

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

A01N 43/08, A61K 31/365, C02F 1/50

(11) International Publication Number:

WO 99/27786

A1 |

(43) International Publication Date:

10 June 1999 (10.06.99)

(21) International Application Number:

PCT/GB98/03548

(22) International Filing Date:

26 November 1998 (26.11.98)

(30) Priority Data:

9725599.6

4 December 1997 (04.12.97) GB

(71) Applicant (for all designated States except US): THE UNI-VERSITY OF NOTTINGHAM [GB/GB]; University Park, Nottingham NG7 2RD (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): RYCROFT, Barrie, Walsham [GB/GB]; 14 The Cloisters, Salthouse Lane, Beeston, Nottingham NG9 2SR (GB). FISH, Leigh [GB/GB]; 131A North Street, Bedminster, Bristol BS3 1EY (GB). HOPE, Victoria, Jane [GB/GB]; 5 Roxburgh Place, Beeston, Nottingham NG9 2HS (GB). LYNCH, Martin, John [GB/GB]; 19 Williamwood Park West, Netherlee, Glasgow G44 3TE (GB). MILTON, Debra, Lynn [US/SE]; Motorbatsvagen 36, S-907 88 Taftea (SE). SWIFT, Simon [GB/GB]; 8 Peartree Avenue, Shepshed, Leicestershire LE12 9JN (GB). STEWART, Gordon, Sydney, Anderson, Birnie [GB/GB]; 14 James Avenue, Loughborough, Leicestershire LE11 5QL (GB). WILLIAMS, Paul [GB/GB]; 67 Gunnersbury Way, Nuthall, Nottingham NG16 1QD (GB).

(74) Agent: STEVENS, Ian, Edward; Stevens Hewlett & Perkins, 1 St. Augustine's Place, Bristol BS1 4UD (GB).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: CONTROL OF BIOFILM FORMATION

(57) Abstract

Compounds of formula (I) wherein n is 2 or 3; Y is O, S or NH; X is O, S or NH; and R is C₁-C₁₈ alkyl or acyl, which may be substituted, may be used in the treatment or prevention of a bacterial infection in humans or animals by control of colonisation. The com-

pounds may also be employed to remove biofilms from surfaces and are therefore useful in antibacterial articles and compositions.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	_	
	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
	Cuba	KZ	Kazakstan	RO	Romania		
	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		
EE	Estonia	LR	Liberia	SG	Singapore		

CONTROL OF BIOFILM FORMATION

This invention relates to the control of biofilm formation. In one aspect, the invention relates to the use of a group of compounds for treating and/or preventing bacterial infections in humans or animals by control of biofilm formation. The invention also relates to a method of removing a biofilm from a surface, to antibacterial compositions and to articles coated and/or impregnated with a compound which inhibits and/or prevents biofilm formation.

The treatment and prevention of bacterial infections are important in many different areas. For example, in seawater culture of salmonids, the bacterial infections vibriosis and furunculosis are the most important diseases in many parts of the world. Cold-water vibriosis is also of great significance in Atlantic salmon in regions with low water temperatures. Disease-control is possible by good husbandry practices, disease-resistance stock, improved diets, non-specific immunostimulants, antimicrobial compounds and vaccines. Current procedures are not without limitations however, for example there are problems of temporary immunosuppression following vaccination against Aeromonas salmonicida infection. Empirical observations have indicated that immunosuppression persists for some time after vaccination, rendering fish, especially subclinical carriers of A. salmonicida, highly vulnerable to bacterial invasion. The use of antibiotics such as amoxycillin as a control measure for furunculosis may contribute significantly to the spread of multiple antibiotic resistance in bacteria, and because of growing concern over the impact of these on the clinical treatment of disease, the use of such antibiotics in agriculture is likely to be highly restricted by future

legislation. Thus, the development of significant improvements in vibriosis and furunculosis disease control remains a major priority in aquaculture. A new understanding of the molecular biology of bacterial cell-cell communication has identified a novel method for the control of *Aeromonas* spp and *Vibrio anguillarum*, key targets in vibriosis and furunculosis disease control.

