УМФ. Определения и формулировки

Васильченко Д.Д., 306

18 марта 2024 г.

1 Уравнение теплопроводности

1.1 Классификация УРЧП

Def 1. Уравнение в частных производных 2-го порядка:

$$F(x,y,u(x,y),u_{x}(x,y),u_{y}(x,y),u_{xx}(x,y),u_{xy}(x,y),u_{yy}(x,y))=0$$

Def 2. Квазилинейное уравнение в частных производных 2-го порядка:

$$a_{11}(x,y,u(x,y),u_x(x,y),u_y(x,y))u_{xx} + 2a_{12}(x,y,u(x,y),u_x(x,y),u_y(x,y))u_{xy} + \\$$

$$+a_{22}(x, y, u(x, y), u_x(x, y), u_y(x, y))u_{yy} + f(x, y, u(x, y), u_x(x, y), u_y(x, y)) = 0$$

Def 3. Линейное уравнение в частных производных 2-го порядка:

$$a_{11}(x,y)u_{xx} + 2a_{12}(x,y) + a_{22}(x,y) + f(x,y,u(x,y),u_x(x,y),u_y(x,y)) = 0$$

Def 4. Линейное УРЧП 2-порядка в точке (x_0, y_0) называется:

- 1. гиперболическим, если $a_{12}^2 a_{11}a_{22} > 0$
- 2. эллиптическим, если $a_{12}^2 a_{11}a_{22} < 0$
- 3. параболическим, если $a_{12}^2 a_{11}a_{22} = 0$

1.2 Одномерное уравнение теплопроводности и задачи для него

Уравнение в полуполосе с граничными условиями первого рода:

$$\begin{cases} u_t = a^2 u_{xx} + f(x,t), \ 0 < x < l, t > 0 \\ u(x,0) = \phi(x), 0 \le x \le l \\ u(0,t) = \nu_1(t), 0 \le t \\ u(l,t) = \nu_2(t), 0 \le t \end{cases}$$

Уравнение в полуполосе с граничными условиями второго рода:

$$\begin{cases} u_t = a^2 u_{xx} + f(x,t), \ 0 < x < l, t > 0 \\ u(x,0) = \phi(x), 0 \le x \le l \\ u_x(0,t) = \nu_1(t), 0 \le t \\ u_x(l,t) = \nu_2(t), 0 \le t \end{cases}$$

Уравнение на полупрямой:

$$\begin{cases} u_t = a^2 u_{xx} + f(x,t), \ 0 < x, t > 0 \\ u(x,0) = \phi(x), 0 \le x \\ u(0,t) = \nu_1(t), 0 \le t \end{cases}$$

Уравнение на прямой

$$\begin{cases} u_t = a^2 u_{xx} + f(x,t), & x \in \mathbb{R}, t > 0 \\ u(x,0) = \phi(x), & x \in \mathbb{R} \end{cases}$$

1.3 Простейшая начально-краевая задача

$$\left\{ \begin{array}{l} u_t = a^2 u_{xx}, \ 0 < x < l, 0 < t \leq \overline{T}(1) \\ u(x,0) = \phi(x), 0 \leq x \leq l(2) \\ u(0,t) = 0, 0 \leq t \leq \overline{T}(3) \\ u(l,t) = 0, 0 \leq t \leq \overline{T}(4) \end{array} \right.$$

Область, в которой рассматривается задача: $Q_{lT} = \{(x,t): 0 < x < l, 0 < t \leq \overline{T}\}$

Def 5. Функция u(x,t) называется решением задачи (1) -(4), если $u(x,t) \in C^{2,1}(Q_{lT}), u(x,t) \in C(\overline{Q}_{lT})$ и удовлетворяет (1)-(4).

