Final Review* †

Yumin Hu[‡]

NSD, PKU

June 1, 2019

 $^{^{*}\}mathrm{This}$ is a review lecture on financial economics 2019S taught by Xu Gao.

[†]Wish you all the best for the final exam.

 $^{^{\}ddagger} Contact$ email: hhhym110730@pku.edu.cn

- Introduction
- 2 Absolute pricing
- Relative pricing
- 4 Financial fractions
- 6 Conclusion

前言

这份讲义的 25 讲可以大致分成五部分。第一部分包含第 1 到第 4 讲,是课程的介绍部分,意在让那些初次接触金融学的读者了解金融的基本概念。第二部分包含第 5 讲到第 12 讲,是均衡资产定价的部分,介绍了均值方差分析、CAPM、C-CAPM 等内容。第三部分包含第 13 讲到第 19 讲,是无套利定价的部分,介绍了风险中性定价、二叉树、对冲等内容。第四部分包括第 20 讲到第 24 讲,重点在于把信息不对称、有限套利、非理性等摩擦因素引入金融分析,以丰富金融理论对现实世界的解释力。第 25 讲自成一部分,站在金融理论的外部来看理论的方法论基础和应用边界。

- Introduction
- 2 Absolute pricing
- Relative pricing
- 4 Financial fractions
- 6 Conclusion

Introduction Lecture 1-4

- Introduction to Financial Economics
 - ▶ Rate of return: good assets V.S. bad assets
- Bonds
 - ▶ IRR & Reinvestment Risk
 - ▶ Spot Rate (r_i) & Yield to maturity (y_i) & Forward Rate $(fr_{i,j})$
 - ▶ Duration
- Stocks
 - ▶ DDM & Gordon model
 - ► Transversality Condition(TVC)
 - ► PE ratio
 - ▶ Dividend decision & Fisher Separation Theorem

- Introduction
- 2 Absolute pricing
- 3 Relative pricing
- 4 Financial fractions
- 6 Conclusion

CAPM Lecture 5-7

- Preference: Mean-Variance Analysis
 - ▶ ex ante & ex post
 - ▶ Risk premium
- ② Behavior and Equilibrium

CML(efficient frontier, Two-fund separation):
$$E(r_i) - r_f = \frac{\sigma_i}{\sigma_M} [E(r_M) - r_f]$$

SML(pricing model): $E(r_i) - r_f = \beta_i [E(r_M) - r_f]$

- Properties: CAPM
 - ▶ Determination of discount rate & Portable alpha
- \bullet Three Questions (7.1.2)
 - ▶ Steel V.S. Pharmaceutical
 - ▶ It is possible that $E(r_i) < r_f$
 - \triangleright $E(r_i) = E(r_i), \sigma_i < \sigma_i$, investors choose which one?

C-CAPM Lecture 8-12

- Preference: Expected Utility(Lecture 8)
 - ► Expected Utility Theorem: Rational+Continuous+Independence
 - ▶ Risk aversion & Certainty equivalent
 - ▶ Utility functions(HARA,CARA,CRRA)
- 2 Behavior: Behavior under risks(Lecture 9)
 - ▶ Risky Assets [Different State]
 - Proposition1: $a^* > (=, <)0 \Leftrightarrow E(\tilde{r}) > (=, <)r_f$
 - Proposition2: $a^{*'}(w_0) > (=, <) \ 0 \Leftrightarrow R'_A(\cdot) < (=, >) \ 0$ (DARA, CARA, IARA)
 - Proposition3: $e(w_0) = (>, <) \ 1 \Leftrightarrow R'_R(\cdot) = (<, >) \ 0$ (CRRA(Real World), DRRA, IRRA)(Without Proof)
 - ▶ Savings under $risk(R_B \text{ is more risky than } R_A)$ [Different Time]
 - Proposition 4: $s_A > (=, <) s_B \Leftrightarrow P_R(sR) < (=, >) 2$

- **3** Equilibrium: General Equilibrium(Lecture 10-11)
 - ▶ Property of best risk sharing:
 - Consumptions of all consumers are perfectly correlated
 - Occumption is only determined by aggregated risk
 - Wilson Theorem: $\frac{dc_{ks}}{de_s} = \frac{T_k(c_{ks})}{\sum_{k=1}^K T_k(c_{ks})}$
 - ▶ Aggregated risk V.S. Idiosyncratic risk
- Properties: C-CAPM(Lecture 12)
 - ▶ Risk-free rate: $r_f \approx \frac{1-\delta}{\delta} + R_R \bar{g} \frac{1}{2} R_R P_R \sigma_g^2$ (Determination)
 - ▶ Risk premium: $E[\tilde{r}_j] r_f = -\frac{\delta(1+r_f)}{u'(c_0)} cov(u'(\tilde{c}_1), \tilde{r}_j)$ (Covariance) 雪中送炭 & 锦上添花
- Two puzzles
 - ▶ Risk free rate puzzle
 - ► Equity premium puzzle
 - Two economic forces(time smoothing and state smoothing)
 - One parameter

