

Taller de Derivación e Integración Numérica

Análisis Numérico

1. Derivación

Teniendo en cuenta el teorema:

Supóngase que se tienen $\{x_0, ..., x_n\}$ n+1 valores distintos en algún intervalo I y que $f(x) \in C^{n+1}(I)$ entonces, existe P(x) para algún $\xi(x) \in I$ talque:

$$f(x) = P(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!} \prod_{i=0}^{n} (x - x_i)$$

Caso 1 Hacia adelante:

Luego, para $f(x_0) \approx \operatorname{con} x_0 \in I$ y donde $x_1 = x_0 + h$ se tiene que la formula dados dos puntos está por:

$$f(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} - \frac{h}{2}f''(\xi(x))$$

Para valores pequeños de h el error está acotado por $\frac{|hM|}{2}$ con M es una cota de $\left|f^{"}(x)\right|$

- a. Teniendo en cuenta lo anterior, genere una tabla para evaluar el valor aproximado f'(x) = xcox de $f'(\mathbf{1.8}) \approx \text{ para los siguientes valores de } h = 0.1,0.01,0.0011,0.0001.$
- b. Estime el valor aproximado de las cotas del error para el problema anterior
- c. Cuál es el valor de h que proporciona una aproximación con una precisión de $10^{-4}\,$
- d. Supóngase que se tienen tres puntos dados por x_0 ; $x_1 = x_0 + h$; $x_2 = x_0 + 2h$ Encuentre la formula conocida de tres puntos para determinar una aproximación de $f'(x_0)$ Donde, ξ_0 se encuentra entre x_0 y $x_0 + 2h$. Utilice está fórmula para encontrar $\approx f'(1.8)$
- e. Realice una modificación de la fórmula de los tres puntos, tomando valores entre $(x_0 h)$ y $(x_0 + h)$ y compare la magnitud del error con la fórmula de la parte e.
- f. Utilice la fórmula para cinco puntos alrededor de x_0 y aplíquela y compárela con todas las formulas anteriores
- g. Aplique la fórmula adecuada para aproximar $f^{"}(1.8)$ justifique su respuesta
- h. Teniendo en cuenta que el error total (h)= error de redondeo + error de truncamiento dado por: $e(h) = \frac{\xi}{h} + \frac{h^2}{6}M$ como una función del tamaño del paso. Encuentre el tamaño óptimo del paso.
- i. El siguiente código está dado para la aproximar f'(1); $f(x) = xe^x$, realice una gráfica que muestre como varia la precisión en función de h

```
#Comportamiento del error en diferenciación numérica
from math import*
def f(x):return x*exp(x)
r=5.436563656918091  #Valor exacto con 16 decimales
h=0.1
for i in range(15):
    d=(f(1+h)-f(1))/h
    e=abs(r-d)
    print('%18.15f %18.15f %18.15f'%(h,r,d,e))
h=h/10
```

j. Aplicación: En un circuito con un voltaje E(t) y una inductancia L se tiene que: $E(T) = L\frac{di}{dt} + Ri \ \, \text{donde} \,\, R \,\, \text{es la resistencia e} \,\, i \,\, \text{es la corriente. La siguiente tabla}$ muestra la medida de la corriente para varios instantes de tiempo (segundos), con R=0.142 ohms y L=0.98 henries. Aproxime el voltaje para los valores de t

1	1.00	1.01	3.14	1.03	1.0
1	3.10	3.12	3.14	3.18	3.24