Oxidación redución

♦ PROBLEMAS

• Estequiometría redox

- 1. Pola acción do ácido HCl de riqueza 36 % en masa e densidade 1,19 g/cm³, o óxido de manganeso(IV) transfórmase en cloruro de manganeso(II), obténdose ademais cloro gasoso e auga.
 - a) Axusta as ecuacións iónica e molecular polo método do ión-electrón.
 - b) Calcula o volume de HCl que será necesario para obter 3 litros de cloro gasoso a 25 ℃ e 1 atm de presión.

(A.B.A.U. extr. 23)

Rta.: a)
$$2 \text{ Cl}^- + \text{MnO}_2 + 4 \text{ H}^+ \rightarrow \text{Cl}_2 + \text{Mn}^{2+} + 2 \text{ H}_2\text{O}; 4 \text{ HCl} + \text{MnO}_2 \rightarrow \text{MnCl}_2 + \text{Cl}_2 + 2 \text{ H}_2\text{O};$$
 b) $V(\text{HCl}) = 41,7 \text{ cm}^3 \text{ (D)}$

2. Dada a seguinte reacción:

$$HCl(ac) + K_2Cr_2O_7(ac) + NaNO_2(ac) \longrightarrow NaNO_3(ac) + CrCl_3(ac) + KCl(ac) + H_2O(l)$$

- a) Axusta as ecuacións iónica e molecular polo método do ión-electrón.
- b) Calcula o volume de dicromato de potasio de concentración 2,0 mol/dm³ necesario para oxidar 20 g de nitrito de sodio.

(A.B.A.U. ord. 23)

Rta.:
$$3 (NO_2)^- + (Cr_2O_7)^{2-} + 8 H^+ \rightarrow 3 (NO_3)^- + 2 Cr^{3+} + 4 H_2O;$$

 $3 NaNO_2 + K_2Cr_2O_7 + 8 HCl \rightarrow 3 NaNO_3 + 2 CrCl_3 + 2 KCl + 4 H_2O; b) V = 48,3 cm^3 (D)$

3. O catión ferro (II) pode ser oxidado tal como ocorre nesta reacción:

$$KMnO_4 + FeCl_2 + HCl \rightarrow MnCl_2 + FeCl_3 + KCl + H_2O$$

- a) Axusta a ecuación iónica empregando o método do ión-electrón e escribe a ecuación molecular redox axustada.
- b) Sabendo que se empregaron 26,0 cm³ dunha disolución de permanganato de potasio de concentración 0,025 mol/dm³ para valorar 25,0 cm³ dunha disolución que contén Fe²+, calcula a concentración da disolución de Fe²+.

(A.B.A.U. extr. 22)

Rta.: a)
$$(MnO_4)^- + 5 Fe^{2+} + 8 H^+ \rightarrow Mn^{2+} + 5 Fe^{3+} + 4 H_2O$$
;
 $KMnO_4 + 5 FeCl_2 + 8 HCl \rightarrow MnCl_2 + 5 FeCl_3 + KCl + 4 H_2O$; b) $[Fe^{2+}] = 0,130 \text{ mol/dm}^3$.

4. a) Axusta polo método do ión-electrón a seguinte ecuación química, indicando as semirreaccións correspondentes, a especie que se oxida e a que se reduce:

$$K_2Cr_2O_7(aq) + FeSO_4(aq) + H_2SO_4(aq) \rightarrow K_2SO_4(aq) + Cr_2(SO_4)_3(aq) + Fe_2(SO_4)_3(aq) + H_2O(I)$$

b) Cantos gramos de sulfato de cromo(III) poderán obterse a partir de 5,0 g de dicromato de potasio se o rendemento da reacción é do 60 %?

(A.B.A.U. extr. 21)

Rta.: a)
$$K_2Cr_2O_7 + 6 \text{ FeSO}_4 + 7 \text{ H}_2SO_4 \longrightarrow K_2SO_4 + Cr_2(SO_4)_3 + 3 \text{ Fe}_2(SO_4)_3 + 7 \text{ H}_2O$$

b) $m = 4.0 \text{ g Cr}_2(SO_4)_3$.

- 5. Dada a seguinte reacción: $H_2S + NaMnO_4 + HBr \rightarrow S + NaBr + MnBr_3 + H_2O$.
 - a) Axusta a ecuación iónica polo método ión-electrón e escriba a ecuación molecular completa.
 - b) Calcula os gramos de NaMnO₄ que reaccionarán con 32 g de H₂S. Se se obtiveron 61,5 g de MnBr₃ calcule o rendemento da reacción.

