Sistemi Informativi Evoluti e Big Data Sistemi informativi per la gestione delle operazioni industriali

Oltre il MES: architetture per la digitalizzazione dei processi di produzione

Alessandro Marini

Controllo di processo di Fabbrica

SCADA, PLC, CNC, Automazione e IoT: cosa sta cambiando nella fabbrica

Automazione: la piramide del CIM

II CIM anni 90

La baseline di Industria 4.0

The SME CIM wheel

Function modules of shop-floor control and management system

Sources: "Systems Approach to Computer-Integrated Design and Manufacturing" by N. Singh, John Wiley and Sons, Inc., 1996, "Computer Integrated Manufacturing" by Cheng WU, Yushun Fan, Deyun Xiao, 1997

La visione classica del CIM

Sistemi di produzione automatizzata

- Esempio di automazione spinta per tipologie di lavorazione meccanica
 - Lavorazioni per asportazione di truciolo (FMS)
 - Lavorazioni per deformazione plastica
 - Lavorazioni additive
 - Fonderia (fusioni sia in pressione che in gravità)
 - Assemblaggio
- Si basano sulla presenza di una o più macchine controllate da un software di controllo numerico (CNC)
- Sono asservite da sistemi di movimentazione semplici o robotizzati
- Esempio <u>FMS</u> lavorazioni meccaniche (https://youtu.be/xYx-VIbjt7Q)
- Esempio sistemi di <u>assemblaggio automatico</u> (https://www.cosberg.com/it/)

Magazzini automatici

- Permette l'immagazzinamento automatico del materiale
- Tracciabilità totale
- Riduzione/eliminazione degli errori nelle giacenze di magazzino
- Riduzione degli spazi di immagazzinamento
- Può essere usato per qualsiasi genere di immagazzinamento:
 - Attrezzature
 - Materiali
 - Ingombranti
- Generalmente integrato con il sistema ERP
- Ha una funziona critica nella fabbrica moderna per le opportunità offerte dalla integrabilità con MES e sistemi di movimentazione (LGV, AGV, nastri trasportatori/rulliere intelligenti)
- Esempio WMS (https://youtu.be/0UYHB9MwO-E)

SCADA

Supervisory Control and Data Acquisition

Il controllo di processo e i sistemi SCADA

- Per le industrie di processo lo SCADA è un sistema utilizzato per garantire:
 - Coordinamento e sorveglianza di processi complessi
 - Coordinamento fra impianti
- Tradizionalmente si collega ai singoli sistemi di supervisione di macchina o impianto
- Sistemi di supervisione
 - No CNC
 - Gestione dei setpoint
 - Funzionalità specifiche per il calcolo delle modslità di conduzione degli impianti
- Il problema dello SCADA è il coordinamento di device e impianti

Dal CIM alla Fabbrica Intelligente

Smartness

Dimensioni e impatti

RAMI 4.0: Reference Architecture Model I4.0

1. Impatto del processo sui dati gestionali

2. Gestione degli asset

3. Impatto dei fattori di contesto sui dati gestionali

4. Impatto energetico del prodotto

5. Stato di salute degli asset

6. Qualità delle condizioni di lavoro

7. Impatto energetico del processo

8. Struttura dei parametri di contesto

9. Struttura del consumo energetico

10. Sostenibilità

Architetture digitali

L'architettura per mettere tutto insieme

