GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-V

Course Title: Mining Hazards and Safety

(Course Code:4352204)

Diploma programme in which this course is offered	Semester in which offered
Mining Engineering	5 th Semester

1. RATIONALE

Due to the nature of work in mines, it may sometimes create hazardous situations which are directly linked with the safety of miners as well as the economy of the industry. Sometimes, the situations become so critical that they will affect the nearby society or livelihoods. Some known hazards that have been reported in many mines in the past are mine fires, inundation, and explosions.

Mining laws also emphasize the provisions regarding safe practices in mines to avoid any circumstances that may create hazardous situations. However, due to varying geological and mining conditions, sometimes a judgmental decision taken by the mining engineer will ensure the safety of the mine as well as society.

A mining diploma holder must acquire a deep knowledge and understanding of the post-effects of any hazard which may arise along with the mitigational safety measures. They must be competent in selecting suitable materials, methods, and technology in varying situations. This course will improve the skill to adopt suitable measures and techniques promptly at any emergency situation that may arise in a mine.

2. COMPETENCY

The course should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

- Identify the risk of hazardous condition in mines.
- Adopt suitable mitigational measures against mine hazards.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with this competency are to be developed in the student to display the following COs:

CO1: Identify the main cause and preventive measure of mine fire.

CO2: Illustrate the governing factors for fire damp explosions.

CO3: Manipulate the techniques to reduce the risk due to coal dust explosions.

CO4: Analyze the responsible conditions for mine inundation.

CO5: Apply all statutory norms to deal a critical situation of rescue and recovery.

4. TEACHING AND EXAMINATION SCHEME

Teachi	ing Scl	neme	Total Credits	Examination Scheme				
(In	(In Hours)		(L+T/2+P/2)	Theory Marks Practical Marks		Theory Marks		Total Marks
L	Т	Р	С	CA* ESE		CA	ESE	TOTAL MARKS
4	-	-	4	30	70	-	-	100

(*): Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs. Legends: L-Lecture; \mathbf{T} – Tutorial/Teacher Guided Theory Practice; \mathbf{P} - Practical; \mathbf{C} – Credit, $\mathbf{C}\mathbf{A}$ - Continuous Assessment; $\mathbf{E}\mathbf{S}\mathbf{E}$ - End Semester Examination.

5. AFFECTIVE DOMAIN OUTCOMES

- a) Act as a team member/individual in rescue and recovery operation.
- b) Displays a professional commitment to ethical practice on a daily basis.
- c) Adopt environmentally friendly methods in mines.
- d) Verify the mitigational measures taken against hazardous situation.

The ADOs are best developed through the laboratory/field-based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

6. UNDERPINNING THEORY

Only the major Underpinning Theory is formulated as higher level UOs of *Revised Bloom's taxonomy* in order development of the COs and competency is not missed out by the students and teachers. If required, more such higher level UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
Unit –I	1a. Apply basic principle to find	1.1 Essential conditions required to start a
	the main cause of fire.	fire (concept of fire triangle).
Mine Fire	1b. Classify the types of fire.	1.2 Classifications of fires with suitable fire
	1c. Select a suitable quenching	extinguishers
	material to deal with a	(Class A, Class B, Class C, Class D, Class E,
	particular class of fire.	Class F)
	1d. Adopt suitable measures to	1.3 Fire prone areas in surface &
	prevent fire condition in	underground mines
	mines.	1.4 Causes of surface and underground fire
	1e. Design a suitable	with preventive measures
	inspection plan for	1.5 Governing factors, detection, prevention
	spontaneous heating of	and control of spontaneous heating /fire
	coal.	1.6 Precautions against outbreak of surface
	1f. Analyze the stage of	fire

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	spontaneous heating depending upon its symptoms. 1g. Select a suitable quenching method to deal with a particular type of fire.	 1.7 Fire quenching materials used in mines for dealing with fire 1.8 Fire-fighting on surface and below ground methods applied for approachable fires (direct attack methods) for not approachable fires (sealing of fire area: preparatory, temporary, permanent stopping, flooding the area with water or inert gas).
Unit – II Fire Damp Explosion	damp explosion. 2b. Conclude the findings to get the severity of gas air mixture. 2c. Calculate the inflammability limit of a gas air mixture.	 2.1. Causes of fire damp explosion 2.2. Coward's diagram 2.3. Limits of inflammability of fire damp 2.4. Sources affecting limits of inflammability of fire damp 2.5. Detection of inflammability limit of a gas air mixture 2.6. Mechanism of fire damp explosion 2.7. Preventions of fire damp explosions
Unit– III Coal Dust Explosion	dust explosion. 3b. Conclude the findings to get the severity of coal dust explosion.	- 1

