NITED STATES DEPARTMENT OF AGRICULTURE BULLETIN No. 1027

Contribution from the Bureau of Chemistry
W. G. CAMPBELL, Acting Chief

Washington, D. C.

V

April 17, 1922

POISONOUS METALS ON SPRAYED FRUITS AND VEGETABLES

BY

W. D. LYNCH, Assistant Chemist, C. C. McDONNELL, Chief, Insecticide and Fungicide Laboratory, and J. K. HAYWOOD, Chief, Miscellaneous Division, Bureau of Chemistry; A. L. QUAINTANCE, Entomologist in Charge, Fruit Investigations, Bureau of Entomology; and M. B. WAITE, Pathologist in Charge, Fruit-Disease Investigations, Bureau of Plant Industry

CONTENTS

							age
Purpose of Investigation							- 1
Results of Previous Investigations	8						1
Experimental Work :							16
Results of Experimental Work							18
Summary							58
Literature Cited		1					58

WASHINGTON
GOVERNMENT PRINTING OFFICE

1922

Com 2

LIBRARY OF CONGRESS
RECEIVED
MAY 2 1922
DOCUMENTS DIVISION

UNITED STATES DEPARTMENT OF AGRICULTURE

BULLETIN No. 1027

Contribution from the Bureau of Chemistry W. G. CAMPBELL, Acting Chief

Washington, D. C.

V

April 17, 1922

POISONOUS METALS ON SPRAYED FRUITS AND VEGETABLES.

By W. D. LYNCH, Assistant Chemist, C. C. McDonnell, Chief, Insecticide and Fungicide Laboratory, and J. K. Haywood, Chief, Miscellaneous Division, Bureau of Chemistry; A. L. Quaintance, Entomologist in Charge, Fruit Investigations, Bureau of Entomology; and M. B. Waite, Pathologist in Charge, Fruit-Disease Investigations, Bureau of Plant Industry.

CONTENTS.

Account transposite by highest 1 to P	age.		Page.
Purpose of investigation	1	Results of experimental work	18
Results of previous investigations	1	Summary	58
Experimental work	16	Literature cited	58

PURPOSE OF INVESTIGATION.

In the spring of 1915 a cooperative study was undertaken in the United States Department of Agriculture to ascertain the amounts of arsenic, lead, and copper remaining on fruits and vegetables treated with poisonous sprays. The spraying was done under the direction of the Bureau of Entomology and the Bureau of Plant Industry, and the chemical work by the Bureau of Chemistry. The plan was to spray various fruit trees and vegetables according to accepted schedules, and also with excessive amounts of material to determine how much of the metals may be present under adverse conditions. In case the investigation showed that poisonous metals remained on the fruit in amounts which might prove injurious to the consumer, the results would constitute a basis for so changing or regulating the spraying schedules as to eliminate this danger.

RESULTS OF PREVIOUS INVESTIGATIONS.

Arsenical compounds first appeared as insecticides in the United States (63)² about 1860, when Paris green was used to check the

¹ Credit is due to John G. Fairchild and Wilbur A. Gersdorff for assistance in the analytical work reported in this paper.

^{*} Figures in parentheses refer to Literature Cited, pp. 58 to 66.

ravages of the Colorado potato beetle. In 1872 Le Baron (70) suggested the application of Paris green to fruit trees to combat the spring cankerworm, but Lodeman (75) states that only a few of the most progressive orchardists adopted arsenical spraying against the codling moth until after the establishment of the State agricultural experiment stations resulting from the passage of the Hatch Act in 1887.

The question soon arose as to the possible danger to the consumer from the use of potatoes the vines of which had been treated with a poisonous compound, such as Paris green. One of the first investigators of this subject, Kedzie, in 1872 (64) and 1875 (65), concluded "that there is but very little danger of the potato tuber being poisoned so as to endanger the health of the consumer. Arsenic is equally deleterious to the vegetable as well as the animal system. If added in dangerous quantity to the plant, the plant dies, no potatoes are formed." McMurtrie (78) detected no arsenic in potatoes which had been subjected to applications of Paris green.

Lodeman (75) states that London purple was recommended as an insecticide in 1877. Cook (26), who sprayed apple trees on May 25 and June 20, 1880, at the rate of 1 pound of London purple to 100 gallons of water, reported that 100 blossom ends cut from the sprayed trees on August 19 showed no trace of arsenic. He proved also (27) that it took but a very small amount of the arsenites to kill potato beetles, currant slugs, and cabbage caterpillars, and discovered that the poison was retained on plants sheltered from rain for 10 to 20 days. He concluded that it was safe to use Paris green or London purple on trees the fruit from which would not be eaten for four or five weeks after the application.

Wheeler (132), in 1888, reported that it was safe in California, where rainless summers prevail, to spray vines with Paris green. When the vines were sprayed with 1 pound of Paris green to 16 gallons of water, "ten times as strong as the solution recommended for general use," Rising (114), the State analyst, found only traces of arsenic on the

grapes and none in the wine made therefrom.

Objection was offered to the use of arsenicals, on the ground that they frequently caused more or less injury to the foliage. Gillette (58), however, found that "lime added to London purple or Paris green in water greatly lessens the injury that these poisons would otherwise do to foliage." Weed (129) recommended applying insecticides and fungicides together, and Gillette (58) showed that London purple can be used at least eight or ten times as strong without injury to foliage if applied in common Bordeaux mixture instead of in water. Gillette (59) stated, in 1891, that a mixture of 1 ounce of Paris green to 100 ounces of flour was the most effectual

remedy against the cabbage worm, applying "just enough to make a slight show of dust upon the leaves." These discoveries were quickly adopted in practice, and arsenicals were generally accepted as the best destroyers of external chewing insects.

The most important insecticides recommended, other than Paris green and London purple, were Scheele's green (113) in 1875, white arsenic plus lime (67) in 1891, and lead arsenate (40) in 1893. Until recently Paris green and lead arsenate have been the most extensively used, but calcium arsenate, now on the market, promises to become one of the leading arsenical insecticides.

The use of Bordeaux mixture originated in France near the city of Medoc. Viticulturists noticed that the vines near the highways, which had been sprinkled with a paste of milk of lime and copper sulphate to prevent thieving, did not suffer from mildew. Prof. Millardet, in 1882, attributed the beneficial action to copper, and later proposed a mixture of copper sulphate, lime, and water, since known as Bordeaux mixture (88) (89). The mixture was immediately accepted not only in France but in the United States, where F. Lamson Scribner (116) was probably the first to publish a formula for it as a result of the work in France. Its use has been extended to the prevention of so many plant diseases that to-day it is perhaps the most important fungicide.

When copper compounds were recommended as fungicides, the question arose as to whether or not spraying with them would leave a dangerous amount of copper on the grapes or in the wine.

Perrett (107) stated, in 1885, that there would be no danger of introducing copper into wine made from grapes sprayed with copper salts, because the hydrogen sulphid formed during fermentation would precipitate the copper as the insoluble sulphid. Quantin (111), in 1886, concluded that the reduction of the sulphate of copper by the ferments was sufficient to effect the total elimination of the copper in wine, but that aeration of the lees which inclosed the precipitated sulphid of copper should be avoided. Chuard (23) announced in 1887 that the copper was present in the must as copper malate, but that it was precipitated during fermentation as the sulphid and tartrate.

In October, 1885, Millardet and Gayon (90) obtained the following amounts of copper from vines that had been sprayed with Bordeaux mixture in July:

Frésh leaves (mg. per kgm.)	19. 1-95. 5
Vine branches (mg. per kgm.)	
Grape stalks (mg. per kgm.)	15.0-18.6
Marcs (mg. per kgm.)	11. 1–21. 9
Musts (mg. per liter)	1.0-2.2
Wines (mg. per liter), from doubtful traces to less than	0. 1

The same authors, in 1886, report (56) the following amounts of copper at vintage from vines treated with various copper mixtures:

Grapes (mg. per kgm.)	0. 2-12. 6
Must (mg. per liter)	. 0-11. 8
Wine (mg. per liter)	Fraction.

Examination of wines from different places in the southwest of France showed the presence of copper in the following amounts:

First wines:	
White (mg. per liter), less than	0.01-1.0
Red (mg. per liter), less than	. 01–2. 8
Second wines (sweet wines) (mg. per liter)	. 01 3
Press wine (mg. per liter)	. 05–1. 7
Piquettes:	
Normal (mg. per liter)	. 0-0. 75
Sour (mg. per liter), less than	. 01- 1. 6

They attributed the absence of copper in wine to the action of the fermentation, the tannin and sulphur added to the wines before fermentation favoring the purification of the wine.

Crolas and Raulin (28) determined the amount of copper in the products of vines that had been treated six weeks to two months before vintage with different preparations containing copper, and found copper in the following amounts:

Grapes (mg. per kgm.)	1.5- 3.5
Marcs (mg. per kgm.)	. 9- 12. 8
Lees (mg. per kgm.)	49. 0-130. 0
Piquettes (mg. per liter)	. 0 14
Wines (mg. per liter)	. 0 36

Other investigators who have determined the amount of copper in wine (8) (16) (25) (29) (36) (41) (42) (45) (79) (104) (108) (118) (134) agree that the amount found in every instance was too small to be harmful.

C. L. Penny (105) reported, in 1889, 2.4 and 6.2 parts of copper per million for grapes that had been sprayed with Bordeaux mixture and 1 to 1.3 parts of copper per million for unsprayed grapes. These amounts were less than those found in some common articles of food. In 1890 (106) grapes so heavily sprayed that "either the appearance or the taste of the fruit would have condemned it on the market" were shown by Penny to contain about 47 parts of copper per million, "less than has been found in some articles of food admitted to be healthful, as beef liver."

In order to determine "whether there is any danger to be apprehended from eating grapes which have been sprayed with the Bordeaux mixture and other copper solutions," Galloway and Fairchild (47) gathered grapes from a plat which had been sprayed eight times with Bordeaux mixture. "The last spraying was made on these

vines July 30, and between that date and August 28, the date of harvest, only a few slight rains had fallen. The fruit showed the mixture plainly, more pronouncedly in fact than any treated grapes seen in the market. One kilogram of the clusters (2½ pounds), including the stems, which appeared to have the greater part of the copper, * * * yielded 0.005 gram (0.077 grain) of metallic copper,' on analysis, about 0.035 grain of copper per pound of grapes.

In September, 1891, the Board of Health of New York City seized a quantity of grapes some of which had been heavily oversprayed with Bordeaux mixture (46). The following results of analysis of the most heavily sprayed bunches of grapes obtainable from the vineyards from which the grapes seized had come were reported (128):

(1) The amount of copper, estimated as metallic copper, found on the berries was very constant in the different samples, averaging 1/120 grain for each pound of fruit (berries and stems).

(2) The amount of copper, estimated as metallic copper, found on the stems varied from 1/90 to 1/14 grain for each pound of fruit (berries and stems), and averaged 1/30 grain

(3) If the copper were on the berries in the form of sulphate of copper, each pound

of berries would contain about 1/30 grain of copper sulphate.

(4) As a matter of fact, copper, when found upon sprayed grapes in New York State, exists, not in the form of a sulphate, but in the form of a carbonate or hydroxid, both of which are not readily soluble and would, therefore, be even less dangerous than if present in the form of sulphate of copper. Most of the copper found was on the stems, and the rest of the copper was on the outside of the skin of the berries, which most people do not eat.

(5) The results obtained from estimating by chemical analysis the amount of copper on grapes, which were selected as being the worst sprayed that could be found, therefore, seem to justify the assertion that it is simply an absolute impossibility for a person to get enough copper from eating grapes to exert upon the health any injurious effect whatever.

According to Popenoe and Mason (109), "as much of the fruit (grapes) at the time of ripening showed a greenish-blue discoloration from the deposit of lime and copper, which had been applied twice since a rain had fallen, some persons feared that it might be poisonous." Analysis of those grapes showing the heaviest deposit gave for combined stems and berries 0.00188 per cent copper, or 0.52 grain of copper sulphate per pound of grapes. "A short time after this sample was taken a heavy shower washed off so much of the deposit that little of the remaining fruit was injured in appearance." Wheeler (131) found only slight traces of copper on grapes that had been sprayed with Bordeaux mixture. Alwood (6) reported no copper, or only traces, on grapes that had been sprayed with copper mixtures, and concluded "that these fungicides are perfectly harmless to consumers of the treated fruit." Maynard (84) reported that only 0.002 per cent of copper oxid was found on grapes which had been so heavily sprayed with Bordeaux as to be badly disfigured and that no

trace of copper could be found on grapes which had been properly sprayed with copper mixtures. From this it would seem "that even under the most careless use of the copper solutions, no injurious effects need be feared, and that when properly applied there will not be a trace of copper left upon the fruit at harvesting."

In 1892 the United States Department of Agriculture (9) published the following:

We take the ground that fruit sprayed with the copper compounds in accordance with the directions of the department is harmless. * * * For five years the copper compounds have been used by hundreds and thousands of fruit growers in every part of the United States, yet in all that time not a single authenticated case of poisoning, so far as we are aware, has been brought to light. * * * Accepting, then, 0.5 gram as the maximum amount of copper in any of the forms discussed that may with safety be daily absorbed, * * * that grapes sprayed intelligently rarely contain more than 5 milligrams (0.005 gram) of copper per kilogram, the average being from 2½ to 3 milligrams per kilogram, * * * an adult may eat from 300 to 500 pounds of sprayed grapes per day without fear of ill effects from the copper. This shows how ridiculously absurd are the statements that fruits properly sprayed with the Bordeaux mixture or any other copper compound are poisonous. * * *

According to numerous analyses, wheat may contain from 4 to 10 milligrams of copper per kilogram. * * * We do not see how any foreign country can logically object to American fruits on the ground that they contain copper without also objecting to wheat.

Wheat, however, does not contain anything like as much copper as some other foods and drinks. Beef liver and sheep liver, according to reliable and repeated analyses, contain, respectively, from 56 to 58 and 35 to 41 milligrams of metallic copper per kilogram of fresh substance, while in chocolate the enormous amount of 125 milligrams to the kilogram has been found. In conclusion, it is only necessary to call attention to one other matter to show how unjust and discriminating it would be to condemn American fruits on the ground that they contain copper in unwholesome quantities. Analyses of vegetables that have been regreened by the copper process show that they may contain from two to sixty times as much of the metal as sprayed grapes.

In this connection the presence of copper reported in various foodstuffs in the following amounts is of interest:

From 4 to 10 milligrams per kilogram in wheat (43); 56 to 58 milligrams per kilogram in beef liver (105); about 40 milligrams per kilogram in sheep liver (35) (100); from 5.6 to 20.8 (44) and from 5 to 125 (31) milligrams per kilogram in chocolate; from 11.2 to 29.2 (44) and from 9 to 40 (31) milligrams per kilogram in cocoa; from 35 to 250 milligrams per kilogram in cocoa shells (31). Instances are cited (77) where as much as 270 milligrams of copper per kilo was found in French peas that had been subjected to the regreening process. Tschirch stated (127) that copper is widely distributed in plant and animal bodies, always, however, in small amounts; that it enters the animal bodies through food and dust; but that the presence of copper in the bodies of man and other higher animals is not to be considered as "normal." He stated further that plants absorb only small amounts of copper from the ground; that no danger to health need be expected from the consumption of wine from sprayed grapes or of potatoes from sprayed fields, and that even the must of coppered grapes may be eaten and the skins (containing 0.006 gram of copper per kilo) used as fodder; that spraying with copper against fungous diseases might be continued without fear of harm; that only very small quantities of the copper compounds entering the mouth

are taken up by the blood, and poisoning can occur only if the necessary quantity enters the circulation; and that to forbid copper in foods and drinks is to forbid those plants which take it up from the ground, and also to designate the use of bread and chocolate as dangerous to the health.

Lehmann reported the following amounts of copper per kilogram in various plant and animal substances: In wheat, 7.5 milligrams; in cherries, 1.5 milligrams; in pears, 0.5 milligram; and in beef liver, from 6.4 to 59 milligrams (71) (73). He stated (72) that the species of the plant had far less influence than the quantity of the copper in the soil on the amount taken up by the plant.

In 1891 objections to the use of American apples because of the presence on them of arsenic were made in certain British journals. However, Maynard (85), Munson (97), and Fletcher (38) proved that the objection had no basis in fact, and later (10) (103) (126) it became apparent that such objections to sprayed fruit in England were neither very general nor very deep-seated.

Table 1 shows the amount of arsenic and copper found by R. C. Kedzie (66) on fruit sprayed with Bordeaux mixture and London purple in 1892 and 1893.

Table 1.—Arsenic and copper on fruit sprayed in 1892 and 1893 with Bordeaux mixture and London purple (Kedzie).

Fruit.	Date sprayed.	Date picked.	Spray used.	As ₂ O ₃ .	CuSO ₄ .5H ₂ O
8	1892.	1892.		Grains	per pound.
Strawberries	June 18, 23	June 24	6-4-32 Bordeaux, 1 pound London purple, 200 gallons water.	0. 0440	
Do	do	do	'2-1½-32 Bordeaux, 1 pound London purple, 200 gallons water.	. 0298	1.821
Red cherries	June 18, 30	July 6		. 0882	. 390
Do	do	do	2-1½-32 Bordeaux, 1 pound London purple, 200 gallons water.	. 0250	. 252
White cherries	June 30	July 1		. 1210	
Red currants	May 25, June 7, 18, 30.	July 8	London purple	. 0503	
Raspberries	June 6, 28, July 8.	July 20	2-1½-32 Bordeaux, 1 pound London purple, 200 gallons water.	. 0098	. 028
Gooseberries		Aug. 2	6-4-32 Bordeaux, 1 pound Lon-	. 0233	.601
Do Pears	June 15, July 7, 21, Aug. 7.		don purple, 200 gallons water. dodo	. 0372 . 0088	. 362 . 0738
	10 Tesles 10		No London purple, 2-2-32 Bordeaux.		. 100
Russian cherries	May 14, June 10, 18, July		First 3 dates, 2-2-32 Bordeaux; last date, "eauceleste."		. 147
Plums	15. do		do		. 200

The skins from 1 pound of the sprayed pears gave 0.106 grain and the flesh gave 0.071 grain of copper sulphate, "showing that while most of the copper salt adheres to the surface, a portion finds its way into the body of the fruits."

In 1893 Davis (30) reported the determinations of arsenic on celery that had been sprayed with Paris green at the rate of 1 pound to 175 gallons of water. The results, obtained on the celery washed without separating the stalks and prepared as for market, were as follows: Sprayed once, 0.0244 grain of arsenious oxid per pound of celery; sprayed twice, 0.0368 grain of arsenious oxid per pound of celery.

In 1893 Beach reported (12) the presence of from 0.00042 to 0.001 per cent of copper in celery that had been sprayed with Bordeaux or ammoniacal copper carbonate solution, and 0.00081 per cent in unsprayed celery, concluding that "these investigations show that when this sprayed celery was stripped and ready for market the sprayed plants were no more poisonous than the unsprayed."

In 1894 Kinney (68) stated that the skins and stems of pears which had been sprayed five times with Bordeaux mixture (6 pounds of copper sulphate, 4 pounds of lime, and 22 gallons of water), and upon which the spray was still visible at harvest contained only 0.016 grain of copper oxid per pear, for which reason no serious objection to this treatment could be raised from a hygienic standpoint.

In 1894 Garman reported (49) that the skins and ends of six apples from a tree that had been sprayed once with London purple and five times with Paris green at the rate of 1 pound to 160 gallons of water showed on analysis no arsenic and only an unweighable amount of copper. The flesh and cores of these apples gave no reaction for arsenic or copper. He reported also (50) that cured tobacco which had been sprayed with arsenites, at the rate of 1 pound to 160 gallons of water, gave on analysis 0.077 grain of arsenious oxid and 0.042 grain of copper oxid per pound with one spraying with Paris green; 0.133, 0.259, and 0.329 grain of arsenious oxid and 0.126, 0.210, and 0.322 grain of copper oxid per pound with two sprayings with Paris green; and 0.245 grain of arsenious oxid per pound with two sprayings with London purple. Later (1904) this author stated (51) that arsenites such as Paris green can be used on cabbage without leaving a trace sufficient for recognition by the chemist. In 1901, cabbages which had been sprayed with Paris green or lead arsenate showed on analysis "traces of poison present." In 1902, and again in 1903, sprayed cabbages were analyzed, but the chemist "was unable to find a trace of poison present."

In 1897 Teyxeira (123) found from 20 to 50 milligrams of copper in 1 kilogram of juice from tomatoes that had been sprayed with copper sulphate, and none after treatment with Bordeaux, unless the skin was cracked. He stated that the copper sulphate penetrates the skin into the flesh, but that the copper-lime mixture does not.

In 1898 Hoffmann reported (62) the presence of from 0.0046 to 0.0128 gram of copper per liter in wines, but failed to give the history of the samples. Later he reported 0.00096 and 0.0058 gram of copper per liter in wine, 0.0028 and 0.0056 gram of copper per liter in must, 0.0027 and 0.0045 gram of copper per liter in grape-skin wine, and 0.053 gram of copper per 100 grams in the grape skins.

Selby found (117) 0.0004 gram of copper per 100 grams of grapes to be the maximum amount on the samples he examined. To show that sprayed grapes can be safely used for making wine he cites Krüger (69), "that in the different musts different amounts of copper, at the beginning of fermentation, or just before the beginning, enter into an insoluble and consequently an inert (copper) compound, in consequence of the presence of greater or less amounts of organic acids. From this condition it is likely that the copper of the must, arising from the spraying of the grapes, is without any importance for the wine."

Gibbs and James (57) reported that 292 of 352 samples of wine examined contained no arsenic, 58 contained from a trace to 1 part in 8,000,000, 1 contained 1 part in 5,000,000, and another 1 part in 2,500,000. They stated also that of 200 samples of wine examined by C. S. Ash the three highest in arsenic contained 1 part in 6,000,000, 1 part in 8,000,000, and 1 part in 14,000,000. "The most probable sources of the major part of that found are arsenical sprays when used upon the vines, sulphur burned for the purpose of sulphuring the wines and receptacles, and perhaps to some extent the lead shot used in cleaning the bottles." A sample of sulphur from a California winery was found to contain arsenic in the proportion of 1 part in 5,000. It is not stated whether these wines were the product of sprayed vines.

In 1906 Roger Marès (82) reported that he found no trace of arsenic in wine from a vine treated a month before grape gathering with a copper-arsenical mixture, and he accordingly continued to recommend this combined mixture as a spray for the vines in Algiers. The same year Von der Heide (61) reported the results shown in Table 2 on products of vines that had been sprayed with lead arsenate.

Table 2.—Metals on products of vines sprayed with lead arsenate (Von der Heide).

	Arsenic.	Lead.	Copper.
Grapes (bunches) (milligrams per 100 grams). Grapes (individual) (milligrams per 100 grams). Stems (milligrams per 100 grams). Leaves (milligrams per 100 grams). Grape skins (milligrams per 100 grams). Must (milligrams per 100 grams). Fall wine (milligrams per 100 grams). Spring wine (milligrams per 100 grams). Wet lees (milligrams per 100 grams). Dry lees (milligrams per 100 grams).	$\left\{\begin{array}{c} 7.1\\ 16.0\\ -7-\\ .6\\ .3\\ .2\\ .1\\ 3.0 \end{array}\right.$.6	}

The German Imperial Health Commission was opposed to the use of lead arsenate in the spraying of grapes because arsenic and lead were found in the wine.

In 1907 Szameitat (121) (122) reported the following results of analyses of musts, wines, and grapes from vines sprayed with arsenic compounds: From a trace to 0.9 milligram of arsenic in 300 grams of grapes; none to 0.14 milligram of arsenic in 300 cubic centimeters of must; none or only a trace in 300 cubic centimeters of wine. Of 38 samples of German wine examined, 24 showed small amounts of arsenic, the largest amount being 0.05 milligram in 100 cubic centimeters of wine. The source of arsenic was not identified.

The use of arsenic compounds for the destruction of insects that devastated vines having become more or less general in central France, in spite of the fact that the French ordinance of 1846 prohibited the use of arsenic for the destruction of insects, the question arose as to the danger of such use.

In 1907 Bertin-Sans and Ros (14), who were among the first in France to publish an answer to this question, found less than 0.001 milligram of arsenic in 145 grams of unripe grapes gathered one month after spraying with sodium arsenate, and 0.002, 0.001, 0.030, and 0.040 milligram of arsenic per liter in wine from arsenical treated vines. These investigators stated that as sheep and cows were not admitted to the sprayed vines and were not fed the sprayed foliage until after harvest there was no danger to these animals, but that rabbits and snails might be poisoned by eating sprayed foliage, and, since snails can tolerate a fairly large amount of arsenic, persons should refrain from eating them during the spraying season. As lead is a cumulative poison, it was considered more prudent to use arsenicals other than lead arsenate, although no data existed to show that there was danger in the use of lead arsenate as an insecticide. Bertin-Sans and Ros believed that the chief danger in the use of arsenicals arose from mistakes due to carelessness and that if suitable regulations were enforced no danger was to be feared. Since the ordinance of 1846 was a dead letter, it seemed to them much better to have the arsenicals handled under definite regulations. In 1908 (15) they stated that as they had found only traces of arsenic in wine from vines sprayed with arsenicals, there was no ground for the fear that the arsenic would pass into the wine if the vines had been sprayed before the grapes were in bloom.

In 1909 Truelle (125) (126) concluded that the advantages of arsenical spraying were so great that its use under regulation should be authorized in France.

Cazeneuve (21), thinking that the use of arsenical insecticides was a serious menace to the public health, asked (1908) for the strict enforcement of the ordinance of 1846. Riche (112) and Gautier (52),

on the other hand, believed that the use of arsenicals, with the exception of lead arsenate, should be permitted in agriculture, but only under proper regulation.

In 1909, a committee appointed by the Academy of Medicine (1) (21) (112) to study this question recommended (96) the strict enforcement of the ordinance, thus causing a very lively discussion. Weiss (130), believing that the committee did not have sufficient evidence to substantiate its recommendation, proposed a medical investigation, this proposal being adopted (2) and sent to the minister of the interior as the advice of the academy. A year later the academy asked (32) that a new investigation, essentially medical, be carried on for two years, and, to avoid accidents, recommended strict regulations in the use of arsenicals and the complete exclusion of lead arsenate. The direction of the investigation was to be intrusted to the councils of hygiene and the sanitary commissions of each department, after consultation with the professors of agriculture (33). In 1911, dissatisfied with the lack of enforcement of its suggestions, the academy decided (34) to recall to the public powers the conditions they had recommended as to the use of arsenicals in agriculture. Malvy, undersecretary of state, stated (80) that since the investigation conducted by the minister of the interior had disclosed no accident, either among the workers who handled the arsenicals or among the consumers, to prohibit the use of lead arsenate would be to impose useless annovances on merchants and viticulturists. In 1913 the minister of the interior submitted to the Academy of Medicine a draft of a decree carrying modifications of the ordinance of 1846, permitting the use of insoluble arsenicals in agriculture (3).

After much discussion (5) (22) (53) (54) (76), articles 9 and 10 of the draft, authorizing the use of arsenicals in agriculture under specified regulations, were adopted by the academy (4) (5), with the recommendation that the order of the minister of agriculture dealing with the precautions to be taken in their use should apply to all arsenicals and not merely to lead arsenate, and article 11, which prohibited the sale and use of soluble arsenic salts, was amended to permit their sale when "denatured" (5). The academy also voted (5) that the public powers be requested to take every means to inform the public of these regulations and to impose penalties for their infraction, and that the Government be requested to encourage researches to find substitutes for arsenicals. The French decree authorizing the use of insoluble arsenicals in agriculture, under regulation (81), and the minister of agriculture's instructions for the sale and use of these arsenical compounds were published in 1916 (86). The sale and use of soluble arsenicals as insecticides were prohibited.

Breteau (17) analyzed 15 samples of wine from vines sprayed with arsenicals, finding from none to 0.04 milligram of arsenic per liter in

12 of the samples and 0.1, 0.1, and 0.2 milligram of arsenic per liter in the other three. He attributed the higher content of arsenic in the last three samples to the fact that the wines had been sulphured. If, as held by Gautier and Clausmann (55), a normal wine contains about 0.01 milligram of arsenic, he felt that the arsenical treatment of vines will introduce into the wine less than 0.03 milligram of arsenic per liter. Mestrezat (87) considered that the only danger from the use in viticulture of arsenical insecticides occurs when they are placed near other substances which resemble them so closely as to be easily mistaken for them. In 1906 Forbes (39) reported 36.6 and 32.9 parts of arsenious oxid per million in peelings of apples sprayed the preceding day with lead arsenate and 40.1 parts of arsenious oxid per million in peelings of apples gathered two months after being sprayed heavily with lead arsenate. He considered that lead arsenate could be substituted for the more common insecticide sprays if discretion were exercised in its use. In 1910 Günther (60) reported the results given in Table 3 on fruits that had been sprayed once with a mixture containing 300 grams of sodium arsenite and 425 grams of lead acetate per 100 liters.

