EL2320 - Introduction to Estimation from Measurement

John Folkesson

Introduction to Estimation (Chap 1-2 in Thrun)

What is Estimation

- Get an imperfect numerical value to describe of some part of the world.
- We actually estimate all the time:
 - time
 - temperature
 - distance
- Here we will generate estimates based on sensor measurements.
- Dealing with the uncertainty (noise) "correctly" is the focus of this course.

Estimate Uncertainty

- We often include estimates of the uncertainty along with the number we estimate: bounds, confidence measure, variance
 ...
- Sources of uncertainty:
- measurement error, sample variation, disturbances, noise.
- algorithmic error, that is error in how we estimate or model the problem.
- There can even be errors in our estimates of our uncertainty, or error in our estimated error.

Statistical Inference aka Induction

- Inference = Draw logical conclusions.
- Statistical = Numerical data (typically containing random variations).
- Try to understand the process and the estimation errors.
- Build a 'Stocastic Model' of the process.
- Build an 'Estimator' based on the model.
- Hopefully: Prove the estimator is unbiased and optimal.

Probability Theory - Discrete Random Variable

Let X be a discrete random variable:

- X can only take discrete values (e.g. heads or tails)
- P(X = x) denotes the probability of X being x
- $0 \le P(X = x) \le 1$.
- $\bullet \ \sum_{x} P(X=x) = 1$
- often write P(X = x) as simply P(x): read Probability of x.
- P(x|z): read Probability of x given z.
 Which actually means: probability that random variable X is equal to x if we know for certain that random varible Z is equal to z.

Let X be a continuous random variable:

- X can take any value in [a,b] often $(-\infty,\infty)$
- (Cumulative) Distribution function: $F(x) = P(X \le x)$
- F(a) = 0
- F(b) = 1
- Probability density function (pdf): $p(x) = \frac{dF(x)}{dx}$

Probability Theory - Expectation Values

Expectation value of X:

$$E[X] = \bar{x} = \sum_{x} xP(X = x)$$

Or for continuous pdf's: $E[X] = \int_{-\infty}^{\infty} xp(x)dx$

For scalar X variance:

$$\sigma^{2} = E[(x - \bar{x})^{2}]$$

$$\sigma^{2} = \int_{-\infty}^{\infty} (x - \int_{-\infty}^{\infty} x' p(x') dx')^{2} p(x) dx$$

$$\sigma^{2} = E[x^{2}] - \bar{x}^{2} \text{ (show this)}$$

• The variance is nonnegative

Write answers

We read 20° C on a calibrated digital thermometer displaying to degrees while its actual temperature sensor is accurate to hundredths of a degree. If the true temperature is denoted by T then what is:

- **1** $P(T \le 20.0 | read 20) = ?$
- 2 $P(T \ge 19.5 | read20) = ?$
- **3** $P(T \le 19.75 | read20) = ?$
- P(T = 20.0 | read20) = ?
- **5** E(T|read20) = ?
- \odot variance of T?
 - Write out answers as best as you can. (3 min.)

Let X and Y be two random variables

• Joint distribution function: $F(x, y) = P((X \le x) \cap (Y \le y))$

- Joint pdf: $p(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y}$
- $F(x) = F(x, \infty)$
- Marginalization: $p(x) = \int_{-\infty}^{\infty} p(x, y) dy$
- Marginalization: $p(x) = \int_{-\infty}^{\infty} p(x, y) dy$

- Conditional probability: p(x|y)p(y) = p(x, y)
- $p(x|y) = \frac{p(x,y)}{p(y)}$ so long as p(y) > 0
- what is p(x|y) when p(y) = 0?
- Theorem of total probability:
 - Discrete: $P(x) = \sum_{y} P(x|y)P(y)$
 - Continous: $p(x) = \int_{-\infty}^{\infty} p(x|y)p(y)dy$

P(X,Y)	X=1	X=2
Y=1	.1	.5
Y=2	.3	.1

What is P(X = 1)? (hint marginalize out the Y) What is P(Y = 1|X = 2)?

