# CIS 3400 Group Project

# MTA Train Scheduling

Crystal Leon: <a href="mailto:crystal.leon@baruchmail.cuny.edu">crystal.leon@baruchmail.cuny.edu</a>
Tata Saoidoh: <a href="mailto:tata.dagnogo@baruchmail.cuny.edu">tata.dagnogo@baruchmail.cuny.edu</a>
Yongqiang Zhou: <a href="mailto:yongqiang.zhou@baruchmail.cuny.edu">yongqiang.zhou@baruchmail.cuny.edu</a>

 $Jinwoo\ Rhee: \underline{jinwoo.rhee@baruchmail.cuny.edu}$ 

Mohammed Chenafi : mohammed.chenafi@baruchmail.cuny.edu

Page1: Business Scenario

Group 9: MTA Business Scenario | <u>Dataset</u> (Click to see the dataset)

Problem: Excessive crowding on certain train lines, particularly during peak hours.

Solution: Enhance services for MTA users by providing accurate train schedules and regulating the number of passengers allowed into the subway.

In response to the significant overcrowding on Manhattan's MTA train lines, especially during peak hours, a comprehensive solution is being developed to enhance the commuting experience. The primary focus is to address the congestion on popular lines such as M, W, Q, F, and especially the 1, 2, 3, N, Q, and R trains. To tackle this, accurate and transparent train schedules will be provided to the public, allowing for better trip planning and time management. Furthermore, the number of passengers allowed entry into the subway will be controlled to prevent excessive crowding.

In addition, the train schedules will be carefully analyzed and additional trains will be scheduled as needed to distribute the passenger load more evenly across the network. This measure will be supplemented by optimizing routes to ensure minimal train traffic delays and to manage peak hour travel more effectively. The synchronization of employee and conductor schedules with these peak times is crucial to maintaining a smooth operation.

The service improvement plan also includes a mix of more local and express trains, catering to the various needs of the commuters, whether they seek faster travel or more frequent stops. By enhancing the reliability of the trains and ensuring that they run on time, the MTA aims to reduce the waiting periods for passengers, thus minimizing the crowds that typically gather during delays. The overarching aim is to maximize service with minimal train traffic delays, creating a more reliable, efficient, and comfortable experience for all MTA train users.

# Page 2: E-R diagram

## MTA PROJECT DATABASE

#### **ER DIAGRAM**

# **TABLES**

## **Trains**

TrainID (PK)

TrainName

TrainType

TrainLine

TrainCapacity

TrainNumberOfCars

TotalCapacity

## Station

StationID (PK)

StationName

StationDivision

StationLine

StationBorough

#### Route

RouteID (PK)

DepartureStationID (FK)

TerminationStationID (FK)

RouteDistance

RouteDuration

AverageRouteDuration\_inMins

# Train\_Schedule

TrainScheduleID (PK)

TrainID (FK)

RouteID(FK)

ConductorID (FK)

DepartureTime

ArrivalTime

# **Employees**

EmployeeID (PK)

FirstName

LastName

Position

EmployeeEmail

Employee Street Address

Employee City Address

Employee State Address

EmployeeZipcode

EmployeePhone

## Conductor

ConductorID (PK)

EmployeeID (FK)

CertificationStatus

# Employee\_Schedule

EmployeeScheduleID (PK)

TrainScheduleID (FK)

EmployeeID (FK)

ShiftStartTime

ShiftEndTime

DaysScheduled

#### RELATIONSHIP SENTENCES

Each train schedule is associated with a specific train.

one-to-one relationship between Train Schedule and Train.

Each train operates on a specific route.

one-to-one relationship between Train Schedule and Route.

Each route connects a departure station to a termination station.

Each employee has one schedule.

one-to-one relationship between Employees and Employee Schedule.

One Employee may have multiple Train Schedules in the Employee Schedule" table

Each conductor is associated with only one employee.

one-to-one relationship between Conductor and Employees.

