1. Lineáris algebra

1.1. Lineáris egyenletrendszerek megoldása

1. Deffiníció. Legyen \mathbb{F} test $a_1, \ldots, a_n \in \mathbb{F}$, $b \in \mathbb{F}$ egy n változós lineáris egyenletrendszer:

$$\sum_{i=1}^{n} a_i x_i = b,$$

ahol a_i együttható, x_i változó, b pedig konstans.

2. Deffiníció. Egy n változós m egyenletrendszerből álló lineáris egyenletrendszer (LER):

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m$$

ahol a_{ij} együttható, x_i változó, b_i pedig konstans.

3. Deffiníció. $(x_1, \ldots, x_n) \in \mathbb{F}^n$ megoldása a fenti LER-nek, ha minden i-re

$$\sum_{i=1}^{n} a_{ij} x_i = b_i$$

teljesül.

4. Deffiníció. Egy LER homogén, ha minden konstans nulla, inhomogén, ha nem homogén.

5. Állítás. Egy LER homogén $\leftrightarrow (0, ..., 0)$ megoldás.

6. Deffiníció. Két LER eqivalens, ha a megoldásaiknak halmaza megegyezik.

7. Lemma. A következők eqivalens LER-hez vezetnek:

- 1. két egyenletet felcserélünk,
- 2. egy egyenletet megszorzunk egy nemnulla \mathbb{F} -beli elemmel,
- 3. az egyik egyenlet többszörösét hozzáadjuk egy másikhoz.
- 8. Deffiníció. Egy LER kibővített mátrixa:

$$\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\
a_{21} & \ddots & & a_{2n} & b_2 \\
\vdots & & & \vdots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn} & b_n
\end{pmatrix}$$

- 9. Deffiníció. A fenti lemmában a műveletek az elemi sorműveletek:
 - 1. i-edik és j-edik sor cseréje, jelölés: $(i) \leftrightarrow (j)$,
 - 2. i-edik sor c-szerese (c nem nulla), jelölés: c(i),
 - 3. i-edik sorhoz a j-edik sor hozzáadása, jelölés: (i) + c(j).
- **10. Deffiníció.** Egy mátrix sorlépcsős alakú (row echelon form)
 - ha vannak csupa akkor azok utolsók és a nem csupa nulla sorok több nullával kezdődnek, mint az előző,
 - nem csupa nulla sorban az első nemnulla elem, a vezérelem (pivot).
- 11. Deffiníció. A Gauss-elimináció a LER kibővített mátrixának sorlécsős alakra hozással való megoldási módja.
- 12. Tétel. Minden mátrix sorlépcsős alakra hozható elemi sorműveletekkel.
- 13. Deffiníció. Egy mátrix redukált sorlépcsős alakú (reduced row echelon form), ha minden vezéreleme 1-es és oszlopukban minen más elem nulla.

Jelölés. A mátrix redukált sorlépcsős alakja: rref(A).

14. Tétel.

- 1. Minden mátrix redukált sorlépcsős alakra hozható elemi sorműveletekkel.
- 2. A sorlépcsős alak független az elemi sorműveletektől.
- 15. Deffiníció. A mátrix redukált sorlépcsős alakja a fenti egyértelmű mátrix.
- 16. Deffiníció. Az egyetrendszerek sorlépcsős alakra hozásával való megoldása a Gauss-Jordan elimináció.
- 17. Deffiníció. Egy változó szabad, ha a rref-ben az oszlopában nincs vezérelem és kötött, ha van.
- 18. Tétel (LER megoldása).
 - 1. Ha az rref-ben van olyan sor, ami a mátrixban csupa nulla és a kibővített mátrixban nem csupa nulla van (ellentmondásos sor), akkor nincs megoldás.
 - 2. Különben a szabad változók tetszőleges értékéhez egyetlen megoldás tartozik.
- **19. Következmény.** Egy LER megoldásszáma 0, $|\mathbb{F}|^f$, ahol f a szabad változók száma.

