

FEATURES

- Single Supply Operation
 Input Voltage Range Extends to Ground
 Output Swings to Ground While Sinking Current
- Pin Compatible to 1458 and 324 with Precision Specs
- Guaranteed Offset Voltage: 150µV Max
- Guaranteed Low Drift: 2µV/°C Max
- Guaranteed Offset Current: 0.8nA Max
- Guaranteed High Gain

5mA Load Current: 1.5 Million Min 17mA Load Current: 0.8 Million Min

- Guaranteed Low Supply Current: 500µA Max
- Low Voltage Noise, 0.1Hz to 10Hz: 0.55µV_{P-P}
- Low Current Noise—Better than OP-07, 0.07pA/√Hz

APPLICATIONS

- Battery-Powered Precision Instrumentation Strain Gauge Signal Conditioners Thermocouple Amplifiers Instrumentation Amplifiers
- 4mA to 20mA Current Loop Transmitters
- Multiple Limit Threshold Detection
- Active Filters
- Multiple Gain Blocks

T, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

Quad Precision Op Amp (LT1014) Dual Precision Op Amp (LT1013)

DESCRIPTION

The LT®1014 is the first precision quad operational amplifier which directly upgrades designs in the industry standard 14-pin DIP LM324/LM348/OP-11/4156 pin configuration. It is no longer necessary to compromise specifications, while saving board space and cost, as compared to single operational amplifiers.

The LT1014's low offset voltage of $50\mu V$, drift of $0.3\mu V/^{\circ}C$, offset current of 0.15nA, gain of 8 million, common mode rejection of 117dB and power supply rejection of 120dB qualify it as four truly precision operational amplifiers. Particularly important is the low offset voltage, since no offset null terminals are provided in the quad configuration. Although supply current is only $350\mu A$ per amplifier, a new output stage design sources and sinks in excess of 20mA of load current, while retaining high voltage gain.

Similarly, the LT1013 is the first precision dual op amp in the 8-pin industry standard configuration, upgrading the performance of such popular devices as the MC1458/MC1558, LM158 and OP-221. The LT1013's specifications are similar to (even somewhat better than) the LT1014's.

Both the LT1013 and LT1014 can be operated off a single 5V power supply: input common mode range includes ground; the output can also swing to within a few millivolts of ground. Crossover distortion, so apparent on previous single-supply designs, is eliminated. A full set of specifications is provided with $\pm 15V$ and single 5V supplies.

TYPICAL APPLICATION

3-Channel Thermocouple Thermometer

LT1014 Distribution of Offset Voltage

10134fd

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage ± 22V
113
Differential Input Voltage±30V
Input Voltage Equal to Positive Supply Voltage
5V Below Negative Supply Voltage
Output Short-Circuit Duration Indefinite
Storage Temperature Range
All Grades65°C to 150°C

