OCVX Case Study

Exam II - Juillet 2019 Daoud Karim, Misk Nicolas, Andersen Simon

Les problèmes étudiés

Descente de gradient

- Comparaison différents pas
- Comparaison norme L1-L2

Méthodes d'optimisation

- Learning ratescheduling
- Nesterov
- Adam

Méthode de Newton

- Descente de gradient avec Newton
- Quasi-newton

Descente de gradient

- Permet de minimiser une fonction
- Algorithme très utilisé dans le machine learning
- De nombreuses variantes et optimisations possible

Légende: Nombre d'itérations Valeur objective trouvée Nombre de conditionnement

Descente de gradient : comparatif

Comparaison norme L1 - L2

- Le nombre d'itération converge vers la même valeur quand le nombre de conditionnement augmente.
- En norme L1 les itérations suivent la direction du gradient.
- En norme L2 les itérations suivent les directions de l'axe orthogonal.

Nombre d'itération en fonction du conditionnement

Visualisation des itérations

Etude du point de départ de la descente

Nombre d'itérations en fonction du point de départ en norme l 1

- Le nombre d'itérations ne dépend pas de la distance par rapport au point optimal.
- Les coordonnées négatives en Y semblent donner de meilleurs résultats.
- Les pires résultats sont pour les coordonnées en X négatifs et Y positifs.

Etude du point de départ de la descente

• Dépend fortement de la distance en X.

Nombre d'itérations en fonction du point de départ en norme L2

Méthodes d'optimisations

Learning rate scheduling

- Variation du step en fonction du nombre d'itérations.
- Implémentation d'un learning rate décroissant, méthode exponentielle

$$S_{n} = S_{0}.e^{-k.t}$$

Avec S_i le step à l'itération i, et k un hyperparamètre introduit.

 On obtient une convergence pour les nombres de conditionnement élevés avec un step de 0.3

Nesterov

 Accélération de la descente via une nouvelle méthode de calcul des itérations

Pas de 0.1, nombre de conditionnement de 0 à 10

<u>Légende:</u>

Nombre d'itérations (Nesterov) Nombre d'itérations (Descente classique) Nombre de conditionnement

Pas de 0.1, nombre de conditionnement de 0 à 100

Adam optimization

- Adaptive Moment Estimation
- Moyennes mobiles du moment d'ordre 1 et 2

Hyperparamètres par défault 5000 4000 2000 1000 0 2 4 6 8 10 12 14

<u>Légende:</u>

Nombre d'itérations (Adam)
Nombre d'itérations (Descente classique)
Nombre de conditionnement

Hyperparamètres adaptés

Adam Optimization: direction de la descente

- Converge très rapidement sur les problèmes convexes.
- 20 itérations dans notre exemple

Méthode de Newton

Descente de gradient avec Newton

- La méthode de Newton permet d'obtenir les zéros d'une fonction
- Dans le cas d'un descente de gradient, un minimum x est disponible lorsque grad(f(x)) = 0

Quasi Newton

- Dérive de la méthode de Newton
- Utilise une approximation du de la Jacobienne
- Permet d'optimiser les calculs lorsque les matrices deviennent importantes

Conclusion

- Il existe différentes méthodes pour optimiser une descente de gradient
- Selon le besoin, il convient d'utiliser une méthode plutôt qu'une autre
- Il est important de chercher les paramètres les mieux adaptés à notre problème (learning rate, hyperparamètres, ...)

Des questions?