Summer 2024

The first half of these notes developed a categorical perspective on the theory of preorders. One key step in this theory is the observation that a preorder (X, \leq) may be treated as a family of indexed propositions $\mathcal{C}(X, \leq)^{\text{op}} \to \Omega$. This allowed us to lift operations on truth values Ω to universal constructions in a preorder. In a category C, we can no longer treat objects like indexed *propositions*, but there is a way to generalize this philosophy. Instead, we need to study indexed sets, i.e., *presheaves*. Similar to the preorder situation, operations between sets can be lifted to universal constructions in a category.

1

A brief account of categories

A category is a collection of objects and arrows between them which can be composed. There are myriad situations where such structure arises. Perhaps two archetypes are interfaces and theories. Qua interface, a category is a collection of states, called *objects*, and families of transitions between states, called *arrows*. Functors $F:C\to \operatorname{Set}$ can be seen as concrete implementations of this interface. This philosophy is explained well in [Fong and Spivak, 2019]. This approach also forms the semantics for algebraic effects. For example, algebras of the Writer m monad, for some monoid m are described by the category consisting of a single object and an arrow for every element of the monoid m. Functors

from this category to, e.g., Set identifies a set X (the image of the single object) and a family of functions $X \to X$ for every element of m. This is a Writer malgebra.

Qua theory, a category C is the classifying category of *some theory*. Functors out of this category are the same as models of this theory. Given a propositional theory T, we saw that functors from $\mathcal{C}\ell(T)$ to a preorder X were the same as models of T in X. This perspective is not fundamentally different to the interface perspective.

We will be using categories to describe the logical relations of a programming language with state, e.g., name allocation or step-indexing. We will identify a category C whose objects will represent states of a heap. Arrows of C will identify how a heap state may be extended with fresh names. We will write our logical relations as sets indexed by heap states, i.e., functors out of C into Set.

For the sake of completeness, here is a definition of a (small) category.

Definition 1.1. A **small category** C is a pair of sets $(C^{(0)}, C^{(1)})$, called its set of **objects** and its set of **arrows**, respectively, and a family of functions.

- A pair $s, t: C^{(1)} \to C^{(0)}$ of **source** and **target** functions. For any arrow $f \in C^{(1)}$, s(f) is its source object, and t(f) is its target object. We usually write this as $f: s(f) \to t(f)$.
- A function $1: C^{(0)} \to C^{(1)}$ sending every object $X \in C^{(0)}$ to its **identity arrow** $1_X: X \to X$.
- A partial function $C^{(1)} \times C^{(1)} \to C^{(1)}$ called **composition**. m(g,f) is defined when s(g) = t(f).

These functions are required to satisfy two axioms. First, m must be an associative operation:

$$m(h, m(g, f)) = m(m(h, g), f),$$

wherever defined. Second, 1 must be a left and right identity for m:

$$m(f, 1_{s(f)}) = m(1_{t(f)}, f) = f,$$

for any $f \in C^{(1)}$.

Usually composition m(g, f) in a category is written as $g \circ f$ or by juxtaposition gf.

Definition 1.2. Given small categories C and D, a **functor** $F:C\to D$ is a family of functions $F^{(0)}:C^{(0)}\to D^{(0)}$ and $F^{(1)}:C^{(1)}\to D^{(1)}$ which preserve the functions s,t,1, and m.

Given a category C, swapping the functions s and t yields a new category, C^{op} , called its **opposite** category. This is a generalization of the relation between \leq and \geq for preordered sets.

There is one more perspective on categories which ties this back to the study on preorders. Recall, for a preordered set (X, \leqslant) , the classifying category $\mathcal{C}(X, \leqslant)$ is thin —between any two objects x, y in $\mathcal{C}(X, \leqslant)$, there is at most one arrow $x \to y$. A category C is an intensional form of a preorder. For a category, it is not enough to know that there exists an arrow between objects X and Y, the specific choice of arrow $f: X \to Y$ is now relevant. Similarly, Set is the intesional analogue of truth values: it is not enough to know that a set X is nonempty; rather, the specific choice of element $x \in X$ matters. This perspective tells us that universal constructions of categories are intensional/proof-relevant variants of the universal constructions for preorders. We saw some of these generalizations in the notes on Galois connections.

