

Deep Perceptrons

Gisele L Pappa

Feedforward Deep Network

- Os deep perceptrons, ou feedforward deep networks, são similares a redes perceptron de múltiplas camadas (MLPs) mas, por definição, têm pelo menos 3 camadas escondidas
- Em relação ao MLP clássico temos:
 - Redes maiores treinadas com mais exemplos
 - Função de ativação das camadas escondidas muda devido ao "vanishing gradient problem"
 - Pequenas modificações algorítmicas no BP

Deep Feedforward Networks

• Mesma estrutura das redes MLP clássicas

O papel de mais camadas escondidas

- A ideia de adicionar camadas escondidas é que elas consigam extrair representações dos dados em diferentes níveis de abstração
 - Intuitivamente, adicionar uma camada deveria reduzir o erro da rede, ou pelo menos manter o erro
- Problema: se considerarmos a MLP convencional vista anteriormente, erro pode aumentar ao se adicionar mais camadas escondidas
 - Por que?

Velocidade de Aprendizado

- A figura mostra a velocidade com que cada neurônio das camadas escondidas de uma rede (com pesos inicializados aleatoriamente) atualiza seus pesos
- Quanto maior a barra, mais rápido a rede muda os valores de pesos e bias
- A barra corresponde ao gradiente da função de erro
- Observe que a segunda camada
 aprende mais rápido

Velocidade de aprendizado

- Primeira camada aprende 10° 100x mais lentamente 10° que a última camada. 10°2
- Por que isso acontece? O 10-3
 gradiente tende a 10-4
 diminuir quando se move 10-5
 pra trás nas camadas 10-6
 ocultas

• Esse problema é conhecido como vanishing gradient

Referência: http://www.deeplearningbook.org/

Vanishing gradient problem

- O gradiente em redes profundas é instável, podendo sumir ou explodir nas primeiras camadas
- Quando a função de ativação usada é uma sigmoide, ela obrigatoriamente mapeia todas as entradas em um intervalo entre 0 e 1
- Para entradas muito próximas a 0 ou 1, o gradiente estará próximo de 0, fazendo com que a rede não aprenda

Vanishing gradient problem

Gradiente muito pequeno

Função sigmoide

Vanishing gradient problem

- Pode ser contornado trocando a função de ativação dos neurônios
- Função mais popular: ReLU (Rectified linear unit)

$$RELU(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } x > = 0 \end{cases}$$

ReLU

- Função próxima de uma função linear
 - Preserva propriedades interessantes de funções lineares que fazem com que a otimização com descida do gradiente seja fácil
- Derivada da ReLU é uma função degrau, não diferenciável em 0

$$\frac{d}{dx}RELU(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x > 0 \end{cases}$$

ReLU

- Agora as derivadas não estão mais em um intervalo de 0 a 1, e não vão sumir.
- Porém, ReLUs tem saída zero quando a entrada é negativa

Isso pode bloquear o backpropagation porque os gradientes

passam a ser 0 depois de uma entrada negativa

Generalizations of ReLU

• Esse problema de valores negativos podem ser resolvidos por generalizações do ReLU, como o Leaky-ReLU ou Parametric-ReLU

$$gRELU(x) = max\{x,0\} + \alpha \min\{x,0\}$$

$$gReLU(x)$$

$$x$$

ReLU

• Leaky-RELU(x) = $\max\{x,0\} + 0.01 \min\{x,0\}$

• Parametric-ReLU(x) = $\max\{x,0\} + \alpha \min\{x,0\}$, onde o valor de α é aprendido junto com os outros parâmetros da rede.

Função de custo

- O algoritmo de back-propagation é baseado na otimização de uma função de erro através do método da descida do gradiente
- Nas aulas de MLP, a função de erro utilizada foi o erro quadrático médio
- A velocidade de treinamento da rede depende do valor do gradiente da função de erro
 - Se esse valor for muito pequeno, a rede demora pra ser treinada

Função de custo

- Pode-se melhorar a velocidade de treinamento simplesmente mudando a função de erro
- Funções utilizadas atualmente são baseadas no princípio de máxima verossimilhança
 - Método para estimar os parâmetros de um modelo estatístico
 - Cross-entropy (negative log-likelihood) entre os dados de treinamento e as saídas do modelo.

