UNIVERSAL LIBRARY OU_158391 AWARININ

OSMANIA UNIVERSITY LIBRARY

Call No. 547.2/E 31 P Accession No. 26845

Author Egloff. G.

Title Physical Constants of hydracarbons

This book hould be returned on or before the date ast marked below.

PHYSICAL CONSTANTS OF HYDROCARBONS

Volume II CYCLANES, CYCLENES, CYCLYNES, and OTHER ALICYCLIC HYDROCARBONS

GUSTAV EGLOFF

DIRECTOR OF RESEARCH
UNIVERSAL OIL PRODUCTS COMPANY
RESEARCH LABORATORIES
CHICAGO, HALINOIS

REINHOLD PUBLISHING CORPORATION 330 WEST FORTY-SECOND STREET, NEW YORK, U. S. A.

COPYRIGHT, 1940, BY REINHOLD PUBLISHING CORPORATION

All rights reserved

Printed in the United States of America by International Textbook Press, Scranton, Pa.

Dedicated to JOSEPH G. ALTHER

GENERAL INTRODUCTION

American Chemical Society Series of Scientific and Technologic Monographs

By arrangement with the Interallied Conference of Pure and Applied Chemistry, which met in London and Brussels in July, 1919, the American Chemical Society was to undertake the production and publication of Scientific and Technologic monographs on chemical subjects. At the same time it was agreed that the National Research Council, in cooperation with the American Chemical Society and American Physical Society, should undertake the production and publication of Critical Tables of Chemical and Physical Constants. The American Chemical Society and the National Research Council mutually agreed to care for these two fields of chemical development. The American Chemical Society named as Trustees, to make the necessary arrangements for the publication of the monographs, Charles L. Parsons, secretary of the society, Washington, D. C.; the late John E. Teeple, then treasurer of the society, New York; and Professor Gellert Alleman of Swarthmore College. The Trustees arranged for the publication of the A. C. S. series of (a) Scientific and (b) Technologic Monographs by the Chemical Catalog Company, Inc. (Reinhold Publishing Corporation, successors) of New York.

The Council, acting through the Committee on National Policy of the American Chemical Society, appointed editors (the present list of whom appears at the close of this introduction) to have charge of securing authors, and of considering critically the manuscripts submitted. The editors endeavor to select topics of current interest and authors recognized as authorities in their respective fields.

The development of knowledge in all branches of science, especially in chemistry, has been so rapid during the last fifty years, and the fields covered by this development so varied that it is difficult for any individual to keep in touch with progress in branches of science outside his own specialty. In spite of the facilities for the examination of the literature given by Chemical Abstracts and by such compendia as Beilstein's Handbuch der Organischen Chemie, Richter's Lexikon, Ostwald's Lehrbuch der Allgemeinen Chemie, Abegg's and Gmelin-Kraut's Handbuch der Anorganischen Chemie, Moissan's Traité de Chimie Minérale Générale, Friend's and Mellor's Textbooks of Inorganic Chemistry and Heilbron's Dictionary of Organic Compounds, it often takes a great deal of time to coördinate

the knowledge on a given topic. Consequently when men who have spent years in the study of important subjects are willing to coördinate their knowledge and present it in concise, readable form, they perform a service of the highest value. It was with a clear recognition of the usefulness of such work that the American Chemical Society undertook to sponsor the publication of the two series of monographs.

Two distinct purposes are served by these monographs: the first, whose fulfillment probably renders to chemists in general the most important service, is to present the knowledge available upon the chosen topic in a form intelligible to those whose activities may be along a wholly different line. Many chemists fail to realize how closely their investigations may be connected with other work which on the surface appears far afield from their own. These monographs enable such men to form closer contact with work in other lines of research. The second purpose is to promote research in the branch of science covered by the monograph, by furnishing a well-digested survey of the progress already made, and by pointing out directions in which investigation needs to be extended. To facilitate the attainment of this purpose, extended references to the literature enable anyone interested to follow up the subject in more detail. If the literature is so voluminous that a complete bibliography is impracticable, a critical selection is made of those papers which are most important.

AMERICAN CHEMICAL SOCIETY BOARD OF EDITORS

Scientific Series:-

WILLIAM A. NOYES, Editor, S. C. LIND, W. MANSFIELD CLARK, LINUS C. PAULING, L. F. FIESER.

Technologic Series:-

HARRISON E. HOWE, Editor,
WALTER A. SCHMIDT,
E. R. WEIDLEIN,
F. W. WILLARD,
W. G. WHITMAN,
C. H. MATHEWSON,
THOMAS H. CHILTON,
BRUCE K. BROWN,
W. T. READ,
CHARLES ALLEN THOMAS.

Preface

The alicyclic hydrocarbons are available in nature to an enormous extent. Petroleum is the greatest potential source of the cyclanes or cycloparaffins (naphthenes). The oil production of the world for 1939 was about 2,000,000,000 barrels, of which 500,000,000 were cyclane hydrocarbons. This volume of cyclanes was largely consumed as motor fuel, kerosene, gas oil, Diesel oil, lubricants, and as fuel for household and industrial use.

A new chemical industry could well be developed based upon cyclane chemistry, to which very little research has been directed. At the moment a new chemical industry is being founded in the aliphatic hydrocarbons derivable from petroleum and natural gas. The chemistry of the cyclenes through essential oils and their polymerization has been studied through the years.

The collation of the physical constants, melting point, boiling point, specific gravity, and refractive index of the alicyclic hydrocarbons has been made in order to facilitate and energize research for chemical derivatives of scientific and utilitarian use in this potentially fruitful field.

The author deeply appreciates the assistance of his colleagues, Dr. J. Sherman, Prudence M. Van Arsdell, Dr. R. B. Dull, Dorothy V. Nordman, Dorothy Sigman, and Mary Alexander in this collation and critical study of the physical constants of the alicyclic hydrocarbons.

GUSTAV EGLOFF

February 15, 1940

Physical Constants of Hydrocarbons

Cyclanes, Cyclenes, Cyclynes, and Other Alicyclic Hydrocarbons

TABLE OF CONTENTS

Volume II

			I	age
	Geno	eral Int	troduction	5
	Prefa	ace		7
I.	Intro	oductio	on	13
	1.	Forew	ord	13
	2.	Struct	ure of Alicyclic Hydrocarbons	13
		A.	Introduction	13
		B.	General Considerations	14
		C.	Monocyclic Rings of the Alicyclic Series	16
			1. Cyclopropane, Cyclobutane and Cyclopentane	16
			2. Cyclohexane	16
		D.	Cyclanes Containing Fused (Shared) Rings	17
		E_{\bullet}	Alicyclic Hydrocarbons Containing Double and Triple Bonds	18
		F.	Geometrical Isomerism	18
	3.	Nome	nclature of Alicyclic Hydrocarbons	19
		A.	Introduction	19
		B.	Geneva Nomenclature	20
			1. Introduction	20
			2. Rules and Author's Comments	20
			a. Monocyclicsb. Polycyclics	20 22
		С.	Definition of <i>Bi</i> and <i>Di</i> in Alicyclic Nomenclature	29
			•	30
		D.	Supplementary Nomenclature Considerations	-
	4.	Critica	al Evaluation of the Data and Calculation o f the Most Probable Values	
		A.	Introduction	35
		B.	Melting Point	35
		С.	Boiling Point	36
		D.		36
		E.	Index of Refraction	37
	5.	Descri	iption of the Tables	37
		A.	Structural Formulae	37
		R	Introduction to Tables	30

		Page
II.	Cyclanes or Cycloparaffins	41
	1. Cyclanes with Alkyl Substitutions, C _n H _{2n}	42
	2. Cyclanes with an Alkenyl or Olefin Substitution, C _n H _{2n-2}	150
	3. Cyclanes with two Alkenyl or Olefin Substitutions, C _n H _{2n-4}	179 183
	 Cyclanes with an Alkadienyl or Diolefin Substitution, C_nH_{2n-4} Cyclanes with an Alkynyl or Acetylene Substitution, C_nH_{2n-4} 	185
	6. Cyclanes with a Cycloalkenyl or Cycloölefin Substitution, C _n H _{2n-4}	190
	7. Cyclanes with a Bicyclenyl or Bicycloölefin Substitution, C _n H _{2n-6}	195
III.	Dicyclanes or Dicycloparaffins	197
	Disystance of Disystophianna	
IV.	Tri, Tetra, and Penta Cyclanes	219
	$ C_nH_{2n-4} $ $ C_nH_{2n-6} $	
	C_nH_{2n-8}	
v.	Bicyclanes or Bicycloparaffins	229
	1. Bicyclanes with Alkyl Substitutions, C_nH_{2n-2}	231
	2. Bicyclanes with an Alkenyl or Olefin Substitution, C _n H _{2n-4}	264
	3. Bicyclanes with two Alkenyl or one Alkadienyl Substitution, C_nH_{2n-6}	275
VI.	Tricyclanes—Endocyclic	277
	C_nH_{2n-4}	
VII.	Polycyclanes or Polycycloparaffins (Fused Rings)	291
	1. Polycyclanes with Alkyl Substitutions, C _n H _{2n-6}	293
	2. Polycyclanes with an Alkenyl or Olefin Substitution, C _n H _{2n-8}	302
VIII.	Cyclene or Cycloölefins	303
	1. Cyclene with Alkyl Substitutions, C _n H _{2n-2}	305
	2. Cyclenes with an Alkenyl or Olefin Substitution, C _n H _{2n-4}	366
	3. Cyclenes with two Alkenyl or one Alkadienyl Substitution, C_nH_{2n-6}	397
	4. Cyclenes with Alkene-Alkyne or Alkatriene Substitution, C _n H _{2n} 8	400
IX.	Cyclodienes or Cyclodiolefins	401
	1. Cyclodienes with Alkyl Substitutions, C _n H _{2n-4}	403
	2. Cyclodienes with an Alkenyl or Olefin Substitution, C_nH_{2n-6}	431
X.	Cyclotrienes or Cyclotriolefins (Exclusive of Aromatics),	439
	C_nH_{2n-6}	
XI.	Dicyclenes or Dicycloölefins	443
	1. Dicyclenes with Alkyl Substitutions, C _n H _{2n-6}	445
	2. Dicyclenes with an Alkadiene or an Alkyne Substitution, C _n H _{2n-10}	450
XII.	Bicyclenes or Bicycloölefins	451
	1. Bicyclenes with Alkyl Substitutions, C _n H _{2n-4}	453
	2. Bicyclenes with an Alkenyl Substitution, C _n H _{2n-6}	477

	TABLE OF CONTENTS	11
		Page
XIII.	Bicyclodienes or Bicyclodiolefins	481
XIV.	Di(bicyclenes) or Dibicycloölefins C _n H _{2n-10}	491
XV.	Polycyclenes C_nH_{2n-6}	495
XVI.	Cyclynes or Cycloacetylenes C _n H _{2n-4}	501
XVII.	Spiro Hydrocarbons C _n H _{2n-2}	505
XVIII.	Alicyclic Hydrocarbons of Known but Unclassified Structures	511
XIX.	Alicyclic Hydrocarbons of Undetermined Structure (Thought to belong to the Naphthene or Cyclic Series)	537

I. Introduction

1. Foreword

The present volume is the second of a four-volume work on the collation and systematic study of the physical constants of all classes of pure hydrocarbons. Volume I, which was published in March 1939, includes the paraffins, olefins, acetylenes, and other aliphatic compounds. The physical constants of the cyclanes or cycloparaffins, cyclenes or cycloölefins, and other alicyclic compounds are reported in Volume II. All cyclic hydrocarbons containing nonaromatic rings have been critically evaluated in this study. The literature and our own and other experimenters' work have been reviewed in order to present all the data which has been available to March 1939.

In comparing the alicyclic hydrocarbons with those of the aliphatic series, it may be pointed out that the former group has not been as extensively studied as the latter as regards physical constants. This is due, in part, to the fact that the aliphatic hydrocarbons have been of more scientific and industrial importance for a longer time than the alicyclic compounds.

The data on the four physical constants melting point, boiling point, specific gravity, and index of refraction of the liquid hydrocarbons are more inconsistent for the alicyclic than for the aliphatic hydrocarbons. The greater difficulty of preparing pure alicyclics probably accounts for this, and also the constants reported in many cases are for mixtures of geometrical isomers rather than individual compounds. A further difficulty in obtaining precise physical constant values for a number of alicyclic hydrocarbons is that they may partially isomerize while the determination is being made due to catalytic influences of the apparatus.

The greater inaccuracy of the alicyclic constants is evidenced by the adopted values of the constants, which are given to fewer significant figures than is the case for the aliphatics. The specific gravity and index of refraction values are given to three significant figures in almost all cases as compared to four and five for the aliphatic compounds.

In contrast to the studies which have been made by various workers in correlating physical constants of aliphatic hydrocarbons, almost nothing of this character has been carried out for the alicyclic hydrocarbons.

2. The Structure of Alicyclic Hydrocarbons

A. Introduction

Although much experimental and theoretical work has been done in recent years in order to determine the structures of alicyclic hydrocarbons, the problem cannot be regarded as solved up to the present time (August 1939). The term structure is used here to denote the relative positions of the atomic nuclei in the molecule and not the electronic structure.

The fundamental postulate concerning the tetrahedral structure of a carbon atom stated by LeBel and van't Hoff in order to explain optical isomerism was also a method of presenting a valid picture of stereochemistry until the discovery of cyclic compounds in nature and in the laboratory. Due to this discovery, the idea of the rigid tetrahedral angle of 109° 28' was necessarily modified. The six-membered ring of the alicyclic group was the first to be prepared and since the other members of the series, cyclopropane, cyclobutane, cyclopentane and others higher than cyclohexane were unknown in nature, and impossible to synthesize by laboratory methods in use before 1880¹, it was argued that they did not exist due to theoretical considerations then generally accepted.

A compound containing a cyclobutane ring and the discovery of cyclopropane between 1880 and 1885 led to the modification of the ideas concerning the existence and possible stability of the cyclic compounds, and in 1885 Baeyer² proposed the strain theory to explain the relative stabilities of cyclopropane, cyclobutane, cyclopentane, and cyclohexane. His theory, however, did not explain the existence of the higher ring compounds.

Since the time of Baeyer, the higher ring compounds have been synthesized and a theory for strainless ring structures³ has been developed which will be discussed later.

B. General Considerations

One of the fundamental postulates of structural organic chemistry is that the angles between the carbon-carbon bonds in a saturated hydrocarbon molecule are tetrahedral. Many facts accumulated through the years support this postulate. Within recent years the tetrahedral nature of the carbon atom in a few simple cases has been directly verified by experiments determining the crystal structure of hydrocarbons by x-ray diffraction, by electron diffraction of gases, and by spectroscopic analysis. Evidence has also accumulated showing that the radius of the carbon atom in saturated compounds is nearly constant at 0.77 Å. (the bond distance between two atoms is equal to the sum of the atomic radii). If this were not so, then planar rings having tetrahedral angles could be constructed having more carbon atoms than cyclopentane. Bond angles in saturated ring compounds should be tetrahedral, just as in aliphatic hydrocarbons. For cyclopropane and cyclobutane and many other compounds containing fused rings such as carene or bicyclohexane this is geometrically impossible.

It is possible to construct a six-membered ring, cyclohexane, in which the carbon-carbon bond distances are equal, and the angles all tetrahedral; hence the ring will not be planar. This was clearly pointed out by Sachse⁴ and later elaborated upon by Mohr⁵ in order to show that rings containing more than five carbon atoms need not be strained as Baeyer believed. It remained for Cohen-Henriquez⁶

- (1) Meyer, Ann., 180, 192, 1876
- (2) Baeyer, Ber., 18, 2278, 1885
- (3) Ruzicka, Stoll, Huyser, and Boekenoogen, Helv. Chim. Acta, 13, 1152, 1930
- (4) Sachse, Ber., 23, 1363, 1890
- (5) Mohr, J. prakt. Chem. (2), 98, 349, 1918
- (6) Cohen-Henriquez, Proc. Roy, Acad, Amsterdam 37, 532, 1934

to give a thorough mathematical treatment of the cyclohexane problem. He showed that it is possible to construct not only one but an infinite set of strainless cyclohexane rings. One of the members of this set, the so-called chair form of cyclohexane, is a singular one in that it cannot be derived from any of the others by a simple distortion not accompanied by a change in the bond angles. The other members of the set, of which the boat form is representative, can all be obtained from any one of them by twisting, not accompanied by bond angle change.

The point of chemical interest in this discussion is that if many forms of cyclohexane actually exist, then it should perhaps be possible to separate isomers corresponding to some of the different possibilities. What is even more pertinent to the present study is the wide variation in the physical constants of cyclohexane reported by investigators, which may in part be attributed to a partial or even complete separation of the boat and chair forms, and similarly for other alicyclic compounds. As a matter of fact, claims are made from time to time that such isomers have been separated. The most recent claim to the separation of the forms of methylcyclohexane is that reported by Vogel⁷. These results have been disputed by Wibaut, Langedijk, Smittenberg, and Hoog⁸; hence further studies should be made.

Although it is apparently impossible to separate the chair and boat forms of cyclohexane in the liquid state, the x-ray diffraction study of the structure of the crystals strongly indicate that the molecules are of the chair form.

In order to reconcile theory and experimental facts, it has been suggested that the possible forms of cyclohexane are in rapid equilibrium so that the statistical average corresponds to a plane structure. If it is assumed that cyclohexane oscillates between the chair and boat forms (the boat form is used here collectively to signify all the structures which may be derived from it by simple distortion), the low frequency of oscillation must be of negligible importance in increasing the stability relative to the individual forms. Also, it is by no means obvious that the activation energy in the conversion of the boat to the chair form is negligibly small.

The bond distances are more important in determining the structure than the bond angles, since it requires considerably more energy to change the normal carbon-carbon single bond distance a small amount than it does to change the bond angle.

Let us now consider the geometrical problem of determining how many forms of an equilateral, equiangular polygon of n sides may be constructed from a set of n points located at the vertices. The general case is extremely difficult and has not been treated. An equilateral, equiangular polygon of n sides may be constructed in which the sides are of any given length. However, the angles must have an average value equal to or less than $\left(\frac{n-2}{n}\right)\pi$. If the angles in the ring are each equal to the upper limit of $\left(\frac{n-2}{n}\right)\pi$, the ring is a planar one, and there is one and only one such ring which can be constructed. If, however, the angles are less than $\left(\frac{n-2}{n}\right)\pi$, the regular polygon will not be a plane. Moreover, as Cohen-

- (7) Vogel, J. Chem. Soc., 1938, 1323
- (8) Wibaut, Langedijk, Smittenberg, and Hoog, Chem, and Ind., 57, 753, 1938

Henriquez showed for cyclohexane, it will, in general, be possible to construct more than one such polygon for a given value of the angle.

Since two single bonds associated with a carbon atom which is part of a double bond tend to be at 120° angles to the double bond, and since the carbon-carbon double bond distance is about 14 per cent shorter than the carbon-carbon single bond distance, the introduction of one or more double bonds into a saturated ring will tend to change the ring configuration to some extent.

C. Monocyclic Rings of the Alicyclic Series

1. Cyclopropane, Cyclobutane, and Cyclopentane

The equilibrium positions of the carbon nuclei in each of these molecules are located at the vertices of an equilateral triangle, a square, and a regular pentagon respectively. The four carbon nuclei in cyclobutane are not geometrically required to lie in a plane. However, they probably are coplanar, for otherwise the average bond angle would be less than 90°, and the molecule would be less stable than the plane form.

In each of the cyclopropane, cyclobutane, and cyclopentane molecules, the two hydrogen bonds associated with each carbon are probably at the tetrahedral angle to each other, the plane of the bonds being perpendicular to the plane of the ring and bisecting the pertinent carbon bond angle.

2. Cyclohexane

Reference has already been made to the work of Cohen-Henriquez in which it was shown by methods of analytical geometry that there are an infinite number of possible cyclohexane rings in which the bond distances are all equal and the bond angles all tetrahedral. The configuration of any one possibility may be described by reference to the following figure:

Since the bond distances and bond angles are to remain fixed, the large triangle BDF will remain invariant to all permissible forms of the cyclohexane ring.

Let ϕ_1 , ϕ_2 , and ϕ_3 denote the angles which the small triangles ABF, BDC, and DEF make with the plane of the triangle BDF respectively. The configuration of the ring is completely specified when the values of the three angles ϕ_1 , ϕ_2 , and ϕ_3 are given. For the "fixed" or chair configuration

$$\phi_1 = \phi_2 = \phi_3 = \cos^{-1}(\sqrt{\frac{2}{3}}) = \pm 35^{\circ} \text{ (approx.)}$$

The following figures depict the boat and chair forms respectively:

In each of these two forms there are four carbon atoms in a plane at the corners of a rectangle. In the boat form, the remaining two carbon atoms are both on the same side of the plane of the other four, and in the chair form, the two carbon atoms not in the plane of the other four are on opposite sides of this plane. For this reason, the boat form is sometimes referred to as the *cis* and the chair type as the *trans* form.

D. Cycloparaffins Containing Fused Rings

The carbon skeleton of the molecule [0,2,2]-bicyclohexane is usually written as

Corresponding to this drawing, it may be described as the boat form

of cyclohexane in which the 1,4-carbon atoms are bonded to each other. If the cyclohexane ring were undistorted, this bond would be $\frac{5}{3}=1.67$ times as long as the bonds in the ring. (The 1,4- atoms in the chair form of cyclohexane are $\frac{1}{3}\sqrt{33}=1.915$ times as far apart as the adjacent atoms in the ring, and a bond in this case would be even weaker than in the case being considered). Moreover, the two cyclobutane rings would be isosceles trapezoids in which two of the angles were tetrahedral and two of the angles 70° 32′. But from the structural principles already elaborated, it may be concluded that in [0,2,2]-bicyclohexane the 1,4- bond is not appreciably different from the other carbon-carbon bonds in the ring, and that the carbon skeleton consists of two cyclobutane rings (squares) the planes of which are inclined to each other at approximately the tetrahedral angle.

It is believed that [0,2,2]-bicyclohexane reacts rather readily to form derivatives of cyclohexane; and this is sometimes given as evidence that the 1,4-bond in the bicylohexane is much weaker than the other carbon bonds. This argument is unreliable for the following reasons: if one of the carbon-carbon bonds in the bicyclohexane is broken, e.g., by the addition of hydrogen, the possible products are 1,2-dimethylcyclobutane, ethylcyclobutane, and cyclohexane. Cyclohexane is the most stable of these hydrocarbons; hence it is formed, assuming, of course, that the activation energy of this reaction is less than for the other reactions.

The foregoing discussion for [0,2,2]-bicyclohexane brings out certain general features of the structure of shared rings. This compound (as well as all other "bi" cyclocompounds) really contains three rings—two cyclobutane rings having a side in common, and a cyclohexane ring, three sides of which are common to one of the

cyclobutane rings and the other three sides to the other. The smaller rings are more important from energy considerations than the large one, *i.e.*, the cyclobutane rings tend to be squares at the expense of the regular cyclohexane ring. Similar considerations apply to other rings. For example [0,1,3]-bicyclohexane may be written as a cyclohexane with a bond between the 1,3-atoms; however, it is more nearly a regular pentagon and an equilateral triangle sharing a side, the plane of the triangle being inclined to the plane of the pentagon at the tetrahedral angle.

E. ALICYCLIC HYDROCARBONS CONTAINING DOUBLE AND TRIPLE BONDS

Cyclopropene has not been synthesized as yet. This is not surprising, for a consideration of the bond angles involved shows that cyclopropene would be highly unstable.

Cyclobutene is known, but not cyclobutadiene. The small increase in stability that would result from the resonance energy in the latter case is not sufficient to offset the instability due to 90° bond angles between conjugated bonds.

The introduction of one or two double bonds in the cyclohexane ring causes it to assume a configuration intermediate between benzene and cyclohexane.

In a very few cases rings containing triple bonds have been reported. These

compounds would probably be unstable.

In the discussion of the structure of alicyclic ring hydrocarbons, it was assumed that the general structural features of these rings are determined by the carbon-carbon bond distances and the carbon-carbon bond angles. This is only an approximation. Other factors may be of significance—e.g., the van der Waals' forces, the zero-point energy, and particularly the interaction of the carbon-hydrogen bonds with the carbon-carbon bonds in the ring. Studies on the last factor are being made and will be reported in the fourth volume of this study of the physical constants of hydrocarbons.

F. GEOMETRICAL ISOMERISM

In the study of aliphatic hydrocarbons, it was pointed out that geometrical isomerism in the olefins occurs whenever a 180° rotation about the double bond of one of the two groups attached by the double bond would result in a molecular configuration which could not be converted to the original by any rotations of the molecule as a whole; e.g., butene-2 has two geometrical isomers, the cis-butene-2 has the structure CC, whereas the trans-butene-2 has the structure HCCC, whereas the trans-butene-2 has the structure to take place about the double bond. In the alicyclic compounds geometrical isomerism also occurs for an additional reason—the lack of rotation about carbon-carbon single bonds which are part of a ring system. Geometrical isomerism in the alicyclic compounds is, consequently, a more prevalent phenomenon than in the aliphatic compounds.

⁽⁹⁾ Cohen, Kistiakowsky, and Smith, J. Am. Chem. Soc., 61, 1870, 1939; Govin, Walter, and Evring, ibid, 61, 1876, 1939

Since geometrical isomers possess different physical properties their constants should be evaluated separately. In a few cases, the investigator has explicitly stated that his compound is *cis* or *trans*, and these have been listed as such in the tables. In the majority of cases where geometrical isomers are theoretically possible, the physical constants are reported without mention by the experimenter as to whether his compounds are the pure *cis* or pure *trans* isomer or some mixture of these. In accordance with the procedure of tabulating the constants adopted for the aliphatic olefins, the alicyclic constants are listed, but no effort was made to obtain an average value for possible mixtures of *cis* and *trans* isomers.

As has already been discussed in the section on structure, geometrical isomerism is a complicated phenomenon in the alicyclic compounds. Except for the simpler cases it is not usually possible to state definitely how many isomers are possible. Almost all the shared rings can exhibit geometrical isomerism, and therefore, the constants for these compounds have been evaluated in only a few cases.

The possibilities of geometrical isomerism become quite complex in shared ring systems. Cohen-Henriquez investigated the perhydronaphthalene ring and found that several fixed and mobile configurations are possible. Actually perhydronaphthalene has been separated into *cis* and *trans* isomers having different physical constants. In other shared ring systems, the physical constants are, with few exceptions, reported without mention of the possibility of geometrical isomerism.

3. Nomenclature of Alicyclic Hydrocarbons

A. Introduction

The nomenclature of alicyclic hydrocarbons is in a confused state due to the many terms and numbering systems used. In some cases the same experimenter has named and numbered the alicyclic hydrocarbons several ways in the same publication without explanation. The nomenclature rules for this series of hydrocarbons are not as extensive, and in some cases not so clearly defined as those used for the aliphatic compounds. An attempt has been made in the present study to bring about uniformity in the numbering and naming of the alicyclic hydrocarbons. The saturated cyclic compounds were originally called polymethylenes and the term still persists due to the chemical formulae being multiples of methylene. Each compound was named by means of the Greek numerical prefix plus methylene, hence cyclopentane was first known as pentamethylene. Several disadvantages of this naming system developed as work progressed in alicyclic chemistry. The term polymethylenes was too inflexible to be of value due to the fact that the term applied only to the single ring saturated structures.

Other terms applied to alicyclic hydrocarbons and widely used are naphthenes, hydroaromatics, and terpenes. The terpene classification has been omitted from separate consideration in this study, since it is recognized that the members of this group are classified in their proper alicyclic series. The terpene names have been retained in addition to the systematic ones assigned in the Geneva system. In so arranging the terpenes, it is hoped that structural relationships will be shown throughout the different series rather than for individual compounds in the usual terpene groupings. Although there are generic group names given to the naph-

thenes, polymethylenes, and hydroaromatics, they are not classified under these terminologies.

The disadvantages imposed by such names as polymethylenes, naphthenes, hydroaromatics, and terpenes are overcome by the more systematic terms which include cyclanes, cycloalkanes, or cycloparaffins; cyclenes, cycloalkenes, or cycloalefins; cyclynes, cycloalkynes, or cycloacetylenes. Chemical Abstracts uses the terms cyclanes, cycloalkanes, cycloparaffins, and naphthenes to cover the cyclic hydrocarbons of the general formula C_nH_{2n} .

In this study of the physical constants of alicyclic hydrocarbons, the terms cyclanes, cyclenes, and cyclynes are used generically for the monocyclic compounds due to the simplicity of the terms compared to the others which have been used.

B. GENEVA NOMENCLATURE

1. Introduction

The rules used in this study were obtained in part from the Definitive Report of the Commission on the Reform of Nomenclature of Organic Chemistry and the Council of the International Union of Chemistry¹¹. The data in Beilstein were also used where the Geneva rules were not sufficient. These two sources of nomenclature generalizations were found insufficient for the complete study and were supplemented by the author.

2. Rules and Author's Comments

a. Monocyclics

The following rules" are quoted from the Definitive Report:

"11. Saturated monocyclic hydrocarbons will take the names of the corresponding straight chain saturated hydrocarbons, preceded by the prefix 'cyclo.' They will bear the generic term cycloalkanes."

Author's note. In this study the term cyclanes has been used instead of cycloalkanes.

"13. When they (alicyclics) are unsaturated Rules 8 and 9 will be applied. However, in the case of partially saturated polycyclic aromatic compounds, the prefix hydro preceded by di-, tri-, tetra-, etc., will be used. Example—Dihydro-anthracene."

Author's note. The Geneva¹¹ Rules 8 and 9 have been adapted on the basis of Rule 13 so as to apply to the alicyclic hydrocarbons.;

- Rule 8. In the names of unsaturated cyclic hydrocarbons having one double bond, the ending -ane of the corresponding saturated hydrocarbon will be replaced by the ending -ene; if there are two double bonds, the ending will be -diene, etc. These hydrocarbons will bear the generic names cyclenes, cyclodienes, cyclotrienes, and cyclotetraenes except in aromatic structures.
- Rule 9. The names of triple bond cyclic hydrocarbons will end in -yne. They will bear the generic names cyclynes.
 - (10) Chem. Abs., Index, 1938
 - (11) Patterson, J. Am. Chem. Soc., 55, 3905, 1933

"Rule 49a¹². Cyclic hydrocarbons with aliphatic side chains are to be named according to one of the two following methods: (a) The radical names denoting the side chains are prefixed to the name of the cyclic hydrocarbon. (b) The cyclic hydrocarbon residue, if it can be named as a radical, is considered a substituent of the aliphatic chain.¹²

"Naming according to (a) is in general preferable when the side chain is short or when several side chains are present. Naming according to (b) is more convenient when the side chain is long, and particularly when the cyclic hydrocarbon residue is not at the end of this chain."

Author's examples:

1-Methyl-2-ethylcyclohexane

1,3-Dimethyl-2-ethenylcyclohexane

"When several cyclic hydrocarbon residues are united by an aliphatic chain the name of the compound will be derived from that of the aliphatic hydrocarbon, provided radical names are available for the cyclic hydrocarbon residues."

Author's example:

1,6-Dicyclohexylhexane

The following rules for numbering and presentation of the various ring systems used throughout this study of alicyclic hydrocarbons are taken from the "Proposed International Rules for Numbering"¹².

The adaptations of the rules with explanations of the changes necessary in this study, together with present practices are given in *Chemical Abstracts* Index for 1938. Only those rules which may apply to the alicyclic hydrocarbons are reported here¹³ despite the fact that the rules are not specific enough.

"A. THE SYSTEM CONSISTS OF A SINGLE RING

I. The ring is carbocyclic

- Rule 1. "Number around the ring in such a manner as to give to hydrogen atoms the lowest numbers possible.
- (12) Latest text adopted at Lucerne 1936, and confirmed in Rome, 1938, Science, 87, No. 2253 216, 1938
 - (13) Patterson, J. Am. Chem. Soc., 47, 543, 1925, Chem. Abs., Index, 1938

"Examples:

"Note 4. Fixed orientations are an aid to memory and should not be neglected. Single rings should be oriented with Position 1 at the top and with numbers proceeding clockwise around the ring."

Author's note: The latest Chemical Abstracts practice¹⁰ regarding the bond placement in the ring reverses Rule 1 and gives the double bond the lowest number possible rather than the hydrogen previously shown.

Example:

This is in line with the rule covering aliphatic hydrocarbons where the lowest number is given to the double or triple bond when they appear singly in the compound. It is more convenient in this study to follow this system for the ring compounds instead of Rule 1.

In the six membered cyclodiolefins there are three positions possible for the bonds, the 1,2; 1,3 and 1,4; the substituting groups are oriented with higher or lower numbers in respect to the double bonds.

Examples:

A cyclodiolefin of 1,2 structure as shown has been reported and the constants shown in the tables, although there is doubt as to the existence of such a compound.

Examples IIIa, IIIb, and IIIc are used throughout our study and supplant Examples II and III of Rule 1 made in 1925.

b. Polycyclics

- "B. THE SYSTEM CONTAINS AT LEAST TWO RINGS OF FIVE OR MORE MEMBERS, BUT NO ATOMIC BRIDGES, CROSSED VALENCE BRIDGES OR FREE SPIRO UNIONS
- "Note 6. An 'atomic bridge' is one that contains atoms (e.g., the bridge in norcamphane, V) as contrasted with a 'valence bridge' (e.g., that in naphthalene, VI, or in norcarane, VII).

$$\begin{array}{c} CH \\ H_2C \\ \hline \begin{pmatrix} 6 \\ 7CH_2 \\ 5 \\ CH \\ V \end{array} \\ \begin{array}{c} CH_2 \\ CH_2 \\ \end{array} \\ \begin{array}{c} CH_2 \\ \end{array} \\ \begin{array}{c} CH_2 \\ \end{array} \\ \begin{array}{c} VIII \\ \end{array} \\ \begin{array}{c} VIII \\ \end{array} \\ \begin{array}{c} VIII \\ \end{array}$$

"Note 7. 'Crossed valence bridges' are valence bridges that are represented by the plane formula as crossing each other as shown in Example XLVIII.

"Note 8. A 'spiro union' is one formed by a single atom which is the only common member of two rings. A 'free spiro union' is one constituting the *only* union direct or indirect, between two rings as in IX. Systems in which the rings are united in some other way (that is by intermediate rings) as well as by the spiro union are not necessarily excluded from Class B.

- "Note 9. In determining whether or not a system contains at least two rings of five or more members, one counts as component rings only the smallest number of smallest rings that together will account for all the atoms and valences.
- "Rule 6. Orient the formula so that the greatest possible number of rings will be in a horizontal row.
- "Note 10. Triangles in such a row should have one side vertical, other rings two sides vertical (this requires a deformation of the polygons with an odd number of sides, thus: or). Accordingly, hexagons should have angles, not sides, at top and bottom. Anthracene (XIII) constitutes a horizontal row of three, so do fluorene (XIV) and s-indacene (XV), but phenanthrene (XVI) does not."

Author's note: The use of regular polygons such as a regular pentagon for cyclopentane, etc., have been used in the tabulated data since it is thought that these structural configurations more nearly represent the equilibrium position of the atoms in the molecule.

"Rule 7. Of orientations conforming to Rule 6, choose the one that places as many as possible of the remaining rings above and to the right.

"Note 11. Only the number of rings and not their size or distance from the center, is taken into account. When the correct orientation is not immediately apparent, bisect the 'horizontal row' by a horizontal axis and a vertical axis (as in XXI) and count the rings and fractions of rings in the four quadrants. If there is more than one combination of rings that could serve as the 'horizontal row,' apply the bisection in the other cases also (as in XXII). Choose the orientation that has as many as possible of the 'remaining rings' in the upper right quadrant; if two or more orientations meet this requirement, choose the one of them that has as few rings as possible in the lower left quadrant. In the examples, phenanthrene (XVI) is shown correctly oriented with its single 'remaining ring' turned upward toward the right; triphenylene (XVII) has one in the upper right quadrant and one in the lower right; Examples XVIII-XX show right and wrong orientations of chrysene; and XXI and XXII show right and wrong orientations in a case that might not be immediately apparent.

"Rule 10. Of orientations conforming to Rules 6-9, choose the one in which unnumbered carbon atoms follow the lowest numbers possible.

"Examples: In XXIX the unnumbered carbon atoms follow the numbers 4,4,8,9; these are lower than the 4,5,9,9 of XXX. Similarly, the numbers 2,5,8 of XXXII are lower than the 3,5,8 of XXXII.

"Rule 11. Of orientations conforming to Rules 6-10, choose the one that gives to hydrogen atoms the lowest numbers possible.

"Rule 12. Number the oriented formula by beginning with the first free angle of the upper right ring and proceeding clockwise around the entire formula to the beginning, numbering all carbon atoms that are not common to two or more rings.

"Note 12. The 'first free angle' is the first angle, not also part of another ring, from which one may proceed clockwise around the ring.

"Note 13. The 'upper right ring' is the highest ring in the formula or, if two or more are equally high, then the ring farthest to the right in the highest row.

"Note 14. Ordinarily, no numbers are needed for carbon atoms that are common to two or more rings. When such a need does arise, it is recommended that they be numbered by adding a (or b, c, etc., in case of a succession of them) to the number of the position just preceding in the clockwise order; interior carbon atoms are considered to follow the highest number."

Examples:

Author's note: In numbering the alicyclic series, the system is not changed entirely but is slightly different for saturated fused ring systems than that generally accepted for aromatic hydrocarbons. For example: Naphthalene is numbered thus:

while the decahydronaphthalene, [0,4,4]-bicyclodecane is numbered thus:

This method is in line with that in general usage for the fused rings of the following type:

"C. THE SYSTEM DOES NOT BELONG TO CLASSES A AND B, AND DOES NOT CONTAIN FREE SPIRO UNIONS

"I. The system consists of two rings only, separated by either an atomic bridge or a valence bridge.

"Note 16. Formulas of systems belonging to Class C, I must be drawn so that the bridge contains as few members as possible.

Examples:

"Rule 13. Starting with one end of the bridge as 1, number around the longe way to the other end of the bridge, then on around the shorter way to the beginning and finally, by the shortest path, along the bridge itself if the bridge is atomic. I there are two or more possibilities for the shortest path, choose the shortest path from the highest previous number that will give a decision. Number all ring members.

Examples:

- "II. The system contains one or more atomic bridges the removal of which would throw the system into Class B.
- "Rule 17. Disregarding the atomic bridges and converting the resulting forn to the lowest stage of hydrogenation, number by Rules 6, 7, 10, 11 and 12; then number the bridge members, following the shortest path as in Rule 13.

Examples:

- "Note 17. The atomic bridges in Class C, II must contain as few members as possible.
 - "III. The system does not belong under I or II.
- "Note 18. The systems of Class C, III contain two or more bridges, eithe atomic or valence. Special care must be taken to draw the formula so that the bridges shall be as simple and of as few members as possible. A branched bridge is regarded as consisting of a main bridge and one or more branch bridges. I branched bridge should be preferred to crossed bridges even though it contain more members (see XLVII and XLVIII), but in no case should the chain o

bridge members between the two bridge ends be greater than either of the outside chains between the same points. In difficult cases it may be advisable to construct a spatial model so as to decide upon the most natural plane formula.

"Rule 18. Select as the chief bridge (one end of which becomes Position I) the one having the most members or, if two have an equally large number of members, the one that divides the outside ring more symmetrically; number as in Rule 13; then number any remaining bridge members by the shortest path.

Examples: See XLV, XLVI, XLVII.

"Rule 19. Of two or more numberings conforming to Rule 18, choose the one that gives the lowest numbers to the ends of the other bridges.

Example:

"D. THE SYSTEM CONTAINS ONE OR MORE FREE SPIRO UNIONS

I. The system contains spiro unions only.

"Rule 21. Beginning with a ring member next to the spiro atom in the right end ring, number clockwise around the end ring and on around the entire formula. Number all ring members.

Example:

"Rule 22. Of two or more numberings conforming to Rule 21, choose the one that gives the lowest numbers to spiro atoms."

Examples:

Author's note: The placing of the double bond has been changed to the one position in this study rather than the six position as is shown in the following. See Chemical Abstracts:

C. Definition of Bi and Di in Alicyclic Nomenclature

In the nomenclature herein adopted for the alicyclic hydrocarbons it has been necessary to differentiate the fused (shared) or "endocyclic" from the "exocyclic" ring structures. The distinction between these two systems has been accomplished by arbitrarily using the prefix bi for hydrocarbons of fused rings or endocyclic type, and the prefix di for the separated rings or exocyclic type—as illustrated in the examples:

The prefix di is also used to denote two separate rings joined to the same carbon atom as illustrated in dicyclohexylmethane

and di is also used as in dicyclohexylylmethane

$$\overline{}$$

In the present study the latter two cases are distinguished by the suffix -yl in the case in which the two rings are joined to each other directly.

In order to name the bicyclic compounds a unique system of numbering in relation to the rest of the compounds had to be adopted. For such compounds as the following

there was no method in existence which properly accounted for the fused ring state of the molecule. The system in use at present was proposed by Baeyer and the following conventions adopted: in the preceding formula the method of naming is as follows [1,2,2]-bicycloheptane. The first number considered is the number of carbons on the bridge, the next two numbers denote the number of carbons on either side of the bridge; the first (according to our own method) denotes the number of carbons to the right of the bridge and the second, the number to the left.

The foregoing usage of the prefixes bi and di will be followed consistently in this study.

D. Supplementary Nomenclature Considerations

The foregoing Geneva nomenclature rules are not sufficiently extensive to cover some complex polycyclic compounds and therefore will be supplemented by nomenclature taken from Beilstein¹⁴ based upon the work of Baeyer, Stelzner, and Kuh.

The generalizations relating to the 2 and 3 ring, fused and condensed ring systems are given:

"1. Polycyclic hydrocarbons with an indirect linkage of single rings.

"The systematic naming of these hydrocarbons and derivatives is more easily accomplished if the following combinations are named with reference to the straight-chain hydrocarbons present in the compound.

Examples:

Cyclopentylidenecyclohexylmethane

"Proceeding with the aforementioned names to designate the homologues, substitution products, etc., the following numbering system is proposed.

(14) Beilstein, Vol. V, pp. 8-14, 1922

Examples:

"2. Polycyclic hydrocarbons with directly connected ring structures. A general designation of this type of compound might be 'diphenyloid' since the original structure of this type was diphenyl.

"A method adopted for the naming of individual representatives of the double ring system is the use of one hydrocarbon ring as a stem and the other as the substituent.

Examples:

Cyclopropylcyclohexane

1,2-Dicyclohexylcyclopentane

"The following rule is applied for both aromatic and alicyclic structures. The handling of the double nuclear symmetrical ring system allows two methods of naming, either as a double radical or according to the method previously shown. The literature contains both dicyclohexyl and bicyclohexyl for the following formula:"

Dicyclohexyl, bicyclohexyl, or cyclohexyl-cyclohexane

Author's note: In our study of formulae of this type, the term dicyclic has been used to differentiate these hydrocarbons from those with internal rings.

Beilstein states that: "The numbering is shown as follows:

The nomenclature of diphenyl and its homologues and unsymmetrical derivatives is based on diphenyl, as for example, 4,4'-dimethyldiphenyl, or as another example of nomenclature for the same compound, p,p'-ditolyl.

"For naming a univalent and a bivalent radical the diphenyl radicals are shown as follows:

$$C_6H_6$$
. C_6H_6 —Diphenylyl or xenyl — C_6H_4 . C_6H_6 —Diphenylene

"Where the formulae are employed without the positions being designated, the diphenylyl radical is understood with the one free valence at the 4 position or para to the connecting bond. The diphenylene structure has the valence at the 2 and 2' or the ortho positions.

C. Polycyclic Hydrocarbons with Internal Rings

"Polynuclear ring systems that are of known structure contain fixed structures within the single ring. These are considered as condensed rings. The polynuclear ring systems characterized by having more than one ring in their fixed ring structure are considered as two rings fused together.

"One considers as condensed rings, polynuclear ring systems which are characterized by having more than one ring in their fixed ring structure. The single rings are, to a certain degree, fused together. Ring condensation of two single-rings present the following possibilities:

1. One carbon atom is common to both rings. The spiro configuration is the case where one carbon is shared by both rings.

2. Two adjacent carbons are common to both rings.

3. There are more than two carbon atoms common to both rings.

"Condensed ring systems which can be split into more than two single rings, can come about if the above manner of condensation is repeated so that no one ring member is common to more than two single rings.

4. Certain carbon atoms are common to more than two single rings.

"For the derivation of systematic names in these different classes of condensed systems there are no fundamental rules carried over into general use which are extensively applicable. The attempts which have been made in this direction and which have yielded good results for certain parts show that the problem is most difficult and that there is small chance of reaching a solution which combines clarity of nomenclature with satisfactory simplicity. Thus is justified the historic procedure which has been developed and by which each polynuclear system whose significance extends through a number of known derivatives. is covered with a characteristic name. Nevertheless the necessity for the systematic or 'half systematic' nomenclature of the few polynuclear rings worked on remains persistent. This was shown especially in the years during which the literature search for this handbook (Beilstein) was carried on and in the different attempts at completion of preliminary principles and their extension. In a comprehensive way (1922) during a similar consideration of isocyclic and heterocyclic compounds, Stelzner and Kuh in the introduction to Vol. III of 'Literatur-Register der Organischen Chemie' attained the object for the basis of this book (Beilstein). Since this work is closely correlated with our book, the naming of compounds obtained according to the suggestion of Stelzner and Kuh, were, in suitable cases, used beside that in the original literature or according to established custom and are quoted with structural names. The following explanations are limited essentially to the prevailing practice of 1910.

"A proposal of Baeyer frequently followed in the literature can be applied to the bicyclic systems of cases 2 and 3. It suggests that one unite in the name, the total number of carbon atoms in the ring with the prefix bicyclo; this specifies by means of figures how many carbon atoms on each of the bridges lie between the two tertiary carbon atoms found at the place of ring branching. Thus one arrives at the name bicyclo-[1,2,2]-heptane for the hydrocarbon shown in the formula.

The numbering begins at a tertiary carbon turning the ring branching first in the wider then in the narrower orbit and going over finally to the carbon atom of the shortest bridge. Accordingly, the unsaturated hydrocarbon of formula

may be designated as bicyclo-[0,4,3]-nonatriene-1(6),2,4."

Up to the present time (August 1939) there has been no systematic method entirely satisfactory for naming the tricyclic groupings both of endo and exocyclic types of hydrocarbons. However, it is possible to apply in a limited way, the methods from bicyclic nomenclature to the naming of the triendocyclic compounds, as for example:

1,4-Endomethylene-[0,1,3]3,5-bicyclohexane

The common name for such a configuration is apocyclene or tricyclene, which is, as usual, unconnected with the structure. The superscripts shown in the formula for bicyclo compounds, as $(0.4.4)^{1.6}$ both in the unquoted part of the introduction and in the section on bicyclanes and bicyclenes are used to denote the positions at which the fusion of the inner bond is located.

The other tricyclic groupings have been difficult to designate in a systematic manner and therefore have retained their common name, for example:

Perhydroanthracene, or as a Geneva system name: 2,3-Cyclohexano-[0,4,4]-1.6 bicyclodecane.

The method of naming exocyclic tricyclo compounds is to use the prefix tricyclo with the suffix denoting the number of carbon atoms in the individual ring. This leaves no method for differentiating the endotricyclic compounds by use of a different prefix meaning three as in the relation of bi and di as adopted in this study.

For compounds of higher ring structure, the application of the Geneva system would be too cumbersome and tend toward ambiguity, although the hydrocarbons can be named as shown in the preceding examples.

The common names of the hydrocarbons have been included with the systematic ones, and an index for all of the common names will appear in the fourth volume of this work.

4. Critical Evaluation of the Data and Calculation of the Most Probable Values

A. Introduction

The problem of critically evaluating the experimental data has been somewhat complicated by investigators who have not reported probable errors of their physical constants; nor have they given sufficient details of their experiments to enable one to evaluate their constants with the degree of accuracy comparable to Volume I on aliphatic hydrocarbons. Since there is no one method by which the probable errors can be calculated from the alicyclic constants, an estimate has been made of the probable degree of reliability by consideration of the mode of synthesis, purification, and measurements.

In general, the physical constants of members of the alicyclic series are less reliable than those of the aliphatic series. The specific gravities and indices of refraction of aliphatic hydrocarbons are, on the average, reliable to one or two parts in 10,000; in contrast, the alicyclic variations are from two to four parts in 1,000. A striking example of inconsistency in the data is found in the data for 1-methylcyclohexene-1. There are data attributed to this compound which agree more closely with the more reliable physical constants of 3- and 4-methylcyclohexene-1. The experimenters have probably overlooked the possibility of isomerization of the compound during identification and measurement of the constants. This type of error may occur frequently but cannot be detected in this study because of a scarcity of accurate data for the pure compounds.

A discussion of the methods used in evaluating the melting points, boiling points, specific gravities, and refraction indices are given as follows:

B. MELTING POINTS

There are fewer data for the melting points of alicyclic hydrocarbons than for any of the other physical constants collected. Less than twenty per cent of the compounds have melting point data. A critical analysis of the data is impractical at this time because in most cases only one or two values are given for any one compound.

C. BOILING POINTS

For each hydrocarbon the boiling point data are listed in order of decreasing pressure. The pressure in millimeters corresponding to each boiling point is given

unless this pressure is 760 mm. in which case it is omitted. The value given in bold-face type for each hydrocarbon is a weighted average of the experimental values given at 760 mm.

There are more values for specific gravity of the alicyclic hydrocarbons than for either the melting point or boiling point values. The specific gravity may be determined more accurately than either the melting or the boiling point.

D. SPECIFIC GRAVITY

In determining the temperature coefficients of specific gravity, it is assumed that the variation of specific gravity with temperature may be expressed by the equation:

$$D_4^t = D_4^{t_0} + a(t - t_0) + b(t - t_0)^2, \tag{1}$$

in which D_4^i is the specific gravity of the substance at the temperature t, $D_4^{i_0}$ the specific gravity at some constant temperature to, and a and b are constants to be evaluated.

The constants $D_4^{t_0}$ (t_0 usually being 20°), a, and b were determined by the method of least squares. If the data are for the same temperature, the method of least squares is equivalent to taking the weighted average of these data.

The temperature coefficient of specific gravity, i.e., the derivative of D_4^t with respect to t, obtained from equation (1) is

$$\frac{dD}{dt} = a + 2b(t - t_0) \tag{2}$$

$$=a\left[1+\frac{2b}{a}(t-t_0)\right] \tag{3}$$

In all but a few cases equation (1) represents a degree of accuracy unjustified by the experimental data. Under these circumstances equation (1) degenerates into

$$D_4^t = D_4^{t_0} + a(t - t_0) \tag{4}$$

and equation (3) to

$$\frac{dD}{dt} = a \tag{5}$$

Equation (4) reproduces the data to within three or four units in the third decimal place or about one part in 200.

The adopted value of $D_4^{f_0}$ is given in the specific gravity column in bold-face type, the last figure of which is usually given in small type, e.g., 0.0812_1 . This signifies that the last figure is to be used only in calculating specific gravities at temperatures other than 20°. Equation (3) or (5) is given in the additional data column.

When values in the form $D_{i_1}^{i_2}$ are reported, t_1 being different from 4° , the values of $D_{i_2}^{i_2}$ are calculated by means of the formula

$$D_4^{t_2}$$
 (hydrocarbon) = $D_{t_1}^{t_1}$ (hydrocarbon) $\times D_4^{t_1}$ (water).

 $D_{t_1}^{t_2}$ is numerically equal to the density at t_2 in c.g.s. units when t_1 refers to the density of water at 4° .

The specific gravity values for each compound are listed in order of decreasing temperature. When the specific gravity was determined at 20°, this temperature was not recorded since the heading is given as D_4^{20} . If the specific gravity is referred to water at a temperature other than 4°, this fact is indicated by $D_{t_1}^{t_2}$ following the specific gravity value (t_1 and t_2 being expressed numerically).

E. INDEX OF REFRACTION

For each compound the indices of refraction are given for the H_{α} , H_{β} , H_{γ} , Na_{D} , He_{r} , He_{y} , and He_{g} lines wherever data permit. The subscripts r, y, and g on the He lines signify red, yellow, and green respectively. The temperature of the index of refraction measurement is indicated by a superscript on the symbol designating the line. Thus 1.42565, n_{H}^{20} signifies that the value of the index of refraction at 20° C. for the H line is 1.42565.

The wave lengths of the above-mentioned lines are given below.

TABLE I-Wave Lengths of the Principal Lines Used in Index of Refraction Measurements

Line	Wave Length, A
He.	6678
H_{α}	6563
Nap	5893
Hey	5876
He_q	5016
H_{β}	4861
H_{γ}	4341

The temperature coefficients of the index of refraction are evaluated by the same method used for specific gravity. The changes with temperature are smaller but of the same order of magnitude as those of specific gravity. The value of $n_D^{i_0}$ ($t_0 = 20^{\circ}$ whenever possible) is given in the index of refraction column in bold-face type, and that of the temperature coefficient in the additional data column. The values of the indices of refraction are referred to the sodium D line unless otherwise indicated and are tabulated in a manner similar to those for specific gravity.

5. Description of the Tables

A. STRUCTURAL FORMULAE

In writing the structure of the carbon skeleton of an alicyclic hydrocarbon, attempts are generally made to show only the number of carbon atoms in the ring. There is no intention to imply literal geometrical relation in the drawings. As a

result, a lack of uniformity occurs in writing the carbon skeletons of ring compounds. For example, cyclopentane is shown in a recent textbook of organic chemistry as follows:

In the present work an attempt is made to depict the carbon rings so as to correspond as closely as possible to the configuration of the carbon nuclei as discussed in an earlier section.

For each hydrocarbon, only those carbon atoms not part of a ring are explicitly written, except for shared rings as noted later. The monocyclic rings from cyclopropane to cycloöctane inclusive are simply depicted as regular polygons. Thus, cyclobutane, methylcyclopentane, and 1,2-dimethylcyclohexane are written as follows:

o-Xylene is often written in the same way as 1,2-dimethylcyclohexane above. However, this should result in no confusion to the reader inasmuch as compounds containing aromatic rings are not reported in the present volume. In volume III the aromatic rings will be distinguished from the alicyclics by the use of double bonds corresponding to any one of the Kekule-type structures.

Aliphatic side chains containing five or more carbon atoms in a straight chain will usually be written in an abbreviated manner. Thus, heptylcyclopentane will be written as

If the aliphatic side chains on the rings are *normal*, i.e., unbranched, the letter *n* has been omitted before the name. Thus butylcyclopentane will signify *n*-butyl cyclopentane.

As has been explained, the structures of many ring compounds, particularly those containing shared rings, are not known with certainty. As a consequence, the structural formulae have been reported more than one way in the literature

even when the attempt is made to show the geometrical configuration; i.e., [0,2,2]-bicyclohexane is shown as either

Although it is more frequently found in the literature in the former way, we shall write it in the latter way (i.e., as two squares) because it has been shown in a previous section that this is somewhat nearer the actual configuration.

[0,1,3]-Bicyclohexane will be written in the form usually found in the literature,

latter is never given and might result in some confusion if it were adopted here. In shared rings having three or more carbon atoms in common, all the shared carbon atoms except the terminal ones will be written explicitly. Thus, [1,2,2]-

bicycloheptane and [2,2,2]-bicycloöctane will be written as C and as

In polycyclic compounds containing more than two shared rings, the foregoing conventions are not strictly adhered to.

B. INTRODUCTION TO TABLES

The tables contain the experimental data on melting point, boiling point, specific gravity, and index of refraction. The bold-face figures are weighted statistical averages of all the values collated to March, 1939.

II. CYCLANES OR CYCLOPARAFFINS

- 1. Cyclanes with alkyl substitutions C_nH_{2n}
- 2. Cyclanes with an alkenyl or olefin substitution CaHin-1
- 3. Cyclanes with two alkenyl or olefin substitutions C_nH_{2n-4}
- 4. Cyclanes with an alkadienyl or diolefin substitution C_nH_{2n-4}
- 5. Cyclanes with an alkynyl or acetylene substitution C_nH_{2n-4}
- 6. Cyclanes with a cycloalkenyl or cycloölefin substitution C_nH_{2n-4}
- 7. Cyclanes with a bicyclenyl or bicycloölefin substitution C_nH_{2n-6}

I. CYCLANES W	TILL AL	N ALKIL C	IN PARA	TELIN SC	BSTITUTION
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n_D^{20}	Additional Data
Cyclopropane	-126.9	-33	0.688, @-40°	1.377 ₁ @-40°	$\frac{dD}{dt} = -0.00116/^{\circ}\text{C}.$ (-80° to -35°)
	- 127 ²⁴ - 126 ^{24a}	- 32.6 to - 33.6 ¹⁴ - 32.89 ¹¹ - 32.9 ⁶ - 32.89 ¹ @ 755.9mm - 34.5 ²⁴ @ 750mm	0.6807 \$ @	1.3726 7 @ -32.75° 1.3769 7 @ -40° 1.3799 6 @ -42.5° 1.3790 20 @ -42.8° 1.3898 20 @ -60.0° 1.3971 20 @ -71.2° 1.4024 7 @ -80°	$\frac{dn}{dt} = -0.00064/^{\circ}\text{C.}$ (-80° to -35°)
C.H. Methylcyclopropane					
c c	4 to 5 °		0.6760 \$ Do-8 0.6912 \$ Do-20		

		43			C, H,
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n_D^{20}	Additional Data
Ethylcyclopropane		34.5	0.677	1.379	$\frac{dD}{dt} = -0.000100/^{\circ}C.$ (0° to 20°)
ç—c		35.75 16	0.6784 4.24b	1.3789 16	(0° to 20°)
1		@ 765mm	0.6764 18	1.3791 23	
		36 to 36.5 23	0.6832 23	1.37973 22	
<u> </u>		34.5 to 35 4,24b		1.3780 24b	
		36.5 to 37 22	@ 18.25°		
		@ 755mm	0.6975 4,24a		
			@ 0°		
,		0	0.7055 22		
	I.		@ 0°		
		1			
1,1-Dimethyl-					
cyclopropane					
сс		21 9,10	0.6604 10	1.3659 10	
\checkmark		, , , , , , , , , , , , , , , , , , ,	0.6619 •	1.36869 9	
\wedge			@ 17°	@ 17°	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	n20 D	Additional Data
1,2-Dimethyl- cyclopropane					
low boiling		32.4 to 33.2 ²¹ @ 761mm 28.8 to 29 ² @ 758.9mm	0.6754 ²¹ @ 22 ⁰ 0.6769 ²	1.37129 * 1.38023 * $n_{H_a}^{20}$ 1.38702 * $n_{H_g}^{20}$ 1.39109 * $n_{H_g}^{20}$	
high boiling		37.2 to 37.4 ² @ 755.5mm	0.6928 ² 0.6985 ² @ 0° 0.71325 ² @ 0°	1.38223 ² 1.3694 1 ² $n_{H_{a}}^{20}$ 1.37617 ² $n_{H_{b}}^{20}$ 1.37997 ² $n_{H_{\gamma}}^{20}$ 1.37493 ²¹ $n_{H_{a}}^{10.6}$ 1.38209 ²¹ $n_{H_{\beta}}^{10.6}$ 1.38598 ²¹ $n_{H_{\gamma}}^{10.6}$	
(Probably cis-trans mixture)		32 to 33 28	0.6806 25 0.7025 25 @ 0°	1.3763 ** 1.3774 ** @ 18° 1.3787 ** @ 16° 1.3798 ** @ 14° 1.3813 ** @ 12° 1.3823 ** @ 10°	

		40			C ₆ H ₁₈
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n20 D	Additional Data
Propylcyclopropape C-C-C		68.5 *	0.7121 * @ 16.7°	1.3957 * @ 18° 1.3963 * @ 16.7°	
1-Methyl-2-ethyl-cyclopropane		64.9 to 65.9 17 63.9 to 64.9 17,18	0.6961 ^{17,18} @ 21° 0.6959 ¹⁷ 0.6960 ¹⁷	1.3876 17 @ 21° 1.3874 18 @ 21° 1.3874 17 1.3880 17	
1,1,2-Trimethyl-cyclopropane		57 59 to 60 ** @ 768mm 59 to 60 4 52.8 ** @ 756mm 52.5 ** @ 752mm 56 to 57 ** @ 750mm	0.681 ₄ 0.6949 12 D ₀ ²⁰ 0.6822 28 @ 19.5° 0.6888 4.21 @ 15.3°	1.386 ₂ 1.3866 ¹³ 1.3848 ** @ 19.5° 1.3896 ** @ 14.5° 1.38738 ** *********************************	

C4.EL12		- TU			
Name and Carbon Skeleton	M. P.,° C.	B. P., °C. @ 760mm	D420	n _D ²⁰	Additional Data
1,2,3-Trimethyl-cyclopropane		65 to 67 ²⁶ @ 755mm	0.6946 ²⁸ @ 18°	1.3945 26	
C, H ₁₄ 1-Methyl-2-propyl- cyclopropane		92 to 93 17,19	0.7206 ^{17,19} @ 18°	1.4003 ^{17,19} @ 18°	
1-Methyl-2-isopropyl-cyclopropane		81 ¹³ @ 748mm	0.7102 13 D_0^{20}	1.3927 13	

		4/			C _t H ₁₆
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n _D ²⁰	Additional Data
1-Methyl-2-(2-methyl-propyl) cyclopropane		109.5 to 110.5 ^{13,25a}	0.7403 13.25a	1.4088 13,25a	
I-Methyl-1,2-diethyl-cyclopropane		108 to 109 ^{25a}	0.7381 ^{25a}	1.4102 ^{25a}	
1,1,2-Trimethyl-2-ethylcyclopropane		103.5 to 104.5 ¹⁷	0.7418 ¹⁷ @ 20.4°	1.4129 ¹⁷ @ 20.4°	
			Ü		

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n _D ²⁰	Additional Data
1,1-Dimethyl-2- (2-methylpropyl)- cyclopropane					
c -c		125 to 12613	0.7187 18 D_0^{10} 0.7347 18 D_0^{0}	1.4032 18	

- (1) A. Ashdown, L. Harris, and R. T. Armstrong, J. Am. Chem. Soc. 58, 850, 1936.
- (2) J. Baudrenghien, Bull. soc. chim. Belg. 38, 172, 1929.
- (3) J. Boeseken and H. V. Takes, Rec. trav. chim. 56, 858, 1937.
- (4) G. Chavanne, Bull. soc. chim. Belg. 31, 338, 1922.
- (5) N. Demianoff, Ber. 28, 23, 1895.
- (6) A. V. Grosse, J. Am. Chem. Soc. 59, 2739, 1937.
- (7) A. V. Grosse and C. Linn, Unpublished data.
- (8) A. V. Grosse and R. Wackher, Unpublished data.
- (9) G. Gustavson, J. prakt. Chem. [2] 62, 271, 1900.
- (10) G. Gustavson and O. Popper, J. prakt. Chem. [2] 58, 458, 1898.
- (11) H. B. Hass, E. T. McBee, G. E. Hinds, and E. W. Gluesenkamp, Ind. Eng. Chem. 28, 1178, 1936.
- (12) N. Kishner, J. Russ. Phys. Chem. Soc. 44, 169, 1912.
- (13) N. Kishner, J. Russ. Phys. Chem. Soc. 45, 957, 1913.
- (14) K. W. F. Kohlrausch and F. Köppl, Z. physik. Chem. B26, 209, 1934.
- (16) R. Lespieau, Bull. soc. chim. [4] 47, 847, 1930.
- (17) R. Lespieau and R. L. Wakeman, Bull. soc. chim. 51, 384, 1932.
- (18) R. Lespieau and R. L. Wakeman, Compt. rend, 192, 1395, 1931.
- (19) R. Lespieau and R. L. Wakeman, Compt. rend. 192, 1572, 1931.
- (20) C. Linn, Unpublished data.
- (21) G. J. Östling, J. Chem. Soc, 101, 457, 1912.
- (22) O. Philipow, J. prakt. Chem. [2] 93, 162, 1916.
- (23) N. Rosanow, J. Russ. Phys. Chem. Soc. 48, 168, 1916.
- (24) M. Trautz and W. Winkler, J. prakt. Chem. [2] 104, 37, 1922.
- (24a) R. Willstätter and J. Bruce, Ber. 40, 3982, 1907.
- (24b) N. D. Zelinsky and B. Schtscherbak, J. Russ. Phys. Chem. Soc. 44, 275, 1880, 1912; Ber. 46, 169, 172, 1913.
- (25) N. D. Zelinsky and M. N. Ujedinoff, J. prakt. Chem. [2] 84, 543, 1911.
- (25a) N. D. Zelinsky and A. Upensky, J. Russ. Phys. Chem. Soc. 45, 831, 1913.
- (26) N. D. Zelinsky and J. Zelikow, Ber. 34, 2856, 1901.

		49	C, I		
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	n_D^{20}	Additional Data
Cyclobutane					
\Diamond	- 80 16	11 to 12 16	0.7038 ¹⁶ @ 0° 0.7185 ¹⁶ @ -5°	1.37520 ¹⁶ @ 0°	
C ₊ H ₁₀					
Methylcyclobutane		38.6	0.6931	1.3837	$\frac{dD}{dt} = -0.000946/^{\circ}C.$
¢		39 to 42 1.2 36.3 4 34 to 35 19 36 to 36.5 13 @ 755mm 35 to 36 3 @ 753mm	0.6931 3 0.6784 19 0.6950 3.13 @ 18° 0.6976 3 @ 15° 0.7118 13 @ 0° 0.7120 4 @ 0° 0.7135 3 @ 0° 0.6975 19 @ 0°	1.3780 19 1.3836 3 1.3850 4 1.3846 3 @ 18° 1.38473 13 @ 18° 1.386 3 @ 15°	$\frac{dn}{dt} = -0.00048/^{\circ}C.$ (15° to 20°)
C.H.2 Ethylcyclobutane	– 143.2 u	71.5 72.2 to 72.5 17 70.7 14 70 6 @ 754mm	0.7450 0.7450 17 0.7284 6 D ₀ 0 0.7540 17 @ 10° 0.7461 6 D ₀ 0	1.402 1.4004 6 1.4023 14 1.4080 17 @ 19.5° 1.4032 6 @ 15°	$\frac{dD}{dt} = -0.00090/^{\circ}C.$ (10° to 20°)

					was a second sec
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	n_D^{20}	Additional Data
1,2-Dimethyl-cyclobutane		68 to 70 ²⁰ @ 740mm	0.7122 20	1.3988 20	
C ₇ H ₁₄ Propylcyclobutane		99 to 100 ¹⁸ @ 736.2mm	0.7440 ¹⁸ @ 19°	1.4119 ¹⁸ @ 19°	
Isopropylcyclobutane c-c-c		90.5 to 91.5 s @ 750mm	0.7464 ⁵ @ 14.5°	1.4096 s @ 19° 1.4125 s @ 14.5°	

		31			C, H,
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D_4^{20}	n_D^{20}	Additional Data
3-Cyclobutylpentane		151 to 152 ⁷	0.7945 ⁷ @ 19°	1.4334 ⁷ @ 19°	
C ₁₀ H ₂₀ 1,2-Diisopropylcyclobutane C—c—c C C C		157 to 158.5 °	0.7755 9 0.7901 9 @ 0°	1.42787 ° 1.42565 ° 1.42565 ° 1.43316 ° 1.43755 ° 1.4375 °	
1,1,2-Trimethyl-3- isopropylcyclobutane		145 to 146.5 °	0.7598 ° 0.7744 ° @ 0°	1.41997 ° 1.41781 ° 1.42527 ° 1.42527 ° 1.42980 ° 1.42980 ° 1.42980 °	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D_4^{20}	n_D^{20}	Additional Data
1,2-Dimethyl-3,4-diethylcyclobutane		155 to 156 "	0.7729 11	1.42447 11 1.42193 11 $n_{H_a}^{20}$ 1.42950 11 $n_{H_B}^{20}$	
c—c				1.43377 11 n ²⁰ _{H_Y}	
C ₁₃ H ₂₄ 1,1,3,3-Tetramethyl- 2,4-diethylcyclobutane C-C-C-C-C-C-C-C		124 to 125 15			
C ₁₁ H ₂₈ 1,1,2,2-Tetramethyl- 3,4-diisopropylcyclo- butane		106 to 107 ¹² @ 27mm	0.8035 ¹² @ 17° 0.8181 ¹² @ 0°	1.44580 ½ @ 17°	

- (1) G. Chavanne, Bull. soc. chim. Belg. 31, 331, 1922.
- (2) H. G. Colman and W. H. Perkin, J. Chem. Soc. 53, 185, 1888.
- (3) N. Demjanoff and M. Dojarenko, J. Russ. Phys. Chem. Soc. 45, 176, 1913.
- (4) A. V. Grosse and V. N. Ipateiff, J. Org. Chem. 2, 447, 1937.
- (5) B. A. Kasansky, Ber. 69, 950, 1936.
- (6) N. Kishner, J. Russ. Phys. Chem. Soc. 45, 973, 1913.
- (7) N. Kishner and Amasow, J. Russ. Phys. Chem. Soc. 37, 518, 1905.
- (9) S. Lebedev, J. Russ. Phys. Chem. Soc. 43, 820, 1911.
- (11) S. Lebedev and L. Mereshkowsky, J. Russ. Phys. Chem. Soc. 45, 1348, 1913.
- (12) L. Mereshkowsky, J. Russ. Phys. Chem. Soc. 45, 1925, 1913.
- (13) O. Philipow, J. prakt. Chem. [2] 93, 162, 1916.
- (14) J. Smittenberg, H. Hoog, and R. A. Henkes, J. Am. Chem. Soc. 60, 17, 1938.
- (15) E. Wedekind and M. Miller, Ber. 44, 3285, 1911.
- (16) R. Willstätter and J. Bruce, Ber. 40, 3982, 1907.
- (17) N. D. Zelinsky and J. Gutt, Ber. 41, 2431, 1908.
- (18) N. D. Zelinsky and B. A. Kasansky, Ber. 60, 1101, 1927.
- (19) N. D. Zelinsky and B. Schtscherbak, J. Russ. Phys. Chem. Soc. 44, 1880, 1912.
- (20) N. D. Zelinsky and M. B. Turova-Pollak, J. Gen. Chem. (U.S.S.R.) 2, 666, 1932.

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D_4^{20}	n_D^{20}	Additional Data
Cyclopentane	-94.4	49.3,	0.7460	1.4068₃	
Cyclopentane	- 94.1 34 - 94.3 58 - 94.8 4	49.5 *4 @ 767mm 48.4 to 48.6 *1 @ 763mm 50.25 to 50.75 *4 49.5 *10 49.4 to 49.5 *19.25 49.37 *50 49.40 *4 49.35 *12 49.30 *00 49.2 *58 49 to 51 *73 49.0 *20 49 *28.29,30 48.5 *31 50.0 *18	0.7460 0.73572 60 @ 30° 0.7506 64 @ 20.5° 0.7543 21 @ 20.1° 0.7447 64 0.7457 19.25 0.7471 61 0.7531 31 0.7491 61 @ 17.5° 0.7494 61 @ 17.1° 0.7490 72 @ 15° 0.7498 19.25 @ 15° 0.750 10 @ 15°	1.4068 ₃ 1.4057 ⁷³ @ 25.5° 1.4061 ⁵² @ 21.8° 1.4039 ⁶⁴ @ 20.5 1.4060 ⁸¹ 1.4065 ⁵⁸ 1.40672 ⁶¹ 1.4070 ^{19,25} 1.4075 ⁵⁴ 1.40910 ⁶⁰ @ 15° 1.4094 ⁴ @ 15° 1.4101 ⁷² @ 15° 1.4101 ⁵² @ 14.7° 1.4100 ²⁸ @ 13.5°	$\frac{dD}{dt} = -0.000949/^{\circ}C.$ (0° to 30°) $\frac{dn}{dt} = -0.000484/^{\circ}C.$ (10° to 25°)
		@ 756mm 48.5 to 51 72 @ 748mm	0.7503 12 @ 15° 0.75033 60 @ 15° 0.7505 4 @ 15° 0.7500 23 @ 14.7° 0.754 55 @ 14.7° 0.7502 28 D12.5 0.7517 20 @ 12.7° 0.7645 4 @ 0° 0.7646 12	1.4321 52 @ - 26.8° 1.40464 21 $n_{H_a}^{20.1}$ 1.40464 61 $n_{H_a}^{20.1}$ 1.40383 18 $n_{H_a}^{20}$ 1.4070 260 $n_{H_a}^{15}$ 1.4074 4 $n_{H_a}^{15}$ 1.40770 28 $n_{H_a}^{14.7}$ 1.4173 21	
			@ 0° 0.76498 •• @ 0°	$ \begin{array}{c c} n_{H_{\beta}}^{20.1} \\ 1.41166 & \\ n_{H_{\beta}}^{20.0} \end{array} $	

					C, H	
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D_4^{20}	n_D^{20}	Additional Data	
Cyclopentane (Continued)						
				1.41126 18		
,				$ \begin{array}{c c} n_{H_{\beta}}^{20} \\ 1.41417 & 60 \end{array} $		
				$n_{H_{\beta}}^{15}$		
				1.4145 4		
				$ \begin{array}{c c} n_{H_{\beta}}^{15} \\ 1.41481^{23} \end{array} $		
				$n_{H_{\beta}}^{14.7}$		
				1.41589 21 $n_{H_{\gamma}}^{20.1}$		
				1.41520 61		
				$ \begin{array}{c c} n_{H_{\gamma}}^{20.0} \\ 1.41536 & ^{18} \end{array} $		
				$n_{H_{\gamma}}^{20}$		
				1.4185 4		
				$n_{H_{\gamma}}^{15}$ 1.41891 23		
				$n_{H_{\gamma}}^{14.7}$		
				1.40609 18 n _{He} 18		
				1.40981 23		
				n14.7		
				1.41318 60 n _{He}		
				1.40668 60		
		:		1.41723 60		
				n _{He} ,		
				1.40927 60		
				n_{He}^{1b}		

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D_4^{20}	n_D^{20}	Additional Data
Methylcyclopentane	-142.2	71.9,	0.7488	1.4099。	$\frac{dD}{dt} = -0.000916/^{\circ}\text{C}.$
ç	- 141 4,7	72 to	0.7293 61	1.4088 67	(0° to 40°)
\downarrow	- 141.9 33		@ 41.2°	@ 21°	$\frac{dn}{dt} = -0.000475$ °C.
$\langle \ \rangle$	- 142.4 58	72.00 60	0.7303 61	1.4098 33	(10° to 20°)
	- 142.7 58	72 10	@ 40.2°	1.4099 19,25	,
	- 143.0 50		0.73948 60	1.40998 61	
		71.8 to 72 4	@ 30°	1.4100 58,80	
		71.8 33	0.7474 67	1.4096 77	
		71.5 to 72.5 ²⁶	@ 21°	@ 19.5°	
		71 to 72.5 71	0.7459 18	1.4104 65	
		71 to 72 80	0.7487 33	@ 18°	
		70 to 72.5 46	0.7496 19,25	1.4119 71,73	
		70 to 71 24,47	0.7510 61	@ 15.5°	
		71 to 72 46	0.7508 46	1.41237 60	
		@ 755mm	D_0^{20}	@ 15°	
		70.0 to 70.5 18		1.4126 4 @ 15°	
		@ 755mm	@ 19.5°	1.4111 28	
		71 to 72 38	0.7515 ⁶¹ @ 19.5°	@ 13.5°	
		@ 752mm	0.7473 65	1.40788 61	
		70.9 to 71.0 61 @ 751mm	@ 18°	$n_{II}^{20.6}$	
		71 to 72.5 73	0.7505 73	1.40750 18	
		@ 745mm	@ 15.5°	$n_{H_a}^{20}$	
		71 77	0.7505 71		
		@ 743mm	@ 15°	1.41023 60	
		71.5 to 72 46	0.7528 4.12	$n_{H_{\mathbf{\alpha}}}^{15}$	
		@ 742mm	@ 15°	1.4104 4	
		71.5 to 72.5 65		n ¹⁵	·
		@ 740mm	@ 15°	1.41511 61	
			0.7530 4	$n_{H_{\beta}}^{20.0}$,
			@ 15° 0.7533 10	1.41465 18	
			@ 15°	$m_{H_{\ eta}}^{20}$	
			0.75343 **	1.4176 4	•
			@ 15°	$n_{H_{\beta}}^{15}$	
			0.7541 19,25	1.41760 60	
			@ 15°		
			0.7562 61	$n_{H_{\beta}}^{15}$	
		ļ	@ 14.8°	1.41824 61	
		ļ	0.7511 28	$n_{H_{\gamma}}^{20.0}$	
	1		$D_{18.5}^{18.5}$	1.41868 18	
			0.7666 4.12	$n_{H_{\gamma}}^{20}$	
			@ 0°		

		57			C, H,
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D40	n20 D	Additional Data
Methylcyclopentane (Continued)					
			0.76737 60 @ 0° 0.76615 46 D% 0.76641 46 D% 0.76829 46 D%	1.4214 4 nlb H 1.40947 18 nlb H 1.41649 60 nlb H 1.40975 60 nlb H 1.42064 60 nlb H 1.4254 60 nlb H nlb H nl	

Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D_4^{20}	n_D^{20} .	Additional Data
Name and Carbon Skeleton Ethylcyclopentane C-C	M. P.,°C.	B. P., °C. @ 760mm	0.7657 0.7478 ⁵¹	1.4197 ₆ 1.4197 ₆ 1.4190 ⁵² @ 21.8° 1.4196 ⁵¹ 1.4201 ^{19,26} 1.4202 ^{71,73} 1.4201 ⁷ @ 19.1° 1.4188 ⁶⁹ @ 18° 1.4222 ⁵² @ 14.7° 1.4269 ⁵² @ 5.8°	Additional Data $\frac{dD}{dt} = -0.000932^{\circ}/C.$ (15° to 40°) $\frac{dn}{dt} = -0.000496/^{\circ}C.$ (5° to 25°)
		⊌ /¥omm	@ 15° 0.77117 @ 14.9°	(a) 5.8° 1.4425 52 (a) -26.7° 1.41612 18 $n_{H_a}^{20}$ 1.4179 7 $n_{H_a}^{18.85}$ 1.42332 18 $n_{H_{\beta}}^{20}$ 1.4253 7 $n_{H_{\beta}}^{18.9}$ 1.42798 18 $n_{H_{\gamma}}^{20}$ 1.41840 18 $n_{H_{\gamma}}^{20}$	

		39			0,111
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D_4^{20}	n_D^{20}	Additional Data
1,1-Dimethyl- cyclopentane			0.7523	1.4126	
c c	- 76.4 ² - 77 ⁹	88 40 @ 762mm 87.5 2.44 86.5 to 87.4 9 87.8 to 87.9 40 @ 755mm 87.2 to 87.9 9 @ 748mm	0.7509 ² 0.7551 ⁹ 0.7546 ⁴⁰ D_{c}^{20} 0.7547 ⁴⁰ D_{c}^{20} 0.7552 ⁴⁴ D_{c}^{30} 0.7590 ⁹ @ 15°	1.4122 ² 1.4131 ⁴⁰ 1.4136 ^{9,40} 1.4139 ⁴⁴ 1.4147 ⁹ @ 18° 1.4125 ⁹ $n_{H_a}^{18}$ 1.4240 ⁹ $n_{H_a}^{18}$	·
cis-1,2-Dimethyl-cyclopentane	- 62 6	99.25 6 99.23 16 98.40 6 @ 741mm	0.7723 0.7718 ° 0.77266 ° 0.7764 ° @ 15°	1.42014 6 $n_{H_a}^{20}$ 1.42748 6 $n_{H_{\beta}}^{20}$ 1.43180 6 $n_{H_{\gamma}}^{20}$ 1.42202 6 $n_{H_{\epsilon}}^{20}$	

⁸ C. B. P., °C. @ 760mm	D40	n20	Additional Data
	1		
91.8 ⁶ 91.78 ¹⁶	0.7495 6 0.75137 16	1.40934 6 n _H _a	
90.95 • @ 741mm	0.7541 6 @ 15°	1.41659 6 $n_{H_{\beta}}^{20}$	
		1.42077 ° n ²⁰ _{H_γ}	
		1.41155 6 1.41155 6 1.41155 6	
	1	1	
95.8 to 97.6 8 94 to 99 11	0.764 11	1.41745 49	
94 to 98 56,57 93 to 94 49	0.7681 ⁸ @ 15°	1.4160 ⁴⁰ 1.4150 ⁴⁰	
92 to 95 9 92 to 93 40 @ 758mm	0.7534^{-40} D_0^{20} 0.7629^{-40}	@ 18.5° 1.4166 56,59 n_H^{20}	
94 to 96 ⁴⁰ @ 754mm	$D_0^{20} \\ 0.7581^{40} \\ D_0^{18.5}$	1.4241 56,59 $n_{H_{\beta}}^{20}$ 1.4287 56,59	
		$n_{H_{oldsymbol{\gamma}}}^{20}$	
	90.95 ° @ 741mm 92.7 to 93 °° @ 762mm 95.8 to 97.6 ° 94 to 99 '' 94 to 98 **.*7 93 to 94 °° 92 to 95 ° 92 to 93 °° @ 758mm 94 to 96 °°	90.95 °	90.95 ° @ 741mm 0.7541 ° @ 15° 1.41659 ° $n_{H_g}^{20}$ 1.42077 ° $n_{H_g}^{20}$ 1.41155 ° 1.41155 ° 1.41155 ° 1.41155 ° 1.417 ° 1.418 ° 1.4

***************************************	C, H				
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D_4^{20}	n_D^{20}	Additional Data
d-1,3-Dimethyl-cyclopentane		90.5 to 91 66 @ 755mm	0.7497 % @ 18°	1.4110 66 @ 18°	$[\alpha]_D^{18} = +1.78^{\circ 66}$
c					
1,3-Dimethyl- cyclopentane					
	- 136.75 3 - 136.7	93 % 90.7 % 90.68 to 90.80 % 90.6 to 90.8 3.5 90.6 to 90.8 3.5 90.5 10.25 94 to 95 30 @ 755mm 91 to 91.5 60 @ 751mm 90.18 to 90.30 % @ 749mm 89.9 to 90.1 % @ 744mm 93 78 @ 743mm	0.7410 °6	1.4066 % @ 24° 1.4076 3.5 @ 20.8° 1.4096 19.25 1.4130 78 1.4144 39 1.4104 3.5 @ 16°	
x,x-Dimethyl- cyclopentane					
		91 to 94 10 91 to 91.4 79			
					bi

Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D420	n_D^{20}	Additional Data
Propylcyclopentane	- 120.3 ⁷ - 121.7 59a	130.8 131.3 7	0.7765 0.7601 s1 @ 40° 0.7755 73 @ 21° 0.7772 7 @ 20.2° 0.7718 18,52 0.7756 51 0.7766 19,25 0.77812 19,25 @ 15.5° 0.7814 7 @ 14.9°	1.4265, 1.4256 52 @ 22° 1.4259 73 @ 21° 1.4263 52 1.4266 7 1.4269	$\frac{dD}{dt} = -0.000849/^{\circ}C.$ (15° to 40°) $\frac{dn}{dt} = -0.000461/^{\circ}C.$ (-30° to +25°)

		03			C,H,
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n20	Additional Data
Isopropylcyclopentane C-C-C	- 112.7 62		0.7766 0.7593 s1 @ 40° 0.7717 18 0.77644 s1 0.77640 s2 0.7785 s7 @ 18°	1.4264 1.4252 52 @ 22° 1.4261 51 1.4273 37 @ 18° 1.4284 52 @ 15° 1.4317 52 @ 7.7° 1.4468 52 @ -26.3° 1.42255 18 1.43010 18 1.43010 18 1.43454 18 1.43454 18 1.43454 18 1.43454 18 1.43454 18 1.43454 18 1.43454 18 1.43454 18	$\frac{dD}{dt} = -0.00086/^{\circ}C.$ (15° to 40°) $\frac{dn}{dt} = -0.00042/^{\circ}C.$ (-25° to +25°)
cis-1-Methyl-2-ethyl-cyclopentane	·	128.24 to 128.26 ¹⁶ 127.7 to 128 ¹³	0.7850 ₁ 0.78508 ¹⁰ 0.7846 ¹³ 0.8011 ¹³ @ 0°	1.4291 13 1.4269 13 1.4269 13 1.4344 13 1.4344 13 1.4387 13 1.4387 13	$\frac{dD}{dt} = -0.000802/^{\circ}C.$ (0° to 20°)

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	n_D^{20}	Additional Data
trans-1-Methyl-2- ethylcyclopentane			0.7691		$\frac{dD}{dt} = -0.000843/^{\circ}\text{C}.$ (0° to 20°)
		121.4 to 121.75 ¹³ 121.35 to 121.40 ¹⁶	0.7696 ¹³ 0.76912 ¹⁶ 0.7860 ¹³ @ 0°	$ \begin{array}{c} 1.4220^{13} \\ 1.4198^{13} \\ n_{H_{\bullet}}^{20} \\ 1.4272^{13} \\ n_{H_{\beta}}^{20} \\ 1.4314^{13} \\ n_{H_{\gamma}}^{20} \\ \end{array} $	
1-Methyl-2-ethyl- cyclopentane		124 ⁴⁸ 121 ⁴⁹ @ 753mm	0.7728 49	1.42835 49	
d-1-Methyl-3-ethyl-cyclopentane		120.5 to 121 ⁶⁶ @ 756mm	0.7669 % @ 16°	1.4214 % @ 16°	$\left[\alpha\right]_{D}=+4.34^{\circ 66}$
c-c					

		65			C ₈ H ₁₆
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D_4^{20}	n_D^{20}	Additional Data
1,1,2-Trimethyl- cyclopentane			0.7710,		$\frac{dD}{dt} = -0.000869/^{\circ}C.$ (0° to 25°)
(Dihydroisolaurolene)		114 74,75 114 74 @ 755mm 113 to 113.5 17.41 @ 750mm 113 to 114 41 @ 749mm	0.7694 17 D_{25}^{25} 0.7727 17 D_{20}^{20} 0.7661 41 D_{0}^{20} 0.7719 74 $(2.18)^{19}$ 0.7728 74.75 $(2.18)^{19}$ 0.7746 21 $(2.18)^{15}$ 0.7746 11.5 0.7746 12 0.7746 11.5 0.7746 17 0.7746 17 0.7746 18 0.7746 17 0.7746 17 0.7746 18 0.7746 17 0.7746 18 0.7746 17 0.7746 18 0.7746 19 0.7746 10 0.7746 10 0.7746 10 0.7746 10 0.7746 10 0.7746 17 0.7746 18 0.7746 17 0.7746 18 0.7746 17 0.7746 18	$ \begin{array}{c} 1.4199 \stackrel{41}{}\\ 1.4234 \stackrel{74}{}\\ @ 19°\\ 1.4238 \stackrel{74.76}{}\\ @ 18°\\ 1.4223 \stackrel{74}{}\\ @ 17°\\ 1.42244 $	
1,1,3-Trimethyl-cyclopentane	1	15 to 116 81	0.7703 81	1.4223 ⁸¹	

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D420	n_D^{20}	Additional Data
Butylcyclopentane C-C-C-C 154.5 to 15636 @ 762.7mm 157.2 19.25 154.5 to 155 52 @ 750mm 154.5 to 155 52 0.7887 7 @ 14.95° 0.7883	(Dihydrolaurolene)			D ₂₈ ²⁸ 0.7596 ¹⁷ D ₂₀ ²⁰ 0.7588 ^{17,21} @ 19.8° 0.7688 ^{74,75} @ 19° 0.7633 ¹⁷ D ₁₅ ¹⁵ 0.7718 ¹⁷	@ 19° 1.41424 $\begin{Bmatrix} ^{17}, & \\ n^{10.8}_{H_a} \end{Bmatrix}$ 1.42162 $\begin{Bmatrix} ^{11}, & \\ 21 & \\ n^{19.8}_{H_B} \end{Bmatrix}$ 1.42591 $\begin{Bmatrix} ^{17}, & \\ 21 & \\ 1 \end{Bmatrix}$	·
$ \begin{array}{c c} $	Butylcyclopentane	-112.1	@ 762.7mm 157.2 10.25 156.8 7.51 154.5 to 155 52	0.7687 ⁵¹ @ 40° 0.7848 ⁷ @ 20.2° 0.7832 ⁵¹ 0.7847 ^{19.25} 0.7862 ³⁶ @ 16° 0.7886 ^{19.35} @ 15° 0.7887 ⁷	1.4309 s2 @ 21.9° 1.4314 7 @ 20.2° 1.4310 19.25 1.4317 51 1.4336 52 @ 16° 1.4336 52 @ 14.8° 1.4380 52 @ 6.2° 1.4529 52 @ - 26.6° 1.4292 7 n202.35 n236 7	$\frac{dD}{dt} = -0.000781/^{\circ}\text{C}.$ $(15^{\circ} \text{ to } 40^{\circ})$ $\frac{dn}{dt} = -0.000460/^{\circ}\text{C}.$ $(-30^{\circ} \text{ to } +25^{\circ})$

Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D40	n_D^{20}	Additional Data
2-Cyclopentylbutane C-C-C-C		154.6 s1 152.5 to 153.5 s6.37 @ 763.7mm 151 to 152 s2 @ 741mm 152 to 154 s3 @ 725mm	0.7944 ₈ 0.7787 ⁵¹ @ 40° 0.79407 ⁵² 0.7941 ⁵¹ 0.7971 ³⁶ , ³⁷ @ 18° 0.810 ⁶³ @ 0°	1.4362 1.4356 ⁸²	$\frac{dD}{dt} = -0.000790/^{\circ}C.$ $(0^{\circ} \text{ to } 40^{\circ})$ $\frac{dn}{dt} = -0.00042/^{\circ}C.$ $(-25^{\circ} \text{ to } 25^{\circ})$
2-Methyl-1-Cyclopentylpropane		148 to 149 ¹⁸ @ 756mm	0.7795 18	$n_{H_{\phi}}^{20}$ $n_{H_{\phi}}^{20}$ $n_{H_{\phi}}^{20}$ $n_{H_{\phi}}^{20}$ $n_{H_{\phi}}^{20}$ $n_{H_{\phi}}^{20}$ $n_{H_{\phi}}^{20}$ $n_{H_{\phi}}^{20}$ $n_{H_{\phi}}^{20}$	
2-Methyl-2-cyclopentylpropane (tert-Butylcyclopentane)	96 sı	145.2 51	0.7753 ⁵¹ @ 40° 0.7911 ⁵¹	1.4342 51 1.4341 51 1.4320 51 n _{Ha} 1.4396 51 n _{Hβ}	$\frac{dD}{dt} = -0.00079/^{\circ}C.$ (20° to 40°)

Ug III is		00			
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D40	n_D^{20}	Additional Data
cis-1-Methyl-2-propyl- cyclopentane					$\frac{dD}{dt} = -0.000786/^{\circ}\text{C}.$ (0° to 20°)
, c-c-c	- 104.9 15	152.58 15,16	0.79212\bigg\{\bigg\{\text{16}} \\ 0.80783 \\ \@ 0^\circ\$	$\begin{array}{c} 1.43432 \ ^{15} \\ 1.43211 \ ^{15} \\ n_{H_{a}}^{20} \\ 1.43962 \ ^{15} \\ n_{H_{b}}^{20} \\ 1.44395 \ ^{15} \\ n_{H_{c}}^{20} \\ 1.43858 \ ^{15} \\ n_{H_{c}}^{20} \\ 1.43171 \ ^{15} \\ n_{H_{c}}^{20} \\ 1.4342 \ ^{15} \\ n_{H_{c}}^{20} \\ \end{array}$	
trans-1-Methyl-2- propylcyclopentane		146.37 16 146.37 to 146.38 18	0.77743 0.777416 0.7774316 0.7932816 @ 0°	$\begin{array}{c} 1.42740^{\ 15} \\ 1.42526^{\ 15} \\ n_{H_{a}}^{20} \\ 1.43279^{\ 15} \\ n_{H_{\beta}}^{20} \\ 1.43705^{\ 15} \\ n_{H_{\gamma}}^{20} \\ 1.43173^{\ 15} \\ n_{H_{\sigma_{q}}}^{20} \\ 1.42496^{\ 15} \\ n_{H_{\sigma_{r}}}^{20} \\ 1.42750^{\ 15} \\ n_{H_{\sigma_{r}}}^{20} \end{array}$	$\frac{dD}{dt} = -0.000793/^{\circ}C$ (0° to 20°)

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D_4^{20}	n_D^{20}	Additional Data
1-Methyl-2-isopropyl-cyclopentane		142.5 ⁴³ @ 759mm	0.7792 ⁴³ D ₀ ²⁰ 0.7833 ⁴³ D ₀ ¹⁵	1.4279 43	
1-Methyl-3-propyl-cyclopentane		146 to 148 ⁷⁰ @742mm			
1-Methyl-3-isopropyl-cyclopentane		140 to 142.5 36 @ 764.8mm 142 to 144 62 133 to 134 30 132 to 134 30 142.5 43 @ 759mm 141.5 to 142 22 @ 758mm	@ 22° 0.7792 43 0.773 30 @ 19° 0.7750 35 @ 18.5°	1.4236^{62} @ 22° 1.4279^{43} 1.4250^{30} @ 19° 1.4257^{35} @ 18.5° 1.42744^{22} $n_{H_{\alpha}}^{15.2}$ 1.43505^{22} $n_{H_{\beta}}^{115.2}$ 1.43947^{22} $n_{H_{\gamma}}^{115.2}$	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n_D^{20}	Additional Data
1,1-Diethylcyclo- pentane		150.5 ⁴² @ 757mm.	0.8028 ⁴² D ₄ ²⁰	1.4388 42	
cis-1,2-Diethylcyclo- pentane C-C C-C	- 118.7 14	153.55 to 153.58 ¹⁴ 153.58 ¹⁶	0.79599 {14, 16 0.81165 14 @ 0°	1.43552^{14} 1.43562^{14} 1.43332^{14} n_{μ}^{20} 1.43343^{14} $n_{H_{g}}^{20}$ 1.44090^{14} $n_{H_{g}}^{20}$ 1.44100^{14} $n_{H_{g}}^{20}$ 1.44528^{14} $n_{H_{g}}^{20}$ 1.44538^{14} $n_{H_{g}}^{20}$	$\frac{dD}{dt} = -0.000783/^{\circ}C.$ (0° to 20°)
trans-1,2-Diethyl- cyclopentane	95.6 14	147.53 ¹⁶ 147.53 to 147.55 ¹⁴	0.78316 14 0.78318 14 0.79858 14 @ 0°	1.42950 14 1.42738 14 n _H 1.43487 14 n _H 1.43920 14 n _H n _H	$\frac{dD}{dt} = -0.000771/^{\circ}\text{C.}$ (0° to 20°)

	C _i H _i				
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n20 D	Additional Data
1,2-Diethylcyclo- pentane		151 to 152 ⁴² @ 755mm	0.7952 42 D ₀ ²⁰	1.4353 42	
1,3-Diethylcyclopentane		148 to 149 45 @ 767mm	0.7851^{45} D_0^{20}	1.4298 46	
1,1,2,3-Tetramethyl-cyclopentane			0.7820 ²¹ @ 14.1°	1.42781 21 1.43541 21 1.43541 21 1.43986 21 1.43986 21 1.43986 21	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D_4^{20}	n_D^{20}	Additional Data
3-Methyl-1-cyclo- pentylbutane		171 to 172 26 168 to 170 22	0.7837 ³² @ 25° 0.7868 ³⁶ @ 20.5°	1.4321 ³² @ 25° 1.4340 ³⁶ @ 20.5°	
2-Cyclopentylpentane		177.5 62	0.7955 ⁵² @ 40° 0.8099 ⁵²	1.4438 52	$\frac{dD}{dt} = -0.00072/^{\circ}C.$ (20° to 40°)
3-Cyclopentylpentane		174 to 176 37	0.8116 ³⁷ @ 19°	1.4443 ³⁷ @ 19°	

2-Methyl-2-cyclo-pentylbutane	M. P.,°C.	B. P., °C. @ 760mm	D ₄ ²⁰ 0.7923 ⁵¹ @ 40° 0.8071 ⁵¹	1.441 ₇ 1.441 ₂ 0.21.3° 1.4457 51	Additional Data $\frac{dD}{dt} = -0.0007_4/^{\circ}C.$ $(20^{\circ} \text{ to } 40^{\circ})$ $\frac{dn}{dt} = -0.00043_4/^{\circ}C.$ $(-25^{\circ} \text{ to } +20^{\circ})$
pentylbutane C		173.9 51	@ 40°	1.4412 ⁵² @ 21.3°	$\frac{dD}{dt} = -0.0007 \text{ (°C.} (20° to 40°) \frac{dn}{dt} = -0.00043 \text{ (°C.} (-25° to +20°)$
1		173.9 61	@ 40°	@ 21.3°	$\frac{dn}{dt} = -0.00043 \text{/°C}.$ $(-25^{\circ} \text{ to } +20^{\circ})$
				1.4439 ⁸² @ 14.6° 1.4470 ⁸² @ 7.7° 1.4619 ⁸² @ - 26.6° 1.4433 ⁸¹ $n_{J_a}^{20}$ 1.4511 ⁸¹ $n_{J_g}^{20}$	
1-Methyl-3-butyl-cyclopentane		170.2 * @ 750.7mm	0.7840 * @ 15°	1.4321 \$ @ 15° 1.4298 \$ n _{H_a} 1.4418 \$ n _{H_y} 1.4418 \$ n _{H_y}	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D_4^{20}	n _D ²⁰	Additional Data
1,2-Dimethyl-3-iso-propylcyclopentane		148 to 149 ²⁷ 146 to 148 ³⁰ 161.4 to 161.9 ⁵³ @ 758mm 159 to 160.5 ³⁵ @ 757.6mm 159 to 161 ³⁵ @ 757mm 49.5 to 49.8 ⁵³ @ 14.5mm		1.4319 35 @ 21° 1.4328 35 @ 21° 1.4344 53 @ 16.5° 1.4337 30 @ 16° 1.4364 27 @ 15°	Kasansky (33) claims that the compound prepared by Godchot and Taboury (29) [which is the same compound as that of Godchot (28)] is not 1,2-dimethyl-3-isopropylcyclopentane.
C ₁₁ H ₂₂ Hexylcyclopentane C-(C) ₄ -C		204 to 206 ⁷⁸ @ 748mm	0.7903 76	1.4370 76	
1,2,3-Trimethyl-4-iso-propylcyclopentane		157 to 158 **	0.7833 ²⁷ @ 13°	1.4326 ²⁷ @ 13°	

		13			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n_D^{20}	Additional Data
1-Methyl-2,3-diiso- propylcyclopentane					
c c c c c c c c c c c c c c c c c c c		150 to 152 30	0.781 ³⁰ @ 17°	1.4318 ³⁰ @ 17°	
	,				
C ₁₃ H ₂₆ Octylcyclopentane					
C-(C) ₆ -C		133 to 134 ⁷⁶ @ 26mm	0.8156 76 @ 18°	1.4483 ⁷⁶ @ 18°	
C ₁₇ H ₂₄ Dodecylcyclopentane					
C-(C) ₁₀ -C		175 ¹ @ 15mm	0.8280 ¹ @ 18°	1.45737 1	
1.4		Ø			

- (1) J. v. Braun, E. Kamp, and J. Kopp, Ber. 70, 1750, 1937.
- (2) J. H. Bruun and M. M. Hicks-Bruun, J. Research Nat. Bur. Standards, 10, 465, 1933.
- (3) G. Chavanne, Bull. sci. acad. roy. Belg. [5], 12, 105, 1926.
- (4) G. Chavanne, Bull. soc. chim. Belg. 31, 331, 1922.
- (5) G. Chavanne, Bull. soc. chim. Belg. 35, 283, 1926.
- (6) G. Chavanne, Bull. soc. chim. Belg. 39, 402, 1930.
- (7) G. Chavanne and P. Becker, Bull. soc. chim. Belg. 36, 591, 1927.
- (8) G. Chavanne and O. Miller, Bull, soc. chim. Belg. 39, 287, 1930.
- (9) G. Chavanne, O. Miller, and Cornet, Bull. soc. chim. Belg. 40, 673, 1931.
- (10) G. Chavanne and L. G. Simon, Compt. rend. 168, 1111, 1324, 1919.
- (11) G. Chavanne and L. de Vogel, Bull. soc. chim. Belg. 37, 141, 1928.
- (12) G. Chavanne and H. Van Risseghem, Bull. soc. chim. Belg. 31, 87, 1922.
- (13) G. Chiurdoglu, Bull. soc. acad. roy. Belg. 17, 1404, 1931.
- (14) G. Chiurdoglu, Bull. soc. chim. Belg. 42, 347, 1933.
- (15) G. Chiurdoglu, Bull. soc. chim. Belg. 43, 35, 1934.
- (16) G. Chiurdoglu, Bull. soc. chim. Belg. 44, 527, 1935.
- (17) A. Crossley and N. Renouf, J. Chem. Soc. 89, 26, 1906.
- (18) F. Eisenlohr and G. Gorr, Fortschr, Chem. Physik, physik, Chem. B18, No. 9, 10, 1925.
- (19) E. B. Evans, J. Inst. Petr. Tech. 24, 321, 1938.
- (20) J. Eykman, Chem. Weekblad, 1, 7, 1903.
- (21) J. Eykman, Chem. Weekblad, 3, 685, 1906.
- (22) J. Eykman, Chem. Weekblad, 8, 651, 1911.
- (23) J. Eykman, Naturkundige Vorhandelingen Haarlem [3], 8, 505, 1919.
- (24) P. Freer and W. Perkin, Jr., J. Chem. Soc. 53, 202, 1888.
- (25) F. Garner and E. Evans, J. Inst. Petr. Tech. 18, 751, 1932.
- (26) M. Godchot, Bull. soc. chim. [5] 1, 1153, 1934.
- (27) M. Godchot, Compt. rend. 172, 686, 1921.
- (28) M. Godchot and G. Cauquil, Compt. rend. 191, 1326, 1930.
- (29) M. Godchot and F. Taboury, Ann. chim. phys. [8] 26, 41, 1912.
- (30) M. Godchot and F. Taboury, Compt. rend. 156, 470, 1913; Bull. soc. chim. [4] 13, 599, 1913.
- (31) A. V. Grosse and V. N. Ipatieff, J. Org. Chem. 2, 447, 1937.
- (32) J. Harris, J. Am. Chem. Soc. 51, 2591, 1929.
- (33) M. M. Hicks-Bruun and J. H. Bruun, J. Research Nat. Bur. Standards 7, 799, 1931.
- (34) C. J. Jacobs and G. S. Parks, J. Am. Chem. Soc. 56, 1513, 1934.
- (35) B. A. Kasansky, Ber. 62, 2205, 1929.
- (36) B. A. Kasansky and A. F. Plate, Ber. 69, 1862, 1936.
- (37) B. A. Kasansky, A. F. Plate, and K. M. Gnatenko, Ber. 69, 954, 1936.
- (38) N. Kishner, J. prakt. Chem. [2] 56, 364, 1897.
- (39) N. Kishner, J. Russ. Phys. Chem. Soc. 37, 516, 1905.
- (40) N. Kishner, J. Russ. Phys. Chem. Soc. 40, 676, 994, 1908.
- (41) N. Kishner, J. Russ. Phys. Chem. Soc. 42, 1211, 1910.
- (42) N. Kishner, J. Russ. Phys. Chem. Soc. 43, 1149, 1911.
- (43) N. Kishner, J. Russ. Phys. Chem. Soc. 44, 854, 1912.
- (44) N. Kishner, J. Russ. Phys. Chem. Soc. 45, 973, 1913.
- (45) N. Kishner and Amasow, J. Russ. Phys. Chem. Soc. 37, 518, 1905.
- (46) W. Markownikoff, Ber. 30, 1222, 1897.
- (47) W. Markownikoff, J. prakt. Chem. [2] 49, 409, 1894.
- (48) T. Marshall and W. Perkin, J. Chem. Soc. 57, 241, 1890.
- (49) C. D. Nenitzescu and G. G. Vantu, Bull. soc. chim. [5] 2, 2209, 1935.
- (50) G. S. Parks and H. M. Huffman, Ind. Eng. Chem. 23, 1138, 1931.
- (51) H. Pines and V. N. Ipatieff, J. Am. Chem. Soc. 61, 1076, 2728, 1939.
- (52) H. Pines and V. N. Ipatieff, Unpublished data.
- (53) F. Richter, W. Wolff, and W. Presting, Ber. 64, 871, 1931.

- (54) N. A. Rosanow, J. Russ. Phys. Chem. Soc. 47, 591, 1915.
- (55) L. Ruzicka, M. Stoll, H. Huyser, and H. A. Boekenoogen, Helv. Chim. Acta, 13, 1152, 1930.
- (56) M. van Rysselberge, Bull. soc. acad. roy. Belg. 12, 171, 1926.
- (57) M. van Rysselberge, Bull. soc. chim. Belg. 35, 311, 1926.
- (58) J. Smittenberg, H. Hoog, and R. A. Henkes, J. Am. Chem. Soc. 60, 17, 1938.
- (59) R. Thiry, Thèse, Brussels, 1925.
- (59a) J. Timmermans, Bull. soc. chim. Belg. 36, 502, 1927.
- (60) J. Timmermans and Hennault-Roland, J. Chim. phys. 34, 693, 1937.
- (61) A. I. Vogel, J. Chem. Soc. 1938, 1323.
- (62) O. Wallach and E. Meyer, Ann. 392, 58, 1912.
- (63) R. Willstätter and M. Heidelberger, Ber. 46, 517, 1913.
- (64) J. Wislicenus and W. Hentschel, Ann. 275. 322, 1893.
- (65) N. D. Zelinsky, Ber. 30, 387, 1897.
- (66) N. D. Zelinsky, Ber. 35, 2677, 1902.
- (67) N. D. Zelinsky, Ber. 44, 2781, 1911.
- (68) N. D. Zelinsky, J. Russ. Phys. Chem. Soc. 31, 408, 1899.
- (69) N. D. Zelinsky, J. Russ. Phys. Chem. Soc. 38, 625, 1905. -
- (70) N. D. Zelinsky, Private Communication, Beilstein V, Suppl., 18, 1928.
- (71) N. D. Zelinsky and B. A. Kasansky, Compt. rend. acad. sci. (U.R.S.S.) 3, 168, 1934.
- (72) N. D. Zelinsky, B. A. Kasansky, and A. F. Plate, Ber. 66, 1415, 1933.
- (73) N. D. Zelinsky, B. A. Kasansky, and A. F. Plate, Ber. 68, 1869, 1935.
- (74) N. D. Zelinsky and N. Lepeschkin, Ann. 319, 303, 1901.
- (75) N. D. Zelinsky and N. Lepeschkin, J. Russ. Phys. Chem. Soc., 33, 555, 1901.
- (76) N. D. Zelinsky, S. E. Michlina, and M. S. Eventowa, Ber. 66, 1422, 1933.
- (77) N. D. Zelinsky and A. Moser, Ber. 35, 2684, 1902.
- (78) N. D. Zelinsky and M. Rudsky, Ber. 29, 403, 1896.
- (79) N. D. Zelinsky and M. Rudsky, J. Russ. Phys. Chem. Soc. 31, 408, 1899.
- (80) N. D. Zelinsky and M. B. Turowa-Pollak, Ber. 65, 1171, 1932.
- (81) N. D. Zelinsky and A. Uspensky, J. Russ. Phys. Chem. Soc. 45, 837, 1913; Ber. 46, 1470 (1913).

O(11)		70			And the second s
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D_4^{20}	n ²⁰	Additional Data
Cyclohexane		80.7,	0.7781.	1.4264	$\frac{dT}{dp} = 0.0002548 \frac{T^2}{p}$
\bigcap	4.5 300	81.06 20 @764 59mm	0.72056 188 @ 80°	1.4235 **	degrees/(40mm to
	4.5 30m 4.7 15s 5.95 37 6.10 147 6.2 88 6.2 to 6.4 151 6.25 12 6.28 31 6.34 85 6.4{22,126, 6.40 136 6.45 9,13 6.48 33 6.5{22,105, 112 6.55 90 6.7 98		@ 80° 0.72215 88 @ 78.05° 0.73057 188 @ 70° 0.73997 186 @ 60° 0.74416 88 @ 50.95° 0.74957 188 @ 50° 0.75513 105 @ 44.6° 0.7554 146 @ 43.6° 0.7564 146 @ 42.9° 0.75942 88 @ 40.21° 0.75907 186 @ 40° 0.76853 186 @ 30° 0.7682 18	1.4235 ** @ 25° 1.42370 ¹47 @ 25° 1.4274 * @ 25° 1.4275 ¹3 @ 25° 1.4242 ¹ 1.4254 ³0a 1.4263 ¹3 1.4263 6° 1.4265 6° 1.4265 145 1.4266 °0 1.42691 ¹151 1.427 * 1.4266 ¹160 @ 19.5° 1.4269 ¹160 @ 19.5° 1.42446 ³9 @ 17.5° 1.42446 ³9 @ 17.4° 1.42806 ⁴ @ 16.1° 1.42886 ¹36	-4 4
		80.5 to 80.7 ⁶⁸ @ 755mm 80.65 ¹⁸⁵ @ 754.7mm 79 to 79.5 ¹	0.77384 ⁹⁸ @ 25.08° 0.77354 ¹⁴⁷ @ 25° 0.7737 ¹³	(a) 15° 1.429001 ³¹ (a) 15° 1.4371 ¹²⁷ (a) 11°	Allsopp of have studied the dependence of index of r fraction upon wave length. Their equation is
		@ 752mm 72 to 73 ** @ 752mm 80.3 ** @ 750mm	@ 25°. 0.7741 ** @ 25° 0.7694 ** D 25°	1.43119 s @ 10.85° 1.42225 ss n ²⁵ _H	tion is $(n_{\lambda}^{20})^2 = 2.00519 + \frac{0.0098035}{\lambda^2 - 0.011923}$ (2450Å to 6707)

		C ₆ H ₁			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D_4^{20}	n_D^{20}	Additional Data
Cyclohexane (Continued)					
		80.0 185	0.7758 146 @ 22.4° 0.7772 145 @ 20.8° 0.7763 160 0.7769 1.173 0.7775	1.42437 145 1.42476 23 1.42211 29 1.1.4 1.42211 29 1.1.4 1.42589 4 1.1.4 1.42698 23 1.1.4 1.42777 25 1.1.5 1.42910 5 1.1.6 1.42971 23 1.1.6 1.43229 23 1.1.7 1.43247 23 1.1.7 1.43447 23 1.1.8 1.43447 23 1.1.8 1.43447 23 1.1.8 1.43447 23 1.1.8 1.43588 115 1.43588 115 1.43588 115 1.43580 115 1.1.8 1.43580 115 1.43580 115 1.43580 115 1.43580 115 1.43580 115 1.43580 115	
			0.78224 156	$n_{H_{\gamma}}^{20}$	

/6 4413		00			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n_D^{20}	Additional Data
Cyclohexane (Continued)					
			0.7830 18 @ 15° 0.78310 136	1.43668 ²³ $n_{H_{\gamma}}^{20}$ 1.43391 ²⁹	
			@ 15° 0.7771 29	1.43773 4	
			D_{16}^{16} 0.774^{-72}	$n_{H_{\gamma}}^{16.1}$	
			D ₁₅ 0.78280 155	1.43892 ²³ n ¹⁶ η	
			@ 14.5° 0.78435 106 @ 13.5°	1.43972 ²⁵ $n_{H_{\gamma}}^{13.5}$	
			0.7844 ²⁵ @ 13.5°	1.44116 5 n _H _{10.86}	
			0.7869 5 @ 11.2°	1.5232 142 n15.3 2150	
			0.7875 127 @ 11°	1.4388 142 n15.3 4200	
			0.7872 ⁵ @ 10.85°	13	
			0.78715 155 @ 10.7°		
			0.7812 29 D ₁₀ ¹⁰		
			0.79063 ** @ 7.00°		
			0.7865 29 @ 4° 0.7903 29		
			@ 0°		
			@ 0° 0.8352 **		
			@ 0° 0.7902 ⁷²		
			D_6^0		

		01		-	C, H,
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	n_D^{20}	Additional Data
Methylcyclohexane		100.3	0.7692,	1.4230,	$\frac{dD}{dt}$ = -0.000857/°C.
ç	- 126.3	100.0 23	0.7174 25	1.4198 1	(0° to 80°)
\downarrow	119,126,132	@ 780mm	@ 78.8°	1.4227 10	$\frac{dn}{dt} = -0.000481/^{\circ}C.$
Γ	- 126.4	100.4 to 145	0.7344 146	1.423 *	$\frac{dt}{dt} = -0.0004817 \text{ C.}$ (10° to 20°)
\smile	126,135,136,	100.7	@ 62.1°	∫ 43.	(10 00 20)
-	148	@ 773mm	0.7512 145	1.4230 89.	*The density and re-
	- 126.7	100.0 23	@ 42.1°	118	fractive index values
	137	@ 770mm	0.76030 136	1.42306 **	of Eisenlohr and
•	- 126.85	100 145	@ 30°	1.4231 126	Gorr (ref. 23) are each the mean of
	134	@ 770mm	0.7606 18	1.4232 187	five separate deter-
•	- 126.9 88	103 51	@ 30°	1.4239 24,300	minations reported
		102 63	0.7679 **	1.42410 **	in the paper.
		101.20 136	143,145	148,145	
		101.1 112	0.7687	1.4243 159	**Vogel (ref. 143,144,
		101 to 42,123,158	(00	@ 19°	145) reports the
		102	0.7688 137	1.41705 51	existence of three isomeric liquid forms
		101 8,138,134	0.7689 10	@ 18.5°	of cyclohexane, the
		101.0 24,80m	0.7693 159	1.4243 159	individual constants
		100.8 to 137	0.7694 **	@ 18°	of which are given in
		100.9	144,145,159	1.4242 128	the tables.
		100.8 126	0.76944 148	@ 17.6°	
		100.80 148	0.7696 24.30a	1.7200	
		100.4 16	0.7697 73	@ 17.5°	
		100.30 135	0.7704 **	1.42531 4	
		100 to 101 111	148,145	@ 15.5°	
		100 ^{30a}	0.77304 * 23		
		99.8 to	0.769 118	1.42535 133 @ 15° 136	
		100.8 118	D_{20}^{20}		
		99.4 to 102 89	0.7641 53	1.4291 ¹²⁷ @ 11°	
		99 to 101 10	D_0^{20}	1.39116 25	
		98 to 100 127	0.7695 43	$n_{H_a}^{78.8}$	
		99.5 to	D_0^{20}		
		100 23,145	0.7622 51	1.42081 **	
		@ 759mm	@ 18.5°		
		100 22	0.7647 158	$n_{H_a}^{20.0}$	
		@ 758mm	@ 18°	1.42085 148	
		100.5 4	0.7662 51	$n_{H_a}^{20.00}$	
		@ 754mm	@ 18°	1,42093	
\		100.2 78	0.7718 *		
		@ 751mm	@ 16.9°	n ^{20.0}	
		9.	0.7725 25		
1			@ 16.3°		

27 EL14		02			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n_D^{20}	Additional Data
Methylcyclohexane (Continued)					
(Communed)		100.3 to 100.9 ⁶⁸ @ 745mm 100 to 100.2 ¹ @ 742mm	0.7773 4 @ 15.5° 0.77340 1346 @ 15° 0.7736 24.80a @ 15° 0.7737 18 @ 15° 0.774 73 D15° 0.7693 159 @ 14° 0.7738 32 D13.5 0.7791 127 @ 11° 0.780 16 @ 0° 0.7859 132 @ 0° 0.78640 1336 @ 0° 0.7868 18 @ 0° 0.7868 18 @ 0° 0.7868 18 @ 0° 0.7887 42 D0° 0.7887 42 D0°	$1.42167 \begin{cases} 143 \\ n^{20.00**} \\ H_a \end{cases}$ $1.42311 \stackrel{23}{\sim} \\ n^{20} \\ n^{16.9} \\ 1.42296 \stackrel{25}{\sim} \\ n^{16.9} \\ 1.42308 \stackrel{4}{\sim} \\ n^{16.5} \\ n^{20.00} \\ n^{16.9} \\ n^{20.0} \\ n^{16.9} \\ n^{20.0} \\ n^{2$	
				$1.43230 \begin{cases} 143, \\ 120.0 \\ n_{H_{\gamma}}^{20.0} \end{cases}$	

		83	C, H		
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D_4^{20}	n 20 D	Additional Data
Methylcyclohexane (Continued)					
				$1.43250 \begin{cases} 144, \\ n_{H_{\gamma}}^{30.0} ** \end{cases}$	
				1,43285 148 n _H ^{20,00}	
				$1.43301 \begin{cases} 143, \\ n_{H_{\gamma}}^{20.0} \end{cases}$	
				1.43524 22 n20 +	
				1.43498 25 $n_{H_{\gamma}}^{16.9}$	
				1.43533 25 n _H ^{16.8}	
				1.43502 4 $n_{H_{\gamma}}^{15.5}$	
				1.42540 ** n ²⁰ **	

Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D_4^{20}	n_D^{20}	Additional Data
Ethylcyclohexane		131.8	0.78782	1.43293	$\frac{dD}{dt} = -0.000770/^{\circ}C.$ (0° to 20°)
c-c	- 111.40 97 - 128.9 133	132 to 134 140 131.89 97 131.8 133 131.6 24.30a 131 to 132 10 130.1 to 130.7 118 130 112 128.5 to 130 127 128 to 129 111 129.5 23 @ 756mm 132 to 133 53 @ 755mm 130 to 131 66 @ 751mm 130 to 132 68 @ 745mm 129.8 to 130 1 @ 743mm 128 152 @ 724mm	0.7899 1 @ 25° 0.7771 53 0.7840 23.57 0.7854 66 0.7872 68 0.7875 24.30m 0.78804 97 0.787 118 D20 0.793 140 @ 17° 0.7914 24.30m @ 15° 0.7972 127 @ 11° 0.7997 57 @ 0° 0.8025 113 @ 0° 0.8026 111 @ 0° 0.7913 53 D%	1.4329 10 1.4332 118 1.4343 66 1.436 140 @ 17°	$\frac{dn}{dt} = -0.000436/^{\circ}C.$ (10° to 25°

		85			C. H.
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D_4^{20}	n_D^{20}	Additional Data
1,1-Dimethyl- cyclohexane		119.,	0.7810	1.4293	$\frac{dD}{dt} = -0.000804/^{\circ}C.$ (0° to 25°)
	- 34.1 % - 35.1 18	120 19 @ 766mm 118 to 118.5 30 @ 764mm 121.2 to	0.7798 19 Dis 0.7786 178 @ 21° 0.78073 80 0.7820 183 0.7825 20 0.7832 19 Dis 0.7890 28 @ 17.6° 0.7843 186 @ 16° 0.775 16 @ 15° 0.7840 15 @ 15° 0.7840 15 @ 15° 0.79709 28 @ 0.79709 28 @ 0°	1.4285 170 @ 21° 1.4289 30 1.4342 183 @ 18° 1.4351 36 @ 17.6° 1.4314 15 @ 15° 1.4320 166 @ 11° 1.42958 19 n16.6 1.43728 19 n16.6 n16.6 1.44203 19 n16.6 n16.6 n16.6 n16.8 n16.7 1.42680 80 n16.8 n16.9 1.43882 80 n16.8 n16.9	$\frac{dn}{dt} = -0.000355/^{\circ}C.$ (10° to 25°)
					01

cis-1,2-Dimethyl- cyclohexane C C C -50.1 {7/2} -57.5 14	130.04 79	0.7965 0.7891 18 @ 30° 0.7822 28 0.7868 23 0.7965 167 0.79620 78 0.79625 79 0.8015 14 @ 15° 0.8016 18 @ 15° 0.81125 78 @ 0° 0.81311 80 @ 0°	1.43114 124 1.4333 167 1.43369 79 1.43373 79 1.43859 23 1.42859 23 1.43050 23 1.43669 79 1.43669 79 1.4373 1.44133 79 1.44138 79 1.43635 23	$\frac{dD}{dt}$ = -0.000784/°C. (0° to 30°)
c = -50.1	130.04 79 128.4 to 129.5 14 128.3 to 128.7 167 126.5 124 126.5 22	@ 30° 0.7822 23 0.7868 23 0.7905 167 0.79620 78 0.79625 79 0.8015 14 @ 15° 0.8016 18 @ 15° 0.81125 78 @ 0° 0.81311 80	1.4333 107 1.43369 79 1.43373 79 1.43373 79 1.42859 23 1.42859 23 1.43050 23 1.43069 79 1.43133 79 1.44133 79 1.44138 79 1.44138 79 1.44138 79 1.44138 79	
		•	1.43033 23 23 23 23 20 20 20 21 23 24 23 24 23 24 23 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25	

	87				C ₈ H	
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n20 D	Additional Data	
cis-1,2-Dimethyl- cyclohexane (Continued)						
				1.43061 80 n ^{28.4}		
				1.43387 80 $n_{H_{\theta_r}}^{18.8}$		
				1.43343 80 $n_{H_{\theta_y}}^{26.4}$		
				1.43598 79 $n_{H_{\bullet}}^{20.30}$		
		(1.43599 79 $n_{He}^{20.30}$		
				1.43663 80 n ^{18.8} He		
				1.43901 79 $n_{H_{\theta_{y}}}^{13.78}$		
				1.44211 80 n ²⁶ .		
				1.44548 80 n18.8 He g		

√ ₈ Ω ₁₆ .		00			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D_4^{20}	n_D^{20}	Additional Data
trans-1,2-Dimethyl- cyclohexane			0.776	1.4303	$\frac{dD}{dt} = -0.000794/^{\circ}C.$ (0° to 20°)
	- 89.4 79	125 111	0.7760 78	1.42930 68	
	- 89.6 ⁷⁸	124.5 162	0.77601 79	1.43020 121	
		124 124	0.779 121	1.43037 124	
		123.9 68	0.7798 23	1.4305 71	
		123.85 78	0.780 124	1.4326 167	
		123.70 79	0.7811 7	1.42466 79	
		123.42 to	0.7814 68	$n_{H_{a}}^{20.35}$	
		124.17 71	0.7822 127	1.42470 78	
		122.5 to 123.5 ¹²¹	0.7823 167	n ^{20.35}	
•		121.3 to	$\begin{array}{c c} 0.7920 & ^{32} \\ D_{18.4}^{18.4} \end{array}$	1.42778 23	
		121.5 32	0.79188 80	$n_{H_{\alpha}}^{20}$	
		126 to	@ 0°	1.42768 78	
		126.5 167	0.8008 111	$n_{H_{\mathfrak{a}}}^{13.85}$	
		@ 758mm	@ 0°	1.43224 79	
		@ 755mm		$n_{H_{\beta}}^{20.35}$	
		122.5 to 124 68		1.43230 78	
		@ 748mm		$n_{H_{\beta}}^{20.85}$	
				1.43546 23	
	ļ			$n_{H_{\beta}}^{20}$	
				1.43533 78 $n_{H_{\beta}}^{13.88}$,
				1.4365 79 n ^{20,36} H _Y	
				1.43673 78	
				$n_{H_{\gamma}}^{20.35}$	
,				1.44008 23	
				$n_{H_{\gamma}}^{20}$	
				1.43979 78 $n_{H_{\gamma}}^{18.88}$	
				1.42990 23	
				n _{He} ²⁰	
				1.42171 80 $n_{H_{\bullet_r}}^{26.4}$	
				1.42493 80 $n_{He_r}^{18.8}$	
		A		Her	
		100			

	C,H				
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n _D ²⁰	Additional Data
trans-1,2-Dimethyl- cyclohexane (Continued)					•
				1.42443 80 n ^{26,4} He y 1.42695 79	
				n ^{20.85} _{He} 1.42701 78	
				n ^{20.85} 1.42768 80 n ^{18.8} n ^{18.8}	
				1.42999 78 $n_{H_{\bullet}}^{13.88}$	
				1.43331 80 1.43331 80	
				1.43641 80 n18.8 H e g	
•					
			1	1.	

C, H ₁₀		90			
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D_4^{20}	n_D^{20}	Additional Data
1,2-Dimethyl-cyclohexane		128.6 to 129 17 127.9 24.30a 126.5 124 126.4 to 128.9 118 126 112 125 111 124.5 162 123 to 125 127 122.5 to 123.5 3 124.5 27 @ 731mm	0.780 124 0.7874 24,30a 0.792 118 D20 0.7809 3 @ 17.85° 0.7912 24,30a @ 15° 0.798 17 @ 15° 0.7880 27 @ 14.25° 0.7929 127 @ 11° 0.8008 112 @ 0° 0.8002 108 D0	1.4314 ^{24,30a} 1.4332 ¹¹⁸ 1.43020 ³ @ 17.85°	

		91			C, H,
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D 40	n_D^{20}	Additional Data
cis-1,3-Dimethyl- cyclohexane			0.7835		$\frac{dD}{dt} = -0.0008_4/^{\circ}C.$ (0° to 20°)
	- 86 to - 90 ¹⁴ - 100 ⁸⁰	124.9 **0 123.5 **0 121.5 **124 121 to 122 **17 121.0 **28 121 **121 119.5 to 122.3 **4	0.7613 18 @ 30° 0.7735 23 0.774 121 0.775 124 0.777 83 0.78348 80 0.7728 14 @ 15° 0.7759 14 @ 15° 0.7852 18 @ 0° 0.80022 80 @ 0°	1.42609 124 1.4265 83 1.4269 121 1.42385 23 n20 1.43170 23 n20 1.43628 23 n20 1.42600 23 n20 1.42600 23 n20 1.42495 80 n26.4 1.42835 80 n18.8 n18.9 1.43099 80 n18.8 n	
	1				

∪8 11:8		94			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	n_D^{20}	Additional Data
trans-1,3-Dimethyl- cyclohexane					
	- 79.4 80	120.59 to	0.762 83	1.4176 88	
	17.1	121.59 71	0.76628 80	1.4254 121	
		120.40 80	0.7706 71	1.4262 71	
		119.5 **	0.772 121,124	1.42470 124	
		119 121	0.78251 80	1.42265 23	
		119 23	@ 0°	$n_{H_a}^{20}$	
		@ 756mm		1.43030 23	
				$n_{H_{\beta}}^{20}$ 1.43493 ²³	
				$n_{H_{\gamma}}^{20}$	
				1.42480 23	
				n _H •	
				1.41772 80 n ^{26.4}	
				1	
				1.42099 80 n18.8 He,	
				1	
				1.42047 80 n ^{26.4} H•	
				1.42376 80	
				n _{He}	
				1	
				1.42919 80 n ^{26.4}	
				1	
		1		1.43254 80 n18.8 H• g	
				H•g	
			1		
		1			

Jame and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D_4^{20}	n_D^{20}	Additional Data
1,3-Dimethyl- cyclohexane					
		121.6 24,30a	0.7208 25	1.4218 161	
		1	@ 81°	@ 26°	
		121.3 to 121.5 32	0.7661 181	1 - 1	
			@ 26°	1.4230 ¹ @ 25°	
		121.2 to 121.8 ¹⁷	0.7661 25	1 - 1	
		121 to 123 111	@ 25.4°	1.4288 48 @ 22.5°	
		l	0.7672 25	1.4239 162	
		121 to 121.5 162	@ 25.4°	@ 22°	
			0.773 1	1.42398 5	
		121 112	@ 25°	@ 22°	
		120.9 to	0.7671 48	1.42499	
		122.5 118	@ 24°	@ 20.75°	
		120.8 165	0.7701 5	1.4234 159	
		120 to 121 167	@ 21.8°	1.42407 22,68	
		120 60,111,159	0.7707 5		
		119 to 123 118	@ 20.75°	1.4246 165	
		119 to	0.7677 22,68	1.42470 124	
		120 122,127	0.7687 159	1.425 3	
		119 3,124	1	1.4253 118	
		118 to 120 5	0.7697 167	24,	
		118 106	0.771 *	1.4255 30a	
		117 to 120 154	0.7712 165	167	
		119.5 167	0.772 124	1.4270 60	
		@ 751mm	0.7723 24,80a		
		118.5 to 119 1	0.7822 122	1.4278 32	
		@ 747mm	0.766 154	@ 13.5°	
		119.5 to	D_{20}^{20}	1.4298 127	
		120.5 22.68	0.774 118	@ 11°	
		@ 740mm	D_{20}^{20}	1.39405 25	
		119.5 to	0.7688 157	$n_{H_a}^{81}$	
		120 161	D_0^{19}	1.42060 25	
		@ 739mm	0.7736 50	$n_{H_{a}}^{25.4}$	
			@ 18°	1.42127 25	
			0.775 17	$n_{H}^{25.4}$	
			@ 15°		
			0.7761 24,800	1.42157 5	
			@ 15°	$n_{H_{a}}^{22.0}$	
			0.7772 48	1.42276 5	
			D13.4	$n_{H_a}^{20.75}$	
			213.6	1.40113 25	
				n ⁸¹ _H β	
1 T		1		··· p	

78 II16		フ <u>T</u>			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	n_D^{20}	Additional Data
1,3-Dimethyl- cyclohexane (Continued)					
			0.7812 127	1 42017 %	•
			@ 11°	$ \begin{array}{c c} 1.42817^{25} \\ n_{H_{\beta}}^{25.4} \end{array} $	
			0.784 154	1.42887 ²⁵	
			@ 0°	n _H ²⁵ 4	
			0.7874 112	1.42940 ⁵	
			@ 0° 0.7869 106	$n_{H_{\beta}}^{22.0}$	
			D_0^0	1.43047 5 $n_{H}^{20.75}$	
				1.40528 ²⁵	
				$n_{II_{\gamma}}^{81}$	
				1.43259 25 n ^{25.4} _H	
				1.43338 25 $n_{H_{\gamma}}^{25.4}$	
				1.43394 5	
				$n_{H_{\gamma}}^{22.0}$	
				1.43500 ⁵	
				$n_{H_{\gamma}}^{20.7b}$	
				Α .	
					0.

	$C_{s}H_{1}$				
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	n_D^{20}	Additional Data
cis-1,4-Dimethyl- cyclohexane					
c c c c c c c c c c c c c c c c c c c	- 84 to - 85 14 - 91.6 80	124.59 80 123.7 14 123.4 14 121.5 to 122 167 121.5 124 120.5 23 @ 755mm	0.7671 23 0.773 124 0.7759 187 0.78271 80 0.781 14 @ 15° 0.7952 18 @ 15° 0.79925 80 @ 0° 0.8075 18 @ 0°	1.42300 124 1.4257 167 1.42064 23 11.42833 23 11.42833 23 11.42833 23 11.42829 23 11.42270 23 11.42425 80 11.42755 80 11.88 1.42700 80 11.89 1.43029 80 11.89 1.43029 80 11.89 1.43568 80 11.89 1.43568 80 11.89 1.43568 80 11.89 1.43568 80 11.89 1.43568 80 11.89 11.8	

78 A-16		90			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	n _D ²⁰	Additional Data
trans-1,4-Dimethyl- cyclohexane					
	- 33.34 124 - 37.2 80	119.63 80 119.5 124 120.07 to 120.67 71 120 to 121 187 119.0 to 119.5 23 119 23 118.6 to 119 30 @ 728mm	0.7620 ³⁰ @ 22° 0.7672 ⁷¹ @ 20.5° 0.76264 ⁸⁰ 0.7638 ²³ 0.7655 ²³ 0.7688 ¹⁸⁷ 0.77913 ⁸⁰ @ 0°	1.42095 124 1.4224 167 1.4248 71 1.41833 23	

		91			C ₈ II
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D_4^{20}	n_D^{20}	Additional Data
1,4-Dimethyl- cyclohexane					
	- 32 to - 33 ²⁷ - 59 ³⁷	120 to 120.2 @ 768mm 27 122.7 to 123 17 122.0 to 124.0 118 121.7 24 120.5 to 121 162 120 112 119.5 to 120.5 3.127 119.5 to 120 169 119.5 to 120 68 @ 740mm		1.4271 ¹¹⁸ 1.42597 ³ @ 15.7° 1.4299 ¹²⁷	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D_4^{20}	n20	Additional Data
Propylcyclohexane		154.7	0.7932	1.4371	$\frac{dD}{dt} = -0.000757/^{\circ}C.$
ç-c-c	- 94.5 124	155.7 24,37	0.791 8	1.437 8	(0° to 20°)
		155 ⁸	@ 21°	@ 21°	
[]		154.9 to	0.7898 23	1.4360 24,30a	
		155.0 118	0.7929 24,30a	1.43690 68	
		154 to 155 68	0.7930 68	1.4370 118	
		153 to 154 66,111,112,127	0.7946 66	1.4374 66	
		140 to 142 188	9.1911 4	1.4382 65	
		154.5 to	0.793 118	1.440 ^s @ 13°	
		155.5 23	D_{20}^{20}	1.4449 127	
		@ 756mm	0.7968 24,30a	@ 11°	
		153 to 154 65	@ 15° 0.796 °	1.43383 23	
		@ 753mm	@ 13°	n_{II}^{20}	
		155 to 156 55 @ 730mm	0.8025 127	1.44160 23	
		(6) 73011111	@11°	$n_{H_{\beta}}^{20}$	
			0.7819 138	1.44616 23	
			@ 0°	$n_{H_{\gamma}}^{20}$,
			0.8091 112	1.43592 ²³	
			@ 0° 0.8098 111	$n_{H\sigma}^{20}$	
			@ 0°		
			Cr "		
Isopropylcyclohexane					
C-C-C	89,8 ¹²⁶	154.7 133	0.787 152	1.4410 126	
		154.5 128	0.7902 23	1.4411 118	
		151.7 to	0.799 118	1.4444 127	
\sim .		153.0 118	D_{20}^{20}	@11°	
		151 to 153 127	0.8090 127	1.43428 23	
		150 to 153 75	@ 11°	$n_{H_a}^{20}$	
		147 to 150 152	0.812 112	1.44225 23	
		146 to 148 112	@ 0°	$n_{H_{\beta}}^{20}$	
		152 to 153 28		1.44686 23	
		@ 756mm		$n_{H_{\gamma}}^{20}$	
	4.5			1.43642 23	
				n_{Hs}^{20}	
			0.54		

		77			O III
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n _D ²⁰	Additional Data
1-Methyl-2-ethyl-cyclohexane		152.6 to 154.7 ¹¹⁸ 151 ⁸⁴ 150 to 152 ⁴⁰	0.784 84 0.805 118 D20 0.7945 84 @ 0°	1.432 84 1.4400 118	
1-Methyl-3-ethyl-cyclohexane		148.4 to 150 ¹¹⁸ 145 to 146 ⁷⁰	0.8213 70 0.791 118 D_{20}^{20} 0.8320 70 @ 0°	1.4311 s3 1.4344 118 1.460 70	
<i>l</i> -1-Methyl-3-ethyl- cyclohexane		148 to 149 ¹⁴⁸ @ 743mm	0.7896 148 @ 17°	1.4353 ¹⁴⁸ @ 17°	
1-Methyl-4-ethyl-cyclohexane		150.1 to 151 118 150 112 147 107	0.791 118 D ₂₀ 20 0.7884 107 @ 15° 0.8041 112 @ 0°	1.4343 118 1.435 107 @ 15°	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n _D ²⁰	Additional Data
1,1,3-Trimethyl- cyclohexane					
c c c		138.5 to 139 45 137 to 138 3.49 134.8 to 135 130	0.7866 * @ 25.3° 0.7663 * 0.7703 * @ 15° 0.7848 * @ 15°	1.43385 3 @ 25.3° 1.4327 45 @ 17° 1.4237 45 @ 15° 1.4324 40 @ 15° 1.43177 3 n ²⁰ _{H_β} 1.43998 3 n ²⁰ _{H_β} 1.44453 3 n ²⁰ _{H_γ}	
cis-1,2,3-Trimethyl-cyclohexane (Hexahydrohemimellitene)		144 to 146 ²³ @ 755mm	0.7930 23	1.43475 23 $n_{H_a}^{20}$ 1.44259 23 $n_{H_{\beta}}^{20}$ 1.44724 23 $n_{H_{\gamma}}^{20}$ 1.43682 23 $n_{H_{\theta}}^{20}$	

	····				
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D_4^{20}	n_D^{20}	Additional Data
trans-1,2,3-Trimethyl- cyclohexane					
(Two possible trans isomers)		142 to 143.5 ²³ @ 762mm 141 ¹⁶⁵ @ 736mm	0.7898 165 0.7914 23	1.4346 ¹⁸⁵ 1.43373 ²³ 1.43373 ²³ 1.44150 ²³ 1.44606 ²³ 1.44606 ²³ 1.43582 ²³ 1.43582 ²³ 1.43582 ²³	
cis-1,2,4-Trimethyl- cyclohexane			T		
Hexahydropseudocumene)		146 124 144.8 to 145.8 120 141.5 23.27 33 @ 11mm 120	0.7850 ²³ 0.790 ^{120,124} 0.7848 ²⁷ @ 16.7°	1.43314 124 1.434 120 1.43120 23 1.43902 23 1.43902 23 1.43902 23 1.43902 23 1.44361 23 1.43341 23 1.43341 23 1.4361 23	
		N .			ja l

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	n ₂₀	Additional Data
1 ⁴ ,2 ² ,4 ⁴ -Trimethyl- cyclohexane					
		138.5 to 139.5 ²³ @ 755mm	0.7813 23	1.42909 ²³ $n_{H_a}^{20}$ 1.43675 ²³ $n_{H_{\beta}}^{20}$ 1.44135 ²³ $n_{H_{\gamma}}^{20}$ 1.43121 ²³ $n_{H_a}^{20}$	
1°,2°,4′-Trimethyl- cyclohexane		142 124	0.786 124	1.43209 124	
1°,2′,4′-Trimethyl- cyclohexane		140 124	0.774.124		
		140 14	0.774 124	1.42916 124	

103					C, H,	
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	n20 D	Additional Data	
1,2,4-Trimethyl- cyclohexane	,					
		145 to 146 111 143 to 144 112 142 to 144 171 140 30 138 53 135 to 136 74 141.5 to 143 27 @ 759mm 143 to 144 27 @ 759mm	0.7652 74 0.7667 83 0.778 30 0.7808 74 0.7807 171 @ 18° 0.7850 27 @ 16.6° 0.7812 83 @ 0° 0.8052 112 @ 0°	$\begin{array}{c} 1.429 \ ^{30} \\ 1.4344 \ ^{32} \\ \textcircled{@} \ 13.5^{\circ} \\ 1.43054 \ ^{27} \\ n_{H_{\alpha}}^{10.7} \\ 1.42962 \ ^{27} \\ n_{H_{\alpha}}^{16.6} \\ 1.43829 \ ^{27} \\ n_{H_{\beta}}^{16.7} \\ 1.43733 \ ^{27} \\ n_{H_{\beta}}^{16.6} \\ 1.44281 \ ^{27} \\ n_{H_{\gamma}}^{16.8} \\ 1.44187 \ ^{27} \\ n_{H_{\gamma}}^{16.8} \end{array}$		
1,2,5-Trimethylcyclo- hexane		140 to 141 ³	0.7799 ° @ 16.9°	1.43056 ³ @ 16.9° 1.42860 ³		
c				1.43632 ³ 1.43632 ³ 1.44099 ³ 1.44099 ³ 1.4409 ³		

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n_D^{20}	Additional Data
cis-1,3,5-Trimethyl- cyclohexane					
(Hexahydromesitylene)		140.0 to 140.5 ²² @ 752mm 139.5 to 140.5 ²² @ 750mm	0.7765 23 0.7773 22	1.42768 23 1.42808 23 1.42808 23 1.43536 23 1.43586 23 1.43586 23 1.43990 23 1.44028 23 1.4990 23 1.42990 23 1.43010 23 1.43010 23 1.43010 24 1.43010 25 1.43010 25 1.43010 26 1.43010 27 1.4208	
	1		1	1	

•	C, H				
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D_4^{20}	n_D^{20}	Additional Data
trans-1,3,5-Trimethyl- cyclohexane					
cyclohexane		138 to 139 ²³ @ 761mm 138.5 to 139 ²³ @ 754mm	0.7720 23	1.42506 23 1.42526 23 1.42526 23 1.43279 23 1.43288 23 1.43725 23 1.43735 23 1.437373 23 1.42710 23 1.42740 23 1.42740 23 1.42740 23	

	, 	<i></i>			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D_4^{20}	n_D^{20}	Additional Data
1,3,5-Trimethyl- cyclohexane					
		140 to 142 111	0.7521 48	1.4304 48	
		139.3 to	@ 25.5°	@ 21°	
		141.4 118	0.7590 93	1.4212 93	
		138 58	0.7666 53	1.42688 68	
		137.5 8	0.7711 68	1.4316 118	
		137 to	0.777 118	1.4320 10	
		139 110,112	D_{20}^{20}	1.42597 3	
		136 to 140 ⁴⁸	0.7744 27	@ 15.7°	
		136 to 137 ²⁷	@ 15.7°	1.42407 3	
		135 to 137 93	0.7777 ³ @ 13.1°	$n_{H_{\mathbf{a}}}^{15.7}$	
		134 to 136 10	[110,	1.42683 27	
		137 to 139 68 @ 752mm	0.7784 111.	n _H ,7	
		© / 02	112	1.43174 *	
			@ 0°`	$n_{H_{\beta}}^{15.7}$	
			0.7811 53	1.43460 27	
			@ 0°	$n_{H_{eta}}^{\scriptscriptstyle 15.7}$	
				1.43624 8	
				$n_{H_{\gamma}}^{15,7}$	
				1.43916 27	
				$n_{H_{\gamma}}^{\scriptscriptstyle 15.7}$	
				,	

		107			C ₁₀ H
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n_D^{20}	Additional Data
Butylcyclohexane C-C-C-C d-2-Cyclohexylbutane (d-sec-Butylcyclohexane)	- 78.6 133	179 177 to 178 *9 @ 763.5mm 180.5 24.30a 180.1 to 181.2 118 178 to 182 21 177 * 176.5 to 178.5 127 176 to 177 *4 @ 755mm 68 @ 16mm *	0.7997 0.797 8 0.7987 64 0.7996 69 0.8005 24,30a 0.8178 21 0.799 118 D20 0.8037 24,30a @ 15° 0.8078 127 @ 11° 0.8305 21 @ 0°	1.4412 1.440 ⁸ 1.44076 ⁶⁰ 1.4408 ¹¹⁸	$\frac{dD}{dt} = -0.000858/^{\circ}\text{C.}$ $(10^{\circ} \text{ to } 20^{\circ})$ $\frac{dn}{dt} = -0.000413/^{\circ}\text{C.}$ $(10^{\circ} \text{ to } 20^{\circ})$
2-Cyclohexylbutane (sec-Butylcyclohexane) C-C-C-C		178.5 to 179.5 ¹¹⁸ 177.2 ¹²³ 174.5 ¹²⁷		1.4458 ¹¹⁸ 1.4487 ¹²⁷ @ 11°	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D_4^{20}	n20 D	Additional Data
2-Methyl-1-cyclo- hexylpropane (iso-Butylcyclohexane)		170.8 to 171.7 ¹¹⁸ 169 ²³ @ 754mm	0.7950 ²³ 0.797 ¹¹⁸ D_{20}^{20}	1.4391 118 1.43686 23 $n_{H_a}^{20}$ 1.44467 23 $n_{H_B}^{20}$ 1.44920 22 $n_{H_A}^{20}$	
				1.43904 ²³ n _{H,e}	
2-Methyl-2-cyclo-hexylpropane (tert-Butylcyclohexane)		169.9 to 171.4 118 167 to 169 127 166 to 167 35	0.813^{118} D_{20}^{20} 0.8305^{35} @ 16° 0.8205^{127} @ 11°	1.4464 118 1.45562 35 @ 16° 1.4538 127 @ 11°	
1-Methyl-2-propyl-cyclohexane		175.2 to 177.0 118 171 to 172.5 % 175.5 to 176 & @ 755.5mm 56 @ 13mm &		1.44378 69 1.4445 118 1.4468 54	

		109			C10 F120
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D40	n_D^{20}	Additional Data
1-Methyl-2-isopropyl- cyclohexane					
(o-Hexahydrocymene)		171 109	0.8134 109 D ₀ 21	1.447 109 @ 21°	
c c c c c c c c c c c c c c c c c c c			0.8326 109 D_0^0	9	
				111	
d-1-Methyl-2-iso- propylcyclohexane	-				[]
		169 to 170 149 @ 752mm	0.8297 149	1.45649 149	$[\alpha]_D = +14.9^{\circ 149}$
1-Methyl-3-propyl- cyclohexane					
c-c-c		171.1 to 173.0 118 169 to 170 164 164 to 165 70	0.7895^{161} @ 21° 0.796^{118} D_{30}^{20}	1.4352 ¹⁶⁴ @ 21° 1.4377 ¹¹⁸	

₩ 10 XX 20					
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n_D^{20}	Additional Data
1-Methyl-3-isopropyl-cyclohexane (m-Hexahydrocymene)		166 to 168 111 166 to 167 100 167 to 168 82 @ 756mm	0.7965 100 @ 24° 0.8033 111 @ 14°	1.440 100 @ 24° 1.44204 82	
<i>d</i> -1-Methyl-3-iso- propylcyclohexane		167 to 168 109 168 to 168.5 4 @ 758mm	0.7948 ** 1 D ₀ ²⁰ 0.8235 ¹⁰⁹ D ₀ ³	1.446 ¹⁰⁰ @ 23° 1.4380 "	$[\alpha]_D^{23} = +1.60^{\circ 109}$ $[\alpha]_D^{20} = +0.45^{\circ 44}$
<i>l</i> -1-Methyl-3-iso- propylcyclohexane		167.5 to 168 4 @ 749mm	7 0.7938 47 D ₀ ²⁰ 0.8078 47 D ₀ ⁰	1.4358 47	$[\alpha]_D^{20} = -0.28^{\circ} ^{47}$

		111			C 10 H 20
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n_D^{20}	Additional Data
1-Methyl-4-propyl- cyclohexane	,				
Č		168 to 169 ⁶⁹ @ 765mm 174.3 to 177.1 ¹¹⁸	0.7941 69 0.798 118 D_{20}^{20}	1.43884 ⁶⁹ 1.4393 ¹¹⁸	
c-c-c					
cis-1-Methyl-4-iso- propylcyclohexane					
(p-Hexahydrocymene)		168.5 124	0.816 124	1.45149 124	
c-c-c					
trans-1-Methyl-4-iso- propylcyclohexane					
		161.0 124	0.792 124	1.43931 124	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D_4^{20}	n_D^{20}	Additional Data
-Methyl-4-isopropyl-cyclohexane		171 to 172 % 170 to 172 125 170 to 172 125 170 % 169 to 170 13 169 to 170 13 168 to 169 146 167 to 168 109 166 to 168 111 165 to 169 55 171 46		1.4370 1 @ 25° 1.440 109 @ 25° 1.4375 48 1.43757 83 1.4380 124 1.43840 \{ 68} 1.4385 96 1.44187 140 1.40789 25	

		110			~10 ===1
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D_4^{20}	n_D^{20}	Additional Data
1,3-Diethylcyclohexane		173.5 to 174.5 ¹¹⁸ 169 to 173 ¹²⁷ 169 to 171 ¹⁷²	0.7957 172 @ 22° 0.800 118 D_{20}^{20} 0.8118 127 @ 11°	1.4388 ¹⁷² 1.4409 ¹¹⁸ 1.4449 ¹²⁷ @ 11°	
1,4-Diethyrcycronexane		174.6 to 176.4 ¹¹⁸	0.802 ¹¹⁸ D ²⁰	1.4415 118	
1,3-Dimethyl-5-ethyl-cyclohexane		168.5 to 170 ¹²⁹ 168 to 170 ¹⁰⁰	0.7929^{129} D_0^{20} 0.796^{100} D_{15}^{15} 0.8073^{129} D_0^{0} 0.8076^{100} D_0^{0}		

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	n_D^{20}	Additional Data
1,2,3,4-Tetramethyl- cyclohexane					
(Hexahydroprehnitene)		84 @ 5mm ⁸¹	0.8219 81	1.4531 *1	
c c c					
cis-1,2,3,5-Tetra- methylcyclohexane					
(Hexahydroisodurene)		168 to 170 23	0.8166 23	1,44621 23	
c I c		@ 762mm		$n_{H_a}^{20}$ 1,45472 23	
				n ²⁰ _H _β	
c c				1.45963 23 n _H ²⁰	
				1.44847 ²³ n ²⁰ _{H•}	
trans-1,2,3,5-Tetra- methylcyclohexane					
(Several possible trans isomers)		162 to 164 ²³ @ 765mm	0.8140 **	1.44440 ²² n ²⁰ _{H_a}	
				1.45212 23 $n_{H_{\beta}}^{20}$	
				1.45667 23	
				n _{H_{\gamma}} 1.44657 ** n _{H_{\sigma}}	

		115			C ₁₀ H ₂
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	n_D^{20}	Additional Data
cis-1,2,4,5-Tetra- methylcyclohexane					
(Hexahydrodurene)		171 ²² @ 755mm	0.8122 23	1.44420 23 n _{H_a}	
°				1.45252 23 n _H _β	
c				1.45756 23 $n_{H_{\gamma}}^{20}$	
c i				1.44647 ²³ n ²⁰ H.	
trans-1,2,4,5-Tetra- methylcyclohexane					
(Several possible trans isomers)		166 to 168 23	0.8100 23	1.44230 ²³ n _{H_e}	
				1.45003 23 $n_{H_{\beta}}^{20}$	
				1.45470 23 $n_{H_{\gamma}}^{20}$	
				1.44446 23 n _H ,	

Name and Carles Shelston	М. Р.,°С.	B. P., °C. @ 760mm	7,20	20	Additional Data
Name and Carbon Skeleton	M. F., C.	@ 760mm	D40	n _D ²⁰	
1,2,4,5-Tetramethyl- cyclohexane				•	
		160.5 to 161.5 ³	0.7578 ^{22,68} @ 70°	1.4299 ^{22,68} @ 40°	
		160 to	0.7765 92	1.4196 92	
		161.5 22,68	@ 23°	@ 23°	
	ĺ	@ 755mm	0.7934 22	1.43717 $\binom{22.}{68}$	•
		172 to 174 *2 @ 730mm	0.811 151 0.7910 3	1.44511 151	
		169 to	@ 13.1°	1.43718 3	
		170.5 151	0.825 151	@ 13.1°	
		@ 711mm	@ 0°	$n_{H_a}^{20}$	
				1.43517 ³ $n_{H_{a}}^{13.1}$	
				1.45064 151 n ²⁰ _H	
				1.44307 *	
				$n_{H_{\beta}}^{13,1}$	
				1.45524 151	
	ŀ			$n_{H_{\gamma}}^{20}$	
				1.44772 * n ^{18.1}	
				,	
C ₁₁ H ₂₂					•
Pentylcyclohexane					
C-(C) ₈ -C		201.4 to	0.802 8	1.4428 118	
		201.9 118	0.8044 69	1.444 8	
		199 *	0.804 118	1.44428 69	
· · ·		194.5 to	D_{20}^{20}	1.454 36	
		198 127 191 to 192 25	0.823 35	@ 16° 1.4466 197	
		197 to 199 69	@ 16° 0.8160 127	@ 11°	
		@ 754mm	@ 11°		
		84 to 85 8			
		@ 16mm	1	1	

		111			CilH
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n_D^{20}	Additional Data
l-2-Cyclohexylpentane		101 60 @ 18mm 88 60 @ 15mm	0.814 60 @ 27° 0.823 60 @ 25°		$[\alpha]_D^{\text{tr}} = -0.81^{\circ 60}$
d-2-Methyl-1-cyclo- hexylbutane (d-[2-Methylbutyl]-cyclohexane)		191 61	0.805 sı @ 25°		$[\alpha]_D^{25} = +3.04^{\circ 61}$
3-Methyl-1-cyclo- hexylbutane		192.5 to 193	0.8023 ⁶⁹ 0.8235 ⁸⁸ 0.800 ¹¹⁸ D_{20}^{20} 0.8136 ¹²⁷ @ 11°	1.4420 118 1.44233 69 1.58125 88 1.4477 127 @ 11°	

Name and Carbon Skeleton	М. Р.,°С.	B. P., °C @ 760mm	D40	n_D^{20}	Additional Data
2-Methyl-2-cyclo- hexylbutane		193.3 to 195.2 ¹¹⁸ 191 to 192 ²⁵	0.821 118 D_{20}^{20} 0.8226 25 @ 16°	1.4510 118 1.4538 25,118 @ 16°	
2,2-Dimethyl-1-cyclo- hexylpropane			0.78352 ⁹⁴ @ 40° 0.79893 ⁹⁴	1.4416 ⁹⁴ 1.4502 ⁹⁴ @ 0° 1.4631 ⁹⁴ @ -30°	$\frac{dD}{dt} = -0.0007_{7}/^{\circ}\text{C.}$ $(20^{\circ} \text{ to } 40^{\circ})$ $\frac{dn}{dt} = -0.00043/^{\circ}\text{C.}$ $(-30^{\circ} \text{ to } +20^{\circ})$
1-Methyl-2-butyl-cyclohexane		195.6 to 198.1 118	0.813 118 D_{20}^{20}	1.4467 118	

	C ₁₁ H ₂₂				
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n_D^{20}	Additional Data
1-Methyl-3-butyl- cyclohexane		194.8 to 195.2 118	0.801 118 D ₂₀	1.4418 118	
0-0-0-0				1	
1-Methyl-4-butyl- cyclohexane					
С-с-с-с		195.9 to 196.6 118	0.807 118 D ₃₀	1,4441 118	
Pentamethyl- cyclohexane					
c c c c		180 to 185 ¹²⁷ 183 to 186 ⁶⁸ @ 752mm	0.7990 ⁶⁸ @ 50° 0.8200 ⁶⁸ 0.8081 ¹²⁷ @ 11°	1.43848 68 @ 50° 1.44995 68 1.4455 127 @ 11°	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D ₄ ²⁰	n_D^{20}	Additional Data
Hexylcyclohexane		221 8 219 to 221 88 102 8 @ 16mm	0.8239 86 0.806 8	1.446 ⁸ 1.45222 ⁸⁸	
l-2-Cyclohexylhexane		101 ⁶⁰ @ 18mm	0.823 ⁶⁰ @ 25°		$[\alpha]_D^{25} = -0.90^{\circ}$ 60
d-3-Cyclohexylhexane		111 ⁶⁰ @ 28mm	0.823 ⁶⁰ @ 23°		$[\alpha]_D^{23} = +0.57^{\circ}$ 60
2-Methyl-2-cyclo- hexylpentane		206 to 207 35	0.8372 ³⁵ @ 16°	1.4670 ³⁵ @ 16°	

		121			011221
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n_D^{20}	Additional Data
l-3-Methyl-1-cyclo- hexylpentane		110 ⁶² @ 15mm	0.806 ⁶² @ 27°		$[\alpha]_D^{27} = -1.68^{\circ} ^{62}$
3-Methyl-3-cyclo- hexylpentane		207 to 208 35	0.8310 ³⁵ @ 16°	1.4574 ³⁵ @ 16°	
1-Methyl-2-pentyl- cyclohexane		215.8 to 219.1 118	0.816 118 D ₂₀	1.4487 118	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n_D^{20}	Additional Data
1-Methyl-2-(3-methyl-butyl)-cyclohexane		204 84	0.812 ⁸⁴ @ 17° 0.825 ⁸⁴ @ 0°	1.454 ⁸⁴ @ 17°	
1-Methyl-3-(3-methyl-butyl)-cyclohexane		205 70			
1,3-Dimethyl-5-(2-methylpropyl)-cyclo-hexane		193 to 195 110	0.8227 ¹¹⁰ @ 0°		

		123			C ₁₂ H ₂₄
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n_D^{20}	Additional Data
1-Methyl-3-ethyl-4- isopropylcyclohexane		207 to 208 4 @ 736mm	0.8159 44 0.8275 46 @ 0°		$\left[\alpha\right]_D = -12.25^{\circ \text{ bs}}$
1,3,4-Trimethyl- 1-isopropylcyclohexane		177 28	0.8375 28	1.4636 28	
1,2-Dimethyl-3,6-diethylcyclohexane		91 to 92 si @ 4mm	0.8536 ⁸¹	1.4673 81	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n _D ²⁰	Additional Data
Hexamethyl- cyclohexane					
(Hexahydromellitene)		210 to 214 22.68	0.8405 22,68	1.4606 22,68	
c c c					
C ₁₂ H ₂₆ l-3-Cyclohexyl- heptane c-c-c-c-c-c		112 00	0.819 **		$[\alpha]_D^{25} = -0.68^\circ$
		@ 15mm	@ 25°		·
4-Cyclohexylheptane					
c-c-c-c-c		228 2.108			
	,				

		125			C ₁₈ FL ₂₆
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D40	n_D^{20}	Additional Data
3-Methyl-3-cyclo- hexylhexane		224 to 226 35	0.8406 35 @ 16°	1.4646 35 @ 16°	
3-Ethyl-3-cyclo- hexylpentane		222 to 223 35	0.8388 ³⁵ @ 16°	1.4658 ³⁵ @ 16°	
2,4-Dimethyl-2-cyclo- hexylpentane C C C-C-C-C-C		220 to 221 35	0.8304 ¹⁸ @ 16°	1.4580 ³⁵ @ 16°	
				ln ka	

		····			
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D40	n _D ²⁰	Additional Data
1,1,3-Trimethyl-2- butylcyclohexane		94 to 95 101 @ 10mm	0.8292 ¹⁰¹ @ 19°	1.4563 ¹⁰¹ @ 19°	
C ₁₄ H ₂₈ Octylcyclohexane C-(C) ₆ -C		117 to 119 ** @ 11mm	0.8150 **	1.45070 69	
l-4-Cyclohexyloctane		123 60 @ 15mm	0.823 •• @ 27°		

	C ₁₄ H ₂₈				
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	n_D^{20}	Additional Data
4-Methyl-4-cyclo- hexylheptane		115 to 116 35 @ 13mm	0.8483 ¹⁸ @ 19°	1.4717 ³⁵ @ 19°	,
3-Ethyl-3-cyclohexyl- hexane C-C C-C-C-C-C-C		114 to 116 35 @ 13mm	0.8547 36 @ 19°	1.4754 ²⁸ @ 23°	
2,5-Dimethyl-2-cyclo-hexylhexane C C C C C C C C C C C C C C C C C C	,	134 to 135 " @ 30mm	0.8512 ** @ 19°	1.4685 35 @ 23°	

C ₁₅ H ₂₀		120			
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D_4^{20}	n _D ²⁰	Additional Data
4-Ethyl-4-cyclohexyl- heptane cc c-c-c-c-c-c-c		129 to 130 35 @ 13mm	0.8376 ³⁵ @ 19°	1.4598 ³⁵ @ 23°	
3,6-Dimethyl-3-cyclo- hexylheptane		120 to 121 35 @ 10mm	0.8717 ³⁵ @ 19°	1.4871 ³⁵ @ 23°	
3-Propyl-1-cyclohexyl-hexane c-c-c c-c-c-c-c-c		83 to 85 ⁸⁷ @ 2mm	0.8285 87	1.4550 87	

		147			○15 1130
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D40	n_D^{20}	Additional Data
6-Methyl-2-[4-methyl- cyclohexyl]-heptane					$[\alpha]_D^{20} = -10.2^{\circ 114}$
(Hexahydrozingiberene) C-C-C-C-C-C-C C C		125 103 @ 15mm 128 to 130 114 @ 11mm 123 to 125 117 @ 8mm	0.8244 117 0.8264 114 0.829 104 0.828 103 @ 15°	1.45423 117 1.4560 114 1.4567 104	
1-Methyl-4-isopropyl- 2-(3-methylbutyl)- cyclohexane C C-C-C-C C		131 to 133 116 @ 14mm	0.8250 116 @ 22°	1.45562 116 @ 22°	
C ₁₆ H ₅₂ 4-Propyl-4-cyclohexyl-heptane C-C-C C-C-C-C-C-C-C-C		133 to 135 % @ 11mm	0.8382 ³⁵ @ 19°	1.4606 ²⁵ @ 23°	
					la i

C16 H12		130			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D_4^{20}	n_D^{20}	Additional Data
2,4,6-Trimethyl-4- cyclohexylheptane		133 to 135 35 @ 11mm	0.8396 ²⁵ @ 19°	1.4622 ²⁵ @ 23°	
C ₁₇ H _M 3-Butyl-1-cyclohexyl- heptane C-C-C-C C-C-C-C-C-C		95 to 96 ²⁷ @ 2mm	0.8351 *7	1.4648 87	
2-Methyl-4-propyl-4-cyclohexylheptane C C-C-C C-C-C-C-C-C-C		148 to 150 35 @ 10mm	0.8441 ³⁵ @ 19°	1.4658 ³⁵ @ 23°	

		101			C ₁₆ H ₃₆
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D420	n _D ²⁰	Additional Data
2,5,8-Trimethyl-5-cyclohexylnonane		156 to 158 ²⁹ @ 12mm	0.8440 ³⁵ @ 20.5°	1.4666 35	
C ₁₉ H ₃₈ 2,8-Dimethyl-5-ethyl-5-cyclohexylnonane C C C C C C C C-C-C-C-C-C-C-C		162 to 164 ³⁵ @ 10mm	0.8681 ³⁵ @ 20.5°	1.4789 35	·
C ₂₀ H ₄₀ 2,8-Dimethyl-5-propyl-5-cyclohexylnonane $ \begin{array}{c} C\\ C\\ C\\ C\\ C-C-C-C-C-C-C-C-C \end{array} $		190 to 192 35 @ 17mm	0.8421 ³⁵ @ 20.5°	1.4646 35	

