The imposter syndrome is strong with this one

```
library(tidyverse)
library(tidymodels)
library(stacks)
dir <- '20210302'
path_coefs_glm <- here::here(dir, 'coefs_glm.rds')</pre>
path_res_knn <- here::here(dir, 'res_knn.rds')</pre>
path_res_rf <- here::here(dir, 'res_rf.rds')</pre>
path_fit_ens <- here::here(dir, 'fit_ens.rds')</pre>
path_preds_holdout <- here::here(dir, 'preds_holdout.csv')</pre>
path_probs_holdout <- here::here(dir, 'probs_holdout.csv')</pre>
df <-
  here::here(dir, 'sliced-s00e01-data.csv') %>%
  read_csv(guess_max = 20000) %>%
  select(-X1)
df holdout <-
  here::here(dir, 'sliced-s00e01-holdout.csv') %>%
  read_csv()
```

Wow there are a lot of columns. Some of these numeric ones are really categorical features in disguise.

```
df %>%
  skimr::skim()
```

Data summary

Name	Piped data
Number of rows	5934
Number of columns	119
Column type frequency:	
character	4
numeric	115

Group variables None

Variable type: character

skim_variable	n_missing	complete_rate	min	max	empty	n_unique	whitespace
field	58	0.99	3	51	0	194	0
undergra	1902	0.68	2	49	0	213	0
from	74	0.99	2	58	0	207	0
career	84	0.99	1	77	0	294	0

Variable type: numeric

skim_variable	n_missing com	plete_rate	mean	sd	p0	p25	p50	p75	p100 hist
iid	0	1.00	310.30	179.37	1.00	102.00	362.0	467.00	552.00

skim_variable	n_missing	complete_rate	mean	sd	p0	p25	p50	p75	p100	hist
id	1	1.00	8.65	5.37	1.00	4.00	8.0	13.00	22.00	
gender	0	1.00	0.50	0.50	0.00	0.00	1.0	1.00	1.00	
idg	0	1.00	16.68	10.65	1.00	8.00	15.0	25.00	44.00	
condtn	0	1.00	1.80	0.40	1.00	2.00	2.0	2.00	2.00	
wave	0	1.00	12.25	6.85	1.00	4.00	14.0	19.00	21.00	
round	0	1.00	16.24	4.44	6.00	14.00	18.0	19.00	22.00	
position	0	1.00	8.77	5.40	1.00	4.00	8.0	13.00	22.00	
positin1	1846	0.69	9.05	5.59	1.00	4.00	8.0	13.00	22.00	
order	0	1.00	8.61	5.34	1.00	4.00	8.0	13.00	22.00	
partner	0	1.00	8.65	5.37	1.00	4.00	8.0	13.00	22.00	
pid	10	1.00	310.61	179.36	1.00	102.00	362.0	467.00	552.00	
match	0	1.00	0.17	0.37	0.00	0.00	0.0	0.00	1.00	I
int_corr	148	0.98	0.19	0.30	-0.73	-0.03	0.2	0.42	0.91	
samerace	0	1.00	0.40	0.49	0.00	0.00	0.0	1.00	1.00	
age_o	99	0.98	26.31	3.67	18.00	23.00	26.0	29.00	55.00	
race_o	68	0.99	2.80	1.25	1.00	2.00	2.0	4.00	6.00	I
pf_o_att	84	0.99	24.24	13.84	2.00	15.00	20.0	30.00	100.00	
pf_o_sin	84	0.99	17.00	7.65	0.00	10.00	20.0	20.00	60.00	
pf_o_int	84	0.99	20.48	7.32	0.00	17.00	20.0	25.00	50.00	
pf_o_fun	93	0.98	17.45	6.80	0.00	13.00	20.0	20.00	50.00	
pf_o_amb	102	0.98	9.77	6.22	0.00	5.00	10.0	15.00	53.00	
pf_o_sha	124	0.98	11.28	6.77	0.00	5.00	10.0	15.00	30.00	
dec_o	0	1.00	0.42	0.49	0.00	0.00	0.0	1.00	1.00	
attr_o	201	0.97	6.19	1.98	0.00	5.00	6.0	8.00	10.50	
sinc_o	242	0.96	7.20	1.77	0.00	6.00	7.0	8.00	10.00	
intel_o	254	0.96	7.36	1.58	0.00	6.00	7.0	8.00	10.00	
fun_o	289	0.95	6.44	1.98	0.00	5.00	7.0	8.00	11.00	
amb_o	531	0.91	6.78	1.83	0.00	6.00	7.0	8.00	10.00	
shar_o	769	0.87	5.45	2.20	0.00	4.00	6.0	7.00	10.00	
like_o	218	0.96	6.15	1.85	0.00	5.00	6.0	7.00	10.00	
prob_o	276	0.95	5.20	2.17	0.00	4.00	5.0	7.00	10.00	
met_o	333	0.94	1.97	0.21	1.00	2.00	2.0	2.00	7.00	
age	90	0.98	26.31	3.68	18.00	23.00	26.0	29.00	55.00	
field_cd	77	0.99	7.41	3.89	1.00	5.00	8.0	10.00	18.00	
mn_sat	3431	0.42	1293.85	118.83	914.00	1210.00	1310.0	1400.00	1470.00	
tuition	2981	0.50	21023.54	6754.80	2406.00	15004.00	25020.0	26562.00	34300.00	

