LIMITES, CONTINUITÉ, CONVEXITÉ

I. Limite d'une fonction à l'infini

1) Limite finie à l'infini

Intuitivement:

On dit que la fonction f admet pour limite L en $+\infty$ si f(x) est aussi proche de L que l'on veut pourvu que x soit suffisamment grand.

Exemple:

La fonction définie par $f(x) = 2 + \frac{1}{x}$ a pour limite 2 lorsque x tend vers $+\infty$.

En effet, les valeurs de la fonction se resserrent autour de 2 dès que *x* est suffisamment grand. La distance MN tend vers 0.

Si on prend un intervalle ouvert quelconque contenant 2, toutes les valeurs de la fonction appartiennent à cet intervalle dès que x est suffisamment grand.

Définition :

On dit que la fonction f admet pour limite L en $+\infty$ si tout intervalle ouvert contenant L contient toutes les valeurs de f(x) dès que x est suffisamment grand et on note : $\lim_{x\to +\infty} f(x) = L.$

<u>Définitions</u>: - La droite d'équation y = L est **asymptote horizontale** à la courbe représentative de la fonction f en $+\infty$ si $\lim_{x \to +\infty} f(x) = L$.

- La droite d'équation y = L est **asymptote horizontale** à la courbe représentative de la fonction f en $-\infty$ si $\lim_{x \to -\infty} f(x) = L$.

Remarque:

Lorsque x tend vers $+\infty$, la courbe de la fonction "se rapproche" de son asymptote. La distance MN tend vers 0.

2) Limite infinie à l'infini

Intuitivement:

On dit que la fonction f admet pour limite $+\infty$ en $+\infty$ si f(x) est aussi grand que l'on veut pourvu que x soit suffisamment grand.

Exemple:

La fonction définie par $f(x) = x^2$ a pour limite $+\infty$ lorsque x tend vers $+\infty$.

En effet, les valeurs de la fonction deviennent aussi grandes que l'on souhaite dès que x est suffisamment grand.

Si on prend un réel a quelconque, l'intervalle a; $+\infty$ contient toutes les valeurs de la fonction dès que a est suffisamment grand.

<u>Définitions</u>: - On dit que la fonction f admet pour limite $+\infty$ en $+\infty$ si tout intervalle]a; $+\infty[$, a réel, contient toutes les valeurs de f(x) dès que x est suffisamment grand et on note : $\lim_{x\to +\infty} f(x) = +\infty$

- On dit que la fonction f admet pour limite $-\infty$ en $+\infty$ si tout intervalle $]-\infty$; b[, b réel, contient toutes les valeurs de f(x) dès que x est suffisamment grand et on note : $\lim_{x\to +\infty} f(x) = -\infty$

Remarques:

- Une fonction qui tend vers $+\infty$ lorsque x tend vers $+\infty$ n'est pas nécessairement croissante.

Yvan Monka – Académie de Strasbourg – <u>www.maths-et-tiques.fr</u>

- Il existe des fonctions qui ne possèdent pas de limite infinie. C'est le cas des fonctions sinusoïdales.

3) Limites des fonctions usuelles

Propriétés:

- $-\lim_{x \to +\infty} x^2 = +\infty, \lim_{x \to -\infty} x^2 = +\infty$ $-\lim_{x \to +\infty} x^3 = +\infty, \lim_{x \to -\infty} x^3 = -\infty$
- $-\lim_{x\to+\infty} x^n = +\infty, \lim_{x\to-\infty} x^n = +\infty \text{ (pour } n \text{ pair)}$ $-\lim_{x\to+\infty} x^n = +\infty, \lim_{x\to-\infty} x^n = -\infty \text{ (pour } n \text{ impair)}$
- $-\lim_{x\to+\infty}\sqrt{x}=+\infty$
- $-\lim_{x \to +\infty} \frac{1}{x} = 0, \lim_{x \to -\infty} \frac{1}{x} = 0$ $-\lim_{x \to +\infty} e^x = +\infty, \lim_{x \to -\infty} e^x = 0$

II. Limite d'une fonction en un réel A

Intuitivement:

On dit que la fonction f admet pour limite $+\infty$ en A si f(x) est aussi grand que l'on veut pourvu que x soit suffisamment proche de A.

Exemple:

La fonction représentée ci-dessous a pour limite $+\infty$ lorsque x tend vers A. En effet, les valeurs de la fonction deviennent aussi grandes que l'on souhaite dès que x est suffisamment proche de A.

Si on prend un réel a quelconque, l'intervalle a; $+\infty$ [contient toutes les valeurs de la fonction dès que x est suffisamment proche de A.

<u>Définitions</u>: - On dit que la fonction f admet pour limite $+\infty$ en A si tout intervalle]a; $+\infty[$, a réel, contient toutes les valeurs de f(x) dès que x est suffisamment proche de A et on note : $\lim_{x\to A} f(x) = +\infty$.

- On dit que la fonction f admet pour limite $-\infty$ en A si tout intervalle $]-\infty$; b[, b réel, contient toutes les valeurs de f(x) dès que x est suffisamment proche de A et on note : $\lim_{x\to A} f(x) = -\infty$.

