Package 'IRSF'

October 6, 2017

Type Package

Version 1.0.0

Title Interaction Random Survival Forest

Date 2017-10-06					
Author Jean-Eudes Dazard [aut, cre]					
Maintainer Jean-Eudes Dazard < jean-eudes.dazard@case.edu>					
Description Ensemble Survival Tree Models to Reveal Variable Interactions in Association with Time-to-Events Outcomes. The current version is a development release. It contains R codes in folders ``/R" and ``/inst/doc" for the analyses and the generation of the results shown in manuscript (Dazard et al., 2017), respectively. Codes contain randomization, interaction modeling and prediction subroutines.					
Depends R (>= 3.0.2), survival, randomForestSRC, abind					
Imports parallel					
Suggests ggRandomForests					
<pre>URL https://github.com/jedazard/IRSF</pre>					
Repository IRSF, GitHub, Inc.					
License GPL (>= 3) file LICENSE					
LazyLoad yes					
LazyData yes					
Archs i386, x64					
R topics documented:					
IRSF-package 2 cph.int 3 cph.main 5 MACS 7 rsf.int 10 rsf.int.signif 15 rsf.main 16 rsf.main.signif 20 Index					
IIIUCA 22					

2 IRSF-package

IRSF-package

Interaction Random Survival Forest

Description

Ensemble Survival Tree Models to Reveal Variable Interactions in Association with Time-to-Events Outcomes. The current version is a development release. It contains R codes in folders "/R" and "/inst/doc" for the analyses and the generation of the results shown in manuscript (Dazard et al., 2017), respectively. Codes contain randomization, interaction modeling and prediction subroutines.

Details

Manuscript Abstract: Unraveling interactions among variables such as genetic, clinical, demographic and environmental factors is essential to understand the development of common and complex diseases. To increase the power to detect such variables interactions associated with clinical time-to-events outcomes, we borrowed established concepts from Random Survival Forest (RSF) models. We introduce a novel RSF-based pairwise interaction estimator and derive a randomization method with bootstrap confidence intervals for inferring interaction significance. Using various linear and non-linear time-to-events survival models in simulation studies, we first show the efficiency of our approach: true pairwise interaction-effects between variables are thus uncovered, while they may not be accompanied with their corresponding main-effects and often not detected by standard semi-parametric Cox regression. Moreover, using a RSF-based cross-validation scheme for generating prediction estimators, we show that informative predictors may thus be inferred. We illustrate the application of our approach in an HIV cohort study recording key host gene polymorphisms and their association with HIV change of tropism or AIDS progression. Altogether, this shows how linear or non-linear pairwise statistical interactions between variables may be uncovered in clinical studies with time-to-event outcomes of interest when the motivation is to discover important variables interactions with a predictive clinical value.

Acknowledgments

This work made use of the High Performance Computing Resource in the Core Facility for Advanced Research Computing at Case Western Reserve University. We are thankful to Ms. Janet Schollenberger, Senior Project Coordinator, CAMACS, as well as Dr. Jeremy J. Martinson, Sudhir Penugonda, Shehnaz K. Hussain, Jay H. Bream, and Priya Duggal, for providing us the data related to the samples analyzed in the present study. Data in this manuscript were collected by the Multicenter AIDS Cohort Study (MACS) at (http://www.statepi.jhsph.edu/macs/macs.html) with centers at Baltimore, Chicago, Los Angeles, Pittsburgh, and the Data Coordinating Center: The Johns Hopkins University Bloomberg School of Public Health. The MACS is funded primarily by the National Institute of Allergy and Infectious Diseases (NIAID), with additional co-funding from the National Cancer Institute (NCI), the National Heart, Lung, and Blood Institute (NHLBI), and the National Institute on Deafness and Communication Disorders (NIDCD). MACS data collection is also supported by Johns Hopkins University CTSA. This study was supported by two grants from the National Institute of Health: NIDCR P01DE019759 (Aaron Weinberg, Peter Zimmerman, Richard J. Jurevic, Mark Chance) and NCI R01CA163739 (Hemant Ishwaran). The work was also partly supported by the National Science Foundation grant DMS 1148991 (Hemant Ishwaran) and the Center for AIDS Research grant P30AI036219 (Mark Chance).

Author(s)

Jean-Eudes Dazard < jean-eudes.dazard@case.edu>

cph.int 3

Maintainer: Jean-Eudes Dazard < jean-eudes.dazard@case.edu>

References

Dazard J-E., Ishwaran H., Mehlotra R.K., Weinberg A. and Zimmerman P.A. "Ensemble Survival Tree Models to Reveal Variable Interactions in Association with Time-to-Events Outcomes" Submitted (2017).

- Ishwaran, H. and Kogalur, U.B. "Random Survival Forests for R. R News, 7(2), 25-31, (2007).
- Ishwaran, H. and Kogalur, U.B. "Contributed R Package randomForestSRC: Random Forests for Survival, Regression and Classification (RF-SRC)" CRAN (2013).

See Also

- Multicenter AIDS Cohort Study (MACS) websitea at http://www.statepi.jhsph.edu/ macs/macs.html
- randomForestSRC

cph.int

Pairwise interaction effects in a Cox-PH model

Description

Fits a Proportional Hazards Time-To-Event Regression Model saturated with first and second order terms. Computes p-values of significance of regression coefficients of pairwise interaction effects in a Cox-PH model.

Usage

Arguments

Χ

data.frame or numeric matrix of input covariates. Dataset X assumes that: - all variables are in columns - the observed times to event and censoring variables are in the first two columns: "stime": numeric vector of observed times. "status": numeric vector of observed status (censoring) indicator variable. - each variable has a unique name, excluding the word "noise"

int.term

vector of character string of all possible pairs of covariates names, separated by ":".

