Activation Functions for Deep Learning

1. Sigmoid Activation Function

Formula:

✓ Output Range: (0, 1)

Advantages:

- Smooth and differentiable.
- Useful for binary classification (as output layer).
- Maps any input to a probability-like output.

X Disadvantages:

- Vanishing gradient problem: Gradients become very small for large positive or negative inputs → slows learning.
- Not zero-centered: Can cause zig-zag updates in gradient descent.

2. Tanh (Hyperbolic Tangent) Function

Formula:

✓ Output Range: (-1, 1)

Advantages:

- ullet Zero-centered \to better weight updates than sigmoid.
- Stronger gradients than sigmoid in some regions.

X Disadvantages:

• Still suffers from vanishing gradient problem.

3. ReLU (Rectified Linear Unit)

Formula:

F(x)=max(0,x)

V Output Range: [0, ∞)

Advantages:

- Computationally efficient.
- Avoids vanishing gradients in positive domain.

X Disadvantages:

Dying ReLU problem: Some neurons may always output 0 (if input < 0), and never learn (gradient = 0).

4. Leaky ReLU

Formula:

Advantages:

- Fixes Dying ReLU problem by allowing a small, non-zero gradient when x<0x < 0.
- Still fast and simple like ReLU.

X Disadvantages:

• α is a hyperparameter and must be tuned.

May still not solve the issue completely in some models.
6. ELU (Exponential Linear Unit)
Formula:
✓ Advantages:
 Negative values bring mean activations closer to zero (helps convergence).
 Smooth curve → better gradient flow than ReLU.
X Disadvantages:
Slower to compute due to exponential function.
• α must be tuned.
<i>№</i> 7. Softmax
Formula (for output layer in multi-class classification):
✓ Output Range: (0, 1), and sum of all outputs = 1
✓ Advantages:

- Converts raw scores into probabilities across multiple classes.
- Essential for multi-class classification problems.

X Disadvantages:

- Not used in hidden layers.
- Sensitive to outliers and large input values → numerical instability (handled using log-softmax in practice).