In recent years it has become evident that many different Gramnegative bacteria employ N-acylhomoserine lactones (AHLs) as diffusible signal molecules ("pheromones") as part of a cell-cell communication system that facilitates the induction of genetic regulons only when a significant population of cells has accumulated. Now termed "quorum sensing", this signal transduction pathway is involved in the regulation of diverse physiological processes including bioluminescence, swarming, antibiotic biosynthesis, plasmid conjugal transfer and the production of exoenzyme virulence determinants in animal and plant pathogens (Salmond et al., Mol. Microbiol. 16: 615-624, 1995; Swift et al., Trends Biochem Sci. 21: 214-219, 1996). The archetypal model for quorum sensing is the lux operon which confers a bioluminescent phenotype on Photobacterium (Vibrio) fischeri. Light emission in P. fischeri is regulated at the transcriptional level via the LuxR and LuxI proteins. LuxR is a transcriptional activator which responds to the pheromone N-(3-oxohexanoyl)-Lhomoserine lactone (OHHL), the biosynthesis of which is dependent on the function of the luxl gene product (Sitnikov et al., Mol.Microbiol. 17, 801-812, 1995). In other Gram-negative bacteria, a family of LuxRI homologues has now been identified alongside a "molecular language" of AHLs which vary predominantly in the

presence or absence of an acyl chain C3 substituent (oxo-or hydroxy-) and length of the *N*-acyl side chain.

An indication of a role for AHLs in pathogenesis has come from studies of the opportunistic pathogen *Pseudomonas aeruginosa*. *P. aeruginosa* secretes many extracellular toxic factors including exotoxins and various tissue damaging exoenzymes including alkaline protease and elastase. All of these virulence determinants are regulated via quorum sensing (Williams et al., In Molecular biology of Pseudomonads, Eds. Nakazawa et al, p. 195-206, ASM Press, Washington, USA, 1996). Thus far, two LuxR homologues (LasR and VsmR[RhIR]) and two LuxI homologues (LasI and VsmII) have been described in *P. aeruginosa* PAO1 and their cognate signal molecules *N*-(3-oxododecanyI)-L-homoserine lactone (OdDHL) and *N*-butanoyI-L-homoserine lactone (BHL) chemically characterized. Both regulatory loci are involved in the expression of alkaline protease and elastase.

Spent culture supernants from both *Aeromonas hydrophila* and *Aeromonas salmonicida* activate a range of biosensors responsive to AHLs. The genes for a quorum sensing signal generator and response regulator have been cloned and termed *ahyRl* and *asaRl* respectively. Protein sequence homology analysis placed the gene products within the family of LuxRl homologues (Swift et al., <u>J Bacteriol</u>. 197, 5271-5281, 1979). *N*-(butanoyl)-L-homoserine lactone (BHL) is identified as the major AHL synthesized. When introduced into *E. coli*, both Ahyl and Asal direct BHL synthesis.

Transcriptional reporter studies with ahl::luxCDABE fusions indicate that AhyR and BHL are required for ahyl transcription. The serine

protease activity of A. salmonicida has been identified as a phenotype controlled by the asaRI quorum sensing regulon. Provision of exogenous BHL increases final levels of serine protease activity and promotes its earlier induction during the growth phase. When either N-decanoyl-L-homoserine lactone (DHL) or N-(3-oxohexanoyl)-L-homoserine lactone (ODHL) is added, the final activity of the serine protease is reduced. ODHL also delayed the induction of serine protease during growth from A_{650} 0.9 to A_{650} 1.2.

Many species of bacteria require the formation of a biofilm in order to colonise a surface, for example during the early stages of infection. The biofilm comprises the bacterial cells embedded within a sticky matrix of a mucoid substance known as "slime". It is now widely accepted that following the initial attachment phase, the second stage of infection by bacteria involves slime production and biofilm formation. The slime typically consists mainly of polysaccharides with about 10-20% proteins and probably stabilises the biofilms by promoting bacterial cell-to-cell and cell-to-surface associations so that multi-layered cell clusters accumulate on the infected surface. This sticky matrix helps the bacteria to survive, allowing them to feed and, where the surface is on a living human or animal, to interfere with host cellular defences and antibody production. Once formed, biofilms can be difficult to remove from a surface.

Unexpectedly, we have now found that quorum sensing is a major regulator of biofilm control and that quorum sensing blockers can therefore be used to prevent and/or inhibit biofilm formation. Also, the quorum sensing blockers are effective in removing, or substantially decreasing the amount of, biofilms which have already

formed on a surface. This is a new approach to dealing with bacterial infections.

