Supplementary material for "Impact of model misspecification in shared frailty survival models"

Alessandro Gasparini¹, Mark S. Clements², Keith R. Abrams¹, and Michael J. Crowther¹

¹Biostatistics Research Group, Department of Health Sciences, University of Leicester, Leicester, United Kingdom

 2 Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden 2019-03-18

List of Figures

1	Bias of regression coefficient, scenario: 750 clusters of 2 individuals each. Colours represent positive and negative bias, and solid grey represents scenarios where no
2	model converged
2	represent positive and negative bias, and solid grey represents scenarios where no
	model converged
3	Mean squared error of regression coefficient, scenario: 750 clusters of 2 individuals
J	each. Colours represent positive and negative bias, and solid grey represents scenarios
	where no model converged
4	Bias of LLE, scenario: 750 clusters of 2 individuals each. Colours represent positive
1	and negative bias, and solid grey represents scenarios where no model converged 6
5	Coverage of LLE, scenario: 750 clusters of 2 individuals each. Colours represent
	positive and negative bias, and solid grey represents scenarios where no model
	converged
6	Mean squared error of LLE, scenario: 750 clusters of 2 individuals each. Colours
	represent positive and negative bias, and solid grey represents scenarios where no
	model converged
7	Convergence rates by simulated scenario for each model
8	Predicted marginal probabilities of non-convergence
9	Proportion of converged scenarios by average proportion of events
10	Percentage of scenarios in which bias or coverage for the estimated treatment effect
	was statistically significant
11	Distribution of the estimated bias for treatment effect
12	Distribution of the estimated coverage for treatment effect
13	Distribution of the estimated MSE for treatment effect
14	Percentage of scenarios in which bias or coverage for the estimated LLE was statisti-
	cally significant
15	Distribution of the estimated bias for LLE
16	Distribution of the estimated coverage for LLE
17	Distribution of the estimated MSE for LLE

List of Tables

1	Results for treatment effect, scenario 1	 19
2	Results for treatment effect, scenario 2	 20
3	Results for treatment effect, scenario $3 \ldots \ldots \ldots \ldots \ldots \ldots$	
4	Results for treatment effect, scenario 4	 22
5	Results for treatment effect, scenario 5 $\dots \dots \dots \dots \dots \dots \dots \dots \dots$	 23
6	Results for treatment effect, scenario 6 $\dots \dots $	 24
7	Results for treatment effect, scenario 7	 25
8	Results for treatment effect, scenario 8	 26
9	Results for treatment effect, scenario 9	 27
10	Results for treatment effect, scenario 10	 28
11	Results for treatment effect, scenario 11	 29
12	Results for treatment effect, scenario 12	 30
13	Results for treatment effect, scenario 13	 31
14	Results for treatment effect, scenario 14	 32
15	Results for treatment effect, scenario 15	
16	Results for treatment effect, scenario 16	 34
17	Results for treatment effect, scenario 17	35
18	Results for treatment effect, scenario 18	 36
19	Results for treatment effect, scenario 19	
20	Results for treatment effect, scenario 20	
21	Results for treatment effect, scenario 21	 39
22	Results for treatment effect, scenario 22	 40
23	Results for treatment effect, scenario 23	 41
24	Results for treatment effect, scenario 24	 42
25	Results for treatment effect, scenario 25	 43
26	Results for treatment effect, scenario 26	 44
27	Results for treatment effect, scenario 27	45
28	Results for treatment effect, scenario 28	 46
29	Results for treatment effect, scenario 29	 47
30	Results for treatment effect, scenario 30	 48
31	Results for treatment effect, scenario 31	 49
32	Results for treatment effect, scenario 32	50
33	Results for treatment effect, scenario 33	 51
34	Results for treatment effect, scenario 34	 52
35	Results for treatment effect, scenario 35	 53
36	Results for treatment effect, scenario 36	 54
37	Results for treatment effect, scenario 37	 55
38	Results for treatment effect, scenario 38	 56
39	Results for treatment effect, scenario 39	 57
40	Results for treatment effect, scenario 40	 58
41	Results for treatment effect, scenario 41	 59
42	Results for treatment effect, scenario 42	 60
43	Results for treatment effect, scenario 43	 61
44	Results for treatment effect, scenario 44	 62
45	Results for treatment effect, scenario 45	 63

46	Results for treatment effect, scenario 46	 	 		64
47	Results for treatment effect, scenario 47	 	 		65
48	Results for treatment effect, scenario 48	 	 		66
49	Results for treatment effect, scenario 49	 	 		67
50	Results for treatment effect, scenario 50	 	 		68
51	Results for treatment effect, scenario 51	 	 		69
52	Results for treatment effect, scenario 52	 	 		70
53	Results for treatment effect, scenario 53	 	 		71
54	Results for treatment effect, scenario 54	 	 		72
55					
56	•				
57	Results for treatment effect, scenario 57	 	 		75
58	·				
59					
60	Results for treatment effect, scenario 60	 	 		78
61	Results for treatment effect, scenario 61	 	 		79
62					
63					
64	·				
65					
66	·				
67	·				
68	Results for treatment effect, scenario 68	 	 		86
69	Results for treatment effect, scenario 69	 	 		87
70	Results for treatment effect, scenario 70	 	 		88
71	Results for treatment effect, scenario 71	 	 		89
72	Results for treatment effect, scenario 72	 	 		90
73	Results for treatment effect, scenario 73	 	 		91
74	Results for treatment effect, scenario 74	 	 		92
75	Results for treatment effect, scenario 75	 	 		93
76	Results for treatment effect, scenario 76	 	 		94
77	Results for treatment effect, scenario 77	 	 		95
78	Results for treatment effect, scenario 78	 	 		96
79	Results for treatment effect, scenario 79	 	 		97
80	Results for treatment effect, scenario 80	 	 		98
81	Results for treatment effect, scenario 81	 	 		99
82	Results for treatment effect, scenario 82	 	 		100
83	Results for treatment effect, scenario 83	 	 		101
84	Results for treatment effect, scenario 84	 	 		102
85	Results for treatment effect, scenario 85	 	 		103
86	,				
87	Results for treatment effect, scenario 87	 	 		105
88	Results for treatment effect, scenario 88	 	 		106
89	Results for treatment effect, scenario 89	 	 		107
90	Results for treatment effect, scenario 90	 	 		108
91	Results for LLE, scenario 1	 	 		114
92	Results for LLE, scenario 2	 	 		115

93	Results for LLE, scenario	3.													116
94	Results for LLE, scenario	4.													117
95	Results for LLE, scenario	5.													118
96	Results for LLE, scenario	6.										 			119
97	Results for LLE, scenario	7.										 			120
98	Results for LLE, scenario	8.										 			121
99	Results for LLE, scenario														
100	Results for LLE, scenario	10													123
101	Results for LLE, scenario	11													124
102	Results for LLE, scenario														
103	Results for LLE, scenario	13													126
104	Results for LLE, scenario														
105	Results for LLE, scenario	15													128
106	Results for LLE, scenario														
107	Results for LLE, scenario	17													130
108	Results for LLE, scenario	18													131
109	Results for LLE, scenario														
110	Results for LLE, scenario	20													133
111	Results for LLE, scenario														
112	Results for LLE, scenario	22													135
113	Results for LLE, scenario														
114	Results for LLE, scenario														
115	Results for LLE, scenario	25													138
116	Results for LLE, scenario														
117	Results for LLE, scenario	27													140
118	Results for LLE, scenario														
119	Results for LLE, scenario														
120	Results for LLE, scenario	30													143
121	Results for LLE, scenario														
122	Results for LLE, scenario	32													145
123	Results for LLE, scenario														
124	Results for LLE, scenario	34													147
125	Results for LLE, scenario	35													148
126	Results for LLE, scenario	36													149
127	Results for LLE, scenario	37													150
128	Results for LLE, scenario	38													151
129	Results for LLE, scenario	39													152
130	Results for LLE, scenario	40													153
131	Results for LLE, scenario	41													154
132	Results for LLE, scenario	42													155
133	Results for LLE, scenario	43													156
134	Results for LLE, scenario	44													157
135	Results for LLE, scenario	45													158
136	Results for LLE, scenario														
137	Results for LLE, scenario	47													160
138	Results for LLE, scenario	48													161
139	Results for LLE, scenario	49				_						 		 _	162

140	Results for LLE, scenario	50														163
141	Results for LLE, scenario	51														164
142	Results for LLE, scenario	52														165
143	Results for LLE, scenario	53														166
144	Results for LLE, scenario	54														167
145	Results for LLE, scenario	55														168
146	Results for LLE, scenario															
147	Results for LLE, scenario															
148	Results for LLE, scenario															
149	Results for LLE, scenario															
150	Results for LLE, scenario	60														173
151	Results for LLE, scenario															
152	Results for LLE, scenario	62														175
153	Results for LLE, scenario	63														176
154	Results for LLE, scenario	64														177
155	Results for LLE, scenario	65														178
156	Results for LLE, scenario	66														179
157	Results for LLE, scenario	67														180
158	Results for LLE, scenario	68														181
159	Results for LLE, scenario	69														182
160	Results for LLE, scenario	70														183
161	Results for LLE, scenario															
162	Results for LLE, scenario	72														185
163	Results for LLE, scenario															
164	Results for LLE, scenario	74														187
165	Results for LLE, scenario															
166	Results for LLE, scenario															
167	Results for LLE, scenario	77														190
168	Results for LLE, scenario															
169	Results for LLE, scenario	79														192
170	Results for LLE, scenario															
171	Results for LLE, scenario															
172	Results for LLE, scenario	82														195
173	Results for LLE, scenario															
174	Results for LLE, scenario															
175	Results for LLE, scenario															
176	Results for LLE, scenario	86														199
177	Results for LLE, scenario															
178	Results for LLE, scenario															
179	Results for LLE, scenario															
180	Results for LLE, scenario															
181	Results for frailty variance	e, se	cen	ari	0	l .										205
182	Results for frailty variance	,														
183	Results for frailty variance	,														
184	Results for frailty variance	-														
185	Results for frailty variance	,														
186	Results for frailty variance	9 90	en	ari	0 6	3										210

187	Results for frailty variance, scenario 7	211
188	Results for frailty variance, scenario 8	212
189	Results for frailty variance, scenario 9	213
190	Results for frailty variance, scenario 10	214
191	Results for frailty variance, scenario 16	
192	Results for frailty variance, scenario 17	216
193	Results for frailty variance, scenario 18	
194	Results for frailty variance, scenario 19	218
195	Results for frailty variance, scenario 20	
196	Results for frailty variance, scenario 21	
197	Results for frailty variance, scenario 22	
198	Results for frailty variance, scenario 23	
199	Results for frailty variance, scenario 24	223
200	Results for frailty variance, scenario 25	
201	Results for frailty variance, scenario 31	225
202	Results for frailty variance, scenario 32	
203	Results for frailty variance, scenario 33	
204	Results for frailty variance, scenario 34	228
205	Results for frailty variance, scenario 35	229
206	Results for frailty variance, scenario 36	230
207	Results for frailty variance, scenario 37	231
208	Results for frailty variance, scenario 38	
209	Results for frailty variance, scenario 39	233
210	Results for frailty variance, scenario 40	
211	Results for frailty variance, scenario 46	235
212	Results for frailty variance, scenario 47	
213	Results for frailty variance, scenario 48	237
214	Results for frailty variance, scenario 49	238
215	Results for frailty variance, scenario 50	239
216	Results for frailty variance, scenario 51	240
217	Results for frailty variance, scenario 52	241
218	Results for frailty variance, scenario 53	242
219	Results for frailty variance, scenario 54	243
220	Results for frailty variance, scenario 55	244
221	Results for frailty variance, scenario 61	245
222	Results for frailty variance, scenario 62	246
223	Results for frailty variance, scenario 63	247
224	Results for frailty variance, scenario 64	248
225	Results for frailty variance, scenario 65	249
226	Results for frailty variance, scenario 66	250
227	Results for frailty variance, scenario 67	
228	Results for frailty variance, scenario 68	
229	Results for frailty variance, scenario 69	253
230	Results for frailty variance, scenario 70	
231	Results for frailty variance, scenario 76	255
232	Results for frailty variance, scenario 77	256
233	Results for frailty variance, scenario 78	257

234	Results for frailty variance, scenario 79	58
235	Results for frailty variance, scenario 80	56
236	Results for frailty variance, scenario 81	3(
237	Results for frailty variance, scenario 82	31
238	Results for frailty variance, scenario 83	32
239	Results for frailty variance, scenario 84	33
240	Results for frailty variance, scenario 85	34

Results: Plots for alternative scenarios not included in the main manuscript

In the main manuscript we presented results for all simulated scenarios with a sample size consisting of 20 clusters of 150 individuals each. In Figures 1 to 6 we present the results for the scenarios with a sample size of 750 clusters with 2 individuals each.

Figure 1: Bias of regression coefficient, scenario: 750 clusters of 2 individuals each. Colours represent positive and negative bias, and solid grey represents scenarios where no model converged.

Figure 2: Coverage of regression coefficient, scenario: 750 clusters of 2 individuals each. Colours represent positive and negative bias, and solid grey represents scenarios where no model converged.

Figure 3: Mean squared error of regression coefficient, scenario: 750 clusters of 2 individuals each. Colours represent positive and negative bias, and solid grey represents scenarios where no model converged.

Figure 4: Bias of LLE, scenario: 750 clusters of 2 individuals each. Colours represent positive and negative bias, and solid grey represents scenarios where no model converged.

Figure 5: Coverage of LLE, scenario: 750 clusters of 2 individuals each. Colours represent positive and negative bias, and solid grey represents scenarios where no model converged.

Figure 6: Mean squared error of LLE, scenario: 750 clusters of 2 individuals each. Colours represent positive and negative bias, and solid grey represents scenarios where no model converged.

Results: Convergence rates

Convergence rates of each model by simulated scenario are depicted in Figure 7.

Predicted marginal means (computed using the following Stata code) are presented in Figure 8.

- . cd "Z:\jointmodels\projects\Misspecification in survival models with frailty terms\"
- . use "convergence.dta", clear
- . glm nonconverged i.model i.ss i.fv i.fv_dist i.baseline, ///
- family(binomial) link(logit) vce(cluster si)
- . margins i.model i.ss i.fv i.fv_dist i.baseline

Figure 7: Convergence rates by simulated scenario for each model.

Figure 8: Predicted marginal probabilities of non-convergence, by factors included in the simulation study.

Convergence by average proportion of events is presented in Figure 9.

Figure 9: Proportion of converged scenarios by average proportion of events with superimposed regression line.

Results: Treatment effect

Figure 10: Percentage of simulated scenarios in which bias (top panel) or coverage (lower panel) for the estimated treatment effect was statistically different than the target value of 0 (for bias) or 95% (coverage), using Z tests based on Monte Carlo standard errors.

Figure 11: Bias distribution for the estimated treatment effect under each data-generating mechanisms by fitted model using ridgeline plots (panel A) or box plots (panel B).

Figure 12: Coverage distribution for the estimated treatment effect under each data-generating mechanisms by fitted model using ridgeline plots (panel A) or box plots (panel B).

Figure 13: Mean squared error distribution for the estimated treatment effect under each datagenerating mechanisms by fitted model using ridgeline plots (panel A) or box plots (panel B).

Table 1: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 0.25, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.4996	0.0043	$0.0676 \ (0.0015)$	$0.0004 \ (0.0021)$	$0.9420 \ (0.0074)$	$0.0046 \ (0.0002)$	1000
Exp	-0.4992	0.0043	$0.0656 \ (0.0015)$	$0.0008 \ (0.0021)$	$0.9520 \ (0.0068)$	$0.0043 \ (0.0002)$	1000
Weibull	-0.5010	0.0045	$0.0673 \ (0.0015)$	-0.0010 (0.0021)	$0.9430 \ (0.0073)$	$0.0045 \ (0.0002)$	1000
Gompertz	-0.4997	0.0045	$0.0650 \ (0.0019)$	$0.0003 \ (0.0027)$	$0.9533 \ (0.0086)$	$0.0042 \ (0.0002)$	600
RP(3)	-0.5004	0.0045	$0.0678 \ (0.0015)$	-0.0004 (0.0021)	$0.9450 \ (0.0072)$	$0.0046 \ (0.0002)$	1000
RP(5)	-0.5005	0.0045	$0.0678 \ (0.0015)$	-0.0005 (0.0021)	$0.9460 \ (0.0071)$	$0.0046 \ (0.0002)$	1000
RP(9)	-0.5005	0.0045	$0.0678 \; (0.0015)$	-0.0005 (0.0021)	$0.9460 \ (0.0071)$	$0.0046 \ (0.0002)$	1000
RP(P)	-0.5007	0.0045	$0.0675 \ (0.0015)$	-0.0007 (0.0021)	$0.9440 \ (0.0073)$	$0.0045 \ (0.0002)$	1000
FP(W)	-0.5013	0.0045	$0.0673 \ (0.0015)$	-0.0013 (0.0021)	$0.9424 \ (0.0074)$	$0.0045 \ (0.0002)$	990
FP (k=10)	-0.4976	0.0045	$0.0677 \ (0.0015)$	$0.0024 \ (0.0021)$	$0.9479 \ (0.0070)$	$0.0046 \ (0.0002)$	998
FP (k=10000)	-0.4989	0.0035	$0.0675 \ (0.0015)$	$0.0011 \ (0.0021)$	$0.9210 \ (0.0085)$	$0.0046 \ (0.0002)$	1000
Model frailty: I	Normal						
Cox	-0.4905	0.0042	$0.0661 \ (0.0015)$	$0.0095 \ (0.0021)$	$0.9460 \ (0.0071)$	$0.0045 \ (0.0002)$	1000
Exp	-0.4998	0.0044	$0.0658 \ (0.0015)$	$0.0002 \ (0.0021)$	$0.9550 \ (0.0066)$	$0.0043 \ (0.0002)$	999
Weibull	-0.5066	0.0046	$0.0682 \ (0.0015)$	-0.0066 (0.0022)	$0.9440 \ (0.0073)$	$0.0047 \ (0.0002)$	1000
Gompertz	-0.4996	0.0046	$0.0658 \ (0.0021)$	$0.0004 \ (0.0029)$	$0.9472 \ (0.0099)$	$0.0043 \ (0.0003)$	511
RP(3)	-0.5014	0.0046	$0.0681 \ (0.0015)$	-0.0014 (0.0022)	$0.9460 \ (0.0071)$	$0.0046 \ (0.0002)$	1000
RP(5)	-0.5014	0.0046	$0.0682 \ (0.0015)$	-0.0014 (0.0022)	$0.9460 \ (0.0071)$	$0.0046 \ (0.0002)$	1000
RP(9)	-0.5015	0.0046	$0.0681 \ (0.0015)$	-0.0015 (0.0022)	$0.9460 \ (0.0071)$	$0.0046 \ (0.0002)$	1000
RP(P)	-0.5018	0.0045	$0.0679 \ (0.0015)$	-0.0018 (0.0021)	$0.9470 \ (0.0071)$	$0.0046 \ (0.0002)$	1000
FP(W)	-0.5013	0.0045	$0.0673 \ (0.0015)$	-0.0013 (0.0021)	$0.9481 \ (0.0071)$	$0.0045 \ (0.0002)$	983
FP (k=10)	-0.4989	0.0046	$0.0680 \ (0.0015)$	$0.0011 \ (0.0022)$	$0.9470 \ (0.0071)$	$0.0046 \ (0.0002)$	1000
FP (k=10000)	-0.4997	0.0037	$0.0677 \ (0.0015)$	$0.0003 \ (0.0021)$	$0.9210 \ (0.0085)$	$0.0046 \ (0.0002)$	1000

Table 2: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.5010	0.0047	$0.0710 \ (0.0016)$	-0.0010 (0.0022)	$0.9450 \ (0.0072)$	$0.0050 \ (0.0002)$	1000
Exp	-0.5933	0.0056	$0.0834 \ (0.0019)$	-0.0933 (0.0026)	$0.7450 \ (0.0138)$	$0.0157 \ (0.0006)$	1000
Weibull	-0.5039	0.0049	$0.0709 \ (0.0016)$	-0.0039 (0.0022)	$0.9500 \ (0.0069)$	$0.0050 \ (0.0002)$	1000
Gompertz	-0.5954	0.0059	$0.0854 \ (0.0028)$	-0.0954 (0.0040)	$0.7516 \ (0.0201)$	$0.0164 \ (0.0009)$	463
RP(3)	-0.5017	0.0049	$0.0711 \ (0.0016)$	-0.0017 (0.0022)	$0.9469 \ (0.0071)$	$0.0051 \ (0.0002)$	999
RP(5)	-0.5017	0.0049	$0.0712 \ (0.0016)$	-0.0017 (0.0023)	$0.9490 \ (0.0070)$	$0.0051 \ (0.0002)$	1000
RP(9)	-0.5019	0.0049	$0.0712 \ (0.0016)$	-0.0019 (0.0023)	$0.9490 \ (0.0070)$	$0.0051 \ (0.0002)$	1000
RP(P)	-0.5029	0.0049	$0.0711 \ (0.0016)$	-0.0029 (0.0022)	$0.9510 \ (0.0068)$	$0.0051 \ (0.0002)$	1000
FP(W)	-0.5039	0.0049	$0.0709 \ (0.0016)$	-0.0039 (0.0023)	$0.9495 \ (0.0070)$	$0.0050 \ (0.0002)$	991
FP (k=10)	-0.4967	0.0049	$0.0716 \ (0.0016)$	$0.0033 \ (0.0023)$	$0.9420 \ (0.0074)$	$0.0051 \ (0.0002)$	1000
FP (k=10000)	-0.5203	0.0042	$0.0746 \ (0.0017)$	-0.0203 (0.0024)	$0.9040 \ (0.0093)$	$0.0060 \ (0.0003)$	1000
Model frailty: I	Normal						
Cox	-0.4928	0.0046	$0.0696 \ (0.0016)$	$0.0072 \ (0.0022)$	$0.9370 \ (0.0077)$	$0.0049 \ (0.0002)$	1000
Exp	-0.5943	0.0058	$0.0834 \ (0.0019)$	-0.0943 (0.0026)	$0.7465 \ (0.0138)$	$0.0158 \ (0.0006)$	998
Weibull	-0.5115	0.0050	$0.0720 \ (0.0016)$	-0.0115 (0.0023)	$0.9479 \ (0.0070)$	$0.0053 \ (0.0002)$	999
Gompertz	-0.6033	0.0060	$0.0844 \ (0.0029)$	-0.1033 (0.0042)	$0.7354 \ (0.0217)$	$0.0178 \ (0.0010)$	412
RP(3)	-0.5030	0.0050	$0.0715 \ (0.0016)$	-0.0030 (0.0023)	$0.9460 \ (0.0071)$	$0.0051 \ (0.0002)$	1000
RP(5)	-0.5032	0.0050	$0.0716 \ (0.0016)$	-0.0032 (0.0023)	$0.9460 \ (0.0071)$	$0.0051 \ (0.0002)$	1000
RP(9)	-0.5033	0.0050	$0.0716 \ (0.0016)$	-0.0033 (0.0023)	$0.9470 \ (0.0071)$	$0.0051 \ (0.0002)$	1000
RP(P)	-0.5045	0.0050	$0.0715 \ (0.0016)$	-0.0045 (0.0023)	$0.9480 \ (0.0070)$	$0.0051 \ (0.0002)$	1000
FP(W)	-0.5058	0.0050	$0.0712 \ (0.0016)$	-0.0058 (0.0023)	$0.9475 \ (0.0071)$	$0.0051 \ (0.0002)$	991
FP (k=10)	-0.5004	0.0050	$0.0723 \ (0.0016)$	-0.0004 (0.0023)	$0.9460 \ (0.0071)$	$0.0052 \ (0.0002)$	1000
FP (k=10000)	-0.5266	0.0045	$0.0758 \ (0.0017)$	-0.0266 (0.0024)	$0.9110 \ (0.0090)$	$0.0064 \ (0.0003)$	1000

Table 3: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 0.25, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	-0.4985	0.0040	$0.0667 \ (0.0015)$	0.0015 (0.0021)	$0.9378 \ (0.0076)$	$0.0045 \ (0.0002)$	997
Exp	-0.4004	0.0031	$0.0536 \ (0.0012)$	$0.0996 \ (0.0017)$	$0.5829 \ (0.0156)$	$0.0128 \ (0.0004)$	995
Weibull	-0.4566	0.0037	$0.0614 \ (0.0014)$	$0.0434 \ (0.0019)$	$0.8870 \ (0.0100)$	$0.0057 \ (0.0003)$	1000
Gompertz	-0.4995	0.0042	$0.0670 \ (0.0015)$	$0.0005 \ (0.0021)$	$0.9430 \ (0.0073)$	$0.0045 \ (0.0002)$	1000
RP(3)	-0.4978	0.0042	$0.0667 \ (0.0015)$	$0.0022 \ (0.0021)$	$0.9450 \ (0.0072)$	$0.0044 \ (0.0002)$	1000
RP(5)	-0.4991	0.0042	$0.0669 \ (0.0015)$	$0.0009 \ (0.0021)$	$0.9430 \ (0.0073)$	$0.0045 \ (0.0002)$	1000
RP(9)	-0.4995	0.0042	$0.0670 \ (0.0015)$	$0.0005 \ (0.0021)$	$0.9440 \ (0.0073)$	$0.0045 \ (0.0002)$	1000
RP(P)	-0.4897	0.0041	$0.0661 \ (0.0015)$	$0.0103 \ (0.0021)$	$0.9330 \ (0.0079)$	$0.0045 \ (0.0002)$	1000
FP(W)	-0.4566	0.0037	$0.0614 \ (0.0014)$	$0.0434 \ (0.0019)$	$0.8870 \ (0.0100)$	$0.0057 \ (0.0003)$	1000
FP (k=10)	-0.4966	0.0042	$0.0668 \ (0.0015)$	$0.0034 \ (0.0021)$	$0.9380 \ (0.0076)$	$0.0045 \ (0.0002)$	1000
FP (k=10000)	-0.4921	0.0030	$0.0659 \ (0.0015)$	$0.0079 \ (0.0021)$	$0.8940 \ (0.0097)$	$0.0044 \ (0.0002)$	1000
Model frailty: I	Normal						
Cox	-0.4884	0.0039	$0.0653 \ (0.0015)$	$0.0116 \ (0.0021)$	$0.9270 \ (0.0082)$	$0.0044 \ (0.0002)$	1000
Exp	-0.4020	0.0032	$0.0538 \ (0.0013)$	$0.0980 \ (0.0018)$	$0.5964 \ (0.0166)$	$0.0125 \ (0.0004)$	877
Weibull	-0.4627	0.0038	$0.0622 \ (0.0014)$	$0.0373 \ (0.0020)$	$0.9008 \; (0.0095)$	$0.0052 \ (0.0002)$	998
Gompertz	-0.5026	0.0043	$0.0670 \ (0.0015)$	-0.0026 (0.0021)	$0.9490 \ (0.0070)$	$0.0045 \ (0.0002)$	1000
RP(3)	-0.4984	0.0042	$0.0668 \ (0.0015)$	$0.0016 \ (0.0021)$	$0.9420 \ (0.0074)$	$0.0045 \ (0.0002)$	1000
RP(5)	-0.4993	0.0042	$0.0670 \ (0.0015)$	$0.0007 \ (0.0021)$	$0.9430 \ (0.0073)$	$0.0045 \ (0.0002)$	1000
RP(9)	-0.4996	0.0042	$0.0671 \ (0.0015)$	$0.0004 \ (0.0021)$	$0.9440 \ (0.0073)$	$0.0045 \ (0.0002)$	1000
RP(P)	-0.4903	0.0041	$0.0663 \ (0.0015)$	$0.0097 \ (0.0021)$	$0.9340 \ (0.0079)$	$0.0045 \ (0.0002)$	1000
FP(W)	-0.4579	0.0038	$0.0617 \ (0.0014)$	$0.0421 \ (0.0019)$	$0.8890 \ (0.0099)$	$0.0056 \ (0.0003)$	1000
FP (k=10)	-0.4972	0.0042	$0.0670 \ (0.0015)$	$0.0028 \ (0.0021)$	$0.9410 \ (0.0075)$	$0.0045 \ (0.0002)$	1000
FP (k=10000)	-0.4946	0.0030	$0.0663 \ (0.0015)$	$0.0054 \ (0.0021)$	0.8890 (0.0099)	$0.0044 \ (0.0002)$	1000

Table 4: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	-0.4989	0.0041	0.0629 (0.0014)	$0.0011 \ (0.0020)$	0.9499 (0.0069)	0.0040 (0.0002)	998
Exp	-0.3722	0.0031	0.0447 (0.0013)	$0.1278 \ (0.0019)$	$0.3339 \ (0.0197)$	$0.0183 \ (0.0005)$	572
Weibull	-0.5474	0.0046	$0.0694 \ (0.0016)$	-0.0474 (0.0022)	$0.8910 \ (0.0099)$	$0.0071 \ (0.0003)$	1000
Gompertz	-0.5025	0.0043	$0.0632 \ (0.0014)$	-0.0025 (0.0020)	$0.9520 \ (0.0068)$	$0.0040 \ (0.0002)$	1000
RP(3)	-0.5005	0.0043	$0.0633 \ (0.0014)$	-0.0005 (0.0020)	$0.9530 \ (0.0067)$	$0.0040 \ (0.0002)$	1000
RP(5)	-0.4998	0.0043	$0.0631 \ (0.0014)$	$0.0002 \ (0.0020)$	$0.9530 \ (0.0067)$	$0.0040 \ (0.0002)$	1000
RP(9)	-0.4999	0.0043	$0.0631 \ (0.0014)$	$0.0001 \ (0.0020)$	$0.9510 \ (0.0068)$	$0.0040 \ (0.0002)$	1000
RP(P)	-0.5022	0.0043	$0.0634 \ (0.0014)$	-0.0022 (0.0020)	$0.9530 \ (0.0067)$	$0.0040 \ (0.0002)$	1000
FP(W)	-0.5474	0.0046	$0.0694 \ (0.0016)$	-0.0474 (0.0022)	$0.8910 \ (0.0099)$	$0.0071 \ (0.0003)$	1000
FP (k=10)	-0.4894	0.0043	$0.0633 \ (0.0014)$	$0.0106 \ (0.0020)$	$0.9390 \ (0.0076)$	$0.0041 \ (0.0002)$	1000
FP (k=10000)	-0.6031	0.0037	$0.0800 \ (0.0018)$	-0.1031 (0.0025)	$0.5720 \ (0.0156)$	$0.0170 \ (0.0006)$	1000
Model frailty: I	Normal						
Cox	-0.4888	0.0040	$0.0613 \ (0.0014)$	$0.0112 \ (0.0019)$	$0.9430 \ (0.0073)$	$0.0039 \ (0.0002)$	1000
Exp	-0.3661	0.0032	$0.0532 \ (0.0034)$	$0.1339 \ (0.0048)$	$0.3145 \ (0.0417)$	$0.0207 \ (0.0014)$	124
Weibull	-0.5455	0.0046	$0.0689 \ (0.0015)$	$-0.0455 \ (0.0022)$	$0.8909 \ (0.0099)$	$0.0068 \ (0.0003)$	999
Gompertz	-0.4935	0.0042	$0.0618 \ (0.0014)$	$0.0065 \ (0.0020)$	$0.9530 \ (0.0067)$	$0.0039 \ (0.0002)$	999
RP(3)	-0.5014	0.0043	$0.0634 \ (0.0014)$	-0.0014 (0.0020)	$0.9540 \ (0.0066)$	$0.0040 \ (0.0002)$	1000
RP(5)	-0.5001	0.0043	$0.0632 \ (0.0014)$	-0.0001 (0.0020)	$0.9540 \ (0.0066)$	$0.0040 \ (0.0002)$	1000
RP(9)	-0.5002	0.0043	$0.0632 \ (0.0014)$	-0.0002 (0.0020)	$0.9560 \ (0.0065)$	$0.0040 \ (0.0002)$	1000
RP(P)	-0.5022	0.0043	$0.0634 \ (0.0014)$	-0.0022 (0.0020)	$0.9530 \ (0.0067)$	$0.0040 \ (0.0002)$	1000
FP (W)	-0.5454	0.0047	$0.0693 \ (0.0016)$	-0.0454 (0.0022)	0.8911 (0.0100)	$0.0069 \ (0.0003)$	973
FP (k=10)	-0.4927	0.0043	$0.0635 \ (0.0014)$	$0.0073 \ (0.0020)$	$0.9490 \ (0.0070)$	$0.0041 \ (0.0002)$	1000
FP (k=10000)	-0.6074	0.0036	0.0804 (0.0018)	-0.1074 (0.0025)	$0.5480 \ (0.0157)$	0.0180 (0.0006)	1000

Table 5: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.5028	0.0045	$0.0723 \ (0.0016)$	-0.0028 (0.0023)	$0.9250 \ (0.0083)$	$0.0052 \ (0.0002)$	1000
Exp	-0.5463	0.0049	$0.0769 \ (0.0017)$	-0.0463 (0.0024)	$0.8780 \ (0.0103)$	$0.0080 \ (0.0004)$	1000
Weibull	-0.5131	0.0047	$0.0732 \ (0.0016)$	-0.0131 (0.0023)	$0.9300 \; (0.0081)$	$0.0055 \ (0.0003)$	1000
Gompertz	-0.5467	0.0051	$0.0777 \ (0.0025)$	$-0.0467 \ (0.0035)$	$0.8855 \ (0.0144)$	$0.0082 \ (0.0005)$	489
RP(3)	-0.5034	0.0047	$0.0723 \ (0.0016)$	-0.0034 (0.0023)	$0.9330 \ (0.0079)$	$0.0052 \ (0.0002)$	1000
RP(5)	-0.5035	0.0047	$0.0724 \ (0.0016)$	-0.0035 (0.0023)	$0.9330 \ (0.0079)$	$0.0052 \ (0.0002)$	1000
RP(9)	-0.5036	0.0047	$0.0724 \ (0.0016)$	-0.0036 (0.0023)	$0.9330 \ (0.0079)$	$0.0053 \ (0.0002)$	1000
RP(P)	-0.5049	0.0047	$0.0725 \ (0.0016)$	-0.0049 (0.0023)	$0.9320 \ (0.0080)$	$0.0053 \ (0.0002)$	1000
FP(W)	-0.5124	0.0047	$0.0731 \ (0.0017)$	-0.0124 (0.0023)	$0.9305 \ (0.0081)$	$0.0055 \ (0.0003)$	979
FP (k=10)	-0.4997	0.0047	$0.0723 \ (0.0016)$	$0.0003 \ (0.0023)$	$0.9300 \ (0.0081)$	$0.0052 \ (0.0002)$	1000
FP (k=10000)	-0.4958	0.0037	$0.0713 \ (0.0016)$	$0.0042 \ (0.0023)$	$0.9050 \ (0.0093)$	$0.0051 \ (0.0002)$	1000
Model frailty: I	Normal						
Cox	-0.4937	0.0044	$0.0705 \ (0.0016)$	$0.0063 \ (0.0022)$	$0.9280 \ (0.0082)$	$0.0050 \ (0.0002)$	1000
Exp	-0.5451	0.0050	$0.0766 \ (0.0017)$	$-0.0451 \ (0.0024)$	$0.8848 \; (0.0101)$	$0.0079 \ (0.0004)$	998
Weibull	-0.5170	0.0048	$0.0734 \ (0.0016)$	-0.0170 (0.0023)	$0.9280 \ (0.0082)$	$0.0057 \ (0.0003)$	1000
Gompertz	-0.5433	0.0052	$0.0748 \ (0.0026)$	-0.0433 (0.0037)	$0.9069 \ (0.0144)$	$0.0075 \ (0.0005)$	408
RP(3)	-0.5041	0.0048	$0.0722 \ (0.0016)$	-0.0041 (0.0023)	$0.9340 \ (0.0079)$	$0.0052 \ (0.0002)$	1000
RP(5)	-0.5046	0.0048	$0.0724 \ (0.0016)$	-0.0046 (0.0023)	$0.9320 \ (0.0080)$	$0.0053 \ (0.0002)$	1000
RP(9)	-0.5048	0.0048	$0.0724 \ (0.0016)$	-0.0048 (0.0023)	$0.9330 \ (0.0079)$	$0.0053 \ (0.0002)$	1000
RP(P)	-0.5055	0.0048	$0.0724 \ (0.0016)$	-0.0055 (0.0023)	$0.9330 \ (0.0079)$	$0.0053 \ (0.0002)$	1000
FP(W)	-0.5122	0.0048	$0.0727 \ (0.0016)$	-0.0122 (0.0023)	$0.9337 \ (0.0079)$	$0.0054 \ (0.0003)$	995
FP (k=10)	-0.5016	0.0048	$0.0725 \ (0.0016)$	-0.0016 (0.0023)	$0.9320 \ (0.0080)$	$0.0052 \ (0.0002)$	1000
FP (k=10000)	-0.4957	0.0039	$0.0710 \ (0.0016)$	$0.0043 \ (0.0022)$	$0.9140 \ (0.0089)$	$0.0051 \ (0.0002)$	1000

Table 6: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.25, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	-0.4987	0.0041	$0.0649 \ (0.0015)$	$0.0013 \ (0.0021)$	$0.9420 \ (0.0074)$	$0.0042 \ (0.0002)$	1000
Exp	-0.5020	0.0041	0.0642 (0.0014)	-0.0020 (0.0020)	$0.9460 \ (0.0071)$	0.0041 (0.0002)	1000
Weibull	-0.5002	0.0042	$0.0643 \ (0.0014)$	-0.0002 (0.0020)	$0.9500 \ (0.0069)$	$0.0041 \ (0.0002)$	1000
Gompertz	-0.5041	0.0043	$0.0656 \ (0.0019)$	-0.0041 (0.0027)	0.9545 (0.0086)	$0.0043 \ (0.0003)$	593
RP(3)	-0.4994	0.0043	$0.0650 \ (0.0015)$	$0.0006 \ (0.0021)$	$0.9510 \ (0.0068)$	$0.0042 \ (0.0002)$	1000
RP(5)	-0.4996	0.0043	$0.0651 \ (0.0015)$	$0.0004 \ (0.0021)$	$0.9510 \ (0.0068)$	$0.0042 \ (0.0002)$	1000
RP(9)	-0.4997	0.0043	$0.0651 \ (0.0015)$	$0.0003 \ (0.0021)$	$0.9520 \ (0.0068)$	$0.0042 \ (0.0002)$	1000
RP(P)	-0.4999	0.0043	$0.0645 \ (0.0014)$	$0.0001 \ (0.0020)$	$0.9490 \ (0.0070)$	$0.0042 \ (0.0002)$	1000
FP(W)	-0.5002	0.0042	$0.0643 \ (0.0014)$	-0.0002 (0.0020)	$0.9500 \ (0.0069)$	$0.0041 \ (0.0002)$	1000
FP (k=10)	-0.4969	0.0043	$0.0650 \ (0.0015)$	$0.0031 \ (0.0021)$	$0.9540 \ (0.0066)$	$0.0042 \ (0.0002)$	1000
FP (k=10000)	-0.4985	0.0033	$0.0649 \ (0.0015)$	$0.0015 \ (0.0021)$	$0.9170 \ (0.0087)$	$0.0042\ (0.0002)$	1000
Model frailty: I	Normal						
Cox	-0.4924	0.0040	$0.0638 \ (0.0014)$	$0.0076 \ (0.0020)$	$0.9470 \ (0.0071)$	$0.0041 \ (0.0002)$	1000
Exp	-0.5034	0.0042	$0.0643 \ (0.0014)$	-0.0034 (0.0020)	$0.9469 \ (0.0071)$	$0.0041 \ (0.0002)$	999
Weibull	-0.5074	0.0044	$0.0650 \ (0.0015)$	-0.0074 (0.0021)	$0.9497 \ (0.0069)$	$0.0043 \ (0.0002)$	995
Gompertz	-0.5036	0.0044	$0.0661 \ (0.0020)$	-0.0036 (0.0028)	$0.9523 \ (0.0091)$	$0.0044 \ (0.0003)$	545
RP(3)	-0.5020	0.0044	$0.0655 \ (0.0015)$	-0.0020 (0.0021)	$0.9490 \ (0.0070)$	$0.0043 \ (0.0002)$	1000
RP(5)	-0.5021	0.0044	$0.0655 \ (0.0015)$	-0.0021 (0.0021)	$0.9490 \ (0.0070)$	$0.0043 \ (0.0002)$	1000
RP(9)	-0.5022	0.0044	$0.0656 \ (0.0015)$	-0.0022 (0.0021)	$0.9500 \ (0.0069)$	$0.0043 \ (0.0002)$	1000
RP(P)	-0.5025	0.0043	$0.0650 \ (0.0015)$	-0.0025 (0.0021)	$0.9480 \ (0.0070)$	$0.0042 \ (0.0002)$	1000
FP(W)	-0.5027	0.0043	$0.0648 \; (0.0015)$	-0.0027 (0.0021)	$0.9508 \; (0.0069)$	$0.0042 \ (0.0002)$	995
FP (k=10)	-0.4999	0.0044	$0.0655 \ (0.0015)$	$0.0001 \ (0.0021)$	$0.9510 \ (0.0068)$	$0.0043 \ (0.0002)$	1000
FP (k=10000)	-0.5012	0.0034	0.0653 (0.0015)	-0.0012 (0.0021)	0.9180 (0.0087)	0.0043 (0.0002)	1000

Table 7: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	-0.4963	0.0045	$0.0671 \ (0.0015)$	$0.0037 \ (0.0021)$	0.9499 (0.0069)	0.0045 (0.0002)	999
Exp	-0.5939	0.0054	$0.0801 \ (0.0018)$	-0.0939 (0.0025)	$0.7580 \ (0.0135)$	$0.0152 \ (0.0006)$	1000
Weibull	-0.4991	0.0046	$0.0674 \ (0.0015)$	$0.0009 \ (0.0021)$	$0.9610 \ (0.0061)$	$0.0045 \ (0.0002)$	1000
Gompertz	-0.5917	0.0056	$0.0799 \ (0.0026)$	-0.0917 (0.0036)	$0.7743 \ (0.0190)$	$0.0148 \ (0.0008)$	483
RP(3)	-0.4969	0.0047	$0.0672 \ (0.0015)$	$0.0031 \ (0.0021)$	$0.9530 \ (0.0067)$	$0.0045 \ (0.0002)$	1000
RP(5)	-0.4971	0.0047	$0.0673 \ (0.0015)$	$0.0029 \ (0.0021)$	$0.9550 \ (0.0066)$	$0.0045 \ (0.0002)$	999
RP(9)	-0.4972	0.0047	$0.0673 \ (0.0015)$	$0.0028 \ (0.0021)$	$0.9559 \ (0.0065)$	$0.0045 \ (0.0002)$	998
RP(P)	-0.4981	0.0046	$0.0672 \ (0.0015)$	$0.0019 \ (0.0021)$	$0.9600 \ (0.0062)$	$0.0045 \ (0.0002)$	1000
FP(W)	-0.4995	0.0046	$0.0674 \ (0.0015)$	$0.0005 \ (0.0021)$	$0.9614 \ (0.0061)$	$0.0045 \ (0.0002)$	985
FP (k=10)	-0.4923	0.0047	$0.0677 \ (0.0015)$	$0.0077 \ (0.0021)$	$0.9510 \ (0.0068)$	$0.0046 \ (0.0002)$	1000
FP (k=10000)	-0.5192	0.0039	$0.0708 \ (0.0016)$	-0.0192 (0.0022)	$0.9010 \ (0.0094)$	$0.0054 \ (0.0003)$	1000
Model frailty: I	Normal						
Cox	-0.4895	0.0044	$0.0658 \ (0.0015)$	$0.0105 \ (0.0021)$	$0.9480 \ (0.0070)$	$0.0044 \ (0.0002)$	1000
Exp	-0.5945	0.0055	$0.0798 \ (0.0018)$	-0.0945 (0.0025)	$0.7565 \ (0.0136)$	$0.0153 \ (0.0006)$	994
Weibull	-0.5071	0.0048	$0.0682 \ (0.0015)$	-0.0071 (0.0022)	$0.9570 \ (0.0064)$	$0.0047 \ (0.0002)$	1000
Gompertz	-0.5894	0.0057	$0.0792 \ (0.0026)$	-0.0894 (0.0037)	$0.7933 \ (0.0191)$	$0.0143 \ (0.0008)$	450
RP(3)	-0.4989	0.0047	$0.0675 \ (0.0015)$	$0.0011 \ (0.0021)$	$0.9570 \ (0.0064)$	$0.0046 \ (0.0002)$	1000
RP(5)	-0.4990	0.0047	$0.0675 \ (0.0015)$	$0.0010 \ (0.0021)$	$0.9560 \ (0.0065)$	$0.0046 \ (0.0002)$	1000
RP(9)	-0.4991	0.0047	$0.0676 \ (0.0015)$	$0.0009 \ (0.0021)$	$0.9560 \ (0.0065)$	$0.0046 \ (0.0002)$	1000
RP(P)	-0.5002	0.0047	$0.0675 \ (0.0015)$	-0.0002 (0.0021)	$0.9550 \ (0.0066)$	$0.0046 \ (0.0002)$	1000
FP(W)	-0.5008	0.0047	$0.0676 \ (0.0015)$	-0.0008 (0.0022)	$0.9552 \ (0.0066)$	$0.0046 \ (0.0002)$	983
FP (k=10)	-0.4969	0.0048	$0.0683 \ (0.0015)$	$0.0031 \ (0.0022)$	$0.9550 \ (0.0066)$	$0.0047 \ (0.0002)$	1000
FP (k=10000)	-0.5267	0.0042	$0.0718 \ (0.0016)$	$-0.0267 \ (0.0023)$	$0.8980 \ (0.0096)$	$0.0059 \ (0.0003)$	1000

Table 8: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.4976	0.0038	$0.0652 \ (0.0015)$	$0.0024 \ (0.0021)$	$0.9288 \; (0.0081)$	$0.0043 \ (0.0002)$	997
Exp	-0.4023	0.0030	$0.0525 \ (0.0012)$	$0.0977 \ (0.0017)$	$0.5791 \ (0.0162)$	$0.0123 \ (0.0004)$	929
Weibull	-0.4520	0.0035	$0.0590 \ (0.0013)$	$0.0480 \ (0.0019)$	$0.8720 \ (0.0106)$	$0.0058 \ (0.0002)$	1000
Gompertz	-0.4992	0.0040	$0.0654 \ (0.0015)$	$0.0008 \; (0.0021)$	$0.9310 \ (0.0080)$	$0.0043 \ (0.0002)$	1000
RP(3)	-0.4965	0.0040	$0.0651 \ (0.0015)$	$0.0035 \ (0.0021)$	$0.9330 \ (0.0079)$	$0.0042 \ (0.0002)$	1000
RP(5)	-0.4984	0.0040	$0.0653 \ (0.0015)$	$0.0016 \ (0.0021)$	$0.9320 \ (0.0080)$	$0.0043 \ (0.0002)$	1000
RP(9)	-0.4989	0.0040	$0.0653 \ (0.0015)$	$0.0011 \ (0.0021)$	$0.9320 \ (0.0080)$	$0.0043 \ (0.0002)$	1000
RP(P)	-0.4886	0.0039	$0.0641 \ (0.0014)$	$0.0114 \ (0.0020)$	$0.9350 \ (0.0078)$	$0.0042 \ (0.0002)$	1000
FP(W)	-0.4520	0.0035	$0.0590 \ (0.0013)$	$0.0480 \ (0.0019)$	$0.8719 \ (0.0106)$	$0.0058 \ (0.0002)$	999
FP (k=10)	-0.4957	0.0040	$0.0650 \ (0.0015)$	$0.0043 \ (0.0021)$	$0.9330 \ (0.0079)$	$0.0042 \ (0.0002)$	1000
FP (k=10000)	-0.4898	0.0028	$0.0640 \ (0.0014)$	$0.0102 \ (0.0020)$	$0.8830 \ (0.0102)$	$0.0042 \ (0.0002)$	1000
Model frailty: I	Normal						
Cox	-0.4912	0.0037	$0.0642 \ (0.0014)$	$0.0088 \ (0.0020)$	$0.9230 \ (0.0084)$	$0.0042 \ (0.0002)$	1000
Exp	-0.4057	0.0031	$0.0531 \ (0.0014)$	$0.0943 \ (0.0020)$	$0.5950 \ (0.0188)$	$0.0117 \ (0.0004)$	679
Weibull	-0.4596	0.0036	$0.0602 \ (0.0013)$	$0.0404 \ (0.0019)$	$0.8960 \ (0.0097)$	$0.0052 \ (0.0002)$	1000
Gompertz	-0.5062	0.0041	$0.0661 \ (0.0015)$	-0.0062 (0.0021)	$0.9300 \ (0.0081)$	$0.0044 \ (0.0002)$	1000
RP(3)	-0.4994	0.0041	$0.0659 \ (0.0015)$	$0.0006 \ (0.0021)$	$0.9280 \ (0.0082)$	$0.0043 \ (0.0002)$	1000
RP(5)	-0.5008	0.0041	$0.0660 \ (0.0015)$	-0.0008 (0.0021)	$0.9320 \ (0.0080)$	$0.0044 \ (0.0002)$	1000
RP(9)	-0.5012	0.0041	$0.0661 \ (0.0015)$	-0.0012 (0.0021)	$0.9320 \ (0.0080)$	$0.0044 \ (0.0002)$	1000
RP(P)	-0.4914	0.0040	$0.0649 \ (0.0015)$	$0.0086 \ (0.0021)$	$0.9320 \ (0.0080)$	$0.0043 \ (0.0002)$	1000
FP(W)	-0.4550	0.0036	$0.0594 \ (0.0013)$	$0.0450 \ (0.0019)$	$0.8860 \ (0.0101)$	0.0055 (0.0002)	1000
FP (k=10)	-0.4988	0.0041	$0.0658 \ (0.0015)$	$0.0012 \ (0.0021)$	$0.9320 \ (0.0080)$	$0.0043 \ (0.0002)$	1000
FP (k=10000)	-0.4946	0.0028	$0.0650 \ (0.0015)$	$0.0054 \ (0.0021)$	$0.8830 \ (0.0102)$	$0.0042 \ (0.0002)$	1000

Table 9: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.4966	0.0039	0.0647 (0.0014)	$0.0034 \ (0.0020)$	0.9289 (0.0081)	$0.0042 \ (0.0002)$	999
Exp	-0.3715	0.0030	$0.0483 \ (0.0015)$	$0.1285 \ (0.0021)$	$0.3136 \ (0.0203)$	$0.0189 \ (0.0006)$	523
Weibull	-0.5487	0.0044	$0.0699 \ (0.0016)$	-0.0487 (0.0022)	$0.8810 \ (0.0102)$	$0.0073 \ (0.0003)$	1000
Gompertz	-0.5026	0.0041	$0.0647 \ (0.0014)$	-0.0026 (0.0020)	$0.9450 \ (0.0072)$	$0.0042 \ (0.0002)$	1000
RP(3)	-0.4980	0.0041	$0.0651 \ (0.0015)$	$0.0020 \ (0.0021)$	$0.9380 \ (0.0076)$	$0.0042 \ (0.0002)$	1000
RP(5)	-0.4975	0.0041	$0.0649 \ (0.0015)$	$0.0025 \ (0.0021)$	$0.9360 \ (0.0077)$	$0.0042 \ (0.0002)$	1000
RP(9)	-0.4978	0.0041	$0.0649 \ (0.0015)$	$0.0022 \ (0.0021)$	$0.9380 \ (0.0076)$	$0.0042 \ (0.0002)$	1000
RP(P)	-0.5002	0.0041	$0.0652 \ (0.0015)$	-0.0002 (0.0021)	$0.9380 \ (0.0076)$	$0.0043 \ (0.0002)$	1000
FP(W)	-0.5484	0.0044	$0.0697 \ (0.0016)$	-0.0484 (0.0022)	$0.8828 \ (0.0102)$	$0.0072 \ (0.0003)$	998
FP (k=10)	-0.4870	0.0041	$0.0657 \ (0.0015)$	$0.0130 \ (0.0021)$	$0.9260 \ (0.0083)$	$0.0045 \ (0.0002)$	1000
FP (k=10000)	-0.6087	0.0036	$0.0801 \ (0.0018)$	$-0.1087 \ (0.0025)$	$0.5420 \ (0.0158)$	$0.0182 \ (0.0006)$	1000
Model frailty: I	Normal						
Cox	-0.4903	0.0038	$0.0637 \ (0.0014)$	$0.0097 \ (0.0020)$	$0.9330 \ (0.0079)$	$0.0041 \ (0.0002)$	1000
Exp	-0.3571	0.0030	$0.0137 \ (0.0056)$	$0.1429 \ (0.0068)$	$0.0000 \ (0.0000)$	$0.0206 \ (0.0020)$	4
Weibull	-0.5499	0.0045	$0.0702 \ (0.0016)$	-0.0499 (0.0022)	$0.8745 \ (0.0105)$	$0.0074 \ (0.0003)$	996
Gompertz	-0.4962	0.0040	$0.0638 \ (0.0014)$	$0.0038 \ (0.0020)$	$0.9440 \ (0.0073)$	$0.0041 \ (0.0002)$	1000
RP(3)	-0.5012	0.0041	$0.0658 \ (0.0015)$	-0.0012 (0.0021)	$0.9370 \ (0.0077)$	$0.0043 \ (0.0002)$	1000
RP(5)	-0.5000	0.0041	$0.0655 \ (0.0015)$	$0.0000 \ (0.0021)$	$0.9360 \ (0.0077)$	$0.0043 \ (0.0002)$	1000
RP(9)	-0.5002	0.0041	$0.0655 \ (0.0015)$	-0.0002 (0.0021)	$0.9360 \ (0.0077)$	$0.0043 \ (0.0002)$	1000
RP(P)	-0.5024	0.0041	$0.0658 \ (0.0015)$	-0.0024 (0.0021)	$0.9360 \ (0.0077)$	$0.0043 \ (0.0002)$	1000
FP(W)	-0.5501	0.0045	$0.0705 \ (0.0016)$	-0.0501 (0.0023)	$0.8700 \ (0.0108)$	$0.0075 \ (0.0003)$	969
FP (k=10)	-0.4929	0.0042	$0.0664 \ (0.0015)$	$0.0071 \ (0.0021)$	$0.9350 \ (0.0078)$	$0.0045 \ (0.0002)$	1000
FP (k=10000)	-0.6169	0.0035	0.0813 (0.0018)	-0.1169 (0.0026)	$0.4930 \ (0.0158)$	$0.0203 \ (0.0007)$	1000

Table 10: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.4988	0.0043	0.0639 (0.0014)	$0.0012 \ (0.0020)$	$0.9570 \ (0.0064)$	0.0041 (0.0002)	1000
Exp	-0.5457	0.0047	$0.0683 \ (0.0015)$	-0.0457 (0.0022)	$0.8990 \ (0.0095)$	$0.0068 \ (0.0003)$	1000
Weibull	-0.5091	0.0045	$0.0644 \ (0.0014)$	-0.0091 (0.0020)	$0.9550 \ (0.0066)$	$0.0042 \ (0.0002)$	1000
Gompertz	-0.5482	0.0049	$0.0684 \ (0.0022)$	-0.0482 (0.0032)	$0.9081 \ (0.0134)$	$0.0070 \ (0.0004)$	468
RP(3)	-0.4996	0.0044	$0.0639 \ (0.0014)$	$0.0004 \ (0.0020)$	$0.9610 \ (0.0061)$	$0.0041 \ (0.0002)$	1000
RP(5)	-0.4997	0.0045	$0.0639 \ (0.0014)$	$0.0003 \ (0.0020)$	$0.9610 \ (0.0061)$	$0.0041 \ (0.0002)$	1000
RP(9)	-0.4999	0.0045	$0.0639 \ (0.0014)$	$0.0001 \ (0.0020)$	$0.9609 \ (0.0061)$	$0.0041 \ (0.0002)$	998
RP(P)	-0.5011	0.0045	$0.0640 \ (0.0014)$	-0.0011 (0.0020)	$0.9590 \ (0.0063)$	$0.0041 \ (0.0002)$	1000
FP(W)	-0.5090	0.0045	$0.0644 \ (0.0014)$	-0.0090 (0.0020)	$0.9556 \ (0.0065)$	$0.0042 \ (0.0002)$	992
FP (k=10)	-0.4960	0.0044	$0.0638 \ (0.0014)$	$0.0040 \ (0.0020)$	$0.9610 \ (0.0061)$	$0.0041 \ (0.0002)$	1000
FP (k=10000)	-0.4929	0.0035	$0.0630 \ (0.0014)$	$0.0071 \ (0.0020)$	$0.9289 \ (0.0081)$	$0.0040 \ (0.0002)$	999
Model frailty: I	Normal						
Cox	-0.4923	0.0042	$0.0628 \ (0.0014)$	$0.0077 \ (0.0020)$	$0.9500 \ (0.0069)$	$0.0040 \ (0.0002)$	1000
Exp	-0.5454	0.0047	$0.0685 \ (0.0015)$	-0.0454 (0.0022)	$0.8998 \ (0.0095)$	$0.0068 \ (0.0003)$	998
Weibull	-0.5143	0.0046	$0.0651 \ (0.0015)$	-0.0143 (0.0021)	$0.9500 \ (0.0069)$	$0.0044 \ (0.0002)$	1000
Gompertz	-0.5425	0.0049	$0.0695 \ (0.0025)$	-0.0425 (0.0035)	$0.9192 \ (0.0137)$	$0.0066 \ (0.0004)$	396
RP(3)	-0.5015	0.0045	$0.0643 \ (0.0014)$	-0.0015 (0.0020)	$0.9600 \ (0.0062)$	$0.0041 \ (0.0002)$	1000
RP(5)	-0.5019	0.0045	$0.0644 \ (0.0014)$	-0.0019 (0.0020)	$0.9600 \ (0.0062)$	$0.0041 \ (0.0002)$	1000
RP(9)	-0.5020	0.0045	$0.0644 \ (0.0014)$	-0.0020 (0.0020)	$0.9600 \ (0.0062)$	$0.0042 \ (0.0002)$	1000
RP(P)	-0.5028	0.0045	$0.0644 \ (0.0014)$	-0.0028 (0.0020)	$0.9600 \ (0.0062)$	$0.0042 \ (0.0002)$	1000
FP(W)	-0.5102	0.0045	$0.0644 \ (0.0014)$	-0.0102 (0.0020)	$0.9545 \ (0.0066)$	$0.0042 \ (0.0002)$	988
FP (k=10)	-0.4992	0.0045	$0.0644 \ (0.0014)$	$0.0008 \ (0.0020)$	$0.9570 \ (0.0064)$	$0.0041 \ (0.0002)$	1000
FP (k=10000)	-0.4942	0.0036	0.0633 (0.0014)	$0.0058 \ (0.0020)$	$0.9350 \ (0.0078)$	$0.0040 \ (0.0002)$	1000

Table 11: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.25, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	-0.4905	0.0079	0.0908 (0.0020)	0.0095 (0.0029)	0.9478 (0.0070)	0.0083 (0.0004)	996
Exp	-0.5056	0.0080	0.0913 (0.0020)	-0.0056 (0.0029)	$0.9410 \ (0.0075)$	0.0084 (0.0004)	1000
Weibull	-0.5027	0.0082	$0.0928 \ (0.0021)$	-0.0027 (0.0029)	$0.9480 \ (0.0070)$	$0.0086 \ (0.0004)$	1000
Gompertz	-0.5051	0.0082	$0.0933 \ (0.0034)$	-0.0051 (0.0048)	$0.9301 \ (0.0132)$	0.0087 (0.0007)	372
RP(3)	-0.4911	0.0081	0.0911 (0.0020)	$0.0089 \ (0.0029)$	$0.9490 \ (0.0070)$	$0.0084 \ (0.0004)$	1000
RP(5)	-0.4914	0.0081	$0.0912 \ (0.0020)$	$0.0086 \ (0.0029)$	$0.9480 \ (0.0070)$	$0.0084 \ (0.0004)$	1000
RP(9)	-0.4917	0.0081	$0.0913 \ (0.0020)$	$0.0083 \ (0.0029)$	$0.9480 \ (0.0070)$	$0.0084 \ (0.0004)$	1000
RP(P)	-0.4933	0.0081	0.0917 (0.0021)	$0.0067 \ (0.0029)$	$0.9470 \ (0.0071)$	$0.0084 \ (0.0004)$	1000
FP(W)	-0.5027	0.0082	$0.0928 \ (0.0021)$	-0.0027 (0.0029)	$0.9480 \ (0.0070)$	$0.0086 \ (0.0004)$	1000
FP (k=10)	-0.4776	0.0079	$0.0892 \ (0.0020)$	$0.0224 \ (0.0028)$	$0.9478 \ (0.0070)$	$0.0084 \ (0.0004)$	996
FP (k=10000)	-0.4799	0.0059	$0.0882\ (0.0020)$	$0.0201 \ (0.0028)$	$0.9044 \ (0.0093)$	$0.0082 \ (0.0003)$	994
Model frailty: I	Normal						
Cox	-0.4574	0.0077	$0.0863 \ (0.0019)$	$0.0426 \ (0.0027)$	$0.9260 \ (0.0083)$	$0.0093 \ (0.0004)$	1000
Exp	-0.4794	0.0081	$0.0894 \ (0.0020)$	$0.0206 \ (0.0029)$	$0.9509 \ (0.0069)$	$0.0084 \ (0.0004)$	978
Weibull	-0.4752	0.0083	$0.0901 \ (0.0020)$	$0.0248 \ (0.0029)$	$0.9440 \ (0.0073)$	$0.0087 \ (0.0004)$	983
Gompertz	-0.4818	0.0082	$0.0862 \ (0.0044)$	$0.0182 \ (0.0063)$	$0.9630 \ (0.0137)$	$0.0077 \ (0.0008)$	189
RP(3)	-0.4822	0.0084	$0.0909 \ (0.0020)$	$0.0178 \ (0.0029)$	$0.9480 \ (0.0070)$	$0.0086 \ (0.0004)$	1000
RP(5)	-0.4822	0.0084	$0.0909 \ (0.0020)$	$0.0178 \ (0.0029)$	$0.9470 \ (0.0071)$	$0.0086 \ (0.0004)$	1000
RP(9)	-0.4824	0.0084	$0.0909 \ (0.0020)$	$0.0176 \ (0.0029)$	$0.9480 \ (0.0070)$	$0.0086 \ (0.0004)$	1000
RP(P)	-0.4817	0.0083	$0.0909 \ (0.0020)$	$0.0183 \ (0.0029)$	$0.9480 \ (0.0070)$	$0.0086 \ (0.0004)$	1000
FP(W)	-0.4946	0.0086	$0.0938 \ (0.0021)$	$0.0054 \ (0.0030)$	$0.9483 \ (0.0071)$	$0.0088 \ (0.0004)$	968
FP (k=10)	-0.4590	0.0082	$0.0880 \ (0.0020)$	$0.0410 \ (0.0028)$	$0.9340 \ (0.0079)$	$0.0094 \ (0.0004)$	1000
FP (k=10000)	-0.4538	0.0066	0.0849 (0.0019)	$0.0462 \ (0.0027)$	0.8987 (0.0096)	0.0093 (0.0004)	997

Table 12: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	-0.4942	0.0085	$0.0934 \ (0.0021)$	$0.0058 \ (0.0030)$	$0.9459 \ (0.0072)$	0.0087 (0.0004)	999
Exp	-0.6133	0.0098	$0.1132 \ (0.0025)$	-0.1133 (0.0036)	$0.7680 \ (0.0133)$	$0.0256 \ (0.0010)$	1000
Weibull	-0.5082	0.0088	$0.0958 \ (0.0021)$	-0.0082 (0.0030)	$0.9380 \ (0.0076)$	$0.0092 \ (0.0004)$	1000
Gompertz	-0.6124	0.0100	0.1074 (0.0042)	-0.1124 (0.0060)	0.7815 (0.0229)	$0.0241 \ (0.0015)$	325
RP(3)	-0.4953	0.0087	$0.0937 \ (0.0021)$	$0.0047 \ (0.0030)$	$0.9480 \ (0.0070)$	$0.0088 \ (0.0004)$	1000
RP(5)	-0.4960	0.0087	$0.0937 \ (0.0021)$	$0.0040 \ (0.0030)$	$0.9470 \ (0.0071)$	$0.0088 \ (0.0004)$	1000
RP(9)	-0.4962	0.0087	$0.0938 \ (0.0021)$	$0.0038 \ (0.0030)$	$0.9470 \ (0.0071)$	$0.0088 \ (0.0004)$	1000
RP(P)	-0.4966	0.0087	$0.0940 \ (0.0021)$	$0.0034 \ (0.0030)$	$0.9460 \ (0.0071)$	$0.0088 \ (0.0004)$	1000
FP(W)	-0.5081	0.0088	$0.0958 \ (0.0021)$	-0.0081 (0.0030)	$0.9379 \ (0.0076)$	$0.0092 \ (0.0004)$	999
FP (k=10)	-0.5184	0.0091	$0.1010 \ (0.0023)$	-0.0184 (0.0032)	$0.9285 \ (0.0082)$	$0.0105 \ (0.0005)$	993
FP (k=10000)	-0.5603	0.0069	$0.1046 \ (0.0023)$	-0.0603 (0.0033)	$0.8318 \ (0.0118)$	$0.0146 \ (0.0006)$	999
Model frailty: I	Normal						
Cox	-0.4542	0.0083	$0.0888 \ (0.0020)$	$0.0458 \ (0.0028)$	$0.9230 \ (0.0084)$	$0.0100 \ (0.0004)$	1000
Exp	-0.5693	0.0099	$0.1106 \ (0.0025)$	-0.0693 (0.0035)	$0.8753 \ (0.0106)$	$0.0170 \ (0.0008)$	978
Weibull	-0.4734	0.0089	$0.0930 \ (0.0021)$	$0.0266 \ (0.0030)$	$0.9407 \ (0.0076)$	$0.0094 \ (0.0004)$	978
Gompertz	-0.5673	0.0101	$0.1203 \ (0.0090)$	-0.0673 (0.0126)	$0.8571 \ (0.0367)$	$0.0188 \ (0.0028)$	91
RP(3)	-0.4791	0.0089	$0.0940 \ (0.0021)$	$0.0209 \ (0.0030)$	$0.9460 \ (0.0071)$	$0.0093 \ (0.0004)$	1000
RP(5)	-0.4795	0.0089	$0.0941 \ (0.0021)$	$0.0205 \ (0.0030)$	$0.9470 \ (0.0071)$	$0.0093 \ (0.0004)$	1000
RP(9)	-0.4795	0.0089	$0.0941 \ (0.0021)$	$0.0205 \ (0.0030)$	$0.9450 \ (0.0072)$	$0.0093 \ (0.0004)$	1000
RP(P)	-0.4792	0.0089	$0.0942 \ (0.0021)$	$0.0208 \ (0.0030)$	$0.9450 \ (0.0072)$	$0.0093 \ (0.0004)$	1000
FP(W)	-0.4932	0.0093	$0.0973 \ (0.0022)$	$0.0068 \ (0.0031)$	$0.9483 \ (0.0071)$	0.0095 (0.0004)	968
FP (k=10)	-0.4819	0.0091	$0.0954 \ (0.0021)$	$0.0181\ (0.0030)$	$0.9450 \ (0.0072)$	$0.0094 \ (0.0004)$	1000
FP (k=10000)	-0.5174	0.0079	0.1005 (0.0023)	-0.0174 (0.0032)	0.9085 (0.0091)	$0.0104 \ (0.0005)$	994

Table 13: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						_
Cox	-0.4864	0.0070	$0.0869 \ (0.0019)$	$0.0136 \ (0.0028)$	$0.9348 \ (0.0078)$	$0.0077 \ (0.0004)$	997
Exp	-0.4621	0.0067	$0.0809 \ (0.0018)$	$0.0379 \ (0.0026)$	$0.9210 \ (0.0085)$	$0.0080 \ (0.0004)$	1000
Weibull	-0.4844	0.0071	$0.0863 \ (0.0019)$	$0.0156 \ (0.0027)$	$0.9390 \ (0.0076)$	$0.0077 \ (0.0004)$	1000
Gompertz	-0.4661	0.0068	$0.0808 \ (0.0032)$	$0.0339 \ (0.0046)$	$0.9238 \ (0.0149)$	$0.0077 \ (0.0006)$	315
RP(3)	-0.4868	0.0072	$0.0872 \ (0.0020)$	$0.0132 \ (0.0028)$	$0.9380 \ (0.0076)$	$0.0078 \ (0.0004)$	1000
RP(5)	-0.4874	0.0072	$0.0872 \ (0.0019)$	$0.0126 \ (0.0028)$	$0.9370 \ (0.0077)$	0.0077 (0.0004)	1000
RP(9)	-0.4881	0.0072	$0.0871 \ (0.0019)$	$0.0119 \ (0.0028)$	$0.9390 \ (0.0076)$	$0.0077 \ (0.0004)$	1000
RP(P)	-0.4862	0.0072	$0.0869 \ (0.0019)$	$0.0138 \ (0.0027)$	$0.9340 \ (0.0079)$	0.0077 (0.0004)	1000
FP(W)	-0.4844	0.0071	$0.0863 \ (0.0019)$	$0.0156 \ (0.0027)$	$0.9390 \ (0.0076)$	0.0077 (0.0004)	1000
FP (k=10)	-0.4707	0.0070	$0.0860 \ (0.0019)$	$0.0293 \ (0.0027)$	$0.9260 \ (0.0083)$	$0.0082 \ (0.0004)$	1000
FP (k=10000)	-0.4849	0.0053	$0.0861 \ (0.0019)$	$0.0151 \ (0.0027)$	$0.8913 \ (0.0099)$	$0.0076 \ (0.0004)$	994
Model frailty: I	Normal						
Cox	-0.4684	0.0069	$0.0834 \ (0.0019)$	$0.0316 \ (0.0026)$	$0.9350 \ (0.0078)$	$0.0079 \ (0.0004)$	1000
Exp	-0.4472	0.0067	$0.0782 \ (0.0018)$	$0.0528 \ (0.0025)$	$0.9051 \ (0.0094)$	$0.0089 \ (0.0004)$	980
Weibull	-0.4761	0.0073	$0.0847 \ (0.0019)$	$0.0239 \ (0.0027)$	$0.9434 \ (0.0073)$	$0.0077 \ (0.0004)$	989
Gompertz	-0.4561	0.0068	$0.0730 \ (0.0036)$	$0.0439 \ (0.0051)$	$0.9314 \ (0.0177)$	$0.0072 \ (0.0007)$	204
RP(3)	-0.4917	0.0075	0.0875 (0.0020)	$0.0083 \ (0.0028)$	$0.9460 \ (0.0071)$	0.0077 (0.0004)	1000
RP(5)	-0.4927	0.0075	$0.0875 \ (0.0020)$	$0.0073 \ (0.0028)$	$0.9460 \ (0.0071)$	0.0077 (0.0004)	1000
RP(9)	-0.4932	0.0075	$0.0875 \ (0.0020)$	$0.0068 \ (0.0028)$	$0.9450 \ (0.0072)$	0.0077 (0.0004)	1000
RP(P)	-0.4919	0.0075	0.0875 (0.0020)	$0.0081 \ (0.0028)$	$0.9450 \ (0.0072)$	0.0077 (0.0004)	1000
FP(W)	-0.4929	0.0076	$0.0878 \ (0.0020)$	$0.0071 \ (0.0029)$	$0.9441 \ (0.0075)$	0.0077 (0.0004)	948
FP (k=10)	-0.4698	0.0073	$0.0850 \ (0.0019)$	$0.0302 \ (0.0027)$	$0.9350 \ (0.0078)$	$0.0081 \ (0.0004)$	1000
FP (k=10000)	-0.4714	0.0057	$0.0833 \ (0.0019)$	$0.0286 \ (0.0026)$	$0.9000 \ (0.0095)$	$0.0078 \ (0.0004)$	1000

Table 14: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline		Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	-0.4904	0.0072	$0.0882 \ (0.0020)$	$0.0096 \ (0.0028)$	0.9379 (0.0076)	0.0079 (0.0003)	998
Exp	-0.3425	0.0058	$0.0651 \ (0.0015)$	$0.1575 \ (0.0021)$	$0.4560 \ (0.0158)$	$0.0290 \ (0.0007)$	1000
Weibull	-0.5090	0.0077	$0.0921 \ (0.0021)$	-0.0090 (0.0029)	$0.9350 \ (0.0078)$	$0.0086 \ (0.0004)$	1000
Gompertz	-0.3389	0.0059	0.0677 (0.0024)	$0.1611 \ (0.0034)$	$0.4409 \ (0.0246)$	0.0305 (0.0011)	406
RP(3)	-0.4920	0.0075	$0.0886 \ (0.0020)$	$0.0080 \ (0.0028)$	$0.9449 \ (0.0072)$	$0.0079 \ (0.0003)$	999
RP(5)	-0.4916	0.0074	$0.0885 \ (0.0020)$	$0.0084 \ (0.0028)$	$0.9430 \ (0.0073)$	$0.0079 \ (0.0003)$	1000
RP(9)	-0.4921	0.0074	$0.0885 \ (0.0020)$	$0.0079 \ (0.0028)$	$0.9430 \ (0.0073)$	$0.0079 \ (0.0003)$	1000
RP(P)	-0.4890	0.0074	$0.0879 \ (0.0020)$	$0.0110 \ (0.0028)$	$0.9439 \ (0.0073)$	$0.0078 \ (0.0003)$	998
FP(W)	-0.5090	0.0077	$0.0921 \ (0.0021)$	-0.0090 (0.0029)	$0.9350 \ (0.0078)$	$0.0086 \ (0.0004)$	1000
FP (k=10)	-0.3983	0.0073	$0.0902 \ (0.0020)$	$0.1017 \ (0.0029)$	$0.7477 \ (0.0137)$	$0.0185 \ (0.0007)$	999
FP (k=10000)	-0.5321	0.0063	$0.0983 \ (0.0034)$	-0.0321 (0.0049)	$0.8589 \ (0.0172)$	$0.0107 \ (0.0007)$	411
Model frailty: I	Normal						
Cox	-0.4674	0.0071	$0.0850 \ (0.0019)$	$0.0326 \ (0.0027)$	$0.9300 \ (0.0081)$	$0.0083 \ (0.0004)$	1000
Exp	-0.3385	0.0057	$0.0658 \ (0.0015)$	$0.1615 \ (0.0021)$	$0.4216 \ (0.0157)$	$0.0304 \ (0.0007)$	989
Weibull	-0.4885	0.0077	$0.0903 \ (0.0020)$	$0.0115 \ (0.0029)$	$0.9407 \ (0.0076)$	$0.0083 \ (0.0004)$	978
Gompertz	-0.3396	0.0058	$0.0670 \ (0.0027)$	$0.1604 \ (0.0038)$	$0.4497 \ (0.0279)$	$0.0302 \ (0.0013)$	318
RP(3)	-0.4913	0.0077	$0.0895 \ (0.0020)$	$0.0087 \ (0.0028)$	$0.9490 \ (0.0070)$	$0.0081 \ (0.0004)$	1000
RP(5)	-0.4915	0.0077	$0.0891 \ (0.0020)$	$0.0085 \ (0.0028)$	$0.9480 \ (0.0070)$	$0.0080 \ (0.0003)$	1000
RP(9)	-0.4921	0.0077	$0.0892 \ (0.0020)$	$0.0079 \ (0.0028)$	$0.9490 \ (0.0070)$	$0.0080 \ (0.0003)$	1000
RP(P)	-0.4878	0.0077	$0.0885 \ (0.0020)$	$0.0122 \ (0.0028)$	$0.9500 \ (0.0069)$	$0.0080 \ (0.0003)$	1000
FP (W)	-0.5069	0.0080	$0.0930 \ (0.0023)$	-0.0069 (0.0032)	$0.9393 \ (0.0082)$	0.0087 (0.0004)	840
FP (k=10)	-0.4399	0.0076	$0.0877 \ (0.0020)$	$0.0601 \ (0.0028)$	$0.8918 \ (0.0098)$	$0.0113 \ (0.0005)$	998
FP (k=10000)	-0.5834	0.0071	0.1091 (0.0024)	-0.0834 (0.0035)	0.7688 (0.0134)	0.0188 (0.0008)	995

Table 15: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.4968	0.0082	$0.0936 \ (0.0021)$	$0.0032 \ (0.0030)$	$0.9408 \; (0.0075)$	$0.0088 \ (0.0004)$	996
Exp	-0.5501	0.0087	$0.1016 \ (0.0023)$	-0.0501 (0.0032)	$0.8980 \ (0.0096)$	$0.0128 \ (0.0005)$	1000
Weibull	-0.4956	0.0084	$0.0934 \ (0.0021)$	$0.0044 \ (0.0030)$	$0.9400 \ (0.0075)$	$0.0087 \ (0.0004)$	1000
Gompertz	-0.5460	0.0089	$0.1041 \ (0.0039)$	-0.0460 (0.0055)	$0.9061 \ (0.0153)$	$0.0129 \ (0.0009)$	362
RP(3)	-0.4956	0.0084	0.0937 (0.0021)	$0.0044 \ (0.0030)$	$0.9410 \ (0.0075)$	$0.0088 \ (0.0004)$	1000
RP(5)	-0.4985	0.0084	$0.0940 \ (0.0021)$	0.0015 (0.0030)	$0.9410 \ (0.0075)$	$0.0088 \ (0.0004)$	1000
RP(9)	-0.4988	0.0084	$0.0939 \ (0.0021)$	$0.0012 \ (0.0030)$	$0.9420 \ (0.0074)$	$0.0088 \ (0.0004)$	1000
RP(P)	-0.4972	0.0084	$0.0937 \ (0.0021)$	$0.0028 \ (0.0030)$	$0.9410 \ (0.0075)$	$0.0088 \ (0.0004)$	1000
FP(W)	-0.4957	0.0084	$0.0934 \ (0.0021)$	$0.0043 \ (0.0030)$	$0.9399 \ (0.0075)$	$0.0087 \ (0.0004)$	998
FP (k=10)	-0.5020	0.0084	$0.0949 \ (0.0021)$	-0.0020 (0.0030)	$0.9374 \ (0.0077)$	$0.0090 \ (0.0004)$	991
FP (k=10000)	-0.5003	0.0061	$0.0936 \ (0.0021)$	-0.0003 (0.0030)	$0.9048 \; (0.0093)$	$0.0088 \ (0.0004)$	998
Model frailty: I	Normal						
Cox	-0.4597	0.0080	$0.0896 \ (0.0020)$	$0.0403 \ (0.0028)$	$0.9270 \ (0.0082)$	$0.0096 \ (0.0004)$	1000
Exp	-0.5185	0.0089	$0.1004 \ (0.0023)$	-0.0185 (0.0032)	$0.9335 \ (0.0080)$	$0.0104 \ (0.0005)$	978
Weibull	-0.4683	0.0084	$0.0921 \ (0.0021)$	$0.0317 \ (0.0029)$	$0.9352 \ (0.0078)$	0.0095 (0.0004)	987
Gompertz	-0.5188	0.0091	$0.0968 \ (0.0060)$	-0.0188 (0.0084)	$0.9474 \ (0.0194)$	$0.0096 \ (0.0014)$	133
RP(3)	-0.4831	0.0086	$0.0944 \ (0.0021)$	$0.0169 \ (0.0030)$	$0.9480 \ (0.0070)$	$0.0092 \ (0.0004)$	1000
RP(5)	-0.4850	0.0086	$0.0945 \ (0.0021)$	$0.0150 \ (0.0030)$	$0.9490 \ (0.0070)$	$0.0091 \ (0.0004)$	1000
RP(9)	-0.4851	0.0086	$0.0945 \ (0.0021)$	$0.0149 \ (0.0030)$	$0.9480 \ (0.0070)$	$0.0091 \ (0.0004)$	1000
RP(P)	-0.4832	0.0086	$0.0942 \ (0.0021)$	$0.0168 \; (0.0030)$	$0.9470 \ (0.0071)$	$0.0091 \ (0.0004)$	1000
FP(W)	-0.4879	0.0088	$0.0953 \ (0.0021)$	$0.0121 \ (0.0030)$	$0.9466 \ (0.0071)$	$0.0092 \ (0.0004)$	992
FP (k=10)	-0.4794	0.0086	$0.0941 \ (0.0021)$	$0.0206 \ (0.0030)$	$0.9420 \ (0.0074)$	$0.0093 \ (0.0004)$	1000
FP (k=10000)	-0.4735	0.0070	0.0912 (0.0020)	$0.0265 \ (0.0029)$	$0.9195 \ (0.0086)$	0.0090 (0.0004)	994

Table 16: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 0.75, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.5004	0.0060	0.0816 (0.0018)	-0.0004 (0.0026)	$0.9420 \ (0.0074)$	0.0067 (0.0003)	1000
Exp	-0.5011	0.0060	0.0798 (0.0018)	-0.0011 (0.0025)	$0.9430\ (0.0073)$	0.0064 (0.0003)	1000
Weibull	-0.5019	0.0062	0.0814 (0.0018)	-0.0019 (0.0026)	$0.9430 \ (0.0073)$	$0.0066 \ (0.0003)$	1000
Gompertz	-0.5034	0.0062	$0.0820 \ (0.0027)$	-0.0034 (0.0037)	0.9374 (0.0111)	0.0067 (0.0005)	479
RP(3)	-0.5013	0.0062	0.0817 (0.0018)	-0.0013 (0.0026)	$0.9450 \ (0.0072)$	0.0067 (0.0003)	1000
RP(5)	-0.5015	0.0062	0.0818 (0.0018)	-0.0015 (0.0026)	$0.9470 \ (0.0071)$	$0.0067 \ (0.0003)$	1000
RP(9)	-0.5015	0.0062	$0.0818 \ (0.0018)$	-0.0015 (0.0026)	$0.9460 \ (0.0071)$	$0.0067 \ (0.0003)$	1000
RP(P)	-0.5015	0.0062	$0.0815 \ (0.0018)$	-0.0015 (0.0026)	$0.9420 \ (0.0074)$	$0.0066 \ (0.0003)$	1000
FP(W)	-0.5018	0.0062	$0.0814 \ (0.0018)$	-0.0018 (0.0026)	$0.9429 \ (0.0073)$	$0.0066 \ (0.0003)$	998
FP (k=10)	-0.4977	0.0062	$0.0818 \; (0.0018)$	$0.0023 \ (0.0026)$	$0.9430 \ (0.0073)$	$0.0067 \ (0.0003)$	1000
FP (k=10000)	-0.4998	0.0048	$0.0815 \ (0.0018)$	$0.0002 \ (0.0026)$	$0.9078 \ (0.0092)$	$0.0066 \ (0.0003)$	998
Model frailty: I	Normal						
Cox	-0.4755	0.0057	0.0777 (0.0017)	$0.0245 \ (0.0025)$	$0.9360 \ (0.0077)$	$0.0066 \ (0.0003)$	1000
Exp	-0.4908	0.0060	$0.0787 \ (0.0018)$	$0.0092 \ (0.0025)$	$0.9449 \ (0.0072)$	$0.0063 \ (0.0003)$	999
Weibull	-0.4952	0.0062	$0.0806 \ (0.0018)$	$0.0048 \; (0.0025)$	$0.9510 \ (0.0068)$	$0.0065 \ (0.0003)$	999
Gompertz	-0.4962	0.0061	$0.0802 \ (0.0028)$	$0.0038 \ (0.0040)$	$0.9512 \ (0.0106)$	$0.0064 \ (0.0005)$	410
RP(3)	-0.5006	0.0064	$0.0820 \ (0.0018)$	-0.0006 (0.0026)	$0.9420 \ (0.0074)$	$0.0067 \ (0.0003)$	1000
RP(5)	-0.5006	0.0064	$0.0821 \ (0.0018)$	-0.0006 (0.0026)	$0.9420 \ (0.0074)$	$0.0067 \ (0.0003)$	1000
RP(9)	-0.5006	0.0064	$0.0821 \ (0.0018)$	-0.0006 (0.0026)	$0.9420 \ (0.0074)$	$0.0067 \ (0.0003)$	1000
RP(P)	-0.5013	0.0063	$0.0820 \ (0.0018)$	-0.0013 (0.0026)	$0.9450 \ (0.0072)$	$0.0067 \ (0.0003)$	1000
FP (W)	-0.5019	0.0063	$0.0819 \ (0.0019)$	-0.0019 (0.0026)	$0.9469 \ (0.0072)$	$0.0067 \ (0.0003)$	960
FP (k=10)	-0.4967	0.0063	$0.0821 \ (0.0018)$	$0.0033 \ (0.0026)$	$0.9408 \; (0.0075)$	$0.0067 \ (0.0003)$	996
FP (k=10000)	-0.4957	0.0052	0.0812 (0.0018)	$0.0043 \ (0.0026)$	0.9140 (0.0089)	$0.0066 \ (0.0003)$	1000

Table 17: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.4966	0.0065	$0.0830 \ (0.0019)$	$0.0034 \ (0.0026)$	$0.9440 \ (0.0073)$	$0.0069 \ (0.0003)$	1000
Exp	-0.5931	0.0076	$0.0989 \ (0.0022)$	-0.0931 (0.0031)	$0.7810 \ (0.0131)$	$0.0184 \ (0.0008)$	1000
Weibull	-0.4998	0.0067	$0.0831 \ (0.0019)$	$0.0002 \ (0.0026)$	$0.9430 \ (0.0073)$	$0.0069 \ (0.0003)$	1000
Gompertz	-0.5913	0.0078	$0.0950 \ (0.0032)$	-0.0913 (0.0046)	$0.8157 \ (0.0186)$	$0.0173 \ (0.0010)$	434
RP(3)	-0.4973	0.0067	$0.0831 \ (0.0019)$	$0.0027 \ (0.0026)$	$0.9450 \ (0.0072)$	$0.0069 \ (0.0003)$	1000
RP(5)	-0.4975	0.0067	$0.0832 \ (0.0019)$	$0.0025 \ (0.0026)$	$0.9450 \ (0.0072)$	$0.0069 \ (0.0003)$	1000
RP(9)	-0.4976	0.0067	$0.0832 \ (0.0019)$	$0.0024 \ (0.0026)$	$0.9450 \ (0.0072)$	$0.0069 \ (0.0003)$	1000
RP(P)	-0.4987	0.0067	$0.0831 \ (0.0019)$	$0.0013 \ (0.0026)$	$0.9420 \ (0.0074)$	$0.0069 \ (0.0003)$	1000
FP(W)	-0.4998	0.0067	$0.0831 \ (0.0019)$	$0.0002 \ (0.0026)$	$0.9430 \ (0.0073)$	$0.0069 \ (0.0003)$	1000
FP (k=10)	-0.4916	0.0067	$0.0840 \ (0.0019)$	$0.0084 \ (0.0027)$	$0.9370 \ (0.0077)$	$0.0071 \ (0.0003)$	1000
FP (k=10000)	-0.5239	0.0056	$0.0889 \ (0.0020)$	-0.0239 (0.0028)	$0.8860 \ (0.0101)$	$0.0085 \ (0.0004)$	1000
Model frailty: I	Normal						
Cox	-0.4723	0.0062	$0.0787 \ (0.0018)$	$0.0277 \ (0.0025)$	$0.9430 \ (0.0073)$	$0.0069 \ (0.0003)$	1000
Exp	-0.5768	0.0076	$0.0960 \ (0.0022)$	-0.0768 (0.0030)	$0.8394 \ (0.0116)$	$0.0151 \ (0.0007)$	996
Weibull	-0.4961	0.0067	$0.0822 \ (0.0018)$	$0.0039 \ (0.0026)$	$0.9469 \ (0.0071)$	$0.0068 \ (0.0003)$	998
Gompertz	-0.5812	0.0078	$0.0939 \ (0.0039)$	-0.0812 (0.0055)	$0.8537 \ (0.0209)$	$0.0154 \ (0.0012)$	287
RP(3)	-0.4982	0.0069	$0.0835 \ (0.0019)$	$0.0018 \; (0.0026)$	$0.9460 \ (0.0071)$	$0.0070 \ (0.0003)$	1000
RP(5)	-0.4983	0.0069	$0.0835 \ (0.0019)$	$0.0017 \ (0.0026)$	$0.9460 \ (0.0071)$	$0.0070 \ (0.0003)$	1000
RP(9)	-0.4984	0.0069	$0.0836 \ (0.0019)$	$0.0016 \ (0.0026)$	$0.9460 \ (0.0071)$	$0.0070 \ (0.0003)$	1000
RP(P)	-0.4998	0.0069	$0.0835 \ (0.0019)$	$0.0002 \ (0.0026)$	$0.9440 \ (0.0073)$	$0.0070 \ (0.0003)$	1000
FP(W)	-0.5016	0.0069	$0.0840 \ (0.0019)$	-0.0016 (0.0027)	$0.9372 \ (0.0078)$	$0.0070 \ (0.0003)$	972
FP (k=10)	-0.4962	0.0070	$0.0848 \; (0.0019)$	$0.0038 \ (0.0027)$	$0.9459 \ (0.0072)$	$0.0072 \ (0.0003)$	999
FP (k=10000)	-0.5257	0.0064	$0.0892 \ (0.0020)$	$-0.0257 \ (0.0028)$	$0.9087 \; (0.0091)$	$0.0086 \ (0.0004)$	997

Table 18: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 0.75, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.4992	0.0056	0.0747 (0.0017)	$0.0008 \ (0.0024)$	$0.9560 \ (0.0065)$	$0.0056 \ (0.0003)$	999
Exp	-0.4110	0.0047	0.0607 (0.0014)	$0.0890 \ (0.0019)$	$0.7680 \ (0.0133)$	$0.0116 \ (0.0004)$	1000
Weibull	-0.4671	0.0053	$0.0695 \ (0.0016)$	$0.0329 \ (0.0022)$	$0.9330 \ (0.0079)$	$0.0059 \ (0.0002)$	1000
Gompertz	-0.4127	0.0048	$0.0626 \ (0.0017)$	$0.0873 \ (0.0024)$	$0.7808 \; (0.0160)$	$0.0115 \ (0.0004)$	666
RP(3)	-0.4995	0.0057	$0.0747 \ (0.0017)$	$0.0005 \ (0.0024)$	$0.9610 \ (0.0061)$	$0.0056 \ (0.0003)$	1000
RP(5)	-0.5001	0.0057	$0.0748 \ (0.0017)$	-0.0001 (0.0024)	$0.9580 \ (0.0063)$	$0.0056 \ (0.0003)$	1000
RP(9)	-0.5003	0.0058	$0.0748 \ (0.0017)$	-0.0003 (0.0024)	$0.9580 \ (0.0063)$	$0.0056 \ (0.0003)$	1000
RP(P)	-0.4934	0.0057	$0.0739 \ (0.0017)$	$0.0066 \ (0.0023)$	$0.9590 \ (0.0063)$	$0.0055 \ (0.0003)$	1000
FP(W)	-0.4671	0.0053	$0.0693 \ (0.0016)$	$0.0329 \ (0.0022)$	$0.9333 \ (0.0079)$	$0.0059 \ (0.0002)$	990
FP (k=10)	-0.4967	0.0057	$0.0746 \ (0.0017)$	$0.0033 \ (0.0024)$	$0.9600 \ (0.0062)$	$0.0056 \ (0.0003)$	1000
FP (k=10000)	-0.4951	0.0042	$0.0740 \ (0.0017)$	$0.0049 \ (0.0023)$	$0.9149 \ (0.0088)$	$0.0055 \ (0.0002)$	999
Model frailty: I	Normal						
Cox	-0.4735	0.0053	$0.0707 \ (0.0016)$	$0.0265 \ (0.0022)$	$0.9450 \ (0.0072)$	$0.0057 \ (0.0002)$	1000
Exp	-0.4060	0.0046	$0.0603 \ (0.0013)$	$0.0940 \ (0.0019)$	$0.7400 \ (0.0139)$	$0.0125 \ (0.0004)$	1000
Weibull	-0.4638	0.0054	$0.0688 \ (0.0015)$	$0.0362 \ (0.0022)$	$0.9337 \ (0.0079)$	$0.0060 \ (0.0003)$	995
Gompertz	-0.4071	0.0048	$0.0635 \ (0.0018)$	$0.0929 \ (0.0026)$	$0.7451 \ (0.0176)$	$0.0127 \ (0.0005)$	616
RP(3)	-0.4967	0.0059	$0.0741 \ (0.0017)$	$0.0033 \ (0.0023)$	$0.9630 \ (0.0060)$	$0.0055 \ (0.0003)$	1000
RP(5)	-0.4970	0.0059	$0.0742 \ (0.0017)$	$0.0030 \ (0.0023)$	$0.9630 \ (0.0060)$	$0.0055 \ (0.0003)$	1000
RP(9)	-0.4971	0.0059	$0.0742 \ (0.0017)$	$0.0029 \ (0.0023)$	$0.9620 \ (0.0060)$	$0.0055 \ (0.0003)$	1000
RP(P)	-0.4909	0.0058	$0.0733 \ (0.0016)$	$0.0091 \ (0.0023)$	$0.9640 \ (0.0059)$	$0.0055 \ (0.0002)$	1000
FP(W)	-0.4702	0.0055	$0.0704 \ (0.0016)$	$0.0298 \ (0.0023)$	$0.9440 \ (0.0075)$	$0.0058 \ (0.0003)$	929
FP (k=10)	-0.4941	0.0059	$0.0742 \ (0.0017)$	$0.0059 \ (0.0023)$	$0.9620 \ (0.0060)$	$0.0055 \ (0.0003)$	1000
FP (k=10000)	-0.4949	0.0044	$0.0739 \ (0.0017)$	$0.0051 \ (0.0023)$	$0.9240 \ (0.0084)$	$0.0055 \ (0.0002)$	1000

Table 19: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.4972	0.0057	$0.0736 \ (0.0016)$	$0.0028 \ (0.0023)$	$0.9620 \ (0.0060)$	$0.0054 \ (0.0002)$	1000
Exp	-0.3626	0.0044	$0.0549 \ (0.0012)$	$0.1374 \ (0.0017)$	$0.4420 \ (0.0157)$	$0.0219 \ (0.0005)$	1000
Weibull	-0.5327	0.0062	$0.0785 \ (0.0018)$	$-0.0327 \ (0.0025)$	$0.9290 \ (0.0081)$	$0.0072 \ (0.0003)$	1000
Gompertz	-0.4600	0.0055	$0.0801 \ (0.0018)$	$0.0400 \ (0.0026)$	$0.8811 \ (0.0104)$	$0.0080 \ (0.0003)$	976
RP(3)	-0.4998	0.0059	$0.0740 \ (0.0017)$	$0.0002 \ (0.0023)$	$0.9620 \ (0.0060)$	$0.0055 \ (0.0002)$	1000
RP(5)	-0.4982	0.0058	$0.0738 \ (0.0017)$	$0.0018 \ (0.0023)$	$0.9620 \ (0.0060)$	$0.0054 \ (0.0002)$	1000
RP(9)	-0.4983	0.0058	$0.0738 \ (0.0017)$	$0.0017 \ (0.0023)$	$0.9630 \ (0.0060)$	$0.0054 \ (0.0002)$	1000
RP(P)	-0.4997	0.0059	$0.0740 \ (0.0017)$	$0.0003 \ (0.0023)$	$0.9610 \ (0.0061)$	$0.0055 \ (0.0002)$	1000
FP(W)	-0.5326	0.0062	$0.0785 \ (0.0018)$	$-0.0326 \ (0.0025)$	$0.9287 \ (0.0082)$	$0.0072 \ (0.0003)$	996
FP (k=10)	-0.4827	0.0058	$0.0739 \ (0.0017)$	$0.0173 \ (0.0023)$	$0.9580 \ (0.0063)$	$0.0058 \ (0.0002)$	1000
FP (k=10000)	-0.5824	0.0049	$0.0890 \ (0.0020)$	-0.0824 (0.0028)	$0.7150 \ (0.0143)$	$0.0147 \ (0.0006)$	1000
Model frailty: I	Normal						
Cox	-0.4715	0.0054	$0.0700 \ (0.0016)$	$0.0285 \ (0.0022)$	$0.9420 \ (0.0074)$	0.0057 (0.0002)	1000
Exp	-0.3584	0.0043	$0.0551 \ (0.0012)$	$0.1416 \ (0.0017)$	$0.4114 \ (0.0156)$	$0.0231 \ (0.0005)$	999
Weibull	-0.5152	0.0060	$0.0759 \ (0.0017)$	$-0.0152 \ (0.0024)$	$0.9549 \ (0.0066)$	$0.0060 \ (0.0002)$	998
Gompertz	-0.4351	0.0052	$0.0732 \ (0.0017)$	$0.0649 \ (0.0024)$	$0.8266 \ (0.0123)$	$0.0096 \ (0.0004)$	940
RP(3)	-0.4966	0.0060	$0.0738 \ (0.0017)$	$0.0034 \ (0.0023)$	$0.9690 \ (0.0055)$	$0.0055 \ (0.0002)$	1000
RP(5)	-0.4954	0.0060	$0.0737 \ (0.0016)$	$0.0046 \ (0.0023)$	$0.9690 \ (0.0055)$	$0.0055 \ (0.0002)$	1000
RP(9)	-0.4955	0.0060	$0.0738 \ (0.0017)$	$0.0045 \ (0.0023)$	$0.9690 \ (0.0055)$	$0.0055 \ (0.0002)$	1000
RP(P)	-0.4956	0.0060	$0.0737 \ (0.0016)$	$0.0044 \ (0.0023)$	$0.9680 \ (0.0056)$	$0.0054 \ (0.0002)$	1000
FP(W)	-0.5253	0.0063	$0.0774 \ (0.0018)$	-0.0253 (0.0025)	$0.9467 \ (0.0073)$	$0.0066 \ (0.0003)$	956
FP (k=10)	-0.4848	0.0060	$0.0738 \ (0.0017)$	$0.0152 \ (0.0023)$	$0.9550 \ (0.0066)$	$0.0057 \ (0.0002)$	999
FP (k=10000)	-0.5826	0.0051	0.0903 (0.0020)	-0.0826 (0.0029)	$0.7150 \ (0.0143)$	$0.0150 \ (0.0006)$	1000

Table 20: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.5036	0.0062	0.0809 (0.0018)	-0.0036 (0.0026)	$0.9429 \ (0.0073)$	$0.0066 \ (0.0003)$	998
Exp	-0.5422	0.0066	$0.0865 \ (0.0019)$	-0.0422 (0.0027)	$0.9090 \ (0.0091)$	$0.0093 \ (0.0004)$	1000
Weibull	-0.5077	0.0064	$0.0812 \ (0.0018)$	-0.0077 (0.0026)	$0.9390 \ (0.0076)$	$0.0066 \ (0.0003)$	1000
Gompertz	-0.5404	0.0069	$0.0847 \ (0.0028)$	-0.0404 (0.0039)	$0.9154 \ (0.0128)$	$0.0088 \ (0.0006)$	473
RP(3)	-0.5031	0.0064	$0.0809 \ (0.0018)$	-0.0031 (0.0026)	$0.9460 \ (0.0071)$	$0.0065 \ (0.0003)$	1000
RP(5)	-0.5041	0.0064	$0.0811 \ (0.0018)$	-0.0041 (0.0026)	$0.9460 \ (0.0071)$	$0.0066 \ (0.0003)$	1000
RP(9)	-0.5044	0.0064	$0.0812 \ (0.0018)$	-0.0044 (0.0026)	$0.9460 \ (0.0071)$	$0.0066 \ (0.0003)$	1000
RP(P)	-0.5043	0.0064	$0.0810 \ (0.0018)$	-0.0043 (0.0026)	$0.9460 \ (0.0071)$	$0.0066 \ (0.0003)$	1000
FP(W)	-0.5078	0.0064	$0.0813 \ (0.0018)$	-0.0078 (0.0026)	$0.9387 \ (0.0076)$	$0.0067 \ (0.0003)$	995
FP (k=10)	-0.4995	0.0064	$0.0811 \ (0.0018)$	$0.0005 \ (0.0026)$	$0.9450 \ (0.0072)$	$0.0066 \ (0.0003)$	1000
FP (k=10000)	-0.4957	0.0050	$0.0798 \ (0.0018)$	$0.0043 \ (0.0025)$	$0.9110 \ (0.0090)$	$0.0064 \ (0.0003)$	1000
Model frailty: I	Normal						
Cox	-0.4790	0.0059	$0.0765 \ (0.0017)$	$0.0210 \ (0.0024)$	$0.9310 \ (0.0080)$	$0.0063 \ (0.0003)$	1000
Exp	-0.5305	0.0066	$0.0846 \ (0.0019)$	-0.0305 (0.0027)	$0.9240 \ (0.0084)$	$0.0081 \ (0.0004)$	1000
Weibull	-0.5005	0.0064	$0.0798 \ (0.0018)$	-0.0005 (0.0025)	$0.9449 \ (0.0072)$	$0.0064 \ (0.0003)$	998
Gompertz	-0.5344	0.0068	$0.0870 \ (0.0033)$	-0.0344 (0.0047)	$0.9176 \ (0.0149)$	$0.0087 \ (0.0007)$	340
RP(3)	-0.5034	0.0066	$0.0808 \; (0.0018)$	-0.0034 (0.0026)	$0.9490 \ (0.0070)$	$0.0065 \ (0.0003)$	1000
RP(5)	-0.5044	0.0066	$0.0810 \ (0.0018)$	-0.0044 (0.0026)	$0.9480 \ (0.0070)$	$0.0066 \ (0.0003)$	1000
RP(9)	-0.5047	0.0066	$0.0811 \ (0.0018)$	-0.0047 (0.0026)	$0.9470 \ (0.0071)$	$0.0066 \ (0.0003)$	1000
RP(P)	-0.5039	0.0066	$0.0808 \; (0.0018)$	-0.0039 (0.0026)	$0.9490 \ (0.0070)$	$0.0065 \ (0.0003)$	1000
FP(W)	-0.5068	0.0065	$0.0806 \ (0.0019)$	-0.0068 (0.0026)	$0.9472 \ (0.0073)$	$0.0065 \ (0.0003)$	947
FP (k=10)	-0.5012	0.0066	$0.0812 \ (0.0018)$	-0.0012 (0.0026)	$0.9479 \ (0.0070)$	$0.0066 \ (0.0003)$	998
FP (k=10000)	-0.4926	0.0055	$0.0794 \ (0.0018)$	$0.0074 \ (0.0025)$	$0.9200 \ (0.0086)$	$0.0063 \ (0.0003)$	1000

Table 21: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.75, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.4909	0.0052	$0.0751 \ (0.0017)$	$0.0091 \ (0.0024)$	$0.9398 \ (0.0075)$	0.0057 (0.0003)	997
Exp	-0.5024	0.0053	$0.0752 \ (0.0017)$	-0.0024 (0.0024)	$0.9410 \ (0.0075)$	$0.0057 \ (0.0003)$	1000
Weibull	-0.4920	0.0053	$0.0746 \ (0.0017)$	$0.0080 \ (0.0024)$	$0.9390 \ (0.0076)$	$0.0056 \ (0.0003)$	1000
Gompertz	-0.4993	0.0055	$0.0746 \ (0.0024)$	0.0007 (0.0034)	$0.9466 \ (0.0102)$	$0.0055 \ (0.0004)$	487
RP(3)	-0.4917	0.0054	$0.0753 \ (0.0017)$	$0.0083 \ (0.0024)$	$0.9430 \ (0.0073)$	$0.0057 \ (0.0003)$	1000
RP(5)	-0.4918	0.0054	$0.0753 \ (0.0017)$	$0.0082 \ (0.0024)$	$0.9440 \ (0.0073)$	$0.0057 \ (0.0003)$	1000
RP(9)	-0.4920	0.0054	$0.0753 \ (0.0017)$	$0.0080 \ (0.0024)$	$0.9450 \ (0.0072)$	$0.0057 \ (0.0003)$	1000
RP(P)	-0.4918	0.0054	$0.0750 \ (0.0017)$	$0.0082 \ (0.0024)$	$0.9420 \ (0.0074)$	$0.0057 \ (0.0003)$	1000
FP(W)	-0.4921	0.0053	$0.0746 \ (0.0017)$	$0.0079 \ (0.0024)$	$0.9388 \ (0.0076)$	$0.0056 \ (0.0003)$	996
FP (k=10)	-0.4890	0.0054	$0.0753 \ (0.0017)$	$0.0110 \ (0.0024)$	$0.9399 \ (0.0075)$	$0.0058 \ (0.0003)$	999
FP (k=10000)	-0.4941	0.0041	$0.0757 \ (0.0017)$	$0.0059 \ (0.0024)$	$0.9020 \ (0.0094)$	$0.0058 \ (0.0003)$	1000
Model frailty: I	Normal						
Cox	-0.4771	0.0051	$0.0727 \ (0.0016)$	$0.0229 \ (0.0023)$	$0.9230 \ (0.0084)$	$0.0058 \ (0.0003)$	1000
Exp	-0.4968	0.0053	$0.0742 \ (0.0017)$	$0.0032 \ (0.0024)$	$0.9448 \ (0.0072)$	$0.0055 \ (0.0002)$	996
Weibull	-0.4948	0.0054	$0.0748 \ (0.0017)$	$0.0052 \ (0.0024)$	$0.9459 \ (0.0072)$	$0.0056 \ (0.0003)$	998
Gompertz	-0.4921	0.0055	$0.0727 \ (0.0024)$	$0.0079 \ (0.0034)$	$0.9575 \ (0.0093)$	$0.0053 \ (0.0003)$	471
RP(3)	-0.4994	0.0056	$0.0765 \ (0.0017)$	$0.0006 \ (0.0024)$	$0.9480 \ (0.0070)$	$0.0059 \ (0.0003)$	1000
RP(5)	-0.4995	0.0056	$0.0766 \ (0.0017)$	$0.0005 \ (0.0024)$	$0.9470 \ (0.0071)$	$0.0059 \ (0.0003)$	1000
RP(9)	-0.4996	0.0056	$0.0766 \ (0.0017)$	$0.0004 \ (0.0024)$	$0.9480 \ (0.0070)$	$0.0059 \ (0.0003)$	1000
RP(P)	-0.5000	0.0056	$0.0763 \ (0.0017)$	-0.0000 (0.0024)	$0.9460 \ (0.0071)$	$0.0058 \ (0.0003)$	1000
FP(W)	-0.5011	0.0056	$0.0760 \ (0.0017)$	-0.0011 (0.0024)	$0.9459 \ (0.0072)$	$0.0058 \ (0.0003)$	980
FP (k=10)	-0.4964	0.0056	$0.0765 \ (0.0017)$	$0.0036 \ (0.0024)$	$0.9460 \ (0.0071)$	$0.0059 \ (0.0003)$	1000
FP (k=10000)	-0.4981	0.0043	0.0762 (0.0017)	0.0019 (0.0024)	$0.9100 \ (0.0090)$	$0.0058 \ (0.0003)$	1000

Table 22: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.4856	0.0056	$0.0789 \ (0.0018)$	$0.0144 \ (0.0025)$	$0.9279 \ (0.0082)$	$0.0064 \ (0.0003)$	998
Exp	-0.6016	0.0067	$0.0969 \ (0.0022)$	-0.1016 (0.0031)	$0.7370 \ (0.0139)$	$0.0197 \ (0.0007)$	1000
Weibull	-0.4889	0.0057	$0.0791 \ (0.0018)$	$0.0111 \ (0.0025)$	$0.9360 \ (0.0077)$	$0.0064 \ (0.0003)$	1000
Gompertz	-0.6005	0.0070	$0.0994 \ (0.0034)$	-0.1005 (0.0048)	$0.7500 \ (0.0208)$	$0.0200 \ (0.0012)$	432
RP(3)	-0.4863	0.0058	$0.0789 \ (0.0018)$	$0.0137 \ (0.0025)$	$0.9340 \ (0.0079)$	$0.0064 \ (0.0003)$	1000
RP(5)	-0.4865	0.0058	$0.0789 \ (0.0018)$	$0.0135 \ (0.0025)$	$0.9330 \ (0.0079)$	$0.0064 \ (0.0003)$	1000
RP(9)	-0.4866	0.0058	$0.0790 \ (0.0018)$	$0.0134 \ (0.0025)$	$0.9340 \ (0.0079)$	$0.0064 \ (0.0003)$	1000
RP(P)	-0.4875	0.0057	$0.0791 \ (0.0018)$	$0.0125 \ (0.0025)$	$0.9320 \ (0.0080)$	$0.0064 \ (0.0003)$	1000
FP(W)	-0.4892	0.0057	$0.0794 \ (0.0018)$	$0.0108 \ (0.0025)$	$0.9351 \ (0.0078)$	$0.0064 \ (0.0003)$	986
FP (k=10)	-0.4818	0.0058	$0.0806 \ (0.0018)$	$0.0182 \ (0.0025)$	$0.9250 \ (0.0083)$	$0.0068 \ (0.0003)$	1000
FP (k=10000)	-0.5287	0.0047	$0.0865 \ (0.0019)$	-0.0287 (0.0027)	$0.8520 \ (0.0112)$	$0.0083 \ (0.0004)$	1000
Model frailty: I	Normal						
Cox	-0.4707	0.0054	$0.0760 \ (0.0017)$	$0.0293 \ (0.0024)$	$0.9190 \ (0.0086)$	$0.0066 \ (0.0003)$	1000
Exp	-0.5891	0.0068	$0.0947 \ (0.0021)$	-0.0891 (0.0030)	$0.7815 \ (0.0131)$	$0.0169 \ (0.0007)$	993
Weibull	-0.4923	0.0058	$0.0795 \ (0.0018)$	$0.0077 \ (0.0025)$	$0.9398 \ (0.0075)$	$0.0064 \ (0.0003)$	996
Gompertz	-0.5839	0.0070	$0.0995 \ (0.0042)$	-0.0839 (0.0059)	$0.7979 \ (0.0239)$	$0.0169 \ (0.0014)$	282
RP(3)	-0.4938	0.0060	$0.0801 \ (0.0018)$	$0.0062 \ (0.0025)$	$0.9390 \ (0.0076)$	$0.0064 \ (0.0003)$	1000
RP(5)	-0.4938	0.0060	$0.0800 \ (0.0018)$	$0.0062 \ (0.0025)$	$0.9380 \ (0.0076)$	$0.0064 \ (0.0003)$	1000
RP(9)	-0.4939	0.0060	$0.0801 \ (0.0018)$	$0.0061 \ (0.0025)$	$0.9380 \ (0.0076)$	$0.0064 \ (0.0003)$	1000
RP(P)	-0.4953	0.0060	$0.0803 \ (0.0018)$	$0.0047 \ (0.0025)$	$0.9390 \ (0.0076)$	$0.0065 \ (0.0003)$	1000
FP(W)	-0.4965	0.0060	$0.0809 \ (0.0018)$	$0.0035 \ (0.0026)$	$0.9382 \ (0.0077)$	$0.0066 \ (0.0003)$	971
FP (k=10)	-0.4956	0.0061	$0.0823 \ (0.0018)$	$0.0044 \ (0.0026)$	$0.9359 \ (0.0077)$	$0.0068 \ (0.0003)$	999
FP (k=10000)	-0.5378	0.0053	$0.0872 \ (0.0020)$	-0.0378 (0.0028)	$0.8607 \ (0.0110)$	$0.0090 \ (0.0004)$	991

Table 23: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	-0.4950	0.0048	$0.0719 \ (0.0016)$	$0.0050 \ (0.0023)$	$0.9449 \ (0.0072)$	$0.0052 \ (0.0002)$	998
Exp	-0.4195	0.0041	$0.0599 \ (0.0013)$	$0.0805 \ (0.0019)$	$0.7580 \ (0.0135)$	$0.0101 \ (0.0003)$	1000
Weibull	-0.4570	0.0046	$0.0659 \ (0.0015)$	$0.0430 \ (0.0021)$	$0.8980 \ (0.0096)$	$0.0062 \ (0.0003)$	1000
Gompertz	-0.4217	0.0043	$0.0633 \ (0.0017)$	$0.0783 \ (0.0024)$	$0.7664 \ (0.0163)$	$0.0101 \ (0.0004)$	672
RP(3)	-0.4945	0.0050	$0.0720 \ (0.0016)$	$0.0055 \ (0.0023)$	$0.9470 \ (0.0071)$	$0.0052 \ (0.0002)$	1000
RP(5)	-0.4958	0.0050	$0.0721 \ (0.0016)$	$0.0042 \ (0.0023)$	$0.9480 \ (0.0070)$	$0.0052 \ (0.0002)$	1000
RP(9)	-0.4961	0.0050	$0.0721 \ (0.0016)$	$0.0039 \ (0.0023)$	$0.9470 \ (0.0071)$	$0.0052 \ (0.0002)$	1000
RP(P)	-0.4893	0.0049	$0.0713 \ (0.0016)$	$0.0107 \ (0.0023)$	$0.9480 \ (0.0070)$	$0.0052 \ (0.0002)$	1000
FP(W)	-0.4570	0.0046	$0.0659 \ (0.0015)$	$0.0430 \ (0.0021)$	$0.8980 \ (0.0096)$	$0.0062 \ (0.0003)$	1000
FP (k=10)	-0.4922	0.0050	$0.0718 \ (0.0016)$	$0.0078 \ (0.0023)$	$0.9470 \ (0.0071)$	$0.0052 \ (0.0002)$	1000
FP (k=10000)	-0.4904	0.0036	$0.0713 \ (0.0016)$	$0.0096 \ (0.0023)$	$0.8949 \ (0.0097)$	$0.0052 \ (0.0002)$	999
Model frailty: I	Normal						
Cox	-0.4830	0.0047	$0.0699 \ (0.0016)$	$0.0170 \ (0.0022)$	$0.9320 \ (0.0080)$	$0.0052 \ (0.0002)$	1000
Exp	-0.4190	0.0041	$0.0599 \ (0.0013)$	$0.0810 \ (0.0019)$	$0.7575 \ (0.0136)$	$0.0101 \ (0.0003)$	998
Weibull	-0.4663	0.0047	$0.0670 \ (0.0015)$	$0.0337 \ (0.0021)$	$0.9249 \ (0.0083)$	$0.0056 \ (0.0002)$	999
Gompertz	-0.4198	0.0043	$0.0624 \ (0.0018)$	$0.0802 \ (0.0025)$	$0.7524 \ (0.0172)$	$0.0103 \ (0.0004)$	630
RP(3)	-0.5030	0.0052	$0.0732 \ (0.0016)$	-0.0030 (0.0023)	$0.9430 \ (0.0073)$	$0.0054 \ (0.0002)$	1000
RP(5)	-0.5037	0.0052	$0.0733 \ (0.0016)$	-0.0037 (0.0023)	$0.9460 \ (0.0071)$	$0.0054 \ (0.0002)$	1000
RP(9)	-0.5039	0.0052	$0.0733 \ (0.0016)$	-0.0039 (0.0023)	$0.9450 \ (0.0072)$	$0.0054 \ (0.0002)$	1000
RP(P)	-0.4977	0.0051	$0.0726 \ (0.0016)$	$0.0023 \ (0.0023)$	$0.9490 \ (0.0070)$	$0.0053 \ (0.0002)$	1000
FP(W)	-0.4694	0.0048	$0.0678 \ (0.0015)$	$0.0306 \ (0.0021)$	$0.9280 \ (0.0082)$	0.0055 (0.0002)	1000
FP (k=10)	-0.5012	0.0052	$0.0733 \ (0.0016)$	-0.0012 (0.0023)	$0.9460 \ (0.0071)$	$0.0054 \ (0.0002)$	1000
FP (k=10000)	-0.5012	0.0037	$0.0729 \ (0.0016)$	-0.0012 (0.0023)	$0.9010 \ (0.0094)$	$0.0053 \ (0.0002)$	1000

Table 24: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	-0.4926	0.0049	0.0699 (0.0016)	$0.0074 \ (0.0022)$	$0.9409 \ (0.0075)$	$0.0049 \ (0.0002)$	999
Exp	-0.3590	0.0036	0.0518 (0.0012)	$0.1410 \ (0.0016)$	0.3190 (0.0147)	$0.0226 \ (0.0005)$	1000
Weibull	-0.5299	0.0054	$0.0747 \ (0.0017)$	-0.0299 (0.0024)	$0.9290 \ (0.0081)$	$0.0065 \ (0.0003)$	1000
Gompertz	-0.4703	0.0049	$0.0666 \ (0.0015)$	$0.0297 \ (0.0021)$	$0.9329 \ (0.0079)$	$0.0053 \ (0.0002)$	998
RP(3)	-0.4947	0.0051	$0.0702 \ (0.0016)$	$0.0053 \ (0.0022)$	$0.9420 \ (0.0074)$	$0.0050 \ (0.0002)$	1000
RP(5)	-0.4935	0.0051	$0.0699 \ (0.0016)$	$0.0065 \ (0.0022)$	$0.9430 \ (0.0073)$	$0.0049 \ (0.0002)$	1000
RP(9)	-0.4938	0.0051	$0.0700 \ (0.0016)$	$0.0062 \ (0.0022)$	$0.9430 \ (0.0073)$	$0.0049 \ (0.0002)$	1000
RP(P)	-0.4952	0.0051	$0.0702 \ (0.0016)$	$0.0048 \ (0.0022)$	$0.9440 \ (0.0073)$	$0.0049 \ (0.0002)$	1000
FP(W)	-0.5300	0.0054	$0.0746 \ (0.0017)$	-0.0300 (0.0024)	$0.9289 \ (0.0081)$	$0.0065 \ (0.0003)$	999
FP (k=10)	-0.4763	0.0051	$0.0708 \ (0.0016)$	$0.0237 \ (0.0022)$	$0.9340 \ (0.0079)$	$0.0056 \ (0.0003)$	1000
FP (k=10000)	-0.5837	0.0044	$0.0850 \ (0.0019)$	-0.0837 (0.0027)	$0.6861 \ (0.0147)$	$0.0142 \ (0.0006)$	994
Model frailty: I	Normal						
Cox	-0.4801	0.0048	$0.0677 \ (0.0015)$	$0.0199 \ (0.0021)$	$0.9360 \ (0.0077)$	$0.0050 \ (0.0002)$	1000
Exp	-0.3579	0.0036	$0.0518 \ (0.0012)$	$0.1421 \ (0.0016)$	$0.3070 \ (0.0146)$	$0.0229 \ (0.0005)$	1000
Weibull	-0.5254	0.0054	$0.0733 \ (0.0016)$	-0.0254 (0.0023)	$0.9368 \; (0.0077)$	$0.0060 \ (0.0003)$	997
Gompertz	-0.4520	0.0047	$0.0639 \ (0.0014)$	$0.0480 \ (0.0020)$	$0.9106 \ (0.0090)$	$0.0064 \ (0.0003)$	995
RP(3)	-0.5021	0.0053	$0.0707 \ (0.0016)$	-0.0021 (0.0022)	$0.9480 \ (0.0070)$	$0.0050 \ (0.0002)$	1000
RP(5)	-0.5012	0.0053	$0.0706 \ (0.0016)$	-0.0012 (0.0022)	$0.9470 \ (0.0071)$	$0.0050 \ (0.0002)$	1000
RP(9)	-0.5014	0.0053	$0.0707 \ (0.0016)$	-0.0014 (0.0022)	$0.9470 \ (0.0071)$	$0.0050 \ (0.0002)$	1000
RP(P)	-0.5015	0.0053	$0.0706 \ (0.0016)$	-0.0015 (0.0022)	$0.9500 \ (0.0069)$	$0.0050 \ (0.0002)$	1000
FP(W)	-0.5342	0.0056	$0.0750 \ (0.0018)$	$-0.0342 \ (0.0025)$	$0.9247 \ (0.0089)$	$0.0068 \ (0.0003)$	876
FP (k=10)	-0.4892	0.0053	$0.0710 \ (0.0016)$	$0.0108 \; (0.0022)$	$0.9430 \ (0.0073)$	$0.0052 \ (0.0002)$	1000
FP (k=10000)	-0.6019	0.0044	0.0866 (0.0019)	-0.1019 (0.0027)	0.6140 (0.0154)	$0.0179 \ (0.0007)$	1000