Conversion to Relational Model:

Train (TrainID (PK), TrainName, TrainType, TrainLine, TrainCapacity, TrainNumberOfCars)

**Station** (StationID (**PK**), StationName, StationDivision, StationBorough, StationLine )

**Route** (RouteID (**PK**), Description, DepartureStationID, TerminationStationID, RouteDistance, RouteDuration)

**Train\_Schedule** (TrainScheduleID (**PK**), TrainID (**FK**), RouteID(**FK**), ConductorID(**FK**), DepartureTime, ArrivalTime)

 $\label{lem:employee} \textbf{Employee} \textbf{Employee} \textbf{Employee} \textbf{Employee} \textbf{Employee} \textbf{Employee} \textbf{StreetA} \\ \textbf{ddress}, \textbf{Employee} \textbf{CityAddress}, \textbf{Employee} \textbf{StateAddress}, \textbf{Employee} \textbf{Zipcode}, \textbf{EmployeePhone}) \\$ 

Conductor (ConductorID (PK), EmployeeID (FK), CertificationStatus)

Employee\_Schedule (EmployeeScheduleID (PK), TrainScheduleID (FK), EmployeeID (FK), ShiftStartTime, ShiftEndTime, DaysScheduled)

#### **UML NOTATION**



#### Report:

MTA train stations are some of the most popular in the entire country, used by everyone, everywhere, at all times for their needs. We, for years by now, have been using a spreadsheet to keep track of a plethora of things, including but not limited to: trains, stations, routes, schedules(Both train and employee), and workers(Employees and Conductors). Recently, we found out that the spreadsheet is becoming outdated and messy to keep track of all information, so we decided to switch to a database.

Our stations face the problem of too many people and too many schedules and times to keep track off, which racks up the lines and crowds, which creates delays, which causes rush hours during lines 1, 2, 3, Q, N, and R. So what we did was examine the stations(Division, Line, Borough, Departure, and Termination) without forgetting about the routes(Its distance and duration). We'll also check the trains like their schedule, of when they arrive and stop, so that we can always be prepared and know in advance when and how a train will be in place.

We also need to keep track of our workers, which are divided into Employees and Conductors. For the employees we look at their contact information(First/Last name, E-Mail, Address and more) while the conductors we only look at their ID and whether they're certified or not. We also need to look at the Employee Schedule(Star/Endshift and Days Scheduled). With this, we'd be able to keep track of every detail necessary to keep trains running while minimizing the delays.

#### Normalization:

## Sample data:

| TrainID | TrainName | TrainType         | TrainLine              | TrainCapacity | TrainNumberOfCars |
|---------|-----------|-------------------|------------------------|---------------|-------------------|
| C54     | Α         | R46 (B Division)  | IND Eighth Avenue Line | 1150          | 10                |
| C55     | Α         | R46 (B Division)  | IND Eighth Avenue Line | 1150          | 10                |
| C56     | Α         | R143 (B Division) | IND Eighth Avenue Line | 1080          | 10                |
| C57     | С         | R143 (B Division) | IND Eighth Avenue Line | 1080          | 9                 |
| C58     | С         | R143 (B Division) | IND Eighth Avenue Line | 1080          | 9                 |
| C59     | С         | R143 (B Division) | IND Eighth Avenue Line | 1080          | 9                 |
| C60     | E         | R143 (B Division) | IND Eighth Avenue Line | 1080          | 11                |
| C61     | E         | R143 (B Division) | IND Eighth Avenue Line | 1080          | 11                |
| C62     | E         | R143 (B Division) | IND Eighth Avenue Line | 1080          | 11                |
| C63     | В         | R143 (B Division) | IND Sixth Avenue Line  | 1080          | 11                |
| C64     | В         | R143 (B Division) | IND Sixth Avenue Line  | 1080          | 11                |
| C65     | В         | R143 (B Division) | IND Sixth Avenue Line  | 1080          | 11                |

#### **Trian Relation**

Train (TrainID (PK), TrainName, TrainType, TrainLine, TrainCapacity, TrainNumberOfCars)

Key: TrainID

FD1: TrainID -> TrainName, TrainType, TrainLine, TrainCapacity, TrainNumberOfCars

