МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра	теоретических	основ
компьютерной	безопасности	И
криптографии		

Дискретное логарифмирование в конечном поле ОТЧЁТ ПО ДИСЦИПЛИНЕ «ТЕОРЕТИКО-ЧИСЛОВЫЕ МЕТОДЫ В КРИПТОГРАФИИ»

студента 5 курса 531 группы специальности 10.05.01 Компьютерная безопасность факультета компьютерных наук и информационных технологий Алексеева Александра Александровича

Преподаватель		
профессор, д.фм.н.		В. А. Молчанов
	подпись, дата	

1 Постановка задачи

Цель работы — изучение основных методов дискретного логарифмирования в конечном поле и их программная реализация.

Порядок выполнения работы:

- 1. Рассмотреть метод Гельфонда-Шенкса вычисления дискретного логарифма и привести его программную реализацию;
- 2. Рассмотреть ρ -метод Полларда вычисления дискретного логарифма и привести его программную реализацию;
- 3. Рассмотреть метод вычисления дискретного логарифма в конечных полях.

2 Теория

Пусть $G = \langle a \rangle$ — конечная циклическая группа порядка m, т.е.

$$G = \{a^0 = 1, a^1 = a, a^2, ..., a^{m-1}\}.$$

Определение. Дискретным логарифмом элемента $b \in G$ называется число $x \in \{0,1,\ldots,m-1\}$, для которого

$$a^x = b$$
.

Обозначается $x = \log_a b$.

Задача нахождения дискретного логарифма имеет большую сложность вычислений.

2.1 Метод Гельфонда-Шенкса

<u>Алгоритм Гельфонда-Шенкса</u> вычисления дискретного логарифма в произвольной циклической группе, элементы которой <u>линейно упорядочены</u>

 $Bxo\partial$. Конечная линейно упорядоченная группа $G=\langle a \rangle$, верхняя оценка порядка группы $|G| \leq B$ и $b \in G$.

 $Bыход. x = \log_a b.$

<u>Шаг 1</u>. Вычислить $r = [\sqrt{B}] + 1$. Вычислить элементы $a, a^2, ..., a^{r-1}$ и упорядочить по второй координате множество пар $(k, a^k), 1 \le k \le r - 1$;

<u>Шаг 2</u>. Вычислить $a_1 = a^{-r}$. Для каждого $0 \le i \le r-1$ вычислить a_1^i и проверить, является ли элемент $a_1^i b$ второй координатой какой-нибудь пары из упорядоченного множества, построенного на шаге 1. Если $a_1^i b = a^k$, то $a^{-ri}b = a^k, b = a^k a^{ri} = a^{k+ri}$ запомнить k+ri;

<u>Шаг 3</u>. Найти число x, равное наименьшему значению среди чисел k+ri, вычисленных на предыдущем шаге. В результате получаем $x = \log_a b$.

<u>Замечание.</u> При B = |G| шаг 3 можно пропустить.

Сложность алгоритма: на шагах 1,2 $O(r\log r)$ операций в группе G — в результате $O(\sqrt{B}\log B)$.

Псевдокод алгоритма Гельфонда-Шенкса

Ввод m – порядок конечной циклической группы, а – образующий элемент группы, b – элемент группы

Если (т не простое)

Вывести «Число *т* должно быть простым»

Если (a не является образующим элементом)

вывести «а не является образующим элементом»

 $r = \lceil \sqrt{m} \rceil + 1$

Создаётся список аѕ

В цикле по i от 1 до r – 1:

Добавить пару (i, a^i) в список as

Отсортировать список аз по второму элементу

 $a_1 = a^{-r} \pmod{m}$

Создаём список k_r і, в котором будут хранится значения k+rі

В цикле по i от 1 до r – 1:

 $a_1b = a_1^ib$

В цикле по всему списку аs:

Если ($a^k = a_1 b$)

Добавить значение k + ri в список k_ri

Вернуть наименьшее значение в списке k_ri

2.2ρ -метод Полларда

Дана конечная циклическая группа $G = \langle a \rangle$ порядка m и элемент $b \in G$. Причем группа разбита на три примерно равные части U_1, U_2, U_3 с простым алгоритмом проверки вхождения элементов в эти части.

Определяется преобразование $f: G \to G$ для элементов $x \in G$ по формуле:

$$f(x) = egin{cases} bx, \text{если } x \in U_1, \ x^2, \text{если } x \in U_2, \ ax, \text{если } x \in U_3. \end{cases}$$

Для случайно выбранного значения $s \in \mathbf{Z}_m$ рассматривается рекуррентная последовательность:

$$y_i = f(y_{i-1}), i \ge 1, y_0 = a^s.$$

Тогда $y_i = a^{\alpha_i} b^{\beta_i}$ для рекуррентно заданных последовательностей:

$$\alpha_0 = s, \alpha_{i+1} = \left\{ \begin{array}{l} \alpha_i \ (mod \ m), \text{если} \ y_i \in U_1, \\ 2\alpha_i \ (mod \ m), \text{если} \ y_i \in U_2, \\ \alpha_i + 1 \ (mod \ m), \text{если} \ y_i \in U_3; \end{array} \right.$$

$$eta_0=0,eta_{i+1}=egin{cases} eta_i+1\ (mod\ m),$$
если $y_i\in U_1,\ 2eta_i\ (mod\ m),$ если $y_i\in U_2,\ eta_i\ (mod\ m),$ если $y_i\in U_3. \end{cases}$

