Exercise 17,4

1. Construct a Δ with sides 4 cm, 5 cm and 6 cm and construct a rectangle having its area equal to that of the Δ . Measure its diagonals. Are they equal?

Given

4cm, 5cm, 6cm the sides of the triangle Δ .

Required

To make a rectangle with area equal to that of the Δ .

Construction

- (i) Draw AB = 4cm.
- (ii) Draw an arc of radius 5cm with centre B and an other arc of radius 6cm with centre A cutting the first in C.

(iii)Join CA, CB

- (iv)ABC is the required Δ .
- (v) Draw a line ℓ through $C \parallel \overline{AB}$.
- (vi) Draw the \perp bisector of \overrightarrow{AB} in D and cutting the line ℓ at P.
- (vii) Draw BQ \perp on the line ℓ . PQDB is the required rectangle.
- 2. Transform an isosceles Δ into a rectangle.

Construction

- (i) Take a line \overline{BC}
- (ii) Draw the ⊥ bisector of BC take any point A on it.
- (iii) Join AB and AC.
- (iv) $\triangle ABC$ is the isosceles \triangle with $\overline{MAB} = \overline{MAC}$.
- (v) Through A draw a line $\ell \parallel BC$.
- (vi) Draw CD ⊥ ℓ

CDAE is the required rectangle equal in area to $\triangle ABC$

3. Construct a $\triangle ABC$ such that $\overline{mAB}=3cm$, $\overline{mBC}=3.8cm$, $\overline{mAC}=4.8cm$. Construct a rectangle equal in area to the $\triangle ABC$, and measure its sides.

Given

Three sides of the $\triangle ABC$

Required

To construct a rectangle with area equal to that of the ΔABC .

Construction

- (i) Take m AB = 3cm
- (ii) With B as centre draw an arc of radius 3.8cm, with A as centre draw another arc of radius 4.8cm, cutting the first in C.
- (iii) Join B with C and A.
- (iv) ABC is the required Δ .
- (v) Through C draw a line ℓ | AB.
- (vi) Draw the \perp bisector of \overline{AB} cutting the line ℓ in P.
- (vii) PCDB is the required rectangle. Measures of sides of rectangle PCDB are; $m\overline{PD} = 3.8cm$, $m\overline{DB} = 1.5cm$