MAT1830 - Discrete Mathematics for Computer Science Assignment #4 Solutions

(1) Let P(n) be the statement "2" divides a_n ".

Base steps.
$$a_1 = 4$$
 and $2^1 = 2$ divides 4, so $P(1)$ is true.
 $a_2 = 12$ and $2^2 = 4$ divides 12, so $P(2)$ is true.

Induction step. For some integer $k \geq 2$, assume that $P(1), P(2), \ldots, P(k)$ are true. We need to prove that P(k+1) is true, that is, that 2^{k+1} divides a_{k+1} .

Because P(k) and P(k-1) are true 2^k divides a_k and 2^{k-1} divides a_{k-1} . So we know that $a_k = r2^k$ and $a_{k-1} = s2^{k-1}$ for some integers r and s.

Now,

$$a_{k+1} = 10a_k - 12a_{k-1}$$
 by the definition of a_{k+1}
 $= 10r2^k - 12s2^{k-1}$ by $P(k)$ and $P(k-1)$
 $= 5r2^{k+1} - 3s2^{k+1}$
 $= 2^{k+1}(5r - 3s)$. [2]

Note that 5r - 3s is an integer because r and s are integers.

So 2^{k+1} divides a_{k+1} and thus P(k+1) is true.

So we have proved by induction that P(n) is true for each integer $n \ge 1$.

(2) (i)
$$\{-6, -5, 3, 4, 5\}$$

(ii)
$$\{x: x \in \mathbb{Z} \text{ and } x \leq -4\}$$

(iii)
$$\{x: x \in \mathbb{Z} \text{ and either } x \leq -7 \text{ or } x = -4 \text{ or } x = -3 \text{ or } x \geq 6\}$$

(iv)
$$\{\{-6, -5, 3\}, \{5\}, \{\}\}$$

(v)
$$|S \cap T| = |\{3, 4, 5\}| = 3$$
. So $|\mathcal{P}(S \cap T)| = 2^3 = 8$. So $|\mathcal{P}(\mathcal{P}(S \cap T))| = 2^8 = 256$. [2]

(3) (i) Yes. Let A, B and C be any sets. Now

$$\begin{split} (x,y) \in (A \cup B) \times C &\equiv x \in A \cup B \wedge y \in C \\ &\equiv (x \in A \vee x \in B) \wedge y \in C \\ &\equiv (x \in A \wedge y \in C) \vee (x \in B \wedge y \in C) \\ &\equiv (x,y) \in A \times C \vee (x,y) \in B \times C \\ &\equiv (x,y) \in (A \times C) \cup (B \times C). \end{split}$$

So $(x,y) \in (A \cup B) \times C$ is logically equivalent to $(x,y) \in (A \times C) \cup (B \times C)$ and it follows that $(A \cup B) \times C = (A \times C) \cup (B \times C)$. [3]

(ii) No. For example, let $A = \{1\}$ and $B = \{2\}$. Then

$$\mathcal{P}(A)\triangle\mathcal{P}(B) = \{\emptyset, \{1\}\} \triangle \{\emptyset, \{2\}\} = \{\{1\}, \{2\}\}$$

$$\mathcal{P}(A\triangle B) = \mathcal{P}(\{1, 2\}) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}.$$
[2]