(A.B.A.U. ord. 21)

Rta.: a)
$$2 S^{2^{-}} + (MnO_4)^{-} + 8 H^{+} \rightarrow 2 S + Mn^{3^{+}} + 4 H_2O$$
; $2 H_2S + NaMnO_4 + 4 HBr \rightarrow 2 S + MnBr_3 + Na-Br + 4 H_2O$; b) $m(NaMnO_4) = 66,6$ g. Rto. = 44,5 %.

- 6. Dada a reacción redox: $SO_2(g) + KMnO_4(aq) + H_2O(l) \rightarrow K_2SO_4(aq) + MnSO_4(aq) + H_2SO_4(aq)$
 - a) Axusta as ecuacións iónica e molecular polo método do ión-electrón.
 - b) Calcula o volume de SO₂, medido a 1,2 atm e 27 °C que reacciona completamente con 500 cm³ dunha disolución de concentración 2,8 mol/dm³ de KMnO₄.

Datos: $R = 8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 0,082 \text{ atm} \cdot \text{L} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$; 1 atm = 101,3 kPa. (A.B.A.U. extr. 20) **Rta.:** a) $2 \text{ MnO}_{4}^{-1} + 5 \text{ SO}_{2} + 2 \text{ H}_{2}\text{O} \rightarrow 2 \text{ Mn}^{2+} + 5 \text{ SO}_{4}^{2-} + 4 \text{ H}^{+}$;

 $2 \text{ KMnO}_4(\text{aq}) + 5 \text{ SO}_2(\text{g}) + 2 \text{ H}_2\text{O}(\text{l}) \rightarrow 2 \text{ MnSO}_4(\text{aq}) + \text{K}_2\text{SO}_4(\text{aq}) + 2 \text{ H}_2\text{SO}_4(\text{aq}); b) \ V = 71.8 \text{ dm}^3.$

- 7. Reaccionan 4,0 cm³ dunha disolución de concentración 0,1 mol/dm³ de KMnO₄ con 10,0 cm³ dunha disolución de ioduro de potasio en presenza de ácido clorhídrico para dar I₂, cloruro de manganeso(II), cloruro de potasio e auga.
 - a) Axusta as ecuacións iónica e molecular polo método do ión-electrón.
 - b) Calcula a concentración da disolución de ioduro de potasio.

(A.B.A.U. ord. 20)

Rta.: a) 2 (MnO₄)⁻ + 10 I⁻ + 16 H⁺ \rightarrow 2 Mn²⁺ + 5 I₂ + 8 H₂O; 2 KMnO₄(aq) + 10 KI(aq) + 16 HCl(aq) \rightarrow 5 I₂(s) + 2 Cl₂(aq) + 12 KCl(aq) + 8 H₂O(l); b) [KI] = 0,200 mol/dm³.

- 8. 100 g de NaBr trátanse con ácido nítrico concentrado de densidade 1,39 g/cm³ e riqueza 70 % en masa, ata reacción completa. Sabendo que os produtos da reacción son Br₂, NO₂, NaNO₃ e auga:
 - a) Axusta as semirreaccións que teñen lugar polo método do ión-electrón, a ecuación iónica e a molecular.
 - b) Calcula o volume de ácido nítrico consumido.

(A.B.A.U. extr. 19)

Rta.: a) $2 \text{ Br}^-(aq) + 2 \text{ NO}_3^-(aq) + 4 \text{ H}^+(aq) \rightarrow \text{Br}_2(l) + 2 \text{ NO}_2(g) + 2 \text{ H}_2O(l);$ $2 \text{ NaBr}(aq) + 4 \text{ HNO}_3(aq) \rightarrow \text{Br}_2(l) + 2 \text{ NO}_2(g) + 2 \text{ NaNO}_3(aq) + 2 \text{ H}_2O(l);$ b) $V = 126 \text{ cm}^3 \text{ HNO}_3.$

- 9. O KMnO₄ reacciona con hipoclorito de potasio, KCIO, en medio ácido sulfúrico, formando KCIO₃, MnSO₄, K₂SO₄ e auga.
 - a) Axusta as ecuacións iónica e molecular polo método do ión-electrón.
 - b) Que volume dunha disolución que contén 15,8 g de permanganato de potasio por litro reacciona completamente con 2,0 litros doutra disolución que contén 9,24 g de hipoclorito de potasio por litro?

