

Recommendation	Evidence quality	Strength	Rationale for the recommendation
Consider planned birth at 38–39 weeks' gestation in women with moderate ICP with peak bile acids 40–99 micromol/L and no other risk factors; advise them that the overall risk of stillbirth is similar to the background risk until 38–39 weeks' gestation	1+	A	Systematic review with individual patient data meta- analysis reporting risk of stillbirth, stratified by peak maternal bile acid concentration
Consider planned birth at 35–36 weeks' gestation in women with severe ICP with peak bile acids 100 micromol/L or more; advise them that the risk of stillbirth is higher than the background risk	1+	A	Systematic review with individual patient data meta-analysis reporting risk of stillbirth, stratified by peak maternal bile acid concentration
Advise women that the presence of co- morbidities (such as gestational diabetes, pre-eclampsia, multifetal pregnancy) appear to increase the risk of stillbirth and may influence decision- making around timing of planned birth	2+	С	Evidence from national surveillance case control study supported by other case series demonstrating increased stillbirth risk with comorbidities

Active care in ICP, usually referring to planned birth around 38 weeks' gestation, came into practice in many settings, including the UK, despite inadequate evaluation of its benefit or an understanding of which women with ICP might be at increased risk of adverse perinatal outcomes. Previous studies had reported on cohorts of women with ICP, often after introduction of active care, and speculated that low stillbirth risk is related to such a policy, 46,47 but few had evaluated prognostic factors to allow better stratification to tailor timing of birth. [Evidence level 1+]

A large systematic review and individual patient data meta-analysis of women with ICP has reported that the risk of stillbirth is 0.13% in women with peak bile acids less than 40 micromol/L, which is not higher than background population risk.⁷ Although the risk of stillbirth remains low throughout gestation for these women, the benefits of continuing the pregnancy after 40 weeks' gestation may be outweighed by the risk, therefore it is reasonable to discuss with the woman or pregnant person whether they wish to continue the pregnancy or have a planned birth. [Evidence level 1+]

The risk of stillbirth in women with peak bile acids of 40–99 micromol/L was 0.28%. This was not higher than overall background population risk, but did appear to increase at around 38–39 weeks' gestation. Although the number of affected pregnancies is small and the confidence intervals wide, it is reasonable to offer planned birth at this gestation for women and pregnant people with peak bile acids of 40–99 micromol/L, or earlier if other comorbidities (such as gestational diabetes or pre-eclampsia) are present. [Evidence level 1+]

For women with peak bile acids 100 micromol/L or more, the risk of stillbirth is 3.44%, which is higher than background population rate, and the risk appears to increase from 35–36 weeks' gestation. This information should be shared with the woman or pregnant person and planned birth considered, based on other factors and the woman's preferences. This is in keeping with other studies using different methodologies, including a retrospective cohort study of 1604386 pregnancies assessing composite perinatal mortality risk⁴⁸ and a decision modelling study concluding that 36 weeks' gestation was optimal.⁴⁹ [Evidence level 1+]

In women with ICP and peak bile acids 40 micromol/L or more, co-morbidities may be associated with a greater risk of stillbirth.²⁹ The presence of and risks related to comorbidities should be taken into account when considering the timing of planned birth. [Evidence level 1+]

8.2 | Mode of birth

Recommendation	Evidence quality	Strength	Rationale for the recommendation
Advise women that ICP in itself does not impact their choice around mode of birth and that these decisions should be based on usual obstetric practice for that woman	2+	D	Choices around mode of birth should follow routine obstetric practice

Women and pregnant people with ICP do not have increased rates of assisted or operative birth compared with women without ICP.⁵⁰ Mode of birth should therefore be based on usual obstetric or medical indications. If planned early birth is indicated, induction of labour should be considered unless other reasons for caesarean birth are present. [Evidence level 2+]

