MSc Data Mining

Topic 02: Exploratory Data Analysis

Part 01: Exploratory Data Analysis

Dr Bernard Butler and Dr Kieran Murphy

Department of Computing and Mathematics, SETU Waterford. (bernard.butler@setu.ie; kmurphy@wit.ie)

Spring Semester, 2023

Outline

- EDA Process
- Datasets = Tips, Titanic and Algae Blooms
- Identifying and resolving issues (missing value, outliers)
- Generating ToDo list for Feature Engineering/Transformation/Selection

Data Mining (Week 2)

Exploratory Data Analysis — Summary

		•	
_			
1.	Introduction	n	
1	1 Example	Datasets	

4.1 Target

Introduction

Exploratory Data Analysis (EDA)

Aim

To understand and summarise a dataset with the aim that issues are discovered, relevant relations between features and the target and between features are identified, in order to inform the subsequent training of machine learning models.

Benefits

- Develop insight about the dataset and understanding of the underlying structure.
- Extract important parameters and relationships that hold between them.
- Test underlying assumptions.
- Identify issues that affect model performance outliers, missing values.

Data Mining Workflow

- Data pre-precessing (Data Cleaning + EDA + Feature Engineering) is the core of the data mining pipeline (typical estimates >50% of the time/effort).
- Decision made during earlier steps in the workflow impact on later steps.
 - Better data cleaning simplifies EDA.
 - EDA informs the feature extraction, engineering, transformation and selection.
 - Better features simplify model selection and training.
- Workflow is iterative based on issues found (or better understanding of the data) we often need to revisit earlier steps in the workflow.

The Bad News — 'The curse of choice'

What questions to ask?

Dataset global questions: How many features? How many observations? What is the data type of each feature? Any null values? ... Feature specific questions: What is the distribution of each variable? Do there appear to be outliers? What features are related? ... Missing value questions: Are null value a result of the way data was recorded? Can we drop the rows with null values without it significantly affecting your analysis? Can we justify filling in the missing values with the mean or median for that variable? If the data is time-series data, can we fill the missing values with interpolation? Are there so many missing values for a variable that we should drop that variable from the dataset? ... Outlier questions: Why are outliers present? Do the outliers represent real observations (i.e. not errors)? Should we exclude these observations? If not, should we winsorise the values? ... Correlations/Relationships questions: Which variables are most correlated with your target variable? (If applicable) Is there multicollinearity? (Two features that have a correlation > 0.8) How will this affect your model? Do you have variables that represent the same information? Can one be dropped? ...

What visualisations to build?

The Bad News — 'The curse of choice'

What questions to ask?

Dataset global questions: How many features? How many observations? What is the data type of each feature? Any null values? ... Feature specific questions: What is the distribution of each variable? Do there appear to be outliers? What features are related? ... Missing value questions: Are null value a result of the way data was recorded? Can we drop the rows with null values without it significantly affecting your analysis? Can we justify filling in the missing values with the mean or median for that variable? If the data is time-series data, can we fill the missing values with interpolation? Are there so many missing values for a variable that we should drop that variable from the dataset? ... Outlier questions: Why are outliers present? Do the outliers represent real observations (i.e. not errors)? Should we exclude these observations? If not, should we winsorise the values? ... Correlations/Relationships questions: Which variables are most correlated with your target variable? (If applicable) Is there multicollinearity? (Two features that have a correlation > 0.8) How will this affect your model? Do you have variables that represent the same information? Can one be dropped? ...

The Bad News — 'The curse of choice'

What questions to ask?

Dataset global questions: How many features? How many observations? What is the data type of each feature? Any null values? ... Feature specific questions: What is the distribution of each variable? Do there appear to be outliers? What features are related? ... Missing value questions: Are null value a result of the way data was recorded? Can we drop the rows with null values without it significantly affecting your analysis? Can we justify filling in the missing values with the mean or median for that variable? If the data is time-series data, can we fill the missing values with interpolation? Are there so many missing values for a variable that we should drop that variable from the dataset? ... Outlier questions: Why are outliers present? Do the outliers represent real observations (i.e. not errors)? Should we exclude these observations? If not, should we winsorise the values? ... Correlations/Relationships questions: Which variables are most correlated with year information? Can one be dropped? ...

Have a plan, be selective, understand strengths/weaknesses of metrics/visualisations

PassengerId	Pclass	Nam	e Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	Survived
1	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S	0
2	1	Cumings, Mrs. John Bradley (Florence Briggs Th.	. female	38.0	1	0	PC 17599	71.2833	C85	C	1
3	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S	1
4	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S	1
5	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S	0
6	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q	0
7	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S	0
8	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	S	0
9	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) female	27.0	0	2	347742	11.1333	NaN	S	1
10	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736	30.0708	NaN	C	1
11	3	Sandstrom, Miss. Marguerite Rut	female	4.0	1	1	PP 9549	16.7000	G6	S	1

- A labeled dataset consists of m rows \times (n+1) columns / variables.
- Use bold to represent vectors and matrices
- Use subscripts to indicate particular feature / attribute / column
- Use superscript in parenthesis to indicate particular observation / instance/ case / row
- So $x_i^{(i)}$ (or $x_{i,j}$) is the *i*-th observation in the *j*-th feature

- A labeled dataset consists of m rows \times (n+1) columns / variables.
- Use bold to represent vectors and matrices.
- Use subscripts to indicate particular feature / attribute / column
- Use superscript in parenthesis to indicate particular observation / instance/ case / row
- So $x_i^{(i)}$ (or $x_{i,j}$) is the *i*-th observation in the *j*-th feature

- A labeled dataset consists of m rows \times (n+1) columns / variables.
- Use bold to represent vectors and matrices.
- Use subscripts to indicate particular feature / attribute / column
- Use superscript in parenthesis to indicate particular observation / instance/ case / row
- So $x_i^{(i)}$ (or $x_{i,j}$) is the *i*-th observation in the *j*-th feature

- A labeled dataset consists of m rows \times (n + 1) columns / variables.
- Use bold to represent vectors and matrices.
- Use subscripts to indicate particular feature / attribute / column
- Use superscript in parenthesis to indicate particular observation / instance/ case / row
- So $x_i^{(i)}$ (or $x_{i,j}$) is the *i*-th observation in the *j*-th feature

- A labeled dataset consists of m rows \times (n+1) columns / variables.
- Use bold to represent vectors and matrices.
- Use subscripts to indicate particular feature / attribute / column

• Use superscript in parenthesis to indicate particular observation / instance/ case / row

• So $x_j^{(i)}$ (or $x_{i,j}$) is the *i*-th observation in the *j*-th feature

Example Datasets

We will use a few datasets today to illustrate the various features:

Tips

- Small dataset of total bills, and tips for different servers with gender, day, time and group size.
- Clean, no missing values, some outliers.
- Task: exploratory data analysis

Titanic

- Classic dataset with passenger information for the Titanic's fatal voyage, and whether they survived.
- Has missing values and information rich text fields (Name, ticket number).
- Task: classification predict whether a passenger survived.

