Guilherme Bilbao Soares da Silva

Projeto de instalação de uma emissora de radiodifusão sonora em frequência modulada, no município de São Pedro de Alcântara

Guilherme Bilbao Soares da Silva

Projeto de instalação de uma emissora de radiodifusão sonora em frequência modulada, no município de São Pedro de Alcântara

Monografia apresentada à Coordenação do Curso Superior de Tecnologia em Sistemas de Telecomunicações do Instituto Federal de Santa Catarina para a obtenção do diploma de Tecnólogo em Sistemas de Telecomunicações.

Orientador Prof. Jaci Destri

Curso Superior de Tecnologia em Sistemas de Telecomunicações Instituto Federal de Santa Catarina Monografia sob o título " *Projeto de instalação de uma emissora de radiodifusão sonora em frequência modulada, no município de São Pedro de Alcântara*", defendida por Guilherme Bilbao Soares da Silva e aprovada em julho de 2013, em São José, Estado de Santa Catarina, pela banca examinadora assim constituída:

Prof. Jaci Destri, Eng. Ele. Orientador

Prof. André Luiz Alves, Ms. IFSC

Prof. Rubem Toledo Bergamo, Ms. IFSC

Agradecimentos

Ao término deste trabalho, deixo aqui meus sinceros agradecimentos:

- a Deus;
- ao Prof. Jaci Destri, por toda dedicação, disponibilidade e estímulo em sua orientação;
- aos amigos que fiz durante o curso de Sistemas de Telecomunicações pelo agradável convívio;
- a minha família, principalmente a minha mãe Andréa, pelo incentivo que me passou durante todo esse período;
- e a minha esposa Marta, por me apoiar em todos os momentos.

Resumo

Este é um estudo de viabilidade técnica, visando a homologação de uma emissora de radiodifusão sonora em frequência modulada, no município de São Pedro de Alcântara. O canal utilizado está disponível no Plano Básico de Distribuição de Canais de Radiodifusão Sonora em Frequência Modulada (PBFM). No decorrer deste projeto atendemos as exigências, dentro do escopo didático, cabíveis ao canal 218, classe C, que resultaria na aprovação e liberação do seu uso pela Agência Nacional de Telecomunicações, a ANATEL.

Para que uma emissora de rádio seja liberada pela ANATEL para o início a sua transmissão sonora no local, é necessário comprovar que as especificações técnicas desta emissora estão respeitando a regulamentação apresentada na Resolução n° 67, de 12 de novembro de 1998, e suas atualizações. Esta resolução exige que, para liberar a ativação emissora, ela deva atender à vários requisitos técnicos, prezando pela qualidade do sinal e evitando interferências entre os canais. Parte desses requisitos são diretamente relacionados ao canal e a qual classe ela está inserida no PBFM, organizado e gerenciado também pela ANATEL.

A Resolução apresenta, dentre outras informações que dão auxilio ao projetista, um roteiro para a elaboração de estudos técnicos. É este roteiro que foi seguido durante o desenvolvimento deste estudo, buscando os resultados utilizando também a Recomendação UIT-R p.1546-1, que traz modelos de previsão de cobertura ponto-área, e é adotada no lugar das curvas de nível de campo anteriormente recomendadas pela resolução.

Ao final deste estudo é apresentado todos os resultados, definições e especificações técnicas necessárias que comprovariam a viabilidade técnica desta emissora perante as exigências impostas pela ANATEL.

PALAVRAS-CHAVES: radiodifusão; emissora FM; Resolução n° 67; radiotransmissão; ANATEL.

Abstract

This is a technical feasibility study, seeking approval of a station broadcasting on frequency modulation in São Pedro de Alcântara. The channel used is available in the "Plano Básico de Distribuição de Canais de Radiodifusão Sonora em Frequência Modulada"- PBFM (Basic Plan of Distribution Channels Broadcasting Frequency Modulation). During this project serve the requirements within the scope courseware, applicable to channel 218, class C, which would result in the adoption and approval of its use by "Agência Nacional de Telecomunicações" (National Agency of Telecommunications), the ANATEL.

For a station to be released by ANATEL to begin their sound transmission in place, it is necessary to prove that the technical specifications of this station are following the rules presented in "Resolução N°67, de 12 de novembro de 1998" (Resolution N°67 of November 12, 1998), and its updates. This resolution requires that, to release the activation broadcaster, it must meet several technical requirements, valuing signal quality and avoiding interference between channels. Some of these requirements are directly related to the channel and to which class it is embedded in the PBFM, also organized and managed by ANATEL.

The Resolution provides, among other information that give aid to the designer, a way to for the preparation of technical studies. This Is the way that was followed during the development of this study, seeking the results using also Recommendation ITU-R P.1546-1, which brings forecasting models point coverage area, and it's adopted in place of the contours of the field previously recommended by the resolution.

At the end of this study are presented all the results, definitions and technical specifications needed that would prove the technical viability of this broadcast before the requeriments imposed by ANATEL.

KEYWORDS: broadcasting, FM station, Resolution N° 67; radio transmission; ANATEL.

Sumário

Lista de Figuras

Lista de Tabelas

Lista de Abreviaturas e Siglas

1	Intr	rodução p. 1								
	1.1	Objetiv	vo geral	p. 15						
	1.2	Objetiv	vo específico	p. 15						
	1.3	Motiva	ação e justificativa	p. 15						
	1.4	Estrutu	ıra do trabalho	p. 15						
2	Reso	olução n	$^{\circ}$ 67, de 12 de novembro de 1998	p. 17						
	2.1	Roteiro	o para elaboração de estudos técnicos	p. 18						
		2.1.1	Estudo de viabilidade técnica de uma emissora	p. 18						
		2.1.2	Projeto de instalação de uma emissora	p. 19						
	2.2	Recom	nendação UIT-R P.1546	p. 21						
		2.2.1	Conceitos Básicos	p. 21						
	2.3	Adapta	ações da recomendação	p. 22						
		2.3.1	Nível Médio do Terreno	p. 22						
		2.3.2	Altura da antena transmissora	p. 23						
3	Can	al nrone	nsto	n 24						

	3.1		Básico de Distribuição de Canais de Radiodifusão Sonora em Frequência	
		Modul	ada	p. 24
		3.1.1	Canalização	p. 24
	3.2	Caract	erísticas básicas do canal proposto	p. 25
		3.2.1	Enquadramento na classe	p. 25
	3.3	Nível l	Médio do Terreno e Altura Acima do Nível Médio do Terreno	p. 27
		3.3.1	Nível Médio da Radial (NMR) e Nível Médio do Terreno (NMT)	p. 28
		3.3.2	Altura Acima do Nível Médio do Terreno	p. 30
	3.4	Conto	mo protegido	p. 34
		3.4.1	Interferências	p. 35
4	Equ	ipamen	tos básicos que compõe a emissora	p. 37
	4.1	O siste	ema irradiante	p. 37
		4.1.1	Antena	p. 37
		4.1.2	Linha de transmissão e conectores	p. 37
		4.1.3	Transmissor	p. 38
		4.1.4	Cálculos de ERPmax, ERPaz e orientação da antena	p. 39
5	Desc	envolvei	ndo a emissora FM	p. 42
	5.1	Especi	ficações definidas	p. 42
	5.2	Defini	ndo as potências ERPmax e ERPaz	p. 43
	5.3	Defini	ndo os contornos das áreas de serviços	p. 44
		5.3.1	Área de Serviço Urbana (66 dBm)	p. 45
		5.3.2	Áreas de Serviço Primário e Rural (74 dBm e 54 dBm)	p. 47
		5.3.3	Os traçados dos contornos	p. 49
6	Resi	ultados	obtidos com o projeto	p. 50
	6.1	Consid	lerações sobre os contornos encontrados	n 50

		6.1.1	Analisando a cobertura da Área de Serviço Urbana em São Pedro de Alcântara	p. 50
	6.2	-	rando os resultados finais com os valores calculados pela aplicação do atel	p. 53
7	Cone	clusões (e trabalhos futuros	p. 55
Re	ferên	cias		p. 57
Аp	êndic	e A - A	Apresentando as informações técnicas, conforme o roteiro para	
	elab	oração d	le estudos técnicos	p. 59
	A.1	Inform	ações Básicas	p. 59
	A.2	Memór	ia Descritiva	p. 60
	A.3	Situaçã	o Geral	p. 61
An	exo A	- Espe	cificações técnicas do fabricante da antena dipolo utilizada.	p. 63
An	exo E	8 – Espe	ecificações técnicas do fabricante do guia de onda utilizado (linha	
		ansmiss		p. 68
An	exo C	C – Map	a de Macrozoneamento de São Pedro de Alcântara.	p. 70
An	ехо Г) – Gráf	icos do perfil de terreno das 12 Radias ao redor da emissora.	p. 72
An	exo E	E – Rela	tório Siganatel - Análise Técnica FM.	p. 79

Lista de Figuras

3.1	Consulta de canais disponíveis para uso - Portal da ANATEL	p. 25
3.2	Demonstração do layout do aplicativo da SIGAnatel	p. 29
3.3	Traçado das 12 radiais partindo da base da emissora	p. 29
3.4	Gráfico do NMR da Radial 1 usando o aplicativo da SIGAnatel	p. 30
3.5	Proximidade entre a base do sistema e a coordenada indicada no PBFM, para o canal proposto (GOOGLE MAPS., 2013)	p. 36
4.1	Diagrama de Irradiação da Antena Dipolo 1/2 Onda para FM	p. 38
5.1	Utilizando as curvas E(50,50) para encontrar as distâncias do contorno protegido	p. 46
5.2	Projeção da cobertura das áreas de serviços utilizando a ferramenta SIGAnatel.	p. 49
6.1	Projeção da cobertura das área de serviço urbana sobre a zona urbana do município	p. 52
6.2	Resultados SIGAnatel	

Lista de Tabelas

3.1	Canalização da faixa de FM	p. 26
3.2	Classificação das emissoras em função de seus requisitos máximos	p. 27
3.3	Coordenadas indicando as referências latitudinais e longitudinais de cada radial.	p. 31
3.4	Mapeamento das altitudes de cada radial	p. 32
3.5	Valores de HNMT para cada radial	p. 34
5.1	Resumo das especificações técnicas da emissora.	p. 42
5.2	Valores de ERPaz para cada radial	p. 45
5.3	Distâncias do contorno protegido (66 dBm)	p. 47
5.4	Contornos das diversas áreas de serviço por radial e dados correspondentes	p. 48
6.1	Comparando os valores de contorno protegido com as distâncias da zona urbana.	p. 51

Lista de Abreviaturas e Siglas

ANATEL Agência Nacional de Telecomunicações

Al atenuação em 100 metros CBT Cota da base da torre

dB decibel

dBd ganho da antena, referido a uma antena dipolo

dBk unidade que exprime o valor de potência, em dB, referida a 1kW unidade que exprime o valor de potência, em dB, referida a 1mW unidade que exprime o valor de potência, em dB, referida a 1μ W **E(L,T)** Intensidade de campo excedido em L por cento das localidades e

T por cento do tempo

E/Emax porcentagem irradiada, em relação à potência máxima

Ef eficiência de linha

EIA Eletronics Industries Association

ERPaz potência efetiva máxima irradiada no azimute

ERPmax potência efetiva máxima irradiada

FM Modulação em Frequência (Frequency Modulation)

Gtmax ganho máximo do sistema irradiante

HCGSI Altura do centro geométrico do sistema irradiante

HNMT altura efetiva acima do nível médio

IBGE Instituto Brasileiro de Geografia e Estatística

km quilômetros

L comprimento da linha

NMR Nível médio da radialNMT Nível médio do terreno

PBFM Plano Básico de Distribuição de Canais de Radiodifusão Sonora em

Frequência Modulada

Pc perdas acessórias

Pd perdas totais da linha em dB

Pl perdas da linha

Pt potência de saída do transmissor Pv perdas totais da linha em vezes

SIGAnatel Sistema de Informações Geográficas da Anatel

UIT-R União Internacional de Telecomunicações-Radiopropagação

Wrms potência eficaz

1 Introdução

Visando aprofundar os conhecimentos em radiotransmissão, através deste estudo é apresentado os aspectos e considerações técnicas necessárias para projetar uma emissora de rádio em frequência modulada.

Comunicar-se, utilizando como meio ondas eletromagnéticas, já é um método bastante conhecido e difundido à muitos anos, consolidando-se historicamente como um dos meios de comunicação mais usados no mundo. Apesar da crescente e irreversível expansão da comunicação através da transmissão de dados, as emissoras de rádio ainda mantém seu espaço entre os usuários. Seja para ouvir músicas, notícias ou entretenimento em geral, este método de comunicação ainda mantém-se ativo devido à simplicidade para o acesso dos ouvintes, que já são culturalmente habituados à ouvir o rádio durante as suas atividades ou nos momentos de lazer.

Em municípios onde ainda prevalece entre seus habitantes as atividades rurais, as emissoras de rádio são de fato importantíssimas para estabelecer a comunicação e a interação entre as comunidades destas regiões, devido a falta de infraestrutura que possibilitaria também o uso dos meios mais modernos.

