MS-C2111 Stochastic Processes

Lecture 7
Random point patterns and counting processes

Jukka Kohonen Aalto University

Contents

Random point patterns

Exponential distributions are exponential races

Simulating independently scattered point patterns

Contents

Random point patterns

Exponential distributions are exponential races

Simulating independently scattered point patterns

Study object: Unpredictable events

Time instants which cannot be accurately predicted:

- Occurrences of earthquakes
- Service requests in data centers
- Press releases of publicly traded companies

Study goals

- Learn to model unpredictable time instants as random point patterns
- Derive the distribution of point counts of an independently scattered pattern
- Learn to analyze independently scattered point patterns using a Poisson process

Random point patterns

Random point pattern

- = Countable set of points $\{T_1, T_2, ...\}$ on the time line \mathbb{R}_+ such that the location of each point is a random variable
 - Countable ⇒ The points can be listed using 1,2,...

Distribution of a random point pattern

- = The joint probability distribution of *all* random variables $T_1, T_2, ...$
 - Usually implicitly defined via a generating mechanism
 - What is a natural mechanism?

Independent scattering

Maximally random time instants: Information about [0, t] is irrelevant for predicting what happens in (t, ∞)

A random point pattern X with counting measure $N(A) = |X \cap A|$ is

• Independently scattered if

$$A_1, \ldots, A_n$$
 disjoint \implies $N(A_1), \ldots, N(A_n)$ independent

Homogeneous if

$$N(A+t) =_{st} N(A)$$
 for all $t \ge 0$,

where $A + t = \{a + t : a \in A\}$ is the *t*-shifted version of A

Thought experiment

How to construct an independently scattered point pattern using $U_1, U_2, \ldots =_{\rm st} {\sf Unif}(0,1)$ as building blocks?

Observations

In an independently scattered point pattern:

- The number of points on every nonempty interval is unlimited
- The distance between two points can be arbitrarily small and arbitrarily large

Distribution of point counts

Theorem

Let X be a homogeneous and independently scattered random point pattern on $(0,\infty)$ with intensity

$$\lambda = \mathbb{E}N((0,1]).$$

Then the number of points of X in the interval (0, t] follows a Poisson distribution with parameter λt :

$$\mathbb{P}\Big(N\big((0,t]\big)=k\Big) = e^{-\lambda t}\frac{(\lambda t)^k}{k!}, \qquad k=0,1,\ldots$$

Distribution of point counts: Proof (1/2)

Let $v(t) = \mathbb{P}(N(0, t] = 0)$ be the probability that (0, t] contains no points of X.

$$v(s+t) = \mathbb{P}(N(0,s+t] = 0)$$

$$= \mathbb{P}(N(0,s] = 0, N(s,s+t] = 0)$$

$$= \mathbb{P}(N(0,s] = 0) \mathbb{P}(N(s,s+t] = 0)$$

$$= \mathbb{P}(N(0,s] = 0) \mathbb{P}(N(0,t] = 0)$$

$$= v(s)v(t)$$

$$t\mapsto v(t)$$
 is decreasing \implies
$$v(t)=e^{-\alpha t}\quad { t for some }\ {lpha}>0.$$

Distribution of point counts: Proof (2/2)

Divide (0, t] into small subintervals $I_{n,j} = (\frac{j-1}{n}t, \frac{j}{n}t]$ and denote

$$Z_n = \sum_{j=1}^n \theta_j, \quad \theta_j = 1(N(I_{n,j}) \geq 1).$$

Independent scattering & homogeneity $\implies Z_n =_{st} Bin(n, q_n)$ where

$$q_n = 1 - v(t/n) = 1 - e^{-\alpha t/n}$$
.

l'Hôpital
$$\Longrightarrow$$
 $nq_n = \frac{1 - e^{-\alpha t/n}}{1/n} \to \alpha t, \quad n \to \infty.$

Law of small numbers (+ a density argument):

$$\mathbb{P}(N(0,t]=k) \approx \mathbb{P}(Z_n=k) \to e^{-\alpha t} \frac{(\alpha t)^k}{k!}.$$

Moreover, $\alpha = \mathbb{E}N(0,1] = \lambda.$

Law of small numbers

Theorem

If $Z_n =_{\mathrm{st}} \mathsf{Bin}(n, q_n)$ and $nq_n \to \alpha \in (0, \infty)$ as $n \to \infty$, then

$$\mathbb{P}(Z_n=k) \rightarrow e^{-\alpha} \frac{\alpha^k}{k!}, \quad n \to \infty.$$

In other words: $Bin(n, q_n) \to Poi(\alpha)$ as $n \to \infty$.

Proof.

