

Objet 260

Initial shape of the

VC/Ag30 bilayer

plate

plate

Printing of Thermally Responsive Polymeric Bilayers with Reversible Shape Reconfiguration in Air

Johnny Moughames¹, Mouad Khiat¹, Théo Calais¹, Frédéric Demoly^{1,2}

BACKGROUND

RESULTS

CONCLUSIONS

- Shape reconfiguration through a single-step printing process and a single thermal stimulus.
- Predicting the final geometry of the bi-layer structures using finite element analysis.
- Demonstrating the potential for achieving precise control over the deformation behavior.
- Fabrication of more intricate structures with tailored functionalities, further broadening the applicability of this approach in the development of dynamic and responsive materials.

REFERENCES

[1] Q. Ji, J. Moughames et al. "4D Thermomechanical metamaterials for soft microrobotics." *Communications Materials* 2, (2021). [2] M. Bodaghi, R. Noroozi, A. Zolfagharian et al. "4D Printing self-morphing structures", Materials (2019).