Cours d'Algèbre et Calcul Formel

Ecrit par Marion Candau

 $Enseignant: M. Karim\ Belabas$

Master 1 Cryptologie et Sécurité Informatique Université Bordeaux 1

2009 - 2010

Table des matières

1	Ope	érations et structures fondamentales	3
	1.1	\mathbb{Z} et R[X], R anneau commutatif unitaire	3
	1.2	Addition/Soustraction	3
	1.3	Multiplications	4
	1.4	Division Euclidienne	6
	1.5	Algorithmes sous-quadratiques	7
	1.6	Structures fondamentales	11
		1.6.1 Fractions $\mathbb{Q}, K[X]$	11
		1.6.2 Quotients $\mathbb{Z}/n\mathbb{Z}$, $K[X]/(T)$	12
	1.7	Complétions $\mathbb{R}, K[[T]]$	13
		$1.7.1$ \mathbb{R}	13
		1.7.2 $K[[T]]$	14
	1.8	Nombres algébriques	14
2	0114	elques algorithmes arithmétiques fondamentaux	16
_	2.1	Euclide	16
	$\frac{2.1}{2.2}$	Crible d'Eratosthène	20
	$\frac{2.2}{2.3}$	Exponentiation binaire	21
	$\frac{2.3}{2.4}$	Symbole de Legendre / de Jacobi	$\frac{21}{22}$
	2.4	2.4.1 p premier impair	22
		9.49 Symbolo do Jacobi	-93
	2.5	2.4.2 Symbole de Jacobi	23 25
	2.5	Test de non-primalité sur $\mathbb Z$	25
	2.6	Test de non-primalité sur $\mathbb Z$	25 26
	2.6 2.7	Test de non-primalité sur \mathbb{Z}	25 26 27
	2.6	Test de non-primalité sur $\mathbb Z$	25 26 27
3	2.6 2.7 2.8	Test de non-primalité sur \mathbb{Z}	25 26 27
3	2.6 2.7 2.8	Test de non-primalité sur \mathbb{Z}	25 26 27
3	2.6 2.7 2.8	Test de non-primalité sur \mathbb{Z}	25 26 27 28 31
3	2.6 2.7 2.8 Sys	Test de non-primalité sur \mathbb{Z}	25 26 27 28

3.4~ Résoudre les systèmes d'équations polynomiales $\ \ldots \ \ldots \ 34$

Chapitre 1

Opérations et structures fondamentales

1.1 \mathbb{Z} et R[X], R anneau commutatif unitaire

Représentation des données :

- Dans \mathbb{Z} , on fixe une base $\beta > 1$, en pratique 2,10 ou 2^{64} . Tout entier $A \geqslant 1$ s'écrit de façon unique $A = \sum_{i=0}^{n} a_i \beta^i$ avec $a_i \in \{0, 1, \dots, \beta 1\}$ et $a_n \neq 0$. On a $n = \lfloor \log_{\beta} A \rfloor + 1$.
- Dans R[X], tout $A \neq 0$ s'écrit $A = \sum_{i=0}^{n} a_i X^i$, avec $a_i \in R, a_n \neq 0$.

On traite 0 séparément. La taille de A est l'entier n+1

- \rightarrow complexité mot-machine sur \mathbb{Z} (binaire : $\beta = 2$)
- \rightarrow complexité algébrique sur R[X]

1.2 Addition/Soustraction

Définition

On appelle complexité algébrique d'une opération le nombre d'opérations $(+,-,\times,/)$ dans l'anneau de base qu'elle utilise.

On appelle complexité binaire d'une opération le nombre d'opérations $(+, -, \times, /)$ sur les mots-machines (chiffres) qu'elle utilise.

Algorithme 1 Addition dans R[X]

Entrées:
$$A = \sum_{i=0}^{n_A} a_i X^i, B = \sum_{i=0}^{n_B} b_i X^i$$

Sorties: $C = A + B \in R[X]$

Pour i = 0 à $max(n_A, n_B)$ Faire

poser $c_i \leftarrow a_i + b_i$

Fin pour

Retourner
$$C = \sum_{i=0}^{\max(n_A, n_B)} c_i X^i$$
, normalisé

Coût : $1 + max(n_A, n_B)$ opérations dans R.

Algorithme 2 Addition dans Z

Entrées:
$$A = \sum_{i=0}^{n_A} a_i \beta^i$$
, $B = \sum_{i=0}^{n_B} b_i \beta^i$

Sorties: C = A + B

 $r \leftarrow 0$

Pour i = 0 à $max(n_A, n_B)$ Faire

écrire $a_i + b_i + r = c_i + r'\beta$, $0 \leqslant c_i < \beta$, r' = 0 ou 1

Fin pour

Retourner
$$c = \sum_{i=0}^{\max(n_A, n_B)} c_i \beta^i + \begin{cases} \beta^{\max(n_A, n_B)+1} & \text{si } r = 1 \\ 0 & \text{si } r = 0 \end{cases}$$

Coût : $max(n_A, n_B) + 1$ opérations sur des mots-machines.