1.2. Vektorterek

20. Deffiníció. $Az \mathbb{F}$ test, ekkor $az \mathbb{F}$ feletti n dimenziós tér:

$$(\mathbb{F}^n, +, \cdot)$$

$$\mathbb{F}^n = \{(x_1, \dots, x_n)^T | x_j \in \mathbb{F}\}$$

$$+ : \mathbb{F}^n \times \mathbb{F}^n \to \mathbb{F}^n \quad (x_1, \dots, x_n)^T + (y_1, \dots, y_n)^T = (x_1 + y_1, \dots, x_n + y_n)^T$$

$$\cdot : \mathbb{F} \times \mathbb{F}^n \to \mathbb{F} \quad \lambda(x_1, \dots, x_n)^T = (\lambda x_1, \dots, \lambda x_n)^T$$

Ha $u, v, w \in \mathbb{F}^n$ és $\lambda, \beta \in \mathbb{F}$:

- 1. (u+v) + w = u + (v+w),
- 2. u + v = v + u,
- 3. $\exists \mathbf{0} \in \mathbb{F} : 0 + v = v$,
- 4. $\forall v \in \mathbb{F}^n \ \exists (-v) \in (F)^n : (-v) + v = 0,$
- 5. $\lambda(u+v) = \lambda u + \lambda v$,
- $6. \ (\lambda + \beta)u = \lambda u + \beta u,$
- 7. $\lambda(\beta u) = (\lambda \beta)u$,
- 8. 1u = u.
- **21. Deffiníció.** $A(V, +, \cdot)$ egy \mathbb{F} test feletti vektortér, ha V olyan halmaz, amiben van egy kitüntetett $\mathbf{0}$, $+: V \times V \to V$, $\cdot: F \times V \to V$ műveletek pedig az 1–8. tulajdonságokat teljesítik.
- **22.** Deffiníció. $Az U \subseteq V$ altér, ha:
 - 1. $U \neq \emptyset$,
 - 2. $u, v \in U$, $akkor u + v \in U$,
 - 3. $u \in U$, $\lambda \in \mathbb{F}$, $akkor \lambda u \in U$.

Jelölés. $U \le V$

23. Deffiníció. Ha egy homogén LER mátrixa A, akkor a nulltere:

$$\mathcal{N}(A) = \{x \in \mathbb{F}^n | x \text{ megoldás} \},$$

ahol n a változók száma.

- **24.** Állítás. Ha A egy n változós \mathbb{F} feletti LER, akkor $\mathcal{N}(A) \leq \mathbb{F}^n$.
- **25. Lemma.** Ha $U \leq V$, akkor $\mathbf{0} \in U$.
- **26.** Következmény. Minden V vektortérre igaz, hogy $\{0\} \in V$.

27. Deffiníció. Az $X \subseteq V$ halmaz affin altér, ha létezik egy olyan V-beli v vektor és $U \subseteq V$ altér, hogy $X = \{u + v | u \in U\}$.

Jelölés. X = u + V

28. Állítás. Egy n változós, megoldható LER megoldáshalmaza $(\mathcal{N}(A))$, affin altér \mathbb{F}^n -ben.

Az Ø nem altér, ezért kell a megoldhatóság.

29. Állítás. Legyen $v, v' \in V$ és $U, U' \leq V$. A v + V = v' + U' akkor és csak akkor teljesül, ha U = U' és $v - v' \in U$.

30. Deffiníció. Legyenek v_1, \ldots, v_n vektorok V vektortér elemei, $\lambda_1, \ldots, \lambda_n$ pedig $\mathbb F$ elemei. Ekkor

$$w = \sum_{i=1}^{n} \lambda_n v_i$$

a vektorok lineáris kombinációja.

31. Deffiníció. A v_1, \ldots, v_n vektorok lineáris kombinációinak halmaza az általuk kifeszítettfeszített altér.

Jelölés. A v_1, \ldots, v_n vektorok által feszített altér: $\operatorname{span}(v_1, \ldots, v_n)$.

32. Állítás. $A \operatorname{span}(v_1, \ldots, v_n)$ altér.

1.3. Halmazelméleti kitérés

33. Deffiníció. Ha H egy halmaz és $X \subseteq \mathcal{P}(H)$:

- $A \in X$ legkisebb, $ha \forall B \in X : A \subseteq B$,
- $A \in X$ legnagyobb, $ha \forall B \in X : B \subseteq A$,
- $A \in X$ minimális, ha $B \in X$, $B \subseteq A \rightarrow B = A$,
- $A \in X$ maximális, ha $B \in X$, $A \subseteq B \rightarrow B = A$.

34. Állítás.

- 1. Ha létezik legkisebb halmaz, akkor ez az egyetlen minimális.
- 2. Ha létezik lagnagyobb halmaz, akkor ez az egyetlen maximális.

35. Állítás.

- 1. Ha X halmaz véges, akkor létezik minimális és maximális részhalmaz.
- 2. Ha X halmaz végtelen, akkor nem mindig létezik maximális és minimális részhalmaz.

