STAT 123: Quantitative Finance, Spring 2022

Prof. Stephen Blyth

Section 3

Xin Zeng (xinzeng@fas.harvard.edu)

February 12, 2022

Section: Monday 10 - 11AM

Office Hour: Monday 11AM - noon

1 Derivatives

A derivative contract is simply a financial contract between two counter-parties and whose value is derived from the value of an underlying asset or variable. For financial derivative contract, the underlying variable is financial asset price, or interest rate, etc. A lot of this course is learning about different derivatives and how to find their current value.

1.1 Forward ZCB

- Definition: A forward ZCB is a forward contract with maturity T_1 on a ZCB with maturity T_2 . In other words, it's a forward contract where the underlying asset is a ZCB maturing at T_2 , not a stock.
- \bullet Price: The fair price K that gives the forward zero value at time t is

$$F(t, T_1, T_2) = \frac{Z(t, T_2)}{Z(t, T_1)}.$$

• Proof by replication: Portfolio A: 1 ZCB with maturity T_2 , Portfolio B: 1 forward contract with maturity T_1 with delivery price K, plus K ZCBs with maturity T_1 .

1.2 Forward Interest Rates

- Definition: The forward rate at time t for period T_1 to T_2 , denoted f_{12} , is the rate agreed on at t where one can borrow/lend from T_1 to T_2 .
- "Price": f_{12} satisfies

$$e^{r_2(T_2-t)} = e^{r_1(T_1-t)}e^{f_{12}(T_2-T_1)}$$

then

$$f_{12} = \frac{r_2(T_2 - t) - r_1(T_1 - t)}{(T_2 - T_1)}$$

or

$$(1+r_2)^{T_2-t} = (1+r_1)^{T_1-t}(1+f_{12})^{T_2-T_1}$$

where r_i is interest rate for period t to T_i , i = 1, 2.

The equation comes from (1) deposit 1 at r_2 until T_2 , (2) deposit 1 at r_1 until T_1 , and agree at t to deposit $e^{r_1(T_1-t)}$ at f_{12} from T_1 to T_2 .

• Proof by no arbitrage: Suppose $f_{12} > \frac{r_2(T_2-t)-r_1(T_1-t)}{(T_2-T_1)}$, we could create an arbitrage opportunity through (1) borrow 1 until T_2 at rate r_2 , (2) deposit 1 until T_1 at rate r_1 , (3) agree to deposit $e^{r_1(T_1-t)}$ from T_1 to T_2 at rate f_{12} .

1.3 LIBOR

- Libor: London InterBank Offered Rate is the rate at which banks borrow and lend to each other. This rate is defined by its accrual factor (α) and the date at which the rate is set. At current time $t \leq T$, rate $L_t[t, t + \alpha]$ represents the libor rate between t and $t + \alpha$ set at t.
- The Libor rate $L_T[T, T + \alpha]$ for a future date T > t is a random variable
- Banks can deposit (or borrow) N at time t, and receive (or pay back) $N(1 + \alpha L_t[t, t + \alpha])$ at time $t + \alpha$.
- For 3 month Libor, $\alpha = 0.25$. If 6 month Libor rate is 4%, I can deposit 1 and receive 1.02 after 6 months.

1.4 Forward Rate Agreement (FRA)

- Definition: In a FRA with maturity T and delivery price K, the buyer agrees to pay αK at time $T+\alpha$ and receive the random amount $\alpha L_T[T,T+\alpha]$ at time $T+\alpha$. Note that $L_T[T,T+\alpha]$ fixes (crystallizes into a value) at time T, but the cashflows occur at time $T+\alpha$. FRA has payout at $T+\alpha$: $\alpha(L_T[T,T+\alpha]-K)$.
- "Price": $L_t[T, T + \alpha]$, the forward libor rate, is the "fair" K that gives the FRA zero value at time t. It satisfies:

$$Z(t, T + \alpha) = Z(t, T) \frac{1}{1 + \alpha L_t[T, T + \alpha]}$$

equivalently:

$$L_t[T, T + \alpha] = \frac{Z(t, T) - Z(t, T + \alpha)}{\alpha Z(t, T + \alpha)}$$

• Proof by replication: Portfolio A: 1 FRA, Portfolio B: long 1 ZCB with maturity T, short $(1 + \alpha K)$ ZCBs with maturity $T + \alpha$. Both worth $\alpha(L_T[T, T + \alpha] - K)$ at $T + \alpha$.

1.5 Futures

• Differences between futures contracts and forward contracts.

Attributes of forwards

- Custom-built
- Traded over-the-counter
- Contract specifies either cash or physical settlement
- Don't involve variational margin: the payout of $S_T K$ at T.

Attributes of futures

- Standardized in maturity, quantity, and quality
- Traded on exchanges
- Contract type specifies either cash or physical settlement? but actual delivery is rare,
 even if contract specifies physical settlement
- Require variational margin: the payouts are $\Phi(i,T) \Phi(i-1,T)$ at the end of every day i.
- Futures Convexity Correction: $\Phi(t,T) F(t,T) \propto Cov(S_T, M_T)$

1.6 Options

- A European Call option with strike K and exercise date T on an asset is the right to buy the asset for K at time T. Payoff at time T: $(S_T K)^+$.
- A European Put option with strike K and exercise date T on an asset is the right to sell the asset for K at time T. Payoff at time T: $(K S_T)^+$.
- A straddle is a call plus a put of the same maturity. Payoff at time T: $|S_T K|$.
- At time t, a call option with strike K and maturity T is: at-the-money if $S_t = K$ in-the-money if $S_t > K$ out-the-money if $S_t < K$

2 Exercises

2.1 Forward Rates and ZCB

- (1) The 3-year rate is 3%, compounded quarterly. The 5-year rate is 5%, compounded quarterly rate. Find the forward rate from time T=3 to T=5.
- (2) Suppose that currently at time t = 0, we have that Z(0,1) = 0.8 and Z(0,2) = 0.7. What is the value of Z(1,2)?

2.2 Forward Rate Agreement

Suppose $L_t[T, T + \alpha] > \frac{Z(t, T) - Z(t, T + \alpha)}{\alpha Z(t, T + \alpha)}$. Show there exists an arbitrage opportunity that we could make money.

2.3 LIBOR

Suppose two companies are offered the following interest rates for a one-year loan, with same principal, compounding (annual).

	Floating	Fixed
A	Libor+0.1%	11%
В	Libor+0.7%	12%

Suppose that Company A wants to pay floating rates, while Company B wants to pay fixed rates. Can you design a FRA such that both party improves and is same attractive to both parties? In what condition such improvement can not be achieved?

Solution:			

2.4 Option

Draw the payout $g(S_T)$ of an "injured" call butterfly, which consists of:

- \bullet +2 call options with strike 100
- -5 call options with strike 110
- \bullet +3 call options with strike 120

all with maturity T.

Solution:			