Zusätzliche Übungsaufgaben: Algorithmen und Datenstrukturen

Fakultät für Fahrzeugtechnik Ostfalia – Hochschule für angewandte Wissenschaften

(Hinweis: Sie sollten die folgenden Aufgaben in 60 Minuten vollständig bearbeiten können)

Wichtige Hinweise für die Klausur:

- Es sind nur die folgenden Hilfsmittel erlaubt:
 - Nichtprogrammierbarer Taschenrechner
 - o Tintenstifte (Kugelschreiber, Füller, Filzstifte o.ä.) in blau und/und schwarz
 - Lineal und/oder Geodreieck
- Schalten Sie alle anderen technischen Geräte vor Klausurbeginn aus und verstauen Sie diese sowie alle anderen nicht zugelassenen Gegenstände in Ihrer Tasche. Verschließen Sie bitte Ihre Tasche.
- Es gelten die Bestimmungen Ihrer Prüfungsordnung, insbesondere hinsichtlich Versäumnis, Täuschungsversuch und Ordnungsverstoß.
- Bearbeiten Sie alle Aufgaben einschließlich aller Nebenrechnungen auf den ausgeteilten Aufgabenblättern. Eigenes Papier ist nicht zugelassen. Kontrollieren Sie die ausgegebenen Bögen auf Vollständigkeit.
- Schreiben Sie auf jedes Blatt in der dafür vorgesehenen Kopfzeile Ihren Vor- und Nachnamen sowie Ihre Matrikelnummer.

Nachname, Vorname: Matrikelnummer:	
------------------------------------	--

Aufgabe 1: Multiple Choice

Bewerten Sie die die folgenden Aussagen mit "richtig" oder "falsch" durch Ankreuzen in der jeweiligen Tabellenspalte. Eine richtige Bewertung wird mit +1 Punkt gewertet, eine falsche mit -1 Punkt. Fehlt eine Bewertung, wird dies mit 0 Punkten gewertet. Bei einer negativen Gesamtpunktzahl wird diese Aufgabe mit 0 Punkten gewertet.

	richtig	falsch
Es gibt Algorithmen, deren Beschreibung unendlich lang ist.		
Der abstrakte Datentyp Kellerspeicher arbeitet nach dem LIFO-Prinzip.		
Der abstrakte Datentyp <i>Warteschlange</i> stellt eine Funktion <i>pop</i> bereit.		
Der Datentyp Verkettete Liste kann rekursiv definiert werden.		
Der Algorithmus binäre Suche arbeitet nach dem Teile-und-Herrsche-Prinzip.		
Hash-Funktionen sind i. A. injektiv.		
Bei geschlossenem Hashing wird bei Kollisionen eine feste Sprungfolge durchlaufen.		
Der abstrakte Datentyp Kellerspeicher arbeitet nach dem LIFO-Prinzip.		
Die Worst-Case-Laufzeit von Quicksort liegt in $\mathcal{O}(n^2)$.		
Die Worst-Case-Laufzeit von Heap-Sort liegt in $\mathcal{O}(n \log(n))$.		

/10 Punkte)

Aufgabe 2: Turing-Maschine

Gegeben ist eine Turing-Maschine $T=(Z,\, \Sigma, \Gamma, \delta\,, z_0\,, \cdot\,,\, E)$ mit

- $Z = \{z_0, z_1, z_2, z_3, z_e\}$ (Zustandsmenge)
- $\Sigma = \{|\}$
- $\Sigma = \{|\}$ (Eingabealphabet) $\Gamma = \{\cdot, |, h\}$ (Bandalphabet) $E = \{z_e\}$ (Endzustände)

Nachname, Vorname:	Matrikelnummer:
--------------------	-----------------

• δ : (Überführungsfunktion)

Zustand	liest	Aktion	Folgezustand
z_0	•	L	z_2
z_0 z_0		L	z_0
z_0	h	L	z_2
z_1	h	R	z_1
z_1		R	z_1
z_1	•		z_0
z_2	h	L	z_2
z_2 z_2		h	$egin{array}{c} z_2 \ z_1 \end{array}$
z_2	•	R	z_3
z_3	h		z_3
$egin{array}{c} Z_3 \ Z_3 \ \end{array}$		R	$egin{array}{c} Z_3 \ Z_e \end{array}$
z_3	•	S	z_e

Bitte beachten Sie die Konvention, dass zu Beginn und zum Ende der Berechnung der Lese-/Schreibkopf auf dem ersten Leerzeichen rechts neben dem Ein- bzw. Ausgabewort steht!

a) Geben Sie für das Eingabewort

die Zustandsfolge und die Bandkonfigurationen an, die T durchläuft. Markieren Sie die jeweilige Position des Lese-Schreibkopfes mit einem ^ unter der entsprechenden Bandposition.

Zustand	Bandkonfiguration
z_0	

Nachname, Vorname:	Matrikelnummer:					

Nachname, Vorname: M	Aatrikelnummer:
----------------------	-----------------

b) Was berechnet T?

/2 Punkte)

Aufgabe 3: Komplexitätsklassen

Untersuchen Sie, ob für folgende Funktionen gilt:

- $f(n) \in \mathcal{O}(g(n))$
- $f(n) \in \Omega(g(n))$
- $f(n) \in \Theta(g(n))$

Es gelten dabei die Definitionen (mit $n, n_0 \in \mathbb{N}$ und $c, c_1, c_2 \in \mathbb{R}^+$):

- $\mathcal{O}(g(n)) = \{f(n) \mid \exists c > 0, n_0 \in \mathbb{N}, \forall n > n_0 : 0 \le f(n) \le c \cdot g(n)\}$
- $\bullet \quad \Omega \big(g(n)\big) = \{f(n) \mid \exists \ c > 0, n_0 \in \mathbb{N}, \forall \ n > n_0 \colon 0 \leq c \cdot g(n) \leq f(n)\}$
- $\Theta(g(n)) = \{f(n) \mid \exists c_1, c_2 > 0, n_0 \in \mathbb{N}, \forall n > n_0: 0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)\}$

Außerdem dürfen Sie als bekannt voraussetzen:

- $f \in \Theta(g) \Leftrightarrow f \in \mathcal{O}(g) \land f \in \Omega(g)$
- $f \in \mathcal{O}(g) \Leftrightarrow g \in \Omega(f)$

Nachname, Vorname:	Matrikelnummer:

a)
$$f(n) = 10^{-6}n^3 + 25$$
, $g(n) = n^3$

Nachname, Vorname:	Matrikelnummer:
--------------------	-----------------

b)
$$f(n) = 7n \ln n$$
, $g(n) = 35n + 9$

Nachname, Vorname:	Matrikelnummer:
--------------------	-----------------

Aufgabe 4: Sortieren

a) Sortieren Sie A aufsteigend mit Hilfe des Algorithmus *Bubblesort*. Geben Sie den Ablauf des Algorithmus schrittweise und vollständig in tabellarischer Form an. Schritte, in denen sich das Array nicht ändert, schreiben Sie bitte nicht mit auf.

-4	3	2	2	7	3	5	7	0	1

Nachname, Vorname:				_ Matrikelnummer:					

/6 Punkte)

b) Arbeitet Bubblesort "in place"? Begründen Sie Ihre Antwort.

/2 Punkte)