

Use Case: Real-Time Insurance Fraud Detection System

Overview

Fraud detection is a major challenge in the insurance industry. Fraudulent claims cost companies billions annually. A **Real-Time Insurance Fraud Detection System** leverages streaming data, AI/ML models, and big data analytics to identify fraudulent claims as they occur, preventing losses and improving decision-making.

1. Functional Architecture

Key Functional Components

- 1. Data Sources (Ingestion Layer)
 - o Claims Submission System (via mobile app, web, agents)
 - o Policyholder Information (Customer profiles, previous claims history)
 - o Third-Party Data (Credit history, social media, external fraud databases)
 - o IoT & Telematics Data (Car sensors, health devices, etc.)
 - Call Center and Chatbot Logs
- 2. Event Stream Processing (Real-time Data Pipeline)
 - o Data is ingested via **Kafka** (Confluent Cloud)
 - o Apache **Flink** (for streaming analytics & rule-based filtering)
 - o Fraud signals triggered in **milliseconds**
- 3. Fraud Detection Engine (AI/ML Layer)
 - o Feature Engineering: Enrich data with historical claim behavior
 - Machine Learning Models: Use anomaly detection (Isolation Forest, Autoencoders), graph-based fraud detection, and deep learning (LSTMs)
 - o **Business Rules Engine:** Define rules like:
 - Sudden high-value claims from new policyholders
 - Multiple claims from different locations
 - Mismatch between claim reports and IoT/Telematics data
- 4. Data Lake & Storage Layer
 - o **MongoDB** (NoSQL for fast lookup)
 - o Delta Lake on Databricks (for historical data)
 - o **Elasticsearch** (for text-based fraud search)
- 5. Decision & Action Laver
 - Real-time alerting to insurance investigators
 - o Automated Claim Flagging (Reject, Review, Approve)
 - Risk Scoring Dashboard (Tableau/Power BI)
- 6. Regulatory & Compliance Logging
 - o Ensuring compliance with industry regulations (e.g., GDPR, HIPAA)

2. Tech Stack

Component	Technology Used
Data Ingestion	Kafka (Confluent Cloud), Apache NiFi
Streaming Processing	Apache Flink, Apache Spark Streaming
	Databricks ML, Python (Scikit-learn, TensorFlow, PyTorch), MLflow
Graph-based Fraud Detection	Neo4j Graph Database
Storage	MongoDB (Claims data), Delta Lake (History), Elasticsearch (Search)
Visualization	Tableau, Power BI, Grafana
Deployment & Infra	Kubernetes, Docker, AWS/GCP/Azure
Security & Compliance	OAuth, JWT, Role-based Access Control (RBAC), GDPR, HIPAA Compliance

4. Key Benefits

- **≪ Real-time fraud detection** − Prevent fraudulent payouts before they happen
- **♦ AI-powered decision-making** Leverages ML for anomaly and risk detection
- **Scalable architecture** − Can handle millions of claims and fraud signals
- $\ensuremath{ \swarrow } \textbf{Regulatory Compliance} Ensures \ industry-specific \ security \ and \ auditability$