Collaborative Metric Learning

Cheng-Kang Hsieh, Longqi Yang, Yin Cui, Tsung-Yi Lin, Serge Belongie, Deborah Estrin

Index

- 1. Introduction
- 2. BackGround
- 3. Model description
- 4. Evaluation
- 5. Conclusion

Introduction

- Distance is at the heart of many fundamental machine learning algorithms
 - Ex) K-nearest neighbor, K-means, SVMs
- Metric learning algorithms produce distance metric
 - similar & dissimilar
 - Assign smaller distances between similar pairs, larger distances between dissimilar pairs.

Introduction

- Triangle inequality
 - x is similar to y,z -> x pull two pairs closer, also pull the remaining pair (y,z) relatively close
 - matrix factorization ->does not satisfy the triangle inequality (dot product)

$$Matrix = egin{bmatrix} 0 & 2 \ 2 & 0 \ 2 & 2 \end{bmatrix} LatentUser = egin{bmatrix} 0 & 1 \ 1 & 0 \ 1 & 1 \end{bmatrix} LatentItem = egin{bmatrix} 0 & 2 \ 2 & 0 \end{bmatrix} \ N imes M = (N imes K) \cdot (K imes M) \ \end{pmatrix}$$

- what we want to know
 - users' preference
 - user-user & item-item similarity
 ->Collaborative Metric Learning
- explicit -> implicit

- Metric Learning
 - $S = \{(x_i, x_j) | x_i \text{ and } x_j \text{ are considered similar} \}$
 - D = $\{(x_i, x_j) | x_i \text{ and } x_j \text{ are considered dissimilar} \}$
- Mahalanobis distance metric

•
$$d_A(x_i, x_j) = \sqrt{(x_i - x_j)^T A(x_i - x_j)}$$

• where $A \in \mathbb{R}^{m \times m}$ is a positive semi-definite matrix

- Metric Learning for kNN
 - LMNN
 - $\mathcal{L}_{pull}(d) = \sum_{j \sim i} d(x_i, x_j)^2$
 - $\mathcal{L}_{push}(d) = \sum_{j \sim i} \sum_{k} (1 y_{ik}) \left[1 + d(x_i, x_j)^2 d(x_i, x_k)^2 \right]_{+}$

Weighted regularized matrix factorization

$$\min_{\mathbf{u}_*, \mathbf{v}_*} \sum_{r_{ij} \in \mathcal{K}} c_{ij} (r_{ij} - \mathbf{u}_i^T \mathbf{v}_j)^2 + \lambda_u ||\mathbf{u}_i||^2 + \lambda_v ||\mathbf{v}_i||^2,$$

- Includes all the unobserved user-item interactions as negative samples
- Uses a case weight cij to reduce the impact of these uncertain samples

Bayesian Personalized Ranking

$$\min_{\mathbf{u}_*, \mathbf{v}_*} \sum_{i \in \mathcal{I}} \sum_{(j,k) \in \mathcal{D}_i} -log \ \sigma(\mathbf{u}_i^T \mathbf{v}_j - \mathbf{u}_i^T \mathbf{v}_k) + \lambda_u \|\mathbf{u}_i\|^2 + \lambda_v \|\mathbf{v}_j\|^2$$

• (user,positive item,negative item)

- Model feature
 - Capture users' relative preferences for different items
 - Uses implicit data
 - Pulls the pairs in S closer and pushes the other pairs relatively further apart
 - By triangular inequality, will also cluster
 - User who co-like the same items together
 - Items that are co-liked by same users together

Model formulation

$$min_{ heta, \mathbf{u}_*, \mathbf{v}_*} \mathcal{L}_m + \lambda_f \mathcal{L}_f + \lambda_f c_c$$

$$s.\ t.\ {||\mathbf{u}_*||}^2 \leq 1 \ \mathsf{and}\ {||\mathbf{v}_*||}^2 \leq 1$$

 \mathcal{L}_m : Embedding Loss

 \mathcal{L}_f : Feature Loss

 \mathcal{L}_c : Covariance Loss

Model formulation-Embedding Loss

$$\mathcal{L}_m(d) = \sum_{(i,j) \in S} \sum_{(i,k) \notin S} w_{ij} [m + D(i,j)^2 - d(i,k)^2]_+$$

- $m + d(i, j)^2 > d(i, k)^2 -> loss$
 - m : margin
 - wij : weight

- Model formulation-Embedding Loss
 - Weighted Approximate-Rank Pairwise (WARP)
 - Penalize items at a lower rank

$$w_{ij} = log(rank_d(i,j) + 1)$$

- Sample U negative items in parallel and compute the hinge loss
- Let MK denote the number of imposts in U sample, $rank_d(i,j)$ is approximated to $\left|\frac{J\times M}{U}\right|$