PIN CONFIGURATION

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LT1013DS8#PBF	LT1013DS8#TRPBF	1013	8-Lead Plastic SO	0°C to 70°C
LT1013IS8#PBF	LT1013IS8#TRPBF	10131	8-Lead Plastic SO	-40°C to 85°C
LT1013ACN8#PBF	LT1013ACN8#TRPBF	LT1013ACN8	8-Lead PDIP	0°C to 70°C
LT1013CN8#PBF	LT1013CN8#TRPBF	LT1013CN8	8-Lead PDIP	0°C to 70°C
LT1013DN8#PBF	LT1013DN8#TRPBF	LT1013DN8	8-Lead PDIP	0°C to 70°C
LT1013IN8#PBF	LT1013IN8#TRPBF	LT1013IN8	8-Lead PDIP	-40°C to 85°C
LT1014DSW#PBF	LT1014DSW#TRPBF	LT1014DSW	16-Lead Plastic SO	0°C to 70°C
LT1014ISW#PBF	LT1014ISW#TRPBF	LT1014ISW	16-Lead Plastic SO	-40°C to 85°C
LT1014ACN#PBF	LT1014ACN#TRPBF	LT1014ACN	14-Lead PDIP	0°C to 70°C
LT1014CN#PBF	LT1014CN#TRPBF	LT1014CN	14-Lead PDIP	0°C to 70°C
LT1014DN#PBF	LT1014DN#TRPBF	LT1014DN	14-Lead PDIP	0°C to 70°C
LT1014IN#PBF	LT1014IN#TRPBF	LT1014IN	14-Lead PDIP	-40°C to 85°C
LT1013AMJ8#PBF	LT1013AMJ8#TRPBF	LT1013AMJ8	8-Lead CERDIP	-55°C to 125°C (OBSOLETE)
LT1013MJ8#PBF	LT1013MJ8#TRPBF	LT1013MJ8	8-Lead CERDIP	-55°C to 125°C (OBSOLETE)
LT1013ACJ8#PBF	LT1013ACJ8#TRPBF	LT1013ACJ8	8-Lead CERDIP	0°C to 70°C (OBSOLETE)
LT1013CJ8#PBF	LT1013CJ8#TRPBF	LT1013CJ8	8-Lead CERDIP	0°C to 70°C (OBSOLETE)
LT1013AMH#PBF	LT1013AMH#TRPBF	LT1013AMH	8-Lead TO-5 Metal Can	-55°C to 125°C (OBSOLETE)
LT1013MH#PBF	LT1013MH#TRPBF	LT1013MH	8-Lead TO-5 Metal Can	-55°C to 125°C (OBSOLETE)
LT1013ACH#PBF	LT1013ACH#TRPBF	LT1013ACH	8-Lead TO-5 Metal Can	0°C to 70°C (OBSOLETE)
LT1013CH#PBF	LT1013CH#TRPBF	LT1013CH	8-Lead TO-5 Metal Can	0°C to 70°C (OBSOLETE)
LT1014AMJ#PBF	LT1014AMJ#TRPBF	LT1014AMJ	14-Lead CERDIP	-55°C to 125°C (OBSOLETE)
LT1014MJ#PBF	LT1014MJ#TRPBF	LT1014MJ	14-Lead CERDIP	-55°C to 125°C (OBSOLETE)
LT1014ACJ#PBF	LT1014ACJ#TRPBF	LT1014ACJ	14-Lead CERDIP	0°C to 70°C (OBSOLETE)
LT1014CJ#PBF	LT1014CJ#TRPBF	LT1014CJ	14-Lead CERDIP	0°C to 70°C (OBSOLETE)

Consult LTC Marketing for parts specified with wider operating temperature ranges. Consult LTC Marketing for information on non-standard lead based finish parts.

For more information on lead free part marking, go to: http://www.linear.com/leadfree/For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$. $V_S = \pm 15V$, $V_{CM} = 0V$ unless otherwise noted.

				T1013AM/A T1014AM/A		LT1013C/D/I/M LT1014C/D/I/M			IINITO				
SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS				
V _{0S}	Input Offset Voltage	LT1013 LT1014 LT1013D/I, LT1014D/I		40 50	150 180		60 60 200	300 300 800	μV μV μV				
	Long-Term Input Offset Voltage Stability			0.4			0.5		μV/Mo.				
I _{SO}	Input Offset Current			0.15	0.8		0.2	1.5	nA				
I _B	Input Bias Current			12	20		15	30	nA				
e _n	Input Noise Voltage	0.1Hz to 10Hz		0.55			0.55		μV _{P-P}				
en	Input Noise Voltage Density	f ₀ = 10Hz f ₀ = 1000Hz		24 22			24 22		nV/√Hz nV/√Hz				
i _n	Input Noise Current Density	f ₀ = 10Hz		0.07			0.07		pA/√Hz				
	Input Resistance – Differential Common Mode	(Note 2)	100	400 5		70	300 4		$M\Omega$				
A _{VOL}	Large-Signal Voltage Gain	$V_0 = \pm 10V, R_L = 2k$ $V_0 = \pm 10V, R_L = 600\Omega$	1.5 0.8	8.0 2.5		1.2 0.5	7.0 2.0		V/μV V/μV				
	Input Voltage Range		13.5 -15.0	13.8 -15.3		13.5 -15.0	13.8 -15.3		V				
CMRR	Common Mode Rejection Ratio	V _{CM} = 13.5V, -15.0V	100	117		97	114		dB				
PSRR	Power Supply Rejection Ratio	$V_S = \pm 2V \text{ to } \pm 18V$	103	120		100	117		dB				
	Channel Separation	$V_0 = \pm 10V, R_L = 2k$	123	140		120	137		dB				
V _{OUT}	Output Voltage Swing	R _L = 2k	±13	±14		±12.5	±14		V				
	Slew Rate		0.2	0.4		0.2	0.4		V/µs				
Is	Supply Current	Per Amplifier		0.35	0.50		0.35	0.55	mA				

