2011-2012 第一学期《基础物理实验》期末试题

一. 单项选择题(每题 31. X=tg73°16′有()位有效			
A. 4 B. 5		D. 7	
2. 若 $f = \frac{E}{V} - 1$,且 $E \pm u(E)$	$E) = (3.000 \pm 0.002)V, V$	$\pm u(V) = (2.750 \pm 0.002)$	V,则 f ± u(f) = ()
A. $(9.1 \pm 0.1) \times 10^{-2}$ C. $(9.09 \pm 0.15) \times 10^{-2}$		B. (9.09 ± 0.10) D. $(9.1 \pm 0.2) \times$	
3. 已知 $N=\frac{X^3Y^2}{Z}$,则其相对不	确定度 ()		
A. $\frac{u(N)}{N} = 3\frac{U(X)}{X} + 2\frac{U(Y)}{Y} - \frac{U(Z)}{Z}$	B	$\frac{1(N)}{N} = \sqrt{3 \frac{U^2(X)}{X^2} + 2 \frac{U^2(Y)}{Y^2} - \frac{U^2(Y)}{Y^2}}$	$\frac{U^2(Z)}{Z^2}$
$C.\frac{u(N)}{N} = \sqrt{9 \frac{U^2(X)}{X^2} + 4 \frac{U^2(Y)}{Y^2} - \frac{U^2}{X^2}}$	$\frac{\overline{(Z)}}{Z^2} \qquad \qquad D. \frac{u(N)}{N}$	$\frac{1}{Y} = \sqrt{9 \frac{U^2(X)}{X^2} + 4 \frac{U^2(Y)}{Y^2} + \frac{U^2}{X^2}}$	7.2 (Z) 7.2
4. 用停表测量蛋白周期,启停	一次秒表的误差来自对提	翼动始末位置判断不准带入	、的方法误差,一般 ∆ 位置不
会超过1/3 个周期。实验: A. 0.4 B. 0.2	测出 10 个周期的时间为 : C. 0.1	LOT=20.13",则其不确定 D.0.04	ご度()
5. 直流电位差计的仪器误差图	$ 艮\Delta_{\dot{\chi}} = a\%(U_X + \frac{U0}{10}) $ 。 U	25 型电位差计的测量上限	以为 1.911110V,准确度为
 0.01 级。如果面板的示值 A. 0.0002v B. 0.0 6. 平均值的标准偏差 S(x̄) 自 	0002v	D. 0.000	
A. $\sqrt{\frac{\sum (x_{i}-\bar{x})}{k(k-1)}}$ B.	$\sqrt{\frac{\sum (x_{i} - \bar{x})^2}{k(k-1)}}$	$C. \ \sqrt{\frac{\sum (x_{i-}A)^2}{k}}$	D. $\sqrt{\frac{\sum (x_{i}-\bar{x})^2}{k-1}}$
7. 对满足正态分布的物理量(A. >68.3%	故多次测量,取平均值作 B. ≈ 2/3	为最终结果表述 $\bar{x} \pm t(\bar{x})$ C. =68.3%	,则其置信概率() D.=99.73%
8. 下列说法中()是错误的 A. 一组测量数据中,出现异常 B. 测量条件一经确定,系统误 C. 随机误差可以通过多次重复 D. 通过改变测量条件,可以发	的值即为粗大误差,应予 是差也随之确定,其大小和 [测量来发现		
9. 下列关于测量的说法中(A. 测量是为确定被测对象的量B. 测量结果是根据已有信息级C. 在相同测量条件下,对同-D. 在不同测量条件下,对同-	量值而进行的一组操作 条件对被测量值做出的最 一被测量进行多次测量所	得结果的一致称为测量结果	
10. 在同一被测量量的多次测量A. 仪器误差 B. 系统误 二. 填空题(每题3分) 11. 用 0.02mm 的游标卡尺测	差 C. 随机误差	É D. 粗大误差	
器误差限位,不确定			

数字)