1NF: Meets the definition of a relation

2NF: No partial Key dependencies 3NF: No Transitive dependencies

#### **Station Relation:**

## Sample data:

| StationID            | StationName       | StationDivision | StationLine         | StationBorough |  |
|----------------------|-------------------|-----------------|---------------------|----------------|--|
| 101 Marcy Av         |                   | BMT             | Jamaica             | Bk             |  |
| 232 2 Av             |                   | IND             | 6th Av - Culver     | M              |  |
| 364                  | Zerega Av         | IRT             | Pelham              | Bx             |  |
| 454 74 St-Broadway   |                   | IRT             | Flushing            | Q              |  |
| 222 Roosevelt Island |                   | IND             | 63rd St             | M              |  |
| 215 Tremont Av       |                   | IND             | Concourse           | Bx             |  |
| 309 103 St           |                   | IRT             | Broadway - 7Av      | M              |  |
| 84                   | 85 St-Forest Pkwy | BMT             | Jamaica             | Q<br>Bk        |  |
| 354                  | Sterling St       | IRT             | Nostrand            |                |  |
| 468                  | Times Sq-42 St    | IRT             | Lexington - Shuttle | M              |  |
| 123                  | Grand St          | BMT             | Canarsie            | Bk             |  |
| 337                  | Nevins St         | IRT             | Eastern Pky         | Bk             |  |
| 322                  | 14 St             | IRT             | Broadway - 7Av      | М              |  |

Station (StationID (PK), StationName, StationDivision, StationBorough, StationLine )

Key: StationID

FD1: StationID -> StationName, StationDivision, StationBorough, StationLine

1NF: Meets the definition of a relation2NF: No partial Key dependencies3NF: No Transitive dependencies

#### **Route Relation:**

## Sample data:

| RouteID | Description                                  | DepartureStationID | TerminationStationID | RouteDistance_inMiles | RouteDuration_inMins |
|---------|----------------------------------------------|--------------------|----------------------|-----------------------|----------------------|
| 1       | 1 Train: Broadway–Seventh Avenue Local       | 293                | 330                  | 13.5                  | 30 - 40              |
| 2       | 2 Train: Seventh Avenue Express              | 416                | 359                  | 18.6                  | 55 - 60              |
| 3       | 3 Train: Seventh Avenue Express              | 436                | 352                  | 23.2                  | 70 - 75              |
| 4       | 4 Train: Lexington Avenue Express            | 378                | 345                  | 23.9                  | 65 - 70              |
| 5       | 5 Train: Lexington Avenue Express            | 417                | 359                  | 20.7                  | 65 - 70              |
| 6       | 6 Train: Lexington Avenue Local/Pelham Local | 360                | 411                  | 13.9                  | 40 - 45              |
| 7       | 7 Train: Flushing Local/Express              | 447                | 471                  | 11.4                  | 30-35                |
| 8       | A Train: Eighth Avenue Express               | 143                | 209                  | 31                    | 75 - 80              |
| 9       | B Train: Sixth Avenue Express                | 151                | 55                   | 15                    | 45 - 50              |
| 10      | C Train: Eighth Avenue Local                 | 148                | 188                  | 19                    | 50 - 55              |
| 11      | D Train: Sixth Avenue Express                | 210                | 58                   | 31.5                  | 55 - 60              |

**Route** (RouteID (**PK**), Description, DepartureStationID, TerminationStationID, RouteDistance, RouteDuration)

Key: RouteID

FD1: RouteID -> Description, DepartureStationID, TerminationStationID, RouteDistance,

RouteDuration

1NF: Meets the definition of a relation2NF: No partial Key dependencies3NF: No Transitive dependencies

#### **Train Schedule Relation:**

# Sample data:

| TrainScheduleID | TrainID | Description                            | ConductorID | ArrivalTime | DepartureTime |
|-----------------|---------|----------------------------------------|-------------|-------------|---------------|
| MNG             | C54     | 1 Train: Broadway–Seventh Avenue Local | 1001        | 5:00        | 5:10          |
| AFT             | C55     | 1 Train: Broadway–Seventh Avenue Local | 1002        | 12:05       | 12:10         |
| NHT             | C56     | 1 Train: Broadway–Seventh Avenue Local | 1003        | 9:00        | 9:10          |
| MNG             | C57     | 2 Train: Seventh Avenue Express        | 1004        | 5:00        | 5:10          |
| AFT             | C58     | 2 Train: Seventh Avenue Express        | 1005        | 12:05       | 12:10         |
| NHT             | C59     | 2 Train: Seventh Avenue Express        | 1006        | 9:00        | 9:10          |
| MNG             | C60     | 3 Train: Seventh Avenue Express        | 1007        | 5:00        | 5:10          |
| AFT             | C61     | 3 Train: Seventh Avenue Express        | 1008        | 12:05       | 12:10         |
| NHT             | C62     | 3 Train: Seventh Avenue Express        | 1009        | 9:00        | 9:10          |

