# Algoritmos de consenso y Forks



Alejandro Narancio ale.narancio@gmail.com @anarancio

## Algoritmos de consenso - Que intentan resolver?

En un sistema distribuido donde múltiples nodos operan independientemente

## Algoritmos de consenso - Que intentan resolver?

En un sistema distribuido donde múltiples nodos operan independientemente

Cómo aseguramos que todos los nodos tengan la misma información?

## Algoritmos de consenso - Que intentan resolver?

En un sistema distribuido donde múltiples nodos operan independientemente

Cómo aseguramos que todos los nodos tengan la misma información?

Cómo determinamos qué transacciones son válidas?

## Algoritmos de consenso - Que intentan resolver?

En un sistema distribuido donde múltiples nodos operan independientemente

| Cómo aseguramos que todos los nodos tengan la misma información? |
|------------------------------------------------------------------|
| Cómo determinamos qué transacciones son válidas?                 |
| Cómo evitamos el doble gasto sin una autoridad central?          |

## Algoritmos de consenso - Que intentan resolver?

En un sistema distribuido donde múltiples nodos operan independientemente

| Cómo aseguramos que todos los nodos tengan la misma información? |
|------------------------------------------------------------------|
| Cómo determinamos qué transacciones son válidas?                 |
| Cómo evitamos el doble gasto sin una autoridad central?          |
| Cómo protegemos el sistema contra ataques?                       |

## Byzantine Generals' Problem

#### Quien lo definió?

Leslie Lamport, Robert Shostak y Marshall Pease en 1982

### Byzantine Generals' Problem

#### Quien lo definió?

Leslie Lamport, Robert Shostak y Marshall Pease en 1982

#### Que ilustra?

Ilustra el problema al que se enfrenta un sistema distribuido para alcanzar un consenso cuando la comunicación no es confiable y algunos actores pueden tener errores o ser mal intencionados (maliciosos)

## Byzantine Generals' Problem

#### Quien lo definió?

Leslie Lamport, Robert Shostak y Marshall Pease en 1982

#### Que ilustra?

Ilustra el problema al que se enfrenta un sistema distribuido para alcanzar un consenso cuando la comunicación no es confiable y algunos actores pueden tener errores o ser mal intencionados (maliciosos)

#### Como se ilustra el problema?

Varios generales deben coordinar un ataque a una ciudad, pero solo pueden comunicarse por mensajeros que podrían ser interceptados o corruptos. A su vez algunos generales pueden ser traidores que envian mensajes contradictorios para sabotear el plan.

## Byzantine Generals' Problem

#### Quien lo definió?

Leslie Lamport, Robert Shostak y Marshall Pease en 1982

#### Que ilustra?

Ilustra el problema al que se enfrenta un sistema distribuido para alcanzar un consenso cuando la comunicación no es confiable y algunos actores pueden tener errores o ser mal intencionados (maliciosos)

#### Como se ilustra el problema?

Varios generales deben coordinar un ataque a una ciudad, pero solo pueden comunicarse por mensajeros que podrían ser interceptados o corruptos. A su vez algunos generales pueden ser traidores que envian mensajes contradictorios para sabotear el plan.

#### Cual es el desafío?

Cómo pueden los generales leales, decidir si atacan o no?

## PBFT (Practical Byzantine Fault Tolerance)

#### Quien lo definió?

Miguel Castro y Barbara Liskov en 1999

## PBFT (Practical Byzantine Fault Tolerance) - requisitos

#### Número mínimo de nodos

Para tolerar f nodos con errores o maliciosos se requieren 3f + 1 nodos. Es decir para tolerar 1 nodo malicioso se requieren 4 nodos, para tolerar 2 se requieren 7, etc.

## PBFT (Practical Byzantine Fault Tolerance) - requisitos

#### Número mínimo de nodos

Para tolerar f nodos con errores o maliciosos se requieren 3f + 1 nodos. Es decir para tolerar 1 nodo malicioso se requieren 4 nodos, para tolerar 2 se requieren 7, etc.