- 13. 用 1.0 级、量程为 15V 的电压表测量约 12V 的电压一次,其不确定度 u(V)=______ (V).若多次测量的标准差 s(v)=0.05V ,则 u(v)= ______ (V)。(按最终结果表述原则)
- 14. 在满足正态分布的随机误差中,大小相等而付好相反的误差出现概率_____
- 15. 甲乙丙三人分别对一个长度为 15cm 的物体进行多次测量,测试的结果如图,由此说明______(甲、
- 乙、丙) 的测量准确度最高
- **16**.相对眼睛处于前后不同平面的两个物体,当左右晃动眼睛时,两者之间的位置将出现相对位移,这种现象叫做_________,其中位移方向与眼睛晃动的方向相反的物体距离眼睛较_______
- 三. 多项选择题(每题 3分, 错选 0分, 少选可得相应的分数)
- 17. 下列哪些性质适用于直接测量量 x? ()
- A. 可通过直接比较获得测量量值
- B. 必须进行多次测量
- C. 其不确定度 A 类

分量 $\mathbf{u}_a(x) = s(\bar{x}) = \sqrt{\frac{\sum x_i - \bar{x}}{k(k-1)}}$ D.其不确定度 B 类分量 $\mathbf{u}_b(x) = \frac{\Delta}{\sqrt{3}}$

- 18. 下列哪些说法是正确的? ()
- A. 实验条件改变时系统误差与随机误差可相互转化
- B. 精密度高,表示在规定条件下多次测量时,所得结果重复性好
- C. A 类不确定度反映随机误差的大小,B 类不确定度则反映系统误差的大小 D. 如果被测量 X 服从正态分布, $X\pm u(x) = 6.33 \pm 0.02$ mm 表示 X 的真值在(6.31,6.35)nm 范围内的概率为 68.3%
- 19. 下列哪些操作不符合电学实验操作规程? ()
- A. 按回路接线法连接线路,将黑色导线连接到电源正极,红色导线连接到电源负极
- B. 实验结束后,要先断开电源,拆线时仍按接线的回路逐根拆除导线 C. 接通电源前,滑动变阻器的滑动端应放到使接入电路的电阻最大一段,亦即安全位置
- D. 由于经常需要调节滑线变阻器, 所以应将其放在手边
- 20. 在现在使用的教材中,用 $\mathbf{u} = \sqrt{\mathbf{u}_a^2 + \mathbf{u}_b^2}$ 表示直接测量量的合成不确定度,其中: $\mathbf{u}_a = \sqrt{\frac{\sum (x_i \bar{x})^2}{n(n-1)}}$, $\mathbf{u}_b = \sqrt{\frac{\sum (x_i \bar{x})^2}{n(n-1)}}$

 $\frac{\Delta}{\sqrt{3}}$ 下列那些理解是对的? ()

- A. u_b仅是仪器误差的影响
- B. 一般 \mathbf{u}_h 远大于 \mathbf{u}_a
- C. u_b采用了近似均匀分布的处理
- D.合成后的置信概率≈ 68.3%在此处键入公式。
- **21**. 不确定度在可修正的系统误差修正之后,将余下的全部误差安产生的原因及计算方法不同分为两类,下面哪些属于 B 类? ()
- A. 由测量仪器产生的的误差分量
- B. 由环境产生的误差分量
- C. 同一条件下的多次测量值按统计方法计算的误差分量
- D. 由测量条件产生的误差分量

四.实验题(**21** 题任选九题,每题三分,若多做按照前九题给分)以下为单选

- 22. 光杠杆发测弹性模量实验中,若粗调时看到如图所示情形时,将对后面产生什么样的影响? ()
- A.望远镜中标尺像模糊不清
- B.望远镜中标尺像左右清晰度不均匀
- C.望远镜中标尺像上下清晰度不均匀
- D. 望远镜中标尺读数与望远镜光轴不等高
- **23**. 测量金属细长杆转动惯量时,若未将杆的中心放在转轴的位置上,如图,则测出的转动惯量将()(忽略杆倾斜带来的系统误差)
- A. 产生负误差

B. 产生正误差

C. 不产生误差

- D. 产生正、负误差不能确定
- 24.测定冰的溶解热实验中,应采用()来测量冰块质量。
- A. 将冰块直接放在电子天平上
- B. 分别用塑料纸包好后放在电子天平上
- C. 分别测量加冰前、后整个量热器的质量, 然后求两者的质量差
- D. 分别测量加冰前和试验后量热器内筒+水的质量, 然后求两者的质量差
- 25. 在稳态法测不良导体热导率中,我们用铜-康铜热电偶来测量温度,当温差为 100℃时其产生的温差电动势约为 4.2mv。现在有一热电偶发生故障,修理时用错了材料,使温差电动势减小了,用此热电偶进行实验将使热导率()
- A. 不会产生误差

