

# Europäisches Patentamt European Patent Office Office européen des brevets



(11) EP 0 698 102 B1

(12)

# **EUROPÄISCHE PATENTSCHRIFT**

(45) Veröffentlichungstag und Bekanntmachung des Hinweises auf die Patenterteilung: 01.03.2006 Patentblatt 2006/09

(21) Anmeldenummer: 94915569.1

(22) Anmeldetag: 02.05.1994

(51) Int Cl.: C12N 15/53<sup>(2006.01)</sup> C12Q 1/60<sup>(2006.01)</sup>

C12N 9/04 (2006.01)

(86) Internationale Anmeldenummer: PCT/EP1994/001394

(87) Internationale Veröffentlichungsnummer: WO 1994/025603 (10.11.1994 Gazette 1994/25)

#### (54) CHOLESTERINOXIDASE AUS BREVIBACTERIUM STEROLICUM

CHOLESTEROL-OXIDASE FROM BREVIBACTERIUM STEROLICUM CHOLESTEROL-OXYDASE DU BREVIBACTERIUM STEROLICUM

(84) Benannte Vertragsstaaten:

AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

(30) Priorität: **05.05.1993 DE 4314793 09.12.1993 DE 4342012** 

(43) Veröffentlichungstag der Anmeldung: **28.02.1996 Patentblatt 1996/09** 

(73) Patentinhaber: Roche Diagnostics GmbH 68305 Mannheim (DE)

(72) Erfinder: JARSCH, Michael D-83670 Bad Heilbrunn (DE)

(56) Entgegenhaltungen:

EP-A- 0 452 112

EP-A- 0 560 983

- GENE. Bd. 103, 1991, AMSTERDAM NL Seiten 93 - 96 T. OHTA ET AL 'Sequence of gene choB encoding cholesterol oxidase of Brevibacterium sterolicum: comparison with choA of Streptomyces sp. SA-COO' in der Anmeldung erwähnt
- BIOSCIENCE, BIOTECHNOLOGY, AND BIOCHEMISTRY Bd. 56, Nr. 11, November 1992 Seiten 1786 - 1791 T. OHTA ET AL 'Hyperexpression and analysis of choB encoding cholesterol oxidase of Brevibacterium sterolicum in Escherichia coli and Streptomyces lividans' in der Anmeldung erwähnt

EP 0 698 102 B1

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Einspruchsgebühr entrichtet worden ist. (Art. 99(1) Europäisches Patentübereinkommen).

#### **Beschreibung**

30

35

40

45

50

[0001] Die Erfindung betrifft eine Cholesterinoxidase aus Brevibacterium sterolicum, ein Verfahren zur Herstellung einer rekombinanten Cholesterinoxidase aus Brevibacterium sterolicum, eine für dieses Verfahren geeignete DNA-Sequenz, welche eine zytoplasmatische Expression der rekombinanten Cholesterinoxidase im Wirtsbakterium bewirkt, sowie die so erhältliche rekombinante Cholesterinoxidase.

[0002] Für die enzymatische Bestimmung von Cholesterin ist die Cholesterinoxidase von großer Bedeutung. Sie katalysiert die Oxidation von Cholesterin zu Cholesten-3-on und H<sub>2</sub>O<sub>2</sub>. Cholesterinoxidase aus verschiedenen Organismen wie Pseudomonas, Mycobacterium, Nocardia, Arthrobacter und Brevibacterium sind bereits beschrieben worden (T. Uwajima et al., Agr. Biol. Chem. 37 (1973), 2345 - 2350). Alle diese bekannten Cholesterinoxidasen sind sezernierte Proteine. Das Bodenbakterium Brevibacterium sterolicum KY 3643 (ATCC 21387) zeigt eine besonders hohe Aktivität der Cholesterinoxidase. Aus diesem Bakterium sind drei Isoenzyme der Cholesterinoxidase bekannt, die sich in ihrem isoelektrischen Punkt, der Substratspezifität gegenüber verschiedenen Steroiden, der Affinität gegenüber Cholesterin im pH-Optimum und der DNA bzw. Aminosäuresequenz unterscheiden (EP-A 0 452 112 und EP-A 560 983). Die Cholesterinoxidase I aus Brevibacterium sterolicum zeigt eine geringe Affinität zu Cholesterin (K<sub>M</sub> 1,1 x 10<sup>-3</sup> mol/I) und ist aus Brevibacterium sterolicum nur in geringer Ausbeute erhältlich. Die Expression einer kompletten für die Cholesterinoxidase I kodierenden DNA in E. coli wurde bereits versucht, ist jedoch bislang nicht gelungen (K. Fujishiro et al., Biochem. Biophys. Res. Com. 172 (1990), 721 - 727, T. Ohta et al., Gene 103 (1991), 93 - 96). Auch die Expression spezieller Deletionsmutanten der für die Cholesterinoxidase I kodierenden DNA, welche mit Teilen des lac z Gens fusioniert wurden, führte zu keiner befriedigenden Expression in E. coli (T. Ohta et al., Biosci. Biotech. Biochem. 56 (1992), 1786 - 1791). In der EP-A 0 452 112 wird die Klonierung und Expression von weiteren Cholesterinoxidasen aus Brevibacterium sterolicum beschrieben. Die Expression dieser DNAs führt jedoch ebenfalls nicht zu einer ausreichenden Menge an aktiver Cholesterinoxidase.

[0003] Aufgabe der Erfindung war es, eine Cholesterinoxidase mit hoher Affinität zu Cholesterin in großen Mengen und in aktiver Form zur Verfügung zu stellen.

[0004] Diese Aufgabe wird gelöst durch eine Cholesterinoxidase, welche die in SEQ ID NO 2 gezeigte Aminosäuresequenz aufweist. Diese Cholesterinoxidase ist aus Brevibacterium sterolicum erhältlich oder auch rekombinant herstellbar.

**[0005]** Es hat sich überraschenderweise gezeigt, daß eine derartige Cholesterinoxidase rekombinant in großer Menge und in aktiver Form hergestellt werden kann. Diese Cholesterinoxidase weist ein Molekulargewicht von 60 kD, einen isoelektrischen Punkt von ca. 5,5 (jeweils gemessen im Phast-System, Pharmacia-LKB) sowie einen K<sub>M</sub>-Wert für Cholesterin von 1 x 10<sup>-4</sup> mol/l (in 0,5 mol/l Kaliumphosphatpuffer pH 7,5 bei 25°C) auf und ist in einem pH-Bereich von 5,5 bis 8,0 wirksam.

**[0006]** Es hat sich gezeigt, daß diese Cholesterinoxidase in großer Menge in aktiver Form erhalten werden kann, wenn für eine heterologe Expression eine DNA verwendet wird, welche für ein Peptid mit Cholesterinoxidase-Aktivität kodiert mit der in SEQ ID NO 1 gezeigten DNA-Sequenz oder dazu komplementären DNA-Sequenz.

[0007] Vorzugsweise wird eine DNA verwendet, welche die in SEQ ID NO 1 gezeigte Sequenz aufweist. In dem Fachmann geläufiger Weise können jedoch degenerierte Codons durch andere Codons, welche für die gleiche Aminosäure kodieren, ersetzt werden. Zusätzlich soll die verwendete DNA eine der in SEQ ID NO 3, 4 und/oder 5 gezeigten DNA-Sequenzen aufweisen und für ein Peptid mit Cholesterinoxidase-Aktivität kodieren. Unter einem Peptid mit Cholesterinoxidase-Aktivität ist ein solches Peptid zu verstehen, welches die Oxidation von Cholesterin (5-Cholesten-3- $\beta$ -ol) zu 4-Cholesten-3-on und  $H_2O_2$  katalysiert.

[0008] Ein weiterer Gegenstand der Erfindung ist daher eine DNA, welche für ein Peptid mit Cholesterinoxidase-Aktivität kodiert mit der in SEQ ID NO 1 gezeigten DNA-Sequenz oder der dazu komplementären DNA-Sequenz.

[0009] Mit einer solchen DNA kann eine mindestens 10fach höhere Aktivität der rekombinant hergestellten Cholesterinoxidase im Rohextrakt erhalten werden als mit den bislang beschriebenen Verfahren und Cholesterinoxidasen.

[0010] Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung einer rekombinanten Cholesterinoxidase durch Transformation einer geeigneten Wirtszelle mit einer erfindungsgemäßen DNA, welche in einem geeigneten Expressionssystem vorliegt, Kultivierung der transformierten Wirtszellen und Isolierung der gebildeten Cholesterinoxidase aus dem Zytoplasma der transformierten Zellen.

[0011] Mit diesem Verfahren ist es überraschenderweise möglich, eine rekombinante Cholesterinoxidase in großer Menge und aktiver Form aus dem Zytoplasma der transformierten Wirtszelle zu erhalten. Dabei kann die verwendete DNA am 5'-Ende eine zusätzliche Nukleotidsequenz enthalten, die ein Translations-Startcodon, jedoch kein Stopcodon aufweist, wobei diese zusätzliche Nukleotidsequenz nicht zu einer Leserasterverschiebung führt und keine für die Sekretion des gebildeten rekombinanten Enzyms funktionell aktive Signalsequenz darstellt. Die Länge dieser Nukleotidsequenz beträgt etwa 3 bis 90 Basenpaare.

[0012] Vorzugsweise weist die zusätzliche Nukleotidsequenz eine der in den Sequenzprotokollen 6, 8, 10, 12, 14 und 16 gezeigten Sequenzen anstelle der nativen Signalsequenz auf.

**[0013]** Ein bevorzugter Gegenstand der Erfindung ist daher ein Verfahren zur Herstellung einer rekombinanten Cholesterinoxidase, wobei eine erfindungsgemäße DNA verwendet wird, welche am 5'-Ende eine der in SEQ ID NO 6, 8, 10, 12, 14 oder 16 gezeigten Sequenzen aufweist.

[0014] Die Transformation der für die rekombinante Herstellung verwendeten Wirtszellen erfolgt nach bekannten Verfahren (siehe z.B. Sambrook, Fritsch und Maniatis, "Molecular Cloning, A Laboratory Manual", Cold Spring Harbor Laboratory Press, Cold Spring Harbor 1989). Die transformierten Wirtszellen werden dann unter Bedingungen kultiviert, die eine Expression des Cholesterinoxidase-Gens erlauben. Je nach dem verwendeten Expressionsvektor ist hierfür in bekannter Weise gegebenenfalls die Zugabe eines Induktors (z.B. Lactose oder Isopropyl-β-D-thiogalactopyranosid (IPTG)) zum Kulturmedium, eine Temperaturerhöhung oder eine limitierte Glucosezufuhr zweckmäßig. Die Isolierung der rekombinanten Cholesterinoxidase aus dem Zytoplasma der transformierten Zellen erfolgt dann nach bekannten Verfahren.

[0015] Mit diesem Verfahren ist es möglich, die erfindungsgemäße Cholesterinoxidase als rekombinantes Enzym in einer Ausbeute von 8 - 20 U/ml zu erhalten. Die Expression des vollständigen Cholesterinoxidase-Gens, welches die Signalsequenz enthält, ergibt dagegen lediglich eine Ausbeute von unter 0,1 U/ml.

[0016] Ein bevorzugter Gegenstand der Erfindung ist eine erfindungsgemäße, für ein Peptid mit Cholesterinoxidase-Aktivität kodierende DNA, welche am 5'-Ende eine der in SEQ ID NO 6, 8, 10, 12, 14 und 16 gezeigten Sequenzen aufweist. Besonders bevorzugt sind die in den Sequenzprotokollen 18, 20, 22, 24, 26 und 29 gezeigten Sequenzen. Vorzugsweise liegen diese erfindungsgemäßen DNA-Sequenzen in einem Expressionsvektor kloniert vor. Mit Hilfe dieser DNA kann die erfindungsgemäße Cholesterinoxidase in beliebigen Mengen in den für die rekombinante Herstellung von Proteinen üblicherweise verwendeten Bakterien gewonnen werden. Vorzugsweise erfolgt die Expression in E. coli.

[0017] Ein weiterer Gegenstand der Erfindung ist daher eine rekombinante Cholesterinoxidase, welche von einer erfindungsgemäßen DNA kodiert wird und am N-terminalen Ende eine der in SEQ ID NO 7, 9, 11, 13, 15 oder 17 gezeigten Aminosäuresequenzen aufweist.

[0018] Diese rekombinante Cholesterinoxidase ist für einen enzymatischen Test zur Bestimmung von Cholesterin ebenso geeignet wie die übrigen aus dem Stand der Technik bekannten Cholesterinoxidasen. Falls erforderlich können in dem Fachmann geläufiger Weise durch in-vitro-Mutagenese zwischen diesen N-terminalen Sequenzen und der Aminosäuresequenz der reifen Cholesterin-oxidase Erkennungssequenzen für spezifische Proteasen wie z.B. der IgA-Protease, der Enterokinase oder des Faktors Xa integriert werden, so daß auch nach der zytoplasmatischen Expression der um diese N-terminalen Sequenzen verlängerten Cholesterinoxidase eine Abspaltung solcher anfusionierter N-terminaler Sequenzen möglich ist.

[0019] Ein bevorzugter Gegenstand der Erfindung ist eine rekombinante Cholesterinoxidase, welche die in SEQ ID NO 21, 23, 25, 27 oder 29 gezeigte Aminosäuresequenz aufweist, sowie die Verwendung einer solchen rekombinanten Cholesterinoxidase in einem enzymatischen Test zum Nachweis von Cholesterin. Dabei wird vorzugsweise das in der Cholesterinoxidasereaktion gebildete  $H_2O_2$  in einer nachgeschalteten Indikatorreaktion als Maß für das in der Probe vorhandene Cholesterin bestimmt.

[0020] Die in den Beispielen genannten Plasmide pUC-Chol-B2-BB (DSM 8274), pmgl-Sphl (DSM 8272) und pfl-20AT1-SD (DSM 8273) wurden am 05.05.1993 bei der Deutschen Sammlung für Zellkulturen und Mikroorganismen GmbH, Mascheroder Weg 1b, D - 3300 Braunschweig hinterlegt.

40 [0021] Die Anmeldung wird durch die folgenden Beispiele in Verbindungen mit den Sequenzprotokollen und Figuren näher erläutert.

SEQ ID NO 1 zeigt die Nukleinsäuresequenz der erfindungsgemäßen Cholesterinoxidase.

SEQ ID NO 2 zeigt die Aminosäuresequenz der erfindungsgemäßen Cholesterinoxidase.

SEQ ID NO 3 - 5 zeigen Nukleotidsequenzen aus erfindungsgemäßen, für ein Peptid mit Cholesterinoxidase-Aktivität kodierenden DNA's.

SEQ ID NO 6 - 17 zeigen die N-terminalen Sequenzen der erfindungsgemäßen rekombinanten Cholesterinoxidasegene (SEQ ID NO 6, 8, 10, 12, 14 und 16) bzw. der dazugehörigen N-terminalen Aminosäu-

resequenzen (SEQ ID NO 7, 9, 11, 13, 15 und 17).

SEQ ID NO 18 - 29 zeigen die Nukleinsäuresequenzen und dazugehörigen Aminosäuresequenzen von erfindungs-

gemäßen rekombinanten Cholesterinoxidasen.

[0022] Dabei bedeuten:

20

30

45

50

|    | Signalsequenz   | vollständige Sequenz | Konstrukt             |
|----|-----------------|----------------------|-----------------------|
|    | SEQ ID NO 6-7   | SEQ ID NO 18-19      | plac-Chol-cyt         |
| 5  | SEQ ID NO 8-9   | SEQ ID NO 20-21      | ppfl-Chol-cyt         |
| 3  | SEQ ID NO 10-11 | SEQ ID NO 22-23      | ppfl-MSN3H-Chol-cyt   |
|    | SEQ ID NO 12-13 | SEQ ID NO 24-25      | ppfl-MSN4H-Chol-cyt   |
|    | SEQ ID NO 14-15 | SEQ ID NO 26-27      | ppfl-MSN4R2K-Chol-cyt |
|    | SEQ ID NO 16-17 | SEQ ID NO 28-29      | ppfl-MVM3H-Chol-cyt   |
| 10 |                 | ı                    | ı                     |

SEQ ID NO 30 - 33

zeigen vier Oligonukleotide für die Amplifikation eines Fragments des erfindungsgemäßen Cholesterinoxidase-Gens.

SEQ ID NO 34 15

zeigt die Sequenz eines Adapteroligonukleotids für die in vitro-Mutagenese des Cholesterinoxidase-Gens gemäß Beispiel 5.

- Fig. 1 zeigt das Plasmid pUC-Chol-B2-BB.
- Fig. 2 zeigt das Plasmid plac-Chol-cyt.
- Fig. 3 zeigt das Plasmid ppfl-Chol-cyt.
- Fig. 4 zeigt das Plasmid ppfl-MSN3H-Chol-cyt.

#### Beispiel 1

#### Klonierung des Gens für Cholesterinoxidase aus Brevibacterium sterolicum

[0023] Brevibacterium sterolicum (BMTU 2407) wird in 500 ml "nutrient broth" (Difco) 20 h bei 30°C angezüchtet. Die Zellen werden durch Zentrifugation geerntet. Die so gewonnene Zellmasse wird in 20 mmol/l Tris/HCl pH 8,0 zu 0,4 g Zell-Naßgewicht/ml resuspendiert. 2,5 ml dieser Suspension werden mit 5 ml 24 % (w/v) Polyethylenglycol 6000, 2,5 ml 20 mmol/l Tris/HCl pH 8,0 und 10 mg Lysozym versetzt und 14 h bei 4°C inkubiert. Dann erfolgt die Lyse der Zellen durch Zugabe von 1 ml 20 % (w/v) SDS und 2 mg Protease K und Inkubation für 1 h bei 37°C. Diese Lösung wird mit dem gleichen Volumen 20 mmol/l Tris/HCl pH 8,0 versetzt und dann pro ml 1 g CsCl sowie 0,8 mg Ethidiumbromid zugegeben. Diese Lösung wird durch Ultrazentrifugation 24 h bei 40.000 Upm in einem TV850 Vertikal-Rotor (DuPont) aufgetrennt. Die DNA-Bande wird dann mit einer Injektionsspritze-abgezogen. Die Entfernung des Ethidiumbromids und Ethanol-Fällung der DNA erfolgt wie bei Sambrook et al., Molecular Cloning, A Laboratory Manual (1989) beschrieben. [0024] 7 µg der so gewonnenen DNA werden partiell mit der Restriktionsendonuklease NlallI (New England Biolab) geschnitten, auf einem 0,8 % Agarosegel elektrophoretisch aufgetrennt und ein Größenbereich von ca. 2 - 12 kb ausgeschnitten. Die DNA-Fragmente werden aus dem Gel isoliert, mit Sphl geschnitten und anschließend in einen mit alkalischer Phosphatase aus Kälberdärm behandelten Plasmidvektor pUC19 ligiert. Dieser Ligationsansatz wird in kompetente E. coli K12 XL1-blue (Stratagene, Katalog-Nr. 200268) transformiert. Die transformierten Zellen werden auf Agarplatten mit LB-Medium, das 100 μg/ml Ampicillin enthält, ausplattiert und über Nacht bei 37°C inkubiert. Die hochgewachsenen Kolonien werden auf Nitrocellulosefilter (Schleicher und Schüll) übertragen, durch Behandlung mit Toluol/ Chloroform-Dampf lysiert und die Filter mit der Kolonieseite auf Indikatorplatten (s.u.) übertragen. Auf diesen Indikatorplatten erfolgt der Nachweis auf eine Cholesterinoxidase-Aktivität durch 15- bis 30-minütige Inkubation bei Raumtemperatur.

[0025] Klone, die eine Farbreaktion zeigen, werden ausgewählt und isoliert. Zur Kontrolle werden diese E. coli-Klone auf einer Agarplatte mit LB-Medium, das 100 µg/ml Ampicillin enthält, ausgestrichen, über Nacht bei 37°C inkubiert, die angewachsenen Kolonien zur Verifizierung nochmals auf zwei verschiedene Nitrozellulosefilter transferiert und wie oben beschrieben mit Toluol/Chloroformdampf aufgeschlossen. Ein Filter wird wieder auf eine der oben beschriebenen Indikatorplatten aufgelegt, der andere Falter auf eine Indikatorplatte ohne Cholesterin. Eine positive Farbreaktion zeigt sich nur auf den kompletten Indikatorplatten mit dem Substrat Cholesterin. Damit wird nachgewiesen, daß die durch den entsprechenden E. coli-Klon hervorgerufene Farbreaktion tatsächlich durch aktive Cholesterinoxidase verursacht wird.

4

20

25

30

40

#### Herstellung der Indikatorplatten:

[0026] Für den Plattentest zur Bestimmung von Cholesterinoxidase-Aktivität werden 100 ml 2%ige low-melting-point-Agarose (Sea Plaque BIOzym 50113) aufgeschmolzen und bei einer Temperatur von 42°C eine vorgewärmte Lösung von:

- 48 mg 4-Aminoantipyrin (Boehringer Mannheim GmbH, Katalog-Nr. 073474)
- 306 mg EST (N-Ethyl-N-sulfoethyl-3-methylanilinkaliumsalz (Boehringer Mannheim GmbH, Katalog-Nr. 586854))
- 2,5 mg Meerrettichperoxidase Reinheitsgrad II (ca. 260 U/mg (Boehringer Mannheim GmbH, Katalog-Nr. 005096))
- 60 μl Natriumazidlösung (20%ig)
- 10 ml 1 mol/l Kaliumphosphat pH 7,2
- 150 mg Cholsäurenatriumsalz (Merck, Katalog-Nr. 12448)
- 10 ml Cholesterinsubstratlösung (s. u.)
- H<sub>2</sub>O ad 100 ml

15

10

zu der aufgeschmolzenen Agarose gegeben, vorsichtig gemischt, jeweils 10 ml in Petrischalen gegossen und zur Aufbewahrung dunkel gehalten.

#### Cholesterinsubstratlösung:

20

25

30

35

[0027] 500 mg Cholesterin (Boehringer Mannheim GmbH, Katalog-Nr. 121312) werden in 12,5 ml 1-Propanol (Merck, Katalog-Nr. 997) gelöst, nach Zugabe von 10 g Thesit (Boehringer Mannheim GmbH, Katalog-Nr. 006190) gut gemischt und  $H_2O$  ad 100 ml zugegeben. Die Substratlösung kann bei Raumtemperatur mehrere Monate aufbewahrt werden.

#### Beispiel 2

#### Charakterisierung des Cholesterinoxidase-Gens

[0028] Das Plasmid eines gemäß Beispiel 1 erhaltenen Klons (pUC-Chol-B2) wird nach Standardmethoden isoliert und einer Restriktionskartierung mit den Restriktionsendonukleasen BamHI, EcoRI, KpnI, XhoI, PstI unterzogen. Es zeigt sich, daß ein DNA-Fragment aus dem Genom von Brevibacterium in der Größe von ca. 5,5 kb in dem Plasmid pUC-Chol-B2 insertiert ist. Durch Subklonierung verschiedener Teilfragmente dieses 5,5 kb-Stückes und anschließender Bestimmung der Cholesterin-oxidase-Aktivität der erhaltenen E. coli-Klone kann das Cholesterinoxidase-Gen auf ein BamHI-Fragment von 2,3 kb-Größe eingeengt werden. Das Plasmid mit diesem Fragment wird pUC-Chol-B2-BB genannt (Fig. 1). Die DNA-Sequenz dieses Fragmentes wird bestimmt und auf einem Leseraster, das für Cholesterinoxidase kodiert, hin untersucht. Die Sequenz dieses Leserahmens für die reife Cholesterinoxidase ist in SEQ ID NO 1 wiedergegeben.

