Chapter 4

Algebra System

本章概括

- ■代数系统一般概念的引入
- 运算的概念
- 运算的性质
- 代数系统的形式定义
- ■代数系统的特殊元素
- ■同态与同构

§ 4.1 代数系统的引入

- 一个代数系统需要满足下面三个条件:
 - (1) 有一个非空集合 S;
 - (2) 有一些建立在 S 上的运算;
 - (3) 这些运算在集合 S 上是封闭的。

4. 2. 1 运算的概念

定义

假设A是一个集合,A×A到A的映射 称为A上的二元运算。

一般地,An到A的映射称为A上的n 元运算。

(2)

4. 2. 1 运算的概念

0	a_1	a_2	•••	a_n	
a_1	$a_1 \circ a_1$	$a_1^{\circ}a_2$ $a_2^{\circ}a_2$		$a_1 \circ a_n$	
a_2	$a_2 \circ a_1$	a_2 ° a_2	•••	$a_2^{\circ}a_n$	
•		• • •			
•		• • •			
•		• • •			
a_n	$a_n \circ a_1$	$a_n \circ a_2$	•••	$a_n \circ a_n$	

	$\circ a_i$
a_1	$\circ a_1$
a_2	$\circ a_2$
•	•
•	•
•	•
a_n	$\circ a_n$

(3)

4. 2. 2 运算的性质

假设 *, + 都是集合 A 上的运算

(1) 封闭性

如果 S_CA, 对任意的 a, b∈S, 有 a*b∈S, 则称 S 对运算 * 是封闭的。

(4)

4.2.2 运算的性质

(2) 交换律

如果对任意的 $a,b \in A$,都有 a*b=b*a,则称运算 * 是可交换的。

(3) 结合律

如果对任意的 a, b, c∈A, 都有 (a*b)*c=a*(b*c), 则称运算 * 是可结合的。

(4) 分配律

如果对任意的 a, b, c∈A, 都有a*(b+c)=(a*b)+(a*c)则称 * 对 + 运算满足左分配;

如果对任意的 $a, b, c \in A$,都有(b+c)*a=(b*a)+(c*a)则称 * 对 + 运算满足右分配。

如果运算*对+既满足左分配又满足右分配,

则称运算*对+满足分配律。

(5)消去律

如果对任意的 $a, b, c \in A$,当 a*b=a*c,必有 b=c,则称运算 * 满足左消去律; 如果对任意的 $a, b, c \in A$,当 b*a=c*a,必有 b=c,则称运算 * 满足右消去律; 如果运算 * 既满足左消去律又满足右消去律,则称运算 * 满足消去律。

(7)

(6) 吸收律

如果对任意的 $a, b \in A$,都有 $a^*(a+b)=a$,则称运算 * 关于运算 + 满足吸收律。

(7) 等幂律

如果对任意的 a∈A, 都有 a*a=a, 则称运算 * 满足等幂律。

(8)

Δ	a	b	c
a	a	b	c
b	b	b	a
c	c	a	c

4.3.1 代数系统的概念

定义

假设 A 是一个非空集合, f_1 , f_2 , ..., f_n 是 A 上的运算(运算的元数可以是不相同的),则称 A 在运算 f_1 , f_2 , ..., f_n 下构成一个代数系统,记为: <A, f_1 , f_2 , ..., f_n >

4.3.1 代数系统的概念

定义

假设 <A, *> 是一个代数系统, $S\subseteq A$,如果 S 对* 是封闭的,则称 <S, *> 为 <A, *>的子代数系统。

4.3.2 代数系统中的特殊元素

(1) 单位元(幺元)

假设 <A, *> 是一个代数系统,如果 $\exists e_{L} \in A$,对于任意元素 $X \in A$,都有 $e_{L} * X = X$,则称 e_{L} 为 A 中关于运算 * 的左单位元;

如果 $\exists e_r \in A_r$ 对于任意元素 $x \in A_r$ 都有 $x^*e_r = x_r$ 则称 e_r 为 A 中关于运算 * 的右单位元;

如果 A 中一个元素 e 既是左单位元又是右单位元,则称 e 为 A 中关于运算 * 的单位元。

(4)

 $A = \{a,b,c\}$

Δ	a	b	c	\Diamond	a	b	c	•	a	b	c
a	a	b	c	a	a	a	a	a	a	b	c
b	a	b	c	b	b	b	b	b	b	c	a
c	a	b	c	c	c	c	c	c	c	a	b

<A,∆>有左单位元: a,b,c

<A,◊>有右单位元: a,b,c

<A,●>有单位元: a

4.3.2 代数系统中的特殊元素

(1) 单位元(幺元)

定理

假设 <A,*> 是代数系统,并且 A 关于运算 * 有左单位元 e_L 和右单位元 e_r ,则 $e_L=e_r=e$ 并且单位元唯一。

4.3.2 代数系统中的特殊元素

(2) 零元

假设 < A, * > 是一个代数系统,如果 $\exists \theta_L \in$ A, 对于任意元素 $x \in$ A,都有 $\theta_L * x = \theta_L$,则称 θ_L 为 A 中关于运算 * 的左零元;

如果 $\exists \theta_r \in A$,对于任意元素 $X \in A$,都有 $X^*\theta_r = \theta_r$,则称 θ_r 为 A 中关于运算 * 的右零元;

如果 A 中一个元素 θ 既是左零元又是右零元,则称 θ 为 A 中关于运算 * 的零元。

(7)

 $A = \{a,b,c\}$

Δ	a	b	c	♦	a	b	c	•	a	b	c
a	a	b	c	a	a	a	a	a	a	b	С
b	a	b	c	b	b	b	b	b	b	b	b
c	a	b	c	c	c	c	c	c	c	b	b

<A,∆>有右零元: a,b,c

<A,◊>有左零元: a,b,c

<A,●>有零元: b

4.3.2 代数系统中的特殊元素

(2) 零元

定理

假设 <A,*> 是代数系统,并且 A 关于运算 * 有左零元 θ_L 和右零元 θ_r ,则 $\theta_L = \theta_r = \theta$ 并且零元唯一。

