概率论与数理统计作业卷(六)

	14-2-43
→ 、	填空题

1. 设 $X_1, ..., X_n$ 是取自总体 X 的样本,总体 X 的分布律如下, 其中 θ 未知, $0 < \theta < 1$, 则 θ 的矩 估计量为

X	-1	0	1
概率	$\frac{\theta}{2}$	$1 - \theta$	$\frac{\theta}{2}$

 $\overline{\mathbf{H}}$: 易得 E(X) = 0,可见 θ 无法表达成总体的一阶矩的函数

因此进一步计算 $E(X^2) = \frac{\theta}{2} + 0 + \frac{\theta}{2} = \theta$

用样本的二阶原点矩替换总体的二阶原点矩,即得 θ 的矩估计量为 $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}$

2. 设 X_1, X_2, X_3 相互独立, 分别服从参数为 $\theta, 2\theta, 3\theta$ 的泊松分布, 利用 X_1, X_2, X_3 可得 θ 的极大 似然估计 $\hat{\theta}$ = _______,并判断它是否为无偏估计 _

3. 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, X_3 是 X 的一组样本,那么 $\hat{\mu}_1 = \frac{1}{4}(X_1 + 2X_2 + X_3)$ 是否为总体期 望 μ 的无偏估计: ______, $\hat{\mu}_2 = \frac{1}{3}(X_1 + X_2 + X_3)$ 是否为总体期望 μ 的无偏估计: ______, 二者哪个更有效:

解: $: E\hat{\mu}_1 = \mu, E\hat{\mu}_2 = \mu$ 故二者都是总体期望 μ 的无偏估计 $\therefore D\hat{\mu}_1 = \frac{1}{16}(DX_1 + 4DX_2 + DX_3) = \frac{3}{8}\sigma^2 > \frac{1}{3}\sigma^2 = D\hat{\mu}_2$ 故 $\hat{\mu}_2$ 比 $\hat{\mu}_1$ 更有效

4. 某厂生产的 100 瓦灯泡的使用寿命 $X \sim N(\mu, 100^2)$ (单位: 小时). 现从一批灯泡中随机抽取 5 只测得它们的使用寿命如下: 1455,1502,1370,1610,1430. 由此可得这批灯泡平均使用寿命 μ 的置信度为 95% 的置信区间为 _____. 已知 $\mu_{0.025}$ = 1.96

解: $\bar{x} = 1473.4$, 所求置信区间为 $(\bar{x} - \mu\alpha/2\frac{\sigma}{\sqrt{n}}, \bar{x} + \mu\alpha/2\frac{\sigma}{\sqrt{n}}) = (1385.75, 1561.05)$

选择题

1. 设总体 $X \sim N(\mu, \sigma^2)$, 现对 μ 进行假设检验, 若在显著性水平 $\alpha = 0.05$ 下接受了 $H_0: \mu = \mu_0$, 则在显著性水平 $\alpha = 0.01$

(A) 接受 H_0 (B) 拒绝 H_0 (C) 可能接受,也可能拒绝 H_0 (D) 犯第一类错误概率变大 解: 应选择(A)

2. 设总体 X 服从正态分布 $N(\mu, \sigma^2)$, $\mu, \sigma^2 > 0$ 均未知,若样本容量 n 和样本值不变,当置信度 $1-\alpha$ 缩小时,总体均值的置信区间长度 $L_{\underline{\underline{\underline{\underline{\underline{L}}}}}$

(A) 增大 (B) 缩短

(C) 不变 (D) 以上三项都不对

解: $L = \frac{2S}{\sqrt{n}} t_{\alpha/2}(n-1)$ 当 $1-\alpha$ 缩小时 α 增大,导致 $t_{\alpha/2}(n-1)$ 缩小,从而 L 缩短 故应选择 (B)

3. 设总体 X 的概率密度 $f(x,\theta) = \frac{\theta^x}{x!}e^{-\theta}, x = 0, 1, 2, ...$,未知参数 $\theta > 0$,现有 θ 的两个独立无偏估计 $\hat{\theta}_1$ 和 $\hat{\theta}_2$,满足 $D(\hat{\theta}_1) = 3D(\hat{\theta}_2)$,为使 $c_1\hat{\theta}_1 + c_2\hat{\theta}_2$ 也是 θ 的无偏估计,且在所有这样的线性估计中有最小方差,则 $(c_1,c_2) =$

$$(A)(0.5,0.5)$$
 $(B)(0.25,0.75)$ $(C)(0.75,0.25)$ $(D)(\frac{2}{3},\frac{1}{3})$ 解: $E(c_1\hat{\theta}_1+c_2\hat{\theta}_2)=(c_1+c_2)\theta=\theta$ \Rightarrow $c_1+c_2=1.....(1)$ $D(c_1\hat{\theta}_1+c_2\hat{\theta}_2)=c_1^2D(\hat{\theta}_1)+c_2^2D(\hat{\theta}_2)=(3c_1^2+c_2^2)D(\hat{\theta}_1)=g(c_1,c_2)D(\hat{\theta}_1)$ 记 $g(c_1,c_2,\lambda)=3c_1^2+c_2^2+\lambda(c_1+c_2-1)$, 令该函数关于 c_1 和 c_2 的偏导数为 0 得 $6c_1+\lambda=0$, $2c_2+\lambda=0$, 解得 $c_2=3c_1$ 结合 (1) 解得 $c_1=0.25$, $c_2=0.75$ 故应选择 (B)