#### Beispiel 3

40

45

50

55

#### Konstruktion eines Plasmids zur Expression des Cholesterinoxidase-Gens mit heterologer Signalsequenz

[0029] Ein Vergleich der N-terminalen Aminosäuresequenz von Cholesterinoxidase, die aus Brevibacterium isoliert wurde, mit dem gesamten für Cholesterinoxidase kodierenden Leseraster von pUC-Chol-B2-BB zeigt, daß im reifen Protein die ersten 52 kodierten Aminosäuren der Gensequenz fehlen. Diese 52 Aminosäuren zeigen die Struktur einer typischen Exportsignalsequenz gram-positiver Prokaryonten (von Heijne, Biochim. Biophys. Acta 947 (1988), 307 - 333). Für die Konstruktion von rekombinanten Cholesterinoxidase-Genen, bei denen diese Signalsequenz gegen andere Sequenzen ersetzt ist, wird zunächst ein 387 bp großes DNA-Fragment aus dem Plasmid pUC-Chol-B2-BB unter Verwendung der in SEQ ID NO 30 und 31 gezeigten Oligonukleotide mittels PCR amplifiziert. Dieses Fragment enthält den für den N-terminalen Teil der reifen Oxidase kodierenden Bereich mit einer neuen Sphl-Schnittstelle direkt vor dem N-Terminus der Aminosäuresequenz des reifen Enzyms. Dieses PCR-Fragment wird mit Sphl und Pstl gespalten und zusammen mit einem Pstl EcoRI-Fragment aus pUC-Chol-B2-BB, das den restlichen Anteil des Cholesterinoxidase-Gens enthält, in den mit Sphl und EcoRI gespaltenen Expressionsvektor pmglSphl ligiert und so der Vektor pmgl-Chol-SB erhalten. In diesem Vektor enthält das Cholesterinoxidase-Gen eine in E. coli funktionelle Signalsequenz aus Salmonella typhimurium (beschrieben in WO 88/093773).

#### Beispiel 4

5

15

20

25

30

35

40

45

50

55

# Konstruktion eines Plasmids zur Expression des Cholesterin-oxidase-Gens ohne Signalpeptid-kodierende Sequenz unter Kontrolle des lacUV5-Promotors

[0030] Aus dem Plasmid pmgl-Chol-SB wird durch Behandlung mit den Restriktionsendonukleasen Sphl und BamBl ein DNA-Fragment von ca. 1,85 kb Größe herausgeschnitten, das den gesamten Anteil der kodierenden Sequenz der reifen Cholesterinoxidase, aber nicht die für das Signal-Peptid kodierende Sequenz enthält. Dieses Fragment wird in den vorher mit Sphl und BamBl geschnittenen Plasmidvektor pUC19 eingesetzt. In dem so erhaltenen Plasmid plac-Chol-cyt liegt das Cholesterin-oxidase-Gen im korrekten Leseraster an die ersten zehn Codons des lacZ'-Gens aus pUC19 anfusioniert vor und liegt unter der Kontrolle des lacUV5-Promotors (Fig. 2).

#### Beispiel 5

#### Konstruktion eines Plasmids zur Expression des Cholesterin-oxidase-Gens ohne Signalpeptid-kodierende Sequenz unter Kontrolle des sauerstoffregulierten pfl-Promotors

[0031] Durch PCR-Technik wird aus dem Plasmid plac\_Chol\_cyt unter Verwendung der in SEQ ID NO 32 und 33 dargestellten Oligonukleotide ein DNA-Fragment von 432 bp Größe erzeugt, das vor dem ATG-Startcodon eine Clal-Schnittstelle enthält. Dieses PCR-Fragment wird mit Clal und Pstl geschnitten. Durch Behandlung mit den Restriktionsendonukleasen Pstl und BamHl wird aus dem Plasmid plac-Chol-cyt weiterhin ein Fragment mit dem restlichen C-terminalen Anteil des Cholesterinoxidase-Gens herausgeschnitten. Beide Fragmente werden simultan in den mit BamHl und Clal gespaltenen Expressionsvektor pfl 20AT1-SD einligiert. Das korrekte Ligationsprodukt enthält nun den Leserahmen der reifen Cholesterinoxidase anfusioniert an die ersten zehn Codons des lacZ'-Gens aus pUC19 unter der Kontrolle des sauerstoffregulierten pfl-Promotors (Fig. 3). Dieses Plasmid trägt die Bezeichnung ppfl-Chol-cyt.

#### Beispiel 6

# Konstruktion eines Plasmids zur Expression des Cholesterin-oxidase-Gens mit alternativer N-terminaler Fusionssequenz

[0032] Zur Entfernung der im 3' untranslatierten Bereich des Cholesterinoxidase-Gens gelegenen Sphl-Schnittstelle des Plasmids ppfl-Chol-cyt wird die Plasmid-DNA mit Smal und EcoRV geschnitten und wieder religiert. 100 ng des so entstandenen Plasmids ppfl-Chol-cyt-Aterm werden dann mit den Restriktionsenzymen Clal und Sphl gespalten. Das entstandende 4,76 kb große DNA-Fragment wird in low-melting-point Agarose elektrophoretisch aufgetrennt, ausgeschnitten und eluiert (Glassmilk®-Kit, Bio 101). 100ng des so gereinigten DNA-Fragments werden mit 50 pmol eines Adapter-Oligonukleotids mit der in SEQ ID NO 34 dargestellten Sequenz (wobei "N" eine äquimolare Mischung aller 4 Basen bedeutet) versetzt und 2 Stunden bei 37°C mit T4-DNA-Ligase behandelt. Anschließend wird der Ansatz mit einer Mischung aus 4 dNTP's (Endkonz. 0,125 mmol/l) versetzt und 40 Minuten bei 37°C mit Klenow-DNA-Polymerase behandelt. Die so erhaltene Plasmid-DNA wird in E. coli XL1-blue (Stratagene) transformiert. Mit Hilfe des in Beispiel 1 beschriebenen Kolonie-Aktivitätstest werden einzelne Kolonien von erhaltenen Klonen bezüglich ihrer Cholesterinoxidase-Aktivität verglichen. Klone mit hoher Cholesterinoxidase-Aktivität werden isoliert und die Plasmid-DNA durch Restriktionsanalyse und DNA-Sequenzierung charakterisiert. Für das Plasmid eines Klons mit besonders hoher Cholesterinoxidase-Aktivität wird die Sequenz SEQ ID NO 23 ermittelt. Das betreffende Plasmid wird ppfl-MSM3H-Chol-cyt-Aterm genannt. Es ist zu\_erwarten, daß in der dargestellten Art und Weise nach Isolierung und Charakterisierung genügend vieler verschiedener Klone auch noch weitere für eine besonders hohe Expression geeignete Klone gefunden werden können. Zur Wiedervervollständigung des 3'-untranslatierten Anteils wird das Plasmid ppfl-MSN3H-Chol-cyt-Aterm mit Clal und Xhol geschnitten. Ein DNA-Fragment von ca. 1,1kb mit der Translationsinitiationsregion und dem N-terminalen Anteil des Cholesterinoxidase-Gens wird isoliert und in das ebenfalls mit Clal und Xhol geschnittene Plasmid ppfl-Chol-cyt einligiert (Fig. 4). Das erhaltene Plasmid trägt die Bezeichnung ppfl-MSN3H-Chol-cyt.

#### Beispiel 7

#### Vergleich der Bildung von Cholesterinoxidase durch die verschiedenen Expressionsplasmide in E. coli

[0033] Die Plasmide pUC-Chol-B2, pUC-Chol-B2-BB, pmgl-Chol-SB, plac-Chol-cyt, ppfl-MSN3H-Chol-cyt werden jeweils in E. coli K12 XL1-blue transformiert. Zum Vergleich der gebildeten Enzymmenge werden die Klone jeweils 15 Stunden bei 30°C in LB-Medium, das 200µg/ml Ampicillin und folgende weiteren Zusätze

enthält, angezogen:

10

25

30

35

40

45

50

55

Klone mit den Plasmiden pUC-Chol-B2, pUC-Chol-B2-BB, plac-Chol-cyt, bei denen das Cholesterinoxidase-Gen jeweils unter der Kontrolle des lacUV5-Promotors steht, bekommen zusätzlich 1 mmol/l IPTG, der Klon mit dem Plasmid pmgl-Chol-SB mit dem Glucose-reprimierten mgl-Promotor erhält keinen weiteren Zusatz, Klone mit den Plasmiden ppfl-Chol-cyt, ppfl-MSN3H-Chol-cyt mit dem sauerstoffregulierten pfl-Promotor erhalten 0,4% Glucose und werden in Stickstoff begasten verschlossenen Serumflaschen angezogen, wobei das Medium mit KOH auf pH 7,0 eingestellt wurde. Nach erfolgter Anzucht wird die erreichte Zelldichte durch photometrische Messung der Trübung bei 420 nm bestimmt. Die Zellen von 1 ml Kulturbrühe werden dann durch Zentrifugation in einer Mikrozentrifuge bei 10.000 g sedimentiert und wieder in 0,5 ml  $\rm H_2O$  bidest resuspendiert. Der Zellaufschluß erfolgt durch 2 x 30 Sekunden Ultraschallbehandlung (Branson Sonfier, Modell 450, Standard-Microtip, Konisch). Die so erhaltenen Zellextrakte werden nach entsprechender Verdünnung in den folgenden Enzymtest eingesetzt: Hierzu werden in Quartz-Küvetten pipettiert: 3 ml Kaliumphosphatpuffer (0,5 mol/l, pH 7,5), der 0,4 % Thesit® (Boehringer Mannheim GmbH, Katalog-Nr. 006190) enthält,

0,1 ml Cholesterinlösung (0,4 % Cholesterin, 10 % 1-Propanol, 10 % Thesit®),

 $0.02 \text{ ml H}_2\text{O}_2$  (0.49 mol/l in bidest. Wasser),

es wird gemischt, nach Zugabe von 0,02 ml Katalase (aus Rinderleber, 20 mg Protein/ml, spezifische Aktivität ca. 65.000 U/mg, Boehringer Mannheim GmbH, Katalog-Nr. 0156744 unmittelbar vor Messung mit eiskaltem Kaliumphosphatpuffer, der 0,4 % Thesit enthält, auf 0,075 - 0,15 U/ml verdünnt) erneut gemischt, die Lösung auf eine Temperatur von 25°C gebracht und anschließend die Reaktion durch Zugabe von 0,05 ml Probelösung gestartet. Nach vorsichtigem Mischen wird die Absorptionsänderung bei 240 nm verfolgt und die Aktivität der Cholesterinoxidase aus dem linearen Bereich der Absorptionskurve ermittelt:

wobei  $\in$  240 = 15,5 mmol<sup>-1</sup> x 1 x cm<sup>-1</sup> ist.

[0034] Die erhaltenen Werte für Zelldichte und Enzymaktivität sind in Tabelle 1 dargestellt.

|                     | Tabelle 1          |                     |              |
|---------------------|--------------------|---------------------|--------------|
| Klon/Plasmid        | Zelldichte (E 420) | Units je Zelldichte | Units pro ml |
| pUC-Chol-B2         | 7,0                | 0,007               | 0,049        |
| pUC-Chol-B2-BB      | 8,4                | 0,068               | 0,571        |
| pmgl-Chol-SB        | 1,3                | 0,014               | 0,018        |
| plac-Chol-cyt       | 8,6                | 0,725               | 6,235        |
| ppfl-Chol-cyt       | 1,25               | 1,675               | 2,094        |
| ppfl-MSN3H-Chol-cyt | 3,7                | 1,463               | 5,413        |

[0035] Die erhaltenen Ergebnisse zeigen, daß mit solchen Konstrukten, die eine zytoplasmatische Expression der Cholesterinoxidase bewirken, eine deutlich höhere Aktivität der rekombinant hergestellten Cholesterinoxidase erhalten werden kann als mit solchen Konstrukten, die zu einer Sekretion der rekombinant hergestellten Cholesterinoxidase führen.

SEQUENZPROTOKOLL

#### [0036]

(1) ALGEMEINE INFORMATION:

(i) ANMELDER:

(A) NAME: Boehringer Mannheim GmbH

|    | (B) STRASSE: Sandhofer Str. 116                                                                                                                                                                   |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | (C) ORT: Mannheim                                                                                                                                                                                 |
|    | (E) LAND: Deutschland                                                                                                                                                                             |
|    | (F) POSTLEITZAHL: D - 6800                                                                                                                                                                        |
| 5  | (ii) ANMELDETITEL: Cholesterinoxidase aus Brevibacterium sterolicum                                                                                                                               |
|    | (iii) ANZAHL DER SEQUENZEN: 34                                                                                                                                                                    |
| 10 | (iv) COMPUTER-LESBARE FORM:                                                                                                                                                                       |
| 15 | <ul><li>(A) DATENTRÄGER: Floppy disk</li><li>(B) COMPUTER: IBM PC compatible</li><li>(C) BETRIEBSSYSTEM: PC-DOS/MS-DOS</li><li>(D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPA)</li></ul> |
|    | (2) INFORMATION ZU SEQ ID NO: 1:                                                                                                                                                                  |
| 20 | (i) SEQUENZ CHARAKTERISTIKA:                                                                                                                                                                      |
|    | (A) LANGE: 1683 Basenpaare                                                                                                                                                                        |
|    | (B) ART: Nukleinsäure                                                                                                                                                                             |
|    | (C) STRANGFORM: Einzel                                                                                                                                                                            |
|    | (D) TOPOLOGIE: linear                                                                                                                                                                             |
| 25 | _                                                                                                                                                                                                 |
|    | (ii) ART DES MOLEKÜLS: DNS (genomisch)                                                                                                                                                            |
|    | (NA NACDIZNAL C.                                                                                                                                                                                  |
|    | (ix) MERKMALE:                                                                                                                                                                                    |
| 30 | (A) NAME/SCHLÜSSEL: CDS                                                                                                                                                                           |
|    | (B) LAGE: 11683                                                                                                                                                                                   |
|    |                                                                                                                                                                                                   |
|    | (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:                                                                                                                                                           |
|    |                                                                                                                                                                                                   |
| 35 |                                                                                                                                                                                                   |
|    |                                                                                                                                                                                                   |
|    |                                                                                                                                                                                                   |
|    |                                                                                                                                                                                                   |
| 40 |                                                                                                                                                                                                   |
|    |                                                                                                                                                                                                   |
|    |                                                                                                                                                                                                   |
|    |                                                                                                                                                                                                   |
| 45 |                                                                                                                                                                                                   |
| -  |                                                                                                                                                                                                   |
|    |                                                                                                                                                                                                   |
|    |                                                                                                                                                                                                   |
|    |                                                                                                                                                                                                   |
| 50 |                                                                                                                                                                                                   |
|    |                                                                                                                                                                                                   |
|    |                                                                                                                                                                                                   |
|    |                                                                                                                                                                                                   |
| 55 |                                                                                                                                                                                                   |
|    |                                                                                                                                                                                                   |

| 5  | TCG<br>Ser<br>1   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | CCG<br>Pro<br>15  |                   | 48  |
|----|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----|
| 5  |                   |                   |                   |                   | Phe               |                   |                   |                   |                   |                   |                   |                   |                   |                   | GAG<br>Glu        |                   | 96  |
| 10 | ATG<br>Met        | CTG<br>Leu        | GAC<br>Asp<br>35  | GCC<br>Ala        | ACT<br>Thr        | TGG<br>Trp        | GTC<br>Val        | TGC<br>Cys<br>40  | TCG<br>Ser        | CCC<br>Pro        | AAG<br>Lys        | ACG<br>Thr        | CCG<br>Pro<br>45  | CAG<br>Gln        | GAT<br>Asp        | GTC<br>Val        | 144 |
| 15 | GTT<br>Val        | CGC<br>Arg<br>50  | CTT<br>Leu        | GCC<br>Ala        | AAC<br>Asn        | TGG<br>Trp        | GCG<br>Ala<br>55  | CAC<br>His        | GAG<br>Glu        | CAC<br>His        | GAC<br>Asp        | TAC<br>Tyr<br>60  | AAG<br>Lys        | ATC<br>Ile        | CGC<br><b>Arg</b> | CCG<br>Pro        | 192 |
|    | CGC<br>Arg<br>65  | GGC<br>Gly        | GCG<br>Ala        | ATG<br>Met        | CAC<br>His        | GGC<br>Gly<br>70  | TGG<br>Trp        | ACC<br>Thr        | CCG<br>Pro        | CTC<br>Leu        | ACC<br>Thr<br>75  | GTG<br>Val        | GAG<br>Glu        | AAG<br>Lys        | GGG<br>Gly        | GCC<br>Ala<br>80  | 240 |
| 20 | AAC<br>Asn        | GTC<br>Val        | GAG<br>Glu        | AAG<br>Lys        | GTG<br>Val<br>85  | ATC<br>Ile        | CTC<br>Leu        | GCC<br>Ala        | GAC<br>Asp        | ACG<br>Thr<br>90  | ATG<br>Met        | ACG<br>Thr        | CAT<br>His        | CTG<br>Leu        | AAC<br>Asn<br>95  | Gly               | 288 |
| 25 | ATC<br>Ile        | ACG<br>Thr        | GTG<br>Val        | AAC<br>Asn<br>100 | ACG<br>Thr        | GGC<br>Gly        | GGC<br>Gly        | CCC<br>Pro        | GTG<br>Val<br>105 | GCT<br>Ala        | ACC<br>Thr        | GTC<br>Val        | ACC<br>Thr        | GCC<br>Ala<br>110 | GGT<br>Gly        | GCC<br>Ala        | 336 |
|    |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | GAC<br>Asp        |                   | 384 |
| 30 | GGC<br>Gly        | TGG<br>Trp<br>130 | GCC<br>Ala        | AAC<br>Asn        | CTG<br>Leu        | CCC<br>Pro        | GCT<br>Ala<br>135 | CCG<br>Pro        | GGT<br>Gly        | GTG<br>Val        | CTG<br>Leu        | TCG<br>Ser<br>140 | ATC<br>Ile        | GGT<br>Gly        | GGC<br>Gly        | GCC<br>Ala        | 432 |
| 35 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | CAG<br>Gln        |                   | 480 |
|    | ACG<br>Thr        | CTG<br>Leu        | CCC<br>Pro        | GGT<br>Gly        | CAC<br>His<br>165 | ACC<br>Thr        | TAC<br>Tyr        | GGT<br>Gly        | TCG<br>Ser        | CTG<br>Leu<br>170 | AGC<br>Ser        | AAC<br>Asn        | CTG<br>Leu        | GTC<br>Val        | ACC<br>Thr<br>175 | GAG<br>Glu        | 528 |
| 40 | CTG<br>Leu        | ACC<br>Thr        | GCG<br>Ala        | GTC<br>Val<br>180 | GTC<br>Val        | TGG<br>Trp        | AAC<br>Asn        | ejå<br>eec        | ACC<br>Thr<br>185 | ACC<br>Thr        | TAC<br>Tyr        | GCA<br>Ala        | CTC<br>Leu        | GAG<br>Glu<br>190 | ACG<br>Thr        | TAC<br>Tyr        | 576 |
| 45 | CAG<br>Gln        | CGC<br>Arg        | AAC<br>Asn<br>195 | GAT<br>Asp        | CCT<br>Pro        | CGG<br>Arg        | ATC<br>Ile        | ACC<br>Thr<br>200 | CCA<br>Pro        | CTG<br>Leu        | CTC<br>Leu        | ACC<br>Thr        | AAC<br>Asn<br>205 | CTC<br>Leu        | GGG<br>Gly        | CGC<br>Arg        | 624 |
| 50 | TGC<br>Cys        | TTC<br>Phe<br>210 | CTG<br>Leu        | ACC<br>Thr        | TCG<br>Ser        | GTG<br>Val        | ACG<br>Thr<br>215 | ATG<br>Met        | CAG<br>Gln        | GCC<br>Ala        | GGC<br>Gly        | CCC<br>Pro<br>220 | AAC<br>Asn        | TTC<br>Phe        | CGT<br>Arg        | CAG<br>Gln        | 672 |
|    | CGG<br>Arg<br>225 | TGC<br>Cys        | CAG<br>Gln        | AGC<br>Ser        | TAC<br>Tyr        | ACC<br>Thr<br>230 | GAC<br>Asp        | ATC<br>Ile        | CCG<br>Pro        | TGG<br>Trp        | CGG<br>Arg<br>235 | GAA<br>Glu        | CTG<br>Leu        | TTC<br>Phe        | GCG<br>Ala        | CCG<br>Pro<br>240 | 720 |

|     | AAG<br>Lys        | GGC<br>Gly        | GCC<br>Ala  | GAC<br>Asp        | GGC<br>Gly<br>245 | CGC<br>Arg        | ACG<br>Thr | TTC<br>Phe | GAG<br>Glu        | AAG<br>Lys<br>250 | TTC<br>Phe        | GTC<br>Val | GCG<br>Ala | GAA<br>Glu        | TCG<br>Ser<br>255 | GJ Y<br>GGC       | 768  |
|-----|-------------------|-------------------|-------------|-------------------|-------------------|-------------------|------------|------------|-------------------|-------------------|-------------------|------------|------------|-------------------|-------------------|-------------------|------|
| 5   | GCC               | GCC<br>Ala        | Glu         | GCG<br>Ala<br>260 | ATC<br>Ile        | TGG<br>Trp        | TAC<br>Tyr | Pro        | TTC<br>Phe<br>265 | ACC<br>Thr        | GAG<br>Glu        | AAG<br>Lys | CCG<br>Pro | TGG<br>Trp<br>270 | ATG<br>Met        | AAG<br>Lys        | 816  |
| 10  |                   | TGG<br>Trp        |             |                   |                   |                   |            |            |                   |                   |                   |            |            |                   |                   |                   | 864  |
| 15  |                   | CTC<br>Leu<br>290 |             |                   |                   |                   |            |            |                   |                   |                   |            |            |                   |                   |                   | 912  |
| , , |                   | GTC<br>Val        |             |                   |                   |                   |            |            |                   |                   |                   |            |            |                   |                   |                   | 960  |
| 20  |                   | ATC<br>Ile        |             |                   |                   |                   |            |            |                   |                   |                   |            |            |                   |                   |                   | 1008 |
| 25  |                   | CCG<br>Pro        |             |                   |                   |                   |            |            |                   |                   |                   |            |            |                   |                   |                   | 1056 |
|     |                   | GCG<br>Ala        |             |                   |                   |                   |            |            |                   |                   |                   |            |            |                   |                   |                   | 1104 |
| 30  |                   | TAC<br>Tyr<br>370 |             |                   |                   |                   |            |            |                   |                   |                   |            |            |                   |                   |                   | 1152 |
| 35  |                   | GTC<br>Val        |             |                   |                   |                   |            |            |                   |                   |                   |            |            |                   |                   |                   | 1200 |
|     |                   | TGG<br>Trp        |             |                   |                   |                   |            |            |                   |                   |                   |            |            |                   |                   |                   | 1248 |
| 40  |                   | CTC<br>Leu        |             |                   |                   |                   |            |            |                   |                   |                   |            |            |                   |                   | GCA<br>Ala        | 1296 |
| 45  |                   | GAC<br>Asp        |             |                   |                   |                   |            |            |                   |                   |                   |            |            |                   |                   |                   | 1344 |
|     |                   | CCG<br>Pro<br>450 |             |                   |                   |                   |            |            |                   |                   |                   |            |            |                   |                   |                   | 1392 |
| 50  | GTT<br>Val<br>465 | CTC<br>Leu        | GGT.<br>Gly | GTT<br>Val        | CCG<br>Pro        | GGC<br>Gly<br>470 | ACC<br>Thr | CCC<br>Pro | GGC<br>Gly        | ATG<br>Met        | TTC<br>Phe<br>475 | GAG<br>Glu | TTC<br>Phe | TAC<br>Tyr        | CGC<br>Arg        | GAG<br>Glu<br>480 | 1440 |
| 55  |                   |                   |             |                   |                   |                   |            |            |                   |                   |                   |            |            |                   |                   | TTC<br>Phe        | 1488 |

