pl-syntax Package*

Robert Harper

February 24, 2024

Overview¹

Use the declaration \usepackage{pfpl-syntax} to define syntax macros for programming languages inspired by the author's textbook *Practical Foundations for Programming Languages*. The package provides an integrated, systematic treatment of abstract and concrete syntax for a wide range of languages.

Abstract Binding Trees

To typeset an abstract binding tree yourself, provide the package with the [abt] option, and use the following commands:

- \Opn{op}: Format an operator as a keyword; use starred form for an operator that is to be set in math mode. For example, \Opn{fun} produces fun and \Opn*{\lambda} produces λ .
- \Abt{operator}Forameters>[minor] (major): produce an abt, with all arguments typeset. In typical usage the parameters are symbols that index certain forms of abt's; the minor arguments are types that would appear in full abstract syntax; and the major arguments are abt's or abstractors constituting the components of a compound abt. The starred form provides a "default" concrete syntax that omits the minor arguments. If the parenthesized arguments are empty, then no parentheses are typeset. For example, the command

produces $get\langle a\rangle[\tau]$, and the command

\Abt{\Opn{set}}[\tau]<a>(e)

 $^{^*}$ © 2024 Robert Harper. All Rights Reserved.

¹I am grateful to Kartik Singal for help with testing and improving this package.

produces $\operatorname{\mathsf{set}}\langle a\rangle[\tau](e)$. The starred forms produce $\operatorname{\mathsf{get}}\langle a\rangle$, and $\operatorname{\mathsf{set}}\langle a\rangle(e)$, respectively.

• \Abs<symbols>(variables){abt}: produce an abstractor over symbols and/or variables within an ABT. For example, the command

produces $\lambda[\tau](x \cdot e)$ and the starred form produces $\lambda(x \cdot e)$. Similarly, the command $\Abt{\opn{dcl}}[\tau](e;\Abs<a>{m})$

produces $dcl[\tau; \rho](e; a.m)$ and the starred form produces dcl(e; a.m).

The package option [sf] indicates that operations are to be set in sans serif font, and the package option [sc] indicates that they are to be set in small capitals. The package option [oldstyle], aka [book], uses the notational conventions from the second edition in which symbol parameters to operators are typeset in square brackets, and their minor arguments are typeset in curly braces. Warning: this option only works in typical cases in which there are at most one each of parameter, minor, and major arguments! Otherwise you must define your own version of the macro to get the book-style formatting.

The command $\Sub\{e\}\{x\}\{e'\}$ expands to [e/x]e', and $\Sub*\{e\}\{x\}\{e'\}$ expands to e'[e/x], providing pre- and post-fix notation for substitution.

Language-Specific Definitions

The commands for typesetting the many language constructs in PFPL, plus some others, are organized into a collection of tables grouped roughly according to type structure. The tables display the abstract and concrete syntax for a language construct, and give the LATEX command used to create them. The minor arguments are generally required for the abstract syntax, but may be omitted for the concrete syntax.² For the variadic forms in Figures 1, the notation τ_I , for I an index set, stands for the finite map $(i \hookrightarrow \tau_i \mid i \in I)$; the notation e_I is defined analogously.

