The Nelder-mead Simplex Method

(1) Choose 0 < x < y, $0 < \beta < 1$, $0 < \delta < 1$. Given simplex $Y = \{x_0, x_1, x_2, \dots, x_n\} \subseteq \mathbb{R}^n$

2 Determine X_B satisfying $f(x_B) \leq f(x_K)$ for all $x_K \in Y$ (BEST) X_W satisfying $f(x_W) \geq f(x_K)$ for all $x_K \in Y$ (WORST)

> X_s satisfying $f(x_s) \ge f(x_k)$ for all $x_k \in Y$, $x_k \ne x_w$ (second Worst) $X_c = \frac{1}{n} \sum_{k=0}^{n} x_k$ (CENTROID OF ALL BUT WORST)

. . . K=0

(REFLECT) XR = Xc + & (Xc-Xw).

4) If $f(x_B) \leq f(x_R) < f(x_S)$ then $Y = (Y \setminus \{x_M\}) \cup \{x_R\}$, go to step 2

(5) If $f(x_R) < f(x_B)$ then (DXPAND) $X_E = X_C + \delta(X_C - X_W)$.

(b) If $f(x_E) < f(x_R)$ then $Y = (Y \setminus 9x_W3) \cup 9x_E3$, goto step 2, else $Y = (Y \setminus 9x_W3) \cup 9x_E3$, goto step 2.

Tf f(xs) & f(xr) < f(w) then (OUTSIDE CONTRACT) XOC = Xc+B(xr-xc).

(8) If $f(x_{oc}) \leq f(x_{r})$ then $Y = (Y \setminus \{x_{w}\}) \cup \{x_{oc}\}$, goto step 2

(9) (Inside Conteact) $X_{IC} = X_C + \beta(X_W - X_C)$.

(D) If f(xx) < f(xw) then Y= (Y\3xw3) U \2xxx3, goto step 2.

(1) (SHRINK) $\chi_k \leftarrow \chi_k + \delta (\chi_8 - \chi_k)$ for all $\chi_k \in Y$, goto step 2.

Notes:

- · All except step (1) can be accomplished with little computational effort.
- · Shrink steps appear to be nave in practice.
- · Convergence results are very limited and weak.
- McKinnon (1998) example strictly convex twice continuously differentiable function on which N-M fails to converge to the minimizer.
- · Use N-m as a fast alternative to find a warm start to a gradient based method.
- · High computational overhead to get started.