Table 25: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	-0.4923	0.0054	0.0753 (0.0017)	0.0077 (0.0024)	0.9399 (0.0075)	0.0057 (0.0002)	998
Exp	-0.5429	0.0058	$0.0812 \ (0.0018)$	-0.0429 (0.0026)	$0.8940 \ (0.0097)$	$0.0084 \ (0.0004)$	1000
Weibull	-0.4951	0.0055	$0.0747 \ (0.0017)$	$0.0049 \ (0.0024)$	$0.9480 \ (0.0070)$	$0.0056 \ (0.0002)$	1000
Gompertz	-0.5374	0.0060	$0.0809 \ (0.0027)$	-0.0374 (0.0038)	$0.9163 \ (0.0130)$	$0.0079 \ (0.0005)$	454
RP(3)	-0.4926	0.0055	$0.0751 \ (0.0017)$	$0.0074 \ (0.0024)$	$0.9440 \ (0.0073)$	$0.0057 \ (0.0002)$	1000
RP(5)	-0.4933	0.0055	$0.0753 \ (0.0017)$	$0.0067 \ (0.0024)$	$0.9440 \ (0.0073)$	$0.0057 \ (0.0002)$	1000
RP(9)	-0.4935	0.0055	$0.0754 \ (0.0017)$	$0.0065 \ (0.0024)$	$0.9460 \ (0.0071)$	$0.0057 \ (0.0002)$	1000
RP(P)	-0.4936	0.0055	$0.0752 \ (0.0017)$	$0.0064 \ (0.0024)$	$0.9470 \ (0.0071)$	$0.0057 \ (0.0002)$	1000
FP(W)	-0.4956	0.0055	$0.0746 \ (0.0017)$	$0.0044 \ (0.0024)$	$0.9484 \ (0.0070)$	$0.0056 \ (0.0002)$	989
FP (k=10)	-0.4901	0.0056	$0.0756 \ (0.0017)$	$0.0099 \ (0.0024)$	$0.9420 \ (0.0074)$	$0.0058 \ (0.0003)$	1000
FP (k=10000)	-0.4916	0.0042	$0.0746 \ (0.0017)$	$0.0084 \ (0.0024)$	$0.9069 \ (0.0092)$	$0.0056 \ (0.0002)$	999
Model frailty: I	Normal						
Cox	-0.4783	0.0052	$0.0728 \ (0.0016)$	$0.0217 \ (0.0023)$	$0.9390 \ (0.0076)$	$0.0058 \ (0.0002)$	1000
Exp	-0.5364	0.0058	$0.0802 \ (0.0018)$	-0.0364 (0.0025)	$0.9095 \ (0.0091)$	$0.0078 \ (0.0003)$	994
Weibull	-0.4964	0.0056	$0.0748 \ (0.0017)$	$0.0036 \ (0.0024)$	$0.9467 \ (0.0071)$	$0.0056 \ (0.0002)$	995
Gompertz	-0.5306	0.0060	$0.0798 \ (0.0029)$	-0.0306 (0.0041)	$0.9235 \ (0.0137)$	$0.0073 \ (0.0005)$	379
RP(3)	-0.5001	0.0057	$0.0766 \ (0.0017)$	-0.0001 (0.0024)	$0.9430 \ (0.0073)$	$0.0059 \ (0.0003)$	1000
RP(5)	-0.5009	0.0057	$0.0768 \ (0.0017)$	-0.0009 (0.0024)	$0.9420 \ (0.0074)$	$0.0059 \ (0.0003)$	1000
RP(9)	-0.5012	0.0057	$0.0768 \ (0.0017)$	-0.0012 (0.0024)	$0.9410 \ (0.0075)$	$0.0059 \ (0.0003)$	1000
RP(P)	-0.5005	0.0057	$0.0766 \ (0.0017)$	-0.0005 (0.0024)	$0.9430 \ (0.0073)$	$0.0059 \ (0.0003)$	1000
FP(W)	-0.5010	0.0057	$0.0761 \ (0.0017)$	-0.0010 (0.0024)	$0.9459 \ (0.0072)$	$0.0058 \ (0.0003)$	979
FP (k=10)	-0.4999	0.0058	$0.0775 \ (0.0017)$	$0.0001 \ (0.0024)$	$0.9410 \ (0.0075)$	$0.0060 \ (0.0003)$	1000
FP (k=10000)	-0.4956	0.0045	$0.0754 \ (0.0017)$	$0.0044 \ (0.0024)$	$0.9130 \ (0.0089)$	$0.0057 \ (0.0002)$	1000

Table 26: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.75, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.5196	0.0110	0.1067 (0.0024)	-0.0196 (0.0034)	$0.9486 \ (0.0070)$	0.0117 (0.0005)	993
Exp	-0.5088	0.0107	$0.1035 \ (0.0023)$	-0.0088 (0.0033)	$0.9540 \ (0.0066)$	$0.0108 \ (0.0005)$	1000
Weibull	-0.5358	0.0114	$0.1107 \ (0.0025)$	-0.0358 (0.0035)	$0.9340 \ (0.0079)$	$0.0135 \ (0.0006)$	1000
Gompertz	-0.4700	0.0108	$0.0912 \ (0.0109)$	$0.0300 \ (0.0152)$	$0.9444 \ (0.0382)$	$0.0090 \ (0.0022)$	36
RP(3)	-0.5228	0.0112	$0.1077 \ (0.0024)$	-0.0228 (0.0034)	$0.9480 \ (0.0070)$	$0.0121 \ (0.0005)$	1000
RP(5)	-0.5233	0.0112	$0.1076 \ (0.0024)$	-0.0233 (0.0034)	$0.9490 \ (0.0070)$	$0.0121 \ (0.0005)$	1000
RP(9)	-0.5233	0.0112	$0.1076 \ (0.0024)$	-0.0233 (0.0034)	$0.9470 \ (0.0071)$	$0.0121 \ (0.0005)$	1000
RP(P)	-0.5220	0.0112	$0.1073 \ (0.0024)$	-0.0220 (0.0034)	$0.9480 \ (0.0070)$	$0.0120 \ (0.0005)$	1000
FP(W)	-0.5358	0.0114	$0.1107 \ (0.0025)$	-0.0358 (0.0035)	$0.9340 \ (0.0079)$	$0.0135 \ (0.0006)$	1000
FP (k=10)	-0.4818	0.0103	$0.1000 \ (0.0022)$	$0.0182 \ (0.0032)$	$0.9570 \ (0.0064)$	$0.0103 \ (0.0005)$	1000
FP (k=10000)	-0.4438	0.0082	$0.0920 \ (0.0032)$	$0.0562 \ (0.0045)$	$0.9175 \ (0.0136)$	$0.0116 \ (0.0008)$	412
Model frailty: I	Normal						
Cox	-0.4403	0.0105	$0.0955 \ (0.0021)$	$0.0597 \ (0.0030)$	$0.9259 \ (0.0083)$	$0.0127 \ (0.0005)$	998
Exp	-0.4751	0.0113	$0.1036 \ (0.0024)$	$0.0249 \ (0.0034)$	$0.9625 \ (0.0062)$	$0.0113 \ (0.0005)$	933
Weibull	-0.4884	0.0118	$0.1092 \ (0.0026)$	$0.0116 \ (0.0036)$	$0.9553 \ (0.0068)$	$0.0120 \ (0.0006)$	917
Gompertz	-0.3753	0.0114	$0.0548 \ (0.0158)$	$0.1247 \ (0.0207)$	$1.0000 \ (0.0000)$	$0.0181 \ (0.0045)$	7
RP(3)	-0.4848	0.0113	$0.1067 \ (0.0024)$	$0.0152 \ (0.0034)$	$0.9550 \ (0.0066)$	$0.0116 \ (0.0005)$	1000
RP(5)	-0.4852	0.0113	$0.1069 \ (0.0024)$	$0.0148 \ (0.0034)$	$0.9550 \ (0.0066)$	$0.0116 \ (0.0005)$	1000
RP(9)	-0.4852	0.0113	$0.1069 \ (0.0024)$	$0.0148 \ (0.0034)$	$0.9540 \ (0.0066)$	$0.0116 \ (0.0005)$	1000
RP(P)	-0.4849	0.0113	$0.1065 \ (0.0024)$	$0.0151 \ (0.0034)$	$0.9560 \ (0.0065)$	$0.0116 \ (0.0005)$	1000
FP(W)	-0.4774	0.0115	$0.1058 \ (0.0024)$	$0.0226 \ (0.0034)$	$0.9574 \ (0.0064)$	$0.0117 \ (0.0005)$	985
FP (k=10)	-0.3876	0.0101	$0.0889 \ (0.0020)$	$0.1124 \ (0.0028)$	$0.8258 \ (0.0120)$	$0.0205 \ (0.0007)$	999
FP (k=10000)	-0.4280	0.0091	0.0946 (0.0021)	$0.0720 \ (0.0030)$	0.8829 (0.0102)	0.0141 (0.0006)	999

Table 27: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	-0.5163	0.0115	$0.1093 \ (0.0025)$	-0.0163 (0.0035)	$0.9394 \ (0.0076)$	$0.0122 \ (0.0006)$	990
Exp	-0.6025	0.0125	$0.1259 \ (0.0028)$	-0.1025 (0.0040)	$0.8290 \ (0.0119)$	$0.0263 \ (0.0011)$	1000
Weibull	-0.5473	0.0122	$0.1156 \ (0.0026)$	-0.0473 (0.0037)	$0.9170 \ (0.0087)$	$0.0156 \ (0.0007)$	1000
Gompertz	-0.5002	0.0132	$0.0854 \ (0.0604)$	-0.0002 (0.0604)	1.0000 (0.0000)	$0.0036 \ (0.0000)$	2
RP(3)	-0.5247	0.0118	$0.1114 \ (0.0025)$	-0.0247 (0.0035)	$0.9380 \ (0.0076)$	$0.0130 \ (0.0006)$	1000
RP(5)	-0.5247	0.0118	$0.1108 \ (0.0025)$	-0.0247 (0.0035)	$0.9390 \ (0.0076)$	$0.0129 \ (0.0006)$	1000
RP(9)	-0.5236	0.0118	$0.1108 \ (0.0025)$	-0.0236 (0.0035)	$0.9409 \ (0.0075)$	$0.0128 \ (0.0006)$	998
RP(P)	-0.5230	0.0118	$0.1106 \ (0.0025)$	-0.0230 (0.0035)	$0.9420 \ (0.0074)$	$0.0127 \ (0.0006)$	1000
FP(W)	-0.5473	0.0122	$0.1156 \ (0.0026)$	-0.0473 (0.0037)	$0.9170 \ (0.0087)$	$0.0156 \ (0.0007)$	1000
FP (k=10)	-0.5718	0.0116	$0.1205 \ (0.0027)$	-0.0718 (0.0038)	$0.8760 \ (0.0104)$	0.0197 (0.0009)	1000
FP (k=10000)		_	_	_			0
Model frailty: I	Normal						
Cox	-0.4313	0.0109	$0.0966 \ (0.0022)$	$0.0687 \ (0.0031)$	$0.9204 \ (0.0086)$	$0.0141 \ (0.0006)$	980
Exp	-0.5519	0.0131	$0.1242 \ (0.0030)$	-0.0519 (0.0042)	$0.9007 \ (0.0100)$	$0.0181 \ (0.0009)$	886
Weibull	-0.4902	0.0125	$0.1089 \ (0.0026)$	$0.0098 \ (0.0037)$	$0.9517 \ (0.0073)$	$0.0119 \ (0.0006)$	870
Gompertz		_		_	_		0
RP(3)	-0.4766	0.0118	$0.1083 \ (0.0024)$	$0.0234 \ (0.0034)$	$0.9510 \ (0.0068)$	$0.0123 \ (0.0006)$	1000
RP(5)	-0.4817	0.0119	$0.1083 \ (0.0024)$	$0.0183 \ (0.0034)$	$0.9480 \ (0.0070)$	$0.0121 \ (0.0006)$	1000
RP(9)	-0.4809	0.0119	$0.1084 \ (0.0024)$	$0.0191 \ (0.0034)$	$0.9490 \ (0.0070)$	$0.0121\ (0.0006)$	1000
RP(P)	-0.4808	0.0118	$0.1082 \ (0.0024)$	$0.0192 \ (0.0034)$	$0.9500 \ (0.0069)$	$0.0121 \ (0.0006)$	1000
FP (W)	-0.4764	0.0121	$0.1063 \ (0.0024)$	$0.0236 \ (0.0034)$	$0.9540 \ (0.0066)$	$0.0118 \ (0.0006)$	999
FP (k=10)	-0.4098	0.0112	0.1003 (0.0022)	$0.0902 \ (0.0032)$	0.8800 (0.0103)	$0.0182 \ (0.0007)$	1000
FP (k=10000)	-0.4833	0.0099	0.1085 (0.0024)	$0.0167 \ (0.0034)$	0.9260 (0.0083)	$0.0120 \ (0.0006)$	1000

Table 28: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.5064	0.0099	$0.1027 \ (0.0023)$	-0.0064 (0.0033)	$0.9418 \; (0.0074)$	$0.0106 \ (0.0005)$	997
Exp	-0.4831	0.0096	$0.0957 \ (0.0021)$	$0.0169 \ (0.0030)$	$0.9590 \ (0.0063)$	$0.0094 \ (0.0004)$	1000
Weibull	-0.5181	0.0102	$0.1044 \ (0.0023)$	-0.0181 (0.0033)	$0.9360 \ (0.0077)$	$0.0112 \ (0.0005)$	1000
Gompertz	-0.4908	0.0096	$0.0837 \ (0.0101)$	$0.0092 \ (0.0141)$	$0.9714 \ (0.0282)$	$0.0069 \ (0.0015)$	35
RP(3)	-0.5105	0.0102	$0.1035 \ (0.0023)$	-0.0105 (0.0033)	$0.9460 \ (0.0071)$	$0.0108 \ (0.0005)$	1000
RP(5)	-0.5092	0.0101	$0.1033 \ (0.0023)$	-0.0092 (0.0033)	$0.9460 \ (0.0071)$	$0.0107 \ (0.0005)$	1000
RP(9)	-0.5099	0.0101	$0.1034 \ (0.0023)$	-0.0099 (0.0033)	$0.9430 \ (0.0073)$	$0.0108 \; (0.0005)$	1000
RP(P)	-0.5083	0.0101	$0.1031 \ (0.0023)$	-0.0083 (0.0033)	$0.9450 \ (0.0072)$	$0.0107 \ (0.0005)$	1000
FP(W)	-0.5181	0.0102	$0.1044 \ (0.0023)$	-0.0181 (0.0033)	$0.9360 \ (0.0077)$	$0.0112 \ (0.0005)$	1000
FP (k=10)	-0.4788	0.0095	$0.0978 \ (0.0022)$	$0.0212 \ (0.0031)$	$0.9545 \ (0.0066)$	$0.0100 \ (0.0004)$	990
FP (k=10000)	-0.4528	0.0074	$0.0805 \ (0.0134)$	$0.0472 \ (0.0185)$	$0.9474 \ (0.0512)$	$0.0084 \ (0.0031)$	19
Model frailty: I	Normal						
Cox	-0.4462	0.0096	$0.0935 \ (0.0021)$	$0.0538 \ (0.0030)$	$0.9319 \ (0.0080)$	$0.0116 \ (0.0005)$	999
Exp	-0.4565	0.0100	$0.0952 \ (0.0022)$	$0.0435 \ (0.0031)$	$0.9430 \ (0.0076)$	$0.0110 \ (0.0005)$	930
Weibull	-0.4845	0.0107	$0.1014 \ (0.0024)$	$0.0155 \ (0.0034)$	$0.9617 \ (0.0064)$	$0.0105 \ (0.0005)$	913
Gompertz	-0.4789	0.0100	$0.1067 \ (0.0218)$	$0.0211 \ (0.0296)$	$0.9231 \ (0.0739)$	$0.0110 \ (0.0036)$	13
RP(3)	-0.4852	0.0104	$0.1019 \ (0.0023)$	$0.0148 \; (0.0032)$	$0.9570 \ (0.0064)$	$0.0106 \ (0.0005)$	1000
RP(5)	-0.4846	0.0103	$0.1018 \; (0.0023)$	$0.0154 \ (0.0032)$	$0.9570 \ (0.0064)$	$0.0106 \ (0.0005)$	1000
RP(9)	-0.4856	0.0103	$0.1020 \ (0.0023)$	$0.0144 \ (0.0032)$	$0.9600 \ (0.0062)$	$0.0106 \ (0.0005)$	1000
RP(P)	-0.4854	0.0103	$0.1020 \ (0.0023)$	$0.0146 \ (0.0032)$	$0.9580 \ (0.0063)$	$0.0106 \ (0.0005)$	1000
FP(W)	-0.4828	0.0106	$0.1007 \ (0.0023)$	$0.0172 \ (0.0032)$	$0.9601 \ (0.0063)$	$0.0104 \ (0.0005)$	977
FP (k=10)	-0.3953	0.0093	$0.0861 \ (0.0019)$	$0.1047 \ (0.0027)$	$0.8297 \ (0.0119)$	$0.0184 \ (0.0006)$	998
FP (k=10000)	-0.4332	0.0083	0.0901 (0.0020)	$0.0668 \ (0.0029)$	$0.8899 \ (0.0099)$	$0.0126 \ (0.0005)$	999

Table 29: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

or 5570, respectively			- CP			MOD	
Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.5088	0.0102	$0.1013 \ (0.0023)$	-0.0088 (0.0032)	$0.9540 \ (0.0066)$	$0.0103 \ (0.0005)$	999
Exp	-0.3224	0.0081	$0.0670 \ (0.0015)$	$0.1776 \ (0.0021)$	$0.5050 \ (0.0158)$	$0.0360 \ (0.0008)$	1000
Weibull	-0.5077	0.0105	$0.1023 \ (0.0023)$	-0.0077 (0.0032)	$0.9500 \ (0.0069)$	$0.0105 \ (0.0005)$	1000
Gompertz	-0.3235	0.0082	$0.0684 \ (0.0026)$	$0.1765 \ (0.0036)$	$0.5265 \ (0.0264)$	$0.0358 \ (0.0014)$	359
RP(3)	-0.5088	0.0104	$0.1014 \ (0.0025)$	-0.0088 (0.0035)	$0.9512 \ (0.0075)$	$0.0103 \ (0.0005)$	819
RP(5)	-0.5105	0.0104	$0.1018 \; (0.0023)$	-0.0105 (0.0032)	$0.9520 \ (0.0068)$	$0.0105 \ (0.0005)$	1000
RP(9)	-0.5114	0.0104	$0.1017 \ (0.0023)$	-0.0114 (0.0032)	$0.9520 \ (0.0068)$	$0.0105 \ (0.0005)$	1000
RP(P)	-0.5057	0.0103	$0.1007 \ (0.0023)$	-0.0057 (0.0032)	$0.9560 \ (0.0065)$	$0.0102 \ (0.0004)$	1000
FP(W)	-0.5075	0.0105	$0.1022 \ (0.0023)$	-0.0075 (0.0032)	$0.9509 \ (0.0068)$	$0.0105 \ (0.0005)$	998
FP (k=10)	-0.5388	0.0093	$0.1513 \ (0.0035)$	-0.0388 (0.0049)	$0.7698 \ (0.0136)$	$0.0244 \ (0.0011)$	960
FP (k=10000)	-0.3149	0.0064	$0.0627 \ (0.0027)$	$0.1851 \ (0.0038)$	$0.3358 \ (0.0288)$	$0.0382 \ (0.0014)$	268
Model frailty: I	Normal						
Cox	-0.4418	0.0099	$0.0921 \ (0.0021)$	$0.0582 \ (0.0029)$	$0.9230 \ (0.0084)$	$0.0119 \ (0.0005)$	1000
Exp	-0.3100	0.0085	$0.0700 \ (0.0016)$	$0.1900 \ (0.0023)$	$0.4572 \ (0.0162)$	$0.0410 \ (0.0009)$	947
Weibull	-0.4698	0.0109	$0.1010 \ (0.0024)$	$0.0302 \ (0.0033)$	$0.9489 \ (0.0073)$	$0.0111 \ (0.0005)$	919
Gompertz	-0.3154	0.0085	$0.0708 \ (0.0037)$	$0.1846 \ (0.0052)$	$0.4863 \ (0.0369)$	$0.0390 \ (0.0020)$	183
RP(3)	-0.4344	0.0102	$0.1438 \ (0.0032)$	$0.0656 \ (0.0046)$	$0.8136 \ (0.0124)$	$0.0250 \ (0.0013)$	987
RP(5)	-0.4803	0.0106	$0.1011 \ (0.0023)$	$0.0197 \ (0.0032)$	$0.9520 \ (0.0068)$	$0.0106 \ (0.0005)$	1000
RP(9)	-0.4816	0.0106	$0.1011 \ (0.0023)$	$0.0184 \ (0.0032)$	$0.9550 \ (0.0066)$	$0.0106 \ (0.0005)$	1000
RP(P)	-0.4763	0.0105	$0.1001 \ (0.0022)$	$0.0237 \ (0.0032)$	$0.9510 \ (0.0068)$	$0.0106 \ (0.0005)$	1000
FP(W)	-0.4612	0.0107	0.0985 (0.0022)	$0.0388 \ (0.0032)$	$0.9432 \ (0.0074)$	$0.0112 \ (0.0005)$	969
FP (k=10)	-0.3328	0.0098	$0.0899 \ (0.0021)$	$0.1672 \ (0.0029)$	$0.6133 \ (0.0158)$	$0.0360 \ (0.0011)$	944
FP (k=10000)	-0.2929	0.0072	0.0673 (0.0015)	0.2071 (0.0021)	$0.2635 \ (0.0139)$	$0.0474 \ (0.0009)$	998

Table 30: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.5114	0.0112	$0.1068 \ (0.0024)$	-0.0114 (0.0034)	0.9477 (0.0071)	$0.0115 \ (0.0005)$	994
Exp	-0.5746	0.0119	$0.1187 \ (0.0027)$	-0.0746 (0.0038)	$0.8740 \ (0.0105)$	$0.0196 \ (0.0008)$	1000
Weibull	-0.5276	0.0116	$0.1109 \ (0.0025)$	$-0.0276 \ (0.0035)$	$0.9400 \ (0.0075)$	$0.0131 \ (0.0006)$	1000
Gompertz	-0.5468	0.0117	$0.1278 \ (0.0242)$	-0.0468 (0.0330)	$0.8667 \ (0.0878)$	0.0174 (0.0059)	15
RP(3)	-0.5174	0.0114	$0.1091 \ (0.0024)$	-0.0174 (0.0034)	$0.9440 \ (0.0073)$	$0.0122 \ (0.0005)$	1000
RP(5)	-0.5195	0.0115	$0.1088 \; (0.0024)$	-0.0195 (0.0034)	$0.9450 \ (0.0072)$	$0.0122 \ (0.0005)$	1000
RP(9)	-0.5185	0.0115	$0.1087 \ (0.0024)$	-0.0185 (0.0034)	$0.9470 \ (0.0071)$	$0.0121 \ (0.0005)$	1000
RP(P)	-0.5175	0.0114	$0.1084 \ (0.0024)$	$-0.0175 \ (0.0034)$	$0.9480 \ (0.0070)$	$0.0121 \ (0.0005)$	1000
FP(W)	-0.5276	0.0116	$0.1109 \ (0.0025)$	$-0.0276 \ (0.0035)$	$0.9400 \ (0.0075)$	$0.0131 \ (0.0006)$	1000
FP (k=10)	-0.5444	0.0111	$0.1129 \ (0.0025)$	-0.0444 (0.0036)	$0.9120 \ (0.0090)$	$0.0147 \ (0.0006)$	1000
FP (k=10000)	-0.4362	0.0089	$0.0909 \ (0.0117)$	$0.0638 \ (0.0163)$	$0.8710 \ (0.0602)$	$0.0121 \ (0.0030)$	31
Model frailty: I	Normal						
Cox	-0.4305	0.0107	$0.0963 \ (0.0022)$	$0.0695 \ (0.0031)$	$0.9048 \ (0.0093)$	$0.0141 \ (0.0006)$	987
Exp	-0.5267	0.0125	$0.1176 \ (0.0027)$	-0.0267 (0.0039)	$0.9283 \ (0.0085)$	$0.0145 \ (0.0007)$	921
Weibull	-0.4776	0.0120	$0.1082 \ (0.0026)$	$0.0224 \ (0.0036)$	$0.9463 \ (0.0075)$	$0.0122 \ (0.0006)$	894
Gompertz		_	_	_	_	_	0
RP(3)	-0.4734	0.0115	$0.1081 \ (0.0024)$	$0.0266 \ (0.0034)$	$0.9380 \ (0.0076)$	$0.0124 \ (0.0005)$	1000
RP(5)	-0.4789	0.0115	0.1085 (0.0024)	$0.0211 \ (0.0034)$	$0.9450 \ (0.0072)$	$0.0122 \ (0.0005)$	1000
RP(9)	-0.4782	0.0115	$0.1084 \ (0.0024)$	$0.0218 \ (0.0034)$	$0.9430 \ (0.0073)$	$0.0122 \ (0.0005)$	1000
RP(P)	-0.4779	0.0115	$0.1082 \ (0.0024)$	$0.0221 \ (0.0034)$	$0.9430 \ (0.0073)$	$0.0122 \ (0.0005)$	1000
FP (W)	-0.4692	0.0118	$0.1060 \ (0.0024)$	$0.0308 \ (0.0034)$	$0.9381 \ (0.0077)$	$0.0122 \ (0.0005)$	986
FP (k=10)	-0.4217	0.0108	0.0982 (0.0022)	$0.0783 \ (0.0031)$	$0.8905 \ (0.0099)$	$0.0158 \ (0.0006)$	995
FP (k=10000)	-0.4675	0.0096	0.1043 (0.0023)	$0.0325 \ (0.0033)$	0.9149 (0.0088)	$0.0119 \ (0.0005)$	999

Table 31: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 1.25, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	-0.4990	0.0074	$0.0866 \ (0.0019)$	$0.0010 \ (0.0027)$	$0.9470 \ (0.0071)$	0.0075 (0.0003)	1000
Exp	-0.4997	0.0073	$0.0859 \ (0.0019)$	$0.0003 \ (0.0027)$	$0.9440 \ (0.0073)$	$0.0074 \ (0.0003)$	1000
Weibull	-0.5007	0.0075	$0.0868 \ (0.0019)$	-0.0007 (0.0027)	$0.9470 \ (0.0071)$	$0.0075 \ (0.0003)$	1000
Gompertz	-0.5004	0.0075	$0.0871\ (0.0030)$	-0.0004 (0.0042)	$0.9495 \ (0.0105)$	$0.0076 \ (0.0005)$	436
RP(3)	-0.4999	0.0076	$0.0868 \ (0.0019)$	$0.0001 \ (0.0027)$	$0.9470 \ (0.0071)$	$0.0075 \ (0.0003)$	1000
RP(5)	-0.5000	0.0076	$0.0868 \ (0.0019)$	-0.0000 (0.0027)	$0.9470 \ (0.0071)$	$0.0075 \ (0.0003)$	1000
RP(9)	-0.5001	0.0076	$0.0868 \ (0.0019)$	-0.0001 (0.0027)	$0.9470 \ (0.0071)$	$0.0075 \ (0.0003)$	1000
RP(P)	-0.5003	0.0076	0.0867 (0.0019)	-0.0003 (0.0027)	$0.9500 \ (0.0069)$	$0.0075 \ (0.0003)$	1000
FP(W)	-0.5004	0.0075	0.0865 (0.0019)	-0.0004 (0.0027)	0.9479 (0.0070)	$0.0075 \ (0.0003)$	998
FP (k=10)	-0.4953	0.0076	$0.0869 \ (0.0020)$	$0.0047 \ (0.0028)$	$0.9474 \ (0.0071)$	$0.0076 \ (0.0003)$	988
FP (k=10000)	-0.4980	0.0058	$0.0864 \ (0.0019)$	$0.0020 \ (0.0027)$	$0.9110 \ (0.0090)$	$0.0075 \ (0.0003)$	1000
Model frailty: I	Normal						
Cox	-0.4675	0.0070	$0.0817 \ (0.0018)$	$0.0325 \ (0.0026)$	$0.9260 \ (0.0083)$	$0.0077 \ (0.0003)$	1000
Exp	-0.4814	0.0073	$0.0838 \ (0.0019)$	$0.0186 \ (0.0027)$	$0.9398 \ (0.0075)$	$0.0074 \ (0.0003)$	996
Weibull	-0.4858	0.0075	$0.0851 \ (0.0019)$	$0.0142 \ (0.0027)$	$0.9487 \ (0.0070)$	$0.0074 \ (0.0003)$	995
Gompertz	-0.4788	0.0074	$0.0821 \ (0.0033)$	$0.0212 \ (0.0047)$	$0.9385 \ (0.0137)$	$0.0072 \ (0.0006)$	309
RP(3)	-0.4970	0.0078	$0.0872 \ (0.0020)$	$0.0030 \ (0.0028)$	$0.9540 \ (0.0066)$	$0.0076 \ (0.0003)$	1000
RP(5)	-0.4970	0.0078	$0.0872 \ (0.0020)$	$0.0030 \ (0.0028)$	$0.9560 \ (0.0065)$	$0.0076 \ (0.0003)$	1000
RP(9)	-0.4970	0.0078	$0.0872\ (0.0020)$	$0.0030 \ (0.0028)$	$0.9540 \ (0.0066)$	$0.0076 \ (0.0003)$	1000
RP(P)	-0.4983	0.0078	$0.0874 \ (0.0020)$	$0.0017 \ (0.0028)$	$0.9550 \ (0.0066)$	$0.0076 \ (0.0003)$	1000
FP(W)	-0.5004	0.0078	$0.0874 \ (0.0020)$	-0.0004 (0.0028)	$0.9553 \ (0.0066)$	$0.0076 \ (0.0003)$	985
FP (k=10)	-0.4923	0.0078	$0.0871\ (0.0020)$	$0.0077 \ (0.0028)$	$0.9539 \ (0.0066)$	$0.0076 \ (0.0003)$	998
FP (k=10000)	-0.4886	0.0066	0.0857 (0.0019)	0.0114 (0.0027)	$0.9227 \ (0.0085)$	$0.0075 \ (0.0003)$	996

Table 32: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

	Avg. Estimate		Emp. SE	Bias	Coverage		N. Converged
Model frailty: 0	Gamma						
Cox	-0.4978	0.0080	$0.0920 \ (0.0021)$	$0.0022 \ (0.0029)$	$0.9378 \ (0.0077)$	0.0085 (0.0004)	996
Exp	-0.5971	0.0092	$0.1103 \ (0.0025)$	-0.0971 (0.0035)	$0.7960 \ (0.0127)$	$0.0216 \ (0.0009)$	1000
Weibull	-0.5014	0.0082	$0.0925 \ (0.0021)$	-0.0014 (0.0029)	$0.9360 \ (0.0077)$	$0.0086 \ (0.0004)$	1000
Gompertz	-0.5942	0.0095	$0.1121 \ (0.0040)$	-0.0942 (0.0057)	$0.8066 \ (0.0199)$	$0.0214 \ (0.0013)$	393
RP(3)	-0.4986	0.0082	$0.0920 \ (0.0021)$	$0.0014 \ (0.0029)$	$0.9380 \ (0.0076)$	$0.0085 \ (0.0004)$	1000
RP(5)	-0.4988	0.0082	$0.0921 \ (0.0021)$	$0.0012 \ (0.0029)$	$0.9380 \ (0.0076)$	$0.0085 \ (0.0004)$	1000
RP(9)	-0.4989	0.0082	$0.0921 \ (0.0021)$	$0.0011 \ (0.0029)$	$0.9380 \ (0.0076)$	$0.0085 \ (0.0004)$	1000
RP(P)	-0.5002	0.0082	$0.0923 \ (0.0021)$	-0.0002 (0.0029)	$0.9390 \ (0.0076)$	$0.0085 \ (0.0004)$	1000
FP(W)	-0.5014	0.0082	$0.0925 \ (0.0021)$	-0.0014 (0.0029)	$0.9370 \ (0.0077)$	$0.0086 \ (0.0004)$	1000
FP (k=10)	-0.4929	0.0082	$0.0935 \ (0.0021)$	$0.0071 \ (0.0030)$	$0.9410 \ (0.0075)$	$0.0088 \ (0.0004)$	1000
FP (k=10000)	-0.5313	0.0067	$0.0987 \ (0.0022)$	-0.0313 (0.0031)	$0.8740 \ (0.0105)$	$0.0107 \ (0.0005)$	1000
Model frailty: I	Normal						
Cox	-0.4657	0.0076	$0.0868 \ (0.0019)$	$0.0343 \ (0.0027)$	$0.9310 \ (0.0080)$	$0.0087 \ (0.0004)$	1000
Exp	-0.5689	0.0091	$0.1061 \ (0.0024)$	-0.0689 (0.0034)	$0.8673 \ (0.0108)$	$0.0160 \ (0.0007)$	995
Weibull	-0.4887	0.0081	$0.0912 \ (0.0020)$	$0.0113 \ (0.0029)$	$0.9487 \ (0.0070)$	$0.0084 \ (0.0004)$	994
Gompertz	-0.5620	0.0093	$0.1070 \ (0.0044)$	-0.0620 (0.0062)	$0.8605 \ (0.0202)$	$0.0153 \ (0.0012)$	294
RP(3)	-0.4972	0.0084	$0.0930 \ (0.0021)$	$0.0028 \ (0.0029)$	$0.9490 \ (0.0070)$	$0.0086 \ (0.0004)$	1000
RP(5)	-0.4972	0.0084	$0.0930 \ (0.0021)$	$0.0028 \ (0.0029)$	$0.9490 \ (0.0070)$	$0.0086 \ (0.0004)$	1000
RP(9)	-0.4971	0.0084	$0.0930 \ (0.0021)$	$0.0029 \ (0.0029)$	$0.9480 \ (0.0070)$	$0.0087 \ (0.0004)$	1000
RP(P)	-0.4990	0.0084	$0.0933 \ (0.0021)$	$0.0010 \ (0.0030)$	$0.9450 \ (0.0072)$	$0.0087 \ (0.0004)$	1000
FP(W)	-0.5001	0.0085	$0.0937 \ (0.0021)$	-0.0001 (0.0030)	$0.9435 \ (0.0074)$	$0.0088 \ (0.0004)$	973
FP (k=10)	-0.4953	0.0086	$0.0946 \ (0.0021)$	$0.0047 \ (0.0030)$	$0.9469 \ (0.0071)$	$0.0090 \ (0.0004)$	998
FP (k=10000)	-0.5237	0.0080	$0.0985 \ (0.0022)$	-0.0237 (0.0031)	$0.9129 \ (0.0089)$	$0.0103 \ (0.0005)$	999

Table 33: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 1.25, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	-0.5009	0.0068	$0.0824 \ (0.0018)$	-0.0009 (0.0026)	$0.9428 \ (0.0074)$	$0.0068 \ (0.0003)$	996
Exp	-0.4192	0.0059	$0.0677 \ (0.0015)$	$0.0808 \; (0.0021)$	$0.8430 \ (0.0115)$	$0.0111 \ (0.0004)$	1000
Weibull	-0.4741	0.0066	0.0777 (0.0017)	$0.0259 \ (0.0025)$	$0.9490 \ (0.0070)$	$0.0067 \ (0.0003)$	1000
Gompertz	-0.4215	0.0060	$0.0666 \ (0.0021)$	$0.0785 \ (0.0029)$	$0.8601 \ (0.0151)$	$0.0106 \ (0.0006)$	529
RP(3)	-0.5015	0.0070	$0.0823 \ (0.0018)$	-0.0015 (0.0026)	$0.9480 \ (0.0070)$	$0.0068 \ (0.0003)$	1000
RP(5)	-0.5019	0.0070	$0.0824 \ (0.0018)$	-0.0019 (0.0026)	$0.9460 \ (0.0071)$	$0.0068 \ (0.0003)$	1000
RP(9)	-0.5021	0.0070	$0.0825 \ (0.0018)$	-0.0021 (0.0026)	$0.9460 \ (0.0071)$	$0.0068 \ (0.0003)$	1000
RP(P)	-0.4964	0.0069	$0.0815 \ (0.0018)$	$0.0036 \ (0.0026)$	$0.9470 \ (0.0071)$	$0.0066 \ (0.0003)$	1000
FP(W)	-0.4741	0.0066	0.0777 (0.0017)	$0.0259 \ (0.0025)$	$0.9490 \ (0.0070)$	$0.0067 \ (0.0003)$	1000
FP (k=10)	-0.4980	0.0069	$0.0823 \ (0.0018)$	$0.0020 \ (0.0026)$	$0.9470 \ (0.0071)$	$0.0068 \ (0.0003)$	1000
FP (k=10000)	-0.4978	0.0052	$0.0817 \ (0.0018)$	$0.0022 \ (0.0026)$	$0.9210 \ (0.0085)$	$0.0067 \ (0.0003)$	1000
Model frailty: I	Normal						
Cox	-0.4692	0.0065	$0.0776 \ (0.0017)$	$0.0308 \ (0.0025)$	$0.9430 \ (0.0073)$	$0.0070 \ (0.0003)$	1000
Exp	-0.4070	0.0058	$0.0669 \ (0.0015)$	$0.0930 \ (0.0021)$	$0.8018 \; (0.0126)$	$0.0131 \ (0.0004)$	999
Weibull	-0.4627	0.0066	$0.0764 \ (0.0017)$	$0.0373 \ (0.0024)$	$0.9446 \ (0.0073)$	$0.0072 \ (0.0003)$	993
Gompertz	-0.4110	0.0059	$0.0654 \ (0.0022)$	$0.0890 \ (0.0032)$	$0.8141 \ (0.0189)$	$0.0122 \ (0.0007)$	425
RP(3)	-0.4953	0.0071	$0.0820 \ (0.0018)$	$0.0047 \ (0.0026)$	$0.9500 \ (0.0069)$	$0.0067 \ (0.0003)$	1000
RP(5)	-0.4955	0.0071	$0.0821 \ (0.0018)$	$0.0045 \ (0.0026)$	$0.9500 \ (0.0069)$	$0.0067 \ (0.0003)$	1000
RP(9)	-0.4955	0.0072	$0.0821 \ (0.0018)$	$0.0045 \ (0.0026)$	$0.9500 \ (0.0069)$	$0.0068 \ (0.0003)$	1000
RP(P)	-0.4906	0.0071	$0.0812 \ (0.0018)$	$0.0094 \ (0.0026)$	$0.9510 \ (0.0068)$	$0.0067 \ (0.0003)$	1000
FP(W)	-0.4765	0.0069	$0.0790 \ (0.0018)$	$0.0235 \ (0.0025)$	$0.9502 \ (0.0069)$	$0.0068 \ (0.0003)$	983
FP (k=10)	-0.4917	0.0072	0.0821 (0.0018)	$0.0083 \ (0.0026)$	$0.9520 \ (0.0068)$	$0.0068 \ (0.0003)$	1000
FP (k=10000)	-0.4927	0.0056	0.0816 (0.0018)	0.0073 (0.0026)	0.9188 (0.0086)	$0.0067 \ (0.0003)$	998

Table 34: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.4997	0.0069	$0.0868 \ (0.0019)$	$0.0003 \ (0.0027)$	$0.9438 \ (0.0073)$	0.0075 (0.0003)	996
Exp	-0.3618	0.0055	$0.0646 \ (0.0014)$	$0.1382 \ (0.0020)$	$0.5260 \ (0.0158)$	$0.0233 \ (0.0006)$	1000
Weibull	-0.5282	0.0074	$0.0914 \ (0.0020)$	-0.0282 (0.0029)	$0.9250 \ (0.0083)$	$0.0091 \ (0.0004)$	1000
Gompertz	-0.3598	0.0056	$0.0649 \ (0.0018)$	$0.1402 \ (0.0026)$	$0.5276 \ (0.0198)$	$0.0239 \ (0.0007)$	633
RP(3)	-0.5022	0.0071	$0.0872\ (0.0020)$	-0.0022 (0.0028)	$0.9440 \ (0.0073)$	$0.0076 \ (0.0003)$	1000
RP(5)	-0.5007	0.0071	$0.0870 \ (0.0019)$	-0.0007 (0.0028)	$0.9460 \ (0.0071)$	$0.0076 \ (0.0003)$	1000
RP(9)	-0.5008	0.0071	$0.0871 \ (0.0019)$	-0.0008 (0.0028)	$0.9470 \ (0.0071)$	$0.0076 \ (0.0003)$	1000
RP(P)	-0.5012	0.0071	$0.0874 \ (0.0020)$	-0.0012 (0.0028)	$0.9458 \ (0.0072)$	$0.0076 \ (0.0003)$	996
FP(W)	-0.5277	0.0074	$0.0912 \ (0.0020)$	-0.0277 (0.0029)	$0.9256 \ (0.0083)$	$0.0091 \ (0.0004)$	995
FP (k=10)	-0.4812	0.0071	$0.0867 \ (0.0019)$	$0.0188 \; (0.0027)$	$0.9400 \ (0.0075)$	$0.0079 \ (0.0003)$	1000
FP (k=10000)	-0.5758	0.0060	$0.1029 \ (0.0023)$	-0.0758 (0.0033)	$0.7550 \ (0.0136)$	$0.0163 \ (0.0007)$	1000
Model frailty: I	Normal						
Cox	-0.4678	0.0066	$0.0824 \ (0.0018)$	$0.0322 \ (0.0026)$	$0.9320 \; (0.0080)$	$0.0078 \ (0.0003)$	1000
Exp	-0.3529	0.0053	$0.0652 \ (0.0015)$	$0.1471 \ (0.0021)$	$0.4669 \ (0.0158)$	$0.0259 \ (0.0006)$	998
Weibull	-0.5023	0.0073	$0.0885 \ (0.0020)$	-0.0023 (0.0028)	0.9477 (0.0071)	$0.0078 \ (0.0003)$	994
Gompertz	-0.3532	0.0054	$0.0651 \ (0.0020)$	$0.1468 \ (0.0028)$	$0.4740 \ (0.0215)$	$0.0258 \ (0.0008)$	538
RP(3)	-0.4959	0.0073	$0.0872 \ (0.0020)$	$0.0041 \ (0.0028)$	$0.9480 \ (0.0070)$	$0.0076 \ (0.0003)$	1000
RP(5)	-0.4949	0.0073	$0.0871 \ (0.0019)$	$0.0051 \ (0.0028)$	$0.9480 \ (0.0070)$	$0.0076 \ (0.0003)$	1000
RP(9)	-0.4949	0.0073	$0.0872 \ (0.0020)$	$0.0051 \ (0.0028)$	$0.9480 \ (0.0070)$	$0.0076 \ (0.0003)$	1000
RP(P)	-0.4940	0.0073	$0.0870 \ (0.0019)$	$0.0060 \ (0.0028)$	$0.9490 \ (0.0070)$	$0.0076 \ (0.0003)$	1000
FP(W)	-0.5184	0.0076	$0.0912 \ (0.0020)$	-0.0184 (0.0029)	$0.9428 \ (0.0074)$	$0.0086 \ (0.0004)$	996
FP (k=10)	-0.4827	0.0073	$0.0865 \ (0.0019)$	$0.0173 \ (0.0027)$	$0.9465 \ (0.0071)$	$0.0078 \ (0.0003)$	991
FP (k=10000)	-0.5661	0.0065	0.1057 (0.0024)	-0.0661 (0.0033)	0.7810 (0.0131)	$0.0155 \ (0.0007)$	1000

Table 35: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.5027	0.0076	0.0898 (0.0020)	-0.0027 (0.0028)	0.9389 (0.0076)	0.0081 (0.0004)	999
Exp	-0.5413	0.0081	$0.0947 \ (0.0021)$	-0.0413 (0.0030)	$0.9030 \ (0.0094)$	$0.0107 \ (0.0005)$	1000
Weibull	-0.5045	0.0078	$0.0899 \ (0.0020)$	-0.0045 (0.0028)	$0.9410 \ (0.0075)$	$0.0081 \ (0.0004)$	1000
Gompertz	-0.5417	0.0083	$0.0921 \ (0.0033)$	-0.0417 (0.0046)	$0.9080 \ (0.0144)$	$0.0102 \ (0.0008)$	402
RP(3)	-0.5025	0.0078	0.0897 (0.0020)	-0.0025 (0.0028)	$0.9410 \ (0.0075)$	$0.0080 \ (0.0004)$	1000
RP(5)	-0.5037	0.0078	$0.0899 \ (0.0020)$	$-0.0037 \ (0.0028)$	$0.9400 \ (0.0075)$	$0.0081 \ (0.0004)$	1000
RP(9)	-0.5040	0.0078	$0.0900 \ (0.0020)$	-0.0040 (0.0028)	$0.9420 \ (0.0074)$	$0.0081 \ (0.0004)$	1000
RP(P)	-0.5033	0.0078	$0.0898 \ (0.0020)$	-0.0033 (0.0028)	$0.9410 \ (0.0075)$	$0.0081 \ (0.0004)$	1000
FP(W)	-0.5045	0.0078	$0.0899 \ (0.0020)$	-0.0045 (0.0028)	$0.9410 \ (0.0075)$	$0.0081 \ (0.0004)$	1000
FP (k=10)	-0.4983	0.0078	$0.0898 \ (0.0020)$	$0.0017 \ (0.0029)$	$0.9414 \ (0.0075)$	$0.0081 \ (0.0004)$	990
FP (k=10000)	-0.4960	0.0061	$0.0883 \ (0.0020)$	$0.0040 \ (0.0028)$	$0.9120 \ (0.0090)$	$0.0078 \ (0.0004)$	1000
Model frailty: I	Normal						
Cox	-0.4704	0.0073	$0.0845 \ (0.0019)$	$0.0296 \ (0.0027)$	$0.9450 \ (0.0072)$	$0.0080 \ (0.0004)$	1000
Exp	-0.5205	0.0080	$0.0923 \ (0.0021)$	-0.0205 (0.0029)	$0.9315 \ (0.0080)$	$0.0089 \ (0.0004)$	992
Weibull	-0.4886	0.0077	$0.0880 \ (0.0020)$	$0.0114 \ (0.0028)$	$0.9518 \ (0.0068)$	$0.0079 \ (0.0003)$	995
Gompertz	-0.5143	0.0082	$0.0890 \ (0.0037)$	-0.0143 (0.0052)	$0.9452 \ (0.0133)$	$0.0081 \ (0.0007)$	292
RP(3)	-0.5005	0.0081	$0.0901 \ (0.0020)$	-0.0005 (0.0028)	$0.9480 \ (0.0070)$	$0.0081 \ (0.0004)$	1000
RP(5)	-0.5013	0.0081	$0.0902 \ (0.0020)$	-0.0013 (0.0029)	$0.9460 \ (0.0071)$	$0.0081 \ (0.0004)$	1000
RP(9)	-0.5014	0.0081	$0.0902 \ (0.0020)$	-0.0014 (0.0029)	$0.9470 \ (0.0071)$	$0.0081 \ (0.0004)$	1000
RP(P)	-0.5001	0.0080	$0.0900 \ (0.0020)$	-0.0001 (0.0028)	$0.9460 \ (0.0071)$	$0.0081 \ (0.0004)$	1000
FP(W)	-0.5023	0.0081	$0.0908 \ (0.0021)$	-0.0023 (0.0029)	$0.9429 \ (0.0075)$	$0.0082 \ (0.0004)$	963
FP (k=10)	-0.4978	0.0081	$0.0908 \ (0.0020)$	$0.0022 \ (0.0029)$	$0.9469 \ (0.0071)$	$0.0082 \ (0.0004)$	998
FP (k=10000)	-0.4880	0.0069	$0.0878 \ (0.0020)$	$0.0120 \ (0.0028)$	$0.9370 \ (0.0077)$	$0.0078 \ (0.0003)$	1000

Table 36: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 1.25, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	-0.4862	0.0059	$0.0791 \ (0.0018)$	$0.0138 \ (0.0025)$	0.9399 (0.0075)	$0.0064 \ (0.0003)$	999
Exp	-0.5054	0.0061	$0.0803 \ (0.0018)$	-0.0054 (0.0025)	$0.9360 \ (0.0077)$	$0.0065 \ (0.0003)$	1000
Weibull	-0.4865	0.0061	$0.0786 \ (0.0018)$	$0.0135 \ (0.0025)$	$0.9390 \ (0.0076)$	$0.0063 \ (0.0003)$	1000
Gompertz	-0.5038	0.0063	$0.0782 \ (0.0026)$	-0.0038 (0.0037)	0.9418 (0.0111)	$0.0061 \ (0.0004)$	447
RP(3)	-0.4871	0.0061	$0.0791 \ (0.0018)$	$0.0129 \ (0.0025)$	$0.9410 \ (0.0075)$	$0.0064 \ (0.0003)$	1000
RP(5)	-0.4873	0.0061	$0.0792 \ (0.0018)$	$0.0127 \ (0.0025)$	$0.9410 \ (0.0075)$	$0.0064 \ (0.0003)$	1000
RP(9)	-0.4874	0.0061	$0.0792 \ (0.0018)$	$0.0126 \ (0.0025)$	$0.9420 \ (0.0074)$	$0.0064 \ (0.0003)$	1000
RP(P)	-0.4867	0.0061	$0.0789 \ (0.0018)$	$0.0133 \ (0.0025)$	$0.9400 \ (0.0075)$	$0.0064 \ (0.0003)$	1000
FP(W)	-0.4872	0.0061	$0.0785 \ (0.0018)$	$0.0128 \ (0.0025)$	$0.9403 \ (0.0075)$	$0.0063 \ (0.0003)$	989
FP (k=10)	-0.4852	0.0061	$0.0793 \ (0.0018)$	$0.0148 \ (0.0025)$	$0.9409 \ (0.0075)$	$0.0065 \ (0.0003)$	999
FP (k=10000)	-0.4950	0.0046	$0.0805 \ (0.0018)$	$0.0050 \ (0.0025)$	$0.9009 \ (0.0095)$	$0.0065 \ (0.0003)$	999
Model frailty: I	Normal						
Cox	-0.4728	0.0058	$0.0762 \ (0.0017)$	$0.0272 \ (0.0024)$	$0.9340 \ (0.0079)$	$0.0065 \ (0.0003)$	1000
Exp	-0.4956	0.0061	$0.0783 \ (0.0018)$	$0.0044 \ (0.0025)$	$0.9437 \ (0.0073)$	$0.0061 \ (0.0003)$	995
Weibull	-0.4885	0.0062	$0.0783 \ (0.0018)$	$0.0115 \ (0.0025)$	$0.9468 \ (0.0071)$	$0.0063 \ (0.0003)$	997
Gompertz	-0.4963	0.0062	$0.0728 \ (0.0028)$	$0.0037 \ (0.0040)$	$0.9643 \ (0.0101)$	$0.0053 \ (0.0004)$	336
RP(3)	-0.4990	0.0064	$0.0806 \ (0.0018)$	$0.0010 \ (0.0025)$	$0.9470 \ (0.0071)$	$0.0065 \ (0.0003)$	1000
RP(5)	-0.4991	0.0064	$0.0806 \ (0.0018)$	$0.0009 \ (0.0025)$	$0.9470 \ (0.0071)$	$0.0065 \ (0.0003)$	1000
RP(9)	-0.4991	0.0064	$0.0806 \ (0.0018)$	$0.0009 \ (0.0025)$	$0.9480 \ (0.0070)$	$0.0065 \ (0.0003)$	1000
RP(P)	-0.4999	0.0064	0.0805 (0.0018)	$0.0001 \ (0.0025)$	$0.9480 \ (0.0070)$	$0.0065 \ (0.0003)$	1000
FP (W)	-0.4999	0.0064	$0.0806 \ (0.0019)$	$0.0001 \ (0.0027)$	$0.9468 \ (0.0074)$	$0.0065 \ (0.0003)$	921
FP (k=10)	-0.4959	0.0064	0.0803 (0.0018)	0.0041 (0.0026)	$0.9492 \ (0.0070)$	$0.0065 \ (0.0003)$	984
FP (k=10000)	-0.4977	0.0050	0.0801 (0.0018)	$0.0023 \ (0.0025)$	0.9190 (0.0086)	0.0064 (0.0003)	1000

Table 37: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.4914	0.0064	$0.0778 \ (0.0017)$	$0.0086 \ (0.0025)$	$0.9570 \ (0.0064)$	$0.0061 \ (0.0003)$	999
Exp	-0.6222	0.0077	$0.0979 \ (0.0022)$	-0.1222 (0.0031)	$0.6990 \ (0.0145)$	$0.0245 \ (0.0009)$	1000
Weibull	-0.4948	0.0065	$0.0778 \ (0.0017)$	$0.0052 \ (0.0025)$	$0.9620 \ (0.0060)$	$0.0061 \ (0.0003)$	1000
Gompertz	-0.6193	0.0080	$0.1034 \ (0.0036)$	-0.1193 (0.0051)	$0.7037 \ (0.0227)$	$0.0249 \ (0.0014)$	405
RP(3)	-0.4923	0.0065	$0.0779 \ (0.0017)$	$0.0077 \ (0.0025)$	$0.9610 \ (0.0061)$	$0.0061 \ (0.0003)$	1000
RP(5)	-0.4925	0.0065	$0.0779 \ (0.0017)$	$0.0075 \ (0.0025)$	$0.9630 \ (0.0060)$	$0.0061 \ (0.0003)$	1000
RP(9)	-0.4926	0.0065	$0.0780 \ (0.0017)$	$0.0074 \ (0.0025)$	$0.9620 \ (0.0060)$	$0.0061 \ (0.0003)$	1000
RP(P)	-0.4931	0.0065	$0.0780 \ (0.0017)$	$0.0069 \ (0.0025)$	$0.9610 \ (0.0061)$	$0.0061 \ (0.0003)$	1000
FP(W)	-0.4949	0.0065	$0.0779 \ (0.0017)$	$0.0051 \ (0.0025)$	$0.9619 \ (0.0061)$	$0.0061 \ (0.0003)$	998
FP (k=10)	-0.4903	0.0067	$0.0815 \ (0.0018)$	$0.0097 \ (0.0026)$	$0.9510 \ (0.0068)$	$0.0067 \ (0.0003)$	1000
FP (k=10000)	-0.5541	0.0053	$0.0886 \ (0.0020)$	-0.0541 (0.0028)	$0.8260 \ (0.0120)$	$0.0108 \; (0.0005)$	1000
Model frailty: I	Normal						
Cox	-0.4756	0.0062	$0.0747 \ (0.0017)$	$0.0244 \ (0.0024)$	$0.9540 \ (0.0066)$	$0.0062 \ (0.0003)$	1000
Exp	-0.6015	0.0077	0.0935 (0.0021)	-0.1015 (0.0030)	$0.7810 \ (0.0131)$	$0.0190 \ (0.0007)$	991
Weibull	-0.4961	0.0066	$0.0773 \ (0.0017)$	$0.0039 \ (0.0024)$	$0.9630 \ (0.0060)$	$0.0060 \ (0.0003)$	999
Gompertz	-0.5959	0.0079	$0.0890 \ (0.0037)$	-0.0959 (0.0052)	$0.8123 \ (0.0228)$	$0.0171 \ (0.0013)$	293
RP(3)	-0.5044	0.0069	$0.0793 \ (0.0018)$	-0.0044 (0.0025)	$0.9610 \ (0.0061)$	$0.0063 \ (0.0003)$	1000
RP(5)	-0.5043	0.0069	$0.0793 \ (0.0018)$	-0.0043 (0.0025)	$0.9620 \ (0.0060)$	$0.0063 \ (0.0003)$	1000
RP(9)	-0.5042	0.0069	$0.0793 \ (0.0018)$	-0.0042 (0.0025)	$0.9610 \ (0.0061)$	$0.0063 \ (0.0003)$	1000
RP(P)	-0.5053	0.0069	$0.0794 \ (0.0018)$	-0.0053 (0.0025)	$0.9630 \ (0.0060)$	$0.0063 \ (0.0003)$	1000
FP(W)	-0.5074	0.0069	$0.0796 \ (0.0018)$	-0.0074 (0.0026)	$0.9614 \ (0.0062)$	$0.0064 \ (0.0003)$	958
FP (k=10)	-0.5112	0.0072	$0.0829 \ (0.0019)$	-0.0112 (0.0026)	$0.9579 \ (0.0064)$	$0.0070 \ (0.0003)$	998
FP (k=10000)	-0.5570	0.0061	$0.0879 \ (0.0020)$	$-0.0570 \ (0.0028)$	$0.8587 \ (0.0110)$	$0.0110 \ (0.0005)$	998

Table 38: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

respectively.							
Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	-0.4879	0.0055	$0.0776 \ (0.0017)$	$0.0121 \ (0.0025)$	$0.9409 \ (0.0075)$	$0.0062 \ (0.0003)$	999
Exp	-0.4270	0.0048	$0.0670 \ (0.0015)$	$0.0730 \ (0.0021)$	$0.8150 \ (0.0123)$	$0.0098 \ (0.0004)$	1000
Weibull	-0.4531	0.0052	$0.0725 \ (0.0016)$	$0.0469 \ (0.0023)$	$0.8940 \ (0.0097)$	$0.0074 \ (0.0003)$	1000
Gompertz	-0.4251	0.0050	$0.0682 \ (0.0021)$	$0.0749 \ (0.0029)$	$0.8082 \ (0.0170)$	$0.0103 \ (0.0005)$	537
RP(3)	-0.4879	0.0057	0.0777(0.0017)	$0.0121 \ (0.0025)$	$0.9440 \ (0.0073)$	$0.0062 \ (0.0003)$	1000
RP(5)	-0.4888	0.0057	$0.0778 \ (0.0017)$	$0.0112 \ (0.0025)$	$0.9460 \ (0.0071)$	$0.0062 \ (0.0003)$	1000
RP(9)	-0.4891	0.0057	0.0779 (0.0017)	$0.0109 \ (0.0025)$	$0.9450 \ (0.0072)$	$0.0062 \ (0.0003)$	1000
RP(P)	-0.4838	0.0056	$0.0771 \ (0.0017)$	$0.0162 \ (0.0024)$	$0.9420 \ (0.0074)$	$0.0062 \ (0.0003)$	1000
FP(W)	-0.4531	0.0052	$0.0725 \ (0.0016)$	$0.0469 \ (0.0023)$	$0.8940 \ (0.0097)$	$0.0074 \ (0.0003)$	1000
FP (k=10)	-0.4846	0.0056	0.0777 (0.0017)	$0.0154 \ (0.0025)$	$0.9400 \ (0.0075)$	$0.0063 \ (0.0003)$	1000
FP (k=10000)	-0.4881	0.0041	$0.0776 \ (0.0017)$	$0.0119 \ (0.0025)$	$0.8935 \ (0.0098)$	$0.0062 \ (0.0003)$	995
Model frailty: I	Normal						
Cox	-0.4774	0.0054	$0.0755 \ (0.0017)$	$0.0226 \ (0.0024)$	$0.9350 \ (0.0078)$	$0.0062 \ (0.0003)$	1000
Exp	-0.4236	0.0048	$0.0662 \ (0.0015)$	$0.0764 \ (0.0021)$	$0.8044 \ (0.0126)$	$0.0102 \ (0.0004)$	997
Weibull	-0.4642	0.0054	$0.0734 \ (0.0016)$	$0.0358 \ (0.0023)$	$0.9205 \ (0.0086)$	$0.0067 \ (0.0003)$	994
Gompertz	-0.4217	0.0050	$0.0667 \ (0.0021)$	$0.0783 \ (0.0030)$	$0.7980 \ (0.0178)$	$0.0106 \ (0.0005)$	510
RP(3)	-0.5012	0.0059	$0.0792 \ (0.0018)$	-0.0012 (0.0025)	$0.9500 \ (0.0069)$	$0.0063 \ (0.0003)$	1000
RP(5)	-0.5016	0.0059	$0.0793 \ (0.0018)$	-0.0016 (0.0025)	$0.9500 \ (0.0069)$	$0.0063 \ (0.0003)$	1000
RP(9)	-0.5018	0.0060	$0.0794 \ (0.0018)$	-0.0018 (0.0025)	$0.9500 \ (0.0069)$	$0.0063 \ (0.0003)$	1000
RP(P)	-0.4970	0.0059	$0.0786 \ (0.0018)$	$0.0030 \ (0.0025)$	$0.9520 \ (0.0068)$	$0.0062 \ (0.0003)$	1000
FP(W)	-0.4744	0.0056	$0.0748 \ (0.0018)$	$0.0256 \ (0.0025)$	$0.9392 \ (0.0080)$	$0.0062 \ (0.0003)$	904
FP (k=10)	-0.4987	0.0059	$0.0791 \ (0.0018)$	$0.0013 \ (0.0025)$	$0.9499 \ (0.0069)$	$0.0063 \ (0.0003)$	999
FP (k=10000)	-0.5003	0.0043	0.0790 (0.0018)	-0.0003 (0.0025)	0.9080 (0.0091)	0.0062 (0.0003)	1000

Table 39: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	-0.4881	0.0056	0.0767 (0.0017)	$0.0119 \ (0.0024)$	0.9320 (0.0080)	$0.0060 \ (0.0003)$	1000
Exp	-0.3542	0.0042	$0.0557 \ (0.0012)$	$0.1458 \ (0.0018)$	$0.3780 \ (0.0153)$	$0.0244 \ (0.0005)$	1000
Weibull	-0.5166	0.0060	0.0801 (0.0018)	-0.0166 (0.0025)	$0.9370 \ (0.0077)$	$0.0067 \ (0.0003)$	1000
Gompertz	-0.3617	0.0044	$0.0603 \ (0.0016)$	$0.1383 \ (0.0023)$	$0.4246 \ (0.0185)$	$0.0227 \ (0.0006)$	716
RP(3)	-0.4900	0.0058	$0.0770 \ (0.0017)$	$0.0100 \ (0.0024)$	$0.9350 \ (0.0078)$	$0.0060 \ (0.0003)$	1000
RP(5)	-0.4891	0.0058	$0.0768 \ (0.0017)$	$0.0109 \ (0.0024)$	$0.9360 \ (0.0077)$	$0.0060 \ (0.0003)$	1000
RP(9)	-0.4894	0.0058	$0.0769 \ (0.0017)$	$0.0106 \ (0.0024)$	$0.9370 \ (0.0077)$	$0.0060 \ (0.0003)$	1000
RP(P)	-0.4900	0.0058	$0.0771 \ (0.0017)$	$0.0100 \ (0.0024)$	$0.9380 \ (0.0076)$	$0.0060 \ (0.0003)$	1000
FP(W)	-0.5168	0.0060	$0.0801 \ (0.0018)$	-0.0168 (0.0025)	$0.9375 \ (0.0077)$	$0.0067 \ (0.0003)$	992
FP (k=10)	-0.4669	0.0058	$0.0781 \ (0.0017)$	$0.0331 \ (0.0025)$	$0.9180 \ (0.0087)$	$0.0072 \ (0.0003)$	1000
FP (k=10000)	-0.5656	0.0050	$0.0906 \ (0.0020)$	$-0.0656 \ (0.0029)$	$0.7746 \ (0.0133)$	$0.0125 \ (0.0005)$	994
Model frailty: I	Normal						
Cox	-0.4760	0.0055	$0.0742 \ (0.0017)$	$0.0240 \ (0.0023)$	$0.9290 \ (0.0081)$	$0.0061 \ (0.0003)$	1000
Exp	-0.3513	0.0042	$0.0557 \ (0.0012)$	$0.1487 \ (0.0018)$	$0.3480 \ (0.0151)$	$0.0252 \ (0.0006)$	1000
Weibull	-0.5117	0.0060	$0.0785 \ (0.0018)$	-0.0117 (0.0025)	$0.9429 \ (0.0073)$	$0.0063 \ (0.0003)$	998
Gompertz	-0.3570	0.0043	$0.0598 \ (0.0017)$	$0.1430 \ (0.0024)$	$0.3974 \ (0.0197)$	$0.0240 \ (0.0007)$	614
RP(3)	-0.5013	0.0061	$0.0779 \ (0.0017)$	-0.0013 (0.0025)	$0.9430 \ (0.0073)$	$0.0061 \ (0.0003)$	1000
RP(5)	-0.5008	0.0061	$0.0778 \ (0.0017)$	-0.0008 (0.0025)	$0.9420 \ (0.0074)$	$0.0061 \ (0.0003)$	1000
RP(9)	-0.5009	0.0061	$0.0779 \ (0.0017)$	-0.0009 (0.0025)	$0.9420 \ (0.0074)$	$0.0061 \ (0.0003)$	1000
RP(P)	-0.5001	0.0060	0.0777 (0.0017)	-0.0001 (0.0025)	$0.9420 \ (0.0074)$	$0.0060 \ (0.0003)$	1000
FP(W)	-0.5208	0.0063	$0.0809 \ (0.0021)$	-0.0208 (0.0030)	$0.9352 \ (0.0091)$	$0.0070 \ (0.0004)$	725
FP (k=10)	-0.4863	0.0061	$0.0782 \ (0.0018)$	$0.0137 \ (0.0025)$	$0.9339 \ (0.0079)$	$0.0063 \ (0.0003)$	998
FP (k=10000)	-0.5952	0.0051	0.0935 (0.0021)	-0.0952 (0.0030)	0.6830 (0.0147)	0.0178 (0.0007)	1000

Table 40: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	-0.4902	0.0061	0.0812 (0.0018)	$0.0098 \ (0.0026)$	0.9399 (0.0075)	0.0067 (0.0003)	999
Exp	-0.5470	0.0067	0.0894 (0.0020)	-0.0470 (0.0028)	0.8880 (0.0100)	0.0102 (0.0004)	1000
Weibull	-0.4876	0.0062	$0.0803 \ (0.0018)$	$0.0124 \ (0.0025)$	$0.9370 \ (0.0077)$	$0.0066 \ (0.0003)$	1000
Gompertz	-0.5432	0.0069	0.0899 (0.0032)	-0.0432 (0.0045)	$0.9000 \ (0.0150)$	0.0099 (0.0006)	400
RP(3)	-0.4903	0.0063	0.0812 (0.0018)	$0.0097 \ (0.0026)$	$0.9400 \ (0.0075)$	$0.0067 \ (0.0003)$	1000
RP(5)	-0.4911	0.0063	$0.0813 \ (0.0018)$	$0.0089 \ (0.0026)$	$0.9410 \ (0.0075)$	$0.0067 \ (0.0003)$	1000
RP(9)	-0.4913	0.0063	$0.0814 \ (0.0018)$	$0.0087 \ (0.0026)$	$0.9420 \ (0.0074)$	$0.0067 \ (0.0003)$	1000
RP(P)	-0.4907	0.0063	$0.0812 \ (0.0018)$	$0.0093 \ (0.0026)$	$0.9410 \ (0.0075)$	$0.0067 \ (0.0003)$	1000
FP(W)	-0.4872	0.0062	0.0805 (0.0018)	$0.0128 \ (0.0026)$	$0.9372 \ (0.0077)$	$0.0066 \ (0.0003)$	988
FP (k=10)	-0.4898	0.0064	$0.0825 \ (0.0018)$	$0.0102 \ (0.0026)$	$0.9370 \ (0.0077)$	$0.0069 \ (0.0003)$	1000
FP (k=10000)	-0.4979	0.0048	$0.0823 \ (0.0018)$	$0.0021 \ (0.0026)$	$0.8970 \ (0.0096)$	$0.0068 \ (0.0003)$	1000
Model frailty: I	Normal						
Cox	-0.4752	0.0060	$0.0779 \ (0.0017)$	$0.0248 \ (0.0025)$	$0.9300 \ (0.0081)$	$0.0067 \ (0.0003)$	1000
Exp	-0.5364	0.0067	$0.0868 \ (0.0019)$	-0.0364 (0.0027)	$0.9168 \; (0.0087)$	$0.0088 \ (0.0004)$	997
Weibull	-0.4882	0.0063	$0.0798 \ (0.0018)$	$0.0118 \; (0.0025)$	$0.9448 \; (0.0072)$	$0.0065 \ (0.0003)$	997
Gompertz	-0.5338	0.0068	$0.0851 \ (0.0037)$	-0.0338 (0.0052)	$0.9361 \ (0.0150)$	$0.0084 \ (0.0006)$	266
RP(3)	-0.5020	0.0066	$0.0824 \ (0.0018)$	-0.0020 (0.0026)	$0.9490 \ (0.0070)$	$0.0068 \ (0.0003)$	1000
RP(5)	-0.5026	0.0066	$0.0824 \ (0.0018)$	-0.0026 (0.0026)	$0.9490 \ (0.0070)$	$0.0068 \ (0.0003)$	1000
RP(9)	-0.5027	0.0066	$0.0824 \ (0.0018)$	-0.0027 (0.0026)	$0.9480 \ (0.0070)$	$0.0068 \ (0.0003)$	1000
RP(P)	-0.5018	0.0066	$0.0822 \ (0.0018)$	-0.0018 (0.0026)	$0.9490 \ (0.0070)$	$0.0068 \ (0.0003)$	1000
FP (W)	-0.4998	0.0065	$0.0821 \ (0.0019)$	$0.0002 \ (0.0027)$	$0.9547 \ (0.0068)$	$0.0067 \ (0.0003)$	949
FP (k=10)	-0.5049	0.0067	$0.0838 \ (0.0019)$	-0.0049 (0.0027)	$0.9518 \ (0.0068)$	$0.0070 \ (0.0003)$	995
FP (k=10000)	-0.5022	0.0053	0.0821 (0.0018)	-0.0022 (0.0026)	0.9230 (0.0084)	$0.0067 \ (0.0003)$	1000

Table 41: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 1.25, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.5083	0.0123	0.1119 (0.0025)	-0.0083 (0.0036)	0.9507 (0.0069)	0.0126 (0.0006)	993
Exp	-0.4796	0.0118	0.1042 (0.0023)	0.0204 (0.0033)	$0.9520\ (0.0068)$	0.0113(0.0005)	1000
Weibull	-0.5361	0.0130	0.1189(0.0027)	-0.0361 (0.0038)	0.9270(0.0082)	0.0154 (0.0007)	1000
Gompertz		_					0
RP(3)	-0.5166	0.0127	0.1147 (0.0026)	-0.0166 (0.0036)	$0.9440 \ (0.0073)$	$0.0134 \ (0.0006)$	1000
RP(5)	-0.5175	0.0127	0.1142 (0.0026)	-0.0175 (0.0036)	0.9440 (0.0073)	0.0133 (0.0006)	1000
RP(9)	-0.5161	0.0127	$0.1138 \ (0.0025)$	-0.0161 (0.0036)	$0.9500 \ (0.0069)$	$0.0132 \ (0.0006)$	1000
RP(P)	-0.5150	0.0126	$0.1135 \ (0.0025)$	-0.0150 (0.0036)	$0.9490 \ (0.0070)$	$0.0131\ (0.0006)$	1000
FP (W)	-0.5361	0.0130	$0.1189 \ (0.0027)$	-0.0361 (0.0038)	$0.9270 \ (0.0082)$	$0.0154 \ (0.0007)$	1000
FP (k=10)	-0.4628	0.0110	$0.1009 \ (0.0023)$	$0.0372 \ (0.0032)$	$0.9429 \ (0.0073)$	$0.0116 \ (0.0005)$	999
FP (k=10000)	_	_	_	_	_	_	0
Model frailty: I	Normal						
Cox	-0.3872	0.0111	$0.0913 \ (0.0020)$	$0.1128 \ (0.0029)$	$0.8540 \ (0.0112)$	$0.0210 \ (0.0007)$	1000
Exp	-0.4496	0.0126	$0.1035 \ (0.0026)$	$0.0504 \ (0.0036)$	$0.9525 \ (0.0074)$	$0.0132 \ (0.0006)$	821
Weibull	-0.4802	0.0134	$0.1091 \ (0.0027)$	$0.0198 \ (0.0038)$	$0.9584 \ (0.0070)$	$0.0123 \ (0.0006)$	818
Gompertz		_		_			0
RP(3)	-0.4604	0.0126	$0.1106 \ (0.0025)$	$0.0396 \ (0.0035)$	$0.9420 \ (0.0074)$	$0.0138 \ (0.0006)$	1000
RP(5)	-0.4723	0.0127	$0.1115 \ (0.0025)$	$0.0277 \ (0.0035)$	$0.9450 \ (0.0072)$	$0.0132 \ (0.0006)$	1000
RP(9)	-0.4706	0.0127	$0.1110 \ (0.0025)$	$0.0294 \ (0.0035)$	$0.9440 \ (0.0073)$	$0.0132 \ (0.0006)$	1000
RP(P)	-0.4693	0.0126	$0.1103 \ (0.0025)$	$0.0307 \ (0.0035)$	$0.9450 \ (0.0072)$	$0.0131\ (0.0006)$	1000
FP (W)	-0.4270	0.0122	$0.1005 \ (0.0023)$	$0.0730 \ (0.0032)$	0.9180 (0.0088)	$0.0154 \ (0.0007)$	976
FP (k=10)	-0.3141	0.0108	0.0879(0.0020)	$0.1859 \ (0.0028)$	$0.5716 \ (0.0157)$	$0.0423 \ (0.0011)$	999
FP (k=10000)	-0.3874	0.0095	0.0940 (0.0021)	0.1126 (0.0030)	0.7956 (0.0128)	0.0215 (0.0008)	998

Table 42: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.5055	0.0128	$0.1121 \ (0.0025)$	-0.0055 (0.0036)	0.9588 (0.0063)	$0.0126 \ (0.0005)$	995
Exp	-0.5390	0.0131	0.1168 (0.0026)	-0.0390 (0.0037)	0.9370(0.0077)	0.0152 (0.0006)	1000
Weibull	-0.5529	0.0137	0.1217 (0.0027)	-0.0529 (0.0038)	0.9230 (0.0084)	0.0176 (0.0007)	1000
Gompertz		_	_	_			0
RP(3)	-0.5270	0.0133	$0.1181\ (0.0026)$	-0.0270 (0.0037)	$0.9460 \ (0.0071)$	0.0147 (0.0006)	1000
RP(5)	-0.5267	0.0133	$0.1167 \ (0.0027)$	-0.0267 (0.0037)	$0.9484 \ (0.0071)$	$0.0143 \ (0.0006)$	969
RP(9)	-0.5615	0.0135	$0.1474 \ (0.0521)$	-0.0615 (0.0659)	1.0000 (0.0000)	$0.0212 \ (0.0088)$	5
RP(P)	-0.5270	0.0133	$0.1170 \ (0.0026)$	-0.0270 (0.0037)	$0.9460 \ (0.0071)$	$0.0144 \ (0.0006)$	1000
FP(W)	-0.5528	0.0137	$0.1218 \ (0.0027)$	-0.0528 (0.0039)	$0.9229 \ (0.0084)$	$0.0176 \ (0.0007)$	999
FP (k=10)	-0.5215	0.0117	$0.1130 \ (0.0025)$	-0.0215 (0.0036)	$0.9467 \ (0.0071)$	$0.0132 \ (0.0006)$	995
FP (k=10000)		_	_	_		_	0
Model frailty: I	Normal						
Cox	-0.3843	0.0115	$0.0917 \ (0.0021)$	$0.1157 \ (0.0029)$	$0.8365 \ (0.0117)$	$0.0218 \ (0.0008)$	997
Exp	-0.4951	0.0138	$0.1157 \ (0.0030)$	$0.0049 \ (0.0042)$	$0.9562 \ (0.0075)$	$0.0134 \ (0.0006)$	754
Weibull	-0.4836	0.0139	$0.1132 \ (0.0029)$	$0.0164 \ (0.0042)$	$0.9501 \ (0.0080)$	$0.0131 \ (0.0006)$	742
Gompertz		_					0
RP(3)	-0.4641	0.0131	$0.1117 \ (0.0025)$	$0.0359 \ (0.0035)$	$0.9440 \ (0.0073)$	$0.0138 \ (0.0006)$	1000
RP(5)	-0.4638	0.0131	$0.1205 \ (0.0027)$	$0.0362 \ (0.0038)$	$0.9374 \ (0.0077)$	$0.0158 \ (0.0009)$	991
RP(9)	-0.0986	0.0081	$0.0711 \ (0.0021)$	$0.4014 \ (0.0030)$	$0.0018 \ (0.0018)$	$0.1662 \ (0.0024)$	563
RP(P)	-0.4670	0.0131	$0.1111 \ (0.0025)$	$0.0330 \ (0.0035)$	$0.9520 \ (0.0068)$	$0.0134 \ (0.0006)$	1000
FP(W)	-0.4261	0.0126	$0.0982 \ (0.0022)$	$0.0739 \ (0.0031)$	$0.9322 \ (0.0081)$	$0.0151 \ (0.0006)$	973
FP (k=10)	-0.2923	0.0116	$0.0953 \ (0.0021)$	$0.2077 \ (0.0030)$	$0.5226 \ (0.0158)$	$0.0522 \ (0.0013)$	997
FP (k=10000)	-0.4264	0.0095	0.1007 (0.0023)	$0.0736 \ (0.0032)$	0.8715 (0.0106)	$0.0156 \ (0.0007)$	996

Table 43: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.5126	0.0115	0.1095 (0.0025)	-0.0126 (0.0035)	$0.9406 \; (0.0075)$	$0.0121 \ (0.0005)$	993
Exp	-0.4787	0.0110	0.1002 (0.0022)	0.0213 (0.0032)	0.9600 (0.0062)	$0.0105 \ (0.0005)$	1000
Weibull	-0.5380	0.0121	$0.1153 \ (0.0026)$	-0.0380 (0.0036)	0.9230 (0.0084)	0.0147 (0.0007)	1000
Gompertz		_		_	_	_	0
RP(3)	-0.5226	0.0119	$0.1124 \ (0.0025)$	-0.0226 (0.0036)	$0.9320 \ (0.0080)$	$0.0131\ (0.0006)$	1000
RP(5)	-0.5212	0.0119	$0.1117 \ (0.0025)$	-0.0212 (0.0035)	$0.9350 \ (0.0078)$	$0.0129 \ (0.0006)$	1000
RP(9)	-0.5199	0.0118	$0.1114 \ (0.0025)$	-0.0199 (0.0035)	$0.9350 \ (0.0078)$	$0.0128 \ (0.0006)$	1000
RP(P)	-0.5188	0.0118	$0.1112 \ (0.0025)$	-0.0188 (0.0035)	$0.9390 \ (0.0076)$	$0.0127 \ (0.0006)$	1000
FP(W)	-0.5382	0.0121	$0.1152 \ (0.0026)$	-0.0382 (0.0036)	$0.9228 \; (0.0085)$	$0.0147 \ (0.0007)$	997
FP (k=10)	-0.4746	0.0105	$0.1000 \ (0.0022)$	$0.0254 \ (0.0032)$	$0.9535 \ (0.0067)$	$0.0106 \ (0.0005)$	989
FP (k=10000)	-0.3982	0.0088	$0.1287 \ (0.0455)$	$0.1018 \ (0.0576)$	$0.8000 \ (0.1789)$	$0.0236 \ (0.0126)$	5
Model frailty: I	Normal						
Cox	-0.4009	0.0105	0.0889 (0.0021)	$0.0991 \ (0.0029)$	0.8817 (0.0105)	0.0177(0.0007)	938
Exp	-0.4481	0.0116	0.1000 (0.0024)	$0.0519 \ (0.0034)$	$0.9434 \ (0.0079)$	0.0127 (0.0006)	866
Weibull	-0.4875	0.0125	$0.1096 \ (0.0027)$	$0.0125 \ (0.0038)$	$0.9574 \ (0.0069)$	$0.0121 \ (0.0006)$	845
Gompertz		_					0
RP(3)	-0.4755	0.0119	$0.1080 \ (0.0024)$	$0.0245 \ (0.0034)$	$0.9440 \ (0.0073)$	$0.0123 \ (0.0005)$	1000
RP(5)	-0.4793	0.0119	$0.1084 \ (0.0024)$	$0.0207 \ (0.0034)$	$0.9450 \ (0.0072)$	$0.0122 \ (0.0005)$	1000
RP(9)	-0.4801	0.0119	$0.1078 \ (0.0024)$	$0.0199 \ (0.0034)$	$0.9440 \ (0.0073)$	$0.0120 \ (0.0005)$	1000
RP(P)	-0.4791	0.0118	$0.1081 \ (0.0024)$	$0.0209 \ (0.0034)$	$0.9380 \ (0.0076)$	$0.0121 \ (0.0005)$	1000
FP(W)	-0.4465	0.0116	$0.0996 \ (0.0022)$	$0.0535 \ (0.0032)$	$0.9369 \ (0.0078)$	$0.0128 \ (0.0005)$	983
FP (k=10)	-0.3323	0.0102	$0.0861 \ (0.0019)$	$0.1677 \ (0.0027)$	$0.6210 \ (0.0153)$	$0.0355 \ (0.0010)$	1000
FP (k=10000)	-0.4019	0.0090	$0.0908 \; (0.0020)$	$0.0981 \ (0.0029)$	$0.8318 \ (0.0118)$	$0.0179 \ (0.0007)$	999

Table 44: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.5109	0.0118	$0.1113 \ (0.0025)$	-0.0109 (0.0035)	$0.9437 \ (0.0073)$	$0.0125 \ (0.0006)$	994
Exp	-0.3169	0.0093	$0.0715 \ (0.0016)$	$0.1831 \ (0.0023)$	$0.5420 \ (0.0158)$	$0.0386 \ (0.0009)$	1000
Weibull	-0.5077	0.0120	$0.1112 \ (0.0025)$	-0.0077 (0.0035)	$0.9550 \ (0.0066)$	$0.0124 \ (0.0006)$	1000
Gompertz	-0.3171	0.0094	0.0597 (0.0039)	$0.1829 \ (0.0055)$	$0.5462 \ (0.0456)$	$0.0370 \ (0.0021)$	119
RP(3)	-0.5095	0.0119	$0.1131 \ (0.0032)$	-0.0095 (0.0045)	$0.9429 \ (0.0092)$	$0.0129 \ (0.0008)$	630
RP(5)	-0.5140	0.0120	$0.1113 \ (0.0025)$	-0.0140 (0.0035)	$0.9504 \ (0.0069)$	$0.0126 \ (0.0006)$	988
RP(9)	-0.5136	0.0120	$0.1120 \ (0.0025)$	-0.0136 (0.0035)	$0.9470 \ (0.0071)$	$0.0127 \ (0.0006)$	1000
RP(P)	-0.5079	0.0119	$0.1107 \ (0.0025)$	-0.0079 (0.0035)	$0.9480 \ (0.0070)$	$0.0123 \ (0.0006)$	1000
FP(W)	-0.5077	0.0120	$0.1112 \ (0.0025)$	-0.0077 (0.0035)	$0.9550 \ (0.0066)$	$0.0124 \ (0.0006)$	1000
FP (k=10)	-0.3173	0.0098	$0.1113 \ (0.0025)$	$0.1827 \ (0.0036)$	$0.4738 \ (0.0160)$	$0.0458 \ (0.0012)$	973
FP (k=10000)	-0.3028	0.0072	$0.0693 \ (0.0017)$	$0.1972 \ (0.0024)$	$0.3362 \ (0.0165)$	$0.0437 \ (0.0010)$	824
Model frailty: I	Normal						
Cox	-0.3962	0.0107	$0.0921 \ (0.0021)$	$0.1038 \ (0.0030)$	$0.8487 \ (0.0116)$	$0.0193 \ (0.0008)$	952
Exp	-0.3015	0.0099	$0.0736 \ (0.0017)$	$0.1985 \ (0.0024)$	$0.4814 \ (0.0163)$	$0.0448 \ (0.0010)$	943
Weibull	-0.4649	0.0125	$0.1085 \ (0.0026)$	$0.0351 \ (0.0036)$	$0.9502 \ (0.0072)$	$0.0130 \ (0.0006)$	904
Gompertz	-0.2911	0.0100	$0.0665 \ (0.0052)$	$0.2089 \ (0.0073)$	$0.4578 \ (0.0547)$	$0.0480 \ (0.0033)$	83
RP(3)	-0.4014	0.0111	$0.1519 \ (0.0035)$	$0.0986 \ (0.0050)$	$0.7681 \ (0.0139)$	$0.0328 \ (0.0017)$	923
RP(5)	-0.4696	0.0121	$0.1144 \ (0.0026)$	$0.0304 \ (0.0036)$	$0.9339 \ (0.0079)$	$0.0140 \ (0.0008)$	999
RP(9)	-0.4738	0.0121	$0.1097 \ (0.0025)$	$0.0262 \ (0.0035)$	$0.9390 \ (0.0076)$	$0.0127 \ (0.0006)$	1000
RP(P)	-0.4708	0.0120	$0.1086 \ (0.0024)$	$0.0292 \ (0.0034)$	$0.9430 \ (0.0073)$	$0.0126 \ (0.0006)$	1000
FP(W)	-0.4200	0.0116	$0.0980 \ (0.0022)$	$0.0800 \ (0.0031)$	$0.9039 \ (0.0094)$	$0.0160 \ (0.0007)$	978
FP (k=10)	-0.2123	0.0104	$0.0900 \ (0.0020)$	$0.2877 \ (0.0029)$	$0.1551 \ (0.0115)$	$0.0909 \ (0.0017)$	993
FP (k=10000)	-0.2752	0.0084	$0.0691 \ (0.0015)$	$0.2248 \ (0.0022)$	$0.2520 \ (0.0137)$	$0.0553 \ (0.0010)$	1000

Table 45: Simulation results for treatment effect, scenario with 750 clusters of 2 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline		Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	-0.5142	0.0125	$0.1140 \ (0.0026)$	-0.0142 (0.0036)	0.9515 (0.0068)	$0.0132 \ (0.0006)$	990
Exp	-0.5561	0.0129	$0.1217 \ (0.0027)$	-0.0561 (0.0038)	$0.8960 \ (0.0097)$	$0.0180 \ (0.0008)$	1000
Weibull	-0.5563	0.0134	$0.1238 \ (0.0028)$	-0.0563 (0.0039)	$0.8980 \ (0.0096)$	$0.0185 \ (0.0008)$	1000
Gompertz		_					0
RP(3)	-0.5329	0.0130	$0.1196 \ (0.0027)$	-0.0329 (0.0038)	$0.9310 \ (0.0080)$	$0.0154 \ (0.0007)$	1000
RP(5)	-0.5345	0.0130	$0.1183\ (0.0026)$	-0.0345 (0.0037)	0.9399 (0.0075)	$0.0152 \ (0.0007)$	998
RP(9)	-0.5280	0.0129	$0.0879 \ (0.0146)$	-0.0280 (0.0202)	1.0000 (0.0000)	$0.0081 \ (0.0023)$	19
RP(P)	-0.5336	0.0130	$0.1178 \ (0.0026)$	-0.0336 (0.0037)	$0.9390 \ (0.0076)$	$0.0150 \ (0.0007)$	1000
FP(W)	-0.5563	0.0134	$0.1238 \ (0.0028)$	-0.0563 (0.0039)	$0.8980 \ (0.0096)$	$0.0185 \ (0.0008)$	1000
FP (k=10)	-0.5370	0.0117	$0.1173 \ (0.0026)$	-0.0370 (0.0037)	$0.9096 \ (0.0091)$	$0.0151 \ (0.0007)$	996
FP (k=10000)		_	_	_			0
Model frailty: I	Vormal						
Cox	-0.3890	0.0113	$0.0929 \ (0.0021)$	$0.1110 \ (0.0029)$	$0.8507 \ (0.0113)$	$0.0209 \ (0.0008)$	998
Exp	-0.4997	0.0135	0.1117 (0.0038)	$0.0003 \ (0.0053)$	$0.9571 \ (0.0096)$	$0.0124 \ (0.0009)$	443
Weibull	-0.4831	0.0136	$0.1142 \ (0.0041)$	$0.0169 \ (0.0058)$	$0.9562 \ (0.0104)$	$0.0133 \ (0.0010)$	388
Gompertz		_		_	_		0
RP(3)	-0.4679	0.0128	$0.1139 \ (0.0025)$	$0.0321 \ (0.0036)$	$0.9450 \ (0.0072)$	$0.0140 \ (0.0006)$	1000
RP(5)	-0.4767	0.0129	$0.1137 \ (0.0025)$	$0.0233 \ (0.0036)$	$0.9459 \ (0.0072)$	$0.0135 \ (0.0006)$	999
RP(9)	-0.0954	0.0080	$0.0765 \ (0.0025)$	$0.4046 \ (0.0036)$	$0.0022 \ (0.0022)$	$0.1696 \ (0.0030)$	451
RP(P)	-0.4735	0.0129	$0.1139 \ (0.0025)$	$0.0265 \ (0.0036)$	$0.9490 \ (0.0070)$	$0.0137 \ (0.0006)$	1000
FP (W)	-0.4396	0.0125	$0.1038 \ (0.0024)$	$0.0604 \ (0.0033)$	$0.9362 \ (0.0078)$	$0.0144 \ (0.0006)$	972
FP (k=10)	-0.3372	0.0114	0.0989 (0.0022)	$0.1628 \ (0.0031)$	$0.6827 \ (0.0147)$	$0.0363 \ (0.0011)$	999
FP (k=10000)	-0.4385	0.0096	0.1040 (0.0023)	0.0615 (0.0033)	0.8947 (0.0097)	0.0146 (0.0006)	997

Table 46: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 0.25, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.5006	0.0017	$0.0414 \ (0.0009)$	-0.0006 (0.0013)	$0.9543 \ (0.0067)$	0.0017 (0.0001)	985
Exp	-0.5005	0.0017	$0.0414 \ (0.0009)$	-0.0005 (0.0013)	$0.9460 \ (0.0071)$	0.0017 (0.0001)	1000
Weibull	-0.5010	0.0017	$0.0414 \ (0.0009)$	-0.0010 (0.0013)	$0.9500 \ (0.0069)$	$0.0017 \ (0.0001)$	1000
Gompertz	-0.4995	0.0017	$0.0416 \ (0.0013)$	$0.0005 \ (0.0018)$	$0.9434 \ (0.0099)$	$0.0017 \ (0.0001)$	548
RP(3)	-0.5007	0.0017	$0.0414 \ (0.0009)$	-0.0007 (0.0013)	$0.9550 \ (0.0066)$	$0.0017 \ (0.0001)$	999
RP(5)	-0.5007	0.0017	$0.0414 \ (0.0009)$	-0.0007 (0.0013)	$0.9540 \ (0.0066)$	$0.0017 \ (0.0001)$	1000
RP(9)	-0.5007	0.0017	$0.0414 \ (0.0009)$	-0.0007 (0.0013)	$0.9540 \ (0.0066)$	$0.0017 \ (0.0001)$	1000
RP(P)	-0.5008	0.0017	$0.0414 \ (0.0009)$	-0.0008 (0.0013)	$0.9510 \ (0.0068)$	$0.0017 \ (0.0001)$	1000
FP(W)	-0.5010	0.0017	$0.0414 \ (0.0009)$	-0.0010 (0.0013)	$0.9499 \ (0.0069)$	$0.0017 \ (0.0001)$	999
FP (k=10)	-0.4997	0.0017	$0.0414 \ (0.0009)$	$0.0003 \ (0.0013)$	$0.9510 \ (0.0068)$	$0.0017 \ (0.0001)$	1000
FP (k=10000)	-0.5002	0.0017	$0.0414 \ (0.0009)$	-0.0002 (0.0013)	$0.9490 \ (0.0070)$	$0.0017 \ (0.0001)$	1000
Model frailty: I	Normal						
Cox	-0.5007	0.0017	$0.0415 \ (0.0009)$	-0.0007 (0.0013)	$0.9530 \ (0.0067)$	$0.0017 \ (0.0001)$	999
Exp	-0.5005	0.0017	$0.0414 \ (0.0009)$	-0.0005 (0.0013)	$0.9450 \ (0.0072)$	$0.0017 \ (0.0001)$	1000
Weibull	-0.5010	0.0017	$0.0414 \ (0.0009)$	-0.0010 (0.0013)	$0.9500 \ (0.0069)$	$0.0017 \ (0.0001)$	1000
Gompertz	-0.5005	0.0017	$0.0414 \ (0.0012)$	-0.0005 (0.0017)	0.9399 (0.0100)	$0.0017 \ (0.0001)$	566
RP(3)	-0.5007	0.0017	$0.0414 \ (0.0009)$	-0.0007 (0.0013)	$0.9550 \ (0.0066)$	$0.0017 \ (0.0001)$	1000
RP(5)	-0.5007	0.0017	$0.0415 \ (0.0009)$	-0.0007 (0.0013)	$0.9540 \ (0.0066)$	$0.0017 \ (0.0001)$	1000
RP(9)	-0.5008	0.0017	$0.0414 \ (0.0009)$	-0.0008 (0.0013)	$0.9540 \ (0.0066)$	$0.0017 \ (0.0001)$	1000
RP(P)	-0.5009	0.0017	$0.0414 \ (0.0009)$	-0.0009 (0.0013)	$0.9520 \ (0.0068)$	$0.0017 \ (0.0001)$	1000
FP(W)	-0.5025	0.0017	$0.0410 \ (0.0011)$	$-0.0025 \ (0.0015)$	$0.9563 \ (0.0076)$	$0.0017 \ (0.0001)$	732
FP (k=10)	-0.4996	0.0017	$0.0418 \ (0.0010)$	$0.0004 \ (0.0013)$	$0.9473 \ (0.0072)$	$0.0017 \ (0.0001)$	968
FP (k=10000)	-0.5007	0.0016	$0.0419 \ (0.0009)$	-0.0007 (0.0013)	$0.9383 \ (0.0077)$	$0.0018 \; (0.0001)$	988

Table 47: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

	Avg. Estimate		Emp. SE	Bias	Coverage		N. Converged
Model frailty: 0	Gamma						
Cox	-0.4995	0.0020	$0.0424 \ (0.0010)$	0.0005 (0.0014)	$0.9572 \ (0.0065)$	0.0018 (0.0001)	982
Exp	-0.5473	0.0020	$0.0468 \ (0.0010)$	-0.0473 (0.0015)	$0.7970 \ (0.0127)$	$0.0044 \ (0.0002)$	1000
Weibull	-0.5003	0.0020	$0.0422 \ (0.0009)$	-0.0003 (0.0013)	$0.9590 \ (0.0063)$	$0.0018 \ (0.0001)$	1000
Gompertz	-0.5470	0.0020	$0.0460 \ (0.0015)$	-0.0470 (0.0022)	$0.7969 \ (0.0190)$	$0.0043 \ (0.0002)$	448
RP(3)	-0.4995	0.0020	$0.0422 \ (0.0009)$	$0.0005 \ (0.0013)$	$0.9600 \ (0.0062)$	$0.0018 \ (0.0001)$	1000
RP(5)	-0.4995	0.0020	$0.0422 \ (0.0009)$	$0.0005 \ (0.0013)$	$0.9590 \ (0.0063)$	$0.0018 \ (0.0001)$	1000
RP(9)	-0.4996	0.0020	$0.0422 \ (0.0009)$	$0.0004 \ (0.0013)$	$0.9580 \ (0.0063)$	$0.0018 \ (0.0001)$	1000
RP(P)	-0.4998	0.0020	$0.0422 \ (0.0009)$	$0.0002 \ (0.0013)$	$0.9600 \ (0.0062)$	$0.0018 \ (0.0001)$	1000
FP(W)	-0.5002	0.0020	$0.0421 \ (0.0009)$	-0.0002 (0.0013)	$0.9599 \ (0.0062)$	$0.0018 \ (0.0001)$	998
FP (k=10)	-0.4963	0.0020	$0.0424 \ (0.0009)$	$0.0037 \ (0.0013)$	$0.9620 \ (0.0061)$	$0.0018 \ (0.0001)$	999
FP (k=10000)	-0.5038	0.0019	$0.0432 \ (0.0010)$	-0.0038 (0.0014)	$0.9510 \ (0.0068)$	$0.0019 \ (0.0001)$	999
Model frailty: I	Normal						
Cox	-0.4996	0.0020	$0.0423 \ (0.0009)$	$0.0004 \ (0.0013)$	$0.9600 \ (0.0062)$	$0.0018 \ (0.0001)$	1000
Exp	-0.5474	0.0020	$0.0468 \ (0.0010)$	-0.0474 (0.0015)	$0.7990 \ (0.0127)$	$0.0044 \ (0.0002)$	1000
Weibull	-0.5004	0.0020	$0.0422 \ (0.0009)$	-0.0004 (0.0013)	$0.9590 \ (0.0063)$	$0.0018 \ (0.0001)$	1000
Gompertz	-0.5460	0.0020	$0.0463 \ (0.0016)$	-0.0460 (0.0022)	$0.8116 \ (0.0189)$	$0.0043 \ (0.0002)$	430
RP(3)	-0.4996	0.0020	$0.0422 \ (0.0009)$	$0.0004 \ (0.0013)$	$0.9610 \ (0.0061)$	$0.0018 \ (0.0001)$	1000
RP(5)	-0.4996	0.0020	$0.0423 \ (0.0009)$	$0.0004 \ (0.0013)$	$0.9600 \ (0.0062)$	$0.0018 \ (0.0001)$	1000
RP(9)	-0.4997	0.0020	$0.0423 \ (0.0009)$	$0.0003 \ (0.0013)$	$0.9600 \ (0.0062)$	$0.0018 \ (0.0001)$	1000
RP(P)	-0.4999	0.0020	$0.0422 \ (0.0009)$	$0.0001 \ (0.0013)$	$0.9600 \ (0.0062)$	$0.0018 \ (0.0001)$	1000
FP(W)	-0.5027	0.0020	$0.0421 \ (0.0010)$	-0.0027 (0.0015)	$0.9631 \ (0.0066)$	$0.0018 \ (0.0001)$	812
FP (k=10)	-0.4968	0.0020	$0.0427 \ (0.0010)$	$0.0032 \ (0.0014)$	$0.9540 \ (0.0067)$	$0.0018 \ (0.0001)$	979
FP (k=10000)	-0.5028	0.0019	0.0434 (0.0010)	-0.0028 (0.0014)	$0.9433 \ (0.0074)$	0.0019 (0.0001)	987

Table 48: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 0.25, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.5018	0.0015	0.0389 (0.0009)	-0.0018 (0.0012)	$0.9520 \ (0.0068)$	0.0015 (0.0001)	980
Exp	-0.4267	0.0015	$0.0332 \ (0.0007)$	$0.0733 \ (0.0010)$	$0.5290 \ (0.0158)$	0.0065 (0.0002)	1000
Weibull	-0.4789	0.0015	$0.0372 \ (0.0008)$	$0.0211 \ (0.0012)$	$0.9280 \ (0.0082)$	$0.0018 \ (0.0001)$	1000
Gompertz	-0.5017	0.0015	$0.0393 \ (0.0009)$	-0.0017 (0.0012)	0.9499 (0.0069)	0.0015 (0.0001)	999
RP(3)	-0.5015	0.0015	$0.0391 \ (0.0009)$	-0.0015 (0.0012)	$0.9540 \ (0.0066)$	0.0015 (0.0001)	1000
RP(5)	-0.5021	0.0015	$0.0391 \ (0.0009)$	-0.0021 (0.0012)	$0.9510 \ (0.0068)$	0.0015 (0.0001)	1000
RP(9)	-0.5022	0.0015	$0.0391 \ (0.0009)$	-0.0022 (0.0012)	$0.9520 \ (0.0068)$	0.0015 (0.0001)	1000
RP(P)	-0.4993	0.0015	$0.0389 \ (0.0009)$	$0.0007 \ (0.0012)$	$0.9510 \ (0.0068)$	0.0015 (0.0001)	1000
FP(W)	-0.4789	0.0015	$0.0372 \ (0.0008)$	$0.0211 \ (0.0012)$	$0.9280 \ (0.0082)$	$0.0018 \ (0.0001)$	1000
FP (k=10)	-0.5013	0.0015	$0.0391 \ (0.0009)$	-0.0013 (0.0012)	$0.9530 \ (0.0067)$	0.0015 (0.0001)	1000
FP (k=10000)	-0.4990	0.0015	$0.0389 \ (0.0009)$	$0.0010 \ (0.0012)$	$0.9470 \ (0.0071)$	$0.0015 \ (0.0001)$	1000
Model frailty: I	Normal						
Cox	-0.5022	0.0015	$0.0391 \ (0.0009)$	-0.0022 (0.0012)	$0.9510 \ (0.0068)$	$0.0015 \ (0.0001)$	1000
Exp	-0.4267	0.0015	$0.0332 \ (0.0007)$	$0.0733 \ (0.0010)$	$0.5280 \ (0.0158)$	$0.0065 \ (0.0002)$	1000
Weibull	-0.4789	0.0015	$0.0372 \ (0.0008)$	$0.0211 \ (0.0012)$	$0.9280 \ (0.0082)$	$0.0018 \ (0.0001)$	1000
Gompertz	-0.5016	0.0015	$0.0393 \ (0.0009)$	-0.0016 (0.0012)	$0.9510 \ (0.0068)$	$0.0015 \ (0.0001)$	999
RP(3)	-0.5015	0.0015	$0.0391 \ (0.0009)$	-0.0015 (0.0012)	$0.9540 \ (0.0066)$	$0.0015 \ (0.0001)$	1000
RP(5)	-0.5021	0.0015	$0.0391 \ (0.0009)$	-0.0021 (0.0012)	$0.9520 \ (0.0068)$	$0.0015 \ (0.0001)$	1000
RP(9)	-0.5022	0.0015	$0.0391 \ (0.0009)$	-0.0022 (0.0012)	$0.9510 \ (0.0068)$	0.0015 (0.0001)	1000
RP(P)	-0.4993	0.0015	$0.0389 \ (0.0009)$	$0.0007 \ (0.0012)$	$0.9520 \ (0.0068)$	$0.0015 \ (0.0001)$	1000
FP(W)	-0.4811	0.0015	0.0367 (0.0010)	$0.0189 \ (0.0014)$	$0.9390 \ (0.0093)$	0.0017 (0.0001)	656
FP (k=10)	-0.5012	0.0015	$0.0398 \; (0.0009)$	-0.0012 (0.0013)	$0.9480 \ (0.0072)$	$0.0016 \ (0.0001)$	962
FP (k=10000)	-0.4992	0.0013	0.0398 (0.0009)	0.0008 (0.0013)	$0.9257 \ (0.0084)$	0.0016 (0.0001)	983

Table 49: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.5015	0.0016	0.0396 (0.0009)	-0.0015 (0.0013)	$0.9452 \ (0.0072)$	$0.0016 \ (0.0001)$	986
Exp	-0.3956	0.0015	0.0317 (0.0007)	0.1044 (0.0010)	0.1810 (0.0122)	0.0119 (0.0002)	1000
Weibull	-0.5258	0.0016	$0.0417 \ (0.0009)$	-0.0258 (0.0013)	$0.8950 \ (0.0097)$	$0.0024 \ (0.0001)$	1000
Gompertz	-0.5033	0.0016	$0.0402 \ (0.0009)$	-0.0033 (0.0013)	$0.9400 \ (0.0075)$	$0.0016 \ (0.0001)$	1000
RP(3)	-0.5021	0.0016	$0.0396 \ (0.0009)$	-0.0021 (0.0013)	$0.9459 \ (0.0072)$	$0.0016 \ (0.0001)$	999
RP(5)	-0.5018	0.0016	0.0395 (0.0009)	-0.0018 (0.0012)	$0.9450 \ (0.0072)$	$0.0016 \ (0.0001)$	1000
RP(9)	-0.5019	0.0016	0.0395 (0.0009)	-0.0019 (0.0013)	$0.9450 \ (0.0072)$	$0.0016 \ (0.0001)$	1000
RP(P)	-0.5024	0.0016	$0.0396 \ (0.0009)$	-0.0024 (0.0013)	$0.9450 \ (0.0072)$	$0.0016 \ (0.0001)$	1000
FP(W)	-0.5258	0.0016	0.0417 (0.0009)	-0.0258 (0.0013)	$0.8949 \ (0.0097)$	$0.0024 \ (0.0001)$	999
FP (k=10)	-0.4975	0.0016	$0.0396 \ (0.0009)$	$0.0025 \ (0.0013)$	$0.9400 \ (0.0075)$	$0.0016 \ (0.0001)$	1000
FP (k=10000)	-0.5197	0.0016	$0.0473 \ (0.0011)$	-0.0197 (0.0015)	$0.8810 \ (0.0102)$	$0.0026 \ (0.0001)$	1000
Model frailty: I	Normal						
Cox	-0.5018	0.0016	$0.0395 \ (0.0009)$	-0.0018 (0.0012)	$0.9450 \ (0.0072)$	$0.0016 \ (0.0001)$	1000
Exp	-0.3956	0.0015	$0.0317 \ (0.0007)$	$0.1044 \ (0.0010)$	$0.1800 \ (0.0121)$	$0.0119 \ (0.0002)$	1000
Weibull	-0.5258	0.0016	$0.0416 \ (0.0009)$	-0.0258 (0.0013)	$0.8950 \ (0.0097)$	$0.0024 \ (0.0001)$	1000
Gompertz	-0.5033	0.0016	$0.0401 \ (0.0009)$	-0.0033 (0.0013)	$0.9389 \ (0.0076)$	$0.0016 \ (0.0001)$	998
RP(3)	-0.5021	0.0016	$0.0396 \ (0.0009)$	-0.0021 (0.0013)	$0.9460 \ (0.0071)$	$0.0016 \ (0.0001)$	1000
RP(5)	-0.5018	0.0016	$0.0395 \ (0.0009)$	-0.0018 (0.0012)	$0.9430 \ (0.0073)$	$0.0016 \ (0.0001)$	1000
RP(9)	-0.5019	0.0016	$0.0395 \ (0.0009)$	-0.0019 (0.0012)	$0.9440 \ (0.0073)$	$0.0016 \ (0.0001)$	1000
RP(P)	-0.5024	0.0016	$0.0395 \ (0.0009)$	-0.0024 (0.0013)	$0.9450 \ (0.0072)$	$0.0016 \ (0.0001)$	1000
FP(W)	-0.5279	0.0016	$0.0426 \ (0.0012)$	-0.0279 (0.0017)	$0.8792 \ (0.0127)$	$0.0026 \ (0.0001)$	662
FP (k=10)	-0.4972	0.0016	$0.0405 \ (0.0009)$	$0.0028 \ (0.0013)$	$0.9399 \ (0.0077)$	$0.0016 \ (0.0001)$	965
FP (k=10000)	-0.5236	0.0014	0.0454 (0.0010)	-0.0236 (0.0014)	0.8619 (0.0110)	0.0026 (0.0001)	985

Table 50: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.5011	0.0018	$0.0412\ (0.0009)$	-0.0011 (0.0013)	$0.9622 \ (0.0061)$	0.0017 (0.0001)	979
Exp	-0.5294	0.0018	$0.0435 \ (0.0010)$	-0.0294 (0.0014)	$0.8900 \ (0.0099)$	$0.0027 \ (0.0001)$	1000
Weibull	-0.5064	0.0018	$0.0416 \ (0.0009)$	-0.0064 (0.0013)	$0.9530 \ (0.0067)$	$0.0018 \ (0.0001)$	1000
Gompertz	-0.5322	0.0018	$0.0419 \ (0.0014)$	-0.0322 (0.0019)	$0.8841 \ (0.0146)$	$0.0028 \ (0.0002)$	483
RP(3)	-0.5014	0.0018	$0.0413 \ (0.0009)$	-0.0014 (0.0013)	$0.9610 \ (0.0061)$	$0.0017 \ (0.0001)$	1000
RP(5)	-0.5014	0.0018	$0.0413 \ (0.0009)$	-0.0014 (0.0013)	$0.9610 \ (0.0061)$	$0.0017 \ (0.0001)$	1000
RP(9)	-0.5015	0.0018	$0.0413 \ (0.0009)$	-0.0015 (0.0013)	$0.9610 \ (0.0061)$	$0.0017 \ (0.0001)$	1000
RP(P)	-0.5017	0.0018	$0.0413 \ (0.0009)$	-0.0017 (0.0013)	$0.9610 \ (0.0061)$	$0.0017 \ (0.0001)$	1000
FP(W)	-0.5063	0.0018	$0.0416 \ (0.0009)$	-0.0063 (0.0013)	$0.9529 \ (0.0067)$	$0.0018 \ (0.0001)$	998
FP (k=10)	-0.4996	0.0018	$0.0413 \ (0.0009)$	$0.0004 \ (0.0013)$	$0.9650 \ (0.0058)$	$0.0017 \ (0.0001)$	1000
FP (k=10000)	-0.4980	0.0018	$0.0411 \ (0.0009)$	$0.0020 \ (0.0013)$	$0.9620 \ (0.0060)$	$0.0017 \ (0.0001)$	1000
Model frailty: I	Normal						
Cox	-0.5015	0.0018	$0.0413 \ (0.0009)$	-0.0015 (0.0013)	$0.9610 \ (0.0061)$	0.0017 (0.0001)	1000
Exp	-0.5294	0.0018	$0.0434 \ (0.0010)$	-0.0294 (0.0014)	$0.8890 \ (0.0099)$	$0.0028 \ (0.0001)$	1000
Weibull	-0.5065	0.0018	$0.0416 \ (0.0009)$	-0.0065 (0.0013)	$0.9530 \ (0.0067)$	$0.0018 \ (0.0001)$	1000
Gompertz	-0.5311	0.0018	$0.0421 \ (0.0014)$	-0.0311 (0.0019)	$0.8887 \ (0.0143)$	$0.0027 \ (0.0002)$	485
RP(3)	-0.5015	0.0018	$0.0413 \ (0.0009)$	-0.0015 (0.0013)	$0.9610 \ (0.0061)$	$0.0017 \ (0.0001)$	1000
RP(5)	-0.5015	0.0018	$0.0413 \ (0.0009)$	-0.0015 (0.0013)	$0.9610 \ (0.0061)$	$0.0017 \ (0.0001)$	1000
RP(9)	-0.5015	0.0018	$0.0413 \ (0.0009)$	-0.0015 (0.0013)	$0.9610 \ (0.0061)$	$0.0017 \ (0.0001)$	1000
RP(P)	-0.5018	0.0018	$0.0413 \ (0.0009)$	-0.0018 (0.0013)	$0.9610 \ (0.0061)$	$0.0017 \ (0.0001)$	1000
FP(W)	-0.5078	0.0018	0.0417 (0.0011)	-0.0078 (0.0015)	$0.9579 \ (0.0072)$	$0.0018 \ (0.0001)$	784
FP (k=10)	-0.4996	0.0018	$0.0416 \ (0.0009)$	$0.0004 \ (0.0013)$	$0.9559 \ (0.0066)$	$0.0017 \ (0.0001)$	974
FP (k=10000)	-0.4985	0.0017	0.0414 (0.0009)	$0.0015 \ (0.0013)$	$0.9544 \ (0.0066)$	$0.0017 \ (0.0001)$	987

Table 51: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.25, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	-0.4996	0.0017	0.0391 (0.0009)	$0.0004 \ (0.0013)$	0.9599 (0.0063)	0.0015 (0.0001)	973
Exp	-0.4996	0.0016	0.0389 (0.0009)	0.0004 (0.0012)	$0.9540 \ (0.0066)$	0.0015 (0.0001)	1000
Weibull	-0.4998	0.0017	$0.0390 \ (0.0009)$	$0.0002 \ (0.0012)$	$0.9580 \ (0.0063)$	0.0015 (0.0001)	1000
Gompertz	-0.5004	0.0017	0.0385 (0.0012)	-0.0004 (0.0017)	$0.9564 \ (0.0089)$	0.0015 (0.0001)	528
RP(3)	-0.4994	0.0017	$0.0391 \ (0.0009)$	$0.0006 \ (0.0012)$	$0.9609 \ (0.0061)$	0.0015 (0.0001)	998
RP(5)	-0.4995	0.0017	$0.0391 \ (0.0009)$	$0.0005 \ (0.0012)$	$0.9600 \ (0.0062)$	0.0015 (0.0001)	1000
RP(9)	-0.4995	0.0017	$0.0391 \ (0.0009)$	0.0005 (0.0012)	$0.9600 \ (0.0062)$	0.0015 (0.0001)	1000
RP(P)	-0.4996	0.0017	$0.0391 \ (0.0009)$	$0.0004 \ (0.0012)$	$0.9570 \ (0.0064)$	0.0015 (0.0001)	1000
FP(W)	-0.4998	0.0017	$0.0390 \ (0.0009)$	$0.0002 \ (0.0012)$	$0.9580 \ (0.0063)$	0.0015 (0.0001)	999
FP (k=10)	-0.4985	0.0017	$0.0392 \ (0.0009)$	$0.0015 \ (0.0012)$	$0.9590 \ (0.0063)$	$0.0015 \ (0.0001)$	1000
FP (k=10000)	-0.4989	0.0016	$0.0391 \ (0.0009)$	$0.0011 \ (0.0012)$	$0.9580 \ (0.0063)$	$0.0015 \ (0.0001)$	1000
Model frailty: I	Normal						
Cox	-0.4995	0.0017	$0.0391 \ (0.0009)$	$0.0005 \ (0.0012)$	$0.9590 \ (0.0063)$	$0.0015 \ (0.0001)$	1000
Exp	-0.4996	0.0016	$0.0389 \ (0.0009)$	$0.0004 \ (0.0012)$	$0.9550 \ (0.0066)$	$0.0015 \ (0.0001)$	1000
Weibull	-0.4999	0.0017	$0.0390 \ (0.0009)$	$0.0001 \ (0.0012)$	$0.9570 \ (0.0064)$	$0.0015 \ (0.0001)$	1000
Gompertz	-0.4987	0.0017	$0.0385 \ (0.0012)$	$0.0013 \ (0.0016)$	$0.9494 \ (0.0093)$	$0.0015 \ (0.0001)$	553
RP(3)	-0.4995	0.0017	$0.0391 \ (0.0009)$	$0.0005 \ (0.0012)$	$0.9610 \ (0.0061)$	$0.0015 \ (0.0001)$	1000
RP(5)	-0.4996	0.0017	$0.0391 \ (0.0009)$	$0.0004 \ (0.0012)$	$0.9590 \ (0.0063)$	$0.0015 \ (0.0001)$	1000
RP(9)	-0.4996	0.0017	$0.0391 \ (0.0009)$	$0.0004 \ (0.0012)$	$0.9590 \ (0.0063)$	$0.0015 \ (0.0001)$	1000
RP(P)	-0.4997	0.0017	$0.0391 \ (0.0009)$	$0.0003 \ (0.0012)$	$0.9570 \ (0.0064)$	$0.0015 \ (0.0001)$	1000
FP (W)	-0.5020	0.0017	0.0397 (0.0010)	-0.0020 (0.0015)	$0.9547 \ (0.0077)$	$0.0016 \ (0.0001)$	729
FP (k=10)	-0.4981	0.0017	$0.0394 \ (0.0009)$	$0.0019 \ (0.0013)$	$0.9573 \ (0.0065)$	$0.0016 \ (0.0001)$	960
FP (k=10000)	-0.4996	0.0015	0.0396 (0.0009)	0.0004 (0.0013)	$0.9473 \ (0.0071)$	0.0016 (0.0001)	986

Table 52: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.5007	0.0019	$0.0439 \ (0.0010)$	-0.0007 (0.0014)	$0.9563 \ (0.0065)$	$0.0019 \ (0.0001)$	985
Exp	-0.5537	0.0019	$0.0486 \ (0.0011)$	$-0.0537 \ (0.0015)$	$0.7390 \ (0.0139)$	$0.0052 \ (0.0002)$	1000
Weibull	-0.5020	0.0019	$0.0437 \ (0.0010)$	-0.0020 (0.0014)	$0.9550 \ (0.0066)$	$0.0019 \ (0.0001)$	1000
Gompertz	-0.5534	0.0019	$0.0489 \ (0.0017)$	-0.0534 (0.0024)	$0.7494 \ (0.0215)$	$0.0052 \ (0.0003)$	407
RP(3)	-0.5010	0.0019	$0.0438 \ (0.0010)$	-0.0010 (0.0014)	$0.9560 \ (0.0065)$	$0.0019 \ (0.0001)$	999
RP(5)	-0.5011	0.0019	$0.0438 \ (0.0010)$	-0.0011 (0.0014)	$0.9560 \ (0.0065)$	$0.0019 \ (0.0001)$	1000
RP(9)	-0.5011	0.0019	$0.0438 \ (0.0010)$	-0.0011 (0.0014)	$0.9560 \ (0.0065)$	$0.0019 \ (0.0001)$	1000
RP(P)	-0.5014	0.0019	$0.0438 \ (0.0010)$	-0.0014 (0.0014)	$0.9540 \ (0.0066)$	$0.0019 \ (0.0001)$	1000
FP(W)	-0.5020	0.0019	$0.0437 \ (0.0010)$	-0.0020 (0.0014)	$0.9550 \ (0.0066)$	$0.0019 \ (0.0001)$	1000
FP (k=10)	-0.4979	0.0019	$0.0439 \ (0.0010)$	$0.0021 \ (0.0014)$	$0.9540 \ (0.0066)$	$0.0019 \ (0.0001)$	1000
FP (k=10000)	-0.5075	0.0018	$0.0449 \ (0.0010)$	-0.0075 (0.0014)	$0.9400 \ (0.0075)$	$0.0021 \ (0.0001)$	1000
Model frailty: I	Normal						
Cox	-0.5012	0.0019	$0.0438 \ (0.0010)$	-0.0012 (0.0014)	$0.9550 \ (0.0066)$	$0.0019 \ (0.0001)$	1000
Exp	-0.5538	0.0019	$0.0486 \ (0.0011)$	-0.0538 (0.0015)	$0.7390 \ (0.0139)$	$0.0053 \ (0.0002)$	1000
Weibull	-0.5020	0.0019	$0.0437 \ (0.0010)$	-0.0020 (0.0014)	$0.9550 \ (0.0066)$	$0.0019 \ (0.0001)$	999
Gompertz	-0.5527	0.0019	$0.0480 \ (0.0016)$	$-0.0527 \ (0.0023)$	$0.7454 \ (0.0210)$	$0.0051 \ (0.0003)$	432
RP(3)	-0.5011	0.0019	$0.0438 \ (0.0010)$	-0.0011 (0.0014)	$0.9560 \ (0.0065)$	$0.0019 \ (0.0001)$	1000
RP(5)	-0.5012	0.0019	$0.0438 \ (0.0010)$	-0.0012 (0.0014)	$0.9550 \ (0.0066)$	$0.0019 \ (0.0001)$	1000
RP(9)	-0.5012	0.0019	$0.0438 \ (0.0010)$	-0.0012 (0.0014)	$0.9550 \ (0.0066)$	$0.0019 \ (0.0001)$	1000
RP(P)	-0.5015	0.0019	$0.0438 \ (0.0010)$	-0.0015 (0.0014)	$0.9550 \ (0.0066)$	$0.0019 \ (0.0001)$	1000
FP(W)	-0.5021	0.0019	$0.0447 \ (0.0011)$	-0.0021 (0.0016)	$0.9505 \ (0.0076)$	$0.0020 \ (0.0001)$	808
FP (k=10)	-0.4980	0.0019	$0.0444 \ (0.0010)$	$0.0020 \ (0.0014)$	$0.9516 \ (0.0069)$	$0.0020 \ (0.0001)$	971
FP (k=10000)	-0.5061	0.0018	$0.0452 \ (0.0010)$	-0.0061 (0.0014)	$0.9325 \ (0.0080)$	$0.0021 \ (0.0001)$	993

