## Question 1

Let S be the parallelopiped determined by the vectors

$$\mathbf{b_1} = \begin{bmatrix} -5\\1\\0 \end{bmatrix}, \mathbf{b_2} = \begin{bmatrix} -2\\5\\0 \end{bmatrix}, \mathbf{b_3} = \begin{bmatrix} -2\\-5\\4 \end{bmatrix}$$

and let

$$A = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 2 & 0 \\ 1 & 1 & 3 \end{bmatrix}$$

Compute the volume of the image of S under the mapping  $x \to Ax$ .

## Question 2

By what factor does the following transformation change the size of the box?

$$T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x - y \\ 2x + y \end{bmatrix}$$

## Question 3

Find the inverse of

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 7 & 5 & 4 \\ 8 & 7 & 10 \end{bmatrix}$$

by using:

- 1. Cofactor Expansion method
- 2. Row operation
- 3. Also write A and  $A^{-1}$  as product of elementary matrices (Note that you can use elementary row operations done in last part to construct these elementary matrices)

|        |         | '.    | ((  | Ques  | tion   | No  | 01)     |     |       |
|--------|---------|-------|-----|-------|--------|-----|---------|-----|-------|
| b1=    | -5],    | b2=   | -2] |       | b3 = [ | -2] | , So B= | 5-5 | -2 -2 |
|        | 1       |       | 5   |       |        | -5  |         | Li  | 5-5   |
|        | 0       |       | 0   |       | l      | 4]  |         | 0   | 0 4   |
| Exp    | andling | a B   | by  | R     | 3:     |     |         |     |       |
| ldd    | B1 =    | 14 (- | 25+ |       | =>     | -23 | x4 =>   | 1-0 | 121   |
| lo     | let B   | 2 0   | 12  |       |        |     |         |     |       |
| ,      | A=      |       | 0   | 0     | 1      |     |         |     |       |
|        |         | -3    | 2   | 0     |        |     |         |     |       |
|        |         |       | 1   | 3     |        |     | 4       |     |       |
| C      | let A   | =     | 1.2 | .3    | =>     | 6   |         |     | -     |
| o, vol | ume o   | f the | ima | ge    | is:    | 6x  | 92 25   | 552 |       |
| ,      |         | Tis   |     | rea o |        |     | et A    |     |       |

## Solution of Q # 02



Solution of Q # 03

$$\text{Adj } A = \begin{cases}
 (50-28) & -(70-32) & 49-40 \\
 -(70-21) & (10-24) & -(7-16) \\
 (8-15) & -(4-21) & (5-14)
 \end{aligned}$$

$$A_{ij} A = \begin{pmatrix} 22 & -38 & 9 \\ 1 & -14 & 9 \\ -7 & 17 & -9 \end{pmatrix} t$$

$$\mathcal{N}_{j} \mathcal{N} = \begin{cases} 22 & 1 & -7 \\ -38 & -14 & 17 \\ 9 & 9 & -9 \end{cases}$$

$$A^{-1} = \frac{AdjA}{|A|}$$

$$A^{-1} = \begin{bmatrix} 22 & 1 & -7 \\ -38 & -14 & 17 \\ 9 & 9 & -9 \end{bmatrix}$$

$$A = \begin{bmatrix} -22 & -1 & 7 \\ 27 & 27 & 27 \end{bmatrix}$$

$$A = \begin{bmatrix} 38 & 1/4 & -17 \\ 27 & 27 & 27 \end{bmatrix}$$

$$-\frac{1}{3} & -\frac{1}{3} & \frac{1}{3}$$

2. Using Row Operations
$$\tilde{\Lambda} = \begin{cases}
1 & 2 & 3 & | & 0 & 0 \\
7 & 5 & 4 & | & 0 & 0 \\
8 & 7 & | & 0 & | & 0 & 0
\end{cases}$$
(1. 2. 3 | 1. 0 0)  $R_2 - 7R_1$ 

