QUANTUM ERROR CORRECTION

Stephen Diadamo February 1, 2017

T.U. Munich

OVERVIEW

- 1. What is Classical Error Correction?
- 2. What is Quantum Error Correction?
- 3. Quantum Errors: Causes and Effects
- 4. Error Correcting Codes
- 5. Stabilizer Formalism
- 6. Surface Code

WHAT IS CLASSICAL ERROR CORRECTION?

· Noise is the main opponent of information processing systems, it causes information to become erroneous

• Error correction is the act of preventing or fixing errors in information caused by noise

WHAT IS CLASSICAL ERROR CORRECTION?

- · A simple strategy for protecting messages: encode redundant information
- · Example: sending a classical bit over a channel
 - · Errors cause the bit flips
 - · Assume probability of error is p>0 and 1-p error free

WHAT IS CLASSICAL ERROR CORRECTION?

Protocol

- Encode: $0 \rightarrow 000$, $1 \rightarrow 111$
- · Send all three bits through the symmetric binary channel
- \cdot Receiver uses majority voting to decode the message

Analysis

 $\cdot\,$ The probability of error is $3p^2-2p^3< p$ if p<0.5.

ŀ

WHAT IS QUANTUM ERROR CORRECTION?

- Quantum error correction is the act of protecting quantum states against the effects of noise
- · Quantum error correcting codes are based on similar principles of classical codes but differ because of
 - · No cloning theorem
 - · Measurement destroys quantum information
 - · Bit flip and phase errors: $|0\rangle \leftrightarrow |1\rangle \& |1\rangle \leftrightarrow -|1\rangle$
 - · Errors are continuous: e.g. $|0\rangle \rightarrow \mathrm{e}^{\mathrm{i}\epsilon\sigma_X}\,|0\rangle$

where $\sigma_{\rm X} \equiv {\sf Pauli~X}$ operation

We investigate two simple algorithms and how common errors affect their outcomes

$$\begin{split} \cdot \ |\psi\rangle_{final} &= \prod_{i=1}^{N} I_i \, |0\rangle = |0\rangle \\ \cdot \ |\psi\rangle_{final} &= HIH \, |0\rangle = HI\frac{1}{\sqrt{2}}\big(|0\rangle + |1\rangle\big) = H\frac{1}{\sqrt{2}}\big(|0\rangle + |1\rangle\big) = |0\rangle \end{split}$$

For:

$$\begin{split} I_i &\equiv \text{Identity operation for all } i = 1,...,N \\ H &\equiv \text{Hadamard operation} \end{split}$$

- 1) Coherent quantum errors: Gates incorrectly applied
 - The system is assumed to be governed by Hamiltonian H' when it is governed by H
 - · For $\prod_{i=1}^N I_i |0\rangle$, I_i could instead, for example, rotate the qubit state by a small angle around the X-axis of the Bloch sphere

$$|\psi\rangle_{\text{final}} = \prod_{i=1}^{N} e^{i\epsilon\sigma_{x}} |0\rangle = \cos(N\epsilon) |0\rangle + i\sin(N\epsilon) |1\rangle$$

- · Measuring $|\psi\rangle_{\rm final}$ in $|0\rangle$, $|1\rangle$ basis
 - $\cdot P(|0\rangle) = \cos^2(N\epsilon) \approx 1 (N\epsilon)^2$
 - $\cdot P(|1\rangle) = \sin^2(N\epsilon) \approx (N\epsilon)^2$

