

## الامتحان الوطني الموحد للبكالوريا الدورة الاستدراكية 2017 - الموضوع -

N8## X++83⊙8 ∧ V \$00NEV 919 NNN V \$0 XXX 9E 90091





**RS 22** 

#### المركز الوطني للتقويم والامتحاذات والتوجية

| 3 | مدة الإنجاز | الرياضيات                      | المادة           |
|---|-------------|--------------------------------|------------------|
| 7 | المعامل     | شعبة العلوم التجريبية بمسالكها | الشعبة أو المسلك |

### تعليمات عامة

- يسمح باستعمال الآلة الحاسبة غير القابلة للبرمجة ؟
- يمكن للمترشح إنجاز تمارين الامتحان حسب الترتيب الذي يناسبه ؟
  - ينبغي تفادي استعمال اللون الأحمر عند تحرير الأجوبة.

### مكونات الموضوع

- يتكون الموضوع من أربعة تمارين و مسألة، مستقلة فيما بينها، وتتوزع حسب المجالات كما يلي:

| 3 نقط   | الهندسة الفضائية               | التمرين الأول  |
|---------|--------------------------------|----------------|
| 3 نقط   | حساب الاحتمالات                | التمرين الثاني |
| 3 نقط   | الأعداد العقدية                | التمرين الثالث |
| 2.5 نقط | المتتاليات العددية             | التمرين الرابع |
| 8.5 نقط | دراسة دالة عددية وحساب التكامل | المسألة        |

# الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2017 - الموضوع - مادة: الرياضيات - شعبة العلوم التجريبية بمسالكها

التمرين الأول: ( 3 نقط)

 $\left(O,\,ec{i}\,,\,ec{j}\,,\,ec{k}
ight)$ الفضاء منسوب إلى معلم متعامد ممنظم مباشر

y-z=0 نعتبر الفلكة (P) الذي معادلتها  $x^2+y^2+z^2-2x-2y-2z-1=0$  الذي معادلته نعتبر الفلكة (S) التي معادلته (S) ال

2) أ- بين أن مركز الفلكة (S) هو النقطة  $\Omega(1,1,1)$  و شعاعها هو

(C) وفق دائرة  $d(\Omega,(P))$  و استنتج أن المستوى  $d(\Omega,(P))$  وفق دائرة و 0.5

(3) = (3) = (1)

(C) ج- حدد مركز و شعاع الدائرة

(P) و العمودي على المستقيم المار من النقطة A(1,-2,2) و العمودي على المستوى ( $\Delta$ )

 $(\Delta)$  متجهة موجهة للمستقيم أن  $\vec{u}(0,1,-1)$  متجهة موجهة المستقيم مردد

و استنتج أن المستقيم ( $\Delta$ ) يقطع الفلكة (S) في نقطتين.  $=\sqrt{2}\|\vec{u}\|$  و استنتج أن المستقيم ( $\Delta$ ) و المستفيم ( $\Delta$ 

(S) و الفلكة  $(\Delta)$  و الفلكة  $(\Delta)$  عدد مثلوث إحداثيات كل نقطة من نقطتي تقاطع المستقيم

### التمرين الثانيه : ( 3 نقط )

يحتوي صندوق على 10 كرات لا يمكن التمييز بينها باللمس: خمس كرات بيضاء و ثلاث كرات حمراء و كرتان خضراوان (انظر الشكل جانبه).

حمس حراث بيصاء و دلات حراث حمراء و حربان حصراوان (انظر الشكل نسحب عشوائيا و في آن واحد أربع كرات من الصندوق.

1) نعتبر الحدث A: " من بين الكرات الأربع المسحوبة توجد كرة خضراء واحدة فقط ".

و الحدث В: " من بين الكرات الأربع المسحوبة توجد بالضبط ثلاث كرات من نفس اللون ".

$$p(B) = \frac{19}{70}$$
 وأن  $p(A) = \frac{8}{15}$ 

2) ليكن X المتغير العشوائي الذي يربط كل سحبة بعدد الكرات الخضراء المسحوبة.

$$p(X=2) = \frac{2}{15}$$
 أ- بين أن 0.

