

Gara online, 29 ottobre 2014

figonacci • IT

Numeri di Figonacci (figonacci)

Limite di tempo: 1.0 secondi Limite di memoria: 256 MiB

Dopo l'ultimo seminario di teoria dei numeri, Giorgio è rimasto affascinato dallo studio della sequenza dei numeri di Fibonacci. Pertanto, per non essere da meno, introduce una nuova sequenza di numeri secondo lui ancora più interessante: i numeri di Figonacci. Come per i loro quasi-omonimi, l'(n+1)-esimo numero di Figonacci G_{n+1} si calcola a partire dai precedenti (eccezion fatta per i primi due numeri di Figonacci, che sono valori fissati a $G_0 = -1$ e $G_1 = 0$). La regola che stabilisce il valore di G_{n+1} , tuttavia, è diversa da quella dei numeri di Fibonacci: G_{n+1} è pari alla somma di tutte le possibili differenze tra il numero di Figonacci immediatamente precedente e quelli ancora prima. In formule:

$$G_{n+1} = \sum_{i=0}^{n-1} (G_n - G_i)$$

= $(G_n - G_{n-1}) + (G_n - G_{n-2}) + \dots + (G_n - G_2) + (G_n - G_1) + (G_n - G_0)$

I primi numeri che si ottengono da questa sequenza sono quindi $-1, 0, 1, 3, 9, \ldots$ ed è facile vedere che crescono molto rapidamente. Ma questo non è un problema per Giorgio, che è interessato ad usarli per problemi di teoria dei numeri, e a cui quindi interessa soltanto il valore modulo M di questi numeri.

Aiuta la sua ricerca calcolando il valore dell'N-esimo numero di Figonacci G_N modulo M.

Dati di input

Il file input.txt è composto da un'unica riga contenente i due numeri interi N ed M.

Dati di output

Il file output.txt è composto da un'unica riga contenente un unico intero, la risposta a questo problema.

Implementazione

Dovrai sottoporre esattamente un file con estensione .c, .cpp o .pas.

Tra gli allegati a questo task troverai un template (figonacci.c, figonacci.cpp, figonacci.pas) con un esempio di implementazione da completare.

Se sceglierai di utilizzare il template, dovrai implementare la seguente funzione:

C/C++	int enumera(int N, int M);
Pascal	function enumera(N, M: longint): longint;

In cui:

- L'intero N rappresenta l'indice del numero di Figonacci a cui Giorgio è interessato.
- ullet L'intero M rappresenta il modulo con il quale va ridotto quel numero.
- La funzione dovrà restituire il valore di G_N modulo M, che verrà stampato sul file di output.

figonacci Pagina 1 di 2

Gara online, 29 ottobre 2014

figonacci • IT

Assunzioni

- $2 \le N \le 1000000$.
- $2 \le M \le 40\,000$.

Assegnazione del punteggio

Il tuo programma verrà testato su diversi test case raggruppati in subtask. Per ottenere il punteggio relativo ad un subtask, è necessario risolvere correttamente tutti i test relativi ad esso.

• Subtask 1 [10 punti]: Casi d'esempio.

• Subtask 2 [20 punti]: $N \leq 10$.

• Subtask 3 [40 punti]: $N \le 100$.

• Subtask 4 [30 punti]: Nessuna limitazione specifica.

Esempi di input/output

input.txt	output.txt
3 10	3
input.txt	output.txt
4 3	0
input.txt	output.txt
5 9	6

Spiegazione

Nel **primo caso di esempio**, $G_3 = 3$ che modulo 10 resta 3.

Nel **secondo caso di esempio**, $G_4 = 9$ che modulo 3 fa 0.

Nel **terzo caso di esempio**, $G_5 = 33$ che modulo 9 fa 6.

Note

L'operazione di modulo si calcola con l'operatore % in C/C++ e mod in Pascal. Notare che in entrambi i casi può dare risultati non corretti se l'argomento è negativo (il che può succedere per diversi motivi). Un modo per risolvere questo problema è usare il seguente codice:

C/C++	(GN % M + M) % M
Pascal	(GN mod M + M) mod M

L'operazione di modulo, inoltre, ha le seguenti proprietà (molto utili per evitare *integer overflow* quando si vogliono calcolare numeri molto grandi):

- $(A+B) \mod M = (A \mod M + B \mod M) \mod M$
- $(A \cdot B) \mod M = (A \mod M \cdot B \mod M) \mod M$

figonacci Pagina 2 di 2