Redes Neurais e Aprendizado Profundo

Trabalho individual ou em grupo de até 3 discentes com data limite de entrega a ser definida (Disponibilizado em 02/08/2023. Atualizado em 09/08/2023. Atualizado em 16/08/2023).

- 1. O que é inteligência para você(s)?
- 2. Em sua opinião (ou na do grupo), o que aconteceria se alguém descobrisse como implementar uma IA mais abrangente (e.g., AGI) em um robô?
- 3. A partir da análise de um processo de destilação fracionada de petróleo observou-se que determinado óleo poderia ser classificado em duas classes de pureza $\{C1 \ e \ C2\}$, mediante a medição de três grandezas $\{x_1, x_2 \ e \ x_3\}$ que representam algumas das propriedades físico-químicas do óleo. Para tanto, pretende-se utilizar um perceptron para executar a classificação automática dessas duas classes. Assim, baseadas nas informações coletadas do processo, formou-se o conjunto de treinamento em anexo¹, tomando por convenção o valor -1 para óleo pertencente à classe C1 e o valor +1 para óleo pertencente à classe C2.

Daí, pede-se:

- a. Execute dois treinamentos para a rede perceptron, inicializando-se o vetor de pesos em cada treinamento com valores aleatórios entre zero e um de tal forma que os elementos do vetor de pesos iniciais não sejam os mesmos.
- b. Registre os resultados dos dois treinamentos na tabela a seguir:

Treinament	Vetor de Pesos Inicial			Vetor de Pesos Final			Número		
0	b	\mathbf{w}_1	\mathbf{w}_2	W_3	b	\mathbf{w}_1	\mathbf{W}_2	W_3	de Épocas
1° (T1)									
2° (T2)									

c. Após o treinamento do perceptron, aplique-o na classificação automática de novas amostras de óleo (ver arquivo tab_teste1.dat), indicando-se na tabela seguinte os resultados das saídas (Classes) referentes aos dois processos de treinamento realizados no item a.

_

¹ tab_treinamento1.dat

Amostr	X ₁	X ₂	X ₃	y (T1)	y (T2)
1	-0.3565	0.0620	5.9891		
2	-0.7842	1.1267	5.5912		
3	0.3012	0.5611	5.8234		
4	0.7757	1.0648	8.0677		
5	0.1570	0.8028	6.3040		
6	-0.7014	1.0316	3.6005		
7	0.3748	0.1536	6.1537		
8	-0.6920	0.9404	4.4058		
9	-1.3970	0.7141	4.9263		
10	-1.8842	-0.2805	1.2548		

- d. Explique por que o número de épocas de treinamento varia a cada vez que se executa o treinamento do perceptron.
- e. Qual é a principal limitação do perceptron quando aplicado em problemas de classificação de padrões?

ANEXO - Conjunto de Treinamento (ver arquivo tab treinamento1.dat).

Amostra	\mathbf{x}_1	X_2	X_3	d
01	-0.6508	0.1097	4.0009	-1.0000
02	-1.4492	0.8896	4.4005	-1.0000
29	2.0149	0.6192	10.9263	-1.0000
30	0.2012	0.2611	5.4631	1.0000

4. Um sistema de gerenciamento automático de controle de duas válvulas, situado a 500 metros de um processo industrial, envia um sinal codificado constituído de quatro grandezas {x₁, x₂, x₃ e x₄} que são necessárias para o ajuste de cada uma das válvulas. Conforme mostra a figura abaixo, a mesma via de comunicação é utilizada para acionamento de ambas as válvulas, sendo que o comutador localizado próximo das válvulas deve decidir se o sinal é para a válvula A ou B. Porém, durante a transmissão, os sinais sofrem interferências que alteram o conteúdo das informações transmitidas. Para resolver este problema, treinar-se-á uma rede ADALINE para classificar os sinais ruidosos, que informará ao sistema comutador se os dados devem ser encaminhados para o comando de ajuste da válvula A ou B.

Assim, baseado nas medições dos sinais já com ruídos, formou-se o conjunto de treinamento em anexo², tomando por convenção o valor –1 para os sinais que devem ser encaminhados para o ajuste da válvula A e o valor +1 se os mesmos devem ser enviados para a válvula B.

Daí, pede-se:

- a. Execute 2 treinamentos para a rede ADALINE inicializando o vetor de pesos em cada treinamento com valores aleatórios entre zero e um de tal forma que os elementos do vetor de pesos iniciais não sejam os mesmos.
- b. Registre os resultados dos 2 treinamentos acima na tabela abaixo:

Treinamento	Vetor de Pesos Inicial			Vetor de Pesos Final				Número de Épocas			
	b	\mathbf{w}_1	\mathbf{w}_2	W_3	W_4	b	\mathbf{w}_1	\mathbf{W}_2	W_3	W_4	
1° (T1)											
2° (T1)											

c. Para os treinamentos realizados, aplique então a rede ADALINE para classificar e informar ao comutador se os sinais seguintes devem ser encaminhados para a válvula A ou B (ver tab_teste2.dat).

