Lecture 8 : Switching

Timothy A. Gonsalves
Professor and Head
Dept. of CSE, IIT Madras

Short Term Course on "Teaching Computer Networks Effectively". Sponsored by AICTE.

- Not all nodes connected to each other
- Need Switches
 - Packet Switches
 - Enable packets to go from one host to another that is not directly connected

Switch: Multi-input Multi-output

Switches: Functions

- Receive incoming packets on incoming ports
- Forward on to outgoing ports
- Not forward all traffic
- Switch must have aggregate capacity
- Help build large networks

Switches: Functions

- Switching
 - Connectionless (datagram)
 - Using destination address in packet consult forwarding table to decide how to forward packet
 - Connection oriented (virtual circuit)
 - First establish a circuit from source to destination
 - Then forward packets on this circuit

Table lookup for switching

Switch 2

Destination	Port
a	3
b	0
c	3
d	3
e	2
f	1
g	0
h	0

Easy when entire map of network is Available

Configured at the time of network setup

Bridges and LAN Switches

• Bridge is also a switch

Source Routing Bridges

- Sender knows the location of destination address
 - LAN number, Bridge number
 - Example:
 - H11 on LAN1 wants to talk to H21 on LAN3
 - Route packets LAN1, B3, LAN2, B4
 - Each LAN has a unique number and each bridge on a LAN has a unique number

Source Routing

Entire route from source to destination in packet header

Virtual Circuit Switching

host a wants to communicate with b

VC Tables

- An incoming interface
- An incoming virtual circuit identifier (VCI) for incoming packet
- An outgoing interface
- An outgoing virtual circuit identifier (VCI) for outgoing packet
- New Connection
 - Assign VCI not in table
 - Incoming VCI and outgoing VCI not globally unique

Setting up VCs

- Dynamic setting up of VC
 - Setup message all the way from a to b and back
 - Choose unused VCI 4 a to S1
 - Choose VCI 10 from S1 to S2
 - Choose VCI 6 from S2 to S3
 - Choose VCI 4 from S3 to b
 - When connection not required tear down connection, free VCI, switches updated

Other VCs

- Permanent set by network administration
- Temporary setup for duration of connection


```
VC Tables setup before data transmission
```

VC Table S1:

```
In IF In VCI Out IF Out VCI
3 4 2 10

VC Table $2:

In IF In VCI Out IF Out VCI
0 10 1 8

VC Table $3:

In IF In VCI Out IF Out VC
1 8 0 5
```

VC Switching Issues

- Delays due to circuit setup
- Connection request full destination address
- Switch or link failure
 - New one has to be established again
- Route known before data being sent
- Requires flow control

VC Switching Advantages

- QoS guarantees
- Switches set aside resources
- Generally queues do not build up
 - Since traffic is delay sensitive
- Examples: X.25, Frame Relay (VPN), ATM

8.2 Characteristics of Connectionless Networks

- A host can send a packet anywhere at any time
 - Packet turns up at a switch forwarded
 - Provided switches table is populated
- Host sends packets does not know (connected / up) status of destination
- Each packet forwarded independent of each other
 - Successive packet can go through other switches
- A switch or link failure may not seriously affect communication

Frame Forwarding in Bridges

- Learning bridges
 - Does not forward all frames that it receives
 - Packet arrives from 1 to 2
 - Not forwarded
 - Forwarding based on Source Address in the packet

Frame Forwarding in Bridges

- When Bridge boots up: Table empty
- Entries are added over time
- Timeout with each entry
- Discards entries after a specified period of time
- Bridge useful for extending a LAN

Extending LANs using Bridges

- To extend a LAN use a bridge
 - This can introduce loops
 - Packets circulate forever
 - Distributed spanning tree algorithm
 - Removes loops
- Bridges are also useful for redundancy
- Bridges exchange configuration information
- Bridges select ports on which it will forward frames

Routing Packets in a LAN

- If source and destination are on the same LAN discard frame
- If destination and source LANs are different forward to appropriate LAN
- If destination not known flood
- Multiple bridges to improve reliability

Spanning trees

- Two bridges connecting LANs 1 and 2
 - At any point in time only one bridge is active
- Facts:
 - Each bridge unique ID MAC address + priority
 - Special group of addresses
 - all bridges on this LAN
 - Each port of the bridge has a unique ID within the bridge
 - Concept of root bridge
 - Bridge with lowest value of bridge ID

Spanning Tree Algorithm

- Each bridge finds the lowest cost path to root bridge
 - If two ports have same cost, choose the one with smaller port ID
- Construct minimum spanning tree
 - Using distributed BFS

Spanning Tree Algorithm

- Initially
 - All nodes think they are root bridges and send configuration information
 - Each node checks configuration information received from other nodes
 - Stops generating messages if its ID is higher
 - Send information to other nodes stating that it is one hop away from root bridge
 - Each node computes path to root
 - Discards some paths
 - i.e. the port with longer paths are made inactive
 - System stabilises only when root node generates configuration messages

Example

- Configuration message (root, d, node)
- Activity node B9
- B9 receives (B4, 0, B4), (B1, 0, B1)
- 1 < 9, 4 < 9, B9, B4 accept B1 as root
- B9 receives (B1, 1, B4) from B4 and (B1, 1, B8)
- B9 notices that distances to root from B4, B8 are the same as that of B9
- 9 > 8, 9 > 4, B9 stops forwarding on both its interfaces

Remote Bridges

- Connect one or more distant LANs
- Complete MAC frame put in payload

