Ecovisor – A Virtual Energy System for Carbon-Efficient Applications

Abel Souza, Noman Bashir, Jorge Murillo, Walid Hanafy, Qianlin Liang David Irwin, Prashant Shenoy **University of Massachusetts Amherst**

https://github.com/carbonfirst/ecovisor

Motivation

- Cloud Capacity and energy usage doubling at ~4 years
 - Energy usage $\sim 2-5\%$ of world's consumption
- The rising in cloud energy usage is not the main problem
- Issue is the carbon emissions from this energy usage and its negative impact on the environment.
- A distinguishing characteristic of clean energy is its unreliability

Computing Unique's Features

 Modern workloads have key temporal and spatial execution flexibility

Limitations

- Energy's Reliability Abstraction Limits Computing's Potential
- Today's energy systems mask clean energy's unreliability from applications in hardware

node1 node2 node60 node3 power bus solar array simulator battery programmable AC power supply

server 🗥 power measurement 🕛 power control

i virtual battery a virtual solar DC-to-AC inverter

smart charge controller on/off relay

Ecovisor Design

An example of a Library API **Function Name Description** Energy usage in interval (t_1, t_2) get_container_energy() Carbon usage in interval (t_1, t_2) get_container_carbon() Power usage for an application get_app_power()

Energy usage in interval (t_1, t_2) get_app_energy() Carbon usage for an application get_app_carbon() Set carbon rate for a container set_carbon_rate() Set carbon budget for a container set_carbon_budget() Set application's carbon budget set_app_carbon_budget() Called when solar changes notify_solar_change() Called when grid carbon changes notify_carbon_change() notify_battery_full() Called when battery fully charged Called when battery empty notify_battery_empty() **Get Energy System Asynchronous Information Notifications Control Power Supply** and Demand Ecovisor

Ecovisor Case Studies

Web Application

Batch Jobs Key Intuition: applications better optimize their carbon-efficiency compared to a system-level policy CO2 Emissions (gCO2e) Runtime (hours) CO2-agnostic **System Policy W&S (2X) W&S (3X)** CO2 Emissions Time ^{∞∞∞} CO2-agnostic System Policy W&S (2X) **W&S (4X)** W&S (3X)

Prototype Solar Charge Controller Solar Array Simulator

Conclusions

- Many carbon-efficiency optimizations possible if applications have visibility/control
- Ecovisor exposes useful functions to enable carbon-efficient applications
- A Foundation to develop abstractions that simplify carbon-efficient applications.