Chapter 3. Potentials

3.1	Laplac	e's Equation
	3.1.1	Introduction
	3.1.2	Laplace's Equation in One Dimension
	3.1.3	Laplace's Equation in Two Dimensions
	3.1.4	Laplace's Equation in Three Dimensions
	3.1.5	Boundary Conditions and Uniqueness Theorems
	3.1.6	Conductors and the Second Uniqueness Theorem
3.2	The M	lethod of Images
	3.2.1	The Classic Image Problem
	3.2.2	Induced Surface Charge
	3.2.3	Force and Energy
	3.2.4	Other Image Problems
3.3	Separa	tion of Variables
	3.3.1	Cartesian Coordinates
	3.3.2	Spherical Coordinates
3.4	Multip	ole Expansion
	3.4.1	Approximate Potentials at Large Distances
	3.4.2	The Monopole and Dipole Terms
	3.4.3	Origin of Coordinates in Multipole Expansions
	3.4.4	The Electric Field of a Dipole

3.2 Method of Images

3.2.1 The Classic Image Problem

Suppose a point charge q is held at d above an infinite grounded conducting plane.

Question: What is the potential in the region above the plane?

- → q will induce a certain amount of negative charge on the nearby surface of the conductor.
- → how can we possibly calculate the potential?
- → we don't know how much charge is induced,
- → or how it is distributed.

This problem is to solve Poisson's equation in the region z > 0, with a single point charge q at (0, 0, d), subject to the boundary conditions:

- 1. V = 0 when z = 0 (since the conducting plane is grounded),
- 2. V -+ 0 far from the charge.

Trick: Forget about the actual problem.

Consider two point charges, +q at (0, 0, d) and -q at (0,0, -d), and no conducting plane.

It produces exactly the same potential as the original configuration, in the "upper" region z > 0.

The Classic Image Problem

 $V(x, y, z) = \frac{1}{4\pi\epsilon_0} \left[\frac{q}{\sqrt{x^2 + y^2 + (z - d)^2}} - \frac{q}{\sqrt{x^2 + y^2 + (z + d)^2}} \right]$

This solution also follows that

- 1. V = 0 when z = 0 (since the conducting plane is grounded),
- 2. V-+ 0 far from the charge.

Notice the **crucial role played by the uniqueness theorem** in this argument:

→ without it, no one would believe this solution, since it was obtained for a completely different charge distribution.

But the uniqueness theorem certifies it:

- → If it satisfies Poisson's equation in the region of interest, and assumes the correct value at the boundaries,
- → then it must be right!

3.2.2 Induced Surface Charge

$$V(x, y, z) = \frac{1}{4\pi\epsilon_0} \left[\frac{q}{\sqrt{x^2 + y^2 + (z - d)^2}} - \frac{q}{\sqrt{x^2 + y^2 + (z + d)^2}} \right]$$

Induced charge (-q)

Boundary condition requires that

$$\sigma = -\epsilon_0 \frac{\partial V}{\partial n} \quad \longleftarrow \quad \mathbf{E} = \frac{\sigma}{\epsilon_0} \hat{\mathbf{n}}$$

$$\sigma = -\epsilon_0 \frac{\partial V}{\partial z} \bigg|_{z=0} \quad \text{(in this case)}$$

$$\frac{\partial V}{\partial z} = \frac{1}{4\pi\epsilon_0} \left\{ \frac{-q(z-d)}{[x^2 + y^2 + (z-d)^2]^{3/2}} + \frac{q(z+d)}{[x^2 + y^2 + (z+d)^2]^{3/2}} \right\}$$

$$\sigma(x, y) = \frac{-qd}{2\pi(x^2 + y^2 + d^2)^{3/2}}$$

The total induced charge is:

$$Q = \int \sigma \, da$$
 \Rightarrow a little easier to use polar coordinates (r, ϕ) , $\sigma(r) = \frac{-qd}{2\pi (r^2 + d^2)^{3/2}}$

$$= \int_0^{2\pi} \int_0^\infty \frac{-qd}{2\pi (r^2 + d^2)^{3/2}} r \, dr \, d\phi = \left. \frac{qd}{\sqrt{r^2 + d^2}} \right|_0^\infty = -q$$

3.2.3 Force and Energy

The charge q is attracted toward the plane, because of the induced charge -q.

$$\mathbf{F} = -\frac{1}{4\pi\epsilon_0} \frac{q^2}{(2d)^2} \hat{\mathbf{z}}$$

Energy, however, is *not* the same in the two cases.

(1) With the two point charges and no conductor:

$$W = -\frac{1}{4\pi\epsilon_0} \frac{q^2}{2d}$$

(b) Image charge and field lines.

(2) For a single charge and conducting plane the **energy** is *half* of this:

$$W = -\frac{1}{4\pi\epsilon_0} \frac{q^2}{4d}$$

(Why?) Think of the energy stored in the fields: $W = \frac{\epsilon_0}{2} \int E^2 d\tau$

In the first case \rightarrow both the regions (z > 0 and z < 0) contribute equally. But in the second case \rightarrow only the upper region contains a nonzero field,

Induced charge (-q)

(Why?) By calculating the work required to bring q in from infinity:

$$W = \int_{\infty}^{d} \mathbf{F} \cdot d\mathbf{l} = \frac{1}{4\pi\epsilon_{0}} \int_{\infty}^{d} \frac{q^{2}}{4z^{2}} dz = \frac{1}{4\pi\epsilon_{0}} \left(-\frac{q^{2}}{4z} \right) \Big|_{\infty}^{d} = -\frac{1}{4\pi\epsilon_{0}} \frac{q^{2}}{4d}$$

3.2.4 Other Image Problems: Method of images

Example 3.2 Find the potential outside the sphere.

The image charge is $q' = -\frac{R}{a}q$

placed a distance $b = \frac{R^2}{a}$

The potential of this configuration is

$$V(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \left(\frac{q}{\imath} + \frac{q'}{\imath'} \right)$$

$$V(r,\theta) = \frac{1}{4\pi\epsilon_0} \left[\frac{q}{\sqrt{r^2 + a^2 - 2ra\cos\theta}} - \frac{q}{\sqrt{R^2 + (ra/R)^2 - 2ra\cos\theta}} \right]$$

