A Book of Abstract Algebra (2nd Edition)

a book of Albothact Aligen	71 G (211G 20					
Chapter AA, Problem 8E	Bookmark	Show all steps: ON				
Pro	Problem					
Prove the following:						
$A \cup 0 = A \text{ and } A \cap 0 = 0.$						
Step-by-s	tep solution					
Step	1 of 3					
Objective:-						
The objective is to prove $A \cup \Phi = A$ and $A \cap A$	$ abla \Phi = \Phi. $					
Comment						
Step	2 of 3					
Exercise (a):-						
Let A and B are two sets. Let $x \in A \cup \Phi$.						
The union of two sets A and B is:-						
$A \cup B = \{x : x \in A \ or \ x \in B\}$						
According to this definition:-						
$A \cup \Phi \Rightarrow x \in A \text{ or } x \in \Phi$						
$\Rightarrow x \in A$ So,						
$A \cup \Phi \subseteq A$ (1)						
Let $x \in A$.						
$A \Rightarrow x \in A \text{ or } x \in \Phi$						
$\Rightarrow x \in A \cup \Phi$						

So,(2) $A \subseteq A \cup \Phi$ Let us consider the equation (1) and (2). $A \cup \Phi = A$ Proved Comment **Step 3** of 3 Exercise (b):-Let A and B are two sets. Let $x \in A \cap \Phi$. The intersection of two sets A and B is:- $A \cap B = \{x : x \in A \text{ and } x \in B\}$ According to this definition:- $A \cap \Phi \Rightarrow x \in A \text{ and } x \in \Phi$ $\Rightarrow x \in \Phi$ Since there is only empty set common in set A and empty set. So,(3) $A \cap \Phi \subseteq \Phi$ Let $x \in \Phi$. $A \Rightarrow x \in A \text{ and } x \in \Phi$ $\Rightarrow x \in A \cap \Phi$ So, $\Phi \subseteq A \cap \Phi$(4) Let us consider the equation (3) and (4). $A \cap \Phi = \Phi$ Proved Comment