Table 3.—Residue on fruits sprayed once with mixture containing 300 grams of sodium arsenite and 425 grams of lead acetate per 100 liters (Günther).

	Days elapsed after spray- ing.	Arsenic.	Lead.
	 39	gra 1, 000	2, 16
Pears	 80-106	7. 140 . 129	16. 70
Apples	 80-106 80-106	. 074	Trace. 0, 017

He reported the results given in Table 4 on fruits dusted once with a mixture consisting of 2 parts of freshly slaked lime, 4 parts of sulphur, and 1 part of Paris green.

Table 4.—Residue on fruits dusted once with a mixture consisting of 2 parts of freshly slaked lime, 4 parts of sulphur, and 1 part of Paris green (Günther).

	Days elapsed after dust- ing.	Arsenic.	Copper.
		Milligran gra	ns per 100
Gooseberries	39	0,8300	0. 560
Do	39	2, 1200	. 930
Currants	39	1.6100	
Do	39	1.5300	. 870
Pears.	80-106	. 0720	. 240
Apples	80-106	. 0420	. 06
1)0	80-106	. 0084	. 098
Do	80-106	. 0420	. 01
Sweet cherries	24	. 2000	. 16
Bour cherries	24	,3200	. 256
Plums	24	. 5000	Trace

In 1910 Bedini (13) reported from 0.2 to 0.4 milligram of arsenious oxid per kilogram in the skins of pears that had been sprayed with arsenate of iron, and only a trace of arsenic in the pulp. The same year Porchet (110) reported that pears sprayed with lead arsenate contained as much as 0.3 milligram of arsenious oxid per kilogram in both the pulp and the skin; that the skins of unsprayed pears contained 0.035 milligram of arsenious oxid per kilogram of fruit; that sprayed grapes contained traces of arsenic, apparently the same in the interior as on the exterior of the fruit, the highest amount obtained being 0.2 milligram per kilogram of grapes; and that the traces of arsenic passed from the grapes into the must, but that the arsenic was precipitated as sulphid during the fermentation. Chuard (24) also found that the arsenic in the must was precipitated as sulphid during the fermentation.

Fetel (37), in 1910, reported that 10 samples of grapes bought on the market in Algeria on August 8 and 25, September 1 and 19, and October 3 contained an average of 0.038 milligram of arsenic per kilogram, while unsprayed grapes, collected on August 8 and September 1 and 8, contained no arsenic. Grapes sprayed twice before blossoming, with a Bordeaux-sodium-arsenate mixture, and gathered on August 10 and 25 and September 5 and 22, contained, respectively, 0.185, 0.083, 0.074, and 0.074 milligram of arsenic per kilogram. Grapes sprayed twice before flowering with arsenious acid and on July 24 with Bordeaux-arsenious-acid mixtures, and gathered on July 24 before and after this last spraying, on August 22, and on September 15, contained, respectively, 0.056, 0.467, 0.149, and 0.112 milligram of arsenic per kilogram.

In 1909 and 1910 Brioux and Griffon (18) found 0.001, 0.001, and 0.004 milligram of arsenic per kilogram in three lots of pears that had been sprayed with a Bordeaux-lead-arsenate mixture. They also reported that, although apples which had been sprayed with lead arsenate on June 8 and June 22, 1910, contained when examined in July 1.3 milligrams of arsenic and 14.2 milligrams of lead per kilogram, yet in September, at harvest time, the apples and the cider contained no lead and only traces of arsenic.

Moreau and Vinet (92), in 1910, reported that grapes sprayed with lead arsenate on May 27 and June 6 contained, respectively, on June 22 and September 14, about 2 and 0.28 milligrams of lead arsenate per bunch, and that 165 grams of moist lees contained 1.38 milligrams of lead arsenate, but that the wines contained no lead or arsenic. They found (93) that only 1 per cent of the lead arsenate which they had applied on May 31 was retained by the grapes, 0.58 milligram per bunch, and that with the development of the grapes a second spraying was necessary on June 14 to control the first generation of the cochylis larva. They also found that a spraying on August 6 to control the

second generation of this insect adhered mostly to the stems. They concluded from other experiments (94) that, since grapes sprayed twice with lead arsenate before flowering, on May 31 and June 14, showed no lead or arsenic at harvest time, October 15, there would be no danger in consuming grapes sprayed so early, but that, since grapes sprayed after the flowering period, on August 6, showed 0.40 milligram of lead arsenate per 100 grams of grapes at harvest time, October 27, there might be danger in consuming grapes sprayed so late in the season. They reported further (95) that wines from vines treated before the flowering period with lead arsenate could be consumed without danger, since only faint traces of lead and arsenic were found in wines from such vines and that the lead and arsenic were eliminated during the process of the making of the wine, being found principally in the marc and in small amounts in the lees.

In 1911 Ampola and Tommasi (7) stated that foodstuffs derived from plants treated with arsenical compounds always contain arsenic, usually in traces, but sometimes as much as 2 milligrams or even more per kilogram in fruits and 1.5 milligrams per liter in wine, amounts greater than that allowed by the Royal Commission on Arsenical

Poisoning in England (11) (115).

In 1912 Muttelet and Touplain (99) reported that the grapes, marcs, wines, piquettes, and lees which came from vines treated with lead arsenate contained about the same amount of arsenic as was found in the products from vines not treated, that the wines and piquettes contained no lead, but that the lees in certain cases contained an appreciable quantity of lead, in which cases there was danger in the consumption of wine or piquette before the deposition of the lees, and that grapes sometimes retained on their surface a quantity of lead which rendered dangerous their consumption in a natural state. The same year Carles and Barthe (20) reported that the wines from vines sprayed before the formation of the fruit with excess of lead arsenate contained only negligible traces of arsenic and lead and that those from vines normally treated with lead arsenate contained neither arsenic nor lead, but that the lees contained 0.0028 and 0.0004 gram of arsenic per liter and traces of lead. According to Mathieu (83), unsprayed grapes and wines made from them contain only traces of arsenic, grapes from vines sprayed with arsenicals before flowering contain not more than 0.05 milligram of arsenic per kilogram, even in a dry year, red wine made from grapes treated with arsenicals in a year of abundant rain contains only a little more arsenic than wine made from unsprayed grapes, the amount being less than 0.06 milligram per liter, and part of the arsenic in the grapes remains in the marc in making red wines, which wines, however, should not contain more than 0.05 milligram per liter. In 1914 Garino (48) stated that the amounts of arsenic met in analyses of wines from grapes subjected to cupro-arsenical treatment are very small, being less than the minimum therapeutic dose of 5 milligrams, and therefore need cause no alarm.

In 1913 Spallino (120) found in three samples of snuff 0.16, 0.40, and 0.34 milligram of arsenic per 100 grams of dried snuff, and in four samples of smoking tobacco 0.08, 1.02, 0.30, and 0.64 milligrams of arsenic per 100 grams of dry tobacco.

Sonntag (119), in 1914, concluded from the results he obtained on ripe fruits and leaves treated in 1907 and 1908 with arsenical mixtures that the arsenical sprays or dusts applied to fruit trees and bushes adhere to the fruits and are retained by them for a long time, in many cases even until the ripening of the fruit.

O'Gara (101) stated that the skin of apples sprayed with lead arsenate may occasionally absorb some arsenic. In such cases the skin is likely to develop red or black spots. Analysis of such spotted apple skins showed the presence of fractions of a milligram of arsenic. Woods (133) reported that apples sprayed with lead arsenate during the first week in August, 1913, carried upon their surface, about two months after spraying, from one-eighth to one-third milligram of lead arsenate per apple. He concludes that "midsummer spraying with lead arsenate is an effective way of combating the browntail moth," and "the amount of arsenic or of lead that will remain at harvest upon the apples that are sprayed in midsummer with arsenate of lead is so slight as to have no practical bearing."

In 1916 Trofimenko and Obiedoff (124) reported that grapes treated with wet arsenical mixtures under conditions most favorable for the continuance of the arsenical salts, both on the grapes and in the must, yielded unobjectionable wines. No arsenic was found in white wine and only 0.0002 gram of arsenious oxid per liter in red wine. The lees might be used for extracting the tartar, washing being enough to remove the arsenates. Muttelet (98) stated that the wine and piquette from vines treated with copper sulphate and lead arsenate, even after the formation of the grapes, contained no lead or copper, and no more than traces of arsenic. The pomace wine contained no lead, traces of copper, and 5 milligrams of arsenic per hectoliter. The lees contained 500 milligrams of lead, 10 milligrams of arsenic, and traces of copper per liter. The air-dried marc contained 200 milligrams of lead, 0.1 milligram of arsenic, and traces of copper per kilogram.

Liberi, Cusmano, Marsiglia, and Zay (74) found copper in the fruit of tomatoes in amounts varying from 0.14 to 2.10 milligrams per kilogram of juice and pulp, and from 3.8 to 19.5 milligrams per kilogram of dry matter. The soils upon which the tomatoes were grown contained copper up to 110 milligrams per kilogram. These investigators stated that the spraying with copper mixtures had no

effect upon the copper content of the tomatoes. It appeared that the copper found in the tomatoes came from the soil, whence the plants assimilated it in different proportions, according to the nature of the soil or under the influence of other factors.

In 1917 Carles (19) stated that copper occurs in small amounts in agricultural products and in larger amounts in calf liver and beef liver. O'Kane, Hadley, and Osgood (102) reported the following amounts of arsenic (calculated as As₂O₃) on fruits and vegetables that had been sprayed with dry lead arsenate equivalent to 3 pounds of lead arsenate paste to 50 gallons of water: Apples picked at intervals ranging from 3 to 91 days after spraying, 0.08 to 0.77 milligram per apple when picked carefully, 0.02 to 0.50 milligram when picked in the ordinary way, 0.10 to 0.21 milligram when picked with cotton gloves, and 0.08 to 0.18 milligram when picked with cotton gloves and wiped; strawberries picked 2 and 6 days after spraying, from 8.6 to 34.2 milligrams per quart; currants picked 3, 6, and 8 days after spraying, from 6.8 to 10.2 milligrams per quart; blackberries picked on the day they were sprayed, from 3.8 to 11.2 milligrams per quart; cabbage gathered 2 and 8 days after spraying, from 43.5 to 51.4 milligrams per head; and lettuce gathered 1 and 6 days after spraying, from 1.6 to 10.6 milligrams per head. The maximum amount of lead arsenate spray that would adhere to an apple, when sprayed directly, was found to be an amount equivalent to 4 milligrams of arsenious oxid. Such fruit gave evidence of spray material on its surface.

EXPERIMENTAL WORK.

The investigation conducted by the United States Department of Agriculture included experiments on peaches, cherries, plums, apples, pears, grapes, cranberries, tomatoes, celery, and cucumbers. The spraying schedules are shown in Tables 5 to 14.

METHODS OF ANALYSIS.

The following methods of analysis were employed:

Of the whole fruit and pulp, dry 200 to 300 grams of sample on the steam bath in glass dishes, and report loss as "loss on drying." (For the determinations on the skins, use parings from 4 apples; for the calyx and stem end determinations, use 12 apples and corresponding amounts in the case of other fruits.) Transfer the dried residues to casseroles and add 100 to 200 cc. nitric acid. Heat the mixture, if necessary, to start action, and when violent action is over cautiously add 20 cc. sulphuric acid. Heat on hot plate, removing at intervals to add small amounts (3 to 5 cc.) of nitric acid (do not allow the solution to become black), and when the oxidation is complete evaporate until sulphuric acid fumes are given off. Cool, dilute with water, and again evaporate to sulphuric acid fumes. Cool, dilute with about 100 cc. of 50 per cent alcohol, and let stand over night. Filter and wash with 80 per cent alcohol. Save sulphate precipitate for lead determination. The copper and arsenic are determined in the filtrate. Evaporate the filtrate to small volume on steam lath to remove alcohol. Make to volume.

Arsenic.—Determine arsenic in an aliquot by the Gutzeit method (Bur. Chem. Circ. 102), modified as follows: The aliquot should contain less than 0.08 mg, arsenic. Dilute to 50 cc. Add strong sulphuric acid so as to have 10 cc. present Add 1 gram sodium chlorid to the aliquot in a small Erlenmeyer flask, heat on steam bath to about 90° C., then add 1 cc. of a stannous chlorid solution containing 0.5 gram dissolved in hydrochloric acid, and leave on steam bath for about 5 minutes (temperature near 90° C.). Remove from steam bath, transfer to the 4-ounce generating bottle, dilute to 100 cc.. and cool to room temperature. This generating bottle is connected by a rubber stopper with an upright tube 8 cm. long, 1 cm. diameter, containing lead acetate paper. This tube is connected by a rubber stopper with a similar tube containing cotton moistened with 5 per cent lead acetate solution. Connected by a rubber stopper with this tube is a capillary tube 3 mm. in diameter, 12 cm. in length, carrying the strip of mercuric bromid paper. Prepare these strips as follows: Cut heavy, closetextured drafting paper into strips 2 mm. by 12 cm.; then soak them for an hour in 5 per cent alcoholic mercuric bromid solution, take out, rapidly squeeze off excess of solution, separate on glass rods, and allow to dry. Place three pieces of stick zinc (about 10 grams) in the generating bottle and join it immediately to the apparatus tubes. Allow the determination to run for 1½ hours, keeping the temperature down to room temperature by placing the bottle in cool water. From standards plot a curve showing milligrams of arsenic to millimeters in length. As high as 0.08 milligram of arsenic can be read on a paper. Determine the larger quantities of arsenic by passing the arsine into a mercuric chlorid solution and either weigh the mercurous chlorid or titrate the arsenious oxid. (Bur. Chem. Circ. 102, p. 5.)

Copper.—Introduce an aliquot into a 100 cc. Erlenmeyer flask. Neutralize the acid with ammonia, add 2 to 3 cc. hydrochloric acid for every 50 cc. of solution, and saturate the solution with hydrogen sulphid. Stopper flask and let stand over night. Filter off the copper sulphid and wash with hydrogen sulphid water. Place the filter paper containing the copper sulphid in a 50 cc. casserole, burn off the paper, dissolve residue in 5 cc. (1:1) nitric acid, evaporate to dryness, add water and 1 drop ammonia, make faintly acid with acetic acid, and add a few drops of a 2 per cent potassium ferrocyanide solution. Compare with standards.

Lead.—Dissolve the sulphate precipitate, previously referred to, in hot 10 per cent ammonium acetate solution, add 2 cc. (0.1 per cent solution) gum arabic, and make to volume with hydrogen sulphid water in 50 cc. (or 100 cc.) Nessler tubes. Compare the tubes thus prepared with standards made up similarly with gum arabic, ammonium acetate, known amounts of lead, and hydrogen sulphid water.

Where copper alone is to be determined, heat the dried sample cautiously over a Bunsen burner and finally ash at the mouth of the electric-muffle furnace. Add 5 cc. (1:1) nitric acid to the ash, evaporate almost to dryness on steam bath, dilute, and make alkaline with ammonia. Filter off precipitate and wash. Dissolve precipitate, reprecipitate with ammonia, and wash. Evaporate the united filtrates to dryness, add water and one drop ammonia, make slightly acid with acetic acid, and add a few drops 2 per cent potassium ferrocyanide solution. Compare with standards.

The presence of between 0.02 and 0.24 milligram of copper can be determined by this method. Larger amounts may be determined by taking an aliquot, by comparing in ammoniacal solutions, or by electrolysis.

The presence of from 0.02 to 0.24 milligram of lead can be read in the 50 cubic centimeter Nessler tubes, larger amounts by using 100 cubic centimeter Nessler tubes or by taking a smaller aliquot.

The whole and pulp of apples were fumed in 7-inch casseroles and the skins were fumed in 5-inch casseroles, all being transferred to 4-inch casseroles before final fuming. Casseroles were covered until final fuming.

RESULTS OF EXPERIMENTAL WORK.

The results of the chemical analyses appear in Tables 5 to 15, inclusive.

Table 5.—Arsenic and lead remaining on sprayed peaches at picking time.

				Arsen	ic(As).	Lead	(Pb).			ying.	eight h.
Sam- ple No.	Spray material used.1	Date sprayed.	Determi- nations made on.	Original fruit.	Dried fruit.	Original fruit.	Dried fruit.	Arsenic.	Lead.	Loss on drying.	Average weight of peach.
23196 2	48 lbs. hydrated lime, 2 lbs. lead arsenate	1915. May 93	Whole 4.	0.13	arts per 0.90 .40		n.		. per ach. 0.042 .016	P.ct. 85. 3 85. 8	Gr. 105, 3
	(powder). 2 lbs. lead arsenate(pow- der), 32 lbs. hydrated lime, 16 lbs. sulphur. 16 lbs. sulphur, 34 lbs.	May 26 July 10	Skin	. 42	2.60	1. 20	7.3	. 009	. 026	83. 6	
23197 2	hydrated lime. 46 lbs. hydrated lime, 4 lbs. lead arsenate (powder). 32 lbs. sulphur, 4 lbs.	May 93	Whole 1. Pulp Skin		1.30 .60 4.00	. 40 . 10 1. 60	2.8 .7 10.4	.018 .006 .012	. 040 . 008 . 032	85. 7 86. 0 84. 6	100, 5
	lead arsenate (powder), 14 lbs. hydrated lime. 32 lbs. sulphur, 18 lbs. hydrated lime.	July 10									
23198 2	44 lbs. hydrated lime, 6 lbs. lead arsenate (powder). 44 lbs. sulphur, 6 lbs.	May 93 May 26	Whole 4. Pulp Skin	. 25 . 08 . 90	1.80 .60 6.10	.80 .20 3.00	5. 7 1. 4 20. 4	.024 .006 .018	. 076 . 015 . 061	85. 9 86. 1 85. 3	95. 2
23199 2	lead arsenate (powder). Sulphur alone. 11b. lead arsenate (pow- der), 50 galls. water. 50 galls. self-boiled lime-	July 10 May 93 May 26	Whole 4. Pulp Skin	. 20 . 08 . 66	1.50 .60 4.20	.30 .10 1,10	2. 2 . 8 7. 0	. 020 . 007 . 013	. 029 . 008 . 021	86. 2 86. 7 84. 2	98. 0
23200 ²	sulphur, 1 lb. lead ar- senate (powder). Self-boiled lime-sulphur. Check (unsprayed)	July 10	Whole 4.	. 12	. 90	. 0	.0	.010	.0	86.7	83, 6
		15 00	Pulp Skin	. 07	2.00	.0	.0	.005	.0	87. 0 85. 3	
23201 2	78 lbs. terra alba, 32 lbs. sulphur. Do	May 93 May 26 July 10	Whole 4. Pulp Skin	. 13 . 02 . 63	1.00 .20 4.00	.0	.0	.012	.0	86. 5 87. 0 84. 3	92.2
232022	78 lbs. hydrated lime, 32 lbs. sulphur. Do. Do.	May 93 May 26	Whole 4. Pulp Skin	. 10 . 09 . 14	. 80 . 70 . 90	.0	.0	.009 .006 .003	.0	86, 7 87, 1 85, 0	88.
232032	10 lbs. lead arsenate (powder), 90 lbs. hy- drated lime.	July 10 May 93	Whole 4. Pulp Skin	.13 .08 .35	. 90 . 60 2. 10	.30 .20 .70	2. 1 1. 4 4. 4	.013 .007 .006	.030 .017 .013	85. 4 85. 8 84. 2	101.8
232042	Do 8 lbs. sulphur, 3ozs. glue (used in water to wet sulphur), 8 lbs. hy- drated lime, 11b. lead arsenate (powder), 50 galls. water.	May 26 May 93	Whole 4. Pulp Skin	. 10 . 04 . 34	. 70 . 30 2. 10	. 30 . 10 1. 00	2. 0 . 7 6. 3	. 009 . 003 . 006	.025 .007 .018	85. 1 85. 4 84. 1	86.0
	Bo 8 lbs.sulphur,3ozs.glue (used in water to wet sulphur), 8 lbs. hy- drated lime,50 galls. water.	May 26 July 10									

Where no mention is made of water in the formula the material was applied as dust.
 Delaware variety, harvested Aug. 12-18, Berlin, Md.
 As shucks fell.
 Without stones.

Table 5.—Arsenic and lead remaining on sprayed peaches at picking time—Continued.

	1			Arsen	ic(As).	Lead	(Pb).			ying.	eight h.
Sam- ple No.	Spray material used.	Date sprayed.	Determi- nations made on .	Original fruit.	Dried fruit.	Original fruit.	Dried fruit.	Arsenic.	Lead.	Loss on drying	Average weight of peach.
		1015							. per	D	0
23205 2	Sprayed lightly with 1 lb. lead arsenate (powder), 50 galls. water.	1915. May 93	Whole 4. Pulp Skin		1. 20 30 4. 10	0.30 .10 1.00	2.2		0. 025 . 007 . 018	P.c.: 86. 1 86. 3 85. 3	Gr. 84. 1
	8 lbs. sulphur, 8 lbs. stonelime, 50galls.wa- ter (self-boiled lime- sulphur), 1 lb. lead arsenate (powder).	May 26					1				
232062	Self-boiled lime-sulphur. Sprayed heavily with 1 lb. lead arsenate (powder), 50 galls. water.	July 10 May 93	Whole 4. Pulp Skin	. 30 . 06 1. 30	1.90 .40 7.80	. 70 . 30 2. 50	4. 4 1. 9 15. 1	. 021 . 003 . 018	. 049 . 016 . 033	84. 0 84. 2 83. 4	69.5
	8 lbs. sulphur, 8 lbs. stone lime, 50 galls. wa- ter (self-boiled lime- sulphur), 1 lb. lead arsenate (powder).	May 26								i	
232072	Self-boiled lime-sulphur. Commercially sprayed with 1 lb. lead arse- nate (powder), 50 galls. water.	July 10 May 93	Whole 4 Pulp Skin	. 23 . 04 . 96	1. 50 . 30 6. 30	. 60 . 20 2. 10	4.0 1.3 13.7	.019	. 050 . 013 . 037	85. 0 85. 1 84. 7	83.4
	8 lbs. sulphur, 8 lbs. stone lime,50galls.wa- ter (self-boiled lime- sulphur), 1 lb. lead arsenate (powder).	May 26									
23208 5	Self-boiled lime-sulphur. 48 lbs. hydrated lime, 2 lbs. lead arsenate (powder).	July 10 May 93	Whole 4. Pulp Skin	. 10 . 03 . 36	. 60 . 20 2. 30	. 40 . 20 1. 40	2.6 1.3 8.8	.008 .002 .006	. 035 . 013 . 022	84.5 84.6 84.0	81.2
	2 lbs. lead arsenate (powder), 32 lbs. hy- drated lime, 16 lbs.	May 26			!					;	
	sulphur. 16 lbs. sulphur, 34 lbs. hydrated lime.	July 10									
23209 5	46 lbs. hydrated lime, 4 lbs. lead arsenate (powder).	May 93	Whole 4. Pulp Skin	. 21 . 08 . 70	1.40 .50 4.60	. 70 . 40 1. 70	4.8 2.7 11.2	.014 .004 .010	. 045 . 020 . 025	85. 3 85. 4 84. 8	65.8
	32 lbs. sulphur, 4 lbs. lead arsenate (pow- der), 14 lbs. hydrated lime.	May 26									
	32 lbs. sulphur, 18 lbs. hydrated lime.	July 10									
232105	44 lbs. hydrated lime, 6 lbs. lead arsenate (powder).	May 92	Whole 1. Pulp Skin	. 67 . 09 2. 50	4.40 .60 15.40	1.40 .20 5.10	9.1 1.3 31.5	. 040 . 004 . 036	. 083 . 009 . 074	84.6 84.8 83.8	59.3
	44 lbs. sulphur, 6 lbs. lead arsenate (powder).	May 26									
	Sulphur, with 5 per cent hydrated lime added.	July 10					1 - 0	***			-0 -
23211 5	11b.lead arsenate (pow- der), 50 galls. water.	May 93	Whole 1. Pulp Skin	. 30 . 10 1. 00	2.00 .70 6.10	1.20 .20 4.30	7.9 1.4 26.1	. 018 . 004 . 014	.070 .007 .063	84. 8 85. 2 83. 5	58.7
	50 galls. self-boiled lime- sulphur, 1 lb. lead ar- senate (powder).	May 26					· ·				
23212 5	Self-boiled lime-sulphur. Check (unsprayed)	July 10	Whole 4.	. 02	. 13	.0	.0	.001	.0	84. 4 84. 8	67.4
23213 5	78 lbs. terra alba, 32 lbs. sulphur.	May 93 May 26	Skin Whole 1. Pulp Skin	. 05 . 06 . 02 . 15	.30 .40 .14 .90	.0	.0	. 001 . 003 . 001 . 002	.0	82.9 85.1 85.6 83.4	55.8
	Do		DE 111	. 10	. 50	.0	.0	.002	. 0	30.4	

Delaware variety, harvested Aug. 12-18, Berlin, Md.
 As shucks fell.
 Without stones.
 Delaware variety, harvested Aug. 12-18, Springfield, W. Va.

 Fable 5.—Arsenic and lead remaining on sprayed peaches at picking time—Continued.

				Arsen	ic(As).	Lead	(Pb).			ying.	eight h.
Sam- ple No.	Spray material used.	Date sprayed.	Determi- nations made on.	Original fruit.	Dried fruit.	Original fruit.	Dried fruit.	Arsenic.	Lead.	Loss on drying	A verage weight of peach.
232145	78 lbs. hydrated lime, 32 lbs. sulphur.	1915. May 93	Whole 1. Pulp Skin		arts pc	r millie 0.0 .0 .0			. per ach. 0.0 .0	P.ct. 85.0 85.5 83.2	Gr. 52.1
232155	Do Do 10 lbs. lead arsenate (powder), 90 lbs. hydrated lime.	May 26 July 10 May 93	Whole 4. Pulp Skin	.12 .06 .40	.70 .40 2.40	. 40 . 20 1. 40	2.4 1.2 8.2	.007 .003 .004	. 024 . 009 . 015	83.4 83.5 83.0	56.3
23216 5	8 lbs. sulphur, 3 ozs. glue (used in water to wet sulphur), 8 lbs. hydrated lime, 1 lb. lead arsenate (pow-	May 26 May 93	Whole 4. Pulp	.17 .05 .58	1.10 .30 3.50	. 40 . 20 1. 20	2.6 1.4 7.3	. 002	. 024 . 011 . 013	84.9 85.3 83.5	54.6
	der), 50 galls. water. Do	July 10									 - - -
234406	galls. water. Sprayed lightly with 2 lbs. lead arsenate (com. paste), 2 lbs. stone lime, 50 galls. water.	June 1	Whole 4. Pulp Skin	.18 .04 .72	1.80 .40 5.80	.70 .20 2.50	6.9 2.1 20.0	.017 .003 .014	. 062 . 012 . 050	89.8 90.4 87.5	95.0
	2 lbs. lead arsenate (com. paste), 50 galls. self-boiled lime-sul- phur (8-8-50). Self-boiled lime-sulphur	June 19 July 29									
23441 6	(8-8-50). Same as No. 23440, but heavier applications.	Same as No. 23440	Whole 4.	.36	3.70	. 90	9.2	. 032	.077	90.3	89.3
23442 6	4 lbs. lead arsenate (com. paste), 4 lbs. stone lime, 50 galls. water.	June 1	Skin Whole 4. Pulp Skin	1.37 .30 .06 1.20	11. 80 2. 90 . 60 10. 30	3. 20 . 80 . 20 3. 10	$ \begin{array}{c c} 27.6 \\ 7.8 \\ 2.0 \\ 26.5 \end{array} $.027 .028 .004 .024	. 063 . 076 . 013 . 063	88.4 89.7 90.1. 88.3	95.1
	4 lbs. lead arsenate (com. paste), self- boiled lime-sulphur (8-8-50).	June 19	4								
23443 6	Self-boiled lime-sulphur (8-8-50). 4 lbs. lead arsenate (powder), 96 lbs. hy- drated lime.	July 29 May 30		. 08	3.10 .70	1.40 .20 6.30	1.7	.040	.155 .017 .138	-88.3 88.5 87.4	110.9
	4 lbs. lead arsenate (powder), 32 lbs. sul- phur (200-mesh fine), 64 lbs. hydrated lime. 32 lbs. sulphur (200- mesh fine), 68 lbs. hy-	July 29					1				1
131416	drated lime. 8 lbs. lead arsenate, (powder), 92 lbs. hy- drated lime. 8 lbs. lead arsenate (powder), 32 lbs. sul- phur (200-mesh fine), 20 lbs. bydrated lime.	May 30 June 19	Whole 4. Pulp Skin	. 67 , 10 2, 90	5, 60 , 90 20, 00	2,00 .20 9.00	16. 8 1. 8 62. 1	. 070 . 008 . 062	. 209 . 017 . 192	88. 1 88. 8 85. 5	104.5
	60 lbs. hydrated lime. 64 lbs. sulphur (200- mesh fine), 36 lbs. hydrated lime.	July 29									i

As shucks fell.
 Without stones.
 Delaware variety, harvested Aug. 12–18, Springfield, W. Va.
 Elberta variety, harvested Sept. 13, Benton Harbor, Mich.

