Assignment Project Exam Help

https://powcoder.com

Imperial College London

Add WeChat powcoder

What is wrong with this schema?

FROM WHERE bank_data sortcode = 67

34005.00 34005.00

34005.00

What is wrong with this schema?

						nk_data				
1	no sorte	ode.	bpame	dash	type	cname 4	rate?	mid	amo int	tdat
ŀ	100	67	Strand	3 10 01 .00	cur er t	Merct E	pull		2 300 00	999-01-05
_	101	(7	Strand			McBrien, P.	5.25	1001	4000.00	1999-01-05
	100	67	Strand	34005.00	current	McBrien, P.	null	1002	-223.45	1999-01-08
	107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1004	-100.00	1999-01-11
	103	3 4	Goodge St	6900.67	current	Boyd, M. _◀	null	1005	145.50	1999-01-12
	100	7	Strand C	°34005 0	Cur e t	Mckred, PCT		1700	10.23	1999-01-15
	107	5 6	Wilm Heden	• 84340 45	eurrent	Poulevassilis, A.	• nail	1007	345.56	1999-01-15
	101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1008	1230.00	1999-01-15
	119	56	Wimbledon	84340.45	deposit	Poulovassilis, A.	5.50	1009	5600.00	1999-01-18
	SELECT	DI	TIMIT	Th I	CL	Of the Ox	***	•	100	
	FROM	bai	nk deta	VV C	L N	atastpov	WL	\mathcal{H}		
	WHERE	501	tcode=67	, , ,	L /	34005.00	• • •			
	V V I ILI \L	301	tcode — or		<i>y</i>					

				_		nk_data		_			_
-	no sorte	ode	brame	d ash	ty be	cname 4		rate?	mid	amo int	tdat
F	100	67	Straid	3 10 0! .00	cur er t	Chame McBic L		pt II	000	2 300 00	999-01-05
_	101	(7	Strand	34005.00	deposit	McBrien, P.		5.25	1001	4000.00	1999-01-05
	100	67	Strand	34005.00	current	McBrien, P.		null	1002	-223.45	1999-01-08
	107	56	Wimbledon	84340.45	current	Poulovassilis,	Α.	null	1004	-100.00	1999-01-11
	103	3 4	Goodge St	6900.67	current	Boyd, M.₄		null	1005	145.50	1999-01-12
	100	(7)	Strand C	°34005 0	Cur e t	McBrier, Pe	r	Wil	1700	10.23	1999-01-15
	107	96	Wim Heden	• 84340 45	eurrent	Poulevassilis,	Α.	nail	1007	345.56	1999-01-15
	101	67	Strand	34005.00	deposit	McBrien, P.		5.25	1008	1230.00	1999-01-15
	119	56	Wimbledon	84340.45	deposit	Poulovassilis,	Α.	5.50	1009	5600.00	1999-01-18
	SELECT	DI	TIMET	Tel /		at po				1	
	FROM	bai	ik data	vv e		74 () ())\	V C	\mathcal{H}	Je r	
	WHERE	200	ount=107	, , ,		กับกั	•	•			
	VVIIILIVE	acc	.0unt — 10 <i>1</i>		<i>'</i>						

```
INSERT INTO bank_data VALUES (100,67, 'Strand',33005.00, 'deposit', 'McBrien, P.', null, 1017, -1000.00, '1999-01-21')
```

Arssignment Project Exam Help

				ba	nk_data				
no	sortcode	bname	/ ¢ash	type	cname 1	rate?	mid	amount	tdate
100	67	Strant	34005 00	current		null	100	2800.00	1999-01-05
101	67	Strant	34005 00	deposit	McBrien, P.	5.25	1001	4000.00	1999-01-05
100	67	Strand	34005.00	current	McBrien, P.	null	1002	-223.45	1999-01-08
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1004	-100.00	1999-01-11
103	34	Goodge St			Boyd, M.	null	1005		
100	67	Strat d	14, 05.00	urrert	McBrien R	Mod	1006	10.23	1999-01-15
107	56	V m bled bn	8/3/0.45	currer t	Pó il vas ils A.	V1 /00	100	345.56	1999-01-15
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1008	1230.00	1999-01-15
119	56	Wimbledon	84340.45	deposit	Poulovassilis, A.	5.50	1009	5600.00	1999-01-18
100	67	Strand	33005.00	deposit	McBrien, P.	null	1017	-1000.00	1999-01-21

