The Retracing Boomerang Attack

Gautam Singh

Indian Institute of Technology Hyderabad

April 28, 2025

- Introduction
- 2 Preliminaries

Boomerang Attacks
The S-box Switch
The Yoyo Game
Mixture Differentials

3 The Retracing Boomerang Attack

The Retracing Boomerang Framework

Introduction

Broke the record for 5-round AES when it was published.

Introduction

- Broke the record for 5-round AES when it was published.
- \odot Brings the attack complexity down to $2^{16.5}$ encryptions.

Introduction

- Broke the record for 5-round AES when it was published.
- \odot Brings the attack complexity down to $2^{16.5}$ encryptions.
- Uncovers a hidden relationship between boomerang attacks and two other cryptanalysis techniques: yoyo game and mixture differentials.

Boomerang Attack

The Boomerang Attack

1 Typically split the encryption function as $E=E_1\circ E_0$, with differential trails for each sub-cipher.

Figure 1: The boomerang attack.

Boomerang Attacks

The Boomerang Attack

- 1 Typically split the encryption function as $E = E_1 \circ E_0$, with differential trails for each sub-cipher.
- 2 We can build a distinguisher that can distinguish E from a truly random permutation in $\mathcal{O}((pq)^{-2})$ plaintext pairs.

Figure 1: The boomerang attack.

The Boomerang Distinguisher

Algorithm 1 The Boomerang Attack Distinguisher

- 1: Initialize a counter $ctr \leftarrow 0$.
- 2: Generate $(pq)^{-2}$ plaintext pairs (P_1, P_2) such that $P_1 \oplus P_2 = \alpha$.
- 3: **for all** pairs (P_1, P_2) **do**
- 4: Ask for the encryption of (P_1, P_2) to (C_1, C_2) .
- 5: Compute $C_3 = C_1 \oplus \delta$ and $C_4 = C_2 \oplus \delta$.

 $\triangleright \delta$ -shift

- 6: Ask for the decryption of (C_3, C_4) to (P_3, P_4) .
- 7: if $P_3 \oplus P_4 = \alpha$ then
- 8: Increment *ctr*
- 9: **if** ctr > 0 **then**
- 10: **return** This is the cipher E
- 11: **else**
- 12: **return** This is a random permutation

The S-box Switch

Boomerang Switches

1 Gain 1-2 middle rounds for free by choosing differentials carefully. Here, we discuss the *S-box switch*.

The S-box Switch

Boomerang Switches

- Gain 1-2 middle rounds for free by choosing differentials carefully. Here, we discuss the *S-box switch*.
- 2 Suppose the last operation in E_0 is a layer of S-boxes where $S(\rho_1 \| \rho_2 \| \dots \| \rho_t) = (f_1(\rho_1) \| f_2(\rho_2) \| \dots \| f_t(\rho_t))$ for t independent keyed functions f_i . Suppose the difference for both β and γ corresponding to the output of some f_i is equal to Δ .

Boomerang Switches

- **1** Gain 1-2 middle rounds for free by choosing differentials carefully. Here, we discuss the *S-box switch*.
- 2 Suppose the last operation in E_0 is a layer of S-boxes where $S(\rho_1 \| \rho_2 \| \dots \| \rho_t) = (f_1(\rho_1) \| f_2(\rho_2) \| \dots \| f_t(\rho_t))$ for t independent keyed functions f_i . Suppose the difference for both β and γ corresponding to the output of some f_i is equal to Δ .
- \odot Denoting this part of the intermediate state by X_i ,

$$(X_1)_j \oplus (X_2)_j = (X_1)_j \oplus (X_3)_j = (X_2)_j \oplus (X_4)_j = \Delta$$
 (1)

which shows $(X_1)_j = (X_4)_j$ and $(X_2)_j = (X_3)_j$.

Boomerang Switches

- **1** Gain 1-2 middle rounds for free by choosing differentials carefully. Here, we discuss the *S-box switch*.
- 2 Suppose the last operation in E_0 is a layer of S-boxes where $S(\rho_1 \| \rho_2 \| \dots \| \rho_t) = (f_1(\rho_1) \| f_2(\rho_2) \| \dots \| f_t(\rho_t))$ for t independent keyed functions f_i . Suppose the difference for both β and γ corresponding to the output of some f_i is equal to Δ .
- $oldsymbol{\circ}$ Denoting this part of the intermediate state by X_j ,

$$(X_1)_j \oplus (X_2)_j = (X_1)_j \oplus (X_3)_j = (X_2)_j \oplus (X_4)_j = \Delta$$
 (1)

which shows $(X_1)_j = (X_4)_j$ and $(X_2)_j = (X_3)_j$.

4 If the differential characteristic in f_j^{-1} holds for (X_1, X_2) , then it will hold for (X_3, X_4) . We pay for probability in one direction.

The S-box Switch

Boomerang Switches

- **1** Gain 1-2 middle rounds for free by choosing differentials carefully. Here, we discuss the *S-box switch*.
- 2 Suppose the last operation in E_0 is a layer of S-boxes where $S(\rho_1 \| \rho_2 \| \dots \| \rho_t) = (f_1(\rho_1) \| f_2(\rho_2) \| \dots \| f_t(\rho_t))$ for t independent keyed functions f_i . Suppose the difference for both β and γ corresponding to the output of some f_i is equal to Δ .
- $oldsymbol{\circ}$ Denoting this part of the intermediate state by X_j ,

$$(X_1)_j \oplus (X_2)_j = (X_1)_j \oplus (X_3)_j = (X_2)_j \oplus (X_4)_j = \Delta$$
 (1)

which shows $(X_1)_j = (X_4)_j$ and $(X_2)_j = (X_3)_j$.

