MA-108 Ordinary Differential Equations

M.K. Keshari

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> 10th March, 2015 D1 - Lecture 5

Recall: Uniqueness of a solution y(x) of IVP: $y'=f(x,y),\ y(x_0)=a_0$ means y(x) is unique on a (connected) open interval containing x_0 .

The interval of validity for a solution of an IVP will always be an open interval (connected).

(Existence) IVP y' = f(x,y), $y(x_0) = y_0$ has a solution on some interval containing x_0 , if f(x,y) is continuous on an open rectangle around (x_0,y_0) .

(Uniqueness) IVP $y'=f(x,y),\ y(x_0)=y_0$ has a unique solution on some interval containing x_0 , if f and $\partial f/\partial y$ are continuous on an open rectangle around (x_0,y_0) .

Example

Ex. Consider the IVP

$$y' = \frac{x+y}{x-y}, \quad y(x_0) = y_0$$
 (*)

lf

$$f(x,y) = \frac{x+y}{x-y}$$
, then $\frac{\partial f}{\partial y} = \frac{2x}{(x-y)^2}$

Here f(x,y) and $\partial f/\partial y$ are continuous everywhere except on the line y=x.

If $x_0 \neq y_0$, there is an open rectangle R containing (x_0, y_0) that does not intersect with the line y = x.

Since f(x,y) and $\partial f/\partial y$ are continuous on R, by existence and uniqueness theorem, if $x_0 \neq y_0$, then (*) has a unique solution on some open interval containing x_0 .

Ex. Consider the IVP

$$y' = \frac{10}{3} x y^{2/5}, \quad y(x_0) = y_0 \quad (*)$$

- **Q1.** For what (x_0, y_0) , (*) has a solution?
- **Q2.** For what (x_0, y_0) , (*) has a unique solution on some open interval that contains x_0 ?

Here
$$f(x,y) = \frac{10}{3} xy^{2/5}$$
 and $\frac{\partial f}{\partial y} = \frac{4}{3} xy^{-3/5}$

- Since f(x,y) is continuous for all $(x,y) \in \mathbb{R}^2$, IVP (*) has a solution for all (x_0,y_0) .
- Since f(x,y) and $\partial f/\partial y$ both are continuous for all (x,y) with $y \neq 0$. If $y_0 \neq 0$, there is an open rectangle R containing (x_0,y_0) s.t. f and $\partial f/\partial y$ are continuous on R. Hence IVP (*) has a unique solution on some open interval containing x_0 . \square

Ex. Consider $f(x,y) = \frac{10}{3} xy^{2/5}$ and $\partial f/\partial y = \frac{4}{3} xy^{-3/5}$.

Since $\partial f/\partial y$ is not defined for y=0, it is discontinuous if y=0. Hence the uniqueness theorem does not apply when $y_0=0$.

Hence the IVP

$$y' = \frac{10}{3} x y^{2/5}, \quad y(0) = 0$$
 (*)

may have more than one solution on every open interval containing $x_0=0$. We will show that this is true!

By inspection $y \equiv 0$ is a solution of (*).

We will show that there are non-zero solutions to the IVP (*).

Let y be a non-zero solution of $y' = \frac{10}{3} xy^{2/5}$.

Example continued ...

Then separating variables, we get

$$\frac{y'}{y^{2/5}} = \frac{10}{3} x$$

Integrating it, we get

$$\frac{5}{3}y^{3/5} = \frac{5}{3}(x^2 + C)$$

$$\implies y(x) = (x^2 + C)^{5/3} \qquad (**)$$

Since we divided by $y^{2/5}$ to separate variables this solution is legitimate only on the open intervals where y(x) does not take zero values.

However, (**) is defined for all (x, y). Differentiating it, gives

$$y' = \frac{5}{3}(x^2 + C)^{2/3}(2x) = \frac{10}{3}xy^{2/5}, \quad \forall x \in (-\infty, \infty)$$

Example continued ...

Thus

$$y(x) = (x^2 + C)^{5/3}$$
 satisfies $y' = (10/3)y^{2/5}$

on $(-\infty, \infty)$ for all C.

Now y(0) = 0 in $y(x) = (x^2 + C)^{5/3}$ gives C = 0.

Thus $y(x) = x^{10/3}$ is another solution of IVP (*).

Thus we have two solutions of IVP

$$y' = (10/3)y^{2/5}, \quad y(0) = 0$$
 (*)

namely $y \equiv 0$ and $y(x) = x^{10/3}$.

We can construct two more solutions of IVP (*). How?