三、 计算、证明题

- 1. 设总体 X 的概率密度为 $f(x) = \begin{cases} \lambda^2 x e^{-\lambda x}, & x > 0 \\ 0, &$ 其他 \end{cases} 其中参数 $\lambda(\lambda > 0)$ 未知, $(X_1, X_2, ..., X_n)$ 是来自总体 X 的一个简单随机样本。求:(1) 参数 λ 的矩估计量;(2) 参数 λ 的极大似然估计量
 - 解: (1) 由于 $EX = \int_0^{+\infty} \lambda^2 x^2 e^{-\lambda x} dx = \frac{2}{\lambda}$ $\Rightarrow \lambda = \frac{2}{EX}$ $\Rightarrow \hat{\lambda}_1 = \frac{2}{X}$ 为 λ 的矩估计量
 - (2) 似然函数

$$L(\lambda) = \prod_{i=1}^{n} f(x_i; \lambda) = \lambda^{2n} \times \prod_{i=1}^{n} x_i \times e^{-\lambda \sum_{i=1}^{n} x_i}$$

对数似然函数

$$\ln L = 2n \ln \lambda + \sum_{i=1}^{n} \ln x_i - \lambda \sum_{i=1}^{n} x_i \tag{1}$$

对数似然方程为

$$\frac{d \ln L}{d\lambda} = 0 \quad \Rightarrow \quad \frac{2n}{\lambda} - \sum_{i=1}^{n} x_i = 0 \quad \Rightarrow \quad \lambda = \frac{2n}{\sum_{i=1}^{n} x_i} = \frac{2}{\frac{1}{n} \sum_{i=1}^{n} x_i}$$
 (2)

 $\hat{\lambda}_2 = \frac{2}{X}$ 为 λ 的极大似然估计量

某厂生产的维尼纶纤度 X ~ N(μ, σ²), 其中 σ² 未知, 正常生产时有 μ ≥ 1.4. 现从某天生产的维尼纶中随机抽取 5 根, 测得其纤度为 1.32, 1.24, 1.25, 1.14, 1.26. 问该天的生产是否正常? (α = 0.05)

解: 易得
$$\bar{x} = 1.242$$
, $s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})} = 0.06496$ 检验问题: $H_0: \mu \ge 1.4 \Leftrightarrow H_1: \mu < 1.4$ H_0 为真时检验统计量 $T = \frac{\bar{X} - \mu_0}{S/\sqrt{n}} \sim t(n-1)$ 对给定的检验水平 $\alpha = 0.05$, $t_{\alpha}(n-1) = t_{0.05}(4) = 2.1318$ 由样本值计算得 $t = \frac{\bar{x} - \mu_0}{s} \sqrt{n} = \frac{1.242 - 1.4}{0.06496} \times \sqrt{5} = -5.439 < -2.1318 = t_{0.05}(4)$ 故应拒绝 H_0 ,即认为该天的生产显著不正常

3. 某货车有 A 和 B 两条行车路线,行车所用时间分别服从 $N(\mu_1, \sigma_1^2)$ 和 $N(\mu_2, \sigma_2^2)$,现每条线路各跑 50 次,测得在 A 线上 $\bar{X}=80$, $S_1^2=20$,在 B 线上 $\bar{Y}=76$, $S_2^2=15$,取 $\alpha=0.05$,问: (1) 方差是否相同?(2) B 线路是否比 A 线路用时更短?

解:
$$(1)H_0: \sigma_1^2 = \sigma_2^2 \Leftrightarrow H_1: \sigma_1^2 \neq \sigma_2^2$$
 检验统计量 $F = S_1^2/S_2^2$, H_0 成立时 $F \sim F(49,49)$ 拒绝域 $W = \{F < F_{0.975}(49,49) = 0.567或F > F_{0.025}(49,49) = 1.762\}$ 计算得 $F \approx 1.333 \in (0.567,1.762)$,不能拒绝 H_0 ,可以认为方差相同 $(2)H_0: \mu_1 \leq \mu_2 \Leftrightarrow H_1: \mu_1 > \mu_2$ 检验统计量 $T = (\bar{X} - \bar{Y})/S_w\sqrt{\frac{1}{50} + \frac{1}{50}}, S_w = \sqrt{\frac{49S_1^2 + 49S_2^2}{50 + 50 - 2}}, H_0$ 成立时 $T \sim t(98)$ 拒绝域 $W = \{(x_1, ..., x_n) | T \geq t_{0.05}(98)\}$ $\{T \geq 1.66\}$ 计算得 $T \approx 4.781 > 1.66$,可以认为 B 线路比 A 线路用时更短