Value

list of 2 fields:

raw Raw p-value of covariates pairwise interaction statistics significance

fdr FDR-adjusted p-value of covariates pairwise interaction statistics significance

4 cph.int

Acknowledgments

This work made use of the High Performance Computing Resource in the Core Facility for Advanced Research Computing at Case Western Reserve University. We are thankful to Ms. Janet Schollenberger, Senior Project Coordinator, CAMACS, as well as Dr. Jeremy J. Martinson, Sudhir Penugonda, Shehnaz K. Hussain, Jay H. Bream, and Priya Duggal, for providing us the data related to the samples analyzed in the present study. Data in this manuscript were collected by the Multicenter AIDS Cohort Study (MACS) at (http://www.statepi.jhsph.edu/macs/macs.html) with centers at Baltimore, Chicago, Los Angeles, Pittsburgh, and the Data Coordinating Center: The Johns Hopkins University Bloomberg School of Public Health. The MACS is funded primarily by the National Institute of Allergy and Infectious Diseases (NIAID), with additional co-funding from the National Cancer Institute (NCI), the National Heart, Lung, and Blood Institute (NHLBI), and the National Institute on Deafness and Communication Disorders (NIDCD). MACS data collection is also supported by Johns Hopkins University CTSA. This study was supported by two grants from the National Institute of Health: NIDCR P01DE019759 (Aaron Weinberg, Peter Zimmerman, Richard J. Jurevic, Mark Chance) and NCI R01CA163739 (Hemant Ishwaran). The work was also partly supported by the National Science Foundation grant DMS 1148991 (Hemant Ishwaran) and the Center for AIDS Research grant P30AI036219 (Mark Chance).

Author(s)

Jean-Eudes Dazard < jean-eudes.dazard@case.edu>

Maintainer: Jean-Eudes Dazard < jean-eudes.dazard@case.edu>

References

- Dazard J-E., Ishwaran H., Mehlotra R.K., Weinberg A. and Zimmerman P.A. "Ensemble Survival Tree Models to Reveal Variable Interactions in Association with Time-to-Events Outcomes" Submitted (2017).
- Ishwaran, H. and Kogalur, U.B. "Random Survival Forests for R. R News, 7(2), 25-31, (2007).
- Ishwaran, H. and Kogalur, U.B. "Contributed R Package randomForestSRC: Random Forests for Survival, Regression and Classification (RF-SRC)" CRAN (2013).

See Also

randomForestSRC

cph.main 5

```
n <- 200
   p <- 5
   x <- matrix(data=runif(n=n*p, min=1, max=5),</pre>
                nrow=n, ncol=p, byrow=FALSE,
                dimnames=list(1:n, paste("X", 1:p, sep="")))
   beta <- c(rep(1,2), rep(0,p-2), 1)
   covar <- cbind(x, "X1X2"=x[,1]\timesx[,2])
   eta <- covar
   seed <- 1234567
   set.seed(seed)
   lambda0 <- 1
   lambda <- lambda0 * exp(eta - mean(eta)) # hazards function</pre>
   tt <- rexp(n=n, rate=lambda)</pre>
                                                # true (uncensored) event times
   tc <- runif(n=n, min=0, max=3.9)</pre>
                                                # true (censored) event times
                                                # observed event times
   stime <- pmin(tt, tc)</pre>
   status <- 1 * (tt <= tc)
                                                # observed event indicator
   X <- data.frame(stime, status, x)</pre>
   int.mdms <- rsf.int(X=X,</pre>
                        ntree=1000,
                        method="imdms",
                        splitrule="logrank",
                        importance="random",
                        B=10,
                        ci=90,
                        parallel=FALSE,
                        conf=NULL,
                        verbose=FALSE,
                        seed=seed)
   int.cph <- cph.int(X=X,</pre>
                       int.term=rownames(int.mdms))
## End(Not run)
```

cph.main

Main effects in a Cox-PH model

Description

Fits a Proportional Hazards Time-To-Event Regression Model saturated with first order terms. Computes p-values of significance of regression coefficients of main effects in a Cox-PH model

Usage

Arguments

Χ

data.frame or numeric matrix of input covariates. Dataset X assumes that: - all variables are in columns - the observed times to event and censoring variables

6 cph.main

are in the first two columns: "stime": numeric vector of observed times. "status": numeric vector of observed status (censoring) indicator variable. -

each variable has a unique name, excluding the word "noise"

main.term Vector of character string of each individual covariate name.

Value

List of 2 fields:

raw Raw p-value covariates importances significance

fdr FDR-adjusted p-value of covariates importances significance

Acknowledgments

This work made use of the High Performance Computing Resource in the Core Facility for Advanced Research Computing at Case Western Reserve University. We are thankful to Ms. Janet Schollenberger, Senior Project Coordinator, CAMACS, as well as Dr. Jeremy J. Martinson, Sudhir Penugonda, Shehnaz K. Hussain, Jay H. Bream, and Priya Duggal, for providing us the data related to the samples analyzed in the present study. Data in this manuscript were collected by the Multicenter AIDS Cohort Study (MACS) at (http://www.statepi.jhsph.edu/macs/macs.html) with centers at Baltimore, Chicago, Los Angeles, Pittsburgh, and the Data Coordinating Center: The Johns Hopkins University Bloomberg School of Public Health. The MACS is funded primarily by the National Institute of Allergy and Infectious Diseases (NIAID), with additional co-funding from the National Cancer Institute (NCI), the National Heart, Lung, and Blood Institute (NHLBI), and the National Institute on Deafness and Communication Disorders (NIDCD). MACS data collection is also supported by Johns Hopkins University CTSA. This study was supported by two grants from the National Institute of Health: NIDCR P01DE019759 (Aaron Weinberg, Peter Zimmerman, Richard J. Jurevic, Mark Chance) and NCI R01CA163739 (Hemant Ishwaran). The work was also partly supported by the National Science Foundation grant DMS 1148991 (Hemant Ishwaran) and the Center for AIDS Research grant P30AI036219 (Mark Chance).

Author(s)

Jean-Eudes Dazard < jean-eudes.dazard@case.edu>

Maintainer: Jean-Eudes Dazard < jean-eudes.dazard@case.edu>

References

- Dazard J-E., Ishwaran H., Mehlotra R.K., Weinberg A. and Zimmerman P.A. "Ensemble Survival Tree Models to Reveal Variable Interactions in Association with Time-to-Events Outcomes" Submitted (2017).
- Ishwaran, H. and Kogalur, U.B. "Random Survival Forests for R. R News, 7(2), 25-31, (2007).
- Ishwaran, H. and Kogalur, U.B. "Contributed R Package randomForestSRC: Random Forests for Survival, Regression and Classification (RF-SRC)" CRAN (2013).

