

Europäisches **Patentamt**

European **Patent Office**

Office européen des brevets

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application conformes à la version described on the following page, as originally filed.

Les documents fixés à cette attestation sont initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr.

Patent application No. Demande de brevet n°

04290509.1

Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets p.o.

R C van Dijk

European Patent Office Office européen des brevets

Anmeldung Nr:

Application no.: 04290509.1

Demande no:

Anmeldetag:

Date of filing: 25.02.04

Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

Renault s.a.s.
13-15 Quai Alphonse Le Gallo
92100 Boulogne Billancourt
FRANCE
Thule Sweden AB
Box 69
330 33 Hillerstorp
SUEDE

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention: (Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung. If no title is shown please refer to the description.
Si aucun titre n'est indiqué se referer à la description.)

Load carriers for vehicles

In Anspruch genommene Prioriät(en) / Priority(ies) claimed /Priorité(s) revendiquée(s) Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/Classification internationale des brevets:

B60R9/00

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR LI

LOAD CARRIERS FOR VEHICLES

The present invention relates to a load carriers and in particular to a load carrier for coupling to a vehicle, such as might typically be coupled to the rear of a vehicle for the transport of bicycles or the like.

It is known to provide a load carrier for a vehicle, and one known type of such a load carrier comprises a loading frame and a supporting arch extending upwardly from and substantially transversely to a loading area of the loading frame. This type of load carrier usually further comprises connecting members for coupling the load carrier to the rear of the vehicle.

5

10

15

20

25

30

One particular prior art load carrier is disclosed in EP-1095820, which is adapted for connection to a tow hitch of the vehicle for carrying cargo such as bicycles. An inverted "U" shaped retaining bar rises from a platform of the load carrier and supports some bicycle holders.

One problem with load carriers of the general type under consideration herein is that, when they are not in use, they are extremely bulky and therefore awkward to store or to transport. In order to address this problem, load carriers have been produced in which the retaining bar/supporting arch is tiltable in such a way that it can be folded down over the loading frame. However, the supporting arch is for the most part so high that, when folded down, it extends beyond the platform/loading frame, which means that many of the storage problems continue to exist.

In US-3670935 a collapsible cycle carrier is proposed in which a pair of upright support arms are joined to each other by means of a cross-bar which extends between them. The arrangement proposed involves three beams used together to form the cycle support, with multiple pivot points. In collapsing the cycle carrier, it is necessary to first fold the cross bar into the support arm to which it remains attached. It can be seen that, even after detaching the cross bar, at least one preparatory operation is needed before one of the two support arms can be pivoted down. Therefore, at least three pivoting movements are required to collapse this prior art carrier. Furthermore, construction of that arm is complicated and the technique used to connect the

crossbar to the other support arm is basic and unsuited to the current market place for such products.

A further drawback with some previous load carriers is that arms used to connect the load carrier to the vehicle take up space when the load carrier is not in use. One prior art load carrier with less than ideal stowage of vehicle connection arms is proposed in WO-94/05526.

5

10

15

20

25

30

There is clearly a continuing need to develop load carriers which are suitable for use with vehicles and which occupy less storage space when not in use than some current types.

It is therefore an object of the present invention to provide an improved load carrier suitable for use with a vehicle.

Accordingly, the present invention provides a load carrier for coupling to a vehicle, said load carrier comprising a loading frame and first and second longitudinally extending connecting members for coupling said load carrier to said vehicle, characterised in that said connecting members are pivotally mounted onto said loading frame and are configured to be pivoted between an outwardly projecting in-use position for connection to said vehicle, and a folded-in stowage position in the region of said loading frame.

A load carrier according to the present invention has the advantage that it can be collapsed into a small package for storage or transport.

Said connecting members may be separately mounted onto said load carrier by means of independent pivotal connections. Connection of the connecting members by independent pivotal connections means that the freedom in where they can be mounted or how they are stowed is greater than that which is found in some known carriers of the general type concerned.

Said connecting members may be configured for stowage in an at least partially overlapping relationship. A vehicle-connection end of each said connecting member may be configured to pivot from its in-use position in towards the middle of said load carrier so as to reach its respective stowage position. Each of these two features further emphasises the compactness

already inherent from the use of independent pivotal mountings according to the present invention.

