Measure Theory Test

Michael Nelson

Problem 1

Exercise 1. Let (X, \mathcal{M}, μ) be a measure space and let $f: X \to \mathbb{R}$ be a measurable function. Prove that $f/(1+f^2)$ is also a measurable function.

Solution 1. By a proposition proved in class (see Appendix for details), the product and sum of two measurable functions is measurable. Therefore both f and $1+f^2$ are measurable. It remains to show that $f/(1+f^2)$ is measurable. To see this, note that for any strictly positive measurable function $h: X \to (0, \infty)$, the function 1/h is measurable. Indeed, for any c > 0, we have

$$x \in \left\{ \frac{1}{h} < c \right\} \iff \frac{1}{h(x)} < c$$

$$\iff 1 < ch(x)$$

$$\iff x \in \left\{ h > \frac{1}{c} \right\}.$$

Thus $\{1/h < c\} = \{h > 1/c\} \in \mathcal{M}$. If $c \le 0$, then we have $\{1/h < c\} = \emptyset \in \mathcal{M}$ since h is strictly positive. In either case, we see that 1/h is measurable. In particular, since $1 + f^2$ is a strictly positive measurable function, we see that $1/(1+f^2)$ is a measurable function. Therefore the product $f/(1+f^2)$ is a measurable function.

Exercise 2. Let (X, \mathcal{M}, μ) be a measure space and let $f: X \to \mathbb{R}$ be a measurable function. Prove that $\{-1 \le f \le 1\}$ is a measurable function.

Solution 2. Since f is measurable, we have

$$\{f \le 1\} = \bigcap_{n=1}^{\infty} \left\{ f < 1 + \frac{1}{n} \right\}$$
$$\in \mathcal{M}.$$

Similarly we have

$$\{f \ge -1\} = \{f < -1\}^c$$
$$\in \mathcal{M}.$$

Therefore

$$\{-1 \le f \le 1\} = \{f \ge -1\} \cap \{f \le 1\}$$

 $\in \mathcal{M}.$

Problem 2

Exercise 3. Let (X, \mathcal{M}, μ) be a finite measure space. Suppose $(f_n \colon X \to \mathbb{R})$ is a sequence of measurable functions and suppose $f \colon X \to \mathbb{R}$ is another measurable function. Prove that

$$\bigcup_{k=1}^{\infty} \limsup_{n \to \infty} \{ |f_n - f| \ge 1/k \} = \{ \lim_{n \to \infty} f_n \ne f \}$$
 (1)

Solution 3. Observe that

$$x \in \bigcup_{k=1}^{\infty} \limsup_{n \to \infty} \{ |f_n - f| \ge 1/k \} \iff x \in \limsup_{n \to \infty} \{ |f_n - f| \ge 1/k \} \text{ for some } k$$

$$\iff x \in \{ |f_{\pi_k(n)} - f| \ge 1/k \} \text{ for some } k \text{ for some subsequence } (\pi_k(n))_{n \in \mathbb{N}} \text{ of } (n)_{n \in \mathbb{N}}$$

$$\iff |f_{\pi_k(n)}(x) - f(x)| \ge 1/k \text{ for some } k \text{ for some subsequence } (\pi_k(n))_{n \in \mathbb{N}} \text{ of } (n)_{n \in \mathbb{N}}$$

$$\iff x \in \{ \lim_{n \to \infty} f_n \ne f \}$$

where the last if and only if follows from the fact that the distance $|f_n(x) - f(x)|$ is frequently greater than 1/k, which means $f_n(x) \not\to f(x)$. This gives us (1).