				Arsen	ic(As).	Lead	(Pb).			ying.	ight
Sam- ple No.	Spray material used.	Date sprayed.	Determi- nations made on.	Original fruit.	Dried fruit.	Original fruit.	Dried fruit.	Arsenic.	Lead.	Loss on drying	Average weight of peach.
		1015				: 77 : .		Mg	. per	D .	
234456	12 lbs. lead arsenate (powder), 88 lbs. hy- drated lime. 12 lbs. lead arsenate	1915. May 30 June 19	Whole 1. Pulp Skin	0.80	7. 10 7. 10 . 60 27. 80		23. 0 1. 8	0.091	ich. 0.297 .013 .284	P.ct. 88. 7 89. 0 87. 4	Gr. 114.
	12 lbs. lead arsenate (powder), 88 lbs. sul- phur (200-mesh fine). 100 lbs. sulphur (200- mesh fine).	July 29									
23446	2 lbs. lead arsenate (com. paste), 2 lbs. stone lime, 50 galls. water,	May 30	Whole 4. Pulp Skin	. 10	4. 00 1. 00 12. 50	. 20	$ \begin{array}{c c} 10.4 \\ 2.0 \\ 34.2 \end{array} $. 044 . 008 . 036	. 115 . 016 . 039	89. 4 89. 8 88. 0	104.
	2 lbs. lead arsenate (com. paste), self- boiled lime-sulphur (8-8-50). Self-boiled lime-sulphur	June 19 July 29									
23447 6	(8–8–50). 68 lbs. terra alba, 32 lbs. sulphur (200- mesh fine).	May 30	Whole '. Pulp Skin	. 20 . 10 . 60	1.80 .90 4.90	.34 .10 1.20	3. 0 . 9 9. 8	. 020 . 008 . 012	.034	88. 8 89. 1 87. 8	100.
10 4 40 4	Do	June 19 July 29	3371- 1- 4	0.4	0.00	00		000	0.05	00.4	107
23448 6	68 lbs. hydrated lime, 32 lbs. sulphur (200- mesh fine).	May 30	Whole 1. Pulp Skin	. 07	2.30 .70 8.70	. 60 . 20 2. 50	5. 7 1. 9 19. 7	. 026 . 006 . 020	. 065 . 020 . 045	89. 4 89. 8 87. 3	107.
23449 6	10 lbs. lead arsenate (powder), 90 lbs. hy- drated lime.	July 29 May 30	Whole 4. Pulp Skin		8, 00 1, 20 35, 40	2. 40 . 20 12, 20	20. 5 1. 7 96. 1	. 115 . 014 . 101	. 295 . 020 . 275	88.3 88.5 87.3	122.
23450 6	Do Check plat (unsprayed).	June 19	Whole 4. Pulp Skin	. 10	2. 00 . 90 6. 10	. 40 . 14 1. 50	3.4 1.2 11.9	. 026 . 009 . 017	. 046 . 013 . 033	88.3 88.5 87.4	114.
256377	Check plat (unsprayed).	1916.	Whole 4.	. 04	. 30	. 40	2. 7	. 005	. 052	85.1	129.
256387	Self-boiled lime-sulphur	About	Pulp Skin Whole 4.	. 01 . 20 . 05	1.20 1.30	.30 .90 .50	2. 2 5. 3 3. 4	.001 .004 .005	. 031 . 021 . 045	86. 4 83. 0 85. 4	90.
10000	(8-8-50), 2 lbs. lead arsenate.	May 13			1.10	.40	2.9	.001	.028	86. 2 82. 6	
256397	2 lbs. lead arsenate, 50 galls. water.	do	Whole 4. Pulp Skin	. 05	.30 .10 1,20	. 50 . 30 1. 30	3.5 2.1 7.7	.005	. 051 . 025 . 026	85.7 85.9 83.1	102.
	5 lbs. "soluble sulphur compd.," 3 lbs. lime, 50 galls. water, 2 lbs. lead arsenate.	3 weeks later	Skin		1.20	1.00			. 02.0	00.1	
	4 lbs. "soluble sulphur compd.," 4 lbs. lime, 50 galls. water.	About July 15									
257088	Check plat (unsprayed).	• • • • • • • • • • • • • • • • • • • •	Whole 4.	. 03	.40	. 40	2.7 2.2	. 005	. 034	85.3 86.4 83.9	85.
25709 8	(powder), 2 lbs. stone lime, 50 galls. water.	May 29- May 30	Skin Whole 4. Pulp Skin	. 20 . 08 . 03 . 30	1. 20 . 70 . 30 2. 20	. 90 . 40 . 30 . 90	5. 6 3. 7 2. 9 6. 6	. 003 . 008 . 002 . 006	. 013 . 042 . 025 . 017	89. 1 89. 5 86. 3	105.
	lb. lead arsenate (powder), self-boiled lime-sulphur (8-8-50).	June 20- June 21				1					
	Self-boiled lime-sulphur (8-8-50).	Aug. 1- Aug. 2				İ					

<sup>As shucks fell.
Without stones.
Elberta variety, harvested Sept. 13, Benton Harbor, Mich.
Elberta variety, harvested Aug. 21, Springfield, W. Va.
Elberta variety, harvested Sept. 16, Benton Harbor, Mich.</sup>

Table 5.—Arsenic and lead remaining on sprayed peaches at picking time—Continued.

Sam- ple No.	Spray material used.	Date sprayed.	Determi- nations made on.	Original fruit.	Dried fruit.	Original fruit.	Dried fruit.	Arsenic.	Lead.	Loss on drying.	Average weight of peach.
279359	1 lb. lead arsenate (powder), 2½ lbs. lime, 50 galls. water. 8 lbs. sulphur, 8 lbs.	1917. Apr. 4 Apr. 19	Whole 4. Pulp Skin	0.05	arts per 0.30 .10 1.20	millio 1.00 .40 4.20	n. 6.9 3.0 25.8		ρετ ich. 0.095 -032 -063	P.ct. 85, 5 86, 6 83, 7	<i>Gr</i> . 95. 0
	hydrated lime, 3 ozs. glue, 1 lb. lead arse- nate (powder), 50 galls. water. 8 lbs. sulphur, 8 lbs. hydrated lime, 3 ozs. glue, 50 galls. water.	June 7									
279369	Check (unsprayed)		Whole 4. Pulp Skin		.0	.60 .40 1.70	4. 0 2. 8 9. 8	.0	. 057 . 032 . 025	85. 0 85. 7 82. 6	95. 4
279379	10 lbs. lead arsenate (powder), 90 lbs. hy- drated lime.	Apr. 4 Apr. 19 June 7	Whole 4. Pulp Skin	. 02	. 10 . 10 . 20	.90 .60 2,40	6.3 4.3 14.0	.002	. 086 . 048 . 038	85. 6 86. 0 82. 8	96. 2
279389	ure sulphur. Commercial preparation containing 50 per cent sulphur and 50 per cent lead arsenate.		Whole 4. Pulp Skin	. 0	.50 .0 2,30	1. 20 . 80 3. 30	8. 0 5. 6 19. 2	.006	. 110 . 062 . 048	85. 0 85. 6 82. 6	91.5

⁴ Without stones.

Table 6.—Arsenic, lead, and copper remaining on sprayed cherries at picking time.

Sam-		P .	Condition		enic s).	Lead	(Pb).		oper u).	Loss
ple No.	Spray material used.	Date sprayed.	of fruit analyzed.	Orig- inal fruit.	Dried fruit.	Orig- inal fruit.	Dried fruit.	Orig- inal fruit.	Dried fruit.	on dry- ing.
						- 4				D 4
054501	(Theels (unapproved)	1916.		0.02	[0.16]	arts pei	r millio	0.5	4.0	P. ct. 87. 5
25452 1 25453 1	Check (unsprayed) Home-made Bordeaux.		Unwashed.	.04	. 2			2.1	11.9	82.3
20400 -	nome-made nordeaux.		Washed 2	.02	.1				7.9	02.0
2545411	Commercial fungicide		Unwashed.		.7			2.0	15.0	86.7
	containing 12 per cent copper, 3 per cent arsenic.		Washed 2	. 07	. 5			1.2	9.0	
25181 3	3-4-50 Bordeaux, 21bs.	May 30, June	Unwashed .	. 15	. 7	1.2	5.4	3.2	14.4	77.8
	lead arsenate (paste).	21.	Washed 2	.09	. 4	.7	3.2	1.8	8.1	
	3-4-50 Bordeaux	July 3.						1		
25482 3	Check (unsprayed)			.08	. 4	. 6	2.8	1.4	6.5	78.6
25483 3	1½ galls. lime-sulphur	May 30, June	Unwashed.	. 15	. 7	. 6	2.8			78.9
1	solution, 2 lbs. lead arsenate (paste), 50 galls. water.	21.	Washed 2	. 10	. 5	. 4	1.9			
	1½ galls. lime-sulphur solution, 50 galls. water.	July 3.								
25484 4	Check (unsprayed)			. 08	. 6	. 7	5.3	1.1	8.3	86.7
25485 4	14 galls, lime-sulphur,	May 29-30.	Unwashed.	.16	1.0	1.3	8.1			83.9
	2 lbs. lead arsenate (paste), 50 galls. wa- ter.	June 20.	Washed 2	. 16	1.0	1.3	8.1			
25486 4	3-4-50 Bordeaux, 21bs.	May 29-30.	Unwashed.	. 35	2.3	.7	4.6	2.3	15.2	84.9
-01.0	lead arsenate (paste).	June 20.	Washed3	.17	1.1	.5	3.3	1.6	10.6	

⁹ Harvested July 9, Fort Valley, Ga.

Picked July 12, 1916, Wenatchee, Wash.
 Washed by holding under running tap water for a few minutes.
 Sweet cherries, picked July 20, 1916, Hart, Mich.
 Sour cherries, picked July 20, 1916, Hart, Mich.

Table 7.—Arsenic, lead, and copper remaining on sprayed plums at picking time.

Sam-		Date	Condition		senic	Lead	(Pb).		oper u).	Loss
ple No.	Spray material used.	sprayed.	of fruit analyzed.	Orig- inal fruit.	Dried fruit.	Orig- inal fruit.	Dried fruit.	Orig- inal fruit.	Dried fruit.	on dry- ing.
		1916.			ı P	arts ne	r millie	on.		P. ct
25640 1	2 lbs. lead arsenate (paste),50 galls. water lb. com. spray containing 1.7 per cent copper, 5 per cent lead arsenate, 7 per centcalcium arsenate. 2 per cent sulphur, 50	May 26. June 22, Aug. 1, 2.	Unwashed . Washed ²	0.06	0.5	0.2	1.6	0.3	2.4 2.4	87.4
25641 1	galls. water. 2 lbs. lead arsenate (paste),50 galls. water. 5 lbs. sulphur, 50 galls. water.	May 26. June 22, Aug. 1, 2.	Unwashed. Washed 2	.04	.3	.4	3.1			87.0
25642 1	2 lbs. lead arsenate (paste), 50 galls.water. 4 lbs. barium polysul-	May 26. June 22, Aug.	Unwashed. Washed ²	. 03	.2	.2	1.6 1.6			87. 2
25643 1	phid, 50 galls. water. 2 lbs. lead arsenate (paste), 50 galls. water. 1 lb. sodium polysul-	1, 2. May 26. June 22, Aug.	Unwashed. Washed 2	.04	.3	.2	1.6 1.6			87.7
25644 1	phid, 50 galls. water. 2 lbs. lead arsenate (paste),50 galls. water. Self-boiled lime-sul-	1, 2. May 26. June 22, Aug.	Unwashed . Washed 2	. 03	.2	.3	2.4 1.6			87.6
25645 1	phur (8-8-50). 2 lbs. lead arsenate (paste), 50 galls. water. Self-boiled lime-sulphur (8-8-50), 2 lbs. soap	1, 2. May 26. June 22, Aug. 1, 2.	Unwashed . Washed 2	. 03	.3	.2	1.7 1.7			88.1
25646 ¹	Check (unsprayed)		Unwashed. Washed?	. 03	.2	.3	2.2 1.4	0.5	3.7 3.0	86.6
25807 3	2 lbs. lead arsenate (paste), plus lime, 50 galls. water. 1½ galls. lime-sulphur solution, 50 galls. wa- ter, 2 lbs. lead arse- nate (paste).	May 27. June 21,22,23	Unwashed. Washed ²	.13	.8	.5	2.9 2.9			82.9
05000 1	1½ galls. lime-sulphur solution, 50 galls. water.	Aug. 12.	YY	07	4	0				01.0
25808 3	2 lbs. lead arsenate (paste), 50 galls. water, plus lime. Self-boiled lime-sulphur (8–8–50), 2 lbs. lead arsenate (paste), 50 galls. water. Self-boiled lime-sulphur	May 27. June 21, 22, 23 Aug. 12.	Unwashed Washed ²	. 07	. 4	.3	1.7 1.7			81.8
25809 3	(8-8-50). 2 lbs. lead arsenate (paste), plus lime, 50 galls. water. Bordeaux 3-4-50, 2 lbs. lead arsenate (paste).	May 27. June 21, 22, 23	Unwashed. Washed?	.13	.7	. 4 14	2.3 2.3	1.2	6.8 5.1	82.3
25810 ³	Bordeaux 3-4-50 Check (unsprayed)	Aug. 12.*	Unwashed . Washed 2	. 10	. 6	.4	$\frac{2.3}{1.7}$. 6	3.4 3.4	82.3

Burban^b; picked last of August, Hart, Mich.
 Washed by holding under running tap water for a few minutes.
 Golden Domestica; picked last of September, Hart, Mich.

Table 8.—Arsenic, lead, and copper remaining on sprayed tomatoes at picking time.

Sam-		P.11	Determina-		enic .s).	Lead	(Pb).		per u).	Loss
ple No.	Spray material used.	Date sprayed.	tions made on.	Origi- nal fruit.	Dried fruit.	Origi- nal fruit.	Dried fruit.	Origi- nal fruit.	Dried fruit.	on dry- ing.
		1915.			Pa	rts per	mill i or	7.		P. ct.
23304 1	Check (unsprayed)		Whole fruit.						30.0	94.0 94.0
23305 1	8-9-50 Bordeaux mix- ture.	July 8, 19, 21,31, Aug. 5, 11, 18,	Pulp Whole fruit, Pulp					5.7	91.9 35.5	93.8 93.8
23306 1	5-6-50 Bordeaux	Sept. 11. July 8, 19, 20, 31, Aug. 5, 10, 18, Sept. 4, 11.	Whole fruit. Pulp					5.7 1.6	91.9 25.8	93. 8 93. 8
25664 2	Check (unsprayed)	1916.	Whole fruit.		0.4	0.9	16.1	. 6	10.7	94.4
25665 ²	5-5-50 Bordeaux, 1½ lbs. lead arsenate (pow-	July 13, Aug. 7, 25, Sept.	Pulp Whole fruit. Pulp	. 3	5. 2 5. 9	1.7 1.2	10.7 29.8 21.1	1.0 .6	8.9 17.5 10.5	94.4 94.3 94.3
25825 3	der). Check (unsprayed)	8.	Whole fruit.	. 07	1.4	. 3	6.0	. 7	14.0	95.0
	, ,		Pulp	. 02	. 4	. 2	4.0	. 7	14.0	95.0
25826 3	5-5-50 Bordeaux, 1½ lbs. lead arsenate (pow- der).	July 13, Aug. 7, 25, Sept. 8.	Whole fruit. Pulp		1.1	.5	7.6	4.0	60. 6 13. 6	93. 4 93. 4
	5-5-50 Bordeaux	Sept. 18.								
25706 4	4-4-50 Bordeaux		Whole fruit.					. 9	17. 0 9. 4	94.7 94.7
25707 4	Check (unsprayed)		Pulp Whole fruit, Pulp					.6	10.5	94.7 94.3 94.3
25710 4	Check (unsprayed)		Pulp Whole fruit.					.7	13.2	94.7
257114	4-4-50 Bordeaux		Pulp Whole fruit. Pulp					. 8	13. 2 14. 3 12. 5	94.7 94.4 94.4

Table 9.—Copper remaining on sprayed celery at gathering time.

G				Coppe	r (Cu),	
Sam- ple No.	Spray material used.	Date · sprayed.	Determinations made on.	Original celery.	Dried celery.	Loss on drying.
	A A.	1915.		Parts ver	million.	Per cent.
23585 2	Check plat (unsprayed)		Unwashed (check)	2,3	24, 2	90, 5
23586 2	Oversprayed with 5-5-50	Aug. 14, 24,	Unwashed leaves 3	258, 1	2,150.8	88.0
	Bordeaux mixture, 2 lbs.	Sept. 2, 14,	Unwashed stalks3	16.6	207.5	92.0
	resin fish-oil soap.	• /	Washed leaves 4	65.7	547.5	88.0
	*		Washed stalks 4	8.2	102.5	. 92,0
23587 2	5-5-50 Bordeaux mixture,	Aug. 14, 24,	Unwashed leaves 3	213.0	1,775.0	88.0
	2 lbs. resin fish-oil soap.	Sept. 2, 14.	Unwashed stalks 3	3.6	45.0	92.0
			Washed leaves 4	85.5	712.5	88.0
			Washed stalks	2.9	36.3	92.0
	l	1917.				
28783 5	Commercially sprayed with	Sept. 11, 22,	Unwashed leaves	4.7	33.6	86.0
	5-5-50 Bordeaux plus soap.	Oct. 1.	Unwashed stalks	. 9	11.5	92.2
			Washed leaves 6	2.9	20.7	
005045		0 1 1 00	Washed stalks 6	. 9	11.5	
28784 5	Oversprayed with 5-5-50	Sept. 11, 22,	Unwashed leaves	12.8	91.4	86.0
	Bordeaux plus soap,	Oct. 1.	Unwashed stalks	1.6	20.0	92.0
			Washed leaves 6 Washed stalks 6	2.1	15. 0 8. 7	
			wasned starks	. (0.1	

The samples sprayed in 1915 were coated with copper spray when received and represent extremely heavy applications; the 1917 samples represent celery as it usually appears on the market.
 Harvested Oct. 29, 1915, North Liberty, Ind.
 These sprayed samples were heavily coated with the spray material when received.
 Washing done by holding sample under faucet water for few minutes.
 Harvested about Nov. 1, 1917, North Liberty, Ind.
 Washed by soaking celery in water for a short time and then rubbing with a small brush.

Fruit picked Sept. 15, 1915, Camden, N. J.
 Fruit picked Sept. 14, 1916. Arlington, Va.
 Fruit picked Oct. 2, 1916, Arlington, Va.
 Fruit picked Sept. 15, 1916, Salem, N. J.; såmples represent commercial fruit ready for market.

Table 10.—Copper remaining on sprayed cucumbers at picking time.

Sam-				Copper		
ple No.	Spray material used.	Date sprayed.	Determinations made on.	Original fruit.	Dried fruit.	Loss on drying.
25660 1	Check (unsprayed)	1916 '	Whole fruit Pulp Skin	Parts per	11.3 7.1	Per cent. 94.7 95.8
256611	2-4-50 Bordeaux	1916	Whole fruit	1.2	$\begin{array}{c} 7.7 \\ 25.5 \\ 7.3 \end{array}$	93. 5 95. 3 95. 9
256621	2-4-50 Bordeaux plus 2 lbs. resin fish-oil soap.	1916	Skin Whole fruit Pulp Skin	1.2	44. 4 25. 5 7. 3 39. 1	93.7 95.3 95.9 93.6
2 56631	5-5-50 Bordeaux	1916	Whole fruit Pulp Skin	1.4	28.6 6.8 38.5	95. 6 95. 6 93. 5

¹ Cucumbers picked Sept. 9, 1916, Plymouth, Ind.

Table 11.—Arsenic, lead, and copper remaining on sprayed cranberries at picking time.

Sam-		Dete	Condition		enic .s).	Lead	(Pb).		oper u).	Loss
ple No.	Spray material used.	Date sprayed.	of fruit analyzed.	Orig- inal fruit	Dried fruit.		Dried fruit.	Orig- inal fruit.	Dried fruit.	dry-
23453 1	Sprayed lightly with 4-4-50 Bordeaux, 2 lbs. resin fish-oil soap. ²	1915. June 24, July 26, Aug. 11, 28.	Unwashed. Washed ³		1	1	million	7.4	62. 7 60. 2	P. ct. 88. 2 88. 2
23454 1	Sprayed medium with 14-50 Bordeaux, 2 lbs.resin fish-oil soap (normal spray for re- gion). ²	do	Washed 3					2.3	33. 9 20. 0	88. 5 88. 5
23455 1	Sprayed heavily with 4-4-50 Bordeaux, 2 1bs. resin fish-oil soap, 2	do	Unwashed Washed 3					7. 6 4. 8	66. 1 41. 7	88. 5 88. 5
23456 1	Oversprayed with 4-4- 50 Bordeaux, 2 lbs. resin fish-oil soap. 2	16	Washed 3					16. 2	268. 5 130. 6	87. 6 87. 6
23684 4	Sprayed heavily with 4-4-50 Bordeaux, 2 lbs. resin fish-oil	June 19, July 27, Aug. 12.	Unwashed Washed 3					2. 0 1. 7	15. 0 12. 8	86.7 86.7
23685 4	soap. 5 Sprayed medium with 4-4-50 Bordeaux, 2 lbs. resin fish-oil soap (normal spray for re-	do	Unwashed Washed 3					2.0 1.8	14, 4 12, 9	86. 1 86. 1
23686 4	4-4-50 Bordeaux, 2 lbs. resin fish-oil		Unwashed Washed 3					2.6 2.4	17. 9 16. 5	85. 5 85. 5
23687 4	soap. 5 Check (unsprayed) 5							. 9	7.1	87.4
25727 1	Commercially sprayed with 3-3-50 Bordeaux 2 lbs. resin fish-oil soap. 6	1916. June 26, July 27, Aug. 5, 25.	Unwashed Washed ⁷					7.2	62. 1 25. 9	88. 4 88. 4

Early Black.
 Harvested Sept. 18, 1915, Brown Mills, N. J.
 Washed by holding the berries in running tap water.

[•] Howe.

5 Harvested Oct. 16, 1915, Brown Mills, N. J.

• Harvested Sept. 18, 1916, Brown Mills, N. J.

• Harvested Sept. 18, 1916, Brown Mills, N. J.

• Washed by soaking berries in water for a short time, pouring off the water, adding more water, and repeating operation three times.

Table 11.—Arsenic, lead, and copper remaining on sprayed cranberries at picking time— Continued.

C			Condition		enic	Lead	(Pb).		pper u).	Loss
Sam- ple No.	Spray material used.	Date sprayed.	Condition of fruit analyzed.	Orig- inal fruit.	Dried fruit.	Orig- inal fruit.	Dried fruit.	Orig- inal fruit.	Dried fruit.	on dry- ing.
26166	Sprayed lightly with 4-4-50 Bordeaux, 2 lbs.resinfish-oil soap, 2 lbs. lead arsenate	1916. Aug. 1, 24.	Unwashed Washed ⁷	1.2	Part 8. 7 5. 8	s per n 4.8 2.5	nillion. 34.8 18.1	5. 5 2. 3	39.8	P. ct. 86. 2 86. 2
26167	(powder). S Sprayed normally with 4-50 Bordeaux, 2 lbs. resin fish-oil soap, 2 lbs. lead arsenate	do	Unwashed Washed 7	1.3	9. 4 7. 2	5.7 2.5	41.3 18.1	6. 7 3. 1	48. 6 22. 5	86, 2 86, 2
26168	(powder).8 Sprayed heavily with 4-4-50 Bordeaux, 2 lbs. resin fish-oil soap, 2 lbs. lead arsenate (powder).8	do	Unwashed. Washed 7	1.7 1.0	12.8 7.5	7.4 3.8	55. 6 28. 6	10.0 4.6	75. 2 34. 6	86. 7 86. 7
26169	Oversprayed with 4-4- 50 Bordeaux, 2 lbs. arsenate (powder), 2	Aug. 2, 24.	Unwashed Washed 7		19. 1 7. 6	9. 2 4. 4	70. 2 33. 6	11. 4 3. 7	87. 0 28. 2	89. 9 86. 6
26170	lbs.resinfish-oilsoap.8 Check (unsprayed).8		Unwashed . Washed 7	.1	.7	.6	4, 4 4, 4	1.0 1.0	7. 4 7. 4	86. 5 86. 5
27337 1	4-5-50 Bordeaux, 2 lbs.	June 24, Aug.	Unwashed . Washed 7					2.2 1.0	17. 2	87. 2
2733810	resin fish-oil soap. 9 10 lbs. lead arsenate (paste), 50 galls.	3. July 22.	Unwashed Washed 7	. 14	1, 1	1.5	11.6 7.0	1.0		87. 1
2733910	water. in 10 lbs. lead arsenate (paste), 2lbs. laundry	July 22, 24.	Unwashed Washed 7		1, 2 1, 2	1.1	8. 1 8. 1			86. 5
27340 1	soap, 50 galls. water. 11 5 lbs. lead arsenate (powder), 50 galls. water. 11 3 lbs. lead arsenate (powder), 50 galls.	June 28, Aug. 1. Aug. 19.	Unwashed. Washed 7	3.9 1.5	30.7 11.8	19. 1 11. 5	150, 4 90, 6			87.3
27346 1	water. 12 4-5-50 Bordeaux, 2 lbs. resin fish-oil soap. 9	June 24, Aug.	Unwashed - Washed 7					3.0 1.6	23. 4 12. 5	87. 2
2734710	10 lbs. lead arsenate (paste), 50 galls. water. 11	July 222	Unwashed . Washed 7	. 14	1.1	1, 4 1, 1	10. 5 8. 3			86. 7
2734810	10 lbs. lead arsenate (paste), 2 lbs. laundry soap, 50 galls. water. 11	July 22, 24.	Unwashed . Washed 7		1.2	1. 5 1. 0	11.7 7.8			87. 2
27349 1	5 lbs. lead arsenate (powder), 50 galls.	June 28, Aug. 1.	Unwashed . Washed 7		30.7 11.0	18.9 12.4	148. 8 97. 7			87.3
	water. 3 lbs. lead arsenate (powder), 50 galls. water. 12	Aug. 19.								
27181	Check (unsprayed) 11	1917.	Unwashed Washed 7		14	. 4	2.9 2.9	0.9	6. 4 5. 0	86.0
28686	4 lbs. lead arsenate (powder), 50 galls. water, 2 lbs. caustic potash fish-oil soap. 18	1917. June 26, July 26, 30.	Unwashed. Washed 7		9. 6 5. 3	4.5 2.9	39. 5 25. 4			88. 6
28685	Check (unsprayed) 13		Unwashed Washed 7		.08	.7	5. 6 5. 6	0.6	4.8	87.6
28556	3 lbs. lime, 4 lbs. copper sulphate, 2 lbs. resin fish-oil soap, 50 galls. water. ¹³	June 28, Aug. 4, 20.	Unwashed Washed 7	. 1	.8	. 6	4. 9 4. 9	1.3 1.2	10.6	87.8
28830	4 lbs. lead arsenate (powder), 2 lbs. caustic potash fish-oil soap, 50 galls. water. 13	June 26, July 26, 30.	Unwashed . Washed 7		10. 0 2. 5	4.8 1.9	40. 0 15. 8			88. 0

¹ Early Black.
7 Washed by soaking berries in water for a short time, pouring off the water, adding more water, and repeating operation three times.
8 Harvested Oct. 9, 1916, Brown Mills, N. J.
9 Harvested Sept. 23, 1916, East Wareham, Mass.
10 Late Home.
11 Harvested Oct. 2, 1916, East Wareham, Mass.
12 Harvested Sept. 25, 1916, East Wareham, Mass.
13 Harvested Oct., 1917, East Wareham, Mass.
14 Harvested Oct., 1917, East Wareham, Mass.

Some of the samples from New Jersey reported in Table 11 represent plots which were purposely oversprayed and contain relatively large amounts of spray residues. The lots sprayed according to recommended schedule contain much less spray residue. Samples 27340 and 27349 show a comparatively large amount of spray residue, but these samples are from experimental plots which were sprayed late. The other Massachusetts samples show very little spray residue. The results indicate that when sprayed with the regulation spray and washed before using the berries contain but little spray material.

Table 12.—Copper, lead, and arsenic remaining on sprayed grapes at picking time.

