# Computer Network

Internetworking

**Bridges are link-level nodes (they** 

- Bridges (LAN Switches) forward frames from one link to another to implement an extended LAN)
  - Class of switches that is used to forward packets' between shared-media LANs such as Ethernets (or token ring)
  - Suppose you have a pair of Ethernets that you want to interconnect
    - 1. One approach is put a repeater in between them
      - It might exceed the physical limitation of the Ethernet
        - » No more than four repeaters between any pair of hosts
        - » No more than a total of 2500 m in length is allowed
    - 2. An alternative would be to put a bridge between the two Ethernets and have it forward frames from one Ethernet to the other
      - A collection of LANs connected by one or more bridges is usually said to form an Extended LAN

- Simplest Strategy for Bridges (dumb bridges)
  - Accept LAN frames on their inputs and forward them out to all other outputs regardless of where the destination host resides
  - Used by early bridges
- Learning Bridges (smart bridges)
  - Observe that there is no need to forward all the frames that a bridge receives
  - Consider the example in the next slide...

- Consider the following extended Ethernet network
  - When a frame from host A that is addressed to host B arrives on port 1, there is no need for the bridge to forward the frame out over port 2.



– How does a bridge come to learn on which port the various hosts reside?

- Solution
  - Download this table into the bridge



| Host | Port |
|------|------|
|      |      |
| A    | 1    |
| В    | 1    |
| C    | 1    |
| X    | 2    |
| Y    | 2    |
| Z    | 2    |

- Who does the download?
  - Human
    - Too much work for maintenance

- Can the bridge learn this information by itself?
  - Yes
- How?
  - Each bridge inspects the source address in all the frames it receives
  - Record the information at the bridge and build the table
  - When a bridge first boots, this table is empty
  - Entries are added over time
  - A timeout is associated with each entry (set a timer at creation time)
    - The bridge discards the entry after a specified period of time
    - To protect against the situation in which a host is moved from one network to another
- If the bridge receives a frame that is addressed to host not currently in the table (say right after first boot, or deleted after timeout)
  - Forward the frame out on all other ports
  - The table only optimizes performance, without it bridge acts as a hub

- Strategy works fine if the extended LAN does not have a loop in it
- Why?
  - Frames potentially loop through the extended LAN forever



Bridges B1, B4, and B6 form a loop

- Network is managed by more than one administrator
  - For example, it spans multiple departments in an organization
  - It is possible that no single person knows the entire configuration of the network
    - A bridge that closes a loop might be added without anyone knowing
- Loops are built into the network to provide redundancy in case of failures
- Solution
  - Distributed Spanning Tree Algorithm

# Spanning Tree Algorithm

- Think of the extended LAN as being represented by a graph that possibly has loops (cycles)
- A spanning tree is a sub-graph of this graph that covers all the vertices but contains no cycles
  - Spanning tree keeps all the vertices of the original graph but throws out some of the edges



Example of (a) a cyclic graph; (b) a corresponding spanning tree.

# Spanning Tree Algorithm

- Developed by Radia Perlman at Digital
  - A protocol used by a set of bridges to agree upon a spanning tree for a particular extended LAN
  - IEEE 802.1 specification for LAN bridges is based on this algorithm
  - Each bridge decides the ports over which it is and is not willing to forward frames
    - In a sense, it is by <u>removing ports from the topology</u> that the extended LAN is reduced to an acyclic tree
    - It is even possible that an entire bridge will not participate in forwarding frames
- Algorithm is dynamic
  - The bridges are always prepared
     to reconfigure themselves into a
     new spanning tree if some bridges fail

# Internetworking

- What is internetwork?
  - A network of networks
  - An arbitrary collection of <u>networks interconnected</u> to provide some sort of <u>host-to-host packet delivery service</u>



A simple internetwork where H represents hosts and R represents routers

# Internetworking

- What is IP?
  - IP stands for Internet Protocol
  - Key tool used today to build <u>scalable</u>, <u>heterogeneous</u> internetworks
  - It runs on all the nodes in a collection of networks and defines the infrastructure that allows these nodes and networks to function as a single logical internetwork



