Linear Algebra Class on 8 June

Seanie Lee

8 June 2019

6.5 Normal and Self-adjoint Operator

Theorem (Spectral Theorem). **T** is linear operator on a complex inner product space **V** with finite dimension.

 \mathbf{T} is normal $\iff [\exists \beta : orthonormal \ basis \ such \ that \ \beta = \{\mathbf{x}_1, \dots \mathbf{x}_n\} \quad \mathbf{T}\mathbf{x}_i = \lambda_i \mathbf{x}_i]$

 $Proof. \Longrightarrow$

Suppose that **T** is normal. Since $\phi_{\mathbf{T}}(t) \in \mathbb{C}[t]$, by the fundamental theorem of algebra, $\phi_{\mathbf{T}}(t)$ splits. So by the Schur's theorem, there is an orthonormal basis $\beta = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ such that $[\mathbf{T}]_{\beta}$ is upper-triangular matrix. Note that \mathbf{x}_1 is eigenvector of $\mathbf{T}(\because \text{since } [\mathbf{T}]_{\beta}$ is upper triangular matrix, $[\mathbf{T}]_{\beta} = \lambda_1 \mathbf{e}_1 + 0\mathbf{e}_2 + \cdots + 0\mathbf{e}_n)$. Assume that $\{\mathbf{x}_1, \dots \mathbf{x}_{k-1}\}$ is the set of eigenvectors of **T**. We want to show that \mathbf{x}_k is eigenvector of **T**. Put $A := [\mathbf{T}]_{\beta}$. Then $\mathbf{T}\mathbf{x}_k = A_{1k}\mathbf{x}_1 + A_{2k}\mathbf{x}_2 + \cdots + A_{kk}\mathbf{x}_k$ (\because Since A is upper-triangular matrix, $A_{ik} = 0$ for i > k). For j < k

$$A_{jk} = \langle \mathbf{T}\mathbf{x}_k, \, \mathbf{x}_j \rangle$$

$$= \langle \mathbf{x}_k, \, \mathbf{T}^* \mathbf{x}_j \rangle$$

$$= \langle \mathbf{x}_k, \, \overline{\lambda}_j \mathbf{x}_j \rangle$$

$$= \lambda_j \langle \mathbf{x}_k, \, \mathbf{x}_j \rangle$$

$$= 0$$

Thus $\mathbf{T}\mathbf{x}_k = A_{kk}\mathbf{x}_k$. By the induction, β is an orthonormal basis consisting of eigenvectors of \mathbf{T} .

Since there exists a basis β consisting of eigenvectors of \mathbf{T} , $[\mathbf{T}]_{\beta}$ is diagonal matrix. Since $[\mathbf{T}^*]_{\beta} = [\mathbf{T}]_{\beta}^*$, $[\mathbf{T}^*]_{\beta}$ is also diagonal matrix. Since matrix multiplication of diagonal matrices commute, $\mathbf{T}\mathbf{T}^* = \mathbf{T}^*\mathbf{T}$. $\therefore \mathbf{T}$ is normal.

Definition. T is self-adjoint if $T^* = T$.

Remark. If T is self-adjoint operator, then T is also normal operator.

Theorem. T is self-adjoint.

- (1). Every eigenvalue of T is real.
- (2). If V is R-vector space, then $\phi_{\mathbf{T}}(t)$ splits.

Proof.

(1)
$$\lambda \mathbf{x} = \mathbf{T}^* \mathbf{x} = \overline{\lambda} \mathbf{x}. \ \lambda = \overline{\lambda}$$

 $\therefore \lambda \in \mathbb{R}$

(2) Put $A := [\mathbf{T}]_{\beta}$. Since $A = [\mathbf{T}]_{\beta} = [\mathbf{T}^*]_{\beta} = [\mathbf{T}]_{\beta}^* = A^*$, A is self-adjoint. Let $\mathbf{T}_A : \mathbf{x} \longmapsto A\mathbf{x}$. Note that \mathbf{T}_A is self-adjoint because $[\mathbf{T}]_{\gamma} = A$, where γ is the standard ordered (normal) basis for \mathbb{C}^n . So by (1), the eigenvalues of \mathbf{T}_A are real. By the fundamental theorem of algebra, the characteristic polynomial of $\phi_{\mathbf{T}_A}(t)$ splits into factors of $\lambda - t$. Since each λ is real-value, $\phi_{\mathbf{T}_A}(t)$ splits over \mathbb{R} . Since $\phi_{\mathbf{T}_A}(t) = \phi_A(t) = \phi_{\mathbf{T}}(t), \phi_{\mathbf{T}}(t)$ also splits over \mathbb{R} .