Said connecting members may be pivotally mounted directly onto said loading frame. Said connecting members may be pivotally mounted onto opposing side members of said loading frame. Each of these features helps achieve a compact design and eliminates the need to provide complicated or bulky hinges.

Said connecting members may be pivotally mounted onto the underside of said loading frame. Said stowage position may be underneath said loading frame.

10

15

20

25

30

When a said connecting member is in its stowage position, a vehicleconnection end of said connecting member may not protrude outside the perimeter of said loading frame. The vehicle connection end is the end region of the connecting member which includes a locking mechanism that fixes the load carrier to the vehicle.

The mounting of said first and second said connecting members to said load carrier may be asymmetric between the respective pivotal connections thereto of said connecting members. This feature may aid in particular the overlapping storage of the connecting members and may be aided by the use of connecting members in the form of arms having different lengths and/or different cranked offsets.

Each said pivotal connection may comprise a screw joint configured to operate as a rotation shaft for its associated said connecting member. Each said connecting member further comprises a clip that is attached thereto and configured to capture its associated said connecting member against said loading frame when said connecting member is in its in-use position.

Said loading frame and each said connecting member may be of tubular construction in the region of said clip and said clip may comprise an interlay configured to capture its associated connecting member against said loading frame when said connecting member is in its in-use position.

Said connecting members may be configured for connection of said load carrier to the rear of said vehicle.

Said load carrier may further comprise a supporting arch that extends substantially upwardly from and transversely to said loading frame said, supporting arch being divisible into first and second arch parts, each of which arch parts is pivotally coupled to said loading frame such that, when divided, each of said first and second arch parts is configured to be pivoted down to a storage position lying substantially level with said loading frame. The storage position of the first and second arch parts may be on top of said loading frame. Said load carrier may comprises a bicycle carrier.

5

10

20

The present invention also provides a kit of parts adapted to be assembled into a load carrier according to the present invention.

The present invention will now be described by way of example only, with reference to the accompanying figures, in which:

Figure 1 is a perspective view of a load carrier according to an embodiment of the present invention in a fully assembled state ready for use;

Figure 2 is a perspective view of the load carrier of Figure 1 with a support arch thereof in a partially disassembled state;

Figure 3 is a perspective view of the load carrier of Figure 1 with a support arch thereof in a fully disassembled state and stowed in a storage position:

Figure 4 is a plan view of the arrangement depicted in Figure 1;

Figure 5 is a plan view of the arrangement depicted in Figure 2;

Figure 6 is a plan view of the arrangement depicted in Figure 3;

Figure 7 is a sectional view taken from the line A-A in Figure 4:

25 Figure 8 is a sectional view taken from the line B-B in Figure 5:

Figure 9 is a sectional view taken from the line C-C in Figure 6;

Figure 10 is a rear view of the arrangement depicted in Figures 3 and 6;

Figure 11 is the view of Figure 4 in which coupling members of the load carrier are in the folded-out;

Figure 12 is the view of Figure 11 in which the coupling members have been pivoted into a folded-in position suitable for storage of the load carrier;

Figure 13 is a sectional view taken from the line D-D in Figure 11;

Figure 14 is a sectional view taken from the line E-E in Figure 12;

10

15

20

25

30

Figure 15 is a perspective view of the load carrier of the previous figures shown with its supporting frame collapsed and its coupling members in the folded-in position, this view showing the load carrier in a fully collapsed state suitable for storage; and

Figure 16 is a perspective view of part of Figure 1 and showing a modified arch coupling.

Referring to the figures, and in particular for the moment to Figures 1 and 4, a load carrier 1 according to an exemplary and non-limiting embodiment of the present invention is illustrated in a fully assembled state. The load carrier 1 comprises a loading frame 2, a supporting arch 3 and connecting members 4. Each of these parts 2, 3, 4 may be made from a round section material, for example from tubular metal. The load carrier 1 is intended to be connected by its connecting members 4 to a vehicle 5, preferably to its rear, which vehicle 5 is represented in the figure only by two rectangles 5. For connection to the vehicle, the connecting members 4 are provided at their vehicle-connection end with a manually operated coupling mechanism 40, each of which is configured to co-operate with an associated mounting point 5 of the vehicle.