14710528, 2022, 13, Downloaded from https://obgyn.onlinelibrary.wiley.com/doi/10.1111/1471-0528.17206 by Cochrane France, Wiley Online Library on [29/05/2024]. See the Terms

ms) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licens

8.3 | Monitoring in labour

Recommendation	Evidence quality	Strength	Rationale for the recommendation
Offer continuous electronic fetal monitoring (CEFM) to women with peak bile acids 100 micromol/L or more. There is insufficient evidence for or against CEFM in women with peak bile acids below 100 micromol/L. A shared decision can be made based on co-morbidities and preferences. Advise women that the presence of risk factors (such as gestational diabetes, pre-eclampsia, multifetal pregnancy) appear to increase the risk of adverse perinatal outcomes and that these conditions themselves may necessitate monitoring during birth or in conjunction with ICP may influence decision-making around monitoring in labour. Advise women that meconium-stained liquor is more common in moderate and severe ICP, and that this will influence decision-making around CEEM	4	D	Recommendation based on extrapolation from assessment of fetal risk associated with stillbirth and other adverse perinatal outcomes, highlighted by systematic review
making around CEFM			

If the woman or pregnant person has existing obstetric or medical conditions that influence decision-making around fetal monitoring in labour, these should be taken into account when planning intrapartum care. In women with mild ICP (peak bile acids 19-39 micromol/L) and no other risk factors, intrapartum care can follow national guidelines.³³ In women with moderate ICP (peak bile acids 40-99 micromol/L), the decision should be made on an individualised basis, explaining that the benefit of continuous electronic fetal monitoring is uncertain; the presence of any other risk factors should be taken into account. In women with severe ICP (peak bile acids 100 micromol/L or more), in light of evidence that there is a risk of adverse perinatal outcomes in these women, continuous electronic fetal monitoring should be offered. Women with moderate and severe ICP are more likely to have meconium-stained liquor, and this will influence the need for continuous electronic monitoring in labour. [Evidence level 4]

8.4 | Analgesia in labour

Recommendation	Evidence quality	Strength	Rationale for the recommendation
Offer women with uncomplicated ICP standard analgesia and anaesthesia options for birth	4	D	Choice of analgesia should be based on routine clinical practice

There are no studies that have indicated that women or pregnant people with ICP require different options for analgesia and anaesthesia for birth and national guidance should be followed. ³³ Three cohort studies of 223 women, ¹⁷ 531 women ¹⁵ and 745 women ¹⁸ with ICP described above in Section 4.2, who had routine coagulation testing reported no cases of prolonged prothrombin time in women with uncomplicated clinical presentations. The small number of abnormal results occurred in women with alternative diagnoses (such as acute fatty liver of pregnancy). [Evidence level 4]

8.5 | Third stage of birth

Recommendation	Evidence quality	Strength	Rationale for the recommendation
Advise women that there is no evidence of an increased risk of postpartum haemorrhage if they have uncomplicated ICP	2-	D	Care of third stage should follow routine clinical practice

A case–control study (64 cases)⁵⁰ and case-cohort study (348 cases)⁵¹ both showed no increased risk of postpartum haemorrhage in women with ICP. Standard care using national guidance for the third stage of birth should be followed.³³ [Evidence level 2–]

9 | WHAT FOLLOW-UP SHOULD BE OFFERED TO WOMEN WHO HAVE HAD A PREGNANCY AFFECTED BY ICP?

Recommendation	Evidence quality	Strength	Rationale for the recommendation
For women who have uncomplicated ICP, follow-up should be arranged at least 4 weeks after birth to confirm resolution of ICP. Advise them that they should anticipate itching and raised maternal bile acid concentrations to resolve after birth	4	D	Good practice to arrange follow up

In women who have had ICP, itch usually stops after birth, often in the first few days, and liver function tests and bile acid concentrations should return to normal within a few weeks. At postnatal follow-up, the healthcare professional should ensure that itching has resolved and should confirm that maternal bile acid concentrations and liver function tests have normalised. If itching or biochemical abnormalities persist beyond 6 weeks postpartum, consider other diagnoses depending upon the history and examination findings. Referral to a hepatologist may be required. [Evidence level 4]

9.1 | What advice should be offered for future contraceptive or hormonal options?

