Problèmes du second degré

On appelle problème du second degré tout problème qui conduit à la résolution d'une équation du type $ax^2 + bx + c = 0$ ou d'une inéquation du type $ax^2 + bx + c \le 0$ (ou $ax^2 + bx + c \ge 0$), où, dans tous les cas, a est un réel non nul.

Résolution de l'équation $ax^2 + bx + c = 0$: on rappelle que les solutions éventuelles de cette équation sont appelées les racines du polynôme $ax^2 + bx + c$ et qu'on appelle discriminant du polynôme le réel $\Delta = b^2 - 4ac$ (qui ne dépend donc que des coefficients a, b, c du polynôme). On a alors les trois cas suivants:

ightharpoonup Si $\Delta > 0$, il y a deux racines réelles distinctes données par

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$

ightharpoonup Si $\Delta = 0$, il y a une seule racine donnée par

$$x_0 = \frac{-b}{2a}$$

▶ Si Δ < 0, il n'y a aucune racine (dans \mathbb{R}).

Factorisation du polynôme $ax^2 + bx + c$: il s'agit, lorsque c'est possible, d'écrire $ax^2 + bx + c$ sous forme d'un produit de facteurs du premier degré.

- ▶ Si $\Delta > 0$, on a $\alpha x^2 + bx + c = \alpha(x x_1)(x x_2)$ où x_1 et x_2 sont les deux racines.
- ▶ Si $\Delta = 0$, on a $ax^2 + bx + c = a(x x_0)^2$ où x_0 est l'unique racine.
- ▶ Si $\Delta < 0$, on ne peut pas factoriser $ax^2 + bx + c$ dans \mathbb{R} .

Signe du polynôme $ax^2 + bx + c$: la connaissance du signe de la quantité $ax^2 + bx + c$ selon la valeur du réel x permet de résoudre les inéquations du second degré. On retiendra cette règle simple :

 $ax^2 + bx + c$ est toujours du signe du réel a, sauf « entre les racines » éventuelles

Plus précisément, cette règle s'interpréte donc comme suit :

- 1. Si $\Delta > 0$, le polynôme $ax^2 + bx + c$ est du signe du réel a, sauf si x est dans l'intérieur de l'intervalle dont les extrémités sont les deux racines x_1 et x_2 , où le polynôme est donc du signe de -a.
- 2. Si $\Delta = 0$, le polynôme $ax^2 + bx + c$ est toujours du signe du réel a (sauf en x_0 où il est nul).
- 3. Si $\Delta < 0$, le polynôme $ax^2 + bx + c$ est toujours du signe du réel a.

Exercice 1:

Pour chacun des polynômes P suivants, on demande de traiter les trois questions suivantes :

- 1. résoudre dans \mathbb{R} l'équation P(x) = 0.
- 2. donner, lorsque P admet au moins une racine réelle, la factorisation de P(x) en produit de facteurs du premier degré.
- 3. préciser le signe de P(x) suivant les valeurs de $x \in \mathbb{R}$.

$$P_{1}(x) = x^{2} + 6x + 5$$

$$P_{2}(x) = x^{2} - 6x + 5$$

$$P_{3}(x) = 5x^{2} + 6x + 1$$

$$P_{4}(x) = 3x^{2} + 4x - 7$$

$$P_{5}(x) = x^{2} + x - 1$$

$$P_{6}(x) = -x^{2} - x - 1$$

$$P_{7}(x) = -7x^{2} + 6x + 1$$

$$P_{8}(x) = 4x^{2} - 12x + 9$$

$$P_{9}(x) = 100x^{2} - 20x + 1$$

$$P_{10}(x) = 2006x^{2} - 2007x + 1$$

$$P_{11}(x) = 3x^{2} - 4x - 15$$

$$P_{12}(x) = -x^{2} + 22x - 121$$

$$P_{13}(x) = 18x^{2} - 31x + 13$$

$$P_{14}(x) = x^{2} + 10x + 100$$

$$P_{15}(x) = \frac{3}{2}x^{2} + \frac{2}{3}x - \left(\frac{2}{3}\right)^{3}$$

$$P_{16}(x) = 169x^{2} - 13x - 2$$