$12a_{0199} (K12a_{0199})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -1.05186 \times 10^{25}u^{29} - 1.43266 \times 10^{24}u^{28} + \dots + 3.83777 \times 10^{26}b + 2.01209 \times 10^{26},$$

$$1.20840 \times 10^{25}u^{29} + 2.78546 \times 10^{25}u^{28} + \dots + 3.83777 \times 10^{26}a - 1.47083 \times 10^{27}, \ u^{30} + u^{29} + \dots - 136u + I_2^u = \langle 8301956774068u^{47}a - 1716498814000922u^{47} + \dots - 18605403975840a + 3278970716047515,$$

$$24902419266u^{47}a + 25380336871u^{47} + \dots + 44502374232a - 179167125090,$$

$$u^{48} - 2u^{47} + \dots + 16u^2 + 1 \rangle$$

$$I_2^u = \langle 2au + b - a, \ 4a^2 - 2au + u + 1, \ u^2 + u + 1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 130 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -1.05 \times 10^{25} u^{29} - 1.43 \times 10^{24} u^{28} + \cdots + 3.84 \times 10^{26} b + 2.01 \times 10^{26}, \ 1.21 \times 10^{25} u^{29} + 2.79 \times 10^{25} u^{28} + \cdots + 3.84 \times 10^{26} a - 1.47 \times 10^{27}, \ u^{30} + u^{29} + \cdots - 136 u + 16 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.0314870u^{29} - 0.0725802u^{28} + \dots - 3.16309u + 3.83250 \\ 0.0274082u^{29} + 0.00373306u^{28} + \dots + 1.51313u - 0.524287 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.00441977u^{29} + 0.0255666u^{28} + \dots - 0.244085u - 1.67888 \\ -0.0228435u^{29} + 0.0213127u^{28} + \dots - 5.26346u + 0.973918 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.00435453u^{29} + 0.00268953u^{28} + \dots + 1.16324u + 0.264419 \\ -0.00450085u^{29} - 0.00348346u^{28} + \dots + 1.15275u - 0.0963126 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.0381470u^{29} - 0.0678968u^{28} + \dots + 1.73655u + 3.55381 \\ 0.0207481u^{29} + 0.00841644u^{28} + \dots + 2.93967u - 0.802977 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.0397231u^{29} - 0.0645166u^{28} + \dots - 4.17765u + 2.94412 \\ -0.00367619u^{29} - 0.0461053u^{28} + \dots + 1.65856u - 0.467412 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.0204362u^{29} - 0.05555509u^{28} + \dots - 0.715574u + 3.27528 \\ 0.0267068u^{29} - 0.0127292u^{28} + \dots + 6.08279u - 1.17219 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.0286036u^{29} - 0.0437086u^{28} + \dots - 2.32665u + 2.99514 \\ -0.00925796u^{29} - 0.0455321u^{28} + \dots + 3.42484u - 0.697592 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-\frac{12790684592978423102182111}{95944166907326703898487264}u^{29} + \frac{24283871709880963319867825}{95944166907326703898487264}u^{28} + \dots \frac{443477214659957979551419763}{11993020863415837987310908}u \frac{42761849795147821338360495}{5996510431707918993655454}$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{30} + 11u^{29} + \dots - 12320u + 256$
c_2, c_5	$u^{30} - u^{29} + \dots + 136u + 16$
c_3, c_4	$16(16u^{30} - 24u^{29} + \dots + u + 1)$
c_6, c_7, c_9 c_{12}	$u^{30} - 2u^{29} + \dots + 3u - 1$
<i>c</i> ₈	$u^{30} + 5u^{29} + \dots - 9216u - 1024$
