# Introducción al Cloud Computing



IES Gonzalo Nazareno
CONSEJERÍA DE EDUCACIÓN

Alberto Molina Coballes Jesús Moreno León José Domingo Muñoz Rodríguez IES Gonzalo Nazareno Dos Hermanas (Sevilla)



#### Inicios de OpenStack



- Cloud propio desde 2005
  - Cloud servers (laaS)
  - Cloud files (StaaS)
- Este software cambia a licencia libre en Abril 2010



- Comienza a utilizar Eucalyptus, pero lo descarta por no ser completamente libre (es "open core")
- Crea el software para laaS Nebula
- Nebula cambia a licencia libre en Mayo 2010



- Nasa y Rackspace lo inician en Junio de 2010
- Dos componentes principales:
  - o OpenStack Compute (nova), deriva de Nebula
  - OpenStack Object Store (swift), deriva de cloud files

# Objetivo de OpenStack

"Crear una plataforma en software libre para cloud computing que cumpla con las necesidades de los proveedores de nubes públicas y privadas, independientemente de su tamaño, que sea fácil de implementar y masivamente escalable."

### Principios fundacionales de OpenStack

- Licencia Apache 2.0, no existe versión "enterprise"
- Proceso de diseño abierto
- Repositorios públicos de código fuente
- Todos los procesos de desarrollo deben estar documentados y ser transparentes
- Orientado para adoptar estándares abiertos
- Diseño modular que permite flexibilidad mediante el uso de APIs

## OpenStack es libre y abierto

- OpenStack es un proyecto con licencia libre (Apache)
- Diseño abierto:
  - o http://blueprints.launchpad.net/openstack
  - o http://www.openstack.org/summit/san-diego-2012/
- Desarrollo abierto:
  - o http://launchpad.net/openstack y
    http://github.com/openstack/
  - Lenguaje de programación Python
  - o http://bugs.launchpad.net/openstack/
- Comunidad abierta:
  - o http://www.openstack.org/community/
  - o http://www.openstack.org/foundation/companies/
  - o http://lists.openstack.org
- Comunidad + empresas

# Versiones de OpenStack

Proyecto muy nuevo, pero con un fuerte ritmo de desarrollo

Austin 21 Octubre 2010

Bexar 3 Febrero 2011

Cactus 15 Abril 2011

Diablo 22 Septiembre 2011 (Publicación semestral)

Essex 5 Abril 2012

Folsom 27 Septiembre 2012

Grizzly Previsto 4 Abril 2013

- Está previsto que se publiquen dos versiones al año
- Hasta ahora cada versión incluye importantes modificaciones respecto a la anterior
- Essex ha sido la primera versión "completa"
- Desde Cactus, el ritmo de publicación se acopla al de Ubuntu

# OpenStack Essex (2012.1)

- ¿Por qué es importante Essex?
  - o Primera versión completa de OpenStack para usar en producción
  - Presente en Ubuntu 12.04 LTS. La próxima versión LTS será en 2014
  - Presente en Debian Wheezy (próxima estable). Debian wheezy soportará OpenStack Folsom en backport
- Componentes de OpenStack Essex:
  - OpenStack Compute (nova)
  - OpenStack Object Store (swift)
  - OpenStack Image (glance)
  - OpenStack Identity (keystone) ← Nuevo en Essex
  - OpenStack Dashboard (horizon) ← Nuevo en Essex

http://wiki.openstack.org/ReleaseNotes/Essex

# OpenStack Folsom (2012.2)

- OpenStack tiene un ritmo de publicación semestral, difícil de incluir en la publicación de distribuciones "estables". Ubuntu LTS o Debian se publican cada dos años.
- Incluye mejoras en bastantes componentes de OpenStack
- Incluido en Ubuntu 12.10
- Se incluirá en Debian Wheezy mediante backport (repositorio extra menos estable)
- Las principales novedades son la aparición de dos nuevos componentes principales:
  - OpenStack Network Service (Quantum)
  - OpenStack Block Storage (Cinder)