<u>Définition</u>: La droite d'équation x = A est **asymptote verticale** à la courbe représentative de la fonction f, si : $\lim_{x \to A} f(x) = +\infty$ ou $\lim_{x \to A} f(x) = -\infty$.

Remarque:

Certaines fonctions admettent des limites différentes en un réel A selon x > A ou x < A.

Considérons la fonction inverse définie sur \mathbb{R}^*

$$par f(x) = \frac{1}{x}.$$

- Si x < 0: Lorsque x tend vers 0, f(x) tend vers $-\infty$ et on note :

$$\lim_{\substack{x \to 0 \\ x < 0}} f(x) = -\infty \text{ ou } \lim_{\substack{x \to 0^-}} f(x) = -\infty.$$

- Si x > 0: Lorsque x tend vers 0, f(x) tend vers $+\infty$ et on note :

$$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = +\infty \text{ ou } \lim_{\substack{x \to 0^+}} f(x) = +\infty.$$

On parle de limite à gauche de 0 et de limite à droite de 0.

Déterminer graphiquement des limites d'une fonction :

Vidéo https://youtu.be/9nEJCL3s2eU

III. Opérations sur les limites

Vidéo https://youtu.be/at6pFx-Umfs

 α peut désigner $+\infty$, $-\infty$ ou un nombre réel.

1) Limite d'une somme

$\lim_{x \to \alpha} f(x) =$	L	L	L	+∞		+∞
$ \lim_{x \to \alpha} g(x) = $	L'	+∞	-∞	+∞	-8	-∞
$\lim_{x \to \alpha} f(x) + g(x) =$	L + L'	+∞	-∞	+∞	-∞	F.I.*

^{*} Forme indéterminée : On ne peut pas prévoir la limite éventuelle.

2) Limite d'un produit

∞ désigne +∞ ou -∞

$\lim_{x \to \alpha} f(x) =$	L	L	8	0
$\lim_{x \to \alpha} g(x) =$	L'	8	8	∞
$\lim_{x \to \alpha} f(x)g(x) =$	L L'	8	8	F.I.

On applique la règle des signes pour déterminer si le produit est $+\infty$ ou $-\infty$.

Exemple:
$$\lim_{x \to \infty} (x - 5)(3 + x^2)$$
?

$$\lim_{x \to -\infty} (x - 5) = -\infty$$
 et $\lim_{x \to -\infty} (3 + x^2) = +\infty$

Exemple: $\lim_{x \to -\infty} (x-5)(3+x^2)$? $\lim_{x \to -\infty} (x-5) = -\infty$ et $\lim_{x \to -\infty} (3+x^2) = +\infty$ D'après la règle sur la limite d'un produit : $\lim_{x \to -\infty} (x-5)(3+x^2) = -\infty$

3) Limite d'un quotient

 ∞ désigne $\pm \infty$ ou $-\infty$

∞ designe $+\infty$ ou $-\infty$							
$\lim_{x \to \alpha} f(x) =$	L	L ≠ 0	L	8	∞	0	
$\lim_{x \to \alpha} g(x) =$	L' ≠ 0	0	8	L	8	0	
$ \lim_{x \to \alpha} \frac{f(x)}{g(x)} = $	$\frac{L}{L'}$	∞	0	8	F.I.	F.I.	

On applique la règle des signes pour déterminer si le produit est $+\infty$ ou $-\infty$.

Exemple:
$$\lim_{x\to 3} \frac{1-2x}{x-3}$$
?

$$\lim_{x \to 3} 1 - 2x = -5$$

$$\lim_{x \to 3^{-}} x - 3 = 0^{-} \text{ et } \lim_{x \to 3^{+}} x - 3 = 0^{+}$$

D'après la règle sur la limite d'un quotient : $\lim_{x\to 3^-} \frac{1-2x}{x-3} = +\infty$ et $\lim_{x\to 3^+} \frac{1-2x}{x-3} = -\infty$

Yvan Monka – Académie de Strasbourg – <u>www.maths-et-tiques.fr</u>

Remarque:

Comme pour les suites, on rappelle que les quatre formes indéterminées sont, par abus d'écriture :

"
$$\infty - \infty$$
", " $0 \times \infty$ ", " $\frac{\infty}{\infty}$ " et " $\frac{0}{0}$ ".

Méthode: Lever une forme indéterminée sur les fonctions polynômes et rationnelles

- Vidéo https://youtu.be/4NQbGdXThrk
- Vidéo https://youtu.be/8tAVa4itblc
- Vidéo https://voutu.be/pmWPfsQaRWI

Calculer: 1)
$$\lim_{x \to +\infty} -3x^3 + 2x^2 - 6x + 1$$
 2) $\lim_{x \to +\infty} \frac{2x^2 - 5x + 1}{6x^2 - 5}$ 3) $\lim_{x \to -\infty} \frac{3x^2 + 2}{4x - 1}$

2)
$$\lim_{x \to +\infty} \frac{2x^2 - 5x + 1}{6x^2 - 5}$$

3)
$$\lim_{x \to -\infty} \frac{3x^2 + 2}{4x - 1}$$

1) •
$$\lim_{x \to +\infty} -3x^3 = -\infty$$
 et $\lim_{x \to +\infty} 2x^2 = +\infty$

On reconnait une forme indéterminée du type " $\infty - \infty$ ".

 Levons l'indétermination (méthode de la factorisation par le monôme de plus haut degré):

$$-3x^3 + 2x^2 - 6x + 1 = x^3 \left(-3 + \frac{2}{x} - \frac{6}{x^2} + \frac{1}{x^3} \right)$$

• Or:
$$\lim_{x \to +\infty} \frac{2}{x} = \lim_{x \to +\infty} \frac{6}{x^2} = \lim_{x \to +\infty} \frac{1}{x^3} = 0.$$

Donc, par limite d'une somme :

$$\lim_{x \to +\infty} -3 + \frac{2}{x} - \frac{6}{x^2} + \frac{1}{x^3} = -3$$

De plus, $\lim_{x \to +\infty} x^3 = +\infty$, donc, par limite d'un produit :

$$\lim_{x \to +\infty} x^3 \left(-3 + \frac{2}{x} - \frac{6}{x^2} + \frac{1}{x^3} \right) = -\infty$$
Soit: $\lim_{x \to +\infty} -3x^3 + 2x^2 - 6x + 1 = -\infty$.

Soit:
$$\lim_{x \to +\infty} -3x^3 + 2x^2 - 6x + 1 = -\infty$$

- 2) En appliquant la méthode de la question 1) pour le numérateur et le dénominateur de la fonction rationnelle, cela nous conduit à une forme indéterminée du type " $\frac{\infty}{\infty}$ ".
- · Levons l'indétermination :

$$\frac{2x^2 - 5x + 1}{6x^2 - 5} = \frac{x^2}{x^2} \times \frac{2 - \frac{5}{x} + \frac{1}{x^2}}{6 - \frac{5}{x^2}} = \frac{2 - \frac{5}{x} + \frac{1}{x^2}}{6 - \frac{5}{x^2}}$$

• Or :
$$\lim_{x \to +\infty} \frac{5}{x} = \lim_{x \to +\infty} \frac{1}{x^2} = \lim_{x \to +\infty} \frac{5}{x^2} = 0.$$

Donc, par limite d'une somm

$$\lim_{x \to +\infty} 2 - \frac{5}{x} + \frac{1}{x^2} = 2 \quad \text{et} \quad \lim_{x \to +\infty} 6 - \frac{5}{x^2} = 6$$

Donc, par limite d'un quotient :

$$\lim_{x \to +\infty} \frac{2 - \frac{5}{x} + \frac{1}{x^2}}{6 - \frac{5}{x^2}} = \frac{2}{6} = \frac{1}{3}$$

Soit :
$$\lim_{x \to +\infty} \frac{2x^2 - 5x + 1}{6x^2 - 5} = \frac{1}{3}$$
.

- 3) Il s'agit d'une forme indéterminée du type " $\frac{\infty}{\infty}$ ".
- · Levons l'indétermination :

$$\frac{3x^2 + 2}{4x - 1} = \frac{x^2}{x} \times \frac{3 + \frac{2}{x^2}}{4 - \frac{1}{x}} = x \times \frac{3 + \frac{2}{x^2}}{4 - \frac{1}{x}}$$

• Or : $\lim_{x \to -\infty} \frac{1}{x} = \lim_{x \to -\infty} \frac{2}{x^2} = 0$ Donc, par limite d'une somme :

$$\lim_{x \to -\infty} 3 + \frac{2}{x^2} = 3 \quad \text{et} \quad \lim_{x \to -\infty} 4 - \frac{1}{x} = 4$$

Donc, par limite d'un quotient :

$$\lim_{x \to -\infty} \frac{3 + \frac{2}{x^2}}{4 - \frac{1}{x}} = \frac{3}{4}$$

De plus, $\lim_{x\to-\infty} x=-\infty$, donc, par limite d'un produit :

$$\lim_{x \to -\infty} x \times \frac{3 + \frac{2}{x^2}}{4 - \frac{1}{x}} = -\infty$$

Soit : $\lim_{x \to \infty} \frac{3x^2 + 2}{4x - 1} = -\infty$.

Méthode : Lever une forme indéterminée sur les fonctions avec des radicaux

- Vidéo https://youtu.be/n3XapvUfXJQ
- Vidéo https://voutu.be/v7Sbgkb9RoU

Calculer: 1)
$$\lim_{x \to +\infty} \sqrt{x+1} - \sqrt{x}$$
 2) $\lim_{x \to 5} \frac{\sqrt{x-1}-2}{x-5}$

1) •
$$\lim_{x \to +\infty} \sqrt{x+1} = +\infty$$
 et $\lim_{x \to +\infty} \sqrt{x} = +\infty$
Il s'agit d'une forme indéterminée du type " $\infty - \infty$ ".