skim_variable	n_missing	complete_rate	mean	sd	p0	p25	p50	p75	p100	hist
race	58	0.99	2.80	1.25	1.00	2.00	2.0	4.00	6.00	— —
imprace	74	0.99	3.70	2.81	0.00	1.00	3.0	6.00	10.00	
imprelig	74	0.99	3.63	2.81	1.00	1.00	3.0	6.00	10.00	I
zipcode	661	0.89	85708.89	615631.05	0.00	10021.00	19422.0	76513.00	9971200.00	
income	0	1.00	22008.95	25253.35	-1.00	-1.00	-1.0	42096.00	109031.00	
goal	74	0.99	2.15	1.43	1.00	1.00	2.0	2.00	6.00	
date	92	0.98	4.98	1.48	1.00	4.00	5.0	6.00	7.00	
go_out	74	0.99	2.13	1.13	1.00	1.00	2.0	3.00	7.00	
career_c	133	0.98	5.45	3.42	1.00	2.00	6.0	7.00	17.00	
sports	74	0.99	6.36	2.67	1.00	4.00	7.0	9.00	10.00	
tvsports	74	0.99	4.59	2.85	1.00	2.00	4.0	7.00	10.00	
exercise	74	0.99	6.16	2.46	1.00	4.00	6.0	8.00	10.00	
dining	74	0.99	7.90	1.73	1.00	7.00	8.0	9.00	10.00	
museums	74	0.99	6.97	2.10	0.00	6.00	7.0	9.00	10.00	
art	74	0.99	6.75	2.30	0.00	5.00	7.0	8.00	10.00	
hiking	74	0.99	5.59	2.63	0.00	3.00	6.0	8.00	10.00	
gaming	74	0.99	3.82	2.61	0.00	1.00	3.0	6.00	14.00	
clubbing	74	0.99	5.82	2.49	0.00	4.00	6.0	8.00	10.00	
reading	74	0.99	7.53	2.01	1.00	6.00	8.0	9.00	13.00	
tv	74	0.99	5.41	2.47	1.00	4.00	6.0	7.00	10.00	
theater	74	0.99	6.87	2.30	0.00	5.00	7.0	9.00	10.00	
movies	74	0.99	7.96	1.76	0.00	7.00	8.0	9.00	10.00	
concerts	74	0.99	6.94	2.12	0.00	6.00	7.0	8.00	10.00	
music	74	0.99	7.85	1.82	1.00	7.00	8.0	9.00	10.00	
shopping	74	0.99	5.76	2.52	1.00	4.00	6.0	8.00	10.00	
yoga	74	0.99	4.37	2.70	0.00	2.00	4.0	7.00	10.00	
exphappy	96	0.98	5.61	1.72	1.00	5.00	6.0	7.00	10.00	
expnum	4134	0.30	5.57	4.76	0.00	2.00	4.0	8.00	20.00	— —
attr1_1	74	0.99	24.26	13.86	2.00	15.00	20.0	30.00	100.00	
sinc1_1	74	0.99	17.00	7.65	0.00	10.00	20.0	20.00	60.00	
intel1_1	74	0.99	20.47	7.32	0.00	17.00	20.0	25.00	50.00	_=
fun1_1	84	0.99	17.44	6.80	0.00	13.00	20.0	20.00	50.00	
amb1_1	94	0.98	9.76	6.22	0.00	5.00	10.0	15.00	53.00	
shar1_1	116	0.98	11.28	6.77	0.00	5.00	10.0	15.00	30.00	
attr4_1	1884	0.68	32.44	15.47	5.00	20.00	30.0	40.00	95.00	
sinc4_1	1884	0.68	12.08	7.27	0.00	10.00	10.0	17.00	35.00	

