MATHF-203 – Algèbre I

R. Petit

Année académique 2016 - 2017

Table des matières

1	Les groupes			
	1.1	Défini	itions	1
	1.2	Group	pes de transformation	2
	1.3	Sous-g	groupes	2
	1.4	Isomo	orphismes	3
	1.5		es latérales et théorème de Lagrange	
	1.6		groupes normaux et homomorphismes	6
	1.7	Group	pes quotients	7
	1.8	r		9
		1.8.1	Premier théorème d'isomorphisme	9
			Deuxième théorème d'isomorphisme	
		1.8.3	Troisième théorème d'isomorphisme	9
2	Actions de groupes			10
3 Groupes abéliens				13
			pes abéliens de type fini	16
4	Les	théorèi	mes de Sylow	18

1 Les groupes

1.1 Définitions

Définition 1.1. Un *groupe* (G, *) est un ensemble non-vide G muni d'une loi de composition $*: G \times G \to G$ tels que :

- * est associative;
- G possède un élément neutre noté $e \in G$;
- chaque élément g de G possède un inverse noté g^{-1} .

Définition 1.2. Un ensemble non-vide M muni d'une loi de composition $*: M \times M \to M$ associative telle que M admet un neutre par * est appelé un *monoïde*.

Définition 1.3. Un monoïde (M, *) est dit *abélien* (ou *commutatif*) lorsque * est commutative.

Remarque. Un groupe est un monoïde admettant un inverse pour chaque élément. Dès lors, les résultats et définitions sur les monoïdes s'appliquent également aux groupes.

Proposition 1.4. *Dans un groupe* (G,*), *les équations :*

$$x * a = b, \tag{1}$$

et:

$$a * y = b \tag{2}$$

П

admettent une unique solution, i.e.:

$$(x,y) = (b * a^{-1}, a^{-1} * b) \in G^2.$$

<u>Démonstration</u>. G est un groupe, du coup a et b admettent un inverse. L'existence de la solution est donc triviale.

Soit x, solution de (1). On a alors :

$$x = x * e = x * a * a^{-1} = b * a^{-1}.$$

Similairement pour y, solution de (2), on a :

$$y = e * y = a^{-1} * a * y = a^{-1} * b.$$

Proposition 1.5. *Le neutre d'un groupe est unique, et l'inverse de tout élément l'est également.*

De plus:

$$\forall a, b, c, d \in G : \left\{ egin{array}{ll} c*a = d*a \Rightarrow c = d, \\ a*c = a*d \Rightarrow c = d. \end{array} \right.$$

Démonstration. EXERCICE.

Proposition 1.6. Si G est un ensemble non-vide muni d'une loi de composition * associative telle que (1) et (2) admettent une unique solution, alors (G, *) est un groupe.

<u>Démonstration</u>. Pour chaque élément $a \in G$, prenons e_a^L tel que $e_a^L * a = a$ et e_a^R tel que $a * e_a^R = a$. Ces deux équations admettent une unique solution par hypothèse. On trouve alors :

$$e_{\alpha}^{L} * \alpha = \alpha = \alpha * e_{\alpha}^{R}$$

d'où l'on déduit:

$$a * e_a^L * a = a * a = a * e_a^R * a$$
,

et donc $e_a^L = e_a^R$ en multipliant à gauche et à droite par a^{-1} . On en déduit l'unicité d'un neutre pour a et notons-le e_a . Montrons que ce neutre l'est pour tous les éléments de G. Prenons $(a,b) \in G^2$ et leur neutre respectif e_a et e_b . On peut écrire :

$$a * e_b * b = a * b = a * e_a * b$$

d'où l'on déduit $e_a = e_b$ en multipliant à gauche par a^{-1} et à droite par b^{-1} .

Définition 1.7. Si $|G| < \infty$, on peut définir la *table de multiplication* de (G,*) par un tableau de dimensions $|G| \times |G|$ reprenant tous les résultats de g*h pour $g,h \in G$.

1.2 Groupes de transformation

Définition 1.8. Soit S un ensemble non-vide. Soit G l'ensemble des bijections de S dans S. On définit la loi de composition :

$$\circ: G \times G \to G: (\psi, \phi) \mapsto (\psi \circ \phi),$$

tels que $\forall s \in S : (\psi \circ \varphi)(s) = \psi(\varphi(s)).$

Proposition 1.9. (G, \circ) *est un groupe (de permutation sur S).*

<u>Démonstration</u>. Le neutre est donné par Id ∈ G où $\forall s \in S : Id(s) = s$. La loi \circ est trivialement associative, et l'inverse d'une fonction est bien définie sur les bijections.

Exemple 1.1. L'ensemble $SO(3,\mathbb{R})$ des rotations axiales passant par $\mathfrak O$ forme un groupe de transformations. *Remarque.* Un groupe de transformation est composé de fonctions bijectives. L'ensemble G est donc un ensemble fonctionnel.

1.3 Sous-groupes

Définition 1.10. Soit (G,*) un groupe, et soit $S \subset G$. Si (S,*) est un groupe, alors on dit que (S,*) est un *sous-groupe* de (G,*).

Proposition 1.11. *Soit* (G, *) *un groupe.* $S \subseteq G$ *est un sous-groupe de* G *si et seulement si :*

$$\forall a, b \in S : a * b^{-1} \in S$$
.

Démonstration. □ Trivial car S est un groupe.

[⇐] S est non-vide, donc $e \in S$ car si $a \in S$, alors par hypothèse $e = a * a^{-1} \in S$. De même, soit $a \in S$. On sait que $a^{-1} = e * a^{-1} \in S$. Et S est stable par * car si $a, b \in S$, on sait que $b^{-1} \in S$, et donc $a * (b^{-1})^{-1} \in S$.

Proposition 1.12. Si $\{S_{\alpha} \ t.q. \ \alpha \in I\}$ est une famille de sous-groupes de (G,*), alors $S := \bigcap_{\alpha \in I} S_{\alpha}$ est un sous-groupe de (G,*) également.

<u>Démonstration</u>. On sait que $e \in S$ car $e \in S_{\alpha}$ pour tout $\alpha \in I$. Donc $S \neq \emptyset$. Prenons $a,b \in S$. On sait que $a,b \in S_{\alpha}$ pour tout $\alpha \in I$. Donc b^{-1} et $a*b^{-1}$ sont dans S_{α} pour tout $\alpha \in I$ également. Donc $a*b^{-1} \in S$. \square

Définition 1.13. Soit (G,*) un groupe et soit $P \subseteq G$. On appelle le *sous-groupe de* G *engendré par* P le plus petit sous-groupe de G contenant P. On le note $\langle P \rangle$

Définition 1.14. Soit (G, *) un groupe et soit $g \in G$. On appelle *ordre de* g le plus petit $n \in \mathbb{N}^*$ tel que $g^n = e$. On le note ord(e).

L'ordre de (G, *) est|G|.

Définition 1.15. Un groupe (G, *) est dit *cyclique* lorsqu'il existe $g \in G$ tel que $G = \langle g \rangle := \langle \{g\} \rangle$.

1.4 Isomorphismes

Définition 1.16. Un *isomorphisme* entre deux groupes (G,*) et (H,*) est une bijection $\varphi:G\to H$ telle que :

$$\forall g_1, g_2 \in G : \varphi(g_1 * g_2) = \varphi(g_1) \star \varphi(g_2).$$

Remarque. La relation « être isomorphe » dans l'ensemble des groupes est une relation d'équivalence.

De plus, sis G et H sont deux groupes finis, $\phi: G \to H$ est un isomorphisme si et seulement si ϕ est bijective, et la table de multiplication de H par $\phi(G)$ est l'image de la table de multiplication de G par G.

```
Proposition 1.17. Soit \phi : (G, *) \to (H, \star) un isomorphisme de groupes. Alors :
- \phi(e_G) = e_H;
- \forall g \in G : \phi(g)^1 = \phi(g^{-1}).
```

<u>Démonstration</u>. On sait que $\phi(e_G) = \phi(e_G * e_G) = \phi(e_G) \star \phi(e_G)$. Dès lors, il est évident que $\phi(e_G)$ est le neutre de H.

Soit $g \in G$. On sait également que $e_H = \phi(e_G) = \phi(g * g^{-1}) = \phi(g) \star \phi(g^{-1})$. On a donc bien, en multipliant par $\phi(g)^{-1}$ à gauche que $\phi(g)^{-1} = \phi(g^{-1})$.

Théorème 1.18. Tout groupe est isomorphe à un groupe de transformation.

<u>Démonstration</u>. Soit (G, *) un groupe, et soit g ∈ G. On définit $φ : G → \{ℓ_g \text{ t.q. } g ∈ G\}$, où $ℓ_g : G → G : h ↦ g * h$.

Pour $g \in G$, montrons que ℓ_g est bijective :

- il est évident que $\forall g, h, h' \in G : g * h = g * h' \iff h = h'$ par les règles de simplification;
- $\forall h \in G : \ell_q(g^{-1} * h) = g * g^{-1} * h = h.$

On a donc que ℓ_g est bien bijective pour tout $g \in G$.

Montrons maintenant que $\phi: g \mapsto \ell_g$ est un isomorphisme de groupes :

- ϕ est surjective par définition.
- soient $g, h \in G$. $\ell_g = \ell_h$ si et seulement si pour tout $\gamma \in G$, on a $g * \gamma = h * \gamma$, et donc si et seulement si on a g = h. ϕ est donc injective.
- Soient $g, h, \gamma \in G$. $\phi(g * h)(\gamma) = g * h * \gamma = g * \ell_h(\gamma) = (\ell_g \circ \ell_h)(\gamma)$.

Théorème 1.19. Tout groupe cyclique est déterminé, à isomorphisme près, par l'ordre d'un élément g qui l'engendre.

Plus précisément, si (G,*) est un groupe engendré par un élément g d'ordre ord(g) fini, alors $G \cong (\mathbb{Z}_{ord(g)},+)$; et si g est d'ordre infini, alors $(G,*) \cong (\mathbb{Z},+)$.

Démonstration. S'il existe $g \in G$ tel que $G = \langle g \rangle$ et ord $(g) \neq +\infty$, alors $G = \{e, g, ..., g^{\operatorname{ord}(g)-1}\}$.

Soit $\phi: \mathbb{Z}_{ord(g)} \to G: k \mapsto g^k$. ϕ est trivialement bijective, et on observe :

$$\phi(k+1) = q^{k+1} = q^k * q^1 = \phi(k) * \phi(1).$$

Supposons maintenant qu'il existe $g \in G$ tel que ord $(g) = +\infty$ et $\langle g \rangle = G$. On pose :

$$\forall p \in \mathbb{N}^* : g^{-p} \coloneqq g^{-1} * g^{1-p}.$$

Puisque ord $(g) = +\infty$, si $g^x = g^y$ pour $x, y \in \mathbb{Z}$, alors x = y. En reprenant le même φ étendu à \mathbb{Z} , on a bien, à nouveau, un isomorphisme de groupes.

Corollaire 1.20. Tout groupe cyclique est commutatif.

Démonstration. Étant isomorphe à \mathbb{Z}_n pour un certain $n \in \mathbb{N}$ ou à \mathbb{Z} , par passage à l'isomorphisme, la propriété d'additivité est conservée. □

Proposition 1.21. *Si* (G,*) *est un groupe cyclique, tout sous-groupe* S *de* G *est cyclique.*

<u>Démonstration</u>. Prenons $a \in G$ tel que $G = \langle a \rangle$. Posons $N \coloneqq \{n \in \mathbb{Z} \text{ t.q. } a^n \in S\}$. Dans le cas fini, prenons \underline{n} , le plus petit entier positif de N. Supposons par l'absurde que $a^t \in S$ ne soit pas une puissance entière de $\underline{a^n}$. Par Euclide, on a:

$$\exists (q,r) \in \mathbb{Z} \times \mathbb{N} \text{ t.q. } t = q\underline{n} + r,$$

et donc:

$$a^{t} = a^{q\underline{n}} * a^{r}$$

avec $0 \le r \le \underline{n}$. On sait que $a^t \in S$, et $a^{q\underline{n}} \in S$ (donc $a^{-q\underline{n}} \in S$). Dès lors, $a^r \in S$. Or \underline{n} est le plus petit entier positif tel que $a^{\underline{n}} \in S$. Il y a donc contradiction, et a^t est une puissance entière de $a^{\underline{n}}$. Dès lors, $S = \langle a^{\underline{n}} \rangle$. \square

1.5 Classes latérales et théorème de Lagrange

Dans cette sous-section, considérons que (G,*) est un groupe, et que S est un sous-groupe de G. **Définition 1.22.** Soient (G,*) un groupe, et S un sous-groupe de G. On appelle *classe latérale gauche de* S *par* $a \in G$ l'ensemble :

$$a * S := \{a * s \text{ t.q. } s \in S\}.$$

Similairement, une classe latérale droite est sous la forme :

$$S * a := \{s * a \text{ t.q. } s \in S\}$$
,

pour un certain $a \in G$.

Proposition 1.23. Deux classes latérales gauches a * S et b * S sont identiques ou sont d'intersection nulle.

<u>Démonstration</u>. Soient deux telles classes d'équivalences, telles que $a*S \cap b*S \neq \emptyset$. On sait alors qu'il existe $c \in a*S \cap b*S$. On en déduit $u,v \in S$ tels que a*u = c = b*v. On a alors, pour $s \in S$:

$$b * s = c * v^{-1} * s = a * u * v^{-1} * s.$$

Or u et v^{-1} sont dans S. Donc $b * S \subseteq a * S$.

Par un raisonnement similaire, on a $a * S \subseteq b * S$, et donc a * S = b * S.

Proposition 1.24. Deux éléments $a, b \in G$ ont la même classe latérale gauche, i.e. a * S = b * S si et seulement $si \ a^{-1} * b \in S$.

Démonstration. \Rightarrow $a * S = b * S = a * a^{-1} * b * S$. Donc $a^{-1} * b \in S$.

 \frown On sait S = e * S = s * S pour tout $s \in S$. Or $a^{-1} * b \in S$. Donc $S = a^{-1} * b * S$, ou encore a * S = b * S. \Box

Définition 1.25. On appelle *indice* d'un sous-groupe S de G le « nombre » de classes latérales gauches distinctes de S dans G.

Proposition 1.26. *Il existe une bijection entre un sous-groupe* S *et chacune de ses classes latérales.*

Démonstration. Soit $a \in G$. On considère $\phi : S \to a * S : s \mapsto a * s$.

 ϕ est surjective par définition, et est trivialement injective.

Corollaire 1.27. Il existe une bijection entre tout groupe (G,*) et l'ensemble $S \times T$, pour S, un sous-groupe de G et T l'ensemble des classes latérales gauches distinctes de S dans G.

Théorème 1.28 (Théorème de Lagrange). *Soient* (G,*) *un groupe fini, et* S *un sous-groupe de* G. *L'ordre de* G *est un multiple de l'ordre de* S.

Démonstration. Trivial par le corollaire précédent.

Corollaire 1.29. Si p est un nombre premier, tout groupe (G,*) à p éléments est isomorphe à $(\mathbb{Z}_p,+)$.

Démonstration. p est premier, donc $|G| \ge 2$. Soit g tel que ord(g) > 1 (c-à-d $g \ne e$). S := $\langle g \rangle$ est un sousgroupe de G, on en déduit par Lagrange que $|\langle g \rangle|$ divise |G|. Donc $|S| \in \{1, p\}$. Et comme $e, g \in S$ pour $g \ne e$, on a $|S| \ge 2$, et donc |S| = p. □

Corollaire 1.30. Si G est un groupe d'ordre fini n, pour tout $g \in G$, on a ord(g) divise n.

