To

## **HEXTHIFT**

KM No. E7J02

 $\mathcal{A}$ 



# RESEARCH MEMORANDUM

for the

Air Materiel Command, Army Air Forces

PRELIMINARY RESULTS OF AN ALTITUDE-WIND-TUNNEL INVESTIGATION

OF A TG-100A GAS TURBINE-PROPELLER ENGINE

II - PRESSURE AND TEMPERATURE DISTRIBUTIONS

By Robert M. Geisenheyner, and Joseph J. Berdysz

Flight Propulsion Research Laboratory Cleveland, Ohio

CLASSIFIED DOCUMENT

This document contains classified information affecting the National Defense of the United States within the meaning of the Espionage Act, USC 50731 and 32. Its transmission or the revelation of its contents in any manner to an unauthorized person is prohibited by law. Information so classified may be imparted only to persons in the military and naval Services of the United States, appropriate dyllian officers and employees of the Federal Government who have a legitminate inferest therein, and to United States citizens of known loyalty and discretion who of necessity must be informed thereof.



NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

WASHINGTON

UNCLASSIFIED

NOVEMBER 131947

CONFIDENTIAL

RESTRICTED

INGLEY MEMORIAL AERONAUTICAL

(APR) AATORY
LAUNIEY Field, Va.

CLASSIFICATION CITANGED

UNCLASSIFIED

\*



NACA RM No. E7JO2





#### NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

#### RESEARCH MEMORANDUM

for the

Air Materiel Command, Army Air Forces

#### PRELIMINARY RESULTS OF AN ALTITUDE-WIND-TUNNEL INVESTIGATION

OF A TG-100A GAS TURBINE-PROPELLER ENGINE

III - PRESSURE AND TEMPERATURE DISTRIBUTIONS

By Robert M. Geisenheyner, and Joseph J. Berdysz

#### SUMMARY

An investigation to determine the performance and the operational characteristics of the TG-100A gas turbine-propeller engine has been conducted in the Cleveland altitude wind tunnel. As part of this investigation, pressure and temperature data were obtained at altitudes from 5000 to 35,000 feet, compressor-inlet ram-pressure ratios from 1.00 to 1.17, and engine speeds from 8000 to 13,000 rpm. Average pressures and temperatures measured at each station in the engine are presented in tabular form for all operating conditions. The effects of engine speed, shaft horsepower, and compressor-inlet ram-pressure ratio on pressure and temperature distribution at each measuring station are presented graphically.

Changes in engine speed had no appreciable effect on the circumferential or radial distribution of pressures and temperatures at any of the measuring stations with the exception of the compressor inlet, compressor outlet, and tail-pipe-nozzle outlet. As the engine speed was increased, the radial distribution of total pressure at the compressor inlet became less uniform, whereas the distribution at the tail-pipe-nozzle outlet became more nearly symmetrical with respect to the center of the tail pipe. Large variations in the circumferential distribution of dynamic pressure at the compressor outlet occurred at all engine speeds.

Variations in shaft horsepower did not greatly affect the circumferential or radial distribution of pressures and temperatures at any measuring station except the tail-pipe-nozzle outlet, where the total-pressure distribution became more uniform as the



1

٧.

engine power was increased. Changes in ram-pressure ratio from 1.00 to 1.09 did not affect the distribution of pressures and temperatures. Flow separation in the upper region of the right wingduct inlet occurred for some operating conditions and was attributed to high inlet-velocity ratio and rotation of the propeller slipstream. Losses in total pressure between the compressor outlet and the turbine inlet were approximately 0.9 of the dynamic pressure at the compressor outlet.

#### INTRODUCTION

An investigation to determine the performance and the operational characteristics of the TG-100A gas turbine-propeller engine has been conducted in the Cleveland altitude wind tunnel at the request of the Air Materiel Command, Army Air Forces. As part of this investigation, pressure and temperature data were obtained at altitudes from 5000 to 35,000 feet, compressor-inlet ram-pressure ratios from 1.00 to 1.17, and engine speeds from 8000 to 13,000 rpm. Performance characteristics of this engine are presented in reference 1 and windmilling characteristics in reference 2.

Typical surveys of total pressures, static pressures, and indicated temperatures at the measuring stations throughout the engine are presented herein. The effects of engine speed, shaft horsepower, and compressor-inlet ram-pressure ratio on these pressure and temperature distributions are briefly discussed. Average pressures and temperatures measured at each station in the engine are presented in tabular form for all the operating conditions presented in reference 1.

#### INSTALLATION AND PROCEDURE

The main components of the TG-100A gas turbine-propeller engine are a 14-stage axial-flow compressor, nine cylindrical counterflow combustion chambers, a single-stage turbine, an exhaust cone, and a two-stage planetary reduction gear (fig. 1). The over-all length of the TG-100A gas turbine-propeller engine is 116 inches and the maximum diameter is about 37 inches. The dry weight of the engine, including piping and all accessories, is 1980 pounds. The engine was installed in a streamlined wing nacelle that was mounted in the 20-foot-diameter test section of the Cleveland altitude wind tunnel. A four-blade Hamilton-Standard superhydromatic propeller with a diameter of 12 feet, 7 inches was installed on the engine (fig. 2).

air entered the installation through two wing ducts with leadingedge inlets behind the propeller. The vertical center lines of the inlets were located along the wing span at about 80 percent of the blade radius (fig. 3). From the ducts, the air flowed through an annular inlet into the compressor. Air discharged from the compressor was turned 180° before entering the combustion chambers. Hot gases leaving the combustion chambers passed through the turbine nozzles and the single-stage turbine into an annular exhaust cone. The exhaust gases were discharged through a straight tail pipe 96 inches in length and 14 inches in diameter.

The operating limits for static sea-level conditions as established by the manufacturer are:

| Turbine speed:                                     |        |
|----------------------------------------------------|--------|
| Maximum overspeed, rpm                             | 13,300 |
| Normal rated, rpm                                  | 13,000 |
| Idling, rpm                                        | 10,000 |
| Exhaust-gas temperatures (at exhaust-cone outlet): |        |
| Military rating, 5 minutes, OF                     | . 1265 |
| Normal continuous rating, of                       | . 1170 |
| Normal continuous rating, of                       | . 1600 |
| Bearing temperatures, F                            | . 250  |
| Vibration:                                         |        |
| At turbine frequency, in                           | 0.004  |
| At propeller frequency, in                         | 0.025  |

A description of the instrumentation installed at each measuring station (figs. 1 and 3) is presented in reference 1. Pressures were measured on mercury, alkazene, and water monometers and were photographically recorded. Temperatures were recorded on two self-balancing potenticmeters.

The investigation was conducted at altitudes from 5000 to 35,000 feet and compressor-inlet ram-pressure ratios from 1.00 to 1.17. At each altitude and compressor-inlet ram-pressure ratio, engine speeds were varied from 8000 to 13,000 rpm. The engine shaft horsepower measured at the torquemeter ranged from 70 to 1050 horsepower. Ambient pressures and temperatures were maintained at approximately NACA standard altitude conditions.

#### RESULTS AND DISCUSSION

The average values of total pressure, static pressure, and indicated temperature at each measuring station are presented in table I for all operating conditions investigated. The effects of engine speed, shaft horsepower, and compressor-inlet ram-pressure ratio on pressure and temperature distributions at each measuring station are shown in figures 4 to 32. All instrumentation except that at the wing-duct inlets was viewed in the direction of air flow.

Effect of engine speed. - A typical over-all average pressure profile through the engine is presented in figure 4 to show the effect of engine speed on the average pressure at each measuring station. When the engine speed was increased from 10,000 to 13,000 rpm at approximately constant tail-pipe temperature, the average pressures at the turbine inlet (station 5) were increased approximately 60 percent, whereas the average pressures at the turbine outlet (station 6) were raised approximately 10 percent. The effect of changing the engine speed from 10,000 to 13,000 rpm on the pressure and temperature distribution at each measuring station is shown in figures 5 to 13 for an altitude of 5000 feet and a compressor-inlet ram-pressure ratio of 1.00. For these engine speeds, the average temperature at the junction of the exhaust cone and the tail pipe was approximately 1500° R.

The wing-duct inlet surveys presented in figure 5 show that at engine speeds of 10,000 and 11,000 rpm very low total pressures were obtained in the upper region of the right wing-duct inlet. These low total pressures apparently resulted from flow separation on the inner surface of the upper lip. Although the inlet-velocity ratios for these operating conditions were above unity, the total-pressure distribution at the left duct inlet was uniform. Flow separation at the right duct inlet was probably caused by a combination of the rotation of propeller slipstream and the high inlet-velocity ratios. At engine speeds of 12,000 and 13,000 rpm, the total-pressure distribution was uniform for both inlets.

At the compressor inlet (fig. 6), the radial pressure profiles were uniform at engine speeds of 10,000 and 11,000 rpm. As the engine speed was increased to 13,000 rpm, the total pressure at the middle portion of the annular passage increased and the static pressure decreased, which indicates that the velocity in this region was higher than at the wall. A reasonably uniform circumferential pressure distribution was obtained at all engine speeds.

A survey of the static pressure through the compressor for several engine speeds is shown in figure 7. Compressor-outlet pressure and temperature distributions are shown in figure 8. Close agreement existed between the total-pressure measurements obtained with tubes located on the struts in the compressor-outlet passage and the center tube of the rakes with the exception of rake 3. A uniform circumferential static-pressure distribution was obtained: however, variations in the total-pressure distribution resulted in a large dynamic-pressure gradient around the compressor-outlet annulus. For each engine speed, the dynamic pressure at rake 2 was approximately three times as great as at rake 1. The circumferential distribution of total and static pressures at the turbine inlet was uniform for each engine speed, as shown in figure 9. Because the compressor-outlet static pressures were uniform and the pressure loss through the combustion chambers was approximately 0.9 of the dynamic pressure at the compressor outlet, the resultant distribution of total pressure at the turbine inlet was uniform.

