

Fundamentos de Programação

Aula 05 - Noções de Complexidade

Profa. Elisa de Cássia Silva Rodrigues

Sumário

- Introdução.
- Complexidade assintótica.
- Notação assintótica.
- Classes de complexidade assintótica.
- Atividade prática.
- Atividade para casa.

Introdução

Complexidade Assintótica

- Análise de tempo feita sobre entrada com tamanhos grandes.
- Mede o crescimento do tempo de execução conforme o tamanho da entrada n aumenta indefinidamente.

Notação Assintótica

- Representa o comportamento assintótico de funções.
- Relaciona funções de complexidade de tempo de dois algoritmos.
- ▶ O domínio das funções é o conjunto dos naturais $\mathcal{N} = \{0, 1, 2, ...\}$.
 - **★ Ex:** $f(n) = n^2 + 2$, onde $n \in \mathcal{N}$.

Complexidade Assintótica

Definição

Uma função g(n) domina assintoticamente uma função f(n) se existem duas constantes positivas c e n_0 tais que $|f(n)| \le c \cdot |g(n)|$, para todo $n \ge n_0$.

- Exemplo: $f(n) = n e g(n) = -n^2$.
 - ▶ Para c = 1 e $n_0 = 1$, temos $|n| \le 1 \cdot |-n^2|$, para todo $n \ge 1$.
 - ▶ Portanto, g(n) domina assintoticamente f(n).

n	$ n \leq \cdot -n^2 $
1	$1 \leq 1$
2	2 ≤ 4
3	3 ≤ 9
4	4 ≤ 16

Será que f(n) domina assintoticamente g(n)?

Notação O

Uma função f(n) é $\mathcal{O}(g(n))$ se existem duas constantes $c \in n_0$ tais que $f(n) \leq c \cdot g(n)$, para todo $n \geq n_0$. (Outras representações: $f(n) = \mathcal{O}(g(n))$ ou $f(n) \in \mathcal{O}(g(n))$).

- Utilizada para dar um limite assintótico superior sobre uma função.
- Graficamente, para todos os valores $n \ge n_0$ (à direita de n_0), o valor de f(n) está em ou abaixo de g(n).

- Exemplo: $f(n) = (n+1)^2 e g(n) = n^2$.
 - ▶ Para c = 3 e $n_0 = 2$, temos $|(n+1)^2| \le 3 \cdot |n^2|$, para todo $n \ge 2$.
 - ▶ Portanto, f(n) é $\mathcal{O}(n^2)$.

Notação Ω

Uma função f(n) é $\Omega(g(n))$ se existem duas constantes c e n_0 tais que $c \cdot g(n) \leq f(n)$, para todo $n \geq n_0$. (Outras representações: $f(n) = \Omega(g(n))$ ou $f(n) \in \Omega(g(n))$).

- Utilizada para dar um limite assintótico inferior sobre uma função.
- Graficamente, para todos os valores $n \ge n_0$ (à direita de n_0), o valor de f(n) está em ou acima de g(n).

- Exemplo: $f(n) = 2n^3 + 3n^2 + n e g(n) = n^3$.
 - ▶ Para c = 1 e $n_0 = 1$, temos $|2n^3 + 3n^2 + n| \le 1 \cdot |n^3|$, para todo $n \ge 1$.
 - ▶ Portanto, $f(n) \in \Omega(n^3)$.

Notação ⊖

Uma função f(n) é $\Theta(g(n))$ se existem três constantes c_1 , c_2 e n_0 tais que $c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$, para todo $n \ge n_0$. (Outras representações: $f(n) = \Theta(g(n))$ ou $f(n) \in \Theta(g(n))$).

- Utilizada para dar um limite assintótico firme sobre uma função.
- Graficamente, para todos os valores $n \ge n_0$ (à direita de n_0), o valor de f(n) está sobre ou acima de $c_1 \cdot g(n)$ e sobre ou abaixo de $c_2 \cdot g(n)$.

- Exemplo: $f(n) = (1/2)n^2 3n e g(n) = n^2$.
 - ▶ Para $c_1 = 1/8$, $c_2 = 1/2$ e $n_0 = 8$, para todo $n \ge 8$, temos $(1/8) \cdot |n^2| \le |(1/2)n^2 3n| \le (1/2) \cdot |n^2|$.
 - ▶ Portanto, $f(n) \in \Theta(n^2)$.

Notação o

- Limite superior n\u00e3o assintoticamente restrito sobre uma fun\u00e7\u00e3o.
- f(n) torna-se insignificante em relação a g(n) conforme n se aproxima de ∞ .
- Exemplo: $2n = o(n^2)$ e $2n^2 \neq o(n^2)$, mas $2n^2 = \mathcal{O}(n^2)$.

Notação ω

- Limite inferior não assintoticamente restrito sobre uma função.
- f(n) torna-se muito grande em relação a g(n) conforme n se aproxima de ∞ .
- Exemplo: $n^2/2 = \omega(n)$ e $n^2/2 \neq \omega(n^2)$, mas $n^2/2 = \Omega(n^2)$.

Classes de Complexidade Assintótica

- O(1): ordem constante.
 - Instruções são executadas um número fixo de vezes.
 - Não depende do tamanho dos dados de entrada.
- O(logn): ordem logarítmica.
 - Resolve um problema transformando-o em problemas menores.
- O(n): ordem linear.
 - Operações são realizadas sobre cada um dos elementos de entrada.
- $O(n \cdot log n)$: ordem log linear.
 - Algoritmos que trabalham com particionamento dos dados.
 - ▶ Transformam um problema em vários problemas.
 - ► Cada problema é resolvido de forma independente e depois unidos.

Classes de Complexidade Assintótica

- O(n²): ordem quadrática.
 - Ocorre quando os dados são processados aos pares.
 - ► Caracterizado pela presença de dois comandos de repetição aninhadas.
- O(n³): ordem cúbica.
 - Caracterizado pela presença de três estruturas de repetição aninhadas.
- $O(2^n)$: ordem exponencial.
 - Ocorre quando se usa uma solução de força bruta.
 - Não são úteis do ponto de vista prático.
- O(n!): ordem fatorial.
 - Possuem comportamento muito pior que o exponencial.

Atividade Prática

- Pesquise na internet 1 exemplo de algoritmo para cada classe:
 - ▶ **O**(1): ordem constante.
 - ► O(logn): ordem logarítmica.
 - ▶ O(n): ordem linear.
 - ▶ $O(n \cdot log n)$: ordem log linear.
 - ► O(n²): ordem quadrática.
 - ► O(n³): ordem cúbica.
 - ▶ $O(2^n)$: ordem exponencial.
 - ► O(n!): ordem fatorial.

Atividade para Casa...

- Leia o seguinte tópico do livro texto (Cormen, 2012):
 - ► Seção 3.2 Notações padrão e funções comuns.

Sugestão de exercícios:

Capítulo 3 - Crescimento de funções.

Observação	
Não precisa entregar!	

Próxima aula...

- Métodos de ordenação interna.
 - Problema da ordenação.
 - Ordenação por inserção.

Sugestão de leitura:

- ► Capítulo 1 A função dos algoritmos na computação.
- ► Sessão 2.1 Ordenação por inserção.

Bibliografia

- ORMEN, Thomas H. et al. Algoritmos: Teoria e Prática. 2ª ed. 2012.
- ASCÊNCIO, A. F. G.; ARAÚJO, Graziela S. Estrutura de Dados: Algoritmos, Análise de Complexidade, Implementações em Java e C/C++. 2010.

Obrigada pela atenção!