Theoretische Physik 1

Daniel Kallendorf

Mitschrift der Vorlesung Theoretische Physik I WS 2015/16 bei Prof. Alber

Inhaltsverzeichnis

1	Das	Zweikörperproblem im Rahmen der Newtonschen Mechanik			
	1.1	Erhaltungssätze			
	1.2	Bestimmung der Bahnkurven			
2	Das	Hamiltonsche Prinzip der klassischen Mechanik 6			
	2.1	Funktionale und Funktionalableitungen			
	2.2				
	2.3	Symmetrie und Erhaltungsgrößen			
		2.3.1 Nöther Theorem			
		2.3.2 Wechselwirkende Systeme			
	2.4	Mechanische Systeme mit Nebenbedingunge			
		2.4.1 Holone NB und Lagrange-Gl zweiter Art			
		2.4.2 Nicht holonome NB und Lagrange-Gl 1. Art			
3	Line	are Schwingungen 20			
	3.1	Lineare Schwingungen um Gleichgewichtskonfigurationen 21			
	3.2	Dynamik kleiner Schwingungen – Normalkoordinaten			
		3.2.1 Modell eines lineare dreiatomigen Moleküls 23			
	3.3	Dynamische Vielteilchensysteme: Der schwingende Ring			
		3.3.2 Der Kontinuierliche Grenzfall			
	3.4	Erzwungene Schwingungen			
		3.4.1 Lösung von DGL mit Hilfe von Integraltransformationen (Fou-			
		rier, Laplace)			
	3.5	Erzwungene Schwingungen und Greensche Fkt			
		3.5.1 Konstruktion Greenscher Funktionen für DGL: I) Anfangswert-			
		probleme			
		3.5.2 Konstruktion Greenscher Funktionen für DGL: II) Randwert-			
		probleme			

4	Han	niltonsche Mechanik	38
	4.1	Legendre Transformation	38
	4.2	Die Hamiltonschen Bewegungsgleichungen	40
	4.3	Das modifizierte Hamiltonsche Prinzip	42
	4.4	Phasenraum, Zustände, physikalische Variable	42
		4.4.1 Erhaltungsgrößen	45
	4.5	Die Poincare-Cartan Invariante	46
	4.6	Kanonische Transformationen	48
		4.6.1 Erzeugende Funktionen und kanonische Transformationen	50
		4.6.2 Kontinuierliche kanonsche Transformationen	51
		4.6.3 Symmetrietransformationen	52
		4.6.4 Hamilton-Jakobische Differentialgleichung	53
		4.6.5 Auf den Spuren von Erwin Schrödinger	54
5	Der	starre Körper	54
	5.1	Der starre Körper als Mechanisches Vielteilchensystem	54
	5.2	Lagrangesche Bewegungsgleichungen 1. Art:	55
	5.3	Lagrange Methode 2. Art	55
		5.3.1 Lagrange Funktion	57
	5.4	Der freie starre Körper	57
		5.4.1 Erhaltungsgrößen	58
		5.4.2 Dynamik des asymmetrischen starren Körpers	58
		5.4.3 Dynamik des freien Symmetrischen Kreisels	59
	5.5	Der starre Körper im homogenen Schwerefeld	59
		5.5.1 Rotation um eine raumfeste Drehachse mit konstanter Winkel-	
		geschwindigkeit	59
		5.5.2 Der schwere Kreisel	60

1 Das Zweikörperproblem im Rahmen der Newtonschen Mechanik

Problemstellung

Newtonsche Axiome

- 1. kräftefreie Massenpunkte bewegen sich geradlinig gleichförmig: Inertialsystem
- 2. $m\ddot{\vec{x}}(t) = \vec{F}(t)$
- 3. Wechselwirkung: actio=reactio

Bemerkungen

- $\vec{F}(t)$ beschriebt Kraftkurve
- $\vec{x}_1(t)$ beschreibt Bahnkurve (ohne Zeitinformation: Bahnkurve)
- $\bullet\,$ Spezielle Kraftfelder:

 $m^{(s)}$: schwere Masse $m^{(t)}$: träge Masse $m^{(T)} \equiv m^{(s)}$

$$\begin{split} \vec{K}(\vec{x}_1, \vec{x}_2) &= \frac{\vec{r}(t)}{\|\vec{r}(t)\|} f(\|\vec{r}(t)\|) = -\vec{\nabla}_{\vec{x}_1} U(\|\vec{x}_1 - \vec{x}_2\|) \\ \Rightarrow \int_{\xi_1 | \vec{x}_1^A}^{\vec{x}_1^B} \vec{K}(\vec{x}_1, \vec{x}_2) \left(\frac{d\vec{x}_1}{d\lambda} \right) d\lambda &= -U(\|\vec{x}_1^B - \vec{x}_2\|) - U(\|\vec{x}_1^A - \vec{x}_2\|) \end{split}$$

mit Weg $\xi: \lambda \to \vec{x}_1(\lambda)$ und wegunabhängiger konservativer Kraft

1.1 Erhaltungssätze

• abgeschlossenes System: (action=reactio)

$$\begin{split} m_1 \ddot{\vec{x}}_1(t) &= \vec{F}_{12}(t) \\ m_1 \ddot{\vec{x}}_1(t) &= \vec{F}_{12}(t) \\ \end{split} \begin{cases} \frac{d}{dt} \underbrace{(m_1 \dot{\vec{x}}_1 + m_2 \dot{\vec{x}}_2)(t)}_{:=\vec{P}(t) \text{ Impuls } = M \dot{\vec{R}}(t)} \\ \underbrace{(m_1 + m_2)}_{:=M} \vec{R}(t) &:= m_1 \vec{x}_1(t) + m_2 \vec{x}_2(t) \end{cases} = 0 \end{split}$$

$$\vec{x}_1(t) = \vec{R}(t) + \frac{m_2}{M}\vec{r} \Leftrightarrow \vec{R}(t) = \frac{m_1\vec{x}_1(t + m_1\vec{x}_2(t))}{M}$$

$$\vec{x}_2(t) = \vec{R}(t) + \frac{m_1}{M}\vec{r} \Leftrightarrow \vec{r}(t) = \frac{m_1\vec{x}_1(t + m_1\vec{x}_2(t))}{M}$$

$$= x_1(t) - x_2(t)$$

• Zentralkraftfeld $\mu \ddot{\vec{r}}(t) = -\frac{\vec{r}(t)}{\vec{r}(t)} f(r(t)) : \text{allgemeine Zentralkraft (z.B. Gravitation)}$ \rightarrow Drehimpulserhaltung

$$\vec{L} := m_1 \vec{x}_1(t) \times \dot{\vec{x}}_1(t) + m_1 \vec{x}_2(t) \times \dot{\vec{x}}_2(t) \qquad \text{zu Zeigen: } \vec{L}(t) = 0$$

$$= \vec{R} \times \vec{P} + \mu \vec{r} \times \dot{\vec{r}}$$

$$\dot{\vec{L}}(t) = \underbrace{\vec{R} \times \vec{P}}_{=0} + \underbrace{\vec{R} \times \dot{\vec{P}}}_{=0} \mu \vec{r} \times \dot{\vec{r}} + \underbrace{\mu \dot{\vec{r}} \times \dot{\vec{r}}}_{=0} = 0$$

Relativbahndrehimpuls L_{rel} :

$$-\vec{L}_{rel} \cdot \vec{r}(t) = 0 \rightarrow$$
ebene Dynamik
 $-\frac{d}{dt} \mu \vec{r} \times \dot{\vec{r}} = 0$ Flächensatz

• konservative Kraftfelder

$$\begin{array}{llll} \dot{\vec{x}}_1 m_1 \ddot{\vec{x}}_1 & = & \vec{F}_{12}(t) & = & -\vec{\nabla}_{\vec{x}_1} U(\|\vec{x}_1 - \vec{x}_2\|) \\ \dot{\vec{x}}_2 m_2 \ddot{\vec{x}}_2 & = & -\vec{F}_{12}(t) & = & -\vec{\nabla}_{\vec{x}_2} U(\|\vec{x}_1 - \vec{x}_2\|) \end{array} \right\} t$$

Die Funktion U darf nur durch x_1 und x_2 von der Zeit abhängen

$$m_{1}\dot{\vec{x}}_{1}\ddot{\vec{x}}_{2} + m_{2}\dot{\vec{x}}_{2}\ddot{\vec{x}}_{2} = -\dot{\vec{x}}_{1}\vec{\nabla}_{\vec{x}_{1}}U - \dot{\vec{x}}_{2}\vec{\nabla}_{\vec{x}_{2}}U$$

$$\frac{d}{dt}\left(\frac{m_{1}}{2}\dot{\vec{x}}_{1}^{2} + \frac{m_{2}}{2}\dot{\vec{x}}_{2}^{2}\right) = -\frac{d}{dt}U(\vec{x}_{1}(t) - \vec{x}_{2}(t))$$

$$\Leftrightarrow \frac{d}{dt}\underbrace{\left(\frac{m_{1}}{2}\dot{\vec{x}}_{1}^{2} + \frac{m_{2}}{2}\dot{\vec{x}}_{2}^{2} + U(\vec{x}_{1}(t) - \vec{x}_{2}(t))\right)}_{:-F} = 0$$

1.2 Bestimmung der Bahnkurven

Erhaltungsgrößen

• abgeschlossenes System: Impulserhaltung

$$\dot{\vec{P}} = 0, \vec{R}(t) = \vec{R}(t_0) + \frac{\vec{P}}{M}(t - t_0)$$

- konservative Kraft: Energieerhaltung

Ansatz

Aus $\vec{L}_{rel} \cdot \vec{r} = 0$ folgt, dass die Bewegung in einer Ebene stattfindet.

• Wir definieren $\vec{L}_{rel}\vec{e}_z$.

$$x = r \cos \varphi$$
 $\dot{x} = \dot{r} \cos \varphi - r \sin \varphi \dot{\varphi}$
 $y = r \sin \varphi$ $\dot{y} = \dot{r} \sin \varphi + r \cos \varphi \dot{\varphi}$

 $L_{rel} = \mu(x\dot{y} - \dot{x}y) = \mu \left[r\cos\varphi \left(\dot{r}\sin\varphi + r\cos\varphi\dot{\varphi} \right) - \left(\dot{r}\cos\varphi - r\sin\varphi\dot{\varphi} \right) r\sin\varphi \right] = \mu r^2\dot{\varphi}$ Somit erhalten wir

$$\dot{\varphi} = \frac{L_{rel}}{\mu r^2}$$

$$\varphi(t) - \varphi_0 = \int_{t_0}^t dt' \frac{L_{rel}}{\mu r^2(t')}$$

• Mit $E_{rel} = \frac{\mu}{2}\dot{\vec{r}}^2 + U(r)$

$$\dot{r}^{2} = \dot{x}^{2} + \dot{y}^{2} = \dot{r}^{2} + r^{2}\dot{\varphi}^{2}$$

$$E_{rel} = \frac{\mu}{2}\dot{r}^{2}\frac{L_{rel}}{\mu^{2}r^{4}} + U(r)$$

$$= \frac{\mu}{2}\dot{r}^{2} + \underbrace{\frac{L_{rel}^{2}}{2\mu r^{2}} + U(r)}_{=U_{eff}(r)}$$

$$\dot{r} = \sqrt{\frac{2}{\mu}}\underbrace{(E_{rel} - U_{eff}(r))}_{\geq 0} = \frac{dr}{dt}$$

$$t - t_{0} = \pm \int_{r(t_{0})}^{r(t)} dr \sqrt{\frac{\mu}{2}(E_{rel} - U(r))}$$

Wobei + für $r(t) > r(t_0)$, - für $r(t) < r(t_0)$, sonst 0.

Bestimmung des Orbits

$$\frac{\dot{\varphi}}{\dot{r}} = \frac{d\varphi}{dr} = \pm \frac{L_{rel}}{\mu r^2 \sqrt{\frac{2}{\mu} (E_{rel} - U(r))}}$$

$$\varphi(r) - \varphi(r_0) = \pm \int_{r_0}^r dr' \frac{L_{rel}}{r'^2 \sqrt{2\mu (E_{rel} - U(r'))}}$$

$$E''_0 \longrightarrow r$$

$$E_0 \longrightarrow r$$
Abbildung 1: Energieschema

Die Lösungen unterschieden sich also je nach dem, wie groß E_0 ist. (Siehe Abbildung 1 und Abbildung 2)

Abbildung 2: Bahnkurven

Definition. Ein *Funktional* ordnet jeder möglichen Bahnkurve eine Zahl zu.

Man kann also Funktionale finden, sodass die Extrema auf die Newtonschen Bewegungsgleichungen führen

Es ergibt sich ein Variationsproblem im ∞ -dimensionalen Raum der Bahnkurve unendlich vieler Punkte.

2 Das Hamiltonsche Prinzip der klassischen Mechanik

Aus dem Variationsprinzip lassen sich die Newtonschen Bewegungsgleichungen herleiten. Dies ermöglicht

- die Vereinheitlichung mechanischer Prozesse in ihrer Beschreibung
- die Beschreibung von Zwangskräften (Wände, Schiene, etc)

Dabei "bewerten" die Funktionale die möglichen Bahnkurven. Ein Extremum des Bewegungsfunktionals liefert also eine Bewegungsgleichung(= Lösung der Newton Gleichungen)

2.1 Funktionale und Funktionalableitungen

Es gilt $x_1, x_2 \in \mathbb{R}^{3N}$, da jeder der N Massenpunkte je 3 Koordinaten hat.

Wir betrachten nun B_{x_1,x_2} , die Menge aller stückweise stetigen und differenzierbaren Bahnkurven von x_1 (zum Zeitpunkt t_1) nach x_2 (zu t_2).

Und das Funktional $F: B_{x_1,x_2} \to \mathbb{R}, \gamma \mapsto F[\gamma]$ (Punktweise Auswertung).

Stetigkeit F ist stetig, an γ_0 , wenn das $\delta - \epsilon$ -Kriterium gilt:

Für alle $\epsilon > 0$ und für alle h mit $||h|| < \delta$, existiert ein $\delta > 0$, sodass

$$|F[\gamma_0 + h] - F[\gamma_0]| < \epsilon$$

Wobei man h auch schreiben kann, als

$$||h|| = \max_{t_1 \le t \le t_2} \left(\sum_{i=1}^{N} \sqrt{\vec{h}_i(t) \cdot \vec{h}_i(t)} \right) + \max_{t_1 \le t \le t_2} \left(\sum_{i=1}^{N} \sqrt{\dot{\vec{h}}_i(t) \cdot \dot{\vec{h}}_i(t)} \right)$$

Funktionalableitungen

Ein Funktional heißt *ableitbar*, wenn eine Beste Lineare Approximation existiert:

$$\exists F'_{\gamma_0} : F[\gamma_0 + h] - F[\gamma_0] = F'_{\gamma_0}[h] + O(\|h\|^2)$$

lokales Funktional

$$F_1[\gamma] \sum_{i=1}^N \sqrt{\vec{x}_i(t_0) \cdot \vec{c}_i(t_0)}$$

mit festem t_0 und $t_1 \leq t_0 \leq t_2$ gilt für

$$S[\gamma] = \int_{t_1}^{t_2} dt \quad L(\{\vec{x}_i\}(t), \{\dot{\vec{x}}_i\}(t), t)$$

dass

$$S[\gamma + h] - S[\gamma] = S'_{\gamma}[h] + O(\|h^2\|^2)$$

$$\text{mit} \quad S_{\gamma}'[h] = \sum_{i=1}^{3N} h_i(t) \left. \frac{\partial L}{\partial \dot{x}_i} \right|_{t_1}^{t_2} + \sum_{i=1}^{3N} \int_{t_1}^{t_2} dt \quad h_i(t) \left\{ \frac{\partial L}{\partial x_i} - \frac{d}{dt} \frac{\partial L}{\partial \dot{x}_i} \right\}_{\gamma(t)}$$

Beweisidee.

$$S[\gamma + h] = \int_{t_1}^{t_2} dt L(x_i(t) + h_i(t), \dot{x}_i(t) + \dot{h}_i(t), t)$$

$$= S[\gamma] + \int_{t_1}^{t_2} dt \left\{ \frac{\partial L}{\partial x_i} \middle|_{\gamma} h_i(t) + \frac{\partial L}{\partial \dot{x}_i} \middle|_{\gamma} \dot{h}_i(t) \right\} + O(\|h\|^2)$$

Wir verwenden die Produktregel: $\frac{\partial L}{\partial \dot{x}_i}\Big|_{\gamma}\dot{h}_i(t) = \frac{d}{dt}\frac{\partial L}{\partial \dot{x}_i}\Big|_{\gamma}h_i(t)$

$$h_i(t) \left. \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}_i} \right) \right|_{\gamma}$$

$$= S[\gamma] + \sum_{i=1}^{3N} h_i(t) \left(\frac{\partial L}{\partial \dot{x}_i} \right) \Big|_{\gamma} \Big|_{t_1}^{t_2} + \sum_{i=1}^{3N} \int_{t_1}^{t_2} dt h_i(t) \left\{ \left. \frac{\partial L}{\partial x_i} \right|_{\gamma} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}_i} \right) \right|_{\gamma} \right\}$$

Da das bei $S_{\gamma}'=0$ Extrema liege, kann man Bewegungsgleichungen formulieren: Die Euler-Lagrange-Gleichungen

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}_i} \right) \Big|_{\gamma} - \left. \frac{\partial L}{\partial x_i} \right|_{\gamma} = 0$$

2.2 Das Hamiltonsche Prinzip

Für

$$L(\{x_i\}, \{\dot{x}_i\}, t) = \sum_{i=1}^{N} \left\{ \frac{m_i}{2} \dot{\vec{x}}_i \cdot \dot{\vec{x}} + \vec{F}_i(t) \cdot \vec{x}_i \right\}$$

wobei $\vec{F}_i(t)$ vorgegebene Kraftkurven sind, gilt, dass die EL-Gl äquivalent zu den Newtonschen Bewegungsgleichungen $(m_i \, \ddot{\vec{x}}_i(t) = \vec{F}_i(t))$ sind.

Beweis. Es gilt:

$$\vec{\nabla}_{x_i} L = \vec{F}_i(t) \qquad \qquad \vec{\nabla}_{\dot{x}_i} L m_i \dot{\vec{x}}_i$$

Somit also

$$\underbrace{\frac{d}{dt}\nabla_{\dot{\vec{x}}_i}L\bigg|_{\gamma}}_{\text{(Newton Gleichungen)}} = \underbrace{\nabla_{\vec{x}_i}L|_{\gamma}}_{\text{(Euler-Langrange-Gleichungen)}}$$

Bemerkung. • Kraftkurven sind vorgegeben.