> Algae Blooms

- Water quality study where samples were taken from different rivers over time.
- Recorded levels of (seven) chemical substances and population of (six) algae species and other information on the sample conditions.
- Task: regression predict algae population level (7 separate populations).

Tips dataset

total_bill	tip	sex	smoker	day	time	size
0 16.99	1.01	Female	No	Sun	Dinner	2
1 10.34	1.66	Male	No	Sun	Dinner	3
2 21.01	3.50	Male	No	Sun	Dinner	3
3 23.68	3.31	Male	No	Sun	Dinner	2
4 24.59	3.61	Female	No	Sun	Dinner	4
5 25.29	4.71	Male	No	Sun	Dinner	4
6 8.77	2.00	Male	No	Sun	Dinner	2
7 26.88	3.12	Male	No	Sun	Dinner	4
8 15.04	1.96	Male	No	Sun	Dinner	2
9 14.78	3.23	Male	No	Sun	Dinner	2

No target column, so mainly just an exploratory data analysis problem. But questions of interest:

- How do factors sex, smoker, day, time, or size affect tip / percentage tip?
- Does size vary with day, time, smoker?

But some questions don't make sense

 What is the relationship between sex and smoker? — why should they be related?

This is the downside of automatic EDA tools such as pandas-profiling — you will drown in statistics / charts.

Algae Blooms dataset

_	Season	Size	Speed	max_pH	min_O2	mean_C	mean_NO3	mean_NH4	mean_oPO4	mean_PO4	mean_Chlor	a1	a2	a3	a4	a5	a6	a7
0	winter	small	medium	8.00	9.8	60.800	6.238	578.00000	105.00000	170.00000	50.000	0.0	0.0	0.0	0.0	34.2	8.3	0.0
1	spring	small	medium	8.35	8.0	57.750	1.288	370.00000	428.75000	558.75000	1.300	1.4	7.6	4.8	1.9	6.7	0.0	2.1
2	autumn	small	medium	8.10	11.4	40.020	5.330	346.66699	125.66700	187.05701	15.600	3.3	53.6	1.9	0.0	0.0	0.0	9.7
3	spring	small	medium	8.07	4.8	77.364	2.302	98.18200	61.18200	138.70000	1.400	3.1	41.0	18.9	0.0	1.4	0.0	1.4
4	autumn	small	medium	8.06	9.0	55.350	10.416	233.70000	58.22200	97.58000	10.500	9.2	2.9	7.5	0.0	7.5	4.1	1.0
5	winter	small	high	8.25	13.1	65.750	9.248	430.00000	18.25000	56.66700	28.400	15.1	14.6	1.4	0.0	22.5	12.6	2.9
6	summer	small	high	8.15	10.3	73.250	1.535	110.00000	61.25000	111.75000	3.200	2.4	1.2	3.2	3.9	5.8	6.8	0.0
7	autumn	small	high	8.05	10.6	59.067	4.990	205.66701	44.66700	77.43400	6.900	18.2	1.6	0.0	0.0	5.5	8.7	0.0
8	winter	small	medium	8.70	3.4	21.950	0.886	102.75000	36.30000	71.00000	5.544	25.4	5.4	2.5	0.0	0.0	0.0	0.0
9	winter	sn	How w	ell can	we pred	ict the (7) different	algae pop	ulation leve	els using w	ater sample	info	rma	tion	?	0.0	0.0	1.7
10	spring	small	high	7.70	10.2	8.000	1.527	21.57100	12.75000	20.75000	0.800	16.6	0.0	0.0	0.0	1.2	0.0	6.0
11	summer	small	high	7.45	11.7	8.690	1.588	18.42900	10.66700	19.00000	0.600	32.1	0.0	0.0	0.0	0.0	0.0	1.5
12	winter	small	high	7.74	9.6	5.000	1.223	27.28600	12.00000	17.00000	41.000	43.5	0.0	2.1	0.0	1.2	0.0	2.1
13	summer	small	high	7.72	11.8	6.300	1.470	8.00000	16.00000	15.00000	0.500	31.1	1.0	3.4	0.0	1.9	0.0	4.1
14	winter	small	high	7.90	9.6	3.000	1.448	46.20000	13.00000	61.60000	0.300	52.2	5.0	7.8	0.0	4.0	0.0	0.0
15	autumn	small	high	7.55	11.5	4.700	1.320	14.75000	4.25000	98.25000	1.100	69.9	0.0	1.7	0.0	0.0	0.0	0.0
16	winter	small	high	7.78	12.0	7.000	1.420	34.33300	18.66700	50.00000	1.100	46.2	0.0	0.0	1.2	0.0	0.0	0.0
17	spring	small	high	7.61	9.8	7.000	1.443	31.33300	20.00000	57.83300	0.400	31.8	0.0	3.1	4.8	7.7	1.4	7.2
18	summer	small	high	7.35	10.4	7.000	1.718	49.00000	41.50000	61.50000	0.800	50.6	0.0	9.9	4.3	3.6	8.2	2.2
19	spring	small	medium	7.79	3.2	64.000	2.822	8777.59961	564.59998	771.59998	4.500	0.0	0.0	0.0	44.6	0.0	0.0	1.4

Titanic dataset

_	PassengerId	Survived	Pclass	1	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	_1	0	3	Braund, Mr. Owen Harris		male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs	Th	female	38.0	1	0	PC 17599	71.2833	C85	C
2	3	1	3	Heikkinen, Miss. Laina		female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)		female	35.0	1	0	113803	53.1000	C123	S
	5	0	3	Allen, Mr. William Henry		male	35.0	0	0	373450	8.0500	NaN	S
5	6	0	3	Moran, Mr. James		male	NaN	0	0	330877	8.4583	NaN	Q
	7	0	1	McCarthy, Mr. Timothy J		male	54.0	0	0	17463	51.8625	E46	S
7	8	0	3	Palsson, Master. Gosta Leonard		male	2.0	3	1	349909	21.0750	NaN	S
8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina	Berg)	female	27.0	0	2	347742	11.1333	NaN	S
9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)		female	14.0	1	0	237736	30.0708	NaN	C
1	11	1	3	Sandstrom, Miss. Marguerite Rut		female	4.0	1	1	PP 9549	16.7000	G6	S
1	12	1	,	uall and was all at a second of		ــــ	نمور	<u>م</u>	~~~	in a f damantum	2000	C103	S
1	2 13	0	10W V	vell can we predict a passenger's sur	vivai	using	inic	rmau	on at	ime of departure	3.7	NaN	S
1	14	0	3	Andersson, Mr. Anders Johan		male	39.0	1	5	347082	31.2750	NaN	S
1	15	0	3	Vestrom, Miss. Hulda Amanda Adolfina		female	14.0	0	0	350406	7.8542	NaN	S
1:	16	1	2	Hewlett, Mrs. (Mary D Kingcome)		female	55.0	0	0	248706	16.0000	NaN	S
1	5 17	0	3	Rice, Master. Eugene		male	2.0	4	1	382652	29.1250	NaN	Q
1	18	1	2	Williams, Mr. Charles Eugene		male	NaN	0	0	244373	13.0000	NaN	S
1	3 19	0	3	Vander Planke, Mrs. Julius (Emelia Maria Van	ıde	female	31.0	1	0	345763	18.0000	NaN	S
1	20	1	3	Masselmani, Mrs. Fatima		female	NaN	0	0	2649	7.2250	NaN	C
2	21	0	2	Fynney, Mr. Joseph J		male	35.0	0	0	239865	26.0000	NaN	S 12 of 6

