Joints in Unity

Joints

- To connect rigid body together, we use joints
- In Unity, they provide five different joints
 - Fixed
 - Spring
 - Hinge
 - Character
 - Configurable

Joints

- In this tutorial, we will try different joints in Unity
- Coordinate system in Unity is as right
- Create a new project in Unity
- Add a plane to it

Coordinate system in Unity

Fixed Joint

- As its name imply, it wouldn't allow movement
- Add a cube to the scene with rigid body
- Add a cylinder with rigid body
- Place them together and in inspector of the cube, add component "Physics/Fixed joint"
- Drag the cylinder into "Connected body" under Fixed Joint of cube

▼ % Fixed Joint		
Connected Body	Cylinder (Rigidbody)	
Break Force	Infinity	
Break Torque	Infinity	
Enable Collision		
Enable Preprocessing		
Mass Scale	1	
Connected Mass Scale	1	

Fixed Joint

- Now try to move the cube in the scene, they should move together
- Under the fixed joint, change the "Break Force" to 50
- Now try to move it again in scene
- Suitable for use in scene for breakable things

₹ % Fixed Joint	
Connected Body	Cylinder (Rigidbody)
Break Force	50
Break Torque	Infinity
Enable Collision	
Enable Preprocessing	
Mass Scale	1
Connected Mass Scale	1

- Create a cube and hang it at some distance from ground
- Add rigid body and uncheck gravity and check "IsKinematic"
- This will make the object not falling down(gravity) and not affected by physics
- Now add a sphere and move it under the cube
- The position should be something like this

- Now add a spring joint to the sphere (rigid body automatically added)
- Drag the cube into "Connected Body" of joint in sphere
- Play to see
- The hanging position seems awkward
- Because it is automatically calculated

- Uncheck "Auto Configure Connected Actors"
- Change the "Connected Anchor" to as below and play

• Note: in local coordinates

- Duplicate(Ctl-D) the sphere and move the new one down a little bit
- Change the "Connected Body" to the old sphere
- change "Spring" to 1000, Damper to 50
- Try again
- "Spring determine the stiffness
- "Damper" control the "viscosity" of movement

- Create a door like game object
- Add "Physics/Hinge Joint"
- Change the "Axis" to as below (rotation axis is Y-axis) and play to rotate the door

- Modify the anchor to "(+/-0.5,0,0)" or (0,0,+/-0.5) depends on which axis & side you want to be the hinge
- Play to see
- Change the motor section of hinge joint as right and play
- automatic rotation of door
- Target velocity is measured in degree/sec

- Modify the Limits section as right
- Note the limits are from -180 to 180
- Play to see
- You can also edit the range by click on "Edit Angular limit" and drag the handles with "Use Limits" checked

- Add a door frame over our door
- Drag the frame into the "Connected Body" field of our door
- You can also hook up any movable joints object to achieve miscellaneous motions

Character Joint

- mainly used for Ragdoll effects
- extended ball-socket joint which allows you to limit the joint on each axis

Character Joint

- Create a sphere with rigid body
- Uncheck gravity and check "isKinematic"
- Then add a capsule and adjust its position to overlap with sphere a bit as that on right
- Add a character joint to the capsule
- Drag the sphere to "Connected Body" field of the character joint
- Play to see

Character Joint

 Can apply restriction by clicking on the "Edit Angular limits" and drag the handlers

 You can model twist, swing like that of human arm motion

Configurable Joint

- Sometimes we may want miscellaneous motion such as sliding or striking
- Previous joints cannot achieve as they are rotational
- Meet the configurable joint
- Superset of all joints and highly configurable

Configurable Joint

- Let's build a sliding door using configurable joint
- create a door shape object
- Add "Physics/Configurable joint"
- We want to build it move along X-axis towards +ve
- Change "Anchor", "Axis", X/Y,Z motion,, Angular X/Y/Z Motion, and Linear Limit as that on right
- Uncheck "Auto-Configure Connected Actor" and modify "Connected Anchor" to position with X increment from original door position
- Note: read your object position and change accordingly

Configurable Joint

- Set also the "X Drive" parameters to tune the desired sliding motion
- Finally set the rigid body rotation parameters to freeze all rotations
- Now the door should be able to slide along
- "Connected Anchor" is the default position
- Add the code on right to the door test the open door effect

```
▼ X Drive

Position Spring 5

Position Damper 5

Maximum Force 3.402823e+38

▶ Y Drive
```

```
Rigidbody rb;

// Start is called before the first frame update
void Start()
{
    rb = GetComponent<Rigidbody>();
}

// Update is called once per frame
void Update()
{
    if (Input.anyKey)
        rb.AddForce(Vector3.left * 80.0f);
}
```