CHAPTER EIGHTTEEN

MOS Digital Integrated Circuits

The currents supplied by $V_{\rm DD}$ for <u>high</u> and <u>low</u> states must be determined

The 18 Output high current supplied I_{DD}(OH)

For High output, Input is low N_O is OFF

$$I_{DD}(OH) = 0$$

Output low current supplied $I_{DD}(OL)$

For Low output, Input is $\underline{high} \longrightarrow N_0$ operates in

 $N_{\rm O}$ operates in linear region

$$V_{GS} = V_{OH} = V_{DD}$$
 $V_{DS} = V_{OL}$

$$I_{D} = \frac{K_{n}}{2} \left[2 \times (V_{DD} - V_{TN}) V_{DS} - V_{DS}^{2} \right] = \frac{V_{DD} - V_{DS}}{R_{L}}$$

$$V_{DS} = V_{OL} \cong \frac{V_{DD}}{(V_{DD} - V_{TN})K_nR_L + 1} = V_{DS} \leq (V_{GS} - V_{TN})$$

$$I_{DD}(OL) = \frac{K_n}{2} \left[2 \times (V_{DD} - V_{TN}) V_{OL} - V_{OL}^2 \right]$$

Static Power Dissipation P_{DD} (avg)

$$P_{DD}(avg) = V_{DD}\left(\frac{I_{DD}(OL) + I_{DD}(OH)}{2}\right) = V_{DD}\left(\frac{I_{DD}(OL)}{2}\right)$$

Dynamic Power Dissipation P_{DD}(dyn)

$$P_{DD}(dyn) = C_L \upsilon(V_{DD})^2$$

C is the total load capacitance at the output of the gate

v is the switching frequency of the gate

o Example

(a) Calculate the static dissipated power in the driver gate for the last example

$$V_{DD} = 5V$$
, $V_{T} = 1 V$, $k_{\underline{n}} = 40\mu A/V^{2}$, $R_{L} = 50k\Omega$,

o Solution (Exact Sol.)

$$V_{OL} = \left[V_{DD} - V_{TN} + \frac{1}{K_n R_L} \right] \pm \sqrt{\left[V_{DD} - V_{TN} + \frac{1}{K_n R_L} \right]^2 - \frac{2}{K_n} \frac{V_{DD}}{R_L}}$$

$$V_{OL} = 4.5 \pm 3.905$$

$$V_{OL} = 4.5 \pm 3.905$$
 $V_{OL} = 0.595V$ $V_{OL} = 3.41V$

$$V_{OL} = 8.41V$$

$$V_{OL} = V_{DS} \le (V_{GS} - V_{TN})$$
 $V_{OL} = V_{DS} \le (5-1)$

To ensure that N_O operates in linear mode

<u>Cont.</u> o Example

(a) Calculate the static dissipated power in the driver gate for the last example

$$V_{DD} = 5V$$
, $V_{T} = 1 V$, $k_{\underline{n}} = 40\mu A/V^{2}$, $R_{L} = 50k\Omega$,

o Solution (Exact Sol.)

$$V_{OL} = 0.595V$$

$$I_{DD}(OL) = \frac{V_{DD} - V_{OL}}{R_{t}} = \frac{5 - 0.595}{50k} = 88.1 \mu A$$

$$I_{DD}(OL) = \frac{K_n}{2} \left[2 \times (V_{DD} - V_{TN}) V_{DS} - V_{DS}^2 \right] = 20 \times 10^{-6} \left(2 \times 4 \times 0.595 - 0.595^2 \right) = 88.1 \mu A$$

$$P_{DD}(avg) = 5\left(\frac{88.1}{2}\right) = 0.22mW$$

<u>Cont.</u>o Example

(a) Calculate the static dissipated power in the driver gate for the last example

$$V_{DD} = 5V$$
, $V_{T} = 1 V$, $k_{\underline{n}} = 40\mu A/V^{2}$, $R_{L} = 50k\Omega$,

o Solution (Approx. Sol.)

$$V_{OL} \cong \frac{V_{DD}}{(V_{DD} - V_{TN})K_n R_L + 1} = \frac{5}{(5 - 1) \times 40 \times 10^{-6} \times 50 \times 10^3} = 0.556V$$

$$I_{DD}(OL) = \frac{V_{DD} - V_{OL}}{R_{I}} = \frac{5 - 0.556}{50k} = 88.89 \mu A$$

$$I_{DD}(OL) = \frac{K_n}{2} \left[2 \times (V_{DD} - V_{TN}) V_{DS} - V_{DS}^2 \right] = 20 \times 10^{-6} \left(2 \times 4 \times 0.556 - 0.556^2 \right) = 82.8 \mu A$$

$$P_{DD}(avg) = 5\left(\frac{82.8}{2}\right) = 0.207mW$$

Diff. due to approx.

<u>Cont.</u>o Example

(b) Calculate the dynamic dissipated power in the driver gate for the last example $V_{DD} = 5V$, $V_{T} = 1 V$, $k_{n} = 40\mu A/V^{2}$, $R_{L} = 50k\Omega$,

$$C_1 = 1$$
 pF, and $\upsilon = 1MHz$

Solution

$$P_{DD}(dyn) = C_L \upsilon (V_{DD})^2$$

$$P_{DD}(dyn) = 10^{-12} \times 10^6 \times 25 = 25 \mu W$$

$$C_L = C'_{G1} + C'_{G2} + \cdots$$
 parallel

Note: In resistor loaded NMOS inverter, the dynamic dissipated power is less than the static dissipated power

• HW #10: Solve Problems: 18.**1-3**,