Quasi-binomial model

Stat 230

May 27 2022

Overview

Today:

Quasi models

Fitting in R

GLM model

ullet GLM assumes $Y \mid x \sim$ some probability distribution where

Over (or under) dispersion

But what if our model's mean function is well modeled, but our variance is off

 $Y \mid x \sim$ some probability distribution where

$$E(Y\mid x)=f\left(x;eta_{0},\ldots,eta_{p}
ight)$$
 (kernel mean)

 $E(Y\mid x)=f\left(x;eta_0,\ldots,eta_p
ight)$ (kernel mean) $V(Y\mid x)
eq\sigma^2(x)$ (some function that could involve x)

E.g. in a binomial logistic model, this means the variance of our response doesn't equal that of a binomial probability model:

$$egin{aligned} Y \mid x &\sim \operatorname{Binom}(m_i, \pi\left(x_i
ight)) \ E(Y \mid x) &= m_i \pi\left(x_i
ight) \ V\left(Y_i \mid x_i
ight)
eq m_i \pi\left(x_i
ight) \left(1 - \pi\left(x_i
ight)
ight) \end{aligned}$$

Estimating the dispersion parameter ψ

• For a GLM, the dispersion parameter ψ ("psi") is estimated from the deviance G^2 from the regular GLM:

$$\hat{\psi}=rac{G^2}{n-(p+1)}$$

- ullet $\hat{\psi} > 1$: overdispersion (responses are more variable than expected)
- ullet $\hat{\psi} < 1$: underdispersion (responses are less variable than expected)
- e.g. for a quasi-binomial model, G^2 is the (residual) deviance from a regular binomial logistic model.

Estimating with a quasi-GLM

- Parameter estimates for β are from the regular GLM model.
- e.g. $\hat{\beta}$ from a regular binomial logistic model
- Quasi model Standard errors for $\hat{\beta}'$ s are adjusted versions of the regular GLM SE:

$$SE_{quasi}\left(\hat{eta}_{i}
ight)=\sqrt{\hat{\psi}}SE_{GLM}\left(\hat{eta}_{i}
ight)$$

ullet e.g. for a quasi-binomial model, $SE_{
m binom}$ $\left(\hat{eta}_i
ight)$ are the usual SE from a regular binomial logistic model.

Inference with a quasi-GLM

- ullet Conduct "z"-inference (Wald tests/CI) using SEs equal to $SE_{quasi}\left(\hat{eta}_i
 ight)$
- Compare quasi-binomial models using a F-test stat equal to

$$F = rac{\left(G_{
m reduced}^2 \, - G_{
m full}^2
ight)/(\# {
m \, terms \, tested}\,)}{\hat{\psi}}$$

using an F-distribution with degrees of freedom equal to the number of terms tested and n-(p+1). G^2 is the model deviance from fitting the usual binomial model for two competing models.

R: Quasi-binomial model

• A quasi-binomial model is fit with

```
glm(y/m \sim x1 + x2, family = quasibinomial, weights = m, data = mydata)
```

Model comparisons with a quasi-binomial model are done with anova:

```
anova(red_quasi, full_quasi, test = "F")
```

Example: Rake data

The USGS monitors submersed aquatic vegetation (SAV) in the Mississippi by using a long-handled rake (from a boat) to pull SAV from the river bottom.

RakeData <- read.csv("https://raw.githubusercontent.com/deepbas/statdatasets/main/RakeData.c
glimpse(RakeData)</pre>

Data description

- Cases = 27 sites that contain SAV
- ullet m = SiteM = 6 locations (quadrats) raked per site
- Y = SiteRake = # Iocations with SAV detected per site
- X = total site biomass, average water depth, substrate (soil type: silt or sand)
- $\pi(X) = \text{Probability the rake detects SAV at a site with predictors } X$

Binomial logistic regression

```
rake_glm <- glm(SiteRake/SiteM ~ log(SiteBiom+1) + SiteDepth + SiteSub,
family = binomial,
weights = SiteM,
data = RakeData)
```

