000

3강. 스케줄링 알고리즘

방송대 컴퓨터과학과 김진욱 교수

목차

01 스케줄링 성능 평가 기준

02 다양한 스케줄링 알고리즘

■ 평균 대기시간

• 각 프로세스가 수행이 완료될 때까지 준비 큐에서 기다리는 시간의 합의 평균값

■ 평균 반환시간

• 각 프로세스가 생성된 시점부터 수행이 완료된 시점까지의 소요시간의 평균값

프로세스	Α	В
대기시간		
반환시간		

프로세스	Α	В
대기시간		
반환시간		

프로세스	Α	В
대기시간		
반환시간		

프로세스	Α	В
대기시간		
반환시간		

프로세스	Α	В
대기시간		
반환시간		

		2+4		
• 평균 대기시간	=		=	3
<u> </u>		2		

프로세스	Α	В
대기시간		
반환시간		

• 평균 반환시간 =
$$\frac{5+8}{2}$$
 = 6.5

다양한 스케줄링 알고리즘

응프로세스와 쓰레드

- FCFS 스케줄링
- SJF 스케줄링
- SRT 스케줄링
- RR 스케줄링
- HRN 스케줄링
- 다단계 피드백 큐 스케줄링

응FCFS 스케줄링

- FCFS (First-Come First-Served) 스케줄링
 - 비선점 스케줄링 알고리즘
 - 준비 큐에 도착한 순서에 따라 디스패치

도착시간	0	0	0	0	신대학
프로세스	Α	В	С	D	
CPU 사이클	6	3	1	4	

프로세스	Α	В	С	D
대기시간	0	6	9	10
반환시간	6	9	10	14

도착시간	0	0	0	0	신대학
프로세스	Α	В	С	D	
CPU 사이클	6	3	1	4	

프로세스	Α	В	С	D
대기시간	0	6	9	10
반환시간	6	9	10	14

도착시간	0	0	0	0	대학.
프로세스	Α	В	С	D	
CPU 사이클	6	3	1	4	

프로세스	Α	В	С	D
대기시간	0	6	9	10
반환시간	6	9	10	14

도착시간	0	0	0	0	신대학
프로세스	Α	В	С	D	
CPU 사이클	6	3	1	4	

프로세스	Α	В	С	D
대기시간	0	6	9	10
반환시간	6	9	10	14

도착시간	0	0	0	0	신대학
프로세스	Α	В	С	D	
CPU 사이클	6	3	1	4	

프로세스	Α	В	С	D
대기시간	0	6	9	10
반환시간	6	9	10	14

도착시간	0	0	0	0	신대학
프로세스	Α	В	С	D	
CPU 사이클	6	3	1	4	

프로세스	Α	В	С	D
대기시간	0	6	9	10
반환시간	6	9	10	14

도착시간	0	0	0	0	신대학
프로세스	Α	В	С	D	
CPU 사이클	6	3	1	4	

프로세스	Α	В	С	D
대기시간	0	6	9	10
반환시간	6	9	10	14

도착시간	0	0	0	0	학교
프로세스	Α	В	С	D	
CPU 사이클	6	3	1	4	

프로세스	Α	В	С	D
대기시간	0	6	9	10
반환시간	6	9	10	14

도착시간	0	0	0	0	스테스
프로세스	Α	В	С	D	
CPU 사이클	6	3	1	4	

프로세스	Α	В	С	D
대기시간	0	6	9	10
반환시간	6	9	10	14

• 평균대기시간 =
$$\frac{0+6+9+10}{4}$$
 = 6.25

• 평균 반환시간 =
$$\frac{6+9+10+14}{4}$$
 = 9.75

응FCFS 스케줄링

- FCFS (First-Come First-Served) 스케줄링
 - 비선점 스케줄링 알고리즘
 - 준비 큐에 도착한 순서에 따라 디스패치
- 장점
 - 가장 간단한 스케줄링 기법
- 단점
 - 짧은 프로세스가 긴 프로세스를 기다리거나,
 중요한 프로세스가 나중에 수행될 수 있음
 - 프로세스들의 도착 순서에 따라 평균 반환시간이 크게 변함

