数字逻辑设计

Digital Logic Design

王鸿鹏 计算机科学与技术学院 wanghp@hit.edu.cn

组合逻辑电路 vs 时序逻辑电路

- ■时序逻辑元件是构成存储电路的基本元件
- ■现态(原态)和 次态(新态)

	构成	定义	结构	电路框图	逻辑函数表达式
数字逻	组合 逻辑 电路	任意时刻的输出── ■ 仅与当前时刻的输入有关 $Z_m = f_m (x_1,, x_n)$	不包含 存储电路	X ₁	$Z_{\rm m}=f_{\rm m}\;(x_1,\;\ldots,\;x_{\rm n})$
辑电路	时序 逻辑 电路	任意时刻的输出与以下有关: ■ 当前时刻的输入 ■ 电路过去(上一个时刻)的 工作状态 $Z_m = f_m(x_1,, x_n, y_1,, y_s)$	包含存储电路	Al A	输出方程, 驱动方程, 状态方程: $Z_{m} = f_{m} (x_{1},,x_{n}, y_{1}^{n},,y_{s}^{n})$ $Y_{r} = g_{r} (x_{1},,x_{n},y_{1},,y_{s})$ $Y_{s}^{n+1} = q_{s} (x_{1},,x_{n},Y_{1}^{n},,Y_{s}^{n})$

时序逻辑元件

- 锁存器 (Latch)
- 触发器 (Flip-Flop)
- 带附加输入端的边沿触发器
- 触发器类型转换
- 时序逻辑的Verilog描述

锁存器和触发器

- 锁存器:没有时钟输入端
- 触发器:有时钟输入端,并且只在时钟信号到来时, 才发生状态转换
- 锁存器与触发器的特性
 - 1. 有两个互补的输出端 Q 和 Q'
 - 2. 有两个稳定的状态: state 0, state 1
 - 3. 在外界信号的刺激下(激励),可以从一个稳定状态转变到另一个稳定状态。
 - 4. 没有外界信号刺激,维持当前状态不变。

双稳态

- 有反馈,不同于普通组合逻辑电路
- 两个输出互补(Q, Q')
- 无输入,无实际用途

基本SR锁存器

(1) 电路构成(或非门)

(2) 功能表

Q (Q_n)——现态

 $Q^+(Q_{n+1})$ ——次态(Next state)

Q=0 (Q=1): state 0

Q=1 (Q=0): state 1

R: 置0端(Reset the output to Q=0)

S: 置1端(Set the output to Q=1)

青0端 R	置1端 S	现态 Q _n	次态 Q _{n+1}	Ĭ
0	0	0	0	│ │保持
0	0	1	1	נינאא
0	1	0	1	置 1
0	1	1	1	-
1	0	0	0	置0
1	0	1	0	
1	1	0		不允许
1	1	1		ついたけ

置1端 次态 置0端 S Q_{n+1} \mathbf{Q}_{n} 0 0 0

输入高电平有效

基本SR锁存器置1功能分析(S=1, R=0)

a.
$$Q_n = 1$$
, $Q'_n = 0$

$$Q_{n+1} = 1$$
, $Q'_{n+1} = 0$
b. $Q_n = 0$, $Q'_n = 1$

$$Q_{n+1} = 1$$
, $Q'_{n+1} = 0$

基本SR锁存器功能分析(S=1, R=1)

$$Q_{n+1} = Q'_{n+1} = 0$$
 两个输出不互补,不允许

如果输入从S=1,R=1变化为S=0,R=0,(考虑门延迟)输出如何变化?

基本SR锁存器次态方程、逻辑符号等

(3) 次态方程 $Q_{n+1}=f(输入,Q_n)$

$$Q_{n+1} = S + \overline{R}Q_n$$

约束条件:(SR = 0)

(4) 逻辑符号

功能表

清0端 R	置1端 S	现态 Q _n	次态 Q _{n+1}
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	_
1	1	1	_

基本SR锁存器驱动表、状态图

(5) 驱动表:完成状态转换需要满足的输入条件

反映时序电路状态转移规律及相应输入、输出取值关系的<u>有向图</u>

圆圈:表示电路的状态

有向线段:表示状态的转换关系

有向线段旁的文字:表示转换条件,即输入信号取值

另一种形式的基本SR锁存器(与非门)

写出下面的锁存器的功能表

逻辑符号:

功能表

置0端 R	置1端 S	现态 Q _n	次态 Q _{n+1}
1	1	0	0
1	1	1	1
1	0	0	1
1	0	1	1
0	1	0	0
0	1	1	0
0	0	0	
0	0	1	_

