

Procesamiento y optimización de consultas (II)

Outline - Query Processing

- Relational algebra level
 - transformations
 - good transformations
- Detailed query plan level
 - estimate costs
 - generate and compare plans

- Estimating cost of query plan
- (1) Estimating <u>size</u> of results
- (2) Estimating # of IOs

Estimating result size

- Keep statistics for relation R
 - -T(R): # tuples in R
 - -S(R): # of bytes in each R tuple
 - − B(R): # of blocks to hold all R tuples
 - V(R, A): # distinct values in Rfor attribute A

Estimación del tamaño del resultado

- Debemos mantener estadísticas para cada relación R:
 - -T(R): # tuplas in R
 - − S(R) : # de bytes en cada tupla de R
 - B(R): # de bloques para guardar todas las tuplas de R
 - V(R, A): # valores diferentes para el atributo A en R

Example

R

A	В	C	D
cat	1	10	a
cat	1	20	b
dog	1	30	a
dog	1	40	c
bat	1	50	d

A: 20 byte string

B: 4 byte integer

C: 8 byte date

D: 5 byte string

$$T(R) = 5$$
 $S(R) = 37$

$$V(R,A) = 3$$

$$V(R,C) = 5$$

$$V(R,B) = 1$$

$$V(R,D) = 4$$

Size estimates for $W = R1 \times R2$

$$T(W) = T(R1) * T(R2)$$

$$S(W) = S(R1) + S(R2)$$

Size estimates for $W = \sigma_{A=cat}(R)$

$$S(W) = S(R)$$

$$T(W) = ?$$

Example

A	В	C	D
cat	1	10	a
cat	1	20	b
dog	1	30	a
dog	1	40	c
bat	1	50	d

$$V(R,A)=3$$

$$V(R,B)=1$$

$$V(R,C)=5$$

$$V(R,D)=4$$

$$W = \sigma_{A=cat}(R)$$
 $T(W) = \frac{T(R)}{V(R,A)}$

Assumption:

Values in select expression Z = val are <u>uniformly distributed</u> over possible V(R,Z) values.

What about with
$$W = \sigma_{z \ge val}(R)$$
 ? $T(W) = ?$

• Solution 1:

$$T(W) = T(R)/2$$

• Solution 2:

$$T(W) = T(R)/3$$

Solution 3: Estimate values in range

R

$$T(R)=16$$

$$f = 20-15+1 = 6 = 0.3$$
 (fraction of range)
20 20

$$f \times V(R,Z) = 0.3 \times V(R,Z) = 0.3 \times 10 = 3$$

$$T(R) / V(R,Z) = 16/10 = 1.6$$

Finally:

$$T(W) = [f \times V(R,Z)] \times \underline{T(R)} = f \times T(R)$$
$$V(R,Z)$$

$$T(W)=0.3 \times 1.6=4.8$$

Size estimate for $W = R1 \bowtie R2$

Let x = attributes of R1y = attributes of R2

Case 1

 $X \cap Y = \emptyset$

Same as R1 x R2

Case 2
$$|W = R1| \times |R2| \times |X \cap Y| = A$$

Assumption:

 $V(R1,A) \le V(R2,A) \Rightarrow Every A value in R1 is in R2$

 $V(R2,A) \le V(R1,A) \Rightarrow Every A value in R2 is in R1$

If R1 and R2 are related by integrity constraints

Computing T(W) when

$$V(R1,A) \le V(R2,A)$$

1 tuple matches with T(R2) tuples... V(R2,A)

so
$$T(W) = T(R2) \times T(R1)$$

 $V(R2, A)$

Example: A is PK in R2

R2

D	1
$\boldsymbol{\Lambda}$	1

A	B	C
7		
11		
9		
10		
5		
8		

A	D
7	
11	
11	
8	
5	

An R1 tuple matches with T(R2)/V(R2,A)=6/6=1 tuples...

