

CSCI 2200 FOUNDATIONS OF COMPUTER SCIENCE

David Goldschmidt goldsd3@rpi.edu Fall 2022

PI MU EPSILON — MATH HONOR SOCIETY TALK

Presentation about proofs tomorrow (Wednesday, October 26) at 7:00PM...

...in Mothers (bottom floor of the Rensselaer Union)

Relevant and interesting to students taking CSCI 2200, MATH 4090, etc.

You should attend — celebrate your work now that we're halfway through the semester!

$$\lim_{n\to inf} \frac{T}{n} = \lim_{n\to inf} \frac{5+10n}{n}$$

$$= \lim_{n\to inf} \frac{5}{n} + \lim_{n\to inf} \frac{5+10n}{n}$$

$$= \lim_{n\to inf} \frac{5}{n} + \lim_{n\to inf} \frac{10n}{n} = 10 \text{ (a constant)}$$

$$\lim_{n\to inf} \frac{2}{n} = \lim_{n\to inf} \frac{2+6n+3n}{n}$$

$$= \lim_{n\to inf} \frac{2}{n} = \lim_{n\to inf} \frac{2}{n} = \inf_{n\to inf} \lim_{n\to inf} \frac{2}{n}$$

T (n) is NOT in Big-Theta(n), i.e., not linear

T (n) is in little-omega(n), i.e., T (n) > linear

$$\frac{1}{2} = \frac{1}{n} = \frac{2}{n} + \frac{6}{n} + \frac{3}{n} = \frac{1}{n} = \frac{1}$$

ASYMPTOTICALLY LINEAR FUNCTIONS — $\Theta(n)$

Recurrence $T \in \Theta(n)$ if there are positive constants c and C such that...

$$c \cdot n \le T(n) \le C \cdot n$$

As n grows toward ∞ , dividing T by n will give us 0, a constant, or ∞

$$\frac{T(n)}{n} \xrightarrow[n \to \infty]{} \begin{cases} \infty & T \in \omega(n), & \text{``$T > n$"}; \\ \text{constant} > 0 & T \in \Theta(n), & \text{``$T = n$"}; \\ 0 & T \in o(n), & \text{``$T < n$"}. \end{cases} \xrightarrow{\text{big-theta-of-}n}$$

ASYMPTOTICALLY LINEAR FUNCTIONS — $\Theta(n)$

Example functions that are asymptotically linear, i.e., that are in $\Theta(n)$...

2n + 7

 $30n + 10^{100}$

 $2n + 15\sqrt{n}$

 $10^{9}n + 3$

 $2n + \log n$

Functions that are <u>not</u> asymptotically linear, i.e., that are <u>not</u> in $\Theta(n)$...

 $10^{-9}n^2$

 $n^{1.0001}$

 $n^{0.9999}$

n log n

 2^n

How do we know if $T(n) \in \Theta(n)$...?

ASYMPTOTICALLY LINEAR FUNCTIONS — $\Theta(n)$

Example functions that are asymptotically linear, i.e., that are in $\Theta(n)$...

2n + 7

 $30n + 10^{100}$

 $2n + 15\sqrt{n}$

 $10^9 n + 3$

 $2n + \log n$

Functions that are <u>not</u> asymptotically linear, i.e., that are <u>not</u> in $\Theta(n)$...

 $10^{-9}n^2$

 $n^{1.0001}$

 $n^{0.9999}$

n log n

 2^n

also see if you can determine constants c and C for those that are asymptotically linear

How do we know if $T(n) \in \Theta(n)$...?

Divide by *n* and then take the limit to ∞ $\stackrel{\triangleleft}{\downarrow}$

We can generalize this to any function f(n) — not just the linear f(n) = n

GENERAL ASYMPTOTIC FUNCTIONS

We can generalize this to any function f(n) — not just the linear f(n) = n

As n grows toward ∞ , dividing T by f(n) will again give us 0, a constant, or ∞

$$\frac{T(n)}{f(n)} \xrightarrow[n \to \infty]{} \begin{cases} \infty & T \in \omega(f), \ ``T > f"; \\ \text{constant} > 0 & T \in \Theta(f), \ ``T = f"; \\ 0 & T \in o(f), \ ``T < f". \end{cases}$$

GENERAL ASYMPTOTIC FUNCTIONS

$$\frac{T(n)}{f(n)} \xrightarrow[n \to \infty]{} \begin{cases} \infty & T \in \omega(f), \ ``T > f"; \\ \text{constant} > 0 & T \in \Theta(f), \ ``T = f"; \\ 0 & T \in o(f), \ ``T < f". \end{cases}$$

$$T \in o(f) \qquad T \in O(f) \qquad T \in \Theta(f) \qquad T \in \Omega(f) \qquad T \in \omega(f)$$

$$"T < f" \qquad "T \le f" \qquad "T \ge f" \qquad "T > f"$$

$$T(n) \le Cf(n) \qquad cf(n) \le T(n) \qquad cf(n) \le T(n)$$

FREQUENTLY OCCURRING GROWTH RATES

Runtimes that are reasonable...

