Towards Efficient Random-Order Enumeration for Join Queries Technical Report

0.1 Proof of Lemma 2.

PROOF. We prove the contrapositive: if $\varphi_Q^*(i) \neq false$, then $i \leq upp(\psi_r)$. By the definition of φ^* , for each integer i > 0 satisfying $\varphi_Q^*(i) \neq false$, there is a tuple $t \in Res(Q)$ along with a root-to-leaf path u_1, \ldots, u_h $(u_1 = r, u_h = u_t)$ such that (11) holds. Then, let

$$sum_{j} = \sum_{\substack{\psi \prec \psi_{u_{j+1}} \\ \psi \in children(\psi_{u_{j}})}} upp(\psi)$$

$$\leq \sum_{\substack{\psi \in children(\psi_{u_{j}}) \\ \leq upp(\psi_{u_{i}}) - upp(\psi_{u_{i+1}}),}} upp(\psi) - upp(\psi_{u_{j+1}})$$

$$(1)$$

therefore

$$i = \sum_{j=1}^{h-1} \operatorname{sum}_{j} + 1 \le \sum_{j=1}^{h-1} \left(upp(\psi_{u_{j}}) - upp(\psi_{u_{j+1}}) \right) + 1$$

$$= upp(\psi_{u_{1}}) - upp(\psi_{u_{h}}) + 1 = upp(\psi_{r}).$$
(2)

0.2 Proof of Lemma 4.

PROOF. For each tuple $t \in R$ satisfying ψ , we have $l_i \leq t(x_i) \leq h_i$ for $\forall i \in \{r_1,\ldots,r_d\}$. This implies $t_l^{\psi} \preceq t \preceq t_h^{\psi}$, and consequently $t \in R[t_l^{\psi},t_h^{\psi}]$. Therefore, $R|_{\psi} \subseteq R[t_l^{\psi},t_h^{\psi}]$. For each tuple $t \in R[t_l^{\psi},t_h^{\psi}]$, we have $t_l^{\psi} \preceq t \preceq t_h^{\psi}$. We need to prove that for each $x_i \in \operatorname{att}(R), l_i \leq t(x_i) \leq h_i$. Let s be a split position of ψ , then:

- (1) For $\forall x_i \in \text{att}(R)$ with $\forall 1 \leq i < s$, since $l_i = h_i$, it follows that $l_i = t(x_i) = h_i$. Otherwise, one of the conditions $t \succeq t_l^{\psi}$ or $t \leq t_h^{\psi}$ would be violated.
- (2) If $x_s \in \text{att}(R)$ then $l_s \le t(x_s) \le h_s$, otherwise $t_l^{\psi} \le t \le t_h^{\psi}$ would be violated.
- (3) For $\forall x_i \in \text{att}(R)$ with $\forall s < i \le n$, since $l_i = \min_Q(x_i)$ and $h_i = \max_Q(x_i)$, it follows that $l_i \le t(x_i) \le h_i$.

Then t satisfies ψ , i.e., $t \in R|_{\psi}$. Therefore, $R[t_l^{\psi}, t_h^{\psi}] \subseteq R|_{\psi}$ and then we have $R[t_l^{\psi}, t_h^{\psi}] = R|_{\psi}$, which implies that $R.cnt(\psi) = |R|_{\psi}|$. \square

0.3 Proof of Lemma 6.

PROOF. Since $upp(\psi) \leq 1$, two cases need to be discussed. Firstly, for the case $upp(\psi) = 0$, we have $|Res(Q|_{\psi})| \leq upp(\psi) = 0$, which implies that $Res(Q|_{\psi}) = \emptyset$. Secondly, for the case $upp(\psi) = 1$, we have $|Res(Q|_{\psi})| \leq 1$. Let $s = \max\{i|l_i \neq h_i\}$, by Property 1, there exists at most one integer $p \in \mathbb{N}[l_s, h_s]$ such that

- $upp([[l_1, h_1], ..., [l_s, p-1], ..., [l_n, h_n]]) = 0,$
- $upp([[l_1, h_1], ..., [p, p], ..., [l_n, h_n]]) = 1,$
- $upp([[l_1, h_1], ..., [p+1, h_s], ..., [l_n, h_n]]) = 0.$

