WHAT IS CLAIMED IS:

1	1. A method for generating a color value for a pixel from geometry data,	
2	the method comprising:	
3	selecting a first plurality of shading locations and a second plurality of depth	
4	locations for the pixel, the second plurality being larger in number than the first plurality,	
5	each of the second plurality of depth locations being associated with one of the shading	
6	locations;	
7	under control of a graphics processing subsystem, generating a plurality of	
8	hybrid sampled data points equal in number to the second plurality of depth locations,	
9	wherein the act of generating includes:	
10	computing a shading value at each of the first plurality of shading	
11	locations and a depth value at each of the second plurality of depth locations; and	
12	storing one of the depth values and the associated shading value as one	
13	of the hybrid sampled data points; and	
14	computing an antialiased color value for the pixel using the hybrid sampled	
15	data points.	
1	2. The method of claim 1 wherein the act of generating the plurality of	
2	hybrid sampled data points includes:	
3	performing at least two multisampling operations on the pixel,	
4	wherein each multisampling operation uses a different one of the shading	
5	locations and a different subset of the depth locations and generates a different subset of the	
6	plurality of hybrid sampled data points.	
V	preferred of hybrid sumpled data points.	
1	3. The method of claim 2 wherein the subset of the hybrid sampled data	
2	points generated by each multisampling operation is stored in a corresponding one of a	
3	plurality of target buffers.	
1	4. The method of claim 2 wherein the subset of the hybrid sampled data	
	1	
2	points generated by each multisampling operation is accumulated in an accumulation buffer.	
1	5. The method of claim 1 wherein each of the depth locations is inside the	
2	pixel.	

1	6. The method of claim 1 wherein each of the shading locations is inside
2	the pixel.
1	7. The method of claim 1 wherein the geometry data includes a primitive
2	the method further comprising, prior to storing one of the depth values and the associated
3	shading value, determining whether the primitive covers the depth location,
4	wherein the one of the depth value and the associated one of the shading value
5	are not stored in the event that the primitive does not cover the depth location.
1	8. The method of claim 1 wherein the act of selecting the first plurality of
2	shading locations and the second plurality of depth locations for the pixel includes:
3	segmenting a viewable area that includes the pixel into a number of
4	sub-pixels, each sub-pixel having a size smaller than a size of the pixel,
5	wherein each sub-pixel includes one of the shading locations and a subset of
6	the depth locations.
1	9. The method of claim 8 wherein associating each of the second plurality
2	of depth locations with one of the shading locations includes:
3	associating each of the depth locations of a sub-pixel with the shading location
4	of that sub-pixel.
1	10. The method of claim 8 wherein the pixel is divided into an integer
2	number of sub-pixels.
1	11. The method of claim 8 wherein the act of segmenting the viewable
2	area includes providing a multisampling rasterizer with a display resolution that is larger than
3	a true display resolution.
1	12. The method of claim 10 wherein the pixel is divided into four
2	sub-pixels arranged to form a quad.
1	13. The method of claim 1 wherein the act of selecting the first plurality of
2	shading locations and the second plurality of depth locations for the pixel includes:
3	defining a multisampling pattern for the pixel, the multisampling pattern
4	including one of the depth locations and at least two of the shading locations;

5		erating a plurality of iterations of the geometry data, wherein each iteration
6	has a different offs	set relative to a boundary of the pixel; and
7	app	lying the multisampling pattern to each of the iterations of the geometry
8	data.	
1	14.	The method of claim 13 wherein each of the offsets corresponds to an
2	amount less than a	pixel size.
1	15.	The method of claim 14 wherein one of the offsets is equal to zero.
1	16.	The method of claim 13 wherein the act of generating the plurality of
2	iterations includes	, for each iteration, setting a value of a viewport offset parameter
3	corresponding to the	he offset of the iteration.
1	17.	The method of claim 13 wherein generating the plurality of hybrid
2	sampled data poin	
3	•	ring the depth values and the associated shading value obtained from each
4		ective one of a plurality of buffers.
	r	
1	18.	The method of claim 1 wherein the act of selecting the first plurality of
2	shading locations	and the second plurality of depth locations for the pixel includes:
3	def	ining a multisampling pattern for the pixel, the multisampling pattern
4	including one of th	ne depth locations and at least two of the shading locations;
5	def	ining a plurality of non-overlapping regions in an image coordinate space,
6	each region includ	ing a virtual pixel corresponding to the pixel;
7	relo	ocating the geometry data to a position within each of the regions, wherein
8	the position of the	relocated geometry data relative to a boundary of the region is shifted by
9	an amount less than a pixel size; and	
10	арр	lying the multisampling pattern to each of the virtual pixels.
1	19.	The method of claim 18 wherein one of the regions corresponds to a
2	viewable area of th	ne image coordinate space.
1	20	
1	20.	٠
2	less than a pixel si	ZC 18 ZCIO.
1	21.	The method of claim 18 wherein relocating the geometry data includes:

2	setting a value of a window offset parameter such that the geometry data is	
3	placed within one of the regions; and	
4	setting a value of a viewport offset parameter corresponding to the shift by an	
5	amount less than a pixel size.	
1	22. The method of claim 18 wherein the act of relocating the geometry	
2	data is performed by the graphics processing subsystem.	
1	23. The method of claim 1 wherein the act of computing the color value	
2	for the pixel includes:	
3	defining a texture map including a second plurality of texels corresponding to	
4	the hybrid sampled data points for the pixel;	
5	fetching the second plurality of texels; and	
6	computing a weighted average of the fetched texels, thereby determining the	
7	color value for the pixel.	
1	24. The method of claim 1 wherein the act of computing the color value	
2	for the pixel includes:	
3	defining a plurality of texture maps, each texture map including a plurality of	
4	texels corresponding to a subset of the hybrid sampled data points for the pixel;	
5	for each of the plurality of texture maps:	
6	fetching the plurality of texels from the texture map; and	
7	blending the fetched texel values to generate an intermediate value;	
8	and	
9	computing a weighted average of the intermediate value generated for each of	
10	the texture maps, thereby determining the color value for the pixel.	
1	25. The method of claim 1 wherein the act of computing the color value	
2	for the pixel is performed during a scanout operation that provides downfiltered color data to	
3	a display device.	
1	26. The method of claim 1 wherein the acts of generating the plurality of	
2	hybrid sampled data points and computing the color value for the pixel are performed in a	
3	single rendering pass.	