Sam-		Data	Condition		enic	Lead	(Pb).		oper u).	Loss
ple No.	Spray material used.	Date sprayed.	of samples analyzed.	Orig- inal fruit.	Dried fruit.	Crig- inal fruit.	Dried fruit.	Orig- inal fruit.	Dried fruit.	on dry- ing.
235651	2½ lbs. lead arsenate (powder), 4-4-50 Bor- deaux.²	1915. June 4, July 16.	Unwashed . Washed ³			2. 6 2. 4	r millio 15. 1 14. 0	0, 8 0, 6	0.4	P. ct. 82. 8
23566 1	1 lb. lead arsenate (powder), 4-4-50 Bor- deaux. ²	do	Unwashed. Washed 3		.80	2. 1 1. 3	13. 1 8. 1	.7	4. 4 3. 8	84.0
23567 ¹ · 23571 ¹ 23572 ¹	Check plat (unsprayed) ² Check plat (unsprayed) ⁴ 3 lbs. lead arsenate (paste), 2 lbs. fish-oil soap, 3-3-50 Bor- deaux (sprayed with coarse nozzle).	July 6.	Unwashed . Washed ³	.07 .07 .44 .30	. 40 . 40 2. 70 1. 80	1.1 .6 1.4 1.2	6. 8 3. 2 8. 4 7. 2	. 4 . 4 1. 3 1. 1	2.1	83. 9 81. 0 83. 4
	3 lbs. lead arsenate (paste), 1 lb. laundry soap, 3-3-50 Bor- deaux (sprayed with coarse nozzle).	July 19.							,	
235731	5 lbs. lead arsenate (paste), 2 lbs. fish-oil soap, 3-3-50 Bordeaux (sprayed with coarse nozzle). 5 lbs. lead arsenate	July 6. July 19.	Unwashed Washed 3		4.80 2.10	2.4	7.8	1.5	9. 0 6. 6	83.3
23574 1	(paste), 1 lb. laundry soap, 3-3-50 Bor- deaux (sprayed with coarse nozzle). ⁴ 5 lbs. lead arsenate (paste), 2 lbs. fish-oil soap, 3-3-50 Bor-	July 6.	Unwashed . Washed ³		4.70 2.10	8. 2 2. 4	48. 5 14. 2		10.7	83. 1
	deaux (oversprayed, coarse nozzle). 5 lbs. lead arsenate (paste), 1 lb. laundry soap, 3-3-50 Bor- deaux (oversprayed,	July 19.								
236881	coarse nozzle).4 3 lbs. lead arsenate (paste), 3-3-50 Bordeaux (sprayed with trailers, using fine nozzles).5	July 5, 17.	Unwashed Washed 3			1.5 1.2	7. 1 5. 7	1.2		79,0
236991	nozzles). ⁵ 3 lbs. lead arsenate (paste), 1 lb. laundry soap, 3-3-50 Bordeaux (sprayed with trailers, using fine nozzles) (normal schedule for this region). ⁵	do	Unwashed Washed 3			2.4 1.4	11. 5 6. 7			79. 2

¹ Concord.

^{*}Harvested Oct. 9, 1915, Benton Harbor, Mich.

Samples washed in running tap water.

Harvested Oct. 9, 1915, North East, Pa.

Harvested Oct. 27, 1915, North East, Pa.

Table 12.—Copper, lead, and arsenic remaining on sprayed grapes at picking time— Continued.

	1		, and the contraction of the con	,						
Sam-			Condition		senic	Lead	(Pb).	Cor (C	oper u).	Loss
ple No.	Spray material used.	Date sprayed.	of samples analyzed.	Orig- inal fruit.	Dried fruit.	Orig- inal fruit.	Dried fruit.		Dried fruit.	on dry- ing.
23690 1	3 lbs. lead arsenate (paste), 1 lb. laundry soap, 3-3-50 Bor- deaux (spray applied with fine nozzles set	1915. July 5, 17.	Unwashed . Washed ³	0.29	P 1.40 1.00	arts per 0.9	r millio 4.3 1.9	0.6	2.9 1.4	P. ct. 79. 0
25836 1	at rear of sprayer).5 Check plat (unsprayed)6		Unwashed. Washed 3	.0.	.0	.5	2. 6 2. 6	.9	4.7 3.2	81.0
25837 1	1 gall.lime-sulphur, 33° B.),7 galls. water. 4-4-50 Bordeaux 6	1916. Dormant spray. June 16.	Unwashed. Washed 3	.05	. 26	.7	3. 6 3. 1	1. 1 1. 1	5. 6 5. 6	80. 4
25838 1	8 lbs. Bordeaux (com. paste), 1 lb. lead arse- nate (powder), 50 galls. water.	June 1, 12.	Unwashed. Washed 3	.12	. 63	.8	4. 2 3. 2	1.4 1.1	7. 4 5. 8	81.1
259031	8 lbs. Bordeaux (com. paste), 50 galls.water.6 Check plat (unsprayed)?	Aug. 2.	Unwashed.	. 04	. 17	.6	2.6	.8	3.4	76. 5
259041	1 lb. soap, 1½ lbs. lead arsenate (powder), 3-3-50 Bordeaux (used trailers with	July 6, 21.	Washed 3 Unwashed. Washed 3	. 04	17 12. 60 4. 20	.6 7.5 3.5	2, 6 31, 6 14, 8	4. 1 1. 4	1.7 17.3 5.9	76.3
259051	medium nozzles). ⁷ 1 lb. soap, 2½ lbs. lead arsenate (powder), 3-3-50 Bordeaux (used trailers with	do	Unwashed. Washed ³	. 70 . 60	3. 20 2. 70	3.9 2.8	17. 7 12. 7	2.1 1.3	9. 5 5. 5	78.0
259061	arsenate (powder), 3-3-50 Bordeaux (used trailers with medium nozzles). 11b. lime, 11b. soap, 23 lbs. lead arsenate (powder), 50 galls. water (double appli-	do Aug. 12.	Unwashed . Washed ³ .	3, 80 2, 60	16. 10 11. 00	12.0 7.6	50, 8 32, 2	3. 2 1. 7	13. 6 7. 2	76.4
25907 1	cation). ⁷ 1 lb. soap, 1½ lbs. lead arsenate (powder), 3-3-50 Bordeaux (used trailers with	July 6, 21.	Unwashed. Washed 3	.30	1.30 1.30	2. 4 1. 3	10.3 5.6	2.3 1.5	9.8 6.5	76.6
26016 8	fine nozzle). ⁷ 4-3-50 Bordeaux (medium set nozzle). ⁹	June 15.	Unwashed. Washed 3	. 15	. 60	.7	2.9 2.9	$\frac{2.0}{1.3}$	8.3 5.4	75.8
26017 8	4-3-50 Bordeaux (medium set nozzle). 2½ lbs. lead arsenate (powder), 2 lbs. laundry soap, 3-3-50 Bordeaux (sprayed with trailer, fine nozzle). 2½ lbs. lead arsenate	June 28.	Unwashed. Washed 3	1.80 .70	7.30-2.80	5. 1 2. 1	20.7	2.7	11. 0 6. 1	75. 4
	(powder), 1 lb. resin soap, 3-3-50 Bor- deaux (sprayed with trailer, fine nozzle).	Aug. 4.								
26018 8	4-3-50 Bordeaux (medium set nozzle). 21 lbs. lead arsenate (powder), 2 lbs. laundry soap, 3-3-50 Bordeaux (sprayed with trailer coarse nozzle)	June 15. June 28.	Unwashed. Washed 3	3.70	16.30 4.00	10. 4 3. 1	45.8 13.7	3.4	15. 0 6. 2	77.3
1.0	2½ lbs. lead arsenate (powder), 1 lb. resin soap, 3-3-50 Bordeaux (sprayed with trailer, coarse nozzle) ² .	Aug. 4.		7	4-1-0		IC N	adla T	-t. T	

¹ Concord.

<sup>Samples washed in running tap water.
Harvested Oct. 27, 1915, North East, Pa.
Harvested Sept. 30, 1916, Benton Harbor, Mich.</sup>

⁷ Harvested Oct. 6, 1916, North East, Pa.

⁸ Catawba.
9 Harvested Oct. 13, 1916, Sandusky, Ohio.

Table 12.—Copper, lead, and arsenic remaining on sprayed grapes at picking time—Continued.

					senic (s).	Lead	(Pb).	Cor (C	oper u).	Loss
Sam- ple No.	Spray material used.	Date sprayed.	Condition of samples analyzed.	Orig- inal fruit.	Dried fruit.	Orig- inal fruit.	Dried fruit.	Orig- inal fruit.	Dried fruit.	on dry- ing.
26019 8	4-3-50 Bordeaux (sprayed with medium set nozzle). 2½ lbs. lead arsenate (powder), 21bs. laun- dry soap, 3-3-50 Bor- deaux (oversprayed with trailer, coarse nozzle).	1916. June 15. June 28.	Unwashed Washed ³		16. 30 4. 10	arts per 12.6 4.9	militie 51.3 19.9	n. 4.4 2.0	18.0	P. ct. 75. 4
	2½ lbs. lead arsenate (powder), 1 lb. resin soap, 3-3-50 Bor- deaux (oversprayed with trailer, coarse	Aug. 4.				1				
26020 8	nozzle),9 4-3-50 B or d e a u x (sprayed with medium set nozzle). 2½ lbs. lead arsenate (powder), 2 lbs. laundry soap, 3-3-50 Bordeaux (sprayed with trailer, medium noz-	June 15. June 28, July 12.	Unwashed . Washed ³	2.80 1.00	12, 70 4, 50	6. 2 3. 2	28. 2 14. 6	3. 1 1. 7	14. 1 7. 7	78.0
26021 8	zle).9 4-3-50 Bordeaux (sprayed with medium set nozzle). 2½ lbs. lead arsenate (powder), 21bs. laundry soap, 3-3-50 Bordeaux (sprayed with trailer, medium nozzle).	June 15. June 28, July 12.	Unwashed. Washed 3	4, 60 2, 70	21. 10 12. 40	13. 3 6. 4	61. 0 29. 4	4.6 1.8	21. 1 8. 3	78. 2
28881 8	2½ lbs. lead arsenate (powder), 1 lb. resin soap, 2-3-50 Bordeaux, 9 3-3-50 Bordeaux (set nozzle). 1½ lbs. lead arsenate (powder), 1 lb. resin fish-oil soap, 2-3-50 Bordeaux (trailer, medium nozzle) (schedulerecommended for this region). ¹¹	Aug. 2. 1917. June 18. July 2-4, 24- 25.	Unwashed . Washed ¹⁰	3, 20 1, 30	16. 00 6. 50	8.1 3.7	40. 5 18. 5	2.7 2.0	13. 5 10. 0	80, 0
288828	3-3-50 Bordeaux (set nozzle). 1½ lbs. lead arsenate (powder), 1 lb. resin fish-oil soap, 2-3-59 Bordeaux (trailer,	June 18–20. July 2–4, 24– 25, Aug. 14.	Unwashed. Washed 10.	7. 10 3. 60	35, 50 18, 00	17. 6 11. 3	88. 0 56. 5	4. 2 2. 6	21. 0 13. 0	80.0
288838	medium nozzle). 11 3-3-50 Bordeaux (set nozzle). 12 12 lbs. lead arsenate (powder), 1 lb. resin fish-oil soap, 2-3-50 Bordeaux (sprayed with trailer, medium nozzle). 22 12 lbs. lead arsenate (powder), 1 lb. resin fish-oil soap, 2-3-50 Bordeaux (sprayed	July 2-4. July 24-25.	Unwashed . Washed 10	6. 20 3. 30	30. 10 16. 00		75. 2 41. 7	3. 7 2. 8	18. 0 13. 6	79. 4

³ Samples washed in running tap water.
8 Catawba.
9 Harvested Oct. 13, 1916, Sandusky, Ohio.
10 Samples washed by soaking the grapes in water for 5 minutes, pouring off the water, and then washing in running tap water.
11 Harvested Oct. 27, 1917, Sandusky, Ohio.

Table 12.—Copper, lead, and arsenic remaining on sprayed grapes at picking time— Continued.

Sam-		Data	Condition		enic	Lead	([†] b).		oper u).	Loss
ple No.	Spray material used.	Date sprayed.	of samples analyzed.	Orig- inal fruit.	Dried fruit.	Orig- inal fruit.	Dried fruit.	Orig- inal fruit.	Dried fruit.	on dry- ing.
2888412	3-3-50 Bordeaux (sprayed with set nozzle).	1917. June 18-20.	Unwashed . Washed 10.		31, 10	arts pe	r millio 71.0 65.6	4.3 3.3	23.5	P. ct. 81, 7
	21 lbs. lead arsenate (powder), 1 lb. resin fish-oil soap, 2-3-50 Bordeaux, (sprayed with trailer, medium nozzle). 13	July 2-4, 24- 25.								
288868	3-3-50' Bordeaux (sprayed with set nozzle). 1½ lbs. lead arsenate (powder), 1 lb. resin fish-oil soap, 2-3-50 Bordeaux (sprayed with trailer, medium	June 18–20. July 2-4, Aug. 14.	Unwashed . Washed 10		30. 30 6. 70	14.8	75. 9 20. 0	2.3	11.8	80. 5
2888712	nozzle). ¹¹ 3-3-50 Bordeaux (sprayed with set nozzle).	June 18.	Unwashed . Washed 10.		24. 30 9. 50			6. 4 4. 2	33. 8 22. 2	81.1
	1 lb. calcium arsenate (powder), 1 lb. resin fish-oil soap, 2-3-50 Bordeaux (sprayed with trailer, medium nozzle). ¹³	July 2-4, 24- - 25.								
288888	3-3-50 Bordeaux (sprayed with set	June 18–20.	Unwashed Washed 19.		.40	.9	4. 5 4. 5	1.5 1.3	7. 6 6. 6	80. 2
2 888912	3-3-50 Bordeaux (sprayed with set nozzle). ¹³	June 18-20.	Unwashed Washed 10	. 08	. 40	. 5	2. 5 1. 5	1. 5 1. 5	7. 6 7. 6	80. 2

8 Catawba.

10 Samples washed by soaking the grapes in water for 5 minutes, pouring off the water, and then washing in running tap water.

h Harvested Oct. 27, 1917, Sandusky, Ohio.

18 Harvested Oct. 18, 1917, Sandusky, Ohio.

WEATHER CONDITIONS.

Nos. 23565-67: Ideal for spraying during both applications; all foliage and fruit were covered. Nos. 23571-74 and 23688-90: Heavy rain on July's, which seemed to wash off a large amount of the spray material.

Nos. 25836-38 and 25903-07: No abnormal weather conditions reported.
Nos. 26016-21: Dry, hot, clear; season unusually dry.
Nos. 28881-89: Rainfall normal; in no case did rain interfere with the spraying, nor did rain fall before material was well dried.

The Michigan samples and the Pennsylvania samples mentioned in Table 12 that were sprayed according to normal schedule showed very little spray residue at harvest. Grapes sprayed in Sandusky, Ohio, according to the schedule formerly used in that region showed a decided spray residue on their surface at harvest. As this spray residue was no doubt due mainly to late spraying, the Bureau of Entomology has recommended a new schedule which is given under Sample 28881. Table 12 shows the composition of grapes sprayed according to the recommended schedule as compared with that of those sprayed under the schedule formerly used, as well as the composition of grapes sprayed under various experimental schedules.

Table 13.—Arsenic, lead, and copper remaining on sprayed pears at picking time.

			0	Arseni	Arsenic (As).	Lead (Pb).	(Pb).	Copper (Cu).	(Cu).		Arconio		Load Connar	4022
Spray material used. Date sprayed.	Date sp	rayed.	tions made on.	Origi- nal fruit.	Dried fruit.	Origi- nal fruit.	Dried fruit.	Origi- nal fruit.	Dried fruit.	Loss on dry- ing.	in pear (aver- age).		in pear (aver- age).	age weight, pear.
23282 1 gall. lime-sulphur, 40 galls. water (normal May 15. schedule). 1 gall. lime-sulphur, 24 lbs. lead arsenate (pastel), 50 galls. water (normal schedule). 1 4-50 Brofeaux, 24 lbs. lead arsenate (nastel) formal schedule).	May 1 May 26 June 1		Whole Pulp. Skin. Calyx	0.32 0.32 0.40 6.40	24.7.9.18 0	Parts per million 1.0 6.7 1.0 6.7 3.2 13.7 21.3 92.2 21.3 92.2 22.4	million. 6.7 1.4 13.7 92.2 10.3	1, 4.91 2, 4.91	10.0 19.9 19.3 10.0 10.0	Per ct. 85.0 85.8 76.7 76.9	Mg. 0,049 .010 .023 .016	Mg. 0.151 .025 .073 .053		Grams. 151.6
Check plat (unsprayed) ³			Whole	90.	.3	21.3	92.2	8.7	4.0	76.9	910.	:053	.020	132,8
235684 11b. lead arsenate (powder), 1‡ galls. lime- May 12. sulphur, 50 galls. water, 11b. lead arsenate (powder), 1‡ galls. lime- June 15-16.			do. Pulp. Skin Calyx Skin 2. Calyx 2.	. 30 . 10 . 5. 10 . 5. 10	9. 4.8.4.8. 0.80404		6.1 13.4 78.9 13.4 78.9			85.2 77.5 77.5 78.5 78.5 78.5 78.5 78.5	. 026 . 007 . 014 . 015	. 0157 . 0155 . 0455 . 0457		89.2
† Ib. calcium arsenate (powder), 1½ galls. May 13. line-sulphur, 5 gglls. water. † ib. calcium arsenate (powder), 14 galls. June 16. lime-sulphur, 2 lbs. freshly-slaked stone lime, 50 galls. water. ⁵			Whole. Pulp. Skin. Calyx. Skin².	6.00 6.00 6.00 6.00	1.3 2.9 27.1 27.1 27.1	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		83.5 88.4 79.3 77.9	. 0017 . 0009 . 0009 . 0009			77.4
Check plat (unsprayed)		:	Whole	80.	4,	0.3	1.1	0.3	1,7	82.2	600	0.022	0, 033	111.2
259196 Check plat (unsprayed) ⁷		:	do	. 10	9.	C.	1.3	:		84.2	.013	.026		128.0
259208 Check plat (unsprayed)7			do	. 05	6.	63	1.5	6.	4.5	80.1	900.	. 037	. 113	125.0
1 Bartlett. 2 Fruit Wiped with dry cloth before peeling. 3 Harvested Sept. 1, 1915, Benton Harbor, Mich. 4 Kieffer.	oloth before pee 5, Benton Harb	ling. or, Mic	ch.		us tos 1~ 00	5 Harvested Oct. 9, 1915, Benton Harbor, Mich. 6 Clarigeau. 7 Harvested Sept. 30, 1916, Benton Harbor, Mich. 8 Anjou.	ed Oct. 9 u. ed Sept.), 1915, B 30, 1916,	enton H Benton	arbor, M Harbor,	ich. Mich.			

Table 13.—Arsenic, lead, and copper remaining on sprayed pears at picking time—Continued.

5				Arsenic (As).	(.\s).	Lead (Pb).	(Pb).	Copper (Cu).	. (Cu).		Arsenic	Lead	Copper	A ver-
ple No.	Spray material used.	Date sprayed.	Determina- tions made on.	Origi- nal fruit.	Dried fruit.	Origi- nal fruit.	Dried fruit.	Origi- nal fruit.	Dried fruit.	Loss on dry- ing.	in pear in pear (average), age).	in pear (aver- age).	in pear (aver- age).	-
25924 8	25924 1 galls. lime-sulphur (32° B.), 50 galls. 1 galls. lime-sulphur, 24 lbs. lead arsenate (paste), 50 galls. water.	1916. May 14. May 24, June 13.	Whole Pulp Skin. Calyx. Skin ¹⁰	0.10 .05 .30 1.20 1.20	0 -14-14	Parts per million 0.3 1.6 2.2 1.3 4.2 16.7 4.2 16.7 4.2 16.7	million. 1.6 1.3 3.1 16.7 3.1 16.7	1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Per ct. 81.3 84.4 74.4 74.8 74.4 74.8	Mg. 0.013 .006 .005 .005 .002	Mg. 0.039 .022 .012 .005 .005	Mg.	Grams. 130. 0
25925 8	1 gall, lime-sulphur, 9 galls, water. 1 gall, lime-sulphur, 50 galls, water. 1 gall, lime-sulphur, 2 lbs, lead arsenate Mostle), 50 galls, water. 3 qts, lime-sulphur, 2 lbs, lead arsenate Jacks, 50 galls, water. (pastle), 50 galls, water. 3-3-50 Bordeaux 9.	Apr. 19. May 3. May 24. June 13. Aug. 16.	Whole Pulp. Skin. Calyx. Skin ¹⁰	. 10 . 04 . 40 1.80 1.80	5.1.5.2	4.57 to 1.50 t	1.9 1.0 5.0 17.3 5.0	3.0 1.0 16.2 21.9 8.2	25.5 68.9 68.9 8.5 8.5 8.5 8.5	79. 80.3 70.3 68.2 68.2	.005 .005 .006 .006 .006	. 0024 . 0024 . 0024 . 007	0.411 .120 .261 .030 .200	137.0
25926	25926¢ 1½ galls. lime-sulphur (32° B.), 4 lbs. stone lime, 1 lb. lead arsenate (powder), 50 galls. water. ³	May 16,26, June 22.	Whole. Pulp. Skin. Calyx. Skin 10.	. 10 . 02 . 40 . 40 . 40 . 40	.5 1.2 12.6 12.6 1.2	4. 1.2 11.9 11.9	3,3,3,0 3,3,2 3,2,2 3,2,2 3,2,2			78 80.8 66.0 65.0 65.0	. 016 . 003 . 006 . 006 . 006	. 066 . 029 . 021 . 021 . 021		164.0
	Clarigeau. 8 Anjou.	9Harv	Harvested Oct. 7, 1916, Benton Harbor, Mich	916, Bent	on Hark	oor, Mich			10 Fruit	10 Fruit wiped with damp cloth	rith dan	p cloth.		

TABLE 14.—Arsenic, lead, and copper remaining on sprayed apples at picking time.

				Arsenic	Arsenic (As).	Lead (Pb).	(Pb).	Copper (Cu)	(Cu).		Arsenic Lead		Conner	A ver-
	Spray material used.	Date sprayed.	Determina- tions made on.	Origi- nal fruit.	Dried fruit.	Origi- nal fruit.	Dried fruit.	Origi- nal fruit.	Dried fruit.	Loss on dry- ing.	napple inapple inapple (average), age), age).	n apple (average).	in apple (aver- age).	p
23709 1	Check plat (unsprayed) ²	1915. Apr. 26, May 16, 27, June 16.	WholedoPulp.Skin.Calyx.Sterm endsSterm ends	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0	Parts per 7	million. 1.5 2.2 1.6 4.6 22.4 21.0	0.3	2, 3	88.88.88.88.88.89.89.89.89.89.89.89.89.8	Mg. 0.007 012 005 006 001	Mg. 0.019 0.036 020 010 003 003	Mg. 0.024	Grams. 80.9 121.7
	23710 ¹ 10 lbs. com. dry Bordeaux, l lb. lead arsenate (powder), 50 galls. water. ²	do	Calyx e Stem ends 3. Whole. Pulp Skin Calyx Stem ends.	3.550 1.10 1.10 1.10				40667.63	15.2 140.0 140.0 15.2 15.2	88.88.88.89.89.89.89.89.89.89.89.89.89.8	000.000	003 003 005 001 005 005 005	127 .046 .039 .032 .010	90.6
23283 4	Check plat (unsprayed) 5	April 30	Calyx 8 Stem ends 3. Wholedo. Pulp.		19.7 7.1 1.0 5.1	13.6 3.6 2.5 11.0		7.6	49.3	88.44.48.89 26.44.47.27.7	.001 .007 .007 .039		010	128. 8 93. 0
	5 lbs. lead arsenate (powder), 200 galls. water (fine nozzle, 200 lbs. pressure). ⁵	May 13, June 19.	Calyx Stem ends Skin 3 Calyx 3	300000 30000 30000 30000 30000 30000	38.7 15.5 46.2	25.6 11.0 25.6	148.0 101.8 148.0			83.2.7 82.7.7 82.7.7 83.7.7	014	.046 .038 .143 .046		
23302 4	4 75 lbs. lime, 25 lbs. lead arsenate (41 lbs. applied to trees of medium size, 40 trees in plat) (dust applied to 40 trees). (3.5.5 lbs. applied to 40 trees). (2.5.5 lbs. applied to 40 trees). (2.6.1 lbs. applied to 40 trees). (2.5 lbs. applied to 40 trees).	Apr. 27. May 10. June 19. July 21. Aug. 9,	Whole. Whole. Pulp. Skin. Calyx. Stem ends. Skin. Skin.		25.7. 25. 25.0.8 25.0.8 25.0.8	12.4.0.4.0.7.7.7.0.4.0.0.0.0.0.0.0.0.0.0.0	20.5 20.9 20.9 20.9 54.5			: : : : : : : : : : : : : : : : : : :	010 010 015 017 017	025 050 050 076 034		149.0

72638—22—Bull. 1027——5

For footnote references see page 47.

Table 14.—Arsenic, lead, and copper remaining on sprayed apples at picking time—Continued.

			*	Arsenic (As).	As).	Lead (Pb).	Pb).	Copper (Cu).	(Cu).			1		
Sam- ple No.	Spray material used.	Date sprayed.	Determina- tions made on.	Origi- nal fruit.	Dried fruit.	Origi- nal fruit.	Dried fruit.	Origi- nal fruit.	Dried fruit.	Loss on dry- ing.	in apple (aver- age).	age). age). age).	copper in app l (aver- age).	age weight, apple.
23303 4	45 lbs. lime, 40 lbs. sulphur, 15 lbs. lead arsenate (57 lbs. spplied to trees of me-dium size. at trees in plat) (diet amilies	1915. Apr. 27.	Whole Pulp.	0.40		Parts per 1.2 .2 4.0	million. 7.8 1.4		0 0 0 0 0 0 0 0 0 0 0 0		Mg. 0.061 .010	Mg. 0.183 .025	Mg.	Grams. 152.9
23435 4	tions). (38.5 lbs. applied to 40 trees). (39.5 lbs. applied to 40 trees). (39.1 sapplied to 40 trees). (39.1 bs. applied to 40 trees). (10 lbs. lead arsenate (paste), 200 galls.	May 10. June 19. July 21. Aug. 9. Apr. 30.	Calyx. Stem ends Skin 3 Calyx 8 Stem ends 8.	6.4.1.8.4. 08.00.00.00.00.00.00.00.00.00.00.00.00.0	18.5 25.0 18.5 25.0 25.0	0.01 0.01 0.01 0.02 0.02 0.02 0.03	61.2 21.3 61.2 14.3			822 83.6 83.6 83.6 84.6	0.026	036 079 079 043 043	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	123,4
	water (coarse nozale, 140 lbs., pressure). 5 lbs. lead arsenate (powder), 200 galls. water (fine nozale, 140 lbs. pressure).	May 13, June 19, July 26.	Skin. Calyx Stem ends Skin 8	.9.89.99	14.9 14.9 159.4 14.9	27.53	. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		81.9 82.9 84.0 81.9	010	126 048 056 126	1	
23461 8	10 lbs. lead arsenate (paste), 200 galls. water (coarse nozzlo, 180 lbs. pressure). (Fine nozzle, 180 lbs. pressure)	May 3. May 16, June 21,	Calyx 8 Stem ends 3. Whole Pulp.		25.4 7.1 18.3	25.33 3.39 11.2	21.4 21.4 21.4 25.4			82.9 84.0 85.6 79.8	010 102 102 016 042	056 306 126 126	9 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	92.8
2359710	101bs. lead arsenate (paste), 200 galls. water (conventor) 165 lbs presente).		Stem ends. Skin 3 Calyx 8 Stem ends 8 Whole.		121.9 18.3 105.1 10.5	2.5.11.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	341.6 31.4 31.4 31.4			8821.0 85.2 85.2 85.2 85.2	026 018 022 022 017	090 058 073 497		103.6
	5 lbs. lead arsenate (powder), 200 galls. water (coarse nozle, 165 lbs. pressure).11	May 14, June 20, July 24.	Skiń. Calyx. Stem ends Skin³. Calyx³.		26.0 205.7 20.3 78.1	14.8 68.0 110.2 11.3 37.5	77.1 354.2 626.1 58.9 195.3	1 1 1 1 1		8888888888888888888888888888	058 027 054 053 019	088 1152 120 120		
2359810	2359910 101bs. lead arsenate (paste), 200 galls. water (coarse nozzle, 165 lbs.pressure) purposely oversprayed.	Apr. 30.	Whole Pulp Skin Calyx Stem ends	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2			53.8 53.8 154.4 420.1 60.0			24.05.00.00.00.00.00.00.00.00.00.00.00.00.	018 038 017 017	064 409 1159 159		108, 5
	5 lbs. lead arsenate (powder), 200 galls. water (fine nozzle, 200 lbs. pressure) purposely oversprayed.	May 14, June 20, July 24.	Stem ends 3 -			130.4	776.2			833.0	. 082	196	· · · · · · · · · · · · · · · · · · ·	

83. g		118.9		110.4		116.7	129.9	118.6
		1 1 1			*	081 048 010 011 011	010	
.084	. 057 . 018 . 040 . 057	0+0		031	0088	800	168 039 062 019	.048 .062 .019 .048 .035 .035 .036 .066 .066
.025 .048 .011	000 006 017 006	10000	868888	888	50050	00000000000000000000000000000000000000	000 000 000 000 000 000 000 000	007 007 007 0083 006 006 0013 0013 013
88.44 4.45 4.5.5	79.2 81.5 79.2 81.5	20 00 00 00 00 00 00 00 00 00 00 00 00 00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	85.2 2.2 2.2	81.55 81.55 81.55 81.55	822.5 78.6 78.6 82.8 82.8	77 88 82 20 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	28.52.88.82.62.62.62.62.62.62.62.62.62.62.62.62.62
41.1.	m → ∞ m →			000	22.0 29.0 13.0 24.9		6.7	≻⊙ 4⊬∞⊙4⊣≻∞⊣α
	16.3 1.35.8 16.3 16.3 16.3 16.3	::		:				125.7 18.0 18.0 18.0 19.7 19.7 19.7 106.1 106.1 107.2
	20.02 20.03 20.03 20.03				14494 60080			1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0
2.2	4.004 4.004 4.004 4.004 4.004 4.004	1.1	10.77	1.6	13.0	12.3	16.35 16.33 16.33 16.35	36.00 36.00 36.00 36.00 36.00 4.30 4.30 5.00 5
37	1.2.7.3.1. 1.00 1.00 1.00	7.30 .117		3833	.2. 1.2.		28883189	2.60 2.20 2.20 2.20 2.20 2.00 1.00 2.00 2.0
Whole do Pulp	Skin. Calyx Stem ends Skin ⁸	Stem ends 3. Whole	Skin. Calyx. Stem ends Skin ³	Whole	Skin. Calyx Stemends Skin 3	Stem ends ³ . Whole. Pulp. Skin. Calyx.	Skin 3. Calyx 3. Stemends 3 Whole. Pulp. Skin. Calyx	Stem ends. Skin s. Skin s. Skin s. Stem ends s. Whole. Pulp. Skin c. Calyx. Stem ends. Skin s. Skin s. Skin s. Calyx stem ends.
Apr. 27.	May 15, June 11, Aug. 10.	Apr. 27.	May 14.	Apr. 27.	May 17.	Apr. 28. May 17.	Apr. 28. May 17, June 11,	Apr. 28. May 17, June 11, Aug. 10.
Check plat (unsprayed) ¹¹ 13 galls. irme-sulphur (32° B.), 50 galls. water Apr. 27	11b. lead arsenate (powden), 1½ galls. lime- sulphur (32° B.), 50 galls. water (sprayed to a drip). ¹³	1½ galls. lime-sulphur (32° B.), 50 galls. water	2 lbs. calcium arsenate (paste) (12.5 per cent Assols, 14 galls, lime-sulphur, 50 galls. water (sprayed to a drip) (fine nozale, 180-225 lbs. pressure). ¹⁴	1½ galls. lime-sulphur (32° B.), 50 galls. water.	1 lb. lead arsenate (powder), 1½ galls. limesulphur, 50 galls. water (line nozzle, 180–2251bs. pressure). 12	1½ galls. lime-sulphur (32° B.), 50 galls. water. 5.7 ozs. Paris green, 4-4-50 Bordeaux, 11b. stone lime(sprayed to a drip) (fine nozzle, 180-253 hs. pressure), 12	1½ galls. lime-sulphur (32° B.), 50 galls. water. Il l. lead arsenate (powder), 1½ galls. lime- sulphur 50 calls water (fine noz.)e 110.	lbs. pressure) (sprayed to a very mild drip). ¹³ galls. lime-sulphur (32° B.), 50 galls. water. 11b. lead arsenate (powder), 1½ galls. limesulphur, 50 galls. water (sprayed to a strong drip) (larger nozale, 210 lbs. pressure). ¹³
23923 23924		23926	,	23927		23928	23929	23930

For footnote references see page 47.

