Wykład 12

1 Estymacja przedziałowa.

DEFINICJA. Estymatorem przedziałowym parametru rzeczywistego θ nazywamy parę funkcji $L(x_1, x_2, ..., x_n)$ i $U(x_1, x_2, ..., x_n)$ próby $x_1, x_2, ..., x_n$ spełniającą dla wszystkich $x = (x_1, x_2, ..., x_n)$ nierówność

$$L(x) \leqslant U(x)$$
.

Dla x, realizacji próby losowej $(X_1,...,X_n)$, oszacowanie przedziałowe parametru θ mówi, że

$$L(x) \leqslant \theta \leqslant U(x)$$
.

Przedział losowy $[L(X),\,U(X)]$ nazywamy estymatorem przedziałowym parametru $\theta.$

PRZYKŁAD. Dla próby losowej $(X_1,...,X_4)$ z rozkładu $N(\mu,1)$ przedział $[\bar{X}-1,\bar{X}+1]$ jest estymatorem przedziałowym parametru μ .

PRZYKŁAD CD. Gdy estymujemy parametr μ przy pomocy średniej próbkowej \bar{X} to

$$P(\bar{X} = \mu) = 0.$$

Dla estymatrora przedziałowego $[\bar{X}-1,\bar{X}+1]$ mamy natomiast

$$P\left(\mu \in [\bar{X}-1, \bar{X}+1]\right) = P\left(\bar{X}-1 \leqslant \mu \leqslant \bar{X}+1\right) \tag{1}$$

$$= P\left(-1 \leqslant \mu - \bar{X} \leqslant 1\right) \tag{2}$$

$$= P\left(-1 \leqslant \bar{X} - \mu \leqslant 1\right) \tag{3}$$

$$= P\left(-2 \leqslant \frac{\bar{X} - \mu}{\sqrt{\frac{1}{4}}} \leqslant 2\right) \tag{4}$$

$$= P(-2 \le Z \le 2) = 0,9544... \tag{5}$$

Skorzystaliśmy z faktu, że $\mu - \bar{X}$ ma taki sam rozkład jak $\mu - \bar{X}$ oraz, że zmienna losowa

$$Z = \frac{\bar{X} - \mu}{\sqrt{\frac{1}{4}}}$$

jest zmienną losową o standardowym rozkładzie normalnym N(0,1). Mamy więc 95% szans, że nasz przedział pokryje nieznaną wartość parametru θ .

DEFINICJA. Dla estymatora przedziałowego [L(X), U(X)] parametru θ , prawdopodobieństwem pokrycia nazywamy

$$P(\theta \in [L(X), U(X)]).$$

DEFINICJA. Dla estymatora przedziałowego [L(X), U(X)] parametru θ , poziomem ufności nazywamy

$$\inf_{\theta} P_{\theta} \left(\theta \in [L(X), U(X)] \right).$$

Zwykle gdy poziom ufności jest równy ustalonej wartości $1-\alpha$ to mówimy o przedziale ufności na poziomie $1-\alpha$.

1.1 Przedział ufności dla wartości średniej w rozkładzie normalnym.

Niech $(X_1, ..., X_n)$ będzie próba losowa z rozkładu $N(\mu, \sigma^2)$ o znanej wartości parametru σ^2 . Wyznaczymy przedział ufności dla nieznanej wartości parametru μ .

Średnia w próbie

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

ma rozkład normalny $N\left(\mu, \frac{\sigma^2}{n}\right)$. Stąd zmienna losowa

$$\frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

ma standardowy rozkład normalny N(0,1). Teraz z łatwością możemy wyznaczyć przedział ufności na poziomie $1-\alpha$, gdzie α jest zadaną liczbą z przedziału (0,1). W tym celu korzystamy z kwantyli standardowego rozkładu normalnego N(0,1):

- $z_{\frac{\alpha}{2}}$ kwantyl rzędu $\frac{\alpha}{2}$,
- $z_{1-\frac{\alpha}{2}}$ kwantyl rzędu 1 $\frac{\alpha}{2}$.

Rysunek 1: Kwantyle rozkładu normalnego.

Dla zmiennej losowej Z, o standardowym rozkładzie normalnym

$$P\left(z_{\frac{\alpha}{2}} \leqslant Z \leqslant z_{1-\frac{\alpha}{2}}\right) = 1 - \alpha. \tag{6}$$

Ze względu na symetrię gęstości standardowego rozkładu normalnego mamy równość

$$z_{\frac{\alpha}{2}} = -z_{1-\frac{\alpha}{2}}$$

w konsekwencji czego równanie (6) przyjmuje postać

$$P\left(-z_{1-\frac{\alpha}{2}} \leqslant Z \leqslant z_{1-\frac{\alpha}{2}}\right) = 1 - \alpha.$$

Stąd otrzymujemy

$$P\left(-z_{1-\frac{\alpha}{2}} \leqslant \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \leqslant z_{1-\frac{\alpha}{2}}\right) = 1 - \alpha,$$

i dalej

$$P\left(\bar{X} - z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \leqslant \mu \leqslant \bar{X} + z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha.$$

Przedział ufności, na poziomie ufności $1-\alpha$, dla średniej μ , gdy znana jest wariancja σ^2 , ma postać

$$\left[\bar{X} - z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \, \bar{X} + z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right]$$

Rysunek 2: Pięćdziesiąt 90% przedziałów ufności dla $\mu=0.$

UWAGA. Przedziały jednostronne

$$\mu \in \left(-\infty, \, \bar{X} + z_{1-\alpha} \frac{\sigma}{\sqrt{n}}\right],$$

$$\mu \in \left[\bar{X} - z_{1-\alpha} \frac{\sigma}{\sqrt{n}}, \, \infty\right),$$

1.2 Przedział ufności dla wartości średniej w rozkładzie normalnym o nieznanej wariancji.

W celu konstrukcji przedziału ufności skorzystamy ze statystyki

$$T = \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}},$$

gdzie Sjest estymatorem wariancji. Statystyka Tma rozkład $t{\rm -Studenta}$ zn-1stopniami swobody.

Rysunek 3: Krzywa punktowa to wykres gęstości standardowego rozkładu normalnego. Pozostałe krzywe to wykresy gęstości rozkładów t-Studenta odpowiednio z 1, 2 i 5 stopniami swobody. Wraz ze wzrostem stopni swobody krzywe coraz lepiej przybliżają krzywą normalną.

Przediał ufności na poziomie ufnosci $1-\alpha$ ma postać

$$\left[\bar{X} - t_{(1-\frac{\alpha}{2}, n-1)} \frac{S}{\sqrt{n}}, \, \bar{X} + t_{(1-\frac{\alpha}{2}, n-1)} \frac{S}{\sqrt{n}}\right],\,$$

gdzie $t_{(1-\frac{\alpha}{2},\,n-1)}$ oznacza kwantyl rzędu $1-\frac{\alpha}{2}$, rozkładu t-Studenta z n-1 stopniami swobody.