Proof: Let $X = \{U \subseteq \mathbb{V} : U \text{ is L.I}\}.$

Proof: Let $X = \{U \subseteq \mathbb{V} : U \text{ is L.I}\}.$

X is non-empty as X contains empty set.

Proof: Let $X = \{U \subseteq \mathbb{V} : U \text{ is L.I}\}.$

X is non-empty as X contains empty set.

Notice that (X,\subseteq) is a partially ordered set where \subseteq is inclusion.

Proof: Let $X = \{U \subseteq \mathbb{V} : U \text{ is L.I}\}.$

X is non-empty as X contains empty set.

Notice that (X, \subseteq) is a partially ordered set where \subseteq is inclusion.

Let W be an arbitrary totally ordered (chain) subset of (X, \subseteq) .

Proof: Let $X = \{U \subseteq \mathbb{V} : U \text{ is L.I}\}.$

X is non-empty as X contains empty set.

Notice that (X,\subseteq) is a partially ordered set where \subseteq is inclusion.

Let W be an arbitrary totally ordered (chain) subset of (X, \subseteq) .

Consider $Z = \bigcup_{U \in W} U$.

Proof: Let $X = \{U \subseteq \mathbb{V} : U \text{ is L.I}\}.$

X is non-empty as X contains empty set.

Notice that (X,\subseteq) is a partially ordered set where \subseteq is inclusion.

Let W be an arbitrary totally ordered (chain) subset of (X,\subseteq) .

Consider $Z = \bigcup_{U \in W} U$.

To show that Z is an upper bound of W

i) for each $U \in W$, we have $U \subseteq Z$.

- i) for each $U \in W$, we have $U \subseteq Z$.
- ii) Z is an element of X, that is Z is linearly independent.

- i) for each $U \in W$, we have $U \subseteq Z$.
- ii) Z is an element of X, that is Z is linearly independent.

Let $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ be a finite subset of Z.

- i) for each $U \in W$, we have $U \subseteq Z$.
- ii) Z is an element of X, that is Z is linearly independent.

Let $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ be a finite subset of Z.

Since W is totally ordered set, then there exists $P \in W$ such that $\alpha_i \in P$ for each i = 1, ..., n.

- i) for each $U \in W$, we have $U \subseteq Z$.
- ii) Z is an element of X, that is Z is linearly independent.

Let $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ be a finite subset of Z.

Since W is totally ordered set, then there exists $P \in W$ such that $\alpha_i \in P$ for each $i = 1, \ldots, n$.

Since P is LI and $\{\alpha_1, \alpha_2, \dots, \alpha_n\} \subseteq P$. Hence $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ is LI.

- i) for each $U \in W$, we have $U \subseteq Z$.
- ii) Z is an element of X, that is Z is linearly independent.

Let $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ be a finite subset of Z.

Since W is totally ordered set, then there exists $P \in W$ such that $\alpha_i \in P$ for each $i = 1, \dots, n$.

Since P is LI and $\{\alpha_1, \alpha_2, \dots, \alpha_n\} \subseteq P$. Hence $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ is LI.

Each finite subset of Z is LI. Hence Z is LI.

- i) for each $U \in W$, we have $U \subseteq Z$.
- ii) Z is an element of X, that is Z is linearly independent.

Let $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ be a finite subset of Z.

Since W is totally ordered set, then there exists $P \in W$ such that $\alpha_i \in P$ for each $i=1,\ldots,n$.

Since P is LI and $\{\alpha_1, \alpha_2, \dots, \alpha_n\} \subseteq P$. Hence $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ is LI.

Each finite subset of Z is LI. Hence Z is LI.

Therefore Z is an upper bound of W.

- i) for each $U \in W$, we have $U \subseteq Z$.
- ii) Z is an element of X, that is Z is linearly independent.

Let $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ be a finite subset of Z.

Since W is totally ordered set, then there exists $P \in W$ such that $\alpha_i \in P$ for each $i=1,\ldots,n$.

Since P is LI and $\{\alpha_1, \alpha_2, \dots, \alpha_n\} \subseteq P$. Hence $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ is LI.

Each finite subset of Z is LI. Hence Z is LI.

Therefore Z is an upper bound of W.