http://wiki.openstack.org/ReleaseNotes/Folsom

# ¿Es OpenStack una buena opción?

- A pesar de ser un proyecto muy nuevo, tiene un ritmo de desarrollo muy fuerte
- Cuenta con la mayor comunidad de desarrolladores dentro de los proyectos de software libre para cloud computing (~200 en Essex)
- Más de 100 empresas participan en el desarrollo en diferente medida
- Esto es consecuencia de la orientación libre y abierta del proyecto
- Has oído hablar de OpenStack con motivo, esto no es vaporware

#### Google Trends:



## Servicios de OpenStack nova

- Nova es el componente principal de OpenStack y está compuesto por varios servicios independientes:
  - nova-api Encargado de aceptar las peticiones de los usuarios o del resto de componentes de OpenStack mediante una API RESTful
  - nova-scheduler Encargado de planificar la ejecución de las instancias en los diferentes nodos del cloud
  - nova-compute Encargado de ejecutar una instancia sobre un hipervisor
  - nova-network Encargado de la comunicación de la instancia con el exterior
  - nova-volume Encargado de gestionar los volúmenes asociados a las instancias
- Los componentes de nova se comunican entre sí mediante AMQP

### Funcionamiento típico de OpenStack

- Un usuario interactúa con la API de nova (bien directamente o indirectamente a través de horizon) para ejecutar una instancia.
- nova-api le pedirá que se autentique previamente con keystone
- Una vez autenticado le mostrará las imágenes disponibles en glance
- Cuando seleccione una imagen y unas características para la instancia, se enviará a nova-scheduler la petición
- Nova-scheduler determinará en que nodo debe ejecutarse la instancia
- Nova-compute del nodo seleccionado se encargará de ejecutar la instancia sobre el hipervisor que disponga
- Nova-network realizará las configuraciones necesarias en la red
- Nova-volume se encargará de gestionar en su caso los volúmenes asociados a la instancia

# Funcionamiento de OpenStack



#### Instalación de componentes de OpenStack

• Dependiendo del número de equipos del cloud y la configuración de red, se instalarán en cada nodo diferentes componentes, p. ej.:



#### **APIs**

- Cada componente de OpenStack ofrecen una API RESTful
- Las APIs se pueden utilizar con XML o JSON (por defecto JSON)
- Esto hace OpenStack extensible y adaptable a cada entorno

```
$ nova --debug list
connect: (172.22.222.1, 5000)
send: 'POST /v2.0/tokens HTTP/1.1\r\nHost: 172.22.222.1:5000\r\nContent-Length:124
\r\ncontent-type: application/json\r\naccept-encoding: gzip, deflate\r\naccept: ap
plication/json\r\nuser-agent: python-novaclient\r\n\r\n{"auth": {"tenantName": "te
st", "passwordCredentials": {"username": "user", "password": "testpass"}}}'
reply: 'HTTP/1.1 200 0K\r\n'
connect: (172.22.221., 8774)
send: u'GET /v2/aaaaaaaa5894473c8a98f89a895c6b2c/servers/detail HTTP/1.1\r\nHost:
172.22.222.1:8774\r\nx-auth-project-id: test\r\nx-auth-token: e9233fef4ca34ee49f7d
blaaaaaaa13f\r\naccept-encoding: gzip, deflate\r\naccept: application/json\r\nuser
-agent: python-novaclient\r\n\r\n'
reply: 'HTTP/1.1 200 0K\r\n'
```

| +                                                  | +- |      |        | +                                  | -+ |
|----------------------------------------------------|----|------|--------|------------------------------------|----|
| ID                                                 | 1  | Name | Status | Networks                           | I  |
| b1724bd0-34f4-4bf1-944<br>  e82814aa-fb1d-4c29-81a |    |      |        | vlan5=10.0.5.6<br>  vlan5=10.0.5.3 |    |