Chapter 6: Data Cleaning, Loops, apply functions

M Affouf

1/8/2018

part1

Data

- We will be using multiple data sets in this lecture:
 - Salary, Monument, Circulator, and Restaurant from OpenBaltimore: https: //data.baltimorecity.gov/browse?limitTo=datasets
 - ► Gap Minder very interesting way of viewing longitudinal data
 - Data is here http://www.gapminder.org/data/
 - http://spreadsheets.google.com/pub?key= rMsQHawTObBb6_U2ESjKXYw&output=xls

Data Cleaning

In general, data cleaning is a process of investigating your data for inaccuracies, or recoding it in a way that makes it more manageable.

MOST IMPORTANT RULE - LOOK AT YOUR DATA!

Again - table, summarize, is.na, any, all are useful.

Dealing with Missing Data

Missing data types

One of the most important aspects of data cleaning is missing values.

Types of "missing" data:

- ► NA general missing data
- NaN stands for "Not a Number", happens when you do 0/0.
- ► Inf and -Inf Infinity, happens when you take a positive number (or negative number) by 0.

Finding Missing data

Each missing data type has a function that returns TRUE if the data is missing:

- ▶ NA is.na
- NaN is.nan
- ▶ Inf and -Inf is.infinite
- is.finite returns FALSE for all missing data and TRUE for non-missing
- complete.cases on a data.frame/matrix returns TRUE if all values in that row of the object are not missing.

Missing Data with Logicals

One important aspect (esp with subsetting) is that logical operations return NA for NA values. Think about it, the data could be > 2 or not we don't know, so R says there is no TRUE or FALSE, so that is missing:

```
x = c(0, NA, 2, 3, 4)

x > 2
```

```
## [1] FALSE NA FALSE TRUE TRUE
```

Missing Data with Logicals

What to do? What if we want if x > 2 and x isn't NA? Don't do x != NA, do x > 2 and x is NOT NA:

```
x != NA
```

[1] NA NA NA NA NA

```
x > 2 & !is.na(x)
```

[1] FALSE FALSE FALSE TRUE TRUE

Missing Data with Logicals

What about seeing if a value is equal to multiple values? You can do $(x == 1 \mid x == 2) \& !is.na(x)$, but that is not efficient. Introduce the %in% operator:

```
(x == 0 | x == 2) # has NA
## [1] TRUE NA TRUE FALSE FALSE
(x == 0 | x == 2) \& !is.na(x) # No NA
## [1] TRUE FALSE TRUE FALSE FALSE
x %in% c(0, 2) # NEVER has NA and returns logical
```

TRUE FALSE TRUE FALSE FALSE

Missing Data with Operations

[1] 0 NA 4 6 8

Similarly with logicals, operations/arithmetic with NA will result in NAs:

```
x + 2
## [1] 2 NA 4 5 6
x * 2
```

Tables and Tabulations

Creating One-way Tables

Here we will use table to make tabulations of the data. Look at ?table to see options for missing data.

```
table(x)
## x
## 0 2 3 4
## 1 1 1 1
table(x, useNA = "ifany")
## x
## 0 2 3 4 <NA>
## 1 1 1 1 1
```

Creating One-way Tables

You can set useNA = "always" to have it always have a column for NA

```
table(c(0, 1, 2, 3, 2, 3, 3, 2,2, 3),
useNA = "always")
```

```
## ## 0 1 2 3 <NA> ## 1 1 4 4 0
```

Creating Two-way Tables

A two-way table. If you pass in 2 vectors, table creates a 2-dimensional table.

```
tab <- table(c(0, 1, 2, 3, 2, 3, 3, 2,2, 3),
c(0, 1, 2, 3, 2, 3, 3, 4, 4, 3),
useNA = "always")
```

Finding Row or Column Totals

margin.table finds the marginal sums of the table. margin is 1 for rows, 2 for columns in general in R. Here is the column sums of the table:

```
margin.table(tab, 2)

##

##

## 0 1 2 3 4 <NA>
## 1 1 2 4 2 0
```

Proportion Tables

prop.table finds the marginal proportions of the table. Think of it dividing the table by it's respective marginal totals. If margin not set, divides by overall total.

```
prop.table(tab)
```

```
##
##
                      3
                            4 <NA>
          0.1 0.0 0.0 0.0 0.0
##
     0
                               0.0
##
          0.0 0.1 0.0 0.0 0.0
                               0.0
          0.0 0.0 0.2 0.0 0.2 0.0
##
##
     3
          0.0 0.0 0.0 0.4 0.0 0.0
##
     <NA> 0.0 0.0 0.0 0.0 0.0 0.0
```

```
prop.table(tab,1)
```

##

```
## 0 1 2 3 4 <NA>
```

Download Salary FY2014 Data

Read the CSV into R Sal:

From https://data.baltimorecity.gov/City-Government/Baltimore-City-Employee-Salaries-FY2014/2j28-xzd7

Checking for logical conditions

- any() checks if there are any TRUEs
- ▶ all() checks if ALL are true

```
head(Sal,2)
```

```
## Name JobTitle Agency
## 1 Aaron,Keontae E AIDE BLUE CHIP W0220
## 2 Aaron,Patricia G Facilities/Office Services II A0300
## Agency HireDate AnnualSalary GrossPay
## 1 Youth Summer 06/10/2013 $11310.00 $873.63
## 2 OED-Employment Dev 10/24/1979 $53428.00 $52868.38
any(is.na(Sal$Name)) # are there any NAs?
```

[1] FALSE

Recoding Variables

Example of Recoding: base R

For example, let's say gender was coded as Male, M, m, Female, F, f. Using Excel to find all of these would be a matter of filtering and changing all by hand or using if statements.

In R, you can simply do something like:

```
# data$gender[data$gender %in%
# c("Male", "M", "m")] <- "Male"</pre>
```

Example of Recoding with recode: car package

You can also recode a vector:

```
## [1] "Male" "Male" "Male" "Male" "Male" "Male" "Female" "Female"
```

Example of Recoding with revalue: plyr

You can also revalue a vector with the revalue command

Example of Cleaning: more complicated

Sometimes though, it's not so simple. That's where functions that find patterns come in very useful.

table(gender)

```
## gender
        F FeMAle FEMALE
                              Fm
                                                   mAle
##
                                       M
                                              Mа
                                                           Male
##
       75
               82
                       74
                              89
                                      89
                                              79
                                                     87
                                                             89
##
      Man
           Woman
       73
               80
##
```


Pasting strings with paste and paste0

Paste can be very useful for joining vectors together:

```
paste("Visit", 1:5, sep = " ")
## [1] "Visit 1" "Visit 2" "Visit 3" "Visit 4" "Visit 5"
paste("Visit", 1:5, sep = "_", collapse = " ")
## [1] "Visit 1 Visit 2 Visit 3 Visit 4 Visit 5"
paste("To", "is going be the ", "we go to the store!", sep
## [1] "Today is going be the day we go to the store!"
# and pasteO can be even simpler see ?pasteO
paste0("Visit",1:5)
```

[1] "Visit1" "Visit2" "Visit3" "Visit4" "Visit5"

Paste Depicting How Collapse Works

```
paste(1:5)

## [1] "1" "2" "3" "4" "5"

paste(1:5, collapse = " ")

## [1] "1 2 3 4 5"
```

Useful String Functions

Useful String functions

- toupper(), tolower() uppercase or lowercase your data:
- str_trim() (in the stringr package) or trimws in base
 - will trim whitespace
- nchar get the number of characters in a string
- paste() paste strings together with a space
- paste0 paste strings together with no space as default

The stringr package

Like dplyr, the stringr package:

- Makes some things more intuitive
- Is different than base R
- Is used on forums for answers
- Has a standard format for most functions
 - the first argument is a string like first argument is a data.frame in dplyr

Splitting/Find/Replace and Regular Expressions

- ▶ R can do much more than find exact matches for a whole string
- Like Perl and other languages, it can use regular expressions.
- What are regular expressions?
 - Ways to search for specific strings
 - Can be very complicated or simple
 - Highly Useful think "Find" on steroids

A bit on Regular Expressions

- http: //www.regular-expressions.info/reference.html
- They can use to match a large number of strings in one statement
- . matches any single character
- * means repeat as many (even if 0) more times the last character
- ? makes the last thing optional
- ^ matches start of vector ^a starts with "a"
- \$ matches end of vector b\$ ends with "b"

Splitting Strings

Substringing

Very similar:

Base R

- substr(x, start, stop) substrings from position start to position stop
- strsplit(x, split) splits strings up returns list!

stringr

- str_sub(x, start, end) substrings from position start to position end
- str_split(string, pattern) splits strings up returns list!

Splitting String: base R

In base R, strsplit splits a vector on a string into a list

```
x <- c("I really", "like writing", "R code programs")
y <- strsplit(x, split = " ") # returns a list
y</pre>
```

Splitting String: stringr

```
stringr::str_split do the same thing:
```

```
library(stringr)
y2 <- str_split(x, " ") # returns a list
y2
## [[1]]
## [1] "I"
               "really"
##
## [[2]]
## [1] "like" "writing"
##
## [[3]]
## [1] "R"
                  "code"
                             "programs"
```

Using a fixed expression

One example case is when you want to split on a period ".". In regular expressions . means **ANY** character, so

```
str split("I.like.strings", ".")
## [[1]]
##
str_split("I.like.strings", fixed("."))
   \lceil \lceil 1 \rceil \rceil
## [1] "I"
                    "like"
                                 "strings"
```

Let's extract from y

```
suppressPackageStartupMessages(library(dplyr)) # must be l
y[[2]]
## [1] "like" "writing"
sapply(y, dplyr::first) # on the fly
## [1] "I" "like" "R"
sapply(y, nth, 2) # on the fly
## [1] "really" "writing" "code"
sapply(y, last) # on the fly
## [1] "really" "writing" "programs"
```

'Find' functions: base R

grep: grep, grepl, regexpr and gregexpr search for matches to argument pattern within each element of a character vector: they differ in the format of and amount of detail in the results.

grep(pattern, x, fixed=FALSE), where:

- pattern = character string containing a regular expression to be matched in the given character vector.
- x = a character vector where matches are sought, or an object which can be coerced by as.character to a character vector.
- ▶ If fixed=TRUE, it will do exact matching for the phrase anywhere in the vector (regular find)

'Find' functions: stringr

str_detect, str_subset, str_replace, and str_replace_all search for matches to argument pattern within each element of a character vector: they differ in the format of and amount of detail in the results.

- str_detect returns TRUE if pattern is found
- str_subset returns only the strings which pattern were detected
 - convenient wrapper around x[str_detect(x, pattern)]
- str_extract returns only strings which pattern were detected, but ONLY the pattern
- str_replace replaces pattern with replacement the first time
- str_replace_all replaces pattern with replacement as many times matched

'Find' functions: stringr compared to base R

Base R does not use these functions. Here is a "translator" of the stringr function to base R functions

- str_detect similar to grepl (return logical)
- grep(value = FALSE) is similar to which(str_detect())
- str_subset similar to grep(value = TRUE) return value
 of matched
- str_replace similar to sub replace one time
- str_replace_all similar to gsub replace many times

Let's look at modifier for stringr

?modifiers

- fixed match everything exactly
- regexp default uses regular expressions
- ignore_case is an option to not have to use tolower

Important Comparisons

Base R:

- Argument order is (pattern, x)
- ► Uses option (fixed = TRUE)

stringr

- ► Argument order is (string, pattern) aka (x, pattern)
- Uses function fixed(pattern)

'Find' functions: Finding Indices

These are the indices where the pattern match occurs:

```
grep("Rawlings", Sal$Name)
## [1] 13832 13833 13834 13835
which(grepl("Rawlings", Sal$Name))
## [1] 13832 13833 13834 13835
which(str_detect(Sal$Name, "Rawlings"))
```

[1] 13832 13833 13834 13835

'Find' functions: Finding Logicals

These are the indices where the pattern match occurs:

```
head(grep1("Rawlings",Sal$Name))
```

[1] FALSE FALSE FALSE FALSE FALSE

```
head(str_detect(Sal$Name, "Rawlings"))
```

[1] FALSE FALSE FALSE FALSE FALSE

'Find' functions: finding values, base R

```
grep("Rawlings", Sal$Name, value=TRUE)
```

```
## [1] "Rawlings, Kellye A"
                                       "Rawlings, MarqWell D"
   [3] "Rawlings, Paula M"
                                       "Rawlings-Blake, Stephan
```

Sal[grep("Rawlings", Sal\$Name),]

2 d = 50 - 0 F (1 d m = 1		
##	Name JobTit	tle Ag

13832 Rawlings, Kellye A EMERGENCY DISPATCHER

13833 Rawlings, MarqWell D

13834 Rawlings, Paula M ## 13835 Rawlings-Blake, Stephanie C

13833

##

AIDE BLUE CHIP

COMMUNITY AIDE MAYOR.

Gro

\$47980.00 \$11310.00

\$684 \$!

Agency HireDate AnnualSalary ## 13832 M-R Info Technology 01/06/2003

\$19802.00 \$83

Youth Summer 06/15/2012

13834 R&P-Recreation 12/10/2007 Mayors Office 12/07/1995 \$163365.00 \$1613 ## 13835

'Find' functions: finding values, stringr and dplyr

```
str_subset(Sal$Name, "Rawlings")
```

```
## [1] "Rawlings, Kellye A"
                                       "Rawlings, MarqWell D"
## [3] "Rawlings, Paula M"
                                       "Rawlings-Blake, Stephan
```

```
Sal %>% filter(str_detect(Name, "Rawlings"))
```

Name JobTitle Agency Rawlings, Kellye A EMERGENCY DISPATCHER ## 1 A403

2 Rawlings, MarqWell D AIDE BLUE CHIP WO2: ## 3 Rawlings, Paula M COMMUNITY AIDE

4 Rawlings-Blake, Stephanie C MAYOR.

A040 A010

Agency HireDate AnnualSalary GrossPa

\$47980.00 \$68426. ## 1 M-R Info Technology 01/06/2003

2 Youth Summer 06/15/2012 \$11310.00 \$507.

\$8195. ## 3 R&P-Recreation 12/10/2007 \$19802.00

Mayors Office 12/07/1995 \$163365.00 \$161219.5 ## 4

Showing differnce in str_extract

```
str extract extracts just the matched string
ss = str extract(Sal$Name, "Rawling")
head(ss)
## [1] NA NA NA NA NA
ss[!is.na(ss)]
## [1] "Rawling" "Rawling" "Rawling" "Rawling"
```

Showing differnce in str_extract and str_extract_all

str_extract_all extracts all the matched strings

```
head(str_extract(Sal$AgencyID, "\\d"))
## [1] "0" "0" "2" "6" "9" "4"
head(str_extract_all(Sal$AgencyID, "\\d"), 2)
## [[1]]
## [1] "0" "2" "2" "0" "0"
##
## [[2]]
## [1] "0" "3" "0" "3" "1"
```

Using Regular Expressions

- ► Look for any name that starts with:
 - Payne at the beginning,
 - ► Leonard and then an S
 - Spence then capital C

[4] "Spencer, Clarence W"

```
head(grep("^Payne.*", x = Sal$Name, value = TRUE), 3)
```

```
## [1] "Dayne El Jackie" "Dayne Johnson Nickel
```

- ## [1] "Payne El, Jackie" "Payne Johnson, Nickole A"
 ## [3] "Payne Chanel"
- ## [3] "Payne, Chanel"
- head(grep("Leonard.?S", x = Sal\$Name, value = TRUE))
- ## [1] "Payne,Leonard S" "Szumlanski,Leonard S"
 head(grep("Spence.*C.*", x = Sal\$Name, value = TRUE))
- ## [1] "Greene, Spencer C" "Spencer, Charles A" "Spencer

"Spencer, Michael C"

Using Regular Expressions: stringr

[4] "Spencer, Clarence W"

```
head(str_subset( Sal$Name, "^Payne.*"), 3)
## [1] "Payne El, Jackie"
                                  "Payne Johnson, Nickole A"
## [3] "Payne, Chanel"
head(str subset( Sal$Name, "Leonard.?S"))
## [1] "Payne, Leonard S"
                               "Szumlanski, Leonard S"
head(str subset( Sal$Name, "Spence.*C.*"))
## [1] "Greene, Spencer C"
                              "Spencer, Charles A"
                                                     "Spence:
```

"Spencer, Michael C"

Replace

[1] 1 3 2

Let's say we wanted to sort the data set by Annual Salary:

```
class(Sal$AnnualSalary)
## [1] "character"
sort(c("1", "2", "10")) # not sort correctly (order simple
## [1] "1" "10" "2"
order(c("1", "2", "10"))
```

Replace

So we must change the annual pay into a numeric:

```
head(Sal$AnnualSalary, 4)

## [1] "$11310.00" "$53428.00" "$68300.00" "$62000.00"
```

Warning in head(as.numeric(Sal\$AnnualSalary), 4): NAs in

```
head(as.numeric(Sal$AnnualSalary), 4)
```

```
## [1] NA NA NA NA
```

coercion

R didn't like the \$ so it thought turned them all to NA. sub() and gsub() can do the replacing part in base R.

Replacing and subbing

Now we can replace the \$ with nothing (used fixed=TRUE because \$ means ending):

```
##
                     Name AnnualSalary
                                                   JobTi
## 1222
        Bernstein, Gregg L
                               238772
                                           STATE'S ATTORI
## 3175
         Charles, Ronnie E
                               200000
                                        EXECUTIVE LEVEL
## 985
          Batts, Anthony W
                               193800
                                        EXECUTIVE LEVEL
                                        EXECUTIVE LEVEL
## 1343
            Black, Harry E
                               190000
## 16352
            Swift.Michael
                             187200 CONTRACT SERV SPEC
```

Replacing and subbing: stringr

We can do the same thing (with 2 piping operations!) in dplyr

```
dplyr sal = Sal
dplyr sal = dplyr sal %>% mutate(
  AnnualSalary = AnnualSalary %>%
    str_replace(
      fixed("$"),
      "") %>%
    as.numeric) %>%
  arrange(desc(AnnualSalary))
check Sal = Sal
rownames(check Sal) = NULL
all.equal(check Sal, dplyr sal)
```

```
## [1] TRUE
```

Part 2

Agenda

- ► A common data cleaning task
- ► If-else statements
- For/while loops to iterate over data
- apply(), lapply(), sapply(), tapply()
- with() to specify scope

A common problem

##

 $\lceil 1 \rceil 4$

[6] 15

[11] none

[36] 0

- One of the most common problems you'll encounter when importing manually-entered data is inconsistent data types within columns
- For a simple example, let's look at TVhours column in a messy version of the survey data from Lecture 2

survey.messy <- read.csv("survey_messy.csv", header=TRUE)
survey.messy\$TVhours</pre>

3

2

3

2ish

5or so

0

6.5

		110110	•	•	0.0
##	[16]	0	gjkhgs	3	0
##	[21]	3	4	10	2.5 (a mo
##	[26]	6	zero	0	2
##	[31]	2	4	4	0

18 Levels: ~5 0 10 15 2 2.5 (a movie) 2ish 3 4 5 (netfl:

What's happening?

##

```
str(survey.messy)
```

\$ Program

```
## $ PriorExp : Factor w/ 3 levels "Extensive exper:
## $ Rexperience : Factor w/ 3 levels "Basic competence
## $ OperatingSystem: Factor w/ 2 levels "Mac OS X","Winde
## $ TVhours : Factor w/ 18 levels "~5","0","10",...
## $ Editor : Factor w/ 5 levels "Google Docs",...
```

: Factor w/ 3 levels "MISM", "Other",.

- Several of the entries have non-numeric values in them (they contain strings)
- As a result, TVhours is being imported as factor

'data.frame': 37 obs. of 6 variables:

Attempt at a fix

What if we just try to cast it back to numeric?

```
tv.hours.messy <- survey.messy$TVhours
tv.hours.messy</pre>
```

```
## [1] 4 ~5 2 5or so
## [6] 15 3 2ish 0
## [11] none 7 3 6.5
```

##	[6]	15	3	2ish	0
##	[11]	none	7	3	6.5
##	[16]	0	gjkhgs	3	0
##	[21]	3	4	10	2.5 (a
##	[26]	6	zero	0	2

[21] 3 4 10 2.5 (a movie) 2 4 4 0 4 0 4 18 Levels: ~5 0 10 15 2 2.5 (a movie) 2 ish 3 4 5 (netfliction)

```
as.numeric(tv.hours.messy)
```

[1] 9 1 5 11 8 4 8 7 2 5 17 14 8 13 2 2 1

That didn't work...

[24]

##

```
tv.hours.messy
as.numeric(tv.hours.messy)
```

6 15 12 18

```
[1] 4
                                         2
##
                         ~5
                                                          5or so
##
    [6] 15
                         3
                                         2ish
                                                          0
   [11] none
                                         3
                                                          6.5
   Г16Т
                                         3
##
                         gjkhgs
                                                          0
   [21] 3
                                         10
                                                          2.5 (a m
##
                         4
   [26] 6
                                                          2
##
                                         0
                         zero
```

[31] 2 4 4 0 ## [36] 0 2 ## 18 Levels: ~5 0 10 15 2 2.5 (a movie) 2ish 3 4 5 (netfl:

18 Levels: ~5 0 10 15 2 2.5 (a movie) 21sh 3 4 5 (netical content of the conte

9

2 10

► This just converted all the values into the integer-coded levels of the factor

2 5 9 5 9

Something that does work

► Consider the following simple example

```
num.vec <-c(3.1, 2.5)
as.factor(num.vec)
## [1] 3.1 2.5
## Levels: 2.5 3.1
as.numeric(as.factor(num.vec))
## [1] 2 1
as.numeric(as.character(as.factor(num.vec)))
## [1] 3.1 2.5
```

If we take a number that's being coded as a factor and first turn it into a character string, then converting the string to a numeric gets back the number

Back to the corrupted TVhours column

as.character(tv.hours.messy)

##

##

##

##

##

##

##

[1]

4.0

NA 2.0

[1]

[5]

[9] [13]

[17]

[21]

"4"

"3"

"0"

"3"

"3"

"gjkhgs"

```
[25]
        "8"
                          "6"
                                                              "0
##
                                            "zero"
   [29]
        "2"
                          "4"
                                            "2"
                                                              "4
##
                          "0"
                                                              "0
##
   [33]
         "4"
                                            "5 (netflix)"
   [37]
        "2"
##
as.numeric(as.character(tv.hours.messy))
## Warning: NAs introduced by coercion
```