See Also

randomForestSRC

MACS 7

```
## Not run:
  # Loading the library and its dependencies
  library("IRSF")
  # Continuous case:
  # All variables xj, j in \{1,\ldots,p\}, are iid from a multivariate uniform distribution
  \# with parmeters a=1, b=5, i.e. on [1, 5].
  # rho = 0.50
  # Regression model: X1 + X5
  #-----#
  seed <- 1234567
  set.seed(seed)
  n <- 200
  p <- 5
  x <- matrix(data=runif(n=n*p, min=1, max=5),</pre>
            nrow=n, ncol=p, byrow=FALSE,
            dimnames=list(1:n, paste("X", 1:p, sep="")))
  beta <- c(1,0,0,0,1)
  covar <- x
  eta <- covar
  seed <- 1234567
  set.seed(seed)
  lambda0 <- 1
  lambda <- lambda0 * exp(eta - mean(eta)) # hazards function</pre>
                                     # true (uncensored) event times
  tt <- rexp(n=n, rate=lambda)</pre>
  tc <- runif(n=n, min=0, max=1.50)</pre>
                                     # true (censored) event times
  stime <- pmin(tt, tc)</pre>
                                     # observed event times
  status <- 1 * (tt <= tc)
                                     # observed event indicator
  X <- data.frame(stime, status, x)</pre>
  main.mdms <- rsf.main(X=X,</pre>
                     ntree=1000,
                     method="mdms",
                     splitrule="logrank",
                     importance="random",
                     B=10,
                     ci=90,
                     parallel=FALSE,
                     conf=NULL,
                     verbose=TRUE,
                     seed=seed)
  main.cph <- cph.main(X=X,</pre>
                    main.term=rownames(main.mdms))
## End(Not run)
```

8 MACS

Description

Publicly available dataset from the Multicenter AIDS Cohort Study (MACS) available at (http://www.statepi.jhsph.edu/m The dataset provides longitudinal account of viral tropism in relation to the HIV full spectrum of rates of HIV-1 disease progression (Shepherd, et al. 2008). To our knowledge, this cohort provides a unique dataset with well characterized clinical information for analyzing associations between host genetic variation and viral tropism as well as disease progression. Here, we determined whether copy number variation in beta-defensin and its interactions with certain polymorphisms in chemokine receptors and ligand genes are associated, either alone or jointly, with clinical events in HIV-seropositive patients, such as time to HIV change of tropism or time to AIDS diagnosis (See Dazard et al. (2017) for additional descriptions of the dataset and materials).

Usage

MACS

Format

The dataset consists of a numeric data. frame containing n=50 complete observations (samples) by rows and p=7 covariates by columns, not including the censoring indicator and (censored) time-to-event variables.

The variables included in the MACS cohort study were 5 genetic variants (DEFB4/103A CNV [1-5], CCR2 SNP [190G>A], CCR5 [SNP -2459G>A, ORF], CXCL12 SNP [801G>A]) and 2 nongenetic variables, taken as two additional covariates. All input variables were categorical with no more than three levels (experimental groups) each. We used genetic variables with original and aggregated categories as follows: DEFB CNV [CNV = 2 or CNV > 2]; CCR2 SNP [GG or GA], CCR5 SNP [GG or GA]; CCR5 ORF [WT or D32], CXCL12 SNP [GG or GA]. The first covariate was the two-level disease progression Group variable [Fast, Slow], and the second was the three-level Race/Ethnicity variable [White, Hispanic, Black]. For each observation $i \in \{1, ..., n\}$, we denote the j-th variable by the n-dimensional vector $\mathbf{x}_j = (x_{1,j}, ..., x_{n,j})^T$, where $j \in \{1, ..., p\}$. Here, p denotes the number of variables. Hereafter, we denoted the p = 7 included variables as follows:

- x₁=DEFB CNV
- x₂=CCR2 SNP
- x₃=CCR5 SNP
- x₄=CCR5 ORF
- x₅=CXCL12 SNP
- x₆=Group
- x₇=Race

The time-to-event outcomes included in the MACS cohort study, generically denoted E, were the time-to-X4-Emergence (denoted XE) and the time-to-AIDS-Diagnosis (denoted AD), whether each was observed or not during each patient's follow-up time. The corresponding event-free (EF) ("survival") probability function S(t) of time-to-event E:=XE (X4-Emergence) or E:=AD (AIDS-Diagnosis), were called X4-Emergence-Free (E:=XEF) or AIDS-Diagnosis-Free (E:=ADF) probability.

The dataset comes as a compressed Rda data file.

MACS 9

Acknowledgments

This work made use of the High Performance Computing Resource in the Core Facility for Advanced Research Computing at Case Western Reserve University. We are thankful to Ms. Janet Schollenberger, Senior Project Coordinator, CAMACS, as well as Dr. Jeremy J. Martinson, Sudhir Penugonda, Shehnaz K. Hussain, Jay H. Bream, and Priya Duggal, for providing us the data related to the samples analyzed in the present study. Data in this manuscript were collected by the Multicenter AIDS Cohort Study (MACS) at (http://www.statepi.jhsph.edu/macs/macs.html) with centers at Baltimore, Chicago, Los Angeles, Pittsburgh, and the Data Coordinating Center: The Johns Hopkins University Bloomberg School of Public Health. The MACS is funded primarily by the National Institute of Allergy and Infectious Diseases (NIAID), with additional co-funding from the National Cancer Institute (NCI), the National Heart, Lung, and Blood Institute (NHLBI), and the National Institute on Deafness and Communication Disorders (NIDCD). MACS data collection is also supported by Johns Hopkins University CTSA. This study was supported by two grants from the National Institute of Health: NIDCR P01DE019759 (Aaron Weinberg, Peter Zimmerman, Richard J. Jurevic, Mark Chance) and NCI R01CA163739 (Hemant Ishwaran). The work was also partly supported by the National Science Foundation grant DMS 1148991 (Hemant Ishwaran) and the Center for AIDS Research grant P30AI036219 (Mark Chance).

