M1 Systèmes dynamiques

Raphaël KRIKORIAN

Chapitre 6
Temps de vie des solutions

M1 Systèmes dynamiques

/ 21

Sommaire du cours 4

- Temps de vie des solutions
 - Intervalle maximal
 - Estimation du temps de vie : critères géométrique et analytique

Plan du cours 4

- Temps de vie des solutions
 - Intervalle maximal
 - Estimation du temps de vie : critères géométrique et analytique

M1 Systèmes dynamique

Temps de vie des solutions

Intervalle maximal

Problème : Etant données $f:\Omega\to\mathbb{R}^n$ continue localement lipschitzienne (en y) où Ω est un ouvert de $\mathbb{R}\times\mathbb{R}^n$ et une solution $y(\cdot)$ de

$$\begin{cases} \dot{y}(t) &= f(t, y(t)) \\ y(t_0) &= y_0 \end{cases}$$
 (*)

définie sur un intervalle I, est-il possible de la prolonger en une solution définie sur un intervalle plus grand?

On dira que (y, I) est solution de y' = f(t, y) si y est solution de cette E.D.O et est définie sur l'intervalle ouvert I.

Intervalle maximal

Proposition (Recollement des solutions

Soient (y_1, I_1) , (y_2, I_2) deux solutions de (*). S'il existe $t_0 \in I_1 \cap I_2$ tel que $y_1(t_0) = y_2(t_0)$, on a également $y_1(t) = y_2(t)$ pour tout $t \in I_1 \cap I_2$. On peut donc définir la fonction $y : I_1 \cup I_2 \to E$ en posant $y | I_1 = y_1$, $y | I_2 = y_2$; cette fonction y est alors C^1 et solution de (*) sur $I_1 \cup I_2$. On dit que $(y, I_1 \cup I_2)$ recolle (y_1, I_1) et (y_2, I_2) .

M1 Systèmes dynamique

Temps de vie des solutions

/ 21

Temps de vie des solutions

Intervalle maximal

Remarque. Si $\Omega = I \times E$ et si $\forall (t_0, v_0) \in \Omega \exists !$ sol. y_{t_0, v_0} maximale sur I tout entier, on dit que l'équation est complète.

Temps de vie des solutions

Intervalle maximal

Définition

Soient I_1 , I_2 deux intervalles ouverts tels que $I_1 \subset I_2$, $I_1 \neq I_2$, et y_1, y_2 deux solutions de (*) respectivement sur I_1 et I_2 . On dit que (y_2, I_2) prolonge (y_1, I_1) si $y_2 | I_1 = y_1 | I_1$. Une solution (y, I) de (*) est dite maximale si on ne peut pas la prolonger.

On peut alors énoncer,

Proposition

Toute solution de (y, I) (*) peut être prolongée en une unique solution maximale.

Démonstration : L'intervalle maximal est l'union de tous les intervalles I contenant y_0 pour lesquels (y, I) est solution de (*).

M1 Systèmes dynamiqu

Temps de vie des solutions

/ 01

Temps de vie des solutions

Intervalle maximal

Exemple d'explosion en temps fini. $\dot{x} = x^2$, $x(t_0) = x_0$;

Solutions:

$$\frac{1}{t_0 + \frac{1}{x_0} - t}$$

Si $x_0 = 0$: solution nulle $x_0 \equiv 0$ définie sur \mathbb{R} .

Si $x_0 \neq 0$; définies uniquement pour $t < t_0 + \frac{1}{x_0}$ ou $t > t_0 + \frac{1}{x_0}$.

Si $x_0 > 0$: solution maximale $y_{t_0,x_0} = \left(\frac{1}{t_0 + \frac{1}{x_0} - t},] - \infty, t_0 + \frac{1}{x_0}[\right),$

Si $x_0 < 0$: solution maximale $y_{t_0,x_0} = \left(\frac{1}{t_0 + \frac{1}{x_0} - t},]t_0 + \frac{1}{x_0}, \infty[\right)$.

