بسمه تعالى

پاسخ سری هفتم تمرینها _ درس جبرخطی ۱ _ دانشگاه صنعتی شریف علیرضا توفیقی محمدی _ رشته علوم کامپیوتر _ شمارهی دانشجویی: ۹۶۱۰۰۳۶۳

۱ تمرین ۱۹ از بخش هشتم

٧ ١.١

 $v \in \ker p(T)$ ابتدا ثابت میکنیم $\ker p(T)$ زیر فضایی ناوردا از T است. برای اینکار عضو دلخواه در نظر بگیرید.

$$p(T)(T(v)) = T(p(T)(v)) = T(\cdot) = \cdot \implies T(v) \in \ker p(T)$$

و قسمت اول ثابت شد.

 $m_{T_{\ker p(T)}} = p(x)^k, k \leq b$ چون $m_{T_{\ker p(T)}} | m_T$ چون

 $m_{T_{\ker p(T)}}|p\implies p$ و در نتیجه $p(T_{\ker p(T)})=r$ پس $T(\ker p(T))\subseteq \ker p(T)$ و در نتیجه $m_{T_{\ker p(T)}}(x)=p(x)$ و از طرفی $m_{T_{\ker p(T)}}(x)=p(x)$ نمی تواند اسکالر باشد پس r=r

A Y. 1

اگر $W_1,...,W_k$ مستقل خطی باشند،

$$\forall w_i \in W_i : w_1 + \dots + w_k = \bullet \implies w_1 = \dots = w_k = \bullet$$

 $v_i \in W_i$ پس اگر عضوهای $v_1 + ... + v_k = \bullet$ در نظر بگیریم که $v_i \in W_i \cap \ker p(T)$ چون $v_1 \in W_i \cap \ker p(T)$ مستقل خطی است پس $v_1 \in W_i \cap \ker p(T)$ مستقل خطی است.

حال به طرف دیگر قضیه میپردازیم، با استقرا روی k تعداد زیرفضاهای Tدوری تلاش به اثبات این سمت میکنیم.

حکم: اگر T عملگری روی فضای برداری V باشد که $m_T(x)=p(x)^b$ و p یک چندجملهای $W_1\cap\ker p(T),...,W_k\cap\ker p(T),...,W_k$ اول باشد و $W_1\cap\ker p(T),...,W_k\cap\ker p(T)$ مستقل خطی باشد نتیجه میشود $W_1,...,W_k$ مستقل خطی است.

پایه: حکم برای k=1 واضخ است زیرا هر زیرفضا به شکل تنها یک مجموعه مستقل خطی از زیرفضاها را تشکیل می دهد.

فرض کنید حکم برای k=n-1 برقرار است و قرار می دهیم n=k چون m=1 ها m=1 دوری اند و فرض کنید حکم برای $m_{W_i}(x)=p(x)^{q_i}$ بست $m_T(x)=p(x)^b$ اند و

بدون خدشه به کلیت مسئله فرض کنید $q_1=Q$ است، چون p^{q_i} چندجملهای مینیمال w_1 است پس $p(T)(W_i)^{q_i}={}^{\bullet}, p(T)(W_i)^{q_{i-1}}\neq {}^{\bullet}$ پس w_1,\dots,w_k را در نظر بگیرید که w_1,\dots,w_k و w_1,\dots,w_k باشد.

 $p(T)(W_i)^Q=ullet$ در این صورت چون $p(T)(W_i)^{Q-1}\subseteq W_i$ است پس $p(T)(W_i)^{Q-1}$ در این صورت چون $u_1=p(T)(w_1)^{Q-1},\dots,u_k=0$ پس اگر بردارهای $\lim p(T)(W_i)^{Q-1}\subseteq \ker p(T)$ بس است پس $u_1=\dots=u_k=ullet$ و در نتیجه $u_1=\dots=u_k=0$ پس $u_1=\dots=u_k=0$

$$u_1 = p(T)(w_1)^{q_1-1} = \cdot \implies w_1 = \cdot$$

پس $w_{\mathsf{t}} + \ldots + w_k = w_{\mathsf{t}}$ نیز مستقل خطی اند پس

$$w_{\mathsf{Y}} = \ldots = w_k = \mathsf{Y}$$

یس $W_1,...,W_k$ مستقل خطی اند.

9 4.1

 $m_{T_{\langle\langle v \rangle\rangle_T}} = p(x)^a$ وجود دارد که $m_{T_{\langle\langle v \rangle\rangle_T}} | m_T$ میدانیم $m_{T_{\langle\langle v \rangle\rangle_T}} | m_T$ پس و به طریق مشابه $m_{T_{\langle\langle p(T)(v)\rangle\rangle_T}} = p(x)^b$ همچنین در کلاس ثابت شد (و همچنین تمرین $m_{T_{\langle\langle p(T)(v)\rangle\rangle_T}} = p(x)^b$ ممین قسمت) که بعد یک فضای $m_{T_{\langle\langle p(T)(v)\rangle\rangle_T}} = m_{T_{\langle\langle p(T)(v)\rangle\rangle_T}}$ داریم:

$$\dim \langle \langle v \rangle \rangle_T = a \times \deg p$$

و

$$\dim \langle \langle p(T)(v) \rangle \rangle_T = b \times \deg p$$

پس تنها كافيست ثابت كنيم

$$b \times \deg p + \deg p = a \times \deg b \iff b + 1 = a$$

که این حکم نیز نسبتا واضح است، زیرا

$$\forall u \in \langle \langle v \rangle \rangle_T : p^{b+1}(T)(u) = p^b(p(T)(u)) = \bullet \implies a \le b+1$$

$$\forall u \in \langle \langle v \rangle \rangle_T : p^b(T)(u) = p^{b-1}(p(T)(u)) \neq \cdot \implies a \ge b + 1$$

پس a=b+1 و حکم ثابت شد.

1. 4.1

حل نشد :(