COMP – 8745 Project Report

Kazi Ashraf Moinuddin U00727147

Task 1

5-Fold Cross Validation Results:

Neural Net:

```
----- Average Scores for Layer (25, 25)
Avg Precision: 0.39
Avg Recall: 0.39
Avg f1 score: 0.39
----- Average Scores for Layer (25, 25, 25)
Avg Precision: 0.39
Avg Recall: 0.39
Avg f1 score: 0.39
----- Average Scores for Layer (30, 30, 30)
Avg Precision: 0.39
Avg Recall: 0.39
Avg f1 score: 0.40
----- Average Scores for Layer (40, 40, 40)
Avg Precision: 0.40
Avg Recall: 0.39
Avg f1 score: 0.39
----- Average Scores for Layer (40, 40, 40, 40)
Avg Precision: 0.40
Avg Recall: 0.40
Avg f1 score: 0.40
----- Average Scores for Layer (50, 50, 50, 50)
Avg Precision: 0.40
Avg Recall: 0.40
Avg f1 score: 0.38
----- Average Scores for Layer (100, 100, 100, 100)
Avg Precision: 0.40
Avg Recall: 0.41
Avg fl score: 0.40
Naive Bayes:
Avg Precision: 0.38
Avg Recall: 0.38
```

Avg f1 score: 0.38 Logistic Regression

Using I1 regularization

```
----- Average Score for C = 0.01 -----
Avg Precision: 0.20
Avg Recall: 0.20
Avg f1 score: 0.20
```

```
----- Average Score for C = 0.1 -----
Avg Precision: 0.36
Avg Recall: 0.36
Avg f1 score: 0.36
----- Average Score for C = 1 ------
Avg Precision: 0.44
Avg Recall: 0.44
Avg f1 score: 0.44
----- Average Score for C = 10 ------
Avg Precision: 0.40
Avg Recall: 0.40
Avg f1 score: 0.40
----- Average Score for C = 100 -----
Avg Precision: 0.39
Avg Recall: 0.39
Avg f1 score: 0.39
Using I2 regularization
----- Average Score for C = 0.01 -----
Avg Precision: 0.42
Avg Recall: 0.42
Avg f1 score: 0.42
----- Average Score for C = 0.1 -----
Avg Precision: 0.43
Avg Recall: 0.43
Avg f1 score: 0.43
----- Average Score for C = 1 ------
Avg Precision: 0.44
Avg Recall: 0.44
Avg f1 score: 0.44
----- Average Score for C = 10 -----
Avg Precision: 0.42
Avg Recall: 0.42
Avg f1 score: 0.42
----- Average Score for C = 100 -----
Avg Precision: 0.40
Avg Recall: 0.40
Avg f1 score: 0.40
AdaBoosting:
----- Average Score for n estimators = 40 -----
Avg Precision: 0.41
Avg Recall: 0.41
Avg f1 score: 0.41
----- Average Score for n estimators = 50 ------
Avg Precision: 0.41
Avg Recall: 0.41
```

Avg f1 score: 0.41

```
----- Average Score for n_estimators = 60 ------
Avg Precision: 0.41
Avg Recall: 0.41
Avg f1 score: 0.41
----- Average Score for n estimators = 70 ------
Avg Precision: 0.42
Avg Recall: 0.42
Avg f1 score: 0.42
----- Average Score for n estimators = 80 -----
Avg Precision: 0.41
Avg Recall: 0.41
Avg f1 score: 0.41
----- Average Score for n estimators = 90 -----
Avg Precision: 0.41
Avg Recall: 0.41
Avg f1 score: 0.41
----- Average Score for n estimators = 100 ------
Avg Precision: 0.42
Avg Recall: 0.42
Avg f1 score: 0.42
SVM:
Using gaussian kernel
----- Average Score for C: 0.01 -----
Avg Precision: 0.21
Avg Recall: 0.21
Avg f1 score: 0.21
----- Average Score for C: 0.1 -----
Avg Precision: 0.21
Avg Recall: 0.21
Avg f1 score: 0.21
----- Average Score for C: 1 -----
Avg Precision: 0.21
Avg Recall: 0.21
Avg f1 score: 0.21
----- Average Score for C: 10 -----
Avg Precision: 0.21
Avg Recall: 0.21
Avg f1 score: 0.21
----- Average Score for C: 100 -----
Avg Precision: 0.21
Avg Recall: 0.21
Avg f1 score: 0.21
Using Poly Kernel
----- Average Score for degree: 1 ------
Avg Precision: 0.38
Avg Recall: 0.38
```