- $S[\gamma] = \int_{t_1}^{t_2} dt L(x(t), \dot{x}(t), t)$
- $h^2(t) \equiv \delta x_i(t)$, eine Virtuelle Verschiebung. Es handelt sich nicht um eine physikalische Bewegung sondern um einen rein mathematische infinitesimale Verschiebung eines Teilchens, die ohne verzögerung (instantan) stattfindet. (Unter beachtung der Zwangsbedingungen)
- Die äquivalenz stimmt nicht vollständig, da die Newton-Gleichungen eine Anfangsrandwertproblem darstellen, das Variationsprinzip/ Hamiltonsches Prinzip ein Randwertproblem darstellt:
- Newton: $\vec{x}_i(t, x_1, \dot{x}_1)$
- Hamilton: $\vec{x}_i(t, x_1, x_2)$

Die Äquivalenz gilt also, wenn dem Ziel bijektiv eine Anfangswert zugeordnet werden kann.

Sei nun
$$S[\gamma]=\int_{t_1}^{t_2}dt L\big(x(t),\dot{x}(t),t\big)$$
 mit
$$\underbrace{\delta\vec{x}(t_1)}_{\vec{h}(t_1)}=\delta\vec{x}(t_2)$$

Da Hamilton Prinzip selektiert nun γ_0

$$\delta S[\gamma_0] = S'_{\gamma_0}[h] = 0$$

ist äquivalent zu den E-L-Gl:

$$\left. \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}_k} \right) \right|_{\gamma_0} - \left. \frac{\partial L}{\partial x_k} \right|_{\gamma_0} = 0$$

und den Newton-Gleichungen:

$$L = \sum_{i=1}^{N} \frac{m_i}{2} \dot{\vec{x}}^2 + \sum_{i=1}^{N} \vec{F}(t) \vec{x}$$

Bemerkung. Geschwindigkeitsabhängige Potenziale

Es gilt für:

$$\vec{F}_i(t) = -\left(\vec{\nabla}_{\vec{x}_i}V - \frac{d}{dt}\left(\vec{\nabla}_{\dot{\vec{x}}_i}V\right)\right)(\{x(t)\},\{\dot{x}(t)\},t)$$

und es ergibt sich

$$L = \sum_{i=1}^{N} \frac{m_i}{2} \dot{\vec{x}}_i^2 - V(\{x(t)\}, \{\dot{x}(t)\}, t)$$

Beweis. z.Z.: $\delta \int_{t_1}^{t_2} dt \sum_{i=1}^N \vec{F}_i(t) \vec{x}_i(t) \stackrel{!}{=} -\delta \int_{t_1}^{t_2} dt V(\{x(t)\}, \{\dot{x}(t)\}, t)$ Wir beginnen mit der rechten Seite:

$$\begin{split} \delta \int_{t_1}^{t_2} dt V(\{x(t)\}, \{\dot{x}(t)\}, t) &= \int_{t_1}^{t_2} dt \left\{ V(\delta \int_{t_1}^{t_2} dt V(\{x(t)\}, \{\dot{x}(t)\}, t)) \right\} \\ &+ \sum_{i=1}^{N} \delta \vec{x}_i(t) \vec{\nabla}_{x_i} V + \sum_{i=1}^{N} \delta \dot{\vec{x}}_i(t) \vec{\nabla}_{\vec{x}_i} V + O(\|h\|^2) \\ &\Rightarrow \delta \vec{x}_i(t) \vec{\nabla}_{\vec{x}_i} V_i = \frac{d}{dt} \left(\Delta x_i \vec{\nabla}_{\dot{\vec{x}}_i} V \right) - \delta x_i(t) \frac{d}{dt} \left(\vec{\nabla}_{x_i} V \right) \\ &\Rightarrow \delta \int_{t_1}^{t_2} dt V(\{x(t)\}, \{\dot{x}(t)\}, t) = \int_{t_1}^{t_2} dt \sum_{i=1}^{N} \left(\delta \vec{x}_i(t) \cdot \left[\vec{\nabla}_{\vec{x}_i} V - \frac{d}{dt} \vec{\nabla}_{\dot{\vec{x}}_i} V \right] + \underbrace{\frac{d}{dt} \left[\delta \vec{x}_i(t) \cdot \nabla_{\vec{x}_i} V \right]}_{\delta \vec{x}_i(t_1) = \delta \vec{x}_i(t_2) = 0} \right) \\ &= - \int_{t_1}^{t_2} dt \quad \vec{F}_i(t) \, \Box \Delta x_i(t) \end{split}$$

Mechanische Eichfreiheit

Aus einer Lagrange-Funktion lassen dich die Newtonschen Bewegungsgleichungen ableiten (nicht bijektiv).

Beweis. Sei $L_1(\{x(t)\},\{\dot{x}(t)\},t)$. Und sei

$$L_2(\{x(t)\}, \{\dot{x}(t)\}, t) = L(\{x(t)\}, \{\dot{x}(t)\}, t) + \frac{\partial f}{\partial t}(\{x\}, t) + \sum_{i=1}^{N} \dot{\vec{x}}_i \cdot \vec{\nabla}_{\vec{x}_i} f(\{x\}, t)$$

mit einer beliebigen (differenzierbaren) Funktion f. Dann führe beide Lagrange-Funktionen auf die selben E-L-Gln, denn

$$S[\gamma] = \int_{t_1}^{t_2} dt L_2(\{x(t)\}, \{\dot{x}(t)\}, t) = \int_{t_1}^{t_2} L_1(\{x(t)\}, \{\dot{x}(t)\}, t) + \int_{t_1}^{t_2} dt \frac{d}{dt} f(\{x\}, t)$$

$$= \frac{\partial f}{\partial t}(\{x(t)\}, t) + \sum_{i=1}^{N} \dot{\vec{x}}_i(t) \cdot \left(\vec{\nabla}_{\vec{x}_i} f\right) (\{x(t)\}, t)$$

$$\partial S[\gamma] \equiv S'_{\gamma}[h] = \delta \int_{t_1}^{t_2} dt \quad L(\{x(t)\}, \{\dot{x}(t)\}, t)$$

$$\frac{d}{dt} f(\{x(t)\}, \{\dot{x}(t)\}, t) = \frac{\partial f}{\partial t}(\{x(t)\}, t) + \sum_{i=1}^{N} \dot{\vec{x}}_i(t) \cdot (\vec{\nabla}_{\vec{x}_i} f) (\{x(t)\}, t)$$

Somit hat also L keine "direkte" physikalische

Daraus folgt jedoch: die Äquivalenzklasse der Lagrange-Funktionen

$$[L] = \{L_2 | \exists f : L_2 = L + f\}$$

Welche Äquivalent zu den E-L-Gln ist.

Analyse der Extrema von $[\gamma]$

Die Frage, ob ein Extremum von $S[\gamma]$ ein Minimum, Maximum oder Sattelpunkt ist gibt uns $\delta^2 S[\gamma]$

$$S[\gamma + \delta x] = S[\gamma] + S'_{\gamma}[\delta x] + O(\|\delta x\|^2)$$

Beispiel. Eine eindimensionale Dynamik mit geschwindigkeitsunabhängiges Potenzial und $\gamma:t\mapsto \vec{x}(t)$

$$L(x, \dot{x}, t) = \frac{m}{2}\dot{x}^2 - V(x, t)$$

$$S[\gamma + \delta x] = \int_{t_1}^{t_2} dt \left(\frac{m}{2}[\vec{x}(t) + \delta \dot{x}(t)]^2 - V(x(t) + \delta \dot{x}(t), t)\right)$$

$$= \underbrace{\int_{t_1}^{t_2} dt \left(\frac{m}{2}\dot{x}(t)^2 - V(x(t), t)\right)}_{S[\gamma]} + \underbrace{\int_{t_1}^{t_2} dt \left(\frac{m}{2} \cdot 2\dot{x}(t)\delta \dot{x}(t) - \delta x(t) \frac{\partial V}{\partial x}(x8(t), t)\right)}_{:=\delta^2 S[\delta x]}$$

$$+ \underbrace{\int_{t_1}^{t_2} dt \left(\frac{m}{2}\delta \dot{x}(t)^2 - \frac{1}{2} \frac{\partial^2 V}{\partial x^2}(x(t), t)\right)}_{:=\delta^2 S[\delta x]} + O(\|\delta x\|^3)$$

wobei $\delta S[\gamma] = 0$ da wir ein Extremum betrachten.

Sei $|t_2 - t_1|$ klein, dann ist für alle $\delta x \ \delta^2 S[\delta x] \ge 0$ weil ??? > 0. Für $|t_2 - t_1|$ wachsen, existiert ein anderes Extremum mit $\delta^2 S[\delta x] < 0$.

Hier fehlt etwas

• $x^{i}(q,t) \leftrightarrow q^{i}(x,t)$ sei angenommen

$$S\left[\gamma\right] = \int_{t_1}^{t_2} dt L(x(t), \dot{c}(t), t) = \int_{t_1}^{t_2} dt \underbrace{L\left(x(q, t), \left\{\frac{\partial x^i}{\partial t} + \sum_{j=1}^N \dot{\vec{q}_j} \cdot \vec{\nabla}_{\vec{q}_j} x^i\right\}, t\right)}_{:= \tilde{L}(q, \dot{q}, t)}$$

 \rightarrow Euler-Lagrange Gleichung für i=1,...,3N

$$\frac{d}{dt}\frac{\partial \tilde{L}}{\partial \dot{q}_i} = \frac{\partial \tilde{L}}{\partial q_i}$$

2.3 Symmetrie und Erhaltungsgrößen

Ausgangspunkt: $\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} = \frac{\partial L}{\partial q_i}$ Euler-Lagrange für $L(q,\dot{q},t)$. Sei $\frac{\partial L}{\partial q_1} = 0$, d.h.:

- Transformation $\tau \epsilon$
- L unabhängig von q_1 ; $\tau_{\epsilon^i}Q^i=q^i+\epsilon\delta_{i1}$
- L invariant unter τ_{ϵ}
- $\tau \epsilon$ transformiert Lösungen der ELG wieder in Lösungen (kontinuierliche Symmetrie)

Es folgt daraus, dass auch $\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_1} = 0 \Leftrightarrow p_1 =$

 $\frac{\partial L}{\partial \dot{q}_1}(q(t),\dot{q}(t),t)$ berechent entlang einer Lösung der

E-L-Gleichung ist Zeitlich konstant

 \rightarrow Erhaltungsgröße

 $p_1 := \text{kanonischer Impuls von } q_i$

Also "kontinuierliche Symmetrie impliziert Erhaltungsgrößen"

2.3.1 Nöther Theorem

Betrachte folgende kontinuierliche Transformation:

$$Q^{m} = q^{m} + \epsilon \psi^{m}(q, \dot{q}, t) + O(\epsilon^{2})$$
$$T = t + \epsilon \phi(q\dot{q}, t) + O(\epsilon^{2})$$
$$\text{mit } \epsilon \in [0, \infty).$$

Es gelte

$$\int_{T_1}^{T_2} dT_{\epsilon} L(Q\epsilon(T_{\epsilon}), \frac{dQ\epsilon}{dt\epsilon}(T\epsilon), T\epsilon) \stackrel{!}{=} \int_{t_1}^{t_2} dt \left\{ L(q(t), \dot{q}(t), t) + \epsilon \frac{df_{\epsilon}}{dt}(q(t), t) \right\}$$

Von dynamischer τ_{ϵ} -Symmetrie gefordert, mit mechanischem Eichterm f_{ϵ} .

Es ergibt sich eine Erhaltungsgröße E der Form

$$E = \sum_{m} \psi^{m} \frac{dL}{\partial \dot{q}^{m}} + \phi (L - \sum_{m} \dot{q}^{m} \frac{\partial L}{\partial \dot{q}^{m}}) - f_{\epsilon=0}(q, t) \bigg|_{q}$$

Bemerkung

- mechanische Eichtransformationen sollen in sinnvoller Weise bei dynamischer Symmetrie berücksichtigt werden $(f \epsilon(q, t) \neq 0)$
- Symmetrische $\tau\epsilon$ Symmetrie bedeutet: $Q_{\epsilon=0}^m(T_{\epsilon=0})$ ist Lösung der ELGl $\to Q_{\epsilon}^m(T_{\epsilon})$ ist Lösung. Sowie $Q_{\epsilon=0}^m=q^m$ und $T_{\epsilon=0}=t$

Bemerkung

- Sei Transformation $Q_{\epsilon}^m = q^m + \epsilon \psi^m(q, \dot{q}, t) + O(\epsilon^2)$
- Sei $T_{\epsilon} = 0$ gegeben. Es folgt:

$$\frac{dQ_{\epsilon}}{dT\epsilon}(T_{\epsilon}) = \underbrace{\frac{dq^m}{dt}}_{:=\dot{q}^m} + \epsilon \frac{d\psi^m}{dt}(q(t), \dot{q}(t), t) + O(\epsilon)$$

Aus τ_{ϵ} Symmetrie:

$$\int_{T_1}^{T_2} dT \epsilon L(Q_{\epsilon}(T_{\epsilon}), \frac{dQ_{\epsilon}}{dT \epsilon}(T_{\epsilon}), T_{\epsilon}) = \int_{t_1}^{t_2} dt \underbrace{L\left(\left\{q^m + \epsilon \psi^m\right\} \dot{q}^m + \epsilon \frac{d\psi^m}{dt}, t\right)}_{=L(q(t), \dot{q}(t), t) + \epsilon \left\{\sum_m \psi^m \frac{\partial L}{\partial q^m} + \sum_m \frac{d\psi^m}{dt} \frac{\partial L}{\partial \dot{q}^m}\right\} + O(\epsilon^2)$$

 $\min f_{\epsilon}(q,t) = 0$

$$0 = \sum_{m} \left(\psi^{m} \frac{\partial L}{\partial q^{m}} + \frac{d\psi^{m}}{dt} \frac{\partial L}{\partial \dot{q}^{m}} \right) = \sum_{m} \psi^{m} \left(\underbrace{\frac{\partial L}{\partial q^{m}} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}^{m}} \right)}_{=0 \, \text{für} \gamma \text{Lsg}} \right) + \frac{d}{dt} \sum_{m} \left(\psi^{m} \frac{\partial L}{\partial \dot{q}^{m}} \right)$$

Es folgt

$$E = \sum_{m} \psi^{m} \frac{\partial L}{\partial \dot{q}^{m}} \bigg|_{\gamma}$$

• Sei
$$Q_{\epsilon}^{m} = q^{m}, T_{\epsilon} = t + \epsilon$$

 $\rightarrow \frac{dQ_{\epsilon}^{m}}{dT_{\epsilon}} = \frac{dq^{m}}{dt} \equiv \dot{q}^{m}$

$$\int_{t_1}^{t_2} dT_{\epsilon} L(Q_{\epsilon}(T_{\epsilon}), \frac{dQ_{\epsilon}}{dT_{\epsilon}}(T_{\epsilon}), T_{\epsilon}) = \int_{t_1}^{t_2} dt \underbrace{L(q(t), \dot{q}(t), t + \epsilon)}_{=t_1} = \int_{t_1}^{t_2} dt L(q(t), \dot{q}(t), t)$$

$$= L(q(t), \dot{q}(t), t) + \epsilon \frac{\partial L}{\partial t} + O(\epsilon^2)$$

Aus τ_{ϵ} -Symmetrie: $\frac{\partial L}{\partial t} = 0$

$$\begin{split} \frac{dL}{dt} &= \sum_{m} (\dot{q}^{m} \frac{\partial L}{\partial q^{m}} + \ddot{\underline{q}}^{m} \frac{\partial L}{\dot{q}^{m}}) + \frac{\partial L}{\dot{q}^{m}} = \sum_{m} \dot{q}^{m} \left(\frac{\partial L}{\partial q^{m}} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}^{m}} \right) \right) + \frac{d}{dt} \sum_{m} \dot{q}^{m} \frac{\partial L}{\partial \dot{q}^{m}} + \frac{\partial L}{\partial t} \\ &= \frac{d}{dt} \left(\dot{q}^{m} \frac{\partial L}{\partial \dot{q}^{m}} \right) - \dot{q}^{m} \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}^{m}} \right) \end{split}$$

$$\begin{split} &=\frac{d}{dt}\sum_{m}\dot{q}^{m}\frac{\partial L}{\partial\dot{q}^{m}}+\frac{\partial L}{\partial t}\\ \Leftrightarrow &\text{ für }\gamma\text{ Lösung der E-L-Gl: }\frac{d}{dt}\left(L-\sum_{m}\dot{q}^{m}\frac{\partial L}{\partial\dot{q}^{m}}\right)\Big|_{\gamma}=\left.\frac{\partial L}{\partial t}\right|_{\gamma}\\ &\tau_{\epsilon}\text{-Symmetrie: }\frac{d}{dt}(L-\sum_{m}\dot{q}^{m}\frac{\partial L}{\partial\dot{q}^{m}})=0\text{ (Erhaltungsgröße)} \end{split}$$

Beispiel: der freie Massenpunkt

$$L(x, \dot{x}, t) = \frac{m}{2} \sum_{i=1}^{3} (\dot{x}_i)^2$$

zu Zeigen: 10-parametrige Symmetriegruppe (eigentliche orthochrone Galilei Gruppe).

Transformationsgesetze :

$$\vec{x}' = R(\underbrace{\vec{\omega}}_{3})\vec{x} + \underbrace{\vec{a}}_{3} + \underbrace{\vec{v}}_{3} t$$

$$T = t + \underbrace{s}_{3}$$

- 1. Translation: $\vec{a} \neq 0$ $\tau_{trans} : x_k = x_k + a_{k_0} \delta_{kk_0}, T = t$ $\rightarrow \text{L-invariant unter } \tau_{\epsilon}; f, \phi = 0; \psi_k = \delta_{kk_0}$ $P_{k_0} = \sum_k \psi_k \frac{\partial L}{\partial \dot{x}_k} = \frac{\partial L}{\partial \dot{x}_{k_0}} \text{ ist Erhaltungsgröße}$
- 2. Translation in der Zeit: $s \neq 0$ $\tau_{tZeit}: X_k = x_k, \, T = t + s$ $-E_{kin} = L \sum_k \dot{x}_k \frac{\partial L}{\partial \dot{x}_k} = -\frac{m}{2} \dot{\bar{x}}^2 \text{ Erhaltungsgröße.}$

 $\vec{P}(t) = m\dot{\vec{x}}(t)$ Impuls ist konstant entlang Lösung.