Author(s)

Jean-Eudes Dazard < jean-eudes.dazard@case.edu>

Maintainer: Jean-Eudes Dazard < jean-eudes.dazard@case.edu>

Source

See real data application in Dazard et al., 2017.

References

- Dazard J-E., Ishwaran H., Mehlotra R.K., Weinberg A. and Zimmerman P.A. "Ensemble Survival Tree Models to Reveal Variable Interactions in Association with Time-to-Events Outcomes" Submitted (2017).
- Shepherd, J.C., et al. "Emergence and Persistence of Cxcr4-Tropic Hiv-1 in a Population of Men from the Multicenter Aids Cohort Study" J Infect Dis, 198, 1104-1112 (2008).

See Also

Multicenter AIDS Cohort Study (MACS) websitea at http://www.statepi.jhsph.edu/macs/macs.html

rsf.int

Bivariate Interaction Minimal Depth of a Maximal Subtree (IMDMS)

Description

Ranking of pairwise interactions between individual or noise variables by bivariate interaction Minimal Depth of a Maximal Subtree (IMDMS)

Usage

```
rsf.int(X,
        ntree = 1000,
        method = "imdms",
        splitrule = "logrank",
        importance = "random",
        B, ci = 90,
        parallel = FALSE,
        conf = NULL,
        verbose = TRUE,
        seed = NULL)
```

Arguments

data.frame or numeric matrix of input covariates. Dataset X assumes that: -

all variables are in columns - the observed times to event and censoring variables are in the first two columns: "stime": numeric vector of observed times. "status": numeric vector of observed status (censoring) indicator variable. -

each variable has a unique name, excluding the word "noise"

ntree Number of trees in the forest. Defaults to 1000.

method Method for ranking of interactions between pairs of individual and noise vari-

ables. character string "imdms" (default) that stands for interaction minimal

depth of a maximal subtree (IMDMS).

splitrule Splitting rule used to grow trees. For time-to-event analysis, use "logrank" (de-

fault), which implements log-rank splitting (Segal, 1988; Leblanc and Crowley,

1993).

importance Method for computing variable importance. Defaults to Character string "random".

See details below.

Postitive integer of the number of replications of the cross-validation proce-В

dure.

Confidence Interval for inferences of individual and noise variables. numeric

scalar between 50 and 100. Defaults to 90.

logical. Is parallel computing to be performed? Defaults to FALSE. parallel

list of 5 fields containing the parameters values needed for creating the parallel backend (cluster configuration). See details below for usage. Optional, defaults

to NULL, but all fields are required if used:

• type: character vector specifying the cluster type ("SOCKET", "MPI").

• spec : A specification (character vector or integer scalar) appropriate to the type of cluster.

Χ

ci

conf

- homogeneous: logical scalar to be set to FALSE for inhomogeneous clusters.
- verbose : logical scalar to be set to FALSE for quiet mode.

 outfile: character vector of an output log file name to direct the stdout and stderr connection output from the workernodes. "" indicates no redirection.

verbose

logical scalar. Is the output to be verbose? Optional, defaults to TRUE.

seed

Positive integer scalar of the user seed to reproduce the results. Defaults to NULL.

Details

The option importance allows several ways to calculate Variable Importance (VIMP). The default "permute" returns Breiman-Cutler permutation VIMP as described in Breiman (2001). For each tree, the prediction error on the out-of-bag (OOB) data is recorded. Then for a given variable x, OOB cases are randomly permuted in x and the prediction error is recorded. The VIMP for x is defined as the difference between the perturbed and unperturbed error rate, averaged over all trees. If "random" is used, then x is not permuted, but rather an OOB case is assigned a daughter node randomly whenever a split on x is encountered in the in-bag tree. If "anti" is used, then x is assigned to the opposite node whenever a split on x is encountered in the in-bag tree.

The function rsf.int relies on the R package **parallel** to create a parallel backend within an R session, enabling access to a cluster of compute cores and/or nodes on a local and/or remote machine(s) and scaling-up with the number of CPU cores available and efficient parallel execution. To run a procedure in parallel (with parallel RNG), argument parallel is to be set to TRUE and argument conf is to be specified (i.e. non NULL). Argument conf uses the options described in function makeCluster of the R packages **parallel** and **snow**. **IRSF** supports two types of communication mechanisms between master and worker processes: 'Socket' or 'Message-Passing Interface' ('MPI'). In **IRSF**, parallel 'Socket' clusters use sockets communication mechanisms only (no forking) and are therefore available on all platforms, including Windows, while parallel 'MPI' clusters use high-speed interconnects mechanism in networks of computers (with distributed memory) and are therefore available only in these architectures. A parallel 'MPI' cluster also requires R package **Rmpi** to be installed. Value type is used to setup a cluster of type 'Socket' ("SOCKET") or 'MPI' ("MPI"), respectively. Depending on this type, values of spec are to be used alternatively:

- For 'Socket' clusters (conf\$type="SOCKET"), spec should be a character vector naming the hosts on which to run the job; it can default to a unique local machine, in which case, one may use the unique host name "localhost". Each host name can potentially be repeated to the number of CPU cores available on the local machine. It can also be an integer scalar specifying the number of processes to spawn on the local machine; or a list of machine specifications if you have ssh installed (a character value named host specifying the name or address of the host to use).
- For 'MPI' clusters (conf\$type="MPI"), spec should be an integer scalar specifying the total number of processes to be spawned across the network of available nodes, counting the workernodes and masternode.

The actual creation of the cluster, its initialization, and closing are all done internally. For more details, see the reference manual of R package **snow** and examples below.

When random number generation is needed, the creation of separate streams of parallel RNG per node is done internally by distributing the stream states to the nodes. For more details, see the vignette of R package **parallel**. The use of a seed allows to reproduce the results within the same type of session: the same seed will reproduce the same results within a non-parallel session or within a parallel session, but it will not necessarily give the exact same results (up to sampling variability)

between a non-parallelized and parallelized session due to the difference of management of the seed between the two (see parallel RNG and value of returned seed below).

