INSTITUTO DE COMPUTAÇÃO

MATA50 – Linguagens Formais e Autômatos – 2023.1

Professor: Roberto Freitas Parente Monitor: Fernando Franco de Lacerda Neto

Gabarito – Grupo 03

Exercício 1 (Entrega: 06/06/2023 - 4.5 pontos). Prove que as seguintes linguagens a seguir não são regulares, construa uma gramática livre de contexto G e prove que L(G) tem a mesma linguagem da esperada.

1. $\{ww^R : w \in \{a, b, c\}^*\}$

Resposta. GLC $G = (\{S\}, \{a, b, c\}, P, S)$

• $S \rightarrow aSa \mid bSb \mid cSc \mid \varepsilon$

Prova por indução no tamanho da palavra de que $w = xx^R \implies w \in L(G)$:

Suponha que w tem essa forma, i.e., $w = xx^R$.

Base: Para $|w|=0 \implies w=\varepsilon$ e como G tem a produção $P\to \varepsilon$ então $w\in L(G)$

Passo indutivo: Suponha que $|w| = n + 1 \ge 1$. Como $w = xx^R$ então ela começa e termina com o mesmo simbolo. Assim, $w = ayy^Ra$ ou $w = byy^Rb$ ou $w = cyy^Rc$. Por H.I. temos que $yy^R \in L(G)$, ou seja, $P \stackrel{*}{\Rightarrow} yy^R$ e como existem as produções $P \to aPa$, $P \to bPb$ e $P \to cPc$ podemos derivar w em cada um dos casos respectivamente, logo $w \in L(G)$.

Prova por indução na quantidade de derivações de que $w \in L(G) \implies w = xx^R$:

Suponha que $w \in L(G)$.

Base: Suponha que derivamos w com uma produção apenas,ou seja, utilizamos $P \to \varepsilon$ então $P \Rightarrow \varepsilon$ e ε é da forma que queremos.

Passo indutivo: Suponha que utilizamos n+1 derivações com n>0. As únicas produções que permitem um derivação com pelo menos 2 passos são $P\to aPa,\ P\to bPb$ e $P\to cPc$ portanto sabemos que a primeira derivação foi uma delas.

Suponha que que utilizamos $P \to aPa$ assim

$$P \Rightarrow aPa \stackrel{*}{\Rightarrow} axa = w$$

Como $P \stackrel{*}{\Rightarrow} x$ em n passos temos, por H.I., que $x = yy^R \implies w = ayy^R a = zz^R$. Análogo para as outras produções.

2. $\{w1^n : w \in \{0,1\}^* \ e \ n = |w|\}$

Resposta. GLC $G = (\{S\}, \{0, 1\}, P, S)$

• $S \rightarrow 0S1 \mid 1S1 \mid \varepsilon$

Prova por indução no tamanho da palavra de que $w = a1^{|a|} \implies w \in L(G)$:

Suponha que w tem essa forma.

Base: Para $|w| = 0 \implies w = \varepsilon$ e como G tem a produção $P \to \varepsilon$ então $w \in L(G)$.

Passo indutivo: Suponha que $|w| = n + 1 \ge 1$. Como $w = a1^{|a|}$ então $w = 0b1^{|b|+1}$ ou $w = 1b1^{|b|+1}$. Por H.I. temos que $b1^{|b|} \in L(G)$, ou seja, $P \stackrel{*}{\Rightarrow} b1^{|b|}$ e como existem as produções $P \to 0P1$ e $P \to 1P1$ podemos derivar w em cada um dos casos respectivamente, logo $w \in L(G)$.

Prova por indução na quantidade de derivações de que $w \in L(G) \implies w = a1^{|a|}$:

Suponha que $w \in L(G)$.

Base: Suponha que derivamos w com uma produção apenas,ou seja, utilizamos $P \to \varepsilon$ então $P \Rightarrow \varepsilon$ e ε é da forma que queremos.

Passo indutivo: Suponha que utilizamos n+1 derivações com n>0. As únicas produções que permitem um derivação com pelo menos 2 passos são $P\to 0P1$ e $P\to 1P1$ portanto sabemos que a primeira derivação foi uma delas.

