Remove Watermark Now

Data Science Capstone projectment

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Summary of methodologies

Data Collection

Data Wrangling

EDA with data visualization

EDA with SQL

Interactive visual analytics using Folium and Plotly Dash

Predictive analysis using classification models

Summary of all results

All 4 machine learning models produced the same prediction

Remove Watermark Nov

Introduction

Project background and context

Space X advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because Space X can reuse the first stage. Therefore, if we can determine if the first stage will land, we can determine the cost of a launch

Problems you want to find answers

What criteria determines the success of landing of the first stage of the rockets.

Remove Watermark Now

Methodology

- Data collection methodology:
 - The data was collected through SpaceX API and the scrapped data from Wikipedia
- Perform data wrangling
 - Convert the data with for machine learning and clean(drop) irreverent columns and rows.
- Perform exploratory data analysis (EDA) using visualization and SQL

Using various visualization tools for the data

- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - How to build, tune, evaluate using the various classification models

Methodology

Data collection

 The data was collected through the SpaceX API and web scraping (Wikipedia).

API

- The SpaceX Rest API endpoints or URI, starts with api.spacexdata.com/v4/
- Performed a GET request using the requests library to obtain the data

- After collecting the data, it is saved as .csv file to be processed.
- The data consists of the information about launches, component of rocket and its type, and landing/launching outcomes.

A flowchart of SpaceX API call

Remove Watermark Nov

flowchart of web scraping

Remove Watermark Now

Data wrangling

• In the data set, there are different cases of whether the booster successfully landed or not. To know each case is success or failure, the outcomes are converted into training labels with `1` means the booster successfully landed `0` means it was unsuccessful and appended to the data set.

• If the column value is numeric and it has a null, then the null is filled with mean value of the whole column values.

EDA with data visualization

Bar chart

- Success rate vs. Orbit type
- Flight Number vs. Orbit type
- Payload vs. Orbit type

Scatter plot

- Flight Number vs. Launch Site of Element
 Payload vs. Launch Site

Line chart

- Launch success yearly trend
- Each chart has its own advantage and different charts were plotted for different purpose. These were used to convey the meaning of the data in the most effective way.

EDA with SQL

Data queried by SQL

- All launch site names
- Launch site names begin with `CCA`
- The total payload carried by boosters from NASA.
- The average payload mass carried by booster version F9 v1.1
- Date of the first successful ground landing
- Successful drone ship landing with payload between 4000 and 6000
- Total number of successful and failure mission outcomes
- Boosters which carried maximum payload
- 2015 launch records
- Rank success count between 2010-06-04 and 2017-03-20

Build an interactive map with Folium

Markers

- 4 markers to indicate the name of the launch sites
- 1 markers to indicate the distance between the launch site and the nearby railway.

Circles

• 4 circles to indicate the location of the launch sites

Icon

 Numerous icons to indicate the number of succussed and failed launch for each launch site.

line

1 line to indicate the linear line between the launch site and the nearby railway.

Build a Dashboard with Plotly Dash

Launch Success Count for All Sites with pie chart

- The Launch Site with The Highest Success Rate with pie chart
- Payload vs Launch Outcome with scatter plot

Predictive analysis (Classification)

Results

- Interactive analytics demo in screenshots
- Predictive analysis results

EDA with Visualization

Flight Number vs. Launch Site

It is a scatter plot of Flight Number vs Launch Site. The blue dot indicates failure and the orange dot indicates success of landing of first stage of the Falcon 9. As flight number increases (more attempts), more orange dots are showing. On the other hand, the failure of landing is not related to the launch sites since it has no distinctive patterns.

Payload vs. Launch Site

It is a scatter plot of Payload vs Launch Site. The blue dot indicates failure and the orange dot indicates success of landing of first stage of the Falcon 9. All three launch sites are showing similar patterns among different payload mass. It shows greater success rate within high pay load mass (more than 14,000kg) than low pay load mass.

Success rate vs. Orbit type

Every first stage of falcon 9 with E5-L1, GEO, HEO, and SSO orbits has landed successfully. Contrast to orbit GTO has about 50% success rate.

Flight Number vs. Orbit type

It is a scatter plot of Flight Number vs Orbit Type. The blue dot indicates failure and the orange dot indicates success of landing of first stage of the Falcon 9. Overall later attempts have higher success rate regardless orbit types. The ISS orbit shows great success rate all times except very beginning. The VLEO illustrate high success rate, however, it was used from flight number 60, therefore, hard to conclude it is the best launch site.