$T_A = 25^{\circ} \text{C. V}_{\text{S}}^{+} = 5 \text{V, V}_{\text{S}}^{-} = 0 \text{V, V}_{\text{OUT}} = 1.4 \text{V, V}_{\text{CM}} = 0 \text{V unless otherwise noted}$

				LT1013AM/ <i>F</i> LT1014AM/ <i>F</i>			T1013C/D/I/ T1014C/D/I/		
SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	LT1013 LT1014 LT1013D/I, LT1014D/I		60 70	250 280		90 90 250	450 450 950	μV μV μV
I _{0S}	Input Offset Current			0.2	1.3		0.3	2.0	nA
I _B	Input Bias Current			15	35		18	50	nA
A _{VOL}	Large-Signal Voltage Gain	$V_0 = 5$ mV to 4V, $R_L = 500\Omega$		1.0			1.0		V/µV
	Input Voltage Range		3.5	3.8 -0.3		3.5 0	3.8 -0.3		V
V _{OUT}	Output Voltage Swing	Output Low, No Load Output Low, 600Ω to Ground Output Low, I_{SINK} = 1mA Output High, No Load Output High, 600Ω to Ground	4.0 3.4	15 5 220 4.4 4.0	25 10 350	4.0 3.4	15 5 220 4.4 4.0	25 10 350	mV mV mV V
I _S	Supply Current	Per Amplifier		0.31	0.45		0.32	0.50	mA

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the temperature range $-55^{\circ}C \le T_{A} \le 125^{\circ}C$. $V_{S} = \pm 15V$, $V_{CM} = 0V$ unless otherwise noted.

				L	T1013A	VI	L	T1014A	M	LT1013M/LT1014M			
SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage		•		80	300		90	350		110	550	μV
		$\begin{split} &V_S = 5V, 0V; V_O = 1.4V \\ &-55^{\circ}C \leq T_A \leq 100^{\circ}C \\ &V_{CM} = 0.1V, T_A = 125^{\circ}C \\ &V_{CM} = 0V, T_A = 125^{\circ}C \end{split}$	•		80 120 250	450 450 900		90 150 300	480 480 960		100 200 400	750 750 1500	μV μV μV
	Input Offset Voltage Drift	(Note 3)	•		0.4	2.0		0.4	2.0		0.5	2.5	μV/°C
I _{OS}	Input Offset Current	V _S = 5V, 0V; V ₀ = 1.4V	•		0.3 0.6	2.5 6.0		0.3 0.7	2.8 7.0		0.4 0.9	5.0 10.0	nA nA
I _B	Input Bias Current	$V_S = 5V$, $0V$; $V_0 = 1.4V$	•		15 20	30 80		15 25	30 90		18 28	45 120	nA nA
A _{VOL}	Large-Signal Voltage Gain	$V_0 = \pm 10V, R_L = 2k$	•	0.5	2.0		0.4	2.0		0.25	2.0		V/µV
CMRR	Common Mode Rejection	V _{CM} = 13.0V, -14.9V	•	97	114		96	114		94	113		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 2V \text{ to } \pm 18V$	•	100	117		100	117		97	116		dB
V _{OUT}	Output Voltage Swing	$R_L = 2k$ $V_S = 5V$, 0V $R_L = 600\Omega$ to Ground	•	±12	±13.8	15	±12	±13.8	15	±11.5	±13.8	18	V mV
		Output Low Output High	•	3.2	3.8	10	3.2	3.8	10	3.1	3.8	10	V
Is	Supply Current Per Amplifier	V _S = 5V, 0V; V ₀ = 1.4V	•		0.38 0.34	0.60 0.55		0.38 0.34	0.60 0.55		0.38 0.34	0.7 0.65	mA mA

