IE501 Project Report Conditional Downturn based Portfolio Optimisation

Group 6 IIT Bombay

November 25, 2024

Teammate Name	Roll Number
Praveen	22b3931
Shaheem Basheer	22b0446
Harsh Raj	210100068
Poras Sanjay Kolgane	17D170014

Contents

1	Problem Statement			
2	2 Problem Description			
3	Setup for Formulation			
	3.1 Definitions and Key Concepts			
	3.2 Three ways to estimate risk			
	3.2.1 Average Dip			
	3.2.2 Maximum Dip			
	3.2.3 Conditioned Dip function			
	3.3 Portfolio Returns and Historical Data			
	3.4 Constraints			
	3.5 Optimization Formulation			
4	Code Implementation 4.1 Link to the Notebook			
5	Results on 10 Stocks data for Last 10 years			

1 Problem Statement

Optimising Portfolio return using **Dips** in Return function to measure the risk, especially over the long term. We contrast this with **Conditional Value at Risk (CVaR)** [1]. , which accounts only for net loss

2 Problem Description

	Using net loss for Risk	Using Dips in return	
Time Horizon	Short-term	Long-term	
Focus	Potential losses beyond a	Maximum potential loss dur-	
	given percentile in a short	ing a downturn over a longer	
	period	period	
Risk Interpreta-	Assesses the potential for	Provides insights into the	
tion	extreme losses in a short	drawdown and potential re-	
	term	covery over a longer term	

Table 1: Comparison of Basic and Dips based modelling approach

Figure 1: Normal vs Dips based modelling

Stock	AAPL	AMZN	GOOGL	MSFT
Non Dip Tolerant Model	0.015	5.55e-17	0.0000	0.9
Drops/Dips-Conscious Model	0.498363	0.0000	0.0000	0.501637

Table 2: Comparison of Weights for Drops/Dips-Conscious and Non-Tolerant Models

Example Consider a cryptocurrency portfolio that peaks at \$10,000, then falls to \$5,000, and eventually recovers to \$7,000. In this case, the loss and drawdown can be calculated as follows:

Loss =
$$10,000 - 7,000 = 3,000$$

Drawdown = $10,000 - 5,000 = 5,000$

3 Setup for Formulation

3.1 Definitions and Key Concepts

Term	Definition
w(x,t)	Uncompounded portfolio return at time t
$x = (x_1, x_2, \dots, x_m)$	Portfolio vector: Weights of m instruments in the portfolio
$D(x,t) = \max\{w(x,t)\} - w(x,t)$	Dip function
N	Number of time sub-periods in the time interval $[0, T]$
$\alpha \in [0,1]$	Confidence level

Table 3: Definitions of terms

3.2 Three ways to estimate risk

We define the key risk measures used for portfolio optimization as follows:

3.2.1 Average Dip

$$A(x) = \frac{1}{N} \sum_{t=1}^{N} D(x, t).$$

The average drawdown is the mean of all drawdowns over the time interval.

3.2.2 Maximum Dip

$$M(x) = \max\{D(x, t) : t \in [0, T]\}.$$

The maximum drawdown is the largest observed drawdown in the portfolio over the given time horizon.

3.2.3 Conditioned Dip function

$$\Delta_{\alpha}(x) = \frac{1}{(1-\alpha)N} \sum_{t \in Q} D(x,t)$$

where:

$$Q = \{t \in [0, T] : D(x, t) > L\}.$$

Here, L is the threshold for drawdowns at the confidence level α . When $\alpha \to 1$, This function approximates the maximum drawdown: $\Delta_1(x) = M(x)$. When $\alpha = 0$, it coincides with the average drawdown: $\Delta_0(x) = A(x)$.

