Prof. Dr. Silvana Botti Dr. Luca Zambelli

MSc. Alessandro Ugolotti

Problems in Advanced Quantum Theory

Sheet 7

Problem 12: Time-dependent perturbation theory

2+4+4 points

An atomic system is subject to an external oscillating electric field

$$\mathbf{E}(t) = \mathbf{E}_0 \sin \omega t \,. \tag{1}$$

To first order in the electromagnetic interaction, and neglecting magnetic dipoles, we can describe the effect of the external field as a time-dependent perturbation

$$V(t) = \theta(t) \left[\hat{F}^{\dagger} e^{i\omega t} + \hat{F} e^{-i\omega t} \right] , \qquad (2)$$

where $\theta(t)$ is a Heaviside step function and

$$\hat{F} = -\frac{1}{2}\hat{\mathbf{d}} \cdot \mathbf{E}_0. \tag{3}$$

Here $\hat{\mathbf{d}}$ is the self-adjoint electric dipole operator.

Call $|n^{(0)}\rangle$ the state of the system for t<0, and $\hbar\omega_n$ the corresponding energy. Call

$$|n(t)\rangle = |n^{(0)}\rangle + |n^{(1)}(t)\rangle \tag{4}$$

the state for t > 0 at first order in perturbation theory, where

$$|n^{(1)}(t)\rangle = \sum_{m} c_m^{(1)}(t)|m^{(0)}\rangle.$$
 (5)

Finally denote

$$\omega_{nm} = \omega_n - \omega_m \,. \tag{6}$$

1. Express the expectation value of the interaction-picture dipole operator

$$\mathbf{D}(t) = \langle n(t) | \hat{\mathbf{d}}_I(t) | n(t) \rangle, \qquad (7)$$

at first order in the perturbation, in terms of the coefficients $c_m^{(1)}(t)$, of ω_{mn} and of the matrix elements of the Schrödinger-picture dipole operator

$$\mathbf{d}_{nm} = \langle n^{(0)} | \hat{\mathbf{d}} | m^{(0)} \rangle. \tag{8}$$

You can assume that $\mathbf{d}_{nn} = 0$.

- 2. Using the explicit formula for $c_m^{(1)}(t)$ as a functional of V(t) provided by time-dependent perturbation theory, write $\mathbf{D}(t)$ as a function of t, \mathbf{d}_{nm} and \mathbf{E}_0 .
- 3. Show that in the limit $\omega_{mn}/\omega \to 0$, i.e. when $|\omega_{mn}|$ is negligible in comparison to ω , one can write

$$D_i(t) = \sum_{j=1}^{3} \sigma_{ij} E_j(t), \qquad (9)$$

where i, j = 1, 2, 3 label the spatial components of the vectors, and σ_{ij} is called polarization tensor. Express the latter in terms of ω and $(d_{i/j})_{mn}$.

Submission date: Thursday, 20 December 2018