2 Indexed sets

We begin by describing a presheaf as an indexed set. By indexed set, we mean indexed in the following manner. Given a family of sets $\{X_{\alpha} \mid \alpha \in I\}$, we can describe this family with a function

$$\pi: X \to I$$
,

where $X \stackrel{\text{def}}{=} \coprod_{\alpha \in I} X_{\alpha}$. Given a function $x \in X$, x is contained in some X_{α} for a unique α . $\pi(x)$ is defined to be this index α . In the case where I is replaced with a category C, we follow the same idea, but we introduce some extra structure to make the set X compatible with the arrows of C.

Definition 2.1. Let C be a small category. A C-indexed set is a set X equipped with a function $\pi: X \to C^{(0)}$ and a partial function $\mu: X \times C^{(1)} \to X$ satisfying the following constraints.

- $\mu(x, f)$ is defined whenever $t(f) = \pi(x)$.
- $\pi(\mu(x,f)) = s(f)$.
- $\mu(x, 1_{\pi(x)}) = x$.
- If $g \circ f$ is defined, then $\mu(x, g \circ f) = \mu(\mu(x, g), f)$, wherever defined.

Anticipating an equivalence between C-indexed sets and presheaves on C, we could write $x\big|_f$ in lieu of $\mu(x,f)$.

Calling this a C-indexed set is admiteddly uncommon. Another name for a C-indexed set is a discrete opfibration. This is more precise, and it alludes to a more general notion, called a fibration of categories. On the other hand, there is a hint of the notion of Writer malgebra in a C-indexed set. A category with one object, i.e., a category C where $C^{(0)} \cong \{*\}$, is the same structure as a monoid on the set $C^{(1)}$. In this sense categories are generalized monoids, where the multiplication is a partial operation. Given that categories are generalized monoids, C-indexed sets are generalized modules.

Proposition 2.2. Let C be a category with one object. Then a C-indexed set (X, π, μ) is the same data as a right-action of the monoid $C^{(1)}$ on the set X.

Proof. Consider a C-indexed set (X, π, μ) . Since $C^{(0)} \cong \{*\}$, the projection $\pi: X \to C^{(0)}$ can only be the map sending any element of X to the single element of $C^{(0)}$. In this case, $\mu: X \times C^{(1)} \to X$ is total. We define the right action on X by $C^{(1)}$ by the rule

$$x \cdot f \stackrel{\text{def}}{=} \mu(x, f).$$

Conversely, given a right action of $C^{(1)}$ on X, we give X the structure of a C-indexed set in the following manner. The projection π is unique, since $C^{(0)}$ is a singleton set. This leaves the map $\mu: X \times C^{(1)} \to X$, which we define using the same rule as before.

$$\mu(x,f) \stackrel{\text{def}}{=} x \cdot f.$$

Due to the above proposition, presheaves are occaisionally called $\mathit{right}\ C\text{-modules}$. Section V.7 of [Mac Lane and Moerdijk, 1994] describes the theory of right C-modules. Furthermore, to feed mathematicians' preference for infix notation, we will now write $x\cdot f$ instead of $\mu(x,f)$ for any C-indexed set

Given a C-indexed set (X, π, \cdot) , we can lift the categorical structure on C to X. In order to give this category a name, we will anticipate presheaves and abuse notation slightly to call this category $\operatorname{el}(X)$, the *category of elements* of X.