C ₁₀ H ₄₀		152			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n_D^{20}	Additional Data
1-(4-Methylpentyl)-4- (1,5-dimethylhexyl)- cyclohexane		183 to 186 115 @ 14mm	0.8331 115	1.46001 115	
0-0-0-0-0					
C ₂₁ H ₄₂ Pentadecylcyclohexane ©-(C)13-C	25 24	178 34	0.8323 34	1.4612 34	
		@ 0.7mm	@ 19.5°		
2,8-Dimethyl-5-iso-butyl-5-cyclohexyl-nonane		162 to 163 38 @ 6mm	0.8797 34 @ 20.5°	1.4905 25	

	~~~	133			C24 H48
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D40	n _D ²⁰	Additional Data
Octadecylcyclohexane					
C-(C) ₁₆ -C	41.20 to 41.45 128 40 76.77 35 139	207.5 to 208.5 128 @ 3mm	0.834 ⁷⁶ @ 25°	1.4538 ⁷⁶ @ 25°	
C ₂₈ H ₅₆ Cyclohexyldocosane  C-(C) ₃₀ -C	49 to 50 76		0.8327 76 @ 25°	1.4643 76 @ 25°	
5-Cyclohexyldocosane			0.8395 76 @ 25°	1.4627 ⁷⁶ @ 25°	
C ₃₂ H ₆₄ 5-Cyclohexylhexa- cosane C-C-C-C-C-(C) ₂₀ -C	30 to 31 76		0.8372 % @ 25°	1.4677 ⁷⁶ @ 25°	

- (1) R. Adams and J. R. Marshall, J. Am. Chem. Soc. 50, 1970, 1928.
- (2) M. Amouroux and M. Murat, Compt. rend. 154, 992, 1912.
- (3) K, v. Auwers, Ann. 420, 84, 1920.
- (4) K. v. Auwers and F. Eisenlohr, Z. physik. Chem. 83, 429, 1913.
- (5) K. v. Auwers, R. Hinterseber, and W. Treppman, Ann. 410, 257, 1915.
- (6) L. Balbiano and L. Angeloni, Atti accad. Lincei Roma [5] 13B, 142, 1904.
- (7) A. Berkenheim, Ber. 25, 686, 1892.
- (8) M. Bourguel, Bull. soc. chim. [4] 41, 1475, 1927.
- (9) G. Broughton, Trans. Faraday Soc. 30, 369, 1934.
- (10) J. H. Brown, H. W. Durand, and C. S. Marvel, J. Am. Chem. Soc. 58, 1594, 1936.
- (11) J. W. Brühl, Ber. 27, 1065, 1894.
- (12) J. H. Bruun and M. M. Hicks-Bruun, J. Research Nat. Bur. Standards, 7, 607, 1931.
- (13) E. Carter and D. Jones, Trans. Faraday Soc. 30, 1027, 1934.
- (14) G. Chavanne and P. Becker, Bull. soc. chim. Belg. 31, 95, 1922.
- (15) G. Chavanne, M. O. Miller, and Cornet, Bull. soc. chim. Belg. 40, 673, 1931.
- (16) G. Chavanne and L. J. Simon, Compt. rend. 168, 1111, 1919.
- (17) G. Chavanne and L. J. Simon, Compt. rend. 168, 1324, 1919.
- (18) G. Chavanne and H. Van Risseghem, Bull. soc. chim. Belg. 31, 87, 1922.
- (19) A. Crossley and N. Renouf, J. Chem. Soc. 87, 1487, 1905.
- (20) G. Déjardin, Ann. phys. [9] 11, 253, 1919.
- (21) R. Douris, Compt. rend. 157, 55, 1913.
- (22) M. K. Dyakova, A. V. Lozovoij, and T. G. Stepantseva, J. Gen. Chem. (U.S.S.R.) 7, 722, 1937.
- (23) F. Eisenlohr and G. Gorr, Fortschr. Chem. Physik, 18, No. 9, 10, 1925.
- (24) E. B. Evans, J. Inst. Petr. Tech. 24, 321, 1938.
- (25) J. F. Eykman, Chem. Weekblad, 3, 685, 1906.
- (26) J. F. Eykman, Chem. Weekblad, 6, 699, 1909.
- (27) J. F. Eykman, Chem. Weekblad, 8, 651, 1911.
- (28) E. H. Farmer and R. C. Pitkethly, J. Chem. Soc. 1938, 11.
- (29) E. C. Fortey, J. Chem. Soc. 73, 932, 1898.
- (30) D. Gadaskin and S. Ssorkina, Chem. Z. 37, 725, 1913.
- (30a) F. H. Garner and E. B. Evans, J. Inst. Petr. Tech. 18, 751, 1932.
- (31) J. W. Gifford and T. M. Lowry, Proc. Roy. Soc. London, A104, 430, 1923.
- (32) M. Godchot, Bull. soc. chim, [5] 1, 1153, 1934.
- (33) D. C. Jones and S. Amstell, J. Chem. Soc. 1930, 1316.
- (34) A. J. Haagen-Smit, Koninkl. Akad. Wetenschappen Amsterdam, 34, 165, 1931.
- (35) O. Halse, J. prakt. Chem. 92, 40, 1915.
- (36) D. C. Hibbit and R. P. Linstead, J. Chem. Soc. 1936, 470.
- (37) W. Hückel, K. Kumetat, and H. Severin, Ann. 518, 184, 1935.
- (38) I. Kagehira, Bull. Soc. Chem. Japan, 6, 241, 1931.
- (39) W. Kay and W. Perkin, J. Chem. Soc. 87, 1079, 1905.
- (40) F. S. Kipping and W. Perkin, J. Chem. Soc. 57, 25, 1890.
- (41) N. Kishner, J. prakt. Chem. [2] 56, 364, 1897.
- (42) N. Kishner, J. Russ. Phys. Chem. Soc. 40, 676, 1007. 1908.
- (43) N. Kishner, J. Russ. Phys. Chem. Soc. 43, 582, 1911.
- (44) N. Kishner, J. Russ. Phys. Chem. Soc. 43, 1562, 1911.
- (45) N. Kishner, J. Russ. Phys. Chem. Soc. 44, 854, 1912.
- (46) N. Kishner, J. Russ. Phys. Chem. Soc. 44, 1754, 1912.
- (47) N. Kishner and Sawadosky, J. Russ. Phys. Chem. Soc. 43, 1132, 1911.
- (48) Klepper, Chim et Ind. Spec. No. 261, 1929.
- (49) E. Knoeverlagel and C. Fischer, Ann. 297, 185, 1897.
- (50) E. Knoevenagel and MacGarvey, Ann. 297, 160, 1897.
- (51) E. Knoevenagel and J. Tübben, Ann. 297, 150, 1897.
- (52) E. Knoevenagel and G. Wiedermann, Ann. 297, 169, 1897.

- (53) M. Konowalow, J. Russ. Phys. Chem. Soc. 19, 255, 1887.
- (54) R. Kuhn and A. Deutsch, Ber. 65, 43, 1932.
- (55) D. Kursanoff, J. Russ. Phys. Chem. 31, 161, 1899.
- (56) D. Kursanoff, J. Russ. Phys. Chem. 33, 301, 1901.
- (57) S. Lebedev and F. Skawronskaja, J. Russ. Phys. Chem. Soc. 43, 1126, 1911.
- (58) R. Lespieau and R. L. Wakeman, Compt. rend. 192, 1395, 1931.
- (59) P. A. Levene and S. A. Harris, J. Biol. Chem. 112, 195, 1935.
- (60) P. A. Levene and R. E. Marker, J. Biol. Chem. 97, 563, 1932.
- (61) P. A. Levene and R. E. Marker, J. Biol. Chem. 110, 299, 1935.
- (62) P. A. Levene and R. E. Marker, J. Biol. Chem. 110, 311, 1935.
- (63) R. Y. Levina, D. A. Petrov, and D. M. Trakhtenberg, J. Gen. Chem. (U.S.S.R.) 6, 1496, 1936.
- (64) R. Y. Levina and A. A. Potopova, J. Gen. Chem (U.S.S.R.) 7, 353, 1937.
- (65) R. Y. Levina and D. M. Trakhtenberg, J. Gen. Chem (U.S.S.R.) 6, 764, 1936.
- (66) R. Y. Levina and Tzurikov, J. Gen. Chem (U.S.S.R.) 4, 1250, 1934.
- (67) T. M. Lowry and C. B. Allsopp, Proc. Roy. Soc. 133A, 26, 1931.
- (68) A. W. Lozovoij, M. K. Dyakova, and T. G. Stepantseva, J. Gen. Chem. (U.S.S.R.) 7, 1119, 1937.
- (69) A. W. Lozovoij, M. K. Dyakova, and T. G. Stepantseva, J. Gen. Chem. (U.S.S.R.) 9, 540, 1939.
- (70) A. Mailhe and M. Murat, Bull. soc. chim. [4] 7, 1083, 1910.
- (71) E. I. Margolis, Ber. 69, 1710, 1936.
- (72) W. Markownikow, Ann. 302, 1, 1898.
- (73) W. Markownikow, J. Russ. Phys. Chem. Soc. 35, 1033, 1903.
- (74) W. Markownikow and Oglobin, J. Russ. Phys. Chem. Soc. 15, 331, 1883.
- (75) K. Matsubara and W. Perkin, J. Chem. Soc. 87, 661, 1905.
- (76) L. A. Mikeska, Ind. Eng. Chem. 28, 970, 1936.
- (77) L. A. Mikeska, C. F. Smith, and E. Lieber, J. Org. Chem. 2, 499, 1938.
- (78) M. O. Miller, Bull. soc. chim. Belg. 41, 217, 1932.
- (79) M. O. Miller, Bull. soc. chim. Belg. 42, 238, 1933.
- (80) M. O. Miller, Bull. soc. chim. Belg. 44, 513, 1935.
- (81) D. T. Mitchell and C. S. Marvel, J. Am. Chem. Soc. 55, 4276, 1933.
- (82) M. J. Montgolfier, Ann. chim [5] 19, 145, 1880.
- (83) M. Mousseron and R. Granger, Compt. rend. 207, 366, 1938.
- (84) M. Murat, Ann. chim. phys. [8] 16, 108, 1909.
- (85) N. Nagornow and L. Rotinjanz, Ann. de d'instut d'analyse physio-chimique 2, 371, 1924.
- (86) C. D. Nenitzescu and E. Cioranescu, Ber. 69, 1820, 1936.
- (87) G. A. Nesty and C. S. Marvel, J. Am. Chem. Soc. 59, 2662, 1937.
- (88) G. S. Parks and H. M. Huffman, Ind. Eng. Chem. 23, 1138, 1931.
- (89) P. V. Pauchkov and A. F. Nikolaeva, J. Gen. Chem. (U.S.S.R.) 8, 1153, 1938.
- (90) D. Pavlov, J. Russ. Phys. Chem. Soc. 58, 1302, 1926.
- (91) W. H. Perkin, Jr. and S. S. Pickles, J. Chem. Soc. 87, 639, 1905.
- (92) A. Pictet and M. Bouvier, Ber. 46, 3342, 1913; Compt. rend. 157, 1438, 1913.
- (93) A. Pictet and M. Bouvier, Ber. 48, 926, 1915.
- (94) H. Pines and R. W. Moehl, Unpublished data.
- (95) Renard, Ann. chim. [6] 1, 223, 1884.
- (96) F. Richter, W. Wolff, and W. Presting, Ber. 64, 87, 1931.
- (97) F. Rose, Jr. and J. White, J. Research Nat. Bur. Standards, 15, 151, 1935.
- (98) L. Rotinjanz and N. Nagornow, Z. phys. Chem. 169A, 20, 1934.
- (99) D. Rozenthal, Bull. soc. chim. Belg. 45, 585, 1936.
- (100) W. Rudewitsch, J. Russ. Phys. Chem. Soc. 30, 587, 603, 1898.
- (101) L. Ruzicka and C. F. Seidel, Helv. Chim. Acta, 19, 424, 1936.
- (102) L. Ruzicka, M. Stoll, H. W. Huyser, and H. A. Boekenoogen, Helv. Chim. Acta, 13, 1152, 1930.
- (103) L. Ruzicka and A. G. Van Veen, Ann. 468, 133, 1929.
- (104) L. Ruzicka and A. G. Van Veen, Ann. 468, 143, 1929.
- (105) P. Sabatier and A. Mailhe, Compt. rend, 137, 240, 1903; Bull. soc. chim. [3] 29, 974, 1903.

- (106) P. Sabatier and A. Mailhe, Compt. rend. 141, 20, 1905.
- (107) P. Sabatier and A. Mailhe, Compt. rend. 142, 438, 1906.
- (108) P. Sabatier and M. Murat, Ann. chim. [9] 4, 253, 1915.
- (109) P. Sabatier and M. Murat, Compt. rend. 156, 184, 1913; Ann. Chim. [9] 4, 274, 1915.
- (110) P. Sabatier and J. B. Senderens, Ann. chim. [8] 4, 365, 1906.
- (111) P. Sabatier and J. B. Senderens, Compt. rend. 132, 506, 1901.
- (112) P. Sabatier and J. B. Senderens, Compt. rend. 132, 1254, 1901.
- (113) Schtschukarew, J. Russ. Phys. Chem. Soc. 22, 297, 1890.
- (114) F. W. Semmler and A. Becker, Ber. 46, 1814, 1913.
- (115) F. W. Semmler and K. G. Jonas, Ber. 47, 2068, 1914.
- (116) F. W. Semmler, K. G. Jonas, and P. Roenisch, Ber. 50, 1823, 1917.
- (117) F. W. Semmler and I. Rosenberg, Ber. 46, 769, 1913.
- (118) F. K. Signaigo and P. L. Cramer, J. Am. Chem. Soc. 55, 3326, 1933.
- (119) E. L. Skau, J. Phys. Chem. 37, 609, 1933.
- (120) A. Skita, Ber. 53, 1792, 1920.
- (121) A. Skita, Z. angew. Chem. 34, 230, 1921.
- (122) A. Skita, A. Ardan, and M. Krauss, Ber. 41, 2938, 1908.
- (123) A. Skita and H. Ritter, Ber. 44, 668, 1911.
- (124) A. Skita and A. Schneck, Ber. 55, 144, 1922.
- (125) V. Smirnow, J. Russ. Phys. Chem. Soc. 41, 1375, 1909.
- (126) J. Smittenberg, H. Hoog, and R. A. Henkes, J. Am. Chem. Soc. 60, 17, 1938.
- (127) R. Stratford, Ann. combustibles liquides 4, 83, 1929.
- (128) J. Strating and H. J. Backer, Rec. trav. chim. 55, 903, 1936.
- (129) P. Subkow, J. Russ. Phys. Chem. Soc. 25, 383, 1893.
- (130) P. Subkow, J. Russ. Phys. Chem. Soc. 33, 711, 1901.
- (131) E. Terres and W. Vollmer, Petrol. Z. 31, No. 19, 1, 1935.
- (132) J. Timmermans, Bull. soc. chim. Belg. 32, 95, 1923.
- (133) J. Timmermans, Bull. soc. chim. Belg. 36, 502, 1927.
- (134) J. Timmermans, Comm. Phys. Lab. Univ. Leiden Supp. 64, 3, 1929.
- (135) J. Timmermans, H. van der Horst, and H. Kammerlingh-Onnes, Compt. rend. 174, 365, 1922
- (136) J. Timmermans and F. Martin, J. chim. phys. 23, 733, 1926.
- (137) C. O. Tongberg and M. R. Fenske, Ind. Eng. Chem. 24, 814, 1932.
- (138) A. Tschitschibabin, J. Russ. Phys. Chem. Soc. 26, 40, 1894.
- (139) P. Van Romburgh, A. G. Van Veen, and A. J. Haagen-Smit, Koninkl. Akad. Wetenschappe Amsterdam, 33, 589, 690, 1930.
- (140) M. G. Vavon, Ann. chim. 1, 144, 1914.
- (141) M. G. Vavon, Compt. rend. 149, 997, 1909.
- (142) H. Voellmy, Z. phys. Chem. 127, 305, 1927.
- (143) A. I. Vogel, Chem. Ind. 57, 541, 1938.
- (144) A. I. Vogel, Chem. Ind. 57, 772, 1938.
- (145) A. I. Vogel, J. Chem Soc. 1938, 1323.
- (146) G. Wagner, Ber. 27, 1636, 1894.
- (147) E. Washburn and H. Spencer, J. Am. Chem. Soc. 56, 361, 1934.
- (148) J. P. Wilbaut, S. L. Langedijk, J. Smittenberg, and H. Hoog, Chem. Ind. 57, 753, 1938.
- (149) H. Weinhaus and P. Schumm, Ann. 439, 20, 1924.
- (150) R. Willstätter and J. Bruce, Ber. 40, 3979, 1907.
- (151) R. Willstätter and D. Hatt, Ber. 45, 1471, 1912.
- (152) R. Willstätter and V. L. King, Ber. 46, 527, 1913.
- (153) W. Wolff, Ann. 394, 86, 1912.
- (154) F. Wreden, Ann. 187, 153, 1877.
- (155) S. Young and E. Fortey, J. Chem. Soc. 75, 873, 1899.
- (156) S. Young and E. Fortey, J. Chem. Soc. 77, 372, 1900.
- (157) N. D. Zelinsky, Ber. 28, 781, 1895.

- (158) N. D. Zelinsky, Ber. 30, 387, 1897.
- (159) N. D. Zelinsky, Ber. 30, 1532, 1897.
- (160) N. D. Zelinsky, Ber. 34, 2799, 1901.
- (161) N. D. Zelinsky, Ber. 35, 2677, 1902.
- (162) N. D. Zelinsky, Ber. 56, 787, 1923.
- (163) N. D. Zelinsky, Ber. 56, 1716, 1923.
- (164) N. D. Zelinsky, Private Communication, Beilstein Suppl. Vol. V, p. 20.
- (165) N. D. Zelinsky and Dworshantschik, J. Russ. Phys. Chem. Soc. 35, 563, 1903.
- (166) N. D. Zelinsky and W. L. Lepeschin, J. Russ. Phys. Chem. Soc. 45, 613, 1913.
- (167) N. D. Zelinsky and E. I. Margolis, Ber. 65, 1613, 1932.
- (168) N. D. Zelinsky and A. Moser, Ber. 35, 2684, 1902.
- (169) N. D. Zelinsky and S. Noumow, Ber. 31, 3206, 1898.
- (170) N. D. Zelinsky, K. Packendorff, and E. Chochlowa, Ber. 68, 98, 1935.
- (171) N. D. Zelinsky and A. Reformatzky, Ber. 29, 214, 1896.
- (172) N. D. Zelinsky and W. Rudewitsch, Ber. 28, 1341, 1895.
- (173) N. D. Zelinsky and M. B. Turova-Pollak., J. Gen. Chem. (U.S.S.R.) 2, 666, 1932.

C7 H14		130			
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
Cycloheptane	- 13 10 - 12 to - 13 12	117 to 117.5 4 @ 763mm 119 to 120 2 118 to 120 7 117 to 117.3 5 117.5 to 118 11 @ 758mm 116 to 118 9 @ 730mm 118 12 @ 726mm	0.8100 0.7733 11 @ 61.0° 0.7905 11 @ 41.0° 0.8079 9 @ 24° 0.8118 8 0.811 10 0.8099 7 0.8098 11 0.8093 4 D ₁₅ 0.8136 1,2 D _{15,5} 0.8275 12 @ 0° 0.8253 4 D ₆ °	1.44366 1.4419 9 @ 24° 1.44521 12 1.4440 7.8 1.44355 11 1.4466 1.2 @ 13.5° 1.44906 11 n ²⁰ _{Hg} 1.44988 11 n ²⁰ _{Hg}	$\frac{dD}{dt} = -0.000897_{6}^{\circ}/\text{C}.$ $(0^{\circ} \text{ to } 60^{\circ})$ $\frac{dn}{dt} = -0.000444_{0}^{\circ}/\text{C}.$ $(10^{\circ} \text{ to } 25^{\circ})$
C. H. Methylcycloheptane		134 135 to 136 ¹ @ 767mm 134 ¹³ 133 to 135 ⁹	0.8052 9 0.7981 13 @ 18° 0.8087 1.2 Dis.5	1.4403 1.4410 ° 1.4382 ¹³ 1.4390 ¹³ @ 18° 1.4436 ² @ 13.5°	$\frac{dn}{dt} = -0.00047/^{\circ}C.$ (10° to 20°)

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n20 D	Additional Data
Ethylcycloheptane c-c		163 to 163.5 6 @ 740mm	0.8152 ° D ₀ ²⁰ 0.8299 ° D ₀ ⁰		
1,2-Dimethylcyclo- heptane		153 ³			
C ₁₀ H ₂₀ Propylcycloheptane		183 to 184 ¹⁴ @ 756mm	0.8175 ¹⁴ @ 18°	1.4502 ¹⁴ @ 18°	
1,1,2-Trimethylcyclo- heptane		104 to 105 ° @ 100mm	0.8243 %	1.4527 9	
		@ 100mm			

Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D40	n _D ²⁰	Additional Data
1,1,4-Trimethylcyclo- heptane		- COMMIN			
		162 to 163 ° @ 720mm	0.8011 °	1.4420 °	
С					

- (1) M. Godchot, Bull soc. chim. [5] 1, 1153, 1934.
- (2) M. Godchot and G. Cauquil, Compt. rend. 191, 1326, 1930.
- (3) F. Kipping and W. Perkin, J. Chem. Soc. 59, 214, 1891.
- (4) W. Markownikoff, Ann. 327, 59, 1903.
- (5) W. Markownikoff, J. Russ. Phys. Chem. Soc. 34, 908, 1902.
- (6) W. Markownikoff and Jakub, J. Russ. Phys. Chem. Soc. 34, 914, 1902.
- (7) N. A. Rosanow, J. Russ. Phys. Chem. Soc. 48, 309, 1916.
- (8) N. A. Rosanow, J. Russ. Phys. Chem. Soc. 61, 2313, 1929.
- (9) L. Ruzicka and C. F. Seidel, Helv. Chim. Acta, 19, 424, 1936.
- (10) L. Ruzicka, M. Stoll, H. Huyser, and W. A. Boekenoogen, Helv. Chim. Acta, 13, 1152, 1930.
- (11) A. I. Vogel, J. Chem. Soc. 1938, 1323.
- (12) R. Willstätter and T. Kametaka, Ber. 41, 1480, 1908.
- (13) N. D. Zelinsky, J. Russ. Phys. Chem. Soc. 37, 962, 1905.
- (14) N. D. Zelinsky, J. Russ, Phys. Chem. Soc. 38, 473, 1906.

	·	141	C, H		
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	n _D ²⁰	Additional Data
Cycloöctane			0.8304,	1.4563	$\frac{dD}{dt} = -0.000869 \text{s/°C}.$ (10° to 80°)
	14.2 to 14.4 10 14 20 13 to 14 22 11.5 18 9.5 to 11.5 1	145.3 to 146.3 16 146.5 1 @ 752mm 148.5 to 149.5 22 @ 749mm 144 7 @ 730mm 147 to 148 20 @ 720mm 145.3 to 148 18 @ 720mm 149.6 to 150.6 10 @ 709mm 39 to 42 17 @ 15mm	0.7800 7 @ 78.3° 0.7800 14 @ 78° 0.7947 8 @ 61.2° 0.8296 7 0.830 14 0.833 2.18 0.8349 22 0.835 16 0.839 19 0.841 20 0.8318 8 @ 17° 0.8332 7 @ 15.8° 0.8396 1.3 D13.5 0.850 18 @ 0° 0.855 20 @ 0°	1.4558 7 1.45777 16 1.4586 19.22 1.4610 1.3 @ 13.5° 1.4641 14 n16. 1.4573 14 n16. 1.4573 14 n16. 1.4545 14 n16. 1.4545 14 n16. 1.4545 14	(10° to 80°)
C, H ₁₈ Methylcycloöctane	14 to 16 ¹	160 to 163 ¹ @ 750mm 148.5 ²² @ 749mm	0.8349 ¹ 0.8405 ¹ D _{18.5}	1.4567 ³ @ 13.5°	

C ₁ H ₁₄		144			
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
Cyclononane		170 to 172 21	0.7733 ²¹ @ 16° 0.785 ²¹ @ 0°	1.4328 ²¹ @ 16°	
C ₁₀ H ₁₀ Cyclodecane	9.6 4.15	201 4	0.8577 4	1.46922 4	
		82 @ 16mm 4	@ 20.4° 0.8584 4 @ 19.6°	1.47758 4  1.47758 4  1.48242 4  1.47181 4  1.48144	
C ₁₁ H ₂₂ Cycloundecane		183.5 to 184.5 @ 764.5mm to 181 to 18		1.44834 5	·
C ₁₂ H ₁₄ Cyclododecane	61 14	118 ¹⁴ @ 18mm	0.8223 ¹⁴ @ 75° 0.8340 ¹⁴ @ 58°		$\frac{dD}{dt} = +0.00070/^{\circ}C.$ (55° to 75°)

		143	W-1107		C, H
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Data
Cyclotridecane	1814	112 to 113 ¹⁴ @ 9mm	0.8513 ¹⁴ @ 33.5° 0.8608 ¹⁴ 0.8636 ¹⁴ @ 16°		$\frac{dD}{dt} = -0.0007/^{\circ}C.$ (15° to 35°)
C ₁₄ H ₂₈ Cyclotetradecane					
	53 14	143 ¹⁴ @ 16mm	0.8259 14 @ 79° 0.8284 14 @ 75°	1.4515 ¹⁴ @ 80° 1.4533 ¹⁴ n ¹⁶ 1.4506 ¹⁴ n ¹⁶ 1.4623 ¹⁴	
C₁₅H₅ Cyclopentadecane				n Th H•;	$\frac{dD}{dt} = -0.0006_2/^{\circ}C.$ (75° to 110°)
	61 14		0.8048 14 @ 109° 0.8240 14 @ 78° 0.828 14 @ 71°	1.4522 14 @ 80° 1.4448 14 n101 H-s _o , 1.4524 14 n71 1.4528 14 n71 H-s _o , 1.4644 14 n71 H-s _o ,	dt (75° to 110°)

J16 LL 82		177			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D.40	$n_D^{20}$	Additional Data
Methylcyclopenta- decane			0.8585,		$\frac{dD}{dt} = -0.0006200$ $(1 - 0.000499t)/^{\circ}C$
	- 19 14	147 to 148 ¹¹ @ 12mm	0.8051 ¹⁴ @ 109°	1.4735 ¹⁴ @ 21°	(20° to 80°)
			0.8227 ⁸ @ 79.2°	1.4438 14 n _{He}	
			0.8337 ⁸ @ 60.9°	1.4716 14 n18 Hof	
		. 1	0.8475 ⁸ @ 34.5°	1.4837 14	
			0.8576 11 @ 21°	n _{He} ;	
			0.8593 ⁸ @ 20.3°		
			0.858 14 0.8594 14		
			@ 19°		
Cyclohexadecane					
	57 ¹⁴ 61 °	170 to 171 ¹⁴ @ 20mm	0.819 ¹⁴ @ 79°	1.4529 ¹⁴ @ 80°	
		<b>3 2</b>	0.824 ¹⁴ @ 72°	1.4557 ¹⁴ @ 72°	

	C,, H,				
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n20 D	Additional Data
Cycloheptadecane	65 14		0.8021 ¹⁴ @ 108° 0.8062 ¹⁴ @ 101° 0.8200 ¹⁴ @ 77°	1.4507 14 @ 80° 1.4436 14 n _{He} , 1.4409 14 n _{He} , 1.4524 14 n _{He} ,	$\frac{dD}{dt} = -0.00058/^{\circ}\text{C.}$ (75° to 110°)
C ₁₉ H ₃₆ Cycloöctadecane	72 4.14		0.7998 14 @ 111° 0.8201 14 @ 76°	1.4506 14 @ 80° 1.4427 14 n104 n171 1.4533 14 n172 1.4399 14 n104 n114 n116 1.4514 14 n116 1.4624 14 n118 n118 1.4624 14	$\frac{dD}{dt} = -0.0006/^{\circ}C.$ (75° to 110°)

C21 FL44		170			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
Cyclodocosane	46 14	212 ¹⁴ @ 16mm	0.8174 ¹⁴ @ 75°	1.4481 14 @ 80° 1.4499 14 n ¹⁵ _{H•,} 1.4472 14 n ⁷⁵ _{H•,} 1.4589 14 n ⁷⁵ _{H•;}	
C ₁₂ H ₄₄ Cyclotricosane	49 to 50 13 56 14	177 ¹³ @ 0.4mm	0.8280 ₈ @ 60° 0.7973 ¹⁴ @ 111° 0.8233 ¹⁴ @ 69° 0.8259 ¹³ @ 64° 0.8305 ¹³ @ 55°	1.4558 ¹³ @ 56°	$\frac{dD}{dt} = -0.0002870$ $(1+0.0128s^{t})/^{\circ}C$ (55° to 110°
C ₁₄ H ₄₄ Cyclotetracosane	47 14	222 to 228 ¹⁴ @ 0.6mm			

		147			C26 H55
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
Cyclohexacosane			0.8238 @ 60°		$\frac{dD}{dt} = -0.000609_1/^{\circ}C.$ (60° to 115°)
	41 to 42 10 42 14	218 to 219 ¹⁴ @ 0.5mm	0.7924 14 @ 112° 0.8120 14 @ 78° 0.8255 10 @ 58°	1.4484 14 @ 80° 1.4463 14 n18 n18 n19	
C ₁₅ H ₁₆				1.4580 ¹⁴	
Cycloöctacosane	47 to 48 10 48 14	213 to 214 ¹⁴ @ 0.25mm	0.8103 ¹⁴ @ 80° 0.813 ¹⁴ @ 76° 0.8243 ¹⁰ @ 58°	1.4489 ¹⁴ @ 80°	

<u></u>		140			
Name and Carbon Skelcton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
Cyclononacosane	4714		0.8232 ¹⁴ @ 64° 0.8429 ¹⁴ @ 33°		$\frac{dD}{dt} = -0.0006_4/^{\circ}C.$ (35° to 65°)
C ₂₀ H ₆₀ Cyclotriacontane	53 to 54 ° 56 14 57.8 10	230 10 @ 0.2mm	0.8294 @ 60° 0.7973 14 @ 111° 0.8180 14 @ 77° 0.8219 10 @ 73° 0.8233 14 @ 69° 0.8308 14 @ 58°	1.4401 ¹⁰ @ 114° 1.4523 ¹⁴ @ 80° 1.4555 ¹⁰ @ 71°	$\frac{dD}{dt} = -0.00063/^{\circ}\text{C}.$ (60° to 110°)
C ₃₅ H ₅₄ 1,16-Dimethylċyclo- triacontane	52 7		0.808 7 @ 89.3° 0.813 7 @ 80°	1.4498 7 @ 80°	

Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
Cyclodotriacontane	59 to 60 10		0.8261 ¹⁰ @ 70°	1.4568 10 @ 70° 1.4590 10 @ 63°	
C ₁₄ H ₄₅ Cyclotetratriacontane	66 to 67 10	230 to 240 10 @ 0.3mm	0.8229 ¹⁰ @ 76°	1.4302 10 @ 151° 1.4443 10 @ 107° 1.4568 10 @ 72°	$\frac{dn}{dt} = -0.00033_{7}/^{\circ}\text{C.}$ (75° to 150°)
					6

- (1) M. Godchot, Bull. soc. chim. [5] 1, 1153, 1934.
- (2) M. Godchot, Compt. rend. 172, 686, 1921.
- (3) M. Godchot and G. Cauquil, Compt. rend. 191, 1326, 1930.
- (4) W. Hückel, A. Gerche, and A. Gross, Ber. 66, 563, 1933.
- (5) G. Komppa, Ann. acad. sci. Fennicae, ser A. 30, No. 16; 15, 1930.
- (6) W. Markownikow and Ogloblin, J. Russ. Phys. Chem. Soc. 15, 335, 1883.
- (7) L. Ruzicka and H. A. Boekenoogen, Helv. Chim. Acta 14, 1319, 1931.
- (8) L. Ruzicka, H. A. Boekenoogen, and H. Edelman, Helv. Chim. Acta 16, 487, 1933.
- (9) L. Ruzicka, W. Brugger, C. F. Seidel, and H. Schinz, Helv. Chim. Acta 11, 496, 1928.
- (10) L. Ruzicka, M. Hurbin, and M. Furter, Helv. Chim. Acta 17, 78, 1934.
- (11) L. Ruzicka, H. Schinz, and M. Pfeiffer, Helv. Chim. Acta 11, 700, 1928.
- (12) L. Ruzicka and C. F. Seidel, Helv. Chim. Acta 19, 424, 1936.
- (13) L. Ruzicka and M. Stoll, Helv. Chim. Acta 16, 493, 1933.
- (14) L. Ruzicka, M. Stoll, H. Huyser, and H. A. Boekenoogen, Helv. Chim. Acta 13, 1152, 1930.
- (15) R. Stratford, Ann. combustibles liquides 4, 83, 1929.
- (16) R. Willstätter and J. Bruce, Ber. 40, 3979, 1907.
- (17) R. Willstätter and M. Heidelberger, Ber. 46, 517, 1913.
- (18) R. Willstätter and H. Veraguth, Ber. 40, 957, 1907.
- (19) R. Willstätter and E. Waser, Ber. 43, 1176, 1910.
- (20) R. Willstätter and E. Waser, Ber. 44, 3423, 1911.
- (21) N. D. Zelinsky, Ber. 40, 3277, 1907.
- (22) N. D. Zelinsky and M. G. Friemann, Ber. 63, 1485, 1930.

C,H.

2. CYCLANES WITH AN ALKENYL OR OLEFIN SUBSTITUTION

Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
Ethylidenecyclopropane		37.5 ° @ 750mm	0.7052 ⁴ @ 18° . 0.7235 ⁵ @ 0°	1.40255 ° @ 18°	$\frac{dD}{dt} = -0.001_0/^{\circ}C.$ (0° to 20°)
Cyclopropylethylene (Ethenylcyclopropane)		40 to 40.2 ° @ 755mm	0.721 0.723 4 @ 18° 0.726 4 @ 15° 0.7311 4 @ 10° 0.7415 4 @ 0°	1.4172 4 @ 15° 1.4205 4 @ 10°	$\frac{dD}{dt} = -0.001 \text{ s/°C.}$ (0° to 20°)
C ₆ H ₁₀ 2-Cyclopropylpropene-1 (Isopropenylcyclopropane)  C=C-C		71.1 to 71.5 10 @ 772mm 69.5 to 70.0 7 @ 751mm	0.74999 7 0.7510 10	1.4252 10 1.42524 7 1.42064 7 1.42067 1.43206 7 1.43206 7 1.43206 7	

131						
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data	
Isopropylidenecyclo- propane  (2-Cyclopropylidene- propane)  C-C-C		70.5 to 71 ¹ @ 763mm 71 to 71.5 ¹² @ 718mm	0.7531 '	1.424 ¹ 1.4264 ¹² @ 17°		
C ₇ H ₁₂ 2-Cyclopropylbutene-1  C=C-C-C		103.5 to 103.8 7	0.7772 7	1.43901 7 1.43569 7 $n_{H_{a}}^{20}$ 1.44926 7 $n_{H_{\beta}}^{20}$ 1.45515 7 $n_{H_{\gamma}}^{20}$		
2-Cyclopropylbutene-2 (1-Methylpropen-1-ylcyclopropane)  C-C=C-C		105.5 to 106 ⁷	0.7804 7	1.44253 ⁷ 1.43861 ⁷ 1.44926 ⁷ 1.44926 ⁷ 1.45515 ⁷ 1.45 ²⁰ 1.45 ²⁰		

U8 III.4		134			
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	n _D ²⁰	Additional Data
3-Cyclopropylpentene-2		127.5 to 128 ⁷ @ 762.5mm 129 to 130 ²	0.79150 ⁷ 0.7644 ²	1.447 1.44454 7 1.45841 2 1.44159 7 1.45156 7 1.45156 7 1.45156 7	·
C ₀ H ₁₆ 2,2-Dimethyl- 1-(2-methylpropen- 1-yl)-cyclopropane		132 ° @ 758mm	0.7677 ° 0.7681 ° $D_0^{20}$	1.4420 •	
1,1-Dimethyl- 2-(2-methylprop- ylidene)-cyclopropane $ \begin{array}{c} C & C \\ C & C \end{array} $ $ = C-C-C $	- 18 °	112 "			

		100			C1011
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
1-Methyl-1-(3-methyl- penten-1-yl)-cyclo- propane					
c c=c-c-c		162 to 162.7 ° 160 to 160.5 ° @ 735mm			
				A No. OFFICE AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PR	

- (1) D. Alexejewa, J. Russ. Phys. Chem. Soc. 37, 419, 1905.
- (2) P. Bruylants, Rec. trav. chim. 28, 188, 1909.
- (4) N. J. Demjanow and M. Dojarenko, Ber. 55, 2718, 1922.
- (5) G. Gustavson, J. prakt. Chem. [2] 54, 99, 1896.
- (6) Jelocnik, Monatsh, 24, 527, 1903.
- (7) N. v. Keersbilck, Bull. soc. chim. Belg. 38, 205, 1929.
- (8) N. Kishner, J. Russ. Phys. Chem. Soc. 45, 957, 1913.
- (9) N. Kishner, J. Russ. Phys. Chem. Soc. 50, 8, 1921.
- (10) N. Kishner and Klawikordow, J. Russ. Phys. Chem. Soc. 43, 597, 1911.
- (11) V. Lowy and E. Winterstein, Monatsh, 22, 399, 1901.
- (12) N. D. Zelinsky, Ber. 40, 4743, 1907.

42 4 @ 749mm 40.6 to 41.6 1.2 @ 15° 0.7487 1 @ 10° 0.7583 2 @ 0° 0.7585 1 @ 0°  0.7585 1 @ 0°  0.7585 1 @ 0°  0.7585 1	Additional Data
3-Cyclobutylidene- pentane	= -0.00099/°C. (0° to 25°)

⁽¹⁾ N. J. Demjanow and M. Dojarenko, J. Russ. Phys. Chem. Soc. 49, 199, 1917.

⁽²⁾ N. J. Demjanow and M. Dojarenko, Ber. 55, 2727, 1922.

⁽³⁾ O. Philipow, J. Russ. Phys. Chem. Soc. 46, 1163, 1914.

⁽⁴⁾ O. Philipow, J. prakt. Chem. 93, 162, 1916.

⁽⁵⁾ N. Kishner and Amosow, J. Russ. Phys. Chem. Soc. 37, 518, 1905.

Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	n _D ²⁰	Additional Data
Methylenecyclo- pentane			0.778,		$\frac{dD}{dt} = -0.0010_{\text{a}}/^{\circ}\text{C}.$ (20° to 45°)
c c		77 to 79 8 @ 767mm 78 to 81 9 75 to 76 8a 76 to 78 8	0.7518 8a @ 44.8° 0.7541 8a @ 42.7° 0.7778 8a @ 20.8° 0.7770 8 0.7787 8.8a 0.778 2	1.4350 8 1.43078 8a 1.4320 8 1.4351 a 1.4355 9 @ 19° 1.42808 8a $n_{H_a}^{20}$ 1.43743 8a $n_{H_{\beta}}^{20}$ 1.44257 8a $n_{H_{\gamma}}^{20}$	
C ₇ H ₁₂ Ethylidenecyclopentane  C-C		113 to 117 12	0.8020 12	1.4481 12	
1-Methylene-3-methyl-cyclopentane		96 to 97 7,13 93.5 14	0.7734 ¹⁴ @ 19° 0.7750 ^{7,13} @ 16°	1.4296 ¹⁴ @ 19° 1.4336 ¹³ @ 16°	

C ₈ H ₁₄		150			
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D40	n ²⁰	Additional Data
Isopropylidenecyclo- pentane		136 to 137 ¹¹	0.817 "	1.4581 ¹¹	
1-Cyclopentylpropene-2  (Allylcyclopentane)  C-C=C		124 to 126 •	0.793 ° @ 23°	1.440 ° @ 23°	
1-Methyl-2-ethylidene- cyclopentane		123 to 124 b	0.7995 8	1.44421 *	,
·					

		101			C, H
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D ₄ ²⁰	$n_D^{20}$	Additional Data
1-Cyclopentylbutene-2 (Buten-2-ylcyclopentane)		156 to 158 ³	0.806 3 @ 24.5°	1.4482 ² @ 25°	,
1-Methyl-2-isopropylidenecyclopentane		149 to 151 4 @ 755mm	0.8104 4 $D_0^{20}$	1.4518 4	
1-Methyl-2-isopropenylcyclopentane		141 to 143 4 @ 757mm	0.8005 4	1.4455 4	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n20	Additional Data
1-Methylene-2,3,3- trimethylcyclopentane		138 to 140 i			
C ₁₀ H ₁₈ 1-Ethylidene-3-iso-propylcyclopentane		172 to 174 10	0.809 10	1.4506 ¹⁰	
1,2,2-Trimethyl-3-ethenylcyclopentane		155 to 156 °	0.8024 ² @ 24°	1.4439 ² @ 25°	
					Si i

- (a) K. v. Auwers and P. Ellinger, Ann. 387, 201 (1912).
- (1) L. Beauveault and G. Blanc, Compt. rend. 136, 1461, 1903.
- (2) J. v. Braun and A. Heymons, Ber. 61, 2276, 1928.
- (3) B. Grédy, Bull. soc. chim. [5] 2, 1029, 1935.
- (4) N. Kishner, J. Russ. Phys. Chem. Soc. 44, 857, 1912.
- (5) C. D. Nenitzescu and G. G. Vantu, Bull. soc. chim. [5] 2, 2209, 1935.
- (6) L. Piaux and M. Bourguel, Ann. chim. [11] 4, 147, 1935.
- (7) N. Speransky, J. Russ. Phys. Chem. Soc. 34, 24, 1902.
- (8) A. I. Vogel, J. Chem. Soc. 1933, 1028.
- (8a) A. I. Vogel, J. Chem. Soc. 1938, 1323.
- (9) O. Wallach, Ann. 347, 325, 1906.
- (10) O. Wallach, Ann. 384, 193, 1911.
- (11) O. Wallach and A. Fleischer, Ann. 353, 304, 1907.
- (12) O. Wallach and v. Martius, Ann. 365, 272, 1909.
- (13) O. Wallach and N. Speransky, Nachr. Ges. Wiss. Göttingen, 1902, 92.
- (14) N. D. Zelinsky, Ber. 34, 3950, 1901.

C, H,	*****	160			
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
Name and Carbon Skeleton  Methylenecyclohexane	M. P.,°C.	@ 760mm  103.5  105 to 106 34     @ 770mm  102 to 103 35     @ 764mm  105 to 106 5,36,103 103 to 104 31 102 to 103 13 101 to 102 2 102.5 6     @ 756mm 100.5 to 101.3 6     @ 756mm 101.2 to 102 6     @ 751mm	0.803; 0.7704 **5 @ 61.0° 0.7867 **5 @ 41.5° 0.7872 **5 @ 40.9° 0.7992 * 0.801 ** 0.802 to 0.804 **7 0.8032 **1 0.8034 ** 0.8034 **	1.450 ₂ 1.4528 ³¹ 1.45227 ³⁵ 1.4502 ⁴ 1.4501	Additional Data $\frac{dD}{dt} = -0.0008/^{\circ}C.$ $(0^{\circ} \text{ to } 60^{\circ})$
		@ 751mm 104 4.5 @ 749mm		1.44916 35  1.44803 6  1.44803 6  1.44863 6  1.44863 6  1.44863 6  1.44934 6  1.45053 6  1.45053 6  1.45973 35  1.45820 6  1.45820 6  1.45820 6  1.45820 6  1.45820 6  1.45820 6  1.45820 6  1.45820 6  1.45820 6  1.45820 6  1.45820 6  1.45820 6  1.45820 6  1.45820 6  1.45820 6  1.45820 6  1.45820 6  1.45820 6  1.45820 6  1.45820 6  1.45820 6  1.45820 6  1.45820 6  1.45820 6  1.45820 6  1.45820 6  1.45820 6  1.45820 6  1.45820 6	
				$n_{H_{\beta}}^{13.2}$	
			<u> </u>		

		101			C ₇ H
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
Methylenecyclohexane (Continued)	,	aa de w a			
				1.46567 35 $n_{H_{\gamma}}^{20}$	
				1.46430 6  n _H ^{17.8}	
				1.46488 5 n _H ^{16.4}	
				1.46568 6  1.46568 6  1.46696 6	
C.H Cyclohexylethylene				11 ^{13.2} H	
(Vinylcyclohexane)		131 to 132 ²² @ 750mm 130 to 131 ²⁴ @ 749mm	0.8134 ²² 0.8166 ²⁴ @ 19°	1.4546 ²² 1.4550 ²⁴ @ 19°	

O 8 4 4 14					
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D ₄ ²⁰	$n_D^{20}$	Additional Data
Ethylidenecyclohexane		137			
C-C		136 to 136.4 ° @ 766mm 137 to 138 " 135 to 136 ¹³ 134 to 136 "	0.8220 ⁵ @ 20.3° 0.8220 ⁴⁴ 0.8225 ¹⁴ 0.8235 ⁴⁶ @ 19° 0.8286 ¹⁴ @ 19° 0.8230 ⁴⁴ @ 18° 0.8237 ⁵ @ 17.6° 0.8239 ⁵ @ 17.3°	$1.46299  ^{5}$ $1.4626  ^{44}$ $1.4591  ^{46}$ @ $19^{\circ}$ $1.4577  ^{14}$ @ $19^{\circ}$ $1.4531  ^{44}$ @ $18^{\circ}$ $1.46389  ^{6}$ @ $17.6^{\circ}$ $1.46094  ^{6}$ $n_{H_a}^{17.5}$ $1.47139  ^{6}$ $n_{H_B}^{17.3}$ $1.47010  ^{5}$ $n_{H_B}^{17.3}$ $1.47773  ^{6}$ $n_{H_B}^{17.6}$ $1.47633  ^{5}$ $n_{H_A}^{17.3}$	
1-Methylene-2-methyl-cyclohexane		122 to 125 41	0.808 ⁴¹ @ 22°	1.4516 ⁴¹ @ 22°	

		103			C ₈ H ₁₄
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
1-Methylene-3-methyl-cyclohexane		123 to 124 35 @ 762mm 123 to 124 36	0.795 ₆ 0.7610 ³⁵ @ 61.9°  0.7614 ³⁵ @ 61.5°  0.7778 ³⁵ @ 42.1°  0.794 ³⁶ 0.7970 ³⁵ 0.797 ³⁶ @ 18°  0.8003 ³⁵ @ 16.3°	1.44626 35 1.4461 36 1.4466 36 ② 18° 1.44337 35 n ²⁰ H  1.45336 35 n ²⁰ H  1.45887 35 n ²⁰ H	$ \alpha _D^{15} = -30.22^{\circ} \text{ as}$ $\frac{dD}{dt} = -0.00079/^{\circ}\text{C.}$ $(15^{\circ} \text{ to } 65^{\circ})$
1-Methylene-4-methyl-cyclohexane	63 to 64 ³⁸	121  124 to 125 35,36  @ 772mm  122 to 123 43  122 29,38  120 to 121 2	0.798,  0.7407 36,  @ 87.3°  0.7412 38,30;  @ 86.7°  0.7634 38,30;  @ 60.9°  0.7925 43,  @ 22°  0.7920 37,  0.7925 20,  0.7923 29,  0.7923 29,  0.8033 38,39;  @ 15.9°	$1.446_{1}$ $1.4446_{1}$ $1.4446_{2}$ $22^{\circ}$ $1.4483_{2}$ $1.44626_{36}$ $1.4450_{37}$ $1.4465_{29}$ $0.18^{\circ}$ $1.44339_{35}$ $n_{H_g}^{20}$ $1.45338_{35}$ $n_{H_g}^{20}$ $1.45890_{35}$ $n_{H_g}^{20}$	$\frac{dD}{dt} = -0.00086/^{\circ}\text{C.}$ $(15^{\circ} \text{ to } 90^{\circ})$ $\frac{dn}{dt} = -0.00048/^{\circ}\text{C.}$ $(15^{\circ} \text{ to } 25^{\circ})$

C 9 II 16					
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	n20 D	Additional Data
Isopropylidenecyclo- hexane  (2-Cyclohexylidenepropane)  C-C-C		160 to 161 ⁴⁵ 152 to 153 ¹⁶ @ 740mm	0.836 45	1.4723 45	
Isopropenylcyclo- hexane (2-Cyclohexylpropene-1)  C=C-C		157 to 158 25			
1-Cyclohexylpropene-2  (Allylcyclohexane)  C-C=C		154 to 154.4 ²⁶ 152 ⁸ 149 to 151 ²³ 148 to 140 ¹⁷ 148 to 149 ³⁶	0.816, 0.8010 17 @ 41.5° 0.8117 17 @ 28.5° 0.808 8 @ 21° 0.8160 17 0.8156 22 0.8196 30 @ 13° 0.813 8 @ 13° 0.8312 30	1.450 ₆ 1.4483 ¹⁷ @ 25° 1.449 ⁸ @ 21° 1.454 ²³ 1.4528 ¹⁷ @ 15° 1.45362 ³⁰ @ 13° 1.452 ⁸ @ 13°	$\frac{dD}{dt} = -0.0007_{3}/^{\circ}C.$ $(0^{\circ} \text{ to } 45^{\circ})$ $\frac{dn}{dt} = -0.0004_{5}/^{\circ}C.$ $(10^{\circ} \text{ to } 25^{\circ})$

		105			C, H ₁₀
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
1-Methyl-2-ethylidene- cyclohexane		158 27	0.81 ²⁷ @ 81° 0.823 ²⁷ @ 0°	1.47 27	
1-Methyl-3-ethylidene-cyclohexane		153 ⁴⁴ⁿ 152 ¹⁵	0.813 44a 0.8135 15 D ₁₀	1.4584 ⁴⁴ ⁸ 1.4590 ¹⁵ @ 19°	$\left[\alpha\right]_{D}=-50^{\circ 15}$
1-Methyl-4-ethylidene- cyclohexane		152 to 153 ⁴⁹	0.810 ⁴⁹ @ 21° 0.812 ⁴⁹ @ 19°	1.4571 ⁴⁹ @ 21° 1.4574 ⁴⁹ @ 19°	

Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	n _D ²⁰	Additional Data
1-Methylene-3,3-di- methylcyclohexane		138 to 141 ¹² @ 739mm	0.7970 ¹² @ 16.5° 0.8013 ¹² @ 10°	1.44837 ¹² @ 10 ^c	
2-Methylene-1,4-di- methylcyclohexane		135 to 136 ° @ 764mm	0.7922 ° @ 14.1°	1.446 ⁶ @ 14.6°	
1-Methylene-3,5-dimethylcyclohexane		135 to 136 4.6 @ 744mm	0.7918 ••• @ 14.6° 0.7922 •• @ 14.1°	1.44628 ° @ 14.6° 1.44334 ° n ^{14.6} 1.45313 ° n ^{14.6} 1.45917 ° n ^{14.6} n ^{14.6}	

		107			C ₁₀ H ₁₈
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
1-Cyclohexylbutene-2 (Buten-2-ylcyclohexane)		177 ⁸ 66 @ 14mm ⁷	0.813 s @ 21° 0.818 s @ 13°	1.453 ⁸ @ 21° 1.457 ⁸ @ 13°	
1-Cyclohexylbutene-3 (Buten-3-ylcyclohexane)		174.5 to 175 ²² 174 ⁵ 62 @ 14mm ⁸	0.810 ⁸ @ 21° 0.8131 ²²	1.450 ⁸ @ 21° 1.453 ²²	
1-Cyclohexylbutene-x			0.815 8	1.454 ⁸ @ 13°	
1-Methyl-2-isopropylidenecyclohexane		160 to 162 42	0.8345 42	1.4670 42	

C10 P18		100			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
1-Methyl-3-propylidenecyclohexane		170 to 173 48	0.814 ⁴⁸ @ 19°	1.4591 ⁴⁸ @ 19°	$\left[\alpha\right]_{D}=-34^{\circ}\ 28^{\prime} \ ^{48}$
1-Methyl-4-isopropylidenecyclohexane		172 to 174 39	0.831 ³⁹ @ 21°	1.4647 ³⁹ @ 21°	
l-1-Methyl-3-isopro- pylidenecyclohexane		173 to 175 ⁴² 172.5 to 174.5 ²¹ @ 749mm	0.8250 ⁴² 0.8214 ²¹	1.4569 ²¹ 1.4577 ²¹ 1.4582 ²¹ 1.4670 ⁴²	$\left[\alpha\right]_{D} = -0.51^{\circ}  ^{20}$

		109			C ₁₀ H ₁₈
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
d-1-Methyl-3-iso- propenylcyclohexane		170 to 170.5 ²¹ @ 751mm	$0.8178^{21}$ $D_0^{20}$	1.4546 21	$ \alpha _D = +9.73^{\circ 21}$
<i>l</i> -1-Methyl-3-iso- propenylcyclohexane		170 to 171 ²⁰ @ 749mm	0.8185 ²⁰ D ₀ ²⁰	1.4574 20	$\left \alpha\right _{D}=-8.06^{\circ 20}$
1-Methylene-4-iso- propylcyclohexane			0.8667 18	1.4840 18	

C ₁₀ H ₁₄		170			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
1-Methyl-4-propyli- denecyclohexane					
С		175 to 177 48	0.8110 40	1.4571 40	
C-c-c		173 to 174 ⁴⁰	0.8135 ⁴⁸ @ 19°	1.4516 ⁴⁸ @ 19°	
,					
1-Methyl-4-isopropyli- denecyclohexane					
(p-Menthene-4)		172 to	0.8189 32	1.4647 36	
0		174 6,36,40	$D_{21}^{22}$	1.4670 40	
ļ		170 to 172 ⁷ 169 to 170 ³²	0.8345 42	1.45922 7	
		@ 748mm	0.831 ⁸⁶ @ 21°	1.45862 ⁷ 1.45823 ³²	
c-c-c			0.819 7 @ 21° 0.8175 7 @ 20.5°	1.43023	
1-Methyl-4-isopro- penylcyclohexane					
(Dihydrolimonene)		170 19	0.8217 32	1.45673 32	
•		@ 750mm	@ 21°	@ 21°	
		168 to 169 32 @ 750mm	$0.8142^{19}$ $D_0^{20}$	1.45662 33 1.4523 19	
		170 to 170.5 28		1.4525	
$\searrow$		@ 746mm	0.810 23		
C-C=C		53 to 54 33 @ 14mm	$D_{15}^{15}$		
		@ 1-111111		- 4	

1-Methylene-2,3,3-tri- methylcyclohexane  (Methyl-γ-geraniolene) 164 12 0.83	D ₄ ²⁰ n _D ²⁰ Additional Data
(Methyl-γ-geraniolene)  C C C C C C C C C C C C C C C C C C	L'4 ND Haddisonde Date
C ₁₁ H ₂₀ 1-Cyclohexylpentene-x  C-C-C-C-C  2-Cyclohexylpentene-1  C=C-C-C-C  198 to 199 * 0.82	
C ₁₁ H ₂₀ 1-Cyclohexylpentene-x  C-C-C-C-C  2-Cyclohexylpentene-1  C=C-C-C-C  198 to 199 8  0.81	3320 12 1.46274 12
1-Cyclohexylpentene-x  C-C-C-C-C  196 8 83 @ 14mm 8  2-Cyclohexylpentene-1  C=C-C-C-C  198 to 199 8 0.81	@ 11°
1-Cyclohexylpentene-x  C-C-C-C-C  196 8 83 @ 14mm 8  2-Cyclohexylpentene-1  C=C-C-C-C  198 to 199 8  0.81	
2-Cyclohexylpentene-1 C=C-C-C-C  196 8 83 @ 14mm 8  0.81  198 to 199 8 0.82	
C=C-C-C 198 to 199 8 0.82	1.454 8
	322 8 1.458 8
	3322 ²⁸ 1.4595 ²⁶ 9 25° @ 25°

Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
1-Methyl-3-(2-methyl-propen-2-yl)-cyclo-hexane		186.5 to 187.5 ⁴⁷	0.8120 47	1.4546 47	
2-Methylene-4-methyl- 1-isopropylcyclohexane		181 to 182 ¹	0.8273 ¹ @ 16°		$\left[\alpha\right]_{D} = +87.25^{\circ 1}$
1-Methylene-3,3-di- methyl-2-ethylcyclo- hexane  (Ethyl-γ-geraniolene)  C-C C		182 to 184 12 @ 745mm	0.8160 ¹² @ 10°	1.46235 ¹² @ 10°	

Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	n20	Additional Data
1-Methylene-2,2,3,3-cetramethylcyclohexane  (Dimethyl-γ-cyclogeraniolene)		181 to 183 ¹² @ 756mm	0.8246 ¹² @ 11°	1.46275 ¹² @ 12°	
C ₁₂ H ₂₂ 1-Cyclohexylhexene-x		219 ⁸ 99 @ 16mm ⁸	0.820 ° @ 21°	1.457 s @ 21°	
2-Cyclohexylhexene-x  C-C-C-C-C-C		221 * 102 * @ 17mm	0.823 ⁸ @ 21°	1.459 ⁸ @ 21°	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Data
5-Methyl-1-ethylidene- 2-isopropylcyclo- hexane		50. 50.	0.0204.1		$[\alpha]_D^{14} = +34.79^{\circ 1}$
c -c-c		58 to 59 ¹ @ 4mm	0.8304 ¹ @ 16°		
1-Methylene-3,3-di- methyl-2-propylcyclo- hexane					
(Propyl-γ-cyclogeraniolene)  C C-C-C C C		200 to 202 ¹² @ 741mm 83 to 85 ¹² @ 12mm	0.8126 ¹² @ 10°	1.46176 ¹² @ 10.5°	
C ₁₃ H ₂₄ 4-Cyclohexylheptene-2					
c-c=c-c-c-c		135.6 to 136.6 ²⁴ @ 45mm	0.8355 ²⁴ @ 25°	1.4630 ²⁴ @ 25°	

		1/5			C ₁₁ H ₂₄
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Data
4-Cyclohexylheptene-x		226 to 228 ^s @ 755mm	0.8441 ³ @ 21°	1.467 ³ @ 21°	•
1-Methyl-3-propylidene-4-isopropylcyclohexane		,	0.8129 ¹ @ 16.5°		
1-Methylene-3,3-dimethyl-2-(2-methyl-propyl)-cyclohexane  (Isobutyl-7-cyclogeraniolene)		212 to 213 ¹² @ 742mm	0.8112 ¹² @ 11°	1.46086 ¹² @ 11°	
		De la constant			

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	n ²⁰ _D	Additional Data
1-Methyl-4-isopropyl- 2-(3-methylbuten-2- yl)-cyclohexane  C C-C-C-C C C-C-C-C		127 to 128 ° @ 19mm	0.8418 ° D ³⁵ D ²⁵	1.4702° @ 25°	
C ₁ , H ₁ ,  2-Methylene-1,1,3,3- tetrapropylcyclohexane  C-C-C  C-C-C  C-C-C		165 ¹⁰ @ 15mm	().8618 ¹⁰ @ 16°	1.4800 ¹⁰ @ 16°	

- (1) Akira Ogata and Chuji Mizashita, J. Pharm. Soc. Japan, 1922, No. 484, 4.
- (2) N. Alexandrovitch, J. Gen. Chem. (U.S.S.R.) 3, (65) 48, 1933.
- (3) G. Amouroux and M. Murat, Compt. rend. 154, 994, 1912.
- (4) K. v. Auwers and P. Ellinger, Ann. 387, 200, 1912.
- (5) K. v. Auwers and P. Ellinger, Ann. 387, 219, 1912.
- (6) K. v. Auwers, R. Hinterseber, and W. Treppmann, Ann. 410, 257, 1915.
- (7) A. Béhal, Compt. rend. 150, 1764, 1910.
- (8) M. Bourguel, Bull soc. chim. [4] 41, 1475, 1927.
- (9) A. E. Bradfield, E. R. Jones, and J. L. Simonsen, J. Chem. Soc. 1934, 1810.
- (10) R. Cornubert, C. Borrel, M. De Demo, J. Garnier, R. Humeau, H. Le Bihan, and G. Sarkis, Bull soc. chim. [5] 2, 195, 1935.
- (11) F. Ebel, R. Brunner, and P. Mangelli, Helv. Chim. Acta 12, 19, 1929.
- (12) R. Escourrou, Bull. soc. chim. [4] 39, 1460, 1926.
- (13) A. Favorsky and I. Borgmann, Ber. 40, 4863, 1907.
- (14) M. M. Godchot and G. Cauquil, Compt. rend. 186, 375, 1928.
- (15) W. N. Haworth, W. H. Perkin, and O. Wallach, Ann. 379, 144, 1911.
- (16) C. Hell and O. Schaal, Ber. 40, 4162, 1907.
- (17) C. D. Hurd and H. T. Bollman, J. Am. Chem. Soc. 55, 699, 1933.
- (18) M. A. Iskenderov, J. Gen. Chem. (U.S.S.R.) 7, 1435, 1937.
- (19) N. Kishner, J. Russ. Phys. Chem. Soc. 43, 951, 1911.
- (20) N. Kishner, J. Russ. Phys. Chem. Soc. 43, 1560, 1911.
- (21) N. Kishner and Sawadowski, J. Russ. Phys. Chem. Soc. 43, 1139, 1911.
- (22) R. Y. Levina and A. A. Potopova, J. Gen. Chem. (U.S.S.R.) 7, 353, 1937.
- (23) R. Y. Levina and D. M. Trakhtenberg, J. Gen. Chem. (U.S.S.R.) 6, 764, 1936.
- (24) R. Y. Levina and F. F. Zurikow, J. Gen. Chem. (U.S.S.R.) 6, 1250, 1936.
- (25) K. Matsubara and W. H. Perkin, J. Chem. Soc. 87, 661, 1905.
- (26) S. P. Mulliken, R. L. Wakeman, and H. T. Gerry, J. Am. Chem. Soc. 57, 1605, 1935.
- (27) M. Murat and G. Amouroux, Bull. soc. chim. [4] 15, 159, 1914.
- (28) W. H. Perkin and S. S. Pickles, J. Chem. Soc. 87, 639, 1905.
- (29) W. H. Perkin and W. J. Pope, J. Chem. Soc. 99, 1514, 1911.
- (30) B. de Rességuier, Bull. soc. chim. [4] 7, 432, 1910.
- (31) N. A. Rosanow, J. Russ. Phys. Chem. Soc. 48, 316, 1916.
- (32) F. W. Semmler and J. Feldstein, Ber. 47, 384, 1914.
- (33) F. W. Semmler and C. Rimpel, Ber. 39, 2582, 1906.
- (34) A. I. Vogel, J. Chem. Soc. 1933, 1028.
- (35) A. I. Vogel, J. Chem. Soc. 1938, 1323.
- (36) O. Wallach, Ann. 347, 342, 1906.
- (37) O. Wallach, Ann. 359, 291, 1908.
- (38) O. Wallach, Ann. 365, 255, 1909.
- (39) O. Wallach, Ber. 39, 2504, 1906.
- (40) O. Wallach and L. Augsperger, Ann. 414, 212, 1918.
- (41) O. Wallach and E. Beschke, Ann. 347, 338, 1906.
- (42) O. Wallach and J. B. Churchill, Ann. 360, 80, 1908.
- (43) O. Wallach and E. Evans, Ann. 347, 345, 1906.
- (44) O. Wallach and E. Evans, Ann. 360, 45, 1908.
- (44a) O. Wallach and E. Evans, Ann. 360, 51, 1908.
- (45) O. Wallach and H. Mallison, Ann. 360, 68, 1908.
- (46) O. Wallach and P. Mendelsohn-Bartholdy, Ann. 360, 48, 1908.
- (47) O. Wallach and W. v. Rechenberg, Ann. 394, 362, 1912.
- (48) O. Wallach and M. Rentschler, Ann. 360, 60, 1908.
- (49) O. Wallach and M. Rentschler, Ann. 365, 269, 1909.

7844I4		1 0 0 00	T		
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D420	#20	Additional Data
Methylenecyclo- heptane					
C		138 to 140 '	0.824 1.2	1.4611 1	
:					
		N			
e.					

O. Wallach, Ann. 345, 139, 1906.
 O. Wallach and van Beeck-Vollenhoven, Ann. 314, 156, 1900.

As a MARKETONIA Service of the control of the contr	SUE	STITUTIO	NS, C _n H	2n-4	С, Н,
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
1,2-Dimethylenecyclo- butane					
c    -c		63 to 65 4	0.7698 4	1.42317 4	
C ₁₀ H ₁₆ 1,2-Diisopropylidene- cyclobutane  C-C-C  =C-C  C		179 to 181 ² 61 to 62 ² @ 9mm	0.8422 ² 0.8571 ² @ 0°	1.50086 2 @ 19.7°  1.50622 2 $n_{H_{a}}^{19.7}$ 1.51251 2 $n_{H_{g}}^{19.7}$ 1.52345 2 $n_{H_{g}}^{19.7}$	$\frac{dD}{dt} = -0.007  \text{s/°C.}$ (0° to 20°)
2-Methylene-1,1-di- methyl-3-isopropyli- denecyclobutane  C C =c -c-c-c		149 to 150 ² @ 752mm 37 to 39 ² @ 9mm	0.7982 ² 0.8143 ² @ 0°	1.46769 ² @ 19.7° 1.46319 ² $n_{H_a}^{19.7}$ 1.47729 ² $n_{H_{\beta}}^{19.7}$	$\frac{dD}{dt} = -0.0008/^{\circ}C.$ (0° to 20°)
1 1					

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
1,2-Dimethyl-3,4-di- ethylidenecyclobutane		163 ⁷ @ 762mm 65 @ 22mm ⁷	0.81137	1.47850 ⁷ 1.47423 ⁷ $n_{H_a}^{50}$ 1.48913 ⁷ $n_{H_B}^{50}$ 1.49838 ⁷ $n_{H_A}^{50}$	
2-Dimethylene-3,3,4, 4-tetramethyl- cyclobutane		140 to 141 5 66 to 67 5 @ 55mm	0.7927 5	1.4606 ⁵ 1.4570 ⁵ $n_{H_a}^{20}$ 1.4699 ⁵ $H_{\beta}^{20}$ 1.4781 ⁶ $n_{H}^{20}$	
1,2-Dimethyl-3,4-di- isopropylidenecyclo- butane		190 to 191 ° @ 754mm 69 to 70 ° @ 11mm	0.8247 °	1.48337 ° 1.47946 ° n _H 1.49282 ° n _H 1.50297 ° n _H 1.50297 °	

		101			414 2214
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
1,2-Di-(1-ethylpropylidene)-cyclobutane  C-C C-C-C =C-C C C-C-C		102 to 104 s @ 10mm	0.8569 * @ 16.5°	1.48643 @ 16.5°	
1,1,2,2-Tetramethyl-3, 4-diisopropylidene- cyclobutane		86 to 88 ° @ 9mm	0.8457 • @ 15.6° 0.8563 • @ 0°	1.49535 ⁸ @ 15.6°	$\frac{dD}{dt} = -0.0006_{\text{s}}/^{\circ}\text{C}.$ (0° to 20°)
$C_{10}$ $H_{16}$ $d$ -1-Methylene-4-iso-propylidenecyclohexane $C$ $\parallel$ $C$ $C$ $\parallel$ $C$ $C$		69 to 73 ° @ 20mm	0.8515 ° Die	1.4785 ° @ 18°	$\left[\alpha\right]_{D}=+2.5^{\circ}$

/10 EL 16		102			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n _D ²⁰	Additional Data
1-Methylene-4-iso- propenylcyclohexane					
c C		65 to 66 ¹ @ 11mm	0.8735 ¹ D ₂₀	1.4870 1	
c-c=c					

⁽¹⁾ M. A. Iskenderov, J. Gen. Chem. (U.S.S.R.) 7, 1435, 1937.

⁽²⁾ S. Lebedev, J. Russ. Phys. Chem. Soc. 43, 820, 1911.

⁽⁴⁾ S. Lebedev, J. Russ. Phys. Chem. Soc. 45, 1357, 1913.

⁽⁵⁾ S. Lebedev, J. Russ. Phys. Chem. Soc. 45, 1373, 1913.

⁽⁶⁾ S. Lebedev and B. Mereshkowsky, J. Russ. Phys. Chem. Soc. 45, 1348, 1913.

⁽⁷⁾ S. Lebedev and B. Mereshkowsky, J. Russ. Phys. Chem. Soc. 45, 1354, 1913.

⁽⁸⁾ B. Mereshkowsky, J. Russ. Phys. Chem. Soc. 45, 1940, 1913.

⁽⁹⁾ F. Richter and W. Wolff, Ber. 60, 477, 1927; 63, 1714, 1930.

⁽¹⁰⁾ O. Wallach, Ann. 359, 283, 1908.

C.H.

	50.	parrioric	JIY Uniiin.	-4	Callia
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
Ethenylidenecyclo- hexane					$\frac{dD}{dt} = -0.0008_7/^{\circ}C.$ (0° to 20°)
c=c		138 to 141 ¹	0.8508 ¹ D ₀ ¹⁰ 0.8682 ¹ D ₀ ⁰	1.4826 1	
C, H ₁₄					
Propadienylcyclo- hexane  C=C=C		155 to 156 ² @ 755mm	0.8239 2	1.4658 2	
C ₁₄ H ₂₄ 1-Methyl-4-isopropyl- 2-buten-2-ylidene- cyclohexane					
C-C-C		108 to 109 \$ @ 12mm			

O14 AA24		101			
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
1-Methyl-4-isopropyl- 3-buten-2-ylidene- cyclohexane					
C-C-C C-C=C·C		99 @ 12mm 4			
C ₁₆ H ₂₈ -3,7-Dimethyl-1-cyclo- hexyloctadiene-1,6		142 to 143 ³	0.8468 3		$[\alpha]_D^{20} = -6.4^{\circ}$
c=c-c-c-c-c		@ 9mm	0.5405		

⁽¹⁾ W. Jegorowa, J. Russ. Phys. Chem. Soc. 43, 1119, 1911.

⁽²⁾ R. Y. Levina and D. M. Trakhtenberg, J. Gen. Chem. (U.S.S.R.) 6, 764, 1936.

⁽³⁾ H. Rupe, Ann. 402, 176, 1913.

⁽⁴⁾ H. Rupe and A. Gassmann, Helv. Chim. Acta 12, 193, 1929.

⁽⁵⁾ H. Rupe and Fr. Kuenzy, Helv. Chim. Acta 14, 708, 1931.

C, H10

	SUBSTITUTION, Cartinate						
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n20 D	Additional Data		
Ethynylcyclopentane C=C	,	107 to 109 4	0.825 4 @ 22°	1.4505 4 @ 18°			
C ₈ H ₁₂ 1-Cyclopentylpropyne-1 (Propyn-1-ylcyclopentane)  C≡C-C		142 to 143 4	0.843 4 @ 22°	1.4636 4 @ 22°			
3-Cyclopentylpropyne-1 (Propyn-2-ylcyclopentane)  C-C≡C		132.5 to 133.5 •	0.828 ⁵ @ 24°	1.4494 ⁵ @ 24°			

Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
1-Cyclopentylbutyne-2 (Butyn-2-ylcyclopentane)  C-C≡C-C		164 to 165 5	0.842 ^s @ 26°	1.4621 ⁵ @ 26°	
C ₈ H ₁₂ Ethynylcyclohexane  C≡C		130 to 132 4.6	0.832 4 @ 23° 0.8424 6 $D_0^{20}$ 0.8602 6	1.4558 4 @ 23° 1.4597 6	$\frac{dD}{dt} = -0.00089/^{\circ}C.$ (0° to 20°)
C, H ₁₄ 1-Cyclohexylpropyne-1 (Propyn-1-ylcyclohexane)  C=C-C		162 to 164 4	0.851 4 @ 22°	1.4682 ⁴ @ 22°	

		101			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n _D ²⁰	Additional Data
3-Cyclohexylpropyne-1					_
C≡C−C		157.5 to	0.836 1	1.459 1	
j	1	160 9	0.8449 *	1.4605 •	
		@ 762mm	0.844 *	1.4603 3	
		157 to 160 7	@ 18°	@ 18°	
•		157 to 158 3			
•		157 1	•		
		55 @ 17mm 3			
		48 @ 12mm 1			
		48 @ 11mm *			
1					
C10 H16					
4-Cyclohexylbutyne-1					
C≡C-C-C		70 @ 17mm ²	0.8462 *	1.4614 8	
		61 to 62 * @ 7mm			
		@ /min			
			}		
	1				
		1			
1-Cyclohexylbutyne-2	ļ				
C-C≡C-C		79 @ 17mm ²			
] 0=0 0		176 1711111			
		1			
•					
		1			

C ₁₁ H ₁₁		100			
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
4-Cyclohexylpentyne-2 C-C≡C-C-C		93 @ 17mm ²			
5-Cyclohexyl- pentyne-1 C≡Ċ-C-C-C		84 @ 16mm ²			
C ₁₂ H ₂₀ 6-Cyclohexyl- hexyne-1  C≡C-(C) ₈ -C		101 @ 16mm ¹			

		107			O1122
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
6-Cyclohexyl- hexyne-2					
C-C=C-C-C		109 to 110 ² @ 17mm			

- (1) M. Bourguel, Compt. rend. 177, 688, 1923.
- (2) M. Bourguel, Compt. rend. 179, 686, 1925.
- (3) M. Bourguel, Ann. chim. [10] 3, 191, 1925.
- (4) B. Grédy, Compt. rend. 199, 153, 1934.
- (5) B. Grédy, Compt. rend. 199, 1129, 1934.
- (6) W. Jegorowa, J. Russ. Phys. Chem. Soc. 43, 1119, 1911. .
- (7) R. Lespieau, Bull. soc. chim. [4] 29, 528, 1921.
- (8) R. Levina and A. Ivanov, J. Gen. Chem. (U.S.S.R.) 7 (69), 1866, 1937.
- (9) R. Levina and D. M. Trakhtenberg, J. Gen. Chem. (U.S.S.R.) 6, 764, 1936.

6. CYCLANES WITH A CYCLOALKENYL OR CYCLOÖLEFIN SUBSTITUTION, C₁₁H₁₄

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ <b>76</b> 0mm	$D_4^{20}$	$n_D^{20}$	Additional Data
1-Cyclopentylcyclopentene-1		189 to 191 18 @ 744mm 190 8 @ 730mm	0.8898 18	1.499 5 n _{Ho} 1.50047 5 n _{Ho} 1.50047 5	
1-Cyclopentylcyclo- pentene-1 or -2	-				
		196.5 to 198 ¹⁷ 190 ³ 83 to 85 ³ @ 20mm 82 to 83 ⁴ @ 17mm 79 @ 13mm ⁴	0.8593 ⁴ @ 22.5° 0.9080 ³⁷ @ 19.5° 0.9183 ³ @ 18°	1.4863 4 @ 22.5° 1.4938 17 @ 19.5° 1.4953 3 @ 18° 1.48284 4 n ^{22.6} 1.49979 4	
1-Cyclopentylcyclo- pentene-2				n22.5	
		63 @ 9mm 1	0.8838 3		

		191			C11 H18
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Data
1-Cyclohexylcyclopentene-2		The second secon	N E Management de la company		
(Cyclopenten-2-ylcyclo- hexane)		80 to 85 1 @ 12mm	0.8995 ¹ @ 18°	1.48698 1	
C ₁₂ H ₂₀ 1-Cyclohexylcyclo- hexene-1					
(Cyclohexen-1-ylcyclo- hexane)	- 41 5	238.518	0.9010 16	1.4910 18 1.4916 18	
		110 s @ 13mm	$\begin{array}{c} 0.906^{13} \\ 0.920 \\ D_{20}^{20} \end{array}$	1.4969 ¹⁸ 1.49556 ⁸	
		100 ¹⁸ @ 8.5mm 85 to 88 ¹³ @ 4mm	0.9071 s @ 19.4°	n ^{17.6}	
Cyclohexylidenecyclo- hexane					
or 1-Cyclohexylcyclo- hexene-1					
or		241 ¹¹ 124 • @ 20mm	0.923 ° @ 0°		
$\bigcirc$					

C12 H26		194		· · · · · · · · · · · · · · · · · · ·	
Name and Carbon Skeleton	M. P.,°C.	B. P., °C @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
Cyclohexylidene- cyclohexane		240 ¹² 236 to 237 ¹⁸ @ 742mm	1.0109 ¹⁸ @ 15°	1.4955 ¹⁸ @ 15°	,
Cyclohexylcyclo- hexene-x	- 45 14	238 to 239 ¹⁴ 103 to 105 ¹⁴ @ 12mm	0.904 ''	1.493 14	
C ₁₈ H ₂₁ 4-Methyl-1-cyclo- hexylcyclohexene-1 or 4-Methyl-1-cyclo- hexylidenecyclohexane  c— or c— or		158 ⁸ @ 35mm	0.901 s @ 10°	1.489 ⁸ @ 10°	

		193			C14 H24
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
6-Ethyl-1-cyclohexyl- cyclohexene-1					$\frac{dD}{dt} = -0.0006_{\text{e}}/^{\circ}\text{C.}$ (0° to 20°)
$\bigcirc\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$		141 to 143 ² @ 20mm	0.9274 ² 0.9406 ² @ 0°	1.5108 2	
d 2 Mathyl 1 (5 math					
d-3-Methyl-1-(5-meth- ylcyclohexyl)-cyclo- hexene-1					$\left[\alpha\right]_{D} = +0.28^{\circ}  ^{6}$
c		257 to 259 °	0.9119 6 $D_0^{20}$ 0.9128 6 $D_0^{0}$		
			23		

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n20 D	Additional Data
3-Methyl-6-isopropyl- 1-cyclohexylcyclo- hexene-1 or 5-Methyl-2-isopropyl- 1-cyclohexylcyclo- hexene-1					$\left[\alpha\right]_{D}=+6.2^{\circ 7}$
C-C C or C		265 ⁷ 260 ⁷ @ 756mm	0.9198 7 @ 14° 0.9897 7 @ 0°	1.498 7	
c-c c					

- (1) J. v. Braun, E. Kamp, and J. Kopp, Ber. 70B, 1750, 1937.
- (2) C. E. Garland and E. E. Reid, J. Am. Chem. Soc. 47, 2333, 1925.
- (3) M. Godchot and F. Taboury, Compt. rend. 154, 1626, 1912.
- (4) C. Harries and H. Wagner, Ann. 410, 29, 1915.
- (5) W. Hückel, O. Neunhoeffer, A. Gercke, and E. Frank, Ann. 477, 99, 1929.
- (6) W. Markownikow, J. Russ. Phys. Chem. Soc. 35, 1069, 1903.
- (7) M. Murat, J. pharm. chim. [7] 4, 297, 299, 1911.
- (8) P. Sabatier and A. Mailhé, Ann. chim. [8] 10, 563, 1907.
- (9) P. Sabatier and A. Mailhé, Compt. rend. 138, 1323, 1904.
- (10) P. Sabatier and A. Mailhé, Compt. rend. 139, 343, 1904.
- (11) P. Sabatier and M. Murat, Compt. rend. 154, 1390, 1912.
- (12) J. B. Senderens and J. Aboulenc, Compt. rend. 183, 830, 1926.
- (13) F. K. Signaigo and P. L. Cramer, J. Am. Chem. Soc. 55, 3326, 1933.
- (14) R. Truffault, Compt. rend. 200, 406, 1935.
- (15) E. D. Venus-Danilova, J. Russ. Phys. Chem. Soc. 61, 1479, 1929.
- (16) O. Wallach, Ann. 381, 95, 1911.
- (17) O. Wallach, Ann. 389, 181, 1912.
- (18) N. D. Zelinsky, N. Shuikin, and L. Fatejev, J. Gen. Chem. (U.S.S.R.) 2, 671, 1932.

## 7. CYCLANES WITH A BICYCLENYL OR BICYCLOÖLEFIN SUBSTITUTION, C₁₁H₂₈ C₁₆H₂₈

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
3-Cyclohexyl-[0,4,4]- bicyclodecene-3 (2-Cyclohexyl-Δ²-octahydro-	٠	163 to 164 ¹	0.9422 1	1.51029 1	
naphthalene)		@ 13mm			
2-Cyclohexyl-[0,4,4]-bicyclodecene-(5-6)		162 to 163 ¹ @ 12mm	0.9546 1	1.51754 1	

## III. DICYCLANES OR DICYCLOPARAFFINS

1. Dicyclanes With Alkyl Substitutions, C_nH_{2n-2}

Cyclopentylcyclo-		B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
pentane			0.8616	1.4640	$\frac{dD}{dt} = -0.000756_{\rm e}/^{\circ}C.$ (20° to 50°)
(Dicyclopentyl)		189 to 191 12,37		1.4652 67	
^ ^		188 to 189 67	@ 50°	1.4640 63	
		@ 753mm 189 to 190 63	0.8648 63	1.4638 12	
		@ 750mm	0.8604 67	1.4660 ¹² @ 15°	
			0.0001	<b>Q 10</b>	
$C_{11}H_{20}$ Dicyclopentylmethane					
<u></u>		208 to 210 42	0.8710 42	1.46974 42	
			l l		
C ₁₂ H ₂₂ 1,2-Dicyclopentylethan		A			
1,2-Dicyclopentyleman					
<u></u>		206 to 207 62 @ 748mm	0.8583 62 @ 22°	1.4651 62 @ 22°	
		109 to 110 "	0.8633 44	1.4657 44	
		@ 17mm			
3-Methyl-1-(3-methyl cyclopentyl)-cyclo- pentane	-				
(3,3' Dimethyldicyclo-	46 to	218 to 219 66	0.8784 55	1.4755 55	
pentyl)	47 22	213 to 215 64	0.8751 66	1.4755 66	
c		213 to 214 55 @ 738mm	@ 18.5°	@ 18.5°	

C14 II 24		200			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
3-Ethyl-1-(3-ethylcyclopentyl)-cyclopentane (3,3' Diethyldicyclopentyl)		125 ⁶ @ 15mm	0.8757 ° @ 15°	1.47097 6	
c-c c-c		<b>@</b> 1011111	9 10		
C24 H46					
4,9-Dimethyl-5,8-di- cyclopentyldodecane					
(C) ₃ -C-C-C-C-C-(C) ₃ C		172 ⁷ @ 0.2mm	0.86907		

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data	
3-Dodecyl-1-(3-dodecylcyclopentyl)- cyclopentane (3,3' Didodecyldicyclopentyl)  C—(C) ₁₀ —C		260 ° @ 0.2mm		,		
Cyclopentylcyclohexane		225 to 227 *** 215.5 *** 214 *** 86 to 88 ** @ 11mm	0.8535 12 @ 50° 0.8886 ° @ 23° 0.8813 ⁴¹ @ 21° 0.8780 ⁴² 0.8758 12	1.4767 61 @ 21° 1.4728 65 @ 21° 1.47491 6 1.4728 12 @ 15°		201

C12 II 22		202			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
Cyclopentylcyclo- hexylmethane		225 to 227 65 223 to 225 42 224 to 226 9,11 @ 750mm	0.8721 *.11 @ 23° 0.8681 *2' 0.8789 *5 @ 19°	1.4671 °,11 @ 23° 1.47131 ⁴² 1.4775 ⁶⁵ @ 19°	
2-Methylcyclopentyl)-cyclohexane (1-Methyl-2-cyclohexyl-cyclopentane)		225.5 to 227 64 @ 744mm	0.8680 64	1.4701 64	
(3-Methylcyclopentyl)- cyclohexane  (1-Methyl-3-cyclohexyl- cyclopentane)		231 to 233 61	0.8902 ⁸¹ @ 17°	1.4787 ⁶¹ @ 17°	

		203			C13 H24
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Data
(2-Methylcyclopentyl)- cyclohexylmethane		239 to 241 42	0.8712 42	1.47369 42	
1-Cyclopentyl-2-cyclo- hexylethane		251 to 252 ¹⁰ @ 752.5mm 74 to 76 ⁴⁶ @ 2mm	0.8780 ¹⁰ @ 21° 0.8746 ⁴⁵	1.4775 ¹⁰ @ 21° 1.4723 ⁴⁵	
C ₁₄ H ₂₆ 1-Cyclopentyl-3-cyclo-hexylpropane		268 to 270 10 @ 748.2mm	0.8751 10	1.4765 10	

<u>U13 1123</u>		2U1			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Data
Cyclohexylcyclohexane		235	0.8846	1.4796	$\frac{dn}{dt} = -0.000485/^{\circ}\text{C}.$
(Dicyclohexyl)	-1 67	233.5 to 235 41	0.8833 27	1.4772 27	(15° to 25°)
	0 19	@ 762mm	@ 25°	@ 25°	
	2 19	240 to 241 20	0.8947 19	1.4740 39	
	2.25 19	239.5 to 240 66		1.4766 59	
	2.75 35	238 to 239 12	0.8862 19	1.4785 57	
	4 18,50	236.5 to	@ 20.6°	1.4792 5,41	
		237.5 56	0.8790 39	1.4795 12	
		236 to 237.5 23		1.4798 56	
		235 29	0.8835 23	1.4800 14,66	
		234 to 236 46	0.8845 41	1.4842 64	
		234 to 235 4	0.8847 66	1.477 49,50	
		234 3,18	0.8848 12	@ 19°	
		233 to 234 50	0.8912 64	1.4815 22	
		233 49	0.8919 23	@ 18°	
		231 to 233 ²⁷	0.877 56	1.4817 12	
		227 59	$D_{20}^{20}$	@ 15°	
		220 to 228 ⁵	0.880 14	$n_{H_{\theta}}^{21.1}$	,
		236 to 238 35	$D_{20}^{20}$		
		@ 757.5mm	0.8644 30	1.47977 19	
		237 to 238.5 ²³ @ 757mm		$n_{H_{m{e}}}^{21.1}$	
		236 to 238 64	0.8876 ¹⁹ @ 19.6°	1.4795 19	
		@ 754mm	0.873 49,50	$n_{Hs}^{20}$	
		234 to 236 80	$D_0^{19}$	1.4802 19	
		@ 752mm	0.8777 30	n20 He	
		216 to 219 40	@ 0°	1.4803 19	
		@ 739mm	0.923 48	$n_{He}^{20}$	
		234 19	$D_0^0$		
		@ 736mm			
		233 19			
		@ 736mm			
		232.5 19 @ 736mm			
		124 48			
		@ 20mm			
		105 67			
		@ 15mm			
	1	1/		1	

					O18 112
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Data
Dicyclohexylmethane		251	0.8808		$\frac{dD}{dt} = -0.000783/^{\circ}C.$ (20° to 80°)
		250 to 252 ²⁴ @ 763mm 251.5 ¹³ 250 to 252 ⁶⁷ 250 to 251 ⁴⁹ 150 ¹³ @ 45mm 110 to 110.5 ¹ @ 18mm	0.8342 ¹³ @ 79.5° 0.8884 ¹ 0.8750 ⁶⁷ 0.8851 ²¹ $D_{10}^{20}$ 0.8829 ⁵¹ $D_{0}^{20}$ 0.8743 ²¹ $D_{0}^{20}$ 0.8765 ¹³ @ 19.7°	$\begin{array}{c} 1.4755^{21} \\ @\ 21^{\circ} \\ 1.4752^{67} \\ 1.4875^{1} \\ 1.4786^{21} \\ 1.45053^{13} \\ n_{I_{\alpha}}^{19.5} \\ 1.47475^{13} \\ n_{I_{\alpha}}^{19.7} \\ 1.45862^{13} \\ n_{I_{\beta}}^{19.7} \\ 1.48328^{13} \\ n_{I_{\gamma}}^{19.5} \\ 1.48828^{13} \\ n_{I_{\gamma}}^{19.7} \\ 1.48828^{13} \end{array}$	dt (20° to 80°)
2-Methyl-1-cyclohexyl-cyclohexane (2-Methyldicyclohexyl)		131 to 133.5 ¹⁷ @ 20mm	0.9058 ¹⁷ 0.9203 ¹⁷ @ 0°	1.4968 17	
3-Methyl-1-cyclohexyl-cyclohexane (3-Methyldicyclohexyl)		243 to 243.5 ⁴³ 240 ³⁴	0.88668 ⁴² 0.9138 ⁴³ @ 18° 0.9634 ³⁴ @ 0°	1.4840 ⁴³ 1.492 ³⁴	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	4470	Additional Date
		@ 760mm	174	n ²⁰	Additional Data
1,1-Dicyclohexylethane		256 to 257 50. 51  264 to 265 60     @ 740mm  112 @ 7mm 1	0.9070 1 @ 25° 0.9271 51 0.9130 49 $D_0^{20}$	1.4887 ¹ @ 25° 1.500 ⁴⁹ 1.511 ⁵¹	
1,2-Dicyclohexylethane		263 to 264 15 274 to 275.5 20 273 12 270 to 271 49.50 266 to 268 50 @ 748mm 145 to 150 15 @ 20mm 133 to 134 54 @ 13.5mm 147 to 148.5 1 @ 12mm 132 8 @ 8mm 93 to 94 45 @ 2mm	0.8795 45	1.4768  1.4749 8 @ 25° 1.4765 46  1.480 49.50 @ 18° 1.4760 1 @ 18° 1.4790 12 @ 15°	$\frac{dn}{dt} = -0.00041/^{\circ}\text{C}.$ (15° to 25°)

		201	and the second second second		C14 F124
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	1)40	H _D ***	Additional Pata
2-Ethyl-1-cyclohexyl- cyclohexane					
(2-Ethyldicyclohexyl)	-	141 to 142.5 17 @ 20mm	0.9126 ¹⁷ 0.9240 ¹⁷	1.4964 17	
		G	@ 0°		
l-3-Methyl-1-(3- methyl-cyclohexyl)- cyclohexane					$ \alpha _D = -3.44^{\circ 31}$
(3,3' Dimethyldicyclo-hexyl)		264 ³¹ @ 761mm 148 to 149 ³¹ @ 30mm	0.8803 31 $D_{20}^{20}$ 0.8789 31 $D_{0}^{20}$ 0.8924 31 $D_{0}^{20}$		
4-Methyl-1-(4-methyl-cyclohexyl)-cyclohexane (4,4' Dimethyldicyclohexyl)		240 to 242 58			
c-\\c					

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
1,1-Dicyclohexyl- propane  C-c-c		270 to 271 49.52	0.8887 ^{49,52} $D_0^{22}$ 0.9038 ^{49,52} $D_0^{0}$	1.485 ^{49,52} @ 23°	$\frac{dD}{dt} = -0.0006_{\text{s}}/^{\circ}\text{C.}$ (0° to 20°)
1,2-Dicyclohexyl- propane -c-c-c		272 to 273 ^{49,62}	$0.8725^{49,52}$ $D_0^{21}$ $0.8891^{49,52}$ $D_0^0$	1.479 ^{49,82} @ 21°	$\frac{dD}{dt} = -0.0007_{9}/^{\circ}C.$ (0° to 20°)
1,3-Dicyclohexyl- propane  -c-c-c-	30 16	291 to 292 ¹⁶ 289 to 290 ^{49,82}	$0.8752^{16}$ $D_{24}^{24}$ $0.8701^{49.52}$ $D_{0}^{21}$ $0.8874^{49.52}$ $D_{0}^{0}$	1.4736 16 @ 24° 1.475 49,52 @ 21°	$\frac{dD}{dt} = -0.0008_{t}/^{\circ}C.$ (0° to 20°)