0.75

 $\frac{4}{5}$  بساوي E(X) بين أن الأمل الرياضي E(X) بساوي بين أن الأمل الرياضي

#### التمرين الثالث : ( 3 نقط )

 $z^2 + 4z + 8 = 0$  المعادلة المعادلة الأعداد العقدية الأعداد العقدية

2) نعتبر، في المستوى العقدي المنسوب إلى معلم متعامد ممنظم مباشر  $(O, \vec{u}, \vec{v})$ ، النقط A و B و D اللتي ألحاقها

c=4 + 8i و b=4 - 4i و a=-2+2i على التوالي هي a و b و a بحيث

 $-\frac{\pi}{2}$  من المستوى و z' لحق النقطة M سورة M بالدوران R الذي مركزه M و زاويته z'=-iz-4 بين أن

ABC بالدوران R و استنتج طبیعة المثلث C عصورة النقطة B هي صورة النقطة C من النقطة B هي صورة النقطة C

[BC] ليكن  $\omega$  لحق النقطة  $\Omega$  منتصف القطعة (3

 $|c-\omega|=6$  أـ بين أن 0.5

ABC بب بين أن مجموعة النقط M ذات اللحق z بحيث z بحيث  $|z-\omega|=6$  هي الدائرة المحيطة بالمثلث 0.5

# الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2017 - الموضوع - مادة: الرياضيات - شعبة العلوم التجريبية بمسالكها

#### التمرين الرابع: ( 2.5 بھـا )

$$IN$$
 نعتبر المتالية العدية  $u_{n+1}=rac{1}{4}u_n+12$  و  $u_0=17$  : المعرفة بما يلي  $u_0=17$ 

- IN من  $u_n > 16$  أ- بين بالترجع أن  $u_n > 16$  من n فكل من
- ب- بين أن المتتالية  $(u_n)$  تناقصية و استنتج أن المتتالية  $(u_n)$  متقاربة.
  - IN من  $v_n = u_n 16$  لتكن ( $v_n$ ) المتتالية العددية بحيث (2
    - أ- بين أن  $(v_n)$  متتالية هندسية.
- $\left(u_{n}\right)$  بـ استنتج أن  $\left(\frac{1}{4}\right)^{n}$  لكل  $u_{n}=16+\left(\frac{1}{4}\right)^{n}$  بـ استنتج
- $u_n < 16,0001$  ج- حدد أصغر قيمة للعدد الصحيح الطبيعي n التي يكون من أجلها

#### المسألة : ( 8.5 نهما )

0.5

0.5

0.25

0.25

0.25

ا لتكن g الدالة العددية المعرفة على R بما يلي :

$$g(x) = 1 - (x+1)^2 e^x$$

- g(0) = 0 تحقق من أن
- (انظر الشكل جانبه) g انطلاقا من التمثيل المبياني g(x) للدالة  $g(x) \ge 0$  انظر الشكل جانبه) بين أن  $g(x) \ge 0$  لكل  $g(x) \le 0$  وأن  $g(x) \le 0$  لكل  $g(x) \le 0$



