UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Deleksamen i: MAT1110 — Kalkulus og lineær algebra

Eksamensdag: Fredag 30. mars 2012

Tid for eksamen: 15.00-17.00

Oppgavesettet er på 8 sider.

Vedlegg: Svarark, formelsamling.

Tillatte hjelpemidler: Ingen.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Løsningsforslag

Oppgave 1. (3 poeng) En parametrisert kurve er gitt ved $\mathbf{r}(t) = t \mathbf{i} + t^2 \mathbf{j}$. Farten v(t) er lik:

- A) $t\sqrt{1+t^2}$
- B) $t + t^2$
- C) $\sqrt{1+4t^2}$
- D) $1 + 4t^2$
- E) $2\sqrt{2t}$

Riktig svar: C) $\sqrt{1+4t^2}$.

Begrunnelse: Hastigheten er $\mathbf{v}(t) = \mathbf{r}'(t) = \mathbf{i} + 2t \mathbf{j}$, så farten blir $v(t) = |\mathbf{v}(t)| = \sqrt{1^2 + (2t)^2} = \sqrt{1 + 4t^2}$.

Oppgave 2. (3 poeng) Hvilket kjeglesnitt fremstiller ligningen $9x^2 + 4y^2 - 18x + 16y = 11$?

- A) Ellipsen med sentrum i (1, -2) og halvakser a = 2, b = 3.
- B) Det er ingen punkter som oppfyller ligningen.
- C) Hyperbelen med sentrum i (1, -2) og asymptoter $y + 2 = \pm \frac{3}{2}(x 1)$.
- D) Hyperbelen med sentrum i (2,3) og asymptoter $y-3=\pm\frac{1}{2}(x-2)$.
- E) Ellipsen med sentrum i (2,2) og halvakser $a=1,\,b=2$

Riktig svar: A) Ellipsen med sentrum i (1, -2) og halvakser a = 2, b = 3. Begrunnelse: Vi fullfører kvadratene:

$$9x^{2} + 4y^{2} - 18x + 16y = 11 \iff 9(x^{2} - 2x + 1) + 4(y^{2} + 4y + 4) = 11 + 9 + 16$$
$$\iff 9(x - 1)^{2} + 4(y + 2)^{2} = 36 \iff \frac{(x - 1)^{2}}{2^{2}} + \frac{(y + 2)^{2}}{3^{2}} = 1$$

(Fortsettes på side 2.)

som er ligningen for en ellipse med sentrum i (1,-2) og halvakser a=2, b = 3.

Oppgave 3. (3 poeng) Hvis $A=\left(\begin{array}{cc}1&2\\2&3\end{array}\right)$ og $\mathbf{b}=\left(\begin{array}{cc}2\\1\end{array}\right)$, så har matriseligningen $A\mathbf{x} = \mathbf{b}$ løsningen:

A)
$$\mathbf{x} = \begin{pmatrix} -2 \\ 2 \end{pmatrix}$$

B)
$$\mathbf{x} = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$$

C) Det finnes ingen løsninger

D)
$$\mathbf{x} = \begin{pmatrix} -4 \\ 3 \end{pmatrix}$$

E)
$$\mathbf{x} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$

Riktig svar: D)
$$\mathbf{x} = \begin{pmatrix} -4 \\ 3 \end{pmatrix}$$

Begrunnelse: Matriseligningen er ekvivalent med ligningssystemet

$$x + 2y = 2$$

$$2x + 3y = 1$$

som har løsningene x = -4, y = 3.

