Large Time Behaviour and the Second Eigenvalue Problem for Finite State Mean-Field Interacting Particle Systems

Sarath Yasodharan, Rajesh Sundaresan

Indian Institute of Science

05 Dec 2019

ightharpoonup N particles. Finite state space \mathcal{Z} .

- N particles. Finite state space Z.
- ▶ State of the *n*th particle at time t: $X_n^N(t) \in \mathcal{Z}$.

- N particles. Finite state space Z.
- ▶ State of the *n*th particle at time t: $X_n^N(t) \in \mathcal{Z}$.
- ▶ Empirical measure at time *t*:

$$\mu_N(t) = rac{1}{N} \sum_{n=1}^N \delta_{X_n^N(t)} \in M_1(\mathcal{Z}).$$

- N particles. Finite state space Z.
- ▶ State of the *n*th particle at time t: $X_n^N(t) \in \mathcal{Z}$.
- ▶ Empirical measure at time *t*:

$$\mu_N(t) = \frac{1}{N} \sum_{n=1}^N \delta_{X_n^N(t)} \in M_1(\mathcal{Z}).$$

▶ Mean-field interaction: $z \to z'$ transition at rate $\lambda_{z,z'}(\mu_N(t))$.

- N particles. Finite state space Z.
- ▶ State of the *n*th particle at time $t: X_n^N(t) \in \mathcal{Z}$.
- Empirical measure at time t:

$$\mu_N(t) = \frac{1}{N} \sum_{n=1}^N \delta_{X_n^N(t)} \in M_1(\mathcal{Z}).$$

- ▶ Mean-field interaction: $z \to z'$ transition at rate $\lambda_{z,z'}(\mu_N(t))$.
- μ_N is a Markov process on $M_1(\mathcal{Z})$.

- N particles. Finite state space Z.
- ▶ State of the *n*th particle at time t: $X_n^N(t) \in \mathcal{Z}$.
- Empirical measure at time t:

$$\mu_N(t) = \frac{1}{N} \sum_{n=1}^N \delta_{X_n^N(t)} \in M_1(\mathcal{Z}).$$

- ▶ Mean-field interaction: $z \to z'$ transition at rate $\lambda_{z,z'}(\mu_N(t))$.
- μ_N is a Markov process on $M_1(\mathcal{Z})$.
- ▶ Goal: understand large time behaviour of μ_N , and convergence to stationarity.

A sample path of μ_N in WiFi example

Figure: Evolution of states in a WiFi network under the MAC protocol

A sample path of μ_N in WiFi example

Figure: Evolution of states in a WiFi network under the MAC protocol

▶ Multiple stable regions in the system. Transitions between two stable regions occur over large time durations.

- Large time behaviour of μ_N (in terms of the Freidlin-Wentzell quasipotential):
 - Mean exit time from an ω -limit set.
 - Estimates on probability of reaching a given ω -limit set.
 - Most likely cycle of ω -limits sets.

- Large time behaviour of μ_N (in terms of the Freidlin-Wentzell quasipotential):
 - Mean exit time from an ω -limit set.
 - Estimates on probability of reaching a given ω -limit set.
 - Most likely cycle of ω -limits sets.
- Mixing and convergence to the invariant measure:
 - A constant $\Lambda \ge 0$ in terms of the quasipotential.

- Large time behaviour of μ_N (in terms of the Freidlin-Wentzell quasipotential):
 - Mean exit time from an ω -limit set.
 - Estimates on probability of reaching a given ω -limit set.
 - Most likely cycle of ω -limits sets.
- Mixing and convergence to the invariant measure:
 - A constant $\Lambda \geq 0$ in terms of the quasipotential.
 - ▶ If time is of the order $\exp\{N(\Lambda O(1))\}$, a lower bound on the transition probability of μ_N .

- Large time behaviour of μ_N (in terms of the Freidlin-Wentzell quasipotential):
 - Mean exit time from an ω -limit set.
 - **E**stimates on probability of reaching a given ω -limit set.
 - Most likely cycle of ω -limits sets.
- Mixing and convergence to the invariant measure:
 - A constant $\Lambda \geq 0$ in terms of the quasipotential.
 - ▶ If time is of the order $\exp\{N(\Lambda O(1))\}$, a lower bound on the transition probability of μ_N .
 - ▶ If time is of the order $\exp\{N(\Lambda + O(1))\}$, μ_N is very close to its invariant measure.

- Large time behaviour of μ_N (in terms of the Freidlin-Wentzell quasipotential):
 - Mean exit time from an ω -limit set.
 - Estimates on probability of reaching a given ω -limit set.
 - Most likely cycle of ω -limits sets.
- Mixing and convergence to the invariant measure:
 - A constant $\Lambda \ge 0$ in terms of the quasipotential.
 - ▶ If time is of the order $\exp\{N(\Lambda O(1))\}$, a lower bound on the transition probability of μ_N .
 - ▶ If time is of the order $\exp\{N(\Lambda + O(1))\}$, μ_N is very close to its invariant measure.
- ▶ Scaling of the second largest eigenvalue (assuming reversibility): $\lambda_2^N \simeq \exp\{-N\Lambda\}$.
 - ► Consequence: μ_N mixes slowly if there are metastable states $(\Lambda > 0)$.