Introduction to Dplyr

Federal Reserve Board of Governors Howard University

Introduction

- Last week visualization with ggplot2
- Today Dplyr
 - Data Analysis
 - Data Manipulation
- ► More background on this topic can be found in *R 4 Data Science* chapter 5 http://r4ds.had.co.nz/transform.html

Today's Question

- American Community Survey for the state of California
 - ▶ income, education, age, gender,
 - ▶ 2010-2014
- ▶ How does income differ for men and women?
- ► How does income differ by age?

Data

- ca_acs.csv
 - Read in this file as a data.frame and call it: "acs"
- Disclaimer: Data are taken from a random 20,000 subsample of the 5-year ACS Public Use data for California; results should be considered only as instructional exercises

Examining our Data

- ► How many columns?
- ► Names of our columns?
- Data is messy
- Install and attach the dplyr package

Guiding Question

- Easier to analyze data if you have a question/goal
- How do wages and income differ for men and women in California by age?
 - Line plot with age on the x-axis and dollars on the y-axis
- ► First step?

Analyzing our columns

- names are cryptic acronyms
 - Data dictionaries
 - Census provides a data dictionary for the ACS at www2.census.gov/programs-surveys/acs/tech_docs/pums/ data_dict/PUMS_Data_Dictionary_2011-2015.pdf
- How do wages and income differ for men and women in California by age

Selecting our Columns

- ► Age (AGEP), Gender (SEX), wages (WAGP), income (PINCP)
 - inflation adjustment factor (ADJINC)
 - weighting factor (PWGTP)

dplyr::select

- ► Select() allows us to subset columns from data.frames
 - ▶ select(.data, ...)
 - ▶ .data = data.frame
 - ▶ ... = columns
- ► Select() example

In class exercise: Select

► Now it's your turn, create a data.frame called exercise_1_data of the following columns from acs: SEX, WKHP, ADJINC, PWGTP, WAGP

Filtering our data

- Remove unusable observations
 - rows with NA values in them
- ▶ filter()
 - ▶ filter(.data, ...)
 - ▶ .data = data.frame
 - ▶ ... = logical conditions (>, <, <=, >=, etc...)
- Filter() example 1

Boolean Logic

- Comparison statements that evalute to TRUE or FALSE
 - string multiple together with & (and) and | (or) operators
 - ▶ 3 < 4 evaluates to TRUE,
 - ightharpoonup 3 < 4 & 5 > 7 evaluates to FALSE
 - When making a statement with & remember: TRUE & TRUE = TRUE while any other combination = FALSE
 - ▶ However, the statement $3 < 4 \mid 5 > 7$ evaluates to TRUE
 - Only one statement must be TRUE when using | for the whole statement to be TRUE

Boolean logic: exercises

- ▶ Remember that == is "equal to" in R, since = also has assignment powers in R, like <-</p>
- ▶ %in% is the "in" operator, for example, 2 %in% c(1, 2, 3) is TRUE
 - ▶ filter(acs, AGEP < 30)
 - ▶ filter(acs, AGEP < 30 & SEX == 1)
 - ▶ filter(acs, AGEP < 25 | AGEP > 65)
 - ▶ filter(acs, Occ %in% c("Computer/Math", "Legal"))

Back to Filter

- filter() can take multiple criteria
 - Example above use |
- ▶ Adding more conditions with , is the same as &

```
identical(filter(income_data, AGEP == 24 & SEX == 1),
    filter(income_data, AGEP == 24, SEX == 1))
```

```
Output: [1] TRUE
```

What do you think happens if you do not provide a search criterion to filter()?

In class exercise: Filter

- ► Re-assign your exercise_1_data data.frame to exercise_2_data and filter out any NA values in the columns
- ▶ Additionally, make sure that your WKHP variable is greater or equal to 10 and less than or equal to 60
- ▶ Your data should have the following dimensions:

8598, 5

Creating a Workflow

- ▶ Need to execute multiple steps
- ▶ One method: create new objects

Combining statements

- Creating new objects each time
 - ► Time consuming and confusing
- Nesting functions
 - f(g(x)) = 5

Nested Functions example

Output: [1] TRUE

Also confusing!

