

Topic 1: Simple Integration

Illustration 1: Evaluate
$$\int \frac{x^4-1}{x^2} dx$$
.

$$I = \int \frac{x^4 - 1}{x^2} dx$$

$$= \int \frac{x^4}{x^2} dx - \int \frac{1}{x^2} dx$$

$$= \int x^2 dx - \int x^{-2} dx$$

$$= \frac{x^{2+1}}{2+1} - \frac{x^{-2+1}}{-2+1} + C$$

$$= \frac{x^3}{3} + \frac{1}{x} + C$$

$$1. \int \left(e^x - \frac{2}{\sqrt{x}}\right) dx$$

2.
$$\int \left(\frac{3}{x} + 2e^x + \frac{1}{1+x^2}\right) dx$$

Answer:

Topic 1: Simple Integration

Illustration 2: Evaluate
$$\int \left(\frac{x^4-1}{x^2-1}\right) dx$$
.

$$I = \int \left(\frac{x^4 - 1}{x^2 - 1}\right) dx$$

$$= \int \frac{(x^2 + 1)(x^2 - 1)}{x^2 - 1} dx$$

$$= \int (x^2 + 1) dx$$

$$= \int x^2 dx + \int (1) dx$$

$$= \frac{x^3}{3} + x + C$$

1.
$$\int \left(x^7 - \frac{1}{x^5} + \sqrt{x}\right) dx$$

2.
$$\int (a^x - x^a) dx$$
; $a > 1$

Answer:

Topic 1: Simple Integration

Illustration 3: Evaluate $\int \left(\frac{1}{\cos^2 x \sin^2 x}\right) dx$.

$$I = \int \left(\frac{1}{\cos^2 x \sin^2 x}\right) dx$$

$$= \int \frac{\cos^2 x + \sin^2 x}{\cos^2 x \sin^2 x} dx$$

$$= \int \frac{\cos^2 x}{\cos^2 x \sin^2 x} dx + \int \frac{\sin^2 x}{\cos^2 x \sin^2 x} dx$$

$$= \int \csc^2 x dx + \int \sec^2 x dx$$

$$= -\cot x + \tan x + C$$

1. $\int \left(2\sin\left(\frac{x}{2}\right) \cdot \cos\left(\frac{x}{2}\right) - \cot^2 x\right) dx$

 $1. \int \frac{\sin x}{\sin^2 x - 1} dx$

Answer:

 $2. \int \left(\frac{1+\cos^2 x}{\cos^2 x}\right) dx$

Answer:

 $3. \int \left(\frac{5\sin x + 2}{\cos^2 x}\right) dx$

Topic 2: Integration by Substitution

Some useful substitutions

Integral	Substitution	Integral	Substitution
$\int f(g(x)) g'(x) dx$	g(x) = t	$\int f(\tan x) \sec^2 x dx$	$\tan x = t$
$\int f(x^n) x^{n-1} dx$	$x^n = t$	$\int f(\ln x) \frac{1}{x} dx$	$\ln x = t$
$\int f(x^3) x^2 dx$	$x^3 = t$	$\int f\left(\sqrt{x}\right) \frac{1}{\sqrt{x}} dx$	$\sqrt{x} = t$
$\int f(\sin x) \cos x dx$	$\sin x = t$	$\int f\left(\tan^{-1}x\right) \frac{1}{1+x^2} dx$	$\tan^{-1} x = t$

Illustration 1: Evaluate
$$\int \frac{\cos x}{(1+\sin x)^2} dx$$

by using the substitution: $1 + \sin x = t$.

$$I = \int \frac{\cos x}{(1 + \sin x)^2} \, dx$$

Let
$$1 + \sin x = t \implies \cos x \, dx = dt$$

$$I = \int \frac{1}{t^2} dt$$

$$= \frac{t^{-1}}{(-1)} + C$$

$$= -\frac{1}{t} + C$$

$$= -\frac{1}{1 + \sin x} + C$$

Note: make sure your final integral is expressed in terms of x.

1.
$$\int \frac{\sec^2 x}{1 + 2\tan x} dx$$
, use: $1 + 2\tan x = t$.

2.
$$\int x^2 \cos(1-x^3) dx$$
, use: $1-x^3 = t$.

Answer:

Answer:

3.
$$\int x^3 (1-x^4)^7 dx$$
, use: $1-x^4=t$.

