Electromagnetismo II

1ª entrega de problemas

- 1.- Dado el circuito de la figura:
- (a) Obtener las corrientes que circulan por cada rama utilizando las leyes de Kirchhoff.
- (b) Obtener las corrientes que circulan por cada rama utilizando el método de las corrientes de malla.
- (c) Las intensidades que circulan por cada rama resolviendo los circuitos parciales, con un generador cada uno, en que se descompone el circuito al aplicar el principio de superposición.
- (d) Determinar el circuito equivalente de Thevenin entre los puntos *A* y *B* eliminando la rama en la que se encuentra el condensador de capacidad 1 F.
- (e) Obtener el valor de la corriente que circula por la rama AB en la que se encuentra el condensador de capacidad 1 F utilizando el equivalente de Thevenin determinado en el apartado (d).
- (f) Realizar un balance de potencias complejas para el circuito completo comprobando que se satisface el teorema de Boucherot.

1a. Obtener las corrientes que circulan por cada rama utilizando las leyes de Kirchoff

Leyes de Kirchoff:

- 1. La suma algebraica de las corrientes instantáneas que fluyen hacia un nudo es cero.
- 2. La suma algebraica de los voltajes aplicados en una malla cerrada más la suma de las diferencias de potencial instantáneas en las impedancias es cero.

Vamos a usar el método de las corrientes de malla, que se basa en las leyes de Kirchoff: El primer paso es asignar mallas con corrientes $\rm I_4$, $\rm I_2$ e $\rm I_3$

Seguidamente nombramos Z_i a cada impedancia y aplicamos las leyes para obtener. Las ecuaciones de malla pueden escribirse con la forma $\sum_{i=1}^n \vec{Z}_{ij} \vec{I}_j = \vec{V}_i$

$$\begin{split} I_1(\vec{Z}_1 + \vec{Z}_2 + \vec{Z}_3) - I_2(\vec{Z}_2) - I_3(\vec{Z}_3) &= V_1 \\ -I_1(\vec{Z}_2) + I_2(\vec{Z}_2 + \vec{Z}_5) &= V_2 \iff \begin{pmatrix} \vec{Z}_1 + \vec{Z}_2 + \vec{Z}_3 & -\vec{Z}_2 & -\vec{Z}_3 \\ -\vec{Z}_2 & \vec{Z}_2 + \vec{Z}_5 & 0 \\ \vec{Z}_3 & 0 & -\vec{Z}_3 - \vec{Z}_4 \end{pmatrix} \begin{pmatrix} \vec{I}_1 \\ \vec{I}_2 \\ \vec{I}_3 \end{pmatrix} &= \begin{pmatrix} \vec{V}_1 \\ \vec{V}_2 \\ \vec{V}_2 \end{pmatrix} \end{split}$$

Es fácil ver que la matriz de impedancias es simétrica, por lo que de momento todo nos cuadra. Basta calcular el valor de las impedancias para obtener la solución.

$$\vec{Z}_{1} = \vec{R}_{1} + \vec{X}_{L1} + \vec{X}_{C1} \qquad \vec{Z}_{1} = \vec{R}_{1} \qquad \vec{Z}_{2} = \omega L_{2} \qquad = \omega$$

$$\vec{Z}_{2} = \vec{R}_{2} + \vec{X}_{L2} + \vec{X}_{C2} \qquad \vec{Z}_{2} = \vec{X}_{L2} \qquad \vec{Z}_{3} = \omega L_{2} \qquad = \omega$$

$$\vec{Z}_{i} = \vec{R}_{i} + \vec{X}_{Li} + \vec{X}_{Ci} \iff \vec{Z}_{3} = \vec{R}_{3} + \vec{X}_{L3} + \vec{X}_{C3} \iff \vec{Z}_{3} = \vec{X}_{C3} \iff \vec{Z}_{3} = \frac{1}{\omega C_{3}} \qquad = \frac{1}{2\omega}$$

$$\vec{Z}_{4} = \vec{R}_{4} + \vec{X}_{L4} + \vec{X}_{C4} \qquad \vec{Z}_{4} = \vec{R}_{4} \qquad \vec{Z}_{4} = 0.5$$

$$\vec{Z}_{5} = \vec{R}_{5} + \vec{X}_{L5} + \vec{X}_{C5} \qquad \vec{Z}_{5} = \vec{X}_{C5} \qquad \vec{Z}_{5} = \frac{1}{\omega C_{5}} \qquad = \frac{1}{\omega}$$

Obtenemos ω a partir de los generadores.

$$\vec{V}_{1} = 10\cos(t + 45^{\circ}) \Longrightarrow \begin{matrix} V_{1_{0}} = 10 \\ \omega = 1 \\ \varphi_{1} = 45^{\circ} \end{matrix} \iff V_{1_{\text{eff}}} = \frac{10}{\sqrt{2}} = 5\sqrt{2} \iff \vec{V}_{1} = 5 + 5j \\ \vec{Z}_{1} = 0.5 \\ \vec{Z}_{2} = j \\ \iff \vec{Z}_{3} = -0.5j \\ \vec{Z}_{4} = 0.5 \\ \vec{Z}_{4} = 0.5 \\ \vec{Z}_{5} = -j \end{cases}$$

Obtenemos el signo de la parte compleja de cada impedancia a partir de la fórmula $\vec{Z}=R+j(X_L-X_C)$ Por tanto, nuestra ecuación matricial queda como

$$\begin{pmatrix} 0.5 + 0.5j & -j & 0.5j \\ -j & 0 & 0 \\ 0.5j & 0 & -0.5 + 0.5j \end{pmatrix} \begin{pmatrix} \vec{I}_1 \\ \vec{I}_2 \\ \vec{I}_3 \end{pmatrix} = \begin{pmatrix} 5 + 5j \\ 2 - 2j \\ 2 - 2j \end{pmatrix} \longrightarrow \mathbf{I}$$

- **2.-** El equivalente de Thevenin $(\bar{V}_{Th} \text{ y } \bar{Z}_{Th} = R_{Th} + jX_{Th})$ de un circuito de corriente alterna se sinusoidal se conecta a una impedancia de carga $\bar{Z} = R + jX$. Determinar:
- (a) La intensidad que circula por el circuito.
- (b) La potencia activa desarrollada en la impedancia de carga.
- (c) El valor de la impedancia de carga $\overline{Z} = R + jX$ para que haya una transferencia máxima de potencia (activa) y el valor de esta potencia máxima.
- (d) Aplicar el resultado obtenido al circuito de la figura.

- 3.- Un circuito serie *RLC* está alimentado por un generador de tensión eficaz 100 V. Si los valores de los parámetros son $R = 5 \Omega$, L = 2 mH, $C = 20 \mu\text{F}$. Determinar:
- (a) La pulsación de resonancia.
- (b) La intensidad compleja que circula por el circuito si la pulsación del generador es igual a la pulsación de resonancia.
- (c) Las tensiones complejas tensiones entre los extremos de cada elemento pasivo (R, L y C) a la pulsación de resonancia.
- (c) La anchura de banda pasante, los valores de ω_1 y ω_2 , extremos de la banda pasante, y el factor de calidad del circuito resonante.
- (d) Las tensiones entre los extremos de la resistencia, la autoinducción y el condensador a la pulsación 4/5 veces la de resonancia.
- (e) Representar gráficamente las tensiones normalizadas (divididas por la tensión eficaz) en los extremos de la resistencia, la autoinducción y el condensador en función de la pulsación ω .