Theorem (Spectral Theorem of real-version). **T** is linear operator on a real inner product space with finite dimension.

T is self-adjoint \iff $[\beta : orthonormal \ basis \ such \ that \ <math>\mathbf{T}\mathbf{x}_i = \lambda_i \mathbf{x}_i \ \lambda_i \in \mathbb{R}]$

 $Proof. \implies$

 \leftarrow

Suppose that **T** is self-adjoint. Since $\phi_{\mathbf{T}}(t)$ splits over \mathbb{R} , by Schur's theorem there exists an orthonormal basis $\beta = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ such that $[\mathbf{T}]_{\beta}$ is upper triangular matrix. Put $A := [\mathbf{T}]_{\beta}$, then $A^* = [\mathbf{T}]_{\beta}^* = [\mathbf{T}^*]_{\beta} = [\mathbf{T}]_{\beta} = A$. Thus A is diagonal.

Let β be an orthonormal basis for $\mathbf{V}_{\mathbb{R}}$ consisting of eigenvectors. Put $A := [\mathbf{T}]_{\beta}$, then $A = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ where λ_i is eigenvalue. $A^* = \operatorname{diag}(\overline{\lambda}_1, \dots \overline{\lambda}_n)$. Since $\lambda_i \in \mathbb{R}$, $A^* = A$. Thus, $[\mathbf{T}]_{\beta} = A = A^* = [\mathbf{T}^*]_{\beta}$. $\therefore \mathbf{T} = \mathbf{T}^*$

6.6 Unitary and Orthogonal Operators

Definition. T is unitary (on $V_{\mathbb{C}}$) if $\|T\mathbf{x}\| = \|\mathbf{x}\| \ \forall \mathbf{x} \in \mathbf{V}$ and T is orthogonal (on $V_{\mathbb{R}}$) if $\|T\mathbf{x}\| = \|\mathbf{x}\| \ \forall \mathbf{x} \in \mathbf{V}$.

Theorem.

- (1) $\mathbf{T}\mathbf{T}^* = \mathbf{T}^*\mathbf{T} = \mathbf{I}$ (T is normal and invertible)
- (2) $\langle \mathbf{Tx}, \mathbf{Ty} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle$ (preserving inner product)
- (3) β is an orthonormal basis $\Longrightarrow \mathbf{T}(\beta)$ is an orthonormal basis
- (4) $\exists \beta$: orthonormal basis such that $\mathbf{T}(\beta)$ is an orthonormal basis
- $(5) \|\mathbf{T}\mathbf{x}\| = \|\mathbf{x}\| \ \forall \mathbf{x} \in V$

Proof. $(1) \Longrightarrow (2)$

$$\langle \mathbf{T}\mathbf{x}, \, \mathbf{T}\mathbf{y} \rangle = \langle \mathbf{x}, \, \mathbf{T}^* \mathbf{T}\mathbf{y} \rangle$$

$$= \langle \mathbf{x}, \, \mathbf{I}\mathbf{y} \rangle$$

$$= \langle \mathbf{x}, \, \mathbf{y} \rangle$$

Proof. $(2) \Longrightarrow (3)$

Let $\beta = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ be an orthonormal basis. $\langle \mathbf{T}\mathbf{x}_i, \mathbf{T}\mathbf{x}_j \rangle = \langle \mathbf{x}_i, \mathbf{x}_j \rangle = \delta_{ij}$ $\therefore \mathbf{T}(\beta)$ is an orthonormal basis.

Proof. $(3) \Longrightarrow (4)$

Let β be an orthonormal basis. Then by (3), $\mathbf{T}(\beta)$ is an orthonormal basis.

 $\therefore \exists \beta \text{ such that } \mathbf{T}(\beta) \text{ is an orthonormal basis.}$

Proof. $(4) \Longrightarrow (5)$

Let β be an orthonormal basis such that $\mathbf{T}(\beta)$ is an orthonormal basis.