3.3 Portfolio Returns and Historical Data

Portfolio returns and their relationship to historical data are defined as:

- $y_j(t) = \sum_{k=1}^t r_j(k)$: Cumulative return of the j-th instrument up to time t
- $y(t) = (y_1(t), y_2(t), \dots, y_m(t))$: Return vector at time t
- $w(x,t) = \sum_{i=1}^{m} y_i(t)x_i$: Cumulative portfolio return at time t.

3.4 Constraints

The optimization problem is subject to the following constraints:

$$\frac{1}{(1-\alpha)N} \sum_{k=1}^{N} \left[\max_{w(x,j)} \{ y_j \cdot x \} - w(x,k) - L \right]^+ + L \le \nu C \tag{1}$$

where:

- L: Variable defining the threshold for Dips to consider
- ν : Allowable Fraction of capital for loss
- C: Total capital invested

• $[g]^+ = \max\{g, 0\}$: ReLU funtion

Additionally, the allocation weights x are bounded:

$$x_{\min} \le x_i \le x_{\max}, \quad \sum_{i=1}^{m} x_i = 1.$$

3.5 Optimization Formulation

The optimization problem is formulated as:

$$\max_{x} w(x, N) = \max_{x} \sum_{i=1}^{m} y_i(N)x_i$$

Subject to the constraint (1) and the allocation bounds, this is reformulated as a linear program (LP):

$$\max_{x,L,u_k,z_k} \sum_{i=1}^m y_i(N)x_i$$

subject to:

$$\begin{split} &\frac{1}{(1-\alpha)N}\sum_{k=1}^N z_k + L \leq \nu C,\\ &z_k \geq u_k - y_k \cdot x - L, \quad z_k \geq 0, \quad 1 \leq k \leq N,\\ &u_k \geq y_k \cdot x, \quad u_k \geq u_{k-1}, \quad u_0 = 0, \quad 1 \leq k \leq N,\\ &x_{\min} \leq x_i \leq x_{\max}, \quad 1 \leq i \leq m. \end{split}$$

4 Code Implementation

```
1 # Decision variables
2 x = cp.Variable(m)
3 z = cp.Variable(N, nonneg=True)
4 u = cp.Variable(N)
5 L = cp.Variable()
7 # Constraints
8 constraints = []
10 # Constraint: L + (1 / (1-alpha)N) * sum(z) \le v * C
11 constraints.append(L + (1 / ((1 - alpha) * N)) * cp.sum(z) \leftarrow v * C)
_{13} # Constraints for z and u
14 for k in range(N):
      constraints.append(z[k] >= u[k] - cp.sum(cp.multiply(y[k], x)) - L)
15
      constraints.append(z[k] >= 0)
16
      constraints.append(u[k] >= cp.sum(cp.multiply(y[k], x)))
          constraints.append(u[k] >= u[k - 1])
21 constraints.append(u[0] == 0)
```

```
# New constraint: Sum of elements of x must equal 1
constraints.append(cp.sum(x) == 1)

## Constraints for bounds on portfolio weights
constraints.append(x[i] >= x_min[i])
constraints.append(x[i] <= x_max[i])

## Objective function: Maximize portfolio return
cobjective = cp.Maximize(cp.sum(cp.multiply(y[-1], x)))

## Problem definition and solving
problem = cp.Problem(objective, constraints)
problem.solve()

## Results
optimal_weights = x.value</pre>
```

4.1 Link to the Notebook

https://drive.google.com/file/d/1xOc8Pw0Y4fb62EW77hjxpEZobpbWjhaT/view?usp=sharing

5 Results on 10 Stocks data for Last 10 years

Instrument	Weight
AAPL	0.0468
MSFT	0.0006
GOOGL	0.0006
AMZN	0.0005
TSLA	0.0005
META	0.0013
NVDA	0.4990
JPM	0.4490
UNH	0.0008
V	0.0008

Table 4: Optimal Weights for Each Instrument

Figure 2: Returns of 10 Instruments

Figure 3: Cumulative return using Dip based formulation

References

[1] Jakob Kisiala. Conditional value-at-risk: Theory and applications, 2015.