Electronic Devices

Lecture 7
P-N Junction

Dr. Roaa Mubarak

Diode Applications

- Rectifying
- Clipping
- Clamping

Rectifiers

• Rectifier circuit rectifies the Ac signal into DC signal, the most known example is the power supply.

Rectifier

- A basic rectifier converts an AC voltage to a pulsating DC voltage.
- A filter then eliminates AC components of the wave form to produce a nearly constant DC voltage output.
- Rectifier circuits are used in virtually all electronic devices to convert the 220V 50Hz AC power line source to the DC voltages required for operation of electronic devices.
- In rectifier circuits, the diode state changes with time and a given piecewise line model is valid only a certain time interval.

Rectifier Circuits

- Half wave rectifier
- Full wave rectifier
- Bridge rectifier.

Halfwave rectifier

Assuming Diode is ideal

 $Vs > 0 \rightarrow D$ is ON (short circuit) $\rightarrow Vo = Vs$

 $Vs < 0 \rightarrow D$ is Off (open circuit) $\rightarrow Vo = 0$

Halfwave rectifier

Assume diode is real one "Practical", the piecewise linear model

Vs

is used.

$$Vs < Vy \rightarrow D$$
 is OFF (open circuit)

 $Vs > Vy \rightarrow D$ is ON (replace diode with Vy)

By KVL

$$-Vs + Vy + Vo = 0$$

Halfwave rectifier

Transfer characteristics

Input & output waveform

Full wave rectifier "Center tap"

- Two half wave circuits make a Full wave rectifier circuit.
- D1 and D2 are not working together.

Full wave rectifier "Center tap"

- if Vs >Vy → D1 is ON & Vo= Vs Vy
- If $Vs < -Vy \rightarrow D2$ is ON & Vo = -(Vs Vy)
- If $Vy < Vs < Vy \rightarrow D1 & D2$ are OFF & Vo = 0

Full wave rectifier "Center tap"

Transfer characteristics

Bridge Rectifier

For positive half cycle (Vs > 2Vy)
 D1 & D2 are ON D3 & D4 are OFF
 Vo= Vs -2Vy

For negative half cycle (Vs <- 2Vy)
 D1 & D2 are OFF D3 & D4 are ON
 Vo=-(Vs -2Vy)

Bridge Rectifier

> $V_s > 2V_{\rm Y}$, $D_{\rm 1}$ and $D_{\rm 2}$ conducts, $D_{\rm 3}$ and $D_{\rm 4}$ off;

$$V_o = V_s - 2V_{\gamma}$$

 $ightharpoonup V_s < -2V_{\gamma}$, D3 and D4 conducts, D1 and D2 off v_I

$$V_o = -(V_s - 2V_{y})$$

 $N_1 : N_2$

Input & output waveform

Bridge Rectifier

Transfer characteristics

Rectifier with filter