Turbine-outlet total and static pressures are shown in figure 10 and turbine-outlet indicated temperatures in figure 11. The circumferential distribution of total and static pressures was nearly uniform for the four engine speeds presented. A considerable radial total-pressure variation was observed at rake 3 for engine speeds of 12,000 and 13,000 rpm. In general, the static pressures measured by wafer static-pressure tubes were lower than those measured by wall static-pressure tubes. With the exception of combustion chambers 1, 7, and 8, the turbine-outlet indicated temperatures were fairly uniform. The large temperature variation among these three combustion chambers probably resulted from uneven fuel and air distribution. Flow-bench tests showed that the fuel nozzle installed in combustion chember 7 had the highest fuel flow under all conditions investigated, which accounted in part for the highest temperature occurring in that combustion chamber. As the engine speed was increased to 12,000 rpm, the temperature differential at the turbine outlet was decreased; however, at 13,000 rpm a slightly greater differential was observed than at 12,000 rpm. Owing to the effect of radiation on the thermocouples, temperatures measured at the turbine outlet were used only to determine burner ignition and unbalance.

Circumferential distributions of total pressure, static pressure, and indicated temperature measured at the exhaust-cone outlet (fig. 12) were uniform for the range of engine speeds presented. For some conditions, not shown graphically, however, temperature variations as great as 140° were observed. Two thermocouples located at this station were connected in parallel to a gage on

83

the engine control panel to indicate limiting exhaust-gas temperatures. The temperature measured by these thermocouples is not shown in figure 12. Exhaust-gas temperature limits were established at this station by the manufacturer.

The distribution of pressures and temperatures in a vertical plane across the tail-pipe-nozzle exit is shown in figure 13. The total-pressure profile at this station changed with engine speed. It is noted that the distribution of total pressure for the top and bottom halves of the rake was not symmetrical. As the engine speed was increased, the total-pressure profile became more uniform with respect to the center of the tail pipe. In order to obtain accurate measurements both vertically and circumferentially, it would be necessary to make surveys in more than one plane. Temperatures measured at the tail-pipe-nozzle-exit rake agreed reasonably well with the average turbine-outlet temperature, but for some conditions these temperatures were higher than those measured at the junction of the exhaust cone and the tail pipe.

Effect of shaft horsepower. - A typical over-all pressure profile through the engine showing the effect of shaft horsepower is presented in figure 14. Total-pressure, static-pressure, and indicated-temperature distributions at each measuring station are shown in figures 15 to 23 for shaft horsepowers of 425 and 951 at an engine speed of 13,000 rpm. These data were obtained at an altitude of 5000 feet and a compressor-inlet ram-pressure ratio of 1.00.

The change in shaft horsepower had no appreciable effect on the pressure and temperature distributions at the wing-duct inlets and the compressor inlet. An increase in shaft horsepower raised the compressor-pressure ratio as shown by the increase in static pressure for each stage of the compressor stator in figure 17. Inasmuch as choking occurred at the turbine nozzles, the higher fuel flow required to increase the shaft horsepower resulted in a higher turbine-inlet temperature and pressure and consequently a higher compressor-pressure ratio.

The change of power had no appreciable effect on the distributions of pressure and temperature at the compressor outlet, the turbine inlet, and the turbine outlet, as shown in figures 18 to 21. The temperature level at the turbine outlet, however, was raised approximately 200° R with the increase in shaft horsepower (fig. 21). The survey at the exhaust-cone outlet shows a slight change in the

NACA RM No. E7JO2

circumferential total-pressure distribution (fig. 22). An increase in shaft horsepower resulted in a more uniform distribution of total pressure at the tail-pipe-nozzle outlet (fig. 23).

Effect of ram-pressure ratio. - The effect of ram-pressure ratio on the total-pressure, static-pressure, and indicated-temperature surveys is shown in figures 24 to 32 for compressor-inlet ram-pressure ratios of 1.00 and 1.09 and shaft horsepowers of 340 and 330. These data were obtained at an altitude of 35,000 feet and an engine speed of 13,000 rpm. In general, the variation of compressor-inlet ram-pressure ratio from 1.00 to 1.09 did not have any appreciable effect on the pressure and temperature distributions.

Wing-duct-inlet surveys (fig. 24(a)) show that at a compressor-inlet ram-pressure ratio of 1.00 there was evidence of flow separation in the upper region of the right duct. As was previously discussed, this flow separation is attributed to the rotation of the propeller slipstream and the high inlet-velocity ratio. Higher pressures occurred at the compressor outlet and the turbine inlet when the ram-pressure ratio was increased to 1.09. (See figs. 27 and 28, respectively.)

#### SUMMARY OF RESULTS

The following results were obtained from an investigation of the TG-100A gas turbine-propeller engine in the Cleveland altitude wind tunnel over a range of altitudes from 5000 to 35,000 feet, engine speeds from 8000 to 13,000 rpm, and ram-pressure ratios from approximately 1.00 to 1.17:

1. Changes in engine speed had no appreciable effect on the circumferential or radial distribution of pressures and temperatures at any of the measuring stations with the exception of the compressor inlet, the compressor outlet, and the tail-pipe-nozzle outlet. As the engine speed was increased, the radial distribution of total pressure at the compressor inlet became less uniform; whereas the distribution at the tail-pipe-nozzle outlet became more nearly symmetrical with respect to the center of the tail pipe. Large variations in the circumferential distribution of dynamic pressure at the compressor outlet occurred at all engine speeds.

83,

- 2. Variation of shaft horsepower did not greatly affect the circumferential or radial distributions of pressures and temperatures at any measuring station except the tail-pipe-nozzle outlet, where the total-pressure distribution became more uniform with an increase in engine power.
- 3. The circumferential or radial distributions of pressure and temperature were unaffected by a change in ram-pressure ratio from 1.00 to 1.09.
- 4. Flow separation, which occurred in the upper region of the right wing-duct inlet for some operating conditions, was attributed to high inlet-velocity ratio and rotation of the propeller slip-stream.
- 5. The total-pressure loss between the compressor outlet and the turbine inlet was approximately 0.9 of the dynamic pressure at the compressor outlet.

Flight Propulsion Research Laboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohio.

Robert M. Geisenheyner, Mechanical Engineer.

Joseph J. Berdysz Mechanical Engineer

Approved:

Alfred W. Young, Mechanical Engineer.

Abe Silverstein, Aeronautical Engineer.

aew

#### REFERENCES

- Saari, Martin J., and Wallner, Lewis B.: Preliminary Results of an Altitude-Wind-Tunnel Investigation of a TG-100A Gas Turbine-Propeller Engine. I - Performance Characteristics. NACA RM No. E7FlOa, Army Air Forces, 1947.
- 2. Conrad, E. W., and Durham, D. J.: Preliminary Results of an Altitude-Wind-Tunnel Investigation of a TG-100A Gas Turbine-Propeller Engine. II Windmilling Characteristics. NACA RM No. E7G25, Army Air Forces, 1947.