Corollaire

L'addition dans \mathbb{Z} ou R[X] s'effectue en complexité binaire ou algébrique, linéaire en la taille des opérandes.

Remarque

- 1. En pratique l'algorithme asymptotiquement meilleur ne l'est pas en "petites tailles".
- 2. En pratique 2^{80} opérations = $+\infty$

1.3 Multiplications

Algorithme 3 Multiplication dans R[X]

Entrées:
$$A = \sum_{i=0}^{n_A} a_i X^i$$
, $B = \sum_{i=0}^{n_B} b_i X^i$ non nuls

Sorties:
$$C = A \times B = \sum_{k=0}^{n_C \leqslant n_A + n_B} c_k X^k$$
 et $c_k = \sum_{i+j=k} a_i b_j$

Pour
$$k = 0$$
 à $n_A + n_B$ Faire

$$c \leftarrow 0;$$

Pour i = 0 à k Faire

$$c \leftarrow c + a_i \times b_{k-i}$$

$$c_k \leftarrow c$$

Fin pour

Fin pour

Retourner
$$C = \sum_{k=0}^{n_A + n_B} c_k X^k$$
, normalisé

Complexité algébrique

$$\sum_{k=0}^{n_A+n_B} \sum_{i=0}^{k} 2 = O\left[(n_A + n_B)^2 \right]$$

Remarque

$$\sum_{k=0}^{N} k^{\alpha} = O(N^{\alpha+1})$$

$$\#\{a_i b_j\} = (n_A + 1)(n_B + 1)$$

Théorème

La complexité algébrique de cet algorithme est $\leq 2 \times (n_A + 1)(n_B + 1) = O((n_A + 1)(n_B + 1))$.

Définition : Landau f = O(g) au voisinage de $+\infty$ si $\exists x_0$ tel que $\forall x > x_0$ on a :

$$|f(x)| \leqslant c(x_0)|g(x)|$$

Définition

 $f \ll g$ si pour tout x on a : $|f(x)| \leqslant c|g(x)|$.

Algorithme 4 Sous Algorithme de multiplication dans \mathbb{Z}

Entrées:
$$A = \sum_{i=0}^{n_A} a_i \beta^i$$
, $b_i \in \{1, \dots, \beta - 1\}$
Sorties: $A \times b = C = \sum c_i \beta^i$
Pour $i = 0$ à n_A Faire
écrire $a_i b + r = q\beta + s$, $0 \le s < \beta$, $0 \le q < \beta$
 $r \leftarrow q$;

 $c_i \leftarrow s;$

Fin pour

Retourner $r\beta^{n+1} + \sum_{i=0}^{n} c_i \beta^i$, normalisé

Algorithme 5 Multiplication dans \mathbb{Z}

Entrées:
$$A = \sum_{i=0}^{n_A} a_i \beta^i$$
, $B = \sum_{i=0}^{n_B} b_i \beta^i$ non nuls

Sorties: $A \times B$

Pour i = 0 à n_B Faire

 $d_i \leftarrow b_i \times A$

Fin pour

Retourner
$$c = \sum_{i=0}^{n_B} d_i \beta^i$$

Coût
$$\ll \sum_{j} n_A + 2 = (n_A + 2)(n_B + 1) = o(\text{taille(A)} \times \text{taille(B)})$$

Corollaire

La multiplication dans \mathbb{Z} ou R[X] s'effectue en complexité binaire ou algébrique en la taille de $A \times la$ taille de B.

Division Euclidienne 1.4

Dans R[X], $\exists A, B$ tel que $cd(B) \in R^* (\Rightarrow B \neq 0)$ alors A = Bq + r avec $deg(r) < deg(B), q, r \in R[X]$ uniques.

Complexité algébrique

Supposons $n_A \ge n_B$. On a $O((n_A - n_B + 1)(n_B + 1))$ opérations dans R $= O(\text{taille}(A) \times \text{taille}(B))$

Si $deg(A) \leq 2n$ et $deg(B) \leq 2n$ on a une complexité en $O(n^2)$.

