-Exercices -

Corr. exo. 1. c.f. théorie C3

Corr. exo. 2. Un nombre pair a s'écrit a=2n pour $n\in\mathbb{N}$, un nombre impair b s'écrit b=2m+1 pour $m \in \mathbb{N}$. On a

$$a + b = 2n + 2m + 1 = 2(n + m) + 1 = 2k + 1$$
 avec $k = n + m$

et donc a + b est bien un nombre impair.

Corr. exo. 3.

a)
$$x^2 + 2xy + y^2$$

b)
$$4x^4 - 4x^2 - 12$$

c)
$$x^2 - y^2$$

d)
$$9x^2 + 6xy + y^2$$

e)
$$x^4 + 2x^2y^3 + y^6$$
 f) $x^2 - 2x + 1$

f)
$$x^2 - 2x + 1$$

g)
$$1 - x^2$$

h)
$$16x^2 - 24x + 9$$

i)
$$x^6 - 9y^2$$

i)
$$9z^2 - 12z + 4$$
 k) $x^2 - 2x + 1$

k)
$$x^2 - 2x + 1$$

$$1) \quad x^2y^2 + 4xy^2 + 4y^2$$

m)
$$x^4 - 2x^2 + 1$$

n)
$$4x^2 + 8x + 4$$

o)
$$4a^2 + 12a + 9$$

p)
$$x^2y^2z^2 - 25$$

q)
$$9x^6 - 30x^3 + 25$$
 r) $a^2 + 6ab + 9b^2$ s) $x^4 - 2x^2 + 1$

r)
$$a^2 + 6ab + 9b^2$$

s)
$$x^4 - 2x^2 + 1$$

t)
$$16a^4b^2 - 25$$

u)
$$4x^2y^6 - 4xy^3 + 1$$
 v) $x^8 + 2x^4y + y^2$

v)
$$x^8 + 2x^4y + y^2$$

w)
$$1 - a^2 x^8$$

x)
$$x^4 - a^4$$

Corr. exo. 4.

a)
$$x^2 - 3x + 2$$

b)
$$x^2 + 4x + 3$$

c)
$$x^2 - 16$$

d)
$$y^2 - 2y - 48$$

e)
$$a^2 - 11a - 12$$
 f) $y^2 + 5y - 36$

f)
$$y^2 + 5y - 36$$

g)
$$a^2 + 10a + 21$$
 h) $x^2 - 13x + 30$

h)
$$x^2 - 13x + 30$$

Corr. exo. 5. Par exemple, $23^2 = (20+3)^2 = 20^2 + 2 \cdot 20 \cdot 3 + 3^9 = 400 + 120 + 9 = 529$.

Corr. exo. 6.

a)
$$a+b$$

b)
$$a^2 + 2ab + b^2$$

c)
$$a^3 + 3a^2b + 3ab^2 + b^3$$

d)
$$a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$$

e)
$$a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5$$

Corr. exo. 7.

a)
$$100r^2x^2 + 130rx + 40$$

b)
$$s^2t^2 - \frac{9}{4}s^2$$

c)
$$25s^4y^2 - \frac{25}{4}s^4y + \frac{25}{64}s^4$$

d)
$$\frac{4}{9}s^2x^2 + \frac{1}{6}sx^2 + \frac{1}{64}x^2$$

e)
$$-\frac{9}{25}r^4z^2 + \frac{4}{25}z^4$$

f)
$$16r^2t^4 - 28r^2t^2 + \frac{49}{4}r^2$$

g)
$$36r^2y^2 + 30ry + 6$$

h)
$$\frac{16}{9}z^4 + \frac{40}{27}rz^3 + \frac{25}{81}r^2z^2$$

i)
$$\frac{16}{49}t^2x^2 - \frac{4}{7}tx - 56$$

$$j) \quad \frac{64}{49}t^6 + \frac{160}{7}st^3 + 100s^2$$

- ${f Automatismes}$ -

Corr. exo. 8.

