Porting Microchip WINC Harmony3 Drivers for the Host SAMA5D27 MPU

Introduction

This document details the porting of WINC1500 and WINC3400 Drivers for the Host SAMA5D27 MPU using the SAMA5D27-SOM1-EK1 development board. The document also describes various aspects of the SW and HW requirements, creating a basic application to check the functionality of WINC driver initialization, the peripherals that are required and related configurations etc. for WINC driver init, and a sample AP_Scan application has also been described here for a quick reference.

WINC Driver / Application Requirements

Software and Utility Requirements (Install the latest from Microchip Website)

- MPLAB X IDE (v 6.0 v or above)
- XC32 Compiler (v 4.0 v or above)
- MCC Plugin (v x.0 v or above, with MCC Plug in v5.1.4)

Third-party Tools

- TeraTerm for Console application
- J-Link for J-Link / J-Trace / Flasher / Debug SW from https://www.segger.com/downloads/jlink/

Hardware Requirements

- SAMA5D27-SOM1-EK1 Evaluation Kit
- MicroEbus to XPRO Adapter
- WINC1500 XPRO Board
- WiFi7 Click Board from MicroE

Steps For Creating Application for Basic Driver Init:

Download / Clone the wireless_wifi repo from the Bitbucket using the following link https://bitbucket.microchip.com/projects/WSGSW/repos/wireless_wifi/browse?at=refs%2Fheads%2Fwinc_intergration_sam
 a5d27

Checkout to winc_intergration_sama5d27 branch -

git checkout origin/winc_intergration_sama5d27 -b local_winc_intergration_sama5d27

- 2. Open MPLAB X IDE v6.0
- 3. Create New MCC MPU32 Bit Device Project with the following names and configurations:
 - a. Inside Configuration → Configuration Name as → sam_a5d27_som1_winc1500
 - b. Inside Firmware → Project Name as → sam_a5d27_som1_winc1500.X
 - c. Device / MPU32 ATSAMA5D27C1G
 - d. Packs SAMA5D2_DFP (1.8.9), CMSIS (5.8.0)
 - e. XC32 v4.0, MCC Core as v5.1.4

Framework required repos

- a. content_manager_artifacts
- b. core
- c. csp
- d. dev_packs
- e. Devices
- f. harmony-services
- g. mcc
- h. mhc
- i. quick_docs
- j. wireless_wifi (branch winc_integration)
- k. net
- I. crypto
- m. paho.mqtt.embedded-c
- n. wolfMQTT
- o. wolfssh
- p. wolfssl
- q. zlib
- r. wireless_apps_winc1500
- s. wireless_apps_winc3400

- f. Set the project as the Main Project
- g. Rename project to desired application name inside IDE such as (for ap_scan)
 - Inside MPLAB X IDE → Project Name as →ap_scan_sam_a5d27_som1_winc1500
- h. Check the project configurations from the Project properties

- 4. Launch MCC and download/clone the repos (Bitbucket) from the Content Manager link such as (this is apart from the Cloned wireless_wifi repo)
 - i. content manager artifacts
 - ii. core
 - iii. csp
 - iv. dev_packs
 - v. Devices
 - vi. harmony-services
 - vii. mcc
 - viii. mhc
 - ix. quick_docs
 - x. wireless wifi (Checkout branch winc integration)
 - xi. net clone
 - xii. crypto

- xiii. paho.mqtt.embedded-c
- xiv. wolfMQTT
- xv. wolfssh
- xvi. wolfssl
- xvii. zlib
- xviii. wireless apps winc1500
- xix. wireless_apps_winc3400

- 5. Make sure to have all the repo based before you start adding components into the Project Graph
- 6. Project would usually have the DFP, CMSIS, System and Core populated
- 7. Start adding the Harmony components required for the Host D27 + WINC1500 Applications (from Device Resources to Project Resources)
 - WINC from Wireless
 - SPI Driver
 - Time, Console, Debug from System Services
 - Flexcom4(SPI), TCO and UART1 from peripherals and link the components as shown below

Adding Harmony components to the Project Graph

- 8. Add the Harmony components to the Project Graph and connect as shown below.
 - Choose appropriate WiFi device WINC1500/WINC3400
 - Choose appropriate Firmware version for the selected WiFi device.

9. Once the components are connected, generate code (MCC based code) for a quick check.

Project / application configurations

Core

WINC

SPI

FLEXCOM4

TIME

TC0

Debug

Console

UART1

Note: Make sure to check the UART Clock Frequency for 83 MHz with source as MCK, refresh if required

PIN Configurations for WINC1500

DMA Configurations

AIC Configuration

Interrupt Vector	Enable	Handler Name	Map Type	Source Type	Priortiy
XDMAC0_IRQn - DMA Controller 0	Yes	XDMAC0_InterruptHandler	Nonsecure	HL Sensitive/Internal LL Sensitive/External	Minimum
XDMAC1_IRQn - DMA Controller 1	No	XDMAC1_Handler	Nonsecure	HL Sensitive/Internal LL Sensitive/External	Minimum
FLEXCOM4_IRQn – FLEXCOM4	Yes	FLEXCOM4_InterruptHandler	Nonsecure	HL Sensitive/Internal LL Sensitive/External	Minimum
UART1_IRQn – UART1	Yes	UART1_InterruptHandler	Nonsecure	HL Sensitive/Internal LL Sensitive/External	Minimum
TC0_IRQn – Timer Counter 0 (ch. 0,1,2)	Yes	TCO_ InterruptHandler	Nonsecure	HL Sensitive/Internal LL Sensitive/External	Minimum
PIOB_IRQn – Parallel I/O Controller	Yes	PIOB_InterruptHandler	Nonsecure	HL Sensitive/Internal LL Sensitive/External	Minimum

