Application No.: 10/797,335

V. REMARKS

Claims 1-8 (presumptively claims 1, 3, 5, 7 and 8 because claims 2, 4 and 6 have been canceled) are rejected under 35 U.S.C. 103(a) as unpatentable over Hermann (U.S. Patent No. 3,839,209) in view of United Lab Equipment, Inc. and Wikipedia. Claims 9 and 11-16 are rejected under 35 U.S.C. 103(a) as unpatentable over Hermann in view of United Lab Equipment, Inc., Wikipedia and Shimotomai (U.S. Patent No. 5,868,555). The rejections are respectfully traversed.

Hermann discloses an organometallic reticulated anti-friction composition obtained from at least one solid epoxy resin containing terminal epoxy groups, lead powder, bismuth powder, mixtures thereof and alloys comprising lead, bismuth, lead and bismuth, and mixtures thereof (see claim 1). The alloy may be selected from at least one member of the group consisting of Pb-Bi, Pb-Sn, Bi-Sn, Pb-Bi-Sn, Pb-Sn-Pb-Cu, Pb-Sn-Cu-Cd or Pb-Sn-Sb-Cu-Ni (see claim 7), a solid lubricant may be contained in the composition (see claim 8).

As described above, Hermann discloses alloys containing copper such as Pb-Sn-Sb-Cu so that the Examiner seems on the opinion that the alloys disclosed in Hermann overlap the present invention.

The present invention relates to a sliding member provided with a sliding layer containing bismuth powder and/or bismuth alloy powder, metal powder, and a solid lubricant. The metal powder contains at least one of a copper-based alloy and aluminum-based alloy.

As specified by the above amendment, the bismuth powder and/or bismuth alloy powder, and the metal powder are mixed with the thermosetting resin in the sliding layer. By adopting such constitution, the thermal conductivity in the sliding layer is improved, and hence, heat does not accumulate in the sliding layer portion, by which seizure can be prevented as described in the specification, paragraph 0043.

Application No.: 10/797,335

As described in Whikipedia "Bismuth" cited in the last official action, bismuth has the second lowest thermal conductivity. Thus, bismuth 1 is poor in effect on prevention of seizure. For this reason, the present invention uses the metal powder containing a copper-based alloy or aluminum based alloy, which is excellent in thermal conductivity to prevent heat from accumulating in the sliding layer.

Applicants enclose herewith a Wikipedia "List of thermal conductivities", which shows that cooper, copper alloys and aluminum are superior to bismuth in thermal conductivity.

Hermann does not disclose or suggest that a copper-based alloy powder or aluminum-based alloy powder, superior in thermal conductivity, is mixed with a thermosetting resin to prevent heat accumulation in a sliding layer as in the present invention.

Accordingly, the invention of present claim 1 is patentable over the prior art references so that the claims dependent upon claim 1 are also patentable thereover. Therefore, the outstanding rejections should be withdrawn and the present application should be allowed.

Withdrawal of the rejections is respectfully requested.

Further, Applicants assert that there are also reasons other than those set forth above why the pending claims are patentable. Applicants hereby reserve the right to submit those other reasons and to argue for the patentability of claims not explicitly addressed herein in future papers.

In view of the foregoing, reconsideration of the application and allowance of the pending claims are respectfully requested. Should the Examiner believe anything further is desirable in order to place the application in even better condition for allowance, the Examiner is invited to contact Applicants' representative at the telephone number listed below.

Should additional fees be necessary in connection with the filing of this paper or if a Petition for Extension of Time is required for timely acceptance of the same, the

Commissioner is hereby authorized to charge Deposit Account No. 18-0013 for any such fees and Applicant(s) hereby petition for such extension of time.

By:

Respectfully submitted,

Date: April 16, 2007

Carl Schaukowitch Reg. No. 29,211

RADER, FISHMAN & GRAUER PLLC

1233 20th Street, N.W. Suite 501

Washington, D.C. 20036 Tel: (202) 955-3750

Fax: (202) 955-3751 Customer No. 23353

Enclosure(s):

Amendment Transmittal

Wikipedia - List of thermal conductivities (pages 1-3

Wikipedia - Bismuth (pages 1-4)

DC272039.DOC

List of thermal conductivities - Wikipedia, the free encyclopedia

List of thermal conductivities

From Wikipedia, the free encyclopedia

It is defined as the quantity of heat, Q, transmitted in time t through a thickness L, in a direction normal to a surface of area A, due to a temperature difference ΔT , under steady state conditions and when the heat transfer is dependent only on the temperature gradient.

thermal conductivity = heat flow rate × distance / (area × temperature difference)

$$k = \frac{Q}{t} \times \frac{L}{A \times \Delta T}$$

This list makes up the data for the smaller list provided in Thermal conductivity.