SELECT DISTINCT cash FROM bank_data WHERE sortcode=67

Problems with Updates on Redundant Data

Arssignment Project Exam Help

				ba	nk_data				
no	sortcode	bname	/ ¢ash	type	cname 1	rate?	mid	amount	tdate
100	67	String	34005 00	current	McErier, P.—	null	100	2800.00	1999-01-05
101	67	Strant	34005 00	deposit	McBrien, P.	5.25	1001	4000.00	1999-01-05
100	67	Strand	34005.00	current	McBrien, P.	null	1002	-223.45	1999-01-08
107	56	Wimbledon	84340.45	current	Poulovassilis, A.	null	1004	-100.00	1999-01-11
103	34	Goodge St	<u>6900.</u> 67		Boyd, M.	null	1005		1999-01-12
100	67	Strat d	14,05.00	urrert	McBrien R	Wod.	1006	10.23	1999-01-15
107	56	Vmbledon	8/3/0.5	durrer t	Foulovas ils A.	1 /00	107	J3 15.56	1999-01-15
101	67	Strand	34005.00	deposit	McBrien, P.	5.25	1008	1230.00	1999-01-15
119	56	Wimbledon	84340.45	deposit	Poulovassilis, A.	5.50	1009	5600.00	1999-01-18
100	67	Strand	33005.00	deposit	McBrien, P.	null	1017	-1000.00	1999-01-21

SELECT DISTINCT rate FROM bank_data

FROM bank_data
WHERE account=107

How do you know what is redundant?

Functional Dependency Afins by the antequal of the secret in the Xids of the Carp agree in two tuples, then so must the values in Y.

Using an FD to find a value

If the FD to the a value of the Country of the transfer of the value 5.25, but y and z may take any value.

t	oank_dat	а
no	mid_	rate
101	100/	10 50
101	1008	x
119	1009	y
z	1010	5.25

l WeChat powcoder

Quiz 1: FDs that hold in bank_data

Which set AFdd We Chat powcoder

Quiz 2: Deriving FDs from other FDs

Assignment Project Exam Help

 $no \rightarrow rate$

 $\mathsf{mid} \to \mathsf{no}$ Given the https://pow.coder.com

Assignment, Project Exam Help

Reflexivity

```
Such and pass / paywooder.com
```

Applying reflexivity

```
If amount, to the all tribute eChat powcoder

By reflexively ty
```

```
amount \subseteq amount, tdate \models amount, tdate \rightarrow amount tdate \rightarrow tdate
```

Armstrong's Axioms

Assignments, Projecta Exxam Help

Augmentation

https://powcoder.com

Applying augmentation

If no cname sortcode are attributes and no \rightarrow cname

By augmentation of color of the color of th

Armstrong's Axioms

Assignment, Project Exam Help

Transitivity

 $h^{X \rightarrow Y,Y}h^{Z}_{t}h^{X}_{t}h^{Z}_{s$

Applying transitivity

If no \rightarrow sortcode and sortcode \rightarrow bname

By transitivity no -> sortcode sortcode -> Mane | Condition | DOWCOCET

Union Rule

Armstrong's Axioms

Reflexivity: $Y \subseteq X \models X \to Y$

Assignment Project Exam Help

Union Rule

Note that the union rules means that we can restrict ourselves to FD sets containing just one attribute on the RHS of each FD without loosing expressiveness

Quiz 3: Deriving FDs from other FDs

Given a set $S = \{A \to BC, CD \to E, C \to F, E \to F\}$ of FDs

Assignment Project Exam Help

A→BF, Antips://powcoder.com

 $A \to BD, A \to CF, A \to ABCF$

Add WeChat powcoder

 $A \rightarrow BD, A \rightarrow BF, A \rightarrow ABCF$

 $A \rightarrow BD, A \rightarrow BF, A \rightarrow CF$

Pseudotransitivity Rule

Armstrong's Axioms Armstrong's Axioms Armstrong's Axioms Project Exam Help Augmentation: $X \to Y \models XZ \to YZ$

