EQUACIONS DIFERENCIALS (II)

Integració Numèrica

1 Fórmules de quadratura Newton-Côtes.

- **1** Deduïu la fórmula de Newton-Côtes per a $\int_0^1 f(x)dx$ i nodes 0, 1/3, 2/3, 1.
- **2** Comproveu que la fórmula següent és exacta per a polinomis de grau ≤ 4 :

$$\int_0^1 f(x) dx \approx \frac{1}{90} \left[7f(0) + 32f(\frac{1}{4}) + 12f(\frac{1}{2}) + 32f(\frac{3}{4}) + 7f(1) \right].$$

Obteniu una expressió per a $\int_a^b f(x)dx$ que sigui exacta per a tots els polinomis de grau 4.

3 Trobeu la distància que ha recorregut un mòvil a partir de les dades de la següent taula:

t min	0	0.1	0.2	0.3	0.4	0.5	0.6
v m/s	1	8	4	3.5	5	1	0

- a) Representa gràficament les dades de la taula.
- b) Explica l'estratègia i dona el resultat pel mètode del punt mig.
- c) Explica l'estratègia i dona el resultat pel mètode dels trapezis.
- d) Explica l'estratègia i dona el resultat pel mètode de Simpson.
- **4** Calculeu $\int_1^{1.8} f(x) dx$ per les dades de la següent taula:

x	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8
f(x)	1.544	1.667	1.811	1.972	2.152	2.351	2.576	2.828	3.107

- a) Explica l'estratègia i dona el resultat pel mètode dels trapezis prenent h = 0.4, 0.2, 0.1.
- b) Explica l'estratègia i dona el resultat pel mètode de Simpson prenent h = 0.4, 0.2, 0.1.
- 5 Calculeu amb una precisió de cinc xifres les següents integrals, escollint per a cada una d'elles el mètode o mètodes que us semblin més adients.

a)
$$\int_{-1}^{1} e^{-x^{2}/2} dx$$
, b) $\int_{2}^{3} \frac{1}{1+\sqrt{\ln(x)}} dx$, c) $\int_{0}^{1} \sqrt{x} \cos(x) dx$, d) $\int_{0}^{1} \frac{\ln(\sqrt{x})}{\sqrt[3]{1+x}} dx$, e) $\int_{0}^{0.5} \frac{\arcsin(x)}{x} dx$, f) $\int_{0}^{1} \arctan(x) \ln(x) dx$, g) $\int_{-1}^{1} \frac{e^{x^{2}}}{\sqrt{1-x^{2}}} dx$.

6 Mitjançant el mètode de Romberg, calculeu:

a)
$$\int_0^1 \sqrt{x} \sin(x) dx$$
, b) $\int_0^1 \frac{1}{\sqrt{(1+x^4)}} dx$, c) $\int_1^\infty e^{-x^2} dx$.

7 Escriure una funció (ROMBERG8) per avaluar $I = \int_a^b f(x)dx$. La fórmula d'integració és:

$$\begin{split} I \approx \frac{h}{5670} \left[217 \left(f(a) + f(b) \right) + 1024 \left(f(a + \frac{h}{8}) + f(a + \frac{3h}{8}) + f(a + \frac{5h}{8}) + f(a + \frac{7h}{8}) \right) \right. \\ &+ 352 \left(f(a + \frac{h}{4}) + f(a + \frac{3h}{4}) \right) + 436 f(a + \frac{h}{2}) \right] + O(h^8) \,. \end{split}$$

- **8** Escriure un script (ROMBERG8COMPOST) per avaluar integrals mitjançant la fórmula composta de ROMBERG8. Feu un joc de proves prenent f(x) = 1, x, $\sin(x)$.
- **9** Calculeu la integral $I = \int_{-1}^{1} e^{-x^2} dx$
 - a) Fent ús del mètode dels trapezis per $h = \frac{1}{2^k}, \ 0 \le k \le 5.$
 - b) Fent ús del mètode de Simpson prenent $h = \frac{1}{2^k}, 0 \le k \le 5$.
 - c) Fent ús del mètode de ROMBERG8COMPOST prenent $n=1,2,\dots,6$ subintervals.
 - d) Doneu els decimals exactes i les xifres significatives del les vostres aproximacions, sabent que

$$\int_{0}^{t} e^{-x^{2}} dx = \sqrt{\pi} \operatorname{erf}(t).$$

Consulteu l'ajuda de Matlab per la funció erf

2 Fórmules de quadratura GAUSSIANA

10 Amb una fórmula d'integració gaussiana de dos punts (m=2), calculeu:

a)
$$\int_{-1}^{1} e^x dx$$
, b) $\int_{-1}^{1} \frac{1}{(1+x^2)^2} dx$, c) $\int_{0}^{1} e^{x^2} dx$.

11 Integreu pel mètode de Legendre-Gauss de quatre punts (m=4),

$$\int_{-1}^{1} \cos(x) \, dx \,, \quad i \quad \int_{-1}^{1} e^x \, dx \,.$$

Prèviament cal deduir la fórmula, i al mateix temps doneu fites de l'error comès.

12 Calculeu les integrals següents per Gauss-Txebixev :

a)
$$\int_{-1}^{1} \frac{x^2}{\sqrt{1-x^2}} dx$$
, b) $\int_{-1}^{1} \frac{\cos(\pi x)}{\sqrt{1-x^2}} dx$, c) $\int_{0}^{1} \frac{x^2}{\sqrt{x(1-x)}} dx$.

3 Mètodes de MonteCarlo per a integració aproximada.

- 13 Per trapezis useu h=0.1, h=0.05. Per MonteCarlo, la mostra de mida prou gran (N>1000)
 - a) Calculeu $\int_0^1 x^2 dx$, per trapezis i Monte
Carlo.
 - b) Calculeu $\int_0^1 (1-x^2)^{(3/2)} dx$, per trapezis i MonteCarlo.
 - c) Com s'ha de pendre la mostra de gran per obtenir la mateixa exactitud que amb la fórmula dels trapezis?
- **14** Calculeu $\int_{-1}^{1} e^{x^2} dx$,
 - a) Per la fórmula dels trapezis (h = 0.1, h = 0.05).
 - b) El mètode de MonteCarlo. Com s'ha de pendre la mostra de gran per obtenir la mateixa exactitud que amb la fórmula dels trapezis?

4 D'examen.

15 El logaritme neperià potset calculat fent ús de la fórmula

$$ln(x) = \int_{1}^{x} \frac{1}{x} dx, \quad x > 1.$$

- a) Useu la regla composta de Trapezis per a determinar $\ln(2)$ i $h=2^{-k},\ k=0,1,2,3,4,5.$ Presenteu els resultats en taules.
- b) Useu la fórmula composta de Simpson per a determinar $\ln(2)$ i $h=2^{-k},\ k=1,2,3,4,5.$ Presenteu els resultats en taules.
- c) Useu una tècnica de simulació (Mètode de MonteCarlo) per a determinar $\ln(2)$ preneu mostres de mida 10^{-k} , $k \ge 3, 4, 5, 6, \ldots$ Presenteu els resultats que s'obtenen taules.
- d) Useu $\ln(x)$ de Matlab® per obtenir el valor de $\ln(2)$ amb 15 xifres decimals correctes, calculeu l'error absolut i l'error r elatiu de les aproximació dels apartats (15.a), (15.b) i (15.c). Quantes xifres significatives s'han obtingut?
- e) Com s'ha de pendre la mostra de gran per obtenir la mateixa exactitud que amb la fórmula dels trapezis? Podem obtenir la mateixa exactitud que amb la fórmula de Simpson?