MBA em IA e Big Data

Curso 01 - Linguagens e Ferramentas para Inteligência Artificial e Big Data (Python e SQL)

MongoDB - CRUD

Jose Fernando Rodrigues Junior ICMC-USP São Carlos

Objetivo: apresentar conceitos sobre sistemas não relacionais contrastando o modelo relacional com o sistema MongoDB

CRUD

Create, Read, Update, Delete

IA BIG DATA

SQL to MongoDB

MongoDB Aggregation Operators
\$match
\$group
\$match
\$project
\$sort
\$limit
\$sum
\$sum

Mapping Chart: http://docs.mongodb.org/manual/reference/sql-aggregation-comparison/

CRUD: Creation

Inserção de documentos/criação de novas coleções:

db.<collection>.insert(<document>)

INSERT INTO
VALUES(<attributevalues>);

CRUD: Inserting Data

Inserir um documento:

db.<collection>.insert({<field>:<value>})

Para inserir múltiplos documentos de uma única vez, basta usar notação de array [<doc1,doc2,...>].

- □ Recuperar todos os documentos: db.<collection>.find()
 - ☐ Retorna um cursor para iterar sobre os primeiros 20 resultados
 - D Adicionar ".limit(<number>)" retringe o número de resultados
 db.<collection>.find().limit(2)

SELECT * FROM ;

Recuperar um documento: db.<collection>.findOne(), o primeiro encontrado no disco, usualmente o primeiro que foi inserido

CRUD: Reading


```
db.<collection>.find({<field>:<value>})
```

• Operador lógico "AND" se torna ",":

SELECT *
FROM
WHERE <field1> = <value1> AND <field2> = <value2>;

CRUD: Reading

Operador lógico OR

```
SELECT *
FROM 
WHERE <field> = <value1> OR <field> = <value2>;
```

```
Ex.: db.Time.find({$or:[{nome:"Marcos"}, {saldo_gols:10}]})
```

Operador In (pertence) Checking for multiple values of a set:

```
db.<collection>.find({<field>: {$in: [<value>, <value>]}})
```

SELECT *
FROM
WHERE <field> IN (<value>,<value>);

Selecionando campos específicos:

```
db.<collection>.find({ }, {<field1>: 1})

SELECT field1
FROM ;

0 false
>0 true
```

Selecionando campos específicos com predicado:

```
db.<collection>.find({<field1>:<value>}, {<field1>: 1}

SELECT field1
FROM
```

WHERE <field1> = <value>;

CRUD: Updating

```
MBA
IA
BIG
DAFA
```

```
UPDATE 
SET <field2> = <value2>
WHERE <field1> = <value1>;
```

Exemplo:

```
db.Time.update({nome:"Marcos"}, {$set: {saldo_gols:20}},
{multi:false})
```


• Removendo um atributo específico:

ALTER TABLE DROP COLUMN <field>
"WHERE field = value"

CRUD: Deleting

Remover todos os documentos selecionados:

```
db.<collection>.remove({<field>:<value>})
```

```
DELETE FROM 
WHERE <field> = <value>;
```

Remover apenas o primeiro documento

```
db.<collection>.remove({<field>:<value>}, true)
```


- □ Provê:
 - filtros aplicados sequencialmente
 - ☐ transformações nos documentos para produzir nova informações
- Ferramentas para:
 - agrupar e ordenar
 - operar sobre arranjos (arrays) de dados

Agregação

Somatório do saldo de gols:

```
db.Time.aggregate({$group:{ id:"group gols", total gols:{$sum:"$saldo gols"}}});
```

SELECT SUM(SALDO_GOLS) AS TOTAL_GOLS FROM TIME

Somatório do saldo de gols por estado:

```
db.Time.aggregate({$group:{_id:"$estado",total_gols:{$sum:"$saldo_gols"}}});
```

FROM TIME

GROUP BY ESTADO

Agregação com ordenação

• Somatório do saldo de gols por estado com ordenação descendente:

SELECT ESTADO, SUM(SALDO_GOLS) AS TOTAL_GOLS
FROM TIME
GROUP BY ESTADO
ORDER BY TOTAL_GOLS DESC

Agregação com ordenação

• Somatório do saldo de gols por estado com ordenação descendente, top 2:

```
db.Time.aggregate(
   {$group:{ id:"$estado",
               total gols:{$sum:"$saldo gols"}}},
   {$sort:{total gols:-1},
    {$limit:2}
);
SELECT * FROM(
SELECT ESTADO, SUM(SALDO GOLS) AS TOTAL GOLS
FROM TIME
GROUP BY ESTADO
ORDER BY TOTAL GOLS DESC)
WHERE ROWNUM <= 2
```


Isolamento

- Por padrão, todas as escritas são atômicas com relação a documentos isolados
- A atualização de múltiplos documentos pode ocorrer em alternância (interleaving) quando as operações ocorrem em concorrência
- Pode-se isolar uma coleção inteira adicionando-se "\$isolated:1":

```
db.foo.update(
    { status : "A" , $isolated : 1 },
    { $inc : { count : 1 } },
    { multi: true }

update é o incremento
```

- "\$isolated:1" faz com que outros clientes aguardem leitura/escrita até que o comando seja concluído
- A partir da versão 4.0, suporte a isolamento de múltiplos documentos

Contras

- □ Sem esquema □ Sem projeto: é tentador começar o projeto sem pensar nele antes
- ☐ Sem projeto ☐ Gerenciamento de aplicações torna-se mais custoso
- Junções acabam sendo necessárias, afinal
 Bases relacionais fazem isso melhor
- Porque nunca usar MongoDB?
- ☐ <u>Is MongoDb Really A Good Fit Data Solution for Your Business?</u>

Contras

- WIBA IA BIG DATA
- MongoDB não é um substituto universal para bancos de dados;
- Diferentes paradigmas têm aplicações (nichos) distintas;
- Bancos de dados relacionais são universais e já bem consolidados, com tecnologia aperfeiçoada ao longo de décadas;
 - mas tem limitações com escalabilidade, custos, e curva de aprendizado.
- Cada sistema, uma aplicação diferente:
 - leitura intensiva;
 - escrita intensiva;
 - muitas entidades conceituais interagindo, estrutura complexa de dados;
 - segurança;
 - escalabilidade;
 - mobilidade.
- É necessário analisar cada caso ⇒ mais detalhes no Curso 03.

Comparação com outros bancos de dados

MongoDB vs MySQL Differences

https://www.mongodb.com/compare/mongodb-mysql

Cassandra vs MongoDB - What are the Differences?

https://phoenixnap.com/kb/cassandra-vs-mongodb

PostgreSQL vs MongoDB:

https://www.mongodb.com/compare/mongodb-postgresql

lados;

os, com

zado.

- mobilidade.
- É necessário analisar cada caso ⇒ mais detalhes no Curso 03.

Mais informações

MBA	
IA BIG DATA	
DÄŤA	
111	

Resource	Location
MongoDB Downloads	mongodb.com/download
Free Online Training	education.mongodb.com
Webinars and Events	mongodb.com/events
White Papers	mongodb.com/white-papers
Case Studies	mongodb.com/customers
Presentations	mongodb.com/presentations
Documentation	docs.mongodb.org
Additional Info	info@mongodb.com

Mongodb: The Definitive Guide: Powerful and Scalable Data Storag,
By Kristina Chodorow and Mike Dirolf

Published: 9/24/2019

Pages: 514

Language: English

Publisher: O'Reilly Media, CA

