Diskrete Mathematik Übung 6

Aufgabe 1

Beweisen Sie mit Induktion, dass folgende Aussagen für alle natürlichen Zahlen $n \in \mathbb{N}$ gelten:

1.

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

2.

$$\sum_{i=1}^{n} (2i - 1) = n^2$$

3.

$$n^2 + n$$
 ist gerade

4.

 a^n-1 ist durch a-1teilbar (wobe
i $a\in\mathbb{N}$ beliebig.)

5.

$$n > 10 \Rightarrow 2^n > n^3$$

Aufgabe 2

Zeigen Sie mit Induktion nach k, dass für alle natürlichen Zahlen n, m, k folgendes gilt:

$$(n+k=m+k) \Rightarrow n=m.$$
 (Kürzbarkeit)

Hinweis: Arbeiten sie mit der (rekursiven) Definition der Addition und benützen Sie die Peano Axiome.

Aufgabe 3

Die Funktionen $F,G:\mathbb{N}\to\mathbb{N}$ seien durch folgende Rekursionsgleichungen gegeben:

$$F(0) = 0$$
 $G(0) = 1$
 $F(n+1) = F(n) + G(n)$ $G(n+1) = F(n+1) + G(n)$

1. Vervollständigen Sie die Wertetabelle:

n	0	1	2	3	4
F(n)	0				
G(n)	1				

2. Zeigen Sie mit Induktion für alle $n \in \mathbb{N}$)

$$ggT(F(n), G(n)) = 1$$