

SOLUTION SECTION

SECTION NUMBER: INSTRUCTOR:

MATH 205 LINEAR ALGEBRA

MIDTERM PART A

[Total Marks: 50]

FALL 2022

Question 1: [10 Marks]

(a) Suppose AX = B is the matrix equation for a system of equations in m variables with A being an m × m coefficient matrix. Prove that if A is not singular, then this system has only one solution.

Southon! Let X1, X2 be two solutions s.t. $Ax_1 = B$ and $Ax_2 = B$ Since A is not singular, A exists $A^{-1}(Ax_1) = A^{-1}(Ax_2)$ unique $Ax_1 = A^{-1}(Ax_2) = A^{-1}(Ax_2)$ Southond Since A is unique: $Ax_1 = A^{-1}(Ax_2) = A^{-1}(Ax_2)$ $Ax_2 = Ax_3 = A^{-1}(Ax_2) = A^{-1}(Ax_2)$ $Ax_3 = Ax_4 = Ax_3 = Ax_4 = Ax_4 = Ax_5 = Ax$

(b) List the three possible elementary row operations and define an elementary matrix.

DSwap 2 Pors	vion-zeau
@ Multiplying a row	is by a constant
2 Multiplying a rov 3 Adding Kruntiple	of 1 ions to another
To social	The stains la
An elementary mal	arch is contact to by
performing a sir	de ion obeioner
on an identity m	strix.

Question 2: [10 Marks]

Let Y and Z be $n \times n$ matrices.

(a) Prove that if $I_n = YZ$ then $Z = Y^{-1}$.

 $I_{n}=YZ \Rightarrow det(I_{n})=det(Y)det(Z)=1$ $\therefore det(Y) \neq 0, det(Z) \neq 0: Y^{2}Z^{2}exist$ $(Y^{2}YZ=Y^{2}I)$ $IZ=Y^{2}$ $Z=Y^{2}$ (Rroyed)

(b) Prove that if $I_n = ZY$ then $Z = Y^{-1}$.

Question 3: [10 Marks]

Consider a homogenous system in n variables for which the coefficient matrix is B. Given a non-singular $n \times n$ matrix M, show that the BX = 0 has only the trivial solution if and only if (MB)X = 0 only has a trivial solution.

(B) (=>) MB is invertible => det (MB) +0 => det (B) +0 ... B' exists and so, BX=0 has only the trivial solution (A) (A=>) Suppose (MB)X=0 for non-zero vector X ... M' exists, [M'M)BX = M'O BX = 0.> this only has a trivial solution, which controlled what we supposed. So, we can conclude MBX=0 has only the trivial solution.

Question 4: [10 Marks]

Show that the diagonal entries of a 3×3 skew-symmetric matrix are all zero.

