МІНІСТЕРСТВО ОСВІТИ ТА НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КПІ»

Кафедра інформаційних систем та технологій

Звіт

з лабораторної роботи № 2

«Розв'язання систем лінійних алгебраїчних рівнянь (СЛАР) прямими методами.

Звичайний метод Гауса та метод квадратних коренів»

з дисципліни

«Спеціальні розділи математики-2. Чисельні методи»

Варіант № 23

Перевірила:

доц. Рибачук Людмила Віталіївна

Виконала: Павлова Софія

Студентка гр. ІС-12, ФІОТ

1 курс,

залікова книжка № ІС-1224

ВСТУП

Тема: Розв'язання систем лінійних алгебраїчних рівнянь (СЛАР) прямими методами. Звичайний метод Гауса та метод квадратних коренів.

Мета: Розв'язати за допомогою Mathcad СЛАР, перевірити розрахунки програмно та розрахувати середньоквадратичну похибку.

Обладнання: Персональні комп'ютери.

ХІД РОБОТИ

Завдання 1:

Розв'язати систему рівнянь з кількістю значущих цифр n=6 згідно з варіантом 23 індивідуального завдання.

Вивести всі проміжні результати (*матриці* A, що отримані в ході прямого ходу методу Гауса, матрицю зворотного ходу методу Гауса, або *матрицю* T та *вектор* y для методу квадратних коренів), та розв'язок системи.

Навести результат перевірки: вектор нев'язки r = b - Ax, де x – отриманий розв'язок.

Розв'язати задану систему рівнянь за допомогою програмного забезпечення Mathcad.

Навести результат перевірки: вектор нев'язки r = b - Axm, де xm — отриманий у Mathcad розв'язок.

Порівняти корені рівнянь, отримані у Mathcad, із власними результатами за допомогою методу середньоквадратичної похибки

$$\delta = \sqrt{\frac{1}{n} \sum_{k=1}^{n} (x_k - x_{mk})^2},$$

<u>Варіант 23:</u>

$(5,18+\alpha)$	1,12	0,95	1,32	0,83	$(6,19+\beta)$
1,12	$4,28 - \alpha$	2,12	0,57	0,91	3,21
0,95	2,12	$6,13 + \alpha$	1,29	1,57	$ 4,28-\beta $
1,32	0,57	1,29	$4,57 - \alpha$	1,25	6,25
0,83	0,91	1,57	1,25	$5,21+\alpha$	$(4,95+\beta)$
$\alpha = 0.25$	$k,k= \mathcal{N}_{2}$	евар — 25	$\beta = 0.35k, \ k = Negap - 21$		

Скрін з Mathcad:

Лабораторна робота №2

Варіант №23

Виконала: Павлова Софія, ІС-12

1. Позначимо матрицю системи А:

$$k = 2$$

$$a = 0.25 \cdot k$$
 $a = 0.5$

$$A \coloneqq \begin{bmatrix} 5.18 + a & 1.12 & 0.95 & 1.32 & 0.83 \\ 1.12 & 4.28 - a & 2.12 & 0.57 & 0.91 \\ 0.95 & 2.12 & 6.13 + a & 1.29 & 1.57 \\ 1.32 & 0.57 & 1.29 & 4.57 - a & 1.25 \\ 0.83 & 0.91 & 1.57 & 1.25 & 5.21 + a \end{bmatrix}$$

$$A = \begin{bmatrix} 5.68 & 1.12 & 0.95 & 1.32 & 0.83 \\ 1.12 & 3.78 & 2.12 & 0.57 & 0.91 \\ 0.95 & 2.12 & 6.63 & 1.29 & 1.57 \\ 1.32 & 0.57 & 1.29 & 4.07 & 1.25 \\ 0.83 & 0.91 & 1.57 & 1.25 & 5.71 \end{bmatrix}$$

