# A Hierarchical Random Effects State-Space Model for Modeling Brain Activities from EEG Data

Xingche Guo

Department of Biostatistics Columbia University

JSM, August 2024

© COLUMBIA | MAILMAN SCHOOL
UNIVERSITY | of PUBLIC HEALTH
BIOSTATISTICS

#### **EEG Experiments**

 Electroencephalogram (EEG): a non-invasive neuroimaging technique that measures changes in electrical voltage on the scalp induced by brain activities.



Fig. EEG scalp map and signals observed from each electrode channel

- Clinical applications: monitoring epilepsy and head injury
- Research applications: biomarkers for dementia, psychiatric disorders.

#### **EEG Experiments**

- Advantages of EEG experiments:
  - Non-invasive neuroimaging technique
  - High temporal resolution to capture dynamic changes of brain activities
- Challenges of EEG experiments:
  - Spatial resolution is low
  - Fast-changing brain activities with complex interactions
  - Substantial between-subject variability
  - Low signal-to-noise ratio
- Analytical challenge: multi-dimensional time-series data

### Existing Methods for Modeling EEG Data

- Reduce EEG signals into frequency domain summary measures, e.g., band powers (Tong and Thankor, 2009)
- Brain sources reconstruction: using a head model, brain anatomy and physiology information on volume conduction (Baillet et al., 2001)
- Blind-source separation approaches: independent component analysis (ICA) (Huster et al., 2015)
- Ordinal differential equations (Zhang et al., 2017; Sun et al., 2020):
- State-space models (Li et al., 2019; Gao et al., 2020): single subject, model each channel separately
- Multi-subject state-space model (Wang et al., 2023): homogeneous spatial patterns, assume stationarity.

#### Challenges

- High between-subject variations observed in EEG data due to
  - difference in cortical connectivity (Hassan, 2018).
  - variability of the onset of neuronal processes in response to external stimulus or internal events (Makeig et al., 2004).
  - inter-individual variability of scalp topographies/brain anatomy (Huster et al., 2015).
- Resting-state EEG data without stimuli
- Our method is based on latent state space models.
  - Jointly analyzing multi-channel EEG recordings and learning dynamics of sources of cortical activities
  - Express observed recordings as combinations of concurrently active lower-dimensional latent brain sources
  - Accounting for heterogeneity of spatial mapping and non-stationarity using random effects

# Methods

#### Notation

- Resting-state EEG data:  $\mathbf{Y}_{rij}(t_k) = (Y_{rij1}(t_k), \dots, Y_{rijP}(t_k))^{\top}$ .
- P scalp electrodes (P = 54).
- Subgroup r = 1, ..., R ( $R = 4 : \{CU, TX\} \times \{MDD, Control\}$ ).
- Subject  $i = 1, ..., N_r (\sum_{r=1}^4 N_r = 147)$ .
- Time segment  $j=1,\ldots,J_{ri}$   $(J_{ri}\equiv J=40)$ .
- Observations k = 1, ..., K (K = 250).



# Random effects state-space models (RESSM)<sup>1</sup>



- The EEG signals (observed states) are often a mixture of unknown underlying brain source (latent states) with lower dimensions.
- Sensor model:

$$\mathbf{Y}_{rij}\left(t_{k}
ight) = \mathbf{\Theta}_{rij}\mathbf{M}_{rij}\left(t_{k}
ight) + \epsilon_{rij}\left(t_{k}
ight), \quad \epsilon_{rij}\left(t_{k}
ight) \sim \mathcal{N}\left(\mathbf{0}, \mathbf{\Sigma}_{rij}
ight).$$

- $\mathbf{M}_{rij}(t_k)$  is Q-dimensional latent EEG signals with (Q < P).
- Vector autoregressive (VAR) model (with order m):

$$\mathbf{M}_{rij}\left(t_{k}
ight) = \sum_{h=1}^{m} \mathbf{A}_{rijh} \mathbf{M}_{rij}\left(t_{k-h}
ight) + \mathbf{W}_{rij}\left(t_{k}
ight), \; \mathbf{W}_{rij}\left(t_{k}
ight) \sim \mathcal{N}\left(\mathbf{0}, \mathbf{\Sigma}_{w}
ight).$$

• Locally stationary within each segment and non-stationary across the entire EEG sequence.

