11 Numero de publication:

0 021 525

A₁

(12)

DEMANDE DE BREVET EUROPEEN

(21) Numéro de dépôt: 80200572.8

2 Date de dépôt: 17.06.80

(51) Int. Cl.³: **C 07 D 315/00** C 07 C 51/285

30 Priorité: 29.06.79 FR 7917307

Date de publication de la demande: 07.01.81 Bulletin 81/1

Etats Contractants Désignés:
 AT BE CH DE FR GB IT LI LU NL SE

Demandeur: INTEROX Société anonyme dite:
 Rue du Prince Albert, 33
 B-1050 Bruxelles(BE)

Van Immersseellaan, 15 B-1860 Meise(BE)

(2) Inventeur: Declerck, Claude Avenue des Croix de Guerre, 128 B-1120 Bruxelles(BE)

(72) Inventeur: Legrand, Franz Rue des Vaches, 71 B-7300 Quaregnon(BE)

(74) Mandataire: Eischen, Roland Solvay & Cie Département de la Propriété Industrielle Rue de Ransbeek 310 B-1120 Bruxelles(BE)

54) Procédé pour la fabrication de composés carboxylés.

(5) Pour obtenir des composés carboxylés tels que les caprolactones on oxyde au peroxyde d'hydrogène des composés carbonylés correspondants, en présence d'un catalyseur en milieu liquide substantiellement anhydre, l'eau formée par la réaction et éventuellement introduite dans le mélange réactionnel étant éliminée du mélange réactionnel. Figure unique

Procédé pour la fabrication de composés carboxylés

Cas INT.79/3

INTEROX (Société Anonyme)

La présente invention concerne un procédé pour la fabrication de composés carboxylés tels que des esters, des lactones et des acides carboxyliques à partir des composés carbonylés correspondants. Elle concerne plus particulièrement un procédé pour la fabrication de lactones, et plus spécialement un procédé pour la fabrication de la caprolactone, par réaction des cétones correspondantes avec le peroxyde d'hydrogène.

5

10

15

20

Les lactones sont en général fabriquées par oxydation des cétones cycliques correspondantes au moyen de peracides carboxyliques. Cette technique, bien que très efficace, nécessite la fabrication préliminaire des peracides, par exemple par oxydation directe de l'aldéhyde correspondant. En outre, la présence dans le milieu réactionnel des peracides carboxyliques et des acides correspondants entraîne la formation de quantités relativement importantes de sous-produits qui en dérivent.

Pour simplifier le schéma réactionnel, on a proposé, dans le brevet britannique 1 050 846 déposé le 16 septembre 1964 au nom de Imperial Chemical Industries Ltd, de faire réagir directement une cétone cyclique, telle que la cyclohexanone, avec le peroxyde d'hydrogène en présence d'un catalyseur constitué d'un oxyacide d'un élément d'une période longue des Groupes IV à VI du Tableau périodique des Eléments. Les quantités de catalyseur mises en oeuvre sont cependant extrêmement élevées. En outre, les rendements en caprolactone de ce

procédé connu sont très faibles, vraisemblablement du fait de la formation d'acide hydroxycaproïque. Or, ce produit, qui ne peut pas facilement se transformer en caprolactone, se révèle très gênant lors de l'utilisation de la caprolactone pour la fabrication de polymères tels que les polyesters, les polyols, et les polyuréthanes.

La présente invention a pour but de fournir un procédé pour la fabrication de composés carboxylés qui permet de pallier les inconvénients précités des procédés connus et notamment d'obtenir le composé carboxylé avec une bonne sélectivité et en une étape, sans préparation préalable de réactifs intermédiaires tels que les peracides carboxyliques.

Le procédé selon l'invention permet en outre d'atteindre des vitesses réactionnelles très élevées ce qui permet d'accroître sensiblement la productivité des réacteurs. En outre, il conduit à des durées de vie élevées des catalyseurs mis en oeuvre. De plus, le procédé permet d'éliminer aisément la chaleur de réaction, et il nécessite des consommations en énergie réduites. Par ailleurs, la séparation du mélange réactionnel résultant du procédé en ses divers constituants est fortement simplifiée du fait qu'il n'y a pas d'acide carboxylique sous-produit.

Le procédé selon l'invention peut aussi être réalisé aisément en continu et dans de bonnes conditions de sécurité, car il n'exige pas la mise en oeuvre de solutions fortement concentrées en composés peroxydés.

L'invention concerne à cet effet un procédé pour la fabrication de composés carboxylés par réaction du composé carbonylé correspondant avec le peroxyde d'hydrogène en milieu liquide et en présence d'un catalyseur selon lequel on maintient le mélange réactionnel liquide à l'état substantiellement anhydre.

30

35

On considère que le mélange réactionnel liquide est substantiellement anhydre lorsque ce mélange contient moins de 5 % en poids d'eau. De préférence, on maintient dans le mélange une concentration en eau inférieure à 2 % de son poids. De très bons résultats ont été obtenus lorsque le mélange réactionnel contient moins de 1 % en poids d'eau. Pour maintenir le mélange à l'état substantiellement anhydre, on élimine en continu l'eau venant à s'y trouver. Il s'agit en général de l'eau formée par la réaction et de l'eau introduite éventuellement avec les réactifs. Pour ce faire, on peut utiliser diverses techniques. En général, l'eau présente dans le mélange réactionnel est éliminée par des procédés de vaporisation tels que la distillation, la distillation azéotropique ou l'entraînement au moyen d'un gaz inerte.