Material 🖪	Thermal conductivity (W·m ⁻¹ ·K ⁻¹) M		Electrical conductivity @ 293 - 273 K (Ω ⁻¹ ·m ⁻¹)	Notes 🗹	
Diamond, purfied synthetic	ⁱ 2,000- ⁱ 2,500		(Lateral) ⁱ 10 ⁻¹⁶ - (Ballistic) ⁱ 10 ⁸⁺		
Diamond, impure	^{ad} 1,000	^a 273	i _{~10} ⁻¹⁶	(C+0.1%N) Type I (98.1% ofGem Diamonds)	
Silver, pure	d406 - f418 - agi429	^g 273- ^{ai} 300- ^g 373	^g 61.35 - ⁱ 63.01 - ⁱ 68.17 × 10 ⁶	Highest <i>electrical</i> conductivity of any metal	
Copper, pure	d ₃₈₅ - f ₃₈₆ - e ₃₉₀ - g _i 401	^g 273- ^{ci} 293- ^g 373	g59.17 - ⁱ 59.59 - ⁱ 64.81 × 10 ⁶	IACS standard pure is 1.7×10^8 $\Omega \cdot m = 58.82 \times 10^{-6} \Omega^{-1} \cdot m^{-1}$	
Gold, pure	^d 314 - ^{fgi} 318	\$273- ¹ 300- \$373	ⁱ 45.17 - ^g 45.45 - ⁱ 48.76 × 10 ⁶		
Aluminium, pure	^d 205 - ^f 220 - ^{egi} 237	⁸ 273- ^{ci} 293- ⁸ 373			
Brass	dg _{109 -} f _{119 -} f _{151 -} g ₁₅₉	⁸ 296	g _{12.82} - g _{21.74} × 10 ⁶	(Cu+(37-15)%Zn)	
Iron, pure	^f 71.8 - ^d 79.5 - ^a 80.2 - ^{gi} 80.4	,			
Cast iron	f ₅₅	:		(Fe+(2-3.5)%C+(1-3)%Si)	
Bronze	(f(25%Sn)26) g42 g50		^B 5.882 - ^B 7.143 × 10 ⁶	(Cu+11%Sn)	
Carbon Steel	f ₃₆ - d _{50.2} - f ₅₄			(Fe+(1.5-0.5)%C)	
Stainless Steel	^a 14 - ^{fg} 16.3	^a 273 - ^g 296	g _{1.389} - g _{1.429} × 10 ⁶	(Fe+18%Cr+8%Ni)	
Lead, pure	d34.7 - ^f 35 - ^{gi} 35.3	^g 273- ⁱ 300- g ₃ 73			