<sup>&</sup>lt;sup>1</sup>Guo et al. (2024). arXiv:2310.03164.

# Random effects state-space models (RESSM)

- $\Theta_{rij}$ :  $P \times Q$  spatial mapping matrix.
- $\mathbf{A}_{rij} = [\mathbf{A}_{rij1}, \dots, \mathbf{A}_{rijm}]: Q \times mQ$  temporal dynamical matrix.
- Define  $\widetilde{\mathbf{Y}}_{rij}(t_k) = \mathbf{\Theta}_{rij} \mathbf{M}_{rij}(t_k)$ , then:

$$\widetilde{\mathbf{Y}}_{rij}\left(t_{k}
ight) = \sum_{h=1}^{m} \mathbf{B}_{rijh} \widetilde{\mathbf{Y}}_{rij}\left(t_{k-h}
ight) + \mathbf{U}_{rij}\left(t_{k}
ight), \ \mathbf{U}_{rij}\left(t_{k}
ight) = \mathbf{\Theta}_{rij} \mathbf{W}_{rij}\left(t_{k}
ight),$$

where

$$\mathbf{B}_{rijh} = \mathbf{\Theta}_{rij} \mathbf{A}_{rijh} \left( \mathbf{\Theta}_{rij}^{\top} \mathbf{\Theta}_{rij} \right)^{-1} \mathbf{\Theta}_{rij}^{\top}, \quad h = 1, \dots, m.$$

•  $\mathbf{B}_{rijh}$ :  $P \times P$  directional connectivity<sup>2</sup> matrix.

<sup>&</sup>lt;sup>2</sup>Li et al (2021). Mapping epileptic directional brain networks using intracranial EEG data. *Biostatistics*, 22(3):613–628.

### Model identifiability

- RESSM with an arbitrary covariance structure of  $\Sigma_w$  and  $\Sigma_{rij}$  can be transformed into an equivalent RESSM where  $\Sigma_w = \mathbf{I}$  and  $\Sigma_{rij}$  is diagonal.
- $\Rightarrow$  We set  $\Sigma_w = \mathbf{I}$  and constraining  $\Sigma_{rij}$  as diagonal matrices.
  - RESSM is only identifiable up to a rotation: for any orthogonal matrix R, the following is an equivalent parameterization:

$$\mathsf{M}_{rij}^{*}\left(t_{k}\right) = \mathsf{RM}_{rij}\left(t_{k}\right), \quad \mathsf{\Theta}_{rij}^{*} = \mathsf{\Theta}_{rij}\mathsf{R}^{\top}, \quad \mathsf{A}_{rijh}^{*} = \mathsf{RA}_{rijh}\mathsf{R}^{\top}.$$

- $\Rightarrow$  Using QR decomposition, we can force  $\Theta_{rij}$  to be lower-triangular matrices.
  - RESSM is identifiable up to a sign.

#### Hierarchical structure

Temporal dynamical matrices:

$$egin{aligned} \left[ \mathsf{vec}\left( \mathbf{A}_{\mathit{rij}} 
ight) \mid \mathsf{vec}\left( \mathbf{A}_{\mathit{ri}} 
ight) 
ight] &\sim \mathcal{N} \Big( \mathsf{vec}\left( \mathbf{A}_{\mathit{ri}} 
ight), \mathbf{\Sigma}_{v,r} \Big), \ \\ \left[ \mathsf{vec}\left( \mathbf{A}_{\mathit{ri}} 
ight) \mid \mathsf{vec}\left( \mathbf{A}_{\mathit{r}} 
ight) 
ight] &\sim \mathcal{N} \Big( \mathsf{vec}\left( \mathbf{A}_{\mathit{r}} 
ight), \mathbf{\Sigma}_{\gamma,r} \Big), \ \\ \left[ \mathsf{vec}\left( \mathbf{A}_{\mathit{r}} 
ight) \mid \mathsf{vec}\left( \mathbf{A} 
ight) 
ight] &\sim \mathcal{N} \Big( \mathsf{vec}\left( \mathbf{A} 
ight), \mathbf{\Sigma}_{\mathit{a}} \Big) \end{aligned}$$

