Computer Vision 03b - Lens distortion

doc. dr. Janez Perš

Laboratory for Machine Intelligence Faculty of Electrical Engineering University of Ljubljana

Introduction

Pinhole camera

- No distortions a perfect camera
- Impractical: at ISO film speed of 200, 1-3 sec exposure time, in the sun!

Introduction

Optical system with lens

- Rays are deflected on their way through the lens
- Flexible rays are focused, forming brighter image
- Introduction of imperfections and tradeoffs
- Result: optical aberrations

In practice: compound lens

- Optical system with lens
 - Several (or many) optical elements to achieve better performance
 - Exact (theoretical) analysis is very difficult
 - Or impossible due to trade secrets of lens manufacturers
 - Example of compound lens: AF Nikkor 20mm f/2.8D:

Fundamental literature

- If (!) you need to dive deeper into the optical systems:
 - Lens imperfections poorly covered in computer vision literature (except radial distortion)
 - Well studied in the field of photogrammetry
 (photogrammetry): the science of making reliable
 measurements from photographs
 - "The bible":
 Chester C. Slama (Ed.), Manual of Photogrammetry, 4th Ed.
 American Society of Photogrammetry, Falls Church, VA, 1980.
 - Difficult to get (in Slovenia: library @ Institute of Forestry)
 - Last edition: 2005 (5th edition) sold out.

Lens aberrations

- Aberrations degrade image quality, some affect geometry as well
 - Astigmatism
 - Coma
 - Curvature of field
 - Color aberrations
- Degradation of quality is visible ->
 manufacturers try hard to reduce them even
 in consumer-grade equipment

Lens distortions

- Distortions
 - Radial
 - tangential
- Distortions affect image geometry
- Present, but not very visible to consumers
- Consequence: linear camera model is not sufficient in practice

Lens distortions

- Tangential distortion
 - Misalignment in elements of the optical system
 - Image points are displaced in the tangential direction

Ideal image

Image with tangential distortion

Tangential distortion - an example

- Rarely one can see an obvious case
 - In this case: lens was not properly attached to the camera (misalignment!)

Lens distortions

Radial distortion

- Image points are displaced in radial direction 2 types
- "Pincushion"

Ideal point radius (linear mapping)

Point radius in presence of radial distortion

Radial distortion - an example

- Pincushion type
 - Rarely seen, not very obvious
 - Sometimes caused by overcompensated barrel distortion?
- Barrel type
 - ubiquitous in wide-angle, consumer-grade lens

Radial distortion - measured

Source: Manual of Photogrammetry, 1980

Somewhat confusing treatment of radial distortion (1/2)

In photogrammetry

- Extremely small distortions (e.g. 100 µm at r=100 mm)
- Complex, polynomial shape of distortion function
- Difficult to spot even on megapixel digital images

In camera calibration

- "Significant distortion" = 3%-4% (R. Tsai, 1987)
- Polynomial approximation methods, correcting any type of distortion

In computer vision "in general"

- "Large distortion" = up to 30%, wide angle, fisheye lenses
- Almost always, barrel type distortion is addressed
- Attempts to find alternative approximations to barrel
 16.10.2019 distortion function Computer Vision 2019/2020

Somewhat confusing treatment of radial distortion (2/2)

Background

- In optical engineering, complex formulas (projection functions) used to design even "simple" lens
- The actual formula not revealed to the end user
- Most lenses on the market of compound type
- Lens design a compromise between brightness, uniformity, viewing angle, distortion, etc.

Low distortion lens (photogrammetry)

 Radial distortion in "photogrammetric sense" likely only the residual after the (imperfect) compensation

In computer vision

"Low quality" ("Off-the-shelf") lenses, that were not designed for measurement are used for measurement!

No incentive for any distortion correction!

Radial distortion

- In computer vision mostly barrel type ...
 - when using wide-angle lenses
 - most of the researchers tried to address this particular case

Radial distortion model

• In general, we seek non-linear function of the form $r = f(r_i)$ or $r - r_i = f(r_i)$ which should describe transformation of radius r_i into r.