		407			C ₁₅ H ₂
Name and Carbon Skelcton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	n20	Additional Data
2,2-Dicyclohexyl- propane  c-c-c		273 to 274 49.52	0.9002 ^{49,52} D ₀ ²³ 0.9158 ^{49,52} D ₀ ⁰	1.490 ^{49,52} @ 23°	$\frac{dD}{dt} = -0.0006_{\text{s}}/^{\circ}\text{C.}$ (0° to 20°)
C ₁₆ H ₃₀ 1,1-Dicyclohexylbutane  C-C-C-C		280 to 282 49.53	$0.8842^{49.53}$ $D_0^{16}$ $0.8922^{49.53}$ $D_0^0$	1.485 ^{49,63} @ 16°	
1,2-Dicyclohexyl- butane		276 to 278 49,53	0.9084 ^{49,53} $D_0^{18}$ 0.9104 ^{49,53} $D_0^{0}$	1.500 ^{49,53} @ 18°	

C14 11 10		#10			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Data
1,4-Dicyclohexyl- butane	9 52 12 ²⁸	304 to 306 53 294 28 @ 725mm	0.8772 ⁵³ $D_0^{21}$	1.475 ⁵³ @ 21°	
2-Methyl-1,1-dicyclo- hexylpropane		278 to 279 49.55	$D_0^{15}$ 0.8906 49.53 $D_0^{15}$ 0.9017 49.53 $D_0^{0}$	1.492 49,53 @ 15°	$\frac{dD}{dt} = -0.00074^{\circ}\text{C.}$ (0° to 15°)
2-Methyl-1,3-dicyclo- hexylpropane		290 to 292 ^{49,8}	0.8840 49.53  D ₀ ¹⁹ 0.8916 49.55  D ₀ ⁰	@ 19°	
·					

211							
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data		
1,5-Dicyclohexyl- pentane  -C-(C) ₃ -C-		315 ²⁵ 311 ^{49,53}	0.8719 49,53  D ₀ ²¹ 0.8836 ²⁹ @ 0° 0.8832 49,53  D ₀ ⁰	1.479 49,53 @ 21° 1.478 ²⁵	$\frac{dD}{dt} = -0.0005_{\text{e}}/^{\circ}\text{C}.$		
3-Methyl-1,1-dicyclo- hexylbutane		290 to 291 49,53	$0.8940^{49.53}$ $D_0^{91}$ $0.9058^{49.53}$ $D_0^{9}$	1.489 ^{40,53} @ 21°	$\frac{dD}{dt} = -0.0005_{\rm e}/^{\circ}C.$ (0° to 20°)		
2-Ethyl-1,3-dicyclo- hexylpropane  C C C C -c-c-c-C		296 ^{49,53}	0.8846 ^{49.53} D ₀ ²¹ 0.8966 ⁴⁹ D ₀ ⁰	1.483 ^{49,63} @ 21°	$\frac{dD}{dt} = -0.0005_7/^{\circ}C.$ (0° to 20°)		

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Pata
1,6-Dicyclohexyl- hexane		212 ²⁸ @ 14mm	-		
2,4,6-Trimethyl-1-(2,4,6-trimethylcyclohexyl)-					
cyclohexane  (2,4,6,2',4',6' Hexamethyldicyclohexyl)		123 to 126 ² @ 3mm	0.8932 ² D ₂₅ ²⁶	1.4873 ² @ 25°	
c-\( \)_c c					
C ₂₀ H ₃₃ 1,8-Dicyclohexyloctane	26 28				
					·

		213			C20 H
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
Bis-(1-Methyl- 4-isopropyl)- cyclohexane					
(Dimenthyl)	105.5 to 106 **	217 to 220 ²⁹ @ 40mm 195 to 197 ²⁹ @ 30mm 185 to 186 ²⁹ @ 21mm 199 to 202 ²⁹ @ 21mm	$0.8925^{29}$ $D_{20}^{20}$ $0.8911^{29}$ $D_{0}^{2^{c}}$		
₂₄ H ₄₆ 5,8-Dicyclohexyldo- decane					
C-(C) ₃ -C-C-C-(C) ₃ -C		170 7 @ 0.2mm	0.8823 ⁷ @ 15°		

C,, H,,		214			
Name and Carbon Skeleton	м. Р.,°С.	B. P., °C. @ 760mm	D40	n _D ²⁰	Additional Data
1,1-Dicyclohexylhexa- decane					
C-(C)14-C	18.5 to 19.5 #	269 to 271 ³² @ 15mm 260 to 264 ³² · @ 10mm	0.8791 22	1.48620 ³² @ 17.5°	
C.0 H.1  1,3-Dicyclohexyl- 2-pentadecyl- propane					
(1-Cyclohexyl-2-hexa-hydrobenzylheptadecane)  -C-C-C-C-   (C) ₁₄   C		288 to 290 ³² @ 17mm 279 to 281 ³² @ 10mm	0.8860 32	1.4911 ³² @ 15°	
			1	1461	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	n ²⁰	Additional Data
3,8-Dimethyl-1,10-di-(2,2,6-trimethylcyclo- hexyl)-decane					
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		166 to 168 ** @ 0.025mm	0.8860 26 @ 17.3°	0.17.3°	
C" H., 1,18-Dicyclohexyldocosane					
C-(C) ₁₈ -C-(C) ₁ -C		255 to 260 m			
<b>)</b>					

Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
Cycloheptylcyclo-heptane (Dicycloheptyl)		290 to 291 ³³ 290 to 291 ³⁶ @ 728mm	0.9069 36 $D_0^{20}$ 0.9195 36 $D_0^{0}$		$\frac{dD}{dt} = -0.0006_{a}/^{\circ}C.$ (0° to 20°)
C ₁₆ H ₃₀ Cycloöctylcyclo- öctane  (Dicycloöctyl)		140 ⁴⁷ @ 1mm	0.9277 ⁴⁷ 0.9292 ⁴⁷ @ 18.2°	1.5018 47	
C₃₀ H₅ѕ	44 47		0.866 ⁴⁷ @ 100° 0.8728 ⁴⁷ @ 88.6°	1.4748 " @ 100°	$\frac{dD}{dt} = -0.0006/^{\circ}\text{C}.$ (85° to 100°)
4.34					

- (1) R. Adams and J. R. Marshall, J. Am. Chem. Soc. 50, 1970, 1928.
- (2) H. Adkins, W. Zartman, and H. Cramer, J. Am. Chem. Soc. 53, 1425, 1931.
- (3) K. Adler and H. Rickert, Ber. 71, 373, 1938.
- (4) W. Borsch and W. Lange, Ber. 38, 2766, 1905.
- (5) J. v. Braun, N. Durand, and C. S. Marvel, J. Am. Chem. Soc. 58, 1594, 1936.
- (6) J. v. Braun, E. Kamp, and J. Kopp, Ber. 70, 1750, 1937.
- (7) J. v. Braun and P. Kurtz, Ber. 70, 1224, 1937.
- (8) J. S. Buck and W. Ide, J. Am. Chem. Soc. 53, 3510, 1931.
- (9) J. Denissenko, Ber. 69, 1668, 1936.
- (10) J. Denissenko, Ber. 69, 2183, 1936.
- (11) J. Denissenko, J. Gen. Chem. (U.S.S.R.) 6 (68), 1263, 1936.
- (12) E. B. Evans, J. Inst. Petr. Tech. 24, 537, 1938.
- (13) J. Eykman, Chem. Weekblad 1, 7, 1903.
- (14) D. Frederick, H. Cogan, and C. S. Marvel, J. Am. Chem. Soc. 56, 1815, 1934.
- (15) P. Freundler, Compt. rend. 142, 343, 1906.
- (16) J. Frézouls, Compt. rend. 155, 42, 1912.
- (17) C. E. Garland and E. E. Reid, J. Am. Chem. Soc. 47, 2333, 1925.
- (18) C. Hell and O. Schaal, Ber. 40, 4162, 1907.
- (19) W. Hückel, O. Neunhoffer, A. Gercke and E. Frank, Ann. 477, 99, 1929.
- (20) V. N. Ipatieff, Ber. 40, 1281, 1907.
- (21) V. N. Ipatieff and B. Dolgov, Compt. rend. 185, 210, 1927.
- (22) V. N. Ipatieff and V. I. Komarewsky, J. Am. Chem. Soc. 56, 1926, 1934.
- (23) V. N. Ipatieff and N. Orlov, Compt. rend. 181, 793, 1925.
- (24) V. N. Ipatieff and N. Orlov, Compt. rend. 183, 973, 1926.
- (25) V. N. Ipatieff and N. Orlov, Compt. rend. 184, 751, 1927.
- (26) P. Karrer, H. Salomon, R. Morf, and O. Walker, Helv. Chim. Acta 15, 878, 1932.
- (27) I. Kagehira, Bull. Chem. Soc. Japan 6, 241, 1931.
- (28) R. Kuhn and A. Winterstein, Helv. Chim. Acta 11, 123, 1928.
- (29) N. Kursanoff, Ann. 318, 327, 1901.
- (30) N. Kursanoff, J. Russ. Phys. Chem. Soc. 34, 222, 1902.
- (31) N. Kursanoff, J. Russ. Phys. Chem. Soc. 34, 224, 1902.
- (32) S. Landa and J. Cech, Collection Czechoslov. Chem. Commun. 6, 423, 1934.
- (33) J. Loevenich, H. Utsch, P. Moldrikx, and E. Shaefer, Ber. 62, 3084, 1929.
- (34) A. Mailhe and M. Murat, Bull. soc. chim. [4] 7, 1083, 1910.
- (35) Mascarelli and Vecchiatti, Atti R. Acad. dei Lincei Roma [5] 19, II, 410, 1910.
- (36) W. Markownikow and L. Jakub, J. Russ. Phys. Chem. Soc. 34, 912, 1902.
- (37) W. Meiser, Ber. 32, 2049, 1899.
- (38) L. A. Mikeska, C. Smith, and E. Lieber, J. Org. Chem. 2, 499, 1938.
- (39) S. S. Nametkin and L. Abakumowskaja, Ber. 66, 358, 1933.
- (40) S. S. Nametkin and L. Abakumowskaja, J. Gen. Chem. (U.S.S.R.) 2, 608, 1932.
- (41) S. S. Nametkin, L. Abakumowskaja and M. Rudenko, J. Gen. Chem. (U.S.S.R.) 7, (69), 763, 1937.
- (42) C. Nenitzescu and E. Ciorănescu, Ber. 69, 1820, 1936.
- (43) A. Petrov and L. Angus, Ber. 66, 420, 1933.
- (44) P. S. Pinkney and C. S. Marvel, J. Am. Chem. Soc. 59, 2669, 1937.
- (45) P. S. Pinkney, G. A. Nesty, R. Wiley, and C. S. Marvel, J. Am. Chem. Soc. 58, 972, 1936.
- (46) Ranendo and Leon, Anales soc. espan. Fis. Amin. 21, 270, 1923.
- (47) L. Ruzicka and H. Boekenoogen, Helv. Chim. Acta 14, 1319, 1931.
- (48) P. Sabatier and A. Mailhe, Compt. rend. 138, 1321, 1904.
- (49) P. Sabatier and M. Murat, Ann. chim. [9] 4, 253, 1915.
- (50) P. Sabatier and M. Murat, Compt. rend. 154, 1390, 1912.
- (51) P. Sabatier and M. Murat, Compt. rend. 154, 1771, 1912.
- (52) P. Sabatier and M. Murat, Compt. rend. 155, 385, 1912.

- (53) P. Sabatier and M. Murat, Compt. rend. 156, 1431, 1951, 1913.
- (54) J. Salkind and N. Schuwalow, J. Gen. Chem. (U.S.S.R) 7 (69), 1235, 1937.
- (55) J. Schmidt and A. Segwart, Ber. 45, 1779, 1912.
- (56) F. K. Signaigo and P. L. Cramer, J. Am. Chem. Soc. 55, 3326, 1933.
- (57) R. Truffault, Compt. rend. 200, 406, 1935.
- (58) A. Tschitschibabin and S. Jelgasin, J. Russ. Phys. Chem. Soc. 46, 812, 1914.
- (59) O. Wallach, Ber. 40, 70, 1907.
- (60) W. Zartman and H. Adkins, J. Am. Chem. Soc. 54, 1668, 1932.
- (61) N. D. Zelinsky, Ber. 58, 2755, 1925.
- (62) N. D. Zelinsky, S. Michlina, and M. Eventowa, Ber. 66, 1422, 1933.
- (63) N. D. Zelinsky and N. Schuikin, J. Russ. Phys. Chem. Soc. 62, 1343, 1930.
- (64) N. D. Zelinsky, N. Schuikin, and L. Fateev. J. Gen. Chem. U.S.S.R. 2, 671, 1932.
- (65) N. D. Zelinsky and I. N. Titz, Ber. 64, 183, 1931.
- (66) N. D. Zelinsky, I. N. Titz, and L. Fateev, Ber. 59, 2580, 1926.
- (67) N. D. Zelinsky, I. N. Titz, and M. Gaverdovskaja, Ber. 59, 2590, 1926.

IV. TRI-, TETRA-, AND PENTACYCLANES,  $C_nH_{2n-4}$ ,  $C_nH_{2n-6}$ ,  $C_nH_{2n-8}$ 

Additional Data	TRICYCLOPARA	Isomeric forms separated by Hacrystallizing from alcohol. Z Authors do not know what O the difference is.	Isomers formed by hydrogena.  tion of dicyclohexylbenzene.  No explanation is given for the difference.		C1. H.
# _D	1.4938 10				
D.**	0.9121 10				
B. P., °C. @ 760mm	202 ¹¹ @ 14mm 192 to 196 ¹¹ @ 12mm 160 to 163 ¹⁰ @ 3mm				
M. P.,°C.	66 to 67 13		54 to 56 5 55 to 57 3	158 to 159 * 162 *	
Name and Carbon Skeleton	1,3-Dicyclohexylcyclohexane	1,4-Dicyclohexylcyclohexane	Isomer I	Isomer II	

Name and Carbon Skeleton	M. P., °C.	B. P., °C. @ 760mm	$D_{\bullet}^{aa}$	## D	Additional Data
Tricyclohexylmethane	48 to 48.5 7 61 11	340 to 345 is 0.92747 322 to 329 7 @ 50° 140 @ 20mm   0.9263 7 180 "	0.9274.7 © 50° 0.9263.7 D ⁵ °	1.4965 7 @ 50° 1.4986 7 @ 40°	
C., H.,  1,1,2-Tricyclohexylethane		191 to 192 ¹⁴ @ 8mm	0.9301 ¹⁴ @ 25°	1.5030 14 @ 25°	

	223	/20 ±±8
Additional Data		
824 O	1.49708 8 1.49708 8 1.49708 8 1.50573 8 1.46170 8 1.46170 8	
$D_4^{20}$	0.9257 *	
B. P., °C. @ 760mm	. 68.5mm	
M. P., °C.		
Name and Carbon Skeleton	1-Cyclohexyl-2-(3-cyclohexylcyclohexyl)- ethane	

U20 F1 34		TETRACYCLOPARAFFINS, C	√n ∏ 2n – 6
Additional Data			
n m		1.51290 •	
D.*		0.9592 • @ 18°	
B. P., °C. @ 760mm	205 to 207 4 @ 9mm	180 ⁴ @ 0.1mm	
M. P., °C.			
Name and Carbon Skeleton	3,3'-Dicyclopentyldicyclopentyl	C. H.,  3,3'-Dicyclohexyldicyclopentyl	

		225	C24 FI.4
Additional Data			
n ²⁰			
$D_4^{20}$			
B. P., °C. @ 760mm	228 to 228.5 2.14 @ 3.5mm		
M. P., °C.	159 to 160 2,14 158 to 159 4	158 to 159 ¹⁴	
Name and Carbon Skeleton	1,3,5-Tricyclohexylcyclohexane	$C_{2a}H_{4a}$ 1,1,2,2-Tetracyclohexylethane	

C26 H46	226	ti.
Additional Data	$ a _D^{10} = +25.1^{\circ}$ 14	
ngu O	1.5217 ¹⁴ @ 25°	
$D_4^{20}$	0.9636 14 Dis	
B. P., °C. @ 760mm		
M. P., °C.	112 to 114 ¹⁴	
Name and Carbon Skeleton	1,1,1,2-Tetracyclohexylethane  \times_{-c}^{-c} \to	

Name and Carbon Skeleton	M. P., °C.	M. P., °C. B. F., °C. @ 760mm	D.20	11.20 D	Additional Data
Pentacyclohexylethane					
	191 to 192 14				
) (					
					-
$\rangle$					a na ana

(2) H. Adkins, W. Zartman, and H. Cramer, J. Am. Chem. Soc. 53, 1425, 1931.

(3) J. v. Braun, G. Irmisch, and J. Nelles, Ber. 66B, 1471, 1933.
 (4) J. v. Braun, E. Kamp, and J. Kopp, Ber. 70B, 1750, 1937.

(5) B. B. Corson and V. N. Ipatieff, J. Am. Chem. Soc. 59, 645, 1937.

(6) M. Godchot, Compt. rend. 147, 1058, 1908.(7) V. N. Ipatieff and B. Dolgov, Compt. rend. 185, 210, 1927.

(8) S. Lebedev and A. Ivanow, J. Russ. Phys. Chem. Soc. 48, 1003, 1916.

S. S. Nametkin, L. Abakumowskaja, and M. Rudenko, J. Gen. Chem. (U.S.S.R.) 7, (69), 763, 1937. 9

(11) O. Neunhoffer, Ann. 509, 115, 1934.

(12) A. Petrov, J. Russ. Phys. Chem. Soc. 60, 1441, 1928.

(13) W. Schrauth, W. Wege, and F. Danner, Ber. 56B, 260, 1923.

(14) W. Zartman and H. Adkins, J. Am. Chem. Soc. 54, 1668, 1933.

(15) N. D. Zelinsky and D. Gaverdovskaja, Ber. 60B, 713, 1927.

## V. BICYCLANES OR BICYCLOPARAFFINS

- 1. Bicyclanes with an alkyl substitution,  $C_nH_{2n-2}$
- 2. Bicyclanes with an alkenyl or olefin substitution, C_nH_{2n-4}
- 3. Bicyclanes with two alkenyl or one alkadienyl substitution.

C. H.

	111712.1.1.	ODBITIC	7110110,	OUTTSH-3	C ₆ H ₁
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
[0,1,3]-Bicyclo- hexane		78 to 79.5 117 @ 750mm 80 to 81 116 @ 748mm	0.8144 117	1.4309 ¹¹⁷ @ 21.5° 1.4320 ¹¹⁷ 1.4337 ¹¹⁶ @ 17°	
[0,2,2]-Bicyclo- hexane		78.5 to 79.5 ⁵⁶ @ 732mm	0.8245 *6 @ 19°	1.4475 % @ 19°	
C ₃ H ₁₄ 5,5-Dimethyl- [0,1,3](1.3)-bicyclo- hexane		115.2 to 115.4 ⁹⁸ 115 ¹²⁴ 114.0 to 114.1 ⁷⁷ @ 740mm	$0.8125^{98}$ $0.7962^{124}$ $0.7929 \begin{cases} 122, \\ 124, \\ 0.7926 \end{cases}$ $0.7976^{124}$ $D_{20}^{20}$	$1.4385^{98}$ $1.4331^{124}$ $1.4329 \begin{cases} 123, \\ 124 \end{cases}$	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
2,2,4-Trimethyl- [0,1,3](1.3)-bicyclo- hexane		137 to 138 ⁴¹ 138.5 to 139 ³⁹ @ 759mm 140.5 ³⁹ @ 752mm	$0.8223^{29}$ $D_6^{20}$	1.4465 ³⁹ @ 18.5°	
C ₁₀ H ₁₈ 4-Methyl-1-isopropyl- [0,1,3] ^(1,1) -bicyclo- hexane  (Thujane) (Tanacetane)  C-C-C		158 to 159 114 @ 765mm 157 to 160 22 157 to 158 22 156 to 157 18.19 155 to 156 18.19 157 38 @ 759mm 157 97 @ 758mm 156.2 to 156.8 73 @ 756mm 156 to 157 91 @ 747mm 157.5 to 158 37 @ 741mm	@ 22° 0.8181 ^{22,97} 0.8139 ⁹⁷ 0.8171 ³⁸ $D_0^{20}$ 0.8161 ³⁷ $D_0^{20}$ 0.8142 ⁷⁰ @ 19.5°	$1.440^{18}$ @ 26° $1.44121$ 18 @ 22° $1.43939^{73}$ @ 20.2° $1.4440^{22}$ $1.4435^{19}$ $1.4400^{38}$ $1.4399^{114}$ $1.4398^{37}$ $1.43759^{37}$ $1.44393$ 27 $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{37}$ $0.44102^{3$	$[\alpha]_D^{20} = +8.48^{\circ}  ^{19,22}$

	C,H,				
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Data
[0,1,4]-Bicyclo- heptane					
(Norcarane)		111 to 112 12	0.8391 12 @ 23°	1.4544 12 @ 23°	
$\bigcirc$				_	
[1,2,2]-Bicyclo- heptane					
(Norbornylane)	86 to 87 43				
	<b>.</b>				
C ₈ H ₁₄ 2-Methyl-[1,2,2](1.4)- bicycloheptane					
c I		125 to 126.5 113	0.8532 113 @ 20.5°	1.4535 113 @ 20.5°	
Ġ		@ 761mm 124.5 to 126 113 @ 745mm	0.8561 113 @ 16.5°	1.4553 ¹¹³ @ 16.5°	
II		121 to 123.5 113 @ 745mm	0.8537 113 @ 16.5°	1.4545 ¹¹³ @ 16°	

Vy +419					
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Data
2,2-Dimethyl-[1,1,3](1.2)-bicycloheptane		149 ⁹¹	0.8611 91	1 44141 91	
(Nopinane)		@ 747mm	$D_{22}^{22}$	1.46141 ⁹¹ @ 22°	
Č,					
2,2-Dimethyl-[1,2,2](1,0)-bicycloheptane			·		
(Camphenilane)	15 to 16 ⁶⁴ 17 ⁴⁴	142 ⁴⁴ 142.5 ⁶⁴ @ 753mm	0.8547 64 0.8539 44	1.4555 64	
÷.		0 ,			
2,3-Dimethyl-[1,2,2](1.0) bicycloheptane					
(Dihydrosantene)			0.8712 ¹⁰ @ 18.5°	1.4636 ¹⁰ @ 18.6°	
·					

		200			<b>U, 11</b>
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
7,7-Dimethyl-[1,2,2]-bicycloheptane  (Apofenchane)	17 to 17.5 "	143.5 "	0.8538 4	1.45414 **	
C ₁₀ H ₁₈ 2,2,5-Trimethyl- [0,1,4] ^(1,3) -bicyclo- heptane  (Carane)		169.5 ⁴⁰ @ 759mm 165 to 166 ⁹¹ @ 750mm 168 to 168.5 ¹¹⁴ @ 748.5mm 162 ²⁰ @ 684mm 105 to 106 ⁴⁷ @ 116mm 49 to 50 ⁹¹ @ 9mm	0.836 ²⁰ $D_{26}^{26}$ 0.8410 ⁴⁰ $D_{0}^{20}$ 0.8381 ⁹¹ $D_{20}^{20}$	1.455 ²⁰ @ 26° 1.4551 ¹¹⁴ @ 24° 1.45823 { 0,91 1.4573 ¹¹⁴ @ 19°	$\left[\alpha\right]_{D}=-34^{\circ 91}$

O 10 11 18		200			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
2,2,4-Trimethyl- [1,1,3](1,3)-bicyclo- heptane  (Pinane) d form	45 vy.100	0. 760mm  166 100  166 99  0. 755mm  163 to  164* 55,85,125  0. 720mm	$D_{4}^{20}$ $0.8566\begin{cases} 17, \\ 55, \\ 86, \\ 128 \end{cases}$ $0.861 \stackrel{99,100}{}_{15}$	$n_D^{20}$ $1.4624$ $\begin{cases} 17, \\ 55, \\ 85, \\ 125 \end{cases}$	Additional Data $[\alpha]_{578} = +23.8^{\circ 100}$ $[\alpha]_{D} = +23.08^{\circ 55,85,125}$ $[\alpha]_{D} = +22.7^{\circ 99}$ *Lipp 52 states that h has determined that this is the cis isome of pinane. He als states that the ci compound is what
Ċ					Sabatier and Sen derens ⁷⁹ have iso lated.
TV					

		201		***************************************	C ₁₀ H ₁ ;
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D420	n ²⁰	Additional Data
2,2,4-Trimethy!- [1,1,3](1,3)-bicyclo- heptane			Andreada A Acces		$\left[\alpha\right]_{D} = -1.25^{\circ}  ^{63}$ $\left[\alpha\right]_{D} = -9.58^{\circ}  ^{109}$
(Pinane)  1 form	- 50 99	168 to 168.5 109 166 85 164.8 to 165.8 85 163.5 to 165 107 @ 758mm 166 99 @ 755mm 163.5 to 165 109 @ 750mm 168 to 169 83 @ 748mm 167.5 to 168 109 @ 748mm 165.5 to 166 58 @ 721mm 162 to 164 55,105 @ 720mm 162 to 164 87 @ 719mm 164.8 to 165.8 108 @ 716mm	0.8550 87 @ 20.5° 0.8567 109 0.8562 55,106 0.8542 109 0.8512 109 0.8390 63 0.8607 107 D20 0.8519 65,106 @ 17.5° 0.8620 85 @ 0°	1.4605 109 1.4601 109 1.4580 109 1.4540 63 1.4648 107 @ 19° 1.4630 87 @ 19°	$[\alpha]_{D} = -13.3^{\circ}  ^{109}$ $[\alpha]_{D} = -16.1^{\circ}  ^{55,106}$ $[\alpha]_{D} = -17.62^{\circ}  ^{87}$ $[\alpha]_{D} = -18.9^{\circ}  ^{65,106}$ $[\alpha]_{D} = -19.84^{\circ}  ^{109}$ $[\alpha]_{D}^{20} = -20.55^{\circ}  ^{107}$ $[\alpha]_{D} = -21.3^{\circ}  ^{90}$
	1		1	1	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
2,2,4-Trimethyl- [1,1,3](1.0)-bicyclo- heptane					
(Pinane) Unspecified optical activity		169 to 170 115 @ 768mm 164.5 to 165 68 @ 763mm 166 to 168 115 @ 752mm 165 to 169 69 @ 752mm 165 to 169.5 69 @ 752mm 168.5 115 @ 748mm 163.5 to 164 68 @ 747mm 167 to 167.5 116 @ 737mm	@ 18°	1.4605 114 @ 21° 1.4554 115 @ 21° 1.4611 68 1.4609 68 1.4572 69 1.4559 60 1.4589 115 @ 18°	
1,2,2-Trimethyl- [1,2,2](1.0)-bicyclo- heptane	116 to 117 66				

		239			C10 H10
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
1,2,3-Trimethyl- [1,2,2] (1.4)-bicyclo- heptane	,				
(1-Methyldihydrosantene)		159 to 160 46	0.8520 46		
c c					
l-1,3,3-Trimethyl- [1,2,2](1.4)-bicyclo- heptane					$[\alpha]_D = -18.11^{\circ 104}$ $[\alpha]_D = -18^{\circ 62}$
(Fenchane)		151 to 152 " @ 765mm 151.5 38 @ 763mm 145 to 147 76 149.2 to 149.5 62,65 @ 753mm 149 104 @ 750mm 149 to 149.3 47 @ 749mm	0.8345 44 0.8337 76 0.8317 62,65 0.8316 104 0.8326 38 D ₀ ²⁰ 0.8471 62 @ 0°	1.44752 76 1.44714 44 1.4463 38 1.4462 104 1.4459 62,65	$[\alpha]_D = -16.53^{\circ}  ^{38}$ $[\alpha]_D = -15.22^{\circ}  ^{72}$

C ₁₀ H ₁₈		240			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	n ²⁰ _D	Additional Data
d-1,3,3-Trimethyl- [1,2,2] · · · · bicyclo- heptane	Sealer A Sealer Sealer A Seale				
( <i>d-l-α</i> -Fenchane)		161 to 163 ⁴² @ 755mm	0.8612 42	1.46152 ⁴² 1.45921 ⁴² 1.46741 ⁴² 1.46740 ⁴²	
dl-1,3,3-Trimethyl- [1,2,2](1,0)-bicyclo- heptane					
( <i>d-l-β-</i> Fenchane)		158 to 160 ⁴² @ 752mm	0.8553 42	1 45744 ⁴² 1.45511 ⁴² 1.46304 ⁴² 1.46304 ⁴² 1.47208 ⁴² 1.47208 ⁴² 1.47208 ⁴² 1.47208 ⁴²	
2,2,3-Trimethyl- [1,2,2](1,4)-bicyclo- heptane					$\left[\alpha\right]_D = +8.68^{\circ}  ^{54}$
(Isocamphane)  d form  C  C	62 to 63 ⁵⁴ 61.5 to 63 ⁵⁴	166 to 166.5 ⁵⁴			

		241			C10 H18
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	$n_D^{z_0}$	Additional Data
2,2,3-Trimethyl- [1,2,2] ^(1,4) -bicyclo- heptane					$\left[\alpha\right]_{D} = -8.5^{\circ 64}$
l form	63 to 64.5 ⁶⁴	164 ⁵⁴ @ 757mm			
2,2,3-Trimethyl- [1,2,2](1.4)-bicyclo- heptane					
optical activity unspecified	65 to 66 ⁵⁴ 60 to 61 ¹⁰⁸	163 ⁵⁴ 164.5 ⁵⁴ @ 709mm	0.82757 ⁶⁴ @ 67°	1.44186 64 @ 67° 1.43982 64 n _H ⁶⁷ 1.45239 64 n _H ⁶⁷ n _H ⁶⁷	
1,4,7-Trimethyl- [1,2,2](1.4)-bicyclo- heptane					
(4-Methylsantenane)		152 to 154 46	0.8531 46		
Ċ					
			h laif		

C ₁₀ H ₁₆		LIL			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$oldsymbol{n}_D^{20}$	Additional Data
1,7,7-Trimethyl- [1,2,2](1,4)-bicyclo- heptane					
(Camphane)	145 48 153 to 154 \{ \}^{96}. 156 to 157 \{ \}^{106}. 157 to 158 61 158 to 159 38 151 114 151 to 152 23 150 21	160 to 161 ³⁸ @ 763mm 160 to 161 ⁹⁶ 161 to 162 ²¹ 161 ^{97,105} @ 757mm	0.7458 ⁴⁸ @ 152 °		
2,7,7-Trimethyl- [1,2,2](1,0)-bicyclo- heptane  (Isobornylane)		163.5 to 164.5 °5 @ 753mm 162 to 163.5 °14 @ 753mm 162.5 to 163.5 °108 @ 751mm	$0.8579$ 65 $0.8566$ $\begin{cases} 108, \\ 114 \end{cases}$	1.4590 % 1.4577 114 1.4560 106 1.4559 114 @ 19.5°	$[\alpha]_D = -12.36^{\circ}  {}^{66}$ $[\alpha]_D = -8.16^{\circ}  {}^{114}$

		243			C ₁₁ H ₂
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
1,2,7,7-Tetramethyl- [1,2,2](1,4)-bicyclo- heptane (?)	129 40	170 to	0.9160.88	1.46225.68	,
(Methylcamphane)	138 to 139 66.67	170 to 170.5 66.67 @ 752mm	0.8160 ⁶⁶ @ 10°	1.46235 66 @ 16°	
C ₁₃ H ₂₄ 1,7,7-Trimethyl-2- propyl-[1,2,2](1,4)-					
bicycloheptane					
(2-Propylcamphane)	32 to 32.5 70	223 to 223.5 70			
1,7,7-Trimethyl-4- propyl-[1,2,2](1,4)- bicycloheptane					
(4-Propylcamphane)	32 to 32.5 ⁷⁰	223 to 223.5 ⁷⁰			

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
[0,3,3]-Bicycloöctane		127 to 135 112	0.8241 112	1.4471 112	
[0,3,3]-Bicycloöctane  trans	-30 4	132 4 @ 762mm	0.8626 ° @ 18° 0.867 ° @ 14°	1.4625 ° @ 18° 1.4651 4 @ 14°	
[1,2,3]-Bicycloöctane	141 2				
[2,2,2]-Bicycloöctane	168 ⁴¹ 16 <b>9</b> to 170 ¹				
•					

		243			C, H ₁ ,
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n _D ²⁰	Additional Data
[0,x,x]-Bicycloöctane		139.5 to 140.5 103	0.8604 ¹⁰³ 0.8775 ¹⁰³ @ 0°	1.46148 103	
C, H ₁₆ 1-Methyl-[2,2,2](1.4)- bicycloöctane		149 to 151 80	0.875 **	1.46900 ⁸⁹	
2-Methyl-[2,2,2](1.4)-bicycloöctane	33 to 34 36	157 to 158.5 ³⁶ @ 760.8mm		1.4613 ³⁶ @ 40.5°	

Cloaris					
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
3,7-Dimethyl- [0,3,3] (1,8)-bicycloöctane  c—  —  c		165 to 167 ²⁴	0.8341 ³⁴ @ 24°	1.4481 ³⁴ @ 24°	
5,5-Dimethyl-[1,2,3](1,4)-bicycloöctane  (Dihydroendocamphene)		171.5 to 173 56	0.87706 55 @ 17.4°	1.46847 ⁵⁶ @ 17.4°	
C, H ₁₀ [0,3,4]-Bicyclononane (Hydrindane) cis		166 ³⁰ 166 ¹²⁰ @ 758mm 166 ²⁹ @ 734mm	0.881 ₉ 0.8783 ²⁹ @ 25.1° 0.8815 ³⁰ @ 20.7° 0.880 ³⁰ 0.879 ³⁰ 0.8849 ³⁰ @ 15.3° 0.8872 ³⁰ @ 11.7°	1.471 ₄ 1.4683 ¹²⁰ 1.4716 ³⁰ 1.4713 ³⁰ 1.47270 ³⁰ @ 16.8° 1.47500 ³⁰ @ 12° 1.46897 ²⁹ $n_{H_{\bullet}}^{24,9}$	$\frac{dD}{dt} = -0.00064/^{\circ}C.$ (10° to 20°)

		471			CITI
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
[0,3,4]-Bicyclononane		159 ³° 156 <b>°</b> @ 747mm	0.8630 ²⁶ 0.865 ⁴	1.4655 4 @ 18.2°	$[\alpha]^{19} = -10.8^{\circ}$
dl trans		159 to 160 30 158 86	0.863 sa 0.8645 so @ 18.3°	1.4643 86 1.46630 30 nH.6	
[0,3,4]-Bicyclononane  (Hydrindane)  with no specification of cis and trans forms		165 to 166 23 @ 767mm 163.5 to 164.5 111 166 to 167 28.118	0.8284 16 @ 81.2° 0.8759 16 @ 23° 0.8334 83 0.8790 111 @ 15.5° 0.8872 28 @ 11.7°	1.46897 4 @ 24.9° 1.4696 118 1.46287 33 1.4711 111 @ 15.5° 1.4750 4.28 @ 12°	
C ₁₀ H ₁₈ cis-1-Methyl- [0,3,4] (1.8)-bicyclo- nonane  (8-Methyl hydrindane)	12 to 13 14	69 @ 19mm ¹⁴ 56 ⁵² @ 10.5mm	0.8778 ¹⁴ @ 16° 0.8754 ¹⁸ @ 13.5°	1.4707 14 @ 16° 1.4699 53 @ 13.5°	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Data
1-Methyl-[0,3,4] (1.5)- bicyclononane (8-Methyl hydrindane)		159 to 160 ⁷ 80 to 82 ⁵ @ 50mm			
2-Methyl-[0,3,4](1.8)-bicyclononane (1-Methyl hydrindane)		182 to 183 ⁷¹	0.8763 71	1.46934 71	
C ₁₃ H ₃₄ 2-Methyl-3-isopropyl- [0,3,4] ^(1,5) -bicyclononane		127 to 137 ¹¹ @ 28mm	0.8715 11	1.4660 11	

		249			C10 H18
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
1-Methyl-[1,3,3](1.5)- bicyclononane					,
c——		176 to 178 ⁷⁷ @ 751mm	0.84167	1.4529 77	
C ₁₁ H ₂₀ 1,3-Dimethyl-[1,3,3](1.8)-bicyclononane		195 to 200 ⁷⁸ @ 750mm			
C ₁₃ H ₂₄ 9-Methyl-3-isopropyl- [1,3,3](1.6)- bicyclononane  C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C		232 to 233 ⁷⁹ @ 755mm 132 ⁷⁹ @ 28mm	0.864379	1.4660 79	

> 10 TT 18		200			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
[0,4,4]-Bicyclodecane			0.895,	1.480,	
(Decahydronaphthalene) (Decalin)	- 43.26 31,95	193 ¹³ @ 768mm	0.898 ²⁴ 0.8963 ⁹⁵	1.4773 75 @ 22.5°	
			$\begin{array}{c} 0.8963 \ ^{96} \\ 0.8962 \ ^{81} \\ 0.8957 \ ^{13} \\ 0.8953 \ ^{13} \\ 0.8952 {25, \atop 119} \\ 0.8951 \ ^{3} \\ 0.895 \ ^{27} \\ 0.8838 \ ^{76} \\ 0.8805 \ ^{75} \end{array}$		
	1				

		231			C10 II 1
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
[0,4,4]-Bicyclodecane				1.4696	,
(trans)	- 31.47 % - 33 26 - 36 25	185 18 @ 765mm 187 to 188 49 186 to 186.5 122 185 25.27 184 to 186.5 121 182 to 184.5 75 185.5 95 185 13 @ 756mm 63 24 @ 12mm 62 to 63 81 @ 12mm	0.8641 28 @ 30° 0.8714 121 @ 21° 0.8704 122 @ 21° 0.8715 25 @ 20.5° 0.8823 13 0.8820 13 0.877 49 0.872 24 0.8699 95 0.8695 23 0.8667 81 0.8657 75 0.8734 25 @ 19° 0.8703 27 @ 18.2° 0.8783 28 @ 10° 0.893 49 @ 0°	1.4871 122 @ 20.5° 1.4713 24.21 1.46968 96 1.4696 119 1.46958 25 1.4695 27.76 1.4691 81 1.4675 49 1.46994 27 @ 18.2° 1.47225 22 @ 18° 1.46720 95 $n_{H_a}^{20}$ 1.47572 27 $n_{H_a}^{18.2}$ 1.48727 95 $n_{H_a}^{20}$ 1.48060 27 $n_{H_a}^{18.2}$ 1.474461 13 $n_{H_a}^{20}$ 1.47442 18 $n_{H_a}^{20}$	

A 10 == 19		202			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	n _D ²⁰	Additional Data
[0,4,4]-Bicyclodecane					
cis and trans		185 to 193 34 188 to 191 88 191.6 15 195 to 196 15 189 to 191 35 189 to 190 74	0.8609 18 @ 50° 0.9134 18 @ 23° 0.8881 88 0.884 17 0.8833 18 0.8781 84	1.4965 15 @ 23° 1.4750 15 1.4753 35 1.4771 34 1.4773 15 @ 15°	
$C_{11}$ $H_{20}$ $C_{12}$ $H_{20}$ $C_{13}$ $H_{20}$ bicyclodecane		82 @ 11mm ²⁴	0.8909 24	1.4813 24	
		79 @ 11mm ⁶³	@ 16.1° 0.8994 ⁶³ @ 12.5°	@ 16.1° 1.4844 ⁵³ @ 12.5°	
trans-1-Methyl- [0,4,4] ^(1,6) -bicyclodecane		75 @ 14mm ⁸¹ 70 to 71 ⁸¹ @ 12mm	0.8633 81 0.8583 81 0.8654 24 @ 17.6°	1.4631 ⁸¹ 1.4702 ⁸¹ @ 17.6° 1.4697 ⁸⁴ @ 17.6°	

		233			C11 F120
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
1-Methyl-[0,4,4](1.6)- bicyclodecane (Mixture of cis and trans isomers)			0.892 53	1.481 53	,
2-Methyl-[0,4,4](1.0)-bicyclodecane		205 101	$0.885^{101}$ $D_{20}^{20}$		
trans-3-Methyl- 0,4,4] (1.6)-bicyclodecane		78 @ 14mm • 76 @ 12mm ⁸¹	0.8670 ⁸¹	1,4681 ⁸¹	
3-Methyl-[0,4,4]- bicyclodecane		201 ¹⁰¹	$0.876^{101} \ D_{20}^{20}$		
		di G			

Name and Carbon Skeleton	м. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
2-Ethyl-[0,4,4](1,4)-bicyclodecane		222 51	0.8843 ⁵¹ @ 23° 0.8985 ⁵¹ D%	1.4764 ⁵¹ @ 23°	
3-Ethyl-[0,4,4](1,4)-bicyclodecane		222 ⁵² 221 ⁵⁰ 92 @ 13mm ⁵⁰	0.8763 50,52 @ 13.2° 0.8857 51,52 $D_0^0$	1.4746 ^{48,50} @ 13.2°	
cis-1,5-Dimethyl- [0,4,4](1.0)-bicyclo- decane		85 s1,82 @ 12mm 84 to 85 s3 @ 10mm	0.8896 ^{81,82} 0.8847 ⁸³ @ 16°	1.4812 ^{81,82} 1.4787 ⁸³ @ 16°	

		200			C19 II 22
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_{B}^{26}$	Additional Data
trans-1,5-Dimethyl- [0,4,4](1.0)-bicyclo- decane		77 to 78 s1 @ 12mm 76 to 78 s3 @ 10mm	0.8633 ⁸¹ 0.8544 ⁵³ @ 15°	1.4659 81 1.4658 53 @ 15°	
2,8-Dimethyl- [0,4,4](1,0)-bicyclo- decane		218 101	0.880 ¹⁰¹ $D_{20}^{20}$		
3,8-Dimethyl- [0,4,4](1.6)-bicyclo- decane		216 to 217 ° 208 101	0.872 ¹⁰¹ D ₂₀		

U12 1122					
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Data
3,9-Dimethyl- [0,4,4] (1,6)-bicyclo- decane		216 to 218 •	0.8518 119		
C ₁₂ H ₂₄ cis-1-Methyl-4- ethyl-[0,4,4] (1,6)- bicyclodecane	- 112 ⁷⁸	102 to 103 s2 @ 12mm 101 to 102 s3 @ 12mm	0.8912 83 0.8903 82	1.4819 ⁸² 1.4811 ⁸³	$[\alpha]_D^{20} = -0.85^{83}$
trans-1-Methyl-4- ethyl-[0,4,4](1.6)- bicyclodecane		97 to 98 ⁸¹ @ 12mm	0.8630 ⁸¹	1.4665 ⁸¹	

		231			C14 H2
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	n20 D	Additional Data
cis-1,5-Dimethyl-8- ethyl-[0,4,4](1.6)- bicyclodecane	,				
c-c c		115 to 116 82 @ 12mm	0.8904 82	1,4815 *2	
1,5-Dimethyl-8-ethyl- [0,4,4]-bicyclodecane		112 to 113 ⁸¹ @ 14mm	0.8703 sı	1.4727 81	
1,5-Dimethyl-8-ethyl-					
[0,4,4] (1,6)-bicyclo- decane					
(1,4(a)-Dimethyl-7- ethyldecalin)		120 to 125 8 @ 20mm			
$\overset{c}{\longleftrightarrow}$					

V15 11 25		200			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D4 *	n²₀ D	Additional Data
2-Ethyl-3-propyl- [0,4,4](1.6)-bicyclo- decane		79 to 89 ⁷² @ 2mm	0.8839 72	1.4778 72	
1,5-Dimethyl-8-iso-propyl-[0,4,4](1,4)-bicyclodecane		126 to 128 % @ 10.5mm 122 to 122.5 % @ 7.5mm 116 to 117 % @ 6.5mm	0.8896 % 0.8893 % 0.8881 % 0.8911 %	1.48471 % 1.483 % 1.48278 % 1.48259 %	$[\alpha]_D = +11.8^{\circ 04}$ $[\alpha]_D = +10.2^{\circ 04}$ $[\alpha]_D = +7^{\circ 00}$
2,8-Dimethyl-5-iso-propyl-[0,4,4](1,6)-bicyclodecane (Tetrahydrocadinene)		125 to 128 % @ 10mm	0.8838 ••	1.4805 %	$\left[\alpha\right]_{D} = -20^{\circ 90}$
1.0					

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
2,9-Dimethyl-5-iso-propyl-[0,4,4] (1.6)-bicyclodecane*  (Tetrahydroisozingiberene)		123 to 123.5 % @ 10mm	0.8822 %	1.4791 90	*Correct structure of this seems to be 2,8-Dimethyl-5-iso-propyl-[0,4,4](0,0)-bicy-clodecane. See Simonsen, "The Terpenes," p. 498. Cambridge Press, London (1932).
C ₁₇ H ₃₂ 2-Propyl-3-butyl- [0,4,4] (1,4)-bicyclodecane  C-C-C  C-C-C-C		98 to 100 ⁷² @ 2mm	0.8796 72	1.4790 72	
C ₂₀ H ₃₈ 2,2-Dimethyl-9-(1,5-dimethylhexyl)- [0,4,4] (1.6)-bicyclodecane  (Hexahydroiso-α-camphorene)  C-C-(C) ₂ -C C C C C		180 to 186 ⁹² @ 14mm	0.8588 ⁹² @ 21°	1.46800 92	

C28 F134		200			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
3-Octadecyl-[0,4,4](1,6)-bicyclodecane	43 to 47 50.40		0.863 59 @ 25° (extrap.)	1.4739 ⁵⁹ @ 25° (extrap.)	·
C ₁₂ H ₀₂ 3-Docosyl-[0,4,4] (1,6)-bicyclodecane  C-(C) ₂₀ -C			0.8673 59 @ 25°	1.4759 ⁵⁹ @ 25°	
3-(2-Butyloctadecyl)- [0,4,4](1,6)-bicyclo- decane  C (C)s (C)s - C-C-(C)15-C		240 to 245 ⁶⁰ @ 3mm	0.8615 ⁶⁹ @ 25°	1.4772 % @ 25°	

- (1) K. Alder and G. Stein, Ann. 514, 1, 1934.
- (2) K. Alder and E. Windemuth, Ber. 71, 2404, 1938.
- (3) K. v. Auwers, Ber. 46, 2988, 1913.
- (4) J. W. Barrett and R. P. Linstead, J. Chem. Soc. 1935, 1069.
- (5) C. Chuang, Chi Ming Ma, Yu-Lin Tien, Ber. 68, 1946, 1935.
- (6) Clemmensen through W. Hückel, Ann. 441, 1, 1925.
- (7) G. Clemo and H. Dickerson, J. Chem. Soc. 1935, 735.
- (8) G. Clemo and R. Haworth, J. Chem. Soc. 1930, 2579.
- (9) E. Coulson, J. Chem. Soc. 1935, 77.
- (10) E. Deussen, J. prakt. Chem. [2] 114, 63, 1926.
- (11) M. Djakowa and A. Petrov. J. Gen. Chem. (U.S.S.R.), 3, 679, 1933.
- (12) F. Ebel, R. Brunner, and P. Mangelli, Helv. Chem. Acta 12, 19, 1929.
- (13) F. Eisenlohr and R. Polenske, Ber. 57, 1639, 1924.
- (14) K. D. Errington and R. P. Linstead, J. Chem. Soc. 1938, 666.
- (15) E. Evans, J. Inst. Petr. Tech. 24, 537, 1938.
- (16) J. Eykman, Chem. Weekblad 3, 685, 1906.
- (17) Fokin and Willstätter through A. Lipp, Ber. 56, 2098, 1923.
- (18) P. Guha and S. Krishnamurthy, Ber. 70, 2112, 1937.
- (19) P. Guha and B. Nath, Ber. 70, 931, 1937.
- (20) P. Guha and D. Sankaran, Ber. 71, 2673, 1938.
- (21) G. Henderson and E. Pollock, J. Chem. Soc. 97, 1620, 1910.
- (22) G. Henderson and A. Robertson, J. Chem. Soc. 123, 1713, 1929.
- (23) A. Hesse, Ber. 39, 1127, 1906.
- (24) D. C. Hibbit and R. P. Linstead, J. Chem. Soc. 1936, 470.
- (25) W. Hückel, Ann. 441, 1, 1925.
- (26) W. Hückel, Ann. 533, 1, 1937.
- (27) W. Hückel, Ber. 58, 1449, 1925.
- (28) W. Hückel and H. Friedrich, Ann. 451, 132, 1926.
- (29) W. Hückel and E. Goth, Ber. 67, 2104, 1934.
- (30) W. Hückel, M. Sachs, J. Yantschulewitsch, and F. Nerdel, Ann. 518, 155, 1935.
- (31) W. Hückel, K. Kumetat, and H. Severin, Ann. 517, 184, (1935).
- (32) V. N. Ipatieff, Ber. 40, 1281, 1907.
- (33) V. N. Ipatieff, J. Russ. Phys. Chem. Soc. 45, 994, 1913.
- (34) R. L. Jones and R. P. Linstead, J. Chem. Soc. 1936, 616.
- (35) I. Kagehira, Bull. Soc. Chem. Japan 6, 241, 1931.
- (36) B. A. Kazansky and A. F. Plate, Ber. 68, 1259, 1935.
- (37) N. Kishner, J. Russ. Phys. Chem. Soc. 42, 1203, 1910.
- (38) N. Kishner, J. Russ. Phys. Chem. Soc. 43, 586, 1911.
- (39) N. Kishner, J. Russ. Phys. Chem. Soc. 44, 853, 1912.
- (40) N. Kishner and Sawadowski, J. Russ. Phys. Chem. Soc. 43, 1137, 1911.
- (41) G. Komppa, Ber. 68, 1267, 1935.
- (42) G. Komppa and S. Beckmann, Ann. 508, 205, 1934.
- (43) G. Komppa and S. Beckmann, Ann. 512, 172, 1934.
- (44) G. Komppa and T. Hasselström, Ann. 496, 164, 1932.
- (45) G. Komppa, T. Hirn, W. Rohrmann, and S. Beckmann, Ann. 521, 242, 1936.
- (46) G. Komppa and G. A. Nyman, Ann. 517, 105, 1935.
- (47) D. Kursanoff, J. Gen. Chem. (U.S.S.R.) 4 (66), 598, 1934.
- (48) M. Leffler and R. Adams, J. Am. Chem. Soc. 58, 1555, 1936.
- (49) H. Leroux, Compt. rend. 139, 672, 1904; Ann. chim. [8] 21, 468, 1910.
- (50) G. Levy, Compt. rend. 192, 1397, 1931.
- (51) G. Levy, Compt. rend. 193, 174, 1931.
- (52) G. Levy, Ann. chim. 9, 1, 1938.

- (53) R. P. Linstead, R. Millidge, and A. Walpole, J. Chem. Soc. 1937, 1140.
- (54) P. Lipp, Ann. 382, 265, 1911.
- (55) A. Lipp, Ber. 56, 2098, 1923.
- (56) P. Lipp, A. Gotzen, and F. Reinartz, Ann. 453, 1, 1927.
- (57) H. Meerwein and K. van Emster, Ber. 53, 1815, 1920.
- (58) Miehr, Diss. Munich, (1913), Quoted by A. Lipp, Ber. 56, 2098, 1923.
- (59) L. A. Mikeska, Ind. Eng. Chem. 28, 970, 1936.
- (60) L. A. Mikeska, C. F. Smith, and E. Lieber, J. Org. Chem. 2, 499, 1938.
- (61) S. S. Nametkin, J. Russ. Phys. Chem. Soc. 47, 410, 1915.
- (62) S. S. Nametkin, J. Russ. Phys. Chem. Soc. 47, 1596, 1915.
- (63) S. S. Nametkin, J. Russ. Phys. Chem. Soc. 51, 150, 1919.
- (64) S. S. Nametkin, Ann. 438, 186, 1924.
- (65) S. S. Nametkin, L. Abakumowsky, and A. Seliwanoff, Ann. 440, 60, 1924.
- (66) S. S. Nametkin and L. Brussowa, J. Russ. Phys. Chem. Soc. 55, 525, 1923.
- (67) S. S. Nametkin and L. Brussowa, Ann. 459, 144, 1927.
- (68) S. S. Nametkin and A. Jarsev, Ber. 56, 832, 1923.
- (69) S. S. Nametkin and A. Jarsev, J. Russ. Phys. Chem. Soc. 54, 77, 1922.
- (70) S. S. Nametkin and A. Schawrigin, Ann. 516, 199, 1935.
- (71) C. Nenitzescu and C. Cioranescu, Ber. 69, 1040, 1936.
- (72) G. A. Nesty and C. S. Marvel, J. Am. Chem. Soc. 59, 2662, 1937.
- (73) G. Östling, J. Chem. Soc. 101, 468, 1912.
- (74) L. Palfray, Compt. rend. 206, 1976, 1938.
- (75) E. Prokopetz, J. Applied Chem. (U.S.S.R.) 8, 1214, 1935.
- (76) W. Quist, Ann. 417, 278, 1918.
- (77) P. Rabe, Ber. 37, 1671, 1904.
- (78) P. Rabe and M. Jahr, Ann. 360, 265, 1908.
- (79) P. Rabe and K. Weilinger, Ber. 37, 1667, 1904.
- (80) W. Roth and K. v. Auwers, Ann. 407, 145, 1914.
- (81) L. Ruzicka, D. R. Koolhaas, and A. H. Wind, Helv. Chim. Acta. 14, 1151, 1931.
- (82) L. Ruzicka, D. R. Koolhaas, and A. H. Wind, Helv. Chim. Acta, 14, 1171, 1931.
- (83) L. Ruzicka and P. Pieth, Helv. Chim. Acta, 14, 1090, 1931.
- (84) P. Sabatier and A. Mailhé, Ann. chim. phys. [8] 10, 527, 1907.
- (85) P. Sabatier and J. Senderens, Compt. rend. 132, 1254, 1901.
- (86) M. Sachs, Diss. Gottingen, 1928.(87) Schenk, Diss. Munich, (1910), quoted by A. Lipp, Ber. 56, 2098, 1923.
- (88) W. Schrauth and T. Böttler, Deutsche Hydrierwerke, A-G. Ger. 663, 963, Aug. 1938.
- (89) F. W. Semmler and K. Bartelt, Ber. 40, 4846, 1907.
- (90) F. W. Semmler and A. Becker, Ber. 46, 1814, 1913.
- (91) F. W. Semmler and J. Feldstein, Ber. 47, 384, 1914.
- (92) F. W. Semmler and K. G. Jonas, Ber. 47, 2068, 1914.
- (93) F. W. Semmler and F. Risse, Ber. 45, 3301, 1912.
- (94) F. W. Semmler and F. Risse, Ber. 46, 2303, 1913.
- (95) W. Seyer and R. Walker, J. Am. Chem. Soc. 60, 2125, 1938.
- (96) J. L. Simonsen, "The Terpenes," vol. 2, p. 222, University Press, Cambridge, 1932.
- (97) L. Tschugaev and W. Fomin, Compt. rend. 151, 1058, 1910.
- (98) A. E. Uspensky, J. Russ. Phys. Chem. Soc. 51, 259, 1920.
- (99) G. Vavon, Compt. rend. 149, 997, 1909.
- (100) G. Vavon, Compt. rend. 150, 1123, 1910.
- (101) G. Weissenberger, R. Henke, and H. Katschinka, Z. anorg. allg. Chem. 153, 33, 1926.
- (102) R. Willstätter and D. Hatt, Ber. 45, 1471, 1912.
- (103) R. Willstätter and T. Kametaka, Ber. 41, 1485, 1908.
- (104) L. Wolff, Ann. 394, 95, 1911.

- (105) L. Wolff, G. Weiland, and E. Thielepape, Ann. 297, 92, 1912.
- (106) Wöllmer, Diss. Munich, (1913), quoted by A. Lipp, Ber. 56, 2098, 1923.
- (107) Zacharewicz, Bull. Inst. Pin [3] 1935, 143.
- (108) N. D. Zelinsky, J. Russ. Phys. Chem. Soc. 36, 768, 1904.
- (109) N. D. Zelinsky, Ber. 44, 2784, 1911.
- (110) N. D. Zelinsky, Ber. 57, 2062, 1924.
- (111) N. D. Zelinsky and P. Borissow, Ber. 57, 2060, 1924.
- (112) N. D. Zelinsky and M. Friemann, Ber. 63, 1485, 1930.
- (113) N. D. Zelinsky, B. A. Kazansky, and A. F. Plate, Ber. 66, 1415, 1933.
- (114) N. D. Zelinsky and R. Levina, Ann. 476, 60, 1929.
- (115) N. D. Zelinsky and R. Levina, Ber. 62, 339, 1929.
- (116) N. D. Zelinsky, S. E. Michlina, and M. Eventowa, Ber. 66, 1422, 1933.
- (117) N. D. Zelinsky and M. Ouchakoff, Bull. soc. chim. [4] 35, 484, 1924.
- (118) N. D. Zelinsky and I. N. Titz, Ber. 62, 2869, 1929.
- (119) N. D. Zelinsky, I. N. Titz, and L. Fatejev, Ber. 59, 2580, 1926.
- (120) N. D. Zelinsky and M. B. Turova-Pollak, Ber. 62, 1658, 1929.
- (121) N. D. Zelinsky and M. B. Turova-Pollak, Ber. 65, 1299, 1932.
- (122) N. D. Zelinsky and M. B. Turova-Pollak, Ber. 58, 1292, 1925.
- (123) N. D. Zelinsky and A. E. Uspensky, Ber. 46, 1466, 1913.
- (124) N. D. Zelinsky and A. E. Uspensky, J. Russ. Phys. Chem. Soc. 45, 834, 1913.
- (125) Zwanziger, Diss. Munich, (1917), quoted by A. Lipp, Ber. 56, 2098, 1923.

 $C_{10}H_{10}$  264 2. BICYCLANES WITH AN ALKENYL OR OLEFIN SUBSTITUTION,  $C_nH_{2n-1}$ 

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
d-4-Methylene-1-iso- propyl-[0,1,3](1.3)- bicyclohexane					$[\alpha]_D = +63^{\circ}  ^{48,54}$ $[\alpha]_D = +80.17^{\circ}  ^{50,64}$
(Sabinene)  C-C-C  L  C  C		163 to 165 *0,54,64 162 to 166 *8 163 to 165 4 @ 757.6mm 66 *8 @ 30mm	0.8430 ³⁶ @ 30° 0.840 ^{48,54} 0.842 ^{50,64} 0.8422 ⁴ @ 17°	1.4660 36 @ 30° 1.465 50 1.465 81 1.4678 64 1.46738 4 @ 17° 1.46428 4 n'l' H  0.147514 4 n'l' H  1.48196 4 n'l' H  1.48196 4	$\left[\alpha\right]_{\mathcal{D}} = +80.07^{\circ 36}$
l-4-Methylene-1-iso- propyl-[0,1,3](1,3)- bicyclohexane		162 to 166 ¹ 161.5 to 163 ⁵⁰ @ 705mm	0.8407 ⁵⁰ D ⁸⁰ 0.8468 ¹	1.465 ⁸⁰ @ 30°	$[\alpha]_D = -46.19^{\circ}  ^{50}$ $[\alpha]_D^{15} = -42.5^{\circ}$

3-Methylene-2,2-dimethyl-[1,2,2](1.0)-bicycloheptane (d-Camphene) 42.7 53 160 to 161 36,50,58 43.5 3 158 to 158.5 5 46 to 157 40 49 50 157.2 to 49 50 67.50 50 69.8486 3 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.4581 50 69.50 50 1.45						<b>-</b> 10-
Methyl-[1,2,2](1.4)-bi-cycloheptane   (d-Camphene)   (42.7 s)   (43 to 161 s), s), s)   (43.5 s)   (45 to 47 s)   (158.5 s)   (3.8450 s)   (3.850 s)	Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
C   A3 to   A3.5   A6 to   A3.5   A6 to   A5.8   A6 to   A5.8   A6 to   A5.8   A6 to   A6 t	methyl-[1,2,2](1,4)-bi-	,				
I-Camphene $ \begin{vmatrix} 39^{.68} & 160 \text{ to } 161^{.68} \\ 44^{.92} & 159 \text{ to } 160^{.15} \\ 45 \text{ to} & 158.5 \text{ to} \\ 48^{.15,41} & 159.5^{.6} \\ 50^{.15} & 158 \text{ to } \\ 52^{.32} & 55^{.66} & 759 \text{mm} \\ 157.8^{.20} & 0.8355^{.68} \\ \end{vmatrix} \begin{vmatrix} 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.68} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} & 0.8062^{.41} &$	(d-Camphene)	43 to 43.5 ° 46 to 47 ° 46 ° ° 48 ° ° 48 to 49 ° ° 50 7.88	161 36,59,68 158 to 158.5 3 157 41 157.6 53 @ 745mm 157.2 to 159.9 3 @ 742mm 160 to 162 21,60	@ 50° 0.8450 36 @ 50° 0.8456 7 @ 50° 0.8486 3 @ 50° 0.850 60	@ 50° 1.4581 60 @ 48° 1.4533 7 @ 25° 1.4570 86 @ 25° 1.46048 3	
	<i>l</i> -Camphene	44 32 45 to 48 15,41 49 20 50 15 51 to 52 32	159 to 160 ¹⁵ 158.5 to 159.5 ⁶ 158.5 to 159 ³² 156 to 157 ⁴¹ 158 to 158.8 ⁴ @ 759mm 157.8 ²⁰	@ 40°  0.8062 41 @ 97.7°  0.8211 41 @ 79.7°  0.83473 6 @ 63.4°  0.8387 41 @ 58.9°  0.84224 6 @ 54°  0.8481 41 @ 47.7°  0.8555 68	@ 63° 1.45514 ° @ 54° 1.46207 °	$\begin{aligned} [\alpha]_D^{10} &= -92.37^{\circ 15} \\ [\alpha]_D^{10} &= -80.7^{\circ 32} \\ [\alpha]_D^{13} &= -51.88^{\circ 41} \\ [\alpha]_D^{13} &= -84.9^{\circ 68} \end{aligned}$

C10 II 16		200			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
3-Methylene-2,2-di- methyl-[1,2,2](1.4)-bi- cycloheptane (Continued)					
dl-Camphene	41 to 42 ² 44.5 to 46 ss 45 to 46 to 47 2 48 to 49 2,16 49 to 51 49.5 to 50.5 ² 50 5,31,64 54 18	160 to 161 54 160 18 159.5 to 160 2.19 159 to 160 5 158 to 160 30.88 158 to 159 2.16 157 to 157.5 38 @ 750mm 156.3 to 156.7 31 @ 712mm 51 to 53 37 @ 17mm	$0.8223^{13}$ @ 78° $0.8524^{38}$ $D_{60}^{50}$ $0.8544^{38}$ $D_{50}^{55}$ $0.8565^{38}$ $D_{60}^{50}$ $0.8586^{38}$ $D_{45}^{45}$ $0.8609^{38}$ $D_{40}^{40}$	1.44115 13 $n_{H_a}^{78}$ 1.45061 13 $n_{H_B}^{78}$ 1.45614 13 $n_{H_{\gamma}}^{78}$	
d-5-Methylene-2,2-dimethyl-[1,2,2](1,4)-bicycloheptane  (β-Fenchene)		151 to 153 ²⁸ 150.5 to 153.5 ³⁹ 150 to 153 ³⁹	0.8591 ³⁹ 0.8599 ³⁹	1.4645 ³⁹ @ 23° 1.4654 ³⁹ @ 18.6°	$[\alpha]_D = +62.91^{\circ 39}$ $[\alpha]_D = +62.5^{\circ 30}$
			1		

		207			C ₁₀ H ₁
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n 20	Additional Data
5-Methylene-2,2-di- methyl-[1,2,2] (1.4)-bi- cycloheptane		151 to 153 ^{23,27,28} 152 to 153 ²⁴	0.8581 ²² 0.8596 ²⁷ 0.8597 ²⁴ 0.8598 ²⁸ @ 17°	1.4644 ²³ 1.46511 ²⁴ 1.4658 ²⁷ 1.4662 ²⁸ @ 17°	
l-4-Methylene-7,7-di- methyl-[1,1,3](1.3)- bicycloheptane (Nopinene, β-Pinene)	About - 50 67	165.2 ¹¹ 164 to 166 ⁴⁷ 163 to 165 ⁵⁴ 162 to 164 ⁴⁶ 162 to 163 ⁶⁷ 160 ⁶¹ 156 to 157 ⁵¹ 164 to 166 ¹⁴ @ 758mm 163.5 to 165.5 ⁷⁰ @ 742mm	0.866 67 @ 22° 0.869 46.54 0.8708 11 0.8650 14 @ 15° 0.8720 47 @ 15° 0.8740 12 @ 15° 0.875 8 @ 15° 0.875 8	1.4647 ⁶¹ @ 22° 1.4724 ⁶⁷ @ 22° 1.4766 ⁷⁰ @ 20.5° 1.47548 ¹⁴ 1.4812 ¹¹ 1.478 ⁸ @ 15° 1.4872 ¹² @ 15°	$\begin{aligned} \left[\alpha\right]_{D}^{22} &= -17.19^{\circ}^{67} \\ \left[\alpha\right]_{D}^{} &= -22.48^{\circ}^{11} \\ \left[\alpha\right]_{D}^{} &= -22.33^{\circ}^{67} \\ \left[\alpha\right]_{D}^{} &= -22.1^{\circ}^{8} \\ \left[\alpha\right]_{D}^{} &= -19.19^{\circ}^{14} \\ \left[\alpha\right]_{D}^{} &= -17.8^{\circ}^{66,54} \\ \left[\alpha\right]_{D}^{} &= -16.24^{\circ}^{51} \end{aligned}$

Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
2-Methylene-7,7-di- methyl-[1,2,2](1,4)- bicycloheptane					$\begin{bmatrix} \alpha \end{bmatrix}_D = -32.3^{\circ 25}$ $[\alpha]_D^{19.5} = -32.76^{\circ 39}$
(l-\alpha-Fenchene)		159 to 162 4 157 to 159 3 156 to 157 6 155 to 160 25 155 to 158 29 154 to 156 63 153 to 155.5 33 @ 750mm 153 to 154 44 @ 720mm	0.8616 ³³ 0.865 ⁵⁴ 0.8664 ³⁹ 0.8675 ³⁰ 0.8677 ²⁹ 0.869 ⁶⁹ @ 19° 0.866 to 0.867 ⁶³ @ 18° 0.8670 ²⁵ @ 17.5° 0.870 ⁴⁴ @ 13°	1.47092 39 @ 23.2° 1.46876 39 @ 22.3° 1.4642 33 1.47085 39 @ 19.5° 1.4724 69 @ 19° 1.4693 63 @ 18° 1.46729 25 @ 17.5° 1.4750 44 @ 13°	$[\alpha]_{D}^{18} = -32.12^{\circ 69}$ $[\alpha]_{D} = -4.4^{\circ 54}$ $[\alpha]_{D} = -38^{\circ 44}$ $[\alpha]_{D} = -39.50^{\circ 29}$
2-Methylene-7,7-di- methyl-[1,2,2](1.4)- bicycloheptane (d-α-Fenchene)		155 to 161 66 140.5 to 142.5 39 @ 755mm	0.8630 66	1.4699 %	$[\alpha]_D^{20} = +12.76^{\circ}$ 66
2-Methylene-7,7-di- methyl-[1,2,2](1.4)- bicycloheptane (dl-α-Fenchene)		158 to 160 62 154 to 156 23 155 to 157 23	0.8660 ²³ 0.8656 ²³ 0.864 ⁴⁴	1.47045 ²³ 1.4708 ²³ 1.46900 ⁶⁸	

		209			C ₁₁ <b>H</b> ₁₀
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
2,2-Dimethyl-3-ethyli- dene-[1,2,2](1.4)-bicyclo- heptane	!				$[\alpha]_D = +4.28^{\circ}$ 30
(ω-Methylcamphene)		178 ³⁰ 172 to 173 ⁷¹ @ 743mm	0.8638 71 @ 27° 0.884 to 0.888 30 @ 15°	1.4643 ⁷¹ @ 27°	
2-Methylene-1,3,3-trimethyl-[1,2,2](1,4)-bicycloheptane (α-Methylcamphene)		170.5 to 171 ³⁴ @ 764mm			
3-Methylene-1,7,7-tri- methyl-[1,2,2](1,4)- bicycloheptane  (Methylenecamphane)	28 65	166 to 168 65 58 to 62 42 @ 11mm			

			_	
6-Methylene-5,7,7-tri- methyl-[1,1,3](1.3)- bicycloheptane (Methylpinene)	161 to 164 ¹⁷ @ 783mm	0.8363 17	1.46362 17	$ \alpha _D^{20} = +0.2420^{\circ}  ^{17}$
2-Methylene-1,5,5-tri- methyl-[1,2,2](1.4)- bicycloheptane (dl-Methyl-β-fenchene)	160 to 162 23	0.85205 22	1.46261 ²² @ 20.5°	
C ₁₃ H ₂₂ 3-Methylene-2,2-dimethyl-1-propyl- [1,2,2](1,0)-bicycloheptane  (β-Propylcamphene)	92 to 93 34 @ 16mm 86 to 87 34 @ 12mm	0.87188 ** 0.8722 35	1.4786 35 1.4770 35	$\left[\alpha\right]_{D}=-36.71^{\circ 35}$

***************************************		211			C15 II 26
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	J) ²⁰	$n_D^{20}$	Additional Data
1,7,7-Trimethyl-6-(3-methylbuten-3-yl)- [1,1,3](1.3)-bicyclo-heptane		-			$[\alpha]_D = -29.41^{\circ 0}$ $[\alpha]_D = -4.97^{\circ 50}$
(γ-Dihydrocaryophyllene) $C=C-C-C$ $C$ $C$		126 ¹⁰ @ 15mm 124 to 124.5 ⁹ @ 12.75mm 131 ⁵⁰ @ 11mm	0.8872 9 @ 21° 0.8893 10 @ 18° 0.8965 50 @ 15°	1.4880 ° @ 21° 1.4885 ° @ 18° 1.496 ° 0 @ 18°	
C ₁₀ H ₁₆ trans-8-Methylene- [0,3,4]-bicyclononane  (trans-2-Methylenehexa- hydrohydrindene)		59 to 60 ⁶² @ 9.5mm	0.8663 52	1.4720 52	
C ₁₁ H ₁₈ trans-3-Methylene- [0,4,4]-bicyclodecane (trans-2-Methylenedecalin)		82 to 82.5 s ² @ 10mm 81 to 83 s ⁵ @ 9mm	0.8897 ⁴⁹ 0.8928 ⁵⁸ @ 16°	1.4870 52,55	·

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Data
1,5-Dimethyl-8-isopro- penyl-[0,4,4]-bicyclo- decane					$[\alpha] = -7^{\circ 49}$
(Dihydroeudesmene)  C=C C C C		132 to 133 46 @ 15mm 127 43 @ 12mm 126 to 127 45 @ 12mm 126 to 130 49 @ 10mm	0.9067 ⁴⁹ 0.9075 ⁴⁵ 0.9080 ⁴⁵	1.4876 ⁴⁹ 1.4972 ⁴⁵ 1.5043 ⁴⁵	
7-Methylene-1-methyl- 4-isopropyl-[0,4,4]- bicyclodecane					
(Dihydroselinene)  C C C C C C C		138 to 139 46 @ 12mm	0.8992 <b>4</b> @ 2 <b>4</b> °	1.4878 ⁴⁵ @ 24°	

- (1) J. Agnew and R. Croad, Analyst, 37, 295, 1912.
- (2) O. Aschan, Ann. 383, 39, 1911.
- (3) O. Aschan, Ann. 398, 299, 1913.
- (4) K. v. Auwers, W. Roth, and F. Eisenlohr, Ann. 373, 267, 1910.
- (5) J. Bertram and H. Walbaum, J. prakt. Chem. [2] 49, 15, 1894.
- (6) J. Brühl, Ber. 25, 142, 1892.
- (7) J. Brühl, Ber. 25, 162, 1892.
- (8) M. Darmois, Ann. chim. [8] 22, 527, 1911.
- (9) E. Deussen, J. prakt. Chem. [2] 90, 318, 1914.
- (10) E. Deussen, J. prakt. Chem. [2] 114, 63, 1926.
- (11) G. Dupont, private communication (Beilstein, suppl. Vol. 5, p. 77).
- (12) G. Dupont and L. Desalbres, Bull. soc. chim. [4] 33, 1252, 1923.
- (13) J. F. Eykman, Chem. Weekblad, 3, 701, 1906.
- (14) E. Gildemeister, W. Müller through O. Wallach, "Festschrifte" 1909, 416.
- (15) Golubew, J. Russ. Phys. Chem. Soc. 41, 1004, 1909.
- (16) C. Harries and J. Palmer, Ber. 43, 1432, 1910.
- (17) T. Hasselström, Ann. Acad. Sci. Fennicae 30A, No. 11, 13.
- (18) G. Henderson and E. Pollock, J. Chem. Soc. 97, 1620, 1910.
- (19) W. Hückel, K. Kumetat, and H. Severin, Ann. 518, 184, 1935.
- (20) W. Hückel and W. Tappe, Ber. 69, 2769, 1936.
- (21) J. Kächler and F. Spitzer, Ann. 200, 340, 1880.
- (22) G. Komppa, Ann. 472, 179, 1929.
- (23) G. Komppa and S. Beckmann, Ann. 508, 205, 1934.
- (24) G. Komppa and T. Hasselström, Ann. Acad. Sci. Fennicae 26A, No. 1, 3, 1927.
- (25) G. Komppa and R. Roschier, Ann. 470, 129, 1929.
- (26) G. Komppa and R. Roschier, Ann. Acad. Sci. Fennicae 1916A, 3.
- (27) G. Komppa and R. Roschier, Ann. Acad. Sci. Fennicae, Ser. A X, 15, 1, 1917.
- (28) G. Komppa and R. Roschier, Ann. Acad. Sci. Fennicae, Ser. A VII, 14, 1, 1917.
- (29) J. Kondakow, J. prakt. Chem. [2] 75, 539, 1907.
- (30) G. Langlois, Ann. chim. [9] 12, 193, 1919.
- (31) P. Lipp, Ann. 382, 265, 1911.
- (32) P. Lipp, Ann. 399, 241, 1913.
- (33) S. S. Nametkin, L. Abakumoswky, and A. Seliwanoff, Ann. 440, 66, 1924.
- (34) S. S. Nametkin and A. Churchrikova, J. Russ. Phys. Chem. Soc. 50, 254, 1918.
- (35) S. S. Nametkin and A. Schawrigin, Ann. 516, 199, 1935.
- (36) R. Padmanabhan and S. Kulkarni Jatkar, J. Am. Chem. Soc. 57, 334, 1935.
- (37) M. Pariselle, Compt. rend. 176, 1901, 1923.
- (38) W. H. Perkin, Sr., J. Chem. Soc. 81, 292, 1902.
- (39) W. Quist, Ann. 417, 278, 1918.
- (40) A. Reychler, Bull. soc. chim. [3] 15, 366, 1896.
- (41) J. Riban, Ann. chim. [5] 6, 353, 1875.
- (42) H. Rupe and J. Brin, Helv. Chim. Acta 7, 546, 1924.
- (43) L. Ruzicka and E. Capato, Ann. 453, 62, 1927.
- (44) L. Ruzicka and F. Liebl, Helv. Chim. Acta 6, 267, 1923.
- (45) L. Ruzicka, A. H. Wind, and D. R. Koolhaas, Helv. Chim. Acta 14, 1132, 1931.
- (46) H. Schmidt, Z. angew. Chem. 42, 126, 1929.
- (47) A. Schorger, J. Am. Chem. Soc. 35, 1896, 1913.
- (48) F. W. Semmler, Ber. 33, 1455, 1900.
- (49) F. W. Semmler and E. Tobias, Ber. 46, 2026, 1913.
- (50) J. L. Simonsen, "The Terpenes," Vol. 2, p. 520, Cambridge University Press.
- (51) K. Slawinsky and J. Piliczewski, Roczniki Chem. 11, 763, 1931.
- (52) R. Tudor and A. Vogel, J. Chem. Soc. 1934, 1250.
- (53) D. Tsakalotos and B. Popoconslantinow, J. Pharm. et Chim. [7] 14, 97, 1916.

- (54) W. Treibs and H. Schmidt, Ber. 61, 459, 1928.
- (55) R. Thakur, J. Chem. Soc. 1932, 2120.
- (56) G. Vavon, Compt. rend. 149, 997, 1909.
- (57) G. Vavon, Compt. rend. 150, 1127, 1910.
- (58) G. Wagner and W. Brickner, Ber. 32, 2302, 1899.
- (59) O. Wallach, Ann. 230, 234, 1885.
- (60) O. Wallach, Ann. 245, 191, 1888.
- (61) O. Wallach, Ann. 246, 221, 1888.
- (62) O. Wallach, Ann. 263, 129, 1891.
- (63) O. Wallach, Ann. 300, 294, 1898.
- (64) O. Wallach, Ann. 350, 141, 1906.
- (65) O. Wallach, Ann. 353, 224, 1907.
- (66) O. Wallach, Ann. 357, 49, 1907.
- (67) O. Wallach, Ann. 363, 1, 1908.
- (68) O. Wallach and P. Gutmann, Ann. 357, 79, 1907.
- (69) O. Wallach and P. Vivck, Ann. 362, 174, 1908.
- (70) N. D. Zelinsky and R. Y. Levina, Ber. 62, 339, 1929.
- (71) N. D. Zelinsky and J. Zelikow, Ber. 34, 3249, 1901.

	201	BSTITUTIO	$N, C_n \Pi_{2n}$	6	C ₁ , H ₁₈
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
2,2-Dimethyl-3-propen-2-ylidene-[1,2,2]- (1.4)-bicycloheptane  (w-Vinylcamphene)		203 to 205 ¹ 85 to 90 ¹ @ 10mm	0.917 ¹ 0.921 ¹ @ 15°		$\left[\alpha\right]_{D} = +76.39^{\circ 1}$
C ₁₈ H ₂₀ 2,2-Dimethyl-3-buten- 2-ylidene-[1,2,2](a,a)-bi- cycloheptane  (w-Propenylcamphene)  C C C-C=C-C		230 to 232 ¹ 95 to 97 ² @ 12mm	0.919 1 @ 15°		$\left[\alpha\right]_{D} = +70^{\circ}  ^{1}$
C ₁₄ H ₂₂ 2,2-Dimethyl-3-penten- 2-ylidene-[1,2,2] ^(1,4) - bicycloheptane  (w-Butenylcamphene)		238 to 240 ¹ 110 to 120 ¹ @ 15mm	0.905 ¹ @ 15°		$[\alpha]_{D} = +80^{\circ 1}$

O15 1124					
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
2,2-Dimethyl-3-hexen- 2-ylidene-[1,2,2] ^(1,4) -bi- cycloheptane	and the second				$\left[\alpha\right]_{D} = +73.5^{\circ}$
(w-Pentenylcamphene)  C C C C-C=C-C-C		255 ¹ 140 @ 10mm ¹	0.900 ¹ @ 15°		
1-Methyl-7-meth- ylene-4-isopropenyl- [0,4,4](1,6)-bicyclode- cane  (β-Selinene)		268 to 272 ⁴ 142 to 144 ³ @ 20mm 136 to 139 ⁵ @ 17mm 135 ² @ 16mm	0.9107 ° 0.9140 ° 0.9196 ° 0.9232 ° @ 15° 0.9279 ° @ 15°	1.50311 ° 1.5042 ° 1.5102 ° @ 15°	$[\alpha]_D = +34^{\circ 2}$ $[\alpha]_D = +31.36^{\circ 6}$ $[\alpha]_D = +49.5^{\circ 6}$ $[\alpha]_D = +63^{\circ 8}$
•					

⁽¹⁾ G. Langlois, Ann. chim. [9] 12, 193, 1919.

⁽²⁾ L. Ruzicka, J. Meyer, and M. Mingazzini, Helv. Chim. Acta 5, 345, 1922.

⁽³⁾ L. Ruzicka, A. H. Wind, and D. R. Koolhaas, Helv. Chim. Acta, 14, 1132, 1931.

⁽⁴⁾ Schimmel and Co., Geschäftsbericht, April, 1910.

⁽⁵⁾ F. W. Semmler and F. Risse, Ber. 45, 3301, 1912.

VI. TRICYCLANES, (ENDOCYCLIC), C_nH_{2n-4}

VI. T	RICYCI	279 LANES, (EN	IDOCYC	LIC), C"H	_{m-4} C, H
Name and Carbon Skeleton		2 2 2 2	$D_4^{20}$	n _D ²⁰	Additional Data
2,2-Dimethyl-1,4-endo- methylene-[0,1,3](3,6)-bi- cyclohexane					
(Apocyclene)  C C C	36.5 to 37.5 28 38.5 to 39.5 27 39 to 40 39 41 to 42 28 42.5 to 43 31	138 to 139 ³¹ @ 764mm 138 to 139.5 ²⁸ @ 763.7mm 138 to 139 ²⁷ @ 762mm 137.5 ²⁸ @ 756mm 136.5 to 137 ³⁰ @ 748mm	@ 40° 0.8734 ²⁸ @ 40°	1.45144 31 @ 40° 1.45204 27 @ 40° 1.45434 2 @ 40° 1.44910 31 n 10 11 1.45686 31	
C ₁₀ H ₁₆ 1,2,2-Trimethyl-1,4- endomethylene- 0,1,3] (3,5)-bicyclohexane	116 to 117 30	150 to 151 30			

C10 H16		280			
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Data
2,2,4-Trimethyl-1,4- endomethylene- [0,1,3](3,8)-bicyclohexane  (Cyclofenchene)		143 to 143.7 50 @ 777mm 144 40 @ 770mm 144 to 146 4 142.8 to 147 50 143.5 2 140 to 143 20 143 to 144 22	0.859 ₈ 0.8589 ⁴⁵ @ 20.4° 0.8574 ²⁹ 0.8584 ⁵⁰ 0.8587 ⁵⁰	1.4503 ⁵⁰ @ 22° 1.45212 ⁵⁰ @ 20.4° 1.45442 ⁵⁰ @ 20.2° 1.44769 ² 1.45133 ⁴⁵ 1.4515 ⁴⁰ 1.4525 ⁶²	$Additional Data$ $ \alpha _{D}^{20} = +3.54^{\circ}  ^{50}$ $ \alpha _{D}^{20} = -1.77^{\circ}  ^{44}$ $ \alpha _{D}^{10} = +0.8^{\circ}  ^{50}$ $ \alpha _{D}^{18} = -0.28^{\circ}  ^{50}$ $[\alpha]_{D} = +0.28^{\circ}  ^{2}$
		@ 756mm 141.5 to 142 50 @ 755mm 143 to 143.5 40.41 @ 754mm 142 to 143 16.33 @ 752mm 143.6 to 143.9 45 @ 750mm 143 62 @ 749.5mm 143 to 143.5 40 @ 748mm 143 to 143.5 40 @ 747.5mm 145 to 149 38 @ 747mm	0.8609 44 0.8636 38 0.8624 16.32 @ 16.5° 0.8624 46 @ 16.4° 0.8624 32 @ 16°	$egin{array}{cccccccccccccccccccccccccccccccccccc$	
				$n_{H_{\beta}}^{16.2}$ $1.46067^{32}$ $n_{H_{\beta}}^{16}$ $1.46449^{40}$ $n_{H_{\gamma}}^{16.2}$ $1.46547^{32}$ $n_{H_{\gamma}}^{16}$	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
1-Methyl-1,4-(di- methylendomethylene)- 0,1,3](3,6) - bicyclohexane (Isocyclene) (β-Bornylene)	117.5 ¹⁸ 117 to 118 ⁷ 119 ^{40,43}	150 to 151 ⁴³ 150 to 152 ⁷ 151 ⁴⁰ 150 to 151 ⁴⁰ 150 to 151 ⁸⁸ @ 743mm	0.7948 ^{18,46} @ 120.8°	$1.40996^{18}$ $n_{H_a}^{120.8}$ $1.41743^{18}$ $n_{H_{\beta}}^{120.8}$ $1.42195^{18}$ $n_{H_{\gamma}}^{120.8}$	
2,2,3–Trimethyl– 1,4–endomethylene– (0,1,3] ^(3,5) –bicyclohexane					
(Tricyclene) (Cyclene)  C C C	64 to 65 29 64.3 36 64.5 to 65 87 65.5 to 66 41 66.5 17 66.5 to 67 69 67 to 68 13 67.5 to 67.8 60	153 46     @ 761mm 153.5 36,37 153 to 153.5 67 152.3     to 153.3 36 152 to 152.5 69 152.8 to 153 60 @ 757.5mm 152.5 17,46 @ 747mm 152 @ 740 mm	0.8268 ¹⁸ @ 80 2° 0.8373 ^{36,37} @ 70° 0.8440 ⁴⁶ @ 66.0°	$1.43890^{36}$ @ $70^{\circ}$ $1.44055^{46}$ @ $66.9^{\circ}$ $1.42963^{18}$ $n_{H_a}^{80.2}$ $1.43816^{46}$ $n_{H_a}^{66.9}$ $1.43744^{18}$ $n_{H_g}^{80.2}$ $1.44644^{46}$ $n_{H_g}^{66.9}$ $1.44206^{18}$ $n_{H_g}^{80.2}$	

Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Data
1,2,2,3-Tetramethyl- 1,4-endomethylene- [0,1,3](3.5)-bicyclohexane					
(4-Methyltricyclene)	109 to 110 30 113 to 114 42	163.5 to 164.5 ³⁰			
2,2,3,4-Tetramethyl- 1,4-endomethylene- 0,1,3](3,5)-bicyclohexane					
c c c	71 to 73 8	172 to 175 ⁸			

		203			01011
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
2,5-Endomethylene- [0,3,4]-bicyclononane					,
(low melting isomer)	9 16	191.5 ¹⁶ @ 769mm	0.9121 ¹⁸ @ 80° 0.9027 ¹⁷ @ 79.2° 0.9492 ¹⁷ @ 20.8°	$1.46705^{17}$ $n_{H_{\alpha}}^{70.2}$ $1.49308^{17}$ $n_{H_{\alpha}}^{20.8}$ $1.47538^{17}$ $n_{H_{\beta}}^{79.2}$ $1.50184^{17}$ $n_{H_{\beta}}^{20.8}$ $1.48021^{17}$ $n_{H_{\gamma}}^{20.8}$ $1.50706^{17}$ $n_{H_{\gamma}}^{20.8}$	
(high melling isomer)	79 18,66	193 16 @ 769mm 123 16 @ 100mm 118 16 @ 85mm 101 16 @ 48mm 86 16 @ 24mm	0.9120 ¹⁶ @ 80° 0.9128 ¹⁷ @ 79°	1.47258 17 $n_{H_a}^{79}$ 1.48101 17 $n_{H_b}^{79}$ 1.48592 17 $n_{H_\gamma}^{70}$	
C ₁₁ H ₁₈ 2,5-Endomethylene- [0,4,4]-bicyclodecane (1,4-Endomethylene decalin)		91 @ 22mm ¹³ 84 to 85 ¹³ @ 15mm			

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n20 D	Additional Data
2,5-Endoethylene- [0,4,4]-bicyclodecane					
C C C C C C C C C C C C C C C C C C C			0.9675 6 @ 22°	1.5042 6 @ 22° 1.5015 6 $n_{H_a}^{22}$	
Decahydroacenaph- thene					
		235 to 237 ²³ 235 to 236 ³⁴ 235 ²¹ 230 to 234 ²³	0.9488 ²⁵ @ 25° 0.9370 ²³ @ 0°	1.4996 ²⁵ @ 25°	
4,5-Cyclopentano- [0,3,4]-bicyclononane		106 to 108 ⁴⁷ @ 18mm	0.9145 4	1.4840 47	
C ₁₈ H ₂₂ 2,3-Cyclopentano- [0,4,4]-bicyclodecane (1,2-Cyclopentano-		71 +0 72 43	D 0741 48	1 4005 48	
decahydronaphthalene)		71 to 72 ⁴⁸ @ 2.5mm	0.9241 48	1.4895 48	

M. P.,°C.	B. P., °C.	NAME OF THE OWNER OWNER OWNER.		
	@ 760mm	$D_4^{20}$	n _D ²⁰	Additional Data
	254 to 258 ²³	0.9496 ²³ @ 0°		
	270 to 275 ³⁴ 275 to 276 ¹¹ @ 754.3mm 274 to 277 ⁵¹ @ 739mm 156 ¹⁵ @ 26mm 147 to 149 ¹⁴ @ 20mm 150 to 160 ²⁵ @ 18mm 142 to 144 ¹⁴	0.9630 ²⁵ @ 25° 0.9609 ²⁵ @ 25° 0.9385 ⁴⁸ 0.9437 ⁴⁸ 0.933 ²⁴ $D_{20}^{20}$ 0.9503 ¹¹ @ 16°	1.5003 ¹⁸ @ 25° 1.5261 ³⁴ @ 25° 1.5323 ³⁴ @ 25° 1.4994 ⁴⁸ 1.5011 ⁴⁸ 1.5050 ¹⁴ 1.5060 ¹¹	
	@ 15mm 135 15     @ 13mm 131 15     @ 10mm 93 to 96 48     @ 2.5mm 90 to 93 45     @ 2.5mm 86 to 89 45     @ 2mm		@ 16°	
	- 3 34	- 3 34 270 to 275 34 275 to 276 11 @ 754.3mm 274 to 277 51 @ 739mm 156 15 @ 26mm 147 to 149 14 @ 20mm 150 to 160 25 @ 18mm 142 to 144 14 @ 15mm 135 15 @ 13mm 131 15 @ 10mm 93 to 96 45 @ 2.5mm 90 to 93 48 @ 2.5mm 86 to 89 45	- 3 34 270 to 275 34 275 to 276 11 @ 25° 0.9609 25 @ 25° 0.9385 48 0.9447 45 0.9447 45 0.9447 45 0.933 34 0.920mm 150 to 160 25 @ 18mm 142 to 144 14 @ 15mm 135 15 @ 13mm 131 15 @ 10mm 93 to 96 45 @ 2.5mm 90 to 93 45 @ 2.5mm 90 to 93 45 @ 2.5mm 86 to 89 45	- 3 34 270 to 275 34 275 to 276 11 @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @ 25° @

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
3,4-Cyclohexano-[0,4,4]-bicyclodecane (Perhydroanthracene)	60.5 to 61 25	272 to 277 24	0.9747 ²⁵ @ 25°	1.5275 ²⁵ @ 25°	
	61 to 62 10 88 to 89 24 88 19,20,24,35 90 to 90.5 37 93 22	270 ²⁰ ca. 270 ³⁵ 150 to 155 ²⁵ @ 13mm 128 ²² @ 11mm	<u>ш</u> 23	<u>ш</u> 25	
C ₁₀ H ₂₀ 3,8-Dimethyl-2,5-(dimethylendomethylene)- [0,4,4]-bicyclodecane					$[\alpha]_D^{*0} = +2^{\circ *4}$ $[\alpha]_D = +33.10^{\circ 12}$
(Dihydrocedrene)		118 to 124 12 @ 12mm 122 to 123 54 @ 10mm 116 to 122 52 @ 10mm 109 to 112 12 @ 10mm 119 to 120 53 @ 8mm	0.9041 12 0.907 12 0.9204 84 0.9247 42 0.9052 42 @ 15°	1.48719 ¹² 1.48721 ⁵² 1.4882 ¹² 1.49204 ⁵³ 1.4929 ⁵⁴	

		287			C., H
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
2-Methyl-8-isopropyl- 2,3-(4-methylcyclo- nexano)-[0,4,4]-bicyclo decane		The second second second second second			$[\alpha]_D = +18.08^{\circ 49}$ $[\alpha]_D = +19.00^{\circ 61}$
(Fichtelite)	46 9,23 46.5 1.61 48 55	355 23 355.23 @ 719mm 235.63 @ 43mm 233.63 @ 42mm			
1,3-Dimethyl-7-iso-propyl-2,3-(3-methyl-cyclohexano)-[0,4,4]-bicyclodecane  (Tetrahydrosciadopitene)		175 to 176 ss @ 6mm 170 to 171 ss @ 5mm	0.9751 ** @ 15° 0.9761 **  Dif	1.5278 58	$ \alpha _D^{15} = +10.59^{\circ} \text{ sa}$

- (1) D. Adelson and M. T. Bogert, Chem. Rev. 24, 135, 1939.
- (2) O. Aschan, Ann. 387, 1, 1912.
- (3) O. Aschan, Ber. 40, 2750, 1907.
- (4) O. Aschan, Ber. 40, 4918, 1907.
