Cálculo de Probabilidades II

Vectores Aleatorios

Inicialmente nos concentramos en la definición para un vector aleatorio en \mathbb{R}^2 , con cada variable aleatoria contínua.

DFN 1 (Función de distribución conjunta). *Definimos* la función de distribución conjunta (f.d.c) del vector aleatorio $X = (X_1, X_2)$ como:

$$F_{X_1,X_2} := F_{\mathbf{X}}(x_1, x_2) = \mathbb{P}(X_1 \le x_1, X_2 \le x_2)$$

= $\mathbb{P}(\{\omega \mid X_1(\omega) \le x_1 \cap X_2(\omega) \le x_2\})$

Teorema 1 (Propiedades de $F_{\boldsymbol{X}}$): La f.d.c cumple con las siguientes:

- 1. $\bullet \lim_{x_1 \to -\infty} F_{X_1, X_2}(x_1, x_2) = 0$
 - $\lim_{x_2 \to -\infty} F_{X_1, X_2}(x_1, x_2) = 0$
 - $\lim_{x_1, x_2 \to \infty} F_{X_1, X_2}(x_1, x_2) = 1$
- 2. Análogo a la monotonicidad no-decreciente. Si $a_1 \le x_1, a_2 \le x_2$ entonces,

$$\mathbb{P}(a_1 \le X_1 \le b_1, a_2 \le X_2 \le b_2) \ge 0.$$

3. Es contínua por la derecha en cada argumento.

DFN 2 (Función de distribución marginal). Sea (X_1, X_2) un vec. aleatorio con función de distribución conjunta $F_{X_1, X_2}(x_1, x_2)$. Entonces $F_{X_1}(x_1)$ y $F_{X_2}(x_2)$ son llamadas funciones de distribución marginales para X_1 y X_2 y se obtienen como

$$F_{X_i}(x_i) = \lim_{x_i \to \infty} F_{X_1, X_2}(x_1, x_2)$$

DFN 3 (Función de densidad conjunta). Sea (X_1, X_2) un vec. aleatorio. Una función de densidad conjunta del vector, es una función $f_{X_1,X_2}(x_1,x_2)$ que satisface:

- 1. $f_{X_1,X_2}(x_1,x_2) > 0 \quad \forall (x_1,x_2) \in \mathbb{R}^2$.
- 2. $\iint_{\mathbb{R}^2} f_{X_1, X_2}(x_1, x_2) \, \mathrm{d}x_1 \, \mathrm{d}x_2 = 1.$
- 3. $F_{X_1,X_2}(x_1,x_2) = \int_{-\infty}^{x_1} \int_{-\infty}^{x_2} f_{X_1,X_2}(u_1,u_2) du_1 du_2$

En general se pueda calcular $\mathbb{P}(A)$ con $A\subseteq\mathbb{R}^2$ como $\iint_A f(x_1,x_2)\,\mathrm{d}x_1\,\mathrm{d}x_2$.

Vectores Aleatorios

Teorema 2: Sea (X_1, X_2) un vector aleatorio con función de densidad conjunta $f(x_1, x_2)$. Entonces, las funciones de densidad marginales se pueden obtener como

$$f_{X_1}(x_1) = \int_{\mathbb{R}} f_{X_1, X_2}(x_1, x_2) \, \mathrm{d}x_2.$$

Distribuciones condicionales

DFN 4 (Función de densidad condicional). Sea (X_1, X_2) un vec. aleatorio con funciones de distrigución acumulada y conjuntas $f_{X_1,X_2}, f_{X_1}, f_{X_2}$. La función de densidad condicional de X_1 con respecto a X_2 se define como:

$$f_{X_1|X_2} := \frac{f_{X_1,X_2}(x_1,x_2)}{f_{X_2}(x_2)}$$

dado $f_{X_2}(x_2) > 0$.

Las funciones de distribución condicionales son funciones propias. Es decir, cumplen con las propiedades de cualquier otra función de densidad.

Obs: Una función de densidad condicional $f_{X_1|X_2}$ <u>es univariada</u>, y su argumento es x_1 . Al calcularse se debe cancelar el soporte de X_2 .