Vissza a vektorterekhez

36. Deffiníció. $Az S \subseteq V \ halmaz, \ ekkor$

$$\operatorname{span}(S) = \left\{ \begin{array}{l} \left\{ \sum_{i=1}^{n} \lambda_{i} v_{i} | n \in \mathbb{N}, \forall i \in (1, \dots, n) \ \lambda_{i} \in \mathbb{F}, v_{i} \in S \right\} & ha \ S \neq \emptyset \\ \mathbf{0} & ha \ S = \emptyset \end{array} \right.$$

 $Az S \subseteq V \ halmaz \ generátor, \ ha \ span(S) = V$

37. Állítás. $Az S = \{v_1, \ldots, v_n\}$ halmaz akkor és csak akkor generátor az $A = (v_1 | \ldots | v_n)$ -ra rref(A)-ban minden sorban van vezérelem.

38. Deffiníció. $Az S \subset V$ (lineárisan) független, $ha \sum_{i=1}^{n} \lambda_i v_i = \mathbf{0}$ ($\lambda_i \in \mathbb{F}, v_j \neq v_j, v_i, v_j \in V$), akkor és csak akkor, ha minden $i \in \{1, \ldots, n\}$ -re $\lambda_i = 0$.

39. Állítás. A $\{v_1, \ldots, v_n\} \in \mathbb{F}^n$ halmaz akkor és csak akkor lineárisan független, ha $A = (v_1|\ldots|v_n)$ -re $\operatorname{rref}(A)$ -ban minden oszlopban van vezérelem.

40. Állítás. Az S halmaz akkor és csak akkor független, ha minden $\in S$ -re $v \notin \text{span}(S - \{v\})$.

41. Állítás. Ha $U \subseteq W \subseteq V$ részhalmazok a V vektortérben, akkor:

- 1. ha U generátor, akkor W is,
- 2. ha U generátor és $u \in U$ és $u \in \text{span}(U \{u\})$, akkor $U \{u\}$ is generátor,
- 3. ha W független, akkor U is,
- 4. ha W független és $w \in V$ olyan, hogy $w \notin \text{span}(W)$, akkor $W \cup \{w\}$ is független.
- **42.** Deffiníció. $Az S \subset V$ bázis, ha független és generátor.
- **43.** Állítás. $Az S = \{v_1, \dots, v_n\} \subseteq \mathbb{F}^m$ akkor és csak akkor bázis, ha $A = (v_1 | \dots | v_n)$ -re:

$$\operatorname{rref}(A) = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & \cdots & 0 & 1 & 0 \\ 0 & \cdots & 0 & 0 & 1 \end{pmatrix}.$$

- **44. Tétel.** A következő állítások eqivalensek $S \subseteq V$ -re:
 - 1. S bázis,
 - 2. S minimális generátor,
 - 3. S mazimális független.
- **45. Tétel.** Ha V vektortér, akkor:
 - 1. Létezik benne bázis,
 - 2. bármelyik két bázis azonos elemszámú.
- 46. Deffiníció. A V vektortér dimenziója egy bázishalmazának elemszáma.

Jelölés. $\dim(V)$

- **47. Állítás.** Ha V vektortér, akkor:
 - 1. $\dim(\mathbb{F}^n) = n$,
 - 2. $\dim(V) = n$ és S generátor, akkor $n \leq |S|$,
 - 3. $\dim(V) = n$ és S független, akkor $|S| \le n$,
 - 4. $\dim(V) = n = |S|$ akkor csak akkor, ha S generátor és független is,
 - 5. $U \leq V$ esetén a $\dim(U) \leq \dim(V)$ összefüggésben csak akkor és csak akkor áll fenn az egyenlőség, ha U = V.
- **48. Következmény.** Ha $B=(b_1,\ldots,b_n)$ bázis V vektortérben (rögzített sorrendben), akkor minden V-beli vektor előállítható egyértelműen

$$\sum_{i=1}^{n} \lambda_i b_i$$

 $alakban (azaz b_i-k lineáris kombinációiként).$

49. Deffiníció. A v vektor B bázisbeli koordinátái az együtthatókból álló vektor.

Jelölés.

$$[v]_B = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}$$

1.4. Mátrixok

Szabatosan fogalmazva a mátrixok számtáblázatok.

50. Deffiníció. Az R gyűrű, akkor egy $m \times n$ mátrix az m sorból és n oszlopból álló táblázat:

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$

ahol $a_{ij} \in R$.