Before we start ... Loading libraries

We start by loading in the core data science modules...

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

matplotlib is an excellent visualisation library but some plots needs additional configuration. seaborn sits above matplotlib and has a collection of visualisations optimised for statistical analysis. . . .

```
import seaborn as sns
```

Next, we import some statistical modules ...

import scipy.stats as stats
import statsmodels.api as sm
import pingouin as pg

scipy.stats has a large number of distributions, parametric and nonparametric statistical tests, and descriptive statistics.
statsmodels is more focused on estimating statistical models.
pingouin overlaps with bits of scipy.stats and statsmodels but generates more details and nicer visualisations.

Finally we set options ...

plt.style.use("seaborn-darkgrid")

Before we start ... auto EDA using pandas—profiling

Variables

Before we start ... auto EDA using pandas-profiling

Variables

Before we start ... zero-code EDA using dtale

Before we start ... zero-code EDA using dtale

First Pass — Load Dataset and Initial Clean

- Load dataset
- Check variables names
- Verify variable types
- Identify (and possibly address) missing values

Tips — Load

```
df = pd.read_csv("tips.csv")
print(df.shape)
df.head(10) (244, 7)
```

total_bill	tip	sex	smoker	day	time	siz
0 16.99	1.01	Female	No	Sun	Dinner	2
1 10.34	1.66	Male	No	Sun	Dinner	3
2 21.01	3.50	Male	No	Sun	Dinner	3
3 23.68	3.31	Male	No	Sun	Dinner	2
4 24.59	3.61	Female	No	Sun	Dinner	4
5 25.29	4.71	Male	No	Sun	Dinner	4
6 8.77	2.00	Male	No	Sun	Dinner	2
7 26.88	3.12	Male	No	Sun	Dinner	4
8 15.04	1.96	Male	No	Sun	Dinner	2
9 14.78	3.23	Male	No	Sun	Dinner	2

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 244 entries, 0 to 243
Data columns (total 7 columns):
    Column
               Non-Null Count Dtype
    total bill 244 non-null
                             float64
    tip
               244 non-null
                             float64
               244 non-null
                             object
    sex
    smoker
               244 non-null
                             object
    dav
               244 non-null
                             object
                             object
    time
               244 non-null
    size
               244 non-null
                             int64
dtypes: float64(2), int64(1), object(4)
memory usage: 13.5+ KB
```

Tips — Load

```
df = pd.read_csv("tips.csv")
print(df.shape)
df.head(10) (244, 7)
```

total_bill	tip	sex	smoker	day	time	size
0 16.99	1.01	Female	No	Sun	Dinner	2
1 10.34	1.66	Male	No	Sun	Dinner	3
2 21.01	3.50	Male	No	Sun	Dinner	3
3 23.68	3.31	Male	No	Sun	Dinner	2
4 24.59	3.61	Female	No	Sun	Dinner	4
5 25.29	4.71	Male	No	Sun	Dinner	4
6 8.77	2.00	Male	No	Sun	Dinner	2
7 26.88	3.12	Male	No	Sun	Dinner	4
8 15.04	1.96	Male	No	Sun	Dinner	2
9 14.78	3.23	Male	No	Sun	Dinner	2

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 244 entries, 0 to 243
Data columns (total 7 columns):
    Column
               Non-Null Count Dtype
    total bill 244 non-null float64
               244 non-null
    tip
                             float64
              244 non-null
                             object
    sex
    smoker
              244 non-null
                             object
    dav
               244 non-null
                             object
                             object
    time
               244 non-null
    size
               244 non-null
                             int64
dtypes: float64(2), int64(1), object(4)
memory usage: 13.5+ KB
```

Issue: categorical data treated as object (string).

Tips — Fix Data Types

```
df.sex.unique()
                                                      df.smoker.unique()
array(['Female', 'Male'], dtype=object)
                                                     array(['No', 'Yes'], dtype=object)
df.sex = pd.Categorical(df.sex)
                                                      df.smoker = pd.Categorical(df.smoker)
                                                      df.smoker.unique()
df.sex.unique()
['Female', 'Male']
                                                      'No'. 'Yes'
Categories (2, object): ['Female', 'Male']
                                                     Categories (2, object): ['No', 'Yes']
df.day.unique()
array(['Sun', 'Sat', 'Thur', 'Fri'], dtype=object)
df.day = pd.Categorical(df.day, categories=['Thur', 'Fri', 'Sun', 'Sat'], ordered=True)
df.dav.unique()
['Sun', 'Sat', 'Thur', 'Fri']
Categories (4, object): ['Thur' < 'Fri' < 'Sun' < 'Sat']</pre>
```

Tips — Fix Data Types

```
df.time = pd.Categorical(df.time, categories=['Lunch', 'Dinner'], ordered=True)
df.time.unique()
```

```
['Dinner', 'Lunch']
Categories (2, object): ['Lunch' < 'Dinner']</pre>
```

df.info()

Converting to category will:

- Simplify visualisation (order can be preserved).
- Reduce memory usage (not that big a deal for us).
- Speed up I/O (depending on file format).
- ⇒ Converting to category is a bigger deal for features where the levels have an order.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 244 entries. 0 to 243
Data columns (total 7 columns):
    Column
              Non-Null Count Dtvpe
    total hill 244 non-null float64
    tip
              244 non-null
                            float64
    sex
              244 non-null
                            category
    smoker
              244 non-null
                            category
    day
              244 non-null
                            category
              244 non-null
    time
                            category
    size
              244 non-null
                            int64
dtypes: category(4), float64(2), int64(1)
memory usage: 7.4 KB
```

Titanic — Load

- Dataset is split into two parts:
 - train, csy 891 rows with Survived column, used in EDA and model training.
 - test.csv 418 rows without the Survived column, used in competition scoring.

Algae_Blooms - Load

Pandas function pd.read_table, is a more general function than read_csv.

