PMT

- 6 The equation $2x^2 + px 3 = 0$, where p is a constant, has roots α and β .
 - (a) Find the value of
 - (i) $\alpha\beta$
 - (ii) $\left(\alpha + \frac{1}{\beta}\right) \left(\beta + \frac{1}{\alpha}\right)$
 - (b) Find, in terms of p,
 - (i) $\alpha + \beta$
 - (ii) $\left(\alpha + \frac{1}{\beta}\right) + \left(\beta + \frac{1}{\alpha}\right)$

Given that $\left(\alpha + \frac{1}{\beta}\right) + \left(\beta + \frac{1}{\alpha}\right) = 2\left(\alpha + \frac{1}{\beta}\right)\left(\beta + \frac{1}{\alpha}\right)$

- (c) find the value of p.
- (d) Using the value of p found in (c), find a variatic equation, with integer coefficients, which has pots (c) and (c)