Funções de custo

Cross-entropy

$$C = -\frac{1}{n} \sum_{x} [y \ln a + (1 - y) \ln(1 - a)],$$

N é o número de exemplos de treinamento y é a saída esperada

• Calculando a derivada parcial da cross-entropy com relação aos pesos da rede, tem-se:

$$\frac{\partial C}{\partial w_j} = \frac{1}{n} \sum_{x} x_j (\sigma(z) - y)$$

A taxa com que os pesos são aprendidos é controlada pelo erro da saída Quanto mais alto o erro, mais rápido o aprendizado.

Função de custo

- Funções de custo também consideram um fator de regularização
- Regularização é uma técnica utilizada para tentar resolver o problema de overfitting.
- Uma forma tradicional de regularização é inserir um termo de penalização na função de custo
 - A intuição é que modelos com pesos menores são mais simples que modelos com pesos maiores
 - Essas penalizações mantêm os valores dos pesos baixos ou zero

Regularização

- Termo regularizador
 - L2 (ou weight decay): encoraja pesos com valores pequenos
 - Função de custo de *cross-entropy* regularizada

$$C = -\frac{1}{n} \sum_{xj} \left[y_j \ln a_j^L + (1 - y_j) \ln(1 - a_j^L) \right] + \frac{\lambda}{2n} \sum_{w} w^2.$$

Termo regularizador

- Termo de regularização não inclui o bias
- λ é um parâmetro de regularização

Regularização

Sem regularização

Norma L2

• Histograma de distribuição dos pesos da rede sem/com regularização

Outras técnicas de Regularização

- Dataset augmentation
 - Aumentar o número de exemplos do dataset
- Parar o processo de aprendizado antes do overfitting
- Dropout
 - Usa um ensemble de redes
 - Para cada passo de atualização de pesos:
 - Amostre aleatoriamente uma máscara para todos os neurônios de entrada e camada escondida
 - Multiplique a máscara com o neurônio e atualize o peso normalmente

Função de ativação da camada de saída

• Está intimamente ligada a função de erro sendo otimizada

Função de ativação da camada de saída

Output Type	Output Distribution	Output Layer	Cost Function
Binary	$\operatorname{Bernoulli}$	$\operatorname{Sigmoid}$	Binary cross- entropy
Discrete	Multinoulli	Softmax	Discrete cross- entropy
Continuous	Gaussian	Linear	Gaussian cross- entropy (MSE)
Continuous	Mixture of Gaussian	Mixture Density	Cross-entropy
Continuous	Arbitrary	See part III: GAN, VAE, FVBN	Various
Referência: http://www.deeplearningbook.org			

Treinar uma rede é uma tarefa difícil

Source: https://papers.nips.cc/paper/7875-visualizing-the-loss-landscape-of-neural-nets.pdf

Descida do Gradiente

https://www.analyticsvidhya.com/blog/2017/03/introduction-to-gradient-descent-algorithm-along-its-variants/

Learning rate

- Pode ser ajustada:
 - Manualmente
 - De forma adaptativa
 - Muda de acordo com o processo de otimização em si
- Backprop com Adam (Adaptive Moment Estimation)
 - Utiliza uma taxa de aprendizado adaptativa

Sumário

- MLP versus Deep Perceptrons
 - Uso da ReLU como função de ativação
 - Funções de perda baseadas na máxima verossimilhança
 - Entropia cruzada
 - Regularização
 - Considerada na própria função de erro
 - Dropout
 - Taxas de aprendizado auto-adaptativas (Adam)

Bibliografia

- 2 livros disponíveis online:
 - http://www.deeplearningbook.org/
 - http://neuralnetworksanddeeplearning.com/index.html
- For optimizers, see https://mlfromscratch.com/ optimizers-explained/#/

