Syntax Analysis

Syntax Analysis is the second phase of compilation

Comparison with lexical analysis:

Phase	Input	Output
Lexer	string of characters	string of tokens
Parser	string of tokens	Parse tree/AST

- Syntax analysis is also called parsing
 - Because it produces a parse tree.
 - > AST (Abstract Syntax Tree) is a simplified parse tree.

What is a Parse Tree?

- Parse tree: a tree that represents grammatical structure
- Language constructs often have recursive structures

 $\textbf{If-stmt} \equiv \textbf{if} \; (EXPR) \; \textbf{then Stmt else Stmt fi}$

 $Stmt \equiv If\text{-stmt} \mid While\text{-stmt} \mid ...$

A Parse Tree Example

- Code to be compiled:
 - \dots if x==y then \dots else \dots fi
- Lexer:
- Parser:
 - Input: sequence of tokens
 - ... IF ID==ID THEN ... ELSE ... FI
 - > Desired output:

REs cannot express recursive program constructs

Example of a recursive construct is matching parenthesis: # of "(" must equal # of ")"

```
✓ (x+y)*z
```

REs cannot express recursive program constructs

- Example of a recursive construct is matching parenthesis: # of "(" must equal # of ")"
 - ✓ (x+y)*z
 - ✓ ((x+y)+y)*z
 - ✓ (...(((x+y)+y)+y)...)
 - **X** ((x+y)+y)+y)*z
- Can regular expressions express this construct?
 - ightharpoonup Recall RL \equiv L(Regular Expression) \equiv L(Finite Automata)
 - Boils down to whether an FA can accept this construct

RE/FA is Not Powerful Enough

 \square Describe strings with pattern $[i]^i$ (i \ge 1)

RE/FA is Not Powerful Enough

- \square Describe strings with pattern $[i]^i$ ($i \ge 1$)
 - "[", "[]" are different states as only the latter is accepting
 - > "[", "[[" are different states as only the former accepts on "]"

RE/FA is Not Powerful Enough

- \square Describe strings with pattern $[i]^i$ ($i \ge 1$)
 - "[", "[]" are different states as only the latter is accepting
 - > "[", "[[" are different states as only the former accepts on "]"

- \rightarrow Infinite as for any [i], there exists a [i+1] that is a new state
- > Contradiction: no finite automaton accepts arbitrary nesting

REs are not suitable for Syntax Analysis

- REs cannot express recursive language constructs
- Programming languages belong to a category called CFLs
 - CLF is short for Context Free Language
 - CFLs are a strictly larger set than RLs
- To express CFLs, we need a new formalism: Grammars
- Grammars are general enough to express most languages
 - Regular Languages
 - Context Free Languages
 - Context Sensitive Languages
 - Recursively Enumerable Languages

A Grammar defines a Language

- A grammar, along with tokens, defines a language
 - Like how English grammar defines the English language
- Grammars are defined using rigorous math just like for REs
- Recall the following definitions
 - ightharpoonup Language: A set of strings over alphabet Alphabet: A finite set of symbols Null string: ε
 - Sentences: strings in the language

An Example Grammar

Language L = { any string with "00" at the end }

- Grammar G = { T, N, s, δ } where T = { 0, 1 }, N = { A, B }, s = A, and production rules δ = { A \rightarrow 0A | 1A | 0B, B \rightarrow 0 }
- Derivation: from grammar to language
 - ightharpoonup A \Rightarrow 0A \Rightarrow 00B \Rightarrow 000
 - ightharpoonup A \Rightarrow 1A \Rightarrow 10B \Rightarrow 100
 - ightharpoonup A \Rightarrow 0A \Rightarrow 00A \Rightarrow 000B \Rightarrow 0000
 - ightharpoonup A \Rightarrow 0A \Rightarrow 01A \Rightarrow ...

Grammar, formally defined

- \square A grammar consists of 4 components (T, N, S, δ)
 - ➤ T set of terminal symbols
 - Leaves in the parse tree essentially tokens
 - N set of non-terminal symbols
 - Internal nodes in the parse tree that expands into tokens
 - Language construct composed of one or more tokens like: statements, loops, functions, classes, ...
 - S A special non-terminal start symbol
 - Every string in language is derived from it
 - \rightarrow δ a set of **production** rules
 - "LHS → RHS": left-hand-side produces right-hand-side

Production Rule and Derivation

- \square "LHS \rightarrow RHS"
 - Production rule to replace LHS with RHS
 - Applied repeatedly to derive target sentence from S
- $\beta \Rightarrow \alpha$: string β derives α

 - $\begin{array}{lll} \blacktriangleright & \beta \Rightarrow \alpha & & \text{1 step} \\ \blacktriangleright & \beta \Rightarrow *\alpha & & \text{0 or more steps} \end{array}$
 - $\Rightarrow \beta \stackrel{*}{\Longrightarrow} \alpha$ 0 or more steps
 - example:

$$A \Rightarrow 0A \Rightarrow 00B \Rightarrow 000$$

- $A \stackrel{*}{\Longrightarrow} 000$
- $A \stackrel{+}{\Longrightarrow} 000$

Noam Chomsky Grammars

Chomsky classified grammars into 4 types:

Type 0: recursive grammar

Type 1: context sensitive grammar

Type 2: context free grammar

Type 3: regular grammar

(Classification done based on form of production rules)

The grammars produce a corresponding language:

 $L(regular grammar) \equiv regular language$

 $L(context\ free\ grammar) \equiv context\ free\ language$

 $L(context\ sensitive\ grammar) \equiv context\ sensitive\ language$

 $L(recursive grammar) \equiv recursively enumerable language$

Type 0: Unrestricted/Recursive Grammar

- Type 0 grammar unrestricted or recursive grammar
 - ightharpoonup Form of rules $\alpha \to \beta$

where
$$\alpha \in (N \cup T)^+$$
, $\beta \in (N \cup T)^*$

- No restrictions on form of grammar rules
- > Example:

$$aAB \rightarrow aCD$$

 $aAB \rightarrow aB$

$$\mathsf{A} o arepsilon$$

; erase rule is allowed

Type 1: Context Sensitive Grammar

Type 1 grammar — context sensitive grammar

> Form of rules $\alpha A\beta \rightarrow \alpha \gamma \beta$

where
$$A \in N$$
, $\alpha, \beta \in (N \cup T)^*$, $\gamma \in (N \cup T)^+$

- ightharpoonup Replace A by γ only if found in the context of α and β
- No erase rule
- ➤ Example: aAB → aCB

Type 2: Context Free Grammar

- Type 2 grammar context free grammar
 - Form of rules

$$A \rightarrow \gamma$$

where
$$A \in N$$
, $\gamma \in (N \cup T)^+$

ightharpoonup Can replace A by γ at any time — cannot specify context

Type 2: Context Free Grammar

- ☐ Type 2 grammar context free grammar
 - > Form of rules

$$A \rightarrow \gamma$$

where
$$A \in N$$
, $\gamma \in (N \cup T)^+$

- ightharpoonup Can replace A by γ at any time cannot specify context
- Are programming languages (PLs) context free ?
 - > Some PL constructs are context free: If-stmt, declaration
 - Many are not: def-before-use, matching formal/actual parameters, etc.

