남계획과 응용

제10강(9장)

다구치 실험계획 1

이번 시간

- 9.1 직교배열표의 기본개념
- 9.2 $L_4(2^3)$ 직교배열표
- 9.3 $L_8(2^7)$ 직교배열표
- 9.4 L₁₆(2¹⁵) 직교배열표

검계된가 응용

제10강(9장)

다구치 실험계획 1

다음 시간

- 9.5 다구치 품질공학의 개념
- 9.6 손실함수와 SN비
- 9.7 파라미터 설계

정보통계학과 백재욱 교수

제10강 다구치 실험계획1

9.1 직교배열표의 기본개념

9.1 직교배열표의 기본개념

◆ 2수준 직교배열표(table of orthogonal arrays)

$$L_{2^m}ig(2^{2^m-1}ig)$$
 , $m\geq 2$

- 첫 번째 L: Latin Square(라틴정방)
- 두 번째 2^m : 실험의 크기
- 세 번째 2 : 모든 인자의 수준이 두 수준
- 마지막 2^m−1: 직교배열표에 있는 열의 수
- $m=2 \rightarrow L_4(2^3)$

9.1 직교배열표의 기본개념

〈표 9-1〉 요인효과

	Α	В	A×B
У00	_	-	+
У01	_	+	_
У ₁₀	+	-	_
У ₁₁	+	+	+

제10강 다구치 실험계획1

9.2 $L_4(2^3)$ 직교배열표

9.2 $L_4(2^3)$ 직교배열표

 $\langle \text{표 9-2} \rangle L_4(2^3)$ 직교배열표

시회비수		열 번	시청 조건		
실험번호	1	2	3		실험 조건
1	0	0	0		
2	0	1	1		
3	1	0	1		
4	1	1	0		
기본표시	а	b	ab		
실험배치					

선점도*: 직교배열표의 어느 열에 어떤 인자를 배치할 것인지 결정하는 것을 알려주는 그림

◆ 실험절차

- 1단계: 인자들을 직교배열표의 열에 합리적 (어떤 것이 합리적인가?)으로 배치한다.
- 2단계: 각 열에 배치된 인자의 2수준을 랜덤하게
 0과 1에 할당한다.
- 3단계: 4번의 실험을 완전히 랜덤한 순서대로 실시한다.

9.2 $L_4(2^3)$ 직교배열표

 $\langle {\rm H}\, 9-3 \rangle \, L_4(2^3)$ 직교배열표 활용 예

시청비송	(결 번 <u>3</u>	호	시청 조건	ᇀ서가
실험번호	1	2	3	실험 조건	특성값
1	0	0	0	A_0B_0	y_1
2	0	1	1	A_0B_1	y_2
3	1	0	1	A_1B_0	y_3
4	1	1	0	A_1B_1	y_4
기본표시	а	b	ab		
실험배치	Α	В			

9.2 $L_4(2^3)$ 직교배열표

예 다음 표에서 SS_A 의 값은?

NO .	1	2	3	실험결과
1	0	0	0	7
2	0	1	1	4
3	1	0	1	5
4	1	1	0	4
배치	A	В		

- 인자 A의 효과 = $\frac{1}{2}$ [수준 1의 데이터의 합)-(수준 0의 데이터 합)] $= \frac{1}{2} [9 11] = -1 \qquad -----(7.10)$
- 인자 A의 변동 SS_A 는 '인자 A의 효과'의 제곱 즉, $SS_A = \frac{1}{4} [(수준 1의 데이터의 합)-(수준 0의 데이터 합)]^2$ $= \frac{1}{4} [9-11]^2 = 1$ -----(7.17)

제10강 다구치 실험계획1

9.3
$$L_8(2^7)$$
 직교배열표

 $\langle \pm 9-5 \rangle L_8(2^7)$ 직교배열표

시청비송		열 번 호							
실험번호	1	2	3	4	5	6	7	실험조건	
1	0	0	0	0	0	0	0		
2	0	0	0	1	1	1	1		
3	0	1	1	0	0	1	1		
4	0	1	1	1	1	0	0		
5	1	0	1	0	1	0	1		
6	1	0	1	1	0	1	0		
7	1	1	0	0	1	1	0		
8	1	1	0	1	0	0	1		
기본표시	а	b	ab	С	ас	bc	abc		
실험배치									

◆ 기본표시의 의미

- 열 번호 2, 4, 6(기본표시 *b*, *c*, *bc*)에 각각 *A*, *B*, *C*를 배치하는 경우 *A*와 *B*의 상호작용효과는 *C*의 효과와 교락되어 나타난다.
- 열 번호 1, 5, 4(기본표시 a, ac, c)에 각각 A, B, C를 배치하는 경우 A와 B의 상호작용효과는 C의 효과와 교락되어 나타난다.