Para que a ANATEL autorize que uma emissora de rádio transmita seu sinal, fazendo uso de um dos canais disponibilizados e ainda vagos no plano básico, deve-se seguir e apresentar uma documentação técnica que esteja respeitando todos os requisitos apresentado na norma técnica¹, publicada no seu portal³⁴. Demostrar os procedimentos necessários para desenvolver um projeto que respeite esta norma é o principal objetivo do estudo apresentado neste trabalho.

¹http://legislacao.anatel.gov.br/resolucoes/13-1998/168-resolucao-67/

² (BRASIL. AGÊNCIA NACIONAL DE TELECOMUNICAÇÕES, 1998b)

³http://www.anatel.gov.br/Portal/

⁴ (BRASIL. AGÊNCIA NACIONAL DE TELECOMUNICAÇÕES, 2013a)

1.1 Objetivo geral

1.1 Objetivo geral

Estudo e compreensão das normas técnicas, relacionadas à rádio FM e suas atualizações, juntamente com a utilização de ferramentas livres oferecidas pela ANATEL.

1.2 Objetivo específico

Realizar um estudo sobre as especificações técnicas necessárias para homologar um canal de rádio FM disponível no plano básico da ANATEL. Colocar em prática os procedimentos e conhecimentos obtidos das recomendações, aplicando em um cenário real.

1.3 Motivação e justificativa

Uma das razões para estudar o tema, além de adquirir maiores conhecimentos em radiotransmissão, é abordar as atualizações nas normas técnicas. Também para servir como referência para estudantes e futuros projetistas, pois, apesar de ser um tipo de projeto já muitas vezes executados em diversos cenários e situações, é grande a dificuldade para encontrar um modelo diponível para consulta. Este documento certamente pode servir de base para outros projetos de emissoras FM ou radiotransmissão em geral.

1.4 Estrutura do trabalho

Este trabalho está dividido em cinco capítulos, além da introdução e conclusão. O capítulo 2 aborda sobre a resolução que regulariza o uso de um canal⁵ por uma emissora de FM, inclusive apresentando o roteiro para elaboração de estudos técnicos seguido pelo projeto. Informa também sobre a recomendação utilizada pela norma, que pode ser usada pelo projetista para os cálculos de viabilidade do canal.

Em seguida, o capítulo 3 fala sobre o canal escolhido para desenvolver este projeto, suas características, oriundas da sua classe determinada pelo plano básico, e informações necessárias para a definição das áreas de cobertura da emissora durante o desenvolvimento do projeto.

Avançando ao capítulo 4, são apresentados os equipamentos básicos utilizados na composição de uma emissora FM e também os cálculos utilizados para definir as especificações de cada

⁵Um canal faz referência à uma frequência em FM, na faixa entre 87,4 e 108 MHz.

1.4 Estrutura do trabalho 16

um destes equipamentos, visando o atendimento aos requisitos máximos definidos pela classe da emissora.

No capítulo 5 é apresentado, de forma sequencial, o desenvolvimento da emissora até a definição dos contornos das áreas de serviços. Já no capítulo 6, é feita a análise comparativa dos resultados obtidos com os requisitos impostos pela resolução para a classe da emissora proposta neste projeto.

Por fim, o último capítulo apresenta as conclusões encontradas após o desenvolvimento do projeto e sugestões de trabalhos futuros.

2 Resolução n° 67, de 12 de novembro de 1998

A Resolução nº 67 aprova o Regulamento Técnico para Emissoras de Radiodifusão Sonora em Frequência Modulada. Tem por objetivo disciplinar a utilização da faixa de 87,4 MHz a 108 MHz, no serviço de Radiodifusão sonora em Frequência modulada e em serviços nela executados, para oferecer um serviço de boa qualidade, evitar interferências sobre outros serviços de telecomunicações regularmente autorizados e reduzir possibilidades de danos físicos à população. Para isto, estabelece requisitos mínimos para os equipamentos utilizados em Radiodifusão Sonora em Frequência Modulada, afim de, além de atender o exposto anterior, racionalizar sua produção industrial.

Este é o documento principal que será usado para a realização deste projeto, pois informa todas as especificações mínimas necessárias para que uma emissora de rádio FM possa ser instalada e liberada para iniciar seus serviços. Um fator importante é sempre ficar atento às novas resoluções que atualizam este regulamento, para que o projeto possa atender às novas exigências.

A última resolução, que altera o regulamento aprovado na Resolução n° 67, é a de n° 546. Ela altera alguns aspectos importantes para o desenvolvimento do projeto. Como exemplo, pode ser citado a classificação das emissoras em função de seus requisitos máximos e as curvas de intensidade de campo (E(50,50) e E(50,10)), essas últimas vindas da Recomendação UIT-R P.1546.

As resoluções podem ser consultadas através do portal da ANATEL, através do link¹.

http://legislacao.anatel.gov.br/resolucoes/

2.1 Roteiro para elaboração de estudos técnicos

A Resolução n°67 contém um capítulo inteiro² que aborda um roteiro para elaboração de estudos técnicos, indicando diversos parâmetros técnicos que devem ser informados sobre a emissora para as diversas e possíveis situações.

Neste capítulo será abordado apenas as informações solicitadas que, particularmente, são necessárias para a homologação da emissora proposta neste estudo, pois o roteiro, apresentado na íntegra na resolução, apresenta diversas outras solicitações que cabem à cenários diferentes do estudado neste projeto.

Existem também algumas documentações, anexos e outras informações, que em casos reais devem ser apresentados (como exemplo: croquis da casa de equipamentos e da torre, endereçamentos detalhados, e informações sobre o engenheiro responsável pelo projeto), mas que não será necessário aqui neste momento, pois trata-se de um estudo didático, com foco apenas no desenvolvimento técnico do projeto.

Sendo assim, seguindo as orientações do roteiro para a elaboração de estudos técnicos, apresentam-se as informações que devem ser encontradas e definidas no decorrer deste projeto.

2.1.1 Estudo de viabilidade técnica de uma emissora

A primeira lista de informações que é solicitada faz referência ao estudo de viabilidade técnica da emissora.

Informações básicas

Conforme apresentado na resolução, as informações básicas para este estudo são as definições que seguem:

- Nome da entidade requerente.
- Localização da emissora objeto do estudo (cidade, UF).
- Propósito do estudo.

E também sobre as características técnicas pretendidas:

²Capitulo 9 - Roteiro para elaboração de estudos técnicos (BRASIL. AGÊNCIA NACIONAL DE TELECOMUNICAÇÕES, 1998a)

- Frequência de operação (MHz);
- No do canal;
- Classe;
- Tipo de sistema irradiante;
- Coordenadas geográficas de instalação.

2.1.2 Projeto de instalação de uma emissora

Neste momento é solicitado as informações técnicas sobre a instalação da emissora.

Memória Descritiva

A memória descritiva é um resumo das características da emissora, juntamente com as características técnicas do sistema irradiante e linha de transmissão.

Resumo das características da emissora:

- 1. Frequência de operação (MHz);
- 2. No do canal;
- 3. Potência de operação do transmissor (kW);
- 4. Classe;
- 5. Modo de operação (monofônico, estereofônico, com ou sem canal secundário).

Sistema irradiante:

- 1. Tipo de antena (omnidirecional ou diretiva);
- 2. Fabricante e modelo da antena;
- 3. Polarização (horizontal, vertical, circular ou elíptica); se elíptica, dar a razão entre a componente horizontal e vertical;
- 4. Ganho máximo em relação ao dipolo de meia-onda;
- 5. Tipo da estrutura de sustentação (auto-suportada ou estaiada);

- 6. Altura física total da estrutura de sustentação em relação à sua base (solo);
- Altura do centro geométrico da antena em relação à base da estrutura de sustentação (solo);
- 8. Altitude da base da estrutura de sustentação (solo) sobre o nível do mar;
- 9. Altura do centro geométrico da antena sobre o nível médio do terreno.

Linha de transmissão de radiofrequência:

- 1. Fabricante e modelo;
- 2. Impedância característica;
- 3. Comprimento total;
- 4. Atenuação em dB por 100 metros;
- 5. Eficiência.

Informações sobre ERPmax e ERPaz:

- 1. ERP máxima (kW)
- 2. ERP, por radial (kW).

Enquadramento na classe:

- 1. ERP máxima proposta para cada radial;
- 2. ERP máxima proposta para cada radial, corrigida para a altura de referência sobre o nível médio do terreno por radial, para a classe da emissora, estabelecida na Tabela 1³;
- 3. Distância ao contorno de 66 dBm para cada radial;
- 4. Média aritmética das distâncias ao contorno de 66 dBm.

³Referente à tabela da resolução, mas também pode ser consultada na Tabela 3.2 deste documento.

Situação Geral

Distâncias aos contornos das diversas áreas de serviço, segundo cada radial, de acordo com:

- 1. Azimute de orientação em relação ao Norte Verdadeiro;
- 2. Altura do centro geométrico da antena com relação ao nível médio de cada radial;
- 3. Intensidade de campo ($dB\mu$);
- 4. Distância aos contornos 1, 2 e 3, em cada radial.

Nível Médio do Terreno

- 1. Azimute de orientação de cada radial, em relação ao Norte Verdadeiro;
- 2. Nível médio de cada radial;
- 3. Nível médio do terreno.

2.2 Recomendação UIT-R P.1546

A União Internacional de Telecomunicações - Radiocomunicações (UIT-R), através da Recomendação UIT-R P.1546 (UNIÃO INTERNACIONAL DE TELECOMUNICAÇÕES: SETOR DE RADIOCOMUNICAÇÕES., 2009), descreve um método prático para a previsão de cobertura ponto-área para serviços terrestres, na faixa de 30 a 3000 MHz, e foi adotada no lugar das curvas de nível de campo anteriormente utilizadas. Os procedimentos que seguimos neste trabalho, principalmente para definir as áreas de serviços, foram baseados nestes métodos.

2.2.1 Conceitos Básicos

A seguir serão descritos os parâmetros básicos mais utilizados nos cálculos. (RÉGIS, 2010)

Altura Acima do Nível Médio do Terreno

A altura acima do nível médio do terreno (*HNMT*) é um valor que representa o nível do terreno ao redor da base transmissora.

Para encontrar o seu valor, deve-se obter cotas entre as distâncias de 3 e 15 Km da antena e fazer uma média aritmética dos pontos obtidos. As alturas podem variar de 10 a 1200 m,

conforme a recomendação, porém o documento também descreve um método para, caso seja necessário, extrapolar esses valores.

Curvas E(L,T)

São gráficos que representam a intensidade de campo excedida em L% das localidades e T% do tempo. O método é válido apenas para distâncias de 1 a 1000 km da antena transmissora. Os valores tabulados pela recomendação foram obtidos com frequências de valores nominais iguais a 100, 600 e 2000 MHz, HNMT de 10, 20, 37,5, 75, 150, 300, 600 e 1200 m e porcentagem de tempo de 1, 10 e 50%. Uma curva é traçada para cada tipo de percurso e frequência. Os percursos considerados são: terrestre, sobre o mar morno e sobre o mar frio.

Novamente são descritos métodos para obter intensidade de campo quando esses valores não forem exatamente iguais aos tabulados.

As curvas utilizadas neste estudo são a E(50,50) e E(50,10) que podem ser encontradas na resolução (BRASIL. AGÊNCIA NACIONAL DE TELECOMUNICAÇÕES, 1998b). (RÉGIS, 2010)

2.3 Adaptações da recomendação

Apesar da recomendação descrever métodos para obter valores precisos, a resolução introduz algumas adaptações, que facilitam os cálculos envolvidos. As adaptações necessárias para este estudo são descritas nesta seção.

2.3.1 Nível Médio do Terreno

Para efeitos de cálculo, no Brasil o nível médio do terreno (*NMT*) é calculado obtendose a média aritmética dos valores de nível médio radial (*NMR*) de, no mínimo, 12 radiais. O *NMR* por sua vez é obtido calculando a média aritmética de pelo menos 50 cotas igualmente espaçadas, compreendidas entre as distâncias de 3 a 15 km da antena transmissora.

As 12 radiais devem ser igualmente espaçada,s de 30 em 30 graus, e deve incluir a radial do norte verdadeiro. (RÉGIS, 2010)

2.3.2 Altura da antena transmissora

Apesar de ser possível calcular a intensidade de campo para valores fora da faixa de 10 a 1200 m para altura da antena transmissora, a recomentação considera esses os valores máximos. Ou seja, quando a *HNMT* da antena for inferior a 10 m, deve ser tomado o valor de 10 m, e quando exceder os 1200 m, este é o valor que deve ser considerado. (RÉGIS, 2010)

3 Canal proposto

Quando fala-se em canal de rádio FM entende-se como um valor dentro da faixa de frequências em FM (entre 87,4 e 108 MHz), sendo esta a frequência central de transmissão do sinal deste canal. Para que possa ser autorizado pela ANATEL a utilização de um deses canais, além da documentação solicitada conforme a resolução, devem ser consideradas no projeto as características básicas do canal, conforme os requisitos referentes à sua classe.