Transitivity: $X \to Y, Y \to Z \models X \to Z$

Pseudotra Ritivity Rele//DOWCOGET.C

If $X \to Y, WY \to Z$

By augmentation

 $X \to Y \models WX \to WY$ By transitive dd $WY \mapsto WX \mapsto WX \mapsto WY$ $WX \to WY$, $WY \to Z \models WX \mapsto Z$ hat powcoder

$$\therefore X \to Y, WY \to Z \models WX \to Z$$

Decomposition Rule

Armstrong's Axioms Armstrong's Axioms Armstrong's Axioms Project Exam Help Augmentation: $X \to Y \models XZ \to YZ$

Transitivity: $X \to Y, Y \to Z \models X \to Z$

Decomposition Rules://powcoder.co

If $X \to Y, Z \subseteq Y$

By reflexivity

 $\underset{X \to Y, Y \to Z}{Z \subseteq Y \models Y \xrightarrow{Z}} \underset{Z}{\overset{Z} = X} \underset{$

$$\therefore X \to Y, Z \subseteq Y \models X \to Z$$

FDs and Keys

Super-keys and minimal keys

attribus of R, then X must be a super-key of R

If it is not possible to remove any attribute from X to form X', and X'functionally determine all attributes, then X is a **minimal key** of R

Suppose branch(sortcode, bname, cash) has the FD set $\{$ sortcode \rightarrow bname, bname \rightarrow sortcode, bname \rightarrow cash $\}$

- [{sortcote there is \\perpersection \\ \perpersection \\ \persection \\ \perpersection \\ \perpersect
- However, {sortcode, bname} is not a minimal key, since sortcode \rightarrow {bname, cash} and bname \rightarrow {sortcode, cash}
- sortcode and bname are both minimal keys of branch

Quiz 4: Deriving minimal keys from FDs

Assignment Project Exam Help

Suppose the relation R(A, B, C, D, E) has functional dependencies

$$S = \{A \rightarrow E, B \rightarrow AC, C \rightarrow D, E \rightarrow D\}$$

Which of https://powcoder.com

Add WeChat powedder

Quiz 5: Keys and FDs

Assignment Project Exam Help

Suppose the relation R(A, B, C, D, E) has minimal keys AC and BC

^{/hich FI}https://powcoder.com Add WeChat powcoder

Closure of a set of attributes with a set of FDs

Closure X^+ of a set of attributes X with FDs S

Set A := A SELIGINATION SET SET SELICION SELICIO

- $X^+ := X^+ \cup Y$
- If Y not empty goto (2)/powcoder.com

 Return Attps://powcoder.com

To compute A^+

- Start with $A^+ = A$, just $A \to BC$ matches, so Y = BC
- $\blacksquare A^+ = ABC$, just $C \to F$ matches, so Y = F
- $\blacksquare A^+ = ABCF$, no FDs apply, so we have the result

Closure of a set of attributes with a set of FDs

Closure X^+ of a set of attributes X with FDs S

Set A := A SELIGINATION SET SET SELICION SELICIO

- $X^+ := X^+ \cup Y$
- If Y not empty goto (2)/powcoder.com

 Return Attps://powcoder.com

Closure of a set of attrib des Relation R(A), E, F has a salka A DR, M C DC $E \rightarrow F$ To compute AD^+

- Start with $AD^+ = AD$, just $A \to BC$ matches, so Y = BC
- $\blacksquare AD^+ = ABCD, CD \to E, C \to F \text{ matches, so } Y = EF$
- $\blacksquare AD^+ = ABCDEF$, no FDs apply, so we have the result

Assignment Project Exam Help

Given a relation R(A, B, C, D, E, F) and FD set $S = \{A \rightarrow BC, C \rightarrow D, BA \rightarrow E, BD \rightarrow F, EF \rightarrow B, BE \rightarrow ABC\}$