- (5) E. Bamberger and L. Strasser, Ber. 22, 3361, 1889.
- (6) H. Bode, Ber. 70, 1167, 1937.
- (7) J. Bredt and W. Holz, J. prakt. Chem. [2] 95, 133, 1917.
- (8) J. Bredt and M. Savelsberg, J. prakt. Chem. [2] 98, 97, 1918.
- (9) C. Bromeis, Ann. 37, 304, 1865.
- (10) J. Brown, H. Durand, and C. S. Marvel, J. Am. Chem. Soc. 58, 1594, 1936.
- (11) Y. I. Denissenko and W. M. Kotelnikowa, J. Gen. Chem (U.S.S.R.) 7, 2819, 1937.
- (12) E. Deussen, F. Weiss, P. Hacker, and P. Hille, J. prakt. Chem. [2] 117, 273, 1927.
- (13) O. Diels and K. Alder, Ann. 460, 98, 1928.
- (14) J. Durland and H. Adkins, J. Am. Chem. Soc. 59, 135, 1937.
- (15) J. Durland and H. Adkins, J. Am. Chem. Soc. 60, 1501, 1938.
- (16) J. F. Eykman, Chem. Weekblad 1, 7, 1903.
- (17) J. F. Eykman, Chem. Weekblad 3, 685, 1906.
- (18) J. F. Eykman, Chem. Weekblad 3, 701, 1906.
- (19) M. Godchot, Ann. chim. [8] 12, 468, 1907.
- (20) M. Godchot, Bull soc. chim. [4] 1, 724, 1907.
- (21) M. N. Goswami, Compt. rend. 179. 1269, 1924.
- (22) E. Hulle, A. Gluschke, G. Stiar, and H. Müller, Ber. 57, 1990, 1924.
- (23) V. N. Ipatieff, Ber. 42, 2092, 1909.
- (24) V. N. Ipatieff, W. Jakowlev, and L. Rakitin, Ber. 41, 996, 1908.
- (25) I. Kagehira, Bull. Chem. Soc. Japan, 6, 241, 1931.
- (26) G. Koller and H. Rues, Mh. Chem. 70, 54, 1937.
- (27) G. Komppa and T. Hasselström, Ann. acad. sci. Fennicae 26A, No. 1, 3, 1927.
- (28) G. Komppa and T. Hasselström, Ann. 497, 116, 1932.
- (29) G. Komppa and T. Hasselström, Ann. 502, 272, 1933.
- (30) G. Komppa and G. A. Nyman, Bèr. 69, 334, 1936.
- (31) G. Komppa and R. Roschier, Ann. 429, 175, 1922.
- (32) G. Komppa and R. Roschier, Ann. 470, 129, 1929.
- (33) S. Landa and V. Machacek, Collection Czechoslov. Chem. Commun. 5, 1, 1933.
- (34) C. Liebermann and L. Spiegel, Ber. 22, 779, 1889.
- (35) L. Lucas, Ber. 21, 2510, 1888.
- (36) H. Meerwein and K. van Emster, Ber. 53, 1815, 1920.
- (37) S. J. Michlina, Wiss. Ber. Moskau, 3, 209, 1934.
- (38) S. S. Nametkin, J. prakt. Chem. [2], 106, 25, 1923.
- (39) S. S. Nametkin and Z. Alexandrow, J. Russ. Phys. Chem. Soc. 57, 382, 1926.
- (40) S. S. Nametkin and L. Brussova, Ann. 459, 144, 1927.
- (41) S. S. Nametkin and L. Brussova, J. prakt. Chem. [2] 112, 169, 1926.
- (42) S. S. Nametkin and L. Brussova, J. prakt. Chem. [2] 135, 155, 1932.
- (43) S. S. Nametkin and L. Brussova, J. Russ. Phys. Chem. Soc. 62, 333, 1930.
- (44) S. S. Nametkin and A. Sseliwanowa, J. Russ. Phys. Chem. Soc. 49, 423, 1918.
- (45) G. Östling, Dissertation, Helinsgfors, 1911.
- (46) G. Östling, J. Chem. Soc., 101, 468, 1912.
- (47) P. S. Pinkney and C. S. Marvel, J. Am. Chem. Soc. 59, 2669, 1937.
- (48) P. S. Pinkney, G. A. Nesty, R. H. Wiley, and C. S. Marvel, J. Am. Chem. Soc. 58, 972, 1936.
- (49) F. Plzák and V. Posicky, Z. Kryst. Mineral. 44, 339, 1908.
- (50) W. Quist, Ann. 417, 278, 1918.
- (51) J. Schmidt and R. Mezger, Ber. 40, 4240, 1907.
- (52) F. W. Semmler and A. Hoffman, Ber. 40, 3521, 1907.
- (53) F. W. Semmler and K. Spornitz, Ber. 47, 1029, 1914.

- (54) J. L. Simonsen, "The Terpenes," Vol. 2, p. 536, University of Cambridge Press, London, 1932.
- (55) L. Spiegel, Ber. 22, 3369, 1889.
- (56) H. Staudinger and H. Rheiner, Helv. Chim. Acta 7, 23, 1924.
- (57) L. Tschugaeff and W. Budrick, Ann. 388, 280, 1912.
- (58) H. Uota, J. Dept. Agr. Kyushu Imp. Univ. 5, 117, 1937.
- (59) G. Wagner and J. Godlewski, J. Russ. Phys. Chem. Soc. 29, 121, 1897.
- (60) G. Wagner, S. Moycho, and F. Zienkowski, Ber. 37, 1032, 1904.
- (61) P. Walden, Chem. Z. 30, 391, 1906.
- (62) N. D. Zelinsky and R. Y. Levina, Ann. 476, 60, 1929.

## VII. POLYCYCLANES OR POLYCYCLOPARAFFINS

- 1. Polycyclanes with alkyl substitutions, C_nH_{2n-6}
- 2. Polycyclanes with an alkenyl or olefin substitution,  $C_nH_{2n-8}$

1. POLYCYCLANES OR POLYCYCLOPARAFFINS WITH ALKYL SUBSTITUTIONS,  $C_nH_{2n-6}$  C C16 H26

Additional Data		
$n_D^{20}$		0.5228 ° @ 25°
$D_4^{26}$	0.9811 2 @ 22°	0.9828 ° @ 25°
B. P., °C. @ 760mm	168 to 170 *	162 to 166 ° @ 9.5mm
M. P., °C.		8.28
Name and Carbon Skeleton	Perhydrofluoranthene	Perhydropyrene

Additional Data	
# # P	1.52412 ¹⁶ @ 17°
$D_i^{i_0}$	0.9827 16
B. P., °C. @ 760mm	359 to 360 ¹⁶ @ 771mm 353 ¹⁰
M. P., °C.	ca. 50 ¹
. Name and Carbon Skeleton	Perhydronaphthacene (3,4,8,9-Dicyclohexano-[0,4,4]-bicyclodecane)  Perhydrochrysene (4,5,9,10-Dicyclohexano-[0,4,4]-bicyclodecane)

		293 C ₁	18 17.3
Additional Data			
n ²⁰	1.50776 14  1.50776 14  1.50510 14  1.51493 14  1.51493 14  1.52080 14  1.52080 14  1.52080 14	1.50693 и п.	
D.20	0.9512 и © 19.2°	0.9425 ¹¹ 0.9468 ¹⁴ © 19.2°	
B. P., °C. @ 760mm	200 to 208 ¹⁴ @ 17mm	200 to 201.5 14 0.9425 18 @ 20mm 0.9468 14 175 to 176 18 @ 19.29 @ 7mm	
M. P., °C.			
Name and Carbon Skeleton	Perhydrotriphenylene (Perhydro-9,10-benzophenanthrene) (2,3,4,5)-Dicyclohexano-[0,4,4]-bicyclodecane from lignin	from synthesis	

n ²⁰ Additional Data	$ \alpha _p = 4$ $ \alpha _p = 4$ *Meltin on on ing $\alpha$ on an ing $\alpha$	
-	1.556 3	
D.20	0.0319 3 @ 15°	
B. P., °C. @ 760mm		
M. P., °C.	49 to 50 4 49 to 51 12 83.5 3	
Name and Carbon Skeleton	Androstane C C C C C C C C C C C C C C C C C C C	
	C. H.	

|--|

 $[\alpha]_D = +25.46^{\circ}$  is  $[\alpha]_D^{15} = +43.32^{\circ}$  ii

269 to 271 ¹¹ @ 12mm

80 = 78 to 79 " 71 is

C Additional Data	
44	

Tentative structure as given by F. C. Whitmore, "Organic Chemistry," Van Nostrand Co., Inc., New York, 1937.

$D_4^{20}$ .		,		
B. P., °C. @ 760mm				
M. P., °C.		75 20		
Name and Carbon Skeleton	Homocholane	0-	9 (°)-0 0	$\rightarrow$

Cholestane

)" H.

70 to 71 ¹⁸	96 to 97?
Pseudocholestane  C (C)s	3-Methylcholestane
	Pseudocholestane 70 to 71 is 69 #

Ergostane  10.1 to 102 is  11.0 82 *  11.0 82 *  12.0 **  13.1 to 82 *  13.1 to 82 *  14.1 to 82 *  15.1 to 82 *  16.1 to 82 *  17.2 to 82 *  18.1 to 82 *	C C C 101 to 102 II C C C C C C C C 81 to 82 8	Name and Carbon Skeleton	M. P., °C.	B. P., °C. @ 760mm	$D_{4}^{m}$	$n_D^{39}$	Additional Data
C C C 101 to 102 ¹³ 82 6  11 to 102 ¹³ 81 to 82 8  1	C C C 101 to 102 13  C C-C-C-C-C 81 to 82 *	Ergostane					$[\alpha]_D^{18} = +22.9^{\circ}$
	81 to 82 \$	0 0 0 0 0 0 0	101 to 102 13 82 6		effective P to assess desiring		
			81 to 82 8		-		
					film processes and the second		
				***************************************	CARP THE TO TAKE		
			,		a december and the second		
					-		
		•					
					47.1		

- (1) J. v. Braun and O. Bayer, Gen. Aniline Works, Inc., New York, A. P. 1, 751, 670, 1930.
  - (2) J. v. Braun and G. Manz, Ber. 63, 2608, 1930.
- (3) A. Butenandt, F. Hildebrandt, and H. Brücher, Ber. 64, 2529, 1931. (4) A. Butenandt and K. Tscherning, Z. physiol. Chem. 229, 85, 1934.
- H. Dieterle and A. Salomon, Arch. Pharm. 270, 495, 1932.
   J. Dunn, I. M. Heilbron, R. F. Phipers, K. M. Samant, and F. S. Spring, J. Chem. Soc. 1934, 1576.
  - (7) S. N. Farmer and G. A. R. Kon, J. Chem. Soc. 1937, 414.
- (9) I. Kagehira, Bull. Chem. Soc. Japan, 6, 241, 1931. (8) E. Fernholz, Ber. 69, 1792, 1936.
- (12) T. Reichstein, Helv. Chim. Acta 19, 979, 1936. (11) F. F. Nord, Biochem. Z. 99, 261, 1919.

(10) C. Liebermann and L. Spiegel, Ber. 22, 135, 1889.

- (13) F. Reindel and E. Walter, Ann. 460, 212, 1928.
- (15) W. Schrauth and K. Görig, Ber. 56, 2024, 1923. (14) W. Schrauth, Z. angew. Chem. 36, 571, 1923.
- (17) H. E. Stavely and W. Bergmann, J. Org. Chem. 1, 567, 1937. (16) A. Spilker, Z. angew. Chem. 48, 368, 1935.

  - (18) W. Steinkopf, J. prakt. Chem. [2] 100, 65, 1920. (19) H. Wieland and R. Jacobi, Ber. 59, 2064, 1926.
- (20) H. Wieland, O. Schlichting, and W. Langsdorff, Z. physiol. Chem. 161, 80, 1926.
  - (21) H. Wieland and V. Wiedersheim, Z. physiol. Chem. 186, 229, 1930.
    - (22) A. Windaus, Ber. 52, 170, 1919.

## 2. POLYCYCLANES WITH AN ALKENYL OR OLEFIN SUBSTITUTION. C. Han-4

J ₁₅ H ₂₄	SUE	21110110	$N, C_n \Pi_{2n}$	-6	
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Data
Ledene		255 ² 264 ³ @ 752mm 139 to 142 ⁴ @ 10mm	0.9233 * 0.9237 * @ 19° 0.9349 * @ 0°	1.50273 ³ 1.5050 ⁴	·
α-Santalene  C C C-C-C=C-C		253 to 254 ¹ 252 ⁶ @ 753mm 118 ⁶ @ 7mm	0.9132 ° @ 15° 0.9134 ¹ @ 0°	1.49205 6 @ 15°	
Longifolene  C  C  C  C  C  C  C  C  C		254 to 256 ⁷ @ 706mm 150 to 151 ⁷ @ 36mm	0.9284 ⁷ D ₃₀ ²⁰	1.495 ⁷ @ 30°	$\left[\alpha\right]_{D} = +42.73^{\circ 7}$

⁽¹⁾ M. Guerbet, Compt. rend. 130, 1324, 1900.

C., H.,

⁽²⁾ E. Hjelt, Ber. 28, 3087, 1895.

⁽³⁾ G. Komppa, Kgl. Norske Videnskab Selskabs, Skrifter 1933, 1.

⁽⁴⁾ K. Ono, Mem. Coll. Sci. Kyoto, 8, [A], 1, 1925.

⁽⁵⁾ Rizza, J. Russ. Phys. Chem. Soc. 19, 324, 1887.

⁽⁶⁾ Schimmel and Co., Oct. 1910, 106.

⁽⁷⁾ J. L. Simonsen, J. Chem. Soc. 117, 570, 1920.

## VIII. CYCLENES OR CYCLOÖLEFINS

- 1. Cyclenes with alkyl substitutions,  $C_nH_{2n-2}$
- 2. Cyclenes with an alkenyl or olefin substitution, C_nH_{2n-4}
- 3. Cyclenes with two alkenyl or one alkadienyl substitution,  $C_nH_{2n-6}$
- 4. Cyclenes with an alkene-alkyne or an alkatriene substitution,  $C_nH_{2n-8}$

1. CYCLEN	ES WIT	H ALKYL	PORPIL.	LOTIONS,	C _n C ₁
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
Cyclobutene		1.5 to 2 4 @ 729mm	0.733 ⁴ @ 0°		
C, H, 1-Methylcyclobutene-1		37 to 39 ^{2,3} 37 to 38 ¹ @ 750mm	0.7075 ² @ 23°	1.4034 ² @ 23°	

⁽¹⁾ A. Favorsky and V. Batalin, J. Russ, Phys. Chem. Soc. 46, 726, 1914.

⁽²⁾ O. Philipow, J. Russ. Phys. Chem. Soc. 45, 1464, 1913.

⁽³⁾ O. Philipow, J. prakt. Chem. 93, 162, 1916.

⁽⁴⁾ R. Willstätter and J. Bruce, Ber. 40, 3979, 1907.

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
Cyclopentene		44.4	0.772	1.4224	$\frac{dD}{dt} = -0.0009_{6}/^{\circ}C.$
Systopentone		44 to 45 ²⁷ @ 763mm 44.3 ⁶¹ @ 761mm 45 to 46 ^{44.63} 45 ^{24.25} 44.02 ¹¹ 43.6 to 43.8 ² 44.1 to 44.6 ⁵⁰ @ 752mm 43 to 44.2 ²³ @ 751mm	0.7716 11 0.7736 s1 0.776 2 0.7743 sc @ 18° 0.7753 s1 @ 17.9° 0.7756 s1 @ 17.2° 0.7754 s1 @ 14° 0.7783 26.27 D13.5 0.7776 23 @ 10° 0.7861 2 @ 7.1° 0.7864 2	1.42246 61 1.4247 2 1.4420 11 1.42183 50 @ 18° 1.42080 31 @ 14° 1.4256 26,27 @ 13.5° 1.4287 23 @ 10° 1.43052 2 @ 7.1° 1.42818 2 n ^{7,1} n ² 1.43746 2 n ^{7,1} n ⁴ n ⁴ n ⁴	$\frac{dn}{dt} = -0.0009_{\text{s}}^{\circ}\text{C.}$ $(5^{\circ} \text{ to } 20^{\circ})$ $\frac{dn}{dt} = -0.0005_{\text{s}}^{\circ}\text{C.}$ $(5^{\circ} \text{ to } 20^{\circ})$
C ₆ H ₁₀ 1-Methyl- cyclopentene-1	- 127.2 16	75.1  75.5 to 76 16  75 to 76 13  72 to 75 45  72 41.42  @ 754mm  71 26  @ 743mm	0.778,  0.778,  0.7754 45  D23  0.7474 28  @ 21°  0.7758 42  D30  0.7918 28,27  D13.5  0.7979 10  @ 0°  0.7879 42  D60	$1.44306^{2}$ $n_{H_{\gamma}}^{7:1}$ $1.4347^{16}$ @ 15° $1.4309^{26,27}$ @ 13.5° $1.4319^{16}$ $n_{H_{\beta}}^{15}$ $1.4416^{16}$ $n_{H_{\beta}}^{16}$ $1.4512^{16}$ $n_{H_{\gamma}}^{18}$	$\frac{dD}{dt} = -0.0009_{0}/^{\circ}\text{C.}$ (0° to 25°)

		307			C, H10
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. (a 760mm	1)40	n ₀	Additional Data
d-3-Methyl-cyclopentene-1		66.5 to 67 ²⁸ @ 766mm 69 ⁹⁹ @ 765mm 69 to 71 ⁴¹	0.7663 ⁶⁹ @ 18° 0.772 ²⁸ @ 16°	1.4222 ⁶⁹ @ 18° 1.4250 ²⁸ @ 16°	$[\alpha]_D = +59.07^{\circ}$ 69 $[\alpha]_{579} = +77.90^{\circ}$ 28
dl-3-Methyl- cyclopentene-1		72 ⁶¹ @ 772mm 66.5 to 67 ²⁸ @ 766mm 69 to 71 ⁶⁵	0.7851 55 0.7705 61 @ 20.0° 0.7715 61 @ 18.9° 0.769 29 @ 16°	$1.42476^{61}$ $1.4201^{55}$ $1.4233^{28}$ @ 16° $1.42214^{61}$ $n_{H_a}^{20}$ $1.43120^{61}$ $n_{H_g}^{20}$ $1.43573^{61}$ $n_{H_g}^{20}$	
4-Methyl-cyclopentene-1		75 to 76 ²⁸ @ 766mm	0.784 ²⁸ @ 16°	1.4346 ²⁸ @ 16°	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ <b>76</b> 0mm	$D_4^{20}$ .	n _D ²⁰	Additional Data
1-Ethylcyclo- pentene-1	402.4	108	0.8000 18	1.4429 18	
c-c	- 123.3 16	107 to 110 ⁶⁷ 106.5 to 107 ¹⁵	0.792 33	1.4429 to @ 21.4°  1.4424 ** 1.4426 ** 1.4402 to ** 1.4402 to ** 1.4407 to ** 1.4497 to ** 1.449	
3-Ethylcyclo- pentene-1		99 to 103 ° @ 758mm	0.7874 •	1.43030°	
c-c					
1,2-Dimethylcyclo- pentene-l			0.795,		$\frac{dD}{dt} = -0.0009_0/^{\circ}C.$ (0° to 30°)
Č c	-90.4 ¹⁴ -91.3 ²⁰	105.03 20 105 to 105.2 14 103 34 103 to 103.5 35 @ 757mm	0.79501 20	1.4447 34.35 @ 13.5° 1.4412 14 $n_H^{20}$ 1.44139 20 $n_H^{20}$ 1.45115 14 $n_H^{20}$ 1.45142 20	
·			@ 15° 0.7992 ** D ₀ ** 0.81283 ** @ 0°	n ²⁰ _{Hβ} 1.4571 ¹⁴ n ²⁰ _{Hγ} 1.45717 ¹⁰ n ²⁰ _{Hγ}	

		309			C, H,
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Data
2,3-Dimethylcyclo- pentene-1			0.780		$\frac{dD}{dt} = -0.0009_{\text{o}}/^{\circ}\text{C.}$ (0° to 30°)
c	1	96 to 97 14 95.48 to 95.50 20	0.77155 20 @ 30° 0.7831 14 0.78055 20 0.78512 20 @ 15° 0.79855 20 @ 0°	$\begin{array}{c} 1.43030^{\ 20} \\ n_{H_{\alpha}}^{20} \\ 1.4321^{\ 14} \\ n_{H_{\alpha}}^{20} \\ 1.43972^{\ 20} \\ n_{H_{\beta}}^{20} \\ 1.44153^{\ 14} \\ n_{H_{\beta}}^{20} \\ 1.44508^{\ 20} \\ n_{H_{\gamma}}^{20} \\ 1.44724^{\ 14} \\ n_{H_{\gamma}}^{20} \end{array}$	
3,3-Dimethylcyclopentene-1		78 to 78.5 ³⁶ @ 754mm	0.7580 36 $D_0^{20}$	1.4190 30	

	1	P P °C	<del>                                     </del>		1
Name and Carbon Skeleion	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
1-Propylcyclopentene-1	- 100.3 ¹⁸	131.5 to 132.5 15 131 to 133 24	0.8015 15 0.8062 24 0.8056 25 @ 15°	1.4450 15 1.4423 15 1.4516 15 1.4516 15 1.4574 15 1.4574 15	
1-Isopropylcyclo- pentene-1  c-c-c		131.4 to 133.4 ⁴³ 133 to 135 ²⁴ @ 755mm	0.8141 43	1.45064 43	
1-Methyl-2-ethyl-cyclopentene-1		127.4 to 127.8 ¹⁷	0.8020 ¹⁷ 0.8190 ¹⁷ @ 0°	1.4490 ¹⁷ 1.4452 ¹⁷ $n_{H_{\alpha}}^{20}$ 1.4549 ¹⁷ $n_{\beta}^{2c}$ 1.4608 ¹⁷ $n_{H_{\gamma}}^{20}$	$\frac{dD}{dt} = -0.0008_{\rm s}/^{\rm o}C.$ (0° to 20°)

Name and Carbon Skeleton   M. P.,°C   $\frac{B. P., °C}{0.760 \text{mm}}$   $D_1^{50}$   $D_2^{50}$   $D_2^{50}$			311			C, H,
Cyclopentene-1 (Laurolene)  122 to 123 70 121 to 122 59 119 to 120.5 21 120.3 to 121 47 @ 750mm  122 to 123 70 0.7939 21 120.3 to 121 47 0.7950 21 0.79650 21 0.7988 70 0.7988 70 0.8008 89 0.17.5° 0.8008 89 0.17.5° 0.8010 21 0.18 44376 59 0.19 47 0.19 43 0.19 40 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18 0 0.18	Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
(Laurolene)  122 to 123 70 121 to 122 59 119 to 120.5 21 120.3 to 121 47 @ 750mm  120.5 20 0.7991 47 D 20 0.79650 21 0.7988 70 @ 18.5 70 0.8008 59 @ 17.5 70 0.8010 21 D 10 0.8030 46 @ 15 50 0.8030 46 @ 15 50 0.8030 46 @ 15 50 0.8048 21 D 10 0.8097 21	d-1,2,3-Trimethyl cyclopentene-1		121	0.796,		
	c c		121 to 122 59 119 to 120.5 21 120.3 to 121 47	$D_{25}^{25}$ $0.7974^{21}$ $D_{20}^{20}$ $0.7991^{47}$ $D_{20}^{20}$ $0.79650^{21}$ @ 19.5° $0.7988^{70}$ @ 18.5° $0.8008^{19}$ @ 17.5° $0.8010^{21}$ $D_{15}^{15}$ $0.8030^{46}$ @ 15° $0.8048^{21}$ $D_{10}^{10}$ $0.8097^{21}$	(@ 18° 1.44376 59 (@ 17.5° 1.44253 21 1.45246 21 1.45246 21 1.45845 21	$[\alpha]_D^{23} = +22.8^{\circ}  ^{46}$ $[\alpha]_D^{15} = +23.6^{\circ}  ^{46}$ $[\alpha]_D = +22.9^{\circ}  ^{70}$

C, H ₁₄		312			
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
l-1,2,3-Trimethyl- cyclopentene-1					$[\alpha]_D^{20} = -14.5^{\circ} 44$ $[\alpha]_D^{20} = -15.72^{\circ} 47$
(Laurolene)		119 ³ 118 to 122 ⁴⁹	0.7871 ⁴⁹ @ 25° 0.7923 ⁴⁹ 0.80187 ¹ @ 18.6° 0.798 ⁴² @ 16° 0.8043 ⁴⁵ @ 15°	1.44315 49 @ 25° 1.44426 49 @ 25° 1.4479 1 @ 18° 1.43972 49  1.44121 49  1.44988 49  1.45099 49  1.455555 49  1.45695 49  1.45695 49	$[\alpha]_D^{sq} = -18.13^{\circ} 47$ $[\alpha]_D^{sq} = -29.2^{\circ} 62$ $\frac{dD}{dt} = -0.0006_8/^{\circ}C.$ (15° to 20°)
1,2,3-Trimethyl-cyclopentene-1  (Laurolene)  (Inactive)		120 to 122 ⁴⁵ 120 to 121 ⁷⁰ @ 752mm	0.7950 70 0.8039 48 @ 15° 0.8030 48 @ 15°	1.4421 70 1.4464 48 @ 16.50 1.4471 48 @ 16.50	

	313					
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data	
2,3,3-Trimethyl- cyclopentene-1	٧	108.5	0.783.	1.433	$\frac{dD}{dt} = -0.0007_{\rm e}/^{\circ}{\rm C}.$ (0° to 25°)	
(Isolaurolene)  C C C		109.2 ⁴⁰ 108 to 110 ²² 108 ² 108.5 ³ @ 758mm 108.5 to 109 ³⁷ @ 754mm 108 to 108.2 ²¹ @ 742mm 109.2 ⁷⁰ @ 736mm 108 to 108.2 ⁷¹ @ 736mm	0.782 ² 0.7812 ^{70.73} 0.78510 ²¹ @ 16.1°	1.4333 70.71 1.4324 37 1.43227 21 1.4136 21 1.44136 21 1.44690 21 1.4690 21 1.4690 21 1.4690 21		
1.1						

C, H ₁₆		314			
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	n _D ²⁰	Additional Data
1-Butylcyclopentene-1					
c-c-c-c	- 95.75 ¹⁶	157.5 to 158 15	0.8101 ¹⁵ @ 17.8°	1.4488 ¹⁵ @ 21.3°	
			0.8123 15 @ 15°	1.4461 15 n ^{21.2}	
				1.4554 15 $n_{H_{\beta}}^{21.2}$	
				1.4610 15 $n_{H_{\gamma}}^{21.2}$	
Isobutylcyclopentene-x					
C-C-C		87 to 88 24 @ 20mm	0.8203 24	1.46046 ²⁴ n ²⁰ H.	
2-Methyl-(2-cyclo- penten-x-yl)-propane					
(tert-Butylcyclopentene-x)  C C-C-C		139.6 ⁵¹	0.7861 ⁵¹ @ 40° 0.8021 ⁵¹	1.4417 51	
	<u>l</u>			Li	

		010			
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
1-Methyl-3-isopropyl-cyclopentene-1		144 to 146 66	0.801 58	1.4478 56	
d-1-Methyl-4-iso-propylcyclopentene-1  (Apofenene)		143 ⁷ 142 to 143 ⁶⁸	0.7945 63 @ 21° 0.812 7 @ 0°	1.4403 ⁶³ @ 21°	$[\alpha]_D = +66.21^{\circ}  ^{63}$
3-Methyl-1-isopropyl-cyclopentene-1		138 to 139 % 136 to 138 8 39 to 41 8 @ 16mm	0.791 % @ 22°	1.4380 ⁶⁶ @ 22°	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
1-Methyl-2-propyl- cyclopentene-x					
c-c-c	-130 10	150.15 to 150.25 19	0.8059 19 0.8223 19 @ 0°	1.4497 10 1.4468 10 n ²⁰ 1.4566 10 n ²⁰ n ²⁰ 1.4563 10 n ²⁰ n ²⁰ n ²⁰ 1.4623 10 n ²⁰	
1,2-Diethyl- cyclopentene-1					
c-c	- 120 ¹⁸	148 to 149 12 @ 761mm 149.20 to 149.30 18 151 to 152 39 @ 751mm	0.8136 12 @ 25° 0.8088 18 0.8124 \$8 D ₀ ° 0.8331 12 @ 0° 0.8252 18 @ 0°	1.4512 18 1.4524 88 1.4484 18 $n_{H_a}^{20}$ 1.4582 18 $n_{H_{\beta}}^{20}$ 1.4640 18 $n_{H_{\gamma}}^{20}$	
3,3-Diethylcyclo- pentene-1					
c-c c c		144 to 146 ³⁸ @ 761mm . 143.5 to 144.5 ^{38,39} @ 754mm	$0.8083^{38}$ $D_0^{20}$ $0.8084^{38,39}$ $D_0^{30}$	1.4469 88 1.4455 88,89	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	20	4 1 1 1 1 1 1
		@ 700mm	<i>D</i> 4	$n_D^{20}$	Additional Data
1,3-Dimethyl-2-ethyl-cyclopentene-1		140 *	0.803 *	1.447 ² $n_{H_{\alpha}}^{20}$	·
1,2,3,3-Tetramethyl-cyclopentene-1 (Campholene*)		133 to 135 68 132 6 129 to 130.5 67 135.5 3 @ 755mm	0.8034 ** 0.8035 * @ 15° 0.8034 ** @ 14.5° 0.8134 * @ 0°	1.44406 ⁵⁸ 1.4446 ⁶ 1.4445 ⁶⁷ @ 14.5°	*Investigators do not agree concerning this structure for cam- pholene.
C ₁₀ H ₁₈ 1-Pentylcyclopentene-1		178 to 180 53			·

C10 H18		318			
Name and Carbon Skeleton	м. Р.,°С.	B. P., °C. @ 760mm	D429	n _D ²⁰	Additional Data
1,1-Dimethylpropyl- cyclopentene-x					of Adaptive and Adaptive Adapt
(tert-Pentylcyclopentene-x)		163 to 165 ⁵¹ @ 743mm	0.8256 51	1.4548 51	
c-c-c-c					
1-(3- <b>M</b> ethylbutyl)-					
1-(3-Methylbutyl)- cyclopentene-1		168 to 170 32	0.8010 32	1.4467 32	
c-c-ò-c		100 00 110	@ 25°	@ 25°	
3-(3-Methylbutyl)- cyclopentene-1					
c-c-c-c		86 to 87 ° @ 59mm	0.7969 ° @ 22°		

		319			C ₁₀ H ₁₈
Name and Carbon Skelcton	М. Р.,°С.	B. P., °C. (A) 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
l-1,2-Dimethyl-3-iso-propylcyclopenterie-1		156 to 156.6 s ² @ 757.5mm 46.2 to 47 s ² @ 15mm	0.811 ⁵² @ 15°	1.447 ⁵² @ 17.6°	$ \alpha _D^{17.6} = -2.0^{\circ}$ 52
2,3-Dimethyl-4-iso-propylcyclopentene-1		164 to 166 64 163 to 165 64 161 to 164 64 157 to 159 60 @ 750mm	0.8085 64 @ 22° 0.8100 64 $D_{21}^{21}$ 0.8046 60 0.8100 64 @ 18.5°	1.4503 64 @ 22° 1.4466 64 @ 21° 1.44591 60 1.4514 64 @ 18.5°	
2-Methyl-1,3-diethyl-cyclopentene-1*		164 *	0.8112	1.450 ° n ²⁰ n ²⁰ H a	*Investigator quotes data from Hoving, Tabl. Annuelles, II, 151, 1911.
-					

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
1-Hexylcyclopentene-1		204 to 205 72 @ 740mm	0.8079 72	1.4490 72	
1,2,3-Triethylcyclo- pentene-1*		181.5 \$	0.814 2	1.451 ² ⁿ²⁰	*Investigator quotes data from Hoving, Tabl. Annuelles, II, 151, 1911.
l-2,3,3-Trimethyl-4-iso-propylcyclopentene-1		168 to 170 10	0.8095 ¹⁰ @ 19°	1.4521 ¹⁰ @ 19°	$[\alpha]_D^{14} = -6.44^{\circ}$ 10

		321			C17 II 32
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
3-Dodecylcyclo- pentene-1		172 ° @ 15mm	0.8262 ° @ 18°	1.45667 9	,
			A		

- (1) O. Aschan, Ann. 290, 185, 1896.
- (2) K. v. Auwers, Ann. 415, 98, 1918.
- (3) A. Béhal, Bull. soc. chim. [3] 13, 841, 1895.
- (4) G. Blanc, Ann. chim. [7] 18, 181, 1899.
- (5) G. Blanc, Bull. soc. chim. [3] 19, 699, 1898.
- (6) G. Blanc, Compt. rend. 145, 681, 1907.
- (7) L. Bouveault and F. Levallois, Compt. rend. 146, 180, 1908.
- (8) L. Bouveault and L. Tetry, Bull. soc. chim. [3] 27, 307, 1902.
- (9) J. v. Braun, E. Kamp, and J. Kopp, Ber. 70, 1750, 1937.
- (10) J. v. Braun and P. Kurtz, Ber. 67, 225, 1934.
- (11) E. P. Carr and H. Stucklen, J. Chem. Phys. 6, 55, 1938.
- (12) F. H. Case and E. E. Reid, J. Am. Chem. Soc. 50, 3062, 1928.
- (13) G. Chavanne, Bull soc. chim. Belg. 31, 331, 1922.
- (14) G. Chavanne, Bull. soc. chim. Belg. 39, 402, 1930.
- (15) G. Chavanne and P. Becker, Bull. soc. chim. Belg. 36, 591, 1927.
- (16) G. Chavanne and L. De Vogel, Bull. soc. chim. Belg. 37, 141, 1928.
- (17) G. Chiurdoglu, Bull. sci. acad. roy. Belg. 17, 1404, 1931.
- (18) G. Chiurdoglu, Bull. soc. chim. Belg. 42, 347, 1933.
- (19) G. Chiurdoglu, Bull. soc. chim. Belg. 43, 35, 1934.
- (20) G. Chiurdoglu, Bull. soc. chim. Belg. 47, 363, 1938.
- (21) A. W. Crossley and N. Renouf, J. Chem. Soc. 89, 26, 1906.
- (22) A. Damsky, Ber. 20, 2959, 1887.
- (23) M. Dojarenko, J. Russ. Phys. Chem. Soc. 58, 27, 1926.
- (24) F. Eisenlohr, Fortschr. Chem. Physik. 18, No. 9, 1, 1925.
- (25) C. Gartner, Ann. 275, 331, 1893.
- (26) M. Godchot, Bull. soc. chim. [5] 1, 1153, 1934.
- (27) M. Godchot and G. Cauquil, Compt. rend. 191, 1326, 1930.
- (28) M. Godchot, M. Mousseron, and R. Richaud, Compt. rend. 200, 1599, 1935.
- (29) M. Godchot and F. Taboury, Compt. rend. 156, 470, 1913.
- (30) M. Guerbert, Ann. chim. [7] 4, 289, 1895.
- (31) C. Harries and L. Tank, Ber. 41, 1701, 1908.
- (32) J. McA. Harries, J. Am. Chem. Soc. 51, 2591, 1929.
- (33) W. Hückel, K. Kumetat, and H. Severin, Ann. 518, 184, 1935.
- (34) N. Kishner, J. Russ. Phys. Chem. Soc. 37, 513, 1905.
- (35) N. Kishner, J. Russ. Phys. Chem. Soc. 40, 676, 1908.
- (36) N. Kishner, J. Russ. Phys. Chem. Soc. 40, 994, 1908.
- (37) N. Kishner, J. Russ. Phys. Chem. Soc. 42, 1211, 1910.
- (38) N. Kishner, J. Russ. Phys. Chem. Soc. 43, 1149, 1911.
- (39) N. Kishner and P. Amosow, J. Russ. Phys. Chem. Soc. 45, 957, 1913.
- (40) W. Koenigs and C. Meyer, Ber. 27, 3465, 1894.
- (41) W. Markownikow, Ann. 307, 335, 1899.
- (42) W. Markownikow, J. Russ. Phys. Chem. Soc. 31, 214, 1899.
- (43) H. Meerwein and H. Probst, Ann. 405, 142, 1914.
- (44) W. Meiser, Ber. 32, 2049, 1899.
- (45) J. Meyerfeld, Chem. Z. 36, 549, 1912.
- (46) W. A. Noyes and C. G. Derick, J. Am. Chem. Soc. 31, 669, 1909.
- (47) W. A. Noyes and C. G. Derick, J. Am. Chem. Soc. 32, 1061, 1910.
- (48) W. A. Noyes and L. P. Kyriakides, J. Am. Chem. Soc. 32, 1064, 1910.
- (49) W. A. Noyes and G. S. Skinner, J. Am. Chem. Soc. 39, 2692, 1917.
- (50) O. Philipow, J. Russ. Phys. Chem. Soc. 46, 1141, 1914.
- (51) H. Pines and V. N. Ipatieff, Unpublished data.
- (52) F. Richter, W. Wolff, and W. Presting, Ber. 64, 871, 1931.
- (53) I. J. Rinkes, Rec. trav. chim. 57, 176, 1938.

- (54) M. van Rysselberge, Bull. soc. chim. Belg. 35, 311, 1926.
- (55) F. W. Semmler, Ber. 26, 774, 1893.
- (56) F. W. Semmler, Ber. 37, 234, 1904.
- (57) W. Thiel, Ber. 26, 922, 1893.
- (58) F. Tiemann, Ber. 30, 594, 1897.
- (59) F. Tiemann, Ber. 33, 2935, 1900.
- (60) L. Tschugaev, Ber. 37, 1481, 1904.
- (61) A. I. Vogel, J. Chem. Soc. 1938, 1323.
- (62) J. Walker and J. Henderson, J. Chem. Soc. 69, 748, 1896.
- (63) O. Wallach, Ann. 369, 83, 1909.
- (64) O. Wallach, Ann. 408, 163, 1915.
- (65) O. Wallach, Ann. 414, 195, 1918.
- (66) O. Wallach, Collmann, and Thede, Ann. 327, 131, 1903.
- (67) O. Wallach and K. v. Martius, Ann. 365, 272, 1909.
- (68) J. Wislicenus and C. Gartner, Ann. 275, 331, 1893.
- (69) N. D. Zelinsky, Ber. 35, 2488, 1902.
- (70) N. D. Zelinsky and N. Lepeschkin, Ann. 319, 303, 1901.
- (71) N. D. Zelinsky and N. Lepeschkin, J. Russ. Phys. Chem. Soc. 33, 554, 1901.
- (72) N. D. Zelinsky, S. E. Michlina, and M. S. Eventowa, Ber. 66, 1422, 1933.

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
Cyclohexene		83	0.8098,	1.4465	$\frac{dD}{dt} = -0.000940_{\text{g}}$
	- 80 °°	83 107 @ 777mm 83.5 24 @ 765mm 82.3 30 @ 764mm 84 69 @ 763mm 83 to 84 55 @ 762mm 83 to 84 79 @ 761mm 84 to 86 103 83.5 130,135 83.1 26 83.1 26 83 to 83.5 3 83 to 84 12,49,82 82.7 15 82 to 84 9,45 81.5 to 82.5 51 81 to 82 28 80 to 81 27 82.8 127 @ 759mm 81.5 to 82.5 78 @ 756mm 83 to 84 136 @ 753mm 83 to 84 59 @ 752mm	0.7355 28 @ 100° 0.7713 197 @ 61.8° 0.7720 197 @ 61.1° 0.7731 197 @ 59.8° 0.7823 28 @ 50° 0.7890 197 @ 41.9° 0.7896 197 @ 41.2° 0.8054 198 @ 27° 0.8034 51 @ 25° 0.8064 197 @ 22.7° 0.8081 14 @ 22.1° 0.809 12 @ 21° 0.809 12 0.810 2 0.8088 197 0.8098 190 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.810 2 0.	1.4428 184 @ 27° 1.4437 51 @ 25° 1.4445 28 @ 25° 1.4445 18 @ 22.1° 1.445 12 @ 21° 1.44637 127 @ 20.05° 1.4460 130 1.44646 107 1.4465 15 1.4469 28,69 1.44577 79 @ 18.7° 1.44902 18 @ 16.4° 1.44921 8 @ 15.1° 1.4494 31 @ 13.5° 1.44235 14 n ²² 1 1 1.44360 127 n ²⁰ 1 1 1.4430 128 n ²⁰ 1 1 1.4430 1 1 1.4430 1 1 1.4430 1 1 1.4430 1 1 1.4430 1 1 1.4430 1 1 1.4430 1 1 1.4430 1 1 1.4430 1 1 1.4430 1 1 1.4430 1 1 1.4430 1 1 1.4430 1 1 1.4430 1 1 1.4430 1 1 1.4430 1 1 1.4430 1 1 1.4430 1 1 1.4430 1 1 1.4430 1 1 1.4430 1 1 1.4430 1 1 1.4430 1 1 1.4430 1 1 1.4430 1 1 1.4430 1 1 1.4430 1 1 1.4430 1 1 1.4430 1 1 1.4430 1 1 1.4430 1 1 1.4430 1 1 1.4430 1 1 1.4430 1 1 1.4430 1	$\frac{dt}{(1-0.000315t)}/^{\circ}C.$ $(10^{\circ} \text{ to } 100^{\circ})$ $\frac{dn}{dt} = -0.000530\eta/^{\circ}Ca$ $(10^{\circ} \text{ to } 30^{\circ})$ Reference ¹⁸ gives $n_{L4}$ and $n_{Tl}$ .

		C, I			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
Cyclohexene (Continued)	,				
			0.8113 79 @ 18.7°	1.43998 74	
			0.8120 24	1.45184 14	
			@ 18.4° 0.8111 ¹⁰⁷	$n_{H_{eta}}^{22.1}$	
			@ 17.4°	1.45312 127 $n_{H_{\beta}}^{20.05}$	
			0.8138 ^{25,31} @ 16.5°	1.45326 107	
			0.8143 3,107 @ 15.6°	$n_{H_{oldsymbol{eta}}}^{20}$	
			0.8147 8	1.45252 79 11.45252 79 11.45252 79	
			@ 15.1° 0.8156 ²⁴	1.45475 24	
			@ 14.9° 1.79934 ⁷⁴	n _H ,4 β	
			@ 14.4°	1.45573 25 $n_{H_{\beta}}^{16.5}$	
			$\begin{array}{c c} 0.8183^{31} \\ D_{18.5}^{13.5} \end{array}$	1.45596 18	
			0.80893 59	n16.4	
			$D_0^0$	1.45620 ³ n ^{15.1} _H	
				1.44943 74	
				$ \begin{array}{c c} n_{H_{\beta}}^{14.4} \\ 1.45743 & 14 \end{array} $	
				$n_{H_{\gamma}}^{22.1}$	
				1.45874 127 n20.05 n _H γ	
				1.45854 107 $n_{H_{\gamma}}^{20}$	
				1.45827 79 $n_{H_{\gamma}}^{18.7}$	
				1.46039 ²⁴ n _{H,\gamma} 1.8.4	
				1.46133 25 $n_{H_{\gamma}}^{16.5}$	
				1.46194 8 n _H ₇	
				1.45507 74 n _H ^{14.4}	

U7 II 12		320			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
1-Methylcyclohexene-1		109.5	0.811,	1.450,	$\frac{dD}{dt} = -0.0009_1/^{\circ}C.$ (15° to 65°)
Ç		109.1 to	0.7734 107	1.44234 111	(13 (0 03 )
		109.3 ²	@ 62.1°	1.4496 112	
		@ 772mm	0.7743 107	1.4497 2.6	
		110.5 to	@ 61.1°	1.4498 98	
		111.5 29	0.7912 107	1.4503 72	,
		@ 770mm	@ 42.1°	1.45067 107	
		109.5 to	0.7918 107	1.4503 ²	
		@ 770mm	@ 41.4°	@ 18.5°	
		110 107	0.799 111	1,44094 46	
		@ 769mm	0.8066	@ 18°	
		108.0 to	0.8099 130,133	1.45042 79	
		108.5 22	0.810 •	@ 17.9°	
		@ 769mm	0.8103 2	1.4499 130	
		109 62	0.8106 22,107	@ 17.5°	
		@ 768mm	0.840 112	1.4508 49	
		109.6 to	0.8118 4	@ 17.5°	
		110.2 79	0.8122 72	1.4543 31,33	
		@ 767mm	0.8127 107	@ 13.5°	
		103.5 62	0.8022 53	1.458 82	
		@ 767mm	$D_{20}^{20}$	@ 12°	
		111 to	0.809 28	1.44766 107	
		1	$D_{20}^{20}$	11 ²⁰ .	
		110.6 31	0.80305 62	1.44744 2	
		110.5 to 111 130.133	$D_{1b}^{20}$	$n_{H_{\mathbf{a}}}^{18.5}$	
		110 to 112 39	0.7999 62	1.44763 70	
	1	1	$D_0^{20}$	n ^{17.9}	
		110 to 110.5 100	0.8005 62	1.45745 107	
		110 6,44	$D_0^{20}$	$n_{H_{\beta}}^{20}$	
		109 to 110 98	0.8115 2		
		108 82,83,84	@ 18.5°	1.45711 2	
		106 to 107 111	0.8115 79	$n_{H}^{18.5}$	
		103 to	@ 18.2°	1.45735 79	
		103 to	0.8075 46	$n_{H_{\beta}}^{17.9}$	
		107.5 to	$D_{18}^{18}$	1.46259 107	
		108.5 49		1.40239 101 n20 H _Y	
		@ 759.5mm		1.46293 2	
		108.9 to	1	n18.5	
		109.2 2			
		@ 754mm		1.46328 79	
				n _H γ	1
					1
	1	1	<u> </u>	1	U

		327		C, H,	
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	n20	Additional Data
1-Methylcyclohexene-1 (Continued)					
		109 to 110 ⁷² @ 753mm 106 to 107 ⁴⁴ @ 751.5mm 108 ⁴³ @ 747mm	0.8117 79 @ 17.9° 0.8145 2 @ 14.8° 0.8182 107 @ 14.2° 0.8257 31,33 D13.5 0.8166 62 @ 0° 0.8172 62 D0° 0.823 82 D0° 0.823 82 D0° 0.827 83,84 D0°		
3-Methylcyclohexene-1		104.4			
c		105 to 106 50 105 62 104 to 106 95 104 to 105 36 104 50,130 103 to 105 6,82,109 103.25 to 103.5 53 @ 752mm 104 35 @ 743mm	0.7950 36 @ 26° 0.80177 83 $D_{21.8}^{21.8}$ 0.8048 50 @ 20.3° 0.805 6 0.806 109 0.8099 130 0.803 35 @ 14°	1.4408 ³⁶ @ 26° 1.44236 ⁵³ 1.4445 ^{6,109} 1.4454 ⁵⁰ 1.4451 ¹³⁰ @ 17° 1.4459 ³⁵ @ 14°	

1,,	328			
me and Carbon Skeleton M. P.,°C. @	3. P., °C. 3 760mm	D420	$n_D^{20}$	Additional Data
102 103 104 102 102 102 10 103 105 101 (@ 101 (@ 101) (@ 102)	02.7 70 2) 772mm 3 to 106 47 3) 765mm 4 to 105 12 3) 762mm 2 to 103 17 2.5 to 03 150 6 15 6 15 7 755mm 1 to 102 61	0.8000 130 0.8001 70 0.8003 80.81 D20 0.7986 80.81 D20 0.8023 24 @ 17.6° 0.8047 80.81 D15 0.805 35 @ 14° 0.8086 31.33 D18.5 0.819 82 D0 0.8207 80.81	1.4419 70 1.4423 130 @ 18° 1.442 12 @ 17° 1.4445 35 @ 14° 1.4449 31,32 @ 13.5° 1.44138 24 % 117.6 % 1.45620 24 % 117.6 % 117.6 % 117.6 % 117.6 % 117.6	
101	2 128 3 757mm .9 61 3 753mm	0.8002 ¹²⁸ @ 16°	1.4443 ¹²⁸ @ 16°	$[\alpha]_D^{20} = +110^{\circ}  ^{58}$ $[\alpha]_D^{20} = +107.05^{120}$
101	9 753mm			

3- or 4-Methyl- cyclohexene-1 [α] _D = +17.78° ¹⁸			329			C, H
C ₄ H ₁₄ 1-Ethylcyclohexene-1  C-C  135 to 136 ² @ 768mm 135.8 to 136.8 ⁸ @ 768mm 135.7 to 136.6 ⁸ 134 to 134.5 ¹²⁴ 134 to 134.5 ¹²⁴ 134 to 135 ¹²⁴ 135 to 135 ¹²⁴ 136 (135 ¹²⁴ 137 to 135 ¹²⁴ 138 to 135 ¹²⁴ 139 199 145966 ¹²⁶ 145966 ¹²⁶ 15.25° 145366 ¹²⁷ 145966 ¹²⁸ 1525° 145366 ¹²⁸ 1525° 145366 ¹²⁸ 11525° 11525° 11525° 115364 ¹²⁸ 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 11525° 1	Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	n _D ²⁰	Additional Data
1-Ethylcyclohexene-1    135 to 136   2	cyclohexene-1		103 to 103.5 129 @ 750mm 105 to 106 136	@ 27° 0.799 115	@ 27° 1.44234 115	$[\alpha]_D = +17.78^{\circ 136}$ $[\alpha]_D = +81.47^{\circ 139}$
	1-Ethylcyclohexene-1		@ 768mm  135.8 to  136.8 79 @ 768mm  135.7 to  136.6 95  134 to 136 124  134 to 134.5 22  134 to 135 124  134 ss.84  134 to 135 49 @ 751.5mm  49 11	0.8217 ²² 0.8260 ⁶³ ,1 ²⁴ 0.828 ⁹⁸ D ²⁰ 0.8238 ² @ 19 1° 0.8235 ¹²⁴ @ 19° 0.8268 ⁷⁹ @ 15.5° 0.8270 ⁷⁹	@ 22.3° 1.4583 °8 1.4576 °8,124 1.4567 °2 @ 19.05° 1.4591 '124 @ 19° 1.45966 °8 @ 15.25° 1.45386 °2 n19.05° 1.45694 °8 n18.28 1.46347 °2 n19.05 n18.28 1.46673 °8 n18.28 1.46673 °8 n18.28 1.46674 °2 n19.05 n18.28 1.46673 °8 n18.28 1.46674 °2 n19.05 n18.28 1.46673 °8 n18.28 1.46674 °2 n19.05 n18.28	

C, A14		330			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	n _D ²⁰	Additional Data
1,2-Dimethyl- cyclohexene-1		136	0.8232		$\frac{dD}{dt} = -0.0008_{2}/^{\circ}C.$ (15° to 30°)
c c		136 to 137.5 84 135.5 to 137.7 17 135.5 to 136.5 131 135.4 to 135.9 98 135 to 137 65,114 132 82,86	0.81495 17 @ 30° 0.8226 131 0.82317 17 0.8234 65 0.824 64,114 0.826 98 D20 0.8269 131 @ 15° 0.82726 17 @ 15° 0.8315 3 @ 13.7° 0.8317 3 @ 13.5° 0.8411 82,86 D00	1.4580 131 @ 21.5° 1.460 64 1.4590 98 1.4587 114 1.45664 65 1.462 82 @ 14° 1.46178 3 @ 13.5° 1.45643 17 n²0 n²1 1.45906 3 n¹1,5 1.4663 17 n²0 n²1,6 1.46908 3 n¹3,5 1.47244 17 n²0 n²1,3,5 n²1,5 1.47517 3 n¹3,5 n¹3,5 n¹3,5 n¹3,5 n²1,5 n	
1,3-Dimethylcyclo- hexene-1		128.0 to 128.4 ¹⁷ 124 to 126 ⁸⁰	0.802 ₆ 0.79448 ¹⁷ @ 30° 0.8006 ⁸⁰ 0.8026 ¹⁷ 0.80677 ¹⁷ @ 15°	1.4487 *0 1.44501 ** ************************** 1.45462 *** *********************************	$\frac{dD}{dt} = -0.00082/^{\circ}C.$ (15° to 30°)
	jt a				

		331	C, H		
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
1,4-Dimethylcyclo- hexene-1		127.5	0.801,	1.445,	$\frac{dD}{dt} = -0.0009_{7}/^{\circ}C.$ (0° to 30°)
c—————————————————————————————————————	-59.4 17	127 to 129 ⁴⁹ @ 764mm 128.7 ¹⁷ 128.5 ^{131,135} 127 to 128 ¹¹⁴ 125.6 to 126 ³³ 125 ^{82,88,87} 127.5 to 128 ⁷¹ @ 756mm 124 to 126 ³ @ 751mm	0.8005 (131,	1.44372 3 @ 22° [131, 1.4457] 1.32, 1.3459 114 1.4461 71 1.4502 49 @ 19° 1.451 82,87 @ 14° 1.4486 31 @ 13.5° 1.44112 3 n ^{22,0} 1.45056 3 n ^{22,0} 1.45242 17 n ²⁰ 1.45262 3 n ^{22,0} 1.45805 17 n ²⁰ 1.45805 17	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
1,5-Dimethylcyclo- hexene-1		127			
°		127.5 to 128.5 114 127.4 to	0.7998 3 @ 22.6° 0.8000 3	1.44533 ³ @ 22.4° 1.4466 ¹³⁶	
		127.8 98	@ 22.4°	@ 22°	
Ć		124 to 126 ²	0.8015 136 @ 22°	1.4466 114 @ 21°	
		124 to 125 50	0.8025 114 @ 21°	1.4430 60 1.4480 61,98	
		124 s2,s4 127 to 129 49	0.8056 **	1.4480	
		@ 758mm 126 to 127 136	0.807 7	1.4547 49	
		@ 750mm	$D_{20}^{20}$	@ 19.5° 1.451 ^{ss}	
			0.8005 ⁵⁰ @ 18°	@ 12° 1.44263 °	
			0.8122 82	n _H ^{22.4}	
			@ 12° 0.8210 82,86	1.45215	
			$D_0^0$	n ^{22.4} 1.45795 ³	
				$n_{H_{\gamma}}^{22.4}$	
3,3-Dimethylcyclo- hexene-1					
C or $C$		118.5 to 120 ¹³⁴ @ 752mm	0.7970 ¹³⁴ @ 21°	1.4439 124 @ 21°	
	10				(M. A.

		000			Citi
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n20 D	Additional Data
3,5-Dimethylcyclo-					
hexene-1					
		125 to 126 7	0.797 3	1.44361	
		@ 764mm	@ 21.1°	@ 21.1°	
$^{\circ}$		124 to 126 90	0.8065 7	1.45083 7	
o o		124 to 125 60	@ 20.6°	@ 20.6°	
		126 to 127 *	0.8062 7	1.44933 7	
		@ 746mm	@ 19.4°	@ 20.2°	
			0.8074 7	1.443 50	
		- 1	@ 18.4°	@ 18°	
		0	0.8101 7 @ 18.1°	1.453727	
			0.8005 50	@ 18°	
			@ 18°	1.45082 7 @ 17°	
			0.8009 *	1.44603 3	
			@ 15.6°	@ 15.6°	
				1.44086 3	
				n ^{91.1}	
				1.44784 7	
				nH _a	
				1.44634 7 n ^{20.2} H _a	
				1.44793 ⁷ n ^{18.0}	
				1.45014 17	
				$n_{H_a}^{17}$	
				1.44315 ³ n ^{16.6} H _a	
				1.45020 3	
				n ^{21.1} _β	
				$n_{H_{\beta}}^{20.6}$	
				1.45642 7 $n_{H_{\beta}}^{20,2}$	
				1.46078 7 n _H _β	
	1			1.45800 7	
	ĺ	1		$n_{H_{\beta}}^{17}$	
				1.45263 *	
				$n_{H_{\beta}}^{16.6}$	
		1		В	

Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
3,5-Dimethylcyclo- hexene-1 (Continued)  4,4-Dimethyl- cyclohexene-1		<b>9</b> 700mm	,	1.45587 3  1.45587 3  1.46413 7  1.46213 7  1.46255 7  1.46728 7  1.46728 7  1.467390 7  1.46390 7  1.47  1.45835 3  1.45835 3  1.464	
		117 to 117.5 ** @ 770mm 119.5 to 121.2 * @ 767mm 120 to 122 ** 120 to 122 * @ 750mm	0.7970 20  D25 0.803 5 0.803 6 0.8056 6 0.8056 7 0.80267 20 0.80267 20 0.80267 20 0.8128 0.8089 8 0.8089 8 0.8129 20 0.42	1.4435 \$ 1.4479 43 @ 16.6° 1.44521 \$ @ 16.2° 1.44251 \$ // 16.2° 1.44251 \$ // 16.2° 1.44218 20 // 16.8° 1.44604 \$ // 16.8° 1.45137 20 // 16.8° 1.45531 \$ // 16.8° 1.45722 \$ // 16.8° // 1.45700 20 // 16.8° // 1.45700 20 // 16.8° // 1.45700 20 // 16.8° // 16.8° // 1.45700 20 // 16.8° // 1.45700 20 // 16.8° // 1.45700 20 // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8° // 16.8°	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	n _D ²⁰	Additional Data
1-Propylcyclohexene-1		154.7 to 157.7 98 154.5 to 155.5 97,120 154 83,84	0.826 % $D_{20}^{20}$ 0.838 120 @ 19° 0.8181 % @ 19°	1.4578 98 1.4541 97 @ 19° 1.4579 120 @ 19°	
1-Isopropylcyclo- hexene-1					
c-c-c		156.5 ² @ 772mm 156 ^{2,6} 155 to 157 ¹²³ 151.7 to 154.5 ⁹⁸ 161 to 162 ²² @ 755mm 87 to 88 ²² @ 20mm	0.826 ^{2.3.6} 0.829 ¹²² 0.830 ⁹⁸ $D_{20}^{20}$ 0.8302 ² @ 15.2° 0.8320 ² @ 12.9°	1.4594 98 1.4593 2.6 1.4606 123 1.46150 2 @ 15.2° 1.45884 2 nth 2	
3-Propylcyclohexene-1		155 to 156 %	0.8240 % @ 19°	1.4564 % @ 19°	

Jg 22.16		330			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
1-Methyl-2-ethyl- cyclohexene-1		156.7 to 157.0 98	0.832 ** $D_{20}^{20}$	1.4630 ⁹⁸	
3-Methyl-1-ethyl-cyclohexene-1 or 5-Methyl-1-ethyl-cyclohexene-1		149 to 151 56 148 to 149 6	0.813 6 0.8296 56 0.8366 56 @ 0°	1.4537 ° 1.454 ⁵⁶	
d-3-Methyl-1-ethyl- cyclohexene-1 or d-5-Methyl-1-ethyl- cyclohexene-1		148 to 149 ¹³⁶ @ 743mm	0.8087 ¹³⁴ @ 25°	1.4514 ¹³⁶ @ 25°	$[\alpha]_D = +56.8^{\circ}$ 136

		331			C9 II 16
Nume and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
4-Methyl-1-ethyl- cyclohexene-1			0.814,	1.452	$\frac{dD}{dt} = -0.00066/^{\circ}C.$ (0° to 20°)
c c c		153 to 154 116 151.5 to 151.7 98 151 to 152 71 149 6,82,87	0.8145 116 @ 22° 0.8133 71 0.814 6 0.814 98 D20 0.8169 82,87 @ 16° 0.8278 82,87 @ 0°	1.4514 ¹¹⁶ @ 22° 1.4510 ⁸ 1.4522 ⁷¹ 1.4528 ⁹⁸ 1.453 ^{82,87} @ 16°	
4-Methyl-2-ethyl-cyclohexene-1		151.9 to 152.1 98	0.815 ⁹⁸ $D_{20}^{20}$	1.4544 98	
1,2,3-Trimethyl-cyclohexene-1		149.6 to 150 4 @ 749mm	0.828 4 0.8347 4 @ 11.75°	1.4593 4 1.46296 4 ② 11.75° 1.46015 4 n _H . _a 1.47021 4 n _H , _β 1.47603 4 n _H , _γ	
	ilļi.	ļ.	1	1	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
1,2,4-Trimethyl-cyclohexene-1 or -5			0.8184 ^{31,33} D ^{12,5}	1.4561 ^{31,33} @ 13.5°	
1,3,5-Trimethyl-cyclohexene-1		139 to 141 ³ @ 766mm 142.5 to 143.5 ¹²⁵ 140.5 to 142 ³	0.7941 * @ 24.7° 0.7965 ¹²⁸ @ 21° 0.8025 * @ 14.3° 0.8048 * @ 13.8° 0.8031 ³ @ 13.5°	1.44378 3 @ 24.7° 1.447 125 @ 21° 1.44909 3 @ 13.5° 1.44917 3 @ 13.1° 1.44102 3 n ^{24.7} 1.44604 3 n ^{13.8} 1.44625 3 n ^{13.1} 1.45057 3 n ^{24.7} 1.45596 3	
				1.45638 3 1.45638 3 1.45638 3 1.456155 3 11.46155 3 11.46154 3 11.47	

	339						
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data		
1,4,4-Trimethyl cyclohexene-1							
c c c		139.5 to 140.5 * 44.4 * @ 21mm 36.3 to 37.3 * @ 14mm	0.8021 \$     @ 23.15° 0.804 \$ 0.8032 \$     @ 18.8° 0.8096 \$     @ 15.1° 0.8098 \$     @ 14.8°	1.44422 5 @ 23.15° 1.4456 5 1.44592 6 @ 18.9° 1.44921 5 @ 15.1° 1.44152 5 n ^{12.16} 1.44322 5 n ^{18.9} 1.45086 5 n ^{18.9} 1.45263 5 n ^{18.9} 1.45591 5 n ^{18.9} 1.45652 5 n ^{23.16} 1.45822 5 n ^{18.9} 1.45664 5 n ^{23.16} 1.45652 6 n ^{23.16} 1.4562 6 n ^{23.16} 1.4562 6 n ^{23.16} 1.4562 6 n ^{23.16} 1.4562 6 n ^{23.}			

J. 1116		340			
Name and Carbon Skelcton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
cis-1,4,5-Trimethyl-cyclohexene-1		147 00	0.814 99	1.44905 99	
trans-1,4,5-Trimethyl- cyclohexene-1		145 00	0.805 **	1.44820 99	
1,4,5-Trimethyl- cyclohexene-1					
(Mixtures of <i>cis</i> and <i>trans</i> isomers)		144 to 146 ¹	0.805 ¹ 0.8078 ¹ @ 16.25°	1.4482 ¹ 1.44990 ¹ @ 16.25° 1.44742 ¹ n _{H_a} 1.45683 ¹ n _{H_β} 1.46264 ¹ n _{H_γ} 1.46264 ¹	
			h l		

-	C,1				
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n ²⁰ _D	Additional Data
2,3,3-Trimethyl- cyclohexene-1	4				
cyclonexene-1		146.2 to 147.2 ⁵ @ 767mm 144 to 146 ³²	0.8217 ⁵ @ 20.3° 0.8278 ⁵ @ 15.0° 0.8300 ⁸ @ 15.0° 0.862 ³² @ 14°	1.45603 ° @ 20.4° 1.45859 ° @ 14.8° 1.45889 ° @ 15.0° 1.4590 ° 2 @ 14° 1.45336 ° *** ********************************	

Co Elis		014			
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
2,4,4-Trimethyl- cyclohexene-1					
c		138 to 139 ° 137 to 140 19 139 to 141 50 @ 759mm 138 to 142 38 @ 735mm	0.7981 *0 @ 23° 0.7911 *8 @ 21.5° 0.8094 *0 @ 17.8° 0.8085 *19 D *15 0.8117 *0 @ 14.4°	1.4453 *0 @ 23° 1.44612 ** @ 21.5° 1.44671 * @ 17.8° 1.4473 * @ 14.4° 1.44402 * $n_{H_{\beta}}^{17.8}$ 1.45332 * $n_{H_{\beta}}^{17.8}$ 1.45900 * $n_{H_{\gamma}}^{17.8}$	
3,5,5-Trimethyl-cyclohexene-1		138 to 140 101	0.7978 101	1.4434 ¹⁰¹	
C ₁₀ H ₁₈ 1-Butylcyclohexene-1		180.8 to 182.9 %	$0.828^{98}$ $D_{20}^{20}$	1.4591 ⁹⁸	

	C10 H18				
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
l-1-sec-Butylcyclo- hexene-1	*	172 to 174 54 172 to 174.5 22 @ 755mm	0.8410 ²² 0.829 ⁵⁴ $D_{20}^{20}$	1.4590 54	$[\alpha]_D^{20} = -4.06^{\circ}$ 54
4-tert-Butyl-cyclohexene-1		172 ⁷⁶ @ 745mm	0.8173 76 @ 40° 0.8315 76	1.4587 76	$\frac{dD}{dt} = -0.0007_1/^{\circ}C.$ (20° to 40°)
1-Methyl-2-propyl-cyclohexene-1		177.3 to 177.8 %	0.832 ⁹⁸ $D_{20}^{20}$	1.4627 ⁹⁸	

U10 EL 10		344			
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
1- or 3-Methyl-2- isopropylcyclohexene-1  C C-C C-C  or  C C-C		165 to 168 ^{48,108}			
1-Methyl-3-isopropyl-cyclohexene-1		164 to 168 119		1.4561 119	
1-Methyl-4-isopropyl-cyclohexene-1		174 to 175 113	0.821 118 @ 21°	1.4551 ¹¹³ @ 21°	

		010			- 10 10
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
d-1-Methyl-4-iso- propylcyclohexene-1	s s	175 to 177 106 174 to 176 8 173 to 174 92 171 to 172 92	0.8258 8 0.829 92 0.8246 106 @ 18°	1.4580 ⁸ 1.4601 ⁹² 1.4563 ¹⁰⁶ @ 18°	
<i>l</i> -1-Methyl-4-iso- propylcyclohexene-1		172 to 174.5 52	0.8230 ⁶² @ 16.5°	1.45979 52	$\left[\alpha\right]_D = -2.07^{\circ  52}$
1-Methyl-2-propyl-cyclohexene-x		167 to 170 **	0.848 ⁶⁸ 0.8611 ⁶⁸ @ 0°	1.469 ⁶⁸	
2-Methyl-4-isopropyl-cyclohexene-1		169 to 172 ⁹¹ 167 to 168 ⁴²	0.828 ⁹¹ 0.8222 ⁴² $D_{20}^{20}$	1.462 ⁹¹ @ 0° 1.45683 ⁴²	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	n _D ²⁰	Additional Data
3-Methyl-1-propyl- cyclohexene-1 or 4-Methyl-2-propyl- cyclohexene-1					
c-c-c or c-c-c		168 to 171 **	0.8302 **   @ 15° 0.8375 **   @ 0°	1.456 **	
3-Methyl-1-isopropyl- cyclohexene-1 or 4-Methyl-2-isopropyl- cyclohexene-1					$[\alpha]_D = +23.34^{\circ}$ 34
d-form  C-C-C  or  C  C  C		168 to 169 % @ 764mm 165 %	0.8125 ³⁴ @ 25°	1.4519 ³⁴ @ 25°	
dl-form		165 34	0.8154 *4 @ 25°	1.4534 ³⁴ @ 25°	

347					
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D40	n _D ²⁰	Additional Data
3-Methyl-6-isopropyl-cyclohexene-1		167.1 13 @ 768.6mm 55 to 56 93 @ 12mm	0.824 93	1.461 93	
4-Methyl-1-propyl-cyclohexene-1		173.2 to 174.2 % 173 to 176 117,118	$0.815$ 98 $D_{20}^{20}$	1.4533 ⁹⁸	
4-Methyl-1-isopropyl-cyclohexene-1		175 10 170 88 166 to 167 82	0.823 ⁸² $D_0^0$ 0.827 ⁸⁸ $D_0^0$		

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	n20	Additional Data
d-4-Methyl-1-iso- propylcyclohexene-1		168 to 168.5 128 @ 758mm 165.5 108 @ 739mm	0.7632 ²⁴ @ 79.8° 0.8118 ¹⁰⁴ 0.8132 ¹⁰⁵ 0.8132 ²⁴ @ 16.8° 0.8141 ¹²⁸ @ 16°	$\begin{array}{c} 1.4532^{\ 128} \\ @\ 16^{\circ} \\ 1.42042^{\ 24} \\ n_{H_a}^{19.8} \\ 1.44970^{\ 24} \\ n_{H_b}^{16.8} \\ 1.45906^{\ 24} \\ n_{H_b}^{16.8} \\ 1.43432^{\ 24} \\ n_{H_b}^{16.8} \\ 1.46460^{\ 24} \\ n_{H_b}^{16.8} \end{array}$	$[\alpha]_D^{20} = +115.64^{\circ}  ^{104}$ $[\alpha]_D = +112.75^{\circ}  ^{128}$ $[\alpha]_D^{26.6} = +32.77^{\circ}  ^{106}$
1-Methyl-4-propyl-cyclohexene-x		168 to 170 ^{82,87}	0.8270 82.87 @ 16° 0.8387 82.87 @ 0°	1.455 ^{82,87} @ 16°	
				2	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	120 D	Additional Data
4-Methyl-2-propyl-cyclohexene-1		172.6 to 173.2 ⁹⁸	0.816 98 D ₂₀ ²⁰	1.4546 ⁹⁸	·
5-Methyl-3-propyl-cyclohexene-1 or 3-Methyl-5-propyl-cyclohexene-1 or cyclohexene-1		169 to 170 60	0.8197 ⁶⁰ @ 16°	1.45609 ⁶⁰ @ 16°	
1,2-Diethylcyclo- hexene-1		54 to 55 st @ 10mm			

CioIII		000			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
3,5-Diethylcyclo- hexene-1		163 to 166 ⁴¹	0.83141 ⁴¹ D ₂₀ ²⁰	1.46519 41	
4,4-Dimethyl-2-ethyl-cyclohexene-1		69 @ 32mm ⁶	0.832 •	1.4616	
1°,2°,4,5-Tetramethyl-cyclohexene-1		169 99	0.828 **	1.46053 **	
1°,2°,4,5-Tetramethyl- cyclohexene-1		166 **	0.817 **	1.45722 **	

	351				
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	n20	Additional Data
1,2,4,5-Tetramethyl- cyclohexene-1					
		165 to 167 1	0.817 ¹ 0.8199 ¹ @ 16.5°	1.4572 ¹ 1.45880 ¹ @ 16.5° 1.45617 ¹ n ^{16.5} H _a	
				1.46597 1  116.4  1.47192 1  1.47192 1  1.47192 1	
2,3,4,4-Tetramethyl- cyclohexene-1					
c c		169 to 172 91.94 167 to 169 89 62.5 to 65 58 @ 17:mm	$0.828^{91,94}$ $0.8208^{58}$ $D_{20}^{20}$ $0.8328^{89}$ $D_{15}^{15}$	1.462 91,94 1.4621 58 1.4629 89 (a) 15°	
C ₁₁ H ₂₀ 1-Pentylcyclohexene-1					
C-(C),-C		203.4 to 205 %	$0.831^{98}$ $D_{20}^{20}$	1.4605 %	
			S		C

C11 F120		332			
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	n ²⁰ _D	Additional Data
2-Cyclohexen-1-yl- pentane		194 83,84	0.856 ⁸⁴ <i>D</i> ₀ ⁰		
3-Methyl-1-cyclo- hexen-1-yl-butane		194.5 to 196.5 %	0.826 % D ₂₀ ²⁰	1.4596 98	
1-Methyl-2-butylcyclo- hexene-1		197.8 to 199.1 ⁹⁸	$0.833^{98}$ $D_{20}^{20}$	1.4637 98	
4-Methyl-1-butylcyclo- hexene-1		196.3 to 197.1 %	0.818 ⁹⁸ $D_{20}^{20}$	1.4558 98	

					C ₁₁ H ₂₆
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Data
4-Methyl-2-butyl-cyclohexene-1		195.2 to 195.7 %	0.820 98 $D_{20}^{20}$	1.4574 98	
4-Methyl-2-(2-methyl-propyl)-cyclohexene-1		184.1 to 186.2 %	$0.812^{08}$ $D_{20}^{20}$	1.4530 %	
1,5-Dimethyl-2-iso-propylcyclohexene-1		180 to 183 " @ 763mm 184 to 186 " @ 767mm 68 to 74 " @ 10mm	0.8550 77 @ 25°	1.4585 77 @ 25° 1.4600 77 @ 25° 1.4578 77 @ 17°	

Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
1,5-Dimethyl-2-iso- propylcyclohexene-1 or -6					
c c c c c c c c c c c c c c c c c c c		185 to 187 126 @ 764mm 186 to 187 110	0.8215 110 @ 23° 0.8432 126 D ₀ °	1.4579 110 @ 23°	
or C C-C					
C ₁₂ H ₃₂ 1-Methyl-2-pentyl- cyclohexene-1  C C-(C) ₃ -C		218.9 to	0.834 **	1.4646 ⁹⁸	
0-(0),-0		219.7 **	D ₂₀		

t		355			C,, H,,
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
4-Methyl-2-(3-methyl-butyl)-cyclohexene-1					
or 3-Methyl-1-(3-methyl- butyl)-cyclohexene-1					
c-c-c-c c		209 to 211 66	0.8190 ⁵⁶ 0.8301 ⁵⁶ @ 0°	1.459 66	
or c-c-c-c c					
4-Methyl-1-(3- methylbutyl)-cyclo- hexene-1					
C-C-C-C C		210 82,87	0.8213 ^{82,87} @ 16° 0.8333 ^{82,87} @ 0°	1.458 85,87 @ 16°	
4-Methyl-2-ethyl-1- isopropylcyclohexene-1		90 to 92 77	0.8302 77	1.4614 77	$[\alpha]_D^{16} = +39.18^{\circ}  \pi$
c-c		@ 21mm 73 to 75 " @ 10mm	@ 25°	@ 25° 1.4610 " @25°	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$u_D^{20}$	Additional Data
1,2,4-Trimethyl-4-iso-propylcyclohexene-1		93 to 95 78 @ 20mm	0.84231 ⁷⁸ @ 25° 0.860 ⁷⁸ @ 0°	$\begin{array}{c} 1.46635^{ 78} \\ @ \ 25^{\circ} \\ 1.46363^{ 78} \\ n_{H_{a}}^{25} \\ 1.47299^{ 78} \\ n_{H_{\beta}}^{25} \\ 1.47856^{ 78} \\ n_{H_{\gamma}}^{25} \\ \end{array}$	
C ₁₃ H ₂₄ 4-Methyl-2-propyl-1-isopropylcyclohexene-1		100 to 103 7 @ 18mm	0.8348 " @ 25°	1.4605 ¹⁷ @ 25°	$[\alpha]_D^{18} = +35.90^{\circ}  n$

		331			C ₁₄ H ₂
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	n _D ²⁰	Additional Data
4-(1,1,3,3-Tetramethyl-butyl)-cyclohexene-1		113 ⁷³ @ 12mm	0.8565 ⁷³ @ 25°	1.4741 ⁷³ @ 25°	
1,3,3,5,5-Pentamethyl- 4-isopropylcyclo- hexene-1		122 to 123 ⁶⁷ @ 29mm	0.8696 ⁸⁷ @ 17° 0.8799 ⁸⁷ @ 0°	1.48767 ⁶⁷ @ 17°	

- (1) K. v. Auwers, Ann. 420, 84, 1920.
- (2) K. v. Auwers and P. Ellinger, Ann. 387, 200, 1912.
- (3) K. v. Auwers, R. Hinterseber and W. Treppmann, Ann. 410, 257, 1915.
- (4) K. v. Auwers and F. Krollpfeiffer, Ber. 48, 1226, 1915.
- (5) K. v. Auwers and E. Lange, Ann. 409, 149, 1915.
- (6) K. v. Auwers and W. Moosbrugger, Ann. 387, 167, 1912.
- (7) K. v. Auwers and G. Peters, Ber. 43, 3111, 1910.
- (8) R. F. Bacon, Philippine J. Sci. 3, 49, 1908.
- (9) A. Baeyer, Ann. 278, 88, 1894.
- (10) A. Baeyer, Ber. 26, 820, 1893.
- (11) E. Bergmann and F. Bergmann, J. Am. Chem. Soc. 59, 1443, 1937.
- (12) D. Bodroux, Ann. chim. [10] 11, 511, 1929.
- (13) J. W. Brühl, Ber. 25, 142, 1892.
- (14) J. W. Brühl, J. prakt. Chem. [2] 49, 201, 1894.
- (15) E. P. Carr and H. Stucklen, J. Chem. Phys. 6, 55, 1938.
- (16) G. Chavanne and B. v. Roelen, Bull. soc. chim. Belg. 22, 410, 1908.
- (17) G. Chiurdoglu, Bull. soc. chim. Belg. 47, 241, 1938.
- (18) A. Cotton and H. Mouton, Ann. chim. phys. [8] 28, 209, 1913.
- (19) A. W. Crossley and C. Gilling, J. Chem. Soc. 97, 2218, 1910.
- (20) A. W. Crossley and N. Renouf, J. Chem. Soc. 87, 1487, 1905.
- (21) F. Ebel, R. Brunner, and P. Mangelli, Helv. Chim. Acta 12, 19, 1929.
- (22) F. Eisenlohr, Fortschr. Chem. Physik. 18, No. 9, 1, 1935.
- (23) G. Elliott and R. P. Linstead, J. Chem. Soc. 1938, 660.
- (24) J. F. Eykman, Chem. Weekblad, 4, 41, 1907.
- (25) J. F. Eykman, Chem. Weekblad 6, 699, 1909.
- (26) E. B. Evans, J. Inst. Petroleum Tech. 24, 321, 1938.
- (27) W. F. Faragher and F. H. Garner, J. Am. Chem. Soc. 43, 1715, 1921.
- (28) W. F. Faragher, W. A. Gruse, and F. H. Garner, Ind. Eng. Chem. 13, 1044, 1921.
- (29) A. Favorsky and I. Borgmann, Ber. 40, 4863, 1907.
- (30) E. C. Fortey, J. Chem. Soc. 73, 932, 1898.
- (31) M. Godchot, Bull. soc. chim. [5] 1, 1153, 1934.
- (32) M. Godchot and P. Bedos, Compt. rend. 181, 919, 1925.
- (33) M. Godchot and G. Cauquil, Compt. rend. 191, 1326, 1930.
- (34) M. Godchot and G. Cauquil, Compt. rend. 206, 88, 1938.
- (35) M. Godchot, M. Mousseron, and R. Granger, Compt. rend. 198, 480, 1934.
- (36) G. A. C. Gough, H. Hunter, and J. Kenyon, J. Chem. Soc. 1926, 2052.
- (37) C. Harries and R. Seitz, Ann. 395, 253, 1913.
- (38) C. Harries and R. Weil, Ber. 37, 845, 1904.
- (39) W. N. Haworth, J. Chem. Soc. 103, 1242, 1913.
- (40) C. Hell and O. Schaal, Ber. 40; 4162, 1907.
- (41) G. G. Henderson and R. Boyd, J. Chem. Soc. 99, 2159, 1911.
- (42) G. G. Henderson and T. F. Smeaton, J. Chem. Soc. 117, 144, 1920.
- (43) D. C. Hibbit and R. P. Linstead, J. Chem. Soc. 1936, 470.
- (44) W. Hückel, K. Kumetat, and H. Severin, Ann. 518, 184, 1935.
- (45) V. N. Ipatieff, Ber. 43, 3383, 1910.
- (46) V. N. Ipatieff, Ber. 45, 3205, 1912.
- (47) A. Juery, Bull. soc. chim. [4] 17, 167, 1915.
- (48) F. W. Kay and W. H. Perkin, J. Chem. Soc. 87, 1066, 1905.
- (49) B. A. Kazansky and N. Glushnev, J. Gen. Chem. (U.S.S.R) 8, 642, 1938.
- (50) E. Knoevenagel, Ann. 297, 113, 1897.
- (51) S. Komatsu and T. Kawamoto, J. Chem. Soc. Japan 52, 685, 1931.
- (52) I. Kondakow and E. Lutschinin, J. prakt. Chem. [2] 60, 257, 1899.

- (53) I. Kondakow and J. Schindelmeiser, J. prakt. Chem. [2] 61, 477, 1900.
- (54) P. A. Levene and S. A. Harris, J. Biol. Chem. 112, 195, 1935.
- (55) W. Louguinine, Compt. rend. 150, 915, 1910.
- (56) A. Mailhé and M. Murat, Bull soc. chim. [4] 7, 1083, 1910.
- (57) A. Mailhé and M. Murat, Bull. soc. chim. [4] 9, 464, 1911.
- (58) R. Majima and B. Kubota, Japan J. Chem. 1, 19, 1922.
- (59) W. Markownikow, Ann. 302, 1, 1898.
- (60) W. Markownikow, Ann. 336, 310, 1904.
- (61) W. Markownikow, J. Russ. Phys. Chem. Soc. 35, 389, 1903.
- (62) W. Markownikow, J. Russ. Phys. Chem. Soc. 36, 58, 1904.
- (63) W. Markownikow and W. Tscherdynzew, J. Russ. Phys. Chem. Soc. 32, 302, 1900.
- (64) H. Meerwein, Ann. 405, 129, 1914.
- (65) H. Meerwein and C. Fleischhauer, Ann. 417, 263, 1918.
- (66) B. N. Menschutkin, J. Russ. Phys. Chem. Soc. 44, 1137, 1912.
- (67) B. Mereshkowsky, J. Russ. Phys. Chem. Soc. 45, 1940, 1913.
- (68) M. Murat, Ann. chim. phys. [8] 16, 108, 1909.
- (69) S. S. Nametkin, J. Russ. Phys. Chem. Soc. 55, 47, 1923-24.
- (70) S. S. Nametkin and L. J. Brüssoff, Ber. 56, 1807, 1923.
- (71) S. S. Nametkin and L. J. Brüssoff, J. Russ. Phys. Chem. Soc. 55, 75, 1924.
- (72) S. S. Nametkin and A. Jarseff, Ber. 56, 1803, 1923.
- (73) J. B. Niederl and R. A. Smith, J. Am. Chem. Soc. 59, 715, 1937.
- (74) W. H. Perkin Jr. through E. C. Fortey, J. Chem. Soc. 73, 943, 1898.
- (75) W. H. Perkin Jr. and G. Tattersall, J. Chem. Soc. 87, 1083, 1905.
- (76) H. Pines and V. N. Ipatieff, Unpublished data.
- (77) J. Read and A. J. Watters, J. Chem. Soc. 1929, 2165.
- (78) A. H. Richard, Compt. rend. 153, 116, 1911.
- (79) W. A. Roth and K. v. Auwers, Ann. 407, 145, 1915.
- (80) L. Ruzicka, D. R. Koolhaas, and A. H. Wind, Helv. Chim. Acta 14, 1151, 1931.
- (81) L. Ruzicka and E. Peyer, Helv. Chim. Acta 18, 676, 1935.
- (82) P. Sabatier and A. Mailhé, Ann. chim. phys. [8] 10, 527, 1907.
- (83) P. Sabatier and A. Mailhé, Bull. soc. Chim. [3] 33, 74, 1905.
- (84) P. Sabatier and A. Mailhé, Compt. rend. 138, 1321, 1904.
- (85) P. Sabatier and A. Mailhé, Compt. rend. 140, 350, 1905.
- (86) P. Sabatier and A. Mailhé, Compt. rend. 141, 20, 1905.(87) P. Sabatier and A. Mailhé, Compt. rend. 142, 437, 1906.
- (88) P. Sabatier and J. B. Senderens, Compt. rend. 134, 1130, 1902.
- (89) Schimmel and Co., Ber. Akt. 1911, 128.
- (90) W. Schrauth and K. Quasebarth, Ber. 57, 854, 1924.
- (91) F. W. Semmler, Ber. 34, 3122, 1901.
- (92) F. W. Semmler, Ber. 36, 1033, 1903.
- (93) F. W. Semmler, Ber. 42, 522, 1909.
- (94) F. W. Semmler, "The Ethereal Oils," Leipzig, 1906, Vol. 3, p. 38.
- (95) J. B. Senderens, Compt. rend. 154, 1168, 1912.
- (96) Shin-ichiro Fujise, Sci. papers Inst. Phys. Chem. Res. Tokyo 8, 185, 1928.
- (97) Shin-ichiro Fujise, Sci. papers Inst. Phys. Chem. Res. Tokyo 10, 83, 1929.
- (98) F. K. Signaigo and P. L. Cramer, J. Am. Chem. Soc. 55, 3326, 1933.
- (99) A. Skita and A. Schneck, Ber. 55, 144, 1922.
- (100) P. Subow, J. Russ. Phys. Chem. Soc. 45, 242, 1913.
- (101) F. Tiemann and F. W. Semmler, Ber. 26, 2708, 1893.
- (102) M. Tiffeneau, Compt. rend. 146, 1153, 1908.
- (103) W. Treibs and H. Schmidt, Ber. 61, 459, 1928.
- (104) L. Tschugaeff, Z. physik. Chem. 76, 469, 1911.

- (105) L. C. Urban and E. Kremers, Am. Chem. J. 16, 395, 1894.
- (106) G. Vavon, Compt. rend. 152, 1675, 1911.
- (107) A. I. Vogel, J. Chem. Soc. 1938, 1323.
- (108) R. L. Wakeman, Thesis, Mass. Inst. Tech. 1930.
- (109) O. Wallach, Ann. 289, 337, 1895.
- (110) O. Wallach, Ann. 323, 135, 1902.
- (111) O. Wallach, Ann. 347, 316, 1906.
- (112) O. Wallach, Ann. 359, 287, 1908.
- (113) O. Wallach, Ann. 381, 51, 1911.
- (114) O. Wallach, Ann. 396, 264, 1913.
- (115) O. Wallach, Ber. 35, 2822, 1902.
- (116) O. Wallach and L. Augspurger, Ann. 396, 281, 1913.
- (117) O. Wallach and L. Augspurger, Ann. 414, 212, 1918.
- (118) O. Wallach and L. Augspurger, Nachr. kgl. Ges. Gottinger, 1915, 1.
- (119) O. Wallach and J. B. Churchill, Ann. 360, 72, 1908.
- (120) O. Wallach, J. B. Churchill, and M. Rentschler, Ann. 360, 55, 1908.
- (121) O. Wallach and E. Evans, Ann. 360, 44, 1908.
- (122) O. Wallach and W. Kempe, Ann. 329, 82, 1903.
- (123) O. Wallach and H. Mallison, Ann. 360, 68, 1908.
- (124) O. Wallach and P. Mendelsohn-Bartholdy, Ann. 360, 48, 1908.
- (125) O. Wallach and H. Schlubach, Ann. 396, 283, 1913.
- (126) I. Wanin, J. Russ. Phys. Chem. Soc. 44, 1072, 1912.
- (127) H. I. Waterman and H. A. van Westen, Rec. trav. chim. 48, 637, 1929.
- (128) J. Zelikow, Ber. 37, 1374, 1904.
- (129) N. D. Zelinsky, Ber. 35, 2488, 1902.
- (130) N. D. Zelinsky, Ber. 57, 2055, 1924.
- (131) N. D. Zelinsky and A. I. Gorsky, Ber. 41, 2630, 1908.
- (132) N. D. Zelinsky and A. I. Gorsky, J. Russ. Phys. Chem. Soc. 40, 1399, 1908.
- (133) N. D. Zelinsky and J. Gutt, J. Russ. Phys. Chem. Soc. 38, 476, 1906.
- (134) N. D. Zelinsky, K. Packendorff, and E. G. Chochlowa, Ber. 68, 98, 1935.
- (135) N. D. Zelinsky and G. Pawlow, Ber. 57, 1066, 1924.
- (136) N. D. Zelinsky and J. Zelikow, Ber. 34, 3249, 1901.

C, H			····				
Additional Data	n _D ²⁰	$D_4^{20}$	B. P., °C. @ 760mm	М. Р.,°С.	Name and Carbon Skeleton		
$\frac{dD}{dt} = -0.000884/^{\circ}C.$ (0° to 65°)	1.457,	0.8253	115		Cycloheptene		
	1.45301 4	0.7884 10	114.5 to 115 10		(Suberene)		
$\frac{dn}{dt} = -0.0005_1/^{\circ}\text{C}.$ (13° to 20°)	1.4545 8	@ 62.1°	@ 774mm				
(10 to 20 )	1.45527	0.7885 ¹⁰ @ 62.0°	113 12 114.5 to				
	1.45737 10	0.8052 10	115 5.6				
	1.4512 9	@ 42.1° 0.8059 10	114 to 115 12				
	@ 19°	@ 41.4°	113 to 115 7 113 to 115 8				
	1.4607 1,8 @ 13.5°	0.8228 7	@ 752mm				
·	1.45450 10	0.823 4	112 to 114 *				
	$n_{H_a}^{20.0}$	0.8239 ⁸ 0.8254 ⁹	@ 720mm				
	1.46438 10	0.8255 10					
	$n_{H_{\beta}}^{20.0}$	0.8245 5.6					
	1.46966 10 n ^{20.0}	$D_{20}^{20}$					
	" _~	0.814 ° @ 19°					
		0.8272 10					
		@ 17.9°					
		0.8359 1,3					
		$D_{13.5}^{13.5}$ $0.8407^{-5.6}$					
		$D_{\mathfrak{o}}^{0}$					
$\frac{dD}{dt} = -0.0010_{6}$ °C. (10° to 25°)	1.4580	0.8262	138		1-Methylcyclo- heptene-1		
	1.4575 °	0.8243 9	137.5 to		C I		
	@ 22°	@ 22° 0.824 ¹¹	138.5 11 137 to 138 2				
	0 19.5°	@ 19.5°	137 to 138 °				
	1.4581 2	0.8294 2	@ 720mm				
	1						
	@ 13.5°	D _{13.5}	w roomin				
	@ 15° 1.4604 1.3	@ 15° 0.8350 ^{1,3}	74 to 75 ° @ 100mm				

Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D4 26	$n_D^{20}$	Additional Data
1,4,4-Trimethyl- cycloheptene-1					
(Eucarvene)		161 to 165 ° @ 720mm	0.8185 *	1.4561 9	
° c					
Ċ					
•					

- (1) M. Godchot, Bull. soc. chim. [5] 1, 1153, 1934.
- (2) M. Godchot and P. Bedos, Compt. rend. 184, 208, 1927.
- (3) M. Godchot and G. Cauquil, Compt. rend. 191, 1326, 1930.
- (4) C. Harries and L. Tank, Ber. 41, 1701, 1908.
- (5) W. Markownikow, J. prakt. Chem. [2] 49, 409, 1894.
- (6) W. Markownikow, J. Russ. Phys. Chem. Soc. 25, 550, 1893.
- (7) N. A. Rosanov, J. Russ. Phys. Chem. Soc. 48, 309, 1916.
- (8) N. A. Rosanov, Tyazhelov, and Nikiforov, J. Russ. Phys. Chem. Soc. 61, 2313, 1929.
- (9) L. Ruzicka and C. F. Seidel, Helv. Chim. Acta 19, 424, 1936.
- (10) A. I. Vogel, J. Chem. Soc. 1938, 1323.
- (11) O. Wallach, Ann. 345, 139, 1906.
- (12) R. Willstätter, Ann. 317, 204, 1901.

	7				
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{to}$	Additional Data
Cycloöctene				1.468,	
		145 to 146 ² 143 to 144 ¹ 145 ⁹ @ 730mm 140 to 142 ⁵ @ 720mm	0.8415 * 0.855 * 0.8486 * @ 19° 0.8487 1 @ 17° 0.8497 2 Dis.5 0.871 * @ 0°	1.403,  1.4678 * 1.4736 * 1.4739 * 1.4683 *	