Table 53: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.4983	0.0015	$0.0408 \; (0.0009)$	0.0017 (0.0013)	$0.9400 \ (0.0076)$	0.0017 (0.0001)	983
Exp	-0.4228	0.0015	$0.0338 \ (0.0008)$	$0.0772 \ (0.0011)$	$0.4580 \ (0.0158)$	$0.0071 \ (0.0002)$	1000
Weibull	-0.4749	0.0015	$0.0385 \ (0.0009)$	$0.0251 \ (0.0012)$	$0.8980 \ (0.0096)$	$0.0021 \ (0.0001)$	1000
Gompertz	-0.4981	0.0015	$0.0413 \ (0.0009)$	$0.0019 \ (0.0013)$	$0.9358 \ (0.0078)$	$0.0017 \ (0.0001)$	997
RP(3)	-0.4977	0.0015	$0.0406 \ (0.0009)$	$0.0023 \ (0.0013)$	$0.9400 \ (0.0075)$	$0.0017 \ (0.0001)$	1000
RP(5)	-0.4984	0.0015	$0.0407 \ (0.0009)$	$0.0016 \ (0.0013)$	$0.9410 \ (0.0075)$	$0.0017 \ (0.0001)$	1000
RP(9)	-0.4986	0.0015	$0.0407 \ (0.0009)$	$0.0014 \ (0.0013)$	$0.9410 \ (0.0075)$	$0.0017 \ (0.0001)$	1000
RP(P)	-0.4956	0.0015	$0.0404 \ (0.0009)$	$0.0044 \ (0.0013)$	$0.9410 \ (0.0075)$	$0.0017 \ (0.0001)$	1000
FP(W)	-0.4748	0.0015	$0.0384 \ (0.0009)$	$0.0252 \ (0.0012)$	$0.8998 \; (0.0095)$	$0.0021 \ (0.0001)$	998
FP (k=10)	-0.4977	0.0015	$0.0407 \ (0.0009)$	$0.0023 \ (0.0013)$	$0.9390 \ (0.0076)$	$0.0017 \ (0.0001)$	1000
FP (k=10000)	-0.4954	0.0014	$0.0404 \ (0.0009)$	$0.0046 \ (0.0013)$	$0.9280 \ (0.0082)$	$0.0016 \ (0.0001)$	1000
Model frailty: I	Normal						
Cox	-0.4986	0.0015	$0.0407 \ (0.0009)$	$0.0014 \ (0.0013)$	$0.9410 \ (0.0075)$	$0.0017 \ (0.0001)$	1000
Exp	-0.4228	0.0015	$0.0338 \ (0.0008)$	0.0772 (0.0011)	$0.4595 \ (0.0158)$	$0.0071 \ (0.0002)$	999
Weibull	-0.4749	0.0015	$0.0385 \ (0.0009)$	$0.0251 \ (0.0012)$	$0.8980 \ (0.0096)$	$0.0021 \ (0.0001)$	1000
Gompertz	-0.4981	0.0015	$0.0413 \ (0.0009)$	$0.0019 \ (0.0013)$	$0.9367 \ (0.0077)$	$0.0017 \ (0.0001)$	995
RP(3)	-0.4977	0.0015	$0.0406 \ (0.0009)$	$0.0023 \ (0.0013)$	$0.9400 \ (0.0075)$	0.0017 (0.0001)	1000
RP(5)	-0.4984	0.0015	$0.0407 \ (0.0009)$	$0.0016 \ (0.0013)$	$0.9400 \ (0.0075)$	$0.0017 \ (0.0001)$	1000
RP(9)	-0.4986	0.0015	$0.0407 \ (0.0009)$	$0.0014 \ (0.0013)$	$0.9410 \ (0.0075)$	$0.0017 \ (0.0001)$	1000
RP(P)	-0.4957	0.0015	$0.0404 \ (0.0009)$	$0.0043 \ (0.0013)$	$0.9410 \ (0.0075)$	0.0017 (0.0001)	1000
FP (W)	-0.4770	0.0015	$0.0394 \ (0.0011)$	$0.0230 \ (0.0015)$	$0.9066 \ (0.0114)$	$0.0021 \ (0.0001)$	653
FP (k=10)	-0.4978	0.0015	$0.0412 \ (0.0009)$	$0.0022 \ (0.0013)$	$0.9363 \ (0.0079)$	$0.0017 \ (0.0001)$	957
FP (k=10000)	-0.4971	0.0013	$0.0410 \ (0.0009)$	$0.0029 \ (0.0013)$	$0.9156 \ (0.0089)$	$0.0017 \ (0.0001)$	983

Table 54: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

respectively.							
Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	-0.4996	0.0015	0.0395 (0.0009)	$0.0004 \ (0.0013)$	$0.9489 \ (0.0070)$	$0.0016 \ (0.0001)$	978
Exp	-0.3862	0.0015	$0.0317 \ (0.0007)$	$0.1138 \ (0.0010)$	$0.1120 \ (0.0100)$	$0.0139 \ (0.0002)$	1000
Weibull	-0.5243	0.0015	$0.0416 \ (0.0009)$	-0.0243 (0.0013)	$0.8870 \ (0.0100)$	$0.0023 \ (0.0001)$	1000
Gompertz	-0.4999	0.0015	$0.0401 \ (0.0009)$	$0.0001 \ (0.0013)$	$0.9440 \ (0.0073)$	$0.0016 \ (0.0001)$	1000
RP(3)	-0.4994	0.0015	$0.0396 \ (0.0009)$	$0.0006 \ (0.0013)$	$0.9470 \ (0.0071)$	$0.0016 \ (0.0001)$	1000
RP(5)	-0.4994	0.0015	0.0395 (0.0009)	$0.0006 \ (0.0013)$	$0.9498 \ (0.0069)$	$0.0016 \ (0.0001)$	996
RP(9)	-0.4994	0.0015	0.0395 (0.0009)	$0.0006 \ (0.0012)$	$0.9490 \ (0.0070)$	$0.0016 \ (0.0001)$	1000
RP(P)	-0.4999	0.0015	$0.0396 \ (0.0009)$	$0.0001 \ (0.0013)$	$0.9470 \ (0.0071)$	$0.0016 \ (0.0001)$	1000
FP(W)	-0.5243	0.0015	$0.0416 \ (0.0009)$	-0.0243 (0.0013)	$0.8869 \ (0.0100)$	$0.0023 \ (0.0001)$	999
FP (k=10)	-0.4945	0.0015	$0.0396 \ (0.0009)$	$0.0055 \ (0.0013)$	$0.9440 \ (0.0073)$	$0.0016 \ (0.0001)$	1000
FP (k=10000)	-0.5370	0.0015	$0.0437 \ (0.0011)$	-0.0370 (0.0016)	$0.7931 \ (0.0145)$	$0.0033 \ (0.0001)$	778
Model frailty: I	Normal						
Cox	-0.4994	0.0015	0.0395 (0.0009)	$0.0006 \ (0.0013)$	$0.9470 \ (0.0071)$	$0.0016 \ (0.0001)$	1000
Exp	-0.3862	0.0015	0.0317 (0.0007)	$0.1138 \ (0.0010)$	$0.1120 \ (0.0100)$	$0.0140 \ (0.0002)$	1000
Weibull	-0.5243	0.0015	$0.0416 \ (0.0009)$	-0.0243 (0.0013)	$0.8870 \ (0.0100)$	$0.0023 \ (0.0001)$	1000
Gompertz	-0.4998	0.0015	$0.0401 \ (0.0009)$	$0.0002 \ (0.0013)$	$0.9430 \ (0.0073)$	$0.0016 \ (0.0001)$	1000
RP(3)	-0.4994	0.0015	$0.0396 \ (0.0009)$	$0.0006 \ (0.0013)$	$0.9480 \ (0.0070)$	$0.0016 \ (0.0001)$	1000
RP(5)	-0.4993	0.0015	$0.0395 \ (0.0009)$	$0.0007 \ (0.0013)$	$0.9480 \ (0.0070)$	$0.0016 \ (0.0001)$	1000
RP(9)	-0.4995	0.0015	0.0395 (0.0009)	$0.0005 \ (0.0013)$	$0.9470 \ (0.0071)$	$0.0016 \ (0.0001)$	1000
RP(P)	-0.4999	0.0015	$0.0396 \ (0.0009)$	$0.0001 \ (0.0013)$	$0.9460 \ (0.0071)$	$0.0016 \ (0.0001)$	1000
FP(W)	-0.5253	0.0015	$0.0423 \ (0.0012)$	-0.0253 (0.0017)	$0.8874 \ (0.0131)$	$0.0024 \ (0.0001)$	586
FP (k=10)	-0.4948	0.0015	$0.0401 \ (0.0009)$	$0.0052 \ (0.0013)$	$0.9440 \ (0.0074)$	$0.0016 \ (0.0001)$	964
FP (k=10000)	-0.5282	0.0013	0.0454 (0.0010)	-0.0282 (0.0014)	$0.8079 \ (0.0125)$	$0.0029 \ (0.0001)$	989

Table 55: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.5012	0.0018	$0.0404 \ (0.0009)$	-0.0012 (0.0013)	0.9595 (0.0063)	$0.0016 \ (0.0001)$	988
Exp	-0.5302	0.0017	$0.0426 \ (0.0010)$	-0.0302 (0.0013)	$0.8850 \ (0.0101)$	$0.0027 \ (0.0001)$	1000
Weibull	-0.5059	0.0018	$0.0407 \ (0.0009)$	-0.0059 (0.0013)	$0.9540 \ (0.0066)$	$0.0017 \ (0.0001)$	1000
Gompertz	-0.5299	0.0018	$0.0423 \ (0.0014)$	-0.0299 (0.0019)	$0.8987 \ (0.0139)$	$0.0027 \ (0.0002)$	474
RP(3)	-0.5011	0.0018	$0.0404 \ (0.0009)$	-0.0011 (0.0013)	$0.9579 \ (0.0064)$	$0.0016 \ (0.0001)$	998
RP(5)	-0.5013	0.0018	$0.0404 \ (0.0009)$	-0.0013 (0.0013)	$0.9580 \ (0.0063)$	$0.0016 \ (0.0001)$	1000
RP(9)	-0.5014	0.0018	$0.0404 \ (0.0009)$	-0.0014 (0.0013)	$0.9600 \ (0.0062)$	$0.0016 \ (0.0001)$	1000
RP(P)	-0.5016	0.0018	$0.0404 \ (0.0009)$	-0.0016 (0.0013)	$0.9570 \ (0.0064)$	$0.0016 \ (0.0001)$	1000
FP(W)	-0.5059	0.0018	$0.0407 \ (0.0009)$	-0.0059 (0.0013)	$0.9540 \ (0.0066)$	$0.0017 \ (0.0001)$	1000
FP (k=10)	-0.4996	0.0018	$0.0404 \ (0.0009)$	$0.0004 \ (0.0013)$	$0.9560 \ (0.0065)$	$0.0016 \ (0.0001)$	1000
FP (k=10000)	-0.4977	0.0017	$0.0402 \ (0.0009)$	$0.0023 \ (0.0013)$	$0.9550 \ (0.0066)$	$0.0016 \ (0.0001)$	1000
Model frailty: I	Normal						
Cox	-0.5014	0.0018	$0.0404 \ (0.0009)$	-0.0014 (0.0013)	$0.9600 \ (0.0062)$	$0.0016 \ (0.0001)$	1000
Exp	-0.5302	0.0017	$0.0426 \ (0.0010)$	-0.0302 (0.0013)	$0.8838 \ (0.0101)$	0.0027 (0.0001)	998
Weibull	-0.5060	0.0018	0.0407 (0.0009)	-0.0060 (0.0013)	$0.9550 \ (0.0066)$	0.0017 (0.0001)	1000
Gompertz	-0.5288	0.0018	$0.0418 \ (0.0014)$	-0.0288 (0.0019)	$0.9011 \ (0.0137)$	$0.0026 \ (0.0001)$	475
RP(3)	-0.5013	0.0018	$0.0404 \ (0.0009)$	-0.0013 (0.0013)	$0.9570 \ (0.0064)$	$0.0016 \ (0.0001)$	1000
RP(5)	-0.5014	0.0018	$0.0404 \ (0.0009)$	-0.0014 (0.0013)	$0.9590 \ (0.0063)$	$0.0016 \ (0.0001)$	1000
RP(9)	-0.5015	0.0018	$0.0404 \ (0.0009)$	-0.0015 (0.0013)	$0.9590 \ (0.0063)$	$0.0016 \ (0.0001)$	1000
RP(P)	-0.5017	0.0018	$0.0405 \ (0.0009)$	-0.0017 (0.0013)	$0.9580 \ (0.0063)$	$0.0016 \ (0.0001)$	1000
FP(W)	-0.5075	0.0018	$0.0413 \ (0.0010)$	-0.0075 (0.0015)	$0.9574 \ (0.0073)$	$0.0018 \ (0.0001)$	775
FP (k=10)	-0.4993	0.0018	$0.0411 \ (0.0009)$	$0.0007 \ (0.0013)$	$0.9549 \ (0.0066)$	$0.0017 \ (0.0001)$	976
FP (k=10000)	-0.4983	0.0016	0.0408 (0.0009)	$0.0017 \ (0.0013)$	$0.9490 \ (0.0070)$	$0.0017 \ (0.0001)$	980

Table 56: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.25, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	-0.4998	0.0021	$0.0446 \ (0.0010)$	$0.0002 \ (0.0014)$	$0.9576 \ (0.0064)$	$0.0020 \ (0.0001)$	991
Exp	-0.5001	0.0021	$0.0438 \ (0.0010)$	-0.0001 (0.0014)	$0.9660 \ (0.0057)$	$0.0019 \ (0.0001)$	1000
Weibull	-0.5011	0.0021	$0.0445 \ (0.0010)$	-0.0011 (0.0014)	$0.9600 \ (0.0062)$	$0.0020 \ (0.0001)$	1000
Gompertz	-0.5028	0.0021	$0.0444 \ (0.0016)$	-0.0028 (0.0022)	$0.9627 \ (0.0095)$	$0.0020 \ (0.0001)$	402
RP(3)	-0.4995	0.0021	$0.0445 \ (0.0010)$	$0.0005 \ (0.0014)$	$0.9590 \ (0.0063)$	$0.0020 \ (0.0001)$	1000
RP(5)	-0.4999	0.0021	$0.0446 \ (0.0010)$	$0.0001 \ (0.0014)$	$0.9580 \ (0.0063)$	$0.0020 \ (0.0001)$	1000
RP(9)	-0.5001	0.0021	$0.0446 \ (0.0010)$	-0.0001 (0.0014)	$0.9580 \ (0.0063)$	$0.0020 \ (0.0001)$	1000
RP(P)	-0.5006	0.0021	$0.0446 \ (0.0010)$	-0.0006 (0.0014)	$0.9610 \ (0.0061)$	$0.0020 \ (0.0001)$	1000
FP(W)	-0.5011	0.0021	$0.0445 \ (0.0010)$	-0.0011 (0.0014)	$0.9600 \ (0.0062)$	$0.0020 \ (0.0001)$	1000
FP (k=10)	-0.4990	0.0021	$0.0445 \ (0.0010)$	$0.0010 \ (0.0014)$	$0.9570 \ (0.0064)$	$0.0020 \ (0.0001)$	1000
FP (k=10000)	-0.4982	0.0021	$0.0440 \ (0.0010)$	$0.0018 \ (0.0014)$	$0.9549 \ (0.0066)$	$0.0019 \ (0.0001)$	998
Model frailty: I	Normal						
Cox	-0.5002	0.0021	$0.0446 \ (0.0010)$	-0.0002 (0.0014)	$0.9580 \ (0.0063)$	$0.0020 \ (0.0001)$	999
Exp	-0.5002	0.0021	$0.0436 \ (0.0010)$	-0.0002 (0.0014)	$0.9668 \; (0.0057)$	$0.0019 \ (0.0001)$	995
Weibull	-0.5012	0.0021	$0.0445 \ (0.0010)$	-0.0012 (0.0014)	$0.9598 \ (0.0062)$	$0.0020 \ (0.0001)$	995
Gompertz	-0.4981	0.0021	$0.0447 \ (0.0016)$	$0.0019 \ (0.0022)$	$0.9583 \ (0.0099)$	$0.0020 \ (0.0002)$	408
RP(3)	-0.4996	0.0021	$0.0445 \ (0.0010)$	$0.0004 \ (0.0014)$	$0.9590 \ (0.0063)$	$0.0020 \ (0.0001)$	1000
RP(5)	-0.5001	0.0021	$0.0446 \ (0.0010)$	-0.0001 (0.0014)	$0.9580 \ (0.0063)$	$0.0020 \ (0.0001)$	1000
RP(9)	-0.5002	0.0021	$0.0446 \ (0.0010)$	-0.0002 (0.0014)	$0.9580 \ (0.0063)$	$0.0020 \ (0.0001)$	1000
RP(P)	-0.5007	0.0021	$0.0446 \ (0.0010)$	-0.0007 (0.0014)	$0.9610 \ (0.0061)$	$0.0020 \ (0.0001)$	1000
FP(W)	-0.5022	0.0021	$0.0451 \ (0.0013)$	-0.0022 (0.0018)	$0.9548 \ (0.0084)$	$0.0020 \ (0.0001)$	619
FP (k=10)	-0.4980	0.0021	$0.0461 \ (0.0011)$	$0.0020 \ (0.0015)$	$0.9418 \ (0.0078)$	$0.0021 \ (0.0001)$	893
FP (k=10000)	-0.4978	0.0019	$0.0445 \ (0.0010)$	$0.0022 \ (0.0015)$	$0.9390 \ (0.0078)$	$0.0020 \ (0.0001)$	935

Table 57: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	-0.4983	0.0023	$0.0480 \ (0.0011)$	$0.0017 \ (0.0015)$	0.9507 (0.0069)	$0.0023 \ (0.0001)$	994
Exp	-0.5870	0.0023	$0.0570 \ (0.0013)$	-0.0870 (0.0018)	$0.5370 \ (0.0158)$	$0.0108 \ (0.0003)$	1000
Weibull	-0.5023	0.0023	$0.0481 \ (0.0011)$	-0.0023 (0.0015)	$0.9510 \ (0.0068)$	$0.0023 \ (0.0001)$	1000
Gompertz	-0.5878	0.0023	$0.0567 \ (0.0021)$	-0.0878 (0.0030)	$0.5192 \ (0.0262)$	$0.0109 \ (0.0005)$	364
RP(3)	-0.4981	0.0023	$0.0478 \ (0.0011)$	$0.0019 \ (0.0015)$	$0.9510 \ (0.0068)$	$0.0023 \ (0.0001)$	1000
RP(5)	-0.4987	0.0023	$0.0479 \ (0.0011)$	$0.0013 \ (0.0015)$	$0.9490 \ (0.0070)$	$0.0023 \ (0.0001)$	1000
RP(9)	-0.4989	0.0023	$0.0479 \ (0.0011)$	$0.0011 \ (0.0015)$	$0.9500 \ (0.0069)$	$0.0023 \ (0.0001)$	1000
RP(P)	-0.4989	0.0023	$0.0479 \ (0.0011)$	$0.0011 \ (0.0015)$	$0.9500 \ (0.0069)$	$0.0023 \ (0.0001)$	1000
FP(W)	-0.5023	0.0023	$0.0481 \ (0.0011)$	-0.0023 (0.0015)	$0.9510 \ (0.0068)$	$0.0023 \ (0.0001)$	1000
FP (k=10)	-0.5010	0.0023	$0.0492 \ (0.0011)$	-0.0010 (0.0016)	$0.9470 \ (0.0071)$	$0.0024 \ (0.0001)$	1000
FP (k=10000)	-0.5442	0.0022	$0.0530 \ (0.0012)$	-0.0442 (0.0017)	$0.8030 \ (0.0126)$	$0.0048 \ (0.0002)$	1000
Model frailty: I	Normal						
Cox	-0.4988	0.0023	$0.0479 \ (0.0011)$	$0.0012 \ (0.0015)$	$0.9499 \ (0.0069)$	$0.0023 \ (0.0001)$	998
Exp	-0.5867	0.0023	$0.0569 \ (0.0013)$	-0.0867 (0.0018)	$0.5392 \ (0.0158)$	$0.0108 \ (0.0003)$	996
Weibull	-0.5025	0.0023	$0.0481 \ (0.0011)$	-0.0025 (0.0015)	$0.9497 \ (0.0069)$	$0.0023 \ (0.0001)$	995
Gompertz	-0.5872	0.0023	$0.0550 \ (0.0020)$	-0.0872 (0.0028)	$0.5547 \ (0.0257)$	$0.0106 \ (0.0005)$	375
RP(3)	-0.4982	0.0023	$0.0478 \ (0.0011)$	$0.0018 \; (0.0015)$	$0.9500 \ (0.0069)$	$0.0023 \ (0.0001)$	1000
RP(5)	-0.4989	0.0023	$0.0479 \ (0.0011)$	$0.0011 \ (0.0015)$	$0.9500 \ (0.0069)$	$0.0023 \ (0.0001)$	1000
RP(9)	-0.4991	0.0023	$0.0479 \ (0.0011)$	$0.0009 \ (0.0015)$	$0.9500 \ (0.0069)$	$0.0023 \ (0.0001)$	1000
RP(P)	-0.4991	0.0023	$0.0479 \ (0.0011)$	$0.0009 \ (0.0015)$	$0.9500 \ (0.0069)$	$0.0023 \ (0.0001)$	1000
FP(W)	-0.5013	0.0023	$0.0492 \ (0.0013)$	-0.0013 (0.0018)	$0.9451 \ (0.0085)$	$0.0024 \ (0.0001)$	711
FP (k=10)	-0.4995	0.0023	$0.0508 \; (0.0012)$	$0.0005 \ (0.0017)$	$0.9356 \ (0.0082)$	$0.0026 \ (0.0001)$	901
FP (k=10000)	-0.5369	0.0021	0.0542 (0.0012)	-0.0369 (0.0018)	0.8080 (0.0128)	$0.0043 \ (0.0002)$	948

Table 58: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.4997	0.0019	$0.0431 \ (0.0010)$	$0.0003 \ (0.0014)$	$0.9425 \ (0.0074)$	0.0019 (0.0001)	991
Exp	-0.4580	0.0018	$0.0393 \ (0.0009)$	$0.0420 \ (0.0012)$	0.8480 (0.0114)	$0.0033 \ (0.0001)$	1000
Weibull	-0.4954	0.0018	$0.0429 \ (0.0010)$	$0.0046 \ (0.0014)$	$0.9410 \ (0.0075)$	$0.0019 \ (0.0001)$	1000
Gompertz	-0.4585	0.0018	$0.0396 \ (0.0014)$	$0.0415 \ (0.0020)$	$0.8499 \ (0.0176)$	$0.0033 \ (0.0002)$	413
RP(3)	-0.5009	0.0019	$0.0433 \ (0.0010)$	-0.0009 (0.0014)	$0.9400 \ (0.0075)$	$0.0019 \ (0.0001)$	1000
RP(5)	-0.4998	0.0019	$0.0432 \ (0.0010)$	$0.0002 \ (0.0014)$	$0.9410 \ (0.0075)$	$0.0019 \ (0.0001)$	1000
RP(9)	-0.4999	0.0019	$0.0431 \ (0.0010)$	$0.0001 \ (0.0014)$	$0.9420 \ (0.0074)$	$0.0019 \ (0.0001)$	1000
RP(P)	-0.5000	0.0019	$0.0432 \ (0.0010)$	-0.0000 (0.0014)	$0.9430 \ (0.0073)$	$0.0019 \ (0.0001)$	1000
FP(W)	-0.4954	0.0018	$0.0429 \ (0.0010)$	$0.0046 \ (0.0014)$	$0.9409 \ (0.0075)$	$0.0019 \ (0.0001)$	999
FP (k=10)	-0.4992	0.0019	$0.0432 \ (0.0010)$	$0.0008 \ (0.0014)$	$0.9400 \ (0.0075)$	$0.0019 \ (0.0001)$	1000
FP (k=10000)	-0.4992	0.0018	$0.0433 \ (0.0011)$	$0.0008 \ (0.0015)$	$0.9370 \ (0.0084)$	$0.0019 \ (0.0001)$	841
Model frailty: I	Normal						
Cox	-0.4999	0.0019	$0.0431 \ (0.0010)$	$0.0001 \ (0.0014)$	$0.9418 \; (0.0074)$	$0.0019 \ (0.0001)$	997
Exp	-0.4579	0.0018	$0.0393 \ (0.0009)$	$0.0421 \ (0.0012)$	$0.8475 \ (0.0114)$	$0.0033 \ (0.0001)$	997
Weibull	-0.4954	0.0018	$0.0429 \ (0.0010)$	$0.0046 \ (0.0014)$	$0.9409 \ (0.0075)$	$0.0019 \ (0.0001)$	998
Gompertz	-0.4589	0.0018	$0.0417 \ (0.0014)$	$0.0411 \ (0.0020)$	$0.8361 \ (0.0180)$	$0.0034 \ (0.0002)$	421
RP(3)	-0.5010	0.0019	$0.0433 \ (0.0010)$	-0.0010 (0.0014)	$0.9400 \ (0.0075)$	$0.0019 \ (0.0001)$	1000
RP(5)	-0.4998	0.0019	$0.0432 \ (0.0010)$	$0.0002 \ (0.0014)$	$0.9420 \ (0.0074)$	$0.0019 \ (0.0001)$	1000
RP(9)	-0.4999	0.0019	$0.0431 \ (0.0010)$	$0.0001 \ (0.0014)$	$0.9430 \ (0.0073)$	$0.0019 \ (0.0001)$	1000
RP(P)	-0.5001	0.0019	$0.0432 \ (0.0010)$	-0.0001 (0.0014)	$0.9420 \ (0.0074)$	$0.0019 \ (0.0001)$	1000
FP(W)	-0.4947	0.0018	$0.0435 \ (0.0013)$	$0.0053 \ (0.0018)$	$0.9302 \ (0.0105)$	$0.0019 \ (0.0001)$	587
FP (k=10)	-0.4964	0.0018	$0.0439 \ (0.0010)$	$0.0036 \ (0.0015)$	$0.9412 \ (0.0078)$	$0.0019 \ (0.0001)$	902
FP (k=10000)	-0.4982	0.0016	0.0449 (0.0011)	$0.0018 \ (0.0015)$	$0.9230 \ (0.0089)$	$0.0020 \ (0.0001)$	896

Table 59: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.4982	0.0019	$0.0423 \ (0.0009)$	$0.0018 \ (0.0013)$	$0.9609 \ (0.0061)$	$0.0018 \ (0.0001)$	997
Exp	-0.3567	0.0019	$0.0361 \ (0.0008)$	$0.1433 \ (0.0011)$	$0.0640 \ (0.0077)$	$0.0218 \ (0.0003)$	1000
Weibull	-0.4960	0.0019	$0.0423 \ (0.0009)$	$0.0040 \ (0.0013)$	$0.9620 \ (0.0060)$	$0.0018 \ (0.0001)$	1000
Gompertz	-0.3590	0.0019	$0.0371 \ (0.0012)$	$0.1410 \ (0.0016)$	$0.0799 \ (0.0120)$	$0.0213 \ (0.0005)$	513
RP(3)	-0.4977	0.0019	$0.0422 \ (0.0009)$	$0.0023 \ (0.0013)$	$0.9630 \ (0.0060)$	$0.0018 \; (0.0001)$	1000
RP(5)	-0.4983	0.0019	$0.0422 \ (0.0009)$	$0.0017 \ (0.0013)$	$0.9600 \ (0.0062)$	$0.0018 \; (0.0001)$	1000
RP(9)	-0.4985	0.0019	$0.0423 \ (0.0009)$	$0.0015 \ (0.0013)$	$0.9600 \ (0.0062)$	$0.0018 \ (0.0001)$	1000
RP(P)	-0.4969	0.0019	$0.0421 \ (0.0009)$	$0.0031 \ (0.0013)$	$0.9620 \ (0.0060)$	$0.0018 \; (0.0001)$	1000
FP(W)	-0.4960	0.0019	$0.0423 \ (0.0009)$	$0.0040 \ (0.0013)$	$0.9620 \ (0.0060)$	$0.0018 \ (0.0001)$	1000
FP (k=10)	-0.4893	0.0019	$0.0421 \ (0.0009)$	$0.0107 \ (0.0013)$	$0.9560 \ (0.0065)$	$0.0019 \ (0.0001)$	1000
FP (k=10000)	-0.4850	0.0020	$0.0428 \ (0.0012)$	$0.0150 \ (0.0017)$	$0.9528 \ (0.0086)$	$0.0021 \ (0.0001)$	614
Model frailty: I	Normal						
Cox	-0.4985	0.0019	$0.0423 \ (0.0009)$	$0.0015 \ (0.0013)$	$0.9609 \ (0.0061)$	$0.0018 \; (0.0001)$	997
Exp	-0.3566	0.0019	$0.0362 \ (0.0008)$	$0.1434 \ (0.0011)$	$0.0643 \ (0.0078)$	$0.0219 \ (0.0003)$	995
Weibull	-0.4961	0.0019	$0.0423 \ (0.0009)$	$0.0039 \ (0.0013)$	$0.9618 \; (0.0061)$	$0.0018 \ (0.0001)$	996
Gompertz	-0.3586	0.0019	$0.0365 \ (0.0012)$	$0.1414 \ (0.0016)$	$0.0775 \ (0.0119)$	$0.0213 \ (0.0005)$	503
RP(3)	-0.4978	0.0019	$0.0423 \ (0.0009)$	$0.0022 \ (0.0013)$	$0.9630 \ (0.0060)$	$0.0018 \ (0.0001)$	1000
RP(5)	-0.4984	0.0019	$0.0422 \ (0.0009)$	$0.0016 \ (0.0013)$	$0.9590 \ (0.0063)$	$0.0018 \ (0.0001)$	1000
RP(9)	-0.4986	0.0019	$0.0423 \ (0.0009)$	$0.0014 \ (0.0013)$	$0.9600 \ (0.0062)$	$0.0018 \; (0.0001)$	1000
RP(P)	-0.4970	0.0019	$0.0421 \ (0.0009)$	$0.0030 \ (0.0013)$	$0.9610 \ (0.0061)$	$0.0018 \ (0.0001)$	1000
FP (W)	-0.4943	0.0019	$0.0427 \ (0.0013)$	$0.0057 \ (0.0018)$	$0.9535 \ (0.0091)$	$0.0019 \ (0.0001)$	538
FP (k=10)	-0.4899	0.0019	$0.0436 \ (0.0010)$	$0.0101 \ (0.0014)$	$0.9538 \ (0.0070)$	$0.0020 \ (0.0001)$	909
FP (k=10000)	-0.4986	0.0017	$0.0521 \ (0.0012)$	$0.0014 \ (0.0017)$	$0.8679 \ (0.0111)$	$0.0027 \ (0.0001)$	931

Table 60: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline		Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	-0.4986	0.0022	$0.0464 \ (0.0010)$	$0.0014 \ (0.0015)$	$0.9415 \ (0.0074)$	$0.0022 \ (0.0001)$	992
Exp	-0.5228	0.0021	$0.0479 \ (0.0011)$	-0.0228 (0.0015)	$0.9050 \ (0.0093)$	$0.0028 \ (0.0001)$	1000
Weibull	-0.4883	0.0022	$0.0454 \ (0.0010)$	$0.0117 \ (0.0014)$	$0.9490 \ (0.0070)$	$0.0022 \ (0.0001)$	1000
Gompertz	-0.5221	0.0022	$0.0472 \ (0.0017)$	-0.0221 (0.0024)	$0.9046 \ (0.0149)$	$0.0027 \ (0.0002)$	388
RP(3)	-0.4937	0.0022	$0.0460 \ (0.0010)$	$0.0063 \ (0.0015)$	$0.9460 \ (0.0071)$	$0.0022 \ (0.0001)$	1000
RP(5)	-0.4982	0.0022	$0.0464 \ (0.0010)$	$0.0018 \ (0.0015)$	$0.9430 \ (0.0073)$	$0.0022 \ (0.0001)$	1000
RP(9)	-0.4989	0.0022	$0.0464 \ (0.0010)$	$0.0011 \ (0.0015)$	$0.9420 \ (0.0074)$	$0.0022 \ (0.0001)$	1000
RP(P)	-0.4981	0.0022	$0.0464 \ (0.0010)$	$0.0019 \ (0.0015)$	$0.9418 \; (0.0074)$	$0.0022 \ (0.0001)$	997
FP(W)	-0.4883	0.0022	$0.0454 \ (0.0010)$	$0.0117 \ (0.0014)$	$0.9490 \ (0.0070)$	$0.0022 \ (0.0001)$	1000
FP (k=10)	-0.4994	0.0022	$0.0468 \ (0.0010)$	$0.0006 \ (0.0015)$	$0.9450 \ (0.0072)$	$0.0022 \ (0.0001)$	1000
FP (k=10000)	-0.4987	0.0021	$0.0464 \ (0.0010)$	$0.0013 \ (0.0015)$	$0.9440 \ (0.0073)$	$0.0021 \ (0.0001)$	1000
Model frailty: I	Vormal						
Cox	-0.4989	0.0022	$0.0464 \ (0.0010)$	$0.0011 \ (0.0015)$	$0.9428 \ (0.0074)$	$0.0021 \ (0.0001)$	996
Exp	-0.5228	0.0021	$0.0480 \ (0.0011)$	$-0.0228 \ (0.0015)$	$0.9045 \ (0.0093)$	$0.0028 \ (0.0001)$	995
Weibull	-0.4884	0.0022	$0.0454 \ (0.0010)$	$0.0116 \ (0.0014)$	$0.9509 \ (0.0068)$	$0.0022 \ (0.0001)$	997
Gompertz	-0.5206	0.0022	$0.0464 \ (0.0016)$	-0.0206 (0.0023)	$0.9122 \ (0.0140)$	$0.0026 \ (0.0002)$	410
RP(3)	-0.4938	0.0022	$0.0461 \ (0.0010)$	$0.0062 \ (0.0015)$	$0.9470 \ (0.0071)$	$0.0022 \ (0.0001)$	1000
RP(5)	-0.4983	0.0022	$0.0464 \ (0.0010)$	$0.0017 \ (0.0015)$	$0.9430 \ (0.0073)$	$0.0022 \ (0.0001)$	1000
RP(9)	-0.4991	0.0022	$0.0464 \ (0.0010)$	$0.0009 \ (0.0015)$	$0.9420 \ (0.0074)$	$0.0022 \ (0.0001)$	1000
RP(P)	-0.4983	0.0022	$0.0464 \ (0.0010)$	$0.0017 \ (0.0015)$	$0.9420 \ (0.0074)$	$0.0022 \ (0.0001)$	1000
FP (W)	-0.4892	0.0021	$0.0452 \ (0.0012)$	$0.0108 \; (0.0017)$	$0.9496 \ (0.0084)$	$0.0022 \ (0.0001)$	674
FP (k=10)	-0.4977	0.0022	$0.0476 \ (0.0011)$	$0.0023 \ (0.0016)$	$0.9429 \ (0.0078)$	$0.0023 \ (0.0001)$	893
FP (k=10000)	-0.4993	0.0019	0.0473 (0.0011)	$0.0007 \ (0.0015)$	0.9263 (0.0084)	$0.0022 \ (0.0001)$	964

Table 61: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 0.75, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.5013	0.0020	$0.0432\ (0.0010)$	-0.0013 (0.0014)	$0.9635 \ (0.0061)$	0.0019 (0.0001)	958
Exp	-0.5010	0.0020	$0.0433 \ (0.0010)$	-0.0010 (0.0014)	$0.9540 \ (0.0066)$	$0.0019 \ (0.0001)$	1000
Weibull	-0.5015	0.0020	$0.0437 \ (0.0010)$	-0.0015 (0.0014)	$0.9580 \ (0.0063)$	$0.0019 \ (0.0001)$	1000
Gompertz	-0.4998	0.0020	$0.0440 \ (0.0014)$	$0.0002 \ (0.0020)$	$0.9494 \ (0.0099)$	$0.0019 \ (0.0001)$	494
RP(3)	-0.5012	0.0020	$0.0438 \ (0.0010)$	-0.0012 (0.0014)	$0.9590 \ (0.0063)$	$0.0019 \ (0.0001)$	1000
RP(5)	-0.5012	0.0020	$0.0438 \ (0.0010)$	-0.0012 (0.0014)	$0.9590 \ (0.0063)$	$0.0019 \ (0.0001)$	1000
RP(9)	-0.5012	0.0020	$0.0438 \ (0.0010)$	-0.0012 (0.0014)	$0.9590 \ (0.0063)$	$0.0019 \ (0.0001)$	1000
RP(P)	-0.5013	0.0020	$0.0437 \ (0.0010)$	-0.0013 (0.0014)	$0.9570 \ (0.0064)$	$0.0019 \ (0.0001)$	999
FP(W)	-0.5015	0.0020	$0.0437 \ (0.0010)$	-0.0015 (0.0014)	$0.9580 \ (0.0063)$	$0.0019 \ (0.0001)$	1000
FP (k=10)	-0.5001	0.0020	$0.0438 \ (0.0010)$	-0.0001 (0.0014)	$0.9600 \ (0.0062)$	$0.0019 \ (0.0001)$	1000
FP (k=10000)	-0.5006	0.0020	$0.0438 \ (0.0010)$	-0.0006 (0.0014)	$0.9590 \ (0.0063)$	$0.0019 \ (0.0001)$	1000
Model frailty: I	Normal						
Cox	-0.5014	0.0020	$0.0438 \ (0.0010)$	-0.0014 (0.0014)	$0.9590 \ (0.0063)$	$0.0019 \ (0.0001)$	1000
Exp	-0.5011	0.0020	$0.0433 \ (0.0010)$	-0.0011 (0.0014)	$0.9540 \ (0.0066)$	$0.0019 \ (0.0001)$	999
Weibull	-0.5018	0.0020	$0.0437 \ (0.0010)$	-0.0018 (0.0014)	$0.9570 \ (0.0064)$	$0.0019 \ (0.0001)$	999
Gompertz	-0.5003	0.0020	$0.0428 \ (0.0014)$	-0.0003 (0.0020)	$0.9519 \ (0.0100)$	$0.0018 \ (0.0001)$	457
RP(3)	-0.5014	0.0020	$0.0438 \ (0.0010)$	-0.0014 (0.0014)	$0.9590 \ (0.0063)$	$0.0019 \ (0.0001)$	1000
RP(5)	-0.5014	0.0020	$0.0438 \ (0.0010)$	-0.0014 (0.0014)	$0.9590 \ (0.0063)$	$0.0019 \ (0.0001)$	1000
RP(9)	-0.5015	0.0020	$0.0438 \ (0.0010)$	-0.0015 (0.0014)	$0.9590 \ (0.0063)$	$0.0019 \ (0.0001)$	1000
RP(P)	-0.5016	0.0020	$0.0437 \ (0.0010)$	-0.0016 (0.0014)	$0.9560 \ (0.0065)$	$0.0019 \ (0.0001)$	1000
FP(W)	-0.5042	0.0020	$0.0439 \ (0.0012)$	-0.0042 (0.0017)	$0.9601 \ (0.0074)$	$0.0019 \ (0.0001)$	701
FP (k=10)	-0.4997	0.0020	$0.0446 \ (0.0010)$	$0.0003 \ (0.0014)$	$0.9502 \ (0.0070)$	$0.0020 \ (0.0001)$	963
FP (k=10000)	-0.5014	0.0019	0.0448 (0.0010)	-0.0014 (0.0014)	$0.9399 \ (0.0076)$	$0.0020 \ (0.0001)$	981

Table 62: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	-0.5011	0.0023	0.0479 (0.0011)	-0.0011 (0.0015)	$0.9409 \ (0.0076)$	$0.0023 \ (0.0001)$	965
Exp	-0.5532	0.0023	$0.0530 \ (0.0012)$	$-0.0532 \ (0.0017)$	$0.7880 \ (0.0129)$	$0.0056 \ (0.0002)$	1000
Weibull	-0.5015	0.0023	$0.0476 \ (0.0011)$	-0.0015 (0.0015)	$0.9460 \ (0.0071)$	$0.0023 \ (0.0001)$	1000
Gompertz	-0.5548	0.0023	$0.0527 \ (0.0018)$	-0.0548 (0.0026)	$0.7900 \ (0.0199)$	$0.0058 \ (0.0004)$	419
RP(3)	-0.5005	0.0023	$0.0477 \ (0.0011)$	-0.0005 (0.0015)	$0.9430 \ (0.0073)$	$0.0023 \ (0.0001)$	1000
RP(5)	-0.5006	0.0023	$0.0477 \ (0.0011)$	$-0.0006 \ (0.0015)$	$0.9430 \ (0.0073)$	$0.0023 \ (0.0001)$	1000
RP(9)	-0.5007	0.0023	$0.0477 \ (0.0011)$	-0.0007 (0.0015)	$0.9430 \ (0.0073)$	$0.0023 \ (0.0001)$	1000
RP(P)	-0.5009	0.0023	$0.0477 \ (0.0011)$	-0.0009 (0.0015)	$0.9430 \ (0.0073)$	$0.0023 \ (0.0001)$	1000
FP(W)	-0.5015	0.0023	$0.0476 \ (0.0011)$	-0.0015 (0.0015)	$0.9460 \ (0.0071)$	$0.0023 \ (0.0001)$	1000
FP (k=10)	-0.4975	0.0023	$0.0478 \ (0.0011)$	$0.0025 \ (0.0015)$	$0.9440 \ (0.0073)$	$0.0023 \ (0.0001)$	1000
FP (k=10000)	-0.5081	0.0022	$0.0493 \ (0.0011)$	-0.0081 (0.0016)	$0.9330 \ (0.0079)$	$0.0025 \ (0.0001)$	1000
Model frailty: I	Normal						
Cox	-0.5009	0.0023	0.0477 (0.0011)	-0.0009 (0.0015)	$0.9410 \ (0.0075)$	$0.0023 \ (0.0001)$	1000
Exp	-0.5534	0.0023	$0.0530 \ (0.0012)$	-0.0534 (0.0017)	$0.7878 \ (0.0129)$	$0.0057 \ (0.0002)$	999
Weibull	-0.5018	0.0023	$0.0476 \ (0.0011)$	-0.0018 (0.0015)	$0.9460 \ (0.0071)$	$0.0023 \ (0.0001)$	1000
Gompertz	-0.5547	0.0023	$0.0531 \ (0.0019)$	$-0.0547 \ (0.0026)$	$0.7932 \ (0.0200)$	$0.0058 \ (0.0004)$	411
RP(3)	-0.5008	0.0023	$0.0477 \ (0.0011)$	-0.0008 (0.0015)	$0.9420 \ (0.0074)$	$0.0023 \ (0.0001)$	1000
RP(5)	-0.5009	0.0023	$0.0477 \ (0.0011)$	-0.0009 (0.0015)	$0.9410 \ (0.0075)$	$0.0023 \ (0.0001)$	1000
RP(9)	-0.5010	0.0023	$0.0477 \ (0.0011)$	$-0.0010 \ (0.0015)$	$0.9410 \ (0.0075)$	$0.0023 \ (0.0001)$	1000
RP(P)	-0.5012	0.0023	$0.0477 \ (0.0011)$	$-0.0012 \ (0.0015)$	$0.9430 \ (0.0073)$	$0.0023 \ (0.0001)$	1000
FP(W)	-0.5024	0.0023	$0.0478 \ (0.0012)$	-0.0024 (0.0017)	$0.9490 \ (0.0080)$	$0.0023 \ (0.0001)$	765
FP (k=10)	-0.4980	0.0023	$0.0484 \ (0.0011)$	$0.0020 \ (0.0016)$	$0.9366 \ (0.0079)$	$0.0023 \ (0.0001)$	962
FP (k=10000)	-0.5061	0.0022	$0.0496 \ (0.0011)$	-0.0061 (0.0016)	$0.9260 \ (0.0083)$	$0.0025 \ (0.0001)$	987

Table 63: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 0.75, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.4990	0.0017	0.0417 (0.0009)	$0.0010 \ (0.0013)$	$0.9545 \ (0.0067)$	0.0017 (0.0001)	966
Exp	-0.4321	0.0017	$0.0363 \ (0.0008)$	$0.0679 \ (0.0011)$	$0.6210 \ (0.0153)$	0.0059 (0.0002)	1000
Weibull	-0.4806	0.0017	$0.0403 \ (0.0009)$	$0.0194 \ (0.0013)$	$0.9410 \ (0.0075)$	$0.0020 \ (0.0001)$	1000
Gompertz	-0.4524	0.0017	$0.0495 \ (0.0013)$	$0.0476 \ (0.0018)$	$0.7284 \ (0.0164)$	$0.0047 \ (0.0002)$	740
RP(3)	-0.4989	0.0017	$0.0418 \; (0.0009)$	$0.0011 \ (0.0013)$	$0.9540 \ (0.0066)$	$0.0017 \ (0.0001)$	1000
RP(5)	-0.4992	0.0017	$0.0418 \; (0.0009)$	$0.0008 \ (0.0013)$	$0.9530 \ (0.0067)$	$0.0017 \ (0.0001)$	1000
RP(9)	-0.4993	0.0017	$0.0418 \ (0.0009)$	$0.0007 \ (0.0013)$	$0.9540 \ (0.0066)$	$0.0017 \ (0.0001)$	1000
RP(P)	-0.4972	0.0017	$0.0416 \ (0.0009)$	$0.0028 \ (0.0013)$	$0.9540 \ (0.0066)$	$0.0017 \ (0.0001)$	1000
FP(W)	-0.4806	0.0017	$0.0403 \ (0.0009)$	$0.0194 \ (0.0013)$	$0.9410 \ (0.0075)$	$0.0020 \ (0.0001)$	1000
FP (k=10)	-0.4983	0.0017	$0.0418 \ (0.0009)$	$0.0017 \ (0.0013)$	$0.9520 \ (0.0068)$	$0.0017 \ (0.0001)$	1000
FP (k=10000)	-0.4972	0.0017	$0.0417 \ (0.0009)$	$0.0028 \ (0.0013)$	$0.9490 \ (0.0070)$	$0.0017 \ (0.0001)$	1000
Model frailty: I	Normal						
Cox	-0.4993	0.0017	$0.0418 \ (0.0009)$	0.0007 (0.0013)	$0.9530 \ (0.0067)$	0.0017 (0.0001)	1000
Exp	-0.4321	0.0017	$0.0363 \ (0.0008)$	$0.0679 \ (0.0011)$	$0.6226 \ (0.0153)$	0.0059 (0.0002)	999
Weibull	-0.4808	0.0017	$0.0403 \ (0.0009)$	$0.0192 \ (0.0013)$	$0.9420 \ (0.0074)$	$0.0020 \ (0.0001)$	1000
Gompertz	-0.4526	0.0017	$0.0492 \ (0.0013)$	$0.0474 \ (0.0018)$	$0.7317 \ (0.0165)$	$0.0047 \ (0.0002)$	723
RP(3)	-0.4991	0.0017	$0.0418 \ (0.0009)$	0.0009 (0.0013)	$0.9530 \ (0.0067)$	0.0017 (0.0001)	1000
RP(5)	-0.4993	0.0017	$0.0418 \ (0.0009)$	0.0007 (0.0013)	$0.9530 \ (0.0067)$	0.0017 (0.0001)	1000
RP(9)	-0.4994	0.0017	$0.0418 \ (0.0009)$	$0.0006 \ (0.0013)$	$0.9550 \ (0.0066)$	$0.0017 \ (0.0001)$	1000
RP(P)	-0.4973	0.0017	0.0417 (0.0009)	$0.0027 \ (0.0013)$	$0.9560 \ (0.0065)$	0.0017 (0.0001)	1000
FP (W)	-0.4818	0.0017	$0.0413 \ (0.0011)$	$0.0182 \ (0.0016)$	$0.9353 \ (0.0095)$	$0.0020 \ (0.0001)$	665
FP (k=10)	-0.4979	0.0017	$0.0423 \ (0.0010)$	$0.0021 \ (0.0014)$	$0.9498 \; (0.0071)$	$0.0018 \; (0.0001)$	936
FP (k=10000)	-0.4977	0.0016	$0.0421 \ (0.0010)$	$0.0023 \ (0.0014)$	$0.9317 \ (0.0081)$	$0.0018 \ (0.0001)$	966

Table 64: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.4985	0.0018	0.0433 (0.0010)	0.0015 (0.0014)	$0.9473 \ (0.0073)$	0.0019 (0.0001)	948
Exp	-0.3933	0.0017	$0.0360 \ (0.0008)$	$0.1067 \ (0.0011)$	$0.2500 \ (0.0137)$	0.0127 (0.0003)	1000
Weibull	-0.5176	0.0018	$0.0448 \ (0.0010)$	-0.0176 (0.0014)	$0.9220 \ (0.0085)$	$0.0023 \ (0.0001)$	1000
Gompertz	-0.4678	0.0018	0.0595 (0.0014)	$0.0322 \ (0.0019)$	$0.7856 \ (0.0134)$	$0.0046 \ (0.0002)$	942
RP(3)	-0.4997	0.0018	$0.0431 \ (0.0010)$	$0.0003 \ (0.0014)$	$0.9550 \ (0.0066)$	$0.0019 \ (0.0001)$	1000
RP(5)	-0.4989	0.0018	$0.0431 \ (0.0010)$	$0.0011 \ (0.0014)$	$0.9510 \ (0.0068)$	$0.0019 \ (0.0001)$	1000
RP(9)	-0.4990	0.0018	$0.0431\ (0.0010)$	$0.0010 \ (0.0014)$	$0.9510 \ (0.0068)$	$0.0019 \ (0.0001)$	999
RP(P)	-0.4993	0.0018	$0.0431 \ (0.0010)$	$0.0007 \ (0.0014)$	$0.9520 \ (0.0068)$	$0.0019 \ (0.0001)$	1000
FP(W)	-0.5175	0.0018	$0.0446 \ (0.0010)$	-0.0175 (0.0014)	$0.9228 \; (0.0085)$	$0.0023 \ (0.0001)$	997
FP (k=10)	-0.4946	0.0018	$0.0431 \ (0.0010)$	$0.0054 \ (0.0014)$	$0.9440 \ (0.0073)$	$0.0019 \ (0.0001)$	1000
FP (k=10000)	-0.4892	0.0018	$0.0439 \ (0.0010)$	$0.0108 \ (0.0014)$	$0.9284 \ (0.0083)$	$0.0020 \ (0.0001)$	977
Model frailty: I	Normal						
Cox	-0.4990	0.0018	$0.0431 \ (0.0010)$	$0.0010 \ (0.0014)$	$0.9490 \ (0.0070)$	$0.0019 \ (0.0001)$	1000
Exp	-0.3932	0.0017	$0.0361 \ (0.0008)$	$0.1068 \; (0.0011)$	$0.2515 \ (0.0137)$	$0.0127 \ (0.0003)$	998
Weibull	-0.5177	0.0018	$0.0448 \ (0.0010)$	-0.0177 (0.0014)	$0.9228 \ (0.0084)$	$0.0023 \ (0.0001)$	998
Gompertz	-0.4668	0.0018	$0.0599 \ (0.0014)$	$0.0332 \ (0.0020)$	$0.7784 \ (0.0141)$	$0.0047 \ (0.0002)$	862
RP(3)	-0.4999	0.0018	$0.0431 \ (0.0010)$	$0.0001 \ (0.0014)$	$0.9540 \ (0.0066)$	$0.0019 \ (0.0001)$	1000
RP(5)	-0.4991	0.0018	$0.0431 \ (0.0010)$	$0.0009 \ (0.0014)$	$0.9500 \ (0.0069)$	$0.0019 \ (0.0001)$	1000
RP(9)	-0.4991	0.0018	$0.0431 \ (0.0010)$	$0.0009 \ (0.0014)$	$0.9490 \ (0.0070)$	$0.0019 \ (0.0001)$	1000
RP(P)	-0.4995	0.0018	$0.0431 \ (0.0010)$	$0.0005 \ (0.0014)$	$0.9520 \ (0.0068)$	$0.0019 \ (0.0001)$	1000
FP (W)	-0.5163	0.0018	$0.0458 \ (0.0013)$	-0.0163 (0.0019)	$0.9171 \ (0.0112)$	$0.0024 \ (0.0001)$	603
FP (k=10)	-0.4957	0.0018	$0.0444 \ (0.0010)$	$0.0043 \ (0.0014)$	$0.9340 \ (0.0081)$	$0.0020 \ (0.0001)$	940
FP (k=10000)	-0.5018	0.0017	0.0490 (0.0011)	-0.0018 (0.0016)	0.8964 (0.0098)	0.0024 (0.0001)	965

Table 65: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.4988	0.0021	$0.0472 \ (0.0011)$	$0.0012 \ (0.0015)$	$0.9525 \ (0.0068)$	$0.0022 \ (0.0001)$	969
Exp	-0.5256	0.0021	$0.0492 \ (0.0011)$	-0.0256 (0.0016)	$0.8970 \ (0.0096)$	$0.0031 \ (0.0001)$	1000
Weibull	-0.5016	0.0021	$0.0472 \ (0.0011)$	-0.0016 (0.0015)	$0.9510 \ (0.0068)$	$0.0022 \ (0.0001)$	1000
Gompertz	-0.5248	0.0021	$0.0492 \ (0.0016)$	-0.0248 (0.0023)	$0.8969 \ (0.0142)$	$0.0030 \ (0.0002)$	456
RP(3)	-0.4986	0.0021	$0.0470 \ (0.0011)$	$0.0014 \ (0.0015)$	$0.9520 \ (0.0068)$	$0.0022 \ (0.0001)$	1000
RP(5)	-0.4991	0.0021	$0.0470 \ (0.0011)$	$0.0009 \ (0.0015)$	$0.9520 \ (0.0068)$	$0.0022 \ (0.0001)$	1000
RP(9)	-0.4992	0.0021	$0.0470 \ (0.0011)$	$0.0008 \ (0.0015)$	$0.9530 \ (0.0067)$	$0.0022 \ (0.0001)$	1000
RP(P)	-0.4992	0.0021	$0.0470 \ (0.0011)$	$0.0008 \ (0.0015)$	$0.9520 \ (0.0068)$	$0.0022 \ (0.0001)$	1000
FP(W)	-0.5016	0.0021	$0.0472 \ (0.0011)$	-0.0016 (0.0015)	$0.9510 \ (0.0068)$	$0.0022 \ (0.0001)$	1000
FP (k=10)	-0.4972	0.0021	$0.0471 \ (0.0011)$	$0.0028 \ (0.0015)$	$0.9520 \ (0.0068)$	$0.0022 \ (0.0001)$	1000
FP (k=10000)	-0.4951	0.0021	$0.0467 \ (0.0010)$	$0.0049 \ (0.0015)$	$0.9530 \ (0.0067)$	$0.0022 \ (0.0001)$	1000
Model frailty: I	Normal						
Cox	-0.4994	0.0021	$0.0470 \ (0.0011)$	$0.0006 \ (0.0015)$	$0.9520 \ (0.0068)$	$0.0022 \ (0.0001)$	1000
Exp	-0.5257	0.0021	$0.0492 \ (0.0011)$	$-0.0257 \ (0.0016)$	$0.8940 \ (0.0097)$	$0.0031 \ (0.0001)$	1000
Weibull	-0.5019	0.0021	$0.0472 \ (0.0011)$	-0.0019 (0.0015)	$0.9509 \ (0.0068)$	$0.0022 \ (0.0001)$	998
Gompertz	-0.5259	0.0021	$0.0497 \ (0.0017)$	-0.0259 (0.0024)	$0.8923 \ (0.0150)$	$0.0031 \ (0.0002)$	427
RP(3)	-0.4988	0.0021	$0.0470 \ (0.0011)$	$0.0012 \ (0.0015)$	$0.9520 \ (0.0068)$	$0.0022 \ (0.0001)$	1000
RP(5)	-0.4993	0.0021	$0.0470 \ (0.0011)$	$0.0007 \ (0.0015)$	$0.9520 \ (0.0068)$	$0.0022 \ (0.0001)$	1000
RP(9)	-0.4994	0.0021	$0.0470 \ (0.0011)$	$0.0006 \ (0.0015)$	$0.9520 \ (0.0068)$	$0.0022 \ (0.0001)$	1000
RP(P)	-0.4994	0.0021	$0.0470 \ (0.0011)$	$0.0006 \ (0.0015)$	$0.9520 \ (0.0068)$	$0.0022 \ (0.0001)$	1000
FP(W)	-0.5020	0.0021	$0.0482 \ (0.0012)$	-0.0020 (0.0017)	$0.9466 \ (0.0081)$	$0.0023 \ (0.0001)$	768
FP (k=10)	-0.4964	0.0021	$0.0475 \ (0.0011)$	$0.0036 \ (0.0015)$	$0.9496 \ (0.0071)$	$0.0023 \ (0.0001)$	953
FP (k=10000)	-0.4952	0.0020	$0.0476 \ (0.0011)$	$0.0048 \; (0.0015)$	$0.9459 \ (0.0072)$	$0.0023 \ (0.0001)$	979

Table 66: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.75, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	-0.4985	0.0018	$0.0423 \ (0.0010)$	0.0015 (0.0014)	$0.9511 \ (0.0070)$	$0.0018 \ (0.0001)$	962
Exp	-0.4988	0.0017	$0.0418 \ (0.0009)$	$0.0012 \ (0.0013)$	$0.9520 \ (0.0068)$	0.0017 (0.0001)	1000
Weibull	-0.4989	0.0018	$0.0422 \ (0.0009)$	$0.0011 \ (0.0013)$	$0.9510 \ (0.0068)$	$0.0018 \ (0.0001)$	1000
Gompertz	-0.4994	0.0017	$0.0415 \ (0.0013)$	$0.0006 \ (0.0019)$	$0.9519 \ (0.0096)$	0.0017 (0.0001)	499
RP(3)	-0.4984	0.0018	$0.0424 \ (0.0009)$	$0.0016 \ (0.0013)$	$0.9530 \ (0.0067)$	$0.0018 \ (0.0001)$	1000
RP(5)	-0.4985	0.0018	$0.0424 \ (0.0009)$	$0.0015 \ (0.0013)$	$0.9530 \ (0.0067)$	$0.0018 \ (0.0001)$	1000
RP(9)	-0.4985	0.0018	$0.0424 \ (0.0009)$	$0.0015 \ (0.0013)$	$0.9530 \ (0.0067)$	$0.0018 \ (0.0001)$	1000
RP(P)	-0.4987	0.0018	$0.0423 \ (0.0009)$	$0.0013 \ (0.0013)$	$0.9509 \ (0.0068)$	$0.0018 \ (0.0001)$	998
FP(W)	-0.4989	0.0018	$0.0422 \ (0.0009)$	$0.0011 \ (0.0013)$	$0.9510 \ (0.0068)$	$0.0018 \ (0.0001)$	999
FP (k=10)	-0.4975	0.0018	$0.0424 \ (0.0009)$	$0.0025 \ (0.0013)$	$0.9520 \ (0.0068)$	$0.0018 \ (0.0001)$	1000
FP (k=10000)	-0.4978	0.0017	$0.0424 \ (0.0009)$	$0.0022 \ (0.0013)$	$0.9460 \ (0.0071)$	$0.0018 \ (0.0001)$	1000
Model frailty: I	Normal						
Cox	-0.4986	0.0018	$0.0424 \ (0.0009)$	$0.0014 \ (0.0013)$	$0.9520 \ (0.0068)$	$0.0018 \ (0.0001)$	1000
Exp	-0.4988	0.0017	$0.0418 \; (0.0009)$	$0.0012 \ (0.0013)$	$0.9519 \ (0.0068)$	$0.0017 \ (0.0001)$	998
Weibull	-0.4991	0.0018	$0.0422 \ (0.0009)$	$0.0009 \ (0.0013)$	$0.9510 \ (0.0068)$	$0.0018 \ (0.0001)$	999
Gompertz	-0.4981	0.0017	$0.0426 \ (0.0014)$	$0.0019 \ (0.0019)$	$0.9414 \ (0.0106)$	$0.0018 \ (0.0001)$	495
RP(3)	-0.4986	0.0018	$0.0424 \ (0.0009)$	$0.0014 \ (0.0013)$	$0.9520 \ (0.0068)$	$0.0018 \ (0.0001)$	1000
RP(5)	-0.4986	0.0018	$0.0424 \ (0.0009)$	$0.0014 \ (0.0013)$	$0.9520 \ (0.0068)$	$0.0018 \ (0.0001)$	1000
RP(9)	-0.4987	0.0018	$0.0424 \ (0.0009)$	$0.0013 \ (0.0013)$	$0.9530 \ (0.0067)$	$0.0018 \ (0.0001)$	1000
RP(P)	-0.4989	0.0018	$0.0423 \ (0.0009)$	$0.0011 \ (0.0013)$	$0.9520 \ (0.0068)$	$0.0018 \ (0.0001)$	1000
FP(W)	-0.5005	0.0017	$0.0423 \ (0.0012)$	-0.0005 (0.0016)	$0.9568 \ (0.0078)$	$0.0018 \ (0.0001)$	672
FP (k=10)	-0.4982	0.0017	$0.0428 \ (0.0010)$	$0.0018 \; (0.0014)$	$0.9467 \ (0.0073)$	$0.0018 \ (0.0001)$	938
FP (k=10000)	-0.4980	0.0016	$0.0431\ (0.0010)$	$0.0020 \ (0.0014)$	$0.9280 \ (0.0083)$	$0.0019 \ (0.0001)$	972

Table 67: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	-0.5007	0.0020	$0.0447 \ (0.0010)$	-0.0007 (0.0014)	$0.9356 \ (0.0079)$	$0.0020 \ (0.0001)$	963
Exp	-0.5634	0.0019	$0.0505 \ (0.0011)$	-0.0634 (0.0016)	$0.6840 \ (0.0147)$	$0.0066 \ (0.0002)$	1000
Weibull	-0.5027	0.0019	$0.0445 \ (0.0010)$	-0.0027 (0.0014)	$0.9350 \ (0.0078)$	$0.0020 \ (0.0001)$	1000
Gompertz	-0.5629	0.0020	$0.0487 \ (0.0017)$	-0.0629 (0.0024)	$0.6751 \ (0.0235)$	$0.0063 \ (0.0003)$	397
RP(3)	-0.5010	0.0020	$0.0445 \ (0.0010)$	-0.0010 (0.0014)	$0.9390 \ (0.0076)$	$0.0020 \ (0.0001)$	1000
RP(5)	-0.5011	0.0020	$0.0445 \ (0.0010)$	-0.0011 (0.0014)	$0.9380 \ (0.0076)$	$0.0020 \ (0.0001)$	1000
RP(9)	-0.5011	0.0020	$0.0445 \ (0.0010)$	-0.0011 (0.0014)	$0.9370 \ (0.0077)$	$0.0020 \ (0.0001)$	1000
RP(P)	-0.5014	0.0020	$0.0445 \ (0.0010)$	-0.0014 (0.0014)	$0.9380 \ (0.0076)$	$0.0020 \ (0.0001)$	1000
FP(W)	-0.5027	0.0019	$0.0445 \ (0.0010)$	$-0.0027 \ (0.0014)$	$0.9350 \ (0.0078)$	$0.0020 \ (0.0001)$	1000
FP (k=10)	-0.4989	0.0020	$0.0449 \ (0.0010)$	$0.0011 \ (0.0014)$	$0.9340 \ (0.0079)$	$0.0020 \ (0.0001)$	1000
FP (k=10000)	-0.5165	0.0019	$0.0470 \ (0.0011)$	$-0.0165 \ (0.0015)$	$0.9110 \ (0.0090)$	$0.0025 \ (0.0001)$	1000
Model frailty: I	Normal						
Cox	-0.5013	0.0020	$0.0445 \ (0.0010)$	-0.0013 (0.0014)	$0.9370 \ (0.0077)$	$0.0020 \ (0.0001)$	1000
Exp	-0.5635	0.0019	$0.0505 \ (0.0011)$	-0.0635 (0.0016)	$0.6807 \ (0.0148)$	$0.0066 \ (0.0002)$	999
Weibull	-0.5029	0.0019	$0.0446 \ (0.0010)$	-0.0029 (0.0014)	$0.9360 \ (0.0077)$	$0.0020 \ (0.0001)$	1000
Gompertz	-0.5629	0.0020	$0.0504 \ (0.0019)$	-0.0629 (0.0027)	$0.6762 \ (0.0250)$	$0.0065 \ (0.0004)$	349
RP(3)	-0.5013	0.0020	$0.0445 \ (0.0010)$	-0.0013 (0.0014)	$0.9390 \ (0.0076)$	$0.0020 \ (0.0001)$	1000
RP(5)	-0.5014	0.0020	$0.0445 \ (0.0010)$	-0.0014 (0.0014)	$0.9390 \ (0.0076)$	$0.0020 \ (0.0001)$	1000
RP(9)	-0.5014	0.0020	$0.0445 \ (0.0010)$	-0.0014 (0.0014)	$0.9370 \ (0.0077)$	$0.0020 \ (0.0001)$	1000
RP(P)	-0.5017	0.0020	$0.0445 \ (0.0010)$	-0.0017 (0.0014)	$0.9390 \ (0.0076)$	$0.0020 \ (0.0001)$	1000
FP(W)	-0.5031	0.0019	$0.0451 \ (0.0012)$	-0.0031 (0.0017)	$0.9440 \ (0.0086)$	$0.0020 \ (0.0001)$	714
FP (k=10)	-0.4986	0.0019	$0.0458 \ (0.0011)$	$0.0014 \ (0.0015)$	$0.9244 \ (0.0086)$	$0.0021 \ (0.0001)$	952
FP (k=10000)	-0.5130	0.0018	$0.0472 \ (0.0011)$	-0.0130 (0.0015)	$0.9087 \ (0.0092)$	$0.0024 \ (0.0001)$	975

Table 68: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.4974	0.0016	$0.0393 \ (0.0009)$	$0.0026 \ (0.0013)$	$0.9509 \ (0.0070)$	$0.0016 \ (0.0001)$	958
Exp	-0.4307	0.0015	$0.0340 \ (0.0008)$	$0.0693 \ (0.0011)$	$0.5850 \ (0.0156)$	$0.0060 \ (0.0002)$	1000
Weibull	-0.4791	0.0016	$0.0381 \ (0.0009)$	$0.0209 \ (0.0012)$	$0.9280 \ (0.0082)$	$0.0019 \ (0.0001)$	1000
Gompertz	-0.4539	0.0016	$0.0491 \ (0.0013)$	$0.0461 \ (0.0018)$	$0.7078 \ (0.0169)$	$0.0045 \ (0.0002)$	722
RP(3)	-0.4980	0.0016	$0.0396 \ (0.0009)$	$0.0020 \ (0.0013)$	$0.9470 \ (0.0071)$	$0.0016 \ (0.0001)$	1000
RP(5)	-0.4984	0.0016	$0.0396 \ (0.0009)$	$0.0016 \ (0.0013)$	$0.9490 \ (0.0070)$	$0.0016 \ (0.0001)$	1000
RP(9)	-0.4985	0.0016	$0.0396 \ (0.0009)$	$0.0015 \ (0.0013)$	$0.9520 \ (0.0068)$	$0.0016 \ (0.0001)$	1000
RP(P)	-0.4965	0.0016	$0.0395 \ (0.0009)$	$0.0035 \ (0.0012)$	$0.9459 \ (0.0072)$	$0.0016 \ (0.0001)$	999
FP(W)	-0.4791	0.0016	$0.0381 \ (0.0009)$	$0.0209 \ (0.0012)$	$0.9280 \ (0.0082)$	$0.0019 \ (0.0001)$	1000
FP (k=10)	-0.4976	0.0016	$0.0396 \ (0.0009)$	$0.0024 \ (0.0013)$	$0.9480 \ (0.0070)$	$0.0016 \ (0.0001)$	1000
FP (k=10000)	-0.4965	0.0015	$0.0395 \ (0.0009)$	$0.0035 \ (0.0012)$	$0.9430 \ (0.0073)$	$0.0016 \ (0.0001)$	1000
Model frailty: I	Normal						
Cox	-0.4985	0.0016	$0.0396 \ (0.0009)$	$0.0015 \ (0.0013)$	$0.9490 \ (0.0070)$	$0.0016 \ (0.0001)$	1000
Exp	-0.4306	0.0015	$0.0341 \ (0.0008)$	$0.0694 \ (0.0011)$	$0.5846 \ (0.0156)$	$0.0060 \ (0.0002)$	999
Weibull	-0.4793	0.0016	$0.0381 \ (0.0009)$	$0.0207 \ (0.0012)$	$0.9290 \ (0.0081)$	$0.0019 \ (0.0001)$	1000
Gompertz	-0.4529	0.0016	$0.0487 \ (0.0013)$	$0.0471 \ (0.0018)$	$0.7014 \ (0.0171)$	$0.0046 \ (0.0002)$	720
RP(3)	-0.4981	0.0016	$0.0396 \ (0.0009)$	$0.0019 \ (0.0013)$	$0.9480 \ (0.0070)$	$0.0016 \ (0.0001)$	1000
RP(5)	-0.4985	0.0016	$0.0396 \ (0.0009)$	$0.0015 \ (0.0013)$	$0.9490 \ (0.0070)$	$0.0016 \ (0.0001)$	1000
RP(9)	-0.4986	0.0016	$0.0396 \ (0.0009)$	$0.0014 \ (0.0013)$	$0.9490 \ (0.0070)$	$0.0016 \ (0.0001)$	1000
RP(P)	-0.4966	0.0016	0.0395 (0.0009)	$0.0034 \ (0.0012)$	$0.9470 \ (0.0071)$	$0.0016 \ (0.0001)$	1000
FP(W)	-0.4788	0.0015	$0.0383 \ (0.0011)$	$0.0212 \ (0.0015)$	$0.9236 \ (0.0107)$	$0.0019 \ (0.0001)$	615
FP (k=10)	-0.4970	0.0016	$0.0406 \ (0.0009)$	$0.0030 \ (0.0013)$	$0.9386 \ (0.0079)$	$0.0017 \ (0.0001)$	928
FP (k=10000)	-0.4973	0.0014	$0.0407 \ (0.0009)$	$0.0027 \ (0.0013)$	$0.9193 \ (0.0088)$	$0.0017 \ (0.0001)$	954

Table 69: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.4994	0.0016	$0.0406 \ (0.0009)$	$0.0006 \ (0.0013)$	$0.9466 \ (0.0073)$	$0.0016 \ (0.0001)$	955
Exp	-0.3795	0.0016	$0.0336 \ (0.0008)$	$0.1205 \ (0.0011)$	$0.1100 \ (0.0099)$	$0.0157 \ (0.0003)$	1000
Weibull	-0.5191	0.0016	$0.0422 \ (0.0009)$	-0.0191 (0.0013)	$0.9080 \ (0.0091)$	$0.0021 \ (0.0001)$	1000
Gompertz	-0.4725	0.0016	$0.0552 \ (0.0013)$	$0.0275 \ (0.0018)$	$0.8326 \ (0.0120)$	$0.0038 \ (0.0002)$	962
RP(3)	-0.5005	0.0016	$0.0406 \ (0.0009)$	-0.0005 (0.0013)	$0.9470 \ (0.0071)$	$0.0016 \ (0.0001)$	1000
RP(5)	-0.5002	0.0016	$0.0405 \ (0.0009)$	-0.0002 (0.0013)	$0.9480 \ (0.0070)$	$0.0016 \ (0.0001)$	1000
RP(9)	-0.5002	0.0016	$0.0406 \ (0.0009)$	-0.0002 (0.0013)	$0.9468 \; (0.0071)$	$0.0016 \ (0.0001)$	997
RP(P)	-0.5004	0.0016	$0.0406 \ (0.0009)$	-0.0004 (0.0013)	$0.9480 \ (0.0070)$	$0.0016 \ (0.0001)$	1000
FP(W)	-0.5191	0.0016	$0.0422 \ (0.0009)$	-0.0191 (0.0013)	$0.9080 \ (0.0091)$	$0.0021 \ (0.0001)$	1000
FP (k=10)	-0.4946	0.0016	$0.0407 \ (0.0009)$	$0.0054 \ (0.0013)$	$0.9480 \ (0.0070)$	$0.0017 \ (0.0001)$	1000
FP (k=10000)	-0.4910	0.0016	$0.0409 \ (0.0010)$	$0.0090 \ (0.0014)$	$0.9466 \ (0.0074)$	$0.0018 \ (0.0001)$	918
Model frailty: I	Vormal						
Cox	-0.5003	0.0016	$0.0406 \ (0.0009)$	-0.0003 (0.0013)	$0.9480 \ (0.0070)$	$0.0016 \ (0.0001)$	1000
Exp	-0.3793	0.0016	$0.0336 \ (0.0008)$	$0.1207 \ (0.0011)$	$0.1071 \ (0.0098)$	$0.0157 \ (0.0003)$	999
Weibull	-0.5192	0.0016	$0.0422 \ (0.0009)$	-0.0192 (0.0013)	$0.9090 \ (0.0091)$	$0.0021 \ (0.0001)$	1000
Gompertz	-0.4724	0.0016	$0.0552 \ (0.0013)$	$0.0276 \ (0.0018)$	$0.8270 \ (0.0125)$	$0.0038 \ (0.0002)$	919
RP(3)	-0.5007	0.0016	$0.0406 \ (0.0009)$	-0.0007 (0.0013)	$0.9470 \ (0.0071)$	$0.0016 \ (0.0001)$	1000
RP(5)	-0.5003	0.0016	$0.0406 \ (0.0009)$	-0.0003 (0.0013)	$0.9480 \ (0.0070)$	$0.0016 \ (0.0001)$	1000
RP(9)	-0.5004	0.0016	$0.0406 \ (0.0009)$	-0.0004 (0.0013)	$0.9480 \ (0.0070)$	$0.0016 \ (0.0001)$	1000
RP(P)	-0.5005	0.0016	$0.0406 \ (0.0009)$	-0.0005 (0.0013)	$0.9480 \ (0.0070)$	$0.0016 \ (0.0001)$	1000
FP(W)	-0.5201	0.0016	$0.0424 \ (0.0013)$	-0.0201 (0.0018)	$0.9019 \ (0.0124)$	$0.0022 \ (0.0001)$	571
FP (k=10)	-0.4960	0.0016	$0.0422 \ (0.0010)$	$0.0040 \ (0.0014)$	$0.9361 \ (0.0080)$	$0.0018 \ (0.0001)$	939
FP (k=10000)	-0.5160	0.0014	0.0464 (0.0011)	-0.0160 (0.0015)	$0.8597 \ (0.0112)$	$0.0024 \ (0.0001)$	962

Table 70: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.4992	0.0018	$0.0429 \ (0.0010)$	0.0008 (0.0014)	$0.9501 \ (0.0070)$	$0.0018 \ (0.0001)$	961
Exp	-0.5273	0.0018	$0.0443 \ (0.0010)$	-0.0273 (0.0014)	$0.8720 \ (0.0106)$	$0.0027 \ (0.0001)$	1000
Weibull	-0.5005	0.0018	$0.0427 \ (0.0010)$	-0.0005 (0.0013)	$0.9590 \ (0.0063)$	$0.0018 \ (0.0001)$	1000
Gompertz	-0.5272	0.0018	$0.0434 \ (0.0015)$	-0.0272 (0.0021)	$0.8807 \ (0.0155)$	$0.0026 \ (0.0002)$	436
RP(3)	-0.4991	0.0018	$0.0426 \ (0.0010)$	$0.0009 \ (0.0013)$	$0.9490 \ (0.0070)$	$0.0018 \ (0.0001)$	1000
RP(5)	-0.4995	0.0018	$0.0426 \ (0.0010)$	$0.0005 \ (0.0013)$	$0.9500 \ (0.0069)$	$0.0018 \ (0.0001)$	1000
RP(9)	-0.4996	0.0018	$0.0427 \ (0.0010)$	$0.0004 \ (0.0013)$	$0.9500 \ (0.0069)$	$0.0018 \ (0.0001)$	1000
RP(P)	-0.4995	0.0018	$0.0427 \ (0.0010)$	$0.0005 \ (0.0014)$	$0.9499 \ (0.0069)$	$0.0018 \ (0.0001)$	998
FP(W)	-0.5005	0.0018	$0.0427 \ (0.0010)$	-0.0005 (0.0013)	$0.9590 \ (0.0063)$	$0.0018 \ (0.0001)$	1000
FP (k=10)	-0.4982	0.0018	$0.0427 \ (0.0010)$	$0.0018 \ (0.0014)$	$0.9480 \ (0.0070)$	$0.0018 \ (0.0001)$	1000
FP (k=10000)	-0.4963	0.0018	$0.0423 \ (0.0009)$	$0.0037 \ (0.0013)$	$0.9469 \ (0.0071)$	$0.0018 \ (0.0001)$	999
Model frailty: I	Normal						
Cox	-0.4997	0.0018	$0.0427 \ (0.0010)$	$0.0003 \ (0.0014)$	$0.9490 \ (0.0070)$	$0.0018 \ (0.0001)$	1000
Exp	-0.5273	0.0018	$0.0443 \ (0.0010)$	-0.0273 (0.0014)	$0.8716 \ (0.0106)$	$0.0027 \ (0.0001)$	997
Weibull	-0.5007	0.0018	$0.0427 \ (0.0010)$	-0.0007 (0.0014)	$0.9590 \ (0.0063)$	$0.0018 \ (0.0001)$	1000
Gompertz	-0.5263	0.0018	$0.0427 \ (0.0015)$	-0.0263 (0.0021)	$0.8832 \ (0.0155)$	$0.0025 \ (0.0002)$	428
RP(3)	-0.4994	0.0018	$0.0427 \ (0.0010)$	$0.0006 \ (0.0013)$	$0.9500 \ (0.0069)$	$0.0018 \ (0.0001)$	1000
RP(5)	-0.4997	0.0018	$0.0427 \ (0.0010)$	$0.0003 \ (0.0013)$	$0.9500 \ (0.0069)$	$0.0018 \ (0.0001)$	1000
RP(9)	-0.4998	0.0018	$0.0427 \ (0.0010)$	$0.0002 \ (0.0013)$	$0.9500 \ (0.0069)$	$0.0018 \ (0.0001)$	1000
RP(P)	-0.4998	0.0018	$0.0427 \ (0.0010)$	$0.0002 \ (0.0013)$	$0.9500 \ (0.0069)$	$0.0018 \ (0.0001)$	1000
FP(W)	-0.5027	0.0018	$0.0426 \ (0.0012)$	-0.0027 (0.0016)	$0.9576 \ (0.0077)$	$0.0018 \ (0.0001)$	684
FP (k=10)	-0.4983	0.0018	$0.0433 \ (0.0010)$	$0.0017 \ (0.0014)$	$0.9504 \ (0.0071)$	$0.0019 \ (0.0001)$	948
FP (k=10000)	-0.4968	0.0017	0.0429 (0.0010)	$0.0032 \ (0.0014)$	$0.9415 \ (0.0075)$	$0.0018 \; (0.0001)$	975

Table 71: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.75, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.4985	0.0026	0.0487 (0.0011)	0.0015 (0.0015)	$0.9540 \ (0.0066)$	$0.0024 \ (0.0001)$	1000
Exp	-0.4979	0.0025	0.0478 (0.0011)	$0.0021 \ (0.0015)$	0.9510 (0.0068)	$0.0023 \ (0.0001)$	1000
Weibull	-0.5034	0.0025	$0.0490 \ (0.0011)$	-0.0034 (0.0015)	$0.9490 \ (0.0070)$	$0.0024 \ (0.0001)$	1000
Gompertz	-0.4838	0.0027	0.0507 (0.0059)	$0.0162 \ (0.0082)$	0.9737 (0.0260)	$0.0028 \ (0.0006)$	38
RP(3)	-0.4976	0.0025	0.0484 (0.0011)	$0.0024 \ (0.0015)$	$0.9548 \ (0.0066)$	$0.0023 \ (0.0001)$	996
RP(5)	-0.4989	0.0025	$0.0487 \ (0.0011)$	$0.0011 \ (0.0015)$	$0.9518 \ (0.0068)$	$0.0024 \ (0.0001)$	995
RP(9)	-0.4991	0.0025	0.0487 (0.0011)	$0.0009 \ (0.0015)$	$0.9538 \ (0.0067)$	$0.0024 \ (0.0001)$	996
RP(P)	-0.4992	0.0025	0.0487 (0.0011)	$0.0008 \ (0.0015)$	$0.9538 \ (0.0067)$	$0.0024 \ (0.0001)$	996
FP(W)	-0.5034	0.0025	$0.0490 \ (0.0011)$	-0.0034 (0.0015)	$0.9490 \ (0.0070)$	$0.0024 \ (0.0001)$	1000
FP (k=10)	-0.4969	0.0025	$0.0481 \ (0.0011)$	$0.0031 \ (0.0015)$	$0.9510 \ (0.0068)$	$0.0023 \ (0.0001)$	1000
FP (k=10000)	-0.4868	0.0033	$0.0654 \ (0.0071)$	$0.0132 \ (0.0100)$	$0.8605 \ (0.0528)$	$0.0044 \ (0.0012)$	43
Model frailty: I	Normal						
Cox	-0.4933	0.0025	$0.0501 \ (0.0011)$	$0.0067 \ (0.0016)$	$0.9483 \ (0.0071)$	$0.0026 \ (0.0001)$	967
Exp	-0.4979	0.0025	$0.0483 \ (0.0011)$	$0.0021 \ (0.0016)$	$0.9484 \ (0.0072)$	$0.0023 \ (0.0001)$	950
Weibull	-0.5035	0.0025	$0.0491 \ (0.0011)$	-0.0035 (0.0016)	$0.9487 \ (0.0072)$	$0.0024 \ (0.0001)$	936
Gompertz	-0.5032	0.0027	$0.0516 \ (0.0063)$	-0.0032 (0.0087)	$0.9429 \ (0.0392)$	$0.0026 \ (0.0006)$	35
RP(3)	-0.4979	0.0025	$0.0485 \ (0.0011)$	$0.0021 \ (0.0015)$	$0.9540 \ (0.0066)$	$0.0024 \ (0.0001)$	1000
RP(5)	-0.4992	0.0025	$0.0487 \ (0.0011)$	$0.0008 \ (0.0015)$	$0.9520 \ (0.0068)$	$0.0024 \ (0.0001)$	1000
RP(9)	-0.4995	0.0025	$0.0488 \ (0.0011)$	$0.0005 \ (0.0015)$	$0.9530 \ (0.0067)$	$0.0024 \ (0.0001)$	1000
RP(P)	-0.4995	0.0025	$0.0487 \ (0.0011)$	$0.0005 \ (0.0015)$	$0.9530 \ (0.0067)$	$0.0024 \ (0.0001)$	1000
FP(W)	-0.5008	0.0025	$0.0483 \ (0.0016)$	-0.0008 (0.0022)	$0.9512 \ (0.0099)$	$0.0023 \ (0.0002)$	471
FP (k=10)	-0.4933	0.0025	$0.0483 \ (0.0012)$	$0.0067 \ (0.0017)$	$0.9517 \ (0.0074)$	$0.0024 \ (0.0001)$	848
FP (k=10000)	-0.4949	0.0022	0.0483 (0.0012)	0.0051 (0.0016)	$0.9326 \ (0.0085)$	0.0024 (0.0001)	876

Table 72: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.4989	0.0027	$0.0513 \ (0.0011)$	$0.0011 \ (0.0016)$	$0.9540 \ (0.0066)$	$0.0026 \ (0.0001)$	1000
Exp	-0.6047	0.0026	$0.0616 \ (0.0014)$	-0.1047 (0.0019)	$0.4460 \ (0.0157)$	$0.0148 \ (0.0004)$	1000
Weibull	-0.5148	0.0027	$0.0529 \ (0.0012)$	-0.0148 (0.0017)	$0.9300 \ (0.0081)$	$0.0030 \ (0.0001)$	1000
Gompertz	-0.6116	0.0026	$0.0579 \ (0.0082)$	-0.1116 (0.0113)	$0.3846 \ (0.0954)$	$0.0157 \ (0.0029)$	26
RP(3)	-0.4996	0.0027	$0.0516 \ (0.0012)$	$0.0004 \ (0.0016)$	$0.9507 \ (0.0069)$	$0.0027 \ (0.0001)$	994
RP(5)	-0.5009	0.0027	$0.0517 \ (0.0012)$	-0.0009 (0.0016)	$0.9517 \ (0.0068)$	$0.0027 \ (0.0001)$	993
RP(9)	-0.5006	0.0027	$0.0519 \ (0.0012)$	-0.0006 (0.0017)	$0.9534 \ (0.0069)$	$0.0027 \ (0.0001)$	923
RP(P)	-0.5008	0.0027	$0.0517 \ (0.0012)$	-0.0008 (0.0016)	$0.9527 \ (0.0067)$	$0.0027 \ (0.0001)$	994
FP(W)	-0.5148	0.0027	$0.0529 \ (0.0012)$	-0.0148 (0.0017)	$0.9300 \ (0.0081)$	$0.0030 \ (0.0001)$	1000
FP (k=10)	-0.5486	0.0027	$0.0623 \ (0.0014)$	-0.0486 (0.0020)	$0.7859 \ (0.0130)$	$0.0062 \ (0.0002)$	995
FP (k=10000)	-0.5596	0.0035	$0.0682 \ (0.0091)$	$-0.0596 \ (0.0127)$	$0.7586 \ (0.0795)$	$0.0080 \ (0.0018)$	29
Model frailty: I	Vormal						
Cox	-0.4943	0.0027	$0.0527 \ (0.0012)$	$0.0057 \ (0.0017)$	$0.9486 \ (0.0071)$	$0.0028 \ (0.0001)$	972
Exp	-0.6049	0.0026	$0.0613 \ (0.0014)$	-0.1049 (0.0020)	$0.4499 \ (0.0163)$	$0.0148 \ (0.0004)$	929
Weibull	-0.5149	0.0027	$0.0527 \ (0.0012)$	-0.0149 (0.0017)	$0.9309 \ (0.0081)$	$0.0030 \ (0.0001)$	970
Gompertz	-0.6117	0.0030	$0.0673 \ (0.0137)$	-0.1117 (0.0187)	$0.4615 \ (0.1383)$	$0.0167 \ (0.0038)$	13
RP(3)	-0.4998	0.0027	$0.0515 \ (0.0012)$	$0.0002 \ (0.0016)$	$0.9520 \ (0.0068)$	$0.0026 \ (0.0001)$	999
RP(5)	-0.5008	0.0027	$0.0527 \ (0.0012)$	-0.0008 (0.0017)	$0.9499 \ (0.0069)$	$0.0028 \ (0.0002)$	998
RP(9)	-0.4923	0.0027	$0.0757 \ (0.0017)$	$0.0077 \ (0.0024)$	$0.9260 \ (0.0083)$	$0.0058 \ (0.0006)$	986
RP(P)	-0.5011	0.0027	$0.0517 \ (0.0012)$	-0.0011 (0.0016)	$0.9529 \ (0.0067)$	$0.0027 \ (0.0001)$	997
FP(W)	-0.5118	0.0027	$0.0542 \ (0.0016)$	-0.0118 (0.0023)	$0.9267 \ (0.0112)$	$0.0031 \ (0.0002)$	546
FP (k=10)	-0.5331	0.0026	$0.0595 \ (0.0015)$	-0.0331 (0.0021)	$0.8433 \ (0.0126)$	$0.0046 \ (0.0002)$	836
FP (k=10000)	-0.5802	0.0023	$0.0601 \ (0.0015)$	-0.0802 (0.0021)	$0.5916 \ (0.0173)$	$0.0100 \ (0.0004)$	808

Table 73: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.4991	0.0023	$0.0461\ (0.0010)$	$0.0009 \ (0.0015)$	$0.9630 \ (0.0060)$	$0.0021 \ (0.0001)$	999
Exp	-0.4771	0.0022	$0.0439 \ (0.0010)$	$0.0229 \ (0.0014)$	$0.9400 \ (0.0075)$	$0.0024 \ (0.0001)$	1000
Weibull	-0.5065	0.0023	$0.0471 \ (0.0011)$	$-0.0065 \ (0.0015)$	$0.9560 \ (0.0065)$	$0.0023 \ (0.0001)$	1000
Gompertz	-0.4653	0.0024	$0.0473 \ (0.0044)$	$0.0347 \ (0.0062)$	$0.8621 \ (0.0453)$	$0.0034 \ (0.0005)$	58
RP(3)	-0.5027	0.0023	$0.0466 \ (0.0010)$	-0.0027 (0.0015)	$0.9598 \ (0.0062)$	$0.0022 \ (0.0001)$	996
RP(5)	-0.5002	0.0023	$0.0463 \ (0.0010)$	-0.0002 (0.0015)	$0.9639 \ (0.0059)$	$0.0021 \ (0.0001)$	996
RP(9)	-0.4998	0.0023	$0.0463 \ (0.0010)$	$0.0002 \ (0.0015)$	$0.9649 \ (0.0058)$	$0.0021 \ (0.0001)$	996
RP(P)	-0.5001	0.0023	$0.0463 \ (0.0010)$	-0.0001 (0.0015)	$0.9618 \; (0.0061)$	$0.0021 \ (0.0001)$	996
FP(W)	-0.5065	0.0023	$0.0471 \ (0.0011)$	-0.0065 (0.0015)	$0.9560 \ (0.0065)$	$0.0023 \ (0.0001)$	1000
FP (k=10)	-0.5013	0.0023	$0.0461 \ (0.0010)$	-0.0013 (0.0015)	$0.9580 \ (0.0063)$	$0.0021 \ (0.0001)$	1000
FP (k=10000)	-0.4972	0.0023	$0.0438 \ (0.0109)$	$0.0028 \ (0.0146)$	$1.0000 \ (0.0000)$	$0.0017 \ (0.0005)$	9
Model frailty: I	Normal						
Cox	-0.4945	0.0023	$0.0473 \ (0.0011)$	$0.0055 \ (0.0015)$	$0.9538 \; (0.0067)$	$0.0023 \ (0.0001)$	973
Exp	-0.4773	0.0023	$0.0441 \ (0.0010)$	$0.0227 \ (0.0014)$	$0.9385 \ (0.0078)$	$0.0025 \ (0.0001)$	960
Weibull	-0.5062	0.0023	$0.0472 \ (0.0011)$	-0.0062 (0.0015)	$0.9559 \ (0.0067)$	$0.0023 \ (0.0001)$	952
Gompertz	-0.4748	0.0023	$0.0412 \ (0.0046)$	$0.0252 \ (0.0064)$	$0.9512 \ (0.0336)$	$0.0023 \ (0.0005)$	41
RP(3)	-0.5028	0.0023	$0.0465 \ (0.0010)$	-0.0028 (0.0015)	$0.9600 \ (0.0062)$	$0.0022 \ (0.0001)$	1000
RP(5)	-0.5004	0.0023	$0.0463 \ (0.0010)$	-0.0004 (0.0015)	$0.9640 \ (0.0059)$	$0.0021 \ (0.0001)$	1000
RP(9)	-0.5000	0.0023	$0.0463 \ (0.0010)$	$0.0000 \ (0.0015)$	$0.9650 \ (0.0058)$	$0.0021 \ (0.0001)$	1000
RP(P)	-0.5002	0.0023	$0.0463 \ (0.0010)$	-0.0002 (0.0015)	$0.9630 \ (0.0060)$	$0.0021 \ (0.0001)$	1000
FP(W)	-0.5038	0.0023	$0.0474 \ (0.0016)$	-0.0038 (0.0023)	$0.9556 \ (0.0100)$	$0.0023 \ (0.0001)$	428
FP (k=10)	-0.4905	0.0023	$0.0470 \ (0.0011)$	$0.0095 \ (0.0016)$	$0.9403 \ (0.0082)$	$0.0023 \ (0.0001)$	838
FP (k=10000)	-0.4987	0.0020	$0.0463 \ (0.0012)$	$0.0013 \ (0.0016)$	$0.9396 \ (0.0084)$	$0.0021 \ (0.0001)$	811

Table 74: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.4993	0.0024	$0.0498 \ (0.0011)$	0.0007 (0.0016)	$0.9550 \ (0.0066)$	0.0025 (0.0001)	1000
Exp	-0.3317	0.0023	$0.0378 \ (0.0008)$	$0.1683 \ (0.0012)$	$0.0480 \ (0.0068)$	$0.0298 \ (0.0004)$	1000
Weibull	-0.4838	0.0024	$0.0482 \ (0.0011)$	$0.0162 \ (0.0015)$	$0.9410 \ (0.0075)$	$0.0026 \ (0.0001)$	1000
Gompertz	-0.3350	0.0024	$0.0376 \ (0.0015)$	$0.1650 \ (0.0021)$	$0.0457 \ (0.0115)$	$0.0286 \ (0.0007)$	328
RP(3)	-0.4936	0.0024	$0.0494 \ (0.0013)$	$0.0064 \ (0.0018)$	$0.9519 \ (0.0079)$	$0.0025 \ (0.0001)$	728
RP(5)	-0.4987	0.0024	0.0499 (0.0011)	$0.0013 \ (0.0016)$	$0.9574 \ (0.0065)$	$0.0025 \ (0.0001)$	962
RP(9)	-0.4997	0.0024	0.0499 (0.0011)	$0.0003 \ (0.0016)$	0.9555 (0.0066)	$0.0025 \ (0.0001)$	989
RP(P)	-0.4960	0.0024	$0.0495 \ (0.0011)$	$0.0040 \ (0.0016)$	$0.9527 \ (0.0067)$	$0.0025 \ (0.0001)$	993
FP(W)	-0.4838	0.0024	$0.0482 \ (0.0011)$	$0.0162 \ (0.0015)$	$0.9410 \ (0.0075)$	$0.0026 \ (0.0001)$	1000
FP (k=10)	-0.4865	0.0024	$0.0497 \ (0.0011)$	$0.0135 \ (0.0016)$	$0.9320 \ (0.0080)$	$0.0026 \ (0.0001)$	1000
FP (k=10000)	-0.4712	0.0029	$0.0614 \ (0.0084)$	$0.0288 \ (0.0116)$	$0.8929 \ (0.0585)$	$0.0045 \ (0.0011)$	28
Model frailty: I	Normal						
Cox	-0.4947	0.0024	0.0507 (0.0011)	$0.0053 \ (0.0016)$	$0.9462 \ (0.0072)$	$0.0026 \ (0.0001)$	986
Exp	-0.3319	0.0023	$0.0378 \ (0.0009)$	$0.1681 \ (0.0012)$	$0.0487 \ (0.0069)$	$0.0297 \ (0.0004)$	986
Weibull	-0.4834	0.0024	$0.0486 \ (0.0011)$	$0.0166 \ (0.0016)$	0.9407 (0.0078)	$0.0026 \ (0.0001)$	928
Gompertz	-0.3320	0.0023	$0.0370 \ (0.0015)$	$0.1680 \ (0.0022)$	$0.0475 \ (0.0124)$	$0.0296 \ (0.0007)$	295
RP(3)	-0.4843	0.0024	$0.0747 \ (0.0019)$	$0.0157 \ (0.0027)$	$0.9261 \ (0.0095)$	$0.0058 \ (0.0008)$	758
RP(5)	-0.4937	0.0024	$0.0658 \ (0.0015)$	$0.0063 \ (0.0021)$	$0.9471 \ (0.0071)$	$0.0044 \ (0.0005)$	983
RP(9)	-0.4992	0.0024	$0.0523 \ (0.0012)$	$0.0008 \; (0.0017)$	$0.9529 \ (0.0067)$	$0.0027 \ (0.0002)$	998
RP(P)	-0.4962	0.0024	$0.0495 \ (0.0011)$	$0.0038 \; (0.0016)$	$0.9530 \ (0.0067)$	$0.0025 \ (0.0001)$	1000
FP(W)	-0.4814	0.0023	$0.0500 \ (0.0017)$	$0.0186 \ (0.0024)$	$0.9254 \ (0.0127)$	$0.0028 \ (0.0002)$	429
FP (k=10)	-0.4816	0.0023	$0.0512 \ (0.0012)$	$0.0184 \ (0.0017)$	$0.9212 \ (0.0092)$	$0.0030 \ (0.0001)$	863
FP (k=10000)	-0.5056	0.0019	$0.0552 \ (0.0014)$	-0.0056 (0.0020)	$0.8651 \ (0.0123)$	$0.0031 \ (0.0002)$	771

Table 75: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	-0.5029	0.0026	0.0515 (0.0012)	-0.0029 (0.0016)	0.9499 (0.0069)	0.0027 (0.0001)	999
Exp	-0.5569	0.0025	$0.0570 \ (0.0013)$	-0.0569 (0.0018)	$0.7660 \ (0.0134)$	$0.0065 \ (0.0003)$	1000
Weibull	-0.5005	0.0026	$0.0516 \ (0.0012)$	-0.0005 (0.0016)	$0.9540 \ (0.0066)$	$0.0027 \ (0.0001)$	1000
Gompertz	-0.5297	0.0025	$0.0593 \ (0.0102)$	-0.0297 (0.0140)	0.8889 (0.0741)	$0.0042 \ (0.0016)$	18
RP(3)	-0.4981	0.0026	$0.0512 \ (0.0011)$	$0.0019 \ (0.0016)$	$0.9528 \; (0.0067)$	$0.0026 \ (0.0001)$	995
RP(5)	-0.5028	0.0026	$0.0516 \ (0.0012)$	-0.0028 (0.0016)	$0.9547 \ (0.0066)$	0.0027 (0.0001)	994
RP(9)	-0.5047	0.0026	$0.0516 \ (0.0012)$	-0.0047 (0.0017)	$0.9502 \ (0.0070)$	$0.0027 \ (0.0001)$	964
RP(P)	-0.5044	0.0026	$0.0517 \ (0.0012)$	-0.0044 (0.0016)	$0.9508 \; (0.0069)$	$0.0027 \ (0.0001)$	995
FP(W)	-0.5005	0.0026	$0.0516 \ (0.0012)$	-0.0005 (0.0016)	$0.9540 \ (0.0066)$	$0.0027 \ (0.0001)$	1000
FP (k=10)	-0.5413	0.0026	$0.0564 \ (0.0013)$	-0.0413 (0.0018)	$0.8390 \ (0.0116)$	$0.0049 \ (0.0002)$	1000
FP (k=10000)	-0.5217	0.0033	$0.0663 \ (0.0066)$	-0.0217 (0.0093)	$0.9608 \; (0.0272)$	$0.0048 \; (0.0010)$	51
Model frailty: I	Normal						
Cox	-0.4977	0.0026	$0.0521 \ (0.0012)$	$0.0023 \ (0.0017)$	$0.9519 \ (0.0068)$	$0.0027 \ (0.0001)$	978
Exp	-0.5568	0.0025	$0.0573 \ (0.0013)$	-0.0568 (0.0019)	$0.7647 \ (0.0139)$	$0.0065 \ (0.0003)$	935
Weibull	-0.5007	0.0026	$0.0516 \ (0.0012)$	-0.0007 (0.0017)	$0.9556 \ (0.0067)$	$0.0027 \ (0.0001)$	946
Gompertz	-0.5369	0.0028	$0.0617 \ (0.0113)$	-0.0369 (0.0154)	$0.9375 \ (0.0605)$	$0.0049 \ (0.0013)$	16
RP(3)	-0.4986	0.0026	$0.0514 \ (0.0012)$	$0.0014 \ (0.0016)$	$0.9499 \ (0.0069)$	$0.0026 \ (0.0001)$	998
RP(5)	-0.5031	0.0026	$0.0517 \ (0.0012)$	-0.0031 (0.0016)	$0.9519 \ (0.0068)$	$0.0027 \ (0.0001)$	997
RP(9)	-0.4995	0.0026	$0.0681 \ (0.0015)$	$0.0005 \ (0.0022)$	$0.9327 \ (0.0079)$	$0.0046 \ (0.0005)$	996
RP(P)	-0.5045	0.0026	$0.0517 \ (0.0012)$	-0.0045 (0.0016)	$0.9508 \; (0.0069)$	$0.0027 \ (0.0001)$	996
FP(W)	-0.4961	0.0026	$0.0518 \ (0.0016)$	$0.0039 \ (0.0023)$	$0.9494 \ (0.0097)$	$0.0027 \ (0.0002)$	514
FP (k=10)	-0.5276	0.0026	$0.0582 \ (0.0014)$	-0.0276 (0.0020)	$0.8733 \ (0.0113)$	$0.0041 \ (0.0002)$	860
FP (k=10000)	-0.5412	0.0022	$0.0569 \ (0.0014)$	-0.0412 (0.0020)	$0.8137 \ (0.0134)$	$0.0049 \ (0.0002)$	848

Table 76: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 1.25, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	-0.5001	0.0023	0.0477 (0.0011)	-0.0001 (0.0015)	0.9505 (0.0069)	$0.0023 \ (0.0001)$	990
Exp	-0.5003	0.0022	$0.0474 \ (0.0011)$	-0.0003 (0.0015)	$0.9460 \ (0.0071)$	$0.0022 \ (0.0001)$	1000
Weibull	-0.5010	0.0022	$0.0479 \ (0.0011)$	-0.0010 (0.0015)	$0.9510 \ (0.0068)$	$0.0023 \ (0.0001)$	1000
Gompertz	-0.4972	0.0022	0.0477 (0.0015)	$0.0028 \ (0.0021)$	$0.9442 \ (0.0102)$	$0.0023 \ (0.0001)$	502
RP(3)	-0.5004	0.0023	$0.0479 \ (0.0011)$	-0.0004 (0.0015)	$0.9490 \ (0.0070)$	$0.0023 \ (0.0001)$	1000
RP(5)	-0.5005	0.0023	$0.0478 \ (0.0011)$	-0.0005 (0.0015)	$0.9490 \ (0.0070)$	$0.0023 \ (0.0001)$	1000
RP(9)	-0.5005	0.0023	$0.0478 \ (0.0011)$	-0.0005 (0.0015)	$0.9490 \ (0.0070)$	$0.0023 \ (0.0001)$	1000
RP(P)	-0.5007	0.0022	$0.0478 \ (0.0011)$	-0.0007 (0.0015)	$0.9510 \ (0.0068)$	$0.0023 \ (0.0001)$	1000
FP(W)	-0.5010	0.0022	0.0479 (0.0011)	-0.0010 (0.0015)	$0.9510 \ (0.0068)$	$0.0023 \ (0.0001)$	1000
FP (k=10)	-0.4991	0.0023	$0.0478 \; (0.0011)$	$0.0009 \ (0.0015)$	$0.9490 \ (0.0070)$	$0.0023 \ (0.0001)$	1000
FP (k=10000)	-0.4998	0.0022	$0.0478 \ (0.0011)$	$0.0002 \ (0.0015)$	$0.9460 \ (0.0071)$	$0.0023 \ (0.0001)$	1000
Model frailty: I	Normal						
Cox	-0.5008	0.0023	$0.0479 \ (0.0011)$	-0.0008 (0.0015)	$0.9490 \ (0.0070)$	$0.0023 \ (0.0001)$	1000
Exp	-0.5004	0.0022	$0.0474 \ (0.0011)$	-0.0004 (0.0015)	$0.9459 \ (0.0072)$	$0.0022 \ (0.0001)$	999
Weibull	-0.5014	0.0022	$0.0479 \ (0.0011)$	-0.0014 (0.0015)	$0.9510 \ (0.0068)$	$0.0023 \ (0.0001)$	999
Gompertz	-0.4961	0.0022	$0.0461 \ (0.0015)$	$0.0039 \ (0.0021)$	$0.9508 \ (0.0098)$	$0.0021 \ (0.0001)$	488
RP(3)	-0.5008	0.0023	$0.0479 \ (0.0011)$	-0.0008 (0.0015)	$0.9490 \ (0.0070)$	$0.0023 \ (0.0001)$	1000
RP(5)	-0.5009	0.0023	$0.0479 \ (0.0011)$	-0.0009 (0.0015)	$0.9490 \ (0.0070)$	$0.0023 \ (0.0001)$	1000
RP(9)	-0.5009	0.0023	$0.0479 \ (0.0011)$	-0.0009 (0.0015)	$0.9490 \ (0.0070)$	$0.0023 \ (0.0001)$	1000
RP(P)	-0.5011	0.0022	$0.0479 \ (0.0011)$	-0.0011 (0.0015)	$0.9500 \ (0.0069)$	$0.0023 \ (0.0001)$	1000
FP(W)	-0.5021	0.0022	$0.0493 \ (0.0014)$	-0.0021 (0.0019)	$0.9504 \ (0.0084)$	$0.0024 \ (0.0001)$	665
FP (k=10)	-0.4997	0.0022	$0.0482 \ (0.0011)$	$0.0003 \ (0.0016)$	$0.9476 \ (0.0073)$	$0.0023 \ (0.0001)$	936
FP (k=10000)	-0.4998	0.0021	0.0488 (0.0011)	$0.0002 \ (0.0016)$	$0.9350 \ (0.0079)$	0.0024 (0.0001)	969

Table 77: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	-0.4975	0.0025	$0.0501 \ (0.0011)$	$0.0025 \ (0.0016)$	$0.9369 \ (0.0078)$	0.0025 (0.0001)	983
Exp	-0.5535	0.0025	$0.0562 \ (0.0013)$	-0.0535 (0.0018)	$0.7920 \ (0.0128)$	$0.0060 \ (0.0002)$	1000
Weibull	-0.4990	0.0025	$0.0502 \ (0.0011)$	$0.0010 \ (0.0016)$	$0.9390 \ (0.0076)$	$0.0025 \ (0.0001)$	1000
Gompertz	-0.5503	0.0026	$0.0561 \ (0.0019)$	-0.0503 (0.0026)	$0.8114 \ (0.0183)$	$0.0057 \ (0.0003)$	456
RP(3)	-0.4976	0.0025	$0.0502 \ (0.0011)$	$0.0024 \ (0.0016)$	$0.9380 \ (0.0076)$	$0.0025 \ (0.0001)$	1000
RP(5)	-0.4977	0.0025	$0.0501 \ (0.0011)$	$0.0023 \ (0.0016)$	$0.9370 \ (0.0077)$	$0.0025 \ (0.0001)$	1000
RP(9)	-0.4978	0.0025	$0.0501 \ (0.0011)$	$0.0022 \ (0.0016)$	$0.9380 \ (0.0076)$	$0.0025 \ (0.0001)$	1000
RP(P)	-0.4981	0.0025	$0.0502 \ (0.0011)$	$0.0019 \ (0.0016)$	$0.9370 \ (0.0077)$	$0.0025 \ (0.0001)$	1000
FP(W)	-0.4990	0.0025	$0.0502 \ (0.0011)$	$0.0010 \ (0.0016)$	$0.9390 \ (0.0076)$	$0.0025 \ (0.0001)$	1000
FP (k=10)	-0.4946	0.0025	$0.0504 \ (0.0011)$	$0.0054 \ (0.0016)$	$0.9390 \ (0.0076)$	$0.0026 \ (0.0001)$	1000
FP (k=10000)	-0.5074	0.0025	$0.0522 \ (0.0012)$	-0.0074 (0.0017)	$0.9230 \ (0.0084)$	$0.0028 \ (0.0001)$	1000
Model frailty: I	Normal						
Cox	-0.4981	0.0025	$0.0502 \ (0.0011)$	$0.0019 \ (0.0016)$	$0.9380 \ (0.0076)$	$0.0025 \ (0.0001)$	1000
Exp	-0.5538	0.0025	$0.0563 \ (0.0013)$	-0.0538 (0.0018)	$0.7896 \ (0.0129)$	$0.0061 \ (0.0002)$	998
Weibull	-0.4994	0.0025	$0.0503 \ (0.0011)$	$0.0006 \ (0.0016)$	$0.9399 \ (0.0075)$	$0.0025 \ (0.0001)$	999
Gompertz	-0.5520	0.0025	$0.0573 \ (0.0019)$	-0.0520 (0.0027)	$0.7964 \ (0.0190)$	$0.0060 \ (0.0004)$	447
RP(3)	-0.4980	0.0025	$0.0502 \ (0.0011)$	$0.0020 \ (0.0016)$	$0.9380 \ (0.0076)$	$0.0025 \ (0.0001)$	1000
RP(5)	-0.4982	0.0025	$0.0502 \ (0.0011)$	$0.0018 \ (0.0016)$	$0.9380 \ (0.0076)$	$0.0025 \ (0.0001)$	1000
RP(9)	-0.4982	0.0025	$0.0502 \ (0.0011)$	$0.0018 \ (0.0016)$	$0.9390 \ (0.0076)$	$0.0025 \ (0.0001)$	1000
RP(P)	-0.4986	0.0025	$0.0503 \ (0.0011)$	$0.0014 \ (0.0016)$	$0.9390 \ (0.0076)$	$0.0025 \ (0.0001)$	1000
FP(W)	-0.4997	0.0025	$0.0515 \ (0.0013)$	$0.0003 \ (0.0019)$	$0.9342 \ (0.0090)$	$0.0026 \ (0.0001)$	760
FP (k=10)	-0.4941	0.0025	$0.0513 \ (0.0012)$	$0.0059 \ (0.0017)$	$0.9340 \ (0.0080)$	$0.0027 \ (0.0001)$	955
FP (k=10000)	-0.5033	0.0024	$0.0523 \ (0.0012)$	-0.0033 (0.0017)	$0.9214 \ (0.0087)$	$0.0027 \ (0.0001)$	967

Table 78: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 1.25, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.5000	0.0019	$0.0430 \ (0.0010)$	-0.0000 (0.0014)	0.9575 (0.0064)	0.0019 (0.0001)	989
Exp	-0.4362	0.0019	$0.0379 \ (0.0008)$	$0.0638 \ (0.0012)$	$0.7080 \ (0.0144)$	0.0055 (0.0002)	1000
Weibull	-0.4835	0.0019	$0.0418 \ (0.0009)$	$0.0165 \ (0.0013)$	$0.9460 \ (0.0071)$	$0.0020 \ (0.0001)$	1000
Gompertz	-0.4415	0.0019	$0.0421 \ (0.0012)$	$0.0585 \ (0.0017)$	$0.7334 \ (0.0174)$	$0.0052 \ (0.0002)$	649
RP(3)	-0.4998	0.0019	$0.0430 \ (0.0010)$	$0.0002 \ (0.0014)$	$0.9560 \ (0.0065)$	$0.0018 \ (0.0001)$	1000
RP(5)	-0.4999	0.0019	$0.0430 \ (0.0010)$	$0.0001 \ (0.0014)$	$0.9560 \ (0.0065)$	$0.0019 \ (0.0001)$	1000
RP(9)	-0.5000	0.0019	$0.0430 \ (0.0010)$	$0.0000 \ (0.0014)$	$0.9570 \ (0.0064)$	$0.0019 \ (0.0001)$	1000
RP(P)	-0.4981	0.0019	$0.0429 \ (0.0010)$	$0.0019 \ (0.0014)$	$0.9580 \ (0.0063)$	$0.0018 \ (0.0001)$	1000
FP(W)	-0.4835	0.0019	$0.0418 \; (0.0009)$	$0.0165 \ (0.0013)$	$0.9460 \ (0.0071)$	$0.0020 \ (0.0001)$	1000
FP (k=10)	-0.4988	0.0019	$0.0430 \ (0.0010)$	$0.0012 \ (0.0014)$	$0.9570 \ (0.0064)$	$0.0019 \ (0.0001)$	1000
FP (k=10000)	-0.4984	0.0019	$0.0429 \ (0.0010)$	$0.0016 \ (0.0014)$	$0.9550 \ (0.0066)$	$0.0018 \ (0.0001)$	1000
Model frailty: I	Normal						
Cox	-0.5002	0.0019	$0.0431 \ (0.0010)$	-0.0002 (0.0014)	$0.9560 \ (0.0065)$	$0.0019 \ (0.0001)$	999
Exp	-0.4362	0.0019	$0.0380 \ (0.0008)$	$0.0638 \ (0.0012)$	$0.7097 \ (0.0144)$	$0.0055 \ (0.0002)$	999
Weibull	-0.4838	0.0019	$0.0419 \ (0.0009)$	$0.0162 \ (0.0013)$	$0.9469 \ (0.0071)$	$0.0020 \ (0.0001)$	998
Gompertz	-0.4412	0.0019	$0.0417 \ (0.0012)$	$0.0588 \; (0.0017)$	$0.7341 \ (0.0176)$	$0.0052 \ (0.0002)$	628
RP(3)	-0.5000	0.0019	$0.0430 \ (0.0010)$	-0.0000 (0.0014)	$0.9560 \ (0.0065)$	$0.0019 \ (0.0001)$	1000
RP(5)	-0.5002	0.0019	$0.0431 \ (0.0010)$	-0.0002 (0.0014)	$0.9560 \ (0.0065)$	$0.0019 \ (0.0001)$	1000
RP(9)	-0.5003	0.0019	$0.0431 \ (0.0010)$	-0.0003 (0.0014)	$0.9570 \ (0.0064)$	$0.0019 \ (0.0001)$	1000
RP(P)	-0.4984	0.0019	$0.0429 \ (0.0010)$	$0.0016 \ (0.0014)$	$0.9580 \ (0.0063)$	$0.0018 \ (0.0001)$	1000
FP(W)	-0.4828	0.0019	$0.0433 \ (0.0012)$	$0.0172 \ (0.0017)$	$0.9308 \; (0.0102)$	$0.0022 \ (0.0001)$	621
FP (k=10)	-0.4985	0.0019	$0.0439 \ (0.0010)$	$0.0015 \ (0.0014)$	$0.9469 \ (0.0073)$	$0.0019 \ (0.0001)$	941
FP (k=10000)	-0.4983	0.0018	$0.0437 \ (0.0010)$	$0.0017 \ (0.0014)$	$0.9446 \ (0.0074)$	$0.0019 \ (0.0001)$	956

Table 79: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	-0.4996	0.0020	$0.0434 \ (0.0010)$	$0.0004 \ (0.0014)$	$0.9587 \ (0.0063)$	0.0019 (0.0001)	993
Exp	-0.3913	0.0019	0.0363 (0.0008)	$0.1087 \ (0.0011)$	$0.2610 \ (0.0139)$	0.0131 (0.0003)	1000
Weibull	-0.5162	0.0020	$0.0453 \ (0.0010)$	-0.0162 (0.0014)	$0.9310 \ (0.0080)$	$0.0023 \ (0.0001)$	1000
Gompertz	-0.4170	0.0020	$0.0565 \ (0.0015)$	$0.0830 \ (0.0021)$	$0.4470 \ (0.0184)$	$0.0101 \ (0.0003)$	727
RP(3)	-0.5007	0.0020	0.0434 (0.0010)	-0.0007 (0.0014)	$0.9560 \ (0.0065)$	$0.0019 \ (0.0001)$	1000
RP(5)	-0.4999	0.0020	$0.0434 \ (0.0010)$	$0.0001 \ (0.0014)$	$0.9570 \ (0.0064)$	$0.0019 \ (0.0001)$	1000
RP(9)	-0.4999	0.0020	$0.0434 \ (0.0010)$	$0.0001 \ (0.0014)$	$0.9570 \ (0.0064)$	$0.0019 \ (0.0001)$	1000
RP(P)	-0.5001	0.0020	$0.0434 \ (0.0010)$	-0.0001 (0.0014)	$0.9570 \ (0.0064)$	$0.0019 \ (0.0001)$	1000
FP(W)	-0.5162	0.0020	$0.0453 \ (0.0010)$	-0.0162 (0.0014)	$0.9310 \ (0.0080)$	$0.0023 \ (0.0001)$	1000
FP (k=10)	-0.4953	0.0020	$0.0434 \ (0.0010)$	$0.0047 \ (0.0014)$	$0.9560 \ (0.0065)$	$0.0019 \ (0.0001)$	1000
FP (k=10000)	-0.4888	0.0020	$0.0442\ (0.0010)$	$0.0112 \ (0.0014)$	$0.9468 \; (0.0071)$	$0.0021 \ (0.0001)$	996
Model frailty: I	Normal						
Cox	-0.5001	0.0020	$0.0434 \ (0.0010)$	-0.0001 (0.0014)	$0.9570 \ (0.0064)$	$0.0019 \ (0.0001)$	1000
Exp	-0.3912	0.0019	$0.0363 \ (0.0008)$	$0.1088 \; (0.0011)$	$0.2613 \ (0.0139)$	$0.0132 \ (0.0003)$	999
Weibull	-0.5164	0.0020	$0.0453 \ (0.0010)$	-0.0164 (0.0014)	$0.9299 \ (0.0081)$	$0.0023 \ (0.0001)$	998
Gompertz	-0.4134	0.0020	$0.0559 \ (0.0015)$	$0.0866 \ (0.0021)$	$0.4188 \; (0.0188)$	$0.0106 \ (0.0003)$	690
RP(3)	-0.5010	0.0020	$0.0435 \ (0.0010)$	-0.0010 (0.0014)	$0.9570 \ (0.0064)$	$0.0019 \ (0.0001)$	1000
RP(5)	-0.5002	0.0020	$0.0434 \ (0.0010)$	-0.0002 (0.0014)	$0.9570 \ (0.0064)$	$0.0019 \ (0.0001)$	1000
RP(9)	-0.5002	0.0020	$0.0434 \ (0.0010)$	-0.0002 (0.0014)	$0.9570 \ (0.0064)$	$0.0019 \ (0.0001)$	1000
RP(P)	-0.5004	0.0020	$0.0434 \ (0.0010)$	-0.0004 (0.0014)	$0.9570 \ (0.0064)$	$0.0019 \ (0.0001)$	1000
FP(W)	-0.5166	0.0020	$0.0443 \ (0.0013)$	-0.0166 (0.0019)	$0.9431 \ (0.0098)$	$0.0022 \ (0.0001)$	562
FP (k=10)	-0.4951	0.0020	$0.0441 \ (0.0010)$	$0.0049 \ (0.0014)$	$0.9522 \ (0.0070)$	$0.0020 \ (0.0001)$	941
FP (k=10000)	-0.4936	0.0019	0.0486 (0.0011)	0.0064 (0.0016)	$0.9157 \ (0.0089)$	0.0024 (0.0001)	973