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the temperature range $-40^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq 85^{\circ}\text{C}$ for LT1013I, LT1014I, $0^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq 70^{\circ}\text{C}$ for LT1013C, LT1013D, LT1014C, LT1014D. $\text{V}_{\text{S}} = \pm 15\text{V}$, $\text{V}_{\text{CM}} = 0\text{V}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	T1013A TYP	C Max	MIN	T1014A Typ	C MAX		1013C/I 1014C/I TYP		UNITS
V _{0S}	Input Offset Voltage	LT1013D/I, LT1014D/I V _S = 5V, 0V; V ₀ = 1.4V LT1013D/I, LT1014D/I V _S = 5V, 0V; V ₀ = 1.4V	•		55 75	240 350		65 85	270 380		80 230 110 280	400 1000 570 1200	μV μV μV
	Average Input Offset Voltage Drift	(Note 3)	•		0.3	2.0		0.3	2.0		0.4 0.7	2.5 5.0	μV/°C μV/°C
I _{OS}	Input Offset Current		•		0.2 0.4	1.5 3.5		0.2 0.4	1.7 4.0		0.3 0.5	2.8 6.0	nA nA
I _B	Input Bias Current		•		13 18	25 55		13 20	25 60		16 24	38 90	nA nA
A _{VOL}	Large-Signal Voltage Gain	$V_0 = \pm 10V, R_L = 2k$	•	1.0	5.0		1.0	5.0		0.7	4.0		V/µV
CMRR	Common Mode Rejection Ratio	V _{CM} = 13.0V, -15.0V	•	98	116		98	116		94	113		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 2V$ to $\pm 18V$	•	101	119		101	119		97	116		dB
V _{OUT}	Output Voltage Swing	$\begin{array}{l} R_L = 2k \\ V_S = 5V, 0V; R_L = 600\Omega \\ Output Low \\ Output High \end{array}$	•	±12.5	±13.9 6 3.9	13	±12.5	±13.9 6 3.9	13	±12.0	±13.9 6 3.9	13	V mV V
Is	Supply Current per Amplifier	= a	•		0.36 0.32	0.55 0.50		0.36 0.32	0.55 0.50		0.37 0.34	0.60 0.55	mA mA

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Rating condition for extended periods may affect device reliability and lifetime.

Note 2: This parameter is guaranteed by design and is not tested. Typical parameters are defined as the 60% yield of parameter distributions of individual amplifiers; i.e., out of 100 LT1014s (or 100 LT1013s) typically 240 op amps (or 120) will be better than the indicated specification.

Note 3: This parameter is not 100% tested.

TYPICAL PERFORMANCE CHARACTERISTICS

Offset Voltage Drift with Temperature of Representative Units

Offset Voltage vs Balanced Source Resistance

Warm-Up Drift

Common Mode Rejection Ratio

Power Supply Rejection Ratio

0.1Hz to 10Hz Noise

Noise Spectrum

10Hz Voltage Noise Distribution

Supply Current vs Temperature

10134fd

TYPICAL PERFORMANCE CHARACTERISTICS

1013/14 TPC11

Large-Signal Transient

Output Saturation vs Sink

10134fd

TYPICAL PERFORMANCE CHARACTERISTICS

APPLICATIONS INFORMATION

Single Supply Operation

The LT1013/LT1014 are fully specified for single supply operation, i.e., when the negative supply is OV. Input common mode range includes ground; the output swings within a few millivolts of ground. Single supply operation, however, can create special difficulties, both at the input and at the output. The LT1013/LT1014 have specific circuitry which addresses these problems.

At the input, the driving signal can fall below 0V—inadvertently or on a transient basis. If the input is more than a few hundred millivolts below ground, two distinct problems can occur on previous single supply designs, such as the LM124, LM158, OP-20, OP-21, OP-220, OP-221, OP-420:

a) When the input is more than a diode drop below ground, unlimited current will flow from the substrate (V $^-$ terminal) to the input. This can destroy the unit. On the LT1013/LT1014, the 400 Ω resistors, in series with the input (see Schematic Diagram), protect the devices even when the input is 5V below ground.

