

Introduction Deep Learning Séquence 05a

Stratégies d'évaluation des modèles

Cette session va être enregistrée. Retrouvez-nous sur notre chaine YouTube :-)

This session will be recorded. Find us on our YouTube channel:-)

https://fidle.cnrs.fr/youtube

Introduction Deep Learning Séquence 05a

Stratégies d'évaluation des modèles

Resources

https://fidle.cnrs.fr

Powered by CNRS CRIC, and UGA DGDSI of Grenoble, Thanks!

Course materials (pdf)

Practical work environment*

Corrected notebooks

Videos (YouTube)

Resources

You can also subscribe to:

https://listes.services.cnrs.fr/wws/info/devlog1

https://listes.math.cnrs.fr/wws/info/calcul²

(1) List of ESR* developers,

(2) List of ESR* « calcul » group Where ESR is Enseignement Supérieur et Recherche, french universities and public academic research organizations

DNN

Roadmap

Training strategies

- 5.1 Training strategies
 - → Basic learning process and bias
 - → Hold-out evaluation
 - → K-fold evaluation

- 5.2 Finding the right metric
 - → Implementation of a simple case

Training strategies

- 5.1 Training strategies
 - → Basic learning process and bias
 - → Hold-out evaluation
 - → K-fold evaluation

- 522 Finding the right metric
 - → Implementation of a simple case

Learning is not so easy!

https://imgs.xkcd.com/comics/machine_learning.png

Basic learning process

Basic learning process

Basic learning process

Hold-out evaluation

Validation simple

Suitable for large datasets, allowing for large Validation and Test sets.

If the Validation/Test sets are too small, the final evaluation will be statistically unstable.

Iterative hold-out evaluation with shuffling

Validation simple, itérative avec brassage des données

Suitable for medium sized datasets: generating a shuffled dataset can be expensive...
The number of iterations depends on the data.

K-fold cross validation

Validation croisée

K-Fold / Cross validation Fold #1: Evaluation #1 train train test Final Fold #2: Evaluation #2 evaluation train train test Data (mean) Fold #3: Evaluation #3 train train

In this example, k=3 In practice, we will rather use a k=5, k=8, ...

Very interesting strategy for small datasets.

If the amount of data is small, however, the result can remain unstable...

Iterated K-fold cross validation with shuffling

Validation croisée, itérative avec brassage des données

Probably the best strategy for small datasets...

...but if K and n are important, the combination can become very expensive!

Be careful with combinatories ;-)

Which model is the best?
Which hyperparameters should I use?
Which dataset is the most usable?
Are my results significant?

Be careful with combinatories ;-)

Be careful with combinatories ;-)

A few questions to keep in mind!

Are my data subsets (train, test, ...) representative of my data?

Can I or should I shuffle my data? (time sequences, ordered data, ...)

Within the dataset, what is the share and impact of outliers?

Mes résultats sont-ils significatifs?

How many folds, how many iterations do I need?

How much data do I need?

How much will it cost?

Training strategies

- 5.1 Training strategies
 - → Basic learning process and bias
 - → Hold-out evaluation
 - → K-fold evaluation

- 5.2 Finding the right metric
 - → Implementation of a simple case

TYPE I ERROR: FALSE POSITIVE

TYPE II ERROR: FALSE NEGATIVE

TYPE III ERROR: TRUE POSITIVE FOR

INCORRECT REASONS

TYPE IV ERROR: TRUE NEGATIVE FOR

INCORRECT REASONS

TYPE I ERROR: INCORRECT RESULT WHICH

LEADS YOU TO A CORRECT

CONCLUSION DUE TO UNRELATED ERRORS

TYPE I ERROR: CORRECT RESULT WHICH

YOU INTERPRET WRONG

TYPE VII ERROR: INCORRECT RESULT WHICH

PRODUCES A COOL GRAPH

TYPE VIII ERROR: INCORRECT RESULT WHICH

SPARKS FURTHER RESEARCH AND THE DEVELOPMENT OF NEW TOOLS WHICH REVEAL THE FLAW IN THE ORIGINAL

RESULT WHILE PRODUCING

NOVEL CORRECT RESULTS

TYPE IX ERROR: THE RISE OF SKYWALKER

Evaluating a result is not easy!

Finding the right metric?

We try to predict a quantity (scalar, vector, ...)

→ Is my predicted value "good"?

We try to predict a quality (class membership, ...)

→ Is my prediction "correct"?

Evaluation of a regression

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} \left[\hat{y}^{(i)} - y^{(i)} \right]^{2}$$

RMSE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} [\hat{y}^{(i)} - y^{(i)}]^2}$$

MAE =
$$\frac{1}{n} \sum_{i=1}^{n} |\hat{y}^{(i)} - y^{(i)}|$$

$$\mathsf{MAPE} = \frac{1}{n} \sum_{i=0}^{n} \frac{|y_i - \hat{y}_i|}{max(\epsilon, |y_i|)}$$

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y_{i}})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

Mean Squared Error Differentiable

Can be use as lost function Increases very quickly

Root Mean Squared Error

Same unit as *y*Robust to outliers
Humans understandable

Mean absolute error

Same unit as *y*More robust to outliers
Humans understandable

Mean Absolute Percentage Error

Humans understandable (%)
Problem when *y* is null!

R² score, coefficient of determination Result in [0, 1]

Measures a correlation between 2 series, nothing else..

Evaluation of a classification

$$accuracy = \frac{Total\ number\ of\ correct\ predictions}{Total\ number\ of\ prédictions}$$

Ability to make correct predictions

« exactitude » en fr

 $HammingLoss = \frac{Total number of wrong predictions}{Total number of prédictions}$

Ability to make wrong predictions

 $precision_{class i} = \frac{Number of correct predictions for class i}{Total number of predictions for class i}$

Ability to identify without error, the elements of the class i

 $recall_{class\,i} = \frac{Number\ of\ correct\ predictions\ for\ class\ i}{Total\ number\ of\ real\ class\ i}$

Ability to identify all the elements of the class i

«sensibilité» en fr

F1 is the harmonic mean of the model's precision and recall.

$$F1_{classi} = 2 * \frac{recall_{classi} \cdot precision_{classi}}{recall_{classi} + precision_{classi}}$$

Next, on Fidle:

Jeudi 15 décembre

Séquence 5b:

Données creuses/textuelles de dimensions variables

Spécificités et gestion des données creuses/textuelles Principes de l'Embedding (Keras, CBOW, Skip-Gram) ...ou comment réduire les dimensions!

Exemple proposé:

Analyse de sentiment avec une analyse de critique de films.

Next on Fidle:

Jeudi 15 décembre, 14h00

Séquence 5b:

Données creuses/textuelles de dimensions variables

To be continued...