```
df = pd.read_table('src/Analysis.txt')
print(df.shape)
df.head()

(199, 1)
```

winter small medium 8.00000 9.80000 60.80000 6.23800 578.00000 105.00000 170.00000 50.00000 0.00000 0.00000 0.00000 0.00000 34.20000 8.30000 0.00000

- 0 spring small medium 8.35000 ...
- 1 autumn small medium 8.10000 1...
- 2 spring small medium 8.07000 ...
- 3 autumn small medium 8.06000 ...
- 4 winter small high 8.25000 13....

Two problems, first row was treated as column headers, and we need to specify the character(s) used to separate columns.

```
df = pd.read_table('src/Analysis.txt', sep='\s+', header=None)
print(df.shape)
df.head()

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 winter small medium 8.00000 9.80000 60.80000 6.23800 578.00000 105.00000 170.00000 50.00000 0.0 0.0 0.0 0.0 34.2 8.3 0.0

1 spring small medium 8.35000 8.00000 57.75000 1.28800 370.00000 428.75000 558.75000 1.30000 1.4 7.6 4.8 1.9 6.7 0.0 2.1

2 autumn small medium 8.07000 4.80000 77.36400 2.30200 98.18200 61.18200 138.70000 1.40000 3.1 41.0 18.9 0.0 1.4 0.0 1.4

4 autumn small medium 8.06000 9.00000 55.35000 10.41600 233.70000 58.22200 97.58000 10.500000 9.2 2.9 7.5 0.0 7.5 4.1 1.0
```

- Now, notice that the number of data rows changed from 199 to 200 since the first row is now treated as a data row (and not headers). Also, now we are using default columns names.
- The "\s+" matches one or more spaces. This is an example of a regex.
- We need to name the columns.

Algae_Blooms — Load (3rd attempt)

```
names = ('Season', 'Size', 'Speed', 'max_pH', 'min_02', 'mean_C1', 'mean_N03', 'mean_NH4', 'mean_oP04',
          'mean PO4', 'mean Chlor', 'a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7')
df = pd.read_table('src/Analysis.txt', sep='\s+', names=names)
print(df.shape)
                                                                                              (200.18)
df.head()
 Season Size Speed max pH min O2 mean Cl mean NO3 mean NH4 mean oPO4 mean PO4 mean Chlor a1 a2
0 winter small medium 8.00000 9.80000 60.80000 6.23800
                                                 578 00000 105 00000
                                                                     170,00000 50,00000
                                                                                       0000 00 00 3428300
                                                        <class 'pandas.core.frame.DataFrame'>
                                                 370.0000
1 spring small medium 8.35000 8.00000 57.75000 1.28800
                                                         RangeIndex: 200 entries, 0 to 199
2 autumn small medium 8.10000 11.40000 40.02000 5.33000
                                                 346.6669
```

Dataframe looks a bit better, but why are numeric columns converted as **object**? Reading instructions.txt we see that missing values are indicated by XXXXXXXX.

3 spring small medium 8.07000 4.80000 77.36400 2.30200

4 autumn small medium 8.06000 9.00000 55.35000 10.41600

Data columns (total 18 columns): 98.18200 Column Non-Null Count Dtype 233.7000 200 non-null object Season Size 200 non-null object object Speed 200 non-null 200 non-null object max pH min O2 200 non-null object 200 non-null object mean Cl mean_NO3 200 non-null object mean NH4 200 non-null object mean oPO4 200 non-null object 24 of 66

Algae_Blooms — Load (4th attempt)

```
names = ('Season','Size','Speed','max_pH','min_02','mean_Cl', 'mean_N03', 'mean_NH4', 'mean_oP04', 'mean_P04', 'mean_Chlor', 'a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7')

df = pd.read_table('src/Analysis.txt', sep='\s+', names=names, na_values='XXXXXXX')
print(df.shape)
df.head()

(200, 18)
```

Season Size S	peed max	_pH min_	O2 mean_	Cl mean_	NO3 mean_N	H4 mea	n_oPC	04 mean	_PO4	mean_	Chlor	a1	a2	a3	a4	a5	a6	a7
winter small med	dium 8.00	9.8	60.800	6.238	578.0000		000	170.0	0000	50.0		0.0				34.2	8.3	0.0
spring small med	dium 8.35	8.0	57.750	1.288	370.0000			andas							<u>'</u> >			1
autumn small me	dium 8.10	11.4	40.020	5.330	346.6669			ex: 20 umns (7
spring small med	dium 8.07	4.8	77.364	2.302	98.18200	#	Colu		•		1 Cou		-	me				4
autumn small me	dium 8.06	9.0	55.350	10.416	233.7000									-				0
						0	Seas	son			ı–nul		ob	,				

Now some variables have missing values

Also we should convert Season, Size and Speed to category and ensure the levels are ordered.

Size 200 non-null object object Speed 200 non-null float64 max_pH 199 non-null min O2 198 non-null float64 mean Cl 190 non-null float64 mean NO3 198 non-null float64 mean NH4 198 non-null float64 mean oPO4 198 non-null float64 25 of 66

Algae_Blooms — Fix Data Types

The three categorical variables have levels with a natural order \Rightarrow convert to category and specify order:

```
df.Season = pd.Categorical(df.Season, categories=['spring', 'summer', 'autumn', 'winter'], ordered=Tr
print(df.Season.unique())
['winter', 'spring', 'autumn', 'summer']
Categories (4. object): ['spring' < 'summer' < 'autumn' < 'winter']
```

df.Size = pd.Categorical(df.Size, categories=['small', 'medium', 'large'], ordered=True) print(df.Size.unique())

```
['small', 'medium', 'large']
Categories (3. object): ['small' < 'medium' < 'large']
```

df.Speed = pd.Categorical(df.Speed, categories=['low', 'medium', 'high'], ordered=True) print(df.Speed.unique())