http://en.viiiipedia.aca/wiki/List_of_thermal_conductivities

Titanium, pure	f _{15.6} - g ⁱ 21.9	^g 273- ⁱ 300- ^g 373	^g 1.852 - ⁱ 2.381 - ⁱ 2.564 × 10 ⁶	· :
Titanium Alloy	g _{5.8}	^g 296	⁸ 0.595 × 10 ⁶ :	(Ti+6%Al+4%V)
				50+% of All Aircraft
Granite	^b 1.73 - ^b 3.98	;		(72.04%SiO ₂ +14%Al ₂ O ₃ +4%K ₂ O etc.);
Marble	^b 2.07 - ^b 2.94			Mostly CaCO ₃
Thermal grease, silver-based	i _{2 -} i ₃	;		
Sandstone	^b 1.83 - ^b 2.90	i		~95-71%SiO ₂
Ice	d1.6 - c2.1 - a2.2	€293 - ^a 273		
Limestone	b1.26 - b1.33			Mostly CaCO ₃
Concrete	d _{0.8} - e _{1.28}	₹293 .		~61-67%CaO
Glass	d _{0.8} -e _{0.93} (E _(96%) SiO ₂)1.2-1.4)	e(g) ₂₉₃	10 ⁻¹⁴ - ^(g) 10 ⁻¹² - 10 ⁻¹⁰	<1% Iron oxides
Fibre-reinforced plastics	g _{0.23} - g _{0.7} - e _{1.06}	^g 296 - ^e 293	g ₁₀ ⁻¹⁵ - g ₁₀ 0	10-40%GF or CF
Soil	^c 0.17 - ^c 1.13			
Water	dc _{0.6}	^{de} 293	$5 \times (Pure)^{i} 10^{-6}$ (Sweet) $i \cdot 10^{-3 \pm 1}$ (Sea)	<3%(Na+Mg+Ca)
High-Density Polymers	g _{0.33} - g _{0.52}	g ₂₉₆	g ₁₀ ⁻¹⁶ - g ₁₀ ²	
Glycerol	e _{0.29}	^e 293		•
Wood, +>=12% water	h0.09091 - a0.16 - h0.21 - e0.4	^a 298 - ^c 293		hSpecies-Variable
Low-Density Polymers	g0.04 - e0.16 - e0.25 - e0.33	⁸ 296 - ⁶ 293	g ₁₀ -17 - g ₁₀ 0	
Rubber (92%)	a _{0.16}	^a 303	~10 ⁻¹³	1
Alcohols OR Oils	°0.1 - °0.21	^e 293		J. J
Wood, oven-dry	^d 0.04 - ^h 0.07692 - ^d 0.12 - ^h 0.17	and the second s		^h Cedar - ^h Hickory
Snow, dry	d _{0.11}			e plantik in metan litre (17 Chin 1890 CE 1890 CE)
Cork	d _{0.04} - e _{0.07}	e ₂₉₃		The state of the s
Fiberglass OR Foam OR Wool	°0.03 - d0.04 -	⁶ 293		
Expanded polystyrene	ad0.033 - (^g (PS) Only)0.1 - 0.13)	^a 98- ^a 298- ^(g) 296	$(g)_{<10^{-14}}$ $(g)_{10^0}$	$(PS+Air+CO_2+C_nH_{2n+x})$
Air	^d 0.024 - ^e 0.025 - ^a 0.0262	^d 273- ^e 293- ^a 300		(N+21%O+0.93%Ar+0.04%CO ₂) (1 atm)
Oxygen, pure	^d 0.0238 - ⁱ 0.02658	^d 293 - ⁱ 300		(O ₂) (1 atm)

Nitrogen, pure	d0.0234 - i0.02583 - a0.026	· • / G & = ** () []		$(N_2) (1 \text{ atm})$	
Silica Aerogel	a0.003	^a 98 - ³ 298		Foamed Glass	
Material	Thermal conductivity	Temperature	Electrical conductivity @ 293 - 273 K	Notes	
	(W·m ⁻¹ ·K ⁻¹)	(K)	$(\Omega^{-1}\cdot m^{-1})$		

References

Note: As the above Wikipedia reference may not cite this table, pure elements are sourced from Chemical elements data references, otherwise an in-table linked-page must list the relevant references.

Heat Conduction Calculator (http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/heatcond.html#c1)

Thermal conductivity of air as a function of temperature can be found at James Ierardi's Fire Protection Engineering Site (http://users.wpi.edu/~ierardi/PDF/air k plot.PDF)

See also

- Thermal conductivity
- Thermal conductivities of the elements (data page)

Retrieved from "http://en.wikipedia.org/wiki/List_of_thermal_conductivities"

Categories: Wikipedia list cleanup | Chemical properties | Physical quantity | Thermodynamics | Heat conduction | Technology-related lists

- This page was last modified 07:32, 5 April 2007.
- All text is available under the terms of the GNU Free Documentation License. (See Copyrights for details.) Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a US-registered 501(c)(3) tax-deductible nonprofit charity.