The probability that $Z_n = k$ can be written as

$$\binom{n}{k}q_n^k(1-q_n)^{n-k} = \underbrace{\frac{n!}{n^k(n-k)!}}_{\to 1}\underbrace{\frac{1}{(1-q_n)^k}}_{\to 1}\underbrace{\frac{(nq_n)^k}{k!}}_{\to \frac{\alpha^k}{k!}}\underbrace{\left(1-\frac{nq_n}{n}\right)^n}_{\to e^{-\alpha}}.$$

Example: Teemu Selänne

- Scored 1430 points in 1387 games during NHL regular seasons 1993–2013
- $\lambda = 1.03$ points per game on average
- $\# Points/game =_{st} Poi(\lambda)$ if goal occurrence instants independently scattered

Points	Pr (predicted)	#Games (predicted)	#Games (realized)
0	0.35665	495	505
1	0.36771	510	506
2	0.18955	263	251
3	0.06514	90	87
4	0.01679	23	29
5	0.00346	5	9
6	0.00059	1	0
7	0.00009	0	0
> 7	0.00001	0	0

Poisson process

 $N: \mathbb{R}_+ \to \mathbb{Z}_+$ is a Poisson process with intensity λ if

- $N(t) N(s) =_{\mathrm{st}} \mathsf{Poi}(\lambda(t-s))$ for all $(s,t] \subset \mathbb{R}_+$
- N has independent increments:

$$N(t_1) - N(s_1), \ldots, N(t_n) - N(s_n)$$

are independent for disjoint $(s_1, t_1], \ldots, (s_n, t_n] \subset \mathbb{R}_+$

The previous theorem rephrased:

Theorem

The counting process N(t) = N(0, t] of a homogeneous independently scattered point pattern is a Poisson process with intensity $\lambda = \mathbb{E}N(0, 1]$.

Contents

Random point patterns

Exponential distributions are exponential races

Simulating independently scattered point patterns

Exponential distribution

Random number $X \ge 0$ is $\operatorname{Exp}(\lambda)$ -distributed with rate parameter $\lambda > 0$ if

$$\mathbb{P}(X \le t) = 1 - e^{-\lambda t}, \quad t \ge 0.$$

- X has a density $f(t) = \lambda e^{-\lambda t}$, $t \ge 0$
- $\mathbb{E}X = \frac{1}{\lambda}$

Memoryless property

Theorem

$$X =_{\mathrm{st}} \mathsf{Exp}(\lambda)$$
 satisfies

$$\mathbb{P}(X > s + t \mid X > s) = \mathbb{P}(X > t)$$
 for all $s, t \ge 0$.

Proof:

$$\mathbb{P}(X > s + t \mid X > s) = \frac{\mathbb{P}(X > s + t, X > s)}{\mathbb{P}(X > s)}$$

$$= \frac{\mathbb{P}(X > s + t)}{\mathbb{P}(X > s)}$$

$$= \frac{e^{-\lambda(s+t)}}{e^{-\lambda s}} = e^{-\lambda t} = \mathbb{P}(X > t).$$

Stochastic public traffic: Having waited for a bus for s minutes, the remaining waiting time is $\text{Exp}(\lambda)$ -distributed.

First jump instant of a Poisson process

Let $T_1 = \min\{t \ge 0 : N(t) = 1\}$ be the first jump instant of a Poisson process N with intensity λ . What is the distribution of T_1 ?

$$\mathbb{P}(T_1 > t) = \mathbb{P}(N(t) = 0) = e^{-\lambda t} \frac{\lambda^0}{0!} = e^{-\lambda t}$$

Because the cumulative distribution function $\mathbb{P}(T_1 \leq t) = 1 - e^{-\lambda t}, t \geq 0$ determines the distribution, we conclude that T_1 is $\operatorname{Exp}(\lambda)$ -distributed.

More generally, the distance

$$\Delta = \min\{t \ge s : N(t) = N(s) + 1\}$$

from any point s to the next jump instant of the Poisson process is $\operatorname{Exp}(\lambda)$ -distributed.

Winning time in an exponential race

Winning time of a race is $U = \min\{X_1, ..., X_n\}$, where the competitors' times $X_i =_{\text{st}} \text{Exp}(\lambda_i)$ are independent.

What is the distribution of U?

$$\mathbb{P}(U > t) = \mathbb{P}(X_1 > t, ..., X_n > t)$$

$$= \mathbb{P}(X_1 > t) \cdots \mathbb{P}(X_n > t)$$

$$= e^{-\lambda_1 t} \cdots e^{-\lambda_n t}$$

$$= e^{-(\sum_{i=1}^n \lambda_i)t}$$

$$\implies U =_{\mathrm{st}} \mathsf{Exp}(\sum_{i=1}^n \lambda_i)$$

The minimum of independent exponentially distributed random numbers is exponentially distributed.

Winning probability in an exponential race

What is the probability that 1 wins?

Competitor 1 wins if $X_1 < \min\{X_2, \dots, X_n\} =: \tilde{U}$.

