EXHIBIT B

U.S. PATENT APPLICATION SERIAL NO. 09/910,950 CLEAN VERSION OF CLAIMS PENDING AFTER ENTRY OF INSTANT AMENDMENT

5. A compound having the structure:

or a pharmaceutically acceptable salt thereof, wherein:

A is $-(CH_2)_bCH=CH(CH_2)_c$ -;

 R_1 is aryl, heteroaryl or heterocycle fused to phenyl, each being optionally substituted with one to four substituents independently selected from R_3 ;

 $R_2 \text{ is -R}_3, -R_4, -(CH_2)_bC(=O)R_5, -(CH_2)_bC(=O)OR_5, -(CH_2)_bC(=O)NR_5R_6, \\ -(CH_2)_bC(=O)NR_5(CH_2)_cC(=O)R_6, -(CH_2)_bNR_5C(=O)R_6, \\ -(CH_2)_bNR_5C(=O)NR_6R_7, -(CH_2)_bNR_5R_6, -(CH_2)_bOR_5, \\ -(CH_2)_bSO_aR_5 \text{ or -}(CH_2)_bSO_2NR_5R_6; \\ a \text{ is 1, 2, 3, 4, 5 or 6;}$

b and c are the same or different and at each occurrence independently selected from 0, 1, 2, 3 or 4;

d is at each occurrence 0, 1 or 2;

 R_3 is at each occurrence independently halogen, hydroxy, carboxy, alkyl, alkoxy, haloalkyl, acyloxy, thioalkyl, sulfinylalkyl, sulfonylalkyl, hydroxyalkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heterocycle, substituted heterocycle, heterocyclealkyl, substituted heterocyclealkyl, $-C(=O)OR_8$, $-C(=O)R_8$, $-C(O)NR_8R_9$, $-C(=O)NR_8OR_9$, $-SO_2NR_8R_9$, $-NR_8SO_2R_9$, -CN, $-NO_2$, $-NR_8R_9$, $-NR_8C(=O)R_9$, $-NR_8C(=O)(CH_2)_bOR_9$, $-NR_8C(=O)(CH_2)_bR_9$, $-O(CH_2)_bNR_8R_9$, or heterocycle fused to phenyl;

- R_4 is alkyl, aryl, arylalkyl, heterocycle or heterocyclealkyl, each being optionally substituted with one to four substituents independently selected from R_3 , or R_4 is halogen or hydroxy;
- R₅, R₆ and R₇ are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle or heterocyclealkyl, wherein each of R₅, R₆ and R₇ are optionally substituted with one to four substituents independently selected from R₃; and
- R₈ and R₉ are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle, or heterocyclealkyl, or R₈ and R₉ taken together with the atom or atoms to which they are bonded form a heterocycle, wherein each of R₈, R₉, and R₈ and R₉ taken together to form a heterocycle are optionally substituted with one to four substituents independently selected from R₃.
- 6. A compound having the structure:

A is
$$-(CH_2)_b C \equiv C(CH_2)_c -$$
;

 R_1 is aryl, heteroaryl or heterocycle fused to phenyl, each being optionally substituted with one to four substituents independently selected from R_3 ;

$$R_2$$
 is $-R_3$, $-R_4$, $-(CH_2)_bC(=O)R_5$, $-(CH_2)_bC(=O)OR_5$, $-(CH_2)_bC(=O)NR_5R_6$, $-(CH_2)_bC(=O)NR_5(CH_2)_cC(=O)R_6$, $-(CH_2)_bNR_5C(=O)R_6$, $-(CH_2)_bNR_5C(=O)NR_6R_7$, $-(CH_2)_bNR_5R_6$, $-(CH_2)_bOR_5$, $-(CH_2)_bSO_aR_5$ or $-(CH_2)_bSO_2NR_5R_6$, a is $1, 2, 3, 4, 5$ or a :

b and c are the same or different and at each occurrence independently selected from 0, 1, 2, 3 or 4;

d is at each occurrence 0, 1 or 2;

- R_3 is at each occurrence independently halogen, hydroxy, carboxy, alkyl, alkoxy, haloalkyl, acyloxy, thioalkyl, sulfinylalkyl, sulfonylalkyl, hydroxyalkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heterocycle, substituted heterocycle, heterocyclealkyl, substituted heterocyclealkyl, $-C(=O)OR_8$, $-C(=O)R_8$, $-C(O)NR_8R_9$, $-C(=O)NR_8OR_9$, $-SO_2NR_8R_9$, $-NR_8SO_2R_9$, -CN, $-NO_2$, $-NR_8R_9$, $-NR_8C(=O)R_9$, $-NR_8C(=O)(CH_2)_bOR_9$, $-NR_8C(=O)(CH_2)_bR_9$, $-O(CH_2)_bNR_8R_9$, or heterocycle fused to phenyl;
- R₄ is alkyl, aryl, arylalkyl, heterocycle or heterocyclealkyl, each being optionally substituted with one to four substituents independently selected from R₃, or R₄ is halogen or hydroxy;
- R₅, R₆ and R₇ are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle or heterocyclealkyl, wherein each of R₅, R₆ and R₇ are optionally substituted with one to four substituents independently selected from R₃; and
- R₈ and R₉ are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle, or heterocyclealkyl, or R₈ and R₉ taken together with the atom or atoms to which they are bonded form a heterocycle, wherein each of R₈, R₉, and R₈ and R₉ taken together to form a heterocycle are optionally substituted with one to four substituents independently selected from R₃.

10. A compound having the structure:

or a pharmaceutically acceptable salt thereof, wherein:

A is a direct bond, $-(CH_2)_a$, $-(CH_2)_b$ CH=CH(CH₂)_c-, or $-(CH_2)_b$ C=C(CH₂)_c-;

- 74 - NY2 - 1325112.1

 R_1 is aryl, heteroaryl or heterocycle fused to phenyl, each being optionally substituted with one to four substituents independently selected from R_3 ;

 R_2 is $-(CH_2)_bC(=O)R_{5:}$

a is 1, 2, 3, 4, 5 or 6;

b and c are the same or different and at each occurrence independently selected from 0, 1, 2, 3 or 4;

d is at each occurrence 0, 1 or 2;

- R_3 is at each occurrence independently halogen, hydroxy, carboxy, alkyl, alkoxy, haloalkyl, acyloxy, thioalkyl, sulfinylalkyl, sulfonylalkyl, hydroxyalkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heterocycle, substituted heterocycle, heterocyclealkyl, substituted heterocyclealkyl, $-C(=O)OR_8$, $-C(=O)R_8$, $-C(O)NR_8R_9$, $-C(=O)NR_8OR_9$, $-SO_2NR_8R_9$, $-NR_8SO_2R_9$, -CN, $-NO_2$, $-NR_8R_9$, $-NR_8C(=O)R_9$, $-NR_8C(=O)(CH_2)_bOR_9$, $-NR_8C(=O)(CH_2)_bR_9$, $-O(CH_2)_bNR_8R_9$, or heterocycle fused to phenyl;
- R₄ is alkyl, aryl, arylalkyl, heterocycle or heterocyclealkyl, each being optionally substituted with one to four substituents independently selected from R₃, or R₄ is halogen or hydroxy;
- R₅, R₆ and R₇ are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle or heterocyclealkyl, wherein each of R₅, R₆ and R₇ are optionally substituted with one to four substituents independently selected from R₃; and
- R₈ and R₉ are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle, or heterocyclealkyl, or R₈ and R₉ taken together with the atom or atoms to which they are bonded form a heterocycle, wherein each of R₈, R₉, and R₈ and R₉ taken together to form a heterocycle are optionally substituted with one to four substituents independently selected from R₃.

11. A compound having the structure:

A is a direct bond, $-(CH_2)_a$ -, $-(CH_2)_bCH=CH(CH_2)_c$ -, or $-(CH_2)_bC=C(CH_2)_c$ -; R_1 is aryl, heteroaryl or heterocycle fused to phenyl, each being optionally substituted with one to four substituents independently selected from R_3 ;

 R_2 is -(CH₂)_bC(=O)NR₅R₆;

a is 1, 2, 3, 4, 5 or 6;

b and c are the same or different and at each occurrence independently selected from 0, 1, 2, 3 or 4;

d is at each occurrence 0, 1 or 2;

 R_3 is at each occurrence independently halogen, hydroxy, carboxy, alkyl, alkoxy, haloalkyl, acyloxy, thioalkyl, sulfinylalkyl, sulfonylalkyl, hydroxyalkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heterocycle, substituted heterocycle, heterocyclealkyl, substituted heterocyclealkyl, $-C(=O)OR_8$, $-C(=O)R_8$, $-C(O)NR_8R_9$, $-C(=O)NR_8OR_9$, $-SO_2NR_8R_9$, $-NR_8SO_2R_9$, -CN, $-NO_2$, $-NR_8R_9$, $-NR_8C(=O)R_9$, $-NR_8C(=O)(CH_2)_bOR_9$, $-NR_8C(=O)(CH_2)_bR_9$, $-O(CH_2)_bNR_8R_9$, or heterocycle fused to phenyl;

- R₄ is alkyl, aryl, arylalkyl, heterocycle or heterocyclealkyl, each being optionally substituted with one to four substituents independently selected from R₃, or R₄ is halogen or hydroxy;
- R_5 , R_6 and R_7 are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle or heterocyclealkyl, wherein each of R_5 , R_6 and R_7 are optionally substituted with one to four substituents independently selected from R_3 ; and
- R₈ and R₉ are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle, or heterocyclealkyl, or R₈

and R_9 taken together with the atom or atoms to which they are bonded form a heterocycle, wherein each of R_8 , R_9 , and R_8 and R_9 taken together to form a heterocycle are optionally substituted with one to four substituents independently selected from R_3 .

12. A compound having the structure:

or a pharmaceutically acceptable salt thereof, wherein:

A is a direct bond, $-(CH_2)_a$ -, $-(CH_2)_bCH=CH(CH_2)_c$ -, or $-(CH_2)_bC=C(CH_2)_c$ -; R_1 is aryl, heteroaryl or heterocycle fused to phenyl, each being optionally substituted with one to four substituents independently selected from R_3 ;

 R_2 is $-(CH_2)_bNR_5C(=O)R_{6}$; a is 1, 2, 3, 4, 5 or 6;

b and c are the same or different and at each occurrence independently selected from 0, 1, 2, 3 or 4;

d is at each occurrence 0, 1 or 2;

 R_3 is at each occurrence independently halogen, hydroxy, carboxy, alkyl, alkoxy, haloalkyl, acyloxy, thioalkyl, sulfinylalkyl, sulfonylalkyl, hydroxyalkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heterocycle, substituted heterocycle, heterocyclealkyl, substituted heterocyclealkyl, $-C(=O)OR_8$, $-C(=O)R_8$, $-C(O)NR_8R_9$, $-C(=O)NR_8OR_9$, $-SO_2NR_8R_9$, $-NR_8SO_2R_9$, -CN, $-NO_2$, $-NR_8R_9$, $-NR_8C(=O)R_9$, $-NR_8C(=O)(CH_2)_bOR_9$, $-NR_8C(=O)(CH_2)_bR_9$, $-O(CH_2)_bNR_8R_9$, or heterocycle fused to phenyl;

 R_4 is alkyl, aryl, arylalkyl, heterocycle or heterocyclealkyl, each being optionally substituted with one to four substituents independently selected from R_3 , or R_4 is halogen or hydroxy;

- 77 - NY2 - 1325112.1

- R_5 , R_6 and R_7 are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle or heterocyclealkyl, wherein each of R_5 , R_6 and R_7 are optionally substituted with one to four substituents independently selected from R_3 ; and
- R₈ and R₉ are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle, or heterocyclealkyl, or R₈ and R₉ taken together with the atom or atoms to which they are bonded form a heterocycle, wherein each of R₈, R₉, and R₈ and R₉ taken together to form a heterocycle are optionally substituted with one to four substituents independently selected from R₃.

13. A compound having the structure:

or a pharmaceutically acceptable salt thereof, wherein:

A is a direct bond, $-(CH_2)_a$ -, $-(CH_2)_bCH=CH(CH_2)_c$ -, or $-(CH_2)_bC=C(CH_2)_c$ -; R_1 is aryl, heteroaryl or heterocycle fused to phenyl, each being optionally substituted with one to four substituents independently selected from R_3 ;

 R_2 is $-(CH_2)_bNR_5R_{6}$;

a is 1, 2, 3, 4, 5 or 6;

b and c are the same or different and at each occurrence independently selected from 0, 1, 2, 3 or 4;

d is at each occurrence 0, 1 or 2;

 R_3 is at each occurrence independently halogen, hydroxy, carboxy, alkyl, alkoxy, haloalkyl, acyloxy, thioalkyl, sulfinylalkyl, sulfonylalkyl, hydroxyalkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heterocycle, substituted heterocycle, heterocyclealkyl, substituted heterocyclealkyl, $-C(=O)OR_8$, $-C(=O)NR_8R_9$, $-C(O)NR_8R_9$, $-C(O)R_8$

- 78 -

C(=O)NR₈OR₉, -SO₂NR₈R₉, -NR₈SO₂R₉, -CN, -NO₂, -NR₈R₉, -NR₈C(=O)R₉, -NR₈C(=O)(CH₂)_bOR₉, -NR₈C(=O)(CH₂)_bR₉, -O(CH₂)_bNR₈R₉, or heterocycle fused to phenyl;

- R₄ is alkyl, aryl, arylalkyl, heterocycle or heterocyclealkyl, each being optionally substituted with one to four substituents independently selected from R₃, or R₄ is halogen or hydroxy;
- R_5 , R_6 and R_7 are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle or heterocyclealkyl, wherein each of R_5 , R_6 and R_7 are optionally substituted with one to four substituents independently selected from R_3 ; and
- R₈ and R₉ are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle, or heterocyclealkyl, or R₈ and R₉ taken together with the atom or atoms to which they are bonded form a heterocycle, wherein each of R₈, R₉, and R₈ and R₉ taken together to form a heterocycle are optionally substituted with one to four substituents independently selected from R₃.

