Stat 215 A - Week 3

Zoe Vernon

Lab 1 check in

How is it going?

What are people finding difficult?

Any questions?

Source: http://www.redwoodhikes.com/JedSmith/BoyScout1.jpg

Lab 1 check in

Some thoughts for coming up with findings

- Use your domain knowledge to come up with questions you may want to answer
- Look closer at the data
 - ☐ Zoom in on a specific day
 - Or specific times of day

Flowing data blog

http://flowingdata.com/2017/08/15/us eless-points-of-comparison/

Slides in this section from Rebecca Barter

Estimate the density, f, by adding together individual kernel functions

$$\hat{f}_h(x) = rac{1}{n} \sum_{i=1}^n K_h(x-x_i) = rac{1}{nh} \sum_{i=1}^n K\Big(rac{x-x_i}{h}\Big).$$

Estimate the density, f, by adding together individual kernel functions

$$\hat{f}_h(x) = rac{1}{n} \sum_{i=1}^n K_h(x-x_i) = rac{1}{nh} \sum_{i=1}^n K\Big(rac{x-x_i}{h}\Big)$$

Each kernel function is centered at a data point

The width of the kernel function is defined by the bandwidth *h*

$$\hat{f}_h(x) = rac{1}{n} \sum_{i=1}^n K_h(x-x_i) = rac{1}{nh} \sum_{i=1}^n K\Big(rac{x-x_i}{h}\Big)$$

There are many possible Kernel functions that you could use

- Gaussian
- Uniform
- ☐ Triangular
- Ш ...

Gaussian Kernel

Support: $u \in \mathbb{R}$

$$K(u) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}u^2}$$

Uniform Kernel

Support: $|u| \leq 1$

$$K(u) = \frac{1}{2}$$

Triangular Kernel

Support: $|u| \leq 1$

$$K(u) = 1 - |u|$$

Probability Perceptions

Joyplot

Way to put multiple kernel density estimates on one plot

Is there anything you would change about this plot?

Image and data source:
https://github.com/zonination/
perceptions

Exercise 1

- 1. Write a function that calculates the density of a vector of numbers.
- 2. Plot the density estimate of the "chances are slight" probability interpretations.
- 3. Make a plot that displays the bias-variance tradeoff for different bandwidths

Alternative view of data: heatmap

Alternative view of data: superheat

Color choice

Choosing color palettes

Don't always use the default in R

Think about what you are trying to convey in the plot

Color choices can affect the way we perceive the plot

Two helpful websites

- 1. https://coolors.co/app
- 2. http://colorbrewer2.org/?

Viridis color scheme

Viridis color scheme

Reasons to use viridis

- Makes pretty plots!
- Perceptually uniform colors (meaning changes in the data should be accurately decoded by our brains)
 - a. Another colormap with the quality is ColorBrewer
- 3. Perceived by most common forms of color blindness

Exercise 2

Come up with your own visualization of the perception data.

Be creative!

Interactive plots

Exercise 3

Come up with your own **interactive** visualization of the perception data.

Useful R packages

- 1. plotly: https://plot.ly/r/
- 2. crosstalk: https://rstudio.github.io/crosstalk/
- 3. Highcharther: http://jkunst.com/highcharter/
- 4. Shiny: https://shiny.rstudio.com/gallery/