

Numerical Analysis Final Report

Constructing Model for Model Velocity by Navier-Stokes Equations Contents

O1 Problem
Description

03 Results

02 Derivation

Conclusion & Discussion

01 Problem Description

How to use some known parameters to construct a model?

How to use numerical methods to find out the flow of blood, and the steady state

02 Derivation

Momentum conservation

Inertia $\rho\left(\begin{array}{ccc}
\frac{\partial \mathbf{v}}{\partial t} & + & (\mathbf{v} \cdot \nabla)\mathbf{v} \\
\text{Unsteady} & \text{Convective} \\
\text{acceleration} & \text{gradient} \\
\end{array}\right) = \frac{-\nabla p}{\rho} + \mu \nabla^2 \mathbf{v} + \mathbf{f}$

Mass conservation (Incompressible)

$$\nabla \cdot \mathbf{v} = 0$$

Assume density is constant

$$\rho\left(\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z}\right) = \mu\left[\frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial y^2} + \frac{\partial^2 v_x}{\partial z^2}\right] - \frac{\partial p}{\partial x} + \rho g_x$$

$$\rho\left(\frac{\partial v_y}{\partial t} + v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_y}{\partial z}\right) = \mu \left[\frac{\partial^2 v_y}{\partial x^2} + \frac{\partial^2 v_y}{\partial y^2} + \frac{\partial^2 v_y}{\partial z^2}\right] - \frac{\partial p}{\partial y} + \rho g_y$$

$$\rho\left(\frac{\partial v_z}{\partial t} + v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z}\right) = \mu \left[\frac{\partial^2 v_z}{\partial x^2} + \frac{\partial^2 v_z}{\partial y^2} + \frac{\partial^2 v_z}{\partial z^2}\right] - \frac{\partial p}{\partial z} + \rho g_z$$

02 Derivation

Assume
$$v = w = 0$$
 $P = P(x)$ $u = u(y, z)$ $\nabla \cdot \vec{v} = 0$

$$P = P(x)$$

$$u = u(y, z)$$

$$\nabla \cdot \vec{v} = 0$$

Analyze x-direction

$$\rho\left(\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + w\frac{\partial u}{\partial z}\right) = \mu\left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right] - \frac{\partial p}{\partial x} + \rho g_x$$

02 Derivation

$$u(y,z) = \frac{1}{2\mu} \frac{dP}{dx} \frac{a^2b^2}{a^2 + b^2} (\frac{y^2}{a^2} + \frac{z^2}{b^2} - 1)$$

For circular cross section

$$u(y,z) = \frac{1}{4\mu} \frac{dP}{dx} (r^2 - R^2)$$


```
(Si
```

```
import numpy as np
 import matplotlib.pyplot as plt
import matplotlib.cm as cm
def FD2(ur, delta x, ax):
    du_dx = (np.roll(ur, -1, axis=ax) - ur) / delta_x
return du_dx
def SD3(ur, delta x, ax):
    du_dx_2 = (np.roll(ur, -1, axis=ax) - 2 * ur + np.roll(ur, 1, axis=ax)) / delta_x ** 2
return du_dx_2
def BC(u):
    ny = np.squeeze(np.shape(u[0, :, 0]))
    nz = np.squeeze(np.shape(u[0, 0, :]))
    yc = dy * (ny - 1) / 2 # Center of y (R)
    for i in range(ny):
        for j in range(nz):
```

```
mu = 3 * 10 ** (-3)
rho = 1.06 * 10 ** 3
nu = mu / rho
n = 101 # 切幾等分
R = 0.0125 # 血管半徑
y = np.linspace(-R, R, n)
dy = y[1] - y[0]
z = np.linspace(-R, R, n)
dz = z[1] - z[0]
r = np.zeros([101, 101])
for i in range(101):
r = np.where(r <= R, r, 0)
dt = 0.001
x = 1 # 血管長度
P1 = 15998.6842 # 初始壓力
P = np.zeros((n, n, n))
dx = x / n
for i in range(n):
dP_dx = FD2(P, dx, 0)
u = np.zeros([n, n, n])
d2u_dy2 = SD3(u, dy, 1)
d2u dz2 = SD3(u, dz, 2)
```


02 Derivation — Code

```
for i in range(20000):
   u = BC(u)
   u += (-1 / rho * dP_dx + nu * (d2u_dy2 + d2u_dz2)) * dt
   d2u dy2 = SD3(u, dy, 1)
   d2u_dz2 = SD3(u, dz, 2)
   t = round(i * dt, 3)
   if i % 100 == 0:
        plt.figure(figsize=(8, 6))
        plt.title("The velocity of the blood, t = %f" % t)
        a = plt.contourf(u[50, :, :], cmap=cm.jet, levels=np.arange(0, 0.65, 0.01))
        plt.colorbar(a)
       plt.savefig("%d.png" % i)
       plt.close()
```

03 Results——Numerical solution (Case 1)

Dynamic
$$\mu = 3 \times 10^{-3}$$
 $\left[\frac{kg}{s \times m}\right]$

$$\text{Kinetic} \quad \nu = 2.8 \times 10^{-6} \quad \left[\frac{m^2}{s}\right]$$

Pressure: 120
$$[mm - Hg] = 15998.6842 \left[\frac{N}{m^2}\right]$$

03 Results — Numerical Solution (Case 1)

Link (Click Me)

Link (Click Me)

03 Results — Analytical Solution (Case 1)

03 Results——Numerical solution (Case 2)

Synamic
$$\mu = 3 \times 10^{-3}$$
 $\left[\frac{kg}{s \times m}\right]$

Kinetic
$$\nu = 2.8 \times 10^{-6} \quad \left[\frac{m^2}{s}\right]$$

Pressure: 120
$$[mm - Hg] = 15998.6842 \left[\frac{N}{m^2}\right]$$

03 Results — Numerical Solution (Case 2)

The real blood velocity in arteries is 0.5 m/s
Link (Click Me)

Link (Click Me)

03 Results——Analytical solution (Case 2)

Steady State

Ti

04 Conclusion and Discussion

The results from the model are consistent with the theoretical values.

The blood velocity at the wall is slow and that at the center is high.

04 Conclusion and Discussion

How to improve

 ν and ω should also be considered

The thick and thin part of blood vessels can be considered

The time evolution of blood pressure should also be considered