라방송통시대학교

D

0

Α

6

В

3

프로세스	Α	В	С	D
대기시간	8	1	0	4
반환시간	14	4	1	8

국방송통신대학교

0

C

0

D

4

라방송통시대학교

프로세스	Α	В	С	D
대기시간	8	1	0	4
반환시간	14	4	1	8

프로세스	Α	В	С	D
대기시간	8	1	0	4
반환시간	14	4	1	8

국방송통신대학교

0

C

0

D

4

라방송통시대학교

D

В

3

프로세스	Α	В	С	D
대기시간	8	1	0	4
반환시간	14	4	1	8

CPU	C	В		D		
프로	세스	Α	В	С	D	
대기	시간	8	1	0	4	
바화	시가	1/1	/1	1	Q	

0 0 0 0 A B C D 6 3 1 4

A

국방송통신대학교

0 0 0

B C D

日 6 3 1 4

도착시간

A

0

В

0

0

D

■ 도착 순서가 다른 경우

프로세스 CPU 사이클 Α 6

14

0

3

4

= 3.25

CPU

B

☆ 앞의 예(A,B,C,D순)

평균 대기시간=6.25

평균 반환시간=9.75

프로세스	Α	В	С	D
대기시간	8	1	0	4
반환시간	14	4	1	8

• 평균 대기시간 = $\frac{8+1+0+4}{}$

SJF 스케줄링

- SJF (Shortest Job First) 스케줄링
 - 비선점 스케줄링 알고리즘
 - 준비 큐에서 기다리는 프로세스 중 실행시간이 가장 짧다고 예상된 것을 먼저 디스패치