Type 3: Regular Grammar

- ☐ Type 3 grammar regular grammar
 - Form of rules

$$A \rightarrow \alpha$$
, or $A \rightarrow \alpha B$

where
$$A, B \in N$$
, $\alpha \in T$

- Regular grammar defines RE
- > Can be used to define tokens for lexical analysis
- > Example:

$$A \rightarrow 1A \mid 0$$

Differentiate Type 2 and 3 Grammars

> Regular grammar

$$S \rightarrow [S \mid [T \mid T \rightarrow T \mid T]]$$

Context free grammar

$$S \rightarrow [\ S\]\ |\ [\]$$

Differentiate Type 1 and 2 Grammars

Type 2 grammar (context free)

```
\begin{array}{lll} S \rightarrow D \ U \\ D \rightarrow int \ x; & | & int \ y; \\ U \rightarrow x{=}1; & | & y{=}1; \end{array}
```

☐ Type 1 grammar (context sensitive)

```
S \rightarrow D U

D \rightarrow int x; | int y;

int x; U \rightarrow int x; x=1;

int y; U \rightarrow int y; y=1;
```

Are Programming Languages Really Context Free?

- Language from type 2 grammar
 - > S \Rightarrow DU \Rightarrow int x; U \Rightarrow int x; x=1;
 - $ightharpoonup S \Rightarrow DU \Rightarrow int x; U \Rightarrow int x; y=1;$
 - $ightharpoonup S \Rightarrow DU \Rightarrow int y; U \Rightarrow int y; x=1;$
 - $ightharpoonup S \Rightarrow DU \Rightarrow int y; U \Rightarrow int y; y=1;$

- Language from type 1 grammar
 - $ightharpoonup S \Rightarrow DU \Rightarrow int x; U \Rightarrow int x; x=1;$
 - $ightharpoonup S \Rightarrow DU \Rightarrow int y; U \Rightarrow int y; y=1;$

Are Programming Languages Really Context Free?

- Language from type 2 grammar
 - > S \Rightarrow DU \Rightarrow int x; U \Rightarrow int x; x=1;
 - $ightharpoonup S \Rightarrow DU \Rightarrow int x; U \Rightarrow int x; y=1;$
 - $ightharpoonup S \Rightarrow DU \Rightarrow int y; U \Rightarrow int y; x=1;$
 - $ightharpoonup S \Rightarrow DU \Rightarrow int y; U \Rightarrow int y; y=1;$

- Language from type 1 grammar
 - $ightharpoonup S \Rightarrow DU \Rightarrow int x; U \Rightarrow int x; x=1;$
 - $ightharpoonup S \Rightarrow DU \Rightarrow int y; U \Rightarrow int y; y=1;$
- PLs are context sensitive, why use CFG in parsing?

The Chomsky Hierarchy of Grammars

The Chomsky Hierarchy of Grammars

 \square RL \subset CFL \subset CSL \subset L(Recursive Grammar)

igsqcup However, $\mathsf{L}_y \subset \mathsf{L}_x$ where $\mathsf{L}_x : [^i]^k$ —RG, $\mathsf{L}_y : [^i]^i$ —CFG

> Is it a problem?

Context Free Grammars

Grammar and Syntax Analysis

- Grammar is used to derive string or construct parser
- A derivation is a sequence of applications of rules
 - Starting from the start symbol
 - ightharpoonup S \Rightarrow ... \Rightarrow ... \Rightarrow (sentence)
- Leftmost and Rightmost drivations
 - At each derivation step, leftmost derivation always replaces the leftmost non-terminal symbol
 - Rightmost derivation always replaces the rightmost one

Examples

$$\mathsf{E} \to \mathsf{E} \,^*\,\mathsf{E} \, \mid \, \mathsf{E} \,^+\,\mathsf{E} \,\mid \, (\,\mathsf{E}\,) \,\mid \, \mathsf{id}$$

leftmost derivation

$$\mathsf{E} \Rightarrow \mathsf{E} + \mathsf{E} \Rightarrow \mathsf{E}^* \, \mathsf{E} + \mathsf{E} \Rightarrow \mathsf{id}^* \, \mathsf{E} + \mathsf{E} \Rightarrow \mathsf{id}^* \, \mathsf{id} + \mathsf{E} \Rightarrow \dots$$
$$\Rightarrow \mathsf{id}^* \, \mathsf{id} + \mathsf{id}^* \, \mathsf{id}$$

> rightmost derivation

$$E \Rightarrow E + E \Rightarrow E + E * E \Rightarrow E + E * id \Rightarrow E + id * id \Rightarrow ...$$
$$\Rightarrow id * id + id * id$$

Parse Trees

Parse tree structure

- Internal nodes are intermediate non-terminals
- Leaves are terminals at the end of derivation
- Structure depends on what production rules were applied
- Same tree for previous rightmost/leftmost derivations (Same rules were applied only in different sequences)

A parse tree

- describes program structure (defined by the rules applied)
- is agnostic of choice of leftmost or rightmost derivation

Different Parse Trees

Given the current grammar, the same string id * id + id * id

can be parsed into 3 different trees (and more)

Ambiguity

- A grammar G is **ambiguous** if
 - ightharpoonup there exist a string $str \in L(G)$ such that
 - > more than one parse tree derives *str*
 - \equiv there is more than leftmost derivation for str
 - \equiv there is more than rightmost derivation for str
- Grammars that produce multiple parse trees is a problem
 - Each parse tree is a different interpretation of program
- Likely, there is an unambiguous version of the grammar
 - > That accepts the same programming language
 - Programming languages are rarely inherently ambiguous

Grammar can be rewritten to remove ambiguity

- Method I: to specify precedence
 - > build precedence into grammar, have different non-terminal for each precedence level
 - Lower precedence relatively higher in tree (close to root)
 - Higher precedence relatively lower in tree (far from root)
 - Same precedence depends on associativity

How to Remove Ambiguity?