Si l'eau forme avec un des constituants du mélange, tel que le composé carbonylé ou le solvant éventuel, un azéotrope à minimum dont la température d'ébullition est plus faible que celle des autres constituants du mélange et des autres azéotropes éventuels qui pourraient se former, on élimine en général l'eau par distillation azéotropique. Cette technique convient tout particulièrement bien lorsque l'azéotrope ainsi formé est un azéotrope hétérogène, car il est alors possible de recycler la phase organique dans le mélange réactionnel, après séparation de la phase aqueuse du distillat.

Lorsque la température d'ébullition de l'eau est plus faible

20 que celle des autres constituants du mélange réactionnel et des
azéotropes éventuels qui pourraient se former, on utilise le plus
souvent un procédé de distillation ou un procédé d'entraînement de
l'eau par passage en continu d'un gaz inerte dans le mélange réactionnel. Cette dernière technique est en général utilisée lorsqu'on

25 veut éviter de porter à l'ébullition des mélanges susceptibles de se
décomposer à leur température d'ébullition.

Les composés carbonylés utilisables dans le procédé selon l'invention peuvent être de natures très diverses. Ils sont en général choisis parmi les cétones et les aldéhydes substitués ou non, saturés ou non, de type aliphatique ou alicyclique et pouvant contenir une ou plusieurs fonctions carbonyles.

Le procédé selon l'invention est en général appliqué à des composés carbonylés contenant de 4 à 30 atomes de carbone et de préférence de 5 à 26 atomes de carbone. Le procédé peut ainsi être 35 appliqué avantageusement à des cyclopentanones et cyclohexanones, substituées ou non, telles que la cyclopentanone, la benzylidènecyclopentanone, la cyclohexanone, la bromocyclohexanone, la chlorocyclohexanone, la méthylcyclohexanone et la benzylidènecyclohexanone,
à d'autres cétones cycliques telles que la cyclohexènone, la cyclooctanone, l'isophorone, la fluorenone, la cyclododécanone, la bicyclooctanone, la méthylbenzoquinone, le norcamphre, les naphtoquinones,
la muscone et le camphre, à des méthylcétones telles que la méthylcyclobutylcétone, la méthylcycloheptylcétone, la méthyl-n-hexylcétone,
la méthylcyclopropylcétone, la méthylisobutylcétone, l'acétophénone,
l'acétylméthylcyclopentane, l'acétylméthylcyclohexane et la pinacolone,
à d'autres cétones linéaires telles que la nitrobenzophénone, la
benzophénone, la méthoxybenzophénone, la cyclohexylphénylcétone, les
cétostéroïdes (composés à squelette cyclopentanophénanthrénique
substitué) et les cétones-alcools, ainsi qu'à des aldéhydes telles
que la vanilline, l'heptanal, le benzaldéhyde et les aldoses.

Le procédé selon l'invention convient bien pour l'oxydation de cétones. Il convient particulièrement bien pour l'oxydation de cétones cycliques, c'est-à-dire de cétones dans lesquelles la fonction carbonyle fait partie du cycle.

15

20

25

30

35

De bons résultats ont été obtenus lors de l'application du procédé selon l'invention aux cyclohexènones, aux cyclopentanones, aux méthylcyclohexanones, à l'heptanal, et, tout spécialement, à la cyclohexanone.

L'oxydation d'aldéhydes par le procédé selon l'invention conduit à la formation des acides carboxyliques correspondants. L'oxydation des cétones conduit à la formation d'esters. Dans ce dernier cas, lorsque la cétone mise en oeuvre est une cétone cyclique, le produit obtenu est un ester interne appelé généralement lactone.

Le peroxyde d'hydrogène peut être mis en oeuvre dans le procédé selon l'invention sous forme de solutions aqueuses ou de solutions dans un solvant organique. Pour des raisons économiques, on utilise en général des solutions aqueuses de peroxyde d'hydrogène. Celles-ci peuvent avoir des concentrations très variables en peroxyde d'hydrogène. En général les solutions aqueuses de peroxyde d'hydrogène contiennent plus de 10 % en poids du peroxyde d'hydrogène. Des

concentrations inférieures sont moins souvent utilisées car elles nécessitent l'élimination de quantités importantes d'eau. Les solutions ne contiennent en général pas plus de 90 % de peroxyde d'hydrogène. Des solutions ayant une concentration supérieure peuvent être utilisées mais elles sont difficiles à produire et assez dangereuses à utiliser. On utilise de préférence des solutions contenant de 20 à 85 % en poids de peroxyde d'hydrogène.

Dans le mélange réactionnel mis en oeuvre selon l'invention, les proportions de réactifs peuvent varier dans de très larges limites en fonction des vitesses d'introduction choisies pour les réactifs, de la vitesse de réaction, de la mise en oeuvre éventuelle d'un solvant inerte, et de l'élimination éventuelle de l'eau par distillation d'un azéotrope eau-composé carbonylé. Ainsi le nombre de moles de peroxyde d'hydrogène dans le mélange réactionnel ne lépasse en général pas deux fois le nombre de moles de fonctions carbonyles. De bons résultats ont été obtenus lorsqu'on maintient dans le mélange réactionnel un défaut de peroxyde d'hydrogène par rapport au composé carbonylé de manière à réaliser un rapport molaire peroxyde d'hydrogène sur composé carbonylé ne dépassant pas 0,9.

