Week 2

July 17, 2014

plotter script

- ▶ 324 sloc
- reads RotationShield and FieldMapping VI input
- uses new normalization method
 - average of data points near (0,0,0) vs. polynomial fit
 - calculates desired normalization level average B_x of measured maps
- handles custom field slices
- ▶ to-do: field gradients, interpolation, smooth plots

10 cm offset between map & simulation

Field slice in [m]: x = -0.1, y = 0, z = None

10 cm offset between map & simulation

varied metglas thickness from 5 cm to 1 mm (closest to actual)

- varied metglas thickness from 5 cm to 1 mm (closest to actual)
- extended metglas slightly (2 cm) above B₀ coil

- varied metglas thickness from 5 cm to 1 mm (closest to actual)
- \triangleright extended metglas slightly (2 cm) above B_0 coil
- extended metglas far (10 cm) above B_0 coil to highlight effects

varying thickness: small change in B magnitude, no shift

Field slice in [m]: x = -0.1, y = 0, z = None

varying thickness: small change in B magnitude, no shift

2 cm longer on top: small magnitude change

Field slice in [m]: x = -0.1, y = 0, z = None

2 cm longer on top: small magnitude change

10 cm longer on top: confirms magnitude change

Field slice in [m]: x = -0.1, y = 0, z = None

10 cm longer on top: confirms magnitude change

metglas shearing - hard to model

- metglas shearing hard to model
 - RotationShield handles arbitrary fields (e.g. you can put a line current anywhere)

- metglas shearing hard to model
 - RotationShield handles arbitrary fields (e.g. you can put a line current anywhere)
 - but before applying the field it builds an interaction matrix requires azimuthal symmetry

- metglas shearing hard to model
 - RotationShield handles arbitrary fields (e.g. you can put a line current anywhere)
 - but before applying the field it builds an interaction matrix requires azimuthal symmetry
 - would probably affect azimuthal symmetry in measured map

azimuthal symmetry: 0°

Field slice in [m]: x = 0.1, y = 0, z = None

azimuthal symmetry: 180°

Field slice in [m]: x = -0.1, y = 0, z = None

azimuthal symmetry: 0° , B_z axis flipped

Field slice in [m]: x = 0.1, y = 0, z = None

azimuthal symmetry: 180°

Field slice in [m]: x = -0.1, y = 0, z = None

- metglas shearing hard to model
 - RotationShield handles arbitrary fields (e.g. you can put a line current anywhere)
 - but before applying the field it builds an interaction matrix requires azimuthal symmetry
 - would probably affect azimuthal symmetry in measured map

- metglas shearing hard to model
 - RotationShield handles arbitrary fields (e.g. you can put a line current anywhere)
 - but before applying the field it builds an interaction matrix requires azimuthal symmetry
 - would probably affect azimuthal symmetry in measured map
 - either the shear doesn't cause a peak shift

- metglas shearing hard to model
 - RotationShield handles arbitrary fields (e.g. you can put a line current anywhere)
 - but before applying the field it builds an interaction matrix requires azimuthal symmetry
 - would probably affect azimuthal symmetry in measured map
 - either the shear doesn't cause a peak shift
 - or it's aligned exactly along the y-axis

- metglas shearing hard to model
 - RotationShield handles arbitrary fields (e.g. you can put a line current anywhere)
 - but before applying the field it builds an interaction matrix requires azimuthal symmetry
 - would probably affect azimuthal symmetry in measured map
 - either the shear doesn't cause a peak shift
 - or it's aligned exactly along the y-axis
- rigorously check centering, dimensions of experimental setup