Payload vs. Orbit type

It is a scatter plot of Payload vs Orbit Type. The blue dot indicates failure, and the orange dot indicates success of landing of first stage of the Falcon 9. As the payload gets heavier, it gives negative effect on GTO orbit whereas it affects positively on ISS orbit.

Launch success yearly trend

The line indicates success rate of landing of the first stage each year. As time goes by, it has higher success rate but there has been a drop in 2018.

EDA with SQL

All launch site names

launch_site

CCAFS LC-40

CCAFS SLC-40

KSC LC-39A

VAFB SLC-4E

Launch site names begin with `CCA`

DATE	timeutc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	landing_outcome
2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	feler	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012- 05-22	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012- 10-08	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013- 03-01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

It is the first 5 records with launch site names begin with 'CCA'.

Total payload mass

customer	total_kg	
NASA (CRS)	45596	

booster_version average_payload

F9 v1.1

2928.400000

Success (ground pad) 2015-12-22

Successful drone ship landing with payload between 4000 and 6000

booster_version	payload_masskg_	landingoutcome
F9 FT B1022	4696	Success (drone ship)
F9 FT B1026	4600	Success (drone ship)
F9 FT B1021.2	5300	Success (drone ship)
F9 FT B1031.2	5200	Success (drone ship)

The names of boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000.

Total number of successful and failure mission outcomes

mission_outcome CO	TNUC	is dorage 100 success and
Failure (in flight)	1	There are 100 Success and 1 failure of mission
Success	99	
Success (payload status unclear)	1	outcomes.

Boosters carried maximum payload

booster_version	payload_masskg_
F9 B5 B1048.4	15600
F9 B5 B1048.5	15600
F9 B5 B1049.4	15600
F9 B5 B1049.5	15600
F9 B5 B1049.7	15600
F9 B5 B1051.3	15600
F9 B5 B1051.4	15600
F9 B5 B1051.6	15600
F9 B5 B1056.4	15600
F9 B5 B1058.3	15600
F9 B5 B1060.2	15600
F9 B5 B1060.3	15600

The maximum payload is 15,600kg and there are several F9 B5 versions of booster carried the payload

2015 launch records

MONTH	booster_version	launch_site	landing_outcome
January	F9 v1.1 B1012	CCAFS LC-40	Failure (drone ship)
April	F9 v1.1 B1015	CCAFS LC-40	Failure (drone ship)

- There are two records where the landing outcome is "Failure (drone ship)", and it was in 2015
- Both had booster version
 F9 v1.1 and launch site
 CCAFS LC-40

Rank success count between 2010-06-04 and 2017-03-20

- There are two different success types in landing outcome from 2010-06-04 to 2017-03-20
- Success on drone ship has the most successes with 5, and on ground pad is following by 3

Interactive map with Folium

<All Launch Sites>

- There are three launch sites on the East coast, and one site on the West coast.
- All of the launch sites are located near the coast.

Remove Watermark Now

<successed/failed launches>

- CCAFS LC-40 has 26 launches and only 7 of them were success.
- KSCLC-39A has the highest success rate.

VAFB SLC-4E

CCAFS SLC-40

KSCLC-39A CCAFS LC-40

37

<Launch site and nearby railway>

 The distance between CCAFSLC-40 and nearby railway is about 2.38km

Build a Dashboard with Plotly Dash

< Launch Success Count for All Sites >

• KSC LC-39A site has the highest success counts whereas CCAFS LC-40 has the lowest

<The Launch Site with The Highest Success Rate >

KSC LC-39A × ▼

% of successul launch by KSC LC-39A

• KSC LC-39A has the highest success rate of 76.9%

< Payload vs Launch Outcome>

The payload between 2,000kg to 4,000kg has the highest success rate among all different payload mass. Also, when the booster version is FT, it shows great outcome whereas booster version v1.1 does not perform very well.

Predictive analysis (Classification)

Classification Accuracy

- Four different algorithms were used
 - Logistic regression
 - SVM
 - Classification tree
 - KNN
- Among four different models, the classification tree has the highest accuracy.

Confusion Matrix

- This is the confusion matrix of classification tree model
- There are three prediction which the model thought it "land", but it was "did not land" which is a false positive.

Remove Watermark Now

CONCLUSION

- Success rate is increased with more attempts regardless other factors.
- Success rate is increased with payload mass between 2,000 and 5,000kg or over 14,000kg.
- Success rate is increased with orbits E5-L1, GEO, HEO, and SSO.
- Success rate is increased with KSCLC-39A launch site.
- Success rate is increased with booster version FT.
- Success rate has been steadily increased from 2013.