응SJF 스케줄링의 예

 도착시간
 0
 0
 0

 프로세스
 A
 B
 C
 D

 CPU 사이클
 6
 3
 1
 4

프로세스	Α	В	С	D
대기시간	8	1	0	4
반환시간	14	4	1	8

SJF 스케줄링의 예

도착시간	0	0	0	0	각방송통 신대학교
프로세스	Α	В	С	D	
CPU 사이클	6	3	1	4	

프로세스	Α	В	С	D
대기시간	8	1	0	4
반환시간	14	4	1	8

SJF 스케줄링의 예

도착시간	0	0	0	0	국방송통신대학교 -
프로세스	Α	В	С	D	
CPU 사이클	6	3	1	4	

프로세스	Α	В	С	D
대기시간	8	1	0	4
반환시간	14	4	1	8

도착시간	0	0	0	0	국방송통신다학교
프로세스	Α	В	С	D	
CPU 사이클	6	3	1	4	

프로세스	Α	В	С	D
대기시간	8	1	0	4
반환시간	14	4	1	8

프로세스	Α	В	С	D
대기시간	8	1	0	4
반환시간	14	4	1	8

프로세스	Α	В	С	D
대기시간	8	1	0	4
반환시간	14	4	1	8

도착시간	0	0	0	0	국방송통신다학교
프로세스	Α	В	С	D	
CPU 사이클	6	3	1	4	

프로세스	Α	В	С	D
대기시간	8	1	0	4
반환시간	14	4	1	8

프로세스	Α	В	С	D
대기시간	8	1	0	4
반환시간	14	4	1	8

프로세스	Α	В	С	D
대기시간	8	1	0	4
반환시간	14	4	1	8

• 평균 대기시간 =
$$\frac{8+1+0+4}{4}$$
 = 3.25

• 평균 반환시간 =
$$\frac{14+4+1+8}{4}$$
 = 6.75

도착시간0123프로세스ABCDCPU 사이클6314

프로세스	Α	В	С	D
대기시간	0	6	4	7
반환시간	6	9	5	11

도착시간0123프로세스ABCDCPU 사이클6314

프로세스	Α	В	С	D
대기시간	0	6	4	7
반환시간	6	9	5	11

도착시간	0	1	2	3
프로세스	Α	В	С	D
CPU 사이클	6	3	1	4

프로세스	Α	В	С	D
대기시간	0	6	4	7
반환시간	6	9	5	11

• 평균 대기시간 =
$$\frac{0+6+4+7}{4}$$
 = 4.25

• 평균 반환시간 =
$$\frac{6+9+5+11}{4}$$
 = 7.75

⁸SJF 스케줄링의 예

도착시간	0	1	2	3	#2
프로세스	Α	В	С	D	
CPU 사이클	6	3	1	4	

프로세스	Α	В	С	D
대기시간	0	6	4	7
반환시간	6	9	5	11

도착시간0123프로세스ABCDCPU 사이클6314

프로세스	Α	В	С	D
대기시간	0	6	4	7
반환시간	6	9	5	11

도착시간0123프로세스ABCDCPU 사이클6314

프로세스	Α	В	С	D
대기시간	0	6	4	7
반환시간	6	9	5	11

⁸SJF 스케줄링의 예

도착시간	0	1	2	3	弋
프로세스	Α	В	С	D	
CPU 사이클	6	3	1	4	

프로세스	Α	В	С	D
대기시간	0	6	4	7
반환시간	6	9	5	11

도착시간0123프로세스ABCDCPU 사이클6314

프로세스	Α	В	С	D
대기시간	0	6	4	7
반환시간	6	9	5	11

도착시간0123프로세스ABCDCPU 사이클6314

프로세스	Α	В	С	D
대기시간	0	6	4	7
반환시간	6	9	5	11

• 평균대기시간 =
$$\frac{0+6+4+7}{4}$$
 = 4.25

• 평균 반환시간 =
$$\frac{6+9+5+11}{4}$$
 = 7.75

SJF 스케줄링

- SJF (Shortest Job First) 스케줄링
 - 비선점 스케줄링 알고리즘
 - 준비 큐에서 기다리는 프로세스 중 실행시간이 가장 짧다고 예상된 것을 먼저 디스패치

■ 장점

• 일괄처리 환경에서 구현하기 쉬움

■ 단점

 실행 예정 시간 길이를 사용자의 추정치에 의존하기 때문에 실제로는 먼저 처리할 작업의 CPU 시간을 예상할 수 없음

SRT 스케줄링

- SRT (Shortest Remaining Time) 스케줄링
 - 선점 스케줄링 알고리즘
 - 실행이 끝날 때까지 남은 시간 추정치가 가장 짧은 프로세스를 먼저 디스패치

프로세스	Α	В	С	D
대기시간	8	1	0	2
반환시간	14	4	1	6

프로세스	Α	В	С	D
대기시간	8	1	0	2
반환시간	14	4	1	6

도착시간 0 1 2 3 분통년대학교 프로세스 A B C D CPU 사이클 6 3 1 4

프로세스	Α	В	С	D
대기시간	8	1	0	2
반환시간	14	4	1	6

프로세스	Α	В	С	D
대기시간	8	1	0	2
반환시간	14	4	1	6

프로세스	Α	В	С	D
대기시간	8	1	0	2
반환시간	14	4	1	6

프로세스	Α	В	С	D
대기시간	8	1	0	2
반환시간	14	4	1	6

프로세스	Α	В	С	D
대기시간	8	1	0	2
반환시간	14	4	1	6

프로세스	Α	В	С	D
대기시간	8	1	0	2
반환시간	14	4	1	6

D

프로세스

도착시간

Α

0

6

В

3 D 송통시대학교

CPU 사이클

14

3

C

4

시간 준비 큐

CPU

B

В

В

A

Α

B

A

- 평균 대기시간=4.25
- 평균 반환시간=7.75

프로세스	Α	В	С	D
대기시간	8	1	0	2
 바화시가	14	4	1	6

• 평균 대기시간 =
$$\frac{8+1+0+2}{4}$$
 = 2.75
• 평균 반환시간 = $\frac{14+4+1+6}{4}$ = 6.25

응SRT 스케줄링

- SRT (Shortest Remaining Time) 스케줄링
 - 선점 스케줄링 알고리즘
 - 실행이 끝날 때까지 남은 시간 추정치가 가장 짧은 프로세스를 먼저 디스패치

■ 장점

- SJF보다 평균 대기시간이나 평균 반환시간에서 효율적
- 대화형 운영체제에 유용

■ 단점

• 각 프로세스의 실행시간 추적, 선점을 위한 문맥 교환 등 SJF보다 오버헤드가 큼

도착시간	0	1	2	3
프로세스	Α	В	С	D
CPU 사이클	6	3	1	4

도착시간	0	1	2	3
프로세스	Α	В	С	D
CPU 사이클	6	3	1	4

응RR 스케줄링

- RR (Round Robin) 스케줄링
 - 선점 스케줄링 알고리즘
 - 준비 큐에 도착한 순서에 따라 디스패치하지만 정해진 시간 할당량에 의해 실행을 제한
 - 시간 할당량 안에 완료되지 못한 프로세스는 준비 큐의 맨 뒤에 배치