NA

3.0 15.0 3.0

"~5"

"15"

"2"

"3"

"4"

"6.5"

"2" "3"

"0"

"0"

"10"

NA

0.0

"none"

"0

"2

A small improvement

[33]

[37]

"4"

- ► All the corrupted cells now appear as NA, which is R's missing indicator
- ▶ We can do a little better by cleaning up the vector once we get it to character form

tv.hours.strings <- as.character(tv.hours.messy)</pre>

```
tv.hours.strings
```

##	[1] "4"	"~5"	"2"	
##	[5] "3"	"15"	ແຊແ	

##	[1] "4"	"~5"	"2"	
##	[5] "3"	"15"	"3"	

##	[5] "3"	"15"	"3"	
##	[9] "0"	"2"	"none"	

"5

"7

"0

"5 (netflix)"

##	[13]	"3"	"6.5"	"0"	"0"
##	[17]	"gjkhgs"	"3"	"0"	"4"
##	[21]	"3"	"4"	"10"	"2

## [21] "3"	"4"	"10"	"2
## [25] "8"	"6"	"zero"	"0"
## [29] "2"	"4"	"2"	"4"

##	[13]	"3"	"6.5"	"0"
##	[17]	"gjkhgs"	"3"	"0"
##	[21]	"3"	"4"	"10"
	$\Gamma \cap \Gamma $	11011	11.011	

"0"

Deleting non-numeric (or .) characters

tv.hours.strings

"4"

"3"

[1]

[5]

[1]

[12] "7"

##

##

"4"

"5"

"3"

"2"

"6.5" "0"

##

##

```
##
    [9]
        "0"
                          "2"
                                            "none"
                                                              "0
   Г137
        "3"
                          "6.5"
                                            "0"
##
   [17]
        "gjkhgs"
                          "3"
                                            "0"
                                                              "4
##
                          "4"
                                            "10"
                                                              "2
##
   [21]
        "3"
                          "6"
                                                              "0
##
   [25] "8"
                                            "zero"
## [29]
        "2"
                          "4"
                                            "2"
                                                              "4
## [33]
        "4"
                          "0"
                                            "5 (netflix)"
                                                              "0
## [37]
        "2"
# Use gsub() to replace everything except digits and '.' w
gsub("[^0-9.]", "", tv.hours.strings)
```

"5"

"3"

"0"

"15"

11 11

"3"

"3"

"2"

"0"

"0

"4

"~5"

"15"

"2"

"3"

The final product

[1] 4

##

tv.hours.messy[1:30]

```
[6] 15
                       3
                                     2ish
##
## [11] none
                                      3
                                                    6.5
## [16] 0
                                      3
                       gjkhgs
                                                    0
## [21] 3
                                      10
                                                    2.5 (a m
## [26] 6
                       zero
## 18 Levels: ~5 0 10 15 2 2.5 (a movie) 2ish 3 4 5 (netfl:
```

2

5or so

~5

tv.hours.clean

[1] 4.0 5.0 2.0 5.0 3.0 15.0 3.0 2.0 0.0 2.0

[15] 0.0 0.0 NA 3.0 0.0 4.0 3.0 4.0 10.0 2.5

tv.hours.clean <- as.numeric(gsub("[^0-9.]", "", tv.hours.

```
## [29] 2.0 4.0 2.0 4.0 4.0 0.0 5.0 0.0 2.0
```

▶ As a last step, we should go through and figure out if any of

Rebuilding our data

```
survey <- transform(survey.messy, TVhours = tv.hours.clean)
str(survey)

## 'data.frame': 37 obs. of 6 variables:
## $ Program : Factor w/ 3 levels "MISM", "Other", ...
## $ PriorExp : Factor w/ 3 levels "Extensive expert
## $ Rexperience : Factor w/ 3 levels "Basic competence"</pre>
```

\$ OperatingSystem: Factor w/ 2 levels "Mac OS X", "Windo

: num 4 5 2 5 3 15 3 2 0 2 ...

