ST102 Class 14 – Additional exercises

1. The *number* of red balls and white balls in an urn is unknown, but the *proportion*, π , of red balls is either 1/3 or 1/2. A random sample of size 5, drawn with replacement, yields the sequence:

red, white, white, red and white.

What is the maximum likelihood estimate of π ?

2. A random sample of size 8 yielded $x_1 = 1$, $x_2 = 0$, $x_3 = 1$, $x_4 = 1$, $x_5 = 0$, $x_6 = 1$, $x_7 = 1$ and $x_8 = 0$. The sample was obtained from the probability function:

$$p(x;\pi) = \begin{cases} \pi^x (1-\pi)^{1-x} & \text{for } x = 0, 1\\ 0 & \text{otherwise.} \end{cases}$$

Derive the maximum likelihood estimate of π .

3. A random sample $\{X_1, X_2, \dots, X_n\}$ is drawn from the distribution with the following probability density function:

$$f(x;\theta) = \frac{\theta}{2\sqrt{x}} e^{-\theta\sqrt{x}}$$

for $x \ge 0$, and 0 otherwise.

- (a) Find the maximum likelihood estimator of θ .
- (b) Suppose n = 4 and we observe $x_1 = 4.1$, $x_2 = 7.3$, $x_3 = 6.5$ and $x_4 = 8.8$. Based on this random sample, calculate the maximum likelihood estimate of $\theta/2$.
- **4.** A random sample $\{X_1, X_2, \dots, X_n\}$ is drawn from the following distribution:

$$p(x;\lambda) = \frac{\lambda^{2x} e^{-\lambda^2}}{x!}$$

1

for $x = 0, 1, 2, \ldots$, and 0 otherwise.

- (a) Find the maximum likelihood estimator of λ .
- (b) State the maximum likelihood estimator of $\theta = \lambda^3$.