Ciencia y analítica de datos

Profesora: Dra. María de la Paz Rico Fernández

Francisco Javier Ramírez Arias: A01316379

Jesús Ángel Rincón Ruiz: A01793960

Datos

Tamaño de los datos: 1068 muestras, 57 variables

Tamaño de los datos: 1054 muestras, 15 variables

Proporción de Aguas Subterráneas

Descripción de nuestro datos (variables utilizadas)

	LONGITUD	LATITUD	PERIODO	ALC_mg/L	CONDUCT_mS/cm	SDT_M_mg/L	FLUORUROS_mg/L	DUR_mg/L	COLI_FEC_NMP/100_mL	N_NO3_mg/L	AS_TOT_mg/L	CD_TOT_mg/L	CR_TOT_mg/L	HG_TOT_mg/L	PB_TOT_mg/L	MN_TOT_mg/L	FE_TOT_mg/L
count	1054.000000	1054.000000	1054.0	1054.000000	1054.000000	1054.000000	1054.000000	1054.000000	1054.000000	1054.000000	1054.000000	1054.00000	1054.000000	1054.000000	1054.000000	1054.000000	1054.000000
mean	-101.848270	23.161796	2020.0	234.695266	1142.726471	896.945797	1.078547	349.893584	359.734156	4.321651	0.019504	0.00303	0.013353	0.000557	0.005285	0.072960	0.412234
std	6.697568	3.875005	0.0	111.147849	1248.990617	2765.757924	1.931204	360.960153	2065.705773	8.378332	0.035051	0.00090	0.155412	0.000470	0.003276	0.378856	5.574307
min	-116.664250	14.561150	2020.0	26.640000	110.000000	101.200000	0.200000	20.000000	1.100000	0.020000	0.010000	0.00300	0.005000	0.000500	0.005000	0.001500	0.025000
25%	-105.385170	20.224857	2020.0	164.257500	506.000000	338.050000	0.269475	121.512000	1.100000	0.651667	0.010000	0.00300	0.005000	0.000500	0.005000	0.001500	0.025000
50%	-102.170665	22.640705	2020.0	215.825000	820.000000	551.400000	0.5 69 50	245.994450	les Qu	2 082016	0.010000	0.00300	0.005000	0.000500	0.005000	0.001500	0.046900
75%	-98.971268	25.508770	2020.0	292.930000	1328.000000	915.600000	1.142400	455.617260	C 5050	5.196585	0.010000	0.00300	0.005000	0.000500	0.005000	0.009830	0.172275
max	-86.864120	32.677713	2020.0	1650.000000	18577.000000	82170.000000	34.803300	3810.692200	24196.000000	121.007813	0.452200	0.03211	5.003200	0.014150	0.080900	8.982000	178.615000

ALC_mg/L CONDUCT_mS/cm SDT_M_mg/L FLUORUROS_mg/L DUR_mg/L COLI_FEC_NMP/100_mL N_NO3_mg/L AS_TOT_mg/L CD_TOT_mg/L CR_TOT_mg/L PB_TOT_mg/L MN_TOT_mg/L	234.695266 1142.726471 896.945797 1.078547 349.893584 359.734156 4.321651 0.019504 0.003030 0.013353 0.000557 0.005285 0.072960	ALC_mg/L CONDUCT_mS/cm SDT_M_mg/L FLUORUROS_mg/L DUR_mg/L COLI_FEC_NMP/100_mL N_NO3_mg/L AS_TOT_mg/L CD_TOT_mg/L CR_TOT_mg/L HG_TOT_mg/L PB_TOT_mg/L	215.825000 820.000000 551.40000 0.506950 245.994450 1.100000 2.082916 0.010000 0.003000 0.005000 0.005000 0.005000	ALC_mg/L CONDUCT_mS/cm SDT_M_mg/L FLUORUROS_mg/L DUR_mg/L COLI_FEC_NMP/100_mL N_NO3_mg/L AS_TOT_mg/L CD_TOT_mg/L CR_TOT_mg/L HG_TOT_mg/L PB_TOT_mg/L	1650.000000 18577.000000 82170.000000 34.803300 3810.692200 24196.000000 121.007813 0.452200 0.032110 5.003200 0.014150 0.080900 8.982000	ALC_mg/L CONDUCT_mS/cm SDT_M_mg/L FLUORUROS_mg/L DUR_mg/L COLI_FEC_NMP/100_mL N_NO3_mg/L AS_TOT_mg/L CD_TOT_mg/L CR_TOT_mg/L PB_TOT_mg/L MN_TOT_mg/L MN_TOT_mg/L	26.6400 110.0000 101.2000 0.2000 20.0000 1.1000 0.0200 0.0100 0.0030 0.0050 0.0050 0.0050 0.0015	ALC_mg/L CONDUCT_mS/cm SDT_M_mg/L FLUORUROS_mg/L DUR_mg/L COLI_FEC_NMP/100_mL N_NO3_mg/L AS_TOT_mg/L CD_TOT_mg/L CR_TOT_mg/L HG_TOT_mg/L PB_TOT_mg/L	111.147849 1248.990617 2765.757924 1.931204 360.960153 2065.705773 8.378332 0.035051 0.000900 0.155412 0.000470 0.003276 0.378856
FE_TOT_mg/L	0.412234	FE_TOT_mg/L	0.046900	FE_TOT_mg/L	178.615000	MN_TOT_mg/L FE_TOT_mg/L	0.0015 0.0250	FE_TOT_mg/L	5.574307

Outliers

Correlaciones

■ K-MEANS: Análisis

Análisis de Características de Importancia

Variables de Importancia:

- SDT_M_mg/LFLUORUROS_mg/L
 - PB_TOT_mg/L

2 de las 3 variables de importancia seleccionadas se encuentran en la grafica de correlación: SDT_M_mg/L, FLUORUROS_mg/L

Entrenamiento de los Clasificadores y Métricas

```
# Crea el Arbol de Decisión
mdl_dt = DecisionTreeClassifier()

# Entrena el Clasificador de Arbol de Decisión
clf = mdl_dt.fit(X_train,y_train)

#Realiza Predicciones con los Datos de Prueba
y_pred = mdl_dt.predict(X_test)
```

Métricas del Árbol de Decisión

Accuracy: 0.985781990521327

-	precision	recall	f1-score	support
clase 0 clase 1 clase 2	0.97 0.99 0.99	0.97 0.97 1.00	0.97 0.98 0.99	40 73 98
accuracy macro avg weighted avg	0.98 0.99	0.98	0.99 0.98 0.99	211 211 211

Este modelo presenta mejores métricas

#Crea el Bosque Aleatorio
mdl_rf=RandomForestClassifier(n_estimators=100)

#Entrena el Clasificador de Bosque Aleatorio
mdl_rf.fit(X_train,y_train)

#Realiza Predicciones con los Datos de Prueba
y_pred=mdl_rf.predict(X_test)

Métricas del Bosque Aleatorio

Accuracy: 0.9715639810426541

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	precision	recall	f1-score	support
clase 0	0.95	0.97	0.96	40
clase 1	0.97	0.96	0.97	73
clase 2	0.98	0.98	0.98	98
accuracy			0.97	211
macro avg	0.97	0.97	0.97	211
weighted avg	0.97	0.97	0.97	211

Matriz de Confusión

Árbol de Decisión

El modelo no tiene dificultad con la clase rojo, presenta mayor dificultad en clasificar la clase amarillo, y menos al clasificar la clase verde.

Bosque Aleatorio

El modelo tiene cierta dificultad al clasificar la clase rojo y verde.

Mientras en la clase amarillo presenta una dificultad mayor.

Conclusiones

- Aproximadamente 40% de las aguas subterráneas son adecuadas para consumo, mientras que el 60% no son adecuadas, debido a que encuentra presente algún contaminante.
- HG_TOT_mg/L, MN_TOT_mg/L y FE_TOT_mg/L son las variables que presentan las correlaciones con mayor índice, en la grafica de correlación.
- Existe una correlación entre la calidad de agua y su ubicación geográfica como lo muestra K-MMEANS.
- Las variables SDT_M_mg/L, FLUORUROS_mg/L, del análisis de importancia se encuentran presentes en la grafica de correlaciones.
- El modelo de Árbol de Decisión presenta una exactitud del 99%, mientras que el modelo de Bosque Aleatorio presenta una exactitud de 97%.
- El modelo de Árbol de Decisión se confunde menos con las diferentes clases en comparación con el Bosque Aleatorio, como se aprecia en las matrices de confusión.