# The Dual Simplex Method

**Combinatorial Problem Solving (CPS)** 

Javier Larrosa Albert Oliveras Enric Rodríguez-Carbonell

April 12, 2019

#### **■** Abuse of terminology:

Henceforth sometimes by "optimal" we will mean "satisfying the optimality conditions"

If not explicit, the context will disambiguate

The algorithm as explained so far is known as primal simplex: starting with feasible basis, find optimal basis (= satisfying optimality conds.) while keeping feasibility

There is an alternative algorithm known as dual simplex: starting with optimal basis (= satisfying optimality conds.), find feasible basis while keeping optimality

$$\begin{cases} \min -x - y \\ 2x + y \ge 3 \\ 2x + y \le 6 \\ x + 2y \le 6 \\ x \ge 0 \\ y \ge 0 \end{cases} \implies \begin{cases} \min -x - y \\ 2x + y - s_1 = 3 \\ 2x + y + s_2 = 6 \\ x + 2y + s_3 = 6 \\ x, y, s_1, s_2, s_3 \ge 0 \end{cases}$$

$$\begin{cases} \min -6 + y + s_3 \\ x = 6 - 2y - s_3 \\ s_1 = 9 - 3y - 2s_3 \\ s_2 = -6 + 3y + 2s_3 \end{cases}$$

Basis  $(x, s_1, s_2)$  is optimal (= satisfies optimality conditions) but is not feasible!



- Let us make a violating basic variable non-negative ...
  - Increase  $s_2$  by making it non-basic: then it will be 0
- while preserving optimality (= optimality conditions are satisfied)
  - $lack If y \text{ replaces } s_2 \text{ in the basis,}$  then  $y=\frac{1}{3}(s_2+6-2s_3), -x-y=-4+\frac{1}{3}(s_2+s_3)$
  - If  $s_3$  replaces  $s_2$  in the basis, then  $s_3 = \frac{1}{2}(s_2 + 6 3y), -x y = -3 + \frac{1}{2}(s_2 y)$

- Let us make a violating basic variable non-negative ...
  - Increase  $s_2$  by making it non-basic: then it will be 0
- while preserving optimality (= optimality conditions are satisfied)
  - ♦ If y replaces  $s_2$  in the basis, then  $y = \frac{1}{3}(s_2 + 6 2s_3), -x y = -4 + \frac{1}{3}(s_2 + s_3)$
  - If  $s_3$  replaces  $s_2$  in the basis, then  $s_3 = \frac{1}{2}(s_2 + 6 3y), -x y = -3 + \frac{1}{2}(s_2 y)$
  - lack To preserve optimality, y must replace  $s_2$

$$\begin{cases} \min -6 + y + s_3 \\ x = 6 - 2y - s_3 \\ s_1 = 9 - 3y - 2s_3 \\ s_2 = -6 + 3y + 2s_3 \end{cases} \implies \begin{cases} \min -4 + \frac{1}{3}s_2 + \frac{1}{3}s_3 \\ x = 2 - \frac{2}{3}s_2 + \frac{1}{3}s_3 \\ y = 2 + \frac{1}{3}s_2 - \frac{2}{3}s_3 \\ s_1 = 3 - s_2 \end{cases}$$

$$\begin{cases} \min -6 + y + s_3 \\ x = 6 - 2y - s_3 \\ s_1 = 9 - 3y - 2s_3 \\ s_2 = -6 + 3y + 2s_3 \end{cases} \implies \begin{cases} \min -4 + \frac{1}{3}s_2 + \frac{1}{3}s_3 \\ x = 2 - \frac{2}{3}s_2 + \frac{1}{3}s_3 \\ y = 2 + \frac{1}{3}s_2 - \frac{2}{3}s_3 \\ s_1 = 3 - s_2 \end{cases}$$

Current basis is feasible and optimal!



## **Outline of the Dual Simplex**

- 1. Initialization: Pick an optimal basis.
- Dual Pricing: If all basic values are ≥ 0, then return OPTIMAL.
   Else pick a basic variable with value < 0.</li>
- 3. Dual Ratio test: Find non-basic variable for swapping while preserving optimality, i.e., non-negativity constraints on reduced costs.

If it does not exist, then return INFEASIBLE.

Else swap chosen non-basic variable with violating basic variable.