Skew-Symmetric means
$$AT = -A$$
 $A_{3x3} = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix} \xrightarrow{A_{12}} \begin{bmatrix} \alpha_{11} & \alpha_{21} & \alpha_{32} \\ \alpha_{12} & \alpha_{22} & \alpha_{32} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix} \xrightarrow{A_{13}} \begin{bmatrix} \alpha_{12} & \alpha_{22} & \alpha_{33} \\ \alpha_{13} & \alpha_{23} & \alpha_{33} \end{bmatrix} \xrightarrow{A_{22}} \begin{bmatrix} \alpha_{22} & \alpha_{23} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix} \xrightarrow{A_{22}} \begin{bmatrix} \alpha_{22} & \alpha_{23} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix} \xrightarrow{A_{22}} \begin{bmatrix} \alpha_{22} & \alpha_{23} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix} \xrightarrow{A_{22}} \begin{bmatrix} \alpha_{22} & \alpha_{23} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix} \xrightarrow{A_{22}} \begin{bmatrix} \alpha_{22} & \alpha_{23} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix} \xrightarrow{A_{22}} \begin{bmatrix} \alpha_{22} & \alpha_{23} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix} \xrightarrow{A_{22}} \begin{bmatrix} \alpha_{22} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix} \xrightarrow{A_{22}} \begin{bmatrix} \alpha_{22} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix} \xrightarrow{A_{22}} \begin{bmatrix} \alpha_{22} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix} \xrightarrow{A_{22}} \begin{bmatrix} \alpha_{22} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix} \xrightarrow{A_{22}} \begin{bmatrix} \alpha_{22} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix} \xrightarrow{A_{22}} \begin{bmatrix} \alpha_{22} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix} \xrightarrow{A_{22}} \begin{bmatrix} \alpha_{22} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix} \xrightarrow{A_{22}} \begin{bmatrix} \alpha_{22} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix} \xrightarrow{A_{22}} \begin{bmatrix} \alpha_{22} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix} \xrightarrow{A_{22}} \begin{bmatrix} \alpha_{22} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix} \xrightarrow{A_{22}} \begin{bmatrix} \alpha_{22} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix} \xrightarrow{A_{22}} \begin{bmatrix} \alpha_{22} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix} \xrightarrow{A_{22}} \begin{bmatrix} \alpha_{22} & \alpha_{22} & \alpha_{23} \\ \alpha_{32} & \alpha_{33} & \alpha_{33} \end{bmatrix} \xrightarrow{A_{22}} \begin{bmatrix} \alpha_{22} & \alpha_{22} & \alpha_{23} \\ \alpha_{32} & \alpha_{33} & \alpha_{33} \end{bmatrix} \xrightarrow{A_{22}} \begin{bmatrix} \alpha_{22} & \alpha_{22} & \alpha_{23} \\ \alpha_{32} & \alpha_{33} & \alpha_{33} \end{bmatrix} \xrightarrow{A_{22}} \begin{bmatrix} \alpha_{22} & \alpha_{22} & \alpha_{23} \\ \alpha_{32} & \alpha_{33} & \alpha_{33} \end{bmatrix} \xrightarrow{A_{22}} \begin{bmatrix} \alpha_{22} & \alpha_{22} & \alpha_{23} \\ \alpha_{32} & \alpha_{33} & \alpha_{33} \end{bmatrix} \xrightarrow{A_{22}} \begin{bmatrix} \alpha_{22} & \alpha_{22} & \alpha_{23} \\ \alpha_{32} & \alpha_{33} & \alpha_{33} \end{bmatrix} \xrightarrow{A_{22}} \begin{bmatrix} \alpha_{22} & \alpha_{22} & \alpha_{23} \\ \alpha_{32} & \alpha_{33} & \alpha_{33} \end{bmatrix} \xrightarrow{A_{22}} \begin{bmatrix} \alpha_{22} & \alpha_{22} & \alpha_{22} \\ \alpha_{32} & \alpha_{33} & \alpha_{33} \end{bmatrix} \xrightarrow{A_{22}} \begin{bmatrix} \alpha_{22} & \alpha_{22} & \alpha_{23} \\ \alpha_{33$

Question 5: [10 Marks]

Prove the following identity WITHOUT evaluating determinants.

 $|a_1 \ b_1 + ta_1 \ c_1 + rb_1 + sa_1| \ |a_1 \ a_2 \ a_3|$

$$\begin{vmatrix} a_{2} & b_{2} + ta_{2} & c_{2} + rb_{2} + sa_{2} \\ a_{3} & b_{3} + ta_{3} & c_{3} + rb_{3} + sa_{3} \end{vmatrix} = \begin{vmatrix} b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3} \end{vmatrix}$$