Dans le mélange réactionnel, on maintient en général une proportion de peroxyde d'hydrogène faible qui peut descendre jusqu'à 0,0001 % en poids et même en dessous. En début de réaction, la proportion de peroxyde d'hydrogène présente dans le mélange réactionnel mis en oeuvre est en général comprise entre 0,001 et 10 % de son 25 poids et la proportion de composé carbonylé est en général comprise entre 5 et 99,9 % en poids. Si le mélange réactionnel mis en oeuvre ne comporte pas de solvant inerte cette dernière proportion est le plus souvent comprise entre 90 et 99,9 % en poids.

Quant au rapport molaire de peroxyde d'hydrogène par rapport au 30 composé carbonylé frais (à l'exclusion du produit de recyclage) envoyé au réacteur, il est en général voisin de la stoechiométrie et il est le plus souvent compris entre 0,5 et 1,5.

Les catalyseurs utilisés dans le procédé selon l'invention sont en général choisis parmi les catalyseurs de Friedel-Crafts et leurs 35 mélanges. Parmi ceux-ci on utilise le plus souvent les acides de Lewis de préférence aux acides de Brönsted. En général, on utilise comme catalyseurs des composés de métaux choisis parmi le beryllium, le magnésium, les éléments des Groupes IIb, IIIa et b, IVb, Vb, VIb et VIII et les éléments des Périodes 3, 4, 5 et 6 des Groupes IVa, Va et VIa, ou du fluorure d'hydrogène. De bons résultats ont été obtenus avec des composés de métaux choisis parmi le beryllium, le zinc, le cadmium, le bore, l'aluminium, le gallium, l'indium, le scandium, l'yttrium, le lanthane, le silicium, le germanium, l'étain, le titane, le zirconium, l'hafnium, le thorium, l'antimoine, le bismuth, le vanadium, le niobium, le tantale, le tellure, le chrome, le molybdène, le tungstène, le fer et le ruthénium. Les composés du titane, du tantale, du tungstène, de l'étain, du molybdène, de l'antimoine, du bore et du zinc ont donné des résultats excellents.

Les composés de métaux utilisés comme catalyseurs peuvent être 15 de natures diverses. Ils sont en général choisis parmi les fluorures, les chlorures, les oxychlorures, les oxyfluorures, les perchlorates et les fluoroalkanesulfonates ainsi que leurs complexes.

Les catalyseurs préférés sont ceux qui sont susceptibles de former des complexes du type "acide-base de Lewis" avec le composé 20 carbonylé à oxyder et qui ne sont pas trop vite hydrolysés dans les conditions de réaction, de manière à avoir une durée de vie nettement supérieure au temps de séjour moyen des réactifs dans le réacteur.

Les meilleurs résultats ont été obtenus avec les fluorures de titane, de tantale, de tungstène, d'étain, d'antimoine et de zinc,

25 les chlorures d'étain, le perchlorate de zinc et le fluorure de bore complexé par un éther tel que BF₃.0(C₂H₅)₂, dont l'utilisation est dès lors préférée.

Les catalyseurs mis en oeuvre peuvent être éventuellement préparés in situ par réaction de l'oxyde métallique, du métal, des 30 alkyl-métaux, des alkoxydes métalliques ou en général des sels métalliques correspondants. Ainsi, lors de l'emploi de fluorures métalliques, on peut introduire dans le mélange réactionnel simultanément du fluorure d'hydrogène et un oxyde du métal choisi. Cette technique se révèle avantageuse lorsque le fluorure métallique choisi comme catalyseur est difficile à dissoudre dans le mélange réactionnel. Tel est le cas pour les fluorures de beryllium et de zinc par exemple.

Les catalyseurs mis en oeuvre peuvent être éventuellement fixés sur un support organique ou inorganique.

La quantité de catalyseur mise en oeuvre est choisie de manière à assurer une concentration stationnaire suffisante pour catalyser

5 la réaction. En général, on met en oeuvre au moins 0,001 g de catalyseur par kg de mélange réactionnel. Les quantités de catalyseur ne dépassent, le plus souvent, pas 50 g par kg de mélange réactionnel; pour des raisons d'économie. De bons résultats sont obtenus lorsque le catalyseur est mis en oeuvre à raison de 0,01 à 20 g par kg de 10 mélange réactionnel.

Lorsque le catalyseur est constitué de fluorure d'hydrogène les quantités de catalyseur nécessaires sont en général plus importantes et sont comprises entre 0,01 et 100 g par kg de mélange réactionnel.

Les catalyseurs peuvent être introduits de diverses manières 15 connues en elles-mêmes. On peut ainsi procéder à une introduction unique, une introduction continue ou une introduction étagée de catalyseurs. Le catalyseur peut être mis en oeuvre à l'état pur. Cependant il est avantageux de le mettre en oeuvre sous forme d'une solution dans un des constituants du mélange réactionnel.

- Outre les réactifs et les catalyseurs, le mélange réactionnel peut également contenir, sans que cela soit indispensable, un ou plusieurs solvants inertes dans les conditions de réaction. Divers types de solvants inertes peuvent être utilisés. Ils peuvent être choisis parmi les éthers, les alcools, les hydrocarbures halogénés,
- 25 les hydrocarbures non substitués, les esters carboxyliques, les esters non acides d'acide phosphorique, les hydrocarbures substitués par des groupes nitro, ainsi que certaines cétones moins réactives vis-à-vis du peroxyde d'hydrogène dans les conditions de réaction, telle que l'acétone.
- 30 Comme hydrocarbures halogénés convenant bien en général on peut signaler les hydrocarbures halogénés aromatiques, aliphatiques et alicycliques contenant de 1 à 10 atomes de carbone dans leur molécule substitués par au moins un halogène choisi de préférence parmi le chlore et le fluor et pouvant être en outre substitués par un groupe 35 hydroxyle.

