Carbon Parameter Modifications

Parameters

The following parameters are important in the context of the carbon curve

- y is the token amount left to sell on the curve, in native token units (assume: ETH);
 we always have yint>=y>=0
- x is a token amount in the other token; its absolute value is not important (and not tracked as it can be obtained by the invariant equation) but differences are (assume: USDC)
- yint is the maximal capacity of the curve; at y=yint the curve is full
- pa is the starting price of the range, ie the best price for the trader, worst for the LP, AMM; like all prices, it is always quoted in the native convention of the curve, dy/dx (here: ETH per USDC [sic])
- pb is the end price of the range, ie the worst price for the trader, best for LP, AMM;
 we have pb<=pa in the price convention dy/dx
- A, B are related to pa, pb; specifically: B=sqrt(pb), A=sqrt(pa)-sqrt(pb)
- pm is the current marginal price of the range; it depends on all parameters above; note: changing pm downwards (-dpm) is safe except for the fact the price moves further away from the market, changing it upwards (+dpm) may not be for an active range, as the marginal price may move beyond market price and into the money

Modifications

ID	Action	y	yint	X	pa	pb	pm
TS	Trade by source	-dy		+dx			-dpm
TT	Trade by target	-dy	-	+dx			
AL	add liquidity	+dy					+dpm
ALX	add liquidity expand	+dy	=y				.[=pa]
ALC	add liquidity (const pm)	+dy	+dyint				
RL	remove liquidity	-dy					-dpm
RLC	remove liquidity (const pm)	-dy	-dyint				
SPU	start price up				+dpa		+dpm
SPD	start price down				-dpa		-dpm
EPU	end price up		-			+dpb	+dpm
EPD	end price down					-dpb	-dpm
BP	change both prices				dpa	dpb	dpm
BPC1	both prices (const pm)				<mark>dpa</mark>	dpb	
BPC2	both prices (const pm)		dyint		dpa	dpb	
MPU	change marg price up		-dyint				+dpm
MPD	change marg price down		+dyint				-dpm
BPM	change prices (const pm)		dyint		<mark>dpa</mark>	dpb	

xxx – provided as parameter; **+dpm** – danger zone; **XXX** – not initiated by LPs

Implemented actions

- Trade (T) is obviously implemented and can be used by everyone
- Add liquidity (AL) and add liquidity expand (ALX) will be triggered by trading on the
 associated curve, and therefore can be used by everyone; it increases pm, therefore
 is in theory not safe; however, as long as the curves are not overlapping there is not
 risk that pm will end up in the unsafe zone
- Add liquidity (AL) however may not be safe to trigger on an active curve because it
 does move the marginal price into the wrong direction; instead of AL we should
 always use ALC.
- Remove liquidity (RL) is safe to call as the marginal price is pushed away from the
 market; if this is not desired, RLC could be called instead (arguably this has the better
 semantics); RL needs to be able to deal with liquidity changes that have been
 introduced by other transaction (up or down) and react gracefully
- Price changes can be dangerous if either of the prices pa, pb go up, because in this
 case the marginal price pm will go up as well; there are two way of keeping pm
 constant:
 - the first one involves changing pa and pb in different directions, essentially symmetrically around pm; this runs into problems if pm has changed since because a trade has happened
 - the second one involves changing yint to ensure that pm sits where it was;
 this calculation can be done in the smart contract, and is in this case robust
 against intermittent changes
- Changing marginal price down (MPD) is always safe; changing it upwards (MPU) is potentially dangerous, and can possibly be front run
 - if the LP adjusts yint to obtain the desired pm and if y has been changed then it can be higher (liquidity transferred from linked curve; bad) or lower (liquidity traded on this curve; not that bad)
 - alternative the marginal price adjustment function can specify the desired marginal price pm directly, and yint is calculated; this again can be bad: if markets move since than pm can be set at the old level which can be too high