Package 'sgr'

October 14, 2022

Type Package

Title Sample Generation by Replacement
Version 1.3.1
Date 2022-04-14
Author Massimiliano Pastore & Luigi Lombardi
Depends MASS
Suggests polycor
Maintainer Massimiliano Pastore <massimiliano.pastore@unipd.it></massimiliano.pastore@unipd.it>
Description Sample Generation by Replacement simulations (SGR; Lombardi & Pastore, 2014; Pastore & Lombardi, 2014). The package can be used to perform fake data analysis according to the sample generation by replacement approach. It includes functions for making simple inferences about discrete/ordinal fake data. The package allows to study the implications of fake data for empirical results.
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2022-04-14 14:30:02 UTC
R topics documented:
amse
arb
dgBeta
dgBetaD
model.fake.par
partition.replacement
pfake
pfakebad
pfakegood
psydata
rdatagen
rdatarepl

2 amse

	replacement.matrix	
Index		20

amse

Average root mean square error

Description

Average root mean square error (AMSE).

Usage

amse(Bpar, B0)

Arguments

Bpar Matrix with dimension B (replicates) $\times P$ (parameters).

B0 Vector of true parameter values.

Details

Let $\hat{\theta}_{ij}$ be the estimated parameter value for the *j*th parameter in the *i*th sample (replicate), $i=1,2,\ldots B,\,j=1,2,\ldots P$, and let θ_j be the corresponding true parameter value, the Average root mean square error is defined as follows:

$$AMSE = \frac{1}{B} \sum_{i} \sqrt{\frac{1}{P} \sum_{j} \left[\frac{\hat{\theta}_{ij} - \theta_{j}}{\theta_{j}} \right]^{2}}$$

Value

Gives the AMSE value.

Note

If
$$\theta_j=0$$
, the ratio $\left[rac{\hat{ heta}_{ij}- heta_j}{ heta_j}
ight]$ is modified as follows: $\left[rac{\hat{ heta}_{ij}-0}{1}
ight]$

Author(s)

Massimiliano Pastore & Luigi Lombardi

References

Yang-Wallentin, F., Joreskog, K. G., Luo, H. (2010). Confirmatory Factor Analysis of Ordinal Variables With Misspecified Models, *Structural Equation Modeling: A Multidisciplinary Journal*, 17, 392-423.

arb 3

See Also

arb

arb

Average relative bias

Description

Average relative bias (ARB).

Usage

arb(Bpar, B0)

Arguments

Bpar Matrix with dimension B (replicates) $\times P$ (parameters).

B0 Vector of true parameter values.

Details

Let $\hat{\theta}_{ij}$ be the estimated parameter value for the *j*th parameter in the *i*th sample (replicate), $i=1,2,\ldots B, j=1,2,\ldots P$, and let θ_j be the corresponding true parameter value, the Average relative bias is defined as follows:

$$ARB = \frac{100}{B} \sum_{i} \frac{1}{P} \sum_{j} \left(\frac{\hat{\theta}_{ij} - \theta_{j}}{\theta_{j}} \right)$$

Value

Gives the ARB value.

Note

If
$$\theta_j=0$$
, the ratio $\left(rac{\hat{ heta}_{ij}- heta_j}{ heta_j}
ight)$ is modified as follows: $\left(rac{\hat{ heta}_{ij}-0}{1}
ight)$

Author(s)

Massimiliano Pastore & Luigi Lombardi

References

Yang-Wallentin, F., Joreskog, K. G., Luo, H. (2010). Confirmatory Factor Analysis of Ordinal Variables With Misspecified Models, *Structural Equation Modeling: A Multidisciplinary Journal*, 17, 392-423.

See Also

amse

4 dgBeta

dgBeta

Generalized Beta Distribution.

Description

The generalized beta distribution extends the classical beta distribution beyond the [0,1] range (Whitby, 1971).