Table 80: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.5014	0.0024	0.0495 (0.0011)	-0.0014 (0.0016)	$0.9483 \ (0.0071)$	$0.0024 \ (0.0001)$	986
Exp	-0.5275	0.0023	$0.0511 \ (0.0011)$	-0.0275 (0.0016)	$0.8950 \ (0.0097)$	$0.0034 \ (0.0001)$	1000
Weibull	-0.5027	0.0024	$0.0490 \ (0.0011)$	-0.0027 (0.0016)	$0.9500 \ (0.0069)$	$0.0024 \ (0.0001)$	1000
Gompertz	-0.5316	0.0024	$0.0508 \; (0.0017)$	-0.0316 (0.0024)	$0.8781 \ (0.0155)$	$0.0036 \ (0.0002)$	443
RP(3)	-0.5007	0.0024	$0.0492 \ (0.0011)$	-0.0007 (0.0016)	$0.9500 \ (0.0069)$	$0.0024 \ (0.0001)$	1000
RP(5)	-0.5014	0.0024	$0.0493 \ (0.0011)$	-0.0014 (0.0016)	$0.9490 \ (0.0070)$	$0.0024 \ (0.0001)$	1000
RP(9)	-0.5016	0.0024	$0.0493 \ (0.0011)$	-0.0016 (0.0016)	$0.9490 \ (0.0070)$	$0.0024 \ (0.0001)$	1000
RP(P)	-0.5014	0.0024	$0.0493 \ (0.0011)$	-0.0014 (0.0016)	$0.9500 \ (0.0069)$	$0.0024 \ (0.0001)$	1000
FP(W)	-0.5027	0.0024	$0.0490 \ (0.0011)$	-0.0027 (0.0016)	$0.9500 \ (0.0069)$	$0.0024 \ (0.0001)$	1000
FP (k=10)	-0.4995	0.0024	$0.0493 \ (0.0011)$	$0.0005 \ (0.0016)$	$0.9500 \ (0.0069)$	$0.0024 \ (0.0001)$	1000
FP (k=10000)	-0.4975	0.0023	$0.0489 \ (0.0011)$	$0.0025 \ (0.0015)$	$0.9490 \ (0.0070)$	$0.0024 \ (0.0001)$	1000
Model frailty: I	Normal						
Cox	-0.5018	0.0024	$0.0493 \ (0.0011)$	-0.0018 (0.0016)	$0.9490 \ (0.0070)$	$0.0024 \ (0.0001)$	1000
Exp	-0.5276	0.0023	$0.0511 \ (0.0011)$	-0.0276 (0.0016)	$0.8947 \ (0.0097)$	$0.0034 \ (0.0001)$	997
Weibull	-0.5030	0.0024	$0.0492 \ (0.0011)$	-0.0030 (0.0016)	$0.9498 \ (0.0069)$	$0.0024 \ (0.0001)$	997
Gompertz	-0.5307	0.0024	$0.0512 \ (0.0017)$	-0.0307 (0.0025)	$0.8833 \ (0.0154)$	$0.0036 \ (0.0002)$	437
RP(3)	-0.5012	0.0024	$0.0492 \ (0.0011)$	-0.0012 (0.0016)	$0.9490 \ (0.0070)$	$0.0024 \ (0.0001)$	1000
RP(5)	-0.5019	0.0024	$0.0493 \ (0.0011)$	-0.0019 (0.0016)	$0.9490 \ (0.0070)$	$0.0024 \ (0.0001)$	1000
RP(9)	-0.5020	0.0024	$0.0494 \ (0.0011)$	-0.0020 (0.0016)	$0.9480 \ (0.0070)$	$0.0024 \ (0.0001)$	1000
RP(P)	-0.5018	0.0024	$0.0493 \ (0.0011)$	-0.0018 (0.0016)	$0.9490 \ (0.0070)$	$0.0024 \ (0.0001)$	1000
FP(W)	-0.5041	0.0023	$0.0498 \ (0.0013)$	-0.0041 (0.0019)	$0.9443 \ (0.0087)$	0.0025 (0.0001)	700
FP (k=10)	-0.4996	0.0023	$0.0504 \ (0.0012)$	$0.0004 \ (0.0016)$	$0.9422 \ (0.0076)$	$0.0025 \ (0.0001)$	951
FP (k=10000)	-0.4989	0.0022	0.0497 (0.0011)	$0.0011 \ (0.0016)$	$0.9368 \ (0.0078)$	$0.0025 \ (0.0001)$	965

Table 81: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 1.25, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.4998	0.0018	$0.0454 \ (0.0010)$	$0.0002 \ (0.0015)$	$0.9288 \; (0.0083)$	$0.0021 \ (0.0001)$	969
Exp	-0.5009	0.0018	$0.0449 \ (0.0010)$	-0.0009 (0.0014)	$0.9370 \ (0.0077)$	$0.0020 \ (0.0001)$	1000
Weibull	-0.5010	0.0018	$0.0453 \ (0.0010)$	-0.0010 (0.0014)	$0.9280 \ (0.0082)$	$0.0020 \ (0.0001)$	1000
Gompertz	-0.5020	0.0018	$0.0473 \ (0.0016)$	-0.0020 (0.0022)	$0.9233 \ (0.0126)$	$0.0022 \ (0.0001)$	443
RP(3)	-0.5002	0.0018	$0.0453 \ (0.0010)$	-0.0002 (0.0014)	$0.9300 \ (0.0081)$	$0.0021 \ (0.0001)$	1000
RP(5)	-0.5002	0.0018	$0.0453 \ (0.0010)$	-0.0002 (0.0014)	$0.9300 \ (0.0081)$	$0.0021 \ (0.0001)$	1000
RP(9)	-0.5003	0.0018	$0.0453 \ (0.0010)$	-0.0003 (0.0014)	$0.9300 \ (0.0081)$	$0.0021 \ (0.0001)$	1000
RP(P)	-0.5007	0.0018	$0.0453 \ (0.0010)$	-0.0007 (0.0014)	$0.9259 \ (0.0083)$	$0.0021 \ (0.0001)$	998
FP(W)	-0.5010	0.0018	$0.0453 \ (0.0010)$	-0.0010 (0.0014)	$0.9280 \ (0.0082)$	$0.0020 \ (0.0001)$	1000
FP (k=10)	-0.4993	0.0018	$0.0453 \ (0.0010)$	0.0007 (0.0014)	$0.9320 \ (0.0080)$	$0.0021 \ (0.0001)$	1000
FP (k=10000)	-0.4995	0.0018	$0.0452 \ (0.0010)$	$0.0005 \ (0.0014)$	$0.9279 \ (0.0082)$	$0.0020 \ (0.0001)$	999
Model frailty: I	Normal						
Cox	-0.5005	0.0018	$0.0454 \ (0.0010)$	-0.0005 (0.0014)	$0.9300 \ (0.0081)$	$0.0021 \ (0.0001)$	1000
Exp	-0.5009	0.0018	$0.0449 \ (0.0010)$	-0.0009 (0.0014)	$0.9369 \ (0.0077)$	$0.0020 \ (0.0001)$	999
Weibull	-0.5012	0.0018	$0.0453 \ (0.0010)$	-0.0012 (0.0014)	$0.9280 \ (0.0082)$	$0.0021 \ (0.0001)$	1000
Gompertz	-0.5004	0.0018	$0.0461 \ (0.0015)$	-0.0004 (0.0022)	$0.9238 \ (0.0126)$	$0.0021 \ (0.0001)$	446
RP(3)	-0.5005	0.0018	$0.0454 \ (0.0010)$	-0.0005 (0.0014)	$0.9290 \ (0.0081)$	$0.0021 \ (0.0001)$	1000
RP(5)	-0.5005	0.0018	$0.0454 \ (0.0010)$	-0.0005 (0.0014)	$0.9300 \ (0.0081)$	$0.0021 \ (0.0001)$	1000
RP(9)	-0.5006	0.0018	$0.0454 \ (0.0010)$	-0.0006 (0.0014)	$0.9300 \ (0.0081)$	$0.0021 \ (0.0001)$	1000
RP(P)	-0.5009	0.0018	$0.0454 \ (0.0010)$	-0.0009 (0.0014)	$0.9270 \ (0.0082)$	$0.0021 \ (0.0001)$	1000
FP(W)	-0.5021	0.0018	$0.0446 \ (0.0012)$	-0.0021 (0.0018)	$0.9353 \ (0.0097)$	$0.0020 \ (0.0001)$	649
FP (k=10)	-0.4988	0.0018	$0.0464 \ (0.0011)$	$0.0012 \ (0.0015)$	$0.9230 \ (0.0087)$	$0.0021 \ (0.0001)$	935
FP (k=10000)	-0.4995	0.0017	0.0462 (0.0011)	$0.0005 \ (0.0015)$	0.9081 (0.0094)	0.0021 (0.0001)	947

Table 82: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.5000	0.0020	$0.0454 \ (0.0010)$	$0.0000 \ (0.0014)$	$0.9541 \ (0.0067)$	$0.0021 \ (0.0001)$	980
Exp	-0.5680	0.0020	$0.0521 \ (0.0012)$	-0.0680 (0.0016)	$0.6280 \ (0.0153)$	$0.0073 \ (0.0002)$	1000
Weibull	-0.5019	0.0020	$0.0454 \ (0.0010)$	-0.0019 (0.0014)	$0.9540 \ (0.0066)$	$0.0021 \ (0.0001)$	1000
Gompertz	-0.5672	0.0020	$0.0492 \ (0.0017)$	-0.0672 (0.0025)	$0.6303 \ (0.0240)$	$0.0069 \ (0.0003)$	403
RP(3)	-0.5000	0.0020	$0.0453 \ (0.0010)$	$0.0000 \ (0.0014)$	$0.9550 \ (0.0066)$	$0.0021 \ (0.0001)$	1000
RP(5)	-0.4999	0.0020	$0.0453 \ (0.0010)$	$0.0001 \ (0.0014)$	$0.9540 \ (0.0066)$	$0.0021 \ (0.0001)$	1000
RP(9)	-0.4999	0.0020	$0.0453 \ (0.0010)$	$0.0001 \ (0.0014)$	$0.9550 \ (0.0066)$	$0.0020 \ (0.0001)$	1000
RP(P)	-0.5001	0.0020	$0.0453 \ (0.0010)$	-0.0001 (0.0014)	$0.9550 \ (0.0066)$	$0.0021 \ (0.0001)$	1000
FP(W)	-0.5019	0.0020	$0.0454 \ (0.0010)$	-0.0019 (0.0014)	$0.9540 \ (0.0066)$	$0.0021 \ (0.0001)$	1000
FP (k=10)	-0.4996	0.0020	$0.0462 \ (0.0010)$	$0.0004 \ (0.0015)$	$0.9510 \ (0.0068)$	$0.0021 \ (0.0001)$	1000
FP (k=10000)	-0.5223	0.0020	$0.0487 \ (0.0011)$	-0.0223 (0.0016)	$0.8918 \ (0.0099)$	$0.0029 \ (0.0001)$	980
Model frailty: I	Normal						
Cox	-0.5001	0.0020	$0.0453 \ (0.0010)$	-0.0001 (0.0014)	$0.9550 \ (0.0066)$	$0.0020 \ (0.0001)$	1000
Exp	-0.5681	0.0020	$0.0521 \ (0.0012)$	-0.0681 (0.0016)	$0.6280 \ (0.0153)$	$0.0074 \ (0.0002)$	1000
Weibull	-0.5022	0.0020	$0.0454 \ (0.0010)$	-0.0022 (0.0014)	$0.9540 \ (0.0066)$	$0.0021 \ (0.0001)$	1000
Gompertz	-0.5668	0.0020	$0.0501 \ (0.0018)$	-0.0668 (0.0025)	$0.6485 \ (0.0238)$	$0.0070 \ (0.0004)$	404
RP(3)	-0.5003	0.0020	$0.0454 \ (0.0010)$	-0.0003 (0.0014)	$0.9550 \ (0.0066)$	$0.0021 \ (0.0001)$	1000
RP(5)	-0.5003	0.0020	$0.0453 \ (0.0010)$	-0.0003 (0.0014)	$0.9540 \ (0.0066)$	$0.0021 \ (0.0001)$	1000
RP(9)	-0.5003	0.0020	$0.0453 \ (0.0010)$	-0.0003 (0.0014)	$0.9550 \ (0.0066)$	$0.0021 \ (0.0001)$	1000
RP(P)	-0.5005	0.0020	$0.0454 \ (0.0010)$	-0.0005 (0.0014)	$0.9540 \ (0.0066)$	$0.0021 \ (0.0001)$	1000
FP(W)	-0.5016	0.0020	$0.0456 \ (0.0012)$	-0.0016 (0.0017)	$0.9538 \ (0.0080)$	$0.0021 \ (0.0001)$	693
FP (k=10)	-0.4990	0.0020	$0.0473 \ (0.0011)$	$0.0010 \ (0.0015)$	$0.9421 \ (0.0077)$	$0.0022 \ (0.0001)$	932
FP (k=10000)	-0.5188	0.0019	$0.0497 \ (0.0011)$	-0.0188 (0.0016)	0.8911 (0.0100)	$0.0028 \ (0.0001)$	964

Table 83: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	-0.4976	0.0016	$0.0392 \ (0.0009)$	$0.0024 \ (0.0013)$	$0.9547 \ (0.0067)$	0.0015 (0.0001)	972
Exp	-0.4354	0.0016	$0.0340 \ (0.0008)$	$0.0646 \ (0.0011)$	$0.6450 \ (0.0151)$	$0.0053 \ (0.0001)$	1000
Weibull	-0.4814	0.0016	$0.0381 \ (0.0009)$	$0.0186 \ (0.0012)$	$0.9370 \ (0.0077)$	$0.0018 \ (0.0001)$	1000
Gompertz	-0.4386	0.0016	$0.0374 \ (0.0011)$	$0.0614 \ (0.0016)$	$0.6661 \ (0.0199)$	$0.0052 \ (0.0002)$	563
RP(3)	-0.4975	0.0016	$0.0394 \ (0.0009)$	$0.0025 \ (0.0012)$	$0.9540 \ (0.0066)$	$0.0016 \ (0.0001)$	1000
RP(5)	-0.4978	0.0016	$0.0394 \ (0.0009)$	$0.0022 \ (0.0012)$	$0.9560 \ (0.0065)$	$0.0016 \ (0.0001)$	1000
RP(9)	-0.4979	0.0016	$0.0394 \ (0.0009)$	$0.0021 \ (0.0012)$	$0.9560 \ (0.0065)$	$0.0016 \ (0.0001)$	1000
RP(P)	-0.4964	0.0016	$0.0393 \ (0.0009)$	$0.0036 \ (0.0012)$	$0.9569 \ (0.0064)$	$0.0016 \ (0.0001)$	998
FP(W)	-0.4814	0.0016	$0.0381 \ (0.0009)$	$0.0186 \ (0.0012)$	$0.9370 \ (0.0077)$	$0.0018 \ (0.0001)$	1000
FP (k=10)	-0.4970	0.0016	$0.0394 \ (0.0009)$	$0.0030 \ (0.0012)$	$0.9570 \ (0.0064)$	$0.0016 \ (0.0001)$	1000
FP (k=10000)	-0.4965	0.0016	$0.0392 \ (0.0009)$	$0.0035 \ (0.0013)$	$0.9534 \ (0.0068)$	$0.0015 \ (0.0001)$	965
Model frailty: I	Normal						
Cox	-0.4979	0.0016	$0.0394 \ (0.0009)$	$0.0021 \ (0.0012)$	$0.9560 \ (0.0065)$	$0.0016 \ (0.0001)$	1000
Exp	-0.4353	0.0016	$0.0340 \ (0.0008)$	$0.0647 \ (0.0011)$	$0.6456 \ (0.0151)$	$0.0053 \ (0.0001)$	999
Weibull	-0.4816	0.0016	$0.0382 \ (0.0009)$	$0.0184 \ (0.0012)$	$0.9389 \ (0.0076)$	$0.0018 \ (0.0001)$	998
Gompertz	-0.4379	0.0016	$0.0363 \ (0.0011)$	$0.0621 \ (0.0015)$	$0.6516 \ (0.0202)$	$0.0052 \ (0.0002)$	554
RP(3)	-0.4976	0.0016	$0.0394 \ (0.0009)$	$0.0024 \ (0.0012)$	$0.9550 \ (0.0066)$	$0.0016 \ (0.0001)$	1000
RP(5)	-0.4979	0.0016	$0.0394 \ (0.0009)$	$0.0021 \ (0.0012)$	$0.9560 \ (0.0065)$	$0.0016 \ (0.0001)$	1000
RP(9)	-0.4981	0.0016	$0.0394 \ (0.0009)$	$0.0019 \ (0.0012)$	$0.9560 \ (0.0065)$	$0.0016 \ (0.0001)$	1000
RP(P)	-0.4966	0.0016	$0.0393 \ (0.0009)$	$0.0034 \ (0.0012)$	$0.9570 \ (0.0064)$	$0.0016 \ (0.0001)$	1000
FP(W)	-0.4821	0.0016	$0.0394 \ (0.0012)$	$0.0179 \ (0.0017)$	$0.9326 \ (0.0106)$	$0.0019 \ (0.0001)$	564
FP (k=10)	-0.4957	0.0016	$0.0398 \ (0.0009)$	$0.0043 \ (0.0013)$	$0.9534 \ (0.0070)$	$0.0016 \ (0.0001)$	902
FP (k=10000)	-0.4965	0.0014	$0.0397 \ (0.0009)$	$0.0035 \ (0.0013)$	$0.9313 \ (0.0083)$	$0.0016 \ (0.0001)$	932

Table 84: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.4974	0.0017	$0.0409 \ (0.0009)$	$0.0026 \ (0.0013)$	$0.9521 \ (0.0068)$	0.0017 (0.0001)	982
Exp	-0.3710	0.0016	$0.0330 \ (0.0007)$	$0.1290 \ (0.0010)$	$0.0670 \ (0.0079)$	0.0177 (0.0003)	1000
Weibull	-0.5128	0.0017	$0.0423 \ (0.0009)$	-0.0128 (0.0013)	$0.9310 \ (0.0080)$	$0.0020 \ (0.0001)$	1000
Gompertz	-0.4150	0.0016	$0.0658 \ (0.0016)$	$0.0850 \ (0.0023)$	$0.4234 \ (0.0174)$	$0.0116 \ (0.0004)$	803
RP(3)	-0.4978	0.0017	$0.0410 \ (0.0009)$	$0.0022 \ (0.0013)$	$0.9520 \ (0.0068)$	$0.0017 \ (0.0001)$	1000
RP(5)	-0.4976	0.0017	$0.0410 \ (0.0009)$	$0.0024 \ (0.0013)$	$0.9500 \ (0.0069)$	$0.0017 \ (0.0001)$	1000
RP(9)	-0.4977	0.0017	$0.0410 \ (0.0009)$	$0.0023 \ (0.0013)$	$0.9510 \ (0.0068)$	$0.0017 \ (0.0001)$	1000
RP(P)	-0.4976	0.0017	$0.0409 \ (0.0009)$	$0.0024 \ (0.0013)$	$0.9530 \ (0.0067)$	$0.0017 \ (0.0001)$	1000
FP(W)	-0.5129	0.0017	$0.0423 \ (0.0009)$	-0.0129 (0.0013)	$0.9309 \ (0.0080)$	$0.0020 \ (0.0001)$	998
FP (k=10)	-0.4911	0.0017	$0.0409 \ (0.0009)$	$0.0089 \ (0.0013)$	$0.9480 \ (0.0070)$	$0.0017 \ (0.0001)$	1000
FP (k=10000)	-0.4873	0.0017	$0.0414 \ (0.0009)$	$0.0127 \ (0.0013)$	$0.9298 \ (0.0082)$	$0.0019 \ (0.0001)$	968
Model frailty: I	Normal						
Cox	-0.4977	0.0017	$0.0410 \ (0.0009)$	$0.0023 \ (0.0013)$	$0.9510 \ (0.0068)$	0.0017 (0.0001)	1000
Exp	-0.3709	0.0016	$0.0330 \ (0.0007)$	$0.1291 \ (0.0010)$	$0.0670 \ (0.0079)$	$0.0178 \ (0.0003)$	1000
Weibull	-0.5129	0.0017	$0.0423 \ (0.0009)$	-0.0129 (0.0013)	$0.9308 \; (0.0080)$	$0.0020 \ (0.0001)$	997
Gompertz	-0.4121	0.0016	$0.0647 \ (0.0017)$	$0.0879 \ (0.0024)$	$0.3975 \ (0.0182)$	$0.0119 \ (0.0004)$	727
RP(3)	-0.4980	0.0017	$0.0410 \ (0.0009)$	$0.0020 \ (0.0013)$	$0.9520 \ (0.0068)$	$0.0017 \ (0.0001)$	1000
RP(5)	-0.4977	0.0017	$0.0410 \ (0.0009)$	$0.0023 \ (0.0013)$	$0.9520 \ (0.0068)$	$0.0017 \ (0.0001)$	1000
RP(9)	-0.4978	0.0017	$0.0410 \ (0.0009)$	$0.0022 \ (0.0013)$	$0.9510 \ (0.0068)$	$0.0017 \ (0.0001)$	1000
RP(P)	-0.4977	0.0017	$0.0410 \ (0.0009)$	$0.0023 \ (0.0013)$	$0.9520 \ (0.0068)$	$0.0017 \ (0.0001)$	1000
FP(W)	-0.5135	0.0017	$0.0444 \ (0.0013)$	-0.0135 (0.0019)	$0.9114 \ (0.0122)$	$0.0021 \ (0.0001)$	542
FP (k=10)	-0.4904	0.0016	$0.0427 \ (0.0010)$	$0.0096 \ (0.0014)$	$0.9260 \ (0.0086)$	$0.0019 \ (0.0001)$	919
FP (k=10000)	-0.5091	0.0015	$0.0504 \ (0.0012)$	-0.0091 (0.0017)	$0.8525 \ (0.0116)$	$0.0026 \ (0.0001)$	929

Table 85: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.4979	0.0019	$0.0438 \ (0.0010)$	$0.0021 \ (0.0014)$	$0.9490 \ (0.0070)$	0.0019 (0.0001)	981
Exp	-0.5260	0.0019	$0.0459 \ (0.0010)$	-0.0260 (0.0015)	$0.9000 \ (0.0095)$	$0.0028 \ (0.0001)$	1000
Weibull	-0.4969	0.0019	$0.0439 \ (0.0010)$	$0.0031 \ (0.0014)$	$0.9470 \ (0.0071)$	$0.0019 \ (0.0001)$	1000
Gompertz	-0.5260	0.0019	$0.0465 \ (0.0016)$	-0.0260 (0.0023)	0.8955 (0.0149)	$0.0028 \ (0.0002)$	421
RP(3)	-0.4975	0.0019	$0.0438 \ (0.0010)$	$0.0025 \ (0.0014)$	$0.9460 \ (0.0071)$	$0.0019 \ (0.0001)$	1000
RP(5)	-0.4980	0.0019	$0.0438 \ (0.0010)$	$0.0020 \ (0.0014)$	$0.9490 \ (0.0070)$	$0.0019 \ (0.0001)$	1000
RP(9)	-0.4980	0.0019	$0.0438 \ (0.0010)$	$0.0020 \ (0.0014)$	$0.9470 \ (0.0071)$	$0.0019 \ (0.0001)$	1000
RP(P)	-0.4980	0.0019	$0.0438 \ (0.0010)$	$0.0020 \ (0.0014)$	$0.9488 \; (0.0070)$	$0.0019 \ (0.0001)$	997
FP(W)	-0.4969	0.0019	$0.0439 \ (0.0010)$	$0.0031 \ (0.0014)$	$0.9470 \ (0.0071)$	$0.0019 \ (0.0001)$	1000
FP (k=10)	-0.4979	0.0019	$0.0441 \ (0.0010)$	$0.0021 \ (0.0014)$	$0.9470 \ (0.0071)$	$0.0019 \ (0.0001)$	1000
FP (k=10000)	-0.4963	0.0019	$0.0439 \ (0.0010)$	$0.0037 \ (0.0014)$	$0.9437 \ (0.0073)$	$0.0019 \ (0.0001)$	994
Model frailty: I	Normal						
Cox	-0.4982	0.0019	$0.0438 \ (0.0010)$	$0.0018 \ (0.0014)$	$0.9479 \ (0.0070)$	$0.0019 \ (0.0001)$	999
Exp	-0.5261	0.0019	$0.0459 \ (0.0010)$	-0.0261 (0.0015)	$0.8997 \ (0.0095)$	$0.0028 \ (0.0001)$	997
Weibull	-0.4973	0.0019	$0.0439 \ (0.0010)$	$0.0027 \ (0.0014)$	$0.9469 \ (0.0071)$	$0.0019 \ (0.0001)$	998
Gompertz	-0.5279	0.0019	$0.0459 \ (0.0017)$	-0.0279 (0.0023)	$0.8938 \ (0.0157)$	$0.0029 \ (0.0002)$	386
RP(3)	-0.4979	0.0019	$0.0438 \ (0.0010)$	$0.0021 \ (0.0014)$	$0.9480 \ (0.0070)$	$0.0019 \ (0.0001)$	1000
RP(5)	-0.4983	0.0019	$0.0438 \ (0.0010)$	$0.0017 \ (0.0014)$	$0.9480 \ (0.0070)$	$0.0019 \ (0.0001)$	1000
RP(9)	-0.4984	0.0019	$0.0438 \ (0.0010)$	$0.0016 \ (0.0014)$	$0.9480 \ (0.0070)$	$0.0019 \ (0.0001)$	1000
RP(P)	-0.4983	0.0019	$0.0438 \ (0.0010)$	$0.0017 \ (0.0014)$	$0.9500 \ (0.0069)$	$0.0019 \ (0.0001)$	1000
FP(W)	-0.4985	0.0019	$0.0439 \ (0.0012)$	$0.0015 \ (0.0017)$	$0.9441 \ (0.0088)$	$0.0019 \ (0.0001)$	680
FP (k=10)	-0.4972	0.0019	$0.0454 \ (0.0011)$	$0.0028 \ (0.0015)$	$0.9300 \ (0.0084)$	$0.0021 \ (0.0001)$	929
FP (k=10000)	-0.4970	0.0017	$0.0450 \ (0.0010)$	$0.0030 \ (0.0015)$	$0.9313 \ (0.0082)$	$0.0020 \ (0.0001)$	961

Table 86: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 1.25, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.4987	0.0028	$0.0516 \ (0.0012)$	$0.0013 \ (0.0016)$	$0.9540 \ (0.0066)$	0.0027 (0.0001)	999
Exp	-0.4956	0.0027	$0.0506 \ (0.0011)$	$0.0044 \ (0.0016)$	$0.9440 \ (0.0073)$	$0.0026 \ (0.0001)$	1000
Weibull	-0.5116	0.0027	$0.0534 \ (0.0012)$	-0.0116 (0.0017)	$0.9420 \ (0.0074)$	$0.0030 \ (0.0001)$	1000
Gompertz	-0.5064	0.0024	$0.0407 \ (0.0057)$	-0.0064 (0.0080)	$1.0000 \ (0.0000)$	$0.0016 \ (0.0004)$	26
RP(3)	-0.4993	0.0027	$0.0521 \ (0.0012)$	$0.0007 \ (0.0017)$	$0.9496 \ (0.0071)$	$0.0027 \ (0.0001)$	953
RP(5)	-0.5002	0.0027	$0.0533 \ (0.0012)$	-0.0002 (0.0017)	$0.9525 \ (0.0069)$	$0.0028 \ (0.0002)$	947
RP(9)	-0.4997	0.0028	$0.0515 \ (0.0012)$	$0.0003 \ (0.0017)$	$0.9547 \ (0.0069)$	$0.0027 \ (0.0001)$	905
RP(P)	-0.5007	0.0027	$0.0518 \ (0.0012)$	-0.0007 (0.0017)	$0.9515 \ (0.0069)$	$0.0027 \ (0.0001)$	970
FP(W)	-0.5115	0.0027	$0.0534 \ (0.0012)$	-0.0115 (0.0017)	$0.9419 \ (0.0074)$	$0.0030 \ (0.0001)$	999
FP (k=10)	-0.4950	0.0027	$0.0506 \ (0.0011)$	$0.0050 \ (0.0016)$	$0.9470 \ (0.0071)$	$0.0026 \ (0.0001)$	1000
FP (k=10000)	-0.5020	0.0032	$0.0889 \ (0.0281)$	-0.0020 (0.0363)	$0.6667 \ (0.1925)$	$0.0066 \ (0.0032)$	6
Model frailty: I	Normal						
Cox	-0.4829	0.0027	$0.0580 \ (0.0013)$	$0.0171 \ (0.0019)$	$0.9095 \ (0.0093)$	$0.0037 \ (0.0002)$	950
Exp	-0.4957	0.0027	$0.0501 \ (0.0012)$	$0.0043 \ (0.0016)$	$0.9483 \ (0.0073)$	$0.0025 \ (0.0001)$	928
Weibull	-0.5117	0.0028	$0.0529 \ (0.0012)$	-0.0117 (0.0018)	$0.9439 \ (0.0076)$	$0.0029 \ (0.0001)$	909
Gompertz	-0.5031	0.0023	$0.0426 \ (0.0069)$	$-0.0031 \ (0.0095)$	$1.0000 \ (0.0000)$	$0.0017 \ (0.0005)$	20
RP(3)	-0.4957	0.0028	$0.0662 \ (0.0015)$	$0.0043 \ (0.0021)$	$0.9358 \ (0.0078)$	$0.0044 \ (0.0006)$	981
RP(5)	-0.4960	0.0028	$0.0675 \ (0.0015)$	$0.0040 \ (0.0022)$	$0.9416 \ (0.0075)$	$0.0046 \ (0.0006)$	976
RP(9)	-0.4899	0.0028	$0.0810 \ (0.0018)$	$0.0101 \ (0.0026)$	$0.9281 \ (0.0083)$	$0.0067 \ (0.0008)$	973
RP(P)	-0.5009	0.0028	$0.0520 \ (0.0012)$	-0.0009 (0.0017)	$0.9511 \ (0.0069)$	$0.0027 \ (0.0001)$	981
FP(W)	-0.4983	0.0027	$0.0533 \ (0.0016)$	$0.0017 \ (0.0023)$	$0.9476 \ (0.0096)$	$0.0028 \ (0.0002)$	534
FP (k=10)	-0.4869	0.0026	$0.0512 \ (0.0013)$	$0.0131 \ (0.0018)$	$0.9448 \ (0.0079)$	$0.0028 \ (0.0001)$	834
FP (k=10000)	-0.4932	0.0023	$0.0508 \ (0.0014)$	$0.0068 \ (0.0019)$	$0.9309 \ (0.0096)$	$0.0026 \ (0.0001)$	695

Table 87: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	-0.4932	0.0029	0.0535 (0.0012)	$0.0068 \ (0.0017)$	$0.9560 \ (0.0065)$	0.0029 (0.0001)	999
Exp	-0.5884	0.0028	$0.0648 \ (0.0014)$	-0.0884 (0.0020)	$0.5880 \ (0.0156)$	$0.0120 \ (0.0004)$	1000
Weibull	-0.5263	0.0029	$0.0571 \ (0.0013)$	-0.0263 (0.0018)	$0.9100 \ (0.0090)$	$0.0039 \ (0.0002)$	1000
Gompertz	-0.5861	0.0027	$0.0693 \ (0.0148)$	-0.0861 (0.0200)	$0.6667 \ (0.1361)$	$0.0118 \ (0.0042)$	12
RP(3)	-0.5005	0.0028	$0.0537 \ (0.0012)$	-0.0005 (0.0017)	$0.9518 \ (0.0069)$	$0.0029 \ (0.0001)$	976
RP(5)	-0.5016	0.0029	$0.0535 \ (0.0014)$	-0.0016 (0.0019)	$0.9569 \ (0.0073)$	$0.0029 \ (0.0001)$	766
RP(9)	-0.4934	0.0030	$0.0586 \ (0.0031)$	$0.0066 \ (0.0044)$	$0.9432 \ (0.0174)$	$0.0035 \ (0.0003)$	176
RP(P)	-0.5026	0.0029	$0.0536 \ (0.0012)$	-0.0026 (0.0017)	$0.9550 \ (0.0066)$	$0.0029 \ (0.0001)$	978
FP(W)	-0.5262	0.0029	$0.0570 \ (0.0013)$	-0.0262 (0.0018)	$0.9108 \; (0.0090)$	$0.0039 \ (0.0002)$	998
FP (k=10)	-0.5714	0.0028	$0.0640 \ (0.0014)$	-0.0714 (0.0020)	$0.6794 \ (0.0148)$	$0.0092 \ (0.0003)$	995
FP (k=10000)		_					0
Model frailty: I	Normal						
Cox	-0.4788	0.0028	$0.0590 \ (0.0014)$	$0.0212 \ (0.0019)$	$0.9115 \ (0.0092)$	$0.0039 \ (0.0002)$	949
Exp	-0.5892	0.0027	$0.0635 \ (0.0015)$	-0.0892 (0.0022)	$0.5869 \ (0.0168)$	$0.0120 \ (0.0004)$	857
Weibull	-0.5257	0.0028	$0.0569 \ (0.0013)$	$-0.0257 \ (0.0019)$	$0.9078 \; (0.0095)$	$0.0039 \ (0.0002)$	922
Gompertz	-0.6166	0.0025	$0.0663 \ (0.0191)$	$-0.1166 \ (0.0251)$	$0.7143 \ (0.1707)$	$0.0174 \ (0.0083)$	7
RP(3)	-0.5011	0.0029	$0.0550 \ (0.0013)$	-0.0011 (0.0019)	$0.9456 \ (0.0078)$	$0.0030 \ (0.0001)$	845
RP(5)	-0.4718	0.0029	$0.1220 \ (0.0031)$	$0.0282 \ (0.0044)$	$0.8841 \ (0.0114)$	$0.0156 \ (0.0017)$	785
RP(9)	-0.2709	0.0030	$0.2055 \ (0.0055)$	$0.2291 \ (0.0078)$	$0.3333 \ (0.0178)$	$0.0946 \ (0.0032)$	702
RP(P)	-0.5015	0.0029	$0.0572 \ (0.0015)$	-0.0015 (0.0021)	$0.9488 \; (0.0080)$	$0.0033 \ (0.0003)$	761
FP(W)	-0.5123	0.0028	$0.0563 \ (0.0017)$	-0.0123 (0.0024)	$0.9357 \ (0.0104)$	$0.0033 \ (0.0002)$	560
FP (k=10)	-0.5402	0.0028	$0.0630 \ (0.0016)$	-0.0402 (0.0022)	$0.8101 \ (0.0139)$	$0.0056 \ (0.0003)$	795
FP (k=10000)	-0.5870	0.0024	0.0631 (0.0024)	-0.0870 (0.0033)	0.5363 (0.0264)	0.0115 (0.0006)	358

Table 88: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.4982	0.0026	$0.0504 \ (0.0011)$	$0.0018 \ (0.0016)$	$0.9480 \ (0.0070)$	0.0025 (0.0001)	1000
Exp	-0.4815	0.0025	$0.0482 \ (0.0011)$	$0.0185 \ (0.0015)$	$0.9410 \ (0.0075)$	$0.0027 \ (0.0001)$	1000
Weibull	-0.5139	0.0026	$0.0520 \ (0.0012)$	-0.0139 (0.0016)	$0.9290 \ (0.0081)$	$0.0029 \ (0.0001)$	1000
Gompertz	-0.4731	0.0023	$0.0506 \ (0.0089)$	$0.0269 \ (0.0123)$	$0.8824 \ (0.0781)$	$0.0031 \ (0.0011)$	17
RP(3)	-0.5031	0.0026	$0.0511 \ (0.0012)$	-0.0031 (0.0016)	$0.9401 \ (0.0076)$	$0.0026 \ (0.0001)$	968
RP(5)	-0.5012	0.0026	$0.0512 \ (0.0012)$	-0.0012 (0.0016)	$0.9400 \ (0.0076)$	$0.0026 \ (0.0001)$	966
RP(9)	-0.4993	0.0026	$0.0509 \ (0.0012)$	$0.0007 \ (0.0017)$	$0.9442 \ (0.0075)$	$0.0026 \ (0.0001)$	932
RP(P)	-0.4998	0.0026	$0.0508 \ (0.0012)$	$0.0002 \ (0.0016)$	$0.9424 \ (0.0075)$	$0.0026 \ (0.0001)$	972
FP(W)	-0.5140	0.0026	$0.0520 \ (0.0012)$	-0.0140 (0.0016)	$0.9289 \ (0.0081)$	$0.0029 \ (0.0001)$	998
FP (k=10)	-0.4975	0.0025	$0.0500 \ (0.0011)$	$0.0025 \ (0.0016)$	$0.9439 \ (0.0073)$	$0.0025 \ (0.0001)$	999
FP (k=10000)	-0.5073	0.0020	$0.0425 \ (0.0114)$	-0.0073 (0.0150)	$1.0000 \ (0.0000)$	$0.0016 \ (0.0004)$	8
Model frailty: I	Normal						
Cox	-0.4818	0.0026	$0.0567 \ (0.0013)$	$0.0182 \ (0.0018)$	$0.9091 \ (0.0093)$	$0.0035 \ (0.0002)$	957
Exp	-0.4804	0.0025	$0.0480 \ (0.0011)$	$0.0196 \ (0.0016)$	$0.9418 \ (0.0078)$	$0.0027 \ (0.0001)$	894
Weibull	-0.5128	0.0026	$0.0520 \ (0.0013)$	-0.0128 (0.0018)	$0.9326 \ (0.0086)$	$0.0029 \ (0.0001)$	860
Gompertz	-0.4809	0.0028	$0.0593 \ (0.0133)$	$0.0191 \ (0.0179)$	$0.9091 \ (0.0867)$	$0.0036 \ (0.0012)$	11
RP(3)	-0.5036	0.0026	$0.0524 \ (0.0012)$	-0.0036 (0.0017)	$0.9412 \ (0.0075)$	$0.0028 \ (0.0002)$	986
RP(5)	-0.5005	0.0026	$0.0545 \ (0.0012)$	-0.0005 (0.0017)	$0.9429 \ (0.0074)$	$0.0030 \ (0.0003)$	981
RP(9)	-0.4948	0.0026	$0.0675 \ (0.0015)$	$0.0052 \ (0.0022)$	$0.9335 \ (0.0080)$	$0.0046 \ (0.0005)$	978
RP(P)	-0.5001	0.0026	$0.0504 \ (0.0011)$	-0.0001 (0.0016)	$0.9489 \ (0.0070)$	$0.0025 \ (0.0001)$	979
FP (W)	-0.5027	0.0025	$0.0501 \ (0.0017)$	-0.0027 (0.0024)	$0.9486 \ (0.0107)$	$0.0025 \ (0.0002)$	428
FP (k=10)	-0.4842	0.0025	$0.0516 \ (0.0013)$	$0.0158 \; (0.0018)$	$0.9290 \ (0.0091)$	$0.0029 \ (0.0001)$	789
FP (k=10000)	-0.4945	0.0021	$0.0502 \ (0.0014)$	$0.0055 \ (0.0020)$	$0.9323 \ (0.0100)$	0.0026 (0.0001)	635

Table 89: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.4990	0.0027	$0.0522 \ (0.0012)$	$0.0010 \ (0.0017)$	$0.9450 \ (0.0072)$	0.0027 (0.0001)	1000
Exp	-0.3251	0.0025	$0.0372 \ (0.0008)$	$0.1749 \ (0.0012)$	$0.0430 \ (0.0064)$	$0.0320 \ (0.0004)$	1000
Weibull	-0.4842	0.0026	$0.0506 \ (0.0011)$	$0.0158 \ (0.0016)$	$0.9440 \ (0.0073)$	$0.0028 \ (0.0001)$	1000
Gompertz	-0.3290	0.0027	$0.0377 \ (0.0025)$	$0.1710 \ (0.0035)$	$0.0702 \ (0.0239)$	$0.0307 \ (0.0012)$	114
RP(3)	-0.4896	0.0027	$0.0538 \ (0.0017)$	$0.0104 \ (0.0023)$	$0.9506 \ (0.0095)$	$0.0030 \ (0.0003)$	526
RP(5)	-0.4978	0.0027	$0.0530 \ (0.0013)$	$0.0022 \ (0.0019)$	$0.9459 \ (0.0079)$	$0.0028 \ (0.0001)$	814
RP(9)	-0.4989	0.0027	$0.0524 \ (0.0012)$	$0.0011 \ (0.0017)$	$0.9436 \ (0.0075)$	$0.0027 \ (0.0001)$	939
RP(P)	-0.4953	0.0026	$0.0518 \ (0.0012)$	$0.0047 \ (0.0017)$	$0.9485 \ (0.0071)$	$0.0027 \ (0.0001)$	970
FP(W)	-0.4842	0.0026	$0.0506 \ (0.0011)$	$0.0158 \ (0.0016)$	$0.9440 \ (0.0073)$	$0.0028 \ (0.0001)$	1000
FP (k=10)	-0.4954	0.0026	$0.0558 \ (0.0012)$	$0.0046 \ (0.0018)$	$0.9250 \ (0.0083)$	$0.0031 \ (0.0001)$	1000
FP (k=10000)	-0.4969	0.0027	$0.0457 \ (0.0122)$	$0.0031 \ (0.0161)$	$1.0000 \ (0.0000)$	$0.0018 \ (0.0006)$	8
Model frailty: I	Normal						
Cox	-0.4827	0.0026	$0.0587 \ (0.0013)$	$0.0173 \ (0.0019)$	$0.8960 \ (0.0098)$	$0.0037 \ (0.0002)$	971
Exp	-0.3253	0.0026	$0.0372 \ (0.0008)$	$0.1747 \ (0.0012)$	$0.0433 \ (0.0065)$	$0.0319 \ (0.0004)$	970
Weibull	-0.4839	0.0027	$0.0512 \ (0.0013)$	$0.0161 \ (0.0018)$	$0.9397 \ (0.0083)$	$0.0029 \ (0.0001)$	813
Gompertz	-0.3348	0.0029	$0.0418 \; (0.0032)$	$0.1652 \ (0.0045)$	$0.0920 \ (0.0310)$	$0.0290 \ (0.0015)$	87
RP(3)	-0.4714	0.0027	$0.0984 \ (0.0029)$	$0.0286 \ (0.0040)$	$0.9007 \ (0.0123)$	$0.0105 \ (0.0014)$	594
RP(5)	-0.4802	0.0027	$0.0974 \ (0.0023)$	$0.0198 \ (0.0033)$	$0.9016 \ (0.0100)$	0.0099 (0.0011)	894
RP(9)	-0.4927	0.0027	$0.0721 \ (0.0016)$	$0.0073 \ (0.0023)$	$0.9242 \ (0.0084)$	$0.0052 \ (0.0006)$	990
RP(P)	-0.4955	0.0026	$0.0531 \ (0.0012)$	$0.0045 \ (0.0017)$	$0.9480 \ (0.0070)$	$0.0028 \ (0.0002)$	1000
FP(W)	-0.4683	0.0026	$0.0523 \ (0.0018)$	$0.0317 \ (0.0026)$	$0.8933 \ (0.0154)$	$0.0037 \ (0.0002)$	403
FP (k=10)	-0.4647	0.0025	$0.0583 \ (0.0014)$	$0.0353 \ (0.0020)$	$0.8534 \ (0.0122)$	$0.0046 \ (0.0002)$	839
FP (k=10000)	-0.4961	0.0020	$0.0589 \ (0.0017)$	$0.0039 \ (0.0024)$	$0.8777 \ (0.0134)$	$0.0035 \ (0.0002)$	597

Table 90: Simulation results for treatment effect, scenario with 20 clusters of 150 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	-0.4971	0.0028	$0.0562 \ (0.0013)$	$0.0029 \ (0.0018)$	$0.9419 \ (0.0074)$	$0.0032 \ (0.0002)$	998
Exp	-0.5686	0.0027	$0.0646 \ (0.0014)$	-0.0686 (0.0020)	$0.6940 \ (0.0146)$	$0.0089 \ (0.0003)$	1000
Weibull	-0.5158	0.0028	$0.0590 \ (0.0013)$	-0.0158 (0.0019)	$0.9170 \ (0.0087)$	$0.0037 \ (0.0002)$	1000
Gompertz	-0.5666	0.0029	$0.0618 \; (0.0109)$	-0.0666 (0.0150)	$0.7059 \ (0.1105)$	$0.0080 \ (0.0016)$	17
RP(3)	-0.5009	0.0028	$0.0572 \ (0.0013)$	-0.0009 (0.0018)	$0.9340 \ (0.0080)$	$0.0033 \ (0.0002)$	969
RP(5)	-0.5014	0.0028	$0.0573 \ (0.0014)$	-0.0014 (0.0020)	$0.9321 \ (0.0088)$	$0.0033 \ (0.0002)$	810
RP(9)	-0.5009	0.0030	$0.0580 \ (0.0026)$	-0.0009 (0.0037)	$0.9300 \ (0.0164)$	$0.0033 \ (0.0003)$	243
RP(P)	-0.5060	0.0028	$0.0574 \ (0.0013)$	-0.0060 (0.0018)	$0.9237 \ (0.0085)$	$0.0033 \ (0.0002)$	970
FP(W)	-0.5158	0.0028	$0.0590 \ (0.0013)$	-0.0158 (0.0019)	$0.9170 \ (0.0087)$	$0.0037 \ (0.0002)$	1000
FP (k=10)	-0.5594	0.0027	$0.0641 \ (0.0014)$	-0.0594 (0.0020)	$0.7317 \ (0.0140)$	$0.0076 \ (0.0003)$	999
FP (k=10000)							0
Model frailty: I	Normal						
Cox	-0.4806	0.0028	$0.0634 \ (0.0015)$	$0.0194 \ (0.0021)$	$0.8996 \ (0.0097)$	$0.0044 \ (0.0002)$	956
Exp	-0.5696	0.0027	$0.0646 \ (0.0015)$	-0.0696 (0.0022)	$0.6841 \ (0.0157)$	$0.0090 \ (0.0004)$	880
Weibull	-0.5165	0.0028	$0.0590 \ (0.0014)$	-0.0165 (0.0019)	$0.9146 \ (0.0092)$	$0.0037 \ (0.0002)$	925
Gompertz	-0.5261	0.0028	$0.0716 \ (0.0358)$	-0.0261 (0.0414)	$0.6667 \ (0.2722)$	$0.0041 \ (0.0034)$	3
RP(3)	-0.5012	0.0028	$0.0568 \ (0.0014)$	-0.0012 (0.0019)	$0.9320 \ (0.0085)$	$0.0032 \ (0.0002)$	883
RP(5)	-0.4725	0.0029	$0.1181 \ (0.0029)$	$0.0275 \ (0.0041)$	$0.8619 \ (0.0120)$	$0.0147 \ (0.0015)$	833
RP(9)	-0.3152	0.0029	$0.2026 \ (0.0053)$	$0.1848 \; (0.0075)$	$0.4425 \ (0.0183)$	$0.0751 \ (0.0030)$	739
RP(P)	-0.5052	0.0029	$0.0570 \ (0.0014)$	-0.0052 (0.0020)	$0.9263 \ (0.0092)$	$0.0033 \ (0.0002)$	801
FP(W)	-0.5026	0.0028	$0.0599 \ (0.0018)$	-0.0026 (0.0025)	$0.9247 \ (0.0109)$	$0.0036 \ (0.0002)$	584
FP (k=10)	-0.5433	0.0027	$0.0639 \ (0.0016)$	-0.0433 (0.0023)	$0.7933 \ (0.0145)$	$0.0059 \ (0.0003)$	779
FP (k=10000)	-0.5585	0.0024	$0.0653 \ (0.0021)$	-0.0585 (0.0030)	$0.6998 \ (0.0213)$	$0.0077 \ (0.0005)$	463

Results: loss in life expectancy, LLE

Figure 14: Percentage of simulated scenarios in which bias (top panel) or coverage (lower panel) for the estimated LLE was statistically different than the target value of 0 (for bias) or 95% (coverage), using Z tests based on Monte Carlo standard errors.

Figure 15: Bias distribution for the estimated LLE under each data-generating mechanisms by fitted model using ridgeline plots (panel A) or box plots (panel B).

Figure 16: Coverage distribution for the estimated treatment effect under each data-generating mechanisms by fitted model using ridgeline plots (panel A) or box plots (panel B).

Figure 17: Mean squared error distribution for the estimated LLE under each data-generating mechanisms by fitted model using ridgeline plots (panel A) or box plots (panel B).

Table 91: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 0.25, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

	Avg. Estimate		Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	0.6736	0.0078	0.0876 (0.0020)	-0.0015 (0.0028)	$0.9480 \ (0.0070)$	0.0077 (0.0003)	1000
Exp	0.6739	0.0076	$0.0874 \ (0.0020)$	-0.0012 (0.0028)	$0.9450 \ (0.0072)$	$0.0076 \ (0.0003)$	1000
Weibull	0.6745	0.0076	$0.0877 \ (0.0020)$	-0.0006 (0.0028)	$0.9430 \ (0.0073)$	$0.0077 \ (0.0003)$	1000
Gompertz	0.6750	0.0077	$0.0872 \ (0.0025)$	-0.0001 (0.0036)	$0.9467 \ (0.0092)$	$0.0076 \ (0.0004)$	600
RP(3)	0.6743	0.0076	$0.0877 \ (0.0020)$	-0.0008 (0.0028)	$0.9430 \ (0.0073)$	$0.0077 \ (0.0003)$	1000
RP(5)	0.6741	0.0076	$0.0877 \ (0.0020)$	-0.0009 (0.0028)	$0.9430 \ (0.0073)$	$0.0077 \ (0.0003)$	1000
RP(9)	0.6742	0.0076	$0.0877 \ (0.0020)$	-0.0009 (0.0028)	$0.9440 \ (0.0073)$	$0.0077 \ (0.0003)$	1000
RP(P)	0.6743	0.0076	$0.0877 \ (0.0020)$	-0.0008 (0.0028)	$0.9430 \ (0.0073)$	$0.0077 \ (0.0003)$	1000
FP(W)	0.6747	0.0080	$0.0877 \ (0.0020)$	-0.0004 (0.0028)	$0.9495 \ (0.0070)$	$0.0077 \ (0.0003)$	990
FP (k=10)	0.6712	0.0081	$0.0878 \ (0.0020)$	-0.0039 (0.0028)	$0.9509 \ (0.0068)$	$0.0077 \ (0.0003)$	998
FP (k=10000)	0.6729	0.0063	$0.0877 \ (0.0020)$	-0.0022 (0.0028)	$0.9220 \ (0.0085)$	$0.0077 \ (0.0003)$	1000
Model frailty: I	Normal						
Cox	0.6656	0.0078	$0.0868 \ (0.0019)$	-0.0095 (0.0027)	$0.9480 \ (0.0070)$	$0.0076 \ (0.0003)$	1000
Exp	0.6702	0.0076	$0.0873 \ (0.0020)$	-0.0049 (0.0028)	$0.9459 \ (0.0072)$	$0.0076 \ (0.0003)$	999
Weibull	0.6723	0.0076	$0.0878 \ (0.0020)$	-0.0028 (0.0028)	$0.9440 \ (0.0073)$	$0.0077 \ (0.0003)$	1000
Gompertz	0.6706	0.0077	$0.0877 \ (0.0027)$	-0.0045 (0.0039)	$0.9374 \ (0.0107)$	$0.0077 \ (0.0005)$	511
RP(3)	0.6725	0.0076	$0.0878 \ (0.0020)$	-0.0026 (0.0028)	$0.9420 \ (0.0074)$	$0.0077 \ (0.0003)$	1000
RP(5)	0.6724	0.0076	$0.0877 \ (0.0020)$	-0.0027 (0.0028)	$0.9420 \ (0.0074)$	$0.0077 \ (0.0003)$	1000
RP(9)	0.6723	0.0076	$0.0877 \ (0.0020)$	-0.0028 (0.0028)	$0.9430 \ (0.0073)$	$0.0077 \ (0.0003)$	1000
RP(P)	0.6727	0.0076	$0.0878 \ (0.0020)$	-0.0024 (0.0028)	$0.9430 \ (0.0073)$	$0.0077 \ (0.0003)$	1000
FP(W)	0.6718	0.0079	$0.0874 \ (0.0020)$	-0.0033 (0.0028)	$0.9502 \ (0.0069)$	$0.0076 \ (0.0003)$	983
FP (k=10)	0.6693	0.0081	$0.0878 \ (0.0020)$	-0.0058 (0.0028)	$0.9510 \ (0.0068)$	$0.0077 \ (0.0003)$	1000
FP (k=10000)	0.6715	0.0065	$0.0877 \ (0.0020)$	-0.0036 (0.0028)	$0.9230 \ (0.0084)$	$0.0077 \ (0.0003)$	1000

Table 92: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

	Avg. Estimate		Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.7004	0.0084	0.0961 (0.0022)	0.0015 (0.0030)	$0.9380 \ (0.0076)$	0.0092 (0.0004)	1000
Exp	0.7334	0.0082	$0.1009 \ (0.0023)$	$0.0345 \ (0.0032)$	$0.9020 \ (0.0094)$	$0.0114 \ (0.0005)$	1000
Weibull	0.7019	0.0089	$0.0962 \ (0.0022)$	$0.0030 \ (0.0030)$	$0.9440 \ (0.0073)$	$0.0092 \ (0.0004)$	1000
Gompertz	0.7361	0.0083	$0.1033 \ (0.0034)$	$0.0371 \ (0.0048)$	$0.8985 \ (0.0140)$	$0.0120 \ (0.0008)$	463
RP(3)	0.7012	0.0090	$0.0962 \ (0.0022)$	$0.0023 \ (0.0030)$	$0.9449 \ (0.0072)$	$0.0093 \ (0.0004)$	999
RP(5)	0.7010	0.0090	$0.0962 \ (0.0022)$	$0.0021 \ (0.0030)$	$0.9450 \ (0.0072)$	$0.0093 \ (0.0004)$	1000
RP(9)	0.7010	0.0090	$0.0962 \ (0.0022)$	$0.0021 \ (0.0030)$	$0.9440 \ (0.0073)$	$0.0092 \ (0.0004)$	1000
RP(P)	0.7015	0.0090	$0.0963 \ (0.0022)$	$0.0026 \ (0.0030)$	$0.9450 \ (0.0072)$	$0.0093 \ (0.0004)$	1000
FP(W)	0.7017	0.0087	$0.0961 \ (0.0022)$	$0.0028 \ (0.0031)$	$0.9425 \ (0.0074)$	$0.0092 \ (0.0004)$	991
FP (k=10)	0.6925	0.0088	$0.0966 \ (0.0022)$	-0.0064 (0.0031)	$0.9380 \ (0.0076)$	$0.0094 \ (0.0004)$	1000
FP (k=10000)	0.7043	0.0071	$0.0975 \ (0.0022)$	$0.0053 \ (0.0031)$	$0.9020 \ (0.0094)$	$0.0095 \ (0.0004)$	1000
Model frailty: I	Normal						
Cox	0.7009	0.0087	$0.0963 \ (0.0022)$	$0.0019 \ (0.0030)$	$0.9430 \ (0.0073)$	$0.0093 \ (0.0004)$	1000
Exp	0.7250	0.0082	$0.0998 \ (0.0022)$	$0.0260 \ (0.0032)$	$0.9108 \; (0.0090)$	$0.0106 \ (0.0005)$	998
Weibull	0.6998	0.0089	$0.0960 \ (0.0021)$	0.0009 (0.0030)	$0.9429 \ (0.0073)$	$0.0092 \ (0.0004)$	999
Gompertz	0.7363	0.0083	$0.1011 \ (0.0035)$	$0.0374 \ (0.0050)$	$0.8859 \ (0.0157)$	$0.0116 \ (0.0008)$	412
RP(3)	0.6998	0.0090	$0.0961 \ (0.0021)$	$0.0009 \ (0.0030)$	$0.9450 \ (0.0072)$	$0.0092 \ (0.0004)$	1000
RP(5)	0.6997	0.0089	$0.0960 \ (0.0021)$	$0.0008 \ (0.0030)$	$0.9440 \ (0.0073)$	$0.0092 \ (0.0004)$	1000
RP(9)	0.6997	0.0089	$0.0960 \ (0.0021)$	$0.0008 \ (0.0030)$	$0.9460 \ (0.0071)$	$0.0092 \ (0.0004)$	1000
RP(P)	0.7002	0.0089	$0.0961 \ (0.0021)$	$0.0013 \ (0.0030)$	$0.9450 \ (0.0072)$	$0.0092 \ (0.0004)$	1000
FP(W)	0.7009	0.0087	$0.0961 \ (0.0022)$	$0.0020 \ (0.0031)$	$0.9405 \ (0.0075)$	$0.0092 \ (0.0004)$	991
FP (k=10)	0.6916	0.0088	$0.0964 \ (0.0022)$	-0.0073 (0.0030)	$0.9390 \ (0.0076)$	$0.0093 \ (0.0004)$	1000
FP (k=10000)	0.7030	0.0075	$0.0973 \ (0.0022)$	$0.0040 \ (0.0031)$	$0.9130 \ (0.0089)$	$0.0095 \ (0.0004)$	1000

Table 93: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 0.25, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate		Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	0.6108	0.0065	$0.0790 \ (0.0018)$	-0.0017 (0.0025)	$0.9539 \ (0.0066)$	$0.0062 \ (0.0003)$	997
Exp	0.5704	0.0062	$0.0757 \ (0.0017)$	-0.0420 (0.0024)	$0.9286 \ (0.0082)$	$0.0075 \ (0.0004)$	995
Weibull	0.5914	0.0059	$0.0769 \ (0.0017)$	-0.0211 (0.0024)	$0.9470 \ (0.0071)$	$0.0063 \ (0.0003)$	1000
Gompertz	0.6111	0.0058	$0.0790 \ (0.0018)$	-0.0014 (0.0025)	$0.9450 \ (0.0072)$	$0.0062 \ (0.0003)$	1000
RP(3)	0.6091	0.0058	$0.0787 \ (0.0018)$	-0.0034 (0.0025)	$0.9470 \ (0.0071)$	$0.0062 \ (0.0003)$	1000
RP(5)	0.6104	0.0058	$0.0790 \ (0.0018)$	-0.0021 (0.0025)	$0.9440 \ (0.0073)$	$0.0062 \ (0.0003)$	1000
RP(9)	0.6109	0.0058	$0.0791 \ (0.0018)$	-0.0016 (0.0025)	$0.9450 \ (0.0072)$	$0.0063 \ (0.0003)$	1000
RP(P)	0.6059	0.0058	$0.0786 \ (0.0018)$	-0.0066 (0.0025)	$0.9480 \ (0.0070)$	$0.0062 \ (0.0003)$	1000
FP(W)	0.5914	0.0068	$0.0769 \ (0.0017)$	-0.0211 (0.0024)	$0.9620 \ (0.0060)$	$0.0063 \ (0.0003)$	1000
FP (k=10)	0.6085	0.0068	$0.0791 \ (0.0018)$	-0.0040 (0.0025)	$0.9570 \ (0.0064)$	$0.0063 \ (0.0003)$	1000
FP (k=10000)	0.6056	0.0050	$0.0784 \ (0.0018)$	-0.0069 (0.0025)	$0.9260 \ (0.0083)$	$0.0062 \ (0.0003)$	1000
Model frailty: I	Normal						
Cox	0.5940	0.0063	$0.0774 \ (0.0017)$	-0.0185 (0.0024)	$0.9560 \ (0.0065)$	$0.0063 \ (0.0003)$	1000
Exp	0.5698	0.0063	$0.0756 \ (0.0018)$	-0.0426 (0.0026)	$0.9282 \ (0.0087)$	0.0075 (0.0004)	877
Weibull	0.5909	0.0059	$0.0768 \ (0.0017)$	-0.0216 (0.0024)	$0.9449 \ (0.0072)$	$0.0064 \ (0.0003)$	998
Gompertz	0.6099	0.0058	$0.0790 \ (0.0018)$	-0.0025 (0.0025)	$0.9460 \ (0.0071)$	$0.0062 \ (0.0003)$	1000
RP(3)	0.6074	0.0058	$0.0787 \ (0.0018)$	-0.0050 (0.0025)	$0.9500 \ (0.0069)$	$0.0062 \ (0.0003)$	1000
RP(5)	0.6085	0.0058	$0.0789 \ (0.0018)$	-0.0040 (0.0025)	$0.9480 \ (0.0070)$	$0.0062 \ (0.0003)$	1000
RP(9)	0.6089	0.0058	$0.0790 \ (0.0018)$	-0.0035 (0.0025)	$0.9470 \ (0.0071)$	$0.0062 \ (0.0003)$	1000
RP(P)	0.6043	0.0058	$0.0785 \ (0.0018)$	-0.0082 (0.0025)	$0.9490 \ (0.0070)$	$0.0062 \ (0.0003)$	1000
FP(W)	0.5909	0.0068	$0.0769 \ (0.0017)$	-0.0216 (0.0024)	$0.9610 \ (0.0061)$	$0.0064 \ (0.0003)$	1000
FP (k=10)	0.6066	0.0068	$0.0790 \ (0.0018)$	-0.0058 (0.0025)	$0.9590 \ (0.0063)$	$0.0063 \ (0.0003)$	1000
FP (k=10000)	0.6049	0.0049	$0.0785 \ (0.0018)$	$-0.0076 \ (0.0025)$	$0.9200 \ (0.0086)$	$0.0062 \ (0.0003)$	1000

Table 94: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.5864	0.0061	$0.0716 \ (0.0016)$	-0.0023 (0.0023)	$0.9669 \ (0.0057)$	$0.0051 \ (0.0002)$	998
Exp	0.5504	0.0065	$0.0656 \ (0.0019)$	-0.0383 (0.0027)	$0.9685 \ (0.0073)$	$0.0058 \ (0.0003)$	572
Weibull	0.6014	0.0053	$0.0746 \ (0.0017)$	$0.0127 \ (0.0024)$	$0.9410 \ (0.0075)$	$0.0057 \ (0.0003)$	1000
Gompertz	0.6039	0.0059	$0.0748 \ (0.0017)$	$0.0152 \ (0.0024)$	$0.9510 \ (0.0068)$	$0.0058 \ (0.0003)$	1000
RP(3)	0.5842	0.0054	$0.0714 \ (0.0016)$	-0.0045 (0.0023)	$0.9510 \ (0.0068)$	$0.0051 \ (0.0002)$	1000
RP(5)	0.5863	0.0055	$0.0717 \ (0.0016)$	-0.0024 (0.0023)	$0.9510 \ (0.0068)$	$0.0051 \ (0.0002)$	1000
RP(9)	0.5865	0.0055	$0.0718 \ (0.0016)$	-0.0022 (0.0023)	$0.9520 \ (0.0068)$	$0.0051 \ (0.0002)$	1000
RP(P)	0.5871	0.0054	$0.0718 \ (0.0016)$	-0.0016 (0.0023)	$0.9510 \ (0.0068)$	$0.0052 \ (0.0002)$	1000
FP(W)	0.6014	0.0060	$0.0746 \ (0.0017)$	$0.0127 \ (0.0024)$	$0.9550 \ (0.0066)$	$0.0057 \ (0.0003)$	1000
FP (k=10)	0.5733	0.0063	$0.0717 \ (0.0016)$	-0.0154 (0.0023)	$0.9620 \ (0.0060)$	$0.0054 \ (0.0002)$	1000
FP (k=10000)	0.6081	0.0041	$0.0774 \ (0.0017)$	$0.0194 \ (0.0024)$	$0.8780 \ (0.0103)$	$0.0064 \ (0.0003)$	1000
Model frailty: I	Normal						
Cox	0.5709	0.0059	$0.0700 \ (0.0016)$	-0.0178 (0.0022)	$0.9590 \ (0.0063)$	$0.0052 \ (0.0002)$	1000
Exp	0.5380	0.0067	$0.0781 \ (0.0050)$	-0.0508 (0.0070)	$0.9194 \ (0.0245)$	$0.0086 \ (0.0012)$	124
Weibull	0.5998	0.0053	$0.0741 \ (0.0017)$	$0.0111 \ (0.0023)$	$0.9369 \ (0.0077)$	$0.0056 \ (0.0003)$	999
Gompertz	0.6014	0.0059	$0.0744 \ (0.0017)$	$0.0126 \ (0.0024)$	$0.9489 \ (0.0070)$	$0.0057 \ (0.0003)$	999
RP(3)	0.5826	0.0054	$0.0712 \ (0.0016)$	-0.0061 (0.0023)	$0.9540 \ (0.0066)$	$0.0051 \ (0.0002)$	1000
RP(5)	0.5848	0.0055	$0.0716 \ (0.0016)$	-0.0040 (0.0023)	$0.9520 \ (0.0068)$	$0.0051 \ (0.0002)$	1000
RP(9)	0.5850	0.0055	$0.0716 \ (0.0016)$	-0.0038 (0.0023)	$0.9510 \ (0.0068)$	$0.0051 \ (0.0002)$	1000
RP(P)	0.5855	0.0054	$0.0716 \ (0.0016)$	-0.0032 (0.0023)	$0.9520 \ (0.0068)$	$0.0051 \ (0.0002)$	1000
FP(W)	0.5994	0.0060	$0.0744 \ (0.0017)$	$0.0107 \ (0.0024)$	$0.9589 \ (0.0064)$	$0.0056 \ (0.0003)$	973
FP (k=10)	0.5736	0.0063	$0.0715 \ (0.0016)$	-0.0152 (0.0023)	$0.9610 \ (0.0061)$	$0.0053 \ (0.0002)$	1000
FP (k=10000)	0.6053	0.0039	$0.0768 \ (0.0017)$	$0.0166 \ (0.0024)$	$0.8730 \ (0.0105)$	$0.0062 \ (0.0003)$	1000

Table 95: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

	Avg. Estimate		Emp. SE	Bias	Coverage		N. Converged
Model frailty: 0	Gamma						
Cox	0.6881	0.0082	$0.0962 \ (0.0022)$	0.0017 (0.0030)	0.9300 (0.0081)	0.0092 (0.0004)	1000
Exp	0.7064	0.0079	$0.0984 \ (0.0022)$	$0.0200 \ (0.0031)$	$0.9180 \ (0.0087)$	$0.0101 \ (0.0005)$	1000
Weibull	0.6958	0.0082	$0.0971 \ (0.0022)$	$0.0094 \ (0.0031)$	$0.9270 \ (0.0082)$	$0.0095 \ (0.0004)$	1000
Gompertz	0.7071	0.0080	0.0997 (0.0032)	$0.0207 \ (0.0045)$	$0.9182 \ (0.0124)$	$0.0103 \ (0.0007)$	489
RP(3)	0.6903	0.0082	$0.0964 \ (0.0022)$	$0.0039 \ (0.0030)$	$0.9310 \ (0.0080)$	$0.0093 \ (0.0004)$	1000
RP(5)	0.6891	0.0082	$0.0963 \ (0.0022)$	$0.0027 \ (0.0030)$	$0.9320 \ (0.0080)$	$0.0093 \ (0.0004)$	1000
RP(9)	0.6887	0.0082	$0.0963 \ (0.0022)$	$0.0023 \ (0.0030)$	$0.9290 \ (0.0081)$	$0.0093 \ (0.0004)$	1000
RP(P)	0.6905	0.0082	$0.0965 \ (0.0022)$	$0.0042 \ (0.0031)$	$0.9300 \ (0.0081)$	$0.0093 \ (0.0004)$	1000
FP(W)	0.6947	0.0084	$0.0969 \ (0.0022)$	$0.0083 \ (0.0031)$	$0.9336 \ (0.0080)$	$0.0095 \ (0.0004)$	979
FP (k=10)	0.6843	0.0085	$0.0964 \ (0.0022)$	-0.0021 (0.0030)	$0.9350 \ (0.0078)$	$0.0093 \ (0.0004)$	1000
FP (k=10000)	0.6866	0.0069	$0.0961 \ (0.0022)$	$0.0002 \ (0.0030)$	$0.9130 \ (0.0089)$	$0.0092 \ (0.0004)$	1000
Model frailty: I	Normal						
Cox	0.6821	0.0083	$0.0955 \ (0.0021)$	-0.0043 (0.0030)	$0.9340 \ (0.0079)$	$0.0091 \ (0.0004)$	1000
Exp	0.7016	0.0079	0.0977 (0.0022)	$0.0152 \ (0.0031)$	$0.9178 \ (0.0087)$	$0.0098 \ (0.0005)$	998
Weibull	0.6931	0.0082	$0.0966 \ (0.0022)$	$0.0067 \ (0.0031)$	$0.9280 \ (0.0082)$	$0.0094 \ (0.0004)$	1000
Gompertz	0.6986	0.0080	$0.0960 \ (0.0034)$	$0.0122 \ (0.0048)$	$0.9240 \ (0.0131)$	$0.0093 \ (0.0006)$	408
RP(3)	0.6890	0.0082	$0.0962 \ (0.0022)$	$0.0027 \ (0.0030)$	$0.9330 \ (0.0079)$	$0.0092 \ (0.0004)$	1000
RP(5)	0.6878	0.0082	$0.0960 \ (0.0021)$	$0.0014 \ (0.0030)$	$0.9330 \ (0.0079)$	$0.0092 \ (0.0004)$	1000
RP(9)	0.6874	0.0082	$0.0960 \ (0.0021)$	$0.0011 \ (0.0030)$	$0.9320 \ (0.0080)$	$0.0092 \ (0.0004)$	1000
RP(P)	0.6891	0.0082	$0.0962 \ (0.0022)$	$0.0027 \ (0.0030)$	$0.9330 \ (0.0079)$	$0.0093 \ (0.0004)$	1000
FP(W)	0.6933	0.0083	$0.0965 \ (0.0022)$	$0.0069 \ (0.0031)$	$0.9347 \ (0.0078)$	$0.0093 \ (0.0004)$	995
FP (k=10)	0.6829	0.0085	$0.0962 \ (0.0022)$	-0.0035 (0.0030)	$0.9400 \ (0.0075)$	$0.0093 \ (0.0004)$	1000
FP (k=10000)	0.6855	0.0071	$0.0959 \ (0.0021)$	-0.0009 (0.0030)	$0.9160 \ (0.0088)$	$0.0092 \ (0.0004)$	1000

Table 96: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.25, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	0.6785	0.0077	$0.0853 \ (0.0019)$	$0.0021 \ (0.0027)$	$0.9570 \ (0.0064)$	$0.0073 \ (0.0003)$	1000
Exp	0.6798	0.0073	$0.0855 \ (0.0019)$	$0.0034 \ (0.0027)$	$0.9450 \ (0.0072)$	$0.0073 \ (0.0003)$	1000
Weibull	0.6792	0.0073	$0.0853 \ (0.0019)$	$0.0027 \ (0.0027)$	$0.9480 \ (0.0070)$	$0.0073 \ (0.0003)$	1000
Gompertz	0.6828	0.0073	$0.0870 \ (0.0025)$	$0.0063 \ (0.0036)$	$0.9427 \ (0.0095)$	$0.0076 \ (0.0005)$	593
RP(3)	0.6790	0.0074	$0.0854 \ (0.0019)$	$0.0026 \ (0.0027)$	$0.9500 \ (0.0069)$	$0.0073 \ (0.0003)$	1000
RP(5)	0.6790	0.0074	$0.0854 \ (0.0019)$	$0.0026 \ (0.0027)$	$0.9500 \ (0.0069)$	$0.0073 \ (0.0003)$	1000
RP(9)	0.6790	0.0074	$0.0854 \ (0.0019)$	$0.0026 \ (0.0027)$	$0.9500 \ (0.0069)$	$0.0073 \ (0.0003)$	1000
RP(P)	0.6791	0.0074	$0.0854 \ (0.0019)$	$0.0027 \ (0.0027)$	$0.9490 \ (0.0070)$	$0.0073 \ (0.0003)$	1000
FP(W)	0.6792	0.0079	$0.0853 \ (0.0019)$	$0.0027 \ (0.0027)$	$0.9590 \ (0.0063)$	$0.0073 \ (0.0003)$	1000
FP (k=10)	0.6763	0.0081	$0.0855 \ (0.0019)$	-0.0001 (0.0027)	$0.9620 \ (0.0060)$	$0.0073 \ (0.0003)$	1000
FP (k=10000)	0.6776	0.0062	$0.0853 \ (0.0019)$	$0.0011 \ (0.0027)$	$0.9280 \ (0.0082)$	$0.0073 \ (0.0003)$	1000
Model frailty: I	Normal						
Cox	0.6683	0.0077	$0.0842 \ (0.0019)$	-0.0081 (0.0027)	$0.9580 \ (0.0063)$	$0.0071 \ (0.0003)$	1000
Exp	0.6765	0.0073	$0.0851 \ (0.0019)$	$0.0001 \ (0.0027)$	$0.9510 \ (0.0068)$	$0.0072 \ (0.0003)$	999
Weibull	0.6773	0.0073	$0.0850 \ (0.0019)$	$0.0009 \ (0.0027)$	$0.9497 \ (0.0069)$	$0.0072 \ (0.0003)$	995
Gompertz	0.6770	0.0074	$0.0875 \ (0.0027)$	$0.0006 \ (0.0037)$	$0.9486 \; (0.0095)$	$0.0076 \ (0.0005)$	545
RP(3)	0.6780	0.0074	$0.0853 \ (0.0019)$	$0.0016 \ (0.0027)$	$0.9520 \ (0.0068)$	$0.0073 \ (0.0003)$	1000
RP(5)	0.6779	0.0074	$0.0853 \ (0.0019)$	$0.0015 \ (0.0027)$	$0.9520 \ (0.0068)$	$0.0073 \ (0.0003)$	1000
RP(9)	0.6779	0.0074	$0.0853 \ (0.0019)$	$0.0015 \ (0.0027)$	$0.9520 \ (0.0068)$	$0.0073 \ (0.0003)$	1000
RP(P)	0.6781	0.0073	$0.0853 \ (0.0019)$	$0.0017 \ (0.0027)$	$0.9490 \ (0.0070)$	$0.0073 \ (0.0003)$	1000
FP(W)	0.6781	0.0079	$0.0852 \ (0.0019)$	$0.0017 \ (0.0027)$	$0.9598 \ (0.0062)$	$0.0072 \ (0.0003)$	995
FP (k=10)	0.6752	0.0081	$0.0853 \ (0.0019)$	-0.0013 (0.0027)	$0.9630 \ (0.0060)$	$0.0073 \ (0.0003)$	1000
FP (k=10000)	0.6770	0.0063	$0.0852 \ (0.0019)$	$0.0005 \ (0.0027)$	$0.9300 \; (0.0081)$	$0.0073 \ (0.0003)$	1000

Table 97: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

	Avg. Estimate		Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.7082	0.0086	$0.0930 \ (0.0021)$	-0.0022 (0.0029)	$0.9520 \ (0.0068)$	$0.0086 \ (0.0004)$	999
Exp	0.7421	0.0081	$0.0979 \ (0.0022)$	$0.0316 \ (0.0031)$	$0.9120 \ (0.0090)$	$0.0106 \ (0.0005)$	1000
Weibull	0.7095	0.0088	$0.0933 \ (0.0021)$	-0.0009 (0.0030)	$0.9540 \ (0.0066)$	$0.0087 \ (0.0004)$	1000
Gompertz	0.7398	0.0081	$0.0985 \ (0.0032)$	$0.0294 \ (0.0045)$	$0.9110 \ (0.0130)$	$0.0105 \ (0.0007)$	483
RP(3)	0.7088	0.0088	$0.0931 \ (0.0021)$	-0.0016 (0.0029)	$0.9550 \ (0.0066)$	$0.0087 \ (0.0004)$	1000
RP(5)	0.7087	0.0088	$0.0931 \ (0.0021)$	-0.0017 (0.0029)	$0.9540 \ (0.0066)$	$0.0087 \ (0.0004)$	999
RP(9)	0.7087	0.0088	$0.0932 \ (0.0021)$	-0.0018 (0.0029)	$0.9539 \ (0.0066)$	$0.0087 \ (0.0004)$	998
RP(P)	0.7091	0.0088	$0.0932 \ (0.0021)$	-0.0013 (0.0029)	$0.9550 \ (0.0066)$	$0.0087 \ (0.0004)$	1000
FP(W)	0.7101	0.0088	$0.0934 \ (0.0021)$	-0.0003 (0.0030)	$0.9543 \ (0.0067)$	$0.0087 \ (0.0004)$	985
FP (k=10)	0.7002	0.0090	$0.0935 \ (0.0021)$	-0.0103 (0.0030)	$0.9540 \ (0.0066)$	$0.0088 \ (0.0004)$	1000
FP (k=10000)	0.7122	0.0071	$0.0941 \ (0.0021)$	$0.0018 \ (0.0030)$	$0.9210 \ (0.0085)$	$0.0088 \ (0.0004)$	1000
Model frailty: I	Normal						
Cox	0.7049	0.0088	$0.0927 \ (0.0021)$	-0.0055 (0.0029)	$0.9550 \ (0.0066)$	$0.0086 \ (0.0004)$	1000
Exp	0.7338	0.0081	$0.0969 \ (0.0022)$	$0.0234 \ (0.0031)$	$0.9225 \ (0.0085)$	0.0099 (0.0004)	994
Weibull	0.7075	0.0087	$0.0930 \ (0.0021)$	-0.0029 (0.0029)	$0.9570 \ (0.0064)$	$0.0086 \ (0.0004)$	1000
Gompertz	0.7281	0.0081	$0.0971 \ (0.0032)$	$0.0177 \ (0.0046)$	$0.9222 \ (0.0126)$	$0.0097 \ (0.0007)$	450
RP(3)	0.7077	0.0088	$0.0929 \ (0.0021)$	-0.0028 (0.0029)	$0.9540 \ (0.0066)$	$0.0086 \ (0.0004)$	1000
RP(5)	0.7075	0.0088	$0.0929 \ (0.0021)$	-0.0029 (0.0029)	$0.9540 \ (0.0066)$	$0.0086 \ (0.0004)$	1000
RP(9)	0.7075	0.0088	$0.0929 \ (0.0021)$	-0.0029 (0.0029)	$0.9540 \ (0.0066)$	$0.0086 \ (0.0004)$	1000
RP(P)	0.7080	0.0088	$0.0930 \ (0.0021)$	-0.0024 (0.0029)	$0.9570 \ (0.0064)$	$0.0086 \ (0.0004)$	1000
FP(W)	0.7078	0.0088	$0.0931 \ (0.0021)$	-0.0026 (0.0030)	$0.9552 \ (0.0066)$	$0.0087 \ (0.0004)$	983
FP (k=10)	0.6995	0.0089	$0.0933 \ (0.0021)$	-0.0109 (0.0030)	$0.9550 \ (0.0066)$	$0.0088 \ (0.0004)$	1000
FP (k=10000)	0.7109	0.0074	0.0939 (0.0021)	$0.0005 \ (0.0030)$	$0.9280 \ (0.0082)$	$0.0088 \ (0.0004)$	1000

Table 98: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

	Avg. Estimate		Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	0.6018	0.0062	$0.0758 \ (0.0017)$	$0.0003 \ (0.0024)$	$0.9559 \ (0.0065)$	0.0057 (0.0003)	997
Exp	0.5630	0.0058	$0.0725 \ (0.0017)$	-0.0384 (0.0024)	$0.9257 \ (0.0086)$	$0.0067 \ (0.0003)$	929
Weibull	0.5810	0.0055	$0.0733 \ (0.0016)$	-0.0204 (0.0023)	$0.9420 \ (0.0074)$	$0.0058 \ (0.0003)$	1000
Gompertz	0.6015	0.0054	$0.0756 \ (0.0017)$	$0.0000 \ (0.0024)$	$0.9400 \ (0.0075)$	$0.0057 \ (0.0003)$	1000
RP(3)	0.5995	0.0054	$0.0754 \ (0.0017)$	-0.0020 (0.0024)	$0.9400 \ (0.0075)$	$0.0057 \ (0.0003)$	1000
RP(5)	0.6013	0.0054	$0.0756 \ (0.0017)$	-0.0002 (0.0024)	$0.9430 \ (0.0073)$	$0.0057 \ (0.0003)$	1000
RP(9)	0.6019	0.0054	$0.0757 \ (0.0017)$	$0.0005 \ (0.0024)$	$0.9410 \ (0.0075)$	$0.0057 \ (0.0003)$	1000
RP(P)	0.5967	0.0054	$0.0750 \ (0.0017)$	-0.0047 (0.0024)	$0.9420 \ (0.0074)$	$0.0056 \ (0.0002)$	1000
FP(W)	0.5810	0.0065	$0.0733 \ (0.0016)$	-0.0204 (0.0023)	$0.9560 \ (0.0065)$	$0.0058 \ (0.0003)$	999
FP (k=10)	0.5996	0.0065	$0.0756 \ (0.0017)$	-0.0019 (0.0024)	$0.9650 \ (0.0058)$	$0.0057 \ (0.0003)$	1000
FP (k=10000)	0.5955	0.0047	$0.0750 \ (0.0017)$	-0.0060 (0.0024)	$0.9190 \ (0.0086)$	$0.0057 \ (0.0003)$	1000
Model frailty: I	Normal						
Cox	0.5851	0.0060	$0.0737 \ (0.0016)$	-0.0163 (0.0023)	$0.9530 \ (0.0067)$	0.0057 (0.0003)	1000
Exp	0.5641	0.0058	$0.0727 \ (0.0020)$	-0.0374 (0.0028)	$0.9308 \; (0.0097)$	$0.0067 \ (0.0003)$	679
Weibull	0.5810	0.0055	$0.0731 \ (0.0016)$	-0.0204 (0.0023)	$0.9430 \ (0.0073)$	$0.0058 \ (0.0003)$	1000
Gompertz	0.6014	0.0054	$0.0755 \ (0.0017)$	-0.0001 (0.0024)	$0.9410 \ (0.0075)$	$0.0057 \ (0.0003)$	1000
RP(3)	0.5986	0.0054	$0.0752 \ (0.0017)$	-0.0028 (0.0024)	$0.9400 \ (0.0075)$	$0.0057 \ (0.0003)$	1000
RP(5)	0.6002	0.0054	$0.0754 \ (0.0017)$	-0.0012 (0.0024)	$0.9400 \ (0.0075)$	$0.0057 \ (0.0003)$	1000
RP(9)	0.6008	0.0054	$0.0755 \ (0.0017)$	-0.0006 (0.0024)	$0.9390 \ (0.0076)$	$0.0057 \ (0.0003)$	1000
RP(P)	0.5958	0.0054	$0.0749 \ (0.0017)$	$-0.0056 \ (0.0024)$	$0.9430 \ (0.0073)$	$0.0056 \ (0.0002)$	1000
FP(W)	0.5809	0.0065	$0.0732 \ (0.0016)$	-0.0206 (0.0023)	$0.9600 \ (0.0062)$	$0.0058 \ (0.0003)$	1000
FP (k=10)	0.5987	0.0065	$0.0755 \ (0.0017)$	-0.0028 (0.0024)	$0.9630 \ (0.0060)$	$0.0057 \ (0.0003)$	1000
FP (k=10000)	0.5954	0.0046	$0.0749 \ (0.0017)$	-0.0061 (0.0024)	0.9140 (0.0089)	$0.0056 \ (0.0003)$	1000

Table 99: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.5786	0.0058	$0.0722 \ (0.0016)$	-0.0004 (0.0023)	$0.9520 \ (0.0068)$	$0.0052 \ (0.0002)$	999
Exp	0.5428	0.0062	$0.0702 \ (0.0022)$	-0.0362 (0.0031)	$0.9465 \ (0.0098)$	$0.0062 \ (0.0004)$	523
Weibull	0.5933	0.0049	$0.0742 \ (0.0017)$	$0.0143 \ (0.0023)$	$0.9240 \ (0.0084)$	$0.0057 \ (0.0003)$	1000
Gompertz	0.5991	0.0055	$0.0751 \ (0.0017)$	$0.0201 \ (0.0024)$	$0.9360 \ (0.0077)$	$0.0060 \ (0.0003)$	1000
RP(3)	0.5757	0.0050	$0.0718 \ (0.0016)$	-0.0033 (0.0023)	$0.9380 \ (0.0076)$	$0.0052 \ (0.0002)$	1000
RP(5)	0.5783	0.0051	$0.0721 \ (0.0016)$	-0.0007 (0.0023)	$0.9370 \ (0.0077)$	$0.0052 \ (0.0002)$	1000
RP(9)	0.5788	0.0051	$0.0721 \ (0.0016)$	-0.0002 (0.0023)	$0.9360 \ (0.0077)$	$0.0052 \ (0.0002)$	1000
RP(P)	0.5792	0.0051	$0.0722 \ (0.0016)$	$0.0002 \ (0.0023)$	$0.9390 \ (0.0076)$	$0.0052 \ (0.0002)$	1000
FP(W)	0.5930	0.0058	$0.0740 \ (0.0017)$	$0.0141 \ (0.0023)$	$0.9469 \ (0.0071)$	$0.0057 \ (0.0003)$	998
FP (k=10)	0.5645	0.0061	$0.0725 \ (0.0016)$	-0.0145 (0.0023)	$0.9530 \ (0.0067)$	$0.0055 \ (0.0003)$	1000
FP (k=10000)	0.5986	0.0039	$0.0767 \ (0.0017)$	$0.0196 \ (0.0024)$	$0.8760 \ (0.0104)$	$0.0063 \ (0.0003)$	1000
Model frailty: I	Normal						
Cox	0.5631	0.0056	$0.0704 \ (0.0016)$	-0.0158 (0.0022)	$0.9510 \ (0.0068)$	$0.0052 \ (0.0002)$	1000
Exp	0.5224	0.0064	$0.0206 \ (0.0084)$	-0.0566 (0.0103)	$1.0000 \ (0.0000)$	$0.0035 \ (0.0013)$	4
Weibull	0.5931	0.0049	$0.0741 \ (0.0017)$	$0.0142 \ (0.0023)$	$0.9307 \ (0.0080)$	$0.0057 \ (0.0003)$	996
Gompertz	0.5982	0.0055	$0.0751 \ (0.0017)$	$0.0192 \ (0.0024)$	$0.9390 \ (0.0076)$	$0.0060 \ (0.0003)$	1000
RP(3)	0.5750	0.0050	$0.0718 \ (0.0016)$	-0.0040 (0.0023)	$0.9370 \ (0.0077)$	$0.0052 \ (0.0002)$	1000
RP(5)	0.5776	0.0051	$0.0721 \ (0.0016)$	-0.0013 (0.0023)	$0.9360 \ (0.0077)$	$0.0052 \ (0.0002)$	1000
RP(9)	0.5781	0.0051	$0.0721 \ (0.0016)$	-0.0009 (0.0023)	$0.9350 \ (0.0078)$	$0.0052 \ (0.0002)$	1000
RP(P)	0.5786	0.0051	$0.0722 \ (0.0016)$	-0.0004 (0.0023)	$0.9340 \ (0.0079)$	$0.0052 \ (0.0002)$	1000
FP(W)	0.5938	0.0057	$0.0744 \ (0.0017)$	$0.0148 \ (0.0024)$	$0.9422 \ (0.0075)$	$0.0057 \ (0.0003)$	969
FP (k=10)	0.5657	0.0061	$0.0724 \ (0.0016)$	-0.0133 (0.0023)	$0.9550 \ (0.0066)$	$0.0054 \ (0.0003)$	1000
FP (k=10000)	0.5993	0.0036	$0.0765 \ (0.0017)$	$0.0203 \ (0.0024)$	$0.8670 \ (0.0107)$	$0.0063 \ (0.0003)$	1000

Table 100: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.6918	0.0082	$0.0860 \ (0.0019)$	$0.0019 \ (0.0027)$	0.9630 (0.0060)	$0.0074 \ (0.0003)$	1000
Exp	0.7112	0.0077	$0.0886 \ (0.0020)$	$0.0212 \ (0.0028)$	$0.9380 \ (0.0076)$	$0.0083 \ (0.0004)$	1000
Weibull	0.7004	0.0080	$0.0870 \ (0.0019)$	$0.0104 \ (0.0028)$	$0.9540 \ (0.0066)$	$0.0077 \ (0.0003)$	1000
Gompertz	0.7148	0.0077	$0.0898 \ (0.0029)$	$0.0248 \ (0.0042)$	$0.9316 \ (0.0117)$	$0.0087 \ (0.0006)$	468
RP(3)	0.6947	0.0080	$0.0863 \ (0.0019)$	$0.0048 \ (0.0027)$	$0.9590 \ (0.0063)$	$0.0075 \ (0.0003)$	1000
RP(5)	0.6930	0.0079	$0.0861 \ (0.0019)$	$0.0030 \ (0.0027)$	$0.9600 \ (0.0062)$	$0.0074 \ (0.0003)$	1000
RP(9)	0.6926	0.0079	$0.0861 \ (0.0019)$	$0.0026 \ (0.0027)$	$0.9599 \ (0.0062)$	$0.0074 \ (0.0003)$	998
RP(P)	0.6946	0.0080	$0.0863 \ (0.0019)$	$0.0047 \ (0.0027)$	$0.9590 \ (0.0063)$	$0.0075 \ (0.0003)$	1000
FP(W)	0.7003	0.0084	$0.0870 \ (0.0020)$	$0.0104 \ (0.0028)$	$0.9607 \ (0.0062)$	$0.0077 \ (0.0003)$	992
FP (k=10)	0.6883	0.0085	$0.0860 \ (0.0019)$	$-0.0016 \ (0.0027)$	$0.9660 \ (0.0057)$	$0.0074 \ (0.0003)$	1000
FP (k=10000)	0.6910	0.0068	$0.0860 \ (0.0019)$	$0.0011 \ (0.0027)$	$0.9419 \ (0.0074)$	$0.0074 \ (0.0003)$	999
Model frailty: I	Normal						
Cox	0.6833	0.0082	$0.0852 \ (0.0019)$	-0.0066 (0.0027)	$0.9610 \ (0.0061)$	$0.0073 \ (0.0003)$	1000
Exp	0.7069	0.0077	$0.0882 \ (0.0020)$	$0.0170 \ (0.0028)$	$0.9399 \ (0.0075)$	$0.0081 \ (0.0004)$	998
Weibull	0.6983	0.0079	$0.0868 \ (0.0019)$	$0.0084 \ (0.0027)$	$0.9530 \ (0.0067)$	$0.0076 \ (0.0003)$	1000
Gompertz	0.7034	0.0077	$0.0905 \ (0.0032)$	$0.0134 \ (0.0045)$	$0.9444 \ (0.0115)$	$0.0083 \ (0.0006)$	396
RP(3)	0.6939	0.0080	$0.0863 \ (0.0019)$	$0.0040 \ (0.0027)$	$0.9590 \ (0.0063)$	$0.0075 \ (0.0003)$	1000
RP(5)	0.6922	0.0079	$0.0860 \ (0.0019)$	$0.0023 \ (0.0027)$	$0.9560 \ (0.0065)$	$0.0074 \ (0.0003)$	1000
RP(9)	0.6917	0.0079	$0.0860 \ (0.0019)$	$0.0018 \ (0.0027)$	$0.9580 \ (0.0063)$	$0.0074 \ (0.0003)$	1000
RP(P)	0.6938	0.0080	$0.0863 \ (0.0019)$	$0.0038 \ (0.0027)$	$0.9570 \ (0.0064)$	$0.0074 \ (0.0003)$	1000
FP(W)	0.6999	0.0084	$0.0866 \ (0.0019)$	$0.0100 \ (0.0028)$	$0.9626 \ (0.0060)$	$0.0076 \ (0.0003)$	988
FP (k=10)	0.6874	0.0085	$0.0860 \ (0.0019)$	$-0.0025 \ (0.0027)$	$0.9650 \ (0.0058)$	$0.0074 \ (0.0003)$	1000
FP (k=10000)	0.6904	0.0069	$0.0860 \ (0.0019)$	$0.0005 \ (0.0027)$	$0.9460 \ (0.0071)$	$0.0074 \ (0.0003)$	1000

Table 101: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.25, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.3994	0.0057	$0.0719 \ (0.0016)$	$0.0340 \ (0.0023)$	$0.9378 \ (0.0077)$	$0.0063 \ (0.0003)$	996
Exp	0.3925	0.0049	$0.0710 \ (0.0016)$	$0.0270 \ (0.0022)$	$0.9240 \ (0.0084)$	$0.0058 \ (0.0003)$	1000
Weibull	0.3923	0.0049	$0.0711 \ (0.0016)$	$0.0268 \ (0.0022)$	$0.9260 \ (0.0083)$	$0.0058 \ (0.0003)$	1000
Gompertz	0.3918	0.0049	$0.0732 \ (0.0027)$	$0.0263 \ (0.0038)$	$0.9086 \ (0.0149)$	$0.0060 \ (0.0005)$	372
RP(3)	0.3985	0.0052	$0.0719 \ (0.0016)$	$0.0331 \ (0.0023)$	$0.9190 \ (0.0086)$	$0.0063 \ (0.0003)$	1000
RP(5)	0.3986	0.0052	$0.0720 \ (0.0016)$	$0.0332 \ (0.0023)$	$0.9180 \ (0.0087)$	$0.0063 \ (0.0003)$	1000
RP(9)	0.3991	0.0052	$0.0720 \ (0.0016)$	$0.0337 \ (0.0023)$	$0.9180 \ (0.0087)$	$0.0063 \ (0.0003)$	1000
RP(P)	0.3970	0.0051	$0.0717 \ (0.0016)$	$0.0315 \ (0.0023)$	$0.9220 \ (0.0085)$	$0.0061 \ (0.0003)$	1000
FP(W)	0.3923	0.0054	$0.0711 \ (0.0016)$	$0.0268 \ (0.0022)$	$0.9440 \ (0.0073)$	$0.0058 \ (0.0003)$	1000
FP (k=10)	0.3931	0.0058	$0.0718 \ (0.0016)$	$0.0277 \ (0.0023)$	$0.9508 \ (0.0069)$	$0.0059 \ (0.0003)$	996
FP (k=10000)	0.3918	0.0042	$0.0712 \ (0.0016)$	$0.0263 \ (0.0023)$	$0.9004 \ (0.0095)$	$0.0058 \ (0.0003)$	994
Model frailty: I	Normal						
Cox	0.4175	0.0068	$0.0767 \ (0.0017)$	$0.0521 \ (0.0024)$	$0.9110 \ (0.0090)$	$0.0086 \ (0.0004)$	1000
Exp	0.4245	0.0063	$0.0789 \ (0.0018)$	$0.0591 \ (0.0025)$	$0.8712 \ (0.0107)$	0.0097 (0.0004)	978
Weibull	0.4236	0.0064	$0.0788 \ (0.0018)$	$0.0582 \ (0.0025)$	$0.8749 \ (0.0106)$	$0.0096 \ (0.0004)$	983
Gompertz	0.4263	0.0063	$0.0771 \ (0.0040)$	$0.0608 \; (0.0056)$	$0.8730 \ (0.0242)$	$0.0096 \ (0.0009)$	189
RP(3)	0.4333	0.0065	0.0795 (0.0018)	$0.0678 \ (0.0025)$	$0.8560 \ (0.0111)$	$0.0109 \ (0.0004)$	1000
RP(5)	0.4333	0.0065	$0.0795 \ (0.0018)$	$0.0678 \ (0.0025)$	$0.8550 \ (0.0111)$	$0.0109 \ (0.0005)$	1000
RP(9)	0.4334	0.0065	$0.0796 \ (0.0018)$	$0.0680 \ (0.0025)$	$0.8540 \ (0.0112)$	$0.0109 \ (0.0005)$	1000
RP(P)	0.4317	0.0065	$0.0794 \ (0.0018)$	$0.0663 \ (0.0025)$	$0.8580 \ (0.0110)$	$0.0107 \ (0.0004)$	1000
FP(W)	0.4190	0.0062	$0.0780 \ (0.0018)$	$0.0536 \ (0.0025)$	$0.8874 \ (0.0102)$	$0.0089 \ (0.0004)$	968
FP (k=10)	0.4133	0.0067	$0.0779 \ (0.0017)$	$0.0479 \ (0.0025)$	$0.9140 \ (0.0089)$	$0.0084 \ (0.0004)$	1000
FP (k=10000)	0.4167	0.0056	$0.0771 \ (0.0017)$	$0.0512 \ (0.0024)$	$0.8716 \ (0.0106)$	$0.0086 \ (0.0004)$	997

Table 102: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.4048	0.0061	$0.0755 \ (0.0017)$	$0.0343 \ (0.0024)$	$0.9419 \ (0.0074)$	$0.0069 \ (0.0003)$	999
Exp	0.4045	0.0043	$0.0756 \ (0.0017)$	$0.0340 \ (0.0024)$	$0.8870 \ (0.0100)$	$0.0069 \ (0.0003)$	1000
Weibull	0.4001	0.0054	$0.0748 \ (0.0017)$	$0.0295 \ (0.0024)$	$0.9340 \ (0.0079)$	$0.0065 \ (0.0003)$	1000
Gompertz	0.4035	0.0043	$0.0717 \ (0.0028)$	$0.0330 \ (0.0040)$	$0.9077 \ (0.0161)$	$0.0062 \ (0.0004)$	325
RP(3)	0.4055	0.0057	$0.0756 \ (0.0017)$	$0.0349 \ (0.0024)$	$0.9300 \ (0.0081)$	$0.0069 \ (0.0003)$	1000
RP(5)	0.4049	0.0057	$0.0755 \ (0.0017)$	$0.0343 \ (0.0024)$	$0.9320 \ (0.0080)$	$0.0069 \ (0.0003)$	1000
RP(9)	0.4050	0.0057	$0.0755 \ (0.0017)$	$0.0344 \ (0.0024)$	$0.9320 \ (0.0080)$	$0.0069 \ (0.0003)$	1000
RP(P)	0.4046	0.0057	$0.0754 \ (0.0017)$	$0.0340 \ (0.0024)$	$0.9310 \ (0.0080)$	$0.0068 \ (0.0003)$	1000
FP(W)	0.4000	0.0059	$0.0748 \ (0.0017)$	$0.0294 \ (0.0024)$	$0.9479 \ (0.0070)$	$0.0065 \ (0.0003)$	999
FP (k=10)	0.4039	0.0060	$0.0770 \ (0.0017)$	$0.0334 \ (0.0024)$	$0.9366 \ (0.0077)$	$0.0070 \ (0.0003)$	993
FP (k=10000)	0.4074	0.0040	$0.0764 \ (0.0017)$	$0.0368 \ (0.0024)$	$0.8559 \ (0.0111)$	$0.0072 \ (0.0003)$	999
Model frailty: I	Normal						
Cox	0.4247	0.0075	$0.0815 \ (0.0018)$	$0.0542 \ (0.0026)$	$0.9230 \ (0.0084)$	$0.0096 \ (0.0004)$	1000
Exp	0.4441	0.0060	$0.0863 \ (0.0020)$	$0.0735 \ (0.0028)$	$0.8323 \ (0.0119)$	$0.0128 \ (0.0005)$	978
Weibull	0.4274	0.0070	$0.0830 \ (0.0019)$	$0.0568 \ (0.0027)$	$0.9110 \ (0.0091)$	$0.0101 \ (0.0005)$	978
Gompertz	0.4443	0.0061	$0.0949 \ (0.0071)$	$0.0737 \ (0.0099)$	$0.8132 \ (0.0409)$	$0.0143 \ (0.0022)$	91
RP(3)	0.4322	0.0070	$0.0833 \ (0.0019)$	$0.0616 \ (0.0026)$	$0.8950 \ (0.0097)$	$0.0107 \ (0.0005)$	1000
RP(5)	0.4323	0.0070	$0.0833 \ (0.0019)$	$0.0617 \ (0.0026)$	$0.8950 \ (0.0097)$	$0.0107 \ (0.0005)$	1000
RP(9)	0.4322	0.0070	$0.0833 \ (0.0019)$	$0.0616 \ (0.0026)$	$0.8950 \ (0.0097)$	$0.0107 \ (0.0005)$	1000
RP(P)	0.4314	0.0070	$0.0831 \ (0.0019)$	$0.0608 \ (0.0026)$	$0.8970 \ (0.0096)$	$0.0106 \ (0.0005)$	1000
FP(W)	0.4224	0.0067	$0.0821 \ (0.0019)$	$0.0518 \ (0.0026)$	$0.9122 \ (0.0091)$	$0.0094 \ (0.0004)$	968
FP (k=10)	0.4289	0.0072	$0.0838 \ (0.0019)$	$0.0584 \ (0.0027)$	$0.9090 \ (0.0091)$	$0.0104 \ (0.0005)$	1000
FP (k=10000)	0.4368	0.0056	$0.0843 \ (0.0019)$	$0.0662 \ (0.0027)$	$0.8421 \ (0.0116)$	$0.0115 \ (0.0005)$	994

Table 103: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.4010	0.0052	$0.0703 \ (0.0016)$	$0.0266 \ (0.0022)$	$0.9378 \ (0.0076)$	$0.0056 \ (0.0003)$	997
Exp	0.3957	0.0049	$0.0696 \ (0.0016)$	$0.0213 \ (0.0022)$	$0.9360 \ (0.0077)$	$0.0053 \ (0.0002)$	1000
Weibull	0.3951	0.0046	$0.0693 \ (0.0015)$	$0.0208 \ (0.0022)$	$0.9310 \ (0.0080)$	$0.0052 \ (0.0002)$	1000
Gompertz	0.3995	0.0050	$0.0693 \ (0.0028)$	$0.0251 \ (0.0039)$	$0.9302 \ (0.0144)$	$0.0054 \ (0.0005)$	315
RP(3)	0.3925	0.0046	$0.0692 \ (0.0015)$	$0.0181 \ (0.0022)$	$0.9340 \ (0.0079)$	$0.0051 \ (0.0002)$	1000
RP(5)	0.3988	0.0047	$0.0699 \ (0.0016)$	$0.0244 \ (0.0022)$	$0.9280 \ (0.0082)$	$0.0055 \ (0.0003)$	1000
RP(9)	0.4008	0.0047	$0.0702 \ (0.0016)$	$0.0264 \ (0.0022)$	$0.9250 \ (0.0083)$	$0.0056 \ (0.0003)$	1000
RP(P)	0.3980	0.0047	$0.0697 \ (0.0016)$	$0.0236 \ (0.0022)$	$0.9280 \ (0.0082)$	$0.0054 \ (0.0003)$	1000
FP(W)	0.3951	0.0052	$0.0693 \ (0.0015)$	$0.0208 \ (0.0022)$	$0.9550 \ (0.0066)$	$0.0052 \ (0.0002)$	1000
FP (k=10)	0.3914	0.0053	$0.0700 \ (0.0016)$	$0.0170 \ (0.0022)$	$0.9530 \ (0.0067)$	$0.0052 \ (0.0002)$	1000
FP (k=10000)	0.3889	0.0038	$0.0692 \ (0.0016)$	$0.0145 \ (0.0022)$	$0.9014 \ (0.0095)$	$0.0050 \ (0.0002)$	994
Model frailty: I	Vormal						
Cox	0.4170	0.0059	$0.0725 \ (0.0016)$	$0.0426 \ (0.0023)$	$0.9240 \ (0.0084)$	$0.0071 \ (0.0003)$	1000
Exp	0.4275	0.0061	$0.0748 \ (0.0017)$	$0.0531 \ (0.0024)$	$0.9041 \ (0.0094)$	$0.0084 \ (0.0004)$	980
Weibull	0.4311	0.0058	$0.0751 \ (0.0017)$	$0.0567 \ (0.0024)$	$0.8837 \ (0.0102)$	$0.0088 \ (0.0004)$	989
Gompertz	0.4378	0.0061	$0.0703 \ (0.0035)$	$0.0634 \ (0.0049)$	$0.9118 \ (0.0199)$	$0.0089 \ (0.0008)$	204
RP(3)	0.4309	0.0056	$0.0749 \ (0.0017)$	$0.0565 \ (0.0024)$	$0.8800 \ (0.0103)$	$0.0088 \ (0.0004)$	1000
RP(5)	0.4353	0.0056	$0.0753 \ (0.0017)$	$0.0609 \ (0.0024)$	$0.8730 \ (0.0105)$	$0.0094 \ (0.0004)$	1000
RP(9)	0.4371	0.0057	$0.0756 \ (0.0017)$	$0.0627 \ (0.0024)$	$0.8670 \ (0.0107)$	$0.0096 \ (0.0004)$	1000
RP(P)	0.4340	0.0056	$0.0752 \ (0.0017)$	$0.0596 \ (0.0024)$	$0.8720 \ (0.0106)$	$0.0092 \ (0.0004)$	1000
FP (W)	0.4252	0.0059	$0.0740 \ (0.0017)$	$0.0508 \ (0.0024)$	$0.9030 \ (0.0096)$	$0.0081 \ (0.0004)$	948
FP (k=10)	0.4186	0.0060	$0.0745 \ (0.0017)$	$0.0442 \ (0.0024)$	$0.9190 \ (0.0086)$	$0.0075 \ (0.0003)$	1000
FP (k=10000)	0.4207	0.0047	$0.0738 \ (0.0017)$	$0.0463 \ (0.0023)$	$0.8790 \ (0.0103)$	$0.0076 \ (0.0003)$	1000

Table 104: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	0.3792	0.0047	$0.0663 \ (0.0015)$	$0.0247 \ (0.0021)$	$0.9419 \ (0.0074)$	$0.0050 \ (0.0002)$	998
Exp	0.3584	0.0064	$0.0680 \ (0.0015)$	$0.0039 \ (0.0022)$	$0.9770 \ (0.0047)$	0.0046 (0.0002)	1000
Weibull	0.3608	0.0038	$0.0643 \ (0.0014)$	$0.0064 \ (0.0020)$	$0.9340 \ (0.0079)$	$0.0042 \ (0.0002)$	1000
Gompertz	0.3550	0.0064	$0.0710 \ (0.0025)$	$0.0006 \ (0.0035)$	$0.9754 \ (0.0077)$	$0.0050 \ (0.0003)$	406
RP(3)	0.3727	0.0042	$0.0652 \ (0.0015)$	$0.0182 \ (0.0021)$	$0.9359 \ (0.0077)$	$0.0046 \ (0.0002)$	999
RP(5)	0.3777	0.0043	$0.0660 \ (0.0015)$	$0.0233 \ (0.0021)$	$0.9330 \ (0.0079)$	$0.0049 \ (0.0002)$	1000
RP(9)	0.3791	0.0043	$0.0662 \ (0.0015)$	$0.0246 \ (0.0021)$	$0.9260 \ (0.0083)$	$0.0050 \ (0.0002)$	1000
RP(P)	0.3773	0.0043	$0.0659 \ (0.0015)$	$0.0229 \ (0.0021)$	$0.9329 \ (0.0079)$	$0.0049 \ (0.0002)$	998
FP(W)	0.3608	0.0042	$0.0643 \ (0.0014)$	$0.0064 \ (0.0020)$	$0.9540 \ (0.0066)$	$0.0042 \ (0.0002)$	1000
FP (k=10)	0.3062	0.0046	$0.0663 \ (0.0015)$	-0.0483 (0.0021)	$0.8989 \ (0.0095)$	$0.0067 \ (0.0003)$	999
FP (k=10000)	0.3263	0.0025	$0.0614 \ (0.0021)$	-0.0281 (0.0030)	$0.8467 \ (0.0178)$	$0.0046 \ (0.0003)$	411
Model frailty: I	Normal						
Cox	0.3960	0.0055	0.0699 (0.0016)	$0.0416 \ (0.0022)$	$0.9290 \ (0.0081)$	$0.0066 \ (0.0003)$	1000
Exp	0.3779	0.0071	$0.0731 \ (0.0016)$	$0.0234 \ (0.0023)$	$0.9666 \ (0.0057)$	$0.0059 \ (0.0003)$	989
Weibull	0.3970	0.0050	$0.0718 \ (0.0016)$	$0.0425 \ (0.0023)$	$0.8978 \ (0.0097)$	$0.0070 \ (0.0003)$	978
Gompertz	0.3794	0.0071	$0.0743 \ (0.0029)$	$0.0250 \ (0.0042)$	$0.9497 \ (0.0123)$	$0.0061 \ (0.0005)$	318
RP(3)	0.4097	0.0052	$0.0722 \ (0.0016)$	$0.0552 \ (0.0023)$	$0.8690 \ (0.0107)$	$0.0083 \ (0.0003)$	1000
RP(5)	0.4138	0.0053	$0.0725 \ (0.0016)$	$0.0594 \ (0.0023)$	$0.8630 \ (0.0109)$	$0.0088 \ (0.0004)$	1000
RP(9)	0.4152	0.0053	$0.0728 \ (0.0016)$	$0.0608 \ (0.0023)$	$0.8600 \ (0.0110)$	$0.0090 \ (0.0004)$	1000
RP(P)	0.4131	0.0053	$0.0726 \ (0.0016)$	$0.0586 \ (0.0023)$	$0.8650 \ (0.0108)$	$0.0087 \ (0.0004)$	1000
FP(W)	0.3937	0.0049	0.0707 (0.0017)	$0.0392 \ (0.0024)$	$0.9143 \ (0.0097)$	$0.0065 \ (0.0003)$	840
FP (k=10)	0.3671	0.0054	$0.0711 \ (0.0016)$	$0.0126 \ (0.0023)$	$0.9519 \ (0.0068)$	$0.0052 \ (0.0002)$	998
FP (k=10000)	0.3918	0.0033	0.0725 (0.0016)	$0.0373 \ (0.0023)$	0.8291 (0.0119)	$0.0066 \ (0.0003)$	995

Table 105: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.4014	0.0058	$0.0749 \ (0.0017)$	$0.0362 \ (0.0024)$	$0.9287 \ (0.0082)$	0.0069 (0.0003)	996
Exp	0.4016	0.0047	$0.0748 \ (0.0017)$	$0.0364 \ (0.0024)$	$0.8910 \ (0.0099)$	$0.0069 \ (0.0003)$	1000
Weibull	0.3986	0.0053	$0.0748 \ (0.0017)$	$0.0334 \ (0.0024)$	$0.9170 \ (0.0087)$	$0.0067 \ (0.0003)$	1000
Gompertz	0.3981	0.0047	$0.0770 \ (0.0029)$	$0.0330 \ (0.0040)$	$0.8950 \ (0.0161)$	$0.0070 \ (0.0005)$	362
RP(3)	0.4047	0.0054	$0.0757 \ (0.0017)$	$0.0395 \ (0.0024)$	$0.9020 \ (0.0094)$	$0.0073 \ (0.0003)$	1000
RP(5)	0.4022	0.0053	$0.0751 \ (0.0017)$	$0.0370 \ (0.0024)$	$0.9060 \ (0.0092)$	$0.0070 \ (0.0003)$	1000
RP(9)	0.4017	0.0053	$0.0750 \ (0.0017)$	$0.0365 \ (0.0024)$	$0.9090 \ (0.0091)$	$0.0069 \ (0.0003)$	1000
RP(P)	0.4020	0.0054	$0.0751 \ (0.0017)$	$0.0368 \ (0.0024)$	$0.9080 \ (0.0091)$	$0.0070 \ (0.0003)$	1000
FP(W)	0.3987	0.0058	$0.0749 \ (0.0017)$	$0.0335 \ (0.0024)$	$0.9369 \ (0.0077)$	$0.0067 \ (0.0003)$	998
FP (k=10)	0.4032	0.0058	$0.0758 \ (0.0017)$	$0.0381 \ (0.0024)$	$0.9243 \ (0.0084)$	$0.0072 \ (0.0003)$	991
FP (k=10000)	0.4036	0.0043	$0.0757 \ (0.0017)$	$0.0384 \ (0.0024)$	$0.8637 \ (0.0109)$	$0.0072 \ (0.0003)$	998
Model frailty: I	Vormal						
Cox	0.4213	0.0070	$0.0810 \ (0.0018)$	$0.0561 \ (0.0026)$	$0.9030 \ (0.0094)$	0.0097 (0.0004)	1000
Exp	0.4361	0.0062	$0.0846 \ (0.0019)$	$0.0709 \ (0.0027)$	$0.8384 \ (0.0118)$	$0.0122 \ (0.0005)$	978
Weibull	0.4282	0.0068	0.0835 (0.0019)	$0.0630 \ (0.0027)$	$0.8703 \ (0.0107)$	$0.0109 \ (0.0004)$	987
Gompertz	0.4359	0.0063	$0.0807 \ (0.0050)$	$0.0707 \ (0.0070)$	$0.8797 \ (0.0282)$	$0.0115 \ (0.0013)$	133
RP(3)	0.4366	0.0068	$0.0840 \ (0.0019)$	$0.0714 \ (0.0027)$	$0.8490 \ (0.0113)$	$0.0122 \ (0.0005)$	1000
RP(5)	0.4363	0.0067	$0.0837 \ (0.0019)$	$0.0711 \ (0.0026)$	$0.8480 \ (0.0114)$	$0.0121 \ (0.0005)$	1000
RP(9)	0.4361	0.0067	$0.0836 \ (0.0019)$	$0.0710 \ (0.0026)$	$0.8490 \ (0.0113)$	$0.0120 \ (0.0005)$	1000
RP(P)	0.4352	0.0067	$0.0836 \ (0.0019)$	$0.0701 \ (0.0026)$	$0.8520 \ (0.0112)$	$0.0119 \ (0.0005)$	1000
FP (W)	0.4234	0.0066	$0.0821 \ (0.0018)$	$0.0583 \ (0.0026)$	$0.8790 \ (0.0104)$	$0.0101 \ (0.0004)$	992
FP (k=10)	0.4268	0.0069	$0.0831 \ (0.0019)$	$0.0617 \ (0.0026)$	$0.8780 \ (0.0103)$	$0.0107 \ (0.0004)$	1000
FP (k=10000)	0.4291	0.0058	$0.0824 \ (0.0018)$	$0.0640 \ (0.0026)$	$0.8461 \ (0.0114)$	$0.0109 \ (0.0004)$	994

Table 106: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 0.75, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

	Avg. Estimate		Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.5773	0.0078	0.0909 (0.0020)	$0.0010 \ (0.0029)$	$0.9460 \ (0.0071)$	$0.0082 \ (0.0004)$	1000
Exp	0.5778	0.0078	0.0907 (0.0020)	$0.0016 \ (0.0029)$	$0.9470 \ (0.0071)$	$0.0082 \ (0.0004)$	1000
Weibull	0.5780	0.0078	$0.0909 \ (0.0020)$	$0.0017 \ (0.0029)$	$0.9450 \ (0.0072)$	$0.0083 \ (0.0004)$	1000
Gompertz	0.5798	0.0078	$0.0932 \ (0.0030)$	$0.0036 \ (0.0043)$	$0.9332 \ (0.0114)$	$0.0087 \ (0.0006)$	479
RP(3)	0.5778	0.0078	$0.0909 \ (0.0020)$	$0.0015 \ (0.0029)$	$0.9460 \ (0.0071)$	$0.0083 \ (0.0004)$	1000
RP(5)	0.5778	0.0078	$0.0909 \ (0.0020)$	$0.0016 \ (0.0029)$	$0.9450 \ (0.0072)$	$0.0083 \ (0.0004)$	1000
RP(9)	0.5778	0.0078	$0.0909 \ (0.0020)$	$0.0015 \ (0.0029)$	$0.9450 \ (0.0072)$	$0.0083 \ (0.0004)$	1000
RP(P)	0.5779	0.0078	$0.0909 \ (0.0020)$	$0.0016 \ (0.0029)$	$0.9450 \ (0.0072)$	$0.0083 \ (0.0004)$	1000
FP(W)	0.5779	0.0079	$0.0909 \ (0.0020)$	$0.0017 \ (0.0029)$	$0.9479 \ (0.0070)$	$0.0083 \ (0.0004)$	998
FP (k=10)	0.5743	0.0080	$0.0911 \ (0.0020)$	-0.0019 (0.0029)	$0.9470 \ (0.0071)$	$0.0083 \ (0.0004)$	1000
FP (k=10000)	0.5765	0.0062	$0.0908 \ (0.0020)$	$0.0002 \ (0.0029)$	$0.9138 \ (0.0089)$	$0.0082 \ (0.0004)$	998
Model frailty: I	Normal						
Cox	0.5705	0.0081	$0.0904 \ (0.0020)$	-0.0057 (0.0029)	$0.9530 \ (0.0067)$	$0.0082 \ (0.0004)$	1000
Exp	0.5741	0.0080	0.0907 (0.0020)	-0.0021 (0.0029)	$0.9510 \ (0.0068)$	$0.0082 \ (0.0004)$	999
Weibull	0.5754	0.0080	$0.0911 \ (0.0020)$	-0.0009 (0.0029)	0.9499 (0.0069)	$0.0083 \ (0.0004)$	999
Gompertz	0.5801	0.0080	$0.0921 \ (0.0032)$	$0.0038 \ (0.0045)$	$0.9366 \ (0.0120)$	$0.0085 \ (0.0007)$	410
RP(3)	0.5734	0.0079	$0.0907 \ (0.0020)$	-0.0029 (0.0029)	$0.9480 \ (0.0070)$	$0.0082 \ (0.0004)$	1000
RP(5)	0.5733	0.0079	$0.0907 \ (0.0020)$	-0.0030 (0.0029)	$0.9460 \ (0.0071)$	$0.0082 \ (0.0004)$	1000
RP(9)	0.5732	0.0079	$0.0907 \ (0.0020)$	-0.0030 (0.0029)	$0.9460 \ (0.0071)$	$0.0082 \ (0.0004)$	1000
RP(P)	0.5734	0.0079	$0.0907 \ (0.0020)$	-0.0028 (0.0029)	$0.9470 \ (0.0071)$	$0.0082 \ (0.0004)$	1000
FP(W)	0.5737	0.0078	$0.0907 \ (0.0021)$	-0.0025 (0.0029)	$0.9458 \ (0.0073)$	$0.0082 \ (0.0004)$	960
FP (k=10)	0.5691	0.0079	$0.0908 \ (0.0020)$	-0.0071 (0.0029)	$0.9458 \ (0.0072)$	$0.0083 \ (0.0004)$	996
FP (k=10000)	0.5714	0.0066	0.0906 (0.0020)	-0.0049 (0.0029)	$0.9210 \ (0.0085)$	$0.0082 \ (0.0004)$	1000