4.3.2 代数系统中的特殊元素

(3) 逆元

假设 <A, * > 是一个代数系统,e 是 <A, * > 的单位元。对于元素 $a \in$ A,如果存在 $b \in$ A,使得 b*a = e,则称 a 为左可逆的,b 为 a 的左逆元;如果存在 $c \in$ A,使得 a*c = e,则称元素 a 是右可逆的,c 为 a 的右逆元。如果存在 $a' \in$ A,使得 a'*a = a*a' = e,则称 a 是可逆的,a' 为 a 的逆元。a 的逆元记为: a^{-1} 。

(10)

 $A = \{a,b,c\}$

•	a	b	c
a	a	b	С
b	b	c	С
С	c	a	b

•	a	b	c
a	a	b	c
b	b	c	a
c	С	a	b

4.3.2 代数系统中的特殊元素

(3) 逆元

定理

设 <A,*> 是一个代数系统,且 A 中存在单位元 e,每个元素都存在左逆元。如果运算* 是可结合的,那么,任何一个元素的左逆元也一定是该元素的右逆元,且每个元素的逆元唯一。

4.3.2 代数系统中的特殊元素

(4)幂等元

定义:

在代数系统<A,*>中,如果元素 a 满足 a*a=a,那么称 a 是 A 中的幂等元。

(13)

	*		a	b	c		*		a	b	c
	a		a	b	c		a		a	b	c
	b		b	c	a b		b	b		a	c
	c		c	a	b		c		c	c	c
		运算	年 1			运算 2					
								1			
	*		a	b	c		*		a	b	С
	a		a	b	c	_	a		a	b	c
	b		a	b	c		b		b	b	c
	С		a	b	c		c		c	c	b
)						运算4	4				

2015-12-29

4.4.1 基本概念

定义

设 $<A,^*>$ 和 $<B,^\circ>$ 是代数系统, $f:A\to B$,如果 f 保持运算,即对 $\forall x,y\in A$,有 $f(x^*y)=f(x)\circ f(y)$ 。称 f 为代数系统 $<A,^*>$ 到 $<B,^\circ>$ 的同态映射,简称同态。也称为两代数系统同态。

4.4.1 基本概念

定义

设 <A,*>和 <B,°> 是代数系统, f是 A 到 B 的同态。如果 f 是单射的, 称 f 为 单同态; 如果 f 是满射的, 称 f 为满同态; 如果 f 是双射的, 称 f 为同构映射, 简称为 同构。

4. 4. 1 基本概念

定义

设 <A,*> 是代数系统,若存在函数 $f: A \rightarrow A$,并且对 $\forall x,y \in A, f$ f(x*y) = f(x)*f(y)。 称 f A < A,*> 的自同态;如果 f 是双射的,则 称 f A < A,*> 的自同构。

4.4.2 同态、同构的性质

(1)如果两函数是同态、同构的,则复合函数也 是同态、同构的。

定理

假设 f 是 <A,*> 到 <B, $^{\circ}>$ 的同态,g是 <B, $^{\circ}>$ 到 <C, $\Delta>$ 的同态,则gof是 <A,*> 到 <C, $\Delta>$ 的同态;如果 f 和 g 是单同态、满同态、同构时,则gof也是单同态、满同态和同构。

4.4.2 同态、同构的性质

(2) 满同态保持结合律

定理

假设 f 是 < A,* > 到 < B,° > 的满同态。如果 * 运算满足结合律,则 ° 运算也满足结合律,即满同态保持结合律。

(3) 满同态保持交换律

4.4.2 同态、同构的性质

(4) 满同态保持单位元

定理

假设 f 是<A,*> 到 <B, $^{\circ}>$ 的满同态。e 是<A,*> 的单位元,则 f(e) 是<B, $^{\circ}>$ 的单位元。

4.4.2 同态、同构的性质

(5)满同态保持逆元

定理

假设 f 是 < A,*> 到 < B,°> 的满同态。 e_A 和 e_B 分别是 < A,*> 和 < B,°> 的单位元,如果 A 中元素 x 和 x' 互逆,则 B 中元素 f(x) 和 f(x') 也互逆。

4.4.2 同态、同构的性质

(6)满同态保持零元

定理

假设 f 是<A,*> 到 <B,°>的满同态。θ 是<A,*> 的零元,则 f(θ) 是<B,°>的零元。

4.4.2 同态、同构的性质

(7) 满同态保持幂等元

定理

假设 f 是 < A,* > 到 < B,° > 的满同态。并且 \times A是 < A,* > 的幂等元,则 $f(x) \in$ B 是 < B,° > 的幂等元。

4.4.2 同态、同构的性质

(8) 同构映射运算性质双向保持

定理

假设 f 是<A,*> 到 <B, $^{\circ}>$ 的同构映射。则 f-1是<B, $^{\circ}>$ 到 <A,*>的同构映射。

§ 4.5 同余关系与商代数

4.5.1 同余关系

定义

假设 < A,* > 是一个代数系统,E 是 A 上的等价关系。如果对 \forall X₁,X₂,Y₁,Y₂ \in A,当 X₁EX₂,Y₁Ey₂时,必有 (X₁*Y₁)E(X₂*Y₂),则 称 E 是 A 上的同余关系。

§ 4.5 同余关系与商代数

(2)

4. 5. 2 商代数

 $<A/E,^{\circ}>$

4.5.3 自然同态

定理:

假设 $<A,^*>$ 是一代数系统,E是A上的同余关系,而 $<A/E,^\circ>$ 是A关于 E的商代数系统。建立映射 $g:A\to A/E$,定义为:对 $\forall x\in A$,有 g(x)=[x],则 g 是 $<A,^*>$ 到 $<A/E,^\circ>$ 的满同态映射。

§ 4.5 同余关系与商代数

4.5.4 特殊的同余关系

假设两个代数系统 $< A, * > 5 < B, \Delta > 同$ 态,它们之间一定存在映射 $f: A \rightarrow B$ 。利用该映射在A 上建立一种关系 E_f ,定义为:对 $\forall x,y \in A$, $E_f = \{< x,y > | f(x) = f(y)\}$,即 $\forall x,y \in A$,如果 f(x) = f(y),就有 $x \in E_f$ y。