Les solutions maximales sont donc

$$(0,\mathbb{R}), \qquad \left(rac{1}{c-t},]-\infty,c[
ight), \qquad \left(rac{1}{c-t},]c,\infty[
ight), \quad c\in\mathbb{R}$$

Intervalle maximal

Exemple de solutions maximales. $\dot{x} = 1 + x^2$;

Les solutions maximales sont :

$$\Big(an(\cdot-c),]c-rac{\pi}{2},c+rac{\pi}{2}[\Big),\qquad c\in\mathbb{R}.$$

M1 Systèmes dynamiques

Temps de vie des solutions

/ 01

Temps de vie des solutions

Intervalle maximal

Démonstration : Le temps de vie donné par le théorème de Cauchy-Lipschitz est uniforme sur tout compact càd pour tout compact $K \subset \Omega$ il existe $\delta_K > 0$ tel que pour tout $(t_*, y_*) \in K$ le problème de Cauchy

$$y'(t) = f(t, y(t)), \quad y(t_*) = y_*$$

admet une solution définie sur $]t_* - \delta_K, t_* + \delta_K[.$

Fixons un compact K et δ_K le temps de vie correspondant. S'il existait une suite $t_n \to a$ de temps de retour de y dans le compact K, alors comme $(t_n, y(t_n)) \in K$, d'après Cauchy-Lipschitz avec temps de vie uniforme sur K, (*) admettrait une extension sur $[t_n - \delta_K, t_n + \delta_K]$. Or pour n assez grand $t_n + \delta_K > a$; donc I ne serait pas maximal. Contradiction.

Temps de vie des solutions

Intervalle maximal

Considérons donc (y, I) une solution maximale de (*) et supposons $I \neq \mathbb{R}$ de façon que I ait au moins une extrémité finie; on supposera par exemple I = (b, a). Que se passe-t-il en a, b?.

Théorème (Propriété de sortie de tout compact)

Soit (y, I) une solution maximale avec $I \neq \mathbb{R}$ et soit $a \in \partial I$ (disons l'extrémité droite); alors pour tout compact $K \subset \Omega$, il existe $t_0 \in I$ tel que pour tout $t \in]t_0, a[, y(t) \notin K.$

M1 Systèmes dynamique

Temps de vie des solutions

/ 01

Temps de vie des solutions

Estimation du temps de vie

On dispose de deux types de critères :

• Critère géométique : Fonctions de Lyapunov

• Critère analytique : Lemme de Gronwall

Estimation du temps de vie

Critère géométique : Fonctions de Lyapunov

Théorème

Soient $\varphi : \mathbb{R}^n \to \mathbb{R}$ de classe C^1 , $F := \{x \in \mathbb{R}^n : \varphi(x) \leq 0\}$. Supposons que f(t,x) définie sur $\Omega \supset \mathbb{R} \times F$ soit telle que

- (a) $D\varphi(x) \cdot f(t,x) < 0$ pour tout $x \in \varphi^{-1}(0)$, $t \in \mathbb{R}$
- ou (b) $D\varphi(x) \cdot f(t,x) \leq 0$ pour tout $x \in \varphi^{-1}(]-\infty,0]$), $t \in \mathbb{R}$ et $\partial \{\varphi < 0\} = \{\varphi = 0\}$ (en part. tout x tq $\varphi(x) = 0$ est lim. de (x_n) tq $\varphi(x_n) < 0$).

Si pour $y_0 \in F$, $(y(\cdot), I)$ est la solution maximale de $\dot{y} = f(t, y)$ telle que $y(t_0) = y_0$, alors pour tout $t \in [t_0, \infty[\cap I, y(t) \in F]]$.

Corollaire

En particulier, si F est compact, $I \supset [t_0, \infty[$.

M1 Systèmes dynamiques

emps de vie des solutions

/ 21

Sous l'hypothèse (b) : Comme précédemment, démontrons par l'absurde que $E:=\{t\in]t_0,b[:\varphi(y(t))>0\}$ est vide. Si E est non vide et si $t_*=\inf E$ on a $\varphi(t_*)=0$ et on voit aussi que $t\mapsto \varphi(y(t))$ est décroissante au sens large sur $[t_0,t_*]$ car $(d/dt)(\varphi(y(t))=D\varphi(y(t))\cdot f(t,y(t))\leqslant 0$ pour $t\in[t_0,t_*]$.

