Track 3 | Session 6

打造應用專屬資料庫 (Purpose-built) 與了解託管服務優勢

Taylor Chu
Cloud Support Engineer
Amazon Web Services

Agenda

- Modernize and break free
- AWS databases: The right tool for the right job
- Why consider purpose-built databases?
 - Managed database services
 - Q&A

Modernize and break free

Rapid expansion of data requirements

Explosion of data

Data grows 10x every 5 years driven by network-connected smart devices

Microservices change data and analytics requirements

Microservices architecture decreases need for "one size fits all' databases and increases need for real-time monitoring and analytics Accelerated rate of change driven by DevOps

Transition from IT to DevOps increases rate of change

Data flywheel

Managing databases on-premises: Time-consuming and complex

- Hardware and software installation
- Database configuration, patching, and backups
- Cluster setup and data replication for high availability
- () Capacity planning, and scaling clusters for compute and storage

The thorns of legacy databases

Break free with AWS

Performance at scale

3–5x the performance

Cost effective

1/10 the cost of commercial databases

Fully managed

Remove administrative complexities and automatically scale

Reliable

Safeguarded, scalable, and secure applications

AWS databases: The right tool for the right job

Purpose-built databases

Amazon Aurora

MySQL and PostgreSQL-compatible relational database built for the cloud

Performance & scalability

5x throughput of standard MySQL and 3x of standard PostgreSQL; scale out up to 15 read replicas

Availability & durability

Fault-tolerant, self-healing storage; 6 copies of data across 3 AZs; continuous backup to Amazon S3

Highly secure

Network isolation, encryption at rest / in transit

Fully managed

Managed by Amazon RDS:
On your part, no server provisioning,
software patching, setup,
configuration, or backups

Amazon DynamoDB

Fast and flexible key-value database service for any scale

Performance at scale

Consistent, single-digit millisecond response times at any scale; build applications with virtually unlimited throughput

Serverless architecture

No hardware provisioning, software patching, or upgrades; scales up or down automatically; continuously backs up your data

Enterprise security

Encrypts all data by default and fully integrates with AWS Identity and Access Management for robust security

Global replication

You can build global applications with fast access to local data by easily replicating tables across multiple AWS Regions

Amazon DocumentDB

Fast, scalable, highly available MongoDB-compatible database service

Millions of requests per second, millisecond latency

Same code, drivers, and tools you use with MongoDB

Simple and fully managed

Secure and compliant

2x throughput of managed MongoDB services

Deeply integrated with AWS services

Amazon ElastiCache

Managed, Redis, or Memcached-compatible in-memory data store

Unlimited scale

Read scaling with replicas; write and memory scaling with sharding; nondisruptive scaling

Consistent high performance

In-memory data store and cache for sub-millisecond response times

Fully managed

AWS manages all hardware and software setup, configuration, and monitoring

Amazon Neptune

Fast, reliable graph database built for the cloud

it, reliable graph database built for the clou

Open

Supports Apache
TinkerPop & W3C
RDF graph models

Fast

Queries billions of relationships with millisecond latency

Reliable

Six replicas of your data across three Availability Zones, with full backup and restore

Easy

Build powerful queries easily with Gremlin and SPARQL

Amazon Timestream

Fast, scalable, fully managed time series database

1,000x faster and 1/10th the cost of relational databases

Trillions of daily events

Time-series analytics

Serverless

Collect data at the rate of millions of inserts per second (10M/second)

Adaptive query processing engine maintains steady, predictable performance

Built-in functions for interpolation, smoothing, and approximation

Automated setup, configuration, server provisioning, and software patching

Amazon Quantum Ledger Database

Fully managed ledger database: Track and verify history of all changes made to your application's data

Immutable and transparent

Append-only, immutable journal tracks history of all changes that cannot be deleted or modified; get full visibility into entire data lineage

Cryptographically verifiable

All changes are cryptographically chained and verifiable

Highly scalable

Executes 2–3x as many transactions as ledgers in common blockchain frameworks

Easy to use

Flexible document model, query with familiar SQL-like interface

Amazon Keyspaces (for Apache Cassandra)

Scalable, highly available, and managed Apache Cassandra-compatible database service

Apache Cassandracompatible

Use the same Cassandra drivers and tools

No servers to manage

No need to provision, configure, and operate large Cassandra clusters

Single-digit millisecond performance at scale

Automatically scale tables up and down

Virtually unlimited throughput and storage

Highly available and secure

99.99% availability SLA within an AWS Region

Data encrypted at rest; integrated with IAM

Why consider purpose-built databases?

Why consider purpose-built databases?

Duolingo uses AWS databases to serve up **over 31 billion items** for 80 language courses with **high performance** and **scalability**

Primary database: Amazon DynamoDB

- 24,000 reads and 3,000 writes per second
- Personalize lessons for users taking 6B exercises per month

In-memory caching: Amazon ElastiCache

Instance access to common words and phrases

Transactional data: Amazon Aurora

Maintain user data

Capital One migrated its monolithic mainframe to **highly available** AWS databases for microservices-based applications

Transactional data: Amazon RDS

• State management

Analytics: Amazon Redshift

Web logs

Consistent low latency: Amazon DynamoDB

User data and mobile app

Managed database services

Fully managed services on AWS

Spend time innovating and building new applications, not managing infrastructure

Move to managed relational databases

Migrate on-premises or cloud-hosted relational databases to managed services

Reduce database administrative burden

No need to re-architect existing applications

Get better performance, availability, scalability, and security

Move to managed non-relational databases

Migrate on-premises or cloud-hosted non-relational databases to managed services

Reduce database administrative burden

No need to re-architect existing applications

Get better performance, availability, scalability, and security

Move to AWS services to break free from the infrastructure muck

Broad portfolio

Fully managed

Highly available and durable

Most secure with support for compliance

Challenge

They experienced service admin challenges with their original provider and wanted to scale business to the next level.

Solution

They moved from self-managed MySQL to Amazon Aurora MySQL. They use Aurora as the primary transactional database, Amazon DynamoDB for personalized search, and Amazon ElastiCache as in-memory store for sub-millisecond site rendering.

Result

Initially, the appeal of AWS was the ease of managing and customizing the stack. It was great to be able to ramp up more servers without having to contact anyone and without having minimum usage commitments. AWS is the easy answer for any Internet business that wants to scale to the next level.

—Nathan Blecharczyk, Cofounder and CTO of Airbnb

Get started

See more information at:

aws.amazon.com/databases

Contact us at:

https://aws.amazon.com/contact-us/

Learn databases with AWS Training and Certification

Resources created by the experts at AWS to help you build and validate database skills

25+ free digital training courses cover topics and services related to relational and nonrelational databases

The classroom offering, Planning and Designing Databases on AWS, features AWS expert instructors and hands-on activities

Validate expertise with the AWS Certified Database – Specialty exam

Visit the databases learning path at aws.amazon.com/training/path-databases

Thank you!

Taylor Chu Cloud Support Engineer Amazon Web Services

