Overview-I

• Data: S&P 500

• Time Series Analysis: GARCH model

• EVT analysis: GPD model

Data

- The S&P 500 tracks 500 major U.S. companies, reflecting overall market performance.
- It's widely used as a benchmark.
- Data includes daily prices, returns, and volume.

	Date	Open	High	Low	Close	Volume
0	1985-01-02	167.20	167.20	165.19	165.37	37677778.0
1	1985-01-03	165.37	166.11	164.38	164.57	49377778.0
2	1985-01-04	164.55	164.55	163.36	163.68	43044444.0
3	1985-01-07	163.68	164.71	163.68	164.24	47883333.0
4	1985-01-08	164.24	164.59	163.91	163.99	51172222.0
4	1985-01-08	164.24	164.59	163.91	163.99)

Data

- We considered S&P500 daily data from January 2, 1985 to April 22, 2025. (N = 10154 observations)
- We focus on log (daily) returns.

$$R_n = \log \left(\frac{\text{Closing price on day } n}{\text{Closing price on day } n - 1} \right)$$

Data

Figure: Log-Returns with Time.

Time Series Analysis: ACF and PACF

- ACF: Correlation with respect to its past values
- PACF: Measures the direct correlation between a value and its lag, removing the effects of shorter lags.

Figure: ACF and PACF of R_n . Almost zero correlations.

Time Series Analysis: ACF and PACF

- Raw returns show near-zero ACF and PACF:
 - Indicates no linear correlation in price movements.
 - Returns behave like white noise.
- Squared (or absolute) returns show significant ACF/PACF
 - Volatility tends to cluster periods of high or low volatility group together
 - Big moves (up or down) are often followed by more big moves and calm periods tend to follow calm periods.

GARCH(p,q) Model

• Time Series $\{X_n\}_{n\geq 0}$ is GARCH(p,q) if

$$X_n = \mu + \sigma_n \epsilon_n$$

where ϵ_n are iid mean 0 random variable.

• The conditional variance σ_n^2 evolves as:

$$\sigma_n^2 = \omega + \sum_{i=1}^q \alpha_i \epsilon_{n-i}^2 + \sum_{j=1}^p \beta_j \sigma_{n-j}^2$$

where $\omega > 0$, $\alpha_i, \beta_i \geq 0$ for stability

 Captures volatility clustering: Big moves are followed by more big moves — and calm periods tend to follow calm periods

GARCH Model: Chosing p and q

How to determine the GARCH model structure?

- Analyze ACF and PACF of squared returns:
 - PACF cutoff → suggests ARCH (p)
 - ACF tailing off → suggests GARCH (q)
- Compare models using:
 - AIC, BIC (lower is better)
- **GARCH(1,1)** is often considered effective.

GARCH: ACF and PACF

Figure: ACF and PACF of R_n^2

GARCH: AIC and BIC

Figure: AIC - p = 2 and q = 2. BIC - p = 1 and q = 1

• All AIC and BIC values are close considering the scale. Will fit the model with $p=1,\,q=1$

GARCH(1,1)

GARCH(1,1): X_n has time-varying volatility driven by past shocks and past variance.

$$X_n = \mu + \sigma_n \epsilon_n$$
 where $\sigma_n^2 = \omega + \alpha_1 \epsilon_{n-1}^2 + \beta_1 \sigma_{n-1}^2$

- We first fit the model with ϵ being standard normal.
- Estimated Parameters:

Parameter	Estimate	Std. Error	p-value
$\hat{\mu}$	0.0649	8.325e-03	6.647e-15
$\hat{\omega}$	0.0219	4.969e-03	1.073e-05
\hat{lpha}_1	0.114	1.776e-02	3.550e-10
\hat{eta}_1	0.08729	1.798e-02	0.000

• All parameters seem significant.

GARCH(1,1): Normality

The QQ plot suggest that tails are heavier. Standard fix: ϵ 's follow t-distribution.

GARCH(1,1): t-model

We fit a GARCH(1,1) model to the log returns:

$$X_n = \mu + \sigma_n \cdot \epsilon_n, \quad \epsilon_n \sim \text{i.i.d. } t_\nu$$

$$\sigma_n^2 = \omega + \alpha_1 (X_{n-1} - \mu)^2 + \beta_1 \sigma_{n-1}^2$$

Estimated Parameters:

Parameter	Estimate	Std. Error	p-value
$\hat{\mu}$	3.3883e+04	7243.760	2.903e-06
$\hat{\omega}$	2.6740e+10	7.964e+09	7.857e-04
\hat{lpha}_{1}	0.1135	1.373e-02	1.417e-16
\hat{eta}_1	0.8674	1.868e-02	0.000
$\hat{ u}$	5.6969	0.392	7.544e-48

GARCH(1,1): Residuals

 $Figure: \ Standarized \ Residuals$

$\mathsf{GARCH}(1,1)$ predictions

Date	Predicted Price (\$)	Actual Price (\$)	
21 April	_	515.82	
22 April	530.68	527.00	
23 April	546.48	537.5	

Table: Forecasted vs Actual S&P 500 Prices

Preliminary extreme value analysis

- We fit GPD model to left tail (market crashes) of *standardized residuals*. (McNeil, A. J et.al Quantitative Risk Management: Concepts, Techniques and Tools)
- We start with a threshold of 0.01 quantile.

Estimation

Estimation: Threshold (u): -2.7831, Shape (ξ): 0.2561 and Scale (β) = 0.7333.

- Heavier than exponential, but not as extreme as power-law.
- ullet $\xi > 0$ implies the distribution has no finite upper bound large events are possible.

Exceedances

VaR: Value at Risk

Interpretation: In the worst 1% of cases, there is a 1% chance that the residual drops below -9.112.

Overview-II

- Methods for picking your GPD threshold Mean excess plot and Weissman method.
- Fit GPD models for the above methods.
- Plot quantiles for the models.
- Compare.

Why threshold matters?

- Too low threshold bias from non tail data.
- Too high threshold high variance from exceedances.

Often, selecting lowest threshold for which the GPD tail assumption is reasonable helps ensure the validity of the fit.

Mean excess plot

- Choose u_1, u_2, \dots, u_K span from a low quantile (say 50^{th} -percentile) upto a high quantile (say 90^{th} -percentile) of the data.
- ullet For each u_j define the emperical mean excess by

$$\hat{e}(u_j) = \frac{1}{n_j} \sum_{i: x_i > u_j} (x_i - u_j) \text{ where } n_j = \# \{x_i > u_j\}.$$

- Plot $\hat{e}(u_j)$ vs u_j .
- Choose the threshold u^* as the smallest u at which the emperical mean excess function first exhibits linearity.

Threshold

GPD Fit

Weismann MSE

- Choose candidate thresholds $u_1 < u_2 < \cdots < u_K$.
- For each u_k form exceedances $\{X_i > u_k\}$ and fit the GPD to obtain $\hat{\theta}_k$.
- For each u_k resample its exceedances B times, refit to get $\{\hat{\theta}_k^{*(b)}\}_{b=1}^B$, and compute

$$MSE(u_k) = \frac{1}{B} \sum_{b=1}^{B} (\hat{\theta}_k^{*(b)} - \hat{\theta}_k)^2.$$

• Select $u^* = \arg\min_{1 \le k \le K} \mathrm{MSE}(u_k)$.

Threshold

GPD Fit

Comparison

Figure: QQ-plots for GPD fit under two different thresholds

- Mean-excess: lower threshold \rightarrow more QQ-points.
- Weissman-MSE: higher threshold \rightarrow fewer QQ-points.