14. A compound having the structure:

or a pharmaceutically acceptable salt thereof, wherein:

A is a direct bond, $-(CH_2)_a$ -, $-(CH_2)_bCH=CH(CH_2)_c$ -, or $-(CH_2)_bC\equiv C(CH_2)_c$ -; R_1 is aryl, heteroaryl or heterocycle fused to phenyl, each being optionally substituted with one to four substituents independently selected from R_3 ;

 R_2 is R_4 :

a is 1, 2, 3, 4, 5 or 6;

b and c are the same or different and at each occurrence independently selected from 0, 1, 2, 3 or 4;

d is at each occurrence 0, 1 or 2;

- R_3 is at each occurrence independently halogen, hydroxy, carboxy, alkyl, alkoxy, haloalkyl, acyloxy, thioalkyl, sulfinylalkyl, sulfonylalkyl, hydroxyalkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heterocycle, substituted heterocycle, heterocyclealkyl, substituted heterocyclealkyl, $-C(=O)OR_8$, $-C(=O)R_8$, $-C(O)NR_8R_9$, $-C(=O)NR_8OR_9$, $-SO_2NR_8R_9$, $-NR_8SO_2R_9$, -CN, $-NO_2$, $-NR_8R_9$, $-NR_8C(=O)R_9$, $-NR_8C(=O)(CH_2)_bOR_9$, $-NR_8C(=O)(CH_2)_bR_9$, $-O(CH_2)_bNR_8R_9$, or heterocycle fused to phenyl;
- R_4 is alkyl, aryl, arylalkyl, heterocycle or heterocyclealkyl, each being optionally substituted with one to four substituents independently selected from R_3 , or R_4 is halogen or hydroxy;
- R₅, R₆ and R₇ are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle or heterocyclealkyl, wherein each of R₅, R₆ and R₇ are optionally substituted with one to four substituents independently selected from R₃; and
- R₈ and R₉ are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle, or heterocyclealkyl, or R₈ and R₉ taken together with the atom or atoms to which they are bonded form a heterocycle, wherein each of R₈, R₉, and R₈ and R₉ taken together to form a heterocycle are optionally substituted with one to four substituents independently selected from R₃.
- 15. A compound having the structure:

A is a direct bond, $-(CH_2)_a$ -, $-(CH_2)_b$ CH=CH(CH₂)_c-, or $-(CH_2)_b$ C \equiv C(CH₂)_c-;

 R_1 is aryl, heteroaryl or heterocycle fused to phenyl, each being optionally substituted with one to four substituents independently selected from R_3 ;

 R_2 is R_4 :

a is 1, 2, 3, 4, 5 or 6;

b and c are the same or different and at each occurrence independently selected from 0, 1, 2, 3 or 4;

d is at each occurrence 0, 1 or 2;

 R_3 is at each occurrence independently halogen, hydroxy, carboxy, alkyl, alkoxy, haloalkyl, acyloxy, thioalkyl, sulfinylalkyl, sulfonylalkyl, hydroxyalkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heterocycle, substituted heterocycle, heterocyclealkyl, substituted heterocyclealkyl, $-C(=O)OR_8$, $-C(=O)R_8$, $-C(O)NR_8R_9$, $-C(=O)NR_8OR_9$, $-SO_2NR_8R_9$, $-NR_8SO_2R_9$, -CN, $-NO_2$, $-NR_8R_9$, $-NR_8C(=O)R_9$, $-NR_8C(=O)(CH_2)_bOR_9$, $-NR_8C(=O)(CH_2)_bR_9$, $-O(CH_2)_bNR_8R_9$, or heterocycle fused to phenyl;

 R_4 is substituted alkyl;

- R_5 , R_6 and R_7 are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle or heterocyclealkyl, wherein each of R_5 , R_6 and R_7 are optionally substituted with one to four substituents independently selected from R_3 ; and
- R₈ and R₉ are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle, or heterocyclealkyl, or R₈ and R₉ taken together with the atom or atoms to which they are bonded form a heterocycle, wherein each of R₈, R₉, and R₈ and R₉ taken together to form a heterocycle are optionally substituted with one to four substituents independently selected from R₃.
- 16. A compound having the structure:

A is a direct bond, $-(CH_2)_a$ -, $-(CH_2)_bCH=CH(CH_2)_c$ -, or $-(CH_2)_bC=C(CH_2)_c$ -; R_1 is aryl, heteroaryl or heterocycle fused to phenyl, each being optionally substituted with one to four substituents independently selected from R_3 ;

 R_2 is R_4 :

a is 1, 2, 3, 4, 5 or 6;

b and c are the same or different and at each occurrence independently selected from 0, 1, 2, 3 or 4;

d is at each occurrence 0, 1 or 2;

 R_3 is at each occurrence independently halogen, hydroxy, carboxy, alkyl, alkoxy, haloalkyl, acyloxy, thioalkyl, sulfinylalkyl, sulfonylalkyl, hydroxyalkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heterocycle, substituted heterocycle, heterocyclealkyl, substituted heterocyclealkyl, $-C(=O)OR_8$, $-C(=O)R_8$, $-C(O)NR_8R_9$, $-C(=O)NR_8OR_9$, $-SO_2NR_8R_9$, $-NR_8SO_2R_9$, -CN, $-NO_2$, $-NR_8R_9$, $-NR_8C(=O)R_9$, $-NR_8C(=O)(CH_2)_bR_9$, $-O(CH_2)_bNR_8R_9$, or heterocycle fused to phenyl;

R₄ is substituted arylalkyl;

- R₅, R₆ and R₇ are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle or heterocyclealkyl, wherein each of R₅, R₆ and R₇ are optionally substituted with one to four substituents independently selected from R₃; and
- R₈ and R₉ are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle, or heterocyclealkyl, or R₈ and R₉ taken together with the atom or atoms to which they are bonded form a heterocycle, wherein each of R₈, R₉, and R₈ and R₉ taken together to form a heterocycle are optionally substituted with one to four substituents independently selected from R₃.

17. A compound having the structure:

NY2 - 1325112.1

A is a direct bond, $-(CH_2)_a$ -, $-(CH_2)_bCH=CH(CH_2)_c$ -, or $-(CH_2)_bC\equiv C(CH_2)_c$ -; R_1 is aryl, heteroaryl or heterocycle fused to phenyl, each being optionally substituted with one to four substituents independently selected from R_3 ;

 R_2 is R_{4} ;

a is 1, 2, 3, 4, 5 or 6;

b and c are the same or different and at each occurrence independently selected from 0, 1, 2, 3 or 4;

d is at each occurrence 0, 1 or 2;

 R_3 is at each occurrence independently halogen, hydroxy, carboxy, alkyl, alkoxy, haloalkyl, acyloxy, thioalkyl, sulfinylalkyl, sulfonylalkyl, hydroxyalkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heterocycle, substituted heterocycle, heterocyclealkyl, substituted heterocyclealkyl, $-C(=O)OR_8$, $-C(=O)R_8$, $-C(O)NR_8R_9$, $-C(=O)NR_8OR_9$, $-SO_2NR_8R_9$, $-NR_8SO_2R_9$, -CN, $-NO_2$, $-NR_8R_9$, $-NR_8C(=O)R_9$, $-NR_8C(=O)(CH_2)_bNR_9$, $-O(CH_2)_bNR_8R_9$, or heterocycle fused to phenyl;

R₄ is substituted heterocycle;

 R_5 , R_6 and R_7 are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle or heterocyclealkyl, wherein each of R_5 , R_6 and R_7 are optionally substituted with one to four substituents independently selected from R_3 ; and

R₈ and R₉ are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle, or heterocyclealkyl, or R₈ and R₉ taken together with the atom or atoms to which they are bonded form a heterocycle, wherein each of R₈, R₉, and R₈ and R₉

taken together to form a heterocycle are optionally substituted with one to four substituents independently selected from R_3 .

18. A compound having the structure:

or a pharmaceutically acceptable salt thereof, wherein:

A is a direct bond, $-(CH_2)_a$ -, $-(CH_2)_bCH=CH(CH_2)_c$ -, or $-(CH_2)_bC=C(CH_2)_c$ -; R_1 is aryl, heteroaryl or heterocycle fused to phenyl, each being optionally substituted with one to four substituents independently selected from R_3 ;

 R_2 is R_4 :

a is 1, 2, 3, 4, 5 or 6;

b and c are the same or different and at each occurrence independently selected from 0, 1, 2, 3 or 4;

d is at each occurrence 0, 1 or 2;

 R_3 is at each occurrence independently halogen, hydroxy, carboxy, alkyl, alkoxy, haloalkyl, acyloxy, thioalkyl, sulfinylalkyl, sulfonylalkyl, hydroxyalkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heterocycle, substituted heterocycle, heterocyclealkyl, substituted heterocyclealkyl, $-C(=O)OR_8$, $-C(=O)R_8$, $-C(O)NR_8R_9$, $-C(=O)NR_8OR_9$, $-SO_2NR_8R_9$, $-NR_8SO_2R_9$, -CN, $-NO_2$, $-NR_8R_9$, $-NR_8C(=O)R_9$, $-NR_8C(=O)(CH_2)_bR_9$, $-O(CH_2)_bNR_8R_9$, or heterocycle fused to phenyl;

R₄ is 3-triazolyl, optionally substituted at its 5-position with:

- (a) a C₁-C₄ straight or branched chain alkyl group optionally substituted with a hydroxyl, methylamino, dimethylamino or 1-pyrrolidinyl group; or
 - (b) a 2-pyrrolidinyl group;

- 84 -

- R₅, R₆ and R₇ are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle or heterocyclealkyl, wherein each of R₅, R₆ and R₇ are optionally substituted with one to four substituents independently selected from R₃; and
- R₈ and R₉ are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle, or heterocyclealkyl, or R₈ and R₉ taken together with the atom or atoms to which they are bonded form a heterocycle, wherein each of R₈, R₉, and R₈ and R₉ taken together to form a heterocycle are optionally substituted with one to four substituents independently selected from R₃.

19. A compound having the structure:

$$R_2$$
 R_2
 R_2

or a pharmaceutically acceptable salt thereof, wherein:

A is a direct bond, $-(CH_2)_a$ -, $-(CH_2)_bCH=CH(CH_2)_c$ -, or $-(CH_2)_bC=C(CH_2)_c$ -; R_1 is aryl, heteroaryl or heterocycle fused to phenyl, each being optionally substituted with one to four substituents independently selected from R_3 ;

 R_2 is R_{4}

a is 1, 2, 3, 4, 5 or 6;

b and c are the same or different and at each occurrence independently selected from 0, 1, 2, 3 or 4;

d is at each occurrence 0, 1 or 2;

R₃ is at each occurrence independently halogen, hydroxy, carboxy, alkyl, alkoxy, haloalkyl, acyloxy, thioalkyl, sulfinylalkyl, sulfonylalkyl, hydroxyalkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heterocycle, substituted heterocycle, heterocyclealkyl, substituted heterocyclealkyl, -C(=O)OR₈, -C(=O)R₈, -C(O)NR₈R₉, -

C(=O)NR₈OR₉, -SO₂NR₈R₉, -NR₈SO₂R₉, -CN, -NO₂, -NR₈R₉, -NR₈C(=O)R₉, -NR₈C(=O)(CH₂)_bOR₉, -NR₈C(=O)(CH₂)_bR₉, -O(CH₂)_bNR₈R₉, or heterocycle fused to phenyl;

 R_4 is tetrazole;

R₅, R₆ and R₇ are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle or heterocyclealkyl, wherein each of R₅, R₆ and R₇ are optionally substituted with one to four substituents independently selected from R₃; and

R₈ and R₉ are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle, or heterocyclealkyl, or R₈ and R₉ taken together with the atom or atoms to which they are bonded form a heterocycle, wherein each of R₈, R₉, and R₈ and R₉ taken together to form a heterocycle are optionally substituted with one to four substituents independently selected from R₃.

20. A compound having the structure:

or a pharmaceutically acceptable salt thereof, wherein:

A is a direct bond, $-(CH_2)_a$ -, $-(CH_2)_bCH=CH(CH_2)_c$ -, or $-(CH_2)_bC=C(CH_2)_c$ -; R_1 is aryl, heteroaryl or heterocycle fused to phenyl, each being optionally substituted with one to four substituents independently selected from R_3 ;

 R_2 is R_4 :

a is 1, 2, 3, 4, 5 or 6;

b and c are the same or different and at each occurrence independently selected from 0, 1, 2, 3 or 4;

d is at each occurrence 0, 1 or 2;

R₃ is at each occurrence independently halogen, hydroxy, carboxy, alkyl, alkoxy, haloalkyl, acyloxy, thioalkyl, sulfinylalkyl, sulfonylalkyl,

hydroxyalkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heterocycle, substituted heterocycle, heterocyclealkyl, substituted heterocyclealkyl, $-C(=O)OR_8$, $-C(=O)R_8$, $-C(O)NR_8R_9$, $-C(=O)NR_8OR_9$, $-SO_2NR_8R_9$, $-NR_8SO_2R_9$, -CN, $-NO_2$, $-NR_8R_9$, $-NR_8C(=O)R_9$, $-NR_8C(=O)(CH_2)_bOR_9$, $-NR_8C(=O)(CH_2)_bR_9$, $-O(CH_2)_bNR_8R_9$, or heterocycle fused to phenyl;

R₄ is imidazole;

 R_5 , R_6 and R_7 are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle or heterocyclealkyl, wherein each of R_5 , R_6 and R_7 are optionally substituted with one to four substituents independently selected from R_3 ; and

R₈ and R₉ are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle, or heterocyclealkyl, or R₈ and R₉ taken together with the atom or atoms to which they are bonded form a heterocycle, wherein each of R₈, R₉, and R₈ and R₉ taken together to form a heterocycle are optionally substituted with one to four substituents independently selected from R₃.

22. A method for treating a condition responsive to JNK inhibition, comprising administering to a patient in need thereof an effective amount of a compound having the structure:

or a pharmaceutically acceptable salt thereof,

wherein:

A is a direct bond, $-(CH_2)_a$ -, $-(CH_2)_b$ CH=CH(CH₂)_c-, or $-(CH_2)_b$ C=C(CH₂)_c-; R₁ is aryl, heteroaryl or heterocycle fused to phenyl, each being optionally substituted with one to four substituents independently selected from R₃;

$$R_2 \text{ is -R}_3, -R_4, -(CH_2)_bC(=O)R_5, -(CH_2)_bC(=O)OR_5, -(CH_2)_bC(=O)NR_5R_6, -(CH_2)_bC(=O)NR_5$$

-(CH₂)_bC(=O)NR₅(CH₂)_cC(=O)R₆, -(CH₂)_bNR₅C(=O)R₆, -(CH₂)_bNR₅C(=O)NR₆R₇, -(CH₂)_bNR₅R₆, -(CH₂)_bOR₅, -(CH₂)_bSO_aR₅ or -(CH₂)_bSO₂NR₅R₆; a is 1, 2, 3, 4, 5 or 6;

b and c are the same or different and at each occurrence independently selected from 0, 1, 2, 3 or 4;

d is at each occurrence 0, 1 or 2;

- R_3 is at each occurrence independently halogen, hydroxy, carboxy, alkyl, alkoxy, haloalkyl, acyloxy, thioalkyl, sulfinylalkyl, sulfonylalkyl, hydroxyalkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heterocycle, substituted heterocycle, heterocyclealkyl, substituted heterocyclealkyl, $-C(=O)OR_8$, $-OC(=O)R_8$, $-C(=O)NR_8R_9$, $-C(=O)NR_8OR_9$, $-SO_2NR_8R_9$, $-NR_8SO_2R_9$, -CN, $-NO_2$, $-NR_8R_9$, $-NR_8C(=O)R_9$, $-NR_8C(=O)(CH_2)_bOR_9$, $-NR_8C(=O)(CH_2)_bR_9$, $-O(CH_2)_bNR_8R_9$, or heterocycle fused to phenyl;
- R_4 is alkyl, aryl, arylalkyl, heterocycle or heterocyclealkyl, each being optionally substituted with one to four substituents independently selected from R_3 , or R_4 is halogen or hydroxy;
- R_5 , R_6 and R_7 are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle or heterocyclealkyl, wherein each of R_5 , R_6 and R_7 are optionally substituted with one to four substituents independently selected from R_3 ; and
- R₈ and R₉ are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle, or heterocyclealkyl, or R₈ and R₉ taken together with the atom or atoms to which they are bonded form a heterocycle, wherein each of R₈, R₉, and R₈ and R₉ taken together to form a heterocycle are optionally substituted with one to four substituents independently selected from R₃.
- 23. The method of claim 22 wherein:

$$R_2$$
 is $-R_4$, $-(CH_2)_bC(=O)R_5$, $-(CH_2)_bC(=O)OR_5$, $-(CH_2)_bC(=O)NR_5R_6$,
 $-(CH_2)_bC(=O)NR_5(CH_2)_cC(=O)R_6$, $-(CH_2)_bNR_5C(=O)R_6$,

$$-(CH_{2})_{b}NR_{5}C(=O)NR_{6}R_{7}, -(CH_{2})_{b}NR_{5}R_{6}, -(CH_{2})_{b}OR_{5}, -(CH_{2})_{b}SO_{d}R_{5}$$
 or
$$-(CH_{2})_{b}SO_{2}NR_{5}R_{6}.$$

- 24. The method of claim 22 wherein the condition is cancer.
- 25. The method of claim 22 wherein the condition is rheumatoid arthritis; rheumatoid spondylitis; osteoarthritis; gout; asthma, bronchitis; allergic rhinitis; chronic obstructive pulmonary disease; cystic fibrosis; inflammatory bowel disease; irritable bowel syndrome; mucous colitis; ulcerative colitis; Crohn's disease; Huntington's disease; gastritis; esophagitis; hepatitis; pancreatitis; nephritis; multiple sclerosis; endotoxin shock; lupus erythematosus; Type II diabetes; psoriasis; burn caused by exposure to fire, chemicals or radiation; eczema; dermatitis; skin graft; ischemia; ischemic conditions associated with surgery or traumatic injury; cachexia or angiogenic and proliferative diseases.
- 26. The method of claim 22 wherein the condition is atherosclerosis, restenosis following angioplasty, left ventricular hypertrophy, or myocardial infarction.
- 27. The method of claim 22 wherein the condition is stroke or ischemic damages of heart, lung, gut, kidney, liver, pancreas, spleen or brain.
- 28. The method of claim 22 wherein the condition is acute or chronic organ transplant rejection, preservation of the organ for transplantation, graft versus host disease or multiple organ failure.
- 29. The method of claim 22 wherein the condition is epilepsy, Alzheimer's disease, or Parkinson's disease.
- 30. The method of claim 22 wherein the condition is an immunological response to bacterial or viral infection.
- 31. The method of claim 22 wherein the condition is solid tumor or cancers of a variety of tissues such as colon, rectum, prostate, liver, lung, bronchus, pancreas, brain,

head, neck, stomach, skin, kidney, cervix, blood, larynx, esophagus, mouth, pharynx, urinary bladder, ovary or uterine.

- 32. The method of claim 22 wherein A is a direct bond.
- 33. The method of claim 22 wherein A is $-(CH_2)_a$.
- 34. The method of claim 22 wherein A is $-(CH_2)_bCH=CH(CH_2)_c$.
- 35. The method of claim 22 wherein A is $-(CH_2)_b C \equiv C(CH_2)_c$.
- 36. The method of claim 22 wherein R_1 is aryl optionally substituted with one to four substituents independently selected from R_3 .
- 37. The method of claim 22 wherein R_1 is heteroaryl optionally substituted with one to four substituents independently selected from R_3 .
- 38. The method of claim 22 wherein R_1 is heterocycle fused to phenyl optionally substituted with one to four substituents independently selected from R_3 .
 - 39. The method of claim 22 wherein R_2 is $-(CH_2)_bC(=O)R_5$.
 - 40. The method of claim 22 wherein R_2 is $-(CH_2)_bC(=O)NR_5R_6$.
 - 41. The method of claim 22 wherein R_2 is -(CH₂)NR₅C(=O)R₆.
 - 42. The method of claim 22 wherein R_2 is $-(CH_2)_bNR_5R_6$.
 - 43. The method of claim 22 wherein R_2 is R_4 .
 - 44. The method of claim 43 wherein R_4 is substituted alkyl.
 - 45. The method of claim 43 wherein R_4 is substituted arylalkyl.

- 46. The method of claim 43 wherein R_4 is substituted heterocycle.
- 47. The method of claim 43 wherein R_4 is 3-triazolyl, optionally substituted at its 5-position with:
- (a) a C_1 - C_4 straight or branched chain alkyl group optionally substituted with a hydroxýl, methylamino, dimethylamino or 1-pyrrolidinyl group; or
 - (b) a 2-pyrrolidinyl group.
 - 48. The method of claim 43 wherein R_4 is tetrazole.
 - 49. The method of claim 43 wherein R_4 is imidazole.
- 50. A method for treating or preventing rheumatoid arthritis; rheumatoid spondylitis; osteoarthritis; gout; asthma, bronchitis; allergic rhinitis; chronic obstructive pulmonary disease; cystic fibrosis; inflammatory bowel disease; irritable bowel syndrome; mucous colitis; ulcerative colitis; Crohn's disease; Huntington's disease; gastritis; esophagitis; hepatitis; pancreatitis; nephritis; multiple sclerosis; lupus erythematosus; Type II diabetes; atherosclerosis; restenosis following angioplasty; left ventricular hypertrophy; myocardial infarction; stroke; ischemic damages of heart, lung, gut, kidney, liver, pancreas, spleen and brain; acute or chronic organ transplant rejection; preservation of an organ for transplantation; graft versus host disease; endotoxin shock; multiple organ failure; psoriasis; burn caused by exposure to fire, chemicals, or radiation; eczema; dermatitis; skin graft; ischemia; ischemic conditions associated with surgery or traumatic injury; epilepsy; Alzheimer's disease; Parkinson's disease; immunological response to bacterial or viral infection; cachexia; angiogenic and proliferative dieseases; solid tumor; and cancers of a variety of tissues such as colon, rectum, prostate, liver, lung, bronchus, pancreas, brain, head, neck, stomach, skin, kidney, cervix, blood, larynx, esophagus, mouth, pharynx, urinary bladder, ovary, or uterine comprising administering to a patient in need of such treatment or prevention an effective amount of a compound having the structure:

wherein:

A is a direct bond, $-(CH_2)_a$ -, $-(CH_2)_bCH=CH(CH_2)_c$ -, or $-(CH_2)_bC\equiv C(CH_2)_c$ -; R_1 is aryl, heteroaryl or heterocycle fused to phenyl, each being optionally substituted with one to four substituents independently selected from R_3 ;

 R_2 is $-R_3$, $-R_4$, $-(CH_2)_bC(=O)R_5$, $-(CH_2)_bC(=O)OR_5$, $-(CH_2)_bC(=O)NR_5R_6$, $-(CH_2)_bC(=O)NR_5(CH_2)_cC(=O)R_6$, $-(CH_2)_bNR_5C(=O)R_6$, $-(CH_2)_bNR_5C(=O)NR_6R_7$, $-(CH_2)_bNR_5R_6$, $-(CH_2)_bOR_5$, $-(CH_2)_bSO_aR_5$ or $-(CH_2)_bSO_2NR_5R_6$, a is 1, 2, 3, 4, 5 or a:

b and c are the same or different and at each occurrence independently selected from 0, 1, 2, 3 or 4;

d is at each occurrence 0, 1 or 2;

- R_3 is at each occurrence independently halogen, hydroxy, carboxy, alkyl, alkoxy, haloalkyl, acyloxy, thioalkyl, sulfinylalkyl, sulfonylalkyl, hydroxyalkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heterocycle, substituted heterocycle, heterocyclealkyl, substituted heterocyclealkyl, $-C(=O)OR_8$, $-OC(=O)R_8$, $-C(=O)NR_8R_9$, $-C(=O)NR_8OR_9$, $-SO_2NR_8R_9$, $-NR_8SO_2R_9$, -CN, $-NO_2$, $-NR_8R_9$, $-NR_8C(=O)R_9$, $-NR_8C(=O)(CH_2)$, $-NR_8C(=O)(CH_2)$, $-NR_8C(=O)(CH_2)$, $-NR_8C(=O)(CH_2)$, $-NR_8C(=O)(CH_2)$, or heterocycle fused to phenyl;
- R_4 is alkyl, aryl, arylalkyl, heterocycle or heterocyclealkyl, each being optionally substituted with one to four substituents independently selected from R_3 , or R_4 is halogen or hydroxy;
- R_5 , R_6 and R_7 are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle or heterocyclealkyl, wherein each of R_5 , R_6 and R_7 are optionally substituted with one to four substituents independently selected from R_3 ; and
- R_8 and R_9 are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle, or heterocyclealkyl, or R_8 and R_9 taken together with the atom or atoms to which they are

bonded form a heterocycle, wherein each of R_8 , R_9 , and R_8 and R_9 taken together to form a heterocycle are optionally substituted with one to four substituents independently selected from R_3 .

51. The method of claim 50 wherein:

$$\begin{split} R_2 &\text{ is } -R_4, -(CH_2)_b C(=O)R_5, -(CH_2)_b C(=O)OR_5, -(CH_2)_b C(=O)NR_5 R_6, \\ &-(CH_2)_b C(=O)NR_5 (CH_2)_c C(=O)R_6, -(CH_2)_b NR_5 C(=O)R_6, \\ &-(CH_2)_b NR_5 C(=O)NR_6 R_7, -(CH_2)_b NR_5 R_6, -(CH_2)_b OR_5, -(CH_2)_b SO_d R_5 \\ &\text{ or } \\ &-(CH_2)_b SO_2 NR_5 R_6. \end{split}$$

- 52. The method of claim 50 wherein A is a direct bond.
- 53. The method of claim 50 wherein A is $-(CH_2)_a$.
- 54. The method of claim 50 wherein A is $-(CH_2)_bCH=CH(CH_2)_c$.
- 55. The method of claim 50 wherein A is $-(CH_2)_b C \equiv C(CH_2)_c$.
- 56. The method of claim 50 wherein R_1 is aryl optionally substituted with one to four substituents independently selected from R_3 .
- 57. The method of claim 50 wherein R_1 is heteroaryl optionally substituted with one to four substituents independently selected from R_3 .
- 58. The method of claim 50 wherein R_1 is heterocycle fused to phenyl optionally substituted with one to four substituents independently selected from R_3 .
 - 59. The method of claim 50 wherein R_2 is $-(CH_2)_bC(=O)R_5$.
 - 60. The method of claim 50 wherein R_2 is $-(CH_2)_bC(=O)NR_5R_6$.
 - 61. The method of claim 50 wherein R_2 is -(CH₂)NR₅C(=O)R₆.

- 62. The method of claim 50 wherein R_2 is $-(CH_2)_bNR_5R_6$.
- 63. The method of claim 50 wherein R_2 is R_4 .
- 64. The method of claim 63 wherein R_4 is substituted alkyl.
- 65. The method of claim 63 wherein R_4 is substituted arylalkyl.
- 66. The method of claim 63 wherein R_4 is substituted heterocycle.
- 67. The method of claim 63 wherein R_4 is 3-triazolyl, optionally substituted at its 5-position with:
- (a) a C₁-C₄ straight or branched chain alkyl group optionally substituted with a hydroxyl, methylamino, dimethylamino or 1-pyrrolidinyl group; or
 - (b) a 2-pyrrolidinyl group.
 - 68. The method of claim 63 wherein R_4 is tetrazole.
 - 69. The method of claim 63 wherein R_4 is imidazole.
 - 71. A compound having the structure:

A is a direct bond, $-(CH_2)_a$ -, $-(CH_2)_bCH=CH(CH_2)_c$ -, or $-(CH_2)_bC=C(CH_2)_c$ -; R_1 is aryl, heteroaryl or heterocycle fused to phenyl, each being optionally substituted with one to four substituents independently selected from R_3 ;

 R_2 is $-(CH_2)_bC(=O)NR_5R_6$, $-(CH_2)_bNR_5C(=O)R_6$, 3-triazolyl or 5-tetrazolyl,

a is 1, 2, 3, 4, 5 or 6;
b is 0;
c is at each occurrence 0, 1, 2, 3 or 4;
d is at each occurrence 0, 1 or 2;

R₃ is at each occurrence independently halogen, hydroxy, carboxy, alkyl, alkoxy, haloalkyl, acyloxy, thioalkyl, sulfinylalkyl, sulfonylalkyl, hydroxyalkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heterocycle, substituted heterocycle, heterocyclealkyl, substituted heterocyclealkyl, -C(=O)OR₈, -C(=O)R₈, -C(O)NR₈R₉, -C(=O)NR₈OR₉, -SO₂NR₈R₉, -NR₈SO₂R₉, -CN, -NO₂, -NR₈R₉, -NR₈C(=O)R₉, -NR₈C(=O)(CH₂)_bOR₉, -NR₈C(=O)(CH₂)_bR₉, -O(CH₂)_bNR₈R₉, or heterocycle fused to phenyl;

- R_4 is alkyl, aryl, arylalkyl, heterocycle or heterocyclealkyl, each being optionally substituted with one to four substituents independently selected from R_3 , or R_4 is halogen or hydroxy;
- R_5 , R_6 and R_7 are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle or heterocyclealkyl, wherein each of R_5 , R_6 and R_7 are optionally substituted with one to four substituents independently selected from R_3 ; and
- R₈ and R₉ are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle, or heterocyclealkyl, or R₈ and R₉ taken together with the atom or atoms to which they are bonded form a heterocycle, wherein each of R₈, R₉, and R₈ and R₉ taken together to form a heterocycle are optionally substituted with one to four substituents independently selected from R₃.

72. A compound having the structure:

or a pharmaceutically acceptable salt thereof, wherein:

- 95 - NY2 - 1325112.1

A is a direct bond, $-(CH_2)_a$ -, $-(CH_2)_bCH=CH(CH_2)_c$ -, or $-(CH_2)_bC=C(CH_2)_c$ -; R_1 is aryl, heteroaryl or heterocycle fused to phenyl, each being optionally substituted with one to four substituents independently selected from R_3 ;

R₂ is 3-triazolyl or 5-tetrazolyl.

a is 1, 2, 3, 4, 5 or 6;

b and c are the same or different and at each occurrence independently selected from 0, 1, 2, 3 or 4;

d is at each occurrence 0, 1 or 2;

- R_3 is at each occurrence independently halogen, hydroxy, carboxy, alkyl, alkoxy, haloalkyl, acyloxy, thioalkyl, sulfinylalkyl, sulfonylalkyl, hydroxyalkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heterocycle, substituted heterocycle, heterocyclealkyl, substituted heterocyclealkyl, $-C(=O)OR_8$, $-C(=O)R_8$, $-C(O)NR_8R_9$, $-C(=O)NR_8OR_9$, $-SO_2NR_8R_9$, $-NR_8SO_2R_9$, -CN, $-NO_2$, $-NR_8R_9$, $-NR_8C(=O)R_9$, $-NR_8C(=O)(CH_2)_bOR_9$, $-NR_8C(=O)(CH_2)_bR_9$, $-O(CH_2)_bNR_8R_9$, or heterocycle fused to phenyl;
- R₄ is alkyl, aryl, arylalkyl, heterocycle or heterocyclealkyl, each being optionally substituted with one to four substituents independently selected from R₃, or R₄ is halogen or hydroxy;
- R_5 , R_6 and R_7 are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle or heterocyclealkyl, wherein each of R_5 , R_6 and R_7 are optionally substituted with one to four substituents independently selected from R_3 ; and
- R₈ and R₉ are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle, or heterocyclealkyl, or R₈ and R₉ taken together with the atom or atoms to which they are bonded form a heterocycle, wherein each of R₈, R₉, and R₈ and R₉ taken together to form a heterocycle are optionally substituted with one to four substituents independently selected from R₃.

73. A compound having the structure:

- 96 - NY2 - 1325112.1

-A-R₁ is phenyl, optionally substituted with one to four substituents independently selected from halogen, alkoxy, -NR₈C(=O)R₉, -C(=O)NR₈R₉, and -O(CH₂)_bNR₈R₉, wherein b is 2 or 3;

 R_2 is $-(CH_2)_bC(=O)NR_5R_6$, $-(CH_2)_bNR_5C(=O)R_6$, 3-triazolyl or 5-tetrazolyl, wherein b is 0.

a is 1, 2, 3, 4, 5 or 6;

c is at each occurrence 0, 1, 2, 3 or 4;

d is at each occurrence 0, 1 or 2;

- R_3 is at each occurrence independently halogen, hydroxy, carboxy, alkyl, alkoxy, haloalkyl, acyloxy, thioalkyl, sulfinylalkyl, sulfonylalkyl, hydroxyalkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heterocycle, substituted heterocycle, heterocyclealkyl, substituted heterocyclealkyl, $-C(=O)OR_8$, $-C(=O)R_8$, $-C(O)NR_8R_9$, $-C(=O)NR_8OR_9$, $-SO_2NR_8R_9$, $-NR_8SO_2R_9$, -CN, $-NO_2$, $-NR_8R_9$, $-NR_8C(=O)R_9$, $-NR_8C(=O)(CH_2)_bOR_9$, $-NR_8C(=O)(CH_2)_bR_9$, $-O(CH_2)_bNR_8R_9$, or heterocycle fused to phenyl;
- R₄ is alkyl, aryl, arylalkyl, heterocycle or heterocyclealkyl, each being optionally substituted with one to four substituents independently selected from R₃, or R₄ is halogen or hydroxy;
- R₅, R₆ and R₇ are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle or heterocyclealkyl, wherein each of R₅, R₆ and R₇ are optionally substituted with one to four substituents independently selected from R₃; and
- R_8 and R_9 are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle, or heterocyclealkyl, or R_8 and R_9 taken together with the atom or atoms to which they are

- 97 - NY2 - 1325112.1

bonded form a heterocycle, wherein each of R_8 , R_9 , and R_8 and R_9 taken together to form a heterocycle are optionally substituted with one to four substituents independently selected from R_3 .

74. A compound having the structure:

or a pharmaceutically acceptable salt thereof, wherein:

-A-R₁ is phenyl, optionally substituted with one to four substituents independently selected from halogen, alkoxy, -NR₈C(=O)R₉, -C(=O)NR₈R₉, and -O(CH₂)_bNR₈R₉;

R₂ is 3-triazolyl or 5-tetrazolyl,
a is 1, 2, 3, 4, 5 or 6;
b is 2 or 3;
c is at each occurrence 0, 1, 2, 3 or 4;

d is at each occurrence 0, 1 or 2;

 R_3 is at each occurrence independently halogen, hydroxy, carboxy, alkyl, alkoxy, haloalkyl, acyloxy, thioalkyl, sulfinylalkyl, sulfonylalkyl, hydroxyalkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heterocycle, substituted heterocycle, heterocyclealkyl, substituted heterocyclealkyl, $-C(=O)OR_8$, $-C(=O)R_8$, $-C(O)NR_8R_9$, $-C(=O)NR_8OR_9$, $-SO_2NR_8R_9$, $-NR_8SO_2R_9$, -CN, $-NO_2$, $-NR_8R_9$, $-NR_8C(=O)R_9$, $-NR_8C(=O)(CH_2)_bR_9$, $-O(CH_2)_bNR_8R_9$, or heterocycle fused to phenyl;

 R_4 is alkyl, aryl, arylalkyl, heterocycle or heterocyclealkyl, each being optionally substituted with one to four substituents independently selected from R_3 , or R_4 is halogen or hydroxy;

R₅, R₆ and R₇ are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle or heterocyclealkyl,

- 98 - NY2 - 1325112.1

- wherein each of R₅, R₆ and R₇ are optionally substituted with one to four substituents independently selected from R₃; and
- R₈ and R₉ are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle, or heterocyclealkyl, or R₈ and R₉ taken together with the atom or atoms to which they are bonded form a heterocycle, wherein each of R₈, R₉, and R₈ and R₉ taken together to form a heterocycle are optionally substituted with one to four substituents independently selected from R₃.
- 75. The method of claim 22, wherein -A-R₁ is phenyl, optionally substituted with one to four substituents independently selected from halogen, alkoxy, -NR₈C(=O)R₉, -C(=O)NR₈R₉, and -O(CH₂)_bNR₈R₉, wherein b is 2 or 3.
- 76. The method of claim 22, wherein R_2 is $-(CH_2)_bC(=O)NR_5R_6$, $-(CH_2)_bNR_5C(=O)R_6$, 3-triazolyl or 5-tetrazolyl, wherein b is 0.
 - 77. The method of claim 22, wherein R_2 is 3-triazolyl or 5-tetrazolyl.
 - 78. The method of claim 22, wherein:
- (a) -A-R₁ is phenyl, optionally substituted with one to four substituents independently selected from halogen, alkoxy, -NR₈C(=O)R₉, -C(=O)NR₈R₉, and -O(CH₂)_bNR₈R₉, wherein b is 2 or 3; and
- (b) R_2 is $-(CH_2)_bC(=O)NR_5R_6$, $-(CH_2)_bNR_5C(=O)R_6$, 3-triazolyl or 5-tetrazolyl, wherein b is 0.
 - 79. The method of claim 22, wherein
- (a) -A-R₁ is phenyl, optionally substituted with one to four substituents independently selected from halogen, alkoxy, -NR₈C(=O)R₉, -C(=O)NR₈R₉, and -O(CH₂)_bNR₈R₉, wherein b is 2 or 3; and
 - (b) R_2 is 3-triazolyl or 5-tetrazolyl.
- 80. The method of claim 50, wherein -A- R_1 is phenyl, optionally substituted with one to four substituents independently selected from halogen, alkoxy, -NR₈C(=O)R₉,

-C(=O)NR₈R₉, and -O(CH₂)_bNR₈R₉, wherein b is 2 or 3.

- 81. The method of claim 50, wherein R_2 is $-(CH_2)_bC(=O)NR_5R_6$, $-(CH_2)_bNR_5C(=O)R_6$, 3-triazolyl or 5-tetrazolyl, wherein b is 0.
 - 82. The method of claim 50, wherein R_2 is 3-triazolyl or 5-tetrazolyl.
 - 83. The method of claim 50, wherein:
- (a) -A-R₁ is phenyl, optionally substituted with one to four substituents independently selected from halogen, alkoxy, -NR₈C(=O)R₉, -C(=O)NR₈R₉, and -O(CH₂)_bNR₈R₉, wherein b is 2 or 3; and
- (b) R_2 is $-(CH_2)_bC(=O)NR_5R_6$, $-(CH_2)_bNR_5C(=O)R_6$, 3-triazolyl or 5-tetrazolyl, wherein b is 0.
 - 84. The method of claim 50, wherein:
- (a) -A-R₁ is phenyl, optionally substituted with one to four substituents independently selected from halogen, alkoxy, -NR₈C(=O)R₉, -C(=O)NR₈R₉, and -O(CH₂)_bNR₈R₉ wherein b is 2 or 3; and
 - (b) R_2 is 3-triazolyl or 5-tetrazolyl.
 - 85. A compound having the structure:

or a pharmaceutically acceptable salt thereof, wherein:

A is a direct bond, $-(CH_2)_a$ -, $-(CH_2)_bCH=CH(CH_2)_c$ -, or $-(CH_2)_bC=C(CH_2)_c$ -; R_1 is aryl, heteroaryl or heterocycle fused to phenyl, each being optionally substituted with one to four substituents independently selected from R_3 ;

 R_2 is R_4 :

- 100 - NY2 - 1325112.1

a is 1, 2, 3, 4, 5 or 6;

b and c are the same or different and at each occurrence independently selected from 0, 1, 2, 3 or 4;

d is at each occurrence 0, 1 or 2;

 R_3 is at each occurrence independently halogen, hydroxy, carboxy, alkyl, alkoxy, haloalkyl, acyloxy, thioalkyl, sulfinylalkyl, sulfonylalkyl, hydroxyalkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heterocycle, substituted heterocycle, heterocyclealkyl, substituted heterocyclealkyl, $-C(=O)OR_8$, $-C(=O)R_8$, $-C(O)NR_8R_9$, $-C(=O)NR_8OR_9$, $-SO_2NR_8R_9$, $-NR_8SO_2R_9$, -CN, $-NO_2$, $-NR_8R_9$, $-NR_8C(=O)R_9$, $-NR_8C(=O)(CH_2)_bOR_9$, $-NR_8C(=O)(CH_2)_bR_9$, $-O(CH_2)_bNR_8R_9$, or heterocycle fused to phenyl;

R₄ is 3-triazolyl, optionally substituted at its 5-position with:

- (a) methyl, n-propyl, isopropyl, 1-hydroxyethyl, 3-hydroxypropyl, methylaminomethyl, dimethylaminomethyl, 1-(dimethylamino)ethyl, 1-pyrrolidinylmethyl or 2-pyrrolidinyl;
- R₅, R₆ and R₇ are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle or heterocyclealkyl, wherein each of R₅, R₆ and R₇ are optionally substituted with one to four substituents independently selected from R₃; and
- R_8 and R_9 are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle, or heterocyclealkyl, or R_8 and R_9 taken together with the atom or atoms to which they are bonded form a heterocycle, wherein each of R_8 , R_9 , and R_8 and R_9 taken together to form a heterocycle are optionally substituted with one to four substituents independently selected from R_3 .
- 86. The method of claim 47 wherein R_4 is methyl, n-propyl, isopropyl, 1-hydroxyethyl, 3-hydroxypropyl, methylaminomethyl, dimethylaminomethyl, 1-(dimethylamino)ethyl, 1-pyrrolidinylmethyl or 2-pyrrolidinyl.

