This listing of claims will replace all prior versions, and listings, of claims in the application:

Claim 1 (currently amended): A method of processing a plurality of Z-vectors, each Z-vector including Z elements, each element including K bits, where Z is a 3 positive integer greater than 1 and K is a positive 4 integer, the plurality of Z-vectors corresponding to a binary codeword, portions of said binary codeword having a direct mapping relationship to a plurality of transmission units, said plurality of Z-vectors being 8 stored in a set of D memory arrays, where D is an integer 9 10 greater than zero, each memory array including Z rows of memory locations, each memory location of a row 11 corresponding to a different array column, each array 12 column corresponding to a different one of said plurality 13 14 of Z-vectors, each Z-vector identifying one column in each of said D memory arrays, the method comprising: 15 16 generating a series of sets of control information, each set of control information including: 17 18 i) a Z-vector identifier: 19 ii) a row identifier; and for at least one generated set of control 21 information: 22 reading P times K divided by D bits, where P is a positive integer, from each column identified by 23 the Z-vector that is identified by the Z-vector 24 25 identifier included in said at least one generated set of control information; 26 wherein said method of processing is used to process 27 28 received transmission units; and

29	wherein K is an integer greater than zero and is a
30	number of bits used to represent a soft value
31	corresponding to one bit of said binary codeword.
1	Claim 2 (original): The method of claim 1,
2	wherein said method of processing is performed by a
3	transmission device prior to transmission of said
4	transmission units;
5	wherein D is 1; and
6	wherein K is 1.
1	Claim 3 (original): The method of claim 2, further
2	comprising:
3	for said at least one generated set of control
4	information:
5	generating from said P bits read from memory, a
6	portion of the transmission unit identified by the
7	transmission unit identifier included in said at
8	least one generated set of control information.
1	Claim 4 (currently amended): The method of claim 3, A method
2	of processing a plurality of Z-vectors, each Z-vector
3	including Z elements, each element including K bits,
4	where Z is a positive integer greater than 1 and K is a
5	positive integer, the plurality of Z-vectors
6	corresponding to a binary codeword, portions of said
7	binary codeword having a direct mapping relationship to a
8	plurality of transmission units, said plurality of Z-
9	vectors being stored in a set of D memory arrays, where D
0	is an integer greater than zero, each memory array
1	including Z rows of memory locations, each memory
2	location of a row corresponding to a different array

13	column, each array column corresponding to a different
14	one of said plurality of Z-vectors, each Z-vector
15	identifying one column in each of said D memory arrays,
16	the method comprising:
17	generating a series of sets of control information,
18	each set of control information including:
19	i) a Z-vector identifier;
20	ii) a row identifier; and
21	for at least one generated set of control
22	information:
23	reading P times K divided by D bits, where
24	P is a positive integer, from each column identified by
25	the Z-vector that is identified by the Z-vector
26	identifier included in said at least one generated set of
27	control information;
28	wherein said method of processing is performed
29	by a transmission device prior to transmission of said
30	transmission units;
31	wherein D is 1;
32	wherein K is 1;
33	for said at least one generated set of control
34	information, generating from said P bits read from
35	memory, a portion of the transmission unit identified by
36	the transmission unit identifier included in said at
37	least one generated set of control information;
38	wherein said plurality of Z-vectors includes n of
39	said plurality of Z-vectors, where n is a positive
40	integer greater than 1; and
41	wherein generating a series of sets of control
42	information further includes:
43	incrementing a Z-vector identifier value by n
14	divided by M, where M is the number of portions of

45	the transmission unit having a direct mapping			
46	relationship to a portion of the binary codeword			
47	said portion of the binary codeword including M			
48	times P bits.			
1	Claim 5 (original): The method of claim 4,			
2	wherein each portion of a transmission unit is a			
,3	symbol; and			
4	wherein the transmission unit is a dwell.			
ì	Claim 6 (currently amended): The method of claim 3,			
2	wherein generating a series of sets of control			
3	information further includes:			
4	incrementing the z-vector identifier value M times;			
5	after incrementing the z-vector value M times:			
6	i) resetting the Z z-vector identifier value to			
7	the z-vector identifier value existing at the			
8	start of said incrementing; and			
9	ii) incrementing a row identifier value by P.			
1	Claim 7 (previously presented): The method of claim 6,			
2	wherein generating a series of sets of control			
3	information further includes:			
4	after incrementing the row identifier value Z			
5	divided by P times, where Z divided by P times is an			
6	integer,			
7	setting the row identifier value to zero; and			
8	incrementing the Z-vector identifier value by a			
9	preselected positive integer value.			
1	Claim 8 (original). Who most = 2 = 5 = 1 = 2 = 7			
2	Claim 8 (original): The method of claim 7, wherein said			
_	preselected positive integer value is one.			

