Instructors: Erik Demaine, Jason Ku, and Justin Solomon

Problem Set 6

Problem Set 6

Name: Your Name

Collaborators: Name1, Name2

Problem 6-1. —

(a) **DAG Relaxation**: [(a, b), (a, d), (d, b), (d, e), (b, e), (b, c), (b, f), (e, f), (f, c)]

Dijkstra: [(a,b), (a, d), (d, b), (b, c), (b, e), (b, f), (f, c), (e, f), (c, e)]

- **Problem 6-2.** General shortest path problem in which we can use Bellman-ford, knowing that there is always some path between every two vertices with at most k edges, implies that |V| is upper bounded by $|E| \to |v| = O(|E|)$, and we can perform **DAG Relaxation** for k levels.
 - •If G has no negative cycles: Let $v \in V$ be any vertex. Consider path $p = \langle v_0, v_1, ..., v_k \rangle$ from $v_0 = s$ to $v_k = v$ that is a shortest path with minimum number of edges. No negative weight cycles \to p is simple $\to k \leq |V| 1$.
 - After 1 pass through E, we have $d[v_1] = \delta(s, v_1)$, because we will relax the edge (v_0, v_1) in this pass and we can't find a shorter path than this shortest path. After 2 passes through E, we have $d[v_2] = \delta(s, v_2)$, because in the second pass we will relax the edge (v_1, v_2) . After i passes through E, we have $d[v_i] = \delta(s, v_i)$. After $k \leq |V| 1$ passes through E, we have $d[v_k] = d[v] = \delta(s, v)$. this takes O(k|E|).
 - •If G has negative cycles: we can perform the previous algorithm and then do Bellman-ford check After k passes, if we find an edge that can be relaxed, it means that the current shortest path from s to some vertex is not simple and vertices are repeated. Since this cyclic path has less weight than any simple path the cycle has to be a negative-weight cycle.

Bellman-ford takes O(|V|(|V|+|E|)) as in this case we just relax on k levels and |v| = O(|E|) so O(K|E|).

Problem Set 6 3

Problem 6-3. construct graph $G_1 = (V, E)$, V is the clearings c_i with the oroginal elevations e_i and E the slopes, same way construct graph $G_2 = (V, E)$, V is the clearings c_i with the elevations e_i after all dynamite detonations and E the slopes, compine G_1 and G_2 in graph G with directed edges with zero-weight length from D_1 towards D_2 .

Claim: G is a DAG.

proof: as Bames will only traverse slopes so as to decrease her elevation, implies that all edges go from a higher c_i to lower $c_j \Rightarrow$ directed, this also guarantees that Bames will not need to revisit a vertex more than once as he goes downhill only.

Run **DAG Relaxation** from L_1 to some vertex T connected to s_1 and s_2 with edge with zero-weight length in O(|E| + |v|) = O(n).

Problem 6-4. construct graph G = (V, E), V is the locations in which practile can exist, E is the transitions $(l_i, l_j, w_i j)$ with directed edges from location i to location j.

- •Add a supernode s connected to all vertex $v \in V \Rightarrow O(n)vertices and O(2n = O(n)edges)$.
- ulletRun **Bellman-ford** from s to detect negative-weight cycles.
- •if there is no negative-weight cycles negate all weights and run **Bellman-ford** again.
- •if there is no positive-weight cylces then the force is conservative.

Problem Set 6 5

Problem 6-5.

Problem Set 6 6

Problem 6-6.

3.8

```
def johnson(n, S):
3
       Input: n | Number of vertices in the graph
4
               S | Tuple of triples (u, v, w) representing edge (u, v) of weight w
       Output: D | Tuple of tuples where D[u][v] is the distance from u to v
                or INF if v is not reachable from u
                 or None if the input graph contains a negative-weight cycle
       , , ,
      D = [[INF for _ in range(n)] for _ in range(n)]
      Adj = [[] for _ in range(n)]
       W = \{ \}
14
       for (u, v, weight) in S:
           Adj[u].append(v);
           w[(u, v)] = weight
       Adj.append([i for i in range(n)])
       for i in range(n):
           w[(n, i)] = 0
       def wbf(u, v): return w[(u, v)]
      bellf = bellman_ford(Adj, wbf, n)
       if bellf is None: return None
      h_{,-} = bellf
       def wdy(u, v): return w[(u, v)] + h[u] - h[v]
       for u in range(n):
           dy_{,-} = dijkstra(Adj, wdy, u)
           for v in range(n):
               if dy[v] < INF:
3.4
                   D[u][v] = dy[v] - h[u] + h[v]
36
       D = tuple(tuple(row) for row in D)
       return D
```