^a CRC handbook of chemistry and physics (http://www.hbcpnetbase.com/) (subscription is required to access the data)

b Marble Institute (http://www.marble-institute.com/industryresources/rvalue.cfm)

^c Soil Sci Journals (http://soil.scijournals.org/cgi/content/figsonly/64/4/1285)

^d Georgia State University - Hyperphysics (http://hyperphysics.phy-astr.gsu.edu/hbase/tables/thrcn.html)

e Hukseflux Thermal Sensors (http://www.hukseflux.com/thermal%20conductivity/thermal.htm)

f Engineers Edge (http://www.engineersedge.com/properties of metals.htm)

g GoodFellow (http://www.goodfellow.com/)

h Physical Properties and Moisture Relations of Wood (http://www.fpl.fs.fed.us/documnts/fplgtr/fplgtr113/ch03.pdf)

Bismuth

From Wikipedia, the free encyclopedia

Bismuth (IPA: ['bizma0]) is a chemical element that has he symbol Bi and atomic number 83. This heavy, brittle, white crystalline trivalent poor metal has a pink tinge and themically resembles arsenic and antimony. Of all the netals, it is the most naturally diamagnetic, and only nercury has a lower thermal conductivity.

Bismuth compounds are used in cosmetics and in medical procedures. As the toxicity of lead has become more apparent in recent years, alloy uses for bismuth metal as a eplacement for lead have become an increasing part of pismuth's commercial importance.

Contents

- 1 Notable characteristics
- 2 Crystals
- 3 History
- a 4 Occurrence
- S Applications
- m 6 See also
- 7 References
- 8 External links

Notable characteristics

t is a brittle metal with a pinkish hue, often occurring in its native form with an indescent oxide tarnish showing many refractive colors from yellow to blue. Among the heavy netals, bismuth is unusual in that its toxicity is much lower han that of its neighbors in the periodic table such as lead, hallium, and antimony. No other metal is more naturally liamagnetic (as opposed to superdiamagnetic) than pismuth, and it has a high electrical resistance. Of any netal (it has the second lowest thermal conductivity and he highest Hall effect. When deposited in sufficiently thin ayers on a substrate, bismuth is a semiconductor, rather han a poor metal.[1] When combusted with oxygen, sismuth burns with a blue flame and its oxide forms yellow ùmes.

While bismuth was traditionally regarded as the element with the heaviest stable isotope, it had long been thought to e unstable on theoretical grounds. Not until 2003 was this lemonstrated when researchers at the Institut l'Astrophysique Spatiale in Orsay, France, measured the

83		10	ad ←	bismuti	oismuth → polonium			
Sb † Bi I Uup	Period	dic Tab		Bi ,	B3P 126N Penodio	<u>.</u>		
	A		G	neral		ne week property and a		
Vame	, Symb	ol, Nu	mber	bismuth	, Bi, 83			
Chem	ical ser	ies		poor me	tals			
Group	, Peno	d, Blo	k	15, 6, p	~-:hipal			
Appearance				lustrous reddish white				
Atom	ic mass	3		208.98040(1) g·mol ⁻¹				
Elect	LOU COU	figura	noi	[Xe] 1f ¹⁴ 5d ¹⁰ 6s ² 6p ³				
Elect	rons pe	r shell		2, 8, 18, 32, 18, 5				
		I	hysica	l prope	rtics			
Phas	e			solid				
Dens	ity (nea	rr.t.)		9.78 g·cm ⁻³				
Liqu	id densi	ity at n	a.p.	10.05 g·cm ⁻³				
Melting point Boiling point			S44.7 K (271.5 °C, 520.7 °F) 1837 K (1564 °C; 2847 °F)					
						Heat	of fusi	on
Heat of vaporization . Heat capacity			151 kJ·mol ⁻¹ (25 °C) 25.52 J·mol ⁻¹ ·K					
P	(Pa)	1	10	100	1 k	10 k	100	
at	T(IK)	941	1041	1165	1325	1538	183	
ļ		. ()	Atom	ic propo	rties			
Crystal structure			rhombohedral					
Oxidation states			3, 5 (mildly acidic oxide)					

upha-emission half-life of ²⁰⁹Bi to be 19 x 10¹⁸ years, ^[2] neaning that bismuth is very slightly radioactive, with a half-life over a billion times longer than the current estimated age of the universe. Due to its extraordinarily ong half-life, for nearly all applications bismuth can be reated as if it is stable and non-radioactive. However, the adioactivity is of academic interest because bismuth is one of few elements whose radioactivity was suspected, and ndeed theoretically predicted, before being detected in the aboratory.