(A.B.A.U. ord. 19)

Rta.: a) 4 (MnO₄)⁻ + 5 (ClO)⁻ + 12 H⁺ \rightarrow 4 Mn²⁺ + 5 (ClO₃)⁻ + 6 H₂O; 4 KMnO₄(aq) + 5 KClO(aq) + 6 H₂SO₄(aq) \rightarrow 5 KClO₃(aq) + 4 MnSO₄(aq) + 2 K₂SO₄(aq) + 6 H₂O; b) $V = 1,63 \text{ dm}^3$.

- 10. O sulfuro de cobre(II) sólido reacciona co ácido nítrico diluído producindo xofre sólido (S), NO, $Cu(NO_3)_2$ e auga.
 - a) Axusta as reaccións iónica e molecular polo método do ión-electrón.
 - b) Calcula os moles de NO que se producen ao reaccionar de forma completa 430,3 g de CuS.

(A.B.A.U. extr. 18)

Rta.: a) $3 S^{2^{-}} + 8 H^{+} + 2 NO_{3}^{-} \rightarrow 3 S + 2 NO + 4 H_{2}O$ $3 CuS(s) + 8 HNO_{3}(aq) \rightarrow 3 S(s) + 2 NO(g) + 3 Cu(NO_{3})_{2}(aq) + 4 H_{2}O(l); b) n = 3,00 mol NO.$

- 11. O cobre metálico reacciona con ácido nítrico concentrado formando dióxido de nitróxeno, nitrato de cobre(II) e auga.
 - a) Axusta reacción iónica e molecular polo método do ión-electrón.
 - b) Calcula o volume dunha disolución de ácido nítrico comercial do 25,0 % en masa e densidade 1,15 g·cm⁻³ que reaccionará con 5,0 g dun mineral que ten un 10 % de cobre.

(A.B.A.U. ord. 18)

Rta.: a) Cu + 4 HNO₃ \rightarrow 2 NO₂ + Cu(NO₃)₂ + 2 H₂O; b) V_d = 6,90 cm³.

- 12. A valoración en medio ácido de 50,0 cm³ dunha disolución de Na₂C₂O₄ require 24,0 cm³ de permanganato de potasio de concentración 0,023 mol/dm³. Sabendo que a reacción que se produce é: $C_2O_4^{2-} + MnO_4^{-} + H^+ \rightarrow Mn^{2+} + CO_2(g) + H_2O$
 - a) Axusta a reacción iónica polo método do ión-electrón.
 - b) Calcula os gramos de Na₂C₂O₄ que hai nun litro da disolución.

(A.B.A.U. extr. 17)

Rta.: a) $5 C_2 O_4^{2-} + 2 MnO_4^{-} + 16 H^+ \rightarrow 10 CO_2(g) + 2 Mn^{2+} + 8 H_2O(l); b) [Na_2 C_2 O_4] = 3,70 g / L.$

13. a) Empregando o método do ión-electrón, axusta as ecuacións iónica e molecular que corresponden a seguinte reacción redox: $H_2SO_4(aq) + KBr(aq) \rightarrow K_2SO_4(aq) + Br_2(I) + SO_2(g) + H_2O(I)$

b) Calcula o volume de bromo líquido (densidade 2,92 g/cm³) que se obterá ao tratar 90,1 g de bromuro de potasio con cantidade suficiente de ácido sulfúrico.

(A.B.A.U. ord. 17)

Rta.: a) $(SO_4)^{2^-} + 2 Br^- + 4 H^+ \rightarrow SO_2 + Br_2 + 2 H_2O$; $2 H_2SO_4 + 2 KBr \rightarrow Br_2 + SO_2 + K_2SO_4 + 2 H_2O$ b) $V = 20.7 \text{ cm}^3$.

Electrólise

1. a) Faise pasar unha corrente eléctrica de 1,5 A a través de 250 cm³ dunha disolución acuosa de ións Cu²+ de concentración 0,1 mol/dm³. Calcula o tempo que ten que transcorrer para que todo o cobre da disolución se deposite como cobre metálico.

Dato: 1 F = 96500 C.

(A.B.A.U. extr. 19)

Rta.: a) t = 54 min.

2. b) Faise pasar durante 2,5 horas unha corrente eléctrica de 5,0 A a través dunha disolución acuosa de Snl_2 . Calcula os moles de I_2 liberados no ánodo.

Dato: Constante de Faraday, F = 96 500 C⋅mol⁻¹.

(A.B.A.U. extr. 18)

Rta.: b) $n = 0.23 \text{ mol } I_2$.