```
['medium', 'high', 'low']
Categories (3. object): ['low' < 'medium' < 'high']
```

Algae_Blooms — Identification of Missing Values (NA)

Which columns have missing values?

df.isna().**sum**()

- Two columns (features) accoun for 22 NAs, but cannot just drop them as will lose a lot of information.
- account for 12 NAs \Rightarrow remove
- Removing other rows with a NA will result in a loss of 14 rows (7% of the data), instead will impute later.

Which rows have missing values? How many NAs per row?

df.isna().**sum**(axis=1).value_counts()

0 184 1 7 2 7 6 2 dtype: int64

df.loc[df.isna().sum(axis=1)==6]

df = df.loc[df.isna().sum(axis=1)<6].copy() print(df.shape) (198, 18

Which columns have missing values?

df.isna().sum()

Season Size Speed max_pH min_O2 mean Cl 10 mean NO3 mean NH4 mean oPO4 mean PO4 mean Chlor a 1 a2 a3 a4 a5 a6 а7

dtvpe: int64

Which rows have missing values? How many NAs per row?

Rows / Cols to drop?

Which columns have missing values?

df.isna().sum()

Season Size Speed max_pH min_O2 mean Cl 10 mean NO3 mean NH4 mean oPO4 mean PO4 mean Chlor a 1 a2 a3 a4 a5 a6 а7 dtvpe: int64

Which rows have missing values? How many NAs per row?

df.isna().sum(axis=1).value_counts()

184 0 dtvpe: int64

Rows / Cols to drop?

Which columns have missing values?

df.isna().sum()

Season Size Speed max_pH min_O2 mean Cl 10 mean NO3 mean NH4 mean oPO4 mean PO4 mean Chlor a 1 a2 a3 a4 a5 a6 а7 dtvpe: int64

- Two columns (features) account for 22 NAs, but cannot just drop them as will lose a lot of information
- Two rows (observations) account for 12 NAs \Rightarrow remove.
- Removing other rows with a NA will result in a loss of 14 rows (7% of the data), instead will impute later.

Which rows have missing values? How many NAs per row?

df.isna().sum(axis=1).value_counts()

184 0 dtvpe: int64

Rows / Cols to drop?

Which columns have missing values? df.isna().sum() • Two columns (features) account Season for 22 NAs, but cannot just Size drop them as will lose a lot of Speed information max_pH Two rows (observations) min_O2 account for 12 NAs \Rightarrow remove. mean Cl 10 Removing other rows with a mean NO3 NA will result in a loss of 14 mean NH4 rows (7% of the data), instead mean oPO4 will impute later. mean PO4

mean Chlor

dtvpe: int64

a 1 a2 a3 a4 a 5

a6

а7

Which rows have missing values? How many NAs per row?

df.isna().sum(axis=1).value_counts()

184 0 dtvpe: int64

Rows / Cols to drop?

df.loc[df.isna().sum(axis=1)==6]

Season	Size	Speed	тах_рн	min_	O2 mean_	Ci mean	_NO3 mean	_NH4 mean_	_oPO4 mean	_PO4 mean	_Cnior	aı	az	as	a.
61 summer	small	medium	6.4	NaN	NaN	NaN	NaN	NaN	14.0	NaN	1	19.4	0.0	0.0	2.0
198 winter	large	medium	8.0	7.6	NaN	NaN	NaN	NaN	NaN	NaN	(0.0	12.5	3.7	1.0
									_						

df = df.loc(df.isna().sum(axis=1)<6).copv()print(df.shape) (198, 18)

After Loading and Initial Clean — Where are we?

Tips

- ✓ Loaded data, corrected dtypes (categorical with order levels).
- ✓ Sanitised column names not needed, but note column name size shadows pandas dataframe function size ⇒ so we need to use df["size"] instead of df.size.
- ✓ No missing values.

> Titanic >

- ✓ Loaded data no conversion of dtypes needed (but if you don't plots/crosstab order won't agree)
- Sanitised column names not needed.
- Missing values in Age (177/891=20%), Cabin (687/891=77%), and Embarked (2/891=0.2%).
 - A feature with 77% missing values should be considered for deletion, but what if the presence of a missing value actually tells us something? ⇒ convert to a boolean feature.

Algae Blooms

- ✓ Loaded data, corrected dtypes (categorical with ordered levels).
- Sanitised column names.
- Missing values
 - Removed two rows with 6 NA each, accounted for 12/33=36% of the missing values.
 - Remaining, 21 NAs are concentrated in mean_CL (8) and mean_Chlor (10). EDA will suggest options.

After Loading and Initial Clean — Where are we?

Next we might

- Save result of initial clean:
 - To either a CSV (if we don't mind losing dtype metadata)

```
df.to_csv('data/Analysis.csv', index=False)
```

• To (say) pickle format (to keep dtype metadata)

```
df.to pickle('data/Analysis.pkl')
```

Later can read dataframe back in using

```
df = pd.read_pickle('data/Analysis.pkl')
print(df.shape)
df.head(1)
```

• If the dataset is large (>100K rows), save a (reproducible) sample of the dataset for later EDA to speed up calculations (especially visualisations).

```
df.sample(frac=.25, random_state=42).to_pickle('data/Analysis_sample.pkl')
```

A Selection of Statistical Visualisations and Metrics

Categorical Variable

The Ideal

- Each level equally likely.
- Not too many levels: 2–12(ish).

Tools

- nunique, unique, value_counts.
- sns.countplot shows the counts of observations in each categorical level using bars.

- If size was the target, then most models will train towards the majority class (size=2).
- If size was a feature, then quality of predictor could vary greatly depending on the feature categorical level.
- Consider merge/drop rare category levels.

Categorical Variable — Relationship with (Categorical) Target

sex	Female	Male	All
smoker			
No	62.07%	61.78%	61.89%
Yes	37.93%	38.22%	38.11%

No relationship between sex and smoker

Sex	female	male	All
Survived			
0	25.80%	81.11%	61.62%
1	74.20%	18.89%	38.38%

Strong relationship between Sex and Survived

Categorical Variable — Relationship with (Numerical) Target

sns.countplot(x="Size", data=df);

 Shows the counts of observations in each categorical level using bar (height/width).

Is it usable?

sns.catplot(x="Size", y="a4", data=df, kind='bar');

- Shows the average level (mean) and uncertainty (std) of the numerical target (a4) in each categorical level of the categorical variable.
- Vertical bar shows 95% confidence interval.

Is it useful?

Categorical Variable — Relationship with (Numerical) Target

The option kind in catplot can be:

- bar and point show essentially the same information, but point is more compact when comparing multiple categorical features to a continuous target on the same plot.
- strip shows individual observations useful (as in this case) to show that the larger uncertainty in Size="small" observations is mainly due to two outliers.

Example — Dataset: Algae Blooms, Feature: Season, Target: a1

df.groupby("Season")["a1"].agg(["mean","count","std"])

	mean	count	std
Season	\bar{x}	n	σ
spring	16.649057	53	23.093786
summer	16.038636	44	17.920798
autumn	17.745000	40	21.611203
winter	17.498361	61	22.568256

- Countplot shows no issues with feature Season all levels approximately equally represented.
 - Catplots show slightly less spread in a1 for Season="summer" observations. (strip shows smaller range, point shows smaller standard deviation).
- Mean levels of a1 for different levels of Season are well within the 95% confidence intervals $(\bar{x} \pm \sigma 1.96/\sqrt{n})$, so no/weak relationship between categorical feature and numerical target.

Example — Dataset: Algae Blooms, Feature: Size, Target: a1

df.groupby("Size")["a1"].agg(["min","max","mean","count","std"])

	min	max	mean	count	std
Size			\bar{x}	n	0
small	0.0	89.8	27.255714	70	24.895426
medium	0.0	86.6	11.267857	84	17.163124
large	0.0	56.8	11.611364	44	16.556123

- Countplot shows no issues with feature Size.
- Catplot (point) shows that levels of a1 are higher for Size="small" observations.
- ⇒ Confidence interval for Size="small" observations do not overlap with CI for other levels, so significant relationship between categorical feature and numerical target.

Numerical Variable

Things here are more complicated as a numerical variable could follow many different distributions. Here we look at data following the standard normal distribution. To start we generate 10,000 values and put in to new DataFrame, df2.