$$f^{-1} = \begin{bmatrix} -\frac{22}{27} & -\frac{1}{27} & \frac{7}{27} \\ \frac{38}{27} & \frac{19}{27} & \frac{-17}{27} \\ -\frac{1}{3} & -\frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$E2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -8 & 0 & 1 \end{bmatrix} \quad R_3 - 8R_1$$

$$\begin{array}{c|cccc}
E_3 : & \begin{bmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{9} & 0 \\ \hline
0 & 0 & 1 \end{bmatrix} & \frac{R_2}{-9}$$

$$\begin{array}{c|cccc}
E_4 = & 1 & -2 & 0 \\
0 & 1 & 0 & R_1 - 2R_2 \\
0 & 0 & 1
\end{array}$$

$$E_{5} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 9 & 1 \end{bmatrix} R_{3} + 9R_{2}$$

$$E_6 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1/3 \end{pmatrix} \frac{R_3}{3}$$

$$E_7 = \begin{pmatrix} 1 & 0 & \frac{7}{9} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} R_1 + \frac{7}{9} R_3$$

$$F_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -17/9 \\ 0 & 0 & 1 \end{pmatrix} R_{2} - \frac{17}{9} R_{3}$$

$$A = \left( E_8 E_7 E_6 E_5 E_4 E_3 E_2 E_1 \right)^{-1} I$$

$$E_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 7 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} R_{2} + 7R_{1}$$

$$E_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 8 & 0 & 1 \end{bmatrix} R_3 + 8R_1$$

$$E_3' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -9 & 0 \\ 0 & 0 & 1 \end{pmatrix} - 9R_2$$

$$E_{8}^{-1} = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} R_{1} + 2R_{2}$$

$$E_{5}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -9 & 1 \end{pmatrix} R_{3} - 9R_{2}$$

$$E_{6}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix} 3R_{3}$$

$$E_{7}^{-1} = \begin{pmatrix} 1 & 0 & -\frac{7}{9} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} R_{1} - \frac{7}{9} R_{3}$$

$$E_{8}^{-1} = \begin{pmatrix} 1 & 0 & -\frac{7}{9} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} R_{2} + \frac{17}{9} R_{3}$$

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} R_{2} + \frac{17}{9} R_{3}$$

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} R_{1} + \frac{17}{9} R_{3}$$

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} R_{1} + \frac{17}{9} R_{3}$$

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} R_{1} + \frac{17}{9} R_{3}$$

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} R_{1} + \frac{17}{9} R_{3}$$

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} R_{1} + \frac{17}{9} R_{3}$$

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} R_{1} + \frac{17}{9} R_{3}$$

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} R_{1} + \frac{17}{9} R_{3}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} R_{1} + \frac{17}{9} R_{3}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} R_{1} + \frac{17}{9} R_{3}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} R_{1} + \frac{17}{9} R_{3}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} R_{1} + \frac{17}{9} R_{3}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} R_{1} + \frac{17}{9} R_{3}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} R_{1} + \frac{17}{9} R_{3}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} R_{1} + \frac{17}{9} R_{3}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} R_{1} + \frac{17}{9} R_{3}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} R_{1} + \frac{17}{9} R_{3}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} R_{1} + \frac{17}{9} R_{3}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} R_{1} + \frac{17}{9} R_{3}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} R_{1} + \frac{17}{9} R_{3}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} R_{1} + \frac{17}{9} R_{3}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} R_{1} + \frac{17}{9} R_{3}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} R_{1} + \frac{17}{9} R_{3}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} R_{1} + \frac{17}{9} R_{3}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} R_{2} + \frac{17}{9} R_{3}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} R_{2} + \frac{17}{9} R_{3}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} R_{2} + \frac{17}{9} R_{3}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} R_{2} + \frac{17}{9} R_{3}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} R_{2} + \frac{17}{9} R_{3}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0$$

$$A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -17/4 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 1/4 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 &$$