Так как при этом

$$y_i = a^{\alpha_i} b^{\beta_i} = a^{\alpha_i} (a^x)^{\beta_i} = a^{\alpha_i + \beta_i x},$$

то выполняется

$$\log_a y_i = \beta_i x + \alpha_i \ (mod \ m).$$

<u>Алгоритм ρ -метода Полларда</u> вычисления дискретного логарифма в произвольной циклической группе

 $Bxo\partial$. Конечная группа $G=\langle a\rangle$ порядка m, элемент $b\in G$, определенная выше функция $f\colon G\to G$ и число $\varepsilon>0$.

 $Bыход. \ x = \log_a b$ с вероятностью не менее $1 - \varepsilon$.

Шаг 1. Вычислить
$$k = \left[\sqrt{2\sqrt{m}\ln\frac{1}{\varepsilon}} \right] + 1;$$

<u>Шаг 2</u>. Положить i=1, выбрать случайное $s\in Z_m$ и вычислить $y_0=a^s$, $y_1=f(y_0)$. Запомнить две тройки (y_0,α_0,β_0) , (y_1,α_1,β_1) и перейти к шагу 3;

<u>Шаг 3</u>. Положить i=i+1, вычислить $y_i=f(y_{i-1}),y_{2i}=f(y_{2i-2}),$ запомнить две тройки $(y_i,\alpha_i,\beta_i),(y_{2i},\alpha_{2i},\beta_{2i})$ и перейти к шагу 4;

<u>Шаг 4</u>. Если $y_i \neq y_{2i}$, то проверить условие i < k. Если это условие выполнено, то перейти к шагу 3. В противном случае закончить вычисления и сообщить, что значение $x = \log_a b$ вычислить не удалось.

Если же $y_i = y_{2i}$, то

$$\log_{a} y_{i} = \beta_{i} x + \alpha_{i} = \log_{a} y_{2i} = \beta_{2i} x + \alpha_{2i} \pmod{m},$$
$$\alpha_{2i} - \alpha_{i} \equiv (\beta_{i} - \beta_{2i}) x \pmod{m}.$$

И для решения сравнения перейти к шагу 5;

<u>Шаг 5</u>. Вычислить $\text{HOД}(\beta_i - \beta_{2i}, m) = d$. Если $\sqrt{m} < d < m$, то перейти на шаг 2 и выбрать новое значение $s \in Z_m$.

В противном случае решить сравнение

$$\alpha_{2i} - \alpha_i \equiv (\beta_i - \beta_{2i})x \pmod{m}.$$

Если d=1, то единственное решение последнего сравнения равно значению $\log_a b$. Если $1 < d \le \sqrt{m}$, то последнее сравнение имеет d различных решений по модулю m. Для каждого из этих решений проверить выполнимость равенства $a^x = b$ и найти истинное значение $x = \log_a b$.

<u>Обоснование.</u> Применим теорему о «парадоксе дней рождений» к последовательности $\{y_i\},\, 0 \leq i \leq k.$ Тогда для

$$\lambda = \ln \frac{1}{\varepsilon}$$
, $S = G$, $|S| = |G| = m$, $k = \left[\sqrt{2\sqrt{m} \ln \frac{1}{\varepsilon}} \right] + 1$

среди членов последовательности $\{y_i\},\ 0 \le i \le k$ с вероятностью не менее $1-e^{\lambda}=1-\varepsilon$ найдутся совпадающие члены $y_i=y_j, 0 \le i < j \le k.$

Значит, в ходе работы алгоритма с вероятностью не менее $1-\varepsilon$ будет построена пара $y_i=y_{2i}$ и в силу равенства $\log_a y_i=\beta_i x+\alpha_i \ (mod\ m)$ выполняется $\alpha_{2i}-\alpha_i\equiv (\beta_i-\beta_{2i})x\ (mod\ m)$. Это сравнение разрешимо и имеет ровно $HOJ(\beta_i-\beta_{2i},m)=d$ решений (число которых ограничено значением \sqrt{m}).

Сложность вычислений: $O(\sqrt{m}\sqrt{\ln\frac{1}{\varepsilon}})$ операций в группе G.

Псевдокод ρ -метода Полларда

def newThrees(*m*, *a*, *b*, список *elPrev*):

$$u1 = m / 3$$
, $u2 = u1 * 2$, $u3 = m$

Если (elPrev[0] < u1)

Вернуть список $[b * elPrev[0] \pmod{m}, elPrev[1], elPrev[2] + 1 \pmod{m-1}$

Если (elPrev[0] < u2)

Вернуть $[elPrev[0]^2 \pmod{m}, 2 * elPrev[1] \pmod{m-1}, 2 * elPrev[2] \pmod{m-1}]$

Eсли (elPrev[0] < u3)

Вернуть $[a*elPrev[0] \pmod{m}, elPrev[1] + 1 \pmod{m-1}, elPrev[2]]$

Ввод m – порядок конечной циклической группы, а – образующий элемент группы, b – элемент группы, ε

Если (т не простое)

Вывести «Число *т* должно быть простым»

Если (α не является образующим элементом)

вывести «а не является образующим элементом»

$$k = \left[\sqrt{2\sqrt{m} ln \frac{1}{\varepsilon}} \right] + 1$$

step2:

s = Random(0, m - 1)

```
Создать список threes pasмepom 2k + 2 = [[a^s \pmod m], s, 0], newThrees(m, a, b, threes[0], [], ..., []]
```

В цикле по i от 2 до k включительно:

threes[i] = newThrees(m, a, b, threes[i - 1])

helpThrees = newThrees(m, a, b, threes[2i - 2])

threes[2i] = newThrees(m, a, b, helpThrees)

В цикле по i от 2 до k включительно:

d = HOД(threes[i][2] - threes[2i][2], m - 1)

Если ($\sqrt{m} < d < m$)

Перейти на step2

Создать список *res*

В цикле по x от 1 до m или пока размер $res \neq d$:

Если (threes[i][2] - threes[2i][2] * $x \pmod{m-1}$ = threes[i][1] - threes[2i][1] (mod m-1))

Добавить в список res значение x

В цикле по j от 0 до размера res:

Если $(a^{res[j]} \pmod{m} = b)$

Вернуть res[j]

Вывести «Дискретный логарифм вычислить не удалось»

2.3 Метод вычисления дискретного логарифма в конечных полях

Даны g — образующий элемент группы $GF(p)^*$ и $h \in GF(p)^*$. Требуется найти $x = \log_{\mathbf{g}} h$.

Будем считать, что $GF(p) = \mathbf{Z}_{p}$.

Пусть B — некоторое натуральное число, параметр метода. Определим факторную базу $S_B = \{2,3,5,...,q\}$ — множество первых простых чисел, не превосходящих $B, |S_B| = \pi(B)$. Значение параметра B выбирается таким образом, чтобы минимизировать сложность алгоритма.

Алгоритм индекс-метода логарифмирования в конечном простом поле $Bxo\partial$. Простое нечетное число $p, Z_p^* = \langle g \rangle, h \in Z_p^*$.

Bыхоо. Значение $x = \log_g h$.

<u>Шаг 1</u>. Выбрать значение параметра B. Построить факторную базу S_B ;

<u>Шаг 2</u>. Выбрать случайное m, $0 \le m \le p-2$, найти вычет $b \in Z_p^*$, $b \equiv g^m \pmod p$;

<u>Шаг 3</u>. Проверить число b на B-гладкость. Если b является B-гладким, то вычислить его каноническое разложение $b = \prod_{i=1}^{\pi(B)} q_i^{l_i}$ и запомнить строку $(l_1, l_2, ..., l_{\pi(B)})$.

Из соотношений

$$\begin{cases} b = \prod_{i=1}^{\pi(B)} q_i^{l_i} = g^{\sum_{i=1}^{\pi(B)} l_i \log_g q_i} \pmod{p} \\ b \equiv g^m \pmod{p} \end{cases}$$

вытекает сравнение

$$m \equiv \sum_{i=1}^{\pi(B)} l_i x_i \pmod{p-1},$$

где $x_i = \log_g q_i$.

Повторять шаги 2 и 3 до тех пор, пока число найденных строк не превысит $N=\pi(B)+\delta$, где δ — некоторая небольшая константа.

В результате будет построена система линейных уравнений над кольцом \mathbf{Z}_{p-1} относительно неизвестных $x_i = \log_{\mathrm{g}} q_i$, $q_i \in S_B$:

$$m_j \equiv \sum_{i=1}^{\pi(B)} l_{ji} x_i \pmod{p-1}, 1 \le j \le N.$$

Полученная система заведомо совместна;

<u>Шаг 4</u>. Решить полученную на предыдущем шаге систему линейных уравнений над кольцом \mathbf{Z}_{p-1} методом Гаусса. Если система имеет более одного решения, то вернуться на шаг 2 и получить несколько новых линейных соотношений. Затем вернуться к шагу 4;

<u>Шаг 5</u>. (Вычисление индивидуального логарифма). Выбрать случайное $m, 0 \le m \le p-2$, найти вычет $b \equiv hg^m \pmod p$, $b \in Z_p^*$. Проверить число b на B-гладкость. Если b является B-гладким, то

$$\begin{cases} b = \prod_{i=1}^{\pi(B)} q_i^{r_i} = g^{\sum_{i=1}^{\pi(B)} r_i \log_g q_i} \ (mod \ p) \\ b \equiv hg^m = g^x g^m = g^{x+m} \ (mod \ p) \end{cases}$$