H ₁₆ Methylcycloöctene-1		158 to 160 ¹ 165 to 169 ⁶ @ 730mm	0.8487 6 0.8515 1 @ 15° 0.8525 ? D13.5	1.4691 6 1.4673 1 @ 15° 1.4720 2 @ 13.5°	

C _B H _B	····	304			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Data
Cyclopentadecene					
	36 to 37 b	122 to 123 \$ @ 1.2mm	0.8416 \$ @ 68.5° 0.8429 \$ @ 66.5°	1.4728 5  n _{Heb} 1.4791 5  n _{Heb} 1.4710 5  n _{Heb} 1.4713 5  n _{Heb} 1.4703 5  n _{Heb} 1.4765 5  n _{Heb} 1.4620 5  n _{Heb} 1.4622 5  n _{Heb} 1.4682 5  n _{Heb} 1.4682 5	
		·		1.4753 5 1.4753 5 1.4816 5 1.4816 5 1.4816 5 1.4651 5 1.4651 5 1.4713 5 1.4713 5 1.4713 5 1.4713 5	
C ₁₆ H ₃₀ 1-Methylcyclopenta- decene-1		152 to 153 7 @ 12mm	0.8697 ⁷ @ 22°	1.4853 ⁷ @ 22°	

		303			U16 II
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
1-Methylcyclopenta- decene-2 or -3	4 34				$\left[\alpha\right]_D = -8.8^{\circ}  4$
(Muscene)		120 @ 1mm 4			
C ₁₇ <b>H</b> ₁₂ Cycloheptadecene					
(Civetene)	47 8	115 ⁸ @ 0 3mm			
	1. 3				

⁽¹⁾ M. Godchot and G. Cauquil, Compt. rend. 185, 1202, 1927.

⁽²⁾ M. Godchot and G. Cauquil, Compt. rend. 191, 1326, 1930.

⁽³⁾ N. A. Rosanoff, J. Russ. Phys. Chem. Soc. 61, 2313, 1929.

⁽⁴⁾ L. Ruzicka, Helv. Chim. Acta 9, 715, 1926.

⁽⁵⁾ L. Ruzicka and H. A. Boekenoogen, Helv. Chim. Acta 14, 1319, 1931.

⁽⁶⁾ L. Ruzicka and W. Brugger, Helv. Chim. Acta 9, 399, 1926.

⁽⁷⁾ L. Ruzicka, H. Schinz, and M. Pfeiffer, Helv. Chim. Acta 11, 686, 1928.

⁽⁸⁾ L. Ruzicka, H. Schinz, and C. F. Seidel, Helv. Chim. Acta 10, 695, 1927.

⁽⁹⁾ R. Willstätter and E. Waser, Ber. 43, 1176, 1910; 44, 3423, 1911.

C, H₁₀ 366 2. CYCLENES WITH AN ALKENYL OR OLEFIN SUBSTITUTION, C_nH_{2n-4}

Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Data
1-Ethenylcyclo- pentene-1		114 to 115 °° @ 754mm	0.824 % @ 18°	1.4870 °° @ 18°	·
C.H.: 1-Propen-1-ylcyclo- pentene-1  C=C-C		142 to 144 % @ 754mm	0.835 % @ 21°	1.4865 %	
C, H ₁₄ 1-Buten-1-ylcyclo- pentene-1  C=C-C-C		59 to 62 % @ 14mm	0.833 ⁹⁰ @ 19°	1.4850 ⁹⁰ @ 19°	
		·			

*					V1111
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Data
1-Methyl-2-isopropen- ylcyclopentene-1		155 to 157 **	0.8515 34	1.4892 34	,
1-Methyl-3-isopropen- ylcyclopentene-1 or -5		150 36			
3-Methyl-4-isopropen- ylcyclopentene-1		143 to 145 36 @ 770mm		·	

Name and Carbon Skeleton	M. P.,°C	B. P., °C. @ 760mm	$D_4^{20}$	n ²⁰	Additional Data
3-Methyl-1-buten-3- ylcyclopentene-x	Marie Marie Andrews	168 to 169 ²¹	0.8377 ²¹ @ 18.5°	1.4665 ²¹ @ 18.5°	
d-3-Methylene-4- methyl-5-isopropyl- cyclopentene-1		169 to 173 ⁸⁰ 50 to 54 ⁸⁰ @ 10mm		1.470 ⁸⁰	
2,3,3-Trimethyl-4- ethenylcyclopentene-1		157 to 158 12			

		309			C ₁₁ H ₁₁
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
2,3,3-Trimethyl-4-iso-propenylcyclopentene-1		177 to 179 °7 @ 754mm			
C ₁₂ H ₂₀ 2-Methyl-1-(2,3,3-trimethylcyclopenten-1-yl)-propene-1		188 to 190 "	0.8311 ¹¹ @ 16° 0.8421 ¹¹ @ 0°	1.46707 ¹¹ @ 16°	
C ₁₄ H ₂₄ 2-Ethyl-1-(2,3,3-tri-methylcyclopenten-1-yl)-butene-1  C-C C=C-C-C C C		222 to 224 ¹¹	0.8688 ¹¹ @ 19° 0.8814 ¹¹ @ 0°	1.46875 11	

Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
1-Ethenylcyclohexene-1		145 18 143 to 145 43 36 @ 23mm 33	0.8701 ⁴³ $D_0^{20}$ 0.8523 ³³ @ 16° 0.8862 ⁴² $D_0^{0}$	1.49060 ⁴³ 1.4677 ³³ @ 16° 1.46423 ³³ $n_{H_a}^{16}$ 1.48812 ³³ $n_{H_g}^{16}$	
4-Ethenylcyclohexene-1		130 52 @ 773mm 129.5 to 130.5 53 65 to 66 53 @ 100mm 50 @ 50mm 52	0.8310 52 0.8320 53 0.8484 53 @ 0°	1.46529 53 @ 20.1° 1.46380 52	$\frac{dD}{dt} = -0.0008_5/^{\circ}C.$ (0° to 20°)
3-Methylene-1-methyl-cyclohexene-1		134 to 138 s	0.8389 ⁵ @ 18.8°	1.48723 5 1.48274 5 1.49872 5 1.49872 5 1.50910 5 1.717 1.717	

	371				
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	$u_D^{20}$	C, H,
3-Methylene-2-methyl- cyclohexene-1		135.5 35	0.8521 35	1.4925 35	
C ₀ H ₁₄ 1-Cyclohexen-1-yl- propene-2 or 1-Cyclohexylidene- propene-2  C-C=C C-C=C		159 to 161 77	0.8457 77 0.8468 77 $D_{20}^{20}$ 0.8611 77 @ 0°		
1-Propen-2-ylcyclo- hexene-1		158 to 159 ⁵⁴ @ 755mm	0.8426 **	1.477 54	

C9 II 14		314			
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D420	n _D ²⁰	Additional Data
1-Isopropenylcyclo- hexene-1		161 to 162 44			
1-Methyl-2-ethenyl-cyclohexene-1		156 to 157 18			
1-Methyl-4-ethylidene- cyclohexene-1 or 1-Methyl-4-ethenyl- cyclohexene-1  C C C C C=C		160 to 163 100	0.843 ¹⁰⁰ @ 22°	1.47586 ¹∞ @ 22°	

		313			C ₉ II ₁₄
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n _D ²⁰	Additional Data
1,5-Dimethyl-3-methylenecyclohexene-1		61 to 66 ° @ 37mm 54 to 56 ° @ 25mm	0.8280 8 @ 20.1° 0.8300 ° @ 17.1°	1.4809 * @ 20.2° 1.48151 *.* 1.47653 * $n_{H_a}^{20.2}$ 1.49168 * $n_{H_g}^{20.2}$ 1.50159 *	
C ₁₀ H ₁₆ 1-Buten-3-ylcyclo-hexene-1		60 to 62 55 @ 10mm	0.8445 ⁵⁵ @ 18°	1.4745 % @ 18°	
2-Methyl-1-cyclo- hexen-1-ylpropene-1		172 to 173 ²⁵ 88 to 90 ³⁵ @ 13mm	0.8537 35	1.4854 34	

O19 22 16		U/ L			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	n _D ²⁰	Additional Data
2-Methyl-1-cyclo- hexen-1-ylpropene-2			0.8607 35	1.4797 25	·
1-Methyl-2-isopropen-ylcyclohexene-1 (o-Menthadiene)		177 <b>4</b> @ 755mm	•	·	
d-1-Methyl-3-isopropenylcyclohexene-1 (Sylvestrene, carvestrene)		176 to 177 % 175 to 178 37.93 175 to 176 % 173 to 175 3	0.8470 94 0.848 99 0.8485 97 @ 18° 0.8510 94 @ 16° 0.8612 3 @ 16°	1.4752 ³⁷ 1.47573 ³⁹ 1.47799 ⁹⁴ @ 18° 1.47468 ⁹⁴ ************************************	$[\alpha]_{D} = +19.5^{\circ 3}$ $[\alpha]_{D} = +67.5^{\circ 37}$ $[\alpha]_{D}^{10} = +66.32^{\circ 99}$

		375			C ₁₀ H ₁
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Data
l-1-Methyl-3-isopro- penylcyclohexene-1					$\left[\alpha\right]_D = -68.2^{\circ}  ^{\mathfrak{s}7}$
		176 to 178 ³⁷	0.848 ²⁷ @ 19°	1.4761 33	
dl-1-Methyl-3-isopro-					
penylcyclohexene-1		177 to 179 7 @ 769mm 177.2 to 178.2 7 @ 767.5mm 176 to 177.5 7 @ 764mm 179 24 178 10 175 to 180 3 174 to 177.5 1 173 to 175 22 178 to 179 66 @ 750mm	0.8453 ¹ 0.8486 ⁷ @ 17.2°	1.47506 ¹ 1.47717 ⁷ @ 17.2° 1.47380 ⁷ $n_{H^*}^{1/2}$ 1.48505 ⁷ $n_{H^*_{B}}^{1/2}$ 1.49245 ⁷ $n_{H^*_{A}}^{1/2}$	

- 1016	<del></del>				
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	n ²⁰	Additional Data
1-Methyl-4-isopropyli- denecyclohexene-1					
(p-Menthadiene)		186 40	0.854 83	1.48017 15	
(Terpinolene)		@ 764mm	0.857 4	1.484 83	
C		185 to 190 **	0.8583 15		
Ĺ		184 to 188 "	0.8633 40		
		184 to 187 15 183 to 185 83	$D_{15}^{15}$		
		181 to 185 P8			
c-c-c		121 83			
		@ 112mm			
		75 @ 15mm 40			
		72 @ 10mm ⁴⁰			
		@ 10mm			
d-1-Methyl-4-iso- propenylcyclohexene-1					$[\alpha]_{D}^{80} = +100.2^{\circ 17}$
					$[\alpha]_D^{20} = +126.84^{\circ}  {}^{18}$
(p-Menthadiene) (d-Limonene)	- 96.6 ⁸⁵	180 to 182 4 @ 765mm	0.7135 ⁷⁹ @ 176.5°	1.4681 ¹⁷ @ 30°	$[\alpha]_D^{20} = +122.47^{\circ \ 27}$
ç		175.5 to 176 14 @ 763mm	0.8356 ¹⁷ @ 30°	1.4720 ²⁷ @ 25°	$[\alpha]_D^{19.5} = +104.25^{\circ 14}$
		179.5 to 180.5 4	0.8417 ²⁷ @ 25°	1.4725 69 @ 25°	$\left[\alpha\right]_D = +124^{\circ 73}$
$\rightarrow$		178 to 179 60	0.8409 ³⁹ @ 25°	1.47428 ¹⁴ @ 21°	$[\alpha]_D = +123.6^{\circ 26}$
C-C=C		178 85	0.8437 60	1.4727 7	$[\alpha]_D = +122.7^{\circ 27}$
		177.6 to	D ₂₅	@ 19.6° 1.473 73	$[\alpha]_D = +120.466^{\circ}$
		176 to 177.4 1	0.8402 14 7 @ 21°	@ 17°	
		176 to 177 17	0.8425 30	1.4771 42	†Average of sever
		176 to 176.7 1	7 0.8456 49	@ 14°	experimental value
		176 to 176.4 1	3 0.846 42	1.49116 ⁴ @ 13.4°	
		176 42	0.8441 **	1.47124 14	
		175 to 177 91	D20	$n_{H_a}^{21}$	
		175 %	0.8425 ⁷ @ 19.6°		
		212 00 110			
		174 to 176 42	@ 19.6°		b

Name and Carbon Skeleton   M. P., °C.   @ 750mm   D10   m			311		C10 11:		
propenylcyclohexene-1 (Continued)  177.5 30 (@ 759mm 177.6 to 177.8 72 (@ 755mm 176.5 79 (@ 755mm 177 30 (@ 745mm 71 @ 20mm 50 64.4 72 (@ 15mm)  64.4 72 (@ 14.7° (@ 14.7°) (@ 14.7°) (@ 14.7°) (@ 14.7°) (@ 14.7°) (@ 14.7°) (@ 14.7°) (@ 14.7°) (@ 14.8223 14) (\textit{1.48223 14} (\textit{1.48223 14} (\textit{1.48223 14} (\textit{1.4877} (\textit{1.48277} (\textit{1.48277} (\textit{1.48261} (\textit{1.50109} 4) (\textit{1.50109} 4) (\textit{1.50109} 4) (\textit{1.50109} 4) (\textit{1.50739} 4) (\tex	Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data	
@ 759mm 177.6 to 177.8 ** @ 755mm 176.5 ** @ 753.7mm 177 ** @ 745mm 71 @ 20mm ** 64.4 ** @ 15mm  15mm    0.8532 **   0.8498 **   0.8468 **   0.8532 **   0.8468 **   0.8532 **   0.8468 **   0.8532 **   0.8532 **   0.8468 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8468 **   0.8532 **   0.8532 **   0.8468 **   0.8532 **   0.8532 **   0.8468 **   0.8532 **   0.8468 **   0.8532 **   0.8468 **   0.8532 **   0.8468 **   0.8532 **   0.8468 **   0.8532 **   0.8532 **   0.8468 **   0.8532 **   0.8532 **   0.8468 **   0.8532 **   0.8532 **   0.8468 **   0.8532 **   0.8532 **   0.8468 **   0.8532 **   0.8532 **   0.8532 **   0.8468 **   0.8532 **   0.8532 **   0.8468 **   0.8532 **   0.8468 **   0.8532 **   0.8532 **   0.8468 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **   0.8532 **	propenylcyclohexene-1						
			@ 759mm 177.6 to 177.8 72 @ 755mm 176.5 79 @ 753.7mm 177 30 @ 745mm 71 @ 20mm 59 64.4 73	@ 18° 0.8532 °° @ 15.6° 0.8498 °° D15 0.8468 ° @ 14.7° 0.8532 °° D10 0.8530 °° @ 9.8° 0.8576 °° D1 0.8584 °° @ 0° 0.8585 °° 0.8585 °°	$n_{H_a}^{19}$ $1.47489$ 7 $n_{H_a}^{14.7}$ $1.48658$ 4 $n_{H_a}^{13.4}$ $1.48223$ 14 $n_{H_B}^{21}$ $1.49796$ 4 $n_{H_B}^{19}$ $1.48277$ 7 $n_{H_B}^{14.7}$ $1.50109$ 4 $n_{H_B}^{21}$ $1.48886$ 14 $n_{H_A}^{21}$ $1.50739$ 4 $n_{H_A}^{19}$ $1.49062$ 7 $n_{H_A}^{14.7}$ $1.51031$ 4		

U10 II 16		310			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	. D ₄ 20	$n_D^{20}$	Additional Data
l-1-Methyl-4-iso- propenylcyclohexene-1					$[\alpha]_D^{20} = -122.6^{\circ}$ 13 $[\alpha]_D^{19.5} = -101.5^{\circ}$ 14
(l-Limonene)		175.5 to 176.5 14 @ 763mm 176 to 176.4 13 175.5 to 176 95 177.6 to 177.8 66 @ 755mm 64.4 73 @ 15mm	20.0	$1.47468$ 14 $@ 20.5^{\circ}$ $1.47459$ 85 $1.4727$ 12 $@ 17.2^{\circ}$ $1.4740$ 13 $@ 14^{\circ}$ $1.47157$ 14 $n_{H_{\beta}}^{20.5}$ $1.48256$ 14 $n_{H_{\beta}}^{20.5}$ $1.48924$ 14 $n_{H_{\gamma}}^{20.5}$	$[\alpha]_D^{18} = -121^{\circ 73}$ $[\alpha]_D = -103.51^{\circ 40}$
dl-1-Methyl-4-iso- propenylcyclohexene-1					
(dl-Limonene) (Dipentene)		175.5 to 176.5 ¹⁴ @ 763mm 180 to 182 ⁹³ 180 to 181 ⁴⁵ 178 to 180 ⁹ 177 ⁸⁵ 176 to 178 ¹⁹ 175 to 178 ⁸³ 175 to 176 ²⁷ 174 to 175 ⁴⁶ 64.4 ¹⁴ @ 15mm	0.7962 22 @ 78.3° 0.8486 45 $D_{25}^{25}$ 0.8402 14 @ 20.85° 0.845 46,86,94 0.8535 19 0.8450 22 @ 16.6° 0.8548 45 $D_{15}^{15}$ 0.85457 45 @ 14.4°	1.47443 ¹⁴ @ 20.85° 1.47194 ²⁷ 1.4746 ⁴⁶ 1.47644 ⁹⁴ 1.4727 ⁷³ @ 18° 1.48013 ¹⁹ @ 16° 1.44279 ²² $n_{A_a}^{73.3}$ 1.47134 ¹⁴ $n_{A_a}^{20.85}$ 1.47308 ⁹⁴ $n_{A_a}^{91}$	

				***************************************	
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
dl-1-Methyl-4-iso- propenylcyclohexene-1 (Continued)					
			0.8627 ⁴⁸	1.47172 22 n16.6	
			0.8657 19 @ 0°	1.47056 45	
				$ \begin{array}{c c} n_{H_a}^{14.4} \\ 1.45328 & 22 \\ n_{H_{\beta}}^{18.3} \end{array} $	
				1.48231 14 $n_{H_{\beta}}^{20.85}$	
				1.48291 22 n16.6 H _B	
				1.48629 45 $n_{H_{\beta}}^{14.4}$	
				1.45965 22 $n_{H_{\gamma}}^{78.3}$	
				1.48898 14 $n_{H_{\gamma}}^{20.85}$	
				1.48961 22	
				$n_{H_{\gamma}}^{16.6}$ $1.49367^{46}$ $n_{H_{\gamma}}^{14.4}$	
2-Methyl-3-iso- propenylcyclohexene-1					
(o-Menthadiene-1,8a)		170 to 171 62 @ 765mm	$\begin{array}{c c} 0.8481 & ^{62} \\ D_{20}^{20} \end{array}$	1.4758 62	
C=C C					

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
2-Methyl-4-iso- propenylcyclohexene-1					
(m-Menthadiene-1,8a, Isocarvestrene, Diprene)		176 to 177 ²⁴ @ 765mm 171.5 to 173 ² @ 752mm 68.5 to 69 ² @ 16mm	0.8481 2.24 0.8476 2 0.8496 24 $D_{20}^{20}$	1.49660 ² @ 23.4° 1.46946 ² 1.47799 ²⁴ 1.49090 ²⁴ 1.49893 ²⁴	
d-3-Methyl-1-iso-propenylcyclohexene-1 (m-Menthadiene)		181 ²⁸ @ 736mm 179 ⁵⁶ @ 730mm	0.864 ³⁸ D ₁₇	1.4946 38,06	$[\alpha]_D = +17.5^{\circ 56}$ $[\alpha]_D = +64.0^{\circ 38}$
l-3-Methyl-1-isopro- penylcyclohexene-1		181 to 182 **		1.4972 56	$\left[\alpha\right]_{D}=-12.9^{\circ 56}$
					Ye.

Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
dl-3-Methyl-1-isopro- penylcyclohexene-1	,				
		182 to 183 ³⁸ @ 770mm 187 ⁶⁵ @ 765mm	0.8549 29 @ 22° 0.8609 56 $D_{20}^{20}$	1.5015 ²⁹ @ 25° 1.4975 ⁵⁶	
		181 to 182 56 184 29 @ 745mm	D ₂₀ 0.8624 38 D ₂₀	1.5030 38	
3-Methyl-4-iso-					
propenylcyclohexene-1 (o-Menthadiene)		170 to 171 e2	0.8490 62	1.4778 62	
(b-Mentiadiene)		@ 765mm	D ₁₇	1.4776	
d-3-Methyl-5-iso- propenylcyclohexene-1					$[\alpha]_D^{17} = +29.6^{\circ}$ 61
C=C C		175 to 176 e1			
				7.	

C10 F14		302		**************************************	
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
l-3-Methyl-5-iso- propenylcyclohexene-1		175 to 176 ⁶¹			$[\alpha]_D^{16} = -25.3^{\circ}$ 61
dl-3-Methyl-5-iso- propenylcyclohexene-1		175 to 176 ⁶¹ @ 765mm			
3-Methylene-6-iso-propylcyclohexene-1  (p-Menthadiene, β-Phellandrene)		171 to 172 % @ 766mm 171 to 172 % 57 @ 11mm 25	0.8520 ²⁴ 0.8558 ⁶⁹ @ 10°	1.4788 25	$[\alpha]_D = +18.54^{\circ 25}$ $[\alpha]_D = +17.60^{\circ 69}$

		C,,H,			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Pata
d-3-Methyl-6-iso-propenylcyclohexene-1  (p-Menthadiene)  C C=C C		172 to 174 ⁸⁸ 171 to 173 ²⁰ @ 750mm	0.838 ²⁰ @ 22.5° 0.8382 ²⁸ @ 20.5°	1.4692 20 @ 22.5° 1.4697 88 @ 20.5° 1.4659 20 n ^{22.5} H _a 1.4775 20 n ^{22.5} H _B	$[\alpha]_{D}^{20} = +131.93^{\circ} \text{ 88}$ $[\alpha]_{578}^{20} = +133.50^{\circ} \text{ 20}$ $[\alpha]_{546}^{20} = +153.4^{\circ} \text{ 17}$
l-3-Methyl-6-iso- propenylcyclohexene-1		172.5 to 173.5 s ⁷ 172 to 172.5 ⁷⁰ @ 745mm	0.8370 ⁷⁰ 0.8390 ⁷⁰ @ 19.5°	1.47043 ⁸⁷ 1.47643 ⁷⁰ 1.4750 ⁷⁰ @ 19.5°	$\left[\alpha\right]_{D} = -140.58^{\circ}$ 87 $\left[\alpha\right]_{D} = -5.92^{\circ}$ 70
4-Methylene-1-iso-propylcyclohexene-1  (p-Menthadiene, β-Terpinene)  C-C-C  C  C		173 to 174 %	0.838 ⁹⁷ @ 22° 0.840 ⁹⁷ @ 22°	1.4754 ⁹⁷ @ 22° 1.4751 ⁹⁷ @ 22°	
					i.

Name and Carbon Skeleton   M. P., °C   B. P., °C   @ 760mm   D ₁ ¹⁰   M. P., °C   @ 1760mm   D ₁ ¹⁰   (a) _D = +100° 12   (a) _D = +100° 13   (a) _D = +100° 14   (a) _D = +118.33° 10   (a) _D = +100° 14   (a) _D = +18.33° 10   (a) _D = +100° 14   (a) _D = +18.33° 10   (a) _D = +100° 14   (a) _D = +18.33° 10   (a) _D = +100° 14   (a) _D = +18.33° 10   (a) _D = +18.33	Name and Carbon Sheleton	1	1	1	I	1
184 to 185   18.48	Trump und Caron Excitor	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
184 to 185 **   0.857 **   1.4957 **   (2) 24°   1.48422 **   (2) 26°   1.48422 **   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°   (2) 26°	d-4-Methyl-1-iso- propenylcyclohexene-1					
propenylcyclohexene-1  184 to 185 45  0.83579 46 $D_{20}^{20}$ 0.8390 46  0.8390 46 $D_{15}^{15}$ 0.8425 46  1.48824 46			@ 776mm 174 to 177 *2 184 *4	$D_{25}^{25}$ $0.8679^{28}$ $0.24^{\circ}$ $0.8420^{82}$ $0.851^{20}$ $0.858^{65}$ $0.8649^{16}$ $D_{16}^{16}$ $0.8634^{45}$ $D_{15}^{15}$ $0.8585^{32}$ $0.14.2^{\circ}$ $0.86483^{45}$ $0.12.7^{\circ}$ $0.8712^{45}$	@ 24° 1.48422 *2 1.4965 ** 1.4915 *8 1.4876 *0 @ 19.8° 1.4966 *2	$[\alpha]_D^{18} = +98.2^{\circ}$
	dl-4-Methyl-1-iso- propenylcyclohexene-1		184 to 185 4	$D_{20}^{30}$ 0.8390 45 $D_{15}^{15}$ 0.8425 46	$n_{H_a}^{17.2}$ 1.48113 45 $n_{H_B}^{17.2}$ 1.48824 46	

		385			C10 H10
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	n20 D	Additional Data
d-4-Methyl-2-propen-2- ylcyclohexene-1					$[\alpha]_D = +52.84^{\circ 78}$
(o-Menthadiene)		171 to 173 78	0.8361 78		
C-C=C					
d-4-Methyl-2-iso- propenylcyclohexene-1					$\left[\alpha\right]_D = +17.5^{\circ  \text{sr}}$
c c c		187 65 @ 765mm 181 to 182 56 179 57 @ 730mm	0.8609 56 D ₂₀ ²⁰	1.4972 ⁵⁷ 1.4975 ⁵⁶	
<i>cis-</i> 4-Methyl-5-iso- propenylcyclohexene-1					
		169 to 170 ⁶³ @ 762mm	0.8507 63 $\mathcal{D}_{20}^{20}$	1.4825 63	

U10.EL16		000			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
trans-4-Methyl-5-iso- propenylcyclohexene-1		170 ⁶³	$0.8477$ 63 $D_{20}^{20}$	1.4749 63	•
1,5-Dimethyl-3-ethyli- denecyclohexene-1					
C		175 to 178 ° @ 753mm	0.8360 6.74 @ 21.3° 0.8332 5 0.8516 74	1.4868 ° @ 19.9° 1.48092 ° @ 17.7° 1.48255 ° n ^{19.0} " 1.47701 ° n ^{17.7} " 1.49748 ° n ^{19.0} " 1.49070 ° n ^{17.7} " 1.49930 ° n	

		387			C10 H16
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Data
2,4-Dimethyl-4- ethenylcyclohexene-1		160 to 161 ⁵¹ 44 @ 9 mm ⁵¹	0.8331 ⁵¹ $D_o^{20}$ 0.8481 ⁵¹ $D_o^{0}$	1.46581 51 @ 19.7° 1.46230 51 $n_{H_{\alpha}}^{19.7}$ 1.47204 51 $n_{H_{\beta}}^{19.7}$ 1.47964 51 $n_{H_{\gamma}}^{19.7}$	
2,4,4-Trimethyl-3-methylenecyclo-hexene-1		48.5 to 49 № @ 11mm	0.843 % @ 21°	1.4772 ⁵⁰ @ 21°	
C ₁₁ H ₁₈ 1-Methyl-2-buten-3- ylcyclohexene-1		75 to 78 ⁴¹ @ 10mm	0.8769 ⁴¹ @ 15.5°	1.4853 ⁴¹ @ 15.5°	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
d-2-Methyl-1-(3- methyl-cyclohexen-1- yl)-propene-1					$[\alpha]_D = +54.8^{\circ}$ 45
c=c-c		192 to 193 35	0.8531 ³⁵ @ 15°	1.4802 ³⁵ @ 15°	·
d-2-Methyl-1-(4-					$\left[\alpha\right]_{D}=+63.9^{\circ \ 55}$
d-2-Methyl-1-(4-methyl-cyclohexen-1-yl)-propene-1		190 to 191 35	0.8445 35 @ 15°	1.4793 35	
4-Methyl-2-(2-methyl-propen-2-yl)-cyclo-hexene-1		191 to 192 33	0.846 35 @ 15°	1.4768 35	$\left[\alpha\right]_D = +68.8^{\circ 3b}$
· ·					

		389			C ₁₁ H ₁₀
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Data
1-Ethyl-4-isopropenyl- cyclohexene-1					
C=C-C		201 to 202 %	0.8545 % @ 18°	1.4802 ^{p6} @ 18°	
1,2-Dimethyl-4-iso- propenyl-cyclohexene-1 or 2,3-Dimethyl-5-iso- propenyl-cyclohexene-1					$[\alpha]_D^{20} = -55.44^{\circ}$ $[\alpha]_D^{20} = -47.55^{\circ}$ ⁷⁴
$ \begin{array}{c c} C & C & C \\ \hline C & C & C \end{array} $		72 @ 9mm ⁷⁴	0.8576 74	1.46502 74	
1,3-Dimethyl-4-iso- propylidene-cyclo- hexene-1					$[\alpha]_D^{20} = -96.89^{\circ 78}$ $[\alpha]_D^{20} = -81.41^{\circ 78}$
C-C-C		71 to 73 ⁷⁵ @ 16mm	0.8402 75	1.47252 7	

C ₁₁ H ₁₈		390			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
1,5-Dimethyl-3-iso- propylidene-cyclo- hexene-1					
		191 to 196 * 106 to 109 * @ 46mm 99 to 103 * @ 36mm	0.8561 ° @ 23.6° 0.8465 ° @ 22.4° 0.8395 ° @ 21.4° 0.8448 ° @ 19.0°	1.49367 ° @ 23.2° 1.49519 ° @ 22.5° 1.48521 ° @ 19.1° 1.48559 ° @ 18.0° 1.48938 ° $n_{H_a}^{23.2}$ 1.49072 ° $n_{H_a}^{22.5}$ 1.48119 ° $n_{H_a}^{19.1}$ 1.50466 ° $n_{H_B}^{19.1}$ 1.50674 ° $n_{H_B}^{19.1}$ 1.49566 ° $n_{H_B}^{19.1}$ 1.51716 ° $n_{H_B}^{19.1}$ 1.51716 ° $n_{H_B}^{19.1}$ 1.50412 ° $n_{H_B}^{19.1}$ 1.50450 ° $n_{H_B}^{19.1}$	

		391	***		C ₁₁ H ₁₆
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D ₄ ²⁰	$n_D^{20}$	Additional Data
2,4-Dimethyl-4-propen- 2-ylcyclohexene-1	,				
c c-c=c		182 to 185 st 183 to 185 st @ 741mm 67 to 69 st @ 9mm	0.8415 84 @ 16° 0.8450 31 @ 9.9° 0.8525 31 @ 0°	1.47292 84 @ 16° 1.47281 31 @ 9.9°	
3,5-Dimethyl-5-iso- propenyl-cyclohexene-1					
c=c c		184 to 186 ⁷¹ @ 737mm	0.8585 ⁿ @ 25°	1.4845 ⁷¹ @ 25°	
C ₁₂ H ₂₀ 5,5-Dimethyl-3-(2- methylpropen-1-yl)- cyclohexene-1					
C C=C-C C		195 to 196 48	0.8246 ⁴⁸ @ 23°	1.4653 ⁴⁸ @ 23°	

O11 2210		0,2			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
3-Methyl-5-ethyl-5-iso- propenylcyclohexene-1		199 to 202 ⁷ @ 759mm 83 to 85 ⁷ @ 15mm	0.8631 ⁷¹ @ 25°	1.4854 ⁷¹ @ 25°	
1,2,4-Trimethyl-4-iso-propenylcyclohexene-1		202 to 203 ²² @ 761mm 205 ⁷² 205 ⁵¹ @ 750mm 97 to 98 ⁷² @ 22mm 85 @ 13mm ⁵¹	0.85322 72 @ 25° 0.8597 81 @ 20° 0.8626 23 @ 16° 0.872 73 @ 0° 0.8741 81 @ 0°	1.47786 72 @ 25° 1.48074 51 @ 19.7° 1.4823 23 @ 16° 1.47463 72 n ²⁰ 1.47716 51 n ¹⁹ .1 1.48572 72 n ²⁵ 1.485796 51 n ¹⁹ .7 1.49241 72 n ²⁵ n ²⁰ 1.49241 72 n ²⁵ n ²⁶ 1.49241 72 n ²⁶ n ²⁷ 1.49491 51 n ¹⁹ .7	

393						
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	n _D ²⁰	Additional Data	
x,x,2-Trimethyl-4-iso- propenylcyclohexene-1	,					
(Dimethyl diprene)		200.5 to 201.3 ² @ 758mm 87.8 to 88.3 ²	0.8535 ²	1.47915 2		
		@ 12mm				
C., H ₂₂ ?-4-Methyl-2-propen-2- yl-1-isopropylcyclo-					$\left[\alpha\right]_D = +50.86^{\circ 78}$	
hexene-1		214 to 217 78	0.8551 78			
c		97 to 100 ⁷⁸ @ 17mm				
3-Methyl-5-n-propyl- 5-isopropenylcyclo- hexene-1						
c-c-c c-c c		104 to 106 71 @ 14mm	0.8872 ⁷¹ @ 25°	1.4865 ⁷¹ @ 25°		
	T .		J	Li iii	Ļ	

Cirri		UJI			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
2,4,4-Trimethyl-3- buten-1-ylcyclo- hexene-1		220 to 221 ⁴⁷ @ 747mm	0.8530 47	1.4784 47	
C ₁₄ H ₂₄ 1,3,3,5,5-Pentamethyl- 4-isopropenylcyclo- hexene-1		122 to 123 58 @ 29mm	0.8696 58 @ 17° 0.8799 58 @ 0°	1.48767 ⁵⁸ @ 17°	
C ₁₅ H ₂₆ 3-Methyl-6-(1,5-dimethylhexen-4-yl)- cyclohexene-1 (Dihydrozingiberene)  C C-C=C-C-C-C-C		135 to 136 76 @ 15mm 122 to 125 81 @ 7mm	0.8557 81 @ 20° 0.865 76 @ 15°	1.4837 81 1.4881 76	$\left[\alpha\right]_{D}=-37^{\circ 81}$
<u> </u>					

- (1) O. Aschan, Ann. 461, 1, 1928.
- (2) O. Aschan and F. Krohn, Ber. 57, 1959, 1924.
- (3) A. Atterberg, Ber. 10, 1202, 1899.
- (4) K. v. Auwers, Ber. 42, 2424, 1909.
- (5) K. v. Auwers and F. Eisenlohr, J. prakt. Chem. [2], 84, 1, 1911.
- (6) K. v. Auwers and G. Peters, Ber. 43, 3076, 1910.
- (7) K. v. Auwers, W. Roth, and F. Eisenlohr, Ann. 373, 267, 1910.
- (8) K. v. Auwers and W. Treppman, Ber. 48, 1207, 1915.
- (9) R. Bacon, Philippine J. Sci. 4A, 93, 1909.
- (10) A. Baeyer, Ber. 27, 3488, 1894.
- (11) A. Béhal, Bull. soc. chim. [3] 31, 461, 1904.
- (12) L. Bouveault and G. Blanc, Compt. rend. 136, 1460, 1903.
- (13) J. v. Braun and G. Lemke, Ber. 56, 1562, 1923.
- (14) J. Brühl, J. Chem. Soc. 91, 115, 1907.
- (15) R. Charlton and A. Day, Ind. Eng. Chem. 29, 92, 1937.
- (16) T. Chou and W. Perkin, J. Chem. Soc. 99, 530, 1911.
- (17) A. M. Clover, Am. Chem. J. 39, 613, 1908.
- (18) J. Cook and C. Laurence, J. Chem. Soc. 1938, 58
- (19) M. Delepine, Bull. soc. chim. [4] 7, 468, 1910.
- (20) J Doeuvre, Bull. soc. chim. [4] 53, 170, 1933.
- (21) K. D. Errington and R. P. Linstead, J. Chem. Soc. 1938, 666.
- (22) J. F. Eykman, Chem. Weekblad 4, 41, 1907.
- (23) E. Farmer and R. Pitkethly, J. Chem. Soc. 1938, 11.
- (24) F. Fisher and W. Perkin, Jr., J. Chem. Soc. 93, 1876, 1908.
- (25) L. Francesconi and E. Sernagiotto, Atti accad. Lincei 20, I, 329, 1911.
- (26) E. Gildemeister and F. Hoffmann, "The Ethereal Oils," 1899, 172.
- (27) E. Gildemeister and F. Hoffmann, "The Ethereal Oils," Vol. 1, 329, 1928.
- (28) M. Godchot and G. Cauquil, Compt. rend. 204, 733, 1937.
- (29) M. Godchot and G. Cauquil, Compt. rend. 206, 88, 1938.
- (30) E. Godlewsky and Roshanoivitsch, J. Russ. Phys. Chem. Soc. 31, 201, 1899.
- (31) V. Grignard, Ann. chim. [7] 24, 433, 1901.
- (32) W. Grubb and J. Read, J. Chem. Soc. 1934, 242.
- (33) C. Harries, Ann. 383, 157, 1911.
- (34) W. Haworth, J. Chem. Soc. 103, 1242, 1913.
- (35) W. Haworth and A. Fyfe, J. Chem. Soc. 105, 1659, 1914.
- (36) W. Haworth and W. Perkin, Jr., J. Chem. Soc. 93, 573, 1908.
- (37) W. Haworth and W. Perkin, Jr., J. Chem. Soc. 103, 2225, 1913.
- (38) W. Haworth, W. Perkin, Jr., and O. Wallach, Ann. 379, 131, 1911.
- (39) G. Henderson and T. Smeaton, J. Chem. Soc. 117, 144, 1920.
- (40) T. Henry and H. Paget, J. Chem. Soc. 1931, 25.
- (41) D. Hibbit, R. Linstead, and A. Millidge, J. Chem. Soc. 1936, 476.
- (42) J. Hosking and W. Short, Rec. trav. chim. 47, 834, 1928.
- (43) I. Jegorowa, J. Russ. Phys. Chem. Soc. 43, 1116, 1911.
- (44) F. Kay and W. Perkin, Jr., J. Chem. Soc. 87, 1066, 1905.
- (45) F. Kay and W. Perkin, Jr., J. Chem. Soc. 89, 839, 1906.
- (46) K. Kafuku, T. Nozoe, and C. Hata, Bull. Chem. Soc. Japan 6, 40, 1931.
- (47) N. Kishner, J. Russ. Phys. Chem. Soc. 43, 1398, 1911.
- (48) E. Knoevenagel and R. Schwartz, Ber. 39, 3441, 1906.
- (49) E. Kremers, Am. Chem. J. 17, 692, 1895.
- (50) R. Kuhn and M. Hoffer, Ber. 67, 357, 1934.
- (51) S. Lebedev, J. Russ. Phys. Chem. Soc. 45, 1296, 1913.
- (52) S. Lebedev and S. Sergjenko, Compt. rend. (U.S.S.R.) 1935, II, 78.

- (53) S. Lebedev and N. Skawronskaja, J. Russ. Phys. Chem. Soc. 43, 1136, 1911.
- (54) R. Levina and D. Trakhtenberg, J. Gen. Chem. (U.S.S.R.) 6, 764, 1936.
- (55) R. Linstead, A. Wang, J. Williams, and K. Errington, J. Chem. Soc. 1937, 1136.
- (56) B. Luff and W. Perkin, Jr., J. Chem. Soc. 97, 2154, 1910.
- (57) B. Luff and W. Perkin, Jr., J. Chem. Soc. 99, 518, 1911.
- (58) B. Mereshkowsky, J. Russ. Phys. Chem. Soc. 45, 1940, 1913.
- (59) R. Padmanabhan and K. Jatkar, J. Am. Chem. Soc. 57, 334, 1935.
- (60) W. Perkin, Sr., J. Chem. Soc. 81, 292, 1902.
- (61) W. Perkin, Jr., J. Chem. Soc. 97, 2129, 1910.
- (62) W. Perkin, Jr., J. Chem. Soc. 99, 727, 1911.
- (63) W. Perkin, Jr., J. Chem. Soc. 99, 741, 1911.
- (64) W. Perkin, Jr. and K. Matsubara, J. Chem. Soc. 87, 661, 1905.
- (65) W. Perkin, Jr. and G. Tattersall, J. Chem. Soc. 87, 1083, 1905.
- (66) W. Perkin, Jr. and G. Tattersall, J. Chem. Soc. 91, 480, 1907.
- (67) W. Perkin, Jr. and J. Thorpe, J. Chem. Soc. 89, 795, 1906.
- (68) W. Perkin, Jr. and O. Wallach, Ann. 374, 198, 1910.
- (69) L. Pesci, Gazz. chim. ital. 16, 225, 1886.
- (70) G. Pigulevsky, E. Kanetskaya, and M. Platonova, J. Gen. Chem. (U.S.S.R.) 7, 873, 1937.
- (71) J. Read and A. Watters, J. Chem. Soc. 1929, 2165.
- (72) A. Richard, Compt. rend. 153, 116, 1911.
- (73) F. Richter and W. Wolff, Ber. 63, 1721, 1930.
- (74) H. Rupe and F. Emmerich, Ber. 41, 1393, 1908.
- (75) H. Rupe and F. Emmerich, Ber. 41, 1750, 1908.
- (76) L. Ruzicka and A. van Veen, Ann. 468, 133, 1929.
- (77) M. Saijew, J. Russ. Phys. Chem. Soc. 44, 1023, 1911.
- (78) M. Saijew, J. Russ. Phys. Chem. Soc. 47, 2128, 1915.
- (79) R. Schiff, Ann. 220, 71, 1883.
- (80) F. W. Semmler, Ber. 39, 4424, 1906.
- (81) F. W. Semmler and A. Becker, Ber. 46, 1814, 1913.
- (82) F. W. Semmler and C. Rimpel, Ber. 39, 2582, 1906.
- (83) F. W. Semmler and E. Schossberger, Ber. 42, 4644, 1909.
- (84) F. Tiemann and R. Schmidt, Ber. 29, 694, 1896.
- (85) J. Timmermans, Bull. soc. chim. Belg. 27, 334, 1913.
- (86) W. Treibs and R. Schmidt, Ber. 61, 459, 1928.
- (87) L. Tschugajew, J. Russ. Phys. Chem. Soc. 36, 993, 1904.
- (88) L. Tschugajew and Pokrowski, J. Russ. Phys. Chem. Soc. 39, 1338, 1907.
- (89) S. Uchida, J. Am. Chem. Soc. 38, 687, 1916.
- (90) E. Urion, Ann. chim. [11] 1, 5, 1934.
- (91) O. Wallach, Ann. 227, 277, 1885.
  - (92) O. Wallach, Ann. 230, 225, 1885.
  - (93) O. Wallach, Ann. 239, 27, 1887.
  - (94) O. Wallach, Ann. 245, 191, 1888.
  - (95) O. Wallach, Ann. 246, 221, 1888.
  - (96) O. Wallach, Ann. 357, 49, 1907.
  - (97) O. Wallach, Ann. 362, 285, 1908.
  - (98) O. Wallach, Ann. 368, 1, 1909.
  - (99) O. Wallach and E. Conrady, Ann. 252, 141, 1889.
  - (100) O. Wallach and O. Rahn, Ann. 324, 79, 1902.

## 3. CYCLENES WITH TWO ALKENYL OR ONE ALKADIENYL SUBSTITUTIONS, C_nH_{2n-6}

C12 H18 B. P., °C. @ 760mm M. P.,°C.  $D_4^{20}$ Name and Carbon Skeleton  $n_D^{20}$ Additional Data 1,5-Dimethyl-3-(2methylpropen-2-ylidene)-cyclohexene-1 103 to 106 1 0.86191 1.52159 1 @ 17mm @ 22.2° @ 22.3° 1.51543 1  $n_{H_a}^{22.8}$ 1.53781 1  $n_{H_{B}}^{22.3}$ 1.55360 1  $n_{H_{\infty}}^{22.3}$ C1.H20 1,3,3-Trimethyl-2butadienylcyclohexene-x 108 to 110 ° 0.8784 6 1.5320 ° @ 15mm @ 18° @ 18° 2,4,4-Trimethyl-3-butadien-x,x-ylcyclohexene-x 1.5000 6 96 to 97 6 0.8675 @ 18° @ 16.5mm @ 18°

Name and Carbon Skeleton	M. P.,°C.	B. P., °C.	7320	20	4122 10
	M. I., C.	@ 760mm	D4 20	n ²⁰	Additional Data
1-Methyl-4-(1,5-di- methylhexadien-2,4- yl)-cyclohexene-1					$[\alpha]_D^{30} = -64.0^{\circ}  ^{8}$ $[\alpha]_D = -73.38^{\circ}  ^{18}$
(Zingiberene)  C  C  C  C  C  C  C  C  C  C  C  C  C		160 to 161 13 @ 327mm 137 to 139 10 @ 17mm 128 to 130 11 @ 12mm 128 to 129 14 @ 9mm 119 to 123 8 @ 3mm	$0.8638 \text{ s}$ $D_{30}^{30}$ $0.8684 ^{14}$ $0.8731 ^{12}$ $0.874 ^{11}$ @ 17° $0.8733 ^{10}$ @ 16°	$1.4870^{8}$ @ $30^{\circ}$ $1.49399^{13}$ $1.4956^{14}$ $1.4975^{11}$ $1.4984^{10}$ @ $16^{\circ}$ $1.49041^{13}$ $n_{H_a}^{20}$ $1.50319^{13}$ $n_{H_B}^{20}$ $1.51112^{13}$ $n_{H_A}^{20}$	$\left[\alpha\right]_{D} = -60^{\circ 10}$ $\left[\alpha\right]_{D} = -59.5^{\circ 11}$
1-Methyl-4-(1,5-di- methylhexene-4- ylidene)-cyclo- hexene-1 (Bisabolene)		262 to 263 2.3	0.8717 15	1.4923 15	
C-C-C-C-C-C C		@ 756mm 261 to 262 12 @ 752mm 261 to 262 5 @ 751mm 133 to 134 15 @ 12mm 131 2 @ 9mm	@ 21° 0.873 ° 0.8798 ° 0.873 ° @ 15° 0.8759 ° @ 15°	@ 21° 1.4901 5 1.4935 2 1.4910 3 @ 19.5°	
	·	· In a last			

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
l-4-Isopropenyl-1-(4- methylpenten-3-yl)- cyclohexene-1					$\left[\alpha\right]_D = -10.59^{\circ}$
(Cycloisopropenemyrcene)  C-C-C=C-C C C C		242 to 244 4 136 to 139 9 @ 14mm 136 @ 11mm 4	0.8817 ° @ 19° 0.905 4	1.4915 4 1.4993 9 @ 19°	
3-Methyl-5-(2,6-dimethylheptadien-x,x-yl)-cyclohexene-1		143 to 144 7 @ 15mm	0.923 ⁷ @ 18.5° 0.920 ⁷ @ 16.5°	1.4988 ⁷ @ 18.5° 1.5040 ⁷ @ 16.5°	
9.					

- (1) K. v. Auwers and G. Peters, Ber. 43, 3094, 1910.
- (2) Burgess and Co., Oct. 1909, 24.
- (3) H. Burgess and T. Page, J. Chem. Soc. 85, 414, 1904.
- (4) H. Dieterle and P. H. Kaiser, Arch. Pharm. 270, 413, 1932.
- (5) E. Gildemeister, and W. Müller through O. Wallach, "Festschrift," p. 414.
- (6) J. Kandel, Compt. rend. 205, 994, 1937.
- (7) E. Knoevenagel, J. prakt. Chem. [2] 97, 288, 1918.
- (8) K. Moudgill, J. Indian Chem. Soc. 5, 251, 1928.
- (9) L. Ruzicka and W. Bosch, Helv. Chim. Acta 14, 1336, 1931.
- (10) L. Ruzicka, J. Meyer, and M. Mingazzini, Helv. Chim. Acta 5, 345, 1922.
- (11) L. Ruzicka and A. G. van Veen, Ann. 468, 143, 1929.
- (12) Schimmel and Co., Oct. 1909.
- (13) O. Schreiner and R. Kremers, Pharm. Arch. 4, 141, 1901.
- (14) F. W. Semmler and A. Becker, Ber. 46, 1814, 1913.
- (15) J. L. Simonsen, "The Terpenes," Vol. 2, p. 493, London, Cambridge University Press, 1932.

## 

C ₁₄ H ₂₂	SUE	STITUTIO	$N, C_nH_{2n}$	-8	
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	n _D ²⁰	Additional Data
1-(3-Propylhexen-3- yne-1)-cyclohexene-1					
C-C-C   Ç≡C-C=C-C-C		98 to 100 ² @ 2mm	0.8796 2	1.5160 ²	
C ₁ , H ₂ , 2,4,4-Trimethyl-3-(3- methylhexatrien- 1,3,5-yl)-cyclohexene-1					
C C=C-C=C-C=C		127 to 130 ¹ @ 10mm			
			•		
C ₁₇ H ₂₆ 1-(3-Butylhepten-3- yne-1)-cyclohexene-1					•
C=C-C-C-C		112 to 113 ² @ 2mm	0.8724 3	1.5110 *	
$\smile$					

⁽¹⁾ P. Karrer, H. Salomon, R. Morf, and O. Walker, Helv. Chim. Acta 15, 878, 1932.

⁽²⁾ G. A. Nesty and C. S. Marvel, J. Am. Chem. Soc. 59, 2662, 1937.

## IX. CYCLODIENES OR CYCLODIOLEFINS

- 1. Cyclodienes with alkyl substitutions, C_nH_{2n-4}
- 2. Cyclodienes with an alkenyl or olefin substitution,  $C_nH_{2n-6}$

Name and Carbon Skeleton	M. P.,°C.	В. Р., °С. @ 760mm	/) ²⁰	# _D	Additional Data
Cyclopentadiene					
Cyclopentadiene	- 85 a	42.5 28 40 81 41 56 41.5 to 42 83 41 116	0.803 ²⁶ 0.7983 ¹¹⁰ @ 19.5° 0.80475 ⁵⁴ @ 18.6° 0.8070 ⁴ @ 16.1° 0.8085 ⁴ @ 16.1° 0.8071 ²⁷ @ 15.7° 0.81500 ⁵⁶ D ¹⁶ 0.8083 ²⁷ @ 14.1°	1.4398 110 @ 19.5° 1.4446 56 @ 18.6° 1.44627 4 @ 16.1° 1.44632 4 @ 16.1° 1.44113 82	

Name and Carbon Skeleton	м. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	11 ²⁰	Additional Data
x-Methylcyclopenta- diene-x,x		69 to 70 110 @ 736mm	0.8200 ¹¹⁰ @ 18°	1.4460 110 @ 18°	
C ₈ H ₁₂ 1-Methyl-3-ethyl- cyclopentadiene-1,3		135 23			
C ₉ H ₁₄ 1-Methyl-3-isopropyl- cyclopentadiene-1,3		152 to 158 % 50 to 55 % @ 20mm	0.840 85	1.4758 85	

					C9 III
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
3-Methyl-1-isopropyl-cyclopentadiene-1,3		147 to 149 84	0.825 ⁸⁴ @ 15°	1.4630 84 @ 15°	
3-Methyl-1-isopropyl- cyclopentadiene-1,3-					
3-Methylene-1-iso-propyl-cyclopentene-1  C-C-C C-C-C  or  or  C C-C-C		166 to 167 %	0.845 % @ 21°	1.4913 %	
C ₁₀ H ₁₆ 1,5-Dimethyl-4-iso- propylcyclopenta- diene-1,3  (Isothujene)		172 to 175 90	0.8386 55	1 47145 91	$\left[\alpha\right]_D = -1.9^{\circ}        \text$
(Tanacetene)		171 to 178 ss 171 to 176 ss 171 to 176 ss 170 to 172 ss 60 to 63 rs @ 14mm	@ 22° 0.836 °1 0.840 87,90 0.8408 74 0.8400 54 @ 17°	1.47145 91 1.4761 90 1.476 74 1.47674 55 1.4789 54 @ 17°	
C				l l	

۶ <b>, H</b> ,		400			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
	M. P.,°C.		0.8296 21 D25 0.8347 52 @ 22° 0.840 19 0.8410 49 0.8451 104	1.4679 52 @ 22° 1.4742 17 1.4699 15 1.4755 49 1.4628 108 @ 18.5° 1.4788 112 @ 16° 1.4760 30 @ 16° 1.47254 33 n _{H_o} 1.46371 21 n _{H_o} 1.48687 33 n _{H_o} 1.47672 21 n _{H_o} 1.47672 21 n _{H_o} 1.48493 21 n _{H_o} 1.48493 21 n _{H_o} 1.48493 21 n _{H_o} 1.48493 21	Additional Data

		407			C ₆ H ₈
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
Cyclohexadiene-1,4  Cyclohexadiene-x,x		88.4 to 89.4 104 @ 769mm 85.5 106 85 to 87 111 84 to 86 11 86 to 87 78 @ 750mm 78 to 79 111 @ 750mm 82 to 83 31 82 to 84 18 @ 718mm	0.8357 39 D25 0.8569 104 0.8471 105 0.8519 105 @ 15° 0.8605 78 @ 10° 0.8466 18 @ 21.2° 0.846 31 0.8478 16	1.46806 39 @ 25° 1.4679 111 1.4729 106 1.4781 104 @ 15.2°  1.46921 16 @ 21.2° 1.46921 18 ### 1.48258 16 ### 1.49092 16 *	*Index of refraction for other wave lengths given by author. 18
C ₇ H ₁₀ 2-Methylcyclo-hexadiene-1,3		110 ¹⁰⁶ @ 741mm	$0.8292$ ${108,107 \atop 107}$	$n_{H_{\gamma}}^{21,2}$ 1.4710 $\begin{cases} 108, \\ 167 \end{cases}$	

C, H,,		408	<del>}</del>	,	
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Date
d-5-Methylcyclo- hexadiene-1,3		105 5 4-	0.8274 108	1.4680 105	
c		105.5 to 106 ¹⁰⁵	0.8214	1.4000	
5-Methylcyclohexa- diene-1,3		100.5 to	0.8252 38	1.46619 38	
		101.5 ³⁸ @ 762mm	@ 22.5°	@ 22.5° 1.46225 38 1.46225 38 1.48519 38 1.48519 38 1.4874	
x-Methylcyclohexa- diene-1,3					
		108 to 110 ⁶⁵ 106 to 107 ⁶³	0.7970 °5 0.8014 °3 @ 18.3° 0.8088 °5 @ 15°	1.4444 ⁶⁵ 1.4460 ⁵³ @ 18.3°	

	409					
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data	
1,3-Dimethylcyclo- hexadiene-1,3						
(Dihydro-m-xylene)  C C C		135 to 137 65 135 to 136 43 133 to 135 3 133 to 134 3 132 to 135 3 131 87	0.8324 65 0.8373 43 0.8389 65 0.8270 3 @ 17.6° 0.8356 3 @ 16.6° 0.8365 3 @ 16.2°	1.441 87 @ 23° 1.4697 65 1.4787 65 1.4787 65 1.4856 43 1.46621 3 @ 17.3° 1.47368 3 @ 16.6° 1.47388 3 @ 16.2° 1.46621 3 n17 3 1.46959 3 n16.6 1.47934 3 n16.2 1.47934 3 n17.3 1.48249 3 n16.2 1.48287 3 n16.2 1.48287 3 n16.2 1.49053 3 n16.3 1.49053 3 n16.4 1.49053 3 n16.5 1.49180 3 n16.2 1.49180 3		

Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
1,4-Dimethylcyclo- hexadiene-1,3		135 to 138 s 29.7 to 30 70 @ 13mm 29.5 to 29.9 70 @ 11mm	0.8306 ° @ 19° 0.8358 ° @ 16.3° 0.8366 ° @ 15.5°	1.47921 70 1.47966 8 @ 19° 1.49380 6 @ 16.1° 1.49385 6	
				@ 15.7° 1.47535 ° n _H 1.47554 70 n _H 1.48219 ° n _H 1.47793 ° n _H 1.47793 °	
				1.49129 5 $n_{H_{\beta}}^{10}$ 1.49079 70 $n_{H_{\beta}}^{16.3}$ 1.49380 6 $n_{H_{\beta}}^{16.1}$ 1.49385 6 $n_{H_{\beta}}^{16.7}$ 1.50191 5	
				n _{H_{\gamma}} 1.50074 ⁷⁰ n _{H_{\gamma}} 1.50459 ⁶ n _{H_{\gamma}} 1.50445 ⁶ n _{H_{\gamma}}	
		·			

Name and Carbon Skeleton  1,5-Dimethylcyclo- hexadiene-1,3	M. P.,°C.	B. P., °C. @ 760mm	D40	n20	Additional Data
1,5-Dimethylcyclo- hexadiene-1,3				D D	Additional Data
					·
c c		128 to 130 39 128 to 129 7 124 to 126 7 @ 756mm 130 to 132.3 7 @ 754mm 128 to 130 7 @ 754mm 126.8 to 128 7 @ 755mm 126 to 128 35 @ 750mm	0.821 7 0.8229 7 @ 19.8° 0.8189 7 @ 19.7° 0.8205 7 @ 18.4° 0.8221 7 @ 18° 0.8203 39 Dis 0.8272 7 @ 16.2°	1.471 7 1.47212 7 @ 19.7° 1.46877 7 @ 19.5° 1.46946 7 @ 18.9° 1.47103 7 @ 18.7° 1.46360 38 @ 18° 1.47466 7 @ 16.0° 1.467 7    1.46828 7   1.146828 7   1.146828 7   1.146561 7   1.18.9 1.46719 7   1.18.1 1.47052 7   1.18.1 1.47052 7   1.18.1 1.47052 7   1.18.1 1.47052 7   1.18.1 1.47052 7   1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.47052 7  1.18.1 1.	
				,	

Name and Carbon Skeleton	м. Р.,°С.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
1,5-Dimethylcyclo- hexadiene-1,3 (Continued)					
				1.48725 7 n ^{19.6}	
				$n_{H_{\gamma}}^{19.5}$ 1.48821 7	
				$n_{H_{\gamma}}^{18.9}$ 1.48978 ⁷	
				1.49367 7	
•					
2,3-Dimethylcyclo- hexadiene-1,3					
, c		135.5 43	0.8521 43	1.4895 43	
c					
2,3 or 5,6-Dimethyl- cyclohexadiene-1,3					
(Karanthrene)		138 to 139 72	0.8373 59 0.8521 43	1.4692 ⁵⁹	
or C		135.5 ⁴³ 134 to 137 ⁵⁹ 134 to 135 ⁶²	0.8531 ⁷² @ 18.6°	1.49118 ³⁹ 1.4848 ⁷²	
		134 63		@ 18.6° 1.4966 39 @ 18°	

The first transfer of the second seco					
Name and Carbon Skeleton	м. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Pata
2,5-Dimethylcyclo- hexadiene-1,3		132.5 to 133.5 106,107 131.5 to 132.5 106,107 @ 740mm	0.8223 \bigg\{\bigg\{\text{106.}\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1.4675 \bigg\{\bigg\{\text{106}, \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	, and the second
2,6-Dimethylcyclo- hexadiene-1,3		129 to 130 106 @ 745mm	0.8225 100 0.8268 100 @ 15°	1.4675 106	$[\alpha]_D = 27.38^{\circ 106}$
5,5-Dimethylcyclo- hexadiene-1,3		111 ²⁰ @ 770mm 110 to 111 ³⁹	0.810 ₃ 0.8083 ⁶¹ $D_{25}^{25}$ 0.8117 ⁶¹ $D_{20}^{20}$ 0.814 ³⁹ $D_{18}^{18}$ 0.8153 ⁶¹ $D_{15}^{15}$ 0.81573 ⁶¹ @ 14° 0.8193 ⁶¹ $D_{10}^{10}$ 0.8246 ⁶¹ @ 4°	1.45630 39 @ 18° 1.45482 61 n ¹⁴ 1.46733 61 n ¹⁴ H _B 1.47530 61 n ¹⁴ H _Y	$\frac{dD}{dt} = -0.0008_{7}/^{\circ}\text{C.}$ (5° to 25°)

Name and Carbon Skeleton	М. Р.,°С.	В. Р., °С. @ 760mm	D420	$n_D^{20}$	Additional Data
1,4-Dimethylcyclo- hexadiene-1,4		133 to 134 ° @ 720mm			
3,3-Dimethylcyclo- hexadiene-1,4			0.8421 ³⁹ @ 18° 0.8433 ³⁹ D ₁₈ D ₁₈	1.47691 ³⁹ @ 18°	
1,3-Dimethylcyclo- hexadiene-x,x		133 to 134 33 132 to 134 89	0.8275 89	1.4675 **	
x,x-Dimethylcyclo- hexadiene-x,x		123 **	0.7948 ⁵³ @ 20.5° 0.7998 ⁵³ @ 15°	1.4416 ss @ 20.5°	
1.0					

Name and Carbon Skeleton M	. Р.,°С.	B. P., °C. @ 760mm	D420	11 20 D	Additional Data
5-Isopropylcyclo- hexadiene-1,3		165 to 167 84	0.846 *4	1.495 84	,
1-Isopropylcyclo- hexadiene-x,x		140 77	0.8142 77	1.4628 77	
1-Methyl-4-ethylcyclo- hexadiene-1,3		160.9 to 161.2 2 @ 761mm 159.5 to 160 4 @ 751mm 51 to 51.2 70 @ 14mm 46 70 @ 12mm	0.8371 ² @ 19.5° 0.8408 ² @ 18.8° 0.8393 ² @ 18.4° 0.8408 ⁷⁰ @ 15.6° 0.8411 ⁷⁰ @ 15.2°	1.48413 70 1.48250 2 1.48181 2 @ 19.90 1.49263 2 @ 180 1.47828 2 1.47750 2 1.47823 2 1.47823 2 1.48002 70 1.49353 2 1.49353 2 1.49353 2	

Ug 1114					
Name and Carbon Skelcton	<i>M. P.</i> ,°€.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
1-Methyl-4-ethylcyclo- hexadiene-1,3 (Continued)	and the state of t				
				1.49294 ² $n_{H_{\beta}}^{10.9}$	
				1.49345 2	
				$ \begin{array}{c} n_{H_{\beta}}^{18} \\ 1.49537 & \\ n_{H_{\beta}}^{15.6} \end{array} $	
				1.50422 ² $n_{H_{\gamma}}^{20}$	
				1.50371 ² $n_{H_{\gamma}}^{10.9}$	
				1.50347 ² n ¹⁸ H	
				1.50574 70 $n_{H_{\gamma}}^{15.5}$	
1,3,5-Trimethylcyclo- hexadiene-x,x					
(Dihydromesitylene)		166 to 168 65	0.8454 85 0.8475 85	1.4773 65 1.4810 65	
c c			0.826 ⁹³ @ 18°		

Name and Carbon Skeleton	M. P.,°C.	B. P., °C, @ 760mm	$D_4^{20}$	n ²⁰ D	Additional Data
1-Methyl-4-propyl- cyclohexadiene-1,3					
C-C-C		65.4 to 66 ⁷⁰ @ 13.5mm 62 to 72 ⁹⁸ @ 6mm	0.8353 70 0.8713 98 @ 15° 0.8726 98 $D_0^{15}$	1.47942 70 @ 18.9° 1.48761 98 @ 15° 1.47535 70 n 18.9 1.49013 70 n 18.9 1.49979 70 n 10.9 n 10.9 n 10.9	
1-Methyl-4-isopropyl- cyclohexadiene-1,3					
$(\alpha ext{-Terpinene})$		174 to 176 36 @ 766mm 163 to 166 64 @ 765mm 179 to 181 34 179 to 180.5 8 174.8 to 175.2 76 173.5 to 175 67 @ 755mm 173.5 to 174.8 69 @ 755mm 174.8 to 175.4 1 @ 750mm 160 to 164 64 @ 750mm 174 to 176 1 @ 742mm 68 to 70 41 @ 15mm 62 @ 15mm 62 @ 15mm 67	$0.8441^{36}$ $D_{27}^{27}$ $0.8529^{25}$ $D_{23}^{23}$ $0.8443^{79}$ @ $20.2^{\circ}$ $0.834^{76}$ $0.845^{75,76}$ $0.846^{94}$ $0.8361^{2}$ @ $19.6^{\circ}$ $0.8353^{70}$ @ $19.6^{\circ}$ $0.8353^{70}$ @ $18.9^{\circ}$ $0.8411^{39}$ @ $18.5^{\circ}$ $0.8423^{39}$ $D_{18.6}^{18.6}$ $0.8474^{42}$ $D_{18.5}^{18.6}$ $0.8382^{99}$ @ $18.3^{\circ}$	1.48451 ³⁶ @ 27° 1.4748 ²⁵ @ 23° 1.49065 ⁷⁹ @ 20.2° 1.4784 ⁷⁵ 1.4789 ⁹⁴ 1.480 ⁶⁴ 1.4905 ^{75,76} 1.47810 ¹ @ 19.4° 1.47942 ⁷⁰ @ 18.9° 1.48724 ⁴² @ 18.5° 1.48579 ⁴¹ @ 18° 1.48005 ¹ @ 16.9°	

J10 II 16		110			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
1-Methyl-4-isopropyl- cyclohexadiene-1,3 (Continued)					
(Convinuea)		65.4 to 66 70 @ 13.5mm 60 to 63 42 @ 12mm 59 to 62 75 @ 10mm 59 to 60 1 @ 11.5mm 61.5 to 62.5 76 @ 10mm	0.838 *7 @ 18° 0.8453 *1 @ 16.2° 0.8372 1 @ 16° 0.8389 1 @ 16° 0.8408 1 @ 16° 0.8504 2 @ 16° 0.8538 2 @ 12.9° 0.8561 2 @ 12.1°	1.48107 1 @ 16.6° 1.48015 1 @ 15.8° 1.48722 2 @ 14.8° 1.48218 1 @ 13° 1.48822 2 @ 12.5° 1.49070 2 @ 12.5° 1.49070 2 # 12.5° 1.49070 3 # 10.4 1.47535 1 # 10.4 1.47535 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1.47637 1 # 10.6 1	
				1.48837 1 116.4 H B	

	C ₁₀ H ₁				
Name and Carbon Skeleton	M. P.,°C.	В. Р., °С. @ 760mm	$D_4^{26}$	n"0	Additional Data
l-Methyl-4-isopropyl- cyclohexadiene-1,3 (Continued)					
				1.49013 ¹ n ^{18.9} H _β 1.49022 ¹	
				1.49707 2 114.8 H _B	
				1.49286 ¹ 1.49286 ¹ 1.49828 ²	
				$ \begin{array}{c c} n_{H_{\gamma}}^{12.5} \\ 1.50087^{2} \\ n_{H_{\gamma}}^{12.5} \end{array} $	
				1.51166 79  1.52166 79  1.49795 1	
				1.49979 1 n18.9	
				1.50701 1 $n_{H_{\gamma}}^{18.5}$	
				1.50006 1 $n_{H_{\gamma}}^{16.9}$ 1.50064 1	
				$\begin{bmatrix} n_{H_{\gamma}}^{16.6} \\ 1.50018 \\ n_{H_{\gamma}}^{16.8} \end{bmatrix}$	
				1.50631 ² 1.50631 ² 1.50254 ¹	
				$n_{H_{\gamma}}^{13}$ $1.50744^{2}$ $n_{H_{\gamma}}^{12.5}$	
				1.51031 ² $n_{H_{\gamma}}^{12.5}$	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. (# 760mm	$D_4^{20}$	$n_D^{v_0}$	Additional Data
1-Methyl-5-isopropyl-cyclohexadiene-1,3		169 to 171 ⁴⁷	$0.8515^{47}$ $D_{20}^{20}$	1.47270 47	
2-Methyl-5-isopropyl-cyclohexadiene-1,3  (d-α-Phellandrene)  C C-C C		175 to 176 ^{72,74} 172 to 173.5 ¹⁸ 89.3 to 90.8 ¹⁸ @ 56.5mm 70 ⁴⁰ @ 15mm 66 ⁴⁰ @ 14mm 61 ⁹⁷ @ 11mm	0.8324 18 @ 30° 0.8473 40 @ 21° 0.844 85 0.8447 40 0.8440 97 @ 19° 0.8565 74 @ 15°	1.4695 ¹⁸ @ 30° 1.48825 ⁴⁰ @ 21° 1.48345 ⁴⁰ 1.4732 ⁹⁷ @ 19°	$[\alpha]_D = +44.66^{\circ}$ 88 $[\alpha]_D = +45^{\circ}$ 40 $\frac{dD}{dt} = -0.0023/^{\circ}\text{C.}$ (15° to 25°)

					C ₁₀ II
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
2-Methyl-5-isopropyl- cyclohexadiene-1,3					$ \alpha _D = -115^{\circ} 67$
(l-α-Phellandrene)		174 to 177 ⁴ @ 759mm 171 to 172 ⁸⁰ @ 758.2mm 173 to 175 ⁶⁰ @ 758mm 173 to 175 ⁶⁷ @ 754mm 67 to 68 ⁸⁰ @ 22mm 65.2 to 66 ^{5,8} @ 17mm 64 to 66 ⁵⁷ @ 17mm 58 to 59 ⁸⁰ @ 16mm 60 to 60.5 ^{67,69} @ 15mm 65 ⁹² @ 12mm	0.8459 °°     @ 30° 0.8372 °° 0.8387 °° 0.25° 0.8426 °° @ 22° 0.8410 °° 0.8425 °° 0.8465 °° @ 19° 0.8490 °° @ 17.1° 0.844 °° @ 15° 0.8448 °° @ 15°	1.466 °°	$ \alpha _D^{20} = -112.76^{\circ} \text{ so}$ $ \alpha _D^{20} = -112^{\circ} \text{ so}$ $ \alpha _D^{30} = -18.37^{\circ} \text{ so}$
d $l$ - $lpha$ - Phellandrene		175 to 176 %	0.841 % @ 22°	1.4760 % @ 22°	$ \alpha _D = +4.12^{\circ 95}$

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Data
1-Methyl-4-isopropyl- cyclohexadiene-1,4					$\left[\alpha\right]_D = +2.5^{\circ 68}$
(γ-Terpinene, Moslene)  C C C-C-C		183 67.69 179 to 181 51 179 45 178.5 to 180.5 91 @ 740mm 174 10 69 to 73 65 @ 20mm 72.5 67.69 @ 18mm 65.5 to 68 109 @ 14mm	0.849 *7.89 0.846 *1 0.8515 *8 D16 0.853 *9 @ 15°	1.4783 109 @ 21° 1.4789 51 1.4779 48 1.4785 88 @ 18° 1.4754 71 @ 15.6° 1.4765 67.69 @ 14.5° 1.4720 71 n15.6 n15.6 1.4827 71 n15.6 n15.6 1.4894 71 n15.6 n15.6	
Methyl-isopropyl- cyclohexadiene		171 to 172 °3	0.8170 ⁶³ @ 15.5°	1.4564 ⁵³ @ 15.5°	
1,3-Diethylcyclo- hexadiene-1,3		68 <u>.@</u> 9mm 14			

		120			- 10 10
Vame and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
1,5-Diethylcyclo- hexadiene-1,3		166 to 168 4	$0.8659 \stackrel{45}{-}$ $D_{20}^{20}$	1.47575 45	·
1,2-Diethylcyclo- hexadiene-x,x		60 to 63 74 @ 14mm	0.8408 74	1.476 74	
1,2,3,4-Tetramethyl-cyclohexadiene-1,3		180 to 182 65	0.8482 65 0.8516 65	1.4816 ⁶⁵ 1.4850 ⁶⁵	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
1-Methyl-4-isopropyl- cyclohexadiene-x,x					$[\alpha]_D^{20} = +8.40^{\circ 13}$
		173.5 45 172 to 174 46,60 75 to 80 ¹³ @ 9mm	$0.8272$ 46 $0.8337$ 45 $0.8491$ 13 $0.8408$ 50 $D_{20}^{20}$ $0.8540$ 50 $D_{0}^{0}$	1.464 ⁴⁶ 1.46430 ⁴⁶ 1.46539 ⁴⁵ 1.49824 ¹³	
C., H.,  1,3-Dimethyl-4-iso- propylcyclo- hexadiene-1,3		184 to 186 ⁶⁶	0,8585 66	1.4845 66	$ \alpha _D^{16} = +0.04^{\circ}$ 66
c-c-c		@ 737mm	@ 25°	@ 25°	
1-Methyl-3-ethyl-4- isopropylcyclo- hexadiene-1,3		100 4 - 202 8	0.9621.88	1.4854 66	$[\alpha]_D^{16} = +0.07^{\circ}$ 66
C-C-C		199 to 202 ⁶⁶ @ 737mm 83 to 85 ⁶⁶ @ 15mm	0.8631 ⁶⁶ @ 25°	@ 25°	

					O13 11 2 1
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Data
1-Methyl-3-propyl-4- isopropylcyclo- hexadiene-1,3					
C-C-C C-C-C		104 to 106 ⁶⁶ (@ 14mm	0.8872 ⁶⁶ @ 25°	1.4865 % @ 25°	
C, H ₁₀ Cycloheptadiene-1,2		118 to 119 22	0.8532 *2		
Cycloheptadiene-1,3		120 to 121 ¹⁸ 120 to 121 ¹⁰¹ @ 724mm 118 to 119 ¹⁰¹ @ 720mm 118 to 119 ¹⁰² @ 715mm	0.8679 ²⁹ @ 17.6° 0.8859 ²⁸ @ 12.4° 0.8809 \{ \begin{small} 100 \\ 0 \\ 0 \end{small} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \	1.50066 28 $n_{H_a}^{12.4}$ 1.51663 28 $n_{H_B}^{12.4}$ 1.49597 29 $n_{H_a}^{17.6}$ 1.51202 29 $n_{H_B}^{17.6}$	*Index of refraction values for other wave lengths given by ref. (29).

C10 III 16		420			
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
2,6,6-Trimethylcyclo- heptadiene-1,4					
(Euterpene)		161 to 165 12			
c c					
$\mathbb{C}_{\mathbf{s}}\mathbf{H}_{12}$					
Cycloöctadiene-1,3		39.5 ¹⁰² @ 16.5mm	0.884 ¹⁰³ @ 0°		
Cycloöctadiene-1,4 or -1,5		143 to 144 103	0.887 ¹⁰³ @ 0°		
Cycloöctadiene-1,5		50 to 52 ²² @ 17mm	0.8564 ²² @ 20.7°	1.49646 ²² @ 20.7°	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
3,4-Dimethylcyclo- öctadiene-1,5		68 to 71 ²² @ 15mm	0.8623 ²² @ 13°	1.49036 ²² @ 13°	
C		G Tomas			
Cyclotriacontadiene- 1,16 or -1,15					
	50 to 52 73	240 ⁷³ @ 0.4mm	0.8218 ⁷³ @ 80°	1.4564 ⁷³ @ 80°	
$C_{az}$ $H_{co}$ 1,16-Dimethylcyclo- triacontadiene-1,16 or -1,15					*Several values for He listed 12
	64 to 65 73	250 @ 1mm ⁷³	0.8302 ⁷³ @ 80°	1.4641 ⁷³ @ 80° *	

- (1) K. v. Auwers and F. v. Heyden, Ber. 42, 2404, 1909.
- (2) K. v. Auwers, Ber. 42, 2424, 1909.
- (3) K. v. Auwers and F. Eisenlohr, Ber. 43, 827, 1910.
- (4) K. v. Auwers and F. Eisenlohr, Ber. 43, 806, 1910.
- (5) K. v. Auwers and F. Eisenlohr, J. prakt. Chem. [2] 82, 65, 1910.
- (6) K. v. Auwers and R. Hinterseber, Ber. 48, 1357, 1915.
- (7) K. v. Auwers and G. Peters, Ber. 43, 3111, 1910.
- (8) K. v. Auwers, W. Roth, and F. Eisenlohr, Ann. 373, 267, 1910.
- (9) A. Baeyer, Ber. 25, 2122, 1892.
- (10) A. Baeyer, Ber. 26, 232, 1893.
- (11) A. Baever, Ann. 278, 88, 1894.
- (12) A. Baeyer and V. Villiger, Ber. 31, 2067, 1898.
- (13) A. Berkenheim, Ber. 25, 686, 1892.
- (14) E. E. Blaise and M. Moire, Bull. soc. chim. [4] 3, 13, 1909.
- (15) J. Brühl, Ber. 17, 1065, 1894.
- (16) J. Brühl, J. prakt. Chem. [2] 49, 201, 1894.
- (17) E. P. Carr and H. Stucklen, J. Chem. Phys. 6, 55, 1938.
- (18) A. Clover, Am. Chem. J. 39, 613, 1908.
- (19) R. Criegee, Ann. 481, 263, 1930.
- (20) A. Crossley and H. Le Sueur, J. Chem. Soc. 81, 821, 1902.
- (21) A. Crossley, J. Chem. Soc. 85, 1404, 1904.
- (22) O. Doebner, Ber. 35, 2129, 1902.
- (23) R. Duden and R. Freydag, Ber. 36, 944, 1903.
- (24) F. Ebel, R. Brunner, and P. Mangelli, Helv. Chim. Acta 12, 19, 1929.
- (25) L. Elson, C. Gibson, and J. Simonsen, J. Chem. Soc. 1929, 2732.
- (26) A. Etard and P. Lambert, Compt. rend. 112, 945, 1891.
- (27) J. F. Eykman, Chem. Weekblad 4, 41, 1907.
- (28) J. F. Eykman, quoted by R. Willstätter, Ber. 31, 1534, 1898.
- (29) J. F. Eykman, quoted by R. Willstätter, Ann. 317, 232, 1910.
- (30) E. Farmer and W. Scott, J. Chem. Soc. 1929, 172.
- (31) W. Faragher, W. Gruse and F. Garner, Ind. Eng. Chem. 13, 1044, 1921.
- (32) A. Favorsky, J. Gen. Chem. (U.S.S.R.) 6, 720, 1936.
- (33) E. Fortey, J. Chem. Soc. 73, 932, 1898.
- (34) D. Hammick and D. Langrish, J. Chem. Soc. 1937, 797.
- (35) C. Harries, Ber. 35, 1166, 1902.
- (36) C. Harries, Ann. 328, 322, 1903.
- (37) C. Harries, Ber. 41, 1698, 1908.
- (38) C. Harries and R. Seitz, Ann. 395, 211, 1913.
- (39) C. Harries and W. Antoni, Ann. 328, 88, 1903.
- (40) C. Harries and M. Johnson, Ber. 38, 1832, 1905.
- (41) C. Harries and R. Majema, Ber. 41, 2516, 1908.
- (42) C. Harries and G. Morrell, Ann. 410, 71, 1915.
- (43) W. Haworth, J. Chem. Soc. 103, 1242, 1913.
- (44) W. Haworth, quoted by W. Rudolph, Arch. Pharm. 254, 423, 1916.
- (45) G. Henderson and R. Boyd, J. Chem. Soc. 99, 2159, 1911.
- (46) G. Henderson and S. Schotz, J. Chem. Soc. 101, 2563, 1912.
- (47) G. Henderson and T. Smeaton, J. Chem. Soc. 117, 144, 1920.
- (48) G. Henderson and M. Sutherland, J. Chem. Soc. 97, 1619, 1910.
- (49) F. Hofmann and P. Damm, Schlesischen Kohlenforschungs inst. d. Kaiser Wilhelm Ges. 2, 97, 1925; Chem. Zentr. 1926, I, 2342.
- (50) R. Horiucki, Mem. Coll. Sci. Kyoto Imp. Univ. Ser. A 11, No. 3, 171, 1928.
- (51) K. Kafuku, T. Ikeda, and C. Hata, J. Chem. Soc. Japan, 56, 1186, 1935.
- (52) B. Kazansky and L. Volfson, J. Gen. Chem. (U.S.S.R.) 8, 1685, 1938.

- (53) E. Knoevenagel, Ann. 297, 113, 1897.
- (54) I. Kondakow and V. Skivorzow, J. prakt. Chem. [2] 69, 1176, 1904.
- (55) I. Kondakow and V. Skivorzow, J. Russ. Phys. Chem. Soc. 42, 497, 1910.
- (56) G. Kräemer and A. Spilker, Ber. 29, 552, 1896.
- (57) R. Leimbach, quoted by O. Wallach, "Festschrift" Oct. 1909, 502; Chem. Zentr. 1909, II, 1870.
- (58) W. Markownikoff, J. Russ. Phys. Chem. Soc. 27, 285, 1895; Ber. 29, Ref. 89, 1896.
- (59) H. Meerwein, Ann. 405, 148, 1914.
- (60) K. Moudgill and P. Vridhchalam, Perfumery, Essential Oil Record 13, 173, 1922.
- (61) W. H. Perkin, Sr., quoted by A. Crossley and H. Le Sueur, J. Chem. Soc. 81, 821, 1902.
- (62) R. Piccard, Ber. 11, 2122, 1878.
- (63) R. Piccard, Ber. 12, 578, 1879.
- (64) S. Pickles, J. Chem. Soc. 93, 862, 1908.
- (65) A. Pictet and M. Kaiser, Ann. chim. [9] 10, 299, 1918.
- (66) J. Read and A. Watters, J. Chem. Soc. 1929, 2165.
- (67) F. Richter, Private communication [Beilstein, Suppl. Vol. 5, p. 68].
- (68) F. Richter and W. Wolff, Ber. 60, 477, 1927.
- (69) F. Richter and W. Wolff, Ber. 63, 1714, 1930.
- (70) W. Roth and K. v. Auwers, Ann. 407, 145, 1914.
- (71) W. Roth and F. Banse, quoted by F. Richter and W. Wolff, Ber. 63, 714, 1930.
- (72) W. Rudolph, Arch. pharm. 254, 423, 1916.
- (73) L. Ruzicka and H. Boekenoogen, Helv. Chim. Acta. 14, 1319, 1931.
- (74) F. W. Semmler, Ber. 25, 3343, 1892.
- (75) F. W. Semmler, Ber. 42, 522, 1909.
- (76) F. W. Semmler, Ber. 42, 4171, 1909.
- (77) F. W. Semmler and A. Hoffmann, Ber. 37, 234, 1904.
- (78) J. Senderens, Compt. rend. 177, 1183, 1927.
- (79) F. Sommer, quoted by F. W. Semmler, Ber. 42, 522, 1909.
- (80) H. Smith, E. Hurst, and J. Read, J. Chem. Soc. 123, 1657, 1923.
- (81) H. Staudinger, Ber. 59, 3019, 1926.
- (82) H. Stobbe and F. Reuss. Ann. 391, 151, 1912.
- (83) J. Thiele, Ann. 314, 296, 1900.
- (84) W. Treibs, Ber. 66, 610, 1933.
- (85) W. Treibs, Ber. 66, 1483, 1933.
- (86) W. Treibs and H. Schmidt, Ber. 61, 459, 1928.
- (87) A. Verley, Bull. soc. chim. [3] 17, 175, 1897.
- (88) W. Walbaum and O. Huthig, J. prakt. Chem. [2] 71, 459, 1905.
- (89) O. Wallach, Ann. 258, 319, 1890.
- (90) O. Wallach, Ann. 272, 99, 1893.
- (91) O. Wallach, Ann. 286, 90, 1895.
- (92) O. Wallach, Ann. 287, 371, 1895.
- (93) O. Wallach, Ann. 323, 135, 1902.
- (94) O. Wallach, Ann. 350, 141, 1906.
- (95) O. Wallach, Ann. 359, 265, 1908.
- (96) O. Wallach, Ann. 414, 195, 1918.
- (97) O. Wallach and E. Beschke, Ann. 336, 9, 1904.
- (98) I. Wanin and A. Tschernojarowa, J. Gen. Chem. (U.S.S.R.) 7 (69), 885, 1937.
- (99) R. Willstätter, Ber. 30, 721, 1897.
- (100) R. Willstätter, Ber. 34, 129, 1901.
- (101) R. Willstätter, Ann. 317, 231, 1901.
- (102) R. Willstätter and H. Veraguth, Ber. 38, 1975, 1905.
- (103) R. Willstätter and H. Veraguth, Ber. 40, 957, 1907.
- (104) N. D. Zelinsky, J. Denissenko, and M. Eventova, Compt. rend. acad. sci. U.R.S.S. 1935, I, 313.
- (105) N. D. Zelinsky and A. Gorsky, Ber. 41, 2479, 1908.

- (106) N. D. Zelinsky and A. Gorsky, Ber. 41, 2630, 1908.
- (107) N. D. Zelinsky and A. Gorsky, J. Russ. Phys. Chem. Soc. 40, 1397, 1908.
- (108) N. D. Zelinsky and K. Kozeshkov, Ber. 60, 1102, 1927.
- (109) N. D. Zelinsky and R. Levina, Ber. 62, 339, 1929.
- (110) N. D. Zelinsky and R. Levina, Ber. 66, 477, 1933.
- (111) N. D. Zelinsky and G. S. Pawlow, Ber. 66, 1420, 1933.
- (112) N. D. Zelinsky and A. Titowa, Ber. 64, 1399, 1931.

## 2. CYCLODIENES WITH AN ALKENYL OR OLEFIN SUBSTITUTION, C_nH_{2n-6}

 $C_8H_{10}$ 

The second secon		DOTILOTIC	11, UNLL 211	-0	C ₈ III ₁
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D ₄ ²⁰	$\mu_D^{20}$	Additional Data
5-Isopropylidenecyclo- pentadiene-1,3					
(Dimethylfulvene)  C   C-C		153 to 154 ¹² @ 717mm 46 ¹² @ 11mm	0.881 14 0.8858 12 @ 17°	1.54740 14 1.53913 14 1.53913 14 1.56918 14 1.56918 14 1.720	
C, H,2 3-Cyclopentadien-2,4- ylidenebutane					
(Methylethylfulvene)  C-C-C-C		185 ca 87.4 to 87.9 2 @ 40mm 62.5 13 @ 13mm 27 to 29 14 @ 0.08 to 0.15mm	0.8772 * @ 20.9° 0.878 * 0.879 * .	1.53702 2 @ 20.9° 1.5375 14 1.5377 14 1.52988 1 n20 1 1.50325 14 1.50326 14 1.50326 14 1.505856 14 1.505856 14 1.505857 14 1.505857 14 1.506857 14	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	$\mu_D^{20}$	Additional Data
3-Cyclopentadien-2,4- ylidenepentane					
(Diethylfulvene)		96.8 to 97.2 ¹³ @ 40mm	0.8812 ² @ 16.4°	1.52997 ² @ 16.4°	
c-c-c-c		74.5 to 78.5 ¹ @ 19mm			
C ₀ <b>H</b> ₁₂					
6-Methylene-3,3-di- methylcyclohexa- diene-1,4					
c		38 to 40 4 @ 15mm	0.8360 ³ @ 15.8° 0.8430 ³ @ 15.2°	1.50295 ° @ 15.8° 1.5086 ° @ 14.95°	

		433 C ₁₀ E						
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	1)40	n ²⁰	Additional Data			
3,3-Dimethyl-6-ethyl- idenecyclohexa- diene-1,4								
c-c c		81.5 to 84 4 @ 25mm 71 to 73 3 @ 16mm	0.857 4 0.8614 4 @ 15.5° 0.8613 4 @ 12.8°	1.51572 4 @ 15.15° 1.51477 4 @ 14.7° 1.51072 4 #### 1.50982 4 ##### 1.53015 4 ##### 1.52946 4 ##### 1.54300 4 ##### 1.54300 4 ##### 1.54300 4 ##### 1.54321 4 ######				
C ₁₀ H ₁₄ 3-Methylene-1,6,6- trimethylcyclohexa- diene-1,4		60 to 65 4 @ 15mm	0.8735 4 @ 10.7°	1.51813 4 @ 10.7° 1.51331 4 n _H ^{10.7} 1.53213 4 n _H ^{10.7} 1.54435 4 n _H ^{10.7}				

U _{II} III _I	<del></del>	n n og			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
2,3-Dimethyl-6-iso- propenylcyclo- hexadiene-1,3					$[\alpha]_D^{21} = +69.12^{\circ 7.8}$ $[\alpha]_D = 103.49^{\circ 9}$
		197 * @ 746mm 90 to 91.5 ¹ @ 21mm 89.2 to 89.4 ¹ @ 18mm 82 to 83 * @ 15mm 75 to 76 • @ 10mm 72 to 73 • @ 8mm	0.8724 8 @ 21.1° 0.8747 9 0.8738 1 @ 19° 0.8686 1 @ 18.8° 0.8776 7 @ 15°	1.5000 s @ 21.1° 1.50152 s 1.49875 1 @ 19.0° 1.50124 1 @ 18.8° 1.50215 7 @ 15° 1.49596 1 n19.0° 1.49451 1 n18.8° 1.49451 1 n18.8° 1.51100 1 n19.8° 1.50888 1 n19.8° 1.51260 7 n19.0° 1.51785 1 n19.0° 1.51785 1 n19.0° 1.50124 7 n1	
•					

		433			C _{ii} H _{ii}
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	n20 D	Additional Data
3,3-Dimethyl-6-propen- 1-yl-cyclohexadiene-1,4		83 to 85 4 @ 13mm	0.8618 4 @ 15.2°	1.50633 4 @ 15.2° 1.50189 4 n ^{15.3} 1.51925 4 n ^{15.2} 1.52040 4 n ^{15.3} 1.52040 4	
1,3,3-Trimethyl-6- ethenylcyclohexa- diene-1,4		85 to 86 4 @ 15mm	0.8844 4 @ 12.7°	1.51931 4 @ 12.7° 1.51470 4 $n_{H_{\beta}}^{12.7}$ 1.53230 4 $n_{H_{\beta}}^{12.7}$ 1.54371 4 $n_{H_{\gamma}}^{12.7}$	

Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
6-Methylene-2,3,3,4- tetramethylcyclohexa- diene-1,4					
c c c c c c c c c c c c c c c c c c c		89 to 90 4 @ 15mm	0.8765 4 @ 23.3°	1.51350 ⁴ @ 23.2° 1.50884 ⁴ $n_{H_a}^{22.2}$ 1.52660 ⁴ $n_{H_g}^{22.3}$ 1.53630 ⁴ $n_{H_g}^{23.2}$ 1.53690 ⁴ $n_{H_g}^{23.2}$	
6-Methylene-1,3,3,4- tetramethylcyclohexa- diene-1,4					
c c c		77 @ 12mm 4	0.8809 4 @ 15.2°	1.51687 4 @ 15.2° 1.51235 4 nHs.2 1.53006 4 nHs.2 1.54172 4 nHs.2 nHs.2	
·					

	1	n n 00		l	
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D40	n _D ²⁰	Additional Data
2-Methyl-3-ethyl-5- isopropenylcyclohexa- diene-1,3					$[\alpha]_D^{18} = +86.19^{\circ 7.8}$
(2-Ethyl-p-menthatriene- 2,6,8(9))  C=C C-C		100 to 101 * @ 13.5mm	0.8859 * @ 18° 0.8880 7 @ 15°	1.5041 8 @ 18° 1.50847 7 @ 15° 1.50429 7 n ¹⁸ _{Hg} 1.51920 7 n ¹⁸ _{Hg} 1.52763 7 n ¹⁸ _{Hg}	
1,3,3,4-Tetramethyl-6- ethenylcyclohexa- diene-1,4		100 to 103 4 @ 18mm	0.8837 4 @ 15.4°	1.51452 4 @ 15.4° 1.51028 4 n _H , 4 1.52702 4 n _H , 6 1.53796 4 n _H , 7	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D4 4	$n_D^{20}$	Additional Data
2-Methyl-3-propyl-5- isopropenylcyclohexa- diene-1,3					$[\alpha]_D^{22} = +86.20^{\circ}$
(2-Propylmenthatriene-2,6,8(9))  C  C  C-C-C		107 to 108 7 @ 13mm	0.8804 ⁷ @ 15°	1.50273 ⁷ @ 15° 1.49900 ⁷ $n_{H_a}^{15}$ 1.51312 ⁷ $n_{H_{\beta}}^{15}$ 1.52141 ⁷ $n_{H_{\gamma}}^{15}$	
C _{.5} H ₂₄ 2-Methyl-5-isopropenyl-3-(3-methyl-butyl)-cyclohexadiene-1,3					$[\alpha]_D^{20} = +18.5^{\circ 11}$ $[\alpha]_D^{20} = +18^{\circ 10}$
C=C C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-	C	135 to 137 10 @ 15mm 130 to 132 11 @ 11mm	0.8679 ¹¹ 0.8703 ¹⁰	1.49478 ¹¹ 1.4952 ¹⁰	

- (1) K. v. Auwers and F. Eisenlohr, Ber. 43, 827, 1910.
- (2) K. v. Auwers and F. Eisenlohr, J. prakt. Chem. [2] 84, 1, 1911.