Recommendation	Evidence quality	Strength	Rationale for the recommendation
Advise women that ICP itself does not influence their choice of contraception or hormone replacement therapy	4	D	Choice of contraception should follow UK Medical Eligibility Criteria (UKMEC) guidance
For women with ICP and previous cholestasis secondary to combined hormonal (oestrogen-containing) contraception, advise them to use progestogenonly or non-hormonal methods	4	D	This is in line with UKMEC guidance
In women with previous ICP requesting HRT, consider offering if there are no other contraindications to use	4	D	Extrapolated from UKMEC guidance on exogenous oestrogen use

As with all women and pregnant people, discussion about methods of contraception should begin during the antenatal period²¹ and continue in the early postpartum days.⁵² This should include the health benefits of spacing pregnancies, consideration of medical conditions and/or patient characteristics affecting contraceptive choice (such as venous thromboemblism risk factors, breastfeeding, medical history), the reliability and benefits of long-acting reversible contraceptive methods, and the additional use of condoms if there is a risk of sexually transmitted infections and HIV.⁵³ [Evidence level 4]

The 2016 UK Medical Eligibility Criteria (UKMEC) for Contraceptive Use advises that copper-bearing intra-uterine devices, levonorgestrel-releasing intra-uterine systems, progestogen-only implant, progestogen-only injectable, and progestogen-only pill can be used without restriction in women with a history of ICP (UKMEC category 1).⁵³

Combined hormonal contraception can be used in women with ICP (UKMEC 2) provided they do not also have a history of contraception related cholestasis. It was previously thought that women with a history of ICP may have an increased risk of developing cholestasis when using oestrogen-containing hormonal contraception, but this is unlikely for the majority of women. The 2016 UKMEC states that in women who have had ICP the advantages of using these oestrogen-containing methods outweigh this theoretical risk (UKMEC category 2)⁵³ and women may thus choose to use this method. Resolution of itching and liver function tests and bile acid concentrations returning to normal levels should be confirmed before commencing this method. [Evidence level 4] Advise women to attend for review if recurrence of itch and abnormal liver function tests occur while using combined hormonal contraception, this would give a diagnosis of contraceptive-related cholestasis (UKMEC 3) and alternative contraception options should be discussed. [Evidence level 4]

For women with an atypical presentation of ICP, atypical postnatal clinical course, where other diagnoses are suspected, or where itching and liver function tests have not resolved, a personalised approach to contraceptive choice should be undertaken, with provision of information about avoidance of pregnancy with active liver disease.

For menopausal women considering hormonal replacement therapy (HRT), national recommendations should be followed.⁵⁴ Current UKMEC guidance is that oestrogencontaining contraception can be used in women with a history of ICP. It therefore seems reasonable to offer the lower physiological dose of oestrogen found in HRT, with review of use if women develop itching or other signs of cholestasis.

9.2 | How should women be cared for in future pregnancies?

Recommendation	Evidence quality	Strength	Rationale for the recommendation
Advise women with a history of ICP that they have an increased chance of recurrence of ICP in subsequent pregnancies	3	D	Good practice to inform women of likelihood of recurrence
Perform a baseline liver function test and bile acid concentration with booking blood investigations	3	D	Good practice to establish baseline values

Women and people of reproductive age who have had a pregnancy complicated by ICP have an increased chance of ICP in a subsequent pregnancy compared to the general pregnancy

population, but the precise magnitude of this is unclear, as quoted rates of recurrence are based on small studies (e.g. of 18 women⁵⁵ and 69 women⁵⁶) and the results may not be generalizable to a wider UK population with ICP. At booking in subsequent pregnancies, baseline measurement of liver function tests and bile acid concentrations should be performed in order to establish that these are normal. They should only be repeated if clinically indicated. [Evidence level 3]

10 | RECOMMENDATIONS FOR FUTURE RESEARCH

- In women with ICP:
 - Which maternal or fetal prognostic tools and/or monitoring modalities predict adverse perinatal outcome (including preterm birth and stillbirth)?
 - Should women with ICP be tested for gestational diabetes (and by what method)?
 - o What is an effective treatment for itching?
 - What is an effective treatment to prevent adverse perinatal outcomes?
- In pregnant women with raised bile acids, what is the natural history of bile acid concentrations without treatment?
- What is the ongoing risk of adverse pregnancy outcome in women whose bile acid concentrations normalise?
- What is the cause of itching in women without raised bile acids, and what is an effective treatment for their itching?

11 | AUDITABLE TOPICS

- Proportion of women with raised bile acid concentrations offered timing of birth in line with RCOG Green-top Guideline. (>90%)
- Proportion of women with uncomplicated raised bile acid concentrations having additional investigations routinely performed. (<10%)
- Proportion of women with raised bile acid concentrations offered ursodeoxycholic acid in line with RCOG Greentop Guideline. (<5%)
- Proportion of women with severe ICP (peak bile acids ≥100 micromol/L) offered continuous electronic fetal monitoring during labour. (>90%)

These targets have been set in recognition of the need for individualised care particularly in women with comorbidities and atypical ICP.

