Teoría y Gestión de Portafolio

Jeferson Carbajal Zapata

Jefe del Dpto de Análisis Táctico de Inversiones Int, BCRP

Msc. in Finance, London Business School

Retorno y riesgo

 La administración de portafolios debe enfocarse no en cómo obtener retornos, sino en cómo gestionar y explotar los riesgos para conseguir retornos

Aversión al riesgo y tolerancia al riesgo

- Los inversionistas son adversos al riesgo:
 - Frente a dos alternativas con el mismo retorno esperado, preferirán la que tiene el menor riesgo.
 - Por lo tanto buscan una compensación por incurrir en riesgo adicional.

Definición de riesgo

- ¿Incertidumbre respecto a los resultados futuros?
- ¿Probabilidad de un resultado adverso?

Enfoque de Cálculo de Retornos Esperados

- Medias Históricas
- Estimados Exógenos
- Estimados internos (Enfoque de Escenarios, modelos macroeconométricos, etc)

Retorno esperado de un activo

Probabilidad	Retorno posible	Retorno esperado	
15%	0.04	0.006	
20%	0.06	0.012	
30%	0.08	0.024	
35%	0.10	0.035	
		E(R)= 0.077	

Retorno esperado de un portafolio

Peso (w _i)	Retorno esperado (R _i)	Retorno esperado del portafolio (w _i *R _i)	
0.25	0.12	0.03	
0.35	0.08	0.028	
0.40	0.07	0.028	
		$E(R_{port}) = 0.086$	

Retorno esperado de un portafolio

$$E(R_{port}) = \sum_{i=1}^{n} w_i R_i$$

Varianza y desviación estándar de un activo

Varianza =
$$\sigma^2 = \sum_{i=1}^{n} [R_i - E(R_i)]^2 P_i$$

Desv. estándar =
$$\sigma = \sqrt{\sum_{i=1}^{n} [R_i - E(R_i)]^2 P_i}$$

Varianza y desviación estándar de un portafolio

- Covarianza
 - Medida del grado en que dos activos se mueven juntos, respecto a sus varianzas individuales

$$Cov_{ij} = E\{[R_i - E(R_i)][R_j - E(R_j)]\}$$

- Correlación
 - Resultado de estandarizar la covarianza

$$\rho_{ij} = \frac{Cov_{ij}}{\sigma_i \sigma_j}$$

Varianza y desviación estándar de un portafolio

$$\sigma_{port} = \sqrt{\sum_{i=1}^{n} w_{i}^{2} \sigma_{i}^{2} + \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i} w_{j} Cov_{ij}}$$

Teoría clásica de portafolio

Los inicios...

• Harry Markowitz. Premio nobel en economía 1990

Teoría Moderna de Portafolio - MPT

- Utiliza la varianza de los retornos como una medida significativa del riesgo del portafolio
- La fórmula de la varianza no sólo indica la importancia de la diversificación para reducir el riesgo total del portafolio sino también cómo diversificar.

Supuestos

Los inversionistas maximizan su utilidad esperada para un único periodo, y sus curvas de indiferencia experimentan una utilidad marginal de riqueza decreciente.

Los inversionistas tienen acceso a la misma información y al mismo tiempo

Son precio aceptantes

Principio de Dominancia

Qué acción preferirían tener?

Modelando el trade off

Teoría de la utilidad cuantifica el deseo subjetivo de algo:

- -Los inversionistas escogen el portafolio que da la mayor utilidad.
- -Un modelo de utilidad por media varianza

$$U(rt) = E(r_t) - o.5xAxVar(r_t)$$

-A mide el nivel de aversión al riesgo:

-A>o : Averso a riesgo

-A=o : Neutral al riesgo

-A<o : Amante al riesgo

Curvas de indiferencia

- Cualquier punto de la curva debería ser indiferente, ya que cualquier combinación nos da el mismo nivel de utilidad.
- Si nos movemos a lo largo de la curva, las combinaciones de riesgo – retorno esperado cambian pero el nivel de utilidad se mantiene.

Curvas de utilidad y aversión al riesgo

Curvas de indiferencia y niveles de utilidad

Comentarios

- 1. Niveles mas altos de aversión al riesgo, significa que los inversionistas requieren niveles mas altos de retorno para el mismo nivel de riesgo para preservar el mismo nivel de utilidad.
- 2. Inversionistas prefieren curvas de indiferencia mas altas
- 3. ¿Se puede invertir en cualquier parte de la linea?