Pipe Operators

- ▶ %>% operator from dplyr
 - output of the left side becomes input on the right side

```
income_data_pipe <- acs %>%
    select(AGEP, SEX, WAGP, PINCP, ADJINC, PWGTP) %>%
    filter(!(is.na(AGEP) | is.na(PINCP)))

identical(income_data_nest, income_data_pipe)
```

Output: [1] TRUE

Pipes Explained

- By default the pipe operator takes the output from the left function and passes it to the right function as the first argument
 - Can change manually with the . operator

```
25 %>% seq(30, by = 1)
```

Output: [1] 25 26 27 28 29 30

```
25 \% seq(30, ., by = -1)
```

Output: [1] 30 29 28 27 26 25

► The first example is seq(25, 30, by = 1) while the second is seq(30, 25, by = -1)

Mutating our data

- Adjust our income and wage data to be in constant 2014 USD
 - Move the decimal in ADJINC over
 - ▶ Recode our gender column to be "Male" and "Female"
 - Create buckets for our weekly hours column
- mutate()
 - calculate new columns, overwrite current columns, or delete columns
- mutate() example

Adjusting our adjuster

Can combine mutations into a single $\mathtt{mutate}()$ call

Updating Income and Wages

- ► Can refer to a column created earlier in a mutate() call within that same function call!
- ▶ mutate() example 2

Updating Gender

- Use a function within mutate()
 - ifelse()
 - plyr::round_any()
 - Need plyr installed

```
Output:
        SEX gender WKHP Hours
                  40
Output: 1 2 Female
                       40
Output: 2 1
            Male 40
                       40
Output: 3 2 Female 40
                       40
Output: 4 1
            Male 60
                       60
Output: 5 2 Female 30
                       30
Output: 6 2 Female 45
                       45
```

In class Exercise: Mutate

- ▶ Now it's time to update your data: exercise_2_data
- ▶ Update SEX, ADJINC, and WKHP as seen previously
- Update WAGP to account for the adjustment factor

Output:		SEX	WKHP	ADJINC	PWGTP	WAGP	${\tt Gender}$	${\tt Hours}$
Output:	1	2	40	1.024037	15	23552.85	${\tt Female}$	40
Output:	2	1	40	1.024037	22	15360.56	Male	40
Output:	3	2	40	1.024037	7	38913.41	${\tt Female}$	40
Output:	4	1	60	1.008425	53	25412.31	Male	60
Output:	5	2	30	1.094136	10	5470.68	${\tt Female}$	30
Output:	6	2	45	1.008425	19	93783.52	${\tt Female}$	45

Deleting your columns

Output: [1] FALSE

using mutate() set your column = NULL

```
"SEX" %in% names(gender_hours_data)
Output: [1] TRUE
gender_hours_data <- gender_hours_data %>%
    mutate(SEX = NULL,
           WKHP = NULL)
"SEX" %in% names(gender hours data)
```

The fun part: Summarize

- Generate our summary statistics
- ► Calculate functions over entire column(s) in a data.frame.
 - ▶ mean, median, etc. . .
- Summarise example

Output: income wages Output: 1 54836.58 48077.21

Grouping

- Summarize by itself isn't all that useful
- ▶ Income for each gender/age combination.
- group_by()
 - ► When used in conjunction with summarize or other functions allows us to calculate statistics within different groups
- ungroup() resets our data

```
income data summary <- gender hours data %>%
    group by (AGEP, gender) %>%
    dplyr::summarise(income = weighted.mean(PINCP,
                                          PWGTP),
             wages = weighted.mean(WAGP, PWGTP))
head(income_data_summary, 3)
Output: Source: local data frame [3 x 4]
Output: Groups: AGEP [2]
Output:
Output: # A tibble: 3 x 4
Output: AGEP gender income wages
Output: <int> <chr> <dbl> <dbl>
Output: 1 20 Female 10694.49 9342.122
Output: 2 20 Male 10492.21 10178.223
Output: 3 21 Female 11375.18 11053.704
```

dplyr::summarise()? weigthed.mean() instead of mean()?

