Predicates and Quantifiers

CSE015 Lab 3, 2024 Fall Jieke (Jacky) Wang jwang450@ucmerced.edu EECS, School of Engineering UC Merced

TOC

Slides is posted on Canvas:Files. If you find any typos or have any concerns, please contact me ASAP!

Review

1.4 Exercise

- ▶ Determine truth value of predicates: 1, 2
- ▶ Determine truth value of quantifiers: 11, 19, 37
- Interpret predicates and quantifiers: 7
- ► Logical equivalence containing quantifiers: 35, 36

Jieke

Logical Equivalence Involving Quantifiers

- ▶ De Morgans laws for quantifiers: $\neg \forall x P(x) \equiv \exists x \neg P(x)$ and $\neg \exists x Q(x) \equiv \forall x \neg Q(x)$.
- ▶ Example 19: $\forall x (P(x) \land Q(x)) \equiv \forall x P(x) \land \forall x Q(x)$.
- ► Example 22: $\neg \forall x (P(x) \rightarrow Q(x)) \equiv \exists x (P(x) \land \neg Q(x)).$

Truth value of \exists and \forall

Prove by cases:

- ▶ Prove $\exists x P(x)$ to be True: give an example such that P(x) holds.
- ▶ Prove $\forall x P(x)$ to be False: give an example such that P(x) does NOT hold.

We have not covered yet (will be introduced in 1.7, 1.8):

- ▶ Prove $\forall x P(x)$ to be True.
- ▶ Prove $\exists x P(x)$ to be True.

1.5 Exercise

- ▶ Interpret nested quantifiers: 1, 2, 3, 4
- ► Symbolize into nested quantifiers: 10, 16
- ▶ Determine truth values of nested quantifiers: 16, 28, 34
- ► Logical equivalence containing nested quantifiers: 30, 31, 32, 33