Corollaire 1.31. Il n'existe, à isomorphisme près, que deux groupes d'ordre 4, à savoir \mathbb{Z}_4 et $V_4 := \mathbb{Z}_2 \times \mathbb{Z}_2$.

Corollaire 1.32. *Tout groupe d'ordre fini* $n \le 5$ *est commutatif.*

1.6 Sous-groupes normaux et homomorphismes

Définition 1.33. Un sous-groupe N d'un groupe (G,*) est dit *normal* lorsque ses classes latérales gauches sont des classes latérales droites, i.e. :

$$\forall \alpha \in G: \alpha * N = N * \alpha.$$

Proposition 1.34. *Soit* N, *un sous-groupe d'un groupe* (G, *). *Les assertions suivantes sont équivalentes :*

- 1. N est normal;
- $2. \ \forall \alpha \in G: \alpha * N = N * \alpha;$
- 3. $\forall \alpha \in G : \alpha * N \subseteq N * \alpha$;
- 4. $\forall \alpha \in G : \alpha * N * \alpha^{-1} \subseteq N$.

<u>Démonstration</u>. On sait, par définition, que 1 \iff 2, et 2 \Rightarrow 3. En multipliant par a^{-1} à droite, on a 3 \iff 4.

Montrons donc que $3 \Rightarrow 2$. En particulier, c'est vrai pour a^{-1} , et donc $a^{-1} * N \subseteq N * a^{-1}$, ou encore $N * a \subseteq a * N$. Avec 3, cela implique que a * N = N * a.

Définition 1.35. Un *homomorphisme* d'un groupe (G,*) dans un groupe (H,*) est une application $f:G\to H$ telle que :

$$\forall g_1, g_2 \in G : f(g_1 * g_2) = f(g_1) \star f(g_2).$$

Proposition 1.36. Si f est un homomorphisme de (G,*) dans (H,*), alors l'image du neutre par f est le neutre de H, et l'inverse g^{-1} d'un élément $g \in G$ est envoyé sur $f(g)^{-1} \in H$.

Démonstration. Voir preuve de la Proposition 1.17.

Proposition 1.37. Si f est un homomorphisme de (G, *) dans (H, *), alors :

- 1. Im $f := \{f(g) \ t.g. \ g \in G\} =: f(G) \ est \ un \ sous-groupe \ de \ H;$
- 2. Ker $f := \{g \in G \text{ t.q. } f(g) = e_H\}$ est un sous-groupe normal de H.

<u>Démonstration</u>. Montrons d'abord que Im $f \le H$. Prenons donc $g, g' \in G$. On a alors $f(g) \star f(g')^{-1} = f(g \star g'^{-1}) \in \text{Im } f$ car f est un homomorphisme.

Montrons ensuite que Ker $f \leq G$. Prenons $g_1, g_2 \in Ker f$. On sait donc que :

$$f(g_1 * g_2^{-1}) = f(g_1) \star f(g_2)^{-1} = e_H \star e_H^{-1} = e_H.$$

On en déduit que $g_1 * g_2^{-1} \in \text{Ker f.}$

Montrons alors que pour tout $a \in G$, on a $a * Ker(f) * a^{-1} \subseteq Ker f$. Soit $g \in Ker f$. On calcule :

$$f\left(\alpha*g*\alpha^{-1}\right)=f(\alpha)*e_{H}*f(\alpha)^{-1}=f(\alpha)*f(\alpha)^{-1}=e_{H},$$

et donc $a*g*a^{-1} \in \text{Ker } f$, ou encore $a*\text{Ker}(f)*a^{-1} \subseteq \text{Ker } f$. Ker f est donc bien un sous-groupe normal de G.

Remarque. Un isomorphisme est un homomorphisme tel que $Ker f = \{e_G\}$ et Im f = H car f est respectivement injective et surjective.

Définition 1.38. Un homomorphisme d'un groupe (G, *) dans lui-même est appelé un *automorphisme*.

Définition 1.39. Pour tout $g \in G$, on définit la *conjugaison par* g comme la fonction :

$$c(g): G \rightarrow G: h \mapsto g * h * g^{-1}.$$

Proposition 1.40. *Pour* $g \in G$, *la conjugaison par* g *est un automorphisme.*

Démonstration. c(g) est injective par les règles de simplification, et est surjective car pour tout $\gamma \in G$, on a :

$$c(g)^{-1}(\gamma) = g^{-1} * \gamma * g,$$

en effet:

$$c(g)(g^{-1}*\gamma*g)=g*\left(g^{-1}*\gamma*g\right)*g^{-1}=\gamma.$$

Donc c(g) est bien surjective.

Et puisque c(g) va de G dans G, c'est bien un automorphisme.

Proposition 1.41. L'application $C: G \to Aut(G) \subset G^G: g \mapsto c(g)$ est un homomorphisme.

Démonstration. Soient g, h, γ ∈ G. On calcule :

$$\begin{split} C(g*h)(\gamma) &= c(g*h)(\gamma) = (g*h)*\gamma*(g*h)^{-1} = g*h*\gamma*h^{-1}*g^{-1} = c(g)(h*\gamma*h^{-1}) \\ &= c(g)\left(c(h)(\gamma)\right) = \left(c(g)\circ c(h)\right)(\gamma). \end{split}$$

Proposition 1.42. Soit f un homomorphisme de groupe de (G,*) dans (H,*). Deux éléments $x,y \in G$ ont la même image par f si et seulement si ils appartiennent à la même classe latérale de Ker f dans G.

Démonstration. Soient x et y tels que f(x) = f(y). On calcule :

$$f(x * y^{-1}) = f(x) \star f(y^{-1}) = f(y) \star f(y)^{-1} = e_H.$$

Donc $x * y^{-1} \in \text{Ker } f$, et donc x * Ker f = y * Ker f par la Proposition 1.24.

1.7 Groupes quotients

Soit $f:(G,*)\to (H,\star)$ un homomorphisme surjectif. Si $x'\in H$, alors il existe $x\in G$ tel que f(x)=x'. On a alors :

$$f^{-1}(\{x'\}) = x * Ker f.$$

Si|Ker f| \geqslant 2, prenons également $y' \in H$ et donc $y \in G$ tel que $f^{-1}(\{y'\}) = y * Ker f$.

On peut ensuite calculer:

$$x' \star y' = f(x) \star f(y) = f(x * y),$$

d'où l'on déduit:

$$f^{-1}(\{x' * y'\}) = x * y * Ker f.$$

Définition 1.43. Soit N un sous-groupe normal du groupe (G,*). On désigne par G/N l'ensemble des classes latérales de N dans G. Cela se lit G *quotienté* N.

Proposition 1.44. *Soient* x * N *et* y * N *deux éléments de* G/N. *Si* $x' \in x * N$ *et* $y' \in y * N$, *alors* :

$$x' * y' \in x * y * N.$$

<u>Démonstration</u>. On sait qu'il existe $\mathfrak{m},\mathfrak{n}\in \mathbb{N}$ tels que $x'=x*\mathfrak{n}$ et $y'=y*\mathfrak{m}$. Par normalité de \mathbb{N} , on sait qu'il existe $\mathfrak{m}'\in \mathbb{N}$ tel que $y'=\mathfrak{n}*y=y*\mathfrak{n}'$. Dès lors :

$$x' * y' = x * n * y * n' * m.$$

Or, $n' * m \in N$. Donc :

$$x' * y' \in x * y * N.$$

Définition 1.45. On définit le produit $\bar{*}: G/N \times G/N \to G/N: (x*N,y*N) \mapsto (x*N)\bar{*}(y*N) := x*y*N.$ **Théorème 1.46.** *Soient* (G,*) *un groupe et* N *un sous-groupe normal de* G. *Alors* $(G/N,\bar{*})$ *est un groupe.*

<u>Démonstration</u>. * est interne par définition et par la proposition précédente, et est associative par associativité de *.

