Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 6 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації» «Дослідження рекурсивних алгоритмів» Варіант 7

Виконав студент ІП-15, Гуменюк Олександр Володимирович

(шифр, прізвище, ім'я, по батькові)

Перевірила Вєчерковська Анастасія Сергіївна

(прізвище, ім'я, по батькові)

Лабораторна робота 6

Дослідження рекурсивних алгоритмів

Мета – дослідити особливості роботи рекурсивних алгоритмів та набути практичних навичок їх використання під час складання програмних специфікацій підпрограм.

Варіант 7

7. Перетворення додатного цілого десяткового значення в значення у вісімковій системі числення

Постановка задачі

Використовуємо рекурсивну функцію, щоб перетворити десяткове число у вісімкову систему числення. Функція приймає додатне ціле число, і якщо воно не менше 8, то виконується рекурсивна гілка, яка обчислєю менший розряд числа. Як тільки функції рекурсивно доходить до числа менше 8, виконується термінальна гілка та повертається це ж число. Таким чином значення числа у вісімкомій системі числення обчислується порозрядно. Результатом розв'язку є перетворення та виведення значення десяткового числа у вісімковій системі числення.

Побудова математичної моделі

Таблиця імен змінних

Змінна	Tun	Ім'я	Призначення
Задане число	Додатне ціле	number	Початкові дані

Функція, що	Функція	toOctal	Початкові дані
перетворює			
десяткове число			
у вісімкове			
Параметр	Додатне ціле	n	Початкові дані
функції			/Проміжні дані
Змінна, яку	Додатне ціле	r	Початкові дані
повертає функція			/Проміжні дані
Значення числа у	Додатне ціле	result	Результат
вісімковій			
системі числення			

Після введення числа, визиваємо рекурсивну функціюю toOctal, яка й перетворить наше десяткове число у вісімкове. Ця функція приймає один параметр типу unsigned int (додатне число), яким і буде задане число. Термінальна гілка функції виконується тільки, якщо число-параметр менше 8; тоді значення самого числа записується в змінну г. В інших випадках виконується рекурсивна гілка, яка записує в змінну г вираз: (п % 8) + (10 * toOctal(n / 8)), де % — функція для знаходження залишку від ділення, а / — цілочисельне ділення. Таким чином, рекурсивна функція toOctal дойде до числа менше 8, що й буде найбільшим розрядом заданого числа у вісімковій системі числення. Потім функція буде додавати кожен розряд помножений на степінь десяти. Перетворення закінчиться, коли функція повернеться до заданого числа, і вираз п % 8 буде найменшим розрядом заданого числа у вісімковій системі числення. Вкінці toOctal повертає значення г, і основна програма записує його в змінну result та виводить цю змінну.

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Обчислення result за допомогою функції toOctal

Псевдокод

Основна програма:

```
Крок 1
                                        Крок 2
початок
                                        початок
     ввід number
                                              ввід number
     Обчислення result за
                                              result := toOctal (number)
     допомогою функції toOctal
                                              виведення result
     виведення result
                                        кінець
кінець
Підпрограма:
toOctal (n)
     якщо n < 8
        T0
```

інакше

$$r := (n \% 8) + (10 * toOctal (n / 8))$$

повернути г

r := n

кінець

Блок-схема

Основна програма:

Крок 1.

Крок 2.

Підпрограма:


```
#include <iostream>
   using namespace std;
   unsigned toOctal(unsigned n);
   int main() {
       unsigned number;
       cout << "Enter your number: ";</pre>
       cin >> number;
       unsigned result = toOctal(number);
       cout << result << endl;</pre>
       return 0;
18 }
   unsigned toOctal(unsigned n){
20
       unsigned r;
       if (n < 8){
            r = n;
       else{
            r = (n \% 8) + (10 * toOctal(n / 8));
       return r;
31 }
```

```
Enter your number: 496
760
Program ended with exit code: 0
```

Тестування

Блок	Дія (основна програма)	Дія (підпрограма)
	Початок	
1	number = 496	
2	result = toOctal(496)	
3		$496 < 8 \rightarrow \text{false}$
4		r := 496 % 8 + (10 * toOctal (496 / 8)) = 0 + 10*toOctal (62)
5		$62 < 8 \rightarrow false$
6		r:=62 % 8 + (10 * toOctal (62 / 8)) = 6 + 10*Octal (7)
7		$7 < 8 \rightarrow \text{true}$
8		r:=7
9		Повернути 7
10		r := 6 + 10*7 = 76
11		Повернути 76
12		r := 0 + 10*76 = 760
13		Повернути 760
14	result = 760	
15	Виведення 760	
	Кінець	

Висновки

Протягом шостої лабораторної роботи я дослідив особливості роботи рекурсивних алгоритмів та набув практичних навичок їх використання під

час складання програмних специфікацій підпрограм. В результат я отримав алгоритм, що використовує рекурсивну підпрограму для переведення числа з десяткової системи числення у вісімкому.