- **140020009 ARVIND MENON**
- 2 140020020 VIDWANS NIRAJ ASHUTOSH
- 140020033 TANUL RAJHANS CHIWANDE ABSENT
- 140020044 ADARSH INANI
- 140020065 TAPISH KOTHAR
- 140020088 PREETI KUMARI
- 140020103 ABHISHEK ADITYA KASHYAP
- 140020121 GURJOT SINGH WALIA
- 140050012 AAKASH PRALIYA
- 140050019 RISHABH AGARWAL
- 140050026 AMEY GUPTA
- 140050033 VADITE RAKESH NAIK
- 🚇 140050042 MALLELA SAI ARAVIND
- 4 140050053 BODDEDA JAGADEESH
- 140020005 ARUNABH SAXENA
- 140020016 SAWANT RICHIE SUBODH
- 140020025 AMIYA MAITREYA
- 140020039 GOUTHAM RAMAKRISHNAN
- 140020051 AMAN VIJAY

Ex. The IVP $y'=\frac{10}{3}\,xy^{2/5},\ y(0)=-1$ (*) has a unique solution on some open interval containing $x_0=0$.

Find a solution and the largest open interval (a,b) on which this solution is unique.

Let y(x) be any solution of IVP. Since y(0)=-1, there is an open interval I containing $x_0=0$ such that y takes non-zero values on I. In this case, the general solution of ODE $y'=(10/3)\,xy^{2/5}$, is given by (solved earlier)

$$y(x) = (x^2 + C)^{5/3}$$

From y(0) = -1, we get C = -1. Hence

$$y(x) = (x^2 - 1)^{5/3}$$
 for $x \in I$ (**)

Note $y(x)=(x^2-1)^{5/3}$ is a solution of $y'=(10/3)\,xy^{2/5}$, which is defined on $(-\infty,\infty)$.

Hence every solution of (*), which does not take zero-value, is given by $y(x)=(x^2-1)^{5/3}$ on open interval (-1,1).

This is the **unique** solution of IVP (*) on (-1,1). Why? Use Existence and Uniqueness theorem for all $x_0 \in (-1,1)$ and initial condition $y(x_0) = (x_0^2 - 1)^{5/3}$.

(-1,1) is the **largest** interval on which IVP (*) has a **unique** solution. To see this, note that we can define another solution

$$y_1(x) = \begin{cases} (x^2 - 1)^{5/3} &, -1 \le x \le 1\\ 0 &, |x| > 1 \end{cases}$$

This also shows that the largest interval on which the solution of (*) is unique is (-1,1). This solution can be extended on larger interval $(-\infty,\infty)$ by y_1 and y both. \square

Exercise. Find largest interval where $y' = \frac{10}{3} xy^{2/5}, y(0) = 1$ has a unique solution.

Transforming Non-Linear into Separable ODE

A non-linear differential equation $y'+p(x)y=f(x)y^r$ (*), where $r\in\mathbb{R}-\{0,1\}$ is said to be a **Bernoulli Equation**. For r=0,1, it is linear.

If y_1 is a non-zero solution of y'+p(x)y=0, then putting $y=uy_1$ in (*), we get

$$u'y_1 + uy_1' + puy_1 = fu^r y_1^r$$

$$\implies u'y_1 = fu^r y_1^r$$

$$\implies \frac{u'}{u^r} = f(x)(y_1(x))^{r-1}$$

$$\implies \frac{u^{-r+1}}{-r+1} = \int f(x)(y_1(x))^{r-1} dx + C.$$

Ex. Solve $y' - y = xy^2$.

Converting Non-Linear into Separable ODE

Consider y' = f(x, y).

Substitute $y=uy_1$, where $y_1(x)$ is known function and u(x) unknown.

$$u'y_1(x) + uy'_1(x) = f(x, uy_1(x)),$$

 $\implies u'y_1(x) = f(x, uy_1(x)) - uy'_1(x).$

If $f(x, uy_1(x)) = q(u)y_1'(x)$ for some function u, then $u'y_1(x) = (q(u) - u)y_1'(x)$ is separable.

After checking for constant solutions $u=u_0$ s.t. $q(u_0)=u_0$, we can separate variables to obtain

$$\frac{u'}{q(u)-u} = \frac{y_1'(x)}{y_1(x)}$$

Homogeneous Non-Linear Equations

Def. A differential equation y' = f(x, y) is said to be **homogeneous** if it can be written as y' = q(y/x).

Substitute y=vx, where v is an unknown function, we get v'x+v=q(v) a separable ODE.

Example. Solve
$$xy' = y + x$$
 (*).

