МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ **НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ**ФАКУЛЬТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

Отчет по лабораторной работе №1 по курсу «Основы теории управления»

ОПТИМАЛЬНАЯ НАСТРОЙКА И СРАВНЕНИЕ РЕГУЛЯТОРОВ

$$(n = 3, T_0 = 0.76)$$

Выполнил: студент 3-го курса гр. 17208

Гафиятуллин А.Р

1. ЦЕЛИ РАБОТЫ:

Научиться настраивать ПИ- и ПИД регуляторы эвристическим методом Никольса-Циглера и по минимуму интегральной ошибки регулирования.

2. ХОД РАБОТЫ:

2.1.Схема собранного ПИ-регулятора:

Пример графика процесса:

- 2.2. Произведена настройка параметров К и Т_и указанными методами:
 - 2.2.1. эвристическим методом Никольса-Циглера:

T	0.0	1.5	3.0
$\mathbf{K}_{\kappa \mathbf{p}}$	7.7	1.77	1.34
$T_{\kappa p}$	2.8	7.0	10.3
$\mathbf{K} = 0.45 * \mathbf{K}_{\kappa p}$	3.465	0.7965	0.603
$T_{\rm u}=T_{\rm \kappa p} / 1.2$	2.33	5.833	8.583

2.2.2. покоординатной оптимизацией K и $T_{\scriptscriptstyle H}$ по интегральному критерию качества:

Пример для T = 0.0:

$T_{\scriptscriptstyle H}$	K	Sum:
2.33	3.465	3.559
2.33	4	inf
2.33	3	2.832
2.33	2.5	2.3
2.33	2	2.0
2.33	1.5	1.85
2.33	1.0	2.3
2.33	1.25	1.926
2.33	1.4	1.875
2.33	1.45	1.862
3.00	1.5	2.054
2.00	1.5	1.926
2.15	1.5	1.875

Результаты для остальных Т:

T	0.0	1.5	3.0
K	1.5	1.0	0.9
Ти	2.33	4.5	7.1

 Ти
 2.53
 4.5

 2.2.3. по параметрам переходной характеристики объекта:

T	0.0	1.5	3.0
$\mathbf{T}_{\mathtt{ИНТ}}$	2.28	3.78	5.28
$T_{em\kappa}$	0.6118	0.6118	0.6118
Ta	2.8044	2.8044	2.8044
$ au^*$	0.6118	2.1118	3.6118
Tu	1) 1.1087982	1) 1.3382982	1) 1.5677982
	2)1.1370094	2)1.3725094	2)1.6080094
K	1)0.8054192	1) 0.4423753	1) 0.3049284
	2)0.9853107	2)0.4392799	2)0.3544578

2.3. Результаты сравнения по интегральному признаку:

T	0.0	1.5	3.0
2.2.1	3.559	7.314	14.228
2.2.2	1.85	5.391	9.732
2.2.3 1 вариант	2.487	5.911	8.473

2.2.3 2 вариант	2.526	5.702	9.153
Лучший	2.2.2	2.2.2	2.2.3 1 вариант
результат			

2.4.Схема собранного ПИД-регулятора:

Пример графика процесса:

2.5.Произведена настройка параметров K, T_{u} , T_{z} , T_{c} указанными методами:

2.5.1. эвристическим методом Никольса-Циглера:

		<u> </u>	
T	0.0	1.5	3.0
$\mathbf{K}_{\kappa p}$	7.7	1.77	1.34
$T_{\kappa p}$	2.8	7.0	10.3
$\mathbf{K} = 0.6 * \mathbf{K}_{\kappa p}$	4.62	1.062	0.804
$T_{\rm u}=T_{\rm \kappa p}*0.5$	1.4	3.5	5.15
$T_{\mu} = T_{\mu} / 4$	0.35	0.875	1.2875

$T_c = T_{\pi} / 8$ 0.04375 0.109375 0.160875	$\mathbf{I}_{\alpha} = \mathbf{I}_{\pi} / \mathbf{X}$	0.04375		
---	---	---------	--	--

2.5.2. покоординатной оптимизацией K и $T_{\rm u}$ по интегральному критерию качества:

Пример для **T** = **1.5**:

Ти	K	$T_{\text{M}} = T_{\text{M}} / 4$	$T_c = T_{\pi} / 8$	Sum:
3.5	1.062	0.875	0.109375	3.766
3.5	1.1	0.875	0.109375	3.882
3.5	1.0	0.875	0.109375	3.668
3.5	0.5	0.875	0.109375	6.974
3.5	0.75	0.875	0.109375	4.658
3.5	0.8	0.875	0.109375	4.382
3.5	0.9	0.875	0.109375	3.882
4.0	1.0	1	0.125	4.086
3.0	1.0	0.75	0.09375	3.388
2.5	1.0	0.625	0.078125	3.520
2.7	1.0	0.675	0.084375	3.372
2.8	1.0	0.7	0.0875	3.355
2.9	1.0	0.725	0.090625	3.372

Результаты для остальных Т:

T	0.0	1.5	3.0
K	4.7	1.0	0.75
$T_{\scriptscriptstyle \rm I\!I}$	2.5	2.8	3.5
$T_{\mu} = T_{\mu} / 4$	0.625	0.7	0.875
$T_c = T_{\pi} / 8$	0.078125	0.0875	0.109375

2.5.3. по параметрам переходной характеристики объекта:

T	0.0	1.5	3.0
$\mathbf{T}_{\mathtt{ИНТ}}$	2.28	3.78	5.28
Темк	0.6118	0.6118	0.6118
Ta	2.8044	2.8044	2.8044
$ au^*$	0.6118	2.1118	3.6118
Ти	1) 1.6057356	1) 1.8847356	1) 2.1637356
	2) 1.16679	2) 1.76979	2) 2.37279
K	1) 2.4004996	1) 0.802115	1) 0.4815035
	2) 4.5205913	2) 0.9762753	2) 0.7293464
$\mathbf{T}_{\mathcal{A}}$	1) 0.4014339	1) 0.4711839	1) 0.5409339
	2) 0.466716	2) 0.707916	2) 0.949116
T _c	1) 0.0501792	1) 0.058898	1) 0.0676167
	2) 0.0583395	2) 0.0884895	2) 0.1186395

2.6. Сравнение полученных ПИ- и ПИД-регуляторов между собой по интегральному критерию качества:

T	0.0	1.5	3.0
Лучший ПИ	1.85	5.391	8.473
Лучший ПИД	0.786	3.355	5.526

ПИД-регулятор оказался лучше по интегральному критерию качества.

2.7.В качестве формулы было взято весовое равенство между двумя приведенными формулами с весом $\mathbf{W} = \mathbf{0.6}$:

$$\begin{split} \mathbf{K} &= \mathbf{W} \, / \, (1.552 \, * \, (\mathbf{\tau}^* / \, \mathbf{T_a}) + 0.078) + (1 - \mathbf{W}) \, / \, (2.766 \, * \, (\mathbf{\tau}^* / \, \mathbf{T_{ihtt}}) - 0.521) \\ \mathbf{T_{ii}} &= \mathbf{W} \, * \, ((0.186 \, * \, (\mathbf{\tau}^* / \, \mathbf{T_a}) + 0.532) \, * \, \mathbf{T_a}) + (1 - \mathbf{W}) \, * \, ((-0.150 \, * \, (\mathbf{\tau}^* / \, \mathbf{T_{iihtt}}) + 0.552) \, * \, \mathbf{T_{iihtt}}) \\ \mathbf{T_{ii}} &= (\mathbf{W} \, * \, 0.25 + (1 - \mathbf{W}) \, * \, 0.4) \, * \, \mathbf{T_{ii}} \end{split}$$

$$T_A = (W \cdot 0.23 + (1 - W) \cdot 0.4)$$

$$T_c = T_{\pi} / 8$$

Результаты сравнения по интегральному критерию качества:

T	1	2	10
1 вар. формул	8.217	10.514	23.645
2 вар. формул	12.087	12.087	20.374
Мои формулы	9.502	11.542	22.991

Как и ожидалось, данные формулы занимают среднее положение между приведёнными.

3. ВЫВОДЫ:

Научились настраивать ПИ- и ПИД регуляторы эвристическим методом Никольса-Циглера и по минимуму интегральной ошибки регулирования.