保持

置 1

置 0

×不允许

锁存器的应用——开关去抖

置0端 R	置1端 S	次态 Q _{n+1}
1	1	Q _n
1	0	1
0	1	0
0	0	

- ❖由于机械弹性作用, 机械式开关在使用中, 通常伴随有一定时间的触点机械抖动。
- ❖触点抖动可能导致判断出错(一次按下或释 放被错误地认为是多次操作)

(7) 典型芯片

74LS279: 4 R-S latches

基本SR锁存器小结

- 优点:结构简单
- 缺点:
 - 输入存在约束,使用不便;
 - 状态改变由输入直接控制。给使用带来局限性。
- 用途:记忆输入状态
- ■基本SR锁存器是众多触发器的鼻祖

门控D锁存器

(1) 电路构成

(4) 逻辑符号

(5) 时序分析(考虑延时)

(2) 功能表

使能端 G	输入端 D	现态 Q _n	次态 Q _{n+1}
0	Х	0	0
0	X	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

(3) 次态方程

$$Q_{n+1} = GD + \overline{G}Q_n$$

不考虑延时

在G为高电平期间,Q端的输出直接复制D端波形

(6) 典型芯片

74LS373: 8D锁存器

门控D锁存器的优缺点

- ◆ 特点: 结构简单,仅一个输入端,不存在输入约束
- ◆ 缺点: 使能端G有效期间,只要输入信号D改变,Q就随 之改变(有时是干扰信号,Q也跟着改变——"空翻")

一个时钟周期内, 状态发生多次变化

"空翻"现象是锁存器(或电平方式触发器)共有的问题

"空翻"使以上器件不能正确实现计数功能!

☆ 关键问题: 电平(电位)触发

☆ 解决方案: 改电平触发为<u>边沿触发</u>

时钟信号的<u>上升沿</u>或 <u>下降沿</u>, 改变状态

什么样的Verilog描述会生成锁存器

只发生在组合逻辑电路中

1、if...else...语句没有else

```
always @ (*) begin
    if (d_en) q = d;
end
```

2、case语句没有default

锁存器的危害:

• 使静态时序分析变得非常复杂

```
req q;
□always @ (*) begin
    if (d en) q2 = d;
    else q2 = 1'h0;
end
palways @ (*) begin
     case (cnt[1:0])
         2'b00 : q = d1;
         2'b01 : q = d2;
         2'b10 : q = d3;
     endcase
end
```

● 对毛刺敏感,不能异步复位,上电后处于不确定的状态

生成锁存器(latch)的示例

生成锁存器(latch)的示例——续

时序逻辑元件

- 锁存器 (Latch)
- 触发器 (Flip-Flop)
- 带附加输入端的边沿触发器
- ■触发器类型转换
- 时序逻辑的Verilog描述

(时钟)触发器

- 受时钟脉冲控制的一种时序逻辑元件,也称时钟触发器。
- 时钟也称同步信号,由时钟脉冲确定状态转换的时刻(何时转换?)
- 由输入信号确定触发器状态转换的方向(如何转换?)
- 将多个触发器的时钟端相连,可以使它们同时动作。

时钟触发器分类

按逻辑功能

SR触发器

D触发器

JK触发器

T触发器

T'触发器

按触发方式

电平触发

<u>边沿触发</u>

边沿触发器

- SR触发器
- D触发器
- JK触发器
- T触发器
- 带附加输入端的触发器

边沿触发器—— SR触发器

(1) 逻辑符号

(3) 次态方程

$$Q_{n+1} = S + \overline{R}Q_n$$

SR = 0 (约束条件)

(2) 功能表(上升沿)

	-/ -/2 170		·/ I / H	•
时钟端	输入端	输入端	现态	次态
CK	R	S	\mathbf{Q}_{n}	Q_{n+1}
1	0	0	0	0
↑	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
<u></u>	1	1	0	_
†	1	1	1	_

(4) 驱动表

Q _n	\rightarrow	Q_{n+1}	R	S
0	\rightarrow	0	X	0
0	\rightarrow	1	0	1
1	\rightarrow	0	1	0
1	\rightarrow	1	0	X

可以从功能表推导出来

SR触发器:输入存在约束

边沿触发器—— D触发器

(1) 逻辑符号

(2) 功能表(上升沿为例)

时钟端 CK	输入端 D	· 现态 Q _n	次态 Q _{n+1}
†	0	0	0
†	0	1	0
†	1	0	1
1	1	1	1

(3) 次态方程

$$Q^{n+1} = D$$

时钟触发器的特点

- ◆ 由时钟脉冲确定状态转换的时刻(即何时转换?)
- ◆ 由输入信号确定触发器状态转换的方向(即如何转换?)