Spatial mapping matrices

$$egin{aligned} \left[ \mathsf{low}\left( oldsymbol{\Theta}_{\mathit{rij}} 
ight) \mid \mathsf{low}\left( oldsymbol{\Theta}_{\mathit{ri}} 
ight) 
ight] &\sim \mathcal{N} \Big( \mathsf{low}\left( oldsymbol{\Theta}_{\mathit{ri}} 
ight), oldsymbol{\Sigma}_{u,r} \Big), \ &\left[ \mathsf{low}\left( oldsymbol{\Theta}_{\mathit{r}} 
ight) \mid \mathsf{low}\left( oldsymbol{\Theta}_{\mathit{r}} 
ight) 
ight] &\sim \mathcal{N} \Big( \mathsf{low}\left( oldsymbol{\Theta}_{\mathit{r}} 
ight), oldsymbol{\Sigma}_{\psi,r} \Big), \ &\left[ \mathsf{low}\left( oldsymbol{\Theta}_{\mathit{r}} 
ight) \mid \mathsf{low}\left( oldsymbol{\Theta} 
ight) 
ight] &\sim \mathcal{N} \Big( \mathsf{low}\left( oldsymbol{\Theta} 
ight), oldsymbol{\Sigma}_{\theta} \Big) \end{aligned}$$

- Full Bayesian analysis coupled with an efficient Gibbs sampler
  - ~6000 spatial matrices, each 54×5, leverage block structure of covariances

#### Sign identifiability

- Switching the sign of the q-th element of  $\mathbf{M}_{rij}(t_k)$  and the sign of the q-th column of  $\mathbf{\Theta}_{rij}$  won't change the model.
- ullet Need sign identifiability of  $oldsymbol{\Theta}_{rij}$  for
  - a meaning computation of their parent parameters (i.e.  $\Theta_{ri}$  and  $\Theta_r$ ).
  - a valid MCMC inference.
- A two-stage procedure to achieve sign identifiability:
  - (Initialization stage): Apply the MCMC algorithm to a simplified RESSM (with  $\Theta_{rij} \equiv \Theta_0$ ) as initial value for all levels of  $\Theta$ .
  - (Sign-tracking stage): Monitor the sign for each column of  $\Theta$  at each MCMC iteration and adjust if different from their parent level.
  - A cosine correlation is used to check the sign agreement.



### Selecting the number of latent states Q and VAR order m

• Complete DIC (cDIC; Celeux et al. 2006): replace the observed likelihood  $p(\mathbf{Y})$  in DIC with the complete likelihood  $p(\mathbf{Y}, \mathbf{M} \mid \mathbf{\Lambda})$ 

$$\begin{aligned} \text{cDIC} &= -4\mathbb{E}_{\mathbf{\Lambda},\mathbf{M}\mid\mathbf{Y}} \big[\log p(\mathbf{Y},\mathbf{M}\mid\mathbf{\Lambda})\big] \\ &+ 2\mathbb{E}_{\mathbf{M}\mid\mathbf{Y}} \Big[\log p\Big(\mathbf{Y},\mathbf{M}\mid\mathbb{E}_{\mathbf{\Lambda}\mid\mathbf{Y},\mathbf{M}}[\mathbf{\Lambda}]\Big)\Big] \end{aligned}$$

**Λ**: collection of all parameters.

- cDIC is effective in selecting the number of latent states Q, not sensitive to the VAR order m.
- The model's performance is robust and not significantly affected by the VAR order m.

