Sprawozdanie z laboratorium nr 6 z przedmiotu KSO Konstrukcja systemu plików

Agnieszka Hermaniuk

Politechnika Warszawska, Wydział Elektroniki i Technik Informacyjnych

18 stycznia 2022

Spis treści

1	Cel ćwiczenia	2
2	Koncepcja teoretyczna	2
	2.1 Funkcje i założenia	2
	2.2 Struktura wirtualnego systemu plików	3
3	Testowanie	3

1 Cel ćwiczenia

Należy napisać w środowisku systemu Minix program w języku C (oraz skrypt demonstrujący wykorzystanie tego programu) realizujący podstawowe funkcje systemu plików.

2 Koncepcja teoretyczna

2.1 Funkcje i założenia

System pliku będzie zrealizowany w dużym pliku, tzw. "wirtualnym dysku" o z góry zadanej wielkości. Program będzie obejmował następujące funkcje:

- 1. Tworzenie wirtualnego dysku
- 2. Kopiowanie pliku z dysku Minixa na dysk wirtualny
- 3. Kopiowanie pliku z dysku wirtualnego na dysk Minixa
- 4. Wyświetlanie zawartości katalogu dysku wirtualnego
- 5. Usuwanie pliku z dysku wirtualnego
- 6. Usuwanie wirtualnego dysku
- 7. Wyświetlanie zestawienia z aktualną mapą zajętości wirtualnego dysku lista obszarów wraz z opisem: adres, typ obszaru, rozmiar, stan (wolny/zajęty)

Nazwa	Argumenty	Opis	Wartość zwracana
create_vfs	uint32_t size	Tworzy system plików (plik) o zadanej wielkości	int exit_code
copy_from_physical_disk	char * file_name	Kopiuje plik o zadanej nazwie z dysku fizycznego na wirtu- alny	int exit_code
copy_from_virtual_disk	char * file_name	Kopiuje plik o zadanej na- zwie z dysku wirtualnego na fizyczny	int exit_code
delete_from_virtual_disk	char * file_name	Usuwa plik o zadanej nazwie z dysku wirtualnego	int exit_code
delete_vfs	void	Usuwa system plików	int exit_code
show_vfs_map	void	Wyświetla zestawienie z aktualną mapą zajętości wirtualnego dysku	void
show_folder	void	Wyświetla pliki znajdujące się w katalogu wraz z ich roz- miarem i adresem	void

Dodatkowe funkcje:

- Kontrola wielkości dostępnego miejsca na wirtualnym dysku
- Kontrola pojemności katalogu
- Instrukcja użycia

Odgórnie określone parametry:

- Maksymalna liczba plików
- Maksymalna długość nazwy pliku
- Rozmiar bloku
- Adresy początkowe poszczególnych sekcji (superblock ma adres zero, a pozostałe sekcje wyliczane zależnie od rozmiaru bloków i liczby plików)

2.2 Struktura wirtualnego systemu plików

System plików zapisany będzie w postaci sekcji, na wzór systemu plików w Unix:

- Superblock zawiera informacje o strukturze systemu plików
- I-nodes listy i-węzłów
- Blok przechowuje dane

Główne informacje zawarte w i-węźle to metadane pliku, takie jak:

- Nazwa pliku
- Rozmiar pliku
- Indeks pliku (adres pierwszego bloku)

Główne informacje zawarte w superbloku:

- rozmiar w blokach listy i-węzłów
- rozmiar w blokach systemu plików
- liczba wolnych bloków
- indeks następnego wolnego bloku
- indeks listy i-węzłów
- liczba wolnych i-węzłów
- maksymalny rozmiar pliku
- nazwa systemu plików

Informacje przechowywane w każdym typie bloku oraz ich rodzaje zweryfikuję dokładniej podczas implementacji, więc mogą się zmienić w trakcie realizacji zadania. Na razie jest to wstępny zamysł oparty na rzeczywistej strukturze systemu plików w systemach Unix.

3 Testowanie

Test zrealizuję w postaci skryptu shellowego. Ponadto na fizycznym dysku stworzę testowe pliki, które użyte będą w skrypcie. Test będzie obejmował m.in. następujące polecenia:

- utworzenie systemu pliku o zadanym rozmiarze
- kopiowanie pliku i porównanie z oryginałem w celu sprawdzenia integralności danych
- usunięcie pliku z dysku i wyświetlenie katalogu, w którym się znajdował
- usunięcie systemu plików