 $(G/N, \bar{*})$ admet pour neutre e * N = N.

Soit
$$g * N \in G/N$$
. Il admet pour inverse $g^{-1} * N$ car $(g * N)\bar{*}(g^{-1} * N) = e * N = N$.

Définition 1.47. Le groupe $(G/N, \bar{*})$ est appelé le groupe quotient de G par N.

Définition 1.48. Soient (G,*) un groupe, et $N \le G$. La projection $\pi_N : G \to G/N : g \mapsto g * N$ est appelée la projection canonique.

Proposition 1.49. $\pi_N: (G,*) \to (G/N,\bar{*})$ *est un homomorphisme.*

Démonstration. Soient
$$q, h \in G$$
. $\pi_N(q * h) = q * h * N = (q * N) \bar{*}(h * N) = \pi_N(q) \bar{*}\pi_N(h)$.

Proposition 1.50. Si (G,*) et (H,*) sont deux groupes, $f:G\to H$ est un homomorphisme, et si N est un sousgroupe normal de G contenu dans $Ker\ f$, alors il existe un homomorphisme $\overline{f}:G/N\to H$ avec $\overline{f}(g*N)=f(g)$. De plus :

$$\label{eq:mean_f} \text{Im}\,\bar{f} = \text{Im}\,f \qquad \qquad \text{et} \qquad \qquad \text{Ker}\,\bar{f} = \text{Ker}(f)/N.$$

Démonstration. \bar{f} est bien définie. Soient $g, g' \in G$. On calcule :

$$\overline{f}((q*N)\overline{*}(q'*N)) = \overline{f}(q*q'*N) = f(q*q').$$

Par propriétés de morphismes de f, on trouve donc :

$$\overline{q}((q*N)\overline{*}(q'*N)) = f(q) \star f(q') = \overline{f}(q*N) \star \overline{f}(q'*N).$$

 $\operatorname{Im} f = \operatorname{Im} \overline{f}$ de manière triviale.

 $g * N \in \text{Ker } \bar{f} \text{ si et seulement si } g \in \text{Ker } f. \text{ On a alors bien } \text{Ker } \bar{f} = \{h * N \text{ t.q. } h \in \text{Ker } f\} = \text{Ker}(f)/N.$

1.8 Théorèmes d'isomorphisme

1.8.1 Premier théorème d'isomorphisme

Théorème 1.51. *Si* $f:(G,*) \to (H,\star)$ *est un homomorphisme de groupes, il induit un isomorphisme :*

$$G/Ker(f) \cong Im f.$$

<u>Démonstration</u>. (Im f, \star) est un groupe car Im f est un sous-groupe de H. f : G \to Im f est un homomorphisme.

Considérons $N = \text{Ker } f. \ \overline{f}: G/\text{Ker}(f) \to \text{Im } f$ est surjectif car $\text{Im } f = \text{Im } \overline{f}$ et est injectif car $\text{Ker}(\overline{f}) = \text{Ker}(f)/\text{Ker}(f) = \{e * \text{Ker } f\} = \{e\}. \ \overline{f}$ est donc un homomorphisme bijectif, ou encore, un isomorphisme. \square

1.8.2 Deuxième théorème d'isomorphisme

Théorème 1.52. Si K, N sont des sous-groupes de (G,*), alors $K/(N\cap K)\cong (N*K)/N$, où on définit :

$$N * K := \{n * k t.q. (n, k) \in N \times K\}.$$

<u>Démonstration</u>. Montrons que N * K est un sous-groupe de G, i.e. $\forall x, y \in N * K : x * y^{-1} \in N * K$. Prenons donc $(x, y) \in (N * K)^2$. Il existe $n_x, n_y \in N$ et $k_x, k_y \in K$ tels que $(x, y) = (n_x * k_x, n_y * k_y)$. On a alors :

$$x * y^{-1} = n_x * k_x * k_y^{-1} * n_y^{-1}.$$

En posant $k := k_x * k_u^{-1} \in K$ (car K est un sous-groupe), on trouve :

$$x*y^{-1} = n_x*k*n_y.$$

Par normalité de N on sait qu'il existe $n \in N$ tel que $k * n_y = n * k$. On trouve alors :

$$x * y^{-1} = n_x * n * k = (n_x * n) * k \in N * K.$$

On observe maintenant que si N est normal dans G, alors il l'est dans N * K.

L'application $f: K \to (N*K)/N: k \mapsto k*N$ est un homomorphisme. Son noyau est $Ker\ f = \{k \in K\ t.q.\ k*N = N\} = K \cap N.\ K \cap N$ est donc un sous-groupe normal de K. Par le théorème précédent, on a :

$$K/Ker(f) \cong Im f = (N * K)/N.$$

1.8.3 Troisième théorème d'isomorphisme

Théorème 1.53. Si K et N sont deux sous-groupes normaux de (G,*) tels que $K \subseteq N$, alors N/K est normal dans G/K et :

$$(G/K)/(N/K) \cong G/N.$$

<u>Démonstration</u>. Prenons $\pi_N : G \to G/N$ l'homomorphisme canonique. On a $K \subset Ker \pi = N$. Par le théorème précédent, il existe un homomorphisme $\overline{\pi} : G/K \to G/N : g * K \mapsto g * N$ surjectif de noyau $Ker \overline{\pi} = N/K$.

Puisque l'on en déduit G/K normal dans N/K, en appliquant le premier théorème d'isomorphisme à $\overline{\pi}$, on trouve :

$$(G/K)/(N/K) \cong G/N.$$

2 Actions de groupes

Définition 2.1. Une action (à gauche) d'un groupe (G,*) sur un ensemble S est une application :

$$\varphi: G \times S \to S: (g, x) \mapsto \varphi(g, x)$$

telle que :

 $- \forall x \in S : \varphi(e_G, x) = x;$

$$-$$
 ∀ $g_1, g_2 ∈ G : ∀x ∈ S : φ($g_1 * g_2, x$) = φ($g_1, φ(g_2, x)$).$

S'il existe une action entre un groupe (G, *) et un ensemble S, on dit que G agit sur S.

Remarque. Pour $g \in G$, $x \in S$ et ϕ une action de G sur S, on note souvent $gx = \phi(g,x)$.

Définition 2.2. Soit (G,*) un groupe et $H \le G$ un sous-groupe. Une action de H sur G est sous la forme $\varphi(h,g) = h*g$. Une telle action est appelée *une translation à gauche* de H par G.

Exemple 2.1. La conjugaison c(g) est une action.

Remarque. Soient (G,*) un groupe et H, K deux sous-groupes de G avec K normal. H agit sur G/K par translation gauche :

$$(h, g * K) \mapsto (h * g) * K$$

Définition 2.3. Soit (G,*) un groupe agissant sur un ensemble S. Cette action φ définit une relation d'équivalence sur S:

$$\forall x, x' \in S : x \sim x' \iff \exists g \in G \text{ t.g. } gx = x'.$$

Les classes d'équivalence induites par \sim (donc les éléments de S/ \sim) sont appelées les *orbites de* S *sous l'action de* G.

On note:

$$\mathcal{O}_{x} := \{gx \text{ t.q. } g \in G\}$$

l'orbite de $x \in S$.

Proposition 2.4. *Les orbites de* S *sous l'action de* G *forment une partition de* S.

Définition 2.5. Si $|S/\sim|=1$, on dit que l'action est transitive.

Définition 2.6. Soit (G, *) un groupe agissant sur un ensemble S, et soit $x \in S$. On définit le *stabilisateur de* x *dans* G par :

$$G_x := \{g \in G \text{ t.q. } gx = x\}$$

Proposition 2.7. Le stabilisateur de $x \in S$ dans G est un sous-groupe de G.