Example: A is not PK in R2

R2

R1

A	В	C
7		
11		
9		
10		
5		
8		
8		
11		

A	D
7	
11	
11	
8	
5	

An R1 tuple matches with T(R2)/V(R2,A)=8/6=1.33 tuples...

•
$$V(R1,A) \le V(R2,A)$$
 $T(W) = T(R2) T(R1)$
 $V(R2,A)$

•
$$V(R2,A) \le V(R1,A) T(W) = T(R2) T(R1) V(R1,A)$$

[A is common attribute]

In General
$$W = R1 \triangleright R2$$

$$T(W) = \frac{T(R2) T(R1)}{\max\{ V(R1,A), V(R2,A) \}}$$

In all the cases:

$$S(W) = S(R1) + S(R2) - S(A)$$
size of attribute A

Another example:

$$W = R(a,b,c,d) \bowtie S(c,d,f,g)$$

R(a,b,c,d)	S(c,d,f,g)
T(R) = 1000	T(S) = 2000
V(R,c) = 20	V(S,c) = 50
V(R,d) = 100	V(S,d) = 50

What would be the estimate size for T(W)?

SOLUTION:

$$T(W) = \underbrace{T(R) T(S)}_{max\{ V(R,c), V(S,c) \}}$$

 $\max\{ V(R,d), V(S,d) \}$

SOLUTION:

$$T(W) = \frac{1000 \times 2000}{50 \times 100}$$

Using similar ideas, we can estimate sizes for:

 $W = \Pi_{AB}(R)$ Sec. 16.4.2

In this case, the T(W) = T(R) but S(W) and B(W) would change.

Union, intersection, diff, Sec. 16.4.7

For complex expressions, need intermediate T,S,V values:

$$W = \left[\sigma_{A=a}(R1) \right] \nearrow R2$$

Relation U

$$T(U) = T(R1)/V(R1,A)$$
 $S(U) = S(R1)$

WE ALSO NEED V(U, *)!!

To estimate Vs

E.g.,
$$U = \sigma_{A=a}(R1)$$

says that R1 has attributes A,B,C,D

$$V(U, A) =$$

$$V(U, B) =$$

$$V(U, C) =$$

$$V(U, D) =$$

Example

R 1

A	В	C	D
cat	1	10	10
cat	1	20	20
dog	1	30	10
dog	1	40	30
bat	1	50	10

$$V(R1,A)=3$$

$$V(R1,B)=1$$

$$V(R1,C)=5$$

$$V(R1,D)=3$$

$$U = \mathbf{\sigma}_{A=a}(R1)$$

For sure : V(U,A) = 1 V(U,B) = 1

V(U,C) and V(U,D) will be between 1 and T(R1)/V(R1,A)

For Joins $U = R1(A,B) \bowtie R2(A,C)$

$$V(U,A) = min \{ V(R1, A), V(R2, A) \}$$

 $V(U,B) = V(R1, B)$
 $V(U,C) = V(R2, C)$

Example:

$$Z = R1(A,B) \bowtie R2(B,C) \bowtie R3(C,D)$$

- R1 T(R1) = 1000 V(R1,A)=50 V(R1,B)=100
- |R2| T(R2) = 2000 V(R2,B)=200 V(R2,C)=300
- |R3| T(R3) = 3000 V(R3,C)=90 V(R3,D)=500

Partial Result:

$$U = R1 \triangleright R2$$

$$T(U) = 1000 \times 2000$$
 $V(U,A) = 50$ $V(U,B) = 100$ $V(U,C) = 300$

$$Z = U \bowtie R3$$

$$T(Z) = 1000 \times 2000 \times 3000$$
 $V(Z,A) = 50$ $V(Z,B) = 100$ $V(Z,C) = 90$ $V(Z,D) = 500$

Summary

- Estimating size of results is an "art"
- Don't forget:

Statistics must be kept up to date... (cost?)

Outline - Query Processing

• Estimating cost of query plan

Estimating size of results done!

Estimating # of IOs next...

Generate and compare plans