

Institut für Akustik und Sprachkommunikation

Professur für Sprachtechnologie und Kognitive Systeme

Reservoir Computing Einführung und Zeitreihenvorhersage

Dipl.-Ing. Peter Steiner Dresden // 21.04.2023

Reservoir Computing Einführung

https://acee.princeton.edu/events/summer-seminar-series-azarakhsh-jalalvand/

https://acee.princeton.edu/events/summer-seminar-series-azarakhsh-jalalvand/

Das mehrschichtige Perzeptron (multi-layer perceptron, MLP)

- Ein MLP besteht aus beliebig vielen verdeckten Schichten und einer Ausgabe-Schicht
- Jede Schicht abstrahiert den Eingang mehr
- Die Ausgabe-Schicht löst eine Aufgabe (Klassifikation oder Regression)
- Alle Verbindungen werden mittels Backpropagation trainiert
- MLPs können keinen zeitlichen Kontext berücksichtigen

Rekurrentes Neuronale Netzwerk (RNN)

- Ein RNN besteht aus beliebig vielen verdeckten Schichten und einer Ausgabe-Schicht
- Rekurrente Verbindungen ermöglichen es, den vorherigen verdeckten Zustand zu benutzen
- Die Ausgabe-Schicht löst eine Aufgabe (Klassifikation oder Regression)
- Alle Verbindungen (auch rekurrente) werden mittels Backpropagation trainiert
- RNNs können einen zeitlichen Kontext berücksichtigen

Reservoir Computing Network (RCN)

- Ein RCN besteht aus einer Eingabe-, einer verdeckten rekurrenten, und aus einer Ausgabe-Schicht
- Rekurrente Verbindungen ermöglichen es, den vorherigen verdeckten Zustand zu benutzen
- Die Ausgabe-Schicht löst eine Aufgabe (Klassifikation oder Regression)
- Nur die Verbindungen von der verdeckten Schicht zur Ausgabeschicht werden trainiert
- RCNs können einen zeitlichen Kontext berücksichtigen

Wie funktioniert Reservoir Computing generell?

Pattern recognition in a bucket

Fernando, C., & Sojakka, S. (2003, September). Pattern recognition in a bucket. In European Conference on Artificial Life (pp. 588-597). Springer, Berlin, Heidelberg.

Wie funktioniert Reservoir Computing generell?

Pattern recognition in a bucket

Fernando, C., & Sojakka, S. (2003, September). Pattern recognition in a bucket. In European Conference on Artificial Life (pp. 588-597). Springer, Berlin, Heidelberg.

Reservoir Computing

- Hauptsächlich umfasst Reservoir Computing zwei Arten von RNNs:
 - Liquid State Machines (Maass 2002)
 - Echo State Networks (Jaeger 2001)
- Zum breiteren Framework gehören Extreme Learning Machines (Huang 2006)
- All diese Ansätze haben Gemeinsamkeiten:
 - Große verdeckte Schichten mit häufig zufällig initialisierten Eingangs- und Reservoirgewichten
 - Nur ein kleiner Teil des Netzwerkes, nämlich die Ausgangsgewichte, werden trainiert

Maass, W., Natschläger, T., & Markram, H. (2002). Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural computation, 14(11), 2531-2560.

Jaeger, H. (2001). The "echo state" approach to analysing and training recurrent neural networks-with an erratum note. Bonn, Germany: German National Research Center for Information Technology GMD Technical Report, 148(34), 13.

Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: theory and applications. Neurocomputing, 70(1-3), 489-501.

Echo State Network (ESN)

- Ein ESN besteht aus Eingabe-, Bias-, rekurrenten, und aus einer Ausgabe-Schicht
- Nichtlineare Transformation in einen hochdimensionalen rekurrenten Merkmalsraum

$$\mathbf{r}'[n] = f'(\mathbf{W}^{\text{in}}\mathbf{u}[n] + \mathbf{w}^{\text{bi}})$$

$$\mathbf{r}[n] = (1 - \lambda)\mathbf{r}[n - 1] + \lambda f(\mathbf{r}'[n] + \mathbf{W}^{res}\mathbf{r}[n - 1])$$

• Lineare Abbildung von diesem Merkmalsraum in den Zielraum, beispielsweise auf Klassen

$$\mathbf{y}[n] = \mathbf{W}^{\text{out}}\mathbf{r}[n]$$

Initialisierung und Training von ESNs

Eingangs- und Bias-Gewichte

- Die Eingangs- und Bias-Gewichte werden aus einer Gleichverteilung zwischen +/-1 initialisiert
- Jedes Neuron empfängt nur eine begrenzte Anzahl an Eingangsmerkmalen – schmal besetzte Gewichtsmatrizen
- Jedes Neuron empfängt einen konstanten Bias-Eingang

Initialisierung und Training von ESNs

Rekurrente Gewichte

- Die rekurrenten Gewichte werden aus einer Standardnormalverteilung initialisiert
- Jedes Neuron empfängt nur eine begrenzte Anzahl an Ausgängen von anderen Neuronen – schmal besetzte Gewichtsmatrizen
- Die rekurrenten Gewichte werden auf ihren maximalen absoluten Eigenwert normiert, um Stabilität zu gewährleisten

Initialisierung und Training von ESNs

Ausgangsgewichte

- 1. Initialisieren und fixieren der Eingangs-, Bias-, und rekurrenten Gewichte diese sind nicht Teil des Trainings
- 2. Propagieren der Trainingsdaten durch das ESN, um die verdeckten Zustände zu berechnen

$$\mathbf{r}'[n] = f'(\mathbf{W}^{\mathrm{in}}\mathbf{u}[n] + \mathbf{w}^{\mathrm{bi}})$$

$$\mathbf{r}[n] = (1 - \lambda)\mathbf{r}[n - 1] + \lambda f(\mathbf{r}'[n] + \mathbf{W}^{res}\mathbf{r}[n - 1])$$

- 3. Sammeln aller verdeckten Zustände und der Zielausgaben
- 4. Lösung der linearen Regression

$$\mathbf{W}^{\text{out}} = (\mathbf{R}\mathbf{R}^{\text{T}} + \epsilon \mathbf{I})^{-1}(\mathbf{D}\mathbf{R}^{\text{T}})$$

- Vergleichsweise einfaches Training, verglichen mit dem iterativen Backpropagation Prozess
- Inkrementelles Training und eine einfache Adaption an neue Daten möglich

Zeitreihenvorhersage Tutorial

- Dieses Tutorial dient als praktische Einführung in die Zeitreihenvorhersage
- Wir beschäftigen uns mit folgenden Themen:
 - Grundsätzliche Methodik bei der Analyse eines Datensatzes
 - Vorverarbeitung eines Datensatzes (Konvertierung von Datentypen, Beschreibung und Skalierung)
 - Optimierung verschiedener linearer und nicht-linearer Modelle für die Zeitreihenvorhersage
 - Design komplexerer Merkmale
- Materialien für dieses Tutorial stehen auf Github zur Verfügung und dürfen gerne verwertet werden

Datenanalyse und -konvertierung

- Der erste Schritt bei jeder Aufgabe ist eine Analyse der vorhandenen Daten:
 - Welche Daten haben wir in welcher Form?
 - Mit welchen Datentypen arbeiten wir?
 - Was wollen wir machen?
- Nach der Definition der Aufgabenstellung kümmern wir uns um die Aufbereitung der Daten:
 - Konvertierung der Daten in ein lesbares Format (Zeitangaben, richtiges Zahlenformat)
 - Gibt es ungültige Daten? Dann verwerfen wir diese entweder, oder konvertieren sie systematisch
- Anschließend visualisieren wir die Daten in geeigneter Form, beispielsweise als Zeitreihen, Histogramme, oder Boxplots.
- Hilfreich ist es gelegentlich auch, die Statistiken des Datensatzes deskriptiv zu analysieren.

Datenanalyse und -konvertierung

- SMARD-Datensatz
 - Realisierte Stromerzeugung ab dem 01.01.2015
- Die rohen Zeitreihen lassen auf ein quasiperiodisches Verhalten schließen

Datenvorverarbeitung

- SMARD-Datensatz
 - Realisierte Stromerzeugung ab dem 01.01.2015
- Die rohen Zeitreihen lassen auf ein quasiperiodisches Verhalten schließen
- Es gibt große Unterschiede zwischen dem Pumpspeicher und den übrigen Größen
 - Unterschiedliche Wertebereiche
 - Unterschiedliche Verteilungen
 - Passende Skalierung notwendig DEMO

Datenvorverarbeitung

- SMARD-Datensatz
 - Realisierte Stromerzeugung ab dem 01.01.2015
- Die rohen Zeitreihen lassen auf ein quasiperiodisches Verhalten schließen
- Es gibt große Unterschiede zwischen dem Pumpspeicher und den übrigen Größen
 - Unterschiedliche Wertebereiche
 - Unterschiedliche Verteilungen
 - Passende Skalierung notwendig DEMO
- Nach der Skalierung deutlich günstigere Verteilungen

Optimierung von Modellen zur Vorhersage

- Der Datensatz ist analysiert und eine angemessene Methode zur Vorverarbeitung wurde gefunden
- Das weitere Ziel ist die Vorhersage der gesamten Netzlast in der n\u00e4chsten Stunde
- Verschiedene Optionen:
 - Vorhersage auf Basis eines oder mehrerer Merkmale (Netzlast oder auch Residuallast und Pumpspeicher)
 - Vorhersage auf Basis eines oder mehrerer Zeitschritte
 - Vorhersage auf Basis linearer oder nichtlinearer Modelle
- In jedem Fall muss man zunächst eine Basislinie festlegen
 - Komplexere Modelle sollten diese Basislinie übertreffen
 - Die Frage nach der Basislinie kommt häufig!

Naives Basismodell

- Dies kann ein untrainiertes Modell sein
- Wir haben eine quasiperiodische Zeitreihe:
 - Die aktuelle Eingabe kann vorhergesagt werden
 - "Kopieren" der Eingabe zur Ausgabe

Naives Basismodell

- Dies kann ein untrainiertes Modell sein
- Wir haben eine quasiperiodische Zeitreihe:
 - Die aktuelle Eingabe kann vorhergesagt werden
 - "Kopieren" der Eingabe zur Ausgabe

Time stamp

MSE	Korrelation
342181	0,9310

Lineare Regression

- Hier ist das Ziel, eine lineare Abbildung zwischen der Eingabe und der Zielausgabe zu finden
- Die Berechnung der Ausgabe ist nur von der aktuellen Eingabe abhängig
 - In diesem Falle gibt es nur eine Eingabe
 - Die Eingabe wird höchstwahrscheinlich "kopiert"

Lineare Regression

- Hier ist das Ziel, eine lineare Abbildung zwischen der Eingabe und der Zielausgabe zu finden
- Die Berechnung der Ausgabe ist nur von der aktuellen Eingabe abhängig
 - In diesem Falle gibt es nur eine Eingabe
 - Die Eingabe wird höchstwahrscheinlich "kopiert"

MSE	Korrelation
341806	0,9316
337162	0,9320

Lineare Regression

- Hier ist das Ziel, eine lineare Abbildung zwischen der Eingabe und der Zielausgabe zu finden
- Die Berechnung der Ausgabe ist nur von der aktuellen Eingabe abhängig
 - In diesem Falle gibt es nur eine Eingabe
 - Die Eingabe wird höchstwahrscheinlich "kopiert"
- Dasselbe ist auch bei einem mehrschichtigen Perzeptron zu erwarten!

MSE	Korrelation
341806	0,9316
337162	0,9320

Echo State Network

- Wir können nun ein Echo State Network an dieselbe Stelle setzen
- Die Berechnung der Ausgabe ist nun von der aktuellen Eingabe und dem letzten verdeckten Zustand abhängig
 - Intrinsisch gehen damit alle früheren Zustände in die Berechnung der aktuellen Ausgabe ein
 - Dies könnte eine mögliche Lösung sein

Echo State Network

- Wir können nun ein Echo State Network an dieselbe Stelle setzen
- Die Berechnung der Ausgabe ist nun von der aktuellen Eingabe und dem letzten verdeckten Zustand abhängig
 - Intrinsisch gehen damit alle früheren Zustände in die Berechnung der aktuellen Ausgabe ein
 - Dies könnte eine mögliche Lösung sein

MSE	Korrelation
341806	0,9316
336821	0,9326
99211	0,98

Komplexere Merkmalsextraktion

Heterogeneous Auto-Regressive Features:

- Ein Set aus verschiedenen Merkmalen
- Originale Zeitreihe
- Gefilterte Zeitreihen (gleitender Mittelwert über fünf bzw. 22 Zeitschritte hinweg)

Dieses Feature-Set hat Vorteile:

- Durch die Filterung können Langzeit-Trends in Zeitreihen berücksichtigt werden
- Wir erhalten mehrere unkorrelierte Features

Corsi, Fulvio. "A simple approximate long-memory model of realized volatility." Journal of Financial Econometrics 7.2 (2009): 174-196.

Komplexere Merkmalsextraktion

- Wir können neben der vorherzusagenden Zeitreihe alle in einem Datensatz zur Verfügung stehenden Zeitreihen (Residuallast, Pumpspeicher, Zeitstempel) nutzen
 - Jedes Merkmal muss immer richtig verarbeitet werden
 - Nicht alle Merkmale sind für jedes Modell geeignet Feature-Engineering zwingend notwendig
- Wir können auch die vorherzusagende Zeitreihe analysieren, beispielsweise eine FOURIER-Analyse
 - Gibt es Perioden im Datensatz?
 - Können wir unsere Merkmale so vorverarbeiten, dass Perioden berücksichtigt werden?

Zusammenfassung

- Was sollten Sie heute gelernt haben:
 - Die scheinbar einfache Zeitreihenvorhersage ist durchaus ein komplexes Gebiet
 - Eine gezielte Datenanalyse ist sehr wichtig für die Leistungsfähigkeit von Modellen
 - Eine geeignete Vorverarbeitung (Merkmalsextraktion) von Datensätzen erleichtert die Arbeit verschiedener Modelle signifikant
 - Für jede Aufgabe muss ein geeignetes Modell ausgewählt werden
- Lineare bzw. kontextfreie Modelle in Kombination mit geeigneten Merkmalen sind mächtig:
 - Die Leistungsfähigkeit eines MLPs kann an ein RNN heranreichen
 - Voraussetzung ist häufig, dass in den Merkmalen der zeitliche Kontext modelliert wird

Zusammenfassung

Modell	MSE	Korrelation	Trainingszeit	Inferenzzeit
Basis	341806	0,9316	-	-
Lineare Regression (LR)	341806	0,9316	0,006s	0.002s
MLP	336821	0,9326	0,857s	0,003s
ESN	99211	0,98	1,195s	0,119s
HAR-LR	151334	0,9695	0,03s	0,01s
HAR-MLP	112004	0, 9774	1.459s	0,002s

