

COMP815 Nature Inspired Computing

Overview of the Course

Timetable and Assessment

Assessment in <u>Assignment</u> Section

Part 1: coding + analysis

Part 2: project report + portfolio

- Course Format: 1 hour Lecture + 1 hour Workshop
- Timetable and Deadlines in <u>Announcements</u>

Q&A: preferably <u>Teams</u>

Any Question so far?

Course Objectives

- Introduce a different kind of algorithms to solve problems that are difficult to solve using conventional algorithms
- Algorithms that are inspired by nature that contains an element of randomness
- Focus on
 - Evolutionary and genetic algorithms
 Biologically inspired
 - Swarm algorithms Socially inspired
 - Neural Networks Brain inspired

Motivating Videos/Demos

Evolutionary Search for Neural Networks

Neural Prompt Search, <u>Nanyang Technological University</u>

Motivating Videos/Demos

Swarm Intelligence

<u>Swarm Drones</u> [credit to DSO National Laboratories, Singapore]: <u>Link</u>

<u>Five Principles of Swarm Intelligence</u> [credit to Alfonso]: <u>Link</u>

Motivating Videos/Demos

Artificial Neural Networks

<u>How AI mimics Human Brain</u> [credit to TheAIAwakening]: <u>Link</u>

Any Question so far?

COMP815 Nature Inspired Computing

Problem Formulation

Examples of Problems

- Timetabling
- Scheduling
- Engineering design

- Generic problems with many applications:
 - Travelling salesman problem (TSP)
 - Eight-queens or N-queens problem
 - Graph colouring problem

Further Examples

- Machine learning problems
 - Determining a statistical model for a given set of data
 - Training an artificial neural network

- Models are used for prediction or inference or control
 - Object recognition
 - Adaptive control
 - Outcomes of changes in economic policies

These problems can be viewed as optimization problems

A search through the feasible space for the best solution

Mathematical Description

Objective function

Minimize

$$\boldsymbol{x} = [x_1, x_2, \dots, x_N]$$

Subject to

Constraints

The feasible set M is often given by a system of equations and inequalities:

Equality constraints

$$g_i \leq 0$$

$$j = 1, 2, ..., m$$

Inequality constraints

$$h_k = 0$$

$$k = 1, 2, ..., n$$

Problem Classification

	Objective function	
Constraints	Yes	No
Yes	Constrained optimization problem	Constraint satisfaction problem
No	Unconstrained optimization problem	

Linear Regression

Given a set of data $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ Find their linear dependence

$$\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} c \\ m \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{bmatrix}$$

$$X \qquad A \qquad y$$

$$\min_{A} \parallel XA - y \parallel$$

Modelling Problem

For a given model

Optimization Problem

Levels of Difficulty of Problems

- P: problem can be solved in polynomial time (a polynomial function of the size of the problem)
- NP: problem can be solved, and any solution can be verified in polynomial time by another algorithm
- NP-complete: problem is NP and any other problem in NP can be reduced to this problem in polynomial time by an algorithm
- NP-hard: problem is at least as hard as any other NP-complete problem, but solution may not be verified in polynomial time

Many practical problems turn out to be NP-complete

Almost impossible to find the optimum solution

Approximate solutions

Summary

Assessments, Timetable, Key dates

Scope of this course

Optimisation problem