ENG231 - Electrical Machines And Transformers - Assesment 2 Lab $4\,$

Baley Eccles - 652137

[2024-09-17 Tue 10:17]

Contents

1	$\mathbf{E}\mathbf{N}$	G231 - Electrical Machines And Transformers - Assesment 2 Lab 4	1
	1.1	Name Plate	1
	1.2	DC Test	1
	1.3	Open Circuit Test	2
	1.4	Short Circus Test	2
		Performance Test / Full Load Test	
	1.6	Three-phase Transformer Configurations	3
		1.6.1 Y-Y Connected Transformer	3
		1.6.2 Δ -Y Connected Transformer	4
		1.6.3 Y- Δ Connected Transformer	4
		1.6.4 Δ - Δ Connected Transformer	4

1 ENG231 - Electrical Machines And Transformers - Assesment 2 Lab 4

Data Collected During Lab

1.1 Name Plate

VA ratings	500
Primary voltage (V)	240
Secondary voltage (V)	115
Primary current (A)	2.1
Secondary current (A)	4.4
Turns ratio	2.1

1.2 DC Test

Primary resistance (R_{1dc}) (Ω)	1.5
Secondary resistance (R_{2dc}) (Ω)	0.4

The primary side has a higher resistance than the secondary side, this is because the primary side has more turns.

$$a = 2.1$$
 $R_{eqHV} = a^2 R_2 + R_1$ $R_{eqHV} = 3.242\Omega$ $R_{eqHV} = (1/a)^2 R_1 + R_2$ $R_{eqHV} = 1.12\Omega$

1.3 Open Circuit Test

	Primary				Secondary
	V1	I1	Poc	PF	V2
LV side open	110	0.563	10.3	0.165	220
HV side open	240	0.375	12.5	0.138	120

LV side open
$$a = \frac{V_2}{V_1} \qquad \qquad a = \frac{V_2}{V_1}$$

$$a = 2 \qquad \qquad a = 2$$
 LV side open
$$a = 2$$
 HV side open

$$PF = \frac{P_{oc}}{V_1 I_1}$$
 $PF = \frac{P_{oc}}{V_1 I_1}$ $= 0.16631$ $= 0.13889$

The calculated power factor is very close to the measured power factor.

LV side open HV side open
$$R_{c1} = \frac{V_1^2}{P_{oc}} \qquad R_{c1} = \frac{V_1^2}{P_{oc}} = 1174.76\Omega \qquad = 4680\Omega$$

$$X_{m1} = \frac{V_1}{\sqrt{I_1^2 + \left(\frac{V_1}{R_{c1}}\right)^2}} \qquad X_{m1} = \frac{V_1}{\sqrt{I_1^2 + \left(\frac{V_1}{R_{c1}}\right)^2}} = 192.73\Omega \qquad = 633.92\Omega$$

TODO

1.4 Short Circus Test

	Primary				Secondary
	V1	I1	Psc	PF	I2
LV side Short circuited	7	1.76	10	0.863	3.5

$$R_{eq} = \frac{P_{sc}}{I_1^2}$$

$$= 3.228\Omega$$

$$X_{eq} = \sqrt{\left(\frac{V_1}{I_1}\right)^2 - R_{eq}^2}$$

$$= 5.123\Omega$$

$$PF = \frac{P_{sc}}{V_1 I_1}$$
$$= 0.81169$$

The calculated power factor matches the measured one. TODO

1.5 Performance Test / Full Load Test

```
clear
clc
close
V2=[120, 120, 119, 118, 118, 117, 116, 115];
P1=[12, 80, 102, 147, 191, 277, 409, 537];
P2=[0, 67, 90, 133, 177, 262, 386, 509];
I2=[0, 0.56, 0.753, 1.12, 1.5, 2.2, 3.3, 4.4];
Eff=P1./P2;
subplot(2, 1, 1);
plot(I2, V2, 'o', 'LineWidth', 2);
xlabel('Secondary Current (A)');
ylabel('Measured Secondary Voltage (V)');
title('Measured Secondary Voltage vs. Secondary Current');
grid on;
subplot(2, 1, 2);
plot(I2, Eff, 'o', 'LineWidth', 2);
xlabel('Secondary Current (A)');
vlabel('Efficiency');
title('Efficiency vs. Secondary Current');
grid on;
title('Voltage and Efficiency vs. Secondary Current');
```

1.6 Three-phase Transformer Configurations

1.6.1 Y-Y Connected Transformer

	Primary Side			Secondary Side	
Quantity	Expected	Observed	Quantity	Expected	Observed
VRN	139	139	Vrn	139	139
VWN	139	141	Vwn	139	142
VBN	139	139	Vbn	139	139
VRW	240	243	Vrw	240	243
VWB	240	243	Vwb	240	243
VBR	240	240	Vbr	240	240

1.6.2 Δ -Y Connected Transformer

	Primary Side			Secondary Side	
Quantity	Expected	Observed	Quantity	Expected	Observed
VRW	181	183	Vrn	181	180
VWB	181	181	Vwn	181	183
VBR	181	181	Vbn	181	181
			Vrw	315	315
			Vwb	315	315
			Vbr	315	320

1.6.3 Y- Δ Connected Transformer

	Primary Side			Secondary Side	
Quantity	Expected	Observed	Quantity	Expected	Observed
VRN	139	141	Vrw	139	141
VWN	139	142	Vwb	139	140
VBN	139	140	Vbr	139	140
VRW	240	245			
VWB	240	243			
VBR	240	242			

1.6.4 Δ - Δ Connected Transformer

	Primary Side			Secondary Side	
Quantity	Expected	Observed	Quantity	Expected	Observed
VRW	240	243	Vrw	240	243
VWB	240	243	Vwb	240	243
VBR	240	240	Vbr	240	240