• Levons l'indétermination à l'aide de l'expression conjuguée :
$$\sqrt{x+1} - \sqrt{x} = \frac{\left(\sqrt{x+1} - \sqrt{x}\right)\left(\sqrt{x+1} + \sqrt{x}\right)}{\sqrt{x+1} + \sqrt{x}}$$

$$= \frac{\left(\sqrt{x+1}\right)^2 - \left(\sqrt{x}\right)^2}{\sqrt{x+1} + \sqrt{x}}$$
$$= \frac{x+1-x}{\sqrt{x+1} + \sqrt{x}}$$
$$= \frac{1}{\sqrt{x+1} + \sqrt{x}}$$

• Par limite d'une somme : $\lim_{x \to +\infty} \sqrt{x+1} + \sqrt{x} = +\infty$. Et donc, par limite d'un quotient : $\lim_{x \to +\infty} \frac{1}{\sqrt{x+1} + \sqrt{x}} = 0$.

Soit $\lim_{x \to +\infty} \sqrt{x+1} - \sqrt{x} = 0$.

On peut vérifier la pertinence du résultat en traçant la courbe représentative de la fonction f définie par $f(x) = \sqrt{x+1} - \sqrt{x}$.

2) •
$$\lim_{x\to 5} \sqrt{x-1} - 2 = \sqrt{5-1} - 2 = 0$$
 et $\lim_{x\to 5} x - 5 = 5 - 5 = 0$ Il s'agit d'une forme indéterminée du type " $\frac{0}{0}$ ".

Levons l'indétermination à l'aide de l'expression conjuguée :

$$\frac{\sqrt{x-1}-2}{x-5} = \frac{(\sqrt{x-1}-2)(\sqrt{x-1}+2)}{(x-5)(\sqrt{x-1}+2)}$$

$$= \frac{x-1-4}{(x-5)(\sqrt{x-1}+2)}$$

$$= \frac{x-5}{(x-5)(\sqrt{x-1}+2)}$$

$$= \frac{1}{\sqrt{x-1}+2}$$

• Or
$$\lim_{x\to 5} \sqrt{x-1} + 2 = \sqrt{5-1} + 2 = 4$$

Donc, par limite d'un quotient, on a : $\lim_{x\to 5} \frac{1}{\sqrt{x-1}+2} = \frac{1}{4}$.

Soit :
$$\lim_{x \to 5} \frac{\sqrt{x-1}-2}{x-5} = \frac{1}{4}$$
.

En traçant à l'aide de la calculatrice la fonction f définie par $f(x) = \frac{\sqrt{x-1-2}}{x-5}$, il est possible de vérifier la pertinence de la solution trouvée en plaçant le point de coordonnées (5; 0,25).

Attention cependant, la calculatrice ne fait pas nécessairement apparaître que la fonction f n'est pas définie en 5.

Méthode : Déterminer une asymptote

Vidéo https://youtu.be/0LDGK-QkL80

Vidéo https://youtu.be/pXDhrx-nMto

Soit f la fonction définie sur $\mathbb{R} \setminus \{1\}$ par $f(x) = \frac{-2}{1-x}$.

Démontrer que la courbe représentative de la fonction f admet des asymptotes dont on précisera les équations.

-
$$\lim_{x \to +\infty} 1 - x = -\infty$$
 donc par limite d'un quotient, on a : $\lim_{x \to +\infty} \frac{-2}{1-x} = 0$. On prouve de même que : $\lim_{x \to -\infty} \frac{-2}{1-x} = 0$.

On en déduit que la droite d'équation y = 0 est asymptote horizontale à la courbe représentative de f en $+\infty$ et en $-\infty$.

$$-\lim_{x\to 1^-} 1 - x = 0^+$$
 et $\lim_{x\to 1^+} 1 - x = 0^-$

 $-\lim_{x\to 1^-}1-x=0^+\text{ et }\lim_{x\to 1^+}1-x=0^-$ D'après la règle sur la limite d'un quotient : $\lim_{x\to 1^-}\frac{-2}{1-x}=-\infty\text{ et }\lim_{x\to 1^+}\frac{-2}{1-x}=+\infty$

On en déduit que la droite d'équation x = 1 est asymptote verticale à la courbe représentative de f à gauche de 1 et à droite de 1.

En traçant, à l'aide de la calculatrice, la courbe de la fonction f, il est possible de vérifier les résultats.

IV. Limite d'une fonction composée

Méthode : Déterminer la limite d'une fonction composée

Vidéo https://youtu.be/DNU1M3li76k

Soit la fonction f définie sur $\left|\frac{1}{2}\right|$; $+\infty$ par : $f(x) = \sqrt{2 - \frac{1}{x}}$ Calculer la limite de la fonction f en $+\infty$.

On a : $\lim_{x \to +\infty} \frac{1}{x} = 0$, donc $\lim_{x \to +\infty} 2 - \frac{1}{x} = 2$

Donc, comme limite de fonction composée : $\lim_{x \to +\infty} \sqrt{2 - \frac{1}{x}} = \sqrt{2}$

On peut en effet poser $X = 2 - \frac{1}{x}$ et calculer $\lim_{X \to 2} \sqrt{X} = \sqrt{2}$.