Exercise 4. Let (X, \mathcal{M}, μ) be a finite measure space. Suppose $(f_n \colon X \to \mathbb{R})$ is a sequence of measurable functions and suppose $f \colon X \to \mathbb{R}$ is another measurable function. Prove that if $\lim_{n \to \infty} f_n(x) = f(x)$ for a.e. $x \in X$, then for all $k \in \mathbb{N}$, we have

$$\lim_{N \to \infty} \mu\{|f_N - f| \ge 1/k\} = 0 \tag{2}$$

Solution 4. Let $k \in \mathbb{N}$. Then observe that

$$0 = \mu \left\{ \lim_{n \to \infty} f_n \neq f \right\}$$

$$= \mu \left\{ \bigcup_{m=1}^{\infty} \limsup_{n \to \infty} \{|f_n - f| \ge 1/m\} \right\}$$

$$\ge \mu \left\{ \limsup_{n \to \infty} \{|f_n - f| \ge 1/k\} \right\}$$

$$= \mu \left(\bigcap_{N=1}^{\infty} \bigcup_{n \ge N} \{|f_n - f| \ge 1/k\} \right)$$

$$= \lim_{N \to \infty} \mu \left(\bigcup_{n \ge N} \{|f_n - f| \ge 1/k\} \right)$$

$$\ge \lim_{N \to \infty} \mu \{|f_N - f| \ge 1/k\}$$

where we used the fact that $\mu(X) < \infty$ to get from the fourth line to the fifth line. This gives us (2).

Exercise 5. Let (X, \mathcal{M}, μ) be a finite measure space. Suppose $(f_n \colon X \to \mathbb{R})$ is a sequence of measurable functions and suppose $f \colon X \to \mathbb{R}$ is another measurable function. Prove that if $f_n \to f$ a.e, then $f_n \to f$ in measure.

Solution 5. Suppose $f_n \to f$ a.e and let $\varepsilon > 0$. Choose $k \in \mathbb{N}$ such that $1/k < \varepsilon$. Then by part (b), we have

$$\lim_{n \to \infty} \mu\{|f_n - f| \ge \varepsilon\} \le \lim_{n \to \infty} \mu\{|f_n - f| \ge 1/k\}$$
$$= 0.$$

This implies $f_n \to f$ in measure.

Exercise 6. Let (X, \mathcal{M}, μ) be a finite measure space. Suppose $(f_n \colon X \to \mathbb{R})$ is a sequence of measurable functions and suppose $f \colon X \to \mathbb{R}$ is another measurable function. Prove that if $f_n \xrightarrow{L^2} f$, then $f_n \to f$ in measure.

Solution 6. Let $g \in L^2(X, \mathcal{M}, \mu)$. Since $\mu(X) < \infty$, we also have $1_X \in L^2(X, \mathcal{M}, \mu)$. By Hölder's inequality, we have

$$||g||_1 \le ||g||_2 \cdot ||1_X||_2$$

= $\sqrt{\mu(X)} ||g||_2$.

In particular, $f_n \xrightarrow{L^2} f$ implies $f_n \xrightarrow{L^1} f$ which implies $f_n \to f$ in measure (proved in class).

Problem 3

Exercise 7. Compute the following limit

$$\lim_{n\to\infty} \int_{(0,1)} \frac{1+nx}{(1+x)^n} \mathrm{d}x$$

Solution 7. For each $n \in \mathbb{N}$, let $f_n = (1 + nx)(1 + x)^{-n}$. Observe that each f_n is measurable since each f_n is continuous (the denominator is never zero for any $x \in \mathbb{R}$). Furthermore, each f_n is nonnegative (since taking squares makes everything nonnegative). We claim that f_n is a decreasing sequence. Indeed

$$\frac{f_n}{f_{n+1}} = \left(\frac{1+nx}{(1+x)^n}\right) \left(\frac{(1+x)^{n+1}}{1+(n+1)x}\right)$$

$$= \frac{(1+nx)(1+x)}{1+(n+1)x}$$

$$= \frac{nx^2+(n+1)x+1}{(n+1)x+1}$$
> 1

Thus (f_n) is a decreasing sequence which is bounded below, so it must converge pointwise to some function. To see what it converges to, we use L'Hopital's rule:

$$\lim_{n \to \infty} f_n = \lim_{n \to \infty} \frac{1 + nx}{(1 + x)^n}$$

$$= \lim_{n \to \infty} \frac{x}{\ln(1 + x)(1 + x)^n}$$

$$= 0.$$

Thus (f_n) converges pointwise to 0. Since

$$\int_0^1 f_1 dx = \int_0^1 \frac{1+x}{1+x} dx$$
$$= \int_0^1 dx$$
$$= 1$$
$$< \infty,$$

it follows from (decreasing version of MCT) that

$$\lim_{n \to \infty} \frac{1 + nx}{(1+x)^n} dx = \lim_{n \to \infty} \int_0^1 f_n dx$$
$$= \int_0^1 0 dx$$
$$= 0.$$

