

Renaud Costadoat Lycée Dorian

Théorie des mécanismes

Vous devez être capables de modéliser le contact entre deux pièces (ou classes d'équivalences) par une liaison.

- Quelles sont les types de liaison,
- Comment paramétrer une liaison,
- Comment représenter une liaison.

La liaison entre deux classes d'équivalence peut avoir ses mobilités contraintes par plus d'une liaison élémentaire.

- Problème: Comment trouver les mobilités de la liaison globale à partir des mobilités des liaisons élémentaires?
- Perspectives: Savoir trouver la liaison globale entre deux classes d'équivalence.

Savoir

Liaisons équivalentes

- Les liaisons équivalentes sont constituées à partir d'un groupe de liaisons élémentaires.
- Elles apparaissent entre deux solides dont les mouvements relatifs sont déterminés par au moins deux liaisons.
- Ainsi, les mobilités de la liaison globale sont déterminées grâce à la combinaison de ces liaisons élémentaires.

Ex: La liaison globale entre une table et le sol constituée de 4 liaisons ponctuelles et une liaison appui plan. Vrai si le nombre de pieds est supérieur ou égal à 3.

Exemple

Méthode d'étude des mécanismes

 L'étude d'un mécanisme ne peut s'effectuer qu'après avoir réussi sa modélisation.

- Afin de le modéliser il faut avoir compris le fonctionnement d'un mécanisme, ce qui n'est pas simple surtout si ce dernier est complexe (beaucoup de pièces...)
- L'utilisation de la méthode suivante permet de simplifier cette étude.

- À partir du dessin d'ensemble ou du système réel, regrouper les pièces liées par des liaisons encastrement (liaisons à mobilité nulle).
- En examinant les surfaces de contact, et en enlevant les éléments intermédiaires comme les roulements, les ressorts,... définir les liaisons entre ces solides, deux à deux, en déterminant les mouvements relatifs possibles.
- Numéroter les solides en attribuant conventionnellement le numéro 0 au bâti ou au solide de référence.

Remarque

Modélisation d'un mécanisme, méthode d'analyse

 Un mécanisme étant un ensemble de solides et de liaisons organisé, il est indispensable d'en faire une analyse et une représentation logique, conforme à sa représentation.

- Outils appropriés disponibles par type d'étude:
 - Étude géométrique et/ou cinématique: Le graphe de structure (ou des liaisons) et le schéma cinématique
 - Les solides sont les classes d'équivalence (pièces liées par encastrement)
 - Les liaisons représentées sont des liaisons globales (1 liaison entre 2 solides)
 - Étude des efforts dans les liaisons, en statique ou dynamique: Le graphe des contacts et le schéma d'architecture
 - Les solides sont les classes d'équivalence,
 - Les liaisons représentées sont des liaisons élémentaires (1 ou plusieurs liaison(s) entre 2 solides)

Graphes associés au mécanisme

Le **graphe associé au mécanisme** est construit en associant à chacun des solides un sommet et à chacune des liaisons mécaniques un arc matérialisé par un segment de droite. Les sommets sont numérotés en correspondance avec le schéma cinématique.

Chaîne fermée simple ou cycle

- Un cycle est un chemin du graphe qui part d'un sommet et y revient sans passer plus d'une fois par un sommet
- γ est le nombre de boucles indépendantes d'un graphe

Chaîne ouverte

 Un mécanisme est dit à chaîne ouverte s'il n'existe pas de cycle. En partant du bâti, on va de solide en solide vers un solide terminal.

Chaîne fermée complexe

 Un mécanisme est dit à chaîne fermée complexe, s'il existe des cycles ayant un ou plusieurs arcs communs.

