Predictability in Space Launch Vehicle Anomaly Detection Using Intelligent Neuro-Fuzzy Systems

Lockheed McDonnell Douglas Joint Effort

JPL Team

Sandeep Gulati Raoul Tawel

Nikzad Toomarian Anil Thakoor

Jacob Barhen Taher Daud

Ayanna Maccalla

Jet Propulsion Laboratory
California Institute of Technology
Center for Space Microelectronics Technology
Pasadena, CA

Ī

INTELLIGENT NEUROPROCESSORS FOR LAUNCH VEHICLE HEALTH MANAGEMENT SYSTEMS

Where The Flight Failures Have Launch Vehicles Been In

INTELLIGENT NEUROPROCESSORS FOR LAUNCH VEHICLE HEALTH MANAGEMENT SYSTEMS

Breakdown of Operations Hours

SPACEPORT FLORIDA INFRASTRUCTURE IMPROVEMENT STUDY

0

Failure of Mars Probe Blamed on Fuel Leak

Troubled Spacecraft

A federal panel Wednesday announced the findings of its inquiry into the Aug. 21 disappearance of the \$980 million Mars Observer spacecraft. Exactly what happened to the space probe is not known, but

- Mechanical flaw: A leak of volatile hydrazine fuel may have caused an explosion when the spacecraft's tanks were pressurized.
- Design flaw: NASA engineers used technology that had been developed for operation in near-Earth orbit but was unsuitable for the more extreme conditions of interplanetary space.
- Management flaw: Project managers at the Jet Propulsion Laboratory did not exercise sufficient control over continuing changes in the spacecraft's design and its scientific instruments.

Source: NASA

INTELLIGENT NEUROPROCESSORS FOR LAUNCH HEALTH MANAGEMENT SYSTEMS VEHICLE

<u>_</u>

TARGET HMS - STS Auxiliary Power Unit Location

AUXILIARY POWER UNIT

- Provide power for the Orbiter hydraulic systems
- mechanical shaft power liquid hydrazine ----->
- **Hydraulic systems**
- actuate the Orbiter aerosurfaces
- throttle and steer Orbiter main engines
- deploy and steer landing gear
 - apply landing gear brakes
- **Operation Cycle**
- t-5 min to OMS-1 burn
- deorbit burn and entry to just before landing

INTELLIGENT NEUROPROCESSORS FOR LAUNCH HEALTH MANAGEMENT SYSTEMS VEHICLE

- Monitoring fuel tank isolation, fuel control valves and electronic controller, e.g.,
- fuel flow could detonate hyrazine near valve valve open for > 2 min in orbit without
- leakage detection
- high rmp pulser-type valves

APU MONITORING AND DIAGNOSIS

INTELLIGENT NEUROPROCESSORS FOR LAUNCH VEHICLE HEALTH MANAGEMENT SYSTEMS

TECHNOLOGY ISSUES

- acceptable range of engineering values on any telemetry channel Engineering alarm limits - critical thresholds which define the
- determined manually: hardcopy ISOE data, design information on spacecraft, rules of thumb
- Overreliance on domain experts leading to wide thresholds creating a range of undetected anomalies
 - monitoring of individual sensors via redlining approach
- acquisition rates. Further degradation due to noisy and incomplete data Access only to snapshots of telemetry due to exploitation of low sensor
- Specific diagnostics can be executed only if they were preconceived and preprogrammed
- cannot currently correlate effects between multiple sensors in real-time
 - fault-detection to engine catastrophy time can be as short as 0.1 sec.

Ē

----== 5

INTELLIGENT NEUROPROCESSORS FOR LAUNCH HEALTH MANAGEMENT SYSTEMS VEHICLE

STS / APU HEALTH MONITORING

- detection of all red line errors currently identified
- real-time correlation of data from multiple heterogeneous sensors
- faster-than-real-time anomaly propagation to determine probability
- both with (using NN s/w) and without (using NN h/w) time-lags
- ease of augmenting expert-generated APU fault knowledge base without needing to redesign the system
- isolating failed sensors as against failed subsystem / system
- reconstruct suspect information and minimize disruption of diagnostic process
- synergistic integration of fuzzy logic and neural networks for real-time diagnostic applications

3

INTELLIGENT NEUROPROCESSORS FOR LAUNCH VEHICLE HEALTH MANAGEMENT SYSTEMS

STS / APU HEALTH MONITORING

- Startup & mode-switch phases difficult nonlinear nature of IAPU dynamics to monitor due to highly complex &
- reduced engine / test stand damage during test firings
- typically damage 1 APU every 2 weeks
- facilitate post-test diagnostic process
- tool for APU knowledge engineering

Ē

ij

VHM SENSOR DATA WITH CHANGING FREQUENCY AND ADDITIONAL GROUND NOISE SPECTROGRAM DIFFERENCE FREQUENCY SPECTROGRAM FREQUENCY LOGARITHM OF SPECTROGRAM FREQUENCY TIME DOMAIN

Ü

Ē

SAMPLED SPECTROGRAM DIFFERENCE

VHM SENSOR DATA WITH VARIATIONS IN FREQUENCY AND GROUND NOISE

L

O

SAMPLED SPECTROGRAM DIFFERENCE

VHM SENSOR DATA WITH VARIATIONS IN FREQUENCY AND BUILDUP NOISE

. . . .

L

