

Details

Ver. Rel. No.	Release Date	Prepared By	Module Name	Reviewed By	Remarks/Revision Details
1.0	16/02/2022	Balaji P 40020526	C Programming on Multiple platforms		
1.0	16/02/2022	Balaji P 40020526	Essentials of Embedded System		
1.0	16/02/2022	Balaji P 40020526	Applied SDLC and Software Testing		
1.0	16/02/2022	Balaji P 40020526	OOPS with Python		
1.0	16/02/2022	Balaji P 40020526	Applied Model Based Design Module		
1.0	16/02/2022	Balaji P 40020526	Mastering Microcontrollers with Embedded Driver Development module		
1.0	16/02/2022	Balaji P 40020526	Overview of Automotive Systems		
1.0	16/02/2022	Balaji P 40020526	Applied Control Systems and Vehicle Dynamics		
1.0	16/02/2022	Balaji P 40020526	Classic Autosar Basic to Intermidiate		

Contents

Miniproject – 1: Shuttle Score [Individual]	7
Modules:	7
Requirements	7
SWOT Analysis	7
4W's and 1'H	7
High Level Requirements	7
Low Level Requirements	8
Design	8
Test Plan	9
High Level Test Plan	9
Low Level Test Plan	9
Implementation and Summary	9
Git Link:	9
Git Dashboard	9
Summary	10
Git Inspector Summary	10
Miniproject 2 – HeatControlSystem [Individual]	11
Modules	11
Requirements	11
Introduction	11
Features	11
4W's and 1H's	11
High Level Requirements	12
Low Level Requirements	12
Design	12
Test Plan	14
Implementation and Summary	15
Git Link:	15
Git Dashboard	15
Miniproject 3 – NFT Marketplace [Team]	16
Modules	16
Requirements	16
4W's and 1 H's	16
High Level Requirements	16
Low Level Requirements	16

Design	17
Test Plan	19
High Level Test Plan	19
Low Level Test Plan	19
Implementation and Summary	20
Git Link:	20
Individual Contribution and Highlights	20
Summary	20
Miniproject 4 – Attendance Automation[Team]	21
Modules	21
Requirements	21
High Level Requirements	21
Low Level Requirements	21
Test Plan	22
High Level Test Plan	22
Low Level Test Plan	22
Implementation and Summary	23
Git Link:	23
Git Dashboard	23
Git Inspector Summary	24
Individual Contribution and Highlights	24
Miniproject 5 – Landrover Project[Team]	25
Modules	25
Requirements	25
Design	25
Miniproject 6 – Wiper Control[Team]	26
Modules	26
Requirements	26
Features	26
4W's and 1 H'S	26
SWOT Analysis	26
High Level Requirements	27
Low Level Requirements	27
Design	28
Test Plan	30
High Level Test Plan	30

Low Level Test Plan	30
Implementation and Summary	30
Git Link:	30
Individual Contribution and Highlights	30
Miniproject 7 – Jaguar Project[Team]	
Modules	
Requirements	
Design	
Implementation and Summary	
Git Link:	
Individual Contribution and Highlights	
Miniproject 8 – EV Bike[Team]	
Modules	34
Requirements	34
Implementation and Summary	34
Individual Contribution and Highlights	34
Miniproject 9 – Parking System[Individual]	35
Modules	35
Requirements	35
Design	
Implementation and Summary	
Git Link:	
Individual Contribution and Highlights	
mulvidual Contribution and riigniignts	
List Of Figures	
Figure 1 Behavior Diagram	8
Figure 2 Git Dashboard	
Figure 3 Git Inspector Summary	
Figure 4 Block Diagram	12
Figure 5 Structure Diagram	
Figure 6 Git Dashboard	
Figure 7 Behavior Diagram	
Figure 8 UserFlow Diagram	
Figure 9 Structure Diagram	
Figure 11 Cit Ingrestor Summers	
Figure 11 Git Inspector SummaryFigure 12 Structural Diagram	
1 15010 12 Dituotutai Diagiaiii	

GENESIS – Learning Outcome and Mini-project Summary Report

Figure 13 Structure Diagram	28
Figure 14 Behaviour Diagram	
Figure 15 Structure Diagram	
Figure 16 VFB Diagram	

Miniproject – 1: Shuttle Score [Individual]

Modules:

- 1. C Programming
- 2. Git

Requirements

Introduction

My proposed application named ShuttleScore calculates the points of each of the players of the shuttle badminton game with respective to the point they secure. It also displays the name of the players, set points and points scored in each of the sets.

Research

In the previous method, they have already done the shuttle score board. Now I am trying on my own method to display the shuttle badminton score.

Cost and Features and Timeline

It is developed to bring a new visual to the score board in a better way.

Defining our system

Instead of using the same visual or the same format, we can see something new in appearance.

SWOT Analysis

Strength: Very much useful in viewing the scoreboard in a new style.

Weakness: No additional information is displayed.

Opportunity: This will be helpful in knowing the points easily and appropriately. **Threat:** May be according to every individual it may not be liked by everyone.

4W's and 1'H

What: The app that is made to view the shuttle scoreboard in a new style.

Who: It will be beneficial for the game viewers.

When: To view the score in an impressive manner.

Where: This can be used in the television.

How: Implementing the scoreboard using C language.

High Level Requirements

ID	Description	Status
HLR_1	Get the players name	Implemented
HLR_2	Display the set score	Implemented
HLR_3	Diplay the current set score	Implemented

Low Level Requirements

ID	Description	Status
HLR_1	Players names are taken as string	Implemented
HLR_2	Set score is printed as integer	Implemented
HLR_3	Current set score is printed as integer	Implemented

Design

Figure 1 Behavior Diagram

Test Plan

High Level Test Plan

ID	Description	Expected I/P	Expected O/P	Actual O/P	Type Of Test
HLTP_1	User Input	Enter Values	SUCCESS	SUCCESS	Requirement Based
HLTP_2	Player Input 1	Enter Values	SUCCESS	SUCCESS	Requirement Based
HLTP_3	Player Input 2	Enter Values	SUCCESS	SUCCESS	Requirement Based

Low Level Test Plan

ID	Description	Expected I/P	Expected O/P	Actual O/P	Type Of Test
LLTP_1	User Input	(0)	Value Increases For Player 1	Value Increases For Player 1	Requirement Based
LLTP_2	User Input	(1)	Value Increases For Player 2	Value Increases For Player 2	Requirement Based

Implementation and Summary

Git Link:

Link: https://github.com/muthupbalag1310/M1_APPLICATION_SHUTTLESCORE.git

Git Dashboard

Figure 2 Git Dashboard

Summary

Git Inspector Summary

Author	Commits	Insertions	Deletions	% of changes
muthupbalag1310	15	267	11	100.00
Below are the number of reintact in the current rev		ch author that	have survived	and are still
Author	Rows	Stability	Age	% in comments
muthupbalag1310	212	79.4	7.5	7.08

Figure 3 Git Inspector Summary

Miniproject 2 – HeatControlSystem [Individual]

Modules

- 1. C Programming
- 2. Embedded System
- 3. SimulIDE
- 4. Git

Requirements

Introduction

The heat control system is used to control the temperature of the vehicle seat. When a person gets seated on a car, the button sensor will be activated. After that, the user gets access to turn ON the heater. The temperature sensor keeps monitoring the temperature and sends the analog value to the microcontroller. The microcontroller processes the analog input of the temperature sensor and outputs a temperature value through serial communication. All the activities of the control system are done on a Atmega328 microcontroller.

Features

The System is capable of telling whether a person is seated or not. A person once seated gets the access to turn ON the heater. The temperature sensor keeps monitoring the temperature and sends the analog value to the microcontroller.

Strength

Cost effective. Easily accessible. High efficiency.

Weakness

Overheating.

Opportunities

This system can be expanded by adding few more features depending on the user requirement. Usage of different Microcontrollers and sensors.

Threats

Competition

4W's and 1H's

What

Heat control system in a vehicle.

Where

Used in almost all of the passenger vehicles.

When

When temperature is low.

Who

To maintain body temperature of passengers.

How

By using sensors and microcontroller.

High Level Requirements

ID	Description			
HLR1	Microcontroller unit			
HLR2	Switches			
HLR3	Temperature sensor			
HLR4	Heater			
HLR5	Display CDD CRO			

Low Level Requirements

ID	Description	HLR ID
LLR1	ATMega328	HLR1
LLR2	ADC and Potentiometer	HLR3
LLR3	Thermo electric module	HLR4
LLR4	LCD and LED, PWM	HLR5

Figure 4 Block Diagram

Test Plan

Tes t ID	Description	EXP I/P	EXP O/P	Actual O/P	Type of Test
T01	If passengers seated on the car button sensor will be activated	button sensor switch closed	Button sensor on	Button sensor on	Requireme nt based
T02	After passenger and driver seated, the user needs to enable the heater sensor	Heater sensor switch closed	Heater sensor on	Heater sensor on	Requireme nt based
Т03	Enabling both button and heater sensor, LED will be ON (binary output)	Both switches closed	LED ON	LED ON	Requireme nt based
T04	Enabling any one of sensor not both	Any one of the switch open	LED OFF	LED OFF	Boundary based
T05	Reads temperature information from temperature sensor and convert analong inputs to digital using ADC	Read ADC from temperatu re sensor	Successfull y read and covert digital values	Successfull y read and covert digital values	Requireme nt based
T06	Display CDD- CRO will give the temperature	Read ADC values	Successfull y displayed	Successfull y displayed	Requireme nt based

Tes t ID	Description	EXP I/P	EXP O/P	Actual O/P	Type of Test
	value by showing PWM		temperatu re	temperatu re	
Т07	Display digital temperature values in serial monitor using USART communicati on protocol	Read ADC values	Successfull y displayed temperatu re	Successfull y displayed temperatu re	Requireme nt based

Implementation and Summary

Git Link:

Link: https://github.com/muthupbalag1310/M2-Embedded_HeatControlSystem.git

Git Dashboard

Figure 6 Git Dashboard

Miniproject 3 – NFT Marketplace [Team]

Modules

- 1. SDLC
- 2. Git

Requirements

4W's and 1 H's

Why:

- 1. It can be used by anyone at any place.
- 2. Digital Items are the Future
- 3. Individual Creators can use this platform to sell the Digital products.

Where:

- 1. This can be used in our daily lives.
- 2. Can be used for international transactions

Who

- 1. It can be used by anyone.
- 2. It can be used as a reference for marketplace.

When:

- 1. One can buy, sell or create anytime.
- 2. The project can be used when anyone wants to buy an NFT.
- 3. Can be used without any centralised authority

How:

- 1. By using a crypto wallet anyone can Buy or Bid on NFT.
- 2. It will be helpful for Digital Creators.

High Level Requirements

ID	Description	Status
HLR_1	Create NFT	Implemented
HLR_2	Sell NFT	Implemented
HLR_3	Bid NFT	Implemented
HLR_4	Buy NFT	Implemented
HLR_5	Contact	Implemented

Low Level Requirements

ID	Description	Status
LLR_1	Sign In	Implemented
LLR_2	Register	Implemented

ID	Description	Status
LLR_3	Connect Wallet	Implemented
LLR_4	Activity	Implemented
LLR_5	Forgot password	Implemented
LLR_6	Signup	Implemented

Design

Figure 7 Behavior Diagram

Figure 8 UserFlow Diagram

Figure 9 Structure Diagram

Test Plan High Level Test Plan

ID	Description	Expected I/P	Expected O/P	Actual O/P	Type Of Test
HLTP_1	Create NFT	Click	SUCCESS	SUCCESS	Requirement Based
HLTP_2	Sell NFT	Click	SUCCESS	SUCCESS	Requirement Based
HLTP_3	Bid NFT	Click	SUCCESS	SUCCESS	Requirement Based
HLTP_4	Buy NFT	Click	SUCCESS	SUCCESS	Requirement Based
HLTP_5	Contact	Click	SUCCESS	SUCCESS	Requirement Based
HLTP_6	Sign In	Click	SUCCESS	SUCCESS	Requirement Based
HLTP_7	Register	Click	SUCCESS	SUCCESS	Requirement Based

Low Level Test Plan

ID	Description	Expected I/P	Expecte d O/P	Actual O/P	Type Of Test
LLTP _1	Connect Wallet	Click	SUCCE SS	SUCCE SS	Requirem ent Based
LLTP _2	Activity	Click	SUCCE SS	SUCCE SS	Requirem ent Based
LLTP _3	Forgot password	Click	SUCCE SS	SUCCE SS	Requirem ent Based
LLTP _4	To check whether none of the fields should be empty	Empty value in the input module	Prompt message mandato ry field missing	SUCCE SS	Requirem ent Based
LLTP _5	E-mail ID should be in the perfect format	group2@gmail. com	Prompt message invalid	SUCCE SS	Requirem ent Based

ID	Description	Expected I/P	Expecte d O/P	Actual O/P	Type Of Test
	i.e. group2@gmail .com		E-mail ID		

Implementation and Summary

Git Link:

Link: https://github.com/GENESIS2021Q1/Applied_SDLC-Dec_Team_2

Live Project Link: https://alrichroshan.com/nft

Individual Contribution and Highlights

Summary

- 1. Designed Homepage
- 2. Search Option
- 3. Header
- 4. Footer
- 5. Integrating All Pages Together

Role in Project Team

- 1. Designer: Designed Webpages Using HTML, CSS, JavaScript
- 2. Integrator: Integrated All the Pages Together
- 3. Tester: Testing the Webpage Performance and Bugs

Miniproject 4 – Attendance Automation [Team]

Modules

- 1. Python
- 2. Git

Requirements

High Level Requirements

ID	Feature	Status
HLR_01	GUI	Not Implemented
HLR_02	Attendance Status	Implemented
HLR_03	User Details	Implemented
HLR_04	User load sheet	Implemented
HLR_05	Output file generation	Implemented

Low Level Requirements

ID	Feature	High Level ID	Status
LLR_01	GUI should allow user to enter inputs	HLR_01	Not Implemented
LLR_02	Input Files For Different Sessions	HLR_01	Not Implemented
LLR_03	User can get the Attendance Status	HLR_02	Implemented
LLR_04	User can enter status input to get the Attendance Status	HLR_02	Implemented
LLR_05	User can get the user details	HLR_03	Implemented
LLR_06	User will get the details after the successfull attendance entry	HLR_03	Implemented
LLR_07	User can load different sheets	HLR_04	Implemented
LLR_08	User can also modify the existing sheets as it is dynamic	HLR_04	Implemented
LLR_09	Output file gets generated	HLR_05	Implemented
LLR_10	Multiple files can be generated with different inputs	HLR_05	Implemented

Test Plan

High Level Test Plan

ID	Description	Expected I/P	Expected O/P	Actual O/P	Type Of Test
HLTP_01	Attendance Status	User Input	SUCCESS	SUCCESS	Requirement Based
HLTP_02	User details	User Input	SUCCESS	SUCCESS	Requirement Based
HLTP_03	User load sheet	User Input	SUCCESS	SUCCESS	Requirement Based
HLTP_04	Output file generation	User Input	SUCCESS	SUCCESS	Requirement Based

Low Level Test Plan

ID	HLTP ID	Description	Expected I/P	Actual O/P	Type Of Test
LLTP_01	HLTP_01	User can get Attendance Status	SUCCESS	SUCCESS	Requirement Based
LLTP_02	HLTP_01	User can enter Status input to get the Attendance Status	SUCCESS	SUCCESS	
LLTP_03	HLTP_02	User can get the User details	SUCCESS	SUCCESS	Requirement Based
LLTP_04	HLTP_02	User will get the details after the successful attendance	SUCCESS	SUCCESS	Requirement Based
LLTP_05	HLTP_03	User can load different sheets	SUCCESS	SUCCESS	Requirement Based
LLTP_06	HLTP_03	User can also modify the	SUCCESS	SUCCESS	Requirement Based

ID	HLTP ID	Description	Expected I/P	Actual O/P	Type Of Test
		existing sheets as it is dynamic			
LLTP_07	HLTP_04	Output file gets generated	SUCCESS	SUCCESS	Requirement Based
LLTP_08	HLTP_04	Multiple files can be generated with different inputs	SUCCESS	SUCCESS	Requirement Based

Implementation and Summary

Git Link:

Link: https://github.com/alrichroshan/Attendance_Automation_Team_14

Git Dashboard

Figure 10 Git Dashboard

Git Inspector Summary

23	Author	Commits	Insertions	Deletions	% of changes
24	Alrich Roshan	4	190	1	35.83
25	Dileep Kumar Varadar	1	1	1	0.38
26	Sreenithy Thayanithy		53	20	13.70
27	Vishnu-prasath		2	2	0.75
28	alrichroshan	9	105	63	31.52
29	cedricxavi	2	25		5.25
30	gulamsuhail00	2	9	9	3.38
31	lokesh4309	1	2	2	0.75
32	muthupbalag1310	1	5	5	1.88
33	subramanikeerthana	1	14	12	4.88
34	vanisreekathirvel	5	8	1	1.69
35					
36	Below are the number of r	ows from eac	ch author that h	nave survived	and are still
37	intact in the current rev	ision:			
38					
39	Author	Rows	Stability	Age	% in comments
40	Alrich Roshan	88	46.3	0.1	0.00
41	Dileep Kumar Varadar	1	100.0	0.1	0.00
42	Sreenithy Thayanithy	7	13.2	0.1	0.00
43	alrichroshan	55	52.4	0.1	0.00
44	cedricxavi	15	60.0	0.1	0.00
45	gulamsuhail00	2	22.2	0.1	0.00
46	subramanikeerthana	14	100.0	0.0	0.00
47	vanisreekathirvel	1	12.5	0.1	0.00
47	vanisreekathirvel	1	12.5	0.1	0.00