프로세스	Α	В	С	D
대기시간	7	2	4	7
반환시간	13	5	5	11

도착시간	0	1	2	3
프로세스	Α	В	С	D
CPU 사이클	6	3	1	4

프로세스	Α	В	С	D
대기시간	7	2	4	7
반환시간	13	5	5	11

도착시간	0	1	2	3	글
프로세스	Α	В	С	D	
CPU 사이클	6	3	1	4	

프로세스	Α	В	С	D
대기시간	7	2	4	7
반환시간	13	5	5	11

도착시간	0	1	2	3	금
프로세스	Α	В	С	D	
CPU 사이클	6	3	1	4	

도착시간 0 1 2 3 프로세스 A B C D CPU 사이클 6 3 1 4

도착시간 0 1 2 3 프로세스 A B C D CPU 사이클 6 3 1 4

도착시간 2 3 0 프로세스 C В D Α CPU 사이클 3 6 1

· 국방송통신대학교

4

프로세스	Α	В	С	D
대기시간	7	2	4	7
반환시간	13	5	5	11

도착시간 2 3 0 프로세스 В C D Α CPU 사이클

6

3

1

4

· 국방송통신대학교

■ 시간 할당량 = 3

반환시간

5

13

5

11

도착시간 0 1 2 3 프로세스 A B C D CPU 사이클 6 3 1 4

프로세스	Α	В	С	D
대기시간	7	2	4	7
반환시간	13	5	5	11

도착시간 2 3 0 프로세스 В C D Α CPU 사이클 3 6

1

4

· 국방송통신대학교

■ 시간 할당량 = 3

반환시간

5

13

5

11

도착시간 0 1 2 3 프로세스 A B C D CPU 사이클 6 3 1 4

프로세스	Α	В	C	D
대기시간	7	2	4	7
반환시간	13	5	5	11

도착시간 0 1 2 3 프로세스 A B C D CPU 사이클 6 3 1 4

■ 시간 할당량 = 3

반환시간

5

13

5

11

도착시간 0 1 2 3 프로세스 A B C D CPU 사이클 6 3 1 4

프로세스	Α	В	С	D
대기시간	7	2	4	7
반환시간	13	5	5	11

도착시간0123프로세스ABCDCPU 사이클6314

· 국방송통신대학교

프로세스	Α	В	С	D
대기시간	7	2	4	7
반환시간	13	5	5	11

도착시간 0 1 2 3 프로세스 A B C D CPU 사이클 6 3 1 4

쓰로세스	А	В	C	ט
대기시간	7	2	4	7
반환시간	13	5	5	11

■ 시간 할당량 = 3

D

하국방송통시대학교

В 프로세스 Α CPU 사이클 6 3 1 4

프로세스	Α	В	С	D
대기시간	7	2	4	7
반환시간	13	5	5	11

• 평균대기시간 =
$$\frac{7+2+4+7}{4}$$
 = 5

• 평균 반환시간 =
$$\frac{13+5+5+11}{4}$$
 = 8.5

응RR 스케줄링

- RR (Round Robin) 스케줄링
 - 선점 스케줄링 알고리즘
 - 준비 큐에 도착한 순서에 따라 디스패치하지만 정해진 시간 할당량에 의해 실행을 제한
 - 시간 할당량 안에 완료되지 못한 프로세스는 준비 큐의 맨 뒤에 배치

■ 장점

- CPU를 독점하지 않고 공평하게 이용
- 대화형 운영체제에 유용

응RR 스케줄링

■ 단점

- 시간 할당량이 너무 크면 FCFS 스케줄링과 같아짐
- 시간 할당량이 너무 작으면 문맥 교환에 따른 오버헤드가 크게 증가함

시간 할당량	1	2	3	4	5	6
평균 대기시간	4.5	5.25	5	5.25	6	4.75
평균 반환시간	8	8.75	8.5	8.75	9.5	8.25
문맥 교환 횟수	9	4	2	1	1	0

■ 시간 할당량 = 6

도착시간0123프로세스ABCDCPU 사이클6314

• 평균대기시간 =
$$\frac{0+5+7+7}{4}$$
 = 4.75

• 평균 반환시간 =
$$\frac{6+8+8+11}{4}$$
 = 8.25

• 평균대기시간 =
$$\frac{8+5+0+5}{4}$$
 = 4.5

• 평균 반환시간 =
$$\frac{14+8+1+9}{4}$$
 = 8

응HRN 스케줄링

- HRN (Highest Response Ratio Next) 스케줄링
 - 비선점 스케줄링 알고리즘
 - 준비 큐에서 기다리는 프로세스 중 응답비율이 가장 큰 것을 먼저 디스패치