V. <u>Limites et comparaisons</u>

1) Théorèmes de comparaisons

<u>Théorème</u>: Soit f et g deux fonctions définies sur un intervalle a; $+\infty$, a réel, telles que pour tout x > a, on a $f(x) \le g(x)$.

- Si $\lim_{x \to +\infty} f(x) = +\infty$ alors $\lim_{x \to +\infty} g(x) = +\infty$ (figure 1) Si $\lim_{x \to +\infty} g(x) = -\infty$ alors $\lim_{x \to +\infty} f(x) = -\infty$ (figure 2) Si $\lim_{x \to -\infty} f(x) = +\infty$ alors $\lim_{x \to -\infty} g(x) = +\infty$ (figure 3) Si $\lim_{x \to -\infty} g(x) = -\infty$ alors $\lim_{x \to -\infty} f(x) = -\infty$ (figure 4)

Par abus de langage, on pourrait dire que la fonction f pousse la fonction g vers $+\infty$ pour des valeurs de x suffisamment grandes.

Démonstration dans le cas de la figure 1 :

 $\lim_{x\to +\infty} f(x) = +\infty \text{ donc tout intervalle }]m \; ; \; +\infty [, m \text{ réel, contient toutes les valeurs de } f(x) \text{ dès que } x \text{ est suffisamment grand, soit } : f(x) > m.$ Or, dès que x est suffisamment grand, on a $f(x) \leq g(x)$. Donc dès que x est suffisamment grand, on a : g(x) > m. Et donc $\lim_{x\to +\infty} g(x) = +\infty$.

2) Théorème d'encadrement

Théorème des gendarmes : Soit f, g et h trois fonctions définies sur un intervalle]a; $+\infty[$, a réel, telles que pour tout x>a, on a $f(x)\leq g(x)\leq h(x)$. Si $\lim_{x\to +\infty} f(x)=L$ et $\lim_{x\to +\infty} h(x)=L$ alors $\lim_{x\to +\infty} g(x)=L$.

Remarque : On obtient un théorème analogue en $-\infty$.

Par abus de langage, on pourrait dire que les fonctions f et h (les gendarmes) se resserrent autour de la fonction g pour des valeurs de x suffisamment grandes pour la faire tendre vers la même limite.

Ce théorème est également appelé le théorème du sandwich.

Méthode : Utiliser les théorèmes de comparaison et d'encadrement

■ Vidéo https://youtu.be/OAtkpYMdu7Y

Vidéo https://youtu.be/Eo1jvPphja0

1) $\lim_{x \to +\infty} x + \sin x$ 2) $\lim_{x \to +\infty} \frac{x \cos x}{x^2 + 1}$ Calculer:

2)
$$\lim_{x \to +\infty} \frac{x \cos x}{x^2 + 1}$$

1) • $\lim_{x\to +\infty} \sin x$ n'existe pas.

Donc sous la forme donnée, la limite cherchée est indéterminée.

Levons l'indétermination :

- Pour tout x, $-1 \le \sin x$ donc : $x 1 \le x + \sin x$.
- Or $\lim_{x \to +\infty} x 1 = +\infty$ donc d'après le théorème de comparaison :

$$\lim_{x \to +\infty} x + \sin x = +\infty$$

2) • $\lim_{x \to +\infty} \cos x$ n'existe pas.

Donc sous la forme donnée, la limite cherchée est indéterminée.

Levons l'indétermination :

• Pour tout x, $-1 \le \cos x \le 1$ donc : $-x \le x \cos x \le x$, car x > 0Et donc:

$$-\frac{x}{x^2+1} \le \frac{x \cos x}{x^2+1} \le \frac{x}{x^2+1}$$
$$-\frac{x}{x^2} \le -\frac{x}{x^2+1} \le \frac{x \cos x}{x^2+1} \le \frac{x}{x^2+1} \le \frac{x}{x^2}$$

$$Soit: -\frac{1}{x} \le \frac{x \cos x}{x^2 + 1} \le \frac{1}{x}$$

• Or:
$$\lim_{x \to +\infty} -\frac{1}{x} = \lim_{x \to +\infty} \frac{1}{x} = 0$$

D'après le théorème des gendarmes, on a : $\lim_{x \to +\infty} \frac{x \cos x}{x^2 + 1} = 0$.

VI. Notion de continuité

Vidéo https://youtu.be/XpjKserte6o

Exemples et contre-exemples :

La courbe représentative d'une fonction continue se trace sans lever le crayon.

<u>Définition</u>: Soit une fonction f définie sur un intervalle I contenant un réel a.

- f est continue en a si : $\lim_{x \to a} f(x) = f(a)$.
- f est continue sur I si f est continue en tout point de I.

Exemples:

- Les fonctions $x \mapsto |x|, x \mapsto x^n \ (n \in \mathbb{N})$ et plus généralement les fonctions polynômes sont continues sur \mathbb{R} .
- Les fonctions $x \mapsto \sin x$ et $x \mapsto \cos x$ sont continues sur \mathbb{R} .
- La fonction $x \mapsto \sqrt{x}$ est continue sur $[0; +\infty[$.
- La fonction $x \mapsto \frac{1}{x}$ est continue sur $]-\infty$; 0[et elle est continue sur $]0; +\infty[$.

