Fundamentos de Sistemas Inteligentes (2021-1)

# Aprendizado por Reforço



Artur Hugo (18/0030400) Felipe Neves (18/0016296)

# O que é aprendizado por reforço?

Aprendizado por reforço é a área de aprendizado de máquina que estuda como agentes inteligentes desempenham ações em um ambiente de forma a maximizar a noção de recompensa cumulativa

#### O que é aprendizado por reforço?

- Aprendizado a partir de recompensas e penalidades
- Sem uso de dados pré-classificados (labels)
- Exploração vs Otimização (não há conhecimento prévio)
- Decisões sequenciais (consequência das características acima)

#### Conceitos Básicos:

- Agente: Realiza ações + Ganha recompensas
- Ambiente: cenário no qual agente se encontra
- Estado: configuração atual do ambiente
- Recompensa: consequência imediata recebida ao realizar ação
- Política: estratégia usada pelo agente para escolher próxima ação
- Valor: retorno esperado a longo-prazo



Jogos



Imagem retirada de https://www.uol.com.br/start/ultimas-noticias/2021/07/21/cientistas-criam-robo-capaz-de-jogar-super-mari o-bros-veja-video.htm

Jogos

Redes



Imagem retirada de https://www.gta.ufrj.br/ensino/eel879/vf/mpeg-dash/

- Jogos
- Redes
- Robótica



Imagem retirada de https://www.gta.ufrj.br/ensino/eel879/vf/mpeg-dash/

Jogos

Redes

Robótica

NLP

• E muito mais



Figure 1: Dialogue simulation between the two agents.

Imagem retirada de https://neptune.ai/blog/reinforcement-learning-applications

#### Algoritmos de Aprendizado por Reforço:

| Algorithm +         | Description                                              | Policy +   | Action Space + | State Space + | Operator +   |
|---------------------|----------------------------------------------------------|------------|----------------|---------------|--------------|
| Monte Carlo         | Every visit to Monte Carlo                               | Either     | Discrete       | Discrete      | Sample-means |
| Q-learning          | State-action-reward-state                                | Off-policy | Discrete       | Discrete      | Q-value      |
| SARSA               | State-action-reward-state-action                         | On-policy  | Discrete       | Discrete      | Q-value      |
| Q-learning - Lambda | State-action-reward-state with eligibility traces        | Off-policy | Discrete       | Discrete      | Q-value      |
| SARSA - Lambda      | State-action-reward-state-action with eligibility traces | On-policy  | Discrete       | Discrete      | Q-value      |
| DQN                 | Deep Q Network                                           | Off-policy | Discrete       | Continuous    | Q-value      |
| DDPG                | Deep Deterministic Policy Gradient                       | Off-policy | Continuous     | Continuous    | Q-value      |
| A3C                 | Asynchronous Advantage Actor-Critic Algorithm            | On-policy  | Continuous     | Continuous    | Advantage    |
| NAF                 | Q-Learning with Normalized Advantage Functions           | Off-policy | Continuous     | Continuous    | Advantage    |
| TRPO                | Trust Region Policy Optimization                         | On-policy  | Continuous     | Continuous    | Advantage    |
| PPO                 | Proximal Policy Optimization                             | On-policy  | Continuous     | Continuous    | Advantage    |
| TD3                 | Twin Delayed Deep Deterministic Policy Gradient          | Off-policy | Continuous     | Continuous    | Q-value      |
| SAC                 | Soft Actor-Critic                                        | Off-policy | Continuous     | Continuous    | Advantage    |

#### O que é Q-Learning?

- Espaço de estados **S**
- Espaço de ações A
- Q-Tabela: todos os pares (s,a)
- Taxa de aprendizado lpha e fator de desconto  $\gamma$

$$Q(s_t, a_t) = (1 - \alpha)Q(s_t, a_t) + \alpha(R_t + \gamma \max_{a} Q(S_{t+1}, a))$$

#### Como o agente escolhe uma ação?

- Exploration x Exploitation
- Política de exploração π(a|s)
- Política **E-greedy**:
  - Escolhe ação ótima com probabilidade 1 ε
  - Escolhe ação aleatória com probabilidade ε
- Decaimento do fator de exploração

#### Processo iterativo

Agente começa um episódio

Cada passo do episódio:

 Verifica se acabou o episódio (e.g. alcançou objetivo ou excedeu limite de passos)



# Demonstração de Q-Learning

#### Abordagem clássica vs Aprendizado profundo



https://www.analyticsvidhya.com/blog/2019/04/introduction-deep-q-learning-python/

#### Supervisado vs Não supervisado vs Reforço

|                         | Aprendizado<br>Supervisionado                                      | Aprendizado não<br>Supervisionado                                                                     | Aprendizado por reforço                                                                                                                                   |  |
|-------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Tipos de<br>Problemas   | Regressão<br>Classificação                                         | Associação<br>Clustering                                                                              | Baseados em recompensa                                                                                                                                    |  |
| Organização<br>de dados | Dados rotulados                                                    | Dados não<br>rotulados                                                                                | Dados não predefinidos*                                                                                                                                   |  |
| Treinamento             | Supervisão externa                                                 | Sem supervisão                                                                                        | Sem supervisão                                                                                                                                            |  |
| Pontos<br>Fracos        | - Trabalho de rotulação<br>- Tempo de computação<br>de treinamento | <ul> <li>Menor acurácia de resultados</li> <li>necessidade de interpretação dos resultados</li> </ul> | <ul> <li>Aprender do zero, sem usar instruções</li> <li>Problemas com espaços de ação grandes</li> <li>extremamente caro em computação e tempo</li> </ul> |  |

#### Referências

- https://deeplizard.com/learn/video/nyjbcRQ-uQ8
- https://www.youtube.com/watch?v=OYhFoMySoVs
- https://towardsdatascience.com/the-complete-reinforcement-learn ing-dictionary-e16230b7d24e#:~:text=Episode%3A%20All%20states %20that%20come,it%20receives%20during%20an%20episode.&tex t=Episodic%20Tasks%3A%20Reinforcement%20Learning%20tasks,e pisode%20has%20a%20terminal%20state).
- https://en.wikipedia.org/wiki/Reinforcement\_learning#Associative\_ reinforcement\_learning
- https://en.wikipedia.org/wiki/Q-learning#Deep Q-learning
- https://www.guru99.com/reinforcement-learning-tutorial.html
- https://www.youtube.com/watch?v=iKdlKYG78j4&ab\_channel=Dr.
   DanielSoper

Obrigado, :)