Machine Learning Exercise Sheet 05

Linear Classification

1 Linear classification

Problem 1: We want to create a generative binary classification model for classifying *nonnegative* one-dimensional data. This means, that the labels are binary $(y \in \{0, 1\})$ and the samples are $x \in [0, \infty)$.

We place a uniform prior on y

$$p(y = 0) = p(y = 1) = \frac{1}{2}.$$

As our samples x are nonnegative, we use exponential distributions (and not Gaussians) as class conditionals:

$$p(x \mid y = 0) = \text{Expo}(x \mid \lambda_0)$$
 and $p(x \mid y = 1) = \text{Expo}(x \mid \lambda_1),$

where $\lambda_0 \neq \lambda_1$. Assume, that the parameters λ_0 and λ_1 are known and fixed.

- a) What is the name of the posterior distribution $p(y \mid x)$? You only need to provide the name of the distribution (e.g., "normal", "gamma", etc.), not estimate its parameters.
- b) What values of x are classified as class 1? (As usual, we assume that the classification decision is $y_{predicted} = \arg\max_k p(y=k\mid x)$)

Problem 2: Assume you have a linearly separable data set. What properties does the maximum likelihood solution for the decision boundary w of a linear regression model have? Assume that w includes the bias term.

What is the problem here and how do we prevent it?

Problem 3: Show that the softmax function is equivalent to a sigmoid in the 2-class case.

Problem 4: Which basis function $\phi(x_1, x_2)$ makes the data in the example below linearly separable (crosses in one class, circles in the other)?

In-class Exercises

2 Multi-Class Classification

Problem 5: Consider a generative classification model for C classes defined by prior class probabilities $p(y=c) = \pi_c$ and general class-conditional densities $p(\boldsymbol{x}|y=c,\boldsymbol{\theta}_c)$ where \boldsymbol{x} is the input feature vector and $\boldsymbol{\theta} = \{\boldsymbol{\theta}_c\}_{c=1}^C$ are further model parameters. Suppose we are given a training set $\mathcal{D} = \{(\boldsymbol{x}^{(n)}, y^{(n)})\}_{n=1}^N$ where $y^{(n)}$ is a binary target vector of length C that uses the 1-of-C(one-hot) encoding scheme, so that it has components $y_c^{(n)} = \delta_{ck}$ if pattern n is from class y = k. Assuming that the data points are iid, show that the maximum-likelihood solution for the prior probabilities is given by

$$\pi_c = \frac{N_c}{N}$$

where N_c is the number of data points assigned to class y = c.

Problem 6: Using the same classification model as in the previous question, now suppose that the class-conditional densities are given by Gaussian distributions with a shared covariance matrix, so that

$$p(x|y=c, \boldsymbol{\theta}_c) = p(x|\boldsymbol{\theta}_c) = \mathcal{N}(\boldsymbol{x} \mid \boldsymbol{\mu}_c, \boldsymbol{\Sigma}).$$

Show that the maximum likelihood solution for the mean of the Gaussian distribution for class C_c is given by

$$oldsymbol{\mu}_c = rac{1}{N_c} \sum_{\{n | oldsymbol{x}^{(n)} \in C_c\}} oldsymbol{x}^{(n)}$$

which represents the mean of those feature vectors assigned to class C_c .

Similarly, show that the maximum likelihood solution for the shared covariance matrix is given by

$$\mathbf{\Sigma} = \sum_{c=1}^{C} \frac{N_c}{N} \mathbf{S}_c$$

where

$$\mathbf{S}_c = rac{1}{N_c} \sum_{\{n | m{x}^{(n)} \in C_c\}} (m{x}^{(n)} - m{\mu}_c) (m{x}^{(n)} - m{\mu}_c)^T.$$

Thus Σ is given by a weighted average of the covariances of the data associated with each class, in which the weighting coefficients N_c/N are the prior probabilities of the classes.