INT102

Algorithmic Foundations And Problem Solving

Coping with the Limitations of Algorithm Power (Approximation Algorithms)

Dr Jia WANG

Department of Computer Science

Acknowledgment: The slides are adapted from ones by Dr. Prudence Wong

Introduction

Objectives:

- > To formalize the notion of approximation.
- > To demonstrate several such algorithms.

· Overview:

- > Optimization and Approximation
- > VERTEX-COVER, TSP

NP-completeness

"I can't find an efficient algorithm, but neither can all these famous people."

Motivation

- By now we've seen many NP-Complete problems.
- We conjecture none of them has polynomial time algorithm.

Motivation

 Is this a dead-end? Should we give up altogether?

Motivation

 Or maybe we can settle for good approximation algorithms?

Coping With NP-Hardness

Brute-force algorithms.

- Develop clever enumeration strategies.
- •Guaranteed to find optimal solution.
- No guarantees on running time.

Heuristics.

- Develop intuitive algorithms.
- •Guaranteed to run in polynomial time.
- No guarantees on quality of solution.

Approximation algorithms.

- •Guaranteed to run in polynomial time.
- •Guaranteed to find "high quality" solution, say within 1% of optimum. Obstacle: need to prove a solution's value is close to optimum, without even knowing what optimum value is!

Heuristics

- A heuristic is a common-sense *rule* drawn from experience
 - > not a mathematically proven assertion
 - > a "rule-of-thumb"
- Examples:
 - > TSP: go to next nearest city
 - > Knapsack: start with highest value/weight ratio

Nearest-Neighbor Algorithm for TSP

Starting at some city, always go to the nearest unvisited city, and, after visiting all the cities, return to the starting one

Note: Nearest-neighbor tour may depend on the starting city

Accuracy: $R_A = \infty$ (unbounded above) - make the length of AD arbitrarily large in the above example

(Complexity Theory

Approximation Algorithms

- Find a "good" solution fast
 - > sufficient for many applications
 - > we often have inaccurate data to start with, so approximation may be as good as optimal solution

Accuracy Ratio

- \square minimization problems: $r(s_a) = f(s_a)/f(s^*)$
 - $f(s_a)$ = value of objective function for solution given by approximation algorithm
 - f(s*) = value of objective function for optimal solution
- \square maximization problems: $r(s_a) = f(s^*)/f(s_a)$
- \Box in either case $r(s_a) >= 1$

Performance Ratio

- If there exists $c \ge 1$, such that $r(s_a) \le c$ for all instances of a problem, the given algorithm is called a *c-approximation algorithm*
- The smallest value of c that holds for all instances is called the *performance ratio*, R_A , of the algorithm,

Unfortunately ...

- c-approximation algorithms are good if you can find one
 - > if c=1.1, your approximation is never more than 10% worse than optimal
- but ... in some cases, no bound for c can be found
 - > approx. alg. may be great for 99% of instances, but there are a few really terrible cases

for instance ...

 THEOREM: if P≠NP, no c-approximation algorithm for TSP exists

> it's unlikely that we can find a poly-time approx. algorithm for TSP such that $f(s_a) \le cf(s^*)$ for all instances

VERTEX-COVER

- Instance: an undirected graph G=(V,E).
- Problem: find a set $C \subseteq V$ of minimal size s.t. for any $(u,v) \in E$, either $u \in C$ or $v \in C$.

Complexity ©D Moshkovitz

VERTEX-COVER

Observation: Let G=(V,E) be an undirected graph. The complement $V\setminus C$ of a vertex-cover C is an independent-set of G.

<u>Proof</u>: Two vertices outside a vertex-cover cannot be connected by an edge. ■

Complexity ©D Moshkovitz

VC - Approximation Algorithm

- $C \leftarrow \phi$
- E' ← E
- while $E' \neq \phi$
 - > do let (u,v) be an arbitrary edge of E'
 - \succ $C \leftarrow C \cup \{u,v\}$
 - > remove from E' every edge incident to either u or v.
- return C.