: Factor w/ 5 levels "Google Docs",...

```
► Success!
```

\$ TVhours

\$ Editor

##

##

A different approach

##

\$ Editor

We can also handle this problem by setting stringsAsFactors = FALSE when importing our data.

```
survey.messy <- read.csv("survey_messy.csv", header=TRUE, s
str(survey.messy)</pre>
```

```
## $ Program : chr "PPM" "Other" "PPM" ...
## $ PriorExp : chr "Never programmed before" "Some
## $ Rexperience : chr "Never used" "Basic competence
## $ OperatingSystem: chr "Windows" "Mac OS X" "Mac OS X"
## $ TVhours : chr "4" "~5" "2" "5or so" ...
```

"Microsoft Word" "Microsoft Word"

Now everything is a character instead of a factor

: chr

'data.frame': 37 obs. of 6 variables:

One-line cleanup

##

\$ Editor

► Let's clean up the TVhours column and cast it to numeric all in one command

```
## 'data.frame': 37 obs. of 6 variables:
## $ Program : chr "PPM" "Other" "PPM" ...
## $ PriorExp : chr "Never programmed before" "Some
## $ Rexperience : chr "Never used" "Basic competence"
## $ OperatingSystem: chr "Windows" "Mac OS X" "Mac OS X"
## $ TVhours : num 4 5 2 5 3 15 3 2 0 2 ...
```

: chr "Microsoft Word" "Microsoft Word

What about all those other character variables?

```
table(survey[["Program"]])
##
##
   MISM Other
              PPM
             17
##
     13
table(as.factor(survey[["Program"]]))
##
##
   MTSM Other PPM
##
     13
            7
                17
```

 Having factors coded as characters may be OK for many parts of our analysis

To be safe, let's fix things

```
# Figure out which columns are coded as characters
chr.indexes <- sapply(survey, FUN = is.character)
chr.indexes</pre>
```

```
## Program PriorExp Rexperience Operatin
## TRUE TRUE TRUE
## TVhours Editor
## FALSE TRUE
```

```
# Re-code all of the character columns to factors
survey[chr.indexes] <- lapply(survey[chr.indexes], FUN = as</pre>
```

Here's the outcome

str(survey)

```
## 'data.frame': 37 obs. of 6 variables:
## $ Program : Factor w/ 3 levels "MISM","Other",.
## $ PriorExp : Factor w/ 3 levels "Extensive exper:
## $ Rexperience : Factor w/ 3 levels "Basic competence
## $ OperatingSystem: Factor w/ 2 levels "Mac OS X","Window
## $ TVhours : num 4 5 2 5 3 15 3 2 0 2 ...
```

: Factor w/ 5 levels "Google Docs",...

Success!

\$ Editor

##

Another common problem

- ► When data is entered manually, misspellings and case changes are very common
- ► E.g., a column showing life support mechanism may look like,

```
life.support <- as.factor(c("dialysis", "Ventilation", "Dia
summary(life.support)</pre>
```

```
## dialysis Dialysis dyalysis nnone
## 3 1 1 1
## ventilation Ventilation
## 1 1
```

dyalysis

nnone

```
summary(life.support)
```

##

```
## dialysis Dialysis
```

What are all these [l/s/t/]apply() functions?

- ► These are all efficient ways of applying a function to margins of an array or elements of a list
- ▶ Before we talk about the details of apply() and its relatives, we should first understand loops
- ▶ loops are ways of iterating over data
- The apply() functions can be thought of as good alternatives to loops

For loops: a pair of examples

```
for(i in 1:4) {
 print(i)
## [1] 1
## [1] 2
## [1] 3
## [1] 4
phrase <- "Good Night, "
for(word in c("and", "Good", "Luck")) {
```

```
phrase <- paste(phrase, word)</pre>
print(phrase)
[1] "Good Night,
                     and"
```

"Good Night, and Good"

[1] "Good Night, and Good Luck"

[1]

For loops: syntax

A for loop executes a chunk of code for every value of an index variable in an index set

The basic syntax takes the form

```
# for(index.variable in index.set) {
# code to be repeated at every value of index.variable
# }
```

The index set is often a vector of integers, but can be more general

Example

[1] "185" "double" ## [1] "TRUE" "logical"

```
index.set <- list(name="Michael", weight=185, is.male=TRUE]
for(i in index.set) {
   print(c(i, typeof(i)))
}
## [1] "Michael" "character"</pre>
```

Example: Calculate sum of each column

##

fake.data <- matrix(rnorm(500), ncol=5) # create fake 100 : head(fake.data,2) # print first two rows

[1,] -1.6446803 -2.1532042 0.5611550 -0.6246019 -0.8568 ## [2,] -0.8199759 -0.5727423 -0.4925805 0.9939846 0.8333 col.sums <- numeric(ncol(fake.data)) # variable to store re

[,1] [,2] [,3]

[.4]

for(i in 1:nrow(fake.data)) {
 col.sums <- col.sums + fake.data[i,] # add ith observati
}
col.sums</pre>

col.sums ## [1] -1.4895621 -4.4912187 -0.8146502 -7.2401811 -5.8186

colSums(fake.data) # A better approach (see also colMeans(

[1] -1.4895621 -4.4912187 -0.8146502 -7.2401811 -5.8186

while loops

while loops repeat a chunk of code while the specified condition remains true

```
day <- 1
num.days <- 365
while(day <= num.days) {
   day <- day + 1
}</pre>
```

- We won't really be using while loops in this class
- Just be aware that they exist, and that they may become useful to you at some point in your analytics career

The various apply() functions

```
Command Description
apply(X, Obtain a
MARGIN, vec-
FUN)
          tor/array/list
          by applying
          FUN along
          the
          specified
          MARGIN of
          an array or
          matrix X
lapply(X,Obtain a
FUN)
          list by
          applying
          FUN to the
          elements of
          a list X
annal - (V Cimplified
```

Example: apply()

```
colMeans(fake.data)
## [1] -0.014895621 -0.044912187 -0.008146502 -0.072401811
apply(fake.data, MARGIN=2, FUN=mean) # MARGIN = 1 for rows
## [1] -0.014895621 -0.044912187 -0.008146502 -0.072401811
# Function that calculates proportion of vector indexes the
propPositive <- function(x) mean(x > 0)
apply(fake.data, MARGIN=2, FUN=propPositive)
```

[1] 0.50 0.53 0.48 0.46 0.51

Example: lapply(), sapply()

lapply(survey, is.factor) # Returns a list

```
## $Program
## [1] TRUE
##
## $PriorExp
## [1] TRUE
##
## $Rexperience
## [1] TRUE
##
   $OperatingSystem
##
  [1] TRUE
##
   $TVhours
## [1] FALSE
##
## $Fditor
```

Example: apply(), lapply(), sapply()

speed dist

apply(cars, 2, FUN=mean) # Data frames are arrays

15.40 42.98

lapply(cars, FUN=mean) # Data frames are also lists

\$speed

[1] 15.4

##

\$dist ## [1] 42.98

```
sapply(cars, FUN=mean) # sapply() is just simplified lapply
```

speed dist ## 15.40 42.98

Example: tapply()

► Think of tapply() as a generalized form of the table() function

```
library (MASS)
```

select

##

```
##
## Attaching package: 'MASS'

## The following object is masked _by_ '.GlobalEnv':
##
## survey

## The following object is masked from 'package:dplyr':
##
```

Get a count table, data broken down by Origin and DriveTetable(Cars93\$Origin, Cars93\$DriveTrain)

Example: tapply()

▶ Let's get the average horsepower by car Origin and Type

```
tapply(Cars93[["Horsepower"]], INDEX = Cars93[c("Origin",

## Type
## Origin Compact Large Midsize Small Sporty
## USA 117.4286 179.4545 153.5000 89.42857 166.5000 9
## non-USA 141.5556 NA 189.4167 91.78571 151.6667
```

► What's that NA doing there?

```
any(Cars93$Origin == "non-USA" & Cars93$Type == "Large")
```

```
## [1] FALSE
```

▶ None of the non-USA manufacturers produced Large cars!

Example: using tapply() to mimic table()

► Here's how one can use tapply() to produce the same output as the table() function

```
library(MASS)
# Get a count table, data broken down by Origin and DriveTetable(Cars93$Origin, Cars93$DriveTrain)

##
## 4WD Front Rear
## USA 5 34 9
## non-USA 5 33 7
```

```
tapply(rep(1, nrow(Cars93)), INDEX = Cars93[c("Origin", "D:
## DriveTrain
```

This one may take a moment to figure out...

Origin 4WD Front Rear ## USA 5 34 9

with()

- ► Thus far we've repeatedly typed out the data frame name when referencing its columns
- ► This is because the data variables don't exist in our working environment
- Using with(data, expr) lets us specify that the code in expr should be evaluated in an environment that contains the elements of data as variables

```
with(Cars93, table(Origin, Type))
```

```
## Type
## Origin Compact Large Midsize Small Sporty Van
## USA 7 11 10 7 8 5
## non-USA 9 0 12 14 6 4
```

Example: with()

```
any(Cars93$Origin == "non-USA" & Cars93$Type == "Large")
```

```
## [1] FALSE
```

```
with(Cars93, any(Origin == "non-USA" & Type == "Large")) #
```

```
## [1] FALSE
```

##

```
with(Cars93, tapply(Horsepower, INDEX = list(Origin, Type)
```

USA 117.4286 179.4545 153.5000 89.42857 166.5000 158

Compact Large Midsize Small Sporty

non-USA 141.5556 NA 189.4167 91.78571 151.6667 138

Using with() makes code simpler, easier to read, and easier to debug