Algorithme 6 Algorithme de division euclidienne

Entrées:
$$A = \sum_{i=0}^{n_A} a_i X^i, B = \sum_{i=0}^{n_B} b_i X^i$$

Sorties:
$$A/B = q$$
 et $A \mod B = r$ tel que $q = \sum_{i=0}^{n_A - n_B} q_i X^i$

$$r \leftarrow A; q \leftarrow 0;$$

Pour
$$i = n_A - n_B$$
 à 0 Faire
Si $deg(r) = n_B + i$ Alors

$$q_i \leftarrow \frac{cd(r)}{cd(B)};$$

$$r \leftarrow r - q_i X^i - B$$

Sinon

 $q_i \leftarrow 0$

Fin si

Fin pour

Retourner
$$q = \sum_{i=0}^{n_A - n_B} q_i X^i$$
 si $n_A \geqslant n_B, q = 0$ sinon et r, normalisés

Division euclidienne dans \mathbb{Z}

Soient $A\in\mathbb{Z},B\in\mathbb{Z},B\neq0$. Il existe q,r uniques tels que A=Bq+r avec $0\leqslant r<|B|$ ou $-\frac{|B|}{2}< r\leqslant\frac{|B|}{2}$

Proposition

 $O_{\beta}(\text{taille}(q) \times \text{taille}(B))$ opérations sur les mots.

1.5 Algorithmes sous-quadratiques

Théorème

Soit $M_{\mathbb{Z}}(n)$ le nombre maximal d'opérations sur les mots pour multiplier 2 opérandes de taille $\leq n$ dans \mathbb{Z} et $M_{R[X]}(n)$ le nombre maximal d'opérations sur les mots pour multiplier 2 opérandes de taille $\leq n$ dans R[X].

1. Karatsuba 1962

$$M_{\mathbb{Z}}(n) = O(n^{\log_2 3})$$

2. Schonhage-Sta β en 1971

$$M_{\mathbb{Z}}(n) = O(n \log n \log \log n) = \tilde{O}(n)$$

Remarque : $\tilde{O}(f) = f(\log f)^{O(1)}$

3. Frer 2005

$$M_{\mathbb{Z}}(n) = O(n \log n 2^{\log_* n})$$

Remarque : $\log_*(n) = \min_{k \geqslant 0} \{k, 2 \text{ puiss } 2 \text{ puiss } 2 \dots \text{ puiss } 2 \text{ k fois } > n \}$

4. Cantor-Kaltofen 1991

$$M_{R[X]}(n) = O(n \log n \log \log n) = \tilde{O}(n)$$

Théorème

Soit $D_{\mathbb{Z},R[X]}(n)$ la complexité de la division euclidienne sur 2 opérandes de taille $\leq n$.

$$D_{\bullet}(n) = O(M_{\bullet}(n))$$

Théorème

Soit $f: \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ telle que $b > 1, a > 0, c \in \mathbb{R}$. On a :

$$f(a) \leqslant af\left(\frac{x}{b}\right) + cx$$

avec f(x) = 1 si x < 1.

Alors

$$f(x) \ll \begin{cases} O(x^{\log_b(a)}) & \text{si } a > b \\ O(x \log x) & \text{si } a = b \\ O(x) & \text{si } a < b \end{cases}$$

On écrit $(a_1X + a_0)(b_1X + b_0) = a_1b_1X^2 + (a_0b_1 + a_1b_0)X + a_0b_0$.

Or $(a_0b_1 + a_1b_0) = (a_0 + a_1)(b_0 + b_1) - a_1b_1 - a_0b_0.$

Avec $A(x) = a_1(x)x^n + a_0(x)$ et $B(x) = b_1(x)x^n + b_0(x)$ et $da_i, b_i < n$, on a $A \times B$ qui se calcule en 3 multiplications et O(1) additions de polynomes de degré < n.

Si M(s) est la complexité algébrique de la multiplication de 2 polynomes de degré $\langle s,$ on peut supposer $s=2^k$, alors

$$M(s) \leqslant 3M\left(\frac{s}{2}\right) + O(s) \Rightarrow M(s) = O(s^{\log_2 3})$$

Remarque

Si s n'est pas une puissance de deux :

- 1. $M(s) \leqslant 3M\left(\left\lceil \frac{s}{2}\right\rceil\right) + O(s)$.
- 2. On remplace s par $2^{\lceil \log_2 s \rceil} \geqslant s$ et on applique le lemme d'où :

$$M(s) = O(2^{\lceil \log_2 s \rceil \log_2 3}) \ll 2^{(\log_2 s + 1) \log_2 3} = 3 \times s^{\log_2 3}$$

Remarque

Soient $\alpha(x) = a_1(x) + a_0$ et $\beta(x) = b_1(x) + b_0$, on cherche $\gamma(x) = \alpha\beta = c_2X^2 + c_1X + c_0$. On fixe x_1, x_2, x_3 distincts dans un corps de base. On calcule $\gamma(x_i) = \alpha(x_i)\beta(x_i)$, $i = 1, 2, 3 + \text{Lagrange pour retrouver } c_0, c_1, c_2$. Cette méthode se généralise avec r morceaux et on a une complexité de $O(s^{1+\epsilon(r)})$, $\lim_{r\to\infty} \epsilon(r) = 0$.