Figure 11 Git Inspector Summary

Individual Contribution and Highlights

- 1. Improved implementation of Python Programming
- 2. Source code management using GitHub

Role in Project Team

- 1. Programmer: Done Programming for Attendance Automation
- 2. Integrator: Integrated all the codes
- 3. Tester: Writing Testcases and testing the integrated code

Miniproject 5 – Landrover Project[Team]

Modules

- 1. Matlab
- 2. Git

Requirements

We have implemented following features

- 1. Airbag Control System
- 2. Door Lock System
- 3. Anti-Lock Braking System
- 4. Power Side Mirror system
- 5. Wiper Control System
- 6. Adaptive Cruise Control System
- 7. Power Window

Design

Figure 12 Structural Diagram

Miniproject 6 – Wiper Control[Team]

Modules

- 1. C Programming
- 2. STM32

Requirements

Features

- 1. Low power Consumption
- 2. High performance
- 3. Real-time capabilities

4W's and 1 H'S

Why

- 1. To understand basic concepts in STM32
- 2. To control wiper system by switching LED in STM32

Where

- 1. It can be used for many projects.
- 2. It has too many realistic features in this STM32 microcontroller

Who

- 1. It can be used by students.
- 2. It can be used by anyone who are new to embedded programming language.

When

It can be used for both small projects and end-to-end platforms.

How

- 1. By using softwares to exceute the program.
- 2. By loading the program in STM32

SWOT Analysis

Strengths

- 1. Simple program to understand.
- 2. Time effective.

Weakness

Single operating program is used here

Opportunities

Program can be made more complex by adding more components.

Threats

There are advanced programs which are simple to learn is out already.

High Level Requirements

ID	Description	Status
HR1	Microcontroller	Implemented
HR2	Switch	Implemented
HR3	Four LED	Implemented
HR4	Software	Implemented

Low Level Requirements

ID	Description	Status
LLR1	STM32	Implemented
LLR2	Switch	Implemented
LLR3	LED	Implemented

Design

Figure 13 Structure Diagram

Figure 14 Behaviour Diagram

Test Plan

High Level Test Plan

ID	Description	Output	Type of Test
HLTP_1	Press and hold the button to put the Ignition key position in ACC mode	System Enters ACC State	Requirement Based
HLTP_2	Different wiper frequencies to be set (1Hz, 4Hz & 8Hz)	Responds Based on Input	Requirement Based
HLTP_3	Hold the button to put the system in Idle state	Enters Idle State	Requirement Based

Low Level Test Plan

ID	Description	Output	HLTP ID	Type of Test
LLTP_1	Hold the button for 2 sec to bring the ignition key position at ACC mode	Red LED- ON	HLTP_1	Requirement Based
LLTP_2	Hold the button for 2 sec to go back to the Idle state	Red LED- OFF	HLTP_1, HLTP_3	Requirement Based
LLTP_3	Press the button one time to set frequency to 1Hz	Blue LED- ON	HLTP_2	Requirement Based
LLTP_4	Press the button second time to set frequency to 4Hz	Green LED-ON	HLTP_2	Requirement Based
LLTP_5	Press the button third time to set frequency to 8Hz	Orange LED-ON	HLTP_2	Requirement Based
LLTP_6	Press the button fourth time to turn OFF the wiper action	All LED OFF except Red	HLTP_2	Requirement Based
LLTP_7	Hold the button for 2 sec to bring ignition key position at Lock state	Red LED- OFF	HLTP_3	Requirement Based

Implementation and Summary

Git Link:

Link: https://github.com/GENESIS-2022/MasteringMCU-Team32

Individual Contribution and Highlights

- 1. Wiper System using C Programming
- 2. Source code management using GitHub

Role in Project Team

- 1. Programmer: Done Programming for Wiper System
- 2. Integrator: Integrated all the codes
- 3. Tester: Writing Testcases and testing the integrated code

Miniproject 7 – Jaguar Project[Team]

Modules

- 1. Automotive Systems
- 2. Git

Requirements

In this Jaguar project we have taken following features and I have contributed to Parking System Feature

- 1. Parking System
- 2. Headlight Control
- 3. Sideview Mirror Control
- 4. Wiper Control System