skim_variable	n_missing	complete_rate	mean	sd	p0	p25	p50	p75	p100 h	nist
intel4_1	1884	0.68	14.35	6.70	0.00	10.00	15.0	20.00	35.00	
fun4_1	1884	0.68	17.88	6.94	0.00	15.00	20.0	20.00	45.00 _	
amb4_1	1884	0.68	10.86	7.86	0.00	5.00	10.0	15.00	50.00	— ——
shar4_1	1906	0.68	12.23	6.39	0.00	10.00	10.0	15.00	40.00	
attr2_1	74	0.99	33.56	17.29	0.00	20.00	30.0	40.00	100.00	
sinc2_1	74	0.99	12.41	7.54	0.00	5.00	10.0	20.00	50.00	
intel2_1	74	0.99	13.82	6.67	0.00	10.00	15.0	20.00	40.00	
fun2_1	74	0.99	18.43	7.20	0.00	15.00	20.0	20.00	50.00	
amb2_1	84	0.99	10.71	6.96	0.00	5.00	10.0	15.00	35.00 ▮	
shar2_1	84	0.99	11.12	6.51	0.00	5.00	10.0	15.00	30.00	
attr3_1	100	0.98	7.02	1.39	2.00	6.00	7.0	8.00	10.00 _	
sinc3_1	100	0.98	8.26	1.41	2.00	8.00	8.0	9.00	10.00 _	
fun3_1	100	0.98	7.72	1.58	2.00	7.00	8.0	9.00	10.00 _	
intel3_1	100	0.98	8.31	1.08	3.00	8.00	8.0	9.00	10.00 _	
amb3_1	100	0.98	7.50	1.77	2.00	7.00	8.0	9.00	10.00 _	_ ==
attr5_1	1910	0.68	7.00	1.48	2.00	6.00	7.0	8.00	10.00 _	
sinc5_1	1910	0.68	7.97	1.63	1.00	7.00	8.0	9.00	10.00 _	
intel5_1	1910	0.68	8.24	1.33	3.00	8.00	8.0	9.00	10.00 _	
fun5_1	1910	0.68	7.56	1.78	2.00	7.00	8.0	9.00	10.00 _	
amb5_1	1910	0.68	7.58	1.80	1.00	7.00	8.0	9.00	10.00 _	
dec	0	1.00	0.42	0.49	0.00	0.00	0.0	1.00	1.00	
attr	191	0.97	6.19	1.97	0.00	5.00	6.0	8.00	10.00 _	
sinc	232	0.96	7.20	1.77	0.00	6.00	7.0	8.00	10.00 _	
intel	244	0.96	7.35	1.58	0.00	6.00	7.0	8.00	10.00 _	
fun	279	0.95	6.44	1.98	0.00	5.00	7.0	8.00	10.00 _	
amb	521	0.91	6.78	1.83	0.00	6.00	7.0	8.00	10.00 _	
shar	760	0.87	5.45	2.20	0.00	4.00	6.0	7.00	10.00	=
like	208	0.96	6.15	1.85	0.00	5.00	6.0	7.00	10.00 _	
prob	267	0.96	5.19	2.17	0.00	4.00	5.0	7.00	10.00	
met	323	0.95	0.99	0.99	0.00	0.00	1.0	2.00	7.00	
match_es	538	0.91	3.17	2.33	0.00	2.00	3.0	4.00	12.00	
attr1_s	4145	0.30	21.98	17.69	3.00	8.00	17.0	30.00	95.00	
sinc1_s	4145	0.30	13.54	8.14	0.00	8.00	10.0	20.00	50.00 ▮	
intel1_s	4145	0.30	14.74	7.52	0.00	9.00	15.0	20.00	40.00	
fun1_s	4145	0.30	13.30	6.42	1.00	9.00	10.0	20.00	40.00	
amb1_s	4145	0.30	8.52	4.94	0.00	5.00	9.0	10.00	20.00	

skim_variable	n_missing comp	olete_rate	mean	sd	p0	p25	p50	p75	p100 hist
shar1_s	4145	0.30	10.18	6.31	0.00	5.00	10.0	15.00	30.00
attr3_s	4160	0.30	7.18	1.30	3.00	7.00	7.0	8.00	10.00
sinc3_s	4160	0.30	8.19	1.38	1.00	7.00	8.0	9.00	10.00
intel3_s	4160	0.30	8.11	1.18	4.00	7.25	8.0	9.00	10.00
fun3_s	4160	0.30	7.83	1.55	3.00	7.00	8.0	9.00	10.00
amb3_s	4160	0.30	7.57	1.75	2.00	7.00	8.0	9.00	10.00

Correlation eda spared for later...

df %>% count(dec_o)

