Serial No.: 10/018,661

IN THE CLAIMS

1. (currently amended) A method of evaluating an audiovisual sequence, the method being characterized in that it implements:

CLARK & BRODY

- a) training, comprising allocating a subjective score NS_i to each of N_0 training sequences S_i (where $i = 1, 2, ..., N_0$) presenting degradations identified by a training vector MO_i comprising objective measurements taken from the signals of the audiovisual sequence which is given to each sequence S_i in application of a first vectorizing method, in order to build up a database of No training vectors MO, with corresponding subjective scores NS_i;
- b) classifying the N_0 training vectors MO_{i} into $\underline{\boldsymbol{k}}$ classes of scores as a function of the subjective scores NS_l that have been allocated to them, so as to form \underline{k} training sets EA_{j} (where j = 1, 2, ..., k) which have \underline{k} significant training scores NSR_{i} allocated thereto;
- c) for each audiovisual sequence to be evaluated, generating a vector MO using said first vectorization method; and
- d) allocating to the audiovisual sequence for evaluation the significant training score NSR_j that corresponds to the training set EA_j containing the vector that is closest to the vector MO in the sense of vector quantification.
- 2. (original) A method according to claim 1, characterized in that it comprises: between steps b) and c):

Serial No.: 10/018,661

b1) for each training set EA_i, using a second vectorization method to generate a reference dictionary D_j made up of N_j reference vectors VR_i (where $I=1,\,2,\,...,\,N_j$); and between steps c) and d):

CLARK & BRODY

c1) selecting amongst the reference vectors VR_i of the \underline{k} reference dictionaries, the reference vector VR_e which is closest to said vector MO; and

in that step d) allocates to the audiovisual sequence for evaluation the significant training score NSR_i corresponding to the reference dictionary containing said closest reference vector VR_i.

- 3. (original) A method according to claim 1 or claim 2, characterized in that the significant training scores NSR_i are distributed in uniform manner along the score scale.
- 4. (original) A method according to claim 1, characterized in that the significant training scores NSR_i of at least some of the k reference dictionaries are distributed in non-uniform manner along the score scale.
- 5. (original) A method according to claim 4, characterized in that said distribution is such that at least some of the reference dictionaries contain substantially the same numbers of reference vectors.

APR-18-2006 10:58 CLARK & BRODY 2028351755 P.05

Serial No.: 10/018,661

6. (original) A method according to claim 4 or claim 5, characterized in that it comprises, between step a) and b), identifying \underline{k} significant training scores NSR_j from subjective scores NS_i each considered as a one-dimensional vector, by finding the minimum distance between the set of the N_0 subjective scores NS_i and the \underline{k} significant training scores.