3.1 Plano Básico de Distribuição de Canais de Radiodifusão Sonora em Frequência Modulada

O Plano Básico de Distribuição de Canais de Radiodifusão Sonora em Frequência Modulada (PBFM) é definido e gerenciado pela ANATEL, e nele constam os canais FM previstos para uso em todo o território nacional. A classes dos canais disponibilizados também são definidas pelo PBMF. Os canais que ainda estão vagos podem ser consultados no portal da ANATEL^{1 2}.

3.1.1 Canalização

A faixa de radiodifusão sonora em frequência modulada estende-se de 87,4 MHz a 107,9 MHz, e é dividida em 103 canais (os canais 198,199 e 200 são para uso exclusivo das estações de ROADCOM³.), cujas portadoras estão separadas de 200 KHz. Cada canal é identificado por sua frequência central, que é a frequência da portadora da estação de FM, e a cada canal é atribuído um número de 198 a 300, que será o seu identificador.

A tabela de canalização da faixa de FM atual foi publicada na Resolução nº546, de 1º de setembro de 2010⁴, que altera o Regulamento Técnico para Emissoras de Radiodifusão Sonora

Inttp://sistemas.anatel.gov.br/srd/Telalistagem.asp?PagSRD=/SRD/Relatorios/PlanoBasico/RelCanaisVagos.asp&OP=5&SISQSmodulo=9900

² (BRASIL. AGÊNCIA NACIONAL DE TELECOMUNICAÇÕES, 2013b)

³Serviço de Radiodifusão Comunitária

⁴ (BRASIL. AGÊNCIA NACIONAL DE TELECOMUNICAÇÕES, 2010)

em Frequência Modulada. A Tabela 3.1, que segue, foi retirada desta resolução e apresenta a faixa de frequência para cada canal FM, definido pelo PBFM.

3.2 Características básicas do canal proposto

Ao analisar os canais disponíveis no Plano Básico de Distribuição de Canais de Radiodifusão Sonora em Frequência Modulada ^{5 6}, observou-se a existência do canal 218, disponível na região do município de São Pedro de Alcântara.

O canal é enquadrado na classe C, sendo assim, deve seguir os requisitos que caracterizam os canais autorizados para esta classe (Figura 3.1).

Figura 3.1: Consulta de canais disponíveis para uso - Portal da ANATEL

3.2.1 Enquadramento na classe

Como já mencionado, o canal usado para este projeto está enquadrado na classe C, conforme apresentado no portal da ANATEL (Figura 3.1) e, para que o projeto respeite as especificações desta classe, deve ser observado seus requisitos máximos, que podem ser verificados na Tabela 3.2.

 $^{^5} http://sistemas.anatel.gov.br/srd/Telalistagem.asp?PagSRD=/SRD/Relatorios/PlanoBasico/RelCanaisVagos.asp\&OP=5\&SISQSmodulo=9900$

⁶ (BRASIL. AGÊNCIA NACIONAL DE TELECOMUNICAÇÕES, 2013b)

Frequência	Canal	Frequência	Canal	Frequência	Canal
(MHz)		(MHz)		(MHz)	
87,5	198	94,5	233	101,5	268
87,7	199	94,7	234	101,7	269
87,9	200	94,9	235	101,9	270
88,1	201	95,1	236	102,1	271
88,3	202	95,3	237	102,3	272
88,5	203	95,5	238	102,5	273
88,7	204	95,7	239	102,7	274
88,9	205	95,9	240	102,9	275
89,1	206	96,1	241	103,1	276
89,3	207	96,3	242	103,3	277
89,5	208	96,5	243	103,5	278
89,7	209	96,7	244	103,7	279
89,9	210	96,9	245	103,9	280
90,1	211	97,1	246	104,1	281
90,3	212	97,3	247	104,3	282
90,5	213	97,5	248	104,5	283
90,7	214	97,7	249	104,7	284
90,9	215	97,9	250	104,9	285
91,1	216	98,1	251	105,1	286
91,3	217	98,3	252	105,3	287
91,5	218	98,5	253	105,5	288
91,7	219	98,7	254	105,7	289
91,9	220	98,9	255	105,9	290
92,1	221	99,1	256	106,1	291
92,3	222	99,3	257	106,3	292
92,5	223	99,5	258	106,5	293
92,7	224	99,7	259	106,7	294
92,9	225	99,9	260	106,9	295
93,1	226	100,1	261	107,1	296
93,3	227	100,3	262	107,3	297
93,5	228	100,5	263	107,5	298
93,7	229	100,7	264	107,7	299
93,9	230	100,9	265	107,9	300
94,1	231	101,1	266		
94,3	232	101,3	267		

Tabela 3.1: Canalização da faixa de FM.

Porém, a resolução aceita algumas diferenças aos requisitos apresentados, desde que, ainda assim, respeite algumas outras condições também informadas. Segue estas observações, que foram publicadas na Resolução n° 546⁷ (BRASIL. AGÊNCIA NACIONAL DE TELECOMUNICAÇÕES, 2010):

		REQUISITOS MÁXIMOS									
	POT	ÊNCIA	DISTÂNCIA MÁXIMA AO	ALTURA DE REFERÊNCIA							
CLASSES	(H	ERP)	CONTORNO PROTEGIDO	SOBRE O NÍVEL MÉDIO DA							
	kW	dBk	(66 dBm) (km)	RADIAL (m)							
E1	100	20,0	78,5	600							
E2	75	18,8	67,5	450							
E3	60	17,8	54,5	300							
A1	50	17,0	38,5	150							
A2	30	14,8	35,0	150							
A3	15	11,8	30,0	150							
A4	5	7,0	24,0	150							
B1	3	4,8	16,5	90							
B2	1	0	12,5	90							
С	0,3	-5,2	7,5	60							

Tabela 3.2: Classificação das emissoras em função de seus requisitos máximos.

- a) Poderão ser utilizadas alturas de antena ou ERP superiores às especificadas na Tabela 3.2, desde que não seja ultrapassada, em qualquer direção, a distância máxima ao contorno protegido.
- b) Apenas para as emissoras de classe C poderá ser permitida a utilização de transmissor com potência nominal inferior a 50 W.
- c) As distâncias apresentadas na Tabela 3.2 foram obtidas para o canal 201 e servem como referência para elaboração de estudos sem o uso de ferramentas computacionais.

3.3 Nível Médio do Terreno e Altura Acima do Nível Médio do Terreno

A seguir será apresentado o método usado para o reconhecimento geométrico do local onde será instalado a emissora. Estes dados são de extrema importância para o sucesso do projeto.

http://legislacao.anatel.gov.br/resolucoes/25-2010/14-resolucao-546

3.3.1 Nível Médio da Radial (NMR) e Nível Médio do Terreno (NMT)

A resolução exige que sejam traçadas no mínimo 12 radiais com espaçamento angular de 30° e com o mínimo de 50 cotas, igualmente espaçadas. O ponto previamente definido, como sendo o local onde a antena será fixada, será a origem das radiais. Para traçar estas radiais pode ser usados os mapas disponíveis no site⁸ do IBGE (BRASIL. INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA., 2010), na escala 1 : 50.000. Através destas radiais podese obter as altitudes do relevo ao redor da base da antena. Esses valores servirão de base para definir todas as características do nosso sistema. As radiais foram tracejadas a partir das coordenadas 27°34′02.72″S com 48°48′33.71″O (ponto referente à base da torre da antena), e deve, obrigatoriamente, incluir a direção do Norte Verdadeiro.

Após os 12 raios traçados, calcula-se o Nível Médio da Radial (*NMR*) para cada uma delas. O *NMR* é definido pela média aritmética de todas as cotas da radial, que, de acordo com a norma, devem ser compreendidas no trecho entre 3 e 15 quilômetros. Para obter esses valores das cotas, no caso os 50 valores correspondentes as altitudes do terreno dentro da cada radial, existe uma ferramenta usada para o auxílio aos estudos de viabilidade, disponível no portal *online*⁹ da ANATEL, o SIGAnatel¹⁰. Neste projeto é usado seus recursos para a identificação de perfil de terreno (projeção geográfica), através de gráficos gerados por ele. Mas, para conseguir usar a ferramenta, é preciso obter as coordenadas das 12 radiais, nas distâncias de 3 km e 15 km e partindo da base da emissora.

Para buscar estes valores deve ser usado como referência os valores informados no mapa (referências de coordenadas) e sua escala. Numa escala de 1 : 50.000 cada centímetro no mapa equivale à 500 m, então, as radiais devem ter 30 centímetros para atingir o ponto equivalente à 15 km.

Definidos os pontos de 3 km e 15 km em todas as radiais, deve ser buscado as coordenadas de cada um desses 24 pontos no mapa. Utilizando a regra de três, podem ser definidas todas as coordenadas necessárias. Traçando uma linha horizontal e uma vertical, partindo dos pontos determinados antes, são encontrados os valores de referência para as coordenadas que se busca, aplica-se a regra de três e defini-se todas as coordenadas que serão usadas na ferramenta SIGAnatel.

A Tabela 3.3 mostra as coordenadas dos pontos definidos no mapa, a Figura 3.2 mostra o

⁸ftp://geoftp.ibge.gov.br/mapas_estatisticos/censo_2010/mapa_municipal_estatistico/

⁹http://sistemas.anatel.gov.br/siganatel/

¹⁰ (BRASIL. AGÊNCIA NACIONAL DE TELECOMUNICAÇÕES, 2013c)

layout da ferramenta SIGAnatel e a Figura 3.3 detalha as 12 radiais traçadas, partindo da base da torre.

Figura 3.2: Demonstração do layout do aplicativo da SIGAnatel.

Figura 3.3: Traçado das 12 radiais partindo da base da emissora.

Esta é uma ferramenta que apresenta um gráfico com a projeção geográfica desejada. Para usar este recurso basta apenas inserir as coordenadas dos pontos inicial e final de cada radial (3 km e 15 km) e o passo, em metros, desejado para a construção da curva (12km/quantidade de

passos).

O gráfico Figura 3.4 apresenta um exemplo do retorno que a aplicação nos disponibiliza. Note é usado um passo de 240 metros para cada medição, este é o valor mínimo exigido pela resolução. A partir deste gráfico, é retirado os valores para descobrir o *NMR* de cada radial (ANEXO D).

Figura 3.4: Gráfico do NMR da Radial 1 usando o aplicativo da SIGAnatel

De posse dos resultados dos *NMR* pode-se encontrar o nível médio do terreno (*NMT*), que é a média aritmética das 12 *NMR*, tornando o terreno simbolicamente plano e de altura conhecida.

A Tabela 3.4 apresenta os valores encontrados nas 12 radiais. Esta tabela indica as altitudes encontradas dos 50 pontos ao longo de cada radial, possibilitando obter a média para encontrar o *NMR* e, consequentemente, o *NMT* de 288,33 m, como pode ser observado.

Os *NMR's* encontrados neste processo serão usados para obter todos os valores de intensidade de sinal para cada uma das radiais, como informaremos mais a frente.

3.3.2 Altura Acima do Nível Médio do Terreno

No momento que já temos definidos os níveis médios do terreno para cada uma das 12 radiais, podemos encontrar o valores de *HNMT* (Altura do nível médio do terreno) também

Radial	Latitude(3 Km)	Longitude(3 Km)	Latitude(15 Km)	Longitude(15 Km)
0°	27° 32' 23,51" S	48° 48' 33,71" O	27° 25' 53,51" S	48° 48' 33,71" O
30°	27° 32' 42,16" S	48° 47' 38,18" O	27° 27' 04,86" S	48° 44' 00,00" O
60°	27° 33' 15,40" S	48° 47' 00,00" O	27° 30' 00,00" S	48° 40' 38,18" O
90°	27° 34' 02,72" S	48° 46' 45,45" O	27° 34' 02,72" S	48° 39' 33,64" O
120°	27° 34' 52,37" S	48° 47' 00,00" O	27° 38' 07,78" S	48° 40' 38,18" O
150°	27° 35' 25,46" S	48° 47' 38,18" O	27° 41' 05,67" S	48° 44' 00,00" O
180°	27° 35' 38,11" S	48° 48' 33,71" O	27° 42' 10,54" S	48° 48' 33,71" O
210°	27° 35' 25,46" S	48° 49' 29,09" O	27° 41' 05,67" S	48° 53' 05,45" O
240°	27° 34' 52,37" S	48° 50' 09,09" O	27° 38' 07,78" S	48° 56' 29,09" O
270°	27° 34' 02,72" S	48° 50' 25,63" O	27° 34' 02,72" S	48° 57' 40,00" O
300°	27° 33' 15,40" S	48° 50' 09,09" O	27° 30' 00,00" S	48° 56' 29,09" O
330°	27° 32' 42,16" S	48° 49' 29,09" O	27° 27' 04,86" S	48° 53' 05,45" O

Tabela 3.3: Coordenadas indicando as referências latitudinais e longitudinais de cada radial.

para cada radial. Estes valores serão usados para definir os valores de intensidade do campo, que formará o contorno protegido de 66 dBm. Os valores de *HNMT* serão aplicados posteriormente nas Curvas de Intensidade de Campo, que será abordada com maiores detalhes mais à frente.

