Results on QM9

Adarsh Jamadandi

QM9 dataset and current SOTA

```
Dataset: QM9(130831):
Number of graphs: 130831
Number of features: 11
Number of classes: 19
Data(x=[15, 11], edge_index=[2, 28], edge_attr=[28, 4], y=[1, 19], pos=[15, 3], idx=[1], name='gdb_134', z=[15])
```

Number of nodes: 15 Number of edges: 28

Average node degree: 1.87 Has isolated nodes: False

Has self-loops: False Is undirected: True

mean 2.672952651977539 std 1.5034793615341187

Target	SchNet	PhysNet	MEGNet-f	Cormorant	MGCN	DimeNet	MXMNet BS=32 d_g =5Å	MXMNet BS=128 d_g =5Å	MXMNet BS=128 d_g =10Å
μ (D)	0.021	0.0529	0.040	0.038	0.056	0.0286	0.0396	0.0382	0.0255
$\alpha(a_0^3)$	0.124	0.0615	0.083	0.085	0.030	0.0469	0.0447	0.0482	0.0465
ϵ_{HOMO} (meV)	47	32.9	38	34	42.1	27.8	24.7	23.0	22.8
$\epsilon_{\text{LUMO}} \text{ (meV)}$	39	24.7	31	38	57.4	19.7	19.7	19.5	18.9
$\Delta \epsilon \ (\text{meV})$	74	42.5	61	61	64.2	34.8	32.6	31.2	30.6
$\left\langle R^{2}\right angle \left(a_{0}^{2} ight)$	0.158	0.765	0.265	0.961	0.11	0.331	0.512	0.506	0.088
ZPVE (meV)	1.616	1.39	1.40	2.027	1.12	1.29	1.15	1.16	1.19
U_0 (meV)	12	8.15	9	22	12.9	8.02	5.90	6.10	6.59
U (meV)	12	8.34	10	21	14.4	7.89	5.94	6.09	6.64
H (meV)	12	8.42	10	21	16.2	8.11	6.09	6.21	6.67
G (meV)	13	9.40	10	20	14.6	8.98	7.17	7.30	7.81
$c_v(rac{ ext{cal}}{ ext{molK}})$	0.034	0.0280	0.030	0.026	0.038	0.0249	0.0224	0.0228	0.0233
std. MAE (%)	1.78	1.37	1.57	1.61	1.89	1.05	1.06	1.02	0.93

Table 1: Comparison of MAEs of targets on QM9 for different models.

Vanilla GNN + QM9

- Regression task Target μ Dipole moment.
- LR 0.0001 and decay to 0.00001
- Epochs = 300
- Metric MAE

Results - Vanilla GNN + QM9

```
Epoch: 294, LR: 0.000010, MSELoss: 80.3882695, Test MAE: 12.0164788 number of distinguishable graphs: 394267 of 395789

Epoch: 295, LR: 0.000010, MSELoss: 80.3782898, Test MAE: 11.6712106 number of distinguishable graphs: 394139 of 395789

Epoch: 296, LR: 0.000010, MSELoss: 80.3760804, Test MAE: 11.8250868 number of distinguishable graphs: 394174 of 395789

Epoch: 297, LR: 0.000010, MSELoss: 80.3846005, Test MAE: 11.9154141 number of distinguishable graphs: 394177 of 395789

Epoch: 298, LR: 0.000010, MSELoss: 80.3873209, Test MAE: 11.8555786 number of distinguishable graphs: 394139 of 395789

Epoch: 299, LR: 0.000010, MSELoss: 80.3757762, Test MAE: 11.9482946 number of distinguishable graphs: 394090 of 395789

Epoch: 300, LR: 0.000010, MSELoss: 80.3805613, Test MAE: 11.8287799
```

1699 Non distinguishable graphs

Principal Neighbourhood Aggregation + QM9 Spectra

```
    Regression task - Target - spectrum

  • Number of graphs - 131460

    LR - 0.001 and decay to 0.00001

  • Epochs = 300

    Metric - MAE

    Model -

Net(
  (convs): ModuleList(
    (0): PNAConv(1, 1, towers=1, edge_dim=None)
    (1): PNAConv(1, 1, towers=1, edge dim=None)
    (2): PNAConv(1, 1, towers=1, edge_dim=None)
    (3): PNAConv(1, 1, towers=1, edge_dim=None)
    (4): PNAConv(1, 1, towers=1, edge_dim=None)
  (batch_norms): ModuleList(
    (0): BatchNorm(1)
    (1): BatchNorm(1)
    (2): BatchNorm(1)
    (3): BatchNorm(1)
    (4): BatchNorm(1)
  (mlp): Sequential(
    (0): Linear(in_features=1, out_features=64, bias=True)
    (1): ReLU()
    (2): Linear(in features=64, out features=150, bias=True)
```

Vanilla GNN+ QM9 Spectra

- Regression task Target spectrum
- LR 0.001 and decay to 0.00001
- Number of graphs 131460
- Epochs = 300
- Metric MAE
- Model -

```
GCN(
  (conv1): GCNConv(1, 64)
  (conv2): GCNConv(64, 64)
  (conv3): GCNConv(64, 64)
  (conv4): GCNConv(64, 64)
  (conv5): GCNConv(64, 64)
  (mlp_1): Sequential(
      (0): Linear(in_features=64, out_features=64, bias=True)
      (1): ReLU()
      (2): Linear(in_features=64, out_features=128, bias=True)
      (3): ReLU()
      (4): Linear(in_features=128, out_features=150, bias=True)
    )
)
```

Results - QM9 spectra

Method	MSE Loss	Test MAE
Vanilla GNN	1.9323	1.9353
PNA	0.0345	1.1209

More results

Adarsh Jamadandi

Method	MSE Loss	Train MAE	Test MAE	Validation MAE
PNA	0.5093	0.5455	1.5671	NA
PNA + Edgefeatures	2.1267	0.8208	1.7472	NA
ChemProp	3.7535	0.4324	2.002	NA
InfoGraph - Supervised Loss	2.045	NA	2.4834	2.2809
InfoGraph* - UnsupervisedLoss	1.920	NA	2.966	2.646

Results on Mol-HIV - Predicting spectra

PNA + Cosine similarity Loss + Not cropping the Y-vector

PNA + Cosine similarity Loss + Cropped

PDNConv + SampleLoss + Cropped

PDNConv + Energy minimisation + Cropped

