GRAVITATIONAL LENSING LECTURE 15

Docente: Massimo Meneghetti AA 2016-2017

MULTIPLE POINT MASSES

- ➤ In the case of multiple point masses, we can use the superposition principle to compute the total deflection angle: total deflection angle = sum of individual deflections
- compared to an individual point mass, the spatial symmetry is broken
- ➤ The mass scale of the system is the total mass=sum of the individual masses
- ➤ We may use this mass to define an equivalent Einstein radius and use it to scale all angles

COMPLEX LENS EQUATION (WITT, 1990)

➤ For a system of N-lenses we obtained:

$$z_s = z - \sum_{i=1}^{N} \frac{m_i}{z^* - z_i^*}$$

➤ Taking the conjugate:

$$z_s^* = z^* - \sum_{i=1}^{N} \frac{m_i}{z - z_i}$$

➤ We obtain z* and substitute it back into the original equation, which results in a (N²+1)th order complex polynomial equation

$$p(z) = \sum_{i=0}^{N} c_i z^i$$

➤ This equation can be solved only numerically, even in the case of a binary lens

COMPLEX LENS EQUATION (WITT, 1990)

- ➤ Note that the solutions are not necessarily solutions of the lens equations (spurious solutions)
- ➤ One has to check if the solutions are solutions of the lens equation
- ➤ Rhie (2001,2003): maximum number of images is 5(N-1) for N>2

The Jacobian determinant is (on the real plane):

$$\det A = \frac{\partial y_1}{\partial x_1} \frac{\partial y_2}{\partial x_2} - \left(\frac{\partial y_1}{\partial x_2}\right)^2$$

How do we write it in complex notation?

The complex derivatives of zs are:

$$\frac{\partial z_s}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x_1} - i \frac{\partial}{\partial x_2} \right) (y_1 + iy_2) = \frac{1}{2} \left(\frac{\partial y_1}{\partial x_1} + \frac{\partial y_2}{\partial x_2} \right) + \frac{i}{2} \left(\frac{\partial y_2}{\partial x_1} - \frac{\partial y_1}{\partial x_2} \right)$$

$$\frac{\partial z_s}{\partial z^*} = \frac{1}{2} \left(\frac{\partial}{\partial x_1} + i \frac{\partial}{\partial x_2} \right) (y_1 + iy_2) = \frac{1}{2} \left(\frac{\partial y_1}{\partial x_1} - \frac{\partial y_2}{\partial x_2} \right) + \frac{i}{2} \left(\frac{\partial y_2}{\partial x_1} + \frac{\partial y_1}{\partial x_2} \right)$$

Note that in lensing these two derivatives are equal!

The complex derivatives of zs are:

$$\frac{\partial z_s}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x_1} - i \frac{\partial}{\partial x_2} \right) (y_1 + i y_2) = \frac{1}{2} \left(\frac{\partial y_1}{\partial x_1} + \frac{\partial y_2}{\partial x_2} \right) + \frac{i}{2} \left(\frac{\partial y_2}{\partial x_1} - \frac{\partial y_1}{\partial x_2} \right)
\frac{\partial z_s}{\partial z^*} = \frac{1}{2} \left(\frac{\partial}{\partial x_1} + i \frac{\partial}{\partial x_2} \right) (y_1 + i y_2) = \frac{1}{2} \left(\frac{\partial y_1}{\partial x_1} - \frac{\partial y_2}{\partial x_2} \right) + \frac{i}{2} \left(\frac{\partial y_2}{\partial x_1} + \frac{\partial y_1}{\partial x_2} \right)$$

Note that in lensing these two derivatives are equal!

The complex derivatives of zs are:

$$\frac{\partial z_s}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x_1} - i \frac{\partial}{\partial x_2} \right) (y_1 + i y_2) = \frac{1}{2} \left(\frac{\partial y_1}{\partial x_1} + \frac{\partial y_2}{\partial x_2} \right) + \frac{i}{2} \left(\frac{\partial y_2}{\partial x_1} - \frac{\partial y_1}{\partial x_2} \right)
\frac{\partial z_s}{\partial z^*} = \frac{1}{2} \left(\frac{\partial}{\partial x_1} + i \frac{\partial}{\partial x_2} \right) (y_1 + i y_2) = \frac{1}{2} \left(\frac{\partial y_1}{\partial x_1} - \frac{\partial y_2}{\partial x_2} \right) + \frac{i}{2} \left(\frac{\partial y_2}{\partial x_1} + \frac{\partial y_1}{\partial x_2} \right)$$