2) Environmental Decoherence

- · Consider a simple two level environment
 - · Basis states: $|e_0\rangle$, $|e_1\rangle$; $\langle e_i|e_j\rangle=\delta_{ij}$; $|e_0\rangle\langle e_0|+|e_1\rangle\langle e_1|=I$
 - · Assume when the qubit is in $|1\rangle$ coupling with the environment flips the environment state, but does nothing when the qubit it in $|0\rangle$
 - · Assume interactions with the environment occur only during "wait stage", that is, during the I operation
 - · Assume the environment is initialized to $|E\rangle=|e_0\rangle$

$$\begin{split} \text{HIH} \left|0\right\rangle \left|E\right\rangle &= \text{HI} \frac{1}{\sqrt{2}} (\left|0\right\rangle + \left|1\right\rangle) \left|e_{0}\right\rangle \\ &= \text{H} \frac{1}{\sqrt{2}} (\left|0\right\rangle \left|e_{0}\right\rangle + \left|1\right\rangle \left|e_{1}\right\rangle) \\ &= \frac{1}{2} (\left|0\right\rangle + \left|1\right\rangle) \left|e_{0}\right\rangle + \frac{1}{2} (\left|0\right\rangle - \left|1\right\rangle) \left|e_{1}\right\rangle \end{split}$$

In density matrix formulation for HIH $|0\rangle$ $|E\rangle$:

$$\begin{split} \rho &= \frac{1}{4} (|0\rangle\langle 0| + |0\rangle\langle 1| + |1\rangle\langle 0| + |1\rangle\langle 1|) |e_0\rangle\langle e_0| \\ &+ \frac{1}{4} (|0\rangle\langle 0| - |0\rangle\langle 1| - |1\rangle\langle 0| + |1\rangle\langle 1|) |e_1\rangle\langle e_1| \\ &+ \frac{1}{4} (|0\rangle\langle 0| - |0\rangle\langle 1| + |1\rangle\langle 0| - |1\rangle\langle 1|) |e_0\rangle\langle e_1| \\ &+ \frac{1}{4} (|0\rangle\langle 0| + |0\rangle\langle 1| - |1\rangle\langle 0| - |1\rangle\langle 1|) |e_1\rangle\langle e_0| \end{split}$$

Tracing out the environment,

$$\mathsf{Tr}_{\mathsf{E}}(\rho) = \frac{1}{2}(|0\rangle\langle 0| + |1\rangle\langle 1|)$$

· With this simple scenario, there is a 50/50 chance of measuring $|0\rangle$ or $|1\rangle$

- 3) Loss, leakage, measurement and Initialization Other types of errors are
 - · Measurement errors
 - Loss errors
 - · Leakage errors
 - · Initialization errors

"We have learned that it is possible to fight entanglement with entanglement." - John Preskill

• Error correcting codes (ECC) are encoding and decoding schemes that allow errors in information to be detected and located

- · E.g. 3-qubit bit flip code
- \cdot Similar to the classical code, the 3-qubit code encodes $|0\rangle$ and $|1\rangle$ using logical qubits

$$\begin{split} |0\rangle_{L} &= |000\rangle, |1\rangle_{L} = |111\rangle \\ |\psi\rangle &= \alpha |0\rangle + \beta |1\rangle \rightarrow |\psi\rangle_{L} \equiv \alpha |0\rangle_{L} + \beta |1\rangle_{L} \end{split}$$

- · The 3-qubit code can correct up to one bit flip error
- · We introduce two ancilla qubits to the system to extract "syndrome" information

- · With probability p for a bit flip error, the probability ≤ 1 bit flips occurs is $(1-p)^3 + 3p(1-p)^2 = 1 3p^2 + 2p^3$
- The probability of error is $3p^2 2p^3$, the same as the classical case, which is an improvement to no code for p < 0.5.

