M378K Introduction to Mathematical Statistics

Problem Set #8

The Normal Distribution.

Definition 8.1. The moment-generating function (mgf) m_Y for a random variable Y is defined as

$$m_Y(t) = \mathbb{E}[e^{tY}]$$

for all t for which the above expectation exists. In fact, we say that the moment-generating function exists there exists a positive number b such that $m_Y(t)$ is finite for all t such that $|t| \le b$.

Proposition 8.2. 1. If m_Y exists for a certain probability distribution, then it is unique.

2. If m_{Y_1} and m_{Y_2} are equal on an interval, then $Y_1 \overset{(d)}{=} Y_2$.

Corollary 8.3. Let Y_1 and Y_2 be independent and normally distributed. Define $Y = Y_1 + Y_2$. Then, the distribution of X is ...

Proof. Note that $Y_i \sim N(\mu = mu_i, \sigma_i)$ for i = 1, 2. Now, let's look at the mgf of Y. Then, since Y_1 and Y_2 are independent, we have

$$m_Y(t) = m_{Y_1}(t)m_{Y_2}(t).$$

We can now use the fact that for any $X \sim N(\mu, \sigma)$,

$$m_X(t) = e^{\mu t} m_Z(\sigma t) = e^{\mu t + \frac{\sigma^2 t^2}{2}}$$

Hence,

$$m_Y(t) = e^{\mu_1 t + \frac{\sigma_1^2 t^2}{2}} \times e^{\mu_2 t + \frac{\sigma_2^2 t^2}{2}} = e^{(\mu_1 + \mu_2)t + \frac{(\sigma_1^2 + \sigma_2^2)t^2}{2}}$$

We can conclude that $Y \sim N(\mu_1 + \mu_2, \sqrt{\sigma_1^2 + \sigma_2^2})$.

Problem 8.1. Two scales are used to measure the mass m of a precious stone. The first scale makes an error in measurement which we model by a normally distributed random variable X_1 with mean $\mu_1=0$ and standard deviation $\sigma_1=0.04m$. The second scale is more accurate. We model its error by a normal random variable X_2 with mean $\mu_2=0$ and standard deviation $\sigma_2=0.03m$.

We assume that the measurements made using the two different scales are independent, i.e., that the random variables X_1 and X_2 are independent.

To get our final estimate of the mass of the stone, we take the average of the two results from the two different scales, i.e., we define $Y = \frac{X_1 + X_2}{2}$.

- (i) What is the distribution of the random variable Y? State the **name** of its distribution and the **values** of the parameters.
- (ii) What is the probability that the error Y we get is within 0.005m of the actual mass of the stone? Namely, calculate

 $\mathbb{P}[|Y| < 0.005m].$

Corollary 8.4. Let Y_1, \ldots, Y_n be independent and identically distributed. Assume that $Y_1 \sim N(\mu, \sigma)$. Define

$$S = Y_1 + Y_2 + \dots + Y_n$$

Then, the distribution of S is \dots

Proof. \Box