<u>Démonstration</u>. Soient $a,b \in G_x$. On observe que :

$$\phi(b^{-1}, x) = \phi(b^{-1}, \phi(b, x)) = \phi(e_G, x) = x.$$

Dès lors, $b^{-1} \in G_x$. Montrons alors que $a*b^{-1} \in G_x$:

$$\phi(\alpha * b^{-1}, x) = \phi(\alpha, \phi(b^{-1}, x)) = \phi(\alpha, x) = x.$$

Définition 2.8. Soit (G,*) un groupe. G agit sur lui-même par conjugaison. Pour $x \in G$, on a :

$$G_x = \{g \in G \text{ t.q. } gxg^{-1} = x\} \Rightarrow C_G(x),$$

que l'on appelle le *centralisateur de* x *dans* G.

Définition 2.9. Si G agit sur l'ensemble de ses sous-groupe par conjugaison, pour $K \leq G$, on définit :

$$G_K := \{g \in G \text{ t.q. } gKg^{-1} = K\} =: N_G(K),$$

que l'on appelle normalisateur de K dans G.

Remarque. On observe que $\langle x \rangle \leq C_G(x)$, et K est un sous-groupe normal de $N_G(K)$.

Remarque. Soient (G,*) un groupe agissant sur un ensemble S, et G_x , le stabilisateur de x dans G. L'indice de G_x dans G (noté $[G:G_x]$) est égal à :

$$[G:G_x] = \frac{|G|}{|G_x|}.$$

Théorème 2.10. *Soit* (G,*) *un groupe agissant sur un ensemble* S. *Alors* $\forall x \in S$, *on a* :

$$|\mathfrak{O}_x| = [G:G_x].$$

<u>Démonstration</u>. L'application $\phi: G/G_x \to \mathcal{O}_x: gG_x \mapsto gx$ est une bijection car :

$$gG_x = \phi(g, G_x) = \{\phi(g, hx) \text{ t.q. } h \in G \text{ et } hx = x\} = \{\phi(g, x)\} = \{gx\}.$$

Corollaire 2.11. *Si* (G, *) *est un groupe fini, alors :*

- 1. $\forall x \in G : |\{gxg^{-1} \text{ t.q. } g \in G\}| = [G : C_G(x)];$
- 2. $si \ \mathfrak{O}_{x_i}$ pour $i=1,\ldots,m$ sont les classes de conjugaison, distinctes deux à deux, d'éléments de G (avec $x_i \in G$), alors :

$$|G| = \sum_{k=1}^{m} |O_{x_k}| = \sum_{k=1}^{m} [G : C_G(x_k)];$$

3. la cardinalité de l'ensemble des sous-groupes de G qui sont conjugués à un sous-groupe K de G fixé, est égal à :

$$[G:N_G(K)],$$

qui divise |G|.

Définition 2.12. On définit le centre du groupe G par :

$$Z(G) := C(G) := \{x \in G \text{ t.g. } \forall g \in G : gxg^{-1}\}.$$

Remarque. On observe que $|\mathfrak{O}_{x_i}|=1 \iff x_i \in C(G)$. Cela amène à la *formule des classes* qui dit que :

$$|G| = |C(G)| + \sum_{j=1}^{n} |O_{x_j}|,$$

où \mathcal{O}_{x_i} sont les classes de conjugaison contenant au moins 2 éléments.

Définition 2.13. Soit $\phi : G \to S$, une action d'un groupe G sur un ensemble S. Pour $g \in G$ fixé, on définit :

$$\phi: S \to S: x \mapsto \phi_{\mathfrak{g}}(x) = \phi(\mathfrak{g}, x) = \mathfrak{g}x.$$

 $\underline{\textit{D\'{e}monstration}}. \ \ \text{Soient} \ \ x,y \in S. \ \ \text{Si} \ \ \varphi_g(x) = \varphi_g(y), \ \ \text{alors} \ \ x = \varphi(g^{-1},\varphi_g(x)) = \varphi(g^{-1},\varphi_g(y)) = y.$

De plus, soit $x \in S$. On sait que $\varphi(g^{-1}, x) \in S$ par définition. Notons y cette valeur. On a alors :

$$\phi_g(y) = \phi_g(g^{-1}x) = x.$$

 ϕ_q est donc injective et surjective.

Définition 2.15. Notons A(S) = Sym(S) le groupe des bijections de S dans S muni de la composition.

Théorème 2.16. Soit $\phi: G \times S \to S$. L'application $\widetilde{\phi}: G \to A(S): g \mapsto \phi_g$ est un homomorphisme de groupes.

Théorème 2.17. Si (G,*) est un groupe, alors il existe un homomorphisme de groupes $\widetilde{\varphi}: G \to Aut(G)$ tel que $Ker \widetilde{\varphi} = C(G)$.

Lemme 2.18. Soit G, un groupe d'ordre fini \mathfrak{p}^n , pour \mathfrak{p} premier, et $n \in \mathbb{N}^*$. Soit S un ensemble fini sur lequel G agit. Si S_0 est un ensemble de points fixes de S sous l'action de G:

$$S_0 := \{x \in S \ t.q. \ \forall g \in G : gx = x\},\$$

alors:

$$|S| = |S_0| \mod p$$
.

<u>Démonstration</u>. On écrit S comme une union disjointe d'orbites sous l'action de G. On remarque que l'orbite O_x d'un point $x \in S$ ne contient qu'un seul point (donc x) si et seulement si $x \in S_0$. Donc :

$$S = S_0 \sqcup \mathcal{O}_{x_1} \sqcup \mathcal{O}_{x_2} \sqcup \ldots \sqcup \mathcal{O}_{x_n},$$

pour $|\mathcal{O}_{x_i}| \geqslant 2$.

On sait que $|\mathcal{O}_{x_i}|$ divise |G| pour tout i. Or, seules les puissances de p divisent |G|, donc p divise \mathcal{O}_{x_i} . Or:

$$S \setminus S_0 = \mathcal{O}_{x_1} \sqcup \ldots \sqcup \mathcal{O}_{x_n}$$
.

Du coup:

$$|S| - |S_0| = pK,$$

pour un certain $K \in \mathbb{N}^*$, et donc :

$$|S| = |S_0| + pK = |S_0| \mod p$$
.

Théorème 2.19 (Théorème de Cauchy). *Soit* (G,*) *un groupe fini, et* p *un nombre premier qui divise* |G|. *Alors* G *possède au moins un élément* $g \in G$ *tel que* $\operatorname{ord}(g) = p$.

<u>Démonstration</u>. On pose :

$$S := \{(g_1, \ldots, g_p) \in G^p \text{ t.q. } g_1 \ldots g_p = e_G\}.$$

Puisque $g_p = (g_1 \dots g_p)^{-1}$, on $a|S| = |G|^{p-1}$, et par hypothèse, p divise |G|. Soit $H \cong \mathbb{Z}_p$, le groupe cyclique d'ordre p agissant sur S par permutations cycliques du type :

$$\mathbb{Z}_p \times S \to S : (k, (g_1, \ldots, g_p)) \mapsto k(g_1, \ldots, g_p) := (g_{k+1}, \ldots, g_p, g_1, \ldots, g_k).$$

Posons alors:

$$S_0 := \{(g_1, \dots, g_p) \in S \text{ t.q. } g_1 = \dots = g_p\} = \{(g, \dots, g) \in S \text{ t.q. } g^p = e\}.$$

On sait $|S_0| \ge 1$ car $(e, \dots, e) \in S_0$. De plus, par le lemme précédent, p divise $|S_0|$, donc $|S_0| \ge 2$.

Il existe donc au moins une valeur $g \in G$ telle que $g \neq e_G$, et $g^p = e$.

