Carnot Cycle Exercise

Vincent Edwards

 $\operatorname{Mt.}$ San Antonio College, Physics 4B, CRN 42240 March 27, 2023

$$T_H = 490 \text{ K}$$

 $V_c = 1.90 \times 10^{-3} \text{ m}^3$

1. Purpose

The goal of the exercise is to perform various calculations related to the Carnot cycle.

2. Given

- $T_H = 490 \text{ K}$
- $T_C = 300 \text{ K}$
- $P_c = 1.01 \times 10^5 \text{ Pa}$
- $V_c = 1.90 \times 10^{-3} \text{ m}^3$
- $Q_{a \to b} = 300 \text{ J}$
- $\gamma = 1.40$
- d.o.f. = 5
- $C_v = \frac{5}{2}R$
- $C_p = \frac{7}{2}R$

3. Derivations

3.1. Temperature-Volume Relationship for Adiabatic Process

$$P_i V_i^{\gamma} = P_f V_f^{\gamma}$$

$$P_i V_i V_i^{\gamma - 1} = P_f V_f V_f^{\gamma - 1}$$

$$nRT_i V_i^{\gamma - 1} = nRT_f V_f^{\gamma - 1}$$

$$T_i V_i^{\gamma - 1} = T_f V_f^{\gamma - 1}$$

3.2. Work by Gas for Isothermal Process

$$W = \int_{V=V_i}^{V=V_f} P dV$$

$$W = \int_{V_i}^{V_f} \frac{nRT}{V} dV$$

$$W = nRT \ln(V)|_{V_i}^{V_f}$$

$$W = nRT \ln(V_f) - \ln(V_i)$$

$$W = nRT \ln\left(\frac{V_f}{V_i}\right)$$

Table 1. Pressure, Volume, and Temperature for Key Points Note: $T_a = T_b = T_H$ and $T_c = T_d = T_C$

Point	P (Pa)	$V~(\mathrm{m}^3)$	T (K)
a b	1.46×10^{6} 5.62×10^{5}	$2.14 \times 10^{-4} \\ 5.57 \times 10^{-4}$	490 490
c	1.01×10^5	1.90×10^{-3}	300
d	2.63×10^{5}	7.30×10^{-4}	300

Table 2. Heat Transferred, Change in Internal Energy, Work Done, and Change in Entropy for Key Processes

Process	Type	Q(J)	W (J)	ΔU (J)	$\Delta S \; (\mathrm{J/K})$
$a \to b$ $b \to c$ $c \to d$ $d \to a$	isothermal expansion adiabatic expansion isothermal compression adiabatic compression				

4. Results

4.1. Moles of Gas(n)

$$P_cV_c = nRT_c$$

$$n = \frac{P_cV_c}{RT_c}$$

$$n = 0.0770 \text{ mol}$$

4.2. Pressure (P_b) and Volume (V_b) at b

$$T_b V_b^{\gamma - 1} = T_c V_c^{\gamma - 1}$$

$$V_b = V_c \left(\frac{T_c}{T_b}\right)^{\frac{1}{\gamma - 1}}$$

$$V_b = 5.57 \times 10^{-4} \text{ m}^3$$

$$P_bV_b = nRT_b$$

$$P_b = \frac{nRT_b}{V_b}$$

$$P_b = 5.62 \times 10^5 \text{ Pa}$$

4.3. Pressure (P_a) and Volume (V_a) at a

$$\Delta U_{a \to b} = Q_{a \to b} - W_{a \to b}$$

$$0 = Q_{a \to b} - nRT_H \ln\left(\frac{V_b}{V_a}\right)$$

$$\ln\left(\frac{V_b}{V_a}\right) = \frac{Q_{a \to b}}{nRT_H}$$

$$\frac{V_b}{V_a} = e^{Q_{a \to b}/(nRT_H)}$$

$$V_a = V_b e^{-Q_{a \to b}/(nRT_H)}$$

$$V_a = 2.14 \times 10^{-4} \text{ m}^3$$

$$P_a V_a = nRT_a$$

$$P_a = \frac{nRT_a}{V_a}$$

$$P_a = 1.46 \times 10^6 \text{ Pa}$$

4.4. Pressure (P_d) and Volume (V_d) at d

$$T_d V_d^{\gamma - 1} = T_a V_a^{\gamma - 1}$$

$$V_d = V_a \left(\frac{T_a}{T_d}\right)^{\frac{1}{\gamma - 1}}$$

$$V_d = 7.30 \times 10^{-4} \text{ m}^3$$

$$P_dV_d = nRT_d$$

$$P_d = \frac{nRT_d}{V_d}$$

$$P_d = 2.63 \times 10^5 \text{ Pa}$$

5. Conclusion

6. Citations

- [1] Karen Schnurbusch, Physics 4B Lab Book, Mt. San Antonio College, 2023, pp. 35-38.
- [2] Karen Schnurbusch, Physics 4B Equations, Mt. San Antonio College, 2023, pp. 1-3.