Computation concerning a water hammer

Arthur Guillot - Le Goff

Autumn semester 2021 - Hydraulic modelling

Introduction

This exercise focus on the calculus of the water pressure and the velocity at three different locations (point A, B and C) on a 2040 m horizontal pipe.

Figure 1: Scheme of the problem

Our starting point is the following equations:

- the continuity equation for flow under pressure : $\frac{a^2}{g} \cdot \frac{\partial v}{\partial x} + v \frac{\partial H}{\partial x} + \frac{\partial H}{\partial t} + v \cdot \sin \theta = 0$
- and the momentum equation for flow under pressure : $\frac{\partial v}{\partial t} + v \frac{\partial v}{\partial x} + g \frac{\partial H}{\partial x} + \frac{\lambda v |v|}{2D} = 0$

As we are trying to calculate H and v at any time t we are using the method of characteristics to get an accurate estimates of these values. We are therefore going to described H(t,x) and v(t,x) such as : $dH = \frac{\partial H}{\partial x} dx + \frac{\partial H}{\partial t} dt$ and $dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial t} dt$.

Our exercise focus on three different scenario that we need to analyse :

- 1. instantaneous closure in point C, friction neglected,
- 2. instantaneous closure in point C, friction coefficient $\lambda = 0.032$,
- 3. gradual closure in 8 seconds in point C, friction coefficient $\lambda = 0,032$.

6) Graphs x-t, v-H and H(t)

Before going to our calculation we drew few graphs representing the results we are expecting.

6.1) Graph x-t (line of characteristics)

6.2) Graph v-H (line of characteristics)

6.3) Graph H(t) at the point C

6.3) Graph H(t) at the point B

7) Calculation of the water hammer

Methodology

To get a glimpse at the methodology we can detailed my excel calculation sheet as it follow. First I have clarified the different constants useful for our calculations.

	Entry		
L	2040	m	Lenght of the pipe
Q	30	m³/s	Initial discharge
D	2.67	m	Diameter of the pipe
НО	725	m	Reservoir level
е	0.03	m	Pipe wall thickness
E	1.96E+11	N/m²	Pipe elasticity module
K	1.96E+11	N/m²	Water compressibility
θ	0	rad	Pipe inclination
N	10		Number of pipe divisions
Δх	204	m	Lenght of a pipe division
S	5.59902497	m²	Pipe section
v0	5.35807577	m/s	Velocity in the pipe at t=0
Δt	0.1	S	Temporal calculation step
а	1020	m/s	The velocity of water hammer propagation
g	9.81 m/s ²		Gravity constant
2*g	19.62	m/s²	,
λ	0		Friction coefficient

Figure 2: Calculation constants used

For our calculation we have to divide the equations used in four parts:

- the t=0 equations (identified as blue backgroud in the next figure)
- the left boundary of the pipe (green)
- the right boundary of the pipe (yellow)
- the internal points (orange)

VITESSE												HEAD										
- 1	1 (A)	2	2	4	5 (B)	6	7	Q	a	10 (C)	i i	1 (A)	2	2	4	5 (B)	6	7	Ω	9	10 (C)	
t	± (^)	_	3	-	J (D)	U	,	U	,	10 (0)	t	± (~)	_	3		J (D)	U	,	8	,	10 (0)	
0	5	5	5	5	. 5	5	5	5	5	5	0	724	724	724	724	724	724	724	724	724	724	
0.1	5	5	5	5	. 5	5	5	5	5	0	0.1	724	724	724	724	724	724	724	724	724	724	
0.2	5	5	5	9	. 5	5	5	5	3	0	0.2	724	724	724	724	724	724	724	724	1002	1002	
0.3	5	5	5	5	. 5	5	5	3	1	. 0	0.3	724	724	724	724	724	724	724	1002	1141	1141	
0.4	5	5	5	5	. 5	5	3	1	1	. 0	0.4	724	724	724	724	724	724	1002	1141	1211	1211	
0.5	5	5	5	9	. 5	3	1	1	C	0	0.5	724	724	724	724	724	1002	1141	1211	1246	1246	
0.6	5	5	5	5	. 3	1	1	0	C	0	0.6	724	724	724	724	1002	1141	1211	1246	1263	1263	
0.7	5	5	5	3	1	1	0	0	0	0	0.7	724	724	724	1002	1141	1211	1246	1263	1272	1272	
0.8	5	5	3	1	. 1	0	0	0	C	0	0.8	724	724	1002	1141	1211	1246	1263	1272	1276	1276	
0.9	5	3	1	1	. 0	0	0	0	C	0	0.9	724	1002	1141	1211	1246	1263	1272	1276	1278	1278	