Théorie des graphes

- La théorie des graphes montre que le nombre de cycles indépendants d'une chaîne fermée complexe se calcule par la relation : $\gamma = l - n + 1$,
- Dans laquelle :
 - γ: nombre de cycles indépendants.
 - /: nombre de liaisons.
 - n: nombre de solides (v compris le bâti).
- Le nombre γ permettra de déterminer le degré de mobilité et le degré d'hyperstatisme d'une chaîne complexe fermée.
- Un mécanisme est dit à chaîne fermée complexe, s'il existe des cycles avant un ou plusieurs arcs communs
- L'hyperstatisme apparaît lorsque les pièces subissent plus de contraintes que ce qui est strictement nécessaire pour les maintenir; au moins un degré de mobilité d'une pièce est supprimé plusieurs fois

Renaud Costadoat

Liaison équivalente

La **liaison équivalente** $le_{1/2}$ à l'ensemble des liaisons situées entre S_1 et S_2 est une liaison théorique qui aurait le même comportement, c'est à dire transmission de la même action mécanique et autorisation du même mouvement.

Le torseur d'actions mécaniques de la liaison équivalente est noté à $\left\{T_{e(S_1/S_2)}\right\}$.

Le torseur cinématique de la liaison équivalente est noté $\left\{ V_{e(S_1/S_2)} \right\}$.

Liaisons en parallèle

Des liaisons sont en parallèles si il existe au moins deux liaisons entre deux pièces.

 $\{\mathcal{T}_0\}$ représente le torseur des autres actions mécaniques extérieures s'exerçant sur S_2 .

Le P.F.S. sur S_2 avec les n liaisons en parallèles s'écrit: $\sum_{i=1}^n \left\{ T_{i(S_2 \to S_1)} \right\} + \left\{ T_0 \right\} = \left\{ 0 \right\}$

Le P.F.S. sur S_2 avec la liaison équivalente s'écrit: $\left\{T_{e(S_1/S_2)}\right\}+\left\{T_0\right\}=\left\{0\right\}$

D'où
$$\{T_{e(S_1/S_2)}\} = \sum_{i=1}^{n} \{T_{i(S_2 \to S_1)}\}$$

Si un mouvement élémentaire est empêché par une liaison, il est aussi impossible sur les autres liaisons et par suite sur la liaison équivalente.

D'où:

$$\left\{ \left. V_{e(S_{1}/S_{2})} \right\} = \left\{ \left. V_{1(S_{1}/S_{2})} \right\} = \left\{ \left. V_{2(S_{1}/S_{2})} \right\} = \dots = \left\{ \left. V_{n(S_{1}/S_{2})} \right\} \right\}$$

◆□▶◆□▶◆壹▶ 壹 り

DORAN

Liaisons en parallèle: Exemple de résolution

- 1. Chercher le torseur cinématique de la liaison $\{V_{e(1/0)}\}$.
- 2. Chercher le torseur statique de la liaison $\{T_{e(1/0)}\}$.
- 3. Donner le nom de la liaison équivalente.

Liaisons en parallèle: Hyperstatisme et mobilités

Le nombre total d'inconnues statiques dans les n liaisons en parallèle est:

$$N_S = \sum_{i=1}^n n_{si}$$

r est le nombre d'équations scalaires indépendantes obtenues par le P.F.S. ($r_s \le 6$).

Le **degré d'hyperstatisme** h de la liaison équivalente aux n liaisons en parallèle est égal au nombre total N_S d'inconnues statiques moins le nombre r_S de relations indépendantes entre ces inconnues: $h = N_S - r_S$

Le nombre d'équations indépendantes s'écrit alors $r_S = 6(p-1) - m$.

Avec:

- p: nombre de pièces incluant le bâti,
- m: nombre total de mobilité dans le système.

Liaisons en parallèle: Hyperstatisme et mobilités

Le calcul peut être réalisé avec une étude cinématique.

Ainsi, le nombre total d'inconnues cinématiques dans les *n* liaisons en parallèle est:

$$I_C = \sum_{i=1}^n n_{ci}$$

Avec $m = I_C - Rg(E)$, Rg(E) étant le rang du système et donc le nombre d'équations indépendantes.

Le degré d'hyperstatisme se calcule ainsi:

- h = E Rg(E) ou,
- $h = m I_C + E$.

Liaisons en parallèle: Exemple de résolution

- Déterminer le torseur d'actions mécaniques de la liaison. En déduire le nom de cette liaison.
- 2. Déterminer le degré hyperstatisme et de mobilité de la liaison.
- Localiser les inconnues hyperstatiques. En déduire les contraintes géométriques de position relative des deux liaisons.