More futile eda trying to gain some insight

```
## # A tibble: 2 x 2
## dec_o n
## * <dbl> <int>
## 1 0 3450
## 2 1 2484
```

```
gg_age <-
  df %>%
  group_by(age, age_o) %>%
  summarize(across(dec, sum)) %>%
  ungroup() %>%
  ggplot() +
  aes(x = age, y = age_o) +
  geom_point(aes(size = dec, color = dec)) +
  theme_minimal() +
  labs(title = 'Ages of people who speed-dated') +
  guides(color = FALSE, size = FALSE)
gg_age
```


Logistic regression with every variable, what could go wrong?

```
f_glm <- function(col_x) {
  fit <- glm(
    formula(glue::glue('match ~ {col_x}')),
    data = df,
    family = 'binomial'
  )
  tidy(fit)
}
col_y <- 'match'
nms <- df %>% names()
cols_x <- nms %>% setdiff(col_y)
cols_x %>% length()
```

```
## [1] 118
```

```
cols_x_filt <- cols_x %>% str_subset('id$', negate = TRUE)
```

```
coefs_glm <-
  cols_x_filt %>% map_dfr(f_glm)
```

```
coefs_glm %>%
  filter(term != '(Intercept)') %>%
  arrange(p.value)
```

```
## # A tibble: 1,015 x 6
##
      term
              estimate std.error statistic
                                               p.value
                                                          idx
##
      <chr>
                 <dbl>
                            <dbl>
                                      <dbl>
                                                 <dbl> <int>
   1 like
                 0.560
                          0.0255
                                       22.0 3.13e-107
                                                        1102
    2 like o
                 0.560
                          0.0255
##
                                       22.0 3.55e-107
                                                           54
##
    3 fun
                 0.460
                          0.0227
                                       20.2 4.79e- 91
                                                        1096
    4 fun_o
                 0.460
                          0.0227
                                       20.2 5.27e- 91
                                                           48
    5 attr
                 0.417
                          0.0216
                                       19.3 6.21e- 83
                                                        1090
##
    6 attr o
                 0.417
                          0.0216
                                       19.3 6.43e- 83
                                                           42
##
    7 shar
                 0.382
                          0.0201
                                       19.0 1.22e- 80
                                                        1100
##
##
    8 shar_o
                 0.382
                          0.0201
                                       19.0 1.25e- 80
                                                           52
    9 prob
                 0.358
                          0.0188
                                       19.0 1.31e- 80
                                                        1104
## 10 prob_o
                 0.358
                          0.0188
                                       19.0 1.58e- 80
                                                           56
## # ... with 1,005 more rows
```

On average, people rated each other around a 5-7.

```
df %>%
  count(like, like_o) %>%
  mutate(across(c(like, like_o), factor)) %>%
  drop_na() %>%
  ggplot() +
  aes(x = like, y = like_o) +
  geom_tile(aes(fill = n), alpha = 0.7) +
  geom_text(aes(label = n)) +
  theme_minimal() +
  labs(
    title = 'Did the people like each other?'
)
```

Did the people like each other?

We've got a ton of the these {attribute} and {attribute}_o (other person) feature pairs. Surely we can do something with them Note that there is a big class imbalance.

```
df %>%
  count(match) %>%
  mutate(across(match, factor)) %>%
  ggplot() +
  aes(x = match, y= n) +
  geom_col()
```


There's variation in the number of people in each wave of speed-dating. Probably not useful for a quick model.

```
df %>%
  count(wave) %>%
  ggplot() +
  aes(x = wave, y = n) +
  geom_col()
```


I noticed that the p.values were smaller for paired features, and it might just make sense to focus on them.

```
cols_x_paired <-
  cols_x %>%
  str_remove('_o$') %>%
  tibble(col = .) %>%
  count(col) %>%
  filter(n > 1L) %>%
  filter(col != 'dec')
cols_x_paired
```

```
## # A tibble: 11 x 2
##
      col
                n
##
      <chr> <int>
                2
   1 age
                2
##
    2 amb
    3 attr
                2
   4 fun
                2
                2
   5 intel
                2
   6 like
   7 met
                2
                2
   8 prob
                2
   9 race
                2
## 10 shar
## 11 sinc
                2
```

```
f_select <- function(data) {</pre>
  res <-
    data %>%
    select(
    any_of(col_y),
    one_of(cols_x_paired %>% pull(col)),
    one_of(cols_x_paired %>% pull(col) %>% paste0('_o'))
  if(any('match' %in% colnames(res))) {
    res <-
      res %>%
      mutate(across(match, factor))
  }
  res
}
df_slim <- df %>% f_select()
df_holdout_slim <- df_holdout %>% f_select()
df_slim_nona <- df_slim %>% drop_na()
```

