Derin Öğrenme Deep Learning

Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü

Bu dersin sunumları, "lan Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press, 2016." kitabı kullanılarak hazırlanmıştır.

Genel bilgiler

Değerlendirme

Ara sınav: 25%Ödevler: 15%Final projesi: 30%Final sınavı: 30%

Ders kitabı

I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, 2016.

Diğer kaynaklar

- S. Russell, and N. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 2003.
- T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning, Springer, 2001.
- K. P. Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, 2012.

E-Posta: akcayol@gazi.edu.tr/~akcayol

Genel bilgiler

Araştırma ödevleri

- Haftalık konu ile ilgili uygulama içeren bir makale incelenerek detaylı rapor hazırlanacaktır.
- incelenen makalede ilgili yöntemin, algoritmanın, yaklaşımın kullanılmasının gerekçeleri ve elde edilen sonuçlar değerlendirilecektir.
- incelenen makale son 3 yılda yayınlanmış olacaktır.
- incelenen makale SCI/E tarafından taranan bir dergide yayınlanmış olacaktır.
- Haftalık ödev içeriği:
 - İncelenen makalenin tam metni
 - SCI/E tarafından tarandığını gösterir belge (Thomson Reuters)
 - Hazırlanacak rapor (Kapak sayfası, İçindekiler, Özet, Materyal/Metot, Sonuçlar, Yorum)

Genel bilgiler

Final projesi

- Derste anlatılan bir yöntemin/algoritmanın/yaklaşımın bir alana uygulamasını içerecektir.
- Geliştirilecek uygulamanın algoritma kısmında hazır araç, fonksiyon veya kütüphane kullanılmayacaktır.
- Hazırlanan projenin; program kodları, veritabanı ve kütüphane gibi diğer dokümanları CD ile, final proje raporu çıktı olarak teslim edilecektir.
- Final projesi içeriği:
 - Uygulama alanı hakkında bilgi (seçilme gerekçesi, daha önce ilgili alanda yapılan uygulamalar, ilgili alanın önemi)
 - Uygulanacak yöntem/algoritma/yaklaşımın seçim gerekçesi (literatürde uygulanan yöntemlerin karşılaştırmalı analizi)
 - Geliştirilecek uygulamanın sonuçlarının karşılaştırmalı analizi

Ders kapsamı

- Derin öğrenmeye giriş
- Olasılık, dağılımlar ve bilgi teorisi
- Makine öğrenmesinin temelleri
- Yapay sinir ağları
- Deep feedforward networks
- ▶ Convolutional neural networks ve uygulamaları
- ▶ Recurrent neural networks ve uygulamaları
- Autoencoders ve uygulamaları
- ▶ Restricted Boltzmann makinesi ve uygulamaları
- Deep belief networks ve uygulamaları

5

İçerik

- Yapay zeka
- Makine öğrenmesi
- Yapay sinir ağları
- Derin öğrenme

Yapay zeka

- Artificial Intelligence (AI), zeki insan davranışını makinelerin taklit etmesini amaçlayan çalışmaları kapsar.
- İlk defa McCarthy tarafından 1956'da kullanıldı.
- AI, iki boyutta dört farklı şekilde tanımlanmaktadır.

		BAŞARI ÖLÇÜTÜ			
		insan zekasina göre	RASYONELLIĞE GÖRE		
TANIM BOYUTU	DÜŞÜNCE	insan gibi düşünen sistemler (Bellman, 1978) Cognitive science	Rasyonel düşünen sistemler (Chamlak and McDermott, 1985) Mantık kuralları		
	DAVRANIŞ	insan gibi davranan sistemler (Kurzweil, 1990) Turing testi	Rasyonel davranan sistemler (Schalkoff, 1990) Rasyonel ajanlar		

7

Yapay zeka

İnsan gibi davranan sistemler

Turing testinde başarılı olan makinelerdir.

Yapay zeka

Rasyonel davranan sistemler (rasyonel ajan)

- ▶ Rasyonel davranış: Girişlere göre en doğruyu yapmaktır.
- Doğru: Verilen bilgiye göre beklenen faydayı maksimum yapar.
- Rasyonel sistemlerin insan düşüncesini tekrarlaması veya aynı kararı vermesi beklenmez.
- Bir rasyonel ajan algı geçmişini yeni girişe göre davranışa dönüştüren bir fonksiyondur.

$$D = f(A^*, A)$$

- igwedge D davranış, A^* algı geçmişi, A yeni algı, f fonksiyondur.
- Rasyonel ajan, çevresini algılar (sensörler vb.) ve en başarılı davranışı belirler.