Remarque:

Les flèches obliques d'un tableau de variation traduisent la continuité et la stricte monotonie de la fonction sur l'intervalle considéré.

Théorème : Une fonction dérivable sur un intervalle *I* est continue sur cet intervalle.

Méthode : Étudier la continuité d'une fonction

Vidéo https://youtu.be/03WMLyc7rLE

On considère la fonction f définie sur \mathbb{R} par $f(x) = \begin{cases} -x+2, \ pour \ x < 3. \\ x-4, \ pour \ 3 \le x < 5 \\ -2x+13, \ pour \ x \ge 5 \end{cases}$

La fonction f est-elle continue sur \mathbb{R} ?

Les fonctions $x \mapsto -x+2$, $x \mapsto x-4$ et $x \mapsto -2x+13$ sont des fonctions polynômes donc continues sur \mathbb{R} .

Ainsi la fonction f est continue sur $]-\infty$; 3[, sur [3; 5[et sur $[5; +\infty[$.

Étudions alors la continuité de f en 3 et en 5 :

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} -x + 2 = -3 + 2 = -1$$
$$\lim_{x \to 3^{+}} f(x) = \lim_{x \to 3^{+}} x - 4 = 3 - 4 = -1$$

Donc:
$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{+}} f(x) = f(3)$$

donc la fonction f est continue en 3.

$$-\lim_{x \to 5^{-}} f(x) = \lim_{x \to 5^{-}} x - 4 = 5 - 4 = 1$$
$$\lim_{x \to 5^{+}} f(x) = \lim_{x \to 5^{+}} -2x + 13 = -2 \times 5 + 13 = 3$$

La limite de f en 5 n'existe pas. On parle de limite à gauche de 5 et de limite à droite de 5.

La fonction f n'est donc pas continue en 5.

La fonction f est continue sur $]-\infty$; 5[et sur $[5; +\infty[$.

VII. Théorème des valeurs intermédiaires

Théorème des valeurs intermédiaires :

On considère la fonction f définie et continue sur un intervalle $[a \; ; \; b]$.

Pour tout réel k compris entre f(a) et f(b), il existe au moins un réel c compris entre a et b tel que f(c) = k.

Conséquence:

Dans ces conditions, l'équation f(x) = k admet au moins une solution dans l'intervalle [a; b].

Cas particuliers:

- Dans le cas où la fonction f est strictement monotone sur l'intervalle $[a\ ;\ b]$ alors le réel c est unique.
- Dans le cas où f(a) et f(b) sont de signes contraires alors il existe au moins un réel c compris entre a et b tel que f(c) = 0.

Dans la pratique, pour démontrer que l'équation f(x) = 0 admet une unique solution sur l'intervalle [a; b], on démontre que :

- 1. f est continue sur [a; b],
- 2. f change de signe sur [a; b],
- 3. f est strictement monotone sur [a; b].

Les conditions 1 et 2 nous assurent de l'existence de la solution. La condition 3 apporte en plus son unicité.

Méthode: Résolution approchée d'une équation

EXEMPLE 1

Vidéo https://youtu.be/fkd7c3lAc3Y

On considère la fonction f définie sur \mathbb{R} par $f(x) = x^3 - 3x^2 + 2$.

- 1) Démontrer que l'équation f(x) = 0 admet exactement une solution sur l'intervalle [2,5;5].
- 2) À l'aide de la calculatrice, donner un encadrement au centième de la solution α .
- 1) Existence de la solution :
 - La fonction f est **continue** sur l'intervalle [2,5;5].

$$-f(2,5) = 2,5^3 - 3 \times 2,5^2 + 2 = -1,125 < 0$$

$$f(5) = 5^3 - 3 \times 5^2 + 2 = 52 > 0$$

Donc la fonction f change de signe sur l'intervalle [2,5;5].

Donc, d'après le théorème des valeurs intermédiaires, l'équation f(x) = 0 admet au moins une solution.

• Unicité de la solution :

$$\overline{f'(x)} = 3x^2 - 6x = 3x(x - 2)$$

Donc, pour tout x de [2,5;5], f'(x) > 0.

La fonction f est donc **strictement croissante** sur l'intervalle [2,5;5].

On en déduit que l'équation f(x) = 0 admet une unique solution sur [2,5;5].

- 2) A l'aide de la calculatrice, il est possible d'effectuer des balayages successifs en augmentant la précision.
- Vidéo TI https://youtu.be/MEkh0fxPakk

Vidéo Casio https://youtu.be/XEZ5D19FpDQ

Vidéo HP https://youtu.be/93mBoNOpEWq

X	[Y1]
BULLWNF	2 0 2 18 52 110

La solution est comprise entre 2 et 3.

X	Ι Υ 1
2 1 2 2 2 2 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3	1.969 11.969 11.703 11.755 11.125 1.704

La solution est supérieure à 2,6

X	[Y1]
	-1.456 -1.125 704 187 .432 1.159 2

La solution est comprise entre 2,7 et 2,8

X	[Y1]
2.71 2.72 2.73 2.74 2.75 2.76	1.187 1.1298 1.0716 1.0123 .04802 .10938 .17178

La solution est comprise entre 2,73 et 2,74.

