Disjoint Sets and Union Find

Disjoint sets as a data structure, representation of disjoint sets, operations on disjoint sets, and the complexity of those operations

Connor Baker

Disjoint Sets and Union Find (Part 1)

Review: Sets

- Set: a collection of distinct objects
 - No duplicates
 - Order does not matter
- Set operations
 - Intersection, union, complement, etc.
- Set relationships
 - Subset (proper subset), superset (proper superset)
 - Testing for the property of being disjoint

Example

- Consider the following sets:
 - $-A = \{1, 2\}$
 - $B = \{3, 4\}$
 - $-C = \{8, 1\}$
- What is $A \cup B$?
 - $A \cup B = \{1, 2, 3, 4\}$
- What is $A \cap C$?
 - $A \cap C = \{1\}$
- Which sets are disjoint?
 - $A \cap B = \emptyset$
 - $B \cap C = \emptyset$
 - $A \cap C = \{1\}$
 - So sets A and B are disjoint and sets B and C are disjoint

Disjoint Sets

- A new data structure (hurrah!)
- A collection of n sets in which any two contain no common elements

Connor Baker 1 of 10

- Written formally:

$$(\forall i,j \in \{1 \dots n\} \land i \neq j) (A_i \cap A_j = \emptyset)$$

- · Basic operations:
 - Find: given an element, return the set it belongs to
 - * Note, it can belong to at most one set
 - Union: merge two sets into one
 - * Note: the union of two disjoint sets is still pairwise disjoint with all other sets, excluding the components of the union

Disjoint Sets Example

- Consider the following sets:
 - $A = \{1, 2\}$
 - $-B = \{3,4\}$
 - $C = \{8\}$
- Example operations:
 - find(2) = A
 - $union(a, b) = union(a, b) = \{1, 2, 8\}$
 - * Take the union of the two sets A and B such that $a \in A$ and $b \in B$
 - * After the union, find(2) = find(8)
 - * After the union, there are only two sets in the collection: $A \cup B$ and C

Disjoing Sets: Union Find

- Disjoint Set: a collection of sets that are all disjoint
 - How can we represent this data structure?
 - * Possibly with a tree?
 - Note the special features of this structure:
 - * The union of all sets remains the same
 - * The intersection of any two sets is always empty
- We only need to support two operations on this structure
 - find() how could we implement this function?
 - union() how could we implement this function?
- · Quick find approach
- · Quick union approach

Connor Baker 2 of 10

Simple Solution: Set of Sets

- Organize the collection as a set of sets
- Each set is implemented using a normal set data structure, like a hash set, a binary search tree, etc.
- · Operations:
 - find(T t): search for t in every set
 - union(T a, T b): assume that $a \in A$ and $b \in B$; add everything in B to A and discard B
- Do we really need a hash set or a binary search tree for find or union?

Quick Find Approach

- Number each item from 0 to n-1
- Maintain an array of n elements
 - Store the set that element i belongs to in arr[i]
- The complexity of find is trivial and O(1)
- What's the complexity of union?

item @ i	0	1	2	3
arr[i]	A	B	C	A

- Corresponds to the disjoint sets $A = \{0, 3\}, B = \{1\}, \text{ and } C = \{2\}$
- As an example, suppose that $i \in A$ and $j \in B$, with $A \neq B$
 - Find all items in B, change ownership to A, and remove B
 - What's the complexity of this example?
 - * O(n)
- After union (0, 1): $A = \{0, 3, 1\}, C = \{2\}$, and B does not exist

Connor Baker 3 of 10

Quick-Find: Union

- The complexity of a single union is O(n)
- How many unions do we need for situations like maze generation
 - n-1, total time complexity is $O(n^2)$
- Can we improve the efficiency of the union if find isn't a concern?
 - Elements of the same set in one linked list?
 - Elements of the same set in one tree?

