

CompTIA Security+ Guide to Network Security Fundamentals, 7th Edition

Module 6: Basic Cryptography

Module Objectives

By the end of this module, you should be able to:

- 1. Define cryptography
- 2. Describe hash, symmetric, and asymmetric cryptographic algorithms
- 3. Explain different cryptographic attacks
- 4. List the various ways in which cryptography is used

Defining Cryptography

- Defining cryptography involves understanding what it is and how it is used
- It also involves knowing the limitations of cryptography

What is Cryptography? (1 of 5)

Cryptography

- Scrambling information so it cannot be read
- Transforms information into secure form so unauthorized persons cannot access it

Steganography

- Hides the existence of data
- An image, audio, or video file can contain hidden messages embedded in the file
- Achieved by dividing data and hiding in unused portions of the file
- May hide data in the file header fields that describe the file, between sections of the metadata (data used to describe the content or structure of the actual data)

What is Cryptography? (2 of 5)

Figure 6-1 Data hidden by steganography

Figure 6-1 Data hidden by steganography

What is Cryptography? (3 of 5)

- Encryption is the process of changing original text into a secret message using cryptography
- Changing the secret message back to its original form is known as decryption
- Plaintext is unencrypted data to be encrypted or is the output of decryption
- Ciphertext is the scrambled and unreadable output of encryption
- Cleartext data is data stored or transmitted without encryption
- Plaintext data is input into a cryptographic algorithm (also called a cipher)
 - It consists of procedures based on a mathematical formula used to encrypt and decrypt the data

What is Cryptography? (4 of 5)

- A key is a mathematical value entered into the algorithm to produce ciphertext
 - The reverse process uses the key to decrypt the message
- A *substitution cipher* substitutes one character for another
 - One type is a ROT13, in which the entire alphabet is rotated 13 steps (A=N)
- An XOR cipher is based on the binary operation eXclusive OR that compares two bits
 - If the bits are different, a 1 is returned, if they are identical, a 0 is returned

What is Cryptography? (5 of 5)

Figure 6-2 Cryptographic process

Figure 6-2 Cryptographic process

Cryptography Use Cases (1 of 2)

- Cryptography can provide several basic protections
 - Confidentiality ensures only authorized parties can view it
 - Integrity ensures information is correct and unaltered
 - Authentication ensures sender can be verified through cryptography
 - Nonrepudiation proves that a user performed an action
 - Obfuscation is making something obscure or unclear
- Security through obscurity
 - An approach in security where virtually any system can be made secure as long as outsiders are unaware of it or how it functions

Cryptography Use Cases (2 of 2)

- Cryptography can provide protection to data as that data resides in any of three states:
 - Data in processing (also called data in use) is data actions being performed by "endpoint devices"
 - Data in transit are actions that transmit the data across a network
 - Data at rest is data that is stored on electronic media

Limitations of Cryptography (1 of 2)

- The number of small electronic devices (low-power devices) has grown significantly
 - These devices need to be protected from threat actors
- Applications that require extremely fast response times also face cryptography limitations
- Resource vs. security constraint is a limitation in providing strong cryptography due to the tug-of-war between available resources (time and energy) and the security provided by cryptography
- It is important that there be high resiliency in cryptography
 - High resiliency is the ability to quickly recover from these resource vs. security constraints

Limitations of Cryptography (2 of 2)

Figure 6-3 Resource vs. security constraint

Figure 6-3 Resource vs. security constraint

Knowledge Check Activity 1

Which of the following is a term that proves that a user performed an action with a computer or on data?

- a. Confidentiality
- b. Nonrepudiation
- c. Obfuscation
- d. Authentication

Knowledge Check Activity 1: Answer

Which of the following is a term that proves that a user performed an action with a computer or on data?

Answer: b. Nonrepudiation

Repudiation means denial. Nonrepudiation is the inability to deny, so in information technology, nonrepudiation is the process of pricing that a user performed an action such as creating a file or sending an email.