Rewrite it as $y' = \frac{y}{x} + 1$. This is homogeneous ODE.

Substitute
$$y = vx$$
. We get $v'x + v = v + 1 \implies v'x = 1$.

By integration,
$$v(x) = \ln |x| + C$$
.

Thus the solution to (*) is
$$y = x(\ln|x| + C)$$
.

Example: Solve

$$x^2y' = y^2 + xy - x^2$$

Write the ODE as

$$y' = \frac{y^2 + xy - x^2}{x^2} = \left(\frac{y}{x}\right)^2 + \frac{y}{x} - 1$$

This is homogeneous. Substitute y = vx to get

$$v'x+v = v^2+v-1 \implies \frac{v'}{v^2-1} = \frac{1}{2}\left(\frac{1}{v-1} - \frac{1}{v+1}\right)v' = \frac{1}{x}$$

Integration gives

$$\frac{1}{2}(\ln|v-1| - \ln|v+1|) = \ln|x| + C_1$$

$$\implies \frac{v-1}{v+1} = Cx^2 \implies v = \frac{1+Cx^2}{1-Cx^2}$$

ODE $y' = (y/x)^2 + (y/x) - 1$

Therefore

$$y = x \frac{1 + Cx^2}{1 - Cx^2}$$

Q. Are these all the solutions? No!

Both y = x and y = -x are also solutions, but only y = x can be obtained from the general solution.

The solutions $y=x\frac{1+Cx^2}{1-Cx^2}$ were obtained in the intervals not containing 0.

Does this mean that the only solutions to the ODE, in an interval containing zero, are y=x or y=-x?

Interval of Validity

Note that $y=x\frac{1+Cx^2}{1-Cx^2}$ is continuous at x=0 and satisfies the ODE $x^2y'=y^2+xy-x^2$ trivially at that point, since y(0)=0.

In fact, for arbitrary $C_1, C_2 \in \mathbb{R}$, the function

$$y(x) = \begin{cases} x \frac{1 + C_1 x^2}{1 - C_1 x^2} & \text{if } x < 0 \\ x \frac{1 + C_2 x^2}{1 - C_2 x^2} & \text{if } x \ge 0 \end{cases}$$

is differentiable and satisfies the ODE $x^2y'=y^2+xy-x^2$ with y(0)=0. Thus this IVP has infinitely many solutions one for each choice of C_1,C_2 .

We have noted before that the interval of validity will depend on C and hence on the initial condition.

An IVP

Let C<0. Then $1-Cx^2$ is positive and non-zero for all x Let $C\geq 0$. Then $1-Cx^2$ is non-zero if $x\neq 1/\sqrt{C}$.

Example. Solve IVP $x^2y' = y^2 + xy - x^2$, y(1) = 2 (*)

Find the interval of validity of the solution.

If y(1) = 2, then $\frac{1+C}{1-C} = 2 \implies C = 1/3$.

Existence and Uniqueness theorem says, (*) has a unique solution

$$y(x) = x \frac{3+x^2}{3-x^2}$$

on an open interval $(a,b) \subset (-\sqrt{3},\sqrt{3})$ containing $x_0=1$.

The solution is valid over the open set $\mathbb{R} - \{\pm\sqrt{3}\}$.

If possible, find the largest interval, in which this solution is unique!

We may presume this ought to be $(-\sqrt{3}, \sqrt{3})$.

However, as noted before, for any $C \in \mathbb{R}$

$$y(x) = \begin{cases} x \frac{1+Cx^2}{1-Cx^2} & \text{if } a < x < 0 \\ x \frac{3+x^2}{3-x^2} & \text{if } 0 \leq x < \sqrt{3} \end{cases}$$
 where, $a = \frac{-1}{\sqrt{C}}$ if $C > 0$ and $a = -\infty$ if $C < 0$, is clearly a solution

is clearly a solution.

Thus the largest open interval in which IVP (*) has a unique solution is $(0, \sqrt{3})$.

Examples

Describe the method to solve the following differential equation and find solution.

- $y' = \frac{x^2 + 3x + 2}{y 2}$, y(1) = 4 non-linear, Separable
- $(x-2)(x-1)y' (4x-3)y = (x-2)^3$ Linear non-homogeneous
- $(1+x^2)y' + 2xy = \frac{1}{(1+x^2)y}$ Bernoulli Equation
- $y' = \frac{2x+y+1}{x+2y-4}$ Can be converted to a separable equation, use substitution X = x-2, Y = y-3.
- $3x^2y^2 + 6x^3y\frac{dy}{dx} = 0$. Exact equation