log	linear	loglinear	quadratic	cubic
$\Theta(\log n)$	$\Theta(n)$	$\Theta(n \log n)$	$\Theta(n^2)$	$\Theta(n^3)$
best				worst

Runtimes that are unreasonable...

superpolynomial	exponential	factorial	forget it
$\Theta(n^{\log n})$	$\Theta(2^n)$	$\Theta(n!)$	$\Theta(n^n)$
			worst

TRICKS TO DETERMINING GROWTH RATE

For polynomials, focus on the highest order term to determine the growth rate...

$$2n^2 \qquad n^2 + n\sqrt{n} \qquad n^2 + \log^{256} n \qquad n^2 + n^{1.99} \log^{256} n$$

$$\Theta(n^2) \qquad \Theta(n^2) \qquad \Theta(n^2) \qquad \Theta(n^2) \qquad \text{Divide by n^2 and take the limit to ∞ to verify...}$$

For summations, the growth rate is the number of nestings plus the order of the summand...

$$\begin{array}{lll}
\sum_{i=1}^{n} i & \sum_{i=1}^{n} \sum_{j=1}^{i} 1 & \sum_{i=1}^{n} \sum_{j=1}^{i} ij \\
\Theta(n^{2}) & \Theta(n^{2}) & \Theta(n^{4})
\end{array}$$

Remove the summations by determining an equivalent f(n), then divide by n^2 and take the limit to ∞ to verify...

(or n^4)

NUMBER THEORY — DIVISIBILITY

Given n = 27 and d = 7, what is the minimum non-negative remainder r such that...

$$n = qd + r$$
 for quotient $q \in \mathbb{Z}$?

Tinker with
$$q = -1, 0, 1, 2, 3, ...$$

Here, q = 3 and the remainder is r = 6 — i.e., r = rem(n, d) = rem(27, 7) = 6

Quotient-Remainder Theorem

For $n \in \mathbb{Z}$ and $d \in \mathbb{N}$, n = qd + r. The quotient $q \in \mathbb{Z}$ and remainder $0 \le r < d$ are unique.

We define divisibility by stating d divides n (or $d \mid n$) iff n = qd for some $q \in \mathbb{Z}$...

...in other words, remainder rem(n, d) = 0

e.g., 3 | 12 or 7 | 42 or 101 | 808 or x | xy or ...

NUMBER THEORY — DIVISIBILITY

We define divisibility by stating d divides n (or $d \mid n$) iff n = qd for some $q \in \mathbb{Z}$

$$d \mid n \leftrightarrow n = dk \text{ for } k \in \mathbb{Z}$$

Use the above equivalence to prove the claims below...

(a) d|0

- (d) if $d \mid n$ and $d \mid m$, then $d \mid (m + n)$
- (b) if $d \mid m$ and $d' \mid n$, then $dd' \mid mn$
- (e) if $d \mid n$, then $xd \mid xn$ for $x \in \mathbb{N}$
- (c) if $d \mid m$ and $m \mid n$, then $d \mid n$
- (f) if $d \mid (m + n)$ and $d \mid m$, then $d \mid n$

NUMBER THEORY — PRIME NUMBERS

We can define the set of prime numbers P using divisibility...

note that 1 is not prime

$$P = \{ p \mid p \ge 2 \text{ with positive divisors 1 and p, i.e., } x \mid p \text{ iff } x = 1 \text{ or } x = p \}$$

The Fundamental Theorem of Arithmetic states that for all natural numbers $n \ge 2$, we can write n as the product of one or more prime numbers

We proved this theorem using strong induction...

...but we did not prove the uniqueness of these products (aside from reordering)

e.g.,
$$43 \times 47 = 2021$$
 is unique; $7 \times 17 \times 17 = 2023$ is unique; etc.

No other group of prime numbers will produce 2021 or 2023 when multiplied together!

GREATEST COMMON DIVISOR (GCD)

i.e., $d \mid m \land d \mid n \rightarrow d \leq \gcd(m, n)$

Definition. Greatest Common Divisor, GCD

Let m, n be two integers not both zero. gcd(m, n) is the largest integer that divides both m and n: gcd(m, n)|m, gcd(m, n)|n and any other common divisor $d \leq gcd(m, n)$.

What is gcd(30, 42)?

Divisors of 30 are {1, 2, 3, 5, 6, 15, 30}

Divisors of 42 are {1, 2, 3, 6, 7, 14, 21, 42}

Common divisors: {1, 2, 3, 6}

Therefore, gcd(30, 42) = 6

Note that gcd(m, n) = gcd(n, m)...