Jelölés.

- a_j : j-edik oszlop $(a_j = (a_{1j}, \ldots, a_{mj})^T)$
- a_{ij} : az i-edik sor j-edik eleme
- $R^{m \times n}$: az összes R feletti $m \times n$ -es mátrix halmaza.

51. Deffiníció. Ha $A, B \in R^{m \times n}$, akkor A és B összege:

$$A + B = (a_{ij} + b_{ij})_{ij},$$

és ha $A \in \mathbb{R}^{m \times n}$ és $\lambda \in \mathbb{R}$, akkor $A \lambda$ -szorosa:

$$\lambda A = (\lambda a_{ij})_{ij}$$
.

52. Állítás. Ha \mathbb{F} test és $(\mathbb{F}^{m \times n}, +, \cdot)$ vektortér, akkor

$$\dim(\mathbb{F}^{m\times n}) = m \cdot n.$$

53. Deffiníció. Ha $A \in \mathbb{R}^{m \times n}$, $v \in \mathbb{R}^n$, $v = (\lambda_1, \dots, \lambda_n)^T$, akkor e mátrix és vektor szorzata:

$$Av = \lambda_1 a_1 + \ldots + \lambda_n a_n \in \mathbb{R}^m$$

 $ahol \ a_1, \ldots, a_n \in \mathbb{R}^m \ oszlopvektorok.$

54. Állítás. Ha értelmes A mátrix és v vektor szorzata ($\lambda \in R; x, y \in R^n; A \in R^{m \times n}$), akkor az alábbi tulajdonságok teljesülnek rá:

- $1. \ A(x+y) = Ax + Ay,$
- 2. $A\lambda x = \lambda Ax$.

55. Deffiníció. Két mátrix szorzata $(A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times k})$:

$$AB = (Ab_1| \dots |Ab_k) \in R^{m \times k}.$$

56. Állítás. Ha értelmes a szorzás ($\lambda \in R, A \in R^{m \times n}, B \in R^{n \times k}, C \in R^{k \times l}$), akkor teljesülnek az alábbi tulajdonságok:

- 1. $\lambda(AB) = (\lambda A)B = A(\lambda B)$,
- 2. (AB)C = A(BC),
- 3. AE = EA = A,
- 4. A(B+C) = AB + AC és (B+C)A = BA + CA.

57. Deffiníció. Egy $A \in R^{m \times n}$ mátrix diadikus (másnéven diád), ha van olyan $v \in R^{m \times 1}$ és $w \in R^{1 \times n}$ vektorok, amikre:

$$A = vw$$
.

Jelölés.

- 1. $A \ v \in \mathbb{R}^n$ a $v \in \mathbb{R}^{n \times 1}$ -et jelöli (tehát oszlopvektort).
- 2. A v^T eleme $R^{1\times n}$ -nek (tehát sorvektor) és minden $1 \le i \le n$ esetén $v_{i1} = v_{1i}^T$.
- 58. Deffiníció. A

$$0_{mn} = \begin{pmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix} \in R^{n \times n}$$

mátrix a nullamátrix.

59. Deffiníció. Az

$$I_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} \in R^{n \times n}$$

mátrix az egység (másnéven identitás) mátrix, ahol ha $A \in \mathbb{R}^{m \times n}$, akkor:

$$I_m A = A = AI_n$$

egyenlőségnek teljesülnie kell.

- **60. Következmény.** $Az(R^{n\times n}, +, \cdot)$ hármas gyűrűt alkot, ahol 0_{nn} az additív egység, I_n pedig a multiplikatív egység, de az $(R^{m\times n}, +, \cdot)$ nem gyűrű (például mert az összeadásra nem zárt).
- **61.** Deffiníció. $Az A \in \mathbb{R}^{m \times n}$ mátrix transzponáltja:

$$A^{T} = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{pmatrix} \in R^{n \times m}.$$