Quick Union with Trees

- Keep all elements of the same set in one tree
 - Represent the set with the tree root
- We continue to number each item 0 to n-1 and maintain an array of n elements
 - Store the parent of element i in arr[i]
 - If element *i* is the root, arr[i] = -1
 - find(i) returns the root of the tree that i belongs to
- As an example, consider the following collection of eight disjoint sets: $\{0\}, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{7\}$
 - We would represent this as a forest of eight trees, each containing only a root
 - Then find(i) = i
 - The array representation would be

i	arr[i]
0	-1
1	-1
2	-1
3	-1
4	-1
5	-1
6	-1
7	-1

Connor Baker 4 of 10

Tree Representation

- Union: merge two trees
 - (Naive) union (r_1,r_2) : Let r_1 and r_2 be the roots of two trees; add r_2 , as a child, to r_1 then r_1 is the new root of the merged tree
 - union(i,j): for any element i and j, is equivalent to union (r_1,r_2)
- Find: walk up the tree until the root is reached and report the ID of the root

Tree: Union-Find Example

Here, we use the same collection of eight disjoint sets that we used in Quick Union with Trees.

- union(4,5)
 - Graphical representation:

Figure 1: Tree representation of disjoint sets after performing union (4,5)

- Tabular representation:

i	arr[i]
0	-1
1	-1
2	-1
3	-1
4	-1
5	4
6	-1
7	-1

- union(6,7)
 - Graphical representation:

Connor Baker 5 of 10

Figure 2: Tree representation of disjoint sets after performing union (6,7)

- Tabular representation:

i	arr[i]
0	-1
1	-1
2	-1
3	-1
4	-1
5	4
6	-1
7	6

- $\bullet \ \operatorname{union}(4,7)$
 - Graphical representation:

Figure 3: Tree representation of disjoint sets after performing union (4,7)

- Tabular representation:

i	arr[i]
0	-1
1	-1
2	-1

Connor Baker 6 of 10

i	arr[i]
3	-1
4	-1
5	4
6	4
7	6

Practice One

• Start with 10 one-element sets (so 10 single-node trees)

0	1	2	3	4	5	6	7	8	9
-1	-1	-1	-1	-1	-1	-1	-1	-1	-1

- Try union(1,2), union(8,6), find(6), and find(1)
- Then try union(8,7), union(2,4), union(3,6), and find(6)
- Draw the trees and fill the table

Practice Two

• Start with 10 one-element sets (so 10 single-node trees)

0	1	2	3	4	5	6	7	8	9
-1	-1	-1	-1	-1	-1	-1	-1	-1	-1

- Try union(1,2), union(3,1), union(5,2), and union(6,3)
- Draw the trees and fill the table

Complexity

• find

Connor Baker 7 of 10

- Walk backwards until the root is encountered
- So it's O(height)
- Worst case is then O(n)
- union
 - $\,O(1)$ if the root is already known
 - O(n) including the time to find the root
- How can we improve the efficiency of these methods?

Complexity As of Now

ullet Worst case scenarios with n initial sets

Approach	Union	Find
Set of sets	O(n)	O(n)
Quick find	O(n)	O(1)
Tree (naive)	$O(1)^*$	O(n)

• *: if the roots are given; if the roots are not given, then O(n) time since we must find the root

Improved Union

- Idea: we can do union-by-rank
 - Attach the smaller tree to the bigger one (union-by-size)
 - * Break the tie by using the root of the first element as the new root
 - Avoid constructing tall trees

Connor Baker 8 of 10

Figure 4: Union by rank example

- arr[i] representation:
 - Case where (≥ 0) : parent of element of i
 - Case where (<0): element i is the root of the tree and the size of the tree is abs (arr[i])

Figure 5: The forest formed by union-by-size, with the sizes encoded as negative numbers

Practice Three

• Start with 10 one-element sets (so 10 single-node trees)

0	1	2	3	4	5	6	7	8	9
-1	-1	-1	-1	-1	-1	-1	-1	-1	-1

- Using union-by-size, try $\mathsf{union}(1,2)$, $\mathsf{union}(3,1)$, $\mathsf{union}(5,2)$, and $\mathsf{union}(6,3)$
- Draw the trees and fill the table

Connor Baker 9 of 10

Complexity Revisited

 $\bullet \ \ \text{Worst case scenarios with } n \ \text{initial sets} \\$

Approach	Union	Find
Set of sets	O(n)	O(n)
Quick find	O(n)	O(1)
Tree (naive)	$O(n)^*$	O(n)
Tree (rank union and naive find)	$O(\log(n))^*$	$O(\log(n))$

- *: includes time to find the root; it's ${\cal O}(1)$ if the roots are given

Connor Baker 10 of 10