

Amplitude analysis of $\Lambda_b \rightarrow J/\psi$ Kp decays

Iraq Rabadan
for the Cinvestav group
BPH Spectroscopy Subgroup meeting
May 2, 2016

Introduction

Last summer LHCb surprised us with the discovery of J/ψ p resonances consistent with pentaquarks states.

A 6-D analysis of mass (m_{Kp}) and 5 angles was used to properly describe the three body final state of $\Lambda_b \to J/\psi$ Kp decays, and to discover the nature of the unexpected peaks.

A satisfactory fit in the J/ ψ p mass distribution is found only by including 2 additional resonances of masses ~4380 and ~4449 MeV, widths ~205 and ~39 MeV, and spins 3/2 and 5/2, respectively.

--- $\Lambda(1670)$

$\Lambda^* \rightarrow Kp$ activity

State	J^P	M_0 (MeV)	Γ_0 (MeV)
$\Lambda(1405)$	1/2-	1405.1+1.3	50.5 ± 2.0
$\Lambda(1520)$	3/2-	1519.5 ± 1.0	15.6 ± 1.0
$\Lambda(1600)$	1/2+	1600	150
$\Lambda(1670)$	1/2-	1670	35
$\Lambda(1690)$	3/2-	1690	60
$\Lambda(1800)$	1/2-	1800	300
$\Lambda(1810)$	1/2+	1810	150
$\Lambda(1820)$	5/2+	1820	80
$\Lambda(1830)$	5/2-	1830	95
$\Lambda(1890)$	3/2+	1890	100
$\Lambda(2100)$	7/2-	2100	200
$\Lambda(2110)$	5/2+	2110	200
$\Lambda(2350)$	9/2+	2350	150
$\Lambda(2585)$?	≈2585	200

LHCb assumes 5/2

$\Lambda^* \rightarrow \text{Kp activity was not enough } \dots$

- $\Lambda^* \rightarrow$ Kp reflections could not describe the **J/\psi p** distribution. Unless ...

Goal

Reproduce the LHCb analysis using CMS 2012 data:

- 1. 6-D analysis of $\Lambda_b \to J/\psi$ Kp decays. \to Ongoing work. **This talk**.
 - a. $\Lambda_h \rightarrow J/\psi$ Kp **reconstruction** and selection optimization.
 - b. $\Lambda_b \to J/\psi$ Kp amplitudes fit: **signal model**, background description (reflections, modeling), efficiencies (MC), etc.
- 2. Addition of 1-2 extra resonant components. \rightarrow We are not there yet.
 - a. Confirm or reject LHCb pentaquarks.

Decay reconstruction

- 2012 "Muonia" sample (so far).
- Displaced J/ψ triggers.
 - Muons must match trigger.
- Soft-muon selection.
- J/ψ mass window: (2.95,3.25)
- Two muons and two high purity tracks, making a vertex:
 - Assumed to be proton and a kaon. Two possible assumptions: $Kp = t_1t_2$ or t_2t_1 . Testing both.
 - pT > 0.7 GeV.
- Kinematic vertex fit of 4 tracks:
 - Dimuon mass constrained to the J/ ψ W.A. mass to improve the Λ_b mass resolution and correct muon momenta.
 - Multiple candidates kept (so far).

MC simulation

Λ_b → J/ψ(→μ⁺μ⁻) Kp private MC generated using phase space models in order to test reconstruction code, optimize selection, understand contaminations, efficiencies, etc.

- Working on MC-matching.
- Official MC was requested: 50 M, no generation filters.

MC simulation

Data after some cuts

- Cuts
- $pt(J/\psi) > 15$
- $c\tau/\sigma_{c\tau} > 5$
- pt(Kp) > 7
- $\chi^2_{vtx}(J/\psi Kp)$, $\chi^2_{vtx}(J/\psi K) > 5$
- $\chi^2_{vtx}(J/\psi p), \chi^2_{vtx}(Kp) > 5$

Decay angles (Helicity formalism)

The choice of the $\hat{z}_0^{\{A_b^0\}}$ direction for the A_b^0 spin quantization is arbitrary.

The choice of $\hat{x}_0^{\{\Lambda_b^0\}}$ direction in the Λ_b^0 rest frame is also arbitrary. ϕ_{A^*} angle zero by definition.

Etc.:

$$\begin{split} & \text{lab frame} \\ & \phi_K = \text{atan2} \left(- (\hat{p}_{\psi}^{\{\Lambda^*\}} \times \hat{x}_0^{\{\Lambda^*\}}) \cdot \hat{p}_K^{\{\Lambda^*\}}, \, \hat{x}_0^{\{\Lambda^*\}} \cdot \hat{p}_K^{\{\Lambda^*\}} \right) \\ & \cos \theta_{\psi} = - \, \hat{p}_{\Lambda^*}^{\{\psi\}} \cdot \hat{p}_{\mu}^{\,\{\psi\}}, \qquad \phi_{\mu} = \text{atan2} \left(- (\hat{p}_{\Lambda^*}^{\,\{\psi\}} \times \hat{x}_0^{\,\{\psi\}}) \cdot \hat{p}_{\mu}^{\,\{\psi\}}, \, \hat{x}_0^{\,\{\psi\}} \cdot \hat{p}_{\mu}^{\,\{\psi\}} \right) \end{split}$$