Usage

```
dgBeta(x, a = min(x), b = max(x), gam = 1, del = 1)
```

Arguments

Vector of	of	quantilies.
	Vector	Vector of

a Minimum of range of r.v. X.

b Maximum of range of r.v. X.

gam Gamma parameter.

del Delta parameter.

Details

The Generalized Beta Distribution is defined as follows:

$$G(x; a, b, \gamma, \delta) = \frac{1}{B(\gamma, \delta)(b - a)^{\gamma + \delta - 1}} (x - a)^{\gamma - 1} (b - x)^{\delta - 1}$$

where $B(\gamma,\delta)$ is the beta function. The parameters $a\in R$ and $b\in R$ (with a< b) are the left and right end points, respectively. The parameters $\gamma>0$ and $\delta>0$ are the governing shape parameters for a and b respectively. For all the values of the r.v. X that fall outside the interval [a,b], G simply takes value 0. The generalized beta distribution reduces to the beta distribution when a=0 and b=1.

Value

Gives the density.

Author(s)

Massimiliano Pastore & Luigi Lombardi

References

Whitby, O. (1971). *Estimation of parameters in the generalized beta distribution* (Technical Report NO. 29). Department of Statistics: Standford University.

dgBetaD 5

See Also

```
dgBetaD
```

Examples

dgBetaD

Generalized Beta distribution for discrete variables

Description

Generalized Beta distribution for discrete variables.

Usage

```
dgBetaD(x, a = min(x), b = max(x), gam = 1, del = 1, ct = 1)
```

Arguments

X	Vector of quantilies.
а	Minimum of range of r.v. X .
b	Maximum of range of r.v. X .
gam	Gamma parameter.
del	Delta parameter.
ct	Correction term, default value: 1.

Details

Let X be a discrete r. v. with range

$$R_X = \{a, a+1, a+2, \dots, a+t-1, a+t=b\}$$

6 dgBetaD

and where $a \in \mathbb{N} \cup \{0\}$ and $t \in \mathbb{N}$. The Generalized Discrete Beta Distribution for the r.v. X is defined as follows:

$$DG(x; a, b, \gamma, \delta) = \begin{cases} \frac{G^*(x; a, b, \gamma, \delta)}{\sum_{x' \in R_X} G^*(x'; a, b, \gamma, \delta)} & x \in R_X \\ 0 & x \notin R_X \end{cases}$$

where G^* is a modified version of the generalized beta distribution dgBeta defined as

$$G^*(x; a, b, \gamma, \delta) = \frac{1}{B(\gamma, \delta)(b - a + 2c)^{\gamma + \delta - 1}} (x - a + c)^{\gamma - 1} (b - x + c)^{\delta - 1}$$

Value

Gives the density.

Author(s)

Massimiliano Pastore & Luigi Lombardi

References

Lombardi, L., Pastore, M. (2014). sgr: A Package for Simulating Conditional Fake Ordinal Data. *The R Journal*, 6, 164-177.

Pastore, M., Lombardi, L. (2014). The impact of faking on Cronbach's Alpha for dichotomous and ordered rating scores. *Quality & Quantity*, 48, 1191-1211.

See Also

dgBeta

model.fake.par 7

model.fake.par

Internal function.

Description

Set different instances of the conditional replacement distribution.

Usage

```
model.fake.par(fake.model = c("uninformative", "average", "slight", "extreme"))
```

Arguments

fake.model

A character string indicating the model for the conditional replacement distribution. The options are: uninformative (default option) [gam = c(1,1) and del = c(1,1)]; average [gam = c(3,3) and del = c(3,3)]; slight [gam = c(1.5,4) and del = c(4,1.5)]; extreme [gam = c(4,1.5) and del = c(1.5,4)].

Value

Gives a list with γ and δ parameters.

Author(s)

Massimiliano Pastore

References

Lombardi, L., Pastore, M. (2014). sgr: A Package for Simulating Conditional Fake Ordinal Data. *The R Journal*, 6, 164-177.

