Введение в теорию сложности вычислений

Эдуард Алексеевич Гирш

http://logic.pdmi.ras.ru/~hirsch

СП6ГУ и ПОМИ РАН

лекция 3 декабря 2020 г.

Теорема Карпа-Липтона

Теорема

$$NP \subseteq P/poly \Rightarrow PH = \Sigma^2 P$$
.

Покажем, что $\Sigma^3 \mathbf{P}$ -полный язык

QBF₃ = {
$$F$$
 — формула в КНФ | $\exists x \forall y \exists z \ F(x, y, z)$ }.

лежит в $\Sigma^2 \mathbf{P}$.

Теорема Карпа-Липтона

Теорема

$$NP \subseteq P/poly \Rightarrow PH = \Sigma^2 P$$
.

Покажем, что $\Sigma^3 \mathbf{P}$ -полный язык

QBF₃ = {
$$F$$
 — формула в КНФ | $\exists x \forall y \exists z \ F(x, y, z)$ }.

лежит в $\Sigma^2 \mathbf{P}$. $\mathbf{G}(\mathbf{x}_1, \dots)$

$$G(x_1, \dots)$$

Проверка корректности схем для SAT:

$$C_{|G|}(G) \stackrel{?}{=} C_{|G[x_1:=0]|}(\underline{G[x_1:=0]}) \vee C_{|G[x_1:=1]|}(\underline{G[x_1:=1]})$$

и проверка корректности для тривиальных формул.

Теорема Карпа-Липтона

Теорема

$$NP \subseteq P/poly \Rightarrow PH = \Sigma^2 P$$
.

Покажем, что $\Sigma^3 \mathbf{P}$ -полный язык

$$\mathbb{Q}\mathrm{BF}_3=\{F-\mathrm{формула}\ \mathrm{B}\ \mathrm{KH}\Phi\,|\,\exists x orall y\exists z\ F(x,y,z)\}.$$
лежит в $\Sigma^2\mathsf{P}$.

 $(\exists x \forall y \exists z \ F) \in \mathbb{Q}BF_3 \Leftrightarrow$ $\exists \text{ схемы } C_1, \ldots, C_{|F|}$ (размера, пр полин из условия)

 $\forall y$

 $\forall G$ — булевой формулы длины $\leq |F|$ (семейство $\{C_i\}$ корректно для G) $\land C_{|F|}(F(x,y,z)) = 1$.

Теорема

$$\forall k \; \Sigma^4 P \nsubseteq Size[n^k].$$
 (He P/poly) $2^{2^n} v_s \geq 2^{n-k}$

Из соображений мощности имеется $f: \{0,1\}^n \to \{0,1\}$, зависящая от первых $c \cdot k \cdot \log n$ битов, для которой нет булевой схемы размера n^k .

Сконструируем такую функцию в $\Sigma^4 P$.

$$y \in L \iff \exists f \ \forall c \ (\text{схемы размера} \ n^k) \qquad \exists x$$
 : не принимается схемой

Теорема

$$\forall k \ \Sigma^4 P \nsubseteq Size[n^k].$$

Из соображений мощности имеется $f: \{0,1\}^n \to \{0,1\}$, зависящая от первых $c \cdot k \cdot \log n$ битов, для которой нет булевой схемы размера n^k .

Сконструируем такую функцию в $\Sigma^4 P$.

$$y \in L \iff \exists f \ \forall c \ (\text{схемы размера } n^k) \qquad \exists x \qquad \qquad \vdots$$
 не принимается схемой
$$\land \underbrace{f(y) = 1}_{\text{значение}}$$

Теорема

$$\forall k \ \Sigma^4 P \nsubseteq Size[n^k].$$

Из соображений мощности имеется $f:\{0,1\}^n \to \{0,1\}$, зависящая от первых $c\cdot k\cdot \log n$ битов, для которой нет булевой схемы размера n^k .