What is gcd(30, 49)?

Divisors of 30 are {1, 2, 3, 5, 6, 15, 30}

Divisors of 49 are $\{1, 7\}$

Common divisors: {1}

Therefore, gcd(30, 49) = 1

Relatively Prime

If gcd(m, n) = 1, then m, n are relatively prime.

Definition. Greatest Common Divisor, GCD

Let m, n be two integers not both zero. $\gcd(m, n)$ is the largest integer that divides both m and n: $\gcd(m, n)|m$, $\gcd(m, n)|n$ and $d|m \wedge d|n \rightarrow d \leq \gcd(m, n)$.

UNLAILJI COMMON DITIJON (UCD)

Theorem.

gcd(m, n) = gcd(rem(n, m), m).

Prove this theorem using a direct proof...

Proof. We prove the claim using a direct proof.

Here, r = rem(n, m) means n = qm + r, so r = n - qm.

Let $D = \gcd(m, n)$ and $d = \gcd(m, r)$.

Since $D \mid m$ and $D \mid n$, we have $D \mid (n - qm)$ or $D \mid r$.

Therefore, $D \le \gcd(m, r) = d$ — i.e., D is a common divisor of m and r.

For d, we have $d \mid m$ and $d \mid r$, so $d \mid qm + r$ or $d \mid n$.

Therefore, $d \leq \gcd(m, n) = D$ — i.e., d is a common divisor of m and n.

Since $D \le d$ and $D \ge d$, it must follow that D = d; thus, gcd(m, n) = gcd(m, r).

EUCLID'S ALGORITHM — RECURSIVE FUNCTION

EUCLID'S ALGORITHM — EXAMPLE

Theorem.
$$gcd(m, n) = gcd(rem(n, m), m)$$
.

$$\gcd(42, 108) = \gcd(24, 42) \implies 24 = 108 - 2 \times 42$$

$$= \gcd(18, 24) \implies 18 = 42 - 24 = 42 - (108 - 2 \times 42) = 3 \times 42 - 108$$

$$= \gcd(6, 18) \implies 6 = 24 - 18 = (108 - 2 \times 42) - (3 \times 42 - 108) = 2 \times 108 - 5 \times 42$$

$$= \gcd(0, 6) \implies 0 = 18 - 3 \times 6$$

$$= 6 \qquad [since \gcd(0, n) = n]$$

EUCLID'S ALGORITHM — EXAMPLE

Theorem. gcd(m, n) = gcd(rem(n, m), m).

Each remainder is a linear combination of the original m and n (i.e., of 42 and 108)...

$$\gcd(42, 108) = \gcd(24, 42) \implies 24 = 108 - 2 \times 42$$
 $\gcd(m, n) = mx + ny \text{ for integers } x \text{ and } y$

$$= \gcd(18, 24) \implies 18 = 42 - 24 = 42 - (108 - 2 \times 42) = 3 \times 42 - 108$$

$$= \gcd(6, 18) \implies 6 = 24 - 18 = (108 - 2 \times 42) - (3 \times 42 - 108) = 2 \times 108 - 5 \times 42$$

$$= \gcd(0, 6) \implies 0 = 18 - 3 \times 6$$

$$= \gcd(0, 6) \implies 0 = 18 - 3 \times 6$$
With $m = 42$ and $n = 108$, can you come up with integers x and y such that $mx + ny < 6 \dots$?

 $gcd(42, 108) = 6 = 2 \times 108 - 5 \times 42 = 2n - 5m \text{ with } m = 42 \text{ and } n = 108$

Using m = 6 and n = 15, list some positive linear combinations z = mx + ny for integers x and y... (and can you minimize z?)

EUCLID'S ALGORITHM — EXAMPLE

Theorem. gcd(m, n) = gcd(rem(n, m), m).

Each remainder is a linear combination of the original m and n (i.e., of 42 and 108)...

$$\gcd(42, 108) = \gcd(24, 42) \implies 24 = 108 - 2 \times 42$$
 $\gcd(m, n) = mx + ny \text{ for integers } x \text{ and } y$

$$= \gcd(18, 24) \implies 18 = 42 - 24 = 42 - (108 - 2 \times 42)_j = 3 \times 42 - 108$$

$$= \gcd(6, 18) \implies 6 = 24 - 18 = (108 - 2 \times 42)_j - (3 \times 42 - 108)_j = 2 \times 108 - 5 \times 42$$

$$= \gcd(0, 6) \implies 0 = 18 - 3 \times 6$$

$$= 6 \qquad [\text{since } \gcd(0, n) = n]$$

$$= \gcd(0, n) = mx + ny \text{ for integers } x \text{ and } y$$

$$= 3 \times 42 - 108$$

$$= 2 \times 108 - 5 \times 42$$

$$= 3 \times 42 - 108$$

$$= 3 \times 42 - 1$$

 $gcd(42, 108) = 6 = 2 \times 108 - 5 \times 42 = 2m - 5n$ with m = 42 and n = 108

Using m = 6 and n = 15, list some positive linear combinations z = mx + ny for integers x and y... (and can you minimize z?)

