Benutzerhandbuch "Iterator 2.0" Version 2.1

Anwendung der linearen Optimierung

HTWG Konstanz SS 2016

Beschreibung

Der Operations Research Iterator ist dazu gedacht LP-Modelle in nach dem Gauss`schen Algorithmus iterieren zu können. Das Programm arbeitet mit der mathematisch genauen Bruchdarstellung.

Voraussetzung

Zunächst muß ein Tableau eingegeben oder geladen werden. Dieses Tableau ist im Normalfall das Ausgangstableau. Im Datenverzeichnis der Diskette ist das Ausgangstableau für unser OR- Linear Programming Standardmodell enthalten. Beispiel:

$$3x_1 + 2x_2 \le 12$$

 $x_1 + 3x_2 \le 9$
 $x_1 + 2x_2 - \rightarrow \text{ maximum}$

NNB): $x_1, x_2 \ge 0$

Die Eingabewerte können Zahlenwerte sein (Ganz- oder Real-). Realzahlwerte werden automatisch in gekürzte Brüche umgewandelt. Zusätzlich können die Werte auch sofort als Brüche angegeben werden. Andere Eingaben führen zu einer Fehlermeldung. Die Zeilen- und Spaltenanzahl kann in den entsprechenden Feldern geändert werden (max. 100).

Pivot-Button

Der Pivot-Button hat nur die Aufgabe das Pivotelement des Tableaus zu bestimmen (falls eines vorliegt). Über diesem Pivotelement kann die Matrix ganz normal iteriert warden.

Abbildung 1: Pivot-Element

Iterieren-Button

Nachdem das (Pivot-) Element ausgewählt ist, wird es mit Hilfe des Iterieren-Buttons oder einem Doppelklick dem Gauss-Algorithmus unterworfen.

Abbildung 2: Iteration

Dadurch wird das entsprechende Element auf 1 dividiert (oder multipliziert). Die restlichen Elemente der Spalte werden auf 0 gesetzt. Die Spalte ist somit in der Basis.Das jeweils selektierte Element wird in der Statuszeile angezeigt.

Mit dem Pivot-Button wird das nächste Pivotlement des Tableaus wieder bestimmt und weiter iteriert.

Optimieren-Button

Die Schritte Pivotelement bestimmen und iterieren können natürlich sukzessive wiederholt werden bis das Optimum vorliegt. Dieser Vorgang läßt sich mit dem Optimieren-Button verkürzen. Dieser führt so viele Iterationen durch bis in der Z-Zeile kein negatives Element mehr vorliegt.

Abbildung 3: Optimum