- $f(x)=x+1-\left(x^2+1
  ight)e^x$ : بما يلي IR بما المعرفة على المعرفة المعرفة المعرفة على المعرفة ال
- ( و ليكن  $\left(0,\overrightarrow{i},\overrightarrow{j}
  ight)$  المنحنى الممثل للدالة f في معلم متعامد ممنظم و الوحدة الوحدة و ليكن
- $\lim_{x \to -\infty} f(x) = -\infty$  أ- تحقق من أن R ثم استنتج أن  $f(x) = x + 1 4\left(\frac{x}{2}e^{\frac{x}{2}}\right)^2 e^x$  أ- تحقق من أن أن أب المستنتج أن أب أ
- $-\infty$ بجوار  $(C_f)$  بجوار y=x+1 مقارب للمنحنى واستنتج أن المستقيم والمستقيم (D) ذا المعادلة y=x+1 مقارب للمنحنى
  - (D) يوجد تحت المستقيم  $(C_f)$  يوجد تحت المستقيم
  - (  $x\left[1+\frac{1}{x}-\left(x+\frac{1}{x}\right)e^x\right]$  على الشكل f(x) على الشكل  $\lim_{x\to +\infty}f(x)=-\infty$  أ- بين أن  $\int_{x\to +\infty}f(x)=\int_{x\to +\infty}f(x)$ 
    - ب- بین أن المنحنی  $\left(C_{f}\right)$  یقبل بجوار  $+\infty$  ، فرعا شلجمیا یتم تحدید اتجاهه.
      - IR نکل x نکل f'(x) = g(x) نکل من (3 من 0.75
  - IR على الدالة f تزايدية على  $[0,+\infty[$  و تناقصية على  $]-\infty$  و f على f على f ما نعيرات الدالة f ما نعيرات الدال
    - -1 و -3 افصولاهما  $\left(C_f\right)$  يقبل نقطتي انعطاف أفصولاهما  $\left(C_f\right)$  0.75
- $(f(-1)\approx -0.75)$  و  $f(-3)\approx -2.5$  (ناخذ  $(C_f)$  و المنحنى ( $(C_f)$  و المنحنى ( $(C_f)$ )، المستقيم ( $(D_f)$ 
  - $\int_{-1}^{0} x e^{x} dx = \frac{2}{e} 1$  على R على R على  $h: x \mapsto xe^{x}$  أ- تحقق من أن  $H: x \mapsto (x-1)e^{x}$  هي دالة أصلية للدالة  $h: x \mapsto xe^{x}$  على  $H: x \mapsto (x-1)e^{x}$ 
    - $\int_{-1}^{0} (x^2 + 1)e^x dx = 3\left(1 \frac{2}{e}\right)$  بين أن بين أن مكاملة بالأجزاء ، بين أن 0.75
- و.0  $(C_f)$  و المستقيم و  $(C_f)$  و المستوى المحصور بين المنحنى و المستقيم (D) و محور الأراتيب x=-1



# الامتحان الوطني الموحد للبكالوريا الدورة الاستدراكية 2017 - عناصر الإجابة -

08366 \$ 37808 1 +064636 A 60063 A 60063 A

+.XN/X+ | NEYO40



المسألة ( 8.5 ن )