Fitted to, or integrated with, the loading frame 2 are cargo members forming a cargo loading area 11. One example of the sort of cargo members envisaged are channels or rails 6 on which the bicycles transported (not shown in the figures) can be loaded. It will be appreciated that the loading frame 2 and loading area 11 may take other forms in variations to the present invention in dependence on the type of cargo/load to be carried. The spread plane of the loading area 11 is marked with the angular arrow U and the direction of the assembled supporting arch 3 with the arrow T. The load carrier 1 may be regarded in the drawings as ready for fitting to the rear of a vehicle and for convenience is provided in plan view with an indication of what will therefore be facing the right "R" and left "L" sides of that vehicle.

The supporting arch 3 when assembled into its in-use position extends substantially upwardly from the loading frame and substantially transversely relative to its spread plane U, for illustration of which reference may be made in particular to Figure 1.

5

10

15

20

25

30

The supporting arch 3 carries distancing arms/load support arms 7, which in use are intended to be coupled to loaded bicycles to hold these in an upright position in association with the or each rail 6. In other versions, these load support arms 7 may be embodied in other forms in dependence on the type of cargo/load to be carried, e.g. they may comprise ski-racks, clips or similar load restraining members. At their arch-connecting end, the arms 7 in the present embodiment comprise a clamping ring that can be loosened and displaced around the arch 3 so as to vary the position of the support provided to the load. At their load supporting end, the arms 7 include a load attachment member, embodied for the present bicycle-carrying embodiment in the form of a pair of jaws hinged to close around a bicycle frame member and clamped on by a manually turned knob. One arm 7 is provided by way of example per rail 6 or row of rails and the distance it extends away from the arch 3 depends on the position of the rail 6 with which it is associated.

For the rear mounted embodiment under consideration, a plate is fitted to the loading frame 2 in the form of a lighting board 8, to which lamps 9 are fitted and on which there is space for a number plate (not shown in the figure). This mimics the rear lamps of the vehicle 5 and improves safety for following road users. The lighting board 8 is connected to the loading frame 2 with rotary couplings 10, by which the lighting board 8 can be folded down against the loading frame 2 to help in keeping the collapsed package size down, e.g. for storage of the load carrier 1.

The supporting arch 3 may be a substantially inverted "U" in shape and comprises a first supporting arch part 12 and a second supporting arch part 13. These arch parts 12, 13 are divisibly connectable such that they are interlocked when the arch 3 is in at least its in-use position. The arch parts 12, 13 are not, however, permanently interlocked and the arch 3 can be divided

into its separate main parts 12, 13, e.g. at least for the purposes of collapsing the arch 3 for space-efficient storage or stowage of the load carrier 1.

The arch parts 12, 13 are interlocked into the arch 3 by a preferably manually operable coupling. In the present embodiment, this coupling is in the form of a screw joint 14 in which one arch part 13 includes a male fastener 14A that is adapted to screw into an aligned female fastener 14B so as the hold the two arch parts 12, 13 together into the arch 3.

5

10

15

20

25

30

The arch parts 12, 13 are interlocked substantially directly to each other, the only intermediary being the actual locking mechanism 14 whose component parts 14A, 14B are integrated with those arch parts 12, 13. This means that the arch parts 12, 13 alone form the whole arch 3 and there is no need for additional components such as for example a crossbar. The direct interlocking between the arch parts 12, 13 means that, upon unlocking, the first and second arch parts 12, 13 are substantially immediately ready to be pivoted down into their storage positions, which keeps to a minimum the number of actions and time required of a user and furthermore keeps manufacturing complexity down and therefore also keeps costs down.

Referring for the moment to Figure 16 and in a modification to the embodiment illustrated in Figure 1, the female part 14B may screw over the top of the male part 14A. In this version, use of a large diameter hand grip on the outside of the female part 14A may prove useful for increasing the mechanical advantage and therefore torque available when trying to undo a particularly tightly done up coupling. Some users may also find it preferable to use a large hand grip. Furthermore, in this arrangement if the female part 14B envelops the male part 14A protection of a thread or equivalent against the elements and contamination may be improved, e.g. against frost damage. This variation may be applied to any version of the present invention and in particular to the specific but non-limiting embodiment disclosed herein and with reference to the other figures.

