Discrete Structures

IIIT Hyderabad

Monsoon 2020

Tutorial 4

September 28, 2020

Introduction

- Questions
 - Question 1
 - Question 2
 - Question 3

Question 1

Prove the following -

- $(R \cap S)^{-1} = R^{-1} \cap S^{-1}$
- ② R, S are symmetric $\implies R \cap S$ is symmetric.
- **3** R is transitive $\implies R^{-1}$ is transitive.
- $*[R, S \text{ are transitive} \implies R \cap S \text{ is transitive.}]$

3/5

Question 2

To answer the questions visit: tinyurl.com/dstut4

2.1: State true or false

- ① If R and S are transitive, $R \cup S$ not always transitive.
- Every relation must either be symmetric or anti-symmetric.
- **2.2:** Mark as Reflexive, Symmetric, Anti-symmetric and/or Transitive.

$$S = \mathbb{R}^2, \ _{(a,b)}R_{(c,d)} \iff a+d = b+c$$

- $S = \text{The powerset of } \{1,2,3...10\}.$ ${}_{A}R_{B} \iff A \subseteq B$
- **2.3:** A set S has 3 elements. Find -
 - Number of binary relations.
 - Number of anti-symmetric relations.
 - Number of equivalent relations.
 - Number of relations neither symmetric nor anti-symmetric.

Question 3

- **1** Let R be a symmetric and transitive relation on a set A. Show that if for every a in A there exists b in A such that (a, b) is in R, then R is an equivalence relation.
- ② * [Let R be a reflexive relation on set A. Show that R is an equivalence relation if and only if (a, b) and (a, c) are in R implies that (b, c) is in R.]

5/5