DFN 5 (Función de distribución condicional). Se define la función de distribución acumulada de X_1 dado X_2 como:

$$F_{X_1|X_2} := \int_{-\infty}^{x_1} f_{X_1|X_2}(u_1|x_2) \, \mathrm{d}u_1$$

DFN 6 (Independencia estocástica). Sea (X_1, X_2) un vec. aleatorio. Se dice que X_1 y X_2 son independientes $(X_1 \perp X_2)$ si y solo se se satisface alguno de los siguientes:

- a) $f_{X_1|X_2}(x_1|x_2) = f_{X_1}(x_1)$, $si f_{X_2}(x_2) > 0$,
- b) $f_{X_2|X_2}(x_2|x_1) = f_{X_2}(x_2)$, $si f_{X_1}(x_1) > 0$,
- c) $f_{X_1,X_2}(x_1,x_2) = f_{X_1}(x_1) \cdot f_{X_2}(x_2)$.

Obs: $A \cap B \implies A \not\perp B$.

Distribuciones condicionales

Teorema 3: Sea (X_1,X_2) un vec. aleatorio con $f_{X_1|X_2}$ y $f_{X_2|X_1}$. Entonces, la función de densidad marginal de X_1 es

$$f_{X_1}(x_1) = \int_{\mathbb{R}} f_{X_1|X_2}(x_1|x_2) \cdot f_{X_2}(x_2) \, \mathrm{d}x_2 \qquad (\triangle)$$

у

$$f_{X_1|X_2}(x_1|x_2) = \frac{f_{X_2|X_1}(x_2|x_1) \cdot f_{X_1}(x_1)}{f_{X_2}(x_2)} \tag{\Box}$$

Los resultados \triangle y \square pueden ser pensados como generalizaciones del Teorema de Probabilidad Total y el Teorema de Bayes, respectivamente.

Teorema 4: Sea (X,Y) un vec. aleatorio. Entonces, $X \perp Y \iff f_{X_1,X_2}(x_1,X_2) = g(x_1)\mathbb{1}_A(x) \cdot h(x_2)\mathbb{1}_B(y)$

Obs: El teorema anterior nos permite concluír que dos v.a's son dependientes si su función de densidad está escita en términos de una indicadora que no se puede "factorizar" en expresiones que dependan únicamente de x y de y.

Teorema 5: Si X_1, \ldots, X_n son v.a's independientes \Longrightarrow $g(X_1), \ldots, g(X_n)$ son también v.a's independientes.

Momentos multivariados

DFN 7 (Esperanza de una función). Sea $g: \mathbb{R}^k \to \mathbb{R}$ una función. Sea X un vec. aleatorio k-dimensional con fn. de densidad conjunta $f_X(x)$. Entonces,

$$\mathbb{E}\left[g(\boldsymbol{X})\right] \coloneqq \int \cdots \int_{\mathbb{R}^k} g(\boldsymbol{x}) f_{\boldsymbol{X}}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}$$

Teorema 6 (Linealidad de \mathbb{E}): Sea X un vec. a. tal que $\mu_i = \mathbb{E}[X_i]$ existe y es finita $\forall i = 1, \dots, k$. Entonces

$$\mathbb{E}\left[\sum_{i=1}^{k} \alpha_i X_i\right] = \sum_{i=1}^{k} \alpha_i \mathbb{E}\left[X_i\right]$$

DFN 8 (Covarianza). Se define la covarianza entre X y Y como:

$$Cov(X, Y) := \mathbb{E}\left[\left\{X - \mathbb{E}(X)\right\} \cdot \left\{Y - \mathbb{E}(Y)\right\}\right]$$

Momentos multivariados

Notación: $Cov(X, Y) = \sigma_{X,Y}$

Obs: Independencia estocástica \Longrightarrow $\mathrm{Cov}(X,Y)=0$. Pero cuidado, $\mathrm{Cov}(X,Y)$ no necesariamente implica $X\perp Y$.

Teorema 7: $Cov(X, Y) = \mathbb{E}[X \cdot Y] = \mu_X \mu_Y$.