c_{10}, c_{11}	$u^{30} + 16u^{29} + \dots + 9u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{30} + 15y^{29} + \dots - 173031936y + 65536$
c_2, c_5	$y^{30} + 11y^{29} + \dots - 12320y + 256$
c_3, c_4	$256(256y^{30} + 2752y^{29} + \dots + y + 1)$
c_6, c_7, c_9 c_{12}	$y^{30} - 16y^{29} + \dots - 9y + 1$
<i>c</i> ₈	$y^{30} + 5y^{29} + \dots + 21626880y + 1048576$
c_{10}, c_{11}	$y^{30} - 48y^{28} + \dots + 87y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.513843 + 0.871891I		
a = -0.446146 - 0.725334I	-8.85186 + 2.07542I	33.6724 - 61.7857I
b = 0.38934 - 2.10569I		
u = 0.513843 - 0.871891I		
a = -0.446146 + 0.725334I	-8.85186 - 2.07542I	33.6724 + 61.7857I
b = 0.38934 + 2.10569I		
u = -0.355475 + 0.904157I		
a = 0.411047 - 0.455694I	-0.39684 - 1.65663I	-3.61734 + 2.59404I
b = 0.035443 - 0.584835I		
u = -0.355475 - 0.904157I		
a = 0.411047 + 0.455694I	-0.39684 + 1.65663I	-3.61734 - 2.59404I
b = 0.035443 + 0.584835I		
u = 0.886842 + 0.643141I		
a = 0.108219 + 0.207785I	7.28214 - 1.89713I	-1.79602 - 0.99400I
b = 0.056684 - 0.750111I		
u = 0.886842 - 0.643141I		
a = 0.108219 - 0.207785I	7.28214 + 1.89713I	-1.79602 + 0.99400I
b = 0.056684 + 0.750111I		
u = -0.270910 + 1.074590I		
a = -1.07328 + 1.52289I	-3.48392 - 0.63227I	-16.5794 + 0.3609I
b = -0.72130 + 2.24404I		
u = -0.270910 - 1.074590I		
a = -1.07328 - 1.52289I	-3.48392 + 0.63227I	-16.5794 - 0.3609I
b = -0.72130 - 2.24404I		
u = 0.989431 + 0.528893I		
a = 2.04634 - 0.16797I	4.1464 - 13.5352I	-6.25412 + 8.07209I
b = 0.906269 - 0.257371I		
u = 0.989431 - 0.528893I		
a = 2.04634 + 0.16797I	4.1464 + 13.5352I	-6.25412 - 8.07209I
b = 0.906269 + 0.257371I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.333835 + 1.072850I		
a = 0.15424 - 1.54650I	-8.69259 + 3.42736I	-19.7102 - 3.7396I
b = 0.33154 - 2.61604I		
u = 0.333835 - 1.072850I		
a = 0.15424 + 1.54650I	-8.69259 - 3.42736I	-19.7102 + 3.7396I
b = 0.33154 + 2.61604I		
u = -0.369336 + 1.114300I		
a = 0.386505 - 0.563344I	-0.33657 - 1.57944I	-6.03935 + 1.36982I
b = -0.127883 - 0.862401I		
u = -0.369336 - 1.114300I		
a = 0.386505 + 0.563344I	-0.33657 + 1.57944I	-6.03935 - 1.36982I
b = -0.127883 + 0.862401I		
u = -1.146190 + 0.299068I		
a = 1.55316 + 0.09412I	4.59032 + 3.09332I	1.17313 - 4.12974I
b = 0.749359 + 0.445987I		
u = -1.146190 - 0.299068I		
a = 1.55316 - 0.09412I	4.59032 - 3.09332I	1.17313 + 4.12974I
b = 0.749359 - 0.445987I		
u = 0.727436 + 1.053530I		
a = -0.047464 + 0.176285I	6.01261 + 7.86778I	-3.60910 - 3.95992I
b = 0.776365 + 0.265918I		
u = 0.727436 - 1.053530I		
a = -0.047464 - 0.176285I	6.01261 - 7.86778I	-3.60910 + 3.95992I
b = 0.776365 - 0.265918I		
u = -1.136890 + 0.641709I		
a = -0.623817 + 0.518365I	4.21761 - 6.91864I	-0.34998 + 9.53979I
b = -0.279528 + 1.274650I		
u = -1.136890 - 0.641709I		
a = -0.623817 - 0.518365I	4.21761 + 6.91864I	-0.34998 - 9.53979I
b = -0.279528 - 1.274650I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.720787 + 1.140920I		
a = -0.21243 + 2.06553I	2.2432 + 19.7483I	-8.5481 - 11.6447I