Решение методом Фурье:

$$u(x,t) = \sum_{n=1}^{\infty} \left(\frac{2}{l} \int_{0}^{l} \phi(s) \sin \frac{\pi n}{l} s ds \right) \sin \frac{\pi n}{l} x e^{-a^{2} \left(\frac{\pi n}{l}\right)^{2} t}$$

St 1. Вспомогательные утверждения:

1.
$$f(x) \in C[0,l], \ f(0) = f(l) = 0, \ \sum_{n=1}^{\infty} f_n \sin \frac{\pi n}{l} x, \ f_n = \frac{2}{l} \int_{0}^{l} f(x) \sin \frac{\pi n}{l} x dx$$
- сходится равномерно на $[0,l] \Rightarrow f(x) = \sum_{n=1}^{\infty} f_n \sin \frac{\pi n}{l} x$

2.
$$f(x) \in C[0,l] \Rightarrow \sum_{n=1}^{\infty} f_n^2 \leq const$$

3.
$$f(x) \in C[0, l] \Rightarrow \sum_{n=1}^{\infty} \hat{f}_n^2 \le const, \ \hat{f}_n = \frac{2}{l} \int_0^l f(x) \cos \frac{\pi n}{l} x dx$$

Th 1. (Существование решения)

Если $\phi(x) \in C^1[0,l]$ и $\phi(0) = \phi(l) = 0$, то функция u(x,t), полученная методом Фурье является решением задачи (1)-(4)

Th 2. (Принцип максимума)

 $\Pi y cm b$ $u(x,t) \in C^{2,1}(Q_{l,T}) \cap C(\overline{Q_{l,T}})$ u $u_t = a^2 u_{xx}$, тогда $\max_{\Gamma} u(x,t) = \max_{\overline{Q_{l,T}}} u(x,t)$, $\min_{\Gamma} u(x,t) = \min_{\overline{Q_{l,T}}} u(x,t)$

St 2. $(E\partial uncmbehnocmb)$

 $\Pi y cmb \ u_i(x,t) \in C^{2,1}(Q_{l,T}) \cap C(\overline{Q_{l,T}}) \ u \ u_i \ y$ довлетворяет:

$$\begin{cases} (u_i)_t = a^2(u_i)_{xx}, & 0 < x < l, 0 < t \le \overline{T} \\ u_i(x, 0) = \phi(x), 0 \le x \le l \\ u_i(0, t) = \nu_1(t), 0 \le t \le \overline{T} \\ u_i(l, t) = \nu_2(t), 0 \le t \le \overline{T} \end{cases}$$

тогда $u_1(x,t)=u_2(x,t), orall (x,t)\in \overline{Q}_{l,T}$

St 3. (Позитивность)

Пусть $u_i(x,t) \in C^{2,1}(Q_{l,T}) \cap C(\overline{Q_{l,T}})$ и u_i удовлетворяет $(u_i)_t = a^2(u_i)_{xx}$ в $Q_{l,T}$, тогда если $u_1(x,t) \geq u_2(x,t), \forall (x,t) \in \Gamma$, то $u_1(x,t) \geq u_2(x,t), \forall (x,t) \in \overline{Q}_{l,T}$

St 4. (Устойчивость)

 $\Pi y cmb \ u_i(x,t) \in C^{2,1}(Q_{l,T}) \cap C(\overline{Q_{l,T}}) \ u \ u_i \ y$ довлетворяет

$$\begin{cases} (u_i)_t = a^2(u_i)_{xx}, \ 0 < x < l, 0 < t \le \overline{T} \\ u_i(x, 0) = \phi_i(x), 0 \le x \le l \\ u_i(0, t) = \nu_{1i}(t), 0 \le t \le \overline{T} \\ u_i(l, t) = \nu_{2i}(t), 0 \le t \le \overline{T} \end{cases}$$

тогда $|u_1(x,t)-u_2(x,t)| \leq \max\left(\max_{[0,T]}|\nu_{11}-\nu_{12}|,\max_{[0,T]}|\nu_{21}-\nu_{22}|,\max_{[0,l]}|\phi_1-\phi_2|\right)$

1.4 Единственность в общем случае

$$\begin{cases} u_t = a^2 u_{xx} + f(x,t), \ 0 < x < l, t > 0(1) \\ u(x,0) = \phi(x), 0 \le x \le l(2) \\ \alpha_1 u(0,t) - \beta_1 u_x(0,t) = \nu_1(t), 0 \le t(3) \\ \alpha_2 u(l,t) + \beta_2 u_x(l,t) = \nu_2(t), 0 \le t(4) \end{cases}$$

