

Techniki Wizualizacji Danych

Politechnika Warszawska

Anna Kozak

się w gąszczu wierzchołków i krawędzi

Wizualizacja grafów - jak nie zgubić

Grafy

- \blacksquare graph G = (V, E)
- vertices $V = \{v_1, v_2, \dots, v_n\}$
- \blacksquare edge $E = \{e_1, e_2, \dots, e_m\}$

```
 V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}\} \\ E = \{\{v_1, v_2\}, \{v_1, v_8\}, \{v_2, v_3\}, \{v_3, v_5\}, \{v_3, v_9\}, \\ \{v_3, v_{10}\}, \{v_4, v_5\}, \{v_4, v_6\}, \{v_4, v_9\}, \{v_5, v_8\}, \\ \{v_6, v_8\}, \{v_6, v_9\}, \{v_7, v_8\}, \{v_7, v_9\}, \{v_8, v_{10}\}, \\ \{v_9, v_{10}\}\}
```

v_1 :	v_2, v_8	v_6 :	v_4, v_8, v_9
v_2 :	v_1, v_3	v_7 :	v_8, v_9
v_3 :	v_2, v_5, v_9, v_{10}	v_8 :	$v_1, v_5, v_6, v_7, v_9, v_{10}$
v_4 :	v_5, v_6, v_9	v_9 :	$v_3, v_4, v_6, v_7, v_8, v_{10}$
v_5 :	v_3, v_4, v_8	v_{10} :	v3, v8, v9

```
0
```


sieci rzeczywistych i abstrakcyjnych.

Grafy są matematyczną reprezentacją

Grafy abstrakcyjne

- sieć społecznościowa
- sieć komunikacyjna
- sieć filogenetyczna

Grafy rzeczywiste

- sieć metra (transportu)
- sieć dróg
- sieć telekomunikacyjna

Istnieje wiele rodzajów grafów, których podział zdeterminowanych jest przez ich strukturę.

- grafy proste

- grafy proste
- grafy skierowane

- grafy proste
- grafy skierowane
- multigrafy

- grafy proste
- grafy skierowane
- multigrafy
- grafy ważone

- grafy proste
- grafy skierowane
- multigrafy
- grafy ważone
- grafy warstwowe

- grafy proste
- grafy skierowane
- multigrafy
- grafy ważone
- grafy warstwowe
- hipergrafy

1. Złożone grafy są trudne do zrozumienia bez dobrej wizualizacji.

1. Złożone	grafy	są	trudne	do	zrozumienia	bez	dobrej	
wizuali	zacji.							

2. Wizualizacje pomagają w komunikacji i eksploracji sieci.

- 1. Złożone grafy są trudne do zrozumienia bez dobrej wizualizacji.
- 2. Wizualizacje pomagają w komunikacji i eksploracji sieci.
- 3. Niektóre grafy są zbyt duże, aby rysować je ręcznie.

- 1. Złożone grafy są trudne do zrozumienia bez dobrej wizualizacji.
- 2. Wizualizacje pomagają w komunikacji i eksploracji sieci.
- 3. Niektóre grafy są zbyt duże, aby rysować je ręcznie.

Potrzebujemy algorytmów, które automatycznie rysują grafy, aby były one bardziej dostępne dla ludzi.

1. Algorytmiczne rozwiązania potrzebują konkretnych formatów danych.

- 2. Istnieje wiele formatów w których można przechowywać informacje o
- grafie (.csv, .json, .gml, .pajek, .dimacs, ...).

1. Algorytmiczne rozwiązania potrzebują konkretnych formatów danych.

- 1. Algorytmiczne rozwiązania potrzebują konkretnych formatów danych.
- 2. Istnieje wiele formatów w których można przechowywać informacje o grafie (.csv, .json, .gml, .pajek, .dimacs, ...).
- 3. W większości przypadków nie mamy pełnej kontroli nad dokładnym rozłożeniem wierzchołków.