b = -0.22299 + 3.04110I		
u = 0.720787 - 1.140920I		
a = -0.21243 - 2.06553I	2.2432 - 19.7483I	-8.5481 + 11.6447I
b = -0.22299 - 3.04110I		
u = 0.646093		
a = -1.97921	-5.53280	-15.4870
b = -0.298708		
u = -0.901122 + 1.028260I		
a = -0.918924 - 0.071187I	3.03751 - 0.25657I	-1.246747 + 0.314424I
b = -0.226436 + 0.036666I		
u = -0.901122 - 1.028260I		
a = -0.918924 + 0.071187I	3.03751 + 0.25657I	-1.246747 - 0.314424I
b = -0.226436 - 0.036666I		
u = -0.095565 + 1.384150I		
a = 0.39805 + 1.76502I	-3.39765 - 10.83270I	-11.6079 + 10.7508I
b = 0.02520 + 2.54016I		
u = -0.095565 - 1.384150I		
a = 0.39805 - 1.76502I	-3.39765 + 10.83270I	-11.6079 - 10.7508I
b = 0.02520 - 2.54016I		
u = -0.78951 + 1.26116I		
a = -0.08887 - 1.76517I	1.73617 - 9.98872I	-5.29929 + 12.58752I
b = -0.07406 - 2.52275I		
u = -0.78951 - 1.26116I		
a = -0.08887 + 1.76517I	1.73617 + 9.98872I	-5.29929 - 12.58752I
b = -0.07406 + 2.52275I		
u = 0.139554		
a = 3.43594	-0.810611	-12.3890
b = -0.437309		

$$\begin{array}{c} \text{II. } I_2^u = \langle 8.30 \times 10^{12} a u^{47} - 1.72 \times 10^{15} u^{47} + \cdots - 1.86 \times 10^{13} a + 3.28 \times \\ 10^{15}, \ 2.49 \times 10^{10} a u^{47} + 2.54 \times 10^{10} u^{47} + \cdots + 4.45 \times 10^{10} a - 1.79 \times \\ 10^{11}, \ u^{48} - 2 u^{47} + \cdots + 16 u^2 + 1 \rangle \end{array}$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.00768508au^{47} + 1.58895u^{47} + \dots + 0.0172229a - 3.03533 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.913597au^{47} - 1.12318u^{47} + \dots - 3.05186a - 4.32727 \\ 1.69606au^{47} - 2.47177u^{47} + \dots + 1.67376a + 0.0264682 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.895600au^{47} + 1.48267u^{47} + \dots + 1.88285a + 10.0601 \\ -0.805141au^{47} + 0.416548u^{47} + \dots - 0.739690a + 0.986881 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.222411au^{47} + 0.533718u^{47} + \dots + 1.07881a - 1.01638 \\ 0.214726au^{47} + 2.12267u^{47} + \dots + 0.0960309a - 4.05170 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 2.20533au^{47} - 1.56856u^{47} + \dots - 4.28442a - 7.99229 \\ 2.65700au^{47} - 0.108542u^{47} + \dots - 0.172526a - 3.38343 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.391848au^{47} + 0.489312u^{47} + \dots + 0.237285a - 5.57041 \\ 0.391848au^{47} + 2.93394u^{47} + \dots + 0.237285a - 4.59756 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1.89258au^{47} - 1.52697u^{47} + \dots - 0.347615a - 7.31396 \\ -1.43205au^{47} + 1.08570u^{47} + \dots + 2.37872a - 4.96729 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{17136040638}{3523750753}u^{47} + \frac{40416089808}{3523750753}u^{46} + \dots - \frac{10188595612}{3523750753}u - \frac{39541667460}{3523750753}u^{46} + \dots$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u^{48} + 18u^{47} + \dots + 32u + 1)^2$
c_{2}, c_{5}	$(u^{48} + 2u^{47} + \dots + 16u^2 + 1)^2$
c_3, c_4	$u^{96} - 9u^{95} + \dots + 130810298u + 122183483$
c_6, c_7, c_9 c_{12}	$u^{96} + 5u^{95} + \dots + 2u + 1$