Elemental bismuth is one of very few substances of which he liquid phase is denser than its solid phase; most substances have the opposite characteristics (i.e., they expand when they melt). Another well-known example of a (substance that expands when it solidifies is water. Because pismuth expands on freezing, it was long an important component of low-melting typesetting alloys which needed o expand to fill printing molds.

Crystals

Though virtually unseen in nature, high-punty bismuth can form into distinctive hopper crystals. These colorful aboratory creations are typically sold to collectors. Bismuth is relatively nontoxic and has a low melting point. Trystals can be grown using a household stove, but this parries significant risk of burns and should not generally be ittempted without extensive metal-smelting experience. The resulting crystals will tend to be disappointing when compared to lab-grown crystals.

History

Bismuth (New Latin bisemutum from German Wismuth, perhaps from weiße Masse, "white mass") was confused in early times with tin and lead due to its resemblance to hose elements. Basilius Valentinus described some of its

uses in 1450. Claude François Geoffroy showed in 1753 that this metal is distinct from lead.

Artificial bismuth was commonly used in place of the actual mineral. It was made by hammering tin into thin plates, and comenting them by a mixture of white tartar, saltpeter, and arsenic, stratified in a crucible over an open fire. [5]

Bismuth was also known to the Incas and used (along with the usual copper and tin) in a special bronze alloy for miyes, [2] (http://adsabs.harvard.edu/abs/1984Sci...223..585G)

Occurrence

in the Earth's crust, bismuth is about twice as abundant as gold. It is not usually economical to mine it as a primary product. Rather, it is usually produced as a byproduct of the processing of other metal ores, especially lead, but also

***************************************	Electro	Electronegativity			2.02 (Pauling scale)				
-	lonizati	on ener	gies	1st: 703 kJ·mol ⁻¹					
	(more)			2nd:	1610	kJ-mol ⁻¹			
1			3rd:	2466	kJ·mol ⁻¹	•			
	Atomic	radius		160	pm				
	Atomic	Atomic radius (calc.)			ρm				
1	Covale	nt radiu	S	146 pm .					
	pprot g-101 asptoteges pr		Misc	ellane	eous				
!	Magnet	ic orde	ring	diam	diamagnetic				
	Electric	al resis	tivity	(20	°C) 1.2	29 μ Ω·m·			
(Thermal conductivity			(300	K) 7.9	97 W·m	1.K-1		
	Therma	ision	(25	°C) 13	.4 μm·m	1.K-1			
	Speed (of sound	d (thin rod)	(20 °C) 1790 m/s					
į	Shear modulus			132 GPa					
				12 GP2 31 GPa 0.33					
	Mohs h	ardnes	5	2.25					
	Brinell	Brinell hardness			94.2 MPa				
	CAS registry number				7440-69-9				
			Select	ed iso	topes				
		Ma	in article:	Isoto	pes of t	oismuth			
	iso	iso NA half-li		fc	DM	DE (MeV)	DP		
	²⁰⁷ Bi	syn	31.55 y		ε, β+	2.399	²⁰⁷ Pi		
	²⁰⁸ Bi	syn	3,368,000	y	ε, β+	2.880	208 _P		
	²⁰⁹ Bi	100%	(19 ± 2) ×	10 ¹⁸ y	α		²⁰⁵ T		
	References								

ا/2007/03

;05686135/1

ungsten or other metal alloys.

The most important ores of bismuth are bismuthinite and bismite. The People's Republic of China is the world's largest producer of bismuth, followed by Mexico and Peru. Canada, Bolivia, and Kazakhstan are smaller producers.

The average price for bismuth in 2000 was USS 7.70 per kilogram. It is relatively cheap, since like lead (but to a much esser extent), it is radiogenic, being formed from the natural decay of uranium and thorium (specifically, by way of reptunium-237 or uranium-233).

