

Systems of Ordinary Differential Equations > Linear Systems of Three and More Equations

1.
$$x_t' = ax$$
, $y_t' = bx + cy$, $z_t' = dx + ky + pz$. Solution:

$$\begin{split} x &= C_1 e^{at}, \\ y &= \frac{bC_1}{a-c} e^{at} + C_2 e^{ct}, \\ z &= \frac{C_1}{a-p} \left(d + \frac{bk}{a-c} \right) e^{at} + \frac{kC_2}{c-p} e^{ct} + C_3 e^{pt}, \end{split}$$

where C_1 , C_2 , and C_3 are arbitrary constants.

Copyright © 2004 Andrei D. Polyanin

http://eqworld.ipmnet.ru/en/solutions/sysode/sode0201.pdf