

Dalhousie University

Faculty of Computer Science

CSCI 2141 – Intro to Database Systems

Week 2 – Data Modelling

What we cover this week

- Data Modelling
 - Various types of data models
 - Data modelling notations
 - How to design a database from business requirements
- Business rules
- Bad design versus good design
- Practice

Why Design Databases?

Let's see an example

- We need to create a database to store information about an employee's skill certifications:
 - What data do we need to save?
 - Employee number
 - Name
 - Title
 - Date of hiring
 - Skills (can be several)
 - Data each skill achieved
- Employee table could be created as follows:

Poor Database Design

ID	ENum	Name	Title	HireDate	Skill1	Skill1Dat
1	02345	Brian Oates	DBA	2/14/1995	Basic Database Management	2/14/20
2	08273	Marco Bienz	Analyst		Basic Web Design	3/8/20
3	06234	Jasmine Patel	Programmer	8/10/2005	Basic Web Design	8/10/20
4	03373	Franklin Johnson, Jr.	Purchasing Agent	3/15/2002	Advanced Spreadsheets	6/20/20
5	13567	Almond, Robert	Analyst	9/30/2012	Basic Process Modeling	9/30/20
6	10282	Richardson, Amanda	Clerk	4/11/2011	_	
7	09382	Susan Mathis	Database Programmer	8/2/2010	Basic DB Design	8/2/20
8	14311	Duong, Lee	Programmer	9/1/2014	Basic Web Design	9/1/20
9					Master Database Programming	
10					Basic Spreadsheets	
11	09002	Wade Gaither	Clerk	5/20/2010	Advanced Spreadsheets	5/16/20
12	13383	Raymond F. Matthews	Programmer	3/12/2012	Basic C# Programming	3/12/20
13	09283	Chavez, Juan	Clerk	7/4/2010		
14	04893	Patricia Richards	DBA	6/11/2004	Advanced Database Management	6/11/20
15	13932	Lee, Megan	Programmer	9/29/2013		

Good Database Design

Table name: EMPLOYEE

Employee_ID Employee FName Employee LName Employee_HireDate Employee_Title 02345 Johnny 2/14/1995 DBA Jones 03373 Franklin 3/15/2002 Purchasing Agent Johnson 04893 6/11/2004 DBA Patricia Richards 06234 8/10/2005 Programmer Jasmine Patel 08273 7/28/2006 Analyst Marco Bienz 09002 5/20/2010 Clerk Ben Joiner 09283 Juan 7/4/2010 Clerk Chavez 09382 Jessica Johnson 8/2/2010 Database Programmer 10282 Richardson 4/11/2011 Clerk Amanda 13383 3/12/2012 Programmer Raymond Matthews 9/30/2012 Analyst 13567 Robert Almond 13932 Megan 9/29/2013 Programmer Lee 14311 9/1/2014 Programmer

Duong

Table name: CERTIFIED

Employee_ID	Skill_ID	Certified_Date
02345	100	2/14/2002
02345	110	8/9/2003
02345	180	2/14/2005
03373	120	6/20/2011
04893	180	6/11/2006
04893	220	9/20/2012
06234	110	8/10/2007
06234	200	8/10/2007
06234	210	1/29/2012
08273	110	3/8/2009
08273	190	8/19/2012
09002	110	5/16/2013
09002	120	5/16/2013
09382	140	8/2/2012
09382	210	8/2/2012
09382	220	5/1/2013
13383	170	3/12/2014
13567	130	9/30/2014
13567	140	5/23/2015
14311	110	9/1/2016

Table name: SKILL

Skill ID

Lee

Skill Name

100	Basic Database Management	Create and manage database user accounts.
110	Basic Web Design	Create and maintain HTML and CSS documents.
120	Advanced Spreadsheets	Use of advanced functions, user-defined functions, and macroing.
130	Basic Process Modeling	Create core business process models using standard libraries.
140	Basic Database Design	Create simple data models.
150	Master Database Programming	Create integrated trigger and procedure packages for a distributed environment.
160	Basic Spreadsheets	Create single tab worksheets with basic formulas
170	Basic C# Programming	Create single-tier data aware modules.
180	Advanced Database Management	Manage Database Server Clusters.
190	Advance Process Modeling	Evaluate and Redesign cross-functional internal and external business processes.
200	Advanced C# Programming	Create multi-tier applications using multi-threading
210	Basice Qatabase Manipulation	Greate simple data retrieval and manipulation istatements in SQL for use as permitted in a license distributed with a
220		Use of advanced data manipulation methods for multi-table inserts, set operations, and correlated subqueries.