 $\alpha_i, \beta_i \ge 0, \ \alpha_i + \beta_i > 0$

Th 3. $(E\partial uhcmbehhocmb)$

Пусть $u_i(x,t) \in C^{2,1}(Q_{l,T}) \cap C(\overline{Q_{l,T}})$ и дополнительно $\frac{\partial u_i}{\partial x} \in C(\overline{Q_{l,T}})$ и u_i удовлетворяет (1)-(4), тогда $u_1(x,t) = u_2(x,t), \forall (x,t) \in \overline{Q_{l,T}}$

1.5 Преобразования Фурье

Def 6. Пусть f(x) кусочно гладкая и $\int\limits_{-\infty}^{\infty} f(x)dx < \infty$ (конечный), тогда преобразованием Фурье для f(x) называется: $F(\xi) = \int\limits_{-\infty}^{\infty} f(x)e^{-ix\xi}dx$. Обратное преобразование Фурье: $f(x) = \frac{1}{2\pi} \int\limits_{-\infty}^{\infty} F(\xi)e^{ix\xi}d\xi$

Лемма 1. $(Ceoйcmea \Pi \Phi)$

- 1. При сделаных предположениях на f(x). $F(\xi)$ определена на $\xi \in \mathbb{R}$ и $|F(\xi)| = |\int\limits_{-\infty}^{\infty} f(x)e^{-ix\xi}dx| \leq \int\limits_{-\infty}^{\infty} |f(x)|dx$
- 2. $F(\xi)$ непрерывна по ξ
- 3. $F(\xi) \to 0$, $npu \ \xi \to \infty$
- 4. ИНтеграл в обратном $\Pi \Phi$ следует понимать в смысле главного значения $f(x)=rac{1}{2\pi}\lim_{a o\infty}\int\limits_{-a}^aF(\xi)e^{i\xi x}d\xi$

Лемма 2. Пусть $f(x) \in C(\mathbb{R})$) $u \mid f(x) \mid \to 0$, $npu \mid x \mid \to \infty$, $\int\limits_{-\infty}^{\infty} |f(x)| dx$, $\int\limits_{-\infty}^{\infty} |f'(x)| dx$ - конечны, тогда $f(x) \leftrightarrow F(\xi) \Rightarrow f'(x) \leftrightarrow i\xi F(\xi)$

Следствие 1. Пусть $f(x) \in C^m(\mathbb{R}), |f^{(k)}(x)| \to 0, npu |x| \to \infty$ и $\int\limits_{-\infty}^{\infty} |f^{(k)}(x)| dx$ - конечный, k=0,m, тогда $f(x) \leftrightarrow F(\xi) \Rightarrow f^{(m)}(x) \leftrightarrow (i\xi)^m F(\xi)$

Важные интегралы:

- 1. Интеграл Эйлера-Пуассона: $\int\limits_{-\infty}^{\infty}e^{-x^2}dx=\sqrt{\pi}$
- 2. Интеграл типа Эйлера-Пуассона: $\int\limits_{-\infty}^{\infty}e^{-\alpha x^2}\cos\beta xdx=\sqrt{\frac{\pi}{\alpha}}e^{-\frac{\beta^2}{4\alpha}}$

1.6 Уравнение теплопроводности на прямой

Формула Пуассона для решения

$$\left\{ \begin{array}{l} u_t = a^2 u_{xx} \ x \in \mathbb{R}, t > 0 \\ u(x,0) = \phi(x), x \in \mathbb{R} \end{array} \right.$$

$$u(x,y) = \frac{1}{\sqrt{4\pi a^2 t}} \int_{-\infty}^{\infty} e^{\frac{-(x-s)^2}{4a^2 t}} \phi(s) dx \quad (P)$$