3. Drehungen $\vec{\omega} = c\vec{e_3}, c \in \mathbb{R} \setminus 0$ $\tau_{rot} : \vec{X} = R(\vec{\omega})\vec{x}, T = t$ $\vec{X} = x + c\vec{e_3} \times \vec{x} + O(\epsilon^2)$ $\vec{X} = R(\omega)\vec{x}$ Somit $\vec{X}^2 = \dot{x}^2 \to \text{L-Invarianz mit } f, \phi = 0$

$$X_{l} = x_{l} + c \sum_{k=1}^{3} \epsilon_{l3k} x_{k} + O(\epsilon^{2})$$

$$\vdots = \psi_{l}$$

$$E = \sum_{k,l=1}^{3} \epsilon_{l3k} x_k \frac{\partial L}{\partial \dot{x}_l} = \vec{e}_3 \underbrace{(\vec{x} \times m\dot{\vec{x}})}_{:=L}$$

Sodass
$$\frac{d\vec{L}}{dt} = 0$$

4. eigentliche Galilei Transformation: $\vec{v} = v\vec{e}$ $\tau: X_k = x_k + ct\vec{e}, T = t$ $\dot{x}_k = \dot{x}_k + c\vec{e} \rightarrow f_c(x,t) \neq 0$

2.3.2 Wechselwirkende Systeme (konservativ, durch Langeragefunktion beschrieben)

$$L(x, \dot{x}, t) = \sum_{i=1}^{N} \frac{m_{(i)}}{2} \dot{\vec{x}}_{(i)}^{2} + U(x)$$

für $\vec{F}_i(t) = -\vec{\nabla}_{\vec{x}_i} U(x(t))$

Damit eine eigentliche orthochrone Galilei Gruppe eine Symmetriegruppe ist muss für U(x) gelten (hinreichend),

- U(x) invariant unter G_{10}
- U(x) muss translations
invariant sein: z.B. $U(x) = \sum_{1=i < j}^{N} U_{ij}(\vec{x}_i \vec{x}_j)$
- U(x) muss rotations invariant sein: z.B. $U(x) = \sum_{i,j} U_{ij}(|\vec{x}_i \vec{x}_i|)$ $|\vec{x}_j|$

2.4 Mechanische Systeme mit Nebenbedingunge

- holonome Nebenbedingungen $f(q(t),t)=0,\ y^2+y^2=R^2\Rightarrow f(x(t),y(t))=x^2-y^2-R^2=0$ ⇒ globale Einschränkung der Dynamik
- nicht holonome Nebenbedingungen: Involvieren Ungleichungen, Differentiale (Schränken die Teilchenbewegung auf einen kleinen Bereich der Dynamikmanigfaltigkeit ein)

2.4.1 Holone NB und Lagrange-Gl zweiter Art

Gegegben: $L(q, \dot{q}, t), \{q_i, i = 1, ..., 3N\}$ mit verallgemeinerten Koordinaten q_i

$$F_l(q,t) = 0; l = 1,...,r$$

Die Zwangsbedingungen schränken die Teilchendynamik auf einen f := (3N - r)-dinensionale Unterraum (Untermannigfaltigkeit) ein.

Stellen eine Matrix auf:
$$\begin{pmatrix} \frac{\partial F_l}{\partial q_k} \end{pmatrix}_{\substack{r_{xk} \\ r_{xk}}} \text{zwangsbedingungs-Matrix } F_{lk} \text{ mit Rang}$$

$$F_{lk} = r^k \forall q \in \mathbb{R}^{3N}$$

$$\Rightarrow q_l(Q_1, ..., Q_{3N-r}, t), l = 1, ..., 3N$$

$$\Rightarrow L(q, \dot{q}, t) = L\left(q(\hat{Q}, t), \sum_{k=1}^{3N-r} \frac{\partial q}{\partial Q_k} \dot{Q}_k + \frac{\partial q}{\partial t}, t\right) := \tilde{L}(\hat{Q}, \hat{Q}, t), \text{ wobei } \hat{Q} \equiv (Q_1, ..., Q_{3N-r})$$

$$\Rightarrow \text{Euler Lagrange Gl.}$$

$$\frac{d}{dt} \left(\frac{\partial \tilde{L}}{\partial \dot{Q}_k} \right) = \frac{\partial \tilde{L}}{\partial Q_k}; k = 1, ..., 3N - r$$

$$\frac{d}{dt} \left(\frac{\partial \tilde{L}}{\partial \dot{X}_i} \right) = F_i(t) + Z_i(t), X(q(Q, t), t)$$

• Für die kinetische Energie gilt: $\frac{\partial F}{\partial t} = 0$

$$\sum_{j} \frac{m_{j}}{2} \dot{x}_{j} \dot{x}_{j} = \sum_{ljk} \frac{m_{(j)}}{2} \frac{\partial x_{j}}{\partial Q_{u}} \frac{\partial x_{i}}{\partial Q_{l}} \dot{Q}_{k} \dot{Q}_{l} := \sum_{k,l} g_{kl}(Q) \dot{Q}_{k} \dot{Q}_{k}$$

$$g_{kl}(Q) \equiv \sum_j \frac{m_{(j)}}{2} \frac{\partial x_j}{\partial Q_k} \frac{\partial x_j}{\partial Q_l}$$
 symmetrisch $(g_{kl} = g_{lk})$, positiv semidefinit

Beispiel. Sphärisches Pendel

$$L(\vec{x},\dot{\vec{x}},t) = T - V = \frac{m_2 \dot{\cdot}}{2} \vec{x}^2 - (-m\vec{g}\vec{x}) = \frac{m}{2} \dot{\vec{x}}^2 + m\vec{g}\vec{x}$$

$$\vec{g} = \begin{pmatrix} 0 \\ 0 \\ -g \end{pmatrix}, \vec{x} = \begin{pmatrix} l\sin\theta\cos\varphi \\ l\sin\theta\sin\varphi \\ l\cos\theta \end{pmatrix} \Rightarrow \dot{\vec{x}} = \begin{pmatrix} l(\theta\cos\theta\cos\varphi - \sin\theta\sin\varphi\dot{\varphi}) \\ l(\dot{\theta}\cos\theta\sin\varphi + \sin\theta\cos\varphi\dot{\varphi}) \\ -l\sin\theta\dot{\theta} \end{pmatrix}$$

$$L = \frac{m}{2}l^2(\dot{\theta}^2 + \dot{\varphi}^2\sin^2\theta) - mgl\cos\theta$$

Erhaltungsgrößen:
$$\frac{\partial L}{\partial \varphi} = 0 \Rightarrow \frac{d}{dt} (m^2 \sin^2 \theta \dot{\varphi}) = 0, \ L_z :=, (\vec{x} \times \dot{\vec{x}}) \vec{e_z}$$

$$\frac{\partial L}{\partial t} = 0 \Rightarrow \frac{d}{dt} \underbrace{\left(\sum_l \dot{q}_l \frac{\partial L}{\partial \dot{q}_l} - L \right)}_{:=\frac{m}{2} l^2 (\dot{\theta}^2 + \dot{\varphi}^2 \sin^2 \theta) + mgl \cos \theta} = 0$$

(Legendre Transformation von Lagrange zu Hamilton Funktion)

$$E = \frac{m}{2}l^2 \left\{ \dot{\theta}^2 + \frac{L_z^2}{m^2 l^4 \sin^4 \theta} \right\} + mgl \cos \theta ? \frac{m}{2}l^2 \dot{\theta}^2 + U_{eff}(\theta)$$
$$U_{eff}(\theta) := \frac{L_z^2}{2ml^2 \sin^4 \theta} + mgl \cos \theta$$

Fallunterscheidung

- $L_z = 0 \rightarrow \dot{\varphi} = 0$ (ebenes Pendel)
- $L_z \neq 0 \rightarrow U_{eff}$ singulär bei $\theta = 0, \pi$

 E_{min} bei $L_z\neq 0$, Teilchen vollführt eine Kreisbewegung $\dot{\varphi}=\frac{L_z}{ml^2\sin^2\theta_s}$

2.4.2 Nicht

holonome NB und Lagrange-Gl 1. Art

Gegeben sei ein System mit f Freiheitsgraden

$$\sum_{i=1}^{f} a_{kj}(q_j, t) dq_j + b_{(u)}(q, t) dt = 0, \quad k = 1, ..., s$$

 $Rang a_{kj} = A$ (Anzahl der Zwangsbedingungen)

$$\Rightarrow \sum_{j=1}^{f} a_{kj}(q_j, t) \frac{dq_i}{dt} + b_k(q, t)$$

Mit hilfe virtueller Verrückungen hat man:

$$\sum_{j=1}^{f} a_{kj}(q_j(t), t) dq_j(t) = 0, \quad k = 1, ..., s$$

i.A. hat man (f-s) unabhängige virtuelle Verrückungen $\delta q'(t),...,\delta q_{f-s}(t)$ Holone NB: $F_{(k)}(q,t)=0$ für k=1,...,s

$$dF_{(k)} = \sum_{i=1}^{f} \frac{\partial F_k}{\partial q_i} + \frac{\partial F_k}{\partial t} dt = 0$$

 dF_k existieren nur dann wenn Integrabilitätsbedingungen gelten (Satz von Schwarz)

$$\begin{array}{|c|c|c|}
\hline
1) & \frac{\partial^2 F_k}{\partial q_i \partial q_j} & \equiv \frac{\partial a_{kj}}{\partial q_i} & = \frac{\partial^2 F_k}{\partial q_j \partial q_i} & = \frac{\partial a_{kj}}{\partial q_j} \\
2) & \frac{\partial^2 F_k}{\partial q_j \partial t} & = \frac{\partial b_k}{\partial q_j} & = \frac{\partial^2 F_k}{\partial t \partial q_j} & = \frac{\partial a_{kj}}{\partial t}
\end{array}$$

Eine Zwangsbedingung F_k ist holonom, wenn dF_k existiert und 1) und 2) gelten, sonst ist F_k nicht holonom.

Das Hamilton Prinzip (Optimierung des Wirkungsfunktionals)

$$NB: \sum_{j=1}^{f} a_{kj}(q(t), t)\dot{q}(t) = 0, \quad k = 1, ..., s$$

Stationäre Lösungen des Variationsproblems f+s Euler-Lagrange-Gleichungen 1. Art.

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_s} = \frac{\partial L}{\partial q_j} \right) + \sum_{k=1}^s \lambda_k(t) a_{kj}(q(t), t) \quad j = 1, ..., f$$

$$\sum_{k=1}^{s} \lambda_k(t) a_{kj}(q(t), t) + \sum_{k=1}^{s} b_k(q(t), t), \quad k = 1, ..., s$$

f Bahnkurven $q_j(t)$ und s Lagrange-Multiplikatoren $\lambda_k(t)$

Für holone Zwangsbedingungen:

$$a_{kj}(q,t) = \frac{\partial F_k}{\partial q_j}(q,t)$$

$$\tilde{L}(q,\dot{q}\lambda,t) = L(q,\dot{q},t) + \sum_{k=1}^{s} \lambda_k F_k(q,t)$$
Effektive Lagrange Funktion

Satz. Für zeitliche Veränderung der Energie

$$E := \left. \left(\sum_{j=1}^{k} \dot{q}_{j}(t) \frac{\partial L}{\partial \dot{q}_{j}} - L \right) \right|_{\gamma}$$

ist für $\frac{\partial L}{\partial t} = 0$ und holonome, Zeitunabhängige $F_k(q,t) = 0$ eine Erhaltungsgröße auch für \tilde{L} .

Beweis.

$$\begin{split} \frac{\partial \tilde{L}}{\partial \dot{q}_j} &= \frac{\partial L}{\partial \dot{q}_j}, \quad \frac{\partial \tilde{L}}{\partial \dot{\lambda}_k} = 0 \\ \frac{\partial \tilde{L}}{\partial q_j} &= \frac{\partial L}{\partial q_j} + \sum_{k=1}^s \lambda_k \frac{\partial F_k}{\partial q_j} \\ \frac{\partial \tilde{L}}{\partial \lambda_k} &= F_k \end{split}$$

$$\Rightarrow \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_j} \right) \Big|_{\gamma} = \left. \frac{\partial L}{\partial q_j} + \sum_{k=1}^s \lambda_k(t) \frac{\partial F}{\partial q_j} \right|_{\gamma}$$
$$\Rightarrow F_k = 0$$

$$\Rightarrow E := \sum_j \dot{q}_j - L \Bigg|_{\gamma}$$
 Ist Erhaltungsgröße

Beispiel. ebenes Pendel mit bewegtem Aufhängepunkt f(t):

ZB:
$$(x - f(t))^2 + y^2 - l^2 = F(x, y, t) = 0$$

ZB ist holonom, rheonom (da Zeitabhängig)

$$\frac{\partial F}{\partial t} = -2(x - f(t))\dot{f}(t) \neq 0$$

Lagrange-Gl 2. Art:

$$x - f(t) := l \sin \varphi$$

$$y := -l \cos \varphi \Rightarrow \dot{x} = \dot{f} + l \cos \varphi$$

$$\dot{y} = \dot{l} \dot{\varphi} \sin \varphi$$

$$L(\varphi, \dot{\varphi}t) = \frac{m}{2} \left\{ l^2 \dot{\varphi}^2 + 2l \cos \varphi \dot{\varphi} \dot{f} \right\} + kgl \cos \varphi$$

$$\frac{\partial \dot{L}}{\partial \dot{\varphi}} = ml^2 \dot{\varphi} + ml \cos \varphi \dot{f}$$

$$\frac{\partial L}{\partial \varphi} = -ml \sin \phi \dot{\varphi} \dot{f} - mgl \cos \varphi$$

Daraus folgt, dass

$$\ddot{\varphi} + \frac{g}{I}\sin\varphi = -\cos\varphi\frac{\ddot{f}}{I}$$

3 Lineare Schwingungen

Lineare Systeme: einfachste, exakt lösbare Vielteilchensysteme.

Betrachte: mechanisches Vielteilchefsystem (N Massenpunkte) mit holonom-skleronomen Randbedingungen.

Koordinaten $x_{\mu}(q_i)$ mit $mu_{=}1,...,3N$ und i=1,...,f<3N

Koordinatentransformation, sodass q_i durch Zwangsbedingungen wegfallen.

Potenzial

$$T = \sum_{i=1}^{N} m_i \dot{\vec{x}}_i \dot{\vec{x}}_i = \sum_{\alpha \beta = 1}^{f} \dot{q}_{\alpha} g_{\alpha\beta}(q) \dot{q}_{\beta}$$

mit
$$g_{\alpha\beta} = \sum_{i=1}^{N} m_i \frac{\partial \vec{x}_i}{\partial q_{\alpha}} \frac{\partial \vec{x}_i}{\partial \alpha \beta} > 0$$

Lagrange Gleichung :

$$L(q, \dot{q}) = \sum_{\alpha, \beta=1}^{N} \dot{q}_{\alpha} g_{\alpha\beta}(q) \dot{q}_{\beta} - U(q)$$

Wir setzen auch voraus:

- Existenz einer Gleichgewichtskonfiguration
- kleine Auslenkung um diese Gleichgewichtskonfiguration

Anwendung

- Beschreibung von Festkörpern
- Elektromagnetisches Strahlungsfeld
- Systeme ungekoppelter Harmonischer Oszillatoren Beschreibt z.B. nicht: Gase, Schmelzende Körper,...

3.1 Lineare Schwingungen um Gleichgewichtskonfigurationen

Gleichgewichtskonfigurationen : $\{q_{\alpha(0)}(t)$ Zeigungabhängig, $\alpha=0$

1,...,
$$f$$
} oder: $\dot{q}_{\alpha(0)}(t) = \ddot{q}_{\alpha(0)} = \dddot{q}_{\alpha(0)=...=0}$
Es gilt: $\frac{\partial U}{\partial q_{\alpha}}\Big|_{q_{(0)}} = 0$

Beweisidee: Euler-Lagrange und Bedingugngen für Gleichgewicht.

$$\begin{split} \frac{\partial L}{\partial \dot{q}_{\alpha}} &= \frac{1}{2} \sum_{\beta=1}^{f} g_{\alpha\beta}(q) \dot{q}_{\beta} + \frac{1}{2} \sum_{\beta=1}^{f} \dot{q}_{\beta} g_{\beta\alpha}(q) \quad \text{da } g_{\alpha\beta} = g_{\beta\alpha} \\ &= \sum_{\beta=1}^{f} g_{\alpha\beta}(q) \dot{q}_{\beta} \\ &\to \text{E-L:} \underbrace{\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_{\alpha}}}_{=0} &= \frac{\partial L}{\partial q_{\alpha}} = -\frac{\partial U}{\partial q_{\alpha}} \\ &\underbrace{\frac{\partial L}{\partial q_{\alpha}}}_{=0} &= -\frac{\partial U}{\partial q_{\alpha}} + \frac{1}{2} \sum_{\beta,\gamma=1}^{f} \dot{q}_{\beta} \frac{\partial q_{\beta\gamma}}{\partial q_{\alpha}} \\ &= -\frac{\partial U}{\partial q_{\alpha}} \end{split}$$

Für kleine Auslenkungen nähern wir über Taylor-Polynome:

$$q_{\alpha}(t) = q_{\alpha(0)} + \eta_{\alpha}(t), \, \eta_{\alpha}(t)$$
 klein

$$L = \frac{1}{2}\dot{\eta}^T \underbrace{g(q_{(0)})\dot{\eta} - U(q_{(0)} - \frac{1}{2}\sum_{\alpha,\beta=1}^f)\nu_\alpha}_{:=K} \underbrace{\frac{\partial^2 U}{\partial q_\alpha \partial q_\beta}\bigg|_{q_{(0)}}}_{:=K} \eta\beta + O^3(\eta,\dot{\eta})$$

$$L(\boldsymbol{\eta}, \dot{\boldsymbol{\eta}}) = \frac{1}{2} \dot{\boldsymbol{\eta}}^T q(q_{(0)}) \dot{\boldsymbol{\eta}} - \frac{1}{2} \boldsymbol{\eta}^T K \boldsymbol{\eta}$$

M Massenmatrix, symmetrisch positiv definit K Kopplungsmatrix, symmetrisch positiv definit

3.2 Dynamik kleiner Schwingungen – Normalkoordinaten

:

$$L(\eta\dot{\eta}) = \frac{1}{2}\dot{\eta}M\dot{\eta} - \frac{1}{2}\eta^T K\eta$$

mit $M > 0, M = M^t$ und $K > 0, K = K^T$, sodass

$$\begin{split} \frac{\partial L}{\partial \dot{\eta}_{\alpha}} &= \sum_{\beta=1}^{f} M_{\alpha,\beta} \dot{\eta}_{\beta} \\ \frac{\partial L}{\partial \eta_{\alpha}} &= -\sum_{\beta=1}^{f} K_{\alpha,\beta} \eta_{\beta} \\ \frac{d}{dt} \frac{\partial L}{\partial \dot{\eta}_{\alpha}} &= \sum_{\beta=1}^{f} M_{\alpha,\beta} \ddot{\eta}_{\beta} = -\sum_{\beta=1}^{f} K_{\alpha,\beta} \eta_{\beta} = \frac{\partial L}{\partial \eta_{\alpha}} \end{split}$$

mit Orthogonal
matrix $O,\,Q=O^TM^{\frac{1}{2}}\mu,\,M^{-\frac{1}{2}}KM^{-\frac{1}{2}}=OKO^T$

 $M_{ij}^{1/2}$ Verändert die Matrix indem wir M diagonalisieren, die Wurzeln der Diagonalelemente Zeihen und danach die Trasnformationsmatrizen wieder einrechnen. Sei $M = SAS^T$ und $B_{ii} = \sqrt{A_{ii}}$, dann def. $M^{1/2} = SBS^T$.