Сконструируем такую функцию в $\Sigma^4 P$.

$$y \in L \iff \exists f \ \forall c \ (\text{схемы размера} \ n^k) \ \underline{\forall f'} \ \exists x \exists c' \ (\text{схема...}) \ \forall x' :$$
 $\underline{f(x) \neq c(x)} \ \land \ \underline{((f \leqslant f') \lor f'(x') = c'(x'))} \ \land \ \underline{f(y) = 1}.$ не принимается схемой первая такая f значение

Теорема

$$\forall k \ \Sigma^4 P \nsubseteq Size[n^k].$$

Из соображений мощности имеется $f:\{0,1\}^n \to \{0,1\}$, зависящая от первых $c\cdot k\cdot \log n$ битов, для которой нет булевой схемы размера n^k .

Сконструируем такую функцию в $\Sigma^4 P$.

$$y \in L \iff \exists f \ \forall c \ (\text{схемы размера } n^k) \ \forall f' \ \exists x \exists c' \ (\text{схема...}) \ \forall x' :$$
 $\underline{f(x) \neq c(x)} \ \land \ \underline{((f \leq f') \lor f'(x') = c'(x'))} \ \land \ \underline{f(y) = 1}.$ не принимается схемой первая такая f значение

Остаётся превратить n^k в $O(n^k)$.

Теорема

 $\forall k \ \Sigma^4 P \nsubseteq Size[n^k].$

Следствие

 $\forall k \ \Sigma^2 P \cap \Pi^2 P \nsubseteq Size[n^k].$

$$\begin{array}{c} \Sigma^2 P \cap \Pi^2 P \subseteq Size[n^k] \Rightarrow \\ NP \subseteq P/poly \Rightarrow \quad \top \quad \text{Kappa-Munious} \\ PH = \Sigma^2 P \cap \Pi^2 P \subseteq Size[n^k]. \\ \nearrow 9^{n} \end{array}$$

OTUPUTO: NP Z Size[n]

 $\mathsf{DTime}(f(n))$ $\mathsf{DSpace}(f(n))$ $\mathsf{NTime}(f(n))$ $\mathsf{NSpace}(f(n))$

NSpace

 $NSpace[f(n)] = \{L \mid L \text{ принимается HMT с памятью } O(f(n))\}.$

Замечание

- ightharpoonup f(n) должна быть конструируемая по памяти,
- ▶ входная лента read-only, выходная лента write-only, память там не в счёт,
- в определении НМТ "с подсказкой" лента подсказки читается слева направо!

$$NPSPACE = \bigcup_{k \ge 0} NSpace[n^k].$$

```
DTime(f(n)) DSpace(f(n))
NTime(f(n)) NSpace(f(n))
P PSPACE
NP NPSPACE
co-NP co-NPSPACE
```

```
\mathsf{DTime}(f(n))
                  \mathsf{DSpace}(f(n))
NTime(f(n))
                  NSpace(f(n))
           P
                    PSPACE
                    NPSPACE
          NP
                  co-NPSPACE
      co-NP
        EXP
                   EXPSPACE
                L = \mathsf{DSpace}(\log n)
               NL = NSpace(\log n)
```

$$STCON = \{(G, s, t) \mid G - op.rpa\phi, s \leadsto t\}.$$

Лемма

 $STCON \in \mathbf{DSpace}[\log^2 n].$

 $PATH(x, y, i) = \exists$ путь из x в y длины не более 2^i .

 $\mathrm{PATH}(x,y,i) = \bigvee (\mathrm{PATH}(x,z,i-1) \wedge \mathrm{PATH}(z,y,i-1)).$

$$PATH(x,y,0) = Z$$

$$PATH(x,x,i) = L$$

$$(s,t)$$
 for $z=z_1,z_1...$

$$STCON = \{(G, s, t) \mid G - op.rpa\phi, s \leadsto t\}.$$

Лемма

 $STCON \in \mathbf{DSpace}[\log^2 n].$

Теорема

 $\mathsf{NSpace}(f) \subseteq \mathsf{DSpace}(f^2)$ для $f(n) = \Omega(\log n)$. $\mathsf{HMTM} \quad \mathsf{M}(\mathsf{x}) = \mathsf{M}(\mathsf{x})$

Достижимость в графе псевдоконфигураций (вх., вых. не входят).

1) COCTORFURE 9 2) Codephance pas herr 3) nonoxerue rolobox (BT.Z. Ha Bx.)

