Problem (1)

Let $(B_t)_{t>0}$ denote a standard Brownian motion.

- (a) Determine the distribution of $B_s + B_t$ for $0 \le s \le t$. Determine the distribution of B_2^2 and of $B_1^2 + (B_2 B_1)^2$.
- (b) Argue that $\mathbb{P}(0 < B_1 < B_2 < B_{\pi}) = \frac{1}{8}$. Determine $\mathbb{E}[B_1 B_2 B_{\pi} \mid \mathcal{F}_2^B]$ and $\mathbb{E}[B_1 B_2 B_{\pi}]$.
- (c) Define $U_t = tB_{\frac{1}{t}}$ for t > 0. Let 0 < s < t. Determine the distribution of U, and of $U_t U_s$, and determine whether U_n and $U_t U_s$ are independent. For $a \in \mathbb{R}$ let

$$T_a = \inf \{ t \ge 0 : B_t = a \}$$

Later in the course we show both that $\mathbb{P}(T_a < \infty) = 1$ for all $a \in \mathbb{R}$ and that $\mathbb{P}(T_a < T_b) = b/(b-a)$ for a < 0 < b.

- (d) Determine $\mathbb{P}(T_1 < T_{-1} < T_2)$.
- (e) Define $(X_t)_{t\geq 0}$ as $X_t = \sqrt{t}B_1$ for $t\geq 0$. Does $X_t \stackrel{t}{=} B_t$ hold for $t\geq 0$? Is $(X_t)_{t\geq 0}$ a Brownian motion?
- (f) Let $Y \sim N(0,1)$ and assume that Y is independent of $(B_t)_{t>0}$. Let

$$Z_t = B_t + t(Y - B_1), \quad t \in [0, 1].$$

Are $(B_t)_{t\in[0,1]}$ and $(Z_t)_{t\in[0,1]}$ versions? Are they modifications or indistinguishable (dansk: uskelnelige)?

Solution

(a)

Problem (2)

Let $(N_t)_{t>0}$ denote a Poisson process with parameter $\lambda > 0$.

- (a) Determine $\mathbb{E}\left[T_{12}\right]$ and $\operatorname{Var}\left(T_{12}\right)$.
- (b) Determine $\mathbb{E}[T_{10} \mid \{N_2 = 5\} \cap \{T_3 < 2\}].$
- (c) Determine $\mathbb{E}\left[N_5\mid N_2=7\right]$ and $\mathrm{Var}\left[N_5\mid N_2=7\right]$. Also determine $\mathbb{E}\left[N_5\mid N_2\right]$.

Solution

(a)

Problem (3 - Durrett 2.27)

Rock concert tickets are sold at a ticket counter. Females and males arrive at times of independent Poisson processes with rates 30 and 20 customers per hour.

- (a) What is the probability the first three customers are female?
- (b) If exactly two customers arrived in the first five minutes, what is the probability both arrived in the first three minutes.
- (c) Suppose that customers regardless of sex buy one ticket with probability 1/2, two tickets with probability 2/5, and three tickets with probability 1/10. Let N_i be the number of customers that buy i tickets in the first hour. Find the joint distribution of (N_1, N_2, N_3) .

Solution

(a)