

Science@SAFE 2014

Forest degradation from above forest canopies

Marion Pfeifer¹, Robert Ewers¹

RapidEye at SAFE provided by ESA and BlackEye

Linking plot attributes to spectral data measured from above canopies

Linking plot attributes to texture data derived from spectral data measured from above canopies

Dissimilarity band 3, offset =1, varying window sizes

Mapping forest attributes

Earth Observation At SAFE

N = 193 (AGB), N = 203 (LAI)

Leaf Area Index, fCover

Using hemispherical photography

Aboveground biomass, AGB_{live}

AGB_Chave_wet: global

AGB_Chave_moist: global

AGB_Niiyama_2010: Malaysia

AGB_Kenzo_2009: Sabah

AGB_Basuki_2009: East Kalimantan

 Biomass (AGB_{live}) declines significantly with increasing land degradation at SAFE

Imperial College London

Earth Observation At SAFE

- Biomass (AGB_{live}) declines significantly with increasing land degradation at SAFE
- LAI varies within and among forest stands and is clearly linked to microclimate

Data distributed for SAFE analyses: LAI_Biomass_Quality_Status_August_2014.xls

Grouping forest plots into four classes: pristine (OG), slightly logged (LittleLog), logged (Logged), heavily logged (LogFrag); and grouping plots in oil palm stands (OilPalm)

LAI, N = 191 (LFE plots are in the clouds), AGB, N = 185

Mapping forest attributes

Maybe, at stand level, there is some relationship between satellite derived data and field derived AGB that can be exploited...... But!

It doesn't look really good for Leaf Area Index, which is more directly linked to impacts on microclimate

And the predictive quality at plot level is questionable.....

Predicting forest attributes for each pixel using these algorithms will come with uncertainties.

And to do so across the whole SAFE landscape requires to get

cloud-free images first.

Landsat images are good for cover change detection. But they seem to be less capable of depicting degradation.

But we do have high hopes for aerial images/aerial sensor data. Not that finding algorithms for these will make life any easier, for upscaling or back-casting. And there is plenty of room for using Sentinel data or other data sources.

?? Some time soon

At the 'workshop' tomorrow:

- Which satellite data do we have in the SAFE database?
- Which sensor data are we hoping to get over the next years?
- What are these data what do they mean for my study?
- How can I make the image data work for me?
- And which maps are being produced to make life easy for me?

Imperial College London

Earth Observation At SAFE

Thank you

Funding ERC, Sime Darby Foundation, European Space Agency

Mapping forest attributes

Shaw & Burke, 2003. Lincoln Laboratory Journal

RapidEye

- five Earth Observation satellites, since 02/09
- Sensor: RapidEye Earth Imaging System (REIS)
- Image bands

Blue: 440 – 510 nm

Green: 520 - 590 nm

Red: 630 – 685 nm

Red Edge: 690 – 730 nm

Near IR: 760 - 850 nm

- Resolution: 6.5 m (resampled to 5 m)
- Capability for daily revisit to any point on earth

Texture analyses: e.g. grey level co-occurrence matrix (glcm)

- N of similar combinations of neighbours within window of specified size: to the right with offset = 1 (asymmetric)
- Option to rescale grey values before analyses

For each combination of neighbours: 1,1: Zero; 1,2; Zero; 1,3: Two,

Image with 5 grey values

Co-Occurrence matrix: 1 to right