Modeling Supernovae based on high resolution simulations

Yuri Oku (Osaka University)

Collabolators: Kengo Tomida (Tohoku U.)

Kentaro Nagamine (Osaka U.)

Ikkoh Shimizu (Shikoku Gakuin U.)

Stellar Feedback

- Massive stars release energy into circumstellar region. (Stellar wind, Supernova)
- Such events suppress star formation (stellar feedback).
- Feedback from supernovae is thought to be a dominant process to surpress star formation.
- Supernova feedback is also important for
 - morphology of galaxy
 - galactic outflow
 - metal enrichment of IGM, CGM
 - turbulence in interstellar medium.

(See also Nagamine-san's talk)

(Behroozi+ 2013)

Feedback Models

(See also Nagamine-san's talk)

- Many types of supernovae feedback models are constructed to overcome overcooling problem.
- Feedback models have evolved from phenomenological models based on galactic properties to direct models based on local properties.
 - Mechanical feedback model (Kimm & Cen 14, Hopkins 18): inject momentum calculated from local properties (ρ , Z)
 - We need functional form of momentum $p(\rho, Z)$
 - Environment dependence?

In this work we

- 1. investigate momentum of supernova remnant (SNR) using high-reso sim.
- 2. introduce new feedback model
- 3. apply the result of (1) to galaxy simulation.

High-reso Simulation: Setup

- We run 3D hydrodynamical simulation using Athena++ code (Stone+ 20).
 - Multiplicity: 10 times SNe
 - Metallicity dependence
 - Thermal conduction
 - Turbulent ISM
 - Time interval

High-reso Simulation: Results

Terminal momentum & shock radius averaged over $t_{interval}$.

- Terminal momentum increase by factor 2 in low metallicity ISM.
- Fitting functions
 - Terminal momentum:

$$p_{term}(n, E, Z) = 1.22 \times 10^5 \left(\frac{n}{1cm^{-3}}\right)^{-0.24} \left(\frac{Z}{Z_{\odot}} + 9.59 \times 10^{-3}\right)^{-0.179} \left(\frac{E}{10^{51}erg}\right) M_{\odot} \text{ km/s}$$

• Shock radius:

$$R_{shock}(n, E, Z) = 43.8 \left(\frac{n}{1cm^{-3}}\right)^{-0.343} \left(\frac{Z}{Z_{\odot}} + 1.15 \times 10^{-2}\right)^{-0.06} \left(\frac{E}{10^{51}erg}\right)^{1/3} \text{pc}$$

Modeling Supernovae

Previous feedback models

- search neighbor particles inside smoothing length h_{sml}
 - → Over estimation of feedback effect
- inject momentum calculated from local density.
 - → Violation of momentum conservation

New model (centroid feedback model)

- search neighbor particles inside shock radius R_{shock}
- inject momentum calculated from local density and particle distribution so that momentum is conserved.

A turbulent ISM is divided into some cones. Injected momentum is calculated for each cone separately.

Modeling Supernovae

Overview of centroid feedback model

- 1. Search gas particles inside R_{shock} .
- 2. Calculate density-weighted centroid point

$$\overrightarrow{r_c} = \frac{1}{N_{ngb}} \sum_i m_i \, \rho_i^{\alpha} \, \overrightarrow{r_i}$$

3. Add momentum \vec{p}_i to gas particles

$$ec{p}_i = C \ (m_i \
ho_i^{lpha} \ ec{r}_i \ - ec{r}_c)$$
 $p_{term} = \sum_i |ec{p}_i|$

Total momentum is conserved

$$\sum_{i} \vec{p}_{i} = C \left(\sum_{i} m_{i} \rho_{i}^{\alpha} \vec{r}_{i} - \sum_{i} \vec{r}_{c} \right) = C \left(N_{ngb} \vec{r}_{c} - N_{ngb} \vec{r}_{c} \right) = 0$$

• negative $\alpha \rightarrow$ more momentum to lower-density particles.

Single Supernova Test

We implement centroid model to GADGET3-Osaka code (Aoyama+17, Shimizu+ 19).
We test our feedback model in homogenious ISM.

- Total radial momentum converge with resolution.
- Total momentum is conserved.

Radial momentum

Total momentum in Y direction

Total momentum in Z direction

Isolated Galaxy Simulation

We run simulations of isolated galaxy with properties characteristic of Milky Way-mass galaxies at $z \sim 1$ (Kim+ 16).

- Mass
 - $M_{halo} = 1.3 \times 10^{12} M_{\odot}$
 - $M_{star} = 3.8 \times 10^{10} M_{\odot}$
 - $M_{gas} = 8.6 \times 10^9 \, M_{\odot}$

- Mass resolution
 - $m_{DM} = 1.3 \times 10^7 \, M_{\odot}$
 - $m_{gas} = 8.6 \times 10^4 \, M_{\odot}$
- Gravity softening length $\epsilon_{grav} = 80$ pc

Results: Star Formation Rate

- Osaka2019: 70% thermal + 30% kinetic, shutoff cooling for t_{hot} (Shimizu+ 19)
- Centroid: 70% thermal + terminal momentum
 - Athena fitting: $p_{term} = 1.2 \times 10^5 M_{sun} \text{ km/s}$
 - Cioffi+ 1988 : $p_{term} = 4.8 \times 10^5 \, M_{sun} \, \text{km/s}$

- In Athena fitting cases, a feedback effect is weak.
- In our previous studies,
 Osaka model produces
 stars too much
 compared to observations.

Results: Mass Outflow

Outflow at H = 4 kpc from galactic disk.

- Mass outflow rate M
 - α decrease $\rightarrow \dot{M}$ increase
 - In α = -2 case, \dot{M} is larger than Osaka model
- Mass loading factor $\eta = \dot{M}/SFR$
 - α controls outflow efficiency

Results: Surface Density Profile

- Gas surface density profile differs at inner region.
- High SFR & High $\dot{M} \rightarrow$ More metal enrichment at outer region.

(Colored region is observational data of nearby galaxies (Leroy+ 08))

Summary

- We run 3D hydro simulation and derive fitting function of terminal momentum of SNR.
- We construct momentum-conserving supernova feedback model.
- Momentum feedback derived from our high-reso simulation (Athena fitting) may be too weak to suppress star formation compared to observations.
 - Other physics (cosmic ray, magnetic field) may need to be considered.
- When α is small, a strong outflow is launched.
- When α is small, outer region is enriched by more metals.

Free parameter α

- SNR expands through low-density channel.
- α is a parameter of this effect.

Outflow Velocity

Max outflow velocity: velocity of the fastest gas particle (upper limit)

Kennicutt-Schmidt Relation

- Surface density is averaged over 750 pc x 750 pc patches
- Slope = 1.5 2?

