CS 435: Introduction to Cryptography

2020 Fall

Final Exam

Professor Somesh Jha Dec 12, 2020

1. (20 points) Let G be a cyclic group of order or size q (a prime) with generator g. Let $S \subseteq G$ be a subset of G of size k. Assume that Eve can compute the discrete logs of all the elements in set S. Show that Eve can compute discrete log of an arbitrary element of G with probability $\frac{k}{q}$.

- 2. (20 points) Let n be a positive integer. Justify whether following statements are true or false.
 - (Stmt 1): For all x and y in Z_n there exists a $z \in Z_n$ such that $x \equiv yz \pmod{n}$.
 - (Stmt 2): For all x and y in Z_n^* there exists a $z \in Z_n^*$ such that $x \equiv yz \pmod{n}$.
- 3. (30 points) Complete the following parts:
 - i. Describe the RSA-signature scheme.
 - ii. Describe how CRT can be used to speed up the signing step in the RSA-signature scheme.
 - iii. Describe two attacks on the scheme given above (i.e., no-message attack and multiplicative attack).
 - iv. Briefly describe how "Hash-then-Sign" paradigm addresses the attacks shown previously.
- 4. (10 points) Describe in detail the man-in-the-middle attack on the Diffie-Hellman key-exchange protocol whereby the adversary ends up sharing a key k_A with Alice and a different key k_B with Bob, and Alice and Bob cannot detect that anything has gone wrong. Briefly describe a fix for this attack.
- 5. (10 points) In class we showed an attack on the plain RSA signature scheme in which an attacker forges a signature on an arbitrary message using two signing queries. Show how an attacker can forge a signature on an arbitrary message using a single signing query.
- 6. (10 points) Consider the system of equations given below:

$$2x \equiv 2 \pmod{9}$$

 $4x \equiv 3 \pmod{5}$

 $5x \equiv 2 \pmod{7}$

Transform the above system of equations so that CRT theorem applies, and then solve it.