Value

data. frame containing the following columns:

- "obs.mean" observed mean of covariates pairwise interaction statistics
- "obs.se" observed standard error of covariates pairwise interaction statistics
- "obs.LBCI" observed Lower Bound Confidence Interval of covariates pairwise interaction ranstatisticsks
- "obs.UBCI" observed Upper Bound Confidence Interval of covariates pairwise interaction statistics
- "noise.mean" observed mean of noise covariates statistics
- "noise.se" observed standard error of noise covariates pairwise interaction statistics
- "noise.LBCI" observed Lower Bound Confidence Interval of noise covariates pairwise interaction statistics
- "noise.UBCI" observed Upper Bound Confidence Interval of noise covariates pairwise interaction statistics
- "signif.1SE" calls of covariates pairwise interaction statistics significance using the 1SE rule
- "signif.CI" calls of covariates pairwise interaction statistics significance using the CI rule at ci% confidence level

Acknowledgments

This work made use of the High Performance Computing Resource in the Core Facility for Advanced Research Computing at Case Western Reserve University. We are thankful to Ms. Janet Schollenberger, Senior Project Coordinator, CAMACS, as well as Dr. Jeremy J. Martinson, Sudhir Penugonda, Shehnaz K. Hussain, Jay H. Bream, and Priya Duggal, for providing us the data related to the samples analyzed in the present study. Data in this manuscript were collected by the Multicenter AIDS Cohort Study (MACS) at (http://www.statepi.jhsph.edu/macs/macs.html) with centers at Baltimore, Chicago, Los Angeles, Pittsburgh, and the Data Coordinating Center: The Johns Hopkins University Bloomberg School of Public Health. The MACS is funded primarily by the National Institute of Allergy and Infectious Diseases (NIAID), with additional co-funding from the National Cancer Institute (NCI), the National Heart, Lung, and Blood Institute (NHLBI), and the National Institute on Deafness and Communication Disorders (NIDCD). MACS data collection is also supported by Johns Hopkins University CTSA. This study was supported by two grants from the National Institute of Health: NIDCR P01DE019759 (Aaron Weinberg, Peter Zimmerman, Richard J. Jurevic, Mark Chance) and NCI R01CA163739 (Hemant Ishwaran). The work was also partly supported by the National Science Foundation grant DMS 1148991 (Hemant Ishwaran) and the Center for AIDS Research grant P30AI036219 (Mark Chance).

Author(s)

Jean-Eudes Dazard < jean-eudes.dazard@case.edu>

Maintainer: Jean-Eudes Dazard < jean-eudes.dazard@case.edu>

References

- Dazard J-E., Ishwaran H., Mehlotra R.K., Weinberg A. and Zimmerman P.A. "Ensemble Survival Tree Models to Reveal Variable Interactions in Association with Time-to-Events Outcomes" Submitted (2017).
- Ishwaran, H. and Kogalur, U.B. "Random Survival Forests for R. R News, 7(2), 25-31, (2007).
- Ishwaran, H. and Kogalur, U.B. "Contributed R Package randomForestSRC: Random Forests for Survival, Regression and Classification (RF-SRC)" CRAN (2013).

See Also

randomForestSRC

```
## Not run:
# Loading the library and its dependencies
library("IRSF")
# Continuous case:
# All variables xj, j in \{1, \ldots, p\}, are iid from a multivariate uniform distribution
\# with parmeters a=1, b=5, i.e. on [1, 5].
# rho = 0.50
# Regression model: X1 + X2 + X1X2
#------
seed <- 1234567
set.seed(seed)
n <- 200
p <- 5
x <- matrix(data=runif(n=n*p, min=1, max=5),</pre>
         nrow=n, ncol=p, byrow=FALSE,
         dimnames=list(1:n, paste("X", 1:p, sep="")))
beta <- c(rep(1,2), rep(0,p-2), 1)
covar \leftarrow cbind(x, "X1X2"=x[,1]*x[,2])
eta <- covar
seed <- 1234567
set.seed(seed)
lambda0 <- 1
lambda <- lambda0 * exp(eta - mean(eta)) # hazards function</pre>
                       # true (uncensored) event times
tt <- rexp(n=n, rate=lambda)
tc <- runif(n=n, min=0, max=3.9)</pre>
                                # true (censored) event times
stime <- pmin(tt, tc)</pre>
                                # observed event times
                                 # observed event indicator
status <- 1 * (tt <= tc)
X <- data.frame(stime, status, x)</pre>
# Examples of parallel backend parametrization
if (require("parallel")) {
  print("'parallel' is attached correctly \n")
} else {
```

```
stop("'parallel' must be attached first \n")
# Example #1 - Quad core PC
# Running WINDOWS with SOCKET communication
cpus <- detectCores(logical = TRUE)</pre>
conf <- list("spec" = rep("localhost", cpus),</pre>
            "type" = "SOCKET",
            "homo" = TRUE,
            "verbose" = TRUE,
            "outfile" = "")
# Example #2 - Master node + 3 Worker nodes cluster
# Running LINUX with SOCKET communication
# All nodes equipped with identical setups of
# multicores (8 core CPUs per machine for a total of 32)
masterhost <- Sys.getenv("HOSTNAME")</pre>
slavehosts <- c("compute-0-0", "compute-0-1", "compute-0-2")</pre>
nodes <- length(slavehosts) + 1</pre>
cpus <- 8
conf <- list("spec" = c(rep(masterhost, cpus),</pre>
                      rep(slavehosts, cpus)),
            "type" = "SOCKET",
            "homo" = TRUE,
            "verbose" = TRUE.
            "outfile" = "")
# Example #3 - Multinode of multicore per node cluster
# Running LINUX with SLURM scheduler and MPI communication
# Below, variable 'cpus' is the total number
\ensuremath{\text{\#}} of requested core CPUs, which is specified from
# within a SLURM script.
#=========
if (require("Rmpi")) {
  print("'Rmpi' is attached correctly \n")
} else {
  stop("'Rmpi' must be attached first \n")
cpus <- as.numeric(Sys.getenv("SLURM_NTASKS"))</pre>
conf <- list("spec" = cpus,</pre>
            "type" = "MPI",
            "homo" = TRUE,
            "verbose" = TRUE,
            "outfile" = "")
int.mdms <- rsf.int(X=X,</pre>
                  ntree=1000,
                  method="imdms",
                  splitrule="logrank",
                  importance="random",
                  B=1000,
                  ci=90,
```

rsf.int.signif

parallel=FALSE, conf=NULL, verbose=FALSE, seed=seed)

