Data Mining

Predictive Modelling Support Vector Machines

Raquel Sebastião

Departamento de Eletrónica, Telecomunicações e Informática

Universidade de Aveiro

raquel.sebastiao@ua.pt

- Support Vector Machines (SVM)
 - Support vectors
- Linear support vector machines
- Nonlinear support vector machines
- Multi-class SVM
- Summary

Prediction Models – approaches

Geometric approaches

- Distance-based: kNN
- Linear models: Fisher's linear discriminant, perceptron, logistic regression, SVM (w. linear kernel)

Probabilistic approaches

naive Bayes, logistic regression

Logical approaches

classification or regression trees, rules

Optimization approaches

neural networks, SVM

Sets of models (ensembles)

random forests, adaBoost

- "Relative recent"
 - introduced in 1992 (@COLT-92 conf)
- Gave origin to a new class of algorithms named kernel machines
- SVMs have been applied with success in a wide range of areas:
 - Bioinformatics
 - text mining
 - hand-written character recognition
 - Biometric recognition

• Find a linear hyperplane (decision boundary) that will separate the data

• One Possible Solution

Another possible solution

• Other possible solutions

- Which one is **better**? B1 or B2?
- How to define better?

• Find hyperplane maximizes the margin => B1 is better than B2

$$g(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{w}^{\mathrm{T}} \mathbf{x} + b \geq 1 \\ -1 & \text{if } \mathbf{w}^{\mathrm{T}} \mathbf{x} + b \leq -1 \end{cases}$$

- Support Vector Machines (SVM)
 - Support vectors
- Linear support vector machines
 - Learning linear SVM
 - Optimization problem and Dual optimization problem
 - Example
 - Soft margin SVM
- Nonlinear support vector machines
- Multi-class SVM
- Summary

• Linear model:

$$g(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{w}^{\mathsf{T}} \mathbf{x} + b \ge 1 \\ -1 & \text{if } \mathbf{w}^{\mathsf{T}} \mathbf{x} + b \le -1 \end{cases}$$

• Target labels = {-1,1}

- ullet Learning the model is equivalent to determining the values of $oldsymbol{w}$ and $oldsymbol{b}$
 - How to find w and b from training data?

The decision rule is a linear discriminant function

$$g(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + b$$

 $g(\mathbf{x}) = 0$ $g(\mathbf{x}) < 0$

How to find \mathbf{w} and b from training data?

Separating hyperplane

- Direction in space: w
- Position in space: b
- Distance of an object \mathbf{x} (with label y) to the hyperplane:

Optimal hyperplane: g(x) = 0

- for EACH possible direction w:
 - choose the hyperplane that leaves the **SAME distance** from the nearest points from each class
 - The margin is twice this distance

- $g(\mathbf{x}) = 1$ and $g(\mathbf{x}) = -1$ define **two parallel hyperplane** to the optimal hyperplane $g(\mathbf{x}) = 0$
 - Cases that fall on the hyperplanes are the support vectors ($\mathbf{w}^T \mathbf{x} + b = \pm 1$)
 - Removing all other cases would not change the solution!
- The optimal hyperplane classifier of a support vector machine is unique

- Support Vector Machines (SVM)
 - Support vectors
- Linear support vector machines
 - Learning linear SVM
 - Optimization problem and Dual optimization problem
 - Example
 - Soft margin SVM
- Nonlinear support vector machines
- Multi-class SVM
- Summary

Given a training data set $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N$, where each object is represented by a D+1–tuple (D-dim) feature vector $\mathbf{x}_i \in \mathbb{R}^D$ and the corresponding label $\mathbf{y}_i \in \mathbf{Y}$

- Goal: maximize Margin $=\frac{2}{||\mathbf{w}||}$ (Largest margin \rightarrow better generalization)
 - Which is equivalent to minimizing: $L(\mathbf{w}) = \frac{\|\mathbf{w}\|^2}{2}$
 - subject to: **w** and *b* such that:

$$y_i = \begin{cases} 1 & \text{if } \mathbf{w}^{\mathrm{T}} \mathbf{x}_i + b \geq 1 \\ -1 & \text{if } \mathbf{w}^{\mathrm{T}} \mathbf{x}_i + b \leq -1 \end{cases}$$

• Which is equivalent to: $y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$, $\forall \{(\mathbf{x}_i, y_i)\}$

