Synthèse de l'ammoniac

Groupe 1254

Ecole polytechnique de Louvain-la-neuve

A link to tex.
roupe 1254 (UCL)

Synthèse de l'ammoniac

1 / J

Démarche suivie

Nous allons vous présenter :

- ① La tâche 3 : Etude environnementale
- 2 La tâche 8 : Comment diminuer notre rejet en CO₂?
 - L'électolyse
 - Le Biogaz
 - Les Algues

						A link	to tex.sx	
		□	< □ >	$\beta \in \Xi \rightarrow$	$\beta\in\Xi(A)$	- 8	200	
54 (UCL)	Synthèse de l'ammoniac						2 / 18	

Aspects énergétique

Points d'entrée et de sorties :

- Four à méthane
- \bullet Condensation du CO_2 et de l' $\mathrm{H}_2\mathrm{O}$
- Refroidissement du réacteur à NH₃
- Condensation de l'ammoniac

${\sf Am\'elioration\ possible}:$

• Réutilisation de l'eau rejetée

Rejets CO₂

Sources

- \bullet Four à méthane : $207\ t$ de $\mathrm{CO_2}.$
- • Réformeur primaire + Réformeur secondaire + Water-gas shift : $1718~{\rm t}~{\rm CO}_2.$

Solutions

- Autre source d'hydrogène
- Le biogaz
- Capturer et stocker le CO₂

		A linl	to tex.sx
		(+ 0 × + 0 × + 2 × + 2 × - 2	200
Groupe 1254 (UCL)	Synthèse de l'ammoniac		4 / 18

Electrolyse de l'eau

$$2 \operatorname{H_2O}_{(l)} \Longrightarrow 2 \operatorname{H_{2(g)}} + \operatorname{O}_{2(g)}$$

Principaux avantages :

- Pas de rejet de CO₂
- Coûts de transport diminués

							A link	to tex.
	- ← □	Þ	4 🗗 →	4.2	Þ	$+(\Xi)$	- 2	20
Synthèse de l'ammoniac								5 / 3

Electrolyse de l'eau

Puissance requise pour produire 1500 [tonnes/jour] d'ammoniac

- ullet \simeq 5.7 [GW]
- ullet \Rightarrow 4 réacteurs nucléaires (d'une puissance de 1.5 [GW])
- \Rightarrow 2850 Ha de panneaux photovoltaïques (avec un rendement de 20 % pour un rayonnement d'une intensité 1000 [W/ m^2])

Principaux désavantages

- Consommation d'électricité
- Stockage de l'hydrogène
- Dangerosité de l'hydrogène

		A link	to tex.sx
		(200
Groupe 1254 (UCL)	Synthèse de l'ammoniac		6 / 18

Biométhanisation

Biométhanisation

Composition:

- 50 à 70 % de CH₄
- 15 à 45 % de CO₂
- 5 % de H₂O
- ullet 0 à 2 % de H_2S
- impuretés (négligeable)

								A link t	to tex.sx
	- ← □	F 4	a >	4.3	E F	$+$ Ξ	Þ	- 8	200
Synthèse de l'ammoniac									8 / 18

Groupe 1254 (UCL)

Biogaz

Avantages:

- Ecologique
 - CO₂
 - CH₄
- Réduction des problèmes liés au transport
- Réduction de la consommation d'énergie

Faisabilité :

- Région wallonne : environ $485.33\cdot 10^3~\mathrm{t/an}$ $de \ CH_4 \ provenant \ de$ biogaz (potentiel)
- $1500 \text{ t/j de NH}_3 \Longrightarrow$ $258.7 \cdot 10^3 \text{ t/an de CH}_4$
- Représente 53.3 % de la production en biométhane wallonne
- Impossibilité de remplacer le gaz naturel totalement par du biogaz

Chlamydomonas reinhardtii : l'hydrogène du futur?

Mécanisme de production d'hydrogène découvert en 1990 à l'Université de Californie à Berkeley.

Privée de soufre, C. reinhardtii produit de l'hydrogène au lieu d'oxygène.

Avantages de la production d'hydrogène par des algues

- Pas d'impact CO₂ direct
- Source renouvelable et extensible d'hydrogène
- Avantages de l'hydrogène (combustion propre, haute densité d'énergie)

Prédictions

Sur base des recherches actuelles, nous pouvons extrapoler :

- Pour produire 1500 t/j de NH₃, il nous faut $266~\mathrm{t/j}$ d'hydrogène
- En Belgique, cela nécessite $200~\mathrm{km}^2$
- ≈ 0.6 % surface de la Belgique

Coût de l'hydrogène

- À partir d'algues : entre 1 et 6 USD/kg
- À partir de gaz naturel : $\sim 3 \text{ USD/kg}$

En conclusion

Beaucoup de potentiel mais aucune réelle alternative au gaz naturel aujourd'hui

 $\implies \text{investir pour le futur}.$

A link to tex.so

Groupe 1254 (UCL)

Synthèse de l'ammoniac

13 / 18

Slides supplémentaires

Analyse du progrès du groupe

Organisation du groupe :

- Utilisation de Github.
- Planification par écrit des tâches.
- Réservation de Locaux en BST.

Le biogaz en Wallonie I

	Gisement (10^6 t)	Productivité (${ m m}_{{ m CH_4}}^3/{ m t}$)
Effluents agricoles	18.2	31.5
Résidus agro-industriels	1.15	60
Résidus organiques ménagers + déchets verts	1	65
Boues de STEP	0.07	230
Total	20.42	

A partir de ces données, nous pouvons faire un estimation de la production de biométhane en Wallonie :

$$18.2 \cdot 10^6 \cdot 31.5 + 1.15 \cdot 10^6 \cdot 60 + 1 \cdot 10^6 \cdot 65 + 0.07 \cdot 10^6 \cdot 230 = 729.4 \cdot 10^6 \text{ m}^3$$

		A link to tex.sx	
		4 B > 4 B > 4 B > 4 B > 1 B 900	
Groupe 1254 (UCL)	Synthèse de l'ammoniac	16 / 18	

Le biogaz en Wallonie II

en sachant que le masse volumique du CH $_4$ est de $0.6790~{\rm kg/m^3}$, on obtient que la combinaison de ces 4 ressources, nous engendre une production de $485.33\cdot 10^3~{\rm t/an}$ de CH $_4$. Comme nous avons besoin de $708.76~{\rm t/day}$ de CH $_4$, il nous faut

Comme nous avons besoin de $708.76~\rm t/day$ de CH₄, il nous faut $258697.5~\rm T/ans$ de CH₄. Ce qui équivaut à 53.3~% de la production de biométhane en Wallonie.

A link to tex.s

17 / 18 Synthèse de l'ammoniac

Flowsheet

(ロ・・グ・・き・き・きゃく) (Synthèse de l'ammoniac 18 / 18