ECE124: Discussion

Discussion #2

Yeonsik Noh, PhD

Number Systems

Decimal	Hinary	Hex	Octol
90	00000	00	00
01	00001	01	01
02	00010	02	02
03	00011	03	03
04	00100	()4	04
05	00101	05	05
06	00110	06	06
07	00111	07	07
08	01000	08	10
09	01001	09	11
10	01010	0A	12
11	01011	0B	13
12	01100	0C	14
13	01101	0D	15
14	01110	0E	16
15	01111	0F	17

Conversions between number systems

Conversion from base r to decimal

3 digits out# (a2a1a0)8
=
$$(a0*8^0)+(a0*8^1)+(a0*8^2)=(?)10$$

- Conversion from decimal to base r
 - Divide number and successive quotients by r
 - Sequence of remainders is base *r* number

1.9 Express the following numbers in different number systems.

1.) Decimal

$$(1x2^4)+1x2^2+1x2^1+1x2^-2+1x2^-4=(?)10 < -- dont have to find on the test,$$

just use formula

2.) octal

010 110 . 010 100

26.24

Decimal	Binary	Hex	Octal
00	00000	00	00
01	00001	01	01
02	00010	02	02
03	00011	03	03
04	00100	()4	04
05	00101	05	05
06	00110	06	06
07	00111	07	07
08	01000	08	10
09	01001	09	11
10	01010	0A	12
11	01011	ØВ	13
12	01100	0C	14
13	01101	θD	15
14	01110	0E	16
15	01111	0F.	17

3.) Hex 0001 0110 . 0101 1 6 . 5

1.9 Express the following numbers in different number systems.

 $(c) (26.24)_8$

Binary 26.24 010 110 . 010 100

what if (26.24)16 0010 0110 . 0010 0100

Decimal	Hinary	Hex	Octal
00	00000	00	00
01	00001	01	01
02	00010	02	02
03	00011	03	03
04	00100	()4	04
05	00101	05	05
06	00110	06	06
07	00111	07	07
08	01000	08	10
09	01001	09	11
10	01010	0A	12
11	01011	0B	13
12	01100	0C	14
13	01101	θD	15
14	01110	0E	16
15	01111	0F	17

1.9 Express the following numbers in different number systems.

(d)
$$(DABA.B)_{16}$$

```
Binary
                                    octal
1101 1010 1011 1010 . 1011
                                    15 12 13 12 . 13
              (25.6875)10
              to binary
               10011.1011
                           .6875*2 = 1+.375 <-MSB
25/2 =12R1 1
               <- LSB
                           .375*2 = 0+.75
12/2 = 6
6/2=3
                           .75*2 = 1 + .5
                           .5*2 =
3/2=1R1
```

Decimal	Hinary	Hex	Octal
00	00000	00	00
01	00001	01	01
02	00010	02	02
03	00011	03	03
04	00100	()4	()4
05	00101	05	05
06	00110	06	06
07	00111	07	07
08	01000	08	10
08	01001	09	11
10	01010	0A	12
11	01011	0B	13
12	01100	0C	14
13	01101	θD	15
14	01110	0E	16
15	01111	0F	17

• Computer arithmetic of signed numbers signed magnitude --> left most (MSB)

N's complement

Given a number N in base r having n digits, the (r-1)'s complement of N is defined as:

$$(r^{n}-1)-N$$

• Given a number N in base r having n digits, the (r)'s complement of N is defined as:

$$(r^n) - N$$

-(1*2^2)+(1*2^1)+(1*2^0)

Signed Numbers with Complements

3-bit representations of positive and negative numbers: 101 =(-1)10

$$3 = 011$$
 $-3 = 101$

ATT-			•	
Decimal		2's Complement	1's Complement	Signed Magnitude
	+3		_	b //
0 1/	ТЭ	01/	0 11	0 17
0/0	+2	010	010	010
001	+1	001	001	00/
000	0	000	000	0 8 0
	-0	X	1 ()	100
	-1	111	110	/ 0 / -
	-2	110	101	(10
	-3	101	100	(/ (
	-4	100	X	X

011100 100100

- Bit sequence does not reveal coding—context matters!
- Left most bit is sign bit in 2's complement—automatically!

1.14 Obtain the 1's and 2' complements of the following binary numbers:

(d) 10101010

01010101

01010110

(e) 10100101 01011010 01011011 (f) 1111111 00000000 00000001 Convert the following decimal numbers to 8-bit signed binary numbers and represent them in 8-bit 2's complement representation.

(b) 27

(c) -52

11100101

00011011

00110100

11001100

1.18 Perform subtraction on the given unsigned binary numbers using the 2's complement of the subtrahend. Where the result should be negative, find its 2's complement and affix a minus sign.

(a)
$$10011 - 10010$$
 $19-18 = 1$
(c) $1001 - 110101$
 00001001
 00001001
 $+ 101110$
 000001
 $+ 11001011$
 11010100
 -00101100