Следствие

PSPACE = NPSPACE.

$$STCON = \{(G, s, t) \mid G - op.rpa\phi, s \leadsto t\}.$$

Лемма

 $STCON \in \mathbf{DSpace}[\log^2 n].$

Лемма

STCON является **NL**-полной (относительно logspace-сведе́ний!).

NL > STCON

HMT M, log space

$$M(x) = 1 \iff start \Rightarrow accept$$

Chegenne X \implies peopo ecropher

e yretom X

$$STCON = \{(G, s, t) \mid G - op.rpa\phi, s \leadsto t\}.$$

Лемма

 $STCON \in \mathbf{DSpace}[\log^2 n].$

Лемма

STCON является NL-полной (относительно logspace-сведений!).

 Φ акт: для неор.графов: USTCON \in L

[Reingold, 2004].

Вопрос на засыпку: а кто L-полная?

```
\mathsf{DTime}(f(n))
                  \mathsf{DSpace}(f(n))
NTime(f(n))
                  NSpace(f(n))
           P
                    PSPACE
                    NPSPACE
          NP
                  co-NPSPACE
      co-NP
        EXP
                   EXPSPACE
                L = \mathsf{DSpace}(\log n)
               NL = NSpace(\log n)
```

```
\mathsf{DTime}(f(n))
                  \mathsf{DSpace}(f(n))
NTime(f(n))
                  NSpace(f(n))
           P
                    PSPACE
         NP
                    NPSPACE
      co-NP
                  co-NPSPACE
        EXP
                   EXPSPACE
                L = \mathsf{DSpace}(\log n)
               NL = NSpace(\log n)
                  (non-uniform)
      P/poly
```

Равномерные полиномиальные схемы

...и параллельные вычисления

Семейство схем $\{C_n\}_{n\in\mathbb{N}}$ равномерно, если имеется полиномиальный алгоритм A, т.ч. $A(1^n)=C_n$.

Замечание

Ясно, что равномерные полиномиальные схемы задают Р.

$$M(x)$$
: $C := A(1^{|x|})$

$$M = |x|$$

$$P(n)$$

$$M = |x|$$

$$M = |x|$$

$$P(n)$$

$$M = |x|$$

$$M =$$

Равномерные полиномиальные схемы

...и параллельные вычисления

Семейство схем $\{C_n\}_{n\in\mathbb{N}}$ равномерно, если имеется полиномиальный алгоритм A, т.ч. $A(1^n)=C_n$.

Замечание

Ясно, что равномерные полиномиальные схемы задают Р.

Logspace-равномерные: A использует память $O(\log n)$.

Равномерные полиномиальные схемы

...и параллельные вычисления

Семейство схем $\{C_n\}_{n\in\mathbb{N}}$ равномерно, если имеется полиномиальный алгоритм A, т.ч. $A(1^n)=C_n$.

Замечание

Ясно, что равномерные полиномиальные схемы задают Р.

Logspace-равномерные: A использует память $O(\log n)$.

Глубина схемы \sim время параллельного вычисления.

Nci =
$$\left\{L \middle| \text{для } L \text{ есть logspace-равномерные} \right\}.$$

$$NC = \bigcup_{i} NC^{i} \subseteq P.$$

Р-полнота

Лемма

Композиция двух logspace функций $f_2(f_1(x))$ в logspace.

ightharpoonup Сделать выходную ленту f_1 входной лентой f_2 нельзя.

t, • t1

Храним только счётчики позиций.

Нужен очередной бит входа f_2 — продолжим работу f_1 . (Если лента не write-once, можно доводить до конца каждый раз.)

7 yi - tabx \$2 log log i $S_2(9, 4i, \dots)$ S_2 moen fi i+1 (9, -, -), octavel mbeier upogonnaen S_2

${f P}$ -полнота

Лемма

Композиция двух logspace функций $f_2(f_1(x))$ в logspace.

- ightharpoonup Сделать выходную ленту f_1 входной лентой f_2 нельзя.
- Храним только счётчики позиций.
- Нужен очередной бит входа f_2 продолжим работу f_1 . (Если лента не write-once, можно доводить до конца каждый раз.)

Теорема

Если L - P-полный, то

(brux. by gree - il.)

- ▶ $L \in \mathbb{NC} \iff P = \mathbb{NC}$ (всё параллелизуется);
- $L \in L \iff P = L.$

lgin (