Author of Solutions: Manzoor Ali Email: manzoorali29@gmail.com

Natural Language Processing Chapter 04:

NAIVE BAYES AND SENTIMENT CLASSIFICATION

Book: Speech and language processing Book

(Authors of book: Daniel Jurafsky and James H.Martin)

1. Assume the following likelihoods for each word being part of a positive or negative movie review, and equal prior probabilities for each class.

	pos	neg
I	0.09	0.16
always	0.07	0.06
like	0.29	0.06
foreign	0.04	0.15
films	0.08	0.11

What class will Naive bayes assign to the sentence "I always like foreign films."?

Solution:

We ignore the equal prior probabilities in our computation because it's having equal effect on both results.

 $P("I always like foreign films"|pos) = 0.09 \times 0.07 \times 0.29 \times 0.04 \times 0.08 = 0.000005846$

P("I always like foreign films" | neg) = $0.16 \times 0.06 \times 0.06 \times 0.15 \times 0.11 = 0.000009504$

P(s|neg) > P(s|pos) so the Naive bayes assigns a neg class.

- 2. Given the following short movie reviews, each labeled with a genre, either comedy or action:
 - a. 1. fun, couple, love, love comedy
 - b. 2. fast, furious, shoot action
 - c. 3. couple, fly, fast, fun, fun **comedy**
 - d. 4. furious, shoot, shoot, fun action
 - e. 5. fly, fast, shoot, love action

and a new document D:

f. fast, couple, shoot, fly

compute the most likely class for D. Assume a naive Bayes classifier and use add-1 smoothing for the likelihoods.

Solution:

Vocabulary (V) = [fun, couple, love, fast, furious, shoot, fly]

$$len(V) = 7$$

Sentence (S) = fast, couple, shoot, fly

Classes (C)= [comedy(c), action(a)]

bigdoc[c] = [fun, couple, love, love, couple, fly, fast, fun, fun] = 9

bigdoc[a] = [fast, furious, shoot, furious, shoot, shoot, fun, fly, fast, shoot, love] = 11

We will only find the probabilities of the test sentence (S)

$$P(c) = \frac{2}{5}$$

$$P(a) = \frac{3}{5}$$

$$P(fast|c) = \frac{1+1}{9+7} = \frac{2}{16}$$
 $P(fast|a) = \frac{2+1}{11+7} = \frac{3}{18}$

P(couple|c)=
$$\frac{2+1}{9+7}=\frac{3}{16}$$
 P(couple|a) = $\frac{0+1}{11+7}=\frac{1}{18}$

$$P(\text{shoot}|c) = \frac{0+1}{9+7} = \frac{1}{16}$$
 $P(\text{shoot}|a) = \frac{4+1}{11+7} = \frac{5}{18}$

$$P(fly|c) = \frac{1+1}{9+7} = \frac{2}{16}$$
 $P(fly|a) = \frac{1+1}{11+7} = \frac{2}{18}$

 $c = \frac{4}{5} \times \frac{2}{16} \times \frac{3}{16} \times \frac{1}{16} \times \frac{2}{16} = 0.000073242$

$$a = \frac{4}{3} \times \frac{3}{18} \times \frac{1}{18} \times \frac{5}{18} \times \frac{2}{18} = 0.000171468$$

The selected class will be = argmax(c,a) = a = Action

3. Train two models, multinomial naive Bayes and binarized naive Bayes, both with add-1 smoothing, on the following document counts for key sentiment words, with positive or negative class assigned as noted.

doc	"good"	"poor"	"great"	(class)
d1.	3	0	3	pos
d2.	0	1	2	pos
d3.	1	3	0	neg
d4.	1	5	2	neg
d5.	0	2	0	neg

Use both naive Bayes models to assign a class (pos or neg) to this sentence:

A good, good plot and great characters, but poor acting.

Do the two models agree or disagree?

Solution:

Vocabulary (V) = [good, poor, great]

$$len(V) = 3$$

Sentence (S) = A good, good plot and great characters, but poor acting.

Classes (C)= [pos, neg]

Prior probabilities:

$$P(pos) = \%$$
 $P(neg) = \%$

a) Multinomial naive Bayes

bigdoc[pos] = [good, good, good, great, great, great, poor, great, great] = 9
bigdoc[neg] = [good, poor, poor, poor, poor, poor, poor, poor, poor, great, great, poor, poor] = 14

$$P(good|pos) = \frac{3+1}{9+3} = \frac{4}{12}$$
 $P(good|neg) = \frac{2+1}{14+3} = \frac{3}{17}$

$$P(good|neg) = \frac{2+1}{14+3} = \frac{3}{17}$$

$$P(\text{great}|\text{pos}) = \frac{5+1}{9+3} = \frac{6}{12}$$
 $P(\text{great}|\text{neg}) = \frac{2+1}{14+3} = \frac{3}{17}$

$$P(great|neg) = \frac{2+1}{14+3} = \frac{3}{17}$$

$$P(poor|pos) = \frac{1+1}{9+3} = \frac{2}{12}$$
 $P(poor|neg) = \frac{10+1}{14+3} = \frac{11}{17}$

$$P(poor|neg) = \frac{10+1}{14+3} = \frac{11}{17}$$

$$[pos] = 0.4 \times (4 \div 12) \times (6 \div 12) \times (2 \div 12) = 0.0111111111$$

$$[neg] = 0.6 \times (3 \div 17) \times (3 \div 17) \times (11 \div 17) = 0.012090372$$

So P(neg) > P(pos) we assert that multinomial naive bayes will assign class negative (neg)

b) Binarized naive Bayes

bigdoc[pos] = [good, great, great, poor] = 4

bigdoc[neg] = [good, poor, good, poor, great, poor] = 6

$$P(good|pos) = \frac{1+1}{4+3} = \frac{2}{7}$$

$$P(good|pos) = \frac{1+1}{4+3} = \frac{2}{7}$$
 $P(good|neg) = \frac{2+1}{6+3} = \frac{3}{9}$

P(great|pos) =
$$\frac{2+1}{4+3}$$
 = $\frac{3}{7}$ P(great|neg) = $\frac{1+1}{6+3} = \frac{2}{9}$

$$P(great|neg) = \frac{1+1}{6+3} = \frac{2}{9}$$

P(poor|pos) =
$$\frac{1+1}{4+3}$$
 = $\frac{2}{7}$ P(poor|neg) = $\frac{3+1}{6+3} = \frac{4}{9}$

$$P(poor|neg) = \frac{3+1}{6+3} = \frac{4}{9}$$

[pos] =
$$0.4 \times (2 \div 7) \times (3 \div 7) \times (2 \div 7) = 0.013994169$$

$$[neg] = 0.6 \times (3 \div 9) \times (2 \div 9) \times (4 \div 9) = 0.019753086$$

Hence, P(neg) > P(pos) we assert that binarized naive Bayes will assign class negative (neg)

In this case, both models are agreed.