

CHEM F111: General Chemistry Semester II: AY 2017-18

Lecture-12, 07-02-2018

Notice: Extra class

TIME: 5.00pm

EXTRA CLASS NOTICE **TUTORIAL SECTION 6**

DATE: Wednesday, 7th Feb 2018

VENUE: Room No. 3249

BITS Pilani, Pilani Campus

Notice: Extra class

TIME: 5.30pm

EXTRA CLASS NOTICE **TUTORIAL SECTION 11**

DATE: Wednesday, 7th Feb 2018

VENUE: Room No. 6103

BITS Pilani, Pilani Campus

Summary of lecture 11

destructive interference

$$\Psi_{-}=1s_{HA}(1) 1s_{HB}(2) - 1s_{HA}(2) 1s_{HB}(1)$$

 \rightarrow between the two nuclei, Ψ_{-} changes sign $\rightarrow |\Psi_{-}|^2 = 0 \rightarrow$ creation of a σ^* bond described by a "antibonding molecular orbital".

Ψ_{+} = 1s_{HA}(1) 1s_{HB}(2) + 1s_{HA}(2) 1s_{HB}(1)

 \rightarrow between the two nuclei: $|\Psi_+|^2>0$ creation of a σ bond described by a "bonding molecular orbital"

Homonuclear diatomic molecule (N₂)

EC of N: $1s^2 2s^2 2p_X^{-1} 2p_y^{-1} 2p_Z^{-1}$

 σ Bond (2p_z)

Nodal plane
Internuclear axis

π Bond (2p_x& p_y)

The remaining N2p orbitals can't merge to give σ bonds as they don't have <u>cylindrical symmetry</u> around <u>the</u> internuclear axis

 N_2 : 3 bonds are formed by combining the 3 different 2p orbitals of the 2 nitrogen atoms. This is possible because of the symmetry and the position of

those 2p orbitals wrt each other. N_2 has sp hybridization.

Polyatomic molecules (H₂O)

EC of O: $1s^2 2s^2 2p_x^2 2p_y^1 2p_z^1$

EC of H: 1s¹

 H_2O should be an angular molecule, which it is. However, the theory predicts a bond angle between the $\sigma_{(O-H)}$ bonds is 90° , whereas the actual bond angle is 104.5° .

Hybridization

- Poor prediction of bond angles.
- Number of bonds that an atom may participate in, for example the tetravalency of C.

Consider first the example of methane, with four equivalent C-H bonds.

- Ground state: 1s²2s²2p_x¹2p_y¹
- Promote one electron to get 1s²2s¹2p_x¹2p_y¹2p_z¹
- Quantum mechanics permits the same electron distribution to be described in different ways. Construct a set of four equivalent linear combinations, i.e., form hybrid orbitals

sp³ Hybridization

An orthonormal set of hybrid orbitals is created by applying a transformation on the orthonormal hydrogenic orbitals. The sp³, sp² or sp hybrid orbitals are <u>linear combinations of the AO's</u>, they appear as the resulting interference between s and p orbitals.

$$h_{1} = s + p_{x} + p_{y} + p_{z}$$

$$h_{2} = s - p_{x} + p_{y} - p_{z}$$

$$h_{3} = s - p_{x} - p_{y} + p_{z}$$

$$h_{4} = s + p_{x} - p_{y} - p_{z}$$

Each hybrid atomic orbital has the same energy and can be occupied by one electron of the promoted atom \rightarrow CH₄ has 4 similar bonds.

sp² Hybridization

- innovate achieve lead
- ◆ The sp² hybrid atomic orbitals lie in a plane and points towards the corners of an equilateral triangle.
- \bullet 2p_z is not involved in the hybridization, and its axis is perpendicular to the plane of the triangle.

$$h_1 = s + 2^{1/2} p_y$$

 $h_2 = s + (3/2)^{1/2} p_x - (1/2)^{1/2} p_y$
 $h_3 = s - (3/2)^{1/2} p_x - (1/2)^{1/2} p_y$

- $CH_2=CH_2$: the hybrid atomic orbitals of each C atom create the backbone of the molecule via 3σ bonds (2 C-H and 1 C-C).
- The remaining $2p_z$ of the 2 C atoms create a π bond preventing internal rotation.

sp Hybridization

In ethyne, HC=CH: Formation of 2 σ bonds (with C and H) using the 2 hybrid atomic orbitals h_1 and h_2 .