Cryptographic Algorithms

- A fundamental difference in cryptographic algorithms is the amount of data processed at a time
 - Stream cipher takes one character and replaces it with another
 - Block cipher manipulates an entire block of plaintext at one time
 - Sponge function takes as input a string of any length and returns a string of any requested variable length
- Three categories of cryptographic algorithms
 - Hash algorithms
 - Symmetric cryptographic algorithms
 - Asymmetric cryptographic algorithms

Hash Algorithms (1 of 3)

- Hash algorithm creates a unique "digital fingerprint" of a set of data and is commonly called hashing
 - This fingerprint, called a digest (sometimes called a message digest or hash), represents the contents
 - Is primarily used for comparison purposes
- Hashing is intended to be one way in that its digest cannot be reversed to reveal the original set of data
- Secure hashing algorithm characteristics:
 - Fixed size short and long data sets have the same size hash
 - Unique two different data sets cannot produce the same hash
 - Original data set cannot be created to have a predefined hash
 - Secure resulting hash cannot be reversed to determine original plaintext

Hash Algorithms (2 of 3)

Image Name	Torrent	Version	Size	SHA256Sum
Kali Linux 64-Bit (Installer)	Torrent	2020.2	3.6G	ae9a3b6ale016cd464ca31ef5055506cecfc55a10f61bf1acb8313eddbe12ad/
Kali Linux 64-Bit (Live)	Torrent	2020.2	2.9G	e90e0cfb4bc8fc640219dba66c9fe4308c9502164e432c47a30af50ce9cb3ba2
Kali Linux 64-Bit (NetInstaller)	Torrent	2020.2	420M	def160159e12ff52fb5f4991240bd760500d7cd5ee38601a8bf35809a20f9450

Figure 6-4 Verifying downloads with digests

Figure 6-4 Verifying downloads with digests

Hash Algorithms (3 of 3)

- Message Digest (MD) is one of the earliest family of hash algorithms
 - Most well-known of the MD hash algorithms is MD5
 - Some security experts recommend using a more secure hash algorithm
- Secure Hash Algorithm (SHA)
 - SHA-2 is currently considered to be a secure hash
 - SHA-3 was announced as a new standard in 2015 and may be suitable for low-power devices
- Race Integrity Primitives Evaluation Message Digest (RIPEMD)
 - The primary design feature is two different and independent parallel chains of computation, the results are combined at end of process
 - There are several version of RIPEMD
 - RIPEMD-128, RIPEMD-256, and RIPEMD-320

Symmetric Cryptographic Algorithms (1 of 2)

- Symmetric cryptographic algorithms use the same single key to encrypt and decrypt a
 document
 - Original cryptographic algorithms were symmetric
 - Also called private key cryptography (the key is kept private between sender and receiver)
- Common algorithms include:
 - Data Encryption Standard (DES)
 - Triple Data Encryption Standard (3DES)
 - Advanced Encryption Standard (AES)
 - Rivest Cipher (RC)
 - Blowfish

Symmetric Cryptographic Algorithms (2 of 2)

Figure 6-5 Symmetric (private key) cryptography

Figure 6-5 Symmetric (private key) cryptography

Asymmetric Cryptographic Algorithms (1 of 6)

- The primary weakness of symmetric algorithms: distributing and maintaining a secure single key among multiple users distributed geographically poses challenges
- Asymmetric cryptographic algorithms use two mathematically related keys
 - Also known as public key cryptography
 - Public key available to everyone and freely distributed
 - Private key known only to individual to whom it belongs
- Important principles
 - Key pairs
 - Public key
 - Private key
 - Both directions keys can work in both directions

Asymmetric Cryptographic Algorithms (2 of 6)

Figure 6-7 Asymmetric (public key) cryptography

Figure 6-7 Asymmetric (public key) cryptography

Asymmetric Cryptographic Algorithms (3 of 6)

RSA

- Published in 1977
- Multiplies two large prime numbers
- The basis of RSA encryption security if factoring
- Elliptic curve cryptography (ECC)
 - Users share one elliptic curve and one point on the curve
 - Uses less computing power than prime number-based asymmetric cryptography
 - Key sizes are smaller
 - Considered as an alternative for prime-number-based asymmetric cryptography for mobile and wireless devices

Asymmetric Cryptographic Algorithms (4 of 6)

Figure 6-8 Elliptic curve cryptography (ECC)

Figure 6-8 Elliptic curve cryptography (ECC)

Asymmetric Cryptographic Algorithms (5 of 6)

- Digital Signature Algorithm (DSA)
 - Creates a digital signature an electronic verification of the sender
 - A digital signature can:
 - Verify the sender
 - Prevent sender from disowning the message
 - Prove message integrity
- Key Exchange
 - There are different solutions for a key exchange that occurs within the normal communications channel (in-band) of cryptography:
 - Diffie-Hellman (DH)
 - Diffie-Hellman Ephemeral (DHE)
 - Elliptic Curve Diffie-Hellman (ECDH)
 - Perfect forward secrecy

Asymmetric Cryptographic Algorithms (6 of 6)

Figure 6-9 Digital signature

Figure 6-9 Digital signature