|    |                   |                   |              | TGG<br>Trp<br>500               |                |                   |                   |            |            |            |                   |                   |            |            |            |                   | 15 | 36 |
|----|-------------------|-------------------|--------------|---------------------------------|----------------|-------------------|-------------------|------------|------------|------------|-------------------|-------------------|------------|------------|------------|-------------------|----|----|
| 5  |                   |                   |              | ATC<br>Ile                      |                |                   |                   |            |            |            |                   |                   |            |            |            |                   | 15 | 84 |
| 10 | GTC<br>Val        | CCG<br>Pro<br>530 | ACG<br>Thr   | ACC<br>Thr                      | GAG<br>Glu     | AAC<br>Asn        | TGG<br>Trp<br>535 | GAC<br>Asp | ACC<br>Thr | GCG<br>Ala | CGC<br>Arg        | GCT<br>Ala<br>540 | CGG<br>Arg | TAC<br>Tyr | AAC<br>Asn | CAG<br>Gln        | 16 | 32 |
| 15 | ATC<br>Ile<br>545 | gac<br>Asp        | CCG<br>Pro   | CAT<br>His                      | CGC<br>Arg     | GTG<br>Val<br>550 | Phe               | ACC<br>Thr | AAC<br>Asn | GGA<br>Gly | TTC<br>Phe<br>555 | ATG<br>Met        | GAC<br>Asp | AAG<br>Lys | CTG<br>Leu | CTT<br>Leu<br>560 | 16 | 80 |
|    | CCG<br>Pro        |                   |              |                                 |                |                   |                   |            |            |            |                   |                   |            |            | :          |                   | 16 | 83 |
| 20 | (2) IN            |                   |              |                                 |                |                   |                   |            |            |            |                   |                   |            |            |            |                   |    |    |
| 25 | (1,               | (A)<br>(B)        | LANG<br>ART: | Z CHA<br>GE: 56<br>Amin<br>OLOG | 31 Am<br>osäur | inosäu<br>e       |                   |            |            |            |                   |                   |            |            |            |                   |    |    |
| 30 | •                 | •                 |              | MOL!                            |                |                   |                   | EQ ID      | NO: 2      | ::         |                   |                   |            |            |            |                   |    |    |
| 35 |                   |                   |              |                                 |                |                   |                   |            |            |            |                   |                   |            |            |            |                   |    |    |
| 40 |                   |                   |              |                                 |                |                   |                   |            |            |            |                   |                   |            |            |            |                   |    |    |
| 45 |                   |                   |              |                                 |                |                   |                   |            |            |            |                   |                   |            |            |            |                   |    |    |
| 50 |                   |                   |              |                                 |                |                   |                   |            |            |            |                   |                   |            |            |            |                   |    |    |

|    | Ser<br>1   | Thr        | Gly        | Pro        | Val<br>5   | Ala        | Pro               | Leu               | Pro        | Thr<br>10  | Pro        | Pro        | Asn        | Phe        | Pro<br>15  | Asn        |
|----|------------|------------|------------|------------|------------|------------|-------------------|-------------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 5  | Asp        | Ile        | Ala        | Leu<br>20  | Phe        | Gln        | Gln               | Ala               | Tyr<br>25  | Gln        | Asn        | Trp        | Ser        | Lys<br>30  | Glu        | Ile        |
|    | Met        | Leu        | Asp<br>35  | Ala        | Thr        | Trp        | Val               | Cys<br>40         | Ser        | Pro        | Lys        | Thr        | Pro<br>45  | Gln        | Asp        | Val        |
| 10 | Val        | Arg<br>50  | Leu        | Ala        | Asn        | Trp        | Ala<br>55         | Hiś               | Glu        | His        | Asp        | Tyr<br>60  | Lys        | Ile        | Arg        | Pro        |
|    | Arg<br>65  | Gly        | Ala        | Met        | His        | Gly<br>70  | Trp               | Thr               | Pro        | Leu        | Thr<br>75  | Val        | Glu        | Lys        | Gly        | Ala<br>80  |
| 15 | Asn        | Val        | Glu        | Lys        | Val<br>85  | Ile        | Leu               | Ala               | Asp        | Thr<br>90  | Met        | Thr        | His        | Leu        | Asn<br>95  | Gly        |
| 90 | Ile        | Thr        | Val        | Asn<br>100 | Thr        | Gly        | Gly               | Pro               | Val<br>105 | Ala        | Thr        | Val        | Thr        | Ala<br>110 | Gly        | Ala        |
| 20 | Gly        | Ala        | Ser<br>115 | Ile        | Glu        | Ala        | Ile               | <b>Val</b><br>120 | Thr        | Glu        | Leu        | Gln        | Lys<br>125 | His        | Asp        | Leu        |
| 25 | Gly        | Trp<br>130 | Ala        | Asn        | Leu        | Pro        | <b>Ala</b><br>135 | Pro               | Gly        | Val        | Leu        | Ser<br>140 | Ile        | Gly        | Gly        | Ala        |
|    | Leu<br>145 | Ala        | Val        | Asn        | Ala        | His<br>150 | Gly               | Ala               | Àla        | Leu        | Pro<br>155 | Ala        | Val        | Gly        | Gln        | Thr<br>160 |
| 30 | Thr        | Leu        | Pro        | Gly        | His<br>165 | Thr        | Tyr               | Gly               | Ser        | Leu<br>170 | Ser        | Asn        | Leu        | Val        | Thr<br>175 | Glu        |
|    | Leu        | Thr        | Ala        | Val<br>180 | Val        | Trp        | Asn               | Gly               | Thr<br>185 | Thr        | Tyr        | Ala        | Leu        | Glu<br>190 | Thr        | Tyr        |
| 35 | Gln        | Arg        | Asn<br>195 | Asp        | Pro        | Arg        | Ile               | Thr<br>200        | Pro        | Leu        | Leu        | Thr        | Asn<br>205 | Leu        | Gly        | Arg        |
|    | Cys        | Phe<br>210 | Leu        | Thr        | Ser        | Val        | Thr<br>215        | Met               | Gln        | Ala        | Gly        | Pro<br>220 | Asn        | Phe        | Arg        | Gln        |
| 40 | Arg<br>225 | Cys        | Gln        | Ser        | Tyr        | Thr<br>230 | Asp               | Ile               | Pro        | Trp        | Arg<br>235 | Glu        | Leu        | Phe        | Ala        | Pro<br>240 |
|    | Lys        | Gly        | Ala        | Asp        | Gly<br>245 | Arg        | Thr               | Phe               | Glu        | Lys<br>250 | Phe        | Val        | Ala        | Glu        | Ser<br>255 | Gly        |
| 45 | Gly        | Ala        | Glu        | Ala<br>260 | Ile        | Trp        | Tyr               | Pro               | Phe<br>265 | Thr        | Glu        | Lys        | Pro        | Trp<br>270 | Met        | Lys        |

|     | Val        | Trp        | Thr<br>275 |            | Ser        | Pro            | Thr        | Lys<br>280 | Pro        | Asp        | Ser        | Ser               | Asn<br>285 | Glu        | Val        | Gly               |
|-----|------------|------------|------------|------------|------------|----------------|------------|------------|------------|------------|------------|-------------------|------------|------------|------------|-------------------|
| 5   | Ser        | Leu<br>290 |            | Ser        | Ala        | Gly            | Ser<br>295 | Leu        | Val        | Gly        | Lys        | Pro<br>300        | Pro        | Gln        | Ala        | Arg               |
| 10  | Glu<br>305 | Val        | Ser        | Gly        | Pro        | Tyr<br>310     | Asn        | Tyr        | Ile        | Phe        | Ser<br>315 | Asp               | Asn        | Leu        | Pro        | Glu<br>320        |
|     | Pro        | Ile        | Thr        | Asp        | Met<br>325 | Ile            | Gly        | Ala        | Ile        | Asn<br>330 | Ala        | Gly               | Asn        | Pro        | Gly<br>335 | Ile               |
| 15  | Ala        | Pro        | Leu        | Phe<br>340 | Gly        | Pro            | Ala        | Met        | Tyr<br>345 | Glu        | Ile        | Thr               | Lys        | Leu<br>350 | Gly        | Leu               |
| •   | Ala        | Ala        | Thr<br>355 | Asn        | Ala        | Asn            | Asp        | Ile<br>360 | Trp        | Gly        | Trp        | Ser               | Lys<br>365 | Asp        | Val        | Gln               |
| 20  | Phe        | Tyr<br>370 | Ile        | Lys        | Ala        | Thr            | Thr<br>375 | Leu        | Arg        | Leu        | Thr        | Glu<br>380        | Gly        | Gly        | GŢÄ        | Ala               |
|     | Val<br>385 | Val        | Thr        | Ser        | Arg        | Ala<br>390     | Asn        | Ile        | Ala        | Thr        | Val<br>395 | Ile               | Asn        | Asp        | Phe        | Thr<br>400        |
| 25  | Glu        | Trp        | Phe        | His        | Glu<br>405 | Arg            | Ile        | Glu        | Phe        | Tyr<br>410 | Arg        | Ala               | Lys        | Gly        | Glu<br>415 | Phe               |
|     | Pro        | Leu        | Asn        | Gly<br>420 | Pro        | Val            | Glu        | Ile        | Arg<br>425 | Cys        | Cys        | Gly               | Leu        | Asp<br>430 | Gln        | Ala               |
| 30  | Ala        | Asp        | Val<br>435 | Lys        | Val        | Pro            | Ser        | Val<br>440 | Gly        | Pro        | Pro        | Thr               | 11e<br>445 | Ser        | Ala        | Thr               |
|     |            | Pro<br>450 |            |            |            |                | 455        |            |            | -          |            | 460               |            | _          |            |                   |
| 35  | 465        | Leu        |            |            |            | 470            |            |            |            |            | 475        |                   |            | _          |            | 480               |
| 40  |            | Glu        |            |            | 485        |                |            |            |            | 490        |            |                   |            |            | 495        |                   |
| ,,, |            | Pro        |            | 500        |            |                |            |            | 505        |            | _          |                   |            | 510        | •          |                   |
| 45  |            | Asn        | 515        |            |            |                |            | 520        |            |            |            |                   | 525        |            |            |                   |
|     | Val        | Pro<br>530 | Thr        | Thr        | Glu        | Asn            | Trp<br>535 | Asp        | Thr        | Ala        | Arg        | <b>Ala</b><br>540 | Arg        | Tyr        | Asn        | Gln               |
| 50  | Ile<br>545 | Asp        | Pro        | His        | Arg        | <b>Val</b> 550 | Phe        | Thr        | Asn        | Gly        | Phe<br>555 | Met               | Asp        | Lys        | Leu        | <b>Leu</b><br>560 |
|     | Pro        | •          |            |            |            |                |            |            |            |            |            |                   |            |            |            |                   |

#### (2) INFORMATION ZU SEQ ID NO: 3:

55

(i) SEQUENZ CHARAKTERISTIKA:

|    | <ul><li>(A) LÄNGE: 48 Basenpaare</li><li>(B) ART: Nukleinsäure</li><li>(C) STRANGFORM: Einzel</li><li>(D) TOPOLOGIE: linear</li></ul> |    |
|----|---------------------------------------------------------------------------------------------------------------------------------------|----|
| 5  | (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 3:                                                                                               |    |
| 10 | TTCCCGCTCA ACGGTCCGGT CGAGATCCGC TGCTGCGGGC TCGATCAG                                                                                  | 48 |
|    | (2) INFORMATION ZU SEQ ID NO: 4:                                                                                                      |    |
|    | (i) SEQUENZ CHARAKTERISTIKA:                                                                                                          |    |
| 15 | <ul><li>(A) LÄNGE: 48 Basenpaare</li><li>(B) ART: Nukleinsäure</li><li>(C) STRANGFORM: Einzel</li><li>(D) TOPOLOGIE: linear</li></ul> |    |
| 20 | (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4:                                                                                               |    |
|    | GCGATCTGGC TGAACGTTCT CGGTGTTCCG GGCACCCCCG GCATGTTC                                                                                  | 48 |
| 25 | (2) INFORMATION ZU SEQ ID NO: 5:                                                                                                      |    |
|    | (i) SEQUENZ CHARAKTERISTIKA:                                                                                                          |    |
| 30 | <ul><li>(A) LÄNGE: 36 Basenpaare</li><li>(B) ART: Nukleinsäure</li><li>(C) STRANGFORM: Einzel</li><li>(D) TOPOLOGIE: linear</li></ul> |    |
| 35 | (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 5:                                                                                               |    |
|    | GACGCCACCT TCCGGCCCGA GTGGTCGAAG GGGTGG                                                                                               | 36 |
| 40 | (2) INFORMATION ZU SEQ ID NO: 6:                                                                                                      |    |
|    | (i) SEQUENZ CHARAKTERISTIKA:                                                                                                          |    |
| 45 | <ul><li>(A) LANGE: 46 Basenpaare</li><li>(B) ART: Nukleinsäure</li><li>(C) STRANGFORM: Einzel</li><li>(D) TOPOLOGIE: linear</li></ul> |    |
| 50 | (ix) MERKMALE:                                                                                                                        |    |
|    | (A) NAME/SCHLÜSSEL: CDS<br>(B) LAGE: 1746                                                                                             |    |
| 55 | (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6:                                                                                               |    |

|           | CACACAGGAA                     | ACAGCT                                           |                    |        |            |       | ACG<br>Thr<br>5 |          |      |   |                | 46     |
|-----------|--------------------------------|--------------------------------------------------|--------------------|--------|------------|-------|-----------------|----------|------|---|----------------|--------|
| 5         |                                |                                                  |                    |        |            |       |                 |          |      |   |                |        |
|           | (2) INFORMATI                  | ON ZU SE                                         | Q ID N             | 10: 7: |            |       |                 |          |      |   |                |        |
| 40        | (i) SEQUEN                     | NZ CHARA                                         | KTERI              | STIKA  | <b>\</b> : |       |                 |          |      |   |                |        |
| 10        | (B) AR                         | NGE: 10 Ar<br>T: Aminosä<br>POLOGIE:             | ure                | uren   |            |       |                 |          |      |   |                |        |
| 15        | (ii) ART DE:<br>(xi) SEQUE     |                                                  |                    |        | SEQ II     | D NO: | 7:              |          |      |   |                |        |
| 20        | Met Thr Met                    | t Ile Ti                                         | nr Pi<br>5         | :o Se  | er Le      | eu H. |                 | la<br>10 |      |   |                |        |
|           | (2) INFORMATI                  | ON ZU SE                                         | Q ID N             | IO: 8: |            |       |                 |          |      |   |                |        |
| 25        | (i) SEQUEN                     | NZ CHARA                                         | KTERI              | STIKA  | <b>\</b> : |       |                 |          |      |   |                |        |
| 20        | (B) AR <sup>-</sup><br>(C) STF | NGE: 49 Ba<br>T: Nukleins<br>RANGFOR<br>POLOGIE: | äure<br>M: Ein:    |        |            |       |                 |          |      |   |                |        |
| 30        | (ix) MERKN                     |                                                  |                    |        |            |       |                 |          |      |   |                |        |
| <i>35</i> |                                | ME/SCHLU<br>GE: 2049                             | JSSEL:             | : CDS  |            |       |                 |          |      |   |                |        |
| 30        | (xi) SEQUE                     | NZBESCH                                          | REIBL              | JNG: S | SEQ II     | O NO: | 8:              |          |      |   |                |        |
| 40        | GAATTTAAGG                     | GGAACA!                                          |                    |        |            |       |                 |          | <br> |   | CAT G<br>His A | <br>49 |
|           | (2) INFORMATI                  | ON ZU SE                                         | Q ID N             | IO: 9: |            |       |                 |          |      |   |                |        |
| 45        | (i) SEQUEN                     | NZ CHARA                                         | KTERI              | STIKA  | ۸:         |       |                 |          |      |   |                |        |
| 50        | (B) AR                         | NGE: 10 Ar<br>T: Aminosä<br>POLOGIE:             | ure                | uren   |            |       |                 |          |      |   |                |        |
| 50        | (ii) ART DE:<br>(xi) SEQUE     |                                                  |                    |        | SEQ II     | O NO: | 9:              |          |      |   |                |        |
| 55        | Met Thr Me                     | t Ile T                                          | h <i>r</i> P:<br>5 | ro S   | er L       | eu H  |                 | la<br>10 |      | • |                |        |

|    | (2) INFORMATION ZU SEQ ID NO: 10:                                                                                                     |    |
|----|---------------------------------------------------------------------------------------------------------------------------------------|----|
|    | (i) SEQUENZ CHARAKTERISTIKA:                                                                                                          |    |
| 5  | <ul><li>(A) LÄNGE: 43 Basenpaare</li><li>(B) ART: Nukleinsäure</li><li>(C) STRANGFORM: Einzel</li><li>(D) TOPOLOGIE: linear</li></ul> |    |
| 10 | (ix) MERKMALE:                                                                                                                        |    |
|    | (A) NAME/SCHLÜSSEL: CDS<br>(B) LAGE: 2043                                                                                             |    |
| 15 | (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 10:                                                                                              |    |
| 20 | GAATTTAAGG GGAACATCG ATG AGT AAT CAC CAT GGG CAT GCC  Met Ser Asn His His Gly His Ala  1 5                                            | 43 |
|    | (2) INFORMATION ZU SEQ ID NO: 11:                                                                                                     |    |
| 25 | (i) SEQUENZ CHARAKTERISTIKA:                                                                                                          |    |
| 30 | (A) LÄNGE: 8 Aminosäuren (B) ART: Aminosäure (D) TOPOLOGIE: linear                                                                    |    |
|    | (ii) ART DES MOLEKÜLS: Protein<br>(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 11:                                                            |    |
| 35 | Met Ser Asn His His Gly His Ala<br>1 5                                                                                                |    |
|    | (2) INFORMATION ZU SEQ ID NO: 12:                                                                                                     |    |
| 40 | (i) SEQUENZ CHARAKTERISTIKA:                                                                                                          |    |
| 45 | <ul><li>(A) LÄNGE: 45 Basenpaare</li><li>(B) ART: Nukleinsäure</li><li>(C) STRANGFORM: Einzel</li><li>(D) TOPOLOGIE: linear</li></ul> |    |
|    | (ix) MERKMALE:                                                                                                                        |    |
| 50 | (A) NAME/SCHLÜSSEL: CDS<br>(B) LAGE: 1945                                                                                             |    |
|    | (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 12:                                                                                              |    |
| 55 | AATTTGGAGG GGAACATT ATG AGT AAT CAT CAC CAT GGG CAT GCC  Met Ser Asn His His Gly His Ala  1 5                                         | 45 |

|           | (2) INFORMATION ZU SEQ ID NO: 13:                                                                                                     |    |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------|----|
|           | (i) SEQUENZ CHARAKTERISTIKA:                                                                                                          |    |
| 5         | <ul><li>(A) LÄNGE: 9 Aminosäuren</li><li>(B) ART: Aminosäure</li><li>(D) TOPOLOGIE: linear</li></ul>                                  |    |
| 10        | (ii) ART DES MOLEKÜLS: Protein<br>(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 13:                                                            |    |
|           | Met Ser Asn His His Gly His Ala                                                                                                       |    |
| 15        |                                                                                                                                       |    |
|           | (2) INFORMATION ZU SEQ ID NO: 14:                                                                                                     |    |
|           | (i) SEQUENZ CHARAKTERISTIKA:                                                                                                          |    |
| 20        | <ul><li>(A) LANGE: 58 Basenpaare</li><li>(B) ART: Nukleinsäure</li><li>(C) STRANGFORM: Einzel</li><li>(D) TOPOLOGIE: linear</li></ul> |    |
| 25        | (ix) MERKMALE:                                                                                                                        |    |
|           | (A) NAME/SCHLÜSSEL: CDS<br>(B) LAGE: 2058                                                                                             |    |
| 30        | (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 14:                                                                                              |    |
| 35        | GAATTTAAGG GGAACATCG ATG AGT AAT ACG CGT AAA CGC AAG CGC CGT ACG Met Ser Asn Thr Arg Lys Arg Lys Arg Thr 1 5 10                       | 52 |
|           | CAT GCC His Ala                                                                                                                       | 58 |
| 40        | (2) INFORMATION ZU SEQ ID NO: 15:                                                                                                     |    |
|           | (i) SEQUENZ CHARAKTERISTIKA:                                                                                                          |    |
| 45        | <ul><li>(A) LÄNGE: 13 Aminosäuren</li><li>(B) ART: Aminosäure</li><li>(D) TOPOLOGIE: linear</li></ul>                                 |    |
| <i>50</i> | (ii) ART DES MOLEKÜLS: Protein<br>(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 15:                                                            |    |
|           | Met Ser Asn Thr Arg Lys Arg Lys Arg Thr His Ala<br>1 5 10                                                                             |    |
| 55        |                                                                                                                                       |    |
|           | (2) INFORMATION ZU SEQ ID NO: 16:                                                                                                     |    |
|           | (2) INFORMATION ZU SEQ ID NO: 16:  (i) SEQUENZ CHARAKTERISTIKA:                                                                       |    |

| _  | <ul><li>(A) LANGE: 48 Basenpaare</li><li>(B) ART: Nukleinsäure</li><li>(C) STRANGFORM: Einzel</li><li>(D) TOPOLOGIE: linear</li></ul>   |    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------|----|
| 5  | (ix) MERKMALE:                                                                                                                          |    |
| 10 | (A) NAME/SCHLÜSSEL: CDS<br>(B) LAGE: 2548                                                                                               |    |
| 10 | (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 16:                                                                                                |    |
| 15 | GAATTCACAC AGGAAACAGA ATTC ATG GTT ATG CAC CAT GGG CAT GCC  Met Val Met His His Gly His Ala  1 5                                        | 48 |
| 20 | (2) INFORMATION ZU SEQ ID NO: 17:                                                                                                       |    |
|    | (i) SEQUENZ CHARAKTERISTIKA:                                                                                                            |    |
| 25 | (A) LANGE: 8 Aminosäuren<br>(B) ART: Aminosäure<br>(D) TOPOLOGIE: linear                                                                |    |
|    | (ii) ART DES MOLEKÜLS: Protein<br>(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 17:                                                              |    |
| 30 | Met Val Met His His Gly His Ala<br>1 5                                                                                                  |    |
| 35 | (2) INFORMATION ZU SEQ ID NO: 18:                                                                                                       |    |
|    | (i) SEQUENZ CHARAKTERISTIKA:                                                                                                            |    |
| 40 | <ul><li>(A) LANGE: 1729 Basenpaare</li><li>(B) ART: Nukleinsäure</li><li>(C) STRANGFORM: Einzel</li><li>(D) TOPOLOGIE: linear</li></ul> |    |
|    | (ix) MERKMALE:                                                                                                                          |    |
| 45 | (A) NAME/SCHLÜSSEL: CDS<br>(B) LAGE: 171729                                                                                             |    |
|    | (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 18:                                                                                                |    |
| 50 |                                                                                                                                         |    |
|    |                                                                                                                                         |    |
| 55 |                                                                                                                                         |    |

| CAC             | ACAG             | GAA /            | ACAGO      |            |                  |                  |                  |            |            |                  |                  |                  | is A       | CC TO<br>la So<br>10 |                  |
|-----------------|------------------|------------------|------------|------------|------------------|------------------|------------------|------------|------------|------------------|------------------|------------------|------------|----------------------|------------------|
|                 |                  |                  |            |            |                  |                  |                  |            |            |                  |                  |                  |            | AAC<br>Asn           |                  |
| \TC<br>[le      | GCG<br>Ala       | CTG<br>Leu<br>30 | TTC<br>Phe | CAG<br>Gln | CAG<br>Gln       | GCG<br>Ala       | TAC<br>Tyr<br>35 | CAG<br>Gln | AAC<br>Asn | TGG<br>Trp       | TCC<br>Ser       | AAG<br>Lys<br>40 | GAG<br>Glu | ATC<br>Ile           | ATG<br>Met       |
| CTG<br>Leu      | GAC<br>Asp<br>45 | Ala              | ACT<br>Thr | TGG<br>Trp | GTC<br>Val       | TGC<br>Cys<br>50 | TCG<br>Ser       | CCC<br>Pro | AAG<br>Lys | ACG<br>Thr       | CCG<br>Pro<br>55 | CAG<br>Gln       | GAT<br>Asp | GTC<br>Val           | GTT<br>Val       |
| GC<br>Arg<br>60 | Leu              | GCC<br>Ala       | AAC<br>Asn | TGG<br>Trp | GCG<br>Ala<br>65 | His              | GAG<br>Glu       | CAC<br>His | GAC<br>Asp | TAC<br>Tyr<br>70 | AAG<br>Lys       | ATC<br>Ile       | CGC<br>Arg | CCG<br>Pro           | CGC<br>Arg<br>75 |
|                 |                  |                  |            |            |                  |                  |                  |            |            |                  |                  |                  |            |                      |                  |
|                 |                  |                  |            |            |                  |                  |                  |            |            |                  |                  |                  |            |                      |                  |
|                 |                  |                  |            |            |                  |                  |                  |            |            |                  |                  |                  |            |                      |                  |
|                 |                  |                  |            |            |                  |                  |                  |            |            |                  |                  |                  |            |                      |                  |
|                 |                  |                  |            |            |                  |                  |                  |            |            |                  |                  |                  |            |                      |                  |
|                 |                  |                  |            |            |                  |                  |                  |            |            |                  |                  |                  |            |                      |                  |
|                 |                  |                  |            |            |                  |                  |                  |            |            |                  |                  |                  |            |                      |                  |
|                 |                  |                  |            |            |                  |                  |                  |            |            |                  |                  |                  |            |                      |                  |
|                 |                  |                  |            |            |                  |                  |                  |            |            |                  |                  |                  |            |                      |                  |
|                 |                  |                  |            |            |                  |                  |                  |            |            |                  |                  |                  |            |                      |                  |

