

ncRNA classification using complex networks topological measures

Programa de Pós Graduação Associado em Bioinformática UFPR/UTFPR-CP

Matheus Henrique Pimenta-Zanon and Fabrício Martins Lopes 2021

Universidade Federal do Paraná and Universidade Federal do Paraná - Cornélio Procópio

Table of contents

Introduction
Objectives

2. Materials and Methods

Materials

Methods

- 3. Preliminary results
- 4. Conclusion

Introduction

• RNA sequences can play various functional roles in the organism;

- RNA sequences can play various functional roles in the organism;
- In general, they can be classified as coding (mRNA) and non-coding (ncRNA);

- RNA sequences can play various functional roles in the organism;
- In general, they can be classified as coding (mRNA) and non-coding (ncRNA);
 - The mRNAs are translated in proteins necessary for cellular functions;

- RNA sequences can play various functional roles in the organism;
- In general, they can be classified as coding (mRNA) and non-coding (ncRNA);
 - The mRNAs are translated in proteins necessary for cellular functions;
 - The ncRNA have several families and their role are still not fully understood;

ncRNA

The role of some ncRNA is the over participation in complex human diseases, such as cancer, Alzheimer's disease, and cardiovascular diseases [1, 4].

Next-generation sequencing (NGS)

The Next-generation sequencing (NGS), in particular the RNA-seq method, generates reads and assembling transcripts of diverse unclassified RNA.

Objectives

 Propose an extension of the feature extraction method, named BASiNET [3];

Objectives

- Propose an extension of the feature extraction method, named BASiNET [3];
- Fewer thresholds are used to order to classify different RNA classes, considering four small non-coding RNA (small ncRNA) families (tRNA, IRES, miRNA, and 5SrRNA).

Materials and Methods

Materials

The Rfam9 dataset [2] was used to provide the ncRNA sequences input to the proposed method.

Methods

Figure 1: Overview of the BASiNET method.

Methods

Figure 2: Mapping step of the BASiNET method.

Preliminary results

Preliminary results

Using fewer thresholds values the accuracy maintains suitable results, using the Decision Tree classifier to reach 88% accuracy in a small dataset.

Preliminary results

Using fewer thresholds values the accuracy maintains suitable results, using the Decision Tree classifier to reach 88% accuracy in a small dataset.

Figure 3: The highest average accuracy of the 10-fold cross validation achieved from the adopted threshold and classifiers when considering the features extracted by BASiNET.

Conclusion

Conclusion

Using fewer thresholds values the accuracy maintains suitable results;

Conclusion

Using fewer thresholds values the accuracy maintains suitable results;

The capacity to classify different ncRNA sequences, which is not shown in the first BASiNET version.

Thank you!

Thank you!

We would like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for funding this work.

References i

M. Esteller.

Non-coding RNAs in human disease.

Nature Reviews Genetics, 12(12):861–874, Nov. 2011.

P. P. Gardner, J. Daub, J. Tate, B. L. Moore, I. H. Osuch,

S. Griffiths-Jones, R. D. Finn, E. P. Nawrocki, D. L. Kolbe, S. R. Eddy, and A. Bateman.

Rfam: Wikipedia, clans and the "decimal" release.

Nucleic Acids Research, 39(Database):D141–D145, Nov. 2010.

E. A. Ito, I. Katahira, F. F. Vicente, L. P. Pereira, and F. M. Lopes.

BASiNETBiologicAl Sequences NETwork: a case study on coding and non-coding RNAs identification.

Nucleic Acids Research, 46(16):e96–e96, Sept. 2018.

References ii

X. Shi, M. Sun, H. Liu, Y. Yao, and Y. Song.

Long non-coding RNAs: A new frontier in the study of human diseases.

Cancer Letters, 339(2):159-166, Oct. 2013.