и, следовательно,

$$x \equiv -m + \sum_{i=1}^{\pi(B)} r_i x_i \pmod{p-1}.$$

При $p \to \infty$ оптимальное значение $B = L_p[1/2]$ и сложность всего алгоритма оценивается величиной $L_p[2]$, где

$$L_p[c]=L_p\left[rac{1}{2},c
ight]=\expigg(ig(c+o(1)ig)(\log p\log\log p)^rac{1}{2}igg)=L^{c+o(1)}$$
 для $L=\expigg((\log p\log\log p)^rac{1}{2}igg).$

Замечание. На шаге 4 система линейных уравнений решается методом Гаусса. Так как \mathbf{Z}_{p-1} не является полем и имеются ненулевые необратимые элементы в \mathbf{Z}_{p-1} , то осуществляется другой подход к приведению элементов на главной диагонали к единице. Для того, чтобы элемент x на главной диагонали был равен 1, необходимо пройтись по столбцу и найти в нём такой элемент y, что HOД(x,y)=1. После этого, с помощью расширенного алгоритма Евклида нужно получить такие коэффициенты a и b, что $x \cdot a + y \cdot b = 1$. Затем строки СЛУ должны быть умножены на коэффициенты a, b и сложены, чтобы элемент на главной диагонали был равен 1.

Псевдокод индекс-метода логарифмирования в конечном простом поле

```
Функция factorizationNum(base, n):
    Создаётся список res = [[base[0], 0], [base[1], 0], ..., [base[-1], 0]]
    В цикле по i от 0 до размера base:
    Пока (n \ (mod \ base[i]) \neq 0):
    base[i][1] = base[i][1] + 1
    n = n \ / base[i]
Вернуть список [res, n]
```

Ввод p – порядок конечной циклической группы, g – образующий элемент группы, h – элемент группы

Если (р не простое)

Вывести «Число р должно быть простым»

```
вывести «д не является образующим элементом»
       B = \text{если } p < 8193 \text{ то } 13 \text{ иначе log2}(p)
step2:
       Создать список canonDecompose
       Пока (размер canonDecompose \neq pasmepy base + 10):
              m = \text{Random}(1, p - 2)
              b = g^m \pmod{p}
              factorsNum = factorizationNum(base, b)
              Если (factorsNum[1] \neq 1)
                      Перейти к следующей итерации
              Создать список degs
              Цикл по i от 0 до размера factorsNum:
                      Добавить в degs значение factorsNum[0][i][1]
              Добавить в список degs значение m
              Добавить в список canonDecompose список degs
       Если (СЛУ canonDecompose не имеет решения)
              Перейти на step2
       Цикл по i от 0 до размера canonDecompose[0] - 1:
              Eсли (canonDecompose[i][i] = 0)
                      Цикл по j от i+1 до размера canonDecompose:
                             Если (canonDecompose[j][i] \neq 0)
                                     swap(canonDecompose[i], canonDecompose[i])
                                    break
       Решить СЛУ canonDecompose и записать в solSLU
       Бесконечный цикл:
              m = \text{Random}(0, p - 2)
              b = g^m \cdot h \pmod{p}
              factorsNum = factorizationNum(base, b)
              Если (factorsNum[1] \neq 1)
                      Перейти к следующей итерации
              res = 0
              Цикл по i от 0 до размера base:
                      res = res + factorsNum[0][i][1] * solSLU[i] \pmod{p-1}
              res = res - m \pmod{p-1}
              Вернуть res в качестве результата
```

Если (g не является образующим элементом)

3 Результаты работы

3.1 Тестирование программы

```
Дискретное логарифмирование в конечном поле
1 - Метод Гельфонда-Шенкса
2 - ро-метод Полларда
3 - индекс-метод
Порядок конечной циклической группы р: 997
Образующий элемент группы а: 29
Элемент группы b: 423
x = 19
Проверка: a^x (mod m) = 423
1 - Метод Гельфонда-Шенкса
2 - ро-метод Полларда
3 - индекс-метод
Порядок конечной циклической группы р: 37
Образующий элемент группы а: 2
Элемент группы b: 23
Значение epsilon: 0.5
x = 15
Проверка: a^x (mod m) = 23
1 - Метод Гельфонда-Шенкса
2 - ро-метод Полларда
3 - индекс-метод
Порядок конечной циклической группы р: 999983
Образующий элемент группы а: 41
Элемент группы b: 53425
слу:
(0, 5, 1, 2, 1, 0, 0, 0, 6999)
(0, 5, 1, 0, 0, 1, 0, 0, 12257)
(0, 2, 2, 0, 0, 2, 1, 0, 17410)
(0, 1, 1, 0, 1, 1, 0, 0, 13861)
(4, 0, 2, 1, 0, 0, 1, 0, 6248)
(3, 2, 1, 2, 0, 1, 0, 0, 4649)
(1, 6, 1, 0, 0, 0, 0, 1, 3119)
(2, 4, 0, 1, 1, 1, 0, 0, 30542)
(2, 2, 0, 0, 0, 0, 1, 0, 5438)
(0, 3, 0, 1, 1, 0, 1, 1, 5228)
(3, 3, 1, 2, 0, 0, 0, 0, 14467)
(1, 2, 0, 0, 2, 0, 2, 0, 5012)
(4, 0, 0, 0, 1, 2, 0, 0, 558)
(0, 3, 1, 1, 0, 2, 0, 0, 28653)
(2, 3, 0, 1, 0, 0, 1, 1, 9672)
(2, 3, 1, 1, 0, 0, 0, 1, 32357)
(2, 0, 1, 0, 0, 0, 2, 0, 20409)
(5, 1, 0, 0, 0, 1, 2, 0, 4082)
```

```
Разрешённая СЛУ:
(1, 999980,
               1, 999981,
                               0, 999981,
                                                      0, 1599)
                                              1,
                      0,
                               0, 999979, 999980,
                                                      0, 977419)
        1, 999979,
(0,
(0,
                               1,
        0, 1,
                                      1, 2,
                       1,
                                                      1, 10381)
(0,
        0,
               0,
                       1, 333312, 666686, 999965, 999972, 372052)
                               1, 941128, 539235, 555554, 534948)
(0,
        0,
               0,
                       0,
                                       1, 676934, 900065, 855378)
(0,
        0,
               0,
                       0,
                               0,
                                              1, 403590, 934334)
                       0,
                               0,
                                       0,
(0,
        0,
               0,
               0,
                                       0,
                                                      1, 405656)
(0,
        0,
                      0,
                               0,
                                              0,
Решение СЛУ: (575370, 786164, 305001, 812378, 146314, 776346, 282316, 405656)
x = 328586
Проверка: a^x (mod m) = 53425
```

3.2 Код программы

```
#include <iostream>
#include <vector>
#include <string>
#include <set>
#include <map>
#include <cmath>
#include <iomanip>
#include "Pattern.cpp"
#include "boost/multiprecision/cpp int.hpp"
#include <boost/multiprecision/cpp dec float.hpp>
using namespace std;
using namespace boost::multiprecision;
class Pattern
{
private:
       static vector <long long> deg2(long long el, long long n)
{//Раскладываем число на степени двойки
               vector <long long> res;
               while (n != 0) {
                       if (n / el == 1) {
                               res.push back(el);
                               n -= el;
                               el = 1;
                       }
                       else
                               el *= 2;
               return res;
        }
        static long long multMod(long long n, long long mod, vector <pair <long
long, long long>> lst) {//Умножаем число по модулю
                if (lst.size() == 1) {
                       long long res = 1;
                       for (unsigned short i = 0; i < lst[0].second; i++)</pre>
                               res = res * lst[0].first % mod;
                       return res;
                else if (lst[0].second == 1) {
                       long long el = lst[0].first;
                       lst.erase(lst.begin());
```

```
return (el * multMod(n, mod, lst)) % mod;
                else {
                        for (unsigned short i = 0; i < lst.size(); i++)</pre>
                                if (lst[i].second > 1) {
                                        lst[i].first = (lst[i].first *
lst[i].first) % mod;
                                        lst[i].second /= 2;
                        return multMod(n, mod, lst);
                }
        }
        static long long partition(vector <pair <short, long long>>& a, long
long start, long long end) {
                long long pivot = a[end].second;
                long long pIndex = start;
                for (unsigned short i = start; i < end; i++) {</pre>
                        if (a[i].second <= pivot) {</pre>
                                swap(a[i], a[pIndex]);
                               pIndex++;
                        }
                swap(a[pIndex], a[end]);
                return pIndex;
        }
public:
        static long long powClosed(long long x, long long y, long long mod)
{//Возводим число в степени по модулю
                if (y == 0)
                       return 1;
                vector <long long> lst = deg2(1, y);
                vector <pair <long long, long long>> xDegs;
                for (unsigned short i = 0; i < lst.size(); i++)</pre>
                        xDegs.push back(make pair(x, lst[i]));
                long long res = multMod(x, mod, xDegs);
                return res;
        }
        static bool miller rabin(long long n, long long k = 10) {
                if (n == 0 || n == 1)
                       return false;
                else if (n == 2 || n == 3)
                        return true;
                long long d = n - 1;
                long long s = 0;
               while (d \% 2 == 0) {
                       s++;
                       d = d / 2;
                }
                long long nDec = n - 1;
                for (unsigned short i = 0; i < k; i++) {
                       long long a = rand() % nDec;
                        if (a == 0 || a == 1)
                                a = a + 2;
```

```
long long x = powClosed(a, d, n);
                       if (x == 1 \mid \mid x == nDec)
                               continue;
                       bool flag = false;
                       for (unsigned short j = 0; j < s; j++) {
                               x = (x * x) % n;
                               if (x == nDec) {
                                       flag = true;
                                       break;
                               }
                       if (!flag)
                               return false;
                }
               return true;
        }
        static void quicksort(vector <pair <short, long long>>& a, long long
start, long long end) {
               if (start >= end) {
                       return;
                }
               long long pivot = partition(a, start, end);
               quicksort(a, start, pivot - 1);
               quicksort(a, pivot + 1, end);
        }
        static long long usualEuclid(long long a, long long b) {
               if (a < b)
                       swap(a, b);
                if (a < 0 | | b < 0)
                       throw string{ "Выполнение невозможно: a < 0 или b < 0" };
                else if (b == 0)
                       return a;
               long long r = a % b;
                return usualEuclid(b, r);
        static pair <long long, long long> advancedEuclid(long long a, long long
b) {
               if (a < 0 | | b < 0)
                       throw string{ "Выполнение невозможно: a < 0 или b < 0" };
                long long q, aPrev = a, aCur = b, aNext = -1;
                long long xPrev = 1, xCur = 0, xNext;
                long long yPrev = 0, yCur = 1, yNext;
               while (aNext != 0) {
                       q = aPrev / aCur;
                       aNext = aPrev % aCur;
                       aPrev = aCur; aCur = aNext;
                       xNext = xPrev - (xCur * q);
                       xPrev = xCur; xCur = xNext;
                       yNext = yPrev - (yCur * q);
                       yPrev = yCur; yCur = yNext;
```

```
}
               return make pair(xPrev, yPrev);
};
class discrLogarithm
{
private:
        //Проверка первообразного элемента
        static void checkPrimitEl(long long g, long long m)