Canonical correlation plot

```
cors <-
  df_slim_nona %>%
  select(where(is.numeric)) %>%
  corrr::correlate() %>%
  rename(col1 = rowname) %>%
  pivot_longer(
    -col1,
   names_to = 'col2',
    values_to = 'cor'
  )
gg_cors <-
  cors %>%
  ggplot() +
  aes(x = col1, y = col2) +
  geom_tile(aes(fill = cor), alpha = 0.7) +
  geom_text(aes(label = scales::number(cor, 0.1))) +
  theme_minimal() +
  guides(fill = FALSE) +
  labs(
    title = 'Correlation plot with paired features',
    x = NULL, y = NULL
  )
gg_cors
```

Correlation plot with paired features

age age_oambamb_oattr attr_o fun fun_o intelintel_o like like_o met met_oprobprob_oracerace_osharshar_osinc_io

Can we differentiate solely based on these paired features? Also, I don't think I need to split into train-test if we have a true holdout? Probably a bad call, but that's why I'm an engineer and not a true DS.

```
# Use the nona data set for this cuz we don't like nas.
rec_umap <-
  recipe(match ~ ., data = df slim nona) %>%
  embed::step umap(all predictors(), outcome = vars(match), num comp = 2)
juiced_umap <-</pre>
  rec_umap %>%
  prep() %>%
  juice()
gg_umap <-
  juiced umap %>%
  ggplot() +
  aes(x = umap_1, umap_2) +
  geom_point(aes(color = match), alpha = 0.7) +
  theme_minimal(base_size = 14) +
  guides(
    color = guide legend(override.aes = list(size = 4))
  theme(legend.position = 'top') +
 labs(
    title = 'UMAP Components 1 and 2 for Paired Features'
  )
gg_umap
```

UMAP Components 1 and 2 for Paired Features

lol at the outlier in the umap plot above.

```
rec <-
recipe(match ~ ., data = df_slim) %>%
  # One of these steps (probably near zero variance?) is causing a column to be dropped in rand forest, which sometimes
raises a warning
  # step_nzv(all_numeric_predictors()) %>%
  step_zv(all_numeric_predictors()) %>%
  # step_lincomb(all_numeric_predictors()) %>%
  # Impute at the end?
  step_impute_knn(all_numeric_predictors()) %>%
  step_downsample(all_outcomes())

# Just checking that it works.
rec %>%
  prep() %>%
  juice()
```

```
## # A tibble: 1,992 x 23
##
         age
                amb
                     attr
                             fun intel like
                                                 met
                                                       prob
                                                             race
                                                                    shar
                                                                           sinc age o amb o
       <dbl>
             <dbl> <dbl> <dbl> <dbl> <dbl>
                                        <dbl> <dbl>
                                                     <dbl> <dbl>
                                                                   <dbl>
                                                                          <dbl> <dbl> <dbl>
##
    1
          30
               5
                        6
                                          6
                                                 2
                                                                            6
                                                                                    23
               5.4
                               3
                                          5
                                                                 2
                                                                      5
                                                                                    28
    2
          29
                        6
                                      5
                                                 2
                                                        3
                                                                            5.6
                                                                                            6
##
               5
                        7
                               5
                                      7
                                          5
                                                        2
                                                                 2
##
    3
          36
                                                                     4.8
                                                                            7
                                                                                    33
                                                                                            8
##
          23
              10
                        7
                                     10
                                          7
                                                                      7
                                                                                    27
    5
          24
                        7
                               5
                                      5
                                          3
                                                 0
                                                        2
                                                                            8
                                                                                    25
                                                                                            3
##
               6
          27
               8
                        6
                               8
                                      8
                                                 1.2
                                                        8
                                                                                    27
                                                                                            6
##
    6
                               9
          23
               5
                                                 2
                                                                 2
                                                                                    27
                                                                                            7
##
    7
                        8
                                                        1
                                                                            7
##
    8
          23
               9
                        3
                                          6
                                                 2
                                                        7
                                                                           10
                                                                                            7
                        2
                                                                 2
##
    9
          26
               6
                               6
                                      7
                                          6.4
                                                 0
                                                        6.4
                                                                      6
                                                                            8
                                                                                    29
                                                                                           10
## 10
          23
               6
                                      6
                                          4
                                                 0
                                                        6
                                                                 4
                                                                                            7
         with 1,982 more rows, and 10 more variables: attr_o <dbl>, fun_o <dbl>,
##
        intel_o <dbl>, like_o <dbl>, met_o <dbl>, prob_o <dbl>, race_o <dbl>,
## #
## #
        shar_o <dbl>, sinc_o <dbl>, match <fct>
```

I'm intentionally picking methods that are relatively different and don't have a lot of stuff to tune.