2. Позначимо вектор правої частини В:

$$b = 0.35 \cdot k$$
 $b = 0.7$

$$B \coloneqq \begin{bmatrix} 6.19+b \\ 3.21 \\ 4.28-b \\ 6.25 \\ 4.95+b \end{bmatrix} \qquad B = \begin{bmatrix} 6.89 \\ 3.21 \\ 3.58 \\ 6.25 \\ 5.65 \end{bmatrix}$$

3. Знайдемо розв'язок СЛАР за допомогою вбудованої функції Isolve(M, v):

, де М - матриця дійсних чисел

$$\mathbf{X} \coloneqq \text{lsolve}(A, B) = \begin{bmatrix} 0.824 \\ 0.317 \\ -0.025 \\ 1.049 \\ 0.596 \end{bmatrix} \qquad \mathbf{X} = \begin{bmatrix} 0.823737 \\ 0.31733 \\ -0.024814 \\ 1.048714 \\ 0.596426 \end{bmatrix}$$

4. Перевіримо правильність розрахунків. Підставивши початкові значення матриць у рівняння A*X=B, маємо одержати правильну рівність:

$$A \cdot \mathbf{X} = \begin{bmatrix} 6.89 \\ 3.21 \\ 3.58 \\ 6.25 \\ 5.65 \end{bmatrix} \qquad B = \begin{bmatrix} 6.89 \\ 3.21 \\ 3.58 \\ 6.25 \\ 5.65 \end{bmatrix}$$

5. Створімо вектор нев'язки R=B-A*X: $R \coloneqq B-A \cdot X$ $\begin{bmatrix} 0 \\ 8.881784 \cdot 10^{-16} \\ 4.440892 \cdot 10^{-16} \\ 8.881784 \cdot 10^{-16} \\ 8.881784 \cdot 10^{-16} \end{bmatrix}$ $8.881784 \cdot 10^{-16}$

Рис. 1. Результат виконання завдання 1 у Mathcad

Код:

У даній лабораторній роботі програмно реалізовано метод Гауса, в основі якого лежить ідея послідовного виключення невідомих, що приводить вихідну систему до трикутного виду, у якому всі коефіцієнти нижче головної діагоналі дорівнюють нулю. У результаті виконання програми отримано верхню трикутну матрицю вигляду:

```
C = \begin{pmatrix} 1 & c_{12} & \dots & c_{1,m-1} & c_{1m} \\ 0 & 1 & \dots & c_{2,m-1} & c_{2m} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & c_{m-1,m} \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix}
```