La frontera eficiente

- Conjunto de portafolios que representan el máximo retorno para cada nivel de riesgo, o el menor riesgo para cada nivel de retorno
- Cualquier portafolio que se encuentre en la frontera es más «eficiente» que cualquier otro portafolio debajo de la frontera

La frontera eficiente

Hallando la frontera eficiente

	Individual Volatility	Volatility of the Frontier Portfolio with the same expected return	Risk reduction
MMM	620%	4.72%	24%
PG	691%	4.54%	34%
вм	10 25%	5.83%	43%
UTX	791%	6.84%	14%
MRK	7.89%	5.28%	33%

La frontera eficiente se desplaza a la izquierda cada vez que se incrementa un activo más; sin embargo, cada incremento **es menor** que el anterior.

Los **activos individuales** son **dominados** por la **frontera!** El riesgo de mercado NO se diversifica! (Gráfico)

El Poder de la Diversificación

J.M. Grifin, G.A. Karolyi/Journal of Financial Economics 50 (1998)

Inclusión del activo libre de riesgo

Desarrollo

- Activo libre de riesgo
 - Activo financiero cuya varianza es cero, y por lo tanto su correlación con cualquier otro activo también es cero
- Este activo libre de riesgo puede combinarse con cualquier activo riesgoso

Covarianza con el activo libre de riesgo

$$Cov_{i,RF} = E\{[R_i - E(R_i)][R_{RF} - E(R_{RF})]\}$$

- Como el retorno del activo libre de riesgo es cierto, entonces: E(R_{RF})=R_{RF}
- Por lo tanto:

$$Cov_{i,RF} = E\{[R_i - E(R_i)][0]\}$$
$$Cov_{i,RF} = 0$$

Combinando el activo libre de riesgo con un portafolio riesgoso

Retorno esperado

$$E(R_{port}) = w_{RF}(RFR) + (1 - w_{RF})E(R_i)$$

Desviación estándar

$$\sigma_{p}^{2} = w_{1}^{2} \sigma_{1}^{2} + w_{2}^{2} \sigma_{2}^{2} + 2w_{1}w_{2}Cov_{1,2}$$

$$\sigma_{p}^{2} = w_{RF}^{2} \sigma_{RF}^{2} + (1 - w_{RF})^{2} \sigma_{i}^{2} + 2w_{RF}(1 - w_{RF})Cov_{RF,i}$$

$$\sigma_{p}^{2} = (1 - w_{RF})^{2} \sigma_{i}^{2}$$

$$\sigma_{p} = (1 - w_{RF})\sigma_{i}$$

Portafolios posibles

σ

Capital Market Line

- Ahora contamos con una nueva frontera eficiente.
- La línea que une la tasa libre de riesgo con el portafolio de mercado se denomina «línea del mercado de capitales» (capital market line).

Capital Market Line

σ

El Portafolio de Mercado

- El portafolio M está en la línea de tangencia, que es la línea posible más alta
- Por tanto todos querrán invertir en ese portafolio, combinándolo con el activo libre de riesgo

El Portafolio de Mercado

- El portafolio M incluye todos los activos disponibles y es un portafolio completamente diversificado
- El riesgo específico, o no sistemático, de cualquier activo en el portafolio es neutralizado por la variabilidad de los otros activos
- El portafolio sólo mantiene riesgo sistemático

Riesgo de un activo individual

- El riesgo individual de un activo puede ser neutralizado totalmente por medio de la diversificación.
- Por lo tanto sólo debe considerarse su riesgo sistemático, que se mide a través de la covarianza con el resto de activos en el portafolio.
- El único portafolio relevante es M, por tanto esta relación se mide a través de la covarianza con el portafolio de mercado M.

Poniendo todo junto

Capital Allocation

Ahora que ya tenemos elegido al portafolio riesgoso óptimo, podemos elegir el portafolio que maximice la utilidad del inversionista en función a su tolerancia al riesgo.

$$U(r_t) = E(r_t) - 0.5 \cdot A \cdot Var(r_t)$$

El problema esta bien definido porque la utilidad es cuadrática en los pesos del portafolio.

$$\mathbf{W_t}^* = \frac{\mu_{\text{m,t}} - r_{\!f}}{A \cdot \sigma_{\text{m,t}}^2}$$