A simple internetwork showing the protocol layers

### OSI Architecture Reminder



The OSI 7-layer Model
OSI – Open Systems Interconnection

### IP Service Model

- Packet Delivery Model
  - Connectionless model for data delivery
    - Datagram model
  - Best-effort delivery (unreliable service)
    - Packets may be lost
    - Packets may be delivered out of order
    - Duplicate copies of a packet may be delivered
    - Packets can be delayed for a long time
    - The higher level layer may need to be aware of these possible failures at the IP layer
- Global Addressing Scheme
  - Provides a way to identify all hosts in the network

### **IPv4** Packet Format

- Version (4): currently 4
- Hlen (4): number of 32-bit words in header
- TOS (8): type of service (to allow packets to be treated differently based on the application needs)
- Length (16): number of bytes in this datagram including the header (max 2<sup>16</sup> = 65,535 bytes)
- Ident (16): used by fragmentation
- Flags/Offset (16): used by fragmentation
- TTL (8): number of hops this datagram has traveled
- Protocol (8): demux key (TCP=6, UDP=17)
- Checksum (16): of the header only
- DestAddr & SrcAddr (32)



## IP Fragmentation and Reassembly

- Each network has some MTU (Maximum Transmission Unit)
  - Ethernet (1500 bytes), FDDI (4500 bytes)
- Strategy
  - Fragmentation occurs in a router when it receives a datagram that it wants to forward over a network link which has (MTU < datagram)</li>
  - Reassembly is done at the receiving host
  - All the fragments carry the same identifier in the *Ident* field
  - Fragments are self-contained IP datagrams
  - IP does not recover from missing fragments
    - So IP fragmentation must be avoided if possible

## IP Fragmentation and Reassembly



IP datagrams traversing the sequence of physical networks

## IP Fragmentation and Reassembly









Flag bit set to 1 meaning more segments to follow

Byte offset of the first segment used for sequencing fragments

Byte offset of the next segment so  $64 \times 8 = 512$  indicates that this segment is the second 512 bytes of data (512 to 1023)



### IP Service Model

#### 1. Packet Delivery Model

- Connectionless model for data delivery
  - Datagram model
- Best-effort delivery (unreliable service)

#### 2. Global Addressing Scheme

- Provides a way to identify all hosts in the network

#### **Properties**

- globally unique
- hierarchical: network + host
- 4 Billion IP address ( $2^{32}$ ), half are A type,  $\frac{1}{4}$  is B type, and  $\frac{1}{8}$  is C type
- Format (all 32 bits)
  - Class D (multicasting)
    - Leading bits are 1110
  - Class E (research)
    - Leading bits 1111
- Dot notation
  - -10.3.2.4
  - 128.96.33.81
- Network Host 1

— 192.168.1.1 (11000000 10101000 00000001 00000001) Octet 2 Octet 1 Octet 3 Octet 4









| Class | 1st Octet | Mask♥         | Format       |
|-------|-----------|---------------|--------------|
| A     | 1 – 127   | 255.0.0.0     | n.h.h.h      |
| В     | 128 - 191 | 255.255.0.0   | n.n.h.h      |
| С     | 192 - 223 | 255.255.255.0 | n.n.n.h      |
| D     | 224 - 239 | Multicast     | Multicast    |
| E     | 240 - 255 | Experimental  | Experimental |



# Private IP Address Space

- RFC 1918 defines IP address ranges to be used on private networks.
- These IP addresses are not routable on the global internet and are used inside private networks

| Network     | Mask        | Range                         |
|-------------|-------------|-------------------------------|
| 10.0.0.0    | 255.0.0.0   | 10.0.0.0 - 10.255.255.255     |
| 172.16.0.0  | 255.240.0.0 | 172.16.0.0 - 172.31.255.255   |
| 192.168.0.0 | 255.255.0.0 | 192.168.0.0 - 192.168.255.255 |



https://www.youtube.com/watch?v=QBqPzHEDzvo

(NAT)



if not in table once connected directly, or tell me where I'm going, send back to default router with that network ID and

R3

### IP Datagram Forwarding

### Strategy

- Every datagram contains destination's address
- If directly connected to destination network, then forward to host
- If not directly connected to destination network, then forward to some router
  - Forwarding table maps network number into next hop
- Each host has a default router
- Each router maintains a forwarding table

