Finite Automata to Regular Expression(transitive Closure method)

Construct the regular expression for the given finite Automata

$$R^{k}_{ij} = R^{k-1}_{ik} (R^{k-1}_{kk})^{*} R^{k-1}_{kj} + R^{k-1}_{ij}$$

Rules

- 1. (€+r)* = r*
- 2. w0+0=w0/0w+0=0w
- 3. $0(0)^*=0^*$
- 4. €(€)* = €*
- 5. €* can be eliminated when accompanied by any term
- 6. Any term multiplied by \emptyset is \emptyset
- 7. (00) * (€+0) -> 0*

K	0	1
R ₁₁	0+€	0*
R ₁₂	1	0*1
R ₂₁	Ø	Ø
R ₂₂	€+0+1	€+0+1

K=1

$$R^{k}_{ij} = R^{k-1}_{ik} (R^{k-1}_{kk})^{*} R^{k-1}_{kj} + R^{k-1}_{ij}$$

$$R^{1}_{11} = R^{0}_{11} (R^{0}_{11})^{*} R^{0}_{11} + R^{0}_{11}$$

$$= (\underbrace{\epsilon} + 0) (\underbrace{\epsilon} + 0)^{*} (\underbrace{\epsilon} + 0) + (\underbrace{\epsilon} + 0)$$

$$W \qquad 0 \qquad 0$$

$$= (\underbrace{\epsilon} + 0) (\underbrace{\epsilon} + 0)^{*} [r3]$$

$$= (\underbrace{\epsilon} + 0)^{*}$$

$$= 0^{*}$$

$$R^{1}_{12} = R^{0}_{11} (R^{0}_{11})^{*} R^{0}_{12} + R^{0}_{12}$$

$$= (\underbrace{\epsilon} + 0) (\underbrace{\epsilon} + 0)^{*} 1 + 1$$

$$= (\underbrace{\epsilon} + 0) (\underbrace{\epsilon} + 0)^{*} 1$$

$$= (\underbrace{\epsilon} + 0)^{*} 1$$

$$= 0^{*} 1$$

$$R^{1}_{21} = R^{0}_{21} (R^{0}_{11})^{*} R^{0}_{11} + R^{0}_{21}$$

$$= \emptyset (\underbrace{\epsilon} + 0)^{*} (\underbrace{\epsilon} + 0) + \emptyset$$

$$= \emptyset + \emptyset$$

$$R^{1}_{21} = \emptyset$$

$$R^{1}_{22} = R^{0}_{21}(R^{0}_{11})^{*} R^{0}_{12} + R^{0}_{22}$$

= \emptyset (€+0)* 1+ (€+0+1)

<u>K =2</u>

$$R^{2}_{12} = R^{1}_{12}(R^{1}_{22})^{*} R^{1}_{22} + R^{1}_{12}$$

$$= 0^{*}1(\text{\textsterling}+0+1)^{*} (\text{\textsterling}+0+1) + 0^{*}1$$

$$= 0^{*}1(\text{\textsterling}+0+1)^{*} (\text{Е}+0+1)$$

$$= 0^{*}1(\text{Е}+0+1)^{*}$$

$$R^{2}_{12} = 0^{*}1(0+1)^{*}$$