Data Science Society of Auburn

November 16, 2020

Dan O'Leary dan.oleary@auburn.edu

Artificial Intelligence & Machine Learning Concepts

Introduction

- Introduction to AI/ML concepts and Data Science
- Based on a lecture for undergrads in BET 2019
 - No expectation of related knowledge
- Expanded and deepened for this audience
- Still "Big Picture"
 - Provide some context, detail for those of you in deeper studies
 - Introduce those of you new / interested
- Disclaimers
 - Some references a little dated (yes, in 18 months)
 - Not as well cited as it should be
 - I am not an expert!

Topics

- Attempt to define Artificial Intelligence (fail)
- Attempt to describe the field of Data Science (better)
- Introduce fundamental concept of Machine Learning (pretty good!?)
- Describe state of the art methods in 1 slide each (jury's out)
- Use cases and examples (great!)
- Discuss why now, benefits, and limitations / pitfalls (ok)

Only the tip of the tip of the iceberg Not a formal academic presentation

Background

- 1992 BS Mechanical Engineering
- 2019 Master of Engineering Management, Supervised Learning
- 2020 Grad Cert Modeling and Analytics for Operations (ISE)
- ≈2022 PhD, Industrial and Systems Engineering
 - Modeling / simulation, data science / machine learning
 - Teach undergrad courses in innovation and product development
- Life-long fascination with modeling and simulation of all types
- 2 x Entrepreneur: co-Founded n-Space in 1994, funding from Sony
 - 23 years, 45 games concept to completion; major brands, publishers, and platforms; all genres and demographics

Embedded videos have been replaced with screenshots and youtube links.

From GTC 2018 – GPU Tech Conference

https://youtu.be/GiZ7kyrwZGQ

Question: What is Artificial Intelligence (AI)?

If you can't explain it to a six-year-old, you don't understand it yourself.

- Albert Einstein

Answer: I don't know.

What is AI?

- Imprecise, overused term
 - Calculator?
 - Self-driving car?
 - Chatbot?
- Definition is fuzzy, changes over time
- Old, diluted, hyped term backlash, cynicism
- Generally used to describe machines doing tasks traditionally assigned to humans

Classic Definition of Al

An intelligently designed agent that perceives its environment and makes decisions to maximize the chances of achieving its goal.

- Subfields:
 - Computer Vision
 - Robotics / Control Theory
 - Natural Language Processing

Now considered "Machine Learning"

https://medium.com/machine-learning-for-humans/why-machine-learning-matters-6164faf1df12

Al Effect

Once a machine takes over a task, humans tend to dismiss it as "not Al"

It's part of the history of the field of artificial intelligence that every time somebody figured out how to make a computer do something — play good checkers, solve simple but relatively informal problems — there was chorus of critics to say, 'that's not thinking'

Pamela McCorduck, 2004

Al is whatever hasn't been done yet. – Douglas Hofstadter

Al Effect

- 1997 IBM's Deep Blue beats world chess champion Garry Kasparov
 - 259th most powerful supercomputer at the time
 - Planned 6-8 moves out; as high as 20+
 - "Brute force methods... not real intelligence"
- Changed the canonical example of human vs machines from Chess to Go
 - Simple rules, many more possible moves
 - More intuition, less susceptible to brute force
- 2016 Google DeepMind beats Go Champ
- 2019 DeepMind beats StarCraft II Pros

When you're fundraising, it's AI
When you're hiring, it's ML
When you're implementing, it's linear regression
When you're debugging, it's printf()

- Baron Schwartz (@xaprb) November 15, 2017

Data Science

- Artificial Intelligence
- Big Data
- Statistical Learning
- Predictive Analytics
- Data Mining
- Machine Learning
- Pattern Recognition
- Deep Learning

Terms, usage, and interpretation vary Overwhelmingly expansive and fast-moving field

Dan's Crude Model of Domains and Tools v0.01

Broad, Multi/Interdisciplinary Interest

Source: I have only myself to blame for this slide.

The "Classic" Definition of Data Science

<u>drewconway.com/zia/2013/3/26/the-data-science-venn-diagram</u>

Robinson, Emily, and Jacqueline Nolis. Build a Career in Data Science. Simon and Schuster, 2020.