# Simulation Studies

#### Simulation study

- P = 54, Q = 2, m = 2, K = 250 (125Hz), AR(2), Rep = 100.
- Scenario 1:  $n_1 = n_2 = 75$ ; Scenario 2:  $n_1 = 75, n_2 = 20$



Figure 1: Bias of the temporal dynamic matrix A

#### Simulation study

- P = 54, Q = 2, m = 2, K = 250 (125Hz), AR(2), Rep = 100.
- Scenario 1:  $n_1 = n_2 = 75$ ; Scenario 2:  $n_1 = 75, n_2 = 20$



Figure 2: Comparison with state-space model ignoring heterogeneity in A

### Simulation study (model selection)

- Vary the number of latent states Q from 2 to 4.
- Vary the number of latent states *m* from 1 to 3.
- Predicted latent states are robust to AR order (correlation > 0.99).



Figure 3: The cDIC values for the 9 models, where Q varies in  $\{2,3,4\}$  and m varies in  $\{1,2,3\}$ , with the true model being (Q=3,m=2).

# Application to EMBARC

#### EMBARC study

- A clinical trial for constructing biomarker signatures of antidepressant treatment response for Major Depressive Disorder<sup>3</sup> (MDD).
- Baseline measures:
  - Demographical data (e.g., age, gender, education, etc).
  - Clinical data (e.g., HAMD-17 scores).
  - Neuroimaging data (i.e., task/resting-state EEG/fMRI data).
  - Human behavioral data (e.g., probabilistic reward task, etc).
- Experimental design
  - Recruited at four study centers: TX, CU, MG, UM.
  - Pre-treatment: MDD vs healthy Control.
  - MDD group randomized to SSRI antidepressants or Placebo.

<sup>&</sup>lt;sup>3</sup>Trivedi et al. (2016). Establishing moderators and biosignatures of antidepressant response in clinical care (EMBARC): Rationale and design. *Journal of Psychiatric Research*. 78:11–23

### Resting-state EEG data in the EMBARC study

- 54 common EEG channels.
- Four 2-minute blocks at 125Hz measured with eyes open/close/close/open.
- EEG preprocessing procedure proposed in Yang et al.<sup>4</sup> (2024).

#### **Preprocessing**

- high/low-pass filtering.
- remove artifacts (e.g. eye blink).
- denoise.
- remove problematic time segments.
- standardized.



<sup>&</sup>lt;sup>4</sup>Yang et al. (2024). Learning optimal biomarker-guided treatment policy for chronic disorders. *Statistics in Medicine*. In press.

### EMBARC analysis details

- Subgroups:  $\{CU, TX\} \times \{MDD, Control\}$ .
- Total of 147 subjects (128 MDD, 19 controls).
- First 2-minute block (eyes open) is used.
- Each time segment has length 2 seconds.
- MCMC parameters
  - Total of 10,000 MCMC iterations.
  - First 3,000 iterations as burn-in.
  - Thinning by 10.
- Set m = 1 (model performance not sensitive to m).
- Selected Q = 5 using cDIC (varying from 2 to 6).

### Spatial mapping matrix $\Theta$

- No significant difference in mean  $\Theta_r$  between MDD and controls.
- Each latent state corresponds to specific brain regions.



Figure 4: Topographies of the posterior means of the population-level spatial mapping matrix  $\Theta$  obtained from the analysis of EMBARC.

# Spatial mapping matrix $\Theta_{ri}$

• Larger between-subject heterogeneity for the MDD group.



Figure 5: Boxplots of the norms of 54 rows within the subject-level spatial mapping matrices.



Figure 6: Inference on group differences of  $A_r$ .

# Visualize A<sub>rij</sub>



Figure 7: Scatterplots of the posterior means of segment-level  $A_{rij}(3,3)$  versus  $A_{rij}(2,2)$ . Colors represent different subjects in subfigure (b) and (c).

