Álgebra Linear I - Lista 13

Matriz em uma Base. Mudança de Base

Respostas

- 1) Considere as seguintes transformações lineares:
- 1. P_1 , projeção ortogonal no plano x + y + z = 0,
- 2. $P_2,$ projeção ortogonal na reta $(t,-t,2t),\,t\in\mathbb{R},$
- 3. P_3 , projeção no plano x+y+z=0 na direção do vetor (1,0,1),
- 4. E_1 , espelhamento no plano x + y + z = 0,
- 5. E_2 , espelhamento na reta $(t, -t, 2t), t \in \mathbb{R}$.

Encontre bases onde as matrizes de P_1 e P_3 sejam da forma

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)$$

e as matrizes de P_2 , E_1 e E_2 da forma

$$\left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right), \quad \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array}\right), \quad \left(\begin{array}{ccc} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array}\right),$$

respetivamente.

Resposta:

- para a projeção P_1 : $\{(1,0,-1),(1,1,1),(1,-1,0)\},$
- para a projeção P_3 : $\{(1,0,-1),(1,0,1),(1,-1,0)\},$
- para a projeção P_2 : $\{(2,0,-1),(1,-1,2),(1,1,0)\},$
- para o espelhamento E_1 : $\{(1,0,-1),(1,-1,0),(1,1,1)\},$

- para o espelhamento E_2 : $\{(1,1,0),(1,-1,2),(2,0,-1)\}.$
- 2) Considere a transformação linear $T \colon \mathbb{R}^3 \to \mathbb{R}^3$ definida por

$$T(v) = v \times (1, 1, 1).$$

Determine a matriz de T nas seguintes bases:

1.
$$\beta = \{(1,1,1), (1,0,-1), (1,-2,1)\},\$$

2.
$$\gamma = \{(1, 1, 1), (1, 0, -1), (1, -1, 0)\},\$$

3.
$$\mathcal{E} = \{(1,0,0), (0,1,0), (0,0,1)\}.$$

Sejam $[T]_{\beta},\,[T]_{\gamma}$ e $[T]_{\mathcal{E}}$ das matrizes acima.

Veja que estas matrizes são semelhantes. Escreva

$$[T]_{\beta} = P^{-1}[T]_{\gamma}P, \quad [T]_{\beta} = Q^{-1}[T]_{\mathcal{E}}Q,$$

e interprete as matrizes $P \in Q$.

Resposta: Observe que

$$T(1,1,1) = \bar{0}, \quad T(1,0,-1) = (1,-2,1), \quad T(1,-2,1) = (-3,0,3).$$

Portanto,

$$[T]_{\beta} = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & -3 \\ 0 & 1 & 0 \end{array}\right).$$

Escreva,

$$(1, -2, 1) = a(1, 1, 1) + b(1, 0, -1) + c(1, -1, 0),$$

e veja que a = 0, b = -1 e c = 2.

Veja também que

$$T(1,-1,0) = (-1,-1,2),$$

e escreva

$$(-1, -1, 2) = a(1, 1, 1) + b(1, 0, -1) + c(1, -1, 0),$$

onde a = 0, b = -2 e c = 1. Portanto,

$$[T]_{\gamma} = \left(\begin{array}{ccc} 0 & 0 & 0\\ 0 & -1 & -2\\ 0 & 2 & 1 \end{array}\right).$$

Finalmente,

$$[T]_{\mathcal{E}} = \left(\begin{array}{ccc} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{array} \right).$$

Observe que

$$[T]_{\mathcal{E}} = A^{-1}[T]_{\beta}A, \quad [T]_{\mathcal{E}} = B^{-1}[T]_{\gamma}B,$$

onde A é a matriz de mudança da base canônica á base β e B é a matriz de mudança da base canônica á base γ . Portanto,

$$\begin{split} [T]_{\beta} &= A[T]_{\mathcal{E}}A^{-1} = A(B^{-1}[T]_{\gamma}B)A^{-1} = (AB^{-1})[T]_{\gamma}(BA^{-1}) = \\ &= (BA^{-1})^{-1}[T]_{\gamma}(BA^{-1}). \end{split}$$

Agora é suficiente considerar $P=BA^{-1}$, que é a matriz de mudança de base da base β á base γ .

