Universitat Oberta de Catalunya

Estudis d'Informàtica, Multimèdia i Telecomunicació

ASSIGNATURA: Grafs i Complexitat

Final 1

- 1. (Valoració d'un 10+15=25%)
 - a) Quantes funcions injectives hi ha del conjunt $N_5 = \{1, 2, ..., 5\}$ a un conjunt X de 20 elements?
 - b) Quants sequències ternàries de longitud 7 es poden fer de forma que continguin com a mínim 3 zeros?

- a) El nombre de funcions injectives del conjunt $N_5 = \{1, 2, ..., 5\}$ a un conjunt X de 20 elements coincideix amb el nombre de 5-mostres ordenades sense repetició del conjunt X. Per tant, n'hi ha $V(20,5) = 20 \cdot 19 \cdot 18 \cdot 17 \cdot 16 = 1860480$.
- b) En total hi ha 3^7 seqüències ternàries de longitud 7. Per obtenir les que contenen com a mínim 3 zeros, hem d'eliminar les seqüències que no contenen cap zero, les que contenen exactament un zero, i les que contenen exactament dos. Per tant, es poden formar $3^7 2^7 2^6 \cdot 7 2^5 \cdot 21 = 2187 128 64 \cdot 7 32 \cdot 21 = 939$ seqüències ternàries.
- 2. (Valoració d'un 10+5+5+5=25%) Considereu el següent arbre binari:

- a) Doneu el recorregut en preordre, inordre i postordre de l'arbre.
- b) Quantes arestes s'han d'eliminar com a mínim per tal que deixi de ser connex? Obtenim el mateix valor per a qualsevol arbre? Justifica les respostes.
- c) Justifiqueu perquè aquest arbre no és eulerià ni té cap camí eulerià i afegiu el mínim nombre d'arestes possibles per tal que sigui eulerià.
- d) El graf eulerià que heu obtingut en l'apartat anterior és hamiltonià? En cas positiu doneu un circuit hamiltonià i en cas negatiu justifiqueu perquè.

a) Els recorreguts de l'arbre són:

• Preordre: A, B, C, D, E.

• Inordre: B, A, D, C, E.

• Postordre: B, D, E, C, A.

- b) Si eliminem una aresta, per exemple l'aresta $\{A,B\}$, aleshores l'arbre deixa de ser connex. Un arbre de n vèrtexs és un graf connex que té n-1 arestes, que és el mínim nombre d'arestes que necessitem per connectar n vèrtex. Per tant, només que eliminem una aresta, deixaria de ser connex.
- c) No és eulerià ja que té vèrtexs de grau senar. Com que té més de 2 vèrtexs de grau senar (en té quatre), tampoc té un camí eulerià. Per tal que sigui un graf eulerià, afegim les arestes $\{\{B,C\},\{D,G\}\}$:

Ara totes les arestes tenen grau parell.

d) El nou graf obtingut en l'apartat anterior no és hamiltonià. Per exemple, si eliminem el vèrtex C ens queden dues components connexes, que no és possible si el graf és hamiltonià

3. (Valoració d'un 5+5+5+5+5=25%)

A continuació es mostren els primers passos de l'algorisme de Dijkstra aplicat sobre un graf simètric.

A	B	C	D	E	F	G	H	I
(0,A)	(∞, A)							
$(0,A)^*$	(12, A)	(∞, A)	(6,A)	(∞, A)	(5,A)	(∞, A)	(4,A)	(∞, A)
(0,A)	(12, A)	(9, H)	(6,A)	(∞, A)	(5,A)	(7,H)	$(4, A)^*$	(9,H)
(0,A)	(12, A)	(9, H)	(6,A)	(14,F)	$(5, A)^*$	(7,H)	(4,A)	(9,H)
(0,A)	(12, A)	(9, H)	$(6,A)^*$	(8,D)	(5,A)	(7,H)	(4,A)	(7,D)

Usant només aquesta taula, que segueix la notació que apareix en els materials, per a cadascuna de les següents afirmacions, digueu raonadament si són certes o falses:

- a) El pes del camí mínim de H a A és 4.
- b) El pes del camí mínim de A a I és menor o igual que 7.
- c) El camí mínim de A a C passa per H.
- d) Hi ha una aresta de A a G de pes 7.
- e) Hi ha una aresta de D a I de pes 1.