If $upp([[l_1,h_1],\ldots,[p,p],\ldots,[l_n,h_n]])=0$ follows for every $p\in\mathbb{N}[l_s,h_s]$, we have $Res(Q|_{\psi})=\emptyset$. Otherwise, it is able to calculate the only integer $p\in\mathbb{N}[l_s,h_s]$ by a multi-head binary search (introduced in Section 4.4) in $O(\log |Q|)$ time. Then apply the same procedure to the next unfixed position of $[[l_1,h_1],\ldots,[p,p],\ldots,[l_n,h_n]]$, and continue this process iteratively on other positions as needed. If this process finally obtains $\psi^*=[[l_1^*,h_1^*],\ldots,[l_n^*,h_n^*]]$ such that $upp(\psi^*)=1$ and $\forall 1\leq i\leq n, l_i^*=h_i^*$, then (l_1^*,\ldots,l_n^*) is the only tuple in $Res(Q|_{\psi})$. Otherwise, we have $Res(Q|_{\psi})=\emptyset$. The time it takes to decide whether $Res(Q|_{\psi})=\emptyset$ and calculate ψ^* (if exists) is at most $O(n\log |Q|)$, which is $O(\log |Q|)$ in data complexity. \square

0.4 Proof of Lemma 8.

PROOF. For the convenience of the proof, a dummy element $+\infty$ is appended to the end of each sequence, that is, $A_i[|A_i|] = +\infty$ for each $1 \le i \le k$. If $F(|A_1|, \ldots, |A_k|) \le T$, the algorithm obviously returns p^* . Then for the case where $F(|A_1|, \ldots, |A_k|) > T$, we show that Algorithm 4 maintains the invariant

$$A_i[l_i] \le p^* \le A_i[r_i], \quad \forall \, 1 \le i \le k, \tag{3}$$

and then prove that Algorithm 4 correctly returns p^* after at most $O(\log \sum_{i=1}^k |A_i|)$ iterations.

Base case. Initially, for each $1 \le i \le k$ we set $l_i = 0$ and $r_i = |A_i|$. Since each A_i is sorted,

$$A_i[0] \le \min A_i \le p^* \le \max A_i \le A_i[n],\tag{4}$$

then the invariant holds before the first iteration.

Inductive step. Suppose at the start of some iteration we have $A_i[l_i] \leq p^* \leq A_i[r_i]$ for any $1 \leq i \leq k$. We aim to demonstrate that the invariant is preserved after the update performed in the current iteration. Without loss of generality, we assume that for any $1 \leq i \leq k$, $r_i - l_i > 1$ satisfies. (If some i already has $r_i - l_i \leq 1$ and the algorithm has not yet terminated, then by the invariant we have $A_i[l_i] < p^* \leq A_i[r_i]$ and $N_i(A_i[r_i]) \leq N_i(A_i[l_i] + 1) = r_i$, then $N_i(p^*) = r_i = m_i$, and the problem reduces to the remaining k-1 sequences.) In each iteration, the algorithm modifies exactly one of the two bounds: it either updates the lower bound $l_{i_{\min}}$ for some index i_{\max} . We discuss the two cases:

Case 1: $F(m_1, ..., m_k) \leq T$.

Let
$$p = A_{i_{\min}}[m_{i_{\min}}] = \min_{r_i - l_i > 1} A_i[m_i]$$
. Since

$$N_{i_{\min}}(p) = |\{x \in A_{i_{\min}} \mid x < A_{i_{\min}}[m_{i_{\min}}]\}| \le m_{i_{\min}},$$
 (5)

and for each $i \neq i_{\min}$,

$$N_i(p) \le N_i(A_i[m_i]) = |\{x \in A_i \mid x < A_i[m_i]\}| \le m_i,$$
 (6)

it follows that

$$F(N_1(p),\ldots,N_k(p)) \le F(m_1,\ldots,m_k) \le T. \tag{7}$$

Hence $p^* \geq p$, then after updating $l_{i_{\min}} \leftarrow m_{i_{\min}}$, we still have $A_{i_{\min}}[l_{i_{\min}}] \leq p^* \leq A_{i_{\min}}[r_{i_{\min}}]$. For all $i \neq i_{\min}$, neither l_i nor r_i changes, so the invariant is preserved after the update.

Case 2: $F(m_1, ..., m_k) > T$. Let $p = A_{l_{max}}[m_{l_{max}}] = \max_{r_i - l_i > 1} A_i[m_i]$. Since

$$N_{i_{\max}}(p+1) = |\{x \in A_{i_{\max}}|x \le A_{i_{\max}}[m_{i_{\max}}]\}| \ge m_{i_{\max}},$$
 (8)

and for each $i \neq i_{\min}$,

$$N_i(p+1) \ge N_i(A_i[m_i]+1) = |\{x \in A_i | x \le A_i[m_i]\}| \ge m_i,$$
 (9)

it follows that

$$F(N_1(p+1), \dots, N_k(p+1)) \ge F(m_1, \dots, m_k) > T.$$
 (10)

Thus $p^* < p+1$ which implies $p^* \le p$, then after updating $r_{i_{\max}} \leftarrow m_{i_{\max}}$, we still have $A_{i_{\max}}[l_{i_{\max}}] \le p^* \le A_{i_{\max}}[r_{i_{\max}}]$. For all $i \ne i_{\max}$, neither l_i nor r_i changes, so the invariant is preserved after the update.