Skill Description

Exercise 1

- a) Identify the serious data redundancy problems in the file structure shown below
- b) How could you improve the EMP_NAME and EMP_PHONE contents shown below?
- c) Identify the various data sources in the file shown below. What new files should you create to eliminate the data redundancies?

d) Draw a data model showing an improved design PROJ_NUM | PROJ_NAME | EMP_NAME | JOB_CODE | JOB_CHG_HOUR | PROJ_HOURS

1	Hurricane	101	John D. Newson	EE	85.00	13.3	653-234-3245
1	Hurricane	105	David F. Schwann	CT	60.00	16.2	653-234-1123
1	Hurricane	110	Anne R. Ramoras	CT	60.00	14.3	615-233-5568
2	Coast	101	John D. Newson	EE	85.00	19.8	653-234-3254
2	Coast	108	June H. Sattlemeir	EE	85.00	17.5	905-554-7812
3	Satellite	110	Anne R. Ramoras	CT	62.00	11.6	615-233-5568
3	Satellite	105	David F. Schwann	CT	26.00	23.4	653-234-1123
3	Satelite	123	Mary D. Chen	EE	85.00	19.1	615-233-5432
3	Satellite	112	Allecia R. Smith	BE	85.00	20.7	615-678-6879

EMP PHONE

Solution 1

- a) Ask yourself these questions:
 - How many changes if JOB_CODE = EE changes from \$85.00 to \$90.00?
 - What information do you lose if employee Allecia R. Smith is deleted from the file?
 - What is the JOB_CHG_HOUR value for the CT job?

PROJ_NUM	PROJ_NAME	EMP_NUM	EMP_NAME	JOB_CODE	JOB_CHG_HOUR	PROJ_HOURS	EMP_PHONE
1	Hurricane	101	John D. Newson	EE	85.00	13.3	653-234-3245
1	Hurricane	105	David F. Schwann	CT	60.00	16.2	653-234-1123
1	Hurricane	110	Anne R. Ramoras	CT	60.00	14.3	615-233-5568
2	Coast	101	John D. Newson	EE	85.00	19.8	653-234-3254
2	Coast	108	June H. Sattlemeir	EE	85.00	17.5	905-554-7812
3	Satellite	110	Anne R. Ramoras	CT	62.00	11.6	615-233-5568
3	Satellite	105	David F. Schwann	CT	26.00	23.4	653-234-1123
3	Satelite	123	Mary D. Chen	EE	85.00	19.1	615-233-5432
3	Satellite	112	Allecia R. Smith	BE	85.00	20.7	615-678-6879

Solution 1

b) Consider these issues:

- How would you create a list of employees based on their Last name? First name?
- How would you be able to print a directory based on area codes?

PROJ_NUM	PROJ_NAME	EMP_NUM	EMP_NAME	JOB_CODE	JOB_CHG_HOUR	PROJ_HOURS	EMP_PHONE
1	Hurricane	101	John D. Newson	EE	85.00	13.3	653-234-3245
1	Hurricane	105	David F. Schwann	CT	60,00	16.2	653-234-1123
1	Hurricane	110	Anne R. Ramoras	CT	60.00	14.3	615-233-5568
2	Coast	101	John D. Newson	EE	85.00	19.8	653-234-3254
2	Coast	108	June H. Sattlemeir	EE	85.00	17.5	905-554-7812
3	Satellite	110	Anne R. Ramoras	CT	62.00	11.6	615-233-5568
3	Satellite	105	David F. Schwann	CT	26.00	23.4	653-234-1123
3	Satelite	123	Mary D. Chen	EE	85.00	19.1	615-233-5432
3	Satellite	112	Allecia R. Smith	BE	85.00	20.7	615-678-6879

Solution 1

- c) Consider which of the fields are Employee characteristics?
 - Project name?
 - Job data e.g. JOB_CHG_HOUR
 - Project hours?

