

TEMA 1

Introducción

Introducción

INTRODUCCIÓN A LAS BASES DE DATOS

¿Qué son los datos?

Corresponden a hechos o realidades del mundo real.

A partir de ellos, intentamos reconstruir la información del mundo real.

Son "almacenados" usando un método de comunicación (ej.: figuras o lenguajes) en un medio semipermanente de "registrarlos" (ej.: piedras o papel).

¿Qué son los datos?

Generalmente, el dato y su interpretación son recogidos juntos, en los lenguajes naturales

- Su altura es 175 cm
 - o Dato: 175
 - Significado: altura en centímetros

A veces, los datos son separados de su interpretación

- Hora en un reloj
- Temperatura en un termómetro de la calle

¿Qué son los datos?

Los ordenadores han incrementado la separación entre datos y su significado:

- No se prestan para manipular en lenguaje natural
- El coste de almacenamiento es muy elevado

La interpretación de los datos es inherente a los programas que los utilizan:

- Dato: valores almacenados
- Información: significado de los datos

Almacenamiento de datos

Existen dos aproximaciones para el almacenamiento de los datos utilizados por un programa informático:

- Sistemas basados en ficheros
- Bases de datos

Sistemas basados en ficheros

En los sistemas basados en ficheros cada programa utiliza sus propios datos. Esto provoca una ocupación inútil de memoria, la aparición de inconsistencias y duplicidad de información.

Además, existe dependencia física entre los programas y los datos:

Sistemas basados en bases de datos

Cuando se utilizan bases de datos los programas "comparten" los datos:

¿Qué es una base de datos?

Definición 1:

Conjunto de información (datos) **homogénea** de una organización, **almacenada** en un ordenador, y que permite realizar **consultas** y **actualizaciones** (inserciones, modificaciones y/o borrados).

¿Qué es una base de datos?

Definición 2:

Conjunto exhaustivo, con redundancia controlada de datos estructurados, fiables y homogéneos, organizados con independencia de su utilización y de su implementación en máquina, accesibles en tiempo útil, compartibles por usuarios concurrentes que tienen necesidades de información diferentes y no predecibles en el tiempo.

Introducción

¿Cómo se utilizan las bases de datos?

Las bases de datos se definen y manipulan mediante un **Sistema de Gestión de Bases de Datos** (SGDB)

Introducción

Introducción

MODELOS DE DATOS

¿Qué es una modelo de datos?

Un modelo de datos permite describir las propiedades de la información almacenada en una base de datos:

- Estructuras de datos
- Restricciones
- Dependencias
- Dominios

Los modelos de datos son fundamentales para introducir la abstracción en una base de datos.

Tipos de modelos de datos

Modelos de datos conceptuales

- Describen las estructuras de datos y las relaciones de integridad
- Utilizados en la etapa de análisis

Modelos de datos **lógicos**

- Orientados a las operaciones
- Dependientes del tipo de base de datos utilizada

Modelos de datos físicos

- Estructuras de datos de bajo nivel usadas para almacenar información
- Dependientes del SGDB

Modelo conceptual

Identifica las **entidades** que se van a almacenar en las base de datos:

• Ejemplo: alumnos, asignaturas, departamentos...

Modela las relaciones existentes entre las entidades:

• Ejemplo: los alumnos se matriculan de asignaturas.

Son cercanos al **mundo real**.

Ayudan a comunicarse con los clientes de las empresa de desarrollo.

Introd Modelo lógico

Incluyen las **relaciones** y **atributos** del modelo conceptual.

La **normalización** se produce en este nivel:

Evita duplicidad de información

Define conceptos propios de las bases de datos:

- Claves primarias:
 - Ejemplo: los alumnos son identificados de forma unívoca por su número de matricula
- Claves foráneas
 - Ejemplo: el alumno con número de matrícula aa0000 fue calificado con un 10 en la asignatura de bases de datos

Son cercanos a la base de datos.

Modelo físico

Definen cómo debe almacenarse la información en un dispositivo físico.

Altamente dependientes del SGBD y de la versión del mismo.

Cercanos al Sistema Operativo.

Facilitan la rápida recuperación y manipulación de los datos almacenados.

Introducción

Introducción

TIPOS DE BASES DE DATOS

No Relacionales

Bases de datos relacionales

Cumplen con el modelo relacional:

Normalización

Es el tipo de base de datos más utilizado.

Utilizan el lenguaje SQL (*Structured Query Languaje*) para consultar y manipular datos.

Los datos son almacenados en tablas:

 Es posible "unir" diferentes tablas para recuperar información

Bases de datos no relacionales

No cumplen el modelo relacional.

De "reciente" aparición.

También llamadas NoSQL.

Bases de datos documentales

La información es almacenada en documentos.

Los documentos contienen información semi-estructurada.

Escalabilidad vertical (máquina más potente) y horizontal (más máquinas).

Muy eficientes para la manipulación de datos.

Aconsejan duplicar información:

• Mejora el rendimiento de las consultas

Consultas muy limitadas.

Bases de datos clave-valor

Almacena toda la información en pares <clave, valor>.

- La clave es única.
- El valor puede ser cualquier objeto.
- Ejemplo:
 - Clave: aa0000
 - o Valor: nombre = "Juan"; apellidos = "García
 Torres"

Escalabilidad horizontal

Suelen almacenarse en memoria

Bases de datos de alta escalabilidad

Bases de datos distribuidas.

Masivamente escalable (escalabilidad lineal).

Orientadas a columnas:

 Optimizadas para la completa recuperación de datos de columnas de datos (analítica de datos).

Pensadas para entornos con pocas escrituras.

Bases de datos orientadas a grafos

Representan la información mediante un grafo:

Nodos: entidades

Aristas: relaciones

Completamente normalizadas:

No duplican información

Muy versátiles.

Utilizan un lenguaje de consultas complejo.

Computacionalmente costosas.

Introducción

ARQUITECTURA CLIENTE-SERVIDOR

Arquitectura cliente-servidor

Las bases de datos funcionan bajo una arquitectura clienteservidor:

- La base de datos es el servidor
- Las aplicaciones que se conectan a la base de datos son los clientes

Esta arquitectura permite compartir los datos entre diferentes aplicaciones:

- Un solo servidor
- Múltiples clientes

Infraestructura física

Habitualmente, la base de datos (servidor) y la aplicación (cliente) se separan en diferentes máquinas físicas.

Existe un protocolo de comunicación entre el cliente y el servidor.

- ¿Cómo se realizan las peticiones?
- ¿Cómo se responde?

Ventajas

Se centraliza el acceso a los datos evitando inconsistencias.

Facilita la escalabilidad:

 Se puede aumentar la capacidad de clientes y servidores por separado.

Mejora el mantenimiento del sistema:

 El mantenimiento de la base de datos depende exclusivamente de la propia base de datos.

Facilita el desarrollo de aplicaciones al abstraerse de la gestión de los datos.

Desventajas

Se puede congestionar el acceso a los datos si el ratio cliente/servidor no es adecuado.

No hay robustez frente a caídas o ataques al servidor:

Este riesgo se minimiza si se replica el servidor

Existe dependencia de la conexión a la base de datos para el funcionamiento de la aplicación.

Conexión con la base de datos

La conexión a base de datos se realiza a partir de un URL (*Universal Resource Location*).

Ejemplo:

jdbc:mysql://mydb.com:3306/dbname