MATH 100, Fall, 2021 Tutorial #4

Derivatives and Instantaneous Rates

- Q1. a) Complete the following statement (so as to be true): A function f = f(x) is differentiable at x = c if and only if the **the right-hand derivative**¹ of f exists at x = c and the **the left-hand derivative** of f exists at x = c and
 - b) Find an example of an f and c as in part a) where both leftand right-hand derivatives exist, but f is NOT differentiable at x = c. Show that your example works by computing both onesided derivatives and explaining why f is not differentiable.
- Q2 Find the derivative of $y = e^x \left[\frac{1}{x^2} x^{e-1} \right]$ as a function of x > 0, then y'(1) as an exact expression. Finish up by computing an approximation to y'(1) rounded to three decimal places.
- Q3 Transport Canada developed a model for a car's stopping distance on dry, paved roads as follows

$$s(v) = 0.245v + 0.008v^2$$

where s = stopping distance in metres and v = speed in kilometers per hour.

- a) Compute s'(50). What are the units? Interpret the number s'(50) in terms of increased stopping distance on a city street. Do the same for s'(100) on a highway.
- b) Use the computation in part a) and the tangent line to the curve s to **estimate** how much extra distance you will need to stop if you are speeding in a 50km per hour zone at 55km/hour (extra, compared to not speeding).
- Q4 Let $y = \frac{1}{\cos x} + \frac{1}{\cot x}$ for $-\pi/4 < x < \pi/4$. Find (exact answer) $y'(\pi/6)$. Simplify as much as possible.
- Q5 a) Find all points x on the interval $(-\pi, \pi)$ where the slope of the tangent line to the curve $y = \tan x$ is parallel to the line y = 4x.
 - b) Make a sketch of the tangent function and the line from part a) then add in all the tangent lines you found in part a). Use colours!

¹See textbook page 128 for definition of RH derivative.

	MATH 100, Fall 2021 Tutorial Worksheet: Your Name: KEY Your Student Number: V00
	Tutorial Section (A01, A02 etc) Today's Date: Sect 29
	Tutorial Instructor Name: Question Number Attempted (Q1, Q2, etc)
- Constitution	A Ruction f = f(x) is differentiable at x = c if
,	and only if the RH derivative of f exists at
	X=C and the LH derivative of f exists at
	X=c and the LH derivative = RH derivative
)	Standard example Six1=1×1= Sxxxx0 -xxx0
	Six1=1×1= 5
	(-x x < 0
	C=0 (0+h1-101
	RH derivative: limit h
	= 11m' L = 11m' L = 1
	N-30' N-30'
	LH derivative: I'm 10+h1-101
	= lini h = lini = 1 = = I
fame	these are not equal.

Therefore I'm 10+h1-101 DNE

=> S'(0) DNE.

MATH 100, Fall 2021	V. N		
•	Your Name:		
Tutorial Worksheet	Your Student Number: V00		
Tutorial Section (T01, T02 etc)	Today's Date: Sect 29		
Tutorial Instructor Name:			
Question Number Attempted (Q1, Q2, etc)			

$$y = e^{x} \left[\frac{1}{x^{2}} - x^{e-1} \right]; \times 0$$
 $y' = e^{x} \left[\text{ same } \right] + e^{x} \left[\frac{-2}{x^{3}} - (e-1)x^{e-2} \right]$

product rule

 $y'(1) = e^{x} \left[\frac{1}{x^{2}} - x^{e-1} \right] + e^{x} \left[\frac{-2}{x^{3}} - (e-1)x^{e-2} \right]$
 $= e^{x} \left[\frac{1}{x^{2}} - x^{e-1} \right] + e^{x} \left[\frac{-2}{x^{3}} - (e-1)x^{e-2} \right]$
 $= e^{x} \left[\frac{1}{x^{2}} - x^{e-1} \right] + e^{x} \left[\frac{-2}{x^{3}} - (e-1)x^{e-2} \right]$
 $= e^{x} \left[\frac{1}{x^{2}} - x^{e-1} \right] + e^{x} \left[\frac{-2}{x^{3}} - (e-1)x^{e-2} \right]$
 $= e^{x} \left[\frac{1}{x^{2}} - x^{e-1} \right] + e^{x} \left[\frac{-2}{x^{3}} - (e-1)x^{e-2} \right]$
 $= e^{x} \left[\frac{1}{x^{2}} - x^{e-1} \right] + e^{x} \left[\frac{-2}{x^{3}} - (e-1)x^{e-2} \right]$
 $= e^{x} \left[\frac{1}{x^{2}} - x^{e-1} \right] + e^{x} \left[\frac{-2}{x^{3}} - (e-1)x^{e-2} \right]$
 $= e^{x} \left[\frac{1}{x^{2}} - x^{e-1} \right] + e^{x} \left[\frac{-2}{x^{3}} - (e-1)x^{e-2} \right]$
 $= e^{x} \left[\frac{1}{x^{2}} - x^{e-1} \right] + e^{x} \left[\frac{-2}{x^{3}} - (e-1)x^{e-2} \right]$
 $= e^{x} \left[\frac{1}{x^{3}} - x^{e-1} \right] + e^{x} \left[\frac{-2}{x^{3}} - (e-1)x^{e-2} \right]$
 $= e^{x} \left[\frac{1}{x^{3}} - x^{e-1} \right] + e^{x} \left[\frac{-2}{x^{3}} - (e-1)x^{e-2} \right]$

	MATH 100, Fall 2021 Tutorial Worksheet Tutorial Section (A01, A02 etc) Tutorial Instructor Name: Question Number Attempted (Q1, Q2, etc.)	Your Name: KEY Your Student Number: V00 Today's Date: tc)
a)	5(1)= 0,245 +	
	5(50) = 0.245 +	0,016·(so) = 1,045
	units are meters per	
	additional knyhrof spe	el, distance vieveases
	54 1.045 metres. CH	nink marginal rate).
	5(100) = 0,245 + 1	,600 = 1,845
	For each kylrabre 100	o knyhr, brakinj distance
	INCHEURS (1845 met	res (almost 2 metres!)
5)	AY = 5 while 5 5(50).	AV =
	EXPECT: AS ~ 5,225	metres extra stapping dustance
	S AS 2.5	
	1 45 3.5	GK) m/km/hv hows
_d govern	5155	but in correct.

MATH 100, Fall 2021

Tutorial Worksheet

Tutorial Section (A01, A02 etc) To O

Tutorial Instructor Name:

Your Name: KEY

Your Student Number: V00

Today's Date: Sept 29

Question Number Attempted (Q1, Q2, etc)

$$y = \frac{\cos x \cdot o - i \cdot (-\csc x)}{\cos^2 x}$$
 $\cot x \cdot (o) - i \cdot (-\csc^2 x)$

Alternate: y(x) = Sec x + tenx y(x) = Sec x tanx + Sec x

MATH 100, Fall 2021

Tutorial Worksheet

Tutorial Section (A01, A02 etc) TOO

Tutorial Instructor Name:

Your Name: KEY Your Student Number: V00 Today's Date: Sept 29

Question Number Attempted (Q1, Q2, etc)

a) y=tanx; y'= sec2x (-T,T) >x Want y'(x) = 4: sec2x =4

/ X= T/3

(=) 1 = 4 Cos2x = = + x = (-17, 17). COIX = + + XE (-17, T)

X= = = = = (4 pts)

1 y=4 X