Premises (KB):

P

$$V \vee T$$

$$\neg P \vee U$$

$$R \vee \neg Q$$

$$V \Rightarrow W \equiv \neg V \lor W$$

$$P \Rightarrow Q \equiv \neg P \lor Q$$

$$S \Rightarrow (U \vee T) \equiv \neg S \vee U \vee T$$

$$(P \land R) \Rightarrow S \equiv \neg P \lor \neg R \lor S$$

Conclusion: S

Proposition: KB = S

We show that $KB \land \neg S$ is unsatisfiable

Resolving:

$$\neg P \lor \neg R \lor S$$
, $\neg S \Rightarrow \neg P \lor \neg R$

$$\neg P \lor \neg R$$
, $P \Rightarrow \neg R$

$$R \vee \neg Q$$
 , $\neg P \vee Q \Rightarrow R \vee \neg P$

$$\neg R$$
, $R \lor \neg P \Rightarrow \neg P$

$$\neg P, P \Rightarrow$$

 $KB \land \neg S$ is unsatisfiable therefore $KB \vDash S$ is a tautology

Premises:

$$P \Rightarrow R$$

$$R \Rightarrow S$$

$$T \vee \neg S$$

$$\neg T \vee U$$

$$\neg U$$

Conclusion:

 $\neg P$

Proof:

step		reason
1	$\neg U$	premise
2	$\neg T \vee U$	premise
3	$\neg T$	Disjunctive syllogism 1 and 2
4	$T \vee \neg S$	premise
5	$\neg S$	Disjunctive syllogism 3 and 4
6	$R \Rightarrow S$	premise
7	$\neg R$	Modus tollens 5 and 6
8	$P \Rightarrow R$	premise
9	$\neg P$	Modus tollens 7 and 8

$$\neg K(X) \lor M(X) \equiv K(X) \Rightarrow M(X)$$

$$\neg K(X) \Rightarrow \neg Q(X)$$

$$L(X) \land \neg Q(X) \Rightarrow N(X)$$

$$\neg (N(X) \land M(Y) \land \neg P(X,Y)) \equiv N(X) \land M(Y) \Rightarrow P(X,Y)$$

$$\neg Q(Ali)$$

$$K(Amir)$$

$$L(Ali)$$

$$\neg Q(Ali) \land L(Ali) \Rightarrow N(Ali)$$

$$K(Amir) \Rightarrow M(Amir)$$

$$N(Ali) \land M(Amir) \Rightarrow P(Ali, Amir)$$

Conclusion: $K(Amir) \Rightarrow P(Ali, Amir)$

(onnt = { }

- queue = { Shiny (Sub), Healthy (Amin), swim (Ali, Fri)}

P < Pap (queue) ; shing (sat)

inferred (U shing (sat)

Count [C1(gat)]=0 > queue - U Nice weather (gat)

Pe Pop (queue) : Healthy (Amin)

inferred (U Mealthy (Amin)

Count [(2 (Amin,n)]=1

P & Pop (queue) : Swim (Ali, FVi)

inferred (U swim (Ali, Fri)

lount [Cg(Ali, FYi)]=0 > queue + Healthy (Ali)

CS Scanned with CamScanner

Pe Pop (queye): Nice wenther (gut) inferred - Wice Wenther (st) (aunt [(2 (5, 5, 4)] =] Count [(2 (Amin, Sat)] =0 => queue & Swim (Amin, Sut) Perpagner) : Healthy (Ali) inferred (Meulthy (Ali) Count [Cr (Align)]=1 Count (, (Air, sat) (=0 =) queue = swim (Arissat) PEPOP (quene): Swim (Amin, Sut) in ferred & U swim (Aming Sat) PEPOP (queue): swim (Ali, sat) inferrede Uswim (Ali, sut)

$$\neg C \Rightarrow \neg E \equiv C \vee \neg E$$

$$D \Rightarrow \neg A \equiv \neg D \lor \neg A$$

$$B \iff C \equiv (B \Rightarrow C) \land (C \Rightarrow B) \equiv (\neg B \lor C) \land (\neg C \lor B)$$

$$A \, \oplus \, B \equiv (A \vee B) \wedge (\neg A \vee \neg B)$$

$$C \Rightarrow \neg D \equiv \neg C \lor \neg D$$

 $D \lor E$

5.1

2CNF:

$$(C \vee \neg E) \wedge (\neg D \vee \neg A) \wedge (\neg B \vee C) \wedge (\neg C \vee B) \wedge \\$$

$$(A \lor B) \land (\neg A \lor \neg B) \land (\neg C \lor \neg D) \land (D \lor E)$$