- 101 - NY2 - 1325112.1

- 87. The method of claim 67 wherein R_4 is methyl, n-propyl, isopropyl, 1-hydroxyethyl, 3-hydroxypropyl, methylaminomethyl, dimethylaminomethyl, 1-(dimethylamino)ethyl, 1-pyrrolidinylmethyl or 2-pyrrolidinyl.
- 88. A composition comprising the compound of claim 5 and a pharmaceutically acceptable carrier.
- 89. A composition comprising the compound of claim 6 and a pharmaceutically acceptable carrier.
- 90. A composition comprising the compound of claim 10 and a pharmaceutically acceptable carrier.
- 91. A composition comprising the compound of claim 11 and a pharmaceutically acceptable carrier.
- 92. A composition comprising the compound of claim 12 and a pharmaceutically acceptable carrier.
- 93. A composition comprising the compound of claim 13 and a pharmaceutically acceptable carrier.
- 94. A composition comprising the compound of claim 14 and a pharmaceutically acceptable carrier.
- 95. A composition comprising the compound of claim 15 and a pharmaceutically acceptable carrier.
- 96. A composition comprising the compound of claim 16 and a pharmaceutically acceptable carrier.
- 97. A composition comprising the compound of claim 17 and a pharmaceutically acceptable carrier.

- 98. A composition comprising the compound of claim 18 and a pharmaceutically acceptable carrier.
- 99. A composition comprising the compound of claim 19 and a pharmaceutically acceptable carrier.
- 100. A composition comprising the compound of claim 20 and a pharmaceutically acceptable carrier.
- 101. A composition comprising the compound of claim 71 and a pharmaceutically acceptable carrier.
- 102. A composition comprising the compound of claim 72 and a pharmaceutically acceptable carrier.
- 103. A composition comprising the compound of claim 73 and a pharmaceutically acceptable carrier.
- 104. A composition comprising the compound of claim 74 and a pharmaceutically acceptable carrier.
- 105. A composition comprising the compound of claim 85 and a pharmaceutically acceptable carrier.
 - 106. A compound of claim 6, wherein the compound is:
- 3-(2-phenylethynyl)-1H-indazole-5-carboxamide, or a pharmaceutically acceptable salt thereof.
 - 107. A compound of claim 10, wherein the compound is:
 - 3-(4-fluorophenyl)-1H-indazole-5-carboxylic acid;
 - 1-{(3-(4-fluorophenyl)-1H-indazol-5-yl)carbonyl} piperidine-4-carboxylic acid;
 - 3-(4-fluorophenyl)(1H-indazol-5-yl) pyrrolidinyl ketone;
 - 3-(4-fluorophenyl)(1H-indazol-5-yl)piperazinyl ketone;

```
1-(3-(4-fluorophenyl)-1H-indazol-5-yl)-2-phenylethan-1-one;
```

1-(3-(4-fluorophenyl)-1H-indazol-5-yl)ethan-1-one; or a pharmaceutically acceptable salt thereof.

108. A compound of claim 11, wherein the compound is: 3-(4-fluorophenyl)-1H-indazole-5-carboxamide; (3-(4-fluorophenyl)(1H-indazol-5-yl))-N-benzamide; N-(2-(dimethylamino)ethyl)3-(4-fluorophenyl)(1H-indazol-5-yl))carboxamide; ethyl 1-{(3-(4-fluorophenyl)-1H-indazol-5-yl)carbonyl}piperidine-4-carboxylate; methyl 4-{(3-(4-fluorophenyl)-1H-indazol-5-yl)carbonylamino}benzoate; 4-{3-(4-fluorophenyl)-1H-indazol-5-yl)carbonylamino} benzoic acid; 4-{(3-(4-fluorophenyl)-1H-indazole-5-yl)carbonylamino}benzamide: (3-(4-fluorophenyl)(1H-indazol-5-yl))-N-(2-pyridyl)carboxamide; (3-(4-fluorophenyl)(1H-indazol-5-yl))-N-(3-pyridyl)carboxamide; (3-(4-fluorophenyl)(1H-indazol-5-yl))-N-(4-pyridyl)carboxamide; tert-butyl 3-{(3-(4-fluorophenyl)-1H-indazol-5-yl)carbonylamino)propanoate; (3-(4-fluorophenyl)(1H-indazol-5-yl))-N-(3-hydroxyphenyl)carboxamide; 3-{(3-(4-fluorophenyl)-1H-Indazol-5-yl)carbonylamino)propanoic acid; (3-(4-fluorophenyl)(1H-indazol-5-yl))-N-(3-nitrophenyl)carboxamide; tert-butyl-2-{(3-(4-fluorophenyl)-1H-indazol-5-yl)carbonylamino}acetate; 4-{(3-(4-fluorophenyl)-1H-indazol-5-yl)carbonylamino} butanoic acid; N-(3-aminophenyl)(3-(4-fluorophenyl)(1H-indazol-5-yl))carboxamide; 2-{(3-(4-fluorophenyl)-1H-indazol-5-yl)carbonylamino}acetic acid; 5-{(3-(4-fluorophenyl)-1H-indazol-5-yl)carbonylamino} pentanoic acid; 4-({(3-(4-fluorophenyl)-1H-indazol-5-yl)carbonylamino}methyl)benzoic acid; (3-(4-fluorophenyl)(1H-indazol-5-yl))-N-(4-pyridylmethyl)carboxamide; 2-(4-{(3-(4-fluorophenyl)-1H-indazol-5-yl)carbonylamino}phenyl)acetic acid; (3-(4-fluorophenyl)(1H-indazol-5-yl))-N,N-dimethylcarboxamide; (3-(4-fluorophenyl)(1H-indazol-5-yl))-N-methylcarboxamide; N-(3-aminoethyl)(3-(4-fluorophenyl)(1H-indazol-5-yl))carboxamide; N-(3-aminopropyl)(3-(4-fluorophenyl)(1H-indazol-5-yl))carboxamide; (3-(4-fluorophenyl)(1H-indazol-5-yl))-N-(2-hydroxypropyl)carboxamide; N-(2H-1,2,3,4-tetrazol-5-yl)(3-(4-fluorophenyl)(1H-indazol-5-yl))carboxamide;

- 104 - NY2 - 1325112.1

```
{3-(4-fluorophenyl)(1H-indazol-5-yl)}-N-(3-morpholin-4-ylpropyl)carboxamide;
```

- (3-(4-fluorophenyl)(1H-indazol-5-yl)}-N-(3-pyridylmethyl)carboxamide;
- (3-(4-fluorophenyl)(1H-indazol-5-yl))-N-(2-(1-methylimidazol-5-yl)ethyl)carboxamide);
 - (3-(4-fluorophenyl)(1H-indazol-5-yl))-N-(2-pyridylmethyl)carboxamide;
 - N-(2-carbamoylethyl)(3 -(4-fluorophenyl)(1H-indazol-5-yl))carboxamide;
 - N-(3-carbamoylpropyl)(3-(4-fluorophenyl)(1H-indazol-5-yl))carboxamide;
 - 1-(3-(4-fluorophenyl)-1H-indazol-5-yl)-2-phenylethan-1-one;
 - 3-(4-methoxyphenyl)-1H-indazole-5-carboxamide;
 - 3-(4-hydroxyphenyl)-1H-indazole-5-carboxamide;
 - 3-(2-naphthyl)-1H-indazole-5-carboxamide;
 - 3-benzo(b)thiophen-2-yl-1H-indazole-5-carboxamide;
 - 3-benzo(d)furan-2-yl-1H-indazole-5-carboxamide;
 - 3-(3-(methylethyl)phenyl)-1H-indazole-5-carboxamide;
 - 3-(4-(dimethylamino)phenyl)-1H-indazole-5-carboxamide;
 - 3-(3-furyl)-1H-indazole-5-carboxamide;
 - 3-{4-(2-(dimethylamino)ethoxy)phenyl}-1H-indazole-5-carboxamide;
 - 3-(3,4-dimethoxyphenyl)-1H-indazole-5-carboxamide;
 - 3-(3-aminophenyl)-1H-indazole-5-carboxamide;
 - 3-(2H-benzo(d)1,3-dioxolen-5-yl)-1H-indazole-5-carboxamide;
 - (3-benzo(d)furan-2-yl(1H-indazol-5-yl))-N-(methylethyl)carboxamide;
 - (3-benzo(d)furan-2-yl(1H-indazol-5-yl))-N-(2-methoxyethyl)carboxamide;
 - (3-benzo(d)furan-2-yl(1H-indazol-5-yl))-N-(2-(dimethylamino)ethyl)carboxamide;
 - (3-benzo(d)furan-2-yl(1H-indazol-5-yl))-N-(4-(dimethylamino)butyl)carboxamide;
 - (3-benzo(d)furan-2-yl(1H-indazol-5-yl))-N-(3-(dimethylamino)propyl)carboxamide;
 - (3-benzo(d)furan-2-yl(1H-indazol-5-yl))-N-(2-methylpropyl)carboxamide;
 - (3-benzo(d)furan-2-yl(1H-indazol-5-yl))-N-methylcarboxamide;
 - 3-(3-(3-pyridylcarbonylamino)phenyl)-1H-indazole-5-carboxamide;
 - 3-(3-(2-methoxyacetylamino)phenyl)-1H-indazole-5-carboxamide;
 - 3-(3-(4-piperidylcarboxyamino)phenyl)-1H-indazole-5-carboxamide;
 - (1S)-1-{N-(3-(5-carbamoyl(1H-indazol-3-yl))phenyl)carbamoyl}ethyl acetate;
 - 3-{3-(2-methoxyethyl)amino)phenyl}-1H-indazole-5-carboxamide;
 - 3-(3-(3-piperidylpropanoylamino)phenyl)-1H-indazole-5-carboxamide;