1	27. The method of claim 1 wherein the number of shading locations and	
2	the number of depth locations are determined based on one or more configurable parameters.	
1	28. A system for generating a color value for a pixel from geometry data,	
2	the system comprising:	
3	a multisampling rasterizer configured to receive the geometry data and	
4	perform a multisampling operation on the pixel, the multisampling operation generating a	
5	plurality of depth values at a plurality of depth locations for the pixel and one shading value,	
6	the shading value being associated with each of the plurality of depth locations;	
7	control logic configured to use the multisampling rasterizer to perform a	
8	plurality of multisampling operations on the pixel; and	
9	a downfiltering unit configured to combine the shading values generated	
10	during the plurality of multisampling operations, thereby generating a color value for the	
11	pixel.	
1		
1	29. The system of claim 28 wherein the control logic is further configured	
2	to select different depth locations for each of the plurality of multisampling operations.	
1	30. The system of claim 28 wherein the control logic is further configured	
2	to change a screen location of the geometry data such that the multisampling rasterizer uses	
3	different depth locations for each of the plurality of multisampling operations.	
1	31. The system of claim 28 wherein the control logic is further configured	
2	to use the multisampling rasterizer to perform a multisampling operation on the geometry	
3	data for each of a plurality of sub-pixels at different locations within the pixel.	
1	32. The system of claim 31 wherein the multisampling rasterizer is	
2	instructed to use a display resolution larger than a true display resolution.	
1	33. The system of claim 28 wherein the control logic is further configured	
2	to store the geometry data and to supply the geometry data to the multisampling rasterizer	
3	multiple times in succession.	
1	The quatern of claim 20 wherein the control logic is forther confirmed.	
1	34. The system of claim 28 wherein the control logic is further configured	

to relocate the geometry data in each of a plurality of non-overlapping regions and to instruct

3	the multisampling rasterizer to perform a multisampling operation on a virtual pixel in each
4	region.
•	
1	35. The system of claim 34 further comprising a buffer having a plurality
2	of non-overlapping regions, wherein multisampled pixel data from each of the
3	non-overlapping region is stored in a respective one of the non-overlapping regions.
1	36. The system of claim 34 further comprising a plurality of buffers,
2	wherein multisampled pixel data from each of the non-overlapping regions is stored in a
3	respective one of the plurality of buffers.
1	37. The system of claim 28 further comprising:
2	a frame buffer for storing the shading value at each depth location,
3	wherein the downfiltering unit is further configured to read the shading values
4	from the frame buffer.
1	38. The system of claim 37 wherein the downfiltering unit includes:
2	a texture processing unit configured to fetch at least one of the shading values
3	from the frame buffer as a texel and to generate an intermediate value from the texel; and
4	a shader configured to blend the intermediate values, thereby generating the
5	color value for the pixel.
1	39. The system of claim 38 wherein:
2	the texture processing unit is further configured to fetch all of the shading
3	values for the pixel from the frame buffer and to provide each fetched shading value as an
4	intermediate value.
1	40. The system of claim 38 wherein:
2	the texture processing unit is further configured to fetch a plurality of subsets
3	of the shading values for the pixel from the frame buffer and to blend each subset of the
4	shading values, thereby generating a plurality of intermediate values.
1	41. An apparatus for generating a color value for a pixel from geometry
2	data, the apparatus comprising:
3	a graphics processor including:

4	a multisampling rasterizer configured to receive the geometry data and		
5	perform a multisampling operation on the pixel, the multisampling operation		
6	generating a plurality of depth values at a plurality of depth locations for the pixel		
7	one shading value, the shading value being associated with each of the plurality of		
8	depth locations;		
9	control logic configured to use the multisampling rasterizer to perform		
10	a plurality of multisampling operations on the pixel; and		
11	a downfiltering unit configured to combine the shading values		
12	generated during the plurality of multisampling operations, thereby generating a colo		
13	value for the pixel;		
14	a frame buffer configured to store the shading values generated during the		
15	plurality of multisampling operations; and		
16	a downfiltering unit configured to combine the shading values stored in the		
17	frame buffer, thereby generating a color value for the pixel.		
1	42. The apparatus of claim 41 further comprising:		
2	a graphics driver module configured to communicate with the graphics		
3	processor and to configure a parameter for the plurality of multisampling operations.		
1	43. The apparatus of claim 42 wherein the parameter determines a number		
2	of multisampling operations to be performed.		
1	44. The apparatus of claim 42 wherein the parameter determines a number		
2	of depth locations to be used during each of the multisampling operation.		
1	45. The apparatus of claim 42 wherein the graphics driver module includes		
2	an application program interface for configuring the parameter.		
1	46. The apparatus of claim 42 wherein the graphics driver module includes		
2	a user interface for configuring the parameter.		
1	47. The apparatus of claim 42 wherein the graphics driver module is		
2	further configured to detect a property of an application program and to configure the		
3	parameter based at least in part on the detected property.		