Cas particulier: FFT

Hypothse

On travaille sur un corps K[X] qui contient ω une racine de l'unité d'ordre exact n.

Définition: DFT

Soit $T \in K[X]$, on définit

$$\mathcal{F}: K[X]/X^n - 1 \longrightarrow K^n$$

$$T \longmapsto (T(\omega^0), T(\omega^1), \dots, T(\omega^{n-1})) = \mathcal{F}(T, \omega)$$

Lemme

 \mathcal{F} ralise un isomorphisme de K-algèbre

$$(K[X]/X^n-1), \times) \simeq (K^n, \text{ produit composante par composante})$$

Corollaire

$$TU = \mathcal{F}^{-1}(\mathcal{F}(T) \otimes \mathcal{F}(U))$$

Ceci permet de calculer TU dans $K[X]/X^n-1$, TU dans K[X] si $d(T)<\frac{n}{2}$ et $d(U)<\frac{n}{2}$.

Lemme

Si
$$T \in K[X]$$
, $\mathcal{F}(T,\omega) = (u_1,\ldots,u_{n-1})$, et $U(X) = \sum_{i=1}^{n-1} u_i X_i$. Alors $\mathcal{F}(U,\omega^{-1}) = nT$.

Théorème

FFT s'effectue en $O(n \log n)$ opérations dans K.

Algorithme 7 Algorithme FFT

Entrées: $n = 2^k$, $T \in K[X]$, dT < n, ω d'ordre n dans K

Sorties: $\mathcal{F}(T,\omega)$

Si n = 1 retourner T.

Ecrire $T(X) = T_0(X^2) + XT_1(X^2)$

Calculer $\mathcal{F}(T_0, \omega^2) = (a_0, \dots, a_{\frac{n}{2}-1})$ et $\mathcal{F}(T_1, \omega^2) = (b_0, \dots, b_{\frac{n}{2}-1})$

Retourner $(a_i + \omega^i b_i)_{i < n}$ où $(a_i), (b_i)$ sont étendus par périodicité de période $\frac{n}{2}$.

Remarque

- 1. si $\omega \notin K$, il faut le rajouter (Schonhage-Strassen)
- 2. On peut définir un algorithme FFT_k en coupant les entrées en k morceaux.

Divisions sous -quadratiques

Soient $a, b \in R[X]$, b unitaire, da = n, $db = m \le n$. Si a = bq + r avec $dr \le m - 1$ et $dq \le n - m$, alors

$$X^{n}a\left(\frac{1}{X}\right) = X^{m}b\left(\frac{1}{X}\right)X^{n-m}q\left(\frac{1}{X}\right) + X^{n}r\left(\frac{1}{X}\right)$$

$$A = BQ + X^{n-m+1}(*)$$

On calcule $Q \equiv AB^{-1}$ dans $R[X]/X^{n-m+1} \to q \to r = a - bq$.

Théorème

Soit $B, C_0, C_1, \ldots \in R[X]$ tels que B(0) = 1, $C_0 = 1$ et $C_{i+1} \equiv 2C_i - BC_i^2 \mod X^{2^{i+1}}$.

Alors $BC_i \equiv 1 \mod X^{2^i}$

Définition

Soit R un anneau commutatif. On définit R[[X]] comme $R^{\mathbb{N}}$ muni de la structure d'anneau suivante :

$$\sum a_i X^i + \sum b_i X^i = \sum (a_i + b_i) X^i$$

$$\sum a_i X^i \times \sum b_i X^i = \sum c_k X^k \text{ avec } c_k = \sum_{i+j=k} a_i b_j$$

$$R[X]$$
 est un sous-anneau de $R[[X]]$
Si $a_0 \in R^* \Leftrightarrow \sum_{i \geqslant 0} a_i X^i \in R[[X]]^*$.

Algorithme 8 Algorithme inversion

Entrées: $B \in R[X]$ tel que $B(0) = 1, l \in \mathbb{N}$ (précision)

Sorties: $C \in R[X]$ tel que $BC \equiv 1 \mod X^l$

- 1: $r \leftarrow \lceil \log_2 l \rceil \ c_0 \leftarrow 1$
- 2: Pour i = 1 à r Faire
- $C_i \leftarrow (2C_{i-1} BC_{i-1}^2) \text{ rem } X^{2^i}$
- 4: Fin pour
- 5: **Retourner** $c = c_r(\text{rem } X^l)$

Théorème

On suppose que $M_{R[X]} = M$ vérifie $M(2n) \ge 2M(n)$ et M croissante. Alors l'algorithme d'inversion utilise $O(M(2^r)) = O(M(2l))$ opérations dans R.