End(Not run)

rsf.int.signif

Subroutine of rsf.int function

Description

Subroutine for ranking of pairwise interactions between individual or noise variables by bivariate interaction Minimal Depth of a Maximal Subtree (IMDMS)

Acknowledgments

This work made use of the High Performance Computing Resource in the Core Facility for Advanced Research Computing at Case Western Reserve University. We are thankful to Ms. Janet Schollenberger, Senior Project Coordinator, CAMACS, as well as Dr. Jeremy J. Martinson, Sudhir Penugonda, Shehnaz K. Hussain, Jay H. Bream, and Priya Duggal, for providing us the data related to the samples analyzed in the present study. Data in this manuscript were collected by the Multicenter AIDS Cohort Study (MACS) at (http://www.statepi.jhsph.edu/macs/macs.html) with centers at Baltimore, Chicago, Los Angeles, Pittsburgh, and the Data Coordinating Center: The Johns Hopkins University Bloomberg School of Public Health. The MACS is funded primarily by the National Institute of Allergy and Infectious Diseases (NIAID), with additional co-funding from the National Cancer Institute (NCI), the National Heart, Lung, and Blood Institute (NHLBI), and the National Institute on Deafness and Communication Disorders (NIDCD). MACS data collection is also supported by Johns Hopkins University CTSA. This study was supported by two grants from the National Institute of Health: NIDCR P01DE019759 (Aaron Weinberg, Peter Zimmerman, Richard J. Jurevic, Mark Chance) and NCI R01CA163739 (Hemant Ishwaran). The work was also partly supported by the National Science Foundation grant DMS 1148991 (Hemant Ishwaran) and the Center for AIDS Research grant P30AI036219 (Mark Chance).

Author(s)

Jean-Eudes Dazard < jean-eudes.dazard@case.edu>

Maintainer: Jean-Eudes Dazard < jean-eudes.dazard@case.edu>

References

- Dazard J-E., Ishwaran H., Mehlotra R.K., Weinberg A. and Zimmerman P.A. "Ensemble Survival Tree Models to Reveal Variable Interactions in Association with Time-to-Events Outcomes" Submitted (2017).
- Ishwaran, H. and Kogalur, U.B. "Random Survival Forests for R. R News, 7(2), 25-31, (2007).
- Ishwaran, H. and Kogalur, U.B. "Contributed R Package randomForestSRC: Random Forests for Survival, Regression and Classification (RF-SRC)" CRAN (2013).

See Also

randomForestSRC

rsf.main

Univariate Minimal Depth of a Maximal Subtree (MDMS)

Description

Ranking of individual and noise variables main effects by univariate Minimal Depth of a Maximal Subtree (MDMS)

Usage

```
rsf.main(X,
    ntree = 1000,
    method = "mdms",
    splitrule = "logrank",
    importance = "random",
    B,
    ci = 90,
    parallel = FALSE,
    conf = NULL,
    verbose = TRUE,
    seed = NULL)
```

Arguments

V	1	

data.frame or numeric matrix of input covariates. Dataset X assumes that: - all variables are in columns - the observed times to event and censoring variables are in the first two columns: "stime": numeric vector of observed times. "status": numeric vector of observed status (censoring) indicator variable. - each variable has a unique name, excluding the word "noise"

ntree

Number of trees in the forest. Defaults to 1000.

method

Method for ranking of individual and noise variables. character string "mdms" (default) that stands for Univariate Minimal Depth of a Maximal Subtree (MDMS).

splitrule

Splitting rule used to grow trees. For time-to-event analysis, use "logrank" (default), which implements log-rank splitting (Segal, 1988; Leblanc and Crowley, 1993).

importance

Method for computing variable importance. Defaults to Character string "random". See details below.

Postitive integer of the number of replications of the cross-validation proce-

dure.

ci

В

Confidence Interval for inferences of individual and noise variables. numeric scalar between 50 and 100. Defaults to 90.

parallel

logical. Is parallel computing to be performed? Defaults to FALSE.

conf

list of 5 fields containing the parameters values needed for creating the parallel backend (cluster configuration). See details below for usage. Optional, defaults to NULL, but all fields are required if used:

- type: character vector specifying the cluster type ("SOCKET", "MPI").
- spec : A specification (character vector or integer scalar) appropriate to the type of cluster.

homogeneous: logical scalar to be set to FALSE for inhomogeneous clusters.

- verbose : logical scalar to be set to FALSE for quiet mode.
- outfile: character vector of an output log file name to direct the stdout and stderr connection output from the workernodes. "" indicates no redirection.

verbose

logical scalar. Is the output to be verbose? Optional, defaults to TRUE.

seed

Positive integer scalar of the user seed to reproduce the results. Defaults to NULL.

Details

The option importance allows several ways to calculate Variable Importance (VIMP). The default "permute" returns Breiman-Cutler permutation VIMP as described in Breiman (2001). For each tree, the prediction error on the out-of-bag (OOB) data is recorded. Then for a given variable x, OOB cases are randomly permuted in x and the prediction error is recorded. The VIMP for x is defined as the difference between the perturbed and unperturbed error rate, averaged over all trees. If "random" is used, then x is not permuted, but rather an OOB case is assigned a daughter node randomly whenever a split on x is encountered in the in-bag tree. If "anti" is used, then x is assigned to the opposite node whenever a split on x is encountered in the in-bag tree.

