МЕТОДЫ ВЕКТОРНОГО ПРЕДСТАВЛЕНИЯ ГЛУБОКИХ ГЕНЕРАТИВНЫХ МОДЕЛЕЙ

Мария Никитина

Антон Бишук

nikitina.mariia@phystech.edu

anton.bishuk@mail.ru

Олег Бахтеев

bakhteev(at)phystech.edu

15 мая 2025 г.

Аннотация

Увеличение времени и ресурсов, затрачиваемых на обучение больших моделей привели к появлению большого количества работ, направленных на поиск уже существующей обученной модели, подходящей под новую задачу. Множество исследований направлено на поиск пространства моделей-датасетов, с помощью которого можно отыскать уже существующую модель, хорошо подходящую под новую задачу. Однако, исследования проводятся в основном в области дискриминативных моделей. Эта работа направлена на поиск векторного представления генеративных моделей, описывающего статистические свойства датасетов, на которых они обучены. Таким образом с помощью такого пространства можно подбирать подходящую генеративную модель, используя привычные операции с векторами. Эксперименты проводятся на VAE и Autoencoder.

1 Введение

Пусть задан некоторый набор генеративных моделей, описывающий разные выборки/генеральные совокупности данных. Требуется предложить метод векторного представления этих моделей, который будет сохранять статистические свойства данных. С помощью такого представления можно облегчить поиск подходящей обученной модели без больших затрат времени и ресурсов на обучения. Также поиск по пространству генеративных моделей может быть применим для анализа качества работы разных архитектур на задаче генерации требуемых данных.

Векторное пространство должно отвечать следующим требованиям:

- 1. Расстояние между векторными представлениями моделей для близких выборок должно быть невелико (при условии, что сами модели хорошо их описывают);
- 2. Модели, обученные на композиции/смеси выборок должны учитывать свойства всех выборок, входящих в смесь.

Для выполнения данных требования и решения задачи в данной статье исследуются и сравниваются три варианта решения:

- 1. Один из возможных вариантов: сумма векторных представлений моделей, полученных по датасетам D_1 , D_2 должна приблизительно соответствовать векторному представлению датасета $D_1 + D_2$. Пример для итогового пространства в виде единичной сферы представлен на рис. 1;
- 2. Вместо использования евклидового расстояния на векторных представлениях, использовать иерархию;
- 3. Представить модель как граф и работать с пространством графов.

Рис. 1: Требуемое соотношение между моделями в векторном пространстве

2 Связанные работы

Существует большое количество работ, направленных на использование энкодера поверх других моделей. Но большинство из них используют дискриминативные модели. Например, энкодер и диффузия [5], кодирование модели NAS [1] или целый набор векторов из раздичных моделей [2].

Изучение представлений помогает понять закономерности в работе нейронных сетей. В [4] представлен метод SANE. Он обучает универсальные представления нейронных сетей, которые масштабируются для больших моделей различных архитектур и предназначенных для разных задач. Для решения SANE испрользует гиперпредставления для последовательной обработки подмножеств весов нейронной сети, что позволяет представить большие нейронные сети как набор токенов и перевести в пространство представления.

В данной работе большое внимание будет уделено кодированию модели с помощью сингулярных чисел её весов. Описание свойств сингулярных чисел в модели представлено в [3].

3 Вазимная информация модели и данных

Чтобы оценить возможность модели описывать данные, на которых она обучалась, необходимо оценить потери информации между исходными данными, весами модели при обучении подвыбоке и последующей векторизацией. Для оценки используется такая метрика, как совместная информация:

$$I(X;Y) = HY - H(Y \mid X).$$

Теорема 1. $X = \{\mathbf{x}_1, \dots, \mathbf{x}_n\} \in \mathbb{R}^{n \times d}$ – множество независимых векторов (пусть $\mathbf{x}_i \in \mathbb{R}^d \ u \ \mathbf{x}_i \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$).

 $X_1 \in \mathbb{R}^{m \times d}$ — его подмножество, формируемое путём независимого включения каждого вектора \mathbf{x}_i с вероятностью p.

AE – линейный автоэнкодер с весами $W \in \mathbb{R}^{k \times d}$. AE обучен на X_1 , то есть $W = W(X_1)$.

Тогда имеем следующие попарные взаимные информации:

1.
$$I(X; X_1) \approx np \cdot H(\mathbf{x}_i), \quad H(\mathbf{x}_i) = \frac{1}{2} \log \left((2\pi e)^d |\Sigma| \right);$$

2.
$$I(X_1; \mathbf{W}) = \frac{m}{2} \log \frac{|\mathbf{\Sigma}|}{|(\mathbf{I} - \mathbf{W}_2 \mathbf{W}_1) \mathbf{\Sigma} (\mathbf{I} - \mathbf{W}_2 \mathbf{W}_1)^T|}$$

3.
$$I(X_1; \mathbf{S}) \approx \frac{m}{4} \log \left((2\pi e)^k \prod_{i=1}^k \lambda_i^2 \right).$$

 \mathcal{A} оказательство. 1. Обозначим индикаторы включения $Z_i \sim$ Bernoulli(p), тогда $X_1 = \{\mathbf{x}_i \mid Z_i = 1\}$.

Поскольку X_1 однозначно определяется X и $Z = (Z_1, \ldots, Z_n)$, то:

$$H(X_1 | X) = H(Z | X) = H(Z),$$

так как Z не зависит от X (выбор подмножества случайный и независимый от значений векторов).

Таким образом:

$$I(X; X_1) = H(X_1) - H(Z).$$

Так как Z_i независимы и $Z_i \sim \text{Bernoulli}(p)$, то:

$$H(Z) = \sum_{i=1}^{n} H(Z_i) = nH_{\text{bin}}(p),$$

где $H_{\mathrm{bin}}(p) = -p \log p - (1-p) \log (1-p)$ – энтропия Бернулли.

Подмножество X_1 состоит из случайного числа $m = \sum_{i=1}^n Z_i$ векторов (где $m \sim \text{Binomial}(n,p)$), и для каждого фиксированного m векторы в X_1 — это m независимых векторов.

Таким образом, условная энтропия при фиксированном m:

$$H(X_1 \mid m) = m \cdot H(\mathbf{x}_i) = m \cdot \frac{1}{2} \log \left((2\pi e)^d |\Sigma| \right).$$

Тогда полная энтропия:

$$H(X_1) = \sum_{m=0}^{n} P(m) \cdot H(X_1 \mid m) + H(m),$$

где H(m) — это энтропия биномиального распределения:

$$H(m) = H_{\text{binomial}}(n, p).$$

Тогда:

$$H(X_1) = H(m) + \mathbb{E}[H(X_1 \mid m)] = H_{\text{binomial}}(n, p) + \mathbb{E}[m] \cdot H(\mathbf{x}_i).$$

Поскольку $\mathbb{E}[m] = np$, то:

$$H(X_1) = H_{\text{binomial}}(n, p) + np \cdot \frac{1}{2} \log \left((2\pi e)^d |\Sigma| \right).$$

Для взаимной информации получаем:

$$I(X; X_1) = H_{\text{binomial}}(n, p) + np \cdot \frac{1}{2} \log \left((2\pi e)^d |\Sigma| \right) - nH_{\text{bin}}(p).$$

При $n \to \infty$: $H_{\text{binomial}}(n, p) \approx nH_{\text{bin}}(p)$. Тогда:

$$I(X; X_1) \approx np \cdot \frac{1}{2} \log \left((2\pi e)^d |\Sigma| \right).$$

2. Автоэнкодер (линейный, без активаций):

Кодировщик: $\mathbf{z} = \mathbf{W}_1 \mathbf{x} + \mathbf{b}_1$

Декодировщик: $\hat{\mathbf{x}} = \mathbf{W}_2 \mathbf{z} + \mathbf{b}_2$

Выход автоэнкодера:

$$\hat{\mathbf{x}} = \mathbf{W}_2 \mathbf{W}_1 \mathbf{x} + \mathbf{W}_2 \mathbf{b}_1 + \mathbf{b}_2$$

Обозначим $\mathbf{A} = \mathbf{W}_2 \mathbf{W}_1, \, \mathbf{c} = \mathbf{W}_2 \mathbf{b}_1 + \mathbf{b}_2$. Тогда:

$$\hat{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{c}$$

Поскольку ${\bf x}$ гауссовский, а ${\bf \hat x}$ — его линейное преобразование, то:

$$\hat{\mathbf{x}} \sim \mathcal{N}(\mathbf{A}oldsymbol{\mu}_x + \mathbf{c}, \mathbf{A}oldsymbol{\Sigma}\mathbf{A}^T)$$

Ошибка восстановления:

$$\boldsymbol{\varepsilon} = \mathbf{x} - \hat{\mathbf{x}} = (\mathbf{I} - \mathbf{A})\mathbf{x} - \mathbf{c}$$

$$oldsymbol{arepsilon} oldsymbol{arepsilon} \sim \mathcal{N}\left((\mathbf{I} - \mathbf{A}) oldsymbol{\mu}_x - \mathbf{c}, (\mathbf{I} - \mathbf{A}) oldsymbol{\Sigma} (\mathbf{I} - \mathbf{A})^T
ight)$$

Взаимная информация между \mathbf{x} и весами $\mathbf{W} = (\mathbf{W}_1, \mathbf{W}_2)$:

$$I(\mathbf{x}; \mathbf{W}) = H(\mathbf{x}) - H(\mathbf{x}|\mathbf{W})$$

Для гауссовского вектора:

$$H(\mathbf{x}) = \frac{1}{2} \log \left((2\pi e)^d |\mathbf{\Sigma}| \right)$$

Условное распределение ${\bf x}$ при фиксированных ${\bf W}$ определяется ошибкой ${m \varepsilon}$:

$$H(\mathbf{x}|\mathbf{W}) = H(\boldsymbol{\varepsilon}) = \frac{1}{2}\log\left((2\pi e)^d|(\mathbf{I} - \mathbf{A})\boldsymbol{\Sigma}(\mathbf{I} - \mathbf{A})^T|\right)$$

Подставляем $H(\mathbf{x})$ и $H(\mathbf{x}|\mathbf{W})$:

$$I(\mathbf{x}; \mathbf{W}) = \frac{1}{2} \log \frac{|\mathbf{\Sigma}|}{|(\mathbf{I} - \mathbf{A})\mathbf{\Sigma}(\mathbf{I} - \mathbf{A})^T|}$$

где $\mathbf{A} = \mathbf{W}_2 \mathbf{W}_1$.

Если автоэнкодер обучен как РСА (т.е. $\mathbf{W}_1 = \mathbf{U}^T$, $\mathbf{W}_2 = \mathbf{U}$, где \mathbf{U} — матрица главных компонент), то:

$$\mathbf{A} = \mathbf{U}\mathbf{U}^T$$

Ковариация ошибки:

$$(\mathbf{I} - \mathbf{U}\mathbf{U}^T)\mathbf{\Sigma}(\mathbf{I} - \mathbf{U}\mathbf{U}^T)^T = \mathbf{\Sigma} - \mathbf{U}\mathbf{\Lambda}\mathbf{U}^T$$

где Λ — диагональная матрица собственных значений.

Тогда:

$$I(\mathbf{x}; \mathbf{W}) = \frac{1}{2} \log \frac{|\mathbf{\Sigma}|}{|\mathbf{\Sigma} - \mathbf{U}\mathbf{\Lambda}\mathbf{U}^T|}$$

Если $\mathbf{A} \approx \mathbf{I}$ (идеальное восстановление), то $|\mathbf{I} - \mathbf{A}| \approx 0$ и $I(\mathbf{x}; \mathbf{W}) \to \infty$. Если $\mathbf{A} \approx 0$ (автоэнкодер ничего не учит), то $I(\mathbf{x}; \mathbf{W}) \approx 0$.

Для линейного автоэнкодера и гауссовских данных взаимная информация (насколько веса модели \mathbf{W} уменьшают неопределённость в данных \mathbf{x}) вычисляется как:

$$I(\mathbf{x}; \mathbf{W}) = \frac{1}{2} \log \frac{|\mathbf{\Sigma}|}{|(\mathbf{I} - \mathbf{W}_2 \mathbf{W}_1) \mathbf{\Sigma} (\mathbf{I} - \mathbf{W}_2 \mathbf{W}_1)^T|}$$

3. Рассмотрим линейный автоэнкодер с гауссовскими входными данными $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Пусть веса кодировщика $\mathbf{W}_1 \in \mathbb{R}^{k \times d}$ и декодировщика $\mathbf{W}_2 \in \mathbb{R}^{d \times k}$ имеют сингулярные разложения:

$$\mathbf{W}_1 = \mathbf{U}_1 \mathbf{S}_1 \mathbf{V}_1^T, \quad \mathbf{W}_2 = \mathbf{U}_2 \mathbf{S}_2 \mathbf{V}_2^T,$$

где \mathbf{S}_1 и \mathbf{S}_2 — диагональные матрицы сингулярных чисел.

Сингулярные числа $\mathbf{s} = \{s_i\}$ весов $\mathbf{W} = (\mathbf{W}_1, \mathbf{W}_2)$ зависят от ковариации входных данных Σ , так как обучение автоэнкодера минимизирует:

$$\mathbb{E}\|\mathbf{x} - \mathbf{W}_2 \mathbf{W}_1 \mathbf{x}\|^2.$$

В оптимальном случае (аналог PCA), $\mathbf{W}_2\mathbf{W}_1$ соответствует проекции на главные компоненты \mathbf{x} , а сингулярные числа связаны с собственными значениями $\mathbf{\Sigma}_x$.

Взаимная информация между ${\bf x}$ и сингулярными числами ${\bf s}$:

$$I(\mathbf{x}; \mathbf{s}) = H(\mathbf{s}) - H(\mathbf{s}|\mathbf{x}).$$

Для РСА-like автоэнкодера, \mathbf{s} — это корни собственных значений Σ . Если Σ_x имеет спектр $\{\lambda_i\}$, то $s_i \approx \sqrt{\lambda_i}$. Тогда энтропия:

$$H(\mathbf{s}) = \frac{1}{2} \log \left((2\pi e)^k \prod_{i=1}^k \operatorname{Var}(s_i) \right).$$

При фиксированных \mathbf{x} , сингулярные числа \mathbf{s} детерминированы (так как \mathbf{W} обучаются на данных). Поэтому $H(\mathbf{s}|\mathbf{x}) = 0$.

Таким образом:

$$I(\mathbf{x}; \mathbf{s}) = H(\mathbf{s}) = \frac{1}{2} \log \left((2\pi e)^k \prod_{i=1}^k \operatorname{Var}(s_i) \right).$$

Если автоэнкодер близок к РСА, то $s_i \approx \sqrt{\lambda_i}$, где λ_i – собственные значения Σ . Тогда:

$$I(\mathbf{x}; \mathbf{s}) \approx \frac{1}{4} \log \left((2\pi e)^k \prod_{i=1}^k \lambda_i^2 \right).$$

Чем больше дисперсия сингулярных чисел ${f s}$, тем выше $I({f x};{f s}).$

Если \mathbf{s} не зависят от \mathbf{x} (например, случайные веса), то $I(\mathbf{x};\mathbf{s})=0$.

4 Вычислительные эксперименты

4.1 Бинарная классификация

Если нужно создать вектор модели с требуемым свойством, то сначала следует проверить, насколько хорошо вектор модели описывает данные, используемые для обучения. Самый простой вариант: обучить N автоэнкодеров на семплах из двух классов датасета, перевести их в векторы и

затем построить энкодер, определяющий, на данных из какого класса была обучена модель (архитектура представлена на рис. 2).

Чтобы не допустить переобучения классификатора и не завязываться на размерности, энкодеры векторизуются:

- 1. Сингулярные числа весов
- 2. Гистограмма значений весов (рис. 3)

Рис. 2: Архитектура эксперимента с бинарной классификацией

Результаты эксперимента представлены в таблице 1. Можно заметить, что автоэнкодеры с линейным слоем, обученные на разных датасетах, отличить друг от друга легче, чем автоэнкодеры со свёрточными слоями. То есть, чем сложнее модель, тем больше информации теряется о ней и датасете при обучении и векторизации.

Рис. 3: Векторизация весов модели с помощью гистограмм

 Таблица 1: Метрики качества предсказания класса, на котором обучалась модель

	Precision	Recall
1 линейный слой	0.79	1.00
1 свёрточный слой	0.55	0.78

4.2 Предсказане вектора в пространстве датасетов-моделей

Для базового эксперимента берётся 3 наиболее удалённых класса из датасета CIFAR. Для поиска таких классов использовалось евклидово расстояние на ембеддингах, полученных из выходного слоя ResNet. Архитектура решения представлена на рис 4.

- 1. Случайное сэмплирование долей классов в датасете для N моделей;
- 2. Обучение N моделей на соответствующих датасетах;
- 3. Получение векторов из обученных моделей;

Рис. 4: Архитектура эксперимента с предсказанием вектора в пространстве датасетов-моделей

- 4. Обучение энкодера на полученных моделях. Предсказание:
 - (а) Вектора на части единичной сферы
 - (b) Расстояния между двумя моделями

Функции потерь для реализации обучения:

1. Contrastive N-pair loss, где $\mathrm{Encoder}(m_i) = \mathbf{x}, \, \mathbf{d}_i = \mathbf{x}_i^+, \,$ остальные элементы батча: \mathbf{x}_i^- :

$$\mathcal{L}_{N-pair}(f) = -\log \frac{\exp(\mathbf{x}^T \mathbf{x}_i^+)}{\exp(\mathbf{x}^T \mathbf{x}_i^+) + \sum_{i=1}^{N-1} \exp(\mathbf{x}^T \mathbf{x}_i^-)};$$

2. Угол между вектором модели $\operatorname{Encoder}(m_i)$ и датасета \mathbf{d}_i :

$$\mathcal{L}_{cos}(\text{Encoder}(m_i), \mathbf{d}_i) = \cos(\text{Encoder}(m_i) \cdot \mathbf{d}_i);$$

3. Triplet loss:

$$\mathcal{L}_{Triplet} = \sum_{x \in \chi} \max(0, ||\mathbf{x} - \mathbf{x}^+||_2^2 - ||\mathbf{x} - \mathbf{x}^-||_2^2 + \varepsilon;$$

4. MSE между $\operatorname{Encoder}(m_i)$ и \mathbf{d}_i :

$$\mathcal{L}_{MSE}(\text{Encoder}(m_i), \mathbf{d}_i) = \|\text{Encoder}(m_i) - \mathbf{d}_i)\|_2^2.$$

Список литературы

- [1] Yash Akhauri and Mohamed S. Abdelfattah. Encodings for prediction-based neural architecture search, 2024.
- [2] Wonyong Jeong, Hayeon Lee, Gun Park, Eunyoung Hyung, Jinheon Baek, and Sung Ju Hwang. Task-adaptive neural network search with meta-contrastive learning, 2021.
- [3] Charles H. Martin and Michael W. Mahoney. Implicit self-regularization in deep neural networks: Evidence from random matrix theory and implications for learning, 2018.
- [4] Konstantin Schürholt, Michael W. Mahoney, and Damian Borth. Towards scalable and versatile weight space learning, 2024.
- [5] Kai Wang, Dongwen Tang, Boya Zeng, Yida Yin, Zhaopan Xu, Yukun Zhou, Zelin Zang, Trevor Darrell, Zhuang Liu, and Yang You. Neural network diffusion, 2024.