Accordingly, the present invention provides the use of a compound of formula (I):

$$R \xrightarrow{NH} Y$$

$$X$$

$$(I)$$

wherein: n is

n is 2 or 3

Y is O, S or NH

X is O, S or NH

and R is C₁-C₁₈ alkyl or acyl which may be substituted,

in the manufacture of a medicament for the treatment and/or prevention of a bacterial infection in humans or animals by control of colonisation. A key feature of the control of colonisation is the control of biofilm formation.

The invention also contemplates a method for treating and/or preventing a bacterial infection in a human or an animal comprising administering to the human or animal a therapeutically effective amount of a compound of formula (I).

For a given type of bacteria, the precise compound or compounds of formula (I) which is/are suitable for treating and/or preventing the

infection by controlling biofilm formation can be readily determined by the skilled person using nothing more than routine experminentation based on trial and error. For example, although a given compound of formula (I) may act as a quorum sensing molecule for a certain strain of bacteria, it may act as a quorum sensing blocker for other strains. It is the compounds which act as quorum sensing blockers in a given strain of bacteria which inhibit or prevent biofilm formation by that strain and, therefore, it is these compounds which are useful in the treatment of infection by that bacterium. As mentioned above, the identification of a suitable compound for treating and/or preventing infection by a given bacterium is a routine matter.

The preferred compounds of formula (I) are those in which Y is O, X is O, n is 2 and R is acyl. More preferably, R carries a keto or hydroxy group, suitably in the 3-position (i.e., the beta-position when R is acyl).

The term "alkyl" as used herein covers branched and unbranched, but preferably unbranched, alkyl groups, optionally substituted, preferably by an oxo or hydroxy group. The term "acyl" is defined in a corresponding manner.

The compounds used in the invention contain at least one chiral centre and they may be employed as a pure enantiomer, an optically active mixture of enantiomers or a racemic mixture.

Compounds of formula (I) in which R is a C_8 - C_{18} group (such as a C_8 to C_{18} acyl group) have been found to be particularly effective as controllers of biofilm formation. For example, N-(3-oxodecanoyl)-L-

homoserine lactone (ODHL) significantly antagonises the formation of biofilms by *Aeromonas hydrophila*. The compounds with longer chain lengths than ODHL are believed to have increased potency. Particularly preferred are compounds having chain lengths of 12 to 14 carbon atoms, such as *N*-(3-oxododecanoyl)-L-homoserine lactone and *N*-(3-oxotetradecanoyl)-L-homoserine lactone; these longer chain compounds not only antagonise biofilm formation but also have the unexpected advantage of substantially abolishing protease production from certain wild type strains of *Aeromonas hydrophila*. A reduction in protease production, and particularly its abolition, helps to diminish the virulence of the bacteria.

It is known that AHL quorum sensing blockers can reduce protease production by 50% in some strains of bacteria but the discovery that certain compounds can substantially eliminate protease production imparts clear significant clinical advantages. Furthermore, the unexpected finding that biofilm formation can be inhibited or prevented by quorum sensing blockers leads to the reasonable conclusion that other AHL quorum sensing blockers which are known to exhibit quorum sensing blocking in other systems, such as protease production, will also be effective against biofilm formation.

The compounds of the invention are advantageously used to treat and/or prevent infections caused by *Vibrio anguillarum* or *Aeromonas* spp. Examples of this type of infection are vibriosis and furunculosis disease in fish. Inhibition of biofilm formation by the bacteria, optionally together with a reduction or elimination of extracellular protease production, renders the bacteria substantially non-pathogenic.

The compounds of the invetion may be formulated by conventional methods for use in the treatment and/or prevention of bacterial infection. For example, the compounds may be used as solid or liquid preparations (such as tablets, suspensions or solutions for oral administration or sterile injectable compositions), optionally together with pharmaceutically acceptable diluents, carriers or other additives. For the treatment of vibriosis or furunculosis disease in fish, the compounds or compositions containing them may be applied directly to the fish or they may be added to the fish's food or water.

In another embodiment, the invention provides a method of removing a biofilm from a surface which comprises treating the surface with a compound of formula (I). The surface is preferably the inside of an aqueous liquid distribution system, such as a drinking water distribution system or a supply line connected to a dental air-water system. The removal of biofilms from this type of surface can be particularly difficult to achieve. The compound is preferably applied to the surface as a solution of the compound either alone or together with other materials such as conventional detergents or surfactants.