Thus:

$$\left(\frac{\partial z_s}{\partial z}\right)^2 = \frac{1}{4} \left[\left(\frac{\partial y_1}{\partial x_1}\right)^2 + \left(\frac{\partial y_1}{\partial x_2}\right)^2 + 2\frac{\partial y_1}{\partial x_1}\frac{\partial y_2}{\partial x_2} \right]$$

$$\left(\frac{\partial z_s}{\partial z^*}\right) \left(\frac{\partial z_s}{\partial z^*}\right)^* = \frac{1}{4} \left[\left(\frac{\partial y_1}{\partial x_1}\right)^2 + \left(\frac{\partial y_1}{\partial x_2}\right)^2 - 2\frac{\partial y_1}{\partial x_1}\frac{\partial y_2}{\partial x_2} \right] + \left(\frac{\partial y_1}{\partial x_2}\right)^2$$

Note that in lensing these two derivatives are equal!

The complex derivatives of zs are:

$$\frac{\partial z_s}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x_1} - i \frac{\partial}{\partial x_2} \right) (y_1 + i y_2) = \frac{1}{2} \left(\frac{\partial y_1}{\partial x_1} + \frac{\partial y_2}{\partial x_2} \right) + \frac{i}{2} \left(\frac{\partial y_2}{\partial x_1} - \frac{\partial y_1}{\partial x_2} \right)
\frac{\partial z_s}{\partial z^*} = \frac{1}{2} \left(\frac{\partial}{\partial x_1} + i \frac{\partial}{\partial x_2} \right) (y_1 + i y_2) = \frac{1}{2} \left(\frac{\partial y_1}{\partial x_1} - \frac{\partial y_2}{\partial x_2} \right) + \frac{i}{2} \left(\frac{\partial y_2}{\partial x_1} + \frac{\partial y_1}{\partial x_2} \right)$$

Thus:

$$\left(\frac{\partial z_s}{\partial z}\right)^2 = \frac{1}{4} \left[\left(\frac{\partial y_1}{\partial x_1}\right)^2 + \left(\frac{\partial y_1}{\partial x_2}\right)^2 + 2\frac{\partial y_1}{\partial x_1}\frac{\partial y_2}{\partial x_2} \right]$$

$$\left(\frac{\partial z_s}{\partial z^*}\right) \left(\frac{\partial z_s}{\partial z^*}\right)^* = \frac{1}{4} \left[\left(\frac{\partial y_1}{\partial x_1}\right)^2 + \left(\frac{\partial y_1}{\partial x_2}\right)^2 - 2\frac{\partial y_1}{\partial x_1}\frac{\partial y_2}{\partial x_2} \right] + \left(\frac{\partial y_1}{\partial x_2}\right)^2$$

By taking the difference of these two equations:

$$\left(\frac{\partial z_s}{\partial z}\right)^2 - \left(\frac{\partial z_s}{\partial z^*}\right) \left(\frac{\partial z_s}{\partial z^*}\right)^* = \frac{\partial y_1}{\partial x_1} \frac{\partial y_2}{\partial x_2} - \left(\frac{\partial y_1}{\partial x_2}\right)^2 = \det A$$

Now, we can use the lens equation:

$$z_s = z - \sum_{i=1}^{N} \frac{m_i}{z^* - z_i^*}$$

To obtain:

$$\frac{\partial z_s}{\partial z} = 1 \qquad \frac{\partial z_s}{\partial z^*} = \sum_{i=1}^N \frac{m_i}{(z^* - z_i^*)^2}$$

so that

$$\det A = 1 - \left| \sum_{i=1}^{N} \frac{m_i}{(z^* - z_i^*)^2} \right|^2$$

CRITICAL LINES

From this equation:

$$\det A = 1 - \left| \sum_{i=1}^{N} \frac{m_i}{(z^* - z_i^*)^2} \right|^2$$

We see that on the critical lines (det A = 0)

$$\left| \sum_{i=1}^{N} \frac{m_i}{(z^* - z_i^*)^2} \right|^2 = 1$$

This sum has to be satisfied on the unit circle:

$$\sum_{i=1}^{N} \frac{m_i}{(z^*-z_i^*)^2} = e^{i\phi}$$
 $\phi \in [0,2\pi)$

Getting rid of the fraction, this equation can be turned into a polynomial of degree 2N: for each phase, there are <=2N critical points. Solving for all phases, we find up to 2N critical lines.

CRITICAL LINES

MAGNIFICATION

- obviously, the magnification is the inverse of the Jacobian determinant
- ➤ can you imagine what would happen to a source moving in the background of such a network of critical lines?

CRITICAL LINES AND CAUSTICS

critical lines and caustics originated by 400 stars

Witt, 1990, A&A, 236, 311

➤ Lens equation:

$$z_s = z - \frac{m_1}{z^* - z_1^*} - \frac{m_2}{z^* - z_2^*}$$

➤ determinant of the Jacobian:

$$\det A = 1 - \left| \frac{\partial z_s}{\partial z^*} \right|^2$$

$$\frac{\partial z_s}{\partial z^*} = \frac{m_1}{(z^* - z_1^*)^2} + \frac{m_2}{(z^* - z_2^*)^2}$$

> condition for critical points:

$$\frac{\partial z_s}{\partial z^*} = e^{i\phi}$$

resulting fourth grade polynomial:

$$z^4 - z^2(2z_1^{*2} + e^{i\phi}) - zz_1^{*2}(m_1 - m_2)e^{i\phi} + z_1^{*2}(z_1^{*2} - e^{i\phi}) = 0$$

critical lines

caustics

critical lines

caustics

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

caustics

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

caustics

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

critical lines

caustics

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

critical lines

caustics

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

critical lines

caustics

critical lines

caustics

TWO LENSES WITH THE VARYING MASS AND FIXED DISTANCE

critical lines

critical lines

caustics

BINARY LENSES: TOPOLOGY CLASSIFICATION

q=1.0000 wide d=2.40 1 separate 4 x_2 y_2 cusp caustics -1-1-2 -2 -1 -1 -2 -2 2 0 1 0 1 x_1 y_1 q=0.1000 2 2 d=2.40 1 x_2 y_2 -1-1-2 -2 -1 -1 0 1 0 1 x_1 y_1

BINARY LENSES: TOPOLOGY CLASSIFICATION

q=1.0000 intermediate d=1.40 1 single 6-cusp x_2 0 y_2 caustic -1-1-2 -2 -1 -1 -2 -2 2 0 1 0 1 x_1 y_1 q = 0.10002 d=1.40 1 x_2 0 y_2 -1-2 -2 -1 -1 0 1 2 0 1 x_1 y_1

BINARY LENSES: TOPOLOGY CLASSIFICATION

TRANSITIONS

Touching critical lines

$$\det A = 0$$

$$\frac{\partial \det A}{\partial z^*} = 0$$

MULTIPLE IMAGES

➤ Lens equation:

$$z_s = z - \frac{m_1}{z^* - z_1^*} - \frac{m_2}{z^* - z_2^*}$$

complex polynomial:

$$p_5(z) = \sum_{i=0}^{5} c_i z^i$$

$$\Delta m = \frac{m_1 - m_2}{2} \qquad m = \frac{m_1 + m_2}{2} \qquad z_2 = -z_1 \qquad z_1 = z_1^*$$

$$c_0 = z_1^2 [4(\Delta m)^2 z_s + 4m\Delta m z_1 + 4\Delta m z_s z_s^* z_1 + 2m z_s^* z_1^2 + z_s z_s^{*2} z_1^2 - 2\Delta m z_1^3 - z_s z_1^4]$$

$$c_1 = -8m\Delta m z_s z_1 - 4(\Delta m)^2 z_1^2 - 4m^2 z_1^2 - 4m z_s z_s^* z_1^2 - 4\Delta m z_s^* z_1^3 - z_s^{*2} z_1^4 + z_1^6$$

$$c_2 = 4m^2 z_s + 4m\Delta m z_1 - 4\Delta m z_s z_s^* z_1 - 2z_s z_s^{*2} z_1^2 + 4\Delta m z_1^3 + 2z_s z_1^4$$
 Witt & Mao, 1995,
$$c_3 = 4m z_s z_s^* + 4\Delta m z_s^* z_1 + 2z_s^{*2} z_1^2 - 2z_1^4$$

$$c_4 = -2m z_s^* + z_s z_s^{*2} - 2\Delta m z_1 - z_s z_1^2$$

$$c_5 = z_1^2 - z_s^{*2}$$

➤ 3 or 5 images

MULTIPLE IMAGES

Mollerach & Roulet, "Gravitational Lensing and Microlensing"

IMAGE MAGNIFICATION

image position:

➤ magnification at the

$$\mu = \det A^{-1} = \left[1 - \left| \frac{m_1}{(z^* - z_1^*)^2} + \frac{m_2}{(z^* - z_2^*)^2} \right| \right]^{-1}$$

➤ total magnification:

$$\mu_{tot} = \sum_{i=1}^{n_i} |\mu_i|$$

 \triangleright of course, the magnification varies as a function of z...