$$L(Q, \dot{Q}) = \frac{1}{2} \dot{Q}^T \dot{Q} - \frac{1}{2} Q^T K Q = \frac{1}{2} \sum_{i=1}^f \dot{Q}_i \dot{Q}_i - \frac{1}{2} \sum_{i=1}^f Q_i K_i Q_i$$

Beweisidee

$$\begin{split} L(\eta,\dot{\eta}) &= \frac{1}{2} (M^{\frac{1}{2}}\dot{\eta})^T (M^{\frac{1}{2}}\eta) - \frac{1}{2} \eta^T K \eta = \frac{1}{2} \dot{\overline{Q}}^T \dot{\overline{Q}} - \frac{1}{2} \dot{\overline{Q}}^T \overline{Q} - \frac{1}{2} \overline{Q}^T M^{-\frac{1}{2}} K M^{-\frac{1}{2}} \overline{Q} = \frac{1}{2} \dot{Q}^T \dot{Q} - \frac{1}{2} Q^T K Q \\ \operatorname{da} Q &= O^T M^{\frac{1}{2}} \eta, \ O^T O = OO^T = 1 \end{split}$$

Lösungen

•
$$K_i > 0$$
: $Q_i(t) = Q_i(0)\cos(\sqrt{K_i}t) + \frac{\dot{Q}_i(0)}{\sqrt{k_i}}\sin(\sqrt{K_i}t)$

•
$$K_i = 0$$
: $Q_i(t) = Q_i(0) + \dot{Q}_i(0)t$

•
$$K_i < 0$$
: $Q_i(t) = Q_i(0) \cosh(\sqrt{K_i}t) + \frac{\dot{Q}_i(0)}{\sqrt{k_i}} \sinh(\sqrt{K_i}t)$

3.2.1 Modell

eines lineare dreiatomigen Moleküls

$$\stackrel{m}{\underset{x_1}{\bigvee}} \stackrel{l_0}{\underset{x_2}{\bigvee}} \stackrel{M}{\underset{x_2}{\bigvee}} \stackrel{l_0}{\underset{x_3}{\bigvee}} \stackrel{m}{\underset{x_3}{\bigvee}}$$

$$M = \begin{pmatrix} m & 0 & 0 \\ 0 & M & 0 \\ 0 & 0 & m \end{pmatrix} \quad K = \begin{pmatrix} k & -k & 0 \\ -k & 2k & -k \\ 0 & -k & k \end{pmatrix}$$

$$L(\eta\dot{\eta}) = \frac{1}{2}m\dot{x}_1^2 + \frac{1}{2}m\dot{x}_3^2 + \frac{1}{2}M\dot{x}_2^2 \underbrace{-\frac{1}{2}k(x_2 - x_1 - l_0)^2 - \frac{1}{2}k(x_3 - x_2 - l_0)^2}_{:=-U(x)}$$

Es ergibt sich zusammengefasst:

$$L(\eta,\dot{\eta}) = \frac{1}{2}\dot{\eta}^T M\dot{\eta} - \frac{1}{2}\eta^T K\eta$$

Wir bestimmen nu die Massen-Kopplungs-Matrix

$$M^{-\frac{1}{2}}KM^{-\frac{1}{2}} = \begin{pmatrix} \frac{k}{m} & -\frac{k}{\sqrt{mM}} & 0\\ -\frac{k}{\sqrt{mM}} & \frac{2k}{M} & -\frac{k}{\sqrt{mM}}\\ 0 & -\frac{k}{\sqrt{mM}} & \frac{k}{m} \end{pmatrix}$$

Wir Bestimmen eine Matrix O um $M^{-\frac{1}{2}}KM^{-\frac{1}{2}}$ zu Diagonalisieren, indem wir die Eigenwerte bestimmen:

$$M^{-\frac{1}{2}}O = \begin{pmatrix} \frac{1}{2m} & \frac{1}{\sqrt{2m+M}} & \frac{1}{\sqrt{2m(1+\frac{2m}{M})}} \\ 0 & \frac{1}{\sqrt{2m+M}} & -\frac{2m/M}{\sqrt{2m(1+\frac{2m}{M})}} \\ -\frac{1}{\sqrt{2m}} & \frac{1}{\sqrt{2m+M}} & \frac{1}{\sqrt{2m(1+\frac{2m}{M})}} \end{pmatrix}$$

Jede Spalte stellt dabei eine Mögliche Schwingungsmode (Energieverteilung) dar.

Bemerkung

- \bullet Transaktionsmoden im $\mathbb{R}^3 \colon 3$ Freiheitsgrade
- Grenzfall: $k \to \infty$ Relativbewegungen unmöglich \to Starrer Körper; 6 Freiheitsgrade

Zusammenfassung

Lagrange Gleichung: $L(\eta,\dot{\eta})=\frac{1}{2}\dot{\eta}^TM\dot{\eta}-\frac{1}{2}\eta^TK\eta$ Mit Massenmatrix M, Kopplungsmatrix K (symmetrisch, positiv definit).

$$M\ddot{\eta} = -K\eta$$

Die allgemeinen Koordinaten unseres System berechnen sich als $Q = O^T M^{1/2} \eta$ Wobei O definiert ist über $M^{-1/2} K M^{-1/2} = O \kappa O^t$ Es folgt, dass $\dot{Q} = O^T M^{1/2} \dot{\eta} = \frac{1}{2} \dot{Q}^T \dot{Q} - \frac{1}{2} Q^T \kappa Q$

3.3 Dynamische Vielteilchensysteme: Der schwingende Ring

$$a=x^{(i)}a_0-x_0^{(i-1)}$$
: Abstand der Gleichgewichtspositionen (mit $i=1,...,N$ und $N+1\equiv 1)$
$$x^{(i)}-x_0^{(i)}=\eta_i$$
 $K\colon ????$

3.3.1

$$L(\eta, \dot{\eta}) = \frac{1}{2} \sum_{i=1}^{N} (\dot{\eta}_i)^2 m - \frac{1}{2} \eta^T \kappa \eta$$
$$= \frac{1}{2} \dot{\eta}^T M \eta - \sum_{i=1}^{N+1} (\eta^{(i)} \eta^{(i-1)})^2 k$$

$$M = m \cdot \mathbb{1}$$

$$\kappa = \begin{pmatrix} 2k + K & -k & -k \\ -k & 2k + K & -k \\ & -k & 2k + K & -k \\ -k & & \end{pmatrix}$$

 $\label{eq:modenbestimmung} \ \ r=1,...,N$

- $\eta_r = \Re(C_r e^{-i\omega_r t})$
- ω_r : Eigenwerte
- $(-M\omega_r^2 + K)l_r = 0$ Eigenwertproblem

$$\begin{aligned} \textbf{Ansatz} \quad l_r^l = e^{il\Phi_r}, \ \text{da} \ C^{(N+1)} = C_r^{(1)} \\ \Rightarrow e^{i(N+1)\Phi_r} = e^{i\Phi_r} \\ N\Phi_r = 2\pi r \\ \Phi_r = \frac{2\pi}{N} r \end{aligned}$$

$$0 = \left[-\omega_r^2 + \frac{k}{m} (2 - e^{i\Phi_r} - e^{i\Phi_r}) + \frac{K}{m} \right] C_r^{(l)}$$

Wobei gilt:

$$\begin{split} 2 - e^{i\Phi_r} - e^{i\Phi_r} &= 2(1 - \cos\Phi_r) \\ &= 4\sin^2\left(\frac{\Phi_r}{2}\right) \end{split}$$

Sodass

$$0 \le \omega_r = \sqrt{\frac{K}{m} + 4\frac{k}{M}\sin^2\left(\frac{\Phi_r}{2}\right)}$$
$$= \sqrt{\frac{K}{m} + 4\frac{k}{M}\sin^2\left(\frac{\pi r}{N}\right)}$$

mit r = 1, ..., N und $C_r^{(l)} = e^{i\frac{2\pi r}{N}l}$.

Wir betrachten nun $\sin^2\left(\frac{\pi r}{N}\right)$. FÜr $\frac{\pi r}{N}=0$ oder $=\frac{\pi}{2}$ gibt es keine Entartung uns somit nur eine Lösung, sonst $\left(\frac{\pi r}{N}\in(0,\pi)\right]\setminus\left\{\frac{\pi}{2}\right\}$) gibt es 2 Lösungen.

$$\eta^{(i)}(t) = \sum_{i=1}^{N} |A_r| Re\{e^{-i\omega_r t} e^{i\phi_r} e^{i\frac{2\pi r}{N}l}\}$$
$$= \cos\{\omega_r t - \frac{2\pi r}{N}l - \phi_r\}$$

Bemerkung. • Mode $r: \omega_r = \sqrt{\frac{K}{m}}$

 $\to \eta_{r=N}^{(l)}(t)$ ist eine Translation entlang des Rings

• Wellenlänge und Phasengeschwindigkeit

$$\psi_r = \omega_r t - \frac{2\pi r}{N} l - \phi_r. \text{ Für } x_o^{(1)} = la \text{ gilt:}$$

$$\psi_r = \omega_r t - \frac{2\pi r}{Na} (la) - \phi_r$$

$$0 = d\psi_r = \omega_r dt - \frac{2\pi r}{N} + dx_0^{(l)}$$

$$v_{ph} = \frac{dx_0^{(l)}}{dt} = \underbrace{\frac{\omega_r}{2\pi r}}_{\lambda} \underbrace{Na}_{\lambda}$$

• Dispersionsrelation: Lösung = Dispersionsrelation+Moden

3.3.2 Der Kontinuierliche Grenzfall

Für Gleichgewichtspositionen x_n und ausgelenkte Position x_n' gilt $x_n'(t) = x_n + \eta_n(t)$:

Ausgangspunkt

$$m\ddot{\eta}_l(t) + k(2\eta_l(t) - \eta_{l-1}(t)) + K\eta_l = 0$$

$$\Leftrightarrow M\ddot{\eta} + K\eta = 0.$$

Kontinuumlimes beschreibt den Grenzfall $a \to 0, N \to \infty$,sodass Na := L = konst im Fall $(\lambda \gg a)$: Langwellengrenzfall.

$$\eta_l(t) := u(x_l, t) \quad \text{sodass} \quad \ddot{\eta}_l(t) = \frac{\partial^2 u}{\partial t^2}(x, t)$$

$$2\eta_{l} - \eta_{l-1}(t) - \eta_{l+1} = 2u(x_{l}, t) - u(x_{l-1}, t) - u(x_{l+1}, t)$$
Taylor Entwickelung:
$$= 2u(x_{l}, t) - \left(-u(x_{l}, t) - a\frac{\partial u}{\partial x}(x_{l}, t) + \frac{a^{2}}{2}\frac{\partial u^{2}}{\partial x^{2}}(x_{l}, t) + O(a^{3})\right)$$

$$- \left(u(x_{l}, t) + a\frac{\partial u}{\partial x}(x_{l}, t) + \frac{a^{2}}{2}\frac{\partial^{2}}{\partial x^{2}}(x_{l}, t) + O(a^{3})\right)$$

$$= -a^{2}\frac{\partial^{2} u}{\partial x^{2}}(x_{l}, t)$$

Einsetzen in die Dgl

$$\frac{1}{\underline{ka^2}}\frac{\partial^2 u}{\partial t^2}(x,t) + \frac{K}{ka^2}u(x,t) = 0$$

Grenzwertbetrachtungen:

$$v := \lim_{\substack{a \to 0 \\ m \to 0 \\ k \to 0}} \sqrt{\frac{ka^2}{m}} \quad \kappa^2 := \lim_{\substack{q \to 0 \\ K, k \to 0}} \left(\frac{K}{ka^2}\right)$$

Wir erhalten die Klein-Gordon Gleichung

$$\left(\frac{1}{v^2} - \frac{\partial^2}{\partial x^2} + \kappa^2\right) u(x,t)$$

Energie:

$$E = \sum_{l=1}^{N} \left(\frac{m}{2} (\dot{\eta}_{l}(t))^{2} + \frac{k}{2} (\eta_{l}(t) - \eta_{l-1}(t))^{2} + \frac{K}{2} (\eta_{l}(t))^{2} \right)$$

Da $N\to\infty$

$$E = \int_{1}^{N} d \int_{0}^{1} \left\{ \frac{m}{2a} \left(\frac{\partial u}{\partial t} \right)^{2} + \frac{ka}{2} \left(\frac{\partial u}{\partial x} \right)^{2} + \frac{K}{2a} u^{2} \right\}$$

wir definieren $\varrho = \lim_{\substack{a \to \ m \to 0}} \frac{m}{a}$

$$=\frac{1}{2}\int_{0}^{L}dx\left\{\varrho\left(\frac{\partial u}{\partial t}\right)^{2}+\varrho v^{2}\left(\frac{\partial u}{\partial x}\right)^{2}+\kappa^{2}\varrho v^{2}u^{2}\right\}$$

Für den diskreten Ring gilt also

$$\eta_l(t) = \sum_{r=-\frac{N-1}{2}}^{\frac{N-1}{2}} A_r e^{-i(\omega_R t - \frac{2\pi}{N} lr)}$$

 $\text{mit } A_r \in \mathbb{C} \text{ und } \omega_r = \sqrt{\tfrac{K}{m} + \tfrac{4k}{m} \sin^2\left(\tfrac{\pi r}{N}\right)} \text{ für } r = 1,...,N \text{ und } L \to \infty.$

Kontinuumslimes

$$u(x,t) = \int_{-\frac{N-1}{2}}^{\frac{N-1}{2}} d\left(r\frac{2\pi}{Na}\right) \underbrace{\left(\frac{A_rNa}{2\pi}\right)}_{:=A(k)} e^{-i\omega_r t - r\frac{2\pi}{Na}al} + kompl.Konj$$
$$= \int_{-\infty}^{\infty} dk \quad A(k)e^{-i\omega(k)t}e^{ikx} + kompl.Konj$$

Einige

Eigenschaften der Fourier-Transformation (FT)

• Definition der FT:

$$\tilde{\varphi} := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx e^{ikx} \varphi(x)$$

• Umkehrtransformation

$$\varphi(x) \lim_{\epsilon \to 0_+} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dk e^{ikx} e^{-\epsilon|k|} \tilde{\varphi}(k)$$

Beweis.

$$\begin{split} \varphi(x) &= \lim_{\epsilon \to 0^+} \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \int_{-\infty}^{\infty} dx' e^{ikx} e^{-\epsilon|k|} e^{-ikx'} \varphi(x') \\ &= \lim_{\epsilon \to 0^+} \int_{-\infty}^{\infty} dx' \underbrace{\left\{ \frac{1}{2\pi} \int_{-\infty}^{\infty} dk e^{ik(x-x')} e^{-\epsilon|k|} \right\}}_{:=\frac{1}{\pi} \frac{\epsilon}{(x-x')^2 + \epsilon^2}}_{\text{(Lorentz-Kurve)}} \\ &= \lim_{\epsilon \to 0^+} \int_{-\infty}^{\infty} dx' \underbrace{\frac{1}{\pi} \frac{\epsilon \varphi(x')}{(x-x')^2 + \epsilon^2}}_{\substack{\text{Distributionen} \\ \text{(uneigentliche} \\ \text{Funktionen)}} \end{split}$$

• Faltungstheorem

$$(\varphi * \psi)(x) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx' \varphi(x - x') \psi(x')$$

(Faltung, engl. convolution), $kx = const \Leftrightarrow k = \frac{const}{x}$ (komplementäre Variablen)

$$\Leftrightarrow \varphi * \psi = \tilde{\varphi}\tilde{\psi}$$

• Parseval'sche Gleichung

$$\int_{-\infty}^{\infty} dx |\varphi(x)|^2 = \int_{-\infty}^{\infty} dk |\varphi(k)|^2$$

Elementare Eigenschaften von stetigen Funktionalen un Distributionen

Gegeben sei ein stetiges,
lineares Funktional über den Funktionenraum \mathfrak{F} .

 $l: \mathfrak{F} \to \mathbb{C}, \ l(c1\varphi_1 + c_2\varphi_2) = c_1l(\varphi_1) + c_2l(\varphi_2)$ (Linearität) für $c_1, c_2 \in \mathbb{C}$ und $\varphi_1, \varphi_2 \in \mathfrak{F}$.

Funktionen φ werden auch Testfunktionen genannt

- D: Raum komplexer, unendlich oft differenzierbarer Funktionen mit kompaktem Träger
- £: Raum unendlich oft differenzierbarer komplexer Funktionen die im Unendlichen stärker abnehmen als jede noch so hohe Potenz (streben gegen Null)
- Um Stetigkeit zu garantierne muss \mathfrak{F} zuem topologischen Raum mit Hilfe der Funktionennorm $\|\varphi\|$ gemacht werden.
- Beispiele: stetiges Funktional
- $-\ l(\varphi):=\int_{-\infty}^{\infty}f(x)\varphi(x)dx$ für f(x) stetig. lheißt auch regulär.
- $-l(\varphi):=\varphi(X=0)$ Dirac-Funktional f(x) ist dann die Dirac-(Delta)-Funktion $f(x):=\delta(x)$
- Zu jedem stetigen linearen FUnktional über \mathfrak{D} oder \mathfrak{L} existiert eine FOlge f_n stetiger Funktional-Kerne mit

$$l(\varphi) = \lim_{n \to \infty} \int_{-\infty}^{\infty} dx f_n(x) \varphi(x) := \int_{-\infty}^{\infty} f(x) \varphi(x) dx \quad \text{für bel } \varphi \in \mathfrak{D} \text{ oder } \mathfrak{C}$$

 $\Rightarrow f$ nennt man Distribution.