4. Update: Update the tableau and go to 2.

- To understand better how the dual simplex works: theory of duality
- We can get lower bounds on LP optimum value by adding constraints in a convenient way

$$\begin{cases} \min -x - y \\ 2x + y \ge 3 \\ 2x + y \le 6 \\ x + 2y \le 6 \\ x \ge 0 \\ y \ge 0 \end{cases} \Rightarrow \begin{cases} \min -x - y \\ 2x + y \ge 3 \\ -2x - y \ge -6 \\ -x - 2y \ge -6 \\ x \ge 0 \\ y \ge 0 \end{cases} -x - 2y \ge -6$$

In general we can get lower bounds on LP optimum value by linearly combining constraints with convenient multipliers

$$\begin{cases} \min -x - y \\ 2x + y \ge 3 \\ -2x - y \ge -6 \\ -x - 2y \ge -6 \\ x \ge 0 \\ y \ge 0 \end{cases}$$

$$\begin{array}{ccccc}
1 \cdot ( & 2x + y & \geq & 3 & ) \\
2 \cdot ( & -2x - y & \geq & -6 & ) \\
1 \cdot ( & x & \geq & 0 & )
\end{array}$$

$$\begin{array}{rcl}
2x + y & \geq & 3 \\
-4x - 2y & \geq & -12 \\
x & \geq & 0
\end{array}$$

$$-x-y \geq -9$$

There may be different choices, each giving a different lower bound

■ In general:

$$\begin{cases} \min -x - y \\ 2x + y \ge 3 \\ -2x - y \ge -6 \\ -x - 2y \ge -6 \\ x \ge 0 \\ y \ge 0 \end{cases}$$

$$\mu_{1} \cdot ( 2x + y \geq 3 )$$
 $\mu_{2} \cdot ( -2x - y \geq -6 )$ 
 $\mu_{3} \cdot ( -x - 2y \geq -6 )$ 
 $\mu_{4} \cdot ( x \geq 0 )$ 
 $\mu_{5} \cdot ( y \geq 0 )$ 

$$2\mu_1 x + \mu_1 y \geq 3\mu_1$$

$$-2\mu_2 x - \mu_2 y \geq -6\mu_2$$

$$-\mu_3 x - 2\mu_3 y \geq -6\mu_3$$

$$\mu_4 x \geq 0$$

$$\mu_5 y \geq 0$$

$$(2\mu_1 - 2\mu_2 - \mu_3 + \mu_4) x + (\mu_1 - \mu_2 - 2\mu_3 + \mu_5) y \ge 3\mu_1 - 6\mu_2 - 6\mu_3$$

If  $\mu_1 \geq 0$ ,  $\mu_2 \geq 0$ ,  $\mu_3 \geq 0$ ,  $\mu_4 \geq 0$ ,  $\mu_5 \geq 0$ ,  $2\mu_1 - 2\mu_2 - \mu_3 + \mu_4 = -1$  and  $\mu_1 - \mu_2 - 2\mu_3 + \mu_5 = -1$  then  $3\mu_1 - 6\mu_2 - 6\mu_3$  is a lower bound

■ We can skip the multipliers of the non-negativity constraints

■ We have:

$$\begin{cases} \min -x - y \\ 2x + y \ge 3 \\ -2x - y \ge -6 \\ -x - 2y \ge -6 \\ x \ge 0 \\ y \ge 0 \end{cases}$$

$$\mu_{1} \cdot ( 2x + y \geq 3 )$$

$$\mu_{2} \cdot ( -2x - y \geq -6 )$$

$$\mu_{3} \cdot ( -x - 2y \geq -6 )$$

$$2\mu_{1}x + \mu_{1}y \geq 3\mu_{1}$$

$$-2\mu_{2}x - \mu_{2}y \geq -6\mu_{2}$$

$$-\mu_{3}x - 2\mu_{3}y \geq -6\mu_{3}$$

$$(2\mu_1 - 2\mu_2 - \mu_3) x + (\mu_1 - \mu_2 - 2\mu_3) y \ge 3\mu_1 - 6\mu_2 - 6\mu_3$$

- In the coefficient of x we can "complete"  $2\mu_1 2\mu_2 \mu_3$  to reach -1 by adding a suitable multiple of  $x \ge 0$  (the multiplier will be the slack)
- If  $\mu_1 \geq 0$ ,  $\mu_2 \geq 0$ ,  $\mu_3 \geq 0$ ,  $2\mu_1 2\mu_2 \mu_3 \leq -1$  and  $\mu_1 \mu_2 2\mu_3 \leq -1$

then  $3\mu_1 - 6\mu_2 - 6\mu_3$  is a lower bound

Best possible lower bound with this "trick" can be found by solving

$$\begin{cases}
\max & 3\mu_1 - 6\mu_2 - 6\mu_3 \\
 & 2\mu_1 - 2\mu_2 - \mu_3 \le -1 \\
 & \mu_1 - \mu_2 - 2\mu_3 \le -1 \\
 & \mu_1, \mu_2, \mu_3 \ge 0
\end{cases}$$

How far will it be from the optimum?

■ Best possible lower bound with this "trick" can be found by solving

$$\begin{cases} \max & 3\mu_1 - 6\mu_2 - 6\mu_3 \\ & 2\mu_1 - 2\mu_2 - \mu_3 \le -1 \\ & \mu_1 - \mu_2 - 2\mu_3 \le -1 \\ & \mu_1, \mu_2, \mu_3 \ge 0 \end{cases}$$

- How far will it be from the optimum?
- A best solution is given by  $(\mu_1, \mu_2, \mu_3) = (0, \frac{1}{3}, \frac{1}{3})$

$$\begin{array}{rccccc}
0 \cdot ( & 2x + y & \geq & 3 & ) \\
\frac{1}{3} \cdot ( & -2x - y & \geq & -6 & ) \\
\frac{1}{3} \cdot ( & -x - 2y & \geq & -6 & )
\end{array}$$

Matches the optimum!

### **Dual Problem**

■ Given an LP (called primal)

$$\min c^T x$$

$$Ax \ge b$$

$$x \ge 0$$

its dual is the LP

$$\max_{A} b^{T} y$$
$$A^{T} y \le c$$
$$y \ge 0$$

- $\blacksquare$  Primal variables associated with columns of A
- $\blacksquare$  Dual variables (multipliers) associated with rows of A
- Objective and right-hand side vectors swap their roles

### **Dual Problem**

■ Prop. The dual of the dual is the primal.

Proof:

$$\max b^T y \qquad -\min (-b)^T y$$

$$A^T y \le c \qquad \Longrightarrow \qquad -A^T y \ge -c$$

$$y \ge 0 \qquad \qquad y \ge 0$$

$$-\max -c^T x \qquad \min c^T x$$

$$(-A^T)^T x \le -b \qquad \Longrightarrow \qquad Ax \ge b$$

$$x > 0 \qquad x > 0$$

We say the primal and the dual form a primal-dual pair

### **Dual Problem**

Proof:

$$\begin{array}{ccc}
\min & c^T x \\
Ax = b \\
x \ge 0
\end{array} \implies \begin{array}{c}
\min & c^T x \\
Ax \ge b \\
-Ax \ge -b \\
x \ge 0
\end{array}$$

$$\max_{A^T y_1 - b^T y_2} b^T y_1 - b^T y_2$$

$$A^T y_1 - A^T y_2 \le c \qquad \Longrightarrow \qquad \max_{A^T y} b^T y$$

$$y_1, y_2 > 0$$

$$A^T y \le c$$

**Th.** (Weak Duality) Let (P, D) be a primal-dual pair

If x is feasible solution to P and y is feasible solution to D then  $b^T y \leq c^T x$ 

#### Proof:

$$c-A^Ty\geq 0$$
, i.e.,  $c^T-y^TA\geq 0$ , and  $x\geq 0$  imply  $c^Tx-y^TAx\geq 0$ .

So  $c^T x \ge y^T A x$ , and

$$b^T y = y^T b = y^T A x \le c^T x$$

- $\blacksquare$  Feasible solutions to D give lower bounds on P
- lacktriangle Feasible solutions to P give upper bounds on D
- Will the two optimum values be always equal?

- $\blacksquare$  Feasible solutions to D give lower bounds on P
- lacksquare Feasible solutions to P give upper bounds on D
- Will the two optimum values be always equal?
- **Th.** (Strong Duality) Let (P, D) be a primal-dual pair

If any of P or D has a feasible solution and a finite optimum then the same holds for the other problem and the two optimum values are equal.

Proof (Th. of Strong Duality):

By symmetry it is sufficient to prove only one direction. Wlog. let us assume P is feasible with finite optimum.

■ Proof (Th. of Strong Duality):

By symmetry it is sufficient to prove only one direction. Wlog. let us assume P is feasible with finite optimum.

After executing the Simplex algorithm to P we find B optimal feasible basis. Then:

So  $\pi^T := c_B^T B^{-1}$  is dual feasible:  $\pi^T A \leq c^T$ , i.e.  $A^T \pi \leq c$ .

■ Proof (Th. of Strong Duality):

By symmetry it is sufficient to prove only one direction. Wlog. let us assume P is feasible with finite optimum.

After executing the Simplex algorithm to P we find B optimal feasible basis. Then:

- $lacktriangle c_{\mathcal{B}}^T B^{-1} a_j \le c_j$  for all  $j \in \mathcal{R}$  (optimality conds hold)

So  $\pi^T:=c_{\mathcal{B}}^TB^{-1}$  is dual feasible:  $\pi^TA\leq c^T$ , i.e.  $A^T\pi\leq c$ . Moreover,  $c_{\mathcal{B}}^T\beta=c_{\mathcal{B}}^TB^{-1}b=\pi^Tb=b^T\pi$ 

By the theorem of weak duality,  $\pi$  is optimum for D

■ Proof (Th. of Strong Duality):

By symmetry it is sufficient to prove only one direction.