Which clohttps://powcoder.com

Closure of a set of Functional Dependencies

Closure of the FD Set

SThe closure Staff a set of FIDS is the set of all FDs that can be in redding Stwo sets of FDs S, Tare equivalent if SET

- For speed, we can ignore
 - trivial FDs (e.g. ignore $A \to A$)
 - LLIS that are not minimal (a grignore AB Cif A Ci and ArightarrowD)
- Apart from calculating equivalence, do not normally need to compute closure

Equivalent Food WeChat powcoder

$$S = \{A \rightarrow B, A \rightarrow C, B \rightarrow A, B \rightarrow D\}$$

$$T = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, B \rightarrow A\}$$

$$S^{+} = T^{+} = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, B \rightarrow A, B \rightarrow C, B \rightarrow D\}$$

 $\therefore S \equiv T$

Minimal cover S_c of S

A minimal cover S_c of FD set S has the properties that:

Assisphent nw telegraph from S_c (i.e. S^+ E^+) and or E^+ attribute from an FD in S_c , and S'_c can still derive all the FDs in S

In general, a set of FDs may have more than one minimal cover

Deriving antipasser/powcoder.com

Suppose $S = \{A \to B, BC \to A, A \to C, B \to C\}$

- 1 Since $B \to C$ $BC \to A \to C$ Leaves $A \to A \to C$ $BC \to A \to C$ $BC \to A \to C$ $A \to C$ A
- $2_a \; \operatorname{Since} \; A \to B, B \to C \models A \to C \\ A \to C \Rightarrow \emptyset \\ \operatorname{Leaves} \; S_c = \{A \to B, B \to A, B \to C\}$
- $2_b \text{ Since } B \to A, A \to C \models B \to C$ $B \to C \Rightarrow \emptyset$ $\text{Leaves } S_c = \{A \to B, B \to A, A \to C\}$

P.J. McBrien (Imperial College London)

Quiz 7: Minimal Cover of a Set of FDs

Given an FD set $S = \{A \rightarrow BC, C \rightarrow D, BA \rightarrow E, BD \rightarrow F, EF \rightarrow B, BE \rightarrow ABC\}$ Assignment Project Exam Help

A - BC, https://powcoder.com

 $A \rightarrow BC, C \rightarrow D, BA \rightarrow E, BD \rightarrow F, EF \rightarrow B, BE \rightarrow A$

Add WeChat powcoder

 $A \rightarrow BCE, C \rightarrow D, BD \rightarrow F, EF \rightarrow B, BE \rightarrow A$

 $A \rightarrow BC, C \rightarrow D, B \rightarrow E, B \rightarrow F, EF \rightarrow B, BE \rightarrow A$

Assignment Project Exam Help

 $S = \{AB \rightarrow DEH, BEF \rightarrow A, FGH \rightarrow C, D \rightarrow EG, EG \rightarrow BF, F \rightarrow BH\}$

- Rewrite State Description of FD cylich the lave constraint on the RHS of each D.S.
- \supseteq Consider each FD $X \to A$, and for each $B \in X$, consider if $X \to B$ from the other FDs. If so, replace $X \to A$ by $(X - B) \to A$ in S.
- Consider each X and compute X^+ without using X and X^+ delete X are it is rundimetant. This will give a maintain X^+ of X^- .
- Justify what are the minimal candidate keys of R constrained by S_c

Worksheet: Minimal Cover (Step 3)

Try removing $AB \to D$: find $AB^+ = ABEH$, so can't remove.

Try removing $AB \to E$: find $AB^+ = ABDHEGFC$, so remove it from S'' to get S'''

- $EF^+ = EFABHDGC$ Try removing $EF \to A$: find $EF^+ = EFBH$, so can't remove.
- Try render Sc/fm Powcoder.com
- If $D^+ = DEGBFHAC$ Try removing $D \to E$: find $D^+ = DG$, so can't remove.
- Try removing $D \to G$; find $D^+ = DE$, so can't remove.

 5 $EG^+ = AGBBDDCV = Chat powcodeT$ Try removing $EG \to B$; find EG' = EGFBHADC, so remove it from S'' to get S'

Try removing $EG \to F$: find $EG^+ = EG$, so can't remove.