In class exercise: group_by and summarize

- ▶ Using the group_by() and summarize() functions find the mean and median values for each gender/hour combination
- save your output as exercise_4_data
- ► Your data should look like the following:

```
Output: Source: local data frame [6 x 3]
Output: Groups: Gender [1]
Output:
Output: # A tibble: 6 x 3
Output: Gender Hours wages
Output: <chr> <dbl> <dbl>
Output: 1 Female 10 4640.393
Output: 2 Female 15 10555.757
Output: 3 Female 20 11856.598
Output: 4 Female 25 16512.445
Output: 5 Female 30 21234.293
Output: 6 Female
                  35 25792.914
```

Finding the top and bottom with arrange

- sorts rows
 - ▶ The default method is ascending sorting
 - descending is possible with the desc() function
- arrange() examples

In Class Exercise: arrange

- Using your exercise_4_data find the bottom five observations for average wages
 - You do not have to save your output to a variable
 - what is their gender, the hours worked?

```
Output: Source: local data frame [5 x 3]
Output: Groups: Gender [2]
Output:
Output: # A tibble: 5 x 3
Output: Gender Hours wages
Output: <chr> <dbl>
                        <dbl>
Output: 1 Female 10 4640.393
Output: 2 Male 10 5108.755
Output: 3 Male 15 8083.622
Output: 4 Male 20 10326.199
Output: 5 Female
                  15 10555.757
```

Answering our Question

Use ggplot to analyze our output

Understanding your analysis

- ▶ Difference between income and wages?
- ► Men and women?
 - ▶ What do we not take into account?
- Jagged peaks and valleys?
- ▶ Is this accurate?

Widening our age ranges

What is the message of this chart compared with our first chart using only 1-year age buckets?

age

Data obtained from Census

In Class Exercise

► Using the exercise_3_data create a chart showing mean wages for men and women by hours worked

Wages by Hours worked

What message does this chart show about wage inequality compared with our previous chart? What more questions do you have?

Joins

Need multiple datasets to talk to each other

New Questions

- ▶ In what county do men have the highest wages? Women?
- In what county do men and women have the largest income ratio?
- Need to add county level data to our acs data
 - puma10_county_xwalk.csv

```
Output: puma12 county
Output: 1 101 Alameda
Output: 2 102 Alameda
Output: 3 103 Alameda
```

Joining our Data

▶ We want to use an inner join

```
Output: [1] "AGEP" "WAGP" "PINCP" "ADJINC" "PWGTP"
```

Output: [6] "PUMA10" "gender" "Hours" "county"

County Level Statistics

Which county has the highest male wages?

```
Output: # A tibble: 6 x 3
      county
                      Female
                               Male
Output:
Output: *
       <chr>
                       <dbl> <dbl>
       Marin 114325.96 69574.81
Output: 1
Output: 2 Placer 70621.52
                                 NΑ
Output: 3 San Francisco 52621.21 98917.28
Output: 4 San Mateo 58002.22 93219.94
Output: 5 Santa Clara 56311.29 77299.68
Output: 6
                         NA 70940.12
            Ventura
```

County Income Ratio

Male/Female income ratio (male wages/female wages)

```
Output: Source: local data frame [6 x 3]
Output: Groups: county [6]
Output:
Output: # A tibble: 6 x 3
Output:
                county ratio observations
                 <chr> <dbl>
Output:
                                    <int>
Output: 1 Imperial 2.644490
                                     203
Output: 2 San Luis Obispo 2.471640
                                     614
Output: 3 Ventura 2.376310
                                    1591
Output: 4 Merced 2.292796
                                     341
                 Yolo 2.120836
                                     347
Output: 5
Output: 6
                 Lake 1.967070
                                     217
```

Let's now go back to how hours worked impacts wages

Challenge exercise 1

- Wages seem to increase dramatically with hours worked
- ▶ Next step: bar chart showing the percentage of men and women in each 5 hour bucket
- Find the total number of observations in each hour/gender combination
 - group_by() and dplyr::summarise()
- 2. Change your grouping to just the hour buckets
 - use mutate to calculate the total number of observations in each bucket and the the percentage of men/women in each bucket
- 3. Plot with ggplot() and geom_bar() etc..., your y value should be the percentage
 - ▶ in the geom_bar() make sure to include stat = "identity"

Challenge Exercise 1 Answer

New insights? Further questions?

Challenge Exercise 2

- Using dplyr and ggplot analyze how wage (WAGP) changes over age between men and women
 - control for number of hours worked
 - ▶ 10 hour buckets instead of 5
 - ▶ Limit to people who work between 20 and 60 hours per week
 - Bucket sizes for age should be 5 years
- PWGTP
- ▶ You will need to start with the original ACS data to answer this

Challenge Exercise 2: Answer

Insights? Further Questions? Is this a "good" chart?