Because X_1 and \tilde{U} are independent,

$$\mathbb{P}(X_1 < \tilde{U}) = \int_0^\infty \mathbb{P}(t < \tilde{U}) \, \lambda_1 e^{-\lambda_1 t} dt.$$

Because $\tilde{U} =_{\text{st}} \text{Exp}(\sum_{i=2}^{n} \lambda_i)$, competitor 1 wins with probability

$$\mathbb{P}(X_1 < \tilde{U}) = \int_0^\infty e^{-(\sum_{i=2}^n \lambda_i)t} \lambda_1 e^{-\lambda_1 t} dt$$
$$= \lambda_1 \int_0^\infty e^{-(\sum_{i=1}^n \lambda_i)t} dt = \frac{\lambda_1}{\sum_{i=1}^n \lambda_i}$$

Exponential race — Summary

Theorem

Let $U = \min\{X_1, \dots, X_n\}$ where $X_i =_{st} \mathsf{Exp}(\lambda_i)$ are independent. Then:

- $U =_{\operatorname{st}} \operatorname{Exp}(\sum_{i=1}^n \lambda_i)$
- $\mathbb{P}(X_i = U) = \frac{\lambda_i}{\lambda_1 + \cdots + \lambda_n}$
- U and $I = \arg \min_{i} \{X_1, \dots, X_n\}$ are independent.

Contents

Random point patterns

Exponential distributions are exponential races

Simulating independently scattered point patterns

Simulating independently scattered point patterns

$$T_n = \tau_1 + \cdots + \tau_n$$

Theorem

If the interpoint distances τ_1, τ_2, \ldots are independent and $\operatorname{Exp}(\lambda)$ -distributed, then the point pattern $X = \{T_1, T_2, \ldots\}$ is homogeneous and independently scattered, and the corresponding counting process N(t) is a Poisson process with intensity λ .

Sketch of proof

 $\Delta =_{\mathrm{st}} \mathsf{Exp}(\lambda)$ and independent of N(s) \Longrightarrow The points in $[s,\infty)$ are independent of the points in [0,s] (We conditioned on a zero-probability event.)

 $= \mathbb{P}(\tau_5 > t)$ $= e^{-\lambda t}$

What is the distribution of the n -th time instant T_n ?	

Gamma distribution

A random number $X \ge 0$ is $Gam(n, \lambda)$ -distributed with shape parameter n and rate parameter λ if it has a density function

$$f(x) = \begin{cases} \lambda e^{-\lambda x} \frac{(\lambda x)^{n-1}}{(n-1)!}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

Lemma

If $\tau_1, ..., \tau_n$ are independent and $\text{Exp}(\lambda)$ -distributed, then $T_n = \sum_{i=1}^n \tau_i$ is $\text{Gam}(n, \lambda)$ -distributed.

Proof.

Classroom problem 8.1.

Distribution of N(t)

Let $T_n = \tau_1 + \cdots + \tau_n$ and let N(t) be the counting process of $\{T_1, T_2, \dots\}$.

$$\mathbb{P}(N(t) = n) = \mathbb{P}(N(t) \ge n) - \mathbb{P}(N(t) \ge n + 1)$$

$$= \mathbb{P}(T_n \le t) - \mathbb{P}(T_{n+1} \le t)$$

$$= \int_0^t \lambda e^{-\lambda s} \frac{(\lambda s)^{n-1}}{(n-1)!} ds - \int_0^t \lambda e^{-\lambda s} \frac{(\lambda s)^n}{(n)!} ds$$

$$= e^{-\lambda t} \frac{(\lambda t)^n}{n!} + \int_0^t \lambda e^{-\lambda s} \frac{(\lambda s)^n}{(n)!} ds - \int_0^t \lambda e^{-\lambda s} \frac{(\lambda s)^n}{(n)!} ds$$

$$= e^{-\lambda t} \frac{(\lambda t)^n}{n!}.$$

Hence $N(t) =_{st} Poisson(\lambda t)$.

Summary

- Random point pattern on $\mathbb{R}=$ model for unpredictable time instants
- Independently scattered point patterns have Poisson distributed point counts and exponentially distributed interpoint distances.
- Independently scattered point patterns can be constructed using Exp-distributed interpoint distances

Siméon Denis Poisson (1781–1840)

RECHERCHES

PROBABILITÉ DES JUGEMENTS

EN MATIÈRE CRIMINELLE

ET EN MATIÈRE CIVILE,

DES RÈGLES GÉNÉRALES DU CALCUL DES PROBABILITÉS:

PAR S.-D. POISSON.

Membre de l'Institut et du Bureau des Lougitudes de France; des Sociétés Royales de Loudres et d'Édimbourg; des Académies de Berlin, de Stockholm, de Saint-Pétersbourg, d'Upsal, de Boston, de Turin, de Naples, etc.; des Sociétés, italienne, astronomique de Londras Hillenstaine de Paris, etc.

PARIS,

BACHELIER, IMPRIMEUR-LIBRAIRE

QUAL DES AUGUSTINS, Nº 55.

1837

References

Photos

- 1. Image courtesy of think4photop at FreeDigitalPhotos.net
- 2. Image courtesy of Hockeybroad/Cheryl Adams at Wikipedia.