- $F^+ = FBH$
 - Try removing $F \to B$: find $F^+ = FH$, so can't remove.

Try removing $F \to H$: find $F^+ = FB$, so can't remove.

Thus S''''' is a minimal cover

 $S_c = \{AB \to D, EF \to A, FG \to C, D \to EG, EG \to F, F \to BH\}$

Assignment Project Exam Help

https://poweoder.com

Imperial College London

Add WeChat powcoder

Using FDs to Formalise Problems in Schemas

					ba	nk_data				
	no	sortcode	bname	cash	type	cname	rate?	mid	amount	tdate
	100	67	Strand	34005.00	current	McBrien, P.	null	1000	2300.00	1999-01-05
	101	• 67	Strand	34005.00	deposit	McBrien, P.	5.25	1001	4000 00	-1999-01-05
	000	2210	tial d	231001. 00	eur er t	McBin, T.		2012	1 223 45	1909 -01-08
1	107) OT 🥷	Wimbledo	on 84340:45	current	Poulovassilis,	A. full	1004	-106.00	1999-01-11
	103	34	Goodge S	t 6900.67	current	Boyd, M.	null	1005	145.50	1999-01-12
	100	67	Strand	34005.00	current	McBrien, P.	null	1006	10.23	1999-01-15
	107	56	Wimbledo	on 84340.45	current	Poulovassilis,	A. null	1007	345.56	1999-01-15
	101	7	Strand	34/00/5,00	deposit	McBrien P.	5,25	1008	1230.00	1999-01-15
	119	<u> </u> 6	Vi n le do	8/43/40 4	d post	McBrien P. Poulo ass I 5,	A. 5 50	1)(9	5600.00	1999-01-18
		_		J•// P	\mathbf{O}					

Formalise the intuition of redundancy by the statements of FDs

```
\begin{array}{l} \mathsf{mid} \to \{\mathsf{tdatA} \ \mathsf{and} \ \mathsf{unt} \ \mathsf{no}\}, \\ \mathsf{type}, \ \mathsf{challed}, \ \mathsf{see}, \ \mathsf{sortcoder} \end{array}
\{cname, type\} \rightarrow no,
sortcode \rightarrow \{bname, cash\}
```

 $bname \rightarrow sortcode$

1st Normal Form (1NF)

Every attribute depends on the key

NOTHIBLISA

Quiz 8: 1st Normal Form

							ba	nk_data							
	no	sortcode	bnam	e	c	ash	type	cname			rate?	mid	amount	tdate	
	100	67	' Stran	d	34005	00.	current	McBrie	n, P.		null	1000	2300.00	1999-	01-05
	101	67	' Stran	d	34005	.00	d posit	McBrie	n, P.		5.25	1001	4000 00		
F	100		Strar	an (3 10 pt	.00	cur er t	N a Brid	n, P.	Г	, n (II)	102	223 45	99 9	01-08
^	107		Wimb	ledon	84340	.45	current	Poulova	assilis,	A.	null	1004	-100.00	1999-	(I-11
	103	34	Good	ge St	6900	0.67	current	Boyd, I	M.		null	1005	145.50	1999-	01-12
	100	67	' Stran	d	34005	00.6	current	McBrie	n, P.		null	1006	10.23	1999-	01-15
	107	<u>5</u> 6	Wimb	ledon	84340).45	current	Poulova	assilis,	A.	null	1007	345.56	1999-	01-15
	101	(7	Stran	40	•34005	00	deposity	McBrie		r	5,25	1008	230.00 600.00	1999-	01-15
	119	<u> </u>	Vim	dedo.	8 4340	4,5	deptsk	Poulo	والعه	A	5 50	1009	5600.00	1999-	01-18
				_		L									

```
\mathsf{mid} \to \{\mathsf{tdate}, \mathsf{amount}, \mathsf{no}\},
```

 $\mathsf{bname} \to \mathsf{sortcode}$

Is bank_data in 1st Normal form?