TABLE I .- PRESSURE AND TEMPERATURE DATA FOR

|               |                  |                  |            |                |                  |                 |                  | - 1             |                      |                         |                     |                       |                 |                     |                        |                                    |
|---------------|------------------|------------------|------------|----------------|------------------|-----------------|------------------|-----------------|----------------------|-------------------------|---------------------|-----------------------|-----------------|---------------------|------------------------|------------------------------------|
| $\rightarrow$ | 1                | 8                | 3          | 4              | 5                | 6               | 7                | 8               | 9                    | 10                      | 11                  | 12                    | 13              | 14                  | 15                     | 16                                 |
|               |                  |                  |            |                | v <sub>o</sub>   | ı,£             |                  | Left            | duct 1               |                         | Right               |                       | inlet           |                     | essor                  | inlet                              |
| Ì             |                  |                  |            | ratio,         | >                | tic pres        | temperature<br>) | 7               | ž,                   | 12                      | , P1                | 4                     | tempera-        | eg.                 |                        | Ĩ                                  |
| 1             |                  |                  | E O        | 2              | D C              | ā. š            | i i              | •               | pressure<br>ft abs.) | tempe                   |                     | pressure,<br>ft abs.) | ğ               |                     | ssure                  | temper-2                           |
|               |                  | рə               | ĕ          | g.             | e be             | D.E             | iğ.              | ssur            | 2 ps                 |                         | ssur                | 888                   |                 | 5.8                 | 1 4 1                  |                                    |
|               | 4                | speed            | horsepower | pressure<br>Po | airepe           | sta<br>Po,      | ten )            | pres            | ##                   | P to                    | pressure<br>ft abs. |                       | 34              | pressure<br>ft abs. | £ #                    | T.                                 |
| 1             | tude             |                  |            | 20             | 191              | f b             | (oR)             |                 | 9,0                  | 1 55 _                  | ו בי בי             | 110<br>/89            | 13              | _, g                | 19 3                   | 3                                  |
| Run           | A1t1<br>(ft)     | Engin<br>(rpm)   | Shaft      | Rem - p        | Tunnel<br>(ft/se | Tunnel<br>sure, | Turm<br>To       | Total<br>(1b/sc | Stati<br>(1b/s       | Indica<br>ture,<br>(oR) | Total<br>(lb/sc     | Static<br>(1b/sq      | Indica<br>ture, | Total<br>(1b/s      | Statio<br>P2<br>(1b/sq | Indicated atture, T <sub>1</sub> , |
| 1             | 5,000            | 13,000           | 425        | 0.99           | 211              | 1760            | 505              | 1822            | 1763                 | 502                     | 1822                | 1776                  | 501             | 1749                | 1542                   | 501                                |
| 2             | 5,000            | 13,000           | 619        | .99            | 210              | 1760            | 500<br>495       | 1825            | 1766<br>1768         | 499                     | 1825                | 1773                  | 500<br>496      | 1752<br>1760        | 1545<br>1545           | 498<br>493                         |
| 3 4           | 5,000            | 13,000           |            | 1.00           | 200              | 1760<br>1760    | 503              | 1827            | 1769                 | 502                     | 1828                | 1775                  | 501             | 1756                | 1555                   | 500                                |
| 5             | 5,000            | 113.000          | 1044       | 1.00           | 201<br>193       | 1767<br>1767    | 499<br>503       | 1839<br>1819    | 1773<br>1773         | 495<br>497              | 1839                | 1786<br>1777          | 495             | 1765<br>1763        | 1563<br>1609           | 494<br>497                         |
| 6<br>7        | 5,000            | 12,000           | 334<br>482 | 11.00          | 192              | 1760            | 496              | 1817            | 1767                 | 495                     | 1818                | 1773                  | 495             | 1759                | 1596                   | 495<br>489                         |
| 8             | 5,000            | 12,000<br>12,000 | 636<br>824 | 1.00           | 183              | 1753<br>1760    | 492              | 1809<br>1816    | 1761<br>1768         | 493<br>500              | 1810                | 1766<br>1772          | 492<br>501      | 1752<br>1757        | 1593<br>1591           | 501                                |
| 10            | 5,000            | 11.000           | 308        | .99            | 91               | 1760            | 498              | 1783            | 1754                 | 490                     | 1776<br>1779        | 1748<br>1747          | 491<br>502      | 1747<br>1752        | 1639<br>1646           | 493<br>501                         |
| 11            | 5,000            | 11,000           | 446<br>591 | 1.00           | 92<br>110        | 1760<br>1753    | 505<br>506       | 1790<br>1790    | 1759<br>1757         | 498<br>501              | 1776                | 1740                  | 506             | 1751                | 1643                   | 502                                |
| 13            | 5,000            | 11.000           | 739        | 1.00           | 130              | 1767            | 506              | 1812            | 1776<br>1764         | 501<br>492              | 1794                | 1756<br>1767          | 505<br>493      | 1770                | 1659                   | 503<br>493                         |
| 14<br>15      | 5,000            |                  | 209<br>302 | 1.00           | 136<br>149       | 1760<br>1760    | 500<br>500       | 1794            | 1768                 | 493                     | 1794                | 1771                  | 495             | 1765                | 1684                   | 495                                |
| 16            | 5,000            | 10.000           | 403        | 1.00           | 101              | 1767            | 503<br>509       | 1797<br>1794    | 1771<br>1768         | 492                     | 1787                | 1762<br>1754          | 495             | 1765<br>1762        | 1686                   | 494<br>497                         |
| 17            | 5,000<br>5,000   | 10,000           | 51.3<br>57 | 1.00           | 81               | 1760            | 500              | 1770            | 1760                 | 500                     | 1770                | 1761                  | 500             | 1759                | 1729                   | 500                                |
| 19            | 5,000            | 8.100            | 85         | 1.00           | 92               | 1760            | 500<br>500       | 1773<br>1775    | 1763<br>1764         | 500                     | 1773                | 1764<br>1766          | 500             | 1762<br>1764        | 1730<br>1732           | 500<br>500                         |
| 20<br>21      | 5,000            | 8,000            | 114        | 1.00           | 101              | 1760            | 505              | 1778            | 1767                 | 499                     | 1778                | 1768                  | 499             | 1767                | 1735<br>1028           | 499<br>461                         |
| 22            | 15,000           | 13,000           | 352<br>514 | 1.00           | 230              |                 | 462<br>468       | 1249            | 1203                 | 465                     | 1249                | 1208                  | 464             | 1139                | 1031                   | 467                                |
| 23<br>24      | 15,000<br>15,000 | 13,000           | 733        | 1.00           | 223              | 1190            | 462              | 1248            | 1203                 | 469                     | 1239                | 1195                  | 469             | 1191                | 1037                   | 469<br>467                         |
| 25<br>26      | 15,000<br>15,000 | 13.000           | 776<br>849 | 1.00           | I 220            |                 | 466              | 775<br>815      |                      | 470                     |                     |                       | 470<br>461      |                     |                        | 461                                |
| 27            | 15,000           | 11,000           | 103        | 11.00          | I 198            | 1190            | 461              | 1225            | 1197                 | 460<br>463              | 1225                | 1199                  | 460             | 1191                | 1096                   | 459<br>463                         |
| 28<br>29      | 15,000           |                  |            | 1.00           | 172              |                 | 461<br>465       | 1222            | 1194<br>1200         | 463                     | 1221                | 1194                  | 463             | 1191                | 1099                   | 463                                |
| 30            | 15,000           | 11,000           | 411        | 1.00           | 167              | 1197            | 460<br>461       | 1233<br>1232    | 1204                 | 457<br>455              | 1224                | 1196<br>1189          | 457             | 1201                | 1105                   | 457<br>453                         |
| 31<br>32      | 15,000           |                  | 530<br>183 | 1.00           | 125              | 1190            | 465              | 1211            | 1193                 | 459                     | 1208                | 1191                  | 459             | 1189                | 1132                   | 459<br>462                         |
| 33            | 15,000           | 10,000           | 260        | 1.00           | 106              | 1190            | 466<br>466       | 1210            | 1193                 | 459<br>460              | 1202                | 1184<br>1185          | 460<br>462      | 1188                | 1135                   | 462                                |
| 34<br>35      | 15,000           |                  | 437        | 1.00           | 113              | 1197            | 466              | 1225            | 1208                 | 462                     | 1213                | 1194                  | 462             | 1203<br>1263        |                        | 462<br>476                         |
| 36            | 15,000           | 10,000           | 172        | 1.06           | 342              |                 | 469<br>473       | 1287<br>1297    | 1261<br>1272         | 476<br>475              | 1287<br>1297        | 1265<br>1275          | 476             | 1274                | 1550                   | 475                                |
| 37<br>38      | 15,000           | 10,000           | 340        | 11.07          | 347              | 1197            | 471              | 1300            | 1276                 | 475                     | 1300<br>1296        | 1279                  | 475<br>472      | 1277                | 1223                   | 475<br>472                         |
| 39            | 15,000           | 10,000           | 422        | 1.07           | 358              | 1190<br>1197    | 469<br>464       | 1296            | 1272<br>1196         | 472<br>454              | 1202                | 1195                  | 459             | 11195               | 1170                   | 461                                |
| 41            | 15,000           | 8.000            | 72         | 1.00           | 71               | 1190            | 464              | 1198            | 1190                 |                         | 1195                | 1189                  | 459             | 1189                | 1166                   | 461<br>461                         |
| 42            | 15,000           | 8,000            | 93         | 1.00           | 71               | 1190            | 465              | 1199            | 1192                 | 1.00                    | 1130                |                       | 1.00            | 1                   |                        |                                    |