Pastore, M., Lombardi, L. (2014). The impact of faking on Cronbach's Alpha for dichotomous and ordered rating scores. *Quality & Quantity*, 48, 1191-1211.

```
model.fake.par() # default
model.fake.par("average")
```

8 partition.replacement

partition.replacement Internal function.

Description

This function allows to set different replacement distributions for different subsets of cells in the data matrix.

Usage

Arguments

0	
Dx	Data frame or matrix to be replaced.
PM	Partition matrix with size dim(Dx). See details.
Q	Max value in the discrete r.v. range: $1, \ldots, Q$.
Pparm	List of replacement parameters for each class in the replacement partition. See details.
fake.model	A character string indicating the model for the conditional replacement distribution, see model.fake.par.
p	Overall probability of replacement. Must be a matrix with P rows and two columns. See details.

Details

PM has size dim(Dx) and contains a numeric code for each distinct class in the partition. If a cell of the partition matrix PM contains 0, then the corresponding Dx cell value is not modified (no replacements condition class).

Pparm is a list containing three elements. Each element is a $P \times 2$ matrix where P is the total number of classes in the partition (see examples for further details).

p: Overall probability of replacement: p[,1] indicates the faking good probability, p[,2] indicates the faking bad probability.

gam: Gamma parameter: gam[,1] and gam[,2] indicate the faking good and the faking bad parameters for the lower bound a.

del: Delta parameter: del[,1] and del[,2] indicate the faking good and the faking bad parameters for the upper bound b.

Note that it is possible to define a faking model using the fake.model assignment. In such cases the user must specify also the overall probability of replacement using parameter p.

Value

Returns the fake data matrix.

pfake 9

Author(s)

Massimiliano Pastore

See Also

```
rdatarepl, replacement.matrix
```

Examples

```
require(MASS)
set.seed(20130207)
R \leftarrow matrix(c(1,.3,.3,1),2,2)
Dx <- rdatagen(n=20,R=R,Q=5)$data</pre>
## partition matrix
PM <- matrix(0,nrow(Dx),ncol(Dx))
PM[3:10,2] <- 1
PM[3:10,1] <- 1
partition.replacement(Dx,PM) # warning! zero replacements
## using fake.model
partition.replacement(Dx,PM,fake.model="uninformative",p=matrix(c(.3,.2),ncol=2))
###
p < -c(.5,0)
gam < - c(1,1)
del <- c(1,1)
Pparm <- list(p=p,gam=gam,del=del)</pre>
partition.replacement(Dx,PM,Pparm=Pparm)
### another partition
PM[11:15,2] <- 2
(Pparm <- list(p=matrix(c(0,.5,.5,0),2,2),
      gam=matrix(c(1,4,1,4),2,2),del=matrix(c(1,2,1,2),2,2)))
partition.replacement(Dx,PM,Pparm=Pparm)
```

pfake

Probability of faking.

Description

The function gives the conditional probability of replacement $p(f=k|d=h,\theta_F)$ for discrete values in the range $1,\ldots,Q$.

Usage

```
pfake(k, h = k, p = c(0,0), Q = 5, gam = c(1,1), del = c(1,1), fake.model = c("uninformative", "average", "slight", "extreme"))
```

10 pfake

Arguments

k	A fake value.
h	An observed original value.
p	Overall probability of replacement: p[1] indicates the faking good probability, p[2] indicates the faking bad probability.
Q	Max value in the discrete r.v. range: $1, \ldots, Q$.
gam	Gamma parameter: gam[,1] indicates the faking good parameter γ_+ , gam[,2] indicates the faking bad parameter γ .
del	Delta parameter: del[,1] indicates the faking good parameter δ_+ , del[,2] indicates the faking bad parameter δ .
fake.model	A character string indicating the model for the conditional replacement distribution. The options are: uninformative (default option) [gam = $c(1,1)$ and del = $c(1,1)$]; average [gam = $c(3,3)$ and del = $c(3,3)$]; slight [gam = $c(1.5,4)$ and del = $c(4,1.5)$]; extreme [gam = $c(4,1.5)$ and del = $c(1.5,4)$].