12 | USEFUL LINKS AND SUPPORT GROUPS

- Information for healthcare professionals
 - Maternal use of medication in pregnancy (UK Teratology Information Service) (http://www.uktis. org/html/maternal_exposure.html)

- o http://www.uktis.org/html/maternal_exposure.html
- Information for women and families
 - Research based charity and support group ICP Support (http://www.icpsupport.org/)
 - RCOG. Intrahepatic Cholestasis of Pregnancy. Information for you (https://www.rcog.org.uk/for-the-public/)
- Information for women and their families on use of medicines in pregnancy
 - o http://www.medicinesinpregnancy.org/

CONFLICT OF INTERESTS

JG, CLK and LC have declared no conflicts of interest.

FUNDING INFORMATION

All those involved in the development of the Greentop Guidelines, including the Guidelines Committee, Guidelines Committee co-chairs, guideline developers, peer reviewers and other reviewers, are unpaid volunteers and receive no direct funding for their work in producing the guideline. The exception to this are the RCOG staff involved who are salaried employees of the College and Guidelines Committee members who receive reimbursement for expenses for attending Guidelines Committee meetings. Please see more information on travel expense rules on the RCOG website.

REFERENCES

- 1. NHS England. Saving babies' lives care bundle version 2019 [cited 2019 Aug 22]. Available from: https://www.england.nhs.uk/wp-content/uploads/2019/07/saving-babies-lives-care-bundle-version-two-v5.
- Kenyon AP, Tribe RM, Nelson-Piercy C, Girling JC, Williamson C, Seed PT, et al. Pruritus in pregnancy: a study of anatomical distribution and prevalence in relation to the development of obstetric cholestasis. Obstet Med. 2010;3(1):25–9.
- Abedin P, Weaver JB, Egginton E. Intrahepatic cholestasis of pregnancy: prevalence and ethnic distribution. Ethn Health. 1999;4(1-2):35-7.
- Geenes V, Williamson C. Intrahepatic cholestasis of pregnancy. World J Gastroenterol. 2009;15(17):2049–66.
- Szczech J, Wiatrowski A, Hirnle L, Reich A. Prevalence and relevance of pruritus in pregnancy. Biomed Res Int. 2017;2017:4238139.
- Girling JC, Dow E, Smith JH. Liver function tests in pre-eclampsia: importance of comparison with a reference range derived for normal pregnancy. Br J Obstet Gynaecol. 1997;104(2):246–50.
- Ovadia C, Seed PT, Sklavounos A, Geenes V, Di Ilio C, Chambers J, et al. Association of adverse perinatal outcomes of intrahepatic cholestasis of pregnancy with biochemical markers: results of aggregate and individual patient data meta-analyses. Lancet. 2019;393(10174):899–909.
- Fleminger J, Seed PT, Smith A, Juszczak E, Dixon PH, Chambers J, et al. Ursodeoxycholic acid in intrahepatic cholestasis of pregnancy: a secondary analysis of the PITCHES trial. BJOG. 2021;128(6):1066-75.
- Williamson C, Geenes V. Intrahepatic cholestasis of pregnancy. Obstet Gynecol. 2014;124(1):120–33.
- Mitchell AL, Ovadia C, Syngelaki A, Souretis K, Martineau M, Girling J, et al. Re-evaluating diagnostic thresholds for intrahepatic cholestasis of pregnancy: case-control and cohort study. BJOG. 2021;128(10):1635-44.