Th 4. Пусть $\phi \in C(\mathbb{R})$ и $|phi(x)| \leq M$, $\forall x \in \mathbb{R}$, M = const. Определим для $\forall (x,t) \in \mathbb{R} \times (0,+\infty)$ функцию u(x,t) через формулу (P), тогда

- 1. $u \in C^{\infty}(\mathbb{R} \times (0, +\infty))$
- 2. u(x,t) удовлевторяет уравнению теплопроводн $cmu\ u_t=a^2u_{xx}$ при $(x,t)\in\mathbb{R}\times(0,+\infty)$
- 3. $u(x,t) \rightarrow \phi(x_0) \ npu \ (x,t) \rightarrow (x_0,0), \forall x_0 \in \mathbb{R}, \ m.e. \ \forall x_0 \in \mathbb{R} \forall \varepsilon > 0 \exists \delta(\varepsilon,x_0) > 0: \ |x-x_0| < \delta \ 0 < t < \delta \Rightarrow |u(x,t)-\phi(x_0)| < \varepsilon$

Def 7. Функция $p_a(x,t)=\dfrac{1}{\sqrt{4\pi a^2 t}}e^{\dfrac{-x^2}{4a^2t}}$ называется функцией мгновенного источника тепла или фундаментальным решением УТ.

Тһ 5. (усиленное сохранение позитивности)

Пусть $\phi \in C(\mathbb{R})$ или кусочно непрерывна $0 \leq \phi(x) \leq M$, M = const, $\phi(x) \neq 0 \forall x \in \mathbb{R}$. Определим u(x,t) по формулам (P), тогда u(x,t) > 0 при $\forall (x,t), t > 0$

Следствие 2. Предыдущая теорема указывает на эффект меновенного распространения тепла: если где-то при t=0 было нагрето, то при t>0 температура тела везде >0, т.е. скорость распространения тепла бесконечна.

Тһ 6. (сохранение ограниченности)

Пусть $\phi \in C(\mathbb{R})$ или кусочно непрерывна на \mathbb{R} $|\phi(x)| \leq M$, $\forall x \in \mathbb{R}, M = const.$ Определим u(x,t) по формулам (P), тогда $|u(x,t)| \leq M$ всюду при t > 0.

Th 7. (принцип эксремума для УТ в полосе)

Пусть u(x,t) - решение $u_t=a^2u_{xx}$ из класса $C^{2,1}(\mathbb{R}\times(0,T])\cap C(\mathbb{R}\times[0,T]),$ ограничено в полуполосе $\mathbb{R}\times[0,T],$ тогда $\inf_{\mathbb{R}}(u(x,0))\leq u(x,t)\leq \sup_{\mathbb{R}}(u(x,0))$ всюду в $\mathbb{R}\times[0,T]$

1.7 Свертка

Def 8. Пусть f_1, f_2 - кусочно непрерывные и ограниченные на \mathbb{R} функции, причём $\int\limits_{-\infty}^{\infty} |f_i| dx < \infty, i = 1, 2$, тогда свертка для f_1, f_2 : $g(x) = \int\limits_{-\infty}^{\infty} f_1(x - s) f_2(x) ds$, $\forall x \in \mathbb{R}$ (обозначение $g = (f_1 * f_2)(x)$)).

Лемма 3. (Основное свойство свертки) Пусть $f_1(x) \leftrightarrow F_1(\xi), f_2(x) \leftrightarrow F_2(\xi) \Rightarrow (f_1 * f_2) \leftrightarrow F_1(\xi)F_2(\xi)$

2 Уравнение Лапласа

Def 9. Функция и называется гармонической в области $\Omega \subset \mathbb{R}^n$, если $\Delta u = 0$ всюду в Ω .

