Assignment 4

Topology (KSM1C03)

Submission Deadline: 5th October, 2025

1) Consider the set $X=(-2,-1)\cup\{0\}\cup(1,2)\subset\mathbb{R}$. Show that with the subspace topology, X is not path connected. Now, equip X with the topology \mathcal{T} generated by the base

$$\mathcal{B} \coloneqq \{(a,b) \mid -2 < a < b < -1\} \bigcup \{(a,b) \mid 1 < a < b < 2\}$$

$$\bigcup \{(a,-1) \cup \{0\} \cup (1,b) \mid -2 < a < -1, \ 1 < b < 2\}.$$

Show that (X, \mathcal{T}) is homeomorphic to (-2, 2) (and hence path connected).

$$2 + 8 = 10$$

2) A collection $\Sigma \subset \mathcal{P}(X)$ of subsets of X is said to have the *finite intersection property (FIP)* if any finite sub-collection of Σ has nonempty intersection.

Show that a space X is compact if and only if given any collection Σ of closed sets of X with FIP, has nonempty intersection (i.e, $\bigcap_{F \in \Sigma} F \neq \emptyset$).

$$5 + 5 = 10$$

3) Prove the following.

- a) Let X=[0,1], any $Y=X/_{\{0,1\}}$ which is the quotient space. Then, Y is homeomorphic to the circle S^1 .
- b) Let $X=\mathbb{R}$, and $Y=\mathbb{R}/\mathbb{Z}$ be the quotient space obtained by the equivalence relation $x\sim y$ if and only if $x-y\in\mathbb{Z}$. Then, Y is homeomorphic to S^1 .

Hint: Look at this diagram

where $f(t)=t+\mathbb{Z}$. The induced map \tilde{f} is continuous and bijective. Argue that \mathbb{R}/\mathbb{Z} is T_2 . Conclude that \tilde{f} is a homeomorphism.

$$3 + 7 = 10$$

4) Let X be the real line equipped with the lower limit topology.

- a) Show that [0,1] is not compact in X.
- b) Let C be compact set in X. Show that C is compact in the usual topology, and hence closed and bounded in X as well. (Recall : lower limit topology is (strictly) finer than the usual topology.)
- c) Let C be a subset in X. Suppose $\{x_n\}$ is a strictly increasing sequence in C, i.e, $x_i \in C$ and $x_1 < x_2 < \ldots$. Show that C is not compact. (If C is compact, we have a minimum $a = \min C = \inf C$ and a maximum $b = \max C = \sup C$. Consider $U_0 = [a, x_0), U_i = [x_i, x_{i+1}), V = [x_0, \infty)$, where $x_0 = \sup x_i$.)
- d) Let $C \subset X$ be a closed set, such that C contains no strictly increasing sequence. Then, show that C is closed in the usual topology as well.
- e) Let $C \subset \mathbb{R}$ be a set such that there is no strictly increasing sequence in C. For any $x \in C$, consider the set $S_x := \{y \in C \mid y < x\}$. If $S_x \neq \emptyset$ (i.e, if x is *not* the minimum element of C), denote $s_x := \sup S_x$. If C has a minimum element x, then set $s_x := x 1$ for convenience.
 - i) Show that $s_x \neq x$, and $C \cap (s_x, x) = \emptyset$. In other words, s_x is the previous element of x in C (called *predecessor*).
 - ii) Show that $\{I_x := (s_x, x) \mid x \in C\}$ is a collection of disjoint open sets of X.
 - iii) Conclude that C is countable.

In particular, observe that any compact subset of X must be countable.

f) Suppose $C \subset X$ is a closed, bounded subset, without any strictly increasing sequence. Show that C is compact. (Hint: For any cover $\mathcal{U} = \{U_{\alpha}\}$, start with $x_0 = \inf C \in C$, and some $x_0 \in U_{\alpha_0}$. Next, get $x_1 \coloneqq \inf(C \setminus U_{\alpha_0})$. Argue that $x_0 < x_1 \in C$. If this process does not terminate after finitely many steps, arrive at a contradiction.)

Observe that $C \subset X$ is compact if and only if C is compact in the usual topology, and contains no strictly increasing sequence.

$$2+2+2+4+(3+3+4)+5=25$$

5) Given a space X, the cone of X is defined as the quotient space

$$CX := \frac{X \times [0,1]}{X \times \{0\}}.$$

- a) Show that CX is homeomorphic to $\frac{X \times [a,b]}{X \times \{a\}}$ and to $\frac{X \times [a,b]}{X \times \{b\}}$ for any interval [a,b].
- b) Show that CX is always path connected, but not necessarily locally path connected. (Recall the broom space.)
- c) Show that $C\mathbb{S}^n \cong \mathbb{D}^{n+1}$, where $\mathbb{S}^n = \{(x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \mid \sum_{i=1}^{n+1} x_i^2 = 1\}$ is the n^{th} sphere, and $\mathbb{D}^{n+1} = \{(x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \mid \sum_{i=1}^{n+1} x_i^2 \leq 1\}$ is the $(n+1)^{\text{th}}$ disc.

Hint: Consider the map

$$f: \mathbb{S}^n \times [0,1] \longrightarrow \mathbb{D}^n$$

 $(x_1, \dots, x_{n+1}, t) \longmapsto (tx_1, \dots, tx_{n+1}).$

$$(3+3)+4+5=15$$

6) Prove that $\mathbb{D}^{n+1}/\mathbb{S}^n\cong \mathbb{S}^{n+1}$, where $\mathbb{S}^n\subset \mathbb{D}^{n+1}$ is included as the boundary.

Hint: Consider the map

$$f: \mathbb{D}^{n+1} \longrightarrow \mathbb{S}^{n+1}$$
$$\mathbf{x} \longmapsto \left(2\sqrt{1 - \|\mathbf{x}\|^2}\mathbf{x}, 2\|\mathbf{x}\|^2 - 1\right),$$

where $\|\mathbf{x}\| = \sqrt{x_1^2 + \dots + x_{n+1}^2}$, for $\mathbf{x} = (x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1}$.

10

7) On the space $X \times [0,1]$, consider the following equivalence relation : for any $(x,s), (y,t) \in X \times [0,1]$, define $(x,s) \sim (y,t)$ if and only if one of the following holds

$$s=t\in(0,1), \text{ and } x=y,$$
 or $s=t=0,$ or $s=t=1.$

The suspension of X is defined as the quotient space of $\Sigma X := (X \times [0,1])/_{\sim}$.

a) Show that ΣX is independent of the choice of the interval. That is, for some a < b, if we consider $\Sigma' X = X \times [a,b]/_{\sim'}$, where $(x,s) \sim' (y,t)$ if and only if

$$s = t \in (a, b)$$
, and $x = y$, or $s = t = a$, or $s = t = b$,

then ΣX is homeomorphic to $\Sigma' X$.

- b) Show that ΣX is homeomorphic to $\frac{CX}{X\times\{1\}}$, where $X\times\{1\}$ is included in $CX=\frac{X\times[0,1]}{X\times\{0\}}$.
- c) Show that $\Sigma \mathbb{S}^n \cong \mathbb{S}^{n+1}$.

$$3 + 3 + 4 = 10$$