Suponha que que utilizamos $P \to 0P1$ assim

$$P \Rightarrow 0P1 \stackrel{*}{\Rightarrow} 0x1 = w$$

Como $P \stackrel{*}{\Rightarrow} x$ em n passos temos, por H.I., que $x = b1^{|b|} \implies w = 0b1^{|b|}1 = 0b1^{|b|+1} = c1^{|c|}$. Análogo para o outro caso.

3. $\{a^ib^jc^k\colon i\neq j \text{ ou } i\neq k\}$

Resposta. GLC $G = (\{S, A, B, C, X, Y\}, \{a, b, c\}, P, S)$

- $S \rightarrow XC \mid AY$
- $A \rightarrow aA \mid \varepsilon$
- $B \rightarrow bB \mid \varepsilon$
- $C \rightarrow cC \mid \varepsilon$
- $X \rightarrow aXb \mid aA \mid bB$
- $Y \rightarrow aYc \mid aAB \mid BcC$

Prova por indução no tamanho da palavra de que $w=a^ib^jc^k$ com $i\neq j$ ou $i\neq k\implies w\in L(G)$:

Exercício 2 (Entrega: 19/06/2023 – 2 pontos). Mostre que toda linguagem regular é uma linguagem livre de contexto. Dica: Construa uma GLC por indução sobre o número de operadores na expressão regular.

Resposta. Seja R a expressão regular para a linguagem regular.

Base: Para zero operadores em R temos que a linguagem reconhece apenas um simbolo a. Assim, podemos criar a seguinte GLC $G = (\{S\}, \Sigma, P, S)$

• $S \rightarrow a$

Hipótese indutiva: Agora suponha que vale para linguagens regulares com n ou menos operadores. **Passo indutivo:** Agora para n + 1 operadores temos 3 casos

- União: $R = R_1 + R_2$. Sejam S_1 e S_2 as variaveis iniciais das GLC's de R_1 e R_2 respectivamente, que existem por H.I., criamos uma variavel inicial para R da seguinte maneira: $S \to S_1 | S_2$. Se a primeira produção que usamos for $S \to S_1$ então derivamos todas as palavras derivadas por R_1 , que, novamente, funciona por H.I.. Se a primeira produção que usamos for $S \to S_2$ então derivamos todas as palavras derivadas por R_2 .
- Concatenação: $R = R_1 R_2$. Sejam S_1 e S_2 as variaveis iniciais das GLC's de R_1 e R_2 respectivamente, que existem por H.I., criamos uma variavel inicial para R da seguinte maneira: $S \to S_1 S_2$. Por H.I., S_1 deriva todas as palavras de R_1 e S_2 deriva todas as palavras de R_2 . Assim, S irá produzir todas as palavras de $R_1 R_2$.
- Estrela: $R = R_1^*$. Sejam S_1 a variavel inicial da GLC's de R_1 , criamos uma variavel inicial para R da seguinte maneira: $S \to S_1 S_1 | \varepsilon$. Assim, podemos derivar a concatenação de $k, k \ge 0$ palavras derivadas a partir de S_1 , ou seja, a *.

Exercício 3 (Entrega: 19/06/2023 – 3 pontos). Pegue as suas três gramáticas do "Exercício 1" acima e coloque-as na Forma Normal de Chomsky.

Obs: Se vc não fez uma delas, é um bom momento para tentar novamente, mas faça com as suas!

Resposta.

- 1. GLC $G = (\{S\}, \{a, b, c\}, P, S)$
 - $S \rightarrow aSa \mid bSb \mid cSc \mid \varepsilon$

Eliminando ε -produções

• $S \rightarrow aSa \mid bSb \mid cSc \mid aa \mid bb \mid cc$

Não temos produções únitarias e S é gerador e alcançável Colocando na Forma Normal de Chomsky

- $\bullet \ S \to ASA \mid BSB \mid CSC \mid AA \mid BB \mid CC$
- $A \rightarrow a$
- $B \rightarrow b$
- \bullet $C \rightarrow c$

Passo 2:

- $S \rightarrow AX_1 \mid BX_2 \mid CX_3 \mid AA \mid BB \mid CC$
- \bullet $A \rightarrow a$
- $B \rightarrow b$
- \bullet $C \rightarrow c$
- $X_1 \to SA$
- $X_2 \rightarrow SB$
- $X_3 \to SC$
- 2. GLC $G = (\{S\}, \{0, 1\}, P, S)$
 - $S \rightarrow 0S1 \mid 1S1 \mid \varepsilon$