Problem 4

Exercise 8. Let (X, \mathcal{M}, μ) be a measure space. Suppose that $f: X \to \mathbb{R}$ is a measurable function such that f(x) > 0 for all $x \in X$. Prove that $\int_X 1_E f d\mu > 0$ for every measurable $E \in \mathcal{M}$ such that $\mu(E) > 0$.

Solution 8. Let $E \in \mathcal{M}$ such that $\mu(E) > 0$. For each $n \in \mathbb{N}$, define

$$F_n:=\{f\geq 1/n\}.$$

Since f(x) > 0 for all $x \in X$, we have

$$0 < \mu(E)$$

$$= \mu\left(\bigcup_{n=1}^{\infty} F_n \cap E\right)$$

$$\leq \sum_{n=1}^{\infty} \mu(F_n \cap E).$$

The strict inequality implies $\mu(F_n \cap E) > 0$ for some $n \in \mathbb{N}$. Choose such an $n \in \mathbb{N}$, then we have

$$\int_{X} f 1_{E} d\mu \ge \int_{X} f 1_{E \cap F_{n}} d\mu$$

$$\ge \int_{X} \frac{1}{n} \cdot 1_{E \cap F_{n}} d\mu$$

$$= \mu(E \cap F_{n})/n$$

$$> 0.$$

Problem 5

Exercise 9. Let $f:[0,1] \to [0,\infty)$ be a nonnegative measurable function. Prove that if

$$\lim_{n \to \infty} \int_{[0,1]} f 1_{[0,\frac{n}{n+1}]} \mathrm{d}x \le 1$$

for all $n \in \mathbb{N}$, then f is integrable and $\int_{[0,1]} f dx \le 1$.

Solution 9. Observe that since (n/n+1) is an increasing sequence which converges to 1, the sequence $(f1_{[0,\frac{n}{n+1}]})$ is an increasing sequence of nonnegative measurable functions which converges pointwise to f. It follows from MCT that

$$\int_{[0,1]} f dx = \lim_{n \to \infty} \int_{[0,1]} f 1_{[0,\frac{n}{n+1}]} dx$$
< 1.

In particular, f is integrable and $\int_{[0,1]} f dx \le 1$.

Problem 6

Exercise 10. Let (X, \mathcal{M}, μ) be a measure space and let $f: X \to \mathbb{R}$ be a nonnegative measurable function such that $\int_X f d\mu < \infty$. Prove that $\nu: \mathcal{M} \to \mathbb{R}$ defined by

$$\nu(E) = \int_{Y} f 1_{E} \mathrm{d}\mu$$

is a finite measure on (X, \mathcal{M}) .

Solution 10. This was proved in the homework, but we include it for completeness.

First we prove it for nonnegative simple functions:

Proposition 0.1. Let $\phi: X \to [0, \infty)$ be a nonnegative simple function. Define a function $\nu: \mathcal{M} \to [0, \infty]$ by

$$\nu(E) = \int_{X} \phi 1_{E} \mathrm{d}\mu$$

for all $E \in \mathcal{M}$. Then v is a measure on (X, \mathcal{M}) .

Proof. First note that

$$\nu(\emptyset) = \int_X \phi 1_{\emptyset} d\mu$$
$$= \int_X \phi \cdot 0 \cdot d\mu$$
$$= \int_X 0 \cdot d\mu$$
$$= 0.$$