Applications

Bismuth oxychloride is sometimes used in cosmetics. Also bismuth subnitrate and bismuth subcarbonate are used in nedicine. Bismuth subsalicylate (the active ingredient in Pepto-Bismol) is used as an antidiarrheal and to treat some other gastro-intestinal diseases. Also, bismuth subgallate (the active ingredient in Devrom) is used as an internal leodorant to treat malodor from flatulence (or gas) and stool.

some other current uses are:

- Strong permanent magnets can be made from the alloy bismanol (BiMn).
- Many bismuth alloys have low melting points and are widely used for fire detection and suppression system safety devices.
- Bismuth is used as an alloying agent in production of malleable irons.
- Bismuth is finding use as a catalyst for making acrylic fibers.
- A carrier for U-235 or U-233 fuel in nuclear reactors.
- Bismuth has also been used in solders. The fact that bismuth and many of its alloys expand slightly when they solidify make them ideal for this purpose.
- Bismuth subnitrate is a component of glazes that produces an iridescent luster finish.
- Bismuth telluride is an excellent thermoelectric material; it is widely used.
- As a replacement propellant for xenon in Hall effect thrusters.
- In 1997 an antibody conjugate with Bi-213, which has a 45 minute half-life, and decays with the emission of an alpha-particle, was used to treat patients with leukemia.

in the early 1990s, research began to evaluate bismuth as a nontoxic replacement for lead in various applications.

- As noted above, bismuth has been used in solders; its low toxicity will be especially important for solders to be used in food processing equipment and copper water pipes.
- As a pigment in artist's oil paint
- As an ingredient of Ceramic glazes
- As an incredient in free-machining brasses for plumbing applications
- As an ingredient in free-cutting steels for precision machining properties
- As a catalyst for making acrylic fibres
- In low-melting alloys used in fire detection and extinguishing systems
- As an ingredient in lubricating greases
- As a dense material for fishing sinkers.
- As the oxide, carbonate, or subnitrate in crackling microstars (dragon's eggs) in pyrotechnics.
- As a replacement for lead in shot and bullets. The UK, U.S., and many other countries now prohibit the use of lead shot for the hunting of wetland birds, as many birds are prone to lead poisoning due to mistaken ingestion of lead (instead of small stones and grit) to aid digestion. Bismuth-tin alloy shot is one alternative that provides similar ballistic performance to lead (another less expensive but also poorer-performing alternative is steel shou (which is actually soft iron)).

Bismuth core bullets are also starting to appear for use in indoor shooting ranges, where particles of lead from the bullet impacting the backstop can be a problem. Due to bismuth's crystalline nature, the bismuth bullets

shatter into a non-toxic powder on impact, making recovery and recycling easy. The lack of malleability does, however, make bismuth unsuitable for use in expanding hunting bullets.

FN Herstal uses bismuth in the projectiles for their FN 303 less-lethal riot gun.

See also

- Bismuth compounds
- Bismuth minerals

References

- Semimetal-to-semiconductor transition in bismuth thin films, C. A. Hoffman, J. R. Meyer, and F. J. Bartoli, A. Di Venere, X. J. Yi, C. L. Hou, H. C. Wang, J. B. Ketterson, and G. K. Wong, Phys. Rev. B 48, 11431 (1993) DOI:10.1103/PhysRevB.48.11431 (http://dx.doi.org/10.1103/PhysRevB.48.11431)
- 2. ^ Marcillac, Pierre de; Noël Coron, Gérard Dambier, Jacques Leblanc, and Jean-Pierre Moalic (April 2003). "Experimental detection of a-particles from the radioactive decay of natural bismuth". Nature 422: 876-878. DOI:10.1038/nature01541 (http://dx.doi.org/10.1038/nature01541).
- 3. ^ This arricle incorporates content from the 1728 Cyclopaedia, a publication in the public domain. [1] (http://digicoll.library.wisc.cdu/cgi-bin/HistSciTcch/HistSciTcch-idx? type=turn&cntity=HistSciTcch000900240255&isize=L)

External links

- WebElements.com Bismuth (http://www.webelements.com/webelements/elements/text/Bi/index.html)
- "Bismuth Statistics and Information (http://minerals.usgs.gov/minerals/pubs/commodity/bismuth/)" United States Geological Survey minerals information for bismuth
- Bismuth breaks half-life record for alpha decay (http://physicsweb.org/article/news/7/4/16)
- Los Alamos National Laboratory Bismuth (http://periodic.lanl.gov/elements/83.html)

Retrieved from "http://en.wikipedia.org/wiki/Bismuth"

Dategories: Cyclopaedia | Bismuth | Chemical elements | Alchemical substances

- This page was last modified 20:27, 7 March 2007.
- All text is available under the terms of the GNU Free Documentation License (See Copyrights for details.)
 Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a US-registered 501(c)(3) tax-deductible nonprofit charity.

NO 858 C