Data analytics with Cognos

Public Transportation Analysis

PHASE 4: DEVELOPMENT PART 2

TOPIC: Visualization Strategy: Plan how to visualize the insights using IBM Cognos to create informative dashboards and reports

On-Time Performance:

- ➤ Measure and improve the punctuality of public transportation by analyzing data to determine the percentage of buses/trains arriving on time and identifying factors contributing to delays.
- > Create a real-time dashboard displaying the current status of buses/trains.
- > Generate line charts showing historical on-time performance trends.

Passenger Satisfaction:

- Assess passenger satisfaction by collecting and analyzing feedback through surveys or social media sentiment analysis, focusing on aspects like cleanliness, safety, and overall experience.
- ➤ Develop a sentiment analysis dashboard summarizing positive and negative feedback.
- ➤ Create heatmaps or word clouds to visualize common themes in passenger comments.

Service Efficiency:

- ➤ Evaluate service efficiency by analyzing operational data, such as the cost per passenger mile, frequency of breakdowns, and utilization of resources.
- ➤ Design a cost analysis dashboard with bar charts or pie charts showing cost breakdowns.
- ➤ Create a maintenance performance dashboard to track vehicle breakdowns and repairs.

CODE:

```
import pandas as pd
from textblob import TextBlob

dataset_path = 'path_to_downloaded_dataset/content/project_dataset.csv'
transportation_data = pd.read_csv('project_dataset.csv')

transportation_data.drop_duplicates(inplace=True)
transportation_data.dropna(subset=['Arrival_Time'], inplace=True) # Handle missing values in specific columns
```

```
total_trips = len(transportation_data)
on_time_trips = len(transportation_data[transportation_data['StopID'] == 'Yes'])
```

```
punctuality_rate = (on_time_trips / total_trips) * 100
print(f"Service Punctuality Rate: {punctuality_rate:.2f}%")
```

transportation_data['feedback_sentiment'] = transportation_data['feedback'].apply(lambda x: TextBlob(str(x)).sentiment.polarity)

positive_feedback = len(transportation_data[transportation_data['feedback_sentiment'] > 0])
neutral_feedback = len(transportation_data[transportation_data['feedback_sentiment'] == 0])
negative_feedback = len(transportation_data[transportation_data['feedback_sentiment'] < 0])</pre>

print(f"Positive Feedback Count: {positive_feedback}")
print(f"Neutral Feedback Count: {neutral_feedback}")
print(f"Negative Feedback Count: {negative_feedback}")

OUTPUT:

Service Punctuality Rate: 86.00%

Positive Feedback Count: 5021

Neutral Feedback Count: 1062

Negative Feedback Count: 486

Visualization:

Report:

