## **EXAM REVIEW PROBLEMS**

- 1. Lifting water with an elastic band. An elastic band consists of a tangle of long molecules with no particular orientation. Consider a toy model of the elastic band as consisting of N rods of length  $\ell$ , each of which can point either up or down (Fig. 1a).
  - a. A bucket of weight w is suspended by the elastic band. Calculate the equilibrium length L of the band as a function of its temperature  $\tau$  and the weight w.
  - b. Suppose you were to heat the elastic band: would the bucket move up, move down, or remain fixed? Give an entropic argument for your answer.
  - c. Design a Carnot cycle to do work by adjusting the temperature of the band and the weight of the bucket (e.g., by pouring water in and out of the bucket).
    - i. Mark arrows on Fig. 1(b) showing in which direction the cycle should go in order to form a heat engine.
    - ii. Sketch the adiabats and isotherms in the L-w plane (Fig. 1(c)) and label the points  $\mathbf{A}, \mathbf{B}, \mathbf{C}$ , and  $\mathbf{D}$  that match the corresponding points in Fig. 1(b). Again mark arrows showing the direction of the cycle.



FIG. 1. Rubber band and Carnot cycle.

2. 2D electron gas. A two-dimensional electron gas (2DEG) can be formed at the interface between two semiconductor materials. Consider an area  $A = L \times L$  containing N free electrons, and let n = N/A represent the electron density.

*Note:* The following approximation may be helpful in this problem:

$$\int_0^\infty dx \frac{x}{ye^x + 1} \approx \frac{\pi^2}{6} + \frac{(\log y)^2}{2} - y + O(y^2)$$

- a. Calculate the Fermi energy  $\varepsilon_F$  as a function of electron density in the zero-temperature limit.
- b. Magnetic susceptibility. Suppose we apply a magnetic field B that shifts the energies of spin-up and spin-down electrons by  $\mp \gamma B$ , with  $|\gamma B| \ll \varepsilon_F$ . ( $\gamma$  includes the electron's intrinsic magnetic moment and a contribution from orbital motion induced by the field.) In terms of N,  $\gamma$ , B, and  $\varepsilon_F$ , calculate
  - i. the magnetization M
  - ii. the magnetic susceptibility  $\chi$
- c. Heat capacity. Now consider the 2DEG at B=0 and at low but non-zero temperature  $\tau \ll \tau_F$ , where  $\tau_F$  is the Fermi temperature. Calculate the specific heat  $c_V$ —i.e., the heat capacity per electron—to lowest order in  $\tau/\tau_F$ . Compare your result quantitatively to the heat capacity of a two-dimensional ideal gas.
- 3. K&K 4.10 (Heat capacity of intergalactic space)
- 4. K&K 6.3 (Distribution function for double occupancy statistics)
- 5. K&K 6.6 (Gas of atoms with internal degrees of freedom)
- 6. K&K 7.2 (Energy of a relativistic Fermi gas)
- 7. K&K 7.10 (Relativistic white dwarf stars)