Quiz 3

MATH 19B - Discussion Section C October 27, 2016

Name & ID # :		
Directions: Make sure to show all of your work for Formulas:	numbers (1), (3), and (4), and box in your final answers.	
(i) Disk Method: Given a <u>perpendicular</u> cross section inner radii respectively. The volume of a rotated respectively.	to the axis of rotation let $R(x)$ and $r(x)$ represent the outer are egion bounded on $[a,b]$ is given by:	nd
$V = \pi \int_{a}^{b}$	$\int \left[(R(x))^2 - (r(x))^2 \right] dx$	
<u></u>	s section to the axis of rotation let $r(x)$ and $h(x)$ represent the lume of a rotated region bounded on $[a,b]$ is given by:	he
V =	$2\pi \int_{a}^{b} r(x)h(x) \mathrm{d}x$	
For all questions the curves of interest are given by:		
$x = y^2$ and	$1 y = \begin{cases} \left \frac{x}{2} \right , & x \le \frac{1}{2} \\ x^2, & x > \frac{1}{2} \end{cases}$	
(1) Sketch the region contained between the curves ar	nd make sure to identify all of the boundary points.	
(2) What is the area of the region you sketched in (1)		
a) $\frac{5}{16}$ b) $\frac{1}{4}$	c) $\frac{\pi}{4}$ d) $\frac{5\pi}{16}$	
(3) Write down the integral(s), but do not evaluate , around the <i>x</i> -axis using the <u>Disk Method</u> :	to calculate the volume generated by rotating the region in ((1)
(4) Write down the integral(s), but do not evaluate , around the x-axis using the Cylindrical Shells Me	to calculate the volume generated by rotating the region in (thod:	(1)