Criptanaliza criptosistemului Vigenère

Fie x un cuvânt peste $\{0, 1, \dots, 25\}$ și $k \in \{0, 1, \dots, 25\}^m$ o cheie arbitrară, $m \ge 1$. Criptarea lui x folosind cheia k va conduce la criptotextul y dat prin

$$y_i = x_i + k_{(((i-1) \mod m)+1)} \mod 26,$$

pentru orice $1 \le i \le |x|$.

Textul obținut din y extrăgând simboluri din n în n poziții începând cu poziția a j-a va fi notat cu $y_{n,j}$, pentru orice $n \ge 1$ și $1 \le j \le n$. Este interesant de remarcat că, în cazul în care $y = e_k(x)$, are loc relația

$$y_{m,j} = SHIFT(x_{m,j}, k_j),$$

pentru orice $1 \le j \le m$, unde m = |k|.

Pentru determinarea cheii k, având un criptotext y, se va proceda astfel:

1. Determinarea lungimii cheii (m) - folosind testul indexului de coincidență:

Pentru un text $\alpha \in \{0,1,\dots,25\}^*$, indexul de coincidență, notat cu $IC(\alpha)$, reprezintă probabilitatea ca un simbol să apară de cel puțin două ori în α . Mai exact, $IC(\alpha)$ este dat prin

$$IC(\alpha) = \sum_{i=0}^{25} \frac{f_i(\alpha)}{|\alpha|} \frac{f_i(\alpha) - 1}{|\alpha| - 1},$$

unde $f_i(\alpha)$ reprezintă numărul de apariții ale simbolului i în α .

- Dacă α este un text normal în limba engleză sau un text obținut dintr-un text normal în limba engleză extrăgând simboluri din m în m poziții, $IC(\alpha)$ se poate aproxima prin $\sum_{i=0}^{25} p_i^2 \cong 0.065$, unde p_i reprezintă probabilitatea de apariție a simbolului i;
- Este interesant de remarcat că criptarea folosind criptosistemul Sh(26) nu modifică acest indicator. Mai exact, $IC(SHIFT(\alpha, s)) = IC(\alpha)$, pentru orice $0 \le s \le 25$.

Astfel, $IC(y_{m,j}) = IC(x_{m,j}) \cong 0.065$, pentru m = |k| și orice $1 \leq j \leq m$. Următorul algoritm va conduce la găsirea lungimii cheii:

Determină_lungimea_cheii(y)

```
input: y, un criptotext; output: m, lungimea cheii folosite; begin m:=0; repeat m:=m+1; until IC(y_{m,1})\cong IC(y_{m,2})\cong \cdots \cong IC(y_{m,m})\cong 0.065 end.
```

2. Determinarea efectivă a cheii (k_1, \ldots, k_m) - folosind testul indexului de coincidență mutuală.

Pentru $\alpha, \beta \in \{0, 1, \dots, 25\}^*$, indexul de coincidență mutuală, notat cu $MIC(\alpha, \beta)$, reprezintă probabilitatea ca un simbol să apară și în α și în β . Mai exact, $MIC(\alpha, \beta)$ este dat prin

$$MIC(\alpha, \beta) = \sum_{i=0}^{25} \frac{f_i(\alpha)}{|\alpha|} \frac{f_i(\beta)}{|\beta|}.$$

- Dacă α și β sunt texte normale în limba engleză (sau texte obținute din texte normale în limba engleză extrăgând simboluri din m în m poziții), $MIC(\alpha,\beta)$ se poate aproxima prin $\sum_{i=0}^{25} p_i^2 \cong 0.065$;
- Dacă α este un text normal în limba engleză (sau un text obținut dintr-un text normal în limba engleză extrăgând simboluri din m în m poziții), $MIC(\alpha,\beta)$ se poate aproxima prin $\sum_{i=0}^{25} p_i \frac{f_i(\beta)}{|\beta|}$.

Deoarece $x_{m,j} = SHIFT(y_{m,j}, -k_j)$ și $MIC(textnormal, x_{m,j}) \cong 0.065$, pentru orice $1 \leq j \leq m$, unde m = |k|, putem construi următorul algoritm pentru determinarea efectivă a cheii:

Determină_cheia(y,m)

```
\begin{array}{ll} \text{input:} & y, \text{ un criptotext } \Si\ m, \text{ lungimea cheii;} \\ \text{output:} & k_1, \ldots, k_m, \text{ componentele cheii folosite;} \\ \text{begin} & \text{for } j{:=}1 \text{ to } m \text{ do} \\ & \text{begin} \\ & s := -1; \\ & \text{repeat} \\ & s := s+1; \\ & \text{until } MIC(textnormal, SHIFT(y_{m,j},s)) \cong 0.065 \\ & k_j := (26-s) \text{ mod } 26; \\ & \text{end} \\ \end{array}
```