²In some cases defaults for the minor arguments are provided, but they are hereby denigrated and should not be relied upon.

```
Abstract
                                                                                                                            Concrete
                                                                                                                                                                                                                                      Invocation \\
unit
                                                                                                                                                                                                                                      \unitTy
                                                                                                                            1
null
                                                                                                                            \langle \rangle
                                                                                                                                                                                                                                      \unitEx
\operatorname{check}[\rho](e_1;e_2)
                                                                                                                            \mathtt{check}\ e_1 \,\{\, e_2\,\}
                                                                                                                                                                                                                                      prod(\tau_1; \tau_2)
                                                                                                                                                                                                                                      \displaystyle \frac{1}{\tau_2}
                                                                                                                            \tau_1 \times \tau_2
\mathtt{proj}\langle i \rangle [	au_1 \; ; \; 	au_2](e)
                                                                                                                                                                                                                                      projEx<i>[tau_1][tau_2]{e} (i = 1, 2)
                                                                                                                            e \cdot i
pair[\tau_1; \tau_2](e_1; e_2)
                                                                                                                                                                                                                                      \protect{\protect} \operatorname{Lau_2}_{e_1}_{e_2}
                                                                                                                            \langle e_1, e_2 \rangle
                                                                                                                            \times_{i \in I} (i \hookrightarrow \tau_i)
\mathtt{vprod}\langle I 
angle (	au_I)
                                                                                                                                                                                                                                      \vprodTy<I><i>{\tau}
\mathsf{vtuple}\langle I \rangle [\tau_I](e_I)
                                                                                                                            \langle i \hookrightarrow e_i \mid i \in I \rangle
                                                                                                                                                                                                                                      \vtupleEx<I><i>[\tau]{e}
                                                                                                                            e \cdot i
                                                                                                                                                                                                                                      \vert Ex<I><i>[\tau]{e} (i \in I)
\operatorname{vproj}\langle I ; i \rangle [\tau_I](e)
void
                                                                                                                                                                                                                                      \voidTy
absurd[\rho](e)
                                                                                                                            \mathtt{absurd}(e)
                                                                                                                                                                                                                                      \absurdEx[\rho]{e}
sum(\tau_1; \tau_2)
                                                                                                                                                                                                                                      \sum_{1}{\tau_2}
                                                                                                                            \tau_1 + \tau_2
 \operatorname{inj}\langle i\rangle[	au_1\,\,;\,	au_2](e)
                                                                                                                                                                                                                                      \injEx<i>[\tau_1] [\tau_2] {e} (i = 1, 2)
                                                                                                                            i \cdot e
                                                                                                                            case e \{ x_1 . e_1 \mid x_2 . e_2 \}
 case[\tau_1 ; \tau_2 ; \rho](e ; x_1 . e_1 ; x_2 . e_2)
                                                                                                                                                                                                                                      \cspace{2pt} \cs
                                                                                                                            case e\{x_1 . e_1 | x_2 . e_2\}
case[\tau_1; \tau_2; \rho](e; x_1 . e_1; x_2 . e_2)
                                                                                                                                                                                           \xcaseEx[tau_1][tau_2][rho]{e}{x_1}{e_1}{x_2}{e_2}
                                                                                                                            2
bool
                                                                                                                                                                                                                                      \boolTy
                                                                                                                                                                                                                                      \trueEx
true
                                                                                                                           true
false
                                                                                                                            false
                                                                                                                                                                                                                                      \falseEx
if[\rho](e; e_1; e_2)
                                                                                                                            if(e; e_1; e_2)
                                                                                                                                                                                                                                      \inf Ex[\rho]{e}{e_1}{e_2}
                                                                                                                            +_{i\in I}(i\hookrightarrow \tau_i)
\operatorname{vsum}\langle I \rangle(\tau_I)
                                                                                                                                                                                                                                      \vsumTy<I><i>{\tau}
                                                                                                                                                                                                                                      \ \ \ \ (i \in I)
\operatorname{vinj}\langle I;i\rangle[\tau_I](e)
\operatorname{vcase}\langle I\rangle[\tau_I ; \rho](e ; (x . e')_I)
                                                                                                                            vcase e\{i \hookrightarrow (x \cdot e')_i \mid i \in I\}
                                                                                                                                                                                                                                      \c = I < i > [ tau ] [ rho ] {e}{x}{e'}
```

Figure 1: Product and Sum Types

```
Abstract
                                        Concrete
                                                                    Invocation
fun(\tau_1; \tau_2)
                                                                    \arrTy{\frac{1}{\frac{2}}
                                       \tau_1 \rightarrow \tau_2
lam[\tau_1; \tau_2](x.e)
                                       \lambda(x \cdot e)
                                                                    \label{lamEx} $$ \lambda_1 = \sum_{x \in \mathbb{Z}} \{x\} \{e\} $$
ap[\tau_1 ; \tau_2](e_1 ; e_2)
                                                                    \appEx[ tau_1] [tau_2] {e_1} {e_2}
                                       ap(e_1; e_2)
all(t.\tau)
                                       \forall (t . \tau)
                                                                    \allTy{t}{\langle tau \rangle}
tlam(t.e)
                                       \Lambda(t \cdot e)
                                                                    \tlamEx{t}[\tau]{e}
tap[t.\tau](e;\rho)
                                                                    \text{tapEx[t][\hat{e}_{rho}]}
                                       tap(e; \rho)
some(t.\tau)
                                       \exists (t . \tau)
                                                                    \sum_{t}{\{t\}}
pack[t.\tau](\rho;e)
                                                                    \packEx[t][\tau]{\rho}{e}
                                       pack(\rho; e)
\mathtt{open}[t \, . \, \tau \, ; \, \rho](e \, ; \, t, x \, . \, e')
                                       open(e; t, x.e')
                                                                    \openEx[t][\tau][\rho]{e}{t}{x}{e'}
```