|    | GCG<br>Ala        |     |     |     |     |     |     |     |     |     |     |     |     | 28  | 9  |
|----|-------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|
| 5  | GAG<br>Glu        |     |     |     |     |     |     |     |     |     |     |     |     | 33  | 7  |
| 10 | GTG<br>Val        |     |     |     |     |     |     |     |     |     |     |     |     | 38  | 5  |
| 15 | AGC<br>Ser<br>125 |     |     |     |     |     |     |     |     |     |     |     | GLY | 43  | 3  |
|    | GCC<br>Ala        |     |     |     |     |     |     |     |     |     |     |     |     | 48  | 1  |
| 20 | GTC<br>Val        |     |     |     |     |     |     |     |     |     |     |     |     | 52  | 9  |
| 25 | CCC<br>Pro        |     |     |     |     |     |     |     |     |     |     |     |     | 57  | 7  |
|    | GCG<br>Ala        |     |     |     |     |     |     |     |     |     |     |     |     | 62  | 5  |
| 30 | AAC<br>Asn<br>205 |     |     |     |     |     |     |     |     |     |     |     |     | 67  | 3  |
| 35 | CTG<br>Leu        |     |     |     |     |     |     |     |     |     |     |     |     | 72  | 1  |
|    | CAG<br>Gln        |     |     |     |     |     |     |     |     |     |     |     |     | 76  | 9  |
| 40 | GCC<br>Ala        | Asp | Arg | Thr | Phe | Glu | Lys | Phe | Val | Ala | Glu | Ser |     | 81  | 7  |
| 45 | GAG<br>Glu        |     |     |     |     |     |     |     |     |     |     |     |     | 86  | 5  |
|    | ACG<br>Thr<br>285 |     |     |     |     |     |     |     |     |     |     |     |     | 91  | .3 |
| 50 | GGC<br>Gly        |     |     |     |     |     |     |     |     |     |     |     |     | 96  | 1  |
| 55 | TCC<br>Ser        |     |     |     |     |     |     |     |     |     |     |     |     | 100 | 9  |

| 5         |            |     |     |     |     |            | GCC<br>Ala        |     |     |     |            |     |     |     |     |            | 1057 |
|-----------|------------|-----|-----|-----|-----|------------|-------------------|-----|-----|-----|------------|-----|-----|-----|-----|------------|------|
|           |            |     |     | Gly |     |            | ATG<br>Met        |     |     |     |            |     |     |     |     |            | 1105 |
| 10        |            |     |     |     |     |            | ATC<br>Ile<br>370 |     |     |     |            |     |     |     |     |            | 1153 |
| 15        |            |     |     |     |     |            | TTG<br>Leu        |     |     |     |            |     |     |     |     |            | 1201 |
| 00        |            |     |     |     |     |            | ATC<br>Ile        |     |     |     |            |     |     |     |     |            | 1249 |
| 20        |            | Phe | His | Glu | Arg | Ile        | GAG<br>Glu        | Phe |     |     |            |     |     |     |     |            | 1297 |
| 25        |            |     |     |     |     |            | ATC<br>Ile        |     |     |     |            |     |     |     |     |            | 1345 |
| 30        |            |     |     |     |     |            | GTG<br>Val<br>450 |     |     |     |            |     |     |     |     |            | 1393 |
|           | Pro<br>460 | Arg | Pro | Asp | His | Pro<br>465 | GAC<br>Asp        | Trp | Asp | Val | Ala<br>479 | Ile | Trp | Leu | Asn | Val<br>475 | 1441 |
| 35        |            |     |     |     |     |            | CCC<br>Pro        |     |     |     |            |     |     |     |     |            | 1489 |
| 40        |            |     |     |     |     |            | CAC<br>His        |     |     |     |            |     |     |     |     |            | 1537 |
| 45        |            |     |     |     |     |            | TGG<br>Trp        |     |     |     |            |     |     |     |     |            | 1585 |
| 45        |            |     |     |     |     |            | AAG<br>Lys<br>530 |     |     |     |            |     |     |     |     |            | 1633 |
| 50        |            |     |     |     |     |            | GAC<br>Asp        |     |     |     |            |     |     |     |     |            | 1681 |
| <i>55</i> |            |     |     |     |     |            | ACC<br>Thr        |     |     |     |            |     |     |     |     |            | 1729 |

<sup>(2)</sup> INFORMATION ZU SEQ ID NO: 19:

| í | í۱ | SEQUENZ  | CHARAKT   | FRISTIKA: |
|---|----|----------|-----------|-----------|
| ١ | ш  | JUGULINZ | OLIMITALL | LINOTINA. |

- (A) LÄNGE: 571 Aminosäuren
- (B) ART: Aminosäure (D) TOPOLOGIE: linear

- (ii) ART DES MOLEKÜLS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 19:

| 10 |            |            |            |            |            |            |            |            |            |            |            |            |            |            |                  |            |
|----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------------|------------|
|    | Met<br>1   | Thr        | Met        | Ile        | Thr<br>5   | Pro        | Ser        | Leu        | His        | Ala<br>10  | Ser        | Thr        | Gly        | Pro        | Val<br>15        | Ala        |
| 15 | Pro        | Leu        | Pro        | Thr<br>20  | Pro        | Pro        | Asn        | Phe        | Pro<br>25  | Asn        | Asp        | Ile        | Ala        | Leu<br>30  | Phe              | Gln        |
|    | Gln        | Ala        | Tyr<br>35  | Gln        | Asn        | Trp        | Ser        | Lys<br>40  | Glu        | Ile        | Met        | Leu        | Asp<br>45  | Ala        | Thr              | Trp        |
| 20 | Val        | Cys<br>50  | Ser        | Pro        | Lys        | Ţħr        | Pro<br>55  | Gln        | Asp        | Val        | Val        | Arg<br>60  | Leu        | Ala        | Asn              | Trp        |
|    | Ala<br>65  | His        | Glu        | His        | Asp        | Tyr<br>70  | Lys        | Ile        | Arg        | Pro        | Arg<br>75  | Gly        | Alä        | Met        | His              | Gly<br>80  |
| 25 | Trp        | Thr        | Pro        | Leu        | Thr<br>85  | Val        | Glu        | Lys        | Gly        | Ala<br>90  | Asn        | Val        | Glu        | Lys        | <b>Val</b><br>95 | Ile        |
|    | Leu        | Ala        | Asp        | Thr<br>100 | Met        | Thr        | His        | Leu        | Asn<br>105 | Gly        | Ile        | Thr        | Val        | Asn<br>110 | Thr              | Gly        |
| 30 | Gly        | Pro        | Val<br>115 | Ala        | Thr        | Val        | Thr        | Ala<br>120 | Gly        | Ala        | Gly        | Ala        | Ser<br>125 | Ile        | Glu              | Ala        |
|    | Ile        | Val<br>130 | Thr        | Glu        | Leu        | Gln        | Lys<br>135 | His        | Asp        | Leu        | Gly        | Trp<br>140 | Ala        | Asn        | Leu              | Pro        |
| 35 | Ala<br>145 |            | Gly        | Val        | Leu        | Ser<br>150 | Ile        | Gly        | Gly        | Ala        | Leu<br>155 | Ala        | Val        | Asn        | Ala              | His<br>160 |
|    | Gly        | Ala        | Ala        | Leu        | Pro<br>165 | Ala        | Val        | Gly        | Gln        | Thr<br>170 | Thr        | Leu        | Pro        | Gly        | His<br>175       | Thr        |
| 40 | Tyr        | Gly        | Ser        | Leu<br>180 |            | Asn        | Leu        | Val        | Thr<br>185 |            | Leu        | Thr        | Ala        | Val<br>190 | Val              | Trp        |
|    | Asn        | Gly        | Thr<br>195 | Thr        | Tyr        | Ala        | Leu        | Glu<br>200 | Thr        | Tyr        | Gln        | Arg        | Asn<br>205 |            | Pro              | Arg        |
| 45 | Ile        | Thr<br>210 | Pro        | Leu        | Leu        | Thr        | Asn<br>215 | Leu        | Gly        | Arg        | Cys        | Phe<br>220 |            | Thr        | Ser              | Val        |
| 50 | Thr<br>225 |            | Gln        | Ala        | Gly        | Pro<br>230 |            | Phe        | Arg        | Gln        | Arg<br>235 |            | Gln        | Ser        | Tyr              | Thr<br>240 |
|    | Asp        | Ile        | Pro        | Trp        | Arg<br>245 |            | Leu        | Phe        | Ala        | Pro<br>250 |            | Gly        | Ala        | Asp        | Gly<br>255       | Arg        |
| 55 | Thr        | Phe        | Glu        | Lys<br>260 |            | Val        | Ala        | Glu        | Ser<br>265 |            | Gly        | Ala        | Glu        | Ala<br>270 | Ile              | Trp        |

|           | Tyr        | Pro        | Phe<br>275        | Thr        | Glu        | Lys        | Pro        | Trp<br>280 | Met        | Lys        | Val        | Trp        | Thr<br>285 | Val        | Ser               | Pro               |
|-----------|------------|------------|-------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------------|-------------------|
| 5         | Thr        | Lys<br>290 | Pro               | Asp        | Ser        | Ser        | Asn<br>295 | Glu        | Val        | Gly        | Ser        | Leu<br>300 | Gly        | Ser        | Ala               | Gly               |
|           | Ser<br>305 | Leu        | Val               | Gly        | Lys        | Pro<br>310 | Pro        | Gln        | Ala        | Arg        | Glu<br>315 | Val        | Ser        | Gly        | Pro               | Tyr<br>320        |
| 10        | Asn        | Tyr        | Ile               | Phe        | Ser<br>325 | Asp        | Asn        | Leu        | Pro        | Glu<br>330 | Pro        | Ile        | Thr        | Asp        | <b>Met</b><br>335 | Ile               |
| 15        | Gly        | Ala        | Ile               | Asn<br>340 | Ala        | Gly        | Asn        | Pro        | Gly<br>345 | Ile        | Ala        | Pro        | Leu        | Phe<br>350 | Gly               | Pro               |
| -         | Ala        | Met        | Tyr<br>355        | Glu        | Ile        | Thr        | Lys        | Leu<br>360 | Gly        | Leu        | Ala        | Ala        | Thr<br>365 | Asn        | Ala               | Asn               |
| 20        | Asp        | 11e<br>370 | Trp               | Gly        | Trp        | Ser        | Lys<br>375 | Asp        | Val        | Gln        | Phe        | Tyr<br>380 | Ile        | Lys        | Ala               | Thr               |
|           | Thr<br>385 | Leu        | Arg               | Leu        | Thr        | Glu<br>390 | Gly        | Gly        | Gly        | Ala        | Val<br>395 | Val        | Thr        | Ser<br>—   | Arg               | Ala<br>400        |
| 25        | Asn        | Ile        | Ala               | Thr        | Val<br>405 | Ile        | Asn        | Asp        | Phe        | Thr<br>410 | Glu        | Trp        | Phe        | His        | Glu<br>415        | Arg               |
|           | Ile        | Glu        | Phe               | Tyr<br>420 | Arg        | Ala        | Lys        | Gly        | Glu<br>425 | Phe        | Pro        | Leu        | Asn        | Gly<br>430 | Pro               | Val               |
| 30        | Glu        | Ile        | Arg<br>435        | Cys        | Суз        | Gly        | Leu        | Asp<br>440 | Gln        | Ala        | Ala        | Asp        | Val<br>445 | Lys        | Val               | Pro               |
|           | Ser        | Val<br>450 | Gly               | Pro        | Pro        | Thr        | Ile<br>455 | Ser        | Ala        | Thr        | Arq        | Pro<br>460 | Arg        | Pro        | Asp               | His               |
| 35        | Pro<br>465 | Asp        | Trp               | Asp        | Val        | Ala<br>470 | Ile        | Trp        | Leu        | Asn        | Val<br>475 | Leu        | Gly        | Val        | Pro               | Ģly<br>480        |
|           | Thr        | Pro        | Gly               | Met        | Phe<br>485 | Glu        | Phe        | Tyr        | Arg        | Glu<br>490 | Met        | Glu        | Gln        | Trp        | Met<br>495        | Arg               |
|           | Ser        | His        | Tyr               | Asn<br>500 | Asn        | Asp        | Asp        | Ala        | Thr<br>505 | Phe        | Arg        | Pro        | Glu        | Trp<br>510 | Ser               | Lys               |
|           | Gly        | Trp        | <b>Ala</b><br>515 | Phe        | Gly        | Pro        | Asp        | Pro<br>520 | Tyr        | Thr        | Asp        | Asn        | Asp<br>525 |            | Val               | Thr               |
| <i>15</i> | Asn        | Lys<br>530 | Met               | Arg        | Ala        | Thr        | Tyr<br>535 | Ile        | Glu        | Gly        | Val        | Pro<br>540 | Thr        | Thr        | Glu               | Asn               |
|           | Trp<br>545 | Asp        | Thr               | Ala        | Arg        | Ala<br>550 | Arg        | Tyr        | Asn        | Gln        | 11e<br>555 | Asp        | Pro        | His        | Arg               | <b>Val</b><br>560 |
| 50        | Phe        | Thr        | Asn               | Gly        | Phe<br>565 | Met        | Asp        | Lys        | Leu        | Leu<br>570 | Pro        |            |            |            |                   |                   |

(2) INFORMATION ZU SEQ ID NO: 20:

55

(i) SEQUENZ CHARAKTERISTIKA:

(A) LÄNGE: 1732 Basenpaare

| (B) ART: Nukleinsäure  |
|------------------------|
| (C) STRANGFORM: Einzel |
| (D) TOPOLOGIE: linear  |

(ix) MERKMALE:

5

10

55

(A) NAME/SCHLÜSSEL: CDS

(B) LAGE: 20..1732

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 20:

| 15 | GAA | TTTA | AGG ( | G <b>GAA</b> (    | CATC | Me |   |   | e Th |   |      | <br>_ | C TCG<br>a Ser | 52  |
|----|-----|------|-------|-------------------|------|----|---|---|------|---|------|-------|----------------|-----|
|    |     |      |       | GTC<br>Val<br>15  |      |    |   |   |      |   |      |       |                | 100 |
| 20 |     |      |       | TTC<br>Phe        |      |    |   |   |      |   |      |       |                | 148 |
| 25 |     |      |       | ACT<br>Thr        |      |    | - | - | <br> |   | <br> | <br>  |                | 196 |
| 30 |     |      |       | AAC<br>Asn        |      |    |   |   |      |   |      |       |                | 244 |
|    |     |      |       | CAC<br>His        |      |    |   |   |      |   |      |       |                | 292 |
| 35 |     |      |       | GTG<br>Val<br>95  |      |    |   |   |      |   |      |       |                | 340 |
| 40 |     |      |       | ACG<br>Thr        |      |    |   |   |      |   |      |       |                | 388 |
|    |     |      |       | GAG<br>Glu        |      | _  |   |   |      | _ |      |       |                | 436 |
| 45 |     |      |       | CTG<br>Leu        |      |    |   |   |      |   |      |       |                | 484 |
| 50 |     |      |       | GCG<br>Ala        |      |    |   |   |      |   |      |       |                | 532 |
|    |     |      |       | CAC<br>His<br>175 |      |    |   |   |      |   |      |       |                | 580 |

| -  |  |      |      |     | ACC<br>Thr        |     |      |     |            | 628  |
|----|--|------|------|-----|-------------------|-----|------|-----|------------|------|
| 5  |  |      |      |     | CTG<br>Leu        |     |      |     |            | 676  |
| 10 |  |      |      |     | GCC<br>Ala        |     |      |     |            | 724  |
| 15 |  | <br> | <br> |     | TGG<br>Trp        | _   | <br> |     |            | 772  |
|    |  |      |      |     | AAG<br>Lys<br>260 |     |      |     |            | 820  |
| 20 |  |      |      |     | ACC<br>Thr        |     |      |     |            | 868  |
| 25 |  |      |      |     | GAC<br>Asp        |     |      |     |            | 916  |
|    |  |      |      |     | GGC<br>Gly        |     |      |     |            | 964  |
| 30 |  |      |      |     | TTC<br>Phe        |     |      |     |            | 1012 |
| 35 |  |      |      |     | AAC<br>Asn<br>340 |     |      |     |            | 1060 |
|    |  |      |      |     | GAG<br>Glu        |     |      |     | ALa<br>ALa | 1108 |
| 40 |  |      |      | Trp | GGC               |     |      |     |            | 1156 |
| 45 |  |      |      |     | CTC<br>Leu        |     |      |     |            | 1204 |
|    |  |      |      |     | ACC<br>Thr        |     |      |     |            | 1252 |
| 50 |  |      |      |     | TAC<br>Tyr<br>420 | Arg |      |     |            | 1300 |
| 55 |  | Pro  |      |     | Cys               |     |      | Gln | GCC<br>Ala | 1348 |

| 5  |  | Lys |  | TCG<br>Ser        |  |   |      |      |  | 1396 |
|----|--|-----|--|-------------------|--|---|------|------|--|------|
|    |  |     |  | CCG<br>Pro<br>465 |  |   |      |      |  | 1444 |
| 10 |  |     |  | ACC<br>Thr        |  |   |      |      |  | 1492 |
| 15 |  |     |  | AGC<br>Ser        |  |   |      |      |  | 1540 |
|    |  |     |  | GGG<br>Gly        |  |   |      |      |  | 1588 |
| 20 |  |     |  | AAC<br>Asīn       |  | - | <br> | <br> |  | 1636 |
| 25 |  |     |  | TGG<br>Trp<br>545 |  |   |      |      |  | 1684 |
| 30 |  |     |  | TTC<br>Phe        |  |   |      |      |  | 1732 |

### (2) INFORMATION ZU SEQ ID NO: 21:

35

40

45

50

55

(i) SEQUENZ CHARAKTERISTIKA:

(A) LANGE: 571 Aminosäuren

(B) ART: Aminosäure(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Protein

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 21:

|            | Met<br>1  | Thr       | Met       | Ile       | Thr<br>5  | Pro              | Ser       | Leu       | His       | Ala<br>10 | Ser       | Thr       | Gly       | Pro       | Val<br>15 | Ala             |
|------------|-----------|-----------|-----------|-----------|-----------|------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------------|
| 5          | Prò       | Leu       | Pro       | Thr<br>20 | Pro       | Pro              | Asn       | Phe       | Pro<br>25 | Asn       | qzA       | Ile       | Ala       | Leu<br>30 | Phe       | Glr             |
|            | Gln       | Ala       | Tyr<br>35 | Gln       | Asn       | Trp              | Ser       | Lys<br>40 | Glu       | Ile       | Met       | Leu       | Asp<br>45 | Ala       | Thr       | Tr              |
| 10         | Val       | Cys<br>50 | Ser       | Pro       | Lys       | Thr              | Pro<br>55 | Gln       | Asp       | Val       | Val       | Arg<br>60 | Leu       | Ala       | Asn       | Trp             |
| 15         | Ala<br>65 | His       | Glu       | His       | Asp       | <b>Tyr</b><br>70 | Lys       | Ile       | Arg       | Pro       | Arg<br>75 | Gly       | Ala       | Met       | His       | 61 <sub>3</sub> |
| 73         | Trp       | Thr       | Pro       | Leu       | Thr<br>85 | Val              | Glu       | Lys       | Gly       | Ala<br>90 | Asn       | Val       | Glu.      | Lys       | Val<br>95 | Ile             |
| 20         |           |           |           |           |           |                  |           |           |           |           |           |           |           |           |           |                 |
| 25         |           |           |           |           |           |                  |           |           |           |           |           |           |           |           |           |                 |
| 30         |           |           |           |           |           |                  |           |           |           |           |           |           |           |           |           |                 |
| 35         |           |           |           |           |           |                  |           |           |           |           |           |           |           |           |           |                 |
| 40         |           |           |           |           |           |                  |           |           |           |           |           |           |           |           |           |                 |
| <b>4</b> 5 |           |           |           |           |           |                  |           |           |           |           |           |           |           |           |           |                 |
| 50         |           |           |           |           |           |                  |           |           |           |           |           |           |           |           |           |                 |
| 55         |           |           |           |           |           |                  |           |           |           |           |           |           |           |           |           |                 |

|    | Leu               | Ala        | Asp        | 100                |            | Thr        | His        | Leu        | 105        | GIY        | 116               | Thr        | Val        | 110        | Thr        | Gly        |
|----|-------------------|------------|------------|--------------------|------------|------------|------------|------------|------------|------------|-------------------|------------|------------|------------|------------|------------|
| 5  | Gly               | Pro        | Val<br>115 | Ala                | Thr        | Val        | Thr        | Ala<br>120 |            | Ala        | Gly               | Ala        | Ser<br>125 | Ile        | Glu        | Ala        |
|    | Ile               | Val<br>130 |            | Glu                | Leu        | Gln        | Lys<br>135 | His        | Asp        | Leu        | Gly               | Trp<br>140 | Ala        | Asn        | Leu        | Pro        |
| 10 | Ala<br>145        | Pro        | Gly        | Val                | Leu        | Ser<br>150 | Ile        | Gly        | Gly        | Ala        | Leu<br>155        | Ala        | Val        | Asn        | Ala        | His<br>160 |
|    | Gly               | Ala        | Ala        | Leu                | Pro<br>165 | Ala        | Val        | Gly        | Gln        | Thr<br>170 | Thr               | Leu        | Pro        | Gly        | His<br>175 | Thr        |
| 15 | Tyr               | Gly        | Ser        | <b>Le</b> u<br>180 | Ser        | Asn        | Leu        | Val        | Thr<br>185 | Glu        | Leu               | Thr        | Ala        | Val<br>190 | Val        | Trp        |
|    | Asn               | Gly        | Thr<br>195 | Thr                | Tyr        | Ala        | Leu        | Glu<br>200 | Thr        | Tyr        | Gln               | Arg        | Asn<br>205 | Asp        | Pro        | Arg        |
| 20 | Ile               | Thr<br>210 |            | Leu                | Leu        | Thr        | Asn<br>215 |            | Gly        | Arg        | Cys               | Phe<br>220 | Leu        | Thr        | Ser        | Val        |
| 25 | Thr<br>225        | Met        | Gln        | Ala                | Gly        | Pro<br>230 | Asn        | Phe        | Arg        | Gln        | Arg<br>235        | Cys        | Gln        | Ser        | Tyr        | Thr<br>240 |
| 20 | Asp               | Ile        | Pro        | Trp                | Arg<br>245 | Glu        | Leu        | Phe        | Ala        | Pro<br>250 | Lys               | Gly        | Ala        | Asp        | Gly<br>255 | Arg        |
| 30 | Thr               | Phe        | Glu        | Lys<br>260         | Phe        | Val        | Ala        | Glu        | Ser<br>265 | Gly        | Gly               | Ala        | Glu        | Ala<br>270 | Ile        | Trp        |
|    | Tyr               | Pro        | Phe<br>275 | Thr                | Glu        | Lys        | Pro        | Trp<br>280 | Met        | Lys        | Val               | Trp        | Thr<br>285 | Val        | Ser        | Pro        |
| 35 | Thr               | Lys<br>290 | Pro        | Asp                | Ser        | Ser        | Asn<br>295 | Glu        | Val        | Gly        | Ser               | Leu<br>300 | G) Y       | Ser        | Ala        | G) A       |
|    | <b>Ser</b><br>305 | Leu        | Val        | Gly                | Lys        | Pro<br>310 | Pro        | Gln        | Ala        | Arg        | Glu<br>315        | Val        | Ser        | Gly        | Pro        | Tyr<br>320 |
| 40 | Asn               | Tyr        | Ile        | Phe                | Ser<br>325 | Asp        | Asn        | Leu        | Pro        | Glu<br>330 | Pro               | Ile        | Thr        | Asp        | Met<br>335 | Ile        |
|    | Gly               | Ala<br>-   | Ile        | Asn<br>340         | Ala        | Gly        | Asn        | Pro        | Gly<br>345 | Ile        | Ala               | Pro        | Leu        | Phe<br>350 | Gly        | Pro        |
| 45 | Ala               | Met        | Tyr<br>355 | Glu                | Ile        | Thr        | Lys        | Leu<br>360 | Gly        | Leu        | Ala               | Ala        | Thr<br>365 | Asn        | Ala        | Asn        |
|    | Asp               | 11e<br>370 | Trp        | Gly                | Trp        | Ser        | Lys<br>375 | Asp        | Val        | Gln        | Phe               | Tyr<br>380 | Ile        | Lys        | Ala        | Thr        |
| 50 | Thr<br>385        | Leu        | Arg        | Leu                | Thr        | Glu<br>390 | Gly        | Gly        | Gly        | Ala        | <b>Val</b><br>395 | Val        | Thr        | Ser        | Arg        | Ala<br>400 |
|    | Asn               | Ile        | Ala        | Thr                | Val<br>405 | Ile        | Asn        | Asp        | Phe        | Thr<br>410 | Glu               | Trp        | Phe        | His        | Glu<br>415 | Arg        |
| 55 | Ile               | Glu        | Phe        | Tyr<br>420         | Arg        | Ala        | Lys        | Gly        | Glu<br>425 | Phe        | Pro               | Leu        | Asn        | Gly<br>430 | Pro        | Val        |