A further embodiment of the invention is an antibacterial composition comprising a compound of formula (I) together with a bacteriocidal agent. In the antibacterial compositions, the compound of formula (I) helps to remove the biofilm whilst the bacteriocidal agent kills the bacteria. The antibacterial composition is preferably in the form of a solution or suspension for spraying and/or wiping on a surface.

In yet another embodiment, the invention provides an article coated and/or impregnated with a compound of formula (I) in order to inhibit

and/or prevent biofilm formation thereon. The article is preferably of plastics material with the compound of formula (I) distributed throughout the material.

The invention will now be described with reference to the following non-limiting examples.

EXAMPLES

Protease Assay

An inoculant of Aeromonas hydrophila A11 was grown overnight at 30°C in LB-broth, Lennox (Difco) containing 10μM of the specified [N-(octanoyl)-L-homoserine lactone (OHL); N-(decanoyl)-Lhomoserine lactone (DHL); N-(dodecanoyl)-L-homoserine lactone (dDHL); N-(3-oxodecanoyl)-L-homoserine lactone (ODHL); N-(3oxododecanoyl)-L-homoserine lactone (OdDHL); N-(3oxotetradecanoyl)-L-homoserine lactone (OtDHL)], diluted 1:1000 from a 10mM stock solution in acetonitrile (Far UV HPLC grade). Cells were removed from the medium after incubation by microcentrifugation, at a maximum speed, for 2 minutes and 50µl aliquots of supernatant were taken for assay. 500μl of 0.25% (w/v) azocasein (Sigma) was added to each supernatant aliquot to be tested and incubated at 37°C for 2 hours. 0.25% azocasein was prepared by dissolving azocasein (solid) at 0.5% (w/v) in 0.1M sodium citrate pH 6 and incubation in a boiling water bath for 2 to 5 minutes, diluting to 0.25% with 0.1M sodium citrate pH 6 and filtration through Whatman No. 1 paper to remove any undissolved particles. The protease reaction was stopped, and protein precipitated, by the

addition of 550µl of ice cold 10% (w/v) trichloroacetic acid followed by incubation on ice for 15 minutes. Azodye released by the action of proteases in supernatant aliquots was measured by absorbance at 366nm (A_{366nm}) after the removal of precipitated protein by microcentrifugation at maximum speed for 5 minutes. Relative protease activity (Table 1) is 1000x the A_{366nm} value. Errors reflect 1 standard deviation from the mean n=3.

Table 1

TREATMENT	RELATIVE PROTEASE ACTIVITY
Untreated control	176±1.2
10μM DHL	16 + 1.5
10μM dDHL	62 ± 2.3
10μM ODHL	106 ± 1.7
10μM OdDHL	1 ± 0.6
10μM OtDHL	Zero

Biofilm Assay

Stainless steel coupons (type 304 with a 28 finish; Campden Food and Drink Research Association, Chipping Campden, UK) cut into 10mm squares, cleaned by scrubbing in a neutral detergent, rinsed with sterile water and sterilised at 140°C for 4 hours were used as biofilm substrata. For biofilm formation, sterile coupons were immersed in 5 ml 10% (v/v) L-broth inoculated to provide a 1:1000 dilution of an overnight bacterial culture. The coupons, media, and the AHL (final concentration 50µM) were contained in a 55mm sterile plastic petri dish and rotated at 70-90 rpm at 30°C. After the stated period of incubation (Table 2) coupons were washed with sterile water, samples were gently heat fixed in the flame of a Bunsen burner and stained by incubation in 40µl of a 0.01% (w/v) solution of

acridine orange for 3-5 minutes at room temperature. Coupons were mounted on a glass microscope slide with a cover clip and imaged using epifluorescent microscopy under oil immersion. Biofilm development was scored as shown in Table 2.

Table 2

24 hour	As column 1	As column 1	As column 1
incubation	but with an	but with an	but with an
	additional 24	additional 24	additional 24
	hours without	hours with	hours with
	additions	50μM OOHL	50μM ODHL
Bacteria	Bacteria	Bacteria	Bacteria
attached in a	attached in a	attached in a	removed or
confluent layer	confluent layer	confluent layer	greatly reduced
and in a	and in a	and in a	in numbers,
structured	structured	structured	with structures
manner	manner	manner	significantly
			affected.