§ 4.5 同余关系与商代数

4.5.4 特殊的同余关系

定理:

设 f 是代数系统 < A,*> 到 < B, $\Delta>$ 的同态映射,则 A 上的关系 E_f 是一个同余关系。

4. 5. 5 同态基本定理

定理:

设 f 是 < A,* > 到 < B, Δ > 满同态映射, E_f 是由 f 确定的 A 上的同余关系, A/E_f 为 A 关于 E_f 的商代数。则 < A/ E_f , $^{\circ}$ > 与 < B, Δ > 同构。

定义:

设 <A,*>和 <B,°>为两个代数系统, <A \times B, $\Delta>$ 称为两代数系统的直积。其中 A \times B 是 A 和 B 的笛卡尔乘积, Δ 定义如下: 对任意的<X,y>,<u,v> \in A \times B, <X,y> $\Delta<$ u,v>=<X*u,y°v>.

定理:

假设 <A,*>和 <B, $^{\circ}>$ 为两个代数系统,且分别有单位元 e_A,e_B,在两代数系统的直积<A \times B, $\Delta>$ 中存在子代数系统 S,T,使得

 $<A, *> \cong <S, \Delta>, <B, °> \cong <T, \Delta>.$

Chapter 5

Group theory

§ 5.1 半群 (1)

5.1.1 半群的定义

定义:

设 < S,* > 是一个代数系统,如果 * 运算满足结合律,则称 < S,* > 是一 个半群。

§ 5.1 半群

(2)

例: 假设 $S = \{a,b,c\}$,在S上定义运算 Δ ,如运算表给出。证明 $< S, \Delta >$ 是半群。

Δ	a	b	c
a	a	b	С
b	a	b	c
c	a	b	c

§ 5.1 半群 (3)

5.1.1 半群的定义

定义:

假设 < S,* > 是一个半群,a \in S, n 是正整数,则 a^n 表示 n 个 a 的计算结果,即 a^n = $a^*a^*...*a$ 。 对任意的正整数 m,n, $a^m*a^n=a^{m+n}$, $(a^m)^n=a^{mn}$ 。 § 5.1 半群 (4)

5.1.2 交换半群

定义:

如果半群 <S,*> 中的 * 运算满足 交换律,则称 <S,*> 为交换半群。

在交换半群 <S,*> 中, 若a,b∈S, n 是任意正整数,则(a*b)ⁿ = aⁿ * bⁿ § 5.1 半群

(5)

5.1.3 独异点(含幺半群)

定义:

假设 <S,*> 是一个半群,如果 <S,*> 中有单位元,则称 <S,*> 是独异点,或含 幺半群。 § 5.1 半群 (6)

5.1.3 独异点(含幺半群)

定理:

假设 <S,*> 是独异点,如果a,b∈S, 并且 a,b 有逆元 a-1,b-1存在,则:

- $(1) (a^{-1})^{-1} = a;$
- $(2) (a*b)^{-1} = b^{-1} * a^{-1}$.

§ 5.1 半群

(7)

5.1.4 子半群

定义:

假设 < S,* > 是一个半群,若 T \subseteq S, 且在 *运算下也构成半群,则称 < T,* > 是 < S,* > 的子半群。 假设A={a,b}, <P(A),∩>是一个含幺半群。

若B={a} 则P(B)⊆P(A) 列里<P(B),(∩> 构成半群, 是 <P(A),(∩>的子 半群。

	\cap	Ø	{a}	{b}	{a,b}
	\boxtimes	Ø	Ø	Ø	Ø
_	{a}	Ø	{a}	Ø	{a}
	{b}	Ø	Ø	{b}	{b}
	{a,b}	Ø	{a}	{b}	{a,b}

(9)

§ 5.1 半群

5.1.4 子半群

定义:

设 <S,*> 是含幺半群,若 <T,*> 是它的子半群,并且 <S,*> 的单位元 e 也是 <T,*>单位元,则称 <T,*>是 <S,*> 的子含幺半群。

§ 5.1 半群

(10)

例: 设<S,*>是可交换的含幺半群, $T=\{a|a\in S, La*a=a\}, 则<math><T,*>$ 是 <S,*>的子含幺半群。

§ 5.1 半群

例: 设<A,*>是一半群,对任意的a, $b \in A$,如果有 $a \ne b$ 必有 $a * b \ne b * a$ 。

证明:

- (1) 对任意的a∈A, 有a*a = a;
- (2) 对任意的a,b∈A,有a*b*a = a;
- (3) 对任意的a,b,c∈A,有a*b*c = a*c。

5. 2. 1 群的基本概念

定义:

设 <G,*> 是一代数系统,如果满足以下几点:

- (1) 运算是可结合的;
- (2) 存在单位元 e;
- (3) 对任意元素 a 都存在逆元 a-1; 则称 <G,*> 是一个群。

例:假设R={0,60,120,180,240,300}表示平面几何上图形绕形心顺时针旋转的角度集合。*是定义在R上的运算。定义如下:对任意的a,b∈R,a*b表示图形顺时针旋转a角度,再顺时针旋转b角度得到的总旋转度数。并规定旋转360度等于原来的状态,即该运算是模360的。整个运算可以用运算表表示。

(3)

*	0	60	120	180	240	300
0	0	60	120	180	240	300
60	60	120	180	240	300	0
120	120	180	240	300	0	60
180	180	240	300	0	60	120
240	240	300	0	60	120	180
300	300	0	60	120	180	240

(4)

5. 2. 1 群的基本概念

一个群如果运算满足交换律,则称该群为交换群,或Abel群。

5.2.2 群的性质

- (1) 任何阶大于 1 的群都没有零元。
- (2) 设 < G,* > 是群,则 G 中消去律成立。
- (3) 设 < G,* > 是群,单位元是 G 中的唯一一等幂元。