	1	craim 9 (original): The method of claim 2, wherein said
	2	binary codeword is a low density parity check codeword.
	1	Claim 10 (canceled):
340	1	Claim 11 (original): The method of claim 10, where D is
	2	equal to K or 1.
	1	Claim 12 (original): The method of claim 11, further
	2	comprising:
	3	for said at least one generated set of control.
	4	information:
	5	supplying the P bits read from memory to a
	6	demodulator.
		1
51/5	1	Claim 13 (previously presented): The method of claim 10,
	2	further comprising:
	3	for said at least one generated set of control
	4	information:
	5	generating, from said P bits read from memory,
	6	a portion of the transmission unit identified by the
	7	transmission unit identifier included in said each
	8	generated set of control information.
	1 .	Claim 14 (previously presented): The method of claim 13,
•	2	wherein said plurality of Z-vectors includes n of
	3	said Z-vectors, where n is a positive integer greater
	4	than 1; and
	5	wherein generating a series of sets of control
	6	information further includes:
	•	

7	incrementing a Z-vector identifier value n		
8	divided by M, where M is the number of portions of		
9	the transmission unit having a mapping relationship		
10	to a portion of the binary codeword said portion of		
11	the binary codeword including M times P bits.		
1	Claim 15 (previously presented): The method of claim 13,		
2	wherein generating a series of sets of control		
3	information further includes:		
4	incrementing a row identifier value by P		
. 5	incrementing the Z-vector identifier value M times;		
6	after incrementing the Z-vector value M times:		
7	i) resetting the Z-vector identifier value to		
8	the Z-vector identifier value existing at the		
9	start of said incrementing; and		
10	ii) incrementing a row identifier value by P.		
1	Claim 16 (previously presented): The method of claim 15,		
2	wherein generating a series of sets of control		
3	information further includes:		
4	after incrementing the row identifier value Z		
5	divided by P times, where Z divided by P times is an		
. 6	integer,		
7	setting the row identifier value to zero; and		
8	incrementing the Z-vector identifier value by a		
9	preselected positive integer value.		
1	Claim 17 (original): The method of claim 16, wherein		
2	said preselected positive integer value is one.		

26

27

Claim 18 (currently amended): The method of claim $\frac{1}{2}$ 10, wherein said binary codeword is a low density parity 2 check codeword. Claim 19 (currently amended): An apparatus for processing a plurality of Z-vectors, each Z vector including Z elements, each element including K bits, where Z is a positive integer greater than 1 and K is a 5 positive integer, the plurality of Z vectors corresponding to a binary codeword, portions of said 6 binary codeword having a direct mapping relationship to a plurality of transmission units, said apparatus 8 9 comprising: 10 memory including a set of D memory arrays for storing said plurality of Z-vectors, where D is an 11 12 integer greater than zero, each memory array including Z 13 rows of memory locations, each memory location of a row corresponding to a different array column, each array 14 15 column corresponding to a different one of said plurality 16 of Z vectors, each Z-vector identifying one column in 17 each of said D memory arrays; 18 memory access control module for generating a series 19 of sets of control information, each set of control information including: 20 21 i) a Z-vector identifier; 22 ii) a row identifier; and 23 means for reading P times K divided by D bits, 24 from said memory, where P is a positive integer greater 25 than zero, from each column identified by the Z-vector

that is identified by the Z-vector identifier included in

at least one generated set of control information; and

28	wherein K is an integer greater than zero and is a
29	number of bits used to represent a soft value
30	corresponding to one bit of said binary codeword.
	·
1	Claim 20 (original): The method of claim 1,
2	wherein D is 1; and
3	wherein K is 1.
1	Claim 21 (previously presented): The method of claim 19,
2	wherein said memory access control modules includes:
3	a first counter for generating said Z-vector
4	identifier; and
5	a second counter for generating said row identifier.
•	·
1	Claim 22 (currently amended): A machine readable medium
2	comprising machine executable instructions for
3	controlling a computer device to process a plurality of
4	Z-vectors, each Z-vector including Z elements, each
5	element including K bits, where Z is a positive integer
6	greater than 1 and K is a positive integer, the plurality
7	of Z-vectors corresponding to a binary codeword, portions
8	of said binary codeword having a direct mapping
9	relationship to a plurality of transmission units, said
10	machine executable instructions including instructions
11	used to control the computer device to:
12	generate a series of sets of control information,
13	each set of control information including:
14	i) a Z-vector identifier; and
15	ii) a row identifier; and
16	for at least one generated set of control
17	information:

read P times K divided by D bits, where P is a
positive integer greater than zero, from each column
identified by the Z-vector that is identified by the Z-
vector identifier included in said at least one generate
set of control information; and
wherein K is an integer greater than zero and
is a number of bits used to represent a soft value
corresponding to one bit of said binary codeword.