```
rv = stats.norm()
data = rv.rvs(size=10_000)
df2 = pd.DataFrame(data, columns=["x"])
df2.head(5)
```


Histplot (Histogram) and Boxplot

- Histogram is useful in depicting location, spread and shape.
- Curve, is estimate of shape given infinite data and infinite number of bins.
- Boxplots also depicts location, spread and shape, but uses median for estimate of centre, and quartiles for spread.
- Half the data is within the box, data points outside the whiskers (lines) are possible outliers, denoted by circles.

Cumulative Plot and QQ-Plot

sns.ecdfplot(data=df2, x="x");

 Represents the proportion of observations less than or equal to given value. import pingouin as pg
pg.qqplot(df2.x);

 Plot of observed quantiles against theoretical (assuming normal) quantiles. If both sets of quantiles came from the same distribution, we should see the points forming a line that's roughly straight.

Example — Dataset: Tips, Feature: total_bill

Name: total_bill, dtvpe: float

- Data is bell curve shaped, but right skewed (data is more spread out to the right).
- Outliners to the right.
- QQ-Plot indicate that data is not normal, but we could transform it to be more closer to normal.

Example — Dataset: Titanic, Feature: Fare

count	891.000000
mean	32.204208
std	49.693429
min	0.000000
25%	7.910400
50%	14.454200
75%	31.000000
max	512.329200
Name:	Fare, dtype: float64

• This variable is more skewed and dominated by its outliers which need to be resolved.

Warning — Plot Output Depends on Data Assumptions

sns.catplot(data=df, x="Fare", y="Survived");

```
df = pd.read csv("train.csv")
df = pd.read csv("train.csv")
                                                         df.Survived = df.Survived.astvpe(str)
sns.catplot(data=df, x="Fare", y="Survived");
                                                         sns.catplot(data=df, x="Fare", y="Survived");
  1.0
                                    seaborn tries to infer the correct
                                     graph based on the data
  8.0
                                     values/type, but it does not always
                                     get it correct.
Survived
                                                                          Survived
  0.6
                                     Survived stores 0 and 1 and has
                                     dtype int.
                                   • Converting to a Categorical
                                     with numeric levels is not enough.
  0.2
                                     astype(str) converts 0 and 1
                                     to "0" and "1" works
  0.0

    or append option orient='h'

                                                                                          200
                 Fare
                                                                                            Fare
df = pd.read_csv("train.csv")
df.Survived = pd.Categorical(df.Survived)
```

400

Second Pass — Individual Features and Target

- Categorical vs numerical target
- Categorical vs numerical features
- Identify (and possibly address) issues
- Relationship to target.

Is it usable?

Is it useful?

Dataset: Titanic, Target: Survived

df.Survived.value counts(normalize=True.dropna=False)

df.Survived.unique()

0.616162

0.383838

Name: Survived, dtype: float64

sns.countplot(x="Survived", data=df);

 $\lceil 0, 1 \rceil$ Categories (2, int64): [0, 1]

df.Survived.describe()

count 891 unique top 549 frea

Name: Survived, dtvpe: int64

- Simplest classification problem (two classes) with both classes nearly equal frequency.
- In a unbalanced classification problem where the minority class occurs about 20% or lower, models can focus too much on the majority class.

Dataset: Algae Blooms, Target: a1...., a7

```
targets = [c for c in df.columns if c[0]=="a"]
targets
             ['a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7']
```

```
plt.figure(figsize=(4,6))
sns.histplot(x="a6", data=df);
```

df[targets].describe()

	a1	a2	a3	a4	a5	a6	a7
count	198.000000	198.000000	198.000000	198.000000	198.000000	198.000000	198.000000
mean	16.996465	7.470707	4.334343	1.997475	5.115657	6.004545	2.487374
std	21.421713	11.065461	6.976788	4.439205	7.511846	11.711053	5.181536
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	1.525000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
50%	6.950000	3.000000	1.550000	0.000000	2.000000	0.000000	1.000000
75%	24.800000	11.275000	4.975000	2.400000	7.500000	6.975000	2.400000
max	89.800000	72.600000	42.800000	44.600000	44.400000	77.600000	31.600000

All distributions are heavily skewed to the right, many with outliers (see next slide). All of the zero measurements are probably due to population levels too low to be measured.

Dataset: Algae Blooms, Target: a1,..., a7

