MATH5905 - Statistical Inference Assignment 2

James Yang z3415436

Question 1.

Let X_1, X_2, \dots, X_n be i.i.d. random variables from a population with a density

$$f(x; \theta) = \begin{cases} \frac{2\theta^2}{x^3}, & \text{if } x \ge \theta \\ 0, & \text{otherwise.} \end{cases}$$

where $\theta > 0$ is an unknown parameter.

a)

The likelihood function is

$$L(\mathbf{x}, \theta) = \prod_{i=1}^{n} \frac{2\theta^{2}}{x_{i}^{3}} I_{[\theta, \infty)}(x_{i})$$
$$= 2^{n} \theta^{2n} \prod_{i=1}^{n} \frac{1}{x_{i}^{3}} I_{(0, x_{(1)}]}(\theta).$$

Therefore

$$\frac{L(\mathbf{x}, \theta)}{L(\mathbf{y}, \theta)} = \frac{2^n \theta^{2n} \prod_{i=1}^n \frac{1}{x_i^3} I_{(0, x_{(1)}]}(\theta)}{2^n \theta^{2n} \prod_{i=1}^n \frac{1}{y_i^3} I_{(0, x_{(1)}]}(\theta)}$$

$$= \prod_{i=1}^n \frac{y_i^3}{x_i^3} \frac{I_{(0, x_{(1)}]}(\theta)}{I_{(0, x_{(1)}]}(\theta)}.$$

This expression is independent of θ iff $x_{(1)} = y_{(1)}$. Hence $T = X_{(1)}$ is a minimal sufficient statistic for θ .

b)

For $x > \theta$,

$$F_{X_{(1)}}(x) = P(X_{(1)} \le x)$$
= 1 - P(X₁ \ge x, X₂ \ge x, ..., X_n \ge x)
= 1 - [P(X_i \ge x)]ⁿ since X_i are i.i.d. for i = 1,2,...,n
$$= 1 - \left[1 - \left(1 - \frac{\theta^2}{x^2}\right)\right]^n$$
= 1 - $\frac{\theta^{2n}}{x^{2n}}$.

Differentiating with respect to x

$$f_{X_{(1)}}(x) = \frac{2n\theta^{2n}}{x^{2n+1}}.$$

Hence

$$f_{X_{(1)}}(x) = \begin{cases} \frac{2n\theta^{2n}}{x^{2n+1}}, & \text{if } x \ge \theta \\ 0, & \text{otherwise.} \end{cases}$$

c)

Recall that

$$L(\mathbf{x},\theta) = 2^n \theta^{2n} \prod_{i=1}^n \frac{1}{x_i^3} I_{(0,x_{(1)}]}(\theta).$$

Since this is a monotonically increasing function in θ , the likelihood function is maximised when θ is largest. That is, when $\theta = x_{(1)}$. Thus the MLE is $\widehat{\theta} = x_{(1)}$.

d)

Suppose $E_{\theta}(g(X_{(1)})) = 0$. That is,

$$\int_{\theta}^{\infty} \frac{2ng(x)\theta^{2n}}{x^{2n+1}} dx = 0$$

$$\int_{\theta}^{\infty} \frac{g(x)}{x^{2n+1}} dx = 0 \text{ as } 2n\theta^{2n} \text{ is constant in } x,$$

$$\frac{d}{d\theta} \int_{\theta}^{\infty} \frac{g(x)}{x^{2n+1}} dx = \frac{d}{d\theta}(0)$$

$$\frac{g(\theta)}{\theta^{2n+1}} = 0.$$

Since $\theta > 0$, we have that $g(\theta) = 0$ for all $\theta > 0$. As x > 0, g(x) = 0 for all x. Hence P(g(x) = 0) = 1 and $X_{(1)}$ is complete for θ .

Note we have also proven that $X_{(1)}$ is sufficient in θ . Now,

$$E(X_{(1)}) = \int_{\theta}^{\infty} \frac{2nx\theta^{2n}}{x^{2n+1}} dx$$
$$= \frac{2n}{2n-1}\theta.$$

Hence an unbiased estimator for θ is $\frac{2n-1}{2n}\theta$ which is also a function of a complete and sufficient statistic for θ . Hence $\frac{2n-1}{2n}\theta$ is the UMVUE of θ .

e)

Let θ' , θ'' be fixed such that $0 < \theta' < \theta''$.