Value

Gives the conditional probability distribution based on the following equation

$$p(f = k | d = h, \theta_F) = \begin{cases} DG(k; h + 1, Q, \gamma_+, \delta_+)\pi_+ & 1 \le h < k \le Q \\ DG(k; q, h - 1, \gamma_-, \delta_-)\pi_- & 1 \le k < h \le Q \\ 1 - (\pi_+ + \pi_-) & 1 < h = k < Q \\ 1 - \pi_+ & k = h = 1 \\ 1 - \pi_- & k = h = Q \end{cases}$$

with θ_F and DG being the parameter vector $(\gamma_+,\gamma_-,\delta_+,\delta_-,\pi_+,\pi_-)$ and the generalized Beta distribution for discrete variables (dgBetaD) with bounds a=h+1 (resp. a=1) and b=Q (resp b=h-1). The parameter π_+ denotes the probability of faking good, π_- indicates the probability of faking bad. Note that the faking probabilities must satisfy the following condition: $\pi_++\pi_-\leq 1$.

Author(s)

Massimiliano Pastore & Luigi Lombardi

References

Lombardi, L., Pastore, M. (2014). sgr: A Package for Simulating Conditional Fake Ordinal Data. *The R Journal*, 6, 164-177.

Pastore, M., Lombardi, L. (2014). The impact of faking on Cronbach's Alpha for dichotomous and ordered rating scores. *Quality & Quantity*, 48, 1191-1211.

```
x <- 1:7
GA <- c(1,3,1.5,8); DE <- c(1,3,4,2.5)
### fake good
```

pfake 11

```
par(mfrow=c(2,2))
for (j in 1:4) {
  y <- NULL
  for (i in x) y \leftarrow c(y,pfake(x[i],h=4,Q=7,
                 gam=c(GA[j],GA[j]),del=c(DE[j],DE[j]),p=c(.4,0)))
  plot(x,y,type="h",panel.first=points(x,y,pch=19),
       main=paste("gamma=",GA[j]," delta=",DE[j],sep=""),ylim=c(0,.7),
       ylab="Replacement probability")
}
### fake bad
for (j in 1:4) {
  y <- NULL
  for (i in x) y \leftarrow c(y,pfake(x[i],h=4,Q=7,
                 gam=c(GA[j],GA[j]),del=c(DE[j],DE[j]),p=c(0,.4)))
  plot(x,y,type="h",panel.first=points(x,y,pch=19),
       \label{eq:main-paste} \verb| main-paste("gamma=",GA[j]," delta=",DE[j],sep=""),ylim=c(0,.7), \\
       ylab="Replacement probability")
}
### fake good and fake bad
P = c(.4, .4)
par(mfrow=c(2,4))
for (j in x) {
  y <- NULL
  for (i in x) {
    y \leftarrow c(y,pfake(x[i],h=x[j],Q=max(x),gam=c(GA[1],GA[1]),del=c(DE[1],DE[1]),p=P))
  plot(x,y,type="h",panel.first=points(x,y,pch=19),
       main=paste("h=",x[j],sep=""),ylim=c(0,1),
       ylab="Replacement probability")
  print(sum(y,na.rm=TRUE))
### using the fake.model argument
x <- 1:5
models <- c("uninformative", "average", "slight", "extreme")</pre>
par(mfrow=c(2,2))
for (j in 1:4) {
  y <- NULL
  for (i in x) y \leftarrow c(y,pfake(x[i],h=2,Q=max(x),
            fake.model=models[j],p=c(.45,0)))
                                                       # fake good
  plot(x,y,type="h",panel.first=points(x,y,pch=19),
       main=paste(models[j], "model"), ylim=c(0,1),
       ylab="Replacement probability")
}
par(mfrow=c(2,2))
for (j in 1:4) {
  y <- NULL
  for (i in x) y \leftarrow c(y,pfake(x[i],h=4,Q=max(x),
            fake.model=models[j],p=c(0,.45)))
                                                        # fake bad
  plot(x,y,type="h",panel.first=points(x,y,pch=19),
```

12 pfakebad

```
main=paste(models[j], "model"), ylim=c(0,1),
       ylab="Replacement probability")
}
```

pfakebad

Probability of faking bad.