- 3-(3-(2-furylcarbonylamino)phenyl)-1H-indazole-5-carboxamide;
- 3-{3-(2-(dimethylamino)acetylamino)phenyl}-1H-indazole-5-carboxamide;
- 3-(3-(2-phenylacetylamino)phenyl)-1H-Indazole-5-carboxamide;
- 3-{3-(2-(4-methoxyphenyl)acetylamino)phenyl}-1H-indazole-5-carboxamide;
- 3-{3-(2-(2-methyl-1,3-thiazol-5-yl)acetylamino)phenyl}-1H-indazole-5-carboxamide;
 - 3-(3-(oxolan-3yl-carbonylamino)phenyl)-1H-indazole-5-carboxamide;
 - 3-(3-(2-(3-thienyl)acetylamino)phenyl)-1H-indazole-5-carboxamide;
 - 3-(3-(2-thienylcarbonylamino)phenyl)-1H-indazole-5-carboxamide;
 - 3-(3-(2-(4-pyridyl)acetylamino)phenyl)-1H-Indazole-5-carboxamide;
 - 3-(3-(2-(2-pyridyl)acetylamino)phenyl)-1H-Indazole-5-carboxamide;
 - 3-{3-(2-(4-fluorophenyl)acetylamino)phenyl}-1H-indazole-5-carboxamide;
 - 3-(3-(cyclopropylcarbonylamino)phenyl)-1H-indazole-5-carboxamide;
 - 3-{3-((3-hydroxyphenyl)carbonylamino)phenyl}-1H-indazole-5-carboxamide;
 - 3-{3-(2-(2,4-dichlorophenyl)acetylamino)phenyl}-1H-indazole-5-carboxamide;
- 3-(3-{2-(4-(trifluoromethyl)phenyl)acetylamino}phenyl)-1H-indazole-5-carboxamide;
- 3-(3-{2-(4-(dimethylamino)phenyl)acetylamino}phenyl)-1H-indazole-5-carboxamide;
- 3-{3-(2-(2-chloro-4-fluorophenyl) acetylamino)phenyl}-1H-indazole-5-carboxamide;
 - 3-{3-(2-(4-chlorophenyl)acetylamino)phenyl}-1H-indazole-5-carboxamide;
 - 3-(3-(3-phenylpropanoylamino)phenyl)-1H-indazole-5-carboxamide;
 - 3-{3-(3-(4-fluorophenyl)propanoylamino)phenyl}-1H-indazole-5-carboxamide;
 - 3-{3-(2-(3,4-difluorophenyl)acetylamino)phenyl}-1H-indazole-5-carboxamide;
 - 3-{3-(2-(2-fluorophenyl) acetylamino)phenyl}-1H-indazole-5-carboxamide;
 - 3-(3-(2-phenylpropanoylamino)phenyl}-1H-indazole-5-carboxamide;
 - 3-(3-(2-piperidylethoxy)phenyl}-1H-indazole-5-carboxamide;
 - N-ethyl-3-{(3-(4-fluorophenyl)(1H-indazol-5-yl))carbonylamino} propanamide;
 - (3-(4-fluorophenyl)(1H-indazol-5-yl))-N-(3-methoxypropyl)carboxamide;
 - 3-{3-(N-(2-piperidylethyl)carbamoyl)phenyl}-1H-indazole-5-carboxamide;
 - (3-(4-fluorophenyl)(1H-indazol-5-yl))-N-(2-hydroxyethyl)carboxamide;
 - (3-(4-fluorophenyl)(1H-indazol-5-yl))-N-(3-hydroxypropyl)carboxamide;

```
(3-(4-fluorophenyl)(1H-indazol-5-yl))-N-(oxolan-2-ylmethyl)carboxamide;
       3-(2H, 3H-benzo(e)1,4-dioxin-6-yl)-1H-indazole-5-carboxamide;
       3-(3-quinolyl)-1H-indazole-5-carboxamide;
       3-(6-methoxy-2-naphthyl)-1H-indazole-5-carboxamide;
       3-(2,3-dihydrobenzo(b)furan-5-yl)-1H-indazole-5-carboxamide;
       (3-(4-fluorophenyl)(1H-indazol-5-yl))-N-(3-oxo-3-pyrrolidinylpropyl) carboxamide;
       3-{(3-(4-fluorophenyl)(1H-indazol-5-yl))carbonylamino}-N-methyl propanamide;
       3-{(3-(4-fluorophenyl)(1H-indazol-5-yl))carbonylamino}-N,N-dimethyl
propanamide;
       3-{(3-(4-fluorophenyl)(1H-indazol-5-yl))carbonylamino}-N-(2-
methoxyethyl)propanamide; or a pharmaceutically acceptable salt thereof.
       109.
              A compound of claim 12, wherein the compound is:
       phenyl-N-(3-phenyl(1H-indazol-5-yl))carboxamide;
       N-(3-phenyl(1H-indazol-5-yl))-2-pyridylcarboxamide;
       methyl 4-(N-(3-phenyl-1H-indazol-5-yl)carbamoyl)benzoate;
       4-(N-(3-phenyl-1H-indazol-5-yl)carbamoyl)benzoic acid;
       (2-hydroxyphenyl)-N-(3-phenyl(1H-indazol-5-yl)carboxamide;
       N-(3-(phenyl-1H-indazole-5-yl))acetamide;
       (4-aminophenyl)-N-(3-phenyl(1H-indazol-5-yl))carlboxamide;
       (3-aminophenyl)-N-(3-phenyl(1H-indazol-5-yl))carboxamide;
       N-(3-(4-fluorophenyl)(1H-indazol-5-yl)) (2-methylphenyl)carboxamide;
       N-(3-(4-fluorophenyl)(1H-indazol-5-yl))(2-methoxyphenyl)carboxamide;
       N-(3-(4-fluorophenyl)(1H-indazol-5-yl))(4-phenylphenyl)carboxamide;
       benzo(b)thiophen-2-yl-N-(3-(4-fluorophenyl)(1H-indazol-5-yl))carboxamide;
       methyl 4-{N-(3-(4-fluorophenyl)-1H-indazol-5-yl)carbamoyl}benzoate;
       N-(3-(4-fluorophenyl)(1H-indazol-5-yl))-2-pyridylcarboxamide;
       4-{N-(3-(4-fluorophenyl)-1H-indazol-5-yl)carbamoyl}benzoic acid;
       cyclopropyl-N-(3-(4-fluorophenyl)(1H-indazol-5-yl))carboxamide;
       methyl 4-{N-(3-(4-fluorophenyl)(1H-indazol-5-yl))-N-methylcarbamoyl}benzoate;
       4-{N-(3-fluorophenyl)(1H-indazol-5-yl))-N-methylcarbamoyl} benzoic acid;
```

methyl 3-{N-((4-fluorophenyl)-1H-indazol-5-yl}carbamoyl}benzoate;

(3-(4-fluorophenyl)(1H-indazol-5-yl))-N-(2-methoxyethyl)carboxamide;

```
3-{N-(3-(4-fluorophenyl)-1H-indazol-5-yl)carbamoyl}benzoic acid;
             N-(3-(4-fluorophenyl)-(1H-indazol-5-yl))(4-(N-
      methylcarbamoyl)phenyl)carboxamide;
             4-{N-(3-(4-fluorophenyl)-1H-indazol-5-yl)carbamoyl}benzamide;
             1-4-{N-(3-(4-methoxyphenyl)-1H-indazol-5-yl)carbamoyl} benzoic acid;
             4-(N-(3-(4-pyridyl)-1H-indazol-5-yl)carbamoyl)benzoic acid;
             N-(3-(4-fluorophenyl)(1H-indazol-5-yl)benzamide;
             (3,4-bis(trifluoromethyl)phenyl)-N-(3-(4-fluorophenyl)(1H-indazol-5-
      yl))carboxamide;
             N-(3-(4-fluorophenyl)(1H-indazol-5-yl))-2-furylcarboxamide;
             N-(3-(4-fluorophenyl)(1H-indazol-5-yl))(3,4-dichlorophenyl)carboxamide;
             N-(3-(4-fluorophenyl)(1H-indazol-5-yl))(2-hydroxyphenyl)carboxamide;
             2-{N-(3-(4-fluorophenyl)-1H-indazol-5-yl)carbamoyl}phenyl)methyl benzoate;
             N-(3-(4-fluorophenyl)(1H-indazol-5-yl))-4-pyridylcarboxamide;
             N-(3-(4-fluorophenyl)(1H-indazol-5-yl))-3-pyridylcarboxamide;
             N-(3-(4-fluorophenyl)(1H-indazol-5-yl))-2-thienylcarboxamide;
             N-(3-(4-fluorophenyl)(1H-indazol-5-yl))morpholin-4-yl-carboxamide;
N-(3-(4-fluorophenyl)(1H-indazol-5-yl))((4-fluorophenyl)amino)carboxamide;
             N-(((2R)-2-hydroxycyclohexyl)methyl) (3-(4-fluorophenyl) (1H-indazol-5-
      yl))carboxamide; or a pharmaceutically acceptable salt thereof.
             110.
                    A compound of claim 13, wherein the compound is:
             (3-(4-fluorophenyl)(1H-indazol-5-yl))(4-pyridylmethyl)amine;
             (3-(4-fluorophenyl)(1H-indazol-5-yl))(3-pyridylmethyl)amine; or a pharmaceutically
      acceptable salt thereof.
             111.
                    A compound of claim 14, wherein the compound is:
             3-phenyl-5-trifluoromethyl-1H-indazole;
             5-fluoro-3-phenyl-1H-indazole;
         5-nitro-3-phenyl-1H-indazole;
             5-amino-3-phenyl-1H-indazole;
```

3-phenyl-1H-indazol-5-ol;

5-methyl-3-phenyl-1H-indazole;

- 3-(4-fluorophenyl)-5-pyrazol-3-yl-1H-indazole;
- 5-benzimidazol-2-yl-3-(4-fluorophenyl)-1H-indazole;
- 5-{3-(4-fluorophenyl)(1H-indazole-5-yl))-3-phenyl-4H-1,2,4-triazole;
- 2-{5-(3-(4-fluorophenyl)-1H-indazol-5-yl)-4H-1,2,4-triazol-3-yl} furan;
- 5-(3-(4-fluorophenyl)(1H-indazol-5-yl))-3-(4-pyridyl)-4H-1,2,4-triazole;
- 3-(4-chlorophenyl)-5-(3-(4-fluorophenyl)(1H-indazol-5-yl))-4H-1,2,4-triazole;
- 5-(3-(4-fluorophenyl)(1H-indazole-5-yl))-3-(4-nitrophenyl)-4H-1,2,4-triazole;
- 1-{5-(3-(4-fluorophenyl)(1H-indazol-5-yl))(4H-1,2,4-triazol-3-yl))-4-methoxybenzene;
 - 4-{5-(3-(4-fluorophenyl)-1H-indazol-5-yl)-4H-1,2,4-triazol-3-yl}phenylamine;
 - 5-(3-(4-fluorophenyl)(1H-indazol-5-yl))-3-benzyl-4H-1,2,4-triazole;
 - 2-(3-(4-fluorophenyl)(1H-indazol-5-yl))-5-phenyl-1,3,4-oxadiazole;
 - 5-(3-(4-fluorophenyl)(1H-indazol-5-yl))-2-methyl-1,3,4-oxadiazole;
 - ethyl (2E)-3-(3-(4-fluorophenyl)-1H-indazol-5-yl)prop-2-enoate;
 - 3-(3-(4-fluorophenyl)-1H-indazol-5-yl)propanoic acid;
 - 5-(3-(4-fluorophenyl)(1H-indazol-5-yl))-3-(3-pyridyl)-4H-1,2,4-triazole;
 - 4-{5-(3-(4-fluorophenyl)-1H-indazol-5-yl)-4H-1,2,4-triazol-3-yl} phenol;
 - 2-{5-(3-(4-fluorophenyl)1H-indazol-5-yl)-4H-1,2,4-triazol-3-yl}acetic acid;
 - ethyl 3-{5-{3-(4-fluorophenyl)-1H-indazol-5-yl)-4H-1,2,4-triazol-3-yl}propanoate;
 - ethyl-4-{5-(3-(4-fluorophenyl)-1H-indazol-5-yl}-4H-1,2,4-triazol-3-yl}butanoate;
 - 3-{5-(3-(4-fluorophenyl)-1H-indazol-5-yl)-4H-1,2,4-triazol-3-yl}propanoic acid;
 - 5-methyl-3-(4-fluorophenyl)-1H-indazole;
- 3-(3-(4-fluorophenyl)-1H-indazol-5-yl)-1,2,4-oxadiazolin-5-one; or a pharmaceutically acceptable salt thereof.
 - 112. A compound of claim 15, wherein the compound is:
 - 3-(4-fluorophenyl)-5-(2-phenylethynyl)-1H-indazole;
 - 5-((1E)-2-phenylvinyl)-3-(4-fluorophenyl)-1H-indazole;
 - 5-((1E)-2-(2-pyridyl)vinyl)-3-(4-fluorophenyl)-1H-indazole;
 - 4-{(1E)-2-((3-(4-fluorophenyl)-1H-indazol-5-yl)vinyl}benzoic acid;
 - 5-((1E)-2-(3-nitrophenyl)vinyl)-3-(4-fluorophenyl)-1H-indazole;
 - 5-((1Z)-2-phenylvinyl)-3-(4-fluorophenyl)-1H-indazole;
 - 5-((1E)-2-(4-aminophenyl)vinyl)-3-(4-fluorophenyl)-1H-indazole;

```
5-((1E)-2-(4-pyridyl)vinyl)-3-(4-fluorophenyl)-1H-indazole;
       (2E)-3-(3-(4-fluorophenyl)-1H-indazol-5-yl)prop-2-enoic acid;
       5-(2-(3-aminophenyl)ethyl)-3-(4-fluorophenyl)-1H-indazole;
       4-{2-(3-(4-fluorophenyl)-1H-indazol-5-yl)ethyl}benzoic acid;
       3-(4-fluorophenyl)-5-(2-(2-pyridyl)ethyl)-1H-indazole;
       3-(4-fluorophenyl)-5-(2-phenylethyl)-1H-indazole;
       1-(3-(4-fluorophenyl)-1H-indazol-5-yl)-2-phenylethan-1-ol; or a pharmaceutically
acceptable salt thereof.
       113.
              A compound of claim 17, wherein the compound is:
       4-(3-(4-fluorophenyl)-1H-indazole-5-yl)pyrimidine-2-ylamine;
       5-(3-(4-fluorophenyl)-1H-indazol-5-yl)-4H-1,2,4-triazole-3-yl-amine;
       1-({5-(3-(4-fluorophenyl)-1H-indazol-5-yl)-4H-1,2,4-triazol-3-yl}methyl)piperidin-
       1-acetyl-4-({5-(3-(4-fluorophenyl)(1H-indazol-5-yl))(4H-1,2,4-triazol-3-yl)}methyl)
piperazine;
       3-(3-(4-fluorophenyl)(1H-indazol-5-yl))-5-(piperidylmethyl)-1H-1,2,4-triazole;
       4-({3-(3-(4-fluorophenyl)(1H-indazol-5-yl))-1H-1,2,4-triazol-5-
yl}methyl)morpholine;
       4-({5-(3-(4-fluorophenyl)-1H-indazol-5-yl)-1,3,4-oxadiazol-2-
yl}methyl)morpholine;
       1-({3-(3-(4-fluorophenyl)-1H-indazol-5-yl)-1H-1,2,4-triazol-5-
yl}methyl)pyrrolidine-2-one;
       (5-(3-(4-fluorophenyl)-1H-indazol-5-yl)-1H-1,2,4-triazol-3-yl)methan-1-ol;
       3-(3-(4-fluorophenyl)(1H-indazol-3-yl))-5-((4-pyrrolidinylpiperidyl) methyl)-1H-
1,2,4-triazole; or a pharmaceutically acceptable salt thereof.
       114.
               A compound of claim 18, wherein the compound is:
       3-(3-(4-fluorophenyl)-1H-indazol-5-yl)-1H-1,2,4-triazole;
       5-(3-(4-fluorophenyl)(1H-indazole-5-yl))-3-methyl-4H-1,2,4-triazole;
       1-{5-(3-(4-fluorophenyl)-1H-indazole-5-yl)-4H-1,2,4-triazol-3-yl} propan-2-ol;
       5-(3-(4-fluorophenyl)(1H-indazol-5-yl))-3-propyl-4H-1,2,4-triazole;
       5-{3-(3-(methylethyl)phenyl)-1H-indazol-5-yl}-1H-1,2,4-triazole;
```

