Levenshtein Distance & WER Computation

Nuray Tağıyeva

March 7, 2025

Introduction

- Speech recognition critical in healthcare, legal, and customer service.
- Importance of accuracy: Errors have high costs.
- Word Error Rate (WER): standard metric.
- Levenshtein Distance measures string similarity (insertions, deletions, substitutions).

(Jurafsky & Martin, 2009; MIT NLP Course)

Theoretical Background

- Naïve Recursive Approach (Brute force): $O(3^n)$ complexity.
- Dynamic Programming Approach: Efficient polynomial O(nm) complexity.
- Optimized DP (Rolling Array): Efficient memory use $(O(\min(n, m))$ space complexity).
- Alternative Metrics: Damerau-Levenshtein, Jaro-Winkler.

Application in ASR

- Applications: Virtual assistants (Siri, Alexa), Transcription services, Accessibility.
- TED-LIUM dataset for testing.
- Compared ASR Models:
 - Google Speech-to-Text
 - Whisper AI (OpenAI)

WER Implementation & Visualization

- Implemented using Python (JiWER library).
- WER results:
 - Google STT: 11.34%
 - Whisper AI: 6.02%
- Visualization highlights differences clearly.

Challenges & Future Improvements

Challenges:

- Scalability issues for large datasets.
- Phonetic error limitations.

• Proposed Improvements:

- Phonetic-based metrics.
- Deep learning techniques (wav2vec2, BERT-based corrections).
- Semantic-aware WER computations.

References

- Jurafsky, D. & Martin, J.H. (2009). Speech and Language Processing.
- MIT NLP OpenCourseWare.
- Additional references (See full report and .bib file).