Algorithme 9 Algorithme division euclidienne

Entrées: $a, b \in R[X]$, b unitaire

Sorties: $q, r \in R[X]$ tels que $a = bq + r, dr \leq db$

- 1: Si da < db Alors
- 2: Retourner (0, a)
- 3: Fin si
- $4: l \leftarrow da db + 1 \geqslant 1$
- 5: Calculer $C \in R[X]$ tel que $BC \equiv 1 \mod X^l$ où $B(X) = X^{dB}b\left(\frac{1}{X}\right)$
- 6: Calculer $Q \leftarrow AC \mod X^l$ où $A(X)X^{dA}a\left(\frac{1}{X}\right)$ 7: **Retourner** $q = X^{dAdB}Q\left(\frac{1}{X}\right)$ et r = a bq.

Structures fondamentales 1.6

1.6.1Fractions $\mathbb{Q}, K|X|$

Soit R un anneau intègre, on définit Frac $R = R \times (R \setminus \{0\}) / \sim où (a, b) \sim$ $(c,d) \Leftrightarrow ad = bc.$

Notation

 $\frac{a}{b} = (a, b)$ dans Frac R. On le munit d'une structure d'anneau :

$$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$$

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

Théorème : Frac R est un corps.

Normalisation

On peut imposer pgcd(a, b) = 1.

$$(a,b) = \left(\frac{a}{pgcd(a,b)}, \frac{b}{pgcd(a,b)}\right)$$
 dans Frac R

1.6.2 Quotients $\mathbb{Z}/n\mathbb{Z}$, K[X]/(T)

Soit R un anneau, I un idéal de R, R/I l'anneau quotient où $a \sim b \Leftrightarrow a-b \in I.$

Notation

$$a \equiv b \mod I$$

Cas particulier

On se restreint au cas où R est euclidien $(\mathbb{Z}, K[X])$.

- * Tout idéal I est principal, $I = (x) = x \cdot R$. Notation : $a \equiv b \mod x$.
- * Toute classe $a + (x) \in R/(x)$ contient un élément canonique.

Définition

- 1. $a+N\mathbb{Z}\in\mathbb{Z}/N\mathbb{Z}$ est sous forme normale si et seulement si $0\leqslant a<|N|$.
- 2. $a + TK[X] \in K[X]/(T)$ est sous forme normale si et seulement si da < dT.

Remarque

Pour mettre une représentation quelconque a + xR sous forme normale il suffit de remplacer a par rem(a, x).

a + (x) et a' + (x) sous formes normales sont égales si et seulement si a = a' dans R.

Corollaire

+, - dans R/(x) s'effectuent avec complexité O(taille(x)).

 \times dans R/(x) s'effectue avec complexité $O(M_R(\text{taille}(x)))$.

1.7 Complétions $\mathbb{R}, K[[T]]$

$$K[[T]] = \text{Frac } (K[[T]]) = \left\{ \sum_{n \ge n_0} a_n T^n : a_n \in K, n_0 \in \mathbb{Z} \right\}$$

1.7.1 \mathbb{R}

Définition

Soit $l \in \mathbb{N}$ fixé (précision), e_{min} , $e_{max} \in \mathbb{Z}$ fixés. L'ensemble des nombres flottants en précision l est :

$$\mathcal{F} = \mathcal{F}_{l,e_{min},e_{max},\beta} = \{0\} \cup \{\pm \beta^e.m : e \in [e_{min},e_{max}], \beta^{l-1} \leqslant m \leqslant \beta^l\}$$

On choisit une fonction d'arrondi $A : \mathbb{R} \to \mathcal{F} \cup \{\text{erreur}\}$

$$A^-(x) = \left\{ \begin{array}{ll} \max\{f \in \mathcal{F}, f \leqslant x\} & \text{par d\'efaut} \\ \text{erreur} & \text{si l'ensemble est vide} \end{array} \right.$$

$$A^+(x) = \left\{ \begin{array}{ll} \min\{f \in \mathcal{F}, f \geqslant x\} & \text{par d\'efaut} \\ \text{erreur} & \text{si l'ensemble est vide} \end{array} \right.$$

Définition

Soient $x, y \in \mathcal{F}$

$$x \oplus y = A(x+y)$$
$$x \ominus y = A(x-y)$$
$$x \otimes y = A(x \times y)$$
$$x \oslash y = A(x/y)$$

définit des opérations de $\mathcal{F} \times \mathcal{F} \to \mathcal{F} \cup \{\text{erreur}\}\$

Théorème

x + y ou x - y se calcule en O(l) opérations algébriques dans \mathbb{Z} . $x \times y$ ou x/y se calcule en O(M(l)) opérations algébriques dans \mathbb{Z} .

