Red Lab Hack(Case 1)

Команда ETNA

План доклада

- EDA
- Оценка качества
- Алгоритм детекции
- Сервис
- Преимущества

EDA

- **1. Пропуски** —> ffill (состояние ряда сохраняется во время пропусков + не подсматриваем в будущее)
- **2. Сезонность** -> важно детектировать и использовать в моделях

Постановка задачи

[t1, ... t_n] -> [0,1,1...1,0]

Отрезок Метка аномальности

Постановка задачи

Оценка качества (метрики кластериазции):

A *Hausdorff(модификация) + B* Silhouett + C* Davies_Bouldin -> MAX

- Вариант №1: Отсутствие разметки —> Unsupervised метрик
- Вариант №2:
 - Сделать ручную разметку(при помощи наивного алгоритма)
 - Supervised метрики классификации(Recall, Precision, F-beta)
- Вариант №3:
 - Сгенерировать синтетические данные с аномалиями
 - Проверять качество на известной разметке

Алгоритмы іqr

Особенности:

- Динамика: оценка на скользящих окнах
- Сезонность и тренд: STL разложение
- Оценка уверенности

Isolation Forest

Особенности:

- Признаковое представление
 - Компоненты из Holt-Winters
 - Признаки из временной метки
- Быстрее IQR
- Оценка уверенноси

+ Автоматическое определение сезонности через периодограммы

Сервис

Деплой

Веб-интерфейс

Данные

Преимущества решения

- 1. Не требует разметки
- 2. Комплексная метрика оценки качества
- 3. Легковесная модель
- 4. Оценка скора аномальности для каждого наблюдения
- 5. Модели учитывают сезонность и тренд
- 6. Автоматический расчёт периодичности сезонности

Спасибо за внимание!