Kinematic Equations 2

Objectives:

- Use all four kinematic equations interchangeably.
- For a given problem, write down given information and unknown information, and from this, select and solve the correct kinematic equation.

Name	Equation
Definition of Acceleration	$v_f = v_i + a \cdot \Delta t$
The King of Kinematic Equations	$\Delta x = v_i \cdot \Delta t + \frac{1}{2}a(\Delta t)^2$
The Average Velocity Formula	$\Delta x = \left(\frac{v_i + v_f}{2}\right) \Delta t$
No-Time Equation	$v_f^2 = v_i^2 + 2a \cdot \Delta x$

- In this quiz, problems are only stated in very clear terms, in which each quantity is given simply.

Part C: Introducing the 4 Kinematic Equations

Thus far, we only know how to calculate distance if something moves at a *constant velocity*. However, most interesting things do not move at a constant velocity, they accelerate. There are 4 equations.

Kinematics

The study of how things *move*.

4 kinematic equations

These are four important equations that demonstrate how things *move* in physics.

Condition for the kinematic equations

You can use the kinematic equations when ever anything is moving with a *constant acceleration*. If acceleration is changing, you CANNOT use the kinematic equations.

Name	Equation
Definition of Acceleration	$v_f = v_i + a \cdot \Delta t$
The King of Kinematic Equations	$\Delta x = v_i \cdot \Delta t + \frac{1}{2}a(\Delta t)^2$
The Average Velocity Formula	$\Delta x = \left(\frac{v_i + v_f}{2}\right) \Delta t$
No-Time Equation	$v_f^2 = v_i^2 + 2a \cdot \Delta x$

- C.1 The study of motion is called ______.
- **C.2** Which kinematic equation have we already studied?
- C.3 True or false: If my acceleration is changing, I can use the No-Time Equation.
- **C.4** True or false: If my acceleration is not changing, I can use The Other Average Velocity Formula.

Part D: The King of Kinematic Equations (The Most Commonly Used Equation)

$$\Delta x = v_i \Delta t + \frac{1}{2} a (\Delta t)^2$$

Symbol	Quantity	SI unit
Δx	Displacement	meters
v_i	Initial	m/s
	velocity	
а	Acceleration	m/s^2
Δt	Change in	seconds
	time, time	
	interval	

D.1a I begin at rest at the top of a cliff, and I fall down from the cliff (my acceleration is 9.8 m/s²). How far will I have gone after 3 seconds?

Looking For	Formula	
Already Know		į
Answer as equation with unit:		

D.1b How far will I have gone after five seconds (if it is a very tall cliff)?

Dir iio ii iai iiii iia ie gene i	arter free seconds (if it is a very	tuii viiii).
Looking For	Formula	
Already Know		l
Answer as equation with unit:		

D.2 A squirrel is running with a for 2.5 seconds. How far does it	speed of 4 m/s, and it begins accelerations move in this time?	ating at a rate of 0.3 m/s ²
Looking For	Formula	
Already Know		A
Answer as equation with unit:		
not moving before you drop it. What was the acceleration of the	an old water well is. You drop a rock e rock? [remember from before] water after 4.5 seconds, then how deep	
Looking For	Formula	
Already Know		
Answer as equation with unit:		
•	The driver sees a deer that is 60 metods to stop, what must be the accelerate	_
Looking For	Formula	
Already Know		.3
Answer as equation with unit:	I	

	a rate of 5.0 m/s^2 for a time of 10 . seconds and moves forward
a distance of 600 meters. Wh	Formula
Looking For	roimuia
Already Know	······································
Answer as equation with unit:	
D.6 Someone accelerates at a	a rate of 5.0 m/s^2 for a time of $10.$ seconds and moves a
displacement of 150 meters.	·
Looking For	Formula
Already Know	
Answer as equation with unit:	
Wow, the answer is negative	! What do you think that means?
-	
	uilding is about 20.0 meters tall. If you drop a rock from rest off
	g, how much time will it take it to hit the ground? Formula
Looking For	Formula
Already Know	
Answer as equation with unit:	
1	

Part E: The Average Velocity Equation

This is another equation for average velocity that applies whenever acceleration is constant:

average velocity =
$$\frac{v_i + v_f}{2}$$

- **E.1** What is the average of 5, 12, and 19?
- **E.2** What is the average of 3, 8, 10, and 11?
- **E.3** Explain how to calculate the average in mathematics.
- **E.4** Now, explain the average velocity formula written above. How does make sense?

The formula:

$$\Delta x = \left(\frac{v_i + v_f}{2}\right) \Delta t$$

E.5 Where does this formula come from? (Hint: look at the formulas you used in part B).