Eigenschaften von $\delta(x)$

- $\int_{-\infty}^{\infty} dx \delta(x x_0) \varphi(x) = \varphi(x_0)$
- Es gilt: Im Limes $n \to \infty$
- $-f_n(c) := ne^{-n^2\pi x^2} \rightarrow \delta(x)$, denn

$$\lim_{n\to\infty}\int_{-\infty}^{\infty}f_n(x)\varphi(x)dx = \lim_{n\to\infty}\frac{n}{n\sqrt{\pi}}\int_{-\infty}^{\infty}due^{-u^2}\varphi(u\frac{n}{n\sqrt{\pi}}) = \frac{1}{\sqrt{\pi}}\varphi(0)\int_{-\infty}^{\infty}due^{-u^2} = \frac{1}{\sqrt{\pi}}\varphi(0)\sqrt{\pi} = \varphi(0)$$

$$-f(x) := \frac{n}{\pi} \left(\frac{\sin(nx)}{xn}\right)^2 \to \delta(x)$$

$$- f_n(x) := \frac{1}{\pi} \frac{\frac{1}{n}}{x^2 + (\frac{1}{n})^2} \to \delta(x)$$

$$-f_n(x) := \frac{1}{\pi} \frac{\sin(nx)}{x} \to \delta x$$

• Definition $l'(\varphi) := -l(\varphi')$ für alle Testfunktionen aus \Re

$$l' = \int_{-\infty}^{\infty} dx f'(x) \varphi(x) = [f(x)\varphi(x)]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} dx f(x) \varphi'(x)$$

- \Rightarrow Jede Distribution auf $\mathfrak L$ lässt sich als Distributionsableitung endlicher Ordnung einer stetigen Fkt. darstellen.
- Beispiel: sei $\alpha(x) := \begin{cases} 0 & x < 0 \\ x & x \ge 0 \end{cases}$ Im Distributionssinn gilt:

$$\alpha'(x) = \theta(x) = \begin{cases} 0 & x < 0 \\ 1 & x > 0 \end{cases}$$

- Es gilt
- $-x\delta(x) = 0$
- $\delta(-x) = \delta(x)$
- $\delta(g(x)) = \sum_{l} \frac{1}{|g(x)|\delta(x-x_l)}$, mit stetigem $g,g(x_l) = 0$ und $g'(x_l) \neq 0$.
- $-\delta(ax) = \frac{1}{|a|}\delta(x)$
- $-\tilde{\delta k} = \frac{1}{\sqrt{2\pi}}$
- $-\delta(x-x_0)=\frac{1}{2\pi}\int_{-\infty}^{\infty}dk \quad e^{ik(x-x_0)}\cdot 1$ (Fourier-Transformation über 1)

Bestimmung der Amplituden A(k) aus den Anfangsbedingungen

$$U(x,0) = \int_{-\infty}^{\infty} dk (A(k)e^{ikx} + A^*(k)e^{ikx}) := F(x)$$

$$\frac{\partial U}{\partial t}(x,0) = \int_{-\infty}^{\infty} dx \left\{ A(k)(-i\omega(k))^{ikx} \right\} + A^*(k)i\omega(k)e^{-ikx} := G(x)$$

$$A(k) = \frac{i\omega(k)\tilde{F}(k) - \tilde{G}(k)}{2i\omega(k\sqrt{2\pi})}$$

Bestimmung der Lösungen für Randbedingungen

z.B. (W) für $x \in [0, L]$ mit 0 = u(x = 0, t) und u(x = L, t) = 0 vorgegeben für alle t.

$$\left(\frac{1}{v^2}\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2} + \kappa^2\right)u(x,t) = 0$$
 (W)

zusätzliche Anfangsbedingungen:

$$u(x,0), \frac{\partial u}{\partial t}(x,0)$$
 für $x \in [0,L]$

Fouriertransformation:

$$u(x,t) = \int_{-\infty}^{\infty} dk A(k) e^{ikx} e^{-i\omega(k)t} + k.k.$$

Randbedingung:

$$\begin{split} 0 &= u(x=0,t) = \int_{-\infty}^{\infty} dk A(k) e^{-i\omega(k)t} + k.k. \\ 0 &= u(x=L,t) = \int_{-\infty}^{\infty} dk A(k) e^{-i\omega(k)t} e^{ikL} + k.k. \\ 0 &= \int_{-\infty}^{\infty} dk A(k) e^{-i\omega(k)t} \underbrace{(1+e^{ikL})}_{-0} + k.k. \end{split}$$

$$\begin{aligned} 1 + e^{ikl} &= 0 \Rightarrow kL = n\pi, n \in \mathbb{Z} \Rightarrow k_n = \frac{\pi}{L}n \\ &\Rightarrow A(k) = A_n \delta(k - \frac{pi}{L}n) \end{aligned}$$

$$\Rightarrow u(x,t) = \sum_{n=-\infty}^{\infty} A_n e^{-i\omega(k_n)t + ik_n x} + k.k. \text{ mit } k_n = \frac{n\pi}{L}$$

zusätzlich:

$$u(x = 0, L) = 0$$

$$= \sum_{n=1}^{\infty} (A_n + A_{-n})e^{i\omega(k_n)t} + A_0 e^{-i\omega(k=0)t} + k.k.$$

$$\Rightarrow A_n + A_{-n} = 0 \text{ und } A_0 = 0.$$

$$u(x,t) = \sum_{n=-\infty}^{\infty} A_n e^{-i\omega(k_n)t} e^{i\frac{k_n\pi}{L}x} + \sum_{n=-\infty}^{\infty} A_n^* e^{i\omega(k_n)t} e^{-i\frac{n\pi}{L}x}$$

$$= \sum_{n=1}^{\infty} \underbrace{\left(A_n e^{i\frac{n\pi}{L}x} + A_{-n} e^{i\frac{n\pi}{L}x}\right)}_{=A_n \cdot 2i\sin\left(\frac{n\pi}{L}x\right) - A_n} e^{-i\omega(k_n)t} + k.k$$

$$= \sum_{n=1}^{\infty} 2|A_n|\sin\left(\frac{n\pi}{L}x\right) \cdot 2\Re\{e^{-i\omega(k_n)t + i\phi_n}i\}$$

$$= \sum_{n=1}^{\infty} 4|A_n|\sin\left(\frac{\pi n}{L}x\right)\sin(\omega(k_n)t - \phi_n)$$

 $\sin\left(\frac{\pi n}{L}x\right)$ bilden dabie ein vollständiges UFnktionensystem für stetige Funktionen f im Intervall [0,L) mit f(x=0)=f(x=L)=0 (sogar orthogonals Funktionensystem)

Es gilt

$$\int_{0}^{L} \left(\sqrt{\frac{2}{L}} \sin\left(\frac{n\pi}{L}x\right) \right) \left(\sqrt{\frac{2}{L}} \sin\left(\frac{m\pi}{L}x\right) \right) = \delta_{nm}$$
d.h. $v = \sum_{i} a_{i}e_{i}, \ w = \sum_{i} b_{i}e_{i}, \ (v, w) = \sum_{i} a_{i}b_{i}.$ Somit
$$\int_{0}^{L} \left(\sqrt{\frac{2}{L}} \sin\left(\frac{m\pi}{L}x\right) \right) u(x, 0) = \sum_{n=1}^{\infty} 4|A_{n}|\delta_{nm} = -4|A_{m}|\sin\varphi_{m}$$

$$\frac{\partial u}{\partial t}(x, 0) = \sum_{n=1}^{\infty} 4|A_{n}|\sin\left(\frac{n\pi}{L}x\right) \omega(k_{n})\cos(\omega(k_{n})t - \varphi_{n})$$

????, das heißt Linear-Kombination von allgemeiner homogene und partikulärer Lösung. \rightarrow ??? \rightarrow ???

3.4 Erzwungene Schwingungen und Greensche Funktionen

- 1. Transformation auf Normalkoordinaten \rightarrow ungekoppelte erzwungenen Schwingungen
- 2. $\ddot{Q}(t) + \omega^2 Q(t) = \mathfrak{F}(t)$ linear inhomogen

3. Allgemeine Lösung

$$Q(t) = \underbrace{Aq_1(t) + Bq_2(t)}_{\text{L\"osung der homogenen Gleichung}} + \underbrace{Q_p(t)}_{\text{partikul\"are L\"osung}}$$

4. Konstruktion von $Q_p(t)$:

Idee:
$$\mathfrak{F}(t) = \int_{-\infty}^{\infty} dt' \delta(t - t') \mathfrak{F}(t')$$

$$\label{eq:GammaG} \mathfrak{L}G(t,t') = \frac{\partial^2}{\partial t^2} G(t,t') + \omega^2 G(t,t') = \delta(t-t')$$

$$Q_p(t) = \int_{-\infty}^{\infty} dt' G(t, t') \mathfrak{F}(t') \text{ denn } \mathfrak{L}Q_p(t) = \int_{-\infty}^{\infty} \mathfrak{L}G(t, t') \mathfrak{F}(t') = \mathfrak{F}(t')$$

3.4.1 Lösung von DGL mit Hilfe von Integraltransformationen (Fourier, Laplace)

$$y''(x) - 2y'(x) + y(x) = x^3 e^x; \ y(0) = y'(0) = 0;$$

 $y(x) = f = f(x)$ Laplace-Transformation $L(y) = F(p) = \int_0^\infty dx f(x) e^{-px}, \ p > 0$

Mehtode. zur Lösung

- 1. Transformiere die DGL mit Hilfe von L und erhalten eine rein algebraische Gl. für F(p) bzgl. p.
- 2. Löse die algebraischen Gl. nach F(p) auf
- 3. Such die inverse Transformation von F(p), $y(x) = L^{-1}(L(y))$
- \Rightarrow Laplace Transformation ist linear $L(y'') 2L(y') + L(y) = L(x^3e^x)$

$$L(y') = \int_{-\infty}^{\infty} dx \frac{dy}{dx} e^{-px} = \left[y e^{-px} \right]_{0}^{\infty} - \int_{0}^{\infty} dx y e^{-px} (-p)$$
$$= -y(0) + p \int_{0}^{\infty} dx y e^{-px}$$
$$= -y(0) + pL(y) = pL(y) - y(0)$$

Analog:

$$L(y'') = p^{2}L(y) - py(0) - y'(0)$$

$$L(x^{3}e^{x}) = \int_{0}^{\infty} x^{2}x^{2}e^{-x(p-1)}dx = \frac{6}{(p-1)^{4}}, \quad p-1 > 0$$

 \Rightarrow Eingesetzt in Gl 1

$$(p^{2} - 2p + 1)L(y) = \frac{6}{(p-1)^{4}}$$
$$L(y) = \frac{6}{(p-1)^{4}(p^{2} - 2p + 1)}$$

3.5 Erzwungene Schwingungen und Greensche Fkt.

Schwingungsgleichung

$$M\ddot{\nu}(t) + K\nu(t) = F(t)$$

Normalkoordinaten Q(t) Einführen

$$\ddot{Q}(t) + kQ = F(t)$$

$$F(t) = O^{T} M^{-1/2} F(t)$$

$$F(t) = AQ_1(t) + BQ_2(t) + Q_p(t)$$

Konstruktion von $Q_P(t)$ auf F(t) Def. Eigenschaften der Greenschen Funktion G(t,t')

$$\frac{\partial^2}{\partial t^2}G(t,t') + kG(t,t') = \delta(t-t')$$

Für Q(t) gilt

$$Q_p(t) = \int_{-\infty}^{\infty} dt' G(t, t') F(t')$$

Beweis.

$$\ddot{Q}_p(t) + kQ_p(t) = \int_{-\infty}^{\infty} dt' \underbrace{\left\{ \ddot{G}(t, t') + kG(t, t') \right\}}_{:=\delta(t - t')} F(t') = F(t)$$

Es gilt:

• $G_{ret}(t,t') = \frac{1}{\sqrt{k}} \sin(\sqrt{k}(t-t'))\theta(t-t')$ (retardiert)

• $G_{av}(t,t') = \frac{1}{\sqrt{k}}\sin(\sqrt{k}(t'-t))\theta(t'-t)$ (avanciert)

Beweis. Für $G_{ret}(t,t')$ und k>0 t>t': $G_{ret}(t,t')=A\sin(\sqrt{k}(t-t'))+B\cos(\sqrt{k}(t-t'))$ (Ansatz) t< t': $G_{ret}(t,t')=0$ Übergangsbedingung für t=t': Sei $\epsilon>0$ Integration von (2) nach t

$$\int_{t'-\epsilon}^{t'+\epsilon} dt \left\{ \frac{\partial^2}{\partial t^2} G_{ret}(t,t') + k G_{ret}(t,t') \right\} = \int_{t'-\epsilon}^{t'+\epsilon} dt \delta(t-t')$$

Im Limes $\epsilon \to 0$

$$\frac{\partial}{\partial t}G_{ret}(t'+\epsilon,t') - \frac{\partial}{\partial t}G_{ret}(t'-\epsilon,t') = 1$$

Weper Stetigkeit:

$$\lim_{\epsilon \to 0} \frac{\partial}{\partial t} G_{ret}(t' + \epsilon, t') = 0$$

$$\Rightarrow B = 0, A \frac{1}{\sqrt{k}}$$

 \Rightarrow Eine Partikuläre Lösung der DGL ist gegeben durch

$$Q_p(t) = \int_{-\infty}^{t} dt' F(t') \frac{1}{\sqrt{k}} \sin(\sqrt{k}(t - t'))$$

Spezialfall $F(t) = F_0 \theta(t') \theta(T - t') \sin \Omega t'$

 \Rightarrow Eingesetzt in Gl 5

$$Q_p(t \ge T > 0) = \frac{-F_0}{2\sqrt{k}} \left\{ \frac{\sin[(\Omega - \sqrt{k})T + \sqrt{k}t] - \sin(\sqrt{k}t)}{\Omega - \sqrt{k}} - \frac{\sin[(\Omega + \sqrt{k})T - \sqrt{k}t]t\sin\sqrt{k}t}{Omega + \sqrt{k}} \right\}$$

mit $\sin \alpha \sin \beta = \frac{-1}{2} (\cos(\alpha - \beta) - \cos(\alpha - \beta))$

$$\xrightarrow{\Omega \to \sqrt{k}} -\frac{F_0 T}{2\sqrt{k}} \cos \sqrt{k} t$$
 resonante Anregung

3.5.1 Konstruktion Greenscher Funktionen für DGL: I) Anfangswertprobleme

Beispiel
$$\ddot{y}(t) + \omega^2 y(t) = f(t), \ y(0 = \dot{y}(0) = 0), \ t > 0$$

Sowie $\ddot{G}(t,t') + \omega^2 G(t,t') = \delta(t-t'), \ G(0,t') = \dot{G}(0,t') = 0$ Durch Multiplikation mit $f(t')$ und integrieren über t' :

$$\int_{0}^{\infty} dt' \left(\frac{\partial^{2}}{\partial t^{2}} + \omega^{2} \right) G(t, t') f(t') = \int_{0}^{\infty} dt' \delta(t - t') f(t')$$

Ergibt

$$\left(\frac{\partial^2}{\partial t^2} + \omega^2\right) \int_0^\infty G(t, t') f(t') = f(t)$$

Transformieren mit Hilfe der Laplace Transformation bzg. p

$$G(p,t')=rac{e^{-pt'}}{p^2+\omega^2}, \quad ext{p};0$$

$$G(t,t') = \frac{\sin(\omega(t-t'))}{\omega}\theta(t-t')$$

Fazit

- 1. Formuliere 6 mit Hilfe von G(t, t') in 7
- 2. Löse 7 mciht Laplace Trasnfomration
- 3. Trasnformiere G(p,t') zurück zu G(t,t')
- 4. Interpretiere $y(t) = \int_{-\infty}^{\infty} dt' G(t,t') f(t')$ und erhalte y(t) für ein bestimmtes f'(t).

3.5.2 Konstruktion Greenscher Funktionen für DGL: II) Randwertprobleme

1. Jede DGL hat die Form $\mathfrak{D}y(x) = f(x)$. Bringe jede DGL 2. Ordnung in die sog. Sturm-Lioville Form

$$\frac{d}{dx}(p(x)y'(x)) + a(x)a(x) = f(x)$$

Wobei p(x) > 0 und a(x) stetig, reell

2. Löse die homogene DGL

$$y_n(x)c_1y_1(x) + c_2y_2(x)$$

3. $y_{ges} = y_n(z) + \int_a^b dx G(x, z) f(x)$

$$G(x,z) := c_1 y_1(x) + c_2 y_2(x) + \begin{cases} \frac{y_1(x)y_2(z)}{p(z)\omega(z)} & \text{für } a < x < z \\ \frac{y_1(z)y_2(x)}{p(z)\omega(z)} & \text{für } a < x < b \end{cases}$$

mir $\omega(z)=y_1(z)y_2'(z)-y_1'(z)y_2(z)$ (Wronski Determinante)

1. p(x) = 1

2. Homogene DGL: y'' = 0

3.
$$G(x,z) = c_1 + c_2 x + \begin{cases} z, & \text{für } 0 < x < z \\ x, & \text{für } z < x < 1 \end{cases}$$
 Bestimme a_1, c_2 aus Randbedingungen

$$G(0,z) = 0 G(1,z) = 0$$
 \Rightarrow $c_1 = -z c_2 = z - 1$ \Rightarrow $G(x,y) = \begin{cases} x(z-1) & \text{, für } 0 < x < z \\ z(x-1) & \text{, für } z < x < 1 \end{cases}$ $\Rightarrow y_P(z) =$

Hier fehlt was!

4 Hamiltonsche Mechanik

Motivation: Lagrange-Formulierung

- 1. Grundlegende Variablen $q, q\dot{q}, t$
- 2. Lagrange Funktion $L(q, \dot{q}, t)$

3.
$$\delta \int_{t_0}^{t_1} dt \ L(q(t), \dot{q}(t), t) = 0$$
 (Hamilton Prinzip)

$$\Rightarrow \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_j} = \frac{\partial L}{\partial q_j} \text{ mit } j = 1, ..., f$$

$$\Rightarrow \frac{\partial L}{\partial q_{j_0}} = 0 \Rightarrow \frac{\partial L}{\partial q_{j_0}} := p_{j_0}$$
 ist Erhaltungsgröße

 \Rightarrow Suche nach einer alternativen Formulierung der Lagrange-Menchanik im bezug auf q, p statt q und \dot{q} .

4.1 Legendre Transformation

Ersetze f(x) durch g(p) mit $P:=\frac{\partial f}{\partial x}$ Ziel: FInde eine eindeutige Zuordnung $f(x)\leftrightarrow g(p)$ (Bijektivität)

 $\Rightarrow \ \ddot{\mathbb{U}}$ bergang von $L(q,\dot{q},t)$ zur Hamilton Funktion $H(P:=\frac{\partial L}{\partial \dot{q}},q,t)$

Gegeben sei f(x) konvex, f''(x) > 0

$$F(x,p) := px - f(x)$$

Es gilt:

$$\bullet \ \frac{\partial F}{\partial x}\big|_P = p - \frac{df}{dx}$$

•
$$\frac{\partial^2 F}{\partial x^2}\Big|_{P} = -\frac{d^2 f}{dx^2} < 0$$
, da $f''(x) > 0$

$$\Rightarrow \max F(x,p) = g(p) := F(x(P),P) \text{ mit } P = \frac{\partial f}{\partial x}$$

 \Rightarrow d.h. durch die Abbildungsvorschrift $f(x) \to g(p) := px(p) - f(x(p))$ mit $p := \frac{\partial f}{\partial x} \to x(p)$ lässt sich jeder konvexen Funktion f(x) eine Legendre-Trasnformierte g(p) zuordnen.