3) Considere a matriz

$$A = \begin{pmatrix} 5 & 0 & 0 \\ 4 & -4 & -2 \\ -2 & 12 & 6 \end{pmatrix}.$$

Sabendo que os autovalores de A são 5, 0 e 2.

- Ache um autovetor associado a cada autovalor.
- Determine uma base β de autovetores de A.
- Determine a matriz de A na base β .
- \bullet Encontre a forma diagonal de A.
- Encontre uma matriz P tal que $A = PDP^{-1}$.
- Interprete P.

Resposta: O autovetor associado a 5 é (1,0,2), o autovetor associado a 0 é (0,1,-2), e o autovetor associado a 2 é (0,1,-3).

A forma diagonal é

$$D = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

A matriz P é

$$P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 2 & -2 & -3 \end{pmatrix}.$$

Esta matriz representa a mudança de base da base β à base canônica.

- **4)** Seja A uma transformação linear de \mathbb{R}^2 em \mathbb{R}^2 tal que a matriz de A na base canônica tem determinante zero e traço 2. Sabendo que A(1,1) = (0,0) que os autovetores associados a autovetores diferentes são ortogonais:
- (a) Determine os autovalores de A.
- (b) Determine uma base de autovetores de A.
- (c) Determine a matriz A.

Resposta: Um autovalor de A é 0 (pois A(1,1) = (0,0) = 0(1,1)). O traço de A é 2, e como ele é igual à soma dos autovalores (contados com multiplicidade) de A, se λ é o outro autovalor de A, temos:

$$0 + \lambda = 2$$
, $\lambda = 2$.

Como os autovetores de A associados a 0 e 2 são ortogonais, portanto, os autovetores associados a 2 são ortogonais a (1,1), logo um autovetor associado a 2 é (1,-1). Portanto, uma base de autovetores de A é $\{(1,1)(1,-1)\}$.

Finalmente, para determinar a matriz de A escrevemos A na base ortonormal β de autovetores $\{(2/\sqrt{2},2/\sqrt{2}),(2/\sqrt{2},-2/\sqrt{2})\},$

$$[A]_{\beta} = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}.$$

Portanto, é suficiente considerar a matriz P de mudança da base β à canônica

$$P = \begin{pmatrix} \sqrt{2}/2 & -\sqrt{2}/2 \\ \sqrt{2}/2 & \sqrt{2}/2 \end{pmatrix}$$

e escrever

$$A = P[A]_{\beta}P^{-1} =$$

$$= \begin{pmatrix} \sqrt{2}/2 & -\sqrt{2}/2 \\ \sqrt{2}/2 & \sqrt{2}/2 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} \sqrt{2}/2 & \sqrt{2}/2 \\ -\sqrt{2}/2 & \sqrt{2}/2 \end{pmatrix} =$$

$$= \begin{pmatrix} \sqrt{2}/2 & -\sqrt{2}/2 \\ \sqrt{2}/2 & \sqrt{2}/2 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ -\sqrt{2} & \sqrt{2} \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}.$$

Verifique que a matriz A está certa.

5) Considere a transformação linear $A\colon \mathbb{R}^3 \to \mathbb{R}^3$ cuja matriz na base canônica é

$$[A]_{\mathcal{E}} = \left(\begin{array}{ccc} 0 & 1 & 0 \\ -1 & 1 & 1 \\ -1 & 0 & 2 \end{array} \right).$$

Encontre uma base $\beta = \{v_1, v_2, v_3\}$ tal que a matriz de A na base β seja

$$[A]_{\beta} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{array}\right).$$

Resposta: O polinômio característico de A é:

$$\begin{vmatrix} -\lambda & 1 & 0 \\ -1 & 1 - \lambda & 1 \\ -1 & 0 & 2 - \lambda \end{vmatrix} = (-\lambda)(1 - \lambda)(2 - \lambda) - (-1(2 - \lambda) + 1) =$$
$$= (-\lambda)(\lambda^2 - 3\lambda + 2) + 1 - \lambda =$$
$$= -\lambda^3 + 3\lambda^2 - 3\lambda + 1 = (1 - \lambda)^3.$$

Portanto, 1 é o único autovalor que tem multiplicidade 3.