**Train\_Schedule** (TrainScheduleID, TrainID, Description, ConductorID, DepartureTime, ArrivalTime)

Key: TrainScheduleID, TrainID

FD1: TrainScheduleID, TrainID -> Description, ConductorID, DepartureTime, ArrivalTime

FD2: TrainID -> TrainScheduleID

FD3: ConductorID -> Description

1NF: Meets the definition of a relation

2NF: Partial Key dependencies exists: TrainScheduleID, TrainID 3NF: Transitive dependencies exists: ConductorID -> Description

Solution: Split Train Schedule relation into two new relations named TrainData and

ConductorData:

TrainData: (TrainScheduleID, TrainID)

Key: TrainID

FD1: TrainID -> TrainScheduleID

ConductorData: (ConductorID, Description)

Key: ConductorID

FD1: ConductorID -> Description

Train\_Schedule: (TrainScheduleID, TrainID, DepartureTime, ArrivalTime)

Key: TrainScheduleID, TrainID

FD1: TrainScheduleID, TrainID -> DepartureTime, ArrivalTime

**Employees**(EmployeeID(**PK**),FirstName,LastName,Position,EmployeeEmail,EmployeeStreetAddress,EmployeeCityAddress, EmployeeStateAddress, EmployeeZipcode, EmployeePhone)

#### Sample data:

| EmployeeID | FirstName | LastName | Position  | EmployeeEmail         | EmployeeStreetAddress | EmployeeCityAddress | EmployeeStateAddress | EmployeeStreetZipcode |
|------------|-----------|----------|-----------|-----------------------|-----------------------|---------------------|----------------------|-----------------------|
| 338        | 2 Rhett   | York     | Conductor | RhettYork@MTA.com     | 9904 Fairview Ave.    | Buffalo             | NY                   | 14221                 |
| 338        | 3 Jimmy   | Patel    | Conductor | JimmyPatel@MTA.com    | 8793 Roberts Rd.      | Staten Island       | NY                   | 10312                 |
| 338        | 4 Saniya  | Padilla  | Conductor | SaniyaPadilla@MTA.com | 845 White Drive       | Astoria             | NY                   | 11106                 |
| 338        | 5 Kenny   | Gilmore  | Conductor | KennyGilmore@MTA.com  | 414 E. Canal Ave.     | Jamaica             | NY                   | 11435                 |
| 338        | 6 Bridget | Bryant   | Conductor | BridgetBryant@MTA.com | 571 Cleveland St.     | North Tonawanda     | NY                   | 14120                 |
| 338        | 7 Trystan | Chavez   | Conductor | TrystanChavez@MTA.com | 179 Brickell Ave.     | Jamaica             | NY                   | 11432                 |
| 338        | 8 Garv    | Holloway | Conductor | GarvHolloway@MTA.com  | 414 3rd Rd.           | Brooklyn            | NY                   | 11211                 |

Key: EmployeeID FD1: EmployeeID ->

First Name, Last Name, Position, Employee Email, Employee Street Address, Employee City A

EmployeeStateAddress, EmployeeZipcode, EmployeePhone

FD2: EmployeeZipcode -> EmployeeCityAddress, EmployeeStateAddress

1NF: Meets the definition of a relation

2NF: No partial Key dependencies

3NF: Transitive dependencies exists: ConductorID -> EmployeeZipcode ->

EmployeeCityAddress, EmployeeStateAddress

**Solution:** Split Employees relation into two new relations named EmployeesData and ZipCodes:

EmployeesData:(EmployeeID,FirstName,LastName,Position,EmployeeEmail,

EmployeeStreetAddress, EmployeePhone)