The function rsf.main relies on the R package **parallel** to create a parallel backend within an R session, enabling access to a clusterof compute cores and/or nodes on a local and/or remote machine(s) and scaling-up with the number of CPU cores available and efficient parallel execution. To run a procedure in parallel (with parallel RNG), argument parallel is to be set to TRUE and argument conf is to be specified (i.e. non NULL). Argument conf uses the options described in function makeCluster of the R packages **parallel** and **snow**. **IRSF** supports two types of communication mechanisms between master and worker processes: 'Socket' or 'Message-Passing Interface' ('MPI'). In **IRSF**, parallel 'Socket' clusters use sockets communication mechanisms only (no forking) and are therefore available on all platforms, including Windows, while parallel 'MPI' clusters use high-speed interconnects mechanism in networks of computers (with distributed memory) and are therefore available only in these architectures. A parallel 'MPI' cluster also requires R package **Rmpi** to be installed. Value type is used to setup a cluster of type 'Socket' ("SOCKET") or 'MPI' ("MPI"), respectively. Depending on this type, values of spec are to be used alternatively:

- For 'Socket' clusters (conf\$type="SOCKET"), spec should be a character vector naming the hosts on which to run the job; it can default to a unique local machine, in which case, one may use the unique host name "localhost". Each host name can potentially be repeated to the number of CPU cores available on the local machine. It can also be an integer scalar specifying the number of processes to spawn on the local machine; or a list of machine specifications if you have ssh installed (a character value named host specifying the name or address of the host to use).
- For 'MPI' clusters (conf\$type="MPI"), spec should be an integer scalar specifying the total number of processes to be spawned across the network of available nodes, counting the workernodes and masternode.

The actual creation of the cluster, its initialization, and closing are all done internally. For more details, see the reference manual of R package **snow** and examples below.

When random number generation is needed, the creation of separate streams of parallel RNG per node is done internally by distributing the stream states to the nodes. For more details, see the vignette of R package **parallel**. The use of a seed allows to reproduce the results within the same type of session: the same seed will reproduce the same results within a non-parallel session or within a parallel session, but it will not necessarily give the exact same results (up to sampling variability)

between a non-parallelized and parallelized session due to the difference of management of the seed between the two (see parallel RNG and value of returned seed below).

Value

data. frame containing the following columns:

- "obs.mean" observed mean of covariates importances
- "obs.se" observed standard error of covariates importances
- "obs.LBCI" observed Lower Bound Confidence Interval of covariates importances
- "obs.UBCI" observed Upper Bound Confidence Interval of covariates importances
- "noise.mean" observed mean of noise covariates importances
- "noise.se" observed standard error of noise covariates ranks
- "noise.LBCI" observed Lower Bound Confidence Interval of noise covariates importances
- "noise.UBCI" observed Upper Bound Confidence Interval of noise covariates importances
- "signif.1SE" calls of covariates importances significance using the 1SE rule
- "signif.CI" calls of covariates importances significance using the CI rule at ci% confidence level

Acknowledgments

This work made use of the High Performance Computing Resource in the Core Facility for Advanced Research Computing at Case Western Reserve University. We are thankful to Ms. Janet Schollenberger, Senior Project Coordinator, CAMACS, as well as Dr. Jeremy J. Martinson, Sudhir Penugonda, Shehnaz K. Hussain, Jay H. Bream, and Priya Duggal, for providing us the data related to the samples analyzed in the present study. Data in this manuscript were collected by the Multicenter AIDS Cohort Study (MACS) at (http://www.statepi.jhsph.edu/macs/macs.html) with centers at Baltimore, Chicago, Los Angeles, Pittsburgh, and the Data Coordinating Center: The Johns Hopkins University Bloomberg School of Public Health. The MACS is funded primarily by the National Institute of Allergy and Infectious Diseases (NIAID), with additional co-funding from the National Cancer Institute (NCI), the National Heart, Lung, and Blood Institute (NHLBI), and the National Institute on Deafness and Communication Disorders (NIDCD). MACS data collection is also supported by Johns Hopkins University CTSA. This study was supported by two grants from the National Institute of Health: NIDCR P01DE019759 (Aaron Weinberg, Peter Zimmerman, Richard J. Jurevic, Mark Chance) and NCI R01CA163739 (Hemant Ishwaran). The work was also partly supported by the National Science Foundation grant DMS 1148991 (Hemant Ishwaran) and the Center for AIDS Research grant P30AI036219 (Mark Chance).

Author(s)

Jean-Eudes Dazard < jean-eudes.dazard@case.edu>

Maintainer: Jean-Eudes Dazard < jean-eudes.dazard@case.edu>

References

- Dazard J-E., Ishwaran H., Mehlotra R.K., Weinberg A. and Zimmerman P.A. "Ensemble Survival Tree Models to Reveal Variable Interactions in Association with Time-to-Events Outcomes" Submitted (2017).
- Ishwaran, H. and Kogalur, U.B. "Random Survival Forests for R. R News, 7(2), 25-31, (2007).
- Ishwaran, H. and Kogalur, U.B. "Contributed R Package randomForestSRC: Random Forests for Survival, Regression and Classification (RF-SRC)" CRAN (2013).

See Also

randomForestSRC

```
## Not run:
# Loading the library and its dependencies
library("IRSF")
#-----#
# Continuous case:
# All variables xj, j in \{1, \ldots, p\}, are iid from a multivariate uniform distribution
\# with parmeters a=1, b=5, i.e. on [1, 5].
# rho = 0.50
# Regression model: X1 + X5
seed <- 1234567
set.seed(seed)
n <- 200
p <- 5
x <- matrix(data=runif(n=n*p, min=1, max=5),</pre>
          nrow=n, ncol=p, byrow=FALSE,
          dimnames=list(1:n, paste("X", 1:p, sep="")))
beta <- c(1,0,0,0,1)
covar <- x
eta <- covar
seed <- 1234567
set.seed(seed)
lambda0 <- 1
lambda <- lambda0 * exp(eta - mean(eta)) # hazards function</pre>
tt <- rexp(n=n, rate=lambda)
                                  # true (uncensored) event times
tt <- rexp(n=n, rate=lambda)  # true (uncensored) event time tc <- runif(n=n, min=0, max=1.50)  # true (censored) event times
stime <- pmin(tt, tc)</pre>
                                  # observed event times
status <- 1 * (tt <= tc)
                                   # observed event indicator
X <- data.frame(stime, status, x)</pre>
# Examples of parallel backend parametrization
if (require("parallel")) {
  print("'parallel' is attached correctly \n")
} else {
  stop("'parallel' must be attached first \n")
#-----
# Example #1 - Quad core PC
# Running WINDOWS with SOCKET communication
cpus <- detectCores(logical = TRUE)</pre>
conf <- list("spec" = rep("localhost", cpus),</pre>
           "type" = "SOCKET",
           "homo" = TRUE,
```