5.2.2 群的性质

- (4) 设<G,*>,<H,∆>是群,f是 G 到 H 的同态,若 e 为<G,*>的单位元,则 f(e) 是
 <H,∆> 的单位元,并且对任意 a∈G,有f(a-1)= f(a)-1。
- (5) 设<G,*>是群,<H,△>是任意代数系统,若 存在 G 到 H 的满同态映射,则<H,△>必是群。

5.2.3 半群与群

- (1) 假设<G,*>是半群,并且
 - ① <G,*>中有一左单位元 e,使得对任意的 a∈G,有 e * a = a;
 - ② <G,*>中任意元素 a 都有"左逆元"a-1, 使得 a-1 * a = e。

则 <G,*> 是群。

5.2.3 半群与群

- (2) 假设 <G,*> 是半群,对任意的 a,b∈G, 方程 a*x = b, y*a = b 都在 G 中有解。则 <G,*> 是群。
- (3) 有限半群,如果消去律成立,则必为群。

5. 2. 4 有限群的性质

定理:

设 <G,*> 是一个 n 阶有限群,它 的运算表中的每一行(每一列)都是 G 中元素的一个全排列。

(10)

5. 2. 4 有限群的性质

*	e	
e	e	

*	e	a	
e	e	a	
a	a	e	

*	e	a	b
e	e	a	b
a	a	b	e
b	b	e	a

(11)

5. 2. 4 有限群的性质

*	e	a	b	c	*	e	a	b	c	*	e	a	b	c
e	e	a	b	c	e	e	a	b	c	e	e	a	b	С
a	a	e	c	b	a	a	e	c	b	a	a	b	c	e
	b	c	e	a	b	b	c		e		b		e	
c	c	b	a	e	С	c	b	e	a	c	c	e	a	b

(12)

例: 假设 < G,* > 是一个二阶群,则 < G×G,* > 是一个Klein群。

*	<e,e></e,e>	<e,a></e,a>	<a,e></a,e>	<a,a></a,a>
<e,e></e,e>	<e,e></e,e>	<e,a></e,a>	<a,e></a,e>	<a,a></a,a>
<e,a></e,a>	<e,a></e,a>	<e,e></e,e>	<a,a></a,a>	<a,e></a,e>
<a,e></a,e>	<a,e></a,e>	<a,a></a,a>	<e,e></e,e>	<e,a></e,a>
<a,a></a,a>	<a,a></a,a>	<a,e></a,e>	<e,a></e,a>	<e,e></e,e>

5.3.1 子群

定义:

设 < G,*> 是一个群,非空集合 $H \subseteq G$ 。如果 H 在 G 的运算下也构成 群,则称 < H,*> 是 < G,*> 的子群。

(2)

5.3.1 子群

定理:

设 <H,*> 是 <G,*> 的子群,则

- (1) <H,*> 的单位元 e_H 一定是 <G,*> 的单位元,即 $e_H = e_G$ 。
- (2) 对 a∈H, a 在 H 中的逆元 a', 一定是 a 在 G 中的逆元。

5.3.2 由子集构成子群的条件

- (1) 设 H 是群 < G,* > 中 G 的非空子 集,则 H构成 < G,* > 子群的充要条 件是:
 - ① 对 ∀a,b∈H, 有 a*b∈H;
 - ② 对 ∀a∈H, 有a⁻¹∈H。

5.3.2 由子集构成子群的条件

(2) 推论

假设 < G,* > 是群, H是 G 的非空子集,则 < H,* > 是 < G,* > 子群的充要条件是:

对 ∀a,b∈H,有 a*b⁻¹∈H。

- 5.3.2 由子集构成子群的条件
 - (3) 假设 <G,* > 是一个群,H是 G 的非空有限子集,则 <H,* > 是 <G,* > 子群的充要条件是: 对 ∀a,b∈H,有 a*b∈H。

(7)

5.3.3 元素的周期

(1) 群中元素的幂运算

```
假设 <G,*>是一个群,a∈G。
则 a<sup>0</sup> = e; a<sup>i+1</sup> = a<sup>i</sup> * a;
a<sup>-i</sup> = (a<sup>-1</sup>)<sup>i</sup> (i ≥ 0);
a<sup>m</sup> * a<sup>n</sup> = a<sup>m+n</sup>;
(a<sup>m</sup>)<sup>n</sup> = a<sup>mn</sup> (m,n为整数)。
```

5.3.3 元素的周期

(2) 元素的周期

定义: 设<G,*>是一个群, $a \in$ G。若存在正整数 n,使得 $a^n = e$,则将满足该条件的最小正整数 n 称为元素 a 的周期或阶。若这样的 n 不存在,则称元素 a 的周期无限。元素 a 的周期记为: |a|。

(8)

例3:	<z<sub>4,+₄>是一个群,</z<sub>
其中	
$Z_{\Lambda} =$	{[0],[1],[2],[3]},

其运算表如右图。

$$[0] = [0]$$
 $|[0]| = 1$

$$[1]^4 = [0]$$
 $|[1]| = 4$

$$[2]^2 = [0]$$
 $|[2]| = 2$

$$[3]^4 = [0]$$
 $|[3]| = 4$

+4	[0]	[1]	[2]	[3]
[0]	[0]	[1]	[2]	[3]
[1]	[1]	[2]	[3]	[0]
[2]	[2]	[3]	[0]	[1]
[3]	[3]	[0]	[1]	[2]

- 5.3.3 元素的周期
 - (3) 元素周期的性质

设<G,*>是一个群, a∈G。

- ① a 的周期等于 a 生成的循环子群(a)的阶。
- $\mathbb{P} |a| = |(a)|;$
- ② 若 a 的周期为 n, 则 $a^{m} = e$ 的充分必要条件是 n|m。

(10)

- 5.3.3 元素的周期
 - (3) 元素周期的性质

推论:

设 < G,* > 是一个群, a∈G。若 a 的周期为 n,则

$$(a) = \{a^0, a^1, \dots, a^{n-1}\}.$$

5.4.1 定义

设 < G,*> 是一个群,若在 G 中存在 一个元素 a,使得 G 中任意元素都由 a 的幂组成,即 G = $\{a^i \mid i \in Z\}$,则称该群为循环群,元素 a 称为循环群的生成元。

