EECS 376: Foundations of Computer Science

Lecture 19 - Approximation Algorithms

What it means for an algorithm to be an α approximation

Minimization Problems: OPT \leq ALG $\leq \alpha$ • OPT, $\alpha \geq 1$ (smaller α is better)

Maximization Problems: OPT ≥ ALG ≥ α • OPT, $\alpha \le 1$ (larger α is better)

ALG = value returned by our algorithm

OPT = Optimal value

α is the approximation ratio

Two ingredients in approximation analysis

Minimization Problems:

- Upper bound on ALG
- Lower bound on OPT

Maximization Problems:

- Lower bound on ALG
- Upper bound on OPT

Next: an approximation algorithm for the problem of Maximum Cut...

Max Cut

Graph Cuts

defo

* A cut of a graph is a partition of its vertices (S, S)

* An edge **crosses** the cut (S, \overline{S}) if one of its endpoints is in S and the other is in \overline{S} .

* The **size** of a cut (S, \overline{S}) is the number of edges crossing it.

Maximum Cut Problem

Max-Cut Problem: Given a graph, find a cut of maximum size.

o decision version is NP-complete (we won't prove)

Has applications in network/circuit design, physics, and more...

Approximate Maximum Cut

We will show a poly-time 1/2-approximation

(i.e. the cut returned by our algorithm is at least ½ the size of a max cut)

Technique: Local Search

Idea:

- Start with an arbitrary cut.
- Pick a vertex *v*
- Switch the side of v if it increase the cut size (this is a local search).

Quiz:

When switching the side of v will increase the cut size?

Ans:

#neighbors of v on the same side > #neighbors of v on the other side

- Start with an arbitrary cut.
- While there is a vertex v such that
 #neighbors of v on the same side > #neighbors of v on the other side
 - Switch the side of *v*
- Return the cut.

Analysis: Running Time

Why does the algorithm terminate?

B为 vertex有限

Why is it polynomial time?

Analysis: Approximation Ratio

ALG: #edges in our cut

OPT: #edges in an optimal cut

Want to show, $ALG \ge m/2$.

Lower bound on ALG

OPT ≤ m.

Upper bound on OPT

⇒ ALG ≥ ½ • OPT

Analysis: Approximation Ratio

ALG: #edges in our cut

OPT: #edges in an optimal cut

Want to show, $ALG \ge m/2$.

Lower bound on ALG

OPT ≤ m.

Upper bound on OPT

⇒ ALG ≥ ½ • OPT

- OPT ≤ m is clear.
- Why **ALG** ≥ m/2?

ALG =
$$\frac{1}{2}\Sigma_v(\#v'\text{s incident cut edges}) = \frac{1}{2}\Sigma_v\frac{\deg(v)}{2} \ge \frac{m}{2}$$

Knapsack

Knapsack Problem

Given a backpack with weight capacity W, and a set of n items each with an integer value $v_i \le V$ and weight $w_i \le W$, what is the largest total value of a set of items that fit in the backpack (i.e. total weight of set $\le W$)?

On the HW: Knapsack is NP-hard

Approximate Knapsack

We will show a poly-time ½-approximation

i.e. the total value of the items chosen by our algorithm is at least ½ the optimal value.

Look at my algorithm! I'm relatively sure it works!

Relatively-Greedy Algorithm:

- Consider items in decreasing order by relative value (breaking ties arbitrarily) i.e. the ratio value/weight
- Greedily select item if it fits in remaining capacity.

This is similar to the algorithm that solves the *fractional* knapsack problem

Your task: How bad is the approximation ratio of the Relatively-Greedy algorithm?

Construct an example to support your claim.

(An example consists of: weight of backpack, and weight/value of each item)

Just take the one single item of largest value. Done!

Single-Greedy Algorithm: Take the one single item of largest value that fits in the backpack. (Don't take any more items.)

Example to show approximation ratio is bad:

Combined-Greedy Algorithm:

- Run Relatively-Greedy and Single-Greedy
- Take the best of the two solutions

One can show: Combined-Greedy is a ½-approximation!

Example of combined algorithms in practice: The Netflix Challenge (2009) "[The winning team] simply ran hundreds of algorithms from their 30-plus members and combined their results into a single set, using a variation of weighted averaging that favored the more accurate algorithms."

Metric Traveling Salesman Problem

Approximate Metric-TSP

Input:

a complete graph with n vertices.

Edge weights form a metric, i.e., they obey the triangle inequality:

for any $x, y, z \operatorname{dist}(x, z) \leq \operatorname{dist}(x, y) + \operatorname{dist}(y, z)$

Output:

What is the minimum length cycle visiting each vertex once?

The decision version of Metric-TSP is NP-complete.

We will show a poly-time 2-approximation.

(returns a tour of length at most 2 times the optimal tour)

Step 1: Find an **MST** (in polynomial time)

Step 2: Walk around the perimeter of the MST to form "tree-tour"

tree-tour is not a legitimate TSP tour!

tree-tour = $2 \cdot MST$

Step 1: Find an MST (in polynomial time)

Step 2: Walk around the perimeter of the MST to form "tree-tour"

tree-tour is not a legitimate TSP tour!

If you wanted to code it:

Find-Tour(u)

Let
$$v_1, ..., v_k$$
 be u's children

For $i = 1, ..., k$
 $T = T + (u, v_i)$

Find-Tour(v_i)

 $T = T + (v_i, u)$

tree-tour = 2·MST

Step 1: Find an **MST** (in polynomial time)

Step 2: Walk around the perimeter of the MST to form "tree-tour"

tree-tour is not a legitimate TSP tour!

Step 3: "Shortcut" tree-tour

Repeatedly visit the next unvisited vertex in tree-tour

Why shortcut tree-tour \leq tree-tour?

Triangle inequality!

Analysis

We have shown

ALG ≤ tree-tour = 2· MST

To get 2-approximation, ALG ≤ 2 · OPT, we will show

 $OPT \ge MS1$

Why is this?

• An optimal cycle has weight at least that of some spanning tree

Can we do better than a 2-approximation?

Yes!

- * [Christofides 1976] 1.5-approximation
- * [Karlin-Klein-Oveis Gharan 2021] (1.5 10⁻³⁶)-approximation.
- * [Karpinski-Lampis-Schmied 2013] No 1.008-approximation unless P = NP.

https://en.wikipedia.org/wiki/Christofides_algorithm

https://dl.acm.org/doi/10.1145/3406325.3451009

Wrap Up

Ways to deal with NP-Hardness

- 1. Approximation algorithms
- 2. Restrict to special classes of inputs
 - o randomly-generated inputs, planar graphs, ...
 - Fixed-parameterized algorithms
- **3. Heuristics:** algorithms without provable guarantees that seem to work well in practice
 - o SAT solvers sometimes do well in practice
- 4. If your **input is small**, sometimes you can afford to run an exponential-time algorithm

Goodbye Complexity...