Definition 2.3. Given the C-indexed set (X, π, \cdot) , its **category of elements** is the following category $\operatorname{el}(X)$. The objects of $\operatorname{el}(X)$ are the elements of X. Furthermore, there is an arrow $\widetilde{f}: x \to y$ in $\operatorname{el}(X)$ for every arrow $f \in C^{(1)}$ such that $x = y \cdot f$. Composition of arrows in $\operatorname{el}(X)$ is the same as composition in C.

It can be helpful to have a picture for how the arrows in $ext{el}(X)$ are related to arrows in C.

$$\begin{array}{ccc}
x & \xrightarrow{\widetilde{f}} & y \\
& \downarrow & & \downarrow \\
\pi(x) & \xrightarrow{f} & \pi(y)
\end{array}$$

Here a squiggly arrow $x \rightsquigarrow A$ signifies the equation $\pi(x) = A$. The arrow notation is suggestive: the projection $\pi: X \to C$ defines a functor $\widetilde{\pi}: \operatorname{el}(X) \to C$. We prove this now.

Proposition 2.4. Let $\widetilde{\pi} : el(X) \to C$ be the map

$$x \mapsto \pi(x), \quad \widetilde{f} \mapsto f.$$

Then $\widetilde{\pi}$ *is a functor.*

Proof. We need to show that $\widetilde{\pi}$ preserves identities and composition. Given an object x in el(X) (i.e., an element $x \in X$), its identity arrow 1_x is presented by the identity $\widetilde{1_{\pi(x)}}$, so

$$\pi(1_x) = \pi(\widetilde{1_{\pi(x)}}) = 1_{\pi(x)},$$

so $\widetilde{\pi}$ preserves identities. A similar argument works for composition.

The functor $\widetilde{\pi}$ is what gives a C-indexed set the structure of a discrete opfibration. A fibration of categories is a categorification of $\widetilde{\pi}$, adding more arrows in $\operatorname{el}(X)$ besides the ones in C.

We now use C-indexed sets to study the category C. While the objects of C may not be faithfully represented by sets, it is true that they are faithfully represented by C-indexed sets. This property is a generalization of the embedding of a preorder into its downward closed sets.

Definition 2.5. Let $X \in C^{(0)}$ be an object of C. Its **indexed downset** $\downarrow X$ is the C-indexed set defined in the following manner.

- The elements of $\downarrow X$ are arrows $f: Y \to X$ in C, for any object Y in C.
- The projection $\pi: \downarrow X \to C$ sends an arrow $f: Y \to X$ to the object Y.
- The multiplication $_-\cdot _-:X\times C^{(1)}\to X$ sends an arrow $f:Y\to X$ and an arrow $g:Z\to Y$ to the composition $f\circ g$:

$$f \cdot g \stackrel{\text{def}}{=} f \circ g$$
.

Remark 2.6. The category of elements for the indexed downset $\downarrow X$ has a familiar name. It is the **slice category** $C_{/X}$. This category is sometimes called $C \downarrow X$, an auspicious hint of the slice category's connection to the downsets of a preordered set.

In order to make sense of how C is embedded into its C-indexed sets, we need to make a notion of C-indexed function.

Definition 2.7. Let X and Y be a pair of C-indexed sets. A C-indexed function $\phi : X \to Y$ is a function ϕ_* between the underlying sets of X and Y which preserves π and $A \to A$, i.e.,

$$\pi_Y(\phi_* x) = \pi_X(x), \quad (\phi_* x) \cdot_Y f = \phi_*(x \cdot_X f).$$

C-indexed functions may be composed, by composing the underlying functions between sets. Furthermore, there is an obvious identity function. This gives a category of C-indexed sets, which we call C-Set.

Given an arrow $f: X \to Y$ in C, we obtain an indexed function $f_*: \downarrow X \to \downarrow Y$, given by postcomposition:

$$f_*(g:Z\to X)\stackrel{\mathrm{def}}{=} f\circ g:Z\to Y.$$

Lemma 2.8 (C-indexed Yoneda lemma). The mapping $X \mapsto \downarrow X$ and $f \mapsto f_*$ defines a functor

$$\downarrow : C \rightarrow C$$
-Set.