- Introduction
- 2 Absolute pricing
- 3 Relative pricing
- 4 Financial fractions
- 6 Conclusion

APT Lecture 13

- APT model

 - $\tilde{r}_{i} = \alpha_{i} + \sum_{k=1}^{K} \beta_{i,k} \tilde{f}_{k} + \tilde{\epsilon}_{i}, \quad i = 1, 2, \cdots, N$ $\tilde{r}_{p} = \sum_{i=1}^{N} w_{i} \alpha_{i} + (\sum_{i=1}^{N} w_{i} \beta_{i,1}) \tilde{f}_{1} + \cdots + (\sum_{i=1}^{N} w_{i} \beta_{i,K}) \tilde{f}_{K} + \sum_{i=1}^{N} w_{i} \tilde{\epsilon}_{i}$
 - $\lambda_k = E(\tilde{r_{pk}}) r_f E(f_k)$
 - \triangleright $E(\tilde{r}_i) = r_f + \sum_{k=1}^{N} \beta_{i,k} (\lambda_k + E(\tilde{f}_k)) [$ Exercise 13.1]
- 2 Parameters: $\tilde{f}_k \beta_{i,k} \tilde{\epsilon_i} \tilde{r_{nk}} \lambda_k$
- Application: Statistical arbitrage

NA-Pricing Lecture 14-15

- Future & Option [Exercise 14.1]
 - Forward price v.s. Expectation of spot price in the future
 - ► Put-call Parity(European v.s American)
 - Pricing idea: replicate bond/option, Risk Neutral World [Exercise 14.2]
- Fundamental Theorem of Asset Pricing

Complete N.A.
$$\Leftrightarrow \exists ! \varphi \text{ s.t. } P_j = \sum_{s=1}^{S} \varphi_s x_s^j \text{ [Exercise 15.2]}$$

$$P = \sum_{s=1}^{S} \pi_s \frac{\varphi_s}{\pi_s} x_s = \sum_{s=1}^{S} \pi_s m_s x_s = E(\tilde{m}\tilde{x})$$

$$P = \sum_{s=1}^{S} \pi_{s} \frac{\varphi_{s}}{\pi_{s}} x_{s} = \sum_{s=1}^{S} \pi_{s} m_{s} x_{s} = E(\tilde{m}\tilde{x})$$

$$P = \sum_{s=1}^{S} \varphi_{s} x_{s} = e^{-r} \sum_{s=1}^{S} \frac{\varphi_{s}}{\sum\limits_{k=1}^{S} \varphi_{k}} x_{s}^{j} = e^{-r} \sum_{s=1}^{S} q_{s} x_{s} = e^{-r} E^{Q}[\tilde{x}]$$

[Exercise 15.1]

Multiperiod pricing(Tree Model) Lecture 16

- lacktriangle Dynamic complete: Long-lived asset \geq Maximum of successor node
- 2 Law of iterated expectation
- Oynamic pricing
 - ▶ Martingale: Define $\hat{S}_t = e^{-rt}S_t$ as deflated stock price, we have $E_0[\hat{S}_2] = E_0[\hat{S}_1] = \hat{S}_0$

 - $C_u = e^{-r}[qC_{uu} + (1-q)C_{ud}], C_d = e^{-r}[qC_{ud} + (1-q)C_{dd}]$
 - $C_0 = e^{-2r} [q^2 C_{uu} + 2q(1-q) C_{ud} + (1-q)^2 C_d d]$
 - ▶ **Derivatives Payoff Function**: European option, American option, Floating strike lookback call option [Exercise 16.1], Asian option

Optimal Stopping(Bellman Equation) Lecture 17

Problem1

$$V(R, G) = \max\{0, \frac{R}{R+G}[1+V(R-1, G)] + \frac{G}{G+R}[-1+V(R, G-1)]\}$$

Problem2

$$P = \max\{\max\{K - S, 0\}, \frac{1}{1+r}[qP_u + (1-q)P_d]\}$$

Problem3

$$V_{s} = \min\{B_{t}, \frac{1}{1+r_{s}}[q(\bar{r}B_{t}+B_{t}-B_{t+1}+V_{su})+(1-q)(\bar{r}B_{t}+B_{t}-B_{t+1}+V_{sd})]\}$$

[Exercise 17.2]

BS Equation(Continuous time) Lecture 18

- Concepts
 - ▶ Random Walk, Brownian motion, Wiener Process
 - ▶ Ito's Lemma
 - geometric Brownian motion(Assets price)
- BS equation(European Option)
 - $C_0 = S_0 N(d_1) e^{-rT} KN(d_2)$
 - $P_0 = -S_0 N(-d_1) + e^{-rT} KN(-d_2)$
 - ▶ Put-Call Parity(Verify) $P_0 + S_0 = C_0 + Ke^{-rT}$
 - ▶ Intuition: $S_0N(d_1), N(d_2)$

Dynamic Hedging Lecture 19

- Naked position & Covered position, Stop loss strategy
- **2** Delta Hedge: $\Delta = \frac{\partial \Pi}{\partial S}$
- 3 Greeks [Exercise 19.1]
 - ▶ Gamma: $\Gamma = \frac{\partial \Delta}{\partial S} = \frac{\partial^2 \Pi}{\partial S^2}$. Curvature & Hedging error
 - ▶ Vega: $\nu = \frac{\partial \Pi}{\partial \sigma}$