#### **Autenticación**

Todos los mensajes deben estar firmados digitalmente para garantizar su autenticidad.

## PBFT (Practical Byzantine Fault Tolerance) - requisitos

#### Número mínimo de nodos

Para tolerar f nodos con errores o maliciosos se requieren 3f + 1 nodos. Es decir para tolerar 1 nodo malicioso se requieren 4 nodos, para tolerar 2 se requieren 7, etc.

#### **Autenticación**

Todos los mensajes deben estar firmados digitalmente para garantizar su autenticidad.

#### Red asincrona

El algoritmo puede manejar retrasos en la red, pero asume que los mensajes eventualmente llegarán.

## PBFT (Practical Byzantine Fault Tolerance) - Funcionamiento

#### **REQUEST**

Cliente envía una solicitud al nodo primario



## PBFT (Practical Byzantine Fault Tolerance) - Funcionamiento

PRE-PREPARE



## PBFT (Practical Byzantine Fault Tolerance) - Funcionamiento

#### **PREPARE**

Si la verificación es exitosa, cada réplica acepta el mensaje PRE-PREPARE y difunde un mensaje PREPARE a todas las demás réplicas.

Fase 3: PREPARE (Preparación)



- 1. Cada réplica difunde (PREPARE, v, n, d, i)σi a todas las demás réplicas
- 2. Cada réplica recolecta mensajes PREPARE de otras réplicas
- 3. Una réplica está en estado "prepared" cuando tiene:
- 1 PRE-PREPARE válido + 2f mensajes PREPARE (de diferentes réplicas)

## PBFT (Practical Byzantine Fault Tolerance) - Funcionamiento

#### COMMIT

Cuando una réplica alcanza el estado "prepared", difunde un mensaje COMMIT a todas las demás réplicas.



## PBFT (Practical Byzantine Fault Tolerance) - Funcionamiento

#### **REPLY**

Cuando una réplica alcanza el estado "committed", ejecuta la operación solicitada por el cliente.

Fase 5: REPLY (Respuesta)



- 1. Cuando una réplica está "committed", ejecuta la operación solicitada
- 2. Envía 〈REPLY, v, t, c, i, r〉σi al cliente (r: resultado de la operación)
- 3. El cliente espera f+1 respuestas REPLY idénticas de diferentes réplicas
- 4. Esto garantiza que al menos una réplica honesta ha confirmado el resultado

### Algoritmos de consenso - Proof of Work (PoW)

Este es el algoritmo original implementado por Bitcoin

### Algoritmos de consenso - Proof of Work (PoW)

Este es el algoritmo original implementado por Bitcoin

Mineros compiten para resolver un problema matemático complejo

### Algoritmos de consenso - Proof of Work (PoW)

Este es el algoritmo original implementado por Bitcoin

Mineros compiten para resolver un problema matemático complejo

El primer minero en resolver el problema obtiene el derecho de añadir un nuevo bloque

## Algoritmos de consenso - Proof of Work (PoW)

Este es el algoritmo original implementado por Bitcoin

Mineros compiten para resolver un problema matemático complejo

El primer minero en resolver el problema obtiene el derecho de añadir un nuevo bloque

La seguridad se basa en el poder computacional: para atacar la red, un adversario necesitaría más del 50% del poder de cómputo total

## Algoritmos de consenso - Proof of Work (PoW)

Este es el algoritmo original implementado por Bitcoin

Mineros compiten para resolver un problema matemático complejo

El primer minero en resolver el problema obtiene el derecho de añadir un nuevo bloque

La seguridad se basa en el poder computacional: para atacar la red, un adversario necesitaría más del 50% del poder de cómputo total

#### Ventajas

Alta seguridad probada a lo largo del tiempo

## Algoritmos de consenso - Proof of Work (PoW)

Este es el algoritmo original implementado por Bitcoin

Mineros compiten para resolver un problema matemático complejo

El primer minero en resolver el problema obtiene el derecho de añadir un nuevo bloque

La seguridad se basa en el poder computacional: para atacar la red, un adversario necesitaría más del 50% del poder de cómputo total

#### Ventajas

Alta seguridad probada a lo largo del tiempo

Sistema descentralizado sin puntos únicos de falla

## Algoritmos de consenso - Proof of Work (PoW)

Este es el algoritmo original implementado por Bitcoin

Mineros compiten para resolver un problema matemático complejo

El primer minero en resolver el problema obtiene el derecho de añadir un nuevo bloque

La seguridad se basa en el poder computacional: para atacar la red, un adversario necesitaría más del 50% del poder de cómputo total

#### Ventajas

Alta seguridad probada a lo largo del tiempo

Sistema descentralizado sin puntos únicos de falla

#### **Desventajas**

Consumo energético alto

## Algoritmos de consenso - Proof of Work (PoW)

Este es el algoritmo original implementado por Bitcoin

Mineros compiten para resolver un problema matemático complejo

El primer minero en resolver el problema obtiene el derecho de añadir un nuevo bloque

La seguridad se basa en el poder computacional: para atacar la red, un adversario necesitaría más del 50% del poder de cómputo total

#### Ventajas

Alta seguridad probada a lo largo del tiempo

Sistema descentralizado sin puntos únicos de falla

#### **Desventajas**

Consumo energético alto

Baja escalabilidad (10-20 transacciones por segundo en Bitcoin)

## Algoritmos de consenso - Proof of Work (PoW)

Este es el algoritmo original implementado por Bitcoin

Mineros compiten para resolver un problema matemático complejo

El primer minero en resolver el problema obtiene el derecho de añadir un nuevo bloque

La seguridad se basa en el poder computacional: para atacar la red, un adversario necesitaría más del 50% del poder de cómputo total

#### **Ventajas**

Alta seguridad probada a lo largo del tiempo

Sistema descentralizado sin puntos únicos de falla

#### **Desventajas**

Consumo energético alto

Baja escalabilidad (10-20 transacciones por segundo en Bitcoin)

Tendencia a la centralización debido a economías de escala en minería

## Algoritmos de consenso - Proof of Stake (PoS)

Los validadores apuestan ("stake") sus propias criptomonedas

## Algoritmos de consenso - Proof of Stake (PoS)

Los validadores apuestan ("stake") sus propias criptomonedas

La probabilidad de ser elegido para validar un bloque es proporcional a la cantidad apostada

## Algoritmos de consenso - Proof of Stake (PoS)

Los validadores apuestan ("stake") sus propias criptomonedas

La probabilidad de ser elegido para validar un bloque es proporcional a la cantidad apostada

Los validadores deshonestos pierden parte o la totalidad de sus fondos apostados

## Algoritmos de consenso - Proof of Stake (PoS)

Los validadores apuestan ("stake") sus propias criptomonedas

La probabilidad de ser elegido para validar un bloque es proporcional a la cantidad apostada

Los validadores deshonestos pierden parte o la totalidad de sus fondos apostados

#### **Ventajas**

Consumo energético mucho menor que PoW

## Algoritmos de consenso - Proof of Stake (PoS)

Los validadores apuestan ("stake") sus propias criptomonedas

La probabilidad de ser elegido para validar un bloque es proporcional a la cantidad apostada

Los validadores deshonestos pierden parte o la totalidad de sus fondos apostados

#### **Ventajas**

Consumo energético mucho menor que PoW

Mayor escalabilidad potencial

## Algoritmos de consenso - Proof of Stake (PoS)

Los validadores apuestan ("stake") sus propias criptomonedas

La probabilidad de ser elegido para validar un bloque es proporcional a la cantidad apostada