Key: EmployeeID

FD1: EmployeeID -> FirstName, LastName, Position, EmployeeEmail, EmployeeStreetAddress,

EmployeePhone

ZipCodes: (EmployeeZipcode, EmployeeCityAddress, EmployeeStateAddress)

Key: EmployeeZipcode

FD1: EmployeeZipcode -> EmployeeCityAddress, EmployeeStateAddress

# **Conductor** (ConductorID (**PK**), EmployeeID (**FK**), CertificationStatus) Sample data:

| ConductorID |     | EmployeeID | CertificationStatus |
|-------------|-----|------------|---------------------|
| 10          | 001 | 3382       | certified           |
| 10          | 002 | 3383       | certified           |
| 10          | 003 | 3384       | certified           |
| 10          | 004 | 3385       | certified           |
| 10          | 005 | 3386       | certified           |
| 10          | 006 | 3387       | certified           |
| 10          | 007 | 3388       | certified           |
| 10          | 008 | 3389       | certified           |
| 10          | 009 | 3390       | certified           |
| 10          | 10  | 3391       | certified           |
| 10          | 11  | 3392       | certified           |
| 10          | 12  | 3393       | certified           |
| 10          | 113 | 3394       | certified           |

Key: ConductorID

FD1: ConductorID -> EmployeeID, CertificationStatus

1NF: Meets the definition of a relation 2NF: No partial Key dependencies

3NF: No Transitive dependencies

Employee\_Schedule (EmployeeScheduleID (PK), TrainScheduleID (FK), EmployeeID (FK), ShiftStartTime, ShiftEndTime, DaysScheduled)

#### Sample data:

| EmployeeScheduleID | TrainScheduleID | EmployeeID | ShiftStartTime | ShiftEndTime | DaysScheduled |
|--------------------|-----------------|------------|----------------|--------------|---------------|
| 101                | MNG             | 3382       | 4:40AM         | 12:40PM      | MON-THUR      |
| 102                | AFT             | 3383       | 11:40AM        | 7:40PM       | MON-THUR      |
| 103                | NHT             | 3384       | 7:00PM         | 3:00AM       | MON-THUR      |
| 104                | MNG             | 3385       | 4:40AM         | 12:40PM      | MON-THUR      |
| 105                | AFT             | 3386       | 11:40AM        | 7:40PM       | MON-THUR      |
| 106                | NHT             | 3387       | 7:00PM         | 3:00AM       | MON-THUR      |
| 107                | MNG             | 3388       | 4:40AM         | 12:40PM      | MON-THUR      |
| 108                | AFT             | 3389       | 11:40AM        | 7:40PM       | MON-THUR      |
| 109                | NHT             | 3390       | 7:00PM         | 3:00AM       | MON-THUR      |
| 110                | MNG             | 3391       | 4:40AM         | 12:40PM      | MON-THUR      |
| 111                | AFT             | 3392       | 11:40AM        | 7:40PM       | MON-THUR      |
|                    |                 |            |                |              |               |

Key: EmployeeScheduleID

FD1: EmployeeScheduleID -> TrainScheduleID, EmployeeID, ShiftStartTime, ShiftEndTime,

DaysScheduled

FD2: EmployeeID -> TrainScheduleID

1NF: Meets the definition of a relation

2NF: No partial Key dependencies

3NF: Transitive dependencies exists: EmployeeID -> TrainScheduleID

**Solution:** Split Employee\_Schedule relation into two new relations named EmployeeSchedule and TrainSchedule:

EmployeeSchedule: (EmployeeScheduleID, ShiftStartTime, ShiftEndTime, DaysScheduled)

Key: EmployeeScheduleID -> ShiftStartTime, ShiftEndTime, DaysScheduled

TrainSchedule: (EmployeeID, TrainScheduleID)

Key: EmployeeID

FD1: EmployeeID -> TrainScheduleID

## Queries

As illustrated in the Route Sheet table, the maximum route distance is 31.5 miles, with the minimum being 0.7 miles. Given that there is minimal variation between route distances, identifying the longest average route duration is crucial for establishing a stable and balanced train schedule.

