FONDAMENTI DI INTELLIGENZA ARTIFICIALE

25 Luglio 2023 – Tempo a disposizione: 2 h – Risultato: 32/32 punti

Esercizio 1 (6 punti)

Si formalizzino le seguenti frasi in logica dei predicati del I ordine:

- Ogni persona lavora o è disoccupata (xor)
- Tutte le persone che lavorano sono maggiorenni
- Tutte le persone sono maggiorenni o minorenni (xor)
- Giorgio è maggiorenne e Maria è minorenne e sono entrambi persone

Le si trasformi in clausole, utilizzando i seguenti predicati:

lavora(X) persona(X) disoccupata(X)

maggiorenne(X) minorenne(X)

con l'ovvio significato, e si applichi poi la risoluzione per dimostrare che Maria è disoccupata.

Esercizio 2 (5 punti)

Si consideri il seguente albero di gioco in cui il primo giocatore è MAX.

- a) Si indichi come l'algoritmo min-max risolve il problema indicando il valore con cui viene etichettato il nodo iniziale e la mossa selezionata dal primo giocatore (arco a sinistra o a destra).
- b) Si mostrino poi i tagli che l'algoritmo alfa-beta consente, indicando gli archi che verranno tagliati.

Esercizio 3 (5 punti)

Si scriva un predicato Prolog **vicini**(X,Y,Z) che è vero se X e Y sono adiacenti nella lista Z indipendentemente dall'ordine in cui compaiono. Ad esempio:

?-vicini(3,4,[1,2,3,4,5,6]).

true

?-vicini(3,4,[1,2,4,3,5,6]).

true

?-vicini(3,4,[1,2,3,5,4]).

false

?-vicini(3,4,[]).

false

?-vicini(X,Y,[1,2,3]).

X = 1

Y = 2:

```
X = 2
Y = 1;
X = 2
Y = 3;
X = 3
Y = 2;
false
```

Esercizio 4 (6 punti)

Il seguente programma Prolog determina il massimo valore in una lista di interi:

max([X|T],X):-max(T,E1), X>E1,!. max([|T],E1):-max(T,E1).

Si mostri l'albero SLD relativo al goal: ?- max([9,12], X).

Esercizio 5 (6 punti)

Si consideri il seguente grafo, dove A è il nodo iniziale e Z il nodo goal, e il numero associato agli archi è il costo dell'operatore per andare dal nodo di partenza al nodo di arrivo dell'arco. Vicino ad ogni nodo, in un quadratino, è indicata inoltre la stima euristica della sua distanza dal nodo goal:

Si applichi la ricerca **A*** su alberi (non tenendo quindi traccia dei nodi già visitati) **disegnando l'albero generato dinamicamente.** In caso di non determinismo si selezionino i nodi da espandere secondo l'ordine alfabetico. Si indichino:

- i nodi espansi nell'ordine di espansione;
- i nodi sulla strada della soluzione e il costo della soluzione;
- la condizione sulla stima euristica h(n) che garantisce l'ottimalità della ricerca su alberi e se è soddisfatta o meno in questo caso.

Esercizio 6 (4 punti)

Dopo avere brevemente introdotto l'algoritmo di Arc-Consistency, se ne mostri l'esecuzione su questo esempio:

A::[1, 2, 3, 4]

B::[1, 2, 3]

C::[1, 2, 3]

A=3*B+1

C>=B+2

A<=10-C

considerando gli archi nel seguente ordine:

Fino alla quiescenza della rete, mostrando - per ogni iterazione - i domini di ogni variabile.

Indicare se si può già identificare la soluzione del CSP o no, al termine dell'applicazione di Arc-Consistency.

25 Luglio 2023 - Soluzioni

Esercizio 1

Traduzione in predicati in logica del primo ordine:

- Ogni persona lavora o è disoccupata (xor)
 ∀X persona(X) → lavora(X) xor disoccupata(X)
- Tutte le persone che lavorano sono maggiorenni.
 ∀X persona(X) and lavora(X) → maggiorenne(X)
- Tutte le persone sono maggiorenni o minorenni (xor)
 ∀X persona(X) → maggiorenne(X) xor minorenne(X)
- Giorgio è maggiorenne e Maria è minorenne e sono entrambi persone.
- maggiorenne(giorgio). minorenne(maria). persona(giorgio). persona(maria).
- Negazione del Goal: *Maria non è disoccupata* not disoccupata(maria)

Traduzione in clausole:

- 1. not persona(X) or lavora(X) or disoccupata(X).
- 2. not persona(X) or not lavora(X) or not disoccupata(X).
- 3. not persona(X) or not lavora(X) or maggiorenne(X).
- 4. not persona(X) or maggiorenne(X) or minorenne(X).
- 5. not persona(X) or not maggiorenne(X) or not minorenne(X).
- 6. maggiorenne(giorgio).
- 7. minorenne(maria).
- 8. persona(giorgio).
- 9. persona(maria).
- 10. not disoccupata(maria)

Risoluzione:

- 10 + 1 = 11 not persona(maria) or lavora(maria)
- 11 + 3 = 12 not persona(maria) or maggiorenne(maria)
- 12 + 5 = 13 not persona(maria) or not minorenne(maria)
- 13 + 9 = 14 not minorenne(maria)
- 14 + 7 = Contraddizione!!

Esercizio 2

Min-Max: in giallo la strada selezionata.

Alfa-Beta: In rosso i nodi espansi, in giallo la strada trovata, i nodi in bianco non sono esplorati per effetto dei tagli alfa-beta.

Esercizio 3 vicini(X,Y,[X,Y|_]).

 $vicini(X,Y,[Y,X|_]).$

 $vicini(X,Y,[_|Zs]):-vicini(X,Y,Zs).$

Esercizio 4

Esercizio 5Con A* i nodi espansi sono indicati in figura (ACBCDEDEEZ), la soluzione ABDZ ha costo 16 (ottimale):

La condizione sulla funzione euristica stimata $h^*(n)$ che garantisce l'ottimalità della ricerca è la condizione di ammissibilità che deve valere per ogni nodo dell'albero e che è verificata se la $h^*(n)$ è ottimista cioè $h^*(n)$ <= h(n). Tale condizione è soddisfatta in questo caso.

Esercizio 6

Vedi slide del corso per spiegare AC.

1a iterazione

Archi	Vincolo	Dominio ridotto
A > B	A=3*B+1	A::[4]
B > A	B=(A-1)/3	B::[1]
C > B	C>=B+2	C::[3]
B > C	B<=C-2	B::[1] non varia
A > C	A<=10-C	A::[4] non varia
C > A	C<=10-A	C::[3] non varia

2a iterazione: nessun dominio varia (quiescenza della rete).

Soluzione: A=4, B=1, C=3.