PROJ_NUM	PROJ_NAME	EMP_NUM	EMP_NAME	JOB_CODE	JOB_CHG_HOUR	PROJ_HOURS	EMP_PHONE
1	Hurricane	101	John D. Newson	EE	85.00	13.3	653-234-3245
1	Hurricane	105	David F. Schwann	CT	60,00	16.2	653-234-1123
1	Hurricane	110	Anne R. Ramoras	CT	60,00	14.3	615-233-5568
2	Coast	101	John D. Newson	EE	85.00	19.8	653-234-3254
2	Coast	108	June H. Sattlemeir	EE	85.00	17.5	905-554-7812
3	Satellite	110	Anne R. Ramoras	CT	62.00	11.6	615-233-5568
3	Satellite	105	David F. Schwann	CT	26.00	23.4	653-234-1123
3	Satelite	123	Mary D. Chen	EE	85.00	19.1	615-233-5432
3	Satellite	112	Allecia R. Smith	BE	85.00	20.7	615-678-6879

Data Modelling

Data Modeling

- Data modeling is a process used to define and analyze data requirements needed to support the business processes within the scope of corresponding information systems in organizations.
- Iterative and progressive process of creating a specific data model for a determined problem domain
- **Data models**: Simple representations of complex realworld data structures
 - Useful for supporting a specific problem domain

Importance of Data Models

Are a communication tool Give an overall view of the database Organize data for various users Are an abstraction for the creation of good database

Process Model versus Data Model

Source: Wikipedia (CCL) - Data_modeling_context.jpg

- Conceptual Data Model
 - Identifies the highest level relationship between entities
 - Facilitates communication, and integration between systems, processes and organizations
 - Often expressed using an entity-relationship model (ERM)
- Logical Data Model
- Physical Data Model

Conceptual Data Model

- Conceptual Data Model
- Logical Data Model
 - Expands on the CDM with more details
 - Describes the data in as much detail as possible, without regards to its physical implementation
 - Contains attributes in addition to entities and relationships
 - Normalization done at this level
- Physical Data Model

- Conceptual Data Model
- Logical Data Model
- Physical Data Model
 - Models how actual database will be built
 - Shows the complete table structure, keys, and relationships between tables
 - Dependent on the database management system used

Model Feature	Conceptual Data Model	Logical Data Model	Physical Data Model
Entity Names	Included	Included	
Entity Relationships	Included	Included	
Attributes		Included	
Keys		Included	Included
Table Names			Included
Column Names			Included
Column Data Types			Included
Column Data Lengths			Included

How to do Data Modelling

Data Modeling

- Data modeling is easy. Its like drawing a sentence
 - A course may contain many students

- Where do these sentences come from?
 - These are business rules

Business Rules

Brief, precise, and unambiguous description of a policy, procedure, or principle

Enable defining the basic building blocks

Describe main and distinguishing characteristics of the data

Sources of Business Rules

Company managers

Policy makers

Department managers

Written documentation

Direct interviews with end users

Reasons for Identifying and Documenting Business Rules

- Help standardize company's view of data
- Communications tool between users and designers
- Allow designer to:
 - Understand the nature, role, scope of data, and business processes
 - Develop appropriate relationship participation rules and constraints
 - Create an accurate data model

Translating Business Rules into Data Model Components

- Nouns translate into entities
- Verbs translate into relationships among entities
- Relationships are bidirectional
- Questions to identify the relationship type
 - How many instances of B are related to one instance of A?
 - How many instances of A are related to one instance of B?

Data Modelling – Example 1

- Map the following business rules to a conceptual data model:
 - Canadian Tire has many outlets
 - Each outlet has many departments
 - Each department has many employees
 - Each employee can prepare several invoices

Data Modelling – Example 1 (Solution)

Data Modelling – Example 2

- Map the following business rules to a conceptual data model:
 - A theater show many movies.
 - A movie can be shown in many theaters.
 - A movie can receive many reviews.
 - Each review is for a single movie.
 - A reviewer can write many reviews.
 - Each review is written by a single reviewer.

