Practical 2:4 pts vs 2+1pts

The goal of this practical is now to compare the classical linear 4 points algorithm and the linear 2 points knowing the vertical direction of the camera.

Let's consider 50 points randomly distributed in a plane of equation $N^T X_w + d = 0$ in the world frame (O_w, X_w, Y_w, Z_w) .

Let's note respectively, $(O_{c_1}, X_{c_1}, Y_{c_1}, Z_{c_1})$ and $(O_{c_2}, X_{c_2}, Y_{c_2}, Z_{c_2})$ the camera positions. We suppose a calibrated camera posed at a rotation R_i and T_i of the world coordinate $(X_w = R_i X_{c_i} + T_i)$.

The image points are noted P_i .

Preliminary questions

This practical is in relation with our first exercice "Homography estimation using $\mathrm{IMU}:2{+}1$ method". The algorithm is given in the file Practical2.m.

Read, run and comment this file.

Comparison

- 1. Test 1: example with different datas, propose a test with different positions of the second camera $(R_1 = I, T_1 = 0)$ with angles of rotation between 0° and 45° and translation of 0 to 100
- 2. Test 2: example with noise, propose a test with different camera positions ($R_1 = I, T_1 = 0$) with angles of rotation between 0° and 45° and translation of 0 to 100 AND white noise in image points of camera 2 between 0 to 1 pixel std (use RANSAC functions).
- 3. Test 3: example with noise on IMU informations, propose a test with different camera positions ($R_1 = I, T_1 = 0$) with angles of rotation between 0° and 45° and translation of 0 to 100, white noise in image points of camera 2 between 0 to 1 pixel std AND white noise in IMU between 0° to 2° (use RANSAC functions).
- 4. Conclusion...