- Method II: to specify associativity
 - Allow recursion only on either left or right non-terminal
 - Left associative recursion on left non-terminal
 - Right associative recursion on right non-terminal
- For the previous example,

```
\mathsf{E} \to \mathsf{E} + \mathsf{E} \dots; allows both left/right associativity
```

rewrite it to

```
E \rightarrow E + T \dots; only left associativity F \rightarrow P \wedge F \dots; only right associativity
```

Properties of Context Free Grammars

- Decidable: computable using a Turing Machine
- It is decidable if a string is in a context free language
 - > Implementing a parser is feasible for every CFL
- It is **undecidable** if a CFG is ambiguous
 - Checking ambiguity at compile time is impossible
 - Can only be checked reliably at runtime for a given string
 - In practice, tools like Yacc check for a more restricted grammar (e.g. LALR(1)) instead
 - LALR(1) is a subset of unambiguous grammars
 - Can be done easily at compile time
- lt is **undecidable** if two CFGs generate same language
 - Impossible to tell if language changed by tweaking grammar
 - > Parsers are regression tested against a test set frequently

The Two Outcomes of Parsing

- Outcome 1: Parser is able to derive input from grammar
 - Parser builds parse tree that represents the derivation
- Outcome 2: Parser is unable to derive input from grammar
 - Parser emits a syntax error with source code location

The Two Outcomes of Parsing

- Outcome 1: Parser is able to derive input from grammar
 - Parser builds parse tree that represents the derivation
- Outcome 2: Parser is unable to derive input from grammar
 - Parser emits a syntax error with source code location
- How would you write a parser that does both well?

Types of Parsers

- Universal parser
 - Can parse any CFG e.g. Early's algorithm
 - Powerful but extremely inefficient (O(N³) where N is length of string)
- Top-down parser
 - Tries to expand start symbol to input string
 - > Finds leftmost derivation
 - > Only works for a certain class of grammars
 - Starts from root and expands into leaves
 - Structure closely mimics grammar amenable to implementation by hand

Types of Parsers (cont.)

Bottom-up parser

- Tries to reduce the input string to the start symbol
- Finds reverse order of the rightmost derivation
- Works for wider class of grammars
- Starts at leaves and build tree in bottom-up fashion
- More amenable to generation by an automated tool

What Output do We Want?

- The output of parsing is
 - parse tree, or
 - abstract syntax tree
- An abstract syntax tree is
 - similar to a parse tree but ignores some details
 - > internal nodes may contain terminal symbols

An Example

Consider the grammar

After lexical analysis, we have a sequence of tokens

Parse Tree of the Input

- A parse tree
 - > Traces the operation of the parser
 - Does capture the nested structure
- but contains too much information
 - parentheses
 - > single-successor nodes

Abstract Syntax Tree

An Abstract Syntax Tree (AST) for the input

- > AST also captures the nested structure
- > AST abstracts from parse tree (a.k.a. concrete syntax tree)
- > AST is more compact and contains only relevant info
- > ASTs are used in most compilers rather than parse trees

How are ASTs Constructed?

- ☐ Through implementation of **semantic actions**
- ☐ We already used them in project 1 to return token tuples
- To construct AST, we attach an attribute to each symbol X
 - X.ast the constructed AST for symbol X
- Extend each production rule with semantic actions, i.e.

$$X \rightarrow Y_1Y_2...Y_n$$
 { actions }

actions may define or use X.ast, Y_i .ast $(1 \le i \le n)$

For the previous example, we have

```
\begin{array}{cccc} E & \rightarrow & \text{int} & \{ \text{ E.ast} = \text{mkleaf(int.lval)} \} \\ & | & \text{E1} + \text{E2} & \{ \text{ E.ast} = \text{mkplus(E1.ast, E2.ast)} \} \\ & | & \text{(E1)} & \{ \text{ E.ast} = \text{E1.ast} \} \end{array}
```

- Here, we use two pre-defined fuctions
 - ptr1=mkleaf(n) create a leave node and assign value "n"
 - → ptr2=mkplus(t1, t2) create a tree node and assign the root value "PLUS", and two subtrees as t1 and t2


```
For input INT<sub>5</sub> '+' '(' INT<sub>2</sub> '+' INT<sub>3</sub> ')'
Construction order given is for a top-down LL(1) parser
(Order can change depending on parser implementation)
```

For input INT₅ '+' '(' INT₂ '+' INT₃ ')'

Construction order given is for a top-down LL(1) parser (Order can change depending on parser implementation)

For input INT₅ '+' '(' INT₂ '+' INT₃ ')'

Construction order given is for a top-down LL(1) parser (Order can change depending on parser implementation)

E1.ast=mkleaf(5) E2.ast=mkleaf(2)

For input INT₅ '+' '(' INT₂ '+' INT₃ ')'

Construction order given is for a top-down LL(1) parser (Order can change depending on parser implementation)

E1.ast=mkleaf(5) E2.ast=mkleaf(2) E3.ast=mkleaf(3)

For input INT₅ '+' '(' INT₂ '+' INT₃ ')'

Construction order given is for a top-down LL(1) parser (Order can change depending on parser implementation)

E4.ast=mkplus(E2.ast, E3.ast)

PLUS

PLUS

E1.ast=mkleaf(5) E2.ast=mkleaf(2) E3.ast=mkleaf(3)

5

2

3

For input INT₅ '+' '(' INT₂ '+' INT₃ ')'

Construction order given is for a top-down LL(1) parser (Order can change depending on parser implementation)

For input INT₅ '+' '(' INT₂ '+' INT₃ ')'

Construction order given is for a top-down LL(1) parser (Order can change depending on parser implementation)

E5.ast=mkplus(E1.ast, E4.ast)

For input INT₅ '+' '(' INT₂ '+' INT₃ ')'

Construction order given is for a top-down LL(1) parser (Order can change depending on parser implementation)

E5.ast=mkplus(E1.ast, E4.ast)

For input INT₅ '+' '(' INT₂ '+' INT₃ ')'

Construction order given is for a top-down LL(1) parser (Order can change depending on parser implementation)

E5.ast=mkplus(E1.ast, E4.ast)

Summary

- ☐ Compilers specify program structure using CFG
 - Most programming languages are not context free
 - Context sensitive analysis can easily separate out to semantic analysis phase
- A parser uses CFG to
 - ightharpoonup ... answer if an input str \in L(G)
 - ... and build a parse tree
 - > ... or build an AST instead
 - ... and pass it to the rest of compiler

Parsing

Parsing

- We will study two approaches
- ☐ Top-down
 - Easier to understand and implement manually
- Bottom-up
 - More powerful, can be implemented automatically

Consider a CFG grammar G

$$S \rightarrow$$

$$\mathsf{A} \, \to \,$$

$$S \,\rightarrow\, A\,B \qquad A \,\rightarrow\, a\,C \qquad B \,\rightarrow\, b\,D$$

 $D \rightarrow d \qquad C \rightarrow c$

$$C \rightarrow c$$

Actually, this language has only one sentence, i.e.

$$L(G) = \{ acbd \}$$

Leftmost Derivation:

$$S \Rightarrow AB (1)$$

$$\Rightarrow$$
 aCB (2)

$$\Rightarrow$$
 acB (3)

$$\Rightarrow$$
 acbD (4)

$$\Rightarrow$$
 acbd (5)

$$S \Rightarrow AB (5)$$

$$\Rightarrow$$
 AbD (4)

$$\Rightarrow$$
 Abd (3)

$$\Rightarrow$$
 aCbd (2)

$$\Rightarrow$$
 acbd (1)