Wlog. let us assume P is feasible with finite optimum.

After executing the Simplex algorithm to P we find B optimal feasible basis. Then:

- $lacktriangle c_{\mathcal{B}}^T B^{-1} a_j \le c_j$  for all  $j \in \mathcal{R}$  (optimality conds hold)

So  $\pi^T := c_{\mathcal{B}}^T B^{-1}$  is dual feasible:  $\pi^T A \leq c^T$ , i.e.  $A^T \pi \leq c$ .

Moreover, 
$$c_{\mathcal{B}}^T \beta = c_{\mathcal{B}}^T B^{-1} b = \pi^T b = b^T \pi$$

By the theorem of weak duality,  $\pi$  is optimum for D

- If B is an optimal feasible basis for P, then simplex multipliers  $\pi^T:=c_{\mathcal{B}}^TB^{-1}$  are optimal feasible solution for D
- We can solve the dual by applying the simplex algorithm on the primal
- We can solve the primal by applying the simplex algorithm on the dual

**Prop.** Let (P, D) be a primal-dual pair

- (1) If P has a feasible solution but is unbounded, then D is infeasible
- (2) If D has a feasible solution but is unbounded, then P is infeasible

#### Proof:

Let us prove (1) by contradiction.

If y were a feasible solution to D,

by the weak duality theorem, objective of P would be lower bounded!

(2) is proved by duality.

**Prop.** Let (P, D) be a primal-dual pair

- (1) If P has a feasible solution but is unbounded, then D is infeasible
- (2) If D has a feasible solution but is unbounded, then P is infeasible
- And the converse?
  Does infeasibility of one imply unboundedess of the other?

**Prop.** Let (P, D) be a primal-dual pair

- (1) If P has a feasible solution but is unbounded, then D is infeasible
- (2) If D has a feasible solution but is unbounded, then P is infeasible
- And the converse?
  Does infeasibility of one imply unboundedess of the other?

min 
$$3x_1 + 5x_2$$
 max  $3y_1 + y_2$   
 $x_1 + 2x_2 = 3$   $y_1 + 2y_2 = 3$   
 $2x_1 + 4x_2 = 1$   $2y_1 + 4y_2 = 5$   
 $x_1, x_2$  free  $y_1, y_2$  free

```
\begin{array}{cccc} \text{Primal unbounded} & \Longrightarrow & \text{Dual infeasible} \\ \text{Dual unbounded} & \Longrightarrow & \text{Primal infeasible} \\ \text{Primal infeasible} & \Longrightarrow & \text{Dual} \left\{ \begin{array}{c} \text{infeasible} \\ \text{unbounded} \end{array} \right. \\ \text{Dual infeasible} & \Longrightarrow & \text{Primal} \left\{ \begin{array}{c} \text{infeasible} \\ \text{unbounded} \end{array} \right. \end{array}
```

## Karush Kuhn Tucker Opt. Conds.

Consider a primal-dual pair of the form

$$\begin{array}{ll} \min \ c^T x \\ Ax = b \quad \text{and} \quad \max \ b^T y \\ x \geq 0 & A^T y + w = c \\ \end{array}$$

Karush-Kuhn-Tucker (KKT) optimality conditions are

- $\begin{array}{ll} \bullet \ Ax = b & \bullet \ x, w \geq 0 \\ \bullet \ A^Ty + w = c & \bullet \ x^Tw = 0 \ \mbox{(complementary slackness)} \end{array}$
- They are necessary and sufficient conditions for optimality of the pair of primal-dual solutions (x, (y, w))
- Used, e.g., as a test of quality in LP solvers

## Karush Kuhn Tucker Opt. Conds.

$$\begin{array}{ll}
\min \ c^T x & \max \ b^T y \\
(P) \ Ax = b & (D) \ A^T y + w = c \\
x \ge 0 & w \ge 0
\end{array}$$

(KKT)

- $\bullet$  Ax = b
- $\bullet \ A^T y + w = c$
- $\bullet$   $x, w \geq 0$
- $\bullet x^T w = 0$
- Th. (x, (y, w)) is solution to KKT iff x optimal solution to P and (y, w) optimal solution to D

#### Proof:

$$\Rightarrow$$
 By  $0 = x^T w = x^T (c - A^T y) = c^T x - b^T y$ , and Weak Duality

 $\Leftarrow x$  is feasible solution to P, (y, w) is feasible solution to D.

By Strong Duality  $x^Tw=x^T(c-A^Ty)=c^Tx-b^Ty=0$  as both solutions are optimal

Consider a primal-dual pair of the form

- lacksquare Let us denote by  $a_1$ , ...,  $a_n$  the columns of A, i.e.,  $A=(a_1,\ldots,a_n)$
- $\blacksquare$  Let B be a basis of P. Let us see how we can get a basis of D.

Assume that the basic variables are the first m:  $B = (a_1, \ldots, a_m)$ .

Then 
$$R = (a_{m+1}, \dots, a_n)$$
.

If slacks w are split into  $w_{\mathcal{B}}^T = (w_1, \dots, w_m)$ ,  $w_{\mathcal{R}}^T = (w_{m+1}, \dots, w_n)$ , then

$$A^{T}y + w = \begin{pmatrix} a_{1}^{T}y \\ \vdots \\ a_{m}^{T}y \\ \hline a_{m+1}^{T}y \\ \vdots \\ a_{n}^{T}y \end{pmatrix} + \begin{pmatrix} w_{1} \\ \vdots \\ w_{m} \\ \hline w_{m+1} \\ \vdots \\ w_{n} \end{pmatrix} = \begin{pmatrix} B^{T}y + w_{\mathcal{B}} \\ \hline R^{T}y + w_{\mathcal{R}} \end{pmatrix}$$

Hence we have

$$A^T y + w = \begin{pmatrix} B^T y + w_{\mathcal{B}} \\ \hline R^T y + w_{\mathcal{R}} \end{pmatrix}$$

 $\blacksquare$  Then the matrix of the system in the dual problem D is

$$\left(\begin{array}{c|c|c}
B^T & I & 0 \\
\hline
R^T & 0 & I
\end{array}\right) \left(\begin{array}{c|c}
y \\
w_{\mathcal{B}} \\
w_{\mathcal{R}}
\end{array}\right)$$

■ Now let us consider the submatrix of vars y and vars  $w_R$ :

$$\hat{B} = \begin{pmatrix} B^T & 0 \\ \hline R^T & I \end{pmatrix}$$

■ Note  $\hat{B}$  is a square  $n \times n$  matrix

lacksquare Dual variables  $\hat{\mathcal{B}} = (y, w_{\mathcal{R}})$  determine a basis of D:

$$\hat{B} = \begin{pmatrix} B^T & 0 \\ \hline R^T & I \end{pmatrix}$$

$$\hat{B}^{-1} = \begin{pmatrix} B^{-T} & 0 \\ \hline -R^T B^{-T} & I \end{pmatrix}$$

lacksquare Dual variables  $\hat{\mathcal{B}} = (y, w_{\mathcal{R}})$  determine a basis of D:

$$\hat{B} = \begin{pmatrix} B^T & 0 \\ \hline R^T & I \end{pmatrix}$$

$$\hat{B}^{-1} = \begin{pmatrix} B^{-T} & 0 \\ \hline -R^T B^{-T} & I \end{pmatrix}$$

- In the next slides we answer the following questions:
  - 1. If basis  $\hat{B}$  of the dual D is feasible, what can we say about basis B of the primal P?
  - 2. If basis  $\hat{B}$  of the dual D is optimal (satisfies the optimality conds.), what can we say about basis B of the primal P?
  - 3. If we apply the simplex algorithm to the dual D using basis B, how does that translate into the primal P and its basis B?

#### **Relating Bases**

lacksquare Dual variables  $\hat{\mathcal{B}} = (y, w_{\mathcal{R}})$  determine a basis of D:

$$\hat{B} = \begin{pmatrix} B^T & 0 \\ \hline R^T & I \end{pmatrix}$$

$$\hat{B}^{-1} = \begin{pmatrix} B^{-T} & 0 \\ \hline -R^T B^{-T} & I \end{pmatrix}$$

- In the next slides we answer the following questions:
  - 1. If basis  $\hat{B}$  of the dual D is feasible, what can we say about basis B of the primal P?
  - 2. If basis  $\hat{B}$  of the dual D is optimal (satisfies the optimality conds.), what can we say about basis B of the primal P?
  - 3. If we apply the simplex algorithm to the dual D using basis  $\hat{B}$ , how does that translate into the primal P and its basis B?
- lacktriangle Recall that each variable  $w_i$  in D is associated to a variable  $x_i$  in P.
- lacksquare Note that  $w_i$  is  $\hat{\mathcal{B}}$ -basic iff  $x_i$  is not  $\mathcal{B}$ -basic

## **Dual Feasibility** = **Primal Optimality**

■ If  $\hat{B}$  is feasible for dual D, what about B in primal P?

