Disussion of Asset Pricing in a Production Economy with Chew-Dekel Preferences

by C. Campanale, R. Castro and G.L. Clementi

Discussion by D. Papanikolaou CMSG 2007

This Paper

- ► Stochastic growth model with Chew-Dekel preferences can match key features of asset returns.
 - 1. EZ preferences generate constant risk premia.
 - 2. GDA preferences can generate countercyclical risk premia.
- ▶ Paper is at the frontier:
 - 1. Nests preference specification that explain the equity premium in when consumption is exogenous
 - 2. Examines how these preferences perform in G.E.
 - 3. Uses finite-elements rather than log-linearization techniques.

This Paper (cont)

- ► Basic Ingredients
 - transitory shocks
 - adjustment costs to capital
 - recursive preferences in the Chew-Dekel class
 - 1. EZ: Risk aversion 18 and EIS 1/39.
 - 2. GDA: comparable results with lower RA.
- ▶ Calibration
 - Model matches
 - 1. level of equity premium and risk-free rate
 - 2. volatility of consumption and equity returns
 - ► Model does not match
 - 1. volatility of the risk-free rate
 - 2. time-variation in the equity premium

some comments

- ► Authors target an equity premium of 7.5% for unlevered equity.
 - 1. No leverage; target moments of firm rather than equity returns.
 - 2. $E(R_A^e) = D/(D+E)R_D^e + E/(D+E)R_E^e$
 - 3. In US, D/(D+E) is close to 50%.
 - 4. A premium of 3-4% on total assets would be enough.
- ► Is risk-aversion of 18 unreasonable?
 - 1. in most experimental evidence, distribution of payoffs is known.
 - 2. Robust control isomorphic to EZ with $EIS^{-1} < RA$ (Skiadas 2003).
 - 3. Can interpret high RA as aversion to uncertainty.

How do we match the Sharpe Ratio?

 \blacktriangleright let γ be risk aversion coefficient and ψ be EIS. We can write

$$\begin{split} \log M_{t+1} &- E_t \log M_{t+1} = -\psi^{-1} (\log C_{t+1} - E_t \log C_{t+1}) \\ &+ (\psi^{-1} - \gamma) (\log V_{t+1} - E_t \log V_{t+1}) \\ &= -\gamma (\log C_{t+1} - E_t \log C_{t+1}) \\ &+ (\psi^{-1} - \gamma) (1 - \psi^{-1}) (\log w c_{t+1} - E_t \log w c_{t+1}) \end{split}$$

where wc_t is the wealth-consumption ratio.

- ▶ HJ bounds: $var(logM_t) \ge SR^2$.
- ▶ If shocks are transitory and ψ < 1:

$$cov_t(\log C_{t+1} - E_t \log C_{t+1}, \varepsilon_{t+1}) > 0$$

$$cov_t(\log wc_{t+1} - E_t \log wc_{t+1}, \varepsilon_{t+1}) > 0$$

If $\gamma < \psi^{-1}$, the two components of the SDF reinforce each other.

▶ Is wc helpful in pricing assets? LVV 2007 construct proxy for wc and estimate linearized version of E(RM) = 1:

LVV 2007

	Factor Prices		Tests		Fit			Returns and Wealth-Consumption			
	λ_c	λ_{wc}	F-test	χ^2	\mathbb{R}^2	RMSE	MAE	$RP^{\Delta c}$	$RP^M-RP^{\Delta c}$	R^W	A_0^{Ann}
Panel A: Size and book-to-market											
Uncond.	0.61	0.01	0.61		0.67	0.56	0.42	2.45	5.66	3.40	76.25
	(0.17)	(0.35)	(5.68)	(0.00)							
	[0.27]	[0.53]	[18.23]	[8.38]							
Cond.	0.44	0.27	0.71		0.69	0.50	0.38	2.85	2.41	3.80	58.50
	(0.15)	(0.33)	(2.21)	(0.00)							
	[0.20]	[0.42]	[6.50]	[0.00]							
			Dec	aal D. G	··	id long-te		1			
			га	nei b: s	nze an	id iong-te	erm reve	ersai			
Uncond.	0.03	0.97	1.01		0.82	0.41	0.31	4.02	5.54	4.97	34.82
	(0.16)	(0.30)	(0.17)	(0.00)							
	[0.17]	[0.31]	[0.25]	[0.00]							
Cond.	-0.06	1.10	1.04		0.86	0.33	0.25	4.17	3.14	5.12	33.10
	(0.15)	(0.30)	(0.07)	(0.00)							
	[0.16]	[0.32]	[0.14]	[0.00]							

Risk-free rate

► Campbell(1999). Let $\eta = \frac{1-\gamma}{1-\psi^{-1}}$.

$$r_{t} = -E_{t}\Delta\log M_{t+1}$$

$$\approx -\ln\beta + \underbrace{\psi^{-1}(E_{t}\Delta\log c_{t+1})}_{\text{intertemporal smoothing}} - \underbrace{\frac{1}{2}\left(\frac{\eta}{\psi^{2}}\sigma_{c,t}^{2} + (1-\eta)\sigma_{w,t}^{2}\right)\sigma_{z}^{2}}_{\text{precautionary savings}}$$

- \triangleright $\beta > 1$ and high precautionary savings keep risk-free rate low.
- ► Low EIS means the riskless rate is sensitive to changes in the expected growth rate of consumption → similar to habit models
- ▶ adjustment costs make expected consumption growth volatile.

Why doesn't the equity premium vary over time?

