Tutorial 07

1. Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = (1,0,0), \quad \mathbf{v}_2 = (1,1,0), \quad \mathbf{v}_3 = (1,2,1), \quad \mathbf{v}_4 = (0,0,3).$$

- (a) Show that $\{\mathbf{v}_2, \mathbf{v}_3\}$ is not a generating set for \mathbb{R}^3 .
- (b) Show that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a generating set for \mathbb{R}^3 .
- (c) Show that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ is a generating set for \mathbb{R}^3 .
- 2. Consider the subset **W** of \mathbb{R}^4 given by

$$\mathbf{W} = \{(x, y, z, w) \in \mathbb{R}^4 : x + y + z + w = 0, \ y = z\}.$$

It is easy to show that \mathbf{W} , with the usual addition and scalar multiplication operations, is a subspace of \mathbb{R}^4 . Let

$$\mathbf{v}_1 = (1, 0, 0, -1), \quad \mathbf{v}_2 = (1, 1, 1, -3).$$

Show that $B = (\mathbf{v}_1, \mathbf{v}_2)$ is a basis for **W** and compute the coordinates of $\mathbf{u} = (-6, 6, 6, -6)$ with respect to B.

3. Suppose $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4)$ is a basis for a vector space \mathbf{V} and let

$$\mathbf{u}_1 = \mathbf{v}_1 + \mathbf{v}_2, \quad \mathbf{u}_2 = \mathbf{v}_2 + \mathbf{v}_3, \quad \mathbf{u}_3 = \mathbf{v}_3 + \mathbf{v}_4, \quad \mathbf{u}_4 = \mathbf{v}_4.$$
 (*)

Prove that $(\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4)$ is also a basis for \mathbf{V} .

- 4. Let **V** be a finite-dimensional vector space and let $B = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m)$ be a basis for **V**. Suppose **v** is an arbitrary *nonzero* vector in **V**. Show that there is a vector \mathbf{v}_i in B such that if we replace \mathbf{v}_i with \mathbf{v} in B, the resulting m-tuple of vectors is still a basis for **V**.
- 5. Let V be a finite-dimensional vector space and let W be a subspace of V.
 - (a) Show that $\dim \mathbf{W} \leq \dim \mathbf{V}$.
 - (b) Suppose $\dim \mathbf{W} = \dim \mathbf{V}$. Show that $\mathbf{W} = \mathbf{V}$.

Hint: The Key Lemma may be useful in part (a).

6. Consider the subspace **W** of \mathbb{R}^4 defined by

$$\mathbf{W} = \{(x, y, z, w) \in \mathbb{R}^4 : x + 2w = 0, \ 2z + w = 0\}.$$

Show that \mathbf{W} has dimension 2.

7. Consider the subspace **W** of \mathbb{R}^4 defined by

$$\mathbf{W} = \{(x, y, z, w) \in \mathbb{R}^4 : x - y = 0, \ z + w = 0, \ y + w = 0\}.$$

Show that \mathbf{W} has dimension 1.

8. Let $\mathcal{P}_2(\mathbb{R})$ be the vector space of polynomial functions (from \mathbb{R} to \mathbb{R}) of degree ≤ 2 , with real coefficients. That is, the polynomials of the form

$$a_0 + a_1 x + a_2 x^2, \qquad x \in \mathbb{R},$$

with $a_0, a_1, a_2, \in \mathbb{R}$. The operations on $\mathcal{P}_2(\mathbb{R})$ are the usual addition and scalar multiplication of polynomials.

(a) Show that $\mathcal{B} = (f_1, f_2, f_3)$ is a basis for $\mathcal{P}_2(\mathbb{R})$, where

$$f_1(x) = 1$$
, $f_2(x) = x - 2$, $f_3(x) = (x - 2)^2$, $x \in \mathbb{R}$,

- (b) What is the dimension of $\mathcal{P}_2(\mathbb{R})$?
- (c) Given $f \in \mathcal{P}_2(\mathbb{R})$, where

$$f(x) = 3x^2 + x + 9, \quad x \in \mathbb{R},$$

find the coordinates of f in terms of basis \mathcal{B} .