Syllabus

Arthur J. Redfern axr180074@utdallas.edu Aug 13, 2018

1 Logistics

Class: CS 6301.502.18F Special Topics in CS – Convolutional Neural Networks https://coursebook.utdallas.edu/search/searchresults/cs6301.502.18f

Location: Mon and Wed from 5:30 – 6:45 pm in FN 2.102

Description: This course provides an introduction to convolutional neural networks (CNNs). The theory part of the course is motivated by the realization that many information extraction problems can be reduced to a classification or regression problem, neural networks are universal approximators and CNNs are an efficient neural network structure for multidimensional data. Network design and training methods are discussed along with software and hardware requirements for high performance CNN implementations. Theory and implementation are demonstrated and expanded on in the context of applications.

Outline: Background – linear algebra, calculus and probability

Theory – machine learning and convolutional neural networks

Implementation – hardware and software

Application – vision, speech, language and games

2 Plan

29/33 valid class days, exact plan subject to change

01 Mon Aug 20 Introduction 02 Wed Aug 22 Linear algebra 03 Mon Aug 27 Calculus

04 Wed Aug 29 Probability HW due

05 Mon Sep 03 Labor Day

06 Wed Sep 05 Machine learning HW due

07 Mon Sep 10 Convolutional neural networks

08 Wed Sep 12 Convolutional neural networks HW due

09	Mon Sep 17	Convolutional neural networks	
10	Wed Sep 19	Convolutional neural networks	HW due
11	Mon Sep 24	Practical / review	
12	Wed Sep 26	Theory test	
13	Mon Oct 01	Hardware	
14	Wed Oct 03	Hardware	HW due
15	Mon Oct 08	Hardware	
16	Wed Oct 10	Software	HW due
17	Mon Oct 15	Software	
18	Wed Oct 17	Software	HW due
19	Mon Oct 22	Practical / review	
20	Wed Oct 24	Implementation tool	
21	Mon Oct 29	Vision	
22	Wed Oct 31	Vision	HW due
23	Mon Nov 05	Vision	
24	Wed Nov 07	Speech	HW due
25	Mon Nov 12	Speech	
26	Wed Nov 14	Language	HW due
27	Mon Nov 19	Fall break	
28	Wed Nov 21	Fall break	
29	Mon Nov 26	Games	
30	Wed Nov 28	Summary and next	HW due
31	Mon Dec 03	Project (1/2)	
32	Wed Dec 05	Project (2/2)	
33	Mon Dec 10	Reading day	

3 Grades

25% Theory test25% Implementation tool25% Project25% Homework

4 Notable Dates

 $\begin{array}{lll} \mbox{Mid term grades} & \mbox{Sat Oct 13} & \mbox{(undergrad classes only)} \\ \mbox{Final exams} & \mbox{Tue Dec } 11 - \mbox{Mon Dec } 17 & \mbox{(none)} \\ \mbox{Final grades} & \mbox{Tue Dec } 11 - \mbox{Thu Dec } 20 & \mbox{(all)} \end{array}$