Name: Department: S.R.No.: Programme:

1. Consider a multi-armed bandit with three arms A, B, and C. The decision maker pulls these arms in the order A, B, C, B, A, C, B and gets the rewards 5, 4, 1, 6, 3, 7, 2, respectively. Assuming initial Q-values for each arm as zero, find the final values of Q(A), Q(B) and Q(C)? (2 marks)

•
$$N(A) = ($$
 $B_{1}(A) \leftarrow B_{1}(A) + \frac{1}{N(A)}(R - B_{1}(A))$
 $= 0 + 1(5 - 0) = 5$
• $N(B) = 1$
 $B_{1}(B) \leftarrow B_{1}(B) + \frac{1}{N(B)}(R - B_{1}(B)) = 4$
• $N(C) = 1$
 $B(C) \leftarrow B_{1}(C) + \frac{1}{N(C)}(R - B_{1}(C)) = 1$
• $N(B) = 2$
 $B_{1}(B) \leftarrow B_{1}(B) + \frac{1}{N(B)}(R - B_{1}(B))$
 $= 4 + \frac{1}{2}(6 - 4) = 5$
• $N(A) = 2$
 $B_{1}(A) \leftarrow B_{1}(A) + \frac{1}{N(A)}(R - B_{1}(A))$
 $= 5 + \frac{1}{2}(3 - 5) = 4$
• $N(C) = 2$
 $B_{1}(C) \leftarrow B_{2}(C) + \frac{1}{N(C)}(R - B_{2}(C))$
 $= 1 + \frac{1}{2}(7 - 1) = 4$
• $N(B) = 3$
 $B_{1}(B_{1}) \leftarrow B_{2}(B_{2}) + \frac{1}{N(B_{2})}(R - B_{2}(B_{3}))$
Lialves:
 $= 5 + \frac{1}{2}(2 - 5) = 4$

 $B_{A}(A) = B(B) = B(C) = 4.$

2. Consider a finite horizon MDP for which the single stage costs at each of the times $0, 1, \ldots, N-1$ are the same, i.e., the functions $g_0 = g_1 = \cdots = g_{N-1} \stackrel{\triangle}{=} g$. Let the terminal cost be g_N and it only depends on the terminal state as before. Assume now that $J_{N-1}(x) \geq g_N(x)$, $\forall x \in S$ (where S denotes the state space). Show that this implies $J_k(x) \geq J_{k+1}(x)$, for all $k = 0, 1, \ldots, N-1$ and all $x \in S$.

As per DP algorithm,

IN(x) = gn(x) +x.

 $J_{N-2}(x) = \min_{\alpha \in A(x)} E_{\gamma} \left[g(x,\alpha,\gamma) + J_{N-1}(\gamma) \right]$

 $= \min_{\alpha \in A(x)} E_{\gamma} [g(x,\alpha,\gamma) + J_{\nu}(\gamma)]$

= J_{N+}(a), +x.

Proceedy similarly, we obtain

 $J_{k}(x) \geq J_{k+1}(x) + k = 0, 1, -, N-1$ and all x.