〈표 9-6〉 2개의 열 간의 상호작용효과를 구하는 표

열	1	2	3	4	5	6	7
	(1)	3	2	5	4	7	6
		(2)	1	6	7	4	5
			(3)	7	6	5	4
				(4)	1	2	3
					(5)	3	2
						(6)	1

직교배열표의 어느 열에 어떤 인자를 배치할 것인지 결정하는 것을 알려주는 그림 예 A, B, A×B, C가 우리의 관심사인 경우 적절한 산점도는?

[그림 9-2] 우리의 관심 선점도

예 A, B, C인자를 1, 3, 5열에 배치하고 $B \times C$ 의 편차 제곱합 $(SS_{B \times C})$ 을 구하면?

시청버승		열 번 호										
실험번호	1	2	3	4	5	6	7	특정치				
1	0	0	0	0	0	0	0	-10				
2	0	0	0	1	1	1	1	5				
3	0	1	1	0	0	1	1	-5				
4	0	1	1	1	1	0	0	20				
5	1	0	1	0	1	0	1	10				
6	1	0	1	1	0	1	0	-5				
7	1	1	0	0	1	1	0	5				
8	1	1	0	1	0	0	1	5				
기본표시	а	b	ab	С	ас	bc	abc					

풀이

 $ab \times ac = bc$ 이므로 6열에서 '1'데이터와 '0'데이터를 비교하면 $B \times C$ 의 효과가 나오고,

$$SS_{B\times C} = \frac{1}{8} \{ (5 - 5 - 5 + 5) - (-10 + 20 + 10 + 5) \}^{2}$$
$$= 78.1 \text{ O} | \Box |.$$

제곱합을 구하는 통상적인 식을 적용해도

$$SS_{B \times C} = \frac{1}{4}(25^2 + 0^2) - \frac{25^2}{8} = 78.1$$

O|C|.

예 주효과 A, B, C, D이외에 2요인 교호작용 중 $A \times B$, $B \times C$, $B \times D$ 를 추정하고 싶다. 적절한 직교배열표를 선정하여 요인을 배치하라.

물이 최소한의 필요한 실험 수

요 인	자 유 도
A	2 - 1 = 1
В	2 - 1 = 1
С	2 - 1 = 1
D	2 - 1 = 1
AB	(2-1)(2-1) = 1
ВС	(2-1)(2-1) = 1
BD	(2-1)(2-1) = 1
총 평균	1
	총 자유도 = 8

상황에 맞는 선점도를 그리고(주 효과는 점, 교호작용효과는 선으로!) 인자를 배치한다.

우선 $L_8(2^7)$ 직교배열표이 선정된다.

풀이(계속)

직교배열표에의 인자 배치현황

열 실험번호	1(B)	2(A)	3(AB)	4(C)	5(BC)	6(D)	7(ABC)
1	B_0	A_0		C_0		D_0	
2	B_0	A_0		C_1		D_1	
3	B_0	A_1		C_0		D_1	
4	B_0	A_1		C_1		D_0	
5	B_1	A_0		C_0		D_1	
6	B_1	A_0		C_1		D_0	
7	B_1	A_1		C_0		D_0	
8	B_1	A_1		C_1		D_1	

에 9.1 플라스틱 제품의 신도(伸度)를 향상시키기 위한 실험을 실시하려 한다. 4요인 A, B, C, D가 신도에 영향을 주리라 기대되어 각각 2수준씩 선택하여 직교배열표를 이용하여 실험을 실시한 결과가 다음과 같이 주어졌다.