The remaining $2p_x$ and $2p_y$ can form two π bonds between the two carbon atoms.

$$h_1 = s + p_z$$

 $h_2 = s - p_z$

Resonance

- The superposition of the wavefunctions representing different electron distributions in the same nuclear framework.
- Consider the VB description of a <u>purely covalently bonded HCl molecule</u>

$$\psi_{H-CI}(1,2) = \psi_{H}(1)\psi_{CI}(2) + \psi_{H}(2)\psi_{CI}(1)$$

But H⁺Cl⁻ is ionic also, the wavefunction for this form

$$\psi_{H+CI}(1,2) = \psi_{CI}(1)\psi_{CI}(2)$$
 (this wavefunction alone is unrealistic)

Therefore, ψ for HCl is as superposition of both, $\psi_{HCl} = \psi_{H-Cl} + \lambda \psi_{H+Cl}$ ($\lambda = \text{nu. co.}$)

or,
$$\psi = \psi_{covalent} + \lambda \psi_{ionic}$$

 λ^2 represents relative proportion of the ionic contribution.

Re-visit VBT

The language of valence bonding:

- 1. The nature of bond types: σ and π bonds are formed by spin pairing
- 2. Promotion: valence electron may be promoted to empty orbitals if overall that results in a lowering of energy
- 3. Hybridization: atomic orbitals may be hybridized
- 4. Resonance: the superposition of individual structures

Drawbacks of VBT

- ✓ This theory does not discuss energies of electrons.
- ✓ The assumptions about the electrons being localized to specific locations

Need of MOT

- 1. Molecular orbitals are obtained by combining the atomic orbitals on the atoms in the molecule.
- 2. This theory takes s, p, and d-orbitals of central atom into account for study.
- 3. It explains σ , π , and δ bond formation.
- 4. MOT predicts bond order, stability, bond strength, and the existence of the molecule
- 5. MOT can explain: N_2 , O_2 , HCl, CO, $[CoCl_4]^{2-}$, $[Co(NH_3)_6]^{3+}$ etc.

LCAO-Molecular Orbital (MO) theory

The individual orbitals of separate atoms combine to make orbitals that span the entire molecules

By using linear variation theory; we can construct the MO by taking linear combinations of the occupied atomic orbital.

The hydrogen molecule-ion: H-H⁺

LCAO-Molecular Orbital (MO) theory

The electron can be found in an atomic orbital (AO) belonging to atom A (*i.e.*; 1s of H) and also in an atomic orbital belonging to B (*i.e.*; 1s of H⁺)

- → The total wavefunction should be a superposition of the 2 AO and it is called *molecular orbital* LCAO-MO.
- → Let's write the atomic orbitals on the two atoms by the letters A and B.

$$\Psi_{\pm}$$
= N(A \pm B)

N is the *normalization constant*

The hydrogen molecule-ion: H-H⁺

LCAO-Molecular Orbital (MO) theory

The hydrogen molecule-ion: H-H⁺

Example for Ψ_{+} = N(A + B):

$$\int \psi^* \psi \ d\tau = N^2 \left[\int A^2 \ d\tau + \int B^2 \ d\tau + 2 \int AB \ d\tau \right] = 1$$
$$= N^2 (1 + 1 + 2S) = 1$$

$$N = \frac{1}{\{2(1+S)\}^{1/2}}$$

$$S=\int AB\,d au$$
 is the *overlap integral* related to the overlap of the 2 AO

Bonding orbital

$$\Psi_{+}$$
= {2(1+S)}^{-1/2}(A + B), with A=1s, B=1s of H

Probability density: $\Psi^{2}_{+} = \{2(1+S)\}^{-1}(A^{2} + B^{2} + 2AB)$

 A^2 and B^2 = probability density to find the e^- in the atomic orbital A and B

2AB = the *overlap density* represents an enhancement of the probability density to find the e^- in the internuclear region: *the electron accumulates in regions* where AO's overlap and interfere constructively; which creates a bonding orbital (σ) with one electron.

Antibonding orbital

$$\Psi = \{2(1-S)\}^{-1/2}(A - B)$$

Probability density: $\Psi^{2} = \{2(1-S)\}^{-1}(A^{2} + B^{2} - 2AB)$

-2AB = reduction of the probability density to find the e^- in the internuclear region: there is a **destructive interference** where the two AO overlap, which creates an **antibonding orbital** σ^* .