Furthermore, this functor is fully faithful. Finally, given an arbitrary C-indexed set A, there is a bijection

$$C$$
-Set $(\downarrow X, A) \cong \{a \in A \mid \pi(a) = X\}.$

Proof. We use the only trick in category theory: chase refl. We first argue that \downarrow is a functor. Since f_* is defined by composition in C, this is straightforward. We now show that \downarrow is faithful. Let $f, g: X \to Y$ be two arrows in C. Suppose $f_* = g_*$. We need to prove f = g. The identity arrow $1_X: X \to X$ is an element of $\downarrow X$. Then

$$f = f_*(1_X) = g_*(1_X) = g,$$

so \downarrow is faithful. Next we show \downarrow is full. Let $\phi: \downarrow X \to \downarrow Y$ be an indexed function. Then $\phi_*(1_X)$ is some arrow $f: X' \to Y$. Since ϕ preserves the projection π , X' = X. What is left is to argue that $\phi_* = f_*$. Indeed, for any element $g: Z \to X$ in $\downarrow X$,

$$f_*g = f \circ g = f \cdot g = \phi_*(1_X) \cdot g = \phi_*(1_X \cdot g) = \phi_*(g).$$

This shows $\phi_* = f_*$. Since ϕ is arbitrary, this shows that \downarrow is full; hence \downarrow is fully faithful.

Finally, we prove the bijection. Let $\phi_0: \downarrow X \to A$ be an indexed function. $\phi_{0*}(1_X)$ is an element of A; call it $a(\phi_0)$. We will show that $a:\phi_0\mapsto a(\phi_0)$ is a bijection. We need an inverse to a. Given an element $a_0\in A$ such that $\pi(a_0)=X$, we define an indexed function $\phi(a_0): \downarrow X \to A$ in the following manner. Given an element $f:Y\to X$ in $\downarrow X$, define

$$\phi(a_0)_*(f) \stackrel{\text{def}}{=} a_0 \cdot f \in A.$$

Since $\pi(a_0) = X$, this function is well-defined, and it is straightforward to show that this function preserves π and \bot . Given an indexed function $\phi_0 : \downarrow X \to A$ and an element $f : Y \to X$ in $\downarrow X$,

$$\phi(a(\phi_0))_*(f) = a(\phi_0) \cdot f = \phi_{0_*}(1_X) \cdot f = \phi_{0_*}(1_X \cdot f) = \phi_{0_*}(f).$$

Thus $\phi(a(\phi_0)) = \phi_0$. Similarly given an element $a_0 \in A$ such that $\pi(a_0) = X$,

$$a(\phi(a_0)) = \phi(a_0)_*(1_X) = a_0 \cdot 1_x = a_0.$$

Therefore $a(\phi(a_0)) = a_0$. This shows that $a(\underline{\ })$ and $\phi(\underline{\ })$ are inverses, proving the desired bijection. \square

We have shown that \downarrow is an embedding. When we did this for preorders, we used this embedding to lift operations on truth-values to universal constructions on a preorder. We do the analogous thing for indexed sets, lifting operations on sets to universal constructions on a category.

Indexed set theory

Test

Presheaves: Indexed sets as functors

References

[Fong and Spivak, 2019] Fong, B. and Spivak, D. I. (2019). *An Invitation to Applied Category Theory: Seven Sketches in Compositionality*. Cambridge University Press, Cambridge. https://www.cambridge.org/core/books/an-invitation-to-applied-category-theory/D4C5E5C2B019B2F9B8CE9A4E9E84D6BC.

[Mac Lane and Moerdijk, 1994] Mac Lane, S. and Moerdijk, I. (1994). *Sheaves in Geometry and Logic: A First Introduction to Topos Theory*. Universitext. Springer, New York, NY. http://link.springer.com/10.1007/978-1-4612-0927-0.