Symbol	Quantity	SI Unit
	displacement,	m
Δx	change in position	
v_i	initial velocity	m/s
v_f	final velocity	m/s
Δt	time interval	S

Common usage:

This formula is often used for things that are starting or stopping.

	accelerates to 5 m/s in 0.5 seconds. H	ow far does he move while
accelerating? Looking For	Formula	
Looking For	1 Official	
Already Know		ı
-		
Answer as equation with unit:		
	ne course of 5 seconds, it accelerates t	o 25 m/s. In this time, how
far does it move?		<u> </u>
Looking For	Formula	
Already Know		
Tiready Know		
A		
Answer as equation with unit:		
	highway at 19 m/s. He sees a deer 60	
	p. How far does he move while stopp	ing?
Looking For	Formula	
Already Know		
Alleady Kilow		
Answer as equation with unit:		

Does he hit the deer?

E.9 A car decelerates from 25 time?	m/s to 15 m/s in 40 seconds. How far	does it travel during this
Looking For	Formula	
Already Know		.i
Answer as equation with unit:		
	time of 20. seconds and moves a dis What was their initial velocity?	placement of 300. meters.
Looking For	Formula	
Already Know		-1
Answer as equation with unit:		
end up traveling at 5 m/s to t	m/s to the right. They move at a co he left. You do not know their time of hink about the information you DO k	or acceleration. What is
Looking For	Formula	
Already Know		at
Answer as equation with unit:	1	

Part F: The no-time formula

$$v_f^2 = v_i^2 + 2a \cdot \Delta x$$

Symbol	Quantity	SI Unit
	displacement,	m
Δx	change in position	
v_i	initial velocity	m/s
v_f	final velocity	m/s
а	acceleration	m/s^2

- **F.1** What does PEMDAS stand for?
- F.2 What does PEMDAS mean?

F.3 A running dog has an acceleration of 2 m/s², and accelerates from an initial speed of 5 m/s. If he moves 20 meters while accelerating, what is his final speed? [NOTE: at the end, you need to use a *square root* to find your answer.]

Looking For	Formula	
Already Know		
Answer as equation with unit:		

F.4 A car accelerates from rest with an acceleration of 3 m/s². If it moves 100 m while accelerating, what is its final speed?

acceptating, what is its intainspecta.			
Looking For	Formula		
Already Know			
Answer as equation with unit:			

8 8		an acceleration of 3 m/s ² . How far
does he move while acceler Looking For	Formula	
Already Know		
Answer as equation with un	it.	
Answer as equation with un	ш.	
	ght down a well. Your accelerateling when you hit the bottom	ntion is 9.8 m/s^2 . The well is 30 meters of the well?
Looking For	Formula	
Already Know		
Answer as equation with un	it:	
F.7 A driver sees a kid on the ro	oad in front of him. He slams h	is brakes, but ends up hitting the child.
Afterwards, the driver clain	ns that he was driving very safe	ety and not speeding at all. A police
detective decides to inspect He knows from examining	if he is telling the truth. The crash that the car hit the kid	1 at 4 m/s.
		moved 60 m after he hit the brakes.
<u>-</u>	ation and sees that his car could BEFORE he started slowing d	
Looking For	Formula	
Already Know		
Answer as equation with un		

If the speed limit on that road was 35 mph (16 m/s), was the car speeding?

C.1 kinematics

C.2 The Definition of Acceleration

C.3 False

C.4 True

D.1a $\Delta x = 44.1 \text{ m}$

D.1b $\Delta x = 122.5 \text{ m}$

D.2 $\Delta x = 10.94 \text{ m}$

D.3 $\Delta x = 99.225 \text{ m}$

D.4 $\Delta x = -4 \text{ m/s}^2$

D.5 $v_i = 35 \text{ m/s}$

D.6 $v_i = -10$ m/s, The initial velocity is negative he started out moving the opposite direction.

D.7 $\Delta t = 2.02 \text{ s}$

- **E.3** To calculate the average, you add all numbers and divide by how many numbers there are.
- **E.4** The formula $\frac{v_f + v_i}{2}$ is the average of final and initial velocity.
- E.5 If acceleration is constant, this formula is identical to the formula $\Delta x = \bar{v} \cdot \Delta t$, displacement = (average velocity (time)

E.6
$$\Delta x = 2 \text{ m}$$

E.7
$$\Delta x = 62.5 \text{ m}$$

E.8
$$\Delta x = 47.5$$
 m, no

E.9
$$\Delta x = 800 \text{ m}$$

E.10
$$v_i = 12 \text{ m/s}$$

$$E.11 \Delta x = 0$$

- **F.1** PEMDAS = Parentheses, Exponent, Multiplication, Division, Addition, Subtraction
- **F.2** PEMDAS gives the order that operations should be completed in a mathematical equation.

$$F.3 v_f = 10.25 \text{ m/s}$$

$$F.4 v_f = 24.5 \text{ m/s}$$

$$\mathbf{F.5} \Delta \mathbf{x} = 8\mathbf{m}$$

$$F.6 v_f = 24.2 \text{ m/s}$$

F.7
$$v_i = 19.39 \text{ m/s}$$