It will be appreciated that other forms of coupling may be used such as a releasable snap-fit coupling, e.g. releasable bayonet joint. In whatever form the coupling 14 is embodied, for user convenience it may prove advantageous to design the coupling 14 such that it is adapted to be connectable and divisible without normally needing the aid of tools, neither of a special nor general variety. The coupling 14 is preferably disposed in a substantially central upper region of the arch 3 so as to keep the length of the arch parts approximately the same, which may prove aesthetically more pleasing to users than widely different lengths of arch part 12, 13.

The supporting arch parts 12 and 13 are each rotatably coupled to the loading frame 2 with a joint comprising a respective sleeve-shaft/tube arrangement 15. When the arch 3 has been divided into its constituent parts 12, 13, these parts 12, 13 can be pivoted about their lower end to a plane H lying essentially level with the loading frame 2. A first stage in this operation can be seen by referring in particular to Figures 2 and 5, in which the arch 3 has been divided by unscrewing the coupling 14. The first and second arch parts 12, 13 have been manually separated and partly pivoted down towards the plane H. The first and second arch parts 12, 13 can be seen fully pivoted down into the plane H with particular reference to Figures 3 and 6. The plane H is preferably substantially co-planar with the plane of the loading frame 2 and may lie to the rear thereof, i.e. on the vehicle-facing side of the load carrier. Both the arch parts 12, 13 may remain in substantially the same vertical plane at all times while being pivoted downwards, that vertical plane being substantially the same vertical plane in which otherwise lies the assembled and undivided arch 3.

10

15

20

25

30

Referring now also to Figures 4 to 6, it can be noted that the supporting arch parts 12, 13 preferably move apart in a lateral direction relative to each other when the supporting arch parts 12, 13 are moved down towards the plane H. This could be achieved in a simple embodiment merely by an arrangement in which one part or both 12, 13 can slide into and/or out of the loading frame 2. Such a simple arrangement would call for a user to pull or push the frame parts 12, 13 to gain the necessary clearance to prevent blocking between the arch parts 12, 13 when pivoting and that might cause

some user confusion or inconvenience. It is therefore considered preferable if relative lateral displacement during pivoting is performed automatically away on lowering the arch parts 12, 13 and towards each other on raising. That is achieved by way of non-limiting example in the illustrated embodiment.

5

10

15

20

25

30

In Figure 4 the parts are in a coupled-together position and in Figure 5 the parts have been detached from each other and partially folded down. In different embodiments, only one or both arch parts 12, 13 could be displaced towards or away from the loading frame 2 to provide the necessary clearance. In the present embodiment, both arch parts 12, 13 are displaced, one arch part 12 towards the loading frame 2 and the other arch part 13 away from the loading frame 2. Thus, as can be seen from Figure 5, one supporting arch part 12 has moved in the lateral direction relative to the other supporting arch part 13 in the direction marked by the arrow B, whilst the other part 13 has moved relative to the supporting arch part 12 in the direction marked by the arrow F.

In Figure 6 the supporting arch parts 12, 13 have been fully folded/pivoted down and the arch parts 12, 13 have continued to move sideways relative to each other. It can thus be seen that, once divided, the arch parts 12, 13 do not make pivot-blocking contact with each other during movement into the plane H. The same happens in reverse during assembly of the arch 3 into its in-use position, in which case pivot-blocking contact is only and deliberately made when the two arch parts 12, 13 meet and are interlocked to form the arch 3. One advantage of displacing both arch parts 12, 13 rather than just one of them is that, if only one is displaced sideways from the other, the one that moves must move a long way and must do so early on during the pivoting operation. A long overhang resulting from displacing just one arch part 12, 13 may weaken its joint 15 by amplifying the effect thereon of any accidental load placed on that arch part 12, 13, e.g. after disassembly and full collapse of the arch 3.