4-ol;

- 110 -NY2 - 1325112.1

```
4-(5-(1H-1,2,4-triazol-5-yl)-1H-indazol-3-yl)phenol;
(4-(5-(1H-1,2,4-triazol-5-yl)(1H-indazol-3-yl))phenyl)dimethylamine;
3-(3-((1E)-2-phenylvinyl)-1H-indazol-5-yl)-1H-1,2,4-triazole;
{2-(4-(5-(1H-1,2,4-triazol-5-yl)(1H-indazol-3-yl))phenoxy)ethyl}dimethylamine;
3-(5-(1H-1,2,4-triazol-5-yl)-1H-indazol-3-yl)furan;
1-(5-(1H-1,2,4-triazol-5-yl)(1H-indazol-3-yl))-4-methoxybenzene;
5-(3-naphthyl-1H-indazol-5-yl)-1H-1,2,4-triazole;
3-(5-(1H-1,2,4-triazol-3-yl)-1H-indazol-3-yl)thiophene;
5-(3-(2-naphthyl)-1H-indazol-5-yl)-1H-1,2,4-triazole;
3-(5-(1H-1,2,4-triazol-3-yl)-1H-indazol-3-yl)phenylamine;
3-(3-(3,4-dichlorophenyl)-1H-indazol-5-yl)-1H-1,2,4-triazole;
3-(5-(1H-1,2,4-triazol-5-vl)-1H-indazol-3-vl)benzo(b)thiophene;
3-(3-(4-methylphenyl)-1H-indazol-5-yl)-1H-1,2,4-triazole;
N-(3-(5-(1H-1,2,4-triazol-3-yl)-1H-indazol-3-yl)phenyl)acetamide;
5-(3-(3-chlorophenyl)-1H-indazol-5-yl)-1H-1,2,4-triazole;
1-((1E)-2-(5-(1H-1,2,4-triazol-3-yl))((1H-indazol-3-yl))vinyl)-4-methoxybenzene;
3-{3-((1E)-2-(4-chlorophenyl)vinyl)-1H-indazol-5-yl}-1H-1,2,4-triazole;
2-(5-(1H-1,2,4-triazol-5-yl)-1H-indazol-3-yl)benzo(b)furan;
1-(5-(1H-1,2,4-triazol-5-yl)(1H-indazol-3-yl))-4-(methylsulfonyl)benzene;
3-{3-((1E)-2-(4-methylphenyl)vinyl)-1H-indazol-5-yl}-1H-1,2,4-triazole;
1-(5-(1H-1,2,4-triazol-5-yl)(1H-indazol-3-yl))-4-(methylsulfinyl)benzene;
5-(5-(1H-1,2,4-triazol-5-yl)-1H-indazol-3-yl)-2H-benzo(d)1,3-dioxolene;
4-(5-(1H-1,2,4-triazol-5-yl)-1H-indazol-3-yl)phenylamine;
5-{3-(4-(trifluoromethyl)phenyl)-1H-indazol-5-yl}-1H-1,2,4-triazole;
(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl)) phenyl) (methylsulfonyl)amine;
N-(3-(5-(1H-1,2,4-triazol-3-yl))(1H-indazol-3-yl))phenyl)-2-methoxyacetamide;
N-(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl)-2-phenylacetamide;
N-(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl)-2-furylcarboxamide;
5-(3-(2-phenylethynyl)-1H-indazol-5-yl)-1H-1,2,4-triazole;
N-(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl)-3-pyridylcarboxamide;
1-{5-{3-(4-fluorophenyl)1H-indazol-5-yl}-4H-1,2,4-Triazol-3-yl}ethan-1-ol;
1-{5-(3-(4-fluorophenyl)-1H-indazol-5-yl}-4H-1,2,4-triazol-3-yl}propan-2-ol;
```

{3-(3-(5-(1H-1,2,4-triazol-5-yl)(1H-indazol-3-yl))phenoxy)propyl}dimethylamine;

- 111 - NY2 - 1325112.1

```
{2-(3-(5-(1H-1,2,4-triazol-5-yl)(1H-indazol-3-yl))phenoxy)ethyl} dimethylamine;
       1-(5-(1H-1,2,4-triazol-5-yl)(1H-indazol-3-yl))-3-(2-morpholin-4-yl-ethoxy)benzene;
       1-(5-(1H-1,2,4-triazol-5-yl)(1H-indazol-3-yl))-3-(2-pyrrolidinylethoxy) benzene;
      1-(5-(1H-1,2,4-triazol-5-yl)(1H-indazol-3-yl))-3-(2-piperidylethoxy) benzene;
       1-{2-(3-(5-(1H-1,2,4-triazol-5-yl)-1H-indazol-3-yl)phenoxy)ethyl} pyrrolidin-2-one;
       1-(5-(1H-1,2,4-triazol-5-yl)(1H-indazol-3-yl))-3-(2-piperazinylethoxy) benzene;
       1-(5-(1H-1,2,4-triazol-5-yl)(1H-indazol-3-yl))-3-(3-piperdylpropoxy) benzene;
       4-{2-(3-(5-(1H-1,2,4-triazol-5-yl)(1H-indazol-3-yl))phenoxy)ethyl}-1-
acetylpiperazine;
       N-{2-(3-(5-(1H-1,2,4-triazol-5-yl)(1H-indazol-3-yl))phenoxy)ethyl}
(phenylmethoxy) carboxamide;
       2-(3-(5-(1H-1,2,4-triazol-5-yl)-1H-indazol-3-yl)phenoxy)ethylamine;
       1-(5-(1H-1,2,4-triazol-5-yl)(1H-indazol-3-yl))-3-(2-cyclohexylethoxy) benzene;
       1-(5-(1H-1,2,4-triazol-5-yl)(1H-indazol-3-yl))-3-(2-
azaperhyroepinylethoxy)benzene;
       N-(4-(5-(1H-1,2,4-triazol-5-yl)(1H-indazol-3-yl))phenyl)-2-furyl caroxamide;
       (3-(5-(1H-1,2,4-triazol-5-yl)(1H-indazol-3-yl))phenyl)-N-benzyl caroxamide;
       N-{2-(3-(5-(1H-1,2,4-triazol-5-yl)(1H-indazol-3-yl)phenoxy)ethyl}acetamide;
       5-(3-(2-chlorophenyl)-1H-indazol-3-yl)-1H-1,2,4-triazole;
       (3-(5-(1H-1,2,4-triazol-5-yl)(1H-indazol-3-yl))phenyl)-N-(2,2-
dimehtylpropyl)carboxamide;
       (3-(5-(1H-1,2,4-triazol-5-yl)(1H-indazol-3-yl))phenyl)-N-
(cyclopropylmethyl)carboxamide;
       (3-(5-(1H-1,2,4-trizol-5-yl)(1H-indazol-3-yl))phenyl)-N-(3-
pyridylmethyl)carboxamide;
       (3-(5-(1H-1,2,4-triazol-5-yl)(1H-indazol-3-yl))phenyl)-4-methyl piperazinyl ketone;
       (3-(5-(1H-1,2,4-triazol-5-yl)(1H-indazol-3-yl))phenyl)-N-((4-fluorophenyl)methyl)
carboxamide;
       (3-(5-(1H-1,2,4-triazol-5-yl)(1H-indazol-3-yl))phenyl)-N-indan-2-ylcarboxamide;
       (3-(5-(1H-1,2,4-triazol-5-yl)(1H-indazol-3-yl))phenyl)-N-
((1R)indanyl)carboxamide;
       (3-(5-(1H-1,2,4-triazol-5-yl)(1H-indazol-3-yl))phenyl)-N-((1S)indanyl)carboxamide;
```

- 112 - NY2 - 1325112.1

```
(3-(5-(1H-1,2,4-triazol-5-yl)(1H-indazol-3-yl))phenyl)-N-((1S,2R)-2-
hydroxyindanyl)carboxamide;
       (3-(5-(1H-1,2,4-triazol-5-yl)(1H-indazol-3-yl))phenyl)-N-((2S,1R)-2-
hydroxyindanyl)carboxamide;
       (3-(5-(1H-1,2,4-triazol-5-yl)(1H-indazol-3-yl))phenyl)-N-(1-methyl-1-
phenylethyl)carboxamide;
       (3-(5-(1H-1,2,4-triazol-5-yl)(1H-indazol-3-yl))phenyl)-N-(tert-butyl)carboxamide;
       (3-(5-(1H-1,2,4-triazol-5-yl)(1H-indazol-3-yl))phenyl)-N-((1R)-1-
phenylethyl)carboxamide;
       1-(5-(1H-1,2,4-triazol-5-yl)(1H-indazol-3-yl))-3-(2-piperidylethoxy) benzene;
       (3-(5-(1H-1,2,4-triazol-5-yl)(1H-indazol-3-yl))phenyl-isoindolin-2-yl ketone;
       (3-(5-(1H-1,2,4-triazol-5-yl)(1H-indazol-3-yl))phenyl)-N-(2-(dimethylamino)
ethyl)carboxamide;
       1-(5-(1H-1,2,4-triazol-5-yl)(1H-indazol-3-yl))-3-(2-piperidylethoxy) benzene;
       (3-(5-(1H-1,2,4-triazol-5-yl)(1H-indazol-3-yl))phenyl)-N-(1R)indanyl benzene;
       {5-(3-(4-fluorophenyl)-1H-indazol-5-yl)-4H-(1,2,4)-triazol-3-ylmethyl}-dimethyl-
amine;
       N-(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl)-3-piperidylpropanamide;
       N-(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl)-2-hydroxypropanamide;
       N-(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl)-2-
(dimethylamino)acetamide;
       N-(3-(5-(1H-1,2,4-triazol-3-yl)-1H-indazol-3-yl)phenyl)butanamide;
       2E-N-(3-(5-(1H-1,2,4-triazol-3-yl))(1H-indazol-3-yl))phenyl)-3-phenylprop-2-
enamide;
       N-(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl)-2-phenoxypropanamide;
       N-(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl)-3,3-dimethylbutanamide;
       N-(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl)cyclopropylcarboxamide;
       N-(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl)-2-indol-3-yl-2-
oxoacetamide;
       N-(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl)(6-chloro(3-
pyridyl))carboxamide;
      N-(3-(5-(1H-1,2,4-triazol-3-yl))(1H-indazol-3-yl))phenyl)cyclopentylcarboxamide;
       N-(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl)methane carboxylic acid;
```

- 113 - NY2 - 1325112.1

```
N-(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl)benzo(b)thiophen-2-
carboxamide;
       N-(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl)-2-pyridylcarboxamide;
       N-(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl)-3-furylcarboxamide;
       N-(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl)-2-hydroxy-2-
phenylacetamide;
       N-(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl)isoxazol-5-ylcarboxamide;
      N-(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl)-2-(2-furyl)-2-
oxoacetamide;
       N-(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl)-2-oxo-2-phenylacetamide;
       N-(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl)pentanamide;
       N-(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl)-4-pyridylcarboxamide;
       N-(3-(5-(1H-1,2,4-triazol-3-yl))(1H-indazol-3-yl))phenyl)-2-cyclohexylacetamide;
       N-(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl)-3-propanamide;
       N-(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl)-2-(4-fluorophenyl)acetic
acid;
       N-(3-(5-(1H-1,2,4-triazol-3-yl))(1H-indazol-3-yl))phenyl)(2R)-2-hydroxy-2-
phenylacetamide;
       N-(3-(5-(1H-1,2,4-triazol-3-yl))(1H-indazol-3-yl))phenyl)(2S)-2-hydroxy-2-
phenylacetamide;
       (2-{3-(3-(4-fluorophenyl)(1H-indazol-5-yl))(1H-1,2,4-triazol-5-
yl)}ethyl)dimethylamine;
       diethyl({3-(3-(4-fluorophenyl)(1H-indazol-5-yl))(1H-1,2,4-triazol-5-
yl)}methyl)amine;
       4-({3-(3-(4-fluorophenyl)(1H-indazol-5-yl))-1H-1,2,4-triazol-5-
yl}methyl)morpholine;
     4-({5-(3-(4-fluorophenyl)-1H-indazol-5-yl)-1,3,4-oxadiazol-2-
yl}methyl)morpholine;
       1-({3-(3-(4-fluorophenyl)-1H-indazol-5-yl)-1H-1,2,4-triazol-5-
yl}methyl)pyrrolidine-2-one;
       ({3-(3-(4-fluorophenyl)(1H-indazol-5-yl))(1H-1,2,4-triazol-5-
yl)}methyl)methylamine;
```

