Homework 5 Due: Friday, February 24

- 1. [SS]2.15. (HINT: You will need to use the fact that, away from $0, z \mapsto \frac{1}{\bar{z}}$ is continuous; so z and z_0 are close if and only if $\frac{1}{\bar{z}}$ and $\frac{1}{\bar{z}_0}$ are close.)
- 2. Consider the function

$$f(z) = \frac{2z - 3}{z^2 - 4}.$$

- (a) Find the residue res(f;2). (HINT: Try and expand f(z) in terms of powers of (z-2).)
- (b) Find the residue res(f; -2).
- (c) Let $C = C_5(0)$, the circle of radius 5 centered at the origin. What is

$$\int_C f(z) \, dz?$$

- (d) Find a partial fraction decomposition for f(z).
- (e) Use your partial fraction decomposition to recompute $\int_C f(z) dz$.

Parts (c) and (e) require the Cauchy residue formula, which will be covered in class on Monday, 2/20.

- 3. Suppose f and g are analytic at z_0 , and that $f(z_0) \neq 0$; $g(z_0) = 0$; $g'(z_0) \neq 0$.
 - (a) What is the order of the pole of $\frac{f(z)}{g(z)}$ at z_0 ?
 - (b) Show that

$$\operatorname{res}(\frac{f(z)}{g(z)}; z_0) = \frac{f(z_0)}{g'(z_0)}.$$

(HINT: *Write* $g(z) = (z - z_0)h(z)...$)

4. Read both of the following problems, and do one of them.

A In class, we said that f(z) has a zero of order $n \ge 0$ at z_0 if there is some function g(z), holomorphic and nonvanishing on a neighborhood of z_0 , such that

$$f(z) = (z - z_0)^n g(z)$$

(on that neighborhood). More generally, if f(z) is holomorphic on some deleted neighborhood of z_0 , we will say that f(z) has a zero of order $n = \operatorname{ord}_{z_0} f(z)$ at z_0 (with n positive or negative!) if there is a function g(z), holomorphic and nonvanishing on a neighborhood of z_0 , such that

$$f(z) = (z - z_0)^n g(z)$$

on a deleted neighborhood of z_0 . (Thus, $\operatorname{ord}_{z_0} \frac{1}{(z-z_0)^3} = -3$.)

Suppose f and h have orders $m = \operatorname{ord}_{z_0}(f)$ and $n = \operatorname{ord}_{z_0}(h)$ at z_0 .

- (a) What is $\operatorname{ord}_{z_0}(fh)$?
- (b) How is $\operatorname{ord}_{z_0}(f+h)$ related to m and n?
- B (a) [SS]3.1.
 - (b) Check your work using (3).