CLAIMS

1. Use of a compound of formula (I)

$$R \xrightarrow{NH} Y$$

$$X$$

$$(I)$$

wherein: n is 2 or 3;

Y is O, S or NH;

X is O, S or NH;

and R is C_1 - C_{18} alkyl or acyl which may be substituted,

in the manufacture of a medicament for the treatment and/or prevention of a bacterial infection in humans or animals by control of colonisation.

- 2. Use as claimed in claim 1, wherein Y is 0, X is 0, n is 2 and R is acyl.
- Use as claimed in claim 1 or claim 2, wherein R carries a keto or hydroxy group.
- Use as claimed in claim 3, wherein R carries a keto group in the
 3-position.

PCT/GB98/03548

- 5. Use as claimed in any one of claims 1 to 4, wherein R is a C_8 C_{18} group.
- 6. Use as claimed in any one of claims 1 to 5, wherein R is a 3-oxododecanoyl group or a 3-oxotetradecanoyl group.
- 7. Use as claimed in any one of claims 1 to 6, wherein the infection is caused by *Vibrio anguillarum* or *Aeromonas* spp.
- 8. Use as claimed in any one of claims 1 to 7, wherein the infection causes vibriosis or furunculosis disease in fish.
- Method of removing a biofilm from a surface which comprises treating the surface with a compound of formula (I) as defined in claim 1.
- 10. Method as claimed in claim 9, wherein the surface is the inside of an aqueous liquid distribution system.
- 11. Method as claimed in claim 10 or claim 11, wherein the compound is in solution.
- 12. Antibacterial composition comprising a compound of formula(I), as defined in claim 1, and a bacteriocidal agent.
- 13. Article coated and/or impregnated with a compound of formula(I) in order to inhibit and/or prevent biofilm formation thereon.

al Application No 98/03548

		PGB
A. CLASSIFICATION OF SUBJECT MATTER	C02F1/50	

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 A01N A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electionic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS	CONSIDERED	TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X .	DATABASE WPI Section Ch, Week 8516 Derwent Publications Ltd., London, GB; Class B03, AN 85-096666 XP002094722 & JP 60 045568 A (MITSUBISHI GAS CHEM CO INC), 12 March 1985 see abstract & CHEMICAL ABSTRACTS, vol. 103, no. 19, 11 November 1985 Columbus, Ohio, US; abstract no. 160377, see abstract	1,2,5,12
	- /	

Ιv	Further documents are listed in the	continuation of how C
ı x	Futilier documents are issed in the	Continuation of box C.

Χ Patent lamily members are listed in annex.

- Special categories of cited documents :
- "A" document defining the general state of the lart which is not considered to be of particular relevance.
- "E" earlier document but published on or after the international filing date
- document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or
- document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or prionty date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other, such documents, such combination being obvious to a person skilled in the art.

Date of mailing of the international search report

"&" document member of the same patent family

Date of the actual completion of the international search

Fax: (+31-70) 340-3016

09/03/1999

25 February 1999

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.

Lamers, W

Name and mailing address of the ISA

Authorized officer

0.10	POOLINGUES COLORED TO DE DEL EVANT	GB 98/03548
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Calegory	Charlot of document, with indication, where appropriate, of the relevant passages	Therevant to claim 140,
Х	US 5 591 872 A (PEARSON JAMES P ET AL) 7 January 1997 see column 1, line 51 - column 2, line 46 see column 5, line 32 - column 8, line 53	1-6,12, 13
Υ	see Column 5, time 32 - Column 6, time 53	1,7-11, 13
Y	WO 96 29392 A (UNISEARCH LTD ;KJELLEBERG STAFFAN (AU); STEINBERG PETER (AU); NYS) 26 September 1996 see page 2, line 12 - line 16 see page 3, line 8 see page 2, line 27 - page 3, line 20	1,7-11,
Y .	CHEMICAL ABSTRACTS, vol. 127, no. 21, 24 November 1997 Columbus, Ohio, US; abstract no. 290287, R.J.C.MCLEAN ET AL.: "Evidence of autoinducer activity in naturally occurring biofilms" XP002094715 see abstract & FEMS MICROBIOL. LETT., vol. 154, no. 2, 1997, pages 259-263,	1,7-11,
Y	CHEMICAL ABSTRACTS, vol. 127, no. 21, 24 November 1997 Columbus, Ohio, US; abstract no. 290292, S.SWIFT ET AL.: "Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: identification of the LuxRI homologs AhyRI and AsaRI and their cognate N.acylhomoserine lactone signal molecules" XP002094716 see abstract & J.BACTERIOL., vol. 179, no. 17, 1997, pages 5271-5281,	1,7,8
Y	CHEMICAL ABSTRACTS, vol. 127, no. 3, 21 July 1997 Columbus, Ohio, US; abstract no. 31300, D.L.MILTON ET AL.: "Quorum sensing in Vibrio anguillarum: characterization of the vanI/vanR locus and identification of the autoinducer N-(3-oxodecanoyl)-L-homoserine lactone" XP002094717 see abstract & J.BACTRIOL., vol. 179, no. 9, 1997, pages 3004-3012, -/	1,7,8

1

والأرب تترسطانا سندب فاستلافيسك فستلاف فالأناء فالمتربث الماتيان الماتيات

Intern. al Application No

C (Continu	AND ANGUMENTS CONCIDENCE TO BE BELEVANT	10 36 98/03348
Category "	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	CHEMICAL ABSTRACTS, vol. 99, no. 21, 21 November 1983 Columbus, Ohio, US; abstract no. 174212, XP002094718 see abstract & JP 58 096079 A (MITSUBISHI GAS CHEMICAL) 7 June 1983	1,2,12
P,X	CHEMICAL ABSTRACTS, vol. 130, Columbus, Ohio, US; abstract no. 49752, D.G.ALLISON: "Extracellular products as mediators of the formation and detachment of Pseudomonas fluorescens biofilms" XP002094719 see abstract & FEMS MICROBIOL.LETT., vol. 167, no. 2, 1998, pages 179-184,	1,2,9-13
E	WO 98 58075 A (UNIV IOWA RES FOUND ;UNIV MONTANA (US); UNIV ROCHESTER (US)) 23 December 1998 see the whole document	1-6,9-13
Ε	WO 98 57618 A (UNIV MONTANA RES DEV INST;DAVIES DAVID G (US); COSTERTON JOHN WIL) 23 December 1998 see the whole document	1-6,9-13
Α	WO 92 18614 A (UNIV NOTTINGHAM) 29 October 1992 see the whole document	1-13
Α	CHEMICAL ABSTRACTS, vol. 125, Columbus, Ohio, US; abstract no. 322642, M.GIVSKOV ET AL.: "Eukaryotic interference with homoserine lactone-mediated prokaryotic signaling" XP002094720 see abstract & J.BACTERIOL., vol. 178, no. 22, 1996, pages 6618-6622, -/	1-13

1

intern al Application No

PGB 98/03548

(Continu	nation) DOCUMENTS CONSIDERED TO BE RELEVANT	GB 98/03548
stegory "		Relevant to claim No.
4	CHEMICAL ABSTRACTS, vol. 124, Columbus, Ohio, US; abstract no. 284049, L.EBERL ET AL.: "Involvement of N.acyl-L-homoserine lactone autoinducers in controlling the multicellular behavoir of Serratia liquefaciens" XP002094721 see abstract & MOL.MICROBIOL., vol. 20, no. 1, 1996, pages 127-136,	1-13
1	WO 92 08458 A (BEECHAM GROUP PLC) 29 May 1992 see the whole document	1-13

1

...ion on patent family members

P GB 98/03548	intern	al Application No	,
	P	GB 98/03548	;

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
US 5591872	Α	07-01-1997	NONE		
WO 9629392	A	26-09-1996	AU BR CA CN EP NZ	4999696 A 9607661 A 2215797 A 1185173 A 0815201 A 303630 A	08-10-1996 16-06-1998 26-09-1996 17-06-1998 07-01-1998 26-01-1998
WO 9858075	Α	23-12-1998	WO	9857618 A	23-12-1998
WO 9857618	Α	23-12-1998	WO	9858075 A	23-12-1998
WO 9218614	Α	29-10-1992	CA EP JP US	2105395 A 0580692 A 6506588 T 5593827 A	19-10-1992 02-02-1994 28-07-1994 14-01-1997
WO 9208458	Α	29-05-1992	AU	8870791 A	11-06-1992