```
fig, axs = plt.subplots(1, 7, figsize=(24,6))
for k, c in enumerate(targets):
   sns.boxplot(data=df, y=c, color="lightblue", ax=axs[k])
   axs[k].set_xlabel(c)
```


The outliers are likely to be true measurements, but their presence can heavily influence the model training — common strategy is to fit two models (one with the case with target outliers and one without) to assess impact of outliers.

Individual Features

To keep this EDA overview more manageable we will focus on the Algae Blooms data set ...

	Season	Size	Speed	max_p	H min	_O2 mean	_Cl mean_	_NO3 mean_NH	4 mean_oPO4	mean_PO4	mean_Chlor	a1	a2	a3	a4	a5	a6	a7
0	winter	small	medium	8.00	9.8	60.80	0 6.238	578.00000	105.00000	170.00000	50.000	0.0	0.0	0.0	0.0	34.2	8.3	0.0
1	spring	small	medium	8.35	8.0	57.75	0 1.288	370.00000	428.75000	558.75000	1.300	1.4	7.6	4.8	1.9	6.7	0.0	2.1
2	autumn	small	medium	8.10	11.4	40.02	5.330	346.66699	125.66700	187.05701	15.600	3.3	53.6	1.9	0.0	0.0	0.0	9.7
3	spring	small	medium	8.07	4.8	77.36	4 2.302	98.18200	61.18200	138.70000	1.400	3.1	41.0	18.9	0.0	1.4	0.0	1.4

Sneak perview

- Three categorical variables Season, Size, and Speed.
 - No missing values
 - No high cardinality, and reasonable balanced.
- Eight numerical variables max_pH, ..., mean_Chlor
- Missing values present
- Some variables heavily skewed might need to transform.
- Possibility of features being interrelated multicollinearity try principal component analysis.

Dataset: Algae Blooms, Feature: Season, Target: a1

df.groupby("Season")["a1"].agg(["min","max","mean","count","std"])

	min	max	mean	count	std
Season			\bar{x}	n	σ
spring	0.0	89.8	16.649057	53	23.093786
summer	0.0	64.2	16.038636	44	17.920798
autumn	0.0	86.6	17.745000	40	21.611203
winter	0.0	81.9	17.498361	61	22.568256

- Countplot shows no issues with feature Season all levels approximately equally represented.
- Catplots show slightly less spread in a1 for Season="summer" observations.
- No/weak relationship between Season feature and a1 target.

Dataset: Algae Blooms, Feature: Size, Target: a1

df.groupby("Size")["a1"].agg(["min","max","mean","count","std"])

	min	max	mean	count	std
Size			\bar{x}	n	σ
small	0.0	89.8	27.255714	70	24.895426
medium	0.0	86.6	11.267857	84	17.163124
large	0.0	56.8	11.611364	44	16.556123

- Countplot shows no issues with feature Size.
- Size="small" rivers have higher frequencies of a1 alga ((point) catplot), and observed frequencies for small rivers is much more widespread across the domain of frequencies than for other types of rivers (boxplot).

Dataset: Algae Blooms, Feature: Speed, Target: a1

df.groupby("Speed")["a1"].agg(["min","max","mean","count","std"])

	min	max	mean	count	std
Speed			\bar{x}	n	σ
low	0.0	58.7	9.209091	33	13.164758
medium	0.0	89.8	12.548148	81	21.146986
high	0.0	81.9	24.345238	84	22.209123

- Countplot shows no issues with feature Speed.
- Speed="high" rivers have larger average population of a1 alga ((point) catplot), and observed population level are more widespread than for other types of rivers (boxplot).

Categorical Variables — Dealing with Missing Values

In terms of our three datasets, only Titanic has missing values in categorical features:

- Location of cabin's missing values are important (1st class passengers were most likely to have a cabin) so add new category level "Unknown".
- Replace Embarked's 2 missing values with mode ("S", 644/891=72%). Note: Use df.Embarked.value_counts(dropna=False) to include missing values in count tables.

Numerical Variables — Dealing with Missing Values

In terms of our three datasets:

- In Titanic, feature Fare appears to have no missing values, but has 15 zero entries. Are these missing values? or free tickets due to age? ...
- In Algae Blooms, some of the 8 numeric features have NAs ... next few slides.

Dataset: Algae Blooms, Feature: max_ph

- Data is relatively normal minor issue with (left) outliers.
- ⇒ Will replace (single) NA by mean
 - df.max_pH.fillna(df.max_pH.mean(), inplace=True)

Dataset: Algae Blooms, Feature: max_ph, Target: a1

Is there a relationship between feature max_pH and target a1?

(Pearson's) Correlation coefficient, r, measures the strength of a **linear** relationship between two numerical variables.

- near zero means no/weak linear relationship.
- near ± 1 zero means strong linear relationship.
- sign indicates direction.

- Correlation coefficient, r = -0.27, shows (at most) a weak negative linear relationship.
- No obvious relationship visible in scatter plot.

Dataset: Algae Blooms, Feature: mean_Chlor

- Data is not normal, heavily skewed to the right ⇒ mean is a poor representative of the central location.
- ⇒ Will replace (single) NA by median
- df.mean_Chlor.fillna(df.mean_Chlor.median(), inplace=True)

Tips

- Reviewed each feature location, spread, shape, issues.
- No missing values
- total_bill, and total_tip have possible outliers.

Titanic >

- Reviewed each feature location, spread, shape, issues.
- Generated ToDo list for for cleaning, feature extraction
 - Identified features that appear to be related to the target.
 - Feature age has missing values.
 - Feature Fare
 - has 15 measurements with value 0 decide missing value or not.
 - distribution has large outliers and is skewed remove/fix outliers and transform.
 - Feature Name has could be used to obtain new feature Title.
 - ...

Algae Blooms

- Reviewed each feature location, spread, shape, issues.
- Imputed missing values using feature distributions (mean/median).
- Identified features that appear to be related to the target.

Aside: Steps needed to create new feature Title from feature Name

	= pd.read_ .head()	csv('ass	ets/tr	ain.csv')									
	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	- 1 I	NaN	_	~~~~
1	2	1	1	Curnings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599				t) feature rep- e passenger's
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7 004	name	_	e passenger s
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	s	
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	s	

Aside: Steps needed to create new feature Title from feature Name

	= pd.read_ .head()	_csv('ass	sets/tr	ain.csv')									
	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2	NaN	s	~~~
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599				t) feature re e passenger
	Title	Count		Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7 004	name	_	e passenger
Cap Col			1	Futrelle, Mrs. Jacques Heath (Lily May	female	35.0	1	0	113803	53.1000	C123	s	
Dor				Peel) Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	s	
Dor				Alett, Mr. William Flerry	maie	35.0	U	0	373400	0.0000	IValv	9	
Dr			8										
Jon	kheer		1										
Lad	у		1										
Ma	jor		2										
Ma	ster	6	1										
Mis	is	26	0										
ΜII	e		2										
Mn	ne		1										
Mr		75	7										
Mrs	5	19	7										
Ms			2										