Now we show that ν is finitely additive. Let $(E_n)_{n=1}^N$ be a finite sequence of pairwise disjoint sets in \mathcal{M} . Then

$$\nu\left(\bigcup_{n=1}^{N} E_{n}\right) = \int_{X} \phi 1_{\bigcup_{n=1}^{N} E_{n}} d\mu$$

$$= \int_{X} \phi \sum_{n=1}^{N} 1_{E_{n}} d\mu$$

$$= \sum_{n=1}^{N} \int_{X} \phi 1_{E_{n}} d\mu$$

$$= \sum_{n=1}^{N} \nu(E_{n}),$$

where we used the fact that each $\phi 1_{E_n}$ is a nonnegative simple function in order to commute the finite sum with the integral. Thus it follows that ν is finitely additive. It remains to show that ν is countably subadditive. Let (E_n) be a sequence of sets in \mathcal{M} . We want to show that

$$\int_{X} \phi 1_{\bigcup_{n=1}^{\infty} E_{n}} \mathrm{d}\mu \leq \sum_{n=1}^{\infty} \int_{X} \phi 1_{E_{n}} \mathrm{d}\mu. \tag{3}$$

To do this, we will show that the sum on the righthand side in (3) is greater than or equal to all integrals of the form $\int \varphi d\mu$ where $\varphi \colon X \to [0, \infty]$ is a simple function such that $\varphi \le \varphi 1_{\bigcup_{n=1}^{\infty} E_n}$. Then the inequality (3) will follow from the fact that the integral on the lefthand side in (3) is the supremum of this set. So let $\varphi \colon X \to [0, \infty]$ be a simple function such that $\varphi \le \varphi 1_{\bigcup_{n=1}^{\infty} E_n}$. Write φ and φ in terms of their canonical forms, say

$$\varphi = \sum_{i=1}^k a_i 1_{A_i}$$
 and $\varphi = \sum_{j=1}^m b_j 1_{B_j}$.

So $a_i \neq a_{i'}$ and $A_i \cap A_{i'} = \emptyset$ whenever $i \neq i'$ and $b_j \neq b_{j'}$ and $B_j \cap B_{j'} = \emptyset$ whenever $j \neq j'$. Observe that the canonical representation of $\phi 1_{\bigcup_{n=1}^{\infty} E_n}$ is given by

$$\phi 1_{\bigcup_{n=1}^{\infty} E_n} = \left(\sum_{j=1}^{m} b_j 1_{B_j}\right) 1_{\bigcup_{n=1}^{\infty} E_n}$$

$$= \sum_{j=1}^{m} b_j 1_{B_j} 1_{\bigcup_{n=1}^{\infty} E_n}$$

$$= \sum_{j=1}^{m} b_j 1_{\bigcup_{n=1}^{\infty} B_j \cap E_{n'}}$$

where this representation is the canonical representation since $b_i \neq b_{i'}$ and

$$\left(\bigcup_{n=1}^{\infty} B_j \cap E_n\right) \cap \left(\bigcup_{n=1}^{\infty} B_{j'} \cap E_n\right) = \emptyset$$

whenever $j \neq j'$ (since $B_i \cap B_{j'} = \emptyset$). Therefore we have

$$\int_{X} \varphi d\mu \leq \int_{X} \varphi 1_{\bigcup_{n=1}^{\infty} E_{n}} d\mu$$

$$= \sum_{j=1}^{m} b_{j} \mu \left(\bigcup_{n=1}^{\infty} B_{j} \cap E_{n} \right)$$

$$\leq \sum_{j=1}^{m} b_{j} \sum_{n=1}^{\infty} \mu(B_{j} \cap E_{n})$$

$$= \sum_{n=1}^{\infty} \sum_{j=1}^{m} b_{j} \mu(B_{j} \cap E_{n})$$

$$= \sum_{n=1}^{\infty} \sum_{j=1}^{m} \int_{X} b_{j} 1_{B_{j} \cap E_{n}} d\mu$$

$$= \sum_{n=1}^{\infty} \int_{X} \sum_{j=1}^{m} b_{j} 1_{B_{j} \cap E_{n}} d\mu$$

$$= \sum_{n=1}^{\infty} \int_{X} \sum_{j=1}^{m} b_{j} \left(1_{B_{j}} 1_{E_{n}} \right) d\mu$$

$$= \sum_{n=1}^{\infty} \int_{X} \left(\sum_{j=1}^{m} b_{j} 1_{B_{j}} \right) 1_{E_{n}} d\mu$$

$$= \sum_{n=1}^{\infty} \int_{X} \varphi 1_{E_{n}} d\mu,$$

where we used monotonicity of integration in the first line and where we used countable subadditivity of μ to get from the second line to the third line.