c ₈	$(u^{48} - 2u^{47} + \dots + 2u + 1)^2$
c_{10}, c_{11}	$u^{96} + 37u^{95} + \dots + 408u^3 + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$(y^{48} + 26y^{47} + \dots - 264y + 1)^2$
c_2, c_5	$(y^{48} + 18y^{47} + \dots + 32y + 1)^2$
c_3, c_4	$y^{96} + 47y^{95} + \dots + 239047203594444768y + 14928803518011289$
c_6, c_7, c_9 c_{12}	$y^{96} - 37y^{95} + \dots - 408y^3 + 1$
c ₈	$(y^{48} + 10y^{47} + \dots + 20y + 1)^2$
c_{10}, c_{11}	$y^{96} + 43y^{95} + \dots + 2144y^2 + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.484781 + 0.850953I		
a = -3.37504 + 5.83345I	-0.02738 - 1.96363I	2.8944 + 51.2708I
b = -3.33055 + 4.82375I		
u = -0.484781 + 0.850953I		
a = 0.20739 - 7.60050I	-0.02738 - 1.96363I	2.8944 + 51.2708I
b = -0.64315 - 8.14498I		
u = -0.484781 - 0.850953I		
a = -3.37504 - 5.83345I	-0.02738 + 1.96363I	2.8944 - 51.2708I
b = -3.33055 - 4.82375I		
u = -0.484781 - 0.850953I		
a = 0.20739 + 7.60050I	-0.02738 + 1.96363I	2.8944 - 51.2708I
b = -0.64315 + 8.14498I		
u = 0.097067 + 1.022650I		
a = -0.406779 + 0.448418I	-3.99758 + 0.49161I	-13.81533 - 0.65955I
b = 0.253041 + 0.768046I		
u = 0.097067 + 1.022650I		
a = -0.72794 + 1.49597I	-3.99758 + 0.49161I	-13.81533 - 0.65955I
b = -0.61571 + 2.57000I		
u = 0.097067 - 1.022650I		
a = -0.406779 - 0.448418I	-3.99758 - 0.49161I	-13.81533 + 0.65955I
b = 0.253041 - 0.768046I		
u = 0.097067 - 1.022650I		
a = -0.72794 - 1.49597I	-3.99758 - 0.49161I	-13.81533 + 0.65955I
b = -0.61571 - 2.57000I		
u = 0.716038 + 0.740578I		
a = -1.58024 + 0.04054I	4.67401 - 3.43632I	-1.94110 + 3.09138I
b = -0.327130 - 0.220538I		
u = 0.716038 + 0.740578I		
a = 0.292211 - 0.016004I	4.67401 - 3.43632I	-1.94110 + 3.09138I
b = -0.626333 - 0.371523I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.716038 - 0.740578I		
a = -1.58024 - 0.04054I	4.67401 + 3.43632I	-1.94110 - 3.09138I
b = -0.327130 + 0.220538I		
u = 0.716038 - 0.740578I		
a = 0.292211 + 0.016004I	4.67401 + 3.43632I	-1.94110 - 3.09138I
b = -0.626333 + 0.371523I		
u = -0.685446 + 0.778575I		
a = -0.298304 - 0.757635I	1.43924 - 0.31691I	-6.77030 + 0.34002I
b = -0.444479 - 0.452774I		
u = -0.685446 + 0.778575I		
a = -1.15899 - 1.04942I	1.43924 - 0.31691I	-6.77030 + 0.34002I
b = -0.234179 - 0.846072I		
u = -0.685446 - 0.778575I		
a = -0.298304 + 0.757635I	1.43924 + 0.31691I	-6.77030 - 0.34002I
b = -0.444479 + 0.452774I		
u = -0.685446 - 0.778575I		
a = -1.15899 + 1.04942I	1.43924 + 0.31691I	-6.77030 - 0.34002I
b = -0.234179 + 0.846072I		
u = 0.636609 + 0.849934I		
a = 0.078084 + 1.162150I	2.20823 + 2.48736I	-1.52867 - 3.91872I
b = -0.09338 + 2.45454I		
u = 0.636609 + 0.849934I		
a = 1.311060 + 0.127836I	2.20823 + 2.48736I	-1.52867 - 3.91872I
b = 0.091787 + 0.556421I		
u = 0.636609 - 0.849934I		
a = 0.078084 - 1.162150I	2.20823 - 2.48736I	-1.52867 + 3.91872I
b = -0.09338 - 2.45454I		
u = 0.636609 - 0.849934I		
a = 1.311060 - 0.127836I	2.20823 - 2.48736I	-1.52867 + 3.91872I