- En particulier si $\varphi(y(t_0)) < 0$ on a $\varphi(y(t_*)) < 0$ ce qui contredit $\varphi(y(t_*)) = 0$. Par conséquent, dans ce cas on a pour tout $t \in I$, $\varphi(y(t)) \leq 0$.
- Supposons à présent $\varphi(y(t_0))=0$. L'hypothèse (b) nous dit qu'il existe une suite $y_{n,0}$ convergeant vers $y(t_0)$ et telle que $\varphi(y_{n,0})<0$. En anticipant sur le théorème de dépendance (continue) par rapport aux conditions initiales, on peut affirmer qu'il existe une solution au problème de Cauchy

$$z'(t) = f(t, z(t)),$$
 $z(t_0) = y_{n,0}$

définie sur l'intervalle de temps $[t_0,t_*]$ et que cette solution $y_n(\cdot)$ est proche de $y(\cdot)$ sur l'intervalle $[t_0,t_*]$; en particulier $y_n(t_*) \to y(t_*)$. Mais on a vu précédemment que comme $\varphi(y_n(t_0)) < 0$, la fonction $t \mapsto \varphi(y_n(t))$ est décroissante sur I et donc

Temps de vie des solutions

Estimation du temps de vie

Démonstration : Sous l'hypothèse (a) : Supposons que I=]a,b[. On doit démontrer que l'ensemble $E:=\{t\in]t_0,b[:\varphi(y(t))>0\}$ est vide. Si ce n'était pas le cas on pourrait définir son inf, disons $t_*>t_0$ (car $\varphi(y(t_0))\leqslant 0$). On aurait $\varphi(y(t_*))=0$ et pour une suite de $\delta_n>0$, $\lim \delta_n=0$ on aurait $\varphi(y(t_*+\delta_n))>0$.

Comme $\varphi(y(t_*))=0$ on a $D\varphi(y(t_*))\cdot f(t_*,y(t_*))<0$ Or pour $\delta>0$ petit

$$\varphi(y(t_* + \delta)) = \varphi(y(t_*)) + \delta D \varphi(y(t_*)) \cdot f(t_*, y(t_*)) + o(\delta)$$

$$= \varphi(y(t_*)) + \delta \times (qq. chose indep. de \delta qui est < 0) + o(\delta)$$

$$< \varphi(y(t_*)) \leq 0$$

en en particulier $\varphi(y(t_* + \delta_n)) < 0$ ce qui est absurde.

M1 Systèmes dynamiques

Temps de vie des solutions

/ 01

 $\forall \ \delta > 0$ suffisamment petit, $\varphi(y_n(t_* + \delta)) < 0$. En faisant tendre n vers l'infini on voit que $\varphi(y(t_* + \delta)) \leq 0$. Cela contredit la définition de t_* . Ainsi E est vide.

Conséquences

- Si $f(t,y) = (-y_1^3 + y_2^2 + 2ty_1, -y_2^5 + 3ty_1^2)$, les solutions sont définies jusqu'en $+\infty$ car pour |y| = R assez grand et tout t, $\langle y, f(t,y) \rangle < 0$ (critère (a) appliqué à $\varphi(y) = |y|^2 R^2$).
- L'équation $\ddot{x} = -\nabla V(x) \gamma \dot{x} \ (\gamma > 0)$ vérifie le critère (b) précédent avec $\varphi(x,\dot{x}) = E = (1/2)|\dot{x}|^2 + V(x)$. Si les ensembles $\varphi^{-1}((-\infty,E])$ sont compacts, les solutions maximales sont définies pour $t \to \infty$.

M1 Systèmes dynamique

Temps de vie des solutions

/ 01

Temps de vie des solutions

Intervalle maximal

Démonstration : Pour le théorème :

(1) Si l'inégalité est stricte : |y'(t)| < g(t,|y(t)|), c'est la même preuve que le théorème des accroissements finis : Si l'ensemble $\{t \in]t_0,t_1]: |y(t)| > \rho(t)\}$ était non-vide, on pourrait définir son inf, disons t_* . On a nécessairement $t_* \in]t_0,t_1], |y(t_*)| = \rho(t_*)$ et il existe une suite $\delta_n > 0$, $\lim \delta_n = 0$ telle que $|y(t_* + \delta_n)| > \rho(t_* + \delta_n)$. D'autre part,

$$|y(t_* + \delta)| - \rho(t_* + \delta) \leq |y(t_*)| + \delta|y'(t_*)| - \rho(t_*) - \delta g(t_*, \rho(t_*)) + o(\delta_n).$$

Donc $|y(t_* + \delta_n)| - \rho(t_* + \delta_n) < 0$ pour $\delta_n > 0$ assez petit ce qui est une contradiction.