EUCLID'S ALGORITHM — EXAMPLE

```
Using m = 6 and n = 15, list some positive linear combinations z = mx + ny for integers x and y...

The goal is to minimize z (but keep z > 0)

if x = 1 and y = 1, then z = 6 + 15 = 21

if x = 2 and y = 2, then z = 12 + 30 = 42

if x = -2 and y = 1, then z = mx + ny is the minimum z = -12 + 15 = 3

\gcd(m, n) = \gcd(6, 15) = 3
```

EUCLID'S ALGORITHM TO BEZOUT'S IDENTITY

From Euclid's Algorithm, gcd(m, n) = mx + ny for integers x and y

Let z = mx + ny > 0.

Can we find a smaller z > 0 that is a linear combination of m and n? No...!

Theorem. Bezout's Identity

gcd(m, n) is the smallest positive integer linear combination of m and n: gcd(m, n) = mx + ny for $x, y \in \mathbb{Z}$.

Bezout's Identity is essentially a "formula" for GCD

GCD FACTS

- (i) gcd(m, n) = gcd(m, rem(n, m)).
- (ii) Every common divisor of m, n divides gcd(m, n).
- (iii) For $k \in \mathbb{N}$, $\gcd(km, kn) = k \cdot \gcd(m, n)$.
- (iv) IF gcd(l, m) = 1 AND gcd(l, n) = 1, THEN gcd(l, mn) = 1.
- (v) IF d|mn AND gcd(d, m) = 1, THEN d|n.

We can prove (iii)-(v) using Bezout's Identity, e.g., for (iii)...

Proof. We prove the claim that for $k \in \mathbb{N}$, $gcd(km, kn) = k \times gcd(m, n)$.

Here, gcd(km, kn) = kmx + kny = k(mx + ny).

From Bezout's Identity, the RHS must be the smallest possible, i.e., there is no smaller linear combination of m and n.

Use Bezout's Identity to prove claims (iv) and (v)...

Therefore, since k > 0, we conclude that gcd(m, n) = mx + ny.

https://www.youtube.com/watch?v=2vdF6NASMiE

USING BEZOUT'S IDENTITY TO AVOID DISASTER

What does Bezout's Identity have to do with this?

Given only 3- and 5-gallon containers, can we measure exactly 4 gallons?

Strategy comes from the following rules/operations...

- 1: Repeatedly fill the 3-gallon container (from an unlimited water supply)
- 2: Pour as much as you can from the 3-gallon container into the 5-gallon container
- 3: If the 5-gallon container is full, we can empty it

USING BEZOUT'S IDENTITY TO AVOID DISASTER

What does Bezout's Identity have to do with this?

When we empty the 3-gallon container into the 5-gallon container, the state of the problem becomes $(0, \ell)$ with $0 \le \ell \le 5$.

Let $x \ge 0$ be the number of times we successfully empty the 3-gallon container into the 5-gallon container

Let $y \ge 0$ be the number of times we empty the 5-gallon container

Then, the amount of water in the 5-gallon container is $\ell = 3x - 5y$, a linear combination...

USING BEZOUT'S IDENTITY TO AVOID DISASTER

What does Bezout's Identity have to do with this?

The amount of water in the 5-gallon container is $\ell = 3x - 5y$, a linear combination...

From Bezout's Identity, this linear combination implies $\ell=\gcd(3,5)$, so we can get 1 gallon

$$l = 3x - 5y = 3 \times 2 + 5 \times 1 = 1$$

Here, we empty the 3-gallon container x = 2 times and the 5-gallon container y = 1 time

Repeat this four times and we have four gallons!

USING BEZOUT'S IDENTITY TO AVOID DISASTER

What does Bezout's Identity have to do with this?

The amount of water in the 5-gallon container is $\ell = 3x - 5y$, a linear combination...

From Bezout's Identity, we want $\ell = 4...$

$$l = 4 = 3x - 5y = 3 \times 3 + 5 \times 1 = 4$$

Here, we empty the 3-gallon container x = 3 times and the 5-gallon container y = 1 time

We at least have shown we cannot do better than this solution...

WHAT NEXT...?

Problem Set 5 is due in your October 26 recitations

Watch for Homework 4 to be posted in Submitty later this week...

...due by 11:59PM on Thursday, November 3

Practice! Tinker! Practice! Tinker! Practice! Tinker! Practice!