Table 14.—Arsenic, lead, and copper remaining on sprayed apples at picking time.—Continued.

Average age weight, apple	Grams.	127.1	148.7	115.9	127.3
Copper in apple (aver- age).	Mg.				
Arsenic Lead Copper (arctic (average). age).	Mg. 0.384 0.384 1.039 1.188 0.061 1.74 1.033	. 191 . 041 . 058 . 057 . 057 . 058	. 476 . 476 . 166 . 117 . 113 . 166 . 117	. 143 . 174 . 024 . 041 . 042 . 067	00000000000000000000000000000000000000
	Mg. 0.119 .007 .064 .017 .040	0019 0019 0019 0019	. 054 . 054 . 054 . 054 . 054	. 005 . 005 . 005 . 015 . 015	010 010 010 010 010 000 010
Loss on dry- ing.	Per ct. 85.5 9 79.6 79.6 81.8 81.8 81.8 81.8 81.8 81.8 81.8 81	2.5.4.2.4.2.4.2.4.2.4.2.4.2.4.2.4.2.4.2.	8 3 8 8 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	20.538.28.28.29.29.29.29.29.29.29.29.29.29.29.29.29.	81.88.63.94.44.88.03.94.44.88.03.94.03.94.94.03.04.04.04.04.04.04.04.04.04.04.04.04.04.
Copper (Cu). Origi- nal fruit.					
Lead (Pb). Tigi- Dried and fruit.	Parts per million. 2.9 19.2 10.2 50.0 33.0 186.8 48.0 313.7 9.5 46.6	2.55 16.1 16.1 153.8 16.1 16.1 16.1 16.1	20.3 20.3 20.3 20.3 362.0 40.6 40.6 40.6 287.6	20.2 9.3 20.4 128.7 134.6 128.7	134.6 3.2 3.2 2.0 2.0 11.6 17.7 17.7 11.6
Lead Origi- nal fruit.	Parts pe 2, 9 10, 2 34, 0 48, 0 9, 5 18, 5 18, 5 18, 5	26.0 26.0 3.6 3.6 4.1	çü, .∞. <mark>ಔ.</mark> ಔ. 504404040	2.14.2.2.4.2.4.2.4.2.4.2.4.2.4.2.4.2.4.2	21
Arsenic (As). Origi- nal fruit.	6.0 17.2 52.7 100.0 10.8 46.7	27.2 2.0 4.0.0 4.0.0 4.4.4 4.4.4	13. 4 102.5 13. 4 102.5 13.4 13.4	102.5 3.1 46.8 48.1 7.3 7.3 7.3	48.1 2.1.1 18.9 25.3 26.3 26.3 26.3 26.3
Arseni Origi- nal fruit.	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0		×	1.50 8.50 8.50 8.50 8.50 8.50 8.50	0.5.5. 0.000000000000000000000000000000
Determina- tions made on.	Whole Pulp Skin Calyx Stem ends Skin a	Stem enus Whole Pulp Skin Calyx Stem ends. Skin 3	Stem ends 's Whole Whole Skin Stem ends Skin Stem ends Skin Skin Calyx	Stem ends & Whole	Stem ends 3. Whole Whole Skin Calyx Skin 3. Calyx 3.
Date spraved.	1915. Apr. 28, 1915. May 17, June 12, Aug. 10.	Apr. 28. May 14, June 10, Aug. 9.	Apr. 28. May 14, June 10, Aug. 9.	Apr. 28. May 14, June 11, Aug. 9.	Apr. 28. May 14, June 11, Aug. 9.
Spray muterial used.	14 galls, lime-sulphur (32° B.), 50 galls. water 24 lbs. lead arsenate (powder), 14 galls. lime-sulphur (32° B.), 50 galls, water (sprayed to a drip) (fine nozzle, 180 lbs. pressure). ¹²	14 galls. lime-sulphur (32° B.), 50 galls. water. 10 lbs. land arsenate (powder), 50 bs. hydrated lime, 40 lbs. sulphur (dust applications).	1½ galls, lime-sulphur (32° B.), 50 galls. water. 25 lbs. lead arsenate (powder), 75 lbs. sul- phur (dust applications). ¹³	1½ galls, lime-sulphur (32° B.), 50 galls. Water. 15 Ibs. Lead arsenate (powder), 40 Ibs. sultions), 12 ibs. terra alba (dust applications), 12	14 galls. lime-sulphur (32° B.), 50 galls. 10 lbs. lead arsenate (powder), 60 lbs. barium polysulphid, 30 lbs. terra alba (dust applications). ¹²
Sam- ple No.	23931	23932	23933	23934	23935

131. 5	113.2	132. 3 140. 6	119.0	73. 0	107. 4
		. 093 093 211 036 072 011 062 072 072	062 071 071 031 008 012 031	. 012 .380 .049 .273 .023 .273 .	161 036 060 035 030 060 060 077
055 010 026 012 012	000 000 000 000 000 000 000 000 000 00	082 012 020 020 020 020 020		000 000 000 000 000 000 000 000 000 00	
88888888888888888888888888888888888888	\$\$\$\$\$\$\$\$\$ \$\$\$\$\$\$\$\$\$\$\$ \$\$\$\$\$\$\$\$\$\$\$\$\$\$	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	\$\$.8888888 24.6888888 24.6840	0.800 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	\$\frac{2}{2}\frac{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac
	1	4. w		24.2 3.9 111.3 79.8 136.1 111.3 47.9	: : : : : : : :
		0.7		28. 5. 2 19. 3 5. 2 29. 4 3 5. 5 11. 6	
		:	190.3 3.9 1.4 9.7 27.6 41.7 9.7 27.6	41.7	9.9 21.7 127.8 127.8 130.3 21.7 127.8
		20.1. 20.5.0 29.5.0 29.5.0			23.0 1.5 19.8 19.8 23.0 11.
		20.7 11.5 11.5 20.7 20.7 20.0 20.0 20.0			26.8 3.7.7 3.6.9 3.6.9 3.6.8 3.6.9 3.6.9 3.6.9 3.6.9 3.6.9
					3.10
Whole Pulp Skin Calyx Stem ends. Skin 3 Calyx a	Stem ends ³ . Whole. Pulp. Skin. Calyx. Stem ends. Skin ³ .	Stem ends 3 Wholedo do PulpSkin. CalyxStem ends. Skim 3 Calvx Calvx	Stem ends 3. Whole. Pulp. Skin. Calyx. Stem ends Skin 3.	Stem ends 3. Whole. Pulp. Skin. Skin. Stem ends. Skin 3.	Stem ends 3 Whole Pulp Skin Calyx Stem ends Skin 3 Calyx 3 Stem ends 3
ine 12,	ine 12,	nne 11,	me 12,	ine 18,	me 14,
Apr. 28. May 14, June Aug. 10.	Apr. 28. May 14, June 12, Aug. 10.	Apr. 28. May 17, June Aug. 10.	Apr. 2s. May 17, June Aug. 10.	Apr. 28. May 18, June 18, Aug. 14.	Apr. 30. May 19, June Aug. 11.
23937 14 galls. lime-sulphur (32° B.), 50 galls. Apr. 28 water. 2 lbs. calcium arsenate (paste) (12.5 per cent As-0.3), 14 galls. lime-sulphur (32° hg.), 60 galls. water (sprayed to a drip) (fine nozzle, 180-225 lbs. pressure).	9 14 galls. Inne-sulphur (32° B.), 50 galls. 9 oss. calcium arsenate (powder), 14 galls. lime-sulphur (32° B.), 50 galls. water (sprayed to a drip) (fine nozale, 180-225 lbs. pressure). ¹²	Check plat (unsprayed) 12. B., 50 galls. water. 1b. lead arsenate (powder), 14 galls. limesulphur (32° B.), 50 galls. sulphur (32° B.), 50 galls. water (sprayed to a drip) (fine nozzle, 210 lbs. pressure). 12	1 14 galls. lime-sulphur (32° B.), 50 galls. water. 1b. lead arsenate (powder), 4 lbs. barium polysulphid, 50 galls. water (sprayed to a drip) (fine nozzle, 180-225 lbs. pres- sure), 12	14 galls, lime-sulphur (32° B.), 50 galls. 5 vater. 5 vater. (sprayed to a drip) (fine nozzle, 180-225 lbs. pressure).	14 galls. lime-sulphur (32° B.), 50 galls. water 2 Dbs. lead arsenate (paste), 14 galls. lime- sulphur (32° B.), 50 galls. water (sprayed by orchardist without supervision). 12
239	23938	23939 23940	23941	23942	23943

For footnote references see page 47.

Table 14.—Arsenic, lead, and copper remaining on sprayed apples at picking time.—Continued.

				Arsenic (As).	(As).	Lead (Pb).	Pb).	Copper (Cu).	(Cu).		Arconio		"toward"	, aou
Sam- ple No.	Spray material used.	Date sprayed.	Determina- tions made on.	Origi- nal fruit.	Dried fruit.	Origi- nal fruit.	Dried fruit.	Origi- nal fruit.	Dried fruit.	Loss on dry- ing.	age). age). age).	napple i (aver- age).		age weight, apple.
235754	23575 • 2 lbs. lead arsenate (paste), 50 galls. water (first application with Beam Clipper noz-zle; Friend mist nozale, 2 to the rod, on all remaining applications) (200 lbs. pressure).13	1915. May 5-7, 24-26, June 14-15, July 16-17, Aug. 6-9.	Whole. Pulp. Skin. Calyx. Stem ends. Stem 8	20. 20. 24 46. 50 12. 80 6. 50	,	<u> </u>	million. 53. 6 6.1 512.0 508.9 159.8			Per c. C. S.	Mg. 0.512 .029 .341 .074 .068	Mg. 1, 265 1, 265 122 823 157 163 510	Mg.	Grams. 142, 2
235764	23576 * 2 lbs.lead arsenate (paste), 50 galls. water (Vermorel nozale, 2 nozales to each 10ft.; spray rod) (100 lbs. pressure). ¹³	do	Stem ends 3. Whole. Pulp. Skin. Calyx.	33.30 3.70 19.00 54.80	197.0 21.6 96.4 233.3	2.18 2.19 2.19 2.19 2.19 2.19 2.19 2.19 2.19	233.5 52.0 52.0 52.0 533.5 539.3			2,50,50,50,50,50,50,50,50,50,50,50,50,50,	259 274 274 288 388	1.036 1.036 1.036 1.036 1.036		116. 4
235774	23577 a lb. com. calcium arsenate (powder), 50 galls. water (first application with Bean Chipper nozzle; Friend mist nozzle, 2 to the rod, on all remaining applications). ¹³	do.	Skin 3 Calyx 3 Stem ends 3 Whole Pulp Skin Calyx Calyx Skin Calyx Skin	16.30 24.50 24.50 29.90 4.52 20.90 10.00 1	220.7 295.5 299.5 200.7 200.7 250.4	27. 5 88. 4 98. 7	139. 6 421. 0 539. 3			8 8 8 8 8 9 9 8 9 9 8 9 8 9 8 9 8 9	235 049 279 279 279 279 279 279 279 279 279 27	396		116.3
23578 4 23570 4	235784 Check plat (unsprayed) ¹³ , c. 10 50-gail. 235794 4 lbs, fead arsenate (nowder) 10 250-gail. tank, or 128 ozs., 50 gails, water (Bordeaux nozzle, 226 lbs, pressure) (coarse penetrating spray (rained June 4, 5, 6, 8) so sprayed immediately on June 8). ¹³	May 6, 24, June 3, 8, 17, 29, July 13, 26, Aug. 9, 24.		27. 45. 5 5 5 60. 60. 60. 60. 60. 60. 60. 60. 60.	208.9 295.4 29.6 29.6 29.6 211.4.4 329.7	1.5 12.7 1.4 55.1 103.6 157.1	9.3 75.1 8.5 274.1 493.3 863.2			2428882999 	092 093 093 098 098 098	1.872 1.872 1.047 228 424		118.7
2371610	23718 ¹⁰ [2 lbs. lead arsenate (paste), 50 galls. water (first application with Bean Clipper noszle: Friend mist nozzle. 2 to the rod. on	May 5-7, 24-26, June 14-15, July 16-17, Aug. 6-9.		44.60 44.60 42.50 4.80 118.00	212, 4 233, 5 30, 0 1, 1 96, 8	31.0 103.6 86.5 13.9 51.6	154.2 493.3 475.3 86.9 6.0			79.9 79.0 81.8 84.0 85.1	. 351 . 098 . 792 . 363	2.28 2.295 1119 1.042		165.0

162, 2	149, 0	153. 9 137. 6	110.1	96, 3 155, 0 158, 0
386 788 501 332 332 524 1.720 1.153 8.84 8.84 8.75 9.75 9.75 9.75 9.75	375	168 1.968 1.163 1.161 2.298 2.298	1,684 1,286 1128 128 298 300 260 242	144 063 066 014 010 010 010 010
154 262 202 202 203 170 616 616 150 150	150 150 150 156 156 156 168 168 168	0921 1442 1442 1442 1460 1460 1460 1460 1460 1460 1460 1460	000 0037 0037 0037 000 000 000 000 000 0	0.000 0.000 0.000 0.000 0.000 0.000 0.000
8.9.8.8.7.9.9.8.8.8.8.8.8.8.8.8.8.8.8.8.	28.28.28.28.28.28.28.28.28.28.28.28.28.2	4488845285 6486865 64866	80.00 80 80.00 80.00 80.00 80.00 80 80.00 80 80 80 80 80 80 80 80 80 80 80 80 8	200 448 8 8 8 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1
18-1-18-1-18-18-18-18-18-18-18-18-18-18-	7	.41-10∞≪0nor	7-1-66-1-22-7	#####################################
1,845.6 133.3 133.3 1739.0 1,260.6 67.1 7.1 230.3 848.7 808.7			256.1 74.3 74.3 74.3 74.3 74.3 822.0 822.0 736.1 718.7	
295.3 295.3 295.3 201.4 201.7 10.6 10.6 139.9 139.1 139.1 14.5 139.1 14.5 139.1 14.5 139.1 14.5 139.1 14.5 139.1 14.5 139.1 14.5 139.1 14.5 139.1 14.5 139.1 139.1 14.5 139.1	139.1	11.1.1 102.5 175.5 175.5 130.9	156.9 15.3 15.3 15.3 10.8 198.8 176.7 176.7 173.2	2
345.1 606.2 54.3 284.3 24.0 24.0 1.9 80.5 323.3 488.2	223.3 15.6 15.6 2.0 203.7 228.5 27.7 27.7	22.2. 2.2.2. 31.2.2.3. 31.2.4.3.3.4.3.3.4.13.3.3.413.3.3.413.3.3.413.3.3.413.3.3.413.3.3.3.	247.7 26.7 29.7 29.7 318.8 318.8 32.0 25.0 33.0 33.0 33.0 33.0 33.0 33.0 33.0 3	
67.30 97.00 10.10 10.10 65.50 65.50 15.70 652.40 652.40	25.5.0 25.0.0 25	36.10 36.10 37.77.70 45.50 60 60 60 60 60 60 60 60 60 60 60 60 60	65.50 67.50 67.90 66.70 66.70	2. 04 1. 20 2. 60 2. 60 2. 1. 20 2. 60 2. 60
Calyx. Stem ends. Stem ends. Calyx a. Stem ends b. Whole Pulp Skin Stem ends.	Calyx Stem ends 3. Whole. Pulp. Skin. Calyx Skem ends. Skin.	Stem ends ³ . Whole. do Pulp. Skin. Calyx. Stem ends. Skin ³ .	Stem ends 3. Whole Pulp. Skin Skin Stem ends. Stem ends. Stem ends.	Whole do do hulp Skin Calyx Stem ends Stem ends Stem ends Stem ends
do	do	May 5, 24, June 3, 13, 26, Aug. 9, 24.	May 8, 10, 25, 26, June 4, 7, 16,28, 29, July 13,26, Aug. 9, 25.	1916. May 1, 15, June 5, July 10.
all remanning applications) (200 lbs. pressure). ¹⁴ 22717 ¹⁰ 2 lbs. lead arsenate (paste), 50 galls. water (Vermorel nozales, 2 to each 10 ft. spray rod) (100 lbs. pressure). ¹⁴	⁴ lb. com. calcium v-senate (powder), 50 galls. water (first application with Bean Clipper nozzle: Friend mist nozzle, 2 to the rod on all remaining applications) (200 lbs. pressure). ¹⁴	Check plat (unsp. 2) ved) ¹⁴ . 4 lbs. lead arsena'e 'nowder) to 250-gall, tank, or 12.8 oz., 50 galls, water (Bordeaux nozzle used) (225 lbs. pressure) (rained June 4, 5, 6; so sprayed immediately on June 8). ¹⁴	4 lbs. lead arsenate (p wder) to 250-gall. tank, or 12,8 oz., 50 galls, water (Bordeaux nozale used) (225 lbs. pressure) (rained lune 4, 5,6; s / sprayed immediately on lune), 14	Check plat (unsprayed) ¹¹ . Check plat (unsprayed) ¹ 1g galls, inc-suphur, i ib. lead arsenate (powder), Bogalls, water (standard spray used in this locality). ¹²
2371710	2371810	23719 10 23720 10	237218	23722 8 26024 1 26025 1

For footnote references see page 47.

Table 14.—Arsenic, lead, and copper remaining on sprayed apples at picking time—Continued.

Avor	age weight, apple.	Grams.	118.0	118.0	118.0	118.0
Conner	napple inapple inapple (aver- (aver- age), age).	Mg.				
Lead	inapple (aver- age).	Mg. 0, 153 0, 050 030 038 035	030 027 072 072 073 073	930 00 00 00 00 00 00 00 00 00 00 00 00 0	0030 0030 0030 0030 0030 0030	0114 0114 0116 0116 0116 0110 0110 000 000
Arsenic	inapple (aver- age).	Mg. 0,059 .010 .007 .023	007 000 000 000 000 000 000 000 000 000	2000 2000 2000 2000 2000 2000 2000 200	000 000 000 000 000 000 000 000 000 00	7.460.000.000.000.000.000.000.000.000.000
	Loss on dry- ing.	Per ct. 82.9 84.1 78.7 79.6	785 88.83 79.05 77.05 88.05 78.05 88.05	28.25 2.08.25 2.08.25 2.09.25 2.09.25 2.09.25	81.0 27.7 28.8 83.0 84.4 80.1 80.1	834883999999999999999999999999999999999
Copper (Cu).	Dried fruit.					
Coppe	Origi- nal fruit.					
Lead (Pb).	Dried fruit.	8	9. 4 51. 0 134. 7 11. 7 22. 9 67. 9	23. 151. 151. 1.0 6.8 8.8 8.8 8.8	117. 6. 6. 117. 8.5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	24.4.4.6.6.1.4.6.6.6.7.7.2.4.4.6.6.6.7.7.4.6.6.6.7.7.4.6.6.6.7.7.4.6.6.6.7.7.4.6.6.6.7.7.4.6.6.6.7.7.4.6.6.6.7.7.4.6.6.6.7.7.4.6.6.6.7.7.7.4.6.6.6.7.7.7.4.6.6.6.7.7.7.7
Lead	Origi- nal fruit.	Parts per 1.3 25.3 25.3 23.3	2,11,2,10,00 0.4,00,00,00,00,00,00,00,00,00,00,00,00,00	27	22. 22. 1. 52. 52. 52. 52. 52. 53. 65. 54. 54. 54. 54. 54. 54. 54. 54. 54. 5	27. 27. 28. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29
Arsenic (As).	Dried fruit.	2.9 6 2.3 74.5 74.0	4.0 4.0 4.0 4.0 4.0 7.1 7.1 7.1 7.1 7.1	84.5 84.5 84.5 84.5 84.5 84.5 84.5	1.2.7.2.1. 1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	31.15 31.15 31.25 31.1 1.15 36.22 36.22 36.22 36.22 36.23
Arseni	Origi- nal fruit.	0.50 . 10 . 50 . 15.20 . 12.80			%: %	
	tions made on.	WholeSkinCalyxStem ends	Skin 16 Calyx 16 Stem ends16 Whole Pulp Skin	Stein ends. Skin b Calyx 16 Stem ends ¹⁶ Whole Pulp. Skin Calyx	Stem ends Skin 16 Stem ends16 Stem ends16 Whole Pulp Skin Skin Scalyx	Skin is Calyx is Stem endsie Whole. Pulp Skin. Calyx Stem ends. Skin is Skin is Calyx is Calyx is
	Date sprayed.	1916. June 10.	Apr. 19, May 3, June 10, July 10.	Apr. 17, 30, June 9, July 11.	do	do
	Spray material used.	258841c (coarse nozzle) (12 galls, water (coarse nozzle) (12 galls, por tree each application) (18-year-old trees), ii	1 lb. lead arsenate (powder), 50 galls, water (fine nozzle) (11 galls, per tree each application) (18-year-old trees). ¹⁷	2586 10 lbs. lead arsenate, 90 lbs. hydrated lime (dust sprayed) (24 lbs. each application) (18-year-old trees).17	25887 ¹¹ 15 lbs. lead arsenate, 85 lbs. hydrated lime . (dust sprayed) (24 lbs. each application) (18-year-old trees). ¹⁷	20 lbs. lead arsenate, 80 lbs. hydrated lime (dust sprayed) (24 lbs. each application) (18-year-old trees). ¹⁷
	No.	2588410	25885 10	25886 10	25887 15	25888 10

118.0	118.0 135.8	145. 5	138. 0 143. 0 131. 7	130, 3	133.8
	258 268 269 269 269 269 269	24 24 24 34 34 34 34 34	069 057 057 041 041 076 076 029	330 330 330 330 330 330 330 330 330 330	100
000 000 000 000 000 000 000 000 000 00	:		000 000 000 001 001 000 000 000 000 000		
88 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		\$ \$ \$ \$ 1 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$: 28 8 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	28.88.89.77.74.88.89.77.77.79.77.79.77.79.79.79.79.79.79.79	
	&4%1-21-1-21-4 4%1-0%030%	- 4 වනු ජූ ල්. කු ජූ බ # ෆ − වෙන වෙයා කර	28.89.1 28.89.1 28.99.1 28.90.0 1		
6.16 6.16 6.06 6.06 0.07 0.07					<u> </u>
25.80 25.80 11.40 26.80	3.50 3.50 3.50 3.50 3.50	6		3	
Who'e Pulp Skin Calyx Stem ends Skin 16	Whole and who who was a second with the work of the wo	Stem ends Whole Pulp Skin Stem ends Skin !e Calyx !e	Whole do	Stem ends w. Whole	Stein ends of Whole
do.	May 9. May 19, June 12, Aug. 5.	May 10, 20, June 13, Aug. 6.	do. May do Aug. 5.	May 9. May 19, June 12, Aug. 5.	May 10. May 20, June 13, Aug. 6.
74 lbs. calcium arsenate, 924 lbs. hydrated lime (dust sprayed) (24 lbs. each appli- cation) (18-year-old trees). ¹⁷	Check plat (unsprayed) 17. 50 per cent sulphur, 50 per cent hydrated lime. 50 per cent sulphur. 45 per cent hydrated lime, 5 per cent lead arsenate (powder) (1.9 lbs. dust per tree each application) (15-year-old frees).	26287 ¹⁰ 4 lbs. barium polysulplid, 2 lbs. lead arsenate (paste), 36 galls. water. ¹⁸	14 lbs. soluble sulptur, 50 galls. water 15 lb. soluble sulptur, 50 galls. water 18 Commercial mixture of 50 per cent sulptur, 50 per cent lead arsenate (dust application, 1 lb. per tree). 18	26421 10 14 galls. lime-sulphur, 50 galls. water 14 galls. lime-sulphur, 1 lb. lead arsenate (powder), 50 galls. water. 18	1½ galls. lime-sulphur. 50 galls. water 1½ galls. lime-sulphur, 50 galls. water, ¾ lb. arsenate of lime (powder). ¹³
26012 10	26286 10	26287 10	26288 10 26289 10 26420 10	26421 10	26422 10

For footnote references see page 47.

Table 14.—Arsenic, lead, and copper remaining on sprayed apples at picking time—Continued.