- 4 If the differential characteristic in f_j^{-1} holds for (X_1, X_2) , then it will hold for (X_3, X_4) . We pay for probability in one direction.
- **6** Distinguisher probability increases by a factor of $(q')^{-1}$, where q' is the probability of the differential characteristic in f_i .

The Yoyo Game

1 Similar to boomerang, starts by encrypting (P_1, P_2) to (C_1, C_2) , then modifying them to (C_3, C_4) and decrypting them.

The Yoyo Game

- 1 Similar to boomerang, starts by encrypting (P_1, P_2) to (C_1, C_2) , then modifying them to (C_3, C_4) and decrypting them.
- 2 Unlike the boomerang attack, this process continues in the yoyo game.

The Yoyo Game

- 1 Similar to boomerang, starts by encrypting (P_1, P_2) to (C_1, C_2) , then modifying them to (C_3, C_4) and decrypting them.
- Unlike the boomerang attack, this process continues in the yoyo game.
- § All pairs of intermediate values (X_{2l+1}, X_{2l+2}) satisfy some property (such as zero difference in some part).

The Yoyo Game

- Similar to boomerang, starts by encrypting (P_1, P_2) to (C_1, C_2) , then modifying them to (C_3, C_4) and decrypting them.
- Unlike the boomerang attack, this process continues in the yoyo game.
- § All pairs of intermediate values (X_{2l+1}, X_{2l+2}) satisfy some property (such as zero difference in some part).
- Probabilities are low with large I. Still, the yoyo technique has been used to attack AES reduced to 5 rounds.

Mixture Differentials

Mixture

Definition 1 (Mixture)

Suppose $P_i \triangleq (\rho_1^i, \rho_2^i, \dots, \rho_t^i)$. Given a plaintext pair (P_1, P_2) , we say (P_3, P_4) is a *mixture counterpart* of (P_1, P_2) if for each $1 \leq j \leq t$, the quartet $(\rho_j^1, \rho_j^2, \rho_j^3, \rho_j^4)$ consists of two pairs of equal values or of four equal values. The quartet (P_1, P_2, P_3, P_4) is called a *mixture*.

Mixture¹

Definition 1 (Mixture)

Suppose $P_i \triangleq (\rho_1^i, \rho_2^i, \dots, \rho_t^i)$. Given a plaintext pair (P_1, P_2) , we say (P_3, P_4) is a *mixture counterpart* of (P_1, P_2) if for each $1 \leq j \leq t$, the quartet $(\rho_j^1, \rho_j^2, \rho_j^3, \rho_j^4)$ consists of two pairs of equal values or of four equal values. The quartet (P_1, P_2, P_3, P_4) is called a *mixture*.

• If (P_1, P_2, P_3, P_4) is a mixture, then XOR of the intermediate values (X_1, X_2, X_3, X_4) is zero.

Mixture

Definition 1 (Mixture)

Suppose $P_i \triangleq (\rho_1^i, \rho_2^i, \dots, \rho_t^i)$. Given a plaintext pair (P_1, P_2) , we say (P_3, P_4) is a *mixture counterpart* of (P_1, P_2) if for each $1 \leq j \leq t$, the quartet $(\rho_j^1, \rho_j^2, \rho_j^3, \rho_j^4)$ consists of two pairs of equal values or of four equal values. The quartet (P_1, P_2, P_3, P_4) is called a *mixture*.

- If (P_1, P_2, P_3, P_4) is a mixture, then XOR of the intermediate values (X_1, X_2, X_3, X_4) is zero.
- ② $X_1 \oplus X_3 = \gamma \implies X_2 \oplus X_4 = \gamma$. Hence, for $\gamma \xrightarrow{q} \delta$ in E_1 , $C_1 \oplus C_3 = C_2 \oplus C_4 = \delta$ with probability q^2 .

Mixture

Definition 1 (Mixture)

Suppose $P_i \triangleq (\rho_1^i, \rho_2^i, \dots, \rho_t^i)$. Given a plaintext pair (P_1, P_2) , we say (P_3, P_4) is a *mixture counterpart* of (P_1, P_2) if for each $1 \leq j \leq t$, the quartet $(\rho_j^1, \rho_j^2, \rho_j^3, \rho_j^4)$ consists of two pairs of equal values or of four equal values. The quartet (P_1, P_2, P_3, P_4) is called a *mixture*.

- If (P_1, P_2, P_3, P_4) is a mixture, then XOR of the intermediate values (X_1, X_2, X_3, X_4) is zero.
- 2 $X_1 \oplus X_3 = \gamma \implies X_2 \oplus X_4 = \gamma$. Hence, for $\gamma \xrightarrow{q} \delta$ in E_1 , $C_1 \oplus C_3 = C_2 \oplus C_4 = \delta$ with probability q^2 .

Figure 2: The retracing boomerang attack.

The Retracing Boomerang Attack

• The retracing boomerang framework consists of a shifting type and a mixing type.

The Retracing Boomerang Attack

- The retracing boomerang framework consists of a shifting type and a mixing type.
- Ø Both attacks use the setup shown in Figure 2.

The Retracing Boomerang Attack

- The retracing boomerang framework consists of a shifting type and a mixing type.
- Observe Both attacks use the setup shown in Figure 2.
- 4 Although the additional split looks restrictive, it applies for a wide class of block ciphers such as SASAS constructions.

The Retracing Boomerang Attack

- The retracing boomerang framework consists of a shifting type and a mixing type.
- Ø Both attacks use the setup shown in Figure 2.
- 6) Although the additional split looks restrictive, it applies for a wide class of block ciphers such as SASAS constructions.
- ① Further, we assume that E_{12} can be split into two parts of size b and n-b bits, call these functions E_{12}^L and E_{12}^R , with characteristic probabilities q_2^L and q_2^R respectively.