Figure 2: Function, Universal, and Existential Types

```
Abstract
                                       Concrete
                                                                          Invocation
ind(t.\tau)
                                      ind(t.\tau)
                                                                          \int Ty{t}{\tau}
                                                                          \inEx[t][\tau]{e}
\operatorname{in}[t \, . \, \tau](e)
                                      in(e)
rec[t.\tau;\rho](e;x.e')
                                      rec(e; x.e')
                                                                          \recEx[t][\tau][\rho]{e}{x}{e'}
nat
                                      nat
                                                                          \n
                                                                          \zeroEx
zero
                                      zero
                                      succ(e)
succ(e)
                                                                          \succEx{e}
                                                                          \natrecEx[\rho]{e}{e_0}{x}{y}{e_1}
\mathtt{natrec}[\rho](e ; e_0 ; x, y . e_1)
                                      natrec e \{ e_0 \mid x, y \cdot e_1 \}
\mathtt{natit}[\rho](e ; e_0 ; x . e_1)
                                      \mathtt{natit}\ e \{e_0 \mid x \cdot e_1\}
                                                                          \natitEx[\rho]{e}{e_0}{x}{e_1}
ifz[\rho](e; e_0; x.e_1)
                                      ifz e \{ e_0 \mid x . e_1 \}
                                                                          \int [\rho]{e}{e_0}{x}{e_1}
list(\tau)
                                      \tau list
                                                                          \left\langle tau \right\rangle
\mathtt{nil}[	au]
                                                                          \nilEx[\tau]
                                      nil
cons[\tau](e_1;e_2)
                                      cons(e_1; e_2)
                                                                          \consEx[\tau]{e_1}{e_2}
                                      listrec e\{e_1 | x, y . e_2\}
                                                                          \label{listrecEx[rho]{e}{e_1}{x}{y}{e_2}
listrec[\rho](e; e_1; x, y . e_2)
listcase[\rho](e ; e_1 ; x, y . e_2)
                                      listcase e \{ e_1 \mid x, y \cdot e_2 \}
                                                                          \label{listcaseEx[rho]{e}{e_1}{x}{y}{e_2}
coi(t.\tau)
                                      coi(t.\tau)
                                                                          \coiTy{t}{\tau}
\operatorname{out}[t . \tau](e)
                                      out(e)
                                                                          \outEx[t][\tau]{e}
gen[t.\tau;\sigma](e;x.e')
                                      gen(e; x.e')
                                                                          \genEx[t][\tau][\sigma]{e}{x}{e'}
conat
                                      conat
                                                                          \conatTy
\mathtt{stream}(\tau)
                                                                          \streamTy{\tau}
                                      	au stream
```

Figure 3: Inductive and Coinductive Types

```
Abstract
                                                    Concrete
                                                                                        Invocation
tens(\tau_1; \tau_2)
                                                    \tau_1 \otimes \tau_2
                                                                                        \tensorTy{\tau_1}{\tau_2}
with [\tau_1; \tau_2](v_1; v_2)
                                                                                        \tensorEx[\tau_1][\tau_2]{v_1}{v_2}
                                                    v_1 \otimes v_2
split[\tau_1; \tau_2; \rho](v; x_1, x_2.e)
                                                    split v \{ x_1, x_2 . e \}
                                                                         \left[ \frac{1}{x_2} \right] 
                                                                                        \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \\ \end{array} \end{array} \end{array}
both(\tau_1; \tau_2)
                                                    \tau_1 \& \tau_2
both(e_1;e_2)
                                                    e_1 \& e_2
                                                                                        \begin{array}{l} \begin{array}{l} \begin{array}{l} \\ \\ \end{array} \end{array}
par(e; x, y.e')
                                                                                        \parEx{e}{x}{y}{e'}
                                                    par(e; x, y . e')
```

