Computer Vision Assignment 3

Emilio Brambilla, Lasse Haffke, Moritz Lahann January 13, 2021

Task 3

The fraction of outliers $\epsilon = \frac{\text{number of outliers}}{\text{total number of data points}}$.

The minimum number of samples needed to define a hypothesis m.

The number of running trials k so that with probability p, at least one set of samples is free from outliers.

 ϵ is the probability that a single point is an outlier. Therefore, the probability that a single point is an inlier is $1 - \epsilon$.

If a hypothesis requires multiple samples, the probability of an outlier occurring is multiplied for each sample. For example, if m=3 then the probability of an outlier being among the samples is $p=\epsilon\cdot\epsilon\cdot\epsilon$. Thus, the probability that a single sample of m points contains no outliers is $(1-\epsilon)^m$.

The inverse of this is the probability that there is an outlier in the sample of m points: $1 - (1 - \epsilon)^m$.

The probability that all k samples drawn fail is $(1 - (1 - \epsilon)^m)^k$.

If p is the probability that at least one set out of k is free from outliers, then the probability that all k samples contain outliers is 1 - p.

Therefore,
$$(1 - (1 - \epsilon)^m)^k = (1 - p)$$

Since we are interested in k, we can use the logarithm to factor it out.

$$(1 - (1 - \epsilon)^m)^k = (1 - p) \tag{1}$$

$$log(1 - (1 - \epsilon)^m)^k = log(1 - p) \tag{2}$$

$$k \cdot log(1 - (1 - \epsilon)^m) = log(1 - p) \tag{3}$$

$$(1 - (1 - \epsilon)^{m}) = (1 - p)$$

$$log(1 - (1 - \epsilon)^{m})^{k} = log(1 - p)$$

$$k \cdot log(1 - (1 - \epsilon)^{m}) = log(1 - p)$$

$$k = \frac{log(1 - p)}{log(1 - (1 - \epsilon)^{m})}$$
(4)

We arrive at the conclusion that we can calculate k with the following formula: $k=\frac{log(1-p)}{log(1-(1-\epsilon)^m)}$