<표 9-7> 실험자료

21 =1 111 =		Ç	결	번	호	-		21 <i>=</i> 1 → ¬1	= 21 -1	
실험번호	1	2	3	4	5	6	7	실험조건	특성치	
1	0	0	0	0	0	0	0	$A_0B_0C_0D_0$	13	
2	0	0	0	1	1	1	1	$A_0B_0C_1D_1$	10	
3	0	1	1	0	0	1	1	$A_0B_1C_0D_1$	19	
4	0	1	1	1	1	0	0	$A_0B_1C_1D_0$	9	
5	1	0	1	0	1	0	1	$A_1B_0C_0D_1$	14	
6	1	0	1	1	0	1	0	$A_1B_0C_1D_0$	10	
7	1	1	0	0	1	1	0	$A_1B_1C_0D_0$	18	
8	1	1	0	1	0	0	1	$A_1B_1C_1D_1$	17	
기본표시	a	ъ	$a\mathbf{b}$	С	$a\mathbf{c}$	bc	a <u>bc</u>			
실험배치	Α	В	е	С	е	е	D			

5 B M M | N | D | C | C | C | C | D |

- 1) 분산분석을 통해서 특성값에 영향을 주리라고 기대되는 요인들을 검출하라.
- 2) 신도를 가장 크게 하는 최적수준조합에서의 모평균에 대한 95% 신뢰구간을 구하라.

풀이

<표 9-8> 각 열의 변동을 구하는 계산표

열 번호	1	2	3	4	5	6	7
요인효과	A	В	e	С	e	e	D
T_0	51	47	58	64	59	53	50
T_1	59	63	52	46	51	57	60
$SS = \frac{(T_1 - T_0)^2}{8}$	8	32	4.5	40.5	8	2	12.5

오차변동
$$SS_E = SS_3 + SS_5 + SS_6$$
(9.12)
= $4.5 + 8 + 2 = 14.5$

풀0

〈표 9-9〉 분산분석표

요 인	제곱합	자유도	평균제곱	F_0	유의확률
A	8	1	8	1.66	0.289
В	32	1	32	6.62	0.082
С	40.5	1	40.5	8.38	0.062
D	12.5	1	12.5	2.59	0.206
오차 <i>E</i>	14.5	3	4.8		
T	107.5	7			

일반적인 법칙: 유의확률이 0.25이상이면 오차 항에 풀링(pooling)함

$$SS_{E'} = SS_E + SS_A = 14.5 + 8 = 22.5 \dots (9.13)$$

$$\phi_{E'} = \phi_E + \phi_A = 3+1=4 \dots (9.14)$$

풀이

<표 9-10> 풀링한 후의 분산분석표

요 인	제곱합	자유도	평균제곱	${F}_0$	유의확률
В	32	1	32	5.69	0.076
C	40.5	1	40.5	7.20	0.055
D	12.5	1	12.5	2.22	0.210
오차 <i>E'</i>	22.5	4	5.6		
T	107.5	7			

 \longrightarrow 요인 B 와 C가 신도에 영향을 줄 것이다.

마지막 모형
$$Y_{ijk} = y + b_i + c_j + \varepsilon_{ijk}$$
(9.15)

실험조건 B_i , C_j 에서 특성 값의 모평균 추정치

$$\widehat{\mu}(B_i C_j) = \widehat{\mu + b_i} + \widehat{\mu + c_j} - \widehat{\mu}$$

$$= \widehat{\mu}(B_i) + \widehat{\mu}(C_j) - \widehat{\mu}$$

$$= \overline{y}_{i.} + \overline{y}_{.j} - \overline{\overline{y}}$$
(9.16)

풀이

 $\langle \pm 9-8 \rangle$ 의 계산표로부터 B_1, C_0 의 수준이 최적조건임

$$\hat{\mu}(B_1 C_0) = \bar{y}_{1.} + \bar{y}_{.0} - \bar{\bar{y}}$$

$$= \frac{63}{4} + \frac{64}{4} - \frac{110}{8} = 18$$
....(9.17)

$$\hat{\mu}(B_1C_0)$$
의 유효반복수 n_e ?
$$\frac{1}{n_e} = \frac{1}{4} + \frac{1}{4} - \frac{1}{8} = \frac{3}{8} -> n_e = \frac{8}{3} \dots (9.18)$$