Teorema 8 (Propiedades de Varianza & Covarianza): Sea X un vec. a. k-dimensional, α_i, β_i constantes, y t.q $\mathbb{E}[X_i]$ es finita.

a)
$$\operatorname{Var}\left[\sum_{i=1}^{k} \alpha_{i} X_{i}\right] = \sum_{i=1}^{k} \alpha_{i}^{2} \operatorname{Var}(X_{i}) + 2 \sum_{i \leq j} \alpha_{i} \alpha_{j} \operatorname{Cov}(X_{i}, X_{j})$$

b)
$$Cov(\alpha_1 + \alpha_2 X_1, \beta_1 + \beta_2 X_2) = \alpha_2 \beta_2 Cov(X_1, X_2)$$

c)
$$\operatorname{Cov}\left[\sum_{i=1}^{k} \alpha_{i} X_{i}, \sum_{j=1}^{k} \beta_{i} X_{j}\right]$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{k} \alpha_{i} \beta_{i} \operatorname{Cov}(X_{i}, X_{j})$$

DFN 9 (Coeficiente de correlación). Sea $X = (X_1, X_2)$ un vec. a. Entonces el coeficiente de correlación entre X_1 y X_2 se define como:

$$\rho_{X_1, X_2} \coloneqq \frac{\operatorname{Cov}(X_1, X_2)}{\sqrt{\operatorname{Var}(X_1)\operatorname{Var}(X_2)}} = \frac{\sigma_{X_1, X_2}}{\sigma_{X_1} \cdot \sigma_{X_2}}$$

Teorema 9 (Propiedades de $\rho_{X,Y}$): El coef. de correlación entre X,Y cumple:

- 1. $|\rho_{X,Y}| \leq 1$
- 2. $|\rho_{X,Y}|=1 \iff \exists \alpha,\beta \in \mathbb{R} \text{ tal que } \mathbb{P}(Y=\alpha+\beta X)=1.$

Teorema 10 (Desigualdad de Cauchy-Schwarz): Sean X, Y v.a's con segundos momentos finitos. Entonces

$$\left|\mathbb{E}\left[X\cdot Y\right]\right|^{2}\leq\mathbb{E}\left(X^{2}\right)\cdot\mathbb{E}\left(Y^{2}\right)$$

con igualdad si y solo si $\mathbb{P}(Y = a + bX) = 1$

Esperanza y Varianza de vectores aleatorios

DFN 10 (Momentos conjuntos). Sea $X = (X_1, \ldots, X_k)$ un vec. aleatorio. Sean $g_1(X) = X_1^{s_1} X_2^{s_2} \cdots X_k^{s_k}$ y $g_2(X) = (X_1 - \mu_1)^{s_1} \cdots (X_k - \mu_k)^{s_k}$. Entonces

$$\mu_{s_1,...,s_k}^{'} \coloneqq \mathbb{E}\left[g_1(\boldsymbol{X})\right] = \mathbb{E}\left[X_1^{s_1} X_2^{s_2} \cdots X_k^{s_k}\right]$$

es el momento de orden $r = \sum_{i=1}^{k} s_i$ no-central, y

$$\mu_{s_1,\ldots,s_k} \coloneqq \mathbb{E}\left[g_2(\boldsymbol{X})\right] = \mathbb{E}\left[\left(X_1 - \mu_1\right)^{s_1} \cdots \left(X_k - \mu_k\right)^{s_k}\right]$$

es el momento de orden r central.

DFN 11 (Esperanza de un vector aleatorio). *Sea* $X^T = (X_1, ..., X_k)$ *un vec. a. Definimos*

$$\mathbb{E}[oldsymbol{X}]\coloneqq\mathbb{E}\left(egin{array}{c} X_1 \ dots \ X_n \end{array}
ight)=\left[egin{array}{c} \mathbb{E}(X_1) \ dots \ \mathbb{E}(X_k) \end{array}
ight]=\left[egin{array}{c} \mu_1 \ dots \ \mu_k \end{array}
ight]=oldsymbol{\mu}$$

DFN 12 (Varianza de un vector aleatorio).

$$\operatorname{Var}(\boldsymbol{X}) = \mathbb{E}\left[(\boldsymbol{X} - \boldsymbol{\mu}) (\boldsymbol{X} - \boldsymbol{\mu})^T \right] = \Sigma \in \mathbb{R}^{k \times k}$$

$$= \begin{bmatrix} \sigma_1^2 & \sigma_{1,2} & \cdots & \sigma_{i,k} \\ \sigma_{2,1} & \sigma_2^2 & \cdots & \sigma_{2,k} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{k,1} & \sigma_{k,2} & \cdots & \sigma_k^2 \end{bmatrix}$$

A veces se define la varianza total como

$$\operatorname{tr}(\Sigma) = \sum_{i=1}^{k} \sigma_i^2$$

Si $\mathbf{Y}^T = (Y_1, \dots, Y_k)$ es otro vec. a.

