

 K_w (water)

 K_p (gas pressure)

 K_c (molar concentrations)

 S° = standard entropy

 H° = standard enthalpy

 G° = standard free energy

 E° = standard reduction potential

T = temperature

n = moles

m = mass

q = heat

c = specific heat capacity

 C_n = molar heat capacity at constant pressure

 E_a = activation energy

k = rate constant

A =frequency factor

Faraday's constant, $\mathcal{F} = 96,500$ coulombs per mole of electrons

Gas constant,
$$R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$$

= 0.0821 L atm mol⁻¹ K⁻¹
= 8.31 volt coulomb mol⁻¹ K⁻¹