Data Science in Broad Terms

- Components (Skills)
 - Math and Stats methods related to data literacy
 - Programming & Databases coding, engineering, carpentry
 - Domain Knowledge subject matter expertise
- Applications (Jobs)
 - Analytics create dashboards and reports that deliver data
 - Machine Learning creates models that run continuously
 - Decision Science creates analyses that create recommendations

Robinson, Emily, and Jacqueline Nolis. Build a Career in Data Science. Simon and Schuster, 2020.

please

please

please do not write that someone who trained an algorithm has "harnessed the power of AI"

- Dave Gershgorn (@davegershgorn) September 18, 2017

Outcome-based...

- Data Science produces insights
 - Various types of insight descriptive, exploratory, causal
 - Statistical inference, data visualization, and experiment design
- Machine Learning produces predictions
 - Various types of predictions regression, classification
- Artificial Intelligence produces actions
 - Executed or recommended by autonomous agents
 - Includes game-playing, robotics / control theory, optimization, NLP, RL

David Robinson

Principal Data Scientist at Heap, works in R and Python.

Example: Self-Driving Car

- Machine Learning
 - Object recognition model trained using many photos of streetside objects
 - System **predicts** the presence of stop signs
- Artificial Intelligence
 - Given varying road conditions and presence of a stop sign
 - Autonomous agent decides when / how to act, properly applying the brakes
- Data Science
 - Analyzing test data developers gain insight about the cause of false negatives
 - They generate a report summarizing their findings / recommendations

Another Angle – Archetypes

- Four Components of Data Science
 - Analysis insights
 - Modeling prediction
 - Engineering deployment
 - Mechanics cleaning / prep*
- Five Archetypes of Data Scientists
 - Generalist proficient at everything
 - Detective master of analysis
 - Oracle master of modeling
 - Maker master of engineering

https://e2eml.school/data_science_archetypes.html

Not Shown

- Few all-around masters!
- Everyone cleans data!

https://e2eml.school/data_science_archetypes.html

sometimes
things
get
complicated

What is Al?

- I'm still not sure...
- Let's go with this:
 - It includes ML and DL
 - Actions \rightarrow Al
 - Predictions → ML
 - Usually
- Ignore grander AI visions, claims, speculation

Most of what we think of as "AI" today based on Deep Learning methods

Much of AI's imagined potential remains distant

Machine Learning & Deep Learning are very real, here now, everywhere

Machine Learning

- Gives "computers the ability to learn without being explicitly programmed." Arthur Samuel, 1959
- Identify patterns in observed data

Unsupervised Learning

https://towardsdatascience.com/what-is-machine-learning-a-short-note-on-supervised-unsupervised-semi-supervised-and-aed1573ae9bb

Supervised Learning

https://towardsdatascience.com/what-is-machine-learning-a-short-note-on-supervised-unsupervised-semi-supervised-and-aed1573ae9bb

Machine Learning

- Linear Regression to Deep Neural Nets
- Ingredient technology
- "Macroscope" (inverted microscope) sees things too big to view
 - Deep Neural Nets with tens of millions of parameters
 - Image data sets on the order of 1M x 1M+, video much larger
 - Entire USPTO archive (text and images), over 4M patents to 1976
 - Many data sets much larger
- Learns by finding statistical structure in training examples
 - Meaningful transformation / representations of data
- Largely empirical methods

Transformations / Representations of Data

Example: Classification

2: Coordinate change

3: Better representation

Chollet, François. Deep Learning with Python. Manning Publications Company, 2017.

Lots of ways to do it...

Best method? It depends.

- Bayesian
- Decision Tree
- Dimens. Reduction
- Instance Based
- Clustering
- Regression
- Rule System
- Regularization
- Neural Networks
- Ensemble
- Deep Learning

"State of the Art"

For Kaggle Contests, at least

- Gradient Boosting
 - LightGBM, XGBoost
 - For structured data
 - Python or R
- Deep Learning
 - Keras/TF, Fastai/PT
 - For perceptual problems
 - Python

Primary ML tool used by top-5 teams in Kaggle competitions, 2017-2018 (N=120)

Gradient Boosting in 1 Slide

- Series of decision trees*
- Each improved by prior
- Weights adjusted based on ease of classification
- Repeat and combine results

^{*}Decision trees can be thought of as giant "if-then" structures converting inputs to outputs based on features

https://datascience.eu/machine-learning/gradient-boosting-what-you-need-to-know/

Deep Learning in 1 Slide

Bonus: Neural Network!

http://neuralnetworksanddeeplearning.com/index.html

Chollet, François. *Deep Learning with Python*. Manning Publications Company, 2017.

