1) Realize the following **functions** using NAND gates only. FEAT+CD AB+CD (T=x)ABT. CD

का

C-D

В

С

D

-Da

च

اله

b) xyz +

=

$$\Rightarrow xyz + x'y'z$$

$$xyz (xyz),$$

$$xyz$$

how

F

many gates?

(y3)

F

क

(2yz)

Do

2) using OR and NOT gates only

$$F = xy + xy + \ddot{y}r$$

OR

NOT-

$$= xy + x$$

$$+ y2$$

$$y$$

$$\rightarrow Appy$$

$$= (x+4);$$

$$(x+y); (y+3)$$

Appy
Demorgan's

$$(x + y) + (x + y) + (y + y)$$

to est

to

3) Determine the Boolean function and the wuth dakle for the opp

@ F of the logic

circuit.

а

С

a

F

5

$$F = ?$$

$$\sqrt{a+b+c} + (a+b) + 5$$

=
$$(a+b+c) + (a + 5)+5 + (a+b)+b$$

=> $(\ddot{a}+5+()+(a+5)+b)$
x+y=x+y

ать

7

abć tabt b

$$\rightarrow$$
 abc + ab +

5 (ata)
abc tabt

abtāb

$$7 = (145)$$
 to

$$(6+6=)$$

тасът

1 = ăţасtь (apa) (a+c) +5 f(a, b, c) = $a + 5 + \bar{a}$ 3 variables -23 = 8decimal

range=0-7

4

2

abc

a b c F= a+b+c ら

а

0 0

0 0

1.

1

ง

```
2
     0
           10
                       101
3
      0
           1
                          00
  رالا
       100
                       0
                       0
                            10
   61
                        001
                        000
                                        0
```

b)

y

$$x+y+x-8$$

=x+y

```
1
2
          10
3
4~1
          b
               J
لم
          0
                        IN
                                 1
61 1
               1
               ง
                                 0
                                  1
```

```
3) using (AND)
gates only
 F(A,B,C) =
 (a+b+c)(a'+
 B'+c)
 L1
 l1
        (A+B+c)(x+
        (A+B+C). (A+
```

A.B.č. A.BC

$$z-y=x+y$$

$$\mathbf{x}+\mathbf{y}=\mathbf{x}-\mathbf{y}$$

BC

NAND NAND

↓ NOT

118

=x

 $\mathbb{A}\ \mathbb{B}\ \mathbb{C}$

Α

Ā **BĒ**

F

ABE

Using theorems and laws

J

Boolean

$$(a + 5 +$$

ét,

(ätötét

а это

$$(y + x) ()$$

$$= (a+b+c)$$

$$(b+c+\alpha$$

brüt dã

$$= (a+b+c)$$

$$=$$
) $ab+ac+16+65+56$
 $+ \emptyset 1272x$

ē

bb

ab
$$+ c (a+67671)$$

=>

1:

X= **X=**0

2+1=1

+)
$$(ab+c+d)(\underline{(+1)}$$

 $(c+d+e)/2:2=0 \rightarrow$
 $(ab+c+d)(c+d+ee)$
 $(F+d+e)$

Cét

f

е

$$\rightarrow$$
 (ab+c+d)
(c+d+ex.e) \rightarrow
(ab+c+d) (c+d)
=)

abc + abd +ectcd+ cd + da => abc + abd + d cete) +d => abć + abd +dfd t

اء

ТУЗ

Truth Table

1) Let as a represent front door and

back door of

a y, yay ya house, Y, Y2 yz be

3 lamps. Let y, turn on when both

turn on when

only front

doors open, y2 turn on

УZ

door is open and Ys

turn on when

only back door is open.

Represent this

$olps \rightarrow$ Y1, Y2 Y3 **az** 14h Y2 Y аг 0 1 a 0 0 ว ഉ 0 1 0 0 0

1

2

a

Q2 **2**

F

0

Д

O

У3

(O R]

У

2) Write T.T for a 4 bit ilp systear indicating when majority of its inputs are true.

ay 2 = 0 - 15

```
sole : -4 ilps \rightarrow
            4 ilps \rightarrow a b c daž
            12/P> logic
            1(ON)
    (
   обл
   Л
   しいしい
   ce oe
        a
            ь С
```

cd