- a) Cert. El vèrtex H s'ha explorat en el tercer pas, per tant l'etiqueta 4 correspon al pes del camí mínim de A a H.
- b) Cert. El vèrtex I encara no ha estat explorat, però el pes del camí mínim de A a I mai podrà ser superior a 7.
- c) Fals. El vèrtex C encara no ha estat explorat, per tant pot ser que l'etiqueta s'actualitzi, i finalment el camí mínim no passi per H.
- d) Fals. No hi ha cap aresta de A a G. Hi ha un camí de pes 7 passant per H.
- e) Cert. Hi ha un camí de A a D de pes 6. També hi ha un camí de A a I de pes 7 que passa per D, per tant de D a I hi ha una aresta de pes 1.

4. (Valoració d'un 6.25 + 6.25 + 6.25 + 6.25 = 25%)

Justifiqueu si poden existir dos problemes A i B, tal que $A \leq_p B$, satisfent les següents condicions: (Nota: Els apartats són independents)

- a) $A \notin P i B \in P$.
- b) $A \in NP i B \in P$.
- c) $A \notin P i B \notin P$.
- d) A i B són polinòmicament equivalents.

- a) No poden existir. Si $B \in P$, aleshores necessàriament $A \in P$.
- b) Sí que poden existir sempre que $A \in P$. Com que $P \subseteq NP$, no hi hauria cap contradicció. En canvi, si $A \notin P$, no poden existir per l'argument de l'apartat a).
- c) Sí que poden existir, ja que podria passar, per exemple, que els dos fossin de la classe NP.
- d) Sí que poden existir, sempre que $B \leq_p A$.

Final 2

1. (Valoració d'un 10+5+10=25%)

Considereu una matriu quadrada $M = (a_{ij})$ de mida $n \times n$, on els coeficients són valors binaris. Considereu el següent algorisme:

```
funció | OperacioMatriu | (M, n)
            inici
 2
                L \leftarrow [\ ]
 3
                \underline{\mathbf{per}}\ i \leftarrow 1\ \underline{\mathbf{fins}}\ n
 4
                          L[i] \leftarrow 0
 5
                fiper
 6
                per i \leftarrow 1 fins n
 \gamma
                          \underline{\mathbf{per}}\ j \leftarrow i+1\ \underline{\mathbf{fins}}\ n
 8
                                    \underline{\mathbf{si}}\ M[i][j] = 1\ \underline{\mathbf{aleshores}}
 9
                                                                                         L[i] \leftarrow L[i] + 1L[j] \leftarrow L[j] + 1
10
11
                                    fisi
12
                          <u>fiper</u>
13
                fiper
14
                retorn L
15
           fi
16
```

- a) Calculeu, en el pitjor dels casos, el nombre d'operacions que efectua l'algorisme.
- b) Determineu, en funció de n, la complexitat de l'algorisme.
- c) Sigui A = [[0, 1, 0, 1, 0], [1, 0, 1, 1, 1], [0, 1, 0, 0, 0], [1, 1, 0, 0, 1], [0, 1, 0, 1, 0]] la matriu d'adjacències d'un graf simètric amb 5 vèrtexs. Calculeu el resultat de la següent crida OperacioMatriu(A, 5), i a continuació expliqueu en general què retorna aquest algorisme aplicat a una matriu d'adjacències d'un graf simètric.

Solució:

a) En el pitjor dels casos, l'algorisme realitza una assignació inicial en la línia 3, n assignacions en la línia 5, n(n-1)/2 comparacions en la línia 9, 2n(n-1)/2 sumes i 2n(n-1)/2 assignacions, en les línies 10 i 11. Per tant, el nombre d'operacions és $n+1+5n(n-1)/2=(5n^2-3n+2)/2$.

- b) A partir del resultat anterior, tenim que l'algorisme té complexitat $O(n^2)$.
- c) El resultat de la crida OperacioMatriu(A,5) és [2,4,1,3,2]. En general, aquesta funció retorna la seqüència de graus a partir de la matriu d'adjacències del graf.
- 2. (Valoració d'un 12.5+12.5=25%) Considereu el següent graf:

- a) És possible trobar un circuit que passi per totes les arestes sense repetir-ne cap? I un camí? En cas negatiu, justifiqueu perquè no és possible i en cas afirmatiu doneu-lo.
- b) Volem eliminar el màxim nombre d'arestes de manera que el graf continuï sent connex i el cost total sigui el mínim possible. Feu servir l'algorisme més adequat i digueu quin és el cost mínim obtingut.

a) No és possible trobar un circuit que passi per totes les arestes sense repetir-ne cap perquè el graf no és eulerià, ja que té dos vèrtexs de grau senar $(E \ i \ F)$. Com que només té dos vèrtexs, sí que existeix un itinerari eulerià: $\{E,C,B,A,D,C,G,D,F,G,E,F\}$. Ara bé, com que hi ha vèrtexs de grau més gran que dos, no existex cap itinerari que passi per totes les arestes sense repetir cap vèrtex; per tant, no existeix cap camí que passi per totes les arestes sense repetir-ne cap.

b) Apliquem l'algorisme de Kurskal:

Arestes	Pesos
$\{A,B\}$	1
$\{E,G\}$	2
$\{C,D\}$	3
$\{C,G\}$	3
$\{C, E\}$	3
$\{D,G\}$	3
$\{F,G\}$	3
$\{A,D\}$	4
$\{B,C\}$	5
$\{E,F\}$	5
$\{D,F\}$	6

Triem i marquem amb un asterisc les 6 primeres arestes que no formen cap cicle, i marquem amb negreta les descartades perquè formen un cicle.

Arestes	Pesos
${A,B}^*$	1
$\{E,G\}^*$	2
$\{C,D\}^*$	3
$\{C,G\}^*$	3
$\{{f C},{f E}\}$	3
$\{\mathbf{D},\mathbf{G}\}$	3
$\{F,G\}^*$	3
$\{A,D\}^*$	4
$\{B,C\}$	5
$\{E,F\}$	5
$\{D,F\}$	6

El cost de l'arbre generador de cost mínim és 16.

3. (Valoració d'un 5+5+5+5+5=25%)

Per a cadascuna de les següents afirmacions, digueu raonadament si són certes o falses:

a) El diàmetre d'un graf és el valor del camí mínim entre totes les parelles de vèrtexs d'un graf, i es pot calcular utilitzant l'algorisme de Floyd.

- b) Per calcular el camí mínim entre dos vèrtexs d'un graf simètric no ponderat, el millor algorisme és Dijkstra.
- c) L'algorisme de Dijsktra pot utilitzar-se encara que hi hagi pesos negatius en les aretes del graf.
- d) Per trobar el nombre de components connexes d'un graf, podem utilitzar els algorismes DFS o BFS.
- e) En un graf hamiltonià, tots els vèrtexs tenen grau parell.

- a) Fals. L'algorisme de Floyd permet trobar el pes mínim entre totes les parelles de vèrtexs d'un graf ponderat, i a partir d'aquest resultat podríem obtenir el mínim, però el diàmetre d'un graf és la distància màxima entre qualsevol parella de vèrtexs.
- b) Fals. Si el graf és no ponderat, el millor algorisme per calcular el camí mínim (amb nombre d'arestes) entre dos vèrtex és el BFS.
- c) Fals. L'algorisme de Dijsktra no es pot utilitzar si hi ha pesos negatius en les arestes.
- d) Cert. Per calcular el nombre de components connexes necessitem fer un recorregut per tots els vèrtexs del graf. Podem adaptar els algorismes DFS o BFS, i al mateix temps que fem el recorregut, podem comptar el nombre de components.
- e) Fals. Per exemple, el següent graf és hamiltonià, amb circuit hamiltonià $\{A, B, C, D\}$, però no tots els vèrtexs tenen grau parell:

- 4. (Valoració d'un 6.25 + 6.25 + 6.25 + 6.25%) Digueu si són certes o falses les següents afirmacions, justificant la resposta:
 - a) Si es troba un algorisme polinòmic per resoldre el problema SAT, aleshores P=NP.

- b) Si $A \leq_p B$, aleshores A i B són polinòmicament equivalents.
- c) Determinar el nombre de components connexos d'un graf és un problema de complexitat polinòmica.
- d) Si A és NP-Difícil, aleshores A és NP-Complet.

- a) Cert. Com que SAT és NP-Complet, si SAT pertany a P, tot problema $A \in NP$ podria reduir-se a un P. Per tant, P = NP.
- b) Fals. S'hauria de complir també que $B \leq_p A$.
- c) Cert. Podem fer servir els algorismes BFS o DFS que tenen complexitat polinòmica.
- d) Fals. La inversa és certa, o sigui si A és NP-Complet, aleshores A és NP-Difícil.