Es gilt:

•
$$\frac{dg}{dp} = x(p) + p\frac{dx}{dp} - \frac{df}{dx}\frac{dx}{dp} = x(p)$$

•
$$\frac{d^2g}{dp^2} = \frac{dx}{dp} = \left[\frac{d^2f}{dx^2}\right]^{-1} > 0 \rightarrow g(p)$$
 ist auch konvex

- Die Legendre Transformation ist involutiv, d.h. die Legendre Transformation von g(p) ist wieder f(x)<u>Beweis:</u> $\max G(x,p) = p(x)x g(p(x)) := p(x)x \{p(x)x f(x)\} = f(x)$
- -g(P(x)) ist die Ordinate Ψ des Punktes $x = 0 = x_0$ der Tangente an die Kurve f(x) an der Stelle x_0

$$\frac{df}{dx}\Big|_{x_0} = \frac{f(x_0) - \Psi}{x_0 - 0} \Leftrightarrow -\Psi = x_0 \frac{df}{dx}\Big|_{x_0} - f(x_0) \equiv g(p(x_0))$$

• Für f(x) von mehreren Unbekannten $x_j, j = 1, ..., d$ gilt:

$$g(p) = \sum_{j=1}^{d} p_j x_j(p) - f(x(p)) \text{ mit } p_j := \frac{\partial f}{\partial x^j} \to x_j(p_j)$$

 $\frac{\partial^2 f}{\partial x_j \partial x_i} > 0$ (positiv definit) Analog gilt für die Umkehrung:

$$\begin{split} f(x) &= \sum_{j=1}^d p_j(x) x_j - g \Big(p(x) \Big) \\ x_j &= \frac{\partial q}{\partial p_j} p \to p_j(x_j) \\ \frac{\partial^2 q}{\partial p_j \partial p_j} &= \left[\frac{\partial^2 f}{\partial x_j \partial x_j} \right]^{-1} > 0 \end{split}$$

$$p(t)$$

$$x(t)$$

• Youngsche Ungleichung

$$F(x,p) := \sum_{j=1}^d p_j x_j - f(x) \leq g(p) \equiv F\left(x(p),p\right) \equiv \max_x F(x,p), \text{ für } \frac{\partial^2 f}{\partial x^2}$$

•
$$dg = \sum_{i=1}^{d} \left\{ dx_i p_i + x_i dp_i - \frac{\partial f}{\partial x_i} dx_i \right\} = \sum_{i=1}^{d} p_i dp_i \Leftrightarrow$$

$$\frac{\partial g}{\partial p_i} = x_i$$

$$df = \sum_{i=1}^{d} \left\{ dx_i p_i + x_i dp_i - \frac{\partial g}{\partial p_i} dp_i \right\} = \sum_{i=1}^{d} p_i dp_i \Leftrightarrow$$

$$\frac{\partial F}{\partial x_i} = p_i$$

- Die Legendre-Funtion (engl. Hemiltonian) mit $p_i=\frac{\partial L}{\partial \dot{q}_i}(q,\dot{q},t) \to \dot{q}(q,p,t)$ für $\frac{\partial^2 L}{\partial \dot{q}_i\dot{q}_j}>0$
- $\Rightarrow \ \frac{\partial L}{\partial q_{j_0}} = 0 \rightarrow \frac{\partial H}{\partial q_{j_0}} = 0$ (zyklische Koordinaten)

4.2 Die

Hamiltonschen Bewegungsgleichungen

Es gilt:

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_i}\right) = \frac{\partial L}{\partial q_i} \quad \text{mit Anfangsbedingungen}$$

Es gilt:

$$\begin{array}{ll} \dot{q}_j(t) &= \frac{\partial H}{\partial p_j}(p,q,t) \\ \dot{p}_j(t) &= -\frac{\partial H}{\partial q_j}(p,q,t) \end{array} \rightarrow (p(t),q(t)) \text{ für gegebenen Anfangsbedingungen } (p(t_0),q(t_0))$$

Hamiltonsche Bewegungsgleichungen

$$\bullet \ \ \frac{\partial H}{\partial q_j} = -\frac{\partial L}{\partial q_j} a$$

$$\bullet \ \frac{\partial H}{\partial t} = -\frac{\partial L}{\partial t}$$

• $\frac{dH}{dt} (p(t), q(t), t) = \frac{\partial H}{\partial t} (p(t), q(t), t)$ Lösung der Hamilton-Bewegungsgleichung \Rightarrow für $\frac{\partial H}{\partial t} (p, q, t) = 0 \Rightarrow H(p(t), q(t), t)$ ist Erhaltungsgröße (Energie)

Beweis. Freiheitsgrade $f=:H(p,q,t)=\sum_{j=1}^f \left[q_j\dot{q}_j(q,p,t)\right]-L\left(q,\dot{q}(q,p,t),t\right)$

$$\begin{split} dH(p,q,t)|_p &= \sum_{j=1}^f \left(\frac{\partial H}{\partial p_j} dp_j + \frac{\partial H}{\partial q_j} dq_j + \frac{\partial H}{\partial t} dt\right)\Big|_P \\ \frac{df}{dx}(x) &\equiv f'(x) \equiv \sum_{j=1}^f \left(dp_j \dot{q}_j + p_j dq_j - \frac{\partial L}{\partial q_j} - \frac{\partial L}{\partial \dot{q}_j} d\dot{q}_j - \frac{\partial L}{\partial t} dt\right)\Big|_T \\ \mathrm{mit}\left(p_j - \frac{\partial L}{\partial \dot{q}_j}\right) d\dot{q}_j &= 0 \\ \Leftrightarrow \dot{q}_j &= \frac{\partial H}{\partial p_j} \end{split}$$

Es folgt daraus dass

$$\begin{split} \frac{\partial H}{\partial q_j} &= -\frac{\partial L}{\partial q_j} &\qquad \text{Hamilton I} \\ \frac{\partial H}{\partial t} &= -\frac{\partial L}{\partial t} &\qquad \text{Hamilton II} \end{split}$$

Weiterhin

$$\frac{dH}{dt} = \sum_{j=1}^{f} \left(\frac{\partial H}{\partial p_j} = -\frac{\partial H}{\partial q_j} + \frac{\partial H}{\partial q_j} = \frac{\partial H}{\partial p_j} \right) + \frac{\partial H}{\partial t} = \frac{\partial H}{\partial t}$$

Es gilt: Sei q_1 eine Zyklische Koordinate $\frac{\partial L}{\partial q_1}=0=-\frac{\partial H}{\partial q_1}\Rightarrow p_1$ Erhaltungsgröße: $H(p_1=c,p_2,...,p_f)$

4.3 Das

modifizierte Hamiltonsche Prinzip

Wenn $p = \frac{\partial L}{\partial \dot{q}_i}(q,\dot{q},t)$ (lokal) bijektiv ist

$$\begin{split} S := & \int_{t_0}^{t_1} \left\{ \sum_{j=1}^f p_j dq_i - H(q,p,t) dt \right\} \\ = & \int_{t_0}^{t_1} dt \left\{ \sum_{j=1}^f p_j(t) \dot{q}_j(t) - H(p(t),q(t),t) \right\} \leq \int_{t_0}^{t_1} dt L\left(q(t),\dot{q}(t),t\right) \quad \text{Youngsche Ungleichung} \end{split}$$

$$\delta S[\gamma] = \delta \int_{t_0}^{t_1} dt \left\{ \sum_{j=1}^{f} p_j(t) \dot{q}_j(t) - H(p(t), q(t), t) \right\} = 0$$

Wobei der Weg $\gamma: t \mapsto (p(t), q(t))$. Es gilt: Die Variation ist gleich 0:

$$\delta q(t_0) = \delta q(t_1) = 0$$

bzw. $p(t_0), p(t_1)$ beliebig

Beweis. betrachte virtuelle Verrückung $(\delta p(t_1), \delta q(t_1))$

$$\begin{split} \delta S[\gamma] &= \int_{t_0}^{t_1} dt \left\{ \sum_{j=1}^f \left(\delta p_j(t) \dot{q}_j(t) + \underbrace{p_j(t) \delta \dot{q}_j(t)}_{=\frac{d}{dt}(p_j(t) \delta q_j(t) - \delta q_j(t) p_j(t) q_j(t))} - \frac{\partial H}{\partial p_j} \delta p_j(t) - \frac{\partial H}{\partial q_j} \delta q_j(t) \right) \right\} \\ &= \sum_{j=1}^f p_j \delta q_j(t) \Bigg|_{t_0}^{t_1} + \int_{t_0}^{t_1} dt \left\{ \sum_{j=1}^f \delta q_j(t) \left(\dot{q}_j(t) - \frac{\partial H}{\partial p_j} \right) + \delta q_j(t) \left(-\dot{p}_j(t) - \frac{\partial H}{\partial q_j} \right) \right\} \det_{\delta q(t_0)} \stackrel{!}{=} \delta q(t_1) = 0 \\ \Leftrightarrow \\ \dot{q}_j &= \frac{\partial H}{\partial q_j}, \quad \dot{p}_j = -\frac{\partial H}{\partial q_j} \end{split}$$

4.4 Phasenraum,

Zustände, physikalische Variable

Ausgangspunkt H(p,q,t) kodiert mechanisches System

 $\label{eq:Raum} \overrightarrow{\text{Raum}} = \{(p,q,t)\} \text{ Phasenraum} \\ \widetilde{\text{Raum}} := \{(p,q,t)\} \text{ erweiterter Phasenraum}$

$$\begin{split} \dot{q}_j &= \frac{\partial H}{\partial p_j} \\ \dot{p}_j &= \frac{\partial H}{\partial p_j} \\ \end{split} \Leftrightarrow \dot{z}^k = \sum_{l=1}^{2f} S_{kl} \frac{\partial H}{\partial z_l} = V_k(z) \\ V_k &= \sum_{j=1}^{2f} \sum_{\substack{l=1 \\ \text{Nonvar.} \\ \text{Not proposed} \\ \text{Not proposed} \\ \text{Not proposed} \\ \frac{\partial H}{\partial z_l} \\ \text{kontravariantes Vektorfeld} \end{split}$$

Trajektorien $\dot{z}_k(t)=\sum_{l=1}^{2f}S_{kl}\frac{\partial H}{\partial z_l}(z)$ Hamiltonsche Bewegungsgleichungen

Zustand (rein) z=(p,q) charakterisier das mechanische System Vollständig

Physikalische Variable Funjtion über dem Phasenraum (z.B. H(z(t),t))

Physikalische Variable (Zustandsgröße, physikalische Variable) $H(z_0, t_0)$

gemischte Zustande Charakterisierung durch Wahrscheinlichkeitsdichteverteilung

$$P(z,t) \ge 0$$
 $\int dz P(z,t_0) = 1$
$$\langle F \rangle_{P(t_0)} = \int dz P(z,t_0) F(z,t_0)$$

Zeitliche Entwicklung und Poisson Klammern:

Sie F(p,q,t) eine Physikalische Variable

$$\dot{q}_l = \{q_l, H\} = \frac{\partial H}{\partial p_l} \quad \dot{p}_l = \{p_l, H\} = \frac{\partial H}{\partial q_l}$$

$$\begin{split} \frac{dF}{dt} \left(p(t), q(t), t \right) & \underset{\text{H-B-Gl}}{=} \sum_{l=1}^{f} \left\{ \frac{\partial F}{\partial p_{l}} \dot{p}_{l} + \frac{\partial F}{\partial q_{l}} \dot{q}_{l} \right\} + \frac{\partial F}{\partial t} \left(p(t), q(t), t \right) \\ & = \frac{\partial F}{\partial t} \left(p(t), q(t), t \right) + \left\{ F, H \right\} \end{split}$$

wobei
$$\{F, G\} = \sum_{l=1}^{f} \left(\frac{\partial F}{\partial q_{l}} \frac{\partial G}{\partial p_{l}} - \frac{\partial F}{\partial p_{l}} \frac{\partial G}{\partial q_{l}} \right)$$
$$= \sum_{l=1}^{f} \left(\frac{\partial F}{\partial q_{l}} \frac{\partial H}{\partial p_{l}} - \frac{\partial F}{\partial p_{l}} \frac{\partial H}{\partial q_{l}} \right)$$

Neue Struktur: Über die Menge der physikalischen Variablen $\{F(z)\}$ ist eine algebraische Struktur definiert

- gewöhnliche Multiplikation (FG)(z) := F(z)G(z) ist kommutativ
- Poisson-Klammern $\{F,G\} := R(z) (:= F \circ G)$ ist nicht kommutativ

Eigenschaften der Poisson-Klammern

- $\{F,c\}=0$ für $\frac{\partial c}{\partial p_i}=\frac{\partial c}{\partial q_i}=0$ für alle i=1,...,f
- $\{F, \alpha G_1 + \beta G_2\} = \alpha \{F, G_1\} + \beta \{F, G_2\}$ für $\alpha, \beta \in \mathbb{R}$
- $\{F,G\} = -\{G,F\} \Rightarrow \{F,F\} = 0$ antikommutativ
- $\{F, G_1G_2\} = \{F, G_1\}G_2 + G_1\{F, G_2\}$ (Produktregel)
- $\{F, \{G_1, G_2\}\} + \{G_1, \{G_2, F\}\} + \{G_2, \{F, G_1\}\}$

 \rightarrow Quantenmechanik: Heisenberg: p,q sind Matrizen \rightarrow lineare Vektorraum Transformationen.

$$\{F, G\} \to [\hat{F}, \hat{G}] := \hat{F}\hat{G} - \hat{G}\hat{F}$$

Beispiel: Poisson-Klammer-Strukturen $a, b \in \mathbb{R}^3$

$$\vec{a}\times\vec{b}:=\{\vec{a},\vec{b}\}\quad \vec{a}\times(\vec{b}\times\vec{c})+\vec{b}\times(\vec{c}\times\vec{a})+\vec{c}\times(\vec{a}\times\vec{b})=0$$

Entwickelung

$$\begin{split} F(p(t),q(t)) &= F\left(p(t),q(t)\right) + (t-t_0) \underbrace{\frac{dF}{dt}\bigg|_{t_0}}_{=-\{H,F\}_{t_0}} + \underbrace{\frac{1}{2}(t-t_0)^2}_{(-1)^2\{H,\{H,F\}_{t_0}} + \dots \\ &= \sum_{n=0}^{\infty} \frac{(-1)^n(t-t_0)^n}{n!} \underbrace{\{H\{H\{\dots\{H,F\}\dots\}\}|_{t_0}\}|_{t_0}}_{\text{n-mal}} \end{split}$$

4.4.1 Erhaltungsgrößen

$$=\stackrel{!}{=}\frac{dF}{dt}\big(p(t),q(t),t\big)=\{F,H\}+\frac{\partial F}{\partial t}$$

Es gilt der Poissonsche Satz: Seien F_1 und F_2 Erhaltungsgrößen: $\Rightarrow \{F,G\}$ ist Erhaltungsgröße

Beweis.

$$\frac{d}{dt}\{F_{1}, F_{2}\} = \{\{F_{1}, F_{2}\}, H\} + \frac{\partial}{\partial t}\{F_{1}, F_{2}\}$$

$$= -\{H, \{F_{1}, F_{2}\}\} + \{\frac{\partial F_{1}}{\partial t}, F_{2}\} + \{F_{1}, \frac{\partial F_{2}}{\partial t}\}$$
Mit Jacobi-Id = $\{F_{1}, \{F_{2}, H\}\} + \{F_{2}, \{H, F_{1}\}\} + \{\frac{\partial F_{1}}{\partial t}, F_{2}\} + \{F_{1}, \frac{\partial F_{2}}{\partial t}\}$

$$= \{F_{1}, \{F_{2}, H\} + \frac{\partial F_{2}}{\partial t}\} + \{F_{2}, \{H, F_{1}\}\} - \frac{\partial F_{1}}{\partial t}\}$$

$$= 0$$

Erhaltungsgröße eines dreien nicht relativistischen Massepunkts

Zusammenhänge:

$$\{q_i, p_k\} = \delta_{ik}$$

 $\{q_i, q_k\} = \{p_i, p_k\} = 0$

$$H = \sum_{i=1}^{3} \frac{p_i p_i}{2m}$$

1. Impulserhaltung

$$\dot{p}_i = \{p_i, H\} = \frac{1}{2m} \sum_{k=1}^{3} \{p_i, p_k, p_k\} = \frac{1}{2m} \sum_{k=1}^{3} \underbrace{\{p_i, p_k\}}_{=0} p_k + p_k \underbrace{\{p_i, p_k\}}_{=0} = 0$$

2. Energieerhaltung

$$\frac{dH}{dt} = \{H, H\} = 0 \quad \text{da } \frac{\partial H}{\partial t} = 0$$

3. Drehimpulserhaltung

$$\vec{L} = \vec{x} \times \vec{p}$$
 $L_i = \sum_{l,k=1}^{3} \epsilon_{ilk} x_l p_k$

$$\frac{dL_i}{dt} = \{L_i, H\} = \frac{1}{2m} \sum_{k=1}^{3} \{L_i p_k p_k\} = \frac{1}{m} \sum_{k=1}^{3} \{L_i, p_k\} p_k = \frac{1}{m} \sum_{k,b=1}^{3} \epsilon_{ikb} p_k p_b = 0$$

7 Erhaltungsgrößen in 6 dim \Rightarrow min 2 sind Abhängig Hier fehlt was!

4.5 Die Poincare-Cartan Invariante

erweiterter Phasenraum $\{(p,q,t)\}$, geschlossener Weg $C:\lambda\in[0,1]\mapsto \big(p(\lambda),q(\lambda),t(\lambda)\big).$

$$I(C) = \oint_C \left\{ \sum_{i=1}^f p_1(\lambda) \frac{dq_i}{d\lambda} - H(p(\lambda), q(\lambda), t(\lambda)) \frac{dt}{d\lambda} \right\} d\lambda$$
$$= \oint_C \sum_{i=1}^f p_i dq_i - H dt$$
$$= I(C')$$

Ist äquivalent zu

$$\dot{p}_i = \frac{\partial H}{\partial p_i} \qquad \dot{q}_i = -\frac{\partial H}{\partial p_i}$$

Konsequenz Die Koordinaten (P,Q,T),K(P,Q,T),S(P,Q,T)hängen von (p,q,t) und H(p,q,t) ab, sodass wenn

$$\sum_{i=1}^{f} p_i dq_i - H dt = \sum_{i=1}^{f} P_i dQ_i - K dT + dS$$

Dann folgt durch die Poincare-Cartan Invariante (P-C-I) und durch $\oint_C dS = 0$ die Äquivalenz zwischen

$$\begin{array}{cccc} \frac{dq_i}{dt} & = \dot{q}_i & = \frac{\partial H}{\partial p_i} & \Leftrightarrow & \frac{dQ_i}{dT} & = \frac{\partial K}{\partial P_i} \\ \frac{dp_i}{dt} & = \dot{p}_i & = \frac{\partial H}{\partial q_i} & \Leftrightarrow & \frac{dP_i}{dT} & = -\frac{\partial K}{\partial Q_i} \end{array}$$

Beweisidee betrachte eine beliebige (glatte) Abbildung $s \in [0, ...)$ und (P(p, q, t), Q(p, q, t), T(p, q, t)) und $\tilde{H}(P, Q, T) := H(p(P, Q, T), q(P, Q, T), t(P, Q, T))$. Wir betrachten die Reihenentwicklungen

$$P_i = p_i + s\dot{P} + O(s^2)$$
$$Q_i = q_i + s\dot{Q} + O(s^2)$$
$$T = t + s\dot{T} + O(s^2)$$