3 Groupes abéliens

Lemme 3.1. *Si* (G,*) *est un groupe cyclique, alors tout sous-groupe de* G *est cyclique.*

<u>Démonstration</u>. Soit $g \in G$ tel que $G = \langle g \rangle$. Soit $H \leq G$, un sous-groupe de G. Posons :

$$A := \{\ell \in \mathbb{Z} \text{ t.q. } g^{\ell} \in H\}.$$

Prenons ℓ , $m \in A$. On a alors $g^{\ell-m} = g^{\ell} * (g^m)^{-1}$, la composition de deux éléments de H. Donc $\ell - m \in A$, ce qui fait de A un sous-groupe de \mathbb{Z} . Si $A = \{0\}$, alors A est trivialement cyclique, et sinon soit n, le plus petit entier strictement positif de A. On a alors $A \cong n\mathbb{Z}$.

Lemme 3.2. *Soit* $G = \langle g \rangle$, *un groupe cyclique d'ordre* $n \leq +\infty$, *et soit* $\ell \in \mathbb{N}^*$. *Alors* :

$$\left|\left\langle g^{\ell}\right\rangle\right| = \frac{n}{GCD(n,\ell)}$$

 $\underline{\textit{D\'emonstration}}.$ On cherche le plus petit entier positif k tel que $(g^\ell)^k=g^{k\ell}=e.$ On a :

$$\begin{cases} \ell &= GCD(\ell, n)r \\ n &= GCD(\ell, n)s, \end{cases}$$

pour $s,r\in\mathbb{N}$, avec GCD(r,s)=1. Si $g^{k\ell}=e$, c'est que n divise $k\ell$, et donc $\frac{n}{GCD(n,\ell)}=s$ divise k. De plus :

$$\left(g^{\ell}\right)^{\frac{n}{GCD(\mathfrak{n},\ell)}}=g^{\frac{\ell n}{GCD(\mathfrak{n},\ell)}}=g^{nr}=e^r=e.$$

On en déduit que $k = ord(g^{\ell})$ divise $\frac{n}{GCD(n,\ell)}$. Donc $k = \frac{n}{GCD(n,\ell)}$.

Exemple 3.1. On sait que $\mathbb{Z}_{30} = \langle 1 \rangle$. Alors $|\{5, 10, 15, 20, 25, 0\}| = |\langle 5 \rangle| = \frac{30}{5} = 6$.

Définition 3.3. Dans un groupe abélien, on prend pour convention d'écrire la loi de composition +, de noter l'inverse par de $g \in G$ par $-g \in G$, et de noter la composition n fois par $g^n = ng$.

Lemme 3.4. Soit $\phi: H \to K$, un morphisme de groupes abéliens. Si Ker ϕ et Im ϕ sont engendrés par un ensemble fini, alors H l'est également.

Soit $x \in H$. Il existe $(a_1, \dots, a_s) \in \mathbb{Z}^s$, tel qu'on peut écrire :

$$\varphi(x) = \sum_{k=1}^{s} a_k i_k.$$

Par définition des h_i et par propriétés de morphismes, on peut écrire :

$$\begin{split} \phi(x) &= \sum_{k=1}^s \alpha_k \phi(h_k) = \phi\left(\sum_{k=1}^s \alpha_k h_k\right) \\ 0 &= \phi(x) - \phi\left(\sum_{k=1}^s \alpha_k h_k\right) = \phi\left(x - \sum_{k=1}^s \alpha_k h_k\right) \\ \text{Ker } \phi \ni x - \sum_{k=1}^s \alpha_k h_k, \end{split}$$

et donc il existe $(b_1, \ldots, b_r) \in \mathbb{Z}^r$ tel qu'on peut écrire :

$$x - \sum_{k=1}^{s} a_k h_k = \sum_{t=1}^{r} b_t k_t,$$

ou encore:

$$x = \sum_{k=1}^{s} a_k h_k + \sum_{t=1}^{r} b_t k_t.$$

H est bien généré par $\{h_1, \ldots, h_s, k_1, \ldots, k_r\}$.

Proposition 3.5. Tout sous-groupe d'un groupe abélien finiment engendré est finiment engendré.

<u>Démonstration</u>. Soit $\{g_1, \dots, g_n\}$, un ensemble générateur de G. Pour $1 \le k \le n$, on définit :

$$G_k := \langle g_1, \ldots, g_k \rangle$$
.

Soit H un sous-groupe de G, et posons $H_i := H \cap G_i$ pour i = 1, ..., n.

Montrons ce résultat par récurrence sur G_k.

Pour k=1, le groupe $G_k=G_1=\langle g_1\rangle$ est un groupe cyclique, et par propriété d'intersection (Proposition 1.12), on sait que H_1 est un sous-groupe, et cyclique qui plus est.

Supposons alors pour j < n que tout sous-groupe de G_j est finiment engendré. Considérons alors la projection :

$$\phi_i: G_{i+1} \to G_{i+1}/G_n$$

un morphisme de groupes. Intéressons-nous à la restriction de ϕ_j à H_{j+1} . Puisque Ker $\phi_j = G_j$, on trouve :

$$\operatorname{Ker} \phi_{j}\Big|_{H_{j+1}} = H_{j+1} \cap G_{j},$$

et $H_{j+1} \cap G_j$ est un sous-groupe de G_j . Or, par hypothèse, on suppose que tout sous-groupe de G_j est finiment engendré. Donc Ker $\varphi_k\Big|_{H_{j+1}}$ est finiment engendré.

De plus, $\text{Im } \varphi_k \leqslant G_{j+1}/G_j = \left\langle g_{j+1} + G_k \right\rangle$. Donc $\text{Im } \varphi_k \Big|_{H_{j+1}} \leqslant \text{Im } \varphi_k \text{ est finiment engendr\'e}.$

Par le lemme précédent, on trouve que H_{j+1} est finiment engendré. La propriété est en particulier vraie pour j=n, et donc pour G.

Théorème 3.6 (Théorème fondamental des groupes abéliens finis). Soit (G,+) un groupe abélien fini. Alors il existe une unique suite $(n_1,\ldots,n_{d(G)})\in\mathbb{Z}^{d(G)}$ telle que :

$$\prod_{i=1}^{d(G)} n_i = |G|,$$

et:

$$G \cong \prod_{k=1}^{d(G)} \mathbb{Z}_{n_k}$$
,

avec d(G) la cardinalité du plus petit générateur de G (au sens de l'inclusion), tel que $\forall 1 \leqslant k \lneq d(G) : n_k$ divise n_{k+1} .

<u>Démonstration</u>. Montrons cela par récurrence. Si d(G) = 1, alors G est cyclique, et donc isomorphe à \mathbb{Z}_{n_1} .

Supposons alors $d(G) \ge 2$ tel que pour tout groupe abélien G' tel que $d(G') \le d(G)$, le théorème est vrai. Soit m, le plus petit entier strictement positif tel qu'il existe $\{g_1, \ldots, g_{d(G)}\}$, un ensemble générateur de G satisfaisant :

$$mg_1 + \sum_{k=2}^{d(G)} a_k g_k = 0.$$
 (3)

Pour $i \in \{2, ..., d(G)\}$, on pose :

$$a_i = mq_i + r_i$$

pour $q_i \in \mathbb{N}$, et $r_i \in \mathbb{N}$ tel que $r_i \nleq m$.

Posons ensuite:

$$h_1 \coloneqq g_1 + \sum_{k=2}^{d(G)} q_k g_k.$$

L'équation (3) devient alors :

$$m\left(g_1+q_2g_2+\ldots+q_{d(G)}g_{d(G)}\right)+\sum_{k=2}^{d(G)}r_kg_k=mh_1+\sum_{k=2}^{d(G)}r_kg_k=0.$$

On trouve alors, par définition de \mathfrak{m} , $r_2 = \ldots = r_{d(G)} = 0$, et donc $\mathfrak{m}h_1 = 0$, avec $\mathfrak{m} \neq 0$, donc \mathfrak{m} divise $\operatorname{ord}(h_1)$. Or \mathfrak{m} est le plus petit entier avec cette propriété. Donc $\mathfrak{m} = \operatorname{ord}(h_1)$.