Figure 10 shows the load carrier 1 viewed from the side intended to be connected to the vehicle 5, which may for convenience be referred to as a rear view of the load carrier 1 in its collapsed state. The bottom plane of the

load carrier 1 is marked by the line 16 and the supporting arch parts 12, 13 are in their pivoted-down position. The lighting board 8 is still in its non-folded-down position and the height of the loading area 11 above the bottom plane is marked by "h" and the height of the supporting arch parts 12, 13 above the bottom plane by H. These heights h, H may be considered as the thickness of the planes that envelope the loading area 11 and the pivoted down arch parts 12, 13 respectively. These dimensions h, H are preferably similar in value.

Sectional views taken from the lines A-A, B-B and C-C in Figures 4, 5 and 6 may be seen by particular reference to Figures 7 to 9. In these figures, the shaft-sleeve arrangement 15, by which the supporting arch part 12 is coupled to the loading frame 2 is shown in detail, along with an exemplary and preferred arrangement by which the or each arch part 12, 13 may be displaced sideways with respect to its counterpart.

10

15

20

25

30

The broad idea of displacing the first and second arch parts (12, 13) away from each other may be achieved for example by use of a cam or groove and an associated follower. The specific but non-limiting embodiment is directed to the illustrated arrangement 15 which is used to couple the part 12, but it will be appreciated that the description is also applicable *mutatis mutandis* for the arrangement used to couple the part 13 to the loading frame 2. The difference between the arrangements for the arch parts 12, 13 is that preferably one 12 should automatically move inwards towards the loading frame 2 and the other should automatically and preferably substantially simultaneously move outwards away from the loading frame 2. This minimises the actual movement in and/or out of each part and should make for greater user comfort and component durability.

A sleeve 17 is used in the embodiment illustrated, which may constitute an integrated part of the loading frame 2 and may be an open end of a tubular member used in the construction of that loading frame 2 itself. The sleeve 17 could also be a separate part that is fastened to the load carrier 1. In the sleeve 17, a shaft 18 is introduced that constitutes an end part of the supporting arch part 12. The shaft part 18 can be rotated in the sleeve 17 and

the shaft part 18 and the sleeve 17 thus have a common fulcrum and common longitudinal axis, which is marked by the dash-dot line G-G in Figure 7.

The shaft part 18, which may be tubular, defines therethrough one or more grooves 19 (two illustrated) whose longitudinal lines of action have been marked by the dashed line H-H. The line H-H has an inclination α to the line G-G. Fitted to the sleeve 18 are one or more pins 20, one each of which extends into and interacts with each grooves 19. While the embodiment illustrated shows two pins 20 and grooves 19 per arch part 12, it will be appreciated that one or more pins 20 and corresponding grooves 19 may be used or an equivalent thereto.

5

10

15

20

25

30

In Figure 7 the supporting arch part 12 is in its raised position and coupled together with the other arch part 13 to form the closed arch 3 and the pins 20 are disposed in a first end position 21 of their grooves 19. In Figure 8 the arch part 12 has been partially pivoted down and the shaft 18 has been rotated in the sleeve 17. The groove 19 and the pin 20 have therefore interacted such that the shaft 18 has been partially and automatically moved further into the sleeve 17 in the direction shown by the arrow B. In Figure 9, the arch part 12 has been pivoted fully down and the shaft 18 has moved further in the direction of the arrow B. In the position shown in Figure 9, further rotation of the shaft 18 is blocked by the fact that the other end 22 of the grooves 19 comes into contact with the pins 20.

The pivotal mounting of the connecting members 4 directly to the loading frame 2 will now be described, with reference in particular to Figures 11 to 14. The connecting members 4 may each comprise an arm including a pipe part 23, which is connected to the loading frame 2 by means of a screw joint 24. The screw joint 24 serves as a rotation shaft for the connecting member 4, so that it can fold inwards to a stowage position.

For mounting the load carrier 1 onto the vehicle, the connecting members 4 are moved into an in-use position in which they project outwards away from the loading frame 2 and towards the vehicle. The connecting members 4 are illustrated captured in this position in for example each of

figures 1 to 6. The pivotal connection provided by the screw joint allows the connecting members 4 to be pivoted between this in-use position and a stowage position that is in the region of the loading frame 2, i.e. near to it which can include positions next to or alongside it. The connecting members 4 are, however, preferably stowed underneath the loading frame 2. There, they do not interfere with the storage position of the collapsed arch 3, 12, 13. Partly in order to facilitate this, the connecting members are mounted onto the underside of the loading frame 2, for which see for example figure 10. In addition, under-slung mounting of the connecting members 4 ensures that the weight of the load bears downwards onto the connecting members 4 and the pivotal connection 24 takes none of the carrier load in tension.