Final 3

1. (Valoració d'un 5+5+5+10=25%)

Considereu el següent algorisme:

```
funció | Ordena3 | (n)
           inici
 2
               L \leftarrow [\ ]
 3
               total \leftarrow 0
 4
               word \leftarrow [\ ]
 5
               \underline{\mathbf{per}}\ i \leftarrow 1\ \underline{\mathbf{fins}}\ n
 6
                        word[1] \leftarrow i
 7
                        \underline{\mathbf{per}}\ j \leftarrow 1\ \underline{\mathbf{fins}}\ n
 8
                                 \mathbf{si}\ (j \neq i)
                                     aleshores
10
                                                           word[2] \leftarrow j
11
                                                           \operatorname{\mathbf{per}} k \leftarrow 1 \operatorname{\mathbf{fins}} n
12
                                                                    \mathbf{si} \ (k \neq i) \ and \ (k \neq j)
13
                                                                         aleshores
14
                                                                                              word[3] \leftarrow k
15
                                                                                              total \leftarrow total + 1
16
                                                                                              L[total] \leftarrow word
17
                                                                    fisi
18
                                                           fiper
19
                                 fisi
20
                        <u>fiper</u>
21
               fiper
22
               retorn total
23
           fi
24
```

- a) Determineu, en funció de n, la complexitat de l'algorisme.
- b) Doneu els cinc primers elements de L si fem la crida Ordena3(4).
- c) Calculeu el resultat de la següent crida Ordena3(8), i a continuació expliqueu en general què retorna aquest algorisme.
- d) És possible modificar l'algorisme donat per tal que la complexitat sigui O(1)? En cas afirmatiu, doneu l'algorisme, i en cas negatiu, justifiqueu perquè no és possible.

- a) Cadascun dels bucles s'executa n vegades. Les comandes de les línies 13-15, s'executen n vegades del primer bucle per n-1 vegades del segon bucle (treiem el cas j=i) per (n-3) vegades del trecer bucle (treiem els casos k=j i k=i). Per tant, podem dir que la complexitat de l'algorisme és $O(n(n-1)(n-2)) = O(n^3)$.
- b) Els cinc primers elements de L en la crida Ordena3(4) són: [1, 2, 3], [1, 2, 4], [1, 3, 2], [1, 3, 4], [1, 4, 2].
- c) El resultat de la crida *Ordena3*(8) és 336. L'algorisme en general retorna el nombre de 3-mostres ordenades sense repetició d'un conjunt de n elements.
- d) Sí que és possible. El nombre de 3-mostres ordenades sense repetició d'un conjunt de n elements és $\frac{n!}{(n-3)!} = n(n-1)(n-2)$ que és una operació. L'algorisme modificat seria:

```
\begin{array}{ll} & \underline{\mathbf{funci\acute{o}}} & | \ Ordena3 \ | \ (n) \\ & \underline{\mathbf{inici}} \\ & & \underline{\mathbf{retorn}} \ n*(n-1)*(n-2); \\ & & \underline{\mathbf{fi}} \end{array}
```

- 2. (Valoració d'un 5+5+5+5+5=25%) Determineu si existeix un graf G que compleixi les següents condicions. En cas negatiu, justifiqueu perquè no pot existir. En cas afirmatiu, dibuixeu un graf que la satisfagui. (**Nota:** Els apartats són independents)
 - $a)\ G$ és un arbre amb seqüencia de graus [4,3,3,2,1,1,1,1].
 - b) Al graf G, la llista de vèrtexs visitats per l'algorisme DFS és [A, B, C, D, E, F, G, H] i la llista de vèrtexs visitats per l'algorisme BFS és [A, B, E, C, D, F, H, G].
 - c) G és eulerià i el seu complementari no ho és.
 - d) La sequencia de graus de G és [2, 2, 2, 2, 2, 2] i no és isomorf a C_6 .
 - e) G és complet i no ès hamiltonià.

- a) Aplicant Havel-Hakimi, sí que existeix un graf G amb la seqüència de graus donada. A més, tenim que |V|=8 i $|A|=\frac{4+3+3+2+1+1+1+1}{2}=8$. Com $|V|\neq |A|-1$, aleshores G no és un arbre.
- b) Sí que existeix. Un graf amb aquestes llistes de vèrtexs visitats seria:

c) Si considerem G i el seu complementari:

Tenim que G és 2-regular i, per tant, eulerià, i G^c no és eulerià perquè és 3-regular.

d) Considerem G i el graf:

La seqüència gràfica de G és [2,2,2,2,2,2], però no és isomorf a C_6 perquè no és connex.