b = 0.091787 - 0.556421I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.936905 + 0.579477I		
a = -0.055387 - 0.251475I	5.72343 - 7.74189I	-4.00692 + 3.57032I
b = -0.074157 + 0.690139I		
u = 0.936905 + 0.579477I		
a = -1.97766 + 0.12581I	5.72343 - 7.74189I	-4.00692 + 3.57032I
b = -0.810338 + 0.148751I		
u = 0.936905 - 0.579477I		
a = -0.055387 + 0.251475I	5.72343 + 7.74189I	-4.00692 - 3.57032I
b = -0.074157 - 0.690139I		
u = 0.936905 - 0.579477I		
a = -1.97766 - 0.12581I	5.72343 + 7.74189I	-4.00692 - 3.57032I
b = -0.810338 - 0.148751I		
u = 0.717956 + 0.851849I		
a = 0.251023 - 0.019875I	6.27413 + 2.73487I	0 3.17064I
b = -0.076809 - 0.959910I		
u = 0.717956 + 0.851849I		
a = -0.220056 + 0.082656I	6.27413 + 2.73487I	0 3.17064I
b = 0.693660 + 0.338468I		
u = 0.717956 - 0.851849I		
a = 0.251023 + 0.019875I	6.27413 - 2.73487I	0. + 3.17064I
b = -0.076809 + 0.959910I		
u = 0.717956 - 0.851849I		
a = -0.220056 - 0.082656I	6.27413 - 2.73487I	0. + 3.17064I
b = 0.693660 - 0.338468I		
u = -0.684569 + 0.885432I		
a = 0.497504 + 0.678613I	1.11254 - 4.96052I	-8.00000 + 5.40900I
b = 0.594605 + 0.365341I		
u = -0.684569 + 0.885432I		
a = 1.10653 + 0.94980I	1.11254 - 4.96052I	-8.00000 + 5.40900I
b = 1.18189 + 1.90242I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.684569 - 0.885432I		
a = 0.497504 - 0.678613I	1.11254 + 4.96052I	-8.00000 - 5.40900I
b = 0.594605 - 0.365341I		
u = -0.684569 - 0.885432I		
a = 1.10653 - 0.94980I	1.11254 + 4.96052I	-8.00000 - 5.40900I
b = 1.18189 - 1.90242I		
u = -0.420414 + 0.772149I		
a = 3.55803 + 1.71143I	-0.14530 + 2.51169I	-9.91381 + 1.94946I
b = 2.51087 + 1.16971I		
u = -0.420414 + 0.772149I		
a = -2.15258 + 3.37249I	-0.14530 + 2.51169I	-9.91381 + 1.94946I
b = -1.24231 + 4.05910I		
u = -0.420414 - 0.772149I		
a = 3.55803 - 1.71143I	-0.14530 - 2.51169I	-9.91381 - 1.94946I
b = 2.51087 - 1.16971I		
u = -0.420414 - 0.772149I		
a = -2.15258 - 3.37249I	-0.14530 - 2.51169I	-9.91381 - 1.94946I
b = -1.24231 - 4.05910I		
u = 0.733465 + 0.467600I		
a = -1.65111 - 0.38305I	-0.96653 - 6.30841I	-9.45390 + 5.38910I
b = -0.445586 - 1.014770I		
u = 0.733465 + 0.467600I		
a = 1.86018 - 0.33304I	-0.96653 - 6.30841I	-9.45390 + 5.38910I
b = 0.410288 - 0.363694I		
u = 0.733465 - 0.467600I		
a = -1.65111 + 0.38305I	-0.96653 + 6.30841I	-9.45390 - 5.38910I
b = -0.445586 + 1.014770I		
u = 0.733465 - 0.467600I		
a = 1.86018 + 0.33304I	-0.96653 + 6.30841I	-9.45390 - 5.38910I
b = 0.410288 + 0.363694I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.605495 + 0.621445I		
a = 1.241810 + 0.446110I	0.278716 - 0.472036I	-6.31074 + 2.15424I
b = 0.123749 + 1.329770I		
u = 0.605495 + 0.621445I		
a = -0.463331 - 0.287948I	0.278716 - 0.472036I	-6.31074 + 2.15424I
b = -0.267791 + 0.963683I		
u = 0.605495 - 0.621445I		
a = 1.241810 - 0.446110I	0.278716 + 0.472036I	-6.31074 - 2.15424I
b = 0.123749 - 1.329770I		
u = 0.605495 - 0.621445I		
a = -0.463331 + 0.287948I	0.278716 + 0.472036I	-6.31074 - 2.15424I
b = -0.267791 - 0.963683I		
u = -0.490818 + 1.023000I		