Now we prove it for more general nonnegative measurable functions

Proposition o.2. Let (X, \mathcal{M}, μ) be measure space and let $g: X \to [0, \infty)$ be a nonnegative measurable function. Define $\nu_g: \mathcal{M} \to [0, \infty]$ by

$$\nu_g(E) = \int_X g 1_E \mathrm{d}\mu$$

for all $E \in \mathcal{M}$. Then ν is a measure on (X, \mathcal{M}) . Furthermore, if $\int_X g d\mu < \infty$, then (X, \mathcal{M}, ν) is a finite measure space. *Proof.* First note that

$$\nu_g(\emptyset) = \int_X g 1_{\emptyset} d\mu$$
$$= \int_X g \cdot 0 \cdot d\mu$$
$$= \int_X 0 \cdot d\mu$$
$$= 0.$$

Next we show that ν_g is finitely additive. Let $(E_n)_{n=1}^N$ be a finite sequence of pairwise disjoint sets in \mathcal{M} . Then

$$\nu_{g}\left(\bigcup_{n=1}^{N} E_{n}\right) = \int_{X} g 1_{\bigcup_{n=1}^{N} E_{n}} d\mu$$

$$= \int_{X} g \sum_{n=1}^{N} 1_{E_{n}} d\mu$$

$$= \int_{X} \sum_{n=1}^{N} g 1_{E_{n}} d\mu$$

$$= \sum_{n=1}^{N} \int_{X} g 1_{E_{n}} d\mu$$

$$= \sum_{n=1}^{N} \nu_{g}(E_{n}),$$

where we used the fact that each $g1_{E_n}$ is a nonnegative measurable function in order to commute the finite sum with the integral. Thus it follows that ν_g is finitely additive.

It remains to show that ν_g is countably subadditive. In problem 3 in HW4, we showed that for any nonnegative simple function $\varphi \colon X \to [0, \infty)$, the function $\nu_{\varphi} \colon \mathcal{M} \to [0, \infty]$ defined by

$$\nu_{\varphi}(E) = \int_{X} \varphi 1_{E} \mathrm{d}\mu$$

is a measure. We will use this fact in what follows:

Choose an increasing sequence $(\varphi_n \colon X \to [0, \infty])$ of nonnegative simple functions which converges pointwise to g (we can do this since g is a nonnegative measurable function). Then $(\varphi_n 1_E)$ is an increasing sequence of nonnegative simple functions which converges pointwise to $g1_E$ for all $E \in \mathcal{M}$. It follows from the Monotone Convergence Theorem that

$$\nu_{\varphi_n}(E) = \int_X \varphi_n 1_E d\mu$$

$$\to \int_X g 1_E d\mu$$

$$= \nu_g(E)$$

for any $E \in \mathcal{M}$. In particular, for any $E \in \mathcal{M}$ and $\varepsilon > 0$, we can find a $N_{E,\varepsilon} \in \mathbb{N}$ (which depends on E and ε) such that

$$\nu_{g}(E) < \nu_{\varphi_{n}}(E) + \varepsilon \tag{4}$$

for all $n \ge N_{E,\varepsilon}$. However we will don't need estimate $\nu_g(E)$ to this level of precision. We just need to know that for any $\varepsilon > 0$, we can find an $n \in \mathbb{N}$ such that (4) holds.