Common Current ML/DL Use Cases

- Natural Language Processing
 - Google Translate, Siri/Cortana/Alexa, Auto-correct
- Recommendation Systems
 - Netflix, Amazon, Facebook
- Customer Relationship Management
 - Direct marketing, mobile advertising, chatbots
- Finance
 - Credit score, loan approval, fraud detection (\$100B-\$1T), algorithmic trading
- Image Recognition
 - Pose detection, facial recognition, medical image processing

Tip of the Iceberg – ML/DL is Everywhere!

https://youtu.be/0FW99AQmMc8

Google Al Doodle

https://youtu.be/0jcigK65mpc

Why Now?

- 50+ years of research
- Algorithm / SW dev
- Huge Investments
- Democratization

STAT TOOLS

ScalaLab

AI / MACHINE LEARNING / DEEP LEARNING

DIMSUM

BIG DATA & AI LANDSCAPE 2018

Why Now?

- Compute power
 - GPU graphics processing unit
 - Originally developed for 3D graphics
 - Massively parallel matrix operations
 - Orders of magnitude better performance
- Deeper Blue (1997)
 - 11.38 GFLOPS
 - ~ \$100M
- NVIDIA GTX 1080 (2016)
 - 8,873 GFLOPS
 - \$499 MSRP
 - 150 million times more GF / \$

	TFlops (10 ¹²)	Price	GFlops per \$
Intel i7-6700K	0.2	\$344	0.6
AMD Radeon R-7 240	0.5	\$55	9.1
NVIDIA GTX 750 Ti	1.3	\$105	12.3
AMD RX 480	5.2	\$239	21.6
NVIDIA GTX 1080	8.9	\$699	12.7

Why Now?

- Access to data
 - 175 zettabytes annually by 2025
 - 1 zettabyte = 1 trillion gigabytes
- The Internet
- Infrastructure to facilitate
- Instrumentation of everything

https://www.digitalinformationworld.com/2018/06/infographics-data-never-sleeps-6.html

Benefits of Data Science

- Domain independent technology; "metascience"
- Informs decision making
- Empowers organizational learning
- Improves operational efficiency
- Leverages underutilized by-product of work
- Delivers actionable results
- Automates scientific discovery
- ... a user's data can be purchased for about half a cent, but the average user's value to the Internet advertising ecosystem is estimated at \$1,200 per year.

Credit: Predictive Analytics, Eric Siegel, p. 54

Limitations and Pitfalls

- Accurate prediction (extrapolation) is generally not possible.
 - "Prediction is very difficult, especially if it's about the future." N. Bohr
 - High value from relatively low predictive power; targeted optimization
- Does not answer WHY or HOW.
 - Correlation does not imply causation; many models opaque, empirical
 - Value comes from the prediction, not understanding cause
- Vast search / Multiple comparisons trap
 - Possibility of being fooled by randomness real trend or random artifact
 - Importance of domain knowledge and disciplined research
- Bias / Variance tradeoff
 - Fit vs Predictive Power

Takeaways

- Data Science is a broad, fast-moving field, with hype and confusion
- The "promise" of AI cannot be met by current or near future tech
- We are surrounded by current use cases, many more emerging
- Its recent growth is fueled by data, compute, algorithms, sw, and \$\$\$
- Leverages existing data to improve operational efficiencies
- Identifies unexpected connections but does not explore causation
- It is not fool-proof and requires expert oversight
- Cannot be fully explained (even introduced) in one short talk...

Resources

Additional Resources for Deep Learning

- http://neuralnetworksanddeeplearning.com/index.html free, online only, starts with writing a simple backprop NN from scratch in Python
- https://www.manning.com/books/deep-learning-with-python build models in Keras and Tensorflow, written by creator of Keras, 2nd edition coming soon!

• https://course.fast.ai – alternative to Keras built on PyTorch, all work

is done inside Jupyter Notebooks

Thank You.

Contact Information:

Dan O'Leary

dan.oleary@auburn.edu

Blog / Portfolio / Links: bit.ly/aboutdjo