- 3. Realízase a electrólise dunha disolución de cloruro de ferro(III) facendo pasar unha corrente de 10 amperios durante 3 horas. Calcula:
 - a) Os gramos de ferro depositados no cátodo.
 - b) O tempo que tería que pasar a corrente para que no ánodo se desprendan 20,5 L de Cl₂ gas medidos a 25 °C de temperatura e 1 atm de presión.

Datos: $R = 8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 0,082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$; 1 atm = 101,3 kPa; constante de Faraday, $F = 96500 \text{ C} \cdot \text{mol}^{-1}$.

(A.B.A.U. ord. 18)

Rta.: a) m = 20.8 g Fe; b) t = 4.5 h.

4. a) Faise pasar unha corrente eléctrica de 0,2 A a través dunha disolución acuosa de sulfato de cobre(II) durante 10 minutos. Calcula os gramos de cobre depositados.

(A.B.A.U. extr. 17)

Rta.: a) m = 0.040 g Cu.

5. a) Faise pasar durante 2,5 horas unha corrente de 2,0 A a través dunha cela electroquímica que contén unha disolución de SnI₂. Calcula a masa de estaño metálico depositada no cátodo.

(A.B.A.U. ord. 17)

Rta.: a) m(Sn) = 11 g.

CUESTIÓNS

Potenciais

1. Explica razoadamente, escribindo as correspondentes reaccións, que sucederá se engadimos limaduras de ferro a unha disolución de Cu²+(ac).

Datos: $E^{\circ}(Cu^{2+}/Cu) = +0.34 \text{ V}$; $E^{\circ}(Fe^{2+}/Fe) = -0.44 \text{ V}$.

(A.B.A.U. ord. 22)

♦ LABORATORIO

Valoración redox

1. Para determinar a concentración dunha disolución de FeSO₄ realízase unha valoración redox na que 18,0 cm³ de disolución de KMnO₄ de concentración 0,020 mol/dm³ reaccionan con 20,0 cm³ da disolución de FeSO₄. A reacción que ten lugar é:

$$5 \text{ Fe}^{2+}(aq) + \text{MnO}_{4}^{-}(aq) + 8 \text{ H}^{+}(aq) \rightarrow 5 \text{ Fe}^{3+}(aq) + \text{Mn}^{2+}(aq) + 4 \text{ H}_{2}\text{O} (I)$$

- a) Calcula a concentración da disolución de FeSO₄.
- b) Nomea o material necesario e describe o procedemento experimental para realizar a valoración.

(A.B.A.U. extr. 18)

Rta.: $[FeSO_4] = 0,090 \text{ mol/dm}^3$.

Pilas

- 1. Constrúese no laboratorio a seguinte pila galvánica: |Pb(s)|Pb²⁺(ac, 1 M)||Cu²⁺(ac, 1 M)||Cu(s)|.
 - a) Escribe as semirreaccións de oxidación, de redución e a reacción global. Calcula a forza electromotriz da pila.
 - b) Debuxa un esquema da pila, representando as semicelas que actúan como ánodo e como cátodo, detallando material e reactivos, así como o sentido do fluxo dos electróns durante o funcionamento da pila.

Datos: $E^{\circ}(Cu^{2+}/Cu) = +0.34 \text{ V}; E^{\circ}(Pb^{2+}/Pb) = -0.12 \text{ V}.$ (A.B.A.U. extr. 23)

Rta.: a) $E^{\circ} = 0.46 \text{ V}.$

- a) Xustifica que reacción terá lugar nunha pila galvánica formada por un eléctrodo de cobre e outro de cadmio en condicións estándar, indicando as reaccións que teñen lugar no ánodo e no cátodo. Calcula a forza electromotriz da pila nestas condicións.
 - b) Fai un esquema da montaxe da pila no laboratorio, detallando o material e os reactivos necesarios e sinalando o sentido de circulación dos electróns.

 $E^{\circ}(Cu^{2+}/Cu) = +0.34 \text{ V}; E^{\circ}(Cd^{2+}/Cd) = -0.40 \text{ V}.$ (A.B.A.U. ord. 23) **Rta.:** a) $E^{\circ} = +0.74 \text{ V}$

- 3. Constrúese no laboratorio unha pila galvánica con eléctrodos de Au e Cd.
 - a) Escribe as reaccións que teñen lugar nos eléctrodos indicando: o ánodo e o cátodo, a reacción global e a forza electromotriz da pila.
 - b) Fai un esquema detallado da montaxe da pila no laboratorio, indicando material, reactivos e o sentido do fluxo dos electróns durante o funcionamento da pila.

