Stat 400 Lecture 13

Review (3.1,3.3)

f(x) = f'(x) $f(x) = \int_{-\infty}^{x} f(u) du$ • Continuous random variable and its c.d.f.

- Probability density function (p.d.f.), its properties.
- Mean, variance, moment generating function
- Percentiles for p.d.f.

Today's Lecture (3.4)

- Uniform distribution, its mean, variance, m.g.f.
- Exponential distribution and its mean, variance.
- Memoryless properties of exponential distribution.

Uniform distribution

X has a uniform distribution on the interval [a,b] if X is equally likely to fall anywhere in the interval [a,b]. We write $X \sim U(a,b)$. The p.d.f of X is

$$f_X(x) = \begin{cases} \frac{1}{b-a} & \text{if } a \le x \le b \\ 0 & \text{otherwise} \end{cases}$$

Distribution function $F_X(x)$:

$$F_X(x) = \begin{cases} 0, & \text{if } x < a, \\ \frac{x-a}{b-a}, & \text{if } a \le x \le b, \\ 1, & \text{if } x > b. \end{cases}$$

Plot of $f_X(x)$ and $F_X(x)$:

Mean, variance and m.g.f. of uniform distribution $\bullet \ E(X) = \frac{a+b}{2}, \ \operatorname{Var}(X) = \frac{(b-a)^2}{12}.$ If $X \sim U(a,b)$, then

$$ullet$$
 $E(X)=rac{a+b}{2}$, $extsf{Var}(X)=rac{(b-a)^2}{12}$.

•
$$M(t) = E(e^{tX}) = \frac{e^{tb} - e^{ta}}{t(b-a)}$$
 if $t \neq 0$, 1 if $t = 0$.

Example: Customers arrive randomly at a bank teller's window. Given that one customer arrived during a particular 10-minute period, let X equal the time within the 10 minutes that the customer arrived. If $X \sim U(0, 10)$, find

of the p.d.f. of
$$X$$

$$f_{\chi}(\chi) = \begin{cases}
0 & \text{if } \chi \leq 0 \\
1 & \text{or } \chi \leq 10
\end{cases}$$

$$P(3 \le X \le 7) = 1$$

• The average arrival time.

$$\bullet \sigma^2 = \frac{(0-0)^2}{12} = \frac{100}{12}$$

Poisson Process

Example: the number of volcano eruptions that would occur in the next 1000 years in the world.

Question: When will the next volcano erupt in the world? Or how long we have to wait for the next volcano?

Define X to be a continuous random variable giving the time waited before the next volcano, starting from now.

Suppose that $\{N_t: t>0\}$ (the number of volcanoes to have occurred by time t) forms a Poisson process with rate λ . So the distribution of $N_t \sim 200$

• When
$$x \ge 0$$
,

$$F_X(x) = P(X \le x)$$

$$= P(\text{amount of time waited for next volcano} \le x)$$

$$= P(\text{at least one volcano between now and time } x)$$

$$= P(\# \text{ volcanoes between now and time } x \text{ is } \ge 1)$$

$$= P(N_x \ge 1) = 1 - P(N_x = 0)$$

$$= 1 - \frac{(\lambda x)^0}{0!} e^{-\lambda x} = 1 - e^{-\lambda x}$$

V. number

• When x < 0,

$$F_X(x) = P(X \le x)$$

= $P(\text{less than 0 time before next volcano}) = 0$

waiting time is a continous random variable POISSON process with intensity & Warting time is Zxpo neutral (1) Ł 4 of 8

Exponential distribution

Definition: Exponential distribution is the distribution of the waiting time (time between events) in a Poisson process with rate λ . Let $\theta = 1/\lambda$, we write $Exp(\theta)$.

• Distribution function:

$$F_X(x) = P(X \le x) = \begin{cases} 1 - e^{-x/\theta} & \text{for } x \ge 0 \\ 0 & \text{for } x < 0 \end{cases}$$

• Probability density function:

$$f_X(x) = F_X'(x) = \begin{cases} \frac{1}{\theta} e^{-x/\theta} & \text{for } x \ge 0\\ 0 & \text{for } x < 0 \end{cases}$$

$$P(X7X) = 1 - \overline{F}(X) = \begin{cases} e^{-x} & x > 0 \\ 1 & x \leq 0 \end{cases}$$

Example

1. What is the probability that the next volcanic eruption in the world occurs within the next 50 years? $(\lambda = \frac{1}{10})$

X = # of enoptions in 50 years $X \sim Pois (50) \sim Pois (5)$ $X \sim Pois (50) \sim Pois (5)$ $Y \sim Pois (50) \sim Pois (5)$ $Y \sim Pois (50) \sim Pois (5)$ $Y \sim Pois (50) \sim Pois (5)$

Method 2: Let Y be waiting time until first emption $Y \sim \text{Exp}(\frac{1}{2}) \sim \text{Exp}(\frac{10}{2})$ $P(Y \leq \frac{1}{20}) = F_{Y}(\frac{1}{20}) = 1 - e^{-\frac{50}{10}} = 1 - e^{-\frac{5}{20}}$

2. What is the probability that there will be at most two volcano eruptions in the world within next 50 years?

$$P(X \le 2) = P(X=0) + P(X=1) + P(X=2)$$

$$= e^{-5} \times (\frac{5^{\circ}}{0!} + \frac{5!}{1!} + \frac{5^{2}}{2!})$$

Method 2: Y₁: time utill the first emption
Y₂: Waiting time from 1st eruption to
the 2nd eruption

YINTERP(10) and YI independent of YI
YINTERP(10)
What'S P(YI+YZ < 50)?

what's P(Y, + (z \le 50)?
We'll explain in Ch 3.5 Gamma6 of Bristin.

Mean, variance, m.g.f. of Exponential distribution

$$f(x) = \frac{1}{\theta}e^{-x/\theta}, \qquad 0 \le x < \infty$$

$$M(t) =$$

Then

$$M'(t) = \frac{\theta}{(1 - \theta t)^2}$$

$$M''(t) = \frac{2\theta^2}{(1 - \theta t)^3}$$

$$\mu = M'(0) = \theta$$

$$\sigma^2 = M''(0) - [M'(0)]^2 = \theta^2$$

So λ is the mean number of events in the unit interval, then $\theta=1/\lambda$ is the mean waiting time for the first event. For example, if $\lambda=10$ is the mean number of events per minute; then the mean waiting time for the first event is 1/10 of a minute.

Memoryless property

Example: Suppose the life of my laptop X has an exponential distribution with a mean life of $1000~{\rm days}.$ What is the probability that

• The life of my laptop is longer than 500 days.

• The life of my laptop is longer than 2000 days.

 Suppose that I have used my laptop for 500 days, what is the probability that it will last for another 2000 days?