D触发器的特点: 输入无约束 最简单,应用最广

用Verilog实现D触发器

module VrDff(input CLK, input D, output reg Q);

always @ (posedge CLK)

$$Q \leq D;$$

endmodule

边沿触发器-JK触发器

(1) 逻辑符号

(3) 次态方程 $Q_{n+1} = J \bar{Q}_n + \bar{K} Q_n$

, Jk	(
Q_n	00	01	11	10
0	0	0	1	1
1	\bigcap	0	0	1

(2) 功能表(下降沿)

时钟端	输入端	输入端	现态	次态 Q n+1	
CK	J	K	Q _n	Q _{n+1}	
↓	0	0	0	0	伊地
↓	0	0	1	1	保持
↓	0	1	0	0	置0
↓	0	1	1	0	■∪
↓	1	0	0	1	₽
↓	1	0	1	1	置1
↓	1	1	0	1	翻转
→	1	1	1	0	田分干々

功能最全,输 入没有约束

输入	次态 Q n+1	
J	K	Q_{n+1}
0	0	\mathbf{Q}_{n}
0	1	0
1	0	1
1	1	$\overline{\mathbf{Q}}_{n}$

(4) 驱动表

Qn	\rightarrow	Q _{n+1}	J	K
0	\rightarrow	0	0	X
0	\rightarrow	1	1	X
1	\rightarrow	0	X	1
1	\rightarrow	1	X	0

边沿触发器—— JK触发器示例

输入	输入端			
J	K	次态 Q _{n+1}		
0	0	\mathbf{Q}_{n}		
0	1	0		
1	0	1		
1	1	$\overline{\overline{\mathbf{Q}}}_{n}$		

CK				<u> </u>	
J					
K			Γ		
Q	设0	_			

设初态Q=0,请画出Q的波形

边沿触发器—— T触发器

(1) 逻辑符号

(2) 功能表(下降沿)

时钟端 CK	输入端 T	现态 Q _n	次态 Q _{n+1}
+	0	0	0
+	0	1	_1
—	1	0	1
+	1	1	0

保持

翻转

(3) 次态方程

$$Q_{n+1} = J \overline{Q}_n + \overline{K} Q_n$$

$$Q_{n+1} = T \overline{Q}_n + \overline{T} Q_n$$

$$= T \oplus Q_n$$

简单时序电路分析

设初态X=0,Y=0,画出X,Y的波形

输入 J	次态 Q _{n+1}	
0	0	Q _n
0	1	0
1	0	1
1	1	$\overline{\mathbf{Q}}_{n}$

带附加输入端的边沿触发器

■ 带异步清零端和异步置1端

异步: 独立于时钟信号

用途: 为触发器设置指定状态

时钟端 CK	输入端 D	异步置1端 PreN	异步清零端 ClrN	次态 Q n+1
X	X	0	0	不允许
X	X	0	1	1
X	X	1	0	0
†	0	1	1	0
1	1	1	1	1
0,1, ↓	X	1	1	Q _n

用Verilog实现带异步清零端的D触发器

module VrDffC(input CLK, input CLRN, input D,
 output reg Q);

always @ (posedge CLK or posedge CLRN)

if
$$(CLRN=1) Q <= 0;$$

else
$$Q \leq D$$
;

endmodule

带附加输入端的边沿触发器—续

■帯时钟使能端

后果: 失去同步性!

解决方案:

使能端不与时钟端CLK捆绑使用

$$Q_{n+1} = Q_n \bullet CE' + D \bullet CE$$

一般不要让clk做运算,不然实际上是不可控的

带时钟使能端的D触发器

module VrDffSE(input CLK, input CE, input D, output reg Q);

always @ (posedge CLK)

if (CE==1) Q <= D; //时钟使能有效

else Q <

endmodule

JK触发器的分析实例1

写出下图所示电路的次态方程

$$Q_{n+1} = J \overline{Q}_n + \overline{K} Q_n$$

$$= J \overline{Q}_n$$

$$= \overline{A} \overline{Q}_n + \overline{B} \overline{Q}_n \overline{Q}_n$$

$$= \overline{A} \overline{Q}_n \cdot \overline{B} \overline{Q}_n \overline{Q}_n$$

$$= (\overline{A} + \overline{Q}_n) (\overline{B} + \overline{Q}_n) \overline{Q}_n$$

$$= \overline{A} \overline{B} \overline{Q}_n + \overline{B} \overline{Q}_n$$

$$= \overline{B} \overline{Q}_n$$

JK触发器的分析实例2

画出Q端波形图

方法1: 写出JK触发器的次态方程

$$Q_{n+1} = J \overline{Q}_n + \overline{K} Q_n$$

$$= (A \oplus B) \overline{Q}_n + Q_n Q_n$$

$$= A \oplus B + Q_n$$

方法2:在每一个时钟下降沿,计算J和K的取值,从而确定Q端波形

第1个	↓	:	J=0,	K=1	置0
第2个	\	:	J=0,	K=1	置0
第3个	\	:	J=1,	K=1	翻转
44人	ı		1-0	V _0	/中 +土