Figure 4: Parallel Types

```
Abstract
                                                                                                      Concrete
                                                                                                                                                                             Invocation
parr(\tau_1; \tau_2)
                                                                                                      \tau_1 \rightharpoonup \tau_2
                                                                                                                                                                             \parrTy{\tau_1}{\tau_2}
fun[	au_1 ; 	au_2](f, x . e)
                                                                                                      \mathtt{fun}(f,x\:.\:e)
                                                                                                                                                                             \funEx[\tau_1][\tau_2]{f}{x}{e}
\mathtt{ap}[	au_1 \ ; \ 	au_2](e_1 \ ; \ e_2)
                                                                                                      ap(e_1;e_2)
                                                                                                                                                                             \page [ tau_1] [ tau_2] {e_1} {e_2}
fix[\tau](x.e)
                                                                                                      fix(x.e)
                                                                                                                                                                             fixEx[\tau]{x}{e}
{\tt rec}(t\,.\,	au)
                                                                                                      rec(t.\tau)
                                                                                                                                                                             \recTy{t}{\tau}
fold[t.\tau](e)
                                                                                                      fold(e)
                                                                                                                                                                             \foldEx[t][\tau]{e}
{\tt unfold}[t\mathinner{.}\tau](e)
                                                                                                      unfold(e)
                                                                                                                                                                             \unfoldEx[t][\tau]{e}
self(\tau)
                                                                                                      self(\tau)
                                                                                                                                                                             \left\{ \right\}
\mathtt{unroll}[\tau](e)
                                                                                                      unroll(e)
                                                                                                                                                                             \unrollEx[\tau]{e}
self[\tau](x.e)
                                                                                                      self(x.e)
                                                                                                                                                                             \left[ \left( x\right) \right] 
lam(x.M)
                                                                                                      \lambda(x . M)
                                                                                                                                                                             \ullet \ullet
app(M_1;M_2)
                                                                                                      M_1(M_2)
                                                                                                                                                                             \upEx{M_1}{M_2}
                                                                                                      Ι
                                                                                                                                                                             \uIEx
K
                                                                                                                                                                             \uKEx
                                                                                                      K
S
                                                                                                      S
                                                                                                                                                                             \uSEx
В
                                                                                                      В
                                                                                                                                                                             \uBEx
```

Figure 5: Partial and Recursive Types

Concrete	Invocation
ans	\ansTy
yes	\yesEx
no	\noEx
au cont	\contTy{\tau}
$\mathtt{cont}(k)$	$\contEx[au]{k}$
$\mathtt{letcc}(x.e)$	$\label{letccEx[x]{e}} \$
$\mathtt{throw}(e_1 \; ; \; e_2)$	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:
• k; f	$\label{lem:lempstk} $$\operatorname{tau}_1(\lambda_2)_{k}_{f} $$ \operatorname{tau}_2(k)_{f}. $$$
	ans yes no $ au$ cont $\cot(k)$ letcc $(x \cdot e)$ throw $(e_1 ; e_2)$

Figure 6: Continuation Types

Abstract	Concrete	Invocation
$\mathtt{susp}(au)$	$\mathtt{susp}(au)$	\suspTy{\tau}
$\mathtt{susp}[au](e)$	$\mathtt{susp}(e)$	\suspEx[\tau]{e}
$\mathtt{force}[au](e)$	$\mathtt{force}(e)$	\forceEx[\tau]{e}
$\mathtt{comp}(au)$	$\mathtt{comp}(au)$	\compTy{\tau}
$\mathtt{comp}(m)$	$\mathtt{comp}(m)$	\compEx{m}
$\mathtt{ret}[au](e)$	$\mathtt{ret}(e)$	\retEx[\tau]{e}
$ exttt{bind}[au](e_1 exttt{ ; } x exttt{ . } e_2)$	$\mathtt{bind}(e_1 \ ; \ x \ . \ e_2)$	$\bndEx[\tau]{e_1}{x}{e_2}$

Figure 7: Suspension and Computation Types

```
Concrete
Abstract
                                                        Invocation \\
Т
                                Т
                                                        \topTy
                                                        \topEx
{\tt check}[\rho](e \; ; \; e')
                                \operatorname{split} e\left\{e'\right\}
                                                        \checkEx[\rho]{e}{e'}
F(\tau)
                                \uparrow(\tau)
                                                        \freeTy{\tau}
\mathtt{ret}[\tau](v)
                                ret(v)
                                                        freeEx[\tau]{v}
\operatorname{bind}[\tau ; \rho](e ; x . e')
                                \mathtt{bind}\,x \leftarrow e\,;e'
                                                        fletEx[\tau][\rho]{e}{x}{e'}
U(\tau)
                                \downarrow(\tau)
                                                        \thunkTy{\tau}
susp[\tau](e)
                                                        \thunkEx[\tau]{e}
                                susp(e)
{\rm susp}\langle k\rangle[\tau](x\,.\,e)
                                susp\langle k\rangle(x\cdot e)
                                                        force[\tau](v)
                                force(v)
                                                        \forceEx[\tau]{v}
```