O HNMT é definido pela equação 3.1.

$$HNMT = CBT + HCGSI - NMT (3.1)$$

Onde:

CBT = Cota da base da torre (Altura do terreno onde será instalada a base da emissora);

HCGSI= Altura do centro geométrico do sistema irradiante;

NMT = Nível Médio do Terreno.

Utilizando o SIGAnatel, informando as coordenadas 27°34′02.72″S e 48°48′33.71″O, buscamos a altura do terreno da nossa base, que resultou em 285 m acima do nível do mar. Assim, é definido o primeiro parâmetro, o *CBT*.

$$CBT = 285m$$

Mais um fato curioso, e compreensível, é que o *CBT* tem um valor muito próximo do já encontrado *NMT* (288,33 m), demostrando que o relevo, nas redondezas, tende à manter a mesma altura do ponto escolhido como base, porém, deve-se ter cautela com este valor, pois trata-se de uma média das 12 radiais.

-/-	Radial 01	Radial 02	Radial 03	Radial 04	Radial 05	Radial 06	Radial 07	Radial 08	Radial 09	Radial 10	Radial 11	Radial 12	NMT
Distancia.(m)	Altitude(m)	Alt. média (m)											
3240	350	335	275	290	470	260	400	315	320	390	140	66	300,91
3480	325	290	325	340	530	245	390	320	300	400	50	40	296,25
3720	225	180	350	290	550	280	435	355	290	340	140	40	289,58
3960	190	183	360	220	540	300	425	400	340	350	150	43	291,75
4200	125	80	325	190	470	300	380	475	335	270	250	40	270,00
4440	30	45	275	220	450	305	350	430	310	210	300	66	249,25
4680	25	80	180	260	350	260	325	370	310	270	350	140	243,33
4920	27	100	200	250	355	270	250	380	340	350	345	130	249,75
5160	95	105	135	190	310	320	200	330	370	430	250	55	232,50
5400	80	80	137	220	250	400	175	280	330	355	200	57	213,67
5640	125	30	97	240	200	430	100	270	370	360	150	35	200,58
5880	140	75	115	250	250	475	75	370	420	370	110	85	227,91
6120	75	75	45	235	245	478	60	370	400	450	115	120	222,33
6360	150	30	40	190	255	440	55	375	350	440	150	150	218,75
6600	105	50	75	195	253	430	53	425	350	490	270	190	240,50
6840	125	30	43	225	285	400	51	500	375	500	300	310	262,00
7080	120	25	43	215	285	380	70	535	470	550	300	230	268,33
7320	238	30	50	230	250	320	100	540	530	570	350	130	278,16
										590		104	
7560	265	30	100	215	275	230	130	460	570		340		275,75
7800	270	30	150	240	270	150	125	480	635	580	260	160	279,16
8040	250	30	190	320	250	100	100	500	650	645	315	190	295,00
8280	150	30	180	315	220	80	115	450	630	580	300	215	272,08
8520	98	30	190	220	200	60	115	450	600	600	380	310	271,08
8760	98	125	170	220	170	40	120	445	510	650	410	300	271,5
9000	125	175	220	200	150	30	115	375	500	700	370	310	272,5
9240	145	155	180	205	130	25	110	340	525	740	380	405	278,33
9480	185	130	160	250	130	30	195	310	510	710	470	410	290,83
9720	210	100	195	315	170	40	150	230	560	720	500	440	302,50
9960	165	60	195	300	200	60	100	210	550	765	450	480	294,58
10200	165	50	250	340	250	50	130	230	470	750	460	530	306,25
10440	150	70	190	300	220	25	150	280	480	700	530	580	306,25
10680	160	60	160	200	160	25	100	250	520	600	590	680	292,08
10920	115	100	80	60	210	50	130	250	500	625	730	680	294,16
11160	140	50	50	25	240	160	100	280	500	650	840	690	310,427
11400	30	40	40	23	300	140	105	310	520	675	830	730	311,91
11640	125	30	30	20	340	150	150	350	540	700	750	830	334,58
11880	125	80	20	23	380	150	105	310	560	695	730	840	334,83
12120	270	50	25	23	410	100	40	390	580	700	730	810	344,00
12360	100	60	60	20	350	90	50	370	600	625	600	800	310,42
12600	185	35	140	17	300	110	70	390	610	570	510	750	307,25
12840	150	50	300	20	200	180	100	430	680	575	515	800	300,00
13080	80	60	350	23	180	170	150	470	665	650	550	780	344,00
13320	75	80	370	25	175	150	170	450	750	720	500	720	348,75
13560	98	35	365	23	130	130	150	480	740	770	410	730	338,42
13800	150	25	160	20	70	125	130	520	670	770	480	710	319,16
14040	200	20	170	20	35	200	135	540	640	790	500	650	325,00
14280	240	15	200	17	35	220	120	590	600	750	550	690	335,58
14520	270	15	220	17	30	200	100	550	580	730	600	650	330,16
14760	300	15	150	19	35	180	70	520	570	760	605	675	324,92
15000	280	15	130	25	10	100	55	490	580	800	500	690	306,25
Soma	7919	3673	8457	8310	12523	9843	7579	19740	25105	28980	20605	20266	14416,66
NMR(m)	158,38	73,46	169,14	166,2	250,46	196,86	151,58	394,8	502,1	579,6	412,1	405,32	288,33

Tabela 3.4: Mapeamento das altitudes de cada radial.

Ao analisar os valores de *NMR* apresentados na Tabela 3.4, pode ser notado que a região voltada ao Oeste (Sudoeste - Noroeste) da base emissora, apresenta níveis de altura do terreno maiores que a base, enquanto as outras regiões são todas mais baixas. Os obstáculos atrapalham na propagação do sinal, então deverá ser feito um esforço maior nos locais onde os terrenos são mais elevados que a antena, e, ao mesmo tempo, cuidar para que o contorno protegido seja respeitado.

Embora a vida útil de uma torre de estrutura metálica (a mais utilizada) e a de um transmissor, sejam ambas de cerca de 20 anos, o transmissor apresenta, além de um custo de manutenção muito superior ao da torre, alto gasto de energia elétrica, fazendo com que, normalmente, seja mais recomendável o aumento da altura da torre, em vez da potência do transmissor.

Sendo assim, sabendo que a emissora está localizada em uma área de relevo acidentado e com algumas radiais apresentado um *NMR* mais elevado que a base, ficará definida a altura da torre em 55 metros¹¹.

Para definir a HCGSI, será preciso ainda obter o valor da altura do Centro de Fase do Sistema Irradiante. Este valor é encontrado nas especificações da antena Dipolo 1/2 Onda para FM do fabricante IDEAL, conforme ANEXO A, que será usada no projeto e varia conforme o número de elementos usados na estrutura do sistema irradiante. De acordo com a especificação da antena, usando três elementos para irradiar o sinal e usando como referência os dados referentes à sistemas com frequência de 88,1 MHz, que é a frequência que mais se aproxima da que será propagada pela emissora (91,5 MHz), o centro de fase do sistema fica em 4244,5 mm ou 4,244 m. Efetuando-se a soma entre a altura da torre e a altura do Centro de Fase do Sistema Irradiante, encontra-se o seguinte valor

$$HCGSI = 55m + 4,244m = 59,244m$$

Agora já estão definidas todas as variáveis que compõem a equação, deve ser buscado o *HNMT*, conforme resultado da equação

$$HNMT = 285m + 59,244m - 288,33m$$

$$HNMT = 55,914m$$

¹¹Para definir este valor foi considerado que a altura máxima da antena não deve ultrapassar os 60 metros acima do *NMT*, conforme definido na tabela de requisitos máximos. Com este valor de altura da torre, somado ao centro de fase do sistema (4,244 m), a altura da antena (*HCGSI*) fica em 59,244 metros

Radial	NMR	HNMT
0°	158,38	185,86
30°	73,46	270,78
60°	169,14	175,10
90°	166,20	178,04
120°	250,46	93,78
150°	196,86	147,38
180°	151,58	192,66
210°	394,80	-50,55
240°	502,10	-157,85
270°	579,60	-235,35
300°	412,10	-67,85
330°	405,32	-61,07

Tabela 3.5: Valores de HNMT para cada radial.

Este primeiro valor de *HNMT* encontrado servirá somente como referência. Através dele, será possível comprovar que a antena estará numa altura dentro do limite estabelecido pela resolução (60 m), considerando a média de todas as radiais (*NMT*).

Agora, esta equação deve ser usada trocando o valor do *NMT* pelos valores de *NMR* e, assim, encontrar o *HNMT* de cada radial, isoladamente.

A Tabela 3.5 apresenta os valores de *HNMT* obtidos. Esse valores informam a diferença entre a altura da antena e o *NMR* da radial correspondente.

Os resultados negativos informam que, na direção das radiais correspondentes à estes valores, o nível do terreno é mais alto que a altura da antena, fixada em 344,24 m (resultado da soma entre a *HCGSI* e *CBT*). Então, conclui-se que o sinal irradiado para estas direções encontram obstáculos que devem interferir na sua propagação. A importância desta informação está na otimização da área de cobertura da emissora, e será lembrada mais adiante.

3.4 Contorno protegido

O contorno protegido de uma estação de rádio FM corresponde ao lugar geométrico onde a intensidade de campo do sinal apresentar o valor de 66 dB μ (2 mV/m)(Contorno 2). Este contorno tem como finalidade atender a área de serviço urbana. Uma vez que a cobertura desta área estiver atendendo os padrões da resolução, as demais áreas de serviços, a área de serviço primária (Contorno 1), limitada pelo contorno de 74 dB μ (5 mV/m) e a área de serviço rural (Contorno 3), compreendida entre o contorno 2 e o contorno de 54 dB μ (0,5 mV/m), também estara de acordo com a norma.

O que vai determinar toda a extensão deste contorno será a escolha dos equipamentos e especificações usados no sistema irradiante, que devem ser definidos da maneira que melhor atenda a geografia da localidade e que também respeite todas as regularidades expostas na resolução determinada pela ANATEL para a classe do canal proposto.

3.4.1 Interferências

A resolução mostra, em várias passagens, bastante rigor no que diz respeito à interferências entre canais. Apesar de informar que o PBFM foi organizado para evitar interferências, a norma exige que este quesito esteja incluso no estudo de viabilidade técnica, conforme previsto no subitem 3.6.2 da resolução (BRASIL. AGÊNCIA NACIONAL DE TELECOMUNICAÇÕES, 1998b).

Porém, a norma também informa que, no caso do sistema irradiante estar fixado próximo das coordenadas informadas no PBFM para este canal, o estudo de interferências torna-se dispensável, conforme segue no trecho da resolução:

8.3.1.2 Nos projetos de instalação de emissoras, bem como nos de mudança de localização de sistema irradiante, o demonstrativo de compatibilidade do subitem 3.6.2 é indispensável, a menos que as coordenadas geográficas de seu sistema irradiante estejam fixadas no PBFM (BRASIL. AGÊNCIA NACIONAL DE TELECOMUNICAÇÕES, 1998b).

O caso do sistema proposto é exatamente este, ou seja, este sistema irradiante está fixado muito próximo das coordenadas definidas para o canal no PBFM, conforme apresentado na Figura 3.5. Sendo assim, o projeto está isento da obrigação de buscar e apresentar estas informações.

Figura 3.5: Proximidade entre a base do sistema e a coordenada indicada no PBFM, para o canal proposto (GOOGLE MAPS., 2013).

4 Equipamentos básicos que compõe a emissora

Agora que já é conhecida geograficamente a localidade onde será fixada a emissora, e que também já foram definidos os outros aspectos técnicos primários necessários, a próxima etapa é a construção do conjunto de equipamentos que formará a emissora.

4.1 O sistema irradiante

Um sistema irradiante é composto basicamente de uma antena, um guia de onda, e um transmissor. Cada um dos componentes apresenta características próprias, variando de fabricante. No levantamento das informações são apresentadas as características que influenciam diretamente nos cálculos.

A seguir serão apresentadas as características do sistema irradiante, bem como os critérios usados para a utilização de cada um dos equipamentos. Também serão apresentados os cálculos que usados para encontrar os valores das potências irradiadas pelo sistema.

4.1.1 Antena

A antena utilizada neste projeto é uma Dipolo 1/2 onda e de polarização vertical. O diagrama de irradiação desta antena é útil para o relevo acidentado da região de São Pedro de Alcântara. Como pode ser visto na Figura 4.1, o diagrama apresenta uma antena com uma irradiação levemente direcionada. O ANEXO A contém o documento do fabricante da antena na íntegra.

4.1.2 Linha de transmissão e conectores

Conforme a potência máxima irradiada e a antena escolhida, fica definido, para o guia de onda, o uso do padrão EIA 1-5/8". Optou-se pelo 1-5/8"CELLFLEX® Lite Low-Loss

Figura 4.1: Diagrama de Irradiação da Antena Dipolo 1/2 Onda para FM

Foam-Dielectric Coaxial Cable, da fabricante RFS, que apresenta uma atenuação de apenas 0.663dB/100m, operando numa frequênciancia de 88 MHz, conforme especificações em ANE-XO B. Como a frequência do canal que está sendo projetado é de 91,5 MHz, é adotado o valor de 0.680dB/100m (valor encontrado usando como base a tebela de atenuação, presente na especificação técnica).