1.7.2 K[[T]]

Définition

L'ensemble des "séries flottantes" est :

$$\mathcal{F} = \{0\} \cup \{T^e.m, e \in [e_{min}, e_{max}], m \in K[T], dm \leq l-1\}$$

et la fonction $K[[T]] \to \mathcal{F} \cup \{\text{erreur}\}$

$$T^e \sum_{i \geqslant 0} m_i T^i \mapsto T^e \sum_{0 \leqslant i < l} m_i T^i$$

si $e \in [e_{min}, e_{max}].$

1.8 Nombres algébriques

Définition

Soit $K \subset \text{un corps (commutatif)}$. $\alpha \in L$ est algébrique sur K s'il existe $P \in K[X], P \neq 0, P(\alpha) = 0$.

Proposition

Si α est algébrique alors il existe $P \in K[X]$, P unitaire, unique tel que

$$P(\alpha) = 0$$

$$Q(\alpha) = 0 \Rightarrow P|Q$$

P est appelé polynome minimal de α .

Corollaire

$$K[\alpha] \simeq K[X]/(P_{min})$$

 $\alpha \mapsto X + (P_{min})$
 $A(\alpha) \leftarrow A(X)$

Cas particulier : $K = \mathbb{F}_p$

Si $P \in \mathbb{F}_p[X]$ est irréductible de degré n alors $\mathbb{F}_p[X]/(P) \simeq \mathbb{F}_p^n$.

Théorème

$$\#\{P \text{ unitaire } \in \mathbb{F}_p[X], P \text{ irréductible de degré n }\} = \frac{1}{n} \sum_{d \mid n} \mu(d) q^{\frac{n}{d}} > 0$$
 où $\mu(d) = \left\{ \begin{array}{ll} -1 & \text{si } d = p_1 \dots p_k, p_i \text{ premiers différents} \\ 0 & sinon \end{array} \right.$

Corollaire

- Les éléments de \mathbb{F}_q se codent avec $O(\log q)$ chiffres +, ont pour complexité binaire $O(\log q)$
- \times a pour complexité binaire $\tilde{O}(\log q)$.

Chapitre 2

Quelques algorithmes arithmétiques fondamentaux

2.1 Euclide

```
Algorithme 10 Algorithme d'Euclide

Entrées: a, b \in \mathbb{Z} ou K[X]

Sorties: pgcd(a, b)

1: r_0 \leftarrow a;

2: r_1 \leftarrow b;

3: i \leftarrow 1;

4: Tant que r_i \neq 0 Faire

5: r_{i+1} \leftarrow rem(r_{i-1}, r_i);

6: i \leftarrow i + 1

7: Fin tant que

8: Retourner r_{i-1}
```

Remarque

$$(a,b) \leftarrow (b,a \mod b)$$

$$\begin{pmatrix} a \\ b \end{pmatrix} \leftarrow \begin{pmatrix} 0 & 1 \\ 1 & -q \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$$

Théorème

Euclide utilise $O(n^2)$ opérations élémentaires dans \mathbb{Z} (ou K[X]) si a, b sont de taille $\leq n$.

Algorithme 11 Algorithme d'Euclide tendu

Entrées: $a, b \in \mathbb{Z}$ ou K[X]

Sorties: pgcd(a,b), u, v tels que au + bv = pgcd(a,b)

- 1: $r_0 \leftarrow a$;
- $2: r_1 \leftarrow b;$
- $3: i \leftarrow 1;$
- $4: U_1 \leftarrow Id_1$
- 5: Tant que $r_i \neq 0$ Faire

6:
$$r_{i+1} \leftarrow rem(r_{i-1}, r_i);$$

7: $U_{i+1} \leftarrow \begin{pmatrix} 0 & 1 \\ 1 & -q_{i+1} \end{pmatrix} U_i$
8: $i \leftarrow i+1$

- 9: Fin tant que
- 10: **Retourner** $r_{i-1} = pgcd(a,b)$ et la première ligne de U_{i-1} , ua + vb =pgcd(a,b)

Théorème

Cet algorithme utilise $O(n^2)$ opérations élémentaires si taille(a) et taille(b) $\leq n$.

Théorème

Il existe un algorithme calculant une relation de Bezout en $O(M(n) \log n) =$ O(n) opérations.

Application 1

Soient $R = \mathbb{Z}$ ou $K[X], a, b \in R$ tels que PGCD(a, b) = 1. Alors $\exists u, v \in R$ tels que au + bv = 1, et $\bar{u} = \bar{a}^{-1}$ dans R/(b).

