Deterministic Finite Automata

And Regular Languages

Finite Automata

The *finite state machine* or *finite automaton* is the simplest computational model of limited memory computers.

Example: an automatic door opener at a supermarket decides when to open or close the door, depending on the input provided by its sensors.

Example: Door Opener

states: closed, open

input conditions: front, rear, both, neither

nonloop transitions:

closed \rightarrow open on front open \rightarrow closed on neither

Deterministic Finite Automaton (DFA)

Transition Graph

Alphabet
$$\Sigma = \{a, b\}$$

For every state, there is a transition for every symbol in the alphabet

head

Initial Configuration

Input Tape

a b b a

Initial state

Scanning the Input

Input finished

accept

A Rejection Case

Input finished

Another Rejection Case

Language Accepted: $L = \{abba\}$

To accept a string:

all the input string is scanned and the last state is accepting

To reject a string:

all the input string is scanned and the last state is non-accepting

Another Example

$$L = \{\lambda, ab, abba\}$$

Empty Tape

 (λ)

Another Example

Input String

Input finished

A rejection case

b a b

Input String

Input finished

Language Accepted: $L = \{a^nb : n \ge 0\}$

Another Example

Alphabet:
$$\Sigma = \{1\}$$

Language Accepted:

$$EVEN = \{x : x \in \Sigma^* \text{ and } x \text{ is even}\}$$

= $\{\lambda, 11, 1111, 111111, ...\}$

Formal Definition

Deterministic Finite Automaton (DFA)

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q : set of states

 Σ : input alphabet $\lambda \notin \Sigma$

 δ : transition function

 q_0 : initial state

F: set of accepting states

Set of States Q

Example

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5\}$$

$$a, b$$

$$a, d$$

$$a, d$$

$$b$$

$$a, d$$

$$a$$

Input Alphabet Σ

 $\lambda \not\in \Sigma$: the input alphabet never contains λ

Initial State q_0

Example

Set of Accepting States $F \subseteq Q$

Example

Transition Function $\delta: Q \times \Sigma \to Q$

$$\delta(q,x)=q'$$

Describes the result of a transition from state q with symbol x

Example:

$$\delta(q_0,a)=q_1$$

$$\delta(q_0,b)=q_5$$

$$\delta(q_2,b)=q_3$$

Transition Table for δ

symbols

•		
δ	а	Ь
<i>q</i> ₀	q_1	q ₅
q_1	9 5	<i>q</i> ₂
92	q_5	<i>q</i> ₃
<i>q</i> ₃	<i>q</i> ₄	q ₅
9 4	<i>q</i> ₅	q ₅
q ₅	q ₅	q ₅

states

Extended Transition Function

$$\delta^*: \mathbf{Q} \times \Sigma^* \to \mathbf{Q}$$

$$\delta^*(q,w)=q'$$

Describes the resulting state after scanning string W from state q

Example:
$$\delta^*(q_0,ab) = q_2$$

$$\delta^*(q_0,abbbaa) = q_5$$

$$\delta^*(q_1,bba)=q_4$$

Special case:

for any state q

$$\delta^*(q,\lambda)=q$$

In general:
$$\delta^*(q, w) = q'$$

implies that there is a walk of transitions

Language Accepted by DFA

Language of DFA M:

it is denoted as L(M) and contains all the strings accepted by M

We say that a language L' is accepted (or recognized) by DFA M if L(M) = L'

For a DFA
$$M=(Q,\Sigma,\mathcal{S},q_0,F)$$

Language accepted by M:

$$L(M) = \{ w \in \Sigma^* : \delta^*(q_0, w) \in F \}$$

$$q_0 \qquad \qquad q' \in F$$

Language rejected by M:

$$\overline{L(M)} = \{ w \in \Sigma^* : \delta^*(q_0, w) \notin F \}$$

$$q_0$$
 W $q' \notin F$

More DFA Examples

$$\Sigma = \{a,b\}$$

$$L(M) = \{ \}$$

Empty language

$$L(M) = \Sigma^*$$

All strings

$$\Sigma = \{a,b\}$$

$$L(M) = \{\lambda\}$$

Language of the empty string

$$\Sigma = \{a,b\}$$

L(M)= { all strings with prefix ab }

$L(M) = \{ all binary strings containing substring 001 \}$

$L(M) = \{ all binary strings without substring 001 \}$

$$L(M) = \left\{awa : w \in \left\{a, b\right\}^*\right\}$$

$$\downarrow b$$

$$\downarrow a$$

$$\downarrow b$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow b$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow b$$

$$\downarrow a$$

Regular Languages

Definition:

```
A language L is regular if there is a DFA M that accepts it (L(M) = L)
```

The languages accepted by all DFAs form the family of regular languages

Example regular languages:

```
\{abba\} \{\lambda, ab, abba\}
\{a^n b : n \ge 0\} {awa : w \in \{a,b\}^*\}
{ all strings in \{a,b\}^* with prefix ab }
{ all binary strings without substring 001}
\{x:x\in\{1\}^* \text{ and } x \text{ is even}\}
\{\} \{\lambda\} \{a,b\}^*
```

There exist automata that accept these languages (see previous slides).

There exist languages which are not Regular:

$$L = \{a^n b^n : n \ge 0\}$$

ADDITION =
$$\{x + y = z : x = 1^n, y = 1^m, z = 1^k, n + m = k\}$$

There is no DFA that accepts these languages

(we will prove this in a later class)