				Arsenic (As)	(83)	Lead (Pb).	Pb).	Copper (Cu.)	(Cu.)			,		
Sam- ple No.	Spray material used.	Date sprayed.	Determina- tions made on.	Origi- nal fruit.	Dried C fruit. f	Origi- nal fruit.	Dried fruit.	Origi- nal fruit.	Dried fruit.	Loss on dry- ing.		Arsenic Lacad Copper in apple in apple in apple a age). age). age). age).	copper in apple (aver- age).	age weight, apple.
2654010	65 per cent sulphur, 35 per cent hydrated lime. Deper cent sulphur, 32.5 per cent hydrated lime, 7.5 per cent arsenate of lime (dust application).18	1916. May 9. May 19, June 12, Aug. 5.	WholePulp Skin Calyx Stem ends	0.10	,	Parts per million	nillion.	1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Per ct. 82.1 83.5 77.6 79.0 82.2 82.2 77.6	Mg. 0.013 0.007 0.003 0.003 0.001	Mg.	Mg.	Grams. 129.7
26541 10	 galls, lime-sulphur (32° B.), 50 galls. galls, lime-sulphur (32° B.), 50 galls. water, 1 lb. lead arsenate (powder). 	May 10. May 20, June 13, Aug. 6.	Calyx 16 Stem ends 16. Whole Pulp. Skin		 	1 200	6.2 11.6 9.9 9.9			88.22 88.22 86.73 80.55		0.126 .031 .043		125.6
26639 10	10 10	May 9. May 19, June 12,	Stem ends Skin 16. Calyx 16. Stem ends 16. Whole Pulp.		29.7 29.7 29.7 20.7 20.7 20.7	22.28.25. 4.7.28.21. 4.7.28.11.	11.6 139.9 6.9 7.4			28.88.88.85.05 7.00.00 7.00.00 7.00.00 7.00.00 7.00.00 7.00.00 7.00.00 7.00.00 7.00.00 7.00.00 7.00.00 7.00.00 7.00.00 7.00.00		. 042 . 043 . 034 . 034 . 034		118.3
2664010	lime, l.5 per eent lead arsenate (dust- applications) (1.9 lbs. per tree per appli- cation) (15-year-old trees). ¹⁸ 80 per cent sulphur, 20 per cent lead arsenate (dust applications) (about 1 lb. per tree each application) (15-year-old trees). ¹⁸		Calyx Stem ends Stem ends Calyx ¹⁹ Stem ends ¹⁹ Whole Pulp Skin	10.80 15.00 10.60 10.60 10.60 10.80 10.80 10.80	ರ್ಣದ್ದುಲ್ಲ. ೧೮೮೦ ಈ ಜನ್ಮ-	24.5 48.1 1.5 17.6 29.4 1.0 29.8	282.9 96.2 172.9 1.9 1.5 1			28.88.88.89.65 2.6.88.88.89.65 2.6.98.60 2.6.98.60	. 0012 . 0008 . 0012 . 0037 . 005	. 022 . 032 . 032 . 032 . 032 . 032		124.2
2668210	2068210 I lb. com. Bordeaux (10 per cent Cu), 50 galls. water.18	May 10, 19, June 13, Aug. 6.	Stem ends Skin ¹⁹ Calyx ¹⁹ Stem ends ¹⁹ . Whole Pulp.		65.5 65.5 31.5 44.6	30.2 11.8 24.0	170.6 8.4 77.8 135.6	409	77.8	82.3 72.7 82.3 82.1 83.5		033	0. 186 .068 .083	133, 3
	2		Stem ends Skinb. Calyx ¹⁹ Stem ends ¹⁹					17.4	92.1 8.5 25.0	77.7 77.7 78.4 81.1			0034	

2668310	2668310 5 lbs. com. powder (12‡ per cent Cu, 3 per cent As), 50 galls. water.¹s	May 10, 20, June 13, Aug. 6.	Whole. Pulp. Skin. Calyx. Stem ends Skin ¹⁹ .	*	7				3.0 3.0 31.9 66.9 15.0	82.2 83.6 77.5 79.3 77.5	000 000 000 000 000 000 000		. 097 . 059 . 018 . 014 . 018	138.2
2670210	65 per cent sulphur, 35 per cent hydrated lime. 65 per cent sulphur, 25 per cent hydrated lime, 10 per cent lead arsenate (dust ap- plications) (1.9 lbs. per tree each appli- cation) (15-year-old trees).	May 9. May 19, June 12, Aug. 5.	Stem ends ¹⁹ . Whole Pulp. Skin. Calyx Skem ends Skin ¹⁹	6 4. 9 6	19.9 1.2 1.0 20.0 51.1 1.0	1.0.1.33.2	6.8 57.5 188.6 6.8	10.6	58.6	831.9 84.8 80.0 79.5 79.5	000000000000000000000000000000000000000	. 116 . 049 . 023 . 011 . 033	. 013	116.0
26703 ¹⁰	26704.0 Check plat (unsprayed) ¹⁸	May 10, 20, June 13, Aug. 6.	Stem ends ¹⁹ . Whole. do. Pulp. Skin. Calyx. Stem ends. Stem.	5.70 .04 .05 .05 .05 .70 .70 .70	461.00.20.	21.5 2.1.6 3.1.6 1.6.7 1.6.7	221 221 221 221 221 221 221 231 231 231	4487277	9,9,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	88.88.88.89.79.79.79.79.79.79.79.79.79.79.79.79.79	000000000000000000000000000000000000000	020000000000000000000000000000000000000		123. 8 137. 2
2671910	2671910 Tib. Lead arsenate (powder), 50 galls, water (pressure, 225 lbs.). Tib. Lead arsenate (powder), 50 galls, water (Bordeaux nozzle, very coarse spray, all applications) (pressure, 200 lbs.). 20	May 2. May 29, July 8, Aug. 18.	Stem ends ¹⁹ Whole Pulp Skin Stem ends Stem ends Skin! ⁹ Calyx! ⁹	1. 20 1. 20 1. 20 1. 70 1. 70 15. 80	20.2 20.2 29.0 29.0 29.0 20.0 20.0 20.0	12. 4.5 12. 9 148. 7 157. 0 6. 3	29.0 30.2 4.9 77.1 963.2 33.2	ici	15.3		000 11888 0050 050 050 035		003	157, 3
2672010	2672010 11b. lead arsenate (powder), 50 galls, water (Bordeaux, nozzle, very coarse spray) (pressure, 225 lbs.). 11b. lead arsenate(powder), 50 galls, water (Friend nozzle, mist-like spray) (pressure, 200 lbs.).	May 29, July 8, Aug. 18.	Stem ends 19. Whole. Whole. Pulp. Skin. Calyx. Stem ends Stem. Calyx.	20.2.2.02 20.2.2.02 20.2.00 20.00 20.00	8,5 8,5 8,5 20,5 241,4 310,6 111,7	103.6 4.5 12.8 136.1 160.0 86.3	635.6 31.9 74.9 782.2 000.0			8888888888 7070999	0055 0055 0059 0059	124 668 076 150 192 158		148, 5
2675810	11b. lead arsonate (powder), 50 galls.water (pressure, 225 lbs.). 11b. lead arsonate (prowder), 50 galls. water (Bordeaux nozzle, very coarse spray, all applications) (pressure, 200 lbs.). ²⁰	May 2. May 29, June 16, July 8, Aug. 18.	Stem ends ¹⁹ . Whole. Whole. Skin. Calyx. Skin ¹⁹ . Calyx stem ends.	30.30 1.40 29.60 52.90 10.70	189, 4 9, 3 162, 6 162, 6 58, 8 118, 2	135,3 4,7 17,9 118,5 137,5 6,2 39,0	845.6 31.3 3.6 100.6 651.1 864.8 34.8 373.0				.036 .038 .008 .033 .022 .022 .012	162 718 718 958 358 130 124 043 043		152.8

For footnote references see page 47.

Table 14.—Arsenic, lead, and copper remaining on sprayed apples at picking time—Continued.

Aver-	age weight, apple.	Grams. 154, 4	151.8	164.0	142, 2	150.0
Copper	e in apple (aver- age).	Mg.	0.000			
Lead	in apple (aver- age).	Mg. 0.725 .066 .302 .151 .206 .204 .204	. 206 . 729 . 064 . 151 . 151 . 152 . 152	1.000 1.000	12.01.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	
Arsenic	in apple (aver- age).	M_{μ} . 0. 216	001 001 001 001 001 001 001	0.040 0.041 0.052 0.052 0.057	003 003 003 003 003	000000000000000000000000000000000000000
	Loss on dry- ing.	Per_ct. 85.0 85.9 82.6 81.9 82.6 82.6	88.55.57 85.59 80.40 80 80 80 80 80 80 80 80 80 80 80 80 80		8888887878 8787878 80044008	226.28.28.28.28.28.28.28.28.28.28.28.28.28.
r (Cu).	Dried fruit.					
Copper (Cu)	Origi- nal fruit.	÷				
Lead (Pb).	Dried fruit.	Parts per million 4.7 31.3 4.7 31.3 15.1 86.8 137.6 760.2 172.0 1,055.2 78.7 434.8	-		1157.4 4.2 5.3 47.3	
Lead	Origi- nai fruit.	`				21.01.1
Arsenic (As).	Dried fruit.	25.33 256.9 366.9 106.1		214.3 188.4 12.2 12.2 38.3 392.6 14.9 14.9		* *
Arseni	Origi- nal fruit.	1. 40 4. 04 59. 80 3. 40	25. 80 1. 40 2. 60 2. 60 2. 60 2. 60 2. 60 3. 60 3. 60	2, 2, 2, 10 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2		2
	Determina- tions made on.	Whole Pulp Skin Calyx Stem ends. Skin ends.	Stem ends 19 Whole. Pulp Skin. Calyx Stem ends. Skin 19	Calyx 19. Stemends 19. Whole Pulp. Skin. Calyx Stem ends. Stem ends.	Stem ends 19. Whole. Pulp. Skin. Calyx	Skin bi. Calyx bi. Stem ends bi. Stem ends bi. Whole. Pulp. Skin. Calyx Skin. Calyx Calyx Calyx Calyx Calyx Calyx Calyx Calyx Calyx
1	Date sprayed.	May 2. May 29, June 16, July 8, Aug. 18.	May 29, June 12, 26, July 8, Aug. 18.	May 2. May 29, June 12, 26, July 8, Aug.	May 6,June 2, July S.	May 6,June 2, July 5, Aug. 18.
1	Spray material used.	11b. lead arsenate (powder), 50 galls. water (Bordeux, noz.b.s.), very coarse spray) (pressure, 225 lbs.). 11b. lead arsenate (powder), 50 galls. water (Friend noz.be, mist-like spray) (pressure, 200 lbs.)0	(pressure, 225 lbs.). (bressure, 225 lbs.). (11b. lead arsenate (powder), 50 galls. water (Bordeaux nozzle, very coarse spray, all applications) (pressure, 200 lbs.). ²⁰	2672510 11b.lead arsenate (powder), 50 galls. water (Bordeaux, nozzle, very course spray) (pressure, 225 lbs.). 1b.lead arsenate (powder), 50 galls. water (Friend nozzle, mist-like spray) (pressure, 200 lbs.), 30	2675910 10 per cent lead arsenate, 90 per cent terra alba (dust applications). ²⁰	2707410 10 per cent lead arsenate, 90 per cent terra alba (dust applications).29
	Sam- ple No.	2696310	2707310	2672510	2675910	2707410

136, 9	129,3	143.0	113.0 91.3 91.6	. 68
		0. 243 . 072 . 131 . 018 . 092 . 090		
. 164 . 058 . 063 . 019 . 024 . 063	.024 .026 .026 .026 .020 .020	. 100 . 048 . 025 . 025 . 009 . 025		
0112 0102 0005 0005 0005	. 003 . 039 . 001 . 007 . 007 . 005		. 001 . 008 . 036 . 056 . 058 . 053 . 017	
83.4 84.0 80.7 77.6 81.7 77.6	x&xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	\$ \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	షైన్ల ద్వష్టిప్రేష్ట్రే రాల అలుకులు ఇంటు ఇం	25.24.25.25.25.25.25.25.25.25.25.25.25.25.25.
, , , , , , , , , , , , , , , , , , ,		11.1 32.8 36.4 98.1 22.6 39.6		
		1.0 6.6 1.0 1.5.7 1.4.4 1.6	<u> </u>	
7.2 3.1 17.1 17.1 84.8 132.2 17.1 64.7	132.2 8.0 117.9 117.9 12.8,2 12.8,2 12.8,2 12.8,2 13.4,2	. 4010088088 9 4010088088 1 0 x 0 4 x 0 0 0	1954 644	150.9 49.1 3.1 151.5 735.6 653.8 11.4 12.4 237.9
1.2 3.3 19.0 24.2 3.3 14.5	44.1.6,842.6,82.8 2.8.8.4.0.9.4.0.9.2	5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	9 4 . 4146 9 4 . 4146 9 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4	28. 30. 6. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.
1.8 5.2 27.3 5.2 15.6	27. 27. 27. 27. 27. 27. 27. 27. 27. 27.		8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	243.4 243.4 216.1 7.9 76.7 84.9
				11. 3.1. 3.1. 3.1. 3.1. 3.1. 3.1. 3.1.
Whole Pulp. Skin. Calyx. Stem ends. Skin 19. Calyx 19.	Stem ends 19. Whole Whole Pulp Skin Calyx Sten ends. Skin 19. Calyx 19. Kin 19. Whole	do. do. Pulp. Skin. (alyx. Sten ends.	Stem ends 19. Wholedodododododoskin	Stemends 19. Whole Puth Skin. Calyx Stem ends. Skin 19. Calyx 19. Skin 19.
May 6, June 2, 20, July 8, Aug. 18.	May 6, June 2, July 8, Aug. 18.	Apr. 14, 26, May I7, June 2, 21, July 9, Aug. 2.	Apr. 14, 26, May 17. May 26. June 13, 28, July 19, Aug. 24.	May 26. June 13, 23, July 4, 19, Aug. 14, Sept. 4.
26968 ¹⁰ 10 per cent lead arsenate, 90 per cent terra alba (dust applications). ²⁰	2672610 20 per cent lead arsenate, 80 per cent terra alba (dust applications.)20 Check riet (unsuraved) 20	galls. water, 2 lbs.	14 galls. lime-sutphur, 50 galls. water, 2 lbs. lead arsenate (paste), 22 Check plat (imsprayed) 22. Lb. lead arsenate (powder), 50 galls. water (Bean Chipper nozzle), 50 galls. water (Friend Whirlpool mist nozzle), 32	29098.19 [11b.] Lead arsenate (powder), 50 galls. water (Bean Clipper nozzle). 11b. Read arsenate (powder), 50 galls. water (Friend Whirlpool mist nozzle). ²³
2696810	2672610	2843121	2843221 290961n 2909710	2909×10

For footnote references see page 47.

Table 14.—Arsenic, lead, and copper remaining on sprayed apples at picking time—Continued.

A ver-	age weight, apple.	Grams. 89.8	154.0	183.0	240.0	166.0
Copper		Мд.				
Lead	napple (aver- age).	Ma. 0.547 0.547 0.340 0.69 102 071 030	810 683 6490 1120		880 075 050 120 096 0056	2.800
Arsenie	inapple inapple inapple (average). age). age).	Ma. 6, 171 006 114 022 023 023 013	220 .005 .052 .052	0120	8889 041 041 041 041	900 6.000
,	Loss ondry- ing	Per ct. 72,50 83.0 77.7 78.5 78.5	88.88.88 80.98 82.09	88.0 88.0 88.0 88.0 88.0	్లి ఇక్టిన్ని న్రాష్ట్ర స్ట్రిన్ని స్టిన్ని స్ట్రిన్ని స్టిన్ని స్ట్రిన్ని స్టిన్ని	85.1 87.4 7.6 87.4
. (Cu).	Dried fruit.					
Copper (Cu).	Origi- nal fruit.					
(Pb).	Dried fruit.	33.9 2.9 107.0 22.3 552.4 22.3 128.3 128.3	36.0 5.3 160.0 480.0 470.0	68. 0 330. 0 230. 0	26.0 160.0 630.0 790.0	180.0 130.0 15.0
Lead (Pb).	Origi- na! fruit.	Parts per million 6.1 5.2 2.9 2.0 6.8.6 2.9 102.2 68.6 102.2 552.4 4.8 22.3 29.5 53.5 53.5	30.0 93.0 81.0	13.0 66.0 39.0	28. 8. 3. 3. 115.0 115.0 115.0	24. 0 17. 0 1.8 75. 0
c (As).	Dried Fruit.	10. 28.38.28.28.28.28.28.28.28.28.28.28.28.28.28	9.6 34.0 170.0 140.0	120.0 120.0 66.0 6.2 7. 6	140.0 170.0 170.0 102.0 102.0 9.5 9.5 11.0 11.0	40.0 40.0
Arsenic (As).	Origi- nal fruit.	21.20 21.20 29.50 29.50 11.20 27.71	1.40 6.60 34.00 24.00	23.00 11.00 7.079	22.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	9.30 5.40 9.08
,	Determina- tions made on.	Whole. Pulp Skin Calyx Stem ends. Skin 19. Skin 19. Skin 19. Skin 19.	WholeSkinCalyx	Skin 3 Calyx 3 Stem ends 3. Whole.	Calyx Stem ends. Skin 3 Calyx 3 Calyx 4 Stem ends 8 Whole Pulp Calyx Stem ends 8 Skin Calyx Stem ends 8 Skin 8	Stem ends 3. Whole
	Date sprayed.	1917. June 13, 23, July 4, 19, Aug. 23.	1919. May 8–10.	May 29-31, June 18-20, July 21-24, Aug. 18-21. May 8-10.	May 29-31, June 18-20, July21-24, Aug. 18-21. May 8-10. May 29-31.	June 18-20, July 8 21-24, Aug. 18-21. May 8-10.
	Spray material used.	(Friend Whirlpool mist nozzle).23	1 lb. lead arsenate (powder), 3 lbs. atomic sulphur, 50 galls. Water (pressure, 225-250 lbs.).34	(pressure, 225 lbs.). ²⁴ (pressure, 225 lbs.). ²⁴ [3 lb. calcium arsenate (powder), 2 lbs. fline, 2 lbs. flour, 50 galls, water (presure, 200.095 lbs.). ²⁴	1 lb. calcium arsenate (powder), 2 lbs. line, 2 lbs. flour, 50 galls. water (pressure, 225 lbs.). 1 lb. lead arsenate (powder), 3 lbs. atomic sulphur, 50 galls, water, Spreader No. 12 (pressure, 225-240 lbs.). ²⁴ water, Spreader No. 12 (pressure, 225-240 lbs.). ²⁴ water, Spreader No. 12 (pressure, 225-240 lbs.). ²⁵ lbs.).	11b. lead arsenate (powder), 50 galls, water, Spreader No. 2 (pressure, 225.16s.); ss. 31bs. lead arsenate (powder), 31bs. atomic sulphur, 50 galls, water (pressure, 220-345.1bc.); st.
	Sam- ple No.	29099 10	33375	33376	33377	33378

3 lbs. lead arsenate (powder), 50 galls. May 29-31, June Calyx 1760,0 328,0 2000,0 421,0 2500,0 421,0 2500,0 421,0 2500,0 421,0 2500,0 421,0 2500,0 421,0 2500,0 421,0 2500,0 421,0 250,0 250,0 421,0 250,0		OISOI	6005	METALS	ON SE
galls. May 29-31, June Calyx. 127.00 760.0 328.0 2000.0 Aug. 18-20, July 21-24, Skin 3. 7.60 44.0 2500.0 Sin 0. 25		159.0		179.0	
galls. May 29-31, June Calyx. 127.00 760.0 328.0 2000.0 Aug. 18-20, July 21-24, Skin 3. 7.60 44.0 2500.0 Sin 0. 25		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
galls. May 29-31, June Calyx	. 400 . 530 . 230	2.500 1.600 1.800	630 075 075		
galls. May 29-31, June Calyx 127, 00 760, 0 328, 0 2000, 0 18-20, July 21-24, Stem ends 38, 0 470, 0 28, 0 160, 0 28, 0 160, 0 24, 0 160, 0 24, 0 160, 0 24, 0 160, 0 24, 0 160, 0 24, 0 160, 0 24, 0 160, 0 24, 0 160, 0 24, 0 160, 0 24, 0 160, 0 24, 0 160, 0 24, 0 160, 0 24, 0 160, 0 24, 0 160, 0 24, 0 160, 0 24, 0 160, 0 24, 0 160, 0 24, 0 24, 0 160, 0 24, 0 26, 0 26, 0 26, 0 26, 0 24, 0 24, 0 24, 0 26,	. 150 . 310 . 140 . 065		. 100 . 100 . 030 . 075	. 100 . 008 . 073 . 028 . 016 . 058	. 012
galls. May 29-31, June Calyx	83.0 83.0 83.0	888.8	83.7 84.3 87.6 87.8	2.03.48.89.49.89.89.89.89.89.89.89.89.89.89.89.89.89	84.6 85.9
galls. May 29-31, June Calyx					
galls. May 29-31, June (Salyx	2000. 0 2500. 0 160. 0 1700. 0	110.0 11.0 480.0 750.0	82. 0 82. 0 380. 0		
galls. May 29-31, June Calyx	328.0 421.0 28.0 297.0	15.0 80.0 120.0	550.0 13.0 61.0		
galls. May 29-31, June Calyx Stem ends	760.0 2000.0 44.0 470.0 390.0	26.0 300.0	1700.0 31.0 150.0 600.0	21.0 21.0 130.0 87.0 16.0	130.0
galls. May 29-31, June 18-20, July 21-24, Aug. 18-21. galls. May 8-1). galls. May 29-31, June 11, 26, 119, 21. c), 50 May 8-10. c), 50 May 8-10. galls. July 21-24, Aug. 18-21. c), 50 May 8-10. galls. July 29-31, June 18-20, July 21-24, Aug. 18-24.	127.00 328.00 7.60 83.00 68.00	3.70 11.00 49.00	210.00 5.00 24.00 76.00	3, 50 3, 50 21, 00 13, 00 2, 60	8.60
galls. galls. galls. (c) 50 (c), 50 (c), 50	Calyx. Stem ends. Skin 3. Calyx 3.	Whole. Pulp. Skin. Calvx	Stem ends Skin 3 Calyx 3 Stem ends 3	Whole. Pulp. Skin. Calyx. Stem ends .	Calyx 3Stem ends 3.
galls. galls. galls. (c) 50 (c), 50 (c), 50	-	June	Aug.		
eo eo	50 galls.	galls.	galls.		Rome Results

Kome beauty. Harvested last of October, 1915, Moorestown, N. J. Fruit wiped with dry cloth before peeling.

Harvested Aug. 26, 1915, Rosewell, N. Mex. Harvested Sept. 1, 1915, Rosewell, N. Mex. Harvested Sept. 10, 1915, Rosewell, N. Mex.

9 Harvested Sept. 20, 1915, Rosewell, N. Mex. ¹⁰ Ben Davis.

Harvested Oct. 16, 1915, Rosewell, N. Mox.
Harvested Oct. 29, 1915, Barton Harbor, Mich.
Harvested Oct. 22, 1915, Grand Junction, Colo.
Harvested Oct. 22, 1916, Rosewell, N. Mex.
Harvested Oct. 22, 1916, Rosewell, N. Mex.
Harvested Oct. 22, 1916, Rosewell, N. Mex.
Harvested Oct. 22, 1916, Rosewell, N. Mich.
Harvested Oct. 22, 1916, Rosewell, N. Mich.
Harvested Oct. 23, 1916, Grand Junction, Colo.
Harvested Oct. 23, 1917, Greenwood, Va.
Harvested Sept. 14, 1917, Greenwood, Va.
Harvested Sept. 14, 1917, Greenwood, Va.
Harvested Oct. 23, 1917, Grand Junction, Colo.
Harvested Oct. 24, 1917, Grand Junction, Colo.
Harvested Oct. 25, 1916, Fatima, Wash.
Harvested Oct. 25, 1916, Fatima, Wash.
Harvested Oct. 25, 1917, Grand Junction, Colo.
Harvested Oct. 15, 1919, Yakima, Wash. ** Spreader 2 made by thoroughly mixing 1; ounces of borax with 10 ounces of casein, the mixture thoroughly agitated with water, and used at the rate of half of this amount gallons of spray mixture.

to a 200-gallon tank of spray mixture.

Several spray schedules are represented by the samples shown in Table 14. Very little spray residue was present on the apples, except Samples 23598, 33378, and 33379, which were purposely heavily sprayed, and the apples from Grand Junction, Colo. The 1915 samples from Grand Junction showed so much more residue than the apples from other districts that the spraying schedule was changed in 1916 and 1917, with the result that much less spray residue was found on the fruit.

Table 15.—Arsenic, lead, and copper remaining on fruits and vegetables sprayed with poisonous sprays (summary).

	Determi-	,	Arsen	ie (As)			Lead	l (Pb).		(Copp	er (Cu)	
Product.	nations made on.	Orig ba:	nal sis.	Dry	basis.	Origi basi		Dry l	oasis.	Origi bas		Dry 1	oasis.
Peaches:						Pa	rts pe	r millio					
Sprayed	Whole	0.02-		0.10-	8.0			2.0-					
	Pulp	. 00-		. 00-	1.2	. 1-	. 8	. 7- 4. 4-	5.6				
II mamma mad	Skin Whole	. 04-	4.50	. 20-	35. 4 2. 0		12. 2 . 6		90.1				
Unsprayed	Pulp	- 00-	. 10		.9		.4						
	Skin	.00-	.77	.00-	6.1		1.7						
Cherries:													
Sprayed	Who!e	. 04-	. 35	- 20-	2.3	. 6-	1.3	2.8-	8.1	2.0-			15. 2
	Whole 1	. 02-	. 17	. 10-	1.1	. 4-	1.3	1.9-	8.1	1.2-	1.8		10.0
Unsprayed	Whole	. 02-	. 08	. 16–	. 6	. 6-	. 7	2.8-	5.3	. 5-	1.4	4.0-	8.3
Plums: Sprayed	Whole	. 03-	. 13	. 20-	. 8	. 2-	. 5	1.6-	3.1	. 3-	1. 2	2.4-	6.8
riudion	Who'e 1	. 02-	. 10		.6	. 2-	. 5	1.5-	2. 9	. 3-	. 9		5. 1
Unsprayed	Who'e	. 03-	. 10	. 20-	. 6	. 3-	. 4	2.2-	2.3	. 5-	. 6		3. 7
	Who!e 1	. 02-	. 07	. 10-	. 4	. 2~	. 3	1.4-	1.7	. 4-	. 6		3.4
Tomatoes:						_			00.0				
Sprayed	Whole	. 07-	. 30	1.10-	5. 2	. 5-	1.7	7.6-	29.8	. <u>S</u> –	5.7		91.9
I Transport and	Pulp	. 02-	. 05 . 07	. 30-	1.4	. 2-	1.2	3.3- 6.0-	21.1 16.1	, 5- . 6-	2. 2 1. 8		35. 5 30. 0
Unsprayed	Who'e Pulp	. 02-	. 02	. 40-	.4	. 2-	. 6	4.0-	10.7	. 5-			20. €
Celery:	1 (11)	. 02-	. 02	• 40	. 1	. 2	. 0	1.0	10	. 0	1.2	0.0	20.0
Sprayed	Leaves									4.7-2	258.1	33.6-2	, 150. 8
	Stalks									. 9-	16.6	11.5-	
	Leaves 1									2. 1-	85.5	15.0-	
I I	Stalks 1									9.7-	8.2	8.7-	
Unsprayed Cucumbers:	Whole									2.3-		24. 2-	
Spraved	Whole						1		1	1.2-	1.4	25, 5-	28.€
Divared	Pulp									. 3-	. 3		7.3
	Pulp Skin									2.5-	2.8		44.4
Unsprayed	Whole Pulp									. 6			
	Pulp									. 3-			
Cranberries:	Skin									. 5-		7.7-	
Sprayed	Whole	0.10-	3.90	0.80-	30.7	0.6-	19.1	4.9-	150.4	1.3-	33.3	10.6-	268.5
~ [rayear]	Whole 1	. 09-		.70-	11. 8		12.4	4.9-	97.7	1.0-		7.8-	130.6
Unsprayed	Whole	. 01-	. 10	. 08-	. 7		. 7	2.9-	5.6	. 6-	1.0	4.8-	7.4
Grapes:													
Sprayed	Whole	. 05-	7. 10	- 26-	35.5		17.6	2.5-	88.0	. G-	6.4	2.9-	33.8
Unsprayed	Whole	. 02~	4.40	. 10-	24.0		12.0 1.1	1.5- 2.6-	65. 6 6. 8	. 3-	4.2	1.4- 2.1-	22. 2 4. 7
Pears:	11 HO.E	. 00-	. 07	. 00-	. 4		1.1	2.0-	0.0	. 4-	. 9	2.1-	4. 1
Sprayed	Whole	. 10 -	. 32	. 50-	2. 1	. 3-	1.0	1.6-	6.7	1.5-	3.0	10.0-	14.5
	Pulp	. 02-	. 10	. 10-	. 8	. 2-	. 2	1.0-	1.7	. 7-	1.0	4.9-	- 5.1
	Skin	. 30-	1.00	1.20-	4.3		3. 2	3.1-	13.7	4.5-	16.2	19.3-	54.5
	Calyx	1.20-		4.80-	27. 7	4.2-		16.7-	92.2	12.1-	21.9	52.4-	68.9
	Skin 2	. 30-	. 90 6, 40		$\frac{4.0}{27.7}$	4.2-	3.0	3. 1- 16. 7-	13. 4 92. 2	2.1-	S. 2		$\frac{41.8}{33.8}$
Unsprayed	Calyx ² Whole	1.20-	:10	. 30-	.6	. 2-	.3	1.0-	1.5	.3-	. 9	1.7-	4.5
Apples:	11 HOIC	. 00	. 10	, ()	. (1.0	1.0	. 0		1	1.0
Sprayed	Whole	. 03-	5.50	. 20-	40.0		17.0	2.2-	130.0	. 4-	5.2	2.4-	24.2
	Pulp	. 02-	. 40	. 10-	2.5	. 2-	1.8	1.3-	15.0	. 3-	. 8	1.8-	4.2
	Skin	. 10-	25.70	. 50-	130.0		80.0		480.0	. (;-	28.5	2.8-	111.3
	Calyx		127. 00 328. 00	3.50-	760. 0 2, 000. 0	2. 2-3 2. 8-5		11. €−2 17. 7−4		2.5- 2.7-	29. 5	12. 4- 15. 3-	149. 0 136. 1
	Stem ends Skin ²	10-	22.70	. 50-2	92.3		63.0	2.4-	256 1	2. 1-	98 5	2.8-	111.3
	Calyx 2	.70-	83.00	3.50-	470.0	2. 2-2		11.6-1	700.0	2.5-	14.7	12.4-	74. 2
	Stem ends 2.	. 40-	76.00	2.70-	600.0	2.8-2	252.0	17.7-1		2.7-		15.3-	98.1
Unsprayed	Whole	. 04-	. 44	.2 -	2. 2	2-	1.5	1.3-	9.3	. 3-	. 7	2.3-	4.3

 $\begin{array}{ll} \textbf{Table 15.} - Arsenic, \ lead, \ and \ copper \ remaining \ on \ fruits \ and \ vegetables \ sprayed \ with \\ poisonous \ sprays \ (summary) - Continued. \end{array}$

Product.	Determi- nation made on.	Arsenic in each fruit.		Lead in	n each fruit.	Copper in each fruit.		
Peaches:		Mq.	Grains.	Ma.	Grains	Mq.	Grains.	
Sprayed	Whole		0.000031-0.00180					
opra, our.	Pulp		.00000000022					
	Skin							
Unsprayed.			.00000000040					
	Pulp	.000009						
	Skin	.000017	. 000000 00026	.000033				
Pears:								
Sprayed	Whole						0.003500-0.00630	
	Pulp		. 000046 00015		. 000230 00045		.00150000180	
	Skin		. 000077 00035			. 102 261		
	Calyx		. 000031 00025		.00007700082			
	Skin 2				. 000180 00083			
	Calyx 2.				.00007700082			
Unsprayed.	Whole	.006013	. 000092 00020	. 022 037	. 000340 00057	. 033 113	.00051000170	
Apples:	337h -1-	004 000	0000000 01400	020 0 000	000570 04000	054 000		
Sprayed	Whole							
	Pulp Skin	.002042			. 000230 00350 . 000150 02500		.00054000110	
	Calvx	. 002 442				.010273	.00015000420	
	Stem	.001104	.00001300240	.003400	.00004000020	. 003 032	.00004600049	
	ends	.001310	.00001500480	003- 768	000016- 01200	003- 035	000016- 0005	
	Skin 2	.002345						
	Calvx 2	.001127			.00011001500			
	Stem	.001 .127	1000010 100200	. 000 002	.00004000010	.000010	.00001000026	
	ends 2.	.001170	.00001500260	. 003 524	.00004600810	.003025	.00004600039	
Unsprayed.	Whole	.005051	.00007700079,	.019178	. 000290 00270	. 024 093	.00037000140	

¹ Washed.

