Istruzioni esame

- Scrivere nome, cognome e matricola su OGNI foglio negli appositi spazi.
- Tutte le risposte vanno riportate sul testo d'esame, eventualmente utilizzando il retro dei fogli se necessario. Non verranno ritirati e corretti eventuali fogli di brutta.
- La prova si considera superata se si ottengono ALMENO 18 punti in totale, di cui ALMENO 10 punti nel primo esercizio (quesiti a risposta multipla).

\sim			, • 1	
Cognome,	nome	e	matricol	a:
COSHOING	1101110	\sim	III COI	u.

Esercizio 1

Rispondere alle seguenti domande a risposta multipla, segnando TUTTE le risposte corrette (per ogni domanda ci può essere una, nessuna o diverse risposte corrette).

(a) Sia S una relazione binaria su un insieme non vuoto B.

2 punti

2 punti

- \blacksquare Se S è una relazione di equivalenza, allora è anche un preordine.
- \square Se S è simmetrica, allora non può essere anche antisimmetrica.
- \blacksquare Se S è irriflessiva, allora non può essere anche riflessiva.
- \blacksquare Se S è una relazione d'equivalenza e P è un'altra relazione binaria su B tale che $S\subseteq P,$ allora P è riflessiva.
- (b) Quali delle seguenti sono formule che formalizzano correttamente "x è un numero primo" utilizzando il linguaggio \cdot , 1 e relativamente alla struttura $\langle \mathbb{N}, \cdot, 1 \rangle$
 - $\blacksquare \neg (x=1) \land \forall y (\neg \exists z (\neg (z=x) \land \neg (z=1) \land y \cdot z = x))$

 - $\Box \exists y \exists z (x = y \cdot z \to y = x \lor z = x)$
 - $\Box \neg (x=1) \rightarrow \forall y \forall z (y \cdot z = x \rightarrow y = 1 \lor z = 1)$
- (c) Consideriamo le funzioni $g\colon \mathbb{Q}^2\to \mathbb{Q},\quad (y,z)\mapsto 3y^2+z$ 2 punti e $h\colon \mathbb{Q}\to \mathbb{Q}^2,\quad y\mapsto (y,3y).$ Allora
 - \square h è iniettiva ed è l'inversa di q.
 - \Box la funzione g è iniettiva.
 - \blacksquare Esistono $y, z \in \mathbb{Q}$ tali che g(y, z) = 0.
 - $\blacksquare g \circ h(y) = 3y(y+1)$ per ogni $y \in \mathbb{Q}$.
- (d) Sia $L = \{Q, g, h, b\}$ un linguaggio del prim'ordine con Q simbolo di relazione 2 punti binario, g simbolo di funzione unario, h simbolo di funzione binario e b simbolo di costante. Quali dei seguenti sono L-termini?
 - \blacksquare h(h(g(b),g(b)),h(g(b),g(b)))
 - $\Box h(g(g(h(b,b),b)),b)$
 - \blacksquare g(h(h(b,g(b)),h(g(b),b)))
 - $\square Q(b, g(b))$

(e) Siano C e D insiemi tali che $D\subseteq C$. Allora possiamo concludere con certezza che 2 punti \blacksquare se D è più che numerabile allora anche C lo è. \square $C \setminus D \neq C$. \square se C e D sono entrambi infiniti e numerabili allora $C \setminus D = \emptyset$. $\blacksquare (C \cap D) \cup (C \setminus D) = C.$ (f) Sia Q la proposizione $\neg (B \land C \land \neg D)$. Allora 2 punti \Box Q è una tautologia. \Box Se *i* è un'interpretazone tale che i(D) = 0 allora necessariamente i(B) = i(C) = 0. \Box Q è insoddisfacibile. \blacksquare Q è conseguenza logica di $B \to D$. (g) Siano $\varphi(y)$ e $\psi(y,z)$ formule del prim'ordine e σ un enunciato. 2 punti $\Box \ \forall y \neg \varphi(y) \models \exists y \, \varphi(y)$ $\blacksquare \exists y \forall z \, \psi(z, y) \models \forall z \exists y \, \psi(z, y)$

■ Se \mathcal{C} è una struttura tale che $\mathcal{C} \models \exists z \neg \varphi(z)$, allora $\mathcal{C} \models \exists z (\neg \sigma \lor \neg \varphi(z))$. ■ Se \mathcal{B} è una struttura tale che $\mathcal{B} \models \forall y \neg \varphi(y)$, allora $\mathcal{B} \models \forall y (\varphi(y) \rightarrow \sigma)$.

Punteggio totale primo esercizio: 14 punti

Esercizio 2 9 punti

Sia $L = \{Q, g, b\}$ con Q simbolo di relazione binaria, g simbolo di funzione binaria e b simbolo di costante. Consideriamo la L-struttura $\mathcal{B} = \langle \mathbb{Z}, >, \cdot, 3 \rangle$, dove \cdot è l'usuale funzione moltiplicazione.