Datos: $E^{\circ}(Au^{3+}/Au) = +1,50 \text{ V}$; $E^{\circ}(Cd^{2+}/Cd) = -0,40 \text{ V}$. (A.B.A.U. extr. 22) **Rta.:** a) $E^{\circ} = 1,90 \text{ V}$.

- 4. Constrúese unha pila cos elementos Cu^{2+}/Cu e AI^{3+}/AI , dos que os potenciais estándar de redución son $E^{\circ} = +0.34 \text{ V}$ e -1.66 V, respectivamente.
 - a) Escribe as reaccións que teñen lugar en cada un dos eléctrodos e a reacción global da pila.
 - b) Fai un esquema desta pila, indicando todos os elementos necesarios para o seu funcionamento. En que sentido circulan os electróns?

(A.B.A.U. ord. 21)

Rta.: $E^{\circ} = 2,00 \text{ V}.$

- a) Explica como construiría no laboratorio unha pila empregando un eléctrodo de cinc e un eléctrodo de níquel, indicando o material e os reactivos necesarios.
 - b) Indica as semirreaccións que teñen lugar en cada eléctrodo, a reacción iónica global e calcule a forza electromotriz da pila.

Datos: $E^{\circ}(Ni^{2+}/Ni) = -0.25 \text{ V}$; $E^{\circ}(Zn^{2+}/Zn) = -0.76 \text{ V}$. (A.B.A.U. extr. 20) **Rta.:** $E^{\circ} = 0.51 \text{ V}$.

6. No laboratorio constrúese a seguinte pila en condicións estándar:

$$Cu(s)\mid Cu^{2+}(aq,\,1\,M)\parallel Ag^{+}(aq,\,1\,M)\mid Ag(s)$$

a) Fai un debuxo da montaxe, indicando o material e os reactivos necesarios.

b) Escribe as semirreaccións de redución e oxidación, a reacción iónica global da pila e calcula o potencial da mesma en condicións estándar.

Datos:
$$E^{\circ}(Cu^{2+}/Cu) = +0.34 \text{ V}$$
; $E^{\circ}(Ag^{+}/Ag) = +0.80 \text{ V}$.

(A.B.A.U. ord. 20, extr. 19)

Rta.: b) $E^{\circ} = 0.46 \text{ V}.$

- 7. a) Fai un esquema indicando o material e os reactivos que se necesitan para construír no laboratorio a pila que ten a seguinte notación Fe(s) | Fe²⁺(aq, 1 M) | | Cu²⁺(aq, 1 M) | Cu(s).
 - b) Escribe as semirreaccións que se producen no ánodo e no cátodo e indica as súas polaridades. Escribe a reacción iónica global e calcula a forza electromotriz da pila.

Datos:
$$E^{\circ}(Cu^{2+}/Cu) = +0.34 \text{ V}$$
; $E^{0}(Fe^{2+}/Fe) = -0.44 \text{ V}$.

(A.B.A.U. ord. 19)

Rta.: b) $E^{\circ} = 0.78 \text{ V}.$

8. No laboratorio constrúese unha pila que ten a seguinte notación:

$$Cd(s) \mid Cd^{2+}(aq \ 1 \ mol/dm^3) \mid Ag^{+}(aq \ 1 \ mol/dm^3) \mid Ag(s)$$
.

- a) Indica as reaccións que teñen lugar en cada eléctrodo, o proceso total e calcula a forza electromotriz.
- b) Detalla o material, reactivos necesarios e debuxa a montaxe indicando cada unha das partes.

Datos:
$$E^{\circ}(Ag^{+}/Ag) = 0.80 \text{ V}$$
; $E^{\circ}(Cd^{2+}/Cd) = -0.40 \text{ V}$.

(A.B.A.U. extr. 17)

Rta.: a) $E^{\circ} = 1,20 \text{ V}.$

- a) Xustifica que reacción terá lugar nunha pila galvánica formada por un eléctrodo de cobre e outro de cinc en condicións estándar, a partir das reaccións que teñen lugar no ánodo e o cátodo. Calcula a forza electromotriz da pila nestas condicións.
 - b) Indica como realizaría a montaxe da pila no laboratorio para facer a comprobación experimental, detallando o material e os reactivos necesarios.

Datos:
$$E^{\circ}(Zn^{2+}/Zn) = -0.76 \text{ V}$$
; $E^{\circ}(Cu^{2+}/Cu) = +0.34 \text{ V}$.

(A.B.A.U. ord. 17)

Rta.: $E^{\circ} = 1,10 \text{ V}.$

Cuestións e problemas das <u>Probas de avaliación de Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.