$$\operatorname{Cov}(\boldsymbol{X}, \boldsymbol{Y}) = \mathbb{E}\left\{ (\boldsymbol{X} - \boldsymbol{\mu}_{\boldsymbol{X}}) (\boldsymbol{Y} - \boldsymbol{\mu}_{\boldsymbol{Y}}) \right\}$$

DFN 13 (Matriz de correlación). Sea R = Corr(X) dada como

$$R = (\rho_{ij}) \quad i, j = 1, \dots, k$$

 $Si V_{\mathbf{X}} = \operatorname{diag}(\sigma_1^2, \dots, \sigma_k^2)$ entonces

$$R = V_{\boldsymbol{X}}^{-1/2} \, \Sigma \, V_{\boldsymbol{X}}^{1/2}$$

Momentos condicionales

DFN 14 (Esperanza condicional). Sea $X^T = (X_1, X_2)$ un vec. a. $y g(\cdot, \cdot)$ una función con imágen subconjunto de \mathbb{R} . La esperanza condicional de $g(X_1, X_2)$ dado $X_2 = x_2$ se define como

$$\mathbb{E}\left[g(X_1, X_2) | X_2 = x_2\right] = \int_{\mathbb{R}} g(X_1, X_2) \cdot f_{X_1 | X_2}(x_1 | x_2) \, \mathrm{d}x_1$$

Obs: Es muy importante notar que $\mathbb{E}[X_1|X_2]$ es función de x_2 .

Teorema 11 (Esperanza y Varianza iterada): Sea (X_1, X_2) un vec. a. Entonces

- a) $\mathbb{E}[X_1] = \mathbb{E}_{X_2} \mathbb{E}[X_1 | X_2]$
- b) $Var(X_1) = \mathbb{E}_{X_2} Var(X_1|X_2) + Var_{X_2} \mathbb{E}(X_1|X_2)$.

Distribuciones multivariadas importantes

Distribución multinomial

Generalización de la distribución binomial para k clases. La distribución binomial es una multinomial con k=2

Suponga que el resultado de un experimento se puede clasificar en k clases c_1, c_2, \ldots, c_k con probabilidades p_1, \ldots, p_k tal que $\sum_{i=1}^k p_i = 1$. Definimos $X_i =$ número de los n ensayos cuyo resultado está en c_i . Entonces

$$f(x_1, \dots, x_k) = \binom{n}{x_1, \dots, x_k} \prod_{i=1}^n p_i^{x_i} \mathbb{1}_{\left\{\sum_{i=1}^k x_i = n\right\}}(\boldsymbol{x})$$

donde

$$\binom{n}{x_1, \dots, x_k} \coloneqq \frac{n!}{x_1! \cdots x_k!}$$

Denotamos $\boldsymbol{X}^T \sim \operatorname{Mult}(n, p_1, \dots, p_k)$

Teorema 12 (Propiedades de la multinomial): Tomando $\mathbf{X}^T = (X_1, X_2, X_3) \sim \text{Mult}(n, p_1, p_2, p_3)$

- a) $M_{\mathbf{X}}(\mathbf{t}) = (p_1 e^{t_1} + p_2 e^{t_2} + p_3)^n$
- b) $X_i \sim \text{Bin}(n, p_i)$
- c) $X_1|X_2 \sim \text{Bin}\left(n X_2, \frac{p_1}{1 p_2}\right)$
- d) $Cov(X_i, X_i) = -n p_i p_i$

Distribuciones multivariadas importantes

Distribución Normal multivariada

Comenzando con el caso bivariado, $\boldsymbol{X}^T=(X_1,X_2)$ tiene una distribución normal bivariada con media $\boldsymbol{\mu}^T=(\mu_1,\mu_2)$, varianzas σ_1^2,σ_2^2 y correlación ρ si su función de densidad es

$$f(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)}\right)$$
$$\left[\left(\frac{x_1 - \mu_1}{\sigma_1}\right)^2 + \left(\frac{x_2 - \mu_2}{\sigma_2}\right)^2 - 2\rho\frac{(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1\sigma_2}\right]\right)$$

con
$$(x_1, x_2) \in \mathbb{R}^2$$
, $(\mu_1, \mu_2) \in \mathbb{R}^2$, σ_1^2 , $\sigma_2^2 >$, $\rho \in [-1, 1]$.