Model formulation-feature loss

$$\mathcal{L}_f(heta, \mathbf{v}_*) = \sum_j \left| \left| f(\mathbf{x}_j, heta) - \mathbf{v}_j
ight|^2$$

- Think as transformation of input
- x_i : raw item j vector
- v_i : embedding item j vector
- f(x) : MLP

- Model formulation-regularization
 - kNN based model is known to be ineffective in a high-dimensional space if the data points spread too widely
 - -> bound all the user/item $||u_*|| \le 1$ and $||v_*|| \le 1$
- Covariance regularization

$$egin{align} \mathcal{L}_c &= rac{1}{N} (\|C\|_f^2 - \|diag(C)\|_2^2) \ C_{ij} &= rac{1}{N} \sum_n (y_i^n - \mu_i) (y_j^n - \mu_j) \ \end{array}$$

Dataset

Table 1: Dataset Statistics.

	CiteULike	BookCX	Flickr	Medium	MovieLens20M	EchoNest
Domain	Paper	Book	Photography	News	Movie	Song
# Users	7,947	22,816	43,758	61,909	129,797	766,882
# Items	25,975	43,765	100,000	80,234	20,709	$260,\!417$
# Ratings	142,794	$623,\!405$	$1,\!372,\!621$	2,047,908	9,939,873	7,261,443
Concentration ^a	33.47%	33.10%	13.48%	55.38%	72.52%	65.88%
Features Type	Tags	Subjects	Image Features	Tags	Genres, Keywords	NA
# Feature Dim.	10,399	7,923	2,048	$2,\!313$	10,399	NA

Evaluation

Table 2: Recall@50 and Recall@100 on the test set. (# dimensions r = 100) The best performing method is boldfaced. *, **, ** indicate $p \le 0.05$, $p \le 0.01$, and $p \le 0.001$ based on the Wilcoxon signed rank test suggested in [41].

	WRMF	BPR	WARP	CML	$ours\ vs.$ $best$	FM	VBPR	CDL	CML+F	$ours\ vs.$ $best$
Recall@50										
CiteULike	0.2437	0.2489	0.1916	0.2714***	9.03%	0.1668	0.2807	0.3375**	0.3312	-1.86%
BookCX	0.0910	0.0812	0.0801	0.1037***	13.95%	0.1016	0.1004	0.0984	0.1147***	12.89%
Flickr	0.0667	0.0496	0.0576	0.0711***	6.59%	NA	0.0612	0.0679	0.0753***	10.89%
Medium	0.1457	0.1407	0.1619	0.1730***	6.41%	0.1298	0.1656	0.1682	0.1780***	5.82%
MovieLens	0.4317	0.3236	0.4649	0.4665	0.34%	0.4384	0.4521	0.4573	0.4617*	0.96%
EchoNest	0.2285	0.1246	0.2433	0.2460	1.10%	NA	NA	NA	NA	NA
Recall@100										
CiteULike	0.3112	0.3296	0.2526	0.3411***	3.37%	0.2166	0.3437	0.4173	0.4255**	1.96%
BookCX	0.1286	0.1230	0.1227	0.1436***	11.66%	0.1440	0.1455	0.1428	0.1712***	17.66%
Flickr	0.0821	0.0790	0.0797	0.0922***	12.30%	NA	0.0880	0.0909	0.1048***	15.29%
Medium	0.2112	0.2078	0.2336	0.2480***	6.16%	0.1900	0.2349	0.2408	0.2531***	5.10%
MovieLens	0.5649	0.4455	0.5989	0.6022	0.55%	0.5561	0.5712	0.5943	0.5976	0.55%
EchoNest	0.2891	0.1655	0.3021	0.3022	0.00%	NA	NA	NA	NA	NA

Evaluation

- CML's throughput is improved by 106x with only 2% reduction in accuracy
- Over 8x faster than (optimized) MF models given the same accuracy

Evaluation

Conclusion

Conclusion

Task	Dataset	Model	Metric Name	Metric Value	Global Rank	Benchmark
Recommendation Systems	Million Song Dataset	CML	Recall@50	0.2460	#6	Compare
			Recall@100	0.3022	#1	Compare
Recommendation Systems	MovieLens 1M	CML	HR@10	0.7216	#6	Compare
			nDCG@10	0.5413	#5	Compare
Recommendation Systems	MovieLens 20M	CML	Recall@50	0.4665	#9	Compare
			HR@10	0.7764	#3	Compare
			nDCG@10	0.5301	#3	Compare
Recommendation Systems	Netflix	CML	nDCG@10	0.2948	#3	Compare
			Recall@10	0.4612	#2	Compare