Parallel processing would be awesome here but it usually breaks my laptop.

```
spec_knn <-
  nearest_neighbor(neighbors = tune(), weight_func = tune()) %>%
  set_mode('classification') %>%
  set_engine('kknn')
wf_knn <-
  workflow() %>%
  add_recipe(rec) %>%
  add_model(spec_knn)
spec rf <-
  rand_forest(mtry = tune(), trees = tune()) %>%
  set_mode('classification') %>%
  set_engine('ranger')
wf rf <-
 workflow() %>%
  add_recipe(rec) %>%
  add_model(spec_rf)
ctrl grid <- control grid(save pred = TRUE, save workflow = TRUE, verbose = TRUE)
met_set <- metric_set(mn_log_loss, accuracy, roc_auc)</pre>
set.seed(6669)
```

```
folds <- df_slim %>% vfold_cv(strata = match, v = 10)
grid_knn <-
  grid_max_entropy(
   wf_knn %>% parameters(),
    size = 10
  )
grid_knn
# I feel like this is overfitting
grid rf <-
 grid_max_entropy(
   trees(),
    # finalize(mtry(), df_slim),
   mtry(1, round(7/8*ncol(df_slim)-1))
    size = 10
  )
grid_rf
f_tune <-
  partial(
   tune_grid,
   resamples = folds,
    metrics = met set,
    control = ctrl_grid,
    ... =
  )
res_knn <- wf_knn %>% f_tune(grid = grid_knn)
res knn
res_rf <- wf_rf %>% f_tune(grid = grid_rf)
res_rf
```

```
params_best_rf <- res_rf %>% select_best(metric = 'mn_log_loss')
wf_rf_final <- wf_rf %>% finalize_workflow(params_best_rf)
wf_rf_final
```

```
## Preprocessor: Recipe
## Model: rand_forest()
##
## 3 Recipe Steps
## * step_zv()
## * step_impute_knn()
## * step_downsample()
##
## -- Model ------
## Random Forest Model Specification (classification)
##
## Main Arguments:
##
  mtry = 12
##
  trees = 1970
##
## Computational engine: ranger
```

Looking at how the tuning went.

```
mets_knn <-
    res_knn %>%
    collect_metrics()
params_best_knn <- res_knn %>% select_best('mn_log_loss')
wf_knn_best <-
    wf_knn %>%
    finalize_workflow(params_best_knn)
fit_knn_best <-
    wf_knn_best <-
    wf_knn_best %>%
    fit(data = df_slim) %>%
    pull_workflow_fit()
fit_knn_best
```

```
## parsnip model object
##
## Fit time: 220ms
##
## Call:
## kknn::train.kknn(formula = ..y ~ ., data = data, ks = min_rows(15L, data, 5), kernel = ~"rectangular")
##
## Type of response variable: nominal
## Minimal misclassification: 0.2394578
## Best kernel: rectangular
## Best k: 15
```

```
mets_knn %>%
  select(neighbors, weight_func, .metric, mean) %>%
  ggplot() +
  aes(x = neighbors, y = mean) +
  geom_point(aes(color = weight_func), size = 4) +
  facet_wrap(~.metric, scales = 'free') +
  guides(color = guide_legend(override.aes = list(size = 4))) +
  theme_minimal(base_size = 16) +
  theme(legend.position = 'top')
```



```
mets_rf <-
  res_rf %>%
  collect_metrics()
mets_rf
```

```
## # A tibble: 30 x 8
##
       mtry trees .metric
                               .estimator
                                           mean
                                                    n std_err .config
##
      <int> <int> <chr>
                               <chr>>
                                          <dbl> <int>
                                                         <dbl> <chr>
                                                   10 0.00427 Preprocessor1_Model01
##
   1
              126 accuracy
                               binary
                                          0.771
##
   2
          3
              126 mn_log_loss binary
                                          0.486
                                                   10 0.00502 Preprocessor1_Model01
##
              126 roc auc
                               binary
                                          0.853
                                                   10 0.00651 Preprocessor1 Model01
   4
         12 1970 accuracy
                                          0.773
                                                   10 0.00319 Preprocessor1_Model02
##
                               binary
##
   5
         12
             1970 mn_log_loss binary
                                          0.482
                                                   10 0.00539 Preprocessor1_Model02
         12 1970 roc_auc
                                          0.853
                                                   10 0.00625 Preprocessor1_Model02
##
    6
                               binary
##
   7
          2 1790 accuracy
                               binary
                                          0.774
                                                   10 0.00524 Preprocessor1_Model03
##
   8
          2 1790 mn log loss binary
                                          0.487
                                                   10 0.00410 Preprocessor1 Model03
   9
          2 1790 roc_auc
                                          0.855
                                                   10 0.00590 Preprocessor1_Model03
##
                               binary
                                                   10 0.00323 Preprocessor1 Model04
## 10
         23 1128 accuracy
                               binary
                                          0.774
     ... with 20 more rows
```

```
mets_rf %>%
  # filter(.metric == 'mn_log_loss') %>%
  #mutate(across(trees, factor)) %>%
  ggplot() +
  aes(x = mtry, y = mean) +
  geom_point(aes(color = trees, size = trees), size = 4) +
  facet_wrap(~.metric, scales = 'free') +
  guides(color = guide_legend(override.aes = list(size = 4))) +
  theme_minimal(base_size = 16) +
  theme(legend.position = 'top')
```