True

False

Prime and Non-Prime Attributes

Prime Attribute

DINGON FOR COLOR THIX ACTION AT THE PARTY OF PAR

Any other attribute $B \in Attrs(R)$ is **non-prime**

Prime and the prime attributes of tank-data er com

bank_data(no,sortcode,bname,cash,type,cname,rate,mid,amount,tdate) Has FDs mid \rightarrow {tdate, amount, no}, no \rightarrow {type, cname, rate, sortcode}, $\{cname, type\} \rightarrow no, sortcode \rightarrow \{bname, cash\}, bname \rightarrow sortcode\}$ Then

- eChat powcoder
- the only prime attribute is mid
- In non-prime attributes are no, sortcode, bname, cash, type, cname, rate, amount, tdate

3rd Normal Form (3NF)

Arssignment Project Exam Help

- 2 A is prime

Every non key attribute depends on the key, the whole key and nothing but the key DOWCOGET.COM

Failure of bank data to meet 3NF

bank_data(no,sortcode,bname,cash,type,cname,rate,mid,amount,tdate)

- Has that the last total the last $no \rightarrow \{type, chame, rate, sortcode\}, \{chame, type\} \rightarrow no$ $sortcode \rightarrow \{bname, cash\}, bname \rightarrow sortcode\}$
- Each of the above FD causes the relation not to meet 3NF since the RHS contains non-prime attributes

Quiz 9: Prime and nonprime attributes

Given a relation R(A, B, C, D, E, F) and an FD set

ssignment Project Exam Help

https://powcoder.com DEF

BC

Add WeChat powcoder

CDF

CD

Given a relation R(A, B, C, D, E, F) and an FD set Assignment Project Exam Help

R₁(B, D, F nttps://powcoder.com

Add WeChat powcoder

 $R_1(A, B, C, E, F), R_2(C, D), R_3(B, D, F)$

D

 $R_1(B, E, F), R_2(A, C, E), R_3(C, D)$

Lossless-join decomposition of relations

Lossless-join decomposition of a Relation

A lossless-join decomposition of a relation R with respect to FDs S interplations A,SSA, Gallin Diperior that: 101ect Exam Heli

- $\blacksquare Attrs(R_1) \cup \ldots \cup Attrs(R_n) = Attrs(R)$
- For all possible extents of R satisfying S, $\pi_{Attrs(R_1)} R \bowtie \ldots \bowtie \pi_{Attrs(R_n)} R = R$

Lossless-join tecomposition provided the composition provided the compo

bank_data(no,sortcode,bname,cash,type,cname,rate,mid,amount,tdate)

- Has FDs mid \rightarrow {tdate amount, no}, no \rightarrow {type, cname, rate, sortcode}, {cname, Apple ho, whose by the tast power of er
- Decomposing bank_data into $branch = \pi_{sortcode,bname,cash} bank_data$ $account = \pi_{no,type,cname,rate,sortcode}$ bank_data $movement = \pi_{mid,amount,no,tdate} bank_data$ satisfies the lossless-join decomposition property

Problems if not a lossless-join decomposition

decomposition of R into R_1 , DR_2 is not lossless, then some tuples pread of SA, and result if paramometriple appearing CX and CX

Quiz 11: Lossless join decomposition

Given a relation R(A, B, C, D, E, F) and an FD set Assignment Project Exam Help

R₁(B, D, Fattps: P, Fpowcoder.com

Add WeChat powcoder

 $R_1(A, B, C, E, F), R_2(C, D), R_3(B, D, F)$

D

 $R_1(B, E, F), R_2(A, C, E), R_3(C, D)$

Assignment Project Exam Help

- R(A, B, C, D, E) has the FDs $S = \{AB \rightarrow C, C \rightarrow DE, E \rightarrow A\}$. Which of the following are lossless join decompositions?
 - Phttps://powcoder.com
- \square Derive a lossless join decomposition into three relations of R(A, B, C, D, E, F)with FDs $S = \{AB \to CD, C \to E, A \to F\}$.