Comme hydrocarbures non substitués convenant bien en général on peut signaler les hydrocarbures contenant de 5 à 14 atomes de carbone aliphatiques, aromatiques ou alicycliques.

Comme éthers convenant bien en général on peut signaler les éthers aliphatiques ou alicycliques, symétriques ou asymétriques, contenant de 3 à 20 et de préférence de 4 à 12 atomes de carbone tels que le diéthyléther, le diphényléther, les diméthoxy -mono- ou -di-éthylèneglycols, le tétrahydrofurane et le diisopropyléther.

Comme alcools convenant bien en général on peut signaler les 10 alcools mono- ou poly-hydriques, primaires, secondaires ou tertiaires contenant de 1 à 10 atomes de carbone tels que l'éthanol et le cyclohexanol.

Comme esters carboxyliques convenant bien en général, on peut mentionner les esters aliphatiques contenant de 3 à 9 atomes de 15 carbone dans la molécule.

Comme hydrocarbures substitués par des groupes nitro convenant bien en général, on peut mentionner les hydrocarbures contenant de l à 10 atomes de carbone tels que le nitrométhane et le nitrobenzène.

Quant aux esters d'acide phosphorique pouvant convenir, ils 20 répondent en général à la formule

où R₁, R₂, R₃ sont identiques ou différents et représentent des 25 groupes alkyles ou aryles, substitués ou non, tels que la molécule contient de 3 à 30 atomes de carbone. A titre d'exemples de phosphates particuliers, on peut signaler les phosphates de triéthyle et de trioctyle.

Lorsque l'eau est difficile à séparer du mélange réactionnel on peut incorporer au mélange un solvant capable de former un azéotrope à minimum avec l'eau. Dans ce cas, on utilise en général un solvant capable de former un azéotrope hétérogène avec l'eau, de manière à pouvoir séparer du distillat de la distillation azéotropique, la phase organique que l'on peut recycler au réacteur.

Les solvants éventuels sont présents dans des proportions variables pouvant varier de 0 à 95 % du poids du mélange réactionnel. Quand on met en oeuvre des solvants, en général ils sont présents à raison de 30 à 95 % du poids du mélange réactionnel. Lors de l'oxy-dation de la cyclohexanone on n'utilise en général pas de solvants inertes.

On peut également ajouter au mélange réactionnel d'autres additifs tels que des agents de stabilisation du peroxyde d'hydrogène, des inhibiteurs de polymérisation ou des dérivés minéraux ou organiques susceptibles de fixer l'eau du milieu réactionnel. Ces additifs éventuels sont en général présents à raison de moins de 10 % du poids du mélange réactionnel.

La température et la pression de réaction peuvent varier dans de très larges limites. Elles sont choisies en fonction de la 15 nature du composé carbonylé à oxyder. En général on les règle de manière à assurer l'ébullition et à ne pas dépasser la température de décomposition du mélange réactionnel. La température est habituellement inférieure à 423 K et le plus souvent comprise entre 293 et 393 K. De bons résultats ont été obtenus à des températures comprises entre 313 et 373 K. La pression est en général inférieure à 5.10 Pa. De bons résultats ont été obtenus en utilisant des pressions comprises entre 1.10 Pa et 3.10 Pa.

Le procédé selon l'invention peut être mis en oeuvre en continu ou en discontinu dans un réacteur unique ou dans une série de réacteurs 25 en parallèle ou consécutifs. Pour réaliser le procédé selon l'invention on peut utiliser n'importe quel appareillage convenant pour les mélanges réactionnels liquides. Plus particulièrement, il est avantageux d'utiliser des réacteurs, connus en eux-mêmes, permettant la distillation en cours de réaction de constituants d'un mélange réactionnel liquide. Ces réacteurs sont avantageusement couplés à des colonnes de distillation connues en elles-mêmes.

Le procédé selon l'invention peut être réalisé en continu dans un appareil tel que celui représenté schématiquement à la figure unique du dessin en annexe qui se rapporte à un mode de réalisation 35 pratique particulier. Cet appareil convient tout particulièrement bien pour l'oxydation d'un composé carbonylé susceptible de former un azéotrope hétérogène avec l'eau comme c'est le cas pour la cyclohexanone.

Dans un réacteur 1 surmonté d'une colonne de distillation 2, on 5 introduit par la voie 3 une solution concentrée de peroxyde d'hydrogène et par la voie 4 le composé carbonylé contenant le catalyseur. Le composé carbonylé frais est introduit par la voie 5.

En cours de réaction l'azéotrope eau-composé carbonylé quitte la colonne de distillation 2 par la voie 9, est condensé dans le 10 condenseur 10, et est envoyé par la voie 11 au décanteur 12. Lorsque le composé carbonylé a une densité inférieure à celle de l'eau, on le recueille en tête du décanteur par la voie 13 tandis que l'eau est recueillie en pied du décanteur par la voie 14; dans le cas contraire, les prélèvements sont inversés. Le composé carbonylé est recyclé à la colonne de distillation par la voie 15 où il constitue le reflux. Dans certains cas, on peut envoyer une partie du composé carbonylé par la voie 16 dans le mélangeur 6 qui est alimenté par la voie 5 en composé carbonylé frais et en catalyseur.