Application 2

Soient $a, b \in R$, PGCD(a, b) = 1 et au + bv = 1. Alors:

$$R/(ab) \simeq R/(a) \times R/(b)$$

 $x \mapsto (x, x)$
 $au\beta + bv\alpha \leftarrow (\alpha, \beta)$

Application 2'

Soient $a_1, \ldots, a_n \in R$, $PGCD(a_i, a_j) = 1$, $\forall i \neq j$. Alors:

$$R/\left(\prod_{i=1}^n a_i\right) \simeq \prod_{i=1}^n R/(a_i)$$

$$x \mapsto (x, \dots, x)$$

$$\sum_{i=1}^{n} \alpha_i u_i A_i \leftarrow (\alpha_1, \dots, \alpha_n)$$

avec $A_i = \prod_{j \neq i} a_j$ et $PGCD(a_i, A_i) = 1 = u_i A_i + v_i a_i = 1$.

Remarque

Soient R = K[X], $a_i = X - \alpha_i$, avec $\alpha_i \in K$, et $\alpha_i \neq \alpha_j$ pour $i \neq j$. Alors:

$$K[X]/\prod_{i=1}^{n}(X-\alpha_i) \simeq \prod_{i=1}^{n}K[X]/(X-\alpha_i) \simeq K^n$$

$$P(X) \mapsto (P(X), \dots, P(X)) \simeq (P(\alpha_1), \dots, P(\alpha_n))$$

Application 3: Interpolation d'Hermite

Soient $\alpha_1, \ldots, \alpha_k$ deux à deux distincts dans K. On veut $P \in K[X]$ tel que (*):

$$P(\alpha_1), P'(\alpha_1), \dots P^{(l_1)}(\alpha_1)$$

$$P(\alpha_2), P'(\alpha_2), \dots P^{(l_2)}(\alpha_2)$$

$$\vdots$$

$$P(\alpha_n), P'(\alpha_n), \dots P^{(l_n)}(\alpha_n)$$

prennent des valeurs fixées à l'avance.

$$P(\alpha) = \beta^{(0)}$$

$$P'(\alpha) = \beta^{(1)}$$

$$\vdots$$

$$P^{(l)}(\alpha) = \beta^{(l)}$$

$$\iff P(\alpha) = \beta^{(0)} + \beta^{(1)}(X - \alpha) + \dots + \beta^{(l)} \frac{(X - \alpha)^l}{l!} + \dots + (X - \alpha)^k$$

Or $+\cdots+(X-\alpha)^k$ est divisible par $(X-\alpha)^{l+1}$ donc $P(\alpha)$ est connu modulo $(X-\alpha)^{l+1}$.

$$(*) \Leftrightarrow P = Q_1 \mod (X - \alpha)^{l_1 + 1}$$

 \vdots
 $\iff P = Q_n \mod (X - \alpha)^{l_n + 1}$

où les Q_i sont connus. C'est donc un problème chinois dans K[X].

Application 4: algorithme modulaire

Soit $A = (a_{ij}) \in M_n(\mathbb{Z})$, quel est $\det(A)$?

Soit $\varphi : \mathbb{Z} \longrightarrow R$ morphisme d'anneau. Alors $\varphi(\det(A)) = \det(\varphi(A))$.

- 1. Soit $\varphi : \mathbb{Z} \longrightarrow \mathbb{F}_p$ projection canonique. On connait alors $\det(A)$ mod p après un pivot de Gauss sur $A \mod p$ dans $M_n(\mathbb{F}_p)$
- 2. On obtient donc $det(A) \mod (p_1, \ldots, p_k)$ si les p_i sont des premiers différents.
- 3. Si $|\det A| < B$ et $N \ge 2B$, alors connaitre $\det(A) \mod N$ détermine $\det(A)$ dans \mathbb{Z} .

$$|\det(A)| \leqslant n! (||A||_{\infty})^n$$

On veut $\sum_{i=1}^{k} \log p_i > \log(2B) = n \log(2||A||_{\infty}) + \log n!$.

Parenthèse sur les nombres premiers

Théorème des nombres premiers

$$\theta(x) = \sum_{p \leqslant x, p \text{ premier}} ln(p) \underset{x \to \infty}{\sim} x$$

$$\Pi(x) = \#\{p \leqslant x, p \text{ premier}\} \sim \frac{x}{\ln(x)}$$

Remarque

Tout est effectif: $\theta(x) > 0,98x$ pour x > 7481.

D'où $\{p_i\} = \{p \leqslant x, \text{ premier}\}\ \text{et}:$

$$\sum_{p \leqslant x} \log p = \theta(x) > 0,98x$$

si $0,98x > \log(2B) \Rightarrow OK$.