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
Unit- IV	4a. Identify the dangerous	4.1. Causes of inundation in mines
	sources of water	a. By surface water
Mine Inundation	4b. Choose suitable measures	b. By overlying strata
	to prevent irruption of	c. By water logged working
	water in mine	4.2. Measures against inundations
	4c. Select suitable measures to	a. Surface measures
	reduce the risk due to	b. Underground measures
	inrush of water in mine	4.3. Water logged workings in mines
	4d. Identify suitable place for	4.4. Dewatering of water-logged workings
	dam construction	a. Exploratory
		b. Drilling
		4.5. Water dams constructional features
Unit – V	5a. Prioritize the rescue	5.1. Human respiratory system
N4" D	apparatus to be procured	5.2. Mine rescue apparatus
Mine Rescue	in mine	a. Self-contained breathing apparatus
and Recovery	5b. Persuade the statutory provisions to be followed	b. Filtered air respirators, air purifying respirators
	in mines	c. Fresh air hose or tube breathing
	5c. Dramatize mine rescue and	apparatus
	recovery operation	5.3. Resuscitation (artificial respiration)
	conducted in mine	5.4. Preparatory for resuscitation
	5d. Select suitable rescue and	5.5. Rescue organization
	recovery apparatus	a. Rescue station, rescue room
	, , , ,	b. Rescue organization at mines
		c. Rescue and recovery work following
		mine disaster

9. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Unit	Unit Title	Teaching	Distribution of Theory Mark			Narks
No.		Hours	R	U	Α	Total
			Level	Level	Level	Marks
I	Mine Fire	16	4	8	8	20
Ш	Fire Damp Explosion	10	0	4	8	12
III	Coal Dust Explosion	8	2	8	0	10
IV	Mine Inundation	10	6	5	2	13
V	Mine Rescue and Recovery	12	8	5	2	15
	Total	56	20	30	20	70

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy)

<u>Note</u>: This specification table provides general guidelines to assist student for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may vary slightly from above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student-related **co-curricular** activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- a) Visit nearby firefighting station.
- b) Visit a mine and write a report on safety measures planned by them against various hazards.
- c) Undertake micro-project.
- d) Dramatize rescue and recovery work conducted by rescue team
- e) Conduct a group discussion on various issues of mine safety

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (MOOCs) may be used to teach various topics/sub topics.
- b) Guide student(s) in undertaking micro-projects.
- c) 'L' in section No. 4 means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) About **20%** of the topics/sub-topics which are relatively simpler or descriptive in nature is to be given to the students for **self-learning**, but to be assessed using different assessment methods.
- e) With respect to **section No.10**, teachers need to ensure to create opportunities and provisions for **co-curricular activities**.
- f) Guide students on how to address issues on environment and sustainability
- g) Video lectures showing operational principles of various rescue operators
- h) Guide students on how to address issues on mine hazards
- i) Animated documentaries on various mine hazards

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project are group-based. However, in the fifth and sixth semesters, it should be preferably be **individually** undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should **not exceed three.**

The micro-project could be industry application based, internet-based, workshop-based, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than *16 (sixteen) student engagement hours* during the course. The student ought to submit micro-project by the end of the semester to develop the industry-oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- a) Prepare a poster showing various classes of fire with material involve and suitable fire extinguishers
- b) Prepare an illustration banner related to fire safety in mines
- c) Presentation on any case study related with mine disaster.
- d) Prepare a poster showing human respiratory system
- e) Make slides showing artificial respiration technique
- f) Design a fresh air base layout for an underground mine
- g) Prepare a chart showing schematic diagram of various stopping
- h) Prepare a sheet showing constructional features of dams used in underground mine