Hence every totally ordered subset of W has an upper bound.

- i) for each $U \in W$, we have $U \subseteq Z$.
- ii) Z is an element of X, that is Z is linearly independent.

Let $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ be a finite subset of Z.

Since W is totally ordered set, then there exists $P \in W$ such that $\alpha_i \in P$ for each $i=1,\ldots,n$.

Since P is LI and $\{\alpha_1, \alpha_2, \dots, \alpha_n\} \subseteq P$. Hence $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ is LI.

Each finite subset of Z is LI. Hence Z is LI.

Therefore Z is an upper bound of W.

Hence every totally ordered subset of W has an upper bound.

Let L_{max} be a maximal element of X.

Let L_{max} be a maximal element of X.

To show that L_{max} is basis for \mathbb{V} .

Let L_{max} be a maximal element of X.

To show that L_{max} is basis for \mathbb{V} .

Since L_{max} is an element of X, so L_{max} is LI.

Let L_{max} be a maximal element of X.

To show that L_{max} is basis for \mathbb{V} .

Since L_{max} is an element of X, so L_{max} is LI.

To show that $ls(L_{max}) = \mathbb{V}$.

Let L_{max} be a maximal element of X.

To show that L_{max} is basis for \mathbb{V} .

Since L_{max} is an element of X, so L_{max} is LI.

To show that $ls(L_{max}) = \mathbb{V}$.

Suppose $ls(L_{max}) \neq \mathbb{V}$. Then there exists $x \in \mathbb{V} - ls(L_{max})$.

Let L_{max} be a maximal element of X.

To show that L_{max} is basis for \mathbb{V} .

Since L_{max} is an element of X, so L_{max} is LI.

To show that $ls(L_{max}) = \mathbb{V}$.

Suppose $ls(L_{max}) \neq \mathbb{V}$. Then there exists $x \in \mathbb{V} - ls(L_{max})$.

 $L_{max} \cup \{x\}$ is LI. A contradiction to the fact that L_{max} is a maximal element of X.

Let L_{max} be a maximal element of X.

To show that L_{max} is basis for \mathbb{V} .

Since L_{max} is an element of X, so L_{max} is LI.

To show that $ls(L_{max}) = \mathbb{V}$.

Suppose $ls(L_{max}) \neq \mathbb{V}$. Then there exists $x \in \mathbb{V} - ls(L_{max})$.

 $L_{max} \cup \{x\}$ is LI. A contradiction to the fact that L_{max} is a maximal element of X.

Hence L_{max} is a basis for \mathbb{V} .

 \bullet Let $\mathbb{V}(\mathbb{F}).$ Any two bases of \mathbb{V} have the same cardinality.

 \bullet Let $\mathbb{V}(\mathbb{F}).$ Any two bases of \mathbb{V} have the same cardinality.

Proof: Let A and B be two bases of V.

 \bullet Let $\mathbb{V}(\mathbb{F}).$ Any two bases of \mathbb{V} have the same cardinality.

Proof: Let A and B be two bases of V.

There are two cases.

ullet Let $\mathbb{V}(\mathbb{F}).$ Any two bases of \mathbb{V} have the same cardinality.

Proof: Let A and B be two bases of V.

There are two cases.

Case-I. A is finite. We know that B is LI and $B \subseteq ls(A) = \mathbb{V}$.

ullet Let $\mathbb{V}(\mathbb{F}).$ Any two bases of \mathbb{V} have the same cardinality.

Proof: Let A and B be two bases of V.

There are two cases.

Case-I. A is finite. We know that B is LI and $B \subseteq ls(A) = \mathbb{V}$.

Then $|B| \leq |A|$

ullet Let $\mathbb{V}(\mathbb{F}).$ Any two bases of \mathbb{V} have the same cardinality.

Proof: Let A and B be two bases of V.

There are two cases.

Case-I. A is finite. We know that B is LI and $B \subseteq ls(A) = \mathbb{V}$.

Then $|B| \leq |A|$

Similar way, $|A| \leq |B|$. Hence |A| = |B|.

B is also infinite. Then $|B| \ge \aleph_0$.

B is also infinite. Then $|B| \geq \aleph_0$.