RR 22

#### المركز الوطني للتقويم والامتحانات والتوجيه

| 3        | مدة الإنجاز                | الرياضيات                                                                                           | المادة                |         |  |  |  |
|----------|----------------------------|-----------------------------------------------------------------------------------------------------|-----------------------|---------|--|--|--|
| 7        | المعامل                    | شعبة العلوم التجريبية بمسالكها                                                                      | أو المسلك             | الشعبة  |  |  |  |
|          |                            | تؤخذ بعين الاعتبار مختلف مراحل الحل وتقبل كل طريقة صحيحة تؤدي إلى الحل                              |                       |         |  |  |  |
|          |                            |                                                                                                     | الأول ( 3 ن )         | التمرين |  |  |  |
|          | و دائرة                    | اً- 0.25 المركز و 0.25 الشعاع ب- 0.25 ل $d(\Omega,(P)) = 0$ و 0.25 التقاطع هو                       | (1                    |         |  |  |  |
|          |                            | ج- 0.25 للمركز هو $\Omega$ و 0.25 للشعاع هو $2$                                                     | ,                     |         |  |  |  |
| ·        | d(O (A)) < 2 =             | ا - 0.25 $\overline{\Omega} A \wedge \vec{u} = 2 \vec{i}$ و 0.25 لاستنتا و 0.25 لاستنتا             | (2                    | 1.5     |  |  |  |
| <i>(</i> | $u(\Omega_{2},(\Delta))<2$ |                                                                                                     | ,                     |         |  |  |  |
|          |                            | (1,-1,1) و $(1,1,-1)$ و 0.25 للمثلوث $(1,1,-1)$                                                     |                       |         |  |  |  |
|          |                            |                                                                                                     | الثاني ( 3 ن )        | التمرين |  |  |  |
|          |                            | $p(B) = \frac{19}{70}$ للتوصل إلى $p(A) = \frac{8}{15}$ و 0.75                                      | (1                    |         |  |  |  |
|          |                            | $p(X=2) = \frac{2}{15}$ للتوصل إلى <b>0.5</b>                                                       | (2                    | 1.5     |  |  |  |
|          | E(X)                       | $=\frac{4}{5}$ ب- 0.25 للتوصل إلى $p(X=0)=\frac{1}{3}$ و 0.5 ل $p(X=1)=\frac{8}{15}$ و 0.25 ب       |                       |         |  |  |  |
|          |                            |                                                                                                     | <u>الثالث (</u> 3 ن ) | التمرين |  |  |  |
|          | (                          | 0.25 لحساب المميز و 0.25 لكل حل من الحلين (تمنح 0.75 للتوصل إلى الحلين بطريقة أخرى                  |                       | 0.75    |  |  |  |
|          |                            | $z'=-iz-4$ للتوصل إلى $z'-a=e^{-irac{\pi}{2}}(z-a)$ الكتابة 0.25 و 0.25 التوصل الح                 | (2                    | 1.25    |  |  |  |
|          |                            | ب- $0.25$ للتوصل إلى أن $R(C)=B$ و $R(C)$ للمثلث متساوي الساقين و قائم الزاوية                      |                       |         |  |  |  |
|          |                            | أ- 0.5 $+$ 0.5 لترجمة الكتابة $ z-\omega = z-\omega $ إلى $z=0$ و 0.25 للتوصل إلى المجموعة المطلوبة | (3                    | 1       |  |  |  |
|          | التمرين الرابع ( 2.5 ن )   |                                                                                                     |                       |         |  |  |  |
|          |                            | أ- 0.5 ب- 0.25 للمتتالية تناقصية و 0.25 للمتتالية متقاربة                                           | (1                    | 1       |  |  |  |
|          |                            | $(u_n)$ الستنتاج و $(u_n)$ هي $(u_n)$ الستنتاج و $(u_n)$ الحي                                       | (2                    | 1.5     |  |  |  |
|          |                            | ج- 0.5 لأصغر قيمة ه <i>ي</i> 7                                                                      |                       |         |  |  |  |
|          |                            |                                                                                                     | <u> </u>              |         |  |  |  |

| الصفحة | DD 00 |
|--------|-------|
| 2 2    | RR 22 |

# الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2017 - عناصر الإجابة - مادة: الرياضيات - شعبة العلوم التجريبية بمسالكها

|                                                                                                                                 | (I   |      |
|---------------------------------------------------------------------------------------------------------------------------------|------|------|
| 0.25                                                                                                                            | (1   | 0.25 |
| $[0,+\infty[$ لكل $x$ من المجال $g(x) \leq 0$ ل $g(x) \leq 0$ لكل $g(x) \geq 0$ لكل $g(x) \geq 0$ لكل و من المجال $g(x) \geq 0$ | (2   | 1    |
|                                                                                                                                 | (II) |      |
| أ- 0.25 للتحقق و 0.5 للنهاية ب- 0.25 للنهاية و 0.25 للاستنتاج ج-0.25                                                            | (1   | 1.5  |
| اً- 0.5 أ                                                                                                                       | (2   | 0.75 |
| 0.75- <sup>ĵ</sup>                                                                                                              | (3   | 2.25 |
| ب- 0.25 ل $f$ تزايدية على $]-\infty,0$ و 0.25 ل $f$ تناقصية على $[0,+\infty[$ و 0.25 لجدول التغيرات                             |      |      |
| 7- 0.75                                                                                                                         |      |      |
| 1 ( انظر الشكل أسفله )                                                                                                          | (4   | 1    |
| أ- 0.25 للتحقق و 0.25 للحساب                                                                                                    | (5   | 1.75 |
| ب- 0.5 لتقنية المكاملة بالأجزاء و 0.25 للتوصل إلى النتيجة                                                                       |      |      |
| $12\left(1-rac{2}{e} ight)cm^2$ ج. 0.25 للمساحة ب $cm^2$ هي $cm^2$ هي $cm^2$ و 0.25 للتوصل إلى المساحة هي $cm^2$               |      |      |