                if (q >= m)
                        throw string{ "Первообразный элемент превышает порядок!"
};
               long long x = g;
               for (long long i = 2; i < m; i++)
                {
                       x = (x * g) % m;
                        if (i != m - 1 \&\& x == 1)
                               throw string{ "Элемент " + to string(g) + " не
является образующим элементом!" };
              }
       }
        static pair <short, long long> findEl(vector <pair <short, long long>>
as, long long el)
        {
                for (unsigned short i = 0; i < as.size(); i++)</pre>
                       if (as[i].second == el)
                               return as[i];
                return make_pair(0, 0);
        }
        //Вычисляется новая тройка во 2-ом алгоритме
        static vector <long long> newThrees(long long m, long long a, long long
b, vector <long long> elPrev)
       {
                long long u1 = m / 3.0;
                long long u2 = u1 * 2;
                long long u3 = m;
                if (elPrev[0] < u1)</pre>
                       return vector <long long> {b * elPrev[0] % m, elPrev[1],
(elPrev[2] + 1) % (m - 1)};
               else if (elPrev[0] < u2)</pre>
                       return vector <long long> {elPrev[0] * elPrev[0] % m, 2 *
elPrev[1] % (m - 1), 2 * elPrev[2] % (m - 1) };
               else
                       return vector <long long> {a * elPrev[0] % m, (elPrev[1]
+ 1) % (m - 1), elPrev[2]};
        }
        //Создаётся факторная база
        static vector <short> createBase(short B)
               vector <short> base;
                for (unsigned short i = 1; i \le B; i++)
```

```
if (Pattern::miller rabin(i))
                                base.push back(i);
                return base;
        }
        //Каноническое представление числа относительно факторной базы
        static pair <map <short, long long>, short> factorizationNum(vector
<short> base, long long n)
                pair <map <short, long long>, short > res;
                for (unsigned short i = 0; i < base.size(); i++)</pre>
                        res.first.insert(make pair(base[i], 0));
                for (unsigned short i = 0; i < base.size(); i++)</pre>
                        while (n % base[i] == 0)
                                res.first[base[i]] += 1;
                                n /= base[i];
                        }
                res.second = n;
                return res;
        //Проверка, имеет ли СЛУ решение
        static bool haveSolutionSLU(vector <vector <long long>> matrix)
                for (unsigned short i = 0, rawSize = matrix[0].size() - 1; i <</pre>
rawSize; i++)
                {
                       bool flag = false;
                        for (unsigned short j = 0, colSize = matrix.size(); j <</pre>
colSize; j++)
                                if (matrix[j][i] > 0) {
                                        flag = true;
                                       break;
                                }
                        if (!flag)
                               return false;
                return true;
        }
        //Перестановка строк, чтобы на главной диагонали не было нулей
        static bool swapColms(vector <vector <long long>>& matrix, short
indexColm)
                for (unsigned short i = indexColm + 1; i < matrix.size(); i++)</pre>
                        if (matrix[i][indexColm] != 0)
                        {
                                swap(matrix[indexColm], matrix[i]);
                                return true;
               return false;
        }
        //Умножение строки на число
        static vector <long long> multRawToNum(vector <long long> raw, long long
num, long long field) {
               vector <long long> res;
```

```
for (unsigned short i = 0, rawSize = raw.size(); i < rawSize;</pre>
i++)
                {
                       int x = (raw[i] * num) % field;
                       while (x < 0)
                               x += field;
                       res.push back(x);
                return res;
        }
        //Сложение строк
        static vector <long long> addRaws(vector <long long> a, vector <long
long> b, long long field) {
               vector <long long> res;
                for (unsigned short i = 0; i < a.size(); i++) {</pre>
                       long long x = (a[i] + b[i]) % field;
                       while (x < 0)
                               x += field;
                       res.push back(x);
                return res;
public:
        static long long gelfondThanks(long long m, long long a, long long b)
                if (!Pattern::miller rabin(m))
                       throw string{ "Порядок группы " + to string(m) + " не
является простым числом!" };
               checkPrimitEl(a, m);
               long long r = round(std::sqrt(m)) + 1;
               vector <pair <short, long long>> as;
               for (unsigned short i = 1; i < r; i++)
                       as.push_back(make_pair(i, Pattern::powClosed(a, i, m)));
                Pattern::quicksort(as, 0, as.size() - 1);
                long long a1 = (Pattern::powClosed(Pattern::advancedEuclid(a,
m).first, r, m) + m) % m;
                set <long long> k ri;
                for (unsigned short i = 0; i < r; i++)</pre>
                       long long ali = Pattern::powClosed(a1, i, m);
                       pair <short, long long> k ak = findEl(as, ali * b % m);
                       if (k ak.first != 0)
                               k ri.insert((k ak.first + r * i) % m);
                for (auto i = k ri.begin(); i != k ri.end(); i++)
                       if (Pattern::powClosed(a, *i, m) == b)
                               return *i;