E.g.
$$|\psi\rangle_{L} = |000\rangle$$

$$|000\rangle |00\rangle \xrightarrow{error} |100\rangle |00\rangle \xrightarrow{CNOTs} |100\rangle |11\rangle \xrightarrow{correction} |000\rangle$$

$$|010\rangle |00\rangle \xrightarrow{CNOTs} |100\rangle |10\rangle \xrightarrow{correction} |000\rangle$$

$$|001\rangle |00\rangle \xrightarrow{CNOTs} |100\rangle |01\rangle \xrightarrow{correction} |000\rangle$$

$$|101\rangle |00\rangle \xrightarrow{CNOTs} |101\rangle |10\rangle \xrightarrow{correction} |111\rangle$$

3-qubit phase flip code

- · Similar to the bit-flip encoding, but we apply Hadamard gates to switch the basis
- \cdot Can use the same strategy to detect phase flips in this new basis

The Shor 9-qubit code

- · Can correct one bit and one phase flip error (or one of both)
- $\cdot |0\rangle_L = \frac{1}{\sqrt{8}}(|000\rangle + |111\rangle)(|000\rangle + |111\rangle)(|000\rangle + |111\rangle)$
- $\cdot \ \left|1\right\rangle_L = \tfrac{1}{\sqrt{8}} (\left|000\right\rangle \left|111\right\rangle) (\left|000\right\rangle \left|111\right\rangle) (\left|000\right\rangle \left|111\right\rangle)$

The Shor 9-qubit code

STABILIZER FORMALISM

- Using vector notation for to represent logical qubits is inefficient
- · Stabilizer states use operators to represent states rather than vectors (Heisenberg representation)
- · A state $|\psi\rangle$ is represented or "stabilized" by an operator A if A $|\psi\rangle=|\psi\rangle$ (i.e $|\psi\rangle$ is an eigenvector of A with eigenvalue 1)
- · E.g. $\sigma_{\rm Z} \left| 0 \right\rangle = \left| 0 \right\rangle$
- Stabilizer codes are a collection of stabilizer states used to form logical qubits

· The Pauli group

$$\mathcal{P} = \{\pm I, \pm iI, \pm \sigma_{X}, \pm i\sigma_{X}, \pm \sigma_{Z}, \pm i\sigma_{Z}, \pm \sigma_{Y}, \pm i\sigma_{Y}\}$$

can be used to represent N qubit states

· Formal definition of a stabilizer for N qubits:

Def: Let S be a subgroup of $\mathcal{P}^{\otimes N}$. Define V_S to be the set of N qubit states which are stabilized by every element in S. V_S is called the vector space stabilized by S, and S is the stabilizer for V_S

- \cdot V_S can be found via the intersection of each subspace spanned by the operators in S.
- · Notation: E.g. N=3, a stabilizer is represented as $\sigma_{z_1}\sigma_{z_2}\equiv\sigma_{z_1}\otimes\sigma_{z_2}\otimes I_3$

STABILIZER FORMALISM

- E.g. Stabilizer for the 3-qubit bit flip code. N = 3 and $S = \{I, \sigma_{7}, \sigma_{7}, \sigma_{7}, \sigma_{7}, \sigma_{7}, \sigma_{7}, \sigma_{7}, \sigma_{7}\}$
 - $\cdot \sigma_{z_1}\sigma_{z_2}$ stabilizes $|000\rangle$, $|001\rangle$, $|110\rangle$, $|111\rangle$
 - \cdot $\sigma_{z_2}\sigma_{z_3}$ stabilizes $\ket{000}, \ket{100}, \ket{011}, \ket{111}$
 - · $\sigma_{z_1}\sigma_{z_3}$ stabilizes $|000\rangle$, $|010\rangle$, $|101\rangle$, $|111\rangle$
 - · $V_S = \{|000\rangle, |111\rangle\}$, which are the logical qubits
- · S = $\langle \sigma_{z_1} \sigma_{z_2}, \sigma_{z_2} \sigma_{z_3} \rangle$, where $\langle \cdot \rangle$ represents every product of the elements called the generator
- · E.g. Stabilizer of Shor's code:

$$\begin{split} S = \langle \sigma_{z_1} \sigma_{z_2}, \sigma_{z_1} \sigma_{z_3}, \sigma_{z_4} \sigma_{z_5}, \sigma_{z_4} \sigma_{z_6}, \sigma_{z_7} \sigma_{z_8}, \sigma_{z_7} \sigma_{z_9}, \\ \sigma_{x_1} \sigma_{x_2} \sigma_{x_3} \sigma_{x_4} \sigma_{x_5} \sigma_{x_6}, \sigma_{x_1} \sigma_{x_2} \sigma_{x_3} \sigma_{x_7} \sigma_{x_8} \sigma_{x_9} \rangle \end{split}$$

