凸优化第 11 周作业

1 预习作业

下节课没有小测。

2 编程题

Problem 1 The *Heavy Ball Method* is a two-step procedure defined by the following state transitions:

$$p^{(k)} = -\nabla f(x^{(k)}) + \beta_k p^{(k-1)}$$
(2.1)

$$x^{(k+1)} = x^{(k)} + \alpha_k p^{(k)} \tag{2.2}$$

for some initial points $x^{(0)}$ and $p^{(0)}$, and some positive sequences α_k and β_k . Typically, we just set $p^{(0)} = 0$. This algorithm can be re-written as the iteration

$$x^{(k+1)} = x^{(k)} - \alpha_k \nabla f(x^{(k)}) + \beta_k (x^{(k)} - x^{(k-1)}), \tag{2.3}$$

where the term $x^{(k)} - x^{(k-1)}$ is is referred to as momentum. We restrict our attention to the case where α_k and β_k are fixed constants.

We aim to minimize $f: \mathbb{R}^n \to \mathbb{R}$ given by

$$f(x) = \frac{1}{2}x^{\top}Ax - b^{\top}x + c,$$
 (2.4)

where A is an $n \times n$ positive definite matrix, b is a vector and c is a constant. We assume that $mI \leq A \leq MI$, where 0 < m < M. This problem has a unique minimizer given by $x^* = A^{-1}b$. We have the chain of equalities

$$\begin{bmatrix} x^{(k+1)} - x^* \\ x^{(k)} - x^* \end{bmatrix} = T(\alpha, \beta) \begin{bmatrix} x^{(k)} - x^* \\ x^{(k-1)} - x^* \end{bmatrix}, \tag{2.5}$$

2 编程题 2

where
$$T(\alpha, \beta) = \begin{bmatrix} (1+\beta)I - \alpha A & -\beta I \\ I & 0 \end{bmatrix}$$
.

Consider the following minimization problem:

$$\min f(x_1, x_2) = \frac{1}{2} \left(x_1^2 + 100x_2^2 \right). \tag{2.6}$$

Suppose the starting point is $x^{(0)} = (100, 1)^{\top}$ and we are using the negative gradient as our descent direction.

Consider the **Heavy ball Method** with $\alpha = 4/121$ and $\beta = 81/121$, then

- 1. plot the corresponding $x^{(k)}$ on the 2D plane and $f(x^{(k)})$ vs k using semi-log plot.
- 2. and compare the convergence rate of the Heavy Ball Method to that of standard gradient method by plotting the semi-log plot of $f(x^{(k)})$ vs k.

The algorithms stops when the gradient is less than 10^{-8} .

Problem 2 分别用障碍函数法和原对偶内点法求解下述二次规划问题:

$$\min \frac{1}{2} x^{\top} P x + q^{\top} x$$
s.t. $Ax = b$

$$x \succeq 0,$$
(2.7)

其中 $x \in \mathbb{R}^n$, $P \in \mathbb{S}^n_+$, $q \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$.

- 1. 障碍函数法要求:
 - (a) 阈值误差 $\varepsilon = 10^{-8}$.
 - (b) 请画出对数对偶间隙 $\log \frac{n}{t}$ 与 Newton 迭代次数 k 之间的关系图.
 - (c) 给出原对偶最优解 x^*, λ^*, v^* 和最优值 p^* .

障碍函数法中参数 μ 建议选取 $\mu = 10$ 或者自行选取.

- 2. 原对偶内点法要求:
 - (a) 原误差 $||r_{\text{pri}}||_2 \le 10^{-8}$, 对偶误差 $||r_{\text{data}}||_2 \le 10^{-8}$, 代理对偶间隙 $\hat{\eta} \le 10^{-8}$.
 - (b) 分别画出 $\log \hat{\eta}$ 和 $\log \left\{ (\|r_{\text{pri}}\|_2^2 + \|r_{\text{dual}}\|_2^2)^{\frac{1}{2}} \right\}$ 与 Newton 迭代次数 k 之间的关系图.
 - (c) 给出原对偶最优解 x^*, λ^*, v^* 和最优值 p^* .

请**使用"课程作业"附件中提供的数据**求解以上两个问题. 我们给出了 m = 100, n = 200 时对应的矩阵 P, q, A, b,以及初始点 x_0, λ, v .

3 作业说明 3

3 作业说明

1. 编程作业部分需要撰写报告,包含计算结果/图像/及其分析。报告提交电子版,和代码一起打包提交至网络学堂。提交作业时文件夹中应包含数据文件,保证程序可以直接在文件夹中运行。

- 2. 编程语言不限,过程需要自己编写,不使用现成的优化器。
- 3. 第 2 题给出的数据文件可以直接使用 Matlab 打开。
- 4. 请大家在截止日期前提交作业,过期不候。