TG-100A GAS TURBINE-PROPELLER ENGINE

| 17                                                                                                                                                                                                                                   | 18                                                                                                                                                                                                   | 19                                                                                                                                                                   | 20                                                                                                                                                                                              | 21                                                                                                                                                                                                           | 22                                                                                                                                                     | 23                                                                                                                                                                                                                   | 24                                                                                                                                                                                                  | 25                                                                                                   | 26                                                                                                                                                                                           | 27                                                                                                                                                                                                   | 28                                                                                                                                                                                                         | 29                                                                                                                                                                 | 30                                                                                                                                                                                                                   | 31                                                                                                                                                                                                                                                  | 32                                                                                                                                                                           | 33                                                                                           | 34                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                      | SEOT O                                                                                                                                                                                               | utlet                                                                                                                                                                | Con                                                                                                                                                                                             | presso                                                                                                                                                                                                       | )Z                                                                                                                                                     |                                                                                                                                                                                                                      | bine<br>let                                                                                                                                                                                         | Tu                                                                                                   | rbine                                                                                                                                                                                        | outle                                                                                                                                                                                                | t                                                                                                                                                                                                          |                                                                                                                                                                    | ust-c                                                                                                                                                                                                                | one                                                                                                                                                                                                                                                 | Tail<br>nozz                                                                                                                                                                 | -pipe                                                                                        | let                                                                                                                                                                                                                                                  |
| Total pressure,<br>P3<br>(1b/sq ft abs.)                                                                                                                                                                                             | lo pressure, sq ft abs.)                                                                                                                                                                             | Indicated temper-<br>ature, T1,3<br>(OR)                                                                                                                             | Total pressure,<br>P4 (1b/sq ft abs.)                                                                                                                                                           | ic pressure,                                                                                                                                                                                                 | ī                                                                                                                                                      | 1 pressure,                                                                                                                                                                                                          | pressure,<br>ft abs.)                                                                                                                                                                               | Total pressure,<br>Ps<br>(1b/sq ft abs.)                                                             | Wall-statio<br>pressure, P6<br>(1b/sq ft abs.)                                                                                                                                               | Wafer-statio<br>pressure, pg<br>(lb/sq ft abs.)                                                                                                                                                      | Indicated temper-<br>ature, Ti,6<br>(OR)                                                                                                                                                                   | Total pressure,<br>Py<br>(lb/sq ft abs.)                                                                                                                           | Static pressure,<br>py<br>(1b/mg ft abm.)                                                                                                                                                                            | P E                                                                                                                                                                                                                                                 | Total pressure,<br>Pg<br>(1b/sq ft abs.)                                                                                                                                     | Static pressure,<br>Pg<br>(1b/mg ft mbm.)                                                    |                                                                                                                                                                                                                                                      |
| 8260<br>8481<br>8804<br>8792<br>9047<br>7129<br>7471<br>7661<br>7782<br>6051<br>6202<br>6419<br>6715<br>5159<br>5299<br>5447<br>5360<br>3250<br>3250<br>3250<br>3250<br>4474<br>4471<br>4472<br>4472<br>4472<br>4472<br>4622<br>5024 | 7973<br>8199<br>8522<br>8518<br>8774<br>6879<br>7223<br>7418<br>5847<br>6038<br>6534<br>4988<br>5133<br>5291<br>5418<br>3303<br>3365<br>5927<br>6041<br>6282<br>4215<br>4372<br>4215<br>4471<br>4885 | 864<br>869<br>873<br>878<br>874<br>819<br>823<br>828<br>775<br>794<br>729<br>738<br>748<br>647<br>655<br>825<br>856<br>856<br>856<br>746<br>746<br>746<br>750<br>760 | 8168<br>8408<br>8723<br>8981<br>77052<br>7394<br>7593<br>77714<br>5986<br>6144<br>6375<br>6676<br>5107<br>5248<br>5403<br>5528<br>5403<br>5528<br>6195<br>6426<br>4328<br>44513<br>4583<br>4960 | 8087<br>8529<br>8698<br>8652<br>8913<br>6987<br>7532<br>7523<br>6093<br>6526<br>6621<br>5069<br>5203<br>5368<br>5484<br>3210<br>3327<br>3341<br>6030<br>6143<br>6379<br>4291<br>4393<br>4572<br>4541<br>4953 | 874<br>879<br>884<br>887<br>887<br>889<br>732<br>859<br>852<br>783<br>795<br>765<br>656<br>661<br>858<br>850<br>865<br>854<br>856<br>755<br>755<br>755 | 7974<br>6215<br>8541<br>8790<br>6891<br>7289<br>7428<br>7525<br>5854<br>6016<br>6242<br>6536<br>5025<br>5139<br>5298<br>5424<br>5167<br>3299<br>3365<br>6298<br>4224<br>4351<br>4531<br>4481<br>4889<br>3590<br>5695 | 7838<br>8075<br>8399<br>8396<br>8644<br>6775<br>7106<br>7299<br>7424<br>5755<br>5913<br>6136<br>6427<br>4913<br>3054<br>5210<br>5329<br>3112<br>3227<br>3309<br>5844<br>438<br>4400<br>4810<br>5527 | 2201<br>2161<br>2126<br>2123<br>2140<br>2090<br>2105<br>2050<br>2061<br>1986<br>1976<br>1953<br>1935 | 1893<br>1862<br>1842<br>1837<br>1877<br>1871<br>1824<br>1823<br>1823<br>1800<br>1803<br>1817<br>1810<br>1788<br>1802<br>1793<br>1263<br>1253<br>1253<br>1253<br>1253<br>1254<br>1254<br>1240 | 1781<br>1767<br>1748<br>1744<br>1746<br>1783<br>1767<br>1746<br>1762<br>1758<br>1758<br>1758<br>1758<br>1758<br>1758<br>1758<br>1760<br>1762<br>1765<br>1760<br>1118<br>1188<br>1183<br>1199<br>1199 | 1320<br>1388<br>1486<br>1515<br>1539<br>1369<br>1329<br>1528<br>1320<br>1484<br>1521<br>1484<br>1521<br>1456<br>1614<br>1550<br>1614<br>1614<br>1018<br>1018<br>1018<br>1018<br>1018<br>1018<br>1018<br>10 | 1891<br>1954<br>2028<br>2003<br>2008<br>1856<br>1870<br>1954<br>1973<br>1802<br>1855<br>1894<br>1891<br>1792<br>1772<br>1772<br>1772<br>1772<br>1772<br>1772<br>17 | 1781<br>1774<br>1788<br>1802<br>1788<br>1777<br>1767<br>1767<br>1767<br>1767<br>1770<br>1767<br>1770<br>1767<br>1774<br>1770<br>1763<br>1763<br>1218<br>1204<br>1204<br>1204<br>1204<br>1204<br>1204<br>1204<br>1204 | 1329<br>1344<br>1444<br>1496<br>1261<br>1266<br>1364<br>1466<br>1458<br>1245<br>1394<br>1468<br>1282<br>1368<br>1468<br>1282<br>1368<br>1468<br>1282<br>1368<br>1468<br>1282<br>1368<br>1488<br>1288<br>1288<br>1288<br>1288<br>1288<br>1288<br>128 | 1962<br>1972<br>1894<br>1905<br>1920<br>1856<br>1856<br>1856<br>1856<br>1858<br>1793<br>1793<br>1793<br>1793<br>1793<br>1265<br>1265<br>1265<br>1285<br>1285<br>1285<br>1285 | 1757<br>1776<br>1768<br>1768<br>1775<br>1775<br>1775<br>1775<br>1767<br>1767<br>1767<br>1767 | 1531<br>1370<br>1449<br>1525<br>1539<br>1276<br>1331<br>1366<br>1529<br>1308<br>1458<br>1458<br>1450<br>1354<br>1403<br>1567<br>1505<br>1548<br>1497<br>1617<br>1193<br>1273<br>1497<br>1193<br>1273<br>1497<br>1193<br>1273<br>1430<br>1285<br>1430 |
| 5799<br>3893<br>4036<br>3694<br>3800<br>3941<br>4092<br>2436<br>2439<br>2476                                                                                                                                                         | 3838<br>3991<br>2369<br>2371                                                                                                                                                                         | 722<br>734<br>711<br>717<br>725<br>728<br>608<br>612                                                                                                                 | 3772<br>3869<br>4010<br>3663<br>3770<br>3913<br>4068<br>2422<br>2426                                                                                                                            | 3841<br>3985<br>3637<br>3742<br>3890<br>4041<br>2408<br>2408                                                                                                                                                 | 732<br>745<br>717<br>723<br>731<br>735<br>618<br>620                                                                                                   | 3792<br>3936<br>3583<br>5695<br>3910<br>3989<br>2367<br>2373<br>2414                                                                                                                                                 | 3728<br>3871<br>3524<br>3632<br>3777<br>3925<br>2329<br>2333                                                                                                                                        | 1318<br>1317<br>1336<br>1334<br>1339<br>1329<br>1259<br>1256<br>1257                                 | 1213<br>1216<br>1255<br>1248<br>1235<br>1219<br>1225<br>1216                                                                                                                                 | 1188<br>1199<br>1216<br>1211<br>1201<br>1204<br>1195<br>1192                                                                                                                                         | 1876<br>1676<br>1285<br>1389<br>1521<br>1600<br>1390<br>1441<br>1500                                                                                                                                       | 1276<br>1276<br>1276<br>1276<br>1276<br>1206<br>1206                                                                                                               | 1211<br>1214<br>1214<br>1221<br>1221<br>1214<br>1200<br>1 1193                                                                                                                                                       | 1472<br>1572<br>1341                                                                                                                                                                                                                                | 1262<br>1253<br>1263<br>1271<br>1268<br>1228<br>1228                                                                                                                         | 1194<br>1203<br>1201<br>1212<br>1214<br>1206<br>1196<br>1189<br>1189                         | 1521<br>1631<br>1260<br>1368<br>1470<br>1548<br>1366<br>1400                                                                                                                                                                                         |