Ψ

Probability Density Function

Matrix Element for $\Lambda_h \rightarrow J/\psi \Lambda^*$

Spin 1 Wigner's D-Matrix

Spin J_{Λ^*} Wigner's D-Matrix

 $R_X(m) = B'_{L_{\Lambda_0^0}}(p, p_0, d) \left(\frac{p}{M_{\Lambda_0^0}}\right)^{L_{\Lambda_0^0}^X}$

 $\times \mathrm{BW}(m|M_{0X},\Gamma_{0X})B'_{L_X}(q,q_0,d)\left(\frac{q}{M_{0X}}\right)^{L_X}$

Mass dependent terms

$$R_{A_n^*}(m_{Kp}) = B'_{L_{A_0^*}^{A_n^*}}(p,p_0,d) \left(\frac{p}{M_{A_0^0}}\right)^{L_{A_0^*}^{A_n^*}} \mathrm{BW}(m_{Kp}|M_0^{A_n^*},\Gamma_0^{A_n^*}) \, B'_{L_{A_n^*}}(q,q_0,d) \left(\frac{q}{M_0^{A_n^*}}\right)^{L_{A_n^*}}$$
 Barrier factor for $\Lambda_b \to \mathrm{J}/\psi \, \Lambda^*$

Blatt-Weisskopf functions:

$$\begin{split} B_0'(p,p_0,d) =& 1\,, \\ B_1'(p,p_0,d) =& \sqrt{\frac{1+(p_0\,d)^2}{1+(p\,d)^2}}\,, \\ B_2'(p,p_0,d) =& \sqrt{\frac{9+3(p_0\,d)^2+(p_0\,d)^4}{9+3(p\,d)^2+(p\,d)^4}}\,, \end{split}$$

BW
$$(m|M_0, \Gamma_0) = \frac{1}{M_0^2 - m^2 - iM_0\Gamma(m)}$$

$$\Gamma(m) = \Gamma_0 \left(\frac{q}{q_0}\right)^{2L_{\Lambda^*}+1} \frac{M_0}{m} B'_{L_{\Lambda^*}}(q, q_0, d)^2$$

 p_0 and q_0 denote values of p and q at $m = M_{0X}$ $d = 3.0 \text{ GeV}^{-1} = \text{size of the decaying particle}$

etc.

- Signal model built using **Mathematica**.
 - Programming optimized for further analytical integration.
 - No approximations.
- Used built-in functions (WignerD, etc.). All were crosschecked with the literature.

5D integration of complete signal model

Example: $B_{\perp S}^{X}$ amplitudes set to $Re(B_{\perp S}^{X}) = C_{X}$ and $Im(B_{\perp S}^{X}) = 0$.

5D integration of complete signal model (II)

Efficiencies are important!

5D integration of complete signal model (III)

Flat distributions expected for all azimuthal angles

Fitting code

- Signal model was ported to RooFit.
 - Programming optimized for fast evaluation and negligible precision loss.
- RooFit generates pseudo-experiments.
- RooFit performs 5D integration numerically (or can use "advertised" integrals).
- Fitting tests ongoing.

Angular projections using RooFit

Summary

- Decay reconstruction is done.
- Reflections and other contaminations are being studied in data and MC.
 - Selection will be optimized using data (sidebands) and MC (signal and backgrounds) using multivariate techniques such as BDTs.
- 6D signal code is all set.
 - We are "learning" to fit at this level, with only a few resonances.
 - Then we will introduce efficiencies.
 - Then background.
 - ...
- A lot of work to be done yet.
- Group:
 - Analysis: Iraq Rabadan, Rogelio Reyes.
 - Advise: Ivan Heredia, Heriberto Castilla.
 - Collaboration with $\Lambda_b \to \mu^+ \mu^-$ Kp team: Cecilia Duran, Jhovanny Mejia, Eduard de la Cruz.

Spares

The fraction for a given resonance is the ratio of the phase space integrals of $|\mathcal{M}|^2_{X}$ calculated for the resonance amplitude X taken alone and for the total $|\mathcal{M}|^2$ summing over all contributions.

The sum of the fractions is not necessarily unity due to the potential presence of interference between two resonances.

Interference between different spin-J states vanishes.

	LHCb Fit	Our example	Cinv
Particle	Fit fraction (%) cFit	Fraction (%)	
$P_c(4380)^+$	8.42 ± 0.68	0	
$P_c(4450)^+$	4.09 ± 0.48	0	
$\Lambda(1405)$	14.64 ± 0.72	12.05	
$\Lambda(1520)$	18.93 ± 0.52	6.64	
$\Lambda(1600)$	23.50 ± 1.48	22.25	
$\Lambda(1670)$	1.47 ± 0.49	1.32	
$\Lambda(1690)$	8.66 ± 0.90	6.48	
$\Lambda(1800)$	18.21 ± 2.27	14.24	
$\Lambda(1810)$	17.88 ± 2.11	12.76	
$\Lambda(1820)$	2.32 ± 0.69	1.51	
$\Lambda(1830)$	1.76 ± 0.58	1.46	
$\Lambda(1890)$	3.96 ± 0.43	2.82	
$\Lambda(2100)$	1.65 ± 0.29	0.45	
$\Lambda(2110)$	1.62 ± 0.32	0.93	
Λ(2350)	?	0.08	
Λ(2585)	?	1.52	
TOTAL	127.11	84.51	
Interference	es -27.11 ?	15.49	
TOTAL + Ir	nterf. 100?	100	