- e) Si G és complet, clarament és hamiltonià. Per exemple, si els vèrtexs de G són $V = \{v_1, v_2, \ldots, v_n\}$, com que els graf és complet, sempre existeix el circuit $\{v_1, v_2, \ldots, v_n, v_1\}$.
- 3. (Valoració d'un 5+5+5+5+5=25%)

Un missatger transporta paquets entre cinc oficines d'una ciutat. Sigui G el graf simètric ponderat, on el pes de cada arc representa el temps (en minuts) que triga el missatger en anar d'una oficina a l'altra desplaçant-se en moto. Aplicant l'algorisme de Floyd, obtenim els valors de $d_{i,j}^4$ i $d_{i,j}^5$ $(i,j=1,\ldots,5)$ següents:

$$(d_{i,j}^4) = \begin{pmatrix} 0 & 14 & 7 & 2 & 6 \\ 14 & 0 & 8 & 13 & 7 \\ 7 & 8 & 0 & 5 & 14 \\ 2 & 13 & 5 & 0 & 8 \\ 6 & 7 & 14 & 8 & 0 \end{pmatrix} \qquad (d_{i,j}^5) = \begin{pmatrix} a & b & c & d & e \\ b & 0 & 8 & 13 & 7 \\ c & 8 & 0 & 5 & 14 \\ d & 13 & 5 & 0 & 8 \\ e & 7 & 14 & 8 & 0 \end{pmatrix}.$$

Per a cadascuna de les següents afirmacions, digueu raonadament si són certes o falses:

- a) Els valors a b c d e de la primera columna i la primera fila de la matriu $(d_{i,j}^5)$ són 0 14 7 2 6, respectivament.
- b) Per anar de l'oficina 2 a la 1 no surt a compte passar per l'oficina 5.
- c) El diàmetre del graf és 14.
- d) Els valors obtinguts a la fila 4 de $(d_{i,j}^5)$ coincidexen amb els que obtenim aplicant Dijkstra des del vèrtex 4.
- e) L'oficina que en mitjana es troba més a prop de la resta d'oficines és la 3.

Solució:

a) Fals. Els valors a b c d e de la primera columna i la primera fila de la matriu $(d_{i,j}^5)$ són 0 13 7 2 6, respectivament. L'entrada $d_{1,1}^5$ és clarament 0. L'entrada $d_{1,5}^5$ no es modifiquen passant per 5. Aplicant l'algorisme obtenim que $d_{1,2}^5 = \min(d_{1,2}^4, d_{1,5}^4 + d_{5,2}^4) = \min(14, 6+7) = 13, \ d_{1,3}^5 = \min(d_{1,3}^4, d_{1,5}^4 + d_{5,3}^4) = \min(7, 6+14) = 7$ i $d_{1,4}^5 = \min(d_{1,4}^4, d_{1,5}^4 + d_{5,4}^4) = \min(2, 6+8) = 2$.

- b) Fals. Com que l'entrada $d_{1,2}^5$ s'ha modificat respecte a la matriu anterior, podem assegurar que el camí mínim per anar de l'oficina 2 a la 1 ha de passar per l'oficina 5.
- c) Cert. El diàmetre del graf és el màxim valor que apareix en la darrera matriu $(d_{i,j}^5)$ de l'algorisme de Floyd.
- d) Cert. A $(d_{i,j}^5)$ tenim el temps mínim que hi ha entre cada parella de vèrtexs. A la fila 4 hi ha, per tant, els temps mínims per a anar de l'oficina 4 a la resta d'oficines i això és el que retorna Dijkstra si comencem pel vèrtex 4.
- e) Fals. Si sumem els valors de la fila i de $(d_{i,j}^5)$ i dividim per 5 ens dóna la mitjana de les distàncies de l'oficina i a la resta. Els valors mínims s'obtenen a les files 1 i 4. Per tant, les oficines 1 i 4 són les que es troben en mitjana més a prop de la resta, i no la 3.
- 4. (Valoració d'un 6.25 + 6.25 + 6.25 + 6.25 = 25%) Digueu si són certes o falses les següents afirmacions, justificant la resposta:
 - a) Si $A \leq_p B$ i B és NP-Complet, aleshores $A \in NP$.
 - b) Si la complexitat d'un algorisme numèric és $O(N^3)$, on N és el nombre enter que representa l'entrada de l'algorisme, aleshores la complexitat de l'algorisme és exponencial.
 - c) Un problema per al qual coneixem que es pot resoldre amb un algorisme de complexitat temporal $O(3^n)$ no pot pertànyer a P.
 - d) $A \vee (B \wedge C) \vee (A \wedge C)$ és una fórmula FNC (forma normal conjuntiva).

- a) Cert. Si B és NP-Complet, aleshores en particular $B \in NP$. Per les propietats de les reduccions, tenim que $A \in NP$.
- b) Cert. En aquest cas, cal expressar la complexitat en funció del nombre de bits d'N. Per tant, la complexitat és $O(2^{3n}) = O(8^n)$, on n és la longitud binària d'N.
- c) Fals. Podria existir un altre algorisme per resoldre'l amb complexitat polinòmica.
- d) Fals. Hauria de ser una conjunció de disjuncions, i no a la inversa.