3.19 Theorem. Let a, b, and c be integers with n > 0. Show that $ax \equiv b \pmod{n}$ has a solution if and only if there exist integers x, y such that ax + ny = b.

Proof. Let $ax \equiv b \pmod{n}$ be given such that a solution exists. By definition, ax - b = nk for $k \in \mathbb{Z}$. Rearranging, ax + ny = b where y = -k. Thus, ax + ny = b has a solution. Now let $x, y \in \mathbb{Z}$ be given such that ax + ny = b. Rearranging, ax - b = -ny. Substituting -y = t for $t \in \mathbb{Z}$, ax - b = nt. By definition, $ax \equiv b \pmod{n}$. Thus, $ax \equiv b \pmod{n}$ has a solution if and only if there exist integers x, y such that ax + ny = b.