- Support Vector Machines (SVM)
 - Support vectors
- Linear support vector machines
 - Learning linear SVM
 - Optimization problem and Dual optimization problem
 - Example
 - Soft margin SVM
- Nonlinear support vector machines
- Multi-class SVM
- Summary

Optimization problem

Maximum Margin Hyperplane

- The solution is achieved with
 - minimizing : $L(\mathbf{w}) = \frac{\|\mathbf{w}\|^2}{2}$
 - subject to: $y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$, $\forall \{(\mathbf{x}_i, y_i)\}$

- This is a constrained optimization problem
 - Solve it using Lagrange multiplier method

Optimization problem

Maximum Margin Hyperplane

Minimization is achieved by writing the Lagrangian primal problem

$$L = \frac{\|\mathbf{w}\|^2}{2} - \sum_{i=1}^{N} \lambda_i (y_i(\mathbf{w}^T \mathbf{x}_i + b) - 1)$$

Calculating

$$\frac{\partial L}{\partial \mathbf{w}} = 0 \Rightarrow \mathbf{w} = \sum_{i=1}^{N} \lambda_i \ y_i \mathbf{x}_i$$

$$\frac{\partial L}{\partial b} = 0 \Rightarrow \sum_{i=1}^{N} \lambda_i \ y_i = 0$$

and substituting in L the dual optimization problem $L_d(\lambda)$ is obtained

Dual optimization problem

Dual optimization problem: data manipulations are dot products

Training by maximizing:

$$L_d(\lambda) = \sum_{i=1}^{N} \lambda_i - \frac{1}{2} \sum_{i,j=1}^{N} \lambda_i \lambda_j y_i y_j ((\mathbf{x}_i)^T \mathbf{x}_j)$$

- Subjected to
 - Lagrangians $\lambda_i \geq 0$
 - $\sum_{i=1}^{N} \lambda_i y_i = 0$
- outputs
 - The Lagrangians λ_i computed for all the examples in the training data set
 - If $\lambda_i = 0$ the i-th example \mathbf{x}_i is not relevant
 - If $\lambda_i \neq 0$ the i-th example \mathbf{x}_i is a support vector

Dual optimization problem

After learning the Lagrangians:

- Compute $\mathbf{w} = \sum_{i=1}^{N} \lambda_i y_i \mathbf{x}_i^*$
 - when $\lambda_i = 0$ the i –th example \mathbf{x}_i is not relevant (it does not contribute to the sum)
 - when $\lambda_i \neq 0$ the corresponding i-th example \mathbf{x}_i is a support vector
 - lies along the hyperplanes parallel to the decision hyperplane (linearly separable problem): $\mathbf{w}^{\mathrm{T}} \mathbf{x} + b = \pm 1$
- b is computed using support vectors

Decision boundary depends only on support vectors

$$g(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + b = 0$$

^{*} Note that only the support vectors contribute to compute **W**

Dual optimization problem

Testing

Applying dual form of linear classifier, the label of object ${m z}$ is

$$g(\mathbf{z}) = \sum_{i,j=1}^{K_S} \lambda_i \ y_i((\mathbf{x}_i)^T \mathbf{z}) + b \Rightarrow \begin{cases} g(\mathbf{z}) > 0, \mathbf{z} \in \omega_1 \\ g(\mathbf{z}) < 0, \mathbf{z} \in \omega_2 \end{cases}$$

• K_S : the number support vectors

To apply **dual form** during testing phase it is needed:

- the support vectors to perform $(\mathbf{x}_i)^T \mathbf{z}$ and corresponding labels y_i
- the complexity of testing phase is dependent on the number of support vectors

- Support Vector Machines (SVM)
 - Support vectors
- Linear support vector machines
 - Learning linear SVM
 - Optimization problem and Dual optimization problem
 - Example
 - Soft margin SVM
- Nonlinear support vector machines
- Multi-class SVM
- Summary

How to find \mathbf{w} and b from training data?

x1	/ x2	У	λ		
0.3858	0.4687	1	65.5261		
0.4871	0.611	-1	65.5261		
0.9218	0.4103	-1	0		
0.7382	0.8936	-1	0		
0.1763	0.0579	1	0		
0.4057	0.3529	1	0		
0.9355	0.8132	-1	o		
0.2146	0.0099	1	o		

How to find \mathbf{w} and b from training data?

$$\mathbf{w} = \sum_{i=1}^{N} \lambda_i y_i \mathbf{x}_i$$

$$\mathbf{w} = \sum_{i=1}^{K_S} \lambda_i y_i \, \mathbf{x}_i$$

0.0099

Support vectors

$$\mathbf{w} = 65.5261 \times 1 \times [0.3858 \ 0.4687] + 65.5261 \times (-1) \times [0.4871 \ 0.611] =$$

$$\mathbf{w} = [-6.6378 \ -9.3244]$$

0.2146

How to find **w** and **b** from training data?