20 rsf.main.signif

```
"verbose" = TRUE,
               "outfile" = "")
  # Example #2 - Master node + 3 Worker nodes cluster
  # Running LINUX with SOCKET communication
  # All nodes equipped with identical setups of
  # multicores (8 core CPUs per machine for a total of 32)
  masterhost <- Sys.getenv("HOSTNAME")</pre>
  slavehosts <- c("compute-0-0", "compute-0-1", "compute-0-2")</pre>
  nodes <- length(slavehosts) + 1</pre>
  cpus <- 8
  conf <- list("spec" = c(rep(masterhost, cpus),</pre>
                        rep(slavehosts, cpus)),
              "type" = "SOCKET",
               "homo" = TRUE,
               "verbose" = TRUE,
              "outfile" = "")
  # Example #3 - Multinode of multicore per node cluster
  # Running LINUX with SLURM scheduler and MPI communication
  # Below, variable 'cpus' is the total number
  # of requested core CPUs, which is specified from
  # within a SLURM script.
  if (require("Rmpi")) {
     print("'Rmpi' is attached correctly \n")
  } else {
     stop("'Rmpi' must be attached first \n")
  cpus <- as.numeric(Sys.getenv("SLURM_NTASKS"))</pre>
  conf <- list("spec" = cpus,</pre>
              "type" = "MPI",
              "homo" = TRUE,
               "verbose" = TRUE,
              "outfile" = "")
  main.mdms <- rsf.main(X=X,</pre>
                       ntree=1000,
                       method="mdms",
                       splitrule="logrank",
                       importance="random",
                       B=1000,
                       ci=90,
                       parallel=FALSE,
                       conf=NULL,
                       verbose=TRUE,
                       seed=seed)
## End(Not run)
```

rsf.main.signif 21

Description

Subroutine for ranking of individual and noise variables main effects by univariate Minimal Depth of a Maximal Subtree (MDMS)

Acknowledgments

This work made use of the High Performance Computing Resource in the Core Facility for Advanced Research Computing at Case Western Reserve University. We are thankful to Ms. Janet Schollenberger, Senior Project Coordinator, CAMACS, as well as Dr. Jeremy J. Martinson, Sudhir Penugonda, Shehnaz K. Hussain, Jay H. Bream, and Priya Duggal, for providing us the data related to the samples analyzed in the present study. Data in this manuscript were collected by the Multicenter AIDS Cohort Study (MACS) at (http://www.statepi.jhsph.edu/macs/macs.html) with centers at Baltimore, Chicago, Los Angeles, Pittsburgh, and the Data Coordinating Center: The Johns Hopkins University Bloomberg School of Public Health. The MACS is funded primarily by the National Institute of Allergy and Infectious Diseases (NIAID), with additional co-funding from the National Cancer Institute (NCI), the National Heart, Lung, and Blood Institute (NHLBI), and the National Institute on Deafness and Communication Disorders (NIDCD). MACS data collection is also supported by Johns Hopkins University CTSA. This study was supported by two grants from the National Institute of Health: NIDCR P01DE019759 (Aaron Weinberg, Peter Zimmerman, Richard J. Jurevic, Mark Chance) and NCI R01CA163739 (Hemant Ishwaran). The work was also partly supported by the National Science Foundation grant DMS 1148991 (Hemant Ishwaran) and the Center for AIDS Research grant P30AI036219 (Mark Chance).

Author(s)

Jean-Eudes Dazard < jean-eudes.dazard@case.edu>

Maintainer: Jean-Eudes Dazard < jean-eudes.dazard@case.edu>

References

- Dazard J-E., Ishwaran H., Mehlotra R.K., Weinberg A. and Zimmerman P.A. "Ensemble Survival Tree Models to Reveal Variable Interactions in Association with Time-to-Events Outcomes" Submitted (2017).
- Ishwaran, H. and Kogalur, U.B. "Random Survival Forests for R. R News, 7(2), 25-31, (2007).
- Ishwaran, H. and Kogalur, U.B. "Contributed R Package randomForestSRC: Random Forests for Survival, Regression and Classification (RF-SRC)" CRAN (2013).

See Also

randomForestSRC

Index

```
*Topic Epistasis
                                                MACS, 7
    IRSF-package, 2
                                                randomForestSRC, 3, 4, 6, 13, 15, 18, 19, 21
    MACS, 7
*Topic Genetic Variations
                                                rsf.int, 10
                                                rsf.int.signif, 15
        Interactions
                                                rsf.main, 16
    IRSF-package, 2
                                                rsf.main.signif, 20
    MACS, 7
*Topic Interaction Detection and
        Modeling
    cph.int, 3
    cph.main, 5
    IRSF-package, 2
    MACS, 7
    rsf.int, 10
    rsf.int.signif, 15
    rsf.main, 16
    rsf.main.signif, 20
*Topic Random Survival Forest
    cph.int, 3
    cph.main, 5
    IRSF-package, 2
    MACS, 7
    rsf.int, 10
    rsf.int.signif, 15
    rsf.main, 16
    rsf.main.signif, 20
*Topic Real Dataset
    MACS, 7
*Topic Time-to-Event Analysis
    cph.int, 3
    cph.main, 5
    IRSF-package, 2
    MACS, 7
    rsf.int, 10
    rsf.int.signif, 15
    rsf.main, 16
    rsf.main.signif, 20
cph.int, 3
cph.main, 5
IRSF (IRSF-package), 2
IRSF-package, 2
```