TABLE I.- CONCLUDED. PRESSURE AND TEMPERATURE

|                                                          | 1                                                                                                | 2                                                                                      | 3                                                                  | 4                                            | 5                                                                  | 6                                                                           | 7                                                                         | 8                                                                    | 9                                                             | 10                                                                 | 23                                                                           | 12                                                                   | 13                                                                        | 14                                                                          | 15                                                                          | 16                                                                 |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------|
| 1 1                                                      |                                                                                                  |                                                                                        |                                                                    |                                              |                                                                    | _                                                                           |                                                                           | Left                                                                 | dust :                                                        | lnlet                                                              | Right                                                                        | duct                                                                 | inlet                                                                     | Comp                                                                        | ressor                                                                      | inlet                                                              |
| Run                                                      | Altitude<br>(ft)                                                                                 | Engine speed<br>(rpm)                                                                  | Shaft horsepower                                                   | Ram-pressure ratio,<br>Pg/Po                 | Tunnel airspeed, Vo                                                | Tunnel statio pres-<br>sure, po. (lb/eq ft                                  | Tunnel temperature,<br>To, (OR)                                           | Total pressure, Pl<br>(lb/sq ft abs.)                                | Static pressure, Pl (1b/sq ft abs.)                           | Indicated tempera-<br>ture, Ti,1                                   | Total pressure, Pl                                                           | Static pressure, pl (1b/sq ft abs.)                                  | Indicated tempera-<br>ture, Ti,1                                          | Total pressure, Pg (1b/sq ft abs.)                                          | Statio pressure, R2 (1b/sq ft abs.)                                         | Indicated temper-<br>ature, T.,3<br>(OR)                           |
| 43                                                       | 15,000                                                                                           | 13,000                                                                                 | 105                                                                | 1,06                                         | 327                                                                | 1190                                                                        | 469                                                                       | 1275                                                                 | 1262                                                          | 476                                                                | 1275                                                                         | 1264                                                                 | 475                                                                       | 1264                                                                        | 1241                                                                        | 475                                                                |
| 44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53 | 15,000<br>15,000<br>25,000<br>25,000<br>25,000<br>25,000<br>25,000<br>25,000<br>25,000<br>25,000 | 13,000<br>13,000<br>13,000<br>13,000<br>13,000<br>13,000<br>13,000<br>13,000<br>13,000 | 134<br>158<br>223<br>335<br>461<br>522<br>587<br>234<br>394<br>638 | 1.06<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 327<br>326<br>254<br>256<br>257<br>229<br>246<br>437<br>437<br>437 | 1197<br>1197<br>781<br>781<br>781<br>781<br>788<br>788<br>788<br>788<br>781 | 471<br>468<br>438<br>438<br>436<br>434<br>433<br>456<br>457<br>457<br>457 | 1283<br>1284<br>823<br>822<br>824<br>836<br>900<br>896<br>904<br>898 | 1270<br>1271<br>790<br>789<br>791<br>802<br>861<br>850<br>858 | 477<br>476<br>435<br>435<br>437<br>435<br>435<br>464<br>470<br>463 | 1283<br>1283<br>1283<br>818<br>814<br>814<br>826<br>901<br>894<br>903<br>897 | 1272<br>1273<br>793<br>787<br>781<br>781<br>791<br>866<br>861<br>868 | 477<br>475<br>433<br>431<br>430<br>430<br>430<br>465<br>464<br>471<br>462 | 1272<br>1273<br>780<br>780<br>777<br>779<br>790<br>852<br>847<br>856<br>850 | 1249<br>1251<br>663<br>663<br>660<br>654<br>672<br>738<br>736<br>743<br>739 | 477<br>475<br>433<br>432<br>431<br>433<br>465<br>464<br>471<br>464 |
| 55                                                       | 25,000                                                                                           | 15,000                                                                                 | 384                                                                | 1.12                                         | 504                                                                | 781                                                                         | 486                                                                       | 924                                                                  | 883                                                           | 496                                                                | 923                                                                          | 890                                                                  | 496                                                                       | 876                                                                         | 773                                                                         | 496                                                                |
| 56<br>57<br>58<br>59<br>60                               | 25,000<br>25,000<br>25,000<br>25,000<br>25,000                                                   | 13,000<br>13,000<br>10,000<br>10,000                                                   | 522<br>631<br>71<br>172<br>118                                     | 1.13<br>1.23<br>1.00<br>1.00                 | 507<br>510<br>152<br>92<br>387                                     | 774<br>788<br>774<br>781<br>781                                             | 482<br>474<br>420<br>418<br>442                                           | 920<br>942<br>790<br>797<br>868                                      | 979<br>900<br>776<br>784<br>848                               | 493<br>488<br>421<br>425<br>450                                    | 920<br>942<br>790<br>790<br>868                                              | 884<br>905<br>776<br>776                                             | 494<br>488<br>418<br>417                                                  | 873<br>894<br>774<br>780<br>848                                             | 764<br>783<br>730<br>738<br>802                                             | 494<br>488<br>421<br>418<br>450                                    |
| 61<br>62                                                 | 25,000                                                                                           | 10,000                                                                                 | 174<br>261                                                         | 1.09                                         | 387<br>385                                                         | 781<br>781                                                                  | 442<br>442                                                                | 868<br>869                                                           | 848<br>849                                                    | 450<br>450                                                         | 868<br>869                                                                   | 951<br>951<br>852                                                    | 450<br>450<br>450                                                         | 849<br>850                                                                  | 805<br>806                                                                  | 450<br>450                                                         |
| 63<br>64                                                 | 25,000                                                                                           | 10,000                                                                                 | 308<br>36                                                          | 1.09                                         | 385<br>39                                                          | 778                                                                         | 458<br>420                                                                | 880<br>789                                                           | 860<br>784                                                    | 450<br>425                                                         | 880<br>789                                                                   | 862<br>785                                                           | 450<br>425                                                                | 861<br>786                                                                  | 819<br>765                                                                  | 450<br>434                                                         |
| 65<br>66                                                 | 25,000<br>25,000                                                                                 | 8,100                                                                                  | 56<br>97                                                           | 1.00                                         | 75<br>75                                                           | 781<br>781                                                                  | 425<br>425                                                                | 787<br>790                                                           | 781<br>785                                                    | 429<br>429                                                         | 785<br>78 <b>6</b>                                                           | 779<br>780                                                           | 429<br>421                                                                | 780<br>783                                                                  | 762<br>767                                                                  | 431<br>427                                                         |
| 67<br>68<br>69                                           | 25,000<br>25,000<br>35,000                                                                       | 8,000<br>8,000<br>13,000                                                               | 86<br>122<br>163                                                   | 1.09<br>1.09                                 | 368<br>370<br>229                                                  | 781<br>781<br>493                                                           | 440<br>459<br>435                                                         | 859<br>860<br>516                                                    | 848<br>849<br>496                                             | 445<br>445<br>439                                                  | 856<br>857<br>514                                                            | 847<br>848<br>495                                                    | 445<br>445<br>430                                                         | 848<br>849<br>487                                                           | 830<br>834<br>415                                                           | 445<br>445<br>432                                                  |
| 70                                                       | 35,000<br>35,000                                                                                 | 13,000                                                                                 | 240<br>289                                                         | 1.00                                         | 238<br>238                                                         | 486<br>493                                                                  | 452<br>432                                                                | 512<br>521                                                           | 492<br>500                                                    | 440<br>442                                                         | 507<br>514                                                                   | 487<br>493                                                           | 432<br>432                                                                | 482<br>491                                                                  | 411<br>417                                                                  | 435<br>435                                                         |
| 72<br>73                                                 | 35,000<br>35,000                                                                                 | 15,000                                                                                 | 340<br>381                                                         | 1.00                                         | 242<br>239                                                         | 493<br>500                                                                  | 430<br>427                                                                | 523<br>530                                                           | 502<br>508                                                    | 440<br>440                                                         | 516<br>522                                                                   | 494<br>500                                                           | 431<br>428                                                                | 492<br>499                                                                  | 419<br>425                                                                  | 434<br>433                                                         |
| 74<br>75<br>76                                           | 35,000<br>35,000<br>35,000                                                                       | 13,000<br>13,000                                                                       | 155<br>252<br>330                                                  | 1.07<br>1.09<br>1.09                         | 429<br>429<br>435                                                  | 493<br>493<br>493                                                           | 440<br>440<br>441                                                         | 563<br>565<br>567                                                    | 537<br>539<br>540                                             | 451<br>450<br>454                                                  | 562<br>564<br>865                                                            | 539<br>540<br>540                                                    | 453<br>452<br>454                                                         | 529<br>531<br>531                                                           | 452<br>454<br>454                                                           | 454<br>454<br>455                                                  |
| 77<br>78                                                 | 35,000<br>35,000                                                                                 | 13,000                                                                                 | 432<br>428                                                         | 1.08                                         | 436<br>436                                                         | 493<br>507                                                                  | 436<br>442                                                                | 570<br>586                                                           | 543<br>558                                                    | 450<br>449                                                         | 566<br>582                                                                   | 540<br>555                                                           | 451<br>450                                                                | 534<br>545                                                                  | 457<br>470                                                                  | 452<br>451                                                         |
| 79<br>80                                                 | 35,000                                                                                           | 12,000                                                                                 | 154<br>209                                                         | .98                                          | 143<br>153                                                         | 493<br>500                                                                  | 425<br>425                                                                | 504<br>515                                                           | 490<br>500                                                    | 429<br>429                                                         | 501<br>510                                                                   | 486<br>493                                                           | 421<br>424                                                                | 483<br>492                                                                  | 425<br>433                                                                  | 428<br>428                                                         |
| 81<br>82<br>83                                           | 35,000                                                                                           | 12,000                                                                                 | 276<br>341<br>163                                                  | 99<br>1.16                                   | 154<br>162<br>506                                                  | 493<br>493<br>493                                                           | 430<br>428<br>437                                                         | 510<br>512<br>590                                                    | 494<br>496<br>873                                             | 436<br>436<br>451                                                  | 504<br>504<br>584                                                            | 485<br>485<br>571                                                    | 422<br>425<br>449                                                         | 487<br>488<br>573                                                           | 428<br>431<br>540                                                           | 426<br>451<br>448                                                  |
|                                                          | 35,000<br>35,000                                                                                 | 10,050                                                                                 | 210                                                                | 1:17                                         | 503                                                                | 493                                                                         | 432                                                                       | 593                                                                  | 579                                                           | 445                                                                | 589                                                                          | 574                                                                  | 443                                                                       | 577                                                                         | 548                                                                         | 443                                                                |