Table 16.—Precipitation reports for sections where samples analyzed were harvested.

Berlin, Md., Section.

Date.	Precipita- tion.	Date.	Precipita- tion.	Date.	Precipita- tion.	Date.	Precipita- tion.
1915. May 3 5 12 13 15 16 17 20 21 24 26 29 30	Inches. Trace 0.08 .33 .63 Trace. Trace. Trace44 Trace02 .20 .67 .22 .47 .32 3.33	1915. June 1 2 3 5 6 12 13 14 17 18 19 22 30	Inches. 0. 02 1. 75 1. 200 .01 .08 .07 .13 .05 .02 .70 Trace58 .01 .1 .22 Trace.	1915. July 2 4 5 11 17 20 21 Aug. 1 4 5 5 5	Inches. 0.58 .72 .80 .07 .57 .55 .48 2.20 .10 .13.17 Trace. 0.15 .60 1.20 Trace.	1915. Aug. 6 8 9 10 12 21. 22 22 28 29 30	Inches

¹ Normal.

² Wiped.

 $\begin{tabular}{ll} \textbf{Table 16.--} Precipitation \ reports \ for \ sections \ where \ samples \ analyzed \ were \ harvested--\\ \textbf{Continued.} \\ \end{tabular}$

SPRINGFIELD, W. VA., SECTION.

Date.	Precipita- tion.	Date.	Precipita- tion.	Date.	Precipita- tion.	Date.	Precipita- tion.
1915. May 3 7 12 16 17 20 21 22 24 29 30 31	Inches. 0. 21 1. 15 7.75 1. 05 2.0 2.1 3.3 57 Trace. 42 67 0.5 4.31 1.3,69	1915. June 1 2 3 7 11 13 14 16 22 26 30	Inches. Trace. 1. 46 .046 .05 .01 Trace. 37 .34 .06 .06 .06 .35	1916. May 2 3 7 8 13 16 23 26 30	Inches. 0.06 13 .07 .38 Trace. 1.02 .42 .13 .30 .50 3.01	1916. June 3 7 9 10 15 16 21 25	Inches. 0. 38 30 31 20 27 32 1. 36 12 31 30 3.87
July 4 5 8 11 12 15 16 19 20 21 22 25 29	. 35 .13 .17 .79 .14 .07 .05 Trace. .15 .08 Trace. .75 .64	Aug. 1 2 3 8 9 11 12 21 27 28	.10 1, 05 1, 10 .30 .18 .15 .13 .40 .42 Trace. 1, 75	July 2 10 12 13 14 17 18 21 25	. 31 . 23 . 05 . 15 . 20 . 32 . 21 . 23 . 40 . 60 . 2. 70 . 1 3. 57	6 7 11 13 21 22 28	1.05 Trace. 110 111 134 Trace. Trace. - 60

FORT VALLEY, GA., SECTION.

1917. Apr. 2 4 5 8 13 14 22 26	0.62 Trace. 2.23 .33 Trace. .23 Trace. Trace.	1917. May 12 23 25 28	Trace 82 Trace 63 2. 91	1917. June 25 26 27 29 30	Trace. Trace. Trace. . 20 . 10	1917. July 14 16 17 18 19 20 21 22	Trace 18 Trace 53
May 4 5 7 8 11	3. 41 1 4. 28 0. 30 . 61 . 45 0. 10 Trace.	June 4 10 14 15 22 23 24	Trace. Trace. 0.10 .50 Trace. 0.44 Trace.	July 4 5 6 7 8 12	0.96 .10 Trace. Trace. Trace. Trace.	23 24 25 26 27	Trace. 1.56 Trace. 1.00 Trace. 4.79

WENATCHEE, WASH., SECTION.

1916.		1916.		1916.		1916.	
May 5	0.09	May 31	0.04	June 24	0.06	July 2	0.99
6	.02	May off.		25	Trace.	8	Trace.
7	Trace.		. 32	26	. 17	15	Trace.
8	10		1.86	27	. 22	16	. 52
9	Trace.	Tumo 9	(Dec. 00	28	.06	27	Trace.
16 20	Trace.	June 3,.	Trace.	30	Trace.		1. 51
24	Trace.	20	.17	30	.01		1.38
29	.01	22	Trace.		1.04		
30	. 05	23	. 32		1.96		
				1			

¹ Normal.

 $\begin{array}{ll} \textbf{Table 16.} \\ -Precipitation \ reports \ for \ sections \ where \ samples \ analyzed \ were \ harvested-\\ \text{Continued.} \end{array}$

HART, MICH., SECTION.

		-	inici, mici	I., SECTION	•		
Date.	Precipita- tion.	Date.	Precipita- tion.	Date.	Precipita- tion.	Date.	Precipita- tion.
1916.	Inches.	1916.	Inches.	1916.	Inches.	1916.	Inches.
May 1	0.75	June 8	0, 72	July 31	Trace.	Sept. 7	0.65
3	Trace.	9	. 28 . 95		2.00	12	. 05
6 8	. 15	14	. 45		$\begin{array}{c} 3.26 \\ 12.92 \end{array}$	13 14	. 14 Trace.
10	1. 27	18	. 04			15	. 04
14	. 30	23	. 25	Aug. 3	. 85	16	. 18
15 17	. 18	26 30	Trace.	4 5	. 13	17 21	. 14
22	. 28	00		6	. 10	22	. 07
25	. 05		4.94	10	. 16	26	. 16
27	. 07		1 2. 39	13	. 10	27	. 40
29	. 45	July 8	Trace.	26 30	.38	28	. 14
	3.83	13	. 15				3. 11
	1 3. 76	16	2. 27		2.50		1 3.00
June 2	. 70	20	. 53		1 2, 42		
7	.58	25	. 27	Sept. 5	. 97		
		1					
		C	AMDEN, N.	J., SECTION	Ν.		
1915.		1915.		1915.		1915.	
July 1	0. 19	July 21	0. 20	Aug. 7	Trace.	Sept. 7	Trace.
2	. 53	23	Trace.	8.,	1.05	12.	0.08
3 4	Trace.	26 27	Trace.	9	. 20	17 18	Trace
5	Trace.	29	1.00	13	.01	19	.09
7	Trace.	30	.01	10	. 05	. 21	. 40
8	. 67		4, 62	17	Trace.	26	Trace.
11 12	Trace.		1 4. 30	21 25	Trace.		. 86
14	. 35			28	. 03		1 3. 74
15	Trace.	Aug. 1	. 13	29	1.05		
16	. 27	2	.02	30	. 74		
17 18	. 15 Trace.	3 4	2. 10		6.61		
19	. 25	5	Trace.		1 4. 59		
20	Trace.	6	.31				
		AR	LINGTON,	VA., SECTION	ON.	<u></u>	-
1916.		1916.		1916.		1916.	
July 2	0.01	Aug. 4	0.13	Sept. 6	0.06	Oct. 6	Trace
3	Trace.	6	1.46	7	Trace.	9	0.03
9	. 34	8	. 17	8	.31	10	. 01
10 15	.73 .04	9 13	Trace.	9 14	Trace. Trace.	13 15	. 03
16	Trace.	16	. 30	15	1.17	16	. 04
17	.03	23	. 05	18	. 18	17	Trace
19	.09	2/	. 45	22	Trace.	18 19	1.24
20 22	Trace. 1.67	28 30	Trace.	23 29	. 38	20	. 02
24	. 15					31	. 26
25	1.85		2.83		2.57		1.74
26 28	.02		1 4. 40		1 3. 59		1.76 1 3.09
≥ 0		Sept. 2	.01	Oct. 5	Trace.		0.00
	4. 97 1 4. 65	-					
		1	CALEM N	I SECTION			-
		Ir I	SALEM, N.	J., SECTION		1 1	
July 10	1.60	1916. Aug. 1	0.05	1916. Sept. 2	Trace.	1916. Sept. 19	0. 20
13	. 34	8	. 30	6	0.20	29	. 52
20	. 48	11	. 18	· · · · · ·	. 22		1.83
21 22	. 02 1. 80	13 14	Trace.	8 15	.37		1 3. 8
44	. 05	27	. 42	10	. 02	1	0.01
23		11 = 1	00	11		1	
23 25	. 90	28	. 20			1	
23	.90	28					
23 25	. 90	28	1. 23 1 4. 74				

¹ Normal.

 $\begin{array}{c} \textbf{Table 16.} - Precipitat' on \ reports \ for \ sections \ where \ samples \ analyzed \ were \ harvested -- \\ \textbf{Continued} \ . \end{array}$

NORTH LIBERTY, IND., SECTION.

Date.	Precipita- tion.	Date.	Precipita- tion.	Date.	Precipita- tion.	Date.	Precipita- tion.
1915. Aug. 2 3 4 5 6 11 12 13 16 17 20 21 24 Sept. 4 6 6	Inches. 0.70 23 0.55 01 0.02 40 1.49 0.44 0.88 Trace. 0.99 1.31 1.2 4.54 1.3.26 Trace.	1915. Sept. 7: 10 11 12 16 17 18 20 26 27 Oct. 1 8 9 13	Inches. 0, 01 22 22 Trace74 .35 .32 .54 1, 12 .09 4, 21 1 3, 03 .10 .56 .13 .40 .51	1915. Oct. 17	Inches. 0.03 10 1.86 1.2.42 .04 Trace69 .55 Trace05 .10 .04 1.47 1.3.03	1917. Oct. 4	Inches. Trace. 0.13 1.55 111 .06 Trace03 1.23 1.20 2.29 .07 .38 .63 .14 .68 .66 Trace.

PLYMOUTH, IND., SECTION.

1916. July 2 12 13 14 19 Aug. 4	Trace. 0.05 .51 .02 .41 .99 13.38	1916. Aug. 7 10 11 15 16 27	0. 15 . 04 1. 55 Trace. . 02 . 27 . 32	1916. Sept. 1 4 5 6 13 17	Trace. 0.19 2.01 1.09 Trace. Trace.	1916. Sept. 26 27 28	0. 02 1. 73 . 18 5. 22 1 3. 27
----------------------------------	-----------------------------------	---	--	---	-------------------------------------	-------------------------------	--

EAST WAREHAM, MASS., SECTION.

Date.	Precipita- tion.	Date.	Precipita- tion.	Date.	Precipita- tion.	Date.	Precipita- tion.
1916. June 4 8 9 10 11 12 13 17 18 19 22 26 29	0. 40 . 18 . 96 . 27 . 19 . 67 18 . 68 27 Trace. 35 . 65 37	1916. Aug. 8 9 10 12 13 24 26 27 28	0. 47 . 24 . 60 . 17 . 29 Trace. Trace. . 20 . 22 2. 19 1 3, 26	1916. Oct. 21 26 June 2 6 11 12 13 16	0.39 .27 2.85 14.18 .08 .28 2.00 1.42 .05 .62 1.69	1917. Aug. 3 9 10 16 21 23 24 25 29 30	0.06 .03 .07 - 43 .38 .95 .10 .07 .03 .44 .04
July 3 5 10 14 17 18 21 23 24 26 27 31	5. 17 1 2. 68 	Sept. 2	112 171 Trace 12 . 50 . 07 . 10 . 13 . 05 . 67 . 2. 47 . 1 3. 56	July 1 124 27 29 4 12 13 15 19 27	1.09 23 15 13 6.65 12.68 Trace52 22 Trace08 .18 1.23 2.23 13.10	Sept. 8 18 20 24 23 30	1 3. 26 .18 1. 87 .24 .02 .44 .10 2. 85 1 3. 56 2 5. 02 1 4. 18

¹ Normal.

^{*} Total; daily data not reported.

 $\begin{array}{c} \textbf{Table 16.--} Precipitation\ reports\ for\ sections\ where\ samples\ analyzed\ were\ harvested-\\ \textbf{Continued.} \end{array}$

NORTH EAST, PA., SECTION.

Date.	Precipita- tion.	Date.	Precipita- tion.	Date.	Precipita- tion.	Date.	Precipita- tion.
1915.	Inches.	1915.	Inches.	1915.	Inches.	1916.	Inches.
July 1	Trace.	Aug. 22	0.33	Oct. 18	0.15	Sept. 1	0.1
2	0.03	24	. 81	19	. 02	4	. 1
3	. 65	28	. 21	21	Trace.	5	. 1
4	. 12	29	.03	28	Trace.	7	1.6
5	. 19	30	Trace.	29	Trace.	8	. 8
·	. 19		9. 28		2.21	14	. 3
, 8	1. 24 . 81		1 3. 26		1 3. 80	15	.0
11	.86		4 3. 20		* 3. 80	17	. (
15	. 13	Sept. 4	Trace.	1916.		18	
16	. 18	5	.05	July 2	. 32	21	.1
17	.04	6	. 36	3	Trace.	22	i
19	.08	8	.07	4	Trace.	23	i
21	.09	10	.01	13	. 02	26	Trac
25	. 19	12	. 31	16	. 01	28	
26	.02	13	. 50	18	Trace.	29	. 1
28	. 32	15	1.49	19	Trace.		
30	Trace.	17	. 15	20	Trace.	-	4.
31	Trace.	18	. 55	25	Trace.		13.4
		19	Trace.	31	.01	00	
	5. 14	21	. 11	!!	20	Oct. 9	
	1 3. 21	24	.01		. 39 1 3. 21	13	1.0
	T	26	. 58		* 3. 21	17	: (
Aug. 2	Trace. 5, 40		4. 19	Aug. 3	Trace.	19	. (
3	.38		1 3. 49	Aug. 4	. 03	20	
5	. 19	i i	0. 15	5	.54	21	. (
7	.02	Oct. 1	.38	8	.71	22	. (
8	.01	2	. 04	11	Trace.	25	. (
9	. 04	4	Trace.	13	. 49	26	. (
11	Trace.	5	. 10	16	Trace.	27	. (
12	, 66	6	Trace.	22	. 17	31	
13	. 29	7	Trace.	23	Trace.		
14	.07	8	. 20	26	Trace.		2.8
15	. 24	9	28	27	. 75		1 3.
17	. 04	13	Trace.	1	0		
20	, 02	14	1.04	,	$^{2.69}$ 1 $^{3.26}$		
21	.51	15	Trace.	1	* 3. 26		

SANDUSKY, OHIO, SECTION.

			7.				
1916. June 2 4 6 7 8	0. 43 . 12 . 29 . 28 . 72 . 01 . 34	1916. Aug. 3 5 8 11 16 19	Trace. 0.03 .02 .48 .81 .15 Trace.	1916. Oct. 8 9 12 13 16 18	0. 07 . 11 Trace. . 28 . 07 . 11 . 42	1917. June 19 21 22 23 26 28 29	0.11 Trace. .12 .22 Trace. .18 .01
10 16 17 18 19 20 21 24 26 30	. 28 .81 Trace. .25 .01 Trace. .57 .17 Trace. .08	Sept. 2 5 8	. 67 . 12 2. 28 1 3. 37 Trace. Trace. Trace. . 63 . 12	20 21 24 25 27 31	. 15 Trace. Trace. . 01 Trace. . 02	July 7 9 10 12 13 14	4. 21 1 3. 82 . 08 . 01 Trace. . 03 . 08 . 09 Trace.
July 2 12 13 20	4.36 13.82 .03 Trace. .11 .12 .26 13.79	14 17 21 22 23 26 27 28	. 05 Trace. . 01 . 03 Trace. . 20 . 09 . 90 2. 03 1 2. 68	1917. June 2 5 6 9 10 12 13 14 15 16 17	. 07 2. 33 . 66 . 08 Trace. Trace. . 14 Trace. . 28 . 01 Trace.	16 17 21 26 4 Aug. 2	. 12 Trace. . 05 Trace. . 46 1 3. 79

¹ Normal.

 $\begin{tabular}{ll} \textbf{Table 16.} $-Precipitation reports for sections where samples analyzed were harvested.--\\ \textbf{Continued.} \end{tabular}$

SANDUSKY, OHIO, SECTION-Continued.

Date.	Precipita- tion.	Date.	Precipita- tion.	Date.	Precipita- tion.	Date.	Precipita- tion.
1917. Aug. 89131620212223252527282930	Inches. 0.07 Trace. 54 38 Trace. 01 03 1,79 Trace. Trace. 50 30 01 3.99	1917. Sept. 2 5 7 20 27 29 30	. 73 . 23 Trace. 1. 31	1917. Oct. 2	Inches. 0.03 67 08 .05 Trace. 72 Trace. 72 Trace. 63 .55 04 .54 Trace.	1917. Oct. 27 28 29 30 31	Inches. 2 0.4 1.1 0.0 0.0 6.2 12.4

MOORESTOWN AND BROWN MILLS, N. J., SECTIONS.

1915.	1	. 1915.	1	1915.		1916.	
Apr. 3	0.69	July 1	0.03	Oct. 15	0.14	July 10	0.90
4	. 17	2	, 37	16	. 20	14	1.33
6	.03	5	.40	27	. 40	15	.05
11	. 73	8	1.04	1		17	. 43
21	Trace.	12	. 73		2.37	20	. 05
23	Trace.	14	. 53		1 3. 64	21	.52
27	.07	16	. 97	-010		22	. 51
28	. 10	17	. 33	1916.	00	23	. 05
29	. 55	19 21	. 35	May 4	. 03	25	1.28 .30
30	.50	27	. 10	5	.39	26	. 50
1	2, 84	29	. 64	9	. 43		5.42
	1 3, 19	31	. 06	14	Trace.		1 4.58
_	- 0.10	01	.00	16	.35		- 1.00
May 4	. 39	1	5.88	17	. 19	Aug. 8	. 67
5	.69		1 4.58	18	. 03	12	.38
9	.61			23	.59	16	Trace.
12	. 36	Aug. 1	. 19	24	. 02	24	.09
13	. 42	3	. 27	25	1.05	28	. 43
16	.07	4	2.11	29	. 03	1	
17	. 26	6	. 21				1.57 14.74
21	. 70	8	. 20		3.32	ì	1 4, 74
22	1.50	9	. 37		1 4. 03		
23	. 15	12	. 47			Sept. 6	Trace.
24	. 17	15	04	June 4	. 10	7	. 05
25	.02	25	. 04	5	. 17	8	. 48
26	. 06	28 29	Trace.	6	1.40	15 19	. 36
30	. 04	30	1.05	8	. 15	29	. 68
-	5, 77	30	. 30 ,	13	. 14	30	. 11
	1 4. 03		5. 75	17	.06	30	.11
_	1.00		1 4. 74	19	, 23		1.81
June 2	. 63			20	. 40		1 3. 76
3	. 14	Sept. 12	.06	21	. 26		
4	.04	18	, 12	25	. 45	Oct. 13	. 20 . 85
12	. 14	19	. 13			19	. 85
13	1.55	21	.38		3.78	1	
15	.41	26	Trace.		1 3, 80	1	1.05
16	. 43						1 3. 64
17	. 03		. 69			1	
22	. 45		1 3. 76				
23	. 17	0-4	44			1	
26	.09	Oct. 1	- 44		1		
28	Trace.	2	$\frac{.26}{.28}$				
	4. 11	5	Trace.		1		
	1 3. 80	8	. 65				
	- 5, 50						
1		14	Trace.	1		1	

¹ Normal.

 $\begin{array}{c} \textbf{Table 16.} \\ \textbf{--} Precipitation \ reports for \ sections \ where \ samples \ analyzed \ were \ harvested \\ \textbf{--} \\ \textbf{--} \\ \textbf{--} \end{array}$

ROSEWELL, N. MEX., SECTION.

Date.	Precipita- tion.	Date.	Precipita- tion.	Date.	Precipita- tion.	Date.	Precipita- tion.
1915.	Inches.	1915.	Inches.	1915.	Inches.	1916.	Inches.
Apr. 1	Trace. 0.01 .06	July 3	Trace. Trace. Trace.	Sept. 25 29	0.39 .71	July 20 27 28	Trace
7 8 9	Trace. Trace.	8 11 19	0.04 .12		2.29 1 2.29	28	.0
10	.17	20 21	.13	Oct. 5	. 09		1.0
14 15	.01 1.44	23 24	.01	11 14	. 01 Trace.	Aug. 7	1.0
16 17	3.48 .23	25 26	Trace.	15	.02	8 16	4.5
18 19	.01	27 28	.10 .01		$^{12}_{11.52}$	17 18	.3
21 22 23	Trace.		. 45 1 3. 46	1916.	.07	19 20 21	1.0 .3
24 25	Trace. . 09 . 02	Aug. 7	Trace.	Apr. 12 13 14	.36	22 23	1.3
29	. 23	8 9	. 28	25 26	.02	27 30	Trace
	6.04	11 12	. 23	30	. 03		9.5
May 5	.04	14 18	.48		1.11 1.49		11.4
23 26 27	. 93 Trace. . 01	19 20 21	.08 .01 Trace.	May 1	. 17	Sept. 2 4 10	Trace Trace
30 31	.02	22 23	Trace.	June 8	Trace.	12	.3
0	1.18	27 29	.09	12 19	. 44 Trace.	30	Trace
	1 1, 17		1.77	24	Trace.		* .3
June 9	.06	gi o	11.46		1 2. 08	Oct. 10	.1
15 23 25	Trace 06	Sept. 2 4 14	.01	July 4	Trace.	12	
26 27	Trace.	16	.08	7	.05 Trace.	14 16	
	. 14	21 22	.03	12 17	.04 Trace.	27	. (
	1 2.08	23 24	. 01 . 73	18 19	.01		2.3

BENTON HARBOR, MICH., SECTION.

					- .	-	
1915.		1915.		1915.		1915.	
May 2	Trace.	June 7	0.09	July 15	0.30	Aug. 16	Trace.
3	0.60	8	Trace.	18	. 80	21	0.61
4	Trace.	9	Trace.	20	Trace.	24	. 21
6	Trace.	10	.24	21	, 23		5, 21
7	. 15	11	, 12	25	. 10		1 2, 28
8	. 45	12	Trace.	27	.17		- 2, 23
13	. 50	13	. 47	28	.15	Cont 5	. 20
14	Trace.	14	. 08	29	.20	Sept. 5	1. 12
15	. 22	15	. 07	30	. 30	9	.06
16	. 32	16	Trace.	31	.18	10	19
17	Trace.	.17	. 04	1		12	.70
20	Trace.	18	. 08		6.53	15	Trace.
21	. 30	20	. 25		1 2, 52	16	. 40
24	. 50	21	. 02			17	. 40
25	. 10			Aug. 2	1.21	18	.60
26	Trace.		1.46	3	1.65	20	1.15
28	. 90		1 2, 95	4	. 25	21	Trace.
29	. 60			5	. 20	26	1. 23
30	. 20	July 4	. 63	7	. 55	27	Trace.
-		7	1.20	8	Trace		
	4.84	. 8	. 90	11	. 20		6. 05
	1 3. 89	11	20	12	. 17		1 3. 06
		14	1.17	13	. 16	'	

¹ Normal.

 ${\it Table~16.--Precipitation~reports~for~sections~where~samples~analyzed~were~harvested--Continued. } \\$

BENTON HARBOR, MICH., SECTION-Continued.

Date.	Precipita-	Date.	Precipita-	Date.	Precipita-	Date.	Precipita-
1915. Oct. 4 7 8 9 13 17 18 19 19 10 13 14 15 19 21 22 22 22 28	Inches. 0.30 Trace. 70 Trace. 25 30 22 20 1.97 12.76	June 2	Inches. 1, 06 1, 30 7, 01 1, 3, 89 23 3, 10 1, 05 49 40 61 60 65 62 27 7, 12 27 52 05 4, 01	1916. July 16 28 Aug. 3 5 8 10 24 26 28 Sept. 4 5 7 12	Inches. 0, 12 39 12, 52 80 33 Trace. 69 30 12, 52 20 2, 92 1, 20 1, 20 20 2, 92 2, 9	1916. Sept. 13	Inches. 0.30 40 .044 .688 .155 13.06 -15 .10 Trace. 1.25 .45 .12 Trace. Trace. 2.07

GRAND JUNCTION, COLO., SECTION.

1915.		1915.		1916.		1916.	
May	2 1. 23	Sept. 2	Trace.	July 16	Trace.	Oct. 1	0.08
itay iiiiiiii	2 , 92	3	0, 05	17	Trace.	3	. 10
_		4	. 04	20	Trace.	4	, 27
une 1	. 20	7	Trace.	23	Trace.	5	. 06
3	. 03	8	. 02	24	Trace.	6	. 08
4	. 08	13	Trace.	25	. 33	7	.51
5	. 40	24	, 03	26	. 07	9	Trace
6	. 19	25	. 81	27	. 11	10	. 51
9	Trace.			28.	. 01	11	. 03
18	, 02		. 95	29	. 02	14	. 3
28	Trace.		1.95	30	Trace.	15	.06
*******						18	. 08
	. 92	Oct. 14	Trace.		.76	10	
i i	1 . 40	15,	. 01		1.50		2. 12
	. 10						1.91
uly 5	. 02		. 01	Aug. 3	. 73		
12	Trace.		1.91	4	Trace.		
26	. 01			5	. 10	1917.	
27	Trace.	1916.		6	. 13	May 1	Trace
28	Trace.	May 2	Trace.	8	Trace.	2	. 02
29	. 13	13	Trace.	9	Trace.	4	, 01
23		18	Trace.	12	. 60	5	. 18
1	, 16	10	. 26	13	. 25	7	. 0
	1.50	20	.78	15	Trace.	8	Trace
_		21	. 01	16	. 26	9	Trace
Aug. 5	Trace.	22	Trace.	20	Trace.	12	. 13
6	Trace.			29	. 08	15	. 0
7	. 25		1.05	30,	.01	20	. 07
11	Trace.		1.92	3		21	. 11
14	Trace.	i -			2, 16	22	. 2
15	. 05	June 5	Trace.		$^{-1}$ 1.04	23	. 01
16	Trace.	18	Trace.			25	.0-
22	. 01			Sept. 2	Trace.	26	. 03
23	.03		Trace.	5	. 21	27	. 0
24	č0,	i i	1,40	8	. 01	28	. 0:
25	, 01	-		9	. 27	29	. 08
26	.01	July 5	Trace.	17	Trace.	30	. 18
29	Trace.	6	Trace.	22	.01	31	. 32
		8	. 20	23	Trace.		
	. 51	9	Trace.			1	1.48
	1 1. 04	14	.01		. 50		1.92
	1.01	15	. 01		1.95		

ı Normal.