a = 0.994900 - 0.202633I	-0.41863 - 1.44578I	-8.00000 - 1.12617I
b = 0.826814 - 0.594067I		
u = -0.490818 + 1.023000I		
a = -0.116576 - 0.595943I	-0.41863 - 1.44578I	-8.00000 - 1.12617I
b = -0.743474 - 0.981271I		
u = -0.490818 - 1.023000I		
a = 0.994900 + 0.202633I	-0.41863 + 1.44578I	-8.00000 + 1.12617I
b = 0.826814 + 0.594067I		
u = -0.490818 - 1.023000I		
a = -0.116576 + 0.595943I	-0.41863 + 1.44578I	-8.00000 + 1.12617I
b = -0.743474 + 0.981271I		
u = 0.679611 + 0.941578I		
a = 0.01271 - 1.46261I	4.06736 + 8.78436I	-3.69204 - 9.06876I
b = 0.11344 - 2.62787I		
u = 0.679611 + 0.941578I		
a = -0.239559 + 0.117695I	4.06736 + 8.78436I	-3.69204 - 9.06876I
b = 0.175598 + 0.973145I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.679611 - 0.941578I		
a = 0.01271 + 1.46261I	4.06736 - 8.78436I	-3.69204 + 9.06876I
b = 0.11344 + 2.62787I		
u = 0.679611 - 0.941578I		
a = -0.239559 - 0.117695I	4.06736 - 8.78436I	-3.69204 + 9.06876I
b = 0.175598 - 0.973145I		
u = 0.618516 + 0.996648I		
a = 0.70483 + 1.36867I	-0.83388 + 5.37086I	-8.00000 - 6.82742I
b = 0.13252 + 2.33095I		
u = 0.618516 + 0.996648I		
a = 0.155618 - 0.259413I	-0.83388 + 5.37086I	-8.00000 - 6.82742I
b = -0.791151 - 0.314501I		
u = 0.618516 - 0.996648I		
a = 0.70483 - 1.36867I	-0.83388 - 5.37086I	-8.00000 + 6.82742I
b = 0.13252 - 2.33095I		
u = 0.618516 - 0.996648I		
a = 0.155618 + 0.259413I	-0.83388 - 5.37086I	-8.00000 + 6.82742I
b = -0.791151 + 0.314501I		
u = 0.092633 + 1.183130I		
a = 0.407430 + 1.310510I	-6.20332 - 4.21770I	-16.5470 + 3.6832I
b = -0.13398 + 2.18038I		
u = 0.092633 + 1.183130I		
a = 0.70859 - 1.82338I	-6.20332 - 4.21770I	-16.5470 + 3.6832I
b = 0.66013 - 2.74184I		
u = 0.092633 - 1.183130I		
a = 0.407430 - 1.310510I	-6.20332 + 4.21770I	-16.5470 - 3.6832I
b = -0.13398 - 2.18038I		
u = 0.092633 - 1.183130I		
a = 0.70859 + 1.82338I	-6.20332 + 4.21770I	-16.5470 - 3.6832I
b = 0.66013 + 2.74184I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.453428 + 1.117910I		
a = -1.45632 + 0.78848I	-1.33452 - 5.77158I	-8.00000 + 6.31105I
b = -1.23263 + 1.33171I		
u = -0.453428 + 1.117910I		
a = -0.19465 - 2.16584I	-1.33452 - 5.77158I	-8.00000 + 6.31105I
b = -0.06297 - 3.08092I		
u = -0.453428 - 1.117910I		
a = -1.45632 - 0.78848I	-1.33452 + 5.77158I	-8.00000 - 6.31105I
b = -1.23263 - 1.33171I		
u = -0.453428 - 1.117910I		
a = -0.19465 + 2.16584I	-1.33452 + 5.77158I	-8.00000 - 6.31105I
b = -0.06297 + 3.08092I		
u = -1.140860 + 0.475100I		
a = 0.830481 - 0.288484I	4.44182 - 1.91664I	0
b = 0.383709 - 1.036000I		
u = -1.140860 + 0.475100I		
a = -1.53836 - 0.13415I	4.44182 - 1.91664I	0
b = -0.738598 - 0.364252I		
u = -1.140860 - 0.475100I		
a = 0.830481 + 0.288484I	4.44182 + 1.91664I	0
b = 0.383709 + 1.036000I		
u = -1.140860 - 0.475100I		
a = -1.53836 + 0.13415I	4.44182 + 1.91664I	0
b = -0.738598 + 0.364252I		
u = 0.628445 + 1.067610I		
a = -0.68712 - 1.58177I	-2.68228 + 11.51390I	0
b = -0.18687 - 2.48633I		
u = 0.628445 + 1.067610I		
a = -0.37642 + 1.72589I	-2.68228 + 11.51390I	0