Внутренняя задача Дирихле: Пусть $u \in C^2(\Omega) \cap C(\overline{\Omega}), \ \phi \in C(\partial\Omega),$ область Ω ограничена, тогда Задача Дирихле:

$$\begin{cases} \Delta u(x) = 0, x \in \Omega \\ u|_{\partial\Omega} = \phi \end{cases}$$

Внешняя задача Дирихле: Пусть $u\in C^2(\Omega)\cap C(\overline{\Omega}),\,\phi\in C(\partial\Omega),$ область $\Omega=\mathbb{R}^n$ $\overline{D},$ D - ограниченная область в $\mathbb{R}^n,$ тогда Задача Дирихле:

$$\begin{cases} \Delta u(x) = 0, x \in \Omega \\ u|_{\partial\Omega} = \phi \end{cases}$$

Тогда добавляется условие регулярности:

- 1. если n=2, то $u(x)=\underline{O}(1), x\to\infty$
- 2. если $n \geq 3$, то $u(x) = \overline{O}(1), x \rightarrow \infty$

Th 8. Пусть $u \in C^2(\Omega) \cap C(\overline{\Omega})$, Ω - ограниченная область в \mathbb{R}^n , $\Delta u = 0$, тогда $m = \min_{\partial \Omega} u, M = \max_{\partial \Omega} u \Rightarrow m \leq u(x) \leq M, \forall x \in \overline{\Omega}$

Следствие 3. (принцип позитивности)

Пусть $u \in C^2(\Omega) \cap C(\overline{\Omega})$, Ω - ограниченная область в \mathbb{R}^n , u - решение внутренней задачи Дирихле $c \phi u \phi \geq 0, \forall x \in \partial \Omega$, тогда $u \geq 0, \forall x \in \overline{\Omega}$

Следствие 4. (единственность решения)

Внутренняя задача Дирихле не может иметь больше одного решения при заданном $\phi \in C(\partial\Omega)$.

Следствие 5. (устойчивость решения)

Пусть u_1,u_2 - решения внутренних задач Дирихле с функциями $\phi_1,\phi_2\in C(\partial\Omega)$ и $|\phi_1-\phi_2|<arepsilon, \forall x\in\partial\Omega,$ тогда $|u_1-u_2|<arepsilon, \forall x\in\overline{\Omega}$

2.1 Элементы векторного анализа

Def 10. $u \in C^k(\overline{\Omega})$, если в Ω существует все частные производные порядков < k и эти частные производные непрерывно продолжаются на границы.

Def 11. Производная по направлению $\nu = \{\nu_1, \dots, \nu_n\}$: $\frac{\partial u}{\partial \nu} = \frac{\partial}{\partial s} u(x + s\nu)|_{s=0} = \nu_1 \frac{\partial u}{\partial x_1} + \dots + \nu_n \frac{\partial u}{\partial x_n} = (\nu, \nabla u)$

Формула Остроградского-Гаусса: Пусть Ω - хорошая(гладкая, кусочно гладкая граница) область, $A \in C^1(\Omega)$, тогда

$$\int_{\partial\Omega} (A, \nu_y) ds_y = \int_{\Omega} div(A) dx,$$

здесь $A(x)=\{A_1(x),\dots,A_n(x)\}$ - векторное поле. $\Omega\in (GO)$ значит, что в области Ω для любой $A\in C^1(\overline{\Omega})$ справедлива формула Остроградского-Гаусса.

Th 9. (Γaycca)

Пусть $u \in C^2(\overline{\Omega})$, тогда $\nabla u \in C^1(\overline{\Omega})$, $\Omega \in (GO)$

$$\int_{\partial \Omega} \frac{\partial u}{\partial \nu_y} ds_y = \int_{\Omega} \Delta u(x) dx$$

St 5. (1-ая формула Грина) $u \in C^2(\overline{\Omega}), v \in C^1(\overline{\Omega}), \Omega \in (GO)$ тогда

$$\int\limits_{\partial\Omega}v\frac{\partial u}{\partial\nu_y}ds_y=\int\limits_{\Omega}v(x)\Delta u(x)dx+\int\limits_{\Omega}(\nabla v,\nabla u)dx$$

St 6. (2-ая формула Грина) $u, v \in C^2(\overline{\Omega}), \ \Omega \in (GO)$ тогда

$$\int_{\partial \Omega} \left[v \frac{\partial u}{\partial \nu_y} - u \frac{\partial v}{\partial \nu_y} \right] ds_y = \int_{\Omega} (v \Delta u - u \Delta v) dx$$

2.2 Применение формул в теории гармонических функций

Th 10. (Единственность решения задачи Дирихле) $u \in C^2(\overline{\Omega}), \ \Omega \in (GO) \ u \ u|_{\partial\Omega} = 0, \ \Delta u = 0 \ всюду \ в \ \Omega, \ morda \ u(x) = 0 \forall x \in \overline{\Omega}$

Задача Неймана:

 $u \in C^2(\overline{\Omega}), \phi \in C(\partial\Omega)$

$$\left\{ \begin{array}{l} \Delta u(x) = 0, x \in \Omega \\ \frac{\partial u}{\partial \nu_y}|_{\partial \Omega} = \phi \end{array} \right.$$

Th 11. (Необходимое условие разрешимости задачи Неймана) $\Omega \in (GO), \ u \in C^2(\overline{\Omega}) \ u \int\limits_{\partial \Omega} \phi(y) dy = 0.$ (в классе $C^2(\overline{\Omega})$)

Th 12. (Неединственность решения)

Пусть $u_1, u_2 \in C^2(\overline{\Omega}), \ \Omega \in (GO), \ u_1, u_2$ - решения задачи Неймана $c \ \phi(x),$ тогда $u_2 = C + u_1, \forall x \in \overline{\Omega}, C = const$

2.3 Сферически симметричный случай

 ω_n - площадь единичной n-мерной сферы $\omega_n r^{n-1}$ - площадь n-мерной сферы радиуса r>0 $\beta_n=\omega_n \frac{R^n}{n}$ - объём n-мерного шара радиуса R>0

Вид оператора Лапласа в симметричных координатах \mathbb{R}^n

$$\Delta u = \frac{1}{r^{n-1}} \frac{\partial}{\partial r} \left(r^{n-1} \frac{\partial f}{\partial r} \right), \ \forall u = f(r)$$

Def 12. Фундаментальным решением уравнения Лапласа в \mathbb{R}^n называется функция:

$$E(x) = \left\{ \begin{array}{ll} \frac{1}{2\pi} \ln|x|, & \text{if } n = 2, \forall x \in \mathbb{R}^n \setminus \{0\} \\ \frac{-1}{\omega_n(n-2)|x|^{n-2}}, & \text{if } n \geq 3, \forall x \in \mathbb{R}^n \setminus \{0\} \end{array} \right\}$$

Лемма 4. (Свойства фундаментального решения)

1. $\Delta E = 0, \forall x \in \mathbb{R}^n \setminus \{0\}$

$$2. \ \frac{\partial E}{\partial r} = \frac{1}{\omega_n r^{n-1}}$$

3.
$$E(x) \to 0, x \to \infty, n \ge 3$$

4.
$$E(x) \to -\infty, x \to 0+0$$
, no $|x|^{n-1}E(x) \to 0, x \to 0+0$

Закон обратных квадратов: $gradE(x) = \frac{1}{4\pi |x|^2} \frac{\overline{x}}{|x|}$

Связь с Ньютоновским потенциалом: $\frac{-1}{4\pi}E_N = E(x), E_N(x) = \frac{1}{|x|}$

2.4 Фундаментальная формула Грина

Th 13. Пусть $\Omega \subset \mathbb{R}^n$ - ограниченная область $u \ \Omega \in (GO)$. $u \in C^2(\overline{\Omega})$, E(x-y) - фундаментальное решение, тогда $\forall x \in \Omega$

$$u(x) = \int_{\Omega} E(x - y) \Delta u(y) dy + \int_{\partial \Omega} \left[\frac{\partial E(x - y)}{\partial \nu_y} u(y) - \frac{\partial u}{\partial \nu_y} E(x - y) \right] ds_y$$

Следствие 6. Пусть $u \in C^2(\overline{\Omega})$ и $\Delta u = 0$ всюду в Ω , тогда $\forall x \in \Omega$:

$$u(x) = \int_{\partial \Omega} \left[\frac{\partial E(x-y)}{\partial \nu_y} u(y) - \frac{\partial u}{\partial \nu_y} E(x-y) \right] ds_y$$

Следствие 7. (Бесконечная дифференцируемость)

Пусть Ω_0 - произвольная область в \mathbb{R}^n , $u \in C^2(\overline{\Omega_0})$, $\Delta u = 0$ в Ω_0 , тогда u - бесконечно дифференцируема в Ω_0 .