Demo

Polynomial Time

- $C \leftarrow \phi$
- E' ← E
- while $E' \neq \phi$ do
 - > let (u,v) be an arbitrary edge of E'
 - $> C \leftarrow C \cup \{u,v\}$
 - > remove from E' every edge incident to either u or v
- return C

Complexity

19

Correctness

The set of vertices our algorithm returns is clearly a vertex-cover, since we iterate until every edge is covered.

How Good an Approximation is it?

Observe the set of edges our algorithm chooses

no common vertices! \Rightarrow any VC contains 1 in each

our VC contains both, hence at most twice as large

 $\mathsf{OPT} \leq \mathit{Our\ solution} \leq 2 * \mathit{CV}$

Worst-case is 2*OPT, so it called 2-Approximation algorithm

TSP: Limited Cases

The problem with this instance is that there may be a very large distance associated with last edge a→d.

Is this a "real-world" instance?

If this graph represents straight-line distances between cities on a map, the length of a → d must be bounded, relative to the other distances (geometry)

If this graph represents costs of airline flights, the cost of a →d could be out of proportion to the other edges

TSP: Euclidean Instances

- Euclidean instances of the TSP problem obey the natural geometry of a 2D map.
 - > triangle inequality: d[i,j] ≤ d[i,k] + d[k,j]
 - > symmetry: d[i,j] = d[j]
- For Euclidean instances, the nearest neighbor algorithm satisfies:
 - $r(s_a) \le \frac{1}{2} (\log_2 n + 1)$, where n = # cities
 - > (still not a c-approximation algorithm)

TSP: Multifragment-heuristic

- 1) sort edges in increasing order
- 2) Repeat until tour of length n: Add next smallest edge, if it doesn't create a vertex of degree 3 and doesn't create a cycle of length < n</p>

More expensive than nearest-neighbor, same accuracy ratio

TSP: Multifragment-heuristic


```
edge list: (a,b), (c,d), (b,c), (a,c), (b,d), (a,d) tour:
```

edge list: *(c,d)*, (b,c), (a,c), (b,d), (a,d) tour: (a,b)

edge list: **(b,c)**, (a,c), (b,d), (a,d)

tour: (a,b), (c,d)

edge list: (a,c), (b,d), (a,d)

tour: (a,b), (c,d), (b,c)

tour: (a,b), (c,d), (b,c), (a,d) length 10

Twice-Around-the-Tree Algorithm

- Stage 1: Construct a minimum spanning tree of the graph (e.g., by Prim's or Kruskal's algorithm)
- Stage 2: Starting at an arbitrary vertex, create a path that goes twice around the tree and returns to the same vertex
- Stage 3: Create a tour from the circuit constructed in Stage 2 by making shortcuts to avoid visiting intermediate vertices more than once

Note: $R_A = \infty$ for general instances, but this algorithm tends to produce better tours than the nearest-neighbor algorithm

TSP: Twice Around the Tree

DFS walk: abcbdedba

eliminate repeated nodes: abcdea

TSP: Twice Around the Tree

 $OPT \le MST\ Tour \le 2 * MST$

Worst-case is 2*OPT

CSE102 END OF TEACHING

What we have learnt

nethodology	Asymp totic idea	Brute force	Divide & Conquer	Dynamic Programming	Greedy	Space/Time	Branch & Bound	Backtracking	Complexity Theory
Efficiency	Big-O								
Sorting		Selection/ Bubble/ins ertion	Merge- sort			Count sorting			
Searching			Binary- searching						
String		searchin g		Alignment/L CS		Horspool algorithm			
Graph/Com binatory		DFS/BFS		Floyd's Algorithm/ Assembly- line Knapsack	MST(Prim's/ Kruskal's) Dikstra's For Shortest path		Traveling salesman, Job assignment	n-Queens Sum of subset Hamiltonian Problem	Approximation: TSP problem: Nearst- Neighbor/twice round/fragement algorithm
Complexity									P/NP Circuit-SAT/3- SAT

How will it be assessed

- Two assignments (20% of the final mark)
 - 1. Assignment 1 (week 6 week 7) (10%)
 - 2. Assignment 2 (week 11 week 12) (10%)
- Final Examination (80% of the final mark)

written examination: 80% MCQ's + 20% Problem Solving