İçerik

- Yapay zeka
- Makine öğrenmesi
- Yapay sinir ağları
- Derin öğrenme

11

Makine öğrenmesi

- ▶ **AI**, insan davranışını makinelere kazandırmayı amaçlar.
- ▶ **Makine öğrenmesi,** yapay zekanın bir alt sınıfıdır ve AI algoritmalarını makinelere uygular.
- ▶ **Artificial Neural Network (ANN),** makine öğrenmesinin bir alt sınıfıdır ve sinir hücrelerinin çalışmasını taklit eder.
- ▶ Deep learning, ANN'in bir alt sınıfıdır ve insan beyninin, algılama ve karar verme becerisini sinir ağları kullanarak taklit etmeyi amaçlar.

Makine öğrenmesi

- Makine öğrenmesi, genellikle, karar veya tahmin oluşturmak amacıyla öğrenme işlemini gerçekleştirir.
- Makine öğrenmesi sınıflandırma (classification) ve kümeleme (clustering) problemlerinde başarıyla uygulanır.
- Makine öğrenme yöntemleri iki türdür:
 - Supervised learning
 - Unsupervised learning
- Supervised learning yönteminde, giriş ile birlikte çıkış bilgisi de sağlanır (classification).
- Unsupervised learning yönteminde, çıkış etiketleri
 sağlanmaz. Girişler arasındaki ilişki sağlanır (clustering).

13

Makine öğrenmesi

Geleneksel programlamada, giriş ve program sağlanır ve çıkışlar elde edilir.

(veri + kural kümesi -> bilgisayar -> sonuçlar)

Makine öğrenmesinde, giriş ve istenen çıkışlar sağlanır ve kurallar/program/algoritma elde edilir.

(veri + sonuçlar -> algoritma + bilgisayar -> kurallar)

Traditional programming

Machine learning

İçerik

- Yapay zeka
- Makine öğrenmesi
- Yapay sinir ağları
- Derin öğrenme

15

Yapay sinir ağları

- İnsan beyni, her görüntüde, seste, tat almada, dokunmada bir algı oluşturur.
- Beynimiz olmasaydı hepimiz ilkel organizmalar olurduk ve sadece basit refleksler yapabilirdik.
- Bebeğin beyni sadece 1 kilodur, ancak günümüzdeki çoğu süper bilgisayarların çözemediği problemleri çözer.
- Doğumdan birkaç gün sonra, ebeveynlerinin yüzlerini tanıyabilir, arka planlarından nesneleri ayırt edebilir ve hatta ayrı sesler çıkarabilir.

- Bir yıl içinde, fizik kurallarını algılayacak bir sezgi geliştirirler, engellerin arkasındaki nesneleri takip edebilirler, seslerle anlam ilişkilendirmesi yapabilirler.
- Çocukluk çağında, binlerce kelime ve karmaşık gramer yapısını anlayabilirler.
- Son yıllarda, **insan beyni gibi beyne sahip** zeki **makineler** geliştirilmeye çalışılmaktadır.

17

Yapay sinir ağları

- Bilgisayar programları aritmetik işlemleri hızlı yapabilir veya sıralı komutları hızlı çalıştırabilir.
- Ancak, klasik programlar bir kişinin el yazısını okuma gibi işlemlerde çok başarılı değildir.

- Yapay sinir ağları, insan beyninin yapısını ve fonksiyonunu taklit eder.
- Sınıflandırıcı y = f(x), x girişi ile y sınıfını eşleştirir.
- Bir feedforward ANN, y = f(x, w), w parametrelerinin değerlerini öğrenerek daha iyi tahmin yapan bir fonksiyon elde eder.
- Öğrenme supervised veya unsupervised olabilir.
- Yapay sinir ağları, metin, ses, görüntü, video gibi yapılandırılmamış veriyi alır ve neuronlardan oluşan katmanlarda işler.
- Neuron'lar başka neuroan'ları aktif yapabilir veya dış ortamda başka işlemleri başlatabilir.

