THE UNIVERSITY OF HONG KONG DEPARTMENT OF STATISTICS AND ACTUARIAL SCIENCE

STAT3602 Statistical Inference

Example Class 8

Review

1. Rao-Blackwell Theorem:

T(X) is sufficient for θ , the loss function $L(\theta; a)$ is convex in a and $\rho(X)$ is an estimator of $\phi(\theta)$ with finite expectation and risk : $E_{\theta}(\rho(X))$ and $E_{\theta}(L(\theta, \rho(X)))$ is finite.

$$\rho^*(t) = E(\rho(X)|T(X))$$

(a) $\rho^*(T(X))$ is an estimator of $\phi(\theta)$, such that

$$E_{\theta}[L(\theta, \rho^*(T(X)))] \leq E_{\theta}(L(\theta, \rho(X)))$$

- (b) Specifically, if $\rho(X)$ is unbiased and T(X) is complete,
 - i. $\rho^*(T(X))$ is the unique unbiased estimator of $\phi(X)$ which is a function of T(X)
 - ii. $E_{\theta}[L(\theta, \rho^*(T(X)))] \leq E_{\theta}[L(\theta, S(X))]$ for any unbiased estimator S(X) of $\phi(\theta)$.
- (c) UMVUE (uniformly minimum variance unbiased estimator) if we take $L(\theta; a) = (\theta a)^2$, and $\rho(X)$ is unbiased, $E_{\theta}[\rho(X)^2] < \infty$, T(X) is complete.
 - i. $Var_{\theta}(\rho^{*}(T(X))) \leq Var_{\theta}(S(X))$ for any other unbiased estimator S(X) of $\phi(X)$, which means $\rho^{*}(T(X))$ is the unique UMVU estimator of $\phi(X)$.
- 2. using Rao-Blackwell Theorem to
 - (a) reduce an estimator's risk given a sufficient statistic by taking expectation;
 - (b) find the UMVU estimator given a complete sufficient statistic and an unbiased estimator by either finding the expected value of any unbiased estimator conditional on T, or finding an unbiased estimator which is a function of T.

Problem

1. Two students are each required to enroll in one and only one of the following four classes: course C1 instructed by lecturer L1, course C1 instructed by lecturer L2, course C2 instructed by lecturer L1.

Assume the two students make their choices independently, each having probabilities α and β to choose course C1 and lecturer L1 respectively. The choice of courses and the choice of lecturers are independent of each other.

For i, j = 1, 2, define $X_{ij} = 1$ if the first student selects course Ci and lecturer Lj, and $X_{ij} = 0$ otherwise. The random variables Y_{ij} are similarly defined for the second student. Define

$$V = X_{11} + X_{12} + Y_{11} + Y_{12}$$
 and $W = X_{11} + X_{21} + Y_{11} + Y_{21}$

(a) Show that the likelihood function can be written as

$$l(\alpha, \beta) = \alpha^{V} (1 - \alpha)^{2 - V} \beta^{W} (1 - \beta)^{2 - W}$$

- (b) Show that (V, W) is complete sufficient for the parameters (α, β) .
- (c) Suppose that α, β satisfy $\frac{\beta}{1-\beta} = (\frac{\alpha}{1-\alpha})^2$,
 - i. Show that V + 2W is complete sufficient for the parameters (α, β) ;
 - ii. Calculate the values of the statistic V + 2W for each of the 16 outcomes.
 - iii. By considering the probabilities of the 16 cases in (ii), show that

$$P(X_1 = 1|V + 2W = 4) = 1/3$$

- iv. If it is observed that V + 2W = 4, calculate the uniformly minimum variance unbiased (UMVU) estimate of the parameter $\theta = \alpha \beta$.
- 2. Suppose X_1, \ldots, X_n is a random sample of size $n \geq 2$ from a uniform distribution on the closed interval [a, b] with $a < b \in \mathbb{R}$. Given $T = (\min_i X_i, \max_i X_i)$ is a complete sufficient statistic for $\theta = (a, b)$. Find the UMVU estimate for θ .
- 3. Independent factory-produced items are packed in boxes each containing k items. The probability that an item is in working order is θ , $0 < \theta < 1$. A sample of n boxes are chosen for testing, and X_i , the number of working items in the ith box, is noted. Thus, X_1, \ldots, X_n are sample from

a binomial distribution, $Bin(k, \theta)$, with index k and parameter θ . It is required to estimate the probability, θ^k , that all items in a box are in working order. Find the UMVU estimator.