$$\hat{B}^{-1}c = \begin{pmatrix} B^{-T} & 0 \\ -R^T B^{-T} & I \end{pmatrix} \begin{pmatrix} c_{\mathcal{B}} \\ c_{\mathcal{R}} \end{pmatrix} = \begin{pmatrix} B^{-T} c_{\mathcal{B}} \\ -R^T B^{-T} c_{\mathcal{B}} + c_{\mathcal{R}} \end{pmatrix}$$

- There is no restriction on the sign of  $y_1, ..., y_m$
- Variables  $w_i$  have to be non-negative. But

$$-R^T B^{-T} c_{\mathcal{B}} + c_{\mathcal{R}} \ge 0 \quad \text{iff} \quad c_{\mathcal{R}}^T - c_{\mathcal{B}}^T B^{-1} R \ge 0$$

## **Dual Feasibility** = **Primal Optimality**

■ If  $\hat{B}$  is feasible for dual D, what about B in primal P?

$$\hat{B}^{-1}c = \begin{pmatrix} B^{-T} & 0 \\ -R^T B^{-T} & I \end{pmatrix} \begin{pmatrix} c_{\mathcal{B}} \\ c_{\mathcal{R}} \end{pmatrix} = \begin{pmatrix} B^{-T} c_{\mathcal{B}} \\ -R^T B^{-T} c_{\mathcal{B}} + c_{\mathcal{R}} \end{pmatrix}$$

- There is no restriction on the sign of  $y_1, ..., y_m$
- Variables  $w_i$  have to be non-negative. But

$$-R^T B^{-T} c_{\mathcal{B}} + c_{\mathcal{R}} \ge 0 \quad \text{iff} \quad c_{\mathcal{R}}^T - c_{\mathcal{B}}^T B^{-1} R \ge 0 \quad \text{iff} \quad d_{\mathcal{R}}^T \ge 0$$

## **Dual Feasibility** = **Primal Optimality**

■ If  $\hat{B}$  is feasible for dual D, what about B in primal P?

$$\hat{B}^{-1}c = \begin{pmatrix} B^{-T} & 0 \\ -R^T B^{-T} & I \end{pmatrix} \begin{pmatrix} c_{\mathcal{B}} \\ c_{\mathcal{R}} \end{pmatrix} = \begin{pmatrix} B^{-T} c_{\mathcal{B}} \\ -R^T B^{-T} c_{\mathcal{B}} + c_{\mathcal{R}} \end{pmatrix}$$

- There is no restriction on the sign of  $y_1, ..., y_m$
- Variables  $w_i$  have to be non-negative. But

$$-R^T B^{-T} c_{\mathcal{B}} + c_{\mathcal{R}} \ge 0 \quad \text{iff} \quad c_{\mathcal{R}}^T - c_{\mathcal{B}}^T B^{-1} R \ge 0 \quad \text{iff} \quad d_{\mathcal{R}}^T \ge 0$$

- lacksquare is dual feasible iff  $d_j \geq 0$  for all  $j \in \mathcal{R}$
- Dual feasibility is primal optimality!

# **Dual Optimality** = **Primal Feasibility**

- If  $\hat{B}$  satisfies the optimality conds. for dual D, what about B in primal P?
- Non  $\hat{\mathcal{B}}$ -basic vars:  $w_{\mathcal{B}}$  with costs (0)
- $\blacksquare$   $\hat{\mathcal{B}}$ -basic vars:  $(y \mid w_{\mathcal{R}})$  with costs  $(b^T \mid 0)$
- Matrix of non  $\hat{\mathcal{B}}$ -basic vars:  $\left(\frac{I}{0}\right)$
- $\blacksquare$  Optimality condition:  $0 \ge \text{reduced costs } (\text{maximization!})$

$$0 \ge (0) - (b^{T} \mid 0) \left(\frac{B^{-T}}{-R^{T}B^{-T}} \mid I\right) \left(\frac{I}{0}\right) =$$

$$(0) - (b^{T}B^{-T} \mid 0) \left(\frac{I}{0}\right) = -b^{T}B^{-T} = -(B^{-1}b)^{T}$$