- O Portfolio Insurance: replicate option [Exercise 19.2]
 - * Δ is the position, not flow

- Introduction
- 2 Absolute pricing
- 3 Relative pricing
- 4 Financial fractions
- 6 Conclusion

Asymmetric Information Lecture 20-21

- Moral Hazard(ex-ante): Credit rationing
 - ▶ IC constraint & IR constraint [Exercise 20.1]
 - ▶ Application: Financial Accelerator, Debt Overhang, Debt-deflation, Fiscal & Monetary Policy
- 2 Adverse Selection(ex-post): Capital Structure
 - ▶ MM Theory & Tradeoff Theory
 - ► Pecking Order Theory
 - Information Intensity: Low \rightarrow High
 - Internal Financing, External Financing(Debt, Equity)

Maturity Mismatch Lecture 22

- Moral Hazard(ex-ante): Credit rationing
- 2 DD Model [Exercise 22.2]
 - ► Autarky(ATK)
 - ▶ Market (MKT, Open in period 1)
 - ► Central Planner(BST)
 - ► Bank(BNK)
- Bank
 - ► Maturity Transformation(Cash Pool)
 - ▶ Bank Run(Self-fulfilling) & Deposit Insurance
 - ▶ Morale Hazard & Regulation
 - ► Shadow Banking
 - ▶ Internet Finance [Exercise 22.1]

Behavioral Finance Lecture 23

- Limits to Arbitrage
 - ▶ Fundamental Risk & Implementation Costs & Noise Trader Noise
- 2 Performance-based Arbitrage [Exercise 23.1]
 - ▶ Performance-based → Expand market volatility
- Systematic Bias
 - ▶ Overconfidence & Optimism & Belief Perseverance
 - ▶ Prospect Theory & Loss Aversion
- Omments: Behavioral Finance

Financial Risk Lecture 24

- Market Risk & Credit Risk & Operation Risk
 - ▶ Greeks: Delta, Gamma, Vega, Theta, Rho
 - \triangleright Value ar Risk: V(T,X)

- Subprime Mortgage Crisis
 - ► ABS & CDO
 - ► CDS & Synthetic CDO

- Introduction
- 2 Absolute pricing
- 3 Relative pricing
- 4 Financial fractions
- 6 Conclusion

Conclusion

Schedule

▶ https://finaecon2019s.github.io/FinaEcon2019S/

12	Mon,5.6	第20讲.道德风险与信贷配给(slides)	提取码: gtny	HW11:20.1 Due:5月13日	从本讲开始,我们进入金融摩擦的领域 理解本讲模型设定和信贷配给理论的四个应用
12	Sat,5.11	第21讲.逆向选择与资本结构(slides)	提取码: 975L		理解模型的setup,掌握信息强度与啄虚假说的概念
13	Mon,5.13	第22讲.银行与期限错配(slides)	提取码: PYt8	HW12:22.2 Due:5月20日	理解模型setup: 理解银行实现的期限转换功能,及其对应带来的期限错配问题
14	Mon,5.20	第23讲.行为金融学初探(slides)	提取码: c6P1	HW13:23.1 Due:5月27日	理解模型setup,有限套利
15	Mon,5.27	第24讲.风险管理与次货危机(slides)	提取码: O4Ly		掌握相关概念,例如风险价值度、希腊字母、CDO、CDS、合成CDO等等,次货危机爆 发的原因
18	Mon.6.17	期末考试			

Grades

- $\blacktriangleright \quad \text{https://shimo.im/sheets/uc7QXLuatNwG8UBC/MODOC}$
- ▶ 平时成绩 23 + 2^{*†} & 期中考试 25 !!! **DDL** [**23:00**, **June 16**, **2019**]
- ▶ 期末考试: 50 [2019 年 6 月 17 日(周一) 18: 30-20: 30]

^{*}Method1: 教材勘误,PPT 勘误

[†]Method2: 教材答案征集 https://www.wjx.cn/jq/11554255.aspx

Model

NA Pricing

- APT [Exercise 13.1]
- 2 Fundamental Theorem of Asset Pricing [Exercise 15.2]
- Multiperiod Pricing [Exercise 16.1]
- Optimal Stopping [Exercise 17.2]
- **5** Dynamic Hedging [Exercise 19.1 & 19.2]

Financial Frictions

- Credit Rationing [Exercise 20.1] & Capital Structure
- 2 Diamond-Dybvig Model [Exercise 22.2]
- 3 Performance-based Arbitrage [Exercise 23.1]

End

时间: 2019.06.17, 18: 30-20: 30

地点:

50-60 计算 & 40-50 简答, 请务必携带计算器

May you suffer the examination and be stronger

Financial Economics 2019 Spring, Xu Gao(徐高)

TA: 胡裕民¹, 张子萱²

 $^{^1}$ hhhym110730@pku.edu.cn

²zhangzixuan19970429@outlook.com