(2) Cas général : on pose $g_{\epsilon}(t,\rho)=g(t,\rho)+\epsilon$, de façon que l'inégalité soit stricte, ce qui démontre le résultat pour un $\rho_{\epsilon}(\cdot)$, et on utilise le théorème de continuité par rapport au paramètre : $\rho_{\epsilon} \to \rho$ quand $\epsilon \to 0$. \square

Temps de vie des solutions

Estimation du temps de vie

Critère analytique : Lemme de Gronwall

Théorème

Soit $g(t,\rho)$ vérifiant les hypothèses de Cauchy-Lipschitz sur Ω et $\rho(\cdot)$ une solution de $\dot{\rho}(t)=g(t,\rho(t))$ définie sur $[t_0,t_1]$. Si $y(\cdot)$ est une fonction C^1 qui vérifie pour tout $t\in [t_0,t_1]$, $|y'(t)|\leqslant g(t,|y(t)|)$ et $|y(t_0)|\leqslant \rho(t_0)$, alors on a pour tout $t\in [t_0,t_1]$, $|y(t)|\leqslant \rho(t)$.

Et en utilisant la propriété de sortie de tout compact :

Corollaire

Si pour tout $(t,y) \in \Omega$, $|f(t,y)| \le g(t,|y|)$ et si $|y(t_0)| \le \rho(t_0)$, alors, si I est un intervalle maximal de définition de $\dot{\rho}(t) = g(t,\rho(t))$, $\rho(t_0) = \rho_0$, l'intervalle maximal de définition de $\dot{y}(t) = f(t,y(t))$ contient I et on a $\forall t \in I$, $|y(t)| \le \rho(t)$.

M1 Systèmes dynamique

Temps de vie des solutions

Temps de vie des solutions

Conséquences

• **Exemple**: Si $y'(t) \leq ay(t) + b$ alors

$$orall \ t\geqslant 0, \quad y(t)\leqslant e^{at}(y(0)+\int_0^t e^{-as}bds) \ \leqslant e^{at}y(0)+(b/a)(e^{at}-1)$$

• Estimées a priori et temps de vie.

Conséquences

Estimées a priori, exemple.

$$y'(t) = y(t) + e^{-3t}y(t)^2, y(0) < 1/2.$$

Alors, $y(\cdot)$ est défini pour tout $t \ge 0$ et

$$\forall t \geqslant 0, \quad y(t) \leqslant e^t.$$

Preuve : Soit / l'intervalle maximal de définition contenant 0 et

$$T:=\inf\{t\in I,\ y(t)>e^t\}.$$

On remarque que

$$T \in I \Longrightarrow y(T) = e^{T}$$
.

Par ailleurs, pour tout $t \in [0, T[$

$$y'(t) \leqslant y(t) + e^{-3t}e^{2t} \leqslant y(t) + e^{-t}$$

M1 Systèmes dynamiques

emps de vie des solutions

/ 21

Temps de vie des solutions

Conséquences

- Très utile Si f(t,y) est à croissance affine à l'infini $(\|f(t,y)\| \le a(t)\|y\| + b(t))$, le temps de vie de (*) est infini (si Ω est de la forme $\mathbb{R} \times \mathbb{R}^n$).
- Estimées explicites de la continuité des solutions et de leur temps de vie en fonction du paramètre ou de la condition initiale.

Théorème

Soient $f_1(t,y)$, $f_2(t,y)$ dont les constantes de Lipschitz sont majorées par k, $y_1(\cdot)$ et $y_2(\cdot)$ solutions de $\dot{y}_i(t) = f(t,y_i(t))$, i=1,2. Alors, si $\sup_{\Omega} \|f_1 - f_2\| \le \epsilon$,

$$||y_1(t) - y_2(t)|| \le e^{k|t-t_0|} ||y_1(t_0) - y_2(t_0)|| + \frac{\epsilon}{k} (e^{k|t-t_0|} - 1)$$

M1 Systèmes dynamiques

Temps de vie des solutions

/ 21

Temps de vie des solutions

Conséquences

donc

$$y(t) \leqslant e^t y_0 + \int_0^t e^{(t-s)} e^{-s} ds \leqslant e^t (y_0 + 1/2) < e^t \leqslant e^T.$$

Cela implique

- $T \notin I$ car sinon $e^T = y(T) < y(T)$.
- $T = \infty$ car sinon $\forall t \in I \cap [0, \infty[, y(t) \leq e^T]$ et cela viole le théorème de sortie de tout compact.

Ainsi,
$$[0,\infty[\subset I \text{ et } T=\infty]$$
.

M1 Systèmes dynamique

emps de vie des solutions

/ 21