第5个	↓	:	J=0,	K=0	保持
/ /	•	-	,		ניניוא

输 <i>)</i> J	\端 K	次态 Q n+1
0	0	\mathbf{Q}_{n}
0	1	0
1	0	1
1	1	$\overline{\mathbf{Q}}_{n}$

三人表决器设计

■少数服从多数,结果为多数人的选择。₄

真值表

A	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

F=AB+AC+BC

触发器的应用——存储功能

保存瞬态信号,直到清除为止

触发器的应用——分频/计数

● 利用触发器的置0、置1功能,由多个触发器组成分频 电路,对输入的时钟信号进行分频。

例:分析输出 Q_1 、 Q_2 、 Q_3 与时钟CLK之间的频率关系(R为清零端)

边沿触发器

- D触发器
- SR触发器
- JK触发器
- T触发器
- 带附加输入端的触发器

边沿触发器——总结

时钟边沿触发器的特点

- ◆ 由时钟脉冲边沿确定状态转换的时刻(即何时转换?)
 其余时刻都是保持功能
- ◆ 由输入信号确定触发器状态转换的方向(即如何转换?)

思考:对于一个下降沿触发的JK触发器,如果让它实现保持功能,有几种方法可以做到?

◆ 方法1:

最简单的方法:不给有效的时钟边沿(此时不用考虑J端和K端的信号)

方法

♦ 方法2:

给时钟下降沿,此时触发器的保持功能就必须依靠J端和K端的信号配合才能完成

时序逻辑元件

- 锁存器 (Latch)
- 触发器 (Flip-Flop)
- 带附加输入端的边沿触发器
- ■触发器类型转换
- 时序逻辑的Verilog描述

触发器类型转换-

- ■用得最多的是JK触发器和D触发器
- ■触发器类型可以相互转换(例如,设计中手头没有需要

的触发器类型)

转换方法 -

■代数法

从次态方程入手

1. $JK \rightarrow D \setminus T \setminus SR$

(1) $JK \rightarrow D$

$$J = f_I(D,Q)$$

$$K = f_2 (D,Q)$$

JK:
$$Q_{n+1} = J Q_n + K Q_n$$

D: $Q_{n+1} = D$

$$\mathbf{D} = \mathbf{J} \, \overline{\mathbf{Q}}_{\mathsf{n}} + \overline{\mathbf{K}} \, \mathbf{Q}_{\mathsf{n}}$$

$$D(Q_n + \overline{Q}_n) = J \overline{Q}_n + \overline{K} Q_n \implies$$

触发器类型转换——JK转其他

JK触发器的特例

(2)
$$JK \rightarrow T$$

JK:
$$Q_{n+1} = J \overline{Q}_n + \overline{K} Q_n$$

T: $Q_{n+1} = T \overline{Q}_n + \overline{T} Q_n$

J=T

K=T

(3) $JK \rightarrow SR$

JK:
$$Q_{n+1} = J \overline{Q}_n + \overline{K} Q_n$$

SR: $Q_{n+1} = S + \overline{R} Q_n = S (Q_n + \overline{Q}_n) + \overline{R} Q_n$

$$= SQ_n + S\overline{Q}_n + \overline{R} Q_n$$

$$= SQ_n (R + \overline{R}) + S\overline{Q}_n + \overline{R} Q_n$$

$$= RSQ_n + \overline{R} SQ_n + S\overline{Q}_n + \overline{R} Q_n$$

$$= RSQ_n + S\overline{Q}_n + \overline{R} Q_n$$

RS=0

42

触发器类型转换-

2. $D \rightarrow JK \ T \ SR$

(1)
$$D \rightarrow JK$$

$$D = f(J,K,Q)$$

$$JK: Q_{n+1} = J \overline{Q}_n + \overline{K} Q_n$$

$$D: Q_{n+1} = D$$

$$D = J \overline{Q}_n + \overline{K} Q_n$$

$$D = f(J,K,Q)$$

$$D = J \overline{Q}_n + \overline{K} Q_n \implies$$

(2)
$$D \rightarrow T$$

T:
$$Q_{n+1} = T \oplus Q_n$$

D: $Q_{n+1} = D$ $D = T \oplus Q_n$

(3) $D \rightarrow SR$?