$$\begin{vmatrix} a_{3} & b_{3} + ta_{3} & c_{3} + rb_{3} + sa_{3} \\ a_{4} & b_{1} & c_{1} + rb_{1} + sa_{1} \end{vmatrix} = \begin{vmatrix} a_{1} & b_{1} & c_{1} & c_{1} + rb_{1} + sa_{1} \\ a_{2} & b_{2} & c_{2} + rb_{2} + sa_{3} + a_{2} & ta_{2} & c_{2} + rb_{2} + sa_{3} \\ a_{3} & b_{3} & c_{3} + rb_{3} + sa_{3} \end{vmatrix} = \begin{vmatrix} a_{1} & b_{1} & rb_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3} \end{vmatrix} = \begin{vmatrix} a_{1} & b_{1} & rb_{1} \\ a_{2} & b_{2} & c_{3} \\ a_{3} & b_{3} & c_{3} \end{vmatrix} = \begin{vmatrix} a_{1} & b_{1} & rb_{1} \\ a_{2} & b_{3} & c_{3} \end{vmatrix} = \begin{vmatrix} a_{1} & b_{1} & rb_{1} \\ a_{2} & b_{3} & c_{3} \end{vmatrix} = \begin{vmatrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{3} & c_{3} \end{vmatrix} = \begin{vmatrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{3} & c_{3} \end{vmatrix} = \begin{vmatrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{3} & c_{3} \end{vmatrix} = \begin{vmatrix} a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} & c_{3} \end{vmatrix} = \begin{vmatrix} a_{1} & a_{2} & a_{3} \\ c_{1} & c_{2} & c_{3} \end{vmatrix} = \begin{vmatrix} a_{1} & b_{1} & c_{1} \\ c_{1} & c_{2} & c_{3} \end{vmatrix} = \begin{vmatrix} a_{1} & b_{1} & c_{1} \\ c_{1} & c_{2} & c_{3} \end{vmatrix} = \begin{vmatrix} a_{1} & a_{2} & a_{3} \\ c_{1} & c_{2} & c_{3} \end{vmatrix} = \begin{vmatrix} a_{1} & a_{2} & a_{3} \\ c_{1} & c_{2} & c_{3} \end{vmatrix} = \begin{vmatrix} a_{1} & b_{1} & c_{1} \\ c_{1} & c_{2} & c_{3} \end{vmatrix} = \begin{vmatrix} a_{1} & a_{2} & a_{3} \\ c_{1} & c_{2} & c_{3} \end{vmatrix} = \begin{vmatrix} a_{1} & a_{2} & a_{3} \\ c_{1} & c_{2} & c_{3} \end{vmatrix} = \begin{vmatrix} a_{1} & a_{2} & a_{3} \\ c_{1} & c_{2} & c_{3} \end{vmatrix} = \begin{vmatrix} a_{1} & a_{2} & a_{3} \\ c_{1} & c_{2} & c_{3} \end{vmatrix} = \begin{vmatrix} a_{1} & a_{2} & a_{3} \\ c_{1} & c_{2} & c_{3} \end{vmatrix} = \begin{vmatrix} a_{1} & a_{2} & a_{3} \\ c_{1} & c_{2} & c_{3} \end{vmatrix} = \begin{vmatrix} a_{1} & a_{2} & a_{3} \\ c_{1} & c_{2} & c_{3} \end{vmatrix} = \begin{vmatrix} a_{1} & a_{2} & a_{3} \\ c_{1} & c_{2} & c_{3} \end{vmatrix} = \begin{vmatrix} a_{1} & a_{2} & a_{3} \\ c_{1} & c_{2} & c_{3} \end{vmatrix} = \begin{vmatrix} a_{1} & a_{2} & a_{3} \\ c_{1} & c_{2} & c_{3} \end{vmatrix} = \begin{vmatrix} a_{1} & a_{2} & a_{3} \\ c_{1} & c_{2} & c_{3} \end{vmatrix} = \begin{vmatrix} a_{1} & a_{2} & a_{3} \\ c_{1} & c_{2} & c_{3} \end{vmatrix} = \begin{vmatrix} a_{1} & a_{2} & a_{3} \\ c_{1} & c_{2} & c_{3} \end{vmatrix} = \begin{vmatrix} a_{1} & a_{2} & a_{3} \\ c_{1} & c_{2} & c_{3} \end{vmatrix} = \begin{vmatrix} a_{1} & a_{2} & a_{3} \\ c_{1} & c_{2} & c_{3} \end{vmatrix} = \begin{vmatrix} a_{1} & a_{2} & a_{3} \\ c_{2} & c_{3}$$

MATH 205 LINEAR ALGEBRA

MIDTERM PART B

[Total Marks: 40] 50

FALL 2022

Question 6: [10 Marks]

Check whether the set of all triples of real numbers with the standard vector addition and with scalar multiplication defined by $k(x,y,z)=(k^2x,k^2y,k^2z)$ is a vector space or not. If not, identify all axioms that fail to hold.