On en déduit que $2,73 < \alpha < 2,74$.

Remarque : Une autre méthode consiste à déterminer un encadrement par dichotomie.

EXEMPLE 2

Vidéo https://youtu.be/UmGQf7gkvLg

On considère la fonction f définie sur \mathbb{R} par $f(x) = x^3 - 4x^2 + 6$. Démontrer que l'équation f(x) = 2 admet au moins une solution sur [-1; 4].

- f est continue sur [–1 ; 4] car une fonction polynôme est continue sur $\mathbb{R}.$

-
$$f(-1) = (-1)^3 - 4(-1)^2 + 6 = 1$$

$$f(4) = 4^3 - 4 \times 4^2 + 6 = 6$$

Donc 2 est compris entre $f(-1)$ et $f(4)$.

D'après le théorème des valeurs intermédiaires, on en déduit que l'équation f(x) = 2 admet au moins une solution sur l'intervalle [-1; 4].

VIII. Fonction convexe et fonction concave

1) Dérivée seconde

<u>Définition</u>: Soit une fonction f dérivable sur un intervalle I dont la dérivée f' est dérivable sur I.

On appelle **fonction dérivée seconde** de f sur l la dérivée de f' et on note :

$$f''(x) = (f'(x))'.$$

Exemple:

Soit la fonction f définie sur \mathbb{R} par $f(x) = 3x^3 - 5x^2 + 1$.

Pour tout x de \mathbb{R} , on a : $f'(x) = 9x^2 - 10x$.

Pour tout *x* de \mathbb{R} , on a : f''(x) = (f'(x))' = 18x - 10.

Vidéo https://youtu.be/ERML85y_s6E

2) <u>Définitions avec les cordes</u>

<u>Définition</u>: Une **corde** est un segment reliant deux points d'une courbe.

<u>Définitions</u>: Soit une fonction f définie sur un intervalle I.

- La fonction f est **convexe** sur l si, sur l'intervalle l, sa courbe représentative est entièrement située en dessous de chacune de ses cordes.
- La fonction f est **concave** sur I si, sur l'intervalle I, sa courbe représentative est entièrement située au-dessus de chacune de ses cordes.

3) Définitions avec les tangentes

Définitions : Soit une fonction f dérivable sur un intervalle I.

- La fonction f est **convexe** sur l si, sur l'intervalle l, sa courbe représentative est entièrement située au-dessus de chacune de ses tangentes.
- La fonction f est **concave** sur I si, sur l'intervalle I, sa courbe représentative est entièrement située en dessous de chacune de ses tangentes.

4) Propriétés

Propriétés :

- La fonction carré $x \mapsto x^2$ est convexe sur \mathbb{R} .
- La fonction cube $x \mapsto x^3$ est concave sur $]-\infty$; 0] et convexe sur $[0; +\infty[$.
- La fonction inverse $x \mapsto \frac{1}{x}$ est concave sur $]-\infty$; 0[et convexe sur]0; $+\infty[$.
- La fonction racine carrée $x \mapsto \sqrt{x}$ est concave sur $[0; +\infty[$.

Propriété : Soit une fonction f définie et dérivable sur un intervalle I.

- Dire que la fonction f est convexe sur I, revient à dire que sa dérivée f' est croissante sur I, soit :

$$f''(x) \ge 0$$
, pour tout x de I.

- Dire que la fonction f est concave sur I, revient à dire que sa dérivée f' est décroissante sur I, soit :

$$f''(x) \le 0$$
, pour tout x de l.

Démonstration:

Vidéo https://youtu.be/-OG8I5Batuo

- Démontrons que f est convexe, si f' est croissante :

On considère la fonction g dérivable sur l et définie par :

$$g(x) = f(x) - f'(a)(x - a) - f(a).$$

Alors : g'(x) = f'(x) - f'(a).

Or f' est croissante sur I, donc g' est également croissante.

De plus, g'(a) = 0. Donc g' est négative pour $x \le a$ et positive pour $x \ge a$.

On peut donc compléter le tableau de variations de g.

x	a
g'(x)	- 0 +
g(x)	0

En effet :
$$g(a) = f(a) - f'(a)(a - a) - f(a) = 0$$

Donc $g(x) \ge 0$ sur l.

Soit
$$f(x) \ge f'(a)(x-a) + f(a)$$

On en déduit que la courbe représentative de f est au-dessus de ses tangentes sur l et donc que f est convexe sur l.

- Démonstration analogue pour prouver que f est concave, si f' est décroissante.

Méthode : Étudier la convexité d'une fonction

Vidéo https://youtu.be/8H2aYKN8NGE

Soit la fonction f définie sur \mathbb{R} par $f(x) = \frac{1}{3}x^3 - 9x^2 + 4$.

Étudier la convexité de la fonction f.

Pour tout x de \mathbb{R} , on a : $f'(x) = x^2 - 18x$.

