

Universität Stuttgart Institute für Photogrammetrie

Ingenieurgeodäsie Übung12: Regression zur Höhenberechnung

Ausarbeitung im Studiengang Geodäsie und Geoinformatik an der Universität Stuttgart

Ziqing Yu, 3218051

Stuttgart, Mai 2020

Betreuer: Dipl.-Ing. Otto Lerke

Universität Stuttgart

Inhaltsverzeichnis

1.1	Einleitung	2
	Aufgabe	
	1.2.1 a	
	1.2.2 b	4

Kapitel 1

1.1 Einleitung

Das amtliche Höhensystem in Deutschland basiert auf Normalhöhen H_N . Bezugsfläche dieses Höhensystems ist das Quasigeoid. In dieser Übung sind 30 Festpunkten mit Ellipsoidische Höhen gegeben, 20 davon haben bekannte Normalhöhen. Die übrige Normalhöhen sind angefragt.

1.2 Aufgabe 3

1.2 Aufgabe

1.2.1 a

Höhenanomalie

$$\zeta = h - H_N$$

wobei

• *h*: ellpsoidische Höhe

• H_N : Normalhöhe

Höhenanomalie von Punkten 1 bis 20:

Pkt.Nr	Höhenanomalie [m]	Pkt.Nr	Höhenanomalie [m]
1	48,3548	11	48,3946
2	48,3928	12	48,4203
3	48,4118	13	48,4420
4	48,4159	14	48,4556
5	48,4290	15	48,4695
6	48,3750	16	48,4148
7	48,4098	17	48,4483
8	48,4360	18	48,4659
9	48,4360	19	48,4762
10	48,4487	20	48,4890

Standardabweichung

$$\sigma_{\zeta} = \sqrt{(\sigma_h^2 + \sigma_{H_N}^2)} = 0,0051 \,\mathrm{m}$$

Graphische Darstellung:

(a) Höhenanomalie

1.2 Aufgabe 4

1.2.2 b

Der funktionale Modell:

$$\zeta_{i} = a_{0} + a_{1} \cdot y_{i} + a_{2} \cdot x_{i} + a_{3} \cdot y_{i} \cdot x_{i} + a_{4} \cdot y_{i}^{2} + a_{5} \cdot x_{i}^{2}$$

$$\begin{bmatrix} \zeta_{1} \\ \zeta_{2} \\ \vdots \\ \zeta_{19} \\ \zeta_{20} \end{bmatrix} = \begin{bmatrix} 1 & y_{1} & x_{1} & y_{1} \cdot x_{1} & y_{1}^{2} & x_{1}^{2} \\ 1 & y_{2} & x_{2} & y_{2} \cdot x_{2} & y_{2}^{2} & x_{2}^{2} \\ \vdots & & & & & \\ 1 & y_{19} & x_{19} & y_{19} \cdot x_{19} & y_{19}^{2} & x_{19}^{2} \\ 1 & y_{20} & x_{20} & y_{20} \cdot x_{20} & y_{20}^{2} & x_{20}^{2} \end{bmatrix} \cdot \begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \\ a_{3} \\ a_{4} \\ a_{5} \end{bmatrix}$$

$$x = (A'A)^{-1}A'l = \begin{bmatrix} 121284,497 \\ -0,0814 \\ 0,0082 \\ 1,7880 \cdot 10^{-8} \\ -2,0830 \cdot 10^{-9} \\ -6,6258 \cdot 10^{-9} \end{bmatrix}$$

1.2.3 c

Redudanz r = 20 - 6 = 14