Remarque

$$\sum_{\frac{x}{2} \leqslant p < x} ln(p) = x - \frac{x}{2} \sim \frac{x}{2}$$

d'où:

$$\#\left\{\frac{x}{2} \leqslant p < x, p \text{ premier} \sim \frac{x}{2ln(x)}\right\}$$

2.2 Crible d'Eratosthène

Algorithme 12 Crible d'Eratosthène

Entrées: $B \in \mathbb{N}$

Sorties: $\{p \leq B, p \text{ premier}\}$

- 1: Initialiser $T[2] = \ldots = T[B] = true$
- 2: Pour n = 2 à \sqrt{B} (tel que T[n] = true) Faire
- 3: Pour k = 2 à $\lfloor \frac{B}{n} \rfloor$ Faire
- 4: $T[kn] \leftarrow false;$
- 5: Fin pour
- 6: Fin pour
- 7: Retourner $\{i \leqslant B, T[i] = true\}$

Améliorations

- Si T[n] = false alors n
 n'est pas premier et ses multiples sont déjà barrés.
- Si k < n alors T[kn] est déjà barré.
- Et si on veut les nombres premiers entre A et A+B? translation faire : T[i] associé A+i.
- Si B est grand?
 - $1. \{ p \leqslant \sqrt{A+B} \}$
 - 2. Tableaux associés $\left[A,A+\frac{B}{N}\right],\left[A+\frac{B}{N},A+\frac{2B}{N}\right]$
- On fixe $N=2\times 3\times 5$, on utilise un crible pour chacune des $\varphi(N)$ classes \pmod{N} dans lesquelles se trouvent les nombres premiers. gain : N en mémoire et $\frac{N}{\varphi(N)}$ en temps.

Le nombre d'accès mémoire de cet algorithme est alors :

$$B + \sum_{n \leqslant \sqrt{B}} \left\lfloor \frac{B}{N} \right\rfloor + B = O(B) + O(\sqrt{B}) + B \sum_{n \leqslant \sqrt{B}} \frac{1}{n}$$

$$= \begin{cases} O(B) + O(\sqrt{B}) + Bln(\sqrt{B}) & \text{sans n premier} \\ O(B) + O(\sqrt{B}) + B(ln(ln(\sqrt{B})) & \text{avec n premier} \end{cases} \sim Bln(ln(B))$$

Le coût par nombre premier est $\sim ln(B)ln(ln(B))$.

2.3 Exponentiation binaire

Soit G un ensemble muni d'une loi associative \times . Soit $g \in G$, on veut calculer g^n avec $n \ge 1$ un entier.

Ides

$$g \times g \times g \times \ldots \times g = g^n$$

n-1 fois
$$\left(\left(\left(\left(g^2\right)^2\right)^2\right)^{\ldots}\right)^2 = g^{2^k}$$

Donc pour $n=2^k$ une puissance de 2, on peut calculer g^n en utilisant $\log_2 n$ opérations au lieu de n-1.

Si
$$n = \sum_{i=0}^{k} \epsilon_i 2^i$$
, $\epsilon_i \in \{0, 1\}$, $\epsilon_k = 1$, on a:

$$g^{n} = \prod_{i=0}^{k} \left(g^{2^{i}}\right)^{\epsilon_{i}}$$
$$= \prod_{i=0}^{k} g^{2^{i}}$$

Algorithme 13 Exponentiation binaire

Entrées:
$$g, n = \sum_{i=0}^{k} \epsilon_i 2^i > 0, \epsilon_i \in \{0, 1\}$$

Sorties: q^n

1:
$$\gamma \leftarrow g; \Pi \leftarrow g^0$$

2: Pour i = 0 à k Faire

3: Si
$$\epsilon_i = 1$$
 Alors

4:
$$\Pi \leftarrow \Pi \times \gamma$$

5: Fin si

6:
$$\gamma \leftarrow \gamma^2$$

7: Fin pour

8: Retourner II

Théorème

Cet algorithme calcule g^n en au plus 2(k+1) opérations (' \times '), soit $O(\log n)$.

Améliorations

$$g^{11} = g^8 \times g^2 \times g$$

$$g^{11} = g \times (g^5)^2 = g \times (g \times (g^2)^2)^2$$

Nouvel algorithme pour calculer q^n

- Si n=1 renvoyer g
- Si n impair renvoyer $g \times \left(g^{\frac{n-1}{2}}\right)^2$ Sinon renvoyer $\left(g^{\frac{n}{2}}\right)^2$

Prolongements

- Si G est un groupe où l'inverse est "gratuit" $n = \sum \epsilon_i 2^i$, $\epsilon_i \in \{0, 1, -1\}$ où le motif $\epsilon_i = \epsilon_{i+1} = 1$ n'apparait pas.
- Fenêtre flexible $g^n = g^\alpha \times \left(g^{\frac{n}{\beta}}\right)^\beta$ où $\alpha = n \mod \beta$ et β est une petite puissance de 2. $\{g^{\alpha}, 0 