Variable importance time. (This is where i realized i left in dec and dec_o on accident.)

```
spec_rf_vi <-
  rand_forest(mtry = 12, trees = 1970) %>%
  set_mode('classification') %>%
  set_engine('ranger', importance = 'impurity')
wf_rf_vi <-
  workflow() %>%
  add_recipe(rec) %>%
  add_model(spec_rf_vi)
fit_rf_vi <- wf_rf_vi %>% fit(data = df_slim)
fit_rf_vi
```

```
## Preprocessor: Recipe
## Model: rand_forest()
##
## 3 Recipe Steps
## * step_zv()
## * step_impute_knn()
## * step_downsample()
## -- Model ------
## Ranger result
##
## Call:
## ranger::ranger(x = maybe_data_frame(x), y = y, mtry = min_cols(\sim12, x), num.trees = \sim1970, importance = \sim"impu
rity", num.threads = 1,
                    verbose = FALSE, seed = sample.int(10^5, 1), probability = TRUE)
##
## Type:
                            Probability estimation
## Number of trees:
                            1970
## Sample size:
                            1992
## Number of independent variables: 22
## Mtry:
                            12
## Target node size:
                            10
## Variable importance mode:
                            impurity
## Splitrule:
                            gini
## 00B prediction error (Brier s.): 0.1534695
fit_rf_final <-</pre>
 fit_rf_vi %>%
 pull_workflow_fit()
gg_vi <-
 fit_rf_vi %>%
 pull_workflow_fit() %>%
```

vip::vip() +

labs(

) gg_vi

theme_minimal(base_size = 18) +

title = 'Variable Importance'

Variable Importance

Ensembling time with a package i just learned how to use yesterday! This is basically a regularized linear regression on our knn and rf models.

```
ens_st <-
    stacks() %>%
    add_candidates(res_knn) %>%
    add_candidates(res_rf)
ens_st
```

```
## # A data stack with 2 model definitions and 20 candidate members:
## # res_knn: 10 model configurations
## # res_rf: 10 model configurations
## # Outcome: match (factor)
```

```
fit_ens <-
  ens_st %>%
  blend_predictions() %>%
  fit_members()
fit_ens
```

```
## # A tibble: 6 x 3
    member
##
                          type
                                           weight
##
     <chr>>
                                            <dbl>
                          <chr>>
## 1 .pred_1_res_rf_1_03 rand_forest
                                           2.28
## 2 .pred_1_res_rf_1_05
                          rand_forest
                                           1.20
                                           0.828
## 3 .pred_1_res_rf_1_10 rand_forest
## 4 .pred_1_res_rf_1_07 rand_forest
                                           0.735
## 5 .pred_1_res_knn_1_09 nearest_neighbor 0.590
## 6 .pred_1_res_rf_1_08 rand_forest
                                           0.0443
```

