We claim:

- 1. A monocyclopentadienyl complex which contains the structural feature of the formula (Cp)(-Z-A)_mM (I), where the variables have the following meanings:
- Cp is a cyclopentadienyl system,
- Z is a bridge between A and Cp and is selected from the group consisting of

10 where

5

L^{1B}-L^{3B} are each, independently of one another, carbon or silicon,

R^{1B}-R^{6B} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{7B}₃, where the organic radicals R^{1B}-R^{6B} may also be substituted by halogens and two geminal or vicinal radicals R^{1B}-R^{6B} or a radical R^{1B}-R^{6B} and A may also be joined to form a five- or six-membered ring and

20

15

R^{7B} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl,
C₂-C₂₀-alkenyl, C₆-C₂₀-aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals
R^{7B} may also be joined to form a five- or six-membered ring,

25

- A is an unsubstituted, substituted or fused, heteroaromatic ring system,
- M is a metal selected from the group consisting of titanium in the oxidation state 3, vanadium, chromium, molybdenum and tungsten and

30

- m is 1, 2 or 3.
- 2. A monocyclopentadienyl complex as claimed in claim 1 of the formula $(Cp)(-Z-A)_mMX_k(V)$, where the variables have the following meanings:

- Cp is a cyclopentadienyl system,
- Z is a bridge between A and Cp and is selected from the group consisting of

where

5

20

L^{1B}-L^{3B} are each, independently of one another, carbon or silicon,

are each, independently of one another, hydrogen, C₁-C₂₀-alkyl,

C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{7B}₃, where the organic radicals R^{1B}-R^{6B} may also be substituted by halogens and two geminal or vicinal radicals R^{1B}-R^{6B} may also be joined to form a five- or six-membered ring and

R^{7B} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R^{7B} may also be joined to form a five- or six-membered ring,

A is an unsubstituted, substituted or fused, heteroaromatic ring system,

M is a metal selected from the group consisting of titanium in the oxidation state 3, chromium, molybdenum and tungsten,

m is 1, 2 or 3,

X are each, independently of one another, fluorine, chlorine, bromine,
30 iodine, hydrogen, C₁-C₁₀-alkyl, C₂-C₁₀-alkenyl, C₆-C₂₀-aryl, alkylaryl
having 1-10 carbon atoms in the alkyl part and 6-20 carbon atoms in the
aryl part, NR¹R², OR¹, SR¹, SO₃R¹, OC(O)R¹, CN, SCN, β-diketonate,
CO, BF₄, PF₆ or a bulky noncoordinating anion,

R¹-R² are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, SiR³₃, where the organic radicals R¹-R² may also be substituted by halogens and two radicals R¹-R² may also be joined to form a five- or six-membered ring,

R³ are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R³ may also be joined to form a five- or six-membered ring and

k is 1, 2 or 3.

10

20

A monocyclopentadienyl complex as claimed in claim 1 or 2, wherein the cyclopentadienyl system Cp has the formula (II):

$$R^{1A} = E^{1A} = E^{2A}$$

$$R^{5A} = E^{5A} = E^{5A} = E^{3A}$$

$$R^{4A} = E^{5A} = E^{3A} = E^{3A}$$

$$R^{4A} = E^{5A} = E$$

where the variables have the following meanings:

 $E^{1A}-E^{5A}$ are each carbon or not more than one E^{1A} to E^{5A} is phosphorus,

 $R^{1A}-R^{5A}$ are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C2-C20-alkenyl, C6-C20-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR^{6A}₂, N(SiR^{6A}₃)₂, OR^{6A}, OSiR^{6A}₃, SiR^{6A}₃, BR^{6A}₂, where the organic radicals R^{1A}-R^{5A} may also be substituted by halogens and two vicinal radicals 25 R^{1A}-R^{5A} may also be joined to form a five- or six-membered ring, and/or two vicinal radicals R^{1A}-R^{5A} are joined to form a heterocycle which contains at least one atom from the group consisting of N, P, O and S, and where 1, 2 or 3 substituents R^{1A}-R^{5A} is a group -Z-A and R^{6A} are each, independently of one another, hydrogen, C1-C20-alkyl, 30 C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl radical and 6-20 carbon atoms in the aryl radical and two

geminal radicals R^{6A} may also be joined to form a five- or six-membered

ring.