Durch einsetzen diese in die PCI

$$\begin{split} I(C') &= \oint_{C'} \sum_{i=1}^f P_i \; dQ_i - \tilde{H} \; dT \\ &= \oint \sum_{i=1}^f (p_q + s\dot{P}_i)(dq_i + sd\dot{Q}_i) - \left(H + \sum_{i=1}^f \left(\frac{\partial H}{\partial p_i} s\dot{P}_i + \frac{\partial H}{\partial q} s\dot{Q}_i\right) + \frac{\partial H}{\partial t} s\dot{T}\right) \left(dt + sd\dot{T}\right) + O(s^2) \\ &= \left(\oint_{C'} \sum_{i=1}^f p_i \; dq_i - H \; dt\right) \\ &+ s\oint_{C'} \left\{\sum_{i=1}^f \left(\dot{P}_i \; dq_o + p_i \; d\dot{Q}_i - \dot{Q}_i \; dp_i - \frac{\partial H}{\partial p_i} \dot{P}_i \; dt - \frac{\partial H}{\partial p_i} \dot{Q}_i \; dt - \frac{\partial H}{\partial t} \dot{T} dt\right) - Hd\dot{T}\right\} + O(s^2) \end{split}$$

wobe
i $p_i \ d\dot{Q}_i = d(p_i \dot{Q}_i) - \dot{Q}_i \ dp_i$ und $H d\dot{T} = d(H\dot{T}) - \dot{T} dH$

Durch Ordnen der Summe

$$= \oint_{C'} \left(\sum_{i=1}^{f} p_i \ dq_i - H \ dt \right) + \underbrace{\oint_{C'} d(p_i Q_i) - d(\tilde{H}\dot{T})}_{=0}$$

$$+ s \underbrace{\oint \sum_{i=1}^{f} \left\{ \dot{P}_i \left(dq_i - \frac{\partial H}{\partial p_i} dt \right) + \dot{Q}_i \left(-dp_i - \frac{\partial H}{\partial q_i} dt \right) + \dot{T} \left(-\frac{\partial H}{\partial t} + d\tilde{H} \right) \right\}}_{=\tilde{I}} + O(s^2)$$

Fall 1: Gelte für die Kurve, dass $dt \equiv \frac{dt}{d\lambda} d\lambda = 0$

$$\tilde{I} = \oint_C \sum_{i=1}^f (\dot{P}_i + \dot{T} \frac{\partial dH}{\partial dq_i}) dq_i + (-\dot{Q}_i + \dot{T} \frac{\partial H}{\partial p_i}) dp_i \stackrel{!}{=} 0$$

Ist äquivalent zu

$$\frac{dp_i}{dt} \equiv \frac{\frac{dP}{ds}\big|_{s=0}}{\frac{dT}{ds}\big|_{s=0}} = \frac{\dot{P}_i}{\dot{T}} = -\frac{\partial H}{\partial q_i} \quad \frac{\dot{Q}_i}{\dot{T}} = \frac{\partial H}{\partial p_i} = \frac{dq_i}{dt}$$

4.6 Kanonische Transformationen

Sei z die ...

$$z_i = (p,q)$$

$$\dot{z}_i = \sum_{k=1}^{2f} S_{ik} \frac{\partial H}{\partial z_k} = \{z_i, H\}$$

und gebe es eine Transformation Z(z), sodass

$$Z(z) \mapsto \dot{Z}_I \tilde{S}^{(ik)} \frac{\partial \tilde{H}}{\partial Z_k} = \{Z_i, \tilde{H}\}$$

$$\tilde{S}_{ik} = \sum_{a,b=1}^{2f} \frac{\partial Z_i}{\partial z_a} A_{ab} \frac{\partial Z_k}{\partial z_b} \tilde{H}(Z := H(z(Z)))$$

Wenn $S_{ik} = \tilde{S}_{ik}$, dann herrscht formale "Gleichheit" der Hamiltonschen Bewegungsgleichungen.

Kanonische Transformationen (erhalten die Poissonklammern) und es gilt $S_{ik} = \{z_i, z_k\}$

Eigenschaften kanonischer Transformationen: $z \leftrightarrow$

Z ist kanonisch \Leftrightarrow

1.
$$\int_{G'} \sum_{i,k=1}^{2f} S_{ik}^{-1} \ dZ_i dZ_k = \int_G \sum_{i,k=1}^{2f} S_{ik}^{-1} dz_i dz_k \text{ für alle } G(G') \text{ im Phasenraum}$$

Beweisidee. Sei $z \leftrightarrow Z$ beliebig:

$$\int_{G} \sum_{i,k=1}^{2f} S_{ik} \ dz_{i} \ dz_{k} = \int_{G'} \sum_{i,k=1}^{2f} \tilde{S}_{ik} \ dZ_{i} \ dZ_{k}$$
$$= \int_{G'} \sum_{i,k=1}^{2f} S_{ik} \ dZ_{i} \ dZ_{k}$$

2.
$$\oint_{\partial G} \sum_{i=1}^f p_i dq_i = \oint_{\partial G'} \sum_{i=1}^f P_i dQ_i$$
 für alle $\partial G(\partial G')$

Beweisidee.

$$\int_{G} \sum_{i,k=1}^{2f} S_{ik} \frac{\partial z_{i}}{\partial u} \frac{\partial z_{k}}{\partial v} \ du \ dv = \sum_{i=1}^{f} \int \ du \ dv \left(\frac{\partial p_{i}}{\partial u} \frac{\partial q_{i}}{\partial v} - \frac{\partial p_{i}}{\partial v} \frac{\partial q_{i}}{\partial u} \right)$$

Wir wählen $u_< \le u \le u_>$ und $v_< \le v \le v_>$

$$\begin{split} &= \sum_{i=1}^{f} \left\{ \int dv \ p_{i} \ \frac{\partial q_{i}}{\partial v} \bigg|_{u<}^{u>} - \int du \ dv \ p_{i} \frac{\partial^{2} q_{i}}{\partial u \partial v} \\ &- \int du \ dv \ p_{i} \ \frac{\partial^{2} q_{i}}{\partial u \partial v} \bigg|_{v<}^{v>} + \int du \ dv \ p_{i} \frac{\partial^{2} q_{i}}{\partial u \partial v} \right\} \\ &= \sum_{i=1}^{f} \oint p_{i} \ dq_{i} \end{split}$$

3. Aus (2) folgt: Wenn $\sum_{i=1}^f p_i \ dq_i = \sum_{i=1}^f P_i \ dQ_i + d\tilde{S}$ für die erzeugende Funktion einer kanonischen Transformation $\tilde{S}(P,Q) = S(p(P,Q), q(P,Q)),$ dann gilt $z \leftrightarrow Z$ ist kanonisch.

Beweis. Es existiert eine erzeugende Funktion kanonischer Transformationen S(P,Q,t) = S(P(p,q,t),Q(p,q,t),t)

$$\sum_{i=1}^{f} p_i \ dq_i = \sum_{i=1}^{f} \left(P_i \ dQ_i + \frac{\partial S}{\partial P_i} dP_i + \frac{\partial S}{\partial Q_i} dQ_i \right)$$

$$\oint_{\partial G} \sum_{i=1}^{f} p_i \ dq_i \equiv \oint_{\partial G} \sum_{i=1}^{f} P_i \ dQ_i + \underbrace{\oint_{\partial G'} \sum_{i=1}^{f} \left(\frac{\partial S}{\partial P_i} dP_i + \frac{\partial S}{\partial Q_i} dQ_i \right)}_{=0}$$

Daraus folgt, dass

$$\begin{split} I(c) &:= \oint_{C} \sum_{i=1}^{f} p_{i} \ dq_{i} - H(p,q,t) dt \\ &= \oint_{C'} \sum_{i=1}^{f} P_{i} \ dQ_{i} - \underbrace{\left(\underbrace{H\left(p(P,Q,t), q(P,Q,t), t\right)}_{=K(P,Q,t)} + \frac{\partial S}{\partial t} \right)}_{=K(P,Q,t)} dt \\ &+ \underbrace{\oint_{C} \sum_{i=1}^{f} \left(\frac{\partial S}{\partial P_{i}} dP_{i} + \frac{\partial S}{\partial Q_{i}} dQ_{i} \right) + \frac{\partial S}{\partial t} dt}_{=0} \end{split}$$

Bemerkung. Es gilt:

Hamilton-Dynamik mit $(p,q;H(p,q,t)) \Leftrightarrow$ Hamilton-Dynamik mit (P,Q;k(P,Q,t)) $(p,q) \leftrightarrow (P,Q)$ mit $K(P,Q,t) = H(p(P,Q,t),q(P,Q,t) + \frac{\partial \tilde{S}}{\partial t}(P,Q,q))$ ist kanonisch (Newtonsche Zeilt t wir nicht Tranformiert)

Verbindung zur Poincare-Cartan Invariante

Sei eine kanonische Transformation $z \leftrightarrow Z$ bzw $(p,q,t) \leftrightarrow (P,Q,T)$ gegeben, dann gilt

$$\oint_{C} \sum_{i=1}^{f} p_{i} \ dq_{i} - H \ dt = \oint_{C'} \sum_{i=1}^{f} P_{i} \ dQ_{i} - \tilde{H} \ dt + d\tilde{S}$$

und

$$\sum_{i=1}^{f} p_i \ dq_i = \sum_{i=1}^{f} \left(P_i \ dQ_i + \frac{\partial \tilde{S}}{\partial P_i} dP_i + \frac{\partial \tilde{S}}{\partial Q_i} dQ_i \right)$$

sodass
$$H = \tilde{H} + \frac{\partial \tilde{S}}{\partial t}$$

4.6.1 Erzeugende

Funktionen und kanonische Transformationen

Ausgangspunkt: kanonische Transformation $(p,Q) \leftrightarrow (P,Q)$ mit erzeugender Funktion $\tilde{S}(P,Q,t) \equiv S(p,q,t)$. Lokal ist det $\frac{\partial(P,Q)}{\partial(p,q)} \neq 0$. Existiert eine Transformationsformel?

Sei $(p,q) \leftrightarrow (P,Q) \leftrightarrow (q,Q)$. Daraus definieren wir $S_2(q,Q,t) := \tilde{S}(P(q,Q,t),Q,t)$.

$$\sum_{i=1}^{f} \left\{ p_i \ dq_i - P_i \ dQ_i - \frac{\partial S_2}{\partial q_i} dq_i - \frac{\partial S_2}{\partial Q_i} dQ_i \right\} = 0$$

(q,Q) sind Koordinaten. Daraus folgt dq_i, dQ_i sind linaer unabhängig:

$$p_i = \frac{\partial S_2}{\partial q_i}(q, Q, t)$$
 $P_i = -\frac{\partial S_2}{\partial Q_i}(q, Q, t)$

Wahl $(p,q) \leftrightarrow (P,Q)$ ist nicht immer möglich (zB. id: $q_i = Q_i, \, p_i = P_i$)

4.6.2 Kontinuierliche

kanonsche Transformationen

Sei $g_{\epsilon}(q,p) \to (P,Q)$ stetig aus den Einheitstransformationen erzeugbar, also erzeugt aus

$$S_3(P, q, t, \epsilon) = \sum_{i=1}^{f} P_i q_i + \epsilon F(P, q, t, \epsilon)$$

Für die erzeugende Funktion F(p,q,t) gilt

$$\frac{dp_i}{d\epsilon} = -\frac{\partial F}{\partial q_i} \qquad \qquad \frac{dq_i}{d\epsilon} = \frac{\partial F}{\partial p_i}$$

$$\begin{split} g_{\epsilon}: & p_{i} = \frac{\partial S_{3}}{\partial q_{i}} = P_{i} + \epsilon \frac{\partial F}{\partial q_{i}}(P,q,t,\epsilon) \\ & \Rightarrow \frac{dp_{i}}{d\epsilon} = \left. \frac{P_{i} - p_{i}}{\epsilon} \right|_{\epsilon=0} = -\frac{\partial F}{\partial q_{i}}(P,q,t,\epsilon=0) = -\frac{\partial F}{\partial q_{i}}(p,q,t,\epsilon=0) \\ Q_{i} & = \frac{\partial S_{3}}{\partial P_{i}} = q_{i} + \epsilon \frac{\partial F}{\partial q P_{i}}(P,q,t,\epsilon) \\ & \Rightarrow \frac{dq_{i}}{d\epsilon} = \left. \frac{Q_{i} - q_{i}}{\epsilon} \right|_{\epsilon=0} = -\frac{\partial F}{\partial P_{i}}(P,q,t,\epsilon=0) = -\frac{\partial F}{\partial p_{i}}(p,q,t,\epsilon=0) \end{split}$$

Bemerkung. Einene Speziallfall der Erzeugenden Funktion stellt die Zeitliche Entwickelung dar: Wenn $\epsilon \to t$ dann ist $F \to H$ einen kontinuierliche Kanonische Transformation.

4.6.3 Symmetrietransformationen

Definition einer Symmetrietransformation

$$z = (p, q) \xrightarrow{h_t} (p_t, q_t) \Leftrightarrow \{F, H\} = 0$$

$$g_{\epsilon} \downarrow F \qquad g_{\epsilon} \downarrow F$$

$$z_{\epsilon} = (P(\epsilon), Q(\epsilon)) \xrightarrow{H} (P_t(\epsilon), Q_t(\epsilon))$$

Sei F(p,q)explizit Zeitunabhängig $\Rightarrow \frac{dF}{dt} = \{F,H\} = 0$ Beweis.

$$h_t(g_{\epsilon}(z)) = M_1$$

$$h_t(h_t(z)) = M_2$$

Durch verwenden der Jacobi Identität:

$$M_1 - M_2 = \epsilon t \{ z, \{ F, H \} \} + O(\epsilon^2, t^2, \epsilon t)$$

Beispiele: freie Teilchen mit H(p,q,t)) $\frac{\vec{p}^2 2}{2m}$ Erhaltungsgröße $\stackrel{?}{\Rightarrow}$ Symmetrietransformation

$$\begin{split} \{H,p_i\} &= 0 \quad \Rightarrow \quad F_{i_0}(p,q,t) \equiv p_{i_0} \\ \frac{d\vec{p}}{d\epsilon} &= \vec{e}_{i_0} \times \vec{p} \\ \frac{d\vec{x}}{d\epsilon} &= \vec{e}_{i_0} \times \vec{x} \end{split}$$

$$\begin{split} \frac{dq_i}{d\epsilon} &= \frac{\partial F_{i_0}}{\partial p_i} = \delta_{ii_0} \\ \frac{dp_i}{d\epsilon} &= -\frac{\partial F_{i_0}}{\partial q_i} = 0 \end{split}$$

4.6.4 Hamilton-Jakobische Differentialgleichung

Es gilt: nicht partielle DGL 1. Ordnung \leftrightarrow Hamiltonisches System von gewöhnlichen DGLs kanonische Transformation in ein Hamilton System: $(p,q) \leftrightarrow (P,Q)$.

Es existier eine erzeugende Funktion S(P, Q, p, q, t), sodass

$$\begin{split} p &= \frac{\partial S}{\partial q} & Q &= \frac{\partial S}{\partial P} & P &= \frac{\partial S}{\partial Q} \\ & \dot{q} &= \frac{\partial H}{\partial p} & \stackrel{S}{\leftrightarrow} & \dot{Q} &= \frac{\partial K}{\partial P} \\ & \dot{q} &= -\frac{\partial H}{\partial q} & \stackrel{F}{\leftrightarrow} & \dot{P} &= -\frac{\partial K}{\partial P} \end{split}$$

Es folgt die H-J-DGl:

$$K=0=H(\frac{\partial S}{\partial q},q,t)+\frac{\partial S}{\partial t}$$

Beispiel. Der Freie Massenpunkt:

$$H(\vec{p}, \vec{x}, t) = \frac{\vec{p}^2}{2M}$$

H-J-DGl:

$$H(\frac{\partial S}{\partial x_i}, x_j, t) + \frac{\partial S}{\partial t} = K = \frac{1}{2}M(\vec{\nabla}_{\vec{x}}S)^2 + \frac{\partial S}{\partial t} \stackrel{!}{=} 0$$

Damit das probl
me eindeutig gelöst werden kann nehemn wir an, dass $S(\vec{P}, \vec{x}, t = 0)$ vorgegeben ist.

Nun suchen wir eine Lösung mit dem Separationsansatz: $S(\vec{P}, \vec{x}, t) = W(\vec{P}, \vec{x}) + \eta t$. Es ergibt sich eine reduziertes Problem:

$$\frac{1}{2M}(\vec{\nabla}_{\vec{x}}S)^2 + \eta = 0$$

Es folgt, als mögliche Lösung $W(\vec{P}, \vec{x}) = \vec{P}\vec{x}$, sodass $\eta = -\frac{\vec{P}^2}{2M}$

$$S(\vec{P},\vec{x},t) = \vec{P}\vec{x} - \frac{\vec{P}^2}{2M}t$$

erfüllt die H-J-DGl mit $S = \vec{P}\vec{x}$, sodass

$$p_{i} = \frac{\partial S}{\partial x_{i}} = P_{i}$$

$$Q_{i} = \frac{\partial S}{\partial P_{i}} = x_{i} - \frac{P_{i}}{M}t$$

$$x_{i} = Q_{i} + \frac{P_{i}}{M}$$

$$p_{i} = P_{i}$$

Hamilton gl zu H-J-DGI Löse die Hamiltonsche Bewegunggelichung mit vorgegebenenm $S_0(\vec{x})$

4.6.5 Auf den Spuren von Erwin Schrödinger

Schrödinger Gleichungen: Punktquant im äußeren Potenzial

$$\left\{-\frac{\hbar^2}{2M}\Delta_{\vec{x}} + V(\vec{x},t)\right\}\Psi(\vec{x},t) = i\hbar\frac{\partial\Psi}{\partial t}(\vec{x},t)$$

Kurzwellenasymptotik $\hbar \to 0$ für kleine Wellenlängen

$$\begin{split} &\Psi(\vec{x},t) = Ae^{\frac{i}{\hbar}S(\vec{x},t)}\\ &(\vec{\nabla}\Psi)(\vec{x},t) = \frac{i}{\hbar}(\vec{\nabla}S)\Psi(\vec{c},t)\\ &(\vec{\nabla}\Psi)(\vec{x},t) = \frac{i}{\hbar}(\Delta S)\Psi(\vec{x},t) + (\frac{i}{\hbar}\vec{\nabla}S)^2\Psi(\vec{x},t)\\ &|(\vec{\nabla}S)^2| \gg |\hbar\Delta S| \end{split}$$

Also folgt für kleine Wellenlängen

$$\frac{1}{2M}(\vec{\nabla}_{\vec{x}}S)^2 + V(\vec{x},t) = -\frac{\partial S}{\partial t}$$

Die allgemeine Lösung ist $\Psi(x,t=0)=Ae^{\frac{i}{\hbar}S_0(x)}:=\phi(x)$. Mit der H-J-DGl bauen wir A zu $A(\vec{x},t)$ aus, sodass

$$\Psi(Q,t) = \sum_{j} \phi(q_0^{(j)}) \frac{1}{\det(\frac{\partial Q}{\partial q_0})_j} e^{\frac{i}{\hbar} S_j(Q,t) - \frac{i}{2}\pi\mu j}$$

Wobei μ den sog. Morse Index bezeichnet.