Teorema 13 (Propiedades de la normal multivariada): Tomando el caso bivariado

a)

$$M_{X_1,X_2}(t_1,t_2) = \exp\left(t_1\mu_1 + t_2\mu_2 + \frac{1}{2}\left[t_1^2\sigma_1^2 + 2\rho\sigma_1\sigma_2t_1t_2 + t_2^2\sigma_2^2\right]\right)$$

- b) $X_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$
- c) $X_1 \perp X_2 \iff X_1 \vee X_2$ son no-correlacionadas

d)

$$X_2|X_1 = x_1 \sim \mathcal{N}\left(\mu_2 + \rho \frac{\sigma_1}{\sigma_2}(x_1 - \mu_1), \sigma_2^2(1 - \rho^2)\right)$$

Obs: En cualquier distribución $X_1 \perp X_2 \Longrightarrow \rho_{X_1,X_2} = 0$, pero X_1,X_2 no-correlacionados implica independencia solo se cumple en el caso de la normal.

Ahora, en el caso multivariado:

$$f_{oldsymbol{X}}(oldsymbol{x}) = rac{\exp\left[-rac{1}{2}(oldsymbol{X} - oldsymbol{\mu})^T \Sigma^{-1} (oldsymbol{X} - oldsymbol{\mu})
ight]}{\sqrt{(2\pi)^k \left|\Sigma
ight|}}$$

Denotada $X \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$ y cumple:

1.
$$M_{\boldsymbol{X}}(\boldsymbol{t}) = \exp\left(\boldsymbol{t}^T\boldsymbol{\mu} + \frac{1}{2}\boldsymbol{t}^T\sigma\boldsymbol{t}\right)$$

Función característica de un vector aleatorio

Teorema 14 (Unicidad de la función generadora de momentos): Sean X, Y dos v.a's con fn. de densidad $f_X(x)$ y $f_Y(y)$. Sup. que $M_X(t)$ y $M_Y(t)$ existen y son iguales $\forall t \in (-h,h), h > 0$. Entonces, se cumple que $f_X(x) = f_Y(y)$.

Corolario 14.1: Para cada función generadora de momentos, existe una única función de densidad de probabilidades asociada.

A partir de ahora adoptamos la convención de abreviar función generadora de momentos como f.g.m.

DFN 15 (Generadora de momentos multivariada). *Sea* $X^T = (X_1, \dots, X_n)$ *un vec. aleatorio. Su f.g.m es*

$$M_{\mathbf{X}}(\mathbf{t}) = \mathbb{E}\left[e^{\mathbf{t}^T\mathbf{X}}\right] = \mathbb{E}\left[\exp(t_1X_1 + \dots + t_kX_k)\right]$$

Teorema 15 (Propiedades de la f.g.m multivariada): Sea $M_{\mathbf{X}}(t)$ la f.g.m asociada a $X^T = (X_1, \dots, X_n)$.

a)
$$\mathbb{E}\left[X_{i}^{r}\right]=rac{\partial^{r}}{\partial t_{i}^{r}}M_{m{X}}(m{0})$$

b)
$$\mathbb{E}\left[X_i^rX_j^s\right] = \frac{\partial^{r+s}}{\partial t_i^r\,\partial t_j^s}M_{\boldsymbol{X}}(\mathbf{0})$$

Teorema 16: Sean $g_1,g_2:\mathbb{R}\to\mathbb{R}$ funciones. Si $X_1\perp X_2 \implies \mathbb{E}\left[g_1(X_1)g_2(X_2)\right]=\mathbb{E}\left[g_1(X_1)\right]\mathbb{E}\left[g_2(X_2)\right]$

Teorema 17: Las variables aleatorias X_1, \ldots, X_n son independientes $\iff M_{\mathbf{X}}(t) = \prod_{i=1}^k M_{X_i}(t_i)$

DFN 16 (Función característica). Sea X una v.a. La función característica $\varphi_X(t)$ para x es una función compleja de t dada como:

$$\varphi_X(t) \coloneqq \mathbb{E}\left[e^{itX}\right], \quad \forall t \in \mathbb{R}$$

Teorema 18 (Propiedades de $\varphi_X(t)$): La función característica de X cumple:

- a) $\varphi_X(t)$ siempre existe $\forall t \in \mathbb{R}$
- b) $\frac{\partial^r}{\partial t^r} \varphi_X(0) = i^r \mathbb{E}[X^r]$
- c) $\varphi_X(t)$ es uniformemente contínua
- d) Si $\varphi_X(t) = \varphi_Y(t) \implies f_X(x) = f_Y(y)$

Función característica

DFN 17 (Fórmula de inversión). Sea X una v.a. con función característica $\varphi_X(t)$. Entonces, la función de densidad está dada como:

$$f_X(x) = \begin{cases} \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-itx} \varphi_X(t) \, \mathrm{d}t & \text{si } X \text{ es discreta} \\ \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \varphi_X(t) \, \mathrm{d}t & \text{si } X \text{ contínua} \end{cases}$$

DFN 18 (Función característica multivariada). *Sea* $X^T = (X_1, ..., X_k)$ un vec. a. Su función característica multivaluada está dada como:

$$\varphi_{\boldsymbol{X}}(\boldsymbol{t}) = \mathbb{E}\left[e^{i\boldsymbol{t}^T\boldsymbol{X}}\right] \quad \forall t \in \mathbb{R}$$

y cumple:

- $\frac{\partial^r}{\partial t_1^{s_1} \cdots \partial t_k^{s_k}} \varphi_{\boldsymbol{X}}(\boldsymbol{0}) = i^r \cdot \mathbb{E}\left[X_1^{s_1} \cdots X_k^{s_k}\right] con \ r = \sum s_i$
- $(X_1, ..., X_k)$ es un vec. a. independiente si y solo si $\varphi_X(t) = \prod_{i=1}^k \varphi_{X_i}(t_i)$.

Distribuciones mezcla

DFN 19 (Distribución mezcla). Sea $f_i(x)$ para $i=1,\ldots,n$ un conjunto de funciones de densidad univariadas. Sea p_i con $i=1,\ldots,n$ números no-negativos $t.q\sum_i p_i=1$. Entonces

$$f_X(x) \coloneqq \sum_{i=1}^n p_i f_i(x)$$

es otra función de densidad llamada distribución mezcla.

Una distribución mezcla satisface las propiedads básicas de cualquier otra distribución.

Transformaciones de vectores aleatorios

Sean X_1, \ldots, X_n v.a's y sea $g: \mathbb{R}^n \to \mathbb{R}^m$ una función medible. Queremos encontrar la distribución de Y = g(X). Para hacerlo, hay 3 técnicas:

- Técnica de las funciones característica y generadora de momentos
- 2. Técnica de la función de distribución
- 3. Técnica de cambio de variable

DFN 20 (Distribución χ^2). Si $X \sim \operatorname{Ga}(k/2, k/2)$ con $k \in \mathbb{N}$ entonces $X \sim \chi^2_{(k)}$ con k grados de libertad. Adicionalmente si $X \sim \chi^2_{(1)} \implies Y = \sum_{j=1}^n X_j \sim \chi^2_{(n)}$.

Teorema 19 (Transformación distribución o transformación integral de probabilidad): Si X es una v.a contínua con fn. de distribución $F_X(x)$. Entonces la transformación $Y = F_X(X)$ es una v.a unif(0,1). De igual manera, si $Y = \text{unif}(0,1) \implies X = F_X^{-1}(Y)$ es una v.a con función de distribución F_X .

Teorema 20 (Distribución de suma y resta de v.a's): Sea (X_1, X_2) un vec. a. con función de densidad conjunta $f_{X_1, X_2}(x_1, x_2)$. Sean $Z = X_1 + X_2$, $W = X_1 - X_2$, entonces:

$$f_Z(z) = \int_{-\infty}^{\infty} f_{X_1, X_2}(x_1, z - x_1) \, \mathrm{d}x_1$$

$$= \int_{\infty}^{\infty} f_{X_1, X_2}(z - x_1, x_2) \, \mathrm{d}x_2$$

$$f_W(w) = \int_{\infty}^{\infty} f_{X_1, X_2}(x_1, x_1 - w) \, \mathrm{d}x_1$$

$$= \int_{\infty}^{\infty} f_{X_1, X_2}(x + x_2, x_2) \, \mathrm{d}x_2$$

Teorema 21 (Distribución del producto y cociente de v.a´s): Sea (X_1,X_2) un v.a contínuo con densidad $f_{X_1,X_2}(x_1,x_2)$ y sean $Z=X_1X_2$ y $W=X_1/X_2$, entonces:

$$f_Z(z) = \int_{-\infty}^{\infty} \frac{1}{|x_1|} f_{X_1, X_2} \left(x_1, \frac{z}{x_1} \right) dx_1$$
$$= \int_{-\infty}^{\infty} \frac{1}{|x_2|} f_{X_1, X_2} \left(\frac{z}{x_2}, x_2 \right) dx_2$$

