НИУ "ВШЭ"

Лабораторная работа по Механике БФЗ223

ЭЛЕМЕНТАРНАЯ ТЕОРИЯ ГИРОСКОПА

Автор: Айдар Ряжапов

27 декабря 2022 г.

Содержание

1	Теоретические сведения	2
2	Постановка эксперимента	3
3	Результаты измерений и обработка данных 3.1 Вычисление момента инерции волчка	4 4 6
4	Выволы	6

ПРЕЦЕССИЯ ГИРОСКОПА

Аннотация

В данной работе исследуется явление прецессии гироскопа. Была проверена сходимость экспериментальной зависимости с теоретической. Также исследовалась природа трения, создаваемого в системе, методом анализа зависимости вертикальной прецессии от горизонтальной прецессии. Трение в системе оказалось сухим.

1 Теоретические сведения

Рассмотрим динамически симметричное тело $(I_1 = I_2 \neq I_3)$ в общем случае.

Рис. 1: Тело с динамической симметрией

Для него введём ортонормированный базис $\{e_1, e_2, e_3\}$. Орт e_3 направлен по оси симметрии тела. Тела вращается с заданными угловыми скоростями ω_1 и ω_2 и углом θ между ними. Тогда получаем:

$$\vec{\omega}_1 = \omega_1 \vec{e}_3$$

$$\vec{\omega}_2 = \omega_2 (\vec{e}_1 \sin(\theta) + \vec{e}_3 \cos(\theta))$$

$$\vec{\omega} = \vec{\omega}_1 + \vec{\omega}_2 = \omega_2 \vec{e}_1 \sin(\theta) + (\omega_1 + \omega_2 \cos(\theta)) \vec{e}_3$$

Запишем момент импульса(кинетический момент) тела:

$$\vec{L}_0 = I_1 \omega_2 \vec{e}_1 \sin(\theta) + I_3 (\omega_1 + \omega_2 \cos(\theta)) \vec{e}_3$$

Вычислим момент вынуждающей силы:

$$\vec{M}_0 = \frac{\vec{L}_0}{dt} = [\vec{\omega}_2, \vec{L}_0] = -\vec{e}_2\omega_2\{I_3\omega_1 + \omega_2(I_3 - I_1)cos(\theta)\}sin(\theta)$$

Полученную формулу можно переписать в следующей форме:

$$\vec{M}_0 = [\vec{\omega}_2, \vec{\omega}_1] \cdot \{I_3 + \frac{\omega_2}{\omega_1}(I_3 - I_1)\cos(\theta)\}$$

В рассматриваемом нами случае вынуждающей силой является сила тяжести груза, который мы прикрепляем к оси (OC = r), поэтому уравнение приобретёт следующую форму:

$$\vec{M}_0 = -mqrsin(\theta)\vec{e}_2$$

Подставляя получаем:

$$\omega_2^2(I_3 - I_1)\cos(\theta) + I_3\omega_1\omega_2 - mgr = 0$$

Если выполняется условие $\omega_1 \gg \omega_2$, то тогда формула принимает вид:

$$I_3\omega_1\omega_2 = mgr$$

, где I_3 - является моментом инерции волчка, ω_1 - угловая скорость вращения маховика, ω_2 - угловая скорость прецессии.

2 Постановка эксперимента

Исследуемая установка представлена на рисунке 2. При включении генератора напряжения маховик гироскопа начинает раскручиваться, в результате чего через некоторое время(когда гироскоп раскрутится) возникает прецессия. На экране

Рис. 2: Исследуемая установка

осциллографа отображались значения частоты вращения маховика, а на камеру телефона снимался гироскоп. Снимались несколько оборотов гироскопа, после чего высчитывалась частота горизонтальной прецессии. Для того, чтобы убрать влияние силы трения и вертикальной прецессии, гироскоп поддерживался руками горизонтально. Также проводились различные опыты в зависимости от положения массы на стержне.