Data Modelling – Example 2 (Solution)

Data Modelling

- Business rules are extracted from client's requirements and may not be as clear cut as shown previously
 - How to design a database in that case?

Let's see an example

Data Modelling

Scenario:

• A college has two departments. Teachers from each department list their course offerings before the beginning of each semester. These lists are collected and displayed on the enrollment website. Each department offers courses to students. Students can enroll in several courses in each semester. Fee for the courses needs to be deposited before the start of the semester

Data Modelling – Solution

- Step 1: Identify key data things
 - Hint: Identify the nouns (things or concepts) in the scenario statement
- Step 2: Define the key "nouns"
 - Hint: Think from the perspective of all stakeholders
- Step 3: Construct a Conceptual Data Model
 - Hint: Use the key "nouns" identified and their relationships with each other
- Step 4: Construct a Logical Data Model

Data Modelling – Solution

- Step 1: Identify key data things
 - A college has two departments. Teachers from each department list their course offerings before the beginning of each semester. These lists are collected and displayed on the enrollment website. Each department offers courses to students. Students can enroll in several courses in each semester. Fee for the courses needs to be deposited before the start of the semester

Data Modelling – Solution

- Step 2: Define the key nouns, for example:
 - Students
 - Study in a department at the college
 - Can enroll in several courses
 - Have to pay fee
- Note: It is important to avoid assumptions
 - Consult relevant stake holders i.e. students, college administration, faculty, ...?
 - Remember the difference between "must" and "should"

Solution – Conceptual Data Model

Step 3: Construct a Conceptual Data Model

Solution – Logical Data Model

Step 4: Construct a Logical Data Model

Naming Conventions

- Entity names Required to:
 - Be descriptive of the objects in the business environment
 - Use terminology that is familiar to the users
- Attribute name Required to be descriptive of the data represented by the attribute
- Proper naming:
 - Facilitates communication between parties
 - Promotes self-documentation

Data Model Basic Building Blocks

- **Entity**: Unique and distinct object used to collect and store data
 - Attribute: Characteristic of an entity
- Relationship: Describes an association among entities
 - One-to-many (1:M)
 - Many-to-many (M:N or M:M)
 - One-to-one (1:1)
- Constraint: Set of rules to ensure data integrity

Types of Relationships

Data Modeling Notations

- Several notations used for high-level data models
 - Choice depends on purpose and audience
 - Also depends on the choice of tool used, if any
 - Should not be tied down to using only one notation
 - Use organization's standard notation, if any
- Recommended to use tools that can generate Data Definition Language (DDL) or scripts for creating databases

Data Modelling Notations

FIGURE 2.3 THE ER MODEL NOTATIONS

Crow's Foot Notation

UML Class Diagram Notation

A One-to-Many (1:M) Relationship: a PAINTER can paint many PAINTINGs; each PAINTING is painted by one PAINTER.

A Many-to-Many (M:N) Relationship: an EMPLOYEE can learn many SKILLs; each SKILL can be learned by many EMPLOYEEs.

A One-to-One (1:1) Relationship: an EMPLOYEE manages one STORE; each STORE is managed by one EMPLOYEE.

Group Exercise

- In groups discuss and sketch a conceptual, logical and physical data model for a database that stores "all" data for a video rental store
- Step 1: Identify important business rules. For example,
 - The store may have several copies of a movie
 - Regular customers get 10% discount on new movies
 - A movie can be rented for 3 days
- Step 2: Identify entities and relationships
- Step 3: Identify attributes of each entity

Group Exercise

- Step 4: For a physical model, identify the constraints and the datatype for each attribute
- For this store, you might want to consider:
 - How regular customers will be identified?
 - How new movies are identified?
 - How rental price is determined?
 - What happens when movies are returned late?
 - How are movies organized?

Example – ERD of a Video Rental Database

Data Types

- Databases support the following data types:
 - Numeric
 - Character (Text, String)
 - Date (DateTime)
 - Logical

MS Access data types →

MySQL data types

