Homework IV – Group 001

(ist1102082, ist1103252)

I. Pen-and-paper

)	
1. Observations: $X = \left\{ \begin{pmatrix} 1 & 0.6 \\ 0.6 \\ 0.1 \end{pmatrix}, \begin{pmatrix} 0 & 0.7 \\ 0.8 \end{pmatrix}, \begin{pmatrix} 0 & 0.7 \\ 0.7 \\ 0.5 \end{pmatrix}, \begin{pmatrix} 1 & 0.4 \\ 0.4 \\ -0.1 \end{pmatrix} \right\}$	Most of our ealculations were
	'
Bernoulli { ya, ya} Gaussian	made Using programming functions as a helpful resource.
Bernoulli Bernoulli	
• $p_1 = P(y_1 = 1) = 0.3$ • $p_2 = P(y_1 = 1)$	1) = 0.7
• That = 0.5	
• $N_1 \left(M_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \geq_1 = \begin{pmatrix} 2 & 0.5 \\ 0.5 & 2 \end{pmatrix} \right)$ • $N_2 \left(M_2 = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right)$	$), \leq_{\lambda} = \begin{pmatrix} 1.5 & 1 \\ 1 & 1.5 \end{pmatrix}$
E-Step:	
$p(x_1 C=1) = p_1 \times N(x_1 x_1, \xi_1) = p_1 \times \left(\frac{1}{x_1}\right)$	exp (-1. (11-11) = 1. (11-11) = 0.01997
$P(x_1 C=1) = p_1 \times N(x_1 m_1, \xi_1) = p_1 \times \left(\frac{1}{\sqrt{a_1 \cdot \xi_1 }}\right)$ $P(x_2 C=1) = (1 - p_1)^{\times} N(x_2 m_1, \xi_1) = 0.03503$	1/ 1/
· ρ (χ3 C=1) = (1 P1 × N (χ3) M1, ≤1) = 0.04786	
p(xy 1 (=2) = P1 x N(x, 1 M1, 51)= 0.01777 Xn vi	aviable will only use yziyz (normally distrabuted)
$ \begin{array}{c c} $	$= \frac{1}{2} \cdot \exp\left(-\frac{1}{2} \cdot \left(n_1 - \mu_0\right)^{T} \cdot \tilde{\Sigma}_{2} \cdot \left(n_1 - \mu_0\right)\right) = 0.08373$
1 P(K2 C=d) - (1- P2) = N(x2 M2, 22) = 0.02046	· //
$ (3 - b) (x^{2} + c = q) = (4 - b^{2}) \cdot N(x^{2} + b^{2}) = 0.03883 $	
p(xy 1 C=d) = px N(x4) m1, 51)= 0.08715	

(ist1102082, ist1103252)

	Joint Probabilities
N	· P(c=1, x1)= T1 x N(n1 M1, 21)= 0.00997
1	· p(l=1, xz) = 0.01752
6/12	· p((=1, n3)=0.02393
	• $P(C=1, x_1) = \Pi_1 \times N(n_1 \mu_1, \leq_1) = 0.00997$ • $P(C=1, x_2) = 0.01752$ • $P(C=1, x_3) = 0.02393$ • $P(C=1, x_4) = 0.00886$
18	• $P(c=2, x_1) = TT_2 \times N(n_1 \mu_2, \leq_2) = 0.04187$ • $P(c=2, x_2) = 0.01023$ • $P(c=2, x_3) = 0.01944$ • $P(c=3, x_4) = 0.04368$
1/2	* P(C=2, xz) = 0.01023
Ch.	· p ((= d , n3) = 0.01944
	· p(c=d,xy)=0.04358
N	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
16	$\gamma((z_1) = 0.63135 \gamma((z_1) = 0.55181 + p(x_n) = \sum_{k=1}^{K} p(x_k = 1, x_n)$
0	$\gamma((\zeta_{31}) = 0.16892$
8	$ \gamma((12) = \beta((12) + $
lest	· \((632) = 0.44819
0	° \((42) = 0.83708

Homework IV - Group 001

(ist1102082, ist1103252)

Homework IV – Group 001

(ist1102082, ist1103252)

λ.	
1	• $p(x_{mu})(-1) = p_{1} \times N(x_{mu})m_{1}, \leq_{1}) = 0.00634$
0/1/2	· p (n (=2) = 0.64567
130	$P(C=1, x_{nw}) = \pi_1 \cdot N(n_{nw}, u_1, \leq_1) = 0.00245$
Off.	$P(C=1, n_{nw}) = \pi_2. N(n_{nw}, n_2, \leq_2) = 0.02803$
	P(Xnew) = P(l=1, Xnw) + P(l=2, Xnew) = 0.03048
	Cluster Memberships (Posteriors) for X new: Note Y(C_num) = P(L=1) x new) = 0.08029 P(N new)
	((new2) = P((=z, χηω) = 6.91971 P(χηω)

Homework IV – Group 001

(ist1102082, ist1103252)

3. We will be using the updated values!
• p(x1/c=1) = p1 x N(x1/M1, 51) = 0.23147 X1 belongs to C=2 • p(x1/c=2) = p2 x N(x1/M2, 52) = 0.94954
• $p(x_{\lambda} C=1) = (1-p_{\lambda})^{2} N(x_{\lambda} M_{1}, \leq_{1}) = 1.26633$ • $p(x_{\lambda} C=\lambda) = (1-p_{\lambda})^{2} N(x_{\lambda} M_{2}, \leq_{\lambda}) = 0.08874$
• $p(x_3 C=1) = (1-p_1) \times N(x_3 \mu_1, \leq_1) = 1.43811$ — X3 belongs to C=1 • $p(x_3 C=d) = (1-p_2) \times N(x_3 \mu_2, \leq_3) = 0.45417$
· p(xy 1 (=1) = p1 × N(x, 1 μ1, ≤1)= 0.02077 · p(xy 1 (=d) = p2 × N(xy 1 μ1, ≤1)= 0.72331 × Xy belongs to C= 2
C1 = { X2, X3}, C2 = 2 X1, X4} Sinu both elusters have the same number of observations, we will ealwhate the Silhovette for both of them.

Si	ilhovette:	S(x)=	1- also best acres	1 , b	(n) > a(n)			
• a	equals to	medium d	stanu from	X; lo 1h	points in	the sam	u Uvster	
• b	equals to) Minimum	medium d	islana f	rom Xi to a	the points	of another we only h	cluster, in this case, ave two cluster.
•In	mportant	to know u	ne will be	Using h	nanhattan unnattan Dist	distance lance	us our dr	danu muasurement
		(n1,n4) =		-0.4]+	0.1-(-0.1	0.40	0000	
		(nz , nz) = (nz , nz) =						
0	ilny)=d	(ny,x1)	0.40000					

(ist1102082, ist1103252)

$b(N_1) = d(N_1,N_2) + d(N_1,N_3) = 2.2500$	0
D(NZ) = d(NZ,M1) + d(NZ,NY) = 2.70000	0
$b(n_3) = d(n_3, n_1) + d(x_3, x_4) = 1.80000$	0
b(ny)= d(ny,nz) + d(xy,x3) = 2.2500	00
Using the Silhovette function:	$S(n_1) = 0.82222$ $S(n_2) = 0.66667$ $S(n_3) = 0.50000$ $S(n_4) = 0.82222$
The Silhoutte of a cluster corresponds to the mi	eun of the silhoutles of the observations
$\circ 3(4) = \frac{3(x_2) + 3(x_3)}{2} =$	0.68333
· 3((2) = 3(x1) + 3(x4)	= 0.92277

4)

4. The purity earth defined as a measurement that indicates the clustering's quality:

A purity score closer to 1 reveals that our clustering is highly adequate.

Since we are given a purity value of 0.75, we can conclude that 75% of the observations were correctly assigned to their clusters.

Thus, 25% of our observations were assigned to the wrong cluster.

Since we have 4 observations, only one of them (25%) was incorrectly classified.

Given that we will know if that observation belongs to either cluster 1 or cluster 2, in the worst case scenario, it doesn't belong to neither of them.

Therefore, we would need at most 3 classes - 1 for each cluster and a new class for the observation that was incorrectly classified.

Homework IV - Group 001

(ist1102082, ist1103252)

II. Programming and critical analysis

1)

Exercise 1 Loading the data from the column_diagnosis.arf file import numpy as np import pandas as pd import warnings from sklearn.preprocessing import MinMaxScaler from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score, completeness_score from sklearn import metrics from scipy.io.arff import loadarff warnings.filterwarnings('ignore') data = loadarff('./column_diagnosis.arff') df = pd.DataFrame(data[0]) df['class'] = df['class'].str.decode('utf-8') X = df.drop('class', axis=1) y = df['class']

(ist1102082, ist1103252)

```
# Normalize the data using MinMaxScaler
scaler = MinMaxScaler()
X_normalized = scaler.fit_transform(X)
k_{values} = [2, 3, 4, 5]
# Initialize lists to store silhouette scores and purity scores for each k
silhouette_scores = []
purity_scores = []
def purity_score(y_true, y_pred):
    # compute contingency/confusion matrix
    confusion_matrix = metrics.cluster.contingency_matrix(y_true, y_pred)
    return np.sum(np.amax(confusion_matrix, axis=0)) / np.sum(confusion_matrix)
# Apply k-means clustering for each k value
for k in k_values:
    kmeans = KMeans(n_clusters=k, random_state=0)
    kmeans.fit(X_normalized)
    # Get cluster labels
    cluster_labels = kmeans.labels_
   # Calculate silhouette score
    silhouette = silhouette_score(X_normalized, cluster_labels)
    silhouette_scores.append(silhouette)
    # Calculate purity score (completeness score since we have ground truth labe(ls)
    purity = purity_score(y, cluster_labels)
    purity_scores.append(purity)
for k, silhouette, purity in zip(k_values, silhouette_scores, purity_scores):
    print(f'K={k}: Silhouette Score = {silhouette:.4f}, Purity Score = {purity:.4f}')
```

```
K=2: Silhouette Score = 0.3604, Purity Score = 0.6323
K=3: Silhouette Score = 0.2958, Purity Score = 0.6677
K=4: Silhouette Score = 0.2744, Purity Score = 0.6613
K=5: Silhouette Score = 0.2382, Purity Score = 0.6774
```