b = -0.34089 + 2.80245I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.628445 - 1.067610I		
a = -0.68712 + 1.58177I	-2.68228 - 11.51390I	0
b = -0.18687 + 2.48633I		
u = 0.628445 - 1.067610I		
a = -0.37642 - 1.72589I	-2.68228 - 11.51390I	0
b = -0.34089 - 2.80245I		
u = -0.178050 + 1.254860I		
a = -0.395666 + 0.536799I	-1.79384 - 6.04938I	0
b = 0.133593 + 0.820738I		
u = -0.178050 + 1.254860I		
a = -0.18971 - 1.75408I	-1.79384 - 6.04938I	0
b = 0.14118 - 2.61617I		
u = -0.178050 - 1.254860I		
a = -0.395666 - 0.536799I	-1.79384 + 6.04938I	0
b = 0.133593 - 0.820738I		
u = -0.178050 - 1.254860I		
a = -0.18971 + 1.75408I	-1.79384 + 6.04938I	0
b = 0.14118 + 2.61617I		
u = 0.722062 + 1.101140I		
a = 0.004104 - 0.197466I	4.1071 + 13.8241I	0
b = -0.795178 - 0.256311I		
u = 0.722062 + 1.101140I		
a = 0.15676 - 1.95744I	4.1071 + 13.8241I	0
b = 0.18592 - 2.96149I		
u = 0.722062 - 1.101140I		
a = 0.004104 + 0.197466I	4.1071 - 13.8241I	0
b = -0.795178 + 0.256311I		
u = 0.722062 - 1.101140I		
a = 0.15676 + 1.95744I	4.1071 - 13.8241I	0
b = 0.18592 + 2.96149I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.197836 + 0.635066I		
a = 1.62396 - 0.06057I	-0.31620 - 5.25869I	-10.26177 + 8.82936I
b = 1.78812 - 1.67082I		
u = -0.197836 + 0.635066I		
a = 0.43158 - 2.15416I	-0.31620 - 5.25869I	-10.26177 + 8.82936I
b = -0.109316 - 0.694850I		
u = -0.197836 - 0.635066I		
a = 1.62396 + 0.06057I	-0.31620 + 5.25869I	-10.26177 - 8.82936I
b = 1.78812 + 1.67082I		
u = -0.197836 - 0.635066I		
a = 0.43158 + 2.15416I	-0.31620 + 5.25869I	-10.26177 - 8.82936I
b = -0.109316 + 0.694850I		
u = -0.597205 + 0.122097I		
a = 0.047679 - 1.266580I	1.90373 - 2.42418I	-2.94951 + 3.72567I
b = -0.062307 - 0.611788I		
u = -0.597205 + 0.122097I		
a = 1.53323 + 1.07170I	1.90373 - 2.42418I	-2.94951 + 3.72567I
b = 0.385306 - 0.194369I		
u = -0.597205 - 0.122097I		
a = 0.047679 + 1.266580I	1.90373 + 2.42418I	-2.94951 - 3.72567I
b = -0.062307 + 0.611788I		
u = -0.597205 - 0.122097I		
a = 1.53323 - 1.07170I	1.90373 + 2.42418I	-2.94951 - 3.72567I
b = 0.385306 + 0.194369I		
u = -0.84747 + 1.14529I		
a = 0.784607 - 0.096523I	2.44671 - 5.11859I	0
b = 0.142080 - 0.240249I		
u = -0.84747 + 1.14529I		
a = 0.11082 + 1.54830I	2.44671 - 5.11859I	0
b = 0.15082 + 2.32934I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.84747 - 1.14529I		
a = 0.784607 + 0.096523I	2.44671 + 5.11859I	0
b = 0.142080 + 0.240249I		
u = -0.84747 - 1.14529I		
a = 0.11082 - 1.54830I	2.44671 + 5.11859I	0
b = 0.15082 - 2.32934I		
u = -0.003925 + 0.294268I		
a = -0.09066 - 2.76849I	-0.218311 - 0.283540I	-10.30249 + 1.71239I
b = -1.231110 + 0.466867I		
u = -0.003925 + 0.294268I		
a = -3.05863 - 2.20591I	-0.218311 - 0.283540I	-10.30249 + 1.71239I
b = -0.918738 + 0.418014I		
u = -0.003925 - 0.294268I		
a = -0.09066 + 2.76849I	-0.218311 + 0.283540I	-10.30249 - 1.71239I
b = -1.231110 - 0.466867I		
u = -0.003925 - 0.294268I		
a = -3.05863 + 2.20591I	-0.218311 + 0.283540I	-10.30249 - 1.71239I
b = -0.918738 - 0.418014I		

III.