Figure 8: Polarized Types

Figure 9: Symbols

```
Abstract
                                                   Concrete
                                                                                                              Invocation
cmd(\tau)
                                                  	au cmd
                                                                                                              \cmdTy{\tau}
\operatorname{cmd}[\tau](m)
                                                  cmd(m)
                                                                                                              \cmdEx[\tau]{m}
                                                                                                              \retCmd[\tau]{e}
ret[\tau](e)
                                                  ret(e)
raise[\rho](e)
                                                  raise(e)
                                                                                                              \raiseCmd[\rho]{e}
                                                                                                              \d \d \d \end{x} {m}
\operatorname{bnd}[\tau ; \rho](e ; x . m)
                                                  bnd x \leftarrow e; m
\mathtt{bndow}[	au](e \; ; \; x \; . \; m_1 \; ; \; x \; . \; m_2)
                                                  bnd x \leftarrow e ; m_1 ow x \rightarrow m_2
                                                                                                              \bndowCmd[\tau]{e}{x}{m_1}{x}{m_2}
dcl[\tau; \rho](e; a.m)
                                                                                                              \cline{Cmd[\tau]{e}[\rho]<a>{m}}
                                                  \mathtt{dcl}\ a := e \ \mathtt{in}\ m
seq(m_1; x.m_2)
                                                                                                              \ensuremath{\verb|seqCmd{m_1}[x]{m_2}}
                                                  x \leftarrow m_1; m_2
seq(m_1; ... m_2)
                                                                                                              \ensuremath{\mbox{seqCmd}\{m_1\}\{m_2\}\ensuremath}
                                                  m_1; m_2
ref(\tau)
                                                                                                              \refTy{\tau}
                                                  \tau \; \mathtt{ref}
                                                                                                              \refEx<a>
ref\langle a \rangle
                                                  \mathbf{\&}\,a
get\langle a \rangle
                                                                                                              \getCmd<a>
                                                   ! a
\mathtt{getref}[\tau](e)
                                                   *e
                                                                                                              \getrefCmd[\tau]{e}
\operatorname{set}\langle a\rangle(e)
                                                                                                              \setCmd<a>{e}
                                                  a := e
\mathtt{setref}[\tau](e_1 ; e_2)
                                                  e<sub>1</sub> *= e<sub>2</sub>
                                                                                                              \ensuremath{\texttt{SetrefCmd}[\hat{e}_1]_{e_2}}
\mathtt{newref}[\tau](e)
                                                                                                              \newrefCmd[\tau]{e}
                                                  newref(e)
do\langle o\rangle(e)(x \cdot m)
                                                  do o(e)(x . m)
                                                                                                              \dcmd<o>(e)[\Abs(x){m}]
hdl\langle o\rangle[\tau](m; x.m_1; x, k.m_2)
                                                  \mathtt{hdl}\,m\,\{\,\mathtt{ret}(x)\hookrightarrow m_1\mid o(x,k)\hookrightarrow m_2\,\}
                                                                                                              \d<o>[tau]{m}{x}{m_1}{x}{k}{m_2}
```