Consider a CFG grammar G

$$S \rightarrow$$

$$S \,\rightarrow\, A\,B \qquad A \,\rightarrow\, a\,C \qquad B \,\rightarrow\, b\,D$$

$$\mathsf{D}\,\to\,\mathsf{d}\,$$
 $\mathsf{C}\,\to\,\mathsf{c}\,$

$$C \rightarrow c$$

Actually, this language has only one sentence, i.e.

$$L(G) = \{ acbd \}$$

Leftmost Derivation:

$$S \Rightarrow AB (1)$$

$$\Rightarrow$$
 aCB (2)

$$\Rightarrow$$
 acB (3)

$$\Rightarrow$$
 acbD (4)

$$\Rightarrow$$
 acbd (5)

$$S \Rightarrow AB (5)$$

$$\Rightarrow$$
 AbD (4)

$$\Rightarrow$$
 Abd (3)

$$\Rightarrow$$
 aCbd (2)

$$\Rightarrow$$
 acbd (1)

Consider a CFG grammar G

$$S \rightarrow$$

$$S \rightarrow AB$$
 $A \rightarrow aC$ $B \rightarrow bD$

$$D \rightarrow d \qquad C \rightarrow c$$

$$\mathsf{C} \, o \, \mathsf{c}$$

Actually, this language has only one sentence, i.e.

$$L(G) = \{ acbd \}$$

Leftmost Derivation:

$$S \Rightarrow AB (1)$$

$$\Rightarrow$$
 aCB (2)

$$\Rightarrow$$
 acB (3)

$$\Rightarrow$$
 acbD (4)

$$S \Rightarrow AB (5)$$

$$\Rightarrow$$
 AbD (4)

$$\Rightarrow$$
 Abd (3)

$$\Rightarrow$$
 aCbd (2)

$$\Rightarrow$$
 acbd (1)

Consider a CFG grammar G

$$\mathsf{S} \to$$

$$S \rightarrow AB$$
 $A \rightarrow aC$ $B \rightarrow bD$

$$D \rightarrow d \qquad C \rightarrow c$$

$$C \rightarrow c$$

Actually, this language has only one sentence, i.e.

$$L(G) = \{ acbd \}$$

Leftmost Derivation:

$$S \Rightarrow AB (1)$$

$$\Rightarrow$$
 aCB (2)

$$\Rightarrow$$
 acB (3)

$$\Rightarrow$$
 acbD (4)

$$\Rightarrow$$
 acbd (5)

$$S \Rightarrow AB (5)$$

$$\Rightarrow$$
 AbD (4)

$$\Rightarrow$$
 Abd (3)

$$\Rightarrow$$
 aCbd (2)

$$\Rightarrow$$
 acbd (1)

Consider a CFG grammar G

$$S \rightarrow$$

$$S \rightarrow AB \qquad A \rightarrow aC \qquad B \rightarrow bD$$

$$\mathsf{D}\,\to\,\mathsf{d}$$
 $\mathsf{C}\,\to\,\mathsf{c}$

$$C \rightarrow c$$

Actually, this language has only one sentence, i.e.

$$L(G) = \{ acbd \}$$

Leftmost Derivation:

$$S \Rightarrow AB (1)$$

$$\Rightarrow$$
 aCB (2)

$$\Rightarrow$$
 acB (3)

$$\Rightarrow$$
 acbD (4)

$$\Rightarrow$$
 acbd (5)

$$\Rightarrow$$
 acco

$$S \Rightarrow AB (5)$$

$$\Rightarrow$$
 AbD (4)

$$\Rightarrow$$
 Abd (3)

$$\Rightarrow$$
 aCbd (2)

$$\Rightarrow$$
 acbd (1)

Consider a CFG grammar G

$$S \rightarrow$$

$$S \rightarrow AB \qquad A \rightarrow aC \qquad B \rightarrow bD$$

$$\mathsf{D} \,\to\, \mathsf{d} \qquad \quad \mathsf{C} \,\to\, \mathsf{c}$$

Actually, this language has only one sentence, i.e.

$$L(G) = \{ acbd \}$$

Leftmost Derivation:

$$S \Rightarrow AB (1)$$

$$\Rightarrow$$
 aCB (2)

$$\Rightarrow$$
 acB (3)

$$\Rightarrow$$
 acbD (4)

$$\Rightarrow$$
 acbd (5)

$$S \Rightarrow AB (5)$$

$$\Rightarrow$$
 AbD (4)

$$\Rightarrow$$
 Abd (3)

$$\Rightarrow$$
 aCbd (2)

$$\Rightarrow$$
 acbd (1)

Consider a CFG grammar G

$$\mathsf{S} \to$$

$$S \rightarrow AB$$
 $A \rightarrow aC$ $B \rightarrow bD$

$$D \rightarrow d \qquad C \rightarrow c$$

$$C \rightarrow c$$

Actually, this language has only one sentence, i.e.

$$L(G) = \{ acbd \}$$

Leftmost Derivation:

$$S \Rightarrow AB (1)$$

$$\Rightarrow$$
 aCB (2)

$$\Rightarrow$$
 acB (3)

$$\Rightarrow$$
 acbD (4)

$$\Rightarrow$$
 acbd (5)

$$S \Rightarrow AB (5)$$

$$\Rightarrow$$
 AbD (4)

$$\Rightarrow$$
 Abd (3)

$$\Rightarrow$$
 aCbd (2)

$$\Rightarrow$$
 acbd (1)

Consider a CFG grammar G

$$S \rightarrow AB$$
 $A \rightarrow aC$ $B \rightarrow bD$

$$\mathsf{D}\,\to\,\mathsf{d}\,$$
 $\mathsf{C}\,\to\,\mathsf{c}\,$

$$C \rightarrow c$$

Actually, this language has only one sentence, i.e.

$$L(G) = \{ acbd \}$$

Leftmost Derivation:

$$S \Rightarrow AB (1)$$

$$\Rightarrow$$
 aCB (2)

$$\Rightarrow$$
 acB (3)

$$\Rightarrow$$
 acbD (4)

$$\Rightarrow$$
 acbd (5)

$$S \Rightarrow AB (5)$$

$$\Rightarrow$$
 AbD (4)

$$\Rightarrow$$
 Abd (3)

$$\Rightarrow$$
 aCbd (2)

$$\Rightarrow$$
 acbd (1)

Consider a CFG grammar G

$$\mathsf{S} \to$$

$$S \rightarrow AB$$
 $A \rightarrow aC$ $B \rightarrow bD$

$$\mathsf{D}\,\to\,\mathsf{d}\,$$
 $\mathsf{C}\,\to\,\mathsf{c}\,$

$$C \rightarrow c$$

Actually, this language has only one sentence, i.e.

$$L(G) = \{ acbd \}$$

Leftmost Derivation:

$$S \Rightarrow AB (1)$$

$$\Rightarrow$$
 aCB (2)

$$\Rightarrow$$
 acB (3)

$$\Rightarrow$$
 acbD (4)

$$\Rightarrow$$
 acbd (5)

$$S \Rightarrow AB (5)$$

$$\Rightarrow$$
 AbD (4)

$$\Rightarrow$$
 Abd (3)

$$\Rightarrow$$
 aCbd (2)

$$\Rightarrow$$
 acbd (1)