|    |           | Glu            | Ile              | Arg<br>435        | Cys            | Cys        | Gly        | Leu        | Asp<br>440 | Gln        | Ala        | Ala        | Asp        | Val<br>445     | Lys        | Val        | Pro        |
|----|-----------|----------------|------------------|-------------------|----------------|------------|------------|------------|------------|------------|------------|------------|------------|----------------|------------|------------|------------|
| 5  |           | Ser            | Val<br>450       | Gly               | Pro            | Pro        | Thr        | Ile<br>455 | Ser        | Ala        | Thr        | Arg        | Pro<br>460 | Arg            | Pro        | Asp        | His        |
|    |           | Pro<br>465     | Asp              | Trp               | Asp            | Val        | Ala<br>470 | Ile        | Trp        | Leu        | Asn        | Val<br>475 | Leu        | Gly            | Val        | Pro        | Gly<br>480 |
| 10 |           | Thr            | Pro <sub>.</sub> | Gly               | Met            | Phe<br>485 | Glu        | Phe        | Tyr        | Arg        | Glu<br>490 | Met        | Glu        | Gln            | Trp        | Met<br>495 | Arg        |
|    |           | Ser            | His              | Tyr               | <b>Asn</b> 500 | Asn        | Asp        | Asp        | Ala        | Thr<br>505 | Phe        | Arg        | Pro        | Glu            | Trp<br>510 | Ser        | Lys        |
| 15 |           | Gly            | Trp              | <b>Ala</b><br>515 | Phe            | Gly        | Pro        | Asp        | Pro<br>520 | Tyr        | Thr        | Asp        | Asn        | <b>Asp</b> 525 | Ile        | Val        | Thr        |
| 20 |           | Asn            | Lys<br>530       | Met               | Arg            | Ala        | Thr        | Tyr<br>535 | Ile        | Glu        | Gly        | Val        | Pro<br>540 | Thr            | Thr        | Glu        | Asn        |
|    | _         | Trp<br>545     |                  |                   | Ala            |            |            |            |            | Asn        |            |            |            |                | His<br>    |            | Val<br>560 |
| 25 |           | Phe            | Thr              | Asn               | Gly            | Phe<br>565 | Met        | Asp        | Lys        | Leu        | Leu<br>570 | Pro        |            |                |            |            |            |
|    | (2) INFOI | RMAT           | ION Z            | U SEC             | N DI Ç         | O: 22:     |            |            |            |            |            |            |            |                |            |            |            |
| 30 | ( )       |                |                  |                   | CTERIS         |            | :          |            |            |            |            |            |            |                |            |            |            |
|    | (         | B) AR<br>C) ST | T: Nuk<br>RANG   | kleinsä<br>GFORN  | /I: Einz       |            |            |            |            |            |            |            |            |                |            |            |            |
| 35 | ·         | ,              | POLC<br>MALE:    |                   | inear          |            |            |            |            |            |            |            |            |                |            |            |            |
|    |           |                | ME/S0<br>GE: 20  |                   | SSEL:          | CDS        |            |            |            |            |            |            |            |                |            |            |            |
| 40 | (xi) S    | EQUE           | ENZ BI           | ESCH              | REIBL          | JNG: S     | SEQ ID     | ) NO: 2    | 22:        |            |            |            |            |                |            |            |            |
| 45 |           |                |                  |                   |                |            |            |            |            |            |            |            |            |                |            |            |            |

|    | GAA7             | TTA)             | AGG (            | GAA(             | CATCO      | S ATO<br>Met     | : Se             | P AAT            | CAC<br>His       | CAT<br>His | Gly              | CAT<br>His       | C GCC            | C TCC            | S' ACC     | GGG<br>Gly       | 52  |
|----|------------------|------------------|------------------|------------------|------------|------------------|------------------|------------------|------------------|------------|------------------|------------------|------------------|------------------|------------|------------------|-----|
| 5  | CCG<br>Pro       | GTC<br>Val       | GCG<br>Ala       | CCG<br>Pro<br>15 | CTT<br>Leu | CCG<br>Pro       | ACG<br>Thr       | CCG<br>Pro       | CCG<br>Pro<br>20 | AAC<br>Asn | TTC<br>Phe       | CCG<br>Pro       | AAC<br>Asn       | GAC<br>Asp<br>25 | ATC<br>Ile | GCG<br>Ala       | 100 |
| 10 | CTG<br>Leu       | TTC<br>Phe       | CAG<br>Gln<br>30 | CAG<br>Gln       | GCG<br>Ala | TAC<br>Tyr       | CAG<br>Gln       | AAC<br>Asn<br>35 | TGG<br>Trp       | TCC<br>Ser | AAG<br>Lys       | GAG<br>Glu       | ATC<br>Ile<br>40 | ATG<br>Met       | CTG<br>Leu | GAC<br>Asp       | 148 |
|    | GCC<br>Ala       | ACT<br>Thr<br>45 | TGG<br>Trp       | GTC<br>Val       | TGC<br>Cys | TCG<br>Ser       | CCC<br>Pro<br>50 | AAG<br>Lys       | ACG<br>Thr       | CCG<br>Pro | CAG<br>Gln       | GAT<br>Asp<br>55 | GTC<br>Val       | GTT<br>Val       | CGC<br>Arg | CTT<br>Leu       | 196 |
| 15 | GCC<br>Ala<br>60 | AAC<br>Asn       | TGG<br>Trp       | GCG<br>Ala       | CAC<br>His | GAG<br>Glu<br>65 | CAC<br>His       | GAC<br>Asp       | TAC<br>Tyr       | AAG<br>Lys | ATC<br>Ile<br>70 | CGC<br>Arg       | CCG<br>Pro       | CGC<br>Arg       | GGC<br>Gly | GCG<br>Ala<br>75 | 244 |
| 20 |                  |                  |                  |                  |            |                  |                  |                  |                  |            |                  |                  |                  |                  |            |                  |     |
| 25 |                  |                  |                  |                  |            |                  |                  |                  |                  |            |                  |                  |                  |                  |            |                  |     |
| 30 |                  |                  |                  |                  |            |                  |                  |                  |                  |            |                  |                  |                  |                  |            |                  |     |
| 35 |                  |                  |                  |                  |            |                  |                  |                  |                  |            |                  |                  |                  |                  |            |                  |     |
| 40 |                  |                  |                  |                  |            |                  |                  |                  |                  |            |                  |                  |                  |                  |            |                  |     |
| 45 |                  |                  |                  |                  |            |                  |                  |                  |                  |            |                  |                  |                  |                  |            |                  |     |
| 50 |                  |                  |                  |                  |            |                  |                  |                  |                  |            |                  |                  |                  |                  |            |                  |     |
|    |                  |                  |                  |                  |            |                  |                  |                  |                  |            |                  |                  |                  |                  |            |                  |     |

| 5  | ATG<br>Met | CAC<br>His        | GGC<br>Gly | TGG<br>Trp | ACC<br>Thr<br>80 | CCG<br>Pro | CTC<br>Leu | ACC<br>Thr | GTG<br>Val | GAG<br>Glu<br>85 | AAG<br>Lys | GGG<br>Gly | GCC<br>Ala | AAC<br>Asn | GTC<br>Val<br>90 | GAG<br>Glu |   | 292  |
|----|------------|-------------------|------------|------------|------------------|------------|------------|------------|------------|------------------|------------|------------|------------|------------|------------------|------------|---|------|
| 3  |            | GTG<br>Val        |            |            |                  |            |            |            |            |                  |            |            |            |            |                  |            |   | 340  |
| 10 |            | ACG<br>Thr        |            |            |                  |            |            |            |            |                  |            |            |            |            |                  |            |   | 388  |
| 15 |            | GAG<br>Glu<br>125 |            |            |                  |            |            |            |            |                  |            |            |            |            |                  |            |   | 436  |
|    |            | CTG<br>Leu        |            |            |                  |            |            |            |            |                  |            |            |            |            |                  |            |   | 484  |
| 20 |            | GCG<br>Ala        |            |            |                  |            |            |            |            |                  |            |            |            |            |                  |            |   | 532  |
| 25 |            | CAC<br>His        |            |            |                  |            |            |            |            |                  |            |            |            |            |                  |            |   | 580  |
|    |            | GTC<br>Val        |            |            |                  |            |            |            |            |                  |            |            |            |            |                  |            |   | 628  |
| 30 |            | CCT<br>Pro<br>205 |            |            |                  |            |            |            |            |                  |            |            |            |            |                  |            |   | 676  |
| 35 |            | TCG<br>Ser        |            |            |                  |            |            |            |            |                  |            |            |            |            |                  |            |   | 724  |
|    |            | TAC<br>Tyr        |            |            |                  |            |            |            |            |                  |            |            |            |            |                  |            | - | 772  |
| 40 |            | GGC<br>Gly        |            | Thr        | Phe              | Glu        | Lys        | Phe        | Val        |                  | Glu        | Ser        |            | Gly        | Ala              |            | • | 820  |
| 45 |            | ATC<br>Ile        |            |            |                  |            |            |            |            |                  |            |            |            |            |                  |            |   | 868  |
|    |            | TCG<br>Ser<br>285 |            |            |                  |            |            |            |            |                  |            |            |            |            |                  |            |   | 916  |
| 50 |            | GCG<br>Ala        |            |            |                  |            |            |            |            |                  |            |            |            |            |                  |            |   | 964  |
| 55 |            | CCG<br>Pro        |            |            |                  |            |            |            |            |                  |            |            |            |            |                  | Thr        |   | 1012 |

| 5  | GAC<br>Asp        | ATG<br>Met        | ATC<br>Ile        | GGC<br>Gly<br>335 | GCC<br>Ala        | ATC<br>Ile        | AAC<br>Asn        | GCC<br>Ala        | GGA<br>Gly<br>340 | AAC<br>Asn        | CCC<br>Pro        | GGA<br>Gly        | ATC<br>Ile        | GCA<br>Ala<br>345 | CCG<br>Pro        | CTG<br>Leu        |   | 1060 |
|----|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---|------|
|    | TTC<br>Phe        | GGC<br>Gly        | CCG<br>Pro<br>350 | GCG<br>Ala        | ATG<br>Met        | TAC<br>Tyr        | GAG<br>Glu        | ATC<br>Ile<br>355 | ACC<br>Thr        | AAG<br>Lys        | CTC<br>Leu        | GGG<br>Gly        | CTG<br>Leu<br>360 | GCC<br>Ala        | GCG<br>Ala        | ACG<br>Thr        |   | 1108 |
| 10 | AAT<br>Asn        | GCC<br>Ala<br>365 | AAC<br>Asn        | GAC<br>Asp        | ATC<br>Ile        | TGG<br>Trp        | GGC<br>Gly<br>370 | TGG<br>Trp        | TCG<br>Ser        | AAG<br>Lys        | GAC<br>Asp        | GTC<br>Val<br>375 | CAG<br>Gln        | TTC<br>Phe        | TAC<br>Tyr        | ATC<br>Ile        |   | 1156 |
| 15 | AAG<br>Lys<br>380 | GCC<br>Ala        | ACG<br>Thr        | ACG<br>Thr        | TTG<br>Leu        | CGA<br>Arg<br>385 | CTC<br>Leu        | ACC<br>Thr        | GAG<br>Glu        | GGC<br>Gly        | GGC<br>Gly<br>390 | GLY               | GCC<br>Ala        | GTC<br>Val        | GTC<br>Val        | ACG<br>Thr<br>395 |   | 1204 |
|    | AGC<br>Ser        | CGC<br>Arg        | GCC               | AAC<br>Asn        | ATC<br>Ile<br>400 | Ala<br>GCG        | ACC<br>Thr        | GTG<br>Val        | ATC<br>Ile        | AAC<br>Asn<br>405 | GAC<br>Asp        | TTC<br>Phe        | ACC<br>Thr        | GAG<br>Glu        | TGG<br>Trp<br>410 | TTC<br>Phe        |   | 1252 |
|    |                   |                   |                   |                   |                   | TTC<br>Phe        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |   | 1300 |
| 25 | GGT<br>Gly        | CCG<br>Pro        | GTC<br>Val<br>430 | GAG<br>Glu        | ATC<br>Ile        | CGC<br>Arg        | TGC<br>Cys        | TGC<br>Cys<br>435 | GGG<br>Gly        | CTC<br>Leu        | gat<br>Asp        | CAG<br>Gln        | GCA<br>Ala<br>440 | GCC<br>Ala        | gac<br>Asp        |                   |   | 1348 |
| 20 | AAG<br>Lys        | GTG<br>Val<br>445 | CCG<br>Pro        | TCG<br>Ser        | GTG<br>Val        | ej A<br>eec       | CCG<br>Pro<br>450 | CCG<br>Pro        | ACC<br>Thr        | ATC<br>Ile        | TCG<br>Ser        | GCG<br>Ala<br>455 | ACC<br>Thr        | CGT<br>Arg        | CCG<br>Pro        | CGT<br>Arg        | • | 1396 |
| 30 | CCG<br>Pro<br>460 | GAT<br>Asp        | CAT<br>His        | CCG<br>Pro        | GAC<br>Asp        | TGG<br>Trp<br>465 | GAC<br>Asp        | GTC<br>Val        | GCG<br>Ala        | ATC<br>Ile        | TGG<br>Trp<br>470 | CTG<br>Leu        | AAC<br>Asn        | GTT<br>Val        | CTC<br>Leu        | GGT<br>Gly<br>475 |   | 1444 |
| 35 | GTT<br>Val        | CCG<br>Pro        | GGC<br>Gly        | ACC<br>Thr        | CCC<br>Pro<br>480 | GGC<br>GGC        | ATG<br>Met        | TTC<br>Phe        | GAG<br>Glu        | TTC<br>Phe<br>485 | TAC<br>Tyr        | CGC<br>Arg        | GAG<br>Glu        | ATG<br>Met        | GAG<br>Glu<br>490 | CAG<br>Gln        |   | 1492 |
| 40 | TGG<br>Trp        | ATG<br>Met        | CGG<br><b>Arg</b> | AGC<br>Ser<br>495 | CAC<br>His        | TAC<br>Tyr        | AAC<br>Asn        | AAC<br>Asn        | GAC<br>Asp<br>500 | GAC<br>Asp        | GCC<br>Ala        | ACC<br>Thr        | TTC<br>Phe        | CGG<br>Arg<br>505 | CCC<br>Pro        | GAG<br>Glu        |   | 1540 |
|    | TGG<br>Trp        | TCG<br>Ser        | AAG<br>Lys<br>510 | GGG<br>Gly        | TGG<br>Trp        | GCG<br>Ala        | TTC<br>Phe        | GGT<br>Gly<br>515 | CCC               | GAC<br>Asp        | CCG<br>Pro        | TAC<br>Tyr        | ACC<br>Thr<br>520 | GAC<br>Asp        | AAC<br>Asn        | GAC<br>Asp        |   | 1588 |
| 45 | ATC<br>Ile        | GTC<br>Val<br>525 | ACG<br>Thr        | AAC<br>Asn        | AAG<br>Lys        | ATG<br>Met        | CGC<br>Arg<br>530 | GCC<br>Ala        | ACC<br>Thr        | TAC<br>Tyr        | ATC<br>Ile        | GAA<br>Glu<br>535 | GGT<br>Gly        | GTC<br>Val        | CCG<br>Pro        | ACG<br>Thr        |   | 1636 |
| 50 | ACC<br>Thr<br>540 | GAG<br>Glu        | AAC<br>Asn        | TGG<br>Trp        | GAC<br>Asp        | ACC<br>Thr<br>545 | GCG<br>Ala        | CGC<br>Arg        | GCT<br>Ala        | CGG<br>Arg        | TAC<br>Tyr<br>550 | Asn               | CAG<br>Gln        | ATC<br>Ile        | GAC<br>Asp        | CCG<br>Pro<br>555 |   | 1684 |
|    | CAT<br>His        | CGC<br>Arg        | GTG<br>Val        | TTC<br>Phe        | ACC<br>Thr<br>560 | AAC<br>Asn        | GGA<br>Gly        | TTC<br>Phe        | ATG<br>Met        | GAC<br>Asp<br>565 | Lys               | CTG<br>Leu        | CTT<br>Leu        | CCG<br>Pro        |                   |                   |   | 1726 |

<sup>(2)</sup> INFORMATION ZU SEQ ID NO: 23:

<sup>(</sup>i) SEQUENZ CHARAKTERISTIKA:

(B) ART: Aminosäure(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Protein

5

55

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 23:

| 10 | Met<br>1   | Ser               | Asn        | His        | His<br>5     |            | His        | Ala        | Ser        | Thr<br>10  | Gly        | Pro        | Val        | Ala        | Pro<br>15  | Leu        |
|----|------------|-------------------|------------|------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|    | Pro        | Thr               | Pro        | Pro<br>20  | Asn          | Phe        | Pro        | Asn        | Asp<br>25  | Ile        | Ala        | Leu        | Phe        | Gln<br>30  | Gln        | Ala        |
| 15 | Tyr        | Glņ               | Asn<br>35  | Trp        | Ser          | Lys        | Glu        | Ile<br>40  | Met        | Leu        | Asp        | Ala        | Thr<br>45  | Trp        | Val        | Cys        |
|    | Ser        | Pro<br>50         | Lys        | Thr        | Pro          | Gln        | Asp<br>55  | Val        | Val        | Arg        | Leu        | Ala<br>60  | Asn        | Trp        | Ala        | His        |
| 20 | Glu<br>65  | His               | Asp        | Tyr        | Lys          | Ile<br>70  | Arg        | Pro        | Arg        | Gly        | Ala<br>75  | Met        | His        | Gly        | Trp        | Thr<br>80  |
|    | Pro        | Leu               | Thr        | Val        | Glu<br>85    | Lys        | Gly        | Ala        | Asn        | Val<br>90  | Glu        | Lys        | Val        | Ile        | Leu<br>95  | Ala        |
| 25 | Asp        | Thr               | Met        | Thr<br>100 | His          | Leu        | Asn        | Gly        | Ile<br>105 | Thr        | Val        | Asn        | Thr        | Gly<br>110 | Gly        | Pro        |
|    | Val        | Ala               | Thr<br>115 | Val        | Thr          | Ala        | Gly        | Ala<br>120 | Gly        | Ala        | Ser        | Ile        | Glu<br>125 | Ala        | Ile        | Val        |
| 30 | Thr        | Glu<br>130        | Leu        | Gln        | Lys          | His        | Asp<br>135 | Leu        | Gly        | Trp        | Ala        | Asn<br>140 | Leu        | Pro        | Ala        | Pro        |
|    | Gly<br>145 | Val               | Leu        | Ser        | Ile          | Gly<br>150 | Gly        | Ala        | Leu        | Ala        | Val<br>155 | Asn        | Ala        | His        | Gly        | Ala<br>160 |
| 35 | Ala        | Leu               | Pro        | Ala        | Val<br>165   | Gly        | Gln        | Thr        | Thr        | Leu<br>170 | Pro        | Gly        | His        | Thr        | Tyr<br>175 | Gly        |
| 40 | Ser        | Leu               | Ser        | Asn<br>180 | Leu          | Val        | Thr        | Glu        | Leu<br>185 | Thr        | Ala        | Val        | Val        | Trp<br>190 | Asn        | Gly        |
| 40 | Thr        | Thr               | Tyr<br>195 | Ala        | Leu          | Glu        | Thr        | Tyr<br>200 | Gln        | Arg        | Asn        | Asp        | Pro<br>205 | Arg        | Ile        | Thr        |
| 45 | Pro        | <b>Leu</b><br>210 | Leu        | Thr        | Asn          | Leu        | Gly<br>215 | Arg        | Cys        | Phe        | Leu        | Thr<br>220 | Ser        | Val        | Thr        | Met        |
|    | Gln<br>225 | Ala               | Gly        | Pro        | Asn          | Phe<br>230 | Arg        | Gln        | Arg        | Cys        | Gln<br>235 | Ser        | Tyr        | Thr        | Asp        | 11e<br>240 |
| 50 | Pro        | Trp               | Arg        | Glu        | Leu .<br>245 | Phe        | Ala        | Pro        | Lys        | Gly<br>250 | Ala        | Asp        | Gly        | Arg        | Thr<br>255 | Phe        |
|    | Glu        | Lys               | Phe        | Val<br>260 | Ala          | Glu        | Ser        | Gly        | Gly<br>265 | Ala        | Glu        | Ala        | Ile        | Trp<br>270 | Tyr        | Pro        |

|    | Phe               | Thr        | Glu<br>275 | Lys         | Pro        | Trp                | Met               | Lys<br>280 |                     | Trp        | Thr        | Val         | Ser<br>285        |            | Thr        | Lys        |
|----|-------------------|------------|------------|-------------|------------|--------------------|-------------------|------------|---------------------|------------|------------|-------------|-------------------|------------|------------|------------|
| 5  | Pro               | Asp<br>290 |            | Ser         | Asn        | Glu                | Val<br>295        |            | Ser                 | Leu        | Gly        | Ser<br>300  |                   | Gly        | Ser        | Leu        |
|    | <b>Val</b><br>305 | Gly        | Lys        | Pro         | Pro        | Gln<br>310         |                   | Arg        | Glu                 | Val        | Ser<br>315 | Gly         | Pro               | Tyr        | Asn        | Tyr<br>320 |
| 10 | Ile               | Phe        | Ser        | Asp         | Asn<br>325 | Leu                | Pro               | Glu        | Pro                 | 11e<br>330 | Thr        | Asp         | Met               | Ile        | Gly<br>335 | Ala        |
|    | . Ile             | Asn        | Ala        | Gly<br>-340 | Asn        | Pro                | Gly               | Ile        | Ala<br>345          | Pro        | Leu        | Phe         | Gly               | Pro<br>350 | Ala        | Met        |
| 15 | Tyr               | Glu        | Ile<br>355 | Thr         | Lys        | Leu                | Gly               | Leu<br>360 | Ala                 | Ala        | Thr        | Asn         | <b>Ala</b><br>365 | Asn        | Asp        | Ilę        |
| 20 | Trp               | Gly<br>370 | Trp        | Ser         | Lys        | Asp                | Val<br>375        | Gln        | Phe                 | Tyr        | Ile        | Lys<br>380  | Ala               | Thr        | Thr        | Leu        |
|    | Arg<br>385        | Leu        | Thr        | Glu         | Gly        | Gl <i>y</i><br>390 | Gly               | Ala        | Val                 | Val        | Thr<br>395 | Ser         | Arg               | Ala        | Asn        | Ile<br>400 |
| 25 | Ala               | Thr        | Val        | Ile         | Asn<br>405 | Asp                | Phe               | Thr        | Glu                 | Trp<br>410 | Phe        | His         | Glu               | Arg        | Ile<br>415 | Glu        |
|    | Phe               | Tyr        | Arg        | Ala<br>420  | Lys        | Gly                | Glu               | Phe        | Pro<br>425          | Leu        | Asn        | Gly         | Pro               | Val<br>430 | Glu        | Ile        |
| 30 | Arg               | Cys        | Cys<br>435 | Gly         | Leu        | Asp                | Gln               | Ala<br>440 | Ala                 | Asp        | Val        | Lys         | Val<br>445        | Pro        | Ser        | Val        |
|    | Gly               | Pro<br>450 | Pro        | Thr         | Ile        | Ser                | <b>Ala</b><br>455 | Thr        | Arg                 | Pro        | Arg        | Pro.<br>460 | Ąsp               | His        | Pro        | Asp        |
| 35 | Trp<br>465        | Asp        | Val        | Ala         | Ile        | Trp<br>470         | Leu               | Asn        | Val                 | Leu        | Gly<br>475 | Val         | Pro               | Gly        | Thr        | Pro<br>480 |
|    | Gly               | Met        | Phe        | Glu         | Phe<br>485 | Tyr                | Arg               | Glu        | Met                 | Glu<br>490 | Gln        | Trp         | Met               | Arg        | Ser<br>495 | His        |
| 40 | Tyr               | Asn        | Asn        | Asp<br>500  | Asp        | Ala                | Thr               | Phe        | <b>Arg</b><br>505 • |            | Glu        | Trp         | Ser               | Lys<br>510 | Gly        | Trp        |
|    | Ala               | Phe        | Gly<br>515 | Pro         | Asp        | Pro                | Tyr               | Thr<br>520 | Asp                 | Asn        | Asp        | Ile         | Val<br>525        | Thr        | Asn        | Lys        |
| 45 | Met               | Arg<br>530 | Ala        | Thr         | Tyr        | Ile                | Glu<br>535        | Gly        | Val                 | Pro        | Thr        | Thr<br>540  | Glu               | Asn        | Trp        | Asp        |
|    | Thr<br>545        | Ala        | Arg        | Ala         | Arg        | Tyr<br>550         | Asn               | Gln        | Ile                 |            | Pro<br>555 | His         | Arg               | Val        | Phe        | Thr<br>560 |
| 50 | Asn               | GÌY        | Phe        | Met         | Asp<br>565 | Lys                | Leu               | Leu        | Pro                 |            |            |             |                   |            |            |            |

