PM FISIKA

- 1). Pada sebuah benda massanya 4 kg bekerja gaya F arah mendatar sebesar 20 N. Jika μ = 0,4 dan 0,2, maka gaya gesekan adalah . . .
- 2). Perhatikan gambar di bawah ini!

Jika $\mu_s = 0.4$ dan 0,2. Tentukan percepatan benda jika besar gaya F yang bekerja sebesar :

- a. 20 N
- b. 50 N
- 3). Pada sistem, balok A bergerak ke atas. Jika gaya tegang tali 24 N dan massa balok A = 2 kg, hitung massa balok B?

4). Dua benda masing-masing bermassa mB = 15 kg dan mA = 10 kg dikaitkan pada ujung-ujung seutas tali yang melalui sebuah katrol yang bermassa 10 kg dan berjari-jari 0,1 m. Katrol berbentuk pejal homogen ($I = \frac{1}{2}$ M.R2). Maka percepatan sistem adalah . . .

5). Sistem pada gambar di samping dalam keadaan seimbang. Besar $m_1 = 60$ kg dan koefisien gesekan statik antara m_1 dan meja adalah 0,2 berapa massa m_2 ?

6). Pada gambar benda A dan E masing-masing 100 N dan 10N. Apabila tali AC horizontal dan tali AB sejajar bidang miring dan katrol licin, maka sistem seimbang untuk berat D sebesar . . .

7). Dua benda A dan B masing-masing bermassa 10 kg dan 3 kg dihubungkan dengan seutas tali melalui sebuah katrol bermassa 10 kg dan berjari-jari 10 cm. benda A terletak dibidang miring kasar dengan koefisien gesekan 0,3 sedangkan benda B tergantung. Maka percepatan sistem adalah $(I = \frac{1}{2} M.R^2)$

8). Sebuah bola pejal (I = ½ M.R²) menggelinding dari keadaan diam menuruni bidang miring yang membentuk sudut 30° terhadap arah mendatar. Maka kelajuan silinder bola ketika telah menempuh lintasan sejauh 1,5 m pada bidang miring adalah . . .

8). Perhatikan gambar berikut! Sebuah benda yang mula-mula diam di A meluncur pada ketinggian 40 m menuju B. Pada saat mencapai B kecepatan benda adalah . . .

