UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

Álgebra II - Capítulo 1: Espacios Vectoriales - Listado 4

Solución para ejercicios varios

Problema 10. (P) Sea
$$w = \frac{1}{2}(\sqrt{3}i - 1)$$
 y $A := \begin{pmatrix} 1 & 0 & 0 \\ 0 & w & 0 \\ 0 & 0 & w^2 \end{pmatrix}$

10.1) Pruebe que
$$A^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & w^2 & 0 \\ 0 & 0 & w \end{pmatrix}$$
 y $A^3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

<u>Solución</u>: Esto se deduce por el hecho de ser w una raíz cúbica de la unidad, teniéndose $w^3 = 1$ y $w^4 = ww^3 = w$.

Notar que esto implica, para cada $i \in \mathbb{N}$

$$A^{3i} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

$$A^{3i-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & w^2 & 0 \\ 0 & 0 & w \end{pmatrix},$$

$$A^{3i-2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & w & 0 \\ 0 & 0 & w^2 \end{pmatrix}.$$

10.2) Considere

$$V = \{ X \in \mathcal{M}_{3\times 3}(\mathbb{C}) : \exists n \in \mathbb{N}, \ \exists \alpha_0, \alpha_1, \dots, \alpha_n \in \mathbb{R} : X = \sum_{i=0}^n a_i \ A^i \}$$

Determine una base y la dimensión de V.

<u>Solución</u>: Como aquí el cuerpo de escalares es \mathbb{R} , es fácil observar que A y A^3 son l.i, por no ser uno múltiplo escalar del otro, y a su vez, es fácil también observar que A^2 no puede ser obtenido como una combinación lineal de A y A^3 . Por lo tanto, $\{A,A^2,A^3\}$ constituyen un conjunto l.i. Además, como cada elemento $X \in V$ se obtiene como

$$X = \sum_{i=0}^{n} a_i A^i,$$

que es equivalente a

$$X = \beta_1 A + \beta_2 A^2 + \beta_3 A^3$$

con β_1, β_2 y β_3 la suma de los factores que multiplican a A, A^2 y A^3 , respectivamente, se concluye que todo elemento $X \in V$ puede ser representado como una combinación lineal de A, A^2 y A^3 . Es decir, $V = \langle \{A, A^2, A^3\} \rangle$, lo que a su vez muestra la dimensión de V.

Víctor Burgos Villanueva.

Concepción, 9 de abril de 2017.