In the Claims

1. (currently amended) A compound of the formula

in which

 R_1 represents hydrogen, substituted or unsubstituted C_1 - C_8 alkyl, substituted or unsubstituted C_1 - C_8 alkoxy or SO_3H ,

R₂ represents SO₃H or CO₂H,

R₃ and R_{3a} each, independently of the other, represent hydrogen, a C₁-C₄alkyl group, which may be substituted or unsubstituted, halogen, hydroxy, substituted or unsubstituted C₁-C₄alkoxy, carboxy, NH₂ or NHC₁-C₄alkyl and each of the residues

A₁ and A₂, independently of the other, is derived from a coupling component selected from the group consisting of

an acetoacetylated amine of the formula

$$X_1$$
 X_2 X_2 (2),

in which

 X_1 represents C_1 - C_4 alkyl, or phenyl which is unsubstituted or monosubstituted by C_1 - C_4 alkyl, C_1 - C_4 alkoxy or halogen and

X₂ represents phenyl which is unsubstituted, mono-, di- or trisubstituted by one or two SO₃H, SO₂NHC₁-C₄ alkyl groups which alkyl groups may be substituted, SO₂C₁-C₄alkyl, C₁-C₄substituted or unsubstituted alkyl, hydroxy, C₁-C₄alkoxy, halogen, CF₃, NH₂, NHCOC₁-C₄alkyl, NHCOOC₁-C₄alkyl, NHCOOC₁-C₄alkyl, NHCONHC₁-C₄alkyl, CO₂H, CONHC₁-C₄alkyl or NO₂;

10/517.410 - 2 - PD/3-22691/A/PCT

a 1- or 2-naphthyl residue which is unsubstituted or substituted by one or two SO_3H , $SO_2NHC_1-C_4$ alkyl, carboxy, $CONHC_1-C_4$ alkyl, carboxy C_1-C_4 alkyl or carboxyaryl groups or a 5- or 6-membered heterocyclic ring containing 1-3 heteroatoms and which may be benzannelated and be further substituted by C_1-C_4 alkyl, C_1-C_4 alkoxy or halogen and which may be attached to the NH-atom in formula (2) either via the hetero- or benzo-nucleus, in the case of benzannelated heterocycles;

a derivative of barbituric acid of the formula

in which

Y represents O, NCN or NCONH₂;

a 2,4,6-triaminopyrimidine derivative;

a pyridone derivative of the formula

$$Q_1$$
 Q_2
 Q_4
 Q_3
 Q_3
 Q_3

in which

- Q₁ represents hydrogen, hydroxy, C₁-C₂alkyl, hydroxyethyl, 2-(C₁-C₂alkoxy)alkyl, C₁-C₂alkoxy, COOH, CONH₂ or COOC₁-C₂alkyl,
- Q2 represents hydrogen, CN, CONH2, halogen, SO3H or C1-C2alkyl which is unsubstituted or substituted by hydroxy, phenyl or SO3H,
- Q₃ represents hydrogen, phenyl, C₁-C₂alkylphenyl, cyclohexyl or C₁-C₄alkyl which is unsubstituted or substituted by hydroxy, CN, C₁-C₂alkoxy or SO₃H and

10/517,410 - 3 - PD/3-22691/A/PCT

Q₄ represents hydrogen or hydroxy;

an aminopyrazole or a pyrazolone derivative of formula

in which

R₄ represents hydrogen, substituted or unsubstituted C₁-C₄alkyl, C₂-C₄alkenyl, NHCOC₁-C₄alkyl or CO₂H, each

 R_5 and R_6 , independently of the other, represent hydrogen, halogen, C_1 - C_4 alkyl, SO_3H or CO_2H and R_7 represents hydrogen or C_1 - C_4 alkyl;

<u>and</u>

a benzoic acid derivative of formula

$$R_8$$
 OH R_8 OH R_7 OH R_8 OH R_8 OH R_8 OH R_7

in which

R₇ represents hydrogen or C₁-C₄alkyl and

R₈ represents hydrogen or hydroxy,

or

A₁ and A₂, each one independently of the other, represent a phenol residue of the formula

$$R_{10}$$
 OH (11) or R_{10} OH (12),

R₉ and R₁₀, each one independently of the other, represent hydrogen, C₁-C₄alkyl, C₁-C₄alkoxy, hydroxy, halogen, NH₂, NHCOC₁-C₄alkyl, NO₂, SO₃H, CO₂C₁-C₄alkyl or CONHC₁-C₄alkyl groups,

with the proviso that in compounds of formula

if

 R_1 , R_2 , R_3 and R_{3a} each, independently of the others, are hydrogen or SO_3H , then A_1 and A_2 are not both a 1-phenyl or 1-sulphophenyl-3-methyl-5-aminopyrazole residue, or, if

