

COOPER & DUNHAM LLP
ATTORNEYS AT LAW
1185 AVENUE OF THE AMERICAS, NEW YORK, NEW YORK 10036
TELEPHONE: (212) 278-0400

CHRISTOPHER C. DUNHAM
 NORMAN M. ZIVIN
 JOHN P. WHITE
 WILLIAM E. PELTON
 ROBERT D. KATZ
 DONNA A. TODIN
 RICHARD S. MILNER
 RICHARD F. JAWORSKI
 PAUL TENG
 PEDRO C. FERNANDEZ
 MICHAEL F. MORANO
 JASON S. MARIN
 KEITH J. BARKAUS
 HARVEY AGOSTO
 ANTHONY V. FLINT
 ARIAN A. BARTALAI*
 ASHTON J. DELAUNEY*
 CINDY YANG
 RON BILLINGSLEY

IVAN S. KAVRUKOV
 PETER D. MURRAY
 JAY H. MAIOLI
 ROBERT B. G. HOROWITZ
 PETER J. PHILLIPS
 WENDY E. MILLER
 ROBERT T. MALDONADO
 ERIC D. KIRSCH
 ALAN J. MORRISON
 GARY J. GERSHIK
 CHRISTINE S. NICKLES
 SPYROS G. LOUKAKOS*
 MARIA V. MARUCCI
 DEEPRO R. MUKERJEE
 PAUL S. LIH
 AUDRE GERSPACHER
 JEFFREY C. SHIEM*
 NAresh BRITHARAN*

FACSIMILE: (212) 391-0525
 (212) 391-052
 (212) 391-0630

OF COUNSEL
 DONALD S. DOWDEN
 JOHN R. GARBER
 MARK A. FARLEY

SCIENTIFIC ADVISORS
 BRIAN J. AMOS, PH.D.
 NICHOLAS F. NUTO, PH.D.
 JOSEPH B. CRYSTAL, PH.D.
 ARMAND L. BALDONI, M.PHIL.
 MURIEL M. LIBERTO, PH.D.
 ANNE C. MARINOVIC, PH.D.
 ANTHONY C. KHONG, PH.D.
 JOHN X. HABERMAN, PH.D.

FOUNDED 1887
www.cooperdunham.com

*NEW YORK STATE BAR ADMISSION PENDING

RECEIVED
CENTRAL FAX CENTER

SEP 15 2003

Unofficial

FACSIMILE TRANSMISSION

PLEASE DELIVER THE FOLLOWING PAGES

TO : United States Patent and Trademark Office
 GROUP ART UNIT : 2877 ATTN.: Examiner Sang H. Nguyen
 FAX NO.: (703) 872-931¹⁷
 FROM : Paul Teng OUR DOCKET NO.: 0398/60046
 DATE : September 12, 2003
 TOTAL NUMBER OF PAGES, INCLUDING COVER SHEET: 2
 ☐ IF YOU DO NOT RECEIVE ALL THE PAGES, PLEASE CALL BACK AS SOON AS
 POSSIBLE TO (212) 278-0400.

• MESSAGE •

Re: Serial No. 09/378,666
 As indicated in the message I left in your voicemail, I am enclosing proposed claim amendments. As you and I previously discussed, Applicants request an interview in person with you. Applicants propose October 8, 2003 (Wednesday) at 2 pm. If the proposed date and time is not suitable, please let us know of another date and time, preferably during the week of Oct. 6-10. Thanks.

THE INFORMATION CONTAINED IN THIS FACSIMILE TRANSMISSION IS INTENDED SOLELY FOR THE PERSONAL AND CONFIDENTIAL USE OF THE DESIGNATED RECIPIENT(S) NAMED ABOVE. THIS TRANSMISSION MAY BE AN ATTORNEY-CLIENT COMMUNICATION CONTAINING INFORMATION THAT IS PRIVILEGED AND CONFIDENTIAL. IF THE READER OF THIS MESSAGE IS NOT A DESIGNATED RECIPIENT OR AN AGENT RESPONSIBLE FOR DELIVERING IT TO A DESIGNATED RECIPIENT, YOU ARE HEREBY NOTIFIED THAT YOU HAVE RECEIVED THIS DOCUMENT IN ERROR, AND THAT ANY REVIEW, DISTRIBUTION, OR COPYING OF THIS MESSAGE IS STRICTLY PROHIBITED. IF YOU HAVE RECEIVED THIS COMMUNICATION IN ERROR, OR IF UPON READING THIS DOCUMENT YOU HAVE REASON TO BELIEVE THAT THE DOCUMENT WAS INADVERTENTLY RECEIVED FROM US, PLEASE NOTIFY US IMMEDIATELY BY COLLECT TELEPHONE CALL AND

Unofficial**RECEIVED
CENTRAL FAX CENTER**

SEP 15 2003

David John Watson et al., Serial No. 09/378,666

1. A particle size distribution analysis apparatus comprising a sample measurement zone defining a sample of particles, a light emitting means for providing a source of light incident upon the sample measurement zone, and at least a first detection means for measuring light levels in the apparatus at particular scattering angles and output a signal to a computation means for calculating said particle size distribution enabling the particle size distribution of particles contained within said sample to be determined, wherein said computation means [calculates, in use, said particle size distribution taking into account, for each of said scattering angles,] is arranged to substantially completely compensate for the reflection, by at least one window of said measurement zone, of light that has previously been scattered by said particles, at each of said scattering angles when calculating said particle size distribution.
14. A method of improving the accuracy of a particle size distribution calculation performed by illuminating a sample with light from a light emitting means and measuring an amount of light scattered by the sample comprising providing at least a first detection means and [calculating the particle size distribution taking into account] substantially completely compensating for reflection by at least one window of a measurement zone of light, that has previously been scattered by the particles at at least two scattering angles.

1. A particle size distribution analysis apparatus comprising a sample measurement zone defining a sample of particles, a light emitting means for providing a source of light incident upon the sample measurement zone, and at least a first detection means for measuring light levels in the apparatus at particular scattering angles and output a signal to a computation means for calculating said particle size distribution enabling the particle size distribution of particles contained within said sample to be determined, wherein [said computation means calculates, in use, said particle size distribution taking into account, for each of said scattering angles, reflection by at least one window of said measurement zone, of light that has previously been scattered by said particles], in use, light scattered by said particles is reflected from at least one window of said measurement zone, said computation means being arranged to substantially completely compensate for light scattered by said particles and reflected from said at least one window, at each of said scattering angles, when calculating said particle size distribution.
14. A method of improving the accuracy of a particle size distribution calculation performed by illuminating a sample with light from a light emitting means and measuring an amount of light scattered by the sample comprising providing at least a first detection means and [calculating the particle size distribution taking into account] substantially completely compensating for reflection by at least one window of a measurement zone of light, that has previously been scattered by the particles at at least two scattering angles.