At the margins: $\mathbf{w}^{\mathrm{T}} \mathbf{x} + b = \pm 1$

Red hyperplane ($\mathbf{w}^{\mathrm{T}} \mathbf{x} + b = +1$)

$$b = +1 - \mathbf{w}^{\mathrm{T}} \mathbf{x} = +1 - [-6.6378 -9.3244]$$

Blue hyperplane ($\mathbf{w}^{\mathrm{T}} \mathbf{x} + b = -1$)

$$b = -1 - \mathbf{w}^{\mathrm{T}} \mathbf{x} = -1 - [-6.6378 -9.3244] \begin{bmatrix} 0.4871 \\ 0.611 \end{bmatrix} = 7.9305$$

$$b = \frac{(7.9226 + 7.9305)}{2} = 7.9265$$

	•			
	x1	x2	у	λ
4	0.3858	0.4687	1	65.5261
•	0.4871	0.611	-1	65.5261
	0.9210	0.4103	-1	0
	0.7382	0.8936	-1	0
	0.1763	0.0579	1	0
	0.4057	0.3529	1	0
	0.9355	0.8132	-1	0
	0.2146	0.0099	1	0
	•	•	•	

(it is numerically safer to take the mean value of b resulting from all support vectors)

- Support Vector Machines (SVM)
 - Support vectors
- Linear support vector machines
 - Learning linear SVM
 - Optimization problem and Dual optimization problem
 - Example
 - Soft margin SVM
- Nonlinear support vector machines
- Multi-class SVM
- Summary

not linearly separable data

• What if the problem is **not linearly separable?**

Soft-margin SVM

not linearly separable data

• What if the problem is **not linearly separable?**

Soft-margin SVM

- Introduce slack variables to tolerate some misclassification errors controlled by the parameter C (regularization term)
 - Objective: minimize

$$L(w) = \frac{||w||^2}{2} + C\left(\sum_{i=1}^{N} \xi_i^k\right)$$

 $\mathbf{w} \cdot \mathbf{x} + b = 0$ ξ_i $\mathbf{w} \cdot \mathbf{x} + b = +1$

 $\mathbf{w} \cdot \mathbf{x} + b = -1$

• Goal: find \mathbf{w} , b and $\boldsymbol{\xi}$, given that:

$$y_i = \begin{cases} 1 & \text{if } \mathbf{w}^{\mathrm{T}} \mathbf{x}_i + b \geq 1 - \xi_i \\ -1 & \text{if } \mathbf{w}^{\mathrm{T}} \mathbf{x}_i + b \leq -1 + \xi_i \end{cases}$$

not linearly separable data

Find the hyperplane that optimizes both margins (B₁ and B₂)

Hard Margin SVMs: Linearly separable data

- works well when data is linearly separable
- on real-world data this is hardly the case
- does not take into account presence of noise

Soft Margin SVMs: Not linearly separable data

- it tolerates some misclassification
- errors controlled by a parameter C (regularization term)
- introduces slack variables for each example

- Support Vector Machines (SVM)
 - Support vectors
- Linear support vector machines
- Nonlinear support vector machines
 - Learning nonlinear SVM and the Kernel trick
 - Example
- Multi-class SVM
- Summary

• What if the decision boundary is **not linear?**

Nonlinear Support Vector Machines

- Most real world problems have inherent nonlinearity
- SVMs solve this by "moving" into an extended input space where classes are already linearly separable
- This means the maximum margin hyperplane needs to be found on this new very high dimension space

Contents

- Support Vector Machines (SVM)
 - Support vectors
- Linear support vector machines
- Nonlinear support vector machines
 - Learning nonlinear SVM and the Kernel trick
 - Example
- Multi-class SVM
- Summary

- Transform data into higher dimensional space with $\Phi(x)$
 - Such that classes are linearly separable
- Same optimization problem $\frac{min}{\mathbf{W}} \frac{||\mathbf{W}||^2}{2}$, but involving $\Phi(\mathbf{x})$ instead of \mathbf{x}
- Computations involve dot product $\Phi(\mathbf{x}_i) \Phi(\mathbf{x}_i)$
 - Solution to the optimization equation involves dot products between feature vectors, \mathbf{x}_i and \mathbf{x}_i , that are computationally heavy on high-dimensional spaces
 - Calculate the image of $\Phi(\mathbf{x})$ of each input vector \mathbf{x} and then do the dot product can be quite expensive
- The kernel function defined as $K(\mathbf{x}_i, \mathbf{x}_j) = \Phi(\mathbf{x}_i) \Phi(\mathbf{x}_j)$ performs simultaneously the mapping and dot product

Kernel Trick

Kernel Trick

- The result of complex calculations in higher dimensional space is equivalent to the result of applying certain functions (**kernel functions**) in the space of the original variables
 - replace the complex dot products by these simpler and efficient calculations
- The kernel function takes as inputs vectors in the original space and returns the dot product of the vectors in the higher dimensional space
 - perform operations in the **original space** (without a feature transformation!)
- Using kernels, we do not need to embed the data into the <u>higher dimensional</u> space explicitly!
- instead of calculating the dot products in a high dimensional space, take advantage of $K(\mathbf{x}_i, \mathbf{x}_i) = \Phi(\mathbf{x}_i) \Phi(\mathbf{x}_i)$
- use a linear optimization solution to solve a non-linear problem

Dual optimization problem: the same set of equations (but involve $\Phi(\mathbf{x})$ instead of \mathbf{x})

$$L_d(\lambda) = \sum_{i=1}^N \lambda_i - \frac{1}{2} \sum_{i,j=1}^N \lambda_i \lambda_j \ y_i \ y_j \Big((\Phi(\mathbf{x}_i))^T \Phi(\mathbf{x}_j) \Big)$$

$$L_d(\lambda) = \sum_{i=1}^N \lambda_i - \frac{1}{2} \sum_{i,j=1}^N \lambda_i \lambda_j \ y_i \ y_j \Big(\mathsf{K}(\mathbf{x}_i, \mathbf{x}_j) \Big)$$
Kernel Trick

• Subjected to

$$\mathbf{w} = \sum_{i=1}^{N} \lambda_i y_i \, \Phi(\mathbf{x}_i)$$

SVM dual form of decision rule

$$g(\mathbf{z}) = \mathbf{w}^{\mathrm{T}}\mathbf{z} + b = \sum_{i,j=1}^{K_{S}} \lambda_{i} y_{i}(\Phi(\mathbf{x}_{i}))^{T} \Phi(\mathbf{z}) + b \Rightarrow \begin{cases} g(\mathbf{z}) > 0, \mathbf{z} \in \omega_{1} \\ g(\mathbf{z}) < 0, \mathbf{z} \in \omega_{2} \end{cases}$$

- Advantages of using kernel:
 - Don't have to know the mapping function Φ
 - Computing dot product $\Phi(\mathbf{x}_i)$ $\Phi(\mathbf{x}_j)$ in the original space avoids curse of dimensionality

- Not all functions can be kernels
 - ullet Must make sure there is a corresponding Φ in some high-dimensional space

Examples of different kernel functions:

Contents

- Support Vector Machines (SVM)
 - Support vectors
- Linear support vector machines
- Nonlinear support vector machines
 - Learning nonlinear SVM and the Kernel trick
 - Example
- Multi-class SVM
- Summary

Transform data into higher dimensional space (from 2D to 3D)

$$\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2] \rightarrow \Phi(\mathbf{x}) = [\mathbf{x}_1^2 \quad \sqrt{2}\mathbf{x}_1\mathbf{x}_2 \quad \mathbf{x}_2^2]$$

- linear decision boundary with SVM (for example..)
 - Linear hyperplane can be used to separate the instances in the transformed space
- The learned hyperplane can then be **projected back** to the **original** attribute space
 - nonlinear decision boundary
 - The dot product in the 3D space using the polynomial kernel

$$\Phi(\mathbf{x}_1)^{\mathrm{T}}\Phi(\mathbf{x}_2) = K(\mathbf{x}_1, \mathbf{x}_2) = (\mathbf{x}_1^T \mathbf{x}_2)^2$$

Transform data into higher dimensional space (from 2D to 3D)

$$\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2] \rightarrow \Phi(\mathbf{x}) = [\mathbf{x}_1^2 \quad \sqrt{2}\mathbf{x}_1\mathbf{x}_2 \quad \mathbf{x}_2^2]$$