4. A monocyclopentadienyl complex as claimed in any of claims 1 to 3, wherein the cyclopentadienyl system Cp together with -Z-A has the formula (IV):

$$A - Z - E^{5A} - E^{2A} - R^{2A}$$

$$R^{4A} - R^{4A} - R^{3A}$$

$$R^{4A} - R^{4A} - R^{3A} - R^{3A}$$

$$R^{4A} - R^{4A} - R^{3A} - R^$$

where the variables have the following meanings:

 $E^{1A}-E^{5A}$ are each carbon or at most one E^{1A} to E^{5A} is phosphorus,

R^{1A}-R^{4A} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl,
C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR^{6A}₂,
N(SiR^{6A}₃)₂, OR^{6A}, OSiR^{6A}₃, SiR^{6A}₃, where the organic radicals R^{1A}-R^{4A} may also be substituted by halogens and two vicinal radicals R^{1A}-R^{4A} may also be joined to form a five- or six-membered ring, and/or two vicinal radicals R^{1A}-R^{4A} may be joined to form a heterocycle containing at least one atom from the group consisting of N, P, O and S,

are each, independently of one another, hydrogen, C₁-C₂₀-alkyl,
C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two geminal radicals R^{6A} may also be joined to form a five- or six-membered ring.

- 25 A is an unsubstituted, substituted or fused, heteroaromatic ring system,
 - Z is a bridge between A and Cp and is selected from the group consisting of

30 where

L^{1B}-L^{3B} are each, independently of one another, carbon or silicon,

- are each, independently of one another, hydrogen, C₁-C₂₀-alkyl,

 C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms
 in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{7B}₃, where
 the organic radicals R^{1B}-R^{6B} may also be substituted by halogens and two
 geminal or vicinal radicals R^{1B}-R^{6B} may also be joined to form a five- or
 six-membered ring and
- are each, independently of one another, hydrogen, C₁-C₂₀-alkyl,

 C₂-C₂₀-alkenyl, C₆-C₂₀-aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals

 R^{7B} may also be joined to form a five- or six-membered ring.
- 15 5. A monocyclopentadienyl complex as claimed in any of claims 1 to 4, wherein A has the formula (IIIa) or (IIIb):

$$\begin{array}{c|c} R_p^{2C} & R_p^{3C} & R_p^{3C} \\ R_p & L_p^{1C} & L_p^{2C} & R_p^{3C} \\ R_p & L_p^{4C} & R_p^{4C} \end{array}$$
where the variables have the following meanings:

25 E^{1C}-E^{4C} are each carbon or nitrogen,

20

30

35

are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{5C}₃, where the organic radicals R^{1C}-R^{4C} may also be substituted by halogens or nitrogen and further C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{5C}₃ groups and two vincinal radicals R^{1C}-R^{4C} or R^{1C} and Z may also be joined to form a five- or six-membered ring and

R^{5C} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals

35

R^{5C} may also be joined to form a five- or six-membered ring and

- p is 0 when E^{1C} - E^{4C} is nitrogen and 1 when E^{1C} - E^{4C} is carbon,
- 5 G^{1C} is nitrogen, phosphorus, sulfur or oxygen,
- are each, independently of one another, hydrogen, C₁-C₂₀-alkyl,

 C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{9C}₃, where the organic radicals R^{6C}-R^{8C} may also be substituted by halogens or nitrogen and further C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{9C}₃ groups and two vincinal radicals R^{6C}-R^{8C} or R^{6C} and Z may also be joined to form a 5- or 6-membered ring and
- 15
 R^{9C} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl,
 C₂-C₂₀-alkenyl, C₆-C₂₀-aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals
 R^{9C} may also be joined to form a five- or six-membered ring and
 - g is 0 when G^{1C} is sulfur or oxygen and 1 when G^{1C} is nitrogen or phosphorus.
- 6. A monocyclopentadienyl complex as claimed in any of claims 1 to 5, wherein Z is selected from the group consisting of -C(R^{1B}R^{2B})-Si(R^{3B}R^{4B})-, -CH₂-C(R^{3B}R^{4B})- and 1,2-phenylene.
 - 7. A catalyst system for olefin polymerization comprising
- 30 A) at least one monocyclopentadienyl complex as claimed in claims 1 to 6,
 - B) optionally, an organic or inorganic support,
 - C) optionally, one or more activating compounds,
 - D) optionally, further catalysts suitable for olefin polymerization and
 - E) optionally, one or more metal compounds containing a metal of group 1, 2 or

35

13 of the Periodic Table.

