Cheatsheet: Probability and Statistics

Seminar 2: Rules of Probability

Mutually Exclusive Events:

Events A and B are mutually exclusive (disjoint, incompatible) if:

$$P(A \cap B) = 0$$

Rules of Probability:

1. Complement Rule:

$$P(A^c) = 1 - P(A)$$

2. Union Rule:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

3. Difference Rule:

$$P(A \setminus B) = P(A) - P(A \cap B)$$

Conditional Probability:

The probability of A given B (if $P(B) \neq 0$):

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Independent Events:

Events A and B are independent if:

$$P(A \cap B) = P(A)P(B)$$
 or $P(A \mid B) = P(A)$

Total Probability Rule:

For a partition $\{A_i\}i \in I$ of the sample space S:

$$P(E) = \sum i \in IP(A_i)P(E \mid A_i)$$

Multiplication Rule:

For n events A_1, A_2, \ldots, A_n :

$$P(\bigcap_{i=1}^{n} A_i) = P(A_1)P(A_2 \mid A_1)P(A_3 \mid A_1 \cap A_2) \dots P(A_n \mid \bigcap_{i=1}^{n-1} A_i)$$

Seminar 3: Probabilistic Models

1. Binomial Model:

ullet Describes the probability of k successes in n independent Bernoulli trials with success probability p

$$P(n,k) = \binom{n}{k} p^k (1-p)^{n-k}$$

2. Hypergeometric Model:

 ${f \cdot}$ Deals with the probability of drawing k successes from a finite population of N items, without replacement.

$$P(n,k) = rac{inom{n_1}{k}inom{N-n_1}{n-k}}{inom{N}{n}}$$

3. Poisson Model:

- Used for counting the probability of a given number of events occurring in fixed intervals of time/space.
- Formula involves the sum of probabilities for specific success occurrences in trials.

4. Pascal (Negative Binomial) Model:

• Describes the probability of achieving the n -th success after k failures in Bernoulli trials.

$$P(n,k) = \binom{n+k-1}{n-1} p^n (1-p)^k$$

5. Geometric Model:

• Represents the probability that the first success occurs after k failures.

$$P(k) = p(1-p)^k$$

Seminar 4: Discrete Random Variables

The expectation (expected value) of a discrete random variable X is calculated using the formula:

$$E(X) = \sum_{i} x_i \cdot P(X = x_i)$$

Using the previously computed probabilities:

$$E(X) = 0 \cdot P(X = 0) + 1 \cdot P(X = 1) + 2 \cdot P(X = 2) + 3 \cdot P(X = 3)$$

Substituting the values:

$$E(X) = 0 \cdot \frac{5}{18} + 1 \cdot \frac{17}{36} + 2 \cdot \frac{2}{9} + 3 \cdot \frac{1}{36}$$

Seminar 5: Continuous Random Variables

1. Continuous Random Variables

A continuous random variable X has:

• Probability Density Function (PDF) f(x):

$$f(x) \geq 0$$
 for all x , and $\int_{-\infty}^{\infty} f(x) dx = 1$.

• Cumulative Distribution Function (CDF) F(x):

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt.$$

· Probability for an interval:

$$P(a < X < b) = \int_a^b f(x) dx.$$

• P(X=x)=0 for any specific value x.

2. Continuous Random Vectors

For (X,Y), a continuous random vector with joint PDF $f_{X,Y}(x,y)$ and joint CDF F(x,y):

Joint CDF:

$$F(x,y) = P(X \leq x, Y \leq y) = \int_{-\infty}^x \int_{-\infty}^y f_{X,Y}(u,v) dv du.$$

· Marginal PDFs:

$$f_X(x)=\int_{-\infty}^{\infty}f_{X,Y}(x,y)dy,\quad f_Y(y)=\int_{-\infty}^{\infty}f_{X,Y}(x,y)dx.$$

Independence:

 \boldsymbol{X} and \boldsymbol{Y} are independent if:

$$f_{X,Y}(x,y) = f_X(x)f_Y(y).$$

Transformation of Random Variables

To find the PDF of a transformed random variable Y=g(X), where g is a differentiable and strictly monotone function, we use:

$$f_Y(y) = f_X\left(g^{-1}(y)
ight) \cdot \left|rac{d}{dy}g^{-1}(y)
ight|.$$

or if g is not sitrctly monotone:

$$f_Y(y) = \sum_i f_X\left(g_i^{-1}(y)
ight) \cdot \left|rac{d}{dy}g_i^{-1}(y)
ight|.$$

summing over all segments.