→ Nodal plane between the 2 nuclei

Bonding and antibonding MO's

Variation of the molecular orbitals along the internuclear axis: increased electron density between nuclei in bonding case, and the node midway between nuclei in antibonding case

LCAO MOs of H₂⁺

MO's characterized by

- Energy Bonding / Antibonding character(*)
- Transformation under inversion symmetric (g), antisymmetric (u). (homonuclear)

Structure of H₂ molecule

Now, we use the molecular orbitals ($\sigma = \Psi_+$ and $\sigma^* = \Psi_-$) found for H₂ molecule; in order to describe many-electron diatomic molecules.

Bond order calculation

Bond order: $b=\frac{1}{2}(n-n^*)$

→ The greater the bond order between atoms of a given pair of elements, the shorter is the bond and the greater is the bond strength.

n= number of electrons in the bonding orbital
n*= number of electrons in the antibonding orbital

Other diatomic molecule

Period 2 diatomic molecules

- \triangleright According to molecular orbital theory, σ orbitals are built from all orbitals that have the appropriate symmetry.
- \triangleright In homonuclear diatomic molecules of Period 2, that means that two 2s and two 2p_z orbitals should be used. From these four orbitals, four molecular orbitals can be built:

With N atomic orbitals \rightarrow the molecule will have N molecular orbitals, which are combinations of the N atomic orbitals.

MO using p atomic orbital

 σ and σ * from the p_z orbitals

π orbitals

The $2p_x$ and $2p_y$ orbitals lead to a pair of π and a pair of π^* orbitals

Inversion symmetry of π orbital

Construction of molecular orbital

- Use all available valence orbitals from atoms
- Classify according to symmetry (σ/π) with respect to axis
- From N_{σ} AO's, build N_{σ} MO's of σ symmetry
- Similarly N_{π} MO's of π symmetry. These occur in degenerate pairs
- In general, the energy of each type of orbital increases with the number of inter-nuclear nodes

Filling of molecular orbitals

Certain rules are to be followed while filling up molecular orbitals with electrons in order to write correct molecular configurations:

Aufbau Principle – This principle states that those molecular orbital which have the lowest energy are filled first.

Pauli's Exclusion Principle – According to this principle each molecular orbital can accommodate maximum of two electrons having opposite spins.

Hund's Rule – This rule states that in two molecular orbitals of the same energy, the pairing of electrons will occur when each orbital of same energy consist one electron.

MO of N₂ molecule

$$1\sigma_{2s}^{2} - 1\sigma_{2s}^{*2} - 1\pi_{2py,pz}^{4} - 2\sigma_{2px}^{2}$$

Bond order of $N_2 = 3$ Note σ and σ^* of mixed 2s and 2p character

Variation of orbital energies

Discussed topics.....

- ✓ Hybridization and Resonance
- ✓ LCAO-MO theory
- ✓ Bonding and antibonding orbital
- ✓ Bond order calculation
- \checkmark π -orbital and inversion symmetry of π orbital
- ✓ Construction of molecular orbital for various diatomic molecule

Model question 1

Q. Write the ground state electronic configurations of C_2 and compare the relative stabilities of C_2 and C_2^- systems based on molecular orbital theory.

Ans. Ground state electronic configuration of C_2 is $1\sigma_b^2 1\sigma_a^2 1\pi_b^4$ (or $\frac{2}{2}$) $\frac{2s^2}{\sigma^2}$, $\frac{\pi^2}{\sigma^2}$, $\frac{\pi^2}{\sigma^2}$, $\frac{\pi^2}{\sigma^2}$

$$\sigma 2s$$
, $\sigma *2s$, $[\pi 2p_* = \pi 2p_*]$, $\sigma 2p_z$, $[\pi *2p_* = \pi *2p_*]$, $\sigma *2p_z$ -

Bond order of $C_2 = 2$ and that of $C_2^- = 2.5$

Therefore, C_2^- more stable than C_2

He₂: 4 electrons

Bond order = 0

He₂ is not stable and does not exist

Model question 3

1. In propene (CH₃-CH₂=CH₂), the first carbon has sp^3 hybrid orbitals and the second carbon has sp^2 hybrid orbitals. These orbitals interact to make a σ bond. Prove that these hybrid orbitals are not orthogonal? The corresponding hybrid orbitals are $\eta_{sp3} = 1/2(s + p_x + p_y + p_z)$ and $\eta_{sp2} = (1/\sqrt{3}) s + (\sqrt{2}/\sqrt{3}) p_z$, respectively.

In cylindrical symmetry, there is only one axis of rotation, and it is always vertical.

Cylindrical symmetry is commonly found in towers, columns, & domes.