Grenzwert \hbar gegen 0

5 Der starre Körper

5.1 Der starre Körper als Mechanisches Vielteilchensystem

Definition Zwangsbedingungen: $|\vec{x}^{(i)} - \vec{y}^{(j)}| = C_{ij}$ $i, j \in \{1, ..., N\}$

- zeitunabhängig für alle Massepunkte
- Holonom

Bemerkung.

- Es gibt keine innere Dynamik
- kontinuierliche starre Körper durch kontinuums Limes

Abstände bleiben im Körperfesten Bezugsystem Konstant

3+3(N-3)=3N-6unabhängige Zwangsbedingungen.

• N Massenpunkte $\to 3N$ Koordinaten für die Positionierung.

Die Anzahl der Freien Parameter ist jedoch 3N - (3N - 6) = 6 unabhängig von N

5.2 Lagrangesche

Bewegungsgleichungen 1. Art:

$$S[\gamma] = \int_{t_0}^{t_1} dt \left\{ \frac{m_i}{2} \dot{\vec{x}}_i^2(t) + \vec{F}_i(t) \cdot \vec{x}_i(t) + \sum_{l,m \in I} \lambda_{lm}(t) (|\vec{x}_l(t) - \vec{x}_x(t)| - c_{lm}) \right\}$$

Bewegunsgleichungen

$$\underbrace{\frac{d}{dt}m_{i}\dot{\vec{x}}_{i}(t)}_{i} = \vec{F}_{i}(t) + \underbrace{\sum_{i,m \in I} \lambda_{im}(t) \frac{\vec{x}_{I}(t) - \vec{x}_{m}(t)}{|\vec{x}_{i}(t) - \vec{x}_{m}(t)|}_{=\vec{Z}_{i}(t)} - \underbrace{\sum_{l,i \in I} \frac{\vec{x}_{l}(t) - \vec{x}_{i}(t)}{|\vec{x}_{l}(t) - \vec{x}_{i}(t)|}_{=\vec{Z}_{i}(t)}$$

•

Kontaktbedingungen

- Gleiten: Zwangskraft steht orthogonal auf der Kontaktfläche
- Rollen: verschwindende Relativgeschwindigkeit

5.3 Lagrange Methode 2. Art

- 6 Freiheitsgrade
- Bezugssystem B im starren Körper $B \leftrightarrow \vec{R}(t)$ entspricht der Position des Körpers
- $\{\vec{e}_1,\vec{e}_2,\vec{e}_3\}$ charakterisiert eien Körperfestes Orthonormalsystem

$$\Rightarrow \vec{x}^{(i)}(t) = \vec{R}(t) + \sum_{r=1}^{3} b_r^{(i)} \vec{e}_r$$

- Die Transformation $\{\vec{e}_1, \vec{e}_2, \vec{e}_3\} \leftrightarrow \{\vec{n}_1, \vec{n}_2, \vec{n}_3\}$ ist von 3 Parametern abhängig und eine Drehung.
- $\vec{e}_l = \sum_{r=1}^3 \vec{n}_r D_{rl}(\vec{\varphi}(t)).$

Drehungen Eine Drehung wir beschrieben, indem mit $|\vec{\varphi}| = \varphi$

$$D(\vec{\varphi}\vec{x}) = (\cos\varphi)\vec{x} + \sin\varphi\frac{\vec{\varphi}}{\varphi} \times \vec{x} + (1 - \cos\varphi)\frac{\vec{\varphi}}{\varphi}(\frac{\vec{\varphi}}{\varphi} \cdot \vec{x})$$

Sodass allgemein für $D(\varphi)$ gilt:

$$D(\vec{\varphi}) = \cos \varphi \cdot \mathbb{1} + \sin \varphi \frac{\vec{\varphi}}{\varphi} + (1 - \cos \varphi) \frac{\vec{\varphi}}{\varphi} \times \frac{\vec{\varphi}}{\varphi}$$

Charakteristische Eigenschaften:

- $D^{-1}(\vec{\varphi}) = D^T(\vec{\varphi}) = D(-\varphi)$
- $\dot{\vec{e}_l}(t) = \sum_{r=1}^3 \vec{n}_r \dot{D}_{rl}(\vec{\varphi}) = \dot{\vec{\varphi}} \times \vec{e}_l := \vec{\omega}$

Parametrisierung durch Euler Winkel $\vec{\alpha} \leftrightarrow (\varphi \theta, \psi)$

Wir zerlegen also in 3 Drehungen

- $\{\vec{n}_i\} \stackrel{D^{(1)}}{\rightarrow} \{\vec{n_j}'\}$
- $\bullet \ \{\vec{n}_i'\} \overset{D^{(2)}}{\rightarrow} \{\vec{n_j}''\}$
- $\bullet \ \{\vec{n}_i''\} \overset{D^{(3)}}{\rightarrow} \{\vec{e}_l\}$

$$D_{rl}(\varphi, \theta, \psi) = \begin{pmatrix} \cos \varphi \cos \theta \cos \psi - \sin \varphi \sin \psi & -\cos \varphi \sin \psi - \sin \varphi \cos \theta \cos \psi & \sin \varphi \sin \theta \\ \sin \varphi \cos \psi + \cos \varphi \cos \theta \sin \psi & -\sin \varphi \sin \psi + \cos \varphi \cos \theta \cos \psi & -\cos \varphi \sin \theta \\ \sin \theta \sin \psi & \sin \theta \cos \varphi & \cos \theta \end{pmatrix}$$

5.3.1 Lagrange Funktion

$$L(\vec{R}, \dot{\vec{R}}, \vec{\Omega}) = \sum_{i=1}^{N} \frac{m_i}{\dot{\vec{x}}_i}^2$$

Weiterhin gilt:

$$\vec{x}^{(i)}(t) = \vec{R}(t) + \sum_{r=1}^{3} b_r^{(i)} \vec{e}_r(t) \dot{\vec{x}}^{(i)}(t) = \dot{\vec{R}}(t) + \sum_{r=1}^{3} b_r^{(i)} \underbrace{\dot{\vec{e}}_r(t)}_{=\vec{\Omega}(t) \times \vec{e}_r(t)}$$

Sodass:

$$\sum_{i=1}^N \frac{m_i^{\ 2}}{\dot{\vec{x}}^{\ i}} = \frac{M}{2} \dot{\vec{R}}^2 + (\dot{\vec{R}} \times \vec{\Omega}) \cdot (\vec{X}_s - \vec{R}) M + \frac{1}{2} \sum_{k,l=1}^3 \underbrace{(\vec{\Omega} \vec{e}_k) I_{kl} (\vec{\Omega} \vec{e}_l)}_{:=\Omega \cdot (I\vec{\Omega})}$$

Der sog Trägheisttensor I wird definiert als

$$I := \sum_{l,k=1}^{3} I_{kl} \vec{e}_k \times \vec{e}_l$$

Wobei I_{kl} definiert ist als

$$I_{kl} = \sum_{i=1}^{N} m_i \left(\sum_{r=1}^{3} (b_r^{(i)})^2 \delta_{kl} - b_k^{(i)} b_l^{(i)} \right)$$

in körperfester Orthonormalbasis, zeitunabhängig. I ist also nur abhängig von der Wahl von \vec{R} und $\{\vec{e_i}\}$.

Die Trägheitsmatrix/ der Trägheitstensor kodiert die Struktur des Starren Körpers.

Steinersche Satz Für I mit Bezugspunkt \vec{R} und I' mit Bp. $\vec{R} + \vec{a}$ gilt:

$$I'_{kl} = I_{kl} + M \left(\delta k l(\vec{a})^2 - (\vec{a}\vec{e}_k)(\vec{a}\vec{e}_l)\right)$$

5.4 Der freie starre Körper

Definition. Ein starrer Körper heißt **frei**, wenn nur die Zwangskräfte wirken.

Definition. Ein freier starrer Körper heißt **Kreisel**, wenn nur ein Punkt fest ist.

5.4.1 Erhaltungsgrößen

$$L = \sum_{i=1}^{N} m^{(i)} \frac{\dot{\vec{x}}^{(i)^{2}}}{2} + \underbrace{\sum_{i,j} \lambda_{ij} \left(|\vec{x}^{(i)} - \vec{x}^{(j)}| - C_{ij} \right)}_{L_{z}}$$

Translationen im Ort

$$\vec{x^{(i)}}' = \vec{x}^{(i)} + \epsilon \vec{a}$$
 $t' = t$
 $L' = L$

Es folgt dass

$$\vec{P}_{i} = \sum_{i=1}^{N} m_{i} \dot{\vec{x}}^{(i)} = M \dot{\vec{X}}_{S}$$

$$E = \sum_{i=1}^{3} \sum_{i=1}^{N} a_{j} m_{i} \dot{\vec{x}}_{j}^{(i)} = \vec{a} \vec{P}$$

Sodass

$$\dot{\vec{P}} = 0$$

Translation in der Zeit Sei $\phi=1, \psi_i=0, \, L=L'.$ Dann

$$E = -\sum_{i=1}^{N} m_i \left(\frac{\dot{\vec{x}}^{(i)^2}}{2} - \dot{\vec{x}}^{(i)^2} \right) = \sum_{i=1}^{N} \frac{m_i}{2} \dot{\vec{x}}^{(i)^2}$$

Veränderung der Geschwindigkeit Sei $\vec{x^{(i)}}' = \vec{x}^{(i)} + \epsilon \vec{v}t$. Wir bezeichnen $\vec{v}t$ als $\vec{\psi}$. Sei zusätzlich t' = t.

$$L' = \frac{1}{2} \sum_{i=1}^{N} m_i (\dot{\vec{x}}^{(i)} + \epsilon \vec{v})^2 + L_z = L + \epsilon \left(\sum_{i=1}^{N} m_i \dot{\vec{x}}^{(i)} \right)$$

5.4.2 Dynamik

des asymmetrischen starren Körpers

wähle
$$\vec{R} = \vec{X}_s = \vec{O}$$
. und $I_{11} < I_{22} < I_{33}$

Mehtode. Erhaltungsgrößen:

$$E_{rot} = \frac{1}{2}(\vec{\Omega}I\vec{\Omega}) = \sum_{i=1}^{3} \vec{I}_{ii}\vec{\Omega}_{ii}$$

5.4.3 Dynamik des freien Symmetrischen Kreisels

5.5 Der starre Körper im homogenen Schwerefeld/unter dem Einfluss äußerer Kräfte

5.5.1 Rotation um eine raumfeste Drehachse mit konstanter Winkelgeschwindigkeit

Problemstellung Betrachte eine einfache Bewegung eines starren Körpers mit $\vec{\Omega}(t) = \vec{\Omega}_0 \Rightarrow \dot{\Omega}(t) = \ddot{\Omega}(t) = \dots = 0$.

Welche Kräfte sind zur Aufrechterhaltung der Bewegung erforderlich? (ohne Kräfte möglich?) Sei $\{\vec{e_i}\}$ ein körperfestes Orthonormalsystem. Dann

$$\vec{x}^{(i)} = \vec{R}(t) + \sum_{j=1}^{3} b_{j}^{(i)} \vec{e}_{j}$$

$$\dot{\vec{x}}^{(i)}(t) = \dot{\vec{R}}(t) + \sum_{j=1}^{3} b_{j}^{(i)} \vec{\Omega}_{0} \times \vec{e}_{j}(t)$$

$$\ddot{\vec{x}}^{(i)}(t) = m_{i} \ddot{\vec{R}}(t) + \sum_{j=1}^{3} m_{i} j_{j}^{(i)} \vec{\Omega}_{0} \times (\vec{\Omega}_{0} \times \vec{e}_{j}(t))$$

Es folgt für die Gesamtkraft

$$\sum_{i=1}^{n} m_i \ddot{\vec{x}}_i = M \ddot{\vec{R}}(t) + \vec{\Omega}_0 \times \left(\sum_{j=1}^{N} \sum_{j=1}^{3} m_i b_j^{(i)} \vec{e}_j(t) \right)$$
$$= M \ddot{\vec{R}}(t) + \vec{\Omega}_0 \times (\vec{\Omega}_o \times (\vec{x}_s - \vec{R}))$$

o.B.d.A: Sei \vec{R} auf der Drehachse $\Rightarrow \dot{\vec{R}} = \ddot{\vec{R}} = 0$

$$=\vec{\Omega_0} \times (\vec{\Omega_0} \times (\vec{x}_s - \vec{R}))M$$
 Unwucht erster Art

Drehimpulsbilanz $\vec{R}(t) = \vec{x}_s$

$$\vec{L} = M\vec{x}_s \times \vec{x}_s + I\vec{\Omega}$$

$$\frac{d\vec{L}}{dt} = M\vec{x}_s \times \ddot{\vec{x}}_s + \sum_{k=1}^{3} \vec{\Omega}_0 \times \vec{e}_k(t) I_{kl}(\vec{\Omega}_0)_l = \vec{N}$$

Sei die Unwucht 1. Art beseitigt (\vec{x}_s auf Drehachse $\Leftrightarrow \ddot{\vec{x}}_s = 0 \Rightarrow \frac{d\vec{P}}{dt} = 0$) Dann ist

$$\vec{N} = \vec{\Omega}_0 \times \vec{L}_{rel}$$
 $\vec{L}_{rel} = I\vec{\Omega}_0$
$$\frac{d\vec{L}}{dt} = 0 \Rightarrow \vec{\Omega}_0 \parallel \vec{L}_{rel}$$
 $\vec{L}_{rel} = I\vec{\Omega}_0 = \alpha\vec{\Omega}_0$

Ist also eine Drehung um eine Hauptträgheitsachse

5.5.2 Der schwere Kreisel

Ein Kreisel im homogene Schwerefeld $(V(\vec{x}^{(i)}) = -m_i \vec{g} \vec{x}^{(i)})$. Lagrange Methode 2. Art:

$$L = \frac{M}{2}\dot{\vec{x}}_s^2 + \frac{1}{2}(\vec{\Omega}, I\vec{\Omega}) - \sum_{i=1}^{N} V(\vec{x}^{(i)}) + \text{Zwbedg}$$

Entlang der Hauptträgheistachsen

$$(\vec{\Omega}, I\vec{\Omega}) = \sum_{j=1}^{3} \Omega_j I_{jj} \Omega_j$$

verwende Eulerwinkel (φ, θ, ψ)

$$L = \frac{1}{2} (I_{11}] M b_3^{(P)^2}) (\dot{\theta}^2 + \dot{\varphi}^2 \sin^2 \theta^2) + I_{33} (\dot{\psi}^2 + \dot{\varphi}^2 \cos^2 \theta + 2\dot{\varphi}\dot{\psi}\cos \theta) + M g b_3^{(P)} \cos \theta - M g \cos \theta - M g \vec{n}_3 \vec{C}$$

Es folgt:

$$\begin{split} \frac{\partial L}{\partial \varphi} &= 0 \quad \frac{\partial L}{\partial \dot{\varphi}} = (I_{11} + Mb_3^{(P)^2}) \sin^2 \theta \dot{\varphi} + I_{33} \cos^2 \theta \dot{\varphi} + I_{33} \dot{\psi} \cos \theta & := A = \vec{L} \vec{n}_3 \\ \frac{\partial L}{\partial \psi} &= 0 \quad \frac{\partial L}{\partial \dot{\psi}} = I_{33} (\dot{\psi} + \dot{\varphi} \cos \theta) & := B = \vec{L} \vec{e}_3 \\ \frac{\partial L}{\partial t} &= 0 \quad \sum_{i=1}^3 \frac{\partial L}{\partial \dot{q}_i} \dot{q}_j - L & := E = L_2 - L_1 \end{split}$$

Einsetzen der Erhaltungsgrößen in L:

$$\dot{\psi} = \frac{B}{I_{33}} - \dot{\varphi}\cos\theta$$

$$\dot{\varphi} = \frac{A - B\cos\theta}{\sin^2\theta[I_{11} + b_3^{(P)^2}]}$$

$$E = \frac{1}{2}(I_{11} + Mb_3^{(P)^2}\dot{\theta}^2 + U_{eff}(\theta))$$

$$U_{eff}(\theta) = \frac{(A - B\cos\theta)^2}{2(I_{11} + Mb_3^{(P)^2})\sin^2\theta} + \frac{B^2}{2I_{33}} - Mgb_3^{(P)}\cos\theta$$

...

• $\theta(t) = \theta_0$, $\dot{\varphi} = \frac{A - B\cos\theta_0}{\sin^2\theta_0 I_{11}'}$: reine Präzessionsbewegung, keine Nutation

•
$$U_{eff}(\theta) = U_{eff}(\theta_0) + \frac{1}{2}(\theta - \theta_0)^2 U_{eff}''(\theta_0) + O((\theta - \theta_0)^3),$$

 $E = \frac{1}{2}I_{11}'\dot{\theta}^2 + \frac{1}{2}(\theta - \theta_0)^2 U_{eff}''(\theta_0) \rightarrow \text{harmonische Schwingung um } \theta_0$

Spezialfall $\theta \approx 0$ Gibt es eine Beewgung mit $\theta(t) = 0$?

Existiert nur für spezielle Werte von A, B. Sei $A = B, |\theta| \ll 1$

$$U_{eff}(\theta) \rightarrow \frac{(A-B(1-\frac{\theta}{2}))}{2I_{11}'\theta^2} + \frac{B^2}{2I_{33}} - Mgb_3^{(P)}(1-\frac{\theta^2}{2}) + O(\theta^3) = \left(\frac{B^2}{2I_{11}'}\frac{1}{4} + Mgb_3^{(P)}\frac{1}{2}\right)\theta^2 + \frac{B^2}{2I_{33}} - Mgb_3^{(P)}(1-\frac{\theta^2}{2})\theta^2 + \frac{B^2}{2I_{33}}\theta^2 + \frac{B^2}{2I_{33$$

Es ergibt sich eien Harmonsiche Schwingung mit $\omega > 0$:

$$\omega^2 := \frac{\frac{B^2}{8I_{11}''} + \frac{Mg}{2}b_3^{(P)}}{\frac{1}{2}I_{11}'}, \, B = \vec{L}\vec{n}_3 = \vec{L} \cdot \vec{e}_3$$

Eine instaile Dynamik für $\omega^2 < 0$ mit $b_3^{(P)} = -|b_3^{(P)}|$:

$$\frac{B^2}{8I'_{11}} < \frac{Mg}{2} |b_3^{(P)}|$$