Twierdzenie (Wzory skróconego mnożenia).

Dla dowolnych liczb rzeczywistych a, b zachodzą następujące wzory:

• $(a+b)^2 = a^2 + 2ab + b^2$	kwadrat sumy
• $(a-b)^2 = a^2 - 2ab + b^2$	kwadrat różnicy
• $a^2 - b^2 = (a - b)(a + b)$	różnica kwadratów
$ (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 $	sześcian sumy
$ (a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3 $	sześcian różnicy
• $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$	różnica sześcianów

• $a^3 + b^3 = (a+b)(a^2 - ab + b^2)$ suma sześcianów • $a^n - b^n = (a-b)(a^{n-1} + a^{n-2}b + a^{n-3}b^2 + \dots + ab^{n-2} + b^{n-1})$

Twierdzenie (Wzory skróconego mnożenia).

Dla dowolnych liczb rzeczywistych a, b zachodzą następujące wzory:

kwadrat sumy	• $(a+b)^2 = a^2 + 2ab + b^2$
kwadrat różnicy	• $(a-b)^2 = a^2 - 2ab + b^2$
różnica kwadratów	• $a^2 - b^2 = (a - b)(a + b)$
sześcian sumy	$ (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 $
sześcian różnicy	$ (a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3 $
różnica sześcianów	• $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$
suma sześcianów	• $a^3 + b^3 = (a+b)(a^2 - ab + b^2)$
$a^{n-3}b^2 + \ldots + ab^{n-2} + b^{n-1}$	• $a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b +$

Twierdzenie (Wzory skróconego mnożenia).

Dla dowolnych liczb rzeczywistych a,b zachodzą następujące wzory:

v	• • •	c
$\bullet (a+b)^2 = a$	$a^2 + 2ab + b^2$	kwadrat sumy
$\bullet (a-b)^2 = a$	$a^2 - 2ab + b^2$	kwadrat różnicy
• $a^2 - b^2 = (a^2 - b^2)$	(a-b)(a+b)	różnica kwadratów
$\bullet (a+b)^3 = a$	$a^3 + 3a^2b + 3ab^2 + b^3$	sześcian sumy
$\bullet (a-b)^3 = a$	$a^3 - 3a^2b + 3ab^2 - b^3$	sześcian różnicy
• $a^3 - b^3 = (a^3 - b^3)$	$(a-b)(a^2+ab+b^2)$	różnica sześcianów
• $a^3 + b^3 = (a^3 + b^3)$	$(a+b)(a^2 - ab + b^2)$	suma sześcianów
$\bullet \ a^n - b^n = (a^n - b^n)$	$(a-b)(a^{n-1}+a^{n-2}b+a^n)$	$a^{n-3}b^2 + \ldots + ab^{n-2} + b^{n-1}$

Twierdzenie (Wzory skróconego mnożenia).

Dla dowolnych liczb rzeczywistych a, b zachodzą następujące wzory:

•
$$(a+b)^2 = a^2 + 2ab + b^2$$
 kwadrat sumy
• $(a-b)^2 = a^2 - 2ab + b^2$ kwadrat różnicy
• $a^2 - b^2 = (a-b)(a+b)$ różnica kwadratów
• $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$ sześcian sumy
• $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$ sześcian różnicy
• $a^3 - b^3 = (a-b)(a^2 + ab + b^2)$ różnica sześcianów
• $a^3 + b^3 = (a+b)(a^2 - ab + b^2)$ suma sześcianów
• $a^n - b^n = (a-b)(a^{n-1} + a^{n-2}b + a^{n-3}b^2 + \dots + ab^{n-2} + b^{n-1})$

Twierdzenie (Wzory skróconego mnożenia).

Dla dowolnych liczb rzeczywistych a, b zachodzą następujące wzory:

•
$$(a+b)^2 = a^2 + 2ab + b^2$$
 kwadrat sumy
• $(a-b)^2 = a^2 - 2ab + b^2$ kwadrat różnicy
• $a^2 - b^2 = (a-b)(a+b)$ różnica kwadratów
• $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$ sześcian sumy
• $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$ sześcian różnicy
• $a^3 - b^3 = (a-b)(a^2 + ab + b^2)$ różnica sześcianów
• $a^3 + b^3 = (a+b)(a^2 - ab + b^2)$ suma sześcianów
• $a^n - b^n = (a-b)(a^{n-1} + a^{n-2}b + a^{n-3}b^2 + \dots + ab^{n-2} + b^{n-1})$

Twierdzenie (Wzory skróconego mnożenia).

Dla dowolnych liczb rzeczywistych a, b zachodza następujące wzory:

• $(a+b)^2 = a^2 + 2ab + b^2$	kwadrat sumy
• $(a-b)^2 = a^2 - 2ab + b^2$	kwadrat różnicy
• $a^2 - b^2 = (a - b)(a + b)$	różnica kwadratów
$ (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 $	sześcian sumy
$ (a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3 $	sześcian różnicy
• $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$	różnica sześcianów
• $a^3 + b^3 = (a+b)(a^2 - ab + b^2)$	suma sześcianów
• $a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + a^{n-3}b)$	$a^2 + \ldots + ab^{n-2} + b^{n-1}$