DA_ASSIGNMENT-4 TEAM ID - PNT2022TMID54247

Team Members: Jagadeesh R(TL), Karthik K(TM-1), Hariharan C(TM-2), Deepak Raj S(TM-3).

1. Download the dataset.

Importing libraries

```
import numpy as pn
import pandas as dp
import matplotlib.pyplot as tlp
%matplotlib inline
import seaborn as ss
```

2.loading the dataset

```
from google.colab import files
upload = files.upload()
```

```
a = dp.read_csv('abalone.csv')
```

a.head()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

```
a['age'] = a['Rings']+1.5
a = a.drop('Rings',axis = 1)
```

3. Performing Visualizations.

1.univariate Analysis.

```
ss.kdeplot(a['Diameter'])
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f36f75625d0>

2.Bi-Variate Analysis

ss.boxplot(x=a.Diameter,y=a.Length,palette='rainbow')

<matplotlib.axes._subplots.AxesSubplot at 0x7f36ff791dd0>

3. Multi-Variate Analysis

ss.pairplot(a)

4. Perform descriptive statistics on the dataset.

a.isnull()

```
a.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 4177 entries, 0 to 4176
    Data columns (total 9 columns):
                         Non-Null Count Dtype
         Column
                        4177 non-null object
     0
        Sex
     1 Length
                       4177 non-null float64
     2 Diameter
                       4177 non-null float64
                       4177 non-null float64
     3 Height
     4 Whole weight 4177 non-null float64
         Shucked weight 4177 non-null float64
     5
         Viscera weight 4177 non-null float64
     6
     7
                         4177 non-null
                                        float64
         Shell weight
         age
                         4177 non-null
                                        float64
    dtypes: float64(8), object(1)
    memory usage: 293.8+ KB
a['Diameter'].describe()
    count
             4177.000000
    mean
                0.407881
    std
                0.099240
    min
                0.055000
    25%
                0.350000
    50%
                0.425000
    75%
                0.480000
    max
                0.650000
    Name: Diameter, dtype: float64
a['Sex'].value_counts()
         1528
    Μ
    Ι
         1342
         1307
    Name: Sex, dtype: int64
5. Check for Missing values and deal with them.
```

		Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight
	0	False	False	False	False	False	False	False	False
	1	False	False	False	False	False	False	False	Fals€
	2	False	False	False	False	False	False	False	Fals€
	3	False	False	False	False	False	False	False	Fals€
	4	False	False	False	False	False	False	False	Fals€
	4172	False	False	False	False	False	False	False	Fals€
4	4173	False	False	False	False	False	False	False	Fals€
4	4174	False	False	False	False	False	False	False	Fals€
4	4175	False	False	False	False	False	False	False	Fals€
•	4176	False	False	False	False	False	False	False	Fals€
4	177 ro	ws × 9 (columns						

a.isnull().sum()

tlp.grid(True)

0 Sex Length 0 Diameter 0 Height Whole weight 0 Shucked weight 0 Viscera weight 0 Shell weight 0 age 0 dtype: int64

6. Find the outliers and replace them outliers.

```
# outlier handling
a = dp.get_dummies(a)
dummy_a = a

var = 'Viscera weight'
tlp.scatter(x = a[var], y = a['age'])
```

```
30
      25
      20
a.drop(a[(a['Viscera weight'] > 0.5) &
           (a['age'] < 20)].index, inplace = True)</pre>
a.drop(a[(a['Viscera weight']<0.5) & (</pre>
a['age'] > 25)].index, inplace = True)
          0.0
                            0.3
                                 0.4
                                       0.5
                                                   0.7
                                             0.6
var = 'Shell weight'
tlp.scatter(x = a[var], y =a['age'])
tlp.grid(True)
```


DA_ASSIGNMENT-4 TEAM ID - PNT2022TMID54247

Team Members: Jagadeesh R(TL), Karthik K(TM-1), Hariharan C(TM-2), Deepak Raj S(TM-3).

```
var = 'Shucked weight'
tlp.scatter(x = a[var], y =a['age'])
tlp.grid(True)
```

```
20 15
```

```
var = 'Diameter'
tlp.scatter(x = a[var], y = a['age'])
tlp.grid(True)
```



```
var = 'Height'
tlp.scatter(x = a[var], y = a['age'])
tlp.grid(True)
```

```
var = 'Length'
tlp.scatter(x = a[var], y = a['age'])
tlp.grid(True)
```


7. Check for Categorical columns and perform encoding.

Encoding

```
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
print(a.Length.value_counts())
    0.550 93
    0.575 93
    0.625
          93
    0.580 92
    0.600 86
            . .
    0.755
           2
    0.220
            2
            1
    0.150
            1
    0.135
    0.760
            1
    Name: Length, Length: 126, dtype: int64
```

8. Spliting the data into dependent and independent variables.

```
x=a.iloc[:,:5]
x
```

	Length	Diameter	Height	Whole weight	Shucked weight
0	0.455	0.365	0.095	0.5140	0.2245
1	0.350	0.265	0.090	0.2255	0.0995
2	0.530	0.420	0.135	0.6770	0.2565
3	0.440	0.365	0.125	0.5160	0.2155
4	0.330	0.255	0.080	0.2050	0.0895
4172	0.565	0.450	0.165	0.8870	0.3700
4173	0.590	0.440	0.135	0.9660	0.4390
4174	0.600	0.475	0.205	1.1760	0.5255
4175	0.625	0.485	0.150	1.0945	0.5310
4176	0.710	0.555	0.195	1.9485	0.9455
	_				

4096 rows × 5 columns

```
y=a.iloc[:,:5]
y
```

	Length	Diameter	Height	Whole weight	Shucked weight
0	0.455	0.365	0.095	0.5140	0.2245
1	0.350	0.265	0.090	0.2255	0.0995
2	0.530	0.420	0.135	0.6770	0.2565
3	0.440	0.365	0.125	0.5160	0.2155
4	0.330	0.255	0.080	0.2050	0.0895
4172	0.565	0.450	0.165	0.8870	0.3700
4173	0.590	0.440	0.135	0.9660	0.4390
4174	0.600	0.475	0.205	1.1760	0.5255
4475	0.005	0 405	0 450	4 0045	0.5040

9. Scale the independent variables.

```
from sklearn.preprocessing import StandardScaler
ss=StandardScaler()
x_train=ss.fit_transform(x_train)

mlrpred=mlr.predict(x_test[0:9])
```

mlrpred

```
array([[0.41 , 0.31 , 0.125 , 0.3595, 0.1415],
        [0.585 , 0.435 , 0.14 , 0.6955, 0.3085],
        [0.575 , 0.43 , 0.13 , 0.7425, 0.2895],
        [0.67 , 0.525 , 0.165 , 1.6085, 0.682 ],
        [0.645 , 0.51 , 0.2 , 1.5675, 0.621 ],
        [0.7 , 0.535 , 0.16 , 1.7255, 0.63 ],
        [0.41 , 0.325 , 0.1 , 0.3245, 0.132 ],
        [0.58 , 0.425 , 0.15 , 0.844 , 0.3645],
        [0.465 , 0.375 , 0.135 , 0.6 , 0.2225]])
```

Double-click (or enter) to edit

10. Spliting the data into training and testing

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)
```

11. Building the model.

```
from sklearn.linear_model import LinearRegression
mlr=LinearRegression()
mlr.fit(x_train,y_train)
```

LinearRegression()

12. Training the model

13. Testing the model

x_test[0:5]

	Length	Diameter	Height	Whole weight	Shucked weight
3268	0.410	0.310	0.125	0.3595	0.1415
2668	0.585	0.435	0.140	0.6955	0.3085
3042	0.575	0.430	0.130	0.7425	0.2895
1040	0.670	0.525	0.165	1.6085	0.6820
184	0.645	0.510	0.200	1.5675	0.6210

y_test[0:5]

	Length	Diameter	Height	Whole weight	Shucked weight
3268	0.410	0.310	0.125	0.3595	0.1415
2668	0.585	0.435	0.140	0.6955	0.3085
3042	0.575	0.430	0.130	0.7425	0.2895
1040	0.670	0.525	0.165	1.6085	0.6820
184	0.645	0.510	0.200	1.5675	0.6210

14. Measure the performance using Metrics.

```
from sklearn.metrics import r2_score
r2_score(mlr.predict(x_test),y_test)
```

1.0

DA_ASSIGNMENT-4 TEAM ID - PNT2022TMID54247

Team Members: Jagadeesh R(TL), Karthik K(TM-1), Hariharan C(TM-2), Deepak Raj S(TM-3).

#-----

Colab paid products - Cancel contracts here

✓ 0s completed at 9:59 AM