Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №2
Синтез помехоустойчивого кода
Вариант 59
Выполнил:
Горин Семён Дмитриевич
Группа Р3108
Проверила:
Бострикова Дарья Константиновна

Содержание

адание	. 3
Основные задания л/р	. 3
Задание 1	3
Задание 2.1 – № 44	4
Задание 2.2 — № 76	4
Задание 2.3 — № 108	4
Задание 2.4 — № 28	5
Задание 3	5
Задание 4 — № 59	6
Задание 5	6
Дополнительное задание	. 6
Зывод:	. 6
1сточники:	. 6

Задание

- 1. Построить схему декодирования классического кода Хэмминга (7;4), которую представить в отчёте в виде изображения.
- Показать, исходя из выбранных вариантов сообщений (по 4 у каждого часть №1 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие.
 Подробно прокомментировать и записать правильное сообщение.
- 3. Построить схему декодирования классического кода Хэмминга (15;11), которую представить в отчёте в виде изображения.
- Показать, исходя из выбранного варианта сообщений (по 1 у каждого часть №2 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие.
 Подробно прокомментировать и записать правильное сообщение.
- 5. Сложить номера всех 5 вариантов заданий. Умножить полученное число на 4. Принять данное число как число информационных разрядов в передаваемом сообщении. Вычислить для данного числа минимальное число проверочных разрядов и коэффициент избыточности.

Дополнительное задание №1 (позволяет набрать от 86 до 100 процентов от максимального числа баллов БаРС за данную лабораторную). Написать программу на любом языке программирования, которая на вход получает набор из 7 цифр «0» и «1», записанных подряд, анализирует это сообщение на основе классического кода Хэмминга (7,4), а затем выдает правильное сообщение (только информационные биты) и указывает бит с ошибкой при его наличии.

Основные задания л/р

Задание 1
Схема декодирования классического кода Хэмминга (7;4) показана на рисунке 1.

Рисунок 1

Задание 2.1 – № 44

\mathbf{r}_1	\mathbf{r}_2	i_1	r ₃	i ₂	i ₃	i 4
0	0	0	1	0	1	1

Расчет синдрома:

$$s_1 = r_1 \bigoplus i_1 \bigoplus i_2 \bigoplus i_4 = 0 \bigoplus 0 \bigoplus 0 \bigoplus 1 = 1$$

$$s_2 = r_2 \bigoplus i_1 \bigoplus i_3 \bigoplus i_4 = 0 \bigoplus 0 \bigoplus 1 \bigoplus 1 = 0$$

$$s_3 = r_3 \bigoplus i_2 \bigoplus i_3 \bigoplus i_4 = 1 \bigoplus 0 \bigoplus 1 \bigoplus 1 = 1$$

 $S(s_1, s_2, s_3) = 101$, таким образом ошибка в символе i_2 .

	1	2	3	4	5	6	7	
2 ^x	r ₁	r ₂	i ₁	r ₃	\mathbf{i}_2	i ₃	i ₄	S
1	X	-	X	-	X	-	X	S ₁
2	-	X	X	-		X	X	S ₂
4	-	-	-	X	X	X	X	S 3

Верное Сообщение: 0001<mark>1</mark>11

Задание 2.2 – № 76

\mathbf{r}_1	r ₂	i ₁	r ₃	i ₂	i ₃	i ₄
0	1	1	0	1	0	1

Расчет синдрома:

$$s_1 = r_1 \bigoplus i_1 \bigoplus i_2 \bigoplus i_4 = 0 \bigoplus 1 \bigoplus 1 \bigoplus 1 = 1$$

$$s_2 = r_2 \bigoplus i_1 \bigoplus i_3 \bigoplus i_4 = 1 \bigoplus 1 \bigoplus 0 \bigoplus 1 = 1$$

$$s_3 = r_3 \bigoplus i_2 \bigoplus i_3 \bigoplus i_4 = 0 \bigoplus 1 \bigoplus 0 \bigoplus 1 = 0$$

 $S\left(s_{1},\,s_{2},\,s_{3}\right)=110,$ таким образом ошибка в символе $i_{1}.$

	1	2	3	4	5	6	7	
2 ^x	\mathbf{r}_1	r ₂	\mathbf{i}_1	r ₃	i ₂	i ₃	i ₄	S
1	X	-	X	-	X	-	X	S ₁
2	-	X	X	-	-	X	X	S ₂
4	-	-		X	X	X	X	S 3

Верное Сообщение: 0100101

Задание 2.3 – № 108

\mathbf{r}_1	\mathbf{r}_2	i ₁	r ₃	i ₂	i ₃	i 4
1	0	1	0	1	1	1

Расчет синдрома:

$$s_1 = r_1 \bigoplus i_1 \bigoplus i_2 \bigoplus i_4 = 1 \bigoplus 1 \bigoplus 1 \bigoplus 1 = 0$$

$$s_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 0 \oplus 1 \oplus 1 \oplus 1 = 1$$

$$s_3 = r_3 \bigoplus i_2 \bigoplus i_3 \bigoplus i_4 = 0 \bigoplus 1 \bigoplus 1 \bigoplus 1 = 1$$

 $S(s_1, s_2, s_3) = 011$, таким образом ошибка в символе i_3 .

	1	2	3	4	5	6	7	
2 ^x	r ₁	r ₂	i ₁	r ₃	i ₂	i 3	i ₄	S
1	X	-	X	-	X	_	X	S ₁
2	-	X	X	-	-	X	X	S 2
4	-	-	-	X	X	X	X	S 3

Верное Сообщение: 10101<mark>0</mark>1

Задание 2.4 – № 28

\mathbf{r}_1	r ₂	i ₁	r ₃	i ₂	i ₃	i ₄
1	1	1	1	0	0	1

Расчет синдрома:

$$s_1 = r_1 \, \bigoplus \, i_1 \bigoplus i_2 \bigoplus i_4 = 1 \, \bigoplus \, 1 \, \bigoplus \, 0 \, \bigoplus \, 1 = 1$$

$$s_2 = r_2 \bigoplus i_1 \bigoplus i_3 \bigoplus i_4 = 1 \bigoplus 1 \bigoplus 0 \bigoplus 1 = 1$$

$$s_3 = r_3 \bigoplus i_2 \bigoplus i_3 \bigoplus i_4 = 1 \bigoplus 0 \bigoplus 0 \bigoplus 1 = 0$$

 $S(s_1, s_2, s_3) = 110$, таким образом ошибка в символе i_1 .

	1	2	3	4	5	6	7	
2 ^x	\mathbf{r}_1	\mathbf{r}_2	\mathbf{i}_1	r ₃	i ₂	i ₃	i ₄	S
1	X	-	X	-	X	-	X	S ₁
2	-	X	X	-	-	X	X	S ₂
4	-	-	-	X	X	X	X	S 3

Верное Сообщение: 11<mark>0</mark>1001

Задание 3

Схема декодирования классического кода Хэмминга(15;11) представлена на рисунке 2.

Задание 4 – № 59

\mathbf{r}_1	\mathbf{r}_2	\mathbf{i}_1	r ₃	\mathbf{i}_2	i 3	i 4	r ₄	i 5	i_6	i 7	i ₈	i 9	i ₁₀	i ₁₁
0	1	0	0	0	1	1	1	0	1	1	0	0	1	1

Расчет синдрома:

 $s_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 \oplus i_5 \oplus i_7 \oplus i_9 \oplus i_{11} = 0 \oplus 0 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 = 1$ $s_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 \oplus i_6 \oplus i_7 \oplus i_{10} \oplus i_{11} = 1 \oplus 0 \oplus 1 = 1$ $s_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 \oplus i_8 \oplus i_9 \oplus i_{10} \oplus i_{11} = 0 \oplus 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 1 \oplus 1 \oplus 1 = 0$ $s_4 = r_4 \oplus i_5 \oplus i_6 \oplus i_7 \oplus i_8 \oplus i_9 \oplus i_{10} \oplus i_{11} = 1 \oplus 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 1 \oplus 1 = 1$ $S(s_1, s_2, s_3, s_4) = 1101$, таким образом ошибка в символе i_7 .

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
2 ^x	\mathbf{r}_1	r ₂	i ₁	r ₃	i ₂	i ₃	i ₄	r ₄	i 5	i 6	i 7	i ₈	i 9	i 10	i ₁₁	S
1	X	-	X	-	X	-	X	-	X	-	X	-	X	-	X	S ₁
2	1	X	X	-	-	X	X	-	-	X	X	-	-	X	X	S ₂
4	1	-	-	X	X	X	X	-	-	-		X	X	X	X	S 3
8	ı	ı	ı	ı	ı	ı	ı	X	X	X	X	X	X	X	X	S4

Верное сообщение: 0100011101<mark>0</mark>0011

Задание 5

Число информационных разрядов i = (44 + 76 + 108 + 28 + 59) * 4 = 1260

Общее число бит сообщения вычисляется по формуле $n=2^r-1$, где r- количество поверочных бит. Таким образом число информационных разрядов можно вычислить по формуле $i=n-r=2^r-1-r$.

Тогда для того чтобы найти необходимое для кодирования число проверочных разрядов необходимо решить неравенство: $2^{r-1} - 1 - (r-1) < 1260 < 2^r - 1 - r$.

Так как r – натуральное число, найдем его перебором. r = 11 подходит.

Таким образом коэффициент избыточности $r/n = r/(i+r) = 11/1271 \approx 0.0086546$

Дополнительное задание

Ссылка на листинг программы на Github.

Вывод:

В ходе выполнения лабораторной работы я узнал о помехоустойчивых кодах, вручную вычислил синдромы некоторых сообщений и смог исправить в них ошибочные биты, а также написал программу позволяющую устранять ошибки в сообщениях использующих классический код Хэмминга(7;4).

Источники:

- 1. Основы цифровой радиосвязи. Помехоустойчивое кодирование: метод. Указания / сост. Д. В. Пьянзин. Саранск: Изд-во Мордов. ун-та, 2009 16с.
- 2. Коды и устройства помехоустойчивого кодирования информации / сост. Королев А.И. Мн.: , 2002. с.286