Avg f1 score: 0.38

----- Average Score for degree: 2 -----

Avg Precision: 0.20 Avg Recall: 0.20 Avg f1 score: 0.20

----- Average Score for degree: 3 -----

Avg Precision: 0.20 Avg Recall: 0.20 Avg f1 score: 0.20

----- Average Score for degree: 5 -----

Avg Precision: 0.20 Avg Recall: 0.20 Avg f1 score: 0.20

----- Average Score for degree: 10 -----

Avg Precision: 0.20 Avg Recall: 0.20 Avg f1 score: 0.20

Task 2

Neural Net:

hidden_layer_sizes=(100,100,100,100)

Avg Precision: 0.40 Avg Recall: 0.40 Avg f1 score: 0.39

Naïve Bayes:

Avg Precision: 0.38 Avg Recall: 0.38 Avg f1 score: 0.38

Logistic Regression:

L1 Regularization

Avg Precision: 0.44 Avg Recall: 0.44 Avg f1 score: 0.44

L2 Regularization

Avg Precision: 0.44 Avg Recall: 0.44 Avg f1 score: 0.44

AdaBoosting:

N_estimators = 100

Avg Precision: 0.42 Avg Recall: 0.42 Avg f1 score: 0.42

SVM:

C = 500, kernel = poly

Avg Precision: 0.34 Avg Recall: 0.34 Avg f1 score: 0.34

The scores do not really change for any algorithms. In some of the algorithms, the accuracy decreases. The detail results are provided on the ipython notebook.

Task 3

Neural Net:

Accuracy: 0.46846846846846					
Scores for test data					
	precision	recall	f1-score	support	
1.0	0.56	0.66	0.60	199	
2.0	0.47	0.41	0.44	200	
3.0	0.41	0.39	0.40	200	
4.0	0.39	0.46	0.42	200	
5.0	0.51	0.44	0.47	200	
avg / total	0.47	0.47	0.47	999	

Naïve Bayes:

Accuracy: 0	.50050050050	05005			
Scores for test data					
	precision	recall	f1-score	support	
1.0	0.50	0.65	0.57	199	
2.0	0.49	0.33	0.39	200	
3.0	0.43	0.41	0.42	200	
4.0	0.44	0.52	0.48	200	
5.0	0.65	0.59	0.62	200	
avg / total	0.50	0.50	0.50	999	

Logistic Regression:

Accuracy: 0	.5325325325 cores for t			
5	precision	recall	f1-score	support
1.0	0.54	0.76	0.64	199
2.0	0.56	0.40	0.46	200
3.0	0.46	0.38	0.42	200
4.0	0.47	0.50	0.48	200
5.0	0.62	0.62	0.62	200
avg / total	0.53	0.53	0.52	999

AdaBoosting:

Accuracy : 0	.4664664664	6646645		
S	Scores for te	est data -		_
	precision	recall	f1-score	support
1.0	0.58	0.60	0.59	199
2.0	0.41	0.38	0.39	200
3.0	0.38	0.34	0.36	200
4.0	0.39	0.39	0.39	200
5.0	0.54	0.62	0.58	200
avg / total	0.46	0.47	0.46	999

SVM:

Accuracy : (.3993993993	993994		
S	Scores for te	est data -		· -
	precision	recall	f1-score	support
1.0	0.49	0.89	0.63	199
2.0	0.52	0.06	0.11	200
3.0	0.00	0.00	0.00	200
4.0	0.31	0.92	0.47	200
5.0	0.90	0.13	0.23	200
avg / total	0.44	0.40	0.29	999

- All the algorithms managed to report except SVM around 45% accuracy.
- SVM the lowest performing algorithm with around 40% accuracy on the test data
- Logistic regression with I2 regularization and C =1 is the best performing algorithm on the test data, achieving 53% accuracy.
- The hardest reviews to predict seem to be 3.0 and 4.0

Task 4

- Using feature selection algorithms like grid search could be useful but is time consuming.
- Using deep neural networks could be useful also.
- Probabilistic systems seem to work much better than non-probabilistic systems as both naïve bayes and logistic regression showed promising results.