Here's the process:

- 1. Identify the function Y = g(X).
- 2. Solve for X in terms of Y to get $X=g^{-1}(Y)$.
- 3. Compute $\frac{d}{dy}g^{-1}(y)$.
- 4. Substitute $g^{-1}(y)$ into $f_X(x)$ and multiply by $\left| \frac{d}{dy} g^{-1}(y) \right|$.

Seminar 7: Inequalities, Central Limit Theorem, Point Estimators

1. Markov's Inequality

For any non-negative random variable X and any a > 0:

$$P(|X| \ge a) \le \frac{E(|X|)}{a}$$

2. Chebyshev's Inequality

For any random variable X with finite expectation E(X) and variance V(X), and for any $\varepsilon > 0$:

$$P(|X - E(X)| \ge \varepsilon) \le \frac{V(X)}{\varepsilon^2}$$

3. Central Limit Theorem (CLT)

Let X_1, X_2, \ldots, X_n be independent and identically distributed (i.i.d.) random variables with mean $\mu = E(X_i)$ and standard deviation σ . Define the sum:

$$S_n = \sum_{i=1}^n X_i$$

As $n \to \infty$, the standardized sum:

$$Z_n = rac{S_n - E(S_n)}{\sigma(S_n)} = rac{S_n - n\mu}{\sigma\sqrt{n}}$$

converges in distribution to the standard normal distribution:

$$Z_n o N(0,1)$$

This means the cumulative distribution function (CDF) of Z_n approaches the standard normal CDF $\Phi(z)$.

Steps for Solving Problems Using Methods of Moements (MoM)

Step 1: Find theoretical moments

- Compute the theoretical mean (first moment), variance (second moment), or higher moments from the given probability density function (PDF) or cumulative distribution function (CDF).
- Example:

$$E(X) = \int_{-\infty}^{\infty} x f(x; \theta) dx$$

Step 2: Compute sample moments

Calculate the sample moments from the given data:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Step 3: Solve for the parameter(s)

• Set the sample moments equal to the theoretical moments:

Theoretical Moment = Sample Moment

$$E(X) = \bar{X}$$

$$\int_{-\infty}^{\infty} x f(x; \theta) \, dx = \frac{1}{n} \sum_{i=1}^{n} X_i$$

• Solve the resulting equation for the unknown parameter(s).

Steps for Solving Problems Using MLE

Step 1: Write the likelihood function

• Given the PDF of the distribution, construct the likelihood function by multiplying the PDFs of the sample data:

$$L(heta) = \prod_{i=1}^n f(X_i; heta)$$

$$L(\theta) = f(X_1; \theta) \cdot f(X_2; \theta) \cdot \cdots \cdot f(X_n; \theta)$$

Step 2: Take the natural logarithm (log-likelihood function)

• The log-likelihood function simplifies calculations:

$$\ln L(\theta) = \sum_{i=1}^{n} \ln f(X_i; \theta)$$

Step 3: Differentiate the log-likelihood with respect to θ

• Compute the derivative of the log-likelihood with respect to the unknown parameter:

$$\frac{d}{d\theta} \ln L(\theta) = 0$$

Step 4: Solve for the parameter

• Solve the resulting equation to find the maximum likelihood estimator $\hat{\theta}$.

Standard Error of an Estimator:

The standard error of an estimator $\hat{\theta}$ is:

$$\sigma_{\hat{ heta}} = \sqrt{V(\hat{ heta})}$$

Fisher Information:

$$I_n(heta) = -E\left[rac{\partial^2 \ln L(X_1,\ldots,X_n; heta)}{\partial heta^2}
ight]$$

If the range of X does not depend on θ , then:

$$I_n(\theta) = nI_1(\theta)$$

Efficiency of an Estimator:

The efficiency of an estimator $\hat{\theta}$ is:

$$e(\theta) = \frac{1}{I_n(\theta)V(\hat{\theta})}$$

Estimator Properties:

An estimator $\hat{\theta}$ of the parameter θ is:

- Unbiased: if $E(\hat{\theta}) = \theta$.
- Absolutely Correct: if $E(\hat{\theta}) = \theta$ and $V(\hat{\theta}) \to 0$ as $n \to \infty$.

- MVUE (Minimum Variance Unbiased Estimator): if $E(\hat{\theta}) = \theta$ and its variance is the lowest among all unbiased estimators.
- Efficient: if $e(\theta)=1$, meaning it achieves the Cramér-Rao lower bound.

Note: If an estimator is efficient, it is also the MVUE.