

Fakulta informatiky

Semestrálne zadanie 1

Práčka – Fuzifikácia procesu prania

PhDr. Ing. Mgr. Miroslav Reiter, DBA

Kontroling

prof. Ing. Štefan Kozák, PhD.

10.12.2022

1. Zadanie

Pre daný process vytvorte prostredníctvom GUI fuzzy **optimálny fuzzy model model** na základe I/O údajov zadaných numericky (rozsah) alebo pomocou lingvistických premenných. Fuzzy model vytvorte a otestujte na základe:

- a. výberu rôznych funkcií príslušnosti pre vstupy a výstupy a ich počtu,
- b. zadaných rôznych rozsahov vstupných a výstupných premenných,
- c. Interaktívnym návrhom rožných pravidiel a ich počtu,
- d. výberu defuzzikačných metód.

Vybraný návrh fuzzy modelu otestujte a vyberte "optimálny" fuzzy model pre zvolený proces. Výsledky súhrne spracujte do MS WORD s numerickým a grafickým spracovaním výsledkov. Odporúčanie - každý študent si vyberie jeden typ procesu z typov uvedených nižšie, ak sa nedokážete rozhodnúť pre typ procesu, zadám Vám ho na Vaše požiadanie.

2. Výber Fuzzy modelu a procesu

V rámci zadaní sme si vybrali rovno prvý proces a to fuzifikáciu procesu prania. Uvedené zadanie sme si vybrali z osobných dôvodov, pretože s manželkou sme mali dlhú diskusiu resp. polemiku ohľadom výberu značky, modelu a výber podľa hmotnosti vid. príloha.

Najprv som sme explicitne zadefinovali a namodelovali v jazyku BPMN proces prania. Na začiatku celého procesu máme zašpinenú bielizeň a celý proces by mal ideálne skončiť čistou vypranou bielizňou. V proces máme rozhodovania, ktoré je reprezentované blokom gateway/brána, kde sa rozhoduje podľa hmotnosti a zašpinenia bielizne.

3. Model, Vstupy a Výstupy

V MATLABe v GUI nástroji pre Fuzzy (príkaz fuzzy v cmd) sme si vytvorili fuzzy model. Na vstupe sa podľa zadania definovali 2 premenné:

- 1. Hmotnosť bielizne M (1, 8) čiže rozsah 1-8 Kg
- 2. **Zašpinenie bielizne ZB** (20, 100) čiže rozsah 20-100 %. Čistú bielizeň 0-19 % by asi nemalo moc zmysel dávať do práčky.

Na výstupe sa podľa zadania definovali 1 premennú:

Množstvo pracieho prášku MP (15, 110)

Vytvorili sme si model s dvomi vstupmi a jedným výstupom. Výstup je počítaný **defuzzifikačnou ťažiskou funkciou** t.j. **centroid**, ktorá bola odporúčaná na cvičeniach a prednáškach pre tento typ problémov.

Ďalej sme si nastavili vstup hmotnosť bielizne. Použili sme su **lichobežníkovú funkciu príslušnosti** t.j. **trampf krivky**, ktoré reprezentovali nízku a vysokú hmotnosť bielizne.

Rovnako sme postupovali v prípade ďalšej premennej a to zašpinenie bielizne pre nízke a vysoké.

Následne sme si zadefinovali rules t.j. pravidlá. Rozhodli sme sa pre 2 priamočiare logické pravidlá pomocou logické operátora AND.

- 1. Ak je Zašpinenie bielizne ZB vysoké a súčasne Hmotnosť bielizne M je vysoká, tak potom výstup Množstvo pracieho prášku MP je veľké.
- 2. Ak je Zašpinenie bielizne ZB nízke a súčasne Hmotnosť bielizne M je nízka, tak potom výstup Množstvo pracieho prášku MP je nízke.

Výstup je následne vyhodnotený fuzzifikáciou pre plynulé posúvanie hodnoty na základe vstupov.

Cez View si potom nechali vykresliť grafy. Graf pre ZB:

Graf pre M:

Surface graf:

Prílohy