▶ Let $\zeta_t \sim N(0, \sigma_z)$ be innovation to technology:

$$\Delta \log C_{t+1} = E_t \Delta \log C_{t+1} + \sigma_{c,t} \zeta_{t+1}$$

$$\Delta \log w c_{t+1} = E_t \Delta \log w c_{t+1} + \sigma_{w,t} \zeta_{t+1}$$

► The market price of risk/ Sharpe ratio /vol of SDF is

$$\sigma_t (\log M_{t+1} - E_t \log M_{t+1}) = \gamma \sigma_{c,t} \sigma_z + (\psi^{-1} - \gamma)(1 - \psi^{-1}) \sigma_{w,t} \sigma_z$$

which does not vary a lot because $\sigma_{c,t}$ and $\sigma_{w,t}$ don't vary a lot.

Countercyclical risk premia.

- quick fix: make $\sigma_{z,t}$ countercyclical: $cov(\varepsilon_t, \sigma_{z,t}) < 0$
- ► Then risk premia are countercyclical

$$\sigma_t(\log m - E\log m) = \gamma \sigma_{c,t} \sigma_{z,t} + (\theta^{-1} - \gamma)(1 - \theta^{-1}) \sigma_{w,t} \sigma_{z,t}.$$

▶ But, as long as as long as $cov(\varepsilon_t, E_t\Delta \log c_{t+1}) > 0$ riskfree rate is more volatile:

$$r_t \approx -\ln\beta + \psi^{-1}(E_t\Delta\log c_{t+1}) - \frac{1}{2}\left(\frac{\eta}{\psi^2}\sigma_{c,t}^2 + (1-\eta)\sigma_{w,t}^2\right)\sigma_{z,t}^2$$

Generalized Disappointment Aversion

- ► A more sophisticated approach based on Routledge and Zin (2004).
- ► Consider the power utility case: $\psi^{-1} = \gamma$

$$\begin{split} \log M_{t+1} - E_t \log M_{t+1} &= -\gamma (\log C_{t+1} - E_t \log C_{t+1}) \\ &+ \log (1 + \theta I_{t+1}) - E_t \log (1 + \theta I_{t+1}) \\ &\approx -\gamma (\log C_{t+1} - E_t \log C_{t+1}) \\ &+ \theta (I_{t+1} - E_t I_{t+1}) \end{split}$$

where
$$I_{t+1} = 1$$
 if $v_{t+1} \le \xi \left(E_t v_{t+1}^{1-\gamma} \right)^{1/(1-\gamma)}$, $\pi_t = E_t[I_{t+1}]$.

▶ Now assume $\gamma \rightarrow 0$ (In general, there is also a covariance term):

$$\begin{array}{rcl} \log M_{t+1} - E_t \log M_{t+1} & = & \theta(I_{t+1} - E_t I_{t+1}) \\ \sigma_t (\log M_{t+1} - E_t \log M_{t+1}) & = & \theta \sqrt{\pi_t (1 - \pi_t)} \end{array}$$

- ▶ MPR depends on $\pi_t = Pr_t(v_{t+1} \le \xi E v_{t+1})$.
- ▶ Model can generate countercyclical price of risk.

Bond Risk Premia

- ► Can model match equity *and* long-term bond premia?
- ► Equity premium = uncertainty premium + term premium
- ightharpoonup Volatile R_f increases volatility of equity and bond returns.
- ▶ Data: Term premium $\approx 2\%$, Equity Premium $\approx 4 7\%$.
- ► Persistence of shocks is key. AJ 2004 show that if *M* has no permanent shocks

$$\lim_{k\to\infty} E_t \log \left\{ \frac{R_{t+1,k}}{R_{t+1,1}} \right\} \ge E_t \left[\log \frac{R_{t+1}}{R_{t+1,1}} \right]$$

LT bonds have the highest risk-premium in the economy.

How to avoid large bond premia

- ► How to make the risk-free rate less volatile?
 - 1. External habit (Campbell-Cochrane).
 - 2. Leisure enters utility non-separably.
 - 3. Write models with storage.
 - 4. Non-Ricardian fiscal regimes.

How to avoid large bond premia

- ▶ How to make the risk-free rate less volatile?
 - 1. External habit (Campbell-Cochrane).
 - 2. Leisure enters utility non-separably.
 - 3. Write models with storage.
 - 4. Non-Ricardian fiscal regimes.
- ▶ but part of the equity premium comes from the term premium.
 - Campbell-Shiller: var(returns) = var(cashflows) + var(discount rates) - covariance term
 - 2. If we make the risk-free rate *less* volatile we need to make risk premia *more* volatile.
 - 3. This will help with the predictability regressions.

How to make risk premia more volatile?

- ► External habit (Campbell-Cochrane).
- ► Generalized Generalized Disappointment Aversion (make threshold ξ history dependent ?)
- Rep Agent has DRRA: (agents heterogenous in γ , basic vs luxury goods).
- ► Heteroscedastic output shocks.
- ► Asymmetric adjustment costs: $\sigma_{c,t}$ can be made countercyclical.

Summary

- 1. Habit models are not necessary, EZ with low EIS + transitory shocks does just as well.
- 2. Volatile risk-free rate is the price we pay to have volatile stock returns.
- 3. Volatile risk-free rate also implies large term premium.
- 4. Increasing volatility of risk premia will allow us to lower volatility of risk-free rate.
- 5. GDA preferences help. Can we combine them with heteroscedastic output / asymmetric adjustment costs?