Consider a CFG grammar G

$$\mathsf{S} \, o$$

$$S \rightarrow AB$$
 $A \rightarrow aC$ $B \rightarrow bD$

$$\mathsf{D}\,\to\,\mathsf{d}\,$$
 $\mathsf{C}\,\to\,\mathsf{c}\,$

$$C \rightarrow c$$

Actually, this language has only one sentence, i.e.

$$L(G) = \{ acbd \}$$

Leftmost Derivation:

$$S \Rightarrow AB (1)$$

$$\Rightarrow$$
 aCB (2)

$$\Rightarrow$$
 acB (3)

$$\Rightarrow$$
 acbD (4)

$$\Rightarrow$$
 acbd (5)

$$S \Rightarrow AB (5)$$

$$\Rightarrow$$
 AbD (4)

$$\Rightarrow$$
 Abd (3)

$$\Rightarrow$$
 aCbd (2)

$$\Rightarrow$$
 acbd (1)

Consider a CFG grammar G

$$\mathsf{S} \, o$$

$$S \rightarrow AB$$
 $A \rightarrow aC$ $B \rightarrow bD$

$$\mathsf{D}\,\to\,\mathsf{d}\,$$
 $\mathsf{C}\,\to\,\mathsf{c}\,$

$$C \rightarrow c$$

Actually, this language has only one sentence, i.e.

$$L(G) = \{ acbd \}$$

Leftmost Derivation:

$$S \Rightarrow AB (1)$$

$$\Rightarrow$$
 aCB (2)

$$\Rightarrow$$
 acB (3)

$$\Rightarrow$$
 acbD (4)

$$\Rightarrow$$
 acbd (5)

$$S \Rightarrow AB (5)$$

$$\Rightarrow$$
 AbD (4)

$$\Rightarrow$$
 Abd (3)

$$\Rightarrow$$
 aCbd (2)

$$\Rightarrow$$
 acbd (1)

Consider a CFG grammar G

$$\mathsf{S} \to$$

$$S \rightarrow AB$$
 $A \rightarrow aC$ $B \rightarrow bD$

$$\mathsf{D}\,\to\,\mathsf{d}\,$$
 $\mathsf{C}\,\to\,\mathsf{c}\,$

$$C \rightarrow c$$

Actually, this language has only one sentence, i.e.

$$L(G) = \{ acbd \}$$

Leftmost Derivation:

$$S \Rightarrow AB (1)$$

$$\Rightarrow$$
 aCB (2)

$$\Rightarrow$$
 acB (3)

$$\Rightarrow$$
 acbD (4)

$$\Rightarrow$$
 acbd (5)

$$S \Rightarrow AB (5)$$

$$\Rightarrow$$
 AbD (4)

$$\Rightarrow$$
 Abd (3)

$$\Rightarrow$$
 aCbd (2)

$$\Rightarrow$$
 acbd (1)

Top Down Parsers

- Recursive descent parser
 - Implemented using recursive calls to functions that implement the expansion of each non-terminal
 - Simple to implement, use backtracking on mismatch
- Predictive parser
 - Recursive descent parser with prediction (no backtracking)
 - Predict next rule by looking ahead k number of symbols
 - Restrictions on the grammar to avoid backtracking
 - Only works for a class of grammars called LL(k)
- Nonrecursive predictive parser
 - > Predictive parser with no recursive calls
 - > Table driven suitable for automated parser generators

Recursive Descent Example

input string: int * int

start symbol: E

initial parse tree is E

Recursive Descent Example

input string: int * int

start symbol: E

initial parse tree is E

Assume: when there are alternative rules, try right rule first

Ε

 $E \Rightarrow T$

– pick right most rule $E{\rightarrow}T$

$$E \Rightarrow T \Rightarrow (E)$$

- pick right most rule $E \rightarrow T$
- pick right most rule $T\rightarrow$ (E)

$$E \Rightarrow T \Rightarrow (E)$$

- pick right most rule E→T
- pick right most rule $T\rightarrow$ (E)
- "(" does not match "int"

$$E \Rightarrow T \Rightarrow (E)$$

- pick right most rule E→T
- pick right most rule $T\rightarrow$ (E)
- "(" does not match "int"
- failure, backtrack one level

$$E \Rightarrow T \Rightarrow (E)$$

- pick right most rule E→T
- pick right most rule $T\rightarrow$ (E)
- "(" does not match "int"
- failure, backtrack one level

$$E \Rightarrow T \Rightarrow (E)$$

 \Rightarrow int

- pick right most rule E→T
- pick right most rule T→(E)
- "(" does not match "int"
- failure, backtrack one level
- pick up $T\rightarrow int$
- "int" matches input "int"

$$E \Rightarrow T \Rightarrow (E)$$

 \Rightarrow int

- pick right most rule E→T
- pick right most rule T→(E)
- "(" does not match "int"
- failure, backtrack one level
- pick up T→int
- "int" matches input "int"
- however, we expect more tokens
- failure, backtrack one level

$$E \Rightarrow T \Rightarrow (E)$$

 \rightarrow int

- pick right most rule E→T
- pick right most rule T→(E)
- "(" does not match "int"
- failure, backtrack one level
- pick up $T\rightarrow int$
- "int" matches input "int"
- however, we expect more tokens
- failure, backtrack one level

$$E \Rightarrow T \Rightarrow (E)$$

 \rightarrow int

 \Rightarrow int * T

- pick right most rule E→T
- pick right most rule T→(E)
- "(" does not match "int"
- failure, backtrack one level
- pick up T→int
- "int" matches input "int"
- however, we expect more tokens
- failure, backtrack one level
- pick up T→int * T

$$\begin{array}{lll} E \Rightarrow T \xrightarrow{} (E) & - \operatorname{pick} \operatorname{right} \operatorname{most} \operatorname{rule} E {\to} T \\ & - \operatorname{pick} \operatorname{right} \operatorname{most} \operatorname{rule} T {\to} (E) \\ & - \text{``('')} \operatorname{does} \operatorname{not} \operatorname{match} \text{``int''} \\ & - \operatorname{failure, backtrack} \operatorname{one} \operatorname{level} \\ & - \operatorname{pick} \operatorname{up} T {\to} \operatorname{int} \\ & - \operatorname{``int''} \operatorname{matches} \operatorname{input} \text{``int''} \\ & - \operatorname{however, we expect} \operatorname{more} \operatorname{tokens} \\ & - \operatorname{failure, backtrack} \operatorname{one} \operatorname{level} \\ & \Rightarrow \operatorname{int} {}^*T \Rightarrow \operatorname{int} {}^*(E) & - \operatorname{pick} \operatorname{up} T {\to} \operatorname{int} {}^*T \\ & - \operatorname{pick} \operatorname{up} T {\to} \operatorname{int} {}^*(E) \end{array}$$

