Math 547: Mathematical Foundations of Statistical Learning Theory Fall 2017

Instructor: Stas Minsker Scribe: Mose Wintner

 $(X_1,Y_1),\ldots,(X_n,Y_n)$ iid from P.

Goal: find $g: \mathbb{S} \to \{\pm 1\}$ such that $P(Y \neq g(X)) = L(g)$ is small.

Let G be some "base class" of possible q.

Let

$$\widehat{g}_n = \operatorname*{argmin}_{g \in G} P_n I\{Y \neq g(X)\} := \operatorname*{argmin}_{g \in G} \frac{1}{n} \sum_{j=1}^n I\{Y_j \neq g(X_j)\} \approx P(Y \neq g(X)).$$

We usually are making empirical observations, so G can't be too large.

Example 1. "Decision stumps". $\mathbb{S} = \mathbb{R}$, $g_t^+(x) := I\{x \geq t\} - I\{x < t\}$, similar g_t^- , $G = \{g_t^+, g_t^- : t \in \mathbb{R}\}$. Then it is enough to consider $g_{X_{(i)}}^{\pm 1}$ for order statistics $X_{(i)}$. As $n \to \infty$ we get convergence.

Example 2. Higher-dimensional decision stumps. $\mathbb{S} = \mathbb{R}^d$. Consider decision stumps for each coordinate, e.g. d = 2. $g_{t,1}^+(x) = I\{x_1 \geq t\} - I\{x_1 < t\}, g_{t,2}^- = I\{x_2 \leq t\} - I\{x_2 > t\}$.

For binary classifiers, $P(Y \neq g(X)) = P(Yg(X) \leq 0)$, where Yg(X) is called the margin. These are equal to $\mathbb{E}I\{Yg(x) \leq 0\} \leq \ell(Yg(X))$ for some functions ℓ . We'll choose $\ell(t) = e^{-t}$, the "classification-calibrated" loss, so we're now considering $\mathbb{E}e^{-Yg(X)}$.

Lemma 1. Let $\overline{g} = \operatorname{argmin}_g \mathbb{E} e^{-Yg(X)}$. Then

$$\overline{g} = \mathbb{E}[\mathbb{E}e^{-Yg(X)}|X] = \int e^{-g(X)} \frac{1 + \eta(x)}{2} + e^{g(X)} \frac{1 - \eta(x)}{2} d\Pi.$$

Let g(x) = t; then minimizing the integrand over $t \in \mathbb{R}$ gives

$$t = \frac{1}{2}\log\frac{1+\eta(x)}{1-\eta(x)}.$$

Then the sign of g(x) is the same as the sign of $\eta(x)$. Therefore $\operatorname{sign}(\overline{g})$ is equal to the Bayes classifier. Next goal:

$$\mathbb{E}\ell(Yg(X)) = P\ell(yg(x)) \approx P_n\ell(yg(x)) = \frac{1}{n} \sum_{j=1}^n e^{-Y_j g(X_j)}.$$