- 8. A prepolymerized catalyst system comprising a catalyst system as claimed in claim 7 and one or more linear C₂-C₁₀-1-alkenes polymerized onto it in a mass ratio of from 1:0.1 to 1:1 000 based on the catalyst system.
- 9. The use of a catalyst system as claimed in claim 7 or 8 for the polymerization or copolymerization of olefins.
- 10 10. A process for preparing polyolefins by polymerization or copolymerization of olefins in the presence of a catalyst system as claimed in claim 7 or 8.
 - 11. A process for preparing cyclopentadienyl systems of the formula (V):

where the variables have the following meanings:

are each, independently of one another, hydrogen, C₁-C₂₀-alkyl,

C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR^{6A}₂,

N(SiR^{6A}₃)₂, OR^{6A}, OSiR^{6A}₃, SiR^{6A}₃, where the organic radicals R^{1A}-R^{4A} may also be substituted by halogens and two vicinal radicals R^{1A}-R^{4A} may also be joined to form a five- or six-membered ring, and/or two vicinal radicals R^{1A}-R^{4A} are joined to form a heterocycle which contains at least one atom from the group consisting of N, P, O and S.

R^{6A} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl,

C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two geminal radicals R^{6A} may also be joined to form a five- or six-membered ring,

is an unsubstituted, substituted or fused, heteroaromatic ring system,

15

20

25

30

R^{1B}-R^{4B} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{7B}₃, where the organic radicals R^{1B}-R^{4B} may also be substituted by halogens and two geminal vicinal radicals R^{1B}-R^{4B} may also be joined to form a five- or sixmembered ring and

R^{7B} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl,

C₂-C₂₀-alkenyl, C₆-C₂₀-aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals

R^{7B} may also be joined to form a five- or six-membered ring,

M^S a metal of group 1, 2 or 3 of the Periodic Table of the Elements,

X^S are each, independently of one another, fluorine, chlorine, bromine, iodine, hydrogen, C₁-C₁₀-alkyl, C₂-C₁₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having 1-10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR¹R², OR¹, SR¹, SO₃R¹, OC(O)R¹, CN, SCN, β-diketonate, CO, BF₄, PF₆ or a bulky noncoordinating anion and

0, 1 or 2,

1 or 2, with the proviso that s + r is the oxidation state of $M^S - 1$,

which comprises reacting $(A-CR^{1B}R^{2B-})_r(M^SX^S_S)^+$ with a fulvene of the formula (VI)

12. A process for preparing cyclopentadienyl systems of the formula (VIII):

30

R^{1B}-R^{4B}

R^{7B}

where the variables have the following meanings:

5 E^{6A} - E^{10A} are each carbon or not more than one E^{6A} to E^{10A} is phosphorus, where four adjacent E^{6A} - E^{10A} form a conjugated diene system and the remaining E^{6A} - E^{10A} additionally bears a hydrogen atom,

are each, independently of one another, hydrogen, C₁-C₂₀-alkyl,

C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR^{6A}₂,

N(SiR^{6A}₃)₂, OR^{6A}, OSiR^{6A}₃, SiR^{6A}₃, where the organic radicals R^{1A}-R^{4A} may also be substituted by halogens and two vicinal radicals R^{1A}-R^{4A} may also be joined to form a five- or six-membered ring, and/or two vicinal radicals R^{1A}-R^{4A} are joined to form a heterocycle which contains at least one atom from the group consisting of N, P, O and S,

R^{6A} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two geminal radicals R^{6A} may also be joined to form a five- or six-membered ring,

is an unsubstituted, substituted or fused, heteroaromatic ring system,

are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{7B}_3 , where the organic radicals R^{1B} - R^{4B} may also be substituted by halogens and two geminal or vicinal radicals R^{1B} - R^{4B} may also be joined to form a five- or six-membered ring, and

are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals

R^{7B} may also be joined to form a five- or six-membered ring,

which comprises reacting $(A-CR^{1B}R^{2B-})_r(M^SX^S_S)^+$ with a cyclopentadienyl system of the formula (IX)

 $R^{1A} \qquad R^{2A}$ $Q \longrightarrow Si \longrightarrow E^{10A} \qquad E^{3A}$ $R^{4B} \qquad E^{3A} \longrightarrow E^{3A}$ $R^{4A} \qquad R^{4A}$ (IX)

where the variables are as defined above and

10 Q is a leaving group.