Завдання 4 з премету Спецкурс для ОМ-3

Коломієць Микола

5 червня 2023 р.

Зміст

1	Завдання 1	2
2	Завдання 2	3
3	Завдання 3	5
4	Завдання 4	7
5	Завдання 5	8
6	Завдання 6	9
7	Завдання 7	10
8	Завдання 8	11
9	Завдання 9	12

Завдання

Покажіть, що лема 1 з лекції 7 справедлива для строго опуклих лінійних нормованих просторів.

Лема

Нехай H — строго опуклий лінійний нормований простір, $C\subseteq H$ — опукла замкнена множина, $T:C\to H$ — нерозтягуючий оператор. Тоді множина F(T) опукла та замкнена.

Розв'язання:

З неперервності T випливає замкненість F(T) Якщо повторити доведення з лекції у кінці вийде $\| \dots \| \le 0$ замість = 0, тобто рзультат залишиться тим самим F(T) - опукла.

Доведено!

Завдання

Нехай C непорожня підмножина гільбертового простору H,

 $T_1, T_2, \dots, T_m : C \to H$ - нерозтягуючі оператори, причому

$$\bigcap_{n=1}^{m} F\left(T_{n}\right) \neq \emptyset$$

.

Доведіть, що для довільного набору $\{\lambda_1,\dots,\lambda_m\}$ додатніх чисел з $\sum\limits_{n=1}^m\lambda_n=1$ оператор

$$Tx = \sum_{n=1}^{m} \lambda_n T_n x \quad (x \in C)$$

 ϵ нерозтягуючим та $F(T) = \bigcap_{n=1}^{m} F\left(T_{n}\right)$.

Нехай
$$x \in \bigcap_{n=1}^m F(T_n) \Rightarrow \forall n \in \mathbb{N}, n < m, T_n x = x$$
 тоді

$$Tx = \sum_{n=1}^{m} \lambda_n T_n x = \sum_{n=1}^{m} \lambda_n x = x \sum_{n=1}^{m} \lambda_n = x$$

Отже
$$x \in F(T)$$
 тобто $F(T) \supseteq \bigcap_{n=1}^{m} F(T_n)$

Нехай $x \in F(T), Tx = x$ і нехай від супротивного $\exists m_1 : T_k x \neq x, k \in m_1$

Тоді

$$Tx=\sum_{n=1}^m\lambda_nT_nx=x\sum_{n=1}^{m-|m_1|}\lambda_n+\sum_{k\in m_1}\lambda_kT_kx=x\sum_{n=1}^m\lambda_n$$
 $\sum_{k\in m_1}\lambda_k(T_kx-x)=0\Rightarrow T_kx=x$ протиріччя Отже $\forall x\in F(T), \forall n\leq m, T_nx=x$ Отже $F(T)=\bigcap_{n=1}^mF(T_n)$

Доведемо, що він є нерозтягуючим.

$$\|Tx-Ty\|=\|\sum_{n=1}^m\lambda_nT_nx-\sum_{n=1}^m\lambda_nT_ny\|=\|\sum_{n=1}^m\lambda_n(T_nx-T_ny)\|=$$
 $=\sum_{n=1}^m\lambda_n\|(T_nx-T_ny)\|\leq\sum_{n=1}^m\lambda_n\|(x-y)\|=\|x-y\|$ $\|Tx-Ty\|\leq\|x-y\|$ - Оператор нерозтягуючий Доведено!

Завдання

Нехай С непорожня підмножина гільбертового простору

 $H, T_1, T_2, \dots, T_m : C \to H-$ строго квазінерозтягуючі оператори, при-

$$\bigcap_{n=1}^{m} F\left(T_{n}\right) \neq \emptyset$$

Доведіть, що оператор $Tx = T_1 T_2 \dots T_m x$ $(x \in C)$ є строго квазінерозтягуючим та $F(T) = \bigcap_{n=1}^m F(T_n)$.

Розв'язання:

Нехай $x\in\bigcap_{n=1}^m F(T_n)$ тоді за визначенням $\forall k\in\mathbb{N}, k\leq m: T_kx=x$

Тоді
$$Tx = T_1 T_2 \dots T_{m-1} T_m = T_1 T_2 \dots T_{m-1} x = \dots = x \Rightarrow x \in F(T)$$

Отже
$$F(T)\supseteq\bigcap_{n=1}^m F(T_n)$$

Нехай $x \in F(T), \exists$ найбільше $k < m: \quad T_k x = x_1 \neq x$ тоді

$$Tx = T_1 T_2 \dots T_m x = T_1 T_2 \dots T_{k-1} x_1 = x$$

З строгої не розтягуваності маємо $||T_{k-1}x_1-x|| < ||x_1-x||$, тобто

$$T_{k-1}x_1 = x_2 \neq x$$

Подібні речі проводимо k-1 раз уже з новими $x_2, x_3 \dots$

отримаємо
$$T_x \neq x$$
 - протиріччя. Отже $F(T) = \bigcap_{n=1}^m F(T_n)$

Доведемо строгу квазінерозтягуваючість

$$||Tx - y|| = ||T_1T_2...T_mx - y|| = ||T_1(T_2...T_mx) - y|| \le$$

$$\leq \|T_2T_3\dots T_mx-y\|=\dots\leq \|x-y\|$$
 Доведено!

