Séance 10

Exercice 1.

On cherche à calculer l'autocorré-lation, fix (t) pour x (t)= e 112 On admet ici que TF[e-TT2]=e-TT2

1. Calculez
$$S_{xx}(0) = TF[\varphi_{xy}(H)]$$

et montrez que $S_{xx}(0) = e^{-2\pi \theta^2}$

Exercice 2

et
$$y(t) = \chi(t) = \chi(t) = \chi(t) e^{-\alpha t}$$
 avec $\chi(0)$

1. Montrez que
$$y(r) = \left(\int_{c}^{t} \pi(z) \pi(r-z) dz\right)^{\frac{1}{2}} R_{+}^{(r)}$$

Exercice 3

on considère
$$\chi(r) = {}^{1}R_{+}$$
 (+) $e^{-\alpha t}$ avec $d>0$ et ${}^{1}R_{+}$ (+) sen autocorrélation.

1. Montrez que ${}^{1}R_{+}$ (-) ${}^{1}R_{+}$ (+) ${}^{2}R_{+}$ (+) ${$

Er =
$$\frac{1}{2q}$$

2. Montrez que $E_{\pi} = f_{\pi \times}(c)$.

2. Montrez que
$$\{(a) = \int_{-\infty}^{\infty} |\chi(\lambda)|^2 d\lambda$$

3. Montrez que
$$\int_{-\infty}^{+\infty} \frac{dv}{1+v^2} = T$$
 en utilisant $x=2T$.

En utilisant les exercices précé-dents, montre 2 que exercice 6

$$TF\left[+e^{-xt}_{R,(r)}\right] = \frac{1}{(x+2i\pi)^2}$$