

H.T No					
11.1 140					

Sreenidhi Institute of Science and Technology

Regulations: Δ18

(An Autonomous Institution)

Code No: 7HC16

Date: 04-Aug-2022 (FN)

B.Tech II-Year II- Semester External Examination, July/August - 2022 (Supplementary)

MATHEMATICS-II (Differential Calculus) - (CSE, IT and ECM)

Time: 3 Hours Max.Marks:70

Note: a) No additional answer sheets will be provided.

- b) All sub-parts of a question must be answered at one place only, otherwise it will not be valued.
- c) Missing data can be assumed suitably.

ANSWER ANY 5 OUT OF 8 QUESTIONS. EACH QUESTION CARRIES 14 MARKS.

Bloom's Cognitive Levels of Learning (BCLL)

		Remember	L1	Apply	L3	Evaluate	L5			
		Understand	L2	Analyze	L4	Create	L6			
								BC LL	CO(s)	Marks
1.	a)	If $x + y + z = u, y + z = uv, z = uvw$, then evaluate $\frac{\partial (x,y,z)}{\partial (u,v,w)}$							CO1	[7M]
	b)							L5	CO1	[7M]
2.	a)	Solve $x \frac{dy}{dx} + y = x^2 y^6$						L5	CO2	[7M]
	b)	A body is originally at 80°c and cools down to 60°c in 20 minutes. If the temperature of the air is 40°c, find the temperature of the body after 40 minutes							CO2	[7M]
3.	a)	Solve $(D^2 - 2D + 1)$	$v = xe^x S$	inx				L3	CO3	[7M]
		Solve $(D^2 + a^2)y = tanax$, by the method of variation of parameters							CO3	[7M]
4.	a)	Find the real root of $x^3 - 3x - 5 = 0$ by Bisection Method Using Lagrange's interpolation formula find the value of y when x=10 from the following table.						L5	CO4	[7M]
	b)							L2	CO4	[7M]
		x 5 y=f(x) 12	6 13		11 16					
5. a	a)	using the Taylor's series method, solve $y' = x^2 - y$, $y(0) = 1$ at $x = 0.1$, 0.2.						L3	CO5	[7M]
b)									CO5	[7M]
6.	a)	$L\left\{\int_{0}^{t} te^{-t} sin 2t\right\}$	dt}					L5	CO6	[7M]

- - Find $L\left\{\int_0^t te^{-t} \sin 2t dt\right\}$ Using the Convolution theorem, find $L^{-1}\left\{\frac{s}{(s^2+4)^2}\right\}$ b) [7M]
- a) Find first and second order partial derivatives of $x^3 + y^3 3axy$ and verify L5 CO1 7. [5M] $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$
 - b) The number N of bacteria grew at a rate proportional to N. The value of N was L2 CO₂ [5M] initially 100 and increased to 332 in one hour. What was the value of N after $^{1\frac{1}{2}}$ hours?
 - c) Solve $(D^2 2D + 1)y = e^{3x}$ L2 CO₃ [4M]
- L3 CO4 8. [5M] a) From the following table of values of x and y, obtain dy for x=1.5 1.5 2.0 2.5 3.0 3.5 4.0
 - 13.625 24.0 3.375 7.0 38.875 59.0 b) Using Euler's Method find y(0.2) given y' = x + y, y(0) = 1 taking h=0.1. CO5 [5M]