Eliminando ε -produções

•
$$S \to 0S1 \mid 1S1 \mid 01 \mid 11$$

Não temos produções únitarias e S é gerador e alcançável Colocando na Forma Normal de Chomsky

- $S \rightarrow ASB \mid BSB \mid AB \mid BB$
- $A \rightarrow 0$
- $B \rightarrow 1$

Passo 2:

- $S \rightarrow AX_1 \mid BX_1 \mid AB \mid BB$
- $A \rightarrow 0$
- $B \rightarrow 1$
- $X_1 \rightarrow SB$
- 3. GLC $G = (\{S, A, B, C, X, Y\}, \{a, b, c\}, P, S)$
 - $S \rightarrow XC \mid Y$
 - $A \rightarrow aA \mid \varepsilon$
 - $B \rightarrow bB \mid \varepsilon$
 - $C \rightarrow cC \mid \varepsilon$
 - $X \rightarrow aXb \mid aA \mid bB$
 - $Y \rightarrow aYc \mid aAB \mid BcC$

Eliminando ε -produções

- $S \rightarrow XC \mid X \mid Y$
- $A \rightarrow aA \mid a$
- $B \rightarrow bB \mid b$

- $C \rightarrow cC \mid c$
- $X \rightarrow aXb \mid aA \mid a \mid bB \mid b$
- $Y \rightarrow aYc \mid aAB \mid aB \mid aA \mid a \mid BcC \mid cC \mid Bc \mid c$

Eliminando produções únitarias

- $\bullet \ S \rightarrow XC \mid aXb \mid aA \mid a \mid bB \mid b \mid aYc \mid aAB \mid aB \mid aA \mid BcC \mid cC \mid Bc \mid c$
- $A \rightarrow aA \mid a$
- $B \rightarrow bB \mid b$
- $C \rightarrow cC \mid c$
- $X \rightarrow aXb \mid aA \mid a \mid bB \mid b$
- $\bullet \ Y \rightarrow aYc \mid aAB \mid aB \mid aA \mid a \mid BcC \mid cC \mid Bc \mid c$

Todas as variáveis são geradoras e alcançáveis

Colocando na Forma Normal de Chomsky

- $\bullet \ S \rightarrow XC \mid QXW \mid QA \mid Q \mid WB \mid W \mid QYE \mid QAB \mid QB \mid QA \mid BEC \mid EC \mid BE \mid E$
- $A \rightarrow QA \mid Q$
- $B \rightarrow WB \mid W$
- $C \rightarrow EC \mid E$
- $\bullet \ \, X \rightarrow QXW \mid QA \mid Q \mid WB \mid W$
- $Y \rightarrow QYE \mid QAB \mid QB \mid QA \mid Q \mid BEC \mid EC \mid BE \mid E$
- \bullet $Q \rightarrow a$
- $W \rightarrow b$
- $E \rightarrow c$

Passo 2:

- $\bullet \ S \rightarrow XC \mid QR_1 \mid QA \mid Q \mid WB \mid W \mid QR_2 \mid QR_3 \mid QB \mid QA \mid BR_4 \mid EC \mid BE \mid E$
- $A \rightarrow QA \mid Q$
- $B \rightarrow WB \mid W$
- $C \rightarrow EC \mid E$
- $X \rightarrow QR_1 \mid QA \mid Q \mid WB \mid W$
- $Y \rightarrow QR_2 \mid QR_3 \mid QB \mid QA \mid Q \mid BR_4 \mid EC \mid BE \mid E$
- $Q \rightarrow a$
- $W \rightarrow b$
- $E \rightarrow c$
- $R_1 \to XW$
- $R_2 \rightarrow YE$
- $R_3 \rightarrow AB$
- $R_4 \to EC$

Exercício 4 (Entrega: 19/06/2023 - 3.5 pontos). Uma outra forma de provar que toda linguagem regular é uma linguagem livre de contexto é propor uma estratégia que: Dado um autômato finito A apresentar uma G_A tal que a mesma simule o comportamente deste. Baseado nessa ideia faça o seguinte:

1. Dado um automato finito determinístico A crie uma gramática G_A baseada em seus estados e transições tal que $L(A) = L(G_A)$.