Now let (E_k) be a sequence of measurable sets and let $\varepsilon > 0$. Choose $n \in \mathbb{N}$ such that

$$\nu_{\mathcal{S}}\left(\bigcup_{k=1}^{\infty} E_k\right) < \nu_{\varphi_n}\left(\bigcup_{k=1}^{\infty} E_k\right) + \varepsilon$$

Then we have

$$\nu_{g}\left(\bigcup_{k=1}^{\infty} E_{k}\right) \leq \nu_{\varphi_{n}}\left(\bigcup_{k=1}^{\infty} E_{k}\right) + \varepsilon$$

$$\leq \sum_{k=1}^{\infty} \nu_{\varphi_{n}}(E_{k}) + \varepsilon$$

$$\leq \sum_{k=1}^{\infty} \nu_{g}(E_{k}) + \varepsilon$$

where we obtained the second line from the first line using countable subadditivity of ν_{φ_n} , and where we obtained the third line from the second line from the fact that $\varphi_n 1_{E_k} \leq g 1_{E_k}$ for all k and from monotonicity of integration. Taking $\varepsilon \to 0$ gives us countable subadditivity of ν_g .

Finally, for the last part, we note that

$$\nu(X) = \int_X g 1_X d\mu$$
$$= \int_X g d\mu$$
$$< \infty.$$

Exercise 11. Let (X, \mathcal{M}, μ) be a measure space and let $f: X \to \mathbb{R}$ be a nonnegative measurable function such that $\int_X f d\mu < \infty$. Prove that for any sequence (E_n) of measurable sets such that $\sum_{n=1}^{\infty} \nu(E_n) < \infty$, we have

$$\lim_{n\to\infty}1_{E_n}f=0$$

for μ a.e. x.

Solution 11. First recall three propositions we proved in the homework:

Proposition 0.3. Let (X, \mathcal{M}, μ) be a measure space and let (E_n) be a sequence in \mathcal{M} . Then

$$\mu$$
 ($\lim \inf E_n$) $\leq \lim \inf \mu(E_n)$

Proof. Note that the sequence

$$\left(\bigcap_{n\geq N}E_n\right)_{N\in\mathbb{N}}$$

is an ascending sequence in N. Therefore we have

$$\mu\left(\liminf E_n\right) = \mu\left(\bigcup_{N=1}^{\infty} \left(\bigcap_{n \ge N} E_n\right)\right)$$

$$= \lim\inf \mu\left(\bigcap_{n \ge N} E_n\right)$$

$$\leq \lim_{N \to \infty} \inf\left\{\mu(E_n) \mid n \ge N\right\}$$

$$= \lim\inf \mu(E_n),$$

where we obtained the third line from the second line since

$$\mu\left(\bigcap_{n>N}E_n\right)\leq\mu(E_n)$$

for all $n \ge N$ by monotonicity of μ .

Proposition 0.4. Let (X, \mathcal{M}, μ) be a measure space and let (E_n) be a sequence in \mathcal{M} such that $\mu(\bigcup_{n=1}^{\infty} E_n) < \infty$. Then

$$\mu$$
 ($\limsup E_n$) $\geq \limsup \mu(E_n)$

Proof. Note that the sequence

$$\left(\bigcup_{n\geq N}E_n\right)_{N\in\mathbb{N}}$$

is a descending sequence in N. This together with the fact that $\mu(\bigcup_{n=1}^{\infty} E_n) < \infty$ implies

$$\mu\left(\limsup E_n\right) = \mu\left(\bigcap_{N=1}^{\infty} \left(\bigcup_{n\geq N} E_n\right)\right)$$

$$= \lim_{N\to\infty} \mu\left(\bigcup_{n\geq N} E_n\right)$$

$$\geq \lim_{N\to\infty} \sup\left\{\mu(E_n) \mid n\geq N\right\}$$

$$= \lim\sup \mu(E_n),$$

where we obtained the third line from the second line since

$$\mu\left(\bigcup_{n\geq N}E_n\right)\geq\mu(E_n)$$

for all $n \ge N$ by monotonicity of μ .

Proposition 0.5. Let (X, \mathcal{M}, μ) be a measure space and let (E_n) be a sequence in \mathcal{M} such that $\sum_{n=1}^{\infty} \mu(E_n) < \infty$. Then

$$\mu$$
 (lim sup E_n) = 0.

