MATH1071 Advanced Calculus & Linear Algebra I

Taught by Artem Pulemetov

Contents

22.	Lecture 22 - Rolle's Theorem and Mean Value Theorem	2
	Rolle's Theorem	2
	Mean Value Theorem	2
	Properties	3

Lecture 22 - Rolle's Theorem and Mean Value Theorem

Theorem: Rolle's Theorem

Suppose $f:[a,b]\to\mathbb{R}$ is continuous on [a,b], and differentiable on (a,b). If f(a)=f(b), then $\exists c\in(a,b)$ such that f'(c)=0

Proof. If $f(x) = f(a) \ \forall x \in (a, b)$, then the theorem is obvious. Assume f is not constant, without loss of generality, assume $\exists x_0 \in (a, b)$ such that $f(x_0) > f(a)$. (If no such x_0 exists then there exists some $x_1 \in (a, b)$ such that $f(x_1) < f(a)$; in this case, a similar argument works).

By the extreme value theorem, f has a global minimum on [a,b], call it c. Since $f(c) \geq f(x_0) > f(a) = f(b)$, we have $c \neq a, c \neq b$. Thus c lies within (a,b) and f'(c) = 0.

Theorem: Mean Value Theorem

Suppose $f:[a,b]\to\mathbb{R}$ is continuous on [a,b], differentiable on (a,b). Then $\exists c\in(a,b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Proof. Consider the function

$$\phi(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a} \cdot (x - a)$$

Observe that

$$\phi(a) = f(a) - f(a) - \frac{f(b) - f(a)}{b - a}(a - a)$$

$$= 0$$

$$\phi(b) = f(b) - f(a) - \frac{f(b) - f(a)}{b - a}(b - a)$$

$$= 0$$

Applying Rolle's Theorem to $\phi(x)$ we obtain the existence of $c \in (a,b)$ such that

$$\phi(c) = f'(c) - \frac{f(b) - f(a)}{b - a} = 0$$

Which gives our result

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Example: Applications of MVT

Assuming $f:[a,b]\to\mathbb{R}$ is continuous on [a,b] and differentiable on (a,b)

1. If f'(x) = 0 on (a, b), then f is continuous on [a, b], or rather $f'(x) \iff f(x) = c$, where c is some constant value. Indeed take $x \in [a, b]$, apply MVT on [a, x] and we conclude that f(x) - f(a) = f'(c)(x - a) for some $c \in [a, x]$. Therefore f(x) - f(a) = 0, which gives f(x) = f(a)

Theorem: Properties

1. If $f' \ge 0$ on (a, b), then f is monotone decreasing,

Proof. Take $x, y \in [a, b]$ and assume x < y. Need to prove that $f(x) \le f(y)$. Apply MVT on [x, y]. We need to find f(y) - f(x) = f'(c)(y - x), where both $f'(c), (y - x) \ge 0$, for some $c \in (x, y)$. By assumption, $f'(c) \ge 0$. Therefore $f(y) \ge f(x)$.

2. if $f' \leq 0$ on (a, b), then f is non-zero.

Proof. Apply (a) to
$$-f$$

- 3. if f' > 0, then f is strictly increasing.
- 4. if f' < 0, then f is strictly decreasing.

Proof. Both (c), (d), analogously proved.