Amostr	\mathbf{X}_1	X ₂	X ₃	X ₄	y (T1)
1	0.9694	0.6909	0.4334	3.4965	
2	0.5427	1.3832	0.6390	4.0352	
3	0.6081	-0.9196	0.5925	0.1016	
4	-0.1618	0.4694	0.2030	3.0117	
5	0.1870	-0.2578	0.6124	1.7749	
6	0.4891	-0.5276	0.4378	0.6439	
7	0.3777	2.0149	0.7423	3.3932	
8	1.1498	-0.4067	0.2469	1.5866	
9	0.9325	1.0950	1.0359	3.3591	
10	0.5060	1.3317	0.9222	3.7174	
11	0.0497	-2.0656	0.6124	-0.6585	
12	0.4004	3.5369	0.9766	5.3532	
13	-0.1874	1.3343	0.5374	3.2189	
14	0.5060	1.3317	0.9222	3.7174	
15	1.6375	-0.7911	0.7537	0.5515	

_

² tab_treinamento2.dat

ANEXO - Conjunto de Treinamento (ver arquivo tab treinamento2.dat).

Amostra	\mathbf{x}_1	\mathbf{X}_{2}	\mathbf{X}_3	$\mathbf{X_4}$	d
01	0.4329	-1.3719	0.7022	-0.8535	1.0000
02	0.3024	0.2286	0.8630	2.7909	-1.0000
•••	•••	•••	•••	•••	•••
34	0.4662	0.6261	0.7304	3.4370	-1.0000
35	0.8298	-1.4089	0.3119	1.3235	-1.0000

NOTA: As questões 3 e 4 foram elaboradas com base em SILVA, I.N. et al..'Redes Neurais Artificiais para Engenharia e Ciências Aplicadas – Fundamentos Teóricos e Práticos.' Artliber Editora. 2ª Ed. 2016.

- 5. Um(a) estudante da disciplina de Redes Neurais e Aprendizado Profundo ficou empolgado(a) com o trabalho do Fisher sobre as flores Íris e resolveu propor uma versão automatizada para ele. Essa nova versão deveria ter dois módulos principais: um módulo de visão computacional e um módulo do tipo classificador neural. Caso você(s) fosse(m) esse(a) estudante, como você(s) desenvolveria(m) esse sistema? Descreva-o em detalhes. Use ilustração(ões) para valorizar o seu pré-projeto. Lembre-se que são três tipos de Íris (Virginica, Versicolor e Setosa) e que 4 parâmetros foram medidos pelo Fisher para cada uma das flores (comprimento e largura da Pétala, Comprimento e largura da Sépala).
- 6. Considere a base de dados encontrada em Irisdat.xlsx. Daí, pede-se: a) Treinar um PMC que classifique observações de flores íris em 3 espécies (Setosa, Versicolor e Virginica) usando como entradas as características SEPALLENGTH (SL), SEPALWIDTH (SW), PETALLENGTH (PL) e PETALWIDTH (PW). b) Estime SL a partir de SW, PL, PW.
- 7. Considere a base de dados encontrada em engines.xlsx, em que 'Fuel rate' e 'Speed' são variáveis de entrada e 'Torque' e 'Nitrous Oxide Emissions (NOE)' são as variáveis de saída, respectivamente. Desenvolva três regressores. Um deles deve estimar conjuntamente o 'Torque' e o NOE. Já os outros dois devem estimar essas saídas separadamente (i.e. um estimará o Torque e o outro o NOE). Compare o desempenho das duas estratégias apontando qual delas apresenta uma maior capacidade de generalização.
- 8. Valendo-se da base de dados reais referente ao Volume de Vendas de Passagens (VVP) de uma companhia aérea norte-americana que se encontra no arquivo vvp.xlsx, pede-se: 1) Desenvolver um previsor neural que receba como entradas os VVPs registrados nos instantes k-1 e k-12 (i.e. VVP(k-1) e VVP(k-12)) e que disponibilize na saída o VVP no instante corrente k (i.e. VVP(k)). O previsor deverá

realizar previsões recursivas de 1 a 12 passos à frente (i.e., de um a doze meses à frente); 2) De posse da base de dados, remova a tendência linear presente na base de dados original. Desse modo, você conhecerá a série destendenciada e a tendência linear. Para a primeira série, desenvolva um previsor neural que receba como entradas os VVPs registrados nos instantes k-1 e k-12 (i.e. VVP(k-1) e VVP(k-12)) e que disponibilize na saída o VVP no instante corrente k (i.e. VVP(k)). O previsor deverá realizar previsões recursivas de 1 a 12 passos à frente (i.e., de um a doze meses à frente). Para a segunda (i.e., a tendência linear), preveja linearmente os próximos dozes pontos. Em seguida, some ponto a ponto as duas previsões e compare o desempenho dessa abordagem com a anterior apontando qual delas apresenta uma maior capacidade de generalização.

9. Procure na literatura 2 artigos que tratem do tema Sensores Inferenciais (ou Soft Sensors) para uma dada grandeza de seu interesse (e.g. temperatura, pressão, vazão, nível etc.) e que tenham sido publicados nos últimos 5 anos. Explique de forma sucinta o que foi desenvolvido pelos autores, referenciando-os. **Sugestão**: As principais informações de qualquer artigo geralmente se encontram no título, no resumo e nas conclusões. Ao ler esses três itens, o leitor tem uma boa ideia do que esperar daquele trabalho. A propósito, usualmente o leitor decidirá se lerá todo o artigo ou não com base na sua impressão a respeito desses três itens.