Elementos de Cálculo Numérico / Cálculo Numérico

Segundo Cuatrimestre de 2024

Práctica N° 3: Ecuaciones Diferenciales: Problemas de valores de contorno.

Ejercicio 1. Hallar el error local de las siguientes discretizaciones de la derivada primera indicando en cada caso las hipótesis de suavidad que requiere de la función u:

- a) $u'(x) \sim \frac{u(x+h)-u(x)}{h}$ (diferencia forward)
- b) $u'(x) \sim \frac{u(x) u(x-h)}{h}$ (diferencia backward)
- c) $u'(x) \sim \frac{u(x+h)-u(x-h)}{2h}$ (diferencias centradas)
- d) $u'(x) \sim -\frac{1}{h}(\frac{3}{2}u(x) 2u(x+h) + \frac{1}{2}u(x+2h))$

Ejercicio 2. Hallar el error local para la discretización habitual de la derivada segunda, y explicitar sus requerimientos de suavidad:

$$f''(x) \sim \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

Ejercicio 3. Se tiene una masa sujeta a un resorte. Suponiendo que no existe rozamiento, la posición y(t) de la masa a tiempo t está regida por la ecuación:

$$m\ddot{y} = -ky$$
,

donde m es la masa y k la constante del resorte.

Supongamos que la masa se encuentra en movimiento y que se registra que su posición a tiempo 0 es y(0) = 0, mientras que a cierto tiempo t_f , es $y(t_f) = y_f$.

- a) Discretizar el intervalo $[0, t_f]$ con paso h. Utilizando la discretización usual para la derivada segunda y teniendo en cuenta las condiciones de contorno, discretizar el problema, formulándolo como un sistema lineal.
- b) Hacer un programa que reciba como input la masa m, la constante k y el paso h, construya la matriz del sistema, lo resuelva, y grafique la solución.
- c) Resolver para $t_f = 10$, con los siguientes datos:
 - $y_f = 1, m = \frac{1}{4}, k = \frac{1}{2}.$
 - $y_f = 1, m = 0.025, k = \frac{1}{2}$.
 - $y_f = 1$, $m = \frac{1}{4}$, k = 0.05.
 - $y_f = 1$, m = 0.025, k = 0.05.

Observar el efecto que producen las modificaciones en los distintos parámetros.

Ejercicio 4. Si al problema anterior se le agrega rozamiento y un forzante se obtiene una ecuación de la forma:

$$m\ddot{y} = -ky - b\dot{y} + f,$$

donde b es el coeficiente de rozamiento y f = f(t) el forzante.

- a) Escribir el sistema discretizado que corresponde a utilizar la discretización usual de la derivada segunda y diferencias centradas para la derivada primera.
- b) Repetir usando diferencias forward para la derivada primera.
- c) Modificar el programa del ejercicio anterior para incorporar los nuevos términos de la ecuación utilizando diferencias centradas o forward para la derivada primera.
- d) Para f=0 proponer soluciones de la forma $y(t)=Ae^{\lambda t}$. Hallar valores de λ en función de los parámetros m, k y b. Estudiar el comportamiento de la solución de acuerdo a la naturaleza de los valores de λ hallados.
- e) Resolver tomando $y_0=1,\,t_f=10,\,y_f=0,\,{\rm con\,\, distintas\,\, combinaciones\,\, de\,\, los\,\, parámetros:}$
 - m = 0.25, m = 0.025.
 - k = 0.5, k = 0.05.
 - $b = 5 \times 10^{-3}$, b = 0.05, b = 0.1.

Analizar si los resultados obtenidos son cualitativamente consistentes con lo esperado.

Ejercicio 5. Calcular el error de truncado de las discretizaciones usadas en el ejercicio anterior, tanto para diferencias centradas como para forward. ¿Cuál parece preferible?

Ejercicio 6. Considerar el problema del calor estacionario en el intervalo [0,1]:

$$\begin{cases} -\alpha u''(x) = f(x), \\ u(0) = u(1) = 0, \end{cases}$$

donde u representa la distribución de temperatura generada por una fuente f y $\alpha > 0$ es el coeficiente de difusividad térmica.