Perceptron

▶ Bir **perceptron** tek katmanlı bir **neural network'tür.**

• $x = (x_0, x_1, x_2)$ giriş vektörü, $w = (w_0, w_1, w_2)$ ağırlık vektörü ve b bias, $y = f(x_0w_0 + x_1w_1 + x_2w_2 + b)$ olur.

Yapay sinir ağları

Perceptron

> Transfer fonksiyonuna göre çıkış değeri değişir.

Perceptron limiti

Tek neuron bir doğru ile çözüm uzayını ayırır.

$$x = (1, x_1, x_2, x_3)$$

 $w = (w_0, w_1, w_2, w_3)$
 $a = w^T x$

$$y = f(a) = \begin{cases} 1 & \text{if } a \ge 0 \\ 0 & \text{otherwise} \end{cases} \Leftrightarrow y(x) = \begin{cases} 1 & \text{if } w^T x \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

Yapay sinir ağları

Perceptron limiti

Tek perceptron XOR problemini çözemez (θ eşik değerdir).

Input 2 Input 1

Input 1	Input 2	Output
1	1	0
1	0	1
0	1	1
0	0	0

$$\begin{array}{c} \circ \ 0 \ w_1 + 0 w_2 < \theta \to 0 \\ \circ \ 0 \ w_1 + 1 w_2 > \theta \\ \circ \ 1 \ w_1 + 0 w_2 > \theta \\ \circ \ 1 \ w_1 + 1 w_2 < \theta \\ \end{array} \begin{array}{c} \text{Tutarsiz!!} \\ w_2 > \theta \\ \end{array}$$

Çok katmanlı neural network

Çok katmanlı ANN daha karmaşık problemleri çözebilir.

Yapay sinir ağları

Çok katmanlı neural network

Katman ve neuron sayısı arttıkça çok daha karmaşık problemleri çözebilir.

Çok katmanlı neural network

- w_1, w_2, b parametredir.
- $m{w}_1$, w_2 doğruyu döndürür, b doğrunun yerini değiştirir.
- $m{w}_1, \ m{w}_2$ ve b için en uygun değerlerin belirlenmesi gereklidir.

Perceptron öğrenme

- ightharpoonup Perceptron öğrenmesinde, $oldsymbol{w_1}, oldsymbol{w_2}$ ve $oldsymbol{ heta}$ değeri belirlenir.
- $ightharpoonup \eta$ öğrenme hızı, d(n) istenen çıkış.
- Yanlış sınıflandırmada ağırlık değiştirilir.

- Dğrenme oranının uygun seçilmesi gerekir.
- Yüksek seçilirse kararsızlık ortaya çıkar, düşük seçilirse öğrenme uzun sürer.

33

İçerik

- Yapay zeka
- Makine öğrenmesi
- Yapay sinir ağları
- Derin öğrenme

Derin öğrenme

- Deep learning, son yıllarda klasik yapay sinir ağlarının yerini almıştır.
- Deep learning, makine öğrenme tekniklerinin ve mimarilerinin geniş bir sınıfını ifade eder.
- Shallow learning, bir veya iki katman kullanarak yapılan öğrenmeyi ifade eder.
- ▶ **Deep learning**, çok sayıda katmanla öğrenmeyi ifade eder.
- Deep learning, işlem birimi olan neuron'larda nonlineer fonksiyon kullanır.

35

Derin öğrenme

- Makine öğrenmesinde ve derin öğrenmede, makinelere geçmiş verileri kullanarak tahmin yapma ve öğrenme yeteneği kazandırılır
- Makine öğrenmesi, genellikle istatistiksel metotlar yaygın kullanılır; derin öğrenme ise çok katmanlı sinir ağları ile hesaplama yapar.

Derin öğrenme

Makine öğrenmesinde, genellikle öznitelik çıkarımı manuel yapılır, derin öğrenmede öznitelikler de otomatik olarak öğrenilebilir.

3

Derin öğrenme

- Yaygın kullanılan derin öğrenme modelleri:
 - Deep feedforward networks
 - Convolutional neural networks
 - Recurrent neural networks
 - Autoencoders
 - Deep belief networks

<i>(</i>)		\sim	
v ,	"	_	w

 Derin öğrenmenin sağlık alanında uygulamasını içeren SCI/E dergilerinde yayınlanmış bir makale hakkında ödev hazırlayınız.