Como já definido, a estrutura da torre onde será alocada a antena tem uma altura de 55 m. Sendo assim, o comprimento do guia de onda será de 65 m, visando que ele será conectado ao transmissor, que deverá estar abrigado dentro de uma estrutura adequada (casa do transmissor). Portanto, a atenuação introduzida pelo cabo será de 0,442 dB.

Continuando com os elementos atenuantes, devem também ser consideradas as perdas causadas pelos conectores, também chamadas de perdas acessórias (*Pc*, em dB). Estas perdas são provenientes de eventuais conectores e divisores utilizados na linha, será assumida uma perda adicional de 2 dB (RÉGIS, 2010).

4.1.3 Transmissor

A única característica de um transmissor levada em consideração nos cálculos é a sua potência de saída. Essa potência é informada nas especificações técnicas, e dada geralmente

em Wrms (potência média).

Baseando-se em pesquisas nos sites de fabricantes de transmissores nacionais, foram encontrado transmissores com potências nominais de 25, 100, 150 e 300 Wrms. Visando atender a resolução, que limita a potência da emissora de rádio em 300 Wrms para a classe C, é usado nos cálculos um transmissor de 150 Wrms, que, combinado com o ganho da antena e com a eficiência da linha de transmissão, terá que resultar numa potência P(erp) <= 300Wrms.

link http://www.videolinkpro.com.br/transmissor_fm_ex150.shtml

4.1.4 Cálculos de ERPmax, ERPaz e orientação da antena

A seguir, serão mostrados os ajustes e cálculos necessários para obter o resultado mais eficiente e dentro da norma.

Potência Efetiva Irradiada Máxima (ERPmax)

A Potência Efetiva Irradiada Máxima é a máxima potência que a emissora poderá transmitir o seu sinal, que é o resultado da combinação das especificações dos elementos que à compõe. A equação 4.1 é usada para encontrar a *ERPmax*. Ela é composta de variáveis que correspondem aos equipamentos e suas características no sistema (RÉGIS, 2010).

$$ERPmax = Pt \times Gtmax \times Ef \tag{4.1}$$

A variável Pt representa a potência de saída do transmissor em Wrms, a Gtmax é o ganho máximo da antena, e Ef a eficiência da linha de transmissão.

Através das especificações do fabricante, podem ser obtidos a potência de saída do transmissor e o ganho máximo da antena. Caso o *Gtmax* esteja somente representado em dBd é usado a equação 4.2 para efetuar a conversão para escala linear (RÉGIS, 2010).

$$Gtmax(dBd) = 10^{0.1 \times Gtmax(dBd)}$$
(4.2)

A eficiência da linha de transmissão deriva das perdas do sistema. Para calcular as perdas na linha, usa-se a equação 4.3 (RÉGIS, 2010).

$$Pl = \frac{L \times Al}{100} \tag{4.3}$$

O parâmetro L informa o comprimento do guia de onda em metros, Al representa a atenuação do guia a cada 100 m de comprimento, em dB/100 m. Será considerado o valor de 2 dB como perda com acessórios (Pc), provenientes de conectores e divisores de linha, que deve ser somado ao valor Pl, resultando então na perda total da linha (Pd), em dB, conforme equação 4.4 (RÉGIS, 2010).

$$Pd = Pl + Pc (4.4)$$

Converte-se as perdas totais para escala linear (Pv) (RÉGIS, 2010):

$$Pv = 10^{0,1 \times Pd}$$

Por fim, para definir o último parâmetro faltante para encontrar o *ERPmax*, inverte-se o último resultado (equação 4.5), obtendo a eficiência da linha (RÉGIS, 2010).

$$Ef = 1/Pv (4.5)$$

Potência Efetiva Irradiada por Azimute (ERPaz)

A *ERPmax* representa a potência máxima, mas, conforme o diagrama de irradiação da antena, na prática essa potência será irradiada somente em uma direção. Então, a *ERPaz* é usada e necessária para encontrar os valores de potência em cada radial. Com esses valores definidos, é possível encontrar as distâncias e traçar os contornos das áreas de serviço do sistema.

A *ERPaz* é simplismente a parcela do *ERPmax* irradiada em um azimute determinado, e é calculada pela equação 4.6

$$ERPaz = ERPmax \times (E/Emax)^2 \tag{4.6}$$

Onde E/Emax representa a porcentagem da potência máxima que é irradiada no azimute correspondente. Ela pode ser buscado diretamente das especificações técnicas do fabricante.

Orientação da antena

Como pode ser visto na Tabela 3.5, existem valores de *HNMT* negativos. Em locais onde o terreno é acidentado, o sinal transmitido apresentará mais dificuldades em propagar-se nas

direções onde o terreno é mais alto que a antena, atenuando-o conforme vai se distanciando da origem.

Na região onde está sendo projetado a emissora, o azimute 270° é a direção onde o NMR é o mais alto e, consequentemente, o HMNT mais negativado. Gradativamente, a altura terrena nesta região vai baixando junto com as outras direções das radiais. Afim de amenizar a atenuação do sinal neste cenário, a antena será direcionada para o oeste, ou seja, o azimute 0° da antena, que conforme a especificação irradia o ERPmax para esta direção, ficará apontado para o azimute 270° da base. Com esta atitude, o sinal está sendo irradiado com a maior potência possível para estas regiões.

5 Desenvolvendo a emissora FM

Agora que já é conhecido detalhadamente o local em que vamos trabalhar, os equipamentos que vão compor a emissora, e também quais caminhos devem ser seguidos para desenvolver o projeto, tem-se o início do desenvolvimento.

5.1 Especificações definidas

Ao decorrer desta leitura, já foram mostrados alguns levantamentos que apresentam seus valores definitivos. Apresentou-se na Tabela 3.5 o mapeamento geográfico da localidade com os valores de *NMR* e *HNMT*, e agora também pode ser observada a Tabela 5.1, que agrupa as especificações técnicas já definidas até este momento.

Os próximos passos serão destinados à mostrar os valores que comprovarão que esta configuração do sistema está respeitando todos os requisitos máximos, principalmente o contorno protegido de 66 dBm.

Canal	218
Frequência	91,5 MHz
Classe	С
Altura do centro geométrico do sistema irradiante (HNMT)	55,914 metros
Orientação do Norte Verdadeiro	90° no diagrama de irradiação
Cota da base da torre	285 metros
Comprimento da linha de transmissão	65 metros
Altura da antena	59,244 metros
Atenuação do guia de onda e conectores	0,442 dB (para 65 metros)
Ganho da antena	4,77 dBd (para 3 elementos)
Potência do transmissor	0,150 kW

Tabela 5.1: Resumo das especificações técnicas da emissora.

5.2 Definindo as potências ERPmax e ERPaz

O limite máximo da potência que o sistema pode usar para irradiar o sinal está fixado em 0,300 kW. Já são conhecidos todos os fatores necessários para saber o valor de *ERPmax* da emissora. Agora serão apresentados os cálculos, começando pela perda da linha

$$Pl = \frac{65 \times 0,680}{100}$$

$$Pl = 0,442dB$$

Soma-se este reultado à atenuação dos conectores

$$Pd = 0,442 + 2$$

$$Pd = 2,442dB$$

Convertendo para perdas totais em escala linear (Pv)

$$Pv = 10^{0,1 \times 2,442}$$

$$Pv = 1,754$$

Inverte-se este resultado para obter a Eficiência da linha

$$Ef = 1/1,754$$

$$Ef = 0,569$$

Portanto, a potência de saída do sistema fica

$$ERPmax = 0,15 \times 3 \times 0,569$$

$$ERPmax = 0,256kW$$

Se for usada a notação em dB

$$ERPmax = -5,91dBk$$

Este resultado atende o estabelecido pela resolução, é menor que 300 W, então já podem ser iniciados os cálculos de ERPaz para cada um dos azimutes traçados.

Como já mencionado anteriormente, a antena ficou posicionada apontando o seu 90° em direção ao norte verdadeiro, assim ficando de frente para o azimute 270° da emissora.

Considerando a posição da antena e os valores de E/Emax (disponível na especificação da antena - ANEXO A), segue o cálculo para o azimute 0°

$$ERPaz(0^{\circ}) = 0.256kW \times (0.78)^2$$
 (5.1)

$$ERPaz(0^{\circ}) = 0.256kW \times 0.6084$$

$$ERPaz(0^{\circ}) = 0,1557kW$$

Convertendo para dBk $(10 \times log)$:

$$ERPaz(0^{\circ}) = -8,07dBk$$

Repete-se este procedimento para todas as outras 11 radiais. A Tabela 5.2 está completa, com todos os valores de E/Emax e ERPaz para todas as radiais.

5.3 Definindo os contornos das áreas de serviços

Definir a distância do contorno protegido, cobertura da área de serviço urbana com potência mínima de 66 dBm, é o principal objetivo deste estudo. Esta distância é a média aritmética das distâncias a este contorno, segundo cada radial, é o que irá identificar a classe desta emissora. Para a classe C, o Contorno 2 não deve ultrapassar 7,5 km, sendo este o resultado da média das

Radial	E/Emax	ERPaz(kW)	ERPaz(dBk)
0°	0,78	0,1560	-8,07
30°	0,69	0,1220	-9,13
60°	0,63	0,1017	-9,92
90°	0,62	0,0985	-10,06
120°	0,63	0,1017	-9,92
150°	0,69	0,1220	-9,13
180°	0,78	0,1560	-8,07
210°	0,88	0,1985	-7,02
240°	0,95	0,2314	-6,35
270°	1,00	0,2564	-5,91
300°	0,95	0,2314	-6,35
330°	0,88	0,1985	-7,02

Tabela 5.2: Valores de ERPaz para cada radial.

12 radiais.

A norma também solicita as definições das outras duas áreas de serviços, a área de serviço primário (74 dBm) e a área de serviço rural (54 dBm), Contornos 1 e 3, respectivamente. O conjunto desses 3 contornos compõem a área de serviço da emissora.

Conhecidas as potências de irradiação de cada uma das radiais do sistema, a próxima etapa é identificar cada uma das distâncias que formarão os contornos. As curvas de intensidade de campo E(50,50) serão usadas para esta finalidade. Através destas curvas são obtidas as relações entre potência e relevo, necessárias para determinar as distâncias dos contornos das áreas de serviços. Tais curvas baseiam-se em uma potência efetiva de 1 kW irradiado por um dipolo de 1/2 onda, em espaço livre, que produz uma intensidade de campo não atenuada, a 1 km, de aproximadamente 107 dB μ .

5.3.1 Área de Serviço Urbana (66 dBm)

Como já mencionado, a Área de Serviço Urbana é o contorno principal do projeto. Para identificar se a emissora está respeitando o contorno de 7,5 km, deve-se fazer o uso das curvas de intensidade, combinadas com as potências ERPaz. Como as potências efetivas irradiadas, anteriormente encontradas, são inferiores à 1 kW, deve ser feito um ajuste, subtraindo estes valores em dBk do valor para o contorno desejado. O resultado será o valor referência do eixo das ordenadas. O ponto de intersecção será o valor de *HMNT* correspondente à radial desta potência, que deverá ser encontrado entre as escalas apresentadas nas curvas de intensidade.

Definido o ponto, busca-se o valor, em km, que está em escala logarítmica no eixo das

abscissas. A Figura 5.1 mostra um exemplo deste procedimento para os valores referentes à radial 0° . À esquerda está destacado o valor resultante da equação 5.2, e através do valor de HMNT de 185,86 m na radial 0° , utilizando a curva correspondente obtem-se o valor de 10,5 km.

$$66dBm - (-8,07dBk) = 74,07dBm (5.2)$$

Então, à 10,5 km da base da emissora, em direção ao norte verdadeiro, a intensidade do sinal apresenta uma potência de 66 dBm. Nota-se que esta distância ultrapassa o valor de limite de 7,5 km, porém, devido à irregularidade do terreno, é permitido que algumas distâncias ultrapassem o limite máximo, desde que a média geral não à ultrapasse. Para que esta exclusividade seja permitida, a potência ERPmax e altura da antena não podem estar excedendo os limites de 0,3 KW e 60 metros respectivamente, sendo este o nosso caso.

Executando este procedimento em todas as 12 radiais, obteve-se os resultados apresentados na Tabela 5.3. Para os valores de *HMNT* negativos é considerado a curva de menor valor como referência (10 m).

Figura 5.1: Utilizando as curvas E(50,50) para encontrar as distâncias do contorno protegido.

Radial	ERPaz(dBk)	HMNT (m)	66 dBm	Contorno 2 (km)
0°	-8,07	185,86	74,07	10,5
30°	-9,13	270,78	75,13	11
60°	-9,92	175,10	75,92	9
90°	-10,06	178,04	76,06	9
120°	-9,92	96,78	75,92	7
150°	-9,13	147,38	75,13	9
180°	-8,07	192,66	74,07	11
210°	-7,02	-50,55	73,02	3,2
240°	-6,35	-157,85	72,35	3,4
270°	-5,91	-235,35	71,91	3,6
300°	-6,35	-67,85	72,35	3,4
330°	-7,02	-61,07	73,02	3,2

Tabela 5.3: Distâncias do contorno protegido (66 dBm).

