	doc_1		doc_2		decision
	authors	hors • Bin Cheng • Qiangchang Ju • Steve Schochet	authors	Bin Cheng Qiangchang Ju Steve Schochet	
			title	Convergence Rate Estimates for the Low Mach and Alfvén Number Three-Scale Singular Limit of Compressible Ideal Magnetohydrodynamics	
	title	Convergence rate estimates for the low Mach and Alfvén number three-scale singular limit of compressible ideal magnetohydrodynamics	publication_date source journal	2019-03-14 04:58:13+00:00 SupportedSources.ARXIV None	
	publication_date 2021-01-01 00:00:00		volume		
	source	SupportedSources.OPENALEX	doi		DUPLICATES 7
cases	journal	Mathematical Modelling and Numerical Analysis	urls	• http://arxiv.org/pdf/1903.05816v3	
	volume	55		• http://arxiv.org/abs/1903.05816v3	
	doi	10.1051/m2an/2020051		• http://arxiv.org/pdf/1903.05816v3	
	urls	 https://openalex.org/W3045764375 https://doi.org/10.1051/m2an/2020051 https://www.esaim- 	id	id7860676359247038454 Convergence rate estimates are obtained for singular limits of the compressible ideal magnetohydrodynamics equations, in which the Mach and Alfv\'en	
		m2an.org/articles/m2an/pdf/2021/01/m2an200046.pdf	f abstract	numbers tend to zero at different rates. The proofs use a detailed analysis of exact and approximate fast, intermediate, and slow modes together with improved estimates for the solutions and their time derivatives, and the time-integration method. When the small parameters are related by a power law the convergence rates are positive powers of the Mach number, with the power varying depending on the component and the norm. Exceptionally, the	
	id	id-2126563419212378287		convergence rate for two components involve the ratio of the two parameters, and that rate is proven to be sharp via corrector terms. Moreover, the convergence rates for the case of a power-law relation between the small parameters tend to the two-scale convergence rate as the power tends to one. These results demonstrate that the issue of convergence rates for three-scale singular limits, which was not addressed in the authors' previous paper, is much more complicated than for the classical two-scale singular limits.	
	abstract versions				
			versions		