Analiza I

Adisa Bolić, abolic@pmf.unsa.ba

Vj. br. 11. Redovi. Konvergencija redova.

- Za dati realni niz $\{a_n\}_{n\in\mathbb{N}_0}$ možemo definisati red u oznaci $\sum_{n=0}^\infty a_n$ kao $a_0+a_1+a_2+\cdots$. Brojeve a_0,a_1,\ldots zovemo članovi red, a a_n je opći član reda. Niz $\{S_n\}_{n\in\mathbb{N}_0}$ je niz parcijalnih suma reda $\sum_{n=0}^\infty a_n$ i zadan je sa $S_n=a_0+a_1+\cdots+a_n, n\in\mathbb{N}_0$.
- Za red kažemo da konvergira ako konvergira njegov niz parcijalnih suma, inače red divergira. Ako red konvergira onda postoji $\lim_{n\to\infty}S_n=S$ i kažemo da je S suma reda $\sum_{n=0}^\infty a_n$ i pišemo $\sum_{n=0}^\infty a_n=S$.
- Potreban uslov za konvergenciju reda: Ako red $\sum_{n=0}^{\infty} a_n$ konvergira onda je $\lim_{n\to\infty} a_n = 0$.
- **Hiperharmonijski red**: Red $\sum_{n=0}^{\infty} \frac{1}{n^p}$ konvergira za p > 1, a divergira za $p \le 1$.
- Aritmetičke operacije sa redovima:
 - o ako je $\sum_{n=0}^{\infty}a_n=S$ i $S\in\mathbb{R}$ onda je $\sum_{n=0}^{\infty}ca_n=cS$ za $c\in\mathbb{R}$
 - o ako je $\sum_{n=0}^{\infty} a_n = S$, $\sum_{n=0}^{\infty} b_n = L$ i S, $L \in \mathbb{R}$ onda je $\sum_{n=0}^{\infty} a_n \pm b_n = S \pm L$
- [1] Ispitati konvergenciju sljedećih redova:
 - a) $\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)}$
 - b) $\sum_{n=0}^{\infty}aq^n$, za $a,q\in\mathbb{R}$, |q|<1
 - c) $\sum_{n=0}^{\infty} k + nd$, $k, d \in \mathbb{R}^+$
- [2] Ispitati konvergenciju sljedećih redova i naći im sume ako konvergiraju:
 - a) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2^n}$
 - b) $\sum_{n=1}^{\infty} \ln{(1+\frac{1}{n})}$
- [3] Ispitati konvergenciju sljedećih redova:
 - a) $\sum_{n=0}^{\infty} \frac{n}{n+1}$
 - b) $\sum_{n=1}^{\infty} \frac{1}{\sqrt[n]{3}}$
 - c) $\sum_{n=1}^{\infty} \frac{n}{\sqrt[n]{n!}}$
- [4] Da li je uslov $\lim_{n \to \infty} a_n = 0$ dovoljan za konvergenciju reda $\sum_{n=0}^\infty a_n$?

Kriterij upoređivanja: Neka su $\sum_{n=0}^{\infty} a_n$ i $\sum_{n=0}^{\infty} b_n$ redovi sa pozitivnim članovima ($a_n > 0$, $b_n > 0$, $\forall n \in \mathbb{N}$) takvi da vrijedi $a_n \leq b_n$ počevši od nekad. Tada vrijedi:

- a) ako red $\sum_{n=0}^{\infty}b_n$ konvergira onda i red $\sum_{n=0}^{\infty}a_n$ konvergira
- b) ako red $\sum_{n=0}^{\infty} a_n$ divergira onda i red $\sum_{n=0}^{\infty} b_n$ divergira
- [5] Ispitati konvergenciju sljedećih redova:
 - a) $\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n+1}}$
 - b) $\sum_{n=1}^{\infty} \frac{\sqrt{n+1} \sqrt{n}}{\sqrt[3]{n}}$
 - c) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \ln \frac{n+1}{n-1}$

Limes kriterij upoređivanja: Neka su $\sum_{n=0}^{\infty} a_n$ i $\sum_{n=0}^{\infty} b_n$ redovi takvi da $a_n > 0, b_n > 0, \forall n \in \mathbb{N}$ i neka postoji $\lim_{n \to \infty} \frac{a_n}{b_n} = l \in [0, +\infty) \cup \{+\infty\}$. Tada:

 1° Ako $l\in(0,+\infty)$ onda red $\sum_{n=0}^\infty a_n$ konvergira akko red $\sum_{n=0}^\infty b_n$ konvergira

2° Ako je l=0 onda iz konvergencije reda $\sum_{n=0}^\infty b_n$ slijedi konvergencija reda $\sum_{n=0}^\infty a_n$, a iz divergencije reda $\sum_{n=0}^\infty a_n$ slijedi divergencija reda $\sum_{n=0}^\infty b_n$

 3° Ako je $l=+\infty$ onda iz konvergencije reda $\sum_{n=0}^\infty a_n$ slijedi konvergencija reda $\sum_{n=0}^\infty b_n$, a iz divergencije reda $\sum_{n=0}^\infty b_n$ slijedi divergencija reda $\sum_{n=0}^\infty a_n$

- [6] Ispitati konvergenciju sljedećih redova:
 - a) $\sum_{n=1}^{\infty} \frac{\sqrt{n^3 + n^2 + 1}}{\sqrt{3n^5 n 2}}$
 - b) $\sum_{n=1}^{\infty} \frac{1}{\ln^2 n}$
 - c) $\sum_{n=1}^{\infty} \frac{\ln n}{\sqrt[n]{n^5}}$
 - d) $\sum_{n=1}^{\infty} tg\left(\frac{\pi}{4n}\right)$

Zadaci za samostalan rad

Zadaci iz zbirki!