Los validadores deshonestos pierden parte o la totalidad de sus fondos apostados

#### **Ventajas**

Consumo energético mucho menor que PoW

Mayor escalabilidad potencial

Barrera de entrada más baja para participar en la validación

## Algoritmos de consenso - Proof of Stake (PoS)

Los validadores apuestan ("stake") sus propias criptomonedas

La probabilidad de ser elegido para validar un bloque es proporcional a la cantidad apostada

Los validadores deshonestos pierden parte o la totalidad de sus fondos apostados

#### **Ventajas**

Consumo energético mucho menor que PoW

Mayor escalabilidad potencial

Barrera de entrada más baja para participar en la validación

#### **Desventajas**

Posible centralización por concentración de riqueza ("the rich get richer")

## Algoritmos de consenso - Proof of Stake (PoS)

Los validadores apuestan ("stake") sus propias criptomonedas

La probabilidad de ser elegido para validar un bloque es proporcional a la cantidad apostada

Los validadores deshonestos pierden parte o la totalidad de sus fondos apostados

#### **Ventajas**

Consumo energético mucho menor que PoW

Mayor escalabilidad potencial

Barrera de entrada más baja para participar en la validación

#### **Desventajas**

Posible centralización por concentración de riqueza ("the rich get richer")

Menos probado en la práctica que PoW

# Algoritmos de consenso - Delegated Proof of Stake (DPoS)

Los poseedores de tokens votan por un número limitado de delegados

# Algoritmos de consenso - Delegated Proof of Stake (DPoS)

Los poseedores de tokens votan por un número limitado de delegados

Solo estos delegados pueden validar transacciones y crear bloques

# Algoritmos de consenso - Delegated Proof of Stake (DPoS)

Los poseedores de tokens votan por un número limitado de delegados

Solo estos delegados pueden validar transacciones y crear bloques

Sistema democrático donde los delegados pueden ser reemplazados por votación

# Algoritmos de consenso - Delegated Proof of Stake (DPoS)

Los poseedores de tokens votan por un número limitado de delegados

Solo estos delegados pueden validar transacciones y crear bloques

Sistema democrático donde los delegados pueden ser reemplazados por votación

### **Ventajas**

Alta eficiencia y escalabilidad (miles de transacciones por segundo)

# Algoritmos de consenso - Delegated Proof of Stake (DPoS)

Los poseedores de tokens votan por un número limitado de delegados

Solo estos delegados pueden validar transacciones y crear bloques

Sistema democrático donde los delegados pueden ser reemplazados por votación

### **Ventajas**

Alta eficiencia y escalabilidad (miles de transacciones por segundo)

Gobierno más democrático

# Algoritmos de consenso - Delegated Proof of Stake (DPoS)

Los poseedores de tokens votan por un número limitado de delegados

Solo estos delegados pueden validar transacciones y crear bloques

Sistema democrático donde los delegados pueden ser reemplazados por votación

### Ventajas

Alta eficiencia y escalabilidad (miles de transacciones por segundo)

Gobierno más democrático

Bajo consumo energético

# Algoritmos de consenso - Delegated Proof of Stake (DPoS)

Los poseedores de tokens votan por un número limitado de delegados

Solo estos delegados pueden validar transacciones y crear bloques

Sistema democrático donde los delegados pueden ser reemplazados por votación

### Ventajas

Alta eficiencia y escalabilidad (miles de transacciones por segundo)

Gobierno más democrático

Bajo consumo energético

### **Desventajas**

Mayor centralización (típicamente solo 21-100 validadores)

# Algoritmos de consenso - Delegated Proof of Stake (DPoS)

Los poseedores de tokens votan por un número limitado de delegados

Solo estos delegados pueden validar transacciones y crear bloques

Sistema democrático donde los delegados pueden ser reemplazados por votación

### **Ventajas**

Alta eficiencia y escalabilidad (miles de transacciones por segundo)

Gobierno más democrático

Bajo consumo energético

### **Desventajas**

Mayor centralización (típicamente solo 21-100 validadores)