- Royal College of Obstetricians and Gynaecologists. Developing a Green-top Guideline. Guidance for developers. London: RCOG; 2020.
- 12. Walker I, Chappell LC, Williamson C. Abnormal liver function tests in pregnancy. BMJ. 2013;347:f6055.
- 13. Kenyon AP, Piercy CN, Girling J, Williamson C, Tribe RM, Shennan AH. Pruritus may precede abnormal liver function tests in pregnant women with obstetric cholestasis: a longitudinal analysis. BJOG. 2001;108(11):1190–2.
- 14. Royal College of Obstetricians and Gynaecologists. Obstetric cholestasis: Green-top Guideline no. 43. London: RCOG; 2011.
- Conti-Ramsden F, McEwan M, Hill R, Wade J, Abraham G, Buckeldee O, et al. Detection of additional abnormalities or co-morbidities in women with suspected intrahepatic cholestasis of pregnancy. Obstet Med. 2019;13(4):185–91.
- UK National Screening Committee. Antenatal screening for hepatitis C virus. 2018 [cited 2020 Jan 13]. Available from: https://legacyscreening.phe.org.uk/hepatitisc-pregnancy
- 17. DeLeon A, De Oliveira GS, Kalayil M, Narang S, McCarthy RJ, Wong CA. The incidence of coagulopathy in pregnant patients with intrahepatic cholestasis: should we delay or avoid neuraxial analgesia? J Clin Anesth. 2014;26(8):623–7.
- Lees J, Al-Rawi S, McPhee H, Southcoast Perioperative A, Research C. Coagulopathy in obstetric cholestasis in Wessex Deanery. Int J Obstet Anesth. 2019;37:130–1.
- David AL, Kotecha M, Girling JC. Factors influencing postnatal liver function tests. BJOG. 2000;107(11):1421–6.
- Reyes H, Radrigan ME, Gonzalez MC, Latorre R, Ribalta J, Segovia N, et al. Steatorrhea in patients with intrahepatic cholestasis of pregnancy. Gastroenterology. 1987;93(3):584–90.
- 21. National Institute for Health and Care Excellence. Antenatal Care. NICE guideline [NG201]. London: NICE; 2021.
- National Institute of Health and Care Excellence. Diabetes in pregnancy: management from preconception to the postnatal period. NG3. London: NICE; 2020.
- Marschall HU, Wikstrom Shemer E, Ludvigsson JF, Stephansson
 O. Intrahepatic cholestasis of pregnancy and associated hepatobiliary disease: a population-based cohort study. Hepatology. 2013;58(4):1385–91.
- 24. Gurusamy KS, Davidson BR. Gallstones. BMJ. 2014;348:g2669.
- 25. Wikstrom Shemer EA, Stephansson O, Thuresson M, Thorsell M, Ludvigsson JF, Marschall HU. Intrahepatic cholestasis of pregnancy and cancer, immune-mediated and cardiovascular diseases: a population-based cohort study. J Hepatol. 2015;63(2):456-61.
- 26. Public Health England. Hepatitis C: interventions for patient case-finding and linkage to care. 2018 [cited 2020 Jan 13]. Available from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/829331/Hepatitis_C_interventions_for_patient_case-finding_and_linkage_to_care.pdf
- Vasavan T, Deepak S, Jayawardane IA, Lucchini M, Martin C, Geenes V, et al. Fetal cardiac dysfunction in intrahepatic cholestasis of pregnancy is associated with elevated serum bile acid concentrations. J Hepatol. 2021;74(5):1087–96.
- Sepulveda WH, Gonzalez C, Cruz MA, Rudolph MI. Vasoconstrictive effect of bile acids on isolated human placental chorionic veins. Eur J Obstet Gynecol Reprod Biol. 1991;42(3):211–5.
- 29. Geenes V, Chappell LC, Seed PT, Steer PJ, Knight M, Williamson C. Association of severe intrahepatic cholestasis of pregnancy with adverse pregnancy outcomes: a prospective population-based case-control study. Hepatology. 2014;59(4):1482–91.
- Cheong-See F, Schuit E, Arroyo-Manzano D, Khalil A, Barrett J, Joseph KS, et al. Prospective risk of stillbirth and neonatal complications in twin pregnancies: systematic review and meta-analysis. BMJ. 2016;354:i4353.
- 31. Liu X, Landon MB, Chen Y, Cheng W. Perinatal outcomes with intrahepatic cholestasis of pregnancy in twin pregnancies. J Matern Fetal Neonatal Med. 2016;29(13):2176–81.