Завдання

Нехай C- непорожня опукла замкнена підмножина гільбертового простору $H,T:C\to H$ - нерозтягуючий оператор з $F(T)\neq\emptyset$. Припустимо, що послідовність точок $x_n\in C$ має властивості:

1.
$$\forall p \in F(T) \quad \exists \lim_{n \to \infty} ||x_n - p|| \in \mathbb{R};$$

2.
$$\lim_{n \to \infty} ||x_n - Tx_n|| = 0.$$

Доведіть, що послідовність (x_n) слабко збігається до точки з F(T).

$$\forall p \in F(T) \quad \exists \lim_{n \to \infty} \|x_n - p\| \in \mathbb{R} \Rightarrow \lim_{n \to \infty} \|x_n\| \in \mathbb{R} \Rightarrow x_n \to x$$
 Тоді $\lim_{n \to \infty} \|x_n - Tx_n\| = \|x - Tx\| = 0 \Rightarrow x = Tx \Rightarrow x \in F(T)$ Доведено!

Завдання

Нехай H - гільбертовий простір, $T:H\to H-$ твердо нерозтягуючий оператор із $F(T) \neq \emptyset$. Розглянемо метод простої ітерації:

$$\begin{cases} x_0 \in H \\ x_{n+1} = Tx_n \end{cases}$$

Доведіть, що послідовність x_n слабко збігається до деякої точки з F(T)

Розв'язання:

Оператор нерозтагуючий, послідовність обмежена тоді будуємо множини

$$C_n = \bigcap_{k=n}^{\infty} B_d(x_k), d = diam(x_n)$$

 $C_n = \bigcap_{k=n}^\infty B_d(x_k), d=diam(x_n)$ Множини мають властивість $T(C_n)\subseteq C_{n+1}$ (з побудови послідовності)

$$C=cl\bigcup_{n=1}^{\infty}C_n$$
 - замкнена, опукла та обмежена і за теоремою Браудера (з лекції 7) оператор T має нерухому точку в C .

Доведено!

Завдання

Нехай H - гільбертовий простір, $C\subseteq H-$ непорожня опукла замкнена множина, $T:C\to C$ - нерозтягуючий оператор, $F(T)\neq\emptyset,y\in C.$ Покажіть, що для довільного $t\in(0,1)$ існує єдиний елемент $x_t\in C$, такий, що

$$x_t = T\left(ty + (1-t)x_t\right).$$

Доведіть, що при $t \to 0$ крива $t \mapsto x_t$ сильно збігається до точки $\bar x$, такої, що $\bar x = P_{F(T)} y.$

Завдання

Нехай H - гільбертовий простір, $C\subseteq H-$ непорожня опукла замкнена множина, $T:C\to C$ - нерозтягуючий оператор з $F(T)\neq\emptyset, f:C\to C-$ стискаючий оператор. Для заданого $x_0\in C$ генеруємо послідовність елементів $x_n\in C$ за допомогою ітераційної схеми:

$$x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n) T x_n$$

де послідовність чисел $\alpha_n \in (0,1)$ задовольняє умови:

- $1. \lim_{n\to\infty} \alpha_n = 0$
- $2. \sum_{n=0}^{\infty} \alpha_n = +\infty$
- 3. $\sum_{n=0}^{\infty} |\alpha_{n+1} \alpha_n| < +\infty$

Доведіть, що згенерована послідовність (x_n) сильно збігається до точки $z\in F(T)$, такої, що $z=P_{F(T)}f(z).$

Завдання

Нехай оператор $T: H \to H-$ нерозтягуючий, оператор $A: H \to H-$ ліпшицевий та сильно монотонний 4 із сталими L>0, l>0, відповідно.

Оператор $T_{\alpha}: H \to H$ задано рівністю

$$T_{\alpha}x = Tx - \alpha ATx, \quad \alpha \in [0, +\infty).$$

Доведіть, що для довільного $\mu \in \left(0, \frac{2l}{L^2}\right)$ маємо

$$||T_{\alpha}x - T_{\alpha}y|| \le \left(1 - \frac{\tau}{\mu}\alpha\right)||x - y|| \quad \forall x \in H \forall y \in H$$

де
$$\alpha \in [0,\mu], \tau = 1 - \sqrt{1 - 2l\mu + L^2\mu^2} \in (0,1].$$

Завдання

Нехай оператор $T: H \to H-$ нерозтягуючий, оператор $A: H \to H-$ ліпшицевий та сильно монотонний. Розглянемо ітераційну схему:

$$\begin{cases} y_n = Tx_n \\ x_{n+1} = y_n - \alpha_n A y_n \end{cases}$$

де послідовність чисел $\alpha_n \in (0,1)$ задовольняє умови:

- $1. \lim_{n \to \infty} \alpha_n = 0$
- $2. \sum_{n=0}^{\infty} \alpha_n = +\infty$
- 3. $\sum_{n=0}^{\infty} |\alpha_{n+1} \alpha_n| < +\infty$

Доведіть, що породжена послідовність (x_n) сильно збігається до єдиного розв'язку варіаційної нерівності:

знайти
$$x \in C: (Ax, y - x) \ge 0 \quad \forall y \in F(T).$$