```
In [1]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import scipy.cluster.hierarchy as sch
        from sklearn.cluster import AgglomerativeClustering
In [2]: # Import Dataset
```

airline=pd.read_csv('EastWestAirlines.csv') airline

Out[2]:		ID#	Balance	Qual_miles	cc1_miles	cc2_miles	cc3_miles	Bonus_miles	Bonus_trans Fli
	0	1	28143	0	1	1	1	174	1
	1	2	19244	0	1	1	1	215	2
	2	3	41354	0	1	1	1	4123	4
	3	4	14776	0	1	1	1	500	1
	4	5	97752	0	4	1	1	43300	26
	3994	4017	18476	0	1	1	1	8525	4
	3995	4018	64385	0	1	1	1	981	5
	3996	4019	73597	0	3	1	1	25447	8
	3997	4020	54899	0	1	1	1	500	1
	3998	4021	3016	0	1	1	1	0	0

3999 rows × 12 columns

In [3]: airline.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 3999 entries, 0 to 3998 Data columns (total 12 columns):

	- · · · · · · · · · · · · · · · · · · ·		
#	Column	Non-Null Count	Dtype
0	ID#	3999 non-null	int64
1	Balance	3999 non-null	int64
2	Qual_miles	3999 non-null	int64
3	cc1_miles	3999 non-null	int64
4	cc2_miles	3999 non-null	int64
5	cc3_miles	3999 non-null	int64
6	Bonus_miles	3999 non-null	int64
7	Bonus_trans	3999 non-null	int64
8	Flight_miles_12mo	3999 non-null	int64
9	Flight_trans_12	3999 non-null	int64
10	Days_since_enroll	3999 non-null	int64
11	Award?	3999 non-null	int64

dtypes: int64(12) memory usage: 375.0 KB

In [4]: airline2=airline.drop(['ID#'],axis=1)
airline2

Out[4]:		Balance	Qual_miles	cc1_miles	cc2_miles	cc3_miles	Bonus_miles	Bonus_trans	Flight_mi
	0	28143	0	1	1	1	174	1	
	1	19244	0	1	1	1	215	2	
	2	41354	0	1	1	1	4123	4	
	3	14776	0	1	1	1	500	1	
	4	97752	0	4	1	1	43300	26	
	3994	18476	0	1	1	1	8525	4	
	3995	64385	0	1	1	1	981	5	
	3996	73597	0	3	1	1	25447	8	
	3997	54899	0	1	1	1	500	1	
	3998	3016	0	1	1	1	0	0	

3999 rows × 11 columns

```
In [5]: # Normalize heterogenous numerical data using z-score (x-mean/std) or custom defi
# Normalization function - here custom defined
def norm_func(i):
    x = (i-i.min())/(i.max()-i.min())
    return (x)
```

In [6]: # Normalized data frame (considering the numerical part of data)
airline2_norm = norm_func(airline2)
airline2_norm

Out[6]:		Balance	Qual_miles	cc1_miles	cc2_miles	cc3_miles	Bonus_miles	Bonus_trans	Flight_n
	0	0.016508	0.0	0.00	0.0	0.0	0.000660	0.011628	
		0.044000	0.0	0.00	0.0	0.0	0.000045	0.000050	

0	0.016508	0.0	0.00	0.0	0.0	0.000660	0.011628
1	0.011288	0.0	0.00	0.0	0.0	0.000815	0.023256
2	0.024257	0.0	0.00	0.0	0.0	0.015636	0.046512
3	0.008667	0.0	0.00	0.0	0.0	0.001896	0.011628
4	0.057338	0.0	0.75	0.0	0.0	0.164211	0.302326
3994	0.010837	0.0	0.00	0.0	0.0	0.032330	0.046512
3995	0.037766	0.0	0.00	0.0	0.0	0.003720	0.058140
3996	0.043169	0.0	0.50	0.0	0.0	0.096505	0.093023
3997	0.032202	0.0	0.00	0.0	0.0	0.001896	0.011628
3998	0.001769	0.0	0.00	0.0	0.0	0.000000	0.000000

3999 rows × 11 columns

In [7]: # Create Dendrograms
 plt.figure(figsize=(10, 7))
 dendograms=sch.dendrogram(sch.linkage(airline2_norm,'complete'))


```
In [8]: # Create Clusters (y)
         hclusters=AgglomerativeClustering(n_clusters=5,affinity='euclidean',linkage='ward
         hclusters
 Out[8]: AgglomerativeClustering(n_clusters=5)
 In [9]: y=pd.DataFrame(hclusters.fit_predict(airline2_norm),columns=['clustersid'])
         y['clustersid'].value_counts()
 Out[9]: 1
              1011
         0
               946
         2
               808
         4
               699
               535
         3
         Name: clustersid, dtype: int64
In [10]: # Adding clusters to dataset
         airline2['clustersid']=hclusters.labels_
         airline2
```

Out[10]:		Balance	Qual_miles	cc1_miles	cc2_miles	cc3_miles	Bonus_miles	Bonus_trans	Flight_mi
	0	28143	0	1	1	1	174	1	
	1	19244	0	1	1	1	215	2	
	2	41354	0	1	1	1	4123	4	
	3	14776	0	1	1	1	500	1	
	4	97752	0	4	1	1	43300	26	
	3994	18476	0	1	1	1	8525	4	
	3995	64385	0	1	1	1	981	5	
	3996	73597	0	3	1	1	25447	8	
	3997	54899	0	1	1	1	500	1	
	3998	3016	0	1	1	1	0	0	
	2000 -	11 10							

3999 rows × 12 columns

In [11]: airline2.groupby('clustersid').agg(['mean']).reset_index()

	clustersid	Balance	Qual_miles	cc1_miles	cc2_miles	cc3_miles	Bonus_miles	Bonus_tr
		mean	mean	mean	mean	mean	mean	m
0	0	79848.233615	285.097252	1.699789	1.024313	1.000000	12079.774841	12.133
1	1	43313.653808	21.506429	1.000000	1.033630	1.000989	2562.614243	5.474
2	2	106221.111386	161.262376	3.198020	1.001238	1.025990	26458.257426	16.363
3	3	127475.028037	160.801869	4.362617	1.000000	1.050467	58656.919626	22.235
4	4	30013.416309	98.054363	1.000000	1.000000	1.000000	2552.569385	6.101

```
In [12]: # Plot Clusters
plt.figure(figsize=(10, 7))
plt.scatter(airline2['clustersid'],airline2['Balance'], c=hclusters.labels_)
```

Out[12]: <matplotlib.collections.PathCollection at 0x21ee50dec40>

Out[11]:


```
In [ ]:
```