StarRocks 存算分离 3.1 性能调优手册

说明

本文针对 StarRocks 存算分离版本如何进行性能调优手册,供实践参考。本手册主要针对 StarRocks 3.1.x 正式版,且其中仅列举了存算分离版本中特有的参数,与存算一体公共的调优参数没有写入本手册,请知晓。

查询

参数名称	参数含义	默认值	修改命令
starlet_fs_stream_buffer_siz e_bytes	BE节点上控制每次读取后端对象存储(如S3)的 IO 大小,该值越大,访问对象存储的次数也就越少,对应的查询性能越高。该值一般针对冷数据查询效果比较明显。但调大该值也会相应地增大内存消耗。	131072 (128KB)	修改be.conf相关配置项,不 支持动态修改
lake_metadata_cache_limit	BE 节点上缓存 Tablet Meta 的内存大小,该值设置的越 大,能缓存的 Tablet Meta 越多,也能一定程度上提升 查询性能。	2147483648 (2GB)	修改be.conf相关配置项,不 支持动态修改
pipeline_connector_scan_thr ead_num_per_cpu	BE节点上每个 CPU 的 scan IO 线程数。 IO 线程数 = 该值 * CPU 核数。 如果 IO 时间很长,可以调大该值。	8	修改be.conf相关配置项,不 支持动态修改
disable_column_pool	BE节点上禁用 column pool,关闭 column 复用。 内存小的机器建议设置为 true。	false	修改be.conf相关配置项,不 支持动态修改

导入

参数名称	参数含义	默认值	修改方式
create_tablet_worker_count	BE 节点上创建 Tablet 线程 池的工作线程数,如果存在 大量创建 Partition / Tablet 的场景,建议调大该值	3	修改be.conf相关配置项并重 启 BE,暂不支持动态修改
enable_new_publish_mecha nism	FE节点上新的publish version 机制,可以提升 publish version性能,建议 设置为 true	false	在所有 FE 节点上执行: admin set frontend config ("enable_new_publish_me chanism" = "true");
flush_thread_num_per_store	BE节点上控制导入时 IO 刷 对象存储的线程池大小,该 值越大,写入吞吐越高	2	修改 be.conf 相关配置项, 不支持动态修改
transaction_publish_version _worker_count	BE节点上执行 publish version 任务的线程池数量上限,该值越大,publish version 任务会越快地执行,相应提升写入吞吐	0(表示根据 CPU Core决 定,但不会 小于8)	修改 be.conf 相关配置项, 不支持动态修改
number_tablet_writer_threa ds	BE节点上控制导入时写入 Mem Table 的线程池大小, BE 上所有 Tablet 的chunk 写入请求被放入队列并交由 该线程池处理,提高该值对 导入性能影响巨大。	16	修改 be.conf 相关配置项, 不支持动态修改

Compaction

参数名称	参数含义	默认值	修改命令
lake_compaction_max_tasks	FE 上可同时发起的 Compaction 任务数量 默认值为-1,即FE会根据系 统中 BE 数量自动计算。如	-1	admin set frontend config ("lake_compaction_max_t asks" = "xxx");

	果为0,则FE不再发起任何 Compaction任务		
lake_compaction_score_sele ctor_min_score	最小的Compaction score, 如果 Partition 的 Compaction Score 低于该 值,则不会对其发起 Compaction 任务	10.0	admin set frontend config ("lake_compaction_score_ selector_min_score" = "xxx");
lake_compaction_history_siz e	控制show proc '/compactions' 显示的结果 数量	12	admin set frontend config ("lake_compaction_histor y_size" = "xxx");
compact_threads	控制 BE 上同时执行 Compaction任务的线程 数,也即 BE 上可同时为多 少个Tablet进行 Compaction	4	修改be.conf相关配置项,不 支持动态修改
compact_thread_pool_queu e_size	BE 上控制 Compaction任务 队列大小,控制可接收来自 FE的最大Compaction 任务 数	100	修改be.conf相关配置项,不 支持动态修改

GC

参数名称	参数含义	默认值	修改命令
drop_tablet_worker_count	BE 节点上执行 GC 任务的线程池的工作线程数,如果导入比较频繁,建议调大该值以便能更快地清理无用数据。	3	修改be.conf相关配置项,不 支持动态修改
lake_autovacuum_grace_per iod_minutes	FE 节点上控制历史数据文件保留时间(minute),一旦文件被 Compaction 后,且其创建时间距离当下超过该值,就会被清理。如果您的场景中有一些大的 ETL 任务,可能需要释放调大该值,否则可能容易造成查询	5	admin set frontend config ("lake_autovacuum_grace _period_minutes" = "xxx");

	时原始数据文件被清除的风 险。		
lake_autovacuum_parallel_p artitions	StarRocks 存算分离表中 FE 端控制可同时执行 vacuum 的 Partition 数 量,默认值为8	8	admin set frontend config ("lake_autovacuum_parall el_partitions" = "xxx");
lake_autovacuum_partition_ naptime_seconds	对于任一 Partition,两次 vacuum 之间的时间间隔 (秒),默认为180 秒,如 果您想加快数据清理进度, 可以适当降低该值	180	admin set frontend config ("lake_autovacuum_partiti on_naptime_seconds" = "xxx");
lake_autovacuum_stale_part ition_threshold	如果 Partition 最后更新时间距离当前时间超过该阈值,那么就不再为该Partition 执行清理		admin set frontend config ("lake_autovacuum_stale_ partition_threshold" = "xxx");

Cache

参数名称	参数含义	默认值	修改命令
starlet_cache_thread_num	BE 节点上开启 File Cache 时控制后台异步拉取缓存数据的线程数,该值越大,拉取的效率越高。但最终的效率也取决于BE节点的网络和磁盘吞吐,而且一味地调大该参数可能会导致其他任务资源争抢。	64	修改be.conf相关配置项,不 支持动态修改
starlet_cache_evict_interval	BE 节点开启 File Cache 时 检查 Cache Disk 空间是否 足够的周期(second)	60	修改be.conf相关配置项,不 支持动态修改
starlet_cache_evict_low_wat er	BE 节点开启 Cache 淘汰的 低水位(百分比)。一旦 Disk 空闲空间低于该值,开 始进行缓存淘汰	0.1	修改be.conf相关配置项,不 支持动态修改
starlet_cache_evict_high_wa ter	BE 节点停止 Cache 淘汰的 高水位(百分比)。一旦	0.2	修改be.conf相关配置项,不 支持动态修改

	Disk 空闲空间高于该值,停 止进行缓存淘汰		
starlet_use_star_cache	BE 节点是否开启 Block Cache 能力,该能力在 3.1 版本引入,作为对当前 File Cache 的能力补充,每次 Cache Miss 时,只会从后端 对象存储获取部分相关内 容,避免 File Cache 在该情 况下拉取整个文件带来的资 源浪费和效率较低。如果用 户冷查场景较多,可以考虑 开启该功能	false	修改be.conf相关配置项,不 支持动态修改