For each $a \in A$ can be expressed as a linear combination of finite elements of B.

B is also infinite. Then $|B| \geq \aleph_0$.

For each $a \in A$ can be expressed as a linear combination of finite elements of B.

Let B_a be the collection of these element.

B is also infinite. Then $|B| \geq \aleph_0$.

For each $a \in A$ can be expressed as a linear combination of finite elements of B.

Let B_a be the collection of these element.

 B_a is uniquely determined by a as B is basis.

CASE-II. A is infinite. Then $|A| \ge \aleph_0$.

B is also infinite. Then $|B| \ge \aleph_0$.

For each $a \in A$ can be expressed as a linear combination of finite elements of B.

Let B_a be the collection of these element.

 B_a is uniquely determined by a as B is basis.

$$B'=\cup_{a\in A}B_a.$$

 $\overline{\mathsf{CASE-II}.\ A\ \mathsf{is}}\ \mathsf{infinite}.\ \mathsf{Then}\ |A| \geq \aleph_0.$

B is also infinite. Then $|B| \geq \aleph_0$.

For each $a \in A$ can be expressed as a linear combination of finite elements of B.

Let B_a be the collection of these element.

 B_a is uniquely determined by a as B is basis.

$$B'=\cup_{a\in A}B_a.$$

 $\mathsf{ls}(A) = \mathbb{V} \implies \mathsf{ls}(B') = \mathbb{V}.$

CASE-II. *A* is infinite. Then $|A| \ge \aleph_0$.

B is also infinite. Then $|B| \geq \aleph_0$.

For each $a \in A$ can be expressed as a linear combination of finite elements of B.

Let B_a be the collection of these element.

 B_a is uniquely determined by a as B is basis.

$$B' = \cup_{a \in A} B_a$$
.

 $\mathsf{ls}(A) = \mathbb{V} \implies \mathsf{ls}(B') = \mathbb{V}.$

To show B = B'. Suppose $B \neq B'$. There exists $x \in B - B'$.

$$b = c_1b_1 + c_2b_2 + c_3b_3 + \cdots + c_kb_k$$
 where $b_i \in B'$ and $c_i \in \mathbb{F}$.

Hence $\{b, b_1, b_2, \dots, b_k\} \subseteq B$ is LD. A contradiction that B is LI.

$$b = c_1b_1 + c_2b_2 + c_3b_3 + \cdots + c_kb_k$$
 where $b_i \in B'$ and $c_i \in \mathbb{F}$.

Hence $\{b,b_1,b_2,\ldots,b_k\}\subseteq B$ is LD. A contradiction that B is LI.

Therefore
$$B = B' \implies |B| = |B'|$$

$$b = c_1b_1 + c_2b_2 + c_3b_3 + \cdots + c_kb_k$$
 where $b_i \in B'$ and $c_i \in \mathbb{F}$.

Hence $\{b, b_1, b_2, \dots, b_k\} \subseteq B$ is LD. A contradiction that B is LI.

Therefore
$$B = B' \implies |B| = |B'|$$

$$=\sum_{a\in A}|B_a|$$

$$b = c_1b_1 + c_2b_2 + c_3b_3 + \cdots + c_kb_k$$
 where $b_i \in B'$ and $c_i \in \mathbb{F}$.

Hence $\{b, b_1, b_2, \dots, b_k\} \subseteq B$ is LD. A contradiction that B is LI.

Therefore
$$B = B' \implies |B| = |B'|$$

$$=\sum_{a\in A}|B_a|$$

$$\leq \aleph_0|A| \leq |A|.$$

$$b = c_1b_1 + c_2b_2 + c_3b_3 + \cdots + c_kb_k$$
 where $b_i \in B'$ and $c_i \in \mathbb{F}$.

Hence $\{b, b_1, b_2, \dots, b_k\} \subseteq B$ is LD. A contradiction that B is LI.

Therefore
$$B = B' \implies |B| = |B'|$$

 $=\sum |B_a|$

$$\leq \aleph_0|A| \leq |A|.$$

Similar way, $|A| \leq |B|$. Hence |A| = |B|.