Figure 10: Command Types

$\begin{array}{c} Abstract \\ \mathtt{st} \\ \mathtt{type} \\ \mathtt{val}(\tau) \end{array}$	$Concrete$ st type $ ext{val}(au)$	<pre>Invocation \staticLock \univSg \valSg{\tau}</pre>
$\operatorname{Ext}(S ; M)$ $\operatorname{in}[S ; M](M')$ $\operatorname{out}[S ; M](M')$	$\{S\mid M\} \ ext{in}(M') \ ext{out}(M')$	\extSg{S}{M} \inMd[S][M]{M'} \outMd[S][M]{M'}
${\tt Comp}(S)$	${\tt Comp}(S)$	\compSg{S}
$\begin{array}{l} \mathtt{Pi}(S_1 \; ; \; X . S_2) \\ \mathtt{Pi}(S_1 \; ; \; _ . S_2) \\ \mathtt{func}[S_1 \; ; \; X . S_2](X . M_2) \\ \mathtt{inst}[S_1 \; ; \; X . S_2](M_1 \; ; M_2) \end{array}$	$egin{aligned} X:S_1 & ightarrow S_2 \ S_1 & ightarrow S_2 \ ext{func} \ X:S_1 \ ext{in} \ M_2 \ M_1(M_2) \end{aligned}$	\piSg{S_1}[X]{S_2} \piSg{S_1}{S_2} \funMd{S_1}{X}{S_2}{M_2} \instMd[S_1][X][S_2]{M_1}{M_2}
$\begin{array}{l} \mathtt{Sig}(S_1 \; ; \; X . S_2) \\ \mathtt{Sig}(S_1 \; ; \; _ . S_2) \\ \mathtt{struct}[S_1 \; ; \; X . S_2](M_1 \; ; \; M_2) \\ \mathtt{proj} \langle i \rangle [S_1 \; ; \; X . S_2](M) \end{array}$	$egin{aligned} X:S_1 imes S_2\ S_1 imes S_2\ ext{struct}\ M_1\ ;M_2\ M\cdot ext{i} \end{aligned}$	$\label{eq:sigSgSgS_1} $$ \sum_{S_2} \left[S_1\right]_{S_2} \\ \int_{S_1}[X]_{S_2}_{M_1}_{M_2} \\ \\ \int_{S_1}[X]_{S_2}[M_1]_{M_2} \\ \\ (i=1,2) \\ $

Figure 11: Module Types

```
Abstract
                                                                                                                                    Concrete
                                                                                                                                                                                                                             Invocation
truth
                                                                                                                                                                                                                             \trueProp
                                                                                                                                    T
truthI
                                                                                                                                    \topI
                                                                                                                                                                                                                             \trueIPf
and(\phi_1; \phi_2)
                                                                                                                                                                                                                             \andProp{\phi_1}{\phi_2}
                                                                                                                                    \phi_1 \wedge \phi_2
\mathtt{andI}[\phi_1 \ \mathsf{;} \ \phi_2](\pi_1 \ \mathsf{;} \ \pi_2)
                                                                                                                                    \wedge \mathtt{I}(\pi_1 ; \pi_2)
                                                                                                                                                                                                                             andE\langle i \rangle [\phi_1 ; \phi_2](\pi)
                                                                                                                                    \wedge \mathtt{E} \langle i \rangle (\pi)
                                                                                                                                                                                                                             \falseProp
falsity
                                                                                                                                    \perp
falseI[\phi](\pi)
                                                                                                                                    \perp I(\pi)
                                                                                                                                                                                                                             \falseIPf[\phi]{\pi}
falseE[\phi](\pi)
                                                                                                                                                                                                                             \falseEPf[\phi]{\pi}
                                                                                                                                    \perp E(\pi)
or(\phi_1;\phi_2)
                                                                                                                                    \phi_1 \vee \phi_2
                                                                                                                                                                                                                             \orProp{\phi_1}{\phi_2}
\mathtt{orI}\langle i \rangle [\phi_1 ; \phi_2](\pi)
                                                                                                                                    \forall \mathtt{I}\langle i\rangle(\pi)
                                                                                                                                                                                                                            \c \pi = \pi = 1 \phi_2 < i > {\pi}
orE[\phi_1 ; \phi_2 ; \rho](\pi ; x . \pi_1 ; x . \pi_2)
                                                                                                                                    \vee \mathsf{E}(\pi \; ; \; x \; . \; \pi_1 \; ; \; x \; . \; \pi_2)
                                                                                                                                                                      \c \Pf[\phi_1][\phi_2][\rho]{\pi}{x}{\pi_1}{x}{\pi_2}
imp(\phi_1;\phi_2)
                                                                                                                                    \phi_1 \supset \phi_2
                                                                                                                                                                                                                             \impProp{\phi_1}{\phi_2}
\mathtt{impI}[\phi_1 \; ; \; \phi_2](x \, . \, \pi_2)
                                                                                                                                    \supset I(x.\pi_2)
                                                                                                                                                                                                                             \label{limpIPf(phi_1)[phi_2]{x}{pi_2}} $$ \lim_{x \to \infty} |x^{-1}| = 1. $$ (x)^{-1} |x^{-1}|^{-1} |x^{-1
\mathtt{impE}[\phi_1 \; ; \; \phi_2](\pi \; ; \; \pi_1)
                                                                                                                                    \supsetE(\pi; \pi_2)
                                                                                                                                                                                                                             \impEPf[\phi_1][\phi_2]{\pi}{\pi_1}
not(\phi)
                                                                                                                                                                                                                             \notProp{\phi}
                                                                                                                                                                                                                             \notIPf[\phi]{x}{\pi}
notI[\phi](x.\pi)
                                                                                                                                    \neg I(x . \pi)
notE[\phi](\pi;\pi_2)
                                                                                                                                    \neg E(\pi ; \pi_2)
                                                                                                                                                                                                                             \notEPf[\phi]{\pi}{\pi_2}
```