Cobertura da Área de Serviço Urbana

Pode ser encontrado no site¹ da Câmara Municipal de São Pedro de Alcântara (CÂMARA..., 2010) um mapa do macrozoneamento do município (ANEXO C), que delimita as áreas conforme sua densidade populacional urbana ou rural (conforme pesquisa realizada em 2010).

A área em vermelho corresponde à área urbana atual, e a área um laranja é correspondente à área de expansão urbana. O contorno de 66 dBm deve cobrir ao menos 90% dessas áreas para, assim, comprovar a cobertura da área urbana do município, conforme o estabelecido pela resolução.

5.3.2 Áreas de Serviço Primário e Rural (74 dBm e 54 dBm)

Os outros contornos de serviço, Área de Serviço Primário (74 dBm) e Área de Serviço Rural (54 dBm), tem como objetivos atender a área de maior densidade populacional e área rural, respectivamente, na localidade. Os mesmos procedimentos usados para encontrar as distâncias do contorno de 66 dBm são usados para esses dois outros contornos. Os resultados estão na Tabela 5.4.

¹http://camaraspa.sc.gov.br/cms/pagina/ver/codMapaItem/459

Radiais	(graus)	0°	30°	60°	90°	120°	150°
NMT	(m)	158,38	73,46	169,20	166,20	250,46	196,86
HMNT	(m)	185,86	270,78	175,10	178,04	93,78	147,38
E/Emax	vezes	0,78	0,69	0,63	0,62	0,63	0,69
Potência	(KW)	0,1560	0,1220	0,1017	0,0985	0,1017	0,1220
ERPaz	(dBk)	-8,07	-9,13	-9,92	-10,06	-9,92	-9,13
Contorno	74 dBm	82,07	83,13	83,92	84,06	83,92	83,13
1	(km)	5,2	6	5	5	4	5
Contorno	66 dBm	74,07	75,13	75,92	76,06	75,92	75,13
2	(km)	10,5	11	9	9	7	9
Contorno	54 dBm	62,07	63,13	63,92	64,06	63,92	63,13
3	(km)	21	23	19	18	15	18
Radiais	(graus)	180°	210°	240°	270°	300°	330°
NMT	(m)	151,58	394,80	502,10	579,60	412,10	405,32
HMNT	(m)	192,66	-50,55	-157,85	-235,35	-67,85	-61,07
E/Emax	vezes	0,78	0,88	0,95	1,00	0,95	0,88
Potência	(KW)	0,1560	0,1985	0,2314	0,2564	0,2314	0,1985
ERPaz	(dBk)	-8,07	-7,02	-6,35	-5,91	-6,35	-7,02
Contorno	74 dBm	82,07	81,02	80,35	79,91	80,35	81,02
1	(km)	5,2	1,8	2	2,1	2	1,8
Contorno	66 dBm	74,07	73,02	72,35	71,91	72,35	73,02
2	(km)	11	3,2	3,4	3,6	3,4	3,2
Contorno	54 dBm	62,07	61,02	60,35	59,91	60,35	61,02
3	(km)	21	6,5	6,8	7	6,8	6,5

Tabela 5.4: Contornos das diversas áreas de serviço por radial e dados correspondentes.

5.3.3 Os traçados dos contornos

Já foram definidas todas as distâncias, em todas as radiais, para cada intensidade do sinal (área de serviço), que juntos formam os 3 contornos do sistema (Tabela 5.4). Utilizando a ferramenta SIGAnatel, podemos visualizar estes contornos, projetados no mapa da localidade, e assim analisar, num primeiro momento, se os efeitos destas coberturas estão dentro do esperado.

A Figura 5.2 apresenta as projeções das áreas de serviço da emissora em São Pedro de Alcântara.

Figura 5.2: Projeção da cobertura das áreas de serviços utilizando a ferramenta SIGAnatel.

6 Resultados obtidos com o projeto

Todas as informações indispensáveis sobre o sistema irradiante neste projeto de emissora FM já estão definidas. Os equipamentos usados, dimensões estabelecidas e comportamento do sinal irradiado já estão mapeados.

Agora deve-se analisar estes resultados e verificar se está tudo conforme orienta a resolução, tantas vezes mencionada no decorrer deste documento. O objetivo é que o projeto apresente uma tendência em anular ou, ao menos, minimizar as chances de apresentar problemas na homologação junto à ANATEL.

6.1 Considerações sobre os contornos encontrados

Uma verificação importante e indispensável é saber se as áreas de serviço, principalmente o contorno protegido, cobrem as zonas à que se destinam. Para isto, buscamos como referência um mapeamento das zonas urbanas e rurais da cidade (ANEXO C), de 2010, publicado no portal da Câmara de São Pedro de Alcântara (CÂMARA..., 2010).

Cruzando as informações deste documento com os resultados do projeto, será possível descobrir se as áreas de cobertura estão de acordo com o que estabelece a resolução.

6.1.1 Analisando a cobertura da Área de Serviço Urbana em São Pedro de Alcântara

A área de serviço urbana, correspondente ao contorno 2 ou contorno protegido (66 dBm), entre as três, é a área referência para a homologação das coberturas. É este contorno que vai indicar se o sistema está devidamente enquadrado na classe correspondente, no caso classe C.

Os requisitos mínimos apresentados pela resolução para o contorno de 66 dBm são os seguintes: áreas de serviço

• A média aritmética das distâncias a este contorno não pode ultrapassar 7,5km;

Radial	Contorno 66 dBm(km)	Distâncias zona urbana
0°	10,50	1,05
30°	11,00	1,85
60°	9,00	4,00
90°	9,00	7,70
120°	7,00	1,40
150°	9,00	1,60
180°	11,00	1,50
210°	3,20	1,00
240°	3,40	1,20
270°	3,60	0,75
300°	3,40	0,65
330°	3,20	0,65

Tabela 6.1: Comparando os valores de contorno protegido com as distâncias da zona urbana.

- A média aritmética das distâncias a este contorno não poderá ser menor do que a distância ao contorno máximo da classe imediatamente inferior;
- O contorno de 66 dBm deve cobrir ao menos 90% dessa área urbana da localidade.

Primeiramente será calculado a média aritmética das distâncias do contorno protegido. Buscando os valores das distâncias, apresentados na Tabela 5.4, pode-se encontrar a média do contorno e saber se a emissora está respeitando este requisito, como pode ser observado no cálculo 6.1.

$$\frac{10,5+11+9+9+7+9+11+3,2+3,4+3,6+3,4+3,2}{12} = 6,942km$$
 (6.1)

Resultando aproximadamante em 7 km, a média aritmética das distâncias do contorno protegido é menor que 7,5 km e está dentro do primeiro requisito. O segundo requisito também pode ser considerado como alcançado, pois a classe C é a última dentro da hierarquia das classes, ou seja, não existe uma classe imediatamente inferior a esta.

Para verificar o último requisito, é utilizado o mapa de Macrozoneamento (ANEXO C) e comparar com a área de cobertura. Comparando os valores das distâncias do contorno protegido e do contorno da área urbana, sempre partindo da base da emissora e considerando os mesmos ângulos que formam as 12 radiais, pode-se comprovar que a área urbana está inserida, praticamente, 100% dentro do contorno de 66 dBm, conforme representado na Figura 6.1. Os valores que foram comparados podem ser verificados na Tabela 6.1.

Assim, está comprovado que a área de serviço urbana está devidamente coberta pelo contorno de 66 dBm, conforme exige a resolução.

Figura 6.1: Projeção da cobertura das área de serviço urbana sobre a zona urbana do município.

As outras áreas de serviços

A resolução solicita, para a cobertura da área de serviço primário, que atenda a maior parte possível da zona central do município, conforme citado no trecho da resolução:

"5.1.1.2 - O local do sistema irradiante deve ser escolhido de forma que o contorno de 74 dBm inclua a maior parte possível da zona central da localidade..."

Pode ser verificado, através da Figura 6.1, que o contorno de 74 dBm (área na cor laranja escuro) cobre aproximadamente 50% da zona urbana da cidade. Considerando que a base da antena está fixada no centro de São Pedro de Alcântara, podemos concluir que este contorno esta cobrindo por completo a zona central da cidade.

A área de serviço rural (54 dBm) não é tratada com tanto rigor pela resolução quanto as outras áreas. Uma vez que a área de serviço urbana e primário estão cobrindo o que é estabelecido na resolução, a área de serviço rural também é aprovada.

Com base nessas informações, já pode-se afirmar que o sistema está atendendo devidamente a cidade em relação às áreas de serviço.

6.2 Comparando os resultados finais com os valores calculados pela aplicação do SIGAnatel

A SIGNATEL é uma ferramenta que auxília os estudos e projetos de estações de radiocomunicação. Foi esta a ferramenta usada para encontrar os gráficos de perfil do terreno e também para a demostração da área de cobertura da emissora através da imagem de satélite. Além de disponibizar estes recursos, a ferramenta também pode ser usada para comparar os resultados obtidos com o projeto.

No momento que já estão definidas as especificações técnicas, obtidas no decorrer do projeto e que apresentaram os resultados desejados, podem ser conferidos, através da ferramenta, se os resultados do estudo correspondem com os resultados originados pela aplicação. A Figura 6.2 mostra a interface da aplicação e os resultados obtidos com as mesmas especificações definidas neste projeto. A ferramenta também pode gerar um relatório com estas informações, como mostra o ANEXO E.

Ao comparar os resultados da ferramenta com os resultados do estudo, pode-se considerar que as conclusões são semelhantes. As poucas diferenças são notas apenas nos valores que derivam do estudo do terreno, como *NMT*, *HNMT* e os contornos. Isto acontece devido à precisão da aplicação contra o método manual que foi praticado no estudo, onde foi buscados os valores de *NMT*, através da observação dos gráficos de perfil de terreno e, no caso dos contornos, foram encontrados os valores utilizando as curvas de intensidade de campo, tornando o resultado um pouco impreciso, mas não o suficiente para compromenter o projeto.

De maneira geral, os resultados dos contornos ficaram bem próximos, afirmando que os cálculos foram conduzidos da forma correta e bem-sucedidas.

Figura 6.2: Resultados SIGAnatel.

7 Conclusões e trabalhos futuros

Uma emissora de radiodifusão sonora em frequência modulada pode ser projetada utilizando diversas configurações diferentes, mesmo nesses casos onde já existem os requisitos definidos pela classe (como acontece com os canais definidos no plano básico, são disponibilizados já enquadrados numa classe). O importante é que o projeto, independentemente da combinação de recursos e equipamentos usados, apresente a resposta desejada e respeite as normas solicitadas pela resolução.

Os contornos formados pela emissora são oriundos da combinação dos elementos que às compõe, juntamente com as implicações causadas pelo relevo da localidade. A potência utilizada no transmissor, as atenuações da linha de transmissão, os ganhos do sistema irradiante, entre outros fatores, devem ser trabalhados e pensados em conjunto, pois a alteração de um elemento já pode modificar a saída completamente. Ao alterar, por exemplo, a potência do transmissor usado, todos os outros componentes precisarão ser analisados e ajustados, para que este conjunto continue respondendo às adequações e requisitos, conforme a resolução, para a emissora em questão.

A configuração do projeto da emissora de radiodifusão, apresentado neste estudo, teve como foco, além de atender à todas as solicitações e regras informadas pela resolução e recomendação, diminuir os custos de manutenção e gastos fixos (como exemplo, aumentando a altura da torre e diminuindo a potência do transmissor), junto com o máximo aproveitamento das áreas de serviços previstos para a classe. O desfecho do projeto se mostrou satisfatório, levando em consideração o perfil acidentado do terreno da região, dificultando a definição dos contornos. Para determinadas direções existiam os obstáculos naturais que acabam atenuando demais o sinal irradiado, forçando à direcionar os maiores ganhos do sistema irradiante para as direções de maiores obstruções, assim distribuindo a potência efetiva irradiada para as 12 direções do modo mais eficiente possível.

Como resultado, o projeto apresenta a cobertura da área urbana quase por completa pelo contorno protegido. Este é o ponto positivo principal do sistema em relação à norma, pois esta

informação, juntamente com o respeito aos requisitos máximos, é o que define o enquadramento da emissora na sua classe do plano básico. Outro fator positivo foi a comprovação da viabilidade técnica com o que foi definido no plano básico. A classe C, definida para o caso de uso do canal 218 em São Pedro de Alcântara, informada no plano básico, é realmente viável, conforme os resultados apresentados neste documento, e foi possivelmente definida levando em consideração o relevo da região (montanhoso aos arredores) e a área urbana pequena (com uma área longitudinal máxima de aproximadamente 10km).

Como sugestão de trabalhos futuros, pode ser feita uma simulação computacional de estudo de viabilidade técnica, para este ou um novo cenário, implementando os modelos e métodos apresentados na Recomendação UIT-R P.1546-1, implementados em linguagem Matlab® (THE MATHWORKS, INC., 2004). Também pode ser acrescentado como sugestão a realização de um projeto de viabilidade técnica para alteração da classe da emissora, de "C"para"B", com a finalidade de aumento da área da cobertura da mesma.