Proof. Note that the sequence

$$\left(\bigcup_{n\geq N} E_n\right)_{N\in\mathbb{N}}$$

is a descending sequence in N. This together with the fact that $\mu(\bigcup_{n=1}^{\infty} E_n) < \infty$ implies

$$\mu\left(\limsup E_n\right) = \mu\left(\bigcap_{N=1}^{\infty} \left(\bigcup_{n\geq N} E_n\right)\right)$$

$$= \lim_{N\to\infty} \mu\left(\bigcup_{n\geq N} E_n\right)$$

$$\leq \lim_{N\to\infty} \sum_{n=N}^{\infty} \mu(E_n)$$

$$= 0,$$

where the last equality follows since $\sum_{n=1}^{\infty} \mu(E_n) < \infty$.

Now we prove part (b). Let (E_n) be a sequence of measurable sets such that

$$\sum_{n=1}^{\infty} \nu(E_n) < \infty.$$

Then observe that

$$\int_X \lim_{n \to \infty} f 1_{E_n} d\mu = \int_X \liminf f 1_{E_n} d\mu$$

$$\leq \lim \inf \int_X f 1_{E_n} d\mu$$

$$= \lim \inf \nu(E_n)$$

$$\leq \lim \sup \nu(E_n)$$

$$\leq \nu(\lim \sup E_n)$$

$$= 0.$$

where we applied Fatou's Lemma to get the second line from the first line. It follows that $\lim_{n\to\infty} f1_{E_n} = 0$ almost everywhere (by a proposition proved in class).

Appendix

Problem 1

Proposition o.6. Let $f,g: X \to \mathbb{R}$ be measurable functions and let $a \in \mathbb{R}$. Then $af, |f|, f^2, f+g, fg, \max\{f,g\}$, and $\min\{f,g\}$ are all measurable.

Proof. We first show af is measurable. If a = 0, then af is the zero function, which is measurable. So assume $a \neq 0$. Then we have

$$(af)^{-1}(-\infty,c) = \begin{cases} f^{-1}(-\infty,c/a) \in \mathcal{M} & \text{if } a > 0\\ f^{-1}(c/a,\infty) \in \mathcal{M} & \text{if } a < 0 \end{cases}$$

 αf is measurable αf is measurable.

Observe that

$$x \in (f+g)^{-1}(-\infty,c) \iff f(x)+g(x) < c$$
 \iff there exists an $r \in \mathbb{Q}$ such that $f(x) < r$ and $r < c-g(x)$
 \iff there exists an $r \in \mathbb{Q}$ such that $x \in f^{-1}(-\infty,r) \cap g^{-1}(-\infty,c-r)$.
 $\iff x \in \bigcup_{r \in \mathbb{Q}} f^{-1}(-\infty,r) \cap g^{-1}(-\infty,c-r)$.

Therefore

$$(f+g)^{-1}(-\infty,c)=\bigcup_{r\in\mathbb{Q}}f^{-1}(-\infty,r)\cap g^{-1}(-\infty,c-r)\in\mathcal{M}.$$

We first prove f^2 is measurable:

$$(f^2)^{-1}(c,\infty) = \begin{cases} f^{-1}(\sqrt{c},\infty) \cup f^{-1}(-\infty,-\sqrt{c}) \in \mathcal{M} & c \ge 0\\ E \in \mathcal{M} & c < 0 \end{cases}$$

Next, note that

$$fg = \frac{1}{4} \left((f+g)^2 - (f-g)^2 \right) \in \mathcal{M}.$$

Finally note that

$$\max\{f,g\} = \frac{1}{2}(|f+g| + |f-g|)$$

and

$$\min\{f,g\} = \frac{1}{2}(|f+g| - |f-g|).$$

Proposition 0.7. Let $(f_n: X \to \mathbb{R})$ be a sequence of measurable functions. Then $\sup f_n$, $\inf f_n$, $\limsup f_n$, and $\liminf f_n$ are all measurable. In particular, of

$$\lim_{n\to\infty} f_n(x)$$

exists for all $x \in X$. The corresponding function is also measurable.

