Lecture 3: LTspice

CSCI 5330 Digital CMOS VLSI Design

Instructor: Saraju P. Mohanty, Ph. D.

NOTE: The figures, text etc included in slides are borrowed from various books, websites, authors pages, and other sources for academic purpose only. The instructor does not claim any originality.

USEFUL LINKS

- LTPSICE software available at: <u>http://www.linear.com/designtools/software/switc</u>
 hercad.jsp
- 50nm model file available at: http://www.cmosedu.com/cmos1/book.htm
- More model files available at: <u>http://www.eas.asu.edu/~ptm/</u>

CMOS Inverter

Construct an Inverter using LTSPICE

- Discussion at Nano-CMOS: 50nm technology.
- PMOS: 20/1 (L = 50nm/ W = 1μ m)
- NMOS: 10/1 (L = 50nm/ W = 500nm)
- V_{DD}: Supply voltage (V_{dc} = 1V).
- V_{in}: changes depending upon analysis:
- DC analysis: DC voltage (1V).
- Transient analysis: Pulsed voltage (vpulse).
- Wire to connect components.
- Model file (cmosedu_models.txt).

What does a model file look like?

*** Short channel models from CMOS Circuit Design, Layout, and Simulation, 2e level = 14.model N 50n nmos paramchk= = 2 igbmod = 1 geomod +capmod iacmod +diomod = 1 rdsmod rbodumod= 1 rgatemod= 1 +permod acnqsmod= trnqsmod= 0 = 1.4e-009 = 27 = 7e-010 +tnom toxe = 1.4e - 009toxp toxm +epsrox = 3.9wint 5e-009 lint = 1.2e-008 = +11 0 $\omega \mathbf{1}$ = я 11n wln. +1 w Я я 1 wn ww wwn = 1.4e - 009+1w1 wwl xpart toxref +vth0 = 0.22k1 0.35 = 0.05k3 = 2.5e-006 dut0 = 2.8 dut1 = 0.52+k3b សមា +dvt2 = -0.032dut0w = 6 dvt1w dvt2w **=** 0 4usub+ = 2 minv = 0.05voff1 = B dvtp0 = 1e-007 +dvtp1 = 0.051pe0 = 5.75e-008 1peb = 2.3e - 010×ί 2e-008 +ngate = 5e + 020ndep = 2.8e+018 nsd = 1e + 020phin +cdsc - 0.0002 cdscb cdscd cit +voff = -0.15nfactor = 1.2eta0 = 0.15etab +ufh = -0.55m Ø = 0.032ша = 1.6e-010 пb = 1.1e-017 = 1.1e + 005= 2 = 1e-020 +uc = -3e - 011vsat аØ ags = -1e-020 +a1 **a2** bΘ b1 = 0.04= 0 = 0.18+keta dwg dwb pclm +pdiblc1 = 0.028 $pd\bar{i}b1c2 = 0.022$ pdiblcb = -0.005= 0.45drout pscbe1 +pvag = 1e - 020delta = 0.01= 8.14e+008 pscbe2 = 1e-007 = 0.2 +fprout pdits = 0.2 pditsd = 0.23 pditsl = 2.3e+006 = 3 = 150 = 150 rdsw = 150 rdw +rsh rsw +rdswmin **=** 0 rswmin **=** 0 rdwmin prwg = 6.8e - 911alpha0 = 0.074= 0.005+prwb we = 1 alpha1 +beta0 = 30 aqidl = 0.0002 baidl = 2.1e + 009cqidl - 0.0002 +egidl = 0.8 +aigbacc = 0.012 bigbacc = 0.0028 cigbacc = 0.002 +nigbacc = 1 aiqbinv = 0.014biqbinv = 0.004ciqbinv = 0.004+eiqbinv = 1.1niqbinv = 3aigc = 0.017bigc = 0.0028= 0.002 aiqsd = 0.017= 0.0028 = 0.002 +cigc bigsd cigsd poxedge = 1+nigc piqcd ntox +xrcra1 = 12 xrcra2 = 6.238e-010 = 6.238e-010 = 2.56e-011 +cgso cgdo cgbo cgdl = 2.495e-10 ckappas = 0.02= 2.495e-10ckappad = 0.02+cqs1 acde +moin noff voffcv +kt1 = -0.21kt11 kt2 = -0.042ute = -1.5= 1e-889 = -3.5e - 019+ua1 uc1 prt = 53000 +fnoimod = 1tnoimod = 0- 0.0001 = 1e-011 iswqs = 1e - 010njs +ijthsfwd= 0.01 ijthsrev= 0.001 bvs = 10 xibus = 1 = 1e-818 homei = 1e - 011

Placing and connecting components

Where to get components from?

Discover the power of ideas

How to assign W/L?

Interpreting a pulsed waveform

How to assign Vin?

DC Analysis

View netlist

Transient (time) Analysis

Creating a symbol for Inverter

- Schematic files saved as *.asc
- Symbol files saved as *.asy

Simulation using symbol: workspace much cleaner!

One more example: NAND gate