3 Результаты измерений и обработка данных

Построим графики зависимости частоты вращения маховика Ω от обратной частоты прецессии $(1/\omega)$.

Рис. 3: Графики зависимостей Ω от $1/\omega$

Как мы можем видеть точки графиков ложатся на аппроксимацию прямой (здесь и далее аппроксимация проводилась методом мнк функцией scipy.optimize.curve_fit), следовательно экспериментальная зависимость соответствуют теоретической. Из формулы для движения гироскопа:

$$\Omega = \frac{1}{\omega} \frac{mgr}{I}$$

Тогда из полученных прямых можно найти коэффициент наклона прямых равный:

$$k = \frac{mgr}{I}$$

3.1 Вычисление момента инерции волчка

Из графиков получаем коэффициенты наклона прямой занесённые в таблицу 1.

Таблица 1

r, cm	8	9	10	11
$k, 1/M \cdot c^2$	244	270	393	476
$\Delta k, 1/\text{M} \cdot c^2$	32	36	50	64

Построим график зависимости k(r) и из него найдём угловой коэффициент γ .

Рис. 4: Графики зависимости k от r

$$\gamma = 4120 \frac{1}{\text{M}^2 c^2}$$

$$\varepsilon_{\gamma} = 14\%$$

Тогда момент инерции равен:

$$I_e = (3.4 \pm 0.5) \cdot 10^{-4} \text{ kg} \cdot \text{m}^2$$

Теоретический рассчёт момента инерции волчка:

$$I_t = \frac{mR^2}{2} = 3.75 \cdot 10^{-4} \text{ K} \cdot \text{ M}^2$$

Как мы можем в пределах погрешности теоретическое и экспериментальное значение момента инерции волчка совпадают.

Расчёт погрешности

Оценим погрешности по полученным данным:

$$arepsilon_{\gamma}=14\%$$

$$arepsilon_{m}=\frac{0.0001}{0.1413}\cdot 100=0.07\%$$

$$arepsilon_{r}=\frac{0.1}{8}\cdot 100=1.25\%$$
 - оценка максимальной погрешности измерения расстояния

Таким образом, наибольшая погрешность в вычислении момента инерции идёт от коэффициента налокна прямой. Тогда относительная погрешность ε_{γ} коэффициента наклона прямой равна ε_{I} .

3.2 Определение преобладающего трения в системе

Для того, что определить тип трения, которые преобладает в системе, необходимо построить график зависимости вертикальной прецессии от горизонтальной прецессии.

Зависимость $\omega_{Bep}(\omega_{rop})$

ω_{rop} ,рад/с ω_{rop} ,рад/с

Рис. 5: Аппроксимация константой

На рисунке 5 представлены две аппроксимации зависимости функциями y=Ax+B и y=B. Ниже представлены значения для двух аппроксимаций.

Линейная аппроксимация

$$A = 0.48$$
 $\Delta A = 36$ $\varepsilon_A = 7557\%$
 $B = 49$ $\Delta B = 9$ $\varepsilon_B = 18.5\%$

По полученным погрешностям коэффициентов аппроксимации легко понять, что данная аппроксимация неверна, поэтому трение в системе не явлется вязким.

Аппроксимая константой

$$B = 49.1 \quad \Delta B = 0.3 \quad \varepsilon_B = 0.6\%$$

Соответственно в системе преобладает сухое трение.

4 Выводы

В данной работе исследовалась элементарная теория гироскопа, а также определялось преобладающий тип трения в системе. Экспериментальная зависимость сходится с теоретической. Из эксперимента был получен момент инерции волчка, равный $I_e = (3.4 \pm 0.5) \cdot 10^{-4} \ \mathrm{kr} \cdot \mathrm{m}^2$, что в пределах погрешности сходится с теоретическим значением $I_t = \frac{mR^2}{2} = 3.75 \cdot 10^{-4} \ \mathrm{kr} \cdot \mathrm{m}^2$. Экспериментально было получено, что в системе преобладает сухое трение.