Oppgave 4. (3 poeng) Hvis $\mathbf{T}: \mathbb{R}^2 \to \mathbb{R}^2$ er lineæravbildningen slik at $\mathbf{T}\begin{pmatrix} 3 \\ 0 \end{pmatrix} = \begin{pmatrix} 9 \\ 3 \end{pmatrix}$ og $\mathbf{T}\begin{pmatrix} 0 \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, så er matrisen til \mathbf{T} lik:

A)
$$\begin{pmatrix} 9 & 1 \\ 3 & -2 \end{pmatrix}$$

$$B) \begin{pmatrix} 3 & 0 \\ 0 & -\frac{1}{2} \end{pmatrix}$$

B)
$$\begin{pmatrix} 3 & 0 \\ 0 & -\frac{1}{2} \end{pmatrix}$$

C) $\begin{pmatrix} 3 & 1 \\ -2 & 2 \end{pmatrix}$
D) $\begin{pmatrix} 3 & -2 \\ 1 & 2 \end{pmatrix}$

$$D) \left(\begin{array}{cc} 3 & -2 \\ 1 & 2 \end{array} \right)$$

$$E) \begin{pmatrix} 9 & 3 \\ 1 & -1 \end{pmatrix}$$

Riktig svar: D) $\begin{pmatrix} 3 & -2 \\ 1 & 2 \end{pmatrix}$

Begrunnelse: Siden T er lineær, har vi:

$$3\mathbf{T}(\left(\begin{array}{c}1\\0\end{array}\right))=\mathbf{T}(\left(\begin{array}{c}3\\0\end{array}\right))=\left(\begin{array}{c}9\\3\end{array}\right)\Longrightarrow\mathbf{T}(\left(\begin{array}{c}1\\0\end{array}\right))=\left(\begin{array}{c}3\\1\end{array}\right)$$

og

$$-\frac{1}{2}\mathbf{T}(\left(\begin{array}{c}0\\1\end{array}\right))=\mathbf{T}(\left(\begin{array}{c}0\\-\frac{1}{2}\end{array}\right))=\left(\begin{array}{c}1\\-1\end{array}\right)\Longrightarrow\mathbf{T}(\left(\begin{array}{c}0\\1\end{array}\right))=\left(\begin{array}{c}-2\\2\end{array}\right)$$

og dermed er matrisen til **T** lik $\begin{pmatrix} 3 & -2 \\ 1 & 2 \end{pmatrix}$.

(Fortsettes på side 3.)

Oppgave 5. (3 poeng) Den reduserte trappeformen til matrisen $\begin{pmatrix} 1 & 2 & 1 \\ -2 & -4 & 2 \\ 1 & 2 & 3 \end{pmatrix}$ er

$$A) \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right)$$

$$C) \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)$$

$$E) \left(\begin{array}{ccc}
 1 & 2 & 0 \\
 0 & 0 & 1 \\
 0 & 0 & 0
 \end{array} \right)$$

Riktig svar: E)
$$\begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\left(\begin{array}{ccc} 1 & 2 & 1 \\ -2 & -4 & 2 \\ 1 & 2 & 3 \end{array}\right) \sim \left(\begin{array}{ccc} 1 & 2 & 1 \\ 0 & 0 & 4 \\ 0 & 0 & 2 \end{array}\right) \sim \left(\begin{array}{ccc} 1 & 2 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{array}\right) \sim \left(\begin{array}{ccc} 1 & 2 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right) \sim \left(\begin{array}{ccc} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right)$$

Oppgave 6. (3 poeng) Hvis $\mathbf{F}(x,y) = x^2 y \mathbf{i} + (x-y) \mathbf{j}$ og \mathcal{C} er kurven parametrisert ved $\mathbf{r}(t) = \sin t \, \mathbf{i} + t^2 \, \mathbf{j}, t \in [0, \pi],$ så er linjeintegralet $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ lik:

A)
$$x^2 y \int_0^{\pi} \cos t \, dt + 2(x-y) \int_0^{\pi} t \, dt$$

A)
$$x^2 y \int_0^{\pi} \cos t \, dt + 2(x - y) \int_0^{\pi} t \, dt$$

B) $\int_0^{\pi} \left(t^2 \sin^2 t \, \mathbf{i} + (\sin t - t^2) \mathbf{j} \right) \sqrt{\cos^2 t + 4t^2} \, dt$
C) $\int_0^{\pi} \left(\sin t \cos t + 2t^3 \right) \, dt$
D) $\int_0^{\pi} \left(t^2 \sin^3 t + t^2 \sin t - t^4 \right) \, dt$
E) $\int_0^{\pi} \left(t^2 \sin^2 t \cos t + 2t \sin t - 2t^3 \right) \, dt$