Table 107: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

	Avg. Estimate		Emp. SE	Bias	Coverage		N. Converged
Model frailty: 0	Gamma						
Cox	0.5861	0.0084	$0.0945 \ (0.0021)$	-0.0048 (0.0030)	$0.9370 \ (0.0077)$	0.0090 (0.0004)	1000
Exp	0.6142	0.0079	$0.0996 \ (0.0022)$	$0.0234 \ (0.0031)$	$0.9190 \ (0.0086)$	$0.0105 \ (0.0005)$	1000
Weibull	0.5874	0.0089	$0.0947 \ (0.0021)$	-0.0034 (0.0030)	$0.9430 \ (0.0073)$	$0.0090 \ (0.0004)$	1000
Gompertz	0.6128	0.0080	$0.0960 \ (0.0033)$	$0.0220 \ (0.0046)$	$0.9263 \ (0.0125)$	$0.0097 \ (0.0007)$	434
RP(3)	0.5867	0.0089	$0.0946 \ (0.0021)$	-0.0042 (0.0030)	$0.9410 \ (0.0075)$	$0.0090 \ (0.0004)$	1000
RP(5)	0.5866	0.0089	$0.0946 \ (0.0021)$	-0.0042 (0.0030)	$0.9410 \ (0.0075)$	$0.0090 \ (0.0004)$	1000
RP(9)	0.5866	0.0089	$0.0947 \ (0.0021)$	-0.0042 (0.0030)	$0.9430 \ (0.0073)$	$0.0090 \ (0.0004)$	1000
RP(P)	0.5871	0.0089	$0.0947 \ (0.0021)$	-0.0038 (0.0030)	$0.9410 \ (0.0075)$	$0.0090 \ (0.0004)$	1000
FP(W)	0.5874	0.0085	$0.0947 \ (0.0021)$	-0.0034 (0.0030)	$0.9390 \ (0.0076)$	$0.0090 \ (0.0004)$	1000
FP (k=10)	0.5778	0.0086	$0.0952 \ (0.0021)$	-0.0130 (0.0030)	$0.9340 \ (0.0079)$	$0.0092 \ (0.0004)$	1000
FP (k=10000)	0.5943	0.0067	$0.0968 \ (0.0022)$	$0.0035 \ (0.0031)$	$0.9000 \ (0.0095)$	$0.0094 \ (0.0004)$	1000
Model frailty: I	Normal						
Cox	0.5884	0.0090	$0.0952 \ (0.0021)$	-0.0024 (0.0030)	$0.9440 \ (0.0073)$	$0.0091 \ (0.0004)$	1000
Exp	0.6044	0.0081	$0.0984 \ (0.0022)$	$0.0136 \ (0.0031)$	$0.9257 \ (0.0083)$	0.0099 (0.0005)	996
Weibull	0.5835	0.0089	$0.0943 \ (0.0021)$	-0.0073 (0.0030)	$0.9419 \ (0.0074)$	$0.0089 \ (0.0004)$	998
Gompertz	0.6078	0.0081	0.0955 (0.0040)	$0.0170 \ (0.0056)$	$0.9129 \ (0.0166)$	$0.0094 \ (0.0008)$	287
RP(3)	0.5821	0.0089	$0.0942 \ (0.0021)$	-0.0087 (0.0030)	$0.9430 \ (0.0073)$	$0.0089 \ (0.0004)$	1000
RP(5)	0.5820	0.0089	$0.0942 \ (0.0021)$	-0.0088 (0.0030)	$0.9430 \ (0.0073)$	$0.0090 \ (0.0004)$	1000
RP(9)	0.5820	0.0089	$0.0943 \ (0.0021)$	-0.0088 (0.0030)	$0.9430 \ (0.0073)$	$0.0090 \ (0.0004)$	1000
RP(P)	0.5823	0.0089	$0.0943 \ (0.0021)$	-0.0085 (0.0030)	$0.9440 \ (0.0073)$	$0.0089 \ (0.0004)$	1000
FP(W)	0.5824	0.0084	$0.0946 \ (0.0021)$	-0.0084 (0.0030)	$0.9403 \ (0.0076)$	$0.0090 \ (0.0004)$	972
FP (k=10)	0.5740	0.0085	$0.0947 \ (0.0021)$	-0.0168 (0.0030)	$0.9339 \ (0.0079)$	$0.0092 \ (0.0004)$	999
FP (k=10000)	0.5869	0.0072	0.0962 (0.0022)	-0.0039 (0.0030)	$0.9147 \ (0.0088)$	0.0093 (0.0004)	997

Table 108: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 0.75, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.5422	0.0068	$0.0792 \ (0.0018)$	-0.0015 (0.0025)	$0.9650 \ (0.0058)$	$0.0063 \ (0.0003)$	999
Exp	0.5191	0.0073	$0.0762 \ (0.0017)$	-0.0246 (0.0024)	$0.9610 \ (0.0061)$	$0.0064 \ (0.0003)$	1000
Weibull	0.5352	0.0067	$0.0780 \ (0.0017)$	-0.0085 (0.0025)	$0.9640 \ (0.0059)$	$0.0061 \ (0.0003)$	1000
Gompertz	0.5206	0.0073	$0.0774 \ (0.0021)$	-0.0231 (0.0030)	$0.9625 \ (0.0074)$	$0.0065 \ (0.0003)$	666
RP(3)	0.5417	0.0064	$0.0791 \ (0.0018)$	-0.0020 (0.0025)	$0.9570 \ (0.0064)$	$0.0063 \ (0.0003)$	1000
RP(5)	0.5422	0.0064	$0.0792 \ (0.0018)$	-0.0015 (0.0025)	$0.9560 \ (0.0065)$	$0.0063 \ (0.0003)$	1000
RP(9)	0.5424	0.0064	$0.0793 \ (0.0018)$	-0.0014 (0.0025)	$0.9570 \ (0.0064)$	$0.0063 \ (0.0003)$	1000
RP(P)	0.5407	0.0065	$0.0790 \ (0.0018)$	-0.0030 (0.0025)	$0.9590 \ (0.0063)$	$0.0062 \ (0.0003)$	1000
FP(W)	0.5352	0.0072	$0.0777 \ (0.0017)$	$-0.0085 \ (0.0025)$	$0.9687 \; (0.0055)$	$0.0061 \ (0.0003)$	990
FP (k=10)	0.5397	0.0070	$0.0792 \ (0.0018)$	-0.0040 (0.0025)	$0.9670 \ (0.0056)$	$0.0063 \ (0.0003)$	1000
FP (k=10000)	0.5395	0.0052	$0.0790 \ (0.0018)$	$-0.0042 \ (0.0025)$	$0.9209 \ (0.0085)$	$0.0062 \ (0.0003)$	999
Model frailty: I	Normal						
Cox	0.5266	0.0068	$0.0770 \ (0.0017)$	-0.0171 (0.0024)	$0.9620 \ (0.0060)$	$0.0062 \ (0.0003)$	1000
Exp	0.5174	0.0074	$0.0764 \ (0.0017)$	-0.0263 (0.0024)	$0.9640 \ (0.0059)$	$0.0065 \ (0.0003)$	1000
Weibull	0.5349	0.0068	$0.0780 \ (0.0017)$	-0.0088 (0.0025)	$0.9638 \ (0.0059)$	$0.0061 \ (0.0003)$	995
Gompertz	0.5181	0.0074	$0.0791 \ (0.0023)$	$-0.0256 \ (0.0032)$	$0.9610 \ (0.0078)$	$0.0069 \ (0.0004)$	616
RP(3)	0.5394	0.0065	$0.0786 \ (0.0018)$	-0.0043 (0.0025)	$0.9620 \ (0.0060)$	$0.0062 \ (0.0003)$	1000
RP(5)	0.5397	0.0065	$0.0787 \ (0.0018)$	-0.0040 (0.0025)	$0.9610 \ (0.0061)$	$0.0062 \ (0.0003)$	1000
RP(9)	0.5398	0.0065	$0.0787 \ (0.0018)$	-0.0039 (0.0025)	$0.9600 \ (0.0062)$	$0.0062 \ (0.0003)$	1000
RP(P)	0.5382	0.0066	$0.0784 \ (0.0018)$	$-0.0055 \ (0.0025)$	$0.9620 \ (0.0060)$	$0.0062 \ (0.0003)$	1000
FP(W)	0.5342	0.0072	$0.0781 \ (0.0018)$	-0.0095 (0.0026)	$0.9709 \ (0.0055)$	$0.0062 \ (0.0003)$	929
FP (k=10)	0.5367	0.0070	$0.0787 \ (0.0018)$	$-0.0070 \ (0.0025)$	$0.9690 \ (0.0055)$	$0.0062 \ (0.0003)$	1000
FP (k=10000)	0.5378	0.0053	$0.0785 \ (0.0018)$	$-0.0059 \ (0.0025)$	$0.9380 \ (0.0076)$	$0.0062 \ (0.0003)$	1000

Table 109: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	0.5154	0.0063	$0.0750 \ (0.0017)$	-0.0026 (0.0024)	$0.9670 \ (0.0056)$	$0.0056 \ (0.0002)$	1000
Exp	0.4813	0.0076	$0.0731\ (0.0016)$	-0.0368 (0.0023)	$0.9620 \ (0.0060)$	$0.0067 \ (0.0003)$	1000
Weibull	0.5202	0.0057	$0.0760 \ (0.0017)$	$0.0022 \ (0.0024)$	$0.9460 \ (0.0071)$	$0.0058 \ (0.0002)$	1000
Gompertz	0.5081	0.0065	$0.0763 \ (0.0017)$	-0.0100 (0.0024)	$0.9662 \ (0.0058)$	$0.0059 \ (0.0003)$	976
RP(3)	0.5147	0.0059	$0.0749 \ (0.0017)$	-0.0034 (0.0024)	$0.9620 \ (0.0060)$	$0.0056 \ (0.0002)$	1000
RP(5)	0.5156	0.0059	$0.0750 \ (0.0017)$	-0.0024 (0.0024)	$0.9600 \ (0.0062)$	$0.0056 \ (0.0002)$	1000
RP(9)	0.5157	0.0060	$0.0751 \ (0.0017)$	-0.0023 (0.0024)	$0.9610 \ (0.0061)$	$0.0056 \ (0.0002)$	1000
RP(P)	0.5156	0.0059	$0.0750 \ (0.0017)$	-0.0025 (0.0024)	$0.9600 \ (0.0062)$	$0.0056 \ (0.0002)$	1000
FP(W)	0.5201	0.0060	$0.0761 \ (0.0017)$	$0.0021 \ (0.0024)$	$0.9528 \ (0.0067)$	$0.0058 \ (0.0002)$	996
FP (k=10)	0.4991	0.0064	$0.0749 \ (0.0017)$	-0.0189 (0.0024)	$0.9560 \ (0.0065)$	$0.0060 \ (0.0003)$	1000
FP (k=10000)	0.5214	0.0041	$0.0778 \ (0.0017)$	$0.0033 \ (0.0025)$	$0.8880 \ (0.0100)$	$0.0061 \ (0.0003)$	1000
Model frailty: I	Normal						
Cox	0.5023	0.0063	$0.0733 \ (0.0016)$	$-0.0157 \ (0.0023)$	$0.9640 \ (0.0059)$	$0.0056 \ (0.0002)$	1000
Exp	0.4805	0.0076	0.0739 (0.0017)	-0.0375 (0.0023)	$0.9590 \ (0.0063)$	0.0069 (0.0003)	999
Weibull	0.5224	0.0059	$0.0762 \ (0.0017)$	$0.0043 \ (0.0024)$	0.9499 (0.0069)	$0.0058 \ (0.0002)$	998
Gompertz	0.5059	0.0068	$0.0767 \ (0.0018)$	-0.0121 (0.0025)	$0.9660 \ (0.0059)$	$0.0060 \ (0.0003)$	940
RP(3)	0.5131	0.0060	$0.0748 \ (0.0017)$	-0.0049 (0.0024)	$0.9570 \ (0.0064)$	$0.0056 \ (0.0002)$	1000
RP(5)	0.5141	0.0061	$0.0750 \ (0.0017)$	-0.0039 (0.0024)	$0.9570 \ (0.0064)$	$0.0056 \ (0.0002)$	1000
RP(9)	0.5142	0.0061	$0.0751 \ (0.0017)$	-0.0039 (0.0024)	$0.9580 \ (0.0063)$	$0.0056 \ (0.0002)$	1000
RP(P)	0.5141	0.0061	$0.0750 \ (0.0017)$	-0.0040 (0.0024)	$0.9560 \ (0.0065)$	$0.0056 \ (0.0002)$	1000
FP(W)	0.5179	0.0061	$0.0755 \ (0.0017)$	-0.0001 (0.0024)	$0.9540 \ (0.0068)$	$0.0057 \ (0.0002)$	956
FP (k=10)	0.5019	0.0064	$0.0749 \ (0.0017)$	-0.0161 (0.0024)	$0.9630 \ (0.0060)$	$0.0059 \ (0.0002)$	999
FP (k=10000)	0.5184	0.0040	$0.0782 \ (0.0017)$	$0.0004 \ (0.0025)$	$0.8760 \ (0.0104)$	$0.0061 \ (0.0003)$	1000

Table 110: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

	Avg. Estimate		Emp. SE	Bias	Coverage		N. Converged
Model frailty: 0	Gamma						
Cox	0.5865	0.0081	$0.0923 \ (0.0021)$	$0.0036 \ (0.0029)$	0.9499 (0.0069)	0.0085 (0.0004)	998
Exp	0.5965	0.0079	$0.0943 \ (0.0021)$	$0.0135 \ (0.0030)$	$0.9330 \ (0.0079)$	$0.0091 \ (0.0004)$	1000
Weibull	0.5876	0.0083	$0.0926 \ (0.0021)$	$0.0047 \ (0.0029)$	$0.9530 \ (0.0067)$	$0.0086 \ (0.0004)$	1000
Gompertz	0.5943	0.0079	$0.0919 \ (0.0030)$	$0.0113 \ (0.0042)$	$0.9387 \ (0.0110)$	$0.0086 \ (0.0005)$	473
RP(3)	0.5872	0.0083	$0.0924 \ (0.0021)$	$0.0043 \ (0.0029)$	$0.9510 \ (0.0068)$	$0.0086 \ (0.0004)$	1000
RP(5)	0.5870	0.0083	$0.0924 \ (0.0021)$	$0.0041 \ (0.0029)$	$0.9510 \ (0.0068)$	$0.0086 \ (0.0004)$	1000
RP(9)	0.5869	0.0083	$0.0924 \ (0.0021)$	$0.0040 \ (0.0029)$	$0.9510 \ (0.0068)$	$0.0086 \ (0.0004)$	1000
RP(P)	0.5871	0.0083	$0.0925 \ (0.0021)$	$0.0042 \ (0.0029)$	$0.9510 \ (0.0068)$	$0.0086 \ (0.0004)$	1000
FP(W)	0.5876	0.0082	$0.0927 \ (0.0021)$	$0.0047 \ (0.0029)$	$0.9508 \ (0.0069)$	$0.0086 \ (0.0004)$	995
FP (k=10)	0.5821	0.0083	$0.0926 \ (0.0021)$	-0.0008 (0.0029)	$0.9500 \ (0.0069)$	$0.0086 \ (0.0004)$	1000
FP (k=10000)	0.5841	0.0066	$0.0922 \ (0.0021)$	$0.0012 \ (0.0029)$	$0.9090 \ (0.0091)$	$0.0085 \ (0.0004)$	1000
Model frailty: I	Normal						
Cox	0.5836	0.0085	$0.0918 \ (0.0021)$	$0.0006 \ (0.0029)$	$0.9530 \ (0.0067)$	$0.0084 \ (0.0004)$	1000
Exp	0.5942	0.0081	$0.0938 \ (0.0021)$	$0.0113 \ (0.0030)$	$0.9390 \ (0.0076)$	0.0089 (0.0004)	1000
Weibull	0.5862	0.0084	$0.0924 \ (0.0021)$	$0.0033 \ (0.0029)$	$0.9479 \ (0.0070)$	0.0085 (0.0004)	998
Gompertz	0.5990	0.0081	$0.0960 \ (0.0037)$	$0.0161 \ (0.0052)$	$0.9206 \ (0.0147)$	$0.0094 \ (0.0007)$	340
RP(3)	0.5847	0.0084	$0.0921 \ (0.0021)$	$0.0017 \ (0.0029)$	$0.9470 \ (0.0071)$	$0.0085 \ (0.0004)$	1000
RP(5)	0.5844	0.0084	$0.0921 \ (0.0021)$	$0.0014 \ (0.0029)$	$0.9470 \ (0.0071)$	$0.0085 \ (0.0004)$	1000
RP(9)	0.5843	0.0083	$0.0921 \ (0.0021)$	$0.0013 \ (0.0029)$	$0.9460 \ (0.0071)$	$0.0085 \ (0.0004)$	1000
RP(P)	0.5843	0.0084	$0.0921 \ (0.0021)$	$0.0014 \ (0.0029)$	$0.9450 \ (0.0072)$	$0.0085 \ (0.0004)$	1000
FP(W)	0.5847	0.0081	$0.0920 \ (0.0021)$	$0.0017 \ (0.0030)$	$0.9461 \ (0.0073)$	$0.0084 \ (0.0004)$	947
FP (k=10)	0.5788	0.0082	$0.0921 \ (0.0021)$	-0.0042 (0.0029)	$0.9419 \ (0.0074)$	$0.0085 \ (0.0004)$	998
FP (k=10000)	0.5808	0.0071	$0.0920 \ (0.0021)$	-0.0021 (0.0029)	$0.9180 \ (0.0087)$	$0.0085 \ (0.0004)$	1000

Table 111: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.75, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

	Avg. Estimate		Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.5943	0.0079	0.0875 (0.0020)	-0.0016 (0.0028)	0.9509 (0.0068)	$0.0076 \ (0.0003)$	997
Exp	0.5967	0.0073	$0.0878 \ (0.0020)$	$0.0008 \ (0.0028)$	$0.9430 \ (0.0073)$	$0.0077 \ (0.0003)$	1000
Weibull	0.5943	0.0075	$0.0875 \ (0.0020)$	-0.0016 (0.0028)	$0.9430 \ (0.0073)$	$0.0076 \ (0.0003)$	1000
Gompertz	0.5932	0.0074	$0.0868 \ (0.0028)$	-0.0028 (0.0039)	$0.9507 \ (0.0098)$	$0.0075 \ (0.0005)$	487
RP(3)	0.5944	0.0075	$0.0876 \ (0.0020)$	-0.0015 (0.0028)	$0.9460 \ (0.0071)$	$0.0077 \ (0.0003)$	1000
RP(5)	0.5945	0.0075	$0.0876 \ (0.0020)$	-0.0014 (0.0028)	$0.9460 \ (0.0071)$	$0.0077 \ (0.0003)$	1000
RP(9)	0.5946	0.0075	$0.0877 \ (0.0020)$	-0.0013 (0.0028)	$0.9460 \ (0.0071)$	$0.0077 \ (0.0003)$	1000
RP(P)	0.5944	0.0075	$0.0876 \ (0.0020)$	-0.0015 (0.0028)	$0.9430 \ (0.0073)$	$0.0077 \ (0.0003)$	1000
FP(W)	0.5945	0.0081	$0.0875 \ (0.0020)$	-0.0014 (0.0028)	$0.9548 \ (0.0066)$	$0.0077 \ (0.0003)$	996
FP (k=10)	0.5920	0.0082	$0.0878 \ (0.0020)$	-0.0040 (0.0028)	$0.9530 \ (0.0067)$	$0.0077 \ (0.0003)$	999
FP (k=10000)	0.5935	0.0061	$0.0877 \ (0.0020)$	-0.0024 (0.0028)	$0.9210 \ (0.0085)$	$0.0077 \ (0.0003)$	1000
Model frailty: I	Normal						
Cox	0.5785	0.0078	$0.0853 \ (0.0019)$	-0.0174 (0.0027)	$0.9550 \ (0.0066)$	$0.0076 \ (0.0003)$	1000
Exp	0.5963	0.0075	0.0877 (0.0020)	$0.0004 \ (0.0028)$	$0.9468 \ (0.0071)$	0.0077 (0.0003)	996
Weibull	0.5957	0.0075	0.0877 (0.0020)	-0.0002 (0.0028)	$0.9459 \ (0.0072)$	$0.0077 \ (0.0003)$	998
Gompertz	0.5907	0.0075	$0.0865 \ (0.0028)$	-0.0052 (0.0040)	$0.9533 \ (0.0097)$	$0.0075 \ (0.0005)$	471
RP(3)	0.5939	0.0075	$0.0875 \ (0.0020)$	-0.0020 (0.0028)	$0.9460 \ (0.0071)$	$0.0077 \ (0.0003)$	1000
RP(5)	0.5938	0.0075	0.0875 (0.0020)	-0.0021 (0.0028)	$0.9450 \ (0.0072)$	$0.0077 \ (0.0003)$	1000
RP(9)	0.5939	0.0075	$0.0876 \ (0.0020)$	-0.0021 (0.0028)	$0.9450 \ (0.0072)$	$0.0077 \ (0.0003)$	1000
RP(P)	0.5939	0.0075	$0.0875 \ (0.0020)$	-0.0020 (0.0028)	$0.9450 \ (0.0072)$	$0.0077 \ (0.0003)$	1000
FP(W)	0.5947	0.0080	$0.0874 \ (0.0020)$	-0.0012 (0.0028)	$0.9541 \ (0.0067)$	$0.0076 \ (0.0003)$	980
FP (k=10)	0.5906	0.0080	$0.0876 \ (0.0020)$	-0.0053 (0.0028)	$0.9560 \ (0.0065)$	$0.0077 \ (0.0003)$	1000
FP (k=10000)	0.5927	0.0062	$0.0875 \ (0.0020)$	-0.0033 (0.0028)	$0.9270 \ (0.0082)$	$0.0077 \ (0.0003)$	1000

Table 112: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

	Avg. Estimate		Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	0.6167	0.0089	$0.0976 \ (0.0022)$	-0.0071 (0.0031)	0.9399 (0.0075)	0.0096 (0.0004)	998
Exp	0.6442	0.0076	$0.1032 \ (0.0023)$	$0.0204 \ (0.0033)$	$0.8880 \ (0.0100)$	$0.0111 \ (0.0005)$	1000
Weibull	0.6178	0.0088	$0.0977 \ (0.0022)$	-0.0060 (0.0031)	$0.9370 \ (0.0077)$	$0.0096 \ (0.0004)$	1000
Gompertz	0.6428	0.0076	$0.1057 \ (0.0036)$	$0.0190 \ (0.0051)$	$0.8819 \ (0.0155)$	$0.0115 \ (0.0008)$	432
RP(3)	0.6172	0.0088	$0.0976 \ (0.0022)$	-0.0066 (0.0031)	$0.9380 \ (0.0076)$	$0.0096 \ (0.0004)$	1000
RP(5)	0.6171	0.0088	$0.0976 \ (0.0022)$	-0.0067 (0.0031)	$0.9360 \ (0.0077)$	$0.0096 \ (0.0004)$	1000
RP(9)	0.6172	0.0088	$0.0976 \ (0.0022)$	-0.0066 (0.0031)	$0.9360 \ (0.0077)$	$0.0096 \ (0.0004)$	1000
RP(P)	0.6174	0.0088	$0.0977 \ (0.0022)$	-0.0064 (0.0031)	$0.9360 \ (0.0077)$	$0.0096 \ (0.0004)$	1000
FP(W)	0.6182	0.0090	$0.0981 \ (0.0022)$	-0.0056 (0.0031)	$0.9422 \ (0.0074)$	$0.0096 \ (0.0004)$	986
FP (k=10)	0.6063	0.0092	$0.0987 \ (0.0022)$	-0.0175 (0.0031)	$0.9350 \ (0.0078)$	$0.0100 \ (0.0004)$	1000
FP (k=10000)	0.6261	0.0067	$0.1000 \ (0.0022)$	$0.0023 \ (0.0032)$	$0.8800 \ (0.0103)$	$0.0100 \ (0.0004)$	1000
Model frailty: I	Normal						
Cox	0.6075	0.0090	$0.0963 \ (0.0022)$	-0.0163 (0.0030)	$0.9410 \ (0.0075)$	0.0095 (0.0004)	1000
Exp	0.6412	0.0079	$0.1026 \ (0.0023)$	$0.0174 \ (0.0033)$	$0.9013 \ (0.0095)$	$0.0108 \ (0.0005)$	993
Weibull	0.6177	0.0088	$0.0978 \ (0.0022)$	-0.0061 (0.0031)	0.9347 (0.0078)	$0.0096 \ (0.0004)$	996
Gompertz	0.6355	0.0079	$0.1078 \ (0.0045)$	$0.0117 \ (0.0064)$	0.8865 (0.0189)	0.0117 (0.0010)	282
RP(3)	0.6155	0.0088	$0.0975 \ (0.0022)$	-0.0083 (0.0031)	$0.9370 \ (0.0077)$	$0.0096 \ (0.0004)$	1000
RP(5)	0.6153	0.0088	$0.0974 \ (0.0022)$	-0.0085 (0.0031)	$0.9360 \ (0.0077)$	$0.0096 \ (0.0004)$	1000
RP(9)	0.6153	0.0088	0.0975 (0.0022)	-0.0085 (0.0031)	$0.9360 \ (0.0077)$	$0.0096 \ (0.0004)$	1000
RP(P)	0.6156	0.0087	$0.0976 \ (0.0022)$	-0.0082 (0.0031)	$0.9360 \ (0.0077)$	$0.0096 \ (0.0004)$	1000
FP(W)	0.6151	0.0089	$0.0980 \ (0.0022)$	-0.0087 (0.0031)	$0.9341 \ (0.0080)$	$0.0097 \ (0.0004)$	971
FP (k=10)	0.6065	0.0089	$0.0983 \ (0.0022)$	-0.0173 (0.0031)	$0.9299 \ (0.0081)$	$0.0100 \ (0.0004)$	999
FP (k=10000)	0.6214	0.0070	0.0990 (0.0022)	-0.0024 (0.0031)	0.8890 (0.0100)	0.0098 (0.0004)	991

Table 113: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

	Avg. Estimate		Emp. SE	Bias	Coverage	· · · · · · · · · · · · · · · · · · ·	
Model frailty: (Gamma						
Cox	0.5483	0.0065	0.0773 (0.0017)	$0.0033 \ (0.0024)$	0.9609 (0.0061)	$0.0060 \ (0.0002)$	998
Exp	0.5303	0.0064	$0.0748 \ (0.0017)$	-0.0146 (0.0024)	$0.9560 \ (0.0065)$	$0.0058 \ (0.0002)$	1000
Weibull	0.5387	0.0061	$0.0757 \ (0.0017)$	-0.0063 (0.0024)	$0.9540 \ (0.0066)$	$0.0058 \ (0.0002)$	1000
Gompertz	0.5316	0.0064	$0.0764 \ (0.0021)$	-0.0133 (0.0029)	$0.9568 \ (0.0078)$	$0.0060 \ (0.0003)$	672
RP(3)	0.5462	0.0058	$0.0771 \ (0.0017)$	$0.0013 \ (0.0024)$	$0.9460 \ (0.0071)$	$0.0059 \ (0.0002)$	1000
RP(5)	0.5476	0.0058	$0.0773 \ (0.0017)$	$0.0027 \ (0.0024)$	$0.9450 \ (0.0072)$	$0.0060 \ (0.0002)$	1000
RP(9)	0.5482	0.0058	$0.0774 \ (0.0017)$	$0.0032 \ (0.0024)$	$0.9450 \ (0.0072)$	$0.0060 \ (0.0002)$	1000
RP(P)	0.5458	0.0058	$0.0770 \ (0.0017)$	$0.0009 \ (0.0024)$	$0.9470 \ (0.0071)$	$0.0059 \ (0.0002)$	1000
FP(W)	0.5387	0.0070	$0.0757 \ (0.0017)$	-0.0063 (0.0024)	$0.9710 \ (0.0053)$	$0.0058 \ (0.0002)$	1000
FP (k=10)	0.5455	0.0067	$0.0773 \ (0.0017)$	$0.0005 \ (0.0024)$	$0.9640 \ (0.0059)$	$0.0060 \ (0.0002)$	1000
FP (k=10000)	0.5439	0.0049	$0.0770 \ (0.0017)$	-0.0011 (0.0024)	$0.9239 \ (0.0084)$	$0.0059 \ (0.0002)$	999
Model frailty: I	Normal						
Cox	0.5269	0.0062	$0.0744 \ (0.0017)$	-0.0180 (0.0024)	$0.9530 \ (0.0067)$	$0.0059 \ (0.0003)$	1000
Exp	0.5288	0.0065	$0.0748 \ (0.0017)$	-0.0162 (0.0024)	$0.9509 \ (0.0068)$	$0.0058 \ (0.0002)$	998
Weibull	0.5398	0.0061	$0.0759 \ (0.0017)$	$-0.0051 \ (0.0024)$	$0.9540 \ (0.0066)$	$0.0058 \ (0.0002)$	999
Gompertz	0.5284	0.0065	$0.0750 \ (0.0021)$	-0.0166 (0.0030)	$0.9556 \ (0.0082)$	$0.0059 \ (0.0003)$	630
RP(3)	0.5472	0.0058	$0.0772 \ (0.0017)$	$0.0022 \ (0.0024)$	$0.9410 \ (0.0075)$	$0.0060 \ (0.0002)$	1000
RP(5)	0.5484	0.0058	$0.0774 \ (0.0017)$	$0.0035 \ (0.0024)$	$0.9390 \ (0.0076)$	$0.0060 \ (0.0003)$	1000
RP(9)	0.5489	0.0058	$0.0775 \ (0.0017)$	$0.0039 \ (0.0025)$	$0.9410 \ (0.0075)$	$0.0060 \ (0.0003)$	1000
RP(P)	0.5462	0.0058	$0.0771 \ (0.0017)$	$0.0013 \ (0.0024)$	$0.9410 \ (0.0075)$	$0.0059 \ (0.0002)$	1000
FP(W)	0.5390	0.0069	$0.0758 \ (0.0017)$	-0.0059 (0.0024)	$0.9660 \ (0.0057)$	$0.0058 \ (0.0002)$	1000
FP (k=10)	0.5465	0.0067	$0.0775 \ (0.0017)$	$0.0015 \ (0.0025)$	$0.9620 \ (0.0060)$	$0.0060 \ (0.0003)$	1000
FP (k=10000)	0.5453	0.0048	$0.0771 \ (0.0017)$	$0.0003 \ (0.0024)$	$0.9180 \ (0.0087)$	$0.0059 \ (0.0002)$	1000

Table 114: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

	Avg. Estimate		Emp. SE	Bias	Coverage		N. Converged
Model frailty: 0	Gamma						
Cox	0.5196	0.0060	0.0723 (0.0016)	-0.0020 (0.0023)	$0.9570 \ (0.0064)$	$0.0052 \ (0.0002)$	999
Exp	0.4968	0.0069	$0.0718 \ (0.0016)$	-0.0249 (0.0023)	$0.9650 \ (0.0058)$	$0.0058 \ (0.0003)$	1000
Weibull	0.5225	0.0051	$0.0731 \ (0.0016)$	$0.0009 \ (0.0023)$	$0.9330 \ (0.0079)$	$0.0053 \ (0.0002)$	1000
Gompertz	0.5220	0.0058	$0.0731 \ (0.0016)$	$0.0004 \ (0.0023)$	$0.9479 \ (0.0070)$	$0.0053 \ (0.0003)$	998
RP(3)	0.5173	0.0053	$0.0720 \ (0.0016)$	-0.0044 (0.0023)	$0.9460 \ (0.0071)$	$0.0052 \ (0.0002)$	1000
RP(5)	0.5192	0.0054	$0.0722 \ (0.0016)$	-0.0025 (0.0023)	$0.9470 \ (0.0071)$	$0.0052 \ (0.0002)$	1000
RP(9)	0.5197	0.0054	$0.0723 \ (0.0016)$	-0.0020 (0.0023)	$0.9480 \ (0.0070)$	$0.0052 \ (0.0002)$	1000
RP(P)	0.5193	0.0053	$0.0722 \ (0.0016)$	-0.0024 (0.0023)	$0.9470 \ (0.0071)$	$0.0052 \ (0.0002)$	1000
FP(W)	0.5226	0.0057	$0.0731 \ (0.0016)$	$0.0009 \ (0.0023)$	$0.9499 \ (0.0069)$	$0.0053 \ (0.0002)$	999
FP (k=10)	0.4990	0.0061	$0.0723 \ (0.0016)$	-0.0227 (0.0023)	$0.9460 \ (0.0071)$	$0.0057 \ (0.0003)$	1000
FP (k=10000)	0.5200	0.0038	$0.0745 \ (0.0017)$	-0.0016 (0.0024)	$0.8843 \ (0.0101)$	$0.0055 \ (0.0003)$	994
Model frailty: I	Normal						
Cox	0.5010	0.0058	$0.0694 \ (0.0016)$	-0.0207 (0.0022)	$0.9550 \ (0.0066)$	$0.0052 \ (0.0002)$	1000
Exp	0.4963	0.0069	$0.0719 \ (0.0016)$	-0.0253 (0.0023)	$0.9630 \ (0.0060)$	$0.0058 \ (0.0003)$	1000
Weibull	0.5307	0.0053	$0.0730 \ (0.0016)$	$0.0091 \ (0.0023)$	$0.9328 \ (0.0079)$	$0.0054 \ (0.0003)$	997
Gompertz	0.5253	0.0060	$0.0733 \ (0.0016)$	$0.0037 \ (0.0023)$	$0.9437 \ (0.0073)$	$0.0054 \ (0.0003)$	995
RP(3)	0.5192	0.0053	$0.0714 \ (0.0016)$	-0.0025 (0.0023)	$0.9490 \ (0.0070)$	$0.0051 \ (0.0002)$	1000
RP(5)	0.5212	0.0054	$0.0717 \ (0.0016)$	-0.0005 (0.0023)	$0.9460 \ (0.0071)$	$0.0051 \ (0.0002)$	1000
RP(9)	0.5216	0.0054	$0.0718 \ (0.0016)$	-0.0000 (0.0023)	$0.9460 \ (0.0071)$	$0.0051 \ (0.0002)$	1000
RP(P)	0.5214	0.0054	$0.0717 \ (0.0016)$	-0.0002 (0.0023)	$0.9460 \ (0.0071)$	$0.0051 \ (0.0002)$	1000
FP(W)	0.5276	0.0058	$0.0731 \ (0.0017)$	$0.0060 \ (0.0025)$	$0.9486 \ (0.0075)$	$0.0054 \ (0.0003)$	876
FP (k=10)	0.5063	0.0061	$0.0716 \ (0.0016)$	-0.0154 (0.0023)	$0.9520 \ (0.0068)$	$0.0054 \ (0.0003)$	1000
FP (k=10000)	0.5303	0.0037	$0.0744 \ (0.0017)$	$0.0086 \ (0.0024)$	0.8810 (0.0102)	$0.0056 \ (0.0003)$	1000

Table 115: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.6050	0.0083	0.0887 (0.0020)	-0.0006 (0.0028)	$0.9549 \ (0.0066)$	$0.0079 \ (0.0003)$	998
Exp	0.6173	0.0074	$0.0909 \ (0.0020)$	$0.0118 \; (0.0029)$	$0.9310 \ (0.0080)$	$0.0084 \ (0.0004)$	1000
Weibull	0.6082	0.0080	$0.0891 \ (0.0020)$	$0.0026 \ (0.0028)$	$0.9500 \ (0.0069)$	$0.0079 \ (0.0003)$	1000
Gompertz	0.6120	0.0075	$0.0904 \ (0.0030)$	$0.0065 \ (0.0042)$	$0.9361 \ (0.0115)$	$0.0082 \ (0.0005)$	454
RP(3)	0.6072	0.0080	$0.0890 \ (0.0020)$	$0.0016 \ (0.0028)$	$0.9530 \ (0.0067)$	$0.0079 \ (0.0003)$	1000
RP(5)	0.6059	0.0079	$0.0888 \ (0.0020)$	$0.0004 \ (0.0028)$	$0.9510 \ (0.0068)$	$0.0079 \ (0.0003)$	1000
RP(9)	0.6055	0.0079	$0.0887 \ (0.0020)$	-0.0000 (0.0028)	$0.9520 \ (0.0068)$	$0.0079 \ (0.0003)$	1000
RP(P)	0.6066	0.0080	$0.0889 \ (0.0020)$	$0.0010 \ (0.0028)$	$0.9510 \ (0.0068)$	$0.0079 \ (0.0003)$	1000
FP(W)	0.6088	0.0085	$0.0890 \ (0.0020)$	$0.0032 \ (0.0028)$	$0.9565 \ (0.0065)$	$0.0079 \ (0.0003)$	989
FP (k=10)	0.6014	0.0086	$0.0891 \ (0.0020)$	-0.0041 (0.0028)	$0.9580 \ (0.0063)$	$0.0079 \ (0.0003)$	1000
FP (k=10000)	0.6058	0.0065	$0.0887 \ (0.0020)$	$0.0002 \ (0.0028)$	$0.9299 \ (0.0081)$	$0.0079 \ (0.0003)$	999
Model frailty: I	Normal						
Cox	0.5917	0.0083	$0.0866 \ (0.0019)$	-0.0139 (0.0027)	$0.9580 \ (0.0063)$	$0.0077 \ (0.0003)$	1000
Exp	0.6203	0.0077	$0.0913 \ (0.0020)$	$0.0147 \ (0.0029)$	$0.9296 \ (0.0081)$	$0.0085 \ (0.0004)$	994
Weibull	0.6110	0.0081	$0.0894 \ (0.0020)$	$0.0054 \ (0.0028)$	$0.9518 \ (0.0068)$	$0.0080 \ (0.0004)$	995
Gompertz	0.6150	0.0077	$0.0909 \ (0.0033)$	$0.0094 \ (0.0047)$	$0.9314 \ (0.0130)$	$0.0083 \ (0.0006)$	379
RP(3)	0.6076	0.0080	$0.0891 \ (0.0020)$	$0.0020 \ (0.0028)$	$0.9530 \ (0.0067)$	$0.0079 \ (0.0003)$	1000
RP(5)	0.6061	0.0080	$0.0889 \ (0.0020)$	$0.0005 \ (0.0028)$	$0.9520 \ (0.0068)$	$0.0079 \ (0.0003)$	1000
RP(9)	0.6057	0.0079	$0.0888 \ (0.0020)$	$0.0001 \ (0.0028)$	$0.9530 \ (0.0067)$	$0.0079 \ (0.0003)$	1000
RP(P)	0.6068	0.0080	$0.0890 \ (0.0020)$	$0.0012 \ (0.0028)$	$0.9510 \ (0.0068)$	$0.0079 \ (0.0003)$	1000
FP(W)	0.6086	0.0084	$0.0895 \ (0.0020)$	$0.0030 \ (0.0029)$	$0.9561 \ (0.0065)$	$0.0080 \ (0.0004)$	979
FP (k=10)	0.6013	0.0084	$0.0891 \ (0.0020)$	-0.0043 (0.0028)	$0.9550 \ (0.0066)$	$0.0080 \ (0.0003)$	1000
FP (k=10000)	0.6055	0.0068	$0.0889 \ (0.0020)$	-0.0001 (0.0028)	$0.9330 \ (0.0079)$	$0.0079 \ (0.0003)$	1000

Table 116: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.75, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						_
Cox	0.2432	0.0026	$0.0490 \ (0.0011)$	$0.0728 \ (0.0016)$	$0.7251 \ (0.0142)$	0.0077 (0.0003)	993
Exp	0.2284	0.0022	$0.0467 \ (0.0010)$	$0.0580 \ (0.0015)$	$0.7610 \ (0.0135)$	0.0055 (0.0002)	1000
Weibull	0.2282	0.0020	0.0467 (0.0010)	$0.0578 \ (0.0015)$	$0.7510 \ (0.0137)$	0.0055 (0.0002)	1000
Gompertz	0.2121	0.0022	$0.0426 \ (0.0051)$	$0.0417 \ (0.0071)$	$0.9444 \ (0.0382)$	$0.0035 \ (0.0006)$	36
RP(3)	0.2436	0.0024	$0.0493 \ (0.0011)$	$0.0732 \ (0.0016)$	$0.6810 \ (0.0147)$	$0.0078 \ (0.0003)$	1000
RP(5)	0.2417	0.0024	$0.0488 \; (0.0011)$	$0.0713 \ (0.0015)$	$0.6980 \ (0.0145)$	$0.0075 \ (0.0002)$	1000
RP(9)	0.2427	0.0024	$0.0490 \ (0.0011)$	$0.0723 \ (0.0015)$	$0.6910 \ (0.0146)$	$0.0076 \ (0.0002)$	1000
RP(P)	0.2425	0.0024	$0.0489 \ (0.0011)$	$0.0721 \ (0.0015)$	$0.6940 \ (0.0146)$	$0.0076 \ (0.0002)$	1000
FP(W)	0.2282	0.0022	$0.0467 \ (0.0010)$	$0.0578 \ (0.0015)$	$0.7760 \ (0.0132)$	0.0055 (0.0002)	1000
FP (k=10)	0.2322	0.0026	$0.0479 \ (0.0011)$	$0.0618 \; (0.0015)$	$0.7810 \ (0.0131)$	$0.0061 \ (0.0002)$	1000
FP (k=10000)	0.2175	0.0021	$0.0462 \ (0.0016)$	$0.0471 \ (0.0023)$	$0.8277 \ (0.0186)$	$0.0044 \ (0.0003)$	412
Model frailty: I	Normal						
Cox	0.3118	0.0054	$0.0668 \ (0.0015)$	$0.1414 \ (0.0021)$	$0.5150 \ (0.0158)$	$0.0245 \ (0.0006)$	998
Exp	0.2753	0.0038	$0.0600 \ (0.0014)$	$0.1049 \ (0.0020)$	$0.5970 \ (0.0161)$	$0.0146 \ (0.0004)$	933
Weibull	0.2768	0.0037	$0.0611 \ (0.0014)$	$0.1064 \ (0.0020)$	$0.5736 \ (0.0163)$	$0.0150 \ (0.0005)$	917
Gompertz	0.2178	0.0038	$0.0327 \ (0.0094)$	$0.0474 \ (0.0123)$	$1.0000 \ (0.0000)$	$0.0032 \ (0.0016)$	7
RP(3)	0.3471	0.0056	$0.0751 \ (0.0017)$	$0.1767 \ (0.0024)$	$0.3570 \ (0.0152)$	$0.0369 \ (0.0009)$	1000
RP(5)	0.3474	0.0056	$0.0752 \ (0.0017)$	$0.1770 \ (0.0024)$	$0.3580 \ (0.0152)$	$0.0370 \ (0.0009)$	1000
RP(9)	0.3472	0.0056	$0.0752 \ (0.0017)$	$0.1768 \ (0.0024)$	$0.3600 \ (0.0152)$	$0.0369 \ (0.0009)$	1000
RP(P)	0.3474	0.0056	$0.0750 \ (0.0017)$	$0.1770 \ (0.0024)$	$0.3540 \ (0.0151)$	$0.0369 \ (0.0009)$	1000
FP(W)	0.2817	0.0040	$0.0619 \ (0.0014)$	$0.1113 \ (0.0020)$	$0.5716 \ (0.0158)$	$0.0162 \ (0.0005)$	985
FP (k=10)	0.2841	0.0054	$0.0645 \ (0.0014)$	$0.1137 \ (0.0020)$	$0.6867 \ (0.0147)$	$0.0171 \ (0.0005)$	999
FP (k=10000)	0.2893	0.0042	$0.0638 \ (0.0014)$	$0.1189\ (0.0020)$	$0.5435 \ (0.0158)$	$0.0182\ (0.0005)$	999

Table 117: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.2383	0.0027	$0.0501 \ (0.0011)$	$0.0779 \ (0.0016)$	$0.6768 \ (0.0149)$	$0.0086 \ (0.0003)$	990
Exp	0.2230	0.0018	$0.0471 \ (0.0011)$	$0.0626 \ (0.0015)$	$0.6560 \ (0.0150)$	$0.0061 \ (0.0002)$	1000
Weibull	0.2234	0.0020	$0.0471 \ (0.0011)$	$0.0629 \ (0.0015)$	$0.7050 \ (0.0144)$	$0.0062 \ (0.0002)$	1000
Gompertz	0.1877	0.0019	$0.0217 \ (0.0153)$	$0.0273 \ (0.0153)$	$1.0000 \ (0.0000)$	$0.0010 \ (0.0008)$	2
RP(3)	0.2406	0.0025	$0.0507 \ (0.0011)$	$0.0802 \ (0.0016)$	$0.6330 \ (0.0152)$	$0.0090 \ (0.0003)$	1000
RP(5)	0.2387	0.0024	$0.0501 \ (0.0011)$	$0.0782 \ (0.0016)$	$0.6370 \ (0.0152)$	$0.0086 \ (0.0003)$	1000
RP(9)	0.2384	0.0024	$0.0501 \ (0.0011)$	$0.0780 \ (0.0016)$	$0.6393 \ (0.0152)$	$0.0086 \ (0.0003)$	998
RP(P)	0.2385	0.0024	$0.0501 \ (0.0011)$	$0.0781 \ (0.0016)$	$0.6360 \ (0.0152)$	$0.0086 \ (0.0003)$	1000
FP(W)	0.2234	0.0022	$0.0471 \ (0.0011)$	$0.0629 \ (0.0015)$	$0.7390 \ (0.0139)$	$0.0062 \ (0.0002)$	1000
FP (k=10)	0.2284	0.0020	$0.0484 \ (0.0011)$	$0.0679 \ (0.0015)$	$0.6540 \ (0.0150)$	$0.0070 \ (0.0002)$	1000
FP (k=10000)	_	_	_	_	_	_	0
Model frailty: I	Normal						
Cox	0.3091	0.0058	$0.0686 \ (0.0016)$	$0.1486 \ (0.0022)$	$0.5010 \ (0.0160)$	$0.0268 \ (0.0007)$	980
Exp	0.2766	0.0033	$0.0627 \ (0.0015)$	$0.1162 \ (0.0021)$	$0.4707 \ (0.0168)$	$0.0174 \ (0.0005)$	886
Weibull	0.2708	0.0037	$0.0598 \ (0.0014)$	$0.1104 \ (0.0020)$	$0.5644 \ (0.0168)$	$0.0157 \ (0.0005)$	870
Gompertz			_	_	_		0
RP(3)	0.3313	0.0057	$0.0753 \ (0.0017)$	$0.1709 \ (0.0024)$	$0.3830 \ (0.0154)$	$0.0349 \ (0.0009)$	1000
RP(5)	0.3365	0.0057	$0.0757 \ (0.0017)$	$0.1761 \ (0.0024)$	$0.3610 \ (0.0152)$	$0.0367 \ (0.0009)$	1000
RP(9)	0.3357	0.0057	$0.0756 \ (0.0017)$	$0.1753 \ (0.0024)$	$0.3610 \ (0.0152)$	$0.0364 \ (0.0009)$	1000
RP(P)	0.3368	0.0057	$0.0757 \ (0.0017)$	$0.1763 \ (0.0024)$	$0.3560 \ (0.0151)$	$0.0368 \ (0.0009)$	1000
FP(W)	0.2786	0.0041	$0.0619 \ (0.0014)$	$0.1182 \ (0.0020)$	$0.5526 \ (0.0157)$	$0.0178 \; (0.0005)$	999
FP (k=10)	0.2825	0.0053	$0.0686 \ (0.0015)$	$0.1221 \ (0.0022)$	$0.6300 \ (0.0153)$	$0.0196 \ (0.0006)$	1000
FP (k=10000)	0.3023	0.0039	$0.0677 \ (0.0015)$	$0.1419 \ (0.0021)$	$0.3940 \ (0.0155)$	$0.0247 \ (0.0006)$	1000

Table 118: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.2453	0.0025	$0.0493 \ (0.0011)$	$0.0559 \ (0.0016)$	$0.8084 \ (0.0125)$	$0.0056 \ (0.0002)$	997
Exp	0.2329	0.0023	$0.0468 \ (0.0010)$	$0.0435 \ (0.0015)$	$0.8530 \ (0.0112)$	$0.0041 \ (0.0002)$	1000
Weibull	0.2314	0.0020	$0.0465 \ (0.0010)$	$0.0420 \ (0.0015)$	$0.8340 \ (0.0118)$	$0.0039 \ (0.0002)$	1000
Gompertz	0.2379	0.0023	$0.0414 \ (0.0050)$	$0.0485 \ (0.0070)$	$0.8286 \ (0.0637)$	$0.0040 \ (0.0007)$	35
RP(3)	0.2373	0.0022	$0.0477 \ (0.0011)$	$0.0479 \ (0.0015)$	$0.8230 \ (0.0121)$	$0.0046 \ (0.0002)$	1000
RP(5)	0.2403	0.0022	$0.0483 \ (0.0011)$	$0.0509 \ (0.0015)$	$0.8100 \ (0.0124)$	$0.0049 \ (0.0002)$	1000
RP(9)	0.2445	0.0023	$0.0491 \ (0.0011)$	$0.0551 \ (0.0016)$	$0.7870 \ (0.0129)$	$0.0054 \ (0.0002)$	1000
RP(P)	0.2435	0.0023	$0.0489 \ (0.0011)$	$0.0541 \ (0.0015)$	$0.7960 \ (0.0127)$	$0.0053 \ (0.0002)$	1000
FP(W)	0.2314	0.0022	$0.0465 \ (0.0010)$	$0.0420 \ (0.0015)$	$0.8640 \ (0.0108)$	$0.0039 \ (0.0002)$	1000
FP (k=10)	0.2307	0.0024	$0.0471 \ (0.0011)$	$0.0413 \ (0.0015)$	$0.8798 \ (0.0103)$	$0.0039 \ (0.0002)$	990
FP (k=10000)	0.2237	0.0020	$0.0393 \ (0.0065)$	$0.0343 \ (0.0090)$	$0.9474 \ (0.0512)$	$0.0026 \ (0.0006)$	19
Model frailty: I	Normal						
Cox	0.3119	0.0049	$0.0647 \ (0.0014)$	$0.1225 \ (0.0020)$	$0.5886 \ (0.0156)$	$0.0192 \ (0.0005)$	999
Exp	0.2865	0.0040	$0.0602 \ (0.0014)$	$0.0971 \ (0.0020)$	$0.6774 \ (0.0153)$	$0.0131 \ (0.0004)$	930
Weibull	0.2882	0.0037	$0.0601 \ (0.0014)$	$0.0988 \ (0.0020)$	$0.6429 \ (0.0159)$	$0.0134 \ (0.0004)$	913
Gompertz	0.3019	0.0040	$0.0678 \ (0.0138)$	$0.1125 \ (0.0188)$	$0.4615 \ (0.1383)$	$0.0169 \ (0.0043)$	13
RP(3)	0.3471	0.0051	$0.0714 \ (0.0016)$	$0.1577 \ (0.0023)$	$0.3960 \ (0.0155)$	$0.0300 \ (0.0008)$	1000
RP(5)	0.3479	0.0051	$0.0716 \ (0.0016)$	$0.1586 \ (0.0023)$	$0.3960 \ (0.0155)$	$0.0303 \ (0.0008)$	1000
RP(9)	0.3518	0.0052	$0.0725 \ (0.0016)$	$0.1624 \ (0.0023)$	$0.3860 \ (0.0154)$	$0.0316 \ (0.0008)$	1000
RP(P)	0.3513	0.0052	$0.0723 \ (0.0016)$	$0.1619 \ (0.0023)$	$0.3850 \ (0.0154)$	$0.0314 \ (0.0008)$	1000
FP(W)	0.2914	0.0039	$0.0606 \ (0.0014)$	$0.1020 \ (0.0019)$	$0.6356 \ (0.0154)$	$0.0141 \ (0.0004)$	977
FP (k=10)	0.2903	0.0051	$0.0630 \ (0.0014)$	$0.1009 \ (0.0020)$	$0.7435 \ (0.0138)$	$0.0142 \ (0.0004)$	998
FP (k=10000)	0.2936	0.0039	$0.0612 \ (0.0014)$	$0.1042 \ (0.0019)$	$0.6166 \ (0.0154)$	$0.0146 \ (0.0004)$	999

Table 119: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						_
Cox	0.2391	0.0024	$0.0464 \ (0.0010)$	$0.0499 \ (0.0015)$	$0.8458 \ (0.0114)$	$0.0046 \ (0.0002)$	999
Exp	0.2188	0.0038	$0.0456 \ (0.0010)$	$0.0296 \ (0.0014)$	$0.9740 \ (0.0050)$	$0.0030 \ (0.0001)$	1000
Weibull	0.2207	0.0020	$0.0435 \ (0.0010)$	$0.0314 \ (0.0014)$	$0.8910 \ (0.0099)$	$0.0029 \ (0.0001)$	1000
Gompertz	0.2197	0.0038	$0.0466 \ (0.0017)$	$0.0305 \ (0.0025)$	$0.9721 \ (0.0087)$	$0.0031 \ (0.0002)$	359
RP(3)	0.2386	0.0023	$0.0465 \ (0.0011)$	$0.0493 \ (0.0016)$	$0.8388 \ (0.0128)$	$0.0046 \ (0.0002)$	819
RP(5)	0.2358	0.0022	0.0459 (0.0010)	$0.0466 \ (0.0015)$	$0.8420 \ (0.0115)$	$0.0043 \ (0.0002)$	1000
RP(9)	0.2384	0.0022	$0.0462 \ (0.0010)$	$0.0492 \ (0.0015)$	$0.8280 \ (0.0119)$	$0.0046 \ (0.0002)$	1000
RP(P)	0.2379	0.0023	$0.0462 \ (0.0010)$	$0.0487 \ (0.0015)$	$0.8340 \ (0.0118)$	$0.0045 \ (0.0002)$	1000
FP(W)	0.2206	0.0021	0.0435 (0.0010)	$0.0314 \ (0.0014)$	$0.9168 \; (0.0087)$	$0.0029 \ (0.0001)$	998
FP (k=10)	0.2044	0.0015	$0.0502 \ (0.0011)$	$0.0152 \ (0.0016)$	$0.8625 \ (0.0111)$	$0.0027 \ (0.0001)$	960
FP (k=10000)	0.2140	0.0031	$0.0429 \ (0.0019)$	$0.0248 \ (0.0026)$	$0.9776 \ (0.0090)$	$0.0024 \ (0.0002)$	268
Model frailty: I	Normal						
Cox	0.2997	0.0047	0.0615 (0.0014)	$0.1105 \ (0.0019)$	$0.6530 \ (0.0151)$	$0.0160 \ (0.0005)$	1000
Exp	0.2444	0.0053	$0.0553 \ (0.0013)$	$0.0552 \ (0.0018)$	$0.9409 \ (0.0077)$	$0.0061 \ (0.0002)$	947
Weibull	0.2600	0.0033	$0.0548 \ (0.0013)$	$0.0708 \ (0.0018)$	0.7617 (0.0141)	$0.0080 \ (0.0003)$	919
Gompertz	0.2495	0.0053	$0.0560 \ (0.0029)$	$0.0603 \ (0.0041)$	$0.9126 \ (0.0209)$	$0.0068 \ (0.0006)$	183
RP(3)	0.3092	0.0052	$0.0906 \ (0.0020)$	$0.1200 \ (0.0029)$	$0.5218 \; (0.0159)$	$0.0226 \ (0.0006)$	987
RP(5)	0.3342	0.0049	$0.0688 \ (0.0015)$	$0.1450 \ (0.0022)$	$0.4460 \ (0.0157)$	$0.0258 \ (0.0007)$	1000
RP(9)	0.3375	0.0050	$0.0693 \ (0.0016)$	$0.1483 \ (0.0022)$	$0.4300 \ (0.0157)$	$0.0268 \ (0.0007)$	1000
RP(P)	0.3344	0.0050	$0.0688 \ (0.0015)$	$0.1452 \ (0.0022)$	$0.4490 \ (0.0157)$	$0.0258 \ (0.0007)$	1000
FP(W)	0.2631	0.0035	$0.0555 \ (0.0013)$	$0.0739 \ (0.0018)$	$0.7688 \; (0.0135)$	$0.0085 \ (0.0003)$	969
FP (k=10)	0.2204	0.0043	$0.0587 \ (0.0014)$	$0.0312 \ (0.0019)$	$0.9460 \ (0.0074)$	$0.0044 \ (0.0002)$	944
FP (k=10000)	0.2422	0.0049	$0.0558 \ (0.0013)$	$0.0530 \ (0.0018)$	$0.9289 \ (0.0081)$	$0.0059 \ (0.0002)$	998

Table 120: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						_
Cox	0.2369	0.0026	$0.0486 \ (0.0011)$	$0.0690 \ (0.0015)$	$0.7425 \ (0.0139)$	$0.0071 \ (0.0002)$	994
Exp	0.2311	0.0020	$0.0480 \ (0.0011)$	$0.0633 \ (0.0015)$	$0.6850 \ (0.0147)$	$0.0063 \ (0.0002)$	1000
Weibull	0.2314	0.0022	$0.0479 \ (0.0011)$	$0.0636 \ (0.0015)$	$0.7220 \ (0.0142)$	$0.0063 \ (0.0002)$	1000
Gompertz	0.2195	0.0019	$0.0503 \ (0.0095)$	$0.0516 \ (0.0130)$	$0.6667 \ (0.1217)$	$0.0050 \ (0.0017)$	15
RP(3)	0.2417	0.0025	$0.0500 \ (0.0011)$	$0.0739 \ (0.0016)$	$0.6790 \ (0.0148)$	$0.0080 \ (0.0003)$	1000
RP(5)	0.2384	0.0024	$0.0491 \ (0.0011)$	$0.0706 \ (0.0016)$	$0.6950 \ (0.0146)$	$0.0074 \ (0.0002)$	1000
RP(9)	0.2375	0.0024	$0.0489 \ (0.0011)$	$0.0696 \ (0.0015)$	$0.6990 \ (0.0145)$	$0.0072 \ (0.0002)$	1000
RP(P)	0.2375	0.0024	$0.0489 \ (0.0011)$	$0.0697 \ (0.0015)$	$0.7020 \ (0.0145)$	$0.0072 \ (0.0002)$	1000
FP(W)	0.2314	0.0024	0.0479 (0.0011)	$0.0636 \ (0.0015)$	$0.7580 \ (0.0135)$	$0.0063 \ (0.0002)$	1000
FP (k=10)	0.2372	0.0023	$0.0492 \ (0.0011)$	$0.0693 \ (0.0016)$	$0.6870 \ (0.0147)$	$0.0072 \ (0.0002)$	1000
FP (k=10000)	0.2025	0.0020	$0.0441 \ (0.0057)$	$0.0346 \ (0.0079)$	$0.8710 \ (0.0602)$	$0.0031 \ (0.0006)$	31
Model frailty: I	Normal						
Cox	0.3059	0.0056	$0.0676 \ (0.0015)$	$0.1381 \ (0.0022)$	$0.5309 \ (0.0159)$	$0.0236 \ (0.0006)$	987
Exp	0.2831	0.0036	$0.0631 \ (0.0015)$	$0.1152 \ (0.0021)$	$0.5092 \ (0.0165)$	$0.0173 \ (0.0005)$	921
Weibull	0.2776	0.0040	$0.0620 \ (0.0015)$	$0.1098 \ (0.0021)$	$0.5794 \ (0.0165)$	$0.0159 \ (0.0005)$	894
Gompertz		_					0
RP(3)	0.3357	0.0057	$0.0762 \ (0.0017)$	$0.1678 \ (0.0024)$	$0.4030 \ (0.0155)$	$0.0340 \ (0.0009)$	1000
RP(5)	0.3421	0.0058	$0.0769 \ (0.0017)$	$0.1742 \ (0.0024)$	$0.3810 \ (0.0154)$	$0.0363 \ (0.0009)$	1000
RP(9)	0.3416	0.0058	$0.0768 \ (0.0017)$	$0.1738 \ (0.0024)$	$0.3830 \ (0.0154)$	$0.0361 \ (0.0009)$	1000
RP(P)	0.3422	0.0058	$0.0769 \ (0.0017)$	$0.1743 \ (0.0024)$	$0.3840 \ (0.0154)$	$0.0363 \ (0.0009)$	1000
FP(W)	0.2819	0.0042	$0.0632 \ (0.0014)$	$0.1141 \ (0.0020)$	$0.5751 \ (0.0157)$	$0.0170 \ (0.0005)$	986
FP (k=10)	0.2974	0.0054	$0.0686 \ (0.0015)$	$0.1295 \ (0.0022)$	$0.5759 \ (0.0157)$	$0.0215 \ (0.0006)$	995
FP (k=10000)	0.3049	0.0041	$0.0678 \ (0.0015)$	$0.1371 \ (0.0021)$	$0.4364 \ (0.0157)$	$0.0234 \ (0.0006)$	999

Table 121: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 1.25, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.5031	0.0072	$0.0860 \ (0.0019)$	-0.0006 (0.0027)	$0.9390 \ (0.0076)$	$0.0074 \ (0.0003)$	1000
Exp	0.5037	0.0074	$0.0861 \ (0.0019)$	$0.0000 \ (0.0027)$	$0.9410 \ (0.0075)$	$0.0074 \ (0.0003)$	1000
Weibull	0.5039	0.0074	$0.0861 \ (0.0019)$	$0.0002 \ (0.0027)$	$0.9450 \ (0.0072)$	$0.0074 \ (0.0003)$	1000
Gompertz	0.5059	0.0074	$0.0871 \ (0.0030)$	$0.0022 \ (0.0042)$	$0.9427 \ (0.0111)$	$0.0076 \ (0.0005)$	436
RP(3)	0.5036	0.0074	$0.0861 \ (0.0019)$	-0.0001 (0.0027)	$0.9430 \ (0.0073)$	$0.0074 \ (0.0003)$	1000
RP(5)	0.5035	0.0074	$0.0860 \ (0.0019)$	-0.0002 (0.0027)	$0.9440 \ (0.0073)$	$0.0074 \ (0.0003)$	1000
RP(9)	0.5036	0.0074	$0.0861 \ (0.0019)$	-0.0001 (0.0027)	$0.9450 \ (0.0072)$	$0.0074 \ (0.0003)$	1000
RP(P)	0.5037	0.0074	$0.0861 \ (0.0019)$	$0.0000 \ (0.0027)$	$0.9450 \ (0.0072)$	$0.0074 \ (0.0003)$	1000
FP(W)	0.5035	0.0074	$0.0857 \ (0.0019)$	-0.0002 (0.0027)	$0.9459 \ (0.0072)$	$0.0073 \ (0.0003)$	998
FP (k=10)	0.4996	0.0074	$0.0862 \ (0.0019)$	-0.0041 (0.0027)	$0.9423 \ (0.0074)$	$0.0074 \ (0.0003)$	988
FP (k=10000)	0.5021	0.0057	$0.0860 \ (0.0019)$	-0.0016 (0.0027)	$0.9070 \ (0.0092)$	$0.0074 \ (0.0003)$	1000
Model frailty: I	Normal						
Cox	0.5054	0.0079	$0.0869 \ (0.0019)$	$0.0017 \ (0.0027)$	$0.9500 \ (0.0069)$	$0.0076 \ (0.0003)$	1000
Exp	0.5019	0.0078	$0.0868 \ (0.0019)$	-0.0018 (0.0028)	$0.9468 \ (0.0071)$	$0.0075 \ (0.0003)$	996
Weibull	0.5031	0.0077	$0.0871 \ (0.0020)$	-0.0007 (0.0028)	0.9467 (0.0071)	$0.0076 \ (0.0003)$	995
Gompertz	0.5000	0.0078	$0.0855 \ (0.0034)$	-0.0037 (0.0049)	$0.9417 \ (0.0133)$	$0.0073 \ (0.0006)$	309
RP(3)	0.4990	0.0076	$0.0863 \ (0.0019)$	-0.0047 (0.0027)	$0.9440 \ (0.0073)$	$0.0075 \ (0.0003)$	1000
RP(5)	0.4989	0.0075	$0.0863 \ (0.0019)$	-0.0048 (0.0027)	$0.9440 \ (0.0073)$	$0.0075 \ (0.0003)$	1000
RP(9)	0.4989	0.0075	$0.0863 \ (0.0019)$	-0.0048 (0.0027)	$0.9460 \ (0.0071)$	$0.0075 \ (0.0003)$	1000
RP(P)	0.4987	0.0075	$0.0863 \ (0.0019)$	-0.0050 (0.0027)	$0.9440 \ (0.0073)$	$0.0075 \ (0.0003)$	1000
FP(W)	0.4999	0.0072	$0.0861 \ (0.0019)$	-0.0038 (0.0027)	$0.9381 \ (0.0077)$	$0.0074 \ (0.0003)$	985
FP (k=10)	0.4947	0.0073	$0.0864 \ (0.0019)$	-0.0090 (0.0027)	$0.9409 \ (0.0075)$	$0.0075 \ (0.0003)$	998
FP (k=10000)	0.4962	0.0063	$0.0860 \ (0.0019)$	-0.0075 (0.0027)	$0.9177 \ (0.0087)$	$0.0074 \ (0.0003)$	996

Table 122: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	0.5116	0.0078	$0.0936 \ (0.0021)$	-0.0026 (0.0030)	$0.9337 \ (0.0079)$	$0.0088 \ (0.0004)$	996
Exp	0.5360	0.0073	$0.0983 \ (0.0022)$	$0.0217 \ (0.0031)$	$0.9010 \ (0.0094)$	$0.0101 \ (0.0005)$	1000
Weibull	0.5128	0.0083	$0.0936 \ (0.0021)$	-0.0014 (0.0030)	$0.9380 \ (0.0076)$	$0.0088 \ (0.0004)$	1000
Gompertz	0.5326	0.0073	$0.0988 \; (0.0035)$	$0.0184 \ (0.0050)$	$0.9033 \ (0.0149)$	$0.0101 \ (0.0007)$	393
RP(3)	0.5121	0.0083	$0.0936 \ (0.0021)$	-0.0021 (0.0030)	$0.9390 \ (0.0076)$	$0.0087 \ (0.0004)$	1000
RP(5)	0.5121	0.0083	$0.0936 \ (0.0021)$	-0.0022 (0.0030)	$0.9390 \ (0.0076)$	$0.0088 \ (0.0004)$	1000
RP(9)	0.5121	0.0083	$0.0936 \ (0.0021)$	-0.0022 (0.0030)	$0.9380 \ (0.0076)$	$0.0088 \ (0.0004)$	1000
RP(P)	0.5125	0.0083	$0.0936 \ (0.0021)$	-0.0017 (0.0030)	$0.9370 \ (0.0077)$	$0.0088 \ (0.0004)$	1000
FP(W)	0.5128	0.0079	$0.0936 \ (0.0021)$	-0.0014 (0.0030)	$0.9320 \ (0.0080)$	$0.0088 \ (0.0004)$	1000
FP (k=10)	0.5037	0.0080	$0.0944 \ (0.0021)$	-0.0105 (0.0030)	$0.9350 \ (0.0078)$	$0.0090 \ (0.0004)$	1000
FP (k=10000)	0.5216	0.0061	$0.0959 \ (0.0021)$	$0.0074 \ (0.0030)$	$0.8860 \ (0.0101)$	$0.0092 \ (0.0004)$	1000
Model frailty: I	Normal						
Cox	0.5205	0.0088	$0.0961 \ (0.0022)$	$0.0063 \ (0.0030)$	$0.9410 \ (0.0075)$	$0.0093 \ (0.0004)$	1000
Exp	0.5265	0.0077	$0.0973 \ (0.0022)$	$0.0123 \ (0.0031)$	$0.9176 \ (0.0087)$	$0.0096 \ (0.0004)$	995
Weibull	0.5087	0.0085	$0.0939 \ (0.0021)$	-0.0055 (0.0030)	$0.9437 \ (0.0073)$	$0.0088 \ (0.0004)$	994
Gompertz	0.5201	0.0077	$0.0982 \ (0.0041)$	$0.0059 \ (0.0057)$	$0.9354 \ (0.0143)$	$0.0096 \ (0.0008)$	294
RP(3)	0.5062	0.0084	$0.0937 \ (0.0021)$	-0.0080 (0.0030)	$0.9430 \ (0.0073)$	$0.0088 \ (0.0004)$	1000
RP(5)	0.5062	0.0084	$0.0937 \ (0.0021)$	-0.0081 (0.0030)	$0.9430 \ (0.0073)$	$0.0088 \ (0.0004)$	1000
RP(9)	0.5061	0.0084	$0.0938 \ (0.0021)$	-0.0082 (0.0030)	$0.9430 \ (0.0073)$	$0.0089 \ (0.0004)$	1000
RP(P)	0.5060	0.0083	$0.0937 \ (0.0021)$	-0.0082 (0.0030)	$0.9420 \ (0.0074)$	$0.0088 \ (0.0004)$	1000
FP(W)	0.5050	0.0077	$0.0937 \ (0.0021)$	-0.0092 (0.0030)	$0.9342 \ (0.0079)$	$0.0089 \ (0.0004)$	973
FP (k=10)	0.4986	0.0078	$0.0942 \ (0.0021)$	-0.0156 (0.0030)	$0.9319 \ (0.0080)$	$0.0091 \ (0.0004)$	998
FP (k=10000)	0.5107	0.0068	$0.0952 \ (0.0021)$	-0.0036 (0.0030)	$0.9109 \ (0.0090)$	$0.0091 \ (0.0004)$	999

Table 123: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 1.25, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate		Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						·
Cox	0.4851	0.0064	$0.0788 \ (0.0018)$	$0.0013 \ (0.0025)$	$0.9478 \ (0.0070)$	$0.0062 \ (0.0003)$	996
Exp	0.4706	0.0073	$0.0763 \ (0.0017)$	-0.0131 (0.0024)	$0.9680 \ (0.0056)$	$0.0060 \ (0.0003)$	1000
Weibull	0.4833	0.0066	$0.0781 \ (0.0017)$	-0.0005 (0.0025)	$0.9550 \ (0.0066)$	$0.0061 \ (0.0003)$	1000
Gompertz	0.4741	0.0073	$0.0752 \ (0.0023)$	-0.0097 (0.0033)	$0.9698 \ (0.0074)$	$0.0057 \ (0.0004)$	529
RP(3)	0.4849	0.0063	$0.0786 \ (0.0018)$	$0.0012 \ (0.0025)$	$0.9430 \ (0.0073)$	$0.0062 \ (0.0003)$	1000
RP(5)	0.4852	0.0063	$0.0787 \ (0.0018)$	$0.0014 \ (0.0025)$	$0.9430 \ (0.0073)$	$0.0062 \ (0.0003)$	1000
RP(9)	0.4853	0.0063	$0.0788 \ (0.0018)$	$0.0016 \ (0.0025)$	$0.9420 \ (0.0074)$	$0.0062 \ (0.0003)$	1000
RP(P)	0.4848	0.0063	$0.0786 \ (0.0018)$	$0.0011 \ (0.0025)$	$0.9460 \ (0.0071)$	$0.0062 \ (0.0003)$	1000
FP(W)	0.4832	0.0069	$0.0781 \ (0.0017)$	-0.0005 (0.0025)	$0.9610 \ (0.0061)$	$0.0061 \ (0.0003)$	1000
FP (k=10)	0.4825	0.0066	$0.0788 \ (0.0018)$	$-0.0012 \ (0.0025)$	$0.9540 \ (0.0066)$	$0.0062 \ (0.0003)$	1000
FP (k=10000)	0.4833	0.0049	$0.0786 \ (0.0018)$	-0.0004 (0.0025)	$0.9190 \ (0.0086)$	$0.0062 \ (0.0003)$	1000
Model frailty: I	Normal						
Cox	0.4792	0.0068	$0.0780 \ (0.0017)$	-0.0045 (0.0025)	$0.9570 \ (0.0064)$	$0.0061 \ (0.0003)$	1000
Exp	0.4706	0.0076	$0.0774 \ (0.0017)$	-0.0131 (0.0024)	$0.9680 \ (0.0056)$	$0.0062 \ (0.0003)$	999
Weibull	0.4850	0.0070	$0.0789 \ (0.0018)$	$0.0013 \ (0.0025)$	0.9577 (0.0064)	$0.0062 \ (0.0003)$	993
Gompertz	0.4766	0.0076	$0.0761 \ (0.0026)$	-0.0071 (0.0037)	$0.9671 \ (0.0087)$	$0.0058 \ (0.0004)$	425
RP(3)	0.4838	0.0065	$0.0787 \ (0.0018)$	$0.0000 \ (0.0025)$	$0.9500 \ (0.0069)$	$0.0062 \ (0.0003)$	1000
RP(5)	0.4838	0.0065	$0.0788 \ (0.0018)$	$0.0001 \ (0.0025)$	$0.9500 \ (0.0069)$	$0.0062 \ (0.0003)$	1000
RP(9)	0.4838	0.0065	$0.0788 \ (0.0018)$	$0.0001 \ (0.0025)$	$0.9490 \ (0.0070)$	$0.0062 \ (0.0003)$	1000
RP(P)	0.4832	0.0066	$0.0787 \ (0.0018)$	-0.0005 (0.0025)	$0.9520 \ (0.0068)$	$0.0062 \ (0.0003)$	1000
FP(W)	0.4814	0.0069	$0.0785 \ (0.0018)$	-0.0024 (0.0025)	$0.9583 \ (0.0064)$	$0.0062 \ (0.0003)$	983
FP (k=10)	0.4796	0.0066	$0.0788 \ (0.0018)$	$-0.0042 \ (0.0025)$	$0.9530 \ (0.0067)$	$0.0062 \ (0.0003)$	1000
FP (k=10000)	0.4811	0.0052	$0.0784 \ (0.0018)$	$-0.0026 \ (0.0025)$	$0.9289 \ (0.0081)$	$0.0062 \ (0.0003)$	998

Table 124: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.4590	0.0059	$0.0781 \ (0.0018)$	$-0.0002 \ (0.0025)$	$0.9508 \; (0.0069)$	$0.0061 \ (0.0003)$	996
Exp	0.4277	0.0076	$0.0762 \ (0.0017)$	$-0.0315 \ (0.0024)$	$0.9590 \ (0.0063)$	$0.0068 \ (0.0003)$	1000
Weibull	0.4588	0.0054	$0.0784 \ (0.0018)$	-0.0004 (0.0025)	$0.9420 \ (0.0074)$	$0.0061 \ (0.0003)$	1000
Gompertz	0.4257	0.0076	$0.0764 \ (0.0021)$	-0.0335 (0.0030)	$0.9542 \ (0.0083)$	$0.0069 \ (0.0004)$	633
RP(3)	0.4585	0.0057	$0.0780 \ (0.0017)$	-0.0007 (0.0025)	$0.9480 \ (0.0070)$	$0.0061 \ (0.0003)$	1000
RP(5)	0.4592	0.0058	$0.0781 \ (0.0017)$	-0.0000 (0.0025)	$0.9490 \ (0.0070)$	$0.0061 \ (0.0003)$	1000
RP(9)	0.4593	0.0058	$0.0782 \ (0.0017)$	$0.0001 \ (0.0025)$	$0.9490 \ (0.0070)$	$0.0061 \ (0.0003)$	1000
RP(P)	0.4584	0.0057	$0.0784 \ (0.0018)$	-0.0008 (0.0025)	$0.9478 \ (0.0070)$	$0.0061 \ (0.0003)$	996
FP(W)	0.4584	0.0056	$0.0782 \ (0.0018)$	-0.0008 (0.0025)	$0.9487 \ (0.0070)$	$0.0061 \ (0.0003)$	995
FP (k=10)	0.4412	0.0060	$0.0776 \ (0.0017)$	-0.0180 (0.0025)	$0.9400 \ (0.0075)$	$0.0063 \ (0.0003)$	1000
FP (k=10000)	0.4570	0.0038	$0.0795 \ (0.0018)$	-0.0022 (0.0025)	$0.8770 \ (0.0104)$	$0.0063 \ (0.0003)$	1000
Model frailty: I	Normal						
Cox	0.4562	0.0063	$0.0787 \ (0.0018)$	$-0.0030 \ (0.0025)$	$0.9560 \ (0.0065)$	$0.0062 \ (0.0003)$	1000
Exp	0.4288	0.0078	$0.0789 \ (0.0018)$	-0.0304 (0.0025)	$0.9559 \ (0.0065)$	$0.0071 \ (0.0003)$	998
Weibull	0.4627	0.0059	$0.0804 \ (0.0018)$	$0.0035 \ (0.0025)$	$0.9487 \ (0.0070)$	$0.0065 \ (0.0003)$	994
Gompertz	0.4301	0.0078	$0.0786 \ (0.0024)$	-0.0291 (0.0034)	$0.9647 \ (0.0080)$	$0.0070 \ (0.0004)$	538
RP(3)	0.4587	0.0060	$0.0791 \ (0.0018)$	-0.0005 (0.0025)	$0.9510 \ (0.0068)$	$0.0063 \ (0.0003)$	1000
RP(5)	0.4591	0.0060	$0.0792 \ (0.0018)$	$-0.0001 \ (0.0025)$	$0.9510 \ (0.0068)$	$0.0063 \ (0.0003)$	1000
RP(9)	0.4590	0.0060	$0.0793 \ (0.0018)$	-0.0002 (0.0025)	$0.9510 \ (0.0068)$	$0.0063 \ (0.0003)$	1000
RP(P)	0.4584	0.0060	$0.0792 \ (0.0018)$	-0.0008 (0.0025)	$0.9510 \ (0.0068)$	$0.0063 \ (0.0003)$	1000
FP(W)	0.4579	0.0057	$0.0793 \ (0.0018)$	-0.0013 (0.0025)	$0.9428 \ (0.0074)$	$0.0063 \ (0.0003)$	996
FP (k=10)	0.4468	0.0061	$0.0786 \ (0.0018)$	-0.0124 (0.0025)	$0.9475 \ (0.0071)$	$0.0063 \ (0.0003)$	991
FP (k=10000)	0.4505	0.0040	$0.0819 \ (0.0018)$	$-0.0087 \ (0.0026)$	$0.8730 \ (0.0105)$	$0.0068 \ (0.0003)$	1000

Table 125: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.5111	0.0076	$0.0885 \ (0.0020)$	$0.0027 \ (0.0028)$	$0.9339 \ (0.0079)$	$0.0078 \ (0.0004)$	999
Exp	0.5187	0.0073	$0.0894 \ (0.0020)$	$0.0103 \ (0.0028)$	$0.9240 \ (0.0084)$	$0.0081 \ (0.0004)$	1000
Weibull	0.5103	0.0077	$0.0884 \ (0.0020)$	$0.0020 \ (0.0028)$	$0.9390 \ (0.0076)$	$0.0078 \ (0.0004)$	1000
Gompertz	0.5193	0.0073	$0.0874 \ (0.0031)$	$0.0109 \ (0.0044)$	$0.9279 \ (0.0129)$	$0.0077 \ (0.0005)$	402
RP(3)	0.5117	0.0078	$0.0885 \ (0.0020)$	$0.0034 \ (0.0028)$	$0.9430 \ (0.0073)$	$0.0078 \ (0.0004)$	1000
RP(5)	0.5118	0.0078	$0.0885 \ (0.0020)$	$0.0034 \ (0.0028)$	$0.9430 \ (0.0073)$	$0.0078 \ (0.0004)$	1000
RP(9)	0.5117	0.0078	$0.0885 \ (0.0020)$	$0.0033 \ (0.0028)$	$0.9430 \ (0.0073)$	$0.0078 \ (0.0004)$	1000
RP(P)	0.5113	0.0078	$0.0884 \ (0.0020)$	$0.0029 \ (0.0028)$	$0.9430 \ (0.0073)$	$0.0078 \ (0.0004)$	1000
FP(W)	0.5103	0.0076	$0.0884 \ (0.0020)$	$0.0020 \ (0.0028)$	$0.9370 \ (0.0077)$	$0.0078 \ (0.0004)$	1000
FP (k=10)	0.5066	0.0077	$0.0885 \ (0.0020)$	-0.0018 (0.0028)	$0.9424 \ (0.0074)$	$0.0078 \ (0.0004)$	990
FP (k=10000)	0.5094	0.0061	$0.0883 \ (0.0020)$	$0.0010 \ (0.0028)$	$0.9080 \ (0.0091)$	$0.0078 \ (0.0004)$	1000
Model frailty: I	Normal						
Cox	0.5163	0.0084	$0.0901 \ (0.0020)$	$0.0079 \ (0.0029)$	$0.9430 \ (0.0073)$	$0.0082 \ (0.0004)$	1000
Exp	0.5171	0.0078	$0.0903 \ (0.0020)$	$0.0088 \ (0.0029)$	$0.9274 \ (0.0082)$	$0.0082 \ (0.0004)$	992
Weibull	0.5096	0.0081	$0.0895 \ (0.0020)$	$0.0013 \ (0.0028)$	$0.9437 \ (0.0073)$	$0.0080 \ (0.0004)$	995
Gompertz	0.5120	0.0078	$0.0886 \ (0.0037)$	$0.0036 \ (0.0052)$	$0.9315 \ (0.0148)$	$0.0078 \ (0.0007)$	292
RP(3)	0.5085	0.0080	$0.0887 \ (0.0020)$	$0.0001 \ (0.0028)$	$0.9450 \ (0.0072)$	$0.0079 \ (0.0003)$	1000
RP(5)	0.5084	0.0080	$0.0887 \ (0.0020)$	$0.0000 \ (0.0028)$	$0.9430 \ (0.0073)$	$0.0079 \ (0.0003)$	1000
RP(9)	0.5083	0.0080	$0.0887 \ (0.0020)$	-0.0001 (0.0028)	$0.9430 \ (0.0073)$	$0.0079 \ (0.0003)$	1000
RP(P)	0.5076	0.0080	$0.0886 \ (0.0020)$	-0.0008 (0.0028)	$0.9440 \ (0.0073)$	$0.0078 \ (0.0003)$	1000
FP(W)	0.5066	0.0075	$0.0886 \ (0.0020)$	-0.0018 (0.0029)	$0.9387 \ (0.0077)$	$0.0078 \ (0.0004)$	963
FP (k=10)	0.5030	0.0077	$0.0891 \ (0.0020)$	-0.0053 (0.0028)	$0.9409 \ (0.0075)$	$0.0080 \ (0.0004)$	998
FP (k=10000)	0.5044	0.0068	$0.0885 \ (0.0020)$	-0.0040 (0.0028)	$0.9260 \ (0.0083)$	$0.0078 \ (0.0003)$	1000

Table 126: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 1.25, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate		Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						·
Cox	0.5378	0.0076	$0.0849 \ (0.0019)$	-0.0043 (0.0027)	$0.9449 \ (0.0072)$	$0.0072 \ (0.0003)$	999
Exp	0.5403	0.0069	$0.0852 \ (0.0019)$	-0.0018 (0.0027)	$0.9330 \ (0.0079)$	$0.0072 \ (0.0003)$	1000
Weibull	0.5378	0.0072	$0.0847 \ (0.0019)$	-0.0043 (0.0027)	$0.9390 \ (0.0076)$	$0.0072 \ (0.0003)$	1000
Gompertz	0.5389	0.0069	$0.0827 \ (0.0028)$	-0.0032 (0.0039)	$0.9396 \ (0.0113)$	$0.0068 \ (0.0005)$	447
RP(3)	0.5379	0.0072	$0.0848 \ (0.0019)$	-0.0042 (0.0027)	$0.9400 \ (0.0075)$	$0.0072 \ (0.0003)$	1000
RP(5)	0.5380	0.0072	$0.0849 \ (0.0019)$	-0.0041 (0.0027)	$0.9390 \ (0.0076)$	$0.0072 \ (0.0003)$	1000
RP(9)	0.5380	0.0072	$0.0849 \ (0.0019)$	-0.0041 (0.0027)	$0.9390 \ (0.0076)$	$0.0072 \ (0.0003)$	1000
RP(P)	0.5378	0.0072	$0.0848 \ (0.0019)$	-0.0043 (0.0027)	$0.9390 \ (0.0076)$	$0.0072 \ (0.0003)$	1000
FP(W)	0.5386	0.0078	$0.0846 \ (0.0019)$	-0.0034 (0.0027)	$0.9464 \ (0.0072)$	$0.0072 \ (0.0003)$	989
FP (k=10)	0.5355	0.0078	$0.0850 \ (0.0019)$	$-0.0065 \ (0.0027)$	$0.9449 \ (0.0072)$	$0.0073 \ (0.0003)$	999
FP (k=10000)	0.5374	0.0057	$0.0851 \ (0.0019)$	-0.0046 (0.0027)	$0.9159 \ (0.0088)$	$0.0073 \ (0.0003)$	999
Model frailty: I	Normal						
Cox	0.5263	0.0076	$0.0828 \ (0.0019)$	-0.0158 (0.0026)	$0.9480 \ (0.0070)$	$0.0071 \ (0.0003)$	1000
Exp	0.5473	0.0073	$0.0858 \ (0.0019)$	$0.0052 \ (0.0027)$	$0.9447 \ (0.0072)$	$0.0074 \ (0.0003)$	995
Weibull	0.5458	0.0074	$0.0858 \ (0.0019)$	$0.0037 \ (0.0027)$	$0.9468 \ (0.0071)$	$0.0074 \ (0.0003)$	997
Gompertz	0.5482	0.0073	$0.0791 \ (0.0031)$	$0.0061 \ (0.0043)$	$0.9643 \ (0.0101)$	$0.0063 \ (0.0005)$	336
RP(3)	0.5416	0.0072	$0.0852 \ (0.0019)$	-0.0005 (0.0027)	$0.9450 \ (0.0072)$	$0.0073 \ (0.0003)$	1000
RP(5)	0.5416	0.0072	$0.0853 \ (0.0019)$	-0.0005 (0.0027)	$0.9450 \ (0.0072)$	$0.0073 \ (0.0003)$	1000
RP(9)	0.5415	0.0072	$0.0853 \ (0.0019)$	-0.0006 (0.0027)	$0.9450 \ (0.0072)$	$0.0073 \ (0.0003)$	1000
RP(P)	0.5416	0.0072	$0.0852 \ (0.0019)$	-0.0005 (0.0027)	$0.9440 \ (0.0073)$	$0.0072 \ (0.0003)$	1000
FP(W)	0.5406	0.0076	$0.0855 \ (0.0020)$	-0.0015 (0.0028)	$0.9490 \ (0.0073)$	$0.0073 \ (0.0003)$	921
FP (k=10)	0.5382	0.0077	$0.0852 \ (0.0019)$	-0.0039 (0.0027)	$0.9492 \ (0.0070)$	$0.0073 \ (0.0003)$	984
FP (k=10000)	0.5400	0.0060	$0.0851 \ (0.0019)$	$-0.0021 \ (0.0027)$	$0.9200 \ (0.0086)$	$0.0072 \ (0.0003)$	1000

Table 127: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	0.5661	0.0085	$0.0875 \ (0.0020)$	$0.0013 \ (0.0028)$	$0.9620 \ (0.0061)$	$0.0077 \ (0.0004)$	999
Exp	0.5842	0.0068	$0.0917 \ (0.0021)$	$0.0193 \ (0.0029)$	$0.9050 \ (0.0093)$	$0.0088 \ (0.0004)$	1000
Weibull	0.5672	0.0083	$0.0877 \ (0.0020)$	$0.0023 \ (0.0028)$	$0.9590 \ (0.0063)$	$0.0077 \ (0.0004)$	1000
Gompertz	0.5815	0.0068	$0.0969 \ (0.0034)$	$0.0167 \ (0.0048)$	$0.8864 \ (0.0158)$	$0.0097 \ (0.0007)$	405
RP(3)	0.5666	0.0083	$0.0876 \ (0.0020)$	$0.0018 \ (0.0028)$	$0.9600 \ (0.0062)$	$0.0077 \ (0.0003)$	1000
RP(5)	0.5665	0.0083	$0.0876 \ (0.0020)$	$0.0017 \ (0.0028)$	$0.9600 \ (0.0062)$	$0.0077 \ (0.0004)$	1000
RP(9)	0.5665	0.0083	$0.0876 \ (0.0020)$	$0.0016 \ (0.0028)$	$0.9600 \ (0.0062)$	$0.0077 \ (0.0004)$	1000
RP(P)	0.5666	0.0083	$0.0876 \ (0.0020)$	$0.0018 \ (0.0028)$	$0.9600 \ (0.0062)$	$0.0077 \ (0.0004)$	1000
FP(W)	0.5672	0.0087	0.0877 (0.0020)	$0.0024 \ (0.0028)$	$0.9619 \ (0.0061)$	$0.0077 \ (0.0004)$	998
FP (k=10)	0.5535	0.0087	$0.0892 \ (0.0020)$	-0.0113 (0.0028)	$0.9530 \ (0.0067)$	$0.0081 \ (0.0004)$	1000
FP (k=10000)	0.5755	0.0060	$0.0900 \ (0.0020)$	$0.0107 \ (0.0028)$	$0.8920 \ (0.0098)$	$0.0082 \ (0.0004)$	1000
Model frailty: I	Normal						
Cox	0.5591	0.0087	$0.0858 \ (0.0019)$	$-0.0057 \ (0.0027)$	$0.9640 \ (0.0059)$	$0.0074 \ (0.0003)$	1000
Exp	0.5933	0.0074	$0.0914 \ (0.0021)$	$0.0284 \ (0.0029)$	$0.9082 \ (0.0092)$	$0.0092 \ (0.0004)$	991
Weibull	0.5736	0.0085	$0.0876 \ (0.0020)$	$0.0087 \ (0.0028)$	$0.9640 \ (0.0059)$	$0.0077 \ (0.0004)$	999
Gompertz	0.5894	0.0074	$0.0872 \ (0.0036)$	$0.0246 \ (0.0051)$	$0.9317 \ (0.0147)$	$0.0082 \ (0.0008)$	293
RP(3)	0.5679	0.0083	$0.0869 \ (0.0019)$	$0.0031 \ (0.0027)$	$0.9620 \ (0.0060)$	$0.0076 \ (0.0003)$	1000
RP(5)	0.5677	0.0083	$0.0869 \ (0.0019)$	$0.0029 \ (0.0027)$	$0.9610 \ (0.0061)$	$0.0076 \ (0.0003)$	1000
RP(9)	0.5676	0.0083	$0.0869 \ (0.0019)$	$0.0028 \ (0.0027)$	$0.9600 \ (0.0062)$	$0.0076 \ (0.0003)$	1000
RP(P)	0.5678	0.0083	$0.0870 \ (0.0019)$	$0.0030 \ (0.0027)$	$0.9620 \ (0.0060)$	$0.0076 \ (0.0003)$	1000
FP(W)	0.5679	0.0085	$0.0873 \ (0.0020)$	$0.0031 \ (0.0028)$	$0.9624 \ (0.0061)$	$0.0076 \ (0.0004)$	958
FP (k=10)	0.5592	0.0084	$0.0880 \ (0.0020)$	-0.0056 (0.0028)	$0.9609 \ (0.0061)$	$0.0078 \ (0.0004)$	998
FP (k=10000)	0.5743	0.0065	$0.0887 \ (0.0020)$	$0.0095 \ (0.0028)$	$0.9108 \; (0.0090)$	$0.0080 \ (0.0004)$	998

Table 128: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

	Avg. Estimate		Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.4995	0.0063	0.0777(0.0017)	-0.0043 (0.0025)	$0.9560 \ (0.0065)$	$0.0060 \ (0.0003)$	999
Exp	0.4917	0.0063	$0.0764 \ (0.0017)$	-0.0122 (0.0024)	$0.9530 \ (0.0067)$	$0.0060 \ (0.0003)$	1000
Weibull	0.4952	0.0060	$0.0770 \ (0.0017)$	-0.0087 (0.0024)	$0.9480 \ (0.0070)$	$0.0060 \ (0.0003)$	1000
Gompertz	0.4902	0.0064	$0.0780 \ (0.0024)$	-0.0137 (0.0034)	$0.9497 \ (0.0094)$	$0.0063 \ (0.0004)$	537
RP(3)	0.4978	0.0057	$0.0774 \ (0.0017)$	-0.0061 (0.0024)	$0.9420 \ (0.0074)$	$0.0060 \ (0.0003)$	1000
RP(5)	0.4989	0.0057	$0.0776 \ (0.0017)$	$-0.0050 \ (0.0025)$	$0.9410 \ (0.0075)$	$0.0060 \ (0.0003)$	1000
RP(9)	0.4993	0.0057	$0.0777 \ (0.0017)$	$-0.0045 \ (0.0025)$	$0.9410 \ (0.0075)$	$0.0061 \ (0.0003)$	1000
RP(P)	0.4981	0.0057	$0.0775 \ (0.0017)$	-0.0058 (0.0024)	$0.9420 \ (0.0074)$	$0.0060 \ (0.0003)$	1000
FP(W)	0.4952	0.0069	$0.0770 \ (0.0017)$	-0.0087 (0.0024)	$0.9650 \ (0.0058)$	$0.0060 \ (0.0003)$	1000
FP (k=10)	0.4961	0.0065	$0.0778 \ (0.0017)$	-0.0077 (0.0025)	$0.9510 \ (0.0068)$	$0.0061 \ (0.0003)$	1000
FP (k=10000)	0.4965	0.0047	$0.0776 \ (0.0017)$	$-0.0074 \ (0.0025)$	$0.9226 \ (0.0085)$	$0.0061 \ (0.0003)$	995
Model frailty: I	Normal						
Cox	0.4840	0.0061	$0.0748 \ (0.0017)$	-0.0199 (0.0024)	$0.9520 \ (0.0068)$	$0.0060 \ (0.0003)$	1000
Exp	0.4940	0.0065	$0.0766 \ (0.0017)$	-0.0099 (0.0024)	$0.9609 \ (0.0061)$	$0.0060 \ (0.0003)$	997
Weibull	0.5019	0.0061	$0.0775 \ (0.0017)$	-0.0020 (0.0025)	$0.9557 \ (0.0065)$	$0.0060 \ (0.0003)$	994
Gompertz	0.4925	0.0065	$0.0779 \ (0.0024)$	-0.0114 (0.0034)	$0.9588 \; (0.0088)$	$0.0062 \ (0.0004)$	510
RP(3)	0.5043	0.0057	$0.0777 \ (0.0017)$	$0.0005 \ (0.0025)$	$0.9480 \ (0.0070)$	$0.0060 \ (0.0003)$	1000
RP(5)	0.5052	0.0058	$0.0779 \ (0.0017)$	$0.0013 \ (0.0025)$	$0.9480 \ (0.0070)$	$0.0061 \ (0.0003)$	1000
RP(9)	0.5056	0.0058	$0.0780 \ (0.0017)$	$0.0017 \ (0.0025)$	$0.9480 \ (0.0070)$	$0.0061 \ (0.0003)$	1000
RP(P)	0.5037	0.0058	$0.0777 \ (0.0017)$	-0.0002 (0.0025)	$0.9480 \ (0.0070)$	$0.0060 \ (0.0003)$	1000
FP(W)	0.4991	0.0067	$0.0769 \ (0.0018)$	-0.0047 (0.0026)	$0.9657 \ (0.0061)$	$0.0059 \ (0.0003)$	904
FP (k=10)	0.5026	0.0064	$0.0779 \ (0.0017)$	-0.0012 (0.0025)	$0.9630 \ (0.0060)$	$0.0061 \ (0.0003)$	999
FP (k=10000)	0.5023	0.0047	$0.0778 \ (0.0017)$	-0.0016 (0.0025)	$0.9200 \ (0.0086)$	$0.0060 \ (0.0003)$	1000

Table 129: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	0.4758	0.0058	0.0727 (0.0016)	-0.0061 (0.0023)	$0.9540 \ (0.0066)$	$0.0053 \ (0.0003)$	1000
Exp	0.4584	0.0071	$0.0721 \ (0.0016)$	-0.0235 (0.0023)	$0.9680 \ (0.0056)$	$0.0057 \ (0.0003)$	1000
Weibull	0.4749	0.0050	$0.0726 \ (0.0016)$	-0.0070 (0.0023)	$0.9370 \ (0.0077)$	$0.0053 \ (0.0003)$	1000
Gompertz	0.4626	0.0070	$0.0708 \ (0.0019)$	-0.0193 (0.0026)	$0.9693 \ (0.0064)$	$0.0054 \ (0.0003)$	716
RP(3)	0.4739	0.0052	$0.0724 \ (0.0016)$	-0.0080 (0.0023)	$0.9450 \ (0.0072)$	$0.0053 \ (0.0003)$	1000
RP(5)	0.4754	0.0052	$0.0726 \ (0.0016)$	-0.0065 (0.0023)	$0.9460 \ (0.0071)$	$0.0053 \ (0.0003)$	1000
RP(9)	0.4759	0.0053	$0.0727 \ (0.0016)$	-0.0060 (0.0023)	$0.9450 \ (0.0072)$	$0.0053 \ (0.0003)$	1000
RP(P)	0.4751	0.0052	$0.0728 \ (0.0016)$	-0.0068 (0.0023)	$0.9440 \ (0.0073)$	$0.0053 \ (0.0003)$	1000
FP(W)	0.4752	0.0055	$0.0726 \ (0.0016)$	-0.0067 (0.0023)	$0.9496 \ (0.0069)$	$0.0053 \ (0.0003)$	992
FP (k=10)	0.4512	0.0059	$0.0729 \ (0.0016)$	-0.0307 (0.0023)	$0.9380 \ (0.0076)$	$0.0062 \ (0.0003)$	1000
FP (k=10000)	0.4690	0.0037	$0.0731 \ (0.0016)$	-0.0129 (0.0023)	$0.8873 \ (0.0100)$	$0.0055 \ (0.0003)$	994
Model frailty: I	Normal						
Cox	0.4628	0.0057	$0.0700 \ (0.0016)$	-0.0191 (0.0022)	$0.9490 \ (0.0070)$	$0.0053 \ (0.0003)$	1000
Exp	0.4602	0.0071	$0.0729 \ (0.0016)$	-0.0217 (0.0023)	$0.9700 \ (0.0054)$	$0.0058 \ (0.0003)$	1000
Weibull	0.4904	0.0053	$0.0738 \ (0.0017)$	$0.0085 \ (0.0023)$	$0.9439 \ (0.0073)$	$0.0055 \ (0.0003)$	998
Gompertz	0.4640	0.0071	$0.0737 \ (0.0021)$	-0.0179 (0.0030)	$0.9658 \; (0.0073)$	$0.0057 \ (0.0003)$	614
RP(3)	0.4811	0.0053	$0.0724 \ (0.0016)$	-0.0007 (0.0023)	$0.9510 \ (0.0068)$	$0.0052 \ (0.0002)$	1000
RP(5)	0.4825	0.0054	$0.0726 \ (0.0016)$	$0.0006 \ (0.0023)$	$0.9500 \ (0.0069)$	$0.0053 \ (0.0002)$	1000
RP(9)	0.4829	0.0054	$0.0727 \ (0.0016)$	$0.0010 \ (0.0023)$	$0.9510 \ (0.0068)$	$0.0053 \ (0.0002)$	1000
RP(P)	0.4826	0.0054	$0.0726 \ (0.0016)$	$0.0007 \ (0.0023)$	$0.9500 \ (0.0069)$	$0.0053 \ (0.0002)$	1000
FP(W)	0.4823	0.0056	$0.0729 \ (0.0019)$	$0.0004 \ (0.0027)$	$0.9545 \ (0.0077)$	$0.0053 \ (0.0003)$	725
FP (k=10)	0.4662	0.0059	$0.0725 \ (0.0016)$	-0.0157 (0.0023)	$0.9529 \ (0.0067)$	$0.0055 \ (0.0003)$	998
FP (k=10000)	0.4869	0.0036	$0.0745 \ (0.0017)$	$0.0050 \ (0.0024)$	$0.8890 \ (0.0099)$	$0.0056 \ (0.0003)$	1000

Table 130: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.5463	0.0079	$0.0884 \ (0.0020)$	-0.0033 (0.0028)	$0.9530 \ (0.0067)$	$0.0078 \ (0.0004)$	999
Exp	0.5553	0.0068	$0.0904 \ (0.0020)$	$0.0057 \ (0.0029)$	$0.9290 \ (0.0081)$	$0.0082 \ (0.0004)$	1000
Weibull	0.5481	0.0076	$0.0887 \ (0.0020)$	-0.0016 (0.0028)	$0.9490 \ (0.0070)$	$0.0079 \ (0.0004)$	1000
Gompertz	0.5518	0.0068	$0.0920 \ (0.0033)$	$0.0022 \ (0.0046)$	$0.9175 \ (0.0138)$	$0.0084 \ (0.0006)$	400
RP(3)	0.5484	0.0076	$0.0888 \ (0.0020)$	-0.0013 (0.0028)	$0.9500 \ (0.0069)$	$0.0079 \ (0.0004)$	1000
RP(5)	0.5471	0.0075	$0.0885 \ (0.0020)$	-0.0026 (0.0028)	$0.9490 \ (0.0070)$	$0.0078 \ (0.0004)$	1000
RP(9)	0.5466	0.0075	$0.0884 \ (0.0020)$	-0.0030 (0.0028)	$0.9490 \ (0.0070)$	$0.0078 \ (0.0004)$	1000
RP(P)	0.5474	0.0075	$0.0886 \ (0.0020)$	-0.0023 (0.0028)	$0.9500 \ (0.0069)$	$0.0078 \ (0.0004)$	1000
FP(W)	0.5477	0.0081	$0.0889 \ (0.0020)$	-0.0019 (0.0028)	$0.9555 \ (0.0066)$	$0.0079 \ (0.0004)$	988
FP (k=10)	0.5426	0.0081	$0.0891 \ (0.0020)$	-0.0070 (0.0028)	$0.9530 \ (0.0067)$	$0.0080 \ (0.0004)$	1000
FP (k=10000)	0.5486	0.0060	$0.0891 \ (0.0020)$	-0.0010 (0.0028)	$0.9170 \ (0.0087)$	$0.0079 \ (0.0004)$	1000
Model frailty: I	Normal						
Cox	0.5367	0.0080	$0.0862 \ (0.0019)$	-0.0129 (0.0027)	$0.9590 \ (0.0063)$	$0.0076 \ (0.0004)$	1000
Exp	0.5670	0.0074	$0.0909 \ (0.0020)$	$0.0173 \ (0.0029)$	$0.9398 \ (0.0075)$	$0.0086 \ (0.0004)$	997
Weibull	0.5576	0.0079	$0.0895 \ (0.0020)$	$0.0079 \ (0.0028)$	$0.9569 \ (0.0064)$	$0.0081 \ (0.0004)$	997
Gompertz	0.5648	0.0074	$0.0894 \ (0.0039)$	$0.0152 \ (0.0055)$	$0.9549 \ (0.0127)$	$0.0082 \ (0.0007)$	266
RP(3)	0.5529	0.0076	$0.0887 \ (0.0020)$	$0.0032 \ (0.0028)$	$0.9540 \ (0.0066)$	$0.0079 \ (0.0004)$	1000
RP(5)	0.5515	0.0076	$0.0883 \ (0.0020)$	$0.0019 \ (0.0028)$	$0.9540 \ (0.0066)$	$0.0078 \ (0.0004)$	1000
RP(9)	0.5512	0.0076	$0.0883 \ (0.0020)$	$0.0015 \ (0.0028)$	$0.9540 \ (0.0066)$	$0.0078 \ (0.0004)$	1000
RP(P)	0.5518	0.0076	$0.0884 \ (0.0020)$	$0.0021 \ (0.0028)$	$0.9540 \ (0.0066)$	$0.0078 \ (0.0004)$	1000
FP(W)	0.5529	0.0080	$0.0890 \ (0.0020)$	$0.0033 \ (0.0029)$	$0.9589 \ (0.0064)$	$0.0079 \ (0.0004)$	949
FP (k=10)	0.5470	0.0080	$0.0886 \ (0.0020)$	-0.0026 (0.0028)	$0.9528 \ (0.0067)$	$0.0078 \ (0.0004)$	995
FP (k=10000)	0.5517	0.0064	$0.0887 \ (0.0020)$	$0.0021 \ (0.0028)$	$0.9260 \ (0.0083)$	$0.0079 \ (0.0004)$	1000

Table 131: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 1.25, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						_
Cox	0.1815	0.0017	0.0393 (0.0009)	0.0775 (0.0012)	$0.5398 \ (0.0158)$	$0.0076 \ (0.0002)$	993
Exp	0.1646	0.0014	$0.0360 \ (0.0008)$	0.0606 (0.0011)	$0.6500 \ (0.0151)$	$0.0050 \ (0.0001)$	1000
Weibull	0.1644	0.0012	$0.0360 \ (0.0008)$	0.0604 (0.0011)	$0.5890 \ (0.0156)$	$0.0049 \ (0.0001)$	1000
Gompertz	_	_					0
RP(3)	0.1826	0.0016	$0.0399 \ (0.0009)$	$0.0786 \ (0.0013)$	$0.5020 \ (0.0158)$	$0.0078 \ (0.0002)$	1000
RP(5)	0.1807	0.0015	$0.0393 \ (0.0009)$	$0.0767 \ (0.0012)$	$0.5070 \ (0.0158)$	$0.0074 \ (0.0002)$	1000
RP(9)	0.1809	0.0016	$0.0392 \ (0.0009)$	$0.0769 \ (0.0012)$	$0.5140 \ (0.0158)$	0.0075 (0.0002)	1000
RP(P)	0.1815	0.0016	$0.0394 \ (0.0009)$	$0.0775 \ (0.0012)$	$0.5110 \ (0.0158)$	$0.0076 \ (0.0002)$	1000
FP(W)	0.1644	0.0013	$0.0360 \ (0.0008)$	$0.0604 \ (0.0011)$	$0.6230 \ (0.0153)$	$0.0049 \ (0.0001)$	1000
FP (k=10)	0.1689	0.0016	$0.0368 \ (0.0008)$	$0.0648 \ (0.0012)$	$0.6406 \ (0.0152)$	$0.0056 \ (0.0002)$	999
FP (k=10000)			_		_		0
Model frailty: I	Normal						
Cox	0.2655	0.0054	$0.0618 \ (0.0014)$	$0.1615 \ (0.0020)$	$0.3770 \ (0.0153)$	$0.0299 \ (0.0006)$	1000
Exp	0.2073	0.0027	$0.0480 \ (0.0012)$	$0.1033 \ (0.0017)$	$0.4921 \ (0.0174)$	$0.0130 \ (0.0004)$	821
Weibull	0.2086	0.0025	$0.0470 \ (0.0012)$	$0.1046 \ (0.0016)$	$0.4413 \ (0.0174)$	$0.0131 \ (0.0004)$	818
Gompertz		_					0
RP(3)	0.2994	0.0054	$0.0742 \ (0.0017)$	$0.1954 \ (0.0023)$	$0.2440 \ (0.0136)$	$0.0437 \ (0.0010)$	1000
RP(5)	0.3062	0.0054	$0.0748 \ (0.0017)$	$0.2022 \ (0.0024)$	$0.2210 \ (0.0131)$	$0.0465 \ (0.0010)$	1000
RP(9)	0.3034	0.0054	$0.0743 \ (0.0017)$	$0.1994 \ (0.0023)$	$0.2220 \ (0.0131)$	$0.0453 \ (0.0010)$	1000
RP(P)	0.3079	0.0055	$0.0744 \ (0.0017)$	$0.2039 \ (0.0024)$	$0.2110 \ (0.0129)$	$0.0471\ (0.0010)$	1000
FP (W)	0.2237	0.0033	$0.0524 \ (0.0012)$	$0.1197 \ (0.0017)$	$0.4580 \ (0.0159)$	$0.0171 \ (0.0004)$	976
FP (k=10)	0.2086	0.0048	$0.0579 \ (0.0013)$	$0.1046 \ (0.0018)$	$0.6977 \ (0.0145)$	$0.0143 \ (0.0004)$	999
FP (k=10000)	0.2313	0.0034	$0.0559 \ (0.0013)$	$0.1273 \ (0.0018)$	$0.4259 \ (0.0157)$	$0.0193 \ (0.0005)$	998

Table 132: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	0.1805	0.0017	$0.0398 \ (0.0009)$	$0.0858 \ (0.0013)$	$0.4482 \ (0.0158)$	$0.0089 \ (0.0002)$	995
Exp	0.1566	0.0011	$0.0344 \ (0.0008)$	$0.0619 \ (0.0011)$	$0.5320 \ (0.0158)$	$0.0050 \ (0.0001)$	1000
Weibull	0.1564	0.0011	$0.0344 \ (0.0008)$	$0.0617 \ (0.0011)$	$0.5240 \ (0.0158)$	$0.0050 \ (0.0001)$	1000
Gompertz		_	_	_	_	_	0
RP(3)	0.1812	0.0016	$0.0405 \ (0.0009)$	$0.0865 \ (0.0013)$	$0.4120 \ (0.0156)$	$0.0091 \ (0.0002)$	1000
RP(5)	0.1812	0.0016	$0.0398 \ (0.0009)$	$0.0865 \ (0.0013)$	$0.4076 \ (0.0158)$	$0.0091 \ (0.0002)$	969
RP(9)	0.1975	0.0017	$0.0540 \ (0.0191)$	$0.1029 \ (0.0242)$	$0.4000 \ (0.2191)$	$0.0129 \ (0.0049)$	5
RP(P)	0.1810	0.0016	$0.0399 \ (0.0009)$	$0.0863 \ (0.0013)$	$0.4070 \ (0.0155)$	$0.0090 \ (0.0002)$	1000
FP(W)	0.1564	0.0012	$0.0344 \ (0.0008)$	$0.0617 \ (0.0011)$	$0.5465 \ (0.0158)$	$0.0050 \ (0.0001)$	999
FP (k=10)	0.1612	0.0012	$0.0354 \ (0.0008)$	$0.0665 \ (0.0011)$	$0.5065 \ (0.0158)$	$0.0057 \ (0.0002)$	995
FP (k=10000)	_	_	_	_	_	_	0
Model frailty: I	Normal						
Cox	0.2648	0.0056	$0.0624 \ (0.0014)$	$0.1701 \ (0.0020)$	$0.3521 \ (0.0151)$	$0.0328 \ (0.0007)$	997
Exp	0.1992	0.0023	$0.0471 \ (0.0012)$	$0.1046 \ (0.0017)$	$0.3939 \ (0.0178)$	$0.0132 \ (0.0004)$	754
Weibull	0.1993	0.0023	$0.0465 \ (0.0012)$	$0.1046 \ (0.0017)$	$0.3935 \ (0.0179)$	$0.0131 \ (0.0004)$	742
Gompertz			_	_	_	_	0
RP(3)	0.2855	0.0052	$0.0728 \ (0.0016)$	$0.1908 \ (0.0023)$	$0.2340 \ (0.0134)$	$0.0417 \ (0.0009)$	1000
RP(5)	0.2903	0.0054	$0.0769 \ (0.0017)$	$0.1956 \ (0.0024)$	$0.2341 \ (0.0135)$	$0.0442 \ (0.0010)$	991
RP(9)	0.1063	0.0094	$0.0766 \ (0.0023)$	$0.0117 \ (0.0032)$	$0.9822 \ (0.0056)$	$0.0060 \ (0.0004)$	563
RP(P)	0.2981	0.0055	$0.0742 \ (0.0017)$	$0.2034 \ (0.0023)$	$0.2050 \ (0.0128)$	$0.0469 \ (0.0010)$	1000
FP(W)	0.2188	0.0033	$0.0504 \ (0.0011)$	$0.1241 \ (0.0016)$	$0.3998 \; (0.0157)$	$0.0179 \ (0.0004)$	973
FP (k=10)	0.1806	0.0044	$0.0586 \ (0.0013)$	$0.0860 \ (0.0019)$	$0.7593 \ (0.0135)$	$0.0108 \; (0.0003)$	997
FP (k=10000)	0.2369	0.0030	$0.0559 \ (0.0013)$	$0.1422 \ (0.0018)$	$0.2681 \ (0.0140)$	$0.0233 \ (0.0005)$	996

Table 133: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						_
Cox	0.1875	0.0017	0.0391 (0.0009)	0.0691 (0.0012)	$0.6093 \ (0.0155)$	$0.0063 \ (0.0002)$	993
Exp	0.1725	0.0014	$0.0362 \ (0.0008)$	$0.0542 \ (0.0011)$	$0.7050 \ (0.0144)$	$0.0042 \ (0.0001)$	1000
Weibull	0.1712	0.0012	$0.0360 \ (0.0008)$	$0.0528 \ (0.0011)$	$0.6610 \ (0.0150)$	$0.0041 \ (0.0001)$	1000
Gompertz		_					0
RP(3)	0.1827	0.0014	$0.0383 \ (0.0009)$	$0.0644 \ (0.0012)$	$0.6030 \ (0.0155)$	$0.0056 \ (0.0002)$	1000
RP(5)	0.1822	0.0014	$0.0381 \ (0.0009)$	$0.0638 \ (0.0012)$	$0.6080 \ (0.0154)$	0.0055 (0.0002)	1000
RP(9)	0.1861	0.0015	$0.0388 \ (0.0009)$	$0.0677 \ (0.0012)$	$0.5820 \ (0.0156)$	$0.0061 \ (0.0002)$	1000
RP(P)	0.1867	0.0015	$0.0390 \ (0.0009)$	$0.0684 \ (0.0012)$	$0.5810 \ (0.0156)$	$0.0062 \ (0.0002)$	1000
FP (W)	0.1712	0.0013	$0.0360 \ (0.0008)$	$0.0529 \ (0.0011)$	$0.6921 \ (0.0146)$	$0.0041 \ (0.0001)$	997
FP (k=10)	0.1730	0.0015	$0.0364 \ (0.0008)$	$0.0546 \ (0.0012)$	$0.7199 \ (0.0143)$	$0.0043 \ (0.0001)$	989
FP (k=10000)	0.1476	0.0013	$0.0487 \ (0.0172)$	$0.0292 \ (0.0218)$	$0.8000 \ (0.1789)$	$0.0028 \ (0.0020)$	5
Model frailty: I	Normal						
Cox	0.2721	0.0050	0.0597 (0.0014)	0.1537 (0.0019)	0.3977 (0.0160)	$0.0272 \ (0.0006)$	938
Exp	0.2215	0.0029	$0.0494 \ (0.0012)$	$0.1031 \ (0.0017)$	$0.5081 \ (0.0170)$	$0.0131 \ (0.0004)$	866
Weibull	0.2232	0.0026	$0.0495 \ (0.0012)$	$0.1048 \ (0.0017)$	$0.4580 \ (0.0171)$	$0.0134 \ (0.0004)$	845
Gompertz	_	_					0
RP(3)	0.3237	0.0054	$0.0723 \ (0.0016)$	$0.2053 \ (0.0023)$	$0.2060 \ (0.0128)$	$0.0474 \ (0.0010)$	1000
RP(5)	0.3250	0.0053	$0.0721\ (0.0016)$	$0.2066 \ (0.0023)$	$0.1970 \ (0.0126)$	$0.0479 \ (0.0010)$	1000
RP(9)	0.3246	0.0053	$0.0720 \ (0.0016)$	$0.2062 \ (0.0023)$	$0.1960 \ (0.0126)$	0.0477 (0.0010)	1000
RP(P)	0.3268	0.0054	0.0727 (0.0016)	$0.2084 \ (0.0023)$	$0.1930 \ (0.0125)$	0.0487 (0.0010)	1000
FP (W)	0.2369	0.0033	$0.0525 \ (0.0012)$	$0.1185 \ (0.0017)$	$0.4466 \ (0.0159)$	$0.0168 \ (0.0004)$	983
FP (k=10)	0.2206	0.0045	$0.0567 \ (0.0013)$	$0.1022 \ (0.0018)$	$0.7050 \ (0.0144)$	$0.0137 \ (0.0004)$	1000
FP (k=10000)	0.2406	0.0033	$0.0543 \ (0.0012)$	$0.1222 \ (0.0017)$	$0.4284 \ (0.0157)$	$0.0179 \ (0.0004)$	999

Table 134: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						_
Cox	0.1856	0.0017	$0.0401 \ (0.0009)$	$0.0613 \ (0.0013)$	$0.6620 \ (0.0150)$	$0.0054 \ (0.0002)$	994
Exp	0.1679	0.0026	$0.0378 \ (0.0008)$	$0.0436 \ (0.0012)$	$0.9410 \ (0.0075)$	$0.0033 \ (0.0001)$	1000
Weibull	0.1694	0.0013	$0.0370 \ (0.0008)$	$0.0451 \ (0.0012)$	$0.7510 \ (0.0137)$	$0.0034 \ (0.0001)$	1000
Gompertz	0.1679	0.0026	$0.0314 \ (0.0020)$	$0.0436 \ (0.0029)$	$0.9832 \ (0.0118)$	$0.0029 \ (0.0003)$	119
RP(3)	0.1866	0.0016	$0.0413 \ (0.0012)$	$0.0623 \ (0.0016)$	$0.6270 \ (0.0193)$	$0.0056 \ (0.0002)$	630
RP(5)	0.1824	0.0015	$0.0394 \ (0.0009)$	$0.0582 \ (0.0013)$	$0.6619 \ (0.0150)$	$0.0049 \ (0.0002)$	988
RP(9)	0.1843	0.0015	$0.0399 \ (0.0009)$	$0.0600 \ (0.0013)$	$0.6490 \ (0.0151)$	$0.0052 \ (0.0002)$	1000
RP(P)	0.1846	0.0016	$0.0400 \ (0.0009)$	$0.0603 \ (0.0013)$	$0.6490 \ (0.0151)$	$0.0052 \ (0.0002)$	1000
FP(W)	0.1694	0.0014	$0.0370 \ (0.0008)$	$0.0451 \ (0.0012)$	$0.7920 \ (0.0128)$	$0.0034 \ (0.0001)$	1000
FP (k=10)	0.1420	0.0023	$0.0388 \ (0.0009)$	$0.0177 \ (0.0012)$	$0.9692 \ (0.0055)$	$0.0018 \ (0.0001)$	973
FP (k=10000)	0.1688	0.0023	$0.0389 \ (0.0010)$	$0.0445 \ (0.0014)$	$0.9150 \ (0.0097)$	$0.0035 \ (0.0001)$	824
Model frailty: I	Normal						
Cox	0.2638	0.0049	$0.0609 \ (0.0014)$	$0.1395 \ (0.0020)$	$0.4538 \ (0.0161)$	$0.0232 \ (0.0006)$	952
Exp	0.1919	0.0040	0.0467 (0.0011)	$0.0676 \ (0.0015)$	$0.9046 \ (0.0096)$	$0.0068 \ (0.0002)$	943
Weibull	0.2062	0.0024	$0.0478 \ (0.0011)$	$0.0819 \ (0.0016)$	$0.6040 \ (0.0163)$	$0.0090 \ (0.0003)$	904
Gompertz	0.1846	0.0040	$0.0415 \ (0.0032)$	$0.0603 \ (0.0046)$	$0.9759 \ (0.0168)$	$0.0053 \ (0.0005)$	83
RP(3)	0.2820	0.0058	$0.0942 \ (0.0022)$	$0.1578 \ (0.0031)$	0.3987 (0.0161)	0.0337 (0.0011)	923
RP(5)	0.3051	0.0050	$0.0730 \ (0.0016)$	$0.1808 \ (0.0023)$	$0.2683 \ (0.0140)$	$0.0380 \ (0.0008)$	999
RP(9)	0.3082	0.0050	$0.0707 \ (0.0016)$	$0.1839 \ (0.0022)$	$0.2590 \ (0.0139)$	$0.0388 \ (0.0008)$	1000
RP(P)	0.3098	0.0051	$0.0704 \ (0.0016)$	$0.1856 \ (0.0022)$	$0.2600 \ (0.0139)$	$0.0394 \ (0.0008)$	1000
FP(W)	0.2179	0.0031	$0.0508 \ (0.0012)$	$0.0936 \ (0.0016)$	$0.6012 \ (0.0157)$	$0.0113 \ (0.0003)$	978
FP (k=10)	0.1302	0.0039	$0.0551 \ (0.0012)$	$0.0059 \ (0.0017)$	$0.9678 \; (0.0056)$	$0.0031 \ (0.0001)$	993
FP (k=10000)	0.2008	0.0044	$0.0504 \ (0.0011)$	$0.0765 \ (0.0016)$	$0.8730 \ (0.0105)$	$0.0084 \ (0.0003)$	1000

