Name:	er:
-------	-----

Title: NAND AND NORGATES

Materials:

- [1] 7400 2-input NAND gate IC
- [1] 7404 inverter
- [1] 7432 2-input OR gate IC
- [1] 7402 2-input NOR gate IC
- [1] 7408 2-input AND gate IC

Procedure:

- 1. Insert a 7400 IC into the breadboard.
- 2. Connect power (+ and gnd) to the 7400.
- 3. Wire the 2-input NAND gate using Fig. 3-9 and your pinout diagrams.
- 4. Move the input switches A and B to the combinations shown in the left side of Table 3-9. Record if the LED is on or off in the right column.
- 5. Under the Output section fill in the binary column, Table 3-9, with 0's and 1's. **Get Instructor's Signature.**
- 6. Insert the 7402 and connect power.
- 7. Refer to Fig. 3-10. Wire the 2-input NOR gate.
- 8. Move the switches according to the Inputs section in Table 3-10. Record your observed results in the table. **Get Instructor's Signature.**
- 9. Insert the 7408 and 7404.
- 10. Wire the circuit diagrammed in Fig. 3-11.
- 11. Fill out Table 3-11 as you move the switches according to the Inputs section of the table. Notice the column Y should be the output of an AND gate and column \overline{Y} should be the output of a NAND gate. **Get Instructor's Signature.**

- 12. **Draw** a logic symbol diagram of a 3-input NOR gate. Use two 2-input OR gates and an inverter. Label the inputs A, B and C and the output Y also label the wires with the correct pin numbers. Put the diagram on a **separate sheet** of paper.
- 13. Construct the 3-input NOR gate you just designed. Wire the 7432 and 7404.
- 14. Fill out Table 3-12 as you move the switches according to the Inputs section of the table. **Get Instructor's Signature.**

Questions (answer on a separate piece of paper – "Draw" means you must use a template):

1.	Write the Boolean expression for each of the following circuits			
	you constructed in this experiment:			
	a. 2-input NAND gate			
	b. 2-input NOR gate			
	c. 3-input NOR gate			
2.	A High voltage from an input switch in this experiment stands			
	for (binary 0, binary 1).			
3.	When the indicator LED is on, it means the gate has an output			
	of(binary 0, binary 1).			
4.	The NAND gate's unique output is a(0,1),			
	which only occurs when all inputs are(high, low).			
5.	The NOR gate's unique output is a(0,1),			
	which only occurs when all inputs are (high, low).			
6.	The NAND function can be created by inverting the output of			

gate.

a(n)

Inputs				Outputs	
A		В		Y	
Voltage	Binary	Voltage	Binary	Light	Binary
low	0	low	0		
low	0	high	1		
high	1	low	0		
high	1	high	1		

Table 3-9 Truth Table for 7400

Fig. 3-9 Wiring a 2-input NAND gate

Inp	uts	Outputs	
A	В	Y	
0	0		
0	1		
1	0		
1	1		

Inputs		Outputs	
A	В	Y	\overline{Y}
0	0		
0	1		
1	0		
1	1		

Table 3-10 Truth Table for 7402

Fig. 3-10 Wiring a 2-input NOR gate

Table 3-11 Truth Table for AND and NAND

	Inputs	Outputs	
A	В	C	Y
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Table 3-12 3-input NOR gate

Fig. 3-11 Wiring a 2-input NAND gate