Следствие 8. Значение гармонической фукнции и в точке $x \in \Omega$ совпадает со средним значением и на любой сфере, с центром в x:

$$u(x) = \frac{1}{\omega r^{n-1}} \int_{|x-y|=r} u(y)dy$$

Следствие 9. Значение гармонической фукнции и в точке $x \in \Omega$ совпадает со средним значением и на любом шаре, с центром в x:

$$u(x) = \frac{1}{\beta_n R^n} \int_{|y-x| \le R} u(y) dy$$

2.5 Функция Грина

Положим $\Omega \subset \mathbb{R}^n$ ограниченная область и $\Omega \in (GO)$

Def 13. Функция Грина: $G(x,y) = E(x-y) + g(x,y), \forall x,y \in \Omega, \ x \neq y$ с свойствами:

- 1. $g(\dot{=},y)\in C^2(\overline{\Omega})$ и $\Delta_x g(x,y)=0$ всюду в Ω $\forall y\in\Omega$ фиксированный
- 2. $G(x,y)|_{x\in\partial\Omega}=0$
- 3. $n \geq 3 |G(x,y)| \rightarrow 0, x \rightarrow \infty, n = 2, G(x,y) \leq M = const, x \rightarrow \infty$

Тh 14. (Симметричность функции Грина)

Пусть $\Omega \subset \mathbb{R}^n$ - область и $\Omega \in (GO)$ и для неё существует функция Грина G(x,y), тогда $G(x,y) = G(y,x), \forall x,y \in \Omega, x \neq y$

2.6 Применение функции Грина в задаче Пуассона

Задача для уравнения Пуассона:

$$\begin{cases} \Delta u(x) = f(x), x \in \Omega \\ u(x)|_{x \in \partial\Omega} = \phi(x) \end{cases}$$

$$f(x) \in C(\overline{\Omega}), \phi(x) \in C(\partial\Omega), u \in C^2(\overline{\Omega})$$

Th 15. Пусть $\Omega \in \mathbb{R}^n$ - ограниченная область и $\Omega \in (GO)$. Пусть $u \in C^2(\overline{\Omega})$ является решением задача Дирихле, тогда справедлива разрешающая формула:

$$u(x) = \int_{\Omega} f(y)G(x,y)dy + \int_{\partial\Omega} \phi(y)\frac{\partial G(x,y)}{\partial \nu_y}ds_y,$$

где G(x,y) - формула Грина для области Ω

3 Уравнение колебаний струны

Уравнение колебания струны

$$u_{tt} = a^2 u_{xx} + f(x,t), \ a^2 = \frac{T}{\rho}, \ f(x,t) = \frac{F(x,t)}{\rho}, \ 0 \le x \le l, 0 < t$$

Типовые граничные условия:

- 1. Закреплённый край u(0,t) = 0
- 2. Свободный край $u_x(0,t) = 0$ Обоснование: $-Tu_x(0,t) = 0$
- 3. Упругое закрепление:

$$\begin{cases} u_x(0,t) - hu(0,t) = 0 \\ u_x(l,t) + hu(l,t) = 0, h = \frac{K}{T} \end{cases}$$

Модельная задача о колебаниях струны с закреплёнными краями

$$\begin{cases} u_{tt} = a^2 u_{xx}, & 0 \le x \le l, t > 0 \\ u(0, t) = u(l, t) = 0 \\ u(x, 0) = \phi(x), u_t(x, 0) = \psi(x) \end{cases}$$

