

AGH University of Science and Technology

Laboratory report 7

Author: Pedro Alexandre Simões dos Reis

Subject: Introduction to CUDA and OpenCLYear:

2019/2020

Contents

1 Comparison between OpenCL and CUDA

1.1 Introduction

In this section will be discussed the performance of OpenCL compared with the performance of CUDA. To do this comparison it will be used an implementation of the Vector Addition problem, using OpenCL with both C and C++ as base programming languages and CUDA for compare the total execution time of the program as a whole and the execution time in the device.

1.2 Comparison between OpenCL and CUDA based on Kernel Execution Times

After running the implementation of the Vector Addition in C and C++ using OpenCL library and in CUDA, it was measured the execution time of the Kernels in each implementation.

Number of			
Elements	С	C++	CUDA
1048576	0,000326	0	0,01043
2097152	0,000636	0	0,01991
4194304	0,000939	0,001	0,034986
8388608	0,001716	0,002	0,063762
16777216	0,003099	0,003	0,119059
33554432	0,005831	0,005	0,213755
67108864	0,01367	0,011	0,405865
134217728	0,021723	0,021	0,759524
268435456			5,401798
536870912			12,11599

Table 1. Kernel Execution Times of OpenCL in C and C++ and CUDA

Graphic 1. Kernel Execution Times of OpenCL in C and C++ and CUDA

As it can be observed in both Table 1 and Graph 1, the Kernel execution times using OpenCL are smaller than the ones observed with CUDA. It is also possible to observe that when the number of elements in the vector increases the kernel execution time of the CUDA code increases linearly in a faster pace than the others.

1.3 Comparison between OpenCL and CUDA based on Total Execution Times

It was ran the code ran in the previous subsection but this time it was measured the total execution time.

Number			
of	С	C++	CUDA
Elements			
1048576	1,058	1,087	0,973
2097152	1,066	1,232	1,013
4194304	1,223	1,525	1,084
8388608	1,432	2,019	1,217
16777216	1,766	2,768	1,625
33554432	2,561	4,345	2,094
67108864	3,919	7,52	3,476
1,34E+08	6,958	13,285	5,605
2,68E+08	Out of	Out of	13,434
	memmory	memmory	13,434
5,37E+08	Out of	Out of	26,747
	memmory	memmory	20,747

Table 2. Total Execution times of OpenCL in C and C++ and CUDA

Graphic 2. Total execution times of OpenCL in C and C++ and CUDA

As it can be observed in both Table 2 and Graph 2, the total execution time of CUDA is lower than the others, even though the execution time of the C code with OpenCL is very close. This difference of the execution is more notorious when the number of elements in the vector increases.

1.4 Comparison between OpenCL and CUDA based on Kernel Execution Times with multiple Kernel Calls

In this case it was implemented some code in C and C++ using the OpenCL library and in CUDA to sum multiple vectors as indicated bellow:

$$\vec{c} = \vec{a} + \vec{b}$$
$$\vec{d} = \vec{c} + \vec{e}$$

$$\vec{f} = \vec{d} + \vec{g}$$

Table 3. Total multi-kernel Execution times of OpenCL in C and C++ and CUDA

Number of	C++	CUDA	
Elements			
1048576	0,005	0,022852	
2097152	0,005	0,042504	
4194304	0,007	0,08103	
8388608	0,007	0,147924	
16777216	0,008	0,231025	
33554432	0,016	0,473548	
67108864	0,032	0,881832	
1,34E+08	Out of	1,889098	
1,341108	memory		
2,68E+08	Out of	17,60611	
2,000100	memmory		
5,37E+08	Out of	36,86254	
3,371108	memmory		

Graphic 3. Total multi-kernel Execution times of OpenCL in C and C++ and CUDA

As observed in Table 3 and Graphic 3, the kernel execution time in CUDA is higher then the C++ equivalent, as expected since the CUDA kernel take longer to execute.