Put $\mathbf{x} := \sum_{i=1}^{n} a_i \mathbf{x}_i$ where $\beta = {\mathbf{x}_1, \dots, \mathbf{x}_n}$

$$\|\mathbf{x}\|^{2} = \langle \mathbf{x}, \mathbf{x} \rangle$$

$$= \langle \sum_{i=1}^{n} a_{i} \mathbf{x}_{i}, \sum_{j=1}^{n} a_{j} \mathbf{x}_{j} \rangle$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} \overline{a}_{j} \langle \mathbf{x}_{i}, \mathbf{x}_{j} \rangle$$

$$= \sum_{i=1}^{n} |a_{i}|^{2}$$

$$\langle \mathbf{T} \mathbf{x}, \mathbf{T} \mathbf{x} \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} \overline{a}_{j} \langle \mathbf{T} \mathbf{x}_{i}, \mathbf{T} \mathbf{x}_{j} \rangle$$

$$= \sum_{i=1}^{n} |a_{i}|^{2}$$

$$\therefore \|\mathbf{T} \mathbf{x}\| = \|\mathbf{x}\|$$

Lemma. U is self-adjoint. If $\langle \mathbf{x}, \mathbf{U} \mathbf{x} \rangle = 0 \ \forall \mathbf{x} \in \mathbf{V}$, then $\mathbf{U} = \mathbf{0}$.

Proof. By the spectral theorem, there is an orthonormal basis $\beta = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ such that $\mathbf{U}\mathbf{x}_i = \lambda_i \mathbf{x}_i$.

$$\forall i \langle \mathbf{x}_i, \mathbf{U} \mathbf{x}_i \rangle = \langle \mathbf{x}_i, \lambda_i \mathbf{x}_i \rangle$$

$$= \overline{\lambda}_i \langle \mathbf{x}_i, \mathbf{x}_i \rangle$$

$$= \overline{\lambda}_i \|\mathbf{x}_i\|^2$$

$$= 0$$

$$\overline{\lambda}_i = 0 \,\forall i$$

$$\forall \mathbf{x} = \sum_{i=1}^{n} a_i \mathbf{x}_i$$

$$\mathbf{U}\mathbf{x} = \sum_{i=1}^{n} a_i \mathbf{U}\mathbf{x}_i$$

$$= \sum_{i=1}^{n} a_i \lambda_i \mathbf{x}_i$$

$$= \mathbf{0}$$

Proof. (5) \Longrightarrow (1) Suppose $\forall \mathbf{x} \| \mathbf{T} \mathbf{x} \| = \| \mathbf{x} \|$.

$$\begin{aligned} \left\|\mathbf{x}\right\|^2 &= \langle \mathbf{x}, \, \mathbf{x} \rangle \\ &= \langle \mathbf{T}\mathbf{x}, \, \mathbf{T}\mathbf{x} \rangle \\ &= \langle \mathbf{x}, \, \mathbf{T}^* \mathbf{T}\mathbf{x} \rangle \\ &\langle \mathbf{x}, \, \mathbf{x} \rangle - \langle \mathbf{x}, \, \mathbf{T}^* \mathbf{T}\mathbf{x} \rangle = 0 \\ &\langle \mathbf{x}, \, (\mathbf{I} - \mathbf{T}^* \mathbf{T}) \mathbf{x} \rangle = 0 \end{aligned}$$

Since $(\mathbf{I} - \mathbf{T}^*\mathbf{T})^* = \mathbf{I} - \mathbf{T}^*\mathbf{T}$, $\mathbf{I} - \mathbf{T}^*\mathbf{T}$ is self-adjoint operator. By the previous lemma, $\mathbf{I} - \mathbf{T}^*\mathbf{T} = \mathbf{0}$. Thus $\mathbf{T}^*\mathbf{T} = \mathbf{I}$, \mathbf{T}^* is onto and \mathbf{T} is one-to-one. Since $\dim \mathbf{V} < +\infty$, by the pigeonhole's principle \mathbf{T}^* is also one-to-one and \mathbf{T} is also onto. Thus \mathbf{T}, \mathbf{T}^* are invertible and $\mathbf{T}^{-1} = \mathbf{T}^*$. $\therefore \mathbf{T}\mathbf{T}^* = \mathbf{I}$

Definition (Inner Product Isomorphism). **V** is vector space with inner product $\langle \cdot, \cdot \rangle_1$ and **W** is vector space with another inner product $\langle \cdot, \cdot \rangle_2$. **T**: **V** \longrightarrow **W** is inner product isomorphism \iff **T** is vector space isomorphism and $\langle \mathbf{Tx}, \mathbf{Ty} \rangle_2 = \langle \mathbf{x}, \mathbf{y} \rangle_1$