R₁, R₂, R₃ and R_{3a} represent hydrogen and

A₁ is a residue of formula (9) in which

R₇ represents hydrogen or methyl, then

A₂ does not represent a 1-phenyl or 1-sulphophenyl-3-methyl- or 3-carboxy pyrazol-5-one residue or, if

R₁, R₃ and R_{3a} are hydrogen and R₂ is SO₃H and one of

A₁ and A₂ represents a 1-sulphophenyl-3-methyl pyrazol-5-one residue, then the other is not a residue of formula (11) in which both

R₉ and R₁₀ are hydrogen, or if

A₁ represents a 1-nitrophenyl-, a 1-phenyl- or an unsubstituted 3-methyl pyrazol-5-one residue,

A₂ is not a residue of formula (9) in which R₇ represents hydrogen, or if

R₁, R₃ and R_{3a} represent hydrogen, R₂ is CO₂H and

 A_1 represents a residue of formula (9), in which R_7 is hydrogen, A_2 is not a residue of formula (2) or formula (7);

in compounds of the formula

if

 R_2 represents CO_2H , R_3 represents hydroxy or methoxy and R_{3a} represents hydrogen, A_1 and A_2 do not represent residues of formulae (2) or (7) and,

in compounds of the formula

if

 R_2 represents SO₃H and R_3 and R_{3a} both represent hydrogen, A₁ and A₂ are not both 2,4-dihydroxyphenyl.

2. (original) A compound of formula (1), according to claim 1, which contains a total number of two, three or four SO₃H and/or CO₂H groups.

PD/3-22691/A/PCT

3. (currently amended) A compound of the formula

$$A_{1} = N_{1} + N_{2} + N_{3a} + N_{3$$

according to claim 1, in which

R₁ represents hydrogen, C₁-C₄alkyl, C₁-C₄alkoxy or SO₃H,

R₂ represents SO₃H or CO₂H,

R₃ represents hydrogen, a C₁-C₄alkyl group, halogen, hydroxy, C₁-C₄alkoxy, carboxy, NH₂ or NHC₁-C₄alkyl[[,]] and

R_{3a} represents hydrogen or NH₂ and

A₁-and A₂ are as defined in claim 1.

4. (currently amended) A compound of formula (13), according to claim 3, in which

R₃ and R_{3a} both represent hydrogen and

A₁ and A₂, each one independently of the other, is derived from a coupling component selected from the group consisting of

an acetoacetylated amine of the formula

$$X_1 \longrightarrow X_2 \qquad (2)$$

in which

X₁ represents C₁-C₄alkyl, and

X₂ represents phenyl, which is unsubstituted, mono-, di- or trisubstituted by SO₃H, C₁-C₄alkyl, hydroxy, C₁-C₄alkoxy, halogen or CO₂H;

barbituric acid or cyanoiminobarbituric acid;

2,4,6-triaminopyrimidine;

citrazinic acid;

a pyridone derivative of the formula

$$Q_1$$
 Q_2
 Q_3
 Q_3
 Q_3

in which

Q₁ represents C₁-C₂alkyl,

Q2 represents CN, CONH2 or CH2SO3H,

Q₃ represents C₁-C₂alkyl and

Q₄ represents hydroxy;

an aminopyrazole or a pyrazolone derivative of formula

in which

R₄ represents C₁-C₄alkyl or CO₂H,

R₅ represents hydrogen, halogen, C₁-C₄alkyl, SO₃H or CO₂H and

R₆ represents hydrogen;

and

a benzoic acid derivative of formula

$$R_{7}$$
 OH R_{8} R_{8} R_{8} R_{8} R_{7} OH (9) or OH (10) ,

in which

R₇ represents hydrogen or C₁-C₄alkyl and

R₈ represents hydrogen or hydroxy,

or

 A_1 and A_2 , each one independently of the other, represent a phenol residue of the formula

$$R_{10}$$
 OH (11) or R_{10} OH (12),

in which

 R_9 represents hydrogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, hydroxy, halogen or SO_3H and R_{10} represents hydrogen.