- (3) K. v. Auwers and K. Müller, Ber. 44, 1595, 1911.
- (4) K. v. Auwers and K. Ziegler, Ann. 425, 217, 1921.
- (5) C. Courtot, Ann. chim. [9] 4, 58, 1915.
- (6) C. Engler and W. Frankenstein, Ber. 34, 2933, 1901.
- (7) A. Klages, Ber. 40, 2360, 1907.
- (8) A. Klages and F. Sommer, Ber. 39, 2306, 1906.
- (9) H. Rupe and F. Emmerich, Ber. 41, 1393, 1908.
- (10) F. W. Semmler, K. G. Jonas, and K. Oelsner, Ber. 50, 1838, 1917.
- (11) F. W. Semmler, K. G. Jonas, and A. Roenisch, Ber. 50, 1823, 1917.
- (12) J. Thiele, Ber. 33, 666, 1900.
- (13) J. Thiele and H. Balhorn, Ann. 348, 1, 1906.
- (14) R. Willstätter and M. Heidelberger, Ber. 46, 517, 1913.

X. CYCLOTRIENES OR CYCLOTRIOLEFINS, C,H2n-6

X. CYCLO	TRIEN	ES OR CYC	LUTRIO	LEFINS,	$C_n\Pi_{2n-6}$ $C_7\Pi_8$
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
Cycloheptatriene-1,3,5 (Tropilidene)		116 ⁵ 115.5 to 116.5 ⁴ 114 ² 117 ⁴ @ 724mm	0.8929 1 @ 17.5° 0.9129 2 @ 0° 0.9082 1,4,8 @ 0°		
C ₁₁ H ₁₆ 4,5,7,7-Tetramethylheptatriene-1,3,5 or 5-Methylene-4,4,7-trimethylheptadiene-1,3		67 to 68 ² @ 11mm	0.8687 3	1.50660 3	

⁽¹⁾ K. v. Auwers and F. Eisenlohr, Ber. 43, 827, 1910.

⁽²⁾ A. Ladenburg, Ann. 217, 74, 1883.

⁽³⁾ H. Rupe and W. Kerkovius, Ber. 44, 2702, 1911.

⁽⁴⁾ R. Willstätter, Ann. 317, 260, 1901.

⁽⁵⁾ R. Willstätter, Ber. 34, 129, 1901.

## XI. DICYCLENES OR DICYCLOÖLEFINS

- 1. Dicyclenes with alkyl substitutions,  $C_nH_{2n-8}$
- 2. Dicyclenes with an alkyne substitution,  $C_nH_{2n-10}$

1. DICYCLENES WITH ALKYL SUBSTITUTIONS, C_nH_{2n-6} C₁₀H₁₄

The control of the co	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	n _D	Additional Data
1-Cyclopenten-1- ylcyclopentene-1 (1,1'-Dicyclopentenyl)		208 2			
C ₁₂ H ₁₈ 1-Cyclohexen-1- ylcyclohexene-1 (1,1'-Dicyclohexenyl)	28 ²	245 to 251 ² 250 to 253 ⁹ 120 to 125 ⁹ @ 15mm	0.9485 %	1.5287 *	
1-Cyclohexen-2-ylcyclohexene-2 (2,2'-Dicyclohexenyl)		234 ³	0.9293 ³	1.5090 ³	*Author states that "The hydrocarbon was apparently an octahydrodiphenyl which was isomeric with the one having conjugated double bonds which has been described by Wallach."
1-Cyclohexen-3-ylcyclohexene-3 (3,3'-Dicyclohexenyl)		230 to 232 1			

Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D40	n _D ²⁰	Additional Data
2-Methyl-5-isopropyl- 1-(2-methyl-5-isopro- pylcyclohexen-1-yl)- cyclohexene-1					
		190 to 195 10 @ 30mm	0.945 10	1.5172 10	
,2-Di-(2,6,6-trimethyl- cyclohexen-1-yl)- ethane					
(Di-β-cyclogeranyl)		116 4			

		441			C13 1130
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
1-Methyl-6-cyclo- hexylidenecyclo- hexene-1		130 to 132 ' @ 20mm	0.9282 4 0.9432 4 @ 0°	1.5165 4	•
C ₁₄ H ₂₂ 1-Ethyl-6-cyclohexylidenecyclohexene-1		139 to 141 4 @ 20mm	0.9308 4 0.9461 4 @ 0°	1.5172 4	
3,3'-Dimethyldicyclo- hexenyl-x,x		265 to 267 °			

Name and Carbon Skeleton	M. P., °C.	B. P., °C. @ 760mm	$D_{\bullet}^{20}$	3 E	Additional Data
3,7,12,16-Tetramethyl-1,18-di-(2,6,6-tri-methylcyclohexen-1-yl)-octadecane  (Octadecahydrocarotene)  C C C C C C C C C C C C C C C C C C		276 • @ 1mm	0.8524 * @ 80.0° 0.8828 * @ 29.2°	1.4792 • @ 46° 1.4848 • @ 31° 1.4869 • @ 25°	$[\alpha]_D^{i_t} = +7.56^{\circ}$ s
C ₁₄ H ₂ .  1-Cyclohepten-1- ylcycloheptene-1  (1,1'-Dicycloheptenyl)		149 to 150 • @ 19mm	0.9736 * @ 19°	1.526 * @ 19°	

		3.17				016 77 36
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n ²⁰	Additional	Datı 🖷
1-Cycloöcten-1-ylcycloöctene-1						-
(1,1'-Dicycloöctenyl)	36 to 37 7	115 to 1167 @ 0.25mm	0.9630 ⁷ @ 21.8°	1.5353 ⁷ @ 24°		
$\bigcirc$ - $\bigcirc$						
						•

- (1) K. Alder and H. F. Rickert, Ber. 71, 373, 1938.
- (2) E. de B. Barnett and C. A. Lawrence, J. Chem. Soc. 1935, 1104.
- (3) D. S. Frederick, H. D. Cogan, and C. S. Marvel, J. Am. Chem. Soc. 56, 1815, 1934.
- (4) C. E. Garland and E. E. Reid, J. Am. Chem. Soc. 47, 2333, 1925.
- (5) M. Godchot and G. Cauquil, Compt. rend. 186, 767, 1928.
- (6) R. Kuhn and M. Hoffer, Ber. 67, 357, 1934.
- (7) L. Ruzicka and H. A. Boekenoogen, Helv. Chim. Acta, 14, 1319, 1931.
- (8) J. H. C. Smith, J. Biol. Chem. 90, 597, 1931.
- (9) O. Wallach, Ann. 381, 95, 1911.
- (10) O. Wallach, Ann. 403, 73, 1914.

C₁₂H₁₄
2. DICYCLENES WITH AN ALKYNE SUBSTITUTION,  $C_nH_{2n-10}$ 

Name and Carbon Skeleton	M. P.,°C.	<i>B. P.</i> , °C. @ 760mm	D40	11"0	Additional Data
Dicyclopenten-1-ylacetylene	58.5 to 60 ¹	105 to 110 ¹ @ 2mm			
C ₁₃ H ₁₆ Cyclohexen-1-yl-cyclopenten-1-ylacetylene		103 to 104 ² @ 2.5mm	0.96103	1.5582 3	
C14 H18 Dicyclohexen-1- ylacetylene		158 to 159 4 @ 12mm 126 to 128 3 @ 3mm 105 to 110 2 @ 1.5mm	0.9934 3 0.9604 4 D ₁₃ ¹³	1.5520 ³ 1.5549 ² 1.55768 ⁴ @ 13°	

⁽¹⁾ P. S. Pinkney and C. S. Marvel, J. Am. Chem. Soc. 59, 2669, 1937.

⁽²⁾ P. S. Pinkney, G. A. Nesty, D. E. Pearson, and C. S. Marvel, J. Am. Chem. Soc. 59, 2666, 1937.

⁽³⁾ P. S. Pinkney, G. A. Nesty, R. H. Wiley, and C. S. Marvel, J. Am. Chem. Soc. 58, 972, 1936.

⁽⁴⁾ Ju. Salkind and N. Schuwalow, J. Gen. Chem. (U.S.S.R.) 7, 1235, 1937.

## XII. BICYCLENES OR BICYCLOÖLEFINS

- 1. Bicyclenes with alkyl substitutions,  $C_nH_{2n-4}$
- 2. Bicyclenes with an alkenyl substitution,  $C_nH_{2n-6}$

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Data
[0,2,2]-Bicyclo- hexene-x		230 to 232 ⁴⁰ 103 @ 8mm ⁴⁰			
C, H ₁₄ 3,4,4-Trimethyl- [0,1,3](1,3)-bicyclo- hexene-1 or 2,3-Dimethylene- 1,1-dimethylcyclo- pentane  C C C		127 to 128 ° @ 757mm	0.8292° @ 0°		
C ₁₀ H ₁₆ d-1-Methyl-4-iso- propyl-[0,1,3](4,6)-bi- cyclohexene-1  (α-Thujene)  C  C-C-C		152 to 152.5 102 @ 699mm 151 to 152 67 151 to 152 85 @ 755mm	$egin{array}{c} 0.8314^{\ 102} \ D_{30}^{\ 30} \ 0.8262^{\ 67} \ D_{20}^{\ 20} \ 0.8294^{\ 85} \ @\ 17.4^{\circ} \ \end{array}$	1.4502 102 @ 30° 1.44909 67 1.45182 85 @ 15.65° 1.44904 85 $n_{H_a}^{15.66}$ 1.45864 86 $n_{H_B}^{15.66}$ 1.46434 85 $n_{H_A}^{15.66}$	$[\alpha]_D^{30} = +37.69^{\circ 102}$ $[\alpha]_D^{35} = +35.54^{\circ 67}$

U10 II 16		101			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
l-1-Methyl-4-iso- propyl-[0,1,3](4.6)-bi- cyclohexene-1					$ \alpha _D^{20} = -4.23^{\circ 109}$ $ \alpha _D^{20} = -8.23^{\circ 110}$
(α-Thujene)		152 to 152.3 110 151 to 153 100 151 to 152.5 100 151 112 @ 759mm	0.8263 109 0.8275 \bigg\{ \bigg\{ \text{110} \\ 0.8301 \\ \text{112} \end{array}}	$1.45022^{109}$ $1.45042 \begin{cases} 109 \\ 110 \end{cases}$ $1.45150^{112}$	$[\alpha]_D^{20} = -37.20^{\circ}$ 112
d-3-Methyl-6-iso- propyl-[0,1,3](4,6)- bicyclohexene-1					$ \alpha _D = +109.90^{\circ}$ 68 $ \alpha _D = +110.780^{\circ}$ 112
(β-Thujene)  C C-C C		147.5 to 149.5 68 150 to 151 110 @ 750mm 147 112 @ 739mm	0.8232 110 @ 22° 0.8208 112 0.8248 110 0.8220 68 @ 16°	1.44842 110 @ 22° 1.44708 112 1.44809 68 @ 16°	
C, H ₁₀ [1,2,2] (3,6)-Bicyclo-heptene-1 (Norbornylene)	51 to 53 54				

		455			C, H,
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
4-Methyl-[1,2,2](3,6)- bicycloheptene-1					
(1-Methylnorcamphene-4)		115.5 to 117 ¹²⁰ @ 750mm	0.8668 ¹²⁰ @ 18°	1.4606 ¹²⁰ @ 18°	
C ₀ H ₁₄ 3,3-Dimethyl- [1,2,2] (1,4)-bicyclo- heptene-1					
(Camphenilene)	26.5 104	138 to 140 104 142 49	0.8699 ¹⁹⁴ @ 21°	1.4676 ¹⁰⁴ @ 21°	
. 44					

J ₉ H ₁₄		700			
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
1,2-Dimethyl- [1,2,2](3,6)-bicyclo- heptene-1					
(Santene)		140 to 142 5,94	0.863 20	1.46539 20	
G.		140 to 141 50	0.865 20	1.4663 20	
i c		139 to 140 ¹⁷	0.8700 59	1.4688	
		136 to 140 69	@ 17° 0.8720 ⁹⁴	@ 17.5°	
		38 to 39 20 @ 15mm	@ 17°	@ 17.5°	
		@ 15mm	0.8664 94	1.4657 94	
			@ 16°	@ 17°	
			0.8698 ^s @ 15°	1.46758 ⁵⁹ @ 17°	
			0.871 69	1.4676 94	
			@ 15°	@ 16°	
			0.8710 77	1.4710 ⁹⁴ @ 14°	
			@ 15° 0.8657 ⁵	@ 14	
			$D_{15}^{15}$		
			0.8680 94		
			@ 14°		
α-Santene					
		140 77	0.870 77		
			@ 15°		
4,4-Dimethyl- [1,2,2](3,6)-bicyclo- heptene-1					
(Apoisofenchene)	24.5 to	134.5 to	0.8607 55	1.45764 65	
(hairaamailana)	25 55	135.5 65	@ 26°	@ 26°	
		@ 762mm	0.8631 55	1.46111 56	
		136 to 138 55	0.8642 58	1.46023 55	
$_{\mathrm{c}}$		130 10 130			
, 0					

		431			C ₂ H ₁
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
7,7-Dimethyl- [1,2,2] (3,6)-bicyclo- heptene-1					
(Apobornylene)	36 to 37 s ³ 38 ⁷³	135 to 140 55 138 73 130 to 132 56 @ 742mm	0.8543 %	1.45374 73 @ 38.7° 1.45942 86 1.45151 73 $n_{H}^{38.7}$ 1.45998 73 $n_{H}^{38.7}$ 1.46881 73 $n_{H}^{38.7}$	
7,7-Dimethyl- [1,1,3](4.6)-bicyclo- heptene-1  (Apopinene)		140 58	0.870 58	1.46700 88	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D 20	$n_D^{20}$	Additional Data
1,4,4-Trimethyl- [0,1,4] (3.8)-bicyclo- heptene-1					$[\alpha]_D^{21} = +15.21^{\circ 3}$ $[\alpha]_D^{20} = +62.2^{\circ 76}$
(Carene or Pinonenc)		172 to 173 ³ 167 to 170 ⁴ 165.5 to 167 ⁷⁶ @ 707mm 165 to 170 ⁷⁶ @ 685mm 64 @ 29mm ⁸⁷	$0.8441^{87}$ @ $30^{\circ}$ $0.8552^{76}$ $D_{30}^{30}$ $0.8594^{100}$ $D_{27}^{27}$ $0.8568^{3}$ @ $21^{\circ}$ $0.8561^{4}$	1.4717 ⁵⁷ @ 30° 1.4731 ⁷⁶ @ 30° 1 47536 ⁴	$[\alpha]_D^{20} = +5.37^{\circ} $ $[\alpha]_D = +82.64^{\circ} $ 87
1,5,5-Trimethyl- [0,1,4] (4.6)-bicyclo- heptene-1 (Carene or Isodiprene)		170 ²¹ 165 to 172 ⁹⁹ 163 to 167 ⁴ 168 to 169 ¹⁰⁰ @ 705mm 123 to 124 ¹⁰⁰ @ 200mm 60 @ 30mm ⁸⁷	$0.8586^{100}$ $D_{50}^{50}$ $0.8575^{87}$ @ $25^{\circ}$ $0.8563^{99}$ $0.8614^{\circ}$ $D_{20}^{20}$ $0.86104^{\circ}$ @ $18^{\circ}$ $0.8668^{21}$ $D_{15}^{15}$	1 469 100 @ 30° 1.4737 ⁹⁹ 1.47009 ⁴ @ 18°	$ \alpha _{D} = +14.45^{\circ 99}$

	-	459			C10 H16
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	n _D ²⁰	Additional Data
d-1,7,7-Trimethyl- [1,1,3](4.6)-bicyclo- heptene-1				1.4662	$[\alpha]_D = +53.75^{\circ 75}$ $[\alpha]_D = +51.52^{\circ 96}$
(d-α-Pinene)		156 to 157 ⁴³ @ 763mm 158.5 to 159 ⁸⁵ 156 to 156.5 ¹⁰⁵ 156.0 to ⁹⁶ 156.1 156 ³³ 155 to 159 ⁷⁵ 155 to ^{1,106,107} , ¹⁵⁶ ^{108,113} 155 ¹⁷ 154.5 to 155 ⁷⁶ 156.4 to 156.6 ⁸ @ 757mm 156 ³⁰ @ 753mm 62 @ 30mm ⁸⁷ 44 @ 14mm ¹⁷ 45 @ 12mm ³	$(a^{\circ} 25^{\circ})$ $0.8582^{\circ} 42^{\circ}$ $(a^{\circ} 25^{\circ})$ $0.8595^{\circ} 88^{\circ}$ $D_{25}^{26}$ $0.8584^{\circ} 105^{\circ}$ $0.8585^{\circ} 3.20^{\circ}$ $0.8591^{\circ} 106^{\circ}$ $0.8597^{\circ} 29^{\circ}$	1.4634 ⁴² @ 25° 1.4635 ^{113*} @ 25° 1.4645 ⁸⁷ @ 25° 1.4608 ¹⁰⁵ 1.46565 ³³ 1.4663 ^{79,106} 1.470 ⁷⁵ 1.4663 ⁴³ @ 15° 1.4663 ⁴³ @ 15° 1.4684 ⁹⁶ @ 15° 1.46915 ¹⁷ @ 14° 1.46929 ³⁰ @ 13.8° 1.4650 ²³ @ 12° 1.46354 ⁸ n ^{18,06} n ¹⁸	$\begin{aligned} & [\alpha]_{D} = +51.14^{\circ}  ^{106} \\ & [\alpha]_{D} = +48.85^{\circ}  ^{23} \\ & [\alpha]_{D} = +47.9^{\circ}  ^{113*} \\ & [\alpha]_{D} = +47.89^{\circ}  ^{87} \\ & [\alpha]_{D} = +47.48^{\circ}  ^{43} \\ & [\alpha]_{D} = +33.37^{\circ}  ^{3} \\ & [\alpha]_{D} = +15.47^{\circ}  ^{88} \\ & [\alpha]_{D}^{15} = +45.04^{\circ}  ^{30} \\ & [\alpha]_{D}^{17.6} = +41.32^{\circ}  ^{8} \end{aligned}$ Reference ²³ gives refractive indices for mercury lines.  *Average of four determinations on same sample. $\frac{dn}{dt} = -0.0004_{b}/^{\circ}\text{C.} \tag{15° to 25°}$

J10 III 16					
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
l-1,7,7-Trimethyl- [1,1,3](4.4)-bicyclo- heptene-1					$[\alpha]_D = -46.65^{\circ 23}$ $[\alpha]_D = -43.4^{\circ 29}$
(l-α-Pinene)		156 to 157 **  156 **  155 to 156 \{ \begin{align*} 1.08 \\ 155 \cdot 2 \\ 153.3 \cdot 2 \\ 157.4 \cdot 8 \\ (2.5 \cdot 8 \cdot 5 \cdot 4 \cdot 5 \cdo	0.8107 °1	1.44797 15 @ 61.4° 1.45239 15 @ 53.2° 1.4625 100 @ 28° 1.4648 91 @ 25° 1.46506 15 @ 24.1° 1.46526 16 @ 23.5° 1.4660 32 1.4676 108 1.46803 8 @ 16.25° 1.4649 23 @ 12° 1.4672 15 note 15 note 16	$[\alpha]_D = -42.6^{\circ}$ 106 $[\alpha]_D = -40.51^{\circ}$ 1 $[\alpha]_D^{10.6} = -34.01^{\circ}$ 8 $[\alpha]_D^{10} = -40.30^{\circ}$ 91 Reference 22 has refractive indices for mercury lines.

		401			C10 II 16
Name and Carbon Skelcton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
dl-1,7,7-Trimethyl- [1,1,3](4.0)-bicyclo- heptene-1					
(dl-α-Pinene)		155 to 156 ²⁸ @ 764mm 159 to 161 ¹¹⁴ 155 to 160 ¹⁴ 155 to 156 {106, 116} 154.5 to 155 ⁷⁰ @ 754mm 153.5 to 154 ¹⁶ @ 750mm	0.8592 106 0.8593 79 0.8583 16	1.46553 115 @ 21° 1.4662 79 1.4664 106 1.4662 15 @ 17.5° 1.43707 28 n ^{79.6} 1.46736 28 n ^{11.6} 1.46736 28 n ^{11.6} 1.467317 16 n ^{13.2} 1.47317 16 n ^{17.6} 1.47317 18 n ^{18.2} 1.47741 28 n ^{18.2} 1.47741 28 n ^{18.2} 1.45192 28 n ^{18.2} 1.48332 28 n ^{19.6} n ^{18.2} 1.48341 28 n ^{18.2} 1.48341 28 n ^{18.2} n ^{18.2} 1.48341 28	

C ₁₉ H ₁₆		404			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D ₄ ²⁰	$n_D^{20}$	Additional Data
d-3,7,7-Trimethyl- [1,1,3](4.6)-bicyclo- heptene-1					$\left[\alpha\right]_{D}=+8.35^{\circ \text{ m}}$
(d-8-Pinenc)		156 to 159 ¹¹⁷ @ 748mm	0.8535 117	1.46434 117	
l-3,7,7-Trimethyl-					$\left[\alpha\right]_{D}=-6.22^{\circ  117}$
[1,1,3](4,0)-bicycľo- heptene-1		156 to 158 ¹¹⁷ @ 758mm 157 ⁷⁹ @ 740.5mm	0.8604 ¹¹⁷ 0.8708 ⁷⁹	1.46672 117	
dl-3,7,7-Trimethyl- [1,3,3](4.6)-bicyclo- heptene-1		157 to 159 60 @ 771mm	0.8636 ••	1.46561 **	
			,		

		400			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	/) ²⁰	$n_D^{20}$	Additional Data
d-3,7,7-Trimethyl- [1,2,2](3.6)-bicyclo- heptene-1  (d-Bornylene)	109 to 109.5 ¹¹¹ 109 to 110 ¹¹¹	146 ¹¹¹ 146.5 ¹¹¹ @ 750mm			$ \alpha _D = +19.29^{\circ} \text{ m}$ $ \alpha _D = +19.33^{\circ} \text{ m}$
l-3,7,7-Trimethyl- [1,2,2](*.*)-bicyclo- heptene-1 (l-Bornylene)	113 11,13,38 113 to 114 12	146 35 @ 750mm 145.6 to 146 12 @ 750mm 146 11 @ 745.5mm 146 13 @ 740mm			$[\alpha]_D = -22.27^{\circ} \text{ ab}$ $[\alpha]_D = -21.69^{\circ} \text{ 13}$ $[\alpha]_D = -18.45^{\circ} \text{ 12}$ $[\alpha]_D^{10} = -23.94^{\circ} \text{ 11}$
dl-3,7,7-Trimethyl- [1,2,2](*.*)-bicyclo- heptene-1 (Bornylene)	96 to 98 31 101.5 to 102.5 80 103 86 105 18	149 to 150 31,35			

Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
1,2,3-Trimethyl- [1,2,2](3,6)-bicyclo- heptene-1  (Methyl santene)		151 to 152 ⁸¹	0.8560 61	1.45943 ^{eq}	
1,7,7-Trimethyl- [1,2,2](3,6)-bicyclo- heptene-1  (Isopinene)		154.5 to 155.5 °	0.8658 •	1.470253 6	$\left[\alpha\right]_{D} = +2.61^{\circ}$
3,5,5-Trimethyl- [1,2,2](3.6)-bicyclo- heptene-1  (&Fenchene, Isofenchene, Fenchylene, Isofenchylene)		139 to 140 78 @ 760mm 139 to 140 64 138.5 to 141 89 140.5 to 78 141.5 @ 740mm 140 to 141 76.78 @ 740mm 66 to 70 116 @ 20mm	0.842 116	1.4505 °° @ 20.8° 1.4486 °° 1.4494 °° 1.4502 °° 1.4505 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439 °° 1.47439	$[\alpha]_D = -68.76^{\circ 78}$ $[\alpha]_D = -57.28^{\circ 83}$ $[\alpha]_D = -55.4^{\circ 89}$

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Da <b>ta</b>
1,4,4-Trimethyl- [1,2,2] (3.6)-bicyclo- heptene-1  (γ-Fenchene)		146 to 148 % 145 to 150 % 145 to 147 %	0.854 65 0.8547 64 @ 17° 0.855 65 @ 17°	1.461 66 1.46072 64 @ 17° 1.461 65 @ 17°	
C ₁₁ H ₁₈ 7,7-Dimethyl-1-ethyl- [1,1,3] (4.6)-bicyclo- heptene-1  (Methyl myrtenyl)  C-C  C-C		95.5 to 96 ⁹² @ 62mm	0.8697 92		$ \alpha _D^0 = +33.96^{\circ}$
1,2,3,6-Tetramethyl- [1,2,2](3,6)-bicyclo- heptene-1 (1,4-Dimethylsantene)		161 to 162 ⁶²	0.8520 62	1.46073 62	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
1,4,4,6-Tetramethyl- [1,2,2](3,4)-bicyclo- heptene-1					
(Methyl-8-Fenchene)		160 to 162 53	0.85205 53	1.46261 ⁵³ @ 20.5°	
c c c				20.0	
C ₁₂ H ₂₀ 7,7-Dimethyl-1-propyl- [1,1,3](4.6)-bicyclo-					$[\alpha]_D^0 = +21.97^{\circ}$ 12
heptene-1					
(Ethyl myrtenyl)  C-C-C		73 to 73.5 ⁹² @ 10mm	0.8663 *2		
C ₁₈ H ₂₂ 7,7-Dimethyl-1-butyl- [1,1,3]('.'0')-bicyclo- heptene-1					$[\alpha]_D^0 = +21.63^{\circ \theta 2}$
(Propyl myrtenyl)		88 to 89 *2 @ 10mm	0.8624 92		

		40/			Cirk
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
4,7,7-Trimethyl-3-(3- methylbutyl)- [1,1,3](4.6)-bicyclo- heptene-1					$[\alpha]_D = -25^{\circ 10}$ $[\alpha]_D = -4.97^{\circ 103}$
(Dihydrocaryophyllene)		140 % @ 24mm 126 % @ 15mm 129 to 130 % @ 14mm 131 103 @ 11mm	0.8898 ¹⁹ @ 19° 0.8893 ²⁰ @ 18° 0.8965 ¹⁰³ @ 15°	1.49032 19 1.4885 20 @ 18° 1.496 103 @ 18° 1.4921 90 @ 16°	
C _s H ₁₂ [0,x,x]-Bicycloöctene		137.5 to 139 119	0.891 118 0.9097 119 @ 0°	1.48434 118	
C. H.,  4-Methyl-[2,2,2] (3,6)- bicycloöctene-1		147.5 to 149 ⁵¹ @ 756.7mm	0.8955 ⁵¹ @ 17°	1.4763 ⁵¹ @ 17°	

C10 II 16		400			
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
2,5-Dimethyl-[0,3,3]-bicycloöctene-1		167 **	0.8605 ^{so} @ 24°	1.4649 ⁵⁰ @ 24°	
2,6(?)-Dimethyl-[0,3,3]- bicycloöctene-2		54 to 60 ⁵⁰ @ 20mm	0.8632 sa	1.4663 **	
3,3-Dimethyl- [1,2,3](4.7)-bicyclo- öctene-1 (Endocamphene)		170.6 to 171.6 ⁷⁴ @ 744.5mm	0.8957 ⁷⁴ @ 12.4°	1.48442 74 @ 12.4°	

469					$\mathbf{C}_{10}\mathbf{H}_{1}$
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D40	n _D 20	Additional Data
1-Methyl-[0,3,4]-bicyclononene-3 (8-Methylhexahydroindene)		175 to 176 ** @ 761mm	0.8879 ²⁷ @ 16.5°	1.4825 ** @ 16.5°	
[0,4,4]-Bicyclodecene-1 (Δ'-Octalin)		194 ²⁵ @ 771mm 189 ²⁵ @ 768mm 197 to 199 ⁴⁸	0.9009 25 0.9090 25 0.9103 48 0.9105 46 @ 19.7°	1.48504 ²⁵ 1.49124 ²⁵ 1.49525 ²⁵ 1.50138 ²⁵ 1.50126 ²⁵ 1.70752 ²⁶ 1.70752 ²⁶ 1.70752 ²⁶ 1.70752 ²⁶	
[0,4,4]-Bicyclodecene-2 (trans-β-Octalin)		185 46	0.893 " 0.8970 " @ 15.6°	1.4841 **	·
				11 12	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n _D ²⁰	Additional Data
[0,4,4]-Bicyclodecene-2 (cis-β-Octalin)		76 to 78 10 @ 15mm 72 to 73 10 @ 12mm	0.915 ¹⁰ @ 22° 0.909 ¹⁰	1.4959 10 @ 22° 1.4902 10	
[0,4,4]-Bicyclodecene-2		190 to 192 ⁷⁾	0.901 71 @ 13° 0.910 71 @ 0°	1.491 ⁷¹ @ 13°	
[0,4,4]-Bicyclodecene-(1,6) (trans-Octalin)		190 % 186 to 188 %	0.8723 ⁵² @ 25° 0.8936 " @ 19°	1.4719 ⁵² @ 25° 1.48429 " @ 19.5°	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
[0,4,4]-Bicyclodecene- (1,6)					
	- 34 45	190 to 191 ⁷⁰ 189 ¹²¹ 194 to 196 ⁴⁵ @ 749mm 88 to 89 ⁵¹ @ 19mm 88 to 89 ⁵² @ 14mm 79 @ 14mm ⁴⁵	0.8987 ¹²¹ @ 22.5° 0.8968 ¹²¹ @ 21° 0.8170 ⁴⁵ @ 20.0° 0.9205 ⁸¹ 0.9200 ⁸² 0.914 ⁷⁰ @ 17° 0.931 ⁷⁰ @ 0°	1.4867 121 @ 22.5° 1.4851 121 @ 21° 1.4976 81 1.4979 82 1.4993 70 @ 17°	
trans-[0,3,5]-Bicyclo-decene-2		63.5 ⁴⁷ @ 8mm	0.8996 ⁴⁷ @ 21.0°	1.48711 ⁴⁷ ^{121,2} ¹⁴⁷ ^{121,2}	
C ₁₁ H ₁₈ 1-Methyl-[0,4,4]- bicyclodecene-3		84 to 86 39 @ 14mm 82 39 @ 14mm 78 to 80 72 @ 12mm	0.9074 ⁷² @ 16.2° 0.9098 ⁷² @ 16° 0.9085 ³⁸ @ 15.2° 0.9053 ³⁹ @ 15°	1.4916 ⁷² @ 16.2° 1.4956 ⁷² @ 16° 1.4943 ³³ @ 15.2° 1.4939 ³⁹ @ 15°	

M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
	78 to 80 ⁹² @ 13mm			
	98 to 103 24	0.9121 26	14975 26	
	@ 12mm 95 to 99 25 @ 10mm	@ 16.7° 0.9153 26 @ 16.4°	@ 16.7° 1.4974 26 @ 16.4°	
	247 to 248 ²			
	102 to 106 52 @ 4mm	().8944 52 @ 25°	1.4915 52 @ 25°	
	M. P.,°C.	78 to 80 °2	78 to 80 s2 @ 13mm  98 to 103 28 @ 16.7° 95 to 99 26 @ 10mm @ 16.4°  247 to 248 2  102 to 106 52 (0.8944 52	78 to 80 °2     @ 13mm  98 to 103 ²⁴ @ 12mm     @ 16.7° 95 to 99 ²⁶ @ 10mm     @ 16.4°  247 to 248 ² 102 to 106 ⁸² 10.8944 ⁸² 1.4915 ⁸²

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
2-Ethyl-3-propyl- [0,4,4]-bicyclodecene-2 (1,2,4a,5,6,7,8,8a-Octa-		89 to 90 ⁸⁴	0.8913 44	1.4838 84	
hydro-3-n-propyl-4- ethylnaphthalene)		@ 2mm			
6,10-Dimethyl-3-iso- propyl-[0,3,5]-bicyclo- decene-9					
(Octahydroguaiazulene)		123 to 125 % @ 11mm	0.8872 **	1.4834 %	
C ₁₇ H ₃₀ 2-Propyl-3-butyl- [0,4,4]-bicyclodecene-2					
(1,2,4a,5,6,7,8,8a-Octa-hydro-3-n-butyl-4-n-pro-pylnaphthalene)		109 to 110 ¹⁴ @ 2mm	0.8849 81	1 4830 84	

- (1) B. Ahlstrom and O. Aschan, Ber. 39, 1441, 1906.
- (2) A. Andreocci, Gazz. chim. ital. 25, I, 452, 1895.
- (3) B. Arbusov and B. M. Michailov, J. prakt. Chem. [2] 127, 1, 1930.
- (4) O. Aschan, Ann. 461, 1, (1928).
- (5) O. Aschan, Ber. 40, 4918, 1907.
- (6) O. Aschan, Översigt. av Finska Vetenskaps-Soc. Forh. 51, 1, 1908.
- (7) O. Aschan, Översigt. av Finska Vetenskaps-Soc. Forh. 53A, No. 8, 5.
- (8) K. v. Auwers, W. Roth, and F. Eisenlohr, Ann. 373, 267, 1910.
- (9) A. Behal, Bull. soc. chim. [3] 27, 402, 1902.
- (10) W. Borsche and E. Lange, Ann. 434, 219, 1923.
- (11) J. Bredt and J. Hilbing, J. prakt. Chem. [2] 84, 778, 1911.
- (12) J. Bredt and W. Perkin, Jr., J. Chem. Soc. 103, 224, 1913; J. prakt. Chem. [2] 89, 209, 1914.
- (13) J. Bredt and H. Sandkuhl, Ann. 366, 11, 1909.
- (14) L. Briggs and W. Short, J. Chem. Soc. 1928, 3118.
- (15) J. Bruhl, Ber. 25, 151, 1892.
- (16) E. Büchner and K. Rehorst, Ber. 46, 2680, 1913.
- (17) M. Delépine, Bull. soc. chim. [4] 7, 468, 1910.
- (18) N. Demjanow and I. Lenarski, Bull acad, sci (U.S.S.R.) 1937, 1001.
- (19) E. Deussen, Ann. 388, 136, 1912.
- (20) E. Deussen, J. prakt. Chem. [2] 114, 63, 1926.
- (21) G. Dupont, Ann. chim. [10] 1, 184, 1924.
- (22) G. Dupont, Private communication [Beilstein suppl. Vol. 5, p. 77].
- (23) G. Dupont and L. Desalbres, Bull. soc. chim. [4] 33, 1252, 1923.
- (24) F. Ebel and M. Goldberg, Helv. Chim. Acta, 10, 677, 1927.
- (25) F. Eisenlohr and R. Polenske, Ber. 57, 1639, 1924.
- (26) G. Elliott and R. P. Linstead, J. Chem. Soc. 1938, 660.
- (27) K. D. Errington and R. P. Linstead, J. Chem. Soc. 1938, 666.
- (28) J. F. Eykman, Chem. Weekblad, 3, 701, 1906.
- (29) F. Flavitsky, Ber. 12, 2354, 1879.
- (30) F. Flavitsky, J. prakt. Chem. [2] 45, 115, 1892.
- (31) A. Gandini, Gazz. chim. ital. 66, 357, 1936.
- (32) T. Gaponenkov, J. Gen. Chem. (U.S.S.R.) 4, 1128, 1934.
- (33) E. Gildemeister, H. Köhler, through O. Wallach, "Festschrift," 429, Göttingen, 1909.
- (34) J. Harvey, I. Heilbron, and E. Kamm, J. Chem. Soc. 1926, 3136.
- (35) G. Henderson and W. Caw, J. Chem. Soc. 101, 1416, 1912.
- (36) G. Henderson and E. F. Pollock, J. Chem. Soc. 97, 1620, 1910.
- (37) T. Henry, J. Chem. Soc. 79, 1144, 1901.
- (38) D. C. Hibbit and R. P. Linstead, J. Chem. Soc. 1936, 470.
- (39) D. C. Hibbit, R. P. Linstead, and A. F. Millidge, J. Chem. Soc. 1936, 478.
- (40) F. Hofmann and P. Damm, Kaiser-Wilhelm Soc. 2, 97, 1925.
- (41) R. Horiucki, Mem. Coll. Sci. Kyoto Imp. Univ. Ser. A. 11, No. 3, 171, 1928.
- (42) J. Hosking, Rec. trav. chim. 47, 578, 1928.
- (43) J. Hosking and W. Short, Rec. trav. chim. 47, 834, 1928.
- (44) W. Hückel, Ber. 58, 1449, 1925.
- (45) W. Hückel, R. Danneel, A. Schwartz, and A. Gercke, Ann. 474, 121, 1929.
- (46) W. Hückel and H. Naab, Ann. 502, 136, 1933.
- (47) W. Hückel and L. Schnitzspahn, Ann. 505, 274, 1933.
- (48) V. N. Ipatieff, Ber. 43, 3383, 1910.
- (49) W. Jagelki, Ber. 32, 1498, 1899.
- (50) R. Jones and R. Linstead, J. Chem. Soc. 1936, 616.
- (51) B. Kasansky and A. Plate, Ber. 68, 1259, 1935.
- (52) S. Kimura, Mem. Coll. Sci. Kyoto Imp. Univ. Ser. A, 14, 173, 1931.
- (53) G. Komppa, Ann. 472, 179, 1929.

- (54) G. Komppa and S. Beckmann, Ann. 512, 172, 1934.
- (55) G. Komppa and T. Hasselström, Ann. 497, 116, 1932.
- (56) G. Komppa and T. Hasselström, Ann. 502, 272, 1933.
- (57) G. Komppa and T. Hasselström, Ann. Acad. Sci. Fennicae, 26A, No. 1, 3, 1927.
- (58) G. Komppa and T. Hasselström, Ann. Acad. Sci. Fennicae 30A, No. 14, 3, 1930.
- (59) G. Komppa and S. V. Hintikka, Bull. soc. chim. [4] 21, 13, 1917.
- (60) G. Komppa and A. Klami, Ber. 70, 788, 1937.
- (61) G. Komppa and G. Nyman, Ann. 517, 105, 1935.
- (62) G. Komppa and G. Nyman, Ann. 518, 204, 1935.
- (63) G. Komppa and R. Roschier, Ann. 429, 175, 1922.
- (64) G. Komppa and R. Roschier, Ann. 470, 129, 1929.
- (65) G. Komppa and R. Roschier, Ann. Acad. Sci. Fennicae 10A, No. 1, 62, 1917.
- (66) G. Komppa and R. Roschier, Ann. Acad. Sci. Fennicae 10A, No. 15, 1, 1917.
- (67) J. Kondakow, Chem. Z. 26, 720, 1902.(68) I. Kondakow and V. Skeworzaw, J. Russ. Phys. Chem. Soc. 42, 497 1910.
- (69) A. Labo, Riv. Ital. delle essence and profumi, 7, 19, 1925.
- (70) H. Leroux, Compt. rend. 141, 953, 1905.
- (71) H. Leroux, Ann. chim. phys. [8] 21, 458, 1910.
- (72) R. P. Linstead, A. Millidge, and A. Walpole, J. Chem. Soc. 1937, 1140.
- (73) P. Lipp and J. Daniels, Ber. 69, 586, 1936.
- (74) P. Lipp, A. Götzen, and F. Reinartz, Ann. 453, 1, 1927.
- (75) E. Lynn, J. Am. Chem. Soc. 41, 361, 1919.
- (76) K. Menon and J. L. Simonsen, J. Indian Inst. Sci. 10A, 1, 1927.
- (77) W. Müller, Arch. Pharm. 238, 66, 1900.
- (78) S. S. Nametkin, J. prakt. Chem. [2] 106, 26, 1923.
- (79) S. S. Nametkin, J. Russ. Phys. Chem. Soc. 54, 177, 1922.
- (80) S. S. Nametkin and L. Brüssova, J. prakt. Chem. [2] 112, 169, 1926.
- (81) S. S. Nametkin and E. Glagoleff, Ber. 62, 1570, 1929.
- (82) S. S. Nametkin and V. Madajew-Ssitschew, Ber. 59, 370, 1926.
- (83) S. S. Nametkin and A. Rushezewa, J. Russ. Phys. Chem. Soc. 51, 152, 1919.
- (84) G. A. Nesty and C. S. Marvel, J. Am. Chem. Soc. 59, 2662, 1937.
- (85) G. Ostling, J. Chem. Soc. 101, 468, 1912.
- (86) J. Owen and J. L. Simonsen, J. Chem. Soc. 1931, 3001.
- (87) R. Padmanabhan, and K. Jatkar, J. Am. Chem. Soc. 57, 334, 1935.
- (88) W. H. Perkin, Sr., J. Chem. Soc. 81, 292, 1902.
- (89) W. Quist, Ann. 417, 278, 1918.
- (90) G. Ramage and J. Simonsen, J. Chem. Soc. 1938, 1208.
- (91) J. Riban, Ann. chim. [5] 6, 1, 1875.
- (92) H. Rupe and A. Héritier, Ann. 459, 171, 1927.
- (93) L. Ruzicka, D. R. Koolhaas, and A. H. Wind, Helv. Chim. Acta 14, 1151, 1931.
- (94) L. Ruzicka and F. Liebl, Helv. Chim. Acta 6, 267, 1923.
- (95) L. Ruzicka and E. Rudolph, Helv. Chim. Acta 9, 118, 1925.
- (96) A. Schorger, Ind. Eng. Chem. 6, 631, 1914.
- (97) N. Schuickin, Uchenge Zapiski Saratov. Gosudarst. Univ. 3, 197, 1934.
- (98) F. W. Semmler and K. Bartelt, Ber. 40, 4844, 1907.
- (99) F. W. Semmler and H. Schiller, Ber. 60, 1591, 1927.
- (100) J. L. Simonsen, J. Chem. Soc. 117, 570, 1920.
- (101) J. L. Simonsen, J. Chem. Soc. 119, 1644, 1921.
- (102) J. L. Simonsen, Indian For. Rec. 9, 289, 1923.
- (103) J. L. Simonsen, "The Terpenes," Vol. 2, p. 520.
- (104) P. Snitter, Bull. inst. Pin [2] 1933, 178, 200.
- (105) F. H. Thurber and L. J. Roll, Ind. Eng. Chem. 19, 739, 1927.
- (106) F. H. Thurber and R. C. Thielke, J. Am. Chem. Soc. 53, 1030, 1931.

- (107) W. Treibs and H. Schmidt, Ber. 61, 459, 1928.
- (108) D. Tsakalotos, Chem. Z. 32, 365, 1908.
- (109) L. Tschugaev, Ber. 34, 2276, 1901.
- (110) L. Tschugaev, Ber. 37, 1481, 1904.
- (111) L. Tschugaev and W. Budrick, Ann. 388, 280, 1912.
- (112) L. Tschugaev and W. Fomin, Ber. 45, 1293, 1912.
- (113) M. Vézes, Bull. soc. chim. [4] 5, 931, 1909.
- (114) O. Wallach, Ann. 239, 1, 1887.
- (115) O. Wallach, Ann. 258, 319, 1890.
- (116) O. Wallach, Ann. 300, 294, 1898.
- (117) H. Wienhaus and P. Schumm, Ann. 439, 20, 1924.
- (118) R. Willstätter and T. Kametaka, Ber. 41, 1480, 1908.
- (119) R. Willstätter and H. Veraguth, Ber. 40, 957, 1907.
- (120) N. D. Zelinsky, B. A. Kasansky, and A. F. Plate, Ber. 66, 1415, 1933.
- (121) N. D. Zelinsky and M. B. Turova-Pollak, Ber. 58, 1292, 1925.

Name and Carbon Skeleton	M. P.,"C.	B. P., °('. @ 760mm	$D_4^{20}$	n'20	Additional Data
5-Methylene-4,4-di- methyl-[1,2,2](3.6)- bicycloheptene-1					
(Isocamphodiene)	41.5 to 42 °	149 to 150 6 @ 763mm			
C ₁₄ H ₂₂ 6-Methyl-9-isopropyli- dene-[0,4,4]-bicyclo- decene-2					
C-C C		125 to 126 ' @ 12mm	0.9124 ? @ 18°	1.5065 ⁷ @ 18°	
C ₁₅ H ₂₄ 4,7,7-Trimethyl-3-(3-methylbuten-3-yl)- [1,1,3](4.6)-bicyclo-					$[\alpha]_D^{20} = -8.959^{\circ 13}$ $[\alpha]_D^{20} = -8.95^{\circ 2}$
heptene-1 (β-Caryophyllene)		258 to 259 ¹ @ 752mm 136 to 137 ¹³	0.9038 ¹ @ 24° 0.9032 ²	1.49976 13 1.50076 2 1.49694 13	$[\alpha]_D^{20} = -8.5^{\circ} \text{ to } 9.5^{\circ}$ 10
c-c-c=c		@ 20mm 129 to 130 18     @ 14mm 136 to 137 17     @ 10mm 119 to 120 1     @ 9mm	0.9030 13 $D_{20}^{20}$ 0.9076 17 @ 15°	1.50830 13 1.50830 13 1.51528 13 1.51528 13	

C ₁₈ H ₁₄		410			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Data
4,5-Dimethyl-5-(4-methylpenten-3-yl)- [1,2,2](3,6)-bicyclo-heptene-1  (β-Santalene)  C-C=C-C-C  C		263 to 264 ³ 125 to 126 ¹² @ 7mm	0.8940 12 0.9139 3 @ 0\$	1.49460 12	$\left[\alpha\right]_{D} = -41.3^{\circ 12}$
3,7-Dimethyl-10-iso-propenyl-[0,4,4]-bicyclo-decene-3  (Micranene)  C=C-C  C		266 to 268 s 126 to 128 s @ 5mm	0.9155 ° @ 30°	1.5050 ⁸ @ 30°	$[\alpha]_D^{27} = -2.41^{\circ 5}$
3,10-Dimethyl-7- isopropenyl-[0,4,4]- bicyclodecene-2  (Isozingeberene)*		138 @ 20mm 130 to 135 ° .@ 14mm 120 to 123 ¹⁴ @ 8mm 118 to 122 ¹⁴ @ 7mm	0.9070 ° 0.9118 ¹⁴ 0.9150 ¹⁴ 0.910.° @ 15°	1.5030 8 1.506 9 1.5062 14 1.5034 14	$[\alpha]_D^{30} = -51.36^{\circ \ 14}$ $[\alpha]_D = -41^{\circ \ 14}$ *Correct structure of this seems to be 3,7-Dimethyl-5-isopropyl-[0,4,4]-bicyclodecadiene-2,8. See Simonsen, "The Terpenes," p. 498, Cambridge Press, London, 1932.
c-c=c		@ /mm			

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Data
9-Methylene-5-methyl- 2-isopropyl-[0,4,4]- bicyclodecene-2					
C-C-C C C-C-C C C		266 4	0.9089 4 @ 30°	1.5021 4 @ 30°	
2,6-Dimethyl-9-iso- propenyl-[0,4,4]-bicyclo- decene-2					$ \alpha _D = +61.6^{\circ 15}$ $ \alpha _D = +49.5^{\circ 11}$
(\alpha-Selinene)  C C=C C C C		268 to 272 ¹¹ 133 to 134.5 ¹⁰ 128 to 132 ¹⁵ @ 11mm	0.9190 15 0.9196 11 0.9232 11 @ 15° 0.9203 10 @ 13°	1.5048 ¹¹ 1.50920 ¹⁵ 1.5075 ¹⁰ @ 13°	$[\alpha] = +32^{\circ 10}$

- (1) E. Erdmann, J. prakt. Chem. [2] 56, 143, 1897.
- (2) J. Gadamer and Amenomiya, Arch. Pharm. 241, 22, 1903.
- (3) M. Guerbet, Compt. rend. 130, 1324, 1900.
- (4) K. Kafuku, K. Ikida, and Y. Fujita, J. Chem. Soc. Japan 53, 636, 1932.
- (5) K. Kafuku, K. Ikida, and Y. Fujita, J. Chem. Soc. Japan 56, 1186, 1935.
- (6) S. S. Nametkin and A. Zabrodina, Compt. rend. (U.R.S.S.) 1937, 1015.
- (7) L. Ruzicka and E. Capato, Ann. 453, 62, 1927.
- (8) L. Ruzicka, J. Meyer and M. Mingazzini, Helv. Chim. Acta 5, 345, 1922.
- (9) L. Ruzicka and A. G. van Veen, Ann. 468, 143, 1929.
- (10) L. Ruzicka, A. H. Wind, and D. R. Koolhaas, Helv. Chim. Acta 14, 1132, 1931.
- (11) Schimmel and Co, Chem. Zentr. 1910, I, 1719.
- (12) Schimmel and Co. Berichte for Oct. 1910, 106.
- (13) O. Schreiner and E. Kremers, Pharm. Arch. 2, 281.
- (14) F. W. Semmler and A. Becker, Ber. 46, 1814, 1913.
- (15) F. W. Semmler and F. Risse, Ber. 45, 3301, 1912.
- (16) J. L. Simonsen, "The Terpenes," Vol. 2, p. 515. London, Cambridge University Press, 1932.
- (17) H. Thoms, Arch. Pharm. 241, 592, 1903.



		TOT CRODI			O10 111
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
1,5,5-Trimethyl- [1,1,3](4.0)-bicyclo- heptadiene-1,3					$[\alpha]_D = -71.6^{\circ 4}$ $[\alpha]_D = -100.61^{\circ 3}$
(Verbenene) l		159 to 160 ° @ 758mm 158 to 159 ° @ 749mm 158 to 159 ° @ 745mm 45 @ 11mm °	0.8822 \$ 0.8852 \$ @ 15° 0.885 \$ @ 15° 0.8866 \$ @ 15°	1.49800 ° 1.49855 °	
d		158 to 159 ° @ 745mm	0.8867 ¢ @ 15°	1.49800 6	$\left[\alpha\right]_{D} = +100.71^{\circ}  6$
1,3,5,5-Tetramethyl- [1,1,3](4.0)-bicyclo- heptadiene-1,3  (Methyl verbenene)		175 to 176 5 @ 771mm 49 @ 8mm 5	0.872 ⁵ 0.876 ⁶ @ 15°	1.4969 5	
C, H ₁₂ [0,3,4] ^(1,6) -Bicyclononadiene-2,4		171 to 172 " @ 757mm	0.9274 ³⁷ @ 16.5°	1.5153 * ⁷ @ 16.5°	,

C ₁₄ H ₂₄		101			
Name and Carbon Skeleto'n	М. Р.,°С.	B. P., °C. (a) 760mm	D4 ²⁰	$n_D^{20}$	Additional Data
2-Isopropy1-5,5,9-tri- methyl-[0,3,4](1.6)-bi- cyclononodiene-2,(6,10)				·	
(Guaiene)	31.5 2				
c c-c-c					
C ₁₀ H ₁₄ [0,4,4]-Bicyclodecadiene-2,5		75 to 76 19 @ 8mm	0.9726 19	1.5322 19	
[0,4,4]-Bicyclo- decadiene-x,x					
		199.5 to 200 °	$0.934^{-86}$ $D_0^{28}$	1.52618 ²⁰ @ 16.4°	
		195 16	0.95807 20	1.52879 20	
			@ 18.4° 0.94887 20 @ 16.4° 0.9419 18 @ 0° 0.952 36	$\begin{bmatrix} n_{H_{\alpha}}^{18.4} \\ 1.52215^{20} \\ n_{H_{\alpha}}^{16.4} \\ 1.54397^{20} \\ n_{H_{\beta}}^{18.4} \end{bmatrix}$	
			$D_0^0$	1.53648 20 n16.4 H _B	
				1.55340 20 1.55340 20 1.8.4 1.8.4	
				1.54555 20 n _H ^{16.4}	

485					$\mathbf{C}_{ii}\mathbf{H}_{i}$
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Data
6-Methyl-[0,4,4]- bicyclodecadiene-1,3					
		172 ¹⁴ @ 12mm			
C ₁₂ H ₁₈ 3-Ethyl-[0,3,5]- bicyclodecadiene-2,4					
-C-C		109 to 111 ³⁰ @ 10mm		1.5252 30	
1,4-Dimethyl-[0,4,4]-bicyclodecadiene-x,x					
(1,4-Dimethyl- hexahydronaphthalene)			0.92194 ²⁰ @ 19.8°	1.50902 20 @ 19.8° 1.50547 20 $n_{H_a}^{19.8}$ 1.51790 20	
$\mathbf{H}_{14}\mathbf{H}_{22}$				n ¹⁹⁻⁸ H β	
1,2,4,5-Tetramethyl- [0,4,4]-bicyclodeca- diene-x,x					
(1,2,4,5-Tetramethylhexa- hydronaphthalene)		89 to 91 33 @ 0.6mm	$0.926^{33}$ $D_{20}^{20}$	1.5095 83	

C14 III 24		400			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D420	n20 D	Additional Data
d-3,7-Dimethyl-10-iso-propyl-[0,4,4]-bicyclo-decadiene-2,9  (Cadinene)		274 to 275 10 273 to 275 10 272 to 274 32 260 to 261 7 269 31 @ 750mm 153 to 154 7 @ 26mm 129 to 131 13 @ 10mm	0.9225 31 0.9255 32 0.9193 13 @ 15° 0.9224 14 @ 15° 0.9247 7 @ 15°	1.5065 ³² 1.5094 ¹⁰ 1.5107 ¹⁰ 1.5108 ⁷ 1.5065 ¹³ @ 15°	$[\alpha]_D^{20} = +103.7^{\circ}  ^{32}$ $[\alpha]_D^{20} = +48.12^{\circ}  ^{10}$ $[\alpha]_D^{20} = +47.92^{\circ}  ^{10}$ $[\alpha]_D = +55^{\circ}  ^{31}$ $[\alpha]_D = +50^{\circ}  ^{7}$ $[\alpha]_{b46.1}^{15} = +11.68^{\circ}  ^{13}$
l-3,7-Dimethyl-10-iso- propyl-[0,4,4]-bicyclo- decadiene-2,9		274 to 275 35 272 to 275 21,37,34 272 18 271 to 272 17 135 to 137 3 @ 15mm 140 to 142 8 @ 11mm 135 1 @ 11mm 134 to 136 11 @ 11mm 127 to 128.5 25 @ 6mm	0.9183 ²⁸ @ 22° 0.918 ¹⁵ 0.9185 ¹¹ 0.9293 ⁸ @ 18° 0.9229 ²⁷ @ 15° 0.9298 ¹ @ 15° 0.9246 ³ $D_{15}^{15}$	1.50858 25 @ 22° 1.50647 35 1.5065 15,21 1.50651 27 1.5074 11 1.5070 1 @ 15° 1.5096 3 @ 13°	$[\alpha]_{D} = -130.0^{\circ 11}$ $[\alpha]_{D} = -116.73^{\circ 27}$ $[\alpha]_{D} = -110.96^{\circ 17}$ $[\alpha]_{D} = -105.5^{\circ 21}$ $[\alpha]_{D} = -98.56^{\circ 35}$ $[\alpha]_{D} = -79^{\circ 25}$ $[\alpha]_{D} = -74.6^{\circ 1}$ $[\alpha]_{D} = -68.38^{\circ 8}$ $[\alpha]_{D} = -30.82^{\circ 3}$

		<b>T</b> 01			U ₁₅ II.
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n20	Additional Data
3,7-Dimethyl-10-iso- propyl-[0,4,4]-bicyclo- decadiene-2,(1,6)					$\left[\alpha\right]_D = -1.0^{\circ} \text{ H}$
(Isocadinene)		124 to 128 12	0.9181 12	1.5158 11	
		@ 12mm	0.9154 11	1.5150 12	
c-c-c		124 to 126 11 @ 11mm			
		<b>W</b> I I I I I I			
Ċ					
0,10-Dimethyl-3-iso- propyl-[0,4,4]-bicyclo- decadiene-2,(1,6)					,
Bicycloisoprenemyrcene)		130 to 134 ²² @ 13mm	0.9136 ²² @ 21°	1.5051 ²² @ 21°	
c c c c c c c c c c c c c c c c c c c		<b>3 10 11 11</b>	<u> </u>	W 21	
				:	
			1		
			,		
			1		

O1) 2214					
Name and Carbon Skeleton	M.,P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
2,6-Dimethyl-9-iso- propyl-[0,4,4]-bicyclo- decadiene-2,9 or -2,8					$ \alpha _D = +194.3^{\circ 29}$
( or ε-Sclinene)  C C C C C O form or		130 ²⁹ @ 12mm	0.9234 ²⁹ @ 14°	1.5167 ²⁹ @ 14°	
c . $c$ .					
Eudesmene  (Position of double bonds unknown)  C C-C- C-C- C		132 to 136 ²⁴ @ 15mm 128 to 132 ²³ @ 12mm 129 to 132 ²⁸ @ 10mm 122 to 124 ²⁶ @ 7mm 121 to 123 ²⁸ @ 6mm	0.9232 ²⁸ 0.9214 ²³ 0.9204 ²⁸ 0.91964 ²⁶ 0.9175 ²⁴	1.50987 ²⁴ 1.50874 ²⁶ 1.50738 ²⁸ 1.5125 ²³ 1.5134 ²⁴ @ 19°	$ \alpha _{D} = +54.1^{\circ}  ^{26}$ $ \alpha _{D} = +52.6^{\circ}  ^{24}$ $ \alpha _{D}^{20} = +51^{\circ}  ^{28}$ $ \alpha _{D}^{20} = +49^{\circ}  ^{28}$

- (1) P. Aitken, J. Soc. Chem. Ind. 47T, 223, 1928.
- (2) K. Birrell, J. Am. Chem. Soc. 57, 893, 1935.
- (3) W. Blackie, J. Soc. Chem. Ind. 48T, 357, 1929.
- (4) A. Blumann and H. Schmidt, Ann. 453, 48, 1927.
- (5) A. Blumann and O. Zeitschel, Ber. 46, 1178, 1913.
- (6) A. Blumann and O. Zeitschel, Ber. 54, 887, 1921.
- (7) E. Deussen, Arch. Pharm. 240, 288, 1902.
- (8) E. Deussen, F. Weiss, P. Hacker, and P. Hille, J. prakt. Chem. [2] 117, 273, 1927.
- (9) C. Graebe and P. Guye, Ber. 16, 3028, 1883.
- (10) E. Grimal, Compt. rend. 135, 1057, 1902.
- (11) G. G. Henderson and A. Robertson, J. Chem. Soc. 125, 1992, 1924.
- (12) G. G. Henderson and A. Robertson, J. Chem. Soc. 1926, 2811.
- (13) J. L. Hosking and W. F. Short, Rec. trav. chim. 47, 834, 1928.
- (14) W. Huber, Ber. 71, 725, 1938.
- (15) K. Kafuku, K. Ikida, and Y. Fujita, J. Chem. Soc. Japan 53, 636, 1932.
- (16) H. Leroux, Compt. rend. 151, 384, 1910.
- (17) N. Lepeschkin, J. Russ. Phys. Chem. Soc. 40, 698, 1908.
- (18) W. Lossen and A. Zander, Ann. 225, 109, 1884.
- (19) S. S. Nametkin and E. V. Glazoleva, J. Russ. Phys. Chem. Soc 61, 535, 1929.
- (20) R. Nasini and O. Bernheimer, Gazz. chim. ital. 15, 59, 1885.
- (21) E. Parry, "The Chemistry of Essential Oils and Artificial Perfumes," Vol. II, 83, 4th edition, 1922.
- (22) L. Ruzicka and W. Bosch, Helv. Chim. Acta 14, 1336, 1931.
- (23) L. Ruzicka and E. Capato, Ann. 453, 62, 1927.
- (24) L. Ruzicka, J. Meyer, and M. Mingazzini, Helv. Chim. Acta 5, 345, 1922.
- (25) F. W. Semmler and K. G. Jonas, Ber. 47, 2068, 1914.
- (26) F. W. Semmler and F. Risse, Ber. 46, 2303, 1911.
- (27) F. W. Semmler and H. Stenzel, Ber. 47, 2555, 1914.
- (28) F. W. Semmler and E. Tobias, Ber. 46, 2026, 1911.
- (29) J. L. Simonsen, "The Terpenes," Vol. 2, p. 512, London, Cambridge University Press, 1932.
- (30) A. St. Pfau and Pl. Plattner, Helv. Chim. Acta 19, 858, 1936.
- (31) H. von Soden, Chem. Z. 33, 428, 1909.
- (32) F. Thurber and L. Roll, Ind. Eng. Chem. 19, 739, 1927.
- (33) F. Trost and V. Debelli, Ann. chim. applicata 26, 301, 1936.
- (34) S. Uchida, J. Am. Chem. Soc. 38, 687, 1916.
- (35) O. Wallach and E. Conrady, Ann. 252, 141, 1889.
- (36) F. Wreden, J. Russ. Phys. Chem. Soc. 9, 183, 1877; Ber. 9, 1598, 1876.
- (37) N. D. Zelinsky and P. Borissov, Ber. 57, 2060, 1924.

XIV.	DIBICYCLENES OR	DIBICYCLOÖLEFINS;	$C_nH_{2n-10}$

Name and Carbon Skeleton	M. P.,°C.	B. P., °€. @ 760mm	D40	H ²⁰	Additional Data
Di-(7,7-dimethyl- 1,1,3](4.6)-bicyclohepten- 1-yl)-methane  (Dimyrtenyl)		173 to 174 ² @ 10mm	0.9521 2		$[\alpha]_D^0 = +13.793^{\circ 3}$
Pinaconene C-C-C C-C-C	55 to 56 ¹		0.93046 ¹ @ 61°	1.50233 ¹ @ 61°	
. 00					

E. Beckmann, Ann. 292, 1, 1896.
 H. Rupe and A. Heritier, Ann. 459, 171, 1927.



	XV. P	OLYCYCLE	enes, C.	11 _{2n-6}	U ₁₀ H ₁₄
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
Dihydrodicyclopenta- diene					
C C	47 17 50 to 51 2	178 ³ @ 766mm 67 to 68 ¹⁷ @ 14mm 78 to 80 ¹⁸ @ 13mm			
$C_{12}H_{18}$					
6,7-Cyclopentano- [0,3,4]-bicyclononene- (1,5)					
(1,2,3,3a,4,5,6,7,8,8b-Deca- hydro-as-indacene)		107 to 108 6 @ 17mm	0.9397 4	1.4990 6	
C ₁ , H ₂₀ 2,3-Cyclopentano- [0,4,4]-bicyclodecene- (1,6)					
(1,2,3,4,5,6,7,8-Octahydro- 1,2-cyclopentano- naphthalene)		74 to 76 8 @ 3mm	0.9513 8	1.5074 *	
	٠				

O 18 X X X					
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	n _D ²⁰	Additional Data
Decahydrofluorene		258 to 259 ¹¹ @ 745mm 258 ¹³ @ 737mm 254 ⁴ @ 727mm	1.012 13	1.5060 13	
$C_{14}H_{22}$ $\Delta^{11}$ -Dodecahydrophenanthrene		268 to 269 12 @ 737mm 81 to 82 8 @ 1.5mm	0.964 ¹² 0.9674 ⁸	1.5098 ⁷ 1.5102 ⁸ 1.5119 ¹²	
C ₁₅ H ₂₄ Copaene		246 to 251 10 119 to 120 14 @ 10mm	0.9077 ¹⁰ @ 15°	1.48943 10	$[\alpha]_D = -13.21^{\circ 10}$
·					

		377			O18 11 30
Name and Carbon Skeleton	М. Р. <b>,</b> °С.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
Dodecahydroretene (Double bond position not indicated)		336 ⁵ 148 to 150 ^{1,16} @ 10mm	0.8985 1.16	1.48510 1,16	
c-c c					
C ₂₀ H ₃₄ 7,7-Dimethyl-3,4- (5-methyl-2-isopropyl- cyclohexano)-[0,4,4]- bicyclodecene-(1,6) (1,2,3,4,4',5,6,7,8,9,9',10-		176 9	0.9410 •	1.5118 °	
Dodecahydro-1-isopropyl- 4,5,5-trimethylanthracene, Tricyclic camphorene dihydride)		@ 12mm	@ 14°	@ 14°	
c c c c					
					,

- (1) D. Adelson and M. T. Bogert, Chem. Rev. 24, 135, 1939.
- (2) K. Alder and G. Stein, Ann. 485, 223, 1931.
- (3) K. Alder and G. Stein, Ber. 67, 613, 1934.
- (4) P. Guye, Bull. soc. chim. [3] 4, 266, 1890.
- (5) C. Liebermann and L. Spiegel, Ber. 22, 779, 1889.
- (6) P. S. Pinkney and C. S. Marvel, J. Am. Chem. Soc. 59, 2669, 1937.
- (7) P. S. Pinkney, G. A. Nesty, D. E. Pearson, and C. S. Marvel, J. Am. Chem. Soc. 59, 2666, 1937.
- (8) P. S. Pinkney, G. A. Nesty, R. H. Wiley, and C. S. Marvel, J. Am. Chem. Soc. 58, 972, 1936.
- (9) L. Ruzicka and M. Stoll, Helv. Chim. Acta. 7, 271, 1924.
- (10) Schimmel and Co., quoted by F. W. Semmler and H. Stenzel, Ber. 47, 2555, 1914.
- (11) J. Schmidt and E. Fischer, Ber. 41, 4227, 1908.
- (12) J. Schmidt and R. Mezger, Ber. 40, 4240, 1907.
- (13) J. Schmidt and R. Mezger, Ber. 40, 4566, 1907.
- (14) F. W. Semmler and K. Spornitz, Ber. 45, 1553, 1912.
- (15) H. Staudinger and H. Bruson, Ann. 447, 97, 1926.
- (16) A. Virtanen, Ber. 53, 1880, 1920.
- (17) H. Wieland and F. Bergel, Ann. 446, 13, 1925.

XVI.	CYCLYNES OR CYCLOACETYLENES,	$C_nH_{2n-4}$

XVI. CY	CLYNES	503 OR CYCL	OACETY	LENES, (	$C_nH_{2n-4}$ $C_7H_{10}$
Name and Carbon Skeleton	M. P.,°C.	B. P., °C, @ 760mm	D420	$n_D^{20}$	Additional Data
Cycloheptyne-1					
(Suberoterpene)		120 to 121 ¹			
C ₁₅ H ₂₆ Cyclopentadecyne		158 to 159 ^{1,2} @ 14mm	0.8843 ^{1,2} @ 21°	1.4910 ^{1,2} @ 21°	
C ₁₇ H ₃₀ Cycloheptadecyne		127 to 128 ² @ 0.25mm	0.8840 ² @ 22°	1.4869 ² @ 22°	

⁽¹⁾ W. Markownikow, J. Russ. Phys. Chem. Soc. 34, 911, 1902.

⁽²⁾ L. Ruzicka, M. Hurbin, and H. A. Boekenoogen, Helv. Chim. Acta 16, 498, 1933.



	XVII.	SPIRO-HY	DROCAL	RBONS	C, H,
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
C _n H _{2n-2} Cyclopropane-spiro-cyclopropane		39.5 to 40.5 ° @ 746mm	0.7266 •	1.4120 6	
C, H ₁₆ 1,5-Dimethyl-cyclo-butane-spiro-cyclo-butane		132 4 @ 756mm	0.7972 4 @ 20.0°	1.43459 4 @ 20.0°	
C ₁₄ H ₂₆ 1,1,6,6-Tetramethyl-3- isopropyl-cyclobutane- spiro-cyclobutane  C C C C C C C C C C C C C C C C C C		116 to 118 4 @ 23mm	0.8380 4 @ 20.0°	1.46362 4 @ 19.9°	

Op III 16		300			
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
Cyclopentane-spiro- cyclopentane		60 @ 12mm ²			
C ₁₀ H ₁₄ Cyclopentane-spiro- cyclohexane		185 to 186 s @ 745mm 75 @ 20mm s	0.8877 *	1.4748 °	
C ₃₃ H ₆₄ 5-(Cyclohexane-spirocyclohexyl)-docosane C-(C) ₁ -C-(C) ₁₀ -C			0.867 ⁵ @ 25°	1.4793 b @ 25°	
·					

		509		***************************************	C ₁₀ H ₁₆
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
$C_nH_{2n-4}$ $[0,1,3]^{(6,10)}$ -Bicyclohexane-spiro-cyclopentane					
		189 to 190 ⁷ @ 764.5mm	0.9134 ⁷ @ 17°		
C ₁₂ H ₂₀ 1-Methyl-[0,2,4] (7,10)- bicycloöctane-spiro- cyclobutane		77 to 78 4 @ 13.5mm	0.8679 4 @ 20.0°	1.46809 4 @ 20.0°	
$C_nH_{2n-6}$ $C_9H_{12}$ 1,5-Dimethylene-cyclobutane-spiro-cyclobutane		135 4 @ 774mm 70.54 @ 90mm 38 4 @ 21mm	0.8264 4 @ 20.0°	1.48064 4 @ 20.0°	

U12 1118		310			
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
1-Methylene-5-methyl- 5-isopropenyl-cyclo- butane-spiro-cyclo- butane					
		101 4 @ 10mm	0.9346 4 @ 20.0°	1.52624 • @ 20.0°	
$C_nH_{2n-8}$ $C_{12}H_{16}$ 1-Methylene- [0,2,4] (7,10)-bicyclo- öctene-7,10-spiro- cyclobutane					
		72 to 74 4 @ 9mm	0.89554 @ 20.0°	1.50301 4 @ 20.0°	

- (1) N. N. Chatterjee, J. Indian Chem. Soc. 13, 536, 1936.
- (2) N. N. Chatterjee, J. Indian Chem. Soc. 14, 259, 1937.
- (3) G. R. Clemo and J. Ormston, J. Chem. Soc. 1933, 352.
- (4) S. V. Lebedev and B. K. Mereshkowsky, J. Russ. Phys. Chem. Soc. 45, 1249, 1913.
- (5) L. Mikeska, Ind. Eng. Chem. 28, 970, 1936.
- (6) N. D. Zelinsky and W. Krawetz, Ber. 46, 163, 1913.
- (7) N. D. Zelinsky and N. I. Schuikin, J. Russ. Phys. Chem. Soc. 62, 1343, 1930.
- (8) N. D. Zelinsky and N. I. Schuikin, J. Russ. Phys. Chem. Soc. 62, 2180, 1929.



Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
C _n H _{2n-4} Cyclohexylcyclohexylidenemethane		133 ¹² @ 20mm 111 to 112 ⁵ @ 12mm	0.8972 ⁵ 0.919 ¹² @ 0°	1.4908 5	
C ₁₄ H ₂₄ 1,1-Dicyclohexylethene		140 @ 18mm ¹⁴			
C _n H _{2n-6} C ₁₈ H ₃₀ 1,3-Dicyclohexylcyclohexene-1		204 to 207 ¹³ @ 15mm		·	

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
$C_nH_{2n-6}$ 1,4-Dicyclohexylcyclohexene-1 (Hexadecahydroterphenyl)	111 to 113 2	190 ² @ 13mm			
C ₁₀ H ₃₂ Dicyclohexylcyclohexen-1-ylmethane	41 10				
Dicyclohexylcyclo- hexylidenemethane		175 ¹⁰ @ 10mm			

		010			
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D40	n20	Additional Data
$C_nH_{2n-6}$ 1-Ethynylcyclohexene-1		148 to 151 ¹ 145 to 146 ⁹ 40 to 43 ² @ 12mm	0.8800 9	1.4922 ¹ 1.4978 ⁹	
C ₂₀ H ₃₄ 2,7,7-Trimethyl- 1-(2,7,7-trimethyl- [1,2,2](3.6)- bicycloheptyl)- [1,2,2](3.6)-bicycloheptane  (Bis-[2,7,7-trimethyl-[1,2,2]- bicycloheptyl)		326 to 327 4	1.001 ⁴ @ 15°		$[\alpha]_D = +28.47^{\circ 6}$ $[\alpha]_D = +15.56^{\circ 6}$
bicyclo]-heptyl)  C C  C-c-c	85 to 87 ⁶ 75 ⁴ 74 to 75 ³	321 to 323.6 8	(solid)		
$C_nH_{2n-6}$ $C_{22}H_{38}$ 1,2-Dicamphane ethano		205 to 208 11 @ 11mm			

- (1) Bayer and Co., Ger. Pat. 290,558.
- (2) J. v. Braun, G. Irmisch, and J. Nelles, Ber. 66, 1471, 1933.
- (3) W. Carothers and D. Coffman, J. Am. Chem. Soc. 54, 4071, 1932.
- (4) A. Étard and G. Meker, Compt. rend. 126, 526, 1898.
- (5) F. G. Fischer and O. Stoffers, Ann. 500, 253, 1932.
- (6) A. Hesse, Ber. 39, 1127, 1906.
- (7) J. Houben, Ber. 38, 3796, 1905.
- (8) E. Letts, Ber. 13, 793, 1880.
- (9) R. Levina and S. Levina, J. Gen. Chem. (U.S.S.R.) 8, 1776, 1938.
- (10) O. Neunhoeffer, Ann. 509, 115, 1934.
- (11) H. Rupe and J. Brin, Helv. Chem. Acta 7, 546, 1924.
- (12) P. Sabatier and A. Mailhe, Compt. rend. 139, 343, 1904.
- (13) W. Schrauth, W. Wege, and F. Danner, Ber. 56, 260, 1923.
- (14) E. Venus-Danilova, J. Russ. Phys. Chem. Soc. 61, 1479, 1929.

	-	517			C, H,
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	n20 D	Additional Data
$C_nH_{2n-1}$ Cycloöctatetraene					
	- 27 43 approx.	42.2 to 42.4 " @ 17mm 36.2 to 36.4 " @ 14mm	0.925 44 0.923 48 0.920 48 0.943 44 @ 0°	1.53944 ⁴³ 1.54225 ⁴³ 1.5389 ⁴⁴ 1.53413 ⁴³ $n_{H_a}^{20}$ 1.53659 ⁴³ $n_{H_g}^{20}$ 1.55377 ⁴³ $n_{H_g}^{20}$ 1.557759 ⁴³ $n_{H_g}^{20}$ 1.57089 ⁴³ $n_{H_g}^{20}$ 1.57426 ⁴³ $n_{H_g}^{20}$	
C ₁₀ H ₁₂ Cyclopentylidene- cyclopentadiene		55 to 57 ¹⁶ @ 2mm			
·					

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	n _D ²⁰	Additional Data
2,5-Endomethylene- bicyclo-[0,4,3]-nono- diene-3,7					
(Dicyclopentadiene)	32.9 ²⁴ 32.5 ⁴¹ 32 1.82,83,86	163 ¹ @ 766mm 170 ^{17,82} 169.5 to 170 ⁴ 95 @ 55mm ¹⁷ 88 @ 35mm ¹⁷ 70 @ 24mm ²⁸ 69 @ 12mm ³³ 68 to 70 ²⁴ @ 12mm	0.9302 6 @ 77.25° 0.9756 17 @ 35° 0.9766 17 @ 33° 1.012 20 @ 17.5° (solid)	1.48031 6 $n_{H_a}^{77.25}$ 1.51047 36 $n_{H_a}^{20}$ 1.49121 6 $n_{H_a}^{77.35}$ 1.52181 36 $n_{H_{\beta}}^{20}$ 1.49766 6 $n_{H_{\gamma}}^{77.35}$	
C _n H _{2n-8} C ₁₁ H ₁₄ Cyclohexylidene- cyclopentadiene		78 to 80 ¹⁸ @ 25mm			
C ₁₂ H ₁₅ [1,4]-Endoethylene- [0,4,4]-bicyclodeca- diene-3,7		229 to 230 °,10	0.9944 3	1.5265 2	

		017			V11 A.A.
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
3,7,7-Trimethyl- [0,4,4](1,0)-bicyclo- decatriene-2,4,8					
(Irene)		127 15 @ 17mm 113 to 115 15.37 @ 9mm	0.9402 37	1.5274 37	
,					
C ₁ , H ₂₀ 3,4-Cyclohexano- [0,4,4]-bicyclodeca- diene-3,(1,6)					
	73 to 74 13				
Decahydrophen- anthrene					
	- 18 to - 20 29	274 to 275 ** @ 737mm	0.993 29	1.5335 29	

C15 22.55		320			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
C _n H _{2n-4} Methyldecahydrophenanthrene		76.5 ¹¹ @ 1mm			
C ₁ , H ₁ ,  1,4,5,8-Di-(endo- methylene)-tetradeca- hydroanthracene		157 to 159 ° @ 16mm			
C ₁₈ H ₂₈ Decahydroretene		336 to 340 25 155 to 158 39 @ 10mm	0.975 ²⁶ 0.9342 ³⁹	1.51501 39	

		021			V:1:
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
C _n H _{in-8} Hexadecahydrotriphenylene		186 to 188.5 ²⁸ @ 12mm	0.9518 28		
Hexadecahydro-chrysene		360 ²⁰ 168 ³ @ 0.5mm 154 ³ @ 0.3mm	1.0129 3	1.5442 ° @ 17°	
$C_nH_{2n-8}$ $C_{20}H_{82}$ $\alpha$ -Camphorene $C$		190 to 192 ²⁷ @ 12mm 178 to 180 ²⁰ @ 8.5mm 177 to 178 ³¹ @ 6mm 178 ¹⁴ @ 4.5mm	0.8864 14 @ 21° 0.8870 31 0.8844 30	1.4998 14 1.50339 21 1.50199 20	

C30 1713		JEZ			
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
C _n H _{2n-8} Sciadopitene	95 to 96 ²⁴				$[\alpha]_D^{90} = +11.05^{\circ  94}$
Isosciadopitene C-C-C	106 to 107 ²⁴ 110 to 111 ³⁸				$ \alpha _D^{20} = +22.13^{\circ}$ 24
C ₂₂ H ₃₆ 9,10-Diisobutyldecahydroanthracene  C-C-C C C C C C C-C-C	86 to 87 ^{22,23}	145 ²² @ 0.01mm			

	Name and Carbon Skeleton	M. P., °C.	B. P., °C. @ 760mm	$D_{4}^{20}$	n20 D	Additional Data
	C"H _{2n-s} Piceneperhydride	175 21	over 360 ²1			
C., H.,	Dehydronorcholane	66 to 67 a				
$\mathbf{C}_{_{\mathbf{J}}}\mathbf{H}_{_{\mathbf{b}}}$	Cholestene	90 to 91°				$ \alpha _D = -53.05^{\circ}$ ,

C ₂₇ F1 ₄₆		ULT			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
Pseudocholestene  C (C)s	77 to 78 35 78 to 79 9,19				$[\alpha]_D = +60.13^{\circ 9}$ $[\alpha]_D^{29} = +66.9^{\circ 35}$
C ₂ H _{2n-8} C ₂₅ H ₄₈ 3-Methyl-Δ ³ (?)- cholestene	81 to 827				
					,
					,

- (1) K. Alder and G. Stein, Ber. 67, 613, 1934.
- (2) H. Bode, Ber. 70, 1167, 1937.
- (3) J. v. Braun and G. Irmisch, Ber. 65, 883, 1932.
- (4) B. Charlampowiczowna and L. Marchlewski, Bull. intern acad. polon. 1930A, 376.
- (5) O. Diels and K. Alder, Ann. 460, 98, 1928.
- (6) J. F. Eykman, Chem. Weekblad 4, 41, 1907.
- (7) S. N. Farmer and G. A. R. Kon, J. Chem. Soc. 1937, 414.
- (8) K. Fleischer and E. Retze, Ber. 55, 3280, 1922.
- (9) I. M. Heilbron, R. A. Morton, and W. A. Sexton, J. Chem. Soc. 1928, 47.
- (10) F. Hofmann and P. Damm, Kaiser-Wilhelm Soc. 2, 97, 1926.
- (11) W. Huber, Ber. 71, 725, 1938.
- (12) T. Ikeda, Sci. Papers Inst. Phys. Chem. Res. Tokyo, 7, 48, 1928.
- (13) V. N. Ipatieff, W. Jackowlew, and L. Rakitin, J. Russ. Phys. Chem. Soc. 40, 494, 1908; Ber. 41, 996, 1908.
- (14) K. Kofuku, Ozamada, and Nishi, J. Chem. Soc. Japan 54, 364, 1933.
- (15) E. Knoevenagel, J. prakt. Chem. [2] 97, 288, 1918.
- (16) E. P. Kohler and J. Kable, J. Am. Chem. Soc. 57, 917, 1935.
- (17) G. Kraemer and A. Spilker, Ber. 29, 552, 1896.
- (18) S. Lebedev and L. Mereshkowski, J. Russ. Phys. Chem. Soc. 45, 1363, 1913.
- (19) H. Lettré, Z. physiol. Chem. 221, 73, 1933.
- (20) C. Liebermann and L. Spiegel, Ber. 22, 135, 1889.
- (21) C. Liebermann and L. Spiegel, Ber. 22, 779, 1889.
- (22) E. Martin, Ann. combustibles liquides, 12, 97, 1937.
- (23) E. Martin and G. Hugel, Bull. soc. chim. [4] 53, 1500, 1933.
- (24) K. Nishida and H. Uota, J. Agr. Chem. Soc. Japan 11, 489, 1935.
- (25) J. Olsson, Ing. Vetenskaps Akad. Hand. 1931, No. 111, p. 27.
- (26) H. Roscoe, Ann. 232, 348, 1886.
- (27) L. Ruzicka and M. Stoll, Helv. Chim. Acta 7, 271, 1924.
- (28) W. Schrauth and K. Görig, Ber. 56, 2024, 1923.
- (29) J. Schmidt and R. Mezger, Ber. 40, 4240, 1907.
- (30) F. W. Semmler and K. G. Jonas, Ber. 46, 1566, 1913.
- (31) F. W. Semmler and I. Rosenberg, Ber. 46, 768, 1913.
- (32) H. Staudinger, Ber. 59, 3019, 1926.
- (33) H. Staudinger and H. Bruson, Ann. 447, 97, 1926.
- (34) H. Staudinger and A. Rheiner, Helv. Chim. Acta 7, 23, 1924.
- (35) H. E. Stavely and W. Bergmann, J. Org. Chem. 1, 575, 1937.
- (36) H. Stobbe and F. Reuss, Ann. 391, 151, 1912.
- (37) F. Tiemann and P. Krueger, Ber. 26, 2675, 1893.
- (38) H. Uota, J. Dept. Agr. Kyushu Imp. Univ. 5, 117, 1937.
- (39) A. J. Virtanen, Ber. 53, 1880, 1920.
- (40) H. Wieland, Z. physiol. Chem. 142, 191, 1925.
- (41) H. Wieland and F. Bergel, Ann. 446, 13, 1925.
- (42) H. Wieland and V. Wiedersham, Z. physiol, Chem. 186, 229, 1930.
- (43) R. Willstätter and M. Heidelberg, Ber. 46, 517, 1913.
- (44) R. Willstätter and E. Waser, Ber. 44, 3423, 1911.

C ₁ , H ₁ ,		520			
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
C"H _{2π-10} Di-[ <i>tert</i> -butyl ethynyl]- cyclohexylidene methane		The second section of the sect			
C C C C C C C C C C C C C C C C C C C		105 to 110 s @ 3mm	0.8578 ⁵ D ¹⁰ 20	1.4838 *	
2-Methyl-5-iso- propenyl-1-(2-methyl- 5-isopropenylcyclo- hexen-2-yl)-cyclo- hexene-2 (Biscarvene*)		169 to 171 • @ 11mm			*Structure taken fro Beilstein.
					n e

		527			C ₂₀ H ₃₀
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
1,2-Di-(2,2-dimethyl- [1,2,2](3.8)-bicyclo- heptylidene)-ethane					
(Dicamphenylidene ethane)	181 7				
$ \begin{array}{c c} C & C \\ \hline C & C \end{array} $					
$\mathbf{C}_{n}\mathbf{H}_{2n-10}$					
C ₂₂ H ₃₄ 1,4-Di-(2,2-dimethyl- [1,2,2](3,6)-bicyclo- heptylidene)-butane					$ \alpha _D = +67.30^{\circ 7}$
(1,4-Dicamphenylidene butane)		210 ⁷ @ 25mm	0.952 7 @ 15°		
$ \begin{array}{c c}  & = C - C - C - C = C \end{array} $					
C ₂₇ H ₄ Cholestadiene-2,4					$[\alpha]_D^{22} = -112.5^{\circ}$ 8
C C ₈	79 8 63 ¹⁰ 61 ²				$[\alpha]_D^{27} = +114.0^{\circ 10}$ $[\alpha]_D^{10} = +114.0^{\circ 2}$

C ₂₇ H ₄₄		320			
Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
Cholestadiene-3,5	76 1 75.9 to 80 4 78 to 79 °				$[\alpha]_D^{2a} = -103.24^{\circ} {}^{4}$ $[\alpha]_D = -100^{\circ} {}^{1}$ $[\alpha]_D^{2a} = -63.75^{\circ} {}^{6}$
C _n H _{2n-10} Cholestadiene-4,6	84 to 85 4				$[\alpha]_D^{28} = +45.77^{\circ 4}$
7-Dehydrocholestene	88 to 89 3				

- (1) E. Bergmann and Y. Hirshberg, Nature 142, 1037, 1938.
- (2) A. Butenandt and H. Kudsuss, Z. physiol. Chem. 253, I-III, 1938.
- (3) K. Dimroth and G. Trautmann, Ber. 69, 669, 1936.
- (4) J. C. Eck, R. L. van Peursem, and E. W. Hollingsworth, J. Am. Chem. Soc. 61, 171, 1939.
- (5) H. B. Gillespie and C. S. Marvel, J. Am. Chem. Soc. 52, 3368, 1930.
- (6) C. Harries and F. Kaiser, Ber. 32, 1320, 1899.
- (7) G. Langlois, Ann. chim. [9] 12, 265, 1919.
- (8) R. Schoenheimer and E. A. Evans, Jr., J. Biol. Chem. 114, 567, 1936.
- (9) H. E. Stavely and W. Bergmann, J. Org. Chem. 1, 567, 1937.
- (10) H. E. Stavely and W. Bergmann, J. Org. Chem. 1, 575, 1937.

		329			C ₁₀ II s
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
C _n H _{2n-12} [0,3,5]-Bicyclodeca- pentaene	98.5 to 99 6				,
C ₁₅ H ₁₈ Tricyclopentadiene	60 7.8.9 66 2 68 1	254 1 @ 766mm 110 7 @ 3mm 105 8 @ 3mm 90 to 92 9 @ 0.06mm			
$C_nH_{2n-12}$ $C_{18}H_{24}$ 3-Cyclopentadien-2,4- ylidene-1-(2,6,6-tri- methylcyclohexen-1- yl)-butene-1  (6-( $\beta$ -[2',6',6'-Trimethyl- cyclohexen-1-yl]-vinyl)- 6-methylfulvene)		111 to 113 4 @ 0.5mm			

C18 H14		330			
	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
3-Cyclopentadien-2,4- ylidene-1-(2,6,6-tri- methylcyclohexen-2- yi)-butene-1					
(6-(β-[2',6',6'-Trimethyl- cyclohexen-2-yl]-vinyl)- 6-methylfulvene)		107 to 109 4 @ 5mm			
C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-		,			
C,H2,-12					
6,10-Dimethyl-2-cyclo- pentadien-2,4-ylidene- undecatriene-3,5,9					
(6-[4',8'-Dimethylnona- trienyl-1',3',7']-6-methyl- fulvene)		139 to 141 4 @ 0.5mm			
C-C-C=C-C-C-C-C-C-C-C					
C #					
C ₁₀ H ₁₁ Tetrahydrotetracyclopentadiene				,	
	200 to 202 *				
			,		

		301			CIGILIE
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
C _n H _{2n-14} Dicyclohexen-1-yl-butadiyne	62.5 to 63 s				
C ₂₀ H ₂₆ Dihydrotetracyclopentadiene  CCCCCCCCCC	205 ³	361 ³ @ 766mm			
$lpha$ -Tetradecahydroperylene- $\Delta$ - 1,2,9,10,9',10'	180 to 181.5 11			·	
·					

U20 F236		332			
Name and Carbon Skeleton	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	11 ²⁰ D	Additional Data
$\beta$ -Tetradecahydro- perylene- $\Delta$ - 3,4,9,10,9',10'					
$\bigcirc$	161 to 162 "	:			
			·		

- (1) K. Alder and G. Stein, Ann. 485, 223, 1931.
- (2) K. Alder and G. Stein, Ann. 496, 204, 1932.
- (3) K. Alder and G. Stein, Ber. 67, 613, 1934.
- (4) E. Kohler and J. Kable, J. Am. Chem. Soc. 56, 2756, 1934.
- (5) R. Kuhn and K. Wallenfels, Ber. 71, 1889, 1938.
- (6) Pl. A. Plattner and A. St. Pfau, Helv. Chim. Acta 20, 224, 1937.
- (7) H. Staudinger, Ber. 59, 3019, 1926.
- (8) H. Staudinger and H. A. Bruson, Ann. 447, 97, 1926.
- (9) H. Staudinger and A. Rheiner, Helv. Chim. Acta 7, 23, 1924.
- (10) J. Thiele and H. Balhorn, Ann. 348, 1, 1906.
- (11) S. Uchida and S. Takata, J. Soc. Chem. Ind. Japan, Suppl. Binding 36, 222, 1933.

Name and Carbon Skeleton	M. P., °C.	B. P., °C. @ 760mm	D.20	nzo D	Additional Data
C"H _{2n–16} Tetracyclopentadiene					
	188 to 190 u 190 v	344 1 @ 766mm 160 9 @ 1mm 160 to 165 10 @ 1mm			
$\mathbf{C}_{\mathbf{H}_{2n-18}}$					
Cu Hu sym-Dicyclohexyl-tetra- <i>tert.</i> -butylethynyl)- ethane					
2-2-2 2-3-2 2 2 2	149 to 150 ³				
		A CONTRACTOR OF THE CONTRACTOR			
-v=v-					
2					

Name and Carbon Skeleton	M. P.,°C.	B. P., °C. @ 760mm	D	<b>20</b>	Additional Data
C _a H _{zn-zo} Pentacyclopentadiene	270 9,10				
$C_nH_{2n-24}$ $C_nH_{2n}$ Hexacyclopentadiene	373 •				

Additional Data	$[\alpha]_D^{16} = -63^{\circ \bullet}$		
n D			
D.**	-		
B. P., °C. @ 760mm			
M. P., °C.		174 to 175 6 174.5 to 175.5 7 182.3 to 182.7 8 183 4 187 to 187 to 188 8 188 5 183.5 2 uncor.	C 180.5 8 182 2 178 to 180 7 187 4
Name and Carbon Skeleton	C _a H _{2a-z4} α-Carotene		

Name and Carbon Skeleton	M. P., C.	B. P., °C. @ 760mm	$D_{i}^{20}$	n n G	Additional Dala
γ-Carotene					
	178 4				
_°	embatika awwalak efekti y				
	A ST				
	**************************************				
	nema sasahish ka a shasahi ya mba				

K. Alder and G. Stein, Ber. 67, 613, 1934.
 A. E. Gillam and M. S. El Ridi, Biochem. J. 39, 1735, 1936.

(3) H. Gillespie and C. S. Marvel, J. Am. Chem. Soc. 52, 3368, 1930. (4) P. Karrer, "Lehrbuch der Organischen Chemie," Leipzig, 1937, p. 723.

(5) P. Karrer and O. Walker, Helv. Chim. Acta 16, 641, 1933.
(6) R. Kuhn and H. Brockmann, Z. physiol. Chem. 200, 255, 1931.
(7) R. Kuhn and E. Lederer, Z. physiol. Chem. 200, 246, 1931.

(8) J. H. C. Smith and H. W. Milner, J. Biol. Chem. 104, 437, 1934.(9) H. Staudinger, Ber. 59, 3019, 1926.

(10) H. Staudinger and H. A. Bruson, Ann. 447, 97, 1926.