» 응답비율 =
$$\frac{\text{대기시간} + 예상실행시간}{$$
 예상실행시간 = $\frac{\text{대기시간}}{$ 예상실행시간 $} + 1$

• 예상 실행시간이 짧을수록, 대기시간이 길수록 응답비율이 커짐

도착시간	0	1	4	6	한국방송통신대학교
프로세스	Α	В	С	D	
CPU 사이클	6	3	2	1	

도착시간	0	1	4	6	한국방송통신대학교
프로세스	Α	В	С	D	
CPU 사이클	6	3	2	1	

도착시간	0	1	4	6	한국방송통신대학교
프로세스	Α	В	С	D	
CPU 사이클	6	3	2	1	

도착시간	0	1	4	6	한국방송통신대학교
프로세스	Α	В	С	D	
CPU 사이클	6	3	2	1	

도착시간	0	1	4	6	한국방송통신대학교
프로세스	Α	В	С	D	
CPU 사이클	6	3	2	1	

⇔ 응답비율
대기시간
예상실행시간 + 1

프로세스	Α	В	С	D
대기시간	0	5	6	3
반환시간	6	8	8	4

• 평균 대기시간 =
$$\frac{0+5+6+3}{4}$$
 = 3.5

• 평균 반환시간 =
$$\frac{6+8+8+4}{4}$$
 = 6.5

응HRN 스케줄링

- HRN (Highest Response Ratio Next) 스케줄링
 - 비선점 스케줄링 알고리즘
 - 준비 큐에서 기다리는 프로세스 중 응답비율이 가장 큰 것을 먼저 디스패치
 - 예상 실행시간이 짧을수록, 대기시간이 길수록 응답비율이 커짐

■ 장점	SJF 스케줄링	A		D	С	В	
	·점을 보완	도착시간	0	1	4	6	
		프로세스	Α	В	С	D	
		CPU 사이클	6	3	2	1	

응HRN 스케줄링

- HRN (Highest Response Ratio Next) 스케줄링
 - 비선점 스케줄링 알고리즘
 - 준비 큐에서 기다리는 프로세스 중 응답비율이 가장 큰 것을 먼저 디스패치
 - 예상 실행시간이 짧을수록, 대기시간이 길수록 응답비율이 커짐

■ 장점	SJF 스케줄	링 A		D	С	E	F	В	
• SJF의 단	점을 보완	도착시간	0	1	4	6	8	10	
		프로세스	Α	В	С	D	Е	F	
		CPU 사이클	6	3	2	1	1	2	

응다단계 피드백 큐 스케줄링

- 다단계 피드백 큐 스케줄링
 - 선점 스케줄링 알고리즘

- *n*개의 단계(단계 I ~ 단계 *n*)
- 각 단계마다 하나씩의 큐 존재
- 단계가 커질수록 시간 할당량도 커짐

응다단계 피드백 큐 스케줄링

■ 스케줄링 방법

- 신규 프로세스는 단계 I 의 큐에서 FIFO 순서에 따라 CPU 점유
- 입출력 같은 이벤트가 발생하면 CPU를 양보하고 대기상태로 갔다가 다시 준비상태가 될 때에는 현재와 동일한 단계의 큐에 배치
- 시간 할당량을 다 썼지만 프로세스가 종료되지 못했다면 다음 단계의 큐로 이동 배치
- 마지막 단계 n에서는 RR 스케줄링 방식으로 동작
- 단계 k 의 큐에 있는 프로세스가 CPU를 할당 받으려면 단계 l 부터 단계 k-l 까지 모든 큐가 비어있어야만 함

응다단계 피드백 큐 스케줄링

■ 장점

- I/O 위주의 프로세스(대화형)는 높은 우선권 유지
- 연산 위주의 CPU 중심 프로세스는 낮은 우선권이지만 긴 시간 할당량 가짐

■ 적응적 다단계 피드백 큐 스케줄링

- 시간 할당량을 다 쓰기 전에 CPU를 반납하는 경우 하나 작은 단계의 큐로 이동 배치
- 연산 위주의 프로세스가 I/O 위주로 바뀐다면 점점 작은 단계로 배치 가능

비선점 선점 **FCFS** RR 다단계 피드백 큐 SJF **HRN SRT**

강의를 마쳤습니다.

다음시간에는 4강. 병행 프로세스 I