APPLICATIONS INFORMATION

b) When the input is more than 400mV below ground (at 25°C), the input stage saturates (transistors Q3 and Q4) and phase reversal occurs at the output. This can cause lock-up in servo systems. Due to a unique phase reversal protection circuitry (Q21, Q22, Q27, Q28), the LT1013/LT1014's outputs do not reverse, as illustrated below, even when the inputs are at -1.5V.

There is one circumstance, however, under which the phase reversal protection circuitry does not function: when the other op amp on the LT1013, or one specific amplifier of the other three on the LT1014, is driven hard into negative saturation at the output.

Phase reversal protection does not work on amplifier:

A when D's output is in negative saturation. B's and C's outputs have no effect.

B when C's output is in negative saturation. A's and D's outputs have no effect.

C when B's output is in negative saturation. A's and D's outputs have no effect.

D when A's output is negative saturation. B's and C's outputs have no effect.

At the output, the aforementioned single supply designs either cannot swing to within 600mV of ground (OP-20) or cannot sink more than a few microamperes while swinging to ground (LM124, LM158). The LT1013/LT1014's all-NPN output stage maintains its low output resistance and high gain characteristics until the output is saturated.

In dual supply operations, the output stage is crossover distortion-free.

Comparator Applications

The single supply operation of the LT1013/LT1014 lends itself to its use as a precision comparator with TTL compatible output:

In systems using both op amps and comparators, the LT1013/LT1014 can perform multiple duties; for example, on the LT1014, two of the devices can be used as op amps and the other two as comparators.

Voltage Follower with Input Exceeding the Negative Common Mode Range

Comparator Rise Response Time 10mV, 5mV, 2mV Overdrives

Comparator Fall Response Time to 10mV, 5mV, 2mV Overdrives

10134fd

APPLICATIONS INFORMATION

Low Supply Operation

The minimum supply voltage for proper operation of the LT1013/LT1014 is 3.4V (three Ni-Cad batteries). Typical supply current at this voltage is 290µA, therefore power dissipation is only one milliwatt per amplifier.

Noise Testing

For applications information on noise testing and calculations, please see the LT1007 or LT1008 data sheet.

Test Circuit for Offset Voltage and Offset Drift with Temperature

TYPICAL APPLICATIONS

50MHz Thermal RMS-to-DC Converter

100k³ 5V 0.01 **≤**30k³ LT1014 10k 5V **≤**300Ω* LT1014 100k 10k 0.01 0.01 LT1014 INPUT 300mV-10V_{RMS} BRN BRN RED 20k FULL-0V TO 4V LT1014 T2B 10k* GRN 10k 2% ACCURACY, DC-50MHz. 100:1 CREST FACTOR CAPABILITY.

T1-T2 = YELLOW SPRINGS INST. CO. THERMISTOR COMPOSITE #44018.

5V Single Supply Dual Instrumentation Amplifier

1/2 LTC1043

1013/14 TA03

0.1% RESISTOR.

7.5mW DISSIPATION.

ENCLOSE T1 AND T2 IN STYROFOAM.

Hot-Wire Anemometer +15V 500pF TIE CA3046 PIN 13 Q5 TO -15V. DO NOT USE Q5 Q1-Q4 Q6 TIP120 OR CA3046 13 Q3 A EQUIVALENT -15V Q4 Q1 **€**220 1000pF 150k* Q2 0.01µF LT1014 **≨**10k* **≶**33k LT1014 27Ω 1W 0V TO 10V = **≶**12k 0 TO 1000 FEET/MINUTE 15V 10M RESPONSE 2M TIME A1 LT1014 FULL-SCALE **ADJUST** ZERO FLOW **₹**3.3k LT1004-1.2 #328 **≶**100k FLOW -15V -1**5**V REMOVE LAMP'S GLASS ENVELOPE FROM 328 LAMP. A1 SERVOS #328 LAMP TO CONSTANT TEMPERATURE. A2-A3 FURNISH LINEAR OUTPUT vs FLOW RATE. *1% RESISTOR. A3 LT1014 1013/14 TA05

Liquid Flowmeter

10M RESPONSE **≤**3.2k* 15V 1M* A2 LT1014 15Ω | DALE \$ TIME 6.98k* LT1014 HL-25 6.25k3 100k FLOW 6.25k** CALIB 1M* 4.7k 1N4148 100k 2N4391 300pF 0.1 OUTPUT OHz TO 300Hz = LT1004-1.2 0 TO 300ML/MIN 383k* 15V 100k A3 LT1014 Α4 LT1014

100k

3.2k**

-15V

FREQUENCY OUTPUT.