Table 135: Simulation results for LLE, scenario with 750 clusters of 2 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						_
Cox	0.1831	0.0017	$0.0402 \ (0.0009)$	$0.0815 \ (0.0013)$	$0.4859 \ (0.0159)$	$0.0083 \ (0.0002)$	990
Exp	0.1689	0.0012	$0.0374 \ (0.0008)$	$0.0673 \ (0.0012)$	$0.5210 \ (0.0158)$	0.0059 (0.0002)	1000
Weibull	0.1688	0.0012	$0.0374 \ (0.0008)$	$0.0673 \ (0.0012)$	$0.5180 \ (0.0158)$	$0.0059 \ (0.0002)$	1000
Gompertz			_	_	_	_	0
RP(3)	0.1846	0.0016	$0.0410 \ (0.0009)$	$0.0831 \ (0.0013)$	$0.4450 \ (0.0157)$	$0.0086 \ (0.0002)$	1000
RP(5)	0.1850	0.0016	$0.0405 \ (0.0009)$	$0.0834 \ (0.0013)$	$0.4309 \ (0.0157)$	$0.0086 \ (0.0002)$	998
RP(9)	0.1856	0.0016	$0.0293 \ (0.0049)$	$0.0841 \ (0.0067)$	$0.4211 \ (0.1133)$	$0.0079 \ (0.0010)$	19
RP(P)	0.1838	0.0015	$0.0401 \ (0.0009)$	$0.0823 \ (0.0013)$	$0.4420 \ (0.0157)$	$0.0084 \ (0.0002)$	1000
FP(W)	0.1688	0.0013	$0.0374 \ (0.0008)$	$0.0673 \ (0.0012)$	$0.5470 \ (0.0157)$	$0.0059 \ (0.0002)$	1000
FP (k=10)	0.1738	0.0013	$0.0383 \ (0.0009)$	$0.0722 \ (0.0012)$	$0.4970 \ (0.0158)$	$0.0067 \ (0.0002)$	996
FP (k=10000)		_					0
Model frailty: I	Vormal						
Cox	0.2666	0.0055	$0.0631 \ (0.0014)$	$0.1651 \ (0.0020)$	$0.3778 \ (0.0153)$	$0.0312 \ (0.0007)$	998
Exp	0.2115	0.0025	$0.0479 \ (0.0016)$	$0.1099 \ (0.0023)$	$0.3905 \ (0.0232)$	$0.0144 \ (0.0005)$	443
Weibull	0.2104	0.0026	$0.0493 \ (0.0018)$	$0.1088 \; (0.0025)$	$0.4175 \ (0.0250)$	$0.0143 \ (0.0006)$	388
Gompertz	_	_	_		_	_	0
RP(3)	0.2921	0.0051	$0.0741 \ (0.0017)$	$0.1906 \ (0.0023)$	$0.2380 \ (0.0135)$	$0.0418 \ (0.0009)$	1000
RP(5)	0.3036	0.0054	$0.0752 \ (0.0017)$	$0.2020 \ (0.0024)$	$0.1962 \ (0.0126)$	$0.0465 \ (0.0010)$	999
RP(9)	0.1026	0.0093	$0.0823 \ (0.0027)$	$0.0010 \ (0.0039)$	$0.9712 \ (0.0079)$	$0.0068 \ (0.0005)$	451
RP(P)	0.3075	0.0055	$0.0763 \ (0.0017)$	$0.2060 \ (0.0024)$	$0.1960 \ (0.0126)$	$0.0482\ (0.0010)$	1000
FP(W)	0.2307	0.0034	$0.0544 \ (0.0012)$	$0.1292 \ (0.0017)$	$0.3951 \ (0.0157)$	$0.0196 \ (0.0005)$	972
FP (k=10)	0.2129	0.0046	$0.0621 \ (0.0014)$	$0.1113 \ (0.0020)$	$0.6326 \ (0.0153)$	$0.0163 \ (0.0005)$	999
FP (k=10000)	0.2505	0.0032	$0.0594 \ (0.0013)$	$0.1490 \ (0.0019)$	$0.2608 \ (0.0139)$	$0.0257 \ (0.0006)$	997

Table 136: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 0.25, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.6766	0.0031	$0.0576 \ (0.0013)$	$0.0015 \ (0.0018)$	$0.9452 \ (0.0073)$	$0.0033 \ (0.0001)$	985
Exp	0.6767	0.0034	$0.0576 \ (0.0013)$	$0.0016 \ (0.0018)$	$0.9500 \ (0.0069)$	$0.0033 \ (0.0001)$	1000
Weibull	0.6769	0.0034	$0.0576 \ (0.0013)$	$0.0018 \; (0.0018)$	$0.9490 \ (0.0070)$	$0.0033 \ (0.0001)$	1000
Gompertz	0.6759	0.0034	$0.0580 \ (0.0018)$	$0.0008 \ (0.0025)$	$0.9507 \ (0.0092)$	$0.0034 \ (0.0002)$	548
RP(3)	0.6768	0.0034	$0.0576 \ (0.0013)$	$0.0017 \ (0.0018)$	$0.9510 \ (0.0068)$	$0.0033 \ (0.0001)$	999
RP(5)	0.6768	0.0034	$0.0576 \ (0.0013)$	$0.0017 \ (0.0018)$	$0.9510 \ (0.0068)$	$0.0033 \ (0.0001)$	1000
RP(9)	0.6768	0.0034	$0.0576 \ (0.0013)$	$0.0017 \ (0.0018)$	$0.9510 \ (0.0068)$	$0.0033 \ (0.0001)$	1000
RP(P)	0.6768	0.0034	$0.0575 \ (0.0013)$	$0.0017 \ (0.0018)$	$0.9500 \ (0.0069)$	$0.0033 \ (0.0001)$	1000
FP(W)	0.6769	0.0031	$0.0576 \ (0.0013)$	$0.0018 \ (0.0018)$	$0.9419 \ (0.0074)$	$0.0033 \ (0.0001)$	999
FP (k=10)	0.6755	0.0031	$0.0576 \ (0.0013)$	$0.0004 \ (0.0018)$	$0.9450 \ (0.0072)$	$0.0033 \ (0.0001)$	1000
FP (k=10000)	0.6762	0.0030	$0.0576 \ (0.0013)$	$0.0011 \ (0.0018)$	$0.9400 \ (0.0075)$	$0.0033 \ (0.0001)$	1000
Model frailty: I	Normal						
Cox	0.6727	0.0031	$0.0581 \ (0.0013)$	-0.0024 (0.0018)	$0.9419 \ (0.0074)$	$0.0034 \ (0.0001)$	999
Exp	0.6755	0.0034	$0.0582 \ (0.0013)$	$0.0004 \ (0.0018)$	$0.9480 \ (0.0070)$	$0.0034 \ (0.0001)$	1000
Weibull	0.6758	0.0034	$0.0581 \ (0.0013)$	$0.0007 \ (0.0018)$	$0.9460 \ (0.0071)$	$0.0034 \ (0.0001)$	1000
Gompertz	0.6762	0.0034	$0.0585 \ (0.0017)$	$0.0011 \ (0.0025)$	$0.9505 \ (0.0091)$	$0.0034 \ (0.0002)$	566
RP(3)	0.6757	0.0034	$0.0581 \ (0.0013)$	$0.0006 \ (0.0018)$	$0.9460 \ (0.0071)$	$0.0034 \ (0.0001)$	1000
RP(5)	0.6756	0.0034	$0.0582 \ (0.0013)$	$0.0005 \ (0.0018)$	$0.9470 \ (0.0071)$	$0.0034 \ (0.0001)$	1000
RP(9)	0.6756	0.0034	$0.0581 \ (0.0013)$	$0.0005 \ (0.0018)$	$0.9460 \ (0.0071)$	$0.0034 \ (0.0001)$	1000
RP(P)	0.6757	0.0034	$0.0581 \ (0.0013)$	$0.0006 \ (0.0018)$	$0.9470 \ (0.0071)$	$0.0034 \ (0.0001)$	1000
FP(W)	0.5317	0.0022	$0.1708 \; (0.0045)$	-0.1434 (0.0063)	$0.5082 \ (0.0185)$	$0.0497 \ (0.0027)$	732
FP (k=10)	0.6523	0.0029	$0.0681 \ (0.0015)$	-0.0228 (0.0022)	$0.8616 \ (0.0111)$	$0.0052 \ (0.0003)$	968
FP (k=10000)	0.6540	0.0026	$0.0607 \ (0.0014)$	-0.0211 (0.0019)	$0.8816 \ (0.0103)$	$0.0041 \ (0.0002)$	988

Table 137: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	0.6990	0.0035	0.0627 (0.0014)	$0.0001 \ (0.0020)$	$0.9328 \; (0.0080)$	$0.0039 \ (0.0002)$	982
Exp	0.7207	0.0039	$0.0653 \ (0.0015)$	$0.0218 \; (0.0021)$	$0.9200 \ (0.0086)$	$0.0047 \ (0.0002)$	1000
Weibull	0.7001	0.0042	$0.0623 \ (0.0014)$	$0.0012 \ (0.0020)$	$0.9560 \ (0.0065)$	$0.0039 \ (0.0002)$	1000
Gompertz	0.7200	0.0039	$0.0644 \ (0.0022)$	$0.0211 \ (0.0030)$	$0.9241 \ (0.0125)$	$0.0046 \ (0.0003)$	448
RP(3)	0.6998	0.0042	$0.0623 \ (0.0014)$	$0.0009 \ (0.0020)$	$0.9570 \ (0.0064)$	$0.0039 \ (0.0002)$	1000
RP(5)	0.6997	0.0042	$0.0624 \ (0.0014)$	$0.0008 \ (0.0020)$	$0.9570 \ (0.0064)$	$0.0039 \ (0.0002)$	1000
RP(9)	0.6997	0.0042	$0.0624 \ (0.0014)$	$0.0008 \ (0.0020)$	$0.9570 \ (0.0064)$	$0.0039 \ (0.0002)$	1000
RP(P)	0.6999	0.0042	$0.0623 \ (0.0014)$	$0.0009 \ (0.0020)$	$0.9570 \ (0.0064)$	$0.0039 \ (0.0002)$	1000
FP(W)	0.7000	0.0035	$0.0622 \ (0.0014)$	$0.0011 \ (0.0020)$	$0.9389 \ (0.0076)$	$0.0039 \ (0.0002)$	998
FP (k=10)	0.6877	0.0034	$0.0632 \ (0.0014)$	-0.0113 (0.0020)	$0.9219 \ (0.0085)$	$0.0041 \ (0.0002)$	999
FP (k=10000)	0.6906	0.0033	$0.0634 \ (0.0014)$	-0.0083 (0.0020)	$0.9189 \ (0.0086)$	$0.0041 \ (0.0002)$	999
Model frailty: I	Normal						
Cox	0.6935	0.0035	$0.0630 \ (0.0014)$	-0.0055 (0.0020)	$0.9320 \ (0.0080)$	$0.0040 \ (0.0002)$	1000
Exp	0.7175	0.0038	$0.0659 \ (0.0015)$	$0.0185 \ (0.0021)$	$0.9210 \ (0.0085)$	$0.0047 \ (0.0002)$	1000
Weibull	0.6964	0.0041	$0.0629 \ (0.0014)$	-0.0025 (0.0020)	$0.9530 \ (0.0067)$	$0.0040 \ (0.0002)$	1000
Gompertz	0.7157	0.0038	$0.0659 \ (0.0022)$	$0.0168 \; (0.0032)$	$0.9279 \ (0.0125)$	$0.0046 \ (0.0003)$	430
RP(3)	0.6960	0.0041	$0.0629 \ (0.0014)$	-0.0029 (0.0020)	$0.9550 \ (0.0066)$	$0.0040 \ (0.0002)$	1000
RP(5)	0.6960	0.0041	$0.0629 \ (0.0014)$	-0.0030 (0.0020)	$0.9530 \ (0.0067)$	$0.0040 \ (0.0002)$	1000
RP(9)	0.6960	0.0041	$0.0629 \ (0.0014)$	-0.0030 (0.0020)	$0.9530 \ (0.0067)$	$0.0040 \ (0.0002)$	1000
RP(P)	0.6961	0.0041	$0.0629 \ (0.0014)$	-0.0028 (0.0020)	$0.9520 \ (0.0068)$	$0.0040 \ (0.0002)$	1000
FP(W)	0.5711	0.0026	$0.1703 \ (0.0042)$	-0.1278 (0.0060)	$0.5702 \ (0.0174)$	$0.0453 \ (0.0025)$	812
FP (k=10)	0.6702	0.0033	$0.0734 \ (0.0017)$	-0.0288 (0.0023)	$0.8478 \ (0.0115)$	$0.0062 \ (0.0003)$	979
FP (k=10000)	0.6642	0.0029	$0.0662 \ (0.0015)$	$-0.0347 \ (0.0021)$	$0.8227 \ (0.0122)$	$0.0056 \ (0.0002)$	987

Table 138: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 0.25, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

	Avg. Estimate		Emp. SE	Bias	Coverage	·	
Model frailty: 0	Gamma						
Cox	0.6161	0.0025	0.0494 (0.0011)	$0.0036 \ (0.0016)$	$0.9459 \ (0.0072)$	$0.0024 \ (0.0001)$	980
Exp	0.5709	0.0029	$0.0458 \ (0.0010)$	-0.0416 (0.0014)	$0.9100 \ (0.0090)$	$0.0038 \ (0.0002)$	1000
Weibull	0.5958	0.0026	$0.0480 \ (0.0011)$	-0.0166 (0.0015)	$0.9460 \ (0.0071)$	$0.0026 \ (0.0001)$	1000
Gompertz	0.6156	0.0025	$0.0499 \ (0.0011)$	$0.0031 \ (0.0016)$	$0.9419 \ (0.0074)$	$0.0025 \ (0.0001)$	999
RP(3)	0.6138	0.0025	$0.0495 \ (0.0011)$	$0.0013 \ (0.0016)$	$0.9430 \ (0.0073)$	$0.0025 \ (0.0001)$	1000
RP(5)	0.6153	0.0025	$0.0497 \ (0.0011)$	$0.0028 \ (0.0016)$	$0.9410 \ (0.0075)$	$0.0025 \ (0.0001)$	1000
RP(9)	0.6158	0.0025	$0.0497 \ (0.0011)$	$0.0033 \ (0.0016)$	$0.9420 \ (0.0074)$	$0.0025 \ (0.0001)$	1000
RP(P)	0.6121	0.0025	$0.0494 \ (0.0011)$	-0.0004 (0.0016)	$0.9440 \ (0.0073)$	$0.0024 \ (0.0001)$	1000
FP(W)	0.5959	0.0026	$0.0480 \ (0.0011)$	$-0.0166 \ (0.0015)$	$0.9440 \ (0.0073)$	$0.0026 \ (0.0001)$	1000
FP (k=10)	0.6163	0.0025	$0.0497 \ (0.0011)$	$0.0038 \ (0.0016)$	$0.9430 \ (0.0073)$	$0.0025 \ (0.0001)$	1000
FP (k=10000)	0.6122	0.0024	$0.0493 \ (0.0011)$	-0.0003 (0.0016)	$0.9450 \ (0.0072)$	$0.0024 \ (0.0001)$	1000
Model frailty: I	Normal						
Cox	0.6152	0.0025	$0.0494 \ (0.0011)$	$0.0027 \ (0.0016)$	$0.9440 \ (0.0073)$	$0.0024 \ (0.0001)$	1000
Exp	0.5713	0.0029	$0.0458 \ (0.0010)$	-0.0412 (0.0014)	$0.9170 \ (0.0087)$	$0.0038 \ (0.0002)$	1000
Weibull	0.5978	0.0027	$0.0478 \ (0.0011)$	-0.0147 (0.0015)	$0.9480 \ (0.0070)$	0.0025 (0.0001)	1000
Gompertz	0.6176	0.0026	$0.0497 \ (0.0011)$	$0.0051 \ (0.0016)$	$0.9530 \ (0.0067)$	$0.0025 \ (0.0001)$	999
RP(3)	0.6158	0.0026	$0.0493 \ (0.0011)$	$0.0034 \ (0.0016)$	$0.9510 \ (0.0068)$	$0.0024 \ (0.0001)$	1000
RP(5)	0.6173	0.0026	$0.0495 \ (0.0011)$	$0.0048 \; (0.0016)$	$0.9500 \ (0.0069)$	$0.0025 \ (0.0001)$	1000
RP(9)	0.6177	0.0026	$0.0495 \ (0.0011)$	$0.0053 \ (0.0016)$	$0.9510 \ (0.0068)$	$0.0025 \ (0.0001)$	1000
RP(P)	0.6142	0.0026	$0.0492 \ (0.0011)$	$0.0017 \ (0.0016)$	$0.9490 \ (0.0070)$	$0.0024 \ (0.0001)$	1000
FP(W)	0.4283	0.0015	$0.1651 \ (0.0046)$	-0.1842 (0.0064)	$0.3918 \; (0.0191)$	$0.0611 \ (0.0028)$	656
FP (k=10)	0.6076	0.0024	$0.0569 \ (0.0013)$	-0.0049 (0.0018)	$0.8960 \ (0.0098)$	$0.0033 \ (0.0002)$	962
FP (k=10000)	0.6130	0.0020	$0.0514 \ (0.0012)$	$0.0005 \ (0.0016)$	0.9115 (0.0091)	$0.0026 \ (0.0001)$	983

Table 139: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.5914	0.0024	$0.0485 \ (0.0011)$	$0.0026 \ (0.0015)$	$0.9462 \ (0.0072)$	$0.0024 \ (0.0001)$	986
Exp	0.5470	0.0030	$0.0456 \ (0.0010)$	-0.0417 (0.0014)	$0.9270 \ (0.0082)$	$0.0038 \ (0.0001)$	1000
Weibull	0.6096	0.0023	$0.0501 \ (0.0011)$	$0.0208 \; (0.0016)$	$0.9200 \ (0.0086)$	$0.0029 \ (0.0001)$	1000
Gompertz	0.6166	0.0025	$0.0513 \ (0.0011)$	$0.0278 \ (0.0016)$	$0.9130 \ (0.0089)$	$0.0034 \ (0.0002)$	1000
RP(3)	0.5880	0.0024	$0.0481 \ (0.0011)$	-0.0007 (0.0015)	$0.9489 \ (0.0070)$	$0.0023 \ (0.0001)$	999
RP(5)	0.5908	0.0024	$0.0484 \ (0.0011)$	$0.0020 \ (0.0015)$	$0.9480 \ (0.0070)$	$0.0023 \ (0.0001)$	1000
RP(9)	0.5910	0.0024	$0.0484 \ (0.0011)$	$0.0023 \ (0.0015)$	$0.9480 \ (0.0070)$	$0.0023 \ (0.0001)$	1000
RP(P)	0.5912	0.0024	$0.0484 \ (0.0011)$	$0.0024 \ (0.0015)$	$0.9480 \ (0.0070)$	$0.0023 \ (0.0001)$	1000
FP(W)	0.6095	0.0023	$0.0502 \ (0.0011)$	$0.0208 \ (0.0016)$	$0.9219 \ (0.0085)$	$0.0029 \ (0.0001)$	999
FP (k=10)	0.5928	0.0024	$0.0483 \ (0.0011)$	$0.0040 \ (0.0015)$	$0.9510 \ (0.0068)$	$0.0023 \ (0.0001)$	1000
FP (k=10000)	0.4198	0.0013	$0.2657 \ (0.0059)$	-0.1690 (0.0084)	$0.5260 \ (0.0158)$	$0.0991 \ (0.0040)$	1000
Model frailty: I	Normal						
Cox	0.5901	0.0023	$0.0482 \ (0.0011)$	$0.0013 \ (0.0015)$	$0.9460 \ (0.0071)$	$0.0023 \ (0.0001)$	1000
Exp	0.5458	0.0030	0.0457 (0.0010)	-0.0429 (0.0014)	$0.9220 \ (0.0085)$	$0.0039 \ (0.0001)$	1000
Weibull	0.6116	0.0024	$0.0500 \ (0.0011)$	$0.0228 \ (0.0016)$	$0.9250 \ (0.0083)$	$0.0030 \ (0.0001)$	1000
Gompertz	0.6169	0.0025	$0.0512 \ (0.0011)$	$0.0282 \ (0.0016)$	$0.9158 \; (0.0088)$	$0.0034 \ (0.0002)$	998
RP(3)	0.5900	0.0024	$0.0479 \ (0.0011)$	$0.0013 \ (0.0015)$	$0.9500 \ (0.0069)$	$0.0023 \ (0.0001)$	1000
RP(5)	0.5925	0.0025	$0.0483 \ (0.0011)$	$0.0038 \ (0.0015)$	$0.9500 \ (0.0069)$	$0.0023 \ (0.0001)$	1000
RP(9)	0.5928	0.0025	$0.0483 \ (0.0011)$	$0.0041 \ (0.0015)$	$0.9510 \ (0.0068)$	$0.0023 \ (0.0001)$	1000
RP(P)	0.5930	0.0025	$0.0483 \ (0.0011)$	$0.0043 \ (0.0015)$	$0.9500 \ (0.0069)$	$0.0023 \ (0.0001)$	1000
FP(W)	0.4885	0.0016	$0.1498 \ (0.0041)$	$-0.1002 \ (0.0058)$	$0.5347 \ (0.0194)$	$0.0324 \ (0.0019)$	662
FP (k=10)	0.5770	0.0022	$0.0567 \ (0.0013)$	-0.0118 (0.0018)	$0.8943 \ (0.0099)$	$0.0034 \ (0.0002)$	965
FP (k=10000)	0.5796	0.0017	$0.0631 \ (0.0014)$	-0.0091 (0.0020)	$0.7878 \ (0.0130)$	$0.0041 \ (0.0002)$	985

Table 140: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

	Avg. Estimate		Emp. SE	Bias	Coverage		N. Converged
Model frailty: 0	Gamma						
Cox	0.6871	0.0033	$0.0591 \ (0.0013)$	0.0007 (0.0019)	$0.9530 \ (0.0068)$	0.0035 (0.0002)	979
Exp	0.7073	0.0036	$0.0615 \ (0.0014)$	$0.0210 \ (0.0019)$	$0.9270 \ (0.0082)$	$0.0042 \ (0.0002)$	1000
Weibull	0.6961	0.0037	$0.0602 \ (0.0013)$	$0.0097 \ (0.0019)$	$0.9580 \ (0.0063)$	$0.0037 \ (0.0002)$	1000
Gompertz	0.7105	0.0036	$0.0596 \ (0.0019)$	$0.0241 \ (0.0027)$	$0.9296 \ (0.0116)$	$0.0041 \ (0.0002)$	483
RP(3)	0.6900	0.0037	$0.0594 \ (0.0013)$	$0.0036 \ (0.0019)$	$0.9580 \ (0.0063)$	$0.0035 \ (0.0002)$	1000
RP(5)	0.6883	0.0037	$0.0592 \ (0.0013)$	$0.0019 \ (0.0019)$	$0.9570 \ (0.0064)$	$0.0035 \ (0.0002)$	1000
RP(9)	0.6880	0.0037	$0.0591 \ (0.0013)$	$0.0016 \ (0.0019)$	$0.9570 \ (0.0064)$	$0.0035 \ (0.0002)$	1000
RP(P)	0.6892	0.0037	$0.0593 \ (0.0013)$	$0.0028 \ (0.0019)$	$0.9570 \ (0.0064)$	$0.0035 \ (0.0002)$	1000
FP(W)	0.6960	0.0033	$0.0602 \ (0.0013)$	$0.0096 \ (0.0019)$	$0.9439 \ (0.0073)$	$0.0037 \ (0.0002)$	998
FP (k=10)	0.6846	0.0033	$0.0593 \ (0.0013)$	-0.0017 (0.0019)	$0.9480 \ (0.0070)$	$0.0035 \ (0.0002)$	1000
FP (k=10000)	0.6869	0.0033	$0.0593 \ (0.0013)$	$0.0005 \ (0.0019)$	$0.9490 \ (0.0070)$	$0.0035 \ (0.0002)$	1000
Model frailty: I	Normal						
Cox	0.6829	0.0033	$0.0594 \ (0.0013)$	-0.0035 (0.0019)	$0.9380 \ (0.0076)$	$0.0035 \ (0.0002)$	1000
Exp	0.7053	0.0035	0.0617 (0.0014)	$0.0189 \ (0.0020)$	$0.9280 \ (0.0082)$	$0.0042 \ (0.0002)$	1000
Weibull	0.6936	0.0037	0.0605 (0.0014)	$0.0072 \ (0.0019)$	$0.9530 \ (0.0067)$	$0.0037 \ (0.0002)$	1000
Gompertz	0.7070	0.0035	0.0599 (0.0019)	$0.0206 \ (0.0027)$	$0.9402 \ (0.0108)$	$0.0040 \ (0.0003)$	485
RP(3)	0.6877	0.0037	0.0597 (0.0013)	$0.0014 \ (0.0019)$	$0.9540 \ (0.0066)$	$0.0036 \ (0.0002)$	1000
RP(5)	0.6863	0.0037	0.0595 (0.0013)	-0.0001 (0.0019)	$0.9530 \ (0.0067)$	$0.0035 \ (0.0002)$	1000
RP(9)	0.6859	0.0037	$0.0594 \ (0.0013)$	-0.0004 (0.0019)	$0.9530 \ (0.0067)$	$0.0035 \ (0.0002)$	1000
RP(P)	0.6871	0.0037	$0.0596 \ (0.0013)$	0.0007 (0.0019)	$0.9540 \ (0.0066)$	$0.0036 \ (0.0002)$	1000
FP (W)	0.5417	0.0023	$0.1789 \ (0.0045)$	-0.1447 (0.0064)	$0.5204 \ (0.0178)$	$0.0529 \ (0.0028)$	784
FP (k=10)	0.6615	0.0031	$0.0701 \ (0.0016)$	-0.0249 (0.0022)	$0.8686 \ (0.0108)$	$0.0055 \ (0.0003)$	974
FP (k=10000)	0.6649	0.0028	$0.0625 \ (0.0014)$	-0.0215 (0.0020)	0.8794 (0.0104)	$0.0044 \ (0.0002)$	987

Table 141: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.25, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.6743	0.0031	$0.0553 \ (0.0013)$	-0.0022 (0.0018)	$0.9558 \ (0.0066)$	$0.0031 \ (0.0001)$	973
Exp	0.6739	0.0032	$0.0551 \ (0.0012)$	-0.0026 (0.0017)	$0.9610 \ (0.0061)$	$0.0030 \ (0.0001)$	1000
Weibull	0.6739	0.0032	$0.0550 \ (0.0012)$	-0.0025 (0.0017)	$0.9590 \ (0.0063)$	$0.0030 \ (0.0001)$	1000
Gompertz	0.6750	0.0032	$0.0539 \ (0.0017)$	-0.0015 (0.0023)	$0.9659 \ (0.0079)$	$0.0029 \ (0.0002)$	528
RP(3)	0.6738	0.0032	$0.0552 \ (0.0012)$	-0.0026 (0.0017)	$0.9599 \ (0.0062)$	$0.0030 \ (0.0001)$	998
RP(5)	0.6738	0.0032	$0.0551 \ (0.0012)$	-0.0026 (0.0017)	$0.9590 \ (0.0063)$	$0.0030 \ (0.0001)$	1000
RP(9)	0.6738	0.0032	$0.0551 \ (0.0012)$	-0.0027 (0.0017)	$0.9590 \ (0.0063)$	$0.0030 \ (0.0001)$	1000
RP(P)	0.6739	0.0032	$0.0551 \ (0.0012)$	-0.0026 (0.0017)	$0.9580 \ (0.0063)$	$0.0030 \ (0.0001)$	1000
FP(W)	0.6740	0.0031	$0.0550 \ (0.0012)$	-0.0024 (0.0017)	$0.9530 \ (0.0067)$	$0.0030 \ (0.0001)$	999
FP (k=10)	0.6733	0.0031	$0.0551 \ (0.0012)$	-0.0032 (0.0017)	$0.9550 \ (0.0066)$	$0.0030 \ (0.0001)$	1000
FP (k=10000)	0.6735	0.0030	$0.0550 \ (0.0012)$	-0.0029 (0.0017)	$0.9480 \ (0.0070)$	$0.0030 \ (0.0001)$	1000
Model frailty: I	Normal						
Cox	0.6738	0.0031	$0.0548 \ (0.0012)$	-0.0026 (0.0017)	$0.9560 \ (0.0065)$	$0.0030 \ (0.0001)$	1000
Exp	0.6769	0.0033	$0.0547 \ (0.0012)$	$0.0004 \ (0.0017)$	$0.9630 \ (0.0060)$	$0.0030 \ (0.0001)$	1000
Weibull	0.6770	0.0033	$0.0547 \ (0.0012)$	$0.0006 \ (0.0017)$	$0.9620 \ (0.0060)$	$0.0030 \ (0.0001)$	1000
Gompertz	0.6762	0.0033	$0.0540 \ (0.0016)$	-0.0002 (0.0023)	$0.9638 \ (0.0079)$	$0.0029 \ (0.0002)$	553
RP(3)	0.6769	0.0033	$0.0548 \ (0.0012)$	$0.0005 \ (0.0017)$	$0.9640 \ (0.0059)$	$0.0030 \ (0.0001)$	1000
RP(5)	0.6768	0.0033	$0.0548 \ (0.0012)$	$0.0004 \ (0.0017)$	$0.9640 \ (0.0059)$	$0.0030 \ (0.0001)$	1000
RP(9)	0.6768	0.0033	$0.0548 \ (0.0012)$	$0.0004 \ (0.0017)$	$0.9640 \ (0.0059)$	$0.0030 \ (0.0001)$	1000
RP(P)	0.6769	0.0033	$0.0548 \ (0.0012)$	$0.0005 \ (0.0017)$	$0.9620 \ (0.0060)$	$0.0030 \ (0.0001)$	1000
FP(W)	0.5617	0.0023	$0.1493 \ (0.0039)$	-0.1148 (0.0055)	$0.5830 \ (0.0183)$	$0.0354 \ (0.0022)$	729
FP (k=10)	0.6568	0.0029	$0.0640 \ (0.0015)$	-0.0196 (0.0021)	$0.8948 \ (0.0099)$	$0.0045 \ (0.0003)$	960
FP (k=10000)	0.6621	0.0026	$0.0552 \ (0.0012)$	-0.0144 (0.0018)	$0.9108 \; (0.0091)$	$0.0033 \ (0.0001)$	986

Table 142: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	0.7124	0.0036	$0.0632 \ (0.0014)$	$0.0019 \ (0.0020)$	$0.9391 \ (0.0076)$	$0.0040 \ (0.0002)$	985
Exp	0.7372	0.0037	$0.0658 \ (0.0015)$	$0.0268 \; (0.0021)$	$0.9000 \ (0.0095)$	$0.0050 \ (0.0002)$	1000
Weibull	0.7136	0.0040	$0.0629 \ (0.0014)$	$0.0032 \ (0.0020)$	$0.9490 \ (0.0070)$	$0.0040 \ (0.0002)$	1000
Gompertz	0.7371	0.0037	$0.0674 \ (0.0024)$	$0.0266 \ (0.0033)$	$0.8870 \ (0.0157)$	$0.0052 \ (0.0003)$	407
RP(3)	0.7133	0.0040	$0.0630 \ (0.0014)$	$0.0028 \ (0.0020)$	$0.9520 \ (0.0068)$	$0.0040 \ (0.0002)$	999
RP(5)	0.7131	0.0040	$0.0630 \ (0.0014)$	$0.0027 \ (0.0020)$	$0.9530 \ (0.0067)$	$0.0040 \ (0.0002)$	1000
RP(9)	0.7131	0.0040	$0.0630 \ (0.0014)$	$0.0026 \ (0.0020)$	$0.9530 \ (0.0067)$	$0.0040 \ (0.0002)$	1000
RP(P)	0.7133	0.0040	$0.0630 \ (0.0014)$	$0.0029 \ (0.0020)$	$0.9530 \ (0.0067)$	$0.0040 \ (0.0002)$	1000
FP(W)	0.7136	0.0036	$0.0629 \ (0.0014)$	$0.0032 \ (0.0020)$	$0.9400 \ (0.0075)$	$0.0040 \ (0.0002)$	1000
FP (k=10)	0.7039	0.0035	$0.0632 \ (0.0014)$	-0.0066 (0.0020)	$0.9290 \ (0.0081)$	$0.0040 \ (0.0002)$	1000
FP (k=10000)	0.7074	0.0033	$0.0634 \ (0.0014)$	-0.0030 (0.0020)	$0.9260 \ (0.0083)$	$0.0040 \ (0.0002)$	1000
Model frailty: I	Normal						
Cox	0.7108	0.0036	$0.0629 \ (0.0014)$	$0.0003 \ (0.0020)$	$0.9400 \ (0.0075)$	$0.0039 \ (0.0002)$	1000
Exp	0.7396	0.0036	$0.0656 \ (0.0015)$	$0.0292 \ (0.0021)$	$0.8920 \ (0.0098)$	$0.0052 \ (0.0002)$	1000
Weibull	0.7140	0.0040	$0.0629 \ (0.0014)$	$0.0036 \ (0.0020)$	$0.9489 \ (0.0070)$	$0.0040 \ (0.0002)$	999
Gompertz	0.7392	0.0036	$0.0646 \ (0.0022)$	$0.0288 \ (0.0031)$	$0.9028 \ (0.0143)$	$0.0050 \ (0.0003)$	432
RP(3)	0.7137	0.0040	$0.0629 \ (0.0014)$	$0.0032 \ (0.0020)$	$0.9480 \ (0.0070)$	$0.0040 \ (0.0002)$	1000
RP(5)	0.7135	0.0040	$0.0630 \ (0.0014)$	$0.0031 \ (0.0020)$	$0.9480 \ (0.0070)$	$0.0040 \ (0.0002)$	1000
RP(9)	0.7135	0.0040	$0.0630 \ (0.0014)$	$0.0030 \ (0.0020)$	$0.9470 \ (0.0071)$	$0.0040 \ (0.0002)$	1000
RP(P)	0.7137	0.0040	$0.0630 \ (0.0014)$	$0.0033 \ (0.0020)$	$0.9490 \ (0.0070)$	$0.0040 \ (0.0002)$	1000
FP(W)	0.5693	0.0026	0.1785 (0.0044)	-0.1412 (0.0063)	$0.5396 \ (0.0175)$	$0.0518 \ (0.0028)$	808
FP (k=10)	0.6871	0.0034	$0.0729 \ (0.0017)$	-0.0233 (0.0023)	$0.8671 \ (0.0109)$	$0.0058 \ (0.0003)$	971
FP (k=10000)	0.6825	0.0029	$0.0670 \ (0.0015)$	-0.0279 (0.0021)	$0.8540 \ (0.0112)$	$0.0053 \ (0.0002)$	993

Table 143: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.5951	0.0024	0.0515 (0.0012)	-0.0064 (0.0016)	$0.9369 \ (0.0078)$	0.0027 (0.0001)	983
Exp	0.5518	0.0027	$0.0467 \ (0.0010)$	-0.0496 (0.0015)	$0.8740 \ (0.0105)$	$0.0046 \ (0.0002)$	1000
Weibull	0.5745	0.0025	$0.0493 \ (0.0011)$	-0.0269 (0.0016)	$0.9100 \ (0.0090)$	$0.0031 \ (0.0001)$	1000
Gompertz	0.5943	0.0024	$0.0517 \ (0.0012)$	-0.0071 (0.0016)	$0.9398 \ (0.0075)$	0.0027 (0.0001)	997
RP(3)	0.5919	0.0024	$0.0512 \ (0.0011)$	-0.0095 (0.0016)	$0.9370 \ (0.0077)$	0.0027 (0.0001)	1000
RP(5)	0.5936	0.0024	$0.0514 \ (0.0011)$	-0.0078 (0.0016)	$0.9410 \ (0.0075)$	0.0027 (0.0001)	1000
RP(9)	0.5942	0.0024	$0.0515 \ (0.0012)$	-0.0072 (0.0016)	$0.9400 \ (0.0075)$	0.0027 (0.0001)	1000
RP(P)	0.5905	0.0024	$0.0510 \ (0.0011)$	-0.0109 (0.0016)	$0.9380 \ (0.0076)$	0.0027 (0.0001)	1000
FP(W)	0.5745	0.0025	$0.0489 \ (0.0011)$	-0.0270 (0.0015)	$0.9138 \ (0.0089)$	$0.0031 \ (0.0001)$	998
FP (k=10)	0.5952	0.0024	$0.0514 \ (0.0011)$	-0.0063 (0.0016)	$0.9390 \ (0.0076)$	$0.0027 \ (0.0001)$	1000
FP (k=10000)	0.5911	0.0023	$0.0508 \ (0.0011)$	-0.0104 (0.0016)	$0.9300 \ (0.0081)$	$0.0027 \ (0.0001)$	1000
Model frailty: I	Normal						
Cox	0.5970	0.0024	$0.0510 \ (0.0011)$	-0.0045 (0.0016)	$0.9420 \ (0.0074)$	$0.0026 \ (0.0001)$	1000
Exp	0.5545	0.0028	$0.0466 \ (0.0010)$	-0.0469 (0.0015)	$0.8819 \ (0.0102)$	$0.0044 \ (0.0002)$	999
Weibull	0.5793	0.0026	$0.0490 \ (0.0011)$	-0.0221 (0.0015)	$0.9300 \ (0.0081)$	0.0029 (0.0001)	1000
Gompertz	0.5993	0.0025	$0.0514 \ (0.0012)$	-0.0022 (0.0016)	$0.9447 \ (0.0072)$	$0.0026 \ (0.0001)$	995
RP(3)	0.5969	0.0025	$0.0509 \ (0.0011)$	-0.0046 (0.0016)	$0.9450 \ (0.0072)$	$0.0026 \ (0.0001)$	1000
RP(5)	0.5985	0.0025	$0.0510 \ (0.0011)$	-0.0029 (0.0016)	$0.9470 \ (0.0071)$	$0.0026 \ (0.0001)$	1000
RP(9)	0.5991	0.0025	$0.0511 \ (0.0011)$	-0.0023 (0.0016)	$0.9450 \ (0.0072)$	$0.0026 \ (0.0001)$	1000
RP(P)	0.5954	0.0025	0.0507 (0.0011)	-0.0060 (0.0016)	$0.9440 \ (0.0073)$	$0.0026 \ (0.0001)$	1000
FP (W)	0.4180	0.0015	$0.1583 \ (0.0044)$	-0.1834 (0.0062)	0.3599 (0.0188)	$0.0587 \ (0.0027)$	653
FP (k=10)	0.5943	0.0023	$0.0598 \ (0.0014)$	-0.0072 (0.0019)	0.8840 (0.0104)	$0.0036 \ (0.0002)$	957
FP (k=10000)	0.6072	0.0020	0.0520 (0.0012)	$0.0058 \ (0.0017)$	0.9044 (0.0094)	$0.0027 \ (0.0001)$	983

Table 144: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.5758	0.0023	0.0507 (0.0011)	-0.0032 (0.0016)	$0.9376 \ (0.0077)$	$0.0026 \ (0.0001)$	978
Exp	0.5313	0.0029	$0.0472 \ (0.0011)$	-0.0477 (0.0015)	$0.8850 \ (0.0101)$	$0.0045 \ (0.0002)$	1000
Weibull	0.5939	0.0022	$0.0523 \ (0.0012)$	$0.0149 \ (0.0017)$	$0.9070 \ (0.0092)$	$0.0030 \ (0.0001)$	1000
Gompertz	0.6028	0.0024	$0.0531 \ (0.0012)$	$0.0239 \ (0.0017)$	$0.9020 \ (0.0094)$	$0.0034 \ (0.0001)$	1000
RP(3)	0.5711	0.0023	$0.0505 \ (0.0011)$	-0.0079 (0.0016)	$0.9370 \ (0.0077)$	$0.0026 \ (0.0001)$	1000
RP(5)	0.5743	0.0023	$0.0508 \; (0.0011)$	-0.0047 (0.0016)	$0.9367 \ (0.0077)$	$0.0026 \ (0.0001)$	996
RP(9)	0.5747	0.0023	$0.0507 \ (0.0011)$	-0.0043 (0.0016)	$0.9370 \ (0.0077)$	$0.0026 \ (0.0001)$	1000
RP(P)	0.5748	0.0023	$0.0507 \ (0.0011)$	-0.0042 (0.0016)	$0.9360 \ (0.0077)$	$0.0026 \ (0.0001)$	1000
FP(W)	0.5938	0.0022	$0.0523 \ (0.0012)$	$0.0149 \ (0.0017)$	$0.9039 \ (0.0093)$	$0.0030 \ (0.0001)$	999
FP (k=10)	0.5805	0.0023	$0.0496 \ (0.0011)$	$0.0015 \ (0.0016)$	$0.9370 \ (0.0077)$	$0.0025 \ (0.0001)$	1000
FP (k=10000)	0.6097	0.0020	$0.0568 \ (0.0014)$	$0.0307 \ (0.0020)$	$0.8265 \ (0.0136)$	$0.0042 \ (0.0002)$	778
Model frailty: I	Normal						
Cox	0.5770	0.0023	$0.0500 \ (0.0011)$	-0.0020 (0.0016)	$0.9360 \ (0.0077)$	$0.0025 \ (0.0001)$	1000
Exp	0.5318	0.0029	$0.0471 \ (0.0011)$	-0.0472 (0.0015)	$0.8880 \ (0.0100)$	$0.0044 \ (0.0002)$	1000
Weibull	0.5988	0.0023	$0.0517 \ (0.0012)$	$0.0198 \ (0.0016)$	$0.9070 \ (0.0092)$	$0.0031 \ (0.0001)$	1000
Gompertz	0.6056	0.0024	$0.0527 \ (0.0012)$	$0.0266 \ (0.0017)$	$0.8990 \ (0.0095)$	0.0035 (0.0001)	1000
RP(3)	0.5760	0.0024	$0.0499 \ (0.0011)$	-0.0030 (0.0016)	$0.9430 \ (0.0073)$	$0.0025 \ (0.0001)$	1000
RP(5)	0.5789	0.0024	$0.0502 \ (0.0011)$	-0.0001 (0.0016)	$0.9390 \ (0.0076)$	$0.0025 \ (0.0001)$	1000
RP(9)	0.5794	0.0024	$0.0501 \ (0.0011)$	$0.0004 \ (0.0016)$	$0.9430 \ (0.0073)$	$0.0025 \ (0.0001)$	1000
RP(P)	0.5795	0.0024	$0.0502 \ (0.0011)$	0.0005 (0.0016)	$0.9400 \ (0.0075)$	$0.0025 \ (0.0001)$	1000
FP(W)	0.4621	0.0014	$0.1562 \ (0.0046)$	-0.1169 (0.0065)	$0.4881 \ (0.0206)$	$0.0380 \ (0.0021)$	586
FP (k=10)	0.5711	0.0022	$0.0551 \ (0.0013)$	-0.0079 (0.0018)	$0.8952 \ (0.0099)$	$0.0031 \ (0.0002)$	964
FP (k=10000)	0.5874	0.0016	0.0585 (0.0013)	0.0084 (0.0019)	0.8119 (0.0124)	$0.0035 \ (0.0002)$	989

Table 145: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	0.6882	0.0033	$0.0576 \ (0.0013)$	-0.0018 (0.0018)	$0.9524 \ (0.0068)$	$0.0033 \ (0.0002)$	988
Exp	0.7091	0.0034	$0.0599 \ (0.0013)$	$0.0192 \ (0.0019)$	$0.9390 \ (0.0076)$	$0.0039 \ (0.0002)$	1000
Weibull	0.6975	0.0036	$0.0586 \ (0.0013)$	$0.0076 \ (0.0019)$	$0.9520 \ (0.0068)$	$0.0035 \ (0.0002)$	1000
Gompertz	0.7085	0.0034	$0.0595 \ (0.0019)$	$0.0185 \ (0.0027)$	$0.9451 \ (0.0105)$	$0.0039 \ (0.0002)$	474
RP(3)	0.6909	0.0036	$0.0577 \ (0.0013)$	$0.0010 \ (0.0018)$	$0.9589 \ (0.0063)$	$0.0033 \ (0.0002)$	998
RP(5)	0.6890	0.0035	$0.0577 \ (0.0013)$	-0.0009 (0.0018)	$0.9590 \ (0.0063)$	$0.0033 \ (0.0002)$	1000
RP(9)	0.6885	0.0035	$0.0577 \ (0.0013)$	-0.0014 (0.0018)	$0.9590 \ (0.0063)$	$0.0033 \ (0.0002)$	1000
RP(P)	0.6900	0.0035	$0.0578 \ (0.0013)$	$0.0000 \ (0.0018)$	$0.9590 \ (0.0063)$	$0.0033 \ (0.0002)$	1000
FP(W)	0.6975	0.0033	$0.0586 \ (0.0013)$	$0.0076 \ (0.0019)$	$0.9450 \ (0.0072)$	$0.0035 \ (0.0002)$	1000
FP (k=10)	0.6867	0.0033	$0.0575 \ (0.0013)$	-0.0032 (0.0018)	$0.9510 \ (0.0068)$	$0.0033 \ (0.0002)$	1000
FP (k=10000)	0.6885	0.0032	$0.0576 \ (0.0013)$	-0.0015 (0.0018)	$0.9490 \ (0.0070)$	$0.0033 \ (0.0002)$	1000
Model frailty: I	Normal						
Cox	0.6879	0.0033	$0.0573 \ (0.0013)$	-0.0020 (0.0018)	$0.9500 \ (0.0069)$	$0.0033 \ (0.0001)$	1000
Exp	0.7124	0.0034	$0.0594 \ (0.0013)$	$0.0224 \ (0.0019)$	$0.9359 \ (0.0078)$	$0.0040 \ (0.0002)$	998
Weibull	0.6997	0.0036	$0.0583 \ (0.0013)$	$0.0098 \ (0.0018)$	$0.9570 \ (0.0064)$	$0.0035 \ (0.0002)$	1000
$\operatorname{Gompertz}$	0.7108	0.0034	$0.0589 \ (0.0019)$	$0.0209 \ (0.0027)$	$0.9474 \ (0.0102)$	$0.0039 \ (0.0002)$	475
RP(3)	0.6936	0.0036	$0.0575 \ (0.0013)$	$0.0036 \ (0.0018)$	$0.9570 \ (0.0064)$	$0.0033 \ (0.0001)$	1000
RP(5)	0.6917	0.0036	$0.0574 \ (0.0013)$	$0.0017 \ (0.0018)$	$0.9580 \ (0.0063)$	$0.0033 \ (0.0001)$	1000
RP(9)	0.6911	0.0036	$0.0573 \ (0.0013)$	$0.0012 \ (0.0018)$	$0.9580 \ (0.0063)$	$0.0033 \ (0.0001)$	1000
RP(P)	0.6925	0.0036	$0.0575 \ (0.0013)$	$0.0026 \ (0.0018)$	$0.9570 \ (0.0064)$	$0.0033 \ (0.0001)$	1000
FP(W)	0.5572	0.0024	$0.1812\ (0.0046)$	$-0.1328 \ (0.0065)$	$0.5574 \ (0.0178)$	$0.0504 \ (0.0028)$	775
FP (k=10)	0.6703	0.0032	$0.0649 \ (0.0015)$	-0.0196 (0.0021)	$0.9027 \ (0.0095)$	$0.0046 \ (0.0002)$	976
FP (k=10000)	0.6748	0.0029	$0.0581 \ (0.0013)$	-0.0152 (0.0019)	$0.9133 \ (0.0090)$	$0.0036 \ (0.0002)$	980

Table 146: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.25, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.4347	0.0017	$0.0440 \ (0.0010)$	$0.0692 \ (0.0014)$	$0.6297 \ (0.0153)$	0.0067 (0.0002)	991
Exp	0.4317	0.0031	$0.0439 \ (0.0010)$	$0.0663 \ (0.0014)$	$0.8700 \ (0.0106)$	$0.0063 \ (0.0002)$	1000
Weibull	0.4318	0.0031	$0.0439 \ (0.0010)$	$0.0664 \ (0.0014)$	$0.8680 \ (0.0107)$	$0.0063 \ (0.0002)$	1000
Gompertz	0.4355	0.0031	$0.0444 \ (0.0016)$	$0.0700 \ (0.0022)$	$0.8532 \ (0.0176)$	$0.0069 \ (0.0004)$	402
RP(3)	0.4316	0.0031	$0.0440 \ (0.0010)$	$0.0662 \ (0.0014)$	$0.8680 \ (0.0107)$	$0.0063 \ (0.0002)$	1000
RP(5)	0.4318	0.0031	$0.0440 \ (0.0010)$	$0.0664 \ (0.0014)$	$0.8680 \ (0.0107)$	$0.0063 \ (0.0002)$	1000
RP(9)	0.4318	0.0031	$0.0440 \ (0.0010)$	$0.0664 \ (0.0014)$	$0.8670 \ (0.0107)$	$0.0063 \ (0.0002)$	1000
RP(P)	0.4319	0.0031	$0.0440 \ (0.0010)$	$0.0664 \ (0.0014)$	$0.8660 \ (0.0108)$	$0.0063 \ (0.0002)$	1000
FP(W)	0.4318	0.0017	$0.0439 \ (0.0010)$	$0.0664 \ (0.0014)$	$0.6480 \ (0.0151)$	$0.0063 \ (0.0002)$	1000
FP (k=10)	0.4348	0.0017	$0.0438 \ (0.0010)$	$0.0694 \ (0.0014)$	$0.6250 \ (0.0153)$	$0.0067 \ (0.0002)$	1000
FP (k=10000)	0.4370	0.0017	$0.0435 \ (0.0010)$	$0.0716 \ (0.0014)$	$0.5942 \ (0.0155)$	$0.0070 \ (0.0002)$	998
Model frailty: I	Normal						
Cox	0.4486	0.0017	$0.0433 \ (0.0010)$	$0.0831 \ (0.0014)$	$0.4615 \ (0.0158)$	$0.0088 \ (0.0002)$	999
Exp	0.4572	0.0034	$0.0435 \ (0.0010)$	$0.0918 \ (0.0014)$	$0.7347 \ (0.0140)$	$0.0103 \ (0.0003)$	995
Weibull	0.4574	0.0034	$0.0438 \ (0.0010)$	$0.0920 \ (0.0014)$	0.7397 (0.0139)	$0.0104 \ (0.0003)$	995
Gompertz	0.4565	0.0034	$0.0451 \ (0.0016)$	$0.0911 \ (0.0022)$	$0.7377 \ (0.0218)$	$0.0103 \ (0.0005)$	408
RP(3)	0.4591	0.0033	$0.0438 \ (0.0010)$	$0.0937 \ (0.0014)$	$0.6960 \ (0.0145)$	$0.0107 \ (0.0003)$	1000
RP(5)	0.4595	0.0033	$0.0438 \ (0.0010)$	$0.0940 \ (0.0014)$	$0.6950 \ (0.0146)$	$0.0108 \ (0.0003)$	1000
RP(9)	0.4595	0.0033	$0.0438 \ (0.0010)$	$0.0941 \ (0.0014)$	$0.6940 \ (0.0146)$	$0.0108 \ (0.0003)$	1000
RP(P)	0.4597	0.0033	$0.0437 \ (0.0010)$	$0.0942 \ (0.0014)$	$0.6910 \ (0.0146)$	$0.0108 \ (0.0003)$	1000
FP(W)	0.3455	0.0011	$0.1054 \ (0.0030)$	-0.0200 (0.0042)	$0.4136 \ (0.0198)$	$0.0115 \ (0.0005)$	619
FP (k=10)	0.4298	0.0016	$0.0592 \ (0.0014)$	$0.0643 \ (0.0020)$	$0.5353 \ (0.0167)$	$0.0076 \ (0.0003)$	893
FP (k=10000)	0.4518	0.0015	$0.0447 \ (0.0010)$	$0.0863 \ (0.0015)$	0.3893 (0.0159)	$0.0094 \ (0.0003)$	935

Table 147: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

	Avg. Estimate		Emp. SE	Bias	Coverage		N. Converged
Model frailty: 0	Gamma						
Cox	0.4597	0.0021	0.0497 (0.0011)	$0.0891 \ (0.0016)$	0.4899 (0.0159)	$0.0104 \ (0.0003)$	994
Exp	0.4763	0.0037	$0.0539 \ (0.0012)$	$0.1057 \ (0.0017)$	$0.6120 \ (0.0154)$	$0.0141 \ (0.0004)$	1000
Weibull	0.4583	0.0038	$0.0499 \ (0.0011)$	$0.0877 \ (0.0016)$	$0.7720 \ (0.0133)$	$0.0102 \ (0.0003)$	1000
Gompertz	0.4789	0.0037	$0.0542 \ (0.0020)$	$0.1083 \ (0.0028)$	$0.6181 \ (0.0255)$	$0.0147 \ (0.0007)$	364
RP(3)	0.4571	0.0038	$0.0498 \ (0.0011)$	$0.0865 \ (0.0016)$	$0.7830 \ (0.0130)$	$0.0100 \ (0.0003)$	1000
RP(5)	0.4575	0.0038	$0.0498 \ (0.0011)$	$0.0869 \ (0.0016)$	$0.7800 \ (0.0131)$	$0.0100 \ (0.0003)$	1000
RP(9)	0.4575	0.0038	$0.0498 \ (0.0011)$	$0.0869 \ (0.0016)$	$0.7790 \ (0.0131)$	$0.0100 \ (0.0003)$	1000
RP(P)	0.4576	0.0038	$0.0498 \ (0.0011)$	$0.0870 \ (0.0016)$	$0.7790 \ (0.0131)$	$0.0100 \ (0.0003)$	1000
FP(W)	0.4583	0.0020	$0.0499 \ (0.0011)$	$0.0877 \ (0.0016)$	$0.4930 \ (0.0158)$	$0.0102 \ (0.0003)$	1000
FP (k=10)	0.4474	0.0018	$0.0541 \ (0.0012)$	$0.0768 \ (0.0017)$	$0.5420 \ (0.0158)$	$0.0088 \ (0.0003)$	1000
FP (k=10000)	0.4794	0.0018	$0.0519 \ (0.0012)$	$0.1088 \; (0.0016)$	$0.3190 \ (0.0147)$	$0.0145 \ (0.0004)$	1000
Model frailty: I	Normal						
Cox	0.4596	0.0019	$0.0481 \ (0.0011)$	$0.0891 \ (0.0015)$	$0.4729 \ (0.0158)$	$0.0102 \ (0.0003)$	998
Exp	0.5034	0.0040	0.0517 (0.0012)	$0.1328 \ (0.0016)$	$0.4177 \ (0.0156)$	$0.0203 \ (0.0005)$	996
Weibull	0.4701	0.0039	$0.0485 \ (0.0011)$	$0.0995 \ (0.0015)$	$0.6925 \ (0.0146)$	$0.0122 \ (0.0003)$	995
Gompertz	0.5055	0.0041	$0.0511 \ (0.0019)$	$0.1349 \ (0.0026)$	$0.4000 \ (0.0253)$	$0.0208 \ (0.0008)$	375
RP(3)	0.4678	0.0039	$0.0486 \ (0.0011)$	$0.0972 \ (0.0015)$	$0.6980 \ (0.0145)$	$0.0118 \ (0.0003)$	1000
RP(5)	0.4685	0.0039	$0.0486 \ (0.0011)$	$0.0979 \ (0.0015)$	$0.6930 \ (0.0146)$	$0.0119 \ (0.0003)$	1000
RP(9)	0.4686	0.0039	$0.0486 \ (0.0011)$	$0.0981 \ (0.0015)$	$0.6920 \ (0.0146)$	$0.0120 \ (0.0003)$	1000
RP(P)	0.4686	0.0039	$0.0486 \ (0.0011)$	$0.0980 \ (0.0015)$	$0.6900 \ (0.0146)$	$0.0120 \ (0.0003)$	1000
FP(W)	0.3676	0.0013	$0.1038 \ (0.0028)$	-0.0030 (0.0039)	$0.4782 \ (0.0187)$	$0.0108 \; (0.0005)$	711
FP (k=10)	0.4432	0.0018	$0.0607 \ (0.0014)$	$0.0726 \ (0.0020)$	$0.5383 \ (0.0166)$	$0.0089 \ (0.0003)$	901
FP (k=10000)	0.4871	0.0017	$0.0527 \ (0.0012)$	$0.1166 \ (0.0017)$	$0.2479 \ (0.0140)$	$0.0164 \ (0.0004)$	948

Table 148: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.4017	0.0013	$0.0411 \ (0.0009)$	$0.0273 \ (0.0013)$	$0.8496 \ (0.0114)$	$0.0024 \ (0.0001)$	991
Exp	0.4052	0.0026	$0.0414 \ (0.0009)$	$0.0308 \ (0.0013)$	$0.9710 \ (0.0053)$	$0.0027 \ (0.0001)$	1000
Weibull	0.4048	0.0024	$0.0414 \ (0.0009)$	$0.0304 \ (0.0013)$	$0.9690 \ (0.0055)$	$0.0026 \ (0.0001)$	1000
Gompertz	0.4087	0.0027	$0.0409 \ (0.0014)$	$0.0343 \ (0.0020)$	$0.9709 \ (0.0083)$	$0.0028 \ (0.0002)$	413
RP(3)	0.3965	0.0023	$0.0410 \ (0.0009)$	$0.0221 \ (0.0013)$	$0.9760 \ (0.0048)$	$0.0022 \ (0.0001)$	1000
RP(5)	0.3975	0.0023	$0.0412 \ (0.0009)$	$0.0232 \ (0.0013)$	$0.9750 \ (0.0049)$	$0.0022 \ (0.0001)$	1000
RP(9)	0.3982	0.0023	$0.0412 \ (0.0009)$	$0.0238 \ (0.0013)$	$0.9740 \ (0.0050)$	$0.0023 \ (0.0001)$	1000
RP(P)	0.3980	0.0023	$0.0411 \ (0.0009)$	$0.0236 \ (0.0013)$	$0.9740 \ (0.0050)$	$0.0022 \ (0.0001)$	1000
FP(W)	0.4049	0.0014	$0.0414 \ (0.0009)$	$0.0305 \ (0.0013)$	$0.8458 \ (0.0114)$	$0.0026 \ (0.0001)$	999
FP (k=10)	0.4032	0.0013	$0.0409 \ (0.0009)$	$0.0288 \ (0.0013)$	$0.8410 \ (0.0116)$	$0.0025 \ (0.0001)$	1000
FP (k=10000)	0.4119	0.0013	$0.0405 \ (0.0010)$	$0.0375 \ (0.0014)$	$0.7967 \ (0.0139)$	$0.0030 \ (0.0001)$	841
Model frailty: I	Normal						
Cox	0.4304	0.0014	$0.0426 \ (0.0010)$	$0.0560 \ (0.0014)$	$0.6991 \ (0.0145)$	$0.0050 \ (0.0002)$	997
Exp	0.4399	0.0031	$0.0432 \ (0.0010)$	$0.0655 \ (0.0014)$	$0.8576 \ (0.0111)$	$0.0062 \ (0.0002)$	997
Weibull	0.4478	0.0030	$0.0437 \ (0.0010)$	$0.0734 \ (0.0014)$	$0.8116 \ (0.0124)$	$0.0073 \ (0.0002)$	998
Gompertz	0.4434	0.0031	$0.0447 \ (0.0015)$	$0.0690 \ (0.0022)$	$0.8337 \ (0.0181)$	$0.0068 \ (0.0004)$	421
RP(3)	0.4379	0.0029	$0.0436 \ (0.0010)$	$0.0635 \ (0.0014)$	$0.8400 \ (0.0116)$	$0.0059 \ (0.0002)$	1000
RP(5)	0.4381	0.0029	$0.0439 \ (0.0010)$	$0.0637 \ (0.0014)$	$0.8390 \ (0.0116)$	$0.0060 \ (0.0002)$	1000
RP(9)	0.4389	0.0029	$0.0439 \ (0.0010)$	$0.0645 \ (0.0014)$	$0.8370 \ (0.0117)$	$0.0061 \ (0.0002)$	1000
RP(P)	0.4392	0.0029	$0.0438 \ (0.0010)$	$0.0648 \ (0.0014)$	$0.8360 \ (0.0117)$	$0.0061 \ (0.0002)$	1000
FP(W)	0.3289	0.0009	$0.1011 \ (0.0030)$	-0.0455 (0.0042)	$0.4242 \ (0.0204)$	$0.0123 \ (0.0006)$	587
FP (k=10)	0.4165	0.0013	$0.0543 \ (0.0013)$	$0.0421 \ (0.0018)$	$0.6829 \ (0.0155)$	$0.0047 \ (0.0002)$	902
FP (k=10000)	0.4323	0.0012	0.0442 (0.0010)	$0.0579 \ (0.0015)$	$0.6027 \ (0.0163)$	$0.0053 \ (0.0002)$	896

Table 149: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.3838	0.0013	$0.0390 \ (0.0009)$	$0.0294 \ (0.0012)$	$0.8516 \ (0.0113)$	$0.0024 \ (0.0001)$	997
Exp	0.3655	0.0027	0.0417 (0.0009)	$0.0111 \ (0.0013)$	$0.9830 \ (0.0041)$	$0.0019 \ (0.0001)$	1000
Weibull	0.3698	0.0019	$0.0392 \ (0.0009)$	$0.0153 \ (0.0012)$	$0.9660 \ (0.0057)$	$0.0018 \ (0.0001)$	1000
Gompertz	0.3692	0.0027	$0.0430 \ (0.0013)$	$0.0147 \ (0.0019)$	$0.9766 \ (0.0067)$	$0.0021 \ (0.0001)$	513
RP(3)	0.3787	0.0020	$0.0387 \ (0.0009)$	$0.0243 \ (0.0012)$	$0.9630 \ (0.0060)$	$0.0021 \ (0.0001)$	1000
RP(5)	0.3799	0.0021	$0.0391 \ (0.0009)$	$0.0254 \ (0.0012)$	$0.9630 \ (0.0060)$	$0.0022 \ (0.0001)$	1000
RP(9)	0.3810	0.0021	$0.0390 \ (0.0009)$	$0.0265 \ (0.0012)$	$0.9610 \ (0.0061)$	$0.0022 \ (0.0001)$	1000
RP(P)	0.3795	0.0021	$0.0389 \ (0.0009)$	$0.0250 \ (0.0012)$	$0.9630 \ (0.0060)$	$0.0021 \ (0.0001)$	1000
FP(W)	0.3698	0.0012	$0.0392 \ (0.0009)$	$0.0153 \ (0.0012)$	$0.8890 \ (0.0099)$	$0.0018 \ (0.0001)$	1000
FP (k=10)	0.3782	0.0012	$0.0387 \ (0.0009)$	$0.0238 \ (0.0012)$	$0.8660 \ (0.0108)$	$0.0021 \ (0.0001)$	1000
FP (k=10000)	0.0553	0.0000	$0.0335 \ (0.0010)$	-0.2991 (0.0014)	$0.0000 \ (0.0000)$	$0.0906 \ (0.0007)$	614
Model frailty: I	Normal						
Cox	0.4115	0.0014	$0.0405 \ (0.0009)$	$0.0570 \ (0.0013)$	$0.6570 \ (0.0150)$	$0.0049 \ (0.0002)$	997
Exp	0.3738	0.0028	$0.0435 \ (0.0010)$	$0.0193 \ (0.0014)$	$0.9739 \ (0.0051)$	$0.0023 \ (0.0001)$	995
Weibull	0.4016	0.0023	$0.0412 \ (0.0009)$	$0.0472 \ (0.0013)$	$0.8976 \ (0.0096)$	$0.0039 \ (0.0001)$	996
Gompertz	0.3769	0.0028	$0.0437 \ (0.0014)$	$0.0225 \ (0.0019)$	$0.9702 \ (0.0076)$	$0.0024 \ (0.0002)$	503
RP(3)	0.4182	0.0025	$0.0412 \ (0.0009)$	$0.0637 \ (0.0013)$	$0.8190 \ (0.0122)$	$0.0058 \ (0.0002)$	1000
RP(5)	0.4191	0.0025	$0.0414 \ (0.0009)$	$0.0647 \ (0.0013)$	$0.8170 \ (0.0122)$	$0.0059 \ (0.0002)$	1000
RP(9)	0.4204	0.0025	$0.0412 \ (0.0009)$	$0.0659 \ (0.0013)$	$0.8060 \ (0.0125)$	$0.0060 \ (0.0002)$	1000
RP(P)	0.4182	0.0025	$0.0412 \ (0.0009)$	$0.0637 \ (0.0013)$	$0.8210 \ (0.0121)$	$0.0058 \ (0.0002)$	1000
FP(W)	0.2957	0.0008	$0.0845 \ (0.0026)$	-0.0588 (0.0036)	$0.4219 \ (0.0213)$	$0.0106 \ (0.0005)$	538
FP (k=10)	0.3982	0.0013	$0.0473 \ (0.0011)$	$0.0438 \; (0.0016)$	$0.6931 \ (0.0153)$	$0.0042 \ (0.0002)$	909
FP (k=10000)	0.3590	0.0008	0.0486 (0.0011)	0.0046 (0.0016)	0.7433 (0.0143)	$0.0024 \ (0.0001)$	931

Table 150: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.4413	0.0018	$0.0468 \ (0.0011)$	$0.0761 \ (0.0015)$	$0.5958 \ (0.0156)$	$0.0080 \ (0.0003)$	992
Exp	0.4415	0.0032	$0.0469 \ (0.0010)$	$0.0764 \ (0.0015)$	$0.7970 \ (0.0127)$	$0.0080 \ (0.0003)$	1000
Weibull	0.4362	0.0033	$0.0461 \ (0.0010)$	$0.0710 \ (0.0015)$	$0.8430 \ (0.0115)$	$0.0072 \ (0.0002)$	1000
Gompertz	0.4438	0.0033	$0.0474 \ (0.0017)$	$0.0787 \ (0.0024)$	$0.7964 \ (0.0204)$	$0.0084 \ (0.0004)$	388
RP(3)	0.4379	0.0033	$0.0468 \ (0.0010)$	$0.0727 \ (0.0015)$	$0.8300 \ (0.0119)$	$0.0075 \ (0.0002)$	1000
RP(5)	0.4395	0.0033	$0.0467 \ (0.0010)$	$0.0743 \ (0.0015)$	$0.8170 \ (0.0122)$	$0.0077 \ (0.0002)$	1000
RP(9)	0.4389	0.0033	$0.0467 \ (0.0010)$	$0.0737 \ (0.0015)$	$0.8190 \ (0.0122)$	$0.0076 \ (0.0002)$	1000
RP(P)	0.4391	0.0033	$0.0467 \ (0.0010)$	$0.0740 \ (0.0015)$	$0.8185 \ (0.0122)$	$0.0077 \ (0.0002)$	997
FP(W)	0.4362	0.0019	$0.0461 \ (0.0010)$	$0.0710 \ (0.0015)$	$0.6340 \ (0.0152)$	$0.0072 \ (0.0002)$	1000
FP (k=10)	0.4481	0.0019	$0.0461 \ (0.0010)$	$0.0829 \ (0.0015)$	$0.5390 \ (0.0158)$	$0.0090 \ (0.0003)$	1000
FP (k=10000)	0.4469	0.0018	$0.0459 \ (0.0010)$	$0.0817 \ (0.0015)$	$0.5490 \ (0.0157)$	$0.0088 \ (0.0003)$	1000
Model frailty: I	Normal						
Cox	0.4528	0.0018	$0.0459 \ (0.0010)$	$0.0876 \ (0.0015)$	$0.4739 \ (0.0158)$	$0.0098 \ (0.0003)$	996
Exp	0.4665	0.0036	$0.0465 \ (0.0010)$	$0.1013 \ (0.0015)$	$0.6563 \ (0.0151)$	$0.0124 \ (0.0003)$	995
Weibull	0.4545	0.0036	$0.0459 \ (0.0010)$	$0.0893 \ (0.0015)$	$0.7563 \ (0.0136)$	$0.0101 \ (0.0003)$	997
Gompertz	0.4662	0.0036	$0.0460 \ (0.0016)$	$0.1010 \ (0.0023)$	$0.6732 \ (0.0232)$	$0.0123 \ (0.0005)$	410
RP(3)	0.4595	0.0035	$0.0462 \ (0.0010)$	$0.0943 \ (0.0015)$	$0.7000 \ (0.0145)$	$0.0110 \ (0.0003)$	1000
RP(5)	0.4636	0.0035	$0.0461 \ (0.0010)$	$0.0985 \ (0.0015)$	$0.6690 \ (0.0149)$	$0.0118 \ (0.0003)$	1000
RP(9)	0.4638	0.0035	$0.0460 \ (0.0010)$	$0.0986 \ (0.0015)$	$0.6710 \ (0.0149)$	$0.0118 \ (0.0003)$	1000
RP(P)	0.4634	0.0035	$0.0460 \ (0.0010)$	$0.0983 \ (0.0015)$	$0.6730 \ (0.0148)$	$0.0118 \ (0.0003)$	1000
FP(W)	0.3535	0.0012	$0.0982 \ (0.0027)$	-0.0116 (0.0038)	$0.4985 \ (0.0193)$	$0.0098 \ (0.0004)$	674
FP (k=10)	0.4318	0.0017	$0.0627 \ (0.0015)$	$0.0667 \ (0.0021)$	$0.5398 \; (0.0167)$	$0.0084 \ (0.0003)$	893
FP (k=10000)	0.4614	0.0016	0.0463 (0.0011)	0.0963 (0.0015)	$0.3651 \ (0.0155)$	$0.0114 \ (0.0003)$	964

Table 151: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 0.75, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	0.5806	0.0026	$0.0621 \ (0.0014)$	$0.0044 \ (0.0020)$	$0.8820 \ (0.0104)$	$0.0039 \ (0.0002)$	958
Exp	0.5810	0.0038	$0.0621 \ (0.0014)$	$0.0047 \ (0.0020)$	$0.9420 \ (0.0074)$	$0.0039 \ (0.0002)$	1000
Weibull	0.5812	0.0038	$0.0621 \ (0.0014)$	$0.0049 \ (0.0020)$	$0.9370 \ (0.0077)$	$0.0039 \ (0.0002)$	1000
Gompertz	0.5812	0.0038	$0.0625 \ (0.0020)$	$0.0049 \ (0.0028)$	$0.9393 \ (0.0107)$	$0.0039 \ (0.0002)$	494
RP(3)	0.5811	0.0038	$0.0622 \ (0.0014)$	$0.0048 \ (0.0020)$	$0.9370 \ (0.0077)$	$0.0039 \ (0.0002)$	1000
RP(5)	0.5810	0.0038	$0.0622 \ (0.0014)$	$0.0048 \ (0.0020)$	$0.9380 \ (0.0076)$	$0.0039 \ (0.0002)$	1000
RP(9)	0.5810	0.0038	$0.0622 \ (0.0014)$	$0.0048 \ (0.0020)$	$0.9390 \ (0.0076)$	$0.0039 \ (0.0002)$	1000
RP(P)	0.5811	0.0038	$0.0622 \ (0.0014)$	$0.0048 \ (0.0020)$	$0.9379 \ (0.0076)$	$0.0039 \ (0.0002)$	999
FP(W)	0.5812	0.0026	$0.0621 \ (0.0014)$	$0.0049 \ (0.0020)$	$0.8830 \ (0.0102)$	$0.0039 \ (0.0002)$	1000
FP (k=10)	0.5785	0.0026	$0.0626 \ (0.0014)$	$0.0022 \ (0.0020)$	$0.8740 \ (0.0105)$	$0.0039 \ (0.0002)$	1000
FP (k=10000)	0.5799	0.0025	$0.0624 \ (0.0014)$	$0.0037 \ (0.0020)$	$0.8780 \ (0.0103)$	$0.0039 \ (0.0002)$	1000
Model frailty: I	Normal						
Cox	0.5604	0.0024	$0.0669 \ (0.0015)$	-0.0159 (0.0021)	$0.8190 \ (0.0122)$	$0.0047 \ (0.0002)$	1000
Exp	0.5659	0.0036	$0.0667 \ (0.0015)$	-0.0104 (0.0021)	$0.9179 \ (0.0087)$	$0.0045 \ (0.0002)$	999
Weibull	0.5663	0.0036	$0.0667 \ (0.0015)$	-0.0100 (0.0021)	$0.9149 \ (0.0088)$	$0.0045 \ (0.0002)$	999
Gompertz	0.5663	0.0037	$0.0642 \ (0.0021)$	-0.0099 (0.0030)	$0.9387 \ (0.0112)$	$0.0042 \ (0.0003)$	457
RP(3)	0.5658	0.0037	$0.0670 \ (0.0015)$	-0.0105 (0.0021)	$0.9130 \ (0.0089)$	$0.0046 \ (0.0002)$	1000
RP(5)	0.5658	0.0037	$0.0670 \ (0.0015)$	-0.0105 (0.0021)	$0.9130 \ (0.0089)$	$0.0046 \ (0.0002)$	1000
RP(9)	0.5658	0.0037	$0.0670 \ (0.0015)$	-0.0105 (0.0021)	$0.9120 \ (0.0090)$	$0.0046 \ (0.0002)$	1000
RP(P)	0.5659	0.0037	$0.0670 \ (0.0015)$	-0.0104 (0.0021)	$0.9150 \ (0.0088)$	$0.0046 \ (0.0002)$	1000
FP(W)	0.4239	0.0015	$0.1440 \ (0.0038)$	$-0.1523 \ (0.0054)$	$0.3866 \ (0.0184)$	$0.0439 \ (0.0020)$	701
FP (k=10)	0.5393	0.0022	$0.0784 \ (0.0018)$	-0.0369 (0.0025)	$0.7248 \ (0.0144)$	$0.0075 \ (0.0004)$	963
FP (k=10000)	0.5521	0.0021	$0.0671 \ (0.0015)$	-0.0241 (0.0021)	$0.7859 \ (0.0131)$	$0.0051 \ (0.0002)$	981

Table 152: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.5908	0.0029	$0.0699 \ (0.0016)$	-0.0000 (0.0023)	$0.8653 \ (0.0110)$	$0.0049 \ (0.0002)$	965
Exp	0.6105	0.0045	$0.0719 \ (0.0016)$	$0.0197 \ (0.0023)$	$0.9220 \ (0.0085)$	$0.0055 \ (0.0002)$	1000
Weibull	0.5922	0.0047	$0.0693 \ (0.0016)$	$0.0014 \ (0.0022)$	$0.9430 \ (0.0073)$	$0.0048 \ (0.0002)$	1000
Gompertz	0.6129	0.0046	$0.0700 \ (0.0024)$	$0.0221 \ (0.0034)$	$0.9212 \ (0.0132)$	$0.0054 \ (0.0004)$	419
RP(3)	0.5918	0.0047	$0.0693 \ (0.0016)$	$0.0010 \ (0.0022)$	$0.9430 \ (0.0073)$	$0.0048 \ (0.0002)$	1000
RP(5)	0.5918	0.0047	$0.0693 \ (0.0016)$	$0.0009 \ (0.0022)$	$0.9440 \ (0.0073)$	$0.0048 \ (0.0002)$	1000
RP(9)	0.5918	0.0047	$0.0693 \ (0.0016)$	$0.0009 \ (0.0022)$	$0.9440 \ (0.0073)$	$0.0048 \ (0.0002)$	1000
RP(P)	0.5919	0.0047	$0.0693 \ (0.0016)$	$0.0011 \ (0.0022)$	$0.9430 \ (0.0073)$	$0.0048 \ (0.0002)$	1000
FP(W)	0.5922	0.0029	$0.0693 \ (0.0016)$	$0.0014 \ (0.0022)$	$0.8660 \ (0.0108)$	$0.0048 \ (0.0002)$	1000
FP (k=10)	0.5682	0.0026	$0.0720 \ (0.0016)$	-0.0227 (0.0023)	$0.8060 \ (0.0125)$	$0.0057 \ (0.0002)$	1000
FP (k=10000)	0.5729	0.0025	$0.0757 \ (0.0017)$	-0.0179 (0.0024)	$0.7990 \ (0.0127)$	$0.0060 \ (0.0003)$	1000
Model frailty: I	Normal						
Cox	0.5642	0.0026	$0.0752 \ (0.0017)$	-0.0266 (0.0024)	$0.7870 \ (0.0129)$	$0.0064 \ (0.0003)$	1000
Exp	0.5897	0.0042	$0.0781 \ (0.0017)$	-0.0011 (0.0025)	$0.8839 \ (0.0101)$	$0.0061 \ (0.0003)$	999
Weibull	0.5696	0.0043	$0.0752 \ (0.0017)$	-0.0212 (0.0024)	$0.8980 \ (0.0096)$	$0.0061 \ (0.0003)$	1000
Gompertz	0.5908	0.0042	$0.0759 \ (0.0027)$	-0.0000 (0.0037)	$0.8856 \ (0.0157)$	$0.0057 \ (0.0004)$	411
RP(3)	0.5690	0.0043	$0.0753 \ (0.0017)$	-0.0218 (0.0024)	$0.8990 \ (0.0095)$	$0.0061 \ (0.0003)$	1000
RP(5)	0.5690	0.0043	$0.0753 \ (0.0017)$	-0.0218 (0.0024)	$0.8990 \ (0.0095)$	$0.0061 \ (0.0003)$	1000
RP(9)	0.5690	0.0043	$0.0753 \ (0.0017)$	-0.0218 (0.0024)	$0.8990 \ (0.0095)$	$0.0061 \ (0.0003)$	1000
RP(P)	0.5692	0.0043	$0.0753 \ (0.0017)$	-0.0216 (0.0024)	$0.8970 \ (0.0096)$	$0.0061 \ (0.0003)$	1000
FP(W)	0.4563	0.0020	$0.1530 \ (0.0039)$	$-0.1345 \ (0.0055)$	$0.4392 \ (0.0179)$	$0.0415 \ (0.0020)$	765
FP (k=10)	0.5419	0.0025	$0.0836 \ (0.0019)$	-0.0489 (0.0027)	$0.7079 \ (0.0147)$	$0.0094 \ (0.0005)$	962
FP (k=10000)	0.5533	0.0023	$0.0752 \ (0.0017)$	$-0.0375 \ (0.0024)$	$0.7457 \ (0.0139)$	$0.0071 \ (0.0003)$	987

Table 153: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 0.75, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

confidence intervals	for blas and cov	erage base	a on Monte Cari	standard errors d	na not include the	e value 0 or 95% ,	respectively.
Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	0.5456	0.0021	$0.0543 \ (0.0012)$	$0.0019 \ (0.0017)$	$0.9037 \ (0.0095)$	0.0029 (0.0001)	966
Exp	0.5171	0.0031	$0.0503 \ (0.0011)$	-0.0266 (0.0016)	$0.9470 \ (0.0071)$	$0.0032 \ (0.0001)$	1000
Weibull	0.5341	0.0029	$0.0525 \ (0.0012)$	-0.0096 (0.0017)	$0.9530 \ (0.0067)$	$0.0028 \ (0.0001)$	1000
Gompertz	0.5317	0.0030	$0.0583 \ (0.0015)$	-0.0120 (0.0021)	$0.9284 \ (0.0095)$	$0.0035 \ (0.0002)$	740
RP(3)	0.5442	0.0029	$0.0543 \ (0.0012)$	$0.0005 \ (0.0017)$	$0.9420 \ (0.0074)$	$0.0029 \ (0.0001)$	1000
RP(5)	0.5450	0.0029	$0.0545 \ (0.0012)$	$0.0013 \ (0.0017)$	$0.9450 \ (0.0072)$	$0.0030 \ (0.0001)$	1000
RP(9)	0.5453	0.0029	$0.0545 \ (0.0012)$	$0.0016 \ (0.0017)$	$0.9450 \ (0.0072)$	$0.0030 \ (0.0001)$	1000
RP(P)	0.5433	0.0029	$0.0541 \ (0.0012)$	-0.0004 (0.0017)	$0.9470 \ (0.0071)$	$0.0029 \ (0.0001)$	1000
FP(W)	0.5341	0.0022	$0.0525 \ (0.0012)$	-0.0096 (0.0017)	$0.9140 \ (0.0089)$	$0.0028 \ (0.0001)$	1000
FP (k=10)	0.5455	0.0021	$0.0546 \ (0.0012)$	$0.0018 \ (0.0017)$	$0.9000 \ (0.0095)$	$0.0030 \ (0.0001)$	1000
FP (k=10000)	0.5438	0.0021	$0.0540 \ (0.0012)$	$0.0001 \ (0.0017)$	$0.9000 \ (0.0095)$	$0.0029 \ (0.0001)$	1000
Model frailty: I	Normal						
Cox	0.5363	0.0020	$0.0577 \ (0.0013)$	-0.0074 (0.0018)	$0.8640 \ (0.0108)$	$0.0034 \ (0.0002)$	1000
Exp	0.5103	0.0031	$0.0539 \ (0.0012)$	-0.0334 (0.0017)	$0.9099 \ (0.0091)$	$0.0040 \ (0.0002)$	999
Weibull	0.5316	0.0029	$0.0553 \ (0.0012)$	-0.0121 (0.0017)	$0.9380 \ (0.0076)$	$0.0032 \ (0.0001)$	1000
Gompertz	0.5253	0.0030	$0.0629 \ (0.0017)$	-0.0184 (0.0023)	$0.8949 \ (0.0114)$	$0.0043 \ (0.0002)$	723
RP(3)	0.5412	0.0029	$0.0571 \ (0.0013)$	-0.0025 (0.0018)	$0.9320 \ (0.0080)$	$0.0033 \ (0.0002)$	1000
RP(5)	0.5417	0.0029	$0.0573 \ (0.0013)$	-0.0020 (0.0018)	$0.9340 \ (0.0079)$	$0.0033 \ (0.0002)$	1000
RP(9)	0.5418	0.0029	$0.0574 \ (0.0013)$	-0.0019 (0.0018)	$0.9350 \ (0.0078)$	$0.0033 \ (0.0002)$	1000
RP(P)	0.5403	0.0029	$0.0569 \ (0.0013)$	-0.0034 (0.0018)	$0.9340 \ (0.0079)$	$0.0033 \ (0.0002)$	1000
FP(W)	0.4002	0.0013	$0.1314 \ (0.0036)$	$-0.1435 \ (0.0051)$	$0.3594 \ (0.0186)$	$0.0378 \ (0.0018)$	665
FP (k=10)	0.5204	0.0019	$0.0643 \ (0.0015)$	-0.0233 (0.0021)	$0.7788 \ (0.0136)$	$0.0047 \ (0.0002)$	936
FP (k=10000)	0.5206	0.0016	0.0602 (0.0014)	-0.0231 (0.0019)	$0.7660 \ (0.0136)$	$0.0042 \ (0.0002)$	966

Table 154: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate		Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	0.5197	0.0020	0.0537 (0.0012)	$0.0016 \ (0.0017)$	$0.9019 \ (0.0097)$	$0.0029 \ (0.0001)$	948
Exp	0.4851	0.0032	$0.0515 \ (0.0012)$	-0.0329 (0.0016)	$0.9310 \ (0.0080)$	$0.0037 \ (0.0002)$	1000
Weibull	0.5301	0.0027	$0.0553 \ (0.0012)$	$0.0121 \ (0.0017)$	$0.9200 \ (0.0086)$	$0.0032 \ (0.0001)$	1000
Gompertz	0.5241	0.0029	$0.0641 \ (0.0015)$	$0.0060 \ (0.0021)$	$0.8992 \ (0.0098)$	$0.0041 \ (0.0002)$	942
RP(3)	0.5183	0.0027	$0.0532 \ (0.0012)$	$0.0003 \ (0.0017)$	$0.9440 \ (0.0073)$	$0.0028 \ (0.0001)$	1000
RP(5)	0.5195	0.0027	$0.0534 \ (0.0012)$	$0.0015 \ (0.0017)$	$0.9440 \ (0.0073)$	$0.0029 \ (0.0001)$	1000
RP(9)	0.5197	0.0027	$0.0535 \ (0.0012)$	$0.0017 \ (0.0017)$	$0.9449 \ (0.0072)$	$0.0029 \ (0.0001)$	999
RP(P)	0.5198	0.0027	$0.0535 \ (0.0012)$	$0.0017 \ (0.0017)$	$0.9440 \ (0.0073)$	$0.0029 \ (0.0001)$	1000
FP(W)	0.5300	0.0019	$0.0551 \ (0.0012)$	$0.0119 \ (0.0017)$	$0.8686 \ (0.0107)$	$0.0032 \ (0.0001)$	997
FP (k=10)	0.5146	0.0019	$0.0547 \ (0.0012)$	-0.0034 (0.0017)	$0.8870 \ (0.0100)$	$0.0030 \ (0.0001)$	1000
FP (k=10000)	0.0785	0.0000	$0.0176 \ (0.0004)$	-0.4395 (0.0006)	$0.0000 \ (0.0000)$	$0.1935 \ (0.0005)$	977
Model frailty: I	Normal						
Cox	0.5106	0.0019	$0.0567 \ (0.0013)$	-0.0075 (0.0018)	$0.8640 \ (0.0108)$	$0.0033 \ (0.0001)$	1000
Exp	0.4728	0.0031	$0.0556 \ (0.0012)$	-0.0452 (0.0018)	$0.8707 \ (0.0106)$	$0.0051 \ (0.0002)$	998
Weibull	0.5258	0.0026	$0.0583 \ (0.0013)$	$0.0078 \ (0.0018)$	$0.9108 \; (0.0090)$	0.0035 (0.0002)	998
Gompertz	0.5147	0.0028	$0.0698 \ (0.0017)$	-0.0033 (0.0024)	$0.8677 \ (0.0115)$	$0.0049 \ (0.0002)$	862
RP(3)	0.5153	0.0027	$0.0560 \ (0.0013)$	-0.0027 (0.0018)	$0.9250 \ (0.0083)$	$0.0031 \ (0.0001)$	1000
RP(5)	0.5157	0.0027	$0.0564 \ (0.0013)$	-0.0023 (0.0018)	$0.9240 \ (0.0084)$	$0.0032 \ (0.0001)$	1000
RP(9)	0.5158	0.0027	$0.0565 \ (0.0013)$	-0.0022 (0.0018)	$0.9250 \ (0.0083)$	$0.0032 \ (0.0001)$	1000
RP(P)	0.5160	0.0027	$0.0565 \ (0.0013)$	-0.0021 (0.0018)	$0.9230 \ (0.0084)$	$0.0032 \ (0.0001)$	1000
FP(W)	0.3913	0.0011	$0.1293 \ (0.0037)$	$-0.1267 \ (0.0053)$	$0.3665 \ (0.0196)$	$0.0328 \ (0.0016)$	603
FP (k=10)	0.4936	0.0017	$0.0625 \ (0.0014)$	-0.0244 (0.0020)	$0.7904 \ (0.0133)$	$0.0045 \ (0.0002)$	940
FP (k=10000)	0.4550	0.0013	$0.0752 \ (0.0017)$	-0.0631 (0.0024)	$0.5192 \ (0.0161)$	$0.0096 \ (0.0004)$	965

Table 155: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						_
Cox	0.5815	0.0027	$0.0665 \ (0.0015)$	-0.0015 (0.0021)	0.8875 (0.0102)	$0.0044 \ (0.0002)$	969
Exp	0.5951	0.0041	$0.0680 \ (0.0015)$	$0.0122 \ (0.0021)$	$0.9350 \ (0.0078)$	$0.0048 \ (0.0002)$	1000
Weibull	0.5860	0.0042	$0.0669 \ (0.0015)$	$0.0031 \ (0.0021)$	$0.9460 \ (0.0071)$	$0.0045 \ (0.0002)$	1000
Gompertz	0.5949	0.0041	$0.0676 \ (0.0022)$	$0.0120 \ (0.0032)$	$0.9342 \ (0.0116)$	$0.0047 \ (0.0004)$	456
RP(3)	0.5835	0.0042	$0.0661 \ (0.0015)$	$0.0006 \ (0.0021)$	$0.9450 \ (0.0072)$	$0.0044 \ (0.0002)$	1000
RP(5)	0.5828	0.0042	$0.0660 \ (0.0015)$	-0.0001 (0.0021)	$0.9450 \ (0.0072)$	$0.0043 \ (0.0002)$	1000
RP(9)	0.5826	0.0042	$0.0659 \ (0.0015)$	-0.0003 (0.0021)	$0.9450 \ (0.0072)$	$0.0043 \ (0.0002)$	1000
RP(P)	0.5832	0.0042	$0.0661 \ (0.0015)$	$0.0002 \ (0.0021)$	$0.9450 \ (0.0072)$	$0.0044 \ (0.0002)$	1000
FP(W)	0.5860	0.0027	$0.0669 \ (0.0015)$	$0.0031 \ (0.0021)$	$0.8860 \ (0.0101)$	$0.0045 \ (0.0002)$	1000
FP (k=10)	0.5759	0.0027	$0.0670 \ (0.0015)$	-0.0070 (0.0021)	$0.8660 \ (0.0108)$	$0.0045 \ (0.0002)$	1000
FP (k=10000)	0.5795	0.0027	$0.0663 \ (0.0015)$	-0.0034 (0.0021)	$0.8800 \ (0.0103)$	$0.0044 \ (0.0002)$	1000
Model frailty: I	Normal						
Cox	0.5593	0.0025	$0.0712 \ (0.0016)$	-0.0236 (0.0023)	$0.7960 \ (0.0127)$	$0.0056 \ (0.0002)$	1000
Exp	0.5768	0.0039	$0.0731\ (0.0016)$	-0.0061 (0.0023)	$0.9050 \ (0.0093)$	$0.0054 \ (0.0002)$	1000
Weibull	0.5666	0.0039	$0.0720 \ (0.0016)$	-0.0163 (0.0023)	$0.9048 \ (0.0093)$	$0.0054 \ (0.0002)$	998
Gompertz	0.5767	0.0039	$0.0728 \ (0.0025)$	$-0.0062 \ (0.0035)$	$0.9133 \ (0.0136)$	$0.0053 \ (0.0004)$	427
RP(3)	0.5648	0.0040	$0.0716 \ (0.0016)$	-0.0182 (0.0023)	$0.9050 \ (0.0093)$	$0.0054 \ (0.0002)$	1000
RP(5)	0.5647	0.0039	$0.0713 \ (0.0016)$	-0.0182 (0.0023)	$0.9050 \ (0.0093)$	$0.0054 \ (0.0002)$	1000
RP(9)	0.5646	0.0039	$0.0713 \ (0.0016)$	-0.0183 (0.0023)	$0.9040 \ (0.0093)$	$0.0054 \ (0.0002)$	1000
RP(P)	0.5648	0.0039	$0.0715 \ (0.0016)$	-0.0181 (0.0023)	$0.9050 \ (0.0093)$	$0.0054 \ (0.0002)$	1000
FP(W)	0.4341	0.0017	$0.1472 \ (0.0038)$	-0.1488 (0.0053)	$0.4089 \ (0.0177)$	$0.0438 \ (0.0020)$	768
FP (k=10)	0.5345	0.0023	$0.0825 \ (0.0019)$	-0.0484 (0.0027)	$0.6852 \ (0.0150)$	$0.0091 \ (0.0005)$	953
FP (k=10000)	0.5522	0.0023	$0.0684 \ (0.0015)$	-0.0308 (0.0022)	$0.7732 \ (0.0134)$	$0.0056 \ (0.0002)$	979

Table 156: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.75, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	0.5847	0.0025	$0.0657 \ (0.0015)$	-0.0112 (0.0021)	0.8555 (0.0113)	$0.0044 \ (0.0002)$	962
Exp	0.5833	0.0033	$0.0655 \ (0.0015)$	-0.0127 (0.0021)	$0.9010 \ (0.0094)$	$0.0044 \ (0.0002)$	1000
Weibull	0.5833	0.0033	$0.0656 \ (0.0015)$	-0.0126 (0.0021)	$0.9000 \ (0.0095)$	$0.0045 \ (0.0002)$	1000
Gompertz	0.5855	0.0033	$0.0638 \ (0.0020)$	-0.0104 (0.0029)	$0.9058 \ (0.0131)$	$0.0042 \ (0.0003)$	499
RP(3)	0.5833	0.0033	$0.0656 \ (0.0015)$	-0.0126 (0.0021)	$0.9000 \ (0.0095)$	$0.0045 \ (0.0002)$	1000
RP(5)	0.5833	0.0033	$0.0656 \ (0.0015)$	-0.0126 (0.0021)	$0.8980 \ (0.0096)$	$0.0045 \ (0.0002)$	1000
RP(9)	0.5833	0.0033	$0.0656 \ (0.0015)$	-0.0126 (0.0021)	$0.9000 \ (0.0095)$	$0.0045 \ (0.0002)$	1000
RP(P)	0.5833	0.0033	$0.0656 \ (0.0015)$	-0.0126 (0.0021)	$0.8988 \ (0.0095)$	$0.0045 \ (0.0002)$	998
FP(W)	0.5833	0.0025	$0.0656 \ (0.0015)$	-0.0127 (0.0021)	0.8559 (0.0111)	$0.0045 \ (0.0002)$	999
FP (k=10)	0.5844	0.0025	$0.0650 \ (0.0015)$	-0.0115 (0.0021)	$0.8580 \ (0.0110)$	$0.0044 \ (0.0002)$	1000
FP (k=10000)	0.5843	0.0025	$0.0650 \ (0.0015)$	-0.0116 (0.0021)	$0.8550 \ (0.0111)$	$0.0044 \ (0.0002)$	1000
Model frailty: I	Normal						
Cox	0.5931	0.0025	$0.0607 \ (0.0014)$	-0.0028 (0.0019)	$0.8970 \ (0.0096)$	$0.0037 \ (0.0002)$	1000
Exp	0.5986	0.0034	$0.0603 \ (0.0014)$	$0.0027 \ (0.0019)$	$0.9409 \ (0.0075)$	$0.0036 \ (0.0002)$	998
Weibull	0.5987	0.0034	$0.0603 \ (0.0014)$	$0.0028 \ (0.0019)$	$0.9429 \ (0.0073)$	$0.0036 \ (0.0002)$	999
Gompertz	0.5997	0.0034	$0.0614 \ (0.0020)$	$0.0038 \ (0.0028)$	$0.9333 \ (0.0112)$	$0.0038 \ (0.0003)$	495
RP(3)	0.5986	0.0034	$0.0604 \ (0.0014)$	$0.0027 \ (0.0019)$	$0.9400 \ (0.0075)$	$0.0037 \ (0.0002)$	1000
RP(5)	0.5986	0.0034	$0.0604 \ (0.0014)$	$0.0027 \ (0.0019)$	$0.9400 \ (0.0075)$	$0.0037 \ (0.0002)$	1000
RP(9)	0.5986	0.0034	$0.0604 \ (0.0014)$	$0.0027 \ (0.0019)$	$0.9410 \ (0.0075)$	$0.0037 \ (0.0002)$	1000
RP(P)	0.5987	0.0034	$0.0603 \ (0.0014)$	$0.0028 \ (0.0019)$	$0.9410 \ (0.0075)$	$0.0036 \ (0.0002)$	1000
FP (W)	0.4532	0.0016	$0.1523 \ (0.0042)$	-0.1427 (0.0059)	$0.4345 \ (0.0191)$	$0.0435 \ (0.0022)$	672
FP (k=10)	0.5744	0.0024	0.0731 (0.0017)	-0.0215 (0.0024)	0.8241 (0.0124)	0.0058 (0.0004)	938
FP (k=10000)	0.5869	0.0022	0.0612 (0.0014)	-0.0090 (0.0020)	0.8580 (0.0112)	$0.0038 \; (0.0002)$	972

Table 157: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

	Avg. Estimate		Emp. SE	Bias	Coverage		N. Converged
Model frailty: (Gamma						
Cox	0.6203	0.0030	$0.0642 \ (0.0015)$	-0.0035 (0.0021)	0.9034 (0.0095)	0.0041 (0.0002)	963
Exp	0.6342	0.0039	$0.0705 \ (0.0016)$	$0.0104 \ (0.0022)$	$0.9120 \ (0.0090)$	$0.0051 \ (0.0002)$	1000
Weibull	0.6205	0.0041	$0.0642 \ (0.0014)$	-0.0033 (0.0020)	$0.9380 \ (0.0076)$	$0.0041 \ (0.0002)$	1000
Gompertz	0.6338	0.0040	$0.0698 \ (0.0025)$	$0.0100 \ (0.0035)$	$0.9194 \ (0.0137)$	$0.0050 \ (0.0004)$	397
RP(3)	0.6202	0.0041	$0.0641 \ (0.0014)$	-0.0036 (0.0020)	$0.9410 \ (0.0075)$	$0.0041 \ (0.0002)$	1000
RP(5)	0.6200	0.0041	$0.0641 \ (0.0014)$	-0.0038 (0.0020)	$0.9410 \ (0.0075)$	$0.0041 \ (0.0002)$	1000
RP(9)	0.6200	0.0041	$0.0641 \ (0.0014)$	-0.0038 (0.0020)	$0.9400 \ (0.0075)$	$0.0041 \ (0.0002)$	1000
RP(P)	0.6201	0.0041	$0.0641 \ (0.0014)$	-0.0037 (0.0020)	$0.9390 \ (0.0076)$	$0.0041 \ (0.0002)$	1000
FP(W)	0.6205	0.0030	$0.0642 \ (0.0014)$	-0.0033 (0.0020)	$0.9020 \ (0.0094)$	$0.0041 \ (0.0002)$	1000
FP (k=10)	0.6091	0.0028	$0.0642 \ (0.0014)$	-0.0147 (0.0020)	$0.8760 \ (0.0104)$	$0.0043 \ (0.0002)$	1000
FP (k=10000)	0.6172	0.0027	$0.0649 \ (0.0015)$	-0.0066 (0.0021)	$0.8820 \ (0.0102)$	$0.0042 \ (0.0002)$	1000
Model frailty: I	Normal						
Cox	0.6221	0.0029	$0.0614 \ (0.0014)$	-0.0017 (0.0019)	$0.9140 \ (0.0089)$	$0.0038 \ (0.0002)$	1000
Exp	0.6532	0.0039	$0.0634 \ (0.0014)$	$0.0294 \ (0.0020)$	$0.9259 \ (0.0083)$	$0.0049 \ (0.0002)$	999
Weibull	0.6283	0.0041	$0.0612 \ (0.0014)$	$0.0045 \ (0.0019)$	$0.9550 \ (0.0066)$	$0.0038 \ (0.0002)$	1000
Gompertz	0.6524	0.0039	$0.0632 \ (0.0024)$	$0.0286 \ (0.0034)$	$0.9226 \ (0.0143)$	$0.0048 \ (0.0004)$	349
RP(3)	0.6276	0.0041	$0.0613 \ (0.0014)$	$0.0038 \ (0.0019)$	$0.9540 \ (0.0066)$	$0.0038 \ (0.0002)$	1000
RP(5)	0.6275	0.0041	$0.0613 \ (0.0014)$	$0.0037 \ (0.0019)$	$0.9540 \ (0.0066)$	$0.0038 \ (0.0002)$	1000
RP(9)	0.6275	0.0041	$0.0613 \ (0.0014)$	$0.0037 \ (0.0019)$	$0.9540 \ (0.0066)$	$0.0038 \ (0.0002)$	1000
RP(P)	0.6277	0.0041	$0.0613 \ (0.0014)$	$0.0039 \ (0.0019)$	$0.9550 \ (0.0066)$	$0.0038 \ (0.0002)$	1000
FP(W)	0.4821	0.0020	$0.1609 \ (0.0043)$	-0.1417 (0.0060)	$0.4734 \ (0.0187)$	$0.0459 \ (0.0024)$	714
FP (k=10)	0.5961	0.0027	$0.0750 \ (0.0017)$	-0.0277 (0.0024)	$0.8141 \ (0.0126)$	$0.0064 \ (0.0004)$	952
FP (k=10000)	0.6112	0.0025	$0.0628 \ (0.0014)$	-0.0126 (0.0020)	0.8626 (0.0110)	0.0041 (0.0002)	975

Table 158: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.5245	0.0019	$0.0574 \ (0.0013)$	-0.0205 (0.0019)	$0.8267 \ (0.0122)$	$0.0037 \ (0.0002)$	958
Exp	0.4991	0.0027	$0.0521 \ (0.0012)$	-0.0459 (0.0016)	$0.8430 \ (0.0115)$	$0.0048 \ (0.0002)$	1000
Weibull	0.5099	0.0025	$0.0565 \ (0.0013)$	-0.0351 (0.0018)	$0.8500 \ (0.0113)$	$0.0044 \ (0.0002)$	1000
Gompertz	0.5165	0.0026	$0.0595 \ (0.0016)$	$-0.0285 \ (0.0022)$	$0.8684 \ (0.0126)$	$0.0043 \ (0.0002)$	722
RP(3)	0.5214	0.0024	$0.0574 \ (0.0013)$	$-0.0235 \ (0.0018)$	$0.8770 \ (0.0104)$	$0.0038 \ (0.0002)$	1000
RP(5)	0.5227	0.0025	$0.0575 \ (0.0013)$	-0.0222 (0.0018)	$0.8780 \ (0.0103)$	$0.0038 \ (0.0002)$	1000
RP(9)	0.5232	0.0025	$0.0575 \ (0.0013)$	-0.0218 (0.0018)	$0.8770 \ (0.0104)$	$0.0038 \ (0.0002)$	1000
RP(P)	0.5208	0.0025	$0.0572 \ (0.0013)$	-0.0241 (0.0018)	$0.8759 \ (0.0104)$	$0.0039 \ (0.0002)$	999
FP(W)	0.5099	0.0020	$0.0565 \ (0.0013)$	-0.0351 (0.0018)	$0.7880 \ (0.0129)$	$0.0044 \ (0.0002)$	1000
FP (k=10)	0.5259	0.0019	$0.0570 \ (0.0013)$	-0.0191 (0.0018)	$0.8330 \ (0.0118)$	$0.0036 \ (0.0002)$	1000
FP (k=10000)	0.5239	0.0019	$0.0562 \ (0.0013)$	-0.0210 (0.0018)	$0.8220 \ (0.0121)$	$0.0036 \ (0.0002)$	1000
Model frailty: I	Normal						
Cox	0.5394	0.0020	$0.0525 \ (0.0012)$	-0.0056 (0.0017)	$0.8980 \ (0.0096)$	$0.0028 \ (0.0001)$	1000
Exp	0.5133	0.0029	$0.0484 \ (0.0011)$	$-0.0317 \ (0.0015)$	$0.9309 \ (0.0080)$	$0.0033 \ (0.0001)$	999
Weibull	0.5316	0.0028	$0.0509 \ (0.0011)$	-0.0134 (0.0016)	$0.9430 \ (0.0073)$	$0.0028 \ (0.0001)$	1000
Gompertz	0.5305	0.0028	$0.0569 \ (0.0015)$	-0.0145 (0.0021)	$0.9250 \ (0.0098)$	$0.0034 \ (0.0002)$	720
RP(3)	0.5422	0.0027	$0.0525 \ (0.0012)$	-0.0028 (0.0017)	$0.9410 \ (0.0075)$	$0.0028 \ (0.0001)$	1000
RP(5)	0.5433	0.0027	$0.0526 \ (0.0012)$	-0.0016 (0.0017)	$0.9410 \ (0.0075)$	$0.0028 \ (0.0001)$	1000
RP(9)	0.5438	0.0027	$0.0526 \ (0.0012)$	-0.0012 (0.0017)	$0.9430 \ (0.0073)$	$0.0028 \ (0.0001)$	1000
RP(P)	0.5416	0.0027	$0.0523 \ (0.0012)$	-0.0033 (0.0017)	$0.9440 \ (0.0073)$	$0.0027 \ (0.0001)$	1000
FP (W)	0.3894	0.0012	$0.1330 \ (0.0038)$	-0.1556 (0.0054)	$0.3675 \ (0.0194)$	$0.0419 \ (0.0019)$	615
FP (k=10)	0.5336	0.0019	$0.0604 \ (0.0014)$	-0.0113 (0.0020)	$0.8438 \ (0.0119)$	$0.0038 \ (0.0002)$	928
FP (k=10000)	0.5432	0.0017	$0.0536 \ (0.0012)$	-0.0018 (0.0017)	$0.8774 \ (0.0106)$	$0.0029 \ (0.0001)$	954

Table 159: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.5057	0.0018	0.0577 (0.0013)	-0.0160 (0.0019)	$0.8220 \ (0.0124)$	$0.0036 \ (0.0002)$	955
Exp	0.4798	0.0028	$0.0510 \ (0.0011)$	-0.0418 (0.0016)	$0.8760 \ (0.0104)$	$0.0043 \ (0.0002)$	1000
Weibull	0.5174	0.0022	$0.0580 \ (0.0013)$	-0.0043 (0.0018)	$0.8840 \ (0.0101)$	$0.0034 \ (0.0002)$	1000
Gompertz	0.5232	0.0024	$0.0614 \ (0.0014)$	$0.0015 \ (0.0020)$	$0.8960 \ (0.0098)$	$0.0038 \ (0.0002)$	962
RP(3)	0.5020	0.0023	$0.0571 \ (0.0013)$	-0.0196 (0.0018)	$0.8670 \ (0.0107)$	$0.0036 \ (0.0002)$	1000
RP(5)	0.5040	0.0023	$0.0575 \ (0.0013)$	-0.0177 (0.0018)	$0.8730 \ (0.0105)$	$0.0036 \ (0.0002)$	1000
RP(9)	0.5045	0.0023	$0.0574 \ (0.0013)$	-0.0172 (0.0018)	$0.8746 \ (0.0105)$	$0.0036 \ (0.0002)$	997
RP(P)	0.5046	0.0023	$0.0573 \ (0.0013)$	-0.0171 (0.0018)	$0.8740 \ (0.0105)$	$0.0036 \ (0.0002)$	1000
FP(W)	0.5174	0.0017	$0.0580 \ (0.0013)$	-0.0043 (0.0018)	$0.8360 \ (0.0117)$	$0.0034 \ (0.0002)$	1000
FP (k=10)	0.5147	0.0018	$0.0548 \ (0.0012)$	-0.0069 (0.0017)	$0.8660 \ (0.0108)$	$0.0030 \ (0.0001)$	1000
FP (k=10000)	0.0609	0.0000	$0.0133 \ (0.0003)$	$-0.4607 \ (0.0004)$	$0.0000 \ (0.0000)$	$0.2124 \ (0.0004)$	918
Model frailty: I	Normal						
Cox	0.5201	0.0019	$0.0523 \ (0.0012)$	-0.0015 (0.0017)	$0.8990 \ (0.0095)$	$0.0027 \ (0.0001)$	1000
Exp	0.4825	0.0029	$0.0502 \ (0.0011)$	-0.0392 (0.0016)	$0.9039 \ (0.0093)$	$0.0041 \ (0.0002)$	999
Weibull	0.5356	0.0024	$0.0540 \ (0.0012)$	$0.0140 \ (0.0017)$	$0.9200 \ (0.0086)$	$0.0031 \ (0.0001)$	1000
Gompertz	0.5327	0.0025	$0.0609 \ (0.0014)$	$0.0111 \ (0.0020)$	$0.9032 \ (0.0098)$	$0.0038 \ (0.0002)$	919
RP(3)	0.5223	0.0025	$0.0521 \ (0.0012)$	$0.0007 \ (0.0016)$	$0.9440 \ (0.0073)$	$0.0027 \ (0.0001)$	1000
RP(5)	0.5241	0.0025	$0.0524 \ (0.0012)$	$0.0024 \ (0.0017)$	$0.9440 \ (0.0073)$	$0.0027 \ (0.0001)$	1000
RP(9)	0.5246	0.0025	$0.0523 \ (0.0012)$	$0.0029 \ (0.0017)$	$0.9450 \ (0.0072)$	$0.0027 \ (0.0001)$	1000
RP(P)	0.5245	0.0025	$0.0523 \ (0.0012)$	$0.0028 \ (0.0017)$	$0.9430 \ (0.0073)$	$0.0027 \ (0.0001)$	1000
FP(W)	0.4067	0.0012	$0.1279 \ (0.0038)$	-0.1150 (0.0054)	$0.4098 \ (0.0206)$	$0.0295 \ (0.0016)$	571
FP (k=10)	0.5113	0.0018	$0.0599 \ (0.0014)$	-0.0103 (0.0020)	0.8413 (0.0119)	$0.0037 \ (0.0002)$	939
FP (k=10000)	0.4918	0.0013	0.0662 (0.0015)	-0.0298 (0.0021)	0.6809 (0.0150)	$0.0053 \ (0.0003)$	962

Table 160: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.5958	0.0027	$0.0655 \ (0.0015)$	-0.0098 (0.0021)	$0.8668 \ (0.0110)$	$0.0044 \ (0.0002)$	961
Exp	0.6074	0.0036	$0.0683 \ (0.0015)$	$0.0019 \ (0.0022)$	$0.9050 \ (0.0093)$	$0.0047 \ (0.0002)$	1000
Weibull	0.6010	0.0037	$0.0658 \ (0.0015)$	-0.0046 (0.0021)	$0.9230 \ (0.0084)$	$0.0043 \ (0.0002)$	1000
Gompertz	0.6085	0.0036	$0.0630 \ (0.0021)$	$0.0029 \ (0.0030)$	$0.9312 \ (0.0121)$	$0.0040 \ (0.0003)$	436
RP(3)	0.5977	0.0036	$0.0653 \ (0.0015)$	-0.0079 (0.0021)	$0.9250 \ (0.0083)$	$0.0043 \ (0.0002)$	1000
RP(5)	0.5957	0.0036	$0.0653 \ (0.0015)$	-0.0099 (0.0021)	$0.9210 \ (0.0085)$	$0.0044 \ (0.0002)$	1000
RP(9)	0.5951	0.0036	$0.0653 \ (0.0015)$	-0.0105 (0.0021)	$0.9200 \ (0.0086)$	$0.0044 \ (0.0002)$	1000
RP(P)	0.5963	0.0036	$0.0654 \ (0.0015)$	-0.0093 (0.0021)	$0.9208 \; (0.0085)$	$0.0044 \ (0.0002)$	998
FP(W)	0.6010	0.0027	$0.0658 \ (0.0015)$	-0.0046 (0.0021)	$0.8740 \ (0.0105)$	$0.0043 \ (0.0002)$	1000
FP (k=10)	0.5960	0.0027	$0.0639 \ (0.0014)$	-0.0096 (0.0020)	$0.8700 \ (0.0106)$	$0.0042 \ (0.0002)$	1000
FP (k=10000)	0.5969	0.0027	$0.0643 \ (0.0014)$	-0.0087 (0.0020)	$0.8689 \ (0.0107)$	$0.0042 \ (0.0002)$	999
Model frailty: I	Normal						
Cox	0.6026	0.0027	$0.0604 \ (0.0014)$	-0.0030 (0.0019)	$0.9010 \ (0.0094)$	$0.0037 \ (0.0002)$	1000
Exp	0.6232	0.0036	$0.0621 \ (0.0014)$	$0.0177 \ (0.0020)$	$0.9268 \ (0.0083)$	$0.0042 \ (0.0002)$	997
Weibull	0.6122	0.0037	$0.0613 \ (0.0014)$	$0.0066 \ (0.0019)$	$0.9380 \ (0.0076)$	$0.0038 \ (0.0002)$	1000
Gompertz	0.6232	0.0036	$0.0583 \ (0.0020)$	$0.0176 \ (0.0028)$	$0.9486 \ (0.0107)$	$0.0037 \ (0.0003)$	428
RP(3)	0.6102	0.0037	$0.0605 \ (0.0014)$	$0.0047 \ (0.0019)$	$0.9480 \ (0.0070)$	$0.0037 \ (0.0002)$	1000
RP(5)	0.6088	0.0037	$0.0603 \ (0.0013)$	$0.0032 \ (0.0019)$	$0.9460 \ (0.0071)$	$0.0036 \ (0.0002)$	1000
RP(9)	0.6084	0.0037	$0.0603 \ (0.0013)$	$0.0028 \ (0.0019)$	$0.9450 \ (0.0072)$	$0.0036 \ (0.0002)$	1000
RP(P)	0.6091	0.0037	$0.0604 \ (0.0014)$	$0.0036 \ (0.0019)$	$0.9460 \ (0.0071)$	$0.0037 \ (0.0002)$	1000
FP(W)	0.4613	0.0018	$0.1547 \ (0.0042)$	-0.1443 (0.0059)	$0.4284 \ (0.0189)$	$0.0447 \ (0.0022)$	684
FP (k=10)	0.5776	0.0025	$0.0768 \ (0.0018)$	-0.0280 (0.0025)	$0.8070 \ (0.0128)$	$0.0067 \ (0.0004)$	948
FP (k=10000)	0.5976	0.0024	$0.0597 \ (0.0014)$	-0.0079 (0.0019)	$0.8790 \ (0.0104)$	$0.0036 \ (0.0002)$	975

Table 161: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.75, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.2762	0.0009	$0.0358 \ (0.0008)$	$0.1058 \ (0.0011)$	$0.0680 \ (0.0080)$	$0.0125 \ (0.0003)$	1000
Exp	0.2717	0.0017	0.0355 (0.0008)	$0.1012 \ (0.0011)$	$0.2120 \ (0.0129)$	$0.0115 \ (0.0002)$	1000
Weibull	0.2717	0.0017	$0.0356 \ (0.0008)$	$0.1013 \ (0.0011)$	$0.2080 \ (0.0128)$	$0.0115 \ (0.0002)$	1000
Gompertz	0.2817	0.0020	$0.0415 \ (0.0048)$	$0.1113 \ (0.0067)$	$0.2105 \ (0.0661)$	$0.0141 \ (0.0015)$	38
RP(3)	0.2716	0.0017	$0.0355 \ (0.0008)$	$0.1012 \ (0.0011)$	$0.2189 \ (0.0131)$	$0.0115 \ (0.0002)$	996
RP(5)	0.2724	0.0017	0.0355 (0.0008)	$0.1020 \ (0.0011)$	$0.2131\ (0.0130)$	0.0117 (0.0002)	995
RP(9)	0.2724	0.0017	$0.0356 \ (0.0008)$	$0.1020 \ (0.0011)$	$0.2108 \ (0.0129)$	$0.0117 \ (0.0002)$	996
RP(P)	0.2725	0.0017	$0.0356 \ (0.0008)$	$0.1021 \ (0.0011)$	$0.2098 \ (0.0129)$	$0.0117 \ (0.0002)$	996
FP (W)	0.2717	0.0008	$0.0356 \ (0.0008)$	$0.1013 \ (0.0011)$	$0.0760 \ (0.0084)$	0.0115 (0.0002)	1000
FP (k=10)	0.2744	0.0008	$0.0360 \ (0.0008)$	$0.1040 \ (0.0011)$	$0.0650 \ (0.0078)$	$0.0121\ (0.0003)$	1000
FP (k=10000)	0.3157	0.0014	$0.0496 \ (0.0054)$	$0.1453 \ (0.0076)$	$0.0930 \ (0.0443)$	$0.0235 \ (0.0020)$	43
Model frailty: I	Normal						
Cox	0.3498	0.0014	$0.1000 \ (0.0023)$	$0.1794 \ (0.0032)$	$0.0103 \ (0.0033)$	$0.0422 \ (0.0017)$	967
Exp	0.3141	0.0025	$0.0362 \ (0.0008)$	$0.1437 \ (0.0012)$	$0.0589 \ (0.0076)$	$0.0219 \ (0.0003)$	950
Weibull	0.3155	0.0025	$0.0358 \ (0.0008)$	$0.1451 \ (0.0012)$	$0.0513 \ (0.0072)$	$0.0223 \ (0.0003)$	936
Gompertz	0.3333	0.0028	$0.0431 \ (0.0052)$	$0.1629 \ (0.0073)$	$0.0286 \ (0.0282)$	$0.0283 \ (0.0024)$	35
RP(3)	0.3315	0.0033	$0.0404 \ (0.0009)$	$0.1611 \ (0.0013)$	$0.1640 \ (0.0117)$	$0.0276 \ (0.0004)$	1000
RP(5)	0.3332	0.0033	$0.0408 \ (0.0009)$	$0.1628 \ (0.0013)$	$0.1610 \ (0.0116)$	$0.0282\ (0.0004)$	1000
RP(9)	0.3335	0.0034	$0.0409 \ (0.0009)$	$0.1631 \ (0.0013)$	$0.1660 \ (0.0118)$	$0.0283 \ (0.0004)$	1000
RP(P)	0.3336	0.0034	0.0409 (0.0009)	$0.1632 \ (0.0013)$	$0.1650 \ (0.0117)$	$0.0283 \ (0.0004)$	1000
FP (W)	0.2471	0.0007	$0.0639 \ (0.0021)$	0.0767 (0.0029)	$0.3291 \ (0.0217)$	0.0099 (0.0005)	471
FP (k=10)	0.2942	0.0009	$0.0369 \ (0.0009)$	$0.1238 \ (0.0013)$	$0.0271 \ (0.0056)$	$0.0167 \ (0.0003)$	848
FP (k=10000)	0.3168	0.0009	$0.0364 \ (0.0009)$	$0.1464 \ (0.0012)$	$0.0080 \ (0.0030)$	$0.0227 \ (0.0004)$	876

