Classification: Decision Trees

Dr. Faisal Kamiran

Comparing Attribute Selection Measures

- The three measures, in general, return good results but
 - Information gain:
 - biased towards multivalued attributes
 - Gain ratio:
 - Gain Ratio takes number and size of branches into account when choosing an attribute
 - Gini index:
 - biased to multivalued attributes
 - has difficulty when # of classes is large

Measures of Node Impurity

Gini Index

Entropy

Misclassification error

Splitting Criteria based on Classification Error

Classification error at a node t :

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

- Measures misclassification error made by a node.
 - ◆ Maximum (1 1/n_c) when records are equally distributed among all classes, implying least interesting information
 - Minimum (0.0) when all records belong to one class, implying most interesting information

Examples for Computing Error

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Error =
$$1 - \max(0, 1) = 1 - 1 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Error =
$$1 - \max(1/6, 5/6) = 1 - 5/6 = 1/6$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Error =
$$1 - \max(2/6, 4/6) = 1 - 4/6 = 1/3$$

Comparison among Splitting Criteria

For a 2-class problem:

Tree Induction

- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.

- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

Stopping Criteria for Tree Induction

 Stop expanding a node when all the records belong to the same class

 Stop expanding a node when all the records have similar attribute values

Early termination (to be discussed later)

Practical Issues of Classification

Practical Issues of Classification

- Underfitting and Overfitting
- Missing Values

Data Fragmentation

Practical Issues of Classification

Underfitting and Overfitting

Missing Values

Data Fragmentation

Decision Boundary

- Border line between two neighboring regions of different classes is known as decision boundary
- Decision boundary is parallel to axes because test condition involves a single attribute at-a-time

Overfitting and Underfitting

- Overfitting results in decision trees that are more complex than necessary
- Training error no longer provides a good estimate of how well the tree will perform on previously unseen records
- Need new ways for estimating errors

Underfitting: when model is too simple, both training and test errors are large

Underfitting and Overfitting

Underfitting: when model is too simple, both training and test errors are large

DR. FAISAL KAMIRAN

Overfitting due to Noise

Decision boundary is distorted by noise point

Overfitting due to Insufficient Examples

- Insufficient number of training records in the region causes the decision tree to predict the test examples using other training records that are irrelevant to the classification task

How to Address Overfitting

- Pre-Pruning (Early Stopping Rule)
 - Stop the algorithm before it becomes a fully-grown tree
 - Typical stopping conditions for a node:
 - Stop if all instances belong to the same class
 - Stop if all the attribute values are the same
 - More restrictive conditions:
 - Stop if number of instances is less than some user-specified threshold
 - Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain).

How to Address Overfitting...

Post-pruning

- Grow decision tree to its entirety
- Trim the nodes of the decision tree in a bottom-up fashion
- If generalization error improves after trimming, replace sub-tree by a leaf node.
- Class label of leaf node is determined from majority class of instances in the sub-tree

- \square Re-substitution errors: error on training (Σ e(t))
- \square Generalization errors: error on testing (Σ e'(t))
- Methods for estimating generalization errors:
 - Optimistic approach: e'(t) = e(t)
 - Pessimistic approach:
 - For each leaf node: e'(t) = (e(t)+0.5)
 - ◆ Total errors: $e'(T) = e(T) + N \times 0.5$ (N: number of leaf nodes)
 - For a tree with 30 leaf nodes and 10 errors on training (out of 1000 instances):

Training error = 10/1000 = 1%Generalization error = $(10 + 30 \times 0.5)/1000 = 2.5\%$

- ◆Reduced error pruning (REP):
- uses validation dataset to estimate generalization error
- Validation set is part of training data used for preliminary validation of model during the learning process

 $E'(T_L) = (4+7*0.5)/24 = 7.5 / 24 = 0.3125$

Decision Tree, T_L

Decision Tree, T_R

$$E'(T_1) = (4+7*0.5)/24 = 7.5 / 24 = 0.3125$$

$$E'(T_R) = (6+4*0.5)/24 = 8/24 = 0.3333$$

Example of Post-Pruning

Class = Yes 20Class = No 10Error = 10/30 Training Error (Before splitting) = 10/30Pessimistic error = (10 + 0.5)/30 = 10.5/30

Class = Yes	8
Class = No	4

Class = Yes	3
Class = No	4

Class = Yes	4
Class = No	1

Class = Yes	5
Class = No	1

Example of Post-Pruning

Training Error (Before splitting) = 10/30

Pessimistic error = (10 + 0.5)/30 = 10.5/30

Training Error (After splitting) = 9/30

Pessimistic error (After splitting)

$$= (9 + 4 \times 0.5)/30 = 11/30$$

	A?	PRUNE
A1		4
A2	A3	

Class = Yes	8
Class = No	4

Class = Yes	3
Class = No	4

Class = Yes	4
Class = No	1

Class = Yes	5
Class = No	1

Occam's Razor

 Given two models of similar generalization errors, one should prefer the simpler model over the more complex model

 For complex models, there is a greater chance that it was fitted accidentally by errors in data

 Therefore, one should include model complexity when evaluating a model

Minimum Description Length (MDL)

X	у
X ₁	1
X ₂	0
X ₃	0
X_4	1
X _n	1

X	у
X_1	?
X_2	?
X_3	?
X_4	?
\mathbf{X}_{n}	?
•	

- Cost(Model, Data) = Cost(Data|Model) + Cost(Model)
 - Cost is the number of bits needed for encoding.
 - Search for the least costly model.
- Cost(Data|Model) encodes the misclassification errors.
- Cost(Model) uses node encoding (number of children) plus splitting condition encoding.

Decision Tree Based Classification

Advantages:

- Inexpensive to construct
- Extremely fast at classifying unknown records
- Easy to interpret for small-sized trees
- Accuracy is comparable to other classification techniques for many simple data sets

Example: C4.5

- Simple depth-first construction.
- Uses Information Gain
- Needs entire data to fit in memory.
- Unsuitable for Large Datasets.
- You can download the software from: http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz