

Conventional Treatment Process

PRE-TREATMENT

- Pre-treatment
- Occurs in business or industry prior to discharge
- Prevention of toxic chemicals or excess nutrients being discharged in wastewater

STAGES

- Pre-treatment
- Preliminary treatment
- Primary treatment
- Secondary treatment
- Sludge (biosolids) disposal

- Water discharged from homes, businesses, and industry enters sanitary sewers
- Water from rainwater on streets enters storm water sewers
- Combined sewers carry both sanitary wastes and storm water
- ❖ Water moves toward the wastewater plant primarily by gravity flow
- Lift stations pump water from low lying areas over hills

Preliminary Treatment

- removes large objects and non-degradable materials
- protects pumps and equipment from damage
- bar screen and grit chamber

❖ Bar Screen

- catches large objects that have gotten into sewer system such as bricks, bottles, pieces of wood, etc.

❖ Grit Chamber

- removes rocks, gravel, broken glass, etc.

❖Mesh Screen

- removes diapers, combs, towels, plastic bags, syringes, etc.

PRIMARY TREATMENT

- -- a physical process
- -- wastewater flow is slowed down and suspended solids settle to the bottom by gravity
- -- the material that settles is called sludge or biosolids

- Primary treatment reduces the suspended solids and the B.O.D. of the wastewater.
 - ❖ From the primary treatment tanks water is pumped to the trickling filter for secondary treatment.
- ❖ Secondary treatment will further reduce the suspended solids and B.O.D. of the wastewater.

- ❖ Secondary treatment is a biological process
- ❖Utilizes bacteria and algae to metabolize organic matter in the wastewater

Some examples are:

- aerobic processes presence of dissolved oxygen
 - Biofilters
 - Trickling filters
 - Activated sludge

- ❖ Measurements of Suspended Solids and BOD/COD indicate the effectiveness of treatment processes
- ❖Both Suspended Solids and B.O.D. decrease as water moves through the wastewater treatment processes

- ❖ Measurement and sampling at the inlet structure
 - a **flow meter** continuously records the volume of water entering the treatment plant
 - water samples are taken for determination of suspended solids and B.O.D.
- **❖** Suspended Solids
- the quantity of solid materials floating in the water column
- ❖B.O.D. = Biochemical Oxygen Demand
- a measure of the amount of oxygen required to aerobically decompose organic matter in the water

BIOLOGICAL TREATMENT

Composition of Wastewater

- Inorganics
 - Ammonia
 - Nitrate
 - Phosphate
 - Carbonate
 - Minerals
 - Calcium
 - Magnesium
 - Iron
 - Etc.

- Organics
 - Biodegradable (BOD)
 - Carbohydrates
 - Proteins (TKN)
 - FOG
 - Non-Biodegradable (COD-BOD)
 - Large particles
 - Complex polymers (plastics, lignin)
 - Surfactants (some)
 - Pesticides (some)
 - Pharmaceuticals (some)

Requirements for Growth of Microbes

- Temperature
- pH
- Water activity
- Energy source
- Nutrients
 - Carbon
 - Nitrogen
 - Phosphorus
 - Minerals
 - Vitamins/growth factors

Temperature and Growth

- Growth rates increase with increasing temperature (0 to 55 °C)
- Growth rates approximately double for a 10 °C rise in temperature
- Temperature extremes may interfere with metabolic processes or harm the organisms
 - ❖ Psychrophilic organisms prefer <5°C 35°C
 - ❖ Mesophilic organisms prefer 20-45 °C
 - ❖ Thermophilic organisms prefer 45-60 °C

Yellowstone's Grand Prismatic Spring

- Named by Hayden Expedition in 1871
- Centre hottest (87°C)
- Very clear
- water spreads out and cools, creates concentric circles of varying temperatures
- very different environment inhabited by different types of hacteria

PRISMATIC COLOURS

pН

- Acidophiles
 - pH 0-6
- ■Alkaliphiles ■pH 8-13

- ■Most bacteria prefer pH 6-8
- ■Most fungi prefer pH 4-7

Types of Microbial Communities

- Aerobic
 - utilize oxygen
- Anaerobic
 - grow in absence of oxygen

can grow either with or without oxygen; metabolism changes as environment changes from aerobic to anaerobic

STING THE SECTION STATE ASSOCIATION OF THE SECTION ASSOCIATION OF THE SECTION ASSOCIATION OF THE SECTION OF THE SEC

27

Importance of Biological treatment

- Largely responsible for reduction of **organic material** in wastewater
- Use organic matter as a **food supply** to support the growth of biomass
- Also use organic material to provide energy for growth resulting in production of CO₂ and other metabolic byproducts thereby reducing total BOD

26

Aerobic Organisms

- Perform best when waters are well aerated and contain relatively high concentrations of dissolved molecular oxygen
- Require high rates of oxygen supply for wastewater treatment processes

28

Aerobic Processes

- presence of oxygen
- rapid conversion
- release lots of energy

Nutrients Required for Growth

- Carbon
 - Usually from food source or CO₂
- Nitrogen
 - ■Usually from ammonia, nitrate or simple organics (amino acids)
- Phosphorus
 - ■Inorganic phosphate
- Sulfur
 - ■Inorganic sulfate or simple organics
- ■Minerals (Ca, Mg, K, Na, Fe)
- ■Trace elements (Ni, Co, Cu, Mo, Zn)
- ■Growth factors/vitamins

Energy Sources

- Oxygen (aerobes) $C_6H_{12}O_6 + 6 O_2 \rightarrow 6 CO_2 + 6 H_2O$
 - Autotrophs
 - NH_4^+ + 2 O_2 \rightarrow NO_3^- + H_2O + 2 H^+ (Nitrifiers)
 - $H_2S + 2 O_2 \rightarrow SO_4 + 2 H^+$ (sulfur oxidizers)
 - $H_2S + 0.5 O_2 \rightarrow S^0 + H_2O$ (sulfur oxidizers)
- ■Nitrate (facultative) $C_6H_{12}O_6 + 6 H_2O \rightarrow 6 CO_2 + 12 H_2 / 5 H_2 + 2 NO_3 + 2 H^+ \rightarrow N_2 + 6 H_2O$ (denitrifiers)

Anaerobic Organisms

- Perform best in conditions with little or no molecular oxygen
- Obtain needed oxygen from molecules that contain oxygen

33

• Complex two stage process that takes place in the absence of oxygen:

acid-forming phase

acid forming bacteria hydrolyze the complex organic molecules and convert them into organic acids, lowering the pH

methanogenic phase

methane forming bacteria metabolize the acids to $\mathbf{CH_4}$ and $\mathbf{CO_2}$

amino acids are broken down, forming ammonia which tends to raise the pH

Energy Sources

■Sulfate (anaerobes) $C_2H_4O_2 \rightarrow CO_2 / SO_4 \rightarrow H_2S$ (sulfate reducers)

Reduction of organic matter generates H₂S and other foul smelling compounds

- ■Carbon dioxide (anaerobes) CO_2 + 4 H_2 → CH_4 +2 H_2O (methanogens)
- ■Fermentation $C_6H_{12}O_6$ → 2 CO_2 + 2 C_2H_5OH

Facultative Organisms

- Prefer aerobic conditions but easily adapt to low oxygen circumstances
- Produce alcohols, organic acids and other organic chemicals when growing anaerobically

Toxicity

Many microbial organisms are able to adapt to changes in their environment – if changes are gradual

Sudden changes or introduction of toxic materials may be harmful or lethal to the biological community

37

- From secondary treatment on the trickling filter water flows to the final clarifiers for further removal of sludge.
- The final clarifiers are another set of primary sedimentation tanks.

To be continued.....

Sludge treatment