- 1. Algorytmiczne rozwiązania potrzebują konkretnych formatów danych.
- 2. Istnieje wiele formatów w których można przechowywać informacje o grafie (.csv, .json, .gml, .pajek, .dimacs, ...).
- 3. W większości przypadków nie mamy pełnej kontroli nad dokładnym rozłożeniem wierzchołków.
- 4. Często spotykamy grafy dużych rozmiarów, które są trudne do wizualizacji, ze względu na: mnogość wierzchołków, nachodzenie labeli, nakładające się krawędzie, długi czas rysowania grafu.

- 1. Algorytmiczne rozwiązania potrzebują konkretnych formatów danych.
- 2. Istnieje wiele formatów w których można przechowywać informacje o grafie (.csv, .json, .gml, .pajek, .dimacs, ...).
- 3. W większości przypadków nie mamy pełnej kontroli nad dokładnym rozłożeniem wierzchołków.
- 4. Często spotykamy grafy dużych rozmiarów, które są trudne do wizualizacji, ze względu na: mnogość wierzchołków, nachodzenie labeli, nakładające się krawędzie, długi czas rysowania grafu.

Wizualizacja grafów jest skomplikowana i nie ma uniwersalnych reguł jak to robić. Niektórych informacji nie da się ukazać samym obrazkiem.

Jak mierzyć grafy?

- 1. Współczynnik klasteryzacji (clustering coefficient)
- 2. Długość najdłuższej ścieżki / średnica grafu
- 3. Gęstość sieci (2E/N)
- 4. Największy stopień wierzchołka (celebryta)
- 5. Indeks Hirsch'a
- 6. PageRank
- 7. Próg epidemii
- 8. Liczba Erdos'a
- 9. Liczba Bacon'a

Liczba Erdos'a

Minimalna ścieżka współautorstwa artykułów prowadząca od naukowca A do Paula Erdos'a. Wartość dla Paula Erdos'a jest równa 0.

R Collaboration Distance = 3					
Grzegorzewski, Przemysław	coauthored with	Mesiar, Radko	MR3660830		
Mesiar, Radko	coauthored with	Širáň, Jozef	MR4171596		
Širáň, Jozef	coauthored with	Erdős, Paul ¹	MR1297187		

MR Collaboration Distance = 4	boration Distance = 4					
Cena, Anna	coauthored with	Gągolewski, Marek	MR4240238			
Gągolewski, Marek	coauthored with	Mesiar, Radko	MR3158692			
Mesiar, Radko	coauthored with	Širáň, Jozef	MR4171596			
Širáň, Jozef	coauthored with	Erdős, Paul¹	MR1297187			

Drzewo cnót głównych

Cztery cnoty kardynalne umieszczone są niżej niż trzy cnoty teologiczne. Z każdej z cnót głównych wyrastają cnoty niższego rzędu. <u>Speculum</u> <u>Virginum</u>, XII w.

Drzewo genealogiczne (sieć społecznościowa)

J. Klawitter, T. Mchedlidze, Link: go.uniwue.de/myth-poster

Ahnentafel Herzog Ludwig von Wurttemberg, 1585

Graf cytowań (sieć społecznościowa)

Kolej dużych prędkości w Europie (sieć

komunikacyj

Sieć ludzkich chorób (bioinformatyka)

THESE CHARTS SHOW MOVIE CHARACTER INTERACTIONS.
THE HORIZONTAL AXIS IS TIME. THE VERTICAL GROUPING OF THE LINES INDICATES WHICH CHARACTERS ARE TOGETHER AT A GIVEN TIME.

Więcej o grafach

- https://seafile.rlp.net/f/f36d7e005a3c48a2bac2/
- Przedmiot Social Networks & Recommendation Systems na studiach magisterskich Data Science - dr. inż. Grzegorz Siudem
- The Anatomy of a Search Engine: Sergey Brin and Lawrence Page