Description

The function gives the conditional probability of replacement $p(f = k|d = h, \theta_F)$ for discrete values in the range $1, \ldots, Q$.

Usage

```
pfakebad(k, h = k, p = 0, Q = 5, gam = 1, del = 1)
```

Arguments

k	A fake value.
h	An observed original value.
p	Overall probability of replacement.
Q	Max value in the discrete r.v. range: $1, \ldots, Q$.
gam	Gamma parameter.
del	Delta parameter.

Value

Gives the conditional probability based on the following equation

$$p(f = k | d = h, \theta_F) = \begin{cases} 1 & h = k = 1\\ GD(k; 1, h - 1, \gamma, \delta)\pi & 1 \le k < h \le Q\\ 1 - \pi & 1 < h = k \le Q\\ 0 & 1 \le h < k \le Q \end{cases}$$

with θ_F and GD being the parameter vector (γ, δ, π) and the generalized Beta distribution for discrete variables (dgBetaD) with bounds a = h + 1 and b = Q. The parameter π denotes the probability of faking bad.

Author(s)

Massimiliano Pastore & Luigi Lombardi

References

Pastore, M., Lombardi, L. (2014). The impact of faking on Cronbach's Alpha for dichotomous and ordered rating scores. Quality & Quantity, 48, 1191-1211.

pfakegood 13

Examples

pfakegood

Probability of faking good.

Description

The function gives the conditional probability of replacement $p(f = k | d = h, \theta_F)$ for discrete values in the range $1, \ldots, Q$.

Usage

```
pfakegood(k, h = k, p = 0, Q = 5, gam = 1, del = 1)
```

Arguments

k	A fake value.
h	An observed original value.
p	Overall probability of replacement.
Q	Max value in the discrete r.v. range: $1, \ldots,$
gam	Gamma parameter.

del Delta parameter.

Value

Gives the conditional probability based on the following equation

$$p(f = k | d = h, \theta_F) = \begin{cases} 1 & h = k = Q \\ GD(k; h + 1, Q, \gamma, \delta)\pi & 1 \le h < k \le Q \\ 1 - \pi & 1 \le k = h < Q \\ 0 & 1 \le k < h \le Q \end{cases}$$

Q.

with θ_F and GD being the parameter vector (γ, δ, π) and the generalized Beta distribution for discrete variables (dgBetaD) with bounds a=h+1 and b=Q. The parameter π denotes the probability of faking good.

14 psydata

Author(s)

Massimiliano Pastore & Luigi Lombardi

References

Pastore, M., Lombardi, L. (2014). The impact of faking on Cronbach's Alpha for dichotomous and ordered rating scores. *Quality & Quantity*, 48, 1191-1211.

Examples

psydata

Data set

Description

The psydata data frame has 744 rows (observations) and 22 columns (variables).

Usage

```
data(psydata)
```

Format

This data frame contains the following variables:

- nsogg: int, subject number.
- vers: Factor, questionnaire version: V1 fake-motivating version, V3 honest-motivating version e V4 neutral version.
- sex: Factor, gender.
- eta: int, age.
- resid: Factor, residence.
- dipl: Factor, education.
- voto: int, high school's final score.
- votomax: int, maximum value for voto.
- cdl: Factor, a character string indicating the type of undergraduate program.
- aep..: int, 12 items of the AEP/A scale.
- tot: int, total score.

rdatagen 15

Author(s)

Andrea Bobbio, Massimo Nucci, Massimiliano Pastore

rdatagen	Simulate discrete data.	
----------	-------------------------	--

Description

Simulate discrete data from either a correlation matrix or thresholds or probabilities.