- Weaker brain temporal dynamics (autocorrelation) in the MDD group.
- Consistent with that MDD patients exhibit reduced levels of neurotransmitters.

#### Directional connectivities



Figure 8: Posterior means of directional connectivity matrices in MDD (a), control (b), and their differences (c).

- Symmetric patterns: mostly bi-directional connections.
- Block-banded patterns: positive between closer electrodes; negative between the opposite sides of the brain or farther brain regions (e.g., frontal/fronto-central; posterior/parieto-occipital).

### Network view of group directional connectivities



Figure 9: Networks of group-level directional connectivity matrices.

• Patients with MDD exhibit reduced connectivity (e.g., lower average degree) compared to the control groups.

#### RESSM features as biomarkers for predicting HTE

Evaluating predictiveness of EEG biomarkers on conditional average treatment effect<sup>5</sup> (CATE):

$$Y_i^* = \frac{Y_i(A_i - p_i)}{p_i(1 - p_i)}, \quad E(Y_i^*|X_i) = E(Y_i(1) - Y_i(0)|X_i).$$

Table 1: Comparing utilities of RESSM-extracted EEG features on external treatment response outcomes in EMBARC study analysis.

|                                      |                                    | Outcome Measures   |                  |                      |
|--------------------------------------|------------------------------------|--------------------|------------------|----------------------|
|                                      |                                    | response at exit   | remission status | change of HAMD score |
| ${\rm RMSE}^1$                       | clinical $+ RESSM^2$               | 1.317 (0.0446)     | 1.261 (0.0463)   | 21.114 (0.609)       |
|                                      | clinical + band power <sup>3</sup> | 1.322(0.0335)      | 1.263 (0.0366)   | 21.359 (0.588)       |
|                                      | clinical variables only            | $1.326 \ (0.0353)$ | 1.266 (0.0364)   | 21.387 (0.579)       |
|                                      |                                    | AUC                | AUC              | R-squared            |
| ${ m AUC}$ or R-squared <sup>4</sup> | clinical + RESSM                   | 0.677(0.036)       | 0.654 (0.039)    | 17.9% (4.6%)         |
|                                      | clinical + band power              | 0.621 (0.022)      | 0.584 (0.041)    | 12.0% (3.7%)         |
|                                      | clinical variables only            | 0.575 (0.045)      | 0.517 (0.029)    | 8.6% (2.3%)          |

• RESSM features (e.g., mean, sd of  $A_{rij}(s, s)$ ) have better predictive performance for the HTE compared to the EEG frequency band power.

<sup>&</sup>lt;sup>5</sup>Tian, et al (2014). A simple method for estimating interactions between a treatment and a large number of covariates. *JASA* 109(508):1517–1532.

# Disucssion

#### Discussion

- Propose a random effects latent state space model to simultaneously model multi-subject, multi-channel, resting EEG signals.
  - Meaningful lower-dimensional latent states represent a large number of observed electrodes.
  - Incorporate subject-, segment-level dynamic temporal matrices.
  - Substantial between-subject and between-segment heterogeneity both in spatial mappings and temporal dynamics.
  - MDD control group difference in temporal dynamics, not spatial mapping.
  - Variability of temporal dynamics may be useful biomarkers for CATE.

#### Extensions

- Model the temporal transitions over time to better account for dynamic directional connectivities (e.g., switching-state SSM).
- Localization of brain regions (ROI-based analysis).

### Acknowledgments

#### References:

Guo, X., Yang, B., Loh, J. M., Wang, Q., and Wang, Y. (2024+). A hierarchical random effects state-space model for modeling brain activities from electroencephalogram data. arXiv preprint arXiv:2310.03164. (Under revision at *Biometrics*)

Wang Q, Loh J, He X, Wang Y. (2023). A Latent State Space Model for Estimating Brain Dynamics from Electroencephalogram (EEG) Data. *Biometrics*. 79(3): 2444-2457.

- Advisor: Prof. Yuanjia Wang.
- Research support: NS073671, GM124104, and MH123487

#### Thank You!