Решение методом Фурье:

$$u(x,t) = \sum_{k=1}^{\infty} (A_k \cos \frac{\pi ka}{l} t + B_k \sin \frac{\pi ka}{l} t) \sin \frac{\pi k}{l} x, A_k = \frac{2}{l} \int\limits_0^l \phi(s) \sin \frac{\pi k}{l} s ds, B_k = \frac{2}{\pi ka} \int\limits_0^l \psi(s) \sin \frac{\pi k}{l} s ds$$

Th 16. Пусть $\phi \in C^3[0,l], \psi \in C^2[0,l],$ причём

1.
$$\phi(0) = \phi(l) = 0, \phi''(0) = \phi''(l) = 0$$

2.
$$\psi(0) = \psi(l) = 0$$

 $Torda\ u \in C^{2,2}([0,l]\times [0,+\infty))\ u\ \phi$ ункция $u(x,t)\ y$ довлетворяет всем условиям задачи выше

3.1 Канонические координаты

$$\begin{cases} \xi = t - ax \\ \eta = t + ax \end{cases}$$

Тогда уравнение $u_{tt}=a^2u_{xx}$ в канонических координатах примет вид $u_{\xi\eta}=0$

Общее решение уравнения колебаний представляется в следующем виде

u(x,t)=f(x-at)+g(x+at), где $f,g\in C^2$ - некоторые функции одного аргумена.

Семейство прямых на плоскости (x,t)

$$\begin{bmatrix} x - at = C_1, C_1 \in \mathbb{R} \\ x + at = C_2, C_2 \in \mathbb{R} \end{bmatrix}$$

это характеристики уравнения (1) (однородное уравнение колебаний струны).

Th 17. Всякое решение u(x,t) задачи (1) представимо в виде суммы прямой и обратной волны. $(m.\kappa.\ g(x+at)$ - обратная волна, f(x-at) - прямая волна).

3.2 Задача Коши для уравнения колебания струны

$$\left\{ \begin{array}{l} u_{tt}=a^2u_{xx},\ x\in\mathbb{R}, t\geq 0\\ u(x,0)=\phi(x), u_t(x,0)=\psi(x) \end{array} \right.$$

Формулы Даламбера (решение для задачи Коши)

$$u(x,t) = \frac{1}{2} (\phi(x+at) - \phi(x-at)) + \frac{1}{2a} \int_{x-at}^{x+at} \phi(s) ds$$

Th 18. Пусть $\phi \in C^2(\mathbb{R})$, $\psi \in C^1(\mathbb{R})$ и u = u(x,t) определяется формулой Даламбера $\Rightarrow u \in C^{2,2}(\mathbb{R} \times [0,+\infty])$ и фукнция и является классическим решением задачи Коши.

Тh 19. Устойчивость ???????

3.3 Неоднородное уравнение колебаний струны

$$\begin{cases} u_{tt} = a^2 u_{xx} + f(x,t), & x \in \mathbb{R}, t \ge 0 \\ u(x,0) = 0, u_t(x,0) = 0 \end{cases}$$

Def 14. Вспомогательная функция $v(x,t;\alpha)$ такая что:

$$\begin{cases} v_{tt} = a^2 v_{xx}, x \in \mathbb{R}, t \ge \alpha \\ v|_{t=\alpha} = 0, v_t|_{t=\alpha} = f(x, \alpha) \end{cases}$$

$$\begin{cases} v_{tt}(x,t;\alpha) = a^2 v_{xx}(x,t;\alpha), x \in \mathbb{R}, t \ge \alpha \\ v(x,\alpha;\alpha) = 0, v_t(x,\alpha;\alpha) = 0 \end{cases}$$

Def 15. Интеграл Дюамеля от функции $v(x, t; \alpha)$:

$$u(x,t) = \int_{0}^{t} v(x,t;\alpha)d\alpha$$

Th 20. Пусть $f,f_x'\in C(\mathbb{R}\times[0,+\infty)\Rightarrow$ интеграл Дюамеля дает классическое решение неоднородной задачи Коши:

$$u(x,t) = \int_{0}^{t} v(x,t;\alpha)d\alpha = \frac{1}{2a} \int_{0}^{t} d\tau \int_{x-a(t-\tau)}^{x+a(t-\tau)} f(s,\tau)ds$$