On soutire en continu par la voie 7 une partie du mélange 20 réactionnel que l'on soumet à des séparations successives pour obtenir d'une part le composé carbonylé non transformé que l'on renvoie en 6 et d'autre part le composé carboxylé qui constitue la production.

Le mélange soutiré par la voie 7 peut éventuellement être

25 soumis à un traitement préliminaire de manière à permettre la séparation du catalyseur qui pourrait s'y trouver. On peut ainsi ajouter au mélange une base de Lewis forte de manière à complexer le catalyseur. Des bases de Lewis convenant pour cet usage sont par exemple la pyridine et la 8-hydroxyquinoléine. Le complexe ainsi formé est séparé du mélange et peut ensuite être soumis à diverses étapes connues en elles-mêmes de régénération du catalyseur telles qu'une décomposition thermique. Le catalyseur régénéré peut être recyclé au réacteur de fabrication du composé carboxylé.

L'appareil représenté à la figure l peut également être utilisé 35 pour réaliser le procédé de l'invention en présence d'un solvant

capable de former avec l'eau un azéotrope hétérogène dont la température d'ébullition est inférieure à celle de tous les constituants et azéotropes éventuels du mélange réactionnel. Dans ce cas la phase organique recueillie dans le décanteur 12 est constituée du solvant 5 de réaction.

Les composés carboxylés obtenus selon le procédé de l'invention peuvent être utilisés pour la fabrication de polymères tels que des polyesters, des polyols ou des polyuréthanes.

Afin d'illustrer l'invention, sans pour autant en limiter la 10 portée, on donne ci-après des exemples de fabrication de composés carboxylés (exemples 1 à 33, 35, 37 à 49). Les exemples 34 et 36 sont donnés à titre de comparaison.

Exemple 1

La cyclohexanone est introduite dans un réacteur en verre à double enveloppe chauffé par circulation d'huile et surmonté d'un réfrigérant maintenu à 263 K. On ajoute du SbF₅ à raison de 0,2 g/kg de cyclohexanone (CHO) puis l'on porte et l'on maintient la température à 363 K sous une pression de 2.10⁴ Pa afin de distiller l'azéotrope aqueux. Par l'intermédiaire d'un tube capillaire on admet 20 alors de l'H₂O₂ à 95 % au débit de 130 ml/h.l. Les produits de distillation sont recueillis et dosés par chromatographie, comme les produits de réaction. La productivité en ε-caprolactone (ε-CL) est de 221 g/h.l avec une sélectivité par rapport à H₂O₂ de 73 %. Exemples 2 à 16

Ces essais sont réalisés de façon analogue à l'exemple 1.

La température et la pression sont respectivement de 353 K et

1,33.10⁴ Pa, et l'H₂O₂ à 95 % est dilué par un mélange acétone-cyclohexanone dans les proportions volumétriques 5/50/30. Le débit de

H₂O₂ 95 % est de 67 ml/h.1. La durée de l'essai est de 30 minutes
environ. Les autres conditions opératoires et les résultats obtenus
sont repris au Tableau I.

Tableau I

Essai n°	•		Productivité, g ε-CL/h.1	Sélectivité par rapport
	nature	concentra- tion, g/kg CHO		à H ₂ O ₂ , %
2	SbF ₅	0,04	242	80
3	SbF ₅ *	0,4	208	69
4	SbC1 ₅	0,5	81	41
5	SnCl ₄	0,2	190 -	63
6	BF3.0(C2H5)2	1,2	242	80
7	SnF ₄	1,4	133	45
8	MoOC13.9,10-P.Q.**	0,4	189	62
9	SbF ₃	1,4	231	76
10	BF ₃	1,1	222	73
11	TiF ₄	0,7	169	56
12	MoO ₂ C1 ₂	0,4	187	62
13	MoC1 ₅	0,2	185	61
14	вг ₃ .сн ₃ он	0,4	149	49
15	TaF ₅	0,4	164	54
16	HF	2,7	211	70
		<u> </u>	<u> </u>	<u>.</u>

^{*} le pentafluorure d'antimoine est déposé sur graphite (vendu par la firme ALDRICH sous la marque GRAPHIMET) à raison de 47 % du poids total de catalyseur.

Avec le ${\rm SbF}_5$, la sélectivité moyenne par rapport à la cyclohexanone est de 82 %.

Exemples 17 à 28

5

Ces essais sont réalisés de façon analogue à l'exemple 1.

La température et la pression sont respectivement de 353 K et 1,6.10⁴ Pa et 1'H₂O₂ 84 % est dilué par un mélange tétrahydrofurane-cyclohexanone dans les proportions volumétriques 6/50/30. Le débit de H₂O₂ 84 % est de 80 ml/h.1. Les autres conditions opératoires et les résultats obtenus sont repris au Tableau II.