- 32. Henderson CE, Shah RR, Gottimukkala S, Ferreira KK, Hamaoui A, Mercado R. Primum non nocere: how active management became modus operandi for intrahepatic cholestasis of pregnancy. Am J Obstet Gynecol. 2014;211(3):189–96.
- National Institute of Health and Care Excellence. Intrapartum care for healthy women and babies. Clinical guideline [CG190]. London: NICE; 2014.
- Iliodromiti S, Mackay DF, Smith GC, Pell JP, Nelson SM. Apgar score and the risk of cause-specific infant mortality: a population-based cohort study. Lancet. 2014;384(9956):1749–55.
- Lai S, Flatley C, Kumar S. Perinatal risk factors for low and moderate five-minute Apgar scores at term. Eur J Obstet Gynecol Reprod Biol. 2017;210:251–6.
- Kawakita T, Parikh LI, Ramsey PS, Huang CC, Zeymo A, Fernandez M, et al. Predictors of adverse neonatal outcomes in intrahepatic cholestasis of pregnancy. Am J Obstet Gynecol. 2015;213(4):570. e1–8.
- 37. Grymowicz M, Czajkowski K, Smolarczyk R. Pregnancy course in patients with intrahepatic cholestasis of pregnancy treated with very low doses of ursodeoxycholic acid. Scand J Gastroenterol. 2016;51(1):78–85.
- 38. Baliutaviciene D, Zubruviene N, Zalinkevicius R. Pregnancy outcome in cases of intrahepatic cholestasis of pregnancy. Int J Gynaecol Obstet. 2011;112(3):250–1.
- Chappell LC, Bell JL, Smith A, Linsell L, Juszczak E, Dixon PH, et al. Ursodeoxycholic acid versus placebo in women with intrahepatic cholestasis of pregnancy (PITCHES): a randomised controlled trial. Lancet. 2019;394(10201):849-60.
- Chappell LC, Gurung V, Seed PT, Chambers J, Williamson C, Thornton JG, et al. Ursodeoxycholic acid versus placebo, and early term delivery versus expectant management, in women with intrahepatic cholestasis of pregnancy: semifactorial randomised clinical trial. BMJ. 2012;344:e3799.
- 41. Ovadia C, Sajous J, Seed PT, Patel K, Williamson NJ, Attilakos G, et al. Ursodeoxycholic acid in intrahepatic cholestasis of pregnancy: a systematic review and individual participant data meta-analysis. Lancet Gastroenterol Hepatol. 2021;6(7):547–58.
- 42. Norman JE, Marlow N, Messow CM, Shennan A, Bennett PR, Thornton S, et al. Vaginal progesterone prophylaxis for preterm birth (the OPPTIMUM study): a multicentre, randomised, double-blind trial. Lancet. 2016;387(10033):2106–16.
- Liu J, Murray AM, Mankus EB, Ireland KE, Acosta OM, Ramsey PS. Adjuvant use of rifampin for refractory intrahepatic cholestasis of pregnancy. Obstet Gynecol. 2018;132(3):678–81.
- Geenes V, Chambers J, Khurana R, Shemer EW, Sia W, Mandair D, et al. Rifampicin in the treatment of severe intrahepatic cholestasis of pregnancy. Eur J Obstet Gynecol Reprod Biol. 2015;189:59–63.
- 45. Hague WM, Callaway L, Chambers J, Chappell L, Coat S, de Haan-Jebbink J, et al. A multi-centre, open label, randomised, parallelgroup, superiority trial to compare the efficacy of URsodeoxycholic acid with RIFampicin in the management of women with severe early onset Intrahepatic Cholestasis of pregnancy: the TURRIFIC randomised trial. BMC Pregnancy Childbirth. 2021;21(1):51.
- Wikstrom Shemer E, Marschall HU, Ludvigsson JF, Stephansson O. Intrahepatic cholestasis of pregnancy and associated adverse pregnancy and fetal outcomes: a 12-year population-based cohort study. BJOG. 2013;120(6):717–23.
- 47. Kohari KS, Carroll R, Capogna S, Ditchik A, Fox NS, Ferrara LA. Outcome after implementation of a modern management strategy for intrahepatic cholestasis of pregnancy. J Matern Fetal Neonatal Med. 2017;30(11):1342–6.
- 48. Puljic A, Kim E, Page J, Esakoff T, Shaffer B, LaCoursiere DY, et al. The risk of infant and fetal death by each additional week of expectant management in intrahepatic cholestasis of pregnancy by gestational age. Am J Obstet Gynecol. 2015;212(5):667.e1–5.
- Lo JO, Shaffer BL, Allen AJ, Little SE, Cheng YW, Caughey AB. Intrahepatic cholestasis of pregnancy and timing of delivery. J Matern Fetal Neonatal Med. 2015;28(18):2254–8.