Liaisons en série

n liaisons sont en série entre deux solides S_0 et S_n , si elles sont disposées à la suite l'une de l'autre par l'intermédiaire de (n-1) solides. Le solide S_i (i variant de 1 à n-1) n'est soumis qu'à l'action mécanique des solides S_{i-1} et S_{i+1} .

 \Leftrightarrow

Il s'agit d'une chaîne ouverte.

Liaisons en série

Des liaisons sont en série s'il n'existe qu'un seul chemin entre deux pièces.

 $\{T_0\}$: torseur des autres **actions mécaniques extérieures** s'exerçant sur S_2 .

 $\{T_i\}$: torseur d'actions mécaniques de la liaison I_i (action mécanique de S_{i-1} sur S_i).

- PFS à S_0 : $\{T_0\} \{T_1\} = \{0\} \rightarrow \{T_0\} = \{T_1\}$
- PFS à S_0 et S_1 : $\{T_0\} \{T_2\} = \{0\} \rightarrow \{T_0\} = \{T_2\}$
- PFS à $S_0,...,S_n$: $\{T_0\} \{T_n\} = \{0\} \rightarrow \{T_0\} = \{T_n\}$ soit, $\{T_{e(0,n)}\} = \{T_1\} = \{T_2\} = ... = \{T_n\}$

 $\{V_{i(S_i \to S_{i-1})}\}$: torseur cinématique de la liaison I_i de S_i par rapport à S_{i-1} .

 $\left\{ \mathit{V}_{e(S_n/S_0)} \right\}$: torseur cinématique de la liaison équivalente $\mathit{le}_{0/n}$ de S_n par rapport à S_0

En utilisant la composition des torseurs cinématiques, on écrit :

$$\left\{ \left. V_{S_{n}/S_{0}} \right\} = \left\{ \left. V_{S_{n}/S_{n-1}} \right\} + \left\{ \left. V_{S_{n-1}/S_{n-2}} \right\} + \ldots + \left\{ \left. V_{S_{1}/S_{0}} \right\} \right\}, \text{ soit } \left\{ \left. V_{e(S_{n}/S_{0})} \right\} = \sum_{i=1}^{n} \left\{ \left. V_{i} \right\} \right\} + \sum_{i=1}^{n} \left\{ \left. V_{i} \right\} \right$$

DORIAN

Liaisons en série: Hyperstatisme et mobilité

Hyperstatisme

La relation précédente permet de calculer toutes les composantes des torseurs d'actions mécaniques $\{T_i\}$ en fonction de celle de $\{T_{e(0/n)}\}$

D'où la liaison équivalente $le_{0/n}$ est toujours isostatique : h = 0.

Mobilité

Le **degré de mobilité** m_u de la liaison équivalente est égal au nombre d'inconnues cinématiques indépendantes du torseur cinématique de la liaison équivalente.

 m_u est aussi le degré de mobilité utile de la chaîne continue ouverte, soit $N_C = \sum_{i=1}^{n} n_{Ci}$

Aucun mouvement élémentaire de la liaison l_i est interdit par une autre liaison entre S_0 et S_n , donc le degré de mobilité m de la chaîne continue ouverte est égal à N_C .

On pose : $m = m_u + m_i$, m_i est le degré de mobilité interne de la chaîne continue ouverte.

Exemple : rotation sur lui même de l'axe d'un vérin.

Liaisons en série: Exemple

- 1. Déterminer le torseur statique de la liaison entre S_0 et S_2 .
- 2. Déterminer le torseur cinématique de la liaison entre S_0 et S_2 . Quel est le nom de cette liaison équivalente.
- 3. Déterminer m_i .

Théorie des mécanismes

- Vous devez être capables de modéliser et de résoudre n'importe quel problème de cinématique,
- La modélisation des problèmes hyperstatiques doit être effectuée en prenant des précautions.

Objectif

 Déterminer les lois d'entrée/sortie de mécanismes à partir de la fermeture de chaînes mécaniques.