$$\frac{L(\mathbf{X}, \theta'')}{L(\mathbf{X}, \theta')} = \frac{2^n \theta''^{2n} \prod_{i=1}^n \frac{1}{x_i^3} I_{(0, x_{(1)}]}(\theta'')}{2^n \theta'^{2n} \prod_{i=1}^n \frac{1}{x_i^3} I_{(0, x_{(1)}]}(\theta')}$$

$$= \left(\frac{\theta''}{\theta'}\right)^{2n} \frac{I_{(0, x_{(1)}]}(\theta'')}{I_{(0, x_{(1)}]}(\theta')}$$

$$= \left(\frac{\theta''}{\theta'}\right)^{2n} \frac{I_{(0, T]}(\theta'')}{I_{(0, T]}(\theta')}$$

$$= \left(\frac{\theta''}{\theta'}\right)^{2n}, \quad 0 < T \le \theta'.$$

For $0 < \theta' < \theta''$, this is a non-decreasing function of T. Hence the family $L(\mathbf{X}, \theta)$ has a MLR in $T = X_{(1)}$.

f)

By the Theorem of Blackwell and Girshick the UMP α -size test ϕ^* of $H_0: \theta \leq 1$ and $H_1: \theta > 1$ has a structure:

$$\phi^* = \begin{cases} 1, & \text{if } T > k \\ 0, & \text{if } T < k. \end{cases}$$

where k is the upper $\alpha.100\%$ point of the P_{θ} distribution of T. That is,

$$\alpha = P(T = X_{(1)} \ge k | \theta = 1)$$
$$= \frac{1}{k^{2n}}.$$

Hence $k = \alpha^{-\frac{1}{2n}}$.

g)

The power function of ϕ^* is

$$E_{\theta}[\phi^*] = P(T > \alpha^{-\frac{1}{2n}})$$

$$= \frac{\theta^{2n}}{(\alpha^{-\frac{1}{2n}})^{2n}}$$

$$= \alpha \theta^{2n}, \quad \theta > 0.$$

Question 2.

Let $\mathbf{X} = (X_1, X_2, \dots, X_n)$ be i.i.d. random variables each with the log-normal density

$$f(x, \theta) = \begin{cases} \frac{1}{\sqrt{2\pi}x\theta} e^{\left[-\frac{1}{2}\left[\frac{\ln(x)}{\theta}\right]^2\right]}, x > 0\\ 0, & \text{otherwise} \end{cases}$$

where $\theta > 0$ is a parameter.

a)

Let $T(\mathbf{X}) = \sum_{i=1}^{n} (\ln X_i)^2$ and let θ', θ'' be fixed such that $0 < \theta' < \theta''$. The likelihood function is

$$L(\mathbf{X}, \theta) = \frac{1}{(2\pi)^{n/2} \theta^n \prod_{i=1}^n x_i} exp \left[-\frac{\sum_{i=1}^n (\ln X_i)^2}{2\theta^2} \right].$$

The likelihood ratio is

$$\frac{L(\mathbf{X}, \theta'')}{L(\mathbf{X}, \theta')} = \left(\frac{\theta'}{\theta''}\right)^n \exp\left[-\frac{1}{2}\left(\frac{1}{\theta''} - \frac{1}{\theta'}\right) \sum_{i=1}^n (\ln X_i)^2\right]
= \left(\frac{\theta'}{\theta''}\right)^n \exp\left[\frac{1}{2}\left(\frac{\theta'' - \theta'}{\theta'\theta''}\right) T(\mathbf{X})\right].$$

Since $\frac{\theta''-\theta'}{\theta'\theta''} > 0$, the likelihood ratio is a strictly increasing function of $T(\mathbf{X})$. Hence the family $L(\mathbf{X}, \theta)$ has a monotone likelihood ratio in $T(\mathbf{X})$.

b)

The family $L(\mathbf{X}, \theta)$ is MLR in $T(\mathbf{X})$. By the Theorem of Blackwell and Girshick, there is a UMP α - size test ϕ^* of the hypothesis $H_0: \theta \leq \theta_0$ against $H_1: \theta > \theta_0$ and the structure of this test is

$$\phi^*(\mathbf{x}) = \begin{cases} 1 \text{ if } T(\mathbf{X}) \ge k \\ 0 \text{ if } T(\mathbf{X}) < k. \end{cases}$$

where k is the upper α 100% of the P_{θ_0} - distribution of $T(\mathbf{X})$.

c)

Let $Y = \ln X$. Then $x = \exp(y)$ and $\frac{dx}{dy} = \exp(y)$. Hence the density of Y is

$$f_Y(y) = \frac{1}{\sqrt{2\pi} \exp(y)\theta} \exp\left(-\frac{y^2}{2\theta^2}\right) \times \exp(y)$$
$$= \frac{1}{\sqrt{2\pi}\theta} \exp\left(-\frac{y^2}{2\theta^2}\right), \quad -\infty < y < \infty.$$

Hence $Y \sim N(0, \theta^2)$.

d)