• Let $\mathbb V$ be a vector space. Then $\mathbb V$ is called **finite dimensional** if it has a basis B which is finite.

ullet Let $\mathbb V$ be a vector space. Then $\mathbb V$ is called **finite dimensional** if it has a basis $\mathcal B$ which is finite.

• The dimension of $\mathbb V$ is the cardinality of B and it is denote by $\dim(V)$.

ullet Let $\mathbb V$ be a vector space. Then $\mathbb V$ is called **finite dimensional** if it has a basis $\mathcal B$ which is finite.

ullet The dimension of $\mathbb V$ is the cardinality of B and it is denote by $\dim(V)$.

A vector space is infinite dimensional if it is not finite dimensional.

i) S is linearly independent

- i) S is linearly independent
- ii) no proper super set of S is linearly independent.

- i) S is linearly independent
- ii) no proper super set of S is linearly independent.

The following examples must be verified by the reader.

- i) S is linearly independent
- ii) no proper super set of S is linearly independent.

The following examples must be verified by the reader.

1. In \mathbb{R}^3 , the set $\{e_1, e_2\}$ is linearly independent but not maximal linearly independent.

- i) S is linearly independent
- ii) no proper super set of S is linearly independent.

The following examples must be verified by the reader.

- 1. In \mathbb{R}^3 , the set $\{e_1, e_2\}$ is linearly independent but not maximal linearly independent.
- 2. In \mathbb{R}^3 , the set $\{e_1, e_2, e_3\}$ is maximal linearly independent.

- i) S is linearly independent
- ii) no proper super set of S is linearly independent.

The following examples must be verified by the reader.

- 1. In \mathbb{R}^3 , the set $\{e_1, e_2\}$ is linearly independent but not maximal linearly independent.
- 2. In \mathbb{R}^3 , the set $\{e_1, e_2, e_3\}$ is maximal linearly independent.
- 3. Let $S \subset \mathbb{R}^n$ be linearly independent and |S| = n. Then S is maximal linearly independent.

ullet A set $S\subset \mathbb{V}$ is maximal linearly independent, then $\mathsf{ls}(S)=\mathbb{V}.$

ullet A set $S\subset \mathbb{V}$ is maximal linearly independent, then $\mathsf{ls}(S)=\mathbb{V}.$

Proof: *S* is maximal linearly independent set.

ullet A set $S\subset \mathbb{V}$ is maximal linearly independent, then $\mathsf{ls}(S)=\mathbb{V}.$

Proof: S is maximal linearly independent set.

To show ls(S) = V.

• A set $S \subset \mathbb{V}$ is maximal linearly independent, then $ls(S) = \mathbb{V}$.

Proof: S is maximal linearly independent set.

To show ls(S) = V.

Suppose $ls(S) \neq \mathbb{V}$. Then there exists $\alpha \in \mathbb{V}$ but not in ls(S).

• A set $S \subset \mathbb{V}$ is maximal linearly independent, then $ls(S) = \mathbb{V}$.

Proof: *S* is maximal linearly independent set.

To show ls(S) = V.

Suppose $ls(S) \neq \mathbb{V}$. Then there exists $\alpha \in \mathbb{V}$ but not in ls(S).

Take $S_1 = S \cup \{\alpha\}$. Then S_1 is linearly independent. A contradiction that S is maximal linearly independent set.

• A set $S \subset \mathbb{V}$ is maximal linearly independent, then $ls(S) = \mathbb{V}$.

Proof: *S* is maximal linearly independent set.

To show ls(S) = V.

Suppose $ls(S) \neq \mathbb{V}$. Then there exists $\alpha \in \mathbb{V}$ but not in ls(S).

Take $S_1 = S \cup \{\alpha\}$. Then S_1 is linearly independent. A contradiction that S is maximal linearly independent set.

Hence ls(S) = V.

Proof: Suppose that *S* is not maximal.

Proof: Suppose that *S* is not maximal.

Then there exits a linearly independent set S_1 such that $S \subsetneq S_1$ and $S_1 \subset ls(S)$.

Proof: Suppose that S is not maximal.

Then there exits a linearly independent set S_1 such that $S \subsetneq S_1$ and $S_1 \subset ls(S)$.

 S_1 is dependent, a contradiction. Hence S is maximal.