5. (currently amended) A compound of formula

10/517,410 - 9 - PD/3-22691/A/PCT

according to claim 1, in which

R₁ represents hydrogen, C₁-C₄alkyl, C₁-C₄alkoxy or SO₃H,

R₂ represents SO₃H or CO₂H,

 R_3 represents hydrogen, a C_1 - C_4 alkyl group, halogen, hydroxy, C_1 - C_4 alkoxy, carboxy, NH_2 or NHC_1 - C_4 alkyl[[,]] and

R_{3a} represents hydrogen or NH₂ and

A₄-and A₂-are as defined in claim 1.

6. (currently amended) A compound of formula (14), according to claim 5, in which

R₃ and R_{3a} both represent hydrogen and

A₁ and A₂, each one independently of the other, is derived from a coupling component selected from the group consisting of

an acetoacetylated amine of the formula

$$X_1 \xrightarrow{O} \xrightarrow{O} X_2 \qquad (2)$$

in which

X₁ represents C₁-C₄alkyl, and

X₂ represents phenyl, which is unsubstituted, mono-, di- or trisubstituted by SO₃H,

 C_1 - C_4 alkyl, hydroxy, C_1 - C_4 alkoxy, halogen or CO_2H ;

barbituric acid or cyanoiminobarbituric acid;

2,4,6-triaminopyrimidine;

citrazinic acid;

an aminopyrazole or a pyrazolone derivative of formula

in which

R₄ represents C₁-C₄alkyl or CO₂H,

R₅ represents hydrogen, halogen, C₁-C₄alkyl, SO₃H or CO₂H and

R₆ represents hydrogen;

<u>and</u>

a benzoic acid derivative of formula

in which

R₇ represents hydrogen or C₁-C₄alkyl and

R₈ represents hydrogen or hydroxy.

or

A₁ and A₂, each one independently of the other, represent a phenol residue of the formula

10/517,410 - 11 - PD/3-22691/A/PCT

$$R_{10}$$
 OH (11) or R_{10} OH (12),

 R_9 represents hydrogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, hydroxy, halogen or SO_3H and R_{10} represents hydrogen.

7. (currently amended) A compound of formula

$$A_{1}-N$$

$$R_{3a}$$

$$N$$

$$R_{1}$$

$$N=N$$

$$A_{2}$$

$$A_{2}$$

$$A_{1}-N$$

$$R_{3a}$$

$$R$$

according to claim 1, in which

R₁ represents hydrogen, C₁-C₄alkyl, C₁-C₄alkoxy or SO₃H,

R₂ represents SO₃H or CO₂H,

R₃ represents hydrogen, a C₁-C₄alkyl group, halogen, hydroxy, C₁-C₄alkoxy, carboxy, NH₂ or NHC₁-C₄alkyl[[,]] and

R_{3a} represents hydrogen or NH₂ and-

A₄ and A₂ are as defined in claim 1.

8. (currently amended) A compound of formula (15), according to claim 7, in which

R₃ and R_{3a} both represent hydrogen and

A₁ and A₂, each one independently of the other, is derived from a coupling component selected from the group consisting of

an acetoacetylated amine of the formula

10/517,410 - 12 - PD/3-22691/A/PCT

$$X_1$$
 X_2 X_2 (2) ,

X₁ represents C₁-C₄alkyl, and

X₂ represents phenyl, which is unsubstituted, mono-, di- or trisubstituted by SO₃H, C₁-C₄alkyl, hydroxy, C₁-C₄alkoxy, halogen or CO₂H;

barbituric acid or cyanoiminobarbituric acid;

2,4,6-triaminopyrimidine;

citrazinic acid;

an aminopyrazole or a pyrazolone derivative of formula

in which

R₄ represents C₁-C₄alkyl or CO₂H,

R₅ represents hydrogen, halogen, C₁-C₄alkyl, SO₃H or CO₂H and

R₆ represents hydrogen;

and

a benzoic acid derivative of formula

R₇ represents hydrogen or C₁-C₄alkyl and

R₈ represents hydrogen or hydroxy,

or

A₁ and A₂, each one independently of the other, represent a phenol residue of the formula

$$R_{10}$$
 OH (11) or R_{10} OH (12),

in which

 R_9 represents hydrogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, hydroxy, halogen or SO_3H and R_{10} represents hydrogen.