DATA FOR TG-100A GAS TURBINE-PROPELLER ENGINE

|                                      |                                      | ,                               |                                      |                                      |                                            |                                      |                                      |                                      |                                      |                                     |                                      |                                  |                                 |                                      |                                 | r                               |                                      |
|--------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|--------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|----------------------------------|---------------------------------|--------------------------------------|---------------------------------|---------------------------------|--------------------------------------|
| 17                                   | 18                                   | 19                              | 20                                   | 21                                   | 22                                         | 23                                   | 24                                   | 25                                   | 26                                   | 27                                  | 28                                   | 29                               | 30                              | 31                                   | 32                              | 33                              | 34                                   |
| Compre                               | ssor (                               | utlet                           | Con                                  | presso                               | CW                                         | Turb<br>inl                          |                                      | Tu                                   | bine                                 | outlet                              |                                      |                                  | ist-co<br>utlet                 | ne                                   | Tail-<br>nozzle                 | -pips-<br>s outl                | o t                                  |
| pressure,<br>ft abs.)                | essure,                              | temper-                         | ossure,<br>t abs.)                   | 8 4                                  | temper-                                    | saure,                               | ressure,<br>t abs.)                  | saure,                               | tio<br>P6<br>tabs.)                  | atio<br>P6<br>t abs.)               | d temper-                            | sasure,<br>tabs.)                | pressure,<br>ft abs.)           | d temper-                            | essure,<br>t abs.)              | pressure,<br>ft abs.)           | 3 0                                  |
| rotal pre<br>Ps<br>(1b/sq ft         | Static props<br>PS<br>(1b/sq ft      | Indicated<br>ature, Ti<br>(OR)  | t pr<br>d<br>lb/sq f                 | 10 p                                 | Indicated<br>ature, T <sub>1</sub><br>(°R) | fotal pre:<br>Pb<br>(1b/sq ft        | tatic p<br>S<br>Ib/sq f              | Total pre:<br>P6<br>(1b/sq ft        | Wall-stati<br>pressure,<br>(lb/sq ft | Wafer-sta<br>pressure,<br>(1b/sq ft | Indicate<br>ature, T                 | rotal press<br>Py<br>(1b/sq ft s | Statio pr<br>P7<br>(1b/sq ft    | ġ F⊢                                 | Potel pre<br>Pg<br>(lb/sq ft    | Static property (1b/sq ft       | 10 6.                                |
| 2514<br>2559<br>2607                 | 2449<br>2496<br>2547                 | 628<br>635<br>637               | 2500<br>2549<br>2598                 | 2485<br>2532<br>2584                 | 635<br>642<br>644                          | 2447<br>2496<br>2549                 | 2407<br>2454<br>2505                 | 1268<br>1274<br>1271                 | 1223<br>1227<br>1221                 | 1204<br>1204<br>1206                | 1485<br>1587<br>1669                 | 1218<br>1234<br>1241             | 1204<br>1211<br>1211            | 1448<br>1527<br>1554                 | 1229<br>1236<br>1237            | 1201<br>1209<br>1212            | 1443<br>1526<br>1569                 |
| 4279<br>4387<br>4520<br>4557<br>5916 | 4129<br>4251<br>4383<br>4420<br>3778 | 795<br>804<br>815<br>816<br>815 | 4241<br>4357<br>4486<br>4526<br>3883 | 4203<br>4322<br>4449<br>4538<br>3851 | 811<br>822<br>832<br>834<br>832            | 4146<br>4262<br>4421<br>4434<br>3792 | 4076<br>4191<br>4321<br>4358<br>3717 | 1017<br>1004<br>1017<br>1000<br>1008 | 852<br>835<br>830<br>829<br>834      | 786<br>781<br>779<br>774<br>776     | 1247<br>1324<br>1415<br>1444<br>1488 | 888<br>926<br>929<br>925<br>941  | 795<br>795<br>798<br>798<br>805 | 1236<br>1292<br>1391<br>1436<br>1459 | 882<br>891<br>894<br>898<br>909 | 783<br>787<br>786<br>787<br>795 | 1255<br>1303<br>1429<br>1470<br>1488 |
| 4389<br>4527<br>4679<br>4815         | 4231<br>4384<br>4536<br>4678         | 826<br>838<br>833<br>854        | 4343<br>4495<br>4651<br>4790         | 4305<br>4460<br>4611<br>4755         | 840<br>850<br>858<br>854                   | 4242<br>4396<br>4551<br>4694         | 4171<br>4321<br>4477<br>4618         | 1055<br>1017<br>1029<br>1013         | 868<br>844<br>848<br>842             | 805<br>797<br>795<br>790            | 1250<br>1366<br>1441<br>1537         | 912<br>941<br>940<br>952         | 809<br>813<br>819<br>816        | 1256<br>1347<br>1440<br>1536         | 903<br>904<br>915<br>917        | 802<br>798<br>805<br>798        | 1259<br>1359<br>1460<br>1538         |
| 4398<br>4592<br>4776<br>2551         | 4255<br>4454<br>4643<br>2470         | 874<br>879<br>878<br>662        | 4366<br>4565<br>4752<br>2532         | 4329<br>4526<br>4713<br>2510         | 884<br>888<br>887<br>670                   | 4266<br>4467<br>4652<br>2474<br>2748 | 4195<br>4394<br>4576<br>8434         | 1010<br>1003<br>1018<br>882          | 845<br>836<br>850<br>819             | 802<br>786<br>793<br>786            | 1394<br>1499<br>1548<br>1133         | 940<br>924<br>954<br>793         | 845<br>806<br>819<br>777        | 1373<br>1489<br>1549<br>1116         | 901<br>900<br>925<br>812        | 799<br>794<br>809<br>773        | 1383<br>1504<br>1548<br>1109<br>1345 |
| 2821<br>2641<br>2744<br>2871<br>2986 | 2749<br>2558<br>2661<br>2792<br>2911 | 680<br>681<br>690<br>701<br>711 | 2805<br>2622<br>2728<br>2860<br>2962 | 2787<br>2601<br>2703<br>2837<br>2921 | 691<br>689<br>698<br>710<br>722            | 2561<br>2562<br>2794<br>2901         | 2702<br>2517<br>2621<br>2749<br>2863 | 885<br>900<br>895<br>898<br>897      | 805<br>834<br>825<br>912<br>817      | 786<br>807<br>807<br>797<br>802     | 1400<br>1161<br>1260<br>1417<br>1502 | 835<br>821<br>844<br>849<br>869  | 784<br>802<br>805<br>802<br>809 | 1347<br>1145<br>1254<br>1385<br>1531 | 827<br>830<br>834<br>838<br>850 | 784<br>792<br>793<br>796<br>804 | 1133<br>1239<br>1368<br>1473         |
| 1678<br>1732<br>1815<br>1840         | 1631<br>1684<br>1775<br>1793         | 589<br>595<br>606<br>609        | 1670<br>1726<br>1811<br>1834         | 1658<br>1714<br>1798<br>1823         | 599<br>603<br>618<br>617                   | 1532<br>1688<br>1775<br>1794         | 1604<br>1660<br>1747<br>1766         | 830<br>828<br>830<br>842             | 810<br>797<br>789<br>807             | 793<br>783<br>781<br>793            | 1546<br>1545<br>1592<br>1402         | 793<br>793<br>804<br>811         | 791<br>784<br>781<br>795        | 1259<br>1337<br>1531<br>1383         | 806<br>799<br>802<br>812        | 787<br>790<br>783<br>792        | 1255<br>1323<br>1520<br>1365         |
| 1908<br>2768<br>2838<br>2929         | 1864<br>2681<br>2753<br>2844         | 622<br>816<br>823<br>830        | 1902<br>2746<br>2823<br>2915         | 1893<br>2732<br>2802<br>2894         | 634<br>836<br>843<br>849                   | 1864<br>2686<br>2759<br>2852         | 1836<br>2641<br>2718<br>2803         | 844<br>648<br>638<br>640             | 798<br>534<br>520<br>526             | 790<br>498<br>488<br>495            | 1610<br>1341<br>1424<br>1483         | 578<br>576<br>587                | 795<br>500<br>497<br>504        | 1556<br>1309<br>1399<br>1470         | 814<br>563<br>558<br>567        | 794<br>496<br>490<br>497        | 1503<br>1313<br>1423<br>1509         |
| 3002<br>3068<br>2849<br>2983         | 2914<br>2984<br>2753<br>2893         | 833<br>833<br>821<br>834        | 2987<br>3052<br>2830<br>2969         | 2964<br>3031<br>2806<br>2947         | 853<br>853<br>834<br>847                   | 2928<br>2996<br>2763<br>2904         | 2876<br>2943<br>2718<br>2854         | 637<br>644<br>659<br>654             | 526<br>535<br>552<br>549             | 495<br>498<br>516<br>512            | 1536<br>1565<br>1197<br>1367         | 595<br>608<br>601<br>594         | 507<br>511<br>511<br>511        | 1512<br>1533<br>1167<br>1177         | 570<br>582<br>571<br>575<br>576 | 505<br>502<br>503<br>504        | 1545<br>1548<br>1162<br>1281<br>1387 |
| 3082<br>3223<br>3233<br>2476         | 2992<br>3132<br>3174<br>2397         | 841<br>847<br>844<br>771        | 5072<br>5211<br>3253<br>2461         | 3052<br>3182<br>3228<br>2436<br>2563 | 854<br>861<br>852<br>789                   | 3002<br>3146<br>3186<br>2405         | 2957<br>3094<br>3136<br>2365         | 657<br>652<br>676<br>611             | 541<br>541<br>559<br>531             | 509<br>509<br>514<br>500<br>507     | 1422<br>1561<br>1278<br>1226<br>1313 | 601<br>620<br>627<br>567<br>568  | 518<br>518<br>525<br>497<br>504 | 1455<br>1579<br>1167<br>1159<br>1158 | 576<br>586<br>607<br>554<br>556 | 505<br>519<br>495<br>503        | 1500<br>1474<br>1155<br>1199         |
| 2597<br>2654<br>2751<br>1950<br>2075 | 2517<br>2579<br>2679<br>1895<br>2027 | 779<br>789<br>798<br>695<br>705 | 2584<br>2644<br>2743<br>1943<br>2070 | 2563<br>2623<br>2722<br>1929<br>2060 | 795<br>806<br>814<br>708<br>718            | 2523<br>2587<br>2685<br>1900<br>2031 | 2481<br>2548<br>2641<br>1866<br>1997 | 620<br>613<br>606<br>580<br>579      | 536<br>624<br>525<br>517<br>517      | 495<br>493<br>547<br>507            | 1395<br>1455<br>1355<br>1511         | 567<br>567<br>577<br>583<br>561  | 504<br>504<br>545<br>514        | 1178<br>1413<br>1255<br>1485         | 553<br>558<br>536<br>543        | 496<br>497<br>504<br>506        | 1422<br>1530<br>1298<br>1490         |



#### INDEX OF FIGURES

- Figure 1. Side view of TG-100A engine showing location of measuring stations.
- Figure 2. Front view of TG-100A gas turbine-propeller engine installation in altitude wind tunnel.
- Figure 3. Sketch of TG-100A gas turbine-propeller engine installation showing location of wing ducts and inlets.
- Figure 4. Typical over-all average pressure profile through TG-100A gas turbine-propeller engine for engine speeds from 10,000 to 13,000 rpm. Altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00.
- Figure 5. Effect of engine speed on distribution of total pressure, static pressure, and indicated temperature at wing-duct inlets. Altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00.
  - (a) Engine speed, 10,000 rpm; tail-pipe temperature, 1527° R.
  - (b) Engine speed, 11,000 rpm; tail-pipe temperature, 14580 R.
  - (c) Engine speed, 12,000 rpm; tail-pipe temperature, 14950 R.
  - (d) Engine speed, 13,000 rpm; tail-pipe temperature, 1510° R.
- Figure 6. Effect of engine speed on distribution of total pressure, static pressure, and indicated temperature at compressor inlet. Altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00.
  - (a) Engine speed, 10,000 rpm; tail-pipe temperature, 1527° R.
  - (b) Engine speed, 11,000 rpm; tail-pipe temperature, 14580 R.
  - (c) Engine speed, 12,000 rpm; tail-pipe temperature, 14950 R.
  - (d) Engine speed, 13,000 rpm; tail-pipe temperature, 1510° R.
- Figure 7. Effect of engine speed on distribution of static pressure for each stage of compressor stator. Engine speed, 10,000 to 13,000 rpm; altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00.
- Figure 8. Effect of engine speed on distribution of total pressure, static pressure, and indicated temperature at compressor outlet. Altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00.
  - (a) Engine speed, 10,000 rpm; tail-pipe temperature, 1527° R.
  - (b) Engine speed, 11,000 rpm; tail-pipe temperature, 1458° R.
  - (c) Engine speed, 12,000 rpm; tail-pipe temperature, 14950 R.
  - (d) Engine speed, 13,000 rpm; tail-pipe temperature. 1510° R.

- Figure 9. Effect of engine speed on distribution of total and static pressures at turbine inlet. Altitude, 5000 feet: compressorinlet ram-pressure ratio, 1.00.
  - (a) Engine speed, 10,000 rpm; tail-pipe temperature, 15270 R.
  - (b) Engine speed, 11,000 rpm; tail-pipe temperature, 14580 R.
  - (c) Engine speed, 12,000 rpm; tail-pipe temperature, 14950 R.
  - (d) Engine speed, 13,000 rpm; tail-pipe temperature, 1510° R.
- Figure 10. Effect of engine speed on distribution of total pressure and static pressure at turbine outlet. Altitude, 5000 feet; compressor-inlet ram-pressure ratio. 1.00.
  - (a) Engine speed, 10,000 rpm; tail-pipe temperature, 1527° R. (b) Engine speed, 11,000 rpm; tail-pipe temperature, 1458° R.