# **Dual Optimality** = **Primal Feasibility**

- If  $\hat{B}$  satisfies the optimality conds. for dual D, what about B in primal P?
- Non  $\hat{\mathcal{B}}$ -basic vars:  $w_{\mathcal{B}}$  with costs (0)
- $\blacksquare$   $\hat{\mathcal{B}}$ -basic vars:  $(y \mid w_{\mathcal{R}})$  with costs  $(b^T \mid 0)$
- Matrix of non  $\hat{\mathcal{B}}$ -basic vars:  $\left(\frac{I}{0}\right)$
- $\blacksquare$  Optimality condition:  $0 \ge \text{reduced costs } (\text{maximization!})$

$$0 \ge \left( \begin{array}{cc|c} 0 \end{array} \right) - \left( \begin{array}{c|c} b^T & 0 \end{array} \right) \left( \begin{array}{c|c} B^{-T} & 0 \\ \hline -R^T B^{-T} & I \end{array} \right) \left( \begin{array}{c|c} I \\ \hline 0 \end{array} \right) = \\ \left( \begin{array}{c|c} 0 \end{array} \right) - \left( \begin{array}{c|c} b^T B^{-T} & 0 \end{array} \right) \left( \begin{array}{c|c} I \\ \hline 0 \end{array} \right) = -b^T B^{-T} = -(B^{-1}b)^T = -\beta^T \quad \text{iff} \quad \beta \ge 0$$

# **Dual Optimality** = **Primal Feasibility**

- If  $\hat{B}$  satisfies the optimality conds. for dual D, what about B in primal P?
- Non  $\hat{\mathcal{B}}$ -basic vars:  $w_{\mathcal{B}}$  with costs (0)
- $\blacksquare$   $\hat{\mathcal{B}}$ -basic vars:  $(y \mid w_{\mathcal{R}})$  with costs  $(b^T \mid 0)$
- Matrix of non  $\hat{\mathcal{B}}$ -basic vars:  $\left(\frac{I}{0}\right)$
- $\blacksquare$  Optimality condition:  $0 \ge \text{reduced costs } (\text{maximization!})$

$$0 \ge \left( \begin{array}{c|c} 0 \end{array} \right) - \left( \begin{array}{c|c} b^T & 0 \end{array} \right) \left( \begin{array}{c|c} B^{-T} & 0 \\ \hline -R^T B^{-T} & I \end{array} \right) \left( \begin{array}{c|c} I \\ \hline 0 \end{array} \right) = \\ \left( \begin{array}{c|c} 0 \end{array} \right) - \left( \begin{array}{c|c} b^T B^{-T} & 0 \end{array} \right) \left( \begin{array}{c|c} I \\ \hline 0 \end{array} \right) = -b^T B^{-T} = -(B^{-1}b)^T = -\beta^T \quad \text{iff} \quad \beta \ge 0$$

- In the dual problem, for all  $1 \le p \le m$ , var  $w_{k_p}$  cannot improve objective function iff  $\beta_p \ge 0$
- Dual optimality is primal feasibility!

### Improving a Non-Optimal Solution

- Next we apply the simplex algorithm to basis  $\hat{B}$  in the dual problem D and translate it to the primal problem P
- Let p (where  $1 \le p \le m$ ) be such that  $\beta_p < 0$ . I.e., the reduced cost of non-basic dual variable  $w_{k_p}$  is positive. So by giving  $w_{k_p}$  a larger value we can improve the dual objective value. If  $w_{k_p}$  takes value  $t \ge 0$ :

$$\begin{pmatrix} y(t) \\ w_{\mathcal{R}}(t) \end{pmatrix} = \hat{B}^{-1}c - \hat{B}^{-1}te_p =$$

$$= \begin{pmatrix} B^{-T}c_{\mathcal{B}} \\ d_{\mathcal{R}} \end{pmatrix} - \begin{pmatrix} B^{-T} & 0 \\ -R^{T}B^{-T} & I \end{pmatrix} \begin{pmatrix} te_{p} \\ 0 \end{pmatrix} = \begin{pmatrix} B^{-T}c_{\mathcal{B}} - tB^{-T}e_{p} \\ d_{\mathcal{R}} + tR^{T}B^{-T}e_{p} \end{pmatrix}$$

Dual objective value improvement is

$$\Delta Z = b^T y(t) - b^T y(0) = -tb^T B^{-T} e_p = -t\beta^T e_p = -t\beta_p = t(-\beta_p)$$

## Improving a Non-Optimal Solution

- lacksquare Of all basic dual variables, only  $w_{\mathcal{R}}$  variables need to be  $\geq 0$
- For  $j \in \mathcal{R}$

$$w_j(t) = d_j + ta_j^T B^{-T} e_p = d_j + te_p^T B^{-1} a_j = d_j + te_p^T \alpha_j = d_j + t\alpha_j^p$$

where  $\alpha_j^p$  is the *p*-th component of  $\alpha_j$ . Hence:

$$w_j(t) \ge 0 \iff d_j + t\alpha_j^p \ge 0$$

- If  $\alpha_i^p \geq 0$  the constraint is satisfied for all  $t \geq 0$
- lacktriangle If  $\alpha_j^p < 0$  we need  $\frac{d_j}{-\alpha_j^p} \ge t$
- Best improvement achieved with

$$\Theta_D := \min\{\frac{d_j}{-\alpha_j^p} \mid \alpha_j^p < 0\}$$

lacksquare Variable  $w_q$  is blocking when  $\Theta_D=rac{d_q}{-lpha_q^p}$ 

## Improving a Non-Optimal Solution

1. If  $\Theta_D = +\infty$  (there is no  $j \in \mathcal{R}$  such that  $\alpha_j^p < 0$ ):

Value of dual objective can be increased infinitely.

