Стохастическая задача формирования теста

> Королев Егор, Туманов Георгий

Ввеление

Постановка за дачи

Численный эксперимент

Заключение

Стохастическая постановка задачи формирования теста заданного уровня сложности с минимизацией квантили времени выполнения

Королев Е.В. Туманов Г.А.

Московский авиационный институт (НИУ)

5 ноября 2021 г.

План презентации

Стохастическая задача формирования теста

> Королев Егор, Туманов Георгий

Введение

задачи

Численный эксперимент

Ваключень

- 1 Введение
- 2 Постановка задачи
- 3 Численный эксперимент
- 4 Заключение

Введение

Стохастическая задача формирования теста

> королев Егор, Туманов Георгий

Введение

Постанов задачи

Численный эксперимент

Заключен

LMS

С переходом на дистанционное образование активно развиваются системы управления обучением (LMS)

Способ повышения качества дистанциооного образования

Применение анализа данных в LMS может повысить качество дистанционного образования

За счет чего повышактся качество?

Сложность заданий оценивается экспертами, либо программно. Происходит адаптация контента под оцениваемый уровень знаний пользователя

Логнормальная модель Ван дер Линдена

Стохастическая задача формирования теста

> Королев Егор, Туманов Георгий

Введение

Постановка задачи

Численный эксперимент

Заключені

Пусть $Z=(z_1,\cdots,z_I)$ – вектор заданий

Ван дер Линден предположил, что логарифм времени T_j^i (время ответа j-го пользователя на i-ю задачу) состоит из 3-х компонент:

- ullet μ общая составляющая для всех пользователей и задач;
- β_i индивидуальная сложность i-й задачи;
- $extbf{ iny } au_{j}$ особенности j-го пользователя, решающего задание.

Модель имеет вид:

$$\ln T_j^i = \mu + \beta_i + \tau_j + \varepsilon_{ij},\tag{1}$$

где $arepsilon_{ij} \sim \mathcal{N}(0,\sigma^2)$ – независимые CB

Численный эксперимент

Ваключение

Из ММП можно получить оценки модели:

$$\hat{\mu} = \frac{1}{I \cdot J} \sum_{j=1}^{J} \sum_{i=1}^{I} \ln t_j^i, \quad \hat{\beta}_i = \frac{1}{J} \sum_{j=1}^{J} \ln t_j^i - \hat{\mu}, \quad \hat{\tau}_j = \frac{1}{I \cdot J} \sum_{i=1}^{I} \ln t_j^i - \hat{\mu}, \quad (2)$$

$$\hat{\sigma^2} = \frac{1}{I \cdot J} \sum_{i=1}^{J} \sum_{j=1}^{I} \left(\ln t_j^i - \hat{\mu} - \hat{\beta}_i - \hat{\tau}_j \right)^2 \tag{3}$$

Ввеление

Постановка задачи

Численный эксперимент

Заключение

Таким образом, из модели (1) и с учетом оценок (2), (3) в качестве модели времени ответа пользователя на задание можно выбрать модель логнормального распределения с плотностью вероятности:

$$f(x,\tau_j,\beta_i,\sigma) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2} \left[\frac{\ln x - (\hat{\mu} + \hat{\beta}_i + \hat{\tau}_j)}{\hat{\sigma}}\right]^2\right\} \tag{4}$$

Обозначения

Стохастическая задача формирования теста

> Королев Егор, Туманов Георгий

Введение

Постановка задачи

Численный эксперимент

Заключени

Матрица принадлежности

Разобъем множество заданий на M различных типов, I_m — число заданий m-го типа.

Пусть
$$A = \|a_i^m\|_{i=\overline{1,I}}^{m=\overline{1,M}}, \quad a_i^m = \begin{cases} 1, & z_i \in Z_m, \\ 0, & z_i \notin Z_m. \end{cases}$$

Тестовый набор

Определим вектор $u \in \mathbb{R}^I$.

Пусть
$$u_i = egin{cases} 1, & ext{если задача } i & ext{попала в тестовый набор,} \\ 0, & ext{иначе.} \end{cases}$$

Тестовым набором считаются k заданий, для которых $u_i=1$.

Заключені

Сложность заданий

Введем $w \in \mathbb{R}^I$, i-я координата — сложность i-го задания.

Пусть изначально задаётся суммарная сложность теста, обозначаемая через c, которая определяется на основе экспертной оценки.

Некоторые обозначения

Пусть в тестировании участвуют ${\it N}$ пользователей.

Пусть T_n^i — случайное время, потребовавшееся пользователю n на решение задачи i.

И пусть
$$T = \|T_n^i\|_{n=\overline{1,N}}^{i=1,I}$$
.

Численный эксперимент

Зак пючение

Функция квантили

Пусть φ – общее время выполнения теста, которое неизвестно.

Тогда для того, чтобы за некоторое оптимальное время все тестируемые могли выполнить выданный вариант теста с заданной вероятностью α , рассмотрим функцию квантили: функцию квантили:

$$\Phi_{\alpha}(u) \triangleq \min \left\{ \varphi : P \left\{ \max_{n=1,N} T_n u \le \varphi \right\} \ge \alpha \right\}$$
 (5)

Задача квантильной оптимизации

Стохастическая задача формирования теста

> Королеі Егор, Тумано Георгий

Введені

Постановка задачи

Численный эксперимент

аключение

Постановка задачи

Требуется составить множество индивидуальных тестовых наборов из k заданий, принадлежащих различным типам, учитывая, что $k \geq M$. При этом, возможно отклонение от c на какое-либо малое число ε в большую, либо меньшую сторону.

Задача квантильной оптимизации

Стохастическая задача формирования теста

> Королев Егор, Туманов Георгий

Ввеление

Постановка задачи

Численный эксперимент

Зак лючение

$$u_{\alpha} = Arg \min_{u \in \{0,1\}^{I}} \left(\frac{\gamma \left| c - w^{T} u \right|}{\varepsilon} + \frac{(1 - \gamma)\Phi_{\alpha}(u)}{2700} \right)$$

$$\varphi_{\alpha} = \min_{u \in \{0,1\}^{I}} \left(\frac{\gamma \left| c - w^{T} u \right|}{\varepsilon} + \frac{(1 - \gamma)\Phi_{\alpha}(u)}{2700} \right)$$

$$|c - w^{T} u| \le \varepsilon$$

$$A^{T} u \ge e_{M}$$

$$e_{I}^{T} u = k$$

$$(6)$$

Заключени

Заменим непрерывные случайные величины T_n^i на дискретные Θ_n^i со следующими распределениями:

$\Theta_n^i(\lambda)$	$\theta_n^i(1)$	$\theta_n^i(2)$	 $\theta_n^i(L_{ni})$
$p_n^i(\lambda)$	$p_n^i(1)$	$p_{n}^{i}(2)$	 $p_n^i(L_{ni})$

где:

$$0 < t_1 < t_2 < ... < t_{L_{ni}-1} < +\infty$$
 — разбиение временного интервала

$$heta_n^i(\lambda)$$
 — середины интервалов $[t_{\lambda-1},t_{\lambda}],$ $l=2,...,L_{ni}-1$

$$heta_n^i(1)$$
 и $heta_n^i(L_{ni})$ — квантили T_n^i уровней 0.01 и 0.99 соответственно

$$p_n^i(\lambda) = \int_{t_{\lambda-1}}^{t_{\lambda}} f(t, \tau_n, \beta_i, \sigma) dt$$

Функция квантили

Стохастическая задача формирования теста

> Королев Егор, Туманов Георгий

Введение

Постановка задачи

Численный эксперимент

Ваключение

Вместо матрицы T будем использовать мктрицу $\Theta = ||\Theta_n^i||.$ Обозначим Θ_n – n-ая строка матрицы Θ . Тогда функция квантили примет вид:

$$\Phi_{\alpha}(u) \triangleq \min \left\{ \varphi : P \left\{ \max_{n=1,N} \Theta_n u \leq \varphi \right\} \geq \alpha \right\}$$

Сведение к детерминированной задаче

Стохастическая задача формирования теста

> Королев Егор, Туманов Георгий

Введение

Постановка задачи

Численный эксперимент

заключені

Введём следующие обозначения:

$$D = \prod_{n=1}^{N} \prod_{i=1}^{I} L_{ni}$$

 $heta_d, d=1,...,D$ — реализации случайной матрицы Θ

$$p = (p_1, ..., p_D), p_d = P(\Theta = \theta_d) = \prod_{n=1}^{N} \prod_{i=1}^{I} P(\Theta_n^i = (\theta_d)_n^i)$$

$$\overline{\varphi} = (\varphi, ..., \varphi)^T \in R^N$$

 $\delta = (\delta_1,...,\delta_D) \in \{0,1\}^D$ – вектор булевых переменных, определяющий доверительное множество

Детерминированная задача

Стохастическая задача формирования теста

> Королев Егор, Туманов Георгий

Ввеление

Постановка задачи

Численный эксперимент

Ваключение

$$u^* = Arg \min_{u \in \{0,1\}^I, \delta \in \{0,1\}^D, \varphi \ge 0} \left(\frac{\gamma \left| c - w^T u \right|}{\varepsilon} + \frac{(1 - \gamma)\varphi}{2700} \right)$$

$$\theta_d u - \overline{\varphi} \le (\theta_d e_I) \delta_d$$

$$c - w^T u \le \varepsilon$$

$$w^T u - c \le \varepsilon$$

$$A^T u \ge e_M$$

$$e_I^T u = k$$

$$p \delta^T \le 1 - \alpha$$

Численный эксперимент

задача формирования теста Королев Егор, Туманов

Стохасти-

Введение

<u> </u>
Бведение

задачи

Численный эксперимент

. Заключение текст

Заключение

теста Королев Егор, Туманов

Стохастическая задача формирования

Ввеления

Постановка задачи

Численный эксперимент

Заключение

текст

Список литературы

мирования теста Королев Егор, Туманов

Стохастическая задача фор-

Введение

Постановк задачи

Численный эксперимент

Заключение

текст

Стохастическая задача формирования теста

> Королев Егор, Туманов Георгий

Введение

Постановк залачи

Численный эксперимент

Заключение

Спасибо за внимание!