Table 162: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.2867	0.0010	$0.0392 \ (0.0009)$	$0.1262 \ (0.0012)$	$0.0310 \ (0.0055)$	$0.0175 \ (0.0003)$	1000
Exp	0.2872	0.0017	$0.0426 \ (0.0010)$	$0.1267 \ (0.0013)$	$0.0700 \ (0.0081)$	$0.0179 \ (0.0004)$	1000
Weibull	0.2822	0.0019	$0.0393 \ (0.0009)$	$0.1218 \ (0.0012)$	$0.1050 \ (0.0097)$	$0.0164 \ (0.0003)$	1000
Gompertz	0.3027	0.0019	$0.0453 \ (0.0064)$	$0.1422 \ (0.0089)$	$0.0000 \ (0.0000)$	$0.0222 \ (0.0026)$	26
RP(3)	0.2816	0.0020	$0.0391 \ (0.0009)$	$0.1212 \ (0.0012)$	$0.1107 \ (0.0100)$	$0.0162 \ (0.0003)$	994
RP(5)	0.2833	0.0020	$0.0389 \ (0.0009)$	$0.1228 \ (0.0012)$	$0.1067 \ (0.0098)$	$0.0166 \ (0.0003)$	993
RP(9)	0.2865	0.0020	$0.0377 \ (0.0009)$	$0.1260 \ (0.0012)$	$0.0888 \ (0.0094)$	$0.0173 \ (0.0003)$	923
RP(P)	0.2834	0.0020	$0.0390 \ (0.0009)$	$0.1229 \ (0.0012)$	$0.1056 \ (0.0097)$	$0.0166 \ (0.0003)$	994
FP(W)	0.2822	0.0009	$0.0393 \ (0.0009)$	$0.1218 \ (0.0012)$	$0.0330 \ (0.0056)$	$0.0164 \ (0.0003)$	1000
FP (k=10)	0.2892	0.0008	$0.0491 \ (0.0011)$	$0.1288 \ (0.0016)$	$0.0503 \ (0.0069)$	$0.0190 \ (0.0004)$	995
FP (k=10000)	0.3658	0.0015	$0.0507 \ (0.0068)$	$0.2053 \ (0.0094)$	$0.0345 \ (0.0339)$	$0.0446 \ (0.0036)$	29
Model frailty: I	Normal						
Cox	0.3519	0.0015	$0.0994 \ (0.0023)$	$0.1914 \ (0.0032)$	$0.0082 \ (0.0029)$	$0.0465 \ (0.0018)$	972
Exp	0.3466	0.0028	$0.0403 \ (0.0009)$	$0.1861 \ (0.0013)$	$0.0118 \; (0.0035)$	$0.0363 \ (0.0005)$	929
Weibull	0.3208	0.0027	$0.0371 \ (0.0008)$	$0.1604 \ (0.0012)$	$0.0299 \ (0.0055)$	$0.0271 \ (0.0004)$	970
Gompertz	0.3587	0.0033	$0.0496 \ (0.0101)$	$0.1983 \ (0.0138)$	$0.0000 \ (0.0000)$	$0.0416 \ (0.0053)$	13
RP(3)	0.3313	0.0039	$0.0466 \ (0.0010)$	$0.1709 \ (0.0015)$	$0.2062 \ (0.0128)$	$0.0314 \ (0.0005)$	999
RP(5)	0.3337	0.0039	0.0477 (0.0011)	$0.1733 \ (0.0015)$	$0.2014 \ (0.0127)$	$0.0323 \ (0.0005)$	998
RP(9)	0.3278	0.0039	$0.0604 \ (0.0014)$	$0.1673 \ (0.0019)$	$0.2211 \ (0.0132)$	$0.0316 \ (0.0005)$	986
RP(P)	0.3343	0.0040	$0.0474 \ (0.0011)$	$0.1738 \ (0.0015)$	$0.2066 \ (0.0128)$	$0.0325 \ (0.0005)$	997
FP(W)	0.2490	0.0007	$0.0672 \ (0.0020)$	$0.0885 \ (0.0029)$	$0.2729 \ (0.0191)$	$0.0123 \ (0.0006)$	546
FP (k=10)	0.3260	0.0010	$0.0395 \ (0.0010)$	$0.1656 \ (0.0014)$	$0.0036 \ (0.0021)$	$0.0290 \ (0.0005)$	836
FP (k=10000)	0.3587	0.0009	$0.0395 \ (0.0010)$	$0.1982 \ (0.0014)$	$0.0025 \ (0.0017)$	$0.0409 \ (0.0006)$	808

Table 163: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.2603	0.0007	0.0317 (0.0007)	$0.0709 \ (0.0010)$	$0.2643 \ (0.0140)$	$0.0060 \ (0.0002)$	999
Exp	0.2657	0.0015	$0.0329 \ (0.0007)$	$0.0763 \ (0.0010)$	$0.5270 \ (0.0158)$	$0.0069 \ (0.0002)$	1000
Weibull	0.2643	0.0014	$0.0332 \ (0.0007)$	$0.0749 \ (0.0010)$	$0.5080 \ (0.0158)$	$0.0067 \ (0.0002)$	1000
Gompertz	0.2874	0.0020	$0.0421 \ (0.0039)$	$0.0980 \ (0.0055)$	$0.4138 \ (0.0647)$	$0.0114 \ (0.0012)$	58
RP(3)	0.2544	0.0013	$0.0313 \ (0.0007)$	$0.0650 \ (0.0010)$	$0.6084 \ (0.0155)$	$0.0052 \ (0.0001)$	996
RP(5)	0.2549	0.0013	$0.0314 \ (0.0007)$	$0.0655 \ (0.0010)$	$0.6044 \ (0.0155)$	$0.0053 \ (0.0001)$	996
RP(9)	0.2561	0.0014	$0.0316 \ (0.0007)$	$0.0667 \ (0.0010)$	$0.5994 \ (0.0155)$	$0.0054 \ (0.0002)$	996
RP(P)	0.2562	0.0014	$0.0315 \ (0.0007)$	$0.0668 \ (0.0010)$	$0.5964 \ (0.0155)$	$0.0055 \ (0.0002)$	996
FP(W)	0.2643	0.0007	$0.0332 \ (0.0007)$	$0.0749 \ (0.0010)$	$0.2260 \ (0.0132)$	$0.0067 \ (0.0002)$	1000
FP (k=10)	0.2592	0.0007	$0.0320 \ (0.0007)$	$0.0698 \ (0.0010)$	$0.2620 \ (0.0139)$	$0.0059 \ (0.0002)$	1000
FP (k=10000)	0.2997	0.0009	$0.0424 \ (0.0106)$	$0.1103 \ (0.0141)$	$0.0000 \ (0.0000)$	$0.0138 \ (0.0032)$	9
Model frailty: I	Normal						
Cox	0.3455	0.0013	$0.0958 \ (0.0022)$	$0.1561 \ (0.0031)$	$0.0175 \ (0.0042)$	$0.0336 \ (0.0015)$	973
Exp	0.3195	0.0025	$0.0333 \ (0.0008)$	$0.1301 \ (0.0011)$	$0.0990 \ (0.0096)$	$0.0180 \ (0.0003)$	960
Weibull	0.3250	0.0025	$0.0339 \ (0.0008)$	$0.1356 \ (0.0011)$	$0.0746 \ (0.0085)$	$0.0195 \ (0.0003)$	952
Gompertz	0.3348	0.0027	0.0377 (0.0042)	$0.1454 \ (0.0059)$	$0.0488 \ (0.0336)$	$0.0225 \ (0.0018)$	41
RP(3)	0.3199	0.0031	$0.0386 \ (0.0009)$	$0.1305 \ (0.0012)$	$0.3350 \ (0.0149)$	$0.0185 \ (0.0003)$	1000
RP(5)	0.3178	0.0030	$0.0382 \ (0.0009)$	$0.1284 \ (0.0012)$	$0.3260 \ (0.0148)$	$0.0179 \ (0.0003)$	1000
RP(9)	0.3196	0.0029	$0.0381 \ (0.0009)$	$0.1302 \ (0.0012)$	$0.3030 \ (0.0145)$	$0.0184 \ (0.0003)$	1000
RP(P)	0.3204	0.0029	$0.0379 \ (0.0008)$	$0.1310 \ (0.0012)$	$0.3020 \ (0.0145)$	$0.0186 \ (0.0003)$	1000
FP (W)	0.2572	0.0007	$0.0649 \ (0.0022)$	$0.0678 \ (0.0031)$	$0.3318 \ (0.0228)$	$0.0088 \; (0.0005)$	428
FP (k=10)	0.2893	0.0008	$0.0372 \ (0.0009)$	$0.0999 \ (0.0013)$	$0.0895 \ (0.0099)$	$0.0114 \ (0.0003)$	838
FP (k=10000)	0.3122	0.0008	$0.0320 \ (0.0008)$	$0.1229 \ (0.0011)$	$0.0136 \ (0.0041)$	$0.0161 \ (0.0003)$	811

Table 164: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.2576	0.0007	$0.0324 \ (0.0007)$	$0.0684 \ (0.0010)$	0.3030 (0.0145)	0.0057 (0.0002)	1000
Exp	0.2455	0.0019	0.0319(0.0007)	0.0562 (0.0010)	$0.8670\ (0.0107)$	$0.0042 \ (0.0001)$	1000
Weibull	0.2448	0.0012	0.0301 (0.0007)	0.0555 (0.0010)	$0.6860 \ (0.0147)$	0.0040 (0.0001)	1000
Gompertz	0.2499	0.0020	0.0317 (0.0012)	$0.0607 \ (0.0017)$	$0.8537 \ (0.0195)$	0.0047 (0.0003)	328
RP(3)	0.2539	0.0013	0.0329 (0.0009)	0.0647 (0.0012)	0.6044 (0.0181)	$0.0053 \ (0.0002)$	728
RP(5)	0.2541	0.0012	$0.0321 \ (0.0007)$	$0.0649 \ (0.0010)$	$0.5759 \ (0.0159)$	$0.0052 \ (0.0002)$	962
RP(9)	0.2541	0.0012	$0.0322 \ (0.0007)$	$0.0649 \ (0.0010)$	$0.5683 \ (0.0158)$	$0.0052 \ (0.0002)$	989
RP(P)	0.2530	0.0012	$0.0319 \ (0.0007)$	$0.0638 \ (0.0010)$	$0.5861 \ (0.0156)$	$0.0051 \ (0.0001)$	993
FP(W)	0.2448	0.0007	$0.0301 \ (0.0007)$	$0.0556 \ (0.0010)$	$0.4420 \ (0.0157)$	$0.0040 \ (0.0001)$	1000
FP (k=10)	0.2194	0.0005	$0.0373 \ (0.0008)$	$0.0302 \ (0.0012)$	$0.6250 \ (0.0153)$	$0.0023 \ (0.0001)$	1000
FP (k=10000)	0.0710	0.0001	$0.0740 \ (0.0101)$	-0.1182 (0.0140)	$0.0714 \ (0.0487)$	$0.0192 \ (0.0017)$	28
Model frailty: I	Normal						
Cox	0.3348	0.0012	$0.0913 \ (0.0021)$	$0.1456 \ (0.0029)$	$0.0456 \ (0.0066)$	$0.0295 \ (0.0013)$	986
Exp	0.2528	0.0021	$0.0328 \ (0.0007)$	$0.0636 \ (0.0010)$	$0.8235 \ (0.0121)$	$0.0051 \ (0.0002)$	986
Weibull	0.2820	0.0018	$0.0318 \ (0.0007)$	$0.0928 \ (0.0010)$	$0.3707 \ (0.0159)$	$0.0096 \ (0.0002)$	928
Gompertz	0.2551	0.0021	$0.0325 \ (0.0013)$	$0.0659 \ (0.0019)$	$0.8136 \ (0.0227)$	$0.0054 \ (0.0003)$	295
RP(3)	0.3067	0.0025	$0.0503 \ (0.0013)$	$0.1175 \ (0.0018)$	$0.2836 \ (0.0164)$	$0.0163 \ (0.0004)$	758
RP(5)	0.3101	0.0027	$0.0457 \ (0.0010)$	$0.1209 \ (0.0015)$	$0.3266 \ (0.0150)$	$0.0167 \ (0.0003)$	983
RP(9)	0.3119	0.0028	$0.0407 \ (0.0009)$	$0.1227 \ (0.0013)$	$0.3487 \ (0.0151)$	$0.0167 \ (0.0003)$	998
RP(P)	0.3092	0.0027	$0.0392 \ (0.0009)$	$0.1200 \ (0.0012)$	$0.3540 \ (0.0151)$	$0.0159 \ (0.0003)$	1000
FP(W)	0.2267	0.0006	0.0547 (0.0019)	$0.0374 \ (0.0026)$	$0.4685 \ (0.0241)$	$0.0044 \ (0.0003)$	429
FP (k=10)	0.2795	0.0008	$0.0395 \ (0.0010)$	$0.0903 \ (0.0013)$	$0.1645 \ (0.0126)$	$0.0097 \ (0.0003)$	863
FP (k=10000)	0.2741	0.0006	0.0324 (0.0008)	0.0849 (0.0012)	0.1206 (0.0117)	0.0083 (0.0002)	771

Table 165: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.2788	0.0009	0.0375 (0.0008)	$0.1110 \ (0.0012)$	$0.0521 \ (0.0070)$	$0.0137 \ (0.0003)$	999
Exp	0.2813	0.0017	0.0385 (0.0009)	$0.1135 \ (0.0012)$	$0.1190 \ (0.0102)$	$0.0144 \ (0.0003)$	1000
Weibull	0.2799	0.0019	$0.0372 \ (0.0008)$	$0.1120 \ (0.0012)$	$0.1600 \ (0.0116)$	$0.0139 \ (0.0003)$	1000
Gompertz	0.2830	0.0018	$0.0535 \ (0.0092)$	$0.1151 \ (0.0126)$	$0.2778 \ (0.1056)$	$0.0159 \ (0.0034)$	18
RP(3)	0.2738	0.0018	$0.0374 \ (0.0008)$	$0.1060 \ (0.0012)$	$0.1930 \ (0.0125)$	$0.0126 \ (0.0003)$	995
RP(5)	0.2769	0.0018	$0.0373 \ (0.0008)$	$0.1091 \ (0.0012)$	$0.1670 \ (0.0118)$	$0.0133 \ (0.0003)$	994
RP(9)	0.2781	0.0018	$0.0363 \ (0.0008)$	$0.1103 \ (0.0012)$	$0.1535 \ (0.0116)$	$0.0135 \ (0.0003)$	964
RP(P)	0.2763	0.0018	$0.0373 \ (0.0008)$	$0.1084 \ (0.0012)$	$0.1719 \ (0.0120)$	$0.0131 \ (0.0003)$	995
FP(W)	0.2799	0.0009	$0.0372 \ (0.0008)$	$0.1120 \ (0.0012)$	$0.0470 \ (0.0067)$	$0.0139 \ (0.0003)$	1000
FP (k=10)	0.2919	0.0008	$0.0407 \ (0.0009)$	$0.1241 \ (0.0013)$	$0.0320 \ (0.0056)$	$0.0170 \ (0.0003)$	1000
FP (k=10000)	0.3373	0.0014	$0.0465 \ (0.0047)$	$0.1695 \ (0.0065)$	$0.0000 \ (0.0000)$	$0.0308 \ (0.0023)$	51
Model frailty: I	Normal						
Cox	0.3576	0.0015	0.1075 (0.0024)	$0.1898 \ (0.0034)$	$0.0051 \ (0.0023)$	$0.0476 \ (0.0019)$	978
Exp	0.3351	0.0027	0.0377 (0.0009)	$0.1673 \ (0.0012)$	$0.0193 \ (0.0045)$	$0.0294 \ (0.0004)$	935
Weibull	0.3203	0.0026	$0.0369 \ (0.0008)$	$0.1524 \ (0.0012)$	$0.0391 \ (0.0063)$	$0.0246 \ (0.0004)$	946
Gompertz	0.3334	0.0028	$0.0431 \ (0.0079)$	$0.1655 \ (0.0108)$	$0.0625 \ (0.0605)$	$0.0291 \ (0.0034)$	16
RP(3)	0.3282	0.0035	$0.0435 \ (0.0010)$	$0.1603 \ (0.0014)$	$0.2014 \ (0.0127)$	$0.0276 \ (0.0004)$	998
RP(5)	0.3356	0.0036	$0.0446 \ (0.0010)$	$0.1677 \ (0.0014)$	$0.1825 \ (0.0122)$	$0.0301 \ (0.0005)$	997
RP(9)	0.3345	0.0038	$0.0534 \ (0.0012)$	$0.1666 \ (0.0017)$	$0.1958 \ (0.0126)$	$0.0306 \ (0.0005)$	996
RP(P)	0.3377	0.0038	$0.0449 \ (0.0010)$	$0.1698 \ (0.0014)$	$0.1978 \ (0.0126)$	$0.0308 \ (0.0005)$	996
FP (W)	0.2456	0.0007	$0.0676 \ (0.0021)$	$0.0778 \ (0.0030)$	$0.3366 \ (0.0208)$	$0.0106 \ (0.0005)$	514
FP (k=10)	0.3177	0.0010	$0.0399 \ (0.0010)$	$0.1499 \ (0.0014)$	$0.0058 \ (0.0026)$	$0.0240 \ (0.0004)$	860
FP (k=10000)	0.3445	0.0009	$0.0382 \ (0.0009)$	$0.1767 \ (0.0013)$	$0.0024 \ (0.0017)$	$0.0327 \ (0.0005)$	848

Table 166: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 1.25, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.5053	0.0022	$0.0651 \ (0.0015)$	$0.0016 \ (0.0021)$	$0.8455 \ (0.0115)$	$0.0042 \ (0.0002)$	990
Exp	0.5062	0.0041	$0.0648 \ (0.0015)$	$0.0024 \ (0.0021)$	$0.9400 \ (0.0075)$	$0.0042 \ (0.0002)$	1000
Weibull	0.5064	0.0041	$0.0649 \ (0.0015)$	$0.0027 \ (0.0021)$	$0.9390 \ (0.0076)$	$0.0042 \ (0.0002)$	1000
Gompertz	0.5026	0.0041	$0.0640 \ (0.0020)$	-0.0011 (0.0029)	$0.9442 \ (0.0102)$	$0.0041 \ (0.0003)$	502
RP(3)	0.5062	0.0041	$0.0649 \ (0.0015)$	$0.0025 \ (0.0021)$	$0.9400 \ (0.0075)$	$0.0042 \ (0.0002)$	1000
RP(5)	0.5062	0.0041	$0.0649 \ (0.0015)$	$0.0025 \ (0.0021)$	$0.9410 \ (0.0075)$	$0.0042 \ (0.0002)$	1000
RP(9)	0.5062	0.0041	$0.0649 \ (0.0015)$	$0.0025 \ (0.0021)$	$0.9410 \ (0.0075)$	$0.0042 \ (0.0002)$	1000
RP(P)	0.5063	0.0041	$0.0649 \ (0.0015)$	$0.0026 \ (0.0021)$	$0.9390 \ (0.0076)$	$0.0042 \ (0.0002)$	1000
FP(W)	0.5064	0.0022	$0.0649 \ (0.0015)$	$0.0027 \ (0.0021)$	$0.8430 \ (0.0115)$	$0.0042 \ (0.0002)$	1000
FP (k=10)	0.5018	0.0021	$0.0657 \ (0.0015)$	-0.0019 (0.0021)	$0.8340 \ (0.0118)$	$0.0043 \ (0.0002)$	1000
FP (k=10000)	0.5044	0.0021	$0.0652 \ (0.0015)$	$0.0007 \ (0.0021)$	$0.8390 \ (0.0116)$	$0.0042 \ (0.0002)$	1000
Model frailty: I	Normal						
Cox	0.4697	0.0018	$0.0710 \ (0.0016)$	-0.0340 (0.0022)	$0.7050 \ (0.0144)$	$0.0062 \ (0.0003)$	1000
Exp	0.4735	0.0037	$0.0730 \ (0.0016)$	-0.0302 (0.0023)	$0.8649 \ (0.0108)$	$0.0062 \ (0.0003)$	999
Weibull	0.4737	0.0037	$0.0730 \ (0.0016)$	-0.0300 (0.0023)	$0.8669 \ (0.0107)$	$0.0062 \ (0.0003)$	999
Gompertz	0.4653	0.0036	$0.0700 \ (0.0022)$	-0.0384 (0.0032)	$0.8627 \ (0.0156)$	$0.0064 \ (0.0004)$	488
RP(3)	0.4716	0.0038	$0.0744 \ (0.0017)$	-0.0321 (0.0024)	$0.8640 \ (0.0108)$	$0.0066 \ (0.0003)$	1000
RP(5)	0.4716	0.0038	$0.0743 \ (0.0017)$	-0.0321 (0.0024)	$0.8630 \ (0.0109)$	$0.0066 \ (0.0003)$	1000
RP(9)	0.4717	0.0038	$0.0744 \ (0.0017)$	-0.0320 (0.0024)	$0.8630 \ (0.0109)$	$0.0066 \ (0.0003)$	1000
RP(P)	0.4718	0.0038	$0.0744 \ (0.0017)$	-0.0320 (0.0024)	$0.8640 \ (0.0108)$	$0.0065 \ (0.0003)$	1000
FP(W)	0.3534	0.0012	$0.1215 \ (0.0033)$	$-0.1503 \ (0.0047)$	$0.3218 \; (0.0181)$	$0.0373 \ (0.0015)$	665
FP (k=10)	0.4576	0.0018	$0.0769 \ (0.0018)$	-0.0461 (0.0025)	$0.6357 \ (0.0157)$	$0.0080 \ (0.0004)$	936
FP (k=10000)	0.4699	0.0017	$0.0685 \ (0.0016)$	-0.0338 (0.0022)	$0.6966 \ (0.0148)$	$0.0058 \ (0.0003)$	969

Table 167: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.5118	0.0024	$0.0695 \ (0.0016)$	-0.0024 (0.0022)	$0.8372 \ (0.0118)$	$0.0048 \ (0.0002)$	983
Exp	0.5332	0.0048	$0.0718 \ (0.0016)$	$0.0189 \ (0.0023)$	$0.9280 \ (0.0082)$	$0.0055 \ (0.0002)$	1000
Weibull	0.5142	0.0048	$0.0695 \ (0.0016)$	$0.0000 \ (0.0022)$	$0.9410 \ (0.0075)$	$0.0048 \ (0.0002)$	1000
Gompertz	0.5283	0.0048	$0.0710 \ (0.0024)$	$0.0141 \ (0.0033)$	$0.9386 \ (0.0112)$	$0.0052 \ (0.0003)$	456
RP(3)	0.5137	0.0048	$0.0694 \ (0.0016)$	-0.0005 (0.0022)	$0.9420 \ (0.0074)$	$0.0048 \ (0.0002)$	1000
RP(5)	0.5137	0.0048	$0.0694 \ (0.0016)$	-0.0005 (0.0022)	$0.9420 \ (0.0074)$	$0.0048 \ (0.0002)$	1000
RP(9)	0.5138	0.0048	$0.0694 \ (0.0016)$	-0.0005 (0.0022)	$0.9420 \ (0.0074)$	$0.0048 \ (0.0002)$	1000
RP(P)	0.5139	0.0048	$0.0694 \ (0.0016)$	-0.0003 (0.0022)	$0.9420 \ (0.0074)$	$0.0048 \ (0.0002)$	1000
FP(W)	0.5142	0.0024	$0.0695 \ (0.0016)$	$0.0000 \ (0.0022)$	$0.8380 \ (0.0117)$	$0.0048 \ (0.0002)$	1000
FP (k=10)	0.4831	0.0021	$0.0723 \ (0.0016)$	-0.0311 (0.0023)	$0.7250 \ (0.0141)$	$0.0062 \ (0.0003)$	1000
FP (k=10000)	0.4897	0.0021	$0.0794 \ (0.0018)$	-0.0245 (0.0025)	$0.7070 \ (0.0144)$	$0.0069 \ (0.0003)$	1000
Model frailty: I	Normal						
Cox	0.4687	0.0020	$0.0750 \ (0.0017)$	$-0.0456 \ (0.0024)$	$0.6530 \ (0.0151)$	$0.0077 \ (0.0003)$	1000
Exp	0.4935	0.0042	$0.0800 \ (0.0018)$	-0.0207 (0.0025)	$0.8547 \ (0.0112)$	$0.0068 \ (0.0003)$	998
Weibull	0.4729	0.0042	$0.0769 \ (0.0017)$	-0.0413 (0.0024)	$0.8238 \ (0.0121)$	$0.0076 \ (0.0003)$	999
Gompertz	0.4892	0.0042	$0.0786 \ (0.0026)$	-0.0250 (0.0037)	$0.8635 \ (0.0162)$	$0.0068 \ (0.0004)$	447
RP(3)	0.4712	0.0042	$0.0775 \ (0.0017)$	-0.0431 (0.0025)	$0.8210 \ (0.0121)$	$0.0079 \ (0.0003)$	1000
RP(5)	0.4712	0.0042	$0.0775 \ (0.0017)$	-0.0430 (0.0025)	$0.8200 \ (0.0121)$	$0.0079 \ (0.0003)$	1000
RP(9)	0.4713	0.0042	$0.0775 \ (0.0017)$	-0.0429 (0.0025)	$0.8210 \ (0.0121)$	$0.0078 \ (0.0003)$	1000
RP(P)	0.4714	0.0042	$0.0776 \ (0.0017)$	-0.0428 (0.0025)	$0.8220 \ (0.0121)$	$0.0078 \ (0.0003)$	1000
FP(W)	0.3642	0.0014	$0.1295 \ (0.0033)$	-0.1500 (0.0047)	$0.3303 \ (0.0171)$	$0.0393 \ (0.0015)$	760
FP (k=10)	0.4607	0.0020	$0.0770 \ (0.0018)$	$-0.0535 \ (0.0025)$	$0.6314 \ (0.0156)$	$0.0088 \ (0.0004)$	955
FP (k=10000)	0.4721	0.0019	$0.0723 \ (0.0016)$	-0.0421 (0.0023)	$0.6711 \ (0.0151)$	$0.0070 \ (0.0003)$	967

Table 168: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 1.25, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.4881	0.0018	$0.0572 \ (0.0013)$	$0.0043 \ (0.0018)$	$0.8665 \ (0.0108)$	$0.0033 \ (0.0002)$	989
Exp	0.4652	0.0033	$0.0541 \ (0.0012)$	$-0.0185 \ (0.0017)$	$0.9510 \ (0.0068)$	$0.0033 \ (0.0001)$	1000
Weibull	0.4798	0.0032	$0.0552 \ (0.0012)$	-0.0039 (0.0017)	$0.9570 \ (0.0064)$	$0.0031 \ (0.0001)$	1000
Gompertz	0.4709	0.0033	$0.0581 \ (0.0016)$	-0.0128 (0.0023)	$0.9414 \ (0.0092)$	$0.0035 \ (0.0002)$	649
RP(3)	0.4867	0.0031	$0.0569 \ (0.0013)$	$0.0029 \ (0.0018)$	$0.9520 \ (0.0068)$	$0.0032 \ (0.0002)$	1000
RP(5)	0.4871	0.0031	$0.0570 \ (0.0013)$	$0.0034 \ (0.0018)$	$0.9510 \ (0.0068)$	$0.0033 \ (0.0002)$	1000
RP(9)	0.4873	0.0031	$0.0570 \ (0.0013)$	$0.0036 \ (0.0018)$	$0.9500 \ (0.0069)$	$0.0033 \ (0.0002)$	1000
RP(P)	0.4860	0.0031	$0.0567 \ (0.0013)$	$0.0023 \ (0.0018)$	$0.9510 \ (0.0068)$	$0.0032 \ (0.0001)$	1000
FP(W)	0.4798	0.0019	$0.0552 \ (0.0012)$	-0.0039 (0.0017)	$0.8770 \ (0.0104)$	$0.0031 \ (0.0001)$	1000
FP (k=10)	0.4864	0.0018	$0.0574 \ (0.0013)$	$0.0026 \ (0.0018)$	$0.8640 \ (0.0108)$	$0.0033 \ (0.0002)$	1000
FP (k=10000)	0.4860	0.0018	$0.0568 \ (0.0013)$	$0.0023 \ (0.0018)$	$0.8630 \ (0.0109)$	$0.0032 \ (0.0001)$	1000
Model frailty: I	Normal						
Cox	0.4640	0.0016	$0.0637 \ (0.0014)$	-0.0198 (0.0020)	$0.7427 \ (0.0138)$	$0.0044 \ (0.0002)$	999
Exp	0.4435	0.0031	$0.0627 \ (0.0014)$	-0.0402 (0.0020)	$0.8498 \ (0.0113)$	$0.0055 \ (0.0002)$	999
Weibull	0.4628	0.0031	$0.0636 \ (0.0014)$	-0.0209 (0.0020)	$0.8918 \; (0.0098)$	$0.0045 \ (0.0002)$	998
Gompertz	0.4477	0.0031	$0.0677 \ (0.0019)$	-0.0360 (0.0027)	$0.8344 \ (0.0148)$	$0.0059 \ (0.0003)$	628
RP(3)	0.4682	0.0030	$0.0654 \ (0.0015)$	-0.0155 (0.0021)	$0.8940 \ (0.0097)$	$0.0045 \ (0.0002)$	1000
RP(5)	0.4682	0.0030	$0.0656 \ (0.0015)$	$-0.0155 \ (0.0021)$	$0.8940 \ (0.0097)$	$0.0045 \ (0.0002)$	1000
RP(9)	0.4683	0.0031	$0.0657 \ (0.0015)$	-0.0154 (0.0021)	$0.8930 \ (0.0098)$	$0.0045 \ (0.0002)$	1000
RP(P)	0.4677	0.0030	$0.0653 \ (0.0015)$	-0.0160 (0.0021)	$0.8940 \ (0.0097)$	$0.0045 \ (0.0002)$	1000
FP(W)	0.3436	0.0011	$0.1153 \ (0.0033)$	-0.1402 (0.0046)	$0.3092 \ (0.0185)$	$0.0329 \ (0.0014)$	621
FP (k=10)	0.4513	0.0015	$0.0662 \ (0.0015)$	-0.0324 (0.0022)	$0.6897 \ (0.0151)$	$0.0054 \ (0.0002)$	941
FP (k=10000)	0.4539	0.0014	$0.0619 \ (0.0014)$	-0.0299 (0.0020)	$0.6768 \ (0.0151)$	$0.0047 \ (0.0002)$	956

Table 169: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate		Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.4633	0.0017	$0.0530 \ (0.0012)$	$0.0041 \ (0.0017)$	$0.8701 \ (0.0107)$	$0.0028 \ (0.0001)$	993
Exp	0.4293	0.0033	$0.0527 \ (0.0012)$	-0.0299 (0.0017)	$0.9240 \ (0.0084)$	$0.0037 \ (0.0002)$	1000
Weibull	0.4700	0.0029	$0.0546 \ (0.0012)$	$0.0108 \; (0.0017)$	$0.9450 \ (0.0072)$	$0.0031 \ (0.0001)$	1000
Gompertz	0.4467	0.0032	$0.0625 \ (0.0016)$	-0.0125 (0.0023)	$0.9106 \ (0.0106)$	$0.0041 \ (0.0002)$	727
RP(3)	0.4620	0.0029	$0.0526 \ (0.0012)$	$0.0028 \ (0.0017)$	$0.9600 \ (0.0062)$	$0.0028 \ (0.0001)$	1000
RP(5)	0.4626	0.0029	$0.0528 \ (0.0012)$	$0.0034 \ (0.0017)$	$0.9580 \ (0.0063)$	$0.0028 \ (0.0001)$	1000
RP(9)	0.4627	0.0029	$0.0528 \ (0.0012)$	$0.0035 \ (0.0017)$	$0.9570 \ (0.0064)$	$0.0028 \ (0.0001)$	1000
RP(P)	0.4628	0.0029	$0.0528 \ (0.0012)$	$0.0036 \ (0.0017)$	$0.9570 \ (0.0064)$	$0.0028 \ (0.0001)$	1000
FP(W)	0.4700	0.0016	$0.0546 \ (0.0012)$	$0.0108 \ (0.0017)$	$0.8460 \ (0.0114)$	$0.0031 \ (0.0001)$	1000
FP (k=10)	0.4501	0.0016	$0.0552 \ (0.0012)$	-0.0091 (0.0017)	$0.8190 \ (0.0122)$	$0.0031 \ (0.0001)$	1000
FP (k=10000)	0.0773	0.0000	$0.0182 \ (0.0004)$	-0.3819 (0.0006)	$0.0000 \ (0.0000)$	$0.1462 \ (0.0004)$	996
Model frailty: I	Normal						
Cox	0.4415	0.0015	$0.0596 \ (0.0013)$	-0.0177 (0.0019)	$0.7670 \ (0.0134)$	$0.0039 \ (0.0002)$	1000
Exp	0.4026	0.0030	$0.0603 \ (0.0014)$	$-0.0566 \ (0.0019)$	$0.7828 \ (0.0130)$	$0.0068 \ (0.0003)$	999
Weibull	0.4518	0.0028	$0.0623 \ (0.0014)$	-0.0074 (0.0020)	$0.8858 \ (0.0101)$	$0.0039 \ (0.0002)$	998
Gompertz	0.4179	0.0030	$0.0711 \ (0.0019)$	-0.0413 (0.0027)	$0.7928 \ (0.0154)$	$0.0068 \ (0.0003)$	690
RP(3)	0.4457	0.0028	$0.0613 \ (0.0014)$	-0.0135 (0.0019)	$0.8850 \ (0.0101)$	$0.0039 \ (0.0002)$	1000
RP(5)	0.4453	0.0028	$0.0617 \ (0.0014)$	-0.0139 (0.0020)	$0.8810 \ (0.0102)$	$0.0040 \ (0.0002)$	1000
RP(9)	0.4453	0.0028	$0.0618 \ (0.0014)$	-0.0139 (0.0020)	$0.8820 \ (0.0102)$	$0.0040 \ (0.0002)$	1000
RP(P)	0.4454	0.0028	$0.0617 \ (0.0014)$	-0.0138 (0.0020)	$0.8820 \ (0.0102)$	$0.0040 \ (0.0002)$	1000
FP(W)	0.3358	0.0009	$0.1055 \ (0.0031)$	-0.1234 (0.0045)	$0.3310 \ (0.0198)$	$0.0263 \ (0.0012)$	562
FP (k=10)	0.4267	0.0014	$0.0622 \ (0.0014)$	-0.0325 (0.0020)	$0.6950 \ (0.0150)$	$0.0049 \ (0.0002)$	941
FP (k=10000)	0.3888	0.0011	$0.0666 \ (0.0015)$	-0.0704 (0.0021)	$0.4234 \ (0.0158)$	$0.0094 \ (0.0003)$	973

Table 170: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

	Avg. Estimate		Emp. SE	Bias	Coverage		N. Converged
Model frailty: 0	Gamma						
Cox	0.5131	0.0023	$0.0690 \ (0.0016)$	$0.0047 \ (0.0022)$	0.8286 (0.0120)	0.0048 (0.0002)	986
Exp	0.5244	0.0044	$0.0704 \ (0.0016)$	$0.0160 \ (0.0022)$	$0.9290 \ (0.0081)$	$0.0052 \ (0.0003)$	1000
Weibull	0.5158	0.0044	$0.0697 \ (0.0016)$	$0.0075 \ (0.0022)$	$0.9370 \ (0.0077)$	$0.0049 \ (0.0002)$	1000
Gompertz	0.5279	0.0044	$0.0701 \ (0.0024)$	$0.0196 \ (0.0033)$	$0.9368 \ (0.0116)$	$0.0053 \ (0.0004)$	443
RP(3)	0.5148	0.0044	$0.0691 \ (0.0015)$	$0.0064 \ (0.0022)$	$0.9380 \ (0.0076)$	$0.0048 \ (0.0002)$	1000
RP(5)	0.5145	0.0044	$0.0689 \ (0.0015)$	$0.0061 \ (0.0022)$	$0.9380 \ (0.0076)$	$0.0048 \ (0.0002)$	1000
RP(9)	0.5143	0.0044	$0.0689 \ (0.0015)$	$0.0060 \ (0.0022)$	$0.9370 \ (0.0077)$	$0.0048 \ (0.0002)$	1000
RP(P)	0.5146	0.0044	$0.0690 \ (0.0015)$	$0.0062 \ (0.0022)$	$0.9370 \ (0.0077)$	$0.0048 \ (0.0002)$	1000
FP(W)	0.5158	0.0023	$0.0697 \ (0.0016)$	$0.0075 \ (0.0022)$	$0.8220 \ (0.0121)$	$0.0049 \ (0.0002)$	1000
FP (k=10)	0.5046	0.0022	$0.0708 \; (0.0016)$	-0.0038 (0.0022)	$0.8030 \ (0.0126)$	$0.0050 \ (0.0002)$	1000
FP (k=10000)	0.5103	0.0023	$0.0697 \ (0.0016)$	$0.0019 \ (0.0022)$	$0.8200 \ (0.0121)$	$0.0049 \ (0.0002)$	1000
Model frailty: I	Normal						
Cox	0.4760	0.0019	0.0757 (0.0017)	-0.0323 (0.0024)	$0.6830 \ (0.0147)$	$0.0068 \ (0.0003)$	1000
Exp	0.4891	0.0039	$0.0788 \ (0.0018)$	-0.0193 (0.0025)	$0.8566 \ (0.0111)$	$0.0066 \ (0.0003)$	997
Weibull	0.4794	0.0039	0.0779 (0.0017)	-0.0290 (0.0025)	$0.8495 \ (0.0113)$	$0.0069 \ (0.0003)$	997
Gompertz	0.4890	0.0039	$0.0770 \ (0.0026)$	-0.0194 (0.0037)	$0.8673 \ (0.0162)$	$0.0063 \ (0.0004)$	437
RP(3)	0.4778	0.0040	$0.0786 \ (0.0018)$	-0.0306 (0.0025)	$0.8480 \ (0.0114)$	$0.0071 \ (0.0003)$	1000
RP(5)	0.4782	0.0040	$0.0784 \ (0.0018)$	-0.0302 (0.0025)	$0.8490 \ (0.0113)$	$0.0071 \ (0.0003)$	1000
RP(9)	0.4783	0.0040	$0.0783 \ (0.0018)$	-0.0301 (0.0025)	$0.8480 \ (0.0114)$	$0.0070 \ (0.0003)$	1000
RP(P)	0.4781	0.0040	$0.0785 \ (0.0018)$	-0.0303 (0.0025)	$0.8480 \ (0.0114)$	$0.0071 \ (0.0003)$	1000
FP(W)	0.3667	0.0013	$0.1256 \ (0.0034)$	-0.1417 (0.0047)	$0.3343 \ (0.0178)$	$0.0358 \ (0.0015)$	700
FP (k=10)	0.4632	0.0019	$0.0789 \ (0.0018)$	-0.0451 (0.0026)	$0.6519 \ (0.0154)$	$0.0083 \ (0.0004)$	951
FP (k=10000)	0.4794	0.0019	0.0714 (0.0016)	-0.0290 (0.0023)	$0.7264 \ (0.0144)$	$0.0059 \ (0.0003)$	965

Table 171: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 1.25, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	0.5237	0.0021	$0.0684 \ (0.0016)$	-0.0184 (0.0022)	0.8111 (0.0126)	$0.0050 \ (0.0002)$	969
Exp	0.5230	0.0033	$0.0694 \ (0.0016)$	-0.0190 (0.0022)	$0.8650 \ (0.0108)$	$0.0052 \ (0.0002)$	1000
Weibull	0.5230	0.0033	$0.0693 \ (0.0016)$	-0.0191 (0.0022)	$0.8660 \ (0.0108)$	$0.0052 \ (0.0002)$	1000
Gompertz	0.5272	0.0033	$0.0710 \ (0.0024)$	-0.0148 (0.0034)	$0.8510 \ (0.0169)$	$0.0053 \ (0.0003)$	443
RP(3)	0.5231	0.0033	$0.0694 \ (0.0016)$	-0.0190 (0.0022)	$0.8660 \ (0.0108)$	$0.0052 \ (0.0002)$	1000
RP(5)	0.5230	0.0033	$0.0693 \ (0.0016)$	-0.0191 (0.0022)	$0.8670 \ (0.0107)$	$0.0052 \ (0.0002)$	1000
RP(9)	0.5230	0.0033	$0.0693 \ (0.0016)$	-0.0191 (0.0022)	$0.8670 \ (0.0107)$	$0.0052 \ (0.0002)$	1000
RP(P)	0.5231	0.0033	$0.0692 \ (0.0015)$	-0.0189 (0.0022)	$0.8677 \ (0.0107)$	$0.0051 \ (0.0002)$	998
FP(W)	0.5230	0.0021	$0.0693 \ (0.0016)$	-0.0191 (0.0022)	$0.8010 \ (0.0126)$	$0.0052 \ (0.0002)$	1000
FP (k=10)	0.5249	0.0021	$0.0685 \ (0.0015)$	$-0.0172 \ (0.0022)$	$0.8140 \ (0.0123)$	$0.0050 \ (0.0002)$	1000
FP (k=10000)	0.5257	0.0021	$0.0679 \ (0.0015)$	-0.0164 (0.0021)	$0.8118 \ (0.0124)$	$0.0049 \ (0.0002)$	999
Model frailty: I	Vormal						
Cox	0.5410	0.0022	$0.0622 \ (0.0014)$	-0.0011 (0.0020)	$0.8640 \ (0.0108)$	$0.0039 \ (0.0002)$	1000
Exp	0.5473	0.0035	0.0615 (0.0014)	$0.0052 \ (0.0019)$	$0.9379 \ (0.0076)$	$0.0038 \ (0.0002)$	999
Weibull	0.5473	0.0035	$0.0614 \ (0.0014)$	$0.0052 \ (0.0019)$	$0.9380 \ (0.0076)$	$0.0038 \ (0.0002)$	1000
Gompertz	0.5475	0.0035	$0.0629 \ (0.0021)$	$0.0055 \ (0.0030)$	$0.9327 \ (0.0119)$	$0.0040 \ (0.0003)$	446
RP(3)	0.5474	0.0034	$0.0612 \ (0.0014)$	$0.0053 \ (0.0019)$	$0.9360 \ (0.0077)$	$0.0038 \ (0.0002)$	1000
RP(5)	0.5473	0.0034	$0.0612 \ (0.0014)$	$0.0052 \ (0.0019)$	$0.9370 \ (0.0077)$	$0.0038 \ (0.0002)$	1000
RP(9)	0.5473	0.0034	$0.0613 \ (0.0014)$	$0.0052 \ (0.0019)$	$0.9370 \ (0.0077)$	$0.0038 \ (0.0002)$	1000
RP(P)	0.5475	0.0034	$0.0612 \ (0.0014)$	$0.0054 \ (0.0019)$	$0.9370 \ (0.0077)$	$0.0038 \ (0.0002)$	1000
FP(W)	0.3979	0.0013	$0.1344 \ (0.0037)$	-0.1442 (0.0053)	$0.3760 \ (0.0190)$	$0.0388 \ (0.0018)$	649
FP (k=10)	0.5185	0.0020	$0.0718 \ (0.0017)$	-0.0236 (0.0023)	$0.7850 \ (0.0134)$	$0.0057 \ (0.0003)$	935
FP (k=10000)	0.5385	0.0019	0.0606 (0.0014)	-0.0036 (0.0020)	0.8427 (0.0118)	0.0037 (0.0002)	947

Table 172: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

	Avg. Estimate		Emp. SE	Bias	Coverage		N. Converged
Model frailty: 0	Gamma						
Cox	0.5517	0.0025	$0.0711 \ (0.0016)$	-0.0131 (0.0023)	$0.8153 \ (0.0124)$	$0.0052 \ (0.0002)$	980
Exp	0.5562	0.0038	$0.0829 \ (0.0019)$	-0.0086 (0.0026)	$0.8520 \ (0.0112)$	$0.0069 \ (0.0003)$	1000
Weibull	0.5507	0.0040	$0.0722 \ (0.0016)$	-0.0142 (0.0023)	$0.9000 \ (0.0095)$	$0.0054 \ (0.0002)$	1000
Gompertz	0.5674	0.0039	$0.0749 \ (0.0026)$	$0.0026 \ (0.0037)$	$0.8958 \ (0.0152)$	$0.0056 \ (0.0004)$	403
RP(3)	0.5507	0.0040	$0.0721 \ (0.0016)$	-0.0142 (0.0023)	$0.8980 \ (0.0096)$	$0.0054 \ (0.0002)$	1000
RP(5)	0.5505	0.0040	$0.0719 \ (0.0016)$	-0.0143 (0.0023)	$0.8950 \ (0.0097)$	$0.0054 \ (0.0002)$	1000
RP(9)	0.5505	0.0040	$0.0718 \ (0.0016)$	-0.0143 (0.0023)	$0.8980 \ (0.0096)$	$0.0054 \ (0.0002)$	1000
RP(P)	0.5506	0.0040	$0.0719 \ (0.0016)$	-0.0142 (0.0023)	$0.8970 \ (0.0096)$	$0.0054 \ (0.0002)$	1000
FP(W)	0.5507	0.0025	$0.0722 \ (0.0016)$	-0.0141 (0.0023)	$0.8090 \ (0.0124)$	$0.0054 \ (0.0002)$	1000
FP (k=10)	0.5398	0.0023	$0.0721 \ (0.0016)$	-0.0250 (0.0023)	$0.7720 \ (0.0133)$	$0.0058 \ (0.0003)$	1000
FP (k=10000)	0.5517	0.0023	$0.0714 \ (0.0016)$	-0.0131 (0.0023)	$0.7929 \ (0.0129)$	$0.0053 \ (0.0002)$	980
Model frailty: I	Normal						
Cox	0.5633	0.0025	$0.0630 \ (0.0014)$	-0.0016 (0.0020)	$0.8840 \ (0.0101)$	$0.0040 \ (0.0002)$	1000
Exp	0.5930	0.0040	$0.0649 \ (0.0015)$	$0.0282 \ (0.0021)$	$0.9290 \ (0.0081)$	$0.0050 \ (0.0002)$	1000
Weibull	0.5688	0.0041	$0.0624 \ (0.0014)$	$0.0040 \ (0.0020)$	$0.9510 \ (0.0068)$	$0.0039 \ (0.0002)$	1000
Gompertz	0.5957	0.0040	$0.0641 \ (0.0023)$	$0.0309 \ (0.0032)$	$0.9257 \ (0.0130)$	$0.0051 \ (0.0003)$	404
RP(3)	0.5681	0.0041	$0.0625 \ (0.0014)$	$0.0033 \ (0.0020)$	$0.9500 \ (0.0069)$	$0.0039 \ (0.0002)$	1000
RP(5)	0.5679	0.0041	$0.0625 \ (0.0014)$	$0.0031 \ (0.0020)$	$0.9510 \ (0.0068)$	$0.0039 \ (0.0002)$	1000
RP(9)	0.5679	0.0041	$0.0625 \ (0.0014)$	$0.0031 \ (0.0020)$	$0.9500 \ (0.0069)$	$0.0039 \ (0.0002)$	1000
RP(P)	0.5680	0.0041	$0.0625 \ (0.0014)$	$0.0032 \ (0.0020)$	$0.9500 \ (0.0069)$	$0.0039 \ (0.0002)$	1000
FP(W)	0.4294	0.0016	$0.1424 \ (0.0038)$	-0.1354 (0.0054)	$0.4113 \ (0.0187)$	$0.0386 \ (0.0018)$	693
FP (k=10)	0.5369	0.0023	$0.0760 \ (0.0018)$	-0.0279 (0.0025)	$0.7908 \ (0.0133)$	$0.0066 \ (0.0004)$	932
FP (k=10000)	0.5617	0.0021	0.0630 (0.0014)	-0.0031 (0.0020)	$0.8496 \ (0.0115)$	$0.0040 \ (0.0002)$	964

Table 173: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	0.4723	0.0016	$0.0626 \ (0.0014)$	-0.0316 (0.0020)	$0.7284 \ (0.0143)$	$0.0049 \ (0.0002)$	972
Exp	0.4550	0.0026	$0.0591 \ (0.0013)$	-0.0488 (0.0019)	$0.7760 \ (0.0132)$	$0.0059 \ (0.0002)$	1000
Weibull	0.4591	0.0024	$0.0643 \ (0.0014)$	-0.0447 (0.0020)	$0.7620 \ (0.0135)$	$0.0061 \ (0.0003)$	1000
Gompertz	0.4657	0.0027	$0.0602 \ (0.0018)$	-0.0381 (0.0025)	$0.8313 \ (0.0158)$	$0.0051 \ (0.0003)$	563
RP(3)	0.4688	0.0024	$0.0639 \ (0.0014)$	-0.0351 (0.0020)	$0.7840 \ (0.0130)$	$0.0053 \ (0.0002)$	1000
RP(5)	0.4700	0.0024	$0.0640 \ (0.0014)$	-0.0339 (0.0020)	$0.7880 \ (0.0129)$	$0.0052 \ (0.0002)$	1000
RP(9)	0.4703	0.0024	$0.0640 \ (0.0014)$	-0.0336 (0.0020)	$0.7890 \ (0.0129)$	$0.0052 \ (0.0002)$	1000
RP(P)	0.4684	0.0024	$0.0638 \ (0.0014)$	-0.0355 (0.0020)	$0.7826 \ (0.0131)$	$0.0053 \ (0.0002)$	998
FP(W)	0.4591	0.0017	$0.0643 \ (0.0014)$	-0.0447 (0.0020)	$0.6750 \ (0.0148)$	$0.0061 \ (0.0003)$	1000
FP (k=10)	0.4739	0.0016	$0.0633 \ (0.0014)$	-0.0300 (0.0020)	$0.7270 \ (0.0141)$	$0.0049 \ (0.0002)$	1000
FP (k=10000)	0.4777	0.0016	$0.0588 \ (0.0013)$	-0.0262 (0.0019)	$0.7523 \ (0.0139)$	$0.0041 \ (0.0002)$	965
Model frailty: I	Normal						
Cox	0.4993	0.0018	$0.0542 \ (0.0012)$	-0.0046 (0.0017)	$0.8740 \ (0.0105)$	$0.0030 \ (0.0001)$	1000
Exp	0.4809	0.0029	$0.0501 \ (0.0011)$	-0.0229 (0.0016)	$0.9379 \ (0.0076)$	$0.0030 \ (0.0001)$	999
Weibull	0.4959	0.0029	$0.0526 \ (0.0012)$	-0.0079 (0.0017)	$0.9469 \ (0.0071)$	$0.0028 \ (0.0001)$	998
Gompertz	0.4890	0.0029	0.0517 (0.0016)	-0.0148 (0.0022)	$0.9513 \ (0.0091)$	$0.0029 \ (0.0002)$	554
RP(3)	0.5029	0.0028	$0.0543 \ (0.0012)$	-0.0010 (0.0017)	$0.9460 \ (0.0071)$	$0.0029 \ (0.0001)$	1000
RP(5)	0.5038	0.0028	$0.0544 \ (0.0012)$	-0.0001 (0.0017)	$0.9470 \ (0.0071)$	$0.0030 \ (0.0001)$	1000
RP(9)	0.5041	0.0028	$0.0544 \ (0.0012)$	$0.0003 \ (0.0017)$	$0.9490 \ (0.0070)$	$0.0030 \ (0.0001)$	1000
RP(P)	0.5027	0.0028	$0.0541 \ (0.0012)$	-0.0011 (0.0017)	$0.9490 \ (0.0070)$	$0.0029 \ (0.0001)$	1000
FP (W)	0.3661	0.0011	$0.1250 \ (0.0037)$	-0.1378 (0.0053)	$0.3475 \ (0.0201)$	$0.0346 \ (0.0017)$	564
FP (k=10)	0.4897	0.0016	$0.0663 \ (0.0016)$	-0.0142 (0.0022)	$0.7960 \ (0.0134)$	$0.0046 \ (0.0003)$	902
FP (k=10000)	0.5015	0.0015	0.0530 (0.0012)	-0.0023 (0.0017)	0.8476 (0.0118)	0.0028 (0.0001)	932

Table 174: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.4519	0.0015	$0.0567 \ (0.0013)$	-0.0300 (0.0018)	$0.7383 \ (0.0140)$	$0.0041 \ (0.0002)$	982
Exp	0.4374	0.0027	$0.0491 \ (0.0011)$	-0.0444 (0.0016)	$0.8680 \ (0.0107)$	$0.0044 \ (0.0002)$	1000
Weibull	0.4613	0.0021	$0.0575 \ (0.0013)$	-0.0206 (0.0018)	$0.8460 \ (0.0114)$	$0.0037 \ (0.0002)$	1000
Gompertz	0.4603	0.0026	$0.0621 \ (0.0016)$	-0.0216 (0.0022)	$0.8717 \ (0.0118)$	$0.0043 \ (0.0002)$	803
RP(3)	0.4479	0.0022	$0.0571 \ (0.0013)$	-0.0340 (0.0018)	$0.8070 \ (0.0125)$	$0.0044 \ (0.0002)$	1000
RP(5)	0.4492	0.0022	$0.0576 \ (0.0013)$	-0.0327 (0.0018)	$0.8090 \ (0.0124)$	$0.0044 \ (0.0002)$	1000
RP(9)	0.4496	0.0022	$0.0576 \ (0.0013)$	-0.0322 (0.0018)	$0.8130 \ (0.0123)$	$0.0044 \ (0.0002)$	1000
RP(P)	0.4499	0.0022	$0.0574 \ (0.0013)$	-0.0320 (0.0018)	$0.8140 \ (0.0123)$	$0.0043 \ (0.0002)$	1000
FP(W)	0.4612	0.0015	$0.0575 \ (0.0013)$	-0.0207 (0.0018)	$0.7605 \ (0.0135)$	$0.0037 \ (0.0002)$	998
FP (k=10)	0.4582	0.0015	$0.0573 \ (0.0013)$	-0.0237 (0.0018)	$0.7660 \ (0.0134)$	$0.0038 \ (0.0002)$	1000
FP (k=10000)	0.0533	0.0000	$0.0165 \ (0.0004)$	$-0.4286 \ (0.0005)$	$0.0000 \ (0.0000)$	$0.1839 \ (0.0004)$	968
Model frailty: I	Normal						
Cox	0.4774	0.0016	$0.0489 \ (0.0011)$	-0.0045 (0.0015)	$0.8900 \ (0.0099)$	$0.0024 \ (0.0001)$	1000
Exp	0.4416	0.0028	$0.0482 \ (0.0011)$	-0.0402 (0.0015)	$0.8970 \ (0.0096)$	0.0039 (0.0001)	1000
Weibull	0.4889	0.0024	$0.0515 \ (0.0012)$	$0.0070 \ (0.0016)$	$0.9308 \; (0.0080)$	$0.0027 \ (0.0001)$	997
Gompertz	0.4661	0.0027	$0.0631 \ (0.0017)$	-0.0158 (0.0023)	$0.8845 \ (0.0119)$	$0.0042 \ (0.0002)$	727
RP(3)	0.4804	0.0025	$0.0492 \ (0.0011)$	-0.0014 (0.0016)	$0.9470 \ (0.0071)$	$0.0024 \ (0.0001)$	1000
RP(5)	0.4816	0.0025	$0.0495 \ (0.0011)$	-0.0003 (0.0016)	$0.9490 \ (0.0070)$	$0.0024 \ (0.0001)$	1000
RP(9)	0.4821	0.0025	$0.0494 \ (0.0011)$	$0.0002 \ (0.0016)$	$0.9500 \ (0.0069)$	$0.0024 \ (0.0001)$	1000
RP(P)	0.4819	0.0025	$0.0494 \ (0.0011)$	-0.0000 (0.0016)	$0.9490 \ (0.0070)$	$0.0024 \ (0.0001)$	1000
FP(W)	0.3658	0.0010	0.1137 (0.0035)	-0.1161 (0.0049)	$0.3819 \ (0.0209)$	$0.0264 \ (0.0013)$	542
FP (k=10)	0.4653	0.0015	$0.0591 \ (0.0014)$	-0.0165 (0.0019)	$0.8172 \ (0.0127)$	$0.0038 \ (0.0002)$	919
FP (k=10000)	0.4414	0.0011	$0.0662 \ (0.0015)$	-0.0405 (0.0022)	$0.6017 \ (0.0161)$	$0.0060 \ (0.0003)$	929

Table 175: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	0.5278	0.0023	$0.0709 \ (0.0016)$	-0.0219 (0.0023)	$0.7819 \ (0.0132)$	0.0055 (0.0002)	981
Exp	0.5340	0.0035	$0.0752 \ (0.0017)$	-0.0156 (0.0024)	$0.8600 \ (0.0110)$	$0.0059 \ (0.0003)$	1000
Weibull	0.5314	0.0036	$0.0715 \ (0.0016)$	-0.0183 (0.0023)	$0.8800 \ (0.0103)$	$0.0054 \ (0.0002)$	1000
Gompertz	0.5421	0.0035	$0.0752 \ (0.0026)$	-0.0075 (0.0037)	$0.8765 \ (0.0160)$	$0.0057 \ (0.0004)$	421
RP(3)	0.5289	0.0035	$0.0715 \ (0.0016)$	-0.0207 (0.0023)	$0.8770 \ (0.0104)$	$0.0055 \ (0.0002)$	1000
RP(5)	0.5269	0.0035	$0.0715 \ (0.0016)$	-0.0227 (0.0023)	$0.8720 \ (0.0106)$	$0.0056 \ (0.0002)$	1000
RP(9)	0.5263	0.0035	$0.0715 \ (0.0016)$	-0.0233 (0.0023)	$0.8710 \ (0.0106)$	$0.0057 \ (0.0002)$	1000
RP(P)	0.5274	0.0035	$0.0715 \ (0.0016)$	-0.0223 (0.0023)	$0.8716 \ (0.0106)$	$0.0056 \ (0.0002)$	997
FP(W)	0.5314	0.0023	$0.0715 \ (0.0016)$	-0.0183 (0.0023)	$0.7830 \ (0.0130)$	$0.0054 \ (0.0002)$	1000
FP (k=10)	0.5301	0.0022	$0.0697 \ (0.0016)$	-0.0195 (0.0022)	$0.7960 \ (0.0127)$	$0.0052 \ (0.0002)$	1000
FP (k=10000)	0.5306	0.0022	$0.0697 \ (0.0016)$	-0.0191 (0.0022)	$0.7897 \ (0.0129)$	$0.0052 \ (0.0002)$	994
Model frailty: I	Normal						
Cox	0.5452	0.0023	$0.0623 \ (0.0014)$	-0.0044 (0.0020)	$0.8729 \ (0.0105)$	$0.0039 \ (0.0002)$	999
Exp	0.5631	0.0037	$0.0628 \ (0.0014)$	$0.0134 \ (0.0020)$	$0.9288 \; (0.0081)$	$0.0041 \ (0.0002)$	997
Weibull	0.5527	0.0037	$0.0623 \ (0.0014)$	$0.0030 \ (0.0020)$	$0.9389 \ (0.0076)$	$0.0039 \ (0.0002)$	998
Gompertz	0.5685	0.0037	$0.0650 \ (0.0023)$	$0.0188 \ (0.0033)$	$0.9145 \ (0.0142)$	$0.0046 \ (0.0004)$	386
RP(3)	0.5525	0.0037	$0.0614 \ (0.0014)$	$0.0029 \ (0.0019)$	$0.9420 \ (0.0074)$	$0.0038 \ (0.0002)$	1000
RP(5)	0.5513	0.0036	$0.0612 \ (0.0014)$	$0.0017 \ (0.0019)$	$0.9430 \ (0.0073)$	$0.0037 \ (0.0002)$	1000
RP(9)	0.5509	0.0036	$0.0611 \ (0.0014)$	$0.0013 \ (0.0019)$	$0.9430 \ (0.0073)$	$0.0037 \ (0.0002)$	1000
RP(P)	0.5514	0.0036	$0.0613 \ (0.0014)$	$0.0018 \ (0.0019)$	$0.9430 \ (0.0073)$	$0.0038 \ (0.0002)$	1000
FP(W)	0.4065	0.0014	$0.1367 \ (0.0037)$	-0.1431 (0.0052)	$0.3647 \ (0.0185)$	$0.0391 \ (0.0017)$	680
FP (k=10)	0.5217	0.0021	$0.0761 \ (0.0018)$	-0.0279 (0.0025)	0.7621 (0.0140)	$0.0066 \ (0.0003)$	929
FP (k=10000)	0.5454	0.0021	0.0619 (0.0014)	-0.0043 (0.0020)	$0.8533 \ (0.0114)$	0.0038 (0.0002)	961

Table 176: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 1.25, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						_
Cox	0.2115	0.0005	$0.0307 \ (0.0007)$	0.1075 (0.0010)	$0.0080 \ (0.0028)$	$0.0125 \ (0.0002)$	999
Exp	0.2068	0.0010	$0.0301 \ (0.0007)$	$0.1028 \ (0.0010)$	$0.0300 \ (0.0054)$	0.0115 (0.0002)	1000
Weibull	0.2069	0.0010	$0.0303 \ (0.0007)$	$0.1029 \ (0.0010)$	$0.0260 \ (0.0050)$	$0.0115 \ (0.0002)$	1000
Gompertz	0.2130	0.0010	$0.0277 \ (0.0039)$	$0.1090 \ (0.0054)$	$0.0000 \ (0.0000)$	$0.0126 \ (0.0011)$	26
RP(3)	0.2066	0.0010	$0.0307 \ (0.0007)$	$0.1026 \ (0.0010)$	$0.0283 \ (0.0054)$	$0.0115 \ (0.0002)$	953
RP(5)	0.2079	0.0010	$0.0310 \ (0.0007)$	$0.1039\ (0.0010)$	$0.0264 \ (0.0052)$	$0.0118 \ (0.0002)$	947
RP(9)	0.2100	0.0011	$0.0297 \ (0.0007)$	$0.1060 \ (0.0010)$	$0.0188 \ (0.0045)$	$0.0121 \ (0.0002)$	905
RP(P)	0.2086	0.0011	$0.0305 \ (0.0007)$	$0.1046 \ (0.0010)$	$0.0237 \ (0.0049)$	$0.0119 \ (0.0002)$	970
FP(W)	0.2069	0.0005	$0.0303 \ (0.0007)$	$0.1029 \ (0.0010)$	$0.0090 \ (0.0030)$	$0.0115 \ (0.0002)$	999
FP (k=10)	0.2085	0.0005	$0.0302 \ (0.0007)$	$0.1045 \ (0.0010)$	$0.0080 \ (0.0028)$	$0.0118 \ (0.0002)$	1000
FP (k=10000)	0.2505	0.0009	$0.0608 \ (0.0192)$	$0.1465 \ (0.0248)$	$0.0000 \ (0.0000)$	$0.0245 \ (0.0078)$	6
Model frailty: I	Normal						
Cox	0.3512	0.0018	$0.1345 \ (0.0031)$	$0.2472 \ (0.0044)$	$0.0011 \ (0.0011)$	$0.0792 \ (0.0027)$	950
Exp	0.2510	0.0019	$0.0310 \ (0.0007)$	$0.1470 \ (0.0010)$	$0.0032 \ (0.0019)$	$0.0226 \ (0.0003)$	928
Weibull	0.2543	0.0019	$0.0312 \ (0.0007)$	$0.1503 \ (0.0010)$	$0.0011 \ (0.0011)$	$0.0236 \ (0.0003)$	909
Gompertz	0.2538	0.0018	$0.0297 \ (0.0048)$	$0.1498 \ (0.0066)$	$0.0000 \ (0.0000)$	$0.0233 \ (0.0019)$	20
RP(3)	0.2756	0.0055	$0.0549 \ (0.0012)$	$0.1716 \ (0.0018)$	$0.3986 \ (0.0156)$	$0.0324 \ (0.0006)$	981
RP(5)	0.2784	0.0056	$0.0558 \ (0.0013)$	$0.1744 \ (0.0018)$	$0.3852 \ (0.0156)$	$0.0335 \ (0.0006)$	976
RP(9)	0.2753	0.0056	$0.0619 \ (0.0014)$	$0.1713 \ (0.0020)$	$0.3895 \ (0.0156)$	$0.0332 \ (0.0006)$	973
RP(P)	0.2817	0.0058	$0.0517 \ (0.0012)$	0.1777 (0.0017)	$0.3863 \ (0.0155)$	$0.0343 \ (0.0006)$	981
FP(W)	0.1956	0.0004	$0.0432 \ (0.0013)$	$0.0916 \ (0.0019)$	$0.0543 \ (0.0098)$	$0.0103 \ (0.0004)$	534
FP (k=10)	0.2503	0.0007	$0.0294 \ (0.0007)$	$0.1463 \ (0.0010)$	$0.0012 \ (0.0012)$	$0.0223 \ (0.0003)$	834
FP (k=10000)	0.2664	0.0007	$0.0307 \ (0.0008)$	$0.1624 \ (0.0012)$	$0.0014 \ (0.0014)$	$0.0273 \ (0.0004)$	695

Table 177: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate		Emp. SE	Bias	Coverage		N. Converged
Model frailty: 0							
Čox	0.2144	0.0006	0.0318 (0.0007)	0.1197 (0.0010)	0.0070 (0.0026)	0.0153 (0.0003)	999
Exp	0.2105	0.0009	0.0337(0.0008)	0.1158 (0.0011)	$0.0110 \ (0.0033)$	0.0146 (0.0003)	1000
Weibull	0.2082	0.0010	$0.0321 \ (0.0007)$	0.1135 (0.0010)	0.0180 (0.0042)	0.0139(0.0002)	1000
Gompertz	0.2112	0.0009	0.0361 (0.0077)	0.1165 (0.0104)	0.0000(0.0000)	0.0148 (0.0027)	12
RP(3)	0.2087	0.0011	$0.0321 \ (0.0007)$	$0.1140 \ (0.0010)$	$0.0174 \ (0.0042)$	$0.0140 \ (0.0002)$	976
RP(5)	0.2189	0.0013	0.0295 (0.0008)	$0.1242 \ (0.0011)$	$0.0091 \ (0.0034)$	$0.0163 \ (0.0003)$	766
RP(9)	0.2257	0.0015	$0.0435 \ (0.0023)$	$0.1310 \ (0.0033)$	$0.0455 \ (0.0157)$	$0.0190 \ (0.0009)$	176
RP(P)	0.2127	0.0012	$0.0314 \ (0.0007)$	$0.1180 \ (0.0010)$	$0.0143 \ (0.0038)$	$0.0149 \ (0.0002)$	978
FP(W)	0.2082	0.0005	$0.0321 \ (0.0007)$	$0.1135 \ (0.0010)$	$0.0040 \ (0.0020)$	$0.0139 \ (0.0002)$	998
FP (k=10)	0.2182	0.0005	$0.0359 \ (0.0008)$	$0.1235 \ (0.0011)$	$0.0030 \ (0.0017)$	$0.0165 \ (0.0003)$	995
FP (k=10000)		_	_	_	_		0
Model frailty: I	Normal						
Cox	0.3512	0.0018	$0.1331 \ (0.0031)$	$0.2566 \ (0.0043)$	$0.0011 \ (0.0011)$	$0.0835 \ (0.0028)$	949
Exp	0.2708	0.0021	$0.0353 \ (0.0009)$	$0.1761 \ (0.0012)$	$0.0047 \ (0.0023)$	$0.0323 \ (0.0004)$	857
Weibull	0.2548	0.0019	$0.0327 \ (0.0008)$	$0.1601 \ (0.0011)$	$0.0043 \ (0.0022)$	$0.0267 \ (0.0003)$	922
Gompertz	0.2737	0.0020	$0.0405 \ (0.0117)$	$0.1790 \ (0.0153)$	$0.0000 \ (0.0000)$	$0.0335 \ (0.0061)$	7
RP(3)	0.2756	0.0065	$0.0553 \ (0.0013)$	$0.1809 \ (0.0019)$	$0.4142 \ (0.0169)$	$0.0358 \; (0.0007)$	845
RP(5)	0.2606	0.0065	$0.0819 \ (0.0021)$	$0.1659 \ (0.0029)$	$0.4369 \ (0.0177)$	$0.0342 \ (0.0008)$	785
RP(9)	0.1457	0.0050	$0.1076 \ (0.0029)$	$0.0511 \ (0.0041)$	$0.7009 \ (0.0173)$	$0.0142 \ (0.0008)$	702
RP(P)	0.2800	0.0069	$0.0584 \ (0.0015)$	$0.1853 \ (0.0021)$	$0.4271 \ (0.0179)$	$0.0377 \ (0.0008)$	761
FP(W)	0.2009	0.0005	$0.0431 \ (0.0013)$	$0.1062 \ (0.0018)$	$0.0161 \ (0.0053)$	$0.0131 \ (0.0004)$	560
FP (k=10)	0.2812	0.0008	$0.0359 \ (0.0009)$	$0.1865 \ (0.0013)$	$0.0013 \ (0.0013)$	$0.0361 \ (0.0005)$	795
FP (k=10000)	0.3102	0.0007	$0.0351 \ (0.0013)$	$0.2155 \ (0.0019)$	$0.0000 \ (0.0000)$	$0.0477 \ (0.0008)$	358

Table 178: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.2018	0.0005	$0.0289 \ (0.0006)$	$0.0835 \ (0.0009)$	$0.0410 \ (0.0063)$	$0.0078 \ (0.0002)$	1000
Exp	0.2046	0.0010	$0.0301 \ (0.0007)$	$0.0862 \ (0.0010)$	$0.1200 \ (0.0103)$	$0.0083 \ (0.0002)$	1000
Weibull	0.2036	0.0009	$0.0305 \ (0.0007)$	$0.0852 \ (0.0010)$	$0.1020 \ (0.0096)$	$0.0082 \ (0.0002)$	1000
Gompertz	0.2029	0.0009	$0.0329 \ (0.0058)$	$0.0845 \ (0.0080)$	$0.1176 \ (0.0781)$	$0.0082 \ (0.0015)$	17
RP(3)	0.1961	0.0008	$0.0287 \ (0.0007)$	$0.0778 \ (0.0009)$	$0.1519 \ (0.0115)$	$0.0069 \ (0.0002)$	968
RP(5)	0.1966	0.0009	$0.0285 \ (0.0006)$	$0.0782 \ (0.0009)$	$0.1491 \ (0.0115)$	$0.0069 \ (0.0002)$	966
RP(9)	0.1987	0.0009	$0.0282 \ (0.0007)$	$0.0803 \ (0.0009)$	$0.1288 \; (0.0110)$	$0.0072 \ (0.0002)$	932
RP(P)	0.1982	0.0009	$0.0285 \ (0.0006)$	$0.0799 \ (0.0009)$	$0.1379 \ (0.0111)$	$0.0072 \ (0.0002)$	972
FP(W)	0.2036	0.0005	$0.0305 \ (0.0007)$	$0.0853 \ (0.0010)$	$0.0361 \ (0.0059)$	$0.0082 \ (0.0002)$	998
FP (k=10)	0.2018	0.0005	$0.0277 \ (0.0006)$	$0.0834 \ (0.0009)$	$0.0330 \ (0.0057)$	$0.0077 \ (0.0002)$	999
FP (k=10000)	0.2257	0.0004	$0.0171 \ (0.0046)$	$0.1074 \ (0.0061)$	$0.0000 \ (0.0000)$	$0.0118 \ (0.0013)$	8
Model frailty: I	Normal						
Cox	0.3459	0.0017	$0.1321\ (0.0030)$	$0.2276 \ (0.0043)$	$0.0010 \ (0.0010)$	$0.0692 \ (0.0025)$	957
Exp	0.2600	0.0019	$0.0319 \ (0.0008)$	0.1417 (0.0011)	$0.0134 \ (0.0038)$	$0.0211\ (0.0003)$	894
Weibull	0.2666	0.0019	$0.0320 \ (0.0008)$	$0.1482 \ (0.0011)$	$0.0093 \ (0.0033)$	$0.0230 \ (0.0003)$	860
Gompertz	0.2670	0.0023	$0.0427 \ (0.0095)$	$0.1486 \ (0.0129)$	$0.0000 \ (0.0000)$	$0.0237 \ (0.0043)$	11
RP(3)	0.2732	0.0047	$0.0483 \ (0.0011)$	$0.1548 \ (0.0015)$	$0.4087 \ (0.0157)$	$0.0263 \ (0.0005)$	986
RP(5)	0.2709	0.0044	$0.0478 \ (0.0011)$	$0.1525 \ (0.0015)$	$0.3823 \ (0.0155)$	$0.0255 \ (0.0005)$	981
RP(9)	0.2692	0.0041	$0.0512 \ (0.0012)$	$0.1508 \; (0.0016)$	$0.3579 \ (0.0153)$	$0.0254 \ (0.0005)$	978
RP(P)	0.2743	0.0041	$0.0452 \ (0.0010)$	$0.1560 \ (0.0014)$	$0.3330 \ (0.0151)$	$0.0264 \ (0.0004)$	979
FP (W)	0.2024	0.0005	$0.0466 \ (0.0016)$	$0.0840 \ (0.0023)$	$0.1192 \ (0.0157)$	$0.0092 \ (0.0004)$	428
FP (k=10)	0.2451	0.0007	$0.0296 \ (0.0007)$	$0.1268 \; (0.0011)$	$0.0025 \ (0.0018)$	$0.0169 \ (0.0003)$	789
FP (k=10000)	0.2635	0.0006	$0.0300 \ (0.0008)$	$0.1452 \ (0.0012)$	0.0000 (0.0000)	$0.0220 \ (0.0004)$	635

Table 179: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	0.2056	0.0005	0.0281 (0.0006)	$0.0813 \ (0.0009)$	$0.0740 \ (0.0083)$	$0.0074 \ (0.0002)$	1000
Exp	0.1960	0.0015	$0.0262 \ (0.0006)$	0.0717(0.0008)	$0.5500 \ (0.0157)$	$0.0058 \ (0.0001)$	1000
Weibull	0.1974	0.0008	$0.0260 \ (0.0006)$	$0.0731 \ (0.0008)$	$0.2200 \ (0.0131)$	$0.0060 \ (0.0001)$	1000
Gompertz	0.2061	0.0017	$0.0273 \ (0.0018)$	$0.0818 \; (0.0026)$	$0.4649 \ (0.0467)$	$0.0074 \ (0.0004)$	114
RP(3)	0.1992	0.0009	$0.0287 \ (0.0009)$	$0.0749 \ (0.0013)$	$0.2110 \ (0.0178)$	$0.0064 \ (0.0002)$	526
RP(5)	0.2042	0.0009	$0.0284 \ (0.0007)$	$0.0800 \ (0.0010)$	$0.1658 \ (0.0130)$	$0.0072 \ (0.0002)$	814
RP(9)	0.2028	0.0009	$0.0278 \ (0.0006)$	$0.0785 \ (0.0009)$	$0.1704 \ (0.0123)$	$0.0069 \ (0.0002)$	939
RP(P)	0.2022	0.0009	$0.0274 \ (0.0006)$	$0.0779 \ (0.0009)$	$0.1722 \ (0.0121)$	$0.0068 \ (0.0001)$	970
FP(W)	0.1974	0.0005	$0.0260 \ (0.0006)$	$0.0731 \ (0.0008)$	$0.1050 \ (0.0097)$	$0.0060 \ (0.0001)$	1000
FP (k=10)	0.1661	0.0003	$0.0427 \ (0.0010)$	$0.0419 \ (0.0014)$	$0.3260 \ (0.0148)$	$0.0036 \ (0.0001)$	1000
FP (k=10000)	0.0998	0.0001	$0.0792 \ (0.0212)$	$-0.0245 \ (0.0280)$	$0.3750 \ (0.1712)$	$0.0061 \ (0.0022)$	8
Model frailty: I	Normal						
Cox	0.3329	0.0016	$0.1220 \ (0.0028)$	$0.2086 \ (0.0039)$	$0.0010 \ (0.0010)$	$0.0584 \ (0.0021)$	971
Exp	0.2024	0.0016	$0.0273 \ (0.0006)$	$0.0781 \ (0.0009)$	$0.5227 \ (0.0160)$	$0.0068 \ (0.0001)$	970
Weibull	0.2351	0.0015	$0.0279 \ (0.0007)$	$0.1108 \; (0.0010)$	$0.0664 \ (0.0087)$	$0.0131 \ (0.0002)$	813
Gompertz	0.2134	0.0019	$0.0310 \ (0.0024)$	$0.0891 \ (0.0033)$	$0.4253 \ (0.0530)$	$0.0089 \ (0.0006)$	87
RP(3)	0.2525	0.0035	$0.0584 \ (0.0017)$	$0.1282 \ (0.0024)$	$0.4141 \ (0.0202)$	$0.0198 \ (0.0005)$	594
RP(5)	0.2627	0.0039	$0.0590 \ (0.0014)$	$0.1384 \ (0.0020)$	$0.4049 \ (0.0164)$	$0.0226 \ (0.0004)$	894
RP(9)	0.2661	0.0043	$0.0493 \ (0.0011)$	$0.1418 \; (0.0016)$	$0.4424 \ (0.0158)$	$0.0225 \ (0.0004)$	990
RP(P)	0.2652	0.0041	$0.0434 \ (0.0010)$	$0.1409 \ (0.0014)$	$0.4370 \ (0.0157)$	$0.0217 \ (0.0004)$	1000
FP(W)	0.1818	0.0004	$0.0374 \ (0.0013)$	$0.0575 \ (0.0019)$	$0.3300 \ (0.0234)$	$0.0047 \ (0.0003)$	403
FP (k=10)	0.2265	0.0006	$0.0348 \ (0.0008)$	$0.1022 \ (0.0012)$	$0.0596 \ (0.0082)$	$0.0117 \ (0.0003)$	839
FP (k=10000)	0.2336	0.0005	0.0299 (0.0009)	0.1093 (0.0012)	0.0218 (0.0060)	0.0128 (0.0003)	597

Table 180: Simulation results for LLE, scenario with 20 clusters of 150 individuals each. The true frailty follows a Mixture Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.2118	0.0006	$0.0325 \ (0.0007)$	$0.1103 \ (0.0010)$	$0.0120 \ (0.0035)$	$0.0132 \ (0.0002)$	998
Exp	0.2146	0.0010	$0.0350 \ (0.0008)$	$0.1130 \ (0.0011)$	$0.0210 \ (0.0045)$	$0.0140 \ (0.0003)$	1000
Weibull	0.2133	0.0011	$0.0338 \ (0.0008)$	0.1117 (0.0011)	$0.0310 \ (0.0055)$	$0.0136 \ (0.0003)$	1000
Gompertz	0.2089	0.0010	$0.0482 \ (0.0085)$	$0.1073 \ (0.0117)$	$0.1176 \ (0.0781)$	$0.0137 \ (0.0030)$	17
RP(3)	0.2068	0.0011	$0.0325 \ (0.0007)$	$0.1052 \ (0.0010)$	$0.0485 \ (0.0069)$	$0.0121 \ (0.0002)$	969
RP(5)	0.2159	0.0012	$0.0311 \ (0.0008)$	0.1144 (0.0011)	$0.0296 \ (0.0060)$	$0.0140 \ (0.0003)$	810
RP(9)	0.2304	0.0014	$0.0374 \ (0.0017)$	$0.1289 \ (0.0024)$	$0.0206 \ (0.0091)$	$0.0180 \ (0.0006)$	243
RP(P)	0.2111	0.0011	$0.0321 \ (0.0007)$	$0.1096 \ (0.0010)$	$0.0361 \ (0.0060)$	$0.0130 \ (0.0002)$	970
FP(W)	0.2133	0.0005	$0.0338 \ (0.0008)$	0.1117 (0.0011)	$0.0150 \ (0.0038)$	$0.0136 \ (0.0003)$	1000
FP (k=10)	0.2213	0.0005	$0.0366 \ (0.0008)$	$0.1197 \ (0.0012)$	$0.0070 \ (0.0026)$	$0.0157 \ (0.0003)$	999
FP (k=10000)	_	_	_	_	_	_	0
Model frailty: I	Normal						
Cox	0.3546	0.0019	$0.1370 \ (0.0031)$	$0.2531 \ (0.0044)$	$0.0031 \ (0.0018)$	$0.0828 \ (0.0028)$	956
Exp	0.2730	0.0021	$0.0355 \ (0.0008)$	$0.1714 \ (0.0012)$	$0.0045 \ (0.0023)$	$0.0306 \ (0.0004)$	880
Weibull	0.2606	0.0020	$0.0337 \ (0.0008)$	$0.1590 \ (0.0011)$	$0.0108 \; (0.0034)$	$0.0264 \ (0.0004)$	925
Gompertz	0.2304	0.0017	$0.0445 \ (0.0223)$	$0.1289 \ (0.0257)$	$0.0000 \ (0.0000)$	$0.0179 \ (0.0068)$	3
RP(3)	0.2756	0.0054	$0.0531 \ (0.0013)$	$0.1740 \ (0.0018)$	$0.3873 \ (0.0164)$	$0.0331 \ (0.0006)$	883
RP(5)	0.2649	0.0055	$0.0791 \ (0.0019)$	$0.1633 \ (0.0027)$	$0.4022 \ (0.0170)$	$0.0329 \ (0.0007)$	833
RP(9)	0.1783	0.0049	$0.1166 \ (0.0030)$	$0.0767 \ (0.0043)$	$0.6292 \ (0.0178)$	$0.0195 \ (0.0010)$	739
RP(P)	0.2874	0.0062	$0.0554 \ (0.0014)$	$0.1858 \ (0.0020)$	$0.3808 \; (0.0172)$	$0.0376 \ (0.0007)$	801
FP (W)	0.1977	0.0005	$0.0423 \ (0.0012)$	0.0961 (0.0018)	$0.0462 \ (0.0087)$	$0.0110 \ (0.0004)$	584
FP (k=10)	0.2799	0.0007	$0.0349 \ (0.0009)$	$0.1784 \ (0.0012)$	$0.0000 \ (0.0000)$	$0.0330 \ (0.0005)$	779
FP (k=10000)	0.3013	0.0007	$0.0371 \ (0.0012)$	$0.1998 \; (0.0017)$	$0.0000 \ (0.0000)$	$0.0413 \ (0.0007)$	463

Results: frailty variance

Table 181: Simulation results for frailty variance, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 0.25, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.2494	0.0036	0.0601 (0.0013)	-0.0006 (0.0019)	$0.9440 \ (0.0073)$	$0.0036 \ (0.0002)$	1000
Exp	0.2491	0.0023	$0.0487 \ (0.0011)$	-0.0009 (0.0015)	$0.9470 \ (0.0071)$	$0.0024 \ (0.0001)$	1000
Weibull	0.2530	0.0032	$0.0559 \ (0.0013)$	$0.0030 \ (0.0018)$	$0.9570 \ (0.0064)$	$0.0031 \ (0.0001)$	1000
Gompertz	0.2473	0.0036	$0.0480 \ (0.0014)$	-0.0027 (0.0020)	$0.9800 \ (0.0057)$	$0.0023 \ (0.0001)$	600
RP(3)	0.2516	0.0036	$0.0601 \ (0.0013)$	$0.0016 \ (0.0019)$	$0.9440 \ (0.0073)$	$0.0036 \ (0.0002)$	1000
RP(5)	0.2517	0.0036	$0.0602 \ (0.0013)$	$0.0017 \ (0.0019)$	$0.9460 \ (0.0071)$	$0.0036 \ (0.0002)$	1000
RP(9)	0.2518	0.0036	$0.0602 \ (0.0013)$	$0.0018 \ (0.0019)$	$0.9450 \ (0.0072)$	$0.0036 \ (0.0002)$	1000
RP(P)	0.2521	0.0033	$0.0572 \ (0.0013)$	$0.0021 \ (0.0018)$	$0.9480 \ (0.0070)$	$0.0033 \ (0.0001)$	1000
FP(W)	0.2534	0.0032	$0.0556 \ (0.0013)$	$0.0034 \ (0.0018)$	$0.9576 \ (0.0064)$	$0.0031 \ (0.0001)$	990
FP (k=10)	0.2489	0.0036	$0.0601 \ (0.0013)$	-0.0011 (0.0019)	$0.9419 \ (0.0074)$	$0.0036 \ (0.0002)$	998
FP (k=10000)	0.2497	0.0023	$0.0600 \ (0.0013)$	-0.0003 (0.0019)	$0.8860 \ (0.0101)$	$0.0036 \ (0.0002)$	1000
Model frailty: l	og-Normal						
Cox	_		_	_	_	_	
Exp	_		_	_	_	_	
Weibull		_		_	_	_	
Gompertz		_		_	_	_	
RP(3)	_	_	_	_	_	_	_
RP(5)	_	_	_	_	_	_	_
RP(9)		_	_	_	_	_	_
RP(P)		_	_				_
FP(W)		_	_	_	_		_
FP (k=10)		_					
FP (k=10000)			_				

Table 182: Simulation results for frailty variance, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	0.2469	0.0044	$0.0673 \ (0.0015)$	-0.0031 (0.0021)	$0.9380 \ (0.0076)$	$0.0045 \ (0.0002)$	1000
Exp	0.4966	0.0046	$0.0733 \ (0.0016)$	$0.2466 \ (0.0023)$	$0.0280 \ (0.0052)$	$0.0662 \ (0.0012)$	1000
Weibull	0.2552	0.0041	$0.0650 \ (0.0015)$	$0.0052 \ (0.0021)$	$0.9530 \ (0.0067)$	$0.0042 \ (0.0002)$	1000
Gompertz	0.4960	0.0065	$0.0695 \ (0.0023)$	$0.2460 \ (0.0032)$	$0.0713 \ (0.0120)$	$0.0654 \ (0.0017)$	463
RP(3)	0.2487	0.0044	$0.0672 \ (0.0015)$	-0.0013 (0.0021)	$0.9389 \ (0.0076)$	$0.0045 \ (0.0002)$	999
RP(5)	0.2489	0.0044	$0.0674 \ (0.0015)$	-0.0011 (0.0021)	$0.9400 \ (0.0075)$	$0.0045 \ (0.0002)$	1000
RP(9)	0.2492	0.0044	$0.0675 \ (0.0015)$	-0.0008 (0.0021)	$0.9390 \ (0.0076)$	$0.0046 \ (0.0002)$	1000
RP(P)	0.2521	0.0042	$0.0658 \ (0.0015)$	$0.0021 \ (0.0021)$	$0.9460 \ (0.0071)$	$0.0043 \ (0.0002)$	1000
FP(W)	0.2557	0.0041	$0.0649 \ (0.0015)$	$0.0057 \ (0.0021)$	$0.9536 \ (0.0067)$	$0.0042 \ (0.0002)$	991
FP (k=10)	0.2508	0.0044	$0.0676 \ (0.0015)$	$0.0008 \ (0.0021)$	$0.9380 \ (0.0076)$	$0.0046 \ (0.0002)$	1000
FP (k=10000)	0.3023	0.0036	$0.0702 \ (0.0016)$	$0.0523 \ (0.0022)$	$0.8490 \ (0.0113)$	$0.0076 \ (0.0004)$	1000
Model frailty: l	og-Normal						
Cox		_					
Exp		_		_			_
Weibull			_	_	_	_	_
Gompertz		_					
RP(3)		_		_			_
RP(5)		_		_			_
RP(9)		_					
RP(P)		_		_			
FP(W)		_		_			_
FP (k=10)		_			_	_	
FP (k=10000)	_		_				

Table 183: Simulation results for frailty variance, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 0.25, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	0.2476	0.0029	$0.0546 \ (0.0012)$	-0.0024 (0.0017)	$0.9458 \ (0.0072)$	$0.0030 \ (0.0001)$	997
Exp	0.0407	0.0010	$0.0299 \ (0.0007)$	-0.2093 (0.0009)	$0.0000 \ (0.0000)$	$0.0447 \ (0.0004)$	995
Weibull	0.1529	0.0019	$0.0442 \ (0.0010)$	-0.0971 (0.0014)	$0.3880 \ (0.0154)$	$0.0114 \ (0.0003)$	1000
Gompertz	0.2505	0.0030	$0.0547 \ (0.0012)$	$0.0005 \ (0.0017)$	$0.9510 \ (0.0068)$	$0.0030 \ (0.0001)$	1000
RP(3)	0.2453	0.0029	$0.0542 \ (0.0012)$	-0.0047 (0.0017)	$0.9450 \ (0.0072)$	$0.0030 \ (0.0001)$	1000
RP(5)	0.2491	0.0029	$0.0547 \ (0.0012)$	-0.0009 (0.0017)	$0.9450 \ (0.0072)$	$0.0030 \ (0.0001)$	1000
RP(9)	0.2504	0.0030	$0.0548 \ (0.0012)$	$0.0004 \ (0.0017)$	$0.9490 \ (0.0070)$	$0.0030 \ (0.0001)$	1000
RP(P)	0.2264	0.0026	$0.0539 \ (0.0012)$	-0.0236 (0.0017)	$0.8950 \ (0.0097)$	$0.0035 \ (0.0001)$	1000
FP(W)	0.1529	0.0019	$0.0442 \ (0.0010)$	-0.0971 (0.0014)	$0.3870 \ (0.0154)$	$0.0114 \ (0.0003)$	1000
FP (k=10)	0.2469	0.0029	$0.0540 \ (0.0012)$	-0.0031 (0.0017)	$0.9450 \ (0.0072)$	$0.0029 \ (0.0001)$	1000
FP (k=10000)	0.2342	0.0014	$0.0510 \ (0.0011)$	-0.0158 (0.0016)	$0.8060 \ (0.0125)$	$0.0028 \; (0.0001)$	1000
Model frailty: l	og-Normal						
Cox	_	_	_	_	_	_	_
Exp		_	_				_
Weibull	_	_	_	_	_	_	_
Gompertz	_	_	_	_	_	_	_
RP(3)	_	_	_	_	_	_	_
RP(5)							
RP(9)							
RP(P)			_	_	_	_	
FP(W)		_		_			
FP (k=10)		_		_			
FP (k=10000)	_		_	_	_	_	

Table 184: Simulation results for frailty variance, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	0.2517	0.0031	$0.0553 \ (0.0012)$	0.0017 (0.0018)	0.9579 (0.0064)	$0.0031 \ (0.0002)$	998
Exp	0.0000	0.0010	$0.0000 \ (0.0000)$	-0.2500 (0.0000)	$0.0000 \ (0.0000)$	$0.0625 \ (0.0000)$	572
Weibull	0.3733	0.0032	$0.0565 \ (0.0013)$	$0.1233 \ (0.0018)$	$0.4120 \ (0.0156)$	$0.0184 \ (0.0005)$	1000
Gompertz	0.2857	0.0033	$0.0570 \ (0.0013)$	$0.0357 \ (0.0018)$	$0.9360 \ (0.0077)$	$0.0045 \ (0.0002)$	1000
RP(3)	0.2534	0.0031	$0.0555 \ (0.0012)$	$0.0034 \ (0.0018)$	$0.9540 \ (0.0066)$	$0.0031 \ (0.0002)$	1000
RP(5)	0.2539	0.0031	$0.0555 \ (0.0012)$	$0.0039 \ (0.0018)$	$0.9550 \ (0.0066)$	$0.0031 \ (0.0002)$	1000
RP(9)	0.2544	0.0031	$0.0555 \ (0.0012)$	$0.0044 \ (0.0018)$	$0.9560 \ (0.0065)$	$0.0031 \ (0.0002)$	1000
RP(P)	0.2598	0.0031	$0.0557 \ (0.0012)$	$0.0098 \ (0.0018)$	$0.9560 \ (0.0065)$	$0.0032 \ (0.0002)$	1000
FP(W)	0.3733	0.0032	$0.0565 \ (0.0013)$	$0.1233 \ (0.0018)$	$0.4110 \ (0.0156)$	$0.0184 \ (0.0005)$	1000
FP (k=10)	0.2550	0.0031	$0.0559 \ (0.0013)$	$0.0050 \ (0.0018)$	$0.9540 \ (0.0066)$	$0.0032 \ (0.0002)$	1000
FP (k=10000)	0.5260	0.0024	$0.0735 \ (0.0016)$	$0.2760 \ (0.0023)$	$0.0040 \ (0.0020)$	$0.0816 \ (0.0013)$	1000
Model frailty: l	og-Normal						
Cox		_	_		_	_	_
Exp		_	_		_	_	_
Weibull	_	_	_	_	_	_	_
Gompertz	_	_	_	_	_	_	_
RP(3)	_	_	_	_	_	_	_
RP(5)							
RP(9)							
RP(P)		_	_	_	_	_	
FP(W)		_		_			
FP (k=10)		_		_			
FP (k=10000)	_		_	_	_	_	

Table 185: Simulation results for frailty variance, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

respectively.							
Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	0.2541	0.0040	$0.0626 \ (0.0014)$	$0.0041 \ (0.0020)$	$0.9490 \ (0.0070)$	$0.0039 \ (0.0002)$	1000
Exp	0.3731	0.0032	$0.0562 \ (0.0013)$	$0.1231 \ (0.0018)$	$0.4150 \ (0.0156)$	$0.0183 \ (0.0005)$	1000
Weibull	0.2866	0.0036	$0.0591 \ (0.0013)$	$0.0366 \ (0.0019)$	$0.9250 \ (0.0083)$	$0.0048 \ (0.0002)$	1000
Gompertz	0.3725	0.0048	$0.0577 \ (0.0018)$	$0.1225 \ (0.0026)$	$0.6074 \ (0.0221)$	$0.0183 \ (0.0007)$	489
RP(3)	0.2570	0.0040	$0.0625 \ (0.0014)$	$0.0070 \ (0.0020)$	$0.9550 \ (0.0066)$	$0.0040 \ (0.0002)$	1000
RP(5)	0.2564	0.0040	$0.0628 \ (0.0014)$	$0.0064 \ (0.0020)$	$0.9530 \ (0.0067)$	$0.0040 \ (0.0002)$	1000
RP(9)	0.2565	0.0040	$0.0628 \ (0.0014)$	$0.0065 \ (0.0020)$	$0.9520 \ (0.0068)$	$0.0040 \ (0.0002)$	1000
RP(P)	0.2612	0.0040	$0.0626 \ (0.0014)$	$0.0112 \ (0.0020)$	$0.9510 \ (0.0068)$	$0.0040 \ (0.0002)$	1000
FP(W)	0.2870	0.0037	$0.0589 \ (0.0013)$	$0.0370 \ (0.0019)$	$0.9254 \ (0.0084)$	$0.0048 \ (0.0002)$	979
FP (k=10)	0.2531	0.0039	$0.0626 \ (0.0014)$	$0.0031 \ (0.0020)$	$0.9490 \ (0.0070)$	$0.0039 \ (0.0002)$	1000
FP (k=10000)	0.2395	0.0027	$0.0620 \ (0.0014)$	-0.0105 (0.0020)	$0.8850 \ (0.0101)$	$0.0040 \ (0.0002)$	1000
Model frailty: l	og-Normal						
Cox		_					
Exp		_					
Weibull		_	_		_	_	
Gompertz	_	_	_	_	_	_	_
RP(3)		_					
RP(5)		_					
RP(9)		_					
RP(P)		_					
FP(W)		_					
FP (k=10)							
FP (k=10000)		_	_	_	_	_	_

Table 186: Simulation results for frailty variance, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.25, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox		_					
Exp	_	_	_	_	_	_	_
Weibull			_	_	_	_	_
Gompertz			_	_	_	_	_
RP(3)		_	_			_	
RP(5)		_	_			_	
RP(9)		_	_			_	
RP(P)		_	_	_	_	_	_
FP(W)		_	_	_	_	_	_
FP (k=10)		_	_	_	_	_	_
FP (k=10000)							
Model frailty: l	og-Normal						
Cox	0.2223	0.0037	$0.0615 \ (0.0014)$	-0.0277 (0.0019)	$0.9040 \ (0.0093)$	$0.0045 \ (0.0002)$	1000
Exp	0.2700	0.0029	$0.0521 \ (0.0012)$	$0.0200 \ (0.0016)$	$0.9520 \ (0.0068)$	$0.0031 \ (0.0001)$	999
Weibull	0.2833	0.0044	$0.0631 \ (0.0014)$	$0.0333 \ (0.0020)$	$0.9508 \ (0.0069)$	$0.0051 \ (0.0002)$	995
Gompertz	0.2691	0.0047	$0.0532 \ (0.0016)$	$0.0191 \ (0.0023)$	$0.9908 \; (0.0041)$	$0.0032 \ (0.0002)$	545
RP(3)	0.2536	0.0053	$0.0744 \ (0.0017)$	$0.0036 \ (0.0024)$	$0.9340 \ (0.0079)$	$0.0055 \ (0.0002)$	1000
RP(5)	0.2539	0.0053	$0.0745 \ (0.0017)$	$0.0039 \ (0.0024)$	$0.9360 \ (0.0077)$	$0.0056 \ (0.0002)$	1000
RP(9)	0.2542	0.0053	$0.0745 \ (0.0017)$	$0.0042 \ (0.0024)$	$0.9350 \ (0.0078)$	$0.0056 \ (0.0002)$	1000
RP(P)	0.2549	0.0048	$0.0705 \ (0.0016)$	$0.0049 \ (0.0022)$	$0.9370 \ (0.0077)$	$0.0050 \ (0.0002)$	1000
FP(W)	0.2556	0.0046	$0.0689 \ (0.0015)$	$0.0056 \ (0.0022)$	$0.9417 \ (0.0074)$	$0.0048 \ (0.0002)$	995
FP (k=10)	0.2533	0.0052	$0.0727 \ (0.0016)$	$0.0033 \ (0.0023)$	$0.9270 \ (0.0082)$	$0.0053 \ (0.0002)$	1000
FP (k=10000)	0.2532	0.0036	0.0716 (0.0016)	$0.0032 \ (0.0023)$	0.8820 (0.0102)	$0.0051 \ (0.0002)$	1000

Table 187: Simulation results for frailty variance, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

	Avg. Estimate		Emp. SE	Bias	Coverage		N. Converged
Model frailty: (Gamma						
Cox			_	_	_		
Exp		_		_			
Weibull		_				_	
Gompertz		_	_		_	_	
RP(3)	_	_	_	_	_	_	_
RP(5)	_	_	_	_	_	_	_
RP(9)	_	_	_	_	_	_	_
RP(P)	_	_	_	_	_	_	_
FP(W)		_	_	_			_
FP (k=10)	_	_	_	_			
FP (k=10000)		_		_		_	
Model frailty: l	og-Normal						
Cox	0.2222	0.0040	$0.0634 \ (0.0014)$	-0.0278 (0.0020)	$0.9100 \ (0.0090)$	$0.0048 \ (0.0002)$	1000
Exp	0.6047	0.0065	$0.0821 \ (0.0018)$	$0.3547 \ (0.0026)$	$0.0030 \ (0.0017)$	$0.1325 \ (0.0019)$	994
Weibull	0.2984	0.0051	$0.0667 \ (0.0015)$	$0.0484 \ (0.0021)$	$0.9410 \ (0.0075)$	$0.0068 \ (0.0003)$	1000
Gompertz	0.6023	0.0096	$0.0832 \ (0.0028)$	$0.3523 \ (0.0039)$	$0.0089 \ (0.0044)$	$0.1310 \ (0.0028)$	450
RP(3)	0.2540	0.0058	$0.0773 \ (0.0017)$	$0.0040 \ (0.0024)$	$0.9420 \ (0.0074)$	$0.0060 \ (0.0003)$	1000
RP(5)	0.2544	0.0059	$0.0775 \ (0.0017)$	$0.0044 \ (0.0025)$	$0.9430 \ (0.0073)$	$0.0060 \ (0.0003)$	1000
RP(9)	0.2548	0.0059	$0.0776 \ (0.0017)$	$0.0048 \; (0.0025)$	$0.9440 \ (0.0073)$	$0.0060 \ (0.0003)$	1000
RP(P)	0.2581	0.0056	$0.0745 \ (0.0017)$	$0.0081 \ (0.0024)$	$0.9470 \ (0.0071)$	$0.0056 \ (0.0003)$	1000
FP(W)	0.2614	0.0053	$0.0728 \ (0.0016)$	$0.0114 \ (0.0023)$	$0.9552 \ (0.0066)$	$0.0054 \ (0.0003)$	983
FP (k=10)	0.2717	0.0061	$0.0793 \ (0.0018)$	$0.0217 \ (0.0025)$	$0.9310 \ (0.0080)$	$0.0068 \ (0.0003)$	1000
FP (k=10000)	0.3624	0.0063	0.0936 (0.0021)	$0.1124 \ (0.0030)$	0.7090 (0.0144)	$0.0214 \ (0.0009)$	1000

Table 188: Simulation results for frailty variance, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox		_					
Exp							
Weibull		_	_	_		_	
Gompertz		_	_	_		_	
RP(3)	_	_	_	_	_	_	_
RP(5)	_	_	_	_	_	_	_
RP(9)		_					
RP(P)			_		_		
FP (W)		_		_			_
FP (k=10)		_		_			_
FP (k=10000)		_					
Model frailty: l	og-Normal						
Cox	0.2254	0.0035	$0.0578 \ (0.0013)$	-0.0246 (0.0018)	$0.9020 \ (0.0094)$	$0.0039 \ (0.0002)$	1000
Exp	0.0388	0.0011	$0.0260 \ (0.0007)$	-0.2112 (0.0010)	$0.0000 \ (0.0000)$	$0.0453 \ (0.0004)$	679
Weibull	0.1564	0.0028	$0.0537 \ (0.0012)$	-0.0936 (0.0017)	$0.5600 \ (0.0157)$	$0.0116 \ (0.0003)$	1000
$\operatorname{Gompertz}$	0.2799	0.0044	$0.0620 \ (0.0014)$	$0.0299 \ (0.0020)$	$0.9560 \ (0.0065)$	$0.0047 \ (0.0002)$	1000
RP(3)	0.2510	0.0048	$0.0688 \ (0.0015)$	$0.0010 \ (0.0022)$	$0.9420 \ (0.0074)$	$0.0047 \ (0.0002)$	1000
RP(5)	0.2551	0.0048	$0.0689 \ (0.0015)$	$0.0051 \ (0.0022)$	$0.9480 \ (0.0070)$	$0.0048 \ (0.0002)$	1000
RP(9)	0.2563	0.0048	$0.0693 \ (0.0015)$	$0.0063 \ (0.0022)$	$0.9500 \ (0.0069)$	$0.0048 \ (0.0002)$	1000
RP(P)	0.2284	0.0043	$0.0677 \ (0.0015)$	-0.0216 (0.0021)	$0.9030 \ (0.0094)$	$0.0050 \ (0.0002)$	1000
FP(W)	0.1352	0.0024	$0.0464 \ (0.0010)$	-0.1148 (0.0015)	$0.3710 \ (0.0153)$	$0.0153 \ (0.0003)$	1000
FP (k=10)	0.2541	0.0047	$0.0675 \ (0.0015)$	$0.0041 \ (0.0021)$	$0.9380 \ (0.0076)$	$0.0046 \ (0.0002)$	1000
FP (k=10000)	0.2414	0.0025	0.0644 (0.0014)	-0.0086 (0.0020)	0.8460 (0.0114)	0.0042 (0.0002)	1000

Table 189: Simulation results for frailty variance, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox		_					
Exp	_	_	_	_	_	_	_
Weibull							
Gompertz		_	_	_		_	
RP(3)	_	_	_	_	_	_	_
RP(5)	_	_	_	_	_	_	_
RP(9)	_	_	_	_	_	_	_
RP(P)		_					
FP(W)			_		_		
FP (k=10)			_		_		
FP (k=10000)		_		_			_
Model frailty: l	og-Normal						
Cox	0.2213	0.0035	$0.0582 \ (0.0013)$	-0.0287 (0.0018)	$0.9070 \ (0.0092)$	$0.0042 \ (0.0002)$	1000
Exp	0.0054	0.0008	$0.0041 \ (0.0017)$	-0.2446 (0.0021)	$0.0000 \ (0.0000)$	$0.0598 \ (0.0010)$	4
Weibull	0.4101	0.0049	$0.0620 \ (0.0014)$	$0.1601 \ (0.0020)$	$0.3484 \ (0.0151)$	$0.0295 \ (0.0007)$	996
Gompertz	0.2534	0.0036	$0.0495 \ (0.0011)$	$0.0034 \ (0.0016)$	$0.9800 \ (0.0044)$	$0.0025 \ (0.0001)$	1000
RP(3)	0.2548	0.0049	$0.0706 \ (0.0016)$	$0.0048 \ (0.0022)$	$0.9490 \ (0.0070)$	$0.0050 \ (0.0003)$	1000
RP(5)	0.2514	0.0049	$0.0699 \ (0.0016)$	$0.0014 \ (0.0022)$	$0.9510 \ (0.0068)$	$0.0049 \ (0.0003)$	1000
RP(9)	0.2520	0.0049	$0.0700 \ (0.0016)$	$0.0020 \ (0.0022)$	$0.9490 \ (0.0070)$	$0.0049 \ (0.0003)$	1000
RP(P)	0.2580	0.0049	$0.0700 \ (0.0016)$	$0.0080 \ (0.0022)$	$0.9490 \ (0.0070)$	$0.0050 \ (0.0003)$	1000
FP(W)	0.4063	0.0057	$0.0716 \ (0.0016)$	$0.1563 \ (0.0023)$	$0.4572 \ (0.0160)$	$0.0295 \ (0.0008)$	969
FP (k=10)	0.2660	0.0049	$0.0697 \ (0.0016)$	$0.0160 \ (0.0022)$	$0.9490 \ (0.0070)$	$0.0051 \ (0.0003)$	1000
FP (k=10000)	0.6791	0.0065	0.1067 (0.0024)	0.4291 (0.0034)	0.0010 (0.0010)	$0.1955 \ (0.0030)$	1000

Table 190: Simulation results for frailty variance, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox		_	_		_		
Exp	_	_	_		_		
Weibull		_					_
Gompertz			_	_	_	_	_
RP(3)		_	_	_		_	
RP(5)		_	_	_		_	
RP(9)	_	_	_	_	_	_	_
RP(P)	_	_	_	_	_	_	_
FP(W)			_		_		
FP (k=10)			_		_		
FP (k=10000)			_				
Model frailty: l	og-Normal						
Cox	0.2214	0.0038	$0.0599 \ (0.0013)$	-0.0286 (0.0019)	$0.9120 \ (0.0090)$	$0.0044 \ (0.0002)$	1000
Exp	0.4077	0.0040	$0.0588 \ (0.0013)$	$0.1577 \ (0.0019)$	$0.2585 \ (0.0139)$	$0.0283 \ (0.0006)$	998
Weibull	0.3070	0.0046	$0.0619 \ (0.0014)$	$0.0570 \ (0.0020)$	$0.9130 \ (0.0089)$	$0.0071 \ (0.0003)$	1000
Gompertz	0.4081	0.0063	$0.0600 \ (0.0021)$	$0.1581 \ (0.0030)$	$0.4874 \ (0.0251)$	$0.0286 \ (0.0010)$	396
RP(3)	0.2517	0.0054	$0.0723 \ (0.0016)$	$0.0017 \ (0.0023)$	$0.9540 \ (0.0066)$	$0.0052 \ (0.0003)$	1000
RP(5)	0.2528	0.0055	$0.0727 \ (0.0016)$	$0.0028 \ (0.0023)$	$0.9530 \ (0.0067)$	$0.0053 \ (0.0003)$	1000
RP(9)	0.2533	0.0055	$0.0729 \ (0.0016)$	$0.0033 \ (0.0023)$	$0.9550 \ (0.0066)$	$0.0053 \ (0.0003)$	1000
RP(P)	0.2557	0.0054	$0.0718 \ (0.0016)$	$0.0057 \ (0.0023)$	$0.9540 \ (0.0066)$	$0.0052 \ (0.0003)$	1000
FP(W)	0.2785	0.0049	$0.0685 \ (0.0015)$	$0.0285 \ (0.0022)$	$0.9494 \ (0.0070)$	$0.0055 \ (0.0003)$	988
FP (k=10)	0.2548	0.0054	$0.0716 \ (0.0016)$	$0.0048 \; (0.0023)$	$0.9420 \ (0.0074)$	$0.0051 \ (0.0003)$	1000
FP (k=10000)	0.2313	0.0037	0.0663 (0.0015)	-0.0187 (0.0021)	0.8740 (0.0105)	$0.0047 \ (0.0002)$	1000

Table 191: Simulation results for frailty variance, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 0.75, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	0.7433	0.0091	$0.0969 \ (0.0022)$	-0.0067 (0.0031)	$0.9400 \ (0.0075)$	$0.0094 \ (0.0004)$	1000
Exp	0.7456	0.0061	$0.0792 \ (0.0018)$	-0.0044 (0.0025)	$0.9470 \ (0.0071)$	$0.0063 \ (0.0003)$	1000
Weibull	0.7483	0.0082	$0.0922 \ (0.0021)$	-0.0017 (0.0029)	$0.9470 \ (0.0071)$	$0.0085 \ (0.0004)$	1000
Gompertz	0.7493	0.0090	$0.0821 \ (0.0027)$	-0.0007 (0.0038)	$0.9645 \ (0.0085)$	$0.0067 \ (0.0004)$	479
RP(3)	0.7465	0.0091	$0.0970 \ (0.0022)$	-0.0035 (0.0031)	$0.9420 \ (0.0074)$	$0.0094 \ (0.0004)$	1000
RP(5)	0.7469	0.0091	$0.0972 \ (0.0022)$	-0.0031 (0.0031)	$0.9420 \ (0.0074)$	$0.0095 \ (0.0004)$	1000
RP(9)	0.7471	0.0091	$0.0973 \ (0.0022)$	-0.0029 (0.0031)	$0.9410 \ (0.0075)$	$0.0095 \ (0.0004)$	1000
RP(P)	0.7468	0.0084	$0.0933 \ (0.0021)$	-0.0032 (0.0030)	$0.9440 \ (0.0073)$	$0.0087 \ (0.0004)$	1000
FP(W)	0.7483	0.0082	$0.0923 \ (0.0021)$	-0.0017 (0.0029)	$0.9469 \ (0.0071)$	$0.0085 \ (0.0004)$	998
FP (k=10)	0.7421	0.0091	$0.0969 \ (0.0022)$	-0.0079 (0.0031)	$0.9380 \ (0.0076)$	$0.0095 \ (0.0004)$	1000
FP (k=10000)	0.7441	0.0060	$0.0967 \ (0.0022)$	-0.0059 (0.0031)	$0.8768 \ (0.0104)$	$0.0094 \ (0.0004)$	998
Model frailty: l	og-Normal						
Cox		_	_	_	_	_	_
Exp		_			_		
Weibull		_			_		
Gompertz		_			_		
RP(3)		_					
RP(5)		_					
RP(9)		_					
RP(P)		_			_		
FP(W)		_	_	_	_	_	
FP (k=10)	_	_	_	_	_	_	_
FP (k=10000)							

Table 192: Simulation results for frailty variance, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod baseline	Avg. Estimate		Emp. SE	Bias	Coverage		N. Converged
		1116. 01	Emp. gE	Dias	Coverage	1/1012	- Tr. Converged
Model frailty: ((1)	()	/	
Cox	0.7507	0.0108	$0.1070 \ (0.0024)$	$0.0007 \ (0.0034)$	$0.9460 \ (0.0071)$	$0.0114 \ (0.0005)$	1000
Exp	1.1199	0.0113	$0.1134 \ (0.0025)$	$0.3699 \ (0.0036)$	$0.0490 \ (0.0068)$	$0.1496 \ (0.0028)$	1000
Weibull	0.7633	0.0101	$0.1014 \ (0.0023)$	$0.0133 \ (0.0032)$	$0.9520 \ (0.0068)$	$0.0105 \ (0.0005)$	1000
Gompertz	1.1171	0.0155	$0.1008 \ (0.0034)$	$0.3671 \ (0.0048)$	$0.0760 \ (0.0127)$	$0.1449 \ (0.0038)$	434
RP(3)	0.7538	0.0108	$0.1072 \ (0.0024)$	$0.0038 \ (0.0034)$	$0.9460 \ (0.0071)$	$0.0115 \ (0.0005)$	1000
RP(5)	0.7542	0.0109	$0.1072 \ (0.0024)$	$0.0042 \ (0.0034)$	$0.9460 \ (0.0071)$	$0.0115 \ (0.0005)$	1000
RP(9)	0.7545	0.0109	$0.1073 \ (0.0024)$	$0.0045 \ (0.0034)$	$0.9490 \ (0.0070)$	$0.0115 \ (0.0005)$	1000
RP(P)	0.7591	0.0104	$0.1041 \ (0.0023)$	$0.0091 \ (0.0033)$	$0.9480 \ (0.0070)$	$0.0109 \ (0.0005)$	1000
FP (W)	0.7633	0.0101	$0.1014 \ (0.0023)$	$0.0133 \ (0.0032)$	$0.9520 \ (0.0068)$	0.0105 (0.0005)	1000
FP (k=10)	0.7601	0.0109	0.1085 (0.0024)	$0.0101 \ (0.0034)$	0.9460 (0.0071)	0.0119 (0.0006)	1000
FP (k=10000)	0.8514	0.0089	$0.1129 \ (0.0025)$	$0.1014 \ (0.0036)$	0.7950 (0.0128)	0.0230 (0.0010)	1000
Model frailty: l	og-Normal						
Cox		_					_
Exp							
Weibull		_					
Gompertz	_	_	_		_		_
RP(3)	_	_	_		_		_
RP(5)		_			_		_
RP(9)	_	_	_		_	_	_
RP(P)		_					
FP (W)		_				_	
FP (k=10)		_					
FP (k=10000)	_	_	_	_	_	_	_

Table 193: Simulation results for frailty variance, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 0.75, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.7509	0.0076	$0.0854 \ (0.0019)$	$0.0009 \ (0.0027)$	$0.9600 \ (0.0062)$	$0.0073 \ (0.0003)$	999
Exp	0.4385	0.0031	$0.0559 \ (0.0013)$	-0.3115 (0.0018)	$0.0000 \ (0.0000)$	$0.1001 \ (0.0011)$	1000
Weibull	0.6187	0.0056	$0.0740 \ (0.0017)$	-0.1313 (0.0023)	$0.5500 \ (0.0157)$	$0.0227 \ (0.0006)$	1000
Gompertz	0.4391	0.0049	$0.0615 \ (0.0017)$	-0.3109 (0.0024)	$0.0120 \ (0.0042)$	$0.1005 \ (0.0014)$	666
RP(3)	0.7499	0.0076	$0.0853 \ (0.0019)$	-0.0001 (0.0027)	$0.9650 \ (0.0058)$	$0.0073 \ (0.0003)$	1000
RP(5)	0.7537	0.0076	$0.0857 \ (0.0019)$	$0.0037 \ (0.0027)$	$0.9600 \ (0.0062)$	$0.0073 \ (0.0003)$	1000
RP(9)	0.7549	0.0077	$0.0857 \ (0.0019)$	$0.0049 \ (0.0027)$	$0.9570 \ (0.0064)$	$0.0074 \ (0.0003)$	1000
RP(P)	0.7238	0.0071	$0.0851 \ (0.0019)$	-0.0262 (0.0027)	$0.9250 \ (0.0083)$	$0.0079 \ (0.0003)$	1000
FP(W)	0.6185	0.0056	$0.0741 \ (0.0017)$	-0.1315 (0.0024)	$0.5515 \ (0.0158)$	$0.0228 \ (0.0006)$	990
FP (k=10)	0.7496	0.0075	$0.0849 \ (0.0019)$	-0.0004 (0.0027)	$0.9610 \ (0.0061)$	$0.0072 \ (0.0003)$	1000
FP (k=10000)	0.7355	0.0041	$0.0815 \ (0.0018)$	-0.0145 (0.0026)	$0.8549 \ (0.0111)$	$0.0069 \ (0.0003)$	999
Model frailty: l	og-Normal						
Cox	_	_	_	_	_	_	_
Exp	_	_	_	_	_	_	_
Weibull						_	
Gompertz						_	
RP(3)						_	
RP(5)		_		_		_	
RP(9)		_		_		_	
RP(P)		_		_			_
FP (W)		_					
FP (k=10)		_					
FP (k=10000)	_		_	_	_	_	

Table 194: Simulation results for frailty variance, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	0.7462	0.0079	$0.0904 \ (0.0020)$	-0.0038 (0.0029)	$0.9360 \ (0.0077)$	$0.0082 \ (0.0004)$	1000
Exp	0.3062	0.0025	$0.0479 \ (0.0011)$	-0.4438 (0.0015)	$0.0000 \ (0.0000)$	$0.1993 \ (0.0013)$	1000
Weibull	0.9032	0.0081	$0.0919 \ (0.0021)$	$0.1532 \ (0.0029)$	$0.6010 \ (0.0155)$	$0.0319 \ (0.0010)$	1000
Gompertz	0.6781	0.0071	$0.1581 \ (0.0036)$	-0.0719 (0.0051)	$0.7930 \ (0.0130)$	$0.0301 \ (0.0017)$	976
RP(3)	0.7524	0.0079	$0.0910 \ (0.0020)$	$0.0024 \ (0.0029)$	$0.9380 \ (0.0076)$	$0.0083 \ (0.0004)$	1000
RP(5)	0.7500	0.0079	$0.0906 \ (0.0020)$	-0.0000 (0.0029)	$0.9380 \ (0.0076)$	$0.0082 \ (0.0004)$	1000
RP(9)	0.7504	0.0079	0.0907 (0.0020)	$0.0004 \ (0.0029)$	$0.9380 \ (0.0076)$	$0.0082 \ (0.0004)$	1000
RP(P)	0.7577	0.0079	$0.0911 \ (0.0020)$	$0.0077 \ (0.0029)$	$0.9390 \ (0.0076)$	$0.0083 \ (0.0004)$	1000
FP(W)	0.9031	0.0081	$0.0921 \ (0.0021)$	$0.1531 \ (0.0029)$	$0.6014 \ (0.0155)$	$0.0319 \ (0.0010)$	996
FP (k=10)	0.7499	0.0079	$0.0915 \ (0.0020)$	-0.0001 (0.0029)	$0.9400 \ (0.0075)$	$0.0084 \ (0.0004)$	1000
FP (k=10000)	1.1203	0.0064	$0.1188 \ (0.0027)$	$0.3703 \ (0.0038)$	$0.0250 \ (0.0049)$	$0.1512 \ (0.0028)$	1000
Model frailty: l	og-Normal						
Cox	_	_	_	_	_	_	_
Exp	_	_	_	_	_	_	_
Weibull	_	_	_	_	_	_	_
Gompertz	_	_	_	_	_	_	_
RP(3)	_	_	_	_	_	_	_
RP(5)							
RP(9)							
RP(P)							
FP(W)							
FP (k=10)							
FP (k=10000)							