Para determinar os autovetores de 1 devemos resolver o sistema:

$$\begin{pmatrix} 0-1 & 1 & 0 \\ -1 & 1-1 & 1 \\ -1 & 0 & 2-1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Ou seja, o sistema

$$-x + y = 0$$
 $-x + z = 0$, $-x + z = 0$.

As soluções são da forma (t, t, t), $t \in \mathbb{R}$. Portanto, somente é possível encontrar um autovetor linearmente independente. Por exemplo, (1, 1, 1).

Observe que a matriz não é diagonalizável, pois não existe uma base de autovetores. Procuramos agora uma base $\beta = \{u, v, w\}$ tal que

$$A(u) = u + v, \quad A(v) = v + w, \quad A(w) = w.$$

Portanto, w é um autovetor de A associado a 1. Podemos escolher (1, 1, 1). Portanto,

$$A(v) = v + (1, 1, 1).$$

Em coordenadas temos v = (x, y, z) (na base canônica):

$$\begin{pmatrix} 0 & 1 & 0 \\ -1 & 1 & 1 \\ -1 & 0 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

Obtemos o sistema

$$y = x + 1$$
, $-x + y + z = y + 1$, $-x + 2z = z + 1$.

Ou seja,

$$-x + y = 1$$
, $-x + z = 1$, $-x + z = 1$.

Podemos escolher o vetor v = (0, 1, 1).

Finalmente,

$$A(u) = u + v = u + (0, 1, 1).$$

Em coordenadas temos u = (x, y, z) (na base canônica):

$$\begin{pmatrix} 0 & 1 & 0 \\ -1 & 1 & 1 \\ -1 & 0 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.$$

Obtemos o sistema

$$y = x + 0$$
, $-x + y + z = y + 1$, $-x + 2z = z + 1$.

Ou seja,

$$-x + y = 0$$
, $-x + z = 1$, $-x + z = 1$.

Podemos escolher o vetor u = (0, 0, 1).

Portanto,

$$\beta = \{(0,0,1), (0,1,1), (1,1,1)\}.$$

Verifique que:

$$A(0,0,1) = (0,1,2) = (0,0,1) + (0,1,1),$$

 $A(0,1,1) = (1,2,2) = (0,1,1) + (1,1,1),$
 $A(1,1,1) = (1,1,1).$

6) Considere a transformação linear $T\colon \mathbb{R}^3 \to \mathbb{R}^3$ cuja matriz na base canônica

$$\mathcal{E} = \{(1,0,0), (0,1,0), (0,0,1)\}$$

é

$$[T]_{\mathcal{E}} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix}.$$

- a) Determine o polinômio característico p_T de T.
- b) Determine os autovalores de T e os autovetores correspondentes.

Considere a base β de \mathbb{R}^3

$$\beta = \{(0,-1,1), (0,1,1), (1,0,1)\}.$$

- c) Determine explicitamente a matriz P de mudança de base da base canônica à base β .
- d) Determine a primeira coluna da matriz $[T]_{\beta}$ de T na base β .
- e) Encontre uma base γ de \mathbb{R}^3 tal que a matriz $[T]_{\gamma}$ de T na base γ seja

$$[T]_{\gamma} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{array}\right).$$

Respostas: O polinômio característico p_T de T 'e

$$\begin{vmatrix} 1 - \lambda & 0 & 1 \\ 0 & 3 - \lambda & 1 \\ 0 & 0 & 3 - \lambda \end{vmatrix} = (1 - \lambda)(3 - \lambda)^2 = -\lambda^3 + 7\lambda^2 - 15\lambda + 9.$$

Portanto, os autovalores são 1 (simples) e 3 (multiplicidade 2).