B. 产生的影响无法确定

C. 产生正误差

- D. 产生负误差
- 26. 如图所示为 QJ19 型双电桥面板图,与用此电桥测量一个阻值约为 0.0005 Ω 的电阻,所用标准电阻阻值为 0.001 Ω ,轻 微比例臂 R1,R2 应当如何选取()

A. R1=100 Ω ,R2=100 Ω

B. R1=1000 Ω ,R2=1000

Ω

C. R1=10 Ω ,R2=10000 Ω

D.只要取 R1=R2 即可

- 27. 单电桥不适合于测量低电阻的原因是()
- A. 由于导线电阻过大,造成测量灵敏度过低
- B. 由于接触电阻过大,造成测量灵敏度过低
- C. 由于附加电阻与待测电阻等量级,使测量结果出现较大正误差
- D. 由于附加电阻大于待测电阻,使测量结果出现较大负误差 28.补偿法测电动势的实验电路如图,如果测量中发现开关置 于标准电池 一侧时检流计始终向某个方向偏转,而置于干 电池 一侧时检流计可以示零。其可能原因是())
- A.与检流计串联的电阻有短路故障
- B. $E < E_N$
- C.连接 R1 的导线中有断路故障
- D. 以上方法均不对

盟运技光轴位置

第 22 题图

第 23 幾图

29. 下列测透镜焦距的方法中() 不存在透镜中心与支架刻线位置不重合的系统误 差(如图)

A. 物距像距法

B.自准法 C. 共轭法 D.仅利用一束平行光

30.下列关于最小偏向角法测三棱镜折射率实验的说法中 () 是正确的

A. 沿某一方向转动平台看到谱线向反方向折回时,该位置即为各谱线的最小偏向角 位置

- B. 三棱镜玻璃的折射率是一个常数, 与入射光的波长无关
- C. 谱线的最小偏向角位置也是该谱线的最小折射角位置
- D. 不同颜色的谱线具有不同的最小偏向角

31.分光仪实验中三棱镜的放置如图所示,如果要改变 AC 面的倾斜度而不改变 AB 面的倾斜度,应调节()

A. 平台螺钉 a

B. 平台螺钉 b

C. 平台螺钉 c

D. 平台螺钉 a 或 b 均可

A. 凹面镜焦距(f_0)

B. 凹面镜焦距的一半 ($f_0/2$)

UJ25 型箱式电位差计测电动势,则其测量值将() (标准电池温 度修正公式: $E_N \approx E_{20} - 3.99 \times 10^{-5} (t - 20) - 0.94 \times 10^{-6} (t - 20)^2$

- A. 存在正误差
- B. 存在负误差
- C. 没有误差
- D. 正负误差不能确定

33.某人在大于 20℃的室温下,用存在正误差的温度计读取数据,再用

34. 用霍尔位置传感器法测金属弹性模量时,需要一个均匀梯度的磁场,同时应将霍尔元件置于适当位置, 下图中() 可产生正确的磁场,并且霍尔元件摆放到正确位置

第 31 題图

以下是多数	 起
-------	-----------

- 35.下列关于迈克尔逊干涉仪的说法哪些是正确的()
- A. 迈克尔逊干涉仪中补偿仪的作用是补偿两反射镜到分数板距离不等产生的光程差
- B. 迈克尔逊干涉仪的最小分度为 0.0001mm, 它是一种精密的测长仪器
- C. 若观察到的干涉图样为一组平行条纹,这时两臂反射镜严格垂直
- D. 对严格的等倾干涉,干涉条纹每涌现一个环,臂长改变量等于单色光源波长的一半
- 36.下列关于平行光管的说法哪些是正确的()
- A. 测凸透镜焦距时,待测透镜安放的位置离平行光管物镜越近测量误差越小 距时,侧微目镜的叉丝必须与玻罗分划板的像无视差,即两者共面 光管物镜的焦平面
 - C. 玻罗分划板位于平行

B. 测图透镜焦

D. 平行光管中白炽灯的位置在物镜焦平面上, 因此平行光管出射平行光

以下是选择填空题

37. 如图电路适于测量 _____(电流表,电压表,欧姆表)的内阻 38. 在热功当量实验中,在考虑了系统散热之后,得到系统温度的实际变 化率为 $\frac{d_{\theta}}{d_{t}} = \frac{VJ}{IC_{M}} - K(\theta - \theta_{\text{环}})$ 。若数据处理时按 $\mathbf{x} = \theta_{i} - \theta_{\text{环}}$, $\mathbf{y} =$