§ 5.4 循环群

(2)

5.4.2 循环群的性质

- (1) 设 (G, *> 是一个循环群。
 - ① 若 <G,*> 是 n 阶有限群,则

$$< G, * > \cong < Z_n, +_n >;$$

② 若 <G,*> 是无限群,则

$$< G, * > \cong < Z, + > ...$$

§ 5.4 循环群

(3)

- 5.4.2 循环群的性质
 - (2) 循环群的子群必为循环群
 - (3)设⟨G,*⟩是 n 阶循环群, m 是正整数, 并且 m|n, 则 G 中存在唯一一个m 阶子群。

§ 5.4 循环群

(4)

5.4.2 循环群的性质

例如: <Z₄,+₄>是一个

群, 其中

Z₄ = { [0], [1], [2], [3] }, 其运算表如右图。

[1]、[3] 是生成元。

+4	[0]	[1]	[2]	[3]
[0]	[0]	[1]	[2]	[3]
[1]	[1]	[2]	[3]	[0]
[2]	[2]	[3]	[0]	[1]
[3]	[3]	[0]	[1]	[2]

(1)

5.5.1 置换及其运算

(1)有限集 S 到其自身的双射称为 S 上的一个置换。当 |S| = n 时, S 上的置换称为 n 次置换。

例如: S= {a, b, c, d} 并且f(a) = b, f(b) = c, f(c) = d, f(d) = a

$$f = \begin{pmatrix} a & b & c & d \\ f(a) & f(b) & f(c) & f(d) \end{pmatrix} = \begin{pmatrix} a & b & c & d \\ b & c & d & a \end{pmatrix}$$

§ 5.5 置換群

(2)

5.5.1 置换及其运算

$$f_1 = \begin{pmatrix} a & b & c & d \\ b & c & d & a \end{pmatrix} \qquad f_2 = \begin{pmatrix} a & b & c & d \\ c & d & b & a \end{pmatrix}$$

$$f_1 \circ f_2 = \begin{pmatrix} a & b & c & d \\ b & c & d & a \end{pmatrix} \circ \begin{pmatrix} a & b & c & d \\ c & d & b & a \end{pmatrix} = \begin{pmatrix} a & b & c & d \\ d & a & c & b \end{pmatrix}$$

§ 5.5 置換群

(3)

5.5.1 置换及其运算

$$f_1 = \begin{pmatrix} a & b & c & d \\ b & c & d & a \end{pmatrix}$$

$$f_1 = \begin{pmatrix} a & b & c & d \\ b & c & d & a \end{pmatrix} \qquad f_2 = \begin{pmatrix} a & b & c & d \\ c & d & b & a \end{pmatrix}$$

$$f_1^{-1} = \begin{pmatrix} a & b & c & d \\ d & a & b & c \end{pmatrix}$$

$$f_1^{-1} = \begin{pmatrix} a & b & c & d \\ d & a & b & c \end{pmatrix} \qquad f_2^{-1} = \begin{pmatrix} a & b & c & d \\ d & c & a & b \end{pmatrix}$$

(4)

5.5.1 置换及其运算

(2) 定义:设 S 上有如下置换

$$f = \begin{pmatrix} a_1 & a_2 & \dots & a_{i-1} & a_i & a_{i+1} & \dots & a_n \\ a_2 & a_3 & \dots & a_i & a_1 & a_{i+1} & \dots & a_n \end{pmatrix}$$

称该置换为循环置换,记为 $(a_1,a_2,...,a_i)$, i 为循环长度。当i=2 时称为对换。单位置换,即恒等映射也视为循环置换,记为(1)或(n)。

(5)

5.5.1 置换及其运算

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4 \end{pmatrix} = (2,3);$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix} = (1,3,4)$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} = (1) = (4)$$

(6)

5.5.2 置换群

(1) 定义:

 $称 < S_n,^{\circ} > 为 n 次对称群,而 < S_n,^{\circ} > 的任意子群称为 n 次置换群。$

5.5.2 置换群

例1: 假设 $S = \{1,2,3\}$,写出 S 的 3 次对称群和所有的 3 次置换群。

解: $S_3 = \{f_1, f_2, f_3, f_4, f_5, f_6\}$,并且 $f_1 = (1), f_2 = (1, 2), f_3 = (1, 3), f_4 = (2, 3),$ $f_5 = (1, 2, 3), f_6 = (1, 3, 2)$

$$f_{1} = (1) = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \qquad f_{2} = (1,2) = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix},$$

$$f_{3} = (1,3) = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \qquad f_{4} = (2,3) = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix},$$

$$f_{5} = (1,2,3) = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, f_{6} = (1,3,2) = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

0	f_1	f_2	f_3	f_4	f_5	f_6
\mathbf{f}_1	f_1	f_2	f_3	f_4	f_5	f_6
f_2	f ₂	\mathbf{f}_1	f_6	f_5	f_4	f_3
f_3	f ₃	f_5	f_1	f_6	f_2	f_4
f_4	f_4	f_6	f_5	f_1	f_3	f_2
f_5	f_5	f_3	f_4	f_2	f_6	f_1
f_6	f_6	f_4	f_2	f_3	f_1	f_5

(8)

5.5.2 置换群

(2) 性质:

任意 n 阶群必同构于一个 n 次置换群。

例2: 给定一个正四边形, 如图所示。四个顶点的集 合为 S={1,2,3,4}。

5.6.1 左同余关系(左陪集关系)

定义:

设<G,*>是一个群,<H,*>是其子群。利用 H 在 G 上定义关系:

 $R_{H} = \{ \langle a,b \rangle | a,b \in G,b^{-1}*a \in H \}$ $R'_{H} = \{ \langle a,b \rangle | a,b \in G,a*b^{-1} \in H \}$

则称 R_H 为 G 上的模 H 左同余关系(左陪集关系); R'_H为 G 上的模 H 右同余关系(右陪集关系)。 § 5.6 陪集

(2)

5.6.1 左同余关系(左陪集关系)

定理:

设 <H,*> 是 <G,*> 的一个子群,则 G 中模 H 左同余关系是等价关系。

§ 5.6 陪集 (3)

5.6.2 左陪集 定义:

设 <H,*> 是 <G,*> 的一个子群,则 $a \in G$ 为代表元的模 H 左同余关系的等价 类 $[a]_{R_H} = \{a*h|h \in H\}$,称为 H 在 G 内 由 a 确定的左陪集。简记为: $aH = [a]_{R_H}$ 。

§ 5.6 陪集

(4)

5.6.2 左陪集

定理:

设 <H,*> 是 <G,*> 的一个子群,则:

- (1) eH = H;
- (2) 对 $\forall a,b \in H$, $aH = bH \Leftrightarrow b^{-1}*a \in H$
- (3) 对 $\forall a \in H$, $aH = H \Leftrightarrow a \in H$

5.6.2 左陪集

例: 设< Z_6 , $+_6$ >是一个群, Z_6 = {[0],[1],[2],[3],[4],[5]}, 试写出< Z_6 , $+_6$ >中每个子群及相应的左陪集。

			•					
	+	[0]	[1]	[2]	[3]	[4]	[5]	我 . 7
	[0]	[0]	[1]	[2]	[3]	[4]	[5]	群 < Z ₆ , + ₆ > 的子群:
	[1]	[1]	[2]	[3]	[4]	[5]	[0]	<{[0]},+ ₆ >
	[2]	[2]	[3]	[4]	[5]	[0]	[1]	<{[0][3]},+ ₆ >
	[3]	[3]	[4]	[5]	[0]	[1]	[2]	<{[0][2][4]},+ ₆ >
	[4]	[4]	[5]	[0]	[1]	[2]	[3]	<z<sub>6,+₆></z<sub>
2015	[5]	[5]	[0]	[1]	[2]	[3]	[4]	

```
子群: <{[0]},+6>=<H1,+6>确定的左陪集
[0]H_1 = \{[0]\}, [1]H_1 = \{[1]\}, ..., [5]H_1 = \{[5]\}
子群: <{[0],[3]},+6>=<H2,+6>确定的左陪集
 [0]H_2 = \{[0],[3]\} = [3]H_2 [1]H_2 = \{[1],[4]\} = [4]H_2
 [2]H_2 = \{ [2], [5] \} = [5]H_2
子群: <{[0],[2],[4]},+6>=<H3,+6>确定的左陪集
[0]H_3 = \{[0], [2], [4]\} = [2]H_3 = [4]H_3
[1]H_2 = \{[1], [3], [5]\} = [3]H_3 = [5]H_2
```

5.6.3 左商集和右商集

定义:

设 $<H,^*>$ 是 $<G,^*>$ 的一个子群,由 H 所确定的 G 上所有元素的左陪集构成的集合称为 G 对 H 的左商集,记为: $S_L=\{ aH | a \in G \}$; 所有右陪集构成的集合称为 G 对 H 的右商集,记为: $S_R=\{ Ha | a \in G \}$ 。

```
<\{[0]\}, +_6>, H_1=\{[0]\},
   S_L = \{ [0]H_1, [1]H_1, [2]H_1, [3]H_1, [4]H_1, [5]H_1 \}
   S_R = \{H_1[0], H_1[1], H_1[2], H_1[3], H_1[4], H_1[5]\}
<\{[0],[3]\},+_6>,H_2=\{[0],[3]\},
   S_1 = \{ [0]H_2, [1]H_2, [2]H_2 \}
   S_R = \{H_2[0], H_2[1], H_2[2]\}
   SI与SR等势
```

§ 5.6 陪集 (9)

5.6.3 左商集和右商集

定理:

设 $<H,^*>$ 是任意群 $<G,^*>$ 的子群,则 G 关于 H 的左、右商集必等势。 定义映射 $f:S_L\to S_R$, 对 $\forall a\in G$, $f(aH)=Ha^{-1}$ § 5.6 陪集

(10)

5.6.3 左商集和右商集

定理:

设 <H,*> 是群 <G,*> 的子群, H 的任意左陪集(右陪集)与 H 等势。

§ 5.6 陪集

(11)

5.6.3 左商集和右商集

定义:

设 <H,*> 是群 <G,*> 的子群, S_L 的基数称为 H 在G 内的指数。记为: $[G:H]=|S_L|$ 。

§ 5.6 陪集 (12)

5. 6. 4 Lagrange 定理

定理:

假设 <G,*> 是有限群, <H,*> 是 <G, *> 的子群,则子群(H)的阶必 整除群(G)的阶,并且 |G|=[G:H]|H|。 § 5.6 陪集

(13)

- 5.6.4 Lagrange 定理
- (1)任何素数阶的群不可能有非平凡的子群。
- (2)素数阶的群必为循环群。
- (3) 假设<G,*>是 n 阶有限群,则对 ∀a∈G,|a||n。
- (4) 假设<G,*>是 n 阶有限群,则对 ∀a∈G,aⁿ = e。

§ 5.7 正规子群

5. 7. 1 正规子群的定义

设 <H,*> 是群 <G,*> 的子群,如果对 ∀a∈G 有 aH=Ha,则称 <H,*> 是<G,*> 的正规子群(不变子群)。

§ 5.7 正规子群

(2)

例: 假设 S={1,2,3},S₃={f₁,f₂,...,f₆}

$$f_{1} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, f_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$f_{3} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, f_{4} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

$$f_{5} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, f_{6} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