D)
$$\int_0^{\pi} (t^2 \sin^3 t + t^2 \sin t - t^4) dt$$

E)
$$\int_0^{\pi} (t^2 \sin^2 t \cos t + 2t \sin t - 2t^3) dt$$

Riktig svar: E) $\int_0^{\pi} (t^2 \sin^2 t \cos t + 2t \sin t - 2t^3) dt$

Begrunnelse: Vi har $\mathbf{F}(\mathbf{r}(t)) = \mathbf{F}(\sin t, t^2) = t^2 \sin^2 t \mathbf{i} + (\sin t - t^2) \mathbf{j}$ og $\overline{\mathbf{r}'(t) = \cos t \,\mathbf{i}} + 2t \,\mathbf{j}$, som gir

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{\pi} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}(t) dt = \int_{0}^{\pi} (t^{2} \sin^{2} t \, \mathbf{i} + (\sin t - t^{2}) \, \mathbf{j}) \cdot (\cos t \, \mathbf{i} + 2t \, \mathbf{j}) dt =$$

$$= \int_{0}^{\pi} \left(t^{2} \sin^{2} t \cos t + 2t \sin t - 2t^{3} \right) dt$$

Oppgave 7. (3 poeng) Hvis $\phi(x,y) = x^2y + x$ og \mathcal{C} er kurven parametrisert ved $\mathbf{r}(t) = \cos t \, \mathbf{i} + \sin t \, \mathbf{j}, t \in [0, \pi], \, \text{så er } \int_{\mathcal{C}} \nabla \phi \cdot d\mathbf{r} \, \text{lik}$

$$C) - \frac{1}{2}$$

(Fortsettes på side 4.)

D)
$$\pi$$

E) -2

Riktig svar: E)
$$-2$$

Begrunnelse:
$$\int_{\mathcal{C}} \nabla \phi \cdot d\mathbf{r} = \phi(\mathbf{r}(\pi)) - \phi(\mathbf{r}(0)) = \phi(-1,0) - \phi(1,0) = -2$$

Oppgave 8. (3 poeng) Lineariseringen til funksjonen $\mathbf{F}(x,y) = \begin{pmatrix} x^2y \\ x-y \end{pmatrix}$ i punktet $\mathbf{a} = (2, 1)$ er gitt ved:

A)
$$T_{\mathbf{a}}\mathbf{F}(x,y) = \begin{pmatrix} -3x + 2y + 14 \\ x - 2y + 1 \end{pmatrix}$$

B) $T_{\mathbf{a}}\mathbf{F}(x,y) = \begin{pmatrix} 4x + 4y - 8 \\ x - y \end{pmatrix}$
C) $T_{\mathbf{a}}\mathbf{F}(x,y) = \begin{pmatrix} 3x - 2y \\ 2x - y - 2 \end{pmatrix}$

B)
$$T_{\mathbf{a}}\mathbf{F}(x,y) = \begin{pmatrix} 4x + 4y - 8 \\ x - y \end{pmatrix}$$

$$C)T_{\mathbf{a}}\mathbf{F}(x,y) = \begin{pmatrix} 3x - 2y \\ 2x - y - 2 \end{pmatrix}$$

D)
$$T_{\mathbf{a}}\mathbf{F}(x,y) = \begin{pmatrix} 4x - 4 \\ -y + 2 \end{pmatrix}$$

$$E)T_{\mathbf{a}}\mathbf{F}(x,y) = \begin{pmatrix} 4x + 4y \\ x - y \end{pmatrix}$$