Usage

```
rdatagen(n = 100, R = diag(1,2), Q = NULL, th = NULL, probs = NULL)
```

Arguments

n	Number of observations.
R	Correlation matrix.
Q	Number of discrete values in the random variables. It is a single value or a vector. If Q is set to 1 (default), the function returns continuous data distributed according to the normal standardized distribution.
th	List of thresholds; each element contains Q+1 values.
probs	List of probabilities; each elements contains Q values.

Value

Returns a list with four elements:

data The simulated data matrix.

R Correlation matrix.

thresholds The list of thresholds.

probs The list of probabilities.

Note

Defaults work like in the myrnorm function of the MASS package.

Author(s)

Massimiliano Pastore, Luigi Lombardi & Marco Bressan

References

Lombardi, L., Pastore, M. (2014). sgr: A Package for Simulating Conditional Fake Ordinal Data. *The R Journal*, 6, 164-177.

Pastore, M., Lombardi, L. (2014). The impact of faking on Cronbach's Alpha for dichotomous and ordered rating scores. *Quality & Quantity*, 48, 1191-1211.

16 rdatarepl

Examples

```
require(MASS)
## only default
rdatagen()
## set correlations only
R \leftarrow matrix(c(1, .4, .4, 1), 2, 2)
Dx <- rdatagen(n=10000,R=R)$data
par(mfrow=c(1,2))
for (j in 1:ncol(Dx)) hist(Dx[,j])
## set correlations and Q
Dx <- rdatagen(n=10000,R=R,Q=2)$data
par(mfrow=c(1,2))
for (j in 1:ncol(Dx)) barplot(table(Dx[,j])/nrow(Dx))
## set correlations and thresholds
th \leftarrow list(c(-Inf,qchisq(pbinom(0:3,4,.5),1),Inf),
    c(-Inf,qnorm(pbinom(0:2,3,.5)),Inf))
Dx <- rdatagen(n=10000,R=R,th=th)$data
par(mfrow=c(1,2))
for (j in 1:ncol(Dx)) barplot(table(Dx[,j])/nrow(Dx))
## set correlations and probabilities [1]
probs <- list(c(.125,.375,.375,.125),c(.125,.375,.375,.125))
Dx <- rdatagen(n=10000,R=R,probs=probs)$data</pre>
par(mfrow=c(1,2))
for (j in 1:ncol(Dx)) barplot(table(Dx[,j])/nrow(Dx))
## set correlations and probabilities [2]
probs <- c(.125,.375,.375,.125)
Dx <- rdatagen(n=10000,R=R,probs=probs)$data</pre>
par(mfrow=c(1,2))
for (j in 1:ncol(Dx)) barplot(table(Dx[,j])/nrow(Dx))
## set different values for Q
Dx \leftarrow rdatagen(n=1000,Q=c(2,4),R=R)$data
par(mfrow=c(1,2))
for (j in 1:ncol(Dx)) barplot(table(Dx[,j])/nrow(Dx))
```

rdatarepl

Random replacements of data.

rdatarepl 17

Description

Replaces data in the original data matrix using a specified replacement matrix.

Usage

```
rdatarepl(Dx, RM, printfp = TRUE)
```

Arguments

Data frame or matrix to be replaced.

RM Replacement matrix.

printfp Logical, if TRUE (the default), it prints the percentage of data replaced.

Details

Replacement matrices can be obtained from the replacement.matrix function.

Value

Returns a list with two elements:

Fx The replaced (fake) data matrix.

Fperc Percentage of replaced data.

Author(s)

Massimiliano Pastore

See Also

```
replacement.matrix
```

```
require(MASS)
set.seed(20130207)
Dx <- rdatagen(R=matrix(c(1,.3,.3,1),2,2),Q=5)$data
RM <- replacement.matrix(p=c(.6,0))
Fx <- rdatarepl(Dx,RM)$Fx

par(mfrow=c(2,2))
for (j in 1:ncol(Dx)) barplot(table(Dx[,j]),main="original data")
for (j in 1:ncol(Fx)) barplot(table(Fx[,j]),main="replaced data")</pre>
```

18 replacement.matrix

replacement.matrix

Replacement matrix.