Proof. Let $c \in \mathbb{R}$. Then we have

$$(\sup f_n)^{-1}(c,\infty) = \bigcup_n f_n^{-1}(c,\infty) \in \mathcal{M}.$$

Similarly, we have

$$(\inf f_n)^{-1}(-\infty,c)=\bigcup_n f_n^{-1}(-\infty,c)\in\mathcal{M}.$$

Also we have

$$\limsup f_n = \inf_k \sup_{n>k} \in \mathcal{M}.$$

Similarly, we have

$$\liminf f_n = \sup_k \inf_{n \ge k} f_n \in \mathcal{M}$$

Problem 2

Proposition o.8. *If* $f_n \xrightarrow{L^1} f$, then $f_n \xrightarrow{m} f$.

Proof. Suppose $f_n \xrightarrow{L^1} f$ and let $\varepsilon, \delta > 0$. Choose $N_{\varepsilon,\delta} \in \mathbb{N}$ such that $n \geq N_{\varepsilon,\delta}$ implies

$$||f_n-f||_1<\varepsilon\delta.$$

Then it follows from Chebyshev's inequality that

$$\mu\left(\left\{\left\{x \in X \mid |f_n(x) - f(x)| \ge \varepsilon\right\}\right\}\right) \le \frac{1}{\varepsilon} ||f_n - f||_1$$

$$< \frac{1}{\varepsilon} \varepsilon \delta$$

$$= \delta.$$

Thus $f_n \stackrel{\mathrm{m}}{\to} f$.

Problem 3

Proposition o.9. Let (X, \mathcal{M}, μ) be a measure space. Suppose $(f_n: X \to [0, \infty])$ is a decreasing sequence of nonnegative measurable functions which converges pointwise to $f: X \to [0, \infty]$. If $\int_X f_1 d\mu < \infty$, then

$$\lim_{n\to\infty} \int_X f_n \mathrm{d}\mu = \int_X f \mathrm{d}\mu. \tag{5}$$

Proof. For each $n \in \mathbb{N}$, set $g_n = f_{n+1} - f_n$. Since (f_n) is a decreasing sequence, each g_n is nonnegative. Furthermore each g_n is measurable since it is a difference of two measurable functions. Set $g = \sum_{n=1}^{\infty} g_n$ and observe that

$$g = \sum_{n=1}^{\infty} g_n$$

$$= \lim_{N \to \infty} \sum_{n=1}^{N} g_n$$

$$= \lim_{N \to \infty} \sum_{n=1}^{N} (f_{n+1} - f_n)$$

$$= \lim_{N \to \infty} (f_N - f_1)$$

$$= f - f_1.$$

It follows from problem 4 that

$$\int_{X} f d\mu - \int_{X} f_{1} d\mu = \int_{X} (f - f_{1}) d\mu$$

$$= \int_{X} g d\mu$$

$$= \sum_{n=1}^{\infty} \int_{X} g_{n} d\mu$$

$$= \lim_{N \to \infty} \sum_{n=1}^{N} \int_{X} g_{n} d\mu$$

$$= \lim_{N \to \infty} \sum_{n=1}^{N} \int_{X} (f_{n+1} - f_{n}) d\mu$$

$$= \lim_{N \to \infty} \int_{X} \sum_{n=1}^{N} (f_{n+1} - f_{n}) d\mu$$

$$= \lim_{N \to \infty} \int_{X} (f_{N} - f_{1}) d\mu$$

$$= \lim_{N \to \infty} \int_{X} f_{N} d\mu - \int_{X} f_{1} d\mu.$$

Since $\int_X f_1 d\mu < 0$, we can cancel it from both sides to get (5).

Problem 6

Proposition 0.10. If $\int_X |f| d\mu = 0$, then $\mu(\{f \neq 0\}) = 0$.

Proof. Note that $\{f \neq 0\} = \{|f| \neq 0\}$. Also $\{|f| \neq 0\} = \bigcup_{n=1}^{\infty} \{|f| \geq 1/n\}$. Thus

$$\mu(\{|f| \neq 0\}) = \mu\left(\bigcup_{n=1}^{\infty} \{|f| \geq 1/n\}\right)$$

$$= \lim_{n \to \infty} \mu(\{|f| \geq 1/n\})$$

$$(C-M) \leq \lim_{n \to \infty} n \int_{X} |f| d\mu$$

$$= 0.$$