Année scolaire : 2024-2025

Première série des devoirs surveillés du second semestre

Classes: $T^{les} F_3 \& EL$

Exercice 1

On considère un générateur triphasé direct, étoile et équilibré, de fréquence 50 Hz. Sa tension simple efficace est V = 127 V. Il alimente un récepteur comme l'indique la **figure 1** ci-dessous. On donne R = 5 Ω et C = 72 μ F.

Figure 1

- 1) Remplacer les trois condensateurs en triangle par trois condensateurs en étoile en utilisant le théorème de Kennely, calculer la valeur C_Y qu'il faut donner à chacun d'eux.
- 2) Déterminer l'impédance complexe du récepteur sur chaque phase si on suppose que $C_Y = 216 \mu F$.
- 3) Calculer la valeur complexe du courant en ligne su chaque phase.
- 4) A la suite d'un incident, la résistance R de la phase 1 est court-circuitée.
 - a) Calculer la valeur efficace du courant dans chacune des phases.
 - b) Quelle est la valeur efficace du courant dans le fil de neutre?

Exercice 2

A- Amplificateur opérationnel

Soit le montage à amplificateur opérationnel idéal de la **figure 2**. L'amplificateur fonctionne en régime linéaire. La diode zéner à une tension zéner E_Z = 8V et on donne R_3 = $10k\Omega$.

- 1) Montrez que $U_S = E_Z(1 + \frac{R_2}{R_3})$.
- 2) Calculez R_2 pour avoir $U_8 = 12V$.
- 3) Calculez R_1 pour avoir I = 2 mA.

Serge SAVI 1

B- Stabilisation de tension à diode zéner

On considère le montage de la figure 3.

- 1) La caractéristique inverse de la diode est assimilée à une droite passant par les points (6,80V; 2mA) et (7,16V; 20mA).
 - a) Déterminer la résistance dynamique r_Z de la diode et sa tension zéner V_Z .
 - b) En-déduire l'équation de la caractéristique utile Iz = f(Uz) de la diode.
 - c) Déterminer la puissance maximale dissipée par la diode si I_{zmax} = 20mA.
- 2) On adopte $V_z = 7 \text{ V et } r_z = 0\Omega$.
 - a) Déduire les valeurs extrêmes de U_C pour que I_Z reste compris entre 2mA et 20mA si R_C = $5k\Omega$ et R_S = $1k\Omega$. De quelle stabilisation s'agit-il ?
 - b) On adopte $U_C = 28$ V et $R_S = 1k\Omega$. Entre quelles limites peut-on faire varier R_C pour qu'il y ait stabilisation ?

Figure 2

Problème

Un moteur à courant continu à excitation indépendante et constante a les caractéristiques suivantes :

Serge SAVI 2

- Tension d'alimentation de l'induit : U = 160 V
- Résistance de l'induit : $R = 0.2 \Omega$
- 1) La fém. E du moteur vaut 150 V quand sa vitesse de rotation est n = 1500 tr/min.
 - Montrer que dans ces conditions E = 6n (E en V et n en tr/s).
- 2) Déterminer l'expression de I (courant d'induit en A) en fonction de E en prouvant que I = 800 30 n (n en tr/s)
- 3) Ecrire l'expression de $T_{\rm em}$ (couple électromagnétique en Nm) en fonction de I puis en déduire que $T_{\rm em}$ = 764 0.477.n (n en tr/min)
- 4) On néglige les pertes collectives du moteur. Justifier alors que : $T_{\rm u}$ (couple utile) = $T_{\rm em}$
- 5) Calculer la vitesse de rotation du moteur à vide.
- 6) Le moteur entraîne maintenant une charge dont le couple résistant varie proportionnellement avec la vitesse de rotation (20 Nm à 1000 tr/min). Calculer la vitesse de rotation du moteur en charge puis en déduire le courant d'induit et la puissance utile du moteur.

Bon courage!

Serge SAVI 3