Riktig svar: B)
$$T_{\mathbf{a}}\mathbf{F}(x,y) = \begin{pmatrix} 4x + 4y - 8 \\ x - y \end{pmatrix}$$

Begrunnelse: Jacobi-matrisen ei

$$\mathbf{F}(x,y) = \begin{pmatrix} \frac{\partial F_1}{\partial x} & \frac{\partial F_1}{\partial y} \\ \\ \frac{\partial F_2}{\partial x} & \frac{\partial F_2}{\partial y} \end{pmatrix} = \begin{pmatrix} 2xy & x^2 \\ \\ 1 & -1 \end{pmatrix},$$

så lineariseringen blir

$$T_{\mathbf{a}}\mathbf{F}(x,y) = \mathbf{F}(\mathbf{a}) + \mathbf{F}'(\mathbf{a})(\mathbf{x} - \mathbf{a}) =$$

$$= \begin{pmatrix} 4 \\ 1 \end{pmatrix} + \begin{pmatrix} 4 & 4 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x - 2 \\ y - 1 \end{pmatrix} = \begin{pmatrix} 4x + 4y - 8 \\ x - y \end{pmatrix}$$

Oppgave 9. (3 poeng) A er området i første kvadrant avgrenset av x-aksen, linjen $y = \frac{\sqrt{3}}{3}x$ og sirkelen $x^2 + y^2 = 4$. Da er $\iint_A (x^2 + y^2 - x) \, dx dy$ lik:

A)
$$\int_0^2 \left[\int_0^{\frac{\pi}{6}} \left(r^2 - r \cos \theta \right) d\theta \right] dr$$

B)
$$\int_0^2 \left[\int_0^{\frac{\pi}{6}} (r^3 - r^2 \cos \theta) \ d\theta \right] dr$$

C)
$$\int_0^2 \left[\int_0^{\frac{\pi}{3}} \left(r^2 - r \cos \theta \right) d\theta \right] dr$$

D)
$$\int_0^4 \left[\int_0^{\frac{\pi}{6}} \left(r^3 - r^2 \cos \theta \right) d\theta \right] dr$$

E)
$$\int_0^2 \left[\int_0^{\frac{\pi}{3}} \left(r^3 - r^2 \cos \theta \right) d\theta \right] dr$$

Riktig svar B):
$$\int_0^2 \left[\int_0^{\frac{\pi}{6}} \left(r^3 - r^2 \cos \theta \right) d\theta \right] dr$$

Begrunnelse: Linjen $y = \frac{\sqrt{3}}{3}$ danner en vinkel $\frac{\pi}{6}$ med x-aksen, og $x^2 + y^2 = 4$ er en sirkel med radius 2. Skifter vi til polarkoordinater (husk Jacobi-faktoren

r), får vi:

$$\iint_{A} (x^{2} + y^{2} - x) dxdy = \int_{0}^{2} \left[\int_{0}^{\frac{\pi}{6}} (r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta - r \cos \theta) r d\theta \right] dr =$$

$$= \int_{0}^{2} \left[\int_{0}^{\frac{\pi}{6}} (r^{3} - r^{2} \cos \theta) d\theta \right] dr$$

Oppgave 10. (3 poeng) Volumet til området som ligger over xy-planet, under grafen til $z = x^2 + y^2$ og inni sylinderen $x^2 + y^2 = 1$, er:

- A) $\frac{3}{2}$ B) 2
- C) $\frac{\pi}{2}$
- D) $\frac{\pi^2}{6}$ E) $\frac{\pi}{3}$

Riktig svar: C) $\frac{\pi}{2}$

Begrunnelse: La A være sirkelskiven om origo med radius 1 i xy-planet. Da

$$V = \iint_A (x^2 + y^2) \, dx dy = \int_0^1 \left[\int_0^{2\pi} r^3 \, d\theta \right] dr = 2\pi \left[\frac{r^4}{4} \right]_0^1 = \frac{\pi}{2}$$

