Final Project 1 Diabetes Prediction from Medical Records

April 28, 2025

1 1. Importing Libraries

```
[73]: # Basic libraries
      import pandas as pd
      import numpy as np
      from google.colab import drive
      # Visualization
      import matplotlib.pyplot as plt
      import seaborn as sns
      # Machine Learning models
      from sklearn.model selection import StratifiedKFold, cross val score
      from sklearn.preprocessing import StandardScaler
      from sklearn.svm import SVC
      from sklearn.ensemble import RandomForestClassifier
      from sklearn.linear_model import LogisticRegression
      from sklearn.neighbors import KNeighborsClassifier
      from sklearn.naive_bayes import GaussianNB
      # Metrics
      from sklearn.metrics import classification_report
```

2 2. Loading the Dataset

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

```
2
              5
                                        74
                                                                      25.6
                      116
                                                          0
3
             10
                      115
                                         0
                                                          0
                                                                    0 35.3
4
                                        70
                                                                       30.5
              2
                      197
                                                         45
                                                                 543
   DiabetesPedigreeFunction
                                Age
                                     {\tt Outcome}
                                               Ιd
0
                        0.351
                                 31
                                            0
                                                 1
                        0.167
1
                                 21
                                            0
                                                3
2
                        0.201
                                                 5
                                 30
                                            0
3
                                                7
                        0.134
                                 29
                                            0
4
                        0.158
                                 53
                                            1
                                                8
```

3 3. Exploratory Data Analysis (EDA)

[75]: print(df.info()) ## Basic info, describes the dataset size and outlines_
\(\text{\cuteff} \) variables

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 550 entries, 0 to 549
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	550 non-null	int64
1	Glucose	550 non-null	int64
2	BloodPressure	550 non-null	int64
3	SkinThickness	550 non-null	int64
4	Insulin	550 non-null	int64
5	BMI	550 non-null	float64
6	DiabetesPedigreeFunction	550 non-null	float64
7	Age	550 non-null	int64
8	Outcome	550 non-null	int64
9	Id	550 non-null	int64

dtypes: float64(2), int64(8)

memory usage: 43.1 KB

None

[76]: print(df.describe()) #Quick Stats Mean, Std, Min, Max

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	\
count	550.000000	550.000000	550.000000	550.000000	550.000000	
mean	4.034545	121.560000	69.381818	20.014545	80.141818	
std	3.447325	30.551206	19.036147	15.898006	115.429640	
min	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	1.000000	100.000000	62.000000	0.000000	0.000000	
50%	3.000000	119.000000	72.000000	22.000000	22.500000	
75%	6.000000	141.000000	80.000000	32.000000	128.750000	
max	17.000000	197.000000	122.000000	63.000000	846.000000	

```
DiabetesPedigreeFunction
                                                               Outcome
              BMI
                                                       Age
       550.000000
                                   550.000000
                                               550.000000
                                                            550.000000
count
        31.902000
                                     0.466582
                                                33.590909
                                                              0.354545
mean
         7.822178
                                     0.320054
                                                12.054140
                                                              0.478811
std
                                                21.000000
                                                              0.000000
min
         0.000000
                                     0.078000
25%
        27.200000
                                     0.239250
                                                24.000000
                                                              0.000000
50%
        32.000000
                                     0.375000
                                                29.000000
                                                              0.000000
                                                41.000000
75%
        36.500000
                                     0.628250
                                                              1.000000
        59.400000
                                     2.420000
                                                81.000000
                                                              1.000000
max
               Ιd
       550.000000
count
       379.630909
mean
std
       222.127731
min
         1.000000
25%
       187.250000
50%
       377.500000
75%
       571.500000
       766.000000
max
print(df.isnull().sum()) # Check missing values
Pregnancies
                             0
Glucose
                             0
BloodPressure
                             0
SkinThickness
                             0
Insulin
                             0
BMI
                             0
```

4 4. Visualization

DiabetesPedigreeFunction

Age

Ιd

Outcome

dtype: int64

```
[78]: # 1. Distribution/Histogram of features
plt.figure(figsize=(15, 10))
for i, col in enumerate(df.columns[:-1]):
    plt.subplot(3, 3, i+1)
    sns.histplot(df[col], kde=True, bins=30)
    plt.title(f'Distribution of {col}')
plt.tight_layout()
plt.show()
```

0

0

0

0


```
[79]: #2. Correlation Heatmap
plt.figure(figsize=(10,8))
sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
plt.title('Feature Correlation Heatmap')
plt.show()
```



```
[80]: #3. Class Balance Plot, visualizes the instances of 0 and 1 for outcome variable
sns.countplot(x='Outcome', data=df)
plt.title('Class Distribution')
plt.xlabel('Outcome (0 = Healthy, 1 = Diabetic)')
plt.ylabel('Count')
plt.show()
```



```
[81]: # 4. Boxplots to identify outliers
plt.figure(figsize=(15, 10))
for i, col in enumerate(df.columns[:-1]):
    plt.subplot(3, 3, i+1)
    sns.boxplot(x='Outcome', y=col, data=df)
    plt.title(f'{col} by Diabetes Status')
plt.tight_layout()
plt.show()
```


5 5. Prepare Features and Labels

```
[82]: # Split data into features and targe
X = df.drop(columns=['Outcome'])
y = df['Outcome']
```

6 6. Standardize Features

```
[83]: # Standardize the features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
```

7 7. Initialize Models

```
[84]: # Initialize models
models = {
    'Support Vector Machine': SVC(kernel='rbf', random_state=42),
    'Random Forest': RandomForestClassifier(n_estimators=100, random_state=42),
    'Logistic Regression': LogisticRegression(max_iter=1000, random_state=42),
    'K-Nearest Neighbors': KNeighborsClassifier(),
    'Naive Bayes': GaussianNB()
```

}

8 8. 10-Fold Cross-Validation and Evaluation

```
[85]: # 10-fold cross-validation setup
      cv = StratifiedKFold(n_splits=10, shuffle=True, random_state=42)
      # Metrics to evaluate
      metrics = ['accuracy', 'f1', 'precision', 'recall']
      # Evaluate models
      results = \Pi
      for name, model in models.items():
          scores = {m: cross_val_score(model, X_scaled, y, cv=cv, scoring=m).mean()_

      for m in metrics}

          results.append([name, scores['accuracy'], scores['f1'],
       ⇔scores['precision'], scores['recall']])
      # Create and display results DataFrame
      results_df = pd.DataFrame(results, columns=['Model', 'Accuracy', 'F1-Score', u
       ⇔'Precision', 'Recall'])
      results_df = results_df.sort_values('F1-Score', ascending=False).
       ⇔reset_index(drop=True)
```

9 9. Display results table

```
[86]: #Display the result table
print("\nPerformance Comparison:\n")
print(results_df.round(4))
```

Performance Comparison:

```
Model Accuracy F1-Score Precision Recall
0
             Naive Bayes
                           0.7636
                                     0.6455
                                                0.6968 0.6108
           Random Forest
1
                           0.7618
                                     0.6417
                                                0.7005 0.6100
2
     Logistic Regression
                           0.7600
                                     0.6204
                                                0.7098 0.5592
                                                0.6876 0.5487
3 Support Vector Machine
                                     0.6057
                           0.7509
     K-Nearest Neighbors
                           0.7327
                                     0.5952
                                                0.6412 0.5629
```

10 10. Visual Representation of Accuracy and F1 Scores

```
[87]: # Plot of Accuracy
plt.figure(figsize=(8,5))
sns.barplot(x='Model', y='Accuracy', data=results_df)
plt.title('Model Accuracy Comparison')
plt.xticks(rotation=45)
plt.ylim(0,1)
plt.show()

#Plot of F1 Scores
plt.figure(figsize=(8,5))
sns.barplot(x='Model', y='F1-Score', data=results_df)
plt.title('Model F1-Score Comparison')
plt.xticks(rotation=45)
plt.ylim(0,1)
plt.show()
```


11 11. Classification Reports of All Models on Full Data

```
[88]: print("Classification Reports (trained on full data):\n")

for name, model in models.items():
    # Fit model on full data
    model.fit(X, y)

# Predict on full data
    y_pred = model.predict(X)

# Print classification report
    print(f"Model: {name}")
    print(classification_report(y, y_pred, digits=4))
    print("-" * 60)
```

Classification Reports (trained on full data):

Model: Suppor	rt Vector Ma	chine				
	precision		f1-score	support		
	-					
0	0.7183	0.9408	0.8146	355		
1	0.7529	0.3282	0.4571	195		
accuracy			0.7236	550		
macro avg	0.7356	0.6345	0.6359	550		
weighted avg	0.7306	0.7236	0.6879	550		
Model: Randon	 - Eomog+					
Model: Randon		rocoll	f1-score	gunnort		
	precision	recall	11-score	support		
0	1.0000	1.0000	1.0000	355		
1	1.0000	1.0000	1.0000	195		
1	1.0000	1.0000	1.0000	100		
accuracy			1.0000	550		
macro avg	1.0000	1.0000	1.0000	550		
weighted avg		1.0000	1.0000	550		
6	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		2,,,,,			
Model: Logis	tic Regressi	on				
	precision	recall	f1-score	support		
0		0.8732		355		
1	0.7152	0.5795	0.6402	195		
accuracy			0.7691			
macro avg				550		
weighted avg	0.7640	0.7691	0.7627	550		
Model: K-Nearest Neighbors						
noder. n wed	precision		f1-score	support		
	proorbron	100011	11 50010	Duppor		
0	0.8056	0.8873	0.8445	355		
1	0.7484			195		
_			2.0.20			
accuracy			0.7891	550		
macro avg	0.7770	0.7488				
weighted avg				550		
2 0						
Model: Naive	•					
	precision	recall	f1-score	support		

0	0.8042	0.8563	0.8295	355	
1	0.7035	0.6205	0.6594	195	
accuracy			0.7727	550	
macro avg	0.7539	0.7384	0.7444	550	
weighted avg	0.7685	0.7727	0.7692	550	