^{**} P.Q. = Phénanthrènequinone

Tableau II

Essai nº	· · · · · · · · · · · · · · · · · · ·		Productivité, g &-CL/h.1		Sélectivité par rapport
	Nature	Concen- tration g/kg CHO		à H ₂ O ₂ ,	à la CHO,
17	SbF ₅	0,079	231	75.0	0/ 3
18	SnCl _A	0,3	209	75,9 68,8	84,7
19	BF ₃ .0(C ₂ H ₅) ₂	1,2	242	_	91,7
20	SnF ₄	1,4	132	79,5	78,3
21	SbF ₃	1,4	234	43,4	69,9
22	BF ₃	0,7		76,9	92,1
23	TiF ₄	0,7	233	76,7	90,8
24	· .		163	53,5	96,4
25	MoO ₂ C1 ₂	0,2	168	55,2	87,5
26	MoC1 ₅	0,2	174	57,3	91,6
	TaF ₅	0,4	222	73	91,3
27	WF ₆	0,035m1 ^x	236	77,5	84,7
28	HF	2,7	231	75,9	89,8

^{*} La concentration est donnée en m1/kg CHO.

Exemples 29 à 32

5

Ces essais sont réalisés de façon analogue à l'exemple 1.

Les catalyseurs ont été formés in situ par mélange de l'oxyde métallique avec HF dans la cyclohexanone.

La température et la pression sont respectivement de 353 K et $1.5.10^4$ Pa et $1^1\text{H}_2\text{O}_2$ 95 % est dilué par un mélange acétone-cyclo-hexanone dans les proportions volumétriques 5/50/30. Le débit de H_2O_2 95 % est de 67 ml/h.1. Les autres conditions opératoires et les résultats obtenus sont repris au Tableau III.

Tableau III

Essai n°	Catalyseur		Productivité, g E-CL/h.1	Sélectivité par rapport
	nature	Poids, g/kg CHO		à H ₂ O ₂ ,
29	HF/ZnO	0,3/0,3	189	62
30	HF/Sb ₂ o ₃	0,3/0,7	224	74
31	HF/Sb ₂ O ₅	0,3/0,5	222	73
32	HF/ZnO	2,7/3,4	235	77

Exemples 33, 34, 35 et 36

L'influence de l'élimination azéotropique de l'eau sur les performances des catalyseurs est illustrée ci-dessous.

Les essais 34 et 36 sans élimination d'eau sont réalisés suivant l'exemple 1 mais avec un reflux total. La température et la pression sont respectivement de 353 K et 1.10^5 Pa.

Les essais 33 et 35 avec distillation de l'azéotrope sont réalisés suivant le mode opératoire des exemples 2 à 16.

Dans tous les cas, le débit de H₂O₂ 95 % est de 67 ml/h.l. Les autres conditions opératoires et les résultats obtenus sont repris au Tableau IV.

Tableau IV

Essai nº	Catalyseur		Elimination de H ₂ O	Productivité, g e-CL/h.1	Sélectivité par rapport
	Nature	Concentration g/kg CHO	2	_	à н ₂ 0 ₂ , %
33	HF	2,7	oui	211	70
34	HF	2,7	non	65 [*]	28 [★]
35	SbF ₅	0,04	oui	242	80
36	SbF ₅	0,04	non	78 [*]	33 [*]

* Pour ces deux essais, le taux de décomposition de H₂O₂ est inférieur à 100 %. Ces valeurs sont donc entachées d'erreur (erreur par excès).

Exemple 37

Cet essai est réalisé dans les conditions des exemples 17 à 28 en utilisant SbF₅ comme catalyseur, 0,2 g/kg de cyclohexanone et de 1'H₂O₂ à 70 %. La température et la pression sont respectivement de 355 K et 1,6.10⁴ Pa et 1'H₂O₂ à 70 % est dilué par un mélange tétrahydrofurane-cyclohexanone dans les proportions volumétriques 7,5/50/30.

Le débit de H_2O_2 70 % est de 100 ml/h.1.

La productivité en ε -caprolactone est de 225 g/h.1 avec une sélectivité par rapport à $\rm H_2O_2$ de 74 %.

10 <u>Exemple 38</u>

Cet essai est réalisé dans des conditions analogues à celles des exemples 17 à 28. La concentration du catalyseur, SbF₅, est de 0,3 g/kg de cyclohexanone. La température et la pression sont respectivement de 331 K et 5,3.10³ Pa et 1'H₂O₂ à 87 % est dilué par un mélange tétrahydrofurane-cyclohexanone dans les proportions volumétriques 6/50/30.

Le débit de H_{2}^{0} 0 87 % est de 80 m1/h.1.

La productivité en ε -caprolactone est de 214 g/h.l avec une sélectivité par rapport à $\rm H_2O_2$ de 67 %.

20 Exemple 39

Cet essai est réalisé dans des conditions analogues à celles des essais 17 à 28. La cétone utilisée est la 2-méthylcyclohexanone, et le catalyseur, BF₃·0(C₂H₅)₂, est mis en oeuvre à raison de 3,3 g/kg de cétone. La température et la pression sont respectivement de 353 K et 1,5.10⁴ Pa et 1'H₂O₂ à 84 % est dilué par un mélange tétrahydrofurane-2-méthylcyclohexanone dans les proportions volumétriques 6/50/30.

Le débit de H_2O_2 84 % est de 60 m1/h.1.

La productivité en lactones est de 180 g/h.1 avec une sélecti- 30 vité par rapport à ${\rm H_2O_2}$ de 71 %.

Exemple 40

Cet essai est réalisé dans des conditions analogues à celles des essais 17 à 28. La cétone utilisée est la cyclopentanone et le catalyseur, $\mathrm{BF_3.0(C_2H_5)_2}$, est mis en oeuvre à raison de 4,0 g/kg de cétone. La température et la pression sont respectivement de 346 K

et 2,9.10⁴ Pa et 1'H₂O₂ 87 % est dilué par un mélange tétrahydrofurane-cyclopentanone dans les proportions volumétriques 6/50/30.