                for (unsigned short i = 1;; i++)
                       if (Pattern::powClosed(a, i, m) == b)
                               return i;
        }
        static long long roMethodPollarda(long long m, long long a, long long b,
double eps)
               if (!Pattern::miller rabin(m))
```

```
throw string{ "Порядок группы " + to string(m) + " не
является простым числом!" );
                                   checkPrimitEl(a, m);
                                   long long k = round(std::sqrt(2 * std::sqrt(m - 1) * log(1 / sqrt(m - 1) * log(1 / sqr
eps))) + 1;
                                  unsigned short count = 0;
                  step2:
                                   count++;
                                  long long s = rand() % (m - 1);
                                   vector <vector <long long>> threes(2 * k + 2);
                                   threes[0] = { Pattern::powClosed(a, s, m), s, 0 };
                                   threes[1] = newThrees(m, a, b, threes[0]);
                                   for (unsigned short i = 2; i \le k; i++)
                                                     threes[i] = newThrees(m, a, b, threes[i - 1]);
                                                    vector <long long> helpThrees = newThrees(m, a, b,
threes [2 * i - 2]);
                                                    threes[2 * i] = newThrees(m, a, b, helpThrees);
                                   }
                                   for (unsigned short i = 2; i \le k; i++)
                                                     if (threes[i][0] == threes[2 * i][0])
                                                                      long long mDec = m - 1;
                                                                      long long d = Pattern::usualEuclid((threes[i][2]
- threes[2 * i][2] + mDec) % mDec, mDec);
                                                                      if (std::sqrt(m) < d && d <= m)</pre>
                                                                                       goto step2;
                                                                      long long alphaRes = (threes[2 * i][1] -
threes[i][1] + mDec) % mDec;
                                                                      long long betaRes = (threes[i][2] - threes[2 *
i][2] + mDec) % mDec;
                                                                      vector <long long> res;
                                                                      for (long long x = 1; x < m \&\& res.size() != d;
X++)
                                                                                        if (betaRes * x % mDec == alphaRes)
                                                                                                         res.push back(x);
                                                                      for (unsigned short j = 0; j < res.size(); j++)</pre>
                                                                                        if (Pattern::powClosed(a, res[j], m) == b)
                                                                                                         return res[j];
                                   if (count < m / eps)</pre>
                                                    goto step2;
                                   throw string{ "Дискретный логарифм вычислить не удалось!" };
                                   return 0;
                  }
                  static long long indexMethod(long long p, long long a, long long h)
                  {
                                   if (!Pattern::miller rabin(p))
                                                    throw string{ "Порядок группы" + to string(p) + " не
является простым числом!" );
                                  checkPrimitEl(a, p);
                                   short B = p < 8193 ? 13 : round(log2(p));
                                   vector <short> base = createBase(B);
                  step2:
```

```
vector <vector <long long>> canonDecompose;
               while (canonDecompose.size() != base.size() + 10)
                        int m = rand() % (p - 2) + 1;
                        long long b = Pattern::powClosed(a, m, p);
                        pair <map <short, long long>, long long> factorsNum =
factorizationNum(base, b);
                        if (factorsNum.second != 1)
                               continue;
                        vector <long long> degs;
                        for (auto i = factorsNum.first.begin(); i !=
factorsNum.first.end(); i++)
                               degs.push back(i->second);
                        degs.push back(m);
                        canonDecompose.push back(degs);
               vector <vector <long long>> copyCanonDecompose = canonDecompose;
                if (!haveSolutionSLU(canonDecompose))
                       goto step2;
                for (unsigned short i = 0; i < canonDecompose[0].size() - 1; i++)
                        if (canonDecompose[i][i] == 0)
                                if (!swapColms(canonDecompose, i))
                                       goto step2;
                long long pDec = p - 1;
                for (unsigned short i = 0; i < canonDecompose[0].size(); i++)</pre>
                        if (canonDecompose[i][i] > 1) {
                               for (unsigned short j = i + 1; j <</pre>
canonDecompose.size(); j++)
                                       if (canonDecompose[j][i] != 0 &&
Pattern::usualEuclid(canonDecompose[i][i], canonDecompose[j][i]) == 1)
                                               pair <long long, long long> coefs
= Pattern::advancedEuclid(canonDecompose[i][i], canonDecompose[j][i]);
