模拟考试(四)

一、选择题 (每小题3分,共15分)

- 1. $\sqrt{3} + i$ 的三角表示式是 ().
 - (A) $-2(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})$

(B) $-2(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6})$

(C) $2(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6})$

- (D) $2(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})$
- 2. 设 $f(z) = \operatorname{Im} z$, 则f(z) (
 - (A) 处处不可导

(B) 处处解析

(C) 仅在虚轴上可导

- (D) 仅在(0,0)点可导
- 3. $i \frac{z^2}{\frac{1}{2}} = \sum_{n=-\infty}^{+\infty} a_n z^n, |z| > 0, \text{ M} a_{-7} = ($

 - (A) $\frac{1}{7!}$ (B) $-\frac{1}{7!}$
- (C) $\frac{1}{9!}$
- (D) $-\frac{1}{9!}$

- 4. 下列公式不成立的是(
 - (A) $Lnz_1z_2 = Lnz_1 + Lnz_2$

(B) $Ln^2z = 2Lnz$

(C) $e^{z+z} = e^z e^z$

(D) $z^{\alpha} = e^{\alpha L n z}$

- 5. z = 0 是函数 $\frac{1}{\cos^{-1}}$ 的().
 - (A) 一级极点

(B) 可去奇点

(C) 非孤立奇点

(D) 本性奇点

二、填空题 (每小题3分,共15分)

- 1. $\int_{-2}^{-2+i} (2+z)^2 dz = \underline{\hspace{1cm}}$
- 2. 函数 $f(z) = \ln(1+z)$ 在 z = 0 处泰勒展开式中 z^4 项的系数为_____
- 3. ln(2i) =______.
- 4. $\sqrt{1} =$ _____.
- 5. 函数 $f(t) = \sin t$ 的拉普拉斯变换为

三、计算题 (共70分)

1. 计算积分 $\oint_C \frac{e^z}{z^2 - z} dz$ 的值,其中 C 为正向圆周 $|z - 1| = \frac{1}{10}$. (7分)

2. 计算积分 $\oint_C \frac{\cos z}{z^4} dz$ 的值,其中 C 为正向圆周 |z|=1. (7分)

3. 求函数 $\frac{\sin z}{z^2 - 9}$ 在有限奇点处的留数. (7分)

4. 求函数
$$z^2 \sin \frac{1}{z}$$
 在有限奇点处的留数. (7分)

5. 试将
$$f(z) = \frac{1}{z^2 - 7z + 12}$$
在 3 < $|z|$ < 4 内展开成洛朗级数. (10 分)

6. 已知 $v = \arctan \frac{y}{x}, x > 0$,求解析函数f(z) = u + iv. (10分)

7. 如果 f(z) = u + iv在 D 解析,Ref 在 D 内恒为常数,证明 f(z) 是常数. (12 分)

8. 利用拉氏变换求解微分方程 $y''(t) - 2y'(t) + y(t) = e^t$, y(0) = y'(0) = 0. (10 分)