

Mastering Complex Control in MOBA Games with Deep Reinforcement Learning

Deheng Ye, Zhao Liu, Mingfei Sun, Bei Shi, Peilin Zhao, Hao Wu, Hongsheng Yu, Shaojie Yang, Xipeng Wu, Qingwei Guo, Qiaobo Chen, Yinyuting Yin, Hao Zhang, Tengfei Shi, Liang Wang, Qiang Fu, Wei Yang, Lanxiao Huang

Tencent AI Lab 2020.01.02

Action control of heroes

"Honor of Kings" tested (Chinese: 王者荣耀)

Mastering Complex Control in MOBA Games with Deep Reinforcement Learning

The method system-level & algorithm-level

Paper link: https://arxiv.org/abs/1912.09729

- Introduction
- Method
 - System
 - Algorithm
- Experiments
- Conclusion & future work

- Introduction
- Method
 - System
 - Algorithm
- Experiments
- Conclusion & future work

Recent development in Game AI

2016.03 2019.02 2017 - 2019 2017 - present

DeepMind: AlphaGo

DeepMind STARTRAFT

DEMONSTRATION

Thursday from 6:00pm GMT

Difficults

DeepMind: AlphaStar

OpenAI: Dota2

Tencent Wukong Al

• Tencent AI Lab – Game AI Center

Go (2016 - present)

MOBA (2017 - present)

3D-FPS (2018 - present)

- MOBA 1v1 games
 - Two-agent, one vs. another
 - Many game units
 - Turrets, creeps, heroes, etc.
 - Pure arena for competing one's ability of action control (micro-management)
 - 5v5 games focus more on team strategy

Honor of Kings Game UI Illustration

- Tencent Al Lab
- Table 1: Comparing Go and MOBA 1v1

- The game is complex
 - Enormous action space
 - Enormous state space
 - Real time
 - Playing method
 - Complicated action control
 - Vary from hero to hero
 - Target selection
 - Hard to decide which game unit(s) to attack/protect
 - Little high-quality human data
 - 1v1 mainly for practicing heroes, while
 5v5 as formal matches
 - Supervised learning infeasible

Game	Go 1v1	MOBA 1v1	
Action space	$250^{150} \approx 10^{360}$ (250 pos available, 150 decisions per game on average	10 ¹⁸⁰⁰⁰ (100+ discretized actions, 9,000 frames per game)	
State space $3^{361} \approx 10^{170}$ (361 pos, 3 states each)		$2^{2000} \approx 10^{600}$ (2 heroes, (1000+ pos)*(2+ states))	
Human player data	rich, high-quality	little	
Peculiarity long-term tactics		real-time, complex control	

- The game is complex
 - Enormous action space
 - Enormous state space
 - Real time
 - Playing method
 - Complicated action control
 - Vary from hero to hero
 - Target selection
 - Hard to decide which game unit(s) to attack/protect
 - Little high-quality human data
 - 1v1 mainly for practicing heroes, while 5v5 as formal matches
 - Supervised learning infeasible

- Introduction
- Method
 - System
 - Algorithm
- Experiments
- Conclusion & future work

Method: overview

- Deep reinforcement learning system
 - Large-scale
 - Off-policy
- Algorithm
 - Multi-modal feature design
 - Actor-critic neural network
 - Multiple action control strategies
 - Dual-clip PPO

Method: system

- Large-scale
 - Support up to 1000+ GPU cards, 500,000+ CPUs tested in our Beta Environment
- Off-policy
 - Actor highly decoupled from Learner

System architecture

- 1. AI Server
 - Actor, where self-play happens
 - Interact with GameCore
- 2. Dispatch Server
 - Data collect, compress & transmit
- 3. Memory Pool
 - For data storage
 - Feed data to RL Learner
- 4. RL Learner
 - For training reinforcement learning model
 - Model sysn to AI Server via P2P

Input: observations/features

Internal: neural network model

Output: hero actions

Input:

- Observable game unit attributes
 - Heroes, creeps, turrets, etc.
- Observable game states
- Local-view image-like channels

Internal:

- Feature/observation encoding
 - FC/ReLU layers, Conv layer, Pooling, Split
 - Weight sharing across same types of units

Internal:

- LSTM
- Action mask
 - For pruning RL exploration
- Target Attention
- Actor-critic network
 - Policy & value share parameter

Output:

- Hierarchical, multi-label
 - First, predict which action to take, i.e., Button
 - E.g., move
 - Second, predict how to execute that action
 - E.g., the direction to move
 - What about label correlations?

Output:

- Control dependency decoupling
 - Action labels have correlations, but are treated independently
 - To simplify episode sampling & objective optimization (See next slide)

Objective optimization

Multi-label PPO (proximal policy optimization)

Objective optimization (continued)

Standard PPO [1]:

$$L^{clip}\left(\theta\right) = E_{t}\left[min\left(\frac{\pi_{\theta}\left(a_{t}|s_{t}\right)}{\pi_{\theta_{old}}\left(a_{t}|s_{t}\right)}\left[\left(R-V\right)\right], clip\left(\frac{\pi_{\theta}\left(a_{t}|s_{t}\right)}{\pi_{\theta_{old}}\left(a_{t}|s_{t}\right)}, 1-\varepsilon, 1+\varepsilon\right)\left(R-V\right)\right)\right]$$
A: Advantage

The problem:

large-scale & off-policy setting → policy deviations

$$\begin{array}{ccc} \text{when } \pi_{\theta}(a_t^{(i)}|s_t) \gg \pi_{\theta_{\text{old}}}(a_t^{(i)}|s_t) & & & \\ \text{and} & \hat{A}_t < 0 & & & \\ \end{array} \qquad \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{\text{old}}}(a_t|s_t)} \hat{A}_t \ll 0$$

Objective optimization (continued)

Standard PPO:

$$L^{clip}\left(\theta\right) = E_{t}\left[min\left(\frac{\pi_{\theta}\left(a_{t}|s_{t}\right)}{\pi_{\theta_{old}}\left(a_{t}|s_{t}\right)}\left(R - V\right), clip\left(\frac{\pi_{\theta}\left(a_{t}|s_{t}\right)}{\pi_{\theta_{old}}\left(a_{t}|s_{t}\right)}, 1 - \varepsilon, 1 + \varepsilon\right)\left(R - V\right)\right)\right]$$

Our proposed PPO: dual-clip PPO

$$L^{clip}\left(\theta\right) = E_{t}\left[max\left(min\left(\frac{\pi_{\theta}\left(a_{t}|s_{t}\right)}{\pi_{\theta_{old}}\left(a_{t}|s_{t}\right)}\left(R-V\right), clip\left(\frac{\pi_{\theta}\left(a_{t}|s_{t}\right)}{\pi_{\theta_{old}}\left(a_{t}|s_{t}\right)}, 1-\varepsilon, 1+\varepsilon\right)\right), \eta\left(R-V\right)\right)\right]$$

(a) standard PPO

(b) Dual-clip PPO

- Introduction
- Method
 - System
 - Algorithm
- Experiments
- Conclusion & future work

Experiments: setup

System

- 40+ GPU cards & 15000+ CPU cores used to train one hero
- 80,000 samples per second per GPU
- FP16 for data transmission

Algorithm

- LSTM
 - time step 16, unit size 1024
- Discount factor 0.998
- Generalized advantage estimation (GAE)
 - Lambda 0.95
- Dual-clip PPO
 - Two clip parameters are 0.2 and 3, respectively

- Evaluating the **upper limit** of control ability
 - Match results between AI & top professional human players
 - Best of five (BO5)
 - Tested on different types of heroes
 - Mage, warrior, Marksman, etc.
 - Tested by several top professionals

Hero	DiaoChan	DiRenjie	LuNa	HanXin	HuaMulan
Hero Type	Mage	Marksman	Warrior+Mage	Assassin	Warrior
Score	3:0	3:0	3:0	3:1	3:0
Kill	5.0:1.3	2.3:0.7	2.7:1.0	2.5:1.5	4.0:1.3
Game Length	6'56"	6'23"	7'53"	6'41"	6'48"
Gold/min	852.7:430.6	869.3:606.6	969.7:724.0	954.1:754.2	945.2:654.2
Exp/min	900.0:573.0	895.3:661.7	979.0:817.2	965.4:802.5	921.4:723.1

- Evaluating the **robustness** of control ability
 - 2,100 public matches (AI vs. a **diversity** of top human players)
 - Multiple heroes that require very diverse playing method

Hero Name	Hero Type	#Matches	#Win	Rate
DiaoChan	Mage	445	445	100%
DiRenJie	Marksman	264	264	100%
HuaMuLan	Warrior	256	256	100%
HanXin	Assassin	221	220	99.55%
LuNa	Warrior+Mage	260	260	100%
HouYi	Marksman	79	78	98.70%
LuBan	Marksman	354	354	100%
SunWukong	Assassin	221	219	99.09%
		2100	2096	99.81%

- Comparison with baseline methods
 - Our method vs. MCTS and its variants
 - Measuring average time length to defeat the same set of opponents

- The growth of our AI
 - Elo rate

Ablation

AM: action mask

– TA: target attention

LSTM

Base: Full w/o AM TA LSTM

Item	Win rate vs Base	Time to converge
Base	-	80 h
Base $+$ AM	50.5%	65 h
Base $+$ TA	75%	90 h
Base + LSTM	73%	100 h
Full version	90%	80 h

- Introduction
- Background
- Method
 - System
 - Algorithm
- Experiments
- Conclusion & future work

Conclusions

- Action control of different MOBA heroes
 - Complex, a big challenging to AI research
- We develop a super-human Al agent which has mastered the complex action control in MOBA 1v1 games
- Our deep reinforcement learning framework
 - System design
 - Algorithm design
 - Multi-modal feature design
 - Actor-critic neural network
 - Multiple action control strategies
 - Dual-clip PPO

Future work

- Our ongoing **Open-Platform** Plan (开放平台计划)
 - Open-source our framework & algorithm
 - Honor of Kings GameCore accessibility
 - Computing resources (CPUs/GPUs) for public use

Link: https://mp.weixin.qq.com/s/jaZJtkljVBib0mj1iOJQbg

Future work

- Our ongoing **Open-Platform** Plan (开放平台计划)
 - Open-source our framework & algorithm
 - Honor of Kings GameCore accessibility
 - Computing resources (CPUs/GPUs) for public use

Link: https://mp.weixin.qq.com/s/jaZJtkljVBib0mj1iOJQbg

Appendix

Reward design

Reward	Weight	Type	Description
hp_point	2.0	dense	the health point of hero
tower_hp_point	10.0	sparse	the health point of turrets and base
money (gold)	0.008	dense	the gold gained
ep_rate	0.8	dense	the rate of mana
death	-1.0	sparse	being killed
kill	-0.5	sparse	kill an enemy hero
exp	0.008	dense	the experience gained
last_hit	0.5	sparse	last hitting to enemy units

We are recruiting!

- Computer Science background in a related domain
 - Machine learning in general
- Strong problem solving & analyzing
- Strong programming skills
 - C++/Python/Linux Shell
- Experience in academic research
 - Having peer-reviewed publications is a plus
- Knowledge in Game AI & RL

Send your CV to: dericye@tencent.com