4.
$$\int \left[\frac{\sin\left(\frac{1}{x}\right)}{3x^2} \right] dx, \text{ use: } \frac{1}{x} = t.$$

Answer:

Topic 2: Integration by Substitution

Illustration 2: Evaluate $\int \frac{x}{\sqrt{x-2}} dx$.

$$I = \int \frac{x}{\sqrt{x-2}} dx \qquad \text{Let } \sqrt{x-2} = t \quad \Rightarrow \quad x-2 = t^2, \ t > 0$$

$$\Rightarrow \quad 1 = 2t \frac{dt}{dx} \quad \Rightarrow \quad dx = 2t dt$$

$$\therefore I = \int \frac{(t^2+2)}{t} 2t dt$$

$$= 2 \int (t^2+2) dt$$

$$= 2 \left[\frac{t^3}{3} + 2t \right] + C$$

$$= 2 \left[\frac{(x-2)^{\frac{3}{2}}}{3} + 2\sqrt{x-2} \right] + C$$

$$1. \int \frac{\sin\sqrt{x}}{\sqrt{x}} \, dx$$

Answer:

$$2. \int \frac{x}{\sqrt{1+2x}} \, dx$$

1.	1	1	dx
		$\overline{x\cdot(\ln x+1)^2}$	ax

Answer:

$$2. \int x \cdot e^{x^2} \, dx$$

Answer:

$$3. \int x^2 \cdot \cos(x^3) \, dx$$

1. $\int (2x+7)(x^2+7x+3)^{\frac{4}{5}} dx$

Answer:

 $2. \int \frac{\sec^2(\sqrt{x})}{\sqrt{x}} \, dx$

Answer:

 $3. \int x \cdot \sqrt{1-x} \, dx$

Topic 3: Integration by Trigonometric Substitution

Integrand	Trigonometric substitution
$\frac{1}{\sqrt{a^2 - x^2}}$	$x = a \sin \theta$
$\frac{1}{x^2 + a^2}$	$x = a \tan \theta$
$\frac{1}{\sqrt{x^2 - a^2}}$	$x = a \sec \theta$

Illustration: Evaluate $\int \frac{x}{\sqrt{9-x^2}} dx$, by using trigonometric substitution.

$$I = \int \frac{x}{\sqrt{9 - x^2}} \, dx$$

Let
$$x = 3\sin\theta$$
 \Rightarrow $dx = 3\cos\theta d\theta$

$$\therefore I = \int \frac{3\sin\theta}{\sqrt{9 - 9\sin^2\theta}} \ 3\cos\theta \ d\theta$$

$$= \int \frac{3\sin\theta}{3\cos\theta} \, 3\cos\theta \, d\theta$$

$$= 3 \int \sin \theta \ d\theta = -3 \cos \theta$$

$$\because \cos \theta = \sqrt{1 - \sin^2 \theta} = \frac{\sqrt{9 - x^2}}{3}$$

$$\therefore 3\cos\theta = \sqrt{9 - x^2}$$

$$\Rightarrow \quad I = -\sqrt{9 - x^2} + C$$

 $1. \int \frac{x}{\sqrt{x^2 - 9}} dx$

Answer:

 $2. \int \frac{1}{x(1+x^2)} dx$

Topic 4: Integral of the Form $\int f(ax + b) dx$

 $\int f(ax+b)dx = \frac{1}{a}F(ax+b) + C, \text{ where } F \text{ is the antiderivative of } f.$

Illustration: Evaluate $\int \sec^2(4x+1)dx$.

$$I = \int \sec^2(4x+1)dx \quad \text{as} \quad \int \sec^2 x \, dx = \tan x + C$$
$$= \frac{1}{4}\tan(4x+1) + C$$

1.
$$\int \sin(2x+5) \, dx$$

$$2. \int e^{3x+7} dx$$

Answer:

Answer:

$$3. \int e^{-2x} \, dx$$

$$4. \int \frac{1}{3x+5} \, dx$$

Answer:

Integration by Substitution (Additional Example)

Illustration:

Evaluate $\int \sec^3 x \tan x \, dx$, by using appropriate substitution.

$$I = \int \sec^3 x \tan x \, dx$$
$$= \int \sec^2 x \cdot \sec x \tan x \, dx$$

Let $\sec x = t \implies \sec x \tan x \, dx = dt$

$$\therefore I = \int t^2 dt$$

$$= \frac{t^3}{3} + C$$

$$= \frac{\sec^3 x}{3} + C$$

$$1. \int \cot^4 x \ dx$$

Hint: I = $\int \cot^2 x (\csc^2 x - 1) dx$ = $\int \cot^2 x \csc^2 x dx - \int (\csc^2 x - 1) dx$

$$2. \int \tan^2 x \sec^4 x \, dx$$

Hint: $I = \int \tan^2 x (1 + \tan^2 x) \sec^2 x dx$

Answer:

Additional Exercises:

$$1. \int x^3 \cdot \sqrt{5 + x^4} \, dx$$

$$2. \int \frac{1}{x \cdot (\ln x)^2} \, dx$$

Answer:

Answer:

3.
$$\int \frac{1}{x} \cdot (\ln x)^n \, dx, \ n \in \mathbb{N}$$

4.
$$\int e^{\tan x} \cdot \sec^2 x \, dx$$

Answer:

Homework Exercise Sheet: 05

Additional Exercises:

$$1. \int \frac{\sec x \tan x}{\sqrt{4 - \sec^2 x}} \, dx$$

$$2. \int \frac{\sec^2 x}{\sqrt{1 - \tan^2 x}} \, dx$$

Answer:

Answer:

$$3. \int \frac{e^x}{\sqrt{4 - e^{2x}}} \, dx$$

$$4. \int \frac{1}{x + x \cdot (\ln x)^2} \, dx$$

Answer: