1. Evaluate each of the following limits.

(a)
$$\lim_{x \to -1} \frac{x^2 - 1}{x^2 + 3x + 2}$$

(b)
$$\lim_{x \to 1^+} \frac{\cos(\pi x/3)}{\ln(x)}$$

(c)
$$\lim_{x \to -\infty} \frac{x - \sqrt{x^2 - x + 7}}{3x + 7}$$

(d)
$$\lim_{x \to 0} \frac{x^2 - x}{\tan(x)}$$

(e)
$$\lim_{x \to 0} \frac{\frac{1}{|2x-1|} - \frac{1}{|2x+1|}}{x}$$

2. Consider the function $f(x) = \frac{3e^x + 4}{e^x - 2}$.

- (a) Find the domain of f.
- (b) Find the horizontal asymptotes of f.
- (c) Find the vertical asymptote of f.
- (d) Determine which one of the following graphs is the graph of f.

i.

ii.

iii.

iv.

v.

3. Find the value of a such that f(x) is continuous at x = 0.

$$f(x) = \begin{cases} \frac{a\sin(ax) + x}{x} & \text{if } x < 0, \\ 2 & \text{if } x = 0, \\ 5e^x + 2a - a^2 & \text{if } x > 0. \end{cases}$$

- **4.** Use the limit definition of the derivative to find f'(x), where $f(x) = \sqrt{5-3x}$.
- **5.** Find $\frac{dy}{dx}$ for each of the following. **Do not** simplify your answers.

(a)
$$y = \sqrt[5]{x^2} + 2^x + \log_2(x) - e^2$$

(b)
$$y = \tan^3\left(x^2\sec(x)\right)$$

(c)
$$y = \frac{e^{2x} + \sin(x)}{\sqrt{x + \sqrt{x}}}$$

(d)
$$y = (x+1)^{\cos(x)}$$

(e)
$$e^{xy} = (x+y)^5$$

- **6.** Use logarithmic differentiation to find the derivative of the function $y = \sqrt[4]{\frac{x^3 + 1}{7^x \tan(x)}}$.
- 7. Find the points on the ellipse $2x^2 + y^2 = 22$ where the tangent lines are parallel to the line y = 3x + 8.

8. Let $g(x) = \frac{f(\sin(x))}{f'(x)}$. Find $g'(\pi/2)$ given that $f(1) = f'(\pi/2) = 2$ and $f''(\pi/2) = 3$.

- **9.** Find the critical numbers of $f(x) = 3(2x-1)^{1/3}(x-2)^{2/3}$.
- **10.** Let $f(x) = x^2 2\ln(x)$.
 - a) Find the domain of the function.
 - b) Find the interval(s) on which the function f(x) is concave up.
- 11. Find the absolute maximum and the absolute minimum of $f(x) = \ln(4x^4 + x^2 + 1)$ on the interval [-1, 1].
- 12. Consider the following function, along with its first and second derivatives.

$$f(x) = \frac{3}{2}\sqrt[3]{x^2} - x = \sqrt[3]{x^2} \left(\frac{3}{2} - \sqrt[3]{x}\right) \qquad f'(x) = \frac{1 - \sqrt[3]{x}}{\sqrt[3]{x}} \qquad f''(x) = \frac{-1}{3\sqrt[3]{x^4}}$$

- (a) Find the domain and any intercepts of f.
- (b) Find the vertical and horizontal asymptotes of f (if any).
- (c) Find the intervals on which f is increasing or decreasing.
- (d) Find the local (relative) extrema of f.
- (e) Find the intervals of upward and downward concavity of f.
- (f) Find all inflection points of f.
- (g) On the next page, sketch the graph of f, labelling all intercepts, asymptotes, extrema, and points of inflection.
- 13. A right circular cylinder is inscribed in a sphere of radius $\sqrt{3}$. Find the largest possible volume of such a cylinder $(V = \pi r^2 h)$.

14. Evaluate each of the following integrals.

(a)
$$\int_{1}^{4} \frac{x^2 + \sqrt{x}}{x} dx$$

(b)
$$\int \left(\frac{3}{\sqrt[3]{x^2}} + e + \frac{1}{x}\right) dx$$

(c)
$$\int (\sec^2(x) + \csc^3(x)) \sin(x) dx$$

- **15.** Find the position function s(t) if the acceleration is given by $a(t) = 3\sin(t) \cos(t)$, where s(0) = 4 and $s(\pi) = 4$.
- **16.** Consider the function $f(x) = \int_2^x \frac{\sin(t)}{t + \sin(t)} dt$.
 - (a) Find f(2).
 - (b) Find f'(x).
 - (c) Show that f(x) has a horizontal tangent line at $x = \pi$.
- 17. Evaluate $\lim_{n\to\infty}\sum_{i=1}^n\frac{e^{i/n}}{n}$ by expressing this limit as a definite integral over the interval [0,1].

Answers:

1) a)-2, b)
$$\infty$$
, c) 2/3, d) -1, e) 4; 2) a) $x \in \mathbb{R} \setminus \{\ln 2\}$, b) $y = 3$ and $y = -2$, c) $x = \ln 2$, d) i.

3)
$$a = -1$$
; 4) $f'(x) = \frac{-3}{2\sqrt{5-3x}}$; 5) a) $y' = 2/5x^{-3/5} + 2^x \ln 2 + \frac{1}{x \ln 2}$,

b)
$$y' = 3\tan^2(x^2\sec(x))\sec^2(x^2\sec(x))(2x\sec(x) + x^2\sec(x)\tan(x)),$$

c)
$$y' = \frac{(2e^{2x} + \cos(x))\sqrt{x + \sqrt{x}} - (e^{2x} + \sin(x))\frac{1 + \frac{1}{2\sqrt{x}}}{2\sqrt{x + \sqrt{x}}}}{x + \sqrt{x}}$$

d)
$$y' = (x+1)^{\cos(x)} \left(\frac{\cos x}{1+x} - \sin x \ln(1+x) \right),$$

e)
$$y' = \frac{xy + y^2 - 5}{5 - x^2 - xy}$$

6)
$$y' = \frac{1}{4} \sqrt[4]{\frac{x^3 + 1}{7^x \tan(x)}} \left[\frac{3x^2}{x^3 + 1} - \ln 7 - \frac{1}{\sin x \cos x} \right].$$

7) (3,-2) and (-3,2); 8) -3/2; 9) x=1/2, x=1 and x=2; 10) a) $x \in (0,\infty)$, b) concave up on its domain;

11) Absolute maximum: $f(-1) = f(1) = \ln 6$, absolute minimum f(0) = 0; 12) a) domain: \mathbb{R} , x-intercept: (0,0) and (27/8,0), y-intercept (0,0), b) None, c)decreasing: $(-\infty,0)$ and $(1,\infty)$, increasing: (0,1), d) local minimum at (0,0), local maximum at (1,1/2), e) C.D. on the whole domain, f) no inflection points;

13) $V_{max} = 4\pi$; 14) a)19/2, b) $9\sqrt[3]{x} + ex + \ln|x| + C$, c)sec(x) $-\cot(x) + C$;

15)
$$-3\sin t + \cos t + \frac{2}{\pi}x + 3$$
; 16) a) 0, b) $f'(x) = \frac{\sin(x)}{x + \sin(x)}$, c) $f'(\pi) = 0$; 17) $e - 1$.