$\begin{array}{c} \textbf{IRB LGD Modeling: Technical Documentation and} \\ \textbf{Model Report} \end{array}$

Melina Hafelt

July 9, 2025

Contents

1	Abs	stract	3		
2	The	eoretical Background	3		
	2.1	Definition of LGD	3		
	2.2	IRB Context and Downturn LGD	3		
	2.3	Modeling LGD: Regression Perspective	4		
3	Data Preparation				
	3.1	LGD Target Construction	4		
	3.2	Outlier Treatment	4		
	3.3	Feature Scaling and Transformation	4		
4	Modeling and Evaluation				
	4.1	Models Compared	5		
	4.2	Evaluation Metrics	5		
	4.3	Results	5		
	4.4	Residual Analysis	5		
	4.5	Calibration Assessment	6		
5	Stress Testing: Downturn LGD				
6	Regulatory Considerations				
	6.1	IRB Guidelines	6		
	6.2	Governance and Validation	6		
7	Cor	nclusions	7		

1 Abstract

This document presents a comprehensive modeling framework for **Loss Given Default (LGD)** estimation within the IRB (Internal Ratings-Based) approach. The work is conducted on a synthetic dataset with variables structured to resemble realistic credit portfolio data.

Key features:

- Exploratory data analysis and LGD target construction
- Feature engineering, winsorization, and scaling
- Multiple model development: OLS, Random Forest, XGBoost
- Evaluation using R^2 , RMSE, MAE, and residual plots
- Calibration analysis and downturn stress testing
- Regulatory considerations and validation recommendations

Disclaimer: All data and variables are simulated and do not represent any real institution or customer.

2 Theoretical Background

2.1 Definition of LGD

Loss Given Default (LGD) represents the portion of a credit exposure a lender expects to lose if a borrower defaults. Formally:

$$LGD = 1 - \frac{Recovered Amount}{Exposure at Default (EAD)}$$
 (1)

LGD is expressed as a percentage or decimal between 0 and 1. A fully recovered exposure yields LGD = 0, while complete loss implies LGD = 1.

2.2 IRB Context and Downturn LGD

According to Basel II/III:

- LGD estimates must be **conservative** and reflect conditions during an economic downturn.
- Estimates should be based on historical recoveries and take into account *seniority*, *collateral*, and *macro conditions*.

2.3 Modeling LGD: Regression Perspective

In contrast to PD (a classification task), LGD modeling is formulated as a **regression problem**. The objective is to predict the continuous variable LGD using borrower and loan characteristics.

Assumptions:

- LGD is bounded: 0 < LGD < 1
- Only defaulted observations (default_flag = 1) are used

3 Data Preparation

3.1 LGD Target Construction

$$LGD_{i} = 1 - \frac{RecoveredAmount_{i}}{ExposureAtDefault_{i}}$$
(2)

Observations with ExposureAtDefault = 0 or LGD < 0 are removed. The target is validated to ensure it lies within [0,1].

3.2 Outlier Treatment

To prevent distortion in model fitting, we apply winsorization at 1st and 99th percentiles:

$$X_i^{\text{winsorized}} = \begin{cases} P_1(X) & \text{if } X_i < P_1(X) \\ X_i & \text{if } P_1(X) \le X_i \le P_{99}(X) \\ P_{99}(X) & \text{if } X_i > P_{99}(X) \end{cases}$$

3.3 Feature Scaling and Transformation

Numerical features are standardized via:

$$z_i = \frac{x_i - \mu}{\sigma} \tag{3}$$

Where μ and σ are the mean and standard deviation from the training set.

4 Modeling and Evaluation

4.1 Models Compared

Three models were trained using the same features:

• Linear Regression (OLS)

• Random Forest Regressor

• XGBoost Regressor

4.2 Evaluation Metrics

• R^2 : Proportion of variance explained

• RMSE: Root Mean Squared Error

• MAE: Mean Absolute Error

4.3 Results

Model	R^2	MAE	RMSE
Linear Regression	0.388	0.617	0.835
Random Forest	0.378	0.594	0.842
XGBoost	0.437	0.575	0.801

Table 1: LGD model performance on test data

4.4 Residual Analysis

Residuals $(e_i = y_i - \hat{y}_i)$ were plotted to assess bias and heteroskedasticity. The XGBoost model exhibited:

- Residuals centered around zero
- No clear heteroskedastic pattern
- Stable spread across predicted range

4.5 Calibration Assessment

We group predictions into deciles and compare:

Calibration Error_j =
$$\overline{y}_j - \overline{\hat{y}}_j$$
, $j = 1, \dots, 10$

A diagonal pattern in the calibration plot confirms that predicted LGD aligns with realized losses in each bin.

5 Stress Testing: Downturn LGD

A downturn scenario is simulated by increasing predicted LGD by 20%:

$$LGD_{stressed} = min(1.0, 1.2 \cdot LGD_{predicted})$$

Result:

• Baseline mean LGD: 0.51

• Stressed mean LGD: 0.61

• Relative uplift: +19.6%

This simulates deterioration in recovery rates and aligns with Basel expectations on conservatism.

6 Regulatory Considerations

6.1 IRB Guidelines

According to CRR Article 181(1)(b):

LGD estimates must be appropriate for an economic downturn and reflect expected recoveries under adverse conditions.

6.2 Governance and Validation

• Monitoring: Track R^2 , RMSE, feature drift quarterly

• Recalibration: Annually or after portfolio shifts

• Audit Trail: All modeling steps documented and reproducible

7 Conclusions

- XGBoost model outperforms others with $R^2 \approx 0.44$
- Model shows good calibration and stability across test segments
- Stress testing confirms regulatory conservatism
- Documentation and preprocessing follow IRB-compliant standards

Recommendation: Use XGBoost for production, with linear regression retained for transparency in regulatory disclosures.