Lecture 7 Logistic Regression I

Inference

ECE 625: Data Analysis and Knowledge Discovery

Di Niu

Department of Electrical and Computer Engineering University of Alberta

February 2, 2021

Introduction

Introduction

Logistic Regression

Inference

Summary and Remark

Inference

Regression is for quantitative response

Qualitative Response

For classification

► There are many qualitative response taking values in an unordered set C such as

```
eye color \in {brown; blue; green}.
```

- ▶ Given a feature vector X and a qualitative response Y taking values in the set C, the classification task is to build a function C(X) (learn a rule) that takes as input the feature vector X and predicts its value for Y; i.e. $C(X) \in C$.
- Often we are more interested in estimating the probabilities that X belongs to each category in C.
- For example, it is more valuable to have an estimate of the probability that an insurance claim is fraudulent, than a classification fraudulent or not.

Cedit Card Default

Individuals who defaulted in a given month in orange, and did not in blue.

Linear Regression Model

Suppose for the Default classification task that we code

$$Y = \begin{cases} 1 & \text{if Yes} \\ 0 & \text{if No} \end{cases}.$$

Inference

Can we simply perform a linear regression of Y on X and classify as Yes if $\hat{Y} > 0.5$?

- ► In this case of a binary outcome, linear regression does a good job as a classifier, and is equivalent to linear discriminant analysis which we discuss later.
- Since in the population E(Y|X=x) = Pr(Y=1|X=x), we might think that regression is perfect for this task.
- ► However, linear regression might produce probabilities less than zero or bigger than one. Logistic regression is more appropriate.

February 2, 2021

6/13

Credit data example

The orange marks indicate the response Y, either 0 or 1. Linear regression does not estimate Pr(Y = 1|X) well. Logistic regression seems well suited to the task.

Logistic Regression

$$1-p(X) = Pr(Y=0|X)$$

▶ Denote p(X) = Pr(Y = 1|X) consider using balance to predict default. Logistic regression uses the form

$$\Pr(ext{Y=1|X}) = p(X) = rac{oldsymbol{arrho_0 + eta_1 X}}{1 + e^{eta_0 + eta_1 X}}$$
 . We have a linear model here

- It is easy to see that no matter what values β_0 , β_1 or X take, p(X) will have values between 0 and 1.
- ► A bit of rearrangement gives

$$\left(\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X.$$

This monotone transformation is called the \log odds or \log transformation of p(X).

Training samples: (x1, 0), (x2, 1), (x3, 1), (x4, 0), ... likelihood under (beta0, beta1): (1-p(x1)) p(x2) p(x3) (1-p(x4))...

Estimation

▶ We use maximum likelihood to estimate the parameters.

$$l(\beta_0, \beta_1) = \prod_{i: y_i = 1} p(x_i) \prod_{i: y_i = 0} (1 - p(x_i)).$$

This likelihood gives the probability of the observed zeros and ones in the data. We pick β_0 and β_1 to maximize the likelihood of the observed data. Let $\beta = (\beta_0, \beta_1)^T$. The log-likelihood is training samples

$$\log \ell(\beta) = \sum_{i=1}^{N} \left\{ y_i \log p(x_i; \beta) + (1 - y_i) \log(1 - p(x_i; \beta)) \right\}$$

$$= \sum_{i=1}^{N} \left\{ y_i \beta^\mathsf{T} x_i - \log(1 + e^{\beta^\mathsf{T} x_i}) \right\}$$

which is concave. Setting the derivative to zero, we get

$$\partial \ell(\beta)/\partial \beta = \sum_{i=1}^{N} x_i (y_i - p(x_i; \beta)) = 0.$$

Estimation

- Can use Newton's Method to solve for the roots in the above nonlinear equations. or use hill climbing
- Most statistical packages can fit linear logistic regression models by maximum likelihood.
- In R we use the glm function. to do logistic regression response must be 0/1
 > glm.fit=glm(default-balance, data=defaultData, family=binomial)
 > summary(glm.fit) means logistic regression
 Coefficients:

 Estimate Std. Error z value Pr(>|z|)

```
(Intercept) -1.065e+01 3.612e-01 -29.49 <2e-16 ***
balance 5.499e-03 2.204e-04 24.95 <2e-16 ***
```

small p-value will reject null hypothesis: this variable is useful

Inference

Interpretation

- Interpreting what β_1 means is not very easy with logistic regression, simply because we are predicting Pr(Y = 1|X) and not Y.
- If $\beta_1 = 0$, this means that there is no relationship between *Y* and *X*.
- If $\beta_1 > 0$, this means that when X gets larger so does the probability that Y = 1.
- ▶ If β_1 < 0, this means that when X gets larger, the probability that Y = 1 gets smaller.
- ▶ But how much bigger or smaller depends on where we are on the slope. increase in the middle is always steeper than a linear regression see the figure on page 6

Hypothesis Testing

We still want to perform a hypothesis test to see whether we can be sure that are β_0 and β_1 significantly different from zero.

Inference

- ▶ We use a z test instead of a t test, but of course that doesn't change the way we interpret the *p*-value
- \blacktriangleright Here the p-value for balance is very small, and β_1 is positive, so we are sure that if the balance increase, then the probability of default will increase as well.

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.065e+01 3.612e-01 -29.49 < 2e-16 ***
balance
           5.499e-03 2.204e-04 24.95 <2e-16 ***
Signif. codes: 0 ?***? 0.001 ?**? 0.05 ?.? 0.1 ? ? 1
```

Prediction

► What is our estimated probability of default for someone with a balance of 1000?

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.5613 + 0.0055 \times 1000}}{1 + e^{-10.5613 + 0.0055 \times 1000}} = 0.006.$$
 Final classification is 0

Inference

- ► The predicted probability of default for an individual with a balance of \$1000 is less than 1%.
- For a balance of \$2000, the probability is much higher, and equals to 0.586(58.6%).

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.5613 + 0.0055 \times 2000}}{1 + e^{-10.5613 + 0.0055 \times 2000}} = 0.586.$$
 if >0.5, classify to 1

Summary and Remark

- Introduction
- Logistic regression and estimation
- Hypothesis testing and prediction
- Read textbook Chapter 4 and R code
- ► Do R lab

Inference