Data Link Layer (3)

COMP90007 Internet Technologies

Lecturer: Ling Luo

Semester 2, 2024

Flow Control

- Strategies to control when sender can send next frame
 - Feedback based flow control
 - Rate based flow control

A Very Simple Protocol

Acknowledged Transmission

- Case: fast sender vs. slow receiver, the receiver's buffer space constrained
- Requires acknowledgement

Noisy Channel Protocol

- Case: frames can be lost either entirely or partially
- Requires timeout function to determine arrival or non-arrival of complete frames
- Requires distinction between frames already sent/received and those being re-transmitted

Stop and Wait Protocol

- ARQ (Automatic Repeat reQuest)
 - Ack, timeout, and sequence number

Link Utilisation in Stop and Wait Protocols

Link Utilisation (U) measures the efficiency of communication.

 $\mathbf{T_f}$ = Transmission delay, time needed to transmit a frame of length L;

 T_p = Propagation delay;

 T_a = Time for transmitting an Ack, and we can assume T_a = 0.

$$T_t = T_f + 2T_p$$

 $U = (Time of transmitting a frame)/(Total time for the transfer) = <math>T_f / T_t$

Given bit rate B and $T_f = L/B$, we have

$$U = T_f / (T_f + 2T_p) = (L/B) / (L/B + 2T_p) = L/ (L+ 2T_p B).$$

Link Utilisation in Stop and Wait Protocols

For a link with B=1 Mbps, T_p =50ms and frame size 10Kb, what is the link utilisation?

$$U = L/(L + 2T_p B)$$

= 10000/(10000+2*0.05*10⁶)=1/11

Sliding Window Protocols

- Sending window: Sender maintains a set of sequence numbers corresponding to frames allowed to send
- Receiving window: Receiver maintains a set of sequence numbers corresponding to frames allowed to accept
- What is the window size of Stop and Wait protocol?

Sliding Window Protocols

Link Utilisation:

Stop and Wait

50% utilisation

Sliding Window

100% utilisation

Go-Back-N

- Senders don't need to wait for acknowledgement for each frame before sending next frame
 - Receiver window size = 1, Sender window size is N
 - Long transmission time needs to be considered when programming timeouts e.g. low bandwidth or long distance

Selective Repeat

- Receiver accepts frames anywhere in receive window
 - NAK (negative ack) triggers the retransmission of a missing frame before a timeout
 - Cumulative ack indicates the highest in-order frame received

sender

Go-Back-N vs Selective Repeat

- Go-Back-N: receiver discards all subsequent frames from error point, sending no acknowledgement, until receiving the next frame in sequence
- Selective Repeat: receiver buffers good frames after an error point, and relies on sender to resend oldest unacknowledged frames
- Trade-off between efficient use of bandwidth and data link layer buffer space