KSCT Fall Meeting

Theoretical Separation Feasibility of Zeolites for Gas Sweetening Process

Sep 9th 2021

Seongbin Ga
Pusan National University

How Adsorption Processes Work

Adsorption phenomena on adsorbent surface

Adsorption at condition 1:

High pressure (P_{high}) , Low temperature (T_{low})

Desorption at condition 2:

Low pressure (P_{low}) , High temperature (T_{high})

Temperature swing adserption (TSA) precess

Cyclic Operation of Adsorption Process

Cyclic Operation of Adsorption Process

Simulation results

e.g. CO₂/N₂ separation (gas phase concentration)

Process-level performance

Efficiency (CO₂ ton/GJ)

$$\eta = \frac{M_{CO_2}}{E_{comp}}$$

CO₂ purity (mol/mol)

$$x = \frac{F_{CO_{2,ex}}}{F_{CO_{2,ex}} + F_{N_2,ex}}$$

Problem 1: CPU time

Suppose we have many adsorbents to evaluate.

For each adsorbent, we need

- 1) Dynamic simulations (min-level)
- 2) Cyclic steady state search (hr-level)
- 3) Design & operation optimization (day-level)

Operation optimization example

Adsorbent 1 Adsorbent 2 → optimal operation set 1 → optimal operation set 2 53.2327 42.4073

Saberimoghaddam, & Khebri, J. Chemometrics, 2016

Mass, momentum, and energy balance equations Energy balance $\frac{\partial T}{\partial t} = \frac{1}{\epsilon \rho_g c_g + (1 - \epsilon) \rho_s c_s} \left((1 - \epsilon) \rho_s \sum_{i}^{2} (-\Delta H_i) \frac{\partial q_i}{\partial t} + \lambda_{ax} \frac{\partial^2 T}{\partial z^2} - \rho_g c_g u \frac{\partial T}{\partial z} - \rho_g c_g T \frac{\partial u}{\partial z} - \frac{2h_i}{r_{b,i}} (T - T_w) \right)$

Overall mass balance

$$\epsilon \frac{\partial C}{\partial t} + (1 - \epsilon) \rho_s \sum_{i}^{2} \frac{\partial q_i}{\partial t} + \epsilon u \frac{\partial C}{\partial z} + \epsilon C \frac{\partial u}{\partial z} = 0$$

$$\frac{\partial y_1}{\partial t} = -\frac{1-\epsilon}{C\epsilon} \rho_s \frac{\partial q_1}{\partial t} + \frac{D_{ax}}{C} \left(C \frac{\partial^2 y}{\partial z^2} + 2 \frac{\partial C}{\partial z} \frac{\partial y_1}{\partial z} + y_1 \frac{\partial^2 C}{\partial z^2} \right) - u \frac{\partial y_1}{\partial z} + \frac{y_1}{C} \frac{(1-\epsilon)}{\epsilon} \rho_s \sum_{i}^{2} \frac{\partial q_i}{\partial t}$$

Momentum balance

$$-\frac{\partial P}{\partial z} = \frac{150.0(1-\epsilon)^2}{\epsilon^3} \frac{\mu}{d_p^2} u + 1.75 \times \frac{10^{-4}(1-\epsilon)}{\epsilon^3} \frac{\rho_g}{d_p} u|u|$$

Other assumed equations

LDF model:
$$\frac{\partial q_i}{\partial t} = k_i(q_i^* - q_i) \ for \ i = 1, 2$$

Ideal gas equation: PV = nRT

Cyclic steady state (CSS) conditions

for all i for all θ : all state variables

Problem 2: Limited information

For the dynamic simulation for the PSA process, a variety of adsorbent properties are essential:

Adsorption isotherm data, heat of adsorption, mass/heat transfer coefficients, heat capacity, density

Most of them are rarely available, especially when they are:

newly discovered or newly developed or newly synthesized

Synthesis of adsorbents

Adsorption isotherm curves
= The first property they can obtain.