$$E \Rightarrow T \Rightarrow (E)$$

 \rightarrow int

$$\Rightarrow$$
 int * T \Rightarrow int * (E) - pick up T \rightarrow int * T

- pick right most rule E→T
- pick right most rule $T\rightarrow (E)$
- "(" does not match "int"
- failure, backtrack one level
- pick up T→int
- "int" matches input "int"
- however, we expect more tokens
- failure, backtrack one level
- pick up T→int * (E)
- "(" matches input "int"
- failure, backtrack one level

$$E \Rightarrow T \Rightarrow (E)$$

 \rightarrow int

$$\Rightarrow \; \mathsf{int} \; {}^\star \; \mathsf{T} \; \xrightarrow{} \; \mathsf{int} \; {}^\star \; (\; \mathsf{E} \;) \quad - \, \mathsf{pick} \; \mathsf{up} \; \mathsf{T} {\to} \mathsf{int} \; {}^\star \; \mathsf{T}$$

- pick right most rule E→T
- pick right most rule $T\rightarrow (E)$
- "(" does not match "int"
- failure, backtrack one level
- pick up T→int
- "int" matches input "int"
- however, we expect more tokens
- failure, backtrack one level
- pick up T→int * (E)
- "(" matches input "int"
- failure, backtrack one level

$$\begin{array}{lll} E \Rightarrow T \xrightarrow{} (E) & - \operatorname{pick} \operatorname{right} \operatorname{most} \operatorname{rule} E {\to} T \\ & - \operatorname{pick} \operatorname{right} \operatorname{most} \operatorname{rule} T {\to} (E) \\ & - \text{``('' does not match "int''} \\ & - \operatorname{failure, backtrack one level} \\ & \Rightarrow \operatorname{int} & - \operatorname{pick} \operatorname{up} T {\to} \operatorname{int} \\ & - \operatorname{pick} \operatorname{up} T {\to} \operatorname{int} \\ & - \operatorname{however, we expect more tokens} \\ & - \operatorname{failure, backtrack one level} \\ & \Rightarrow \operatorname{int} {}^*T \xrightarrow{} \operatorname{int} {}^*(E) \\ & - \operatorname{pick} \operatorname{up} T {\to} \operatorname{int} {}^*(E) \\ & - \operatorname{"('' matches input "int"} \\ & - \operatorname{failure, backtrack one level} \\ & \Rightarrow \operatorname{int} {}^*\operatorname{int} & - \operatorname{pick} \operatorname{up} T {\to} \operatorname{int} \\ & \to \operatorname{pick} \operatorname{up} T {\to} \operatorname{int} \\ & - \operatorname{pick} \operatorname{up} T {\to} \operatorname{up} T {\to} \operatorname{up} T {\to} \operatorname{up} T {\to} T \\ & - \operatorname{up} T {\to} \operatorname{up} T {\to} T {\to} T \\ & - \operatorname{up} T {\to} T {\to} T {\to} T {\to} T \\ & - \operatorname{up} T {\to} T {\to} T {\to} T {\to} T {\to} T {\to} T \\ & - \operatorname{up} T {\to} T$$

$$\begin{array}{lll} E \Rightarrow T \xrightarrow{} (E) & - \operatorname{pick} \operatorname{right} \operatorname{most} \operatorname{rule} E {\to} T \\ - \operatorname{pick} \operatorname{right} \operatorname{most} \operatorname{rule} T {\to} (E) \\ - \text{"(" does not match "int"} \\ - \operatorname{failure, backtrack one level} \\ - \operatorname{pick} \operatorname{up} T {\to} \operatorname{int} \\ - \operatorname{"int" matches input "int"} \\ - \operatorname{however, we expect more tokens} \\ - \operatorname{failure, backtrack one level} \\ - \operatorname{pick} \operatorname{up} T {\to} \operatorname{int} {}^* T \\ - \operatorname{pick} \operatorname{up} T {\to} \operatorname{int} {}^* T \\ - \operatorname{pick} \operatorname{up} T {\to} \operatorname{int} {}^* (E) \\ - \operatorname{"(" matches input "int"} \\ - \operatorname{failure, backtrack one level} \\ - \operatorname{pick} \operatorname{up} T {\to} \operatorname{int} \\ - \operatorname{match, accept} \\ \end{array}$$

Recursive Descent Parsing uses Backtracking

- Approach: for a non-terminal in the derivation, productions are tried in some order until
 - A production is found that generates a portion of the input, or
 - No production is found that generates a portion of the input, in which case backtrack to previous non-terminal
- Parsing fails if no production for the start symbol generates the entire input
 - Terminals of the derivation are compared against input
 - Match advance input, continue parsing
 - Mismatch backtrack, or fail

Implementation

- Create a procedure for each non-terminal
 - 1. For RHS of each production rule,
 - a. For a terminal, match with input symbol and consume
 - b. For a non-terminal, call procedure for that non-terminal
 - c. If match succeeds for entire RHS, return success
 - d. If match fails, regurgitate input and try next production rule
 - 2. If match succeeds for any rule, apply that rule to LHS

Sample Code

■ Sample implementation of parser for previous grammar:

```
\mathsf{E} \to \mathsf{T} + \mathsf{E} + \mathsf{T}
 T \rightarrow int * T \mid int \mid (E)
fetchNext()
void expr()
    term():
    if (sym==AddNum) {
      fetchNext();
      expr();
```

```
void term()
   if (sym==IntNum) {
     fetchNext():
     if (sym==StarNum) {
       fetchNext():
       term():
   else if (sym==LeftParenNum) {
     fetchNext():
     expr():
     fetchNext():
     if (sym!=RightParenNum)
       perror("error");
     fetchNext():
```

Left Recursion Problem

- The previous scheme does not work if grammar is left recursive
 - Right recursion is okay
- Why is left recursion a problem?
 - For left recursive grammar

$$A \rightarrow Ab \mid c$$

We may repeatedly choose to apply A b

$$\mathsf{A} \Rightarrow \mathsf{A} \; \mathsf{b} \Rightarrow \mathsf{A} \; \mathsf{b} \; \mathsf{b} \; ...$$

- Sentence can grow indefinitely w/o consuming input
- How do you know when to stop recursion and choose c?