Data set: 2 exemples (2D)

$$X = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$

Dot product in the 3D space using kernel

$$\left((1 \quad 1) \begin{pmatrix} -1 \\ -1 \end{pmatrix} \right)^2 = 4$$

Mapped data set: 2 examples (3D)

$$\Phi(\mathbf{x}) = \begin{pmatrix} 1 & \sqrt{2} & 1 \\ 1 & \sqrt{2} & 1 \end{pmatrix}$$

Dot product with the 3D data

$$\begin{pmatrix} 1 & \sqrt{2} & 1 \end{pmatrix} \begin{pmatrix} 1 \\ \sqrt{2} \\ 1 \end{pmatrix} = 4$$

ADVANTAGE: The dot product in the 3D space with the data of the 2D space

SVM with polynomial degree 2 kernel

SVM with Gaussian RBF kernel

Contents

- Support Vector Machines (SVM)
 - Support vectors
- Linear support vector machines
- Nonlinear support vector machines
- Multi-class SVM
- Summary

Support Vector Machines: multi-class

How to handle more than 2 classes?

- Solve several binary classification tasks
- Essentially, find the support vectors that separate each class from all others

Support Vector Machines: multi-class

Two strategies of training multiple binary classifiers. Considering C classes

- one-against-all (one-against-the rest): C binary classifiers
 - Training set: Positive class (objects of C_i), Negative class (objects of the rest C_j , $j \neq i$)
 - Testing a new object: winner-takes-all strategy, binary classifier with the highest (largest) output function assigns the class
- one-against-one: c(c -1)/2 binary classifiers
 - Training set: Positive class (objects of C_i), Negative class (examples of the other C_j, j ≠i)
 - Testing a new object: max-wins voting strategy, in which every classifier assigns the instance to one of the two classes, the class with most votes determines the instance classification

Contents

- Support Vector Machines (SVM)
 - Support vectors
- Linear support vector machines
- Nonlinear support vector machines
 - Learning nonlinear SVM and the Kernel trick
 - Example
- Multi-class SVM
- Summary

SVM: summary

The outputs of the training algorithm are

- the values of Lagrangian λ_i : $0 \le \lambda_i < C$
- the parameter b
- the support vectors (\mathbf{x}_i, y_i) a subset of training set
- Linear SVM: the w can be estimated
- Non-Linear SVM: dual form is a must
- Data set with same support vectors → decision boundary remains

SVM: training and testing

Training SVM

- Choose appropriate kernel function. This implicitly assumes a mapping to a higher dimensional (yet, not known) space
- Assign the parameters of the kernel (e.g., σ if RBF kernel)
- The margin control parameter C

The choice of parameters is usually experimentally driven: k-folder cross-validation

Testing SVM

- The support vectors need to be stored to apply the kernel function (if non-linear)
- The complexity depends on the number of support vectors
- Major limitations of (non-linear) SVM is the computational burden

SVM: characteristics

- The learning problem is formulated as a convex optimization problem
 - Efficient algorithms are available to find the global minima (e.g., SGD)
 - Many of the other methods use greedy approaches and find locally optimal solutions
- SVM is effective on large datasets
 - Complexity of trained classifier
 - characterized by the # of support vectors (rather than the size of data)
 - Support vectors: essential or critical training examples
 - lie closest to the decision boundary
 - SVM with a small number of support vectors can have good generalization, even on large datasets
 - What about categorical variables?

SVM: advantages and disadvantages

Advantages

- Linear and non-Linear in the same algorithm.
- Good generalization (classification accuracy high)
 - Overfitting: handled by maximizing the margin of the decision boundary
- Robust to noise (works when training examples contain errors)
- Can handle irrelevant and redundant attributes better than many other techniques

Disadvantages

- In training: no criterium to choose of appropriate kernel function (and parameters)
- If number of support vectors is high: complexity (storage and computation) is high
- Not easy to interpret results
- Multiclass problems still need more improvement

Bibliography

Introduction to Data Mining, Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, Vipin Kumar, *Pearson*, 2019 (chap 6.9)

Data Mining, the Textbook, Charu C. Aggarwal, *Springer*, 2015 (chap 10.6)

Machine Learning: The Art and Science of Algorithms That Make Sense of Data, P. Flach, Cambridge University Press, 2012 (ch 7.3)