S.NO	Function	Description
1	Rain sensor	The IR sensor in the front windscreen sends the signal and if it is reflected by the rain drop then front and rear wipers are turned ON. The wipers speed are in accordance with the car speed.
2	Single wipe	The wiper is turned ON once and set back to its initial position. If it is held then it wipes until its held.
3	Manual speed modes	Low and High speed modes are chosen according to the users by rotating the switching so that the gap between each wipes varies.
4	Wash and wipe	When this mode is turned ON, the washing liquid is sprayed and wiper runs continuously until its held ON.
5	Rear windscreen wipe with car speed	When switched ON to INT mode the frequency of the rear wiper depends on the car's speed.
6	Rear windscreen continuous automatic wipe	If rear side switch is turned to ON state so its wipes continuously until this mode is switched OFF.
7	User based control	If this mode is turned ON, it wipes the rear windscreen only when this mode is held.

Design

Figure 15 Structure Diagram

Implementation and Summary

Git Link:

Link: https://github.com/alrichroshan/Team_Jaguar-XF

Individual Contribution and Highlights

- 1. Wiper Control System Case Study
- 2. Source code management using GitHub

Role in Project Team

- 1. Designer: Done Designing for Project
- 2. Researcher: Done case study for Wiper Control System

Miniproject 8 – EV Bike [Team]

Modules

- 1. Matlab
- 2. Matlab Script

Requirements

Motor Performance:

- 1. Our Arrow M1 has a Mid Drive IPM motor which can produce 7.2 kW power and 40 Nm torque. We find these figures to be a nice balance of drivability and efficiency.
- 2. Arrow M1 has an acceleration time from 0 to 60 km/hr of 6.5 seconds.
- 3. Top speed of our Arrow M1 is 100 km/hr

Battery Performance:

- 1. We are using a Lithium polymer battery to reduce weight and thereby increase fuel efficiency, performance and handling.
- 2. A range of 220 km is class leading due to our battery being the biggest at 4.6 kWh.
- 3. Charging times of our Arrow M1 is higher than the competition at 7.15 hours but we make up for it in the range section.
- 4. We also offer fast charging.

Braking Performance:

- 1. Our Arrow M1 also uses combi braking system and use disc brakes for both front and back wheels.
- 2. Braking performance is on par with the competition.

Wheel Performance:

- 1. Our Arrow M1 uses Alloy wheels at 12 inches diameter.
- 2. We use a 90 section, 90 profile tire for a balance between grip, efficiency and ride quality.

Suspension Performance:

1. We use Mono shocks for rear and single fork for front.

Dimensions:

- 1. Our kerb weight is 110 kg which is just 2 kg heavier than the Ather 450X while having a substantially bigger battery and more powerful motor.
- 2. Length, Height and Weight are all comparable to the competition.
- 3. Wheelbase is 1370 mm is the longest in the segment.
- 4. With a seat height of 782 mm it is accessible for a wide range of people in terms of height.

Implementation and Summary

Submission: Submitted in GEALearn

Individual Contribution and Highlights

1. Done in Matlab Script

Role in Project Team

- 1. Done Matlab scripting for EV Bike
- 2. Researcher: Done case study for EV Bike

Miniproject 9 – Wiper Control System[Individual]

Modules

- 1. Autosar
- 2. Git

Requirements

S.NO	Function	Description
1	Rain sensor	The IR sensor in the front windscreen sends the signal and if it is reflected by the rain drop then front and rear wipers are turned ON. The wipers speed are in accordance with the car speed.
2	Single wipe	The wiper is turned ON once and set back to its initial position. If it is held then it wipes until its held.
3	Manual speed modes	Low and High speed modes are chosen according to the users by rotating the switching so that the gap between each wipes varies.
4	Wash and wipe	When this mode is turned ON, the washing liquid is sprayed and wiper runs continuously until its held ON.
5	Rear windscreen wipe with car speed	When switched ON to INT mode the frequency of the rear wiper depends on the car's speed.
6	Rear windscreen continuous automatic wipe	If rear side switch is turned to ON state so its wipes continuously until this mode is switched OFF.
7	User based control	If this mode is turned ON, it wipes the rear windscreen only when this mode is held.

Design

Figure 16 VFB Diagram

Implementation and Summary

Git Link:

Link: https://github.com/muthupbalag1310/WiperControl_40020526_DPS.git

Individual Contribution and Highlights

- 1. Wiper Control System Case Study
- 2. Source code management using GitHub
- 3. AtomicSwComponent
- 4. SWCInternalBehavior
- 5. SWCImplementation