§ 1.1. Structure of finite/local/global field

Road map

	finite f	Field	local Archi	field NA	global field	Adéle
base field F F* integral ring OF units OF	FOR IFIT	/hr. - -	R or C R*× 2/12 C*	3 Qp Fp((+)) Zp xZ Fp((+)) x Z Zp Fp((+)) x Zp Fp((+)) x	4 Q Fp(t) Z Fp[t] Z/21 Fp	Ak Ik ? Ik ? I
Gal(F ^{sep} /F) ari Frob #ext of day n Spec OF		an 1 (2,1)	Z/ _{27/} Id total order? – 1/0	most known choose a lift finite	dre n+1 inf cou	am ? ntable ——
topology topo of OF measure	_	screte	Euclidean — Lebesgue	profinite cpt, not discrete $\mu(O_F) = 1$		restricted K is a lattice in Ak Can be computed

Also, discuss

- field extension, norm, trace,...
 their connection to geometry, ramification theory
 analog with knot theory

1 finite field 1Fg

Any fin field is of form IFq, where $q = p^r$, $r \in IN_{\geq 1}$, IFq = the splitting field of $X^q - X$ over IFp.

Gal(IFq/Fq) $\cong \widehat{\mathcal{I}}$ as top gps

Frobp \iff 1

2. Archi local field IR or C

No difficulty: $Gal(C/R) \cong \mathbb{Z}/2\mathbb{Z}$ Gal(C/C) = Id C is the unique local field which is alg closed.

3. NA local field Define NA local field as (finite ext of Q_p) or $F_q((T))$.

Individual structure

Task Read [NAlocal], answer the following questions:

- Describe O, p, k, U, U in terms of v
- What is the structure of Qr??
- For F, F*, O, O*, which are opt?

Can we classify open subgps of F.Fx?

- Give a description of the Haar measure on F and Fx.

Field extension

Task Read [NA ext], answer the following questions.

- Describe the field extension tower of F.
- Find a wild extension of exp & [Fp[[t]]
- Can we "see the geometry of Qp" vividly?

Something is needed here.

Task Read [NAval], answer the following questions: (Not necessary for future discussion)

- What is the difference of NA valued field (with NA local field)?
 When is the field extension over Qp complete?
- Using the result in [NAval], computes the following Galois gps.

$$G_{al}\left(|F_{p}((t\stackrel{\dot{\vdash}}{P^{\omega}}))^{sep}/|F_{p}((t\stackrel{\dot{\vdash}}{P^{\omega}}))\right), \ G_{al}\left(\widehat{\overline{Q}_{p}}/\widehat{\overline{Q_{p}^{uv}}}\right), \ G_{al}\left(\overline{\overline{Q_{p}(p^{\dot{\vdash}^{\omega}})}}/\overline{Q_{p}(p^{\dot{\vdash}^{\omega}})}\right)$$

$$G_{|F_{p}((t))}$$

$$G_{|F_{p}((t))}$$