(2) INFORMATION ZU SEQ ID NO: 24:

55

(i) SEQUENZ CHARAKTERISTIKA:

(A) LÄNGE: 1728 Basenpaare (B) ART: Nukleinsäure

175

| _  |      | ,       | ,     | ANGF<br>OLOG     |       |        | I          |        |        |   |      |     |            |     |
|----|------|---------|-------|------------------|-------|--------|------------|--------|--------|---|------|-----|------------|-----|
| 5  |      | (ix) ME | ERKM  | ALE:             |       |        |            |        |        |   |      |     |            |     |
| 10 |      | ,       | ,     | ME/SCI<br>iE: 19 |       | SEL: C | DS         |        |        |   |      |     |            |     |
|    |      | (xi) SE | :QUEI | NZBES            | SCHRE | EIBUN  | G: SE      | Q ID N | NO: 24 | : |      |     |            |     |
| 15 | AAT: | rtgg/   | AGG ( | GGAA(            | CATT  |        | AGT<br>Ser |        |        |   |      |     |            | 51  |
| 20 |      |         |       | GCG<br>Ala<br>15 |       |        |            |        |        |   |      |     |            | 99  |
|    |      |         |       | CAG<br>Gln       |       |        |            |        |        |   |      |     |            | 147 |
| 25 |      |         |       | TGG<br>Trp       |       |        |            |        |        |   | <br> |     | -          | 195 |
| 30 |      |         |       | TGG<br>Trp       |       |        |            |        |        |   | <br> |     |            | 243 |
|    |      |         |       | GGC<br>Gly       |       |        |            |        |        |   |      |     |            | 291 |
| 35 |      |         |       | ATC<br>Ile<br>95 |       |        |            |        |        |   |      |     | ACG<br>Thr | 339 |
| 40 |      |         |       | GGC<br>GGC       |       |        |            |        |        |   |      | Ala |            | 387 |
| 45 |      |         |       | GCG<br>Ala       |       |        |            |        |        |   |      |     |            | 435 |
|    |      |         |       | CCC              |       |        |            |        |        |   |      |     |            | 463 |
| 50 |      | _       |       | CAC<br>His       |       |        |            | _      |        |   |      |     |            | 531 |
| 55 |      |         |       | ACC              |       |        |            |        |        |   |      |     |            | 579 |

180

| 5  | GCG<br>Ala        | GTC<br>Val        | GTC<br>Val<br>190 | TGG<br>Trp | AAC<br>Asn        | GGC<br>Gly        | ACC<br>Thr        | ACC<br>Thr<br>195 | TAC<br>Tyr        | GCA<br>Ala        | CTC<br>Leu        | GAG<br>Glu        | ACG<br>Thr<br>200 | TAC<br>Tyr        | CAG<br>Gln        | CGC<br>Arg        | 627  |
|----|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
|    | AAC<br>Asn        | GAT<br>Asp<br>205 | CCT<br>Pro        | CGG<br>Arg | ATC<br>Ile        | ACC<br>Thr        | CCA<br>Pro<br>210 | CTG<br>Leu        | CTC<br>Leu        | ACC<br>Thr        | AAC<br>Asn        | CTC<br>Leu<br>215 | GGG<br>Gly        | CGC<br><b>Arg</b> | TGC<br>Cys        | TTC<br>Phe        | 675  |
| 10 | CTG<br>Leu<br>220 | ACC<br>Thr        | TCG<br>Ser        | GTG<br>Val | ACG<br>Thr        | ATG<br>Met<br>225 | CAG<br>Gln        | GCC<br>Ala        | GGC               | CCC<br>Pro        | AAC<br>Asn<br>230 | TTÇ<br>Phe        | CGT<br>Arg        | CAG<br>Gln        | CGG<br>Arg        | TGC<br>Cys<br>235 | 723  |
| 15 | CAG<br>Gln        | AGC<br>Ser        | TAC<br>Tyr        | ACC<br>Thr | GAC<br>Asp<br>240 | ATC<br>Ile        | CCG<br>Pro        | TGG<br>Trp        | CGG<br>Arg        | GAA<br>Glu<br>245 | CTG<br>Leu        | TTC<br>Phe        | GCG<br>Ala        | CCG<br>Pro        | AAG<br>Lys<br>250 | GGC               | 771  |
|    |                   |                   |                   |            |                   |                   |                   |                   | TTC<br>Phe<br>260 |                   |                   |                   |                   |                   |                   |                   | 819  |
| 20 |                   |                   |                   |            |                   |                   |                   |                   | GAG<br>Glu        |                   |                   |                   |                   |                   |                   |                   | 867  |
| 25 |                   |                   |                   |            |                   |                   |                   |                   | TCG<br>Ser        |                   |                   |                   |                   |                   |                   |                   | 915  |
|    |                   |                   |                   |            |                   |                   |                   |                   | AAG<br>Lys        |                   |                   |                   |                   |                   |                   |                   | 963  |
| 30 |                   |                   |                   |            |                   |                   |                   |                   | TCC<br>Ser        |                   |                   |                   |                   |                   |                   |                   | 1011 |
| 35 |                   |                   |                   |            |                   |                   |                   |                   | GCC<br>Ala<br>340 |                   |                   |                   |                   |                   |                   |                   | 1059 |
|    |                   |                   |                   |            |                   |                   |                   |                   | ATC<br>Ile        |                   |                   |                   |                   |                   |                   |                   | 1107 |
| 40 |                   |                   | Ala               | Asn        | Asp               | Ile               | Trp               | Gly               | TGG<br>Trp        | Ser               | Lys               | Asp               | Val               |                   |                   |                   | 1155 |
| 45 |                   |                   |                   |            |                   |                   |                   |                   | ACC<br>Thr        |                   |                   |                   |                   |                   |                   |                   | 1203 |
| 50 |                   |                   |                   |            |                   |                   |                   |                   | GTG<br>Val        |                   |                   |                   |                   |                   |                   |                   | 1251 |
| 50 |                   |                   |                   |            |                   |                   |                   |                   | CGC<br>Arg<br>420 |                   |                   |                   |                   |                   |                   |                   | 1299 |
| 55 |                   |                   |                   |            |                   |                   |                   |                   | TGC<br>Cys        |                   |                   |                   |                   |                   |                   |                   | 1347 |

| 5  | GTC<br>Val        | AAG<br>Lys<br>445 | GTG<br>Val | CCG<br>Pro | TCG<br>Ser        | GTG<br>Val        | GGC<br>Gly<br>450 | CCG<br>Pro | CCG<br>Pro | ACC<br>Thr        | ATC<br>Ile        | TCG<br>Ser<br>455 | GCG<br>Ala | ACC<br>Thr | CGT<br>Arg        | CCG<br>Pro        | 1395 |
|----|-------------------|-------------------|------------|------------|-------------------|-------------------|-------------------|------------|------------|-------------------|-------------------|-------------------|------------|------------|-------------------|-------------------|------|
|    | CGT<br>Arg<br>460 | CCG<br>Pro        | GAT<br>Asp | CAT<br>His | CCG<br>Pro        | GAC<br>Asp<br>465 | TGG<br>Trp        | GAC<br>Asp | GTC<br>Val | GCG<br>Ala        | ATC<br>Ile<br>470 | TGG<br>Trp        | CTG<br>Leu | AAC<br>Asn | GTT<br>Val        | CTC<br>Leu<br>475 | 1443 |
| 10 | GGT<br>Gly        | GTT<br>Val        | CCG<br>Pro | GGC<br>Gly | ACC<br>Thr<br>480 | CCC<br>Pro        | G1 y              | ATG<br>Met | TTC<br>Phe | GAG<br>Glu<br>485 | TTC<br>Phe        | TAC<br>Tyr        | CGC<br>Arg | GAG<br>Glu | ATG<br>Met<br>490 | GAG<br>Glu        | 1491 |
| 15 |                   |                   | Met        |            |                   | CAC<br>His        |                   |            |            |                   |                   |                   |            |            |                   |                   | 1539 |
| 20 |                   |                   |            |            |                   | TGG<br>Trp        |                   |            |            |                   |                   |                   |            |            |                   |                   | 1587 |
|    |                   |                   |            |            |                   | AAG<br>Lys        |                   |            |            |                   |                   |                   |            |            |                   |                   | 1635 |
| 25 |                   |                   |            |            |                   | GAC<br>Asp<br>545 |                   |            |            |                   |                   |                   |            |            |                   |                   | 1683 |
| 30 |                   |                   |            |            |                   | ACC<br>Thr        |                   |            |            |                   |                   |                   |            |            |                   |                   | 1728 |

## (2) INFORMATION ZU SEQ ID NO: 25:

35

40

45

50

55

(i) SEQUENZ CHARAKTERISTIKA:

(A) LANGE: 570 Aminosäuren

(B) ART: Aminosäure

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Protein

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 25:

|    | Met<br>1  | Ser       | Asn       | His       | His<br>5  | His       | Gly       | His       | Ala       | Ser<br>10 | Thr       | Gly       | Pro       | Val       | Ala<br>15 | Pro       |
|----|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 5  | Leu       | Pro       | Thr       | Pro<br>20 | Pro       | Asn       | Phe       | Pro       | Asn<br>25 | Asp       | Ile       | Ala       | Leu       | Phe<br>30 | Gln       | Gln       |
|    | Ala       | Tyr       | Gln<br>35 | Asn       | Trp       | Ser       | Lys       | Glu<br>40 | Ile       | Met       | Leu       | Asp       | Ala<br>45 | Thr       | Trp       | Val       |
| 10 | Cys       | Ser<br>50 | Pro       | Lys       | Thr       | Pro       | Gln<br>55 | Asp       | Val       | Val       | Arg       | Leu<br>60 | Ala       | Asn       | Trp       | Ala       |
|    | His<br>65 | Glu       | His       | Asp       | Tyr       | Lys<br>70 | Ile       | Arg       | Pro       | Arg       | Gly<br>75 | Ala       | Met       | His       | Gly       | Trp<br>80 |
| 15 | Thr       | Pro       | Leu       | Thr       | Val<br>85 | Glu       | Lys       | Gly       | Ala       | Asn<br>90 | Val       | Glu       | Lys       | Val       | Ile<br>95 | Leu       |
| 20 |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| 25 |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| 30 |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| 35 |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| 40 |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| 45 |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| 50 |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| 55 |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |

|    | Ala        | Asp        | Thr        | Met<br>100 |                | His        | Leu        | Asn        | G1 y<br>105 | Ile        | Thr        | Val        | Asn        | Thr<br>110 | Gly        | Gly        |
|----|------------|------------|------------|------------|----------------|------------|------------|------------|-------------|------------|------------|------------|------------|------------|------------|------------|
| 5  | Pro        | Val        | Ala<br>115 | Thr        | Val            | Thr        | Ala        | Gly<br>120 | Ala         | Gly        | Ala        | Ser        | Ile<br>125 | Glu        | Ala        | Ile        |
|    | Val        | Thr<br>130 |            | Leu        | Gln            | Lys        | His<br>135 | Asp        | Leu         | Gly        | Trp        | Ala<br>140 | Asn        | Leu        | Pro        | Ala        |
| 10 | Pro<br>145 | Gly        | Val        | Leu        | Ser            | Ile<br>150 | Gly        | Gly        | Ala         | Leu        | Ala<br>155 | Val        | Asn        | Ala        | His        | Gly<br>160 |
|    | Ala        | Ala        | Leu        | Pro        | Ala<br>165     | Val        | Gly        | Gln        |             | Thr<br>170 | Leu        | Pro        | Gly        | His        | Thr<br>175 | Tyr        |
| 15 | Gly        | Ser        | Leu        | Ser<br>180 | Asn            | Leu        | Val        | Thr        | Glu<br>185  | Leu        | Thr        | Ala        | Val        | Val<br>190 | Trp        | Asn        |
| 20 | Gly        | Thr        | Thr<br>195 | Tyr        | Ala            | Leu        | Glu        | Thr<br>200 | Tyr         | Gln        | Arg        | Asn        | Asp<br>205 | Pro        | Arg        | Ile        |
| 20 | Thr        | Pro<br>210 | Leu        | Leu        | Thr            | Asn        | Leu<br>215 |            | Arg         | Cys        | Phe        | Leu<br>220 | Thr        | Ser        | Val        | Thr        |
| 25 | Met<br>225 | Gln        | Ala        | Gly        | Pro            | Asn<br>230 | Phe        | Arg        | Gln         | Arg        | Cys<br>235 | Gln        | Ser        | Tyr        | Thr        | Asp<br>240 |
|    | Ile        | Pro        | Trp        | Arg        | Glu<br>245     | Leu        | Phe        | Ala        | Pro         | Lys<br>250 | Gly        | Ala        | Asp        | Gly        | Arg<br>255 | Thr        |
| 30 | Phe        | Glu        | Lys        | Phe<br>260 | Val            | Ala        | Glu        | Ser        | Gly<br>265  | Gly        | Ala        | Glu        | Ala        | Ile<br>270 | Trp        | Tyr        |
|    | Pro        | Phe        | Thr<br>275 | Glu        | Lys            | Pro        | Trp        | Met<br>280 | Lys         | Val        | Trp        | Thr        | Val<br>285 | Ser        | Pro        | Thr        |
| 35 | Lys        | Pro<br>290 | qzA        | Ser        | Ser            | Asn        | Glu<br>295 | Val        | Gly         | Ser        | Leu        | Gly<br>300 | Ser        | Ala        | Gly        | Ser        |
|    | Leu<br>305 | Val        | Gly        | Lys        | Pro            | Pro<br>310 | Gln        | Ala        | Arg         | Glu        | Val<br>315 | Ser        | G) À       | Pro        | Tyr        | Asn<br>320 |
| 40 | Tyr        | Ile        | Phe        | Ser        | <b>Asp</b> 325 | Asn        | Leu        | Pro        | Glu         | Pro<br>330 | Ile        | Thr        | Asp        | Met        | 11e<br>335 | Gly        |
|    | Ala        | Ile        |            | Ala<br>340 |                | neA        | Pro        | Gly        | Ile<br>345  |            | Pro        | Leu        | Phe        | Gly<br>350 | Pro        | Ala        |
| 45 | Met        | Tyr        | Glu<br>355 | Ile        | Thr            | Lys        | Leu        | Gly<br>360 | Leu         | Ala        | Ala        | Thr        | Asn<br>365 | Ala        | Asn        | Asp        |
|    | Ile        | Trp<br>370 | Gly        | Trp        | Ser            | Lys        | Asp<br>375 | Val        | Gln         | Phe        | Tyr        | 11e<br>380 | Lys        | Ala        | Thr        | Thr        |
| 50 | Leu<br>385 | Arg        | Leu        | Thr        | Glu            | Gly<br>390 | Gly        | Gly        | Ala         | Val        | Val<br>395 | Thr        | Ser        | Arg        | Ala        | Asn<br>400 |
|    | Ile        | Ala        | Thr        | Val        | Ile<br>405     | Asn        | qeA        | Phe        | Thr         | Glu<br>410 | Trp        | Phe        | His        | Glu        | Arg<br>415 | Ile        |
| 55 | Glu        | Phe        | Tyr        | Arg<br>420 | Ala            | Lys        | Gly        | Glu        | Phe<br>425  | Pro        | Leu        | Asn        | Gly        | Pro<br>430 | Val        | Glu        |

|    | Ile        | Arg            | Cys<br>435      | Cys        | Gly        | Leu        | Asp        | Gln<br>440 | Ala        | Ala        | Asp        | Val        | Lys<br>445 | Val        | Pro        | Ser        |
|----|------------|----------------|-----------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 5  | Val        | Gly<br>450     | Pro             | Pro        | Thr        | Ile        | Ser<br>455 | Ala        | Thr        | Arg        | Pro        | Arg<br>460 | Pro        | Asp        | His        | Pro        |
| 10 | Asp<br>465 | Trp            | Asp             | Val        | Ala        | Ile<br>470 | Trp        | Leu        | Asn        | Val        | Leu<br>475 | Gly        | Val        | Pro        | Gly        | Thr<br>480 |
|    | Pro        | Gly            | Met             | Phe        | Glu<br>485 | Phe        | Tyr        | Arg        | Glu        | Met<br>490 | Glu        | Gln        | Trp        | Met        | Arg<br>495 | Ser        |
| 15 | His        | Tyr            | Asn             | Asn<br>500 | Asp        | Asp        | Ala        | Thr        | Phe<br>505 | Arg        | Pro        | Glu        | Trp        | Ser<br>510 | Lys        | Gly        |
|    | Trp        | Ala            | Phe<br>515      | Gly        | Pro        | Asp        | Pro        | Tyr<br>520 | Thr        | Asp        | Asn        | Asp        | Ile<br>525 | Val        | Thr        | Asn        |
| 20 | Lys        | Met<br>530     | Arg             | Ala        | Thr        | Tyr        | 11e<br>535 | Glu        | Gly        | Val        | Pro        | Thr<br>540 | Thr        | Glu        | Asn        | Trp        |
|    | Asp<br>545 | Thr            | Ala             | Arg        | Ala        | Arg<br>550 | Tyr        | Asn        | Ğln        | Ile        | Asp<br>555 | Pro        | His        | Arg        | Val        | Phe<br>560 |
| 25 | Thr        | Asn            | Gly             | Phe        | Met<br>565 | Asp        | Lys        | Leu        | Leu        | Pro<br>570 |            |            |            |            |            |            |
|    | (2) INFOF  | RMATI          | ON ZL           | SEQ        | ID NC      | ): 26:     |            |            |            |            |            |            |            |            |            |            |
| 30 | (i) SE     | QUEN           | IZ CHA          | ARAK       | TERIS      | TIKA:      |            |            |            |            |            |            |            |            |            |            |
|    | (E         | 3) <b>A</b> R1 | IGE: 1          | einsäu     | ıre        |            |            |            |            |            |            |            |            |            |            |            |
| 35 |            |                | RANGF<br>POLOC  |            |            | el         |            |            |            |            |            |            |            |            |            |            |
|    | (ix) M     | ERKN           | IALE:           |            |            |            |            |            |            |            |            |            |            |            |            |            |
| 40 | •          | •              | ME/SC<br>GE: 20 |            |            | CDS        |            |            |            |            |            |            |            |            |            |            |
|    | (xi) S     | EQUE           | NZBE            | SCHE       | REIBUI     | NG: S      | EQ ID      | NO: 2      | 26:        |            |            |            |            |            |            |            |
| 45 |            |                |                 |            |            |            |            |            |            |            |            |            |            |            |            |            |
|    |            |                |                 |            |            |            |            |            |            |            |            |            |            |            |            |            |
| 50 |            |                |                 |            |            |            |            |            |            |            |            |            |            |            |            |            |
|    |            |                |                 |            |            |            |            |            |            |            |            |            |            |            |            |            |
|    |            |                |                 |            |            |            |            |            |            |            |            |            |            |            |            |            |

| EP 0 698 102 B1 |                  |                  |                  |                  |            |                  |                  |                  |                  |            |                  |                  |                  |                  |            |                  |     |
|-----------------|------------------|------------------|------------------|------------------|------------|------------------|------------------|------------------|------------------|------------|------------------|------------------|------------------|------------------|------------|------------------|-----|
|                 | GAAT             | rtta.            | AGG (            | <b>GAA</b> (     | CATCO      | ATO<br>Met       | : Sei            | TAA 1<br>CAS 1   | ACC<br>Thr       | G CGI      | Lys              | CGC<br>Arg       | C AAG            | G CGC            | CGT<br>Arg | ACG<br>Thr       | 52  |
| 5               | CAT<br>His       | GCC<br>Ala       | TCG<br>Ser       | ACC<br>Thr<br>15 | GGG<br>Gly | CCG<br>Pro       | GTC<br>Val       | GCG<br>Ala       | CCG<br>Pro<br>20 | CTT<br>Leu | CCG<br>Pro       | ACG<br>Thr       | CCG<br>Pro       | CCG<br>Pro<br>25 | AAC<br>Asn | TTC<br>Phe       | 100 |
| 10              | CCG<br>Pro       | AAC<br>Asn       | GAC<br>Asp<br>30 | ATC<br>Ile       | GCG<br>Ala | CTG<br>Leu       | .TTC<br>Phe      | CAG<br>Gln<br>35 | CAG<br>Gln       | GCG<br>Ala | TAC<br>Tyr       | CAG<br>Gln       | AAC<br>Asn<br>40 | TGG<br>Trp       | TCC<br>Ser | AAG<br>Lys       | 148 |
| 15              | GAG<br>Glu       | ATC<br>Ile<br>45 | Met              | CTG<br>Leu       | GAC<br>Asp | GCC<br>Ala       | ACT<br>Thr<br>50 | Trp              | GTC<br>Val       | TGC<br>Cys | TCG<br>Ser       | CCC<br>Pro<br>55 | AAG<br>Lys       | ACG<br>Thr       | CCG<br>Pro | CAG<br>Gln       | 196 |
|                 | GAT<br>Asp<br>60 | Val              | GTT<br>Val       | CGC<br>Arg       | CTT<br>Leu | GCC<br>Ala<br>65 | AAC<br>Asn       | TGG<br>Trp       | GCG<br>Ala       | CAC<br>His | GAG<br>Glu<br>70 | CAC<br>His       | GAC<br>Asp       | TAC<br>Tyr       | AAG<br>Lys | ATC<br>Ile<br>75 | 24  |
| 20              |                  |                  |                  |                  |            |                  |                  |                  |                  |            |                  |                  |                  |                  |            |                  |     |
| 25              |                  |                  |                  |                  |            |                  |                  |                  |                  |            |                  |                  |                  |                  |            |                  |     |
| 30              |                  |                  |                  |                  |            |                  |                  |                  |                  |            |                  |                  |                  |                  |            |                  |     |
| 35              |                  |                  |                  |                  |            |                  |                  |                  |                  |            |                  |                  |                  |                  |            |                  |     |
| 40              |                  |                  |                  |                  |            |                  |                  |                  |                  |            |                  |                  |                  |                  |            |                  |     |
| 45              |                  |                  |                  |                  |            |                  |                  |                  |                  |            |                  |                  |                  |                  |            |                  |     |