Le débit de H_2O_2 87 % est de 60 ml/h.1.

La productivité en δ -valérolactone est de 103 g/h.1 avec une 5 sélectivité par rapport à H_2O_2 de 49 %.

Exemple 41

Cet essai est réalisé dans des conditions analogues à celles des exemples 17 à 28 en utilisant une solution de cyclohexanone dans le diphényléther à 469 g/kg. On utilise le BF₃.0(C₂H₅)₂ comme catalyseur (3,2 g/kg de cyclohexanone) et de 1'H₂O₂ à 87 %. La température et la pression sont respectivement de 383 K et 9,3.10³ Pa et 1'H₂O₂ à 87 % est diluée par un mélange tétrahydrofurane-cyclohexanone dans les proportions volumétriques 6/50/30.

Le débit de H_2O_2 à 87 % est de 80 ml/h.1.

La productivité en ε-caprolactone est de 183 g/h.1 avec une sélectivité par rapport à H₂O₂ de 58 %.

Exemple 42

15

30

Cet essai est réalisé dans des conditions de l'essai 41 mais l'on utilise une solution de cyclohexanone dans le 1,1,2,2-tétrachloroéthane à 374 g/kg. La température et la pression sont respectivement de 385 K et 1,3.10⁴ Pa.

La productivité en ε -caprolactone est de 220 g/h.1 avec une sélectivité par rapport à $\mathrm{H_{2}O_{2}}$ de 69 %.

Exemple 43

Cet essai est réalisé dans des conditions analogues à celles de l'exemple 1 mais le volume dans le réacteur est maintenu constant par addition continue de cyclohexanone. On utilise le SbF₅ comme catalyseur (0,2 g/kg de cyclohexanone) et de 1'H₂O₂ à 41 %. La température et la pression sont respectivement de 357 K et 1,4.10⁴ Pa.

Le débit de H_2O_2 à 41 % est de 462 ml/h.1.

La productivité en ε -caprolactone est de 489 g/h.1 avec une sélectivité par rapport à H_2O_2 de 67 %.

Exemple 44

Cet essai est réalisé dans les conditions opératoires de l'exem-35 ple 43 mais la cyclohexanone d'addition contient 0,08 g de catalyseur/

kg de cyclohexanone et $1^{'}\text{H}_{2}^{0}$ utilisé est à 20 %. La température et la pression sont respectivement de 355 K et 1,4.10⁴ Pa.

Le débit de H_2O_2 à 20 % est de 244 m1/h.1.

La productivité en ϵ -caprolactone est de 104 g/h.l avec une 5 sélectivité par rapport à $\rm H_2O_2$ de 57 %.

Exemple 45

Cet essai est réalisé dans des conditions analogues à l'essai 44 mais avec $1^{\rm H}_2{\rm O}_2$ à 69 %. La température et la pression sont respectivement de 363 K et $1,4.10^4$ Pa.

Le débit de H_2O_2 à 69 % est de 242 ml/h.1.

La productivité en ϵ -caprolactone est de 534 g/h.1 avec une sélectivité par rapport à $\mathrm{H_2O_2}$ de 75 %.

Exemple 46

10

Cet essai est réalisé dans des conditions analogues à l'essai 15 44 mais avec de $1^{1}H_{2}^{0}$ 0 à 86 %. La température et la pression sont respectivement de 364 K et $1,4.10^{4}$ Pa.

Le débit de H_2O_2 à 86 % est de 171 m1/h.1.

La productivité en ε -caprolactone est de 510 g/h.1 avec une sélectivité par rapport à ${\rm H_2O_2}$ de 76 % et une sélectivité par rapport à la cyclohexanone de 85 %.

Exemple 47

Cet essai est réalisé dans des conditions analogues à l'essai 43 mais avec de $1^{1}H_{2}^{0}$ 0 à 86 % et en utilisant le SbF3 comme catalyseur (1,4 g/kg de cyclohexanone). La température et la pression sont respectivement de 362 K et 1,3.10 Pa.

Le débit de $\mathrm{H}_2\mathrm{O}_2$ à 86 % est de 141 m1/h.1.

La productivité en ε -caprolactone est de 420 g/h.1 avec une sélectivité par rapport à $\mathrm{H}_2\mathrm{O}_2$ de 76 % et une sélectivité par rapport à 1a cyclohexanone de 88 %.

30 Exemple 48

35

La 2-cyclohexèn-l-one est introduite dans un réacteur analogue à celui de l'exemple l. On ajoute du ${\rm SbF}_5$ à raison de 0,2 g/kg de cétone puis l'on porte et l'on maintient la température à 369 K sous une pression de 8.10^3 Pa. On admet alors de $1^{\rm H}_2{}^{\rm O}_2$ à 86 % au débit de 267 ml/h.1.

La productivité en lactones est de 348 g/h.1 avec une sélectivité par rapport à $\rm H_2O_2$ de 34 %.

Exemple 49

L'heptanal est introduit dans un réacteur analogue à celui de 5 l'exemple 1. On ajoute du BF₃.0(C₂H₅)₂ à raison de 2,7 g/kg d'aldé-hyde puis 1'on porte et on maintient la température à 351 K sous une pression de 1.10⁴ Pa. On admet alors de 1'H₂O₂ à 86 % au débit de 267 ml/h.1.

La productivité en acide heptanoïque est de 671 g/h.1 avec une 10 sélectivité par rapport à $\rm H_2O_2$ de 58 %.