Referências

BRASIL. AGÊNCIA NACIONAL DE TELECOMUNICAÇÕES. *Resolução nº 546, de 1º de setembro de 2010.* [S.l.], 2010. Disponível em: http://legislacao.anatel.gov.br/resolucoes/25-2010/14-resolucao-546. Acesso em: 27 mai. 2013.

BRASIL. AGÊNCIA NACIONAL DE TELECOMUNICAÇÕES. *Capitulo 9 - Roteiro para elaboração de estudos técnicos* (*Resolução nº 67, de 12 de novembro de 1998*). [S.l.], 1998. Disponível em: http://legislacao.anatel.gov.br/resolucoes/13-1998/168-resolucao-67. Acesso em: 27 mai. 2013.

BRASIL. AGÊNCIA NACIONAL DE TELECOMUNICAÇÕES. *Resolução nº 67, de 12 de novembro de 1998.* [S.l.], 1998. Disponível em: http://legislacao.anatel.gov.br/resolucoes/13-1998/168-resolucao-67>. Acesso em: 27 mai. 2013.

BRASIL. AGÊNCIA NACIONAL DE TELECOMUNICAÇÕES. *Portal ANATEL.* [S.l.], 2013. Disponível em: http://www.anatel.gov.br/Portal/>. Acesso em: 27 mai. 2013.

BRASIL. AGÊNCIA NACIONAL DE TELECOMUNICAÇÕES. *Sistema de Controle de Radiodifusão*. [S.l.], 2013. Disponível em: http://sistemas.anatel.gov.br/srd/Telalistagem.asp?PagSRD=/SRD/Relatorios/>. Acesso em: 27 mai. 2013.

BRASIL. AGÊNCIA NACIONAL DE TELECOMUNICAÇÕES. *Sistema de Informações Geográficas*. [S.l.], 2013. Disponível em: http://sistemas.anatel.gov.br/siganatel/. Acesso em: 27 mai. 2013.

BRASIL. INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. *Mapas Estatisticos - SC - CENSO 2010.* [S.l.], 2010. Disponível em: <ftp://geoftp.ibge.gov.br>. Acesso em: 25 jun. 2013.

CÂMARA MUNICIPAL DE SÃO PEDRO DE ALCÂNTARA.: **Mapa de Macrozoneamento de São Pedro de Alcântara**. 2010. Disponível em: http://camaraspa.sc.gov.br/cms/pagina/ver/codMapaItem/459>. Acesso em: 22 jun. 2013.

GOOGLE MAPS. *Localização da base do sistema irradiante*. *São Pedro de Alcantara - 2013*. [S.l.], 2013. Disponível em: https://maps.google.com.br/. Acesso em: 03 jun. 2013.

IDEAL ANTENAS PROFISSIONAIS.: **Antena Dipolo 1/2 Onda para FM.** 2013. Disponível em: http://www.idealantenas.com.br/produtosport/fm/pdfantenadipolodemeiaondafm.pdf. Acesso em: 22 jun. 2013.

MIYOSHI, E. M.; SANCHES, C. *Projetos de Sistemas de Rádio*. 3. ed. São Paulo: Érica, 2006.

Referências 58

RADIO FREQUENCY SYSTENS.: **1-5/8"CELLFLEX® Lite Low-Loss Foam-Dielectric Coaxial Cable.** 2013. Disponível em: http://www.rfsworld.com/dataxpress/DataSheets/?q=LCF158-50JFNL. Acesso em: 22 jun. 2013.

RÉGIS, P. A. *Cálculo de Viabilidade Técnica de um Canal de Televisão Digital*. Blumenal: FURB, 2010.

THE MATHWORKS, INC. MATLAB, The Language of Technical Computing. [S.1.], 2004.

TRANSMISSOR DE FM PROFISSIONAL: **Excitador Ágil 150 watts, Certificado de Homologação Nº 2510-09-2884.** 2013. Disponível em: http://www.videolinkpro.com.br/. Acesso em: 22 jun. 2013.

UNIÃO INTERNACIONAL DE TELECOMUNICAÇÕES: SETOR DE RADIOCOMUNICAÇÕES. *Recomendação P.1546-4: Médoto de previsões ponto-área para serviços terrestres na faixa de frequências de 30 a 3000MHz.* [S.1.], 2009. Disponível em: http://www.itu.int/rec/R-REC-P.1546-4-200910-I/en>. Acesso em: 27 mai. 2013.

APÊNDICE A – Apresentando as informações técnicas, conforme o roteiro para elaboração de estudos técnicos

Após desenvolver o projeto respeitando a Resolução, e também utilizando recursos da recomendação, será apresentado agora as informações que são solicitadas no roteiro para elaboração de estudos técnicos.

Todas estas informações foram definidas e detalhadas no decorrer deste estudo e agora serão organizadas por tópicos, conforme é apresentado no roteiro. Seguem as informações técnicas necessárias para que a ANATEL autorize a utilização do canal 218, classe C, disponível no município de São Pedro de Alcântara.

A.1 Informações Básicas

- •Nome da entidade requerente: Não se aplica, projeto com objetivos didáticos.
- •Localização da emissora objeto do estudo (cidade, UF): São Pedro de Alcântara, SC.
- Propósito do estudo: Projetar emissora de radiofrequência, com canal já definido no plano básico.

Características técnicas pretendidas

- •Frequência de operação (MHz): 91,5.
- •Nº do canal: 218.
- •Classe: C.
- Tipo de sistema irradiante: Dipolo 1/2 onda, polarização vertical.
- •Coordenadas geográficas de instalação: 27° 34' 02.72" S / 48° 48' 33.71" O.

A.2 Memória Descritiva 60

A.2 Memória Descritiva

Resumo das características da emissora

- 1.Frequência de operação (MHz): 91,5.
- 2.Nº do canal: 218.
- 3. Potência de operação do transmissor (kW):0,150kWrms.
- 4.Classe: C.
- 5. Modo de operação (monofônico, estereofônico, com ou sem canal secundário): estereofônico.

Sistema irradiante

- 1. Tipo de antena (onidirecional ou diretiva): onidirecional.
- 2. Fabricante e modelo da antena: IDEAL Antenas Profissionais Dipolo 1/2 Onda para FM.
- 3. Polarização (horizontal, vertical, circular ou elíptica:) vertical.
- 4. Ganho máximo em relação ao dipolo de meia-onda: 4,77 dBd (3 elementos).
- 5. Tipo da estrutura de sustentação (auto-suportada ou estaiada): auto-suportada.
- 6.Altura física total da estrutura de sustentação em relação à sua base (solo): 55 metros.
- 7. Altura do centro geométrico da antena em relação à base da estrutura de sustentação (solo): 59,244m.
- 8. Altitude da base da estrutura de sustentação (solo) sobre o nível do mar: 285m.
- 9. Altura do centro geométrico da antena sobre o nível médio do terreno: 55,914m.

Linha de transmissão de radiofrequência

1.**Fabricante e modelo:** RFS - 1-5/8" CELLFLEX° Lite-loss Foam-Dieletric Coaxial Cable.

A.3 Situação Geral 61

- 2.Impedância característica (Ω): 50+/- 1.
- 3. Comprimento total: 65m.
- 4. Atenuação em dB por 100 metros: 0.68 dB/100m.
- 5.**Eficiência:** 0,569.

Informações sobre ERPmax e ERPaz

- 1.**ERP máxima (kW):** 0, 256kW.
- 2.ERP, por radial (kW):

Azimute/dBk: 0°/-8,07; 30°/-9,13; 60°/-9,92; 90°/-10,06; 120°/-9,92; 150°/-9,13; 180°/-8,07; 210°/-7,02; 240°/-6,35; 270°/-5,91; 300°/-6,35; 330°/-7,02.

Enquadramento na classe

1.ERP máxima proposta para cada radial:

Azimute/dBk: 0°/-8,07; 30°/-9,13; 60°/-9,92; 90°/-10,06; 120°/-9,92; 150°/-9,13; 180°/-8,07; 210°/-7,02; 240°/-6,35; 270°/-5,91; 300°/-6,35; 330°/-7,02.

2.ERP máxima proposta para cada radial, corrigida para a altura de referência sobre o nível médio do terreno por radial, para a classe da emissora:

Azimute/dBk: 0°/-8,07; 30°/-9,13; 60°/-9,92; 90°/-10,06; 120°/-9,92; 150°/-9,13; 180°/-8,07; 210°/-7,02; 240°/-6,35; 270°/-5,91; 300°/-6,35; 330°/-7,02.

3.Distância ao contorno de 66 dBm para cada radial:

Azimute/Km: 0°/10,5; 30°/11; 60°/9; 90°/9; 120°/7; 150°/9; 180°/11; 210°/3,2; 240°/3,4; 270°/3,6; 300°/3,4; 330°/3,2.

4. Média aritmética das distâncias ao contorno de 66 dBm: Aproximadamente 7 km.

A.3 Situação Geral

Distâncias aos contornos das diversas áreas de serviço, segundo cada radial, de acordo com:

A.3 Situação Geral 62

1. Azimute de orientação em relação ao Norte Verdadeiro: 270°.

2. Altura do centro geométrico da antena com relação ao nível médio de cada radial:

```
Azimute/HMNT(m): 0°/185,86; 30°/270,78; 60°/175,10; 90°/178,04; 120°/93,78; 150°/147,38; 180°/192,66; 210°/-50,55; 240°/-157,85; 270°/-235,35; 300°/-67,85; 330°/-61,07.
```

3.Intensidade de campo (dB μ):

```
Azimute/dBm: 0°/74,07; 30°/75,13; 60°/75,92; 90°/76,06; 120°/75,92; 150°/75,13; 180°/74,07; 210°/73,02; 240°/72,35; 270°/71,91; 300°/72,35; 330°/73,02.
```

4. Distância aos contornos 1, 2 e 3, em cada radial:

Contorno 1:

```
Azimute/km: 0°/5,2; 30°/6; 60°/52; 90°/5; 120°/4; 150°/5; 180°/5,2; 210°/1,8; 240°/2; 270°/2,1; 300°/2; 330°/1,8.
```

Contorno 2:

```
Azimute/km: 0°/10,5; 30°/11; 60°/9; 90°/9; 120°/7; 150°/9; 180°/11; 210°/3,2; 240°/3,4; 270°/3,6; 300°/3,4; 330°/3,2.
```

Contorno 3:

```
Azimute/km: 0°/21; 30°/23; 60°/19; 90°/18; 120°/15; 150°/18; 180°/21; 210°/6,5; 240°/6,8; 270°/7; 300°/6,8/; 330°/6,5.
```

Nível Médio do Terreno

1. Azimute de orientação de cada radial, em relação ao Norte Verdadeiro:

```
Radial/Azimute: 1/0°; 2/30°; 3/60°; 4/90°; 5/120°; 6/150°; 7/180°; 8/210°; 9/240°; 10/270°; 11/300°; 12/330°.
```

2. Nível médio de cada radial:

```
Radial/NMT(m): 1/158,38; 2/73,46; 3/169,14; 4/166,2; 5/250,46; 6/196,86; 7/151,58; 8/394,8; 9/502,1; 10/579,6; 11/412,1; 12/405,32
```

3.Nível médio do terreno: 288,33m

ANEXO A – Especificações técnicas do fabricante da antena dipolo utilizada.

Nº de	Ganho dBd Vezes		Potência Máxima de	(a)	Ång. ½ Pot. Vertical	
Elementos			Entrada (KW)	Conexão		
1	0	1	5	EIA 1 5/8"	840	
2	3	2	10	EIA 1 5/8"	27°	
3	4,77	3	15	EIA3 1/8"	18º	
4	6	4	20	EIA3 1/8"	130	
6	7,76	6	30	EIA 3 1/8"	8,50	
8	9,03	8	40	EIA 4 1/16	6.5°	

* Dipolos confeccionados em 1 5/8"

Nº de	Ganho dBd Vezes		Potência Máxima de	- Marian	Ång. ½Pot. Vertical	
Elementos			Entrada (KW)	Conexão		
1	0	1	10	EIA3 1/8"	84°	
2	3	2	20	EIA3 1/8"	270	
3	4,77	3	30	EIA3 1/8"	18°	
4	6	4	40	EIA 4 1/16"	13°	
6	7,76	6	40	EIA4 1/16	8,5°	
8	9,03	8	40	EIA 4 1/16"	6,5°	

^{*} Dipolos confeccionados em 3 1/8"

Dipolo ½ Onda para FM

Antena para transmissão de FM, com polarização Vertical. Podendo ser confeccionada em linha EIA 1 5/8" ou EIA 3 1/8".

Ideal para transmissão em média e alta potência. Podendo ser instalada em lateral de torre ou tubulão em topo de torre.

Antena de fácil instalação e baixa carga de vento.

Pode ser utilizado diagrama de elevação com tilt elétrico e/ou preenchimento de nulo. Possui confecção com alimentação inferiorou central.

É produzida, sendo sua estrutura externa em latão e suas conexões internas em cobre e latão banhados a prata. Possui tratamento anticorrosivo com epoxi em coloração branca. Com possibilidade de pressurização plena ou até a entrada da antena.