|    |                   |                   |                   |            |                   | ATG<br>Met        |                   |                   |            |                   |                   |                   |                   |            |                   |                   | :   | 292 |
|----|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-----|-----|
| 5  |                   |                   |                   |            |                   | AAG<br>Lys        |                   |                   |            |                   |                   |                   |                   |            |                   |                   | :   | 340 |
| 10 | AAC<br>Asn        | GGC<br>Gly        | ATC<br>Ile<br>110 | ACG<br>Thr | GTG<br>Val        | AAC<br>Asn        | ACG<br>Thr        | GGC<br>Gly<br>115 | GT A       | CCC<br>Pro        | GTG<br>Val        | GCT<br>Ala        | ACC<br>Thr<br>120 | GTC<br>Val | ACC<br>Thr        | GCC<br>Ala        | ;   | 388 |
| 15 |                   |                   |                   |            |                   | ATC<br>Ile        |                   |                   |            |                   |                   |                   |                   |            |                   | CAC<br>His        | . ( | 436 |
|    |                   |                   |                   |            |                   | AAC<br>Asn<br>145 |                   |                   |            |                   |                   |                   |                   |            |                   |                   | 4   | 484 |
| 20 |                   |                   |                   |            |                   | AAC<br>Asn        |                   |                   |            |                   |                   |                   |                   |            |                   |                   | ;   | 532 |
| 25 | Gln               | Thr               | Thr               | Leu<br>175 | Pro               | GGT<br>Gly        | His               | Thr               | Tyr<br>180 | Gly               | Ser               | Leu               | Ser               | Asn<br>185 | Leu               | Val               |     | 580 |
|    | Thr               | Glu               | Leu<br>190        | Thr        | Ala               | GTC<br>Val        | Val               | Trp<br>195        | Asn        | Gly               | Thr               | Thr               | Tyr<br>200        | Ala        | Leu               | Glu               | •   | 628 |
| 30 | Thr               | <b>Tyr</b><br>205 | Gln               | Arg        | Asn               | GAT<br>Asp        | Pro<br>210        | Arg               | Ile        | Thr               | Pro               | <b>Leu</b><br>215 | Leu               | Thr        | Asn               | Leu               | •   | 576 |
| 35 | GGG<br>Gly<br>220 | CGC<br>Arg        | TGC<br>Cys        | TTC<br>Phe | CTG<br>Leu        | ACC<br>Thr<br>225 | TCG<br>Ser        | GTG<br>Val        | ACG<br>Thr | ATG<br>Met        | CAG<br>Gln<br>230 | GCC<br>Ala        | GGC<br>Gly        | CCC<br>Pro | AAC<br>Asn        | TTC<br>Phe<br>235 | 7   | 724 |
|    | Arg               | Gln               | Arg               | Cys        | Gln<br>240        | AGC<br>Ser        | Tyr               | Thr               | Asp        | 11e<br>245        | Pro               | Trp               | Arg               | Glu        | <b>Leu</b><br>250 | Phe               | 7   | 772 |
| 40 |                   |                   |                   |            |                   | GAC<br>Asp        |                   | Arg               |            |                   |                   |                   |                   |            |                   |                   | 8   | 320 |
| 45 | TCG<br>Ser        | GGC<br>Gly        | GGC<br>Gly<br>270 | GCC<br>Ala | GAG<br>Glu        | GCG<br>Ala        | ATC<br>Ile        | TGG<br>Trp<br>275 | TAC<br>Tyr | CCG<br>Pro        | TTC<br>Phe        | ACC<br>Thr        | GAG<br>Glu<br>280 | AAG<br>Lys | CCG<br>Pro        | TGG<br>Trp        | •   | 968 |
|    | ATG<br>Met        | AAG<br>Lys<br>285 | GTG<br>Val        | TGG<br>Trp | ACG<br>Thr        | GTC<br>Val        | TCG<br>Ser<br>290 | CCG<br>Pro        | ACC<br>Thr | AAG<br>Lys        | CCG<br>Pro        | GAC<br>Asp<br>295 | TCG<br>Ser        | TCG<br>Ser | AAC<br>Asn        | GAG<br>Glu        | 9   | 916 |
| 50 | GTC<br>Val<br>300 | GGA<br>Gly        | AGC<br>Ser        | CTC<br>Leu | GGC<br>Gly        | TCG<br>Ser<br>305 | GCG<br>Ala        | GGC<br>Gly        | TCC<br>Ser | CTC<br>Leu        | GTC<br>Val<br>310 | GGC<br>Gly        | AAG<br>Lys        | CCT<br>Pro | CCG<br>Pro        | CAG<br>Gln<br>315 | 9   | 964 |
| 55 | GCG<br>Ala        | CGT<br>AIG        | GAG<br>Glu        | GTC<br>Val | TCC<br>Ser<br>320 | GGC<br>G1 y       | CCG<br>Pro        | TAC<br>Tyr        | AAC<br>Asn | TAC<br>Tyr<br>325 | ATC<br>Ile        | TTC<br>Phe        | TCC<br>Ser        | GAC<br>Asp | AAC<br>Asn<br>330 | CTG<br>Leu        | 10  | 012 |

|      |                   |            | CCC<br>Pro        |            |                   |                   |            |            |            |                   |                   |            |                    |            |                   |                   | 1060 |
|------|-------------------|------------|-------------------|------------|-------------------|-------------------|------------|------------|------------|-------------------|-------------------|------------|--------------------|------------|-------------------|-------------------|------|
| 5    |                   |            | GCA<br>Ala<br>350 |            |                   |                   |            |            |            |                   |                   |            |                    |            |                   |                   | 1108 |
| 10   |                   |            | GCC<br>Ala        |            |                   |                   |            |            |            |                   |                   |            |                    |            |                   |                   | 1156 |
| 15   |                   |            | TTC<br>Phe        |            |                   |                   |            |            |            |                   |                   |            |                    |            |                   |                   | 1204 |
|      | GGC<br>Gly        | GCC<br>Ala | GTC<br>Val        | GTC<br>Val | ACG<br>Thr<br>400 | AGC<br>Ser        | CGC<br>Arg | GCC<br>Ala | AAC<br>Asn | ATC<br>Ile<br>405 | GCG<br>Ala        | ACC<br>Thr | GTG<br>Val         | ATC<br>Ile | AAC<br>Asn<br>410 | GAC<br>Asp        | 1252 |
| 20 - | Phe               | Thr        | GAG<br>Glu        | Trp        | Phe               | His               |            |            |            |                   |                   |            |                    |            |                   |                   | 1300 |
| 25   | Glu               | Phe        | CCG<br>Pro<br>430 | Leu        | Asn               | Gly               | Pro        | Val<br>435 | Glu        | Ile               | Arg               | Cys        | Cys<br>440         | Gly        | Leu               | Asp               | 1348 |
|      | Gln               | Ala<br>445 | GCC<br>Ala        | Asp        | Val               | Lys               | Val<br>450 | Pro        | Ser        | Val               | Gly               | Pro<br>455 | Pro                | Thr        | Ile               | Ser               | 1396 |
| 30   |                   |            | CGT<br>Arg        |            |                   |                   |            |            |            |                   |                   |            |                    |            |                   | TGG<br>Trp<br>475 | 1444 |
| 35   |                   |            | GTT<br>Val        |            |                   |                   |            |            |            |                   |                   |            |                    |            |                   | TAC<br>Tyr        | 1492 |
|      |                   |            |                   |            |                   |                   |            |            |            |                   |                   |            |                    |            |                   | GCC<br>Ala        | 1540 |
| 40   |                   |            |                   |            |                   |                   |            |            |            |                   |                   |            |                    | Pro        |                   | CCG<br>Pro        | 1588 |
| 45   |                   |            |                   |            |                   |                   |            |            |            |                   |                   |            |                    |            |                   | ATC<br>Ile        | 1636 |
| 50   | GAA<br>Glu<br>540 | Gly        | GTC<br>Val        | CCG<br>Pro | ACG<br>Thr        | ACC<br>Thr<br>545 | Glu        | AAC<br>Asn | TGG<br>Trp | GAC<br>Asp        | ACC<br>Thr<br>550 | Ala        | CGC<br><b>Ar</b> g | GCT<br>Ala | CGG               | TAC<br>Tyr<br>555 | 1684 |
| 50   |                   |            |                   |            |                   | His               |            |            |            |                   | Asn               |            |                    |            |                   | AAG<br>Lys        | 1732 |
| 55   |                   |            | CCG<br>Pro        |            |                   |                   |            |            |            |                   |                   |            |                    |            |                   |                   | 1741 |

|    | (2) INFORMATION ZU SEQ ID NO: 27:                                                                      |
|----|--------------------------------------------------------------------------------------------------------|
|    | (i) SEQUENZ CHARAKTERISTIKA:                                                                           |
| 5  | <ul><li>(A) LANGE: 574 Aminosäuren</li><li>(B) ART: Aminosäure</li><li>(D) TOPOLOGIE: linear</li></ul> |
| 10 | (ii) ART DES MOLEKÜLS: Protein (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 27:                                |
| 15 |                                                                                                        |
| 20 |                                                                                                        |
| 25 |                                                                                                        |
| 30 |                                                                                                        |
| 35 |                                                                                                        |
| 40 |                                                                                                        |
| 45 |                                                                                                        |
| 50 |                                                                                                        |
|    |                                                                                                        |

|    | Met<br>1   | Ser        | Asn        | Thr        | Arg<br>5          | Lys        | Arg        | Lys        | Arg        | Arg<br>10  | Thr        | His        | Ala        | Ser        | Thr<br>15     | Gly            |
|----|------------|------------|------------|------------|-------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|---------------|----------------|
| 5  | Pro        | Val        | Ala        | Pro<br>20  | Leu               | Pro        | Thr        | Pro        | Pro<br>25  | Asn        | Phe        | Pro        | Asn        | Asp<br>30  | Ile           | Ala            |
|    | Leu        | Phe        | Gln<br>35  |            | Ala               | Tyr        | Gln        | Asn<br>40  | Trp        | Ser        | Lys        | Glu        | Ile<br>45  | Met        | Leu           | Asp            |
| 10 | Ala        | Thr<br>50  | Trp        | Val        | Cys               | Ser        | Pro<br>55  | Lys        | Thr        | Pro        | Gln        | Asp<br>60  |            | Val        | Arg           | Leu            |
| 15 | Ala<br>65  | Asn        | Trp        | Ala        | His               | Glu<br>70  | His        | Asp        | Tyr        | Lys        | Ile<br>75  | Arg        | Pro        | Arg        | Gly           | Ala<br>80      |
|    | Met        | His        | Gly        | Trp        | Thr<br>85         | Pro        | Leu        | Thr        | Val        | Glu<br>90  | Lys        | Gly        | Ala        | Asn        | <b>Val</b> 95 | Glu            |
| 20 | Lys        | Val        | Ile        | Leu<br>100 | Ala               | Asp        | Thr        | Met        | Thr<br>105 | His        | Leu        | Asn        | Gly        | Ile<br>110 | Thr           | Val            |
|    | Asn        | Thr        | Gly<br>115 | Gly        | Pro               | Val        | Ala        | Thr<br>120 | Val        | Thr        | Ala        | Gly        | Ala<br>125 | Gly        | Ala           | Ser            |
| 25 | Ile        | Glu<br>130 | Ala        | Ile        | Val               | Thr        | Glu<br>135 | Leu        | Gln        | Lys        | His        | Asp<br>140 | Leu        | Gly        | Trp           | Ala            |
|    | Asn<br>145 | Leu        | Pro        | Ala        | Pro               | Gly<br>150 | Val        | Leu        | Ser        | Ile        | Gly<br>155 | Gly        | Ale        | Leu        | Ala           | <b>Val</b> 160 |
| 30 | Asn        | Ala        | His        | Gly        | <b>Ala</b><br>165 | Ala        | Leu        | Pro        | Ala        | Val<br>170 | Gly        | Gln        | Thr        | Thr        | Leu<br>175    | Pro            |
|    | Gly        | His        | Thr        | Tyr<br>180 | Gly               | Ser        | Leu        | Ser        | Asn<br>185 | Leu        | Val        | Thr        | Glu        | Leu<br>190 | Thr           | Ala            |
| 35 | Val        | Val        | Trp<br>195 | Asn        | Gly               | Thr        | Thr        | Tyr<br>200 | Ala        | Leu        | Glu        | Thr        | Tyr<br>205 | Gln        | Arg           | Asn            |
|    | Asp        | Pro<br>210 | Arg        | Ile        | Thr               | Pro        | Leu<br>215 | Leu        | Thr        | Asn        | Leu        | Gly<br>220 | Arg        | Ċys        | Phe           | Leu            |
| 40 | Thr<br>225 | Ser        | Val        | Thr        | Met               | Gln<br>230 | Ala        | Gly        | Pro        | Asn        | Phe<br>235 | Arg        | Gln        | Arg        | Cys           | Gln<br>240     |
|    | Ser        | Tyr        | Thr        | Asp        | 11e<br>245        | Pro        | Trp        | Arg        | Glu        | Leu<br>250 | Phe        | Ala        | Pro        | Lys        | Gly<br>255    | Ala            |
| 45 | Asp        | Gly        | Arg        | Thr<br>260 | Phe               | Glu        | Lys        | Phe        | Val<br>265 | Ala        | Glu        | Ser        | Gly        | Gly<br>270 | Ala           | Glu            |

|    | Ala        | lle               | 275        |            | Pro        | Phe        | Thr        | Glu<br>280 |            | Pro            | Trp        | Met               | Lys<br>285        | Val               | Trp        | Thr        |
|----|------------|-------------------|------------|------------|------------|------------|------------|------------|------------|----------------|------------|-------------------|-------------------|-------------------|------------|------------|
| 5  | Val        | Ser<br>290        | Pro        | Thr        | Lys        | Pro        | Asp<br>295 | Ser        | Ser        | Asn            | Glu        | Val<br>300        | Gly               | Ser               | Leu        | Gly        |
|    | Ser<br>305 | Ala               | Gly        | Ser        | Leu        | Val<br>310 |            | Lys        | Pro        | Pro            | Gln<br>315 | Ala               | Arg               | Glu               | Val        | Ser<br>320 |
| 0  | Gly        | Pro               | Tyr        | Asn        | Tyr<br>325 | Ile        | Phe        | Ser        | Asp        | Asn<br>330     | Leu        | Pro               | Glu               | Pro               | Ile<br>335 | Thr        |
| 5  | Asp        | Met               | Ile        | Gly<br>340 | Ala        | Ile        | Asn        | Ala        | Gly<br>345 | Asn            | Pro        | Gly               | Ile               | <b>Ala</b><br>350 | Pro        | Leu        |
|    | Phe<br>-   | Gly               | Pro<br>355 | Ala        | Met        | Tyr        | Glu        | Ile<br>360 | Thr        | Lys            | Leu        | Gly               | <b>Leu</b><br>365 | Ala               | Ala        | Thr        |
| 20 | Asn        | Ala<br>370        | Asn        | Asp        | Ile        | Trp        | Gly<br>375 | Trp        | Ser        | Lys            | Asp        | <b>Val</b><br>380 | Gln               | Phe               | Tyr        | Ile        |
|    | Lys<br>385 | Ala               | Thr        | Thr        | Leu        | Arg<br>390 | Leu        | Thr        | Glu        | Gly            | Gly<br>395 | Gly               | Ala               | Val               | Val        | Thr<br>400 |
| 25 | Ser        | Arg               | Ala        | Asn        | Ile<br>405 | Ala        | Thr        | Val        | Ile        | Asn<br>410     | Asp        | Phe               | Thr               | Glu               | Trp<br>415 | Phe        |
|    | His        | Glu               | Arg        | Ile<br>420 | Glu        | Phe        | Tyr        | Arg        | Ala<br>425 | Lys            | Gly        | Glu               | Phe               | Pro<br>430        | Leu        | Asn        |
| 30 | Gly        | Pro               | Val<br>435 | Glu        | Ile        | Arg        | Суз        | Cys<br>440 | Gly        | Leu            | Asp        | Gln               | Ala<br>445        | Ala               | Asp        | Val        |
|    | Lys        | Val<br>450        | Pro        | Ser        | Val        | Gly        | Pro<br>455 | Pro        | Thr        | Ile            | Ser        | Ala<br>460        | Thr               | Arg               | Pro        | Arg        |
| 35 | Pro<br>465 | Asp               | His        | Pro        | Asp        | Trp<br>470 | Asp        | Val        | Ala        | Ile            | Trp<br>475 | Leu               | Asn               | Val               | Leu        | Gly<br>480 |
|    | Val        | Pro               | Gly        | Thr        | Pro<br>485 | Gly        | Met        | Phe        | Glu        | Phe<br>490     | Tyr        | Arg               | Glu               | Met               | Glu<br>495 | Gln        |
| 10 | Trp        | Met               | Arg        | Ser<br>500 | His        | Tyr        | Asn        | Asn        | Asp<br>505 | Asp            | Ala        | Thr               | Phe               | Arg<br>510        | Pro<br>·   | Glu        |
|    | Trp        | Ser               | Lys<br>515 | Gly        | Trp        | Ala        | Phe        | Gly<br>520 | Pro        | Asp            | Pro        | Tyr               | Thr<br>525        | Asp               | Asn        | Asp        |
| 15 | Ile        | <b>Val</b><br>530 | Thr        | Asn        | Lys        | Met        | Arg<br>535 | Ala        | Thr        | Tyr            | Ile        | Glu<br>540        | Gly               | Val               | Pro        | Thr        |
| 50 | Thr<br>545 | Glu               | Asn        | Trp        | Asp        | Thr<br>550 | Ala        | Arg        | Ala        | Arg            | Tyr<br>555 | Asn               | Gln               | Ile               | Asp        | Pro<br>560 |
| 50 | His        | Arg               | Val        | Phe        | Thr<br>565 | Asn        | Gly        | Phe        | Met        | <b>Asp</b> 570 | Lys        | Leu               | Leu               | Pro               |            |            |

(2) INFORMATION ZU SEQ ID NO: 28:

55

(i) SEQUENZ CHARAKTERISTIKA:

(A) LÄNGE: 1731 Basenpaare

55

| 5  |                   | (                 | (B) AR<br>(C) ST<br>(D) TC | RANG              | FOR              | M: Ein            | zel               |                   |                   |                  |                   |                   |                   |                   |                  |                   |     |
|----|-------------------|-------------------|----------------------------|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|-----|
| J  |                   | (ix) N            | /IERKI                     | MALE:             | :                |                   |                   |                   |                   |                  |                   |                   |                   |                   |                  |                   |     |
| 10 |                   |                   | (A) NA<br>(B) LA           |                   |                  |                   | : CDS             |                   |                   |                  |                   |                   |                   |                   |                  |                   |     |
|    |                   | (xi) S            | SEQUE                      | ENZBE             | ESCH             | REIBL             | JNG: S            | SEQ II            | O NO:             | 28:              |                   |                   |                   |                   |                  |                   |     |
| 15 | GAAT              | rtca(             | CAC A                      | \GG <b>A</b>      | ACAC             | EA AE             |                   |                   |                   |                  | CAC C             |                   |                   |                   |                  |                   | 51  |
| 20 |                   |                   |                            |                   |                  |                   |                   |                   |                   |                  | CCG<br>Pro<br>20  |                   |                   |                   |                  |                   | 99  |
| 20 | ATC<br>Ile        | GCG<br>Ala        | CTG<br>Leu                 | TTC<br>Phe        | CAG<br>Gln<br>30 | CAG<br>Gln        | GCG<br>Ala        | TAC<br>Tyr        | CAG<br>Gln        | AAC<br>Asn<br>35 | TGG<br>Trp        | Ser               | AAG<br>Lys        | GAG<br>Glu        | ATC<br>Ile<br>40 | ATG<br>Met        | 147 |
| 25 |                   |                   |                            |                   |                  |                   |                   |                   |                   |                  | ACG Thr           |                   |                   |                   |                  |                   | 195 |
| 30 |                   |                   |                            |                   |                  |                   |                   |                   |                   |                  | TAC<br>Tyr        |                   |                   |                   |                  |                   | 243 |
|    | GGC<br>Gly        | GCG<br>Ala<br>75  | ATG<br>Met                 | CAC<br>His        | GGC<br>Gly       | TGG<br>Trp        | ACC<br>Thr<br>80  | CCG<br>Pro        | CTC<br>Leu        | ACC<br>Thr       | GTG<br>Val        | GAG<br>Glu<br>85  | AAG<br>Lys        | GGG<br>Gly        | GCC<br>Ala       | AAC<br>Asn        | 291 |
| 35 |                   |                   |                            |                   |                  |                   |                   |                   |                   |                  | ACG<br>Thr<br>100 |                   |                   |                   |                  |                   | 339 |
| 40 | Thr               | Val               | Asn                        | Thr               | Gly<br>110       | Gly               | Pro               | Val               | Ala               | Thr<br>115       | GTC<br>Val        | Thr               | Ala               | Gly               | Ala<br>120       | Gly               | 387 |
|    | GCC<br>Ala        | AGC<br>Ser        | ATC<br>Ile                 | GAG<br>Glu<br>125 | GCG<br>Ala       | ATC<br>Ile        | GTC<br>Val        | ACC<br>Thr        | GAA<br>Glu<br>130 | CTG<br>Leu       | CAG<br>Gln        | AAG<br>Lys        | CAC<br>His        | GAC<br>Asp<br>135 | CTC<br>Leu       | GJ y<br>GGC       | 435 |
| 45 | TGG<br>Trp        | GCC<br>Ala        | AAC<br>Asn<br>140          | CTG<br>Leu        | CCC<br>Pro       | GCT<br>Ala        | CCG<br>Pro        | GGT<br>Gly<br>145 | GTG<br>Val        | CTG<br>Leu       | TCG<br>Ser        | ATC<br>Ile        | GGT<br>Gly<br>150 | GGC               | GCC<br>Ala       | CTT<br>Leu        | 483 |
| 50 | GCG<br>Ala        | GTC<br>Val<br>155 | Asn                        | GCG<br>Ala        | CAC<br>His       | GGT<br>Gly        | GCG<br>Ala<br>160 | GCG<br>Ala        | CTG<br>Leu        | CCG<br>Pro       | GCC               | GTC<br>Val<br>165 | GGC<br>Gly        | CAG<br>Gln        | ACC<br>Thr       | ACG<br>Thr        | 531 |
|    | CTG<br>Leu<br>170 | Pro               | GGT<br>Gly                 | CAC<br>His        | ACC<br>Thr       | TAC<br>Tyr<br>175 | GGT<br>Gly        | TCG<br>Ser        | CTG<br>Leu        | AGC<br>Ser       | AAC<br>Asn<br>180 | CTG<br>Leu        | GTC<br>Val        | ACC<br>Thr        | GAG<br>Glu       | CTG<br>Leu<br>185 | 579 |