触发器类型转换——卡诺图法

□ 卡诺图法

1. $T \rightarrow JK$, D, SR

(1) $T \rightarrow JK$

Q _n	→	Q_{n+1}	Т	J	K
0	→	0	0	0	X
0	→	1	1	1	X
1	→	0	1	X	1
1	→	1	0	X	0

$$T = f(J,K,Q)$$

(2)	T-	\rightarrow	
\ - /		′	

Q _n	→	Q_{n+1}	Т	D
0	→	0	0	0
0	→	1	1	1
1	→	0	1	0
1	→	1	0	0

$$T = f(D,Q)$$

$$T = D \oplus Q_n$$

触发器类型转换——卡诺图法

(3) $T \rightarrow SR$

Q _n	→	Q_{n+1}	Т	R	S
0	→	0	0	X	0
0	→	1	1	0	1
1	→	0	1	1	0
1	→	1	0	0	X

2.
$$SR \rightarrow JK$$
, D, T

时序逻辑元件

- 锁存器 (Latch)
- 触发器 (Flip-Flop)
- 带附加输入端的边沿触发器
- ■触发器类型转换
- 时序逻辑的Verilog描述

时序逻辑的Verilog描述

- 时序逻辑电路在逻辑功能上的特点是**任意时刻**输出不仅 取决于当时的**输入信号**,还取决于**电路原来的状态**。
- 时序逻辑电路的变化通过时钟沿触发,需要使用**时钟沿 触发**的always块描述。
- ■用always块描述时序逻辑电路时,用非阻塞赋值。

时钟沿触发的always块描述

```
always @(〈敏感信号列表〉)
 begin
   //过程赋值
   //if-else、case选择语句
   //for、while等循环块
  end
边沿触发: 时钟处在上升沿或下降沿时, 语句被执行。
 always @(posedge clk) ——时钟上升沿触发
 always @(negedge clk) ——时钟下降沿触发
 always @( posedge clk or negedge rst n ) 带异步复位的
 时钟上升沿触发
```

非阻塞赋值

块内的赋值语句同时进行: 先同时采样, 最后一起更新

时序电路特点:输出不会随输入变化而立即变化

```
■ 非阻塞赋值

always @ ( posedge clk )
begin
3 c<= b;
5 b<= a;
2 a<= d;
End

$ 结果:
a=2, b=5
c=3, d=2
```

初值: a=5, b=3 c=10, <u>d=2</u>

结果与书写的顺序无关 (原因:同步更新)

本质上,在一个时钟沿触发里,a得到d的值,但b得到的是a的旧值,c得到的是b的旧值

JK触发器的Verilog描述

- 通过时钟沿触发,需要使用时钟沿触发的always块描述。
- 用always块描述时序逻辑电路时,用非阻塞赋值。


```
pmodule J K (
               wire clk,
     input
     input
               wire j,
     input
               wire k,
     input
               wire rst,
     output
                req Q
);
     wire rst n;
     assign rst n=~rst;
     always@( posedge clk or negedge rst n )begin
          if (~rst n)
               0 \le 1'b0;
          else
               Q \le j\&\&(\sim Q) | | (\sim k) \&\&Q;
                                           Q_{n+1} = J \overline{Q}_n + \overline{K} Q_n
     end
     endmodule
```

Testbench-时序逻辑


```
輸入端 次态 Q<sub>n+1</sub> の 0 Q<sub>n</sub> の 1 0 1 1 1 Q<sub>n</sub>
```

```
`timescale 1ns/1ps
module J K sim();
req clk;
reg rst;
reg j,k;
wire 0;
J K u J K(.clk(clk),.rst(rst),.j(j),.k(k),.Q(Q));
initial begin
    clk=1'b0; j=1'b0; k=1'b1; rst=1'b1;
    #20 rst=1'b0;j=1'b0;k=1'b0;
    #20 j=1'b0;k=1'b1;
    #20 j=1'b1; k=1'b0;
    #20 j=1'b1; k=1'b1;
end
always #10 clk=~clk;
                                            51
endmodule
```

时序逻辑元件

- 锁存器 (Latch)
- 触发器 (Flip-Flop)
- 带附加输入端的边沿触发器
- ■触发器类型转换
- 时序逻辑的Verilog描述