Autômatos Finitos Não-determinísticos

Não-determinísmo Construção de Sub-Conjuntos

Não-determinísmo

- Um autômato finito não-determinístico tem o poder de estar em vários estados ao mesmo tempo.
 - Capacidade de "adivinhar" algo sobre sua entrada.
- Função de Transição: recebe um estado e um símbolo de entrada como argumentos, mas retorna um conjunto de zero, um ou mais estados.

Não-determinísmo – (2)

- Começa no estado inicial.
- Aceita se alguma sequência de escolhas conduzir para um estado final.
- ◆Intuitivamente: o NFA sempre "adivinha certo."

Exemplo: Movimentos sobre um tabuleiro de xadrez

- Estados = quadrados.
- ◆Entradas = r (mover para um quadrado adjacente vermelho) e b (mover para um quadrado adjacente preto).
- Estado inicial e estado final estão em cantos opostos.

Exemplo: Tabuleiro – (2)

1	2	3
4	5	6
7	8	9

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

← Aceitar, pois estado final alcançado

Autômato Finito Não-Determinístico (NFA)

- Um conjunto finito de estados, Q.
- Um conjunto finito de símbolos de entrada, Σ.
- A função de transição, δ.

- \bullet Um estado inicial, $q_0 \in Q$
- \bullet Um conjunto de estados finais, $F \subseteq Q$.

Função de Transição de um NFA

 $\bullet \delta(q, a)$ retorna um subconjunto de Q.

- Extender para strings:
- ♦ Base: $\hat{\delta}(q, \epsilon) = \{q\}$
- ◆Indução: $\hat{\delta}(q, wa) = união sobre todos$ os estados $p \in \hat{\delta}(q, w)$ de $\delta(p_i, a)$

Linguagem de um NFA

- •Uma string w é aceita por um NFA se $\hat{\delta}(q_0, w)$ contêm, pelo menos, um estado final.
- A linguagem de um NFA é o conjunto de strings que ele aceita.
- ♦L(A) = {w | $\hat{\delta}$ (q₀,w) \cap F ≠ Ø }

Exemplo: Linguagem de um NFA

1	2	3
4	5	6
7	8	9

- Para o NFA Tabuleiro vimos que <u>rbb</u> é aceito.
- ◆Se a entrada consite de somente b's, o conjunto de estados acessíveis alterna entre {5} e {1,3,7,9}.
- ◆Assim somente strings não-vazias de comprimento par de b's são aceitas.

Equivalência entre DFA's e NFA's

- Um DFA pode ser transformado em um NFA que aceita a mesma linguagem.
- Se $\delta_D(q, a) = p$, faça o NFA ter $\delta_N(q, a) = \{p\}$
- O NFA é sempre um conjunto contendo exatamente um estado.

Equivalência – (2)

- ◆Importante: Para qualquer NFA existe um DFA que aceita a mesma linguagem.
- Prova: construção de subconjuntos.
- ◆O DFA pode ter exponencialmente mais estados que o NFA (raro!).
- NFA's aceitam as linguagens regulares.

Construção de Subconjuntos

- ♦ Dado um NFA com estados Q, entrada Σ, função de transição δ_N, estado incial q₀, e estados finais F, construir um DFA equivalente com:
 - Estados 2^Q (conjunto de subconjuntos de Q).
 - Entrada Σ.
 - Estado inicial {q₀}.
 - Estados finais = todos aqueles com pelo menos um estado final de F.

Ponto Crítico

- Os estados do DFA têm nomes que são conjuntos de estados do NFA.
- Mas como estado do DFA, uma expressão {p,q} precisa ser lida como um símbolo simples, não como um conjunto.

Construção de Subconjuntos – (2)

- \bullet A função de transição δ_D é definida por: $\delta_D(\{q_1,...,q_k\}, a)$ é a união sobre todos i = 1,...,k de $\delta_N(q_i, a)$.
- **Exercício:** Construir o DFA equivalente do NFA do "tabuleiro".

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
→ {1}	{2,4}	{5}
{2,4}	(-/ -)	(-)
(= <i>,</i> ·) {5}		
(3)		

Alerta: O que estamos fazendo aqui é a forma *preguiçosa* de construção de DFA, onde apenas construímos um estado se 15 formos forçados a isso.

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
→ {1}	{2,4}	{5 }
{2,4}	{2,4,6,8}	{1,3,5,7}
{5 }		
{2,4,6,8}		
{1,3,5,7}		

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

		r	b
	→ {1}	{2,4}	{5 }
	{2,4}	{2,4,6,8}	{1,3,5,7}
	{5 }	{2,4,6,8}	{1,3,7,9}
	{2,4,6,8}		
	{1,3,5,7}		
*	{1,3,7,9}		

		r	р
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	<u>b</u>
$\longrightarrow \{1\}$	{2,4}	{5}
{2,4}	{2,4,6,8}	{1,3,5,7}
{5 }	{2,4,6,8}	{1,3,7,9}
{2,4,6,8}	{2,4,6,8}	{1,3,5,7,9}
{1,3,5,7}		
* {1,3,7,9}		
* {1,3,5,7,9}		

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
→ {1}	{2,4}	{5 }
{2,4}	{2,4,6,8}	{1,3,5,7}
{5 }	{2,4,6,8}	{1,3,7,9}
{2,4,6,8}	{2,4,6,8}	{1,3,5,7,9}
{1,3,5,7}	{2,4,6,8}	{1,3,5,7,9}
* {1,3,7,9}		
* {1,3,5,7,9}		

