Lab Logbook

Link to GitHub Folder: https://github.com/taqisherazi/cybersecurity.git

SID: 2363665

Week # 1

Introduction to Cyber Security and AI Case Studies

This week, I explored different Pandas classes and found five of them particularly interesting:

- 1. **DataFrame** This is like a supercharged table that organizes data in rows and columns. It makes it easy to analyze and manipulate structured data.
- 2. **Series** A Series feels like a single-column spreadsheet, where each value has a label, makes it simple to work with individual data columns.
- 3. **Index** The Index class acts like a built-in organizer. it helps to label and quickly access data in both rows and columns.
- 4. **DatetimeIndex** Working with time-based data can be tricky, but this class makes handling dates and times smooth and efficient.
- 5. **Categorical** Instead of storing repetitive text data inefficiently, this class groups similar values together, saves memory and speeds up operations.

Anomaly Detection and Regression

Scatter plot between house size and cost

Estimated cost for house size 1772748.75: 4.6

Neural Networks and AI-Specific attacks

Plot of anomalies using Z-score and IQR methods

Deep Fake Images

Plot a graph showing the model's accuracy for each epsilon value.

The model accuracy before and after data poisoning.

Text-based Cyber attacks

My SID is 2363665. So, 65/2 is 32.5, used epoch 33(ceil it).

Time for epoch 33 is 51.22585964202881 sec

Cryptography

Cryptography II

1. A. Sample of plain and cypher text for DES

```
# Testing DES

# Example usage:

key = b'SecretKe' # DES key must be exactly 8 bytes long

plain_text = "Taqi Sherazi"

encrypted = des_encrypt(plain_text, key)

print("Encrypted text:", encrypted)

decrypted = des_decrypt(encrypted, key)

print("Decrypted text:", decrypted)

$\square$ 0.0s

Encrypted text: 3Q1BcH3aRLp8n7rn05LA7Q==

Decrypted text: Taqi Sherazi
```

1. B. Sample of plain and cypher text for AES

2. Real image and cipher image for the image of any choice using AES

Cipher Image

3.Explain in one word 'YES' or 'NO' whether encryption method for the images is good.

No. AES in ECB (Electronic Codebook) mode is not secure for encrypting images because identical plaintext blocks produce identical ciphertext blocks.

Hash Functions, Digital Signature, and Blockchain

Network-based attacks

Attack Type Chosen:

SolarWinds Supply Chain Attack (2020)

Key Research Source:

CISA Advisory AA20-352A: "Advanced Persistent Threat Compromise of Government Agencies, Critical Infrastructure, and Private Sector Organizations" https://www.cisa.gov/news-events/cybersecurity-advisories/aa20-352a

 $\underline{\text{Week \# 10}}$ Network Intrusion Detection and Malwares

Honeypots, DMZ, CTI sharing and Cyber security framework

Detailed Model Performance:

Random Forest:

Accuracy: 0.9999 Precision: 0.9999 Recall: 0.9999 F1 Score: 0.9999

Cross-validation Accuracy: 0.9988

Logistic Regression:

Accuracy: 0.9990 Precision: 0.9990 Recall: 0.9990 F1 Score: 0.9990

Cross-validation Accuracy: 0.9983

SVM:

Accuracy: 0.9994 Precision: 0.9994 Recall: 0.9994 F1 Score: 0.9994

Cross-validation Accuracy: 0.9985

KNN:

Accuracy: 0.9997 Precision: 0.9997 Recall: 0.9997 F1 Score: 0.9997

Cross-validation Accuracy: 0.9988

Best performing model: Random Forest

