MAT. DISCRETA 1

Simboli e significato

DEFINIZIONI

PROPOSIZIONE

Una proposizione è una affermazione che è o vera o falsa, ma non può essere contemporaneamente vera e falsa.

Per esempio:

- Londra si trova in Europa.
- Madrid è la capitale d'italia.
- 3+3=8
- 8-4=4

Le affermazioni che non sono proposizioni sono:

- Che ore sono?
- Mostrami quello che hai scritto.
- · Che bella musica.
- x + 6 = 1 (non è nè vera nè falsa, perchè non sappiamo il valore di x).
- Tutti i giorni in estate piove almeno due ore. (Non possiamo dire se questa affermazioni sia vera o falsa. Perchè è possibile che in certe parti della terra in estate piove almeno 2 ore)
 - per esempio se trasformassimo la frase in: in qualche parte della terra piove alemeno 2 ore la proposizione risulta vera.
 - oppure: a Roma tutti i giorni in estate piove almeno due ore, allora diventerebbe una proposizione falsa.

Le proposizioni si indicano generalmente con le lettere dell'alfabeto: p, q, r, s, t, ecc.

Negazione di una proposizione

Se abbiamo una proposizione p, possiamo costruire una nuova proposizione chiamata **negazione di** p e si indica con:

 $\neg p$

• Si legge: "non p"

Significa: non è vero che p.

Sia p la proposizione:

Ieri abbiamo battuto gli avversari.

La sua negazione è la proposizione:

 $\neg p$: Non è vero che ieri abbiamo battuto gli avversari.

Cioè la proposizione:

Ieri non abbiamo battuto gli avversari.

Quantificatore esistenziale

- Forma: $\exists x \ P(x)$
- **Significato:** Esiste almeno un valore di x per cui P(x) è vero.
- · Esempio:
 - $P(x): x^2 = 4$
 - $\exists x \ (x^2 = 4)$ significa "esiste almeno un numero il cui quadrato è 4".
 - È **vero**, perché x = 2 e x = -2 soddisfano la proprietà.

Quantificatore universale

- Forma: $\forall x \ P(x)$
- **Significato:** Per ogni valore di x, P(x) è vero.
- Esempio:
 - $P(x): x^2 \ge 0$
 - $\forall x\ (x^2 \ge 0)$ significa "per ogni numero reale, il suo quadrato è maggiore o uguale a zero".
 - È **vero**, perché qualunque numero prendi, il quadrato non è mai negativo.

OPERATORE DI CONGIUNZIONE

Siano p e q due proposizioni.

La proposizione "p e q" si denota con p \vee q ed è vera quando entrambe p e q sono vere, falsa altrimenti, ossia quando una almeno delle due proposizioni è falsa.

È **vera solo se entrambe** le proposizioni sono vere; è **falsa** se almeno una delle due è falsa.

Esempio:

- p: "Oggi piove"
- q: "Porto l'ombrello"
- p ∧ q: "Oggi piove e porto l'ombrello".
 - Se piove e porto l'ombrello → **vero**
 - Se piove ma non porto l'ombrello \rightarrow falso
 - Se non piove ma porto l'ombrello \rightarrow falso
 - Se non piove e non porto l'ombrello \rightarrow falso

OPERATORE DI DISGIUNZIONE

Siano p e q due proposizioni.

La proposizione "p o q" si denota con p \land q ed è falsa quando entrambe p e q sono false, vera altrimenti, ossia quando almeno una delle due proposizioni è vera.

È **falsa solo se entrambe** le proposizioni sono false; è **vera** se almeno una delle due è vera.

Esempio:

- p: "Oggi piove"
- q: "Porto l'ombrello"
- p ∨ q: "Oggi piove oppure porto l'ombrello".
 - Se piove e porto l'ombrello → vero
 - Se piove ma non porto l'ombrello → vero
 - Se non piove ma porto l'ombrello → vero
 - Se non piove e non porto l'ombrello → falso

IMPLICAZIONE LOGICA

Siano p e q due proposizioni.

L'implicazione si scrive

 $p \Rightarrow q$

Si legge: "se p, allora q".