Dual LP is unbounded.

Primal LP is infeasible.

2. If  $\Theta_D < +\infty$  and  $w_q$  is blocking:

When setting  $w_{k_p} = \Theta_D$ , non-negativity constraints of basic vars of dual are respected

In particular, 
$$w_q(\Theta_D) = d_q + \Theta_D \alpha_q^p = d_q + (\frac{d_q}{-\alpha_q^p}) \alpha_q^p = 0$$

We can make a basis change:

- ullet In dual:  $w_{k_p}$  enters  $\hat{\mathcal{B}}$  and  $w_q$  leaves
- In primal:  $x_{k_p}$  leaves  $\mathcal{B}$  and  $x_q$  enters

### **Update**

- We do not actually need to form the dual LP: it is enough to have a representation of the primal LP
- lacksquare New basic indices:  $\bar{\mathcal{B}}=(k_1,\ldots,k_{p-1},q,k_{p+1}\ldots,k_m)$
- New dual objective value:  $\bar{Z} = Z \Theta_D \beta_p$
- New dual basic sol:  $\bar{y} = y \Theta_D \rho_p$  $\bar{d}_j = d_j + \Theta_D \alpha_j^p$  if  $j \in \mathcal{R}$ ,  $\bar{d}_{k_p} = \Theta_D$
- New primal basic sol:  $\bar{\beta}_p = \Theta_P$ ,  $\bar{\beta}_i = \beta_i \Theta_P \alpha_q^i$  if  $i \neq p$  where  $\Theta_P = \frac{\beta_p}{\alpha_q^p}$

### **Algorithmic Description**

1. Initialization: Find an initial dual feasible basis  $\mathcal{B}$  Compute  $B^{-1}$ ,  $\beta=B^{-1}b$ ,  $y^T=c_{\mathcal{B}}^TB^{-1}$ ,  $d_{\mathcal{R}}^T=c_{\mathcal{R}}^T-y^TR$ ,  $Z=b^Ty$ 

2. Dual Pricing:

If for all  $i \in \mathcal{B}, \beta_i \geq 0$  then return OPTIMAL Else let p be such that  $\beta_p < 0$ . Compute  $\rho_p^T = e_p^T B^{-1}$  and  $\alpha_j^p = \rho_p^T a_j$  for  $j \in \mathcal{R}$ 

3. Dual Ratio test: Compute  $\mathcal{J} = \{j \mid j \in \mathcal{R}, \alpha_j^p < 0\}$ . If  $\mathcal{J} = \emptyset$  then return INFEASIBLE Else compute  $\Theta_D = \min_{j \in \mathcal{J}} (\frac{d_j}{-\alpha_j^p})$  and q st.  $\Theta_D = \frac{d_q}{-\alpha_q^p}$ 

## **Algorithmic Description**

#### 4. Update:

$$\bar{\mathcal{B}} = \mathcal{B} - \{k_p\} \cup \{q\}$$

$$\bar{Z} = Z - \Theta_D \beta_p$$

#### Dual solution

$$ar{y} = y - \Theta_D \rho_p$$
 $ar{d}_j = d_j + \Theta_D \alpha_j^p \text{ if } j \in \mathcal{R}, \ ar{d}_{k_p} = \Theta_D$ 

#### Primal solution

Compute 
$$\alpha_q = B^{-1}a_q$$
 and  $\Theta_P = \frac{\beta_p}{\alpha_q^p}$   $\bar{\beta}_p = \Theta_P$ ,  $\bar{\beta}_i = \beta_i - \Theta_P\alpha_q^i$  if  $i \neq p$ 

$$\bar{B}^{-1} = EB^{-1}$$

Go to 2.

### Primal vs. Dual Simplex

#### PRIMAL

DUAL

- Can handle bounds efficiently
  - Can handle bounds efficiently (not explained here)

Many years of research and implementation Developments in the 90's made it an alternative

■ There are classes of LP's for which it is the best

- Nowadays on average it gives better performance
- Not suitable for solving LP's with integer variables
- Suitable for solving LP's with integer variables