Seminari avaluable d'Àlgebra commutativa 7 de maig de 2024

En tot el seminari, els anells que apareixen no cal que siguin commutatius.

1. (Construcció del límit inductiu) Sigui (R_n, f_n) una successió d'anells i morfismes, on $f_n: R_n \to R_{n+1}$. Ho anomenem un sistema inductiu. Si m < n, posem $f_{mn} = f_n \circ f_{n-1} \circ \cdots \circ f_m \colon R_m \to R_n$. Posem també $f_{nn} = \mathrm{id}_{R_n}$. Sigui

$$R' = \bigsqcup_{n=1}^{\infty} R_n \left(= \bigcup_{n=1}^{\infty} (R_n, n) \right)$$

la unió disjunta dels R_n . Definim $(r,n) \sim (s,m)$ si i només si existeix $k \geq n, m$ tal que $f_{nk}(r) = f_{mk}(s)$.

- (i) Proveu que \sim és una relació d'equivalència.
- (ii) Proveu que $R := R'/\sim$ és un anell, amb operacions

$$\overline{(r,n)} + \overline{(s,m)} = \overline{(f_{nk}(r) + f_{mk}(s), k)} i \overline{(r,n)} \cdot \overline{(s,m)} = \overline{(f_{nk}(r) \cdot f_{mk}(s), k)},$$

on $k \geq n, m$.

D'ara endavant simplificarem notació i escriurem \overline{r} , entenent que $r \in R_n$ per un cert n, i que està identificat amb $\overline{f_{nk}(r)}$ per a qualsevol $k \geq n$.

(iii) Proveu que hi ha morfismes d'anells $\mu_n \colon R_n \to R$ tals que fan els diagrames

$$R_n \xrightarrow{f_{nm}} R_m$$

$$\downarrow^{\mu_m}$$

$$R$$

commutatius per a tot m > n.

(iv) Proveu que $R = \bigcup \mu_n(R_n)$ i que

$$\ker(\mu_n) = \{x \in R_n \mid \exists m > n \text{ amb } f_{mn}(x) = 0\}.$$

En particular, si $\mu_n(e)^2 = \mu_n(e)$, llavors $f_{mn}(e^2) = f_{mn}(e)$ per algun $m \ge n$. Anomemem R el límit inductiu del sistema inductiu (R_n, f_n) . Es denota $R = \underline{\lim}(R_n, f_n)$ o bé $\underline{\lim} R_n$ si no hi ha risc de confusió.

- 2. (Propietat universal del límit inductiu)
 - (i) Suposem que (R_n, f_n) són com a l'exercici anterior, i que S és un anell amb morfismes $\varphi_n \colon R_n \to S$ tals que

són commutatius per a tot m>n. Proveu que llavors existeix un únic morfisme $\psi\colon R\to S$ tal que

és commutatiu per a tot m > n.

- (ii) Proveu que, si $R_n = M_n(R)$ i $f_n \colon R_n \to R_{n+1}$ ve donada per $f_n(a) = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$, llavors $\varinjlim R_n \cong M_\infty(R)$.
- (iii) Proveu que si $R_n \subseteq R_{n+1}$, aleshores $\varinjlim R_n = \bigcup_n R_n$.
- 3. Sigui (R_n, f_n) un sistema inductiu d'anells amb unitat. Sigui $R = \underline{\lim} R_n$.
 - (i) Comproveu que tenim un sistema inductiu $(K_0(R_n), (f_n)_*)$, on $(f_n)_* = K_0(f_n)$. (El concepte de sistema inductiu i de límit es defineix igual per grups abelians).
 - (ii) Vegeu que existeix un morfisme de grups $\theta \colon \varinjlim K_0(R_n) \to K_0(R)$, i que de fet és un isomorfisme. Per tant $K_0(R) \cong \varinjlim K_0(\overrightarrow{R_n})$.
- 4. Sigui F un cos. Considerem $f_n \colon M_{2^n}(F) \to M_{2^{n+1}}(F)$ donat per $f_n(a) = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$. Denotem per $M_{2^{\infty}}(F) = \varinjlim (M_{2^n}(F), f_n)$.
 - (i) Proveu que $K_0(M_n(F)) \cong K_0(F) \cong \mathbb{Z}$ per tot n.
 - (ii) Proveu que $(f_n)_*: \mathbb{Z} \to \mathbb{Z}$ és $(f_n)_*(a) = 2a$. (Utilitzeu l'apartat anterior).
 - (iii) Deduïu que $K_0(M_{2^{\infty}}(F)) \cong \mathbb{Z}[1/2]$, el grup dels racionals diàdics (és a dir, els racionals el denominador dels quals és una potència de 2).
 - (iv) Podeu trobar un exemple d'anell R amb $K_0(R) \cong \mathbb{Z}[1/3]$? I amb $K_0(R) \cong \mathbb{Q}$?