a)
$$(-3\sqrt{3} + 5\sqrt{5})^2 = (-3\sqrt{3})^2 + 2 \cdot (-3)\sqrt{3}$$
 b) $(6\sqrt{3} + 6)(6\sqrt{3} - 6) = (6\sqrt{3})^2 - 6^2$
 $5\sqrt{5} + (5\sqrt{5})^2 = (-3)^2 \cdot 3 + 2 \cdot (-3) \cdot \sqrt{3} \cdot 5$ $= 6^2 \cdot 3 - 36$
 $= (-3)^2 \cdot 3 + 2 \cdot (-3) \cdot \sqrt{3} \cdot 5$ $= 108 - 36$
 $= 27 - 30\sqrt{3 \cdot 5} + 125$
 $= 152 - 30\sqrt{15}$

c)
$$(-3\sqrt{2} + 5\sqrt{2}) (-3\sqrt{2} - 5\sqrt{2}) = (-3\sqrt{2})^2 - (5\sqrt{2})^2$$

 $= (-3)^2 \cdot 2 - 5^2 \cdot 2$
 $= 18 - 50$
 $= -32$

c)
$$(-3\sqrt{2} + 5\sqrt{2})(-3\sqrt{2} - 5\sqrt{2}) = (-3\sqrt{2})^2 - d$$
 d) $(-5\sqrt{2} + 5)^2 = (-5\sqrt{2})^2 + 2 \cdot (-5)\sqrt{2} \cdot 5 + 5^2$
 $(5\sqrt{2})^2$ $= (-5)^2 \cdot 2 - 50\sqrt{2} + 25$
 $= (-3)^2 \cdot 2 - 60\sqrt{2} + 25$

e)
$$(4\sqrt{3} - 6)^2 = (4\sqrt{3})^2 - 2 \cdot 4\sqrt{3} \cdot 6 + 6^2$$

 $= 4^2 \cdot 3 - 48\sqrt{3} + 36$
 $= 48 - 48\sqrt{3} + 36$
 $= 84 - 48\sqrt{3}$

f)
$$(-2\sqrt{11} - 5)^2 = (-2\sqrt{11})^2 - 2 \cdot (-2)\sqrt{11} \cdot 5 + 5^2$$

$$= (-2)^2 \cdot 11 + 20\sqrt{11} + 25$$

$$= 44 + 20\sqrt{11} + 25$$

$$= 69 + 20\sqrt{11}$$

Corr. exo. 9.

a)
$$5(8ty - 2t^2 + 7y)$$
 ou $-5(-8ty + 2t^2 - 7y)$

b)
$$4s(3st + 8s + 6t)$$

c)
$$5(-6z + 9t + 2)$$
 ou $-5(6z - 9t - 2)$

d)
$$10z(7sz + 5s + 6)$$

e)
$$10r(5s^2+4r+2)$$

f)
$$7(3t+8)$$

g)
$$8x(9rx + 4x - 7)$$
 ou $-8x(-9rx - 4x + 7)$

h)
$$-7y(9y + 8x + 6)$$

i)
$$8(-7sy - 5s + 3)$$
 ou $-8(7sy + 5s - 3)$

j)
$$3t(-2s^2+3t^2)$$
 ou $-3t(2s^2-3t^2)$

Corr. exo. 10.

a)
$$-6z(10rsy + 8s + 3)$$

b)
$$10rtx(-3rtx - 6rt + x)$$
 ou $-10rtx(3rtx + 6rt - x)$

c)
$$7s(-3txz+6xz+8)$$
 ou $-7s(3txz-6xz-8)$

d)
$$2s(-yz^2 - 8t + 7)$$
 ou $-2s(yz^2 + 8t - 7)$

e)
$$2stx(5txy - 7s)$$
 ou $-2stx(-5txy + 7s)$

f)
$$3z(-6rxz + 7t - 5)$$
 ou $-3z(6rxz - 7t + 5)$

g)
$$rt(s+7)$$

h)
$$8rtx(7y^2 + 6x)$$

i)
$$7x(5rx^2 + 6yz^2)$$

j)
$$3(-ry+5y+5)$$
 ou $-3(ry-5y-5)$