徐逸祥

Prelab 1 518370910020

4.1 (a)
$$RC \cdot \frac{dV_{outt}}{dt} + V_{out}(t) = V_{in}(t)$$
 (j).

 $V_{out}(t) = (I - e^{t/RC}) U(t)$ $V_{in}(t) = U(t)$

$$\frac{dV_{out}(t)}{dt} = \left\{ \frac{d}{dt} \left(1 - e^{-t/RC} \right) \right\} t \ge 0 = \begin{cases} \frac{1}{RC} e^{-t/RC} \\ 0 \end{cases} t < 0$$

=
$$\frac{1}{RC}e^{-t/RC}u(t)$$
 substitute into (1). $\Rightarrow RC \cdot \frac{1}{RC}e^{-t/RC}u(t) + (1-e^{-t/RC})u(t)$
= $u(t) = V_{in}(t)$

Thus, we've verified that ysign(T) = (1-e7/RC)ult)

4.2 Since
$$u(t) \xrightarrow{LTL}$$
 ystep

So that $\frac{d}{dt}u(t) \xrightarrow{LTL}$ $\frac{d}{dt}$ ystep (t)
 $\frac{d}{dt}u(t) = \delta(t) \xrightarrow{LTL}$ $h(t) = \frac{d}{dt}$ ystep (t)
 $h(t) = \frac{d}{dt}$ ystep $(t) = \delta(t)(1 - e^{\frac{t}{Rc}}) + \frac{t}{Rc}e^{\frac{t}{Rc}}u(t) = \frac{t}{Rc}e^{\frac{t}{Rc}}u(t)$

(a)
$$\frac{b}{\Delta}u(t)$$
 \xrightarrow{LTI} $\frac{b}{\Delta}$ ystep (t- Δ)

Yb, $\Delta(t) = \frac{b}{\Delta}$ (ystep (t) - ystep (t- Δ))

$$= \frac{b}{\Delta} \left[(1 - e^{\frac{t}{Ac}}) u(t) - (1 - e^{\frac{t}{Ac}}) u(t-\Delta) \right]$$

(b)
$$\lim_{\Delta \to 0} \mathcal{A}_{b,\delta}(\tau) = \lim_{\Delta \to 0} \frac{\mathcal{A}_{step}(\tau) - \mathcal{A}_{step}(\tau-\delta)}{\Delta} = \frac{\mathcal{A}_{step}(\tau)}{\mathcal{A}_{t}} = \frac{1}{RC} e^{-t/RC} u(t)$$

This is the same result as hut) in 4.2

(C)

44
$$y(t) = \chi(t) + h(t) = \int_{-\infty}^{\infty} \chi(t-t)h(t)dt$$

for $\chi(t) = tu(t)$, $y(t) = \int_{-\infty}^{t} (t-t) dt e^{-t/RC}dt - \frac{1}{RC}\int_{0}^{t} te^{-t/RC}dt$
 $= \frac{1}{RC}\int_{0}^{t} e^{-t/RC}dt - \frac{1}{RC}\int_{0}^{t} te^{-t/RC}dt$
 $= t(1-e^{-t/RC})u(t) + [te^{-t/RC} - RC + RCe^{-t/RC}]u(t)$
 $= [RC(e^{-\frac{1}{RC}} - 1) + t]u(t)$

$$V_{\text{out}}(t) = (1 - e^{-1000t})u(t) - (1 - e^{-1000(t - 0.01)})u(t - 0.01) + 200 [0.00] e^{-1000(t - 0.016)} - 0.001 e^{-1000(t - 0.016)}]$$

4.5

RC
$$\frac{d}{dt}$$
 Vout (t) + Vout (t) = Vin(t)
RC $j\omega$ Vout (ω) + Vout (ω) = $Vin(\omega)$
 \Rightarrow H(ω) = $\frac{Vout(\omega)}{Vin(\omega)} = \frac{1}{RCj\omega+1}$

46

fc(Hz)	[Hyznfe]	2 IH(शेम्मिट)। (degree)	Td (ms)
50	0.954	-17.4	0.969
200	0.603	-51.5	0.715
500	0.303	-73.3	0.402
1000	0.157	-81.0	0.225
5000	0.032	-88.1	0.049