- 10. Once the required configuration changes are done, Generate the code
- 11. Now Clean and Build the project
- 12. The project should build successfully, for any errors/warning resolve the same and proceed further
- 13. This would just work for the WINC Driver Initialization, and this needs to be monitored with the SAMA5D27-SOM1-EK1 Evaluation Board

14. Connecting and checking on SAMA5D27-SOM1-EK1 Evaluation Kit

- 1. For linking the HW SAMA5D27-SOM1-EK1 Board along with the WINC Module on the XPRO Board connected through the XPRO Adapter
- 2. Copy the at91bootstrap_sam_a5d27_som1_ek.X project at the location\wireless_wifi\apps\ap_scan\firmware
- 3. Install JLink Program / Debug utility from Segger (https://www.segger.com/downloads/jlink/) for SOM1-Ek1 board JLink Debugger / Programmer
- 4. Connect J10 / JLink on SOM1-EK1 Board and the PC COM Port using the MicroUSB Cable
- 5. USB connection powers up the board
- 6. Once the SAMA5D27-SOM1-EK1 Board is detected, note down the SUB connected COM Port to use the Console Application using the TeraTerm
- 7. Connect the WINC1500 XPRO Board to the SAMA5D27-SOM1-EK1 using the XPRO Adapter

Connection Details of SAM1_EK1 Board to 1500/3400 Module

SOM1_EK1 Board			WINC1500 Module		
J24 Mbus1 Header Pins	Signal name on Mbus	SAMA5D27 (For our Ref.)	XPRO Header EXT1 Pins	Signal name on Module	Signal Type
1	AN	PD25	10	CHIP_EN	Active High
2	RST	PB2	5	RESET_N	Active Low
3	CS	PD0	15	SPI_SSN	Active Low
4	SPCK	PC30	18	SPI_SCK	SPI Clock
5	MISO	PC29	17	SPI_MISO	
6	MOSI	PC28	16	SPI_MOSI	
7	+3.3V		20	+3.3V	
8	GND		19	GND	

SOM1_EK1 Board			WINC1500 Module		
		SAMA5D27 (For our	XPRO Header EXT1	Signal name on	
J25 Mbus1 Header	Pin Name on Mbus	Ref.)	Pins	Module	Signal Type
1	PWM			NC	
2	INT (INT_IN)	PB0	9	IRQN (INT_OUT)	Active Low
3	RX			NC	
4	TX			NC	
5	TWCK			NC	
6	TWD			NC	
7	+5.0V			NC	
8	GND			NC	

15. Make the below Changes in the generated code of the PIO to support the PIO Interrupt Handler Make the following changes @:

16. Power up the board using the USB cable through the J10 / JLink connector

Note: The JLink Section appears in the Category list, and shows up as a connected HW tool with the serial number

- 17. Re-Generate the code for bootstrap link to compile
- 18. AT MPLAB X IDE Tools → Options list check for the Repo base selection

19. For MCC

20. For MHC

21. Check the following files in the below path.

- at91bootstrap.elf
- boot.bin
- 22. Link the bootstrap to the elf to the project for JLink support

23. Generate the harmony.bin from the following Building Category from the Project Properties

- 24. Once the tool is set, generate the project, and do a clean build
- 25. Open Teraterm with the following COM Port settings:

- 26. Now Debug / Run Main Project (application project) from the MPLAB X IDE
- 27. Note the logs on the UART Console through the TeraTerm Application

- 28. For WINC Driver Init the default source code generated along with important files used for execution are at the location (for check-ins):
- a. ap_scan(for WINC DRV INIT)/firmware/src
 - config folder
 - packs folder
 - app.c
 - app.h
 - main.c
 - example.c

.....\wireless_wifi\apps\ap_scan (for WINC DRV INIT)\firmware\src (folder snap below)

- b. ap_scan(for WINC DRV INIT)/firmware/ sam_a5d27_som1_winc1500.X/nbproject/
 - 1. configurations.xml
 - 2. project.xml
- c. ap_scan(for WINC DRV INIT)/firmware/ sam_a5d27_som1_winc1500.X/
 - 3. Makefile
- d. ap_scan(for WINC DRV INIT)/firmware/at91bootstrap_sam_a5d27_som1_ek.X

Note: WINC Driver Init is completed which the initial steps before putting up an example code for ap_scan

Porting Sample Application with WINC Driver Init Code (E.g., AP_SCAN)

AP SCAN application

For AP_SCAN application - ap_scan/firmware/

- 1. Replace the following src files / add them to the src folder app.c, app.h, main.c, example.c
- a. /firmware/src
 - i. config folder
 - ii. packs folder
- iii. app.c
- iv. app.h
- v. main.c
- vi. example.c
- b. /firmware/ sam a5d27 som1 winc1500.X/nbproject/
 - i. configurations.xml
 - ii. project.xml
- c. /firmware/ sam_a5d27_som1_winc1500.X/
 - i. Makefile
- d. /firmware/at91bootstrap_sam_a5d27_som1_ek.X

Output Screen shows up as follows:

Only a sample AP_Scan had been described here for a quick reference. All the other sample applications and related configurations are described in the WINC Sample Applications Quick Configurations Guide.