Posible formación de "carteles" entre delegados

### Algoritmos de consenso - Proof of Authority (PoA)

Solo nodos previamente autorizados pueden validar transacciones

### Algoritmos de consenso - Proof of Authority (PoA)

Solo nodos previamente autorizados pueden validar transacciones

La identidad de los validadores es conocida y verificada

### Algoritmos de consenso - Proof of Authority (PoA)

Solo nodos previamente autorizados pueden validar transacciones

La identidad de los validadores es conocida y verificada

Utilizada en blockchains permisionadas o privadas

### Algoritmos de consenso - Proof of Authority (PoA)

Solo nodos previamente autorizados pueden validar transacciones

La identidad de los validadores es conocida y verificada

Utilizada en blockchains permisionadas o privadas

### **Ventajas**

Extremadamente eficiente y rápido

### Algoritmos de consenso - Proof of Authority (PoA)

Solo nodos previamente autorizados pueden validar transacciones

La identidad de los validadores es conocida y verificada

Utilizada en blockchains permisionadas o privadas

### **Ventajas**

Extremadamente eficiente y rápido

Sin necesidad de tokens o incentivos económicos

### Algoritmos de consenso - Proof of Authority (PoA)

Solo nodos previamente autorizados pueden validar transacciones

La identidad de los validadores es conocida y verificada

Utilizada en blockchains permisionadas o privadas

### **Ventajas**

Extremadamente eficiente y rápido

Sin necesidad de tokens o incentivos económicos

Adecuado para casos de uso empresariales o gubernamentales

### Algoritmos de consenso - Proof of Authority (PoA)

Solo nodos previamente autorizados pueden validar transacciones

La identidad de los validadores es conocida y verificada

Utilizada en blockchains permisionadas o privadas

### **Ventajas**

Extremadamente eficiente y rápido

Sin necesidad de tokens o incentivos económicos

Adecuado para casos de uso empresariales o gubernamentales

### **Desventajas**

Altamente centralizado

### Algoritmos de consenso - Proof of Authority (PoA)

Solo nodos previamente autorizados pueden validar transacciones

La identidad de los validadores es conocida y verificada

Utilizada en blockchains permisionadas o privadas

### **Ventajas**

Extremadamente eficiente y rápido

Sin necesidad de tokens o incentivos económicos

Adecuado para casos de uso empresariales o gubernamentales

### **Desventajas**

Altamente centralizado

Requiere confianza en los validadores

## Forks - Conceptos

### Qué son?

Son bifurcaciones de la cadena activa o válida

## Forks - Conceptos

### Qué son?

Son bifurcaciones de la cadena activa o válida

#### Cuándo ocurren?

Ocurren cuando los nodos se desincronizan, temporal o permanentemente

## Forks - Conceptos

### Qué son?

Son bifurcaciones de la cadena activa o válida

#### Cuándo ocurren?

Ocurren cuando los nodos se desincronizan, temporal o permanentemente

### Con qué frecuencia ocurren?

Temporales (o accidentales) ocurren casi constantemente, el resto se da con cambios de reglas en las reglas de consenso.

## Forks - Conceptos

## 4

#### Qué son?

Son bifurcaciones de la cadena activa o válida

#### Cuándo ocurren?

Ocurren cuando los nodos se desincronizan, temporal o permanentemente

### Con qué frecuencia ocurren?

Temporales (o accidentales) ocurren casi constantemente, el resto se da con cambios de reglas en las reglas de consenso.

### **Ejemplo**

Ejemplo de forks temporales durante proceso de minouo

## Forks - Conceptos

#### Qué son?

Son bifurcaciones de la cadena activa o válida

#### Cuándo ocurren?

Ocurren cuando los nodos se desincronizan, temporal o permanentemente

### Con qué frecuencia ocurren?

Temporales (o accidentales) ocurren casi constantemente, el resto se da con cambios de reglas en las reglas de consenso.

### Tipos

Hard fork y Soft fork