Sistemas com configurações diferentes as apresentadas, entrar em contato.

CARACTERÍSTICAS TÉCNICAS

Faixa de Frequência	87,5 a 108,1 Mhz
Largura de Banda	500 KHz
Polarização	Vertical
Impedância	50 ohms
Ganho	Vide tabela
Máxima potência por elemento	5000 Watts (EIA 1 5/8")
	10000 Watts (EIA 3 1/8")
Ângulo de ½ pot. vertical	Vide tabela
VSWR	<1.05:1
Dimensões (Altura x Diâmetro)	Vide tabela
Área exposta	Vide tabela
Carga ao Vento	Vide tabela
Peso	Vide tabela
Conexão de entrada do sistema	EIA 1 5/8", EIA 3 1/8", EIA 4 1/16"
Resistência a ventos	180 Km/h
Proteção elétrica	Por intermédio da estrutura da antena

MODELO

Características Mecânicas *								
Números de Elementos	A	В	C	Area Exposta	Carga ao Vento	Peso		
1	1815	907,5		0,13	13	10		
2	5152	2576		0,61	61	39		
3	8489	4244.5	3337	0,89	89	61		
4	11826	5913	3331	1,15	115	74		
6	18500	9250		1,71	171	113		
8	25155	12577		227	227	145		

*Dados referentes a sistemas com freqüência de 88.1 Mhz em Linha 1 5/8"

Características Mecânicas *								
Números de Elementos	A	В	C	Area Exposta	Carga ao Vento	Peso		
1	1630	815		0,12	12	8,4		
2	4630	2315		0,56	56	37		
3	7630	3815	3000	0,82	82	58		
4	10630	5315	3000	1,06	106	70		
6	16630	8315		1,57	157	107		
8	22623	11312		2,09	209	136		

Dados referentes a sistemas com freqüência de 98.1 MHz em Linha 1 5/8"

Números de Elementos	A	В	С	Area Exposta	Carga ao Vento	Pesc
1	1480	740		0,11	11	7,9
2	4200	2100		0,51	51	35
3	6920	3460	2720	0,75	75	55
4	9640	4820	2.20	0,97	97	67
6	15080	7540		1,43	143	102
8	20520	10260		1,91	191	131

* Dados referentes a sistemas com freqüéncia de 108.1 Mhz em Linha 1 5/8"

A = Altura do sistema (mm) B = Centro de Fase do sistema (mm)

C = Espaçamento entre antenas (mm)

C - Espagamento entile anterias (mini)
Area Exposta (m²)
Carga ao Vento (Kgf)
Peso (Kg)
* Características referentes a confecção em tubo padrão em tatão.

Diagrama de Azimute

Graus	E/Emax	(dB)	(%)	Graus	E/Emax	(dB)	(%)
0.	1,00	0,0	100.0%	90°	0,78	-2,2	60,3%
5°	0,99	-0,1	97,7%	95°	0,76	-2,4	57,5%
10°	0,99	-0.1	97,7%	100°	0,75	-2,5	56,2%
15"	0,99	-0,1	97.7%	105*	0,73	-2,7	53,7%
20"	0,98	-0,2	95,5%	110*	0,72	-2,9	51,3%
25°	0,97	-0,3	93,3%	115*	0,70	-3,1	49,0%
30"	0,95	-0.4	91,2%	120"	0,69	-3,2	47,9%
35°	0,94	-0,5	89,1%	125"	0,68	-3,4	45,7%
40"	0,93	-0,6	87,1%	130"	0,67	-3,5	44,7%
45"	0,92	-0.7	85,1%	135"	0,66	-3,6	43,7%
50°	0,90	-0,9	81,3%	140°	0,65	-3,7	42,7%
55°	0,89	-1,0	79,4%	145"	0,64	-3,9	40,7%
60"	0,88	-1,1	77,6%	150°	0,63	-4,0	39,8%
65°	0,87	-1,2	75,9%	155"	0,63	-4.0	39,8%
70°	0,85	-1.4	72,4%	160*	0,63	-4,0	39.8%
75°	0,84	-1,5	70,8%	165"	0,62	-4.2	38,0%
80°	0,82	-1.7	67,6%	170"	0,62	-4,2	38,0%
85°	0,80	-1,9	64,6%	175"	0,62	-4,2	38,0%

Graus	E/Emax	(dB)	(%)	Graus	E/Emax	(dB)	(%)
180°	0,62	-4.2	38,0%	270"	0,78	-2,2	60,3%
185°	0,62	-4.2	38,0%	275*	0,80	-1,9	64,6%
190°	0,62	-4,2	38,0%	280°	0,82	-1,7	67,6%
195°	0,62	-4.2	38,0%	285*	0,84	-1,5	70,8%
200°	0,63	-4,0	39,8%	290°	0,85	-1,4	72,4%
205°	0,63	-4.0	39,8%	295*	0,87	-1,2	75,9%
210°	0,63	-4,0	39,8%	300"	0,88	-1,1	77,6%
215°	0,64	-3,9	40,74%	305*	0,89	-1,0	79,4%
220°	0,65	-3.7	42,7%	310"	0,90	-0,9	81,3%
225°	0,66	-3,6	43,7%	315"	0,92	-0,7	85,1%
230°	0,67	-3,5	44.7%	320"	0,93	-0,6	87,1%
235°	0,68	-3,4	45,7%	325"	0,94	-0,5	89,1%
240°	0,69	-3.2	47,9%	330"	0,95	-0,4	91,2%
245°	0,70	-3.1	49,0%	335"	0,97	-0,3	93,3%
250°	0,72	-2,9	51,3%	340"	0,98	-0,2	95,5%
255°	0,73	-2,7	53,7%	345"	0,99	-0,1	97,7%
260°	0,75	-2,5	56,2%	350"	0,99	-0,1	97,7%
265°	0.76	-2.4	57.5%	355"	0.99	-0.1	97.7%

Dipolo de 1/2 Onda para FM

Diagrama de Elevação

ANEXO B – Especificações técnicas do fabricante do guia de onda utilizado (linha de transmissão).

Product Data Sheet

LCF158-50JFNL

1-5/8" CELLFLEX® Lite Low-Loss Foam-Dielectric Coaxial Cable

Product Description

CELLFLEX® Lite 1-5/8" low loss flexible cable Application: Main feed line, Riser-rated In-Building

- It represents a light-weight transmission line solution
 The light weight of CELLFLEX® Lite coaxial cable results in reduced work-force and lifting gear. It is easy to transport, handle and install
 CELLFLEX® Lite coaxial cables enable savings in shipping cost

- It exhibits a cost-efficient alternative to copper transmission line CELLFLEX® Lite coaxial cable helps to reduce CAPEX spending.
- the object of the coaxial cable religible to reduce OAPEA Spending.

 It offers a user-friendly compatibility with RFS's existing range of accessories CELLFLEX® Lite coaxial cable requires less inventory additions, thus reduced OPEX.

 It enables trouble-free installation and operation

- CELLFLEX® Lite coaxial cable avoids downtime and reduces OPEX. The attenuation is comparable to the industry standard in traditional cable CELLFLEX® Lite coaxial cable maintains uncompromised coverage.
- Specially developed connectors exhibit low and stable intermodulation performance CELLFLEX® Lite coaxial cable exceeds present PIM standards ensuring no dropped calls.

 It is available with UV-resistant polyethylene or flame-retardant jackets

Corrugated Copper Tube
Foam Polyethylene
Corrugated Aluminium
Polyethylene, PE, Metalhydroxite Filling

CELLFLEX® Lite coaxial cable can be used outside and in indoor applications where restrictions apply.

[mm (in)]

[mm (in)]

[mm (in)]

[Nm (lb-ft)] [N (lb)]

[Ω/km (Ω/1000ft)]

[kg/m (lb/ft)]

17.6 (0.69)

46.5 (1.83) 50.3 (1.98)

0.78 (0.52)

0.68 (0.205)

200 (8) 500 (20)

 It exceeds industry standard for return loss performance
 CELLFLEX® Lite coaxial cable means zero risk in network planning. Technical Features

0.5	0.0480	0.0146	244
1.0	0.0680	0.0207	172
1.5	0.0834	0.0254	140
2.0	0.0963	0.0294	121
10	0.217	0.0662	53.9
20	0.309	0.0942	37.9
30	0.380	0.116	30.8
50	0.495	0.151	23.6
88	0.663	0.202	17.6
100	0.709	0.216	16.5
108	0.738	0.225	15.9
150	0.877	0.267	13.3
174	0.948	0.289	12.3
200	1.02	0.311	11.5
300	1.27	0.387	9.21
400	1.48	0.452	7.91
450	1.58	0.481	7.41
500	1.67	0.510	7.01
512	1.70	0.517	6.88
600	1.85	0.564	6.32
700	2.01	0.614	5.82
750	2.09	0.638	5.60
800	2.17	0.661	5.39
824	2.21	0.672	5.29
894	2.31	0.704	5.06
900	2.32	0.707	5.04
925	2.35	0.718	4.98
960	2.40	0.733	4.88
1000	2.46	0.750	4.76
1250	2.79	0.851	4.19
1400	2.98	0.908	3.93
1500	3.10	0.945	3.77
1700	3.33	1.02	3.51
1800	3.45	1.05	3.39
2000	3.67	1.12	3.19
2100	3.77	1.15	3.10
2200	3.88	1.18	3.02
2400	4.08	1.24	2.87
2500	4.18	1.28	2.80
2600	4.28	1.31	2.73
2700	4.38	1.34	2.67
2750	4.43	1.35	2.64
Attenuation at 20°C (68°F) cable temperature Mean power rating at 40°C (104°F) ambient temperature			

	Bending moment
	Max. tensile force
	Recommended / maximum clamp spacing
ı	

Mechanical Properties Weight, approximately
Minimum bending radius, single bending

Structure

Jacket:

Inner conductor

Outer conductor

recommended / maximum clamp spacing	[iii (it)]	1.2 / 1.0 (4.0 / 0.0)	
Electrical Properties			
Characteristic impedance	[Ω]	50 +/- 1	
Relative propagation velocity	[%]	90	_
Capacitance	[pF/m (pF/ft)]	74.0 (22.5)	_
Inductance	[μH/m (μH/ft)]	0.185 (0.056)	
Max. operating frequency	[GHz]	2.75	
Jacket spark test RMS	[V]	10000	_
Peak power rating	[kW]	310	
RF Peak voltage rating	[V]	5600	
DC-resistance inner conductor	[O/km (O/1000ff)]	1.30 (0.396)	_

Recommended Temperature Range	_
DC-resistance outer conductor	Ī

Minimum bending radius, repeated bending

Storage temperature	[°C (°F)]	-70 to +85 (-94 to +185)
Installation temperature	[°C (°F)]	-25 to +60 (-13 to +140)
Operation temperature	[°C (°F)]	-50 to +85 (-58 to +185)

Other Characteristics

Fire Performance: Flame Retardant, LS0H

VSWR Performance: Standard fdB (VSWR)1 18 (1.288:1) Phase stabilized and phase matched cables and assemblies are available upon request

RFS The Clear Choice ® Rev: C / 16.DEC.2010 LCF158-50JFNL

ANEXO C – Mapa de Macrozoneamento de São Pedro de Alcântara.

ANEXO D – Gráficos do perfil de terreno das 12 Radias ao redor da emissora.

Radial 1

Radial 2

Radial 3

Radial 4

Radial 6

Radial 7

Radial 8

Radial 9

Radial 10

Radial 11

Radial 12

ANEXO E – Relatório Siganatel - Análise Técnica FM.

Análise Técnica - FM/TV

Serviço: FM Canal: 218 Pot. TX (KW): 0,15 Comp.Linha-L(m): 65

Longitude: 48W483371

Atenuação (dB/100m): 0,68

Cbt(m): 286

Analógico/Digital: Analógico

Curva: UIT-1546

Latitude: 27S340272

HCI(m): 60

G Max SI(dBd): 4,77

Demais Perdas(dB): 2

Município: São Pedro de Alcântara - SC

Eficiência: 0,570

Erp máx(KW): 0,256

Intervalo Radiais: 30

2001-200 2001-200 0%-100% 2001-200 >100% 0%-100% >100% >100% 23,602 8774 C2(km) 10,905 11,482 6.914 3,366 C10kmg 6749 4,829 2043 4784 4626 9009 1981 3,599 1981 C.Protikm 9,460 11,482 8.914 8,930 3,461 3,386 3,229 ERP60m/kW) 2.963 0,699 0,235 1,487 0,024 0,027 0,029 0,027 0,024 ERP Az AVII) 0.122 0,102 0.122 850'0 0,102 0,156 0,231 0,231 Campo Protegido (dBµV/m): 66,000 0.478 0.397 0.384 9,478 0.808 0.774 0,902 1,000 0,902 0.397 0.774 69'0 0,63 0,62 0,63 69'0 0,78 0.88 96'0 960 0.88 HEADY 245 8 152 8 8 8 8 8 8 8 M 163 2 163 243 8 148 408 498 165 4 4 5 Azimuto 8 8 8 8 8 8 210 540 270 300 330