If $Y_i \sim N(0, \theta^2)$ then $\frac{Y_i}{\theta} \sim N(0, 1)$. Hence $\sum_{i=1}^n \left(\frac{Y_i}{\theta}\right)^2 = \frac{1}{\theta^2} \sum_{i=1}^n Y_i^2 \sim \chi_n^2$. We have that,

$$\begin{split} P(\Sigma_{i=1}^{n}(\ln X_{i})^{2} \geqslant k | \theta = \theta_{0}) &= P\left(\frac{1}{\theta_{0}^{2}} \Sigma_{i=1}^{n}(\ln X_{i})^{2} \geqslant \frac{k}{\theta_{0}^{2}} | \theta = \theta_{0}\right) \\ &= \int_{\frac{k}{\theta_{0}^{2}}}^{\infty} \frac{x^{\frac{n}{2} - 1} e^{-\frac{x}{2}}}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})}. \end{split}$$

Hence the threshold is $k = \theta_0^2 \chi_{n,\alpha}^2$ where $\chi_{n,\alpha}^2$ is the upper $\alpha \times 100\%$ point of the χ_n^2 distribution.

The complete UMP α - size test ϕ^* of $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$ is

$$\phi^* = \begin{cases} 1, & \text{if } T(\mathbf{X}) \ge \theta_0^2 \chi_{n,\alpha}^2 \\ 0 & \text{if } T(\mathbf{X}) < \theta_0^2 \chi_{n,\alpha}^2. \end{cases}$$

The power function of ϕ^* is

$$\begin{split} E_{\theta}[\phi^*] &= P(\Sigma_{i=1}^n (\ln X_i)^2 \geqslant \theta_0^2 \chi_{n,\alpha}^2) \\ &= P\left(\frac{1}{\theta^2} \Sigma_{i=1}^n (\ln X_i)^2 \geqslant \frac{\theta_0^2 \chi_{n,\alpha}^2}{\theta^2}\right) \\ &= P\left(\chi_n^2 \geqslant \frac{\theta_0^2 \chi_{n,\alpha}^2}{\theta^2}\right) \end{split}$$

Hence $E_{\theta}[\phi^*]$ is an increasing function of $\theta \in (0, \infty)$, and satisfies $E_{\theta=0}[\phi^*] = 0$, $E_{\theta=\theta_0}[\phi^*] = \alpha$ and $\lim_{\theta\to\infty} E_{\theta}[\phi^*] = 1$.

Question 4.

Suppose $X_{(1)} < X_{(2)} < X_{(3)}$ are the order statistics based on a random sample of size 3 from the standard exponential density $f(x) = e^{-x}, x > 0$.

i)

The general formula for the density of an order statistic is

$$f_{X_{(i)}}(x) = \frac{n!}{(i-1)!(n-i)!} [F(x)]^{i-1} [1 - F(x)]^{n-i} f(x)$$

The density of $X_{(3)}$ is

$$f_{X_{(3)}}(x) = \frac{3!}{(3-1)!(3-3)!} [1 - e^{-x}]^{3-1} [e^{-x}]^{3-3} e^{-x}$$
$$= 3[1 - e^{-x}]^2 e^{-x}, 0 < x < \infty$$

So then

$$EX_{(3)} = 3 \int_0^\infty x[1 - e^{-x}]^2 e^{-x} dx$$
$$= 3 \left[\Gamma(2) - \frac{1}{2}\Gamma(2) + \frac{1}{9}\Gamma(2) \right]$$
$$= \frac{11}{6}.$$

ii)

It holds in general that

$$f_{X_{(1)},X_{(n)}}(x_{(1)},x_{(n)}) = n(n-1)[F_X(x_{(n)}) - F_X(x_{(1)})]^{n-2}f_X(x_{(1)})f_X(x_{(n)}), \quad x_{(1)} < x_{(n)}.$$

So the joint density of $X_{(1)}$ and $X_{(3)}$ is

$$f_{X_{(1)},X_{(3)}}(x_{(1)},x_{(3)}) = 6[e^{-x_{(1)}} - e^{-x_{(3)}}]e^{-x_{(1)}}e^{-x_{(3)}}, \quad 0 < x_{(1)} < x_{(3)} < \infty.$$

Let $A = X_{(1)}$ and $B = \frac{1}{2}(X_{(1)} + X_{(3)})$. Rearranging, we have that $x_{(1)} = a$ and $x_{(3)} = 2b - a$ with a Jacobian of transformation equal to 2. Hence the joint density of A and B is

$$f_{A,B}(a,b) = 6[e^{-a} - e^{a-2b}]e^{-2b} \times 2$$

= $12[e^{-a-2b} - e^{a-4b}].$

The relationship $0 < x_{(1)} < x_{(3)} < \infty$ transforms to $0 < a < b < \infty$. Hence the density of the median *B* is

$$f_B(b) = 12 \int_0^b [e^{-a-2b} - e^{a-4b}] da$$

= 12(e^{-2b} - 2e^{-3b} + e^{-4b}), 0 < b < \infty.

Now,

$$P(B > 1) = 1 - 12 \int_0^1 (e^{-2b} - 2e^{-3b} + e^{-4b})db$$

= 0.468662.

as required.