                                               canonDecompose[i] =
addRaws(multRawToNum(canonDecompose[i], coefs.first, pDec),
                       multRawToNum(canonDecompose[j], coefs.second, pDec),
                       pDec);
                                               break;
                                if (canonDecompose[i][i] > 1)
                                       goto step2;
                        for (unsigned short k = i + 1; k < canonDecompose.size();</pre>
k++)
                        {
                               canonDecompose[k] = addRaws(canonDecompose[k],
multRawToNum(canonDecompose[i], -canonDecompose[k][i], pDec), pDec);
                               if (k < canonDecompose[0].size() - 1 &&</pre>
canonDecompose[k][k] == 0)
                                       if (!swapColms(canonDecompose, k))
                                               goto step2;
                                       k--:
                                }
                        }
                }
```

```
while (canonDecompose.size() != base.size())
                        canonDecompose.pop back();
                cout << "\nСЛУ: ";
                for (unsigned short i = 0, size = copyCanonDecompose.size(); i <</pre>
size; i++)
                {
                        string res = "\n(";
                        for (unsigned short j = 0, iSize =
copyCanonDecompose[i].size(); j < iSize; j++)</pre>
                                 res += j == copyCanonDecompose[i].size() - 1 ?
to string(copyCanonDecompose[i][j]) + ")" : to string(copyCanonDecompose[i][j])
+ ", ";
                        cout << res;</pre>
                }
                cout << "\n\nРазрешённая СЛУ: ";
                for (unsigned short i = 0, sizeP = to string(p).length(), size =
canonDecompose.size(); i < size; i++)</pre>
                {
                        cout << "\n(" << canonDecompose[i][0] << ", ";</pre>
                        for (unsigned short j = 1, iSize =
canonDecompose[i].size(); j < iSize; j++)</pre>
                                 if (j == canonDecompose[i].size() - 1)
                                         cout << setw(sizeP) <<</pre>
canonDecompose[i][j] << ")";</pre>
                                 else
                                        cout << setw(sizeP) <<</pre>
canonDecompose[i][j] << ", ";</pre>
                }
                vector <long long> solSLU(canonDecompose.size(), 0);
                for (short i = canonDecompose.size() - 1; i >= 0; i--)
                        for (short j = i + 1; j < canonDecompose[i].size(); j++)</pre>
                                 solSLU[i] = j == canonDecompose[i].size() - 1 ?
(solSLU[i] + canonDecompose[i][j]) % pDec : solSLU[i] - 1 * canonDecompose[i][j]
* solSLU[j];
                                 while (solSLU[i] < 0)</pre>
                                         solSLU[i] += pDec;
                        }
                cout << "\n\nРешение СЛУ: (";
                for (unsigned short i = 0, sizeSolSLU = solSLU.size(); i <</pre>
sizeSolSLU; i++)
                {
                        if (i == sizeSolSLU - 1)
                                cout << solSLU[i] << ")";</pre>
                        else
                                cout << solSLU[i] << ", ";</pre>
                }
                while (true)
                        int m = rand() % (p - 2) + 1;
                        long long b = Pattern::powClosed(a, m, p) * h % p;
                        pair <map <short, long long>, long long> factorsNum =
factorizationNum(base, b);
                        if (factorsNum.second != 1)
```

```
continue;
                        long long res = 0;
                        for (unsigned short i = 0; i < base.size(); i++)</pre>
                                res = (res + factorsNum.first[base[i]] *
solSLU[i]) % (p - 1);
                        res = (res - m) % (p - 1);
                        return res;
                }
        }
};
int main()
        srand(time(NULL));
        setlocale(LC ALL, "ru");
        cout << "\tДискретное логарифмирование в конечном поле";
        unsigned short choice;
        for (;;)
                << "\n1 - Метод Гельфонда-Шенкса \n2 - ро-метод Полларда \n3
- индекс-метод \n";
                cin >> choice;
                long long p, a, b;
                cout << "\nПорядок конечной циклической группы р: ";
                cin >> p;
                cout << "Образующий элемент группы а: ";
                cin >> a;
                cout << "Элемент группы b: ";
                cin >> b;
                try
                {
                        if (choice == 1)
                        {
                                long long res = discrLogarithm::gelfondThanks(p,
a, b);
                                cout << "\n" = " << res << "\n" Ipoверка: a^x (mod
m) = " << Pattern::powClosed(a, res, p);</pre>
                        else if (choice == 2)
                        {
                                cout << "Значение epsilon: ";
                                double eps;
                                cin >> eps;
                                long long res =
discrLogarithm::roMethodPollarda(p, a, b, eps);
                                cout << "\n" = " << res << "\nПроверка: a^x
(mod m) = " << Pattern::powClosed(a, res, p);</pre>
                        }
                        else if (choice == 3)
                        {
                                long long res = discrLogarithm::indexMethod(p, a,
b);
                                while (res < 0)</pre>
                                        res += p - 1;
                                cout << "\nx = " << res << "\nПроверка: a^x (mod
m) = " << Pattern::powClosed(a, res, p);</pre>
```

}