47

| 5  |                   |            |                   |             | TGG<br>Trp<br>190 |                   |            |                   |            |            |                   |            |                   |            |            |                   | 627  |
|----|-------------------|------------|-------------------|-------------|-------------------|-------------------|------------|-------------------|------------|------------|-------------------|------------|-------------------|------------|------------|-------------------|------|
| J  |                   |            |                   |             | CGG<br>Arg        |                   |            |                   |            |            |                   | _          |                   |            |            |                   | 675  |
| 10 |                   |            |                   |             | GTG<br>Val        |                   |            |                   |            |            |                   |            |                   |            |            |                   | 723  |
| 15 |                   |            |                   |             | ACC<br>Thr        |                   |            |                   | -          |            | -                 |            |                   |            | _          |                   | 771  |
|    | GGC<br>Gly<br>250 | GCC<br>Ala | GAC<br>Asp        | GJ y<br>GGC | CGC               | ACG<br>Thr<br>255 | TTC<br>Phe | GAG<br>Glu        | AAG<br>Lys | TTC<br>Phe | GTC<br>Val<br>260 | GCG<br>Ala | GAA<br>Glu        | TCG<br>Ser | GGC<br>Gly | GGC<br>Gly<br>265 | 819  |
| 20 |                   |            |                   |             | TGG<br>Trp<br>270 |                   |            |                   |            |            |                   |            |                   |            |            |                   | 867  |
| 25 |                   |            |                   |             | CCG<br>Pro        |                   |            |                   |            |            |                   |            |                   |            |            |                   | 915  |
|    | CTC<br>Leu        | GGC<br>Gly | TCG<br>Ser<br>300 | GCG<br>Ala  | GGC<br>GLy        | TCC<br>Ser        | CTC<br>Leu | GTC<br>Val<br>305 | Gly        | AAG<br>Lys | CCT<br>Pro        | CCG<br>Pro | CAG<br>Gln<br>310 | GCG<br>Ala | CGT<br>Arg | GAG<br>Glu        | 963  |
| 30 |                   |            |                   |             | TAC<br>Tyr        |                   |            |                   |            |            |                   |            |                   |            |            |                   | 1011 |
| 35 |                   |            |                   |             | ATC<br>Ile        |                   |            |                   |            |            |                   |            |                   |            |            | GCA<br>Ala<br>345 | 1059 |
|    |                   |            |                   |             | CCG<br>Pro<br>350 |                   |            |                   |            |            |                   |            |                   |            |            |                   | 1107 |
| 40 |                   |            |                   |             | AAC<br>Asn        |                   |            |                   |            |            |                   |            |                   |            |            |                   | 1155 |
| 45 |                   |            |                   |             | ACG<br>Thr        |                   |            |                   |            |            |                   |            |                   |            |            |                   | 1203 |
| 50 |                   |            |                   |             | GCC<br>Ala        |                   |            |                   |            |            |                   |            |                   |            |            |                   | 1251 |
| 50 |                   |            |                   |             | CGC<br>Arg        |                   |            |                   |            |            |                   |            |                   |            |            |                   | 1299 |
| 55 |                   |            |                   |             | GTC<br>Val<br>430 |                   |            |                   |            |            |                   |            |                   |            |            | GCC<br>Ala        | 1347 |

| 5  | GAC<br>Asp        | GTC<br>Val        | AAG<br>Lys        | GTG<br>Val<br>445 | CCG<br>Pro        | TCG<br>Ser        | GTG<br>Val        | GGC               | CCG<br>Pro<br>450 | Pro               | ACC<br>Thr        | ATC<br>Ile        | TCG<br>Ser        | GCG<br>Ala<br>455 | ACC<br>Thr        | CGT<br>Arg        | 1395 |
|----|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
|    | CCG<br>Pro        | CGT<br>Arg        | CCG<br>Pro<br>460 | GAT<br>Asp        | CAT<br>His        | CCG<br>Pro        | gac<br>Asp        | TGG<br>Trp<br>465 | GAC<br>Asp        | GTC<br>Val        | GCG<br>Ala        | ATC<br>Ile        | TGG<br>Trp<br>470 | CTG<br>Leu        | AAC<br>Asn        | GTT<br>Val        | 1443 |
| 10 | CTC<br>Leu        | GGT<br>Gly<br>475 | GTT<br>Val        | CCG<br>Pro        | GGC<br>Gly        | ACC<br>Thr        | CCC<br>Pro<br>480 | GGC<br>Gly        | ATG<br>Met        | TTC<br>Phe        | GAG<br>Glu        | TTC<br>Phe<br>485 | TAC<br>Tyr        | CGC<br>Arg        | GAG<br>Glu        | ATG<br>Met        | 1491 |
| 15 | GAG<br>Glu<br>490 | CAG<br>Gln        | TGG<br>Trp        | ATG<br>Met        | CGG<br>Arg        | AGC<br>Ser<br>495 | CAC<br>His        | TAC<br>Tyr        | AAC<br>Asn        | AAC<br>Asn        | GAC<br>Asp<br>500 | GAC<br>Asp        | GCC<br>Ala        | ACC<br>Thr        | TTC<br>Phe        | CGG<br>Arg<br>505 | 1539 |
|    | CCC               | GAG<br>Glu        | TGG<br>Trp        | TCG<br>Ser        | AAG<br>Lys<br>510 | GGG<br>Gly        | TGG<br>Trp        | GCG<br>Ala        | TTC<br>Phe        | GGT<br>Gly<br>515 | CCC               | GAC<br>Asp        | CCG<br>Pro        | TAC<br>Tyr        | ACC<br>Thr<br>520 | GAC<br>Asp        | 1587 |
| 20 | AAC<br>Asn        | GAC<br>Asp        | Ile               | GTC<br>Val<br>525 | Thr               | AAC<br>Asn        | AAG<br>Lys        | Met               | CGC<br>Arg<br>530 | GCC<br>Ala_       | ACC               | TAC<br>Tyr        | ATC               | GAA<br>Glu<br>535 | GGT<br>Gly        | GTC<br>Val        | 1635 |
| 25 | CCG<br>Pro        | ACG<br>Thr        | ACC<br>Thr<br>540 | GAG<br>Glu        | AAC<br>Asn        | TGG<br>Trp        | GAC<br>Asp        | ACC<br>Thr<br>545 | GCG<br>Ala        | CGC<br>Arg        | GCT<br>Ala        | CGG<br>Arg        | TAC<br>Tyr<br>550 | AAC<br>Asn        | CAG<br>Gln        | ATC<br>Ile        | 1683 |
|    | GAC<br>Asp        | CCG<br>Pro<br>555 | CAT<br>His        | CGC<br>Arg        | GTG<br>Val        | TTC<br>Phe        | ACC<br>Thr<br>560 | AAC<br>Asn        | GGA<br>Gly        | TTC<br>Phe        | ATG<br>Met        | GAC<br>Asp<br>565 | AAG<br>Lys        | CTG<br>Leu        | CTT<br>Leu        | CCG<br>Pro        | 1731 |

(2) INFORMATION ZU SEQ ID NO: 29:

30

35

40

45

50

55

(i) SEQUENZ CHARAKTERISTIKA:

(A) LANGE: 569 Aminosäuren

(B) ART: Aminosäure

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Protein

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 29:

|           | Met<br>1 | Val | Met | His       | His<br>5  | Gly | His       | Ala | Ser       | Thr<br>10 | Gly | Pro | Val | Ala       | Pro<br>15 | Leu |
|-----------|----------|-----|-----|-----------|-----------|-----|-----------|-----|-----------|-----------|-----|-----|-----|-----------|-----------|-----|
| 5         | Pro      | Thr | Pro | Pro<br>20 | Asn       | Phe | Pro       | Asn | Asp<br>25 | Ile       | Ala | Leu | Phe | Gln<br>30 | Gln       | Ala |
| 10        |          |     | 35  |           |           |     | Glu       | 40  |           |           |     |     | 45  |           |           | _   |
| 70        |          | 50  |     |           |           |     | Asp<br>55 |     |           |           |     | 60  |     |           |           |     |
| 15        | 65       |     |     |           |           | 70  | Arg       |     |           |           | 75  |     |     |           |           | 80  |
|           | Pro      | Leu | Thr | Val       | Glu<br>85 | Lys | Gly       | Ala | Asn       | Val<br>90 | Glu | Lys | Val | Ile       | Leu<br>95 | Ala |
| 20        |          |     |     |           |           |     |           |     |           |           |     |     |     |           |           |     |
|           |          |     |     |           |           |     |           |     |           |           |     |     |     |           |           |     |
| 25        |          |     |     |           |           |     |           |     |           |           |     |     |     |           |           |     |
|           |          |     |     |           |           |     |           |     |           |           |     |     |     |           |           |     |
| 30        |          |     |     |           |           |     |           |     |           |           |     |     |     |           |           |     |
| 35        |          |     |     |           |           |     |           |     |           |           |     |     |     |           |           |     |
|           |          |     |     |           |           |     |           |     |           |           |     |     |     |           |           |     |
| 40        |          |     |     |           |           |     |           |     |           |           |     |     |     |           |           |     |
|           |          |     |     |           |           |     |           |     |           |           |     |     |     |           |           |     |
| 45        |          |     |     |           |           |     |           |     |           |           |     |     |     |           |           |     |
| 50        |          |     |     |           |           |     |           |     |           |           |     |     |     |           |           |     |
| 50        |          |     |     |           |           |     |           |     |           |           |     |     |     |           |           |     |
| <i>55</i> |          |     |     |           |           |     |           |     |           |           |     |     |     |           |           |     |

|    | Asp               | Thr        | Met        | Thr<br>100 | His               | Leu        | Asn        | Gly        | 11e<br>105 | Thr        | Val        | Asn        | Thr        | 110        | GIÀ        | Pro        |
|----|-------------------|------------|------------|------------|-------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 5  | Val               | Ala        | Thr<br>115 | Val        | Thr               | Ala        | Gly        | Ala<br>120 | Gly        | Ala        | Ser        | Ile        | Glu<br>125 | Ala        | Ile        | Val        |
|    | Thr               | Glu<br>130 | Leu        | Gln        | Lys               | His        | Asp<br>135 | Leu        | Gly        | Trp        | Ala        | Asn<br>140 | Leu        | Pro        | Ala        | Pro        |
| 10 | Gly<br>145        | Val        | Leu        | Ser        | Ile               | Gly<br>150 | Gly        | Ala        | Leu        | Ala        | Val<br>155 | Asn        | Ala        | His        | Gly        | Ala<br>160 |
|    | Ala               | Leu        | Pro        | Ala        | <b>Val</b><br>165 | Gly        | Gln        | Thr        | Thr        | Leu<br>170 | Pro        | Gly        | His        | Thr        | Tyr<br>175 | Gly        |
| 15 | Ser               | Leu        | Ser        | Asn<br>180 | Leu               | Val        | Thr        | Glu        | Leu<br>185 | Thr        | Ala        | Val        | Val        | Trp<br>190 | Asn        | Gly        |
| 00 | Thr               | Thr        | Tyr<br>195 | Ala        | Leu               | Glu        | Thr        | Tyr<br>200 | Gln        | Arg        | Asn        | Asp        | Pro<br>205 | Arg        | Ile        | Thr        |
| 20 | <br>Pro           | Leu<br>210 | Leu        | Thr        | Asn               | Leu        | Gly<br>215 | Arg        | Cys        | Phe        | Leu        | Thr<br>220 | Ser        | Val<br>-   | Thr        | Met        |
| 25 | Gln<br>225        | Ala        | Gly        | Pro        | Asn               | Phe<br>230 | Arg        | Gln        | Arg        | Cys        | Gln<br>235 | Ser        | Tyr        | Thr        | Asp        | Ile<br>240 |
| 20 | Pro               | Trp        | Arg        | Glu        | Leu<br>245        | Phe        | Ala        | Pro        | Lys        | Gly<br>250 | Ala        | Asp        | Gly        | Arg        | Thr<br>255 | Phe        |
| 30 | Glu               | Lys        | Phe        | Val<br>260 | Ala               | Glu        | Ser        | Gly        | Gly<br>265 | Ala        | Glu        | Ala        | Ile        | Trp<br>270 | Tyr        | Pro        |
|    | Phe               | Thr        | Glu<br>275 | Lys        | Pro               | Trp        | Met        | Lys<br>280 | Val        | Trp        | Thr        | Val        | Ser<br>285 | Pro        | Thr        | Lys        |
| 35 |                   | Asp<br>290 |            | Ser        | Asn               | Glu        | Val<br>295 | Gly        | Ser        | Leu        | Gly        | Ser<br>300 | Ala        | Gly        | Ser        | Leu        |
|    | <b>Val</b><br>305 |            | Lys        | Pro        | Pro               | Gln<br>310 |            | Arg        | Glu        | Val        | Ser<br>315 | Gly        | Pro        | Tyr        | Asn        | Tyr<br>320 |
| 40 | Ile               | Phe        | Ser        | Asp        | <b>Asn</b><br>325 |            | Pro        | Glu        | Pro        | 11e<br>330 | Thr        | Asp        | Met        | Ile        | Gly<br>335 | Ala        |
|    | Ile               | neA        | Ala        | Gly<br>340 |                   | Pro        | Gly        | Ile        | Ala<br>345 | Pro        | Leu        | Phe        | Gly        | Pro<br>350 | Ala        | Met        |
| 45 | Tyr               | Glu        | 11e<br>355 |            | Lys               | Leu        | Gly        | Leu<br>360 |            | Ala        | Thr        | Asn        | Ala<br>365 | Asn        | Asp        | Ile        |
|    | Trp               | Gly<br>370 |            | Ser        | Lys               | Asp        | Val<br>375 |            | Phe        | Tyr        | Ile        | Lys<br>380 | Ala        | Thr        | Thr        | Leu        |
| 50 | Arg<br>385        |            | Thr        | Glu        | Gly               | Gly<br>390 |            | Ala        | Val        | Val        | Thr<br>395 |            | Arg        | Ala        | Asn        | 1le<br>400 |
|    | Ala               | Thr        | Val        | Ile        | Asn<br>405        |            | Phe        | Thr        | Glu        | Trp<br>410 | Phe        | His        | Glu        | Arg        | Ile<br>415 | Glu        |
| 55 | Phe               | Tyr        | Arg        | Ala<br>420 |                   | Gly        | Glu        | Phe        | Pro<br>425 |            | Asn        | Gly        | Pro        | Val<br>430 | Glu        | Ile        |

| -  | Arg        | Cys            | Cys<br>435 | Gly               | Leu        | Asp        | Gln        | Ala<br>440 | Ala        | Asp        | Val        | Lys        | Val<br>445 | Pro         | Ser        | Val        |    |
|----|------------|----------------|------------|-------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------|------------|------------|----|
| 5  | Gly        | Pro<br>450     | Pro        | Thr               | Ile        | Ser        | Ala<br>455 | Thr        | Arg        | Pro        | Arg        | Pro<br>460 | Asp        | His         | Pro        | Asp        |    |
| 10 | Trp<br>465 | Asp            | Val        | Ala               | Ile        | Trp<br>470 | Leu        | Asn        | Val        | Leu        | Gly<br>475 | Val        | Pro        | Gly         | Thr        | Pro<br>480 |    |
|    | Gly        | Met            | Phe        | Glu               | Phe<br>485 | Tyr        | Arg        | Glu        | Met        | Glu<br>490 | Gln        | Trp        | Met        | Arg         | Ser<br>495 | His        |    |
| 15 | Tyr        | Asn            | Asn        | <b>Asp</b><br>500 | Asp        | Ala        | Thr        | Phe        | Arg<br>505 | Pro        | Glu        | Trp        | Ser        | Lys.<br>510 | Gly        | Trp        |    |
|    | Ala        | Phe            | Gly<br>515 | Pro               | Asp        | Pro        | Tyr        | Thr<br>520 | Asp        | Asn        | Asp        | Ile        | Val<br>525 | Thr         | Asn        | Lys        |    |
| 20 | Met        | <b>Arg</b> 530 | Ala        | Thr               | Tyr        | Ile        | Glu<br>535 | Gly        | Val        | Pro        | Thr        | Thr<br>540 | Glu        | Asn         | Trp        | Asp        |    |
|    | Thr<br>545 | Ala            | Arg<br>-   | Ala               | Arg        | Tyr<br>550 | Asn        | Gln        | Ile        | Asp        | Pro<br>555 | His        | Arg        | Val         | Phe        | Thr<br>560 |    |
| 25 | Asn        | Gly            | Phe        | Met               | Asp<br>565 | Lys        | Leu        | Leu        | Pro        |            |            |            |            |             |            |            |    |
|    | (2) IN     | IFORM          | MATIO      | N ZU S            | SEQ II     | NO:        | 30:        |            |            |            |            |            |            |             |            |            |    |
| 30 | (i         | ) SEQ          | UENZ       | CHAF              | RAKTE      | RISTI      | KA:        |            |            |            |            |            |            |             |            |            |    |
|    |            |                |            | GE: 36<br>Nuklei  |            | -          |            |            |            |            |            |            |            |             |            |            |    |
| 35 |            |                |            | NGFC<br>DLOGI     |            |            |            |            |            |            |            |            |            |             |            |            |    |
|    | ()         | xi) SEC        | QUEN       | ZBES              | CHRE       | BUNG       | 3: SEC     | N DI Ç     | O: 30:     |            |            |            |            |             |            |            |    |
| 40 | TCGCA      | TGCC           | T CGJ      | ACGGG             | ccc        | GGTG       | SCGC       | CG C1      | TCCG       |            |            |            |            |             |            |            | 36 |
|    | (2) IN     | IFORM          | MATIO      | N ZU S            | SEQ II     | NO:        | 31:        |            |            |            |            |            |            |             |            |            |    |
| 45 | (i         | ) SEQ          | UENZ       | CHAF              | RAKTE      | RISTI      | KA:        |            |            |            |            |            |            |             |            |            |    |
|    |            | (B)            | ART:       | GE: 25<br>Nuklei  | nsäure     | è          |            |            |            |            |            |            |            |             |            |            |    |
| 50 |            | , ,            |            | NGFC<br>DLOGI     |            |            |            |            |            |            |            |            |            |             |            |            |    |
|    | ()         | xi) SEC        | QUEN       | ZBES              | CHRE       | BUNG       | G: SEC     | N DI       | O: 31:     |            |            |            |            |             |            |            |    |
| 55 | CGTGC      | CTTCT          | G CA       | GTTC              | SGTG       | ACGA'      | r          |            |            |            |            |            |            |             |            |            | 25 |
|    | (2) IN     | IFORM          | 1ATIO      | N ZU S            | SEQ II     | NO:        | 32:        |            |            |            |            |            |            |             |            |            |    |

|    |    | (i) SEQUENZ CHARAKTERISTIKA:                                                                                                                                                                                                                                                                                                                                     |
|----|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5  |    | <ul><li>(A) LANGE: 39 Basenpaare</li><li>(B) ART: Nukleinsäure-</li><li>(C) STRANGFORM: Einzel</li><li>(D) TOPOLOGIE: linear</li></ul>                                                                                                                                                                                                                           |
|    |    | (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 32:                                                                                                                                                                                                                                                                                                                         |
| 10 | •  | TCCCATGGCA CACAGGAAAC ATCGATGACC ATGATTACG 39                                                                                                                                                                                                                                                                                                                    |
| 15 |    | (2) INFORMATION ZU SEQ ID NO: 33:                                                                                                                                                                                                                                                                                                                                |
|    |    | (i) SEQUENZ CHARAKTERISTIKA:                                                                                                                                                                                                                                                                                                                                     |
| 20 |    | (A) LÄNGE: 25 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear                                                                                                                                                                                                                                                                      |
|    |    | (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 33:                                                                                                                                                                                                                                                                                                                         |
| 25 |    | CGTGCTTCTG CAGTTCGGTG ACGAT 25                                                                                                                                                                                                                                                                                                                                   |
| 30 |    | (2) INFORMATION ZU SEQ ID NO: 34:                                                                                                                                                                                                                                                                                                                                |
| 00 |    | (i) SEQUENZ CHARAKTERISTIKA:                                                                                                                                                                                                                                                                                                                                     |
| 35 |    | <ul><li>(A) LÄNGE: 18 Basenpaare</li><li>(B) ART: Nukleinsäure</li><li>(C) STRANGFORM: Einzel</li><li>(D) TOPOLOGIE: linear</li></ul>                                                                                                                                                                                                                            |
|    |    | (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 34:                                                                                                                                                                                                                                                                                                                         |
| 40 |    | CGATGCACCA TGGGCATG 18                                                                                                                                                                                                                                                                                                                                           |
| 45 | Pa | tentansprüche                                                                                                                                                                                                                                                                                                                                                    |
|    | 1. | Aktive Cholesterinoxidase, <b>dadurch gekennzeichnet, daß</b> sie die in SEQ ID NO 2 gezeigte Aminosäuresequenz aufweist.                                                                                                                                                                                                                                        |
| 50 | 2. | DNA, welche für ein Peptid mit Cholesterinoxidase-Aktivität kodiert mit der in SEQ ID NO 1 gezeigten DNA-Sequenz oder der dazu komplementären DNA-Sequenz.                                                                                                                                                                                                       |
| 55 | 3. | Verfahren zur Herstellung einer rekombinanten Cholesterinoxidase durch Transformation einer geeigneten Wirtszelle mit einer DNA gemäß Anspruch 2, welche in einem geeigneten Expressionssystem kloniert vorliegt, Kultivierung der transformierten Wirtszellen und Isolierung der exprimierten Cholesterinoxidase aus dem Zytoplasma der transformierten Zellen. |
|    | 4. | Verfahren gemäß Anspruch 3, <b>dadurch gekennzeichnet, daß</b> die verwendeten DNA am 5'-Ende eine der in SEQ                                                                                                                                                                                                                                                    |

ID NO 6, 8, 10, 12, 14 oder 16 gezeigten Sequenzen aufweist.

- 5. DNA gemäß Anspruch 2, dadurch gekennzeichnet, daß sie am 5'-Ende eine der in SEQ ID NO 6, 8, 10, 12, 14 oder 16 gezeigten Sequenzen aufweist.
- **6.** DNA gemäß Anspruch 5, **dadurch gekennzeichnet**, **daß** sie eine der in SEQ ID NO 18, 20, 22, 24, 26 oder 28 gezeigten Sequenzen aufweist.
- 7. Rekombinante Cholesterinoxidase, **dadurch gekennzeichnet, daß** sie von einer DNA gemäß Anspruch 2 kodiert wird und am N-terminalen Ende eine der in SEQ ID NO 7, 9, 11, 13, 15 oder 17 gezeigten Sequenzen aufweist.
  - 8. Rekombinante Cholesterinoxidase gemäß Anspruch 7, dadurch gekennzeichnet, daß sie eine der in SEQ ID NO 21, 23, 25, 27 und 29 gezeigten Sequenzen aufweist.
- 9. Verwendung einer rekombinanten Cholesterinoxidase gemäß einem der Ansprüche 7 oder 8 in einem enzymatischen Test zur Bestimmung von Cholesterin.

#### Claims

20

5

- 1. Active cholesterol oxidase, characterized in that it has the amino acid sequence shown in SEQ ID NO 2.
- 2. DNA which codes for a peptide with cholesterol oxidase activity having the DNA sequence shown in SEQ ID NO 1 or the DNA sequence which is complementary thereto.

25

- 3. Process for the production of a recombinant cholesterol oxidase by transformation of a suitable host cell with a DNA as claimed in claim 2 which is present cloned in a suitable expression system, culturing the transformed host cells and isolating the expressed cholesterol oxidase from the cytoplasm of the transformed cells.
- 4. Process as claimed in claim 3, characterized in that the DNA used has one of the sequences shown in SEQ ID NO 6, 8, 10, 12, 14 or 16 at the 5' end.
  - 5. DNA as claimed in claim 2, **characterized in that** it has one of the sequences shown in SEQ ID NO 6, 8, 10, 12, 14 or 16 at the 5' end.

35

- 6. DNA as claimed in claim 5, characterized in that it has one of the sequences shown in SEQ ID NO 18, 20, 22, 24, 26 or 28.
- 7. Recombinant cholesterol oxidase, **characterized in that** it is coded by a DNA as claimed in claim 2 and has one of the sequences shown in SEQ ID NO 7, 9, 11, 13, 15 or 17 at the N-terminal end.
  - 8. Recombinant cholesterol oxidase as claimed in claim 7, characterized in that it has one of the sequences shown in SEQ ID NO 21, 23, 25, 27 or 29.
- **9.** Use of a recombinant cholesterol oxidase as claimed in one of the claims 7 or 8 in an enzymatic test for the determination of cholesterol.

#### Revendications

- Cholestérol oxydase active, caractérisée en ce qu'elle présente la séquence d'acides aminés représentée dans SEQ ID NO: 2.
- 2. ADN qui code pour un peptide possédant une activité de cholestérol oxydase comprenant la séquence d'ADN représentée dans SEQ ID NO: 1 ou la séquence d'ADN complémentaire à celle-ci.
  - 3. Procédé pour la préparation d'une cholestérol oxydase recombinante par transformation d'une cellule hôte appropriée avec un ADN selon la revendication 2, qui est présent à l'état cloné dans un système d'expression approprié,

par mise en culture des cellules hôtes transformées et par isolation de la cholestérol oxydase exprimée à partir du cytoplasme des cellules transformées.

**4.** Procédé selon la revendication 3, **caractérisé en ce que** l'ADN utilisé présente, à l'extrémité 5', une des séquences représentées dans SEQ ID NO: 6, 8, 10, 12, 14 ou 16.

5

15

25

30

35

40

45

50

55

- 5. ADN selon la revendication 2, caractérisé en ce qu'il présente, à son extrémité 5', une des séquences représentées dans SEQ ID NO: 6, 8, 10, 12, 14 ou 16.
- 40 6. ADN selon la revendication 5, caractérisé en ce qu'il présente une des séquences représentées dans SEQ ID NO: 18, 20, 22, 24, 26 ou 28.
  - 7. Cholestérol oxydase recombinante, caractérisée en ce qu'elle est encodée par un ADN selon la revendication 2 et en ce qu'elle présente, à son extrémité amino terminale, une des séquences représentées dans SEQ ID NO: 7, 9, 11, 13, 15 ou 17.
  - 8. Cholestérol oxydase recombinante selon la revendication 7, caractérisé en ce qu'elle présente une des séquences représentées dans SEQ ID NO: 21, 23, 25, 27 et 29.
- 9. Utilisation d'une cholestérol oxydase recombinante selon l'une quelconque des revendications 7 ou 8, dans un test enzymatique pour la détermination de cholestérol.

Figur 1



Figur 2



Figur 3



Figur 4

