# Continuous Attractor Network and Grid Cells

All Over the Place



#### Introduction

- What is a Continuous Attractor Network?
- Grid fields from CANs



$$\tau \frac{ds_i}{dt} + s_i = f \left[ \sum_j W_{ij} s_j + B_i \right]$$

$$W_{ij} = W_0 \left( \mathbf{x}_i - \mathbf{x}_j - l \hat{\mathbf{e}}_{\theta_i} \right)$$

$$W_0(\mathbf{x}) = \mathbf{a} \, \mathbf{e}^{-\gamma |\mathbf{x}|^2} - \mathbf{e}^{-\beta |\mathbf{x}|^2}$$

$$B_i = A(x_i)(1 + \alpha \hat{\mathbf{e}}_{\theta_i} \cdot \mathbf{v})$$









#### **Motivation**

Accurate Path Integration in Continuous Attractor Network Models of Grid Cells.

Original model paper: Yoram Burak and Ila R. Fiete (DOI:

https://doi.org/10.1371/journal.pcbi.1000291)

Resonating neurons stabilize heterogeneous grid-cell networks, Mittal and Narayan

- How might grid cells connect to give rise to hexagonal grids.
- An attempt to understand how path integration is done by grid cells.
- How various factors such as synaptic weights, velocity and the extent of inhibition changes the attractor network.

#### **Parameters Changed**

- The velocity gain (Alpha).
- The periodicity of the population (Lambda).
- The extent of the inhibitory region (Gamma).



Implementation

### **Generating the Trajectory Plots**





#### **Generating the Grid Scores**

 $Gridness\ score = min(Acorr_{60}^{\circ}, Acorr_{120}^{\circ}) - max(Acorr_{30}^{\circ}, Acorr_{90}^{\circ}, Acorr_{150}^{\circ}).$ 





## Results

#### Periodicity of the lattice



#### **Velocity gain**



#### **Extent of inhibition**



#### **Comparing Grid Scores**

| Alpha | Grid Score |
|-------|------------|
| 45    | 0.3530     |
| 30    | 0.2330     |
| 60    | 0.2572     |

| Lambda | Grid Score |
|--------|------------|
| 13     | 0.3530     |
| 11     | 0.2076     |
| 15     | 0.1160     |

| Gamma | Grid Score |
|-------|------------|
| 1.1   | 0.3530     |
| 0.8   | -0.0127    |
| 1.5   | 0.3990     |

#### Limitations

- Large number of cells are required for the hexagonal grids to form.
- Simulation Time prevents longer simulations
- Spatial Autocorrelation might not have been done in the most precise way

#### Acknowledgement

We would like to thank the TAs for helping us brainstorm and validate our ideas when we were trying to develop a project.

Special thanks to Harshith for helping us gain clarity on the implementation and guiding us.

#### **Contributions**

Conceptualisation: Arkadeep, Mrittika, Nilay

Implementation: Nilay, Kajal, Mrittika

Analysis and Presentation: Arkadeep, Kajal, Mrittika, Nilay

## Thank you