9. (currently amended) A compound of formula

according to claim 1, in which

10/517,410 - 14 - PD/3-22691/A/PCT

R₁ represents hydrogen, C₁-C₄alkyl, C₁-C₄alkoxy or SO₃H,

R₂ represents SO₃H or CO₂H,

R₃ represents hydrogen, a C₁-C₄alkyl group, halogen, hydroxy, C₁-C₄alkoxy, carboxy, NH₂ or NHC₁-C₄alkyl[[,]] and

R_{3a} represents hydrogen or NH₂-and-

A₄ and A₂ are as defined in claim 1.

10. (currently amended) A compound of formula (16), according to claim 9, in which

R₃ and R_{3a} both represent hydrogen and

A₁ and A₂, each one independently of the other, is derived from a coupling component selected from the group consisting of

an acetoacetylated amine of the formula

$$X_1$$
 X_2 X_2 (2),

in which

X₁ represents C₁-C₄alkyl, and

X₂ represents phenyl, which is unsubstituted, mono-, di- or trisubstituted by SO₃H, C₁-C₄alkyl, hydroxy, C₁-C₄alkoxy, halogen or CO₂H;

barbituric acid or cyanoiminobarbituric acid;

2,4,6-triaminopyrimidine;

citrazinic acid;

an aminopyrazole or a pyrazolone derivative of formula

10/517,410 - 15 - PD/3-22691/A/PCT

R₄ represents C₁-C₄alkyl or CO₂H,

R₅ represents hydrogen, halogen, C₁-C₄alkyl, SO₃H or CO₂H and

R₆ represents hydrogen;

and and

a benzoic acid derivative of formula

$$O$$
OH O OH

in which

R₇ represents hydrogen or C₁-C₄alkyl and

R₈ represents hydrogen or hydroxy.

or

A₁ and A₂, each one independently of the other, represent a phenol residue of the formula

$$R_{10}$$
 OH (11) or R_{10} OH (12),

in which

 R_9 represents hydrogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, hydroxy, halogen or SO_3H and R_{10} represents hydrogen.

11. (currently amended) A process for the preparation of a compound of formula (1), according to claim 1,

by tetrazotisation of a diaminobenzanilide derivative of the formula

$$H_2N$$
 R_{3a}
 N
 R_{3a}
 N
 N
 R_2
 N
 N
 N
 N
 R_1

in which R_4 , R_2 , R_3 and R_{3a} are as defined in claim 1[[,]] and sequential coupling with a coupling component of the formula A_1H or A_2H , followed by coupling with a coupling component of the formula A_2H or A_1H [[,]] A_2 and A_4 being as defined in claim 1.

12. (original) A compound of the formula

$$\begin{array}{c|c}
 & O & O & O \\
 & O & O & O$$

13. (previously presented) A process for the preparation of compound (18), according to claim **12**, by reaction of 2-methoxy-4-nitroaniline-5-sulphonic acid with the appropriate nitrobenzoyl halide, followed by reduction of the resulting dintrobenzanilide.

10/517,410 - 17 - PD/3-22691/A/PCT

14. (canceled)

- **15.** (previously presented) A process for dyeing natural or synthetic materials, comprising contacting said materials with a tinctorially effective amount of a compound of the formula (1) according to claim **1**, and, optionally, further auxiliaries.
- **16. (original)** A solid dye preparation for dyeing paper, comprising a compound of the formula (1) according to claim **1**, and, optionally, further auxiliaries.
- **17. (original)** Aqueous solutions for dyeing paper, comprising a compound of the formula (1), according to claim **1**, and, optionally, further auxiliaries.
- **18.** (original) Aqueous solutions according to claim **17** containing, as further auxiliaries, solubilizers and/or organic solvents.
- **19.** (previously presented) Paper which is dyed with a compound of the formula (1), according to claim **1**.
- **20.** (currently amended) A process for the preparation of a compound of formula (1), according to claim 1, by tetrazotisation of a diaminobenzanilide derivative of the formula

10/517,410 - 18 - PD/3-22691/A/PCT

and sequential coupling with a coupling component of the formula A_1H or A_2H , followed by coupling with a coupling component of the formula A_2H or $A_1H[[,]]A_2$ and A_4 being as defined in claim 1.

10/517,410 - 19 - PD/3-22691/A/PCT