· Benefits to using the stabilizer code are seen when looking at error detection and correction

SURFACE CODE

· E.g. 2-qubit surface code

$\sigma_{z_1}\sigma_{z_2}$	$\sigma_{X_1}\sigma_{X_2}$	$ \psi angle$
+1	+1	$(00\rangle + 11\rangle)/\sqrt{2}$
+1	-1	$(00\rangle - 11\rangle)/\sqrt{2}$
-1	+1	$(01\rangle + 10\rangle)/\sqrt{2}$
-1	-1	$(01\rangle - 10\rangle)/\sqrt{2}$

 $|\psi\rangle$ is initialized to $(|00\rangle+|11\rangle)/\sqrt{2}$ and a σ_{x_1} error (i.e. a bit flip on the first qubit) occurs, the state will change to $(|01\rangle+|10\rangle)/\sqrt{2}$ and the eigenvalue pair on the next stabilizer measurement $\sigma_{z_1}\sigma_{z_2}$ is (-1,+1)

SURFACE CODE

- · Data gubit (white) or measurement gubit (black)
- · Measure-Z (green) and measure-X (yellow)
- · Each data qubit is coupled to two measure-Z and two measure-X qubits
- · Measure-Z: $\sigma_{\rm Z_a}\sigma_{\rm Z_b}\sigma_{\rm Z_c}\sigma_{\rm Z_d}$, measure-X: $\sigma_{\rm X_a}\sigma_{\rm X_b}\sigma_{\rm X_c}\sigma_{\rm X_d}$

SURFACE CODE

Eigenvalue	$ \hat{Z}_a\hat{Z}_b\hat{Z}_c\hat{Z}_d $	$ \hat{X}_a\hat{X}_b\hat{X}_c\hat{X}_d $
+1	$ gggg\rangle$	$ ++++\rangle$
	$ ggee\rangle$	$ + + \rangle$
	$ geeg\rangle$	$ ++ \rangle$
	$ eegg\rangle$	+ +
	$ egge\rangle$	$ -++-\rangle$
	$ gege\rangle$	$ + - + - \rangle$
	$ egeg\rangle$	$ -+-+ \rangle$
	$ eeee\rangle$	>
-1	$ ggge\rangle$	$ +++-\rangle$
	$ ggeg\rangle$	$ + + - + \rangle$
	$ gegg\rangle$	$ + - + + \rangle$
	eggg angle	$ - + + + \rangle$
	geee angle	+>
	$ egee\rangle$	$ -+ \rangle$
	$ eege\rangle$	+ ->
	$ eeeg\rangle$	+>

Questions

- 1. Why does Shor's 9-qubit gate need 8 logical qubits instead of 4 (i.e. 4 for bit flip errors and 4 for phase flip errors instead of 2 and 2)?
- 2. Can you find a stabilizer state representation for the $|GHZ\rangle_3 = \frac{|000\rangle + |111\rangle}{\sqrt{2}}$?
- 3. Why in the examples of stabilizer codes shown does σ_y never appear?
- 4. What are some flaws for the two qubit surface code example?

BIBLIOGRAPHY

- Simon Devitt, William Munro, Kae Nemoto Quantum Error Correction for Beginners arXiv:0905.2794v4
- Austin G. Fowler, Matteo Mariantoni, John M. Martinis, Andrew N. Cleland Surface codes: Towards practical large-scale quantum computation arXiv:1208.0928v2
- Michael Nielsen, Isaac Chuang Quantum Computation and Quantum Information