

Engineering Services

TAIWAN TRUSS 28/01/2022

www.windglaz.com

contact@windglaz.com

4 rue de Galilée, 56270 Ploemeur

Agenda

- Site data
- Wind farm layout and elements definition
- Reduce model adjustment
- TRUSS modeling
- Mooring modeling
- Pile / Pile ring interaction
- Aluminium fatigue

<u>For Numerical calibration</u> Storm events (wind/wave/tide/current)

For fatigue analysis

Wind/windir & fetch => Hs/Tp => H/T => Orcaflex => S design

TRUSS modeling

6.3 Truss assumptions

- Beam properties
 - Square 60x60
 - Isotropic inertia
 - I = 617 867 mm4
- Extremity beam section : to be discussed
- Gussets neglected
- Additional weight to be considered
 - Beam model: 200 kg
 - Input data: 320 kg (including buoy connection, gussets...)

South truss

Two models:

• cad: 3.9m

Documentation: 4.8 m

Farm modeling

Global modelling

To be added: South truss (4.8m or 3.9m) Mooring lines (characteristics to be defined)

SCOPE REMINDER

ETUDE N°002-22	Taiwan Truss fatigue analysis
DONNEES D'ENTREES	Meeting avec les équipes C&T Description du système : plans, matériaux, devis de masse
	- Description détaillée du treillis (materiaux, section, inerties)
SCOPE	Modélisation sous Orcaflex a. Truss modélisé sous formes de lignes avec connexions pour pouvoir accéder aux efforts en différents nœuds i. Recherche de caractéristiques en fatigue de l'aluminium (SN curves)
	b. Modélisation simplifiée de la ferme pour imposer des efforts/mouvements vers l'ancrage
	c. Modélisation des lignes d'ancrage entre truss et ferme
	d. Modélisation des connexions aux piliers béton 2. Sensibilité sur la construction du modèle
	a. Taille de la ferme
	b. Hypothèse concernant la connexion avec les piliers béton
	c. Efforts de vent et efforts des vagues
	Définition d'une liste de cas de charges Drise de cas des des des des des des des des des de
	a. Prise en compte des données du site et établissement d'une liste réduite b. Vagues seules et/ou Vagues + vent en fonction du point 2.c
	Vagues sedies et ou vagues vent en initiation du point 2.6 4. Simulations et résultats
	a. Simulations temporelles dans Orcaflex
	b. Calcul en fatigue en différents points du truss
	i. Endommagement ii. Durée de vie
	c. Sortie d'une base de donnée compatible S-design dans le cas vagues seules
	(si besoin de sensibilité ultérieurs sur les données de site, ou courbes SN)
LIVRABLES	- Modèles Orcaflex (.dat) de l'étude
	- Rapport d'analyse incluant la méthodologie et les résultats de l'étude
PLANNING	3 semaines
NOMBRE DE JOURS	10 jours
NOMBRE DE JOURS	To jours
DECOMPTE JOURS 2022	4 jours (Etude Ancrage alernatif avec bouées, en cours).
PRINCIPE DE TARIFICATION	Application d'un taux dégressif sur l'année
	■ 0-25 jours / an : 800 €/jour
	25-75 jours / an : 700 €/jour >75 jours / an : 650 €/jour
	Le décompte des jours est réalisé sur la base d'une année calendaire. Le décompte des jours est réalisé sur la base d'une année calendaire.
	Facturation tous les 2 mois réalisée sur un tarif moyen de 700 €HT/jour.
	 Régularisation bi-annuelle en fonction du nombre de jours consommés
	 En cas de trop perçu lors de la régularisation bi-annuelle, une régularisation sera proposée sous forme d'avoir pour les études à venir.

Engineering Services

TAIWAN TRUSS 11/02/2022

www.windglaz.com

contact@windglaz.com

4 rue de Galilée, 56270 Ploemeur

Agenda

- Site data
- Wind farm layout and elements definition
- Reduce model adjustment
- TRUSS modeling
- Mooring modeling

Water depth

• 50 % time with water depth less than draft (7 cm)

Wind speed and direction distribution

- 70% occurrence in -45° to +45° sector with 0m fetch
- 20% in back sector with 180 m fetch
- Largest fetch in south-west sector (low occurrences)

Wind direction distribution 65% Face 337.5 50% 40% 9% 30% 292.5 20% 67.5 10% Left 270 0% right 247.5 112.5 6% 202.5 157.5 180 20% back

water depth yearly distribution

Wind speed distribution

TRUSS modeling

6.3 Truss : Model update

- Vertical end bar removal
- End bracings added
- Additional weight to be considered
 - Beam model: 200 kg
 - Input data: 250 kg (including buoy connection, gussets...)
 - => material density increase

South truss

Two models:

- 3.9 m version
- Additional weight to be considered
 - Beam model: 120 kg
 - Input data: 150 kg (including buoy connection, gussets...)
 - => material density increase

Farm modeling

Difference in line spacing with 3.9m Truss

Farm modeling

- Chain: 12 mm in 316L SWL 1.7 t
- Polyester rope: selected to have 12% elongation at 12 kN (EA 100 kN) and user defined stiffness curve

Horizontal distances between farm and truss

- To be calibrated
- Tension at equilibrium in the mooring lines

Global modelling

Sling around truss assumption to be tested

- Free rotation around truss
- Line length difference

Engineering Services

TAIWAN TRUSS 18/02/2022

www.windglaz.com

contact@windglaz.com

4 rue de Galilée, 56270 Ploemeur

Agenda

- Mooring line assumption
- Farm modelling sensitivity
- Wind/waves sensitivity
- Site data and List of simulations

Global modelling

Assumption changed with a slinding winch (constant length, with dynema stiffness)

Global modelling

LSF update: 1305 mm

Maximum wind speed available in the data: 25 m/s

Use of wings on MSF buoys

Surface and drag coefficient calibrated to have

12 kN in mooring lines in extreme static wind (25m/s)

Turbulent wind time serie at 25 m/s

- Tension in mooring line directly linked to wind speed
- Very limited vertical motions in the farm
- No impact of farm vertical motions on tension applied to the truss through the mooring lines

=> Assumption to model the farm as one single buoy with free motions in x, y

Farm

- connected to a boundary free
 - X
 - Y
- Wind loads through wings element

Assumption:

- same wind load at 0° and 90° to have 12kN in fairlead (even if wind loads in Est-West conditions should be lower)
- for same reference wind speed of 25m/s

Comparison Full farm vs simplified farm

WIND ONLY

Mooring line tension (kN)

Same load level and variations
Assumption to use the simplified model

Waves behavior

Impact of hydrodynamic coefficients

• No hydrodynamic coefficients on supporting buoys

No drag and added mass

Drag Cd=1 Added mass Ca = 1 (Cm=2)

Comparison Constant wind vs Turbulent wind

- Extreme conditions
 - 25 m/s wind speed
 - Wave H=0.1 m T=1.5s
- Average conditions
 - 3 m/s wind speed
 - Wave H=0.05 m T=0.75s

stress in one truss main beam (kPa)

simplified farm constant wind Worst ZZ stresssimplified farm turbulent wind Worst ZZ stress

Time

stress in one truss main beam (kPa)

Time

Extreme Wind

Average Wind

Water depth

• 50 % time with water depth less than draft (7 cm)

Regular wave calculation as a function of

- Wind speed and direction
- Fetch

8 load directions (0 to 360° with 45° steps)

Each direction is affected one simulation direction (0°, 45° or 90°)

16 wind speed with existing waves

Each wind speed associated to several regular waves

=> Total 2423 simulations

