四川轻化工大学试卷(2021至 2022 学年第 2 学期)

课程名称: 线性代数(A卷)

命题教师: 谢巍

适用班级: 本科 32 学时

考试

2022年月日 共6页

题号	_	11	Ξ	四四	Ŧi	六	七	八	总分	评阅 (统分) 教师
得分										

注意事项:

- 1、满分100分。要求卷面整洁、字迹工整、无错别字。
- 2、考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否则视为 废卷。
- 3、考生必须在签到单上签到,若出现遗漏,后果自负。
- 4、如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答题卷分别一 同交回, 否则不给分。

得分	评阅教师			

- 一、选择题 (每题 3 分, 共 24 分)
- 1. 设 $A \cap B$ 均为 n 阶矩阵,且 $(A B)^2 = A^2 2AB + B^2$,则必有 ()
 - A. A = E
- B. B = E C. A = B
- D. AB = BA
- 2. 设矩阵 A 为方阵,若有矩阵关系式 AB = AC 成立,则必有 ()
 - A. A = 0
- B. $B \neq C$ 时A = O
- C. $A \neq O$ 时 B = C D. $|A| \neq 0$ 时,|B| = C
- 3. 设 A 为 $s \times n$ 的矩阵,则齐次线性方程组 Ax=0 有非零解的充分必要条件是()

 - A. A 的行向量组线性无关 B. A 的列向量组线性无关

 - C. A 的行向量组线性相关 D. A 的列向量组线性相关
- 4. 若矩阵 A 的秩为r,则 A中()

 - A. 所有r-1阶子式都不为0 B. 所有r-1阶子式都为0
 - C. 至少有一个r阶子式不为 0 D. 所有r阶子式都不为 0
- 5. 若 x_1 是方程 Ax=b 的解, x_2 是方程 Ax=0 的解,则() 是方程 Ax=b 的解($c \in R$)
 - A. $x_1 + cx_2$

B. cx_1+cx_2

C. $x_1 - cx_2$

D. $cx_1 + x_2$

第1页共6页

6. 如果矩阵矩阵 A 与 B 相似,则下列说法错误的是 (A. |A| = |B|B. 有相同的特征多项式 C. 有相同的秩 D. 有相同的特征向量 7. 设矩阵 A 为n 阶方阵,则|A|=0 的充分必要条件为(A. A中必有一行(或一列)元素全为0 B. A中必有两行元素成比例 C. A中必有一行为其余各行的线性组合 D. A中任意一行为其余各行的线性组合 8. 设 A 为三阶矩阵, $\Lambda = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$,则 A 的特征值为 1, -1, 0 的充分必要条件为(A. 存在可逆矩阵 P,Q,使得 $A = P \wedge Q$ B. 存在可逆矩阵 P,使得 $A = P \wedge P^{-1}$ C. 存在正交矩阵 Q,使得 $A = Q\Lambda Q^{-1}$ D. 存在可逆矩阵 P.使得 $A = P\Lambda P^{T}$ 得分 评阅教师 二、填空题(每题3分,共24分) 1. 行列式 $\begin{vmatrix} a_1 & 0 & 0 & b_1 \\ 0 & a_2 & b_2 & 0 \\ 0 & a_3 & b_3 & 0 \end{vmatrix} =$ ______ 2. 若矩阵 $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, 则 $A^{-1} =$ _______ 3. 设4阶方阵 A, |A|=2,则|-2A-1|=____; 4. 设向量组 $\alpha_1 = (1,2,-1,0)^T, \alpha_2 = (1,1,0,2)^T, \alpha_3 = (2,1,1,a)^T$ 线性相关,则a = 15. $\Re \alpha = (1,2,3)^T$, $\beta = \left(1,\frac{1}{2},0\right)^T$, $A = \alpha \beta^T$. $\bowtie A^3 =$ _______;

6. 设A为 4×5 矩阵,R(A)=4,又设 P_1 , P_2 为非齐次线性方程组Ax=b的两个不同解向

7. 设三阶矩阵 A 的特征值为 1,2,2. E 为三阶单位矩阵, $|4A^{-1}-E|=$ _______;

8. 二次型 $f(x_1, x_2, x_3) = x_1^2 + 5x_3^2 + 4x_1x_2 + 6x_2x_3$ 所对应的实对称阵______

量,则 Ax = 0 的通解 x=______

三、(6分) 求行列式 D =
$$\begin{vmatrix} 0 & 0 & 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 0 & 5 & 6 \\ 1 & 0 & 0 & 8 & 0 & 0 \\ 2 & 3 & 0 & 0 & 0 & 0 \\ 0 & 4 & 5 & 0 & 0 & 0 \\ 0 & 0 & 6 & 7 & 0 & 0 \end{vmatrix}$$

得分	评阅教师

四、(8分) 设
$$f(x)=1+x+x^2+\cdots x^9$$
, $A=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$,求
$$f(A),[f(A)]^{-1}.$$

得分	评阅教师

and a second actual

五、(10分)设向量组

$$\alpha_1 = (1,1,1)^T$$
, $\alpha_2 = (-1,0,1)^T$, $\alpha_3 = (0,1,2)^T$, $\alpha_4 = (1,2,3)^T$.

得分 评阅教师

(1) 求向量组的秩; (2) 求此向量组的一个极大线性无关组,并把其余向量分别用该极大线性无关组线性表示。

六、(10 分)求齐次线性方程组 $\begin{cases} 2x_1 - 3x_2 + x_3 + 5x_4 = 0\\ -3x_1 + x_2 + 2x_3 - 4x_4 = 0 \text{ 的一个}\\ -x_1 - 2x_2 + 3x_3 + x_4 = 0 \end{cases}$

得分	评阅教师	
	drift the	

基础解系及其通解。

(3	0	1)		得分	评阅教
七、(12分) 已知 $A = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}$	4	0 ,求一个正交矩阵 P ,	使 P-1 AP		
(1	0	3)			
Yout 在版 A					

得分	评阅教师

八、(6 分)设 $\alpha_1 = (\lambda, 1, 1)^T$, $\alpha_2 = (1, \lambda, 1)^T$, $\alpha_3 = (1, 1, \lambda)^T$, $\alpha_4 = (1, \lambda, \lambda^2)^T$, 若向量组 $\alpha_1, \alpha_2, \alpha_3 = \alpha_1, \alpha_2, \alpha_4$ 等价,求入的取值范围.