Idea: Ideal PSA Process

Inspired by McCabe Thiele method or Fenske equation

For distillation column

[Shortcut method: ideal PSA process]

Feed-in/out

For pressure swing adsorption (PSA) column

Idea: Ideal PSA Process

[Shortcut method: ideal PSA process]

Derivation of the method (formula) starts from a set of assumptions (idealization):

- Two gas components
- No dispersion: clear saturated region boundary
- Two periods: saturation & desaturation
- Full capacity of the adsorbents
- Always in solid/gas equilibrium
- · No effect of void volume

For pressure swing adsorption (PSA) column

8

Formula: Ideal PSA Process

New shortcut evaluation method

Efficiency

$$\eta = \frac{(\gamma - 1)y_{flue}}{\gamma RT \left[\left(\frac{P_{high}}{P_{flue}} \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right]}$$

Purity

$$P_{high} = \frac{P_{low}}{(1 + \overline{b}(x)P_{low})R_q - \overline{b}(y_{flue})P_{low}} - \cdots$$
where
$$R_q = \frac{q_{m,1}b_1(1 - x)y_{flue} - q_{m,2}b_2(1 - y_{flue})}{x(1 - x)(q_{m,1}b_1 - q_{m,2}b_2)}$$

$$\overline{b}(y_{flue}) = (b_1 - b_2)y_{flue} + b_2$$

 $\overline{b}(x) = (b_1 - b_2)x + b_2$

Advantages of them:

- ❖ Reflective of the application to the PSA process
- Easy to use and requiring only isotherm parameters
- Small computational cost
 (compared to PSA simulation time:
 ~2000 sec with successive substitution)

Proposed in

S. Ga et al., Comput. Chem. Eng., 2017

$$\lim_{P\to\infty} x = ?$$

[Converges to a certain value]

Find xsuch that $P_{high} \rightarrow \infty$ (denominator) $\rightarrow +0$

Upper limit of purity (purity cannot exceed this)

$$x_{upper} = \frac{-B - \sqrt{B^2 - 4AC}}{2A}$$

$$where$$

$$A = (q_{m,1} - q_{m,2})b_1b_2P_{low}$$

$$B = q_{m,1}(\beta_1 - b_1y_{flue}) + q_{m,2}\{\beta_2 - b_2(1 - y_{flue})\}$$

$$C = (1 + b_2P_{low})q_{m,1}b_1y_{flue}$$

$$\beta_1 = \{b_1(b_1 - b_2) + b_1\bar{b}(y_{flue}) - b_1b_2y_{flue}\}P_{low}$$

$$\beta_2 = -\{b_2^2 + b_2\bar{b}(y_{flue})\}P_{low}$$

Multi-component Case: CH₄/H₂S/CO₂

Natural gas sweetening process (feed gas contains CH₄/H₂S/CO₂):

Different adsorbents can be classified into three cases.

10

Expansion Set of The Ideal PSA Method

Leading component concept

- During the adsorption step, the saturated region is propagated by the feed gas.
- > The rate of saturation differs for each gas component.
- From the ideal PSA concept, we can calculate the rate of saturation as:

Rate of the saturation for component i (r_i)

$$r_i = \frac{l_{sat,i}}{\Delta t}$$

[Definition]

From the mass balance,

$$y_{in,i}F_{in}\Delta t = \rho_s(1-\varepsilon)A l_{sat,i}\Delta q_i$$
$$l_{sat,i} = \frac{y_{in,i}F_{in}\Delta t}{\rho_s(1-\varepsilon)A\Delta q_i}$$

[Length of saturation region]

Therefore,

[Ratio of the rate]
= [Ratio of length]

Application to Zeolite Database

International Zeolite Association (IZA) database

- Database providing structural information of over 300 zeolites
- > Data in the crystallographic information framework (*.cif) file
- > Online available database

Ideal PSA simulation Results: <u>Classifying zeolites</u> of IZA database

Visualization for Classification

Different Saturation regions

Saturation region ratio

$$R_{s1} = \frac{CH_4}{H_2S} > 1$$

$$R_{s2} = \frac{CH_4}{CO_2} > 1$$

Conclusion

☐ Based on an ideal PSA process, shortcut evaluation method has been developed.

multi component gas separation system.

☐ Using IZA database, the separation feasibility was tested for 346 zeolites, and 8 zeolites were found to be feasible.

Destartantation perioridd

Unsaturated region

Seongbin Ga

School of Chemical Engineering Pusan National University (PNU) Republic of Korea

Email: sga00@pusan.ac.kr