Quiz 10

Deadline	Monday, 28 October 2019 at 4:00PM	
Latest Submission	no submission yet	
Maximum Mark	5	

Question 1 (1 mark)

Assume $\{p,q\} \subseteq Prop$. Which of the following are well-formed formulas under the strictest definition (i.e. no conventional omissions)? Select all that apply.

(a) 🗆	¬(p^q)
(b)	p→¬T
(c) 🗆	((p ∧ q) ∨ (q ∧ ⊥))
(d)	¬¬¬⊥
(e)	(⊥ ∨ (¬⊤))

Question 2 (1 mark)

The *dual* of a propositional formula is defined recursively as follows. If PF is the set of propositional formulas over Prop, we define dual:PF→PF as follows:

- dual(T) = ⊥; dual(⊥)=T;
- dual(p) = p for all p∈Prop
- dual($\neg \phi$) = \neg dual(ϕ);
- $dual(\phi \land \psi) = (dual(\phi) \lor dual(\psi))$
- $dual(\phi \lor \psi) = (dual(\phi) \land dual(\psi))$

Let $\varphi = ((p \land \neg q) \lor \top)$

What is dual(φ)?

(a) O	((¬p∨q)^⊥)
(b) O	((p∨¬q)∧⊥)
(c) O	((¬p∧q)∨⊤)

(d) O	1
(e) O	None of the above

Question 3 (1 mark)

As before, let PF be the set of well-formed formulas over Prop. Define flip:PF→PF recursively as follows:

- flip(\top) = \top ; flip(\bot)= \bot ;
- flip(p) = $\neg p$ for all $p \in Prop$
- flip($\neg \phi$) = \neg flip(ϕ);
- $flip(\phi \land \psi) = (flip(\phi) \land flip(\psi))$
- $flip(\phi \lor \psi) = (flip(\phi) \lor flip(\psi))$

Let $\varphi = ((p \land \neg q) \lor \top)$

What is flip(φ)?

(a) O	((p∨q¬)) (⊥ ^ (p∨q¬))
(b) O	((p∨¬q)∧⊥)
(c) O	((¬p∧q)∨T)
(d) O	Т
(e) O	None of the above

Question 4 (1 mark)

Which symbol appears at the top of the parse tree for the formula:

$$\phi = ((p \land \neg q) \lor \top)$$

(a) O	V
(b) O	^
(c) O	٦
(d) O	Т
(e) O	None of the above

Question 5 (1 mark)

Suppose v:Prop $\rightarrow \mathbb{B}$ is defined as v(p) = true; v(q) = false.

Let
$$\varphi = ((p \land \neg q) \lor \top)$$

If we extend v to all propositional formulas as described in lectures, what is $v(\phi)$?

(a) O	True
(b) O	False

✓ Submit