Generating 3NF

- 2 Decompose R into $R_a(Attr(R) A)$ and $R_b(XA)$ (Note because the two relations share X and $X \to A$ this is lossless)
- Project the S onto the new relations, and repeat the process from (1) **nttps://powcoder.com**

Note that step (2) ensures that the decomposition is lossless since joining R_a with R_b will share X, and $X \to A$

Canonical Example of INF Decomposition DOWCOCET

Suppose R(A, B, C) has FD set $S = \{A \rightarrow B, B \rightarrow C\}$

- The only key is A, and so $B \to C$ violates 3NF (since B is not a superkey and C is nonprime).
- Decomposing R into $R_1(A, B)$ and $R_2(B, C)$ results in two 3NF relations.

Example: Decomposing bank_data into 3NF

Bank Database as a Single Relation

 $bank_data (no, sortcode, bname, cash, type, cname, rate, mid, amount, tdate)$

Since sortcode \rightarrow {bname, cash} and sortcode is not superkey and bname, cash nonprime, we should decompose bank_data into

- 1 branch spreade thame, cash with spreade { bnam (ash) bname -> sorteode
- 2 bank_data'(no, sortcode, type, cname, rate, mid, amount, tdate) with FDs mid → {tdate amount, no}, no → {type, cname, rate, sortcode}, {cname, rate, sortcode}

branch is in 3NF, but no \rightarrow {type, cname, rate, sorteode} makes bank_data' violate 3NF, so we should decompose bank_data' into:

- 3 account(no, type, cname, rate, sortcode) with FDs no \rightarrow {type, cname, rate, sortcode}, {cname, type} \rightarrow no
- 4 movement(mid.amount, no, tdate) with FD mid \rightarrow {tdate, amount, no}

The relations branch, account, and movement are all in 3NF

FD preserving decomposition

A lossless decomposition of R with FDs S into R_a and R_b preserves functional dependencies S if the projection of S^+ onto R_a and R_b is equivalent to S

Ssignment Project Exam Help

Suppose R(ABC) with $S = \{A \to B, B \to C, C \to A\}$ is decomposed into $R_a(AB)$ and $R_b(BC)$.

- s+ = https://powcoder.com
- The projection of S^+ onto R_a gives $S_a^+ = \{A \to B, B \to A\}$
- The projection of S^+ onto R_b gives $S_b^+ = \{B \to C, C \to B\}$
- Note that the union S of the two subsets of S^+ (i.e. $S_n = S_n^+ \cup S_n^+$) has the property that $S^+ = S_n^+ \cup S_n^+$ lengthese the theory is impossible to the decomposition of the property that $S^+ = S_n^+ \cup S_n^+$ is the property that $S^+ = S_n^+ \cup S_n^+$ is the property that $S^+ = S_n^+ \cup S_n^+$ is the property that $S^+ = S_n^+ \cup S_n^+$ is the property that $S^+ = S_n^+ \cup S_n^+$ is the property that $S^+ = S_n^+ \cup S_n^+$ is the property that $S^+ = S_n^+ \cup S_n^+$ is the property that $S^+ = S_n^+ \cup S_n^+$ is the property that $S^+ = S_n^+ \cup S_n^+$ is the property that $S^+ = S_n^+ \cup S_n^+$ is the property that $S^+ = S_n^+ \cup S_n^+$ is the property that $S^+ = S_n^+ \cup S_n^+$ is the property that $S^+ = S_n^+ \cup S_n^+$ is the property that $S^+ = S_n^+ \cup S_n^+$ is the property of $S^+ = S_n^+ \cup S_n^+$ is the property of $S^+ = S_n^+ \cup S_n^+$ in $S^+ = S_n^+ \cup S_n^+$ is the property of $S^+ = S_n^+ \cup S_n^+$ in $S^+ = S_n^+ \cup S_n^+$ is the property of $S^+ = S_n^+ \cup S_n^+$ in $S^+ = S_n^+ \cup S_n^+$ is the property of $S^+ = S_n^+ \cup S_n^+$ in $S^+ = S_n^+ \cup S_n^+$ is the property of $S^+ = S_n^+ \cup S_n^+$ in $S^+ = S_n^+ \cup S_n^+$ is the property of $S^+ = S_n^+ \cup S_n^+$ in $S^+ = S_n^+ \cup S_n^+$ is the property of $S^+ = S_n^+ \cup S_n^+$ in $S^+ = S_$

3NF

There is always possible to decompose a relation into $3\mathrm{NF}$ in a manner that preserves functional dependencies. Thus any $good~3\mathrm{NF}$ decomposition of a relation must also preserve functional dependencies.

