

GAMES 102在线课程

几何建模与处理基础

刘利刚

中国科学技术大学

GAMES 102在线课程:几何建模与处理基础

NURBS曲线

作业4情况

- 作业4情况
 - 演示优秀demo
 - 优秀代码和优秀报告
- 其他学员可以继续完成提交
 - 可参照优秀作业尽快完成, 赶上大部队

回顾: Bézier曲线

- 类似RBF函数:对每个控制点叠加权函数
- 几何设计观点: 给定控制顶点 $\{b_i, i = 0 \sim n\}$,使用一组(随t变化的)权系数函数 $\{B_i^n(t), i = 0 \sim n\}$ 对它们进行线性组合,得到的点的集合

$$x(t) = \sum_{i=0}^{n} B_i^n(t) \cdot b_i$$

$$\mathbf{b}_1^{(0)} \qquad \mathbf{b}_2^{(0)}$$

$$\mathbf{b}_3^{(0)}$$

Bezier曲线的性质来源于Bernstein基函数的性质

回顾: B样条曲线

- Bézier曲线、RBF函数:每个控制点上的权系数 函数都是全局(定义在整个定义域)的
- B样条曲线:每个控制点上的权系数函数是局部 定义的(定义在其参数节点附近的支集)

有理曲线

问题: Bézier曲线无法表示圆弧!

思考:如何证明?

Approximation of Circle using Cubic Bezier

Evaluation of $(x^2 + y^2)$ for points on the Bezier curve

投影几何

■ 2D case:

■ 3D case:

• 齐次坐标:
$$x \to \begin{pmatrix} \omega x \\ \omega \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} \to \begin{pmatrix} \omega x \\ \omega y \\ \omega \end{pmatrix} \qquad \begin{pmatrix} x \\ y \\ z \end{pmatrix} \to \begin{pmatrix} \omega x \\ \omega y \\ \omega z \\ \omega \end{pmatrix}$$

$$x' = d\frac{x}{z}, \quad y' = d\frac{y}{z}$$

$$\begin{pmatrix} x' \\ y' \\ z' \\ \omega' \end{pmatrix} = \begin{pmatrix} d & 0 & 0 & 0 \\ 0 & d & 0 & 0 \\ 0 & 0 & d & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$
center of projection image plane object

有理Bezier曲线

- Rational Bezier curves in \mathbb{R}^n of degree d:
 - Form a Bezier curve of degree d in n+1 dimensional space
 - Interpret last coordinates as homogenous component
 - Euclidean coordinates are obtained by projection

$$f^{(hom)}(t) = \sum_{i=0}^{n} B_i^{(d)}(t) p_i, \quad p_i \in \mathbb{R}^{n+1}$$

$$\sum_{i=0}^{n} B_i^{(d)}(t) \begin{pmatrix} p_i^{(1)} \\ \dots \\ p_i^{(n)} \end{pmatrix}$$

$$f^{(eucl)}(t) = \frac{\sum_{i=0}^{n} B_i^{(d)}(t) p_i^{(n+1)}}{\sum_{i=0}^{n} B_i^{(d)}(t) p_i^{(n+1)}}$$

有理Bezier曲线

• 每个控制顶点上设置一个权系数 $f^{(eucl)}(t) = \frac{\sum_{i=0}^{n} B_i^{(d)}(t) \omega_i p_i}{\sum_{i=0}^{n} B_i^{(d)}(t) \omega_i} \qquad p_i = \begin{pmatrix} p_i^{(1)} \\ \dots \\ p_i^{(n)} \end{pmatrix}$

• 另一种形式
$$f^{(eucl)}(t) = \sum_{i=0}^{n} p_i \frac{B_i^{(d)}(t)\omega_i}{\sum_{j=0}^{n} B_j^{(d)}(t)\omega_i} = \sum_{i=0}^{n} q_i(t)p_i$$
 with $\sum_{i=0}^{n} q_i(t) = 1$

• 如权系数都相等,则退化为Bezier曲线

有理Bezier曲线的几何解释

• 高维的Bezier曲线的中心投影

权系数对曲线形状的影响

• 控制顶点的权系数越大, 曲线就越靠近该点

有理Bezier曲线的性质

- 具有Bezier曲线的大部分性质(设 $\omega_i > 0$, $i = 1 \sim n$):
 - 端点插值
 - 端点切线
 - 凸包性
 - 导数递推性
 - de Casteljau作图算法
 - •

2次有理Bezier曲线表示圆

NURBS曲线

NURBS: Non-Uniform Rational B-Spline (非均匀有理B样条)

NURBS: Rational B-Splines

• Formally: $(N_i^{(d)})$: B-spline basis function i of degree d)

$$f(t) = \frac{\sum_{i=1}^{n} N_i^{(d)}(t) \omega_i \boldsymbol{p}_i}{\sum_{i=1}^{n} N_i^{(d)}(t) \omega_i}$$

- Knot sequences etc. all remain the same
- De Boor algorithm similar to rational de Casteljau alg.
 - option 1. apply separately to numerator, denominator
 - option 2. normalize weights in each intermediate result
 - the second option is numerically more stable

NURBS曲线

- 影响NURBS曲线建模的因素
 - 控制顶点: 用户交互的手段
 - 节点向量: 决定了B样条基函数
 - 权系数: 也影响曲线的形状, 生成圆锥曲线等

- NURBS曲线的性质
 - 大部分与Bezier/B样条曲线类同: 具有良好的几何直观性

NURBS曲线的例子

NURBS曲线的例子

NURBS曲线

产品设计的工业标准

- NURBS曲线/曲面表达是当前的工业标准
 - 工业CAD软件的基本表达形式
 - 各种CAD系统的数据交换标准

- 3D建模软件:
 - 工业设计: AutoCAD, CATIA, SolidWorks, Rhino, ...
 - 动画设计: 3DS Max, Maya, SoftImage, Cinema 4D, ...

谢 谢!