Weißlichtspektren

Weißlichspektren herunterladen

```
#
# CHARACTERISING THE WITEC DETECTOR
#
# How does the detector response changes when changing the orientation of the lasers plane
of polarisation?

#
# Get some libraries and functions used for characterising the detector and plotting stuff
#
source("../bauteilCharakterisierung/charakterisierungDetektor_utilities.R")

# Fetch experimental data from elabFTW
# First try
detector.spectral <- GET.elabftw.bycaption(76, header=T, outputHTTP=T) %>% parseTimeSerie
s.elab(., header=F, sep="")
# Second try
detector.spectra2 <- GET.elabftw.bycaption(81, header=T, outputHTTP=T) %>% parseTimeSerie
s.elab(., header=F, sep="")
```

- Berechnen des gemittelten Spektrums
- Berechnen von absoluter und relativer Differenz zwischen Spektren und ihrem Mittel

```
# Select one data set for evaluation
detector.spectra <- detector.spectra2
# PREPROCESS SPECTRA
# Vector normalisation and wavenumber conversion and mean calculation
# Wavelength of the WiTecs laser
laser.wavelength <- 514.624
detector.spectra <- lapply(detector.spectra, function(spec) {</pre>
  # Which columns contain the measured white lamp spectra?
  data.selector <- which(colnames(spec) %in% c("wavenumber", "wavelength", "mean") == F)</pre>
  # Convert raman shift in wavenumbers into absolute wavelength
  spec$wavelength <- 1/( 1/laser.wavelength - spec$wavenumber*1e-7 )</pre>
  # Vector normalisation of the spectra
  # spec[, data.selector] <- apply(spec[, data.selector], 2, function(spec) { spec / sum(s</pre>
pec^2) })
  # Compute mean spectrum and add it to the data.frame
  spec$mean <- rowMeans(spec[, data.selector])</pre>
  # Reorder data.frame
  spec <- spec[,c( which(colnames(spec) == "wavenumber"),</pre>
                   which(colnames(spec) == "wavelength"),
                   which(colnames(spec) == "mean"),
                    data.selector )]
  # Return
  return(spec)
})
# HOW DOES THE INFLUENCE OF THE POLARISATION CHANGE WITH THE WAVENUMBER?
detector.absDifference <- lapply(detector.spectra, function(spectra) {</pre>
  # Copy white lamp spectrum
  diffSpectra <- spectra</pre>
  # Compute the absolute difference between white lamp spectra and their mean spectrum
  diffSpectra[, -(1:3)] <- apply(diffSpectra[, -(1:3)], 2, function(spec) {spec - diffSpec
tra$mean})
  # Return result
  return(diffSpectra)
detector.relDifference <- lapply(detector.spectra, function(spectra) {</pre>
  # Copy white lamp spectrum
  diffSpectra <- spectra
  # Compute the relative difference between white lamp spectra and their mean spectrum
  diffSpectra[, -(1:3)] <- apply(diffSpectra[, -(1:3)], 2, function(spec) {(spec/diffSpect</pre>
ra$mean)-1})
  # Return result
  return(diffSpectra)
})
```

- Alle gemessenen Spektren übereinander legen
- Das Spektrum der Kalibrationslampe plotten

```
#
# PLOT
#

# Get the ideal white lamp spectrum
detector.whitelamp <- read.table(file = "../Weisslichtspektrum_Julian.txt", header = T)
# Plot ideal white lamp spectrum
detector.range <- detector.spectra[[1]]$wavelength[c(1, nrow(detector.spectra[[1]]))]
plot(detector.whitelamp, type = "l",
    main = "Spektrum Kalibrationslampe",
    xlab = expression(bold("wavelength / nm")),
    ylab = expression(bold("intensity")))
abline(v = detector.range)
text( mean(detector.range),
    y = mean(detector.whitelamp$Intensity), expression("Messbereich \n WiTec") )</pre>
```

Spektrum Kalibrationslampe

Detector Response for polarised white light (with microscope)

Detector Response for polarised white light (without microscope the color gradient encodes the absolute deviation D of the linear polarisers position from the detectors most sensitive axis

• Alle gemessenen Spektren als 3D-Plot

Plot the WHITE LAMP SPECTRA in one 3d plot as 3D SURFACE
plot.detector.allSpectra(detector.spectra[[1]][,-c(2:3,21:24)], theta=240)

The White Lamp Raman Spectra For Different Polarised Light

plot.detector.allSpectra(detector.spectra[[2]][,-c(2:3,21:24)], theta=240)

The White Lamp Raman Spectra For Different Polarised Light

- Auftragen der Differenzspektren
- Von den Spektren, die mit dem Mikroskop gemessen wurden, werden die Spektren mit dem größten Unterschied gezeigt

Absolute Difference (with detector)

Absolute Difference (with detector)

the color gradient encodes the absolute deviation D of the linear polarisers position from the detectors most sensitive axis

Absolute Difference (without detector)

Relative Difference (with detector)

Relative Difference (with detector)

the color gradient encodes the absolute deviation D of the linear polarisers position from the detectors most sensitive axis

Relative Difference (without detector)