Quiz 12: Preserving FDs during Decomposition

Given a relation R(A, B, C, D, E, F) and an FD set Assignment Project Exam Help

R₁(B, D, F) tps://powcoder.com

Add WeChat powcoder

 $R_1(A, B, C, E, F), R_2(C, D), R_3(B, D, F)$

D

 $R_1(B, E, F), R_2(A, C, E), R_3(C, D)$

Preserving FDs, lossless join, and 3NF

Assignment Project Exam Help

Decomposition			Preserves FDs
$R_1(B,D,F)$ $R_2(A,B,C,D,F)$ $R_1(A,B,C,D,F)$ $R_2(A,B,C,D,F)$	ddor	X ₁	X
	Juci.		X
$R_1(A, B, C, E, F), R_2(C, D), R_3(B, D, F)$	✓	✓	✓
$R_1(B, E, F), R_2(A, C, E), R_3(C, D)$	Х	/	X

Decomposing that WeChat powcoder

Since it is always possible to decompose a relation into a 3NF form that is both a lossless join decomposition, and preserves FDs, you should always do so.

Which is plossess join decomposition to 3NF that preserves FDs?

A $R_a(B,C,E), R_b(A,B,C), R_c(D,E)$ C

Add Wech at powcoder $R_a(A,C,D), R_b(A,C,E), R_c(A,B)$ $R_a(A,C,E), R_b(B,D,E)$

Boyce-Codd Normal Form (BCNF)

Boyce-Codd Normal Form (BCNF) Fig. S. 1201-11 and C. 11-4 in F. Q. 1 Court-ker. X and HCIP Every attribute depends on the key, the whole key and nothing but the key

BCNF schema

 $\frac{\text{NLDS.//powcoder.com}}{\text{branch(sortcode, brame, cash) with FDs sortcode}} \rightarrow \{\text{bname, cash}\}, \text{bname} \rightarrow \text{sortcode}$

is in BCNF since sortcode and bname are both candidate keys

account(no, type chan e, rate sortcode) with FDs no type chame, rate sortcode}, {cname, type} thous in ICNI since many type are solb cardidate keys

movement(mid.amount, no, tdate) with FD mid → {tdate, amount, no} is in BCNF since mid is key

Decomposition of Relations into BCNF

Generating BCNF

I Given R and a set of FDs S, find an FD $X \to A$ that causes R to violate BCNF

(i.e. for which X is not a superkey). asuperey).

1. Landa | Carlo | relations share X and $X \to A$ this is lossless)

3 Project the S onto the new relations, and repeat the process from (1)

Difference between 3NF and BCNIV COGET. COM

Suppose the relation address(no, street, town, county, postcode) has FDs $\{\text{no, street, town, county}\} \rightarrow \text{postcode, postcode} \rightarrow \{\text{street, town, county}\},$

- The relation is not in BCNF since postcode → {street, town, county} has a non-superkey as the determinant
 - Decompose the relation address on postcode \rightarrow {street, town, county} to: postcode(postcode, street, town, county) streetnumber(no, postcode)
 - Note FD {no, street, town, county} → postcode cannot be projected over the relations.

RCNE

Normalisation

Worksheet: Normal Forms

Assignment Project Exam Help

 $S_c = \{AB \rightarrow D, EF \rightarrow A, FG \rightarrow C, D \rightarrow EG, EG \rightarrow F, F \rightarrow BH\}$

- Decompose the relation into BCNF
- Determine if your decompositions in (1) and (2) preserve FDs, and if they do

$\begin{array}{c} {\rm not, \ suggest \ how \ to \ amend \ you \ schema \ to \ preserve \ FDs.} \\ \hline & Add \ WeChat \ powcoder \end{array}$