-15V

5V Powered Precision Instrumentation Amplifier

9V Battery Powered Strain Gauge Signal Conditioner

5V Powered Motor Speed Controller No Tachometer Required

5V Powered EEPROM Pulse Generator

/ LINEAR

Methane Concentration Detector with Linearized Output

Low Power 9V to 5V Converter

≈ 75% EFFICIENCY. SWITCHING PREREGULATOR CONTROLS DROP ACROSS FET TO 200mV.

1013/14 TA12

5V Powered 4mA to 20mA Current Loop Transmitter[†]

Fully Floating Modification to 4mA-20mA Current Loop[†]

10134fd

5V Powered, Linearized Platinum RTD Signal Conditioner

ALL RESISTORS ARE TRW-MAR-6 METAL FILM.

RATIO MATCH 2M-200K ± 0.01%.

TRIM SEQUENCE:

SET SENSOR TO 0° VALUE.

ADJUST ZERO FOR OV OUT.

SET SENSOR TO 100°C VALUE. ADJUST GAIN FOR 1.000V OUT.

SET SENSOR TO 400°C.

ADJUST LINEARITY FOR 4.000V OUT, REPEAT AS REQUIRED.

1013/14 TA15

Strain Gauge Bridge Signal Conditioner

LVDT Signal Conditioner

Triple Op Amp Instrumentation Amplifier with Bias Current Cancellation

TECHNOLOGY TECHNOLOGY

10134fd

18

Low Dropout Regulator for 6V Battery

Voltage Controlled Current Source with Ground Referred Input and Output

6V to ±15V Regulating Converter

Low Power, 5V Driven, Temperature Compensated Crystal Oscillator (TXCO)[†]

SCHEMATIC DIAGRAM

1/2 LT1013, 1/4 LT1014

PACKAGE DESCRIPTION

PACKAGE DESCRIPTION

N8 Package 8-Lead PDIP (Narrow .300 Inch)

(Reference LTC DWG # 05-08-1510)

NOTE:

1. DIMENSIONS ARE $\frac{\text{INCHES}}{\text{MILLIMETERS}}$

*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)

N Package 14-Lead PDIP (Narrow .300 Inch)

(Reference LTC DWG # 05-08-1510)

*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)

PACKAGE DESCRIPTION

S6 Package 6-Lead Plastic TSOT-23

(Reference LTC DWG # 05-08-1636)

SW Package XX-Lead Plastic Small Outline (Wide .300 Inch)

(Reference LTC DWG # 05-08-1620)

- 2. DRAWING NOT TO SCALE

 3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS. THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS

 4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)

REVISION HISTORY (Revision history begins at Rev D)

REV	DATE	DESCRIPTION	PAGE NUMBER
D	05/10	Updates to Typical Application "Hot-Wire Anemometer"	12
		Updated Related Parts	26

Step-Up Switching Regulator for 6V Battery

LT = AIE-VERNITRON 24-104 78% EFFICIENCY

013/14 TA23

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT2078/LT2079	Dual/Quad 50µA Single Supply Precision Amplifier	50μA Max I _S , 70μV Max V _{OS}
LT2178/LT2179	Dual/Quad 17μA Single Supply Precision Amplifier	17µA Max I _S , 70µV Max V _{OS}
LTC6081/LTC6082	Dual/Quad 400µA Precision Rail-to-Rail Amplifier	$V_S = 2.7V \text{ to 6V, } 400\mu\text{A Max } I_S, 70\mu\text{V } V_{OS} 0.8\mu\text{V/°C TCV}_{OS}$
LTC6078/LTC6079	Dual/Quad 72µA Precision Rail-to-Rail Amplifier	V_S = 2.7V to 6V, 72 μ A Max I_S , 25 μ V V_{OS} 0.7 μ V/°C TCV $_{OS}$