- **62.** Állítás. Ha $A, B \in \mathbb{R}^{n \times n}$, akkor teljesülnek az alábbi tulajdonságok:
 - 1. $(A^T)^T = A$,
 - 2. $(A+B)^T = A^T + B^T$,
 - 3. $(AB)^T = B^T A^T$.
- **63. Deffiníció.** $Az A \in \mathbb{R}^{n \times n}$ mátrix szimmmetrikus, ha $A = A^T$.
- **64. Lemma.** Az A,B megfelelő méretű mátrixok $(A \in R^{m \times k}, B \in R^{k \times n})$, akkor:
 - 1. az AB oszlopai a B oszlopai szorozva A-val,
 - 2. az AB oszlopai az A oszlopainak lineáris kombinációi,
 - 3. az AB sorai az A sorai szorozva B-vel,
 - 4. az AB sorai a B sorainak lineáris kombinációi.
- 65. Következmény. Az AX előáll X-ből (nem feltétlenül egivalens) sorműveletek segítségével.
- **66.** Deffiníció. Az E elemi mátrix, ha EX az X-ből elemi sorművelettel kapható.
- 67. Következmény. A Gauss-elimináció lényegében megegyezik elemi mátrixokkal (balról) való szorzásával.

1.5. Mátrixhoz rendelt alterek

- **68.** Deffiníció. Ha \mathbb{F} test és $A \in \mathbb{F}^{m \times n}$, akkor:
 - A nulltere: $\mathcal{N}(A) = \{x \in \mathbb{F}^n | Ax = 0\},\$
 - A sortere: $S(A) = \{A \text{ sorai által feszített altér}\},$
 - A oszloptere: $\mathcal{O}(A) = \{A \text{ oszlopai által feszített altér}\}.$

69. Tétel.

- 1. Az S(A) egy bázisa a vezérelemeket tartalmazó sorokból álló vektorrendszer.
- 2. Az $\mathcal{O}(A)$ egy bázisa a vezérelemeket tartalmazó oszlopokból álló vektorrendszer.
- **70. Deffiníció.** Egy A mátrix rangfelbontása BR, ahol B az előző tétel első részbeli rref(A) oszlopai és R a második részbeli rref(A) sorai.(???)
- **71.** Deffiníció. $Az A \in \mathbb{F}^{m \times n}$ mátrixnak a rangja az oszlopterének a dimenziója, tehát $\dim(\mathcal{O}(A))$.

Jelölés. rk(A)

72. Következmény. A rang, az oszloptér dimenziója, a vezérelemek száma és a sortér dimenziója ugyanannyi

73. Következmény.

$$\underbrace{\dim(\mathcal{O}(A))}_{\leq \mathbb{F}^n} = \underbrace{\dim(\mathcal{S}(A))}_{\leq \mathbb{F}^m}$$

74. Tétel. Ha $A \in \mathbb{F}^{m \times n}$, akkor:

- 1. $\operatorname{rk}(A) \leq \min(m, n)$,
- 2. $\operatorname{rk}(A) = \operatorname{rk}(A^T)$,
- 3. $\operatorname{rk}(A+B) \le \operatorname{rk}(A) + \operatorname{rk}(B)$,
- 4. $\operatorname{rk}(AB) \leq \min(\operatorname{rk}(A), \operatorname{rk}(B))$.

75. Deffiníció. Az A és B mátrix egymás inverzei, ha AB és BA is egységmátrix. Ekkor $A \in \mathbb{F}^{m \times n}$ és $B \in \mathbb{F}^{n \times m}$.

76. Állítás. A deffiníciót csak négyzetes mátrixok elégítik (a mátrixok körében), azaz m = n = rk(A), és ekkor az inverz egyértelmű.

Jelölés. Ha A-nak van inverze, akkor ezt az A^{-1} jelöli.

77. **Tétel.** Ha $A \in \mathbb{F}^{n \times n}$, akkor eqivalensek az alábbi kijelentések:

- 1. A-nak létezik inverze,
- $2. \operatorname{rk}(A) = n,$
- 3. $\operatorname{rref}(A) = I_n$, és ekkor $(A|I_n)$ -ből Gauss-Jordan-eliminációval $(I_n|A^{-1})$ -et kapjuk.

78. Következmény. Az AX = B mátrixegyenlet megoldása $X = A^{-1}B$, ha A invertálható.

79. Állítás. Ha $A, B \in \mathbb{R}^{n \times n}$ invertálható mátrixok, $\lambda \in \mathbb{R}$, akkor teljesülnek az alábbi feltételek:

- 1. $(A^{-1})^{-1} = A$,
- $2. (A^T)^{-1} = (A^{-1})^T$
- 3. $(AB)^{-1} = B^{-1}A^{-1}$,
- 4. $(\lambda A)^{-1} = \lambda^{-1} A^{-1}$.

