Problem set 14 - Due: Monday, April 28

15.3. Prove Corollary 15.4

Remark. Corollary 15.4. The nonright angles of a small right triangle are accute

Proof. Assume a small triangle $\triangle ABC$, with $\angle ABC = 90$.

Extend the segment \overline{BC} to form exterior angle $\angle DBA$. Since $\angle ABC$ and $\angle DBA$ are supplementary, $\angle DBA = 180 - \angle ABC = 180 - 90 = 90$.

By theorem 15.3, $\angle DBA > \angle ACB$ and $\angle BAC$, which implies $\angle BAC$, $\angle ACB < 90$. Since $\underline{\angle ACB}$ and $\underline{\angle BAC}$ are the nonright angles and they have angle measure less than 90, the nonright angles of a small right triangle are therefore acute.

15.4. Prove Corollary 15.5 (Hint: Show that if M is the midpoint of the base \overline{BC} of isosceles triangle $\triangle ABC$, then $\triangle ABM$ and $\triangle ACM$ are both small right triangles)

Remark. Corollary 15.5. The base angles of an isosceles triangle whose congruent sides are $<\frac{\omega}{2}$ are acute.

Proof. Assume an isosceles triangle $\triangle ABC$, with congruent sides $<\frac{\omega}{2}$, let AB,AC be the congruent sides, so $\overline{AB} \cong \overline{AC} \implies AB = AC$.

Let M be the midpoint of \overline{BC} , call the line that contains $A, M \overleftrightarrow{AM}$. Since $A \in \overleftrightarrow{AM}$, $A \notin \overleftrightarrow{BC}$, and BA = BC, $\overrightarrow{AM} \perp \overrightarrow{BC}$ at M, so $\angle AMB = \angle AMC = 90$.

Since $AB, AC < \frac{\omega}{2}$, and B-M-C, Theorem 15.1 implies $AM < \frac{\omega}{2}$. Since B-M-C, we have BM + MC = BC. Since A, B, C noncollinear, $BC < \omega$. By definition of the midpoint M of the segment \overline{BC} , $BM = MC = \frac{1}{2}BC$, so BC = 2BM = 2BC. So,

$$\begin{split} BC < \omega \\ \Longrightarrow \ 2BM < \omega \\ \Longrightarrow \ BM < \frac{\omega}{2}. \end{split}$$

And,

$$BC < \omega$$

$$\implies 2MC < \omega$$

$$\implies MC < \frac{\omega}{2}.$$

So, $\triangle AMB$ and $\triangle AMC$ are both small.

Therefore, by Corollary 15.4, $\angle ABM < 90$, and $\angle ACM < 90$.

15.7. Show that if $\omega < \infty$, then for any triangle $\triangle ABC$,

$$AB + BC + CA < 2\omega$$
.

Hint: Apply the Triangle Inequality to $\triangle BCA^*$

Proof. Assume $\omega < \infty$, and the existence of triangle $\triangle ABC$.

Consider the triangle $\triangle BCA^*$, by the Triangle Inequality, we have

$$BA^* + CA^* > BC.$$

Note that by Theorem 9.1 A-B- $A^* \implies AB + BA^* = AA^* = \omega \implies BA^* = \omega - AB$, and similarly $CA^* = \omega - CA$. So,

$$BA^* + CA^* > BC$$

$$\implies \omega - BA + \omega - CA > BC$$

$$\therefore AB + BC + CA < 2\omega.$$

As desired.

16.2. Suppose that $\triangle ABC$ and $\triangle XYZ$ are two small triangles with $\angle A=\angle X$, AB=XY, and $\angle B<\angle Y$. Prove that $\angle C>\angle Z$

Proof. Assume that $\triangle ABC$ and $\triangle XYZ$ are two small triangles with $\angle A = \angle X$, AB = XY, and $\angle B < \angle Y$.

Consider the rays, $\overrightarrow{YZ}, \overrightarrow{YX}$ and the fan \overrightarrow{YZYX} (which exists since X, Y, Z noncollinear). By Theorem 11.6, there exists a ray $j \in \overrightarrow{YZYX}$ such that $\overrightarrow{YX}j = \angle B$, $\overrightarrow{YX}j$ must be in the wedge \overrightarrow{YZYX} since $\angle B < \angle Y = \overrightarrow{YZYX}$.

By the Crossbar Theorem, there exists a point $E \in j^0$ such that X-E-Z.

Notice that by Theorem 13.1 (ASA), we have congruence of triangles, specifically $\triangle ABC \cong \triangle XYE$ under the correspondence $ABC \leftrightarrow XYE$

Thus, $\angle C = \angle XEY$. Observe that $\angle XEY = \angle C$ is exterior to $\triangle EYZ$, thus $\angle XEY = \angle C > \angle EZY = \angle Z$. Thus, $\angle C > \angle Z$.

16.5. Prove Corollary 16.2

Remark. Corollary 16.2. The hypotenuse of a small right triangle is its longest side

Proof. Assume a small right triangle, call this triangle $\triangle ABC$, where $\angle B = 90$.

By Theorem 15.4, $\angle A$ and $\angle C < 90$, so $\angle B > \angle A$, and $\angle B > \angle C$. Thus, by Theorem 16.1 (comparison), CB < CA and AB < AC. Therefore, the hypotenuse \overline{AC} is the longest side.