Axioms 1-5 all work because they are imply the same as addition axion on the Euclidean space R3.
Axioms 6 and to also hold (inspection) Axiom & Let U= (x,y,z), Y=(a,b,c (K+m) 4 = Ku+mu LHS: (K+m) (x,y,z)=(k2+2km+m2)x, ((k²+2/+m+m²)y,(k²+2/+m+m²)z) RHS: Ky + My = ((k+m)x, (k+m) y, (k+m)2 Ariom & fails Hence set not a ector space. (k(u+v)=ku+kv)Ak2(n+a), K2(y+b) = | K2/2 x, K2

Question 7: [10 Marks]

(A)

<u>Prove:</u> If *W* is a set of one or more vectors from a vector space *V*, then *W* is a subspace of <u>V</u> if and only if the following conditions hold:

(a) If \underline{u} and \underline{v} are vectors in W, then $\underline{u} + \underline{v} \in W$.

(b) If k is any scalar and \underline{u} is any vector in W, then $k\underline{u} \in W$.

(B)

[3] Wes a subspace of V, then all vector space axioms are satisfied, including (1) and (6), which are some as(a) &(b)

(B) (A) Assume (a) and (b) 1, 61d, we now

B \$A Assume (a) and (b) hold. We now show the other 8 axioms are satisfied Axioms 2,3,7,8,9 and 10 automatically

satisfied by vectors in W, as they're satisfied by all vectors in V.

Axiom 4: Let u EW. By 16), ku EW for every scalar K. So, for K=0,

ku = 0u = 0 But ku EW. Therefore, O EW

But ky EW. Mere pre, DEW Axiom 5: Sumlarly, for k=1,

ky = (-1) y = -4 EW

. Wis a subspace of V.

SECTION NUMBER:

Question 8: [10 Marks]

- (a) Indicate whether each of the following statements is always true or sometimes false. Justify your answers:
 - (i) If W is a set of one or more vectors from a vector space V, and if $k\underline{u} + \underline{v}$ is a vector in W for all vectors \underline{u} and \underline{v} in W and all $k \in \mathbb{R}$, then W is a subspace of V.

TRUE O EW, since if y=v, and k=1,

then -y+y=0

Axiom 1 Let k=1 > y+y EW

Axiom b Let v=0 > ky EW

(ii) If $span(S_1) = span(S_2)$ then $S_1 = S_2$.

[3]

FALSE Give example of any 2 unequal sets that have same span. e.g. $S_1 = \frac{2}{3}(1,0), (0,1)$ and $S_2 = \frac{2}{3}(2,0), (0,2)$ by when $S_1 = \frac{2}{3}(2,0), (0,2)$ by when $S_2 = \frac{2}{3}(2,0), (0,2)$ in $S_3 = \frac{2}{3}(2,0), (0,2)$ by when $S_3 = \frac{2}{3}(2,0), (0,2)$ is $S_4 = \frac{2}{3}(2,0), (0,2)$ by when $S_4 = \frac{2}{3}(2,0), (0,2)$ is $S_4 = \frac{2}{3}(2,0), (0,2)$ in $S_4 = \frac{2}{3}(2,0)$ in $S_4 = \frac{2$

(b) In words, describe a set of matrices that spans M_{nn} .

This can be any set of matrices containing n' elements, each matrix having all entries zero except one, which is non-zero (such Prat-Prey will be bases for Mm)

147

Question 9: [10 Marks]

Let u and v be vectors in the Euclidean space \mathbb{R}^n . Show the following:

(a)
$$A\underline{u} \cdot \underline{v} = \underline{u} \cdot A^T \underline{v}$$
.

(b) $\|\underline{u} + \underline{v}\| \le \|\underline{u}\| + \|\underline{v}\|$.

Question 10: [10 Marks]

Let V be the subspace of $F(-\infty,\infty)$ given by $V=span\{\sin x,\cos x\}$. Show that for any given value of θ , $f_1=\cos(x+\theta)$ and $g_1=\sin(x+\theta)$, we have that $f_1\in V$ and $g_1\in V$.

f₁ = cos(x+0) = cos0cosx - sin0 sinx f₂ = sin (x+0) = sinx cos0 + cosx sin0 For any given value of 0, both sin0 and cos0 are also simply constant real numbers (and hence scalars). ... f₁ and f₂ are both simply linear combinations of sinx and easy, and therefore in their span i.e. both eV.

9