$$I_3^u = \langle 2au + b - a, 4a^2 - 2au + u + 1, u^2 + u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -2au+a \\ -2au+a \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -a+\frac{1}{2}u \\ 2au-a-\frac{1}{2}u-1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{1}{2}au+\frac{1}{2}a+\frac{1}{2} \\ \frac{1}{2}au-\frac{1}{2}a+u+\frac{1}{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -a \\ -2au-a \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 3a+\frac{1}{2}u \\ 2au+3a-\frac{1}{2}u-1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -a \\ -2au-a \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} a-\frac{1}{2}u \\ 2au+a-\frac{3}{2}u-1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $64au 4a \frac{51}{4}u 30$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1,c_5	$(u^2 - u + 1)^2$
c_2	$(u^2+u+1)^2$
c_3	$16(16u^4 + 8u^3 + 8u^2 - 2u + 1)$
c_4	$16(16u^4 - 8u^3 + 8u^2 + 2u + 1)$
c_{6}, c_{7}	$(u^2+u-1)^2$
c_8	u^4
c_9, c_{12}	$(u^2 - u - 1)^2$
c_{10}	$(u^2 + 3u + 1)^2$
c_{11}	$(u^2 - 3u + 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5	$(y^2 + y + 1)^2$
c_3, c_4	$256(256y^4 + 192y^3 + 128y^2 + 12y + 1)$
c_6, c_7, c_9 c_{12}	$(y^2 - 3y + 1)^2$
c_8	y^4
c_{10}, c_{11}	$(y^2 - 7y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = -0.404508 + 0.700629I	-8.88264 - 2.02988I	-47.8955 - 58.6846I
b = 0.40451 + 2.10189I		
u = -0.500000 + 0.866025I		
a = 0.154508 - 0.267617I	-0.98696 - 2.02988I	-14.3545 + 7.1561I
b = -0.154508 - 0.802850I		
u = -0.500000 - 0.866025I		
a = -0.404508 - 0.700629I	-8.88264 + 2.02988I	-47.8955 + 58.6846I
b = 0.40451 - 2.10189I		
u = -0.500000 - 0.866025I		
a = 0.154508 + 0.267617I	-0.98696 + 2.02988I	-14.3545 - 7.1561I
b = -0.154508 + 0.802850I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^{2} - u + 1)^{2})(u^{30} + 11u^{29} + \dots - 12320u + 256)$ $\cdot (u^{48} + 18u^{47} + \dots + 32u + 1)^{2}$
c_2	$((u^{2} + u + 1)^{2})(u^{30} - u^{29} + \dots + 136u + 16)$ $\cdot (u^{48} + 2u^{47} + \dots + 16u^{2} + 1)^{2}$
c_3	$256(16u^{4} + 8u^{3} + \dots - 2u + 1)(16u^{30} - 24u^{29} + \dots + u + 1)$ $\cdot (u^{96} - 9u^{95} + \dots + 130810298u + 122183483)$
c_4	$256(16u^4 - 8u^3 + \dots + 2u + 1)(16u^{30} - 24u^{29} + \dots + u + 1)$ $\cdot (u^{96} - 9u^{95} + \dots + 130810298u + 122183483)$
c_5	$((u^{2} - u + 1)^{2})(u^{30} - u^{29} + \dots + 136u + 16)$ $\cdot (u^{48} + 2u^{47} + \dots + 16u^{2} + 1)^{2}$
c_6, c_7	$((u^{2} + u - 1)^{2})(u^{30} - 2u^{29} + \dots + 3u - 1)(u^{96} + 5u^{95} + \dots + 2u + 1)$
c ₈	$u^{4}(u^{30} + 5u^{29} + \dots - 9216u - 1024)(u^{48} - 2u^{47} + \dots + 2u + 1)^{2}$
c_9, c_{12}	$((u^{2} - u - 1)^{2})(u^{30} - 2u^{29} + \dots + 3u - 1)(u^{96} + 5u^{95} + \dots + 2u + 1)$
c_{10}	$((u^{2} + 3u + 1)^{2})(u^{30} + 16u^{29} + \dots + 9u + 1)$ $\cdot (u^{96} + 37u^{95} + \dots + 408u^{3} + 1)$
c_{11}	$((u^{2} - 3u + 1)^{2})(u^{30} + 16u^{29} + \dots + 9u + 1)$ $\cdot (u^{96} + 37u^{95} + \dots + 408u^{3} + 1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y^2 + y + 1)^2)(y^{30} + 15y^{29} + \dots - 1.73032 \times 10^8 y + 65536)$ $\cdot (y^{48} + 26y^{47} + \dots - 264y + 1)^2$
c_2, c_5	$((y^{2} + y + 1)^{2})(y^{30} + 11y^{29} + \dots - 12320y + 256)$ $\cdot (y^{48} + 18y^{47} + \dots + 32y + 1)^{2}$
c_3, c_4	$65536(256y^{4} + 192y^{3} + 128y^{2} + 12y + 1)$ $\cdot (256y^{30} + 2752y^{29} + \dots + y + 1)$ $\cdot (y^{96} + 47y^{95} + \dots + 239047203594444768y + 14928803518011289)$
c_6, c_7, c_9 c_{12}	$((y^2 - 3y + 1)^2)(y^{30} - 16y^{29} + \dots - 9y + 1)$ $\cdot (y^{96} - 37y^{95} + \dots - 408y^3 + 1)$
c_8	$y^{4}(y^{30} + 5y^{29} + \dots + 2.16269 \times 10^{7}y + 1048576)$ $\cdot (y^{48} + 10y^{47} + \dots + 20y + 1)^{2}$
c_{10}, c_{11}	$((y^{2} - 7y + 1)^{2})(y^{30} - 48y^{28} + \dots + 87y + 1)$ $\cdot (y^{96} + 43y^{95} + \dots + 2144y^{2} + 1)$