Radial distortion model

Polynomial approximation of the form:

$$\Delta r = f(r_1) = k_0 + k_1 r_1 + k_2 r_1^2 + k_3 r_1^3 + \dots + k_n r_1^n$$

- Inherited from the field of photogrammetry
- ... where the distortion usually is of unpredictable nature
- Alternative/equivalent formulations (e.g. for Δx , Δy) exist.

Advantage:

- General model, does not assume type of the distortion
- Disadvantages:
 - With significant distortion, many coefficients are needed!
 - Closed-form inverse cannot be obtained

Radial distortion model

- Redundant for pure barrel type distortion
 - coefficients are used to better fit the monotonically increasing slope of $f(r_i)$, instead of modelling the unpredictable form of $f(r_i)$, as envisioned in photogrammetry)
 - Obtaining parameters is an optimization process, which can be unstable and/or slow.

 That's why people invented many competing models for radial distortion

Alternative models

- Alternative models have appeared
 - To model particular kind of distortion (monotonic, barrel) with less coefficients than in polynomial model
 - To provide closed-form inverse
 - To provide model with parameters, related to physically measurable lens properties
 - viewing angle
 - focal length
- Polynomial model is still state-of-the art
 - Sometimes it is inadequate
 - Optimization may not converge, or is unstable
 - Small number of parameters or inverse needed
 - Sometimes, simpler model is preferred, even with lower

Alternative models

Fish-Eye Transform (FET)

$$r = s \log(1 + \lambda r_l)$$

 Anup Basu, Sergio Licardie, Alternative models for fish-eye lenses, Pattern Recognition Letters, Volume 16, Issue 4, April 1995, pages 433-441,

Alternative models

Field Of View model (FOV)

$$r = \frac{1}{\omega} \arctan \left(2r_l \tan \frac{\omega}{2} \right)$$

 Frédéric Devernay, Olivier Faugeras, Straight lines have to be straight, Machine Vision and Applications, Volume 13, Issue 1, pages 14-24, 2001.

Another model – our derivation

- Based on the properties of the distorted image
 - "Tilted camera" analogy

Derivation

Lens model we used

- Radial projection functions (lens specific!):
 - perspective,
 - stereographic,
 - equidistant,
 - equi-solid angle,
 - sine law

$$r(\alpha) = f \tan(\alpha)$$

$$r(\alpha) = f \tan(\alpha/2)$$

$$r(\alpha) = f\alpha$$

$$r(\alpha) = f \sin(\alpha/2)$$

$$r(\alpha) = f \sin(\alpha)$$

Our radial distortion model

- Radial distortion function:
 - Based on the perspective radial projection function

$$r' = f \cdot ln \left(\frac{r'_l}{f} + \sqrt{1 + \frac{r'^2_l}{f^2}} \right) = f \cdot \operatorname{arcsinh} \left(\frac{r'_l}{f} \right)$$

The inverse:

$$r'_l = f \cdot \sinh(r'/f).$$

- Only parameter is the focal length f!
 - Already a parameter of linear calibration

Experiment

Protocol:

- Used 6.5 mm and 8 mm lens
 - We show results only for 6.5 mm TAMRON lens
- Used DLT for calibration, regardless of the distortion
- DLT-based calibration provided focal length f (in pixels)
- Acquired chessboard image, and extracted grid of points
- Used the calculated focal length f to correct the distortion and "flatten" the grid.
- The distortion before and after the correction was measured by:
 - Fitting of lines across rows and columns of points
 - Measuring the residual error = residual nonlinearity

Results

• f = 818 pixels

HB - horizontal border 1/4 of the image!

VC - vertical center,

VB - vertical border,

HC - horizontal center

Further reading

- By doing the radial distortion correction "the established way", we are enforcing the perspective projection.
 - This is usually expressed as "Straight lines have to be straight" paradigm.
 - And it is rarely questioned.
 - But then we have to accept that "circles are not circular".
 - Why should be straightness of lines more important than the shape of circles?
- If you are interested, the TR on this topic:
 - Margaret M. Fleck (1994) "Perspective Projection: the Wrong Imaging Model," technical report 95-01, Computer Science, University of Iowa