Pour tout x de \mathbb{R} , on a : f''(x) = 2x - 18 qui s'annule pour x = 9.

Pour tout $x \le 9$, $f''(x) \le 0$.

Pour tout $x \ge 9$, $f''(x) \ge 0$.

Donc f est concave sur $]-\infty$; 9] et f est convexe sur $[9; +\infty[$.

IX. Point d'inflexion

Vidéo https://youtu.be/r8sYr6ToeLo

<u>Définition</u>: Soit une fonction f dérivable sur un intervalle I.

Un **point d'inflexion** est un point où la courbe traverse sa tangente en ce point.

Remarque importante:

Au point d'inflexion, la fonction change de convexité.

Exemple:

On considère la fonction cube $x \mapsto x^3$.

La tangente au point O(0,0) est l'axe des abscisses.

Pour $x \le 0$, la courbe est en dessous de sa tangente.

Pour $x \ge 0$, la courbe est au-dessus de sa tangente.

La tangente à la courbe en O traverse donc la courbe. Le point O est un point d'inflexion de la courbe de la fonction cube.

<u>Méthode</u>: Étudier la convexité pour résoudre un problème

Vidéo https://youtu.be/ XlqCeLcN1k

Une entreprise fabrique des clés USB avec un maximum de 10 000 par mois.

Le coût de fabrication \mathcal{C} (en milliers d'euros) de x milliers de clés produites s'exprime par : $\mathcal{C}(x) = 0.05x^3 - 1.05x^2 + 8x + 4$.

- 1) À l'aide de la calculatrice graphique, conjecturer la convexité de la fonction C. En déduire si la courbe possède un point d'inflexion.
- 2) Démontrer ces résultats.
- 3) Interpréter les résultats obtenus au regard du contexte de l'exercice.
- 1) La fonction semble concave sur l'intervalle [0; 7] et convexe sur l'intervalle [7; 10]. La courbe semble posséder un point d'inflexion pour x = 7.

2)
$$C(x) = 0.05x^3 - 1.05x^2 + 8x + 4$$

Donc :
$$C'(x) = 0.15x^2 - 2.1x + 8$$

Et :
$$C''(x) = 0.3x - 2.1$$

Or,
$$0.3x - 2.1 = 0$$
 pour $x = 7$.

On peut ainsi résumer les variations de \mathcal{C}' et la convexité de \mathcal{C} dans le tableau suivant :

X	0		7		10
C''(x)		_	0	+	
C'(x)	,		*		→
Convexité de C		concave		convex	е

$$C(7) = 25.7$$

Ainsi, le point de coordonnées (7 ; 25,7) est un point d'inflexion de la courbe.

3) Après le point d'inflexion, la fonction est convexe, la croissance du coût de fabrication \mathcal{C} s'accélère. Avant le point d'inflexion, la fonction est concave, la croissance du coût de fabrication ralentie.

Ainsi, à partir de 7000 clés produites, la croissance du coût de fabrication s'accélère.

Méthode : Prouver une inégalité en utilisant la convexité d'une fonction

Vidéo https://youtu.be/AaxQHlsxZkg

Soit la fonction f définie sur \mathbb{R} par $f(x) = x^3 - 2x^2$.

- a) Étudier la convexité de la fonction f.
- b) Déterminer l'équation de la tangente à la fonction f en -1.
- c) En déduire que pour tout réel x négatif, on a : $x^3 2x^2 \le 7x + 4$.
- a) Pour tout x de \mathbb{R} , on a : $f'(x) = 3x^2 4x$.

Pour tout
$$x$$
 de \mathbb{R} , on a : $f''(x) = 6x - 4$ qui s'annule pour $x = \frac{2}{3}$.

Pour tout
$$x \le \frac{2}{3}$$
: $f''(x) \le 0$.

Pour tout
$$x \ge \frac{3}{3}$$
: $f''(x) \ge 0$.

Donc f est concave sur $\left]-\infty; \frac{2}{3}\right]$ et f est convexe sur $\left[\frac{2}{3}; +\infty\right]$.

b) L'équation de la tangente à la courbe de la fonction f en -1 est de la forme :

$$y = f'(-1)(x - (-1)) + f(-1)$$
Or, $f'(-1) = 3 \times (-1)^2 - 4 \times (-1) = 7$ et $f(-1) = (-1)^3 - 2 \times (-1)^2 = -3$

Donc, l'équation de la tangente en -1 est : y = 7(x + 1) - 3Soit : y = 7x + 4

c) f est concave sur $\left]-\infty$; $\frac{2}{3}\right]$ donc sur cet intervalle, la courbe représentative de f est située en dessous de ses tangentes.

Soit, en particulier, la courbe de f est située en dessous de la tangente en -1.

On a ainsi, $f(x) \le 7x + 4 \operatorname{sur} \left[-\infty; \frac{2}{3} \right]$.

Soit $x^3 - 2x^2 \le 7x + 4$ sur $\left| -\infty; \frac{2}{3} \right|$ et donc en particulier pour tout x négatif.

Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur.

<u>www.maths-et-tiques.fr/index.php/mentions-legales</u>