Определение 1. Пусть n и k — целые числа, $k \neq 0$. Говорят, что n делится на k, если найдётся такое целое m, что $n = k \cdot m$. Обозначение: n : k. Говорят также, что n кратно k или что k делит n $(k \mid n)$.

- Задача 1^{\varnothing} . Верно ли, что **a)** если n : k и k : n, то n = k; **б)** если $a \mid b$ и $b \mid c$, то $a \mid c$;
- в) если b : a и c : a, но d / : a, то b + c : a, но b + d / : a; г) если a и b не делятся на c, то ab не делится на c^2 ?
- **Задача 2**[©]. Пусть m, n целые, и $5m + 3n \vdots 11$. Докажите, что **a)** $6m + 8n \vdots 11$; **б)** $9m + n \vdots 11$.
- Задача 3° . Докажите, что **a)** \overline{aaa} делится на 37: **б)** $\overline{abc} \overline{cba}$ делится на 99 (где a, b, c цифры).
- Задача 4. а) Докажите, что целое число делится на 4 тогда и только тогда, когда две его последние цифры образуют число, кратное 4. б) Найдите и докажите признаки делимости на 2, 5, 8, 10.
- **Задача 5^{\varnothing}. а)** Из натурального числа $\overline{a_n \dots a_1 a_0}$ вычли сумму его цифр $a_n + \dots + a_1 + a_0$. Докажите, что получилось число, делящееся на 9. б) Выведите из пункта а) признаки делимости на 3 и на 9.
- **Задача 6.** Переставив цифры в числе N, получили в 3 раза меньшее число. Докажите, что N
 otin 27.
- **Задача 7.** Докажите, что число 11...11, запись которого состоит из 3^n единиц, делится на 3^n .
- **Задача 8^{\varnothing}.** Докажите, что число делится на 11 тогда и только тогда, когда сумма его цифр, стоящих в чётных разрядах, и сумма его цифр, стоящих в нечётных разрядах, отличаются на число, кратное 11.
- **Задача 9.** Может ли n! оканчиваться ровно на 4 нуля? А ровно на 5 нулей?
- **Задача 10 . a)** Целые числа a и b различны. Докажите, что $a^n b^n \, \vdots \, a b$ при любом натуральном n. Чему равно частное? **б)** Докажите, что $a^n + b^n : a + b$, если $a + b \neq 0$ и натуральное n нечетно.
- **Задача 11** $^{\varnothing}$. Найдите все целые n, при которых будет целым число **a)** $\frac{4}{n+2}$; **б)** $\frac{n^2+2}{n+2}$.
- Задача 12[©]. Решите в натуральных числах: a) $x^2 y^2 = 31$; б) $x^2 y^2 = 27$; в) xy 2x 3y = 19.
- **Определение 2.** Натуральное число p > 1 называется npocmым, если оно имеет ровно два натуральных делителя: 1 и р, в противном случае оно называется составным.
- Задача 13°. Докажите, что любое натуральное число, большее 1, либо само простое, либо раскладывается в произведение нескольких простых множителей.
- **Задача 14** $^{\varnothing}$. **a)** Даны целые числа a_1, \ldots, a_n , большие 1. Придумайте целое число, большее 1, которое не делится ни на одно из чисел a_1, \ldots, a_n . **б)** Докажите, что простых чисел бесконечно много.
- в) Докажите, что простых чисел вида 3k + 2 бесконечно много (k натуральное).
- Задача 15. а) Могут ли 100 последовательных натуральных чисел все быть составными?
- б) Найдутся ли 100 последовательных натуральных чисел, среди которых ровно 5 простых?
- **Задача 16.** Докажите, что число $2^n + 3^n$ составное, если n не является степенью двойки.

Целые числа и темы прошлых листков

- **Задача 17.** У каждого целого числа от n+1 до 2n включительно (где n- натуральное) возьмем наибольший нечетный делитель и сложим все эти делители. Докажите, что получится n^2 .
- **Задача 18. а)** Докажите, что числа $\frac{m(m+1)}{2}$ и $\frac{m(m+1)(m+2)}{6}$ целые при любом натуральном m. **б)** Докажите, что произведение любых n последовательных целых чисел делится на n!.
- в) Числа a,b,c,d натуральные. Обязательно ли число $\frac{(a+b+c+d)!}{a!\ b!\ c!\ d!}$ целое?
- **Задача 19** $^{\varnothing}$. Сколькими нулями оканчивается число $11^{100}-1$?
- **Задача 20.** Натуральное число n назовём xорошим, если найдётся такая перестановка x_1, x_2, \ldots, x_n чисел $1, 2, \ldots, n$, что все числа $x_1 + 1, x_2 + 2, \ldots, x_n + n$ — степени двойки. Найти все хорошие числа.
- Задача 21. У двух натуральных чисел равны суммы делителей и суммы обратных величин к делителям. Докажите, что и сами числа равны.
- **Задача 22.** Даны N различных натуральных чисел. Докажите, что любое натуральное число, делящееся на все эти числа, хотя бы в N раз больше наименьшего из них. ($\Pi o d c \kappa a s \kappa a$: решение очень простое.)

$\begin{bmatrix} 1 \\ \mathbf{a} \end{bmatrix}$	1 б	1 B	1 Г	$\begin{vmatrix} 2 \\ a \end{vmatrix}$	2 6	3 a	3 6	$\begin{vmatrix} 4 \\ a \end{vmatrix}$	$\begin{vmatrix} 4 & 5 \\ 6 & a \end{vmatrix}$	5 6	6	$\lceil 7 \rceil$	8	9	10 a	10 б	11 a	11 б	12 a	12 б	12 B	13	14 a	14 б	14 B	15 a	15 б	16	17	18 a	18 б	18 B	19	20	21	22