Binomial logistic regression

```
summary(rake_glm)
```

```
Call:
glm(formula = SiteRake/SiteM ~ log(SiteBiom + 1) + SiteDepth +
   SiteSub, family = binomial, data = RakeData, weights = SiteM)
Deviance Residuals:
            10 Median
   Min
                             30
                                    Max
-3.2516 -0.3863 0.8381 1.0709 1.7355
Coefficients:
                Estimate Std. Error z value Pr(>|z|)
(Intercept)
            -1.8528 0.8319 -2.227 0.0259 *
log(SiteBiom + 1) 0.7475 0.1157 6.461 1.04e-10 ***
          -1.2472
                         0.8175 -1.526 0.1271
SiteDepth
SiteSubsilt 0.4691
                         0.4545 1.032 0.3020
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 118.36 on 26 degrees of freedom
Residual deviance: 50.44 on 23 degrees of freedom
AIC: 82.189
Number of Fisher Scoring iterations: 4
```

Goodness-of-fit

 H_0 : logistic model

 H_A : saturated model

```
1 - pchisq(50.44, df = 23)
```

[1] 0.0008063917

The GOF p-value for this model is 0.0008, which suggests that there is enough evidence to say the model is not adequate

Residual analysis

Leverage and Cook's distance

Estimate the dispersion parameter

Null deviance: 118.36 on 26 degrees of freedom Residual deviance: 50.44 on 23 degrees of freedom

$$\hat{\psi}=rac{50.44}{23}pprox 2.1$$

The dispersion parameter is estimated as 2.14

Fit the quasi-binomial model

```
rake_quasi_glm <- glm(SiteRake/SiteM ~ log(SiteBiom+1) + SiteDepth + SiteSub,
family = quasibinomial,
weights = SiteM,
data = RakeData)
```

Quasi-binomial logistic regression

```
summary(rake_quasi_glm)
```

```
Call:
glm(formula = SiteRake/SiteM ~ log(SiteBiom + 1) + SiteDepth +
   SiteSub, family = quasibinomial, data = RakeData, weights = SiteM)
Deviance Residuals:
            1Q Median 30
   Min
                                    Max
-3.2516 -0.3863 0.8381 1.0709 1.7355
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
               -1.8528 1.2168 -1.523 0.141474
(Intercept)
log(SiteBiom + 1) 0.7475 0.1692 4.417 0.000199 ***
           -1.2472 1.1958 -1.043 0.307814
SiteDepth
SiteSubsilt 0.4691 0.6648 0.706 0.487527
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for quasibinomial family taken to be 2.139552)
   Null deviance: 118.36 on 26 degrees of freedom
Residual deviance: 50.44 on 23 degrees of freedom
AIC: NA
Number of Fisher Scoring iterations: 4
```

Standard errors

Binomial Model

```
Coefficients:
                  Estimate Std. Error z value Pr(>|z|)
(Intercept)
                  -1.8528
                              0.8319 -2.227
                                               0.0259 *
log(SiteBiom + 1) 0.7475
                              0.1157
                                       6.461 1.04e-10 ***
SiteDepth
                  -1.2472
                              0.8175 -1.526
                                               0.1271
SiteSubsilt
                   0.4691
                                               0.3020
                              0.4545
                                       1.032
```

Quasi-binomial Model

```
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
(Intercept)
                  -1.8528
                              1.2168 -1.523 0.141474
log(SiteBiom + 1)
                   0.7475
                              0.1692
                                       4.417 0.000199 ***
SiteDepth
                  -1.2472
                              1.1958 -1.043 0.307814
SiteSubsilt
                   0.4691
                              0.6648
                                      0.706 0.487527
```

$$SE\left(\hat{eta}_{i}^{quasi}
ight)=\sqrt{2.139552} imes SE(\hat{eta}_{i})$$

Quasi-binomial F-test

```
anova(rake_glm)
```

```
Analysis of Deviance Table
Model: binomial, link: logit
Response: SiteRake/SiteM
Terms added sequentially (first to last)
                Df Deviance Resid. Df Resid. Dev
NULL
                                 26
                                      118.357
log(SiteBiom + 1) 1 64.263
                                 25 54.094
SiteDepth 1 2.571
                                24 51.522
SiteSub
                                 23
                                       50.440
                     1.083
```


Complete (1a-c):

Test the hypotheses (1d):

 $H_0:\beta_2=\beta_3=0$

 $H_A: ext{ at least one } eta_2, eta_3
eq 0$

Compare models using anova with the F test in R

The p-value is from an F-distribution with 2 and 25 degrees of freedom. The test results suggest that neither depth nor substrate are statistically significant (F = 0.854, p-value=0.439).