Table 16.—Precipitation reports for sections where samples analyzed were harvested— Continued.

GRAND JUNCTION, COLO., SECTION-Continued.

Date.	Precipita- tion.	Date.	Precipita- tion.	Date.	Precipita- tion.	Date.	Precipita- tion.
1917.	Inches.	1917.	Inches.	1917.	Inches.	1917.	Inches.
June 1	Trace.	July 28	Trace.	Aug. 26	_ 0.01	Sept. 12	0.13
4	_ 0.01	29	0.07	27	Trace.	22	. 10
10	Trace.	30	. 21	28	.03	23	. 02
21	Trace.			31	Trace.	25	.02
		,	. 28			30	Trace
	. 01		1.50		.38		
	1.40			1	1 1.04		1.00
		Aug. 4	Trace.				1.93
July 5	Trace.	9	Trace.	Sept. 2	Trace.		
6	Trace.	10	. 09	4	. 01	Oct. 1	Trace.
10	Trace.	12	.02	5	Trace.	17	Trace.
20	Trace.	13	. 22	6,	.04	24	Trace
24	Trace.	. 14	Trace.	8	.01		Trace
25	Trace.	17	Trace.	/ 9	.01		Trace
26	Trace.	18	.01	10	.61		1,9

GREENWOOD, VA., SECTION.

1917.		1917.		1917.		1917.	
Apr. 5	2.33	June 1	0.43	July 16	0.16	Sept. 2	0.05
8	.30	2	. 27	17	. 14	6	. 23
13	.44	5	. 03	18	. 01	7	. 58
18	Trace.	9	1.40	21	. 05	8	. 36
21	.08	10	. 22	22	. 07	9	.04
24	.05	11	.03	24	. 35	15	.19
25	.12	12	. 01	25	. 48	16	. 05
27	.06	14	.38	26	.10	21	.01
28	. 43	15	. 01			27	.77
		20	.12		3.78		
	3.81	23	.64		1 4.89		2.28
	1 3. 22	25	.18				1 4.18
		26	. 02	Aug. 2	. 46		
May 1	.03	27	.38	7	.01		
4	.78	1 28	1.37	8	1.08		
7	.38			9	2.21		
8	.13		5.49 1 5.48	14	.01		
11	Trace.		1 5.48	15	Trace.	i	
22	.02	T-1- 0	20	16	.13		
26	Trace.	July 2	.36	23	2.80		
27	. 65	J	.07	24	.73		
28	.68		.28	30	.60		
	0.07	8	. 81 . 75	31	.08		
	2.67	10	10		8.11		
	1 4.62	11	.13		15.00		
		14	.02		* 5.00		
		15	Trace.				

YAKIMA, WASH., SECTION.

1919. May 4 0.04 5 18 11 Trace. 1503 16 Trace. 25 33 .58 1.83 June 9 Trace. 10 Trace. 11 Trace. 12 0.04 1.52	1919. July 5 10 11 23 31 Aug. 3 30 31	Trace. Trace03 Trace. Trace. Trace. Trace03 1.25 Trace08 .08	1919. Sept. 4 5 6 8 10 11 27 28 30	Trace. 0.05 0.1 09 Trace. 44 01 02 01 06 69	1919. Oct. 1 172122232631	0.12 Trace. Trace. Trace. Trace. Trace. 12
---	--	---	------------------------------------	---	---------------------------------	--

¹ Normal.

SUMMARY.

The amounts of arsenic, lead, and copper remaining on mature fruits and vegetables which have been sprayed according to various schedules were determined in the Bureau of Chemistry. Table 15 gives the maximum and minimum results.

Because of overspraying or late spraying, comparatively large quantities of spray residues were found in some cases. This emphasizes the importance of spraying according to the schedules recommended by the Bureaus of Entomology and Plant Industry.

The extent of the reduction of spray residues on the mature fruit and vegetables by washing and wiping them was determined by a series of analyses before and after such treatment.

When peeled, sprayed fruits and vegetables contain essentially the same amounts of arsenic, lead, and copper as the unsprayed products, indicating that practically all of the spray residues can be removed by peeling.

From the results reported in this bulletin it is evident that when fruits and vegetables are sprayed in accordance with the schedules recommended by the Bureaus of Entomology and Plant Industry, but little of the material used remains on the fruit or vegetable at harvest time.

LITERATURE CITED.

- Academy of Medicine (France).
 Proc. Acad. Med., Feb. 18, 1908. Bull. acad. med., 3 ser., 59 (1908): 246.
- Proc. Acad. Med., Feb. 2, 1909. Bull. acad. med., 3 ser., 61 (1909): 194.
- Sur un projet de décret portant modification de l'ordonnance de 1846 relative à la vente des substances vénéneuses. Bull. acad. med., 3 ser., 70 (1913): 152.
- Proc. Acad. Med., Mar. 3, 1914. Bull. acad. med., 3 ser., 71 (1914): 324, 325, 326.
- (6) Alwood, W. B.

Treatment of diseases of the grape. Va. Agr. Exp. Sta. Bull. 15 (1892): 41.

- (7) Ampola, G., and Tommasi, G.
 - I composti di arsenico in agricoltura. Ann. staz. chim. agrar. sper. Roma, 2 ser., 5 (1911): 241; J. Soc. Chem. Ind., 31 (1912): 891; Chem. Abst., 7 (1913): 1255; Exp. Sta. Rec., 30 (1914): 130.
- (8) Andouard, A.

Le cuivre dans les vins provenant de vignes traitées par le sulfate de cuivre. Compt. rend., 104 (1887): 195; Bull. soc. nat. agr. (France), 47 (1887): 40; J. pharm. chim., 5 ser., 15 (1887): 290.

(9) Anonymous.

Spraying fruits for insect pests and fungous diseases. U. S. Dept. Agr., Farmers' Bull. 7 (1892): 17-20.

(10) ----

Fruit spraying. J. Roy. Hort. Soc., 18 (1895): 185.

(11) BAKER, J. L.

A résumé of the report minutes of evidence and appendices of the Royal Commission on Arsenical Poisoning. J. Soc. Chem. Ind., 23 (1904): 168.

(12) BEACH, S. A.

Some celery diseases. N. Y. Agr. Exp. Sta. Bull. 51, n. ser. (1893): 146; Exp. Sta. Rec., 4 (1892-93): 926.

(13) BEDINI, R.

I sali arsenicali in frutticultura. L'istria agricola, 3 yr. (1910): 538.

(14) BERTIN-SANS, H., and Ros, V.

L'emploi de l'arsenic en agriculture ses dangers. Rev. hyg. pol. sanit., 29 yr. (1907): 193.

A propos

(15) —

À propos de l'utilisation des composés arsenicaux en agriculture. Rev. hyg. pol. sanit., 30 yr. (1908): 281; Exp. Sta. Rec., 20 (1908–09): 459.

(16) Bouffard, M.

La présence du cuivre métallique dans les vins provenant des vignes traitées au sulfate de cuivre. Bull. ministère agr. 8 (1887): 832.

(17) Breteau, P.

Sur la teneur en arsenic des vins provenant de vignes traitées par les composés de l'arsenic. J. pharm. chim., 6 ser., 28 (1908): 154; Chem. Abst., 2 (1908): 3257.

(18) BRIOUX and GRIFFON.

Les traitements arsenicaux en arboriculture fruitière. Bull. soc. nat. agr. (France), 70 (1910): 864.

(19) CARLES, P.

À propos du cuivre dans les tomates. Répert. pharm., 3 ser., 28 (1917): 193; Rev. sci., 55 yr. (1917): 183; Chem. Abst., 12 (1918): 192; Exp. Sta. Rec., 37 (1917): 263.

(20) - and BARTHE, L.

Recherche de l'arsenic de plomb dans des vins, des lies et des pépins provenant de vignes traitées à l'arséniate de plomb. Bull. soc. chim., 4 ser., 11 (1912): 413; Chem. Abst., 6 (1912): 1805; Exp. Sta. Rec., 27 (1912): 243.

(21) CAZENEUVE, P.

Sur les dangers de l'emploi des insecticides à base arsenicale en agriculture au point de vue de l'hygiène publique. Bull acad. med., 3 ser., 59 (1908): 133, 234.

(22)

Proc. Acad. Med., Nov. 18, 1913. Bull. acad. med., 3 ser., 70 (1913): 415.

(23) CHUARD, E.

Observations concernant le mécanisme de l'introduction et de l'élimination du cuivre dans les vins provenant de vignes traitées par les combinaisons cuivriques. Compt. rend., 105 (1887): 1196.

Présence et l'élimination de l'arsenic des vins. Trav. chim. alim. hyg. bur. sanit. fed., 1, (1910): 82.

(25) Comboni, E.

Chemische Untersuchungen über die Weine aus Trauben, die mit kupferhaltigen Schutzmitteln gegen die Peronospora behandelt worden waren. Nuova Rassegna Vitic., 2: 209; through Chem. Centr., 3 ser., 19 yr. (1888): 875.

(26) Cook, A. J.

Two new uses of important insecticides. Proc. 29 Meeting Am. Assoc. Adv. Sci. (1880): 669.

(28) Crolas and Raulin.

Traitement de la vigne par les sels de cuivre contre le mildew. Compt. rend., 103 (1886):1068; J. pharm. chim., 5 ser., 15 (1887):156.

(29) Cugini, G.

Ueber die Bekämpfung der Peronospora Viticula und den Einfluss der Mittel auf die Zusammensetzung des Mostes und Weines. Nat. Bot. Kongr. Parma, 1 (1887): 5, through Chem. Centr., 3 ser., 19 yr. (1888): 532.

(30) Davis, G. C.

Celery insects. Mich. Agr. Exp. Sta. Bull. 102 (1893):44.

(31) Duclaux, E.

Sur le dosage de très petités quantités de cuivre et la présence de ce métal dans les cacaos et chocolats. Bull. soc. chim. 16 (1871): 33.

(32) Duguet et al.

Proc. Acad. Med., June 28, 1910. Bull. acad. med., 3 ser., 63 (1910):657.

Proc. Acad. Med., July 11, 1911. Bull. acad. med., 3 ser., 66 (1911):59.

(35) Dupré, A.
On copper in food. Analyst, 2 (1878):1.

(36) FALLOT, B.

Le cuivre dans les vins. Prog. agr. vit., June 16, 1889; through U. S. Dept. Agr., Div. Bot. Bull. 11 (1890): 96.

(37) FETEL, P.

De la teneur en arsenic des raisins d'Algérie et en particulier des raisins provenant des vignes ayant subi des traitements aux sels arsenicaux. Bull, agr. Algérie et Tunisie, 16 (1910): 430; Exp. Sta. Rec., 25 (1911): 40.

(38) FLETCHER, J.

The results of an experiment to prove that apples are not poisoned by spraying with Paris green for codling moth. Can. Exp. Farms Rpt. for 1891, p. 189; Exp. Sta. Rec., 4 (1892-93):437.

(39) Forbes, S. A.

Spraying apples for the plum curculio. Ill. Agr. Exp. Sta. Bull. 108 (1906): 279; Exp. Sta. Rec. 18 (1906-7): 160.

(40) Forbush, E. H.

On the work of extermination of the gypsy moth. Mass. Bd. Agr. 41, Ann. Rpt. (1893): 282.

(41) Fréchou.

Le black-rot et les vins des vignes traitées. J. agr. (Barral), 24 yr. (1889): 649.

(42) FRÜHAUF, T., and URSIC, G.

Die Bestimmung sehr geringer Mengen Kupfer. Bol. soc. Adriatica sc.
nat. Trieste, 10:103; through Chem. Centr., 3 ser., 19 yr. (1888):198;
Staz. sper. agrar. ital. (1888):704; through J. Soc. Chem. Ind., 8
(1889):206.

(43) GALIPPE.

Sur la présence du cuivre dans les céréales, la farine, le pain et diverses autre substances alimentaires. Compt. rend. soc. biol., 7 ser., 4 (1882): 726; Rev. hyg. pol. sanit., 5 yr. (1883): 23.

- Sur la présence du cuivre dans le cacao et dans le chocolat. J. pharm. chim., 5 ser., 7 (1883):505; Répert. pharm., n. ser., 11 (1883):267.
- (45) _____ Le sulfate de cuivre et le mildew. J. pharm. chim., 5 ser., 15 (1887):430.

(46) GALLOWAY, B. T.

The grape scare in New York. U.S. Dept. Agr. Ann. Rpt. for 1891, p. 375.

- (48) Garino, E.

 Determination of arsenic in wine made from grapes that had been subjected to cuproarsenical treatment. Ann. accad. agr. Torino, 56 (1914): 78; Ann. chim. applicata, 3:148; through Chem. Abst., 9 (1915):1526.
- (49) GARMAN, H.

Spraying for codling moth. Ky. Agr. Exp. Sta. Bull. 53 (1894): 125.

- - Insects injurious to cabbage. Ky. Agr. Exp. Sta. Bull. 114 (1904).
- (52) GAUTIER, A.

 Sur l'emploi des arsenicaux en agriculture. Bull. acad. med., 3 ser.,
 59 (1908): 229.
- Proc. Acad. Med., Nov. 11, 1913. Bull. acad. med., 3 ser., 70 (1913):370.
- Proc. Acad. Med., Mar. 3, 1914. Bull. acad. med., 3 ser., 71 (1914):300.
- (56) GAYON, U., and MILLARDET, A.
 Le cuivre dans la récolte des vignes soumises à divers procédés de traitement du mildew par les composés cuivreux. Compt. rend., 103 (1886):
 1240; J. pharm. chim., 5 ser., 15 (1887): 153.
- (57) GIBBS, H. D., and JAMES, C. C. On the occurrence of arsenic in wine. J. Am. Chem. Soc., 27 (1905):1484.
- (58) GILLETTE, C. P. Experiments with arsenites. Iowa Agr. Exp. Sta. Bull. 10 (1890):410.
- Notes and experiments upon injurious insects and insecticides. Iowa Agr. Exp. Sta. Bull. 12 (1891): 536.
- (60) GÜNTHER, A.

 Ergebnisse der amtlichen Weinstatistik, Berichtsjahr 1908-1909. Arb

 Kais. Gesundh., 35 (1910):1; Exp. Sta. Rec., 24 (1911):267.

(61) HEIDE, C. VON DER.

Analytische Befunde von Mosten und Weinen aus Trauben der mit Bleiarseniat bespritzten Reben. Ber. Kgl. Lehranst. Wein-, Obst- u. Gartenbau, Geisenheim (1906): 228; Chem. Abst., 3 (1909): 2338.

(62) Hoffmann, M.

Ein Beitrag zur Translokation des Kupfers beim Keltern gekupferter Trauben. Centr. Bakt. Parasitenk, part 2, 4 (1898): 369, 422.

(63) HOWARD, L. O.

Progress in economic entomology. U.S. Dept. Agr. 1899 Yearbook, p. 146.

(64) KEDZIE, R. C.

Influence of Paris green on the potato. Michigan Farmer, June 6, 1872.

Mineral residues in sprayed fruits. Mich. Agr. Exp. Sta. Bull. 101 (1893): 19; Exp. Sta. Rec., 5 (1893–94): 793.

(67) KILGORE, B. W.

On the cause and prevention of the injury to foliage by arsenites, together with a new and cheap arsenite, and experiments on combining arsenites with some fungicides. N. C. Agr. Exp. Sta. Bull. 77-b (1891):7.

(68) KINNEY, L. F.

Leaf blight of the pear. R. I. Agr. Exp. Sta. Bull. 27 (1894); Exp. Sta. Rec., 5 (1893-94): 986.

(69) KRÜGER, F.

Ueber den Einfluss von Kupfervitriol auf die Vergärung von Traubenmost durch Saccharomyces ellipsoideus. Centr. Bakt. Parasitenk, part 2, 1 (1895):64.

(70) LE BARON, W. Second annu

Second annual report on the noxious insects of the State of Illinois (1872), p. 116.

(71) LEHMANN, K. B.

Hygienische Studien über Kupfer. Arch. Hyg., 24 (1895):18.

(73) ————

Hygienische Studien über Kupfer. Arch. Hyg., 30 (1897): 250.

(74) LIBERI, G., CUSMANO, A., MARSIGLIA, T., and ZAY, C.

The presence of copper in tomatoes and tomato preserves. Ann. staz. chim. agrar. sper. Roma, ser. 2, 8 (1916): 163; through Bull. Agr. Intelligence, 7 yr. (1916): 662, and Chem. Abst., 11 (1917): 1701.

(75) LODEMAN, E. G.

The spraying of plants (1896), p. 64, 65. MacMillan & Co., New York.

(76) LUCET, A.

Proc. Acad. Med., Mar. 3, 1914. Bull. acad. med., 3 ser., **71** (1914): 299, 311.

(77) McElroy, K. P.

Canned vegetables. U. S. Dept. Agr., Div. Chem. Bull. 13, part 8 (1893).

(78) McMurtrie, W.

The influence of arsenical compounds, when present in the soil, upon vegetation. U. S. Com. Agr. Rpt. for 1875, p. 147.

(79) MACH, E.

Bericht über die Ergebnisse der im Jahre 1886 ausgeführten Versuche zur Bekämpfung der Perenospora. Tirol. Landw. Bl., 6 (1887): 37, 53; through Jahr. Agr. Chem. (Hilger), n. ser., 10 (1887): 270.

(S0) Malvy, M.

J. agr. prat., 22 (1911): 293.

(81) ———

Décret concernant l'importation, le commerce, la détention et l'usage des substances vénéneuses. Bull. intern. repr. fraudes, 9 yr. (1916): 145.

(82) Marès, R.

Les bouillies arsenicales et la lutte contre les altises. Rev. vit., 25 (1906): 426.

(83) MATHIEU, M.

Recherche de l'arsenic sur les raisins et dans les vins. Ann. fals., 5 yr.
(1912): 78; Chem. Abst., 7 (1913): 204; Exp. Sta. Rec., 26 (1912): 841;
J. Soc. Chem. Ind., 31 (1912): 295.

(84) MAYNARD, S. T.

The amount of copper on sprayed fruit. Mass. Hatch Agr. Exp. Sta. Bull. 17 (1892): 38; Exp. Sta. Rec., 3 (1891-92): 865.

(86) MÉLINE, J.

Instruction pour la vente et l'emploi en agriculture des composés arsenicaux. Bull. intern. repr. fraudes, 9 yr. (1916): 157.

(87) MESTREZAT, W.

La question du danger de l'emploi des sels arsenicaux en agriculture. J. pharm. chim., 6 ser., 28 (1908): 393; Chem. Abst.. 3 (1909): 1569; Exp. Sta. Rec., 20 (1908-09): 959.

(88) MILLARDET, A.

Ann. soc. agric. Cironde, Apr. 1, 1885, p. 73; through The Spraying o Plants, by E. G. Lodeman, p. 27.

Plants, b

Sur l'histoire du traitement du mildiou par le sulfate de cuivre. J. agr. prat., 2 (1885): 801.

(90) - and GAYON, U.

Recherche du cuivre sur les vignes traitées par le mélange de chaux et de sulfate de cuivre, et dans la récolte. Compt. rend., 101 (1885): 985; J. agr. prat., 2 (1885): 732.

(91) MIRMAN, M.

Proc. Acad. Med., Feb. 2, 1909. Bull. acad. med., 3 ser., 61 (1909): 194.

(92) MOREAU, L., and VINET, E.

L'arseniate de plomb en viticulture. Compt. rend., 150 (1910): 787; Bull. agr. Algérie et Tunisie, 6 (1910): 187; Exp. Sta. Rec., 24 (1911): 168; Ann. chim. anal., 15 (1910): 346; Chem. Abst., 4 (1910): 2539.

L'arseniate de plomb en viticulture et la consommation des raisins frais et des raisins sec. Compt. rend., 151 (1910): 1147; Ann. chim. anal., 16 (1911): 94; Chem. Abst., 5 (1911): 1968; Exp. Sta. Rec., 25 (1911): 40.

(95) MOREAU, L., and VINET, E.

Comment s'élimine l'arseniate de plomb apporté par la vendange. Compt. rend., 152 (1911): 1057; Chem. Abst., 5 (1911): 2296.

(96) MOUREU ET AL.

Sur l'emploi des composés arsenicaux en agriculture considéré au point de vue de l'hygiène publique. Bull. acad. med., 3 ser., 61 (1909): 17; L'engrais, 24 (1909): 211; Chem. Abst., 3 (1909): 1569.

(97) Munson, W. M.

Report of the horticulturist. Maine Agr. Exp. Sta. Ann. Rpt. for 1891, p. 106.

(98) MUTTELET, C. F.

L'arseniate de plomb en viticulture. Ann. fals., 9 yr. (1916): 298; Chem. Abst., 11 (1917): 684; Exp. Sta. Rec., 36 (1917): 537.

(99) MUTTELET, F., and TOUPLAIN, F.

L'arseniate de plomb en viticulture. Ann. fals., 5 yr. (1912): 9; Chem. Abst., 6 (1912): 910.

(100) ODLING, W., and DUPRÉ, A.

On the existence of copper in organic tissues. Guy's Hospital Reports, 3 ser., 4 (1858): 103.

(101) O'GARA, P. J.

Presence of arsenic in fruit sprayed with arsenate of lead. Science, n. ser., 33 (1911): 900; Chem. Abst., 6 (1912): 898; Exp. Sta. Rec., 25 (1911): 642.

(102) O'KANE, W. C., HADLEY, C. H., and OSGOOD, W. A.

Arsenical residues after spraying. N. H. Agr. Exp. Sta. Bull. 183 (1917);Exp. Sta. Rec., 38 (1918): 54; Chem. Abst., 11 (1917): 2836.

(103) ORMEROD, ELEANOR A.

Notes of the season. U. S. Dept. Agr., Div. Ent. Per. Bull., Insect Life, 4 (1891-92): 36.

(104) PAPASOGLI, G.

Anwendung der Kupfersalze auf die Weinstöcke und hierauf bezugliche Betrachtungen. L'Orosi, 10 (1887): 369; through Chem. Centr., 3 ser., 19 yr. (1888): 234.

(105) PENNY, C. L.

Several articles of food known to be healthful found to contain small quantities of copper. Del. Agr. Exp. Sta. 2 Ann. Rpt. (1889): 172; Exp. Sta. Rec., 2 (1890–91): 324.

(106) ———— Copper on grapes. Del. Agr. Exp. Sta. 3 Ann. Rpt. (1890): 149; Exp. Sta. Rec., 3 (1891–92): 690.

(107) PERRETT, M.

Le sulfate de cuivre contre le phylloxera et le mildiou. J. agr. prat., 2 (1885): 630.

(108) Polacci, E.

Ueber eine chemische Thatsache, welche beweist, dass Schwefelsaures Kupfer aus den Trauben nur in ganz geringen Mengen in den Wein übergehen kann, nebst kritischen Bemerkungen über einige zur Bekämpfung der Perenospera vorgeschlagene Mittel. Rendi. ist. Lombardo, 20: 413; through Chem. Centr., 3 ser., 18 yr. (1887): 939.

(109) POPENOE, E. A., and MASON, S. C.

Second report on the experimental vineyard. Kan. Agr. Exp. Sta. Bull. 28 (1891): 166; Exp. Sta. Rec., 3 (1891-92): 788.

(110) PORCHET, F.

Les traitements culturaux aux sels d'arsenic et l'hygiène alimentaire. Trav. chim. alim. hyg. bur. sanit. féd., 1 (1910): 79; Schweiz. Wochschr., 48 yr. (1910): 694; Chem. Abst., 5 (1911): 754.

(111) QUANTIN, H.

Sur la réduction du sulfate de cuivre pendant la fermentation du vin. Compt. rend., 103 (1886): 888; J. pharm. chim., 5 ser., 15 (1887): 39.

(112) RICHE, A.

Sur les dangers de l'emploi des insecticides à base arsenicale en agriculture. Bull. acad. med., 3 ser., 59 (1908): 192, 244.

(113) RILEY, C. V.

Potato pests, p. 67. Orange Judd Co., New York (1876).

(114) RISING, W. B.

Report of the State Analyst for 1887. Ann. Rpt. Bd. Calif. State Vit. Com. for 1887, p. 133.

(115) ROYAL COMMISSION ON ARSENICAL POISONING.

Final Report, p. 36. Eyre and Spottiswoode, London (1903).

(116) Scribner, F. Lamson.

Fungous diseases of plants. Rpt. U. S. Com. Agr. for 1885, p. 84.

(117) SELBY, A. D.

The relation of grape spraying to public health. Ohio Agr. Exp. Sta. Bull. 130 (1902): 42; Exp. Sta. Rec., 14 (1902-03): 61.

(118) SESTINI, F., and TOBLER, O.

Ueber das Kupfer welches Weine enthalten, die aus mit Kupfersalzen behandelten Trauben herstammen. L'Orosi, 10 (1887): 289; through Chem. Centr., 3 ser., 18 yr. (1887): 1450.

(119) SONNTAG, G.

Zu der Verwendung von Arsen und Blei enthaltenden Pflanzenschutzmitteln. Arb. Kais. Gesundh., **49** (1914): 502; Chem. Centr., 86 yr. (1915): 450; Chem. Abst., **9** (1915): 1819.

(120) SPALLINO, R.

Sulla presenza del bario e dell' arsenico nei tabacchi lavorati italiani. Gazz. chim. ital., 43 yr., part 2 (1913): 475; Chem. Abst., 8 (1914): 787; Exp. Sta. Rec., 31 (1914): 715.

(121) SZAMEITAT, A.

Analytische Befunde von Mosten und Weinen aus Trauben der mit Arsenverbindungen bespritzten Reben. Ber. Kgl. Lehranst. Wein-, Obst- u. Gartenbau Geisenheim (1907), p. 176; Exp. Sta. Rec., 20 (1908–09): 1163; Chem. Abst., 3 (1909): 685.

Vorkommen des Arsens in deutschen Weinen. Ber. Kgl. Lehranst. Wein-, Obst- u. Gartenbau Geisenheim (1907), p. 180; Exp. Sta. Rec., 20 (1908– 09): 1163; Chem. Abst., 3 (1909): 685.

(123) TEYXEIRA, G.

Ueber die Behandlung des Liebesapfels (der Tomate) mit Kupferverbindungen. Giorn. farm. Trieste, 2 (1897): 71; through Vierteljahr. Chem. Nahr. Genussmtl., 12 yr. (1897): 286, and Exp. Sta. Rec., 9 (1897–98): 569.

(124) TROFIMENKO, M., and OBIEDOFF, S.

Le vin des raisins traités aux arseniates. Prog. agr. vit., 65 (1916): 331;
Bull. Agr. Intelligence, 7 yr. (1916): 1023; Chem. Abst., 11 (1917): 2383.

(125) TRUELLE, A.

L'emploi des composés arsenicaux en arboriculture aux États-Unis. Bull. soc. nat. agr., 69 (1909): 99.

(127) Тясніясн, А.

Das Kupfer, p. 133. Ferdinand Enke, Stuttgart (1893).

(128) VAN SLYKE, L. L.

Analyses of sprayed grapes. N. Y. Agr. Exp. Sta. Bull. 41 (1892): 56;
Exp. Sta. Rec., 4 (1892–93): 55.

(129) WEED, C. M.

The combination of insecticides and fungicides. Ohio Agr. Exp. Sta. Bull., Vol. 2, No. 7, 2 ser., No. 14, (1889): 186; Agr. Science, 3 (1889): 263.

(130) Weiss, M.

Sur l'emploi des composés arsenicaux en agriculture, considéré au point de vue de l'hygiène publique. Bull. acad. med., 3 ser., 61, (1909): 140.

(131) WHEELER, H. J.

Grapes sprayed with Bordeaux. R. I. Agr. Exp. Sta. 4 Ann. Rpt. (1892): 84; Exp. Sta. Rec., 4 (1892–93): 242.

(132) WHEELER, J. H.

Some pests and diseases of the vine, with remedies. Rpt. 6 Ann. Calif. State Vit. Conven. (1888): 63.

(133) Woods, C. D.

Analyses for poison of apples sprayed with arsenate of lead in mid-summer. Maine Agr. Exp. Sta. Bull. 224 (1914): 46; Exp. Sta. Rec., 31 (1914): 141; Chem. Abst., 9 (1915): 503.

(134) Zecchini and Ravizza.

Copper in wine. Staz. sper. agrar. ital. 16 (1889): 73; through J. Soc. Chem. Ind., 8 (1889): 910.

ADDITIONAL COPIES

OF THIS PUBLICATION MAY BE PROCURED FROM THE SUPERINTENDENT OF DOCUMENTS GOVERNMENT PRINTING OFFICE WASHINGTON, D. C.

10 CENTS PER COPY

LIBRARY OF CONGRESS