On a un morphisme surjectif de groupes : Θ : $\langle h_1 \rangle \times \langle g_2, \dots, g_{d(G)} \rangle \to G$: $(a, b) \mapsto a + b$. On observe que Θ est injective car $(a, b) \in \text{Ker } \Theta \iff a = b = e$ par (3). Donc Θ est un isomorphisme, et donc :

$$\exists G' \text{ t.q. } G \cong Z_{\mathfrak{m}} \times G',$$

et par récurrence, on a $\exists (n_2, ..., n_{d(G)})$ tel que :

$$G' \cong \mathbb{Z}_{n_1} \times \dots \mathbb{Z}_{n_{d(G)}}$$
.

Il reste alors à montrer que \mathfrak{m} divise \mathfrak{n}_2 . On pose $\mathfrak{n}_2=\mathfrak{m}\mathfrak{q}+\mathfrak{r}$, et on observe que $\mathfrak{m}\mathfrak{h}_1+\mathfrak{n}_2\mathfrak{h}_2=0$ si \mathfrak{h}_2 engendre $\mathbb{Z}_{\mathfrak{n}_2}$. On a donc :

$$m\left(h_1+qh_2\right)+rh_2=0 \Rightarrow r=0.$$

3.1 Groupes abéliens de type fini

Définition 3.7. Un groupe abélien est dit *de type fini* lorsqu'il est engendré par un ensemble fini.

Définition 3.8. La *torsion* T d'un groupe (G, *) est définie par :

$$T := \{g \in G \text{ t.q. } ord(g) \nleq +\infty\}.$$

Remarque. On remarque que e est toujours dans la torsion du groupe dont il est le neutre.

Définition 3.9. Un groupe (G, *) de torsion $T = \{e\}$ est dit *sans torsion*, et un groupe de torsion T = G est dit *de torsion*.

Proposition 3.10. La torsion T d'un groupe abélien de type fini G est un sous-groupe de G.

<u>Démonstration</u>. Soient $x,y \in T$. On sait que $y^{-1} \in T$ car $ord(y) = ord(y^{-1})$. Puisque G est de type fini, on sait :

$$x = \sum_{i=1}^{d(G)} a_i g_i$$
 et $y = \sum_{i=1}^{d(G)} b_i g_i$,

pour $\{g_1,\ldots g_{d(G)}\}\subset G$ tel que $G=\Big\langle g_1,\ldots,g_{d(G)}\Big\rangle.$ Dès lors :

$$ord(x) \, ord(y)(x-y) = ord(x) \, ord(y) \, \sum_{i=1}^{d(G)} (a_i - b_i) g_i = ord(y) \, \left(ord(x)x\right) - ord(x) \, \left(ord(y)y\right) = ord(x) e - ord(y) e = e.$$

Dès lors, x - y a un ordre fini qui divise ord(x) ord(y) (à savoir LCM(ord(x), ord(y))).

Théorème 3.11. Soit (G, +) un groupe abélien sans torsion de type fini. Alors $G \cong \mathbb{Z}^{d(G)}$.

<u>Démonstration</u>. Soit $\hat{g} := \{g_1, \dots, g_{d(G)}\}$, une partie génératrice de G. On définit :

$$\Pi: \mathbb{Z}^{d(G)} \to G: (\alpha_1, \ldots, \alpha_{d(G)}) \mapsto \sum_{\mathfrak{i}=1}^{d(G)} \alpha_{\mathfrak{i}} g_{\mathfrak{i}},$$

un morphisme de groupes surjectif.

Montrons que Π est injectif. Si $(a_1, \ldots, a_{d(G)}) \in \text{Ker } \Pi$, alors :

$$\sum_{i=1}^{d(G)} a_i g_i = 0. (4)$$

De plus, G est sans torsion, donc tout $g \in G$ tel que $g \neq e_G$ est d'ordre infini. En considérant $(a_1, \ldots, a_{d(G)}) \neq (0, \ldots, 0)$, on déduit qu'il existe au moins deux coefficients non-nuls. Prenons a_1 et a_2 (réorganisation des indices). Supposons $|a_1| > |a_2|$ sans perte de généralité.

Si $a_1a_2 > 0$ (même signe), alors $|a_1 - a_2| < |a_1|$. L'équation (4) devient alors :

$$(a_1 - a_2)g_1 + a_2(g_1 + g_2) + \sum_{i=3}^{d(G)} a_i g_i = 0.$$

Si $a_1a_2 < 0$ (signe opposé), alors $|a_1 + a_2| < |a_1| < |a_1 - a_2|$. L'équation (4) devient alors :

$$(a_1 + a_2)g_1 + a_2(g_2 - g_1) + \sum_{i=3}^{d(G)} = 0.$$

En réitérant un nombre fini de fois, on montre qu'il existe un élément différent de e_G d'ordre fini, ce qui est une contradiction.

Π est donc injective, donc bijective, et donc un isomorphisme.

Lemme 3.12. *Soit* (G, +) *un groupe abélien de type fini.* G/T *est un groupe sans torsion.*

Démonstration. Soit $g \in G$ tel que T ≠ $g + T \in G/T$. Dès lors, $g \notin T$, et donc, $\nexists n \in \mathbb{N}$ t.q. ng + T = T.

Lemme 3.13. Tout groupe abélien (G, +) de type fini est isomorphe au produit direct d'un groupe abélien fini et d'un groupe abélien sans torsion de type fini.

<u>Démonstration</u>. T est un sous-groupe de G. Considérons G/T, qui est sans torsion (lemme précédent). Soit π : $G \to G/T$, la projection canonique. Par le Théorème 3.11, $G/T \cong \mathbb{Z}^{\ell}$, pour $\ell \coloneqq d(G/T)$. Soit $\{g_1 + T, \dots, g_{\ell} + T\}$ un ensemble générateur de G/T.

Soit $f: G/T \to G: \sum_{i=1}^\ell \alpha_i g_i \mapsto \sum_{i=1}^\ell \alpha_i g_i$. f est un morphisme injectif, et donc :

$$\pi \circ f : G/T \to G/T = Id_{G/T}$$
.

Soit O : $T \times G/T \rightarrow G$: $(t,x) \mapsto O(t,x) = t + f(x)$. O est surjectif. En effet :

$$\forall q \in G : \pi(q - (f \circ \pi)(q)) = \pi(q) - (\pi \circ f)(\pi(q)) = \pi(q) - \pi(q) = 0,$$

et donc $\mathbf{t}(\mathbf{q}) \coloneqq \mathbf{q} - (\mathbf{f} \circ \pi)(\mathbf{q}) \in \operatorname{Ker} \pi = \mathsf{T}. \operatorname{Or} :$

$$q = q - (f \circ \pi)(q) + (f \circ \pi)(q) = t(q) + (f \circ \pi)(q) = O(q, \pi(q)).$$

De plus, O est injective car O(t,x)=0 si et seulement si t=-f(x), donc $f(x)\in T$ car $0\in T$. f est un morphisme, donc si f(x) est d'ordre fini, alors x est d'ordre fini car f(nx)=nf(x). De plus, si x est d'ordre fini et f est injective, il faut x=0 car x est dans la torsion de G/T. On a donc $O(t,x)=0\iff (t,x)=(0_T,0_{G/T})$.

Théorème 3.14. Soit (G,+) un groupe abélien de type fini. Alors il existe $\ell > 0$ et une suite unique d'entiers positifs (n_1,\ldots,n_k) tel que n_j divise n_{j+1} pour $1 \leqslant j \nleq k$ et $G \cong \mathbb{Z}^\ell \times \mathbb{Z}_{n_1} \times \ldots \times \mathbb{Z}_{n_k}$.