5.2

5.3

As you can see in the figure below, no strong component contains both $x_i \ and \ \neg x_i$

5.4

1	$(C \vee \neg E)$	Р
2	$(\neg D \lor \neg A)$	Р
3	$(\neg B \lor C)$	Р
4	$(\neg C \lor B)$	Р
5	$(A \lor B)$	Р
6	$(\neg A \lor \neg B)$	Р
7	$(\neg C \lor \neg D)$	Р
8	$(D \lor E)$	Р
9	$(\neg E \lor B)$	1,4
10	$(\neg D \lor \neg E)$	1,7
11	$(C \lor D)$	1,8
12	$(\neg D \lor B)$	2,5
13	$(E \lor \neg A)$	2,8
14	$(C \lor \neg A)$	2,11
15	$(A \lor C)$	3,5
16	$(\neg B \lor \neg D)$	3,7
17	$(\neg D \lor C)$	3,12
18	$(\neg C \lor \neg A)$	4,6
19	$(D \lor B)$	4,11
20	$(\neg A \lor B)$	4,14
21	$(E \lor B)$	5,13
22	$(C \lor B)$	5,14
23	$(A \lor \neg D)$	5,16
24	В	5,20
25	$(\neg A \lor \neg E)$	6,9
26	$(\neg A \lor B)$	6,19
27	$\neg A$	6,20
28	$(\neg C \lor E)$	7,8
29	$\neg D$	7,17
30	$(\neg B \lor E)$	8,16
31	$(A \lor E)$	8,23
32	$(D \lor \neg A)$	8,25
33	E	8,29
34	$(\neg D \lor E)$	2,31
35	C	15,27

Smoke	$Smoke \Rightarrow Smoke$		
F	Т		
Т	Т		

Tautology and satisfiable

Smoke	Fire	Smoke ⇒ Fire	$\neg Smoke \Rightarrow \neg Fire$	$(Smoke \Rightarrow Fire) \Rightarrow (\neg Smoke \Rightarrow \neg Fire)$
F	F	T	T	Т
F	Т	T	F	F
Т	F	F	T	Т
Т	Т	T	T	Т

Non-Tautology but satisfiable

Smoke	Fire	$\neg Fire$	$Fire \lor \neg Fire$	Smoke ∨ Fire ∨ ¬Fire
F	F	Т	T	T
F	Т	F	Т	Т
Т	F	Т	Т	Т
Т	Т	F	Т	Т

Tautology and satisfiable

Fire	Smoke	Heat	$Smoke \Rightarrow Fire$	Smoke ∧ Heat	$(Smoke \land Heat) \Rightarrow Fire$	$(Smoke \Rightarrow Fire)$
						\Rightarrow
						$((Smoke \land Heat) \Rightarrow Fire)$
F	F	F	Т	F	T	T
F	F	Т	T	F	T	Т
F	T	F	F	F	Т	Т
F	Т	Т	F	T	F	Т
Т	F	F	T	F	Т	Т
Т	F	Т	T	F	T	Т
Т	T	F	T	F	T	Т
Т	T	T	Т	T	Т	Т

Tautology and satisfiable

Big	Dumb	$Big \lor Dumb$	$Big \Rightarrow Dumb$	$Big \lor Dumb \lor (Big \Rightarrow Dumb)$
F	F	F	Т	Т
F	Т	Т	Т	Т
Т	F	Т	F	Т
Т	Т	Т	Т	Т

Tautology and satisfiable

 $\frac{A \wedge B \wedge F}{A \wedge B} \stackrel{A \wedge B}{\sim} \frac{A \wedge B}{B}$ $\therefore A \wedge B$

CS Scanned with CamScanner