}

```
#define CRT_SECURE_NO_WARNINGS
#include <stdio.h>
#include <stdlib.h>
#include <windows.h>
#include <math.h>
#include <iostream>
using namespace std;
#define ICHAR 80 // Довжина рядку опису системи
#define IDEBUG 1 // Чи друкувати кроки зведення матриці до трикутного вигляду
int matrix_print_off(int nr, int nc, double** A) {
      int i, j;
     if (nr \le 0) return (-1);
      if (nc \le 0) return (-2);
     for (i = 1; i \le nr; i++)
            for (j = 1; j \le nc; j++)
                 printf("%9.2f", A[i][j]);
```

```
printf("\n");
      return (0);
}
int vector_print_off(int nr, double* x) {
      int i;
      if (nr \le 0) return (-1);
      for (i = 1; i \le nr; i++)
             cout << "<< x[i] << "\n";
      }
      printf("\n");
      return (0);
}
double* matrix_on_vector_mult(int nr, int nc, double** A, double* x) {
      if (nr <= 0) return NULL;
      if (nc <= 0) return NULL;
      double* b = (double*)calloc(nr, sizeof(double)); b--;
      for (int i = 1; i \le nr; i++) {
             b[i] = 0;
             for (int j = 1; j \le nc; j++) b[i] += A[i][j] * x[j];
      return b;
}
void gauss(double** a, double* b, double* x, int n) {
      int i, j, k, m, rowx;
      double xfac, temp, temp1, amax;
      rowx = 0;
      for (k = 1; k \le n - 1; ++k) {
             amax = (double)fabs(a[k][k]);
             m = k;
             for (i = k + 1; i \le n; i++)
                   xfac = (double)fabs(a[i][k]);
                   if (xfac > amax) \{ amax = xfac; m = i; \}
             if (m != k) {
                   rowx = rowx + 1;
                   temp1 = b[k];
                   b[k] = b[m];
                   b[m] = temp1;
                   for (j = k; j \le n; j++) {
                          temp = a[k][j];
```

```
a[k][j] = a[m][j];
                          a[m][j] = temp;
                    }
             for (i = k + 1; i \le n; ++i) {
                   xfac = a[i][k] / a[k][k];
                   for (j = k + 1; j \le n; ++j) {
                          a[i][j] = a[i][j] - xfac * a[k][j];
                   b[i] = b[i] - xfac * b[k];
             }
             if (IDEBUG == 1) {
                   printf("Kpoκ % d:\n\n", k);
                   matrix_print_off(n, n, a);
                   cout << "\n";
             }
      }
      for (j = 1; j \le n; ++j) {
             k = n - j + 1;
             x[k] = b[k];
             for (i = k + 1; i \le n; ++i) {
                   x[k] = x[k] - a[k][i] * x[i];
             x[k] = x[k] / a[k][k];
      }
}
int main(void) {
      SetConsoleCP(1251);
      SetConsoleOutputCP(1251);
      double ** a, ** a0, * b, * b0, * x, * xm, * r;
      float aij, bi, xmi;
      char desc[ICHAR];
      int i, j, n;
      FILE* finput;
      finput = fopen("Gaus.TXT", "r");
      if (finput == NULL) {
             printf("Текстовий файл \"Gaus.TXT\" НЕ знайдено!\n");
             return(-1);
      }
      fgets(desc, ICHAR, finput);
```

```
// Відсканувати перший рядок файлу до 80 знаків
      fscanf(finput, "%d", &n);
     printf("Розмір матриці (N*N) = %d\n\n", n);
     // Виділення пам'яті для матриць (двомірні масиви)
     a = (double**)calloc(n, sizeof(double*)); --a;
                                                             // а-- для нумерування
елементів масивів з одиниці
     a0 = (double**)calloc(n, sizeof(double*)); --a0; // Копія матриці для перевірки
розв'язку
      for (i = 1; i \le n; ++i)
            a[i] = (double*)calloc(n, sizeof(double)); --a[i];
            a0[i] = (double*)calloc(n, sizeof(double)); --a0[i];
      }
     // Виділення пам'яті для векторів (одномірні масиви)
      b = (double*)calloc(n, sizeof(double)); --b;
     b0 = (double*)calloc(n, sizeof(double)); --b0;
                                                            // Копія вектора для
перевірки розв'язку
     x = (double*)calloc(n, sizeof(double)); --x;
      xm = (double*)calloc(n, sizeof(double)); --xm;
     r = (double*)calloc(n, sizeof(double)); --r;
     // Зчитування матриці А
     for (i = 1; i \le n; i++)
            for (j = 1; j \le n; j++)
                  fscanf(finput, "%f", &aij);
                  a[i][j] = (double)aij;
                  a0[i][j] = (double)aij;
            }
     // Зчитування вектора В
      for (i = 1; i \le n; i++)
            fscanf(finput, "%f", &bi);
            b[i] = (double)bi;
            b0[i] = (double)bi;
     // Зчитування вектора XM - розв'язку з mathcad
      for (i = 1; i \le n; i++)
            fscanf(finput, "%f", &xmi);
            xm[i] = (double)xmi;
      }
     fclose(finput);
     printf("------------------\n");
```

```
printf("\nMATPИЦЯ A:\n\n");
     matrix_print_off(n, n, a);
     printf("\nBEKTOP B:\n\n");
     vector_print_off(n, b);
     cout << "-----\n\n";
     gauss(a, b, x, n);
     printf("\n-----\n\nBEKTOP X:\n\n");
     vector_print_off(n, x);
     if (IDEBUG == 1) 
          // Створення матричного добутку А*Х
          double* a0x = matrix_on_vector_mult(n, n, a0, x);
          printf("-----\n\nBEKTOP-
ДОБУТОК A*X:\n\n");
          vector_print_off(n, a0x);
          // Створення вектору нев'язки R
          cout << "\nBEKTOP HEB'ЯЗКИ R=B-A*X:\n\n";
          for (int i = 0; i < n; i++) {
               for (int i = 0; i < n; i++) {
                    r[i] = b0[i] - a0x[i];
               }
          vector_print_off(n, r);
          // Розрахунок середньоквадратичної похибки
          double err = 0;
          for (i = 1; i \le n; i++) {
               err += pow(x[i] - xm[i], 2);
          err = sqrt(err / n);
          cout << "\n-----СЕРЕДНЬОКВАДРАТИЧНА ПОХИБКА-----

\ln Q = " \ll err \ll "\ln ";

     getchar();
     return(0);
}
```