Figure 12: Propositions and Proofs

Abstract	Concrete	Invocation
one	1	\unitPr
$\mathtt{par}(p_1 \; ; p_2)$	$p_1\otimes p_2$	\parPr{p_1}{p_2}
null	0	\nullPr
$\mathtt{or}(p_1 \; ; p_2)$	$p_1 \oplus p_2$	$\choosePr{p_1}{p_2}$
$\operatorname{que}\langle a angle(p)$	$?\langle a\rangle(p)$	$\quePr{a}{p}$
$\operatorname{sig}\langle a\rangle(p)$	$!\langle a\rangle(p)$	$\sigma^{sigPr{a}{p}}$
$\operatorname{rcv}\langle a \rangle(x.p)$	$?\langle a\rangle(x\cdot p)$	$\rcvPr{a}{x}{p}$
$\operatorname{snd}\langle a angle(e \; ; \; p)$	$!\langle a \rangle(e ; p)$	$\space{2} \space{2} \spa$
$\mathtt{asnd}\langle a angle(e)$	$!\langle a\rangle(e)$	\asndPr{a}{e}
$\mathtt{sync}(e)$	$\mathtt{sync}(e)$	\syncPr{e}
$\mathtt{new}[\tau](a\:.\:p)$	$\nu(a \cdot p)$	$\newPr[\tau]{a}{p}$
sil	ϵ	\silAc
$\operatorname{\mathtt{sig}}\langle a angle$	a!	\sigAc{a}
$\mathtt{que}\langle a angle$	a?	\queAc{a}
$\operatorname{snd}\langle a angle(e)$	a ! e	$\sndAc{a}{e}$
$rcv\langle a \rangle(e)$	a? e	$\rcvAc{a}{e}$
any(e)	e?	\anyAc{e}
$\mathtt{emit}(e)$	e!	\emitAc{e}

Figure 13: Processes

```
\operatorname{emit}[\tau](e)
                                      emit(e)
                                                                            \emitCmd[\tau]{e}
acc[\tau]
                                                                            \accCmd[\tau]
                                      acc
{\rm sync}[\tau](e)
                                                                            \syncCmd[\tau]{e}
                                      sync(e)
\mathtt{spawn}[\tau](e)
                                      \mathtt{spawn}(e)
                                                                            \spawnCmd[\tau]{e}
\mathtt{newch}[	au]
                                     \mathtt{newch}_{\tau}
                                                                            \newchCmd{\tau}
\operatorname{send}\langle a \rangle(e)
                                      \operatorname{send}\langle a \rangle(e)
                                                                            \scalebox{sndCmd<a>{e}}
recv\langle a\rangle(x.e)
                                      \operatorname{recv}\langle a\rangle(x\,.\,e)
                                                                            \rcvCmd<a>{x}{e}
\operatorname{rcv}\langle a \rangle
                                      rcv\langle a \rangle
                                                                            \rcvEv<a>
\operatorname{snd}\langle a \rangle(v)
                                      \operatorname{snd}\langle a \rangle(v)
                                                                            \scalebox{sndEv<a>}
                                                                            \orEv[\tau]{e_1}{e_2}
\mathtt{or}[	au](e_1 ; e_2)
                                      e_1 \oplus e_2
                                                                            \wrapEv[\tau]{e_1}{x}{e_2}
wrap[\tau](e_1; x.e_2)
                                      wrap[\tau](e_1; x.e_2)
```

Figure 14: Concurrent Algol