Table 195: Simulation results for frailty variance, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.7483	0.0098	$0.0958 \ (0.0021)$	-0.0017 (0.0030)	$0.9539 \ (0.0066)$	$0.0092 \ (0.0004)$	998
Exp	0.9096	0.0079	$0.0871 \ (0.0019)$	$0.1596 \ (0.0028)$	$0.5930 \ (0.0155)$	$0.0331 \ (0.0010)$	1000
Weibull	0.7805	0.0090	$0.0914 \ (0.0020)$	$0.0305 \ (0.0029)$	$0.9550 \ (0.0066)$	$0.0093 \ (0.0004)$	1000
Gompertz	0.9106	0.0115	$0.0868 \ (0.0028)$	$0.1606 \ (0.0040)$	$0.7442 \ (0.0201)$	$0.0333 \ (0.0014)$	473
RP(3)	0.7504	0.0098	$0.0959 \ (0.0021)$	$0.0004 \ (0.0030)$	$0.9540 \ (0.0066)$	$0.0092 \ (0.0004)$	1000
RP(5)	0.7513	0.0098	$0.0962 \ (0.0022)$	$0.0013 \ (0.0030)$	$0.9510 \ (0.0068)$	$0.0092 \ (0.0004)$	1000
RP(9)	0.7518	0.0098	$0.0963 \ (0.0022)$	$0.0018 \ (0.0030)$	$0.9530 \ (0.0067)$	$0.0093 \ (0.0004)$	1000
RP(P)	0.7557	0.0097	$0.0957 \ (0.0021)$	$0.0057 \ (0.0030)$	$0.9520 \ (0.0068)$	$0.0092 \ (0.0004)$	1000
FP(W)	0.7806	0.0090	$0.0915 \ (0.0021)$	$0.0306 \ (0.0029)$	$0.9548 \ (0.0066)$	$0.0093 \ (0.0004)$	995
FP (k=10)	0.7471	0.0098	0.0957 (0.0021)	-0.0029 (0.0030)	$0.9510 \ (0.0068)$	$0.0092 \ (0.0004)$	1000
FP (k=10000)	0.7258	0.0067	$0.0939 \ (0.0021)$	-0.0242 (0.0030)	$0.9030 \ (0.0094)$	$0.0094 \ (0.0004)$	1000
Model frailty: l	og-Normal						
Cox	_	_	_	_	_	_	_
Exp	_	_	_	_	_	_	_
Weibull						_	
Gompertz						_	
RP(3)						_	
RP(5)		_		_		_	
RP(9)		_		_		_	
RP(P)							
FP(W)		_		_	_		
FP (k=10)		_		_			
FP (k=10000)				_			_

Table 196: Simulation results for frailty variance, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.75, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox		_					
Exp	_	_	_	_	_	_	_
Weibull			_	_	_	_	_
Gompertz			_	_	_	_	_
RP(3)		_	_	_		_	
RP(5)		_	_	_		_	
RP(9)		_					
RP(P)		_					
FP(W)		_	_	_		_	
FP (k=10)		_	_	_	_	_	_
FP (k=10000)		_					
Model frailty: l	og-Normal						
Cox	0.6300	0.0101	$0.0967 \ (0.0022)$	-0.1200 (0.0031)	$0.7310 \ (0.0140)$	$0.0237 \ (0.0008)$	1000
Exp	0.7170	0.0066	$0.0749 \ (0.0017)$	-0.0330 (0.0024)	$0.9367 \ (0.0077)$	$0.0067 \ (0.0003)$	996
Weibull	0.7080	0.0101	$0.0883 \ (0.0020)$	-0.0420 (0.0028)	$0.9369 \ (0.0077)$	$0.0096 \ (0.0004)$	998
Gompertz	0.7168	0.0104	$0.0739 \ (0.0024)$	-0.0332 (0.0034)	$0.9809 \ (0.0063)$	$0.0066 \ (0.0004)$	471
RP(3)	0.7570	0.0149	$0.1181 \ (0.0026)$	$0.0070 \ (0.0037)$	$0.9550 \ (0.0066)$	$0.0140 \ (0.0006)$	1000
RP(5)	0.7573	0.0149	$0.1181 \ (0.0026)$	$0.0073 \ (0.0037)$	$0.9560 \ (0.0065)$	$0.0140 \ (0.0006)$	1000
RP(9)	0.7577	0.0149	$0.1182\ (0.0026)$	$0.0077 \ (0.0037)$	$0.9540 \ (0.0066)$	$0.0140 \ (0.0006)$	1000
RP(P)	0.7602	0.0138	$0.1139 \ (0.0025)$	$0.0102 \ (0.0036)$	$0.9590 \ (0.0063)$	$0.0131 \ (0.0006)$	1000
FP(W)	0.7629	0.0135	$0.1114 \ (0.0025)$	$0.0129 \ (0.0036)$	$0.9592 \ (0.0063)$	$0.0126 \ (0.0006)$	980
FP (k=10)	0.7551	0.0147	$0.1177 \ (0.0026)$	$0.0051 \ (0.0037)$	$0.9520 \ (0.0068)$	$0.0139 \ (0.0006)$	1000
FP (k=10000)	0.7547	0.0099	$0.1138 \ (0.0025)$	$0.0047 \ (0.0036)$	$0.9160 \ (0.0088)$	$0.0130 \ (0.0006)$	1000

Table 197: Simulation results for frailty variance, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

	Avg. Estimate		Emp. SE	Bias	Coverage		N. Converged
Model frailty: 0	Gamma						
Cox	_	_	_	_	_	_	
Exp			_	_	_		
Weibull							
Gompertz	_	_	_	_	_	_	_
RP(3)	_	_	_	_	_	_	_
RP(5)	_	_	_	_	_	_	_
RP(9)		_	_	_	_		_
RP(P)	_	_	_	_	_	_	_
FP(W)	_	_	_	_			
FP (k=10)		_	_				
FP (k=10000)			_	_	_	_	_
Model frailty: l	og-Normal						
Cox	0.6205	0.0104	$0.0964 \ (0.0022)$	-0.1295 (0.0030)	$0.7170 \ (0.0142)$	$0.0261 \ (0.0008)$	1000
Exp	1.2491	0.0147	$0.1163 \ (0.0026)$	$0.4991 \ (0.0037)$	$0.0050 \ (0.0022)$	$0.2626 \ (0.0038)$	993
Weibull	0.7216	0.0111	$0.0896 \ (0.0020)$	-0.0284 (0.0028)	$0.9588 \ (0.0063)$	$0.0088 \ (0.0004)$	996
Gompertz	1.2500	0.0219	$0.1176 \ (0.0050)$	$0.5000 \ (0.0070)$	$0.0177 \ (0.0079)$	$0.2638 \ (0.0072)$	282
RP(3)	0.7545	0.0158	$0.1203 \ (0.0027)$	$0.0045 \ (0.0038)$	$0.9550 \ (0.0066)$	$0.0145 \ (0.0007)$	1000
RP(5)	0.7546	0.0158	$0.1202 \ (0.0027)$	$0.0046 \ (0.0038)$	$0.9540 \ (0.0066)$	$0.0145 \ (0.0007)$	1000
RP(9)	0.7549	0.0158	$0.1201 \ (0.0027)$	$0.0049 \ (0.0038)$	$0.9560 \ (0.0065)$	$0.0144 \ (0.0007)$	1000
RP(P)	0.7625	0.0153	$0.1186 \ (0.0027)$	$0.0125 \ (0.0037)$	$0.9610 \ (0.0061)$	$0.0142 \ (0.0007)$	1000
FP(W)	0.7736	0.0149	$0.1140 \ (0.0026)$	$0.0236 \ (0.0037)$	$0.9650 \ (0.0059)$	$0.0135 \ (0.0007)$	971
FP (k=10)	0.8225	0.0171	$0.1301 \ (0.0029)$	$0.0725 \ (0.0041)$	$0.9349 \ (0.0078)$	$0.0222 \ (0.0011)$	999
FP (k=10000)	1.0281	0.0164	$0.1425 \ (0.0032)$	$0.2781 \ (0.0045)$	0.4218 (0.0157)	$0.0976 \ (0.0029)$	991

Table 198: Simulation results for frailty variance, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox		_		_	_		
Exp		_	_	_	_	_	
Weibull			_	_	_	_	
Gompertz			_	_	_	_	
RP(3)			_	_	_	_	
RP(5)		_	_	_		_	
RP(9)		_	_	_		_	
RP(P)		_	_	_		_	
FP(W)		_	_	_		_	
FP (k=10)		_	_	_		_	
FP (k=10000)		_	_	_	_	_	
Model frailty: l	og-Normal						
Cox	0.6318	0.0098	$0.0983 \ (0.0022)$	-0.1182 (0.0031)	$0.7240 \ (0.0141)$	$0.0236 \ (0.0008)$	1000
Exp	0.3618	0.0031	$0.0549 \ (0.0012)$	-0.3882 (0.0017)	$0.0000 \ (0.0000)$	$0.1537 \ (0.0014)$	998
Weibull	0.5546	0.0077	$0.0836 \ (0.0019)$	-0.1954 (0.0026)	$0.3864 \ (0.0154)$	$0.0452 \ (0.0011)$	999
Gompertz	0.3647	0.0054	$0.0654 \ (0.0018)$	-0.3853 (0.0026)	$0.0095 \ (0.0039)$	$0.1528 \ (0.0018)$	630
RP(3)	0.7449	0.0137	$0.1176 \ (0.0026)$	-0.0051 (0.0037)	$0.9340 \ (0.0079)$	$0.0138 \ (0.0006)$	1000
RP(5)	0.7485	0.0138	$0.1176 \ (0.0026)$	-0.0015 (0.0037)	$0.9380 \ (0.0076)$	$0.0138 \ (0.0006)$	1000
RP(9)	0.7497	0.0138	$0.1178 \ (0.0026)$	-0.0003 (0.0037)	$0.9360 \ (0.0077)$	$0.0139 \ (0.0006)$	1000
RP(P)	0.7176	0.0129	$0.1160 \ (0.0026)$	-0.0324 (0.0037)	$0.9150 \ (0.0088)$	$0.0145 \ (0.0006)$	1000
FP (W)	0.5812	0.0098	$0.1028 \ (0.0023)$	-0.1688 (0.0033)	$0.5690 \ (0.0157)$	$0.0391 \ (0.0011)$	1000
FP (k=10)	0.7472	0.0137	$0.1176 \ (0.0026)$	-0.0028 (0.0037)	$0.9340 \ (0.0079)$	$0.0138 \ (0.0006)$	1000
FP (k=10000)	0.7449	0.0079	0.1150 (0.0026)	-0.0051 (0.0036)	0.8550 (0.0111)	0.0132 (0.0006)	1000

Table 199: Simulation results for frailty variance, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox		_					
Exp	_	_	_	_	_	_	_
Weibull					_		
Gompertz		_	_		_	_	
RP(3)	_	_	_	_	_	_	_
RP(5)	_	_	_	_	_	_	_
RP(9)	_	_	_	_	_	_	_
RP(P)		_					
FP(W)			_		_		
FP (k=10)			_		_		
FP (k=10000)		_					
Model frailty: l	og-Normal						
Cox	0.6376	0.0100	$0.1007 \ (0.0023)$	-0.1124 (0.0032)	$0.7450 \ (0.0138)$	$0.0228 \ (0.0008)$	1000
Exp	0.1606	0.0016	$0.0352 \ (0.0008)$	-0.5894 (0.0011)	$0.0000 \ (0.0000)$	$0.3486 \ (0.0013)$	1000
Weibull	0.8493	0.0113	$0.0969 \ (0.0022)$	$0.0993 \ (0.0031)$	$0.8987 \ (0.0096)$	$0.0192 \ (0.0008)$	997
Gompertz	0.5207	0.0067	$0.0702 \ (0.0016)$	-0.2293 (0.0022)	$0.1809 \ (0.0122)$	$0.0575 \ (0.0011)$	995
RP(3)	0.7626	0.0142	$0.1208 \ (0.0027)$	$0.0126 \ (0.0038)$	$0.9430 \ (0.0073)$	$0.0147 \ (0.0007)$	1000
RP(5)	0.7581	0.0141	$0.1209 \ (0.0027)$	$0.0081 \ (0.0038)$	$0.9390 \ (0.0076)$	$0.0147 \ (0.0007)$	1000
RP(9)	0.7590	0.0142	$0.1211 \ (0.0027)$	$0.0090 \ (0.0038)$	$0.9390 \ (0.0076)$	$0.0147 \ (0.0007)$	1000
RP(P)	0.7594	0.0140	$0.1197 \ (0.0027)$	$0.0094 \ (0.0038)$	$0.9400 \ (0.0075)$	$0.0144 \ (0.0007)$	1000
FP(W)	0.9477	0.0153	$0.1211 \ (0.0029)$	$0.1977 \ (0.0041)$	$0.6804 \ (0.0158)$	$0.0537 \ (0.0018)$	876
FP (k=10)	0.7777	0.0141	$0.1193 \ (0.0027)$	$0.0277 \ (0.0038)$	$0.9440 \ (0.0073)$	$0.0150 \ (0.0007)$	1000
FP (k=10000)	1.4016	0.0175	0.1673 (0.0037)	$0.6516 \ (0.0053)$	0.0040 (0.0020)	$0.4525 \ (0.0070)$	1000

Table 200: Simulation results for frailty variance, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox		_					
Exp			_	_	_	_	_
Weibull		_	_	_	_	_	
Gompertz		_	_	_	_	_	
RP(3)	_	_	_	_	_	_	_
RP(5)	_	_	_	_	_	_	_
RP(9)	_	_	_	_	_	_	_
RP(P)		_					
FP(W)	_	_	_		_		
FP (k=10)		_	_		_		_
FP (k=10000)			_	_	_	_	
Model frailty: l	og-Normal						
Cox	0.6253	0.0102	$0.1016 \ (0.0023)$	$-0.1247 \ (0.0032)$	$0.7140 \ (0.0143)$	$0.0259 \ (0.0008)$	1000
Exp	0.9080	0.0090	$0.0918 \ (0.0021)$	$0.1580 \ (0.0029)$	$0.6590 \ (0.0150)$	$0.0334 \ (0.0010)$	994
Weibull	0.7069	0.0102	0.0907 (0.0020)	-0.0431 (0.0029)	$0.9327 \ (0.0079)$	$0.0101 \ (0.0004)$	995
Gompertz	0.8963	0.0139	$0.0897 \ (0.0033)$	$0.1463 \ (0.0046)$	$0.8628 \ (0.0177)$	$0.0294 \ (0.0016)$	379
RP(3)	0.7515	0.0152	$0.1254 \ (0.0028)$	$0.0015 \ (0.0040)$	$0.9420 \ (0.0074)$	$0.0157 \ (0.0007)$	1000
RP(5)	0.7547	0.0152	$0.1254 \ (0.0028)$	$0.0047 \ (0.0040)$	$0.9460 \ (0.0071)$	$0.0157 \ (0.0007)$	1000
RP(9)	0.7557	0.0153	$0.1255 \ (0.0028)$	$0.0057 \ (0.0040)$	$0.9490 \ (0.0070)$	$0.0158 \ (0.0007)$	1000
RP(P)	0.7529	0.0150	$0.1236 \ (0.0028)$	$0.0029 \ (0.0039)$	$0.9470 \ (0.0071)$	$0.0153 \ (0.0007)$	1000
FP(W)	0.7588	0.0136	$0.1150 \ (0.0026)$	$0.0088 \; (0.0037)$	$0.9551 \ (0.0066)$	$0.0133 \ (0.0006)$	979
FP (k=10)	0.7754	0.0157	$0.1305 \ (0.0029)$	$0.0254 \ (0.0041)$	$0.9470 \ (0.0071)$	$0.0177 \ (0.0009)$	1000
FP (k=10000)	0.7329	0.0104	0.1203 (0.0027)	-0.0171 (0.0038)	0.8820 (0.0102)	0.0148 (0.0007)	1000

Table 201: Simulation results for frailty variance, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 1.25, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	1.2440	0.0176	0.1365 (0.0031)	-0.0060 (0.0043)	$0.9410 \ (0.0075)$	$0.0186 \ (0.0009)$	1000
Exp	1.2459	0.0121	$0.1127 \ (0.0025)$	-0.0041 (0.0036)	$0.9450 \ (0.0072)$	$0.0127 \ (0.0006)$	1000
Weibull	1.2512	0.0161	$0.1299 \ (0.0029)$	$0.0012 \ (0.0041)$	$0.9470 \ (0.0071)$	$0.0169 \ (0.0008)$	1000
Gompertz	1.2321	0.0171	$0.1169 \ (0.0040)$	-0.0179 (0.0056)	$0.9656 \ (0.0087)$	$0.0140 \ (0.0009)$	436
RP(3)	1.2486	0.0177	$0.1368 \ (0.0031)$	-0.0014 (0.0043)	$0.9390 \ (0.0076)$	$0.0187 \ (0.0009)$	1000
RP(5)	1.2492	0.0177	$0.1369 \ (0.0031)$	-0.0008 (0.0043)	$0.9390 \ (0.0076)$	$0.0187 \ (0.0009)$	1000
RP(9)	1.2495	0.0177	$0.1370 \ (0.0031)$	-0.0005 (0.0043)	$0.9380 \ (0.0076)$	$0.0188 \ (0.0009)$	1000
RP(P)	1.2494	0.0165	$0.1319\ (0.0030)$	-0.0006 (0.0042)	$0.9460 \ (0.0071)$	$0.0174 \ (0.0008)$	1000
FP(W)	1.2513	0.0161	$0.1300 \ (0.0029)$	$0.0013 \ (0.0041)$	$0.9469 \ (0.0071)$	$0.0169 \ (0.0008)$	998
FP (k=10)	1.2429	0.0176	$0.1368 \ (0.0031)$	-0.0071 (0.0044)	$0.9383 \ (0.0077)$	$0.0188 \ (0.0009)$	988
FP (k=10000)	1.2452	0.0119	$0.1344 \ (0.0030)$	-0.0048 (0.0043)	$0.9010 \ (0.0094)$	$0.0181 \ (0.0008)$	1000
Model frailty: l	og-Normal						
Cox	_	_	_	_	_	_	_
Exp		_			_		
Weibull		_	_	_	_	_	_
Gompertz		_	_	_	_	_	_
RP(3)		_	_	_	_	_	_
RP(5)		_			_		
RP(9)		_			_		
RP(P)		_			_		
FP(W)	_	_	_	_	_	_	_
FP (k=10)	_	_	_	_	_	_	_
FP (k=10000)							

Table 202: Simulation results for frailty variance, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate		Emp. SE	Bias	Coverage		N. Converged
Model frailty: 0			<u>r</u>				
Cox	1.2502	0.0206	0.1504 (0.0034)	0.0002 (0.0048)	0.9317 (0.0080)	0.0226 (0.0010)	996
Exp	1.7328	0.0215	0.1557 (0.0035)	0.4828 (0.0049)	0.0830 (0.0087)	$0.2574 \ (0.0049)$	1000
Weibull	1.2682	0.0194	0.1462 (0.0033)	0.0182 (0.0046)	0.9410 (0.0075)	0.0217 (0.0010)	1000
Gompertz	1.7364	0.0194	$0.1476 \ (0.0053)$	$0.4864 \ (0.0074)$	0.1196 (0.0164)	0.2583 (0.0075)	393
RP(3)	1.7554 1.2550	0.0294 0.0207	0.1510 (0.0034)	0.0050 (0.0048)	$0.9370 \ (0.0077)$	0.0228 (0.0010)	1000
RP(5)	1.2557	0.0207	$0.1510 \ (0.0034)$ $0.1512 \ (0.0034)$	0.0057 (0.0048)	0.9350 (0.0078)	$0.0229 \ (0.0010)$	1000
RP (9)	1.2563	0.0207	0.1512 (0.0034) $0.1513 (0.0034)$	0.0063 (0.0048)	$0.9340 \ (0.0079)$	0.0229 (0.0010) $0.0229 (0.0010)$	1000
RP(P)	1.2620	0.0207	0.1492 (0.0033)	$0.0120 \ (0.0047)$	0.9350 (0.0078)	0.0229 (0.0010) 0.0224 (0.0010)	1000
FP (W)	1.2682	0.0198 0.0194	$0.1462 \ (0.0033)$ $0.1462 \ (0.0033)$	$0.0120 \ (0.0047)$ $0.0182 \ (0.0046)$	0.9410 (0.0075)	0.0224 (0.0010) $0.0217 (0.0010)$	1000
FP (k=10)	1.2678	0.0194	$0.1402 \ (0.0033)$ $0.1526 \ (0.0034)$	0.0132 (0.0040)	0.9380 (0.0076)	0.0217 (0.0010)	1000
FP (k=10000)	1.4026	0.0209 0.0170	$0.1520 \ (0.0034)$ $0.1564 \ (0.0035)$	0.0178 (0.0048) 0.1526 (0.0049)	$0.7610 \ (0.0135)$	$0.0230 \ (0.0011)$ $0.0477 \ (0.0019)$	1000
,		0.0170	0.1304 (0.0033)	0.1520 (0.0049)	0.7010 (0.0133)	0.0477 (0.0019)	1000
Model frailty: l	og-Normal						
Cox		_					
Exp		_					_
Weibull		_					
Gompertz	_						
RP(3)		_					_
RP(5)		_					_
RP(9)		_					_
RP(P)							
FP (W)		_					
FP (k=10)		_					
FP (k=10000)		_					

Table 203: Simulation results for frailty variance, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 1.25, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

respectively.							
Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	1.2437	0.0147	$0.1228 \ (0.0028)$	-0.0063 (0.0039)	$0.9408 \; (0.0075)$	$0.0151 \ (0.0007)$	996
Exp	0.8475	0.0065	$0.0818 \ (0.0018)$	-0.4025 (0.0026)	$0.0070 \ (0.0026)$	$0.1687 \ (0.0020)$	1000
Weibull	1.0827	0.0114	$0.1084 \ (0.0024)$	-0.1673 (0.0034)	$0.6240 \ (0.0153)$	$0.0397 \ (0.0012)$	1000
Gompertz	0.8416	0.0098	$0.0811 \ (0.0025)$	-0.4084 (0.0035)	$0.0113 \ (0.0046)$	$0.1733 \ (0.0029)$	529
RP(3)	1.2435	0.0147	$0.1225 \ (0.0027)$	-0.0065 (0.0039)	$0.9420 \ (0.0074)$	$0.0150 \ (0.0007)$	1000
RP(5)	1.2480	0.0147	$0.1231 \ (0.0028)$	-0.0020 (0.0039)	$0.9400 \ (0.0075)$	$0.0151 \ (0.0007)$	1000
RP(9)	1.2492	0.0148	$0.1232 \ (0.0028)$	-0.0008 (0.0039)	$0.9410 \ (0.0075)$	$0.0152 \ (0.0007)$	1000
RP(P)	1.2121	0.0139	$0.1214 \ (0.0027)$	-0.0379 (0.0038)	$0.9240 \ (0.0084)$	$0.0162 \ (0.0007)$	1000
FP(W)	1.0827	0.0114	$0.1084 \ (0.0024)$	-0.1673 (0.0034)	$0.6240 \ (0.0153)$	$0.0397 \ (0.0012)$	1000
FP (k=10)	1.2418	0.0145	$0.1221 \ (0.0027)$	-0.0082 (0.0039)	$0.9390 \ (0.0076)$	$0.0150 \ (0.0007)$	1000
FP (k=10000)	1.2279	0.0085	$0.1185 \ (0.0027)$	-0.0221 (0.0037)	$0.8710 \ (0.0106)$	$0.0145 \ (0.0007)$	1000
Model frailty: l	og-Normal						
Cox			_	_	_	_	
Exp							
Weibull		_	_		_	_	
Gompertz	_	_	_	_	_	_	
RP(3)							
RP(5)							
RP(9)	_	_	_	_	_	_	
RP(P)							
FP(W)		_				_	
FP (k=10)							
FP (k=10000)	_		_	_	_	_	_

Table 204: Simulation results for frailty variance, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	1.2463	0.0154	$0.1242 \ (0.0028)$	-0.0037 (0.0039)	$0.9458 \ (0.0072)$	$0.0154 \ (0.0007)$	996
Exp	0.6525	0.0052	$0.0675 \ (0.0015)$	-0.5975 (0.0021)	$0.0000 \ (0.0000)$	$0.3615 \ (0.0025)$	1000
Weibull	1.4347	0.0158	$0.1264 \ (0.0028)$	$0.1847 \ (0.0040)$	$0.7180 \ (0.0142)$	$0.0501 \ (0.0017)$	1000
Gompertz	0.6493	0.0082	$0.0660 \ (0.0019)$	-0.6007 (0.0026)	$0.0000 \ (0.0000)$	$0.3652 \ (0.0031)$	633
RP(3)	1.2554	0.0155	$0.1249 \ (0.0028)$	$0.0054 \ (0.0040)$	$0.9450 \ (0.0072)$	$0.0156 \ (0.0008)$	1000
RP(5)	1.2513	0.0154	$0.1244 \ (0.0028)$	$0.0013 \ (0.0039)$	$0.9450 \ (0.0072)$	$0.0155 \ (0.0008)$	1000
RP(9)	1.2518	0.0154	$0.1245 \ (0.0028)$	$0.0018 \ (0.0039)$	$0.9450 \ (0.0072)$	$0.0155 \ (0.0008)$	1000
RP(P)	1.2603	0.0154	$0.1247 \ (0.0028)$	$0.0103 \ (0.0040)$	$0.9458 \ (0.0072)$	$0.0156 \ (0.0008)$	996
FP(W)	1.4347	0.0158	$0.1267 \ (0.0028)$	$0.1847 \ (0.0040)$	$0.7166 \ (0.0143)$	$0.0502 \ (0.0017)$	995
FP (k=10)	1.2486	0.0154	$0.1253 \ (0.0028)$	-0.0014 (0.0040)	$0.9440 \ (0.0073)$	$0.0157 \ (0.0008)$	1000
FP (k=10000)	1.7205	0.0128	$0.1638 \ (0.0037)$	$0.4705 \ (0.0052)$	$0.0500 \ (0.0069)$	$0.2482 \ (0.0049)$	1000
Model frailty: l	og-Normal						
Cox		_		_	_	_	
Exp	_	_	_	_	_	_	_
Weibull	_	_	_	_	_	_	_
Gompertz		_	_	_	_	_	_
RP(3)		_					
RP(5)		_					
RP(9)			_				
RP(P)	_	_	_	_			_
FP (W)							
FP (k=10)				_	_	_	_
FP (k=10000)		_					

Table 205: Simulation results for frailty variance, scenario with 750 clusters of 2 individuals each. The true frailty follows a Gamma distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

respectively.							
Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	1.2453	0.0188	$0.1387 \ (0.0031)$	-0.0047 (0.0044)	$0.9419 \ (0.0074)$	$0.0192 \ (0.0009)$	999
Exp	1.4533	0.0153	$0.1259 \ (0.0028)$	$0.2033 \ (0.0040)$	$0.6400 \ (0.0152)$	$0.0572 \ (0.0019)$	1000
Weibull	1.2768	0.0174	$0.1331 \ (0.0030)$	$0.0268 \ (0.0042)$	$0.9520 \ (0.0068)$	$0.0184 \ (0.0009)$	1000
Gompertz	1.4524	0.0217	$0.1292 \ (0.0046)$	$0.2024 \ (0.0064)$	$0.7935 \ (0.0202)$	$0.0576 \ (0.0030)$	402
RP(3)	1.2482	0.0188	$0.1387 \ (0.0031)$	-0.0018 (0.0044)	$0.9430 \ (0.0073)$	$0.0192 \ (0.0009)$	1000
RP(5)	1.2501	0.0189	$0.1391 \ (0.0031)$	$0.0001 \ (0.0044)$	$0.9440 \ (0.0073)$	$0.0193 \ (0.0009)$	1000
RP(9)	1.2508	0.0189	$0.1392 \ (0.0031)$	$0.0008 \ (0.0044)$	$0.9430 \ (0.0073)$	$0.0193 \ (0.0009)$	1000
RP(P)	1.2543	0.0187	$0.1385 \ (0.0031)$	$0.0043 \ (0.0044)$	$0.9430 \ (0.0073)$	$0.0192 \ (0.0009)$	1000
FP(W)	1.2768	0.0174	$0.1331 \ (0.0030)$	$0.0268 \ (0.0042)$	$0.9520 \ (0.0068)$	$0.0184 \ (0.0009)$	1000
FP (k=10)	1.2456	0.0188	$0.1390 \ (0.0031)$	-0.0044 (0.0044)	$0.9384 \ (0.0076)$	$0.0193 \ (0.0009)$	990
FP (k=10000)	1.2199	0.0130	$0.1363 \ (0.0031)$	-0.0301 (0.0043)	$0.8870 \ (0.0100)$	$0.0195 \ (0.0008)$	1000
Model frailty: l	og-Normal						
Cox							
Exp							
Weibull							
Gompertz							
RP(3)							
RP(5)	_	_	_	_	_		_
RP(9)	_	_	_	_	_		_
RP(P)							
FP(W)						_	
FP (k=10)						_	
FP (k=10000)			_	_	_		

Table 206: Simulation results for frailty variance, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 1.25, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox		_					
Exp		_					_
Weibull		_		_	_	_	
Gompertz		_		_	_	_	
RP(3)	_	_	_	_	_	_	_
RP(5)	_	_	_	_	_	_	_
RP(9)	_	_	_	_	_	_	_
RP(P)		_					
FP(W)			_		_		
FP (k=10)			_		_		
FP (k=10000)		_		_			
Model frailty: l	og-Normal						
Cox	1.0333	0.0200	$0.1388 \; (0.0031)$	-0.2167 (0.0044)	$0.6240 \ (0.0153)$	$0.0662 \ (0.0019)$	1000
Exp	1.1431	0.0119	$0.1065 \ (0.0024)$	-0.1069 (0.0034)	$0.8101 \ (0.0124)$	$0.0228 \ (0.0008)$	995
Weibull	1.0971	0.0185	$0.1272 \ (0.0028)$	-0.1529 (0.0040)	$0.7693 \ (0.0133)$	$0.0395 \ (0.0013)$	997
Gompertz	1.1400	0.0185	$0.1092 \ (0.0042)$	-0.1100 (0.0060)	$0.8839 \ (0.0175)$	$0.0240 \ (0.0015)$	336
RP(3)	1.2454	0.0276	$0.1655 \ (0.0037)$	-0.0046 (0.0052)	$0.9430 \ (0.0073)$	$0.0274 \ (0.0013)$	1000
RP(5)	1.2452	0.0275	$0.1654 \ (0.0037)$	-0.0048 (0.0052)	$0.9420 \ (0.0074)$	$0.0274 \ (0.0013)$	1000
RP(9)	1.2453	0.0275	$0.1653 \ (0.0037)$	$-0.0047 \ (0.0052)$	$0.9430 \ (0.0073)$	$0.0273 \ (0.0013)$	1000
RP(P)	1.2520	0.0263	$0.1626 \ (0.0036)$	$0.0020 \ (0.0051)$	$0.9420 \ (0.0074)$	$0.0264 \ (0.0013)$	1000
FP(W)	1.2579	0.0260	$0.1617 \ (0.0038)$	$0.0079 \ (0.0053)$	$0.9414 \ (0.0077)$	$0.0262 \ (0.0013)$	921
FP (k=10)	1.2443	0.0272	$0.1626 \ (0.0037)$	$-0.0057 \ (0.0052)$	$0.9482 \ (0.0071)$	$0.0264 \ (0.0012)$	984
FP (k=10000)	1.2436	0.0181	0.1511 (0.0034)	-0.0064 (0.0048)	0.9100 (0.0090)	0.0229 (0.0010)	1000

Table 207: Simulation results for frailty variance, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

	Avg. Estimate		Emp. SE	Bias	Coverage		N. Converged
Model frailty: (Gamma						
Cox			_	_	_		
Exp			_	_			
Weibull		_				_	
Gompertz		_	_		_	_	
RP(3)		_	_		_	_	
RP(5)		_	_		_	_	
RP(9)	_	_	_	_	_	_	_
RP(P)	_	_	_	_	_	_	_
FP(W)		_	_	_			_
FP (k=10)			_	_			
FP (k=10000)				_		_	
Model frailty: l	og-Normal						
Cox	1.0334	0.0208	$0.1402 \ (0.0031)$	-0.2166 (0.0044)	$0.6190 \ (0.0154)$	$0.0666 \ (0.0020)$	1000
Exp	1.9041	0.0273	$0.1667 \ (0.0037)$	$0.6541 \ (0.0053)$	$0.0061 \ (0.0025)$	$0.4556 \ (0.0072)$	991
Weibull	1.1281	0.0202	$0.1293 \ (0.0029)$	-0.1219 (0.0041)	$0.8509 \ (0.0113)$	$0.0316 \ (0.0011)$	999
Gompertz	1.8842	0.0395	$0.1562 \ (0.0065)$	$0.6342 \ (0.0091)$	$0.0171 \ (0.0076)$	$0.4265 \ (0.0122)$	293
RP(3)	1.2642	0.0297	$0.1703 \ (0.0038)$	$0.0142 \ (0.0054)$	$0.9610 \ (0.0061)$	$0.0292 \ (0.0013)$	1000
RP(5)	1.2630	0.0297	$0.1701 \ (0.0038)$	$0.0130 \ (0.0054)$	$0.9590 \ (0.0063)$	$0.0291 \ (0.0013)$	1000
RP(9)	1.2625	0.0296	$0.1699 \ (0.0038)$	$0.0125 \ (0.0054)$	$0.9590 \ (0.0063)$	$0.0290 \ (0.0013)$	1000
RP(P)	1.2715	0.0292	$0.1702 \ (0.0038)$	$0.0215 \ (0.0054)$	$0.9570 \ (0.0064)$	$0.0294 \ (0.0013)$	1000
FP(W)	1.2923	0.0287	$0.1661 \ (0.0038)$	$0.0423 \ (0.0054)$	$0.9614 \ (0.0062)$	$0.0293 \ (0.0013)$	958
FP (k=10)	1.4112	0.0324	$0.1844 \ (0.0041)$	$0.1612 \ (0.0058)$	$0.8677 \ (0.0107)$	$0.0599 \ (0.0025)$	998
FP (k=10000)	1.7008	0.0297	0.1938 (0.0043)	$0.4508 \ (0.0061)$	0.2615 (0.0139)	$0.2407 \ (0.0059)$	998

Table 208: Simulation results for frailty variance, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox		_					
Exp		_					_
Weibull		_		_	_	_	
Gompertz		_		_	_	_	
RP(3)	_	_	_	_	_	_	_
RP(5)	_	_	_	_	_	_	_
RP(9)	_	_	_	_	_	_	_
RP(P)		_					
FP(W)	_	_			_		
FP (k=10)		_			_		_
FP (k=10000)		_	_	_	_	_	
Model frailty: l	og-Normal						
Cox	1.0495	0.0197	$0.1366 \ (0.0031)$	-0.2005 (0.0043)	$0.6470 \ (0.0151)$	$0.0589 \ (0.0017)$	1000
Exp	0.7015	0.0060	$0.0780 \ (0.0017)$	$-0.5485 \ (0.0025)$	$0.0000 \ (0.0000)$	$0.3069 \ (0.0027)$	997
Weibull	0.9367	0.0149	$0.1154 \ (0.0026)$	-0.3133 (0.0037)	$0.2767 \ (0.0142)$	$0.1115 \ (0.0022)$	994
Gompertz	0.6968	0.0099	$0.0761 \ (0.0024)$	-0.5532 (0.0034)	$0.0000 \ (0.0000)$	$0.3118 \ (0.0037)$	510
RP(3)	1.2420	0.0259	$0.1591 \ (0.0036)$	-0.0080 (0.0050)	$0.9470 \ (0.0071)$	$0.0253 \ (0.0012)$	1000
RP(5)	1.2455	0.0260	$0.1590 \ (0.0036)$	-0.0045 (0.0050)	$0.9490 \ (0.0070)$	$0.0253 \ (0.0012)$	1000
RP(9)	1.2466	0.0260	$0.1589 \ (0.0036)$	-0.0034 (0.0050)	$0.9480 \ (0.0070)$	$0.0252 \ (0.0012)$	1000
RP(P)	1.2126	0.0248	$0.1575 \ (0.0035)$	-0.0374 (0.0050)	$0.9400 \ (0.0075)$	$0.0262 \ (0.0011)$	1000
FP(W)	1.0575	0.0206	$0.1475 \ (0.0035)$	$-0.1925 \ (0.0049)$	$0.6814 \ (0.0155)$	$0.0588 \ (0.0019)$	904
FP (k=10)	1.2450	0.0257	$0.1578 \ (0.0035)$	-0.0050 (0.0050)	$0.9479 \ (0.0070)$	$0.0249 \ (0.0011)$	999
FP (k=10000)	1.2524	0.0154	$0.1545 \ (0.0035)$	0.0024 (0.0049)	0.8900 (0.0099)	0.0239 (0.0011)	1000

Table 209: Simulation results for frailty variance, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox		_					
Exp		_					_
Weibull		_		_	_	_	
Gompertz		_		_	_	_	
RP(3)	_	_	_	_	_	_	_
RP(5)	_	_	_	_	_	_	_
RP(9)	_	_	_	_	_	_	_
RP(P)		_					
FP(W)			_		_		
FP (k=10)			_		_		
FP (k=10000)		_	_	_	_	_	
Model frailty: l	og-Normal						
Cox	1.0511	0.0197	$0.1330 \ (0.0030)$	-0.1989 (0.0042)	$0.6700 \ (0.0149)$	$0.0572 \ (0.0017)$	1000
Exp	0.3573	0.0028	$0.0442 \ (0.0010)$	-0.8927 (0.0014)	$0.0000 \ (0.0000)$	$0.7989 \ (0.0025)$	1000
Weibull	1.2511	0.0205	$0.1230 \ (0.0028)$	$0.0011 \ (0.0039)$	$0.9739 \ (0.0050)$	$0.0151 \ (0.0007)$	998
Gompertz	0.3708	0.0050	$0.0896 \ (0.0026)$	-0.8792 (0.0036)	$0.0000 \ (0.0000)$	$0.7810 \ (0.0054)$	614
RP(3)	1.2538	0.0264	$0.1549 \ (0.0035)$	$0.0038 \ (0.0049)$	$0.9570 \ (0.0064)$	$0.0240 \ (0.0011)$	1000
RP(5)	1.2511	0.0264	$0.1553 \ (0.0035)$	$0.0011 \ (0.0049)$	$0.9550 \ (0.0066)$	$0.0241 \ (0.0011)$	1000
RP(9)	1.2523	0.0264	$0.1556 \ (0.0035)$	$0.0023 \ (0.0049)$	$0.9560 \ (0.0065)$	$0.0242 \ (0.0011)$	1000
RP(P)	1.2460	0.0260	$0.1536 \ (0.0034)$	-0.0040 (0.0049)	$0.9590 \ (0.0063)$	$0.0236 \ (0.0011)$	1000
FP(W)	1.4439	0.0282	$0.1591 \ (0.0042)$	$0.1939 \ (0.0059)$	$0.8469 \ (0.0134)$	$0.0629 \ (0.0026)$	725
FP (k=10)	1.2778	0.0263	$0.1539 \ (0.0034)$	$0.0278 \ (0.0049)$	$0.9709 \ (0.0053)$	$0.0244 \ (0.0011)$	998
FP (k=10000)	2.0911	0.0330	0.2085 (0.0047)	0.8411 (0.0066)	0.0060 (0.0024)	0.7509 (0.0111)	1000

Table 210: Simulation results for frailty variance, scenario with 750 clusters of 2 individuals each. The true frailty follows a log-Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox		_					
Exp	_	_	_	_	_	_	_
Weibull							
Gompertz		_	_		_	_	
RP(3)	_	_	_	_	_	_	_
RP(5)	_	_	_	_	_	_	_
RP(9)	_	_	_	_	_	_	_
RP(P)		_					
FP(W)			_		_	_	
FP (k=10)			_		_	_	
FP (k=10000)		_					_
Model frailty: l	og-Normal						
Cox	1.0411	0.0204	$0.1414 \ (0.0032)$	-0.2089 (0.0045)	$0.6510 \ (0.0151)$	$0.0636 \ (0.0019)$	1000
Exp	1.4192	0.0168	$0.1333 \ (0.0030)$	$0.1692 \ (0.0042)$	$0.7753 \ (0.0132)$	$0.0464 \ (0.0018)$	997
Weibull	1.0897	0.0186	$0.1259 \ (0.0028)$	-0.1603 (0.0040)	$0.7462 \ (0.0138)$	$0.0415 \ (0.0013)$	997
Gompertz	1.4123	0.0259	$0.1366 \ (0.0059)$	$0.1623 \ (0.0084)$	$0.9060 \ (0.0179)$	$0.0449 \ (0.0033)$	266
RP(3)	1.2597	0.0287	$0.1706 \ (0.0038)$	$0.0097 \ (0.0054)$	$0.9510 \ (0.0068)$	$0.0292 \ (0.0013)$	1000
RP(5)	1.2615	0.0287	$0.1703 \ (0.0038)$	$0.0115 \ (0.0054)$	$0.9490 \ (0.0070)$	$0.0291 \ (0.0013)$	1000
RP(9)	1.2622	0.0287	$0.1700 \ (0.0038)$	$0.0122 \ (0.0054)$	$0.9510 \ (0.0068)$	$0.0290 \ (0.0013)$	1000
RP(P)	1.2569	0.0283	$0.1685 \ (0.0038)$	$0.0069 \ (0.0053)$	$0.9500 \ (0.0069)$	$0.0284 \ (0.0013)$	1000
FP(W)	1.2461	0.0263	$0.1623 \ (0.0037)$	-0.0039 (0.0053)	$0.9494 \ (0.0071)$	$0.0263 \ (0.0012)$	949
FP (k=10)	1.3242	0.0301	$0.1802 \ (0.0040)$	$0.0742 \ (0.0057)$	$0.9296 \ (0.0081)$	$0.0379 \ (0.0019)$	995
FP (k=10000)	1.2732	0.0199	0.1684 (0.0038)	$0.0232 \ (0.0053)$	0.9010 (0.0094)	0.0289 (0.0014)	1000

Table 211: Simulation results for frailty variance, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 0.25, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.2366	0.0060	$0.0746 \ (0.0017)$	-0.0134 (0.0024)	$0.8640 \ (0.0109)$	$0.0057 \ (0.0003)$	985
Exp	0.2362	0.0060	$0.0741 \ (0.0017)$	-0.0138 (0.0023)	$0.8720 \ (0.0106)$	$0.0057 \ (0.0002)$	1000
Weibull	0.2367	0.0060	$0.0744 \ (0.0017)$	-0.0133 (0.0024)	$0.8740 \ (0.0105)$	$0.0057 \ (0.0002)$	1000
Gompertz	0.2343	0.0059	$0.0762 \ (0.0023)$	-0.0157 (0.0033)	$0.8558 \ (0.0150)$	$0.0060 \ (0.0004)$	548
RP(3)	0.2365	0.0060	$0.0744 \ (0.0017)$	-0.0135 (0.0024)	$0.8749 \ (0.0105)$	$0.0057 \ (0.0002)$	999
RP(5)	0.2364	0.0060	$0.0744 \ (0.0017)$	-0.0136 (0.0024)	$0.8750 \ (0.0105)$	$0.0057 \ (0.0002)$	1000
RP(9)	0.2364	0.0060	$0.0744 \ (0.0017)$	-0.0136 (0.0024)	$0.8750 \ (0.0105)$	$0.0057 \ (0.0002)$	1000
RP(P)	0.2365	0.0060	$0.0744 \ (0.0017)$	-0.0135 (0.0024)	$0.8750 \ (0.0105)$	$0.0057 \ (0.0002)$	1000
FP(W)	0.2367	0.0060	$0.0744 \ (0.0017)$	-0.0133 (0.0024)	$0.8739 \ (0.0105)$	$0.0057 \ (0.0002)$	999
FP (k=10)	0.2365	0.0060	$0.0745 \ (0.0017)$	-0.0135 (0.0024)	$0.8750 \ (0.0105)$	$0.0057 \ (0.0002)$	1000
FP (k=10000)	0.2363	0.0060	$0.0743 \ (0.0017)$	-0.0137 (0.0024)	$0.8740 \ (0.0105)$	$0.0057 \ (0.0002)$	1000
Model frailty: l	og-Normal						
Cox			_	_	_	_	_
Exp		_	_				
Weibull		_	_	_	_	_	_
Gompertz		_	_	_	_	_	_
RP(3)	_	_	_	_	_	_	_
RP(5)	_	_	_	_	_	_	_
RP(9)	_	_	_	_	_	_	_
RP(P)	_	_	_	_	_	_	_
FP(W)							
FP (k=10)			_	_	_	_	_
FP (k=10000)				_	_		_

Table 212: Simulation results for frailty variance, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.2342	0.0059	$0.0762 \ (0.0017)$	-0.0158 (0.0024)	$0.8523 \ (0.0113)$	$0.0061 \ (0.0003)$	982
Exp	0.2750	0.0080	$0.0872 \ (0.0020)$	$0.0250 \ (0.0028)$	$0.9400 \ (0.0075)$	$0.0082 \ (0.0004)$	1000
Weibull	0.2345	0.0060	$0.0760 \ (0.0017)$	$-0.0155 \ (0.0024)$	$0.8630 \ (0.0109)$	$0.0060 \ (0.0003)$	1000
Gompertz	0.2740	0.0079	$0.0813 \ (0.0027)$	$0.0240 \ (0.0038)$	$0.9509 \ (0.0102)$	$0.0072 \ (0.0006)$	448
RP(3)	0.2338	0.0060	$0.0759 \ (0.0017)$	-0.0162 (0.0024)	$0.8620 \ (0.0109)$	$0.0060 \ (0.0003)$	1000
RP(5)	0.2339	0.0060	$0.0759 \ (0.0017)$	-0.0161 (0.0024)	$0.8620 \ (0.0109)$	$0.0060 \ (0.0003)$	1000
RP(9)	0.2339	0.0060	$0.0759 \ (0.0017)$	-0.0161 (0.0024)	$0.8620 \ (0.0109)$	$0.0060 \ (0.0003)$	1000
RP(P)	0.2341	0.0060	$0.0759 \ (0.0017)$	-0.0159 (0.0024)	$0.8620 \ (0.0109)$	$0.0060 \ (0.0003)$	1000
FP(W)	0.2345	0.0060	$0.0761 \ (0.0017)$	-0.0155 (0.0024)	$0.8627 \ (0.0109)$	$0.0060 \ (0.0003)$	998
FP (k=10)	0.2381	0.0064	$0.0784 \ (0.0018)$	-0.0119 (0.0025)	$0.8709 \ (0.0106)$	$0.0063 \ (0.0003)$	999
FP (k=10000)	0.2430	0.0065	$0.0795 \ (0.0018)$	-0.0070 (0.0025)	$0.8799 \ (0.0103)$	$0.0064 \ (0.0003)$	999
Model frailty: l	og-Normal						
Cox		_			_		
Exp		_			_		
Weibull		_			_		
Gompertz		_			_		
RP(3)		_			_		
RP(5)		_			_		
RP(9)		_			_		
RP(P)		_			_		
FP(W)		_			_		
FP (k=10)					_	_	
FP (k=10000)	_	_	_	_	_	_	_

Table 213: Simulation results for frailty variance, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 0.25, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.2374	0.0059	0.0757 (0.0017)	-0.0126 (0.0024)	$0.8531 \ (0.0113)$	0.0059 (0.0002)	980
Exp	0.1752	0.0034	$0.0594 \ (0.0013)$	-0.0748 (0.0019)	$0.5990 \ (0.0155)$	$0.0091 \ (0.0003)$	1000
Weibull	0.2167	0.0051	$0.0704 \ (0.0016)$	-0.0333 (0.0022)	$0.8130 \ (0.0123)$	$0.0061 \ (0.0002)$	1000
Gompertz	0.2360	0.0060	$0.0745 \ (0.0017)$	-0.0140 (0.0024)	$0.8619 \ (0.0109)$	$0.0057 \ (0.0002)$	999
RP(3)	0.2360	0.0060	$0.0755 \ (0.0017)$	-0.0140 (0.0024)	$0.8620 \ (0.0109)$	$0.0059 \ (0.0002)$	1000
RP(5)	0.2366	0.0060	$0.0756 \ (0.0017)$	-0.0134 (0.0024)	$0.8610 \ (0.0109)$	$0.0059 \ (0.0002)$	1000
RP(9)	0.2368	0.0060	$0.0756 \ (0.0017)$	-0.0132 (0.0024)	$0.8610 \ (0.0109)$	$0.0059 \ (0.0002)$	1000
RP(P)	0.2341	0.0059	$0.0751 \ (0.0017)$	-0.0159 (0.0024)	$0.8570 \ (0.0111)$	$0.0059 \ (0.0002)$	1000
FP(W)	0.2167	0.0051	$0.0704 \ (0.0016)$	-0.0333 (0.0022)	$0.8130 \ (0.0123)$	$0.0061 \ (0.0002)$	1000
FP (k=10)	0.2367	0.0060	$0.0757 \ (0.0017)$	-0.0133 (0.0024)	$0.8610 \ (0.0109)$	$0.0059 \ (0.0002)$	1000
FP (k=10000)	0.2344	0.0059	$0.0751 \ (0.0017)$	-0.0156 (0.0024)	$0.8590 \ (0.0110)$	$0.0059 \ (0.0002)$	1000
Model frailty: l	og-Normal						
Cox		_	_	_	_	_	_
Exp			_	_	_	_	
Weibull		_	_	_	_	_	
Gompertz		_	_	_	_	_	
RP(3)	_	_	_	_	_	_	_
RP(5)	_	_	_	_	_	_	_
RP(9)		_	_	_	_	_	_
RP(P)		_	_		_		
FP(W)		_	_	_	_	_	_
FP (k=10)		_					
FP (k=10000)			_		_	_	

Table 214: Simulation results for frailty variance, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.2407	0.0061	0.0777(0.0017)	-0.0093 (0.0025)	$0.8590 \ (0.0111)$	$0.0061 \ (0.0003)$	986
Exp	0.1567	0.0028	$0.0559 \ (0.0012)$	-0.0933 (0.0018)	$0.4900 \ (0.0158)$	$0.0118 \ (0.0003)$	1000
Weibull	0.2612	0.0072	$0.0829 \ (0.0019)$	$0.0112 \ (0.0026)$	$0.9150 \ (0.0088)$	$0.0070 \ (0.0004)$	1000
Gompertz	0.2417	0.0062	$0.0771 \ (0.0017)$	-0.0083 (0.0024)	$0.8740 \ (0.0105)$	$0.0060 \ (0.0003)$	1000
RP(3)	0.2403	0.0062	$0.0778 \ (0.0017)$	-0.0097 (0.0025)	$0.8719 \ (0.0106)$	$0.0061 \ (0.0003)$	999
RP(5)	0.2401	0.0062	$0.0778 \ (0.0017)$	-0.0099 (0.0025)	$0.8710 \ (0.0106)$	$0.0061 \ (0.0003)$	1000
RP(9)	0.2402	0.0062	$0.0778 \ (0.0017)$	-0.0098 (0.0025)	$0.8700 \ (0.0106)$	$0.0061 \ (0.0003)$	1000
RP(P)	0.2406	0.0062	$0.0779 \ (0.0017)$	-0.0094 (0.0025)	$0.8730 \ (0.0105)$	$0.0061 \ (0.0003)$	1000
FP(W)	0.2612	0.0072	$0.0829 \ (0.0019)$	$0.0112 \ (0.0026)$	$0.9149 \ (0.0088)$	$0.0070 \ (0.0004)$	999
FP (k=10)	0.2489	0.0071	$0.0825 \ (0.0018)$	-0.0011 (0.0026)	$0.8900 \ (0.0099)$	$0.0068 \ (0.0004)$	1000
FP (k=10000)	5.3526	7.0519	$6.8994 \ (0.1544)$	$5.1026 \ (0.2182)$	$0.5550 \ (0.0157)$	73.5905 (3.4394)	1000
Model frailty: l	og-Normal						
Cox		_	_	_	_	_	_
Exp		_				_	
Weibull	_	_	_	_	_	_	_
Gompertz	_	_	_	_	_	_	_
RP(3)	_	_	_	_	_	_	_
RP(5)	_	_	_	_	_	_	_
RP(9)	_	_	_	_	_	_	_
RP(P)		_	_	_	_	_	
FP(W)			_	_	_	_	_
FP (k=10)	_	_	_	_	_	_	_
FP (k=10000)							

Table 215: Simulation results for frailty variance, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	0.2433	0.0063	$0.0793 \ (0.0018)$	-0.0067 (0.0025)	$0.8754 \ (0.0106)$	$0.0063 \ (0.0003)$	979
Exp	0.2674	0.0076	$0.0855 \ (0.0019)$	$0.0174 \ (0.0027)$	$0.9250 \ (0.0083)$	$0.0076 \ (0.0004)$	1000
Weibull	0.2471	0.0066	$0.0800 \ (0.0018)$	-0.0029 (0.0025)	$0.8960 \ (0.0097)$	$0.0064 \ (0.0003)$	1000
Gompertz	0.2703	0.0077	$0.0851 \ (0.0027)$	$0.0203 \ (0.0039)$	$0.9275 \ (0.0118)$	$0.0076 \ (0.0006)$	483
RP(3)	0.2426	0.0064	$0.0790 \ (0.0018)$	$-0.0074 \ (0.0025)$	$0.8830 \ (0.0102)$	$0.0063 \ (0.0003)$	1000
RP(5)	0.2425	0.0064	$0.0790 \ (0.0018)$	-0.0075 (0.0025)	$0.8830 \ (0.0102)$	$0.0063 \ (0.0003)$	1000
RP(9)	0.2425	0.0064	$0.0790 \ (0.0018)$	-0.0075 (0.0025)	$0.8830 \ (0.0102)$	$0.0063 \ (0.0003)$	1000
RP(P)	0.2429	0.0064	$0.0791 \ (0.0018)$	-0.0071 (0.0025)	$0.8830 \ (0.0102)$	$0.0063 \ (0.0003)$	1000
FP(W)	0.2471	0.0066	$0.0801 \ (0.0018)$	-0.0029 (0.0025)	$0.8968 \ (0.0096)$	$0.0064 \ (0.0003)$	998
FP (k=10)	0.2433	0.0065	$0.0795 \ (0.0018)$	-0.0067 (0.0025)	$0.8850 \ (0.0101)$	$0.0064 \ (0.0003)$	1000
FP (k=10000)	0.2404	0.0063	$0.0785 \ (0.0018)$	-0.0096 (0.0025)	$0.8790 \ (0.0103)$	$0.0062 \ (0.0003)$	1000
Model frailty: l	og-Normal						
Cox	_	_	_	_	_	_	_
Exp	_	_	_	_	_	_	_
Weibull							
Gompertz							
RP(3)							
RP(5)		_		_		_	
RP(9)		_		_		_	
RP(P)		_					
FP (W)		_					
FP (k=10)		_					
FP (k=10000)	_		_	_	_	_	

Table 216: Simulation results for frailty variance, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.25, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox		_					
Exp			_	_	_		
Weibull			_	_	_	_	_
Gompertz			_	_	_	_	_
RP(3)		_	_		_	_	
RP(5)		_	_		_	_	
RP(9)	_	_	_	_	_	_	_
RP(P)	_	_	_	_	_	_	_
FP(W)		_	_	_			
FP (k=10)		_	_	_			
FP (k=10000)		_					
Model frailty: l	og-Normal						
Cox	0.2491	0.0060	$0.0825 \ (0.0018)$	-0.0009 (0.0026)	$0.8740 \ (0.0105)$	$0.0068 \ (0.0004)$	1000
Exp	0.2355	0.0066	$0.0782 \ (0.0017)$	-0.0145 (0.0025)	$0.8690 \ (0.0107)$	$0.0063 \ (0.0003)$	1000
Weibull	0.2359	0.0066	$0.0785 \ (0.0018)$	-0.0141 (0.0025)	$0.8700 \ (0.0106)$	$0.0064 \ (0.0003)$	1000
Gompertz	0.2338	0.0065	$0.0776 \ (0.0023)$	-0.0162 (0.0033)	$0.8698 \ (0.0143)$	$0.0063 \ (0.0004)$	553
RP(3)	0.2355	0.0066	$0.0783 \ (0.0018)$	-0.0145 (0.0025)	$0.8690 \ (0.0107)$	$0.0063 \ (0.0003)$	1000
RP(5)	0.2356	0.0066	$0.0784 \ (0.0018)$	-0.0144 (0.0025)	$0.8690 \ (0.0107)$	$0.0063 \ (0.0003)$	1000
RP(9)	0.2356	0.0066	$0.0784 \ (0.0018)$	-0.0144 (0.0025)	$0.8690 \ (0.0107)$	$0.0063 \ (0.0003)$	1000
RP(P)	0.2357	0.0066	$0.0784 \ (0.0018)$	-0.0143 (0.0025)	$0.8690 \ (0.0107)$	$0.0063 \ (0.0003)$	1000
FP(W)	1.1442	0.4526	$1.7847 \ (0.0468)$	$0.8942 \ (0.0661)$	$0.6187 \ (0.0180)$	$3.9803 \ (0.4737)$	729
FP (k=10)	0.3006	0.0119	$0.1557 \ (0.0036)$	$0.0506 \ (0.0050)$	$0.9083 \ (0.0093)$	$0.0268 \ (0.0035)$	960
FP (k=10000)	0.3072	0.0111	0.1164 (0.0026)	$0.0572 \ (0.0037)$	0.9473 (0.0071)	0.0168 (0.0010)	986

Table 217: Simulation results for frailty variance, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

	Avg. Estimate		Emp. SE	Bias	Coverage	MSE	
Model frailty: (Gamma						
Cox			_	_	_		
Exp		_		_			
Weibull		_				_	
Gompertz			_	_		_	
RP(3)		_	_		_	_	
RP(5)		_	_				
RP(9)		_	_				
RP(P)		_	_		_	_	
FP(W)	_	_	_	_	_	_	_
FP (k=10)	_	_	_	_	_	_	_
FP (k=10000)							
Model frailty: l	og-Normal						
Cox	0.2473	0.0061	$0.0847 \ (0.0019)$	-0.0027 (0.0027)	$0.8490 \ (0.0113)$	$0.0072 \ (0.0004)$	1000
Exp	0.2847	0.0097	$0.0987 \ (0.0022)$	$0.0347 \ (0.0031)$	$0.9350 \ (0.0078)$	$0.0109 \ (0.0007)$	1000
Weibull	0.2347	0.0067	$0.0809 \ (0.0018)$	-0.0153 (0.0026)	$0.8609 \ (0.0109)$	$0.0068 \ (0.0003)$	999
Gompertz	0.2801	0.0094	$0.0953 \ (0.0032)$	$0.0301 \ (0.0046)$	$0.9375 \ (0.0116)$	$0.0100 \ (0.0009)$	432
RP(3)	0.2338	0.0067	$0.0806 \ (0.0018)$	-0.0162 (0.0025)	$0.8550 \ (0.0111)$	$0.0067 \ (0.0003)$	1000
RP(5)	0.2339	0.0067	$0.0806 \ (0.0018)$	-0.0161 (0.0025)	$0.8560 \ (0.0111)$	$0.0067 \ (0.0003)$	1000
RP(9)	0.2339	0.0067	$0.0806 \ (0.0018)$	-0.0161 (0.0025)	$0.8550 \ (0.0111)$	$0.0068 \ (0.0003)$	1000
RP(P)	0.2342	0.0067	$0.0807 \ (0.0018)$	-0.0158 (0.0026)	$0.8560 \ (0.0111)$	$0.0068 \ (0.0003)$	1000
FP(W)	1.5704	0.9086	$2.5593 \ (0.0637)$	$1.3204 \ (0.0900)$	$0.5582 \ (0.0175)$	8.2854 (0.8843)	808
FP (k=10)	0.2946	0.0116	$0.1520 \ (0.0035)$	$0.0446 \ (0.0049)$	$0.8826 \ (0.0103)$	$0.0251 \ (0.0029)$	971
FP (k=10000)	0.3057	0.0111	0.1169 (0.0026)	$0.0557 \ (0.0037)$	$0.9406 \ (0.0075)$	0.0168 (0.0011)	993

Table 218: Simulation results for frailty variance, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox		_			_		
Exp	_	_		_	_	_	
Weibull		_					
Gompertz		_					
RP(3)		_					
RP(5)		_					
RP(9)		_					
RP(P)		_					
FP(W)		_					
FP (k=10)		_	_	_	_	_	_
FP (k=10000)			_	_	_	_	
Model frailty: l	og-Normal						
Cox	0.2536	0.0061	$0.0865 \ (0.0019)$	$0.0036 \ (0.0027)$	$0.8550 \ (0.0111)$	0.0075 (0.0004)	1000
Exp	0.1714	0.0036	$0.0606 \ (0.0014)$	-0.0786 (0.0019)	$0.5976 \ (0.0155)$	$0.0098 \ (0.0003)$	999
Weibull	0.2173	0.0057	$0.0753 \ (0.0017)$	-0.0327 (0.0024)	$0.8180 \ (0.0122)$	$0.0067 \ (0.0003)$	1000
Gompertz	0.2380	0.0067	$0.0793 \ (0.0018)$	-0.0120 (0.0025)	$0.8683 \ (0.0107)$	$0.0064 \ (0.0003)$	995
RP(3)	0.2391	0.0068	$0.0821 \ (0.0018)$	-0.0109 (0.0026)	$0.8650 \ (0.0108)$	$0.0068 \ (0.0003)$	1000
RP(5)	0.2398	0.0069	$0.0823 \ (0.0018)$	-0.0102 (0.0026)	$0.8670 \ (0.0107)$	$0.0069 \ (0.0003)$	1000
RP(9)	0.2400	0.0069	$0.0824 \ (0.0018)$	-0.0100 (0.0026)	$0.8680 \ (0.0107)$	$0.0069 \ (0.0003)$	1000
RP(P)	0.2371	0.0067	0.0816 (0.0018)	-0.0129 (0.0026)	$0.8640 \ (0.0108)$	$0.0068 \ (0.0003)$	1000
FP (W)	2.4769	1.8769	3.5497 (0.0983)	$2.2269 \ (0.1389)$	$0.4380 \ (0.0194)$	17.5402 (1.7615)	653
FP (k=10)	0.3063	0.0123	$0.1568 \ (0.0036)$	$0.0563 \ (0.0051)$	0.8903 (0.0101)	$0.0277 \ (0.0029)$	957
FP (k=10000)	0.3559	0.0157	$0.1635 \ (0.0037)$	$0.1059 \ (0.0052)$	$0.9044 \ (0.0094)$	$0.0379 \ (0.0029)$	983

Table 219: Simulation results for frailty variance, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox		_					
Exp		_	_	_	_	_	
Weibull		_					
Gompertz		_					
RP(3)		_					
RP(5)		_					
RP(9)		_					
RP(P)		_					
FP(W)		_					
FP (k=10)	_	_	_	_	_	_	_
FP (k=10000)	_	_	_	_	_	_	
Model frailty: l	log-Normal						
Cox	0.2506	0.0063	0.0847 (0.0019)	$0.0006 \ (0.0027)$	$0.8520 \ (0.0112)$	$0.0072 \ (0.0003)$	1000
Exp	0.1407	0.0025	$0.0493 \ (0.0011)$	-0.1093 (0.0016)	$0.3780 \ (0.0153)$	$0.0144 \ (0.0003)$	1000
Weibull	0.2611	0.0081	$0.0873 \ (0.0020)$	$0.0111 \ (0.0028)$	$0.9060 \ (0.0092)$	0.0077 (0.0004)	1000
Gompertz	0.2373	0.0067	$0.0791 \ (0.0018)$	-0.0127 (0.0025)	$0.8660 \ (0.0108)$	$0.0064 \ (0.0003)$	1000
RP(3)	0.2368	0.0067	$0.0802 \ (0.0018)$	-0.0132 (0.0025)	$0.8680 \ (0.0107)$	$0.0066 \ (0.0003)$	1000
RP(5)	0.2368	0.0067	$0.0802 \ (0.0018)$	-0.0132 (0.0025)	$0.8690 \ (0.0107)$	$0.0066 \ (0.0003)$	1000
RP(9)	0.2370	0.0067	$0.0803 \ (0.0018)$	-0.0130 (0.0025)	$0.8690 \ (0.0107)$	$0.0066 \ (0.0003)$	1000
RP(P)	0.2374	0.0067	$0.0804 \ (0.0018)$	-0.0126 (0.0025)	$0.8690 \ (0.0107)$	$0.0066 \ (0.0003)$	1000
FP (W)	2.2338	1.6430	$3.3825 \ (0.0989)$	1.9838 (0.1397)	$0.5341 \ (0.0206)$	15.3572 (1.6924)	586
FP (k=10)	0.3022	0.0117	$0.1484 \ (0.0034)$	$0.0522 \ (0.0048)$	$0.8952 \ (0.0099)$	$0.0247 \ (0.0024)$	964
FP (k=10000)	0.5222	0.0348	$0.2657 \ (0.0060)$	$0.2722 \ (0.0084)$	0.7674 (0.0134)	$0.1446 \ (0.0103)$	989

Table 220: Simulation results for frailty variance, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.25, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox		_					
Exp	_	_	_	_	_	_	
Weibull		_					
Gompertz		_					
RP(3)		_					
RP(5)		_					
RP(9)		_					
RP(P)		_					
FP(W)		_					
FP (k=10)		_	_	_	_	_	_
FP (k=10000)		_	_	_	_	_	
Model frailty: l	og-Normal						
Cox	0.2570	0.0065	$0.0876 \ (0.0020)$	$0.0070 \ (0.0028)$	$0.8720 \ (0.0106)$	0.0077 (0.0004)	1000
Exp	0.2721	0.0088	$0.0923 \ (0.0021)$	$0.0221 \ (0.0029)$	$0.9238 \ (0.0084)$	$0.0090 \ (0.0005)$	998
Weibull	0.2478	0.0074	$0.0843 \ (0.0019)$	-0.0022 (0.0027)	$0.8900 \ (0.0099)$	$0.0071 \ (0.0004)$	1000
Gompertz	0.2696	0.0086	0.0875 (0.0028)	$0.0196 \ (0.0040)$	0.9305 (0.0117)	$0.0080 \ (0.0006)$	475
RP(3)	0.2431	0.0071	$0.0833 \ (0.0019)$	-0.0069 (0.0026)	$0.8780 \ (0.0103)$	$0.0070 \ (0.0003)$	1000
RP(5)	0.2431	0.0071	$0.0834 \ (0.0019)$	-0.0069 (0.0026)	$0.8780 \ (0.0103)$	$0.0070 \ (0.0003)$	1000
RP(9)	0.2431	0.0071	$0.0834 \ (0.0019)$	-0.0069 (0.0026)	$0.8780 \ (0.0103)$	$0.0070 \ (0.0003)$	1000
RP(P)	0.2434	0.0071	0.0835 (0.0019)	-0.0066 (0.0026)	$0.8790 \ (0.0103)$	$0.0070 \ (0.0003)$	1000
FP(W)	1.7254	1.1303	2.8775 (0.0731)	$1.4754 \ (0.1034)$	$0.5858 \ (0.0177)$	$10.4461 \ (1.1445)$	775
FP (k=10)	0.2997	0.0117	$0.1469 \ (0.0033)$	$0.0497 \ (0.0047)$	0.9119 (0.0091)	$0.0240 \ (0.0030)$	976
FP (k=10000)	0.2987	0.0105	$0.1119 \ (0.0025)$	$0.0487 \ (0.0036)$	$0.9408 \; (0.0075)$	$0.0149\ (0.0010)$	980

Table 221: Simulation results for frailty variance, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 0.75, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	0.7150	0.0449	$0.2179 \ (0.0050)$	-0.0350 (0.0070)	$0.8591 \ (0.0112)$	$0.0487 \ (0.0022)$	958
Exp	0.7124	0.0460	$0.2147 \ (0.0048)$	-0.0376 (0.0068)	$0.8820 \ (0.0102)$	$0.0475 \ (0.0021)$	1000
Weibull	0.7135	0.0462	$0.2151 \ (0.0048)$	$-0.0365 \ (0.0068)$	$0.8840 \ (0.0101)$	$0.0476 \ (0.0021)$	1000
Gompertz	0.7004	0.0446	$0.2111 \ (0.0067)$	-0.0496 (0.0095)	$0.8623 \ (0.0155)$	$0.0469 \ (0.0029)$	494
RP(3)	0.7128	0.0462	$0.2149 \ (0.0048)$	-0.0372 (0.0068)	$0.8840 \ (0.0101)$	$0.0475 \ (0.0021)$	1000
RP(5)	0.7129	0.0462	$0.2149 \ (0.0048)$	-0.0371 (0.0068)	$0.8840 \ (0.0101)$	$0.0475 \ (0.0021)$	1000
RP(9)	0.7130	0.0462	$0.2149 \ (0.0048)$	-0.0370 (0.0068)	$0.8840 \ (0.0101)$	$0.0475 \ (0.0021)$	1000
RP(P)	0.7131	0.0462	$0.2153 \ (0.0048)$	-0.0369 (0.0068)	$0.8839 \ (0.0101)$	$0.0477 \ (0.0021)$	999
FP(W)	0.7135	0.0462	$0.2151 \ (0.0048)$	$-0.0365 \ (0.0068)$	$0.8840 \ (0.0101)$	$0.0476 \ (0.0021)$	1000
FP (k=10)	0.7142	0.0466	$0.2157 \ (0.0048)$	$-0.0358 \ (0.0068)$	$0.8850 \ (0.0101)$	$0.0478 \ (0.0021)$	1000
FP (k=10000)	0.7130	0.0462	$0.2151 \ (0.0048)$	-0.0370 (0.0068)	$0.8840 \ (0.0101)$	$0.0476 \ (0.0021)$	1000
Model frailty: l	og-Normal						
Cox	_	_	_	_	_	_	_
Exp		_	_				
Weibull	_	_	_	_	_	_	_
Gompertz	_	_	_	_	_	_	
RP(3)	_	_	_	_	_	_	
RP(5)		_	_				
RP(9)		_					
RP(P)		_					
FP(W)			_	_	_		
FP (k=10)							
FP (k=10000)			_				

Table 222: Simulation results for frailty variance, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	0.7277	0.0468	$0.2130 \ (0.0049)$	-0.0223 (0.0069)	$0.8653 \ (0.0110)$	$0.0458 \ (0.0021)$	965
Exp	0.8289	0.0604	$0.2350 \ (0.0053)$	$0.0789 \ (0.0074)$	$0.9510 \ (0.0068)$	$0.0614 \ (0.0030)$	1000
Weibull	0.7280	0.0482	$0.2128 \ (0.0048)$	-0.0220 (0.0067)	$0.8920 \ (0.0098)$	$0.0457 \ (0.0021)$	1000
Gompertz	0.8235	0.0598	$0.2334 \ (0.0081)$	$0.0735 \ (0.0114)$	$0.9475 \ (0.0109)$	$0.0597 \ (0.0050)$	419
RP(3)	0.7261	0.0480	$0.2125 \ (0.0048)$	-0.0239 (0.0067)	$0.8880 \ (0.0100)$	$0.0457 \ (0.0021)$	1000
RP(5)	0.7262	0.0480	$0.2126 \ (0.0048)$	-0.0238 (0.0067)	$0.8880 \ (0.0100)$	$0.0457 \ (0.0021)$	1000
RP(9)	0.7263	0.0480	$0.2126 \ (0.0048)$	$-0.0237 \ (0.0067)$	$0.8890 \ (0.0099)$	$0.0457 \ (0.0021)$	1000
RP(P)	0.7268	0.0480	$0.2127 \ (0.0048)$	$-0.0232 \ (0.0067)$	$0.8890 \ (0.0099)$	$0.0457 \ (0.0021)$	1000
FP (W)	0.7279	0.0482	$0.2128 \ (0.0048)$	$-0.0221 \ (0.0067)$	$0.8920 \ (0.0098)$	$0.0457 \ (0.0021)$	1000
FP (k=10)	0.7553	0.0556	$0.2280 \ (0.0051)$	$0.0053 \ (0.0072)$	$0.9050 \ (0.0093)$	$0.0520 \ (0.0025)$	1000
FP (k=10000)	0.7720	0.0546	$0.2312 \ (0.0052)$	$0.0220 \ (0.0073)$	$0.9120 \ (0.0090)$	$0.0539 \ (0.0027)$	1000
Model frailty: l	og-Normal						
Cox			_	_	_	_	
Exp		_		_			
Weibull		_		_			
Gompertz		_		_			
RP(3)		_		_			
RP(5)		_		_			
RP(9)		_					
RP(P)		_		_			
FP (W)		_		_			
FP (k=10)					_	_	
FP (k=10000)	_	_	_	_	_	_	_

Table 223: Simulation results for frailty variance, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 0.75, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

respectively.							
Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.7211	0.0457	$0.2226 \ (0.0051)$	-0.0289 (0.0072)	$0.8613 \ (0.0111)$	$0.0504 \ (0.0024)$	966
Exp	0.5820	0.0321	$0.1941 \ (0.0043)$	-0.1680 (0.0061)	$0.6950 \ (0.0146)$	$0.0659 \ (0.0022)$	1000
Weibull	0.6774	0.0421	$0.2143 \ (0.0048)$	-0.0726 (0.0068)	$0.8420 \ (0.0115)$	$0.0512 \ (0.0022)$	1000
Gompertz	0.5829	0.0317	$0.1706 \ (0.0044)$	-0.1671 (0.0063)	$0.7297 \ (0.0163)$	$0.0570 \ (0.0021)$	740
RP(3)	0.7179	0.0466	$0.2209 \ (0.0049)$	-0.0321 (0.0070)	$0.8780 \ (0.0103)$	$0.0498 \ (0.0024)$	1000
RP(5)	0.7189	0.0467	$0.2210 \ (0.0049)$	-0.0311 (0.0070)	$0.8790 \ (0.0103)$	$0.0498 \ (0.0024)$	1000
RP(9)	0.7193	0.0467	$0.2211 \ (0.0049)$	-0.0307 (0.0070)	$0.8790 \ (0.0103)$	$0.0498 \ (0.0024)$	1000
RP(P)	0.7140	0.0461	$0.2202 \ (0.0049)$	-0.0360 (0.0070)	$0.8780 \ (0.0103)$	$0.0498 \ (0.0023)$	1000
FP (W)	0.6774	0.0420	$0.2143 \ (0.0048)$	-0.0726 (0.0068)	$0.8420 \ (0.0115)$	$0.0512 \ (0.0022)$	1000
FP (k=10)	0.7204	0.0471	$0.2220 \ (0.0050)$	-0.0296 (0.0070)	$0.8810 \ (0.0102)$	$0.0501 \ (0.0024)$	1000
FP (k=10000)	0.7165	0.0464	$0.2217 \ (0.0050)$	$-0.0335 \ (0.0070)$	$0.8770 \ (0.0104)$	$0.0502 \ (0.0024)$	1000
Model frailty: l	og-Normal						
Cox			_	_	_	_	
Exp							
Weibull		_	_		_	_	
Gompertz		_	_		_	_	
RP(3)							
RP(5)							
RP(9)	_	_	_	_	_	_	_
RP(P)							
FP (W)		_		_		_	
FP (k=10)							
FP (k=10000)	_	_	_	_	_	_	_

Table 224: Simulation results for frailty variance, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

respectively.							
Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	0.7186	0.0449	$0.2223 \ (0.0051)$	-0.0314 (0.0072)	$0.8449 \ (0.0118)$	$0.0504 \ (0.0022)$	948
Exp	0.5214	0.0265	$0.1803 \ (0.0040)$	-0.2286 (0.0057)	$0.5680 \ (0.0157)$	$0.0847 \ (0.0025)$	1000
Weibull	0.7585	0.0513	$0.2272 \ (0.0051)$	$0.0085 \ (0.0072)$	$0.9060 \ (0.0092)$	$0.0516 \ (0.0024)$	1000
Gompertz	0.6386	0.0369	$0.1592 \ (0.0037)$	-0.1114 (0.0052)	$0.8588 \ (0.0113)$	0.0377 (0.0016)	942
RP(3)	0.7170	0.0465	$0.2205 \ (0.0049)$	-0.0330 (0.0070)	$0.8750 \ (0.0105)$	$0.0496 \ (0.0021)$	1000
RP(5)	0.7165	0.0465	$0.2203 \ (0.0049)$	-0.0335 (0.0070)	$0.8750 \ (0.0105)$	$0.0496 \ (0.0021)$	1000
RP(9)	0.7163	0.0465	$0.2201 \ (0.0049)$	-0.0337 (0.0070)	$0.8759 \ (0.0104)$	$0.0495 \ (0.0021)$	999
RP(P)	0.7174	0.0466	$0.2203 \ (0.0049)$	-0.0326 (0.0070)	$0.8760 \ (0.0104)$	$0.0496 \ (0.0021)$	1000
FP(W)	0.7590	0.0514	$0.2273 \ (0.0051)$	$0.0090 \ (0.0072)$	$0.9057 \ (0.0093)$	$0.0517 \ (0.0024)$	997
FP (k=10)	0.7582	0.0562	0.2377 (0.0053)	$0.0082 \ (0.0075)$	$0.9050 \ (0.0093)$	$0.0565 \ (0.0026)$	1000
FP (k=10000)	13.7281	18.5251	$3.8121 \ (0.0863)$	$12.9781 \ (0.1220)$	$0.0000 \ (0.0000)$	$182.9476 \ (3.4553)$	977
Model frailty: l	og-Normal						
Cox	_	_	_	_	_	_	
Exp	_	_	_	_	_	_	
Weibull	_	_	_	_	_	_	
Gompertz		_	_	_	_	_	
RP(3)		_	_		_		
RP(5)	_	_	_	_	_	_	
RP(9)	_	_	_	_	_	_	
RP(P)	_	_	_	_	_	_	
FP(W)	_		_	_	_	_	
FP (k=10)	_		_	_	_	_	_
FP (k=10000)		_	_	_	_	_	

Table 225: Simulation results for frailty variance, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	0.7313	0.0469	$0.2163 \ (0.0049)$	-0.0187 (0.0069)	$0.8762 \ (0.0106)$	$0.0471 \ (0.0022)$	969
Exp	0.7841	0.0546	$0.2241\ (0.0050)$	$0.0341 \ (0.0071)$	$0.9280 \ (0.0082)$	$0.0513 \ (0.0026)$	1000
Weibull	0.7372	0.0491	$0.2154 \ (0.0048)$	-0.0128 (0.0068)	$0.9010 \ (0.0094)$	$0.0465 \ (0.0022)$	1000
Gompertz	0.7805	0.0545	$0.2296 \ (0.0076)$	$0.0305 \ (0.0108)$	$0.9320 \ (0.0118)$	$0.0535 \ (0.0039)$	456
RP(3)	0.7292	0.0482	$0.2144 \ (0.0048)$	-0.0208 (0.0068)	$0.8980 \ (0.0096)$	$0.0464 \ (0.0021)$	1000
RP(5)	0.7294	0.0482	$0.2145 \ (0.0048)$	-0.0206 (0.0068)	$0.8980 \ (0.0096)$	$0.0464 \ (0.0021)$	1000
RP(9)	0.7295	0.0482	$0.2145 \ (0.0048)$	-0.0205 (0.0068)	$0.8980 \ (0.0096)$	$0.0464 \ (0.0021)$	1000
RP(P)	0.7300	0.0483	$0.2146 \ (0.0048)$	-0.0200 (0.0068)	$0.8990 \ (0.0095)$	$0.0464 \ (0.0021)$	1000
FP(W)	0.7371	0.0491	$0.2154 \ (0.0048)$	-0.0129 (0.0068)	$0.9010 \ (0.0094)$	$0.0465 \ (0.0022)$	1000
FP (k=10)	0.7362	0.0501	$0.2180 \ (0.0049)$	-0.0138 (0.0069)	$0.9000 \ (0.0095)$	$0.0477 \ (0.0023)$	1000
FP (k=10000)	0.7252	0.0478	$0.2141 \ (0.0048)$	-0.0248 (0.0068)	$0.8960 \ (0.0097)$	$0.0464 \ (0.0021)$	1000
Model frailty: l	og-Normal						
Cox	_	_	_	_	_	_	_
Exp	_	_	_	_	_	_	_
Weibull							
Gompertz							
RP(3)							
RP(5)		_		_		_	
RP(9)		_		_		_	
RP(P)		_		_			_
FP (W)		_					
FP (k=10)		_					
FP (k=10000)	_		_	_	_		

Table 226: Simulation results for frailty variance, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.75, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	_	_	_	_	_	_	_
Exp		_	_	_			
Weibull			_	_	_	_	_
Gompertz			_	_	_	_	_
RP(3)			_	_	_	_	_
RP(5)		_	_	_	_	_	_
RP(9)		_	_		_		
RP(P)	_	_	_	_	_	_	_
FP(W)	_	_	_	_	_	_	_
FP (k=10)			_	_		_	
FP (k=10000)			_	_		_	
Model frailty: l	log-Normal						
Cox	0.7431	0.0551	$0.2635 \ (0.0059)$	-0.0069 (0.0083)	$0.8460 \ (0.0114)$	$0.0694 \ (0.0036)$	1000
Exp	0.6998	0.0566	$0.2425 \ (0.0054)$	-0.0502 (0.0077)	$0.8457 \ (0.0114)$	$0.0613 \ (0.0029)$	998
Weibull	0.7006	0.0570	$0.2435 \ (0.0054)$	-0.0494 (0.0077)	$0.8468 \ (0.0114)$	$0.0617 \ (0.0029)$	999
Gompertz	0.6799	0.0541	$0.2419 \ (0.0077)$	-0.0701 (0.0109)	$0.8283 \ (0.0170)$	$0.0633 \ (0.0042)$	495
RP(3)	0.6991	0.0568	$0.2427 \ (0.0054)$	-0.0509 (0.0077)	$0.8470 \ (0.0114)$	$0.0614 \ (0.0029)$	1000
RP(5)	0.6992	0.0568	$0.2427 \ (0.0054)$	-0.0508 (0.0077)	$0.8470 \ (0.0114)$	$0.0614 \ (0.0029)$	1000
RP(9)	0.6993	0.0569	$0.2428 \ (0.0054)$	-0.0507 (0.0077)	$0.8470 \ (0.0114)$	$0.0615 \ (0.0029)$	1000
RP(P)	0.6999	0.0569	$0.2432 \ (0.0054)$	-0.0501 (0.0077)	$0.8480 \ (0.0114)$	$0.0616 \ (0.0029)$	1000
FP (W)	2.7200	2.0050	$3.5489 \ (0.0969)$	$1.9700 \ (0.1369)$	$0.6176 \ (0.0187)$	$16.4570 \ (1.9451)$	672
FP (k=10)	0.8407	0.0914	$0.4321 \ (0.0100)$	$0.0907 \ (0.0141)$	$0.8870 \ (0.0103)$	$0.1948 \; (0.0316)$	938
FP (k=10000)	0.7910	0.0718	0.2828 (0.0064)	0.0410 (0.0091)	0.9012 (0.0096)	$0.0815 \ (0.0052)$	972

Table 227: Simulation results for frailty variance, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						_
Cox	_	_	_	_	_	_	
Exp			_	_	_		
Weibull		_	_	_	_	_	
Gompertz	_	_	_	_	_	_	_
RP(3)	_	_	_	_	_	_	_
RP(5)		_	_	_	_		
RP(9)		_	_	_	_		
RP(P)	_	_	_	_	_	_	_
FP(W)	_		_	_	_		
FP (k=10)	_		_		_		
FP (k=10000)	_		_	_	_	_	_
Model frailty: l	og-Normal						
Cox	0.7597	0.0596	$0.2562 \ (0.0057)$	$0.0097 \ (0.0081)$	$0.8720 \ (0.0106)$	$0.0657 \ (0.0043)$	1000
Exp	0.8853	0.0902	$0.3008 \; (0.0067)$	$0.1353 \ (0.0095)$	$0.9469 \ (0.0071)$	$0.1087 \ (0.0072)$	999
Weibull	0.7223	0.0605	$0.2415 \ (0.0054)$	$-0.0277 \ (0.0076)$	$0.8850 \ (0.0101)$	$0.0591 \ (0.0035)$	1000
Gompertz	0.8845	0.0892	$0.2832 \ (0.0107)$	$0.1345 \ (0.0152)$	$0.9656 \ (0.0098)$	$0.0981 \ (0.0095)$	349
RP(3)	0.7181	0.0599	$0.2398 \ (0.0054)$	-0.0319 (0.0076)	$0.8830 \ (0.0102)$	$0.0584 \ (0.0035)$	1000
RP(5)	0.7182	0.0599	0.2397 (0.0054)	-0.0318 (0.0076)	$0.8830 \ (0.0102)$	$0.0584 \ (0.0035)$	1000
RP(9)	0.7184	0.0599	$0.2398 \ (0.0054)$	-0.0316 (0.0076)	$0.8830 \ (0.0102)$	$0.0584 \ (0.0035)$	1000
RP(P)	0.7189	0.0600	$0.2398 \ (0.0054)$	-0.0311 (0.0076)	$0.8830 \ (0.0102)$	$0.0584 \ (0.0035)$	1000
FP(W)	2.6544	1.8546	3.3745 (0.0894)	$1.9044 \ (0.1263)$	$0.6499 \ (0.0179)$	$14.9982 \ (1.6291)$	714
FP (k=10)	0.8562	0.0913	$0.3906 \ (0.0090)$	$0.1062 \ (0.0127)$	$0.9044 \ (0.0095)$	$0.1637 \ (0.0212)$	952
FP (k=10000)	0.8302	0.0789	0.2841 (0.0064)	$0.0802 \ (0.0091)$	$0.9282 \ (0.0083)$	$0.0871 \ (0.0059)$	975

Table 228: Simulation results for frailty variance, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox		_					
Exp		_	_	_	_	_	
Weibull		_	_	_	_	_	
Gompertz		_			_		
RP(3)		_			_		
RP(5)		_			_		
RP(9)		_			_		
RP(P)		_			_		
FP(W)		_	_		_		
FP (k=10)		_			_		
FP (k=10000)	_		_	_	_	_	
Model frailty: l	log-Normal						
Cox	0.7620	0.0575	$0.2465 \ (0.0055)$	$0.0120 \ (0.0078)$	$0.8730 \ (0.0105)$	$0.0608 \ (0.0029)$	1000
Exp	0.5384	0.0333	0.1797 (0.0040)	-0.2116 (0.0057)	$0.6276 \ (0.0153)$	$0.0770 \ (0.0023)$	999
Weibull	0.6604	0.0497	$0.2142 \ (0.0048)$	-0.0896 (0.0068)	$0.8150 \ (0.0123)$	$0.0539 \ (0.0022)$	1000
Gompertz	0.5402	0.0328	$0.1541 \ (0.0041)$	-0.2098 (0.0057)	$0.6792 \ (0.0174)$	0.0677 (0.0021)	720
RP(3)	0.7135	0.0578	$0.2263 \ (0.0051)$	-0.0365 (0.0072)	$0.8830 \ (0.0102)$	0.0525 (0.0024)	1000
RP(5)	0.7152	0.0581	0.2269 (0.0051)	-0.0348 (0.0072)	$0.8830 \ (0.0102)$	0.0527 (0.0024)	1000
RP(9)	0.7157	0.0582	$0.2271\ (0.0051)$	-0.0343 (0.0072)	$0.8830 \ (0.0102)$	0.0527 (0.0024)	1000
RP(P)	0.7095	0.0572	0.2261 (0.0051)	-0.0405 (0.0071)	0.8780 (0.0103)	$0.0527 \ (0.0024)$	1000
FP (W)	2.6785	1.6574	$3.0548 \; (0.0872)$	$1.9285 \ (0.1232)$	$0.5789 \ (0.0199)$	$13.0358 \ (1.3537)$	615
FP (k=10)	0.8608	0.0877	$0.3510 \ (0.0082)$	$0.1108 \; (0.0115)$	0.9181 (0.0090)	$0.1353 \ (0.0144)$	928
FP (k=10000)	0.9303	0.1006	$0.3613 \ (0.0083)$	$0.1803 \ (0.0117)$	$0.9298 \; (0.0083)$	$0.1629 \ (0.0117)$	954

Table 229: Simulation results for frailty variance, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox		_			_		
Exp	_	_		_	_	_	_
Weibull		_					
Gompertz		_					
RP(3)		_					
RP(5)		_					
RP(9)		_					
RP(P)		_					
FP(W)		_			_		
FP (k=10)		_					
FP (k=10000)		_	_	_	_	_	
Model frailty: l	og-Normal						
Cox	0.7544	0.0550	$0.2512 \ (0.0056)$	$0.0044 \ (0.0079)$	$0.8610 \ (0.0109)$	$0.0630 \ (0.0027)$	1000
Exp	0.4234	0.0209	$0.1430 \ (0.0032)$	-0.3266 (0.0045)	$0.3674 \ (0.0153)$	$0.1271 \ (0.0027)$	999
Weibull	0.7663	0.0666	$0.2442 \ (0.0055)$	$0.0163 \ (0.0077)$	$0.9130 \ (0.0089)$	0.0599 (0.0027)	1000
Gompertz	0.6115	0.0414	$0.1562 \ (0.0036)$	-0.1385 (0.0052)	$0.8226 \ (0.0126)$	$0.0435 \ (0.0018)$	919
RP(3)	0.7089	0.0574	$0.2307 \ (0.0052)$	-0.0411 (0.0073)	$0.8580 \ (0.0110)$	$0.0549 \ (0.0022)$	1000
RP(5)	0.7087	0.0574	$0.2309 \ (0.0052)$	-0.0413 (0.0073)	$0.8580 \ (0.0110)$	$0.0550 \ (0.0022)$	1000
RP(9)	0.7091	0.0575	$0.2311 \ (0.0052)$	-0.0409 (0.0073)	$0.8590 \ (0.0110)$	$0.0550 \ (0.0022)$	1000
RP(P)	0.7096	0.0575	$0.2308 \ (0.0052)$	-0.0404 (0.0073)	$0.8590 \ (0.0110)$	$0.0548 \ (0.0022)$	1000
FP(W)	2.8997	1.9368	$3.3202 \ (0.0983)$	2.1497 (0.1389)	$0.5989 \ (0.0205)$	$15.6255 \ (1.6905)$	571
FP (k=10)	0.8556	0.0864	$0.3457 \ (0.0080)$	$0.1056 \ (0.0113)$	$0.9148 \; (0.0091)$	$0.1305 \ (0.0110)$	939
FP (k=10000)	1.3665	0.2284	$0.6346 \ (0.0145)$	$0.6165 \ (0.0205)$	$0.8534 \ (0.0114)$	$0.7824\ (0.0620)$	962

Table 230: Simulation results for frailty variance, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 0.75, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox		_	_				
Exp		_		_	_		
Weibull	_			_	_	_	_
Gompertz				_	_	_	_
RP(3)		_					
RP(5)	_	_	_	_	_	_	_
RP(9)	_	_	_	_	_	_	_
RP(P)	_	_	_	_	_	_	_
FP(W)	_	_	_	_	_	_	_
FP (k=10)		_		_		_	_
FP (k=10000)		_	_	_		_	_
Model frailty: l	log-Normal						
Cox	0.7537	0.0584	$0.2472 \ (0.0055)$	$0.0037 \ (0.0078)$	$0.8790 \ (0.0103)$	$0.0611 \ (0.0031)$	1000
Exp	0.7852	0.0701	$0.2499 \ (0.0056)$	$0.0352 \ (0.0079)$	$0.9188 \; (0.0087)$	$0.0636 \ (0.0034)$	997
Weibull	0.7150	0.0586	$0.2272 \ (0.0051)$	-0.0350 (0.0072)	$0.8780 \ (0.0103)$	$0.0528 \ (0.0024)$	1000
Gompertz	0.7752	0.0682	$0.2379 \ (0.0081)$	$0.0252 \ (0.0115)$	$0.9182 \ (0.0132)$	$0.0571 \ (0.0042)$	428
RP(3)	0.7100	0.0579	$0.2286 \ (0.0051)$	-0.0400 (0.0072)	$0.8700 \ (0.0106)$	$0.0538 \ (0.0025)$	1000
RP(5)	0.7101	0.0580	$0.2286 \ (0.0051)$	-0.0399 (0.0072)	$0.8730 \ (0.0105)$	$0.0538 \ (0.0025)$	1000
RP(9)	0.7102	0.0580	$0.2286 \ (0.0051)$	-0.0398 (0.0072)	$0.8730 \ (0.0105)$	$0.0538 \ (0.0025)$	1000
RP(P)	0.7106	0.0580	$0.2286 \ (0.0051)$	-0.0394 (0.0072)	$0.8730 \ (0.0105)$	$0.0538 \ (0.0025)$	1000
FP(W)	2.7657	2.0299	$3.5402 \ (0.0958)$	2.0157 (0.1354)	$0.6170 \ (0.0186)$	$16.5781 \ (1.9751)$	684
FP (k=10)	0.8768	0.1004	$0.4585 \ (0.0105)$	$0.1268 \; (0.0149)$	$0.8903 \ (0.0102)$	$0.2261 \ (0.0321)$	948
FP (k=10000)	0.7705	0.0672	0.2501 (0.0057)	0.0205 (0.0080)	0.9067 (0.0093)	$0.0629 \ (0.0035)$	975

Table 231: Simulation results for frailty variance, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 1.25, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	1.2132	0.1208	0.3577 (0.0080)	-0.0368 (0.0114)	0.8879 (0.0100)	$0.1292 \ (0.0061)$	990
Exp	1.2146	0.1245	$0.3596 \ (0.0080)$	-0.0354 (0.0114)	$0.8990 \ (0.0095)$	$0.1304 \ (0.0062)$	1000
Weibull	1.2163	0.1250	$0.3595 \ (0.0080)$	-0.0337 (0.0114)	$0.9010 \ (0.0094)$	$0.1302 \ (0.0062)$	1000
Gompertz	1.2212	0.1256	0.3517 (0.0111)	-0.0288 (0.0157)	$0.9124 \ (0.0126)$	$0.1243 \ (0.0083)$	502
RP(3)	1.2147	0.1248	$0.3591 \ (0.0080)$	-0.0353 (0.0114)	$0.9000 \; (0.0095)$	$0.1301 \ (0.0061)$	1000
RP(5)	1.2148	0.1248	$0.3591 \ (0.0080)$	-0.0352 (0.0114)	$0.9000 \; (0.0095)$	$0.1301 \ (0.0061)$	1000
RP(9)	1.2149	0.1248	$0.3592 \ (0.0080)$	-0.0351 (0.0114)	$0.9000 \; (0.0095)$	$0.1301 \ (0.0061)$	1000
RP(P)	1.2155	0.1249	$0.3593 \ (0.0080)$	-0.0345 (0.0114)	$0.9010 \ (0.0094)$	$0.1301 \ (0.0062)$	1000
FP(W)	1.2162	0.1250	0.3595 (0.0080)	-0.0338 (0.0114)	$0.9010 \ (0.0094)$	$0.1302 \ (0.0062)$	1000
FP (k=10)	1.2192	0.1268	$0.3615 \ (0.0081)$	-0.0308 (0.0114)	$0.9000 \ (0.0095)$	$0.1315 \ (0.0063)$	1000
FP (k=10000)	1.2156	0.1250	$0.3600 \ (0.0081)$	-0.0344 (0.0114)	$0.9000 \ (0.0095)$	$0.1307 \ (0.0062)$	1000
Model frailty: l	og-Normal						
Cox		_	_		_	_	
Exp	_	_	_	_	_	_	_
Weibull	_	_	_	_	_	_	_
Gompertz	_	_	_	_	_	_	_
RP(3)		_			_		
RP(5)		_			_		
RP(9)		_			_		
RP(P)	_	_	_	_	_	_	_
FP (W)						_	
FP (k=10)						_	
FP (k=10000)			_		_		

Table 232: Simulation results for frailty variance, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: (Gamma						
Cox	1.2027	0.1182	$0.3352 \ (0.0076)$	-0.0473 (0.0107)	$0.8759 \ (0.0105)$	$0.1145 \ (0.0053)$	983
Exp	1.3432	0.1485	$0.3655 \ (0.0082)$	$0.0932 \ (0.0116)$	$0.9450 \ (0.0072)$	$0.1421 \ (0.0074)$	1000
Weibull	1.2041	0.1232	$0.3383 \ (0.0076)$	-0.0459 (0.0107)	$0.8950 \ (0.0097)$	$0.1165 \ (0.0053)$	1000
Gompertz	1.3549	0.1510	$0.3598 \ (0.0119)$	$0.1049 \ (0.0168)$	$0.9539 \ (0.0098)$	$0.1401 \ (0.0115)$	456
RP(3)	1.2006	0.1227	$0.3378 \ (0.0076)$	-0.0494 (0.0107)	$0.8940 \ (0.0097)$	$0.1164 \ (0.0053)$	1000
RP(5)	1.2008	0.1227	$0.3378 \ (0.0076)$	$-0.0492 \ (0.0107)$	$0.8940 \ (0.0097)$	$0.1164 \ (0.0053)$	1000
RP(9)	1.2009	0.1227	$0.3378 \ (0.0076)$	-0.0491 (0.0107)	$0.8940 \ (0.0097)$	$0.1164 \ (0.0053)$	1000
RP(P)	1.2018	0.1229	$0.3380 \ (0.0076)$	$-0.0482 \ (0.0107)$	$0.8940 \ (0.0097)$	$0.1164 \ (0.0053)$	1000
FP(W)	1.2040	0.1232	$0.3383 \ (0.0076)$	-0.0460 (0.0107)	$0.8950 \ (0.0097)$	$0.1165 \ (0.0053)$	1000
FP (k=10)	1.2651	0.1482	$0.3684 \ (0.0082)$	$0.0151 \ (0.0117)$	$0.9190 \ (0.0086)$	$0.1358 \ (0.0070)$	1000
FP (k=10000)	1.2943	0.1465	$0.4127 \ (0.0092)$	$0.0443 \ (0.0131)$	$0.9200 \ (0.0086)$	$0.1721 \ (0.0172)$	1000
Model frailty: l	og-Normal						
Cox		_			_		
Exp		_	_	_	_		_
Weibull			_	_	_	_	_
Gompertz		_			_		
RP(3)		_	_	_	_		_
RP(5)		_	_	_	_		_
RP(9)		_			_		
RP(P)		_	_	_	_		_
FP(W)		_	_	_	_		_
FP (k=10)		_			_	_	
FP (k=10000)	_	_		_	_	_	_

Table 233: Simulation results for frailty variance, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 1.25, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	1.2045	0.1152	$0.3490 \ (0.0079)$	-0.0455 (0.0111)	$0.8675 \ (0.0108)$	$0.1237 \ (0.0055)$	989
Exp	1.0217	0.0908	$0.3213 \ (0.0072)$	-0.2283 (0.0102)	$0.7430 \ (0.0138)$	$0.1553 \ (0.0055)$	1000
Weibull	1.1513	0.1116	$0.3433 \ (0.0077)$	-0.0987 (0.0109)	$0.8600 \ (0.0110)$	$0.1275 \ (0.0052)$	1000
Gompertz	1.0091	0.0893	$0.3256 \ (0.0090)$	-0.2409 (0.0128)	$0.7165 \ (0.0177)$	$0.1639 \ (0.0068)$	649
RP(3)	1.2043	0.1207	$0.3510 \ (0.0079)$	-0.0457 (0.0111)	$0.8890 \ (0.0099)$	$0.1252 \ (0.0055)$	1000
RP(5)	1.2055	0.1209	$0.3512 \ (0.0079)$	-0.0445 (0.0111)	$0.8940 \ (0.0097)$	$0.1252 \ (0.0055)$	1000
RP(9)	1.2059	0.1209	$0.3512 \ (0.0079)$	-0.0441 (0.0111)	$0.8940 \ (0.0097)$	$0.1252 \ (0.0055)$	1000
RP(P)	1.1989	0.1197	$0.3501 \ (0.0078)$	-0.0511 (0.0111)	$0.8820 \ (0.0102)$	$0.1250 \ (0.0054)$	1000
FP(W)	1.1513	0.1116	$0.3433 \ (0.0077)$	-0.0987 (0.0109)	$0.8600 \ (0.0110)$	$0.1275 \ (0.0052)$	1000
FP (k=10)	1.2092	0.1225	$0.3534 \ (0.0079)$	-0.0408 (0.0112)	$0.8960 \ (0.0097)$	$0.1265 \ (0.0056)$	1000
FP (k=10000)	1.2043	0.1207	$0.3524 \ (0.0079)$	-0.0457 (0.0111)	$0.8850 \ (0.0101)$	$0.1261 \ (0.0055)$	1000
Model frailty: l	og-Normal						
Cox	_	_	_	_	_	_	_
Exp	_	_	_	_	_	_	_
Weibull	_	_	_	_	_	_	_
Gompertz	_	_	_	_	_	_	_
RP(3)	_	_	_	_	_	_	_
RP(5)							
RP(9)							
RP(P)							
FP(W)							
FP (k=10)							
FP (k=10000)							

Table 234: Simulation results for frailty variance, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	1.1972	0.1129	$0.3347 \ (0.0075)$	-0.0528 (0.0106)	$0.8620 \ (0.0109)$	$0.1147 \ (0.0052)$	993
Exp	0.9264	0.0764	$0.2942 \ (0.0066)$	-0.3236 (0.0093)	$0.6490 \ (0.0151)$	$0.1912\ (0.0061)$	1000
Weibull	1.2553	0.1288	$0.3435 \ (0.0077)$	$0.0053 \ (0.0109)$	$0.9140 \ (0.0089)$	$0.1179 \ (0.0058)$	1000
Gompertz	0.9385	0.0769	$0.2567 \ (0.0067)$	-0.3115 (0.0095)	$0.6726 \ (0.0174)$	$0.1628 \; (0.0056)$	727
RP(3)	1.2012	0.1195	$0.3353 \ (0.0075)$	-0.0488 (0.0106)	$0.8900 \ (0.0099)$	$0.1147 \ (0.0053)$	1000
RP(5)	1.2005	0.1194	$0.3353 \ (0.0075)$	-0.0495 (0.0106)	$0.8900 \ (0.0099)$	$0.1148 \; (0.0053)$	1000
RP(9)	1.2007	0.1194	$0.3353 \ (0.0075)$	-0.0493 (0.0106)	$0.8900 \ (0.0099)$	$0.1148 \; (0.0053)$	1000
RP(P)	1.2016	0.1195	$0.3354 \ (0.0075)$	-0.0484 (0.0106)	$0.8900 \ (0.0099)$	$0.1147 \ (0.0053)$	1000
FP(W)	1.2553	0.1288	$0.3435 \ (0.0077)$	$0.0053 \ (0.0109)$	$0.9140 \ (0.0089)$	0.1179 (0.0057)	1000
FP (k=10)	1.2840	0.1479	$0.3640 \ (0.0081)$	$0.0340 \ (0.0115)$	$0.9190 \ (0.0086)$	$0.1335 \ (0.0068)$	1000
FP (k=10000)	14.3374	20.4350	$4.6662 \ (0.1046)$	$13.0874 \ (0.1479)$	$0.0000 \ (0.0000)$	193.0326 (4.5684)	996
Model frailty: l	og-Normal						
Cox		_		_			
Exp	_			_		_	
Weibull		_		_			
Gompertz		_		_			
RP(3)	_			_		_	
RP(5)		_		_			
RP(9)	_	_		_			
RP(P)	_			_		_	
FP (W)		_					
FP (k=10)		_					
FP (k=10000)			_				

Table 235: Simulation results for frailty variance, scenario with 20 clusters of 150 individuals each. The true frailty follows a Gamma distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: Gamma							
Cox	1.2023	0.1198	$0.3498 \ (0.0079)$	-0.0477 (0.0111)	$0.8682 \ (0.0108)$	$0.1245 \ (0.0060)$	986
Exp	1.2762	0.1353	$0.3645 \ (0.0082)$	$0.0262 \ (0.0115)$	$0.9110 \ (0.0090)$	$0.1334 \ (0.0071)$	1000
Weibull	1.2103	0.1237	$0.3519 \ (0.0079)$	-0.0397 (0.0111)	$0.8800 \ (0.0103)$	$0.1253 \ (0.0061)$	1000
Gompertz	1.2786	0.1354	$0.3503 \ (0.0118)$	$0.0286 \ (0.0166)$	$0.9210 \ (0.0128)$	$0.1233 \ (0.0095)$	443
RP(3)	1.2014	0.1223	$0.3518 \ (0.0079)$	-0.0486 (0.0111)	$0.8730 \ (0.0105)$	$0.1260 \ (0.0060)$	1000
RP(5)	1.2019	0.1224	$0.3520 \ (0.0079)$	-0.0481 (0.0111)	$0.8750 \ (0.0105)$	$0.1261 \ (0.0060)$	1000
RP(9)	1.2020	0.1224	$0.3521 \ (0.0079)$	-0.0480 (0.0111)	$0.8760 \ (0.0104)$	$0.1261 \ (0.0060)$	1000
RP(P)	1.2025	0.1225	$0.3520 \ (0.0079)$	-0.0475 (0.0111)	$0.8760 \ (0.0104)$	$0.1260 \ (0.0060)$	1000
FP(W)	1.2103	0.1237	$0.3519 \ (0.0079)$	-0.0397 (0.0111)	$0.8800 \ (0.0103)$	$0.1253 \ (0.0061)$	1000
FP (k=10)	1.2190	0.1295	$0.3611 \ (0.0081)$	-0.0310 (0.0114)	$0.8820 \ (0.0102)$	$0.1313 \ (0.0064)$	1000
FP (k=10000)	1.1969	0.1216	$0.3516 \ (0.0079)$	-0.0531 (0.0111)	$0.8700 \ (0.0106)$	$0.1263 \ (0.0060)$	1000
Model frailty: l	og-Normal						
Cox	_	_	_	_	_	_	_
Exp	_	_	_	_	_	_	_
Weibull							
Gompertz							
RP(3)							
RP(5)		_		_		_	
RP(9)		_		_		_	
RP(P)		_		_			_
FP (W)		_					
FP (k=10)		_					
FP (k=10000)	_		_	_	_		_

Table 236: Simulation results for frailty variance, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 1.25, and the true baseline hazard follows follows an Exponential distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	_	_	_	_	_	_	_
Exp		_	_	_			
Weibull			_	_	_	_	_
Gompertz			_	_	_	_	_
RP(3)			_	_	_	_	_
RP(5)		_	_	_	_	_	_
RP(9)		_	_	_	_	_	_
RP(P)	_	_	_	_	_	_	_
FP(W)		_	_	_		_	_
FP (k=10)			_	_		_	
FP (k=10000)							
Model frailty: l	log-Normal						
Cox	1.2525	0.1580	$0.4185 \ (0.0094)$	$0.0025 \ (0.0132)$	$0.8740 \ (0.0105)$	$0.1750 \ (0.0089)$	1000
Exp	1.1844	0.1599	$0.3914 \ (0.0088)$	-0.0656 (0.0124)	$0.8679 \ (0.0107)$	$0.1573 \ (0.0072)$	999
Weibull	1.1866	0.1612	$0.3942 \ (0.0088)$	-0.0634 (0.0125)	$0.8730 \ (0.0105)$	$0.1593 \ (0.0074)$	1000
Gompertz	1.1828	0.1597	$0.3838 \ (0.0129)$	-0.0672 (0.0182)	$0.8677 \ (0.0160)$	$0.1515 \ (0.0104)$	446
RP(3)	1.1833	0.1606	$0.3928 \ (0.0088)$	-0.0667 (0.0124)	$0.8720 \ (0.0106)$	$0.1586 \ (0.0073)$	1000
RP(5)	1.1835	0.1607	$0.3927 \ (0.0088)$	-0.0665 (0.0124)	$0.8720 \ (0.0106)$	$0.1585 \ (0.0073)$	1000
RP(9)	1.1837	0.1607	$0.3927 \ (0.0088)$	-0.0663 (0.0124)	$0.8720 \ (0.0106)$	$0.1585 \ (0.0073)$	1000
RP(P)	1.1853	0.1610	$0.3936 \ (0.0088)$	-0.0647 (0.0124)	$0.8730 \ (0.0105)$	$0.1590 \ (0.0074)$	1000
FP(W)	3.7079	2.7298	3.6575 (0.1016)	$2.4579 \ (0.1436)$	$0.6179 \ (0.0191)$	19.3977 (1.8523)	649
FP (k=10)	1.3801	0.2273	$0.5640 \ (0.0130)$	$0.1301 \ (0.0184)$	$0.9027 \ (0.0097)$	$0.3347 \ (0.0310)$	935
FP (k=10000)	1.2758	0.1841	0.4215 (0.0097)	$0.0258 \ (0.0137)$	0.9134 (0.0091)	0.1781 (0.0110)	947

Table 237: Simulation results for frailty variance, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						_
Cox	_	_	_	_	_	_	
Exp			_	_	_		
Weibull		_	_	_	_	_	
Gompertz	_	_	_	_	_	_	_
RP(3)	_	_	_	_	_	_	_
RP(5)		_	_	_	_		
RP(9)	_	_	_	_	_	_	_
RP(P)	_	_	_	_	_	_	_
FP(W)	_	_	_	_	_	_	
FP (k=10)	_		_	_	_		
FP (k=10000)	_		_	_	_	_	_
Model frailty: l	og-Normal						
Cox	1.2515	0.1716	$0.4266 \ (0.0095)$	$0.0015 \ (0.0135)$	$0.8650 \ (0.0108)$	$0.1818 \ (0.0098)$	1000
Exp	1.4900	0.2544	$0.5108 \ (0.0114)$	$0.2400 \ (0.0162)$	$0.9470 \ (0.0071)$	$0.3183 \ (0.0186)$	1000
Weibull	1.2094	0.1691	$0.4109 \ (0.0092)$	-0.0406 (0.0130)	$0.8780 \ (0.0103)$	$0.1703 \ (0.0086)$	1000
Gompertz	1.4398	0.2347	$0.4533 \ (0.0160)$	$0.1898 \; (0.0226)$	$0.9431 \ (0.0115)$	$0.2410 \ (0.0230)$	404
RP(3)	1.2015	0.1671	$0.4077 \ (0.0091)$	-0.0485 (0.0129)	$0.8750 \ (0.0105)$	$0.1684 \ (0.0083)$	1000
RP(5)	1.2012	0.1670	$0.4070 \ (0.0091)$	-0.0488 (0.0129)	$0.8750 \ (0.0105)$	$0.1678 \ (0.0083)$	1000
RP(9)	1.2012	0.1670	$0.4066 \ (0.0091)$	-0.0488 (0.0129)	$0.8750 \ (0.0105)$	$0.1676 \ (0.0083)$	1000
RP(P)	1.2018	0.1671	$0.4066 \ (0.0091)$	-0.0482 (0.0129)	$0.8760 \ (0.0104)$	$0.1675 \ (0.0083)$	1000
FP(W)	3.5032	2.6645	3.8025 (0.1022)	$2.2532 \ (0.1444)$	$0.6681 \ (0.0179)$	$19.5152 \ (2.2218)$	693
FP (k=10)	1.4213	0.2496	$0.6401 \ (0.0148)$	$0.1713 \ (0.0210)$	$0.8991 \ (0.0099)$	$0.4386 \ (0.0451)$	932
FP (k=10000)	1.3654	0.2138	$0.4759 \ (0.0108)$	$0.1154 \ (0.0153)$	$0.9180 \ (0.0088)$	$0.2396 \ (0.0147)$	964

Table 238: Simulation results for frailty variance, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Gompertz distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	_	_	_	_	_	_	_
Exp		_	_	_	_		
Weibull			_	_	_	_	_
Gompertz			_	_	_	_	_
RP(3)			_	_	_	_	_
RP(5)		_	_	_		_	_
RP(9)		_	_		_		
RP(P)	_	_	_	_	_	_	_
FP(W)	_	_	_	_	_	_	_
FP (k=10)			_	_			
FP (k=10000)							
Model frailty: l	log-Normal						
Cox	1.2541	0.1672	$0.4235 \ (0.0095)$	$0.0041 \ (0.0134)$	$0.8630 \ (0.0109)$	$0.1792 \ (0.0113)$	1000
Exp	0.9194	0.0973	0.3197 (0.0072)	-0.3306 (0.0101)	$0.6406 \ (0.0152)$	$0.2114 \ (0.0064)$	999
Weibull	1.1080	0.1403	$0.3738 \ (0.0084)$	-0.1420 (0.0118)	$0.8226 \ (0.0121)$	$0.1598 \ (0.0067)$	998
Gompertz	0.8736	0.0886	$0.3062 \ (0.0092)$	-0.3764 (0.0130)	$0.5722 \ (0.0210)$	$0.2353 \ (0.0084)$	554
RP(3)	1.1840	0.1595	$0.3901 \ (0.0087)$	-0.0660 (0.0123)	$0.8720 \ (0.0106)$	$0.1564 \ (0.0077)$	1000
RP(5)	1.1868	0.1603	$0.3909 \ (0.0087)$	-0.0632 (0.0124)	$0.8730 \ (0.0105)$	$0.1566 \ (0.0078)$	1000
RP(9)	1.1875	0.1605	$0.3910 \ (0.0087)$	-0.0625 (0.0124)	$0.8730 \ (0.0105)$	$0.1566 \ (0.0078)$	1000
RP(P)	1.1797	0.1585	$0.3899 \ (0.0087)$	-0.0703 (0.0123)	$0.8670 \ (0.0107)$	$0.1568 \ (0.0077)$	1000
FP(W)	3.4351	2.3713	$3.4349 \ (0.1024)$	$2.1851 \ (0.1446)$	$0.6383 \ (0.0202)$	$16.5522 \ (1.6936)$	564
FP (k=10)	1.3970	0.2359	$0.6132 \ (0.0144)$	$0.1470 \ (0.0204)$	$0.9013 \ (0.0099)$	$0.3972 \ (0.0507)$	902
FP (k=10000)	1.4277	0.2308	0.4992 (0.0116)	0.1777 (0.0164)	$0.9356 \ (0.0080)$	$0.2805 \ (0.0182)$	932

Table 239: Simulation results for frailty variance, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull-Weibull (1) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox	_	_	_	_	_	_	_
Exp		_	_	_		_	
Weibull		_	_	_		_	
Gompertz			_	_	_	_	_
RP(3)			_	_	_	_	_
RP(5)		_	_		_		
RP(9)		_	_		_		
RP(P)	_	_	_	_	_	_	_
FP(W)		_	_	_		_	_
FP (k=10)			_	_		_	
FP (k=10000)							
Model frailty: l	log-Normal						
Cox	1.2458	0.1659	$0.4082 \ (0.0091)$	-0.0042 (0.0129)	$0.8730 \ (0.0105)$	$0.1665 \ (0.0086)$	1000
Exp	0.7098	0.0585	$0.2427 \ (0.0054)$	-0.5402 (0.0077)	$0.3460 \ (0.0150)$	$0.3507 \ (0.0073)$	1000
Weibull	1.2663	0.1812	$0.4086 \ (0.0092)$	$0.0163 \ (0.0129)$	$0.9157 \ (0.0088)$	$0.1671 \ (0.0092)$	997
Gompertz	0.7781	0.0669	$0.1898 \ (0.0050)$	-0.4719 (0.0070)	$0.4718 \; (0.0185)$	$0.2587 \ (0.0059)$	727
RP(3)	1.1844	0.1597	$0.3887 \ (0.0087)$	-0.0656 (0.0123)	$0.8790 \ (0.0103)$	$0.1553 \ (0.0075)$	1000
RP(5)	1.1848	0.1598	$0.3894 \ (0.0087)$	-0.0652 (0.0123)	$0.8770 \ (0.0104)$	$0.1557 \ (0.0075)$	1000
RP(9)	1.1858	0.1601	$0.3897 \ (0.0087)$	-0.0642 (0.0123)	$0.8780 \ (0.0103)$	$0.1559 \ (0.0075)$	1000
RP(P)	1.1856	0.1600	$0.3892 \ (0.0087)$	-0.0644 (0.0123)	$0.8790 \ (0.0103)$	$0.1554 \ (0.0075)$	1000
FP(W)	3.7818	2.6612	3.5561 (0.1081)	$2.5318 \ (0.1527)$	$0.5959 \ (0.0211)$	$19.0330 \ (2.0449)$	542
FP (k=10)	1.3671	0.2187	$0.5337 \ (0.0125)$	$0.1171 \ (0.0176)$	$0.9064 \ (0.0096)$	$0.2983 \ (0.0272)$	919
FP (k=10000)	2.0638	0.4992	0.8429 (0.0196)	0.8138 (0.0277)	$0.9150 \ (0.0092)$	$1.3720 \ (0.1033)$	929

Table 240: Simulation results for frailty variance, scenario with 20 clusters of 150 individuals each. The true frailty follows a log-Normal distribution with a variance of 1.25, and the true baseline hazard follows follows a Weibull-Weibull (2) distribution. Values in red are values where 95% confidence intervals for bias and coverage based on Monte Carlo standard errors did not include the value 0 or 95%, respectively.

Mod. baseline	Avg. Estimate	Avg. SE	Emp. SE	Bias	Coverage	MSE	N. Converged
Model frailty: 0	Gamma						
Cox		_	_		_		
Exp		_	_	_	_	_	
Weibull		_					
Gompertz		_					
RP(3)		_					
RP(5)		_					
RP(9)		_					
RP(P)		_					
FP(W)		_					
FP (k=10)	_	_		_	_	_	
FP (k=10000)	_	_	_	_	_	_	
Model frailty: l	log-Normal						
Cox	1.2682	0.1693	$0.4567 \ (0.0102)$	$0.0182 \ (0.0144)$	$0.8659 \ (0.0108)$	$0.2087 \ (0.0196)$	999
Exp	1.3306	0.2030	$0.4546 \ (0.0102)$	$0.0806 \ (0.0144)$	$0.9178 \ (0.0087)$	$0.2129 \ (0.0122)$	997
Weibull	1.2072	0.1680	$0.4107 \ (0.0092)$	-0.0428 (0.0130)	$0.8808 \; (0.0103)$	$0.1703 \ (0.0087)$	998
Gompertz	1.2996	0.1935	$0.4365 \ (0.0157)$	$0.0496 \ (0.0222)$	$0.8990 \ (0.0153)$	$0.1925 \ (0.0158)$	386
RP(3)	1.2075	0.1688	$0.4160 \ (0.0093)$	-0.0425 (0.0132)	$0.8800 \ (0.0103)$	0.1747 (0.0089)	1000
RP(5)	1.2075	0.1687	$0.4154 \ (0.0093)$	-0.0425 (0.0131)	$0.8810 \ (0.0102)$	0.1742 (0.0088)	1000
RP(9)	1.2077	0.1688	$0.4154 \ (0.0093)$	-0.0423 (0.0131)	0.8810 (0.0102)	$0.1742 \ (0.0088)$	1000
RP(P)	1.2081	0.1689	$0.4155 \ (0.0093)$	-0.0419 (0.0131)	0.8810 (0.0102)	$0.1742 \ (0.0089)$	1000
FP (W)	3.5658	2.5378	$3.5329 \ (0.0959)$	$2.3158 \ (0.1355)$	$0.6324 \ (0.0185)$	17.8256 (1.8802)	680
FP (k=10)	1.4164	0.2440	0.6141 (0.0143)	$0.1664 \ (0.0201)$	$0.8999 \ (0.0098)$	$0.4044 \ (0.0380)$	929
FP (k=10000)	1.2707	0.1857	$0.4477 \ (0.0102)$	$0.0207 \ (0.0144)$	$0.8845 \ (0.0103)$	$0.2006 \ (0.0134)$	961