Samlefil for alle data til prøveeksamen

Filen 1A.txt

Perioden P er 186.6 millioner år

Filen 1B/Oppgave1B_Figur_A.png

Figure 1: Figur fra filen 1B/Oppgave1B_Figur_A.png

$Filen~1B/Oppgave1B_Figur_B.png$

Figure 2: Figur fra filen 1B/Oppgave1B_Figur_B.png

$Filen~1B/Oppgave1B_Figur_C.png$

Figure 3: Figur fra filen 1B/Oppgave1B_Figur_C.png

$Filen~1B/Oppgave1B_Figur_D.png$

Figure 4: Figur fra filen 1B/Oppgave1B_Figur_D.png

Filen 1B/Oppgave1B_Figur_E.png

Figur E 658.14 658.12 Bølgelengde (nm) 658.10 658.08 658.06 658.04 10 0 5 15 20 25 30 35 Periode (år)

Figure 5: Figur fra filen 1B/Oppgave1B_Figur_E.png

Filen 1D.txt

Stjerna A: Tilsynelatende visuell størrelseklasse m
-V = 14.12, tilsynelatende blå størrelseklass $m_B=15.61$

Stjerna B: Tilsynelatende visuell størrelseklasse m
_V = 6.64, tilsynelatende blå størrelseklass $m_B = 9.13$

Stjerna C: Tilsynelatende visuell størrelseklasse m₋V = 6.64, tilsynelatende

blå størrelseklass m_B = 8.13

Stjerna D: Tilsynelatende visuell størrelseklasse m_V = 14.12, tilsynelatende blå størrelseklass $m_B = 16.61$

Filen 1E.txt

For stjerne 1 sin bane om massesenteret er elliptisiteten e=0.94 og store halvakse a=46.09 AU.

For stjerne 2 sin bane om massesenteret er elliptisiteten e=0.94 og store halvakse a=29.52 AU.

Filen 1F.txt

Ved bølgelengden 404.64 nm finner du størst fluks

$Filen~1G/Oppgave1G_Figur_A.png$

Figure 6: Figur fra filen 1G/Oppgave1G_Figur_A.png

$Filen~1G/Oppgave1G_Figur_B.png$

Figure 7: Figur fra filen 1G/Oppgave1G_Figur_B.png

$Filen \ 1G/Oppgave1G_Figur_C.png$

Figure 8: Figur fra filen 1G/Oppgave1G_Figur_C.png

$Filen~1G/Oppgave1G_Figur_D.png$

Figure 9: Figur fra filen 1G/Oppgave1G_Figur_D.png

Filen 1G/Oppgave1G_Figur_E.png

Figur E 1.40 Tilsynelatende størrelsklasse m_V 1.30 1.20 1.10 1.00 0.90 0.80 0.70 5 10 ò 15 20 25 30 Observasjonstid (dager)

Figure 10: Figur fra filen 1G/Oppgave1G_Figur_E.png

Filen 1I.txt

Gass-sky A har masse på 8.60 solmasser, temperatur på 50.10 Kelvin og tetthet 2.60e-21 kg per kubikkmeter

Gass-sky B har masse på 21.60 solmasser, temperatur på 27.00 Kelvin og tetthet 2.09e-21 kg per kubikkmeter

Gass-sky C har masse på 16.40 solmasser, temperatur på 79.50 Kelvin og

tetthet 1.52e-21 kg per kubikkmeter

Gass-sky D har masse på 15.80 solmasser, temperatur på 66.90 Kelvin og tetthet 4.70e-21 kg per kubikkmeter

Gass-sky E har masse på 37.90 solmasser, temperatur på 13.40 Kelvin og tetthet 1.08e-20 kg per kubikkmeter

Filen 1J.txt

STJERNE A) stjernas energi kommer fra frigjort gravitasjonsenergi

STJERNE B) stjernas energi kommer hovedsaklig fra heliumfusjon i skall

STJERNE C) stjernas energi kommer hovedsaklig fra fusjon av magnesium i sentrum

STJERNE D) stjernas overflate består hovedsaklig av helium

STJERNE E) stjernas energi kommer hovedsaklig fra heliumfusjon i sentrum

Filen 1L.txt

Stjerne A har spektralklasse K7 og visuell tilsynelatende størrelseklasse m $_{\text{-}}\mathrm{V}$ = 3.71

Stjerne B har spektralklasse F2 og visuell tilsynelatende størrelseklasse m_V = 5.76

Stjerne C har spektralklasse M7 og visuell tilsynelatende størrelseklasse m_V = 2.45

Stjerne D har spektralklasse A6 og visuell tilsynelatende størrelseklasse m_V

= 6.39

Stjerne E har spektralklasse G6 og visuell tilsynelatende størrelseklasse m_V = 9.08

Filen 1P.txt

Halvparten av partiklene har hastighetskomponent kun langs synsretningen som er enten $100~\rm m/s$ mot deg eller fra deg (like mange i hver retning) og den andre halvparten har ingen bevegelse langs synsretningen

$Filen~2A/Oppgave 2A_Figur 1.png$

Figur 1

Figure 11: Figur fra filen 2A/Oppgave2A_Figur1.png

$Filen~2A/Oppgave 2A_Figur 2.png$

Figure 12: Figur fra filen 2A/Oppgave2A_Figur2.png

$Filen\ 2B/Oppgave 2B_Figur\ 4.png$

Figure 13: Figur fra filen 2B/Oppgave2B_Figur 4.png

4.png

Filen 2B/Oppgave2B_Figur3.png

Figure 14: Figur fra filen 2B/Oppgave2B_Figur3.png

Filen 2C.txt

Avstand til solen er 0.75700000000000000621725 AU.

Tangensiell hastighet er 44401.846193581892293878 m/s.

Filen 2D.txt

Kometens avstand fra jorda i punkt 1 er r1=2.306 AU.

Kometens avstand fra jorda i punkt 2 er r2=9.085 AU.

Kometens tilsynelatende størrelseklasse i punkt 1 er m1=16.227.

Filen 3A.txt

Romskipets hastighet langs x-aksen er 0.9676 ganger lyshastigheten.

Tiden mellom utsendelse av strålene er 0.00071 sekunder målt i bakkesystemet.

Filen 3B.txt

Avstanden mellom de to romskipene ved første utsendelse er D=760.0 km.

Romskip2 sin hastighet langs x-aksen er 0.9929 ganger lyshastigheten.

Filen 3E.txt

Bølgelengden målt i romskipet som sender ut er 730.80 nm.

Filen 4A.txt

Stjernas masse er 2.95 solmasser.

Stjernas radius er 0.58 solradier.

Filen 4C.png

Figur 4C 2.6000 2.4000 2.2000 2.0000 Sannsynlighetstetthet i 10⁻⁴ % 1.8000 1.6000 1.4000 1.2000 1.0000 0.8000 0.6000 0.4000 0.2000 0.0000 200 -200 -400 -600 400 600 Hastighet i x-retning (km/s)

Figure 15: Figur fra filen 4C.png

Filen 4D.txt

Kun hvis du ikke fikk til forrige oppgave, skal du bruke denne temperaturen her: 25.05 millioner K

Filen 4G.txt

Massen til det sorte hullet er 2.46 solmasser.

r-koordinaten til det innerste romskipet er
r $=7.62~\mathrm{km}.$

r-koordinaten til det innerste romskipet er
r $=13.37~\mathrm{km}.$