中国科学技术大学《代数学基础》期末考试

2023年03月02日, 8: 30-10: 30

题号	-	=	=	四	五	六	七	
得分								总
复查								

一、(10分) 设 $n\in\mathbb{Z}$ 有标准素因子分解 $n=\varepsilon\prod_{i=1}^k p_i^{e_i}$, 其中 $\varepsilon=\pm 1$ 以及 p_i 为两两不同的素数。定义 $\nu_{p_i}(n)=e_i$, 并且令 $\nu_{p_i}(0)=+\infty$. 证明: 当 $a,b\in\mathbb{Z}$, 对任意素数 p, 以下结论成立:

- (1) 当 $\nu_p(a) \neq \nu_p(b)$, 则有 $\nu_p(a+b) = \min\{\nu_p(a), \nu_p(b)\};$
- (2) 若 $a^p \equiv b^p \pmod{p}$, 则有 $a^p \equiv b^p \pmod{p^2}$.

二、(15分)

- (1) 解一次同余方程 $2^{2023}x \equiv 61 \pmod{221}$. (10分)
- (1) 所 (2) 求出一个次数最低的多项式 $f(x) \in \mathbb{F}_{5}[x]$, 使得 $f(\bar{0}) = f(\bar{1}) = f(\bar{1$

三、 (共10分) 设 $f(x) = x^7 + x^5 + x^2 + 1 \in \mathbb{F}_2[x]$ 和 $g(x) = x^4 + x^2 + x \in \mathbb{F}_2[x]$,求 f(x) 与 g(x) 的最大公因式 (f(x), g(x)),并求出 $s(x), t(x) \in \mathbb{F}_2[x]$ 使得

$$s(x)f(x) + t(x)g(x) = (f(x), g(x)).$$

四、(20分)设第 n 个费马(Fermat)数 $F_n = 2^{2^n} + 1$. 证明:

- (1) 2 模 F_n 的阶为 2^{n+1} ;
- (2) F_n 的素因子 p 满足 $p \equiv 1 \pmod{2^{n+1}}$;
- (3) 若 F_n 是素数,则模 F_n 的二次非剩余必为 F_n 的原根;
- (4) 若 F_n 是素数,则 ± 3 是模 F_n 的原根。

五、(10分)

- (1) 求使得勒让德符号 $\left(\frac{-2}{p}\right) = 1$ 的全体素数 p.
- (2) 二元二次不定方程 $x^2 + 2y^2 = 2023$ 是否有整数解? 为什么?

六、(20分) 设 $f(x)=x^3+x^2-2x-1\in\mathbb{Z}[x]$ 在复数域 $\mathbb C$ 中有一个根为 α , 证明:

- (1) f(x) 在 $\mathbb{Z}[x]$ 中不可约, 并且 f(x) 没有重根; ψ
- (2) α^2-2 也是 f(x) 的根, 并求出 f(x) 的全部复根;
- (3) f(x) 模 2 约化多项式是 $\mathbb{F}_2[x]$ 中不可约多项式;
- (4) 8 元有限域是否存在? 存在的话请构造说明, 不存在的话解释原因。

七、(共10分)

- (1) 证明 $f(x) = x^6 + 12x^5 + 18x^4 + 24x^3 + 9x^2 + 36x + 6$ 在 $\mathbb{Z}[x]$ 中不可约。
- (2) 如果 f(x) 是 $\mathbb{Z}[x]$ 中首一多项式,而 $g(x) \in \mathbb{Q}[x]$ 是 f(x) 的首一多项式图子,那么

 $g(x) \in \mathbb{Z}[x].$