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
→ {1}	{2,4}	{5}
{2,4}	{2,4,6,8}	{1,3,5,7}
{5 }	{2,4,6,8}	{1,3,7,9}
{2,4,6,8}	{2,4,6,8}	{1,3,5,7,9}
{1,3,5,7}	{2,4,6,8}	{1,3,5,7,9}
* {1,3,7,9}	{2,4,6,8}	{5}
* {1,3,5,7,9}		

		r	р
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
→ {1}	{2,4}	{5}
{2,4}		{1,3,5,7}
{5}	{2,4,6,8}	{1,3,7,9}
{2,4,6,8}	{2,4,6,8}	{1,3,5,7,9}
{1,3,5,7}	{2,4,6,8}	{1,3,5,7,9}
* {1,3,7,9}	{2,4,6,8}	{5}
* {1,3,5,7,9}	{2,4,6,8}	{1,3,5,7,9}

NFA's com ε-Transições

- ◆Podemos permitir transições de estado para estado sobre a entrada ∈
- Essas transições são feitas de forma espontânea, sem receber um símbolo de entrada.
- É conveniente as vezes, mas ainda apenas linguagens regulares são aceitas.

Exemplo: ∈-NFA

$$\begin{array}{c|cccc} & 0 & 1 & \varepsilon \\ \rightarrow & A & \{E\} & \{B\} & \varnothing \\ & B & \varnothing & \{C\} & \{D\} \\ & C & \varnothing & \{D\} & \varnothing \\ & * & D & \varnothing & \varnothing \\ & E & \{F\} & \varnothing & \{B, C\} \\ & F & \{D\} & \varnothing & \varnothing \end{array}$$

Fechamento de Estados

◆CL(q) = conjunto de estados que podem ser alcançados a partir do estado q seguindo somente arcos rotulados por ϵ .

◆Exemplo: CL(A) = {A};CL(E) = {B, C, D, E}.

◆Fechamento de um conjunto de estados = união do fechamento de cada estado.

Delta Extendido

- \bullet Base: δ̂ (q, ϵ) = CL(q).
- Indução: δ̂ (q, xa) é assim computado:
 - 1. Comece com δ (q, x) = S.
 - 2. Faça a união de $CL(\delta(p, a))$ para todos p em S.
- Intuição: δ (q, w) é o conjunto de estados que podem ser alcançados de q seguindo um caminho rotulado como w.

Exemplo: Delta Extêndido

- $\bullet \ \delta(A, \, \epsilon) = CL(A) = \{A\}.$
- \bullet $\delta(A, 0) = CL(\{E\}) = \{B, C, D, E\}.$
- \bullet $\delta(A, 01) = CL(\{C, D\}) = \{C, D\}.$
- Linguagem de um ϵ -NFA é o conjunto de strings w tal que $\hat{\delta}$ (q₀, w) contêm pelo menos um estado final.

Equivalência de ε-NFA e DFA

- ◆Dado qualquer ∈-NFA E, podemos encontrar um DFA D que aceita a mesma linguagem que E.
- Usa a construção de subconjuntos.
- ◆Diferença: precisa incorporar as ∈-transições de E.

• Seja E = $(Q_E, \Sigma, \delta_E, q_E, F_E)$. Então o DFA equivalente

$$D = (Q_D, \Sigma, \delta_D, q_D, F_D)$$

é definido como:

1. Q_D é o conjunto de subconjuntos de Q_E Todos os estados acessíveis de D são subconjuntos com ϵ -fechamento de Q_E .

• Seja E = $(Q_E, \Sigma, \delta_E, q_E, F_E)$. Então o DFA equivalente

$$D = (Q_D, \Sigma, \delta_D, q_D, F_D)$$

é definido como:

$$2. q_D = CL(q_E)$$

Seja E = $(Q_E, \Sigma, \delta_E, q_E, F_E)$. Então o DFA equivalente

$$D = (Q_D, \Sigma, \delta_D, q_D, F_D)$$

é definido como:

3. F_D representa os conjuntos de estados que contêm pelo menos um estado de aceitação de E

$$F_D = \{S \mid S \text{ está } Q_D \text{ e } S \cap F_E \neq 0\}$$

• Seja E = $(Q_E, \Sigma, \delta_E, q_E, F_E)$. Então o DFA equivalente

$$D = (Q_D, \Sigma, \delta_D, q_D, F_D)$$

é definido como:

- 4. δ_D (S,a) é calculado por:
 - a) Seja S = $\{p_1, p_2, ..., p_k\}$
 - b) Calcule a união δ_D (p_i ,a) = { r_1 , r_2 ,..., r_m }
 - c) Então, δ_D (S,a) = união CL(r_i)

 \bullet Exemplo: Eliminar as ϵ -transições do ϵ -NFA de números decimais.

 Uma linguagem L é aceita por algum ε-NFA se e somente se L é aceita por algum DFA.

Resumo

- ◆DFA's, NFA's, e ϵ -NFA's todos aceitam exatamente o mesmo conjunto de linguagens: as linguagens regulares.
- Os NFA's são mais fáceis de projetar e podem ter esponencialmente menos estados que um DFA.
- Mas somente um DFA pode ser implementado!