To determine the five longest average route durations in minutes by station, I used the following code:



| Average Route                                 | Duration in Mi     | ns                   |                       | 월 8일 금요일<br>10:19:11 오후 |                |
|-----------------------------------------------|--------------------|----------------------|-----------------------|-------------------------|----------------|
| RouteID                                       | DepartureStationID | TerminationStationID | RouteDistance_inMiles | AverageRouteD           | uration_inMins |
| A Train: Eighth Avenue Express                | 143                | 209                  | 31                    |                         | 77.5           |
| 3 Train: Seventh Avenue Express               | 436                | 352                  | 23.2                  |                         | 73.5           |
| 4 Train: Lexington Avenue<br>Express          | 378                | 345                  | 23.9                  |                         | 68.5           |
| 5 Train: Lexington Avenue<br>Express          | 417                | 359                  | 20.7                  |                         | 68.5           |
| Q Train: Broadway<br>Express/Brighton Express | 310                | 58                   | 31.5                  |                         | 65             |
| .5                                            |                    | Page 1 of 1          |                       |                         |                |

The results of the above query revealed that, in relation to the route distances in miles, Trains 3, 4, and 5 face challenges in providing stable schedules to passengers. For example, a 31-mile route takes 77.5 minutes, and a 23.2-mile route takes 73.5 minutes.

To investigate the reasons behind these durations, I selected data from the "Trains" sheet to analyze the total capacity of each train route among A, 3, 4, 5, and Q with the following code:

SELECT \*
FROM Trains
WHERE TrainName IN ('A', '3', '4', '5', 'Q');

| Query2  |           | 20                | 023년 12월 8일 금요일<br>10:16:41 오후      |               |                   |                |  |
|---------|-----------|-------------------|-------------------------------------|---------------|-------------------|----------------|--|
| TrainID | TrainName | TrainType         | TrainLine                           | TrainCapacity | TrainNumberOfCars | Total Capacity |  |
| C54     | A         | R46 (B Division)  | IND Eighth Avenue Line              | 1150          | 10                | 11500          |  |
| C55     | A         | R46 (B Division)  | IND Eighth Avenue Line              | 1150          | 10                | 11500          |  |
| C56     | A         | R143 (B Division) | IND Eighth Avenue Line              | 1080          | 10                | 10800          |  |
| C93     | Q         | R46 (B Division)  | BMT Broadway Line                   | 1150          | 11                | 12650          |  |
| C94     | Q         | R46 (B Division)  | BMT Broadway Line                   | 1150          | 11                | 12650          |  |
| C95     | Q         | R143 (B Division) | BMT Broadway Line                   | 1080          | 11                | 11880          |  |
| C105    | 3         | R62 (A Division)  | IRT Broadway–Seventh Avenue<br>Line | 1200          | 11                | 13200          |  |
| C106    | 3         | R142 (A Division) | IRT Broadway–Seventh Avenue<br>Line | 1080          | 11                | 11880          |  |
| C107    | 3         | R142 (A Division) | IRT Broadway–Seventh Avenue<br>Line | 1080          | 11                | 11880          |  |
| C108    | 4         | R142 (A Division) | IRT Lexington Avenue Line           | 1080          | 11                | 11880          |  |
| C109    | 4         | R188 (A Division) | IRT Lexington Avenue Line           | 1080          | 11                | 11880          |  |
| C110    | 4         | R188 (A Division) | IRT Lexington Avenue Line           | 1080          | 11                | 11880          |  |
| C111    | 5         | R188 (A Division) | IRT Lexington Avenue Line           | 1080          | 11                | 11880          |  |
| C112    | 5         | R142 (A Division) | IRT Lexington Avenue Line           | 1080          | 11                | 11880          |  |
| C113    | 5         | R142 (A Division) | IRT Lexington Avenue Line           | 1080          | 11                | 11880          |  |
|         | 15        |                   | Page 1 of 1                         |               |                   |                |  |

From this data, it was discovered that among the five train routes—A, Q, 3, 4, and 5—there is no significant capacity difference between routes A and Q when compared to 3, 4, and 5. Therefore, it is vital to either increase the capacity of trains for lines 3, 4, and 5 or to add more trains to these lines to stabilize schedule regularity.