Resposta. Construa uma GLC da seguinte maneira:

Seja $A = (Q, \Sigma, q_0, F)$ o AFD de uma linguagem regular L, e G uma GLC, para cado estado de q_n de A temos uma variável correspondente Q_n em G, para cada transição de A da seguinte forma

criamos uma regra, para a variável correspondente da seguinte maneira $Q_n \to aQ_k$, se q_n for um estado final a regra será $Q_n \to aQ_k \mid \epsilon$.

E a variável inicial de G será Q_0 .

Assim,
$$G = (\{Q_n \mid q_n \in Q\}, \Sigma, P, Q_0).$$

2. Como exemplo do que propôs no item acima, dê um AFD para a linguagem $L = \{w \in \{0,1\}^* : |w| \cong 0 \mod 3\}$.

Resposta. AFD para L

Pelo procedimento de .1 temos as produções

- $Q_0 \rightarrow 0Q_1 \mid 1Q_1 \mid \varepsilon$
- $Q_1 \to 0Q_2 \mid 1Q_2$
- $Q_2 \to 0Q_0 \mid 1Q_0$

E a GLC
$$G_A = (\{Q_0, Q_1, Q_2\}, \{0, 1\}, P, Q_0)$$

3. Prove que o seu procediemtno está corrento, ou seja, mostre que $L(A) = L(G_A)$.

Resposta. (1)
$$w \in L(A) \implies w \in L(G_A)$$

Indução no tamanho de w

Base: $|w| = 0 \implies w = \varepsilon$ como $w \in L(A)$ e $\delta(q, \varepsilon) = q$ sabemos que o estado inicial q_0 também é final e por definição da gramática existe a produção $Q_0 \to \varepsilon$ e como Q_0 é a variavel inicial

$$Q_0 \Rightarrow \varepsilon$$

 $e \ w \in L(G_A)$

Passo indutivo: Suponha que |w| = n + 1 com $w = xa, x \in \Sigma^*$ e $a \in \Sigma$. Por H.I., $x \in L(A)$, ou seja, $\hat{\delta}(q_0, x) = q_{f_1}$ é um estado final, dessa maneira sabemos que a derivações na gramática chegam em Q_{f_1} . Como $\delta(q_{f_1}, a) = q_{f_2}$ é um estado final, por definição da gramática, existem as produções $Q_{f_1} \to \varepsilon \mid aQ_{f_2}$, $Q_{f_2} \to \varepsilon$.

Usando elas temos

$$Q_0 \stackrel{*}{\Rightarrow} xQ_{f_1} \Rightarrow xaQ_{f_2} \Rightarrow xa = w$$

 $e \ w \in L(G_A)$

$$(2) \ w \in L(G_A) \implies w \in L(A)$$

Indução no número de produções

Base: Pela maneira que a G_A é definida por utilizarmos apenas uma produção sabemos que a produção usada foi $Q_0 \to \varepsilon$

$$Q_0 \Rightarrow \varepsilon$$

Assim, sabemos que q_0 , que é o estado inicial do AFD, é final e, como $\delta(q_0,\varepsilon)=q_0, \varepsilon\in L(A)$

Passo indutivo: Suponha que G_A deriva $w=xa, x\in \Sigma^*$ e $a\in \Sigma$ utilizando n+1 produções e que é valido para todas as derivações com menos passos.

Assim

$$Q_0 \stackrel{*}{\Rightarrow} xQ_{f_1} \Rightarrow xaQ_{f_2} \Rightarrow xa = w$$

Por H.I., sabemos que $\hat{\delta}(q_0,x)=q_{f_1}$ e q_{f_1} é estado final. Como existem as produções $Q_{f_1}\to aQ_{f_2}$ e $Q_{f_2}\to \varepsilon$ temos a transição $\delta(q_{f_1},a)=q_{f_2}$ e sabemos que q_{f_2} é estado final. Logo

$$\hat{\delta}(q_0, w) = \hat{\delta}(q_0, xa) = \delta(\hat{\delta}(q_0, x)a) = \delta(q_{f_1}, a) = q_{f_2}$$

$$e w \in L(A)$$

4. Informalmente como poderíamos expandir a ideia do "item 1" para capturar autômatos de pilha?

Exercício 5 (Entrega: 19/06/2023 – 2.5 pontos). Construa autômatos de pilha com "aceitação por estado final" para cada uma das linguagen do "Exercício 1".

Resposta. 1. PDA por aceitação de estado final

2. PDA por aceitação de estado final

3. PDA por aceitação de estado final