Os autovetores associados a 1 são as soluções não nulas do sistema

$$\begin{pmatrix} 1-1 & 0 & 1 \\ 0 & 3-1 & 1 \\ 0 & 0 & 3-1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Isto é, y = 0 = z. Logo os autovetores associados a 1 são da forma (t, 0, 0), $t \neq 0$.

Analogamente, os autovetores associados a 3 são as soluções não nulas do sistema

$$\begin{pmatrix} 1-3 & 0 & 1 \\ 0 & 3-3 & 1 \\ 0 & 0 & 3-3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -2 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Isto é, $z=0,\,x=0.$ Logo os autovetores associados a 3 são da forma $(0,t,0),\,t\neq0.$

Observe que não existem dois autovetores linearmente independentes associados ao autovalor 3 de multiplicidade 2, portanto a matriz não é diagonalizável.

Observe que a matriz de mudança de base da base β à base canônica é:

$$M = \left(\begin{array}{rrr} 0 & 0 & 1 \\ -1 & 1 & 0 \\ 1 & 1 & 1 \end{array}\right).$$

Portanto, a matriz de mudança de base da base canônica à base β é

$$P = M^{-1}$$
.

Usaremos o método de escalonamento para calcular a matriz inversa de M:

$$\begin{pmatrix} 0 & 0 & 1 \\ -1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 1 \\ -1 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 1 \\ -1/2 & 1/2 & 1/2 \\ 1 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1/2 & -1/2 & 1/2 \\ -1/2 & 1/2 & 1/2 \\ 1 & 0 & 0 \end{pmatrix}$$

Logo,

$$P = \left(\begin{array}{ccc} -1/2 & -1/2 & 1/2 \\ -1/2 & 1/2 & 1/2 \\ 1 & 0 & 0 \end{array}\right).$$

Observe que

$$[T]_{\beta} = P [T]_{\mathcal{E}} P^{-1}.$$

Logo,

$$[T]_{\beta} = \begin{pmatrix} -1/2 & -1/2 & 1/2 \\ -1/2 & 1/2 & 1/2 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ -1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} -1/2 & -1/2 & 1/2 \\ -1/2 & 1/2 & 1/2 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 2 \\ -2 & 4 & 1 \\ 3 & 3 & 3 \end{pmatrix} = \begin{pmatrix} 2 & -1 & 0 \\ 0 & 3 & 1 \\ 1 & 1 & 2 \end{pmatrix}.$$

Observe que $[T]_{\beta}$ e $[T]_{\mathcal{E}}$ têm o mesmo traço e confira que

$$T(0,-1,1) = (1,-2,3) = 2(0,-1,1) + 0(0,1,1) + 1(1,0,1);$$

 $T(0,1,1) = (1,4,3) = -1(0,-1,1) + 3(0,1,1) + 1(1,0,1);$
 $T(1,0,1) = (2,1,3) = 0(0,-1,1) + 1(0,1,1) + 2(1,0,1).$

Seja $\gamma = \{u, v, w\}$. Observe que pela definição de $[T]_{\gamma}$,

$$T(u) = u$$
, $T(v) = 3v$, $T(w) = 3w + v$.

Portanto, u e v devem ser autovetores de T associados a 1 e 3, respetivamente. Pelo segundo item podemos escolher

$$u = (1, 0, 0), \quad v = (0, 1, 0).$$

Escrevamos (na base canônica) w=(a,b,c). Sabemos que

$$T(w) = (a + c, 3b + c, 3c).$$

Portanto,

$$(a+c,3b+c,3c) = (3a,3b,3c) + (0,1,0).$$

Logo

$$a = 1/2, \quad c = 1, \quad b = t, t \in \mathbb{R}.$$

Logo

$$\gamma = \{(1,0,0), (0,1,0), (1/2,t,1)\}, \quad t \in \mathbb{R}.$$