A blend of 6 rf models were chosen by the ensembling

```
predict(df_holdout_slim, type = 'pred')
df_holdout_slim
## # A tibble: 882 x 22
                          age
                                              amb attr
                                                                                      fun intel like
                                                                                                                                                  met prob race shar sinc age o amb o
##
                     <dbl> 
##
           1
                                                                         6
                                                                                             6
                                                                                                                 7
                                                                                                                                     6
                                                                                                                                                        0
                                                                                                                                                                             8
                                                                                                                                                                                                3
                                                                                                                                                                                                                     2
                                                                                                                                                                                                                                         6
                                                                                                                                                                                                                                                         29
            2
                             28
                                                                                             6
                                                                                                                                     6
                                                                                                                                                                             8
                                                                                                                                                                                                3
                                                                                                                                                                                                                     6
                                                                                                                                                                                                                                         5
                                                                                                                                                                                                                                                         24
##
                                                     6
                                                                         4
                                                                                                                 6
                                                                                                                                                        0
                                                                                                                                                                                                                                                                                8
                             28
                                                     9
                                                                        7
                                                                                             4
                                                                                                                9
                                                                                                                                     2
                                                                                                                                                                            4
                                                                                                                                                                                                3
                                                                                                                                                                                                                    3
                                                                                                                                                                                                                                                         21
            3
                                                                                                                                                        0
                                                                                                                                                                                                                                         6
                                                                                                                                                                                                                                                                                6
##
           4
                             28
                                                                        2
                                                                                                                                                                            3
                                                                                                                                                                                                3
                                                                                                                                                                                                                                                         26
                                                                                                                                                                                                                                                                                9
##
            5
                             28
                                                     9
                                                                        2
                                                                                             1
                                                                                                                                     1
                                                                                                                                                        0
                                                                                                                                                                            2
                                                                                                                                                                                                3
                                                                                                                                                                                                                    5
                                                                                                                                                                                                                                                         25
                                                                                                                                                                                                                                                                             NA
##
                                                                                                                1
                                                                                                                                                                                                                                        1
##
            6
                             28
                                                     8
                                                                        1
                                                                                             1
                                                                                                                8
                                                                                                                                     2
                                                                                                                                                        0
                                                                                                                                                                            8
                                                                                                                                                                                                3
                                                                                                                                                                                                                    1
                                                                                                                                                                                                                                        2
                                                                                                                                                                                                                                                         32
                                                                                                                                                                                                                                                                                8
##
            7
                             28
                                                                        4
                                                                                             1
                                                                                                                 5
                                                                                                                                                                            8
                                                                                                                                                                                                3
                                                                                                                                                                                                                    7
                                                                                                                                                                                                                                                         25
                                                                                                                                                                                                                                                                                8
                                                                                             1
                                                                                                                                                                            8
                                                                                                                                                                                                3
            8
                             28
                                                     3
                                                                        1
                                                                                                                                     2
                                                                                                                                                        0
                                                                                                                                                                                                                    1
                                                                                                                                                                                                                                        9
                                                                                                                                                                                                                                                         25
                                                                                                                                                                                                                                                                                8
##
                                                                                                                 8
##
            9
                             28
                                                     6
                                                                         4
                                                                                             6
                                                                                                                 8
                                                                                                                                    4
                                                                                                                                                                             8
                                                                                                                                                                                                3
                                                                                                                                                                                                                 10
                                                                                                                                                                                                                                        6
                                                                                                                                                                                                                                                         27
                                                                                                                                                                                                                                                                                5
                             28
                                                     5
                                                                                             7
                                                                                                                 5
                                                                                                                                                                            4
                                                                                                                                                                                                                                                         23
## 10
                                                                        1
                                                                                                                                    1
                                                                                                                                                        0
                                                                                                                                                                                                3
                                                                                                                                                                                                                    1
                                                                                                                                                                                                                                                                                8
## # ... with 872 more rows, and 9 more variables: attr_o <dbl>, fun_o <dbl>,
## #
                       intel_o <dbl>, like_o <dbl>, met_o <dbl>, prob_o <dbl>, race_o <dbl>,
                       shar_o <dbl>, sinc_o <dbl>
## #
preds holdout <-
       # fit_rf_final %>%
      fit_knn_best %>%
      predict(df_holdout_slim, type = 'class')
preds_holdout
## # A tibble: 664 x 1
##
                     .pred_class
##
                    <fct>
            1 0
            2 1
##
            3 0
            4 0
            5 0
##
            6 0
            7 0
##
##
            8 1
```

preds_ens_holdout <# fit_ens %>%

9 0 ## 10 0

... with 654 more rows

```
probs_holdout <-
    # fit_rf_final %>%
    fit_knn_best %>%
    predict(df_holdout_slim, type = 'prob') %>%
    rename(prob_0 = .pred_0, prob_1 = .pred_1)
probs_holdout
```

```
## # A tibble: 664 x 2
##
     prob_0 prob_1
##
      <dbl> <dbl>
   1 0.933 0.0667
   2 0.267 0.733
##
##
   3 0.733 0.267
  4 0.933 0.0667
   5 1
            0
##
   6 0.867 0.133
##
  7 0.933 0.0667
##
##
   8 0.4
            0.6
   9 1
## 10 0.933 0.0667
## # ... with 654 more rows
```

```
write_csv(preds_holdout, path_preds_holdout)
write_csv(probs_holdout, path_probs_holdout)
```