80. Deffiníció. $Az A \in \mathbb{R}^{n \times n}$

- diagonális, ha $(A)_{ij} = 0$, ha $i \neq j$,
- alsó háromszögmátrix, ha $(A)_{ij} = 0$, ha i < j,
- felsőháromszögmátrix, $ha(A)_{ij} = 0$, hai > j,
- permutációmátrix, ha minden sorában és oszlopában pontosan egy 1-es szerepel és a többi eleme 0.

81. Állítás. Ha $A, B \in \mathbb{R}^{n \times n}$ diagonális (felső, vagy alsóháromszögmátrix), akkor A + B, AB és ha $\lambda \in \mathbb{R}$, akkor λA is az. Emellett A pontosan akkor invertálható, ha $a_{11} \cdot \ldots \cdot a_{nn} \neq 0$.

82. Állítás. Ha $A, B \in \mathbb{R}^{n \times n}$ permutációmátrix, akkor AB és $A^{-1} = A^T$ is az.

1.6. Lineáris leképezések

83. Deffiníció. Ha V és W \mathbb{F} feletti vektortér, akkor $\varphi: V \to W$ lineáris, ha $\forall u, v \in V; \forall \lambda \in \mathbb{F}$ esetén:

- 1. $\varphi(u+v) = \varphi(u) + \varphi(v)$,
- 2. $\varphi(\lambda v) = \lambda \varphi(v)$.

Jelölés. $A \cup_{V} a V$ vektortér nullavektorát jelöli.

84. Lemma. Ha $\varphi: V \to W$ lineáris, akkor $\varphi(0_V) = 0_W$.

85. Lemma. Ha V és W vektortér és $\dim(V) = n$, valamint $a_1, \ldots, a_n \in W$ és $e_1, \ldots, e_n \in W$, akkor létezik egyetlen olyan $\varphi : V \to W$ lineáris leképezés, melyre:

$$\varphi(e_j) = a_j.$$

86. Következmény. $Ha \varphi : \mathbb{F}^n \to \mathbb{F}^m$ lineáris leképezés és $A \in \mathbb{F}^{m \times n}$, akkor:

- 1. a φ megfeleltethető egy \mathbb{F} -beli bijekciónak(???),
- 2. A-hoz hozzárendelhető az $x \mapsto Ax$ leképezés,
- 3. φ -hez hozzárendelhető a $(\varphi(e_1)| \dots | \varphi(e_n))$ mátrix.

87. Deffiníció. $A \varphi : \mathbb{F}^m \to \mathbb{F}^n$ lináris leképezés (standard) mátrixa:

$$(\varphi(e_1)|\dots|\varphi(e_n)) \in \mathbb{F}^{m \times n}$$

mátrix, ahol e_j az az oszlopmátrix, aminek a j-edik komponense 1, a többi 0.

Jelölés. [arphi]

88. Deffiníció. $Ha \varphi : V \to W$ egy lineáris leképezés, akkor:

- φ magtere azoknak a vektorok halmaza, amikhez φ 0_W -t rendel, azaz $\{v \in V | \varphi(v) = 0_W\}$,
- φ képtere azoknak a vektoroknak a halmaza, amiket φ egy V-beli vektorhoz rendel, azaz $\{w \in W | \exists v \in V \mid \varphi(v) = w\}$.

Jelölés. $magtér: Ker(\varphi), képtér: Im(\varphi)$

89. Állítás. $Ha \varphi : V \to W$ lineáris leképezés, akkor:

- 1. $Ker(\varphi) \leq V$, $Im(\varphi) \leq W$,
- 2. $ha\ V = \mathbb{F}^n$, $W = \mathbb{F}^m$ és $A = [\varphi]$, $akkor\ \mathrm{Ker}(\varphi) = \mathcal{N}(A)$ és $\mathrm{Im}(A) = \mathcal{O}(A)$.

90. Tétel (Dimenziótétel). $Ha \varphi : V \to W$ lináris leképezés, akkor:

$$\dim(\ker(\varphi))+\dim(\operatorname{im}(\varphi))=\dim(V).$$

91. Deffiníció. Ha $\varphi: V \to W$ lineáris leképezés, $B = \{v_1, \dots, v_n\}$ bázis V-ben, $C = \{w_1, \dots, w_m\}$ bázis W-ben, akkor:

$$[\varphi]_{BC} = ([\varphi(v_1)]_C| \dots |[\varphi(v_n)]_C).$$

 $Ha\ V = \mathbb{F}^n$ és $W = \mathbb{F}^m$ alkalmasan választjuk a standard bázisokat. (???)