Magnet Precalculus CD Polar coordinates

Devin D. Droddy

Contents

Chapter 1	Introduction to Polar Coordinates	Page 2
C1 + 2		
Chapter 2	Polar function types	Page 3
0.1		
')	Circle	પ

Chapter 1

Introduction to Polar Coordinates

Normally, points and functions are represented rectangularly, with an x and a y coordinate. However, they can also be represented in polar form.

Definition 1.0.1: Polar Coordinates

A coordinate represented by a distance from the origin r and an angle from the positive x-axis θ . Polar coordinates are in the form (r, θ) .

In polar functions, the dependent variable is generally r. With polar, you can far more easily graph circles and other curves. For instance, take r=3:

Chapter 2

Polar function types

2.1 Circle

Circles in polar form are fairly simple. There are three kinds:

- \bullet r = n
- $r = n \sin(\theta)$
- $r = n \cos(\theta)$

In the case of r = n, the circle is centered on the pole (or the origin), and has a radius of |n|.

In the case of $r = n \cos(\theta)$, the circle is centered at (polar) $(\frac{n}{2}, 0)$ and has a radius of $\frac{n}{2}$. You can also think of it as being centered on the polar axis (or positive x-axis), tangent to the pole, and tangent to the polar point (n, 0).

Example 2.1.2 $(r = n \cos(\theta) \text{ circle})$

The function $r=n\sin(\theta)$ is the same as $r=n\cos(\theta)$, but instead of being centered on the polar axis, it is centered on the polar line $\theta=\frac{\pi}{2}$ (or the y-axis).