- 114 -

```
({3-(3-(4-fluorophenyl)(1H-indazol-5-yl))(1H-1,2,4-triazol-5-yl)}
ethyl)dimethylamine;
       (2R)-N-(3-(5-{5-((dimethylamino)methyl)(1H-1,2,4-triazol-3-yl)}(1H-indazol-3-
yl))phenyl)-2-hydroxy-2-phenylacetamide;
       N-(3-(5-{5-((dimethylamino)methyl)(1H-1,2,4-triazol-3-yl)}(1H-indazol-3-yl))
phenyl)-3,3-dimethylbutanamide;
       3-(3-(4-fluorophenyl)(1H-indazol-5-yl))-5-(pyrrolidinylmethyl)-1H-1,2,4-triazole;
       N-(3-(5-{5-((dimethylamino)methyl)(1H-1,2,4-triazol-3-yl)}(1H-indazol-3-
yl))phenyl)-3-methylbutanamide;
       N-(3-(5-{5-((dimethylamino)methyl)(1H-1,2,4-triazol-3-yl)}(1H-indazol-3-
yl))phenyl)-3-pyridylcarboxamide;
       (3-(5-{5-((dimethylamino)methyl)(1H-1,2,4-triazol-3-yl)}(1H-indazol-3-
yl))phenyl)-N-((4-fluorophenyl)methyl)carboxamide;
       (3-(5-\{5-((dimethylamino)methyl)(1H-1,2,4-triazol-3yl)\}(1H-indazol-3-yl))phenyl)-
N-((tert-butyl)methyl)carboxamide;
       ((1R)indanyl)(3-(5-\{5-((dimethylamino)methyl)(1H-1,2,4-triazol-3-yl)\}(1H-indazol-1)
3-yl))phenyl)carboxamide;
       ({3-(3-(4-methoxyphenyl)(1H-indazol-5-yl))(1H-1,2,4-triazol-5-
yl)}methyl)dimethylamine;
       {(3-(3-(2H-benzo(d)1,3-dioxolen-5-yl))(1H-indazol-5-yl))(1H-1,2,4-triazol-5-yl)
yl)}methyl}dimethylamine;
       (3-(5-(3-((dimethylamino)methyl)(1H-1,2,4-triazol-5-yl))(1H-indazol-3-yl))phenyl)-
N-(2-piperidylethyl)carboxamide;
       (3-(5-(3-((dimethylamino)methyl)(1H-1,2,4-triazol-5-yl))(1H-indazol-3-yl))phenyl)-
N-cyclobutylcarboxamide·2HCl;
       1-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl)-3-(2-methoxyethoxy)benzene;
       1-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl)-3-(3-pyridylmethoxy)benzene;
       3-(5-(1H-1,2,4-triazol-3-yl)-1H-indazol-3-yl)benzoic acid N-(4-(5-(1H-1,2,4-triazol-
3-yl)(1H-indazol-3-yl))phenyl)-2-(3-pyridyl)acetamide;
       N-(4-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl)-2-phenylacetamide;
       N-(4-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl)-2-methoxyacetamide;
       N-(4-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl)-2-
(dimethylamino)acetamide;
```

```
(4-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl)(methylsulfonyl)amine;
(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl)-N-(2-
methoxyethyl)carboxamide;
(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl)-N-benzamide;
(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl)-N-(2-
phenethyl)carboxamide;
(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl-N-(2-
piperidylethyl)carboxamide;
(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl-N-(2-morpholin-4-
ylethyl)carboxamide;
(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl-N-cyclohexylcarboxamide;
(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl-N-cyclopentylcarboxamide;
```

fluorophenyl)carboxamide;

(3-(5-(1H-1,2,4-triazol-3-yl))(1H-indazol-3-yl))phenyl-N-{2-(1-benzyl(4-piperidyl))ethylcarboxamide;

(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl-N-((1R,2R)-2-phenylcyclopropyl) carboxamide;

(3-(5-(1H-1,2,4-triazol-3-yl))(1H-indazol-3-yl))phenyl-N-cyclopropylcarboxamide;

(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl)) phenyl-N-(3-pyridyl) carboxamide;

(3-(5-(1H-1,2,4-triazol-3-yl))(1H-indazol-3-yl))phenyl-N-(5,6,7,8-tetrahydronaphthyl)carboxamide;

(3-(5-(1H-1,2,4-triazol-3-yl))(1H-indazol-3-yl))phenyl-N-(1-benzyl(4-piperidyl))carboxamide;

(3-(5-(1H-1,2,4-triazol-3-yl))(1H-indazol-3-yl))phenyl-N-(1-benzylpyrrolidin-3-yl)carboxamide;

(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl-N-(methylethyl)carboxamide;

(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl-N-cyclobutylcarboxamide;

(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl)) phenyl-N-(4-pyridyl) carboxamide;

6-(5-(1H-1,2,4-triazol-3-yl)-1H-indazol-3-yl)-2H,3h-benzo(e)1,4-dioxin;

 $6\hbox{-}(5\hbox{-}(1H\hbox{-}1,2,4\hbox{-}triazol\hbox{-}3\hbox{-}yl)(1H\hbox{-}indazol\hbox{-}3\hbox{-}yl))\hbox{-}2\hbox{-}methoxynaphthalene};$

3-(3-(3-quinoyl)-1H-indazol-5-yl)-1H-1,2,4-triazole;

5-(5-(1H-1,2,4-triazol-3-yl)-1H-indazol-3-yl)-2,3-dihydrobenzo(b)furan;

N-(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl)benzamide;

N-(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl)(2,4-dichlorophenyl)carboxamide;

N-(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl)(4-methoxyphenyl)carboxamide;

N-(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl)(4-methylphenyl)carboxamide;

N-(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl)(4-chlorophenyl)carboxamide;

N-(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl)-2-methylpropanamide;

N-(3-(5-(1H-1,2,4-triazol-3-yl)(1H-indazol-3-yl))phenyl)-3-methylbutanamide;

N-(3-(5-(1H-1,2,4-triazol-3-yl))(1H-indazol-3-yl))phenyl)-2-morpholin-4-yl-acetamide;

N-(3-(5-(1H-1,2,4-triazol-3-yl))(1H-indazol-3-yl))phenyl)-2-(4-methylpiperazinyl)acetamide;

3-(3-(4-fluorophenyl)(1H-indazol-3-yl))-5-(pyrrolidinylmethyl)-1H-1,2,4-triazole; ({3-(3-(6-methoxy(2-naphthyl))(1H-indazol-5-yl))(1H-1,2,4-triazol-5-yl)}methyl)dimethylamine;

2-methoxy-6-{5-(5-(pyrrolidinylmethyl)(1H-1,2,4-triazol-3-yl))(1H-indazol-3-yl)}naphthalene;

N-phenyl(3-{5-(5-(pyrrolidinylmethyl)(1H-1,2,4-triazol-3-yl))(1H-indazol-3-yl)}phenyl)carboxamide;

6-{5-(5-(pyrrolidinylmethyl)-1H-1,2,4-triazol-3-yl)-1H-indazol-3-yl}-2H,3H-benzo(e)1,4-dioxin; or a pharmaceutically acceptable salt thereof.

115. A compound of claim 19, wherein the compound is:

5-(3-(4-fluorophenyl)-1H-indazol-5-yl)-2H-1,2,3,4-tetrazole;

1-(5-(2H-1,2,3,4-tetrazol-5-yl)(1H-indazol-3-yl))-2-methoxybenzene;

5-(1E)-2-phenylvinyl)-1H-indazole-5yl)-2H-1,2,3,4-tetrazole;

5-(3-(3-pyridyl)-1H-indazol-5-yl)-2H-1,2,3,4-tetrazole;

2-(5-(2H-1,2,3,4-tetrazol-5-yl)-1H-indazol-3-yl)thiophene;

5-{3-(4-(methylethyl)phenyl)-1H-indazol-5-yl}-2H-1,2,3,4-tetrazole;

2-(5-(2H-1,2,3,4-tetrazol-5-yl)-1H-indazol-3-yl)furan;

```
3-(5-(2H-1,2,3,4-tetrazol-5-yl)-1H-indazol-3-yl)phenylamine;
       5-(5-(1H-1,2,3,4-tetraazol-5-yl)-1H-indazol-3-yl)-2H-benzo(d)1,3-dioxolene;
       3-(5-(2H-1,2,3,4-tetrazol-5-yl)-1H-indazol-3-yl)thiophene;
       5-(3-(2-naphthyl)-1H-indazol-5-vl)-1H-1,2,3,4-tetrazole:
       1-(5-(1H-1,2,3,4-tetraazol-5-yl)(1H-indazol-3-yl))-4-methoxybenzene;
       1-(5-(1H-1,2,3,4-tetraazol-5-yl)(1H-indazol-3-yl))-4-(2-methylpropoxy)benzene;
       5-(3-(4-chlorophenyl)-1H-indazol-5-yl)-2H-1,2,3,4-tetrazole;
       1-(5-(2H-1,2,3,4-tetrazol-5-yl)(1H-indazol-3-yl))-3-methoxybenzene;
       5-(3-(4-pyridyl)-1H-indazol-5-yl)-2H-1,2,3,4-tetrazole;
       2-(5-(2H-1,2,3,4-tetraazol-5-yl)-1H-indazol-3-yl)benzo(b)furan;
       2-(5-(2H-1,2,3,4-tetrazol-5-yl)-1H-indazol-3-yl)phenol;
       3-(5-(2H-1,2,3,4-tetrazol-5-yl)-1H-indazol-3-yl)phenol;
       5-(3-(2-phenylethynyl)-1H-indazol-5-yl)-1H-1,2,3,4-tetrazole;
       5-(3-(2-phenylethyl)-1H-indazol-5-yl)-2H-1,2,3,4-tetrazole;
    \rightarrow 5-{3-(3-(methylethyl)phenyl)-1H-indazol-5-yl}-1H-1,2,4-triazole;
       N-(3-(5-(2H-1,2,3,4-tetrazol-5-yl)(1H-indazol-3-yl))phenyl)-2-methoxyacetamide;
       2-(5-(1H-1,2,3,4-tetraazol-5-yl)-1H-indazol-3-yl)benzo(b)thiophene;
       1-(5-(1H-1,2,3,4-tetraazol-5-yl)(1H-indazol-3-yl))-4-(2-morpholin-4-
ylethoxy)benzene;
       N-(3-(5-2H-1,2,3,4-tetrazol-5-yl)(1H-indazol-3-yl))phenyl)2-phenoxypropanamide;
       N-(3-(5-(2H-1,2,3,4-tetrazol-5-yl)(1H-indazol-3-yl))phenyl)-3-
piperidylpropanamide;
       N-(3-(5-(2H-1,2,3,4-tetrazol-5-yl)(1H-indazol-3-yl))phenyl)-2-furylcarboxamide;
       1-(5-(1H-1,2,3,4-tetraazol-5-yl)(1H-indazol-3-yl))-3-(2-morpholin-4-
ylethoxy)benzene;
       4-(5-(2H-1,2,3,4-tetraazol-5-yl)(1H-indazol-3-yl))-1,2-dimethoxybenzene;
       N-(3-(5-(2H-1,2,3,4-tetrazol-5-yl)(1H-indazol-3-yl))phenyl)-3-
methoxypropanamide;
       N-(3-(5-(2H-1,2,3,4-tetrazol-5-yl)(1H-indazol-3-yl))phenyl)-3-pyridylcarboxamide;
       {3-(4-(5-(1H-1,2,3,4-tetrazo-5-yl)(1H-indazol-3-yl))phenoxy)propyl}
dimethylamine;
       {3-(3-(5-(1H-1,2,3,4-tetrazol-5-yl)(1H-indazol-3-yl))phenoxy)propyl}
```

- 118 -

NY2 - 1325112.1

dimethylamine;

{2-(3-(5-(1H-1,2,3,4-tetrazol-5-yl)(1H-indazol-3-yl))phenoxy)ethyl}dimethylamine; N-(3-(5-(2H-1,2,3,4-tetrazol-5-yl)(1H-indazol-3-yl))phenyl)(2S)-2-hydroxypropanamide;

(1S)-1-{N-(3-(5-(2H-1,2,3,4-tetrazol-5-yl)(1H-indazol-3-yl))phenyl)carbamoyl}ethyl acetate;

ļ

N-(4-(5-(2H-1,2,3,4-tetrazo-5-yl)(1H-indazol-3-yl))phenyl)-3-pyridylcarboxamide; or a pharmaceutically acceptable salt thereof.

116. A compound of claim 20, wherein the compound is:

3-(4-fluorophenyl)-5-imidazol-2-yl-1H-indazole, or a pharmaceutically acceptable salt thereof.

117. A compound, wherein the compound is:

3-phenyl-5-(phenylmethoxy)-1H-indazole;

(3-(4-fluorophenyl)(1H-indazol-5-yl))(phenylsulfonyl)amine;

3-(4-fluorophenyl)-1H-indazole-5-carboxylate;

(3-(4-fluorophenyl)(1H-indazol-5-yl))-N-(phenylmethoxy)carboxamide;

3-(4-fluorophenyl)-1H-indazole-5-carbohydroxamic acid;

N-((tert-butoxy)carbonylamino) (3-(4-fluorophenyl) (1H-indazol-5-yl))carboxamide;

N-amino(3-(4-fluorophenyl)(1 H-indazol-5-yl))carboxamide;

methyl-3-benzo(B)thiophen-2-yl-1H-indazole-5-carboxylate;

3-benzo(B)thiophen-2-yl-1H-indazole-5-carboxylic acid; or a pharmaceutically acceptable salt thereof.