0	_1	f_2	A	-		
	f_1	f_2	f_3	f_4	f_5	f_6
f_2	f_2	f_1	f_6	f_5	f_4	f_3
f_3	f_3	f_5	f_1	f_6	f_2	f_4
f_4	f_4	f_6	f_5	f_1	f_3	f_2
f_5	f_5	f_3	f_4	f_2	f_6	f_1
f_6	f_6	f_4	f_2	f_3	f_1	f_5

$$f_{1} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} f_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} f_{3} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} f_{5} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} f_{6} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} f_{6} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} f_{6} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

$$= \langle \{f_{1}, f_{3}\}, o \rangle, \langle \{f_{1}, f_{2}\}, o \rangle, \langle \{f_{1}, f_{4}\}, o \rangle, \langle \{f_{1}, f_{3}\}, o \rangle, \langle \{f_{1}, f_{5}\}, o \rangle, \langle \{f_{1}, f_{5$$

$$f_{1}\{f_{1},f_{2}\} = \{f_{1},f_{2}\} = f_{2}\{f_{1},f_{2}\}, \{f_{1},f_{2}\}f_{1} = \{f_{1},f_{2}\} = \{f_{1},f_{2}\}f_{2}$$

$$f_{3}\{f_{1},f_{2}\} = \{f_{3},f_{5}\} = f_{5}\{f_{1},f_{2}\}, \{f_{1},f_{2}\}f_{3} = \{f_{3},f_{6}\} = \{f_{1},f_{2}\}f_{6}$$

$$f_{4}\{f_{1},f_{2}\} = \{f_{4},f_{6}\} = f_{6}\{f_{1},f_{2}\}, \{f_{1},f_{2}\}f_{4} = \{f_{4},f_{5}\} = \{f_{1},f_{2}\}f_{5}$$

5.7.2 判定正规子群的条件

定理:

设 <H,*>是群<G,*>的一个子群,则以下各条件等价。

- (1) 对∀a∈G, aH=Ha
- (2) 对∀a∈G,h∈H,必存在h'∈H,使 h*a=a*h'
- (3) 对∀a∈G,h∈H,有 a⁻¹*h*a ∈H。

5.7.3 商群

设<H,*>是群<G,*>的一个正规子群。

则商集为: G/H={aH|a∈G}={Ha|a∈G}

在商集G/H上定义运算△如下:

对∀aH, bH∈G/H, aH Δ bH = (a*b)H 则 < G/H, Δ > 构成商群。

§ 5.7 正规子群

5.7.3 商群

例: 三次置换群< $\{f_1,f_5,f_6\}$, o>所产生的商集 $S_3/H_3=\{f_1H_3,f_2H_3\}$ 关于运算 Δ 构成一个商群。

$$f_1H_3 = \{f_1, f_5, f_6\} = f_5H_3 = f_6H_3$$

 $f_2H_3 = \{f_2, f_3, f_4\} = f_3H_3 = f_4H_3$

§ 5.7 正规子群

(7)

5.7.3 商群

在S3/H3上所定义的运算如下所示:

对任意的aH,bH∈ S₃/H₃, aHΔbH=(a°b)H

运算定义如右表所示:

Δ	$\int f_1 H_3$	f_2H_3
$\overline{f_1H_3}$	f_1H_3	f_2H_3
f_2H_3	$\int f_2H_3$	f_1H_3

§ 5.7 正规子群

5.7.4 子集的乘积

(1) 定义

假设 < G,* > 是一个群, A,B 是 G的子集,集合

{a*b| a∈A,b∈B}或者{ab| a∈A,b∈B} 称为A,B的乘积,记为A*B或AB。

§ 5.7 正规子群

(9)

- 5.7.4 子集的乘积
 - (2) 性质
 - (1) 子集的乘积满足结合律。即 (A*B)*C=A*(B*C)
 - (II)在子集的运算下,任何子群都为幂等元,即HH=H。

(10)

§ 5.7 正规子群

5.7.4 子集的乘积

定理:

设<H,*>是群<G,*>的正规子群,则对∀a,b∈G, aH*bH=(a*b)H

Chapter 6

Ring and Fields

(1)

§ 6.1 定义及基本性质

6.1.1 环

假设 <A,★,*> 是一个代数系统,其中,★和*都是集合 A 上的二元运算,如果满足:

- (1) <A,★> 是交换群(Abel群);
- (2) <A,*> 是半群;
- (3) * 对★ 是可分配的;

则称 <A,★,*> 是一个环。

(2)

6.1.1 环

例: 试证明<Z,⊕,⊗>是环。

其中, Z是整数集合, ⊕,⊗定义如下:

対 $\forall a,b\in Z$, $a\oplus b=a+b-1$

$$a \otimes b = a + b - a \times b$$

(3)

6.1.2 环的性质

假设 <A,★,*> 是一个环。

(1)因为<A,★>是Abel群,所以★满足结合律、交换律、消去律,<A,★>中有单位元。

(4)

6.1.2 环的性质

```
约定: a^{n} = a * a * ... * a = na;

対∀a,b∈A, (a * b)^{n} = na * nb;
a^{m+n} = a^{m} * a^{n} = (m+n)a;
a^{mn} = (a^{m})^{n} = n(ma).
```

(5)

6.1.2 环的性质

- (2) 假设 e 是<A,★>的单位元,对∀a,b,c∈A有:
 - ① e * a = a * e = e
 - ② $a * b^{-1} = a^{-1} * b = (a*b)^{-1}$
 - $3 a^{-1} * b^{-1} = a * b$
 - $(4) a^*(b \star c^{-1}) = (a^*b) \star (a^*c)^{-1}$
 - \bigcirc (b★ c⁻¹) * a = (b*a)★(c*a)⁻¹

- 6.1.3 由 * 运算确定的几种环
- (1) 在环 <A,★,*>中,如果 <A,*>是含 幺半群,并且 e' 是单位元,则称 e' 为环的 单位元。这时称 A 为有单位元的环 (有 1 环)。如果元素 a 在 <A,*>中有逆元,则 在含有单位元的环中,该元素的逆也称为环 中元素的逆。

- 6.1.3 由 * 运算确定的几种环
- (2)如果环中只含有一个元素,此时该元素 应该是 <A,★> 中的单位元,当然也是 <A,*> 中的单位元和零元,所以这种环称为 零环。
- (3) 设 <A,★,*> 是环, 当 <A,*> 是可交换 换半群时, 称 <A,★,*> 是可交换环。

6.2.1 零因子

设<A,*,*>是环,如果存在 $a,b\in A,$ 这里 $a \neq e, b \neq e,$ 但 a*b=e, 则称 $a \rightarrow A$ 中的左零因子, $b \rightarrow A$ 中的右零因子,f 大不零因子统称为零因子。 其中,f 是f 是f 以为