Rev	/		8										
Sir			1										
the	Countess		1										

Aside: Steps needed to create new feature Title from feature Name

Aside: Steps needed to create new feature Title from feature Name

Third Pass — Relationships Between Features (and Target)

Correlations

Correlations — Relationship Between two Variables

Pearson's correlation coefficient, r

is a measure of linear correlation between two variables. Its value lies between -1 and +1, -1 indicating total negative linear correlation, 0 indicating no linear correlation and 1 indicating total positive linear correlation.

Spearman's rank correlation coefficient, ρ

is a measure of monotonic correlation between two variables, and is therefore better in catching nonlinear monotonic correlations than Pearson's r. Its value also lies between -1 and +1, with values near zero indicating no monotonic relation.

Kendall rank correlation coefficient, τ

measures ordinal association between two variables. Its value lies between -1 and +1 with values near zero indicating no relation.

\rightarrow Phi-k. ϕk

is a new and practical correlation coefficient that works consistently between categorical, ordinal and interval variables, captures non-linear dependency and reverts to the Pearson correlation coefficient in case of a bivariate normal input distribution. Its value also lies between 0 and +1, with values near zero indicating no relation.

Pearson's Correlation Coefficient — Dataset: Algae Blooms

columns = df.columns[:12] corr = df[columns].corr()

cmap = sns.diverging_palette(230, 20, as_cmap=True)
sns.heatmap(corr, square=True, vmin=-1, vmax=1, cmap=cmap);

	max_pH	min_O2	mean_Cl	mean_NO3	mean_NH4	mean_oPO4	mean_PO4	mean_Chlor	a1
max_pH	1.000000	-0.167981	0.136369	-0.130762	-0.093521	0.158769	0.179885	0.445864	-0.268539
min_O2	-0.167981	1.000000	-0.278333	0.099444	-0.087478	-0.416163	-0.487486	-0.153265	0.285564
mean_Cl	0.136369	-0.278333	1.000000	0.225041	0.071913	0.391054	0.457449	0.149856	-0.371171
mean_NO3	-0.130762	0.099444	0.225041	1.000000	0.721444	0.144588	0.168601	0.139679	-0.241211
mean_NH4	-0.093521	-0.087478	0.071913	0.721444	1.000000	0.227237	0.208180	0.088947	-0.132656
mean_oPO4	0.158769	-0.416163	0.391054	0.144588	0.227237	1.000000	0.914365	0.115621	-0.417358
mean_PO4	0.179885	-0.487486	0.457449	0.168601	0.208180	0.914365	1.000000	0.253621	-0.487023
mean_Chlor	0.445864	-0.153265	0.149856	0.139679	0.088947	0.115621	0.253621	1.000000	-0.277987
a1	-0.268539	0.285564	-0.371171	-0.241211	-0.132656	-0.417358	-0.487023	-0.277987	1.000000

- Categorical variables are not included.
- Suggests best predictors for a1 are mean_P04, mean_oP04, and meanC1.
- mean_P04 and mean_oP04 are highly correlated (0.91) could use values of one to estimate missing values of the other.

Spearman's Rank Correlation Coefficient — Dataset: Algae Blooms

columns = df.columns[:12]
coor = df[columns].corr(method='spearman')
coor

cmap = sns.diverging_palette(230, 20, as_cmap=Tr sns.heatmap(corr, square=True, vmin=-1, vmax=1,

	max_pH	min_O2	mean_Cl	mean_NO3	mean_NH4	mean_oPO4	mean_PO4	mean_Chlor	a1
max_pH	1.000000	-0.148676	0.159079	-0.145182	0.026160	0.290245	0.214569	0.394813	-0.247787
min_O2	-0.148676	1.000000	-0.405142	0.057610	-0.348226	-0.457805	-0.519786	-0.217714	0.283418
mean_Cl	0.159079	-0.405142	1.000000	0.530374	0.592052	0.670399	0.713479	0.564915	-0.546845
mean_NO3	-0.145182	0.057610	0.530374	1.000000	0.425010	0.432303	0.451272	0.346805	-0.382403
mean_NH4	0.026160	-0.348226	0.592052	0.425010	1.000000	0.603157	0.646690	0.406656	-0.449194
mean_oPO4	0.290245	-0.457805	0.670399	0.432303	0.603157	1.000000	0.914921	0.510930	-0.671019
mean_PO4	0.214569	-0.519786	0.713479	0.451272	0.646690	0.914921	1.000000	0.554167	-0.656670
mean_Chlor	0.394813	-0.217714	0.564915	0.346805	0.406656	0.510930	0.554167	1.000000	-0.537823
a1	-0.247787	0.283418	-0.546845	-0.382403	-0.449194	-0.671019	-0.656670	-0.537823	1.000000

• Now best predictors for all also include mean Chlor and mean NH4.

Phik Correlation Coefficient — Dataset: Algae Blooms

import phik
columns = df.columns[:12]
corr = df[columns].phik_matrix()
corr

cmap = sns.diverging_palette(230, 20, as_cmap=Ti sns.heatmap(corr, square=True, vmin=-1, vmax=1,

	Season	Size	Speed	max_pH	min_O2	mean_Cl	mean_NO3	mean_NH4	mean_oPO4	mean_PO4	mean_Chlor	a1
Season	1.000000	0.000000	0.000000	0.000000	0.343496	0.000000	0.000000	0.034202	0.000000	0.093199	0.045361	0.000000
Size	0.000000	1.000000	0.620101	0.655207	0.270013	0.268198	0.182410	0.000000	0.000000	0.531635	0.173516	0.353390
Speed	0.000000	0.620101	1.000000	0.445096	0.437356	0.339237	0.000000	0.101348	0.483298	0.594480	0.479735	0.369374
max_pH	0.000000	0.655207	0.445096	1.000000	0.125231	0.000000	0.000000	0.000000	0.000000	0.175105	0.528134	0.372031
min_O2	0.343496	0.270013	0.437356	0.125231	1.000000	0.353196	0.000000	0.416999	0.492457	0.535996	0.296376	0.000000
mean_Cl	0.000000	0.268198	0.339237	0.000000	0.353196	1.000000	0.243887	0.073692	0.443047	0.472824	0.225583	0.000000
mean_NO3	0.000000	0.182410	0.000000	0.000000	0.000000	0.243887	1.000000	0.642789	0.158463	0.259915	0.368142	0.000000
mean_NH4	0.034202	0.000000	0.101348	0.000000	0.416999	0.073692	0.642789	1.000000	0.734681	0.776197	0.167533	0.000000
mean_oPO4	0.000000	0.000000	0.483298	0.000000	0.492457	0.443047	0.158463	0.734681	1.000000	0.954601	0.000000	0.000000
mean_PO4	0.093199	0.531635	0.594480	0.175105	0.535996	0.472824	0.259915	0.776197	0.954601	1.000000	0.192920	0.221308
mean_Chlor	0.045361	0.173516	0.479735	0.528134	0.296376	0.225583	0.368142	0.167533	0.000000	0.192920	1.000000	0.000000
a1	0.000000	0.353390	0.369374	0.372031	0.000000	0.000000	0.000000	0.000000	0.000000	0.221308	0.000000	1.000000

• Now include categorical variables — Season is not related, but Size and Speed are.

Multi-Relation Plots

```
sns.boxplot(x="a1", data=df);
```

.

Multi-Relation Plots

Multi-Relation Plots

After Third Pass — Where are we?

- Reviewed each feature location, spread, shape, issues.
- Identified any correlation among features and with target.
- Located and resolved missing values.
- Generated list of possible feature engineering tasks.

Resources

Guides

• 1 hour, Youtube on generating seaborn plots — excellent (but has wrong on interpretation of box plot)

www.youtube.com/watch?v=6GUZXDef2U0&t=1363s

Articles on Exploratory Data Analysis

• Exploratory Data Analysis (EDA) and Data Visualization with Python

www.kite.com/blog/python/data-analysis-visualization-python/

• Titanic Survival Dataset Part 1/2: Exploratory Data Analysis (9 min read)

www.kaggle.com/mcromao/titanic-exploratory-data-analysis

• Titanic - Exploratory Data Analysis

becominghuman.ai/

titanic-survival-dataset-part-1-2-exploratory-data-analysis-5b98f7917913

• When Should You Delete Outliers from a Data Set?

humansofdata.atlan.com/2018/03/when-delete-outliers-dataset