9)	Variable eliminated	Factor Generated
	B	f, (+c, A, D)
	G	f2 (+c, F)
	F	+3 (+c, D)
	D	fy (+c, A,E)

Bayesian networks (B, C), and easy to interpret

	-		. Comments	1
1	H/N	1	2	3
c)	0	e(1-4) +f	t	t
	1	(1-e)(1-f)	2(1-1)	0
	2	e(1-f)	(1-e)(1-f)	e(1-f)
	3	0	e[1-f]	(1-e)(1-f)
	4	0	0	<u>e(1-f)</u>

e) $e_{77}f = 7 N=2$ is the most letely number of stars, given the observations

$$P(N=2) = \frac{e^{2}(1-8)^{2}}{4}$$
 $P(N=4) = \frac{e^{2}(1-8)^{4}}{4}$
 $P(N=5) = f^{2}$

(Q4)	$a)\frac{5}{8}$	$n) \frac{2}{3}$
(4.)	1 &	3

2					
B)	Sample	Weight			
	-a+b+c-d	5/18			
	+0+b+c-d	1/6			
	+a+b-c-d	1/40			
	-a+b-c-d	1/24			

= 0.625

d) P(D/A) is better suited for likelihood heighting,
Because likelihood weighting conditions on upstream evidence.

Q2 a)
$$P(B|+j,+m) = \propto P(B) \underset{e}{\leq} P(e) \underset{e}{\leq} P(a|b,e) P(m|a) P(j|a) =$$

$$= \propto P(B) \underset{e}{\leq} P(e) [0.9 \times 0.7 \times (0.95 \times 0.29) + 0.05 \times 0.01 \times (0.95 \times 0.29) + 0.05 \times 0.01 \times (0.95 \times 0.29) + 0.05 \times 0.01 \times (0.95 \times 0.29) + 0.94 \times (0.592335) \times (0.001295) =$$

$$= \sim P(B) [0.002 \times (0.592595) + 0.998 \times (0.001295)] =$$

$$= \sim (0.001) \times (0.59224259) = \sim (0.00129351) = \sim (0.001491357) = \sim (0.001491357)$$

B) VE: 4 additions, 16 multiplications, 2 divisions Enumeration: 4 additions, 18 multiplications, 2 divisions