TÉCNICO LISBOA

Aprendizagem 2023/24

Homework IV - Group 001

(ist1102082, ist1103252)

```
from sklearn.decomposition import PCA
# Fit a PCA model on the normalized data
pca = PCA(n components=2)
pca.fit(X_normalized)
# i. Variability explained by top two principal components
explained_variance = pca.explained_variance_ratio_
print("Explained Variance for Top Two Principal Components:")
print(f"Component 1: {explained_variance[0]:.4f}")
print(f"Component 2: {explained_variance[1]:.4f}")
# ii. Sort input variables by relevance in top two principal components
# Extract the weights of the input variables for the top two components
component_weights = pca.components_
# Sort input variables by absolute loading for component 1
sorted_variables_component1 = [X.columns[i] for i in
                                np.argsort(np.abs(component_weights[0]))[::-1]]
# Sort input variables by absolute loading for component 2
sorted_variables_component2 = [X.columns[i] for i in
                                np.argsort(np.abs(component_weights[1]))[::-1]]
# Print the sorted input variables for each component
print("\nTop Two Principal Components and respective Absolute Weights:")
print(f"\nTop Two Variables for Component 1:")
for variable in sorted_variables_component1:
    print(f" - {variable}: {np.abs(component_weights[0][X.columns.get_loc(variable)]):.5f}")
print(f"\nTop Two Variables for Component 2:")
for variable in sorted_variables_component2:
    print(f" - {variable}: {np.abs(component_weights[1][X.columns.get_loc(variable)]):.5f}")
```

TÉCNICO LISBOA

Aprendizagem 2023/24

Homework IV - Group 001

(ist1102082, ist1103252)

Explained Variance for Top Two Principal Components:

Component 1: 0.5618
Component 2: 0.2096

Top Two Principal Components and respective Absolute Weights:

Top Two Variables for Component 1:

- pelvic_incidence: 0.59162

- lumbar_lordosis_angle: 0.51508

- pelvic_tilt: 0.46704
- sacral_slope: 0.32569

- degree_spondylolisthesis: 0.21693

- pelvic_radius: 0.11582

Top Two Variables for Component 2:

- pelvic_tilt: 0.67037
- pelvic_radius: 0.58107

- sacral_slope: 0.44330

- pelvic_incidence: 0.10004

- lumbar_lordosis_angle: 0.08005

- degree_spondylolisthesis: 0.00458

(ist1102082, ist1103252)

3)

Exercise 3 import matplotlib.pyplot as plt from sklearn.decomposition import PCA from sklearn.cluster import KMeans # Fit a PCA model on the normalized data with 2 components pca = PCA(n_components=2) X_2D = pca.fit_transform(X_normalized) # K-means clustering labels with k=3 kmeans = KMeans(n_clusters=3, random_state=0) kmeans_labels = kmeans.fit(X_normalized) # Map diagnoses to 0, 1, 2 codes = {'Hernia': 0, 'Spondylolisthesis': 1, 'Normal': 2} codes_labels = y.map(codes).tolist() plt.figure(figsize=(12, 5)) plt.subplot(121) plt.scatter(X_2D[:, 0], X_2D[:, 1], c=codes_labels, label=codes) plt.title("Ground Truth Diagnoses") # Create a scatter plot for K-means clustering labels plt.subplot(122) plt.scatter(X_2D[:, 0], X_2D[:, 1], c=kmeans.labels_, label='K-Means Clustering') plt.title("K-Means Clustering (k=3)") plt.tight_layout()

Homework IV - Group 001

(ist1102082, ist1103252)

4)

Exercise 4

Considering the results from question (1) and question (3), clustering can be used to characterize the population of ill and healthy individuals in the following ways:

- 1. Identifying Subpopulations:
 - Clustering can help identify subpopulations within the dataset based on the similarities of their feature profiles. In the context of the our dataset, these subpopulations could represent different groups of individuals with varying degrees of health or illness.
- 2. Detection of Anomalies:
 - Clustering offers a useful approach for uncovering outliers or irregular cases within a population. In the realm of healthcare, these anomalies could signify individuals who exhibit uncommon or unexpected health conditions. By cross-referencing the groupings generated by clustering with the known diagnoses (ground truth), as mentioned in question 3, we can identify individuals who find themselves assigned to clusters that don't align with their actual medical conditions. This subset of individuals warrants closer examination, as they may be harboring undiagnosed or rare health issues. Thus, clustering proves to be a valuable tool for the early detection of diseases.

END