(2)

6.2.1 零因子

例如: <Z₄,+₄,×₄>是一个环。其中,+₄,×₄的运算表如下:

+4	[0]	[1]	[2]	[3]	\times_4	[0]	[1]	[2]	[3]
[0]	[0]	[1]	[2]	[3]	[0]	[0]	[0]	[0]	[0]
[1]	[1]	[2]	[3]	[0]	[1]	[0]	[1]	[2]	[3]
[2]	[2]	[3]	[0]	[1]	[2]	[0]	[2]	[0]	[2]
[3]	[3]	[0]	[1]	[2]	[3]	[0]	[3]	[2]	[1]

(3)

6.2.1 零因子

当一个环中不含有零因子时,称它为无零因子环。即对任意的 $a,b \in A$,若 a * b = e,则必有 a = e 或 b = e。

定理:

设 <A,★,*> 是无零因子的环,则*在A 上消去律成立。反之亦然。

6.2.2 整环

设 <A,★,*> 是无零因子环,并且是可交换的含幺环,则称它为整环。

即 <A, \star , $^*>$ 是环,并且 <A, $^*>$ 有单位元,*运算可交换,对 \forall a,b \in A,若 $a^*b=e$,则必有 a=e 或 b=e。

6.2.3 除环、域

设 <A,*,*> 是一个含幺环,其单位 元是e',如果 $A-\{e\}\neq\emptyset$,并且 $<A-\{e\},*>$ 是一个群,则称它为除环, 可交换的除环是域。

6.2.3 除环、域

域一定是整环,但整环不一定是域。

有限整环必为域。

假设 <A,*,*>是一个无零因子的有限环, 并且 $|A| \ge 2$,则<A,*,*>一定是除环。

Chapter 7

Lattices

and Boolean Algebra

§ 7.1 Lattices

(1)

7.1.1 Posets and Lattices

Exam 1: $S_{30} = \{1,2,3,5,6,10,15,30\}$

$$| = \{ \langle x, y \rangle \mid x, y \in S_{30} \text{ and } x | y \}$$

$$S = \{2,3,6\} \subseteq S_{30}$$

§ 7.1 Lattices

(2)

7.1.2 The concept of lattices and their properties

A partially ordered set in which every pair of elements has both a least upper bound and a greatest lower bound is called a lattices.

- ⊕,*运算性质:
 - (1) Idempotent laws (幂等律)
 - (2) Commutative laws (交换律)
 - (3) Associative laws (结合律)
 - (4) Absorptions (吸收律)

§ 7.2 Lattices - algebra system (1)

 $< P_{1} \le > \Leftrightarrow < P_{1} \oplus_{1} * >$

定理

假设< P, ≤ >是一个格,则对 \forall a,b∈P,有 a ≤ b ⇔ a*b=a ⇔ a⊕b=b。

引理

 $设 < P, \oplus, *> 是一个代数系统,如果运算 <math>\oplus$, *满足等幂、结合、交换、吸收律,那么 $a * b = a \Leftrightarrow a \oplus b = b$ 。

§ 7.2 Lattices - algebra system (2)

定理

假设<P, \oplus ,*>是一个代数系统,其中的运算 \oplus ,*满足等幂、结合、交换、吸收律,定义 P 上的关系为:对 \forall a,b \in P,a \leq b \Leftrightarrow a * b = a,则 \leq 是偏序关系,并且对 \forall a,b \in P,a * b 和 a \oplus b 分别表示为 a,b 在<P, \leq >中的最大下界和最小上界,从而,<P, \leq >是一个格。

§ 7.2 Lattices - algebra system (3)

定义

设<P,⊕,*>是一个代数系统,如果运算⊕,*满足等幂、结合、交换、吸收律,那么<P,⊕,*>就是一个格。

§ 7.3 Several different types of lattices (1)

1) Complete lattice

A complete lattice is a partially ordered set in which all subsets have both a supremum and an infimum.

§ 7.3 Several different types of lattices (2)

2 Bounded lattice

A bounded lattice is a lattice $< P, \le >$ and $\exists a,b \in P$ satisfy the following:

- for all x∈P , a≤x, that a is called the lower bound;
- 2. for all x∈P , x≤b, that b is called the upper bound.

§ 7.3 Several different types of lattices (3)

③ Complemented lattice

A complemented lattice is a bounded lattice (that is it has a least element 0 and a greatest element 1), in which each element x has a complement.

§ 7.3 Several different types of lattices (4)

4 Distributive lattice

A lattice is said to be distributive if it satisfies either (and therefore both) of the distributive laws:

$$a\oplus(b * c) = (a \oplus b) * (a \oplus c)$$

$$a^*(b \oplus c) = (a * b) \oplus (a * c)$$

§ 7.3 Several different types of lattices (5)

5 Modular lattice

A modular lattice P is a lattice that satisfies the following self-dual condition: Modular law

a ≤ c implies

$$a \oplus (b * c) = (a \oplus b) * c$$

for all $a,b,c \in P$.

Boolean lattice

A Boolean lattice B is a distributive lattice in which for each element $x \in B$ there exists a complement $x' \in B$.

§ 7.5 Boolean expressions

(1)

Boolean expressions

- 定义: 假设 B 是一个布尔代数, $X_1, X_2, ..., X_n$ 是 B 上的变量,B上由 $X_1, X_2, ..., X_n$ 生成的布尔表达式归纳定义如下:
- (1) B中的元素是B上由X₁,X₂,...,X_n生成的布尔表达式;
- (2) B上任意变量X_i (i=1,2,...,n) 是B上由X₁,X₂,...,X_n生成的布尔表达式;
- (3)如果α, β是B上由 $x_1, x_2, ..., x_n$ 生成的布尔表达式,则 α θ β, α*β, α'(α的补元)是B上由 $x_1, x_2, ..., x_n$ 生成的 布尔表达式:
- (4)只有通过有限次使用(1),(2),(3)得到的符号串是B上由 X₁,X₂,...,X_n生成的布尔表达式。