Left Recursion Problem

- The previous scheme does not work if grammar is left recursive
 - Right recursion is okay
- Why is left recursion a problem?
 - For left recursive grammar

$$A \to A \ b \ \mid \ c$$

We may repeatedly choose to apply A b

$$\mathsf{A} \Rightarrow \mathsf{A} \; \mathsf{b} \Rightarrow \mathsf{A} \; \mathsf{b} \; \mathsf{b} \; ...$$

- > Sentence can grow indefinitely w/o consuming input
- > How do you know when to stop recursion and choose c?
- Rewrite the grammar so that it is right recursive
 - > Which expresses the same language

Remove Left Recursion

In general, we can eliminate all immediate left recursion

$$A \rightarrow A x \mid y$$

change to

$$A \rightarrow y A'$$

$$A' \rightarrow x A' \mid \varepsilon$$

Not all left recursion is immediate may be hidden in multiple production rules

$$A \rightarrow BC \mid D$$

$$\mathsf{B} \to \mathsf{AE} \ | \ \mathsf{F}$$

... see Section 4.3 for elimination of general left recursion

... (not required for this course)

Summary of Recursive Descent

- Recursive descent is a simple and general parsing strategy
 - Left-recursion must be eliminated first
 - Can be eliminated automatically as in previous slide
- However it is not popular because of backtracking
 - Backtracking requires re-parsing the same string
 - Which is inefficient (can take exponential time)
 - > Also undoing semantic actions may be difficult
 - E.g. removing already added nodes in parse tree
- Techniques used in practice do no backtracking
 ... at the cost of restricting the class of grammar

Predictive Parsers

- ☐ To avoid backtracking: for a given input symbol and given non-terminal, choose the alternative appropriately
 - The first terminal of every alternative in a production is unique

```
\begin{array}{l} \mathsf{A} \rightarrow \mathsf{a} \; \mathsf{B} \; \mathsf{D} \; \mid \; \mathsf{b} \; \mathsf{B} \; \mathsf{B} \\ \mathsf{B} \rightarrow \mathsf{c} \; \mid \; \mathsf{b} \; \mathsf{c} \; \mathsf{e} \\ \mathsf{D} \rightarrow \mathsf{d} \end{array}
```

parsing an input "abced" has no backtracking

> Left factoring to enable prediction

$$\begin{array}{c|ccc} \mathbf{A} \rightarrow \alpha\beta & \alpha\gamma \\ \mathbf{change\ to} \\ \mathbf{A} \rightarrow \alpha\ \mathbf{A'} \\ \mathbf{A'} \rightarrow \beta & \gamma \end{array}$$

Predictive Parsers

- To avoid backtracking: for a given input symbol and given non-terminal, choose the alternative **appropriately**
 - The first terminal of every alternative in a production is unique

```
\begin{array}{l} \textbf{A} \rightarrow \textbf{a} \ \textbf{B} \ \textbf{D} \ | \ \textbf{b} \ \textbf{B} \ \textbf{B} \\ \textbf{B} \rightarrow \textbf{c} \ | \ \textbf{b} \ \textbf{c} \ \textbf{e} \\ \textbf{D} \rightarrow \textbf{d} \end{array}
```

parsing an input "abced" has no backtracking

> Left factoring to enable prediction

$$\begin{array}{c|ccc} \mathbf{A} \rightarrow \alpha\beta & | & \alpha\gamma \\ \text{change to} & \\ \mathbf{A} \rightarrow \alpha & \mathbf{A'} \\ \mathbf{A'} \rightarrow \beta & | & \gamma \end{array}$$

- For predictive parsers, must eliminate left recursion
 - > Recall our sample C code

LL(k) Parsers

- LL(k) Parser
 - ➤ L left to right scan
 - > L leftmost derivation
 - k k symbols of lookahead
 - A predictive parser that uses k lookahead tokens
- LL(k) Grammar
 - A grammar that can parsed using a LL(k) parser with no backtracking
- LL(k) Language
 - A language that can be expressed as a LL(k) grammar
 - > LL(k) languages are a restricted subset of CFLs
 - ➤ But many languages are LL(k).. in fact many are LL(1)!
- Can be implemented in a recursive or nonrecursive fashion

Nonrecursive Predictive Parser

Syntax stack — hold right hand side (RHS) of grammar rules Parse table M[A,b] — an entry containing rule "A \rightarrow ..." or error Parser driver — next action based on (current token, stack top) Table-driven: amenable to automatic code generation (just like lexers)

A Sample Parse Table

	int	*	+	()	\$
E	$E\toTX$			$E\toTX$		
X			$X \to +E$		X o arepsilon	X o arepsilon
T	$T \to int\;Y$			T o (E)		
Y		$Y \rightarrow *T$	$Y \rightarrow \varepsilon$		$Y \rightarrow \varepsilon$	$Y \rightarrow \varepsilon$

- Implementation with 2D parse table
 - > First column lists all non-terminals
 - First row lists all possible terminals and \$
 - > A table entry contains one production
 - One action for each (non-terminal, input) combination
 - No backtracking required

Algorithm for Parsing

- **X** symbol at the top of the syntax stack
- a current input symbol
- Parsing based on (X,a)
 - ➤ If X==a==\$, then
 - parser halts with "success"
 - ➤ If X==a!=\$, then
 - pop X from stack and advance input head
 - If X!=a, then Case (a): if $X \in T$, then
 - parser halts with "failed", input rejected
 - Case (b): if $X \in N$, $M[X,a] = "X \rightarrow RHS"$
 - pop X and push RHS to stack in reverse order

Push RHS in Reverse Order

- **X** symbol at the top of the syntax stack
- a current input symbol

if M[X,a] = "X
$$\rightarrow$$
 B c D"

 \Rightarrow

Applying LL(1) Parsing to a Grammar

Given our old grammar

- No left recursion
- But require left factoring
- After rewriting grammar, we have

To recognize "int * int"

☐ To recognize "int * int"

To recognize "int * int"

☐ To recognize "int * int"

To recognize "int * int"

To recognize "int * int"

Recognition Sequence

lt is possible to write in a action list

Stack	Input	Action	
E \$	int * int \$	$E \!\! o TX$	
T X \$	int * int \$	T→ int Y	
int Y X \$	int * int \$	terminal	
Y X \$	* int \$	Y→ * T	
* T X \$	* int \$	terminal	
T X \$	int \$	T→ int Y	
int Y X \$	int \$	terminal	
Y X \$	\$	$Y \rightarrow \varepsilon$	
X \$	\$	$X \rightarrow \varepsilon$	
\$	\$	halt and accept	

How to Construct the Parse Table?

- Need to know 2 sets
 - For each symbol A, the set of terminals that can begin a string derived from A. This set is called the FIRST set of A
 - For each non-terminal A, the set of terminals that can appear after a string derived from A is called the FOLLOW set of A

Intuitive Meaning of First and Follow

 $c \in First(A)$

 $a \in Follow(A)$

Why is the Follow Set important?

$First(\alpha)$

- First(α) = set of terminals that start string of terminals derived from α .
- igspace Apply followsing rules until no terminal or arepsilon can be added
 - If t ∈ T, then First(t)={t}.
 For example First(+)={+}.
 - 2). If $X \in \mathbb{N}$ and $X \to \varepsilon$ exists, then add ε to First(X). For example, First(Y) = $\{*, \varepsilon\}$.
 - 3). If $X \in \mathbb{N}$ and $X \to Y_1 Y_2 Y_3 ... Y_m$, where $Y_1, Y_2, Y_3, ... Y_m$ are non-terminals, then
 - Add (First(Y_1) ε) to First(X).
 - If First(Y_1), ..., First(Y_{k-1}) all contain ε , then add $(\sum_{1 < i < k} First(Y_i) \varepsilon)$ to First(X).
 - If First(Y_1), ..., First(Y_m) all contain ε , then add ε to First(X).

