Basic Dynamic Modeling in 2D

Course 1, Module 4, Lesson 3

Dynamic Modeling

forces & moments

- Why Dynamic Modeling is Important?
 - At higher speed and slippery roads, vehicles do not satisfy no slip condition
 - Forces such as drag, road friction govern required throttle inputs

Dynamic Modeling

• Steps to build a typical dynamic model:

Dynamic Modeling - Translational System

- Deals with forces and torques
- Roughly, need to equate all forces
- Governed by Newton's second law

$$Ma = \sum F$$

$$M\ddot{x} = f_1 - f_2 - f_3$$

Example - Vehicle Shock Absorber (Suspension)

Dynamic Modeling - Rotational Systems

- Inertia, J
- Torsional force, au
- Forces resisting that torsional force
 - o Spring force
 - Damping force
 - o Inertia force

Example - Tire Model

Full Vehicle Modeling

- All components, forces and moments in 3D
 - o Pitch, roll, normal forces
 - o Suspension, drivetrain, component models

Project Chrono

2D Dynamics - Vehicle Longitudinal Motion

2D Dynamics - Vehicle Lateral Motion

Summary

- What we have learned from this lesson?
 - Basics of 2D dynamic and how to start modeling a dynamical system, along with some application in automotive.
- What is next?
 - We will take a look at the vehicle longitudinal dynamics and drivetrain system

