Modellierung des Fahrgastwechsels in Fußgängersimulationen

Bachelorarbeit

Alexandra Mayer 11.09.2019

- Einführung
- Auswertung
- Modell
- Kritik
- Verbesserungsvorschläge

Einführung

Formulierung der Forschungsfragen

Beobachtung/
Aufnahme

Verfeinerung der Forschungsfragen

Datenauswertung

Datenauswertung

- Erstellung eines Modells für Software zur Personenstromanalyse
- Aufnahmen:
 - an 3 großen Haltestellen der Münchner U-Bahn
 - 56 Videos ausgewertet
- Datenextraktion mit Tabellen
- Auswertung mit Jupyter Notebooks

Standardfall

- Einigermaßen ausgeglichenes Verhältnis an Ein- und Aussteigern
- Einsteiger:
 - Bei einfahrenden Zug an Türen
 - Stehen links und rechts der Türen
- Aussteiger:
 - Aus Zug sobald Türen geöffnet
 - Austeigen in Zweierreihen

- Einführung
- Auswertung
- Modell
- Kritik
- Verbesserungsvorschläge

Fahrgastwechselzeit

• Abschätzen der Wechselzeiten über die Anzahl der am Fahrgastwechsel beteiligten Personen

Typen

- Aggressiv, Defensiv und Normal
- Nach Definition gezählt → Signifikanter Anteil
- Normal
 - Keine auffälligen Verhaltensweisen
- Defensiv
 - Gehen eher langsam
 - Gehen nur in den Türbereich wenn keine andere Person in diesem ist
- Aggressiv
 - Drängeln sich vor andere Personen
 - Stellen sich auch in den Weg wenn kein anderer Platz im Wartebereich ist

Verhaltensweisen/Merkmale

- Auffälliges Verhalten/auffällige Merkmale
- Optischer Vergleich, zur Untersuchung des zeitlichen Einflusses:
 - Im Weg Stehen
 - Sperrig

Kolmogorov-Smirnov Test

- H_0 : 2 unabhängige Stichproben besitzen die gleiche Verteilung
- Signifikanzniveau: 0.05
- Nur im Weg Stehen liegt unter Signifikanz Niveau

Auswertungen

FORSCHUNGSFRAGE

- Kann die Fahrgastwechselzeit aus der Anzahl der Aus-, Einsteiger und Platzmacher abgeschätzt werden?
- Welche Verhaltensweisen und Merkmale von Fahrgästen beeinflussen die Fahrgastwechselzeit?
- Gibt es einen Zusammenhang zwischen der Anzahl der Aussteiger und dem Vorkommen von Platzmachern?
- Gibt es einen signifikanten Anteil an defensiven und aggressiven Personen?

ERGEBNIS

- Ja mit: $Fahrgastwechselzeit = 3.67 + 0.69 \cdot Personen$
- Nur Im Weg Stehen hat einen signifikanten zeitlichen Einfluss
- Es konnte kein direkter Zusammenhang gefunden werden
- Ja der Anteil an defensiven und aggressiven Personen ist signifikant

- Einführung
- Auswertung
- Modell
- Kritik
- Verbesserungsvorschläge

Modell - Zielbereiche

Das kognitive Heuristik Modell

- Hindernis auf dem Weg zum Ziel → Leader suchen
- Kein Leader oder Schritt in Richtung von Leader führt zu Kollision → Schritt Richtung Ziel
- Führt zu Kollision → Tangential ausweichen
- Führt zu Kollision → Seitlich ausweichen
- Führt zu Kollision → In aktueller Position verbleiben
- Aggressive: Zunächst direkter Schritt zum Ziel, bzw. tangentiales oder seitliches ausweichen
- Defensive: Schritt wird nicht genommen wenn man dadurch mit anderer Person in den Türbereich tritt

Einstiegsprozess Heuristik

Normale Einsteiger-Heuristik

Normale Platzsuche-Heuristik

Ausstiegsprozess Heuristik

Platzmachprozess-Heuristik

- Einführung
- Auswertung
- Modell
- Kritik
- Verbesserungsvorschläge

Kritik

- Keine Implementierung →
 - Keine Validierung
 - Kein Vergleich mit der Modellierung durch accu:rate
- Wenige Daten, vor allem:
 - Erste Aussteiger
 - Platzmacher

- Einführung
- Auswertung
- Modell
- Kritik
- Verbesserungsvorschläge

Verbesserungsvorschläge

- Modell implementieren
- Kalibrieren und validieren des Modells mit den Ergebnis
- Mehr Daten sammeln
- Erweitern des Modells mit anderen Modellen
 - Personen auf dem Bahnsteig die warten
 - Einsteiger im Zug
 - Aussteiger vor dem Aussteigen
- Gesamten Zug modellieren