Description

Builds the replacement matrix.

Usage

```
replacement.matrix(Q = 5, p = c(0,0), gam = c(1,1), del = c(1,1), fake.model = c("uninformative", "average", "slight", "extreme"))
```

Arguments

Q	Max value in the discrete r.v. range: $1, \ldots, Q$.
p	Overall probability of replacement: $p[1]$ indicates the faking good probability, $p[2]$ indicates the faking bad probability.
gam	Gamma parameter: gam[,1] indicates the faking good parameter γ_+ , gam[,2] indicates the faking bad parameter γ .
del	Delta parameter: del[,1] indicates the faking good parameter δ_+ , del[,2] indicates the faking bad parameter δ .
fake.model	A character string indicating the model for the conditional replacement distribution. The options are: uninformative (default option) [gam = $c(1,1)$ and del = $c(1,1)$]; average [gam = $c(3,3)$ and del = $c(3,3)$]; slight [gam = $c(1.5,4)$ and del = $c(4,1.5)$]; extreme [gam = $c(4,1.5)$] and del = $c(1.5,4)$].

Value

Gives a $Q \times Q$ matrix with replacement probabilities. Each row r $(1 \le r \le Q)$ in the matrix indicates the conditional probability distribution

$$p(k=r|h=c,\pi), \qquad h=1,\ldots,Q$$

 π (p) denotes the overall replacement probability.

Author(s)

Massimiliano Pastore

See Also

dgBetaD, pfake, pfakegood, pfakebad

smokers 19

Examples

```
## no replacements
replacement.matrix(Q=7)

## faking good
replacement.matrix(Q=7,p=c(.5,0))
replacement.matrix(Q=7,p=c(.5,0),gam=8,del=2.5)

## faking bad
replacement.matrix(Q=7,p=c(0,.5))
replacement.matrix(Q=7,p=c(0,.5),gam=8,del=2.5)

## faking good and faking bad
replacement.matrix(Q=7,p=c(0,.5),gam=c(8,8),del=c(2.5,2.5))

## using the fake.model argument
replacement.matrix(Q=7,p=c(0,.4),fake.model="extreme")
replacement.matrix(Q=7,p=c(.4,0),fake.model="extreme")
replacement.matrix(Q=7,p=c(.4,.4),fake.model="slight")
```

smokers

Data set

Description

Data about smoking and drug consumption among young people.

Usage

```
data(smokers)
```

Format

This data frame contains the following columns:

- age: int, 1 = adults, 2 = minors.
- smoking: int, 1 = yes, 2 = no.
- drug: int, drug addiction, 1 = yes, 2 = no.
- druguse: int, drug consumption, 1 = never, 2 = once, 3 = some times, 4 = often.

Source

Pastore, M., Lombardi, L., Mereu, F. (2007). Effects of malingering in self-report measures: A scenario analysis approach; in C. H. Skiadas (Ed.), *Recent Advances in Stochastic Modeling and Data Analysis*, pp. 483-491, World Scientific Publishing.

Index

```
\ast datagen
     rdatagen, 15
* data
     psydata, 14
     smokers, 19
* distribution
     dgBeta, 4
     dgBetaD, 5
     pfake, 9
    pfakebad, 12
     pfakegood, 13
* utility
     amse, 2
     arb, 3
    model.fake.par, 7
     partition.replacement, 8
     rdatarepl, 16
     replacement.matrix, 18
amse, 2, 3
arb, 3, 3
dgBeta, 4, 6
{\tt dgBetaD}, {\tt 5}, {\tt 5}, {\tt 10}, {\tt 12}, {\tt 13}, {\tt 18}
model.fake.par, 7, 8
\verb"partition.replacement, 8"
pfake, 9, 18
pfakebad, 12, 18
pfakegood, 13, 18
psydata, 14
rdatagen, 15
rdatarepl, 9, 16
replacement.matrix, 9, 17, 18
smokers, 19
```