- Ipotesi: p (la condizione di partenza)
- Conclusione/Tesi: q (ciò che deve seguire)

È possibile anche pensarla in altri modi:

- p è condizione sufficiente di q.
- q è condizione necessaria per p.

È **falsa solo** se p è vera **e** q è falsa.

In tutti gli altri casi, è vera.

Esempio pratico

- p: "Piove"
- q: "Porto l'ombrello"

L'implicazione $p \Rightarrow q$: "Se piove, allora porto l'ombrello".

- Se piove e porto l'ombrello → vero
- Se piove e non porto l'ombrello → falso (qui l'implicazione crolla)
- Se non piove e porto l'ombrello → vero
- Se non piove e non porto l'ombrello → vero

PROPOSIZIONE PRIMITIVA e COMPOSTA

Una proposizione si dice primitiva se non si può spezzare in proposizioni più semplici mediante connettivi logici.

Una proposizione non primitiva si dice composta.

Per esempio la proposizione:

"Giovanni è alto e ha vinto la gara" non è una proposizione primitiva, perchè si può scrivere come congiunzione delle due proposizioni.

p: Giovanni è alto

g: Giovanni ha vinto una gara

Ossia:

 $p \wedge q$

Invece la proposizione: "Giovanni ha studiato" è primitiva.

TAUTOLOGIA E CONTRADDIZIONE

Una proposizione composta che è sempre vera, indipendentemente dal valore di verità delle proposizioni da cui è composta, prende il nome di *tautologia*.

Esempio: La $p \lor \neg p$ è un esempio di tautologia, dato che, qualunque sia p, o p o $\neg p$ è sicuramente vera, quindi $p \lor \neg p$ è sempre vera.

Una proposizione composta che è sempre falsa prende il nome di *contraddizione*.

Esempio: La $p \land \neg p$ è un esempio di contraddizione, dato che, qualunque sia $p \in \neg p$ non possono essere contemporaneamente vere, quindi la $p \land \neg p$ è sempre falsa.

Due proposizioni p e q si dicono *logicamente equivalenti* se p è vera (o falsa) se e solo se q è vera (o falsa).

Ad ogni proposizione possiamo associare un valore di verità rispettivamente attraverso dei simboli: T e F con T vera e F falsa.

TAVOLE DI VERITA'

Possiamo costruire le tavole di verità.

Per esempio sappiamo che la negazione $\neg p$ di una proposizione p, sappiamo che essa è falsa quando p è vera e viceversa.

La sua tavola corrisponde:

p	eg p
Т	F
F	Т

La tavola di verità che corrisponde alla proposizione di congiunzione e disgiunzione è la seguente:

p	q	$p \wedge q$	p ee q
Т	Т	Т	Т
Т	F	F	Т
F	Т	F	Т
F	F	F	F

Dalle tavole di verità è possibile controllare per esempio due proposizioni logicamente equivalenti.

Per verificare prendiamo due proposizioni:

$$\neg (p \land q) \mathrel{\mathsf{e}} \neg p \lor \neg q$$

Queste due proposizioni solo logicamente equivalenti.

Possiamo verificare attraverso la tavola di verità:

p	q	eg p	$\neg q$	p ee q	$\lnot(p \land q)$	$ eg p \lor eg q$
Т	Т	F	F	Т	F	F
Т	F	F	Т	F	Т	Т
F	Т	Т	F	F	Т	Т
F	F	Т	Т	F	Т	Т

Un'altro esempio di proposizione logicamente equivalente è la seguente:

$$p\Rightarrow q$$
 e $(\lnot p)\lor q$

La tavola si svolge come si segue:

p	q	eg p	$p \Rightarrow q$	$(\neg p) \vee q$
Т	Т	F	Т	Т
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

Esempio di traccia:

$$\neg(P \land Q) \equiv \neg P \lor \neg Q$$

Р	Q	PΛQ	¬(P ∧ Q)	¬P	¬Q	¬Р v ¬Q
V	V	V	F	F	F	F

MAT. DISCRETA 1

Р	Q	PΛQ	¬(P ∧ Q)	¬P	¬Q	¬P ∨ ¬Q
V	F	F	V	F	V	V
F	V	F	V	V	F	V
F	F	F	V	V	V	V