 $\frac{\theta_{i+1}-\theta_1}{t_{i+1}+t_i}$ 选取变量,则在升温过程测出的热功当量将产生_____ (正,

零,负)误差

以下为填空题

39. 如图所示李萨如图与水平线相交的点数 $n_x = ___________,与垂直线$ 相交的点数 $n_v =$ ________,两信号频率比 f_v : $f_x =$ _______ 40.双棱镜实验中若各元件位置固定,用氦氖激光器(($\lambda = 632.8$ nm) 代替半导体激光器(\(\lambda =650nm \) , 虚光源的间距将______ 纹间距将_____。(波长对折射率的影响可以忽略) 41. 用示波器观察周期为 0.2ms 的正弦电压, 若在荧光屏上呈现了 4 个完 整而稳定的正弦波形,扫描电压的周期等于

42. 使用读数显微镜时要注意: 1.应 ______

轮,否则读数将带入 误差

调出物镜焦距 2. 测量过程中应始终向一个方向旋转鼓

第 39 疑图

五. 计算题(10分): 下面是某学生的数据处理报告,请重新处理数据,仔细找出其中所有的错误并帮他改正。若将正确部分改错将倒扣分。

43. 实验测得换能器间距 I 与半波数 n 的数据如下表。已知 $l=n\frac{\lambda}{2}+\Delta$,测量 I 时某种因素引起的最大误差取 0.1mm。忽略其余不确定度的影响,试用逐差法计算声波波长 λ .

	The same of	2	2	A	5	6	7	8	-	
n		- 4	3			V 20 4 20 4	22.222	37 164	41.817	46.502
11 mm	4.212	8.850	13.573	18.234	23.012	27.696	34.314	37,164		ACC
I/mm			NAME OF TAXABLE PARTY.	THE PARTY OF THE P	16.7	26	37	38	27	
22	31	32	33	34	35	30		100 536	183 742	188.023
ASSESSED V	146 012	150 552	155 382	160 116	164,701	169.273	173.832	178.516	103,670	-
Umm	145,815	120.333	133,302	100.110	BE NAMED AND ADDRESS OF THE PARTY OF THE PAR					

解: 由
$$l=n\frac{\lambda}{2}+\Delta$$
 可得 $\Delta l=\frac{\lambda}{2}\Delta n$

						-	7	8	9	10
12	1	2	3	4	5	6	40.000	37.164	41.817	46.502
I/mm	4.212	8.850	13.573	18.234	23.012	27.696	32.372			40
D'HILLI.				34	35	36	37	38	39	
12	31	32	33		SECTION AND DESCRIPTION AND DE	169.273	173.832	178.516	183.242	188.022
l/mm	145.813	150.553	155.382	160.116	164.701		THE RESERVE AND ADDRESS OF	30	30	30
A	30	30	30	30	30	30	30			141.526
Δη			141.819	141.882	141.689	141,577	141.450	141.352	141.425	141.54
Δ//mm	141.601	141.703	141.819	141.002		THE REAL PROPERTY.				

$$\overline{\Delta l} = 141.602 \text{ (mm)}$$
 iff $\lambda = \frac{2\Delta l}{\Delta n} = \frac{2 \times 141.602}{30} = 9.44013 \text{ (mm)}$

$$u_{\sigma}(\overline{\Delta I}) = \sqrt{\frac{\sum (\Delta I_x - \overline{\Delta I})^2}{k - 1}} = 0.05379 \text{ (mm)}$$

$$u_{\alpha}(\lambda) = \frac{2}{\Delta n} u_{\alpha}(\Delta l) = \frac{2}{30} \times 0.05379 = 0.0359$$
 (mm)

$$u_b(\lambda) = \frac{0.1}{\sqrt{3}} = 0.0577 \text{ (mm)}$$

$$u(\lambda) = \sqrt{u_a^2(\lambda) + u_b^2(\lambda)} = \sqrt{0.0359^2 + 0.0577^2} = 0.06796 \text{ (mm)}$$

$$\lambda \pm u(\lambda) = 9.44 \pm 0.07 \text{ mm}$$