- p(x, y) = p(x|y)p(y) = p(y|x)p(x)
- Bayes rule:
 - Discrete: $P(x|y) = \frac{P(y|x)P(x)}{P(y)}$
 - Continous: $p(x|y) = \frac{p(y|x)p(x)}{p(y)}$
- so long as p(y) > 0
- we say x and y are independent of one another if:

$$p(x|y) = p(x) \Leftrightarrow p(x,y) = p(y)p(x) \Leftrightarrow p(y|x) = p(y)$$

P(X,Y)	X=1	X=2
Y=1	.1	.5
Y=2	.3	.1

Are X and Y independent?

Are X and Y independent?

Probability Theory - Covariance and Correleation

- $C_{xy} = E[(x \bar{x})(y \bar{y})]$ is called the covariance of X and Y.
- $E[xy] \bar{x}\bar{y}$ is related to the correlation coefficient of X and Y (divide by $\sigma_X\sigma_Y$.
- X and Y said to be uncorrelated if $< E[xy] = \bar{x}\bar{y}$. which implies $C_{xy} = 0$.
- For vectors x covariance matrix: $\Sigma = E[(\mathbf{x} \overline{\mathbf{x}})(\mathbf{x} \overline{\mathbf{x}})^T]$ is positive semidefinate, (Eigenvalues $\lambda \geq 0$).

$$C_{xy} = E[(x - \bar{x})(y - \bar{y})]$$
 is called the covariance of X and Y .

P(X,Y)	X=1	X=2
Y=1	.1	.5
Y=2	.3	.1

What is the covariance of X and Y? Are they correlated?

Law of Large Numbers

The average of a series of n unbiased measurements of a value x

$$\mu_n = \frac{1}{n} \sum_{1}^{n} z_n$$
 will approach x as.

$$\lim_{n\to\infty}\mu_n=x$$

 μ_n is a random variable so we need to be a bit careful with the limit. There are two ways to do limits of random variables leading to the Weak and strong versions of the law.

Weak:
$$\lim_{n\to\infty} P(|\mu_n - x| < \epsilon) = 1$$

Strong:
$$P(\lim_{n\to\infty}\mu_n=x)=1$$

The Gaussian Distribution

Carl Friedrich Gauss invented the normal distribution in 1809 to help explain the method of least squares.

The scalar X is a Gaussian or normal variable if its pdf is of the form:

$$p(x) = G(x, \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 (Laplace figured out the $\frac{1}{\sqrt{2\pi\sigma^2}}$)

where the mean of X is

$$\mu = E[x] = \bar{x}$$

and the variance of X is $\sigma^2 = E[(x - \bar{x})^2]$

We say X is
$$N(\mu, \sigma^2)$$
 or $x \sim N(\mu, \sigma^2)$

The Gaussian Distribution

Carl Friedrich Gauss invented the normal distribution in 1809 to help explain the method of least squares.

The scalar X is a Gaussian or normal variable if its pdf is of the form:

$$p(x) = G(x, \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 (Laplace figured out the $\frac{1}{\sqrt{2\pi\sigma^2}}$)

where the mean of X is

$$\mu = E[x] = \bar{x}$$

and the variance of X is $\sigma^2 = E[(x - \bar{x})^2]$

We say X is
$$N(\mu, \sigma^2)$$
 or $x \sim N(\mu, \sigma^2)$

Central Limit Theorem

Let z_1, z_2, \dots, z_n be a sequence of n independent and identically distributed random variables.

Let x be the distribution's mean and q > 0 its variance.

The central limit theorem states that as the sample size n increases the distribution of the sample average of these random variables approaches the normal distribution with a mean x and variance q/n irrespective of the shape of the common distribution.

Our first estimation algortihm:

$$\bar{z}_n = \frac{\sum z_i}{n} = \frac{\bar{z}_{n-1}(n-1) + z_n}{n}$$

$$\sigma_n^2 = q/n = \sigma_{n-1}^2(n-1)/n.$$

CLT

a SICK example.