(11) H. Staudinger and A. Rheiner, Helv. Chim. Acta 7, 23, 1924.

XIX. HYDROCARBONS OF UNDETERMINED STRUCTURE (Thought to belong to the naphthene or cyclic series)

		JU 7			
Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
C"H." Hexahydrogeijerene		96 @ 20mm ¹	0.8373 ¹ D ₂₅	1.4577 ¹ @ 25°	
C ₁₅ H ₃₀ Hexahydroelemene		114 to 116 4 @ 10mm	0.8450 4	1.4621 4	$\left[\alpha\right]_{D}=-4.8^{\circ}^{4}$
Hexahydro- $\alpha$ -curcumene		128 @ 7mm ²	0.8283 ² D ₃₀	1.4952 ² @ 30°	
Hexahydro-β- curcumene		128 @ 7mm *	0.8283 ² D ₃₀ ²⁰	1.4552 ° @ 30°	$[\alpha]_D^{30} = +6.3^{\circ}$
d-Tetrahydroferulen		118 to 122 * @ 10mm	0.8400 3	1.45810 *	$[\alpha]_D^{20} = +4.2^{\circ 3}$

- (1) A. R. Penfold and J. L. Simonsen, J. Proc. Roy. Soc. N. S. Wales, 66, 332, 1932.
- (2) B. S. Rao and J. L. Simonsen, J. Chem. Soc. 1928, 2496.
- (3) F. W. Semmler, K. G. Jonas, and P. Roenisch, Ber. 50, 1823, 1917.
- (4) F. W. Semmler and F. Liao, Ber. 49, 794, 1916.

Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. (# 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data	
C _n H _{2n-2} Dihydrobicycloekasan- talane		204 ° @ 768mm 75 to 77 ° @ 10mm	0.8705 ° @ 15°	1.47151 ° @ 15°		
Tetrahydrogeijerene		95 @ 20mm ¹	0.85058 ¹ D ₂₅	1.4695 ¹ @ 25°		
C15 H25 Decahydrochamazulene		119 to 120 * @ 12mm	0.8808 ² @ 15mm	1.4776 ² @ 15mm		
Decahydro-S-guaiazu- lene		130 to 131 ² @ 13mm 132 to 134 ² @ 12mm	0.8798 ² @ 15° 0.8823 ² @ 15°	1.4783 ² @ 15° 1.4790 ² @ 15°		

		UIA			
Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	n ²⁰	Additional Data
C _n H _{3n-2}					$[\alpha]_D^{13} = +36.99^{\circ}$ 14
Tetrahydroatractylene					
		129 to 130 ¹⁴ @ 10mm	0.9030 ¹⁴ @ 11°	0 12°	
Tetrahydrobetulene		118 to 120 s @ 11mm	0.8737 s @ 18°	1.4744 ° @ 18°	$\left[\alpha\right]_{D} = -3^{\circ 4}$
Tetrahydrocaryophyl- lene		122 to 123 10 @ 12mm	0.8712 10	1.4700 10	$\left[\alpha\right]_{D}=+3^{\circ 10}$
Tetrahydroelemene		118 to 120 ° @ 12mm 117 to 119 ° @ 10mm	0,8576 • 0.8659 •	1.4760 °	$[\alpha]_{D} = -15.2^{\circ 9}$ $[\alpha]_{D} = -20.4^{\circ 9}$
<b>Tetrah</b> ydroguaiene		118 to 119 12 @ 7mm 126 to 128 2 @ 12mm	0.8806 ¹³ 0.8884 ³ @ 15°	1.47840 ¹² 1.4811 ³ @ 15°	$[\alpha]_D = +10.52^{\circ}$ 12

		543	)		C ₁₁ H ₁₀
Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	D420	n20 D	Additional Data
C _n H _{2n-2} Tetrahydro-α- santalane *		115 to 116 12 @ 9mm	0.8655 12	1.46908 12	α  = +5.6° 12 *Suggested by Simonsen, "The Terpenes," Vol. II, p. 548.
Tetrahydrosantalene		116 to 118 7 @ 9mm	0.864 7	1.46767	$[\alpha]_D = +7.5^{\circ 7}$
Tetrahydroselinene		128 to 130 4 @ 12mm 126 to 128 " @ 10.5mm 125 to 126 " @ 10mm	0.8881 11 0.8889 12 0.8903 4 0.8910 4 0.8970 4	1.4823 ⁴ 1.48259 ¹¹ 1.4830 ⁴ 1.48375 ¹¹ 1.4877 ⁴	$[\alpha] = +1.12^{\circ 11}$
A fully hydrogenated sesquiterpene		265 18	0.8994 ¹³ @ 22°		$[\alpha]^{23} = +5.62^{\circ 13}$
ļ					

U15 II 25		JII			
Hydrocarbons of Undetermined Structure	м. <i>Р.</i> ,°С.	B. P., °C. (4) 760mm	$D_4^{20}$	n ²⁰	Additional Data
$C_nH_{2n-2}$					
Tetrahydrozingiberene					
		130 to 135 5 @ 18mm	0.842 ⁵ @ 15°	1.463 ⁵ @ 15°	
		1	1		

- (1) A. R. Penfold and J. L. Simonsen, J. Proc. Roy. Soc. N. S. Wales 66, 332, 1932.
- (2) L. Ruzicka and A. J. Haagen-Smit, Helv. Chim. Acta 14, 1104, 1931.
- (3) L. Ruzicka and A. J. Haagen-Smit, Helv. Chim. Acta 14, 1122, 1931.
- (4) L. Ruzicka, D. R. Koolhaas, and A. H. Wind, Helv. Chim. Acta 14, 1171, 1931.
- (5) L. Ruzicka and A. G. van Veen, Ann. 468, 143, 1929.
- (6) F. W. Semmler, Ber. 41, 1488, 1908.
- (7) F. W. Semmler, Ber. 43, 445, 1910.
- (8) F. W. Semmler, K. G. Jonas, and E. L. Richter, Ber. 51, 417, 1918.
- (9) F. W. Semmler and F. Liao, Ber. 49, 794, 1916; 50, 1286, 1917.
- (10) F. W. Semmler and E. Mayer, Ber. 45, 1384, 1912.
- (11) F. W. Semmler and F. Risse, Ber. 45, 3301, 1912.
- (12) F. W. Semmler and F. Risse, Ber. 46, 2303, 1913.
- (13) A. Soltys, Monatsh, 53-54, 185, 1929.
- (14) S. Takagi, J. Pharm. Soc. Japan No. 473, 1-10, 1921.

Hydrocarbons of Undelermined Structure	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	n20 D	Additional Data
C _n H _{2n-4} Carveprene		183 to 1863			
Chamene		168 to 170 " 86 to 88 " @ 50mm	0.8228 ¹¹ @ 25°	1.4686 11 @ 25°	$ \alpha _D = +35^{\circ 11}$
Citronellal-terpene			0.8535 8	1.4875 *	
Dacrydene	-	165 to 166 27	$0.8524^{27}$ $D_{16}^{22}$		$[\alpha]_{D} = +14.48^{\circ 27}$
Isochamene		88 to 90 11 @ 50mm	0.8222 ¹¹ @ 25°	1.4726 ¹¹ @ 25°	$ \alpha _D^{25} \approx -0.27^{-11}$

Cio His		540			
Hydrocarbons of Undetermined Structure	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	n20 D	Additional Data
C _n H _{in-4} Norbicycloekasantalane		186 to 189 18 62 to 64 18 @ 9mm	0.8827 18	1.4779 18	$\left[\alpha\right]_{D}=-19^{\circ 18}$
C ₁₁ H ₁₈ Bicycloekasantalane		183.5 18 @ 767mm 72 to 74 18 @ 10mm 57 to 59 18 @ 9mm	0.871 ¹⁸ 0.885 ¹⁸	1.46856 ¹⁸ 1.4774 ¹⁸	
C ₁₈ H ₂₆ Dihydroaromadendrene		121 to 122 ² @ 10mm	0.9014 * @ 17°	1.4871 * @ 17°	

		547			C15 H36
Hydrocarbons of Undetermined Structure	M.P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	n ²⁰	Additional Data
C _n H _{1n-4} Dihydrocopaene		118 to 121 24 @ 12mm	0.8926 ²⁴ @ 18°	1.47987 24 temp.not given	$[\alpha] = -12.2^{\circ 94}$
Dihydrocyperene		113 to 116 ¹² @ 12mm	0.9332 12 D ₁₉		$[\alpha]_D^{19} = +7.6^{\circ 12}$
Dihydroguaiene		124 to 125 16 @ 15mm 122 @ 11mm 7	0.9089 7	1.4836 ³⁰ @ 23° 1.49817 ⁷ @ 20.2°	$[\alpha]_D^{18.5} = -26.65^{\circ}$
Dihydro-α-gurjunene		@ 1mm 129 ²⁹ @ 14mm	@ 0° 0.9090 29 0.8977 29	1.49061 ²⁹ 1.4897 ²⁹	$\left[\alpha\right]_D = -18^{\circ 29}$
		·			

OH TTH					
Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	11 ²⁰	Additional Data
$C_nH_{2n-4}$ Dihydro- $\beta$ -gurjunene		120 @ 8mm ¹⁰ 115 to 117 ²³ @ 7mm	0.9239 ²³ 0.9172 ²⁹	1.49490 ²³ 1.4922 ²⁹	$[\alpha]_D = -42^{\circ} ^{29}$ $[\alpha]_D = -37.5^{\circ} ^{19}$ $[\alpha]_D = -37^{\circ} ^{23}$
Dihydroledene		112 to 115 13 @ 6mm	0.9075 12	1.492324 13	
Dihydro- $lpha$ -santalene			0.899 19	1.495 19	
Dihydroselinene		138 to 139 16 @ 12mm	0.8992 16 @ 24°	1.4878 18	
			·		

		549			C"H,
Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	D40	n20	Additional Data
C _n H _{:n-4} Dihydrosesqui- citronellene					
		131 to 133 ²² @ 12mm	0.8316 22	1.4800 22	
Dihydrovetivene		126 to 132 ²¹	0.90734 21	1.48685 21	$\left[\alpha\right]_{D} = -1.8^{\circ \text{ at}}$
Elemane		115 to 119 10 @ 10mm	0.8830 ¹⁰ @ 17°	1.4950 ¹⁰ @ 17°	
Ferulene		126 to 128 ²⁰ @ 10mm 124 to 126 ²⁰ @ 7mm	0.8687 ²⁰ 0.8698 ²⁰	1.48377 ²⁰ 1.48423 ²⁰	$[\alpha]_D^{20} = +6^{\circ 20}$
Isodihydro- caryophyllene		137 to 138 ¹⁷ @ 19mm 124 to 124.5 ⁵ @ 12.75mm	0.8872 * @ 21° 0.919 ¹⁷	1.4880 ° @ 21° 1.4925 17	$\left \alpha\right _{\mathcal{D}} = -29.4^{\circ}  ^{\circ}$

V 11 AA31					
Hydrocarbons of Undetermined Structure	М. Р.,°С.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
C _n H _{2n-4} Octahydroazulene		123 to 124.5 '' @ 10mm	0.8935 ²⁵ @ 25° 0.8967 ¹⁴ @ 15°	1.490 ²³ 1.4921 ¹⁴ @ 15°	
Tetrahydrokessylene		105 to 108 ¹ @ 5mm	0.8931 ¹ @ 18°	1.47289 ¹ @ 18°	
C ₁₄ H ₁₄ α-Kayene		33.5 to 34.5 ²¹ @ 8mm	0.8600 31	1.4713 81	$ \alpha _D^{20} = -7.9^{\circ}$
β-Kayene		44.5 to 45.5 ³¹ @ 8mm	0.8591 ³¹	1.4721 31	$[\alpha]_D^{20} = -15.1^{\circ 81}$
C _u H _{se} Dihydroabietene			0.933 •	1.522 •	

		331			C ₁₀ H ₁₄
Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
C _* H _{2n-4} Tetrahydroditerpene	26 4				
Tetrahydromanoene		141 to 142 ° @ 0.2mm	0.9158	1.5030 •	
Totarene	74.5 to 75 ²⁶				
C ₄₀ H ₇₆ Eicosahydrocarotene		206 ²⁸ @ 0.0001mm	0.8748 ²⁸ @ 24.2°	1.4821 ²⁸ @ 24.2°	$ \alpha _D^{20} = +0.337^{\circ 28}$

- (1) Y. Asahina and S. Nakanishi, J. pharm. Soc. Japan 48, 1, 1928.
- (2) O. Aschan, Ann. 461, 1, 1928.
- (3) L. H. Briggs and W. F. Short, J. Chem. Soc. 1928, 2524.
- (4) M. S. Carrie, J. Soc. Chem. Ind., 51, 367T, 1932.
- (5) E. Deussen and K. Meyer, J. prakt. Chem. [2] 90, 318, 1914.
- (6) T. Easterfield and G. Bagley, J. Chem. Soc. 85, 1238, 1904.
- (7) A. L. Gandurin, Ber. 41, 4359, 1908.
- (8) R. Horiuchi, Mem. Coll. Sci. Kyoto, Imp. Univ. Ser. A. 11, No. 3, 171, 1928.
- (9) J. R. Hosking and C. W. Brandt, Ber. 68, 1311, 1935.
- (10) H. Jansch and P. Fantl, Ber. 56, 1363, 1923.
- (11) K. Kafuku, T. Nozoe, and C. Hata, Bull. Chem. Soc. Japan 6, 40, 1931.
- (12) Y. Kimura and M. Ohtani, J. pharm. Soc. Japan 48, 128, 1928.
- (13) G. Komppa, Kgl. Norske Videnskab. Silskabs, Skrifter, 1933, 1-16.
- (14) S. Ruhemann and K. Levy, Ber. 60, 2459, 1927.
- (15) L. Ruzicka and E. Rudolph, Helv. Chim. Acta 9, 118, 1925.
- (16) L. Ruzicka, A. H. Wind, and D. R. Koolhaas, Helv. Chim. Acta 14, 1132, 1931.
- (17) F. W. Semmler, Ber. 36, 1038, 1903.
- (18) F. W. Semmler and K. Bode, Ber. 40, 1124, 1907.
- (19) F. W. Semmler and W. Jakubowicz, Ber. 37, 1141, 1914.
- (20) F. W. Semmler, K. G. Jonas, and P. Roenisch, Ber. 50, 1823, 1917.
- (21) F. W. Semmler, F. Risse and F. Schröter, Ber. 45, 2347, 1912.
- (22) F. W. Semmler and K. E. Spornitz, Ber. 46, 4025, 1913.
- (23) F. W. Semmler and K. E. Spornitz, Ber. 47, 1029, 1914.
- (24) F. W. Semmler and H. Stenzel, Ber. 47, 2555, 1914.
- (25) A. E. Sherndal, J. Am. Chem. Soc. 37, 1537, 1915.
- (26) W. F. Short and H. Stromberg, J. Chem. Soc. 1937, 516.
- (27) H. G. Smith, J. Soc. Chem. Ind. 30, 1353, 1911.
- (28) J. H. C. Smith, J. Biol. Chem. 90, 597, 1931.
- (29) W. Treibs, Ber. 68, 1751, 1935.
- (30) V. M. Trikojus and D. E. White, J. Proc. Roy. Soc. N. S. Wales 68, 177, 1935.
- (31) R. Worsley, Bull. Imp. Inst. 32, 253, 1934.

Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
C _n H _{2n-6} Cycloöctatriene					
		147.2 to 148.2 122 133 to 135 121 @ 715mm 57 to 57.5 121 @ 49 to 50mm 36 to 40 121 @ 13mm 31.2 to 31.8 122 @ 8mm	0.9086 122 0.903 120 0.912 121 @ 0° 0.925 122 @ 0°	1.52844 120	
C ₁₀ H ₁₄ <b>p-M</b> enthatriene		183 113	0.863 113	1.49693 ¹¹³	
C ₁₁ H ₁₆ Methylmenthatriene					$ \alpha _D = +90.32^{\circ 68}$
		90 to 91.5 1 @ 21mm 89.2 to 89.4 1 @ 18mm 74 to 75 60 @ 10mm 74 to 76 68 @ 9.5mm	0.8728 68 0.8745 68 0.8747 68 0.8748 68 0.8738 1 @ 19.0° 0.8686 1 @ 18.8° 0.8776 50 @ 15°	1.5007 ⁶⁹ 1.50152 ⁶⁸ 1.50124 ¹ @ 19.0° 1.49875 ¹ @ 18.8°	$[\alpha]_D^{21} = +69.12^{\circ}  ^{\bullet 0}$

C ₁₂ H ₁₈		554			
Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	n20 D	Additional Data
C _n H _{2n−6} Geijerene		85 @ 17mm 59	0.8720 ¹⁰ D ₂₀ ²⁰	1.4888 50	
1,4-Diisopropenyl- cyclohexene-1 or 1-Isopropenyl-4-iso- propylidene-cyclo- hexene-1					
Low boiling		95 to 98 4 @ 20mm	0.8715 4	1.48717 4  n ²⁰ n ²⁰ n ²⁰ n ²⁰	
High boiling		105 to 108 4 @ 20mm	0.8706 4	1.48650 4 n _H _a	
C ₁₈ H ₃₄ Aromadendrene		121 to 121.4 ° @ 10mm 121 @ 10mm °	0.9116 • 0.9157 • @ 17°	1.4978 ° 1.4993 ° @ 17°	$[\alpha]_{877}^{20} = -6.1^{\circ 9}$

		333			C ₁₅ H ₂
Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	nºt	Additional Data
C _n H _{2n−4} Atractylene		260 to 263 ²⁷	0.9101 27	1.50893 *7	$[\alpha]_D^{13} = +78.35^{\circ}$ 105
		125 to 126 27 @ 10mm 108 to 109 106 @ 3mm	D ₁₆ 0.9154 27 D ₁₆ 0.9189 105 @ 13°	(a) 13°	
Azulene terpene					$\left[\alpha\right]_{D} = +11.40^{\circ 78}$
Azalene terpene	30 to 31 3	167 to 168.4 st @ 11mm 127 to 128 7 @ 10mm 120 to 122 7 @ 10mm 140 to 145 st @ 5mm 117 to 120 75 @ 5mm 135.6 st @ 1.1mm	0.98771 b1 @ 25° 0.98465 b1 D 25 0.9835 b8 @ 15° 0.9134 78 D 16 D 16	1.5021 78	(CAI)
Betulene		123 to 127 % @ 13mm 130 to 132 109 @ 20mm	0.9120 °1 @ 21° 0.9213 10°	1.4952 ⁹¹ @ 21° 1.5144 ¹⁰⁰	$[\alpha]_D^{21} = +6^{\circ 91}$

Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Date
C _n H _{2n-6} Bulnesene		The second second			
		113.5 to 115 ¹¹⁵ @ 6mm	0.9149 119	1.50467 119	
Calamene		127 to 130 74 @ 14mm	$0.9224^{-97}$ $D_{19}^{20}$	1.50572 97 1.5023 74	$ \alpha _D = +5^{\circ 97}$
		123 to 126 ⁹⁷ @ 10.5mm	0.9231 ⁷⁴ D ₁₅ 15	@ 19°	
Camarene		263 42	0.9056 42	1.500 42	$ \alpha _D^{27} = +6.74^{\circ}  ^{42}$
		121 to 122 ⁴² @ 4mm	@ 30°	@ 30°	
Carlinene					
		139 to 141 ⁸⁶ @ 20mm	0.8733 *6 @ 23.8°	1.492 86 @ 23.8°	

		557	y w Miller who we have the second	The State of	C., H.,
Hydrocarbons of Undetermined Structure	M. P.,°C.	B, P., °C. (a 760mm	$D_4^{20}$	H _D ²⁰	Additional Data
C _n H _{2n-6} α-Caryophyllene		130 to 131 ⁶² @ 24mm 139 to 140 ¹⁵ @ 19mm 125 to 125.5 ¹⁷ @ 14.5mm 123 to 124 ¹⁷ @ 14.5mm 122 to 124 ¹⁸ @ 12mm 131 @ 10mm ¹⁹	0.8990 ¹⁷ 0.89951 ¹⁷ 0.8965 ¹⁹	1.4942 62 @ 25° 1.49617 17 1.49665 17 @ 19° 1.496 19 @ 16°	$[\alpha] = -4.97^{\circ 19}$ $[\alpha] = -24.07^{\circ 16}$ $[\alpha]_{D}^{19} = -26.174^{\circ 17}$ $[\alpha]_{D}^{19} = -21.85^{\circ 18}$ $[\alpha]_{B461} = -29.7^{\circ 90}$

Cnaterminea Structure         C _n H _{3n-4} 264 to 268 117,118 264 82 264 82 264 82 264 52 261 to 262 12,14 262 to 263 164 262 to 263 164 262 to 263 164 262 10,9345 86 2750mm 129 to 132 107 @ 17mm 124 to 126 89 @ 12mm 123 to 124 94 @ 12mm 118 to 119 96 @ 12mm 118 to 119 96 @ 12mm 131 to 132 67 @ 10mm       0.9359 12,14 1 1.50233 82 1.50233 82 ( $\alpha$ ) $\alpha$	Additional Dat
Cedrene  264 to 268 117,118 264 ss 264 ss 263.5 to 264 ss 261 to 262 12,14 237 s4 262 to 263 163 @ 750mm 129 to 132 107 @ 17mm 124 to 126 89 @ 12mm 123 to 124 94 @ 12mm 118 to 119 96 @ 12mm 118 to 119 96 @ 12mm 119 ss @ 10mm 119 ss @ 10mm 119 ss @ 10mm 119 ss @ 10mm  119 ss @ 10mm  119 ss @ 10mm  119 ss @ 10mm  119 ss @ 10mm  120	
@ 10mm 114 to 115 ** @ 9mm 112 to 113 ** @ 7mm 119 to 121 ** @ 3mm	$= -85.5^{\circ} \text{ 82}$ $= -85^{\circ} \text{ 96}$ $= -82^{\circ} \text{ 107}$ $= -67^{\circ} \text{ 107}$ $= -60.8^{\circ} \text{ 103}$ $= -59^{\circ} \text{ 93}$ $= -56.51^{\circ} \text{ 12}$ $= -56.2^{\circ} \text{ 94}$ $= -55^{\circ} \text{ 89}$ $= -47.8^{\circ} \text{ 67}$ $= -47.54^{\circ} \text{ 84}$

Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
$C_nH_{2n-4}$					<ul> <li>Tree</li></ul>
Clovene					
Fraction I		251 to 253 72 @ 765mm 117 to 119 72 @ 16mm	0.9215 72 @ 18°	1.4968 ⁷² @ 18°	$\left[\alpha\right]_{D}=-29.66^{\circ 78}$
Fraction II		260 to 262 72 @ 765mm 122 to 124 72 @ 16mm	0.9244 ⁷² @ 18°	1.4951 ⁷² @ 18°	$\left[\alpha\right]_{D} = -39.66^{\circ 78}$
		261 to 263 114 131 to 139 17 @ 15.5mm 111 to 113 36 @ 10mm	0.924 ²⁶ 0.92223 ¹⁷ D ₀ ¹⁹ 0.930 ¹¹⁴ @ 18°	1.4980 36 1.4740 17 @ 19° 1.50066 114 @ 18°	$[\alpha]_D = +1.3^{\circ}$ 36 $[\alpha] = +1.3^{\circ}$ 17
lpha-Costene		122 to 126 88 @ 12mm	0.9014 ss @ 21°	1.49807 ⁸⁸ @ 16°	$\left[\alpha\right]_D = -12^{\circ} \stackrel{\text{de}}{=}$
β-Costene		144 to 149 ss @ 18mm	0.8728 ss @ 22°	1.4905 88	$\left[\alpha\right]_{D}=+6^{\circ 38}$
Cubebene		255 to 260 14 220 44	0.915 ⁸⁴ @ 15°		$\left[\alpha\right]_D = -39.15^{\circ}  4$

Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Data
$C_nH_{2n-4}$ $\alpha$ -Curcumene		128 to 130 ⁶³ @ 9mm	0.8633 63 D ₃₀ ²⁰	1.4944 ⁶³ @ 30°	$[\alpha]_D^{30} = -22.9^{\circ}$ 65
β-Curcumene		128 to 130 63 @ 6mm	0.8810 ⁶³	1.4940 ⁶³ @ 30°	$ lpha _D^{30} = -27.9^\circ$ 63
Curcumene		139 to 142 ⁴⁵ @ 13mm 140 to 142 ⁸⁴ @ 12mm	0.9235 ⁴⁵ @ 24°	1.50594 ⁴⁵ @ 24°	$[\alpha]_D^{30} = +16.35^{\circ}  ^{46}$
Cyclolinaloolene		165 to 167 85	0.8112 %	1.4602 85	
Cyclosesquicitronellene		129 to 132 ⁹⁸ @ 15mm	0.8892 98	1.5069 %	

		301			CIII
Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
C _n H _{2n-4} Cyperene		110 to 115 ⁴⁹ @ 7mm	0.9372 ⁴⁹ D ₁₃	1.50127 <b>49</b> @ 13°	$[\alpha]_D^{13} = +1.5^{\circ}$ 49
lpha-Cyperene		132 to 133 7 @ 15mm			
Dicyclic sesquiterpene		115 to 117 % @ 7mm	0.8932 ⁶³ D ₃₀	1.4936 ⁶⁵ @ 30°	$[\alpha]_B^{30} = -11.9^{\circ}$ 63
Dysoxylonene		136 to 137 58 @ 10mm	0.9236 ⁵⁸ @ 15°	1.5063 68	
Elemene		115 to 117 92 @ 10mm	0.8797 92		
					e 1

Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	n20 D	Additional Data
C _n H _{2n-6} Equinopanocene		135 to 138 46 @ 15mm	0.9051 ⁴⁶ @ 5°	1.5013 ⁴⁶ @ 15°	$[\alpha]_D^6 = +33.5^{\circ}  ^{46}$
Fokienene		112 to 114 ³¹ @ 7mm	0.8802 sa @ 15°	1.49594 ²¹ @ 13°	$[\alpha]_D^{16} = +16.93^{\circ}$ at
Galipene		255 to 260 14	0.912 ¹⁴ @ 19°		
Gonystylene		137 to 139 ²³ @ 17mm	0.9183 ²³ @ 17°	1.5134 ²³ @ 15°	$[lpha]_D^{17} = +40^{\circ}$ 23

		563			C ₁₈ H ₂₄
Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. (a) 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
$C_nH_{2n-6}$ Guaiene		135 to 138 35 @ 14mm	0.8954 ²⁸ @ 25°	1.49468 ²⁸ @ 25°	$[\alpha]_D = -16.8^{\circ 75}$ $[\alpha]_D^{20} = -40.35^{\circ 27}$
		134 to 136 ³ @ 22mm 128 to 130 ⁷⁸ @ 12mm 124 ²⁸ @ 11mm 123 to 124 ²⁷ @ 9mm 124 to 128 ¹¹⁶ @ 13mm	0.9085 ²⁷ 0.9182 ³⁵ 0.910 ¹¹⁶ 0.9115 ⁷⁵ @ 19° 0.9133 ²⁸ @ 0°	1.5022 ⁷⁵ 1.50114 ¹¹⁶ 1.50049 ²⁷	$[\alpha]_D^{25} = -66.11^{\circ}$ 28
α-Gurjunene		114 to 116 % @ 10mm 122 to 126 76 @ 12mm 119 18 @ 12mm	0.919 100 0.918 90 0.9285 75 @ 15°	1.5010 °° 1.501 ¹08 1.5047 75 @ 15°	$[\alpha] = -95^{\circ y_0}$ $[\alpha]_D = -90^{\circ 78}$
iso-α-Gurjunene			0.9109 108	1.5101 108	$\left[\alpha\right]_{D} = -135^{\circ 100}$

C ₁₅ H ₁₄		564			
Hydrocarbons of Undelermined Structure	M. P.,°C.	B. P., °C. @ 760mm	D40	n _D ²⁰	Additional Data
C _n H _{2n-6} β-Gurjunene		120 to 123 % @ 13mm 122.5 to 123.5 18 @ 12mm 113.5 to 114 % @ 7mm	0.9348 90 0.9329 99 0.9321 108	1.50526 99 1.50275 90 1.5022 106	$[\alpha]_D = +74.5^{\circ}$ 90 $[\alpha]_D = +70.5^{\circ}$ 108
iso-β-Gurjunene			0.9313 108	1.5109 108	$\left[\alpha\right]_{D}=-36^{\circ \ 108}$
Hexahydro- chamazulene		118 to 124 76 @ 11mm	0.9117 78	1.5200 76	
Humulene		263 to 266 ¹¹ 132 to 137 ²⁵ @ 13mm	0.8977 11 $D_{20}^{20}$ 0.9001 11 $D_{15}^{15}$	1.5021 11 @ 19° 1.4978 11 $n_{H_a}^{10}$	$[\alpha]_D^{20} = -0.5^{\circ}$ 11

		303			C ₁₈ H ₂₄
Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Data
C _n H _{2n-6} Isocamerene		253 ⁴² 110 to 111 ²³ @ 5mm	0.8942 ⁴² @ 30°	1.4925 ⁴² @ 30°	$[\alpha]_D^{27} = -11.21^{\circ}$ 42
Isoclovene		130 to 131 ³⁶ @ 12mm	0.943 ³⁴ @ 19°	1.5039 ³⁸ @ 19°	$[\alpha]_D^{14} = -56.6^{\circ}$ 36
Isocostene		130 to 135 88 @ 12mm	0.9062 ** @ 21°	1.50246 ⁸⁸	$\left[\alpha\right]_D = +31^{\circ 88}$
Isofokienene Fraction I		95 to 96 ³² @ <b>3</b> mm	0.9075 \$1.32	1.5041 ³² @ 21°	$[\alpha]_D^{21} = +5.92^{\circ 32}$
lpha-Isosantalene		225 to 256 33			$\left[\alpha\right]_D = +6.1^{\circ} \text{ as}$

		300			
Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	D ₄ ²⁰	$n_D^{20}$	Additional Data
C _n H _{2n-6} β-Isosantalene		259 to 260 ³³			$ \alpha _D^{24} = +16.89^{\circ}$ 23
Isosesquichamene		265 to 268 III 129 to 131 45,44,111 @ 12mm	0.9320 44,111 @ 21.5° 0.9367 111	1.5109 44,111 @ 21.5° 1.5009 111	$[\alpha]_D^{21.5} = -8.52^{\circ} \text{ III}$ $[\alpha] = -15.7^{\circ} \text{ III}$ $[\alpha]_D^{21.5} = -8.532^{\circ} \text{ III}$
Machilene		142 to 144 ⁷⁸ @ 20mm	0.9267 ⁷³ @ 15°	1.5104 ⁷³ @ 15°	$\left[\alpha\right]_{D}=+63^{\circ n}$
Patchoulene		255 to 256 *1 254 to 256 118 252 to 255 52 @ 743mm 112 to 115 27 @ 12 to 12.5mm	0.939 116 @ 23° 0.9296 27 0.9334 81 @ 15° 0.937 52 @ 13.5° 0.946 52 @ 0°	1.49835 ²⁷ 1.50094 ¹¹⁶	$[\alpha]_D^{20} = -38.08^{\circ} {}^{27}$ $[\alpha]_D = -42.10^{\circ} {}^{51}$ $[\alpha]_D = -36.52^{\circ} {}^{81}$
			·		

		307			C ₁₅ H ₂
Hydrocarbons of Undetermined Strugture	M. P.,°C.	B. P., °C. @ 760mm	D40	n 20	Additional Data
C _n H _{2n−4} Populene		121 to 122 ** @ 8:nm	0.9135 ^{sq} @ 15°	1.504 ⁵⁴ @ 15°	$\left[\alpha\right]_{D}=+21.22^{\circ}$
γ-Santalene		118 to 120 ⁸⁷ @ 9 to 10mm	0.9355 ⁸⁷	1.5042 87	
Sesquibenhene		127 to 131 ⁴¹ @ 10°	0.9162 ⁴¹ @ 14°	1.5058 ⁴¹ @ 24°	$ \alpha _D^{24} = +35.7^{\circ}$ 41
Sesquichamene		112.5 to 123.5 ^{43,44} @ 12mm	0.9277 ^{43,44} @ 28°	1.5021 ^{43,44} @ 28°	$ \alpha _D^{28} = -89.85^{\circ}$ 43,44
Sesquicitronellin		138 to 140 % @ 9mm	0.8489 98	1.53252 98	$\left[\alpha\right]_{D} = +0.36^{\circ \text{ b8}}$

Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	D40	n ²⁰ _D	Additional Data
$C_nH_{2n-6}$					
Sesquiterpene-1					
Sesquiterpene-2		140 134 @ 26mm	0.902 12a @ 15°		$\left[\alpha\right]_D = +50^{\circ 13a}$
		153 to 154 12a @ 26mm	0.9247 18a @ 15°		
Sesquiterpene from aliharz oil					$\left[\alpha\right]_{D} = +131.99^{\circ 83}$
		270.8 to 271 ⁸³ @ 754mm	0.9190 ⁹³ @ 15°	1.52252 83 @ 15°	
Sesquiterpene from balsoharz balsam					$[\alpha]_D^{80} = +116.4^{\circ 2}$
		118 to 119 ² @ 8mm	0.9104 ² @ 30°	1.4956 ² @ 30°	
Sesquiterpene from					$[\alpha] = -35.39^{\circ}$ 102
caryophyllene-dihydro- chloride			0,9191 103	1.49901 102	

		569			C14 H14
Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	D40	n20 D	Additional Data
$C_nH_{2n-6}$					
Sesquiterpene from citronellol					
		272 to 275 80 170 to 172 80 @ 16mm 157 80 @ 15mm	0.8643 ⁸⁰ @ 15°		
Sesquiterpene from Ethereal Oil of Pittos- porum					
		263 to 264 61 167 to 171 61 @ 60mm	0.9100 61 D ₁₅ ¹⁵	1.5030 61	
Sesquiterpene from alcohol from Capaiba balsam					$\left[\alpha\right]_D = -61.7^{\circ} \text{ 112}$
		252 ¹¹² @ 759mm	0.952 112 @ 15°	1.5189 112 @ 15°	

C14 F124		3/0			
Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
C _n H _{2n-6} Sesquiterpene from Matico Oil		138 to 139 ¹⁰⁶ @ 17mm 133 to 134 ¹⁰⁸ @ 11mm	0.914 ¹⁰⁸ 0.916 ¹⁰⁸	1.50542 106 1.50808 106 $n_{H_a}^{21}$ 1.52177 106 $n_{H_{\beta}}^{21}$ 1.53028 106 $n_{H_{\gamma}}^{21}$	$\left[\alpha\right]_{D}=-10.83^{\circ \ 106}$
Sesquiterpene from Ysop Oil		125 ⁷⁵ @ 12mm	0.9116 ⁷⁵ @ 17°	1.5012 ⁷⁵ @ 17°	
Sesquiterpene from Cubebene Oil		274 to 275 118	0.918 118	1.50467 115	
Sesquiterpene from Eucalyptus Globulus Oil		1.24 to 127 75 @ 12mm	0.9078 75	1.4969 75	

		3/1			CIA
Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. ' @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
C _n H _{2n-6} Sesquiterpene from Eucalyptus Globus Oil		127 to 131 75 @ 12mm	0.9172 75	1.5001 75	
Sesquiterpene		0.44.00	0.00(0.24		
		266 28	0.9269 ²⁶ @ 30°	1.5094 ²⁸ @ 30°	
Sesquiterpene					$[\alpha]_D = +58.40^{\circ 101}$
		265.5 to 266 101 @ 750mm	0.9326 ¹⁰¹ @ 15°	1.50602 101	
Sesquiterpene					$[\alpha]_D = -55.48^{\circ 101}$
		247 to 248 101 @ 748mm	0.8956 ¹⁰¹ @ 15°	1.49287 101	
Sesquiterpene from Cymbopogon Sennaarensis, Chiov Oil		150 to 155 % @ 27mm	0.9114 ⁶⁶ $D_{15}^{15}$		$[\alpha]_D^{23} = +24.40^\circ$ 66
Sesquiterpene		127 ⁵³ @ 14mm	0.8961 ⁵³ @ 30°	1.4990 53 @ 30°	$[\alpha]_D^{30} = +16.1^{\circ \ 53}$

j₁8 Fl.24		312			
Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
C _n H _{2n-6} Sesquiterpene		122 to 127 ³⁹ @ 10mm		1.527 ³⁹ @ 17°	
Terebenthene		155.4 to 155.8 ¹⁰ @ 748.9mm	0.8685 ²² @ 25° 0.867 ⁶⁵ @ 17°	1.4648 ** @ 15°	$[\alpha]_D = +3.2^{\circ 66}$ $[\alpha]_D = -40.3^{\circ 22}$
<b>Vetivene</b> Bicyclic		137 to 140 % @ 16mm 132 to 133 71 @ 12mm	0.9321 % 0.9339 71 @ 15°	1.51896 % 1.5179 71	$\left[\alpha\right]_D = -10.20^{\circ 95}$
<b>Vetivene</b> Tricyclic		123 to 130 % @ 16mm 126 to 127 ⁷¹ @ 12mm	0.9335 % 0.9372 ⁷¹ @ 15°	1.51126 % 1.5143 71 @ 15°	

		313			U10.II.1
Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Data
$C_nH_{2n-6}$					
Dihydrocyclosclarene					$\left[\alpha\right]_D = +33.4^{\circ} \ ^{40}$
		122 to 128 40	0.9288 40	1.5075 40	
		@ 0.15mm	@ 25° 0.9296 40	@ 25°	
			@ 24°		
<b>5</b> 4.4.4					
Dihydroisomanoene					
		123 to 124 38 @ 0.2mm	0.9164 88 @ 19°	1.5048 38 @ 19°	
$\alpha$ -Dihydromanoene					
		149 to 150 38	0.9206 38	1.5089 38	
		@ 0.3mm	@ 21°	@ 21°	
$\alpha$ -Dihydropodocarprene					$\alpha_D^{(20)} = -15.85^{\circ 56}$
	83 to 84 56				
β-Dihydropodocarprene					$\left[\alpha\right]_{D} = +7.80^{\circ}  ^{56}$
,		203 to 204 56		1.5121 56	
		@ 17mm		1.5121	
lpha-Dihydrophyllocladene					$[\alpha]_D^{22} = +23.25^{\circ}$ 8
	73 to				
β-Dihydrophyllocladene	74 8				
p-Diny dropny nociatione					
	55 *				
	1				

C ₂₀ II ₃₄		5/4			_
Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	D40	n20	Additional Data
C _n H _{2n-4} Kaurene					
	86 to 87 ³⁷		0.9282 ³⁷ @ 106° 0.9330 ³⁷ @ 100°	1.4912 ³⁷ @ 100°	
C ₁₇ Η ₁₄ Allo-α-ergostane					$\left[\alpha\right]_{D} = +17.0^{\circ}  ^{64}$
	84 to 85 64				
Bombisestane	79 48				$[\alpha]_D^{18} = +18.6^{\circ}$ 45
	81 47				
Cholestane	79 110 71 104 70 to				$[\alpha]_D = +24.59^{\circ 110}$
	71 6				

	No. Market Strategy and Associated Strategy and Associ	575			C,7 H48
Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{z_0}$	Additional Data
C _n H _{2n-6} Lupane	184 to				
Soja-γ-sitostane	185 ²⁰				$[\alpha]_D^{15^{\bullet}} = +20.2^{\circ 5}$
C₂₅ H₅₀ Pseudoergostane	64 24				$[\alpha]_D^{19} = +25.3^{\circ 24}$
Ergostane	81 to 82 ²⁴ 82 ²¹				$[\alpha]_D^{18} = +22.9^{\circ} 24$
C _{a0} H ₆₄ Artostane	101 55				

C ₂₀ H ₃₄	576				
Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	D ₄ ²⁰	11 ²⁰	Additional Data
C _n H _{1n-6} Stigmastane					
	84 to 84.5 123				
				,	

- (1) K. v. Auwers and F. Eisenlohr, Ber. 43, 827, 1910.
- (2) R. F. Bacon, Phillipine J. Sci. 4A, 93, 1909.
- (3) K. Birrell, J. Am. Chem. Soc. 57, 893, 1935.
- (4) M. T. Bogert and C. P. Harris, J. Am. Chem. Soc. 41, 1676, 1919.
- (5) K. Bonstedt, Z. physiol. Chem. 176, 269, 1928.
- (6) A. T. Bose and W. Doran, J. Chem. Soc. 1929, 2244.
- (7) A. E. Bradfield, B. H. Hegde, B. S. Rao, J. L. Simonsen, and A. E. Gillam, J. Chem. Soc. 1936, 667.
- (8) L. Briggs, J. Soc. Chem. Ind. 56T, 137, 1937.
- (9) L. H. Briggs and W. F. Short, J. Chem. Soc. 1928, 2524.
- (10) J. Brühl, Ber. 25, 142, 1892.
- (11) A. Chapman, J. Chem. Soc. 67, 54, 1895.
- (12) A. Chapman and E. Burgess, Proc. Chem. Soc. 12, 140, 1896.
- (13) E. Deussen, Ann. 359, 273, 1927.
- (13a) E. Deussen, Ann. 388, 136, 1912.
- (14) E. Deussen, Arch. Pharm. 240, 288, 1902.
- (15) E. Deussen, J. prakt. Chem. [2] 114, 63, 1926.
- (16) E. Deussen, J. prakt. Chem. [2] 145, 31, 1936.
- (17) E. Deussen and A. Lewinsohn, Ann. 359, 245, 1908.
- (18) E. Deussen and H. Philipp, Ann. 374, 105, 1910.
- (19) E. Deussen, F. Weiss, P. Hacker, and P. Hille, J. prakt. Chem. [2] 117, 273, 1927.
- (20) H. Dieterle and A. Salomon, Arch. Pharm. 270, 495, 1932.
- (21) J. L. Dunn, I. M. Heilbron, R. F. Phipers, K. M. Samont, and F. S. Spring, J. Chem. Soc. 1934, 1576.
- (22) G. Dupont, Ann. chim. [10] 1, 184, 1924.
- (23) P. A. A. F. Eyken, Rec. trav. chim. 25, 44, 1906.
- (24) E. Fernholz, Ber. 69, 1792, 1936.
- (25) F. Fichter and J. Katz, Ber. 32, 3183, 1899.
- (26) Y. Fujita, J. Chem. Soc. Japan 55, 6, 1934.
- (27) J. Gadamer and T. Amenomiya, Arch. Pharm. 241, 22, 1903.
- (28) A. L. Gandurin, Ber. 41, 4359, 1908.
- (29) J. Gladstone, J. Chem. Soc. 45, 241, 1884.
- (30) J. Gladstone, J. Chem. Soc. 59, 290, 1891.
- (31) E. Glichitch, Compt. rend. 191, 1457, 1930.
- (32) E. Glichitch, Parfums de France 8, 157, 1920.
- (33) M. Guerbet, Compt. rend. 130, 1324, 1900.
- (34) A. Guttenberg, Z. gas. exp. Med. 54, 642, 1927.
- (35) H. Haensel, Geschäftsberichte, April-Sept., 1908.
- (36) J. A. R. Henderson, R. O. O. McCrone, and G. J. Robertson, J. Chem. Soc. 1929, 1368.
- (37) J. Hosking, Rec. trav. chim. 49, 1036, 1930.
- (38) J. Hosking and C. Brandt, Ber. 68, 37, 1935.
- (39) V. N. Ipatieff and V. Petrov, Ber. 60, 753, 1927.
- (40) M. M. Janot, Ann. chim. [10] 17, 5, 1932.
- (41) K. Kafuku and K. Ichikawa, J. Chem. Soc. Japan 54, 1011, 1933.
- (42) K. Kafuku, T. Ikeda, and C. Hata, J. Chem. Soc. Japan 56, 1186, 1935.
- (43) K. Kafuku and T. Nozoe, Bull. Chem. Soc. Japan 6, 111, 1931.
- (44) K. Kafuku and T. Nozoe, Chem. News 143, 21, 1931.
- (45) T. Kariyone and Y. Matsushima, J. Pharm. Soc. Japan, No. 546, 674, 1927.
- (46) T. Kariyone and Morotomi, J. Pharm. Soc. Japan, No. 546, 671, 1927.
- (47) C. Kawasaki, J. Pharm. Soc. Japan 57, 736, 1937.
- (48) K. Kawasaki, J. Pharm. Soc. Japan 55, 758, 1935.
- (49) Y. Kimura and M. Ohtoni, J. Pharm. Soc. Japan 48, 128, 1928.
- (50) A. Klages, Ber. 40, 2360, 1907.
- (51) R. E. Kremers, J. Am. Chem. Soc. 45, 717, 1923.

- (52) E. Montgolfier, Compt. rend. 84, 90, 1877.
- (53) K. Moudgill and P. Virdhachalam, Perfumery and Essential Oil Record 13, 173, 1922.
- (54) N. Nakao, J. Pharm. Soc. Japan, No. 513, 4, 1924.
- (55) M. C. Nath, Z. physiol, Chem. 247, 9, 1937.
- (56) K. Nishida and H. Uota, Bull. Agricult. Chem. Soc. Japan 7, 1, 1931.
- (57) V. Pavesi, Rend. Inst. Lombardo [2] 37, 487, 1904.
- (58) A. R. Penfold, J. Proc. Roy. Soc. N. S. Wales 61, 337, 1928.
- (59) A. R. Penfold and J. L. Simonsen, J. Proc. Roy. Soc. N. S. Wales 66, 332, 1932.
- (60) P. S. Pinkney and C. S. Marvel, J. Am. Chem. Soc. 59, 2669, 1937.
- (61) F. B. Power and F. Tutin, J. Chem. Soc. 89, 1083, 1906.
- (62) G. R. Ramage and J. L. Simonsen, J. Chem. Soc. 1938, 1208.
- (63) B. S. Rao and J. L. Simonsen, J. Chem. Soc. 1928, 2496.
- (64) F. Reindel and E. Walter, Ann. 460, 212, 1928.
- (65) A. Reychler, Bull. soc. chim. [3] 15, 366, 1896.
- (66) K. Roberts, J. Chem. Soc. 107, 1465, 1915.
- (67) L. Rousset, Bull. soc. chim. [3] 17, 485, 1897.
- (68) H. Rupe and F. Emmerich, Ber. 41, 1393, 1908.
- (69) H. Rupe and K. Liechtenhan, Ber. 39, 1119, 1906.
- (70) L. Ruzicka, Helv. Chim. Acta 6, 483, 1923.
- (71) L. Ruzicka, E. Capato, and H. W. Huyser, Rec. trav. chim. 47, 370, 1928.
- (72) L. Ruzicka and D. T. Gibson, Helv. Chim. Acta 14, 570, 1931.
- (73) L. Ruzicka, D. R. Koolhaas, and A. H. Wind, Helv. Chim. Acta 14, 1178, 1931.
- (74) L. Ruzicka, J. Meyer, and M. Mingazzini, Helv. Chim, Acta 5, 345, 1922.
- (75) L. Ruzicka, S. Pontalti, and F. Balas, Helv. Chim. Acta 6, 855, 1923.
- (76) L. Ruzicka and E. Rudolph, Helv. Chim. Acta 9, 118, 1926.
- (77) L. Ruzicka and J. A. van Melsen, Helv. Chim. Acta 14, 397, 1931.
- (78) S. Sabetay and H. Sabetay, Compt. rend. 199, 313, 1934.
- (79) A. St. Pfau and P. A. Plattner, Helv. Chim. Acta 19, 858, 1936.
- (80) Schimmel and Co., Geschäftsberichte, Oct. 1899.
- (81) Schimmel and Co., Geschäftsberichte, Apr. 1904, 75.
- (82) Schimmel and Co., Geschäftsberichte, Oct., 1909.
- (83) Schimmel and Co., Geschäftsberichte, Oct., 1908, 80.
- (84) O. Schreiner and E. Kremers, Pharm. Arch. 2, 273, 1899.
- (85) F. W. Semmler, Ber. 27, 2520, 1894.
- (86) F. W. Semmler, Ber. 39, 726, 1906.
- (87) F. W. Semmler and K. Bode, Ber. 40, 1124, 1907.
- (88) F. W. Semmler and J. Feldstein, Ber. 47, 2687, 1914.
- (89) F. W. Semmler and A. Hoffmann, Ber. 40, 3521, 1907.
- (90) F. W. Semmler and W. Jakubowricz, Ber. 47, 1141, 1914.
- (91) F. W. Semmler, K. G. Jonas, and W. Richter, Ber. 51, 417, 1918.
- (92) F. W. Semmler and F. Liao, Ber. 49, 794, 1916.
- (93) F. W. Semmler and E. Mayer, Ber. 45, 1384, 1912.
- (94) F. W. Semmler and F. Risse, Ber. 45, 355, 1912.
- (95) F. W. Semmler, F. Risse, and H. Schrötter, Ber. 45, 2347, 1912.
- (96) F. W. Semmler and K. E. Spornitz, Ber. 45, 1553, 1912.
- (97) F. W. Semmler and K. E. Spornitz, Ber. 46, 3700, 1913.
- (98) F. W. Semmler and K. E. Spornitz, Ber. 46, 4025, 1913.
- (99) F. W. Semmler and K. E. Spornitz, Ber. 47, 1029, 1914.
- (100) F. W. Semmler and H. Stenzel, Ber. 47, 2555, 1914.
- (101) F. W. Semmler and E. Tobias, Ber. 46, 2026, 1913.
- (102) "The Sesquiterpenes" [Milwaukee, 1904], 71, 108.
- (103) H. v. Soden and W. Rojahn, Ber. 37, 3353, 1907.
- (104) W. Steinkopf, H. Winternitz, W. Roederer, and O. Wolynski, J. prakt. Chem. [2] 100, 65, 1920.

- (105) S. Takagi, J. Pharm. Soc. Japan, No. 473, 1, 1921.
- (106) H. Thoms, Arch. Pharm. 247, 591, 1909.
- (107) W. Treibs, Ber. 68, 1047, 1935.
- (108) W. Treibs, Ber. 68, 1751, 1935.
- (109) W. Treibs, Ber. 69, 41, 1936.
- (110) L. Tschugaeff and W. Fomin, Ann. 375, 288, 1910.
- (111) S. Uchida, J. Soc. Chem. Ind. Japan 19, 611, 1916.
- (112) L. Van Itallie and C. Nieuwland, Pharm. Weekblad 43, 389; 1906.
- (113) O. Wallach, Ann. 264, 1, 1891.
- (114) O. Wallach, Ann. 271, 285, 1892.
- (115) O. Wallach and E. Conrady, Ann. 252, 141, 1889.
- (116) O. Wallach and F. Tuttle, Ann. 279, 391, 1894.
- (117) P. Walter, Ann. 39, 247, 1841.
- (118) P. Walter, Ann. chim. [3] 1, 498, 1841.
- (119) H. Weinhaus and Scholz, Ber. Schimmel and Co., 1929, 269.
- (120) R. Willstätter and M. Heidelberger, Ber. 46, 517, 1913.
- (121) R. Willstätter and H. Veraguth, Ber. 38, 1975, 1905.
- (122) R. Willstätter and E. Waser, Ber. 44, 3423, 1911.
- (123) A. Windhaus and J. Brunken, Z. physiol, Chem. 140, 47, 1924.

C ₁₆ H ₂₉		300			
Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Data
C _n H _{2n-1} Calamenene		136 to 140 " @ 12mm	0.942 <b>4</b> @ 16°	1.5239 <b>4</b> @ 16°	
Dehydrobetulene		112 to 114 ⁶⁷ @ 9mm	0.9186 ^{s7} @ 23°	1.5052 ⁵⁷ @ 23°	$[\alpha]_D^{23} = -68^{\circ}$ 57
C ₁₈ H ₁₈ Dinormenthadiene		170 to 172 ³⁸ @ 16mm			
C ₁ , H ₁₀ Abietine also "Diterebentyl"		253 to 255 16 @ 82 to 85mm 210 to 211 35 @ 26.5mm 199 to 200 16 @ 13mm	0.977 35		

		201			C ₂₀ II.
Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	. D40	$n_D^{20}$	Additional Data
C _n H _{2n-8} <i>l</i> -Bifenchene		321 to 325 bs @ 751mm	0.9488 ⁵⁴ @ 15°	1.50762 56	$\left[\alpha\right]_D = -5.15^{\circ  46}$
γ-Camphorene		176 to 178 ²⁸⁴ @ 4.5mm	0.8875 ^{28a} @ 19°	1.5030 ²⁸ 4 @ 19°	
Colophen		318 to 320 13			
lpha-Cryptomerene	61 50	345 ⁵⁰ 198 ⁵⁰ @ 15mm			$[\alpha]_D = +34.22^{\circ}$ 80
β-Cryptomerene	212 50 with sub- lima- tion				

20 1132		304			
Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
C _n H _{2n-s} Dacrene	96 1.7			1.5120 ⁷ (a. 13°	Briggs states that Dacrene, Sciadopitene, and Phyllocladene are identical and that the use of the names Dacrene and Sciadopitene should be discontinued in the literature.
Dicarvenene		170 to 173 ⁴⁶ @ 10mm	0.928 46	1.5175 46	
Dicinene		329 to 334 ³² 328 to 333 ²³ 182 ³² @ 13mm			
Diisocarvestrine		188 to 190 ¹⁹ @ 20mm			

		303			The state of the s
Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Da <b>t</b> a
C _n H _{2n-8} Diisochamene		155 to 156 ²⁸ @ 4mm	0.9150 28	1.5134 28	$[\alpha]_D^{20} = -0.7^{\circ}$ 35
Dipinene		183 to 184 " @ 15mm	0.9260 11	1.5174 11	
Diterpene	57 to 58 ²⁴ 55.5 ³⁸	320 38 184 to 186 ²⁴ @ 10mm 140 to 142 ²⁴ @ 1mm	0.9631 ²⁴ @ 60° 0.9686 ²⁴	1.5132 ²⁴ @ 60° 1.5150 ²⁴ @ 56° 1.5208 ²⁴ @ 25° 1.5244 ²⁴	$[\alpha]_{6461}^{25} = -1.11^{\circ} 24$
Diterpene		178 ⁵² @ 8mm			$\left[\alpha\right]_D = +214^{\circ 52}$
Diterpene		156 to 160 ⁴² @ 13mm	$0.8966^{-42}$ $D_{20}^{20}$	1.5048 42	

C34.EL33		384			
Hydrocarbons of Undetermined Structure	М. Р.,°С.	B. P., °C. @ 760mm	D40	n _D ¹⁰	Additional Data
C _n H _{in-1} Diterpene from 1- Pinene and Limonene in the presence of HCl		330 to 332 ²² 174 to 178 ²² @ 11mm	0.932 ²² @ 17.5°	1.51983 23	
<u>Diterpene</u>		180 to 185 ²⁰ @ 15mm	0.9309 ²⁰ $D_{30}^{30}$	1.5168 ²⁰ @ 30°	
Diterpene		142 to 143 ² @ 4mm	0.8654 ² D ₀ ²³	1.5080 ³ @ 23°	
Diterpenes from $l$ - $\alpha$ -Phellandrene		182 to 184 12 @ 16mm	0.9257 12	1.5171 12	$[\alpha]_D^{90} = +14.96^{\circ 12}$
oil from Eucalyptus dives		193 to 195 12 @ 24mm	0.9245 12	1.5178 12	$[\alpha]_D^{20} = +13.20^{\circ 13}$

		303			C ₂₀ III ₂ :
Hydrocarbons of Undetermined Structure	М. Р.,°С.	B. P., °C. @ 760mm	$D_4^{20}$	n20 D	Additional Data
C _n H _{in-t} oil from Eucalyptus phellandra		194 to 196 ¹² @ 24mm	0.9272 13	1.5173 12	$[\alpha]_D^{90} = +3.28^{\circ}$ 12
oil from Melaleuca acuminata		191 to 193 ¹² @ 22mm	0.9303 12	1.51813 12	$[\alpha]_D^{20} = +1.00^{\circ}$ 15
Diterpene		173 to 183 ⁴¹ @ 13mm	0.9361 4	1.5170 4	
Diterpene with 3 double bonds		170 ¹⁷ @ 12mm	0.923 17	1.5143 17	
Diterpene-bicyclic with 3 double bonds		178 to 180 ⁴⁰ @ 6mm	0.8892 40	1.4884 40	$\left[\alpha\right]_{D} = +1.64^{\circ}  40$

730 EL 83		300			1
Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Data
C _n H₂ _{n−s} Diterpilene		210 to 212 ²⁴ @ 4mm	0.9404 ³⁴ @ 0°		
Isodacrene	107 ⁴ 107 ¹				$\left[\alpha\right]_{D} = +48.4^{\circ}  1$
Isophyllocladene	110.5 to 112° 108 to 109 10				$[\alpha]_D^{17} = +23.4^{\circ 9}$
Methylabietine		135 to 138 <b>4</b> 5 @ 0.15mm	0.9734 ⁴⁵ @ 24°	1.5313 ⁴⁵ @ 24°	
·					

Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Data
$C_nH_{2n-8}$ Phyllocladene	95 ⁴⁸ 98 ⁹				$[\alpha]_D^{25} = +15.8^{\circ}$ $[\alpha]_D = +16.06^{\circ}$ 48
Pinaconane	98 5				
$\alpha$ -Podocarprene	50 38				$[\alpha]_D^{20} = -111.71^{\circ}$ 28
eta-Podocarprene		188 to 190 38	0.9688 ³⁸ @ 15°	1.5203 28	$[\alpha]_D^{20} = -15.88^{\circ}$ 38
δ-Podocarprene	65 ²⁹				$[\alpha]_D^{11} = -27.1^{\circ 29}$
Sclarene		125 to 128 ⁴⁵ @ 0.2mm	0.9388 ⁴³ @ 17°	1.5217 ⁴³ @ 17°	$\left[\alpha\right]_D = -14^{\circ 43}$

Hydrocarbons of Undetermined Structure	М. Р.,°С.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
C _n H _{2n-8} Tetracyclic Diterpene		185 to 186 # @ 12mm	0.9648 # @ 25°	1.5185 ²⁷ @ 25°	$[\alpha]_D^{25} = -25.1^{\circ 27}$
Tricyclic Diterpene		179 to 182 ³ @ 12mm	0.9482 *		
C ₂₁ H ₁₄		135 ²⁶ @ 0.2mm	0.9212 ²⁰ @ 16°	1.5114 ²⁴ @ 16°	
C ₂₂ H ₄₆	79 55				
C ₂₁ H ₂₅ Dehydrocholane		213 to 218 53 @ 12mm 210 to 213 53 @ 12mm			

		589			C ₂₇ H
Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	D420	$n_D^{20}$	Additional Data
C _n H _{2n-8} Amyranene					
	182 to 183 ¹⁴		٤		
Bombicestene	91 to 92 **				
Inagostene	89 31				$[\alpha]_D^{20} = -50.7^{\circ}$ 31
Lupene	180 to 181 ¹⁴				·
Microcionastene	61 to 62 °				

71 to 74 ²²	•			
69 ⁸				
73 ° 76 to 77 55				$\left[\alpha\right]_D = -59.3^{\circ 8}$
77 to 78 ²² a				$[\alpha]_D^{22} = +11^{\circ 22a}$
87 to 88 ^{22b} 86 to 87 ¹⁵ 78 ¹⁵				$\left[\alpha\right]_D = +21.3^{\circ 22b}$
	73 8 76 to 77 55 77 to 78 22a 87 to 88 22b 86 to 87 15	73 8 76 to 77 **  77 to 78 **  87 to 88 ** 88 to 87 ** 87 to 88 ** 88 to 87 ** 87 ** 87 ** 88 ** 88 ** 89 ** 80 ** 80 ** 80 ** 81 ** 82 ** 83 ** 84 ** 85 ** 86 ** 87 ** 87 ** 88 ** 88 ** 89 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 ** 80 **	73 8 76 to 77 *5  77 to 78 *22a  87 to 88 *22b 86 to 87 *15	73 8 76 to 77 *5  77 to 78 *22a  87 to 88 *22b 86 to 87 *15

		591			C 27 H 46
Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
$C_n \mathbf{H}_{2n-8}$ $\Delta^{24}$ -Pseudoergostene	103 18				$[\alpha]_D^{17} = +20.3^{\circ}$ 18
C ₂₀ <b>H</b> ₅₂ Cryptostene	74.5 to 76 54				$ \alpha _D^{10} = +60.1^{\circ}$ 54
					15

- (1) P. W. Aitkens, J. Soc. Chem. Ind. 47T, 223, 1928.
- (2) B. Arbusov, Ber. 67, 563, 1934.
- (3) F. R. Balas and Z. Pejsova, Collection Czechoslovak. commun. 2, 424, 1930.
- (4) G. B. Beath, J. Soc. Chem. Ind. 52T, 338, 1933.
- (5) E. Beckmann, Ann. 292, 1, 1896.
- (6) W. Bergmann and T. B. Johnson, Z. physiol. Chem. 222, 220, 1933.
- (7) W. J. Blackie, J. Soc. Chem. Ind. 48T, 357, 1929.
- (8) K. Bonstedt, Z. physiol. Chem. 176, 269, 1928.
- (9) L. H. Briggs, J. Chem. Soc. 1937, 79.
- (10) L. H. Briggs, J. Soc. Chem. Ind. 56, 137, 1937.
- (11) L. H. Briggs and W. F. Short, J. Chem. Soc. 1928, 3118.
- (12) P. G. Carter, H. G. Smith, and J. Read, J. Soc. Chem. Ind. 44T, 543, 1925.
- (13) Deville through S. Uchida, J. Am. Chem. Soc. 38, 687, 1916.
- (14) H. Dieterle and A. Salomon, Arch. Pharm, 270, 495, 1932.
- (15) J. L. Dunn, I. M. Heilbron, R. F. Phipers, K. M. Samant, and F. S. Spring, J. Chem. Soc. 1934, 1576.
- (16) T. Easterfield and G. Bagley, J. Chem. Soc. 85, 1238, 1904.
- (17) F. Ebel and M. W. Goldberg, Helv. Chim. Acta 10, 677, 1927.
- (18) E. Fernholz, Ber. 69, 1792, 1936.
- (19) K. Fisher and W. H. Perkin, J. Chem. Soc. 93, 1876, 1908.
- (20) C. S. Gibson and J. L. Simonsen, J. Chem. Soc. 1929, 305.
- (21) C. Harries, Ber. 35, 3256, 1902.
- (22) K. Hattori and C. Kowasaki, J. Pharm. Soc. Japan 57, 588, 1937.
- (22a) I. M. Heilbron, F. S. Spring, and E. T. Webster, J. Chem. Soc. 1932, 1705.
- (22b) I. M. Heilbron and D. G. Wilkinson, J. Chem. Soc. 1932, 1708.
- (23) C. Hell and H. Stürcke, Ber. 17, 1970, 1884.
- (24) J. R. Hosking, Rec. trav. chim. 47, 578, 1928.
- (25) J. R. Hosking and C. Brandt, Ber. 68, 237, 1935.
- (26) J. R. Hosking and C. Brandt, Ber. 68, 286, 1935.
- (27) K. Kafuku and T. Nozoe, Bull. Chem. Soc. Japan 6, 111, 1931; Chem. News 143, No. 3717, 21, 1931.
- (28) K. Kafuku, T. Nozoe, and C. Hata, Bull. Chem. Soc. Japan 6, 40, 1931.
- (28a) K. Kafuku, Ozamada, and Nishi, J. Chem. Soc. Japan 54, 364, 1933.
- (29) J. Kawamura, Bull. Imp. Forestry Exp. Station Japan, No. 31, 93, 1931.
- (30) K. Kowasaki, J. Pharm. Soc. Japan 55, 758, 1935.
- (31) K. Kowasaki, J. Pharm. Soc. Japan 56, 76, 1936.
- (32) E. Knoevenagel, Ann. 402, 111, 1914.
- (33) I. L. Kondakow and S. Saprikin, Bull. soc. chim. [4] 37, 1045, 1925.
- (34) L. Lafont, Ann. chim. [6] 15, 145, 1888.
- (35) P. Levy, Ber. 39, 3043, 1906.
- (36) K. Matsubara and W. H. Perkin, J. Chem. Soc. 87, 661, 1905.
- (37) F. H. McDowall and H. J. Finlay, J. Soc. Chem. Ind. 44T, 42, 1925.
- (38) K. Nishida and H. Uota, Bull. Agr. Chem. Soc. Japan 7, 1, 1931.
- (39) K. Nishida and H. Uota, J. Agr. Chem. Soc. Japan 11, 489, 1935.
- (40) G. V. Pigulevski, E. T. Kanetskaya, and M. A. Platonova, J. Gen. Chem. (U.S.S.R) 7, 873, 1937.
- (41) K. C. Roberts, J. Chem. Soc. 127, 2451, 1925.
- (42) S. Ruheman, Z. angew. Chem. 44, 75, 1931.
- (43) L. Ruzicka and M. M. Janot, Helv. Chim. Acta 14, 645, 1931.
- (44) L. Ruzicka, J. Meyer, and M. Mingazzini, Helv. Chim. Acta 5, 345, 1922.
- (45) L. Ruzicka, H. Waldman, P. Meier, and H. Hösli, Helv. Chim. Acta 16, 169, 1933.
- (46) F. W. Semmler, Ber. 42, 522, 1909.
- (47) F. W. Semmler, K. G. Jonas, and F. Richter, Ber. 51, 417, 1918.

- (48) H. Smith, J. Soc. Chem. Ind. 30, 1353, 1911.
- (49) H. Staudinger and H. A. Bruson, Ann. 447, 97, 1926.
- (50) S. Uchida, J. Am. Chem. Soc. 38, 687, 1916.
- (51) H. Uota, J. Dept. Agr. Kyushu Imp. Univ. 5, 118, 1937.
- (52) H. Weinhaus, Nordiska Kemistmotet, 1926, 211.
- (53) H. Wieland, Z. physiol. Chem. 142, 191, 1925.
- (54) H. Wieland, H. Pasedach, and A. Ballauf, Ann. 529, 68, 1937.
- (55) A. Windaus and J. Brunken, Z. physiol. Chem. 140, 52, 1924.
- (56) O. Zeitschel, Ber. Schimmel and Co. Akt. Ges. 1929, 319.

27 1144		394			
Hydrocarhons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
C,H2,10	ti A tangan - a (Anglan)				
lpha-Cholesterylene					$[\alpha]_D = -116.20^{\circ 19}$
	79 to	257 to 267 20	0.9572 20	1.52027 20	$[\alpha]_D = -109.30^{\circ 22}$
	80 13,19	@ 12mm			$\left[\alpha\right]_D = -107^{\circ 23}$
	79 ^{20,21} 78,2 ¹²				$\left[\alpha\right]_{D} = -102.1^{\circ 10}$
	78 3,10				
	77 22,23				$[\alpha]_D = -61.55^{\circ 21}$
	75.5 ² 74 to			0.11	$\left[\alpha\right]_D = -47.7^{\circ 20}$
	76"				$[\alpha]_D^{18} = -17.53^{\circ 12}$
		,			Total Prices
eta-Cholesterylene	59 3				
lpha-Ergostadiene	124 to				$ \alpha _D^{22} = -10^{\circ 9}$
	125 %				
eta-Ergostadiene					$\alpha_D^{22} = -33^{\circ 9}$
	66 to 67 9				
Dehydroergostene					$[\alpha]_D^{23} = -15^{\circ 14}$
	71 to 72 14				

		393			C ₂₀ H ₄₀
Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	D420	$n_{D}^{D}$	Additional Data
$C_nH_{2n-10}$					The state of the s
Amyrene					$[\alpha]_D^{20} = +44.9^{\circ}$
		120 4			
		@ 15mm			
$\alpha$ -Amyrene I					$[\alpha]_D^{19} = +72.2^{\circ 24}$
	96 to				
	97.5 24				
eta-Amyrene	1				
,	98 18	252 18			
	,	@ 12mm			
$\beta$ -Amyrene Ib					$[\alpha]_{D} = +98.9^{\circ 24}$
	104 24				
β-Amyrene I	Ì				$\left  \left[ \alpha \right]_{D} = +77.6^{\circ 24} \right $
ρ-Amyrene 1					$[a]_{D} = +11.0$
·	89 to 91.5 24				
β-Amyrene Ia	}				$[\alpha]_D^{19} = +115^{\circ 24}$
p 11111/10110 200	209 to				
	210 24				1
$\alpha$ -Amyrene II				•	
	120 to 122 24				
0 Amman	122				[-119
$\beta$ -Amyrene II					$[\alpha]_D^{19} = +94.6^{\circ 24}$
	162 24				
β-Amyrene III					$[\alpha]_D^{19} = -22^{\circ 24}$
	187 to				
	189.5 24				

M. P.,°C.	B. P., °C. @ 760mm	D420	$n_{D}^{20}$	Additional Data
159 to 161 ²⁴				$[\alpha]_D^{18} = +57.3^{\circ 24}$
84 to 85 16		0.841 ¹⁶ (solid)		$[\alpha]_D = +120.2^{\circ}$ 16
85 16		0.846 ¹⁶ (solid) 0.941 ¹⁷ @ 102°		$ \alpha _D = +131.5^{\circ 16}$ $ \alpha _D = +77^{\circ 17}$
257 to 258 5				
80 to				
	159 to 161 24 84 to 85 16 1 92 to 93 17 257 to 258 5	159 to 161 ²⁴ 84 to 85 ¹⁶ 1 92 to 93 ¹⁷ 257 to 258 ⁵	159 to 161 ²⁴ 84 to 85 ¹⁶ 83 to 85 ¹⁶ (solid)  1 92 to 93 ¹⁷ 257 to 258 ⁵ 80 to	159 to 161 ²⁴ 84 to 85 ¹⁶ (solid)  1 92 to 93 ¹⁷ 257 to 258 ⁵ 80 to

		597			C ₃₀ H ₅₀
Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
$\mathbf{C}_n\mathbf{H}_{2n-10}$ Lanostene	76 to 77 °				
Oleanene	193 25				$[\alpha]_{D}^{23} = +56.5^{\circ 25}$
Oleanene I	113 to 116 ²⁴				
Oleanene II	193 24				
Oleanene III	225 to 226 24				$[\alpha]_D^{20} = +30.1^{\circ}$ ²⁴

C ₃₀ H ₅₀		390			
Hydrocarbons of Undelermined Structure	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	n ²⁰	Additional Data
C _n H _{2n-10} Iso-tetracyclosqualene					
		228 to 230 s @ 3mm	0.9237 8 $D_{20}^{20}$	1.5098 8	
lpha-Viscane	98 1				
β-Viscane	136 1				
C., H., Methyl friedelene	272 to 274 s				
C48 H86 Thevetene	79 to 80 ⁷				

- (1) K. H. Bauer and V. Girloff, Arch. Pharm. 274, 473, 1936.
- (2) A. Bloch, Bull. soc. chim. [3] 31, 71, 1904.
- (3) A. T. Bose and W. Doran, J. Chem. Soc. 1929, 2244.
- (4) H. Dieterle, A. Salomon, and E. Herzberg, Arch. Pharm. 269, 78, 1931.
- (5) N. Drake and W. Campbell, J. Am. Chem. Soc. 58, 1681, 1936.
- (6) C. Doreé and V. A. Petrov, J. Chem. Soc. 1936, 1562.
- (7) N. Ghatak and G. P. Pendse, Bull. Acad. Sci. United Provinces Agra Oudh, India, 2, 259, 1933.
- (8) J. Harvey, I. M. Heilbron, and E. D. Kamm, J. Chem. Soc. 1926, 3136.
- (9) I. M. Heilbron, F. S. Spring, and E. T. Webster, J. Chem. Soc. 1932, 1705.
- (10) I. M. Heilbron, R. A. Morton, and W. A. Sexton, J. Chem. Soc. 1928, 47.
- (11) R. E. Marker, O. Kamm, T. S. Oakwood, and J. Laucius, J. Am. Chem. Soc. 58, 1948, 1936.
- (12) E. Miller and I. H. Page, J. biol. Chem. 101, 127, 1933.
- (13) E. Montigne, Bull. soc. chim. [5] 2, 1367, 1935.
- (14) A. Morrison and J. Simpson, J. Chem. Soc. 1932, 1710.
- (15) F. Nord, Biochem. Z. 99, 261, 1919.
- (16) L. Ruzicka, H. Silbermann, and M. Furter, Helv. Chim. Acta 15, 482, 1932.
- (17) L. Ruzicka, H. Silbermann, and P. Pieth, Helv. Chim. Acta 15, 1285, 1932.
- (18) F. S. Spring, J. Chem. Soc. 1933, 1345.
- (19) W. Steinkopf and E. Blümmer, J. prakt. Chem. [2] 84, 460, 1911.
- (20) W. Steinkopf, H. Winternitz, W. Roederer and A. Wolynski, J. prakt. Chem. [2] 100, 65, 1920.
- (21) A. Windaus, Z. physiol. Chem. 117, 146, 1921.
- (22) L. Tschugaeff and W. Fomin, Ann. 375, 288, 1910.
- (23) L. Tschugaeff and Gasteff, Ber. 42, 4631, 1909.
- (24) A. Winterstein and G. Stein, Ann. 502, 223, 1933.
- (25) A. Winterstein and G. Stein, Z. physiol. Chem. 202, 217, 1931.

М. Р.,°С.	B. P., °C. @ 760mm	0.9881 ¹⁷ @ 18°  0.9355 ¹⁴ @ 79° 0.9735 ¹⁴ @ 19°	n20	Additional Data
		@ 18°  0.9355 ¹⁴ @ 79°  0.9735 ¹⁴		
		@ 18°  0.9355 ¹⁴ @ 79°  0.9735 ¹⁴		
		@ 79° 0.9735 ¹⁴	-	
		@ 79° 0.9735 ¹⁴		
	167 to 168 14	0.9333 14		
	@ 12mm   164 ¹⁷   @ 11mm	0.9333 14 @ 80° 0.9712 14 @ 23° 0.9728 14 @ 19° 0.9759 17 @ 18°		
	194 to 199 10 @ 17mm 190 to 194 10 @ 14mm	0.9494 ¹⁰ 0.9244 ¹⁰	1.5303 ¹⁰ 1.5280 ¹⁰	
		@ 17mm 190 to 194 10	194 to 199 10 @ 17mm 190 to 194 10	@ 19° 0.9759 17 @ 18°  194 to 199 10 @ 17mm 190 to 194 10 1.5303 10 1.5280 10

		001			C ₂₇ H
Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
C _n H _{2n-12} Dihydroergotetraene-A					$ \alpha _D^{16} = +121^{\circ 18}$
	98 18				
Ergostatriene-D					$[\alpha]_D^{23} = +42.7^{\circ 9}$
	134 to				
C ₂₉ H ₄₆					
Oleanylene	185 to				$[\alpha]_D^{20} = +96.4^{\circ 24}$
	186 24				
Oleanylene					
	182 "				
Oleanylene I	145 to				$[\alpha]_D^{22} = +78.9^{\circ}$ 23
Oleanniana VV	149 23				
Oleanylene II	186 23				
Oleanylene III	180 -				į
	178 to 182 ²³				
					,

10 ED 48		002			
Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	D40	$n_D^{20}$	Additional Data
$C_nH_{2n-1s}$ $\alpha$ -Amyrilene					$\left[\alpha\right]_D = +109.48^{\circ 1}$
d-form	135 21	450 22	0.9532 16	1.5107 16	$[\alpha]_D = +109.5^{\circ 21}$
	134 to 135 19 133 to 134 13	285 *2 @ 15mm	@ 137.0°	@ 137.0°	
l-form					$[\alpha]_D = -104.9^{\circ 12}$
	193 to 194 ²⁰				
lpha-Amyrilene I					
America II	133 to 135 ²³	235 18 @ 0.1mm	0.9857 ¹⁸ @ 38°	1.5420 ¹⁸ @ 38°	$[\alpha]_D^{19} = +136.6^{\circ 23}$
α-Amyrilene II	119 to 120 ²³				[a ₁₂ -   130.0
β-Amyrilene					$\left[\alpha\right]_D = +112.19^{\circ 1}$
	175 to 178 19,21 173 to 175 16	235 ¹⁵ @ 0.1mm	0.9268 16 @ 173.2° 0.9807 18 @ 38°	1.4973 ¹⁶ @ 173.2° 1.5409 ¹⁴ @ 38°	$\left[\alpha\right]_{D} = +111.3^{\circ 2}$

	***************************************	603			CH
Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	D420	n20 D	Additional Data
$C_nH_{2n-12}$					
eta-Amyrilene I					
	170 to 175 ²³				
$\beta$ -Amyrilene II					$[\alpha]_D^{19} = +139.3^{\circ 23}$
	147 to 148 ⁵				
	148 to 150 ²³				
eta-Amyrilene III					$[\alpha]_D^{22} = +155^{\circ b}$
	103 5				
γ-Amyrilene					[]20   54   19 6
γ-Amyriiene					$[\alpha]_D^{20} = +54.1^{\circ}$
	175 °				
lpha-Latucene					
	207 4				
$\alpha$ -Viscene					$[\alpha]_D^{20} = +120.2^{\circ 2}$
	169 2				

Hydrocarbons of Undetermined Structure	M. P.,°C.	B. P., °C. @ 760mm	$D_4^{20}$	$n_D^{20}$	Additional Data
C _n H _{2n-12}					
β-Viscene					$ \alpha _D^{20} = +32.2^{\circ 2}$
	161 2				
C ₃₁ H ₄₀ β-Euphorbodiene					
b-Euphorbourene		220 4 - 025 5			
		232 to 235 * @ 5mm			
					-
$C_nH_{2n-18}$					
C ₂₇ H ₄₀					r 114 / 4750 10
Ergotetraene A					$[\alpha]_D^{16} = +176^{\circ 18}$
	97 18				
Ergotetraene B					$\left[\alpha\right]_{D} = +93^{\circ}  ^{18}$
	105 18				
Ergotetraene C					$[\alpha]_D^{20} = +121^{\circ 7}$
	98 7				
A 3/4					

M. P.,°C.	B. P., °C. @ 760mm	$D_4^{26}$	$n_D^{z_0}$	Additional Date
		6 h	- And the second	$ \alpha _D^{24} = +298.9^{\circ 8}$
88 to 90 8				1216
	88 to	88 to	88 to	88 to

- (1) H. Böckström through A. Vesterberg, Ber. 20, 1245, 1887.
- (2) K. H. Bauer and U. Gerloff, Arch. Pharm. 274, 473, 1936.
- (3) K. H. Bauer and G. Schröder, Arch. Pharm. 269, 209, 1931.
- (4) K. H. Bauer and E. Schub, Arch. Pharm. 267, 413, 1929.
- (5) H. Dieterle, H. Brass, and F. Schoal, Arch. Pharm. 275, 557, 1937.
- (6) H. Dieterle, A. Salomon, and E. Herzberg, Arch. Pharm. 269, 78, 1931.
- (7) A. Guiteras, Z. physiol. Chem. 215, 196, 1933.
- (8) I. M. Heilbron, F. S. Spring, and P. A. Stewart, J. Chem. Soc. 1935, 1221.
- (9) I. M. Heilbron, F. S. Spring, and E. T. Webster, J. Chem. Soc. 1932, 1705.
- (10) Riki Horiuchi, Mem. Coll. Sci. Kyoto Imp. Univ. Ser. A. 11, No. 3, 171, 1928.
- (11) Kenjiro Kitasato, Acta Phytochem., Japan 8, 207, 1935.
- (12) v. Koch through A. Vesterberg, Ber. 24, 3835, 1891.
- (13) H. Matthes and O. Rohdich, Ber. 41, 19, 1908.
- (14) L. Ruzicka and A. J. Haagen-Smit, Helv. Chim. Acta 14, 1104, 1931.
- (15) L. Ruzicka, H. W. Huyser, M. Pfeiffer, and C. F. Seidel, Ann. 471, 21, 1929.
- (16) L. Ruzicka and E. Rudolph, Helv. Chim. Acta 9, 118, 1926.
- (17) L. Ruzicka, H. Silbermann, and M. Furter, Helv. Chim. Acta 15, 482, 1932.
- (18) O. Rygh, Z. physiol. Chem. 185, 99, 1929.
- (19) A. Vesterberg, Ber. 20, 1242, 1887.
- (20) A. Vesterberg, Ber. 24, 3834, 1891.
- (21) A. Vesterberg, Ber. 24, 3836, 1891.
- (22) K. A. Vesterberg and S. Westerlind, Ann. 428, 247, 1922.
- (23) A. Winterstein and G. Stein, Ann, 502, 223, 1933.
- (24) A. Winterstein and G. Stein, Z. physiol. Chem. 202, 222, 1931.

# American Chemical Society

# MONOGRAPH SERIES

## **PUBLISHED**

#### No.

- 1. The Chemistry of Enzyme Action (Revised Edition). By K. George Falk.
- The Chemical Effects of Alpha Particles and Electrons (Revised Edition). By Samuel C. Lind.
- 3. Organic Compounds of Mercury. By Frank C. Whitmore. (Out of Print)
- 4. Industrial Hydrogen, By Hugh S. Taylor.
- 5. Zirconium and Its Compounds. By Francis P. Venable.
- 6. The Vitamins (Revised Edition). By H. C. Sherman and S. L. Smith.
- 7. The Properties of Electrically Conducting Systems. By Charles A. Kraus.
- 8. The Origin of Spectra. By Paul D. Foote and F. L. Mohler. (Out of Print)
- 9. Carotinoids and Related Pigments. By Leroy S. Palmer.
- 10. The Analysis of Rubber. By John B. Tuttle.
- 11. Glue and Gelatin. By Jerome Alexander. (Out of Print)
- The Chemistry of Leather Manufacture (Revised Edition). By John A. Wilson. Vol. I and Vol. II.
- 13. Wood Distillation. By L. F. Hawley. (Out of Print)
- 14. Valence and the Structure of Atoms and Molecules. By Gilbert N. Lewis. (Out of Print)
- 15. Organic Arsenical Compounds. By George W. Raiziss and Jos. L. Gavron.
- 16. Colloid Chemistry (Revised Edition). By The Svedberg.
- 17. Solubility (Revised Edition). By Joel H. Hildebrand.
- 18. Coal Carbonization. By Horace C. Porter. (Revision in preparation)
- The Structure of Crystals (Second Edition) and Supplement to Second Edition. By Ralph W. G. Wyckoff.
- 20. The Recovery of Gasoline from Natural Gas. By George A. Burrell.
- 21. The Chemical Aspects of Immunity (Revised Edition). By H. Gideon Wells.
- Molybdenum, Cerium and Related Alloy Steels. By H. W. Gillett and E. L. Mack.
- 23. The Animal as a Converter of Matter and Energy, By H. P. Armsby and C. Robert Moulton.
- 24. Organic Derivatives of Antimony. By Walter G. Christiansen.
- 25. Shale Oil. By Ralph H. McKee.
- 26. The Chemistry of Wheat Flour. By C. H. Bailey.
- Surface Equilibria of Biological and Organic Colloids. By P. Lecomte du Noüy.
- 28. The Chemistry of Wood. By L. F. Hawley and Louis E. Wise.
- 29. Photosynthesis. By H. A. Spoehr. (Out of Print)

## American Chemical Society Monograph Series

#### PUBLISHED

#### No.

- 30. Casein and Its Industrial Applications (Revised Edition). By Edwin Sutcrmeister and F. L. Browne.
- 31. Equilibria in Saturated Salt Solutions. By Walter C. Blasdale.
- 32. Statistical Mechanics as Applied to Physics and Chemistry. By Richard C. Tolman. (Out of Print)
- 33. Titanium. By William M. Thornton, Jr.
- 34. Phosphoric Acid, Phosphates and Phosphatic Fertilizers. By W. H. Waggaman.
- 35. Noxious Gases. By Yandell Henderson and H. W. Haggard. (Revision in Preparation)
- 36. Hydrochloric Acid and Sodium Sulfate. By N. A. Laury.
- 37. The Properties of Silica. By Robert B. Sosman.
- 38. The Chemistry of Water and Sewage Treatment. By Arthur M. Buswell. (Revision in preparation)
- 39. The Mechanism of Homogeneous Organic Reactions. By Francis O. Rice.
- 40. Protective Metallic Coatings. By Henry S. Rawdon. Replaced by Protective Coatings for Metals.
- 41. Fundamentals of Dairy Science (Revised Edition). By Associates of Rogers.
- 42. The Modern Calorimeter. By Walter P. White.
- 43. Photochemical Processes. By George Kistiakowsky.
- 44. Glycerol and the Glycols. By James W. Lawrie.
- 45. Molecular Rearrangements. By C. W. Porter.
- 46. Soluble Silicates in Industry. By James G. Vail.
- 47. Thyroxine. By E. C. Kendall.
- 48. The Biochemistry of the Amino Acids. By H. H. Mitchell and T. S. Hamilton. (Revision in preparation)
- 49. The Industrial Development of Searles Lake Brines. By John E. Teeple.
- 50. The Pyrolysis of Carbon Compounds. By Charles D. Hurd.
- 51. Tin. By Charles L. Mantell.
- 52. Diatomaceous Earth. By Robert Calvert.
- 53. Bearing Metals and Bearings, By William M. Corse.
- 54. Development of Physiological Chemistry in the United States. By Russell H. Chittenden.
- Dielectric Constants and Molecular Structure. By Charles P. Smyth. (Out of Print)
- 56. Nucleic Acids. By P. A. Levene and L. W. Bass.
- 57. The Kinetics of Homogeneous Gas Reactions. By Louis S. Kassel.
- 58. Vegetable Fats and Oils. By George S. Jamieson.
- 59. Fixed Nitrogen. By Harry A. Curtis.

# American Chemical Society Monograph Series

#### PUBLISHED

No.

- The Free Energies of Some Organic Compounds. By G. S. Parks and H. M. Huffman.
- The Catalytic Oxidation of Organic Compounds in the Vapor Phase. By L. F. Marek and Dorothy A. Hahn.
- 62. Physiological Effects of Radiant Energy. By H. Laurens.
- 63. Chemical Refining of Petroleum. By Kalichevsky and B. A. Stagner. (Out of Print)
- 64. Therapeutic Agents of the Quinoline Group. By W. F. Von Oettingen.
- 65. Manufacture of Soda. By T. P. Hou. (Revision in Preparation)
- 66. Electrokinetic Phenomena and Their Application to Biology and Medicine. By H. A. Abramson.
- 67. Arsenical and Argentiferous Copper. By J. L. Gregg.
- 68. Nitrogen System of Compounds. By E. C. Franklin.
- 69. Sulfuric Acid Manufacture. By Andrew M. Fairlie.
- 70: The Chemistry of Natural Products Related to Phenanthrene (Second Edition with Appendix). By L. F. Fieser.
- 71. The Corrosion Resistance of Metals and Alloys. By Robert J. McKay and Robert Worthington.
- 72. Carbon Dioxide. By Elton L. Quinn and Charles L. Jones.
- 73. The Reactions of Pure Hydrocarbons. By Gustav Egloff.
- 74. Chemistry and Technology of Rubber. By C. C. Davis and J. T. Blake.
- 75. Polymerization. By R. E. Burk, A. J. Weith, H. E. Thompson and I. Williams.
- 76. Modern Methods of Refining Lubricating Oils. By V. A. Kalichevsky.
- 77. Properties of Glass. By George W. Morey.
- 78. Physical Constants of Hydrocarbons. By Gustav Egloff. Vol. I.
- 79. Protective Coatings for Metals. By R. M. Burns and A. E. Schuh.
- 80. Raman Effect and its Chemical Applications. By James H. Hibben.
- 81. Properties of Water. By Dr. N. E. Dorsey.
- 82. Mineral Metabolism. By A. T. Shohl.