- (a) Formular el problema de forma matricial.
- (b) Estudiar el error de truncado.
- (c) Resolver y graficar la solución para distintos valores de α .

Ejercicio 7. Considerar el problema de evolución para la ecuación del calor, dado por la ecuación en derivadas parciales:

$$u_t(x,t) = \alpha u_{xx}(x,t) \quad x \in (0,1), t > 0$$

$$u(x,0) = g(x) \qquad x \in [0,1]$$

$$u(0,t) = u(1,t) = 0 \qquad t > 0,$$

donde tomamos $\alpha = 1$.

- (a) Discretizar el problema usando un esquema explícito con paso h en x y paso Δt en t.
- (b) Calcular el error de truncado del método. ¿Existe algún valor de $r = \frac{\Delta t}{h^2}$ tal que el error de truncado sea mejor?
- (c) Hallar condiciones sobre r que garanticen la estabilidad del método en norma infinito.
- (d) Probar que el error de discretización $e_j^n = U(x_j, t_n) u_j^n$ es solución de la ecuación en diferencias:

$$e_i^{n+1} = \alpha r e_{i-1}^n + (1 - 2\alpha r) e_i^n + \alpha r e_{i+1}^n + \Delta t \cdot T(x_i, t_n)$$

donde $T(x_i, t_n)$ es el error de truncado en (x_i, t_n) .

(e) Probar que si se satisfacen las condiciones de estabilidad el método resulta convergente.

Ejercicio 8. Para el problema del ejercicio anterior:

- (a) Implementar un programa que reciba como input los pasos h y Δt , el coeficiente α , el dato inicial g y un tiempo final t_f y resuelva el problema.
- (b) Graficar la solución u con dominio en el plano $[0,1] \times [0,t_f]$. ¿Qué se observa cuando se resuelve utilizando un valor de r que no satisface la condición de estabilidad?
- (c) Graficar la solución en el intervalo [0, 1], para cada instante de tiempo. Para lograr ver una película con la evolución del sistema puede completarse la siguiente secuencia:

```
plt.ion()
fig, ax = plt.subplots()
ax.plot() #grafica
for i in ...:
    ax.lines.pop(0) #elimina el dibujo anterior
    ax.plot(...) #grafica el siguiente paso
    fig.canvas.draw() #refresca del dibujo
    plt.pause(0.1) #pausa para ver el cuadro
```

Ejercicio 9. Modificar el programa del Ejercicio 8 para que resuelva la ecuación $u_t(x,t) = \alpha u_{xx}(x,t) + f(x,t)$, donde f es una fuente. Resolver tomando $g(x) \equiv 0$, para alguna f. Por ejemplo, pueden tomarse:

- f(x,t) = x(1-x)
- $f(x,t) = \chi_{[\frac{1}{4},\frac{3}{4}]}(x)$
- $f(x,t) = \chi_{[\frac{1}{4},\frac{3}{4}]}(x)\operatorname{sen}(t)$
- $f(x,t) = \chi_{\left[\frac{1}{8},\frac{3}{8}\right]}(x)\chi_{\left[2i,2i+1\right]}(t) + \chi_{\left[\frac{5}{8},\frac{7}{8}\right]}(x)\chi_{\left[2i+1,2i+2\right]}(t)$, tomando $i=0,\ldots,I-1,$ $t_f=2I$. Para las f independientes de t, comparar la solución a tiempo t_f con la obtenida al resolver el problema estacionario del Ejercicio 6.

Ejercicio 10. Considerar la ecuación $u_t = \alpha u_{xx}$ con condiciones de Dirichlet homogéneas y con $\alpha > 0$. Para el método implícito de primer orden:

$$u_{j+1}^{n+1} - u_j^n = r\alpha(u_{j-1}^{n+1} - 2u_j^{n+1} + u_{j+1}^{n+1}).$$

- (a) Estudiar la estabilidad en norma infinito.
- (b) Probar que el error de truncado es $O(\Delta t) + O(h^2)$.