Oppgave 11. (3 poeng) En flate er parametrisert ved $\mathbf{r}(u,v) = (u-v)\mathbf{i} +$ $(u+v)\mathbf{j}+u\mathbf{k}$, der $0 \le u \le 1, 0 \le v \le 1$. Arealet til flaten er

- A) $\sqrt{5}$
- B) 2
- C) $\sqrt{6}$
- D) $\frac{5}{2}$
- E) $\tilde{3}$

Riktig svar: C) $\sqrt{6}$

Begrunnelse: Vi har $\frac{\partial \mathbf{r}}{\partial u} = \mathbf{i} + \mathbf{j} + \mathbf{k}$ og $\frac{\partial \mathbf{r}}{\partial v} = -\mathbf{i} + \mathbf{j}$, og dermed er

$$\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 1 \\ -1 & 1 & 0 \end{vmatrix} = -\mathbf{i} + \mathbf{j} + 2\mathbf{k}$$

og
$$\left|\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}\right| = \sqrt{(-1)^2 + 1^2 + 2^2} = \sqrt{6}$$
. Vi får

Areal =
$$\int_{S} 1 dS = \int_{0}^{1} \int_{0}^{1} \left| \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right| du dv = \int_{0}^{1} \int_{0}^{1} \sqrt{6} du dv = \sqrt{6}$$

Oppgave 12. (3 poeng) Anta at R er rektangelet $[0,3] \times [0,2]$, og la \mathcal{C} være randkurven til R med positiv orientertering. Da er $\int_{\mathcal{C}} (xy^2 dx - x^2y dy)$ lik:

- A) -36
- B) 20
- C) -30
- D)-45

(Fortsettes på side 6.)

E) 25

Riktig svar: A) -36

Begrunnelse: Vi skal bruke Greens teorem med $P(x,y)=xy^2$ og $Q(x,y)=-x^2y$. Da er $\frac{\partial Q}{\partial x}=-2xy$ og $\frac{\partial P}{\partial y}=2xy$. Dette gir

$$\int_{\mathcal{C}} (P \, dx + Q \, dy) = \iint_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx dy = \int_{0}^{2} \int_{0}^{3} -4xy \, dx dy = -\int_{0}^{2} \left[2x^{2}y \right]_{x=0}^{x=3} \, dy = -\int_{0}^{2} 18y \, dy = -\left[9y^{2} \right]_{0}^{2} = -36$$

Oppgave 13. (3 poeng) Finn alle løsningene til ligningssystemet

$$x+y+z = 2$$
$$2x+2y+3z = 2$$
$$3x+3y+4z = 4$$

er gitt ved:

A) Systemet har ingen løsninger

B)
$$x = 4$$
, $y = 0$, $z = -2$

C)
$$x = 6, y = -2, z = -2$$

D) z = -2, y kan velges fritt, men da må vi la x = 4 - y.

E)
$$x = 4$$
, $y = 1$, $z = -3$

Riktig svar: D) $z=-2,\,y$ kan velges fritt, men da må vi la x=4-y.

Begrunnelse: Vi radreduserer den utvidede matrisen:

$$\left(\begin{array}{ccccc} 1 & 1 & 1 & 2 \\ 2 & 2 & 3 & 2 \\ 3 & 3 & 4 & 4 \end{array}\right) \sim \left(\begin{array}{ccccc} 1 & 1 & 1 & 2 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 1 & -2 \end{array}\right) \sim \left(\begin{array}{ccccc} 1 & 1 & 1 & 2 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

Siden den bakerste søylen ikke er en pivotsøyle, har vi løsninger, og siden den andre søylen ikke er en pivotsøyle, kan y velges fritt. Fra linje nummer 2 ser vi at z=-2, og setter vi dette inn i den øverste linjen, får vi x=2-y-z=4-y.

Oppgave 14. (3 poeng) A er området i xy-planet avgrenset av de fire linjene y = x, y = x + 2, y = -x + 1, y = -x + 3. Hvis vi innfører nye variable u = y - x, v = y + x, blir integralet $\iint_A xy \, dx \, dy$ lik:

A)
$$\int_0^2 \left[\int_1^3 (v^2 - u^2) \, dv \right] du$$

B)
$$\int_0^2 \left[\int_1^3 (v^2 - u^2) uv \, dv \right] du$$

C)
$$\int_0^2 \left[\int_1^3 \frac{v^2 - u^2}{8} \, dv \right] du$$

D)
$$\int_0^2 \left[\int_1^3 (v^2 - u^2) \ln(uv) \, dv \right] du$$

E)
$$\int_0^2 \left[\int_1^3 (v^2 - u^2)(u + v) \, dv \right] du$$

(Fortsettes på side 7.)

 $\frac{\text{Riktig svar: C)}}{\text{Begrunnelse: Vi løser ligningene }u=y-x,\;v=y+x\;\text{for }x\;\text{og }y\;\text{og får}}\frac{\text{Riktig svar: C)}}{x=\frac{v-u}{2}\;\text{og }y=\frac{v+u}{2}}.\;\text{Jacobi-determinanten er}$

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{vmatrix} = -\frac{1}{2}$$

Siden u = y - x varierer mellom 0 og 2, og v = y + x varierer mellom 1 og 3, får vi

$$\iint_A xy \, dx dy = \int_0^2 \left[\int_1^3 \frac{v-u}{2} \cdot \frac{v+u}{2} \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \, dv \right] du = \int_0^2 \left[\int_1^3 \frac{v^2-u^2}{8} \, dv \right] du$$

Oppgave 15. (4 poeng) MATLAB-sekvensen

t=-1:0.01:1;

 $x=t.^3-t;$

 $y=1-t.^2;$

plot(x,y)

axis('equal')

produserer figuren nedenfor. Finn arealet til området avgrenset av kurven.

Riktig svar: D) $\frac{8}{15}$.

Begrunnelse: Kurven som beskrives er

$$\mathbf{r}(t) = (t^3 - t)\mathbf{i} + (1 - t^2)\mathbf{j}$$
 der $t \in [-1, 1]$

og er positivt orientert. Ifølge Greens teorem er arealet omsluttet av kurven, gitt ved

Areal =
$$\int_{\mathcal{C}} x \, dy = \int_{-1}^{1} (t^3 - t)(-2t) \, dt = \int_{-1}^{1} (2t^2 - 2t^4) \, dt = \left[\frac{2t^3}{3} - \frac{2}{5}t^5 \right]_{-1}^{1} = \frac{8}{15}$$

Oppgave 16. (4 poeng) Volumet til legemet avgrenset av paraboloiden $z = x^2 + y^2$ og planet z = 2x + 2y + 2 er

(Fortsettes på side 8.)

- A) 8π
- B) 7π
- C) 10π
- D) 9π
- E) $2\sqrt{3}\pi$

Riktig svar: A) 8π .

Begrunnelse: Skjæringskurven mellom de to flatene er gitt ved

$$x^{2} + y^{2} = 2x + 2y + 2 \iff (x - 1)^{2} + (y - 1)^{2} = 4$$

og er altså en sirkel med radius 2 om punktet (1,1). Lar viD være sirkelskiven, ser vi at

$$Volum = \iint_{D} (2x + 2y + 2 - (x^2 + y^2)) dxdy = \iint_{D} (4 - (x - 1)^2 - (y - 1)^2) dxdy$$

Skifter vi til polarkoordinater med sentrum i (1,1), får vi

Volum =
$$\int_0^2 \int_0^{2\pi} (4 - r^2) r \, d\theta dr = 2\pi \int_0^2 (4r - r^3) \, dr =$$

= $2\pi \left[2r^2 - \frac{r^4}{4} \right]_0^2 = 8\pi$

SLUTT