$Follow(\alpha)$

Intuition: if $X \to A$ B, then $First(B) \subseteq Follow(A)$

little trickier because B may be ε i.e. B \Rightarrow * ε

- igspace Apply followsing rules until no terminal or arepsilon can be added
 - 1). $\$ \in \text{Follow}(S)$, where S is the start symbol. e.g. $\text{Follow}(E) = \{\$... \}$.
 - 2). Look at the occurrence of a non-terminal on the right hand side of a production which is followed by something If $A \to \alpha B\beta$, then First(β)-{ ε } \subseteq Follow(B)
 - 3). Look at N on the RHS that is not followed by anything,

if
$$(A \to \alpha B)$$
 or $(A \to \alpha B\beta)$ and $\varepsilon \in \text{First}(\beta)$, then $\text{Follow}(A) \subseteq \text{Follow}(B)$

Informal Interpretation of First and Follow Sets

- First set of X
 - Terminal symbols
 - \rightarrow X \rightarrow Y Z, then First(Y)
 - \triangleright X \rightarrow ε
- Follow set of X
 - > \$
 - \rightarrow ... \rightarrow X Y, focus on X
 - \rightarrow Y \rightarrow X, focus on X

For the example

For the first set

For the follow set

$$\begin{array}{c} \mbox{\$} \\ \mbox{E} \rightarrow \mbox{T} \mbox{X} \\ \mbox{T} \rightarrow \mbox{(E)} \\ \mbox{X} \rightarrow \mbox{+E} \\ \mbox{T} \rightarrow \mbox{int Y} \\ \mbox{Y} \rightarrow \mbox{*T} \\ \mbox{E} \rightarrow \mbox{T} \end{array}$$

Example

Symbol	First
((
))
+	+
*	*
int	int
Υ	*, ε
Х	+ , ε
Т	(, int
Е	(, int

Symbol	Follow		
E	\$,)		
Х	\$,)		
Т	\$,),+		
Υ	\$,),+		

Construction of LL(1) Parse Table

- $lue{}$ To construct the parse table, we check each ${\sf A}{
 ightarrow}\,lpha$
 - For each terminal $a \in First(\alpha)$, then add $A \rightarrow \alpha$ to M[A,a].
 - ightharpoonup If $\varepsilon \in \operatorname{First}(\alpha)$, then for each terminal $b \in \operatorname{Follow}(A)$, add $A \rightarrow \alpha$ to M[A,b].
 - ightharpoonup If $\varepsilon \in \mathsf{First}(\alpha)$ and $\$ \in \mathsf{Follow}(\mathsf{A})$, then add $\mathsf{A} \to \alpha$ to M[A,\$].

Example

First		
(
)		
+		
*		
int		
*, ε		
+ , ε		
(, int		
(, int		

Symbol	Follow		
Е	\$,)		
Х	\$,)		
Т	\$,),+		
Υ	\$,),+		

Table	int	*	+	()	\$
E	$E\toTX$			$E\toTX$		
X			$X \to +E$		X o arepsilon	X o arepsilon
T	$T \to int\;Y$			T o (E)		
Υ		Y o *T	Y o arepsilon		Y o arepsilon	Y o arepsilon

Determine if Grammar G is LL(1)

Observation

If a grammar is LL(1), then each of its LL(1) table entry contains at most one rule. Otherwise, it is not LL(1).

- Two methods to determine if a grammar is LL(1) or not
 - Construct LL(1) table, and check if there is a multi-rule entry or
 - (2) Checking each rule as if the table is getting constructed. G is LL1(1) **iff** for a rule $\mathbf{A} \to \alpha | \beta$
 - ightharpoonup First(α) \cap First(β) = ϕ
 - ightharpoonup at most one of α and β can derive ε
 - ightharpoonup If β derives ε , then First(α) \cap Follow(A) = ϕ

Non-LL(1) Grammars

If an LL(1) table entry contains more than one rule, then the grammar is not LL(1).

- What to do then?
 - (1) Might still be an LL(1) language. Massage to LL(1) grammar:
 - Apply left-factoring
 - Apply left-recursion removal
 - (2) If (1) fails, the possibilties are...
 - Grammar just needs a little more lookahead (May need LL(k) parser where k > 1 or backtracking)
 - Grammar is inherently ambiguous (May result in multiple legal derivations)

Ambiguous Grammars

Some grammars are not LL(1) even after left-factoring and left-recursion removal $S \rightarrow if C then S \mid if C then S else S \mid a (other statements)$ $C \rightarrow b$ change to $S \rightarrow if C then S X \mid a$ $X \rightarrow \text{else S} \mid \varepsilon$ $C \rightarrow b$ problem sentence: "if b then if b then a else a" "else" \in First(X) First(X)- $\varepsilon \subset Follow(S)$ $X \rightarrow else ... \mid \varepsilon$ "else" ∈ Follow(X) Such grammars are potentially ambiguous

Removing Ambiguity

- To remove ambiguity, it is possible to rewrite the grammar
- For the "if-then-else" example, how would you rewrite it?

```
S \rightarrow if C then S \mid S2
 S2 \rightarrow if C then S2 else S \mid a
 C \rightarrow b
```

- Now grammar is unambiguous but it is not LL(k) for any k
 - > Intuitively, must lookahead until 'else' to choose rule for 'S'
 - That lookahead may be an arbirary number of tokens
- Changing the grammar to be perfectly unambiguous
 - Can be very taxing for programmers to specify correctly
 - May still result in grammar not suitable for LL(1) parsing
- More practical to encode precedence rules into parser to resolve ambiguity
 - ightharpoonup E.g. Always choose $X \to else S$ over $X \to \varepsilon$ on 'else' token

LL(1) Summary

- LL(1) parsers operate in linear time and at most linear space relative to the length of input because
 - Time each input symbol is processed constant number of times
 - Why?
 - ightharpoonup Stack space is smaller than the input (if we remove X $ightarrow \varepsilon$)
 - Why?

Summary

- First and Follow sets are used to construct predictive parsing tables
- Intuitively, **First** and **Follow** sets guide the choice of rules
 - For non-terminal **a** and input **t**, use a production rule $\mathbf{A} \to \alpha$ where $\mathbf{t} \in \mathbf{First}(\alpha)$
 - For non terminal **A** and input **t**, if $\mathbf{A} \to \alpha$ and $\mathbf{t} \in \mathsf{Follow}$ (A), use the production $\mathbf{A} \to \alpha$ where $\varepsilon \in \mathsf{First}(\alpha)$

Questions

What is LL(0)?

☐ Why LL(2) ... LL(k) are not widely used?