Sia φ la formula

$$(Q(y,z) \wedge \exists w (g(b,w) = z))$$

 $e \psi$ la formula

$$(Q(y,z) \to \exists w (g(b,w) = z))$$

- 1. Determinare se:
 - $\mathcal{B} \models \varphi[y/-1000, z/-2000],$
 - $\mathcal{B} \models \varphi[y/-1000, z/-3000],$
 - $\mathcal{B} \models \exists z \, \varphi[y/-1000, z/-999].$
- 2. Determinare se $\mathcal{B} \models \forall y \exists z \varphi[y/0, z/0]$.
- 3. Determinare se:
 - $\mathcal{B} \models \psi[y/-1000, z/-2000],$
 - $\mathcal{B} \models \psi[y/-1000, z/-3000],$
 - $\mathcal{B} \models \forall z \psi[y/-1000, z/-998].$
- 4. Determinare se $\mathcal{B} \models \exists y \forall z \psi[y/-1, z/3]$.
- 5. Determinare se $\forall y \exists z \varphi \models \exists y \forall z \psi$.

Giustificare le proprie risposte.

Soluzione:

- 1. La formula φ è verificata in $\mathcal B$ con l'assegnamento y/n e z/m se e solo se n>m e m è multiplo di 3. Quindi
 - $\mathcal{B} \not\models \varphi[y/-1000, z/-2000]$ perché -2000 non è multiplo di 3
 - $\mathcal{B} \models \varphi[y/-1000, z/-3000]$ perché -3000 è multiplo di 3 e -1000 > -3000
 - $\mathcal{B} \models \exists z \, \phi[y/-1000, z/-999]$, come mostrato dall'assegnazione di z a -3000 nel punto precedente.
- 2. L'enunciato $\forall y \exists z \varphi$ interpretato in \mathcal{B} afferma che

Per ogni numero intero y esiste un numero intero z minore di y che è un multiplo di 3,

ovvero

Vi sono numeri interi arbitrariamente piccoli che sono multipli di 3.

Quindi si ha che $\mathcal{B} \models \forall y \exists z \varphi$.

3. La formula ψ è verificata in $\mathcal B$ con l'assegnamento y/n e z/m se e solo se si verifica che

Se n > m, allora m è multiplo di 3.

Quindi

- $\mathcal{B} \not\models \psi[y/-1000, z/-2000]$ perché -1000 > -2000 ma -2000 non è multiplo di 3, e quindi l'antecedente dell'implicazione in ψ è vero mentre il conseguente è falso;
- $\mathcal{B} \models \psi[y/-1000, z/-3000]$ perché -3000 è multiplo di 3 e quindi con questi assegnamenti il conseguente dell'implicazione in ψ è verificato, rendendo quindi vera ψ stessa. (Si può notare che anche l'antecedente dell'implicazione in ψ è vero con tale assegnamento, anche se questo è di fatto irrilevante nel determinare se $\psi[y/-1000, z/-3000]$ sia vera in \mathcal{B} .)
- $\mathcal{B} \not\models \forall z \psi[y/-1000, z/-998]$, come mostrato dall'assegnazione di z a -2000 nel punto precedente.
- 4. L'enunciato $\exists y \forall z \psi$ interpretato in \mathcal{B} afferma che

Esiste un numero intero y tale che tutti i numeri interi minori di esso sono multipli di 3,

ovvero

Tutti i numeri interi sufficientemente piccoli sono multipli di 3.

Quindi si ha che $\mathcal{B} \not\models \exists y \forall z \psi$.

5. Poiché $\mathcal{B} \models \forall y \exists z \varphi \text{ ma } \mathcal{B} \not\models \exists y \forall z \psi$, per definizione di conseguenza logica si ha che $\forall y \exists z \varphi \not\models \exists y \forall z \psi$.

Esercizio 3 9 punti

Sia B un insieme non vuoto e $g \colon B \to B$ una funzione. Formalizzare relativamente alla struttura $\langle B,g \rangle$ mediante il linguaggio $L=\{g\}$ con un simbolo di funzione unario le seguenti affermazioni:

- 1. g è iniettiva
- 2. se g è iniettiva, allora g è biettiva
- 3. $g \circ g$ è una funzione costante (ovvero il suo range contiene un solo punto)
- 4. ogni elemento ha almeno due preimmagini distinte.

Soluzione:

- 1. $g \in \text{iniettiva: } \forall x \forall y (g(x) = g(y) \rightarrow x = y).$
- 2. se g è iniettiva, allora g è biettiva:

$$\forall x \forall y (g(x) = g(y) \to x = y) \to [\forall y \exists x (g(x) = y) \land \forall x \forall y (g(x) = g(y) \to x = y)].$$

- 3. $g \circ g$ è una funzione costante: $\exists y \forall x (g(g(x)) = y)$.
- 4. ogni elemento ha almeno due preimmagini distinte:

$$\forall y \exists x_1 \exists x_2 (\neg(x_1 = x_2) \land g(x_1) = y \land g(x_2) = y).$$