Convergence and termination. In each iteration, an update is performed on sequence A_i only if $r_i - l_i > 1$, and every such update reduces the length of the interval by at least one. Consequently, the length of each interval $[l_i, r_i]$ shrinks to at most 2 after at most $O(\log |A_i|)$ updates on A_i . Since the number of sequences is a constant, the total number of iterations of the algorithm is bounded by $O(\log \sum_{i=1}^k |A_i|)$.

Now we show that when Algorithm 4 terminates, it returns p^* correctly. If it terminates at Line 4 or Line 14, which implies

$$F(N_1(A_i[l_i]+1),...,N_k(A_i[l_i]+1)) > T,$$
 (11)

it follows that $p^* \le A_i[l_i]$, then by the invariant $p^* \ge A_i[l_i]$, we have $p^* = A_i[l_i]$.

If Algorithm 4 terminates at line 16, which implies $r_i - l_i \le 1$ and $F(N_1(A_i[l_i] + 1), \ldots, N_k(A_i[l_i] + 1)) \le T$ satisfies for every $1 \le i \le k$. Let $p = \min_{1 \le i \le k} A_i[r_i]$ and $q = \max_{1 \le i \le k} A_i[l_i]$, then

$$F(N_{1}(p),...,N_{k}(p)) \leq F(N_{1}(A_{1}[r_{1}],...,N_{k}(A_{k}[r_{k}]))$$

$$\leq F(N_{1}(A_{1}[l_{1}]+1),...,N_{k}(A_{k}[l_{k}]+1)) \qquad (12)$$

$$\leq F(N_{1}(q+1),...,N_{k}(q+1)) \leq T.$$

Thus $p^* \ge p$, and by the invariant, $p^* \le p$, we conclude $p^* = p = \min_{1 \le i \le k} A_i[r_i]$.

In summary, since i_{\min} , i_{\max} , and F can be computed in O(1) time, and computing each N_i takes at most $O(\log |A_i|)$ time, Algorithm 4 returns p^* in $O(\log \sum_{i=1}^k |A_i|)$ time.

0.5 Proof of Lemma 9.

PROOF. Let $\psi = [[l_1, h_1], \dots, [l_n, h_n]]$, since $s = \min\{i | l_i \neq h_i\}$ is a split position of ψ , it follows that

- $(1) \ \forall 1 \le i < s, l_i = h_i,$
- (2) $\forall s < i \le n, l_i = \min_O(x_i)$ and $h_i = \max_O(x_i)$.

If ψ_{left} is not an empty range, then $l_p \leq mid_p - 1$, which implies that ψ_{left} is a prefix range filter with split position s. Similarly, if ψ_{left} is not an empty range, then $mid_p + 1 \leq h_p$, which implies that ψ_{right} is a prefix range filter with split position s. Finally, since $mid_p \leq mid_p$, ψ_{mid} is a prefix range filter with split position s. \square

0.6 Proof of Lemma 11.

PROOF. If $\operatorname{att}(Q_s) = \operatorname{att}(Q)$, then $\operatorname{Res}(Q|_{\psi}) \subseteq \operatorname{Res}(Q_s|_{\psi})$, which implies $|\operatorname{Res}(Q|_{\psi})| \leq |\operatorname{Res}(Q_s|_{\psi})|$. If $\operatorname{att}(Q_s) \subsetneq \operatorname{att}(Q)$, then

$$|Res(Q|_{\psi})| = |Res(Q_{s}|_{\psi}) \bowtie Res(Q_{r}|_{\psi})|$$

$$\leq \sum_{t \in Res(Q_{s}|_{\psi})} |Res((Q_{r} \bowtie t)|_{\psi})|$$

$$\leq |Res(Q_{s}|_{\psi})| \max_{t \in Res(Q_{s}|_{\psi})} |Res((Q_{r} \bowtie t)|_{\psi})| \qquad (13)$$

$$\leq |Res(Q_{s}|_{\psi})| \cdot |Res(Q_{r}^{*}|_{\psi})|$$

$$\leq |Res(Q_{s}|_{\psi})| \cdot AGM_{c}(Q_{r}^{*}|_{\psi}).$$

2