  - (c) Engine speed, 12,000 rpm; tail-pipe temperature, 1495° R.
  - (d) Engine speed, 13,000 rpm; tail-pipe temperature, 15100 R.
- Figure 11. Effect of engine speed on distribution of indicated temperature at turbine outlet. Altitude, 5000 feet; compressorinlet ram-pressure ratio, 1.00.
  - (a) Engine speed, 10,000 rpm; tail-pipe temperature, 1527° R.
  - (b) Engine speed, 11,000 rpm; tail-pipe temperature, 1458° R.
  - (c) Engine speed, 12,000 rpm; tail-pipe temperature, 1495° R.
  - (d) Engine speed, 13,000 rpm; tail-pipe temperature, 1510° R.
- Figure 12. Effect of engine speed on distribution of total pressure, static pressure, and indicated temperature at exhaust-cone outlet. Altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00.
  - (a) Engine speed, 10,000 rpm; tail-pipe temperature, 1527° R.
  - (b) Engine speed, 11,000 rpm; tail-pipe temperature, 1458° R.
  - (c) Engine speed, 12,000 rpm; tail-pipe temperature, 1495° R.
  - (d) Engine speed, 13,000 rpm; tail-pipe temperature, 1510° R.
- Figure 13. Effect of engine speed on distribution of total pressure, static pressure, and indicated temperature at tail-pipenozzle outlet. Altitude, 5000 feet; compressor-inlet rampressure ratio, 1.00.
  - (a) Engine speed, 10,000 rpm; tail-pipe temperature, 15270 R.
  - (b) Engine speed, 11,000 rpm; tail-pipe temperature, 1458° R.
  - (c) Engine speed, 12,000 rpm; tail-pipe temperature, 14950 R.
  - (d) Engine speed, 13,000 rpm; tail-pipe temperature, 1510° R.
- Figure 14. Typical over-all average pressure profile for various shaft horsepowers. Altitude, 5000 feet; compressor-inlet rampressure ratio, 1.00; engine speed, 13,000 rpm.

- Figure 15. Effect of shaft horsepower on distribution of total pressure, static pressure, and indicated temperature at wingduct inlets. Altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00; engine speed, 13,000 rpm.
  - (a) Shaft horsepower, 425.
  - (b) Shaft horsepower, 951.
- Figure 16. Effect of shaft horsepower on distribution of total pressure, static pressure, and indicated temperature at compressor inlet. Altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00; engine speed, 13,000 rpm.
  - (a) Shaft horsepower, 425.
  - (b) Shaft horsepower, 951.
- Figure 17. Effect of shaft horsepower on distribution of static pressure for each stage of compressor stator. Altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00; engine speed, 13,000 rpm.
- Figure 18. Effect of shaft horsepower on distribution of total pressure, static pressure, and indicated temperature at compressor outlet. Altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00; engine speed, 13,000 rpm.
  - (a) Shaft horsepower, 425.
  - (b) Shaft horsepower. 951.
- Figure 19. Effect of shaft horsepower on distribution of total and static pressures at turbine inlet. Altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00; engine speed, 13,000 rpm.
  - (a) Shaft horsepower, 425.
  - (b) Shaft horsepower, 951.
- Figure 20. Effect of shaft horsepower on distribution of total pressure and static pressure at turbine outlet. Altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00; engine speed, 13,000 rpm.
  - (a) Shaft horsepower, 425.
  - (b) Shaft horsepower, 951.
- Figure 21. Effect of shaft horsepower on distribution of indicated temperature at turbine outlet. Altitude, 5000 feet; compressorinlet ram-pressure ratio, 1.00; engine speed, 13,000 rpm.
  - (a) Shaft horsepower, 425.
  - (b) Shaft horsepower, 951.

- Figure 22. Effect of shaft horsepower on distribution of total pressure, static pressure, and indicated temperature at exhaust-cone outlet. Altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00; engine speed, 13,000 rpm.
  - (a) Shaft horsepower, 425.
  - (b) Shaft horsepower, 951.
- Figure 23. Effect of shaft horsepower on distribution of total pressure, static pressure, and indicated temperature at tail-pipe-nozzle outlet. Altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00; engine speed, 13.000 rpm.
  - (a) Shaft horsepower, 425.
  - (b) Shaft horsepower, 951.
- Figure 24. Effect of compressor-inlet ram-pressure ratio on distribution of total pressure, static pressure, and indicated temperature at wing-duct inlets. Altitude, 35,000 feet; engine speed, 13,000 rpm.
  - (a) Compressor-inlet ram-pressure ratio, 1.00; shaft horse-power, 340.
  - (b) Compressor-inlet ram-pressure ratio, 1.09; shaft horse-power, 330.
- Figure 25. Effect of compressor-inlet ram-pressure ratio on distribution of total pressure, static pressure, and indicated temperature at compressor inlet. Altitude, 35,000 feet; engine speed, 13,000 rpm.
  - (a) Compressor-inlet ram-pressure ratio, 1.00; shaft horse-power, 340.
  - (b) Compressor-inlet ram-pressure ratio, 1.09; shaft horse-power, 330.
- Figure 26. Effect of compressor-inlet ram-pressure ratio on distribution of static pressure for each stage of compressor stator. Altitude, 35,000 feet; engine speed, 13,000 rpm.
- Figure 27. Effect of compressor-inlet ram-pressure ratio on distribution of total pressure, static pressure, and indicated temperature at compressor outlet. Altitude, 35,000 feet; engine speed, 13,000 rpm.
  - (a) Compressor-inlet ram-pressure ratio, 1.00; shaft horse-power, 340.
  - (b) Compressor-inlet ram-pressure ratio, 1.09; shaft horse-power, 330.

ω

- Figure 28. Effect of compressor-inlet ram-pressure ratio on distribution of total and static pressures at turbine inlet. Altitude, 35,000 feet; engine speed, 13,000 rpm.
  - (a) Compressor-inlet ram-pressure ratio, 1.00; shaft horse-power, 340.
  - (b) Compressor-inlet ram-pressure ratio, 1.09; shaft horse-power, 330.
- Figure 29. Effect of compressor-inlet ram-pressure ratio on distribution of total and static pressure at turbine outlet.

  Altitude, 35,000 feet; engine speed, 13,000 rpm.
  - (a) Compressor-inlet ram-pressure ratio, 1.00; shaft horse-power, 340.
  - (b) Compressor-inlet ram-pressure ratio, 1.09; shaft horse-power, 330.
- Figure 30. Effect of compressor-inlet ram-pressure ratio on distribution of indicated temperature at turbine outlet. Altitude, 35,000 feet; engine speed, 13,000 rpm.
  - (a) Compressor-inlet ram-pressure ratio, 1.00; shaft horse-power, 340.
  - (b) Compressor-inlet ram-pressure ratio, 1.09; shaft horse-power, 330.
- Figure 31. Effect of compressor-inlet ram-pressure ratio on distribution of total pressure, static pressure, and indicated temperature at exhaust-cone outlet. Altitude, 35,000 feet; engine speed, 13,000 rpm.
  - (a) Compressor-inlet ram-pressure ratio, 1.00; shaft horse-power, 340.
  - (b) Compressor-inlet ram-pressure ratio, 1.09; shaft horse-power, 330.
- Figure 32. Effect of compressor-inlet ram-pressure ratio on distribution of total pressure, static pressure, and indicated temperature at tail-pipe-nozzle outlet. Altitude, 35,000 feet; engine speed, 13,000 rpm.
  - (a) Compressor-inlet ram-pressure ratio, 1.00; shaft horse-power, 340.
  - (b) Compressor-inlet ram-pressure ratio, 1.09; shaft horse-power, 330.

### Station

- Wing-duct inlet (fig. 3) Compressor inlet
- 3 Compressor outlet 4 Compressor elbow 5 Turbine inlet

- 6 Turbine outlet 7 Exhaust-cone outlet 8 Tail-pipe-nozzle outlet



Figure 1. - Side view of TG-100A engine showing location of measuring stations.

|     |      | •          |
|-----|------|------------|
|     |      |            |
|     |      |            |
|     |      | •          |
| ÷10 |      |            |
|     |      |            |
|     |      |            |
|     |      |            |
|     |      |            |
|     |      |            |
|     |      |            |
|     |      |            |
|     |      |            |
|     |      |            |
|     |      |            |
|     |      |            |
|     |      |            |
|     |      |            |
|     |      |            |
|     |      |            |
|     |      |            |
|     |      | <u></u>    |
|     |      | · •        |
|     |      |            |
|     |      | <u>.</u> * |
|     |      | •          |
|     |      |            |
|     |      | •          |
|     |      |            |
|     |      |            |
|     |      |            |
|     |      |            |
|     |      |            |
|     |      |            |
|     |      |            |
|     |      |            |
|     |      |            |
|     |      |            |
|     |      |            |
|     |      |            |
|     |      |            |
|     |      |            |
|     |      |            |
|     |      |            |
|     |      | -,         |
|     |      |            |
|     |      | _          |
|     |      | <b>-</b>   |
|     |      |            |
|     |      |            |
|     |      |            |
|     | 0.50 |            |



Figure 2. - Front view of TG-100A gas turbine-propeller engine installation in altitude wind tunnel.

|     |  |      | :              |
|-----|--|------|----------------|
|     |  |      |                |
|     |  |      | _              |
|     |  |      | •              |
|     |  |      |                |
|     |  |      |                |
|     |  |      |                |
|     |  |      |                |
|     |  |      |                |
|     |  |      |                |
|     |  |      |                |
|     |  |      |                |
|     |  |      |                |
|     |  | - 21 |                |
|     |  |      |                |
|     |  |      |                |
|     |  |      |                |
|     |  |      |                |
|     |  |      | •              |
|     |  |      |                |
|     |  |      | •              |
|     |  |      | ·              |
|     |  |      | •              |
|     |  |      |                |
|     |  |      |                |
|     |  |      |                |
|     |  |      |                |
|     |  |      |                |
|     |  |      |                |
|     |  |      |                |
|     |  |      |                |
|     |  |      |                |
|     |  |      |                |
|     |  |      |                |
|     |  |      |                |
|     |  |      |                |
|     |  |      | •              |
|     |  |      |                |
|     |  |      | _              |
|     |  |      | <del>7</del> 7 |
|     |  |      |                |
| (*) |  |      |                |
|     |  | 100  | 4              |
|     |  |      |                |



Figure 3. - Sketch of TG-100A gas turbine-propeller engine installation showing location of wing ducts and inlets.



Figure 4. - Typical over-all average pressure profile through TG-100A gas turbine-propeller engine for engine speeds from 10,000 to 13,000 rpm. Altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00.