 $\mu(B_1C_0)$ 의 95% 신뢰구간

$$(\bar{y}_{1.} + \bar{y}_{.0} - \bar{\bar{y}}) \pm t(4:.025) \sqrt{\frac{MS_E}{n_e}}$$

= $18 \pm 2.776 \sqrt{5.6 \times \frac{3}{8}} = 18 \pm 4.02 \dots (9.19)$

9.3 $L_8(2^7)$ 직교배열표 R 실습

elastic <- c(13, 10, 19, 9, 14, 10, 18, 17)

temp < -c(0, 0, 0, 0, 1, 1, 1, 1)

<u>humid $\langle -c(0, 0, 1, 1, 0, 0, 1, 1) \rangle$ </u>

press $\langle -c(0, 1, 0, 1, 0, 1, 0, 1) \rangle$

 $vib \leftarrow c(0, 1, 1, 0, 1, 0, 0, 1)$

Df Sum Sq Mean Sq F value Pr(>F)8.0 8.00 0.2885 1.655 temp 1 32.0 32.00 humid 6.621 0.0823. 1 40.5 40.50 8.379 0.0628. press 12.50 1 12.5 2.586 0.2062 vih 4.83 Residuals 3 14.5 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'

elastic.data <- data.frame(elastic, temp, humid, press, vib)

elastic.data\$temp <- factor(elastic.data\$temp, levels=c(0, 1), labels=c("A0", "A1"))

elastic.data\$humid <- factor(elastic.data\$humid, levels=c(0, 1), labels=c("B0", "B1"))

elastic.data\$press <- factor(elastic.data\$press, levels=c(0, 1), labels=c("C0", "C1"))

elastic.data\$vib <- factor(elastic.data\$vib, levels=c(0, 1), labels=c("D0", "D1"))

model1 <- aov(elastic~temp+ humid+ press+ vib. data=elastic.data)

summary(model1)

제10강 다구치 실험계획1

 $9.4 | L_{16}(2^{15})$ 직교배열표

9.4 $L_{16}(2^{15})$ 직교배열표

<표 $9-11>L_{16}~(2^{15})$ 직교배열표

실험번호	열 번 호										실험조건					
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	ラおエゼ
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	
3	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	
4	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	
5	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	
6	0	1	1	0	0	1	1	1	1	0	0	1	1	0	0	
7	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	
8	0	1	1	1	1	0	0	1	1	0	0	0	0	1	1	
9	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	
10	1	0	1	0	1	0	1	1	0	1	0	1	0	1	0	
11	1	0	1	1	0	1	0	0	1	0	1	1	0	1	0	
12	1	0	1	1	0	1	0	1	0	1	0	0	1	0	1	
13	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	
14	1	1	0	0	1	1	0	1	0	0	1	1	0	0	1	
15	1	1	0	1	0	0	1	0	1	1	0	1	0	0	1	
16	1	1	0	1	0	0	1	1	0	0	1	0	1	1	0	
	а	b	а	С	a	b	а	d	а	b	а	С	а	b	а	
기본표시			b		С	С	b		d	d	ъ	d	С	С	b	
기근표시							С				d		d	d	С	
															d	
실험배치																

$9.4 L_{16}(2^{15})$ 직교배열표

예 9.1 2수준 요인 A, B, C, D, E, F, G, H와 상호작용효과 $A \times B$, $A \times C$, $G \times H$ 의 효과를 구하고 싶다. 2수준 직교배열표의 열에 각각의 요인을 어떻게 배치하겠는가?

풀이

<그림 9-4> 만족해야 될 선점도

$9.4 L_{16}(2^{15})$ 직교배열표

풀이

<표 9-12> 여러 가지 배치현황

열번호	123	456	7	8 9	1011	12	1314	15
배치1	ABA imes B	GDF	e	Не	e e	$G \times H$	e A×C	С
배치2	A G e	$H \in G \times H$	e	$B A \times B$	C $A \times C$	D	e e	P
배치3	$ABA \times B$	Ge D	e	C $A \times C$	e H	P	e e	$G \!\! imes \!\! H$
배치4	A G e	DHe	$G \times H$	$B A \times B$	C $A \times C$	P	e e	e

험계획과 응용

다음 시간 안내

제11강 (9장)

다구치실험계획 2