Скріншоти виконання програми:

Microsoft Visual Studio Debug Console

ual Studio Debug	Console		
ui (N*N) =	5		
В	кідні дані		
1.12	0.95	1.32	0.83
		0.57	0.91
			1.57
			1.25
0.91	1.5/	1.25	5.71
	хід		
B 1972	0.1673	0 2324	0.1461
			0.6664
			1.5065
			0.8008
0.8992	1.7243	1.2736	6.7334
0.1972	0.1673	0.2324	0.1461
1.0000	0.5430	0.0870	0.2097
0.0000	2.8052	0.4662	0.5308
0.0000	2.9092	12.0635	3.2034
0.0000	1.3746	1.3294	7.2785
8 1972	0 1673	0 2324	0.1461
			0.2097
			1.1011
			-0.9119
0.0000	0.0000	-3.1795	4.1939
0.1972	0.1673	0.2324	0.1461
1.0000		0.0870	0.2097
	1.0000		1.1011
			0.2291
0.0000	0.0000	0.0000	-1.5481
0.1972	0.1673	0.2324	0.1461
1.0000	0.5430	0.0870	0.2097
			4 4044
0.0000	1.0000	4.1466	1.1011
0.0000 -0.0000 -0.0000	1.0000 -0.0000 -0.0000	4.1466 1.0000 -0.0000	0.2291 1.0000
	0.1972 3.778 2.12 9.57 9.91 0.1972 3.1778 2.0344 0.2346 0.8992 0.1972 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	ПЦІ (N*N) = 5	1.12

```
------РОЗВ'ЯЗОК-----
BEKTOP X:
   0.823737
   0.31733
   -0.0248144
   1.04871
   0.596426
     ------
ВЕКТОР-ДОБУТОК А*Х:
   6.89
3.21
3.58
   6.25
   5.65
ВЕКТОР НЕВ'ЯЗКИ R=B-A*X:
   0
   4.44089e-16
   0
   0
   ------СЕРЕДНЬОКВАДРАТИЧНА ПОХИБКА-----
 = 0.000308393
```

Рис. 2. Результат виконання завдання 1 програмно

ВИСНОВОК

У ході виконання лабораторної роботи я дізналася про алгоритми розв'язання СЛАР, а саме метод квадратного кореня та різні варіації методу Гауса (з вибором головного елементу, метод прогону). Дізналася про інструменти роботи з матрицями у програмі Mathcad. Я навчилась програмно реалізовувати метод Гауса, у результаті якого було отримано верхню трикутну матрицю та розв'язки системи рівнянь і навчилась використовувати вищезазначений метод у середовищі Mathcad для розв'язання представлених СЛАР.

У результаті виконання програми за допомогою середньоквадратичної похибки було порівняно результати виконання методу Гауса в Mathcad та програмно. Отримана похибка ϵ допустимою, а отже всі розрахунки було зробрено правильно.