Figure 3: Extract from the calculation table

For the internal points we use:

•
$$H_{Pi} = 0.5 \left[H_{i-1} + H_{i+1} + \frac{a}{g} \left(v_{i-1} - v_{i+1} \right) - \sin \theta \Delta t \left(v_{i-1} + v_{i+1} \right) - \frac{a\lambda \Delta t}{2gD} \left(v_{i-1} \left| v_{i-1} \right| - v_{i+1} \left| v_{i+1} \right| \right) \right] \right]$$

•
$$v_{Pi} = 0.5 \left[v_{i-1} + v_{i+1} + \frac{g}{a} \left(H_{i-1} - H_{i+1} \right) - \frac{g}{a} \sin \theta \Delta t \left(v_{i-1} - v_{i+1} \right) - \frac{\lambda \Delta t}{2D} \left(v_{i-1} \left| v_{i-1} \right| + v_{i+1} \left| v_{i+1} \right| \right) \right]$$

For the left boundary:

•
$$H_{Pi} = H_0 - \frac{v_0^2}{2g}$$

•
$$v_{Pi,t=T-\Delta t} = 0.5 \left[v_1 + v_2 + \frac{g}{a} \left(H_1 - H_2 \right) - \frac{g}{a} \sin \theta \Delta t \left(v_1 - v_2 \right) \right. - \frac{\lambda \Delta t}{2D} \left(v_1 \left| v_1 \right| + v_2 \left| v_2 \right| \right) \right]$$

For the right boundary:

•
$$H_{Pi,t=T-\Delta t} = 0.5 \left[H_{10} + H_9 + \frac{a}{g} \left(v_9 - v_{10} \right) - \sin \theta \Delta t \left(v_9 + v_{10} \right) \right. \\ \left. - \frac{a\lambda \Delta t}{2gD} \left(v_9 \left| v_9 \right| - v_{10} \left| v_{10} \right| \right) \right]$$

•
$$v_{Pi} = \tau . v_0 \sqrt{\frac{H_{Pi}}{H_0}}$$

For t = 0:

•
$$H_{Pi} = H_0 - \frac{v_0^2}{2a}$$

$$\bullet \ v_{Pi} = v_0$$

Results for scenario 1

Figure 4: H(t) and v(t) at point A,B and C

Results for scenario 2

Figure 5: H(t) and v(t) at point A,B and C

Results for scenario 3

Figure 6: H(t) and v(t) at point A,B and C

Conlusion

We kind of found the result we were expecting as the Head of point B is oscillating arround 1280 and 160 N/m² with a period of 4s. The behaviour we excepted for point B is slightly the one at the beggining of the curve we have calculated but we lost it as it become more like a sinusoidal curve. The second scenario including the friction coefficient λ , is decreasing the global amplitude of H(t) and v(t).

Working with the characteristics method makes sense when we calculate scenario 3. We can study the non-trivial behaviour of water in pipes without using our calculation set. As a result, we can see that the velocity gradually decreases as the valve closes at each point. The head at point B and point C follow a similar pattern, oscillating differently than in the first scenario and appearing to adopt a more regular behaviour as time progresses.