TCA.



Figure 5. - Effect of engine speed on distribution of total pressure, static pressure, and indicated temperature at wing-duct inlets. Altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00.



Figure 5. - Continued. Effect of engine speed on distribution of total pressure, static pressure, and indicated temperature at wing-duct inlets. Altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00.

150



Figure 5. - Continued. Effect of engine speed on distribution of total pressure, static pressure, and indicated temperature at wing-duct inlets. Altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00.



Figure 5. - Concluded. Effect of engine speed on distribution of total pressure, static pressure, and indicated temperature at wing-duct inlets. Altitude, 5,000 feet; compressor-inlet ram-pressure ratio, 1.00.



Figure 6. - Effect of engine speed on distribution of total pressure, static pressure, and indicated temperature at compressor inlet. Altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00.



Figure 6. - Concluded. Effect of engine speed on distribution of total pressure, static pressure, and indicated temperature at compressor inlet. Altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00.



Figure 7. - Effect of engine speed on distribution of static pressure for each stage of compressor stator. Engine speed, 10,000 to 13,000 rpm; altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00.



Figure 8. - Effect of engine speed on distribution of total pressure, static pressure, and indicated temperature at compressor outlet. Altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00.



Figure 8. - Concluded. Effect of engine speed on distribution of total pressure, static pressure, and indicated temperature at compressor outlet. Altitude, 5000 feet; compressor-injet ram-pressure ratio, 1.00.



Figure 9. - Effect of engine speed on distribution of total and static pressures at turbine inlet. Altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00.



(d) Engine speed, 15,000 rpm; tail-pipe temperature, 1510° R.

Figure 9. - Concluded. Effect of engine speed on distribution of total and static pressures at turbine inlet. Altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00.



Figure 10. - Effect of engine speed on distribution of total pressure and static pressure at turbine outlet. Altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00.

IE8 -



Figure 10. - Concluded. Effect of engine speed on distribution of total pressure and static pressure at turbine outlet. Altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00.



Figure 11. - Effect of engine speed on distribution of indicated temperature at turbine outlet.

Altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00.



Figure 11. - Concluded. Effect of engine speed on distribution of indicated temperature at turbine outlet. Altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00.



Figure 12. - Effect of engine speed on distribution of total pressure, static pressure, and indicated temperature at exhaust-cone outlet. Altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00

TT^



Figure 12. - Continued. Effect of engine speed on distribution of total pressure, static pressure, and indicated temperature at exhaust-cone outlet. Altitude, 5000 feet; compressor-injet rampressure ratio, j.00.



Figure 12. - Continued. Effect of engine speed on distribution of total pressure, static pressure, and indicated temperature at exhaust-cone outlet. Altitude, 5000 feet; compressor-inlet rampressure ratio, 1.00.



Figure 12. - Concluded. Effect of engine speed on distribution of total pressure, static pressure, and indicated temperature at exhaust-cone outlet. Altitude, 5000 feet; compressor-inlet rampressure ratio, 1.00.



Figure 13. - Effect of engine speed on distribution of total pressure, static pressure, and indicated temperature at tail-pipe-nozzle outlet. Altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00.



(b) Engine speed, ll,000 rpm; tail-pipe temperature, 1458° R.
Figure 13. - Continued. Effect of engine speed on distribution of total pressure, static pressure, and indicated temperature at tail-pipe-nozzle outlet. Altitude, 5000 feet; compressor-inlet rampressure ratio, 1.00.



(c) Engine speed, 12,000 rpm; tail-pipe temperature, 1495° R. Figure 13. - Continued. Effect of engine speed on distribution of total pressure, static pressure, and indicated temperature at tail-pipe-nozzle outlet. Altitude, 5000 feet; compressor-inlet rampressure ratio, 1.00.



(d) Engine speed, 13,000 rpm; tail-pipe temperature, 1510° R.
Figure 13. - Concluded. Effect of engine speed on distribution of total pressure, static pressure, and indicated temperature at tail-pipe-nozzle outlet. Altitude, 5000 feet; compressor-injet rampressure ratio, 1.00.



Figure 14. - Typical over-all average pressure profile for various shaft horsepowers. Altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00; engine speed, 13,000 rpm.



Figure 15. - Effect of shaft horsepower on distribution of total pressure, static pressure, and indicated temperature at wing-duct inlets. Altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00; engine speed, 13,000 rpm.



Figure 15. - Concluded. Effect of shaft horsepower on distribution of total pressure, static pressure, and indicated temperature at wing-duct inlets. Altitude, 5000 feet; compressor-inlet rampressure ratio, 1.00; engine speed, 13,000 rpm.



Figure 16. - Effect of shaft horsepower on distribution of total pressure, static pressure, and indicated temperature at compressor inlet. Altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00; engine speed, 13,000 rpm.



Figure 17. - Effect of shaft horsepower on distribution of static pressure for each stage of compressor stator. Altitude, 5000 feet; compressor-injet ram-pressure ratio, 1.00; engine speed, 13,000 rpm.

150 "

NACA RM NO.



Figure 18. - Effect of shaft horsepower on distribution of total pressure, static pressure, and indicated temperature at compressor outlet. Altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00; engine speed, 13,000 rpm.



Figure 19. - Effect of shaft horsepower on distribution of total and static pressures at turbine inlet. Altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00; engine speed, 13,000 rpm.

FC ^ \_ \_



Figure 20. - Effect of shaft horsepower on distribution of total pressure and static pressure at turbine outlet. Altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00; engine speed, 13,000 rpm.

9



Figure 21. - Effect of shaft horsepower on distribution of indicated temperature at turbine outlet.

Altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00; engine speed, 13,000 rpm.

₹837



(a) Shaft horsepower, 425.
Figure 22. - Effect of shaft horsepower on distribution of total pressure, static pressure, and indicated temperature at exhaust-cone outlet. Altitude, 5000 feet; compressor-inlet rampressure ratio, 1.00; engine speed, 13,000 rpm.



(b) Shaft borsepower, 951.

Figure 22. ~ Concluded. Effect of shaft horsepower on distribution of total pressure, static pressure, and indicated temperature at exhaust-cone outlet. Altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00; engine speed, 13,000 rpm.



(a) Shaft horsepower, 425.

Figure 23. - Effect of shaft horsepower on distribution of total pressure, static pressure, and indicated temperature at tall-pipe-nozzle outlet. Altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00; engine speed, 13,000 rpm.



Figure 23. - Concluded. Effect of shaft horsepower on distribution of total pressure, static pressure, and indicated temperature at tail-pipe-nozzle outlet. Altitude, 5000 feet; compressor-inlet ram-pressure ratio, 1.00; engine speed, 13,000 rpm.

. . . . . . . . . . . . .

... ... .

هم در درم س



Figure 24. - Effect of compressor-inlet ram-pressure ratio on distribution of total pressure, static pressure, and indicated temperature at wing-duct inlets. Altitude, 35,000 feet; engine speed, 13,000 rpm.



Figure 24. - Concluded. Effect of compressor-inlet ram-pressure ratio on distribution of total pressure, static pressure, and indicated temperature at wing-duct inlets. Altitude, 35,000 feet; engine speed, 13,000 rpm.



Figure 25. - Effect of compressor-inlet ram-pressure ratio on distribution of total pressure, static pressure, and indicated temperature at compressor inlet. Altitude, 35,000 feet; engine speed, 13,000 rpm.



Figure 26. - Effect of compressor-inlet ram-pressure ratio on distribution of static pressure for each stage of compressor stator. Altitude, 35,000 feet; engine speed, 13,000 rpm.

, .

k, 1

. . . . . . .



Figure 27. - Effect of compressor-inlet ram-pressure ratio on distribution of total pressure, static pressure, and indicated temperature at compressor outlet. Altitude, 35,000 feet; engine speed, 13,000 rpm.



(b) Compressor-inlet ram-pressure ratio, 1.09; shaft horsepower, 330.

Figure 28. - Effect of compressor-inlet ram-pressure ratio on distribution of total and static pressures at turbine inlet. Altitude, 35,000 feet; engine speed, 13,000 rpm.

**~** Ω31



Figure 29. - Effect of compressor-inlet ram-pressure ratio on distribution of total and static pressure at turbine outlet. Altitude, 35,000 feet; engine speed, 13,000 rpm.

9



NACA RM NO.



(a) Compressor-inlet ram-pressure ratio, 1.00; shaft horsepower, 340.
 Figure 30. - Effect of compressor-inlet ram-pressure ratio on distribution of indicated temperature at turbine outlet. Altitude, 35,000 feet; engine speed, 13,000 rpm.

Tઈક્ર



(b) Compressor-inlet ram-pressure ratio, 1,09; shaft horsepower, 350.

Figure 30. - Concluded. Effect of compressor-inlet ram-pressure ratio on distribution of indicated temperature at turbine outlet. Altitude, 35,000 feet; engine speed, 13,000 rpm.



Figure 31. - Effect of compressor-inlet ram-pressure ratio on distribution of total pressure, static pressure, and indicated temperature at exhaust-cone outlet. Altitude, 35,000 feet; engine speed, 13,000 rpm.

fco



(b) Compressor-inlet ram-pressure ratio, 1.09; shaft horsepower, 330.

Figure 31. - Concluded. Effect of compressor-inlet ram-pressure ratio on distribution of total pressure, static pressure, and indicated temperature at exhaust-cone outlet. Altitude, 35,000 feet; engine speed, 13,000 rpm.



(a) Compressor-inlet ram-pressure ratio, 1.00; shaft horsepower, 340.

Figure 32. - Effect of compressor-inlet ram-pressure ratio on distribution of total pressure, static

pressure, and indicated temperature at tail-pipe-nozzle outlet. Altitude, 35,000 feet; engine speed, 13,000 rpm.

f\$n



(b) Compressor-inlet ram-pressure ratio, 1.09; shaft horsepower, 330. Figure 32. - Concluded. Effect of compressor-inlet ram-pressure ratio on distribution of total pressure, static pressure, and indicated temperature at tail-pipe-nozzle outlet. Altitude, 35,000 feet; engine speed, 13,000 rpm.

3 1176 01425 9783



tranky wile case of which in any to the case of