

Group Theory Part-2

Prep Smart. Stay Safe. go Gradeup

gradeup.co

gradeup

Group Theory Part-2

Content:

- 1. Field
- 2. Semi Group
- 3. Ring
- 4. R-module
- 5. Vector Space
- 6. Ideal
- 7. Prime Field
- 8. Linear Group
- 9. Summary of Group Theory

Fields:

A glossary of algebraic systems

Semi-group: A semi-group is a set with an associative binary operation.

Ring: A ring is a set with two binary operations, addition and multiplication, linked by the distributive laws

$$a(b + c) = ab + ac$$

$$(b + c)a = ba + ca$$

Rings are abelian groups under addition and are semigroups under multiplication. We will assume our rings have the multiplicative identity 1 not equal to 0.

Commutative ring: A commutative ring is a ring in which the multiplication is commutative.

Domain: A domain (or integral domain) is a ring with no zero divisors, that is

$$ab = 0 \Rightarrow a = 0$$
 or $b = 0$ for all a, b in the domain.

Field: A field is a commutative ring in which every nonzero element has a multiplicative inverse.

Skew field: A skew field (or division ring) is a ring (not necessarily commutative) in which the nonzero elements have a multiplicative inverse.

The quaternions

Q =
$$\{1 + ai + bj + ck : a, b, c \in R\}$$

where ij = k,jk = i,ki = j,and i 2 = j 2 = k 2 = -1 is an example of a skew field.

R-module: If R is a commutative ring then an abelian group M is an R-module if scalar multiplication (r, m) $7 \rightarrow rm$ is also defined such that for all $r, s \in R$ and $m, n \in M$:

$$(r + s)m = rm + sm$$

 $(m + n)r = mr + nr$
 $(rs)m = r(sm)$
 $1_R \cdot m = m$

Vector Space: A vector space is an R-module where R is a field.

Euclidean Domain A domain D with a division algorithm is called a Euclidean Domain (ED).

By a division algorithm on a domain D we mean there is a function

deg : D
$$7 \rightarrow \{0\} \cup N$$

such that if a, b \in D and b 6 not equal to 0 then there exists q, r \in D such that a = q^b + r where either r = 0 or deg(r) < deg(b).

Ideals

A subset I of a ring R is an ideal if 1. if a, b \in I, then a + b \in I, 2. if $r \in R$ and a \in I, then $ra \in I$ and ar \in I We write I C R and say I is an ideal of R.

A function $f: R \to S$ is a homomorphism of the rings R, S if for all a, b, $\in R$

$$f(a + b) = f(a) + f(b)$$

$$f(ab) = f(a)f(b)$$

If f is a homomorphism, then the kernel(f) = $\{x \in R : f(x) = 0\}$.

Proposition: The kernel of a ring homomorphism is an ideal.

An ideal I that is singularly generated, i.e. I = (a), is called a principle ideal.

A ring with only principle ideals is called a principle ideal ring (PIR). And similarly a domain with only principle ideals is a principle ideal domain (PID).

Theorem: If R is a Euclidean Domain, then R is a principle ideal domain.

An ideal P is a prime ideal, if whenever ab \in P, then either a \in P or b \in P.

For example the prime ideals of Z are (p) = $pZ = \{xp : x \in Z\}$, where p is prime integer

The prime field:

A prime field is a field with no proper subfields.

Theorem: Every prime field Π is isomorphic to Z_p or Q.

Theorem: Every field F contains a unique prime field Π .

Theorem: Every finite field F has p n elements for some prime p and natural number n.

Theorem: The commutative ring R is a field if and only if R contains no proper ideals

An ideal M of R is a maximal ideal if M 6= R and there is no proper ideal of R that contains M

Theorem: M is a maximal ideal of the commutative ring R if and only if R/M is a field.

Theorem: Every prime ideal of a PID is a maximal ideal.

An element $p \in R$ is an irreducible if and only if in every factorization p = ab either a or b is a unit. If p = uq where u is a unit then p and q are said to be associates.

Theorem: If R is a PID, then the non-zero prime ideals of R are the ideals (p), where p is irreducible.

Splitting fields

If the polynomial $f(x) \in F[x]$ completely factors into linear factors $f(x) = (x - \alpha_1)(x - \alpha_2) \cdot \cdot (x - \alpha_n)$

www.gradeup.co

gradeup

in the extension field K of F we say that f(x) splits over K. If f(x) splits over K and there is no subfield of K over which f(x) splits, then K is called the splitting field of f(x) over F.

Theorem: If F is a field and $f(x) \in F[x]$, then there exists a splitting field of f(x) over F.

Galois fields

Finite fields are also know as Galois fields. Recall that every finite field F is a vector space over its prime field Π . Thus if the characteristic of Π is the prime integer p, then $|F| = p^n$ where $n = [F : \Pi]$.

Theorem: For all primes p and positive integers n, all fields of order p ⁿ are isomorphic.

Linear groups

The linear fractional group and PSL(2, q)

Let F_q be the finite field of order q and let $X = F_q \cup \{\infty\}$ (the so-called projective line). A mapping $f: X \to X$ of the form

$$x \rightarrow ax + b/cx + d$$

The set of all linear fractional transformations whose determinant is a nonzero square is LF(2, q), the linear fractional group.

Theorem: LF(2, q) is a group.

Theorem: LF(2, q) \sim = PSL(2, q)

Closure Property: A set 'A' w.r.t. operator * is satisfy closure property if \forall a,b \in A then $a*b \in A$.

Algebraic Structure: if a set 'A' w.r.t. operator '*' satisfy closure property then it is called Algebraic Structure(A,*)

Associative Property: A set 'A' w.r.t. '*' is said to satisfy Associative property. If \forall a,b,c \in A.

$$(a*b) \quad \forall \ c = a * (b*c)$$

Semi group: if a Algebra structure satisfy associative property is it called Semi group.

Identity Property: A set 'A' w.r.t. operator * is said to be satisfy identity property if \forall a \in A there is an element 'e' such that a * e = e*a = a

Monoid: If a semi Group satisfy identity then it is called monoid.

$$a + 0 = a + \rightarrow 0$$

Inverse Property: A set 'A' w.r.t. operator '*' is said to satisfy inverse property if $\forall a \in A$ there is an element a^{-1} such that $a * a^{-1} = a^{-1} * a = e$.

Group: if a monoid satisfy inverse property then it is called group.

Commutative Property: A set 'A' w.r.t. operator * is said to satisfy commutative property if $\forall a, b \in A$ a*b = b*a.

Abelian Group: If a group satisfy commutative property then it is called Abelian Group.

	Algebraic Structure	Semi group	marcid	gewip	Abolien group.
N, +	~	×	××	×	×
N, -	×	×	×	XXX	××××
N:= 2,+	×	1	X	XX	×
21 -	V	X	×	XXX	×××
2,*	×	×	X	X	×
R, +		×	×	X	*
2, *	×	1	×	×	*
e + e +	7	×	X	×	* * *
0+	×		/	V X	*
M+	1	~	1	×	× ×
M* Rq.		~	1	×	
Ra;+	1		1		

Gradeup UGC NET Super Superscription

Features:

- 1. 7+ Structured Courses for UGC NET Exam
- 2. 200+ Mock Tests for UGC NET & MHSET Exams
- 3. Separate Batches in Hindi & English
- 4. Mock Tests are available in Hindi & English
- 5. Available on Mobile & Desktop

Gradeup Super Subscription, Enroll Now