5

10

15

20

25

30

Fitted to the pipe part 23 on each side of the screw joint 24 is an clip in the form of an interlay 25. The interlay 25 is connected by screws 26, rivets or similar to the pipe part 23 and the interlay is shaped on the side 27 facing the loading frame 2 such that it fits tightly against the loading frame 2 when the connecting member 4 is in the folded-out position, which position is shown in Figure 11. The interlay 25 is preferably made of a resilient material, which allows the connecting member 4 to be pivotable between the folded-out position shown in Figure 11 and the folded-in position shown in Figure 12. The tight fitting of the interlay 25 against the loading frame 2 has the effect that the connecting members 4, when in the folded-out position, are captured in position and are not inadvertently shifted out of this position, which makes the load carrier 1 easier to fit to the vehicle 5.

The connecting members 4 are preferably configured for stowage in an at least partially over-lapping relationship, which helps with compactness. The connecting members 4 are mounted separately by independent pivotal connections 24 and this enables them to be folded inwardly one by one to achieve the compact stowage illustrated with ease of use for the operator. It is also of note that once the connecting members are in their stowed positions, the vehicle connection end of neither projects outwards of the loading frame 2. This keeps everything compact and reduces chances of tripping the user.

The pivotal mounting 24 of the connecting members 4 is made onto opposing side members of the loading frame and is asymmetric, e.g. the right hand side mounting member 4 is mounted further back than the left hand one. This helps offset the connecting members 4 and can be useful in setting up over-lapping stowage positions, in particular when combined with asymmetric offsets to the arms forming the connecting members. The asymmetry of the connecting members 4 and their step outwards allows them to achieve a good width in the in-use position but aids compact stowage. Mounting the connecting members 4 directly onto the loading frame 2 keeps down component count, weight and cost.

10

15

20

25

30

When the load carrier 1 is uncoupled from the vehicle 5 to which it has been connected, the load carrier 1 is in the position which can be seen from Figures 1 and 4. In this position, the screw joint 14 is released and the supporting arch parts 12 and 13 are pivoted down, an intermediate stage of the folding operation being visible in particular in Figures 2 and 5. Due to the functioning of the shaft-sleeve arrangement (Figures 7 to 9), the arch parts 12, 13 shift in the lateral direction relative to each other, which means that the arch parts 12, 13 can pass each other while being pivoted down to the position shown in Figure 10 substantially without interfering with each other or otherwise making pivot-blocking contact. The situation with a divided and fully collapsed arch 3 can be seen with particular reference to Figures 3 and 6.

The connecting members 4 are next folded inwards towards the middle of and beneath the loading frame 2, whereafter the lighting board 8 is rotated about its pivot edge to make bearing contact against the loading frame 2, thereby producing a fully collapsed and very compact load carrier 1 of the appearance represented in Figure 15, which load carrier 1 requires little storage space. It may be noted that the distance arms 7 lie substantially across the loading area 11 and may be down against the tracks 6 when the load carrier is in its fully collapsed state or may lie substantially between them (e.g. as illustrated in Fig. 6). In particular, the load carrier 1 in its collapsed/storage condition does not suffer from the disadvantage felt by

some prior art load carriers because the manner in which its arch 3 is divided enables its collapse into a position H in which no part of the arch 3 juts out over the back of the loading area 11. This co-operates with the similarly efficient stowage of the connecting members 4 under the loading area 11 so as to produce a very compact package for storage or transport when the load carrier 1 is not being used to carry a load.

The load carrier 1 of this or other embodiments may be supplied in the form of an original equipment part fitted to, or supplied in relation with, a new or used vehicle 5. It could also be supplied as a dealer-fit optional extra with a new vehicle or could be sold as an after-market accessory supplied as an item for hire. In one version, the load carrier 1 could be supplied in the form of a kit of parts. Such a kit of parts would preferably have included therein at least substantially all the components for assembly of a load carrier 1 according to an embodiment of the present invention.

