Adjacency Metric Dimension

Sara Hardi Mia Čakarova

Finančni praktikum 2024/25

1 Uvod

V tej projektni nalogi se bova ukvarjali z dimenzijo sosednosti neusmerjenih grafov. Obravnavali bova tudi posebne primere.

2 Definicije

Definicija 1

Naj bo G=(V,E) neusmerjen povezan graf in $s,x,y\in V$. Pravimo, da vozlišče s razreši par vozliščx,y, če je $d(s,x)\neq d(s,y)$. Množica vozliščS je rešljiva množica grafa G, če vsak par vozliščx,y razreši neko vozlišče iz S. Moči najmanjše take množice S pravimo metrična dimenzija grafa G, označimo jo z $\dim(G)$.

Definicija 2

Naj bo G=(V,E) neusmerjen povezan graf in $s,x,y\in V$. Pravimo, da vozlišče s sosedno razreši par vozliščx,y, če je $d(s,x)\neq d(s,y)$ in je vozlišče s sosedno natanko enemu vozlišču iz para x,y. Moči najmanjše množice vozliščS, ki sosedno razreši vsak par vozliščx,y, pravimo dimenzija sosednosti, označimo jo z $\dim_A(G)$.

3 Načrt in cilji

Dimenzijo sosednosti $\dim_A(G)$ iščemo s pomočjo CLP:

• Definirajmo

$$n_{u,v} = \begin{cases} 1, & \text{\'e } uv \in E, \\ 0, & \text{sicer.} \end{cases}$$

• Naš model se glasi:

$$\min \sum_{v \in V} x_v$$

pri pogoju:

$$\sum_{u \in V} (|n_{u,v} - n_{u,w}| \cdot x_u + x_v + x_w) \ge 1, \quad \forall v, w \in V,$$

kjer je

$$x_v \in \{0, 1\}, \quad \forall v \in V.$$

S pomočjo CLP bova odgovorili na naslednja vprašanja:

- 1. Za katere grafe velja $\dim_A(G) = 1, 2$ oz. 3?
- 2. Za katere grafe z n vozlišči velja $\dim_A(G) = n, n-1$ oz. n-2?
- 3. Kakšna sta spodnja in zgornja meja za $\dim_A(G),$ v primeru, da je G drevo zn vozlišči?