Exemple 50

Une solution à 50 % de cyclododécanone dans le 1,1,1,2-tétra-chloroéthane est introduite dans un réacteur analogue à celui de l'exemple 1. On ajoute du BF₃.0(C₂H₅)₂ à raison de 4,6 g/kg de 15 cétone puis l'on porte et on maintient la température à 347 K sous une pression de 1,0.10⁴ Pa. On admet alors de 1'H₂O₂ à 86 % au débit de 185 ml/h.1.

Un examen par résonance magnétique nucléaire donne une teneur en lactone de 7 % par rapport à la cyclododécanone.

20 Exemple 51

La cyclohexanone est introduite dans un réacteur analogue à celui de l'exemple 1. On ajoute du Zn(ClO₄)₂.6H₂O à raison de 7,0 g/kg de cétone puis l'on porte et on maintient la température à 353 K sous une pression de 1,1.10⁴ Pa. On admet de 1'H₂O₂ à 86 % au 25 débit de 218 ml/h.1.

La productivité en ε -caprolactone est de 472 g/h.1 avec une sélectivité par rapport à $\rm H_2O_2$ de 55 %.

REVENDICATIONS

- l Procédé pour la fabrication de composés carboxylés par réaction du composé carbonylé correspondant avec le peroxyde d'hydrogène en milieu liquide et en présence d'un catalyseur caractérisé en ce qu'on maintient le mélange réactionnel liquide à l'état substantiellement anhydre.
 - 2 Procédé selon la revendication l caractérisé en ce qu'on maintient dans le mélange réactionnel moins de 2 % en poids d'eau.
- 3 Procédé selon la revendication 1 ou 2 caractérisé en ce 10 qu'on élimine en continu l'eau du mélange réactionnel par vaporisation.
 - 4 Procédé selon l'une quelconque des revendications 1 à 3 caractérisé en ce que l'on met en oeuvre comme catalyseur au moins un catalyseur de Friedel-Crafts.
- 5 Procédé selon la revendication 4 caractérisé en ce que l'on choisit le catalyseur parmi le fluorure d'hydrogène et les composés des métaux choisis parmi le beryllium, le zinc, le cadmium, le bore, l'aluminium, le gallium, l'indium, le scandium, l'yttrium, le lanthane, le silicium, le germanium, l'étain, le titane, le zirconium, l'hafnium, 20 le thorium, l'antimoine, le bismuth, le vanadium, le niobium, le tantale, le tellure, le chrome, le molybdène, le tungstène, le fer et le ruthénium, ainsi que leurs mélanges.
- 6 Procédé selon la revendication 5 caractérisé en ce que l'on choisit le catalyseur parmi les fluorures d'antimoine, de titane, de 25 tantale, de tungstène, d'étain et de zinc, le perchlorate de zinc, le chlorure d'étain et le fluorure de bore complexé par un éther.
 - 7 Procédé selon l'une quelconque des revendications 1 à 6 caractérisé en ce que le catalyseur est mis en oeuvre en quantités comprises entre 0,001 et 50 g par kg de mélange réactionnel.
- 30 8 Procédé selon l'une quelconque des revendications 1 à 7 caractérisé en ce que l'on met en oeuvre un mélange réactionnel contenant de 0,001 à 10 % en poids de peroxyde d'hydrogène et de 5 à 99,9 % en poids de composé carbonylé.

- 9 Procédé selon l'une quelconque des revendications l à 8 caractérisé en ce que le mélange réactionnel contient en outre un solvant.
- 10 Procédé selon l'une quelconque des revendications l à 9 5 caractérisé en ce qu'il est appliqué à la fabrication d'e-caprolactone par réaction de cyclohexanone.
- 11 Procédé selon la revendication 10 caractérisé en ce que l'on élimine l'eau du mélange réactionnel par distillation de l'azéotrope eau-cyclohexanone, en ce que l'on condense le distillat et on le soumet à une décantation pour en séparer la phase aqueuse de la phase organique, et en ce que l'on renvoie la phase organique dans le mélange réactionnel.

RAPPORT DE RECHERCHE EUROPEENNE

Numéro de la demande

EP 80 20 0572

	DOCUMENTS CONSI	CLASSEMENT DE LA DEMANDE (Int. Ci. 3)		
atégorie	Citation du document avec in pertinentes	dication, en cas de besoin, des parties	Revendica- tion concernée	
	* En entier	86 (CELANESE CORP. et en particulier vendication 7 *	1-11	C 07 D 315/00 C 07 C 51/28
	<u>US - A - 3 457</u> * En entier '	298 (L. SCHMERLING	1	
	FR - A - 2 372 * Pages 11-13	161 (UGINE KUHLMANN), revendications *	1) 1-11	DOMAINES TECHNIQUES RECHERCHES (Int. Ci. 3)
				C 07 D 315/00
	# En entier *		1-11	313/00 313/04 309/30
				C 07 C 51/28
				CATEGORIE DES DOCUMENTS CITES
				X: particulièrement pertinent A: arrière-plan technologique O: divulgation non-écrite P: document intercalaire
				T: théorie ou principe à la bas de l'invention demande faisant interféren document cité dans la demande
				L: document cité pour d'autre raisons
	Le présent rapport de recherc	che a été établi pour toutes les revendicati	ons	&: membre de la même famille document correspondant
	cherche	Date d'achèvement de la recherche	1	
u de la re	Haye	age a generalisell de la lécuelcue	Examinateu	ſ