Transformaciones de vectores aleatorios

$$f_W(w) = \int_{-\infty}^{\infty} \frac{1}{|x_2|} f_{X_1, X_2} (w \cdot x_2, x_2) dx_2$$

DFN 21 (Distribución t de Student). Sea X una variable aleatoria. Si la función de distribución de T es:

$$f_T(t) = \frac{\Gamma\left(\frac{k+1}{2}\right)}{\Gamma\left(\frac{k}{2}\right)\sqrt{k\pi}} \left(1 + \frac{t^2}{k}\right)^{-\frac{k+1}{2}} \mathbb{1}_{\mathbb{R}}(t)$$

decimos que $T \sim t_k$. Es decir, se distribuye t con k grados de libertad.

Teorema 22 (Propiedades de la distribución t): Si $T \sim t_k$, se cumple:

1.
$$\mathbb{E}(T) = 0 \text{ si } k > 0$$

2.
$$Var(T) = \frac{k}{k-2} \text{ si } k > 2$$

3. Si
$$k = 1$$
, entonces $T \sim \text{Cauchy}(0, 1)$

DFN 22 (Distribución F). Decimos que $X \sim F_{n,m}$ (X se distribuye F con n, m grados de libertad) si X tiene función de densidad

$$f_X(x) = \frac{\Gamma\left(\frac{n+m}{2}\right)}{\Gamma\left(\frac{n}{2}\right)\Gamma\left(\frac{m}{2}\right)} \left(\frac{n}{m}\right)^{\frac{n}{2}} \frac{x^{\frac{n}{2}-1}}{\left[1 + (n/m)x\right]^{(n+m)/2}}$$

Teorema 23 (Propiedades de la distribución F): Si $X \sim F_{n,m}$, se cumple:

1.
$$\mathbb{E}(X) = \frac{m}{m-2} \text{ si } m > 2.$$

2.
$$Var(X) = \frac{2m^2(n+m-2)}{n(m-2)^2(m-4)}$$
 si $m > 4$.

Teorema 24 (Distribuciones generadas a partir de la Normal): Sean X_1, \ldots, X_n v.a.i.i.d $\mathcal{N}(\mu, \sigma^2)$. Entonces, se cumplen:

1.
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim \mathcal{N}(\mu, \frac{\sigma^2}{2}).$$

2. Las v.a's \overline{X} y $\sum_{i=1}^{n} (X_i - \overline{X})^2$ son independientes.

3.
$$J = \sum_{i=1}^{n} \left(\frac{X_i - \overline{X}}{\sigma}\right)^2 \sim \chi^2_{(n-2)}$$

Estadísticas de orden

Teorema 25: Sean X_1, \ldots, X_n v.a's independientes & idénticamente distribuidas (v.a.i.i.d), con función de distribución acumulada $F_X(x)$ (es igual para cada X_i). Definimos:

$$Y_1 = \min\left\{X_1,\dots,X_n
ight\}$$
 $Y_j = j$ -ésima var. más pequeña $Y_n = \max\left\{X_1,\dots,X_n
ight\}$

La función de distribución de estas variables es:

$$F_{Y_1}(y) = 1 - [1 - F_X(y)]^n$$

$$F_{Y_j}(y) = \sum_{k=1}^n \binom{n}{k} [F_X(y)]^k [1 - F_X(y)]^{n-k}$$

$$F_{Y_n}(y) = [F_X(y)]^n$$

Corolario 25.1: Sean X_1,\ldots,X_n v.a.i.i.d con fn. de distribución $F_X(x)$. La función de densidad $f_{Y_j}(y)$ está dada por:

1.
$$f_{Y_j}(y) = F_{Y_j} - \lim_{h \to 0^+} F_{Y_j}(y-h)$$
 si X_i son discretas.

2.
$$f_{Y_j}(y) = \frac{n! f_X(y) [F_X(y)]^{j-1} [1 - F_X(y)]^{n-j}}{(j-1)!(n-j)!} \operatorname{si} X_i$$

son continuas