10

CLAIMS

5

10

- 1. A load carrier for coupling to a vehicle (5), said load carrier (1) comprising a loading frame (2) and first and second longitudinally extending connecting members (4) for coupling said load carrier to said vehicle (5), characterised in that said connecting members are pivotally mounted onto said loading frame (2) and are configured to be pivoted between an outwardly projecting in-use position for connection to said vehicle, and a folded-in stowage position in the region of said loading frame (2).
 - A load carrier according to claim 1, wherein said connecting members
 (4) are separately mounted onto said loading frame (2) by means of independent pivotal connections (24).
- A load carrier according to claim 1 or claim 2, wherein said connecting members (4) are configured for stowage in an at least partially overlapping relationship.
 - 4. A load carrier according to any preceding claim, wherein a vehicle-connection end of each said connecting member (4) is configured to pivot from its in-use position in towards the middle of said loading frame (2) so as to reach its respective stowage position.
 - A load carrier according to any preceding claim, wherein said connecting members (4) are pivotally mounted directly onto said loading frame (2).
- A load carrier according to any preceding claim, wherein said
 connecting members (4) are pivotally mounted onto opposing side members of said loading frame (2).
 - 7. A load carrier according to any preceding claim, wherein said connecting members (4) are pivotally mounted onto the underside of said loading frame (2).
- A load carrier according to any preceding claim, wherein said stowage position is underneath said loading frame (2).

- A load carrier according to any preceding claim wherein, when a said connecting member (4) is in its stowage position, a vehicle-connection end of said connecting member does not protrude outside the perimeter of said loading frame (2).
- 5 10. A load carrier according to any preceding claim, wherein the mounting of said first and second said connecting members (4) to said loading frame (2) is asymmetric between the respective pivotal connections (24) thereto of said connecting members.
- 11. A load carrier according to any preceding claim, wherein each said
 10 pivotal connection (24) comprises a screw joint configured to operate as a rotation shaft for its associated said connecting member (4).
 - 12. A load carrier according to any preceding claim, wherein each said connecting member (4) further comprises a clip (25) that is attached thereto and configured to capture its associated said connecting member against said loading frame (2) when said connecting member is in its in-use position.

15

- 13. A load carrier according to claim 11, wherein said loading frame (2) and each said connecting member (4) are of tubular construction in the region of said clip (25) and wherein said clip comprises an interlay configured to capture its associated connecting member against said loading frame when said connecting member is in its in-use position.
- 14. A load carrier according to any preceding claim, wherein said connecting members (4) are configured for connection of said load carrier to the rear of said vehicle (5).
- 25 15. A load carrier according to any preceding claim, further comprising a supporting arch (3) that extends substantially upwardly (T) from and transversely to said loading frame (2) said, supporting arch being divisible into first and second arch parts (12, 13), each of which arch parts is pivotally coupled (15) to said loading frame such that, when divided, each of said first and second arch parts is configured to be pivoted down to a storage position lying substantially level with said loading frame.

- 16. A load carrier according to claim 15, wherein the storage position of the first and second arch parts (12, 13) is on top of said loading frame (2).
- 17. A load carrier according to any preceding claim, wherein said load carrier (1) comprises a bicycle carrier.
- 5 18. A kit of parts adapted to be assembled into a load carrier (1) according to any preceding claim.

Abstract

LOAD CARRIERS FOR VEHICLES

5

10

A load carrier is disclosed for coupling to a vehicle (5). The load carrier (1) comprises a loading frame (2) and first and second longitudinally extending connecting members (4) for coupling the load carrier to the vehicle (5). The connecting members are pivotally mounted onto the loading frame (2) and are configured to be pivoted between an outwardly projecting in-use position for connection to the vehicle, and a folded-in stowage position in the region of the loading frame (2).

(Figure 2)

DOCUMENT MADE AVAILABLE UNDER THE PATENT COOPERATION TREATY (PCT)

International application number: PCT/EP2004/007571

International filing date: 06 July 2004 (06.07.2004)

Document type: Certified copy of priority document

Document details: Country/Office: EP

Number: **04290509.1**

Filing date: 25 February 2004 (25.02.2004)

Date of receipt at the International Bureau: 27 June 2011 (27.06.2011)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule

17.1(a),(b) or (b-bis)