<u>Démonstration</u>. Montrons que $|T| < +\infty$. T est un groupe de torsion de type fini puisque G est de type fini. Il existe donc un générateur de $T : \{t_1, \ldots, t_{d(T)}\}$ tel que pour $x \in T$:

$$x = \sum_{i=1}^{d(T)} a_i t_i.$$

 $Donc|T|\leqslant LCM\left(\alpha_1,\ldots,\alpha_{d(T)}\right)<+\infty.$

Par le lemme précédent et par le théorème fondamental des groupes abéliens finis, on a ce résultat ($T \cong \mathbb{Z}^{d(T)=:\ell}$).

4 Les théorèmes de Sylow

Définition 4.1. Soit (G,*) un groupe fini, et soit p un diviseur premier de|G|. Si H est un sous-groupe de G tel que $|H| = p^n$ pour un certain $n \in \mathbb{N}^*$, on dit que H est un p-sous-groupe de G. Si de plus, p ne divise pas $\frac{|G|}{|H|}$, on dit que H est un p(-sous-groupe de G) Sylow de G.

Théorème 4.2 (Premier théorème de Sylow). *Soit* G *un groupe fini et soit* $p \in \mathbb{N}$ *premier tel que* p *divise* |G|. *Alors* G *possède au moins un* p-*Sylow.*

<u>Démonstration</u>. Montrons cela par récurrence sur |G|. Si $\exists \alpha \in \mathbb{N}^*$ tel que $|G| = \mathfrak{p}^{\alpha}$, alors G est son propre \mathfrak{p} -Sylow.

Supposons que le théorème soit faux pour un G d'ordre le plus petit possible. On a donc $\alpha \in \mathbb{N}$ et $\mathfrak{m} \in \mathbb{N}$ tels que $\mathfrak{m} > 1$, $GCD(\mathfrak{p}_{r},\mathfrak{m}) = 1$ et $|G| = \mathfrak{p}^{\alpha}\mathfrak{m}$. On sait de plus (formule des classes) :

$$|G| = |Z(G)| + \sum_{k=1}^{r} [G : C_G(x_k)],$$

où $\mathcal{O}_{x_1}, \dots, \mathcal{O}_{x_r}$ sont les orbites (classes de conjugaison) de cardinalité $\ngeq 1$.

Cas 1 Supposons qu'il existe un j tel que p^{α} divise $|C_G(x_j)|$. Puisque $|C_G(x_j)| < |G|$, l'hypothèse nous donne un p-Sylow de $C_G(x_j)$, qui est également un p-Sylow de G, contradiction.

Cas 2 Supposons que pour tout $1 \le j \le r : p^{\alpha}$ ne divise pas $|C_G(x_j)|$. On sait :

$$\forall 1 \leqslant j \leqslant r : |G| = |C_G(x_i)| [G : C_G(x_i)].$$

Or p^{α} divise |G|, donc p^{α} divise $[G:C_G(x_j)]$ pour tout j. Par la formule des classes, on a alors p divise |Z(G)|.

De plus, Z(G) est abélien. Par le théorème de Cauchy, il existe $x \in Z(G)$ tel que ord(x) = p. Étant donné que $\langle x \rangle$ forme un sous-groupe normal de G, on peut poser $G' := G/\langle x \rangle$. On a $|G'| = \frac{|G|}{p} = p^{\alpha-1}m < p^{\alpha} = |G|$. Donc par hypothèse de récurrence, il existe P', un p-Sylow de G' d'ordre $p^{\alpha-1}$. Or, tout sous-groupe de $G/\langle x \rangle$ est sous la forme $H/\langle x \rangle$, pour $H \leqslant G$. Il existe donc $P \leqslant G$ tel que $P/\langle x \rangle = P'$. Et donc :

$$|P'| = p^{\alpha - 1} = \frac{|P|}{|\langle x \rangle|} = \frac{|P|}{p},$$

ou encore $|P| = p^{\alpha}$, et donc P est un p-Sylow de G, ce qui est une contradiction.

Remarque. Si $|G| < +\infty$ et p est premier tel que p divise|G|, alors tout sous-groupe conjugué xPx^{-1} admet un p-Sylow.

Si un groupe G n'admet qu'un seul p-Sylow P, alors P est normal dans G.

Théorème 4.3 (Deuxième théorème de Sylow). *Soit* H, un p-sous-groupe d'un groupe fini G. Soit P, un p-Sylow de G. Alors il existe $x \in G$ tel que $H \subseteq xPx^{-1}$.

En particulier, tous les p-Sylow sont conjugués.

<u>Démonstration</u>. On regarde l'action de H par translation à gauche sur S := G/P:

$$\varphi: H \times S \to S: (h, xP) \mapsto hxP.$$

Par le Lemme 2.18, pour :

$$S_0 = \{x \in S \text{ t.q. } \forall h \in H : \varphi(h, xP) = xP\},\$$

on a:

$$|G/P| = [G : P] = |S| = |S_0| \mod p.$$

Or p ne divise pas |S| car P est un p-Sylow. Donc $|S_0| \neq 0$. Donc il existe $xP \in S_0$. Or :

$$\begin{split} xP \in S_0 &\iff \forall h \in H: hxP = \varphi(h, xP) = xP \\ &\iff \forall h \in H: x^{-1}hxP = P \\ &\iff \forall h \in H: x^{-1}hx \in P \\ &\iff x^{-1}Hx \subseteq P \\ &\iff H \subseteq xPx^{-1}. \end{split}$$

Corollaire 4.4. Si P est un p-Sylow de G, et P est un sous-groupe normal de G, alors P est l'unique p-Sylow de G.

Théorème 4.5 (Troisième théorème de Sylow). *Soit* G *un groupe fini et soit* p *premier tel que* p *divise* |G|. *Le nombre de* p-Sylow *de* G *divise* |G| *et est de la forme* :

$$[G : N_G(P)] = kp + 1,$$

avec $k \in \mathbb{N}$.

<u>Démonstration</u>. Par le deuxième théorème de Sylow, ce nombre de p-Sylow est égal au nombre de conjugués d'un p-Sylow.

Pour P fixé, on a donc :

$$\left| \left\{ x P x^{-1} \text{ t.q. } x \in G \right\} \right| = |\mathfrak{O}_{P}| \Longrightarrow \left| P^{G} \right|.$$

On considère l'action de G sur les sous-groupes de G par conjugaison. Le stabilisateur de P dans cette action est $N_G(P)$. De plus :

$$|\mathfrak{O}_P| = \left|\left\{xPx^{-1} \text{ t.q. } x \in G\right\}\right| = [G:N_G(P)] \text{ divise } |G|.$$

On regarde l'action de P sur l'ensemble des p-Sylow par conjugaison :

$$\phi: P \times \mathcal{O}_P \to \mathcal{O}_P: (q, xPx^{-1}) \mapsto \phi(q, xPx^{-1}) = qxPx^{-1}.$$

Si S₀ désigne l'ensemble des p-Sylow fixes par cette action, on a :

$$Q \in S_0 \iff \forall g \in P : gQg^{-1} = Q$$
$$\iff P \leqslant N_G(Q).$$

P et Q sont des p-Sylow de G, et des sous-groupes de $N_G(Q)$. Dès lors, P et Q sont conjugués dans $N_G(Q)$. Ainsi, on a $P = xQx^{-1}$, pour $x \in N_G(Q)$. Comme Q est normal dans $N_G(Q)$, on a $xQx^{-1} = Q$, et donc P = Q. Il y a donc un unique élément dans S_0 , et par la formule $|S| = |S_0| \mod p = 1 \mod p$, on trouve |S| = 1 + kp, pour $k \in \mathbb{N}$.