13. SUGGESTED LEARNING RESOURCES

S. No.	Title of Book	Author	Publication with place, year and ISBN
1	Elements of Mining	D. J. Deshmukh	Denett & Co., Nagpur
	Technology Vol. II		Year: 2008
			ISBN-13: 978-8189904333
2	Mine Ventilation	S. Ghatak	Coalfield Publishers, Ukhra
			Year: 1991
3	Mine Disasters and Mine	Madisetti Anant	The Orient Blackswan, Telangana
	Rescue	Ramlu	Year: 2018
			ISBN-13: 978-9386235589
4	Mine Disasters and Mine	Madisetti Anant	Madisetti Anant Ramlu, Telangana
	Rescue	Ramlu	Year: 2006
			ISBN-13: 978-8173715730
5	Fires in Coal Mines	L C Kaku	Oriental Publishers, Jaipur
			Year: 1985
6	Mine Rescue Manual	Robert L. Ferriter,	Society for Mining, Metallurgy &
		Chris Enright	Exploration
			Year: 2014
			ISBN-13: 978-0873354059
7	Prevention and	Sudhish Chandra	CRC Press
	Combating Mine Fires	Banerjee	Year: 2000
			ISBN-13: 978-1000443769

14. SOFTWARE/LEARNING WEBSITES

- a) https://nptel.ac.in MOOC Course
- b) federalregister.gov. "Underground Mine Rescue Equipment and Technology" https://www.federalregister.gov/documents/2006/01/25/06-722/underground-mine-rescue-equipment-and-technology.

c) V. S. Vutukuri, and R. N. Singh. "Mine Inundation-Case Histories." *Mine Inundation-Case Histories* 14, no. 1 (1995): 107–30. https://doi.org/10.1007/BF02914857.

- d) CDC. "CDC Mining Feature Coal Mine Explosion Prevention NIOSH." Centers for Disease Control and Prevention,
 - https://www.cdc.gov/niosh/mining/features/coalmineexplosion.html.
- e) Scribd. "Methane Gas Properties & Coward's Diagram | PDF | Coal | Methane," n.d. https://www.scribd.com/document/360834216/Methane-Gas-Properties-Coward-s-Diagram.
- f) Park, Cherry. "5 Types of Fire Extinguishers: A Guide to Using the Right Class." IFSEC Global | Security and Fire News and Resources, https://www.ifsecglobal.com/global/choose-right-type-fire-extinguisher/.
- g) The Fire Triangle. "The Fire Triangle," n.d. https://www.sc.edu/ehs/training/Fire/01 triangle.htm.
- h) "Backstory: The Chasnala Mining Tragedy of 1975." cnbctv18.com, June 23, 2021. https://www.cnbctv18.com/views/backstory-the-chasnala-mining-tragedy-of-1975-9754561.htm.
- i) Mining Accidents in India. "Mining Accidents in India,"
 http://ismenvis.nic.in/Database/Mining_Accidents_in_India_24483.aspx.

15. PO-COMPETENCY-CO MAPPING

Semester V	Mining Hazards & Safety (Course Code:4352204)											
Semester v	POs and PSOs											
Competency & Course Outcomes	PO 1 Basic & Discipline specific knowledg e	em Analy	/ develo	PO 4 Engineering Tools, Experiment ation &Testing	practices for	PO 6 Project Manag ement	PO 7 Life- long learnin g	PSO 1	PSO 2	PSO 3 (If neede d)		
<u>Competency</u>	 Identify the risk of hazardous condition in mines. Adopt suitable mitigational measures against mine hazards. 											
CO1 Identify the main cause and preventive measure of mine fire.	3	2	3	-	2	1	1	-	-	-		
CO2 Illustrate the governing factors for fire damp explosions.	-	3	-	-	2	1	2	-	-	-		
CO3 Manipulate the techniques to reduce the risk due to coal dust explosions.	-	3	3	3	3	2	2	-	-	-		
CO4 Analyze the responsible conditions for mine inundation.	-	3	-	-	-	-	2	-	-	-		
CO5 Apply all statutory norms to deal a critical situation of rescue and recovery.	3	2	3	3	3	3	2					

Legend: '3' for high, '2' for medium, '1' for low or '-' for the relevant correlation of each competency, CO, with PO/ PSO

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

SR. No.	Name and Designation	Institute	Contact No.	Email
1	Mr. S. G. Srivastav I/c Head of Dept. Mining Engineering.	Government Polytechnic, Bhuj	9428546433	shivkumarsrivastav11@gmail. com
2	Mr. S. S. Shah Lecturer In Mining Engineering.	Government Polytechnic, Bhuj	9428546433	samayshah02@gmail.com
3	Mr. S. N. Heruvala Lecturer In Mining Engineering.	Government Polytechnic, Bhuj	9428546433	snheruvala@gmail.com