### IP Datagram Forwarding

Example (router R2)



#### Forwarding Table of R2

| NetworkNum | NextHop     |
|------------|-------------|
| 1          | R1          |
| 2          | Interface 1 |
| 3          | Interface 0 |
| 4          | R3          |

## IP Datagram Forwarding

```
Algorithm
if (NetworkNum of destination = NetworkNum of one of my
  interfaces) then
  deliver packet to destination over that interface
else
  if (NetworkNum of destination is in my forwarding table)
  <del>t.hen</del>
   deliver packet to NextHop router
  else
   deliver packet to default router
For a host with only one interface and only a default router in its forwarding table, this
  simplifies to
if (NetworkNum of destination = my NetworkNum) then
  deliver packet to destination directly
else
  deliver packet to default router
```

### Classless Addressing

## **CIDR Notation**

#### **Classless Inter-Domain Routing Notation**

- Traditionally, subnet masks were determined by the IP address class, so there were only really three subnet masks you would see - For the class A, B and C networks
- To preserve IP address space, use them more efficiently, and help decrease burdon on global routing tables classless interdomain routing was born (CIDR).
- CIDR is used for IP address aggregation and specifies the subnet mask in a different notation
- The CIDR notation lists the network followed by a "/" followed by the number of subnet mask bits
  - Example: 192.168.0.0/16 ← dotted decimal mask 255.255.0.0

  - Example: 8.8.8.8/30 dotted decimal mask 255.255.255.252

https://www.youtube.com/watch?v=Q1U9wVXRuHA

#### Address Translation

- ARP (Address Resolution Protocol)
  - Table of IP to physical (MAC) address bindings
  - Broadcast request if IP address not in table
  - Target machine responds with its physical address
  - Table entries are discarded if not refreshed

#### **ARP Packet Format**

| 0 0                            | 3 1     | 6                              |  |  |
|--------------------------------|---------|--------------------------------|--|--|
| Hardware type=1                |         | ProtocolType=0x0800            |  |  |
| HLen=48                        | PLen=32 | Operation                      |  |  |
| SourceHardwareAddr (bytes 0–3) |         |                                |  |  |
| SourceHardwareAddr (bytes 4–5) |         | SourceProtocolAddr (bytes 0–1) |  |  |
| SourceProtocolAddr (bytes 2–3) |         | TargetHardwareAddr (bytes 0–1) |  |  |
| TargetHardwareAddr (bytes 2–5) |         |                                |  |  |
| TargetProtocolAddr (bytes 0–3) |         |                                |  |  |

https://www.youtube.com/watch?v=Ow-jESqubz4

### **Host Configurations**

- Ethernet addresses are configured into network
   by manufacturer and they are unique
- IP addresses must be unique on a given internetwork but also must reflect the structure of the internetwork
- Most host Operating Systems provide a way to manually configure the IP information for the host
- Drawbacks of manual configuration
  - A lot of work to configure all the hosts in a large network
  - Configuration process is error-prone
- Automated Configuration Process is required

#### Dynamic Host Configuration Protocol (DHCP)

- DHCP server is responsible for providing configuration information to hosts
- There is at least one DHCP server for an administrative domain
- DHCP server maintains a pool of available addresses

#### **DHCP**

 Newly booted or attached host sends DHCPDISCOVER message to a special IP address

(255.255.255)

– Broadcast

 DHCP relay agent unicasts the message to DHCP server and waits for the response



https://www.youtube.com/watch?v=RUZohsAxPxQ

#### Internet Control Message Protocol (ICMP)

#### different ICMP for each IPv4 and IPv6

- Defines a collection of error messages that are sent back to the source host whenever a router or host is unable to process an IP datagram successfully
  - Destination host unreachable due to link /node failure
  - Reassembly process failed
  - TTL had reached 0 (so datagrams don't cycle forever)
  - IP header checksum failed

all happened in Data Link Layer? but why this => show network layer?



#### Internet Control Message Protocol (ICMP)

- ICMP-Redirect (a useful ICMP control message)
  - From router to a source host
  - With a better route information (for the consequent packets)