Résumé sur les fonctions circulaires réciproques

Fonction arcsinus (arcsin)

Bijection croissante de [-1, 1] sur $[-\pi/2, \pi/2]$

$$\arcsin(\sin x) = x$$
 si $x \in [-\pi/2, \pi/2]$

$$\sin(\arcsin x) = x$$
 si $x \in [-1, 1]$

Fonction impaire : si $x \in [-1, 1]$ on a $\arcsin(-x) = -\arcsin x$.

Fonction dérivable sur]-1, 1[:
$$f'(x) = \frac{1}{\sqrt{1-x^2}}$$
.

Fonction arccosinus (arccos)

Bijection décroissante de [-1, 1] sur $[0, \pi]$

$$\arccos(\cos x) = x \quad \text{si} \quad x \in [0, \pi]$$

$$\cos(\arccos x) = x \text{ si } x \in [-1, 1]$$

Fonction dérivable sur] 0, π [: $f'(x) = \frac{-1}{\sqrt{1-x^2}}$.

Fonction arctangente (arctan)

Bijection croissante de **R** sur] $-\pi/2$, $\pi/2$ [

$$\arctan(\tan x) = x \text{ si } x \in]-\pi/2, \pi/2[$$

$$\tan(\arctan x) = x \quad \text{si} \quad x \in]-\infty, \infty[$$

Fonction impaire : si $x \in \mathbf{R}$ on a $\arctan(-x) = -\arctan x$.

Fonction dérivable sur
$$\mathbf{R}: f'(x) = \frac{1}{x^2 + 1}$$
.

Limites à l'infini :
$$\lim_{x\to +\infty} \arctan x = \frac{\pi}{2}$$
 et $\lim_{x\to -\infty} \arctan x = -\frac{\pi}{2}$

Formule utile : si
$$x > 0$$
, $\arctan x + \arctan \frac{1}{x} = \frac{\pi}{2}$.

Tableau de valeurs à savoir retrouver rapidement

x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\arcsin x$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\arccos x$	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{4}$	$\frac{\pi}{6}$	0

x	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	$+\infty$
$\arctan x$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$

a) $\arcsin x$

b) $\arccos x$

c) $\arctan x$

Résumé sur les fonctions hyperboliques

Définitions : quel que soit $x \in \mathbf{R}$

$$\operatorname{ch} x = \frac{e^x + e^{-x}}{2}$$
 ; $\operatorname{sh} x = \frac{e^x - e^{-x}}{2}$

$$th x = \frac{sh x}{ch x} = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1} = \frac{1 - e^{-2x}}{1 + e^{-2x}}$$

Fonction sinus hyperbolique (sh)

Bijection croissante de ${\bf R}$ sur ${\bf R}$

Fonction impaire : si $x \in \mathbf{R}$ on a sh $(-x) = -\operatorname{sh} x$.

Fonction dérivable sur $\mathbf{R}: f'(x) = \operatorname{ch} x$

Limites à l'infini : $\lim_{x \to +\infty} \operatorname{sh} x = +\infty$ et $\lim_{x \to -\infty} \operatorname{sh} x = -\infty$

Fonction cosinus hyperbolique (ch)

Application de **R** sur $[1, +\infty[$. En particulier ch 0 = 1.

Fonction paire : si $x \in \mathbf{R}$ on a $\operatorname{ch}(-x) = \operatorname{ch} x$.

Fonction dérivable sur $\mathbf{R}: f'(x) = \operatorname{sh} x$

Limites à l'infini : $\lim_{x \to +\infty} \operatorname{ch} x = +\infty$ et $\lim_{x \to -\infty} \operatorname{ch} x = +\infty$

Relations entre $\operatorname{sh} x$ et $\operatorname{ch} x : \operatorname{sh} x + \operatorname{ch} x = e^x$, $\operatorname{ch}^2 x - \operatorname{sh}^2 x = 1$.

Fonction tangente hyperbolique (th)

Bijection croissante de \mathbf{R} sur] -1, 1[

Fonction impaire : si $x \in \mathbf{R}$ on a th $(-x) = -\operatorname{th} x$.

Fonction dérivable sur \mathbf{R} : $f'(x) = \frac{1}{\cosh^2 x} = 1 - \sinh^2 x$

Limites à l'infini : $\lim_{x \to +\infty} \operatorname{th} x = +1$ et $\lim_{x \to -\infty} \operatorname{th} x = -1$

d)

e) th x

Résumé sur les fonctions hyperboliques inverses

Fonction argument sinus hyperbolique (argsh)

Bijection croissante de ${\bf R}$ sur ${\bf R}$

Fonction impaire : si $x \in \mathbf{R}$ on a $\operatorname{argsh}(-x) = -\operatorname{argsh} x$.

Fonction dérivable sur $\mathbf{R}: f'(x) = \frac{1}{\sqrt{1+x^2}}$

Limites à l'infini : $\lim_{x\to +\infty} \operatorname{argsh} x = +\infty$ et $\lim_{x\to -\infty} \operatorname{argsh} x = -\infty$

Expression so us forme logarithmique : si $x \in \mathbf{R}$ on a argsh $x = \ln(x + \sqrt{x^2 + 1})$

Fonction argument cosinus hyperbolique (argch)

Bijection croissante de $[1, +\infty[$ sur $[0, +\infty[$

Fonction dérivable sur] 1, $+\infty$ [: $f'(x) = \frac{1}{\sqrt{x^2 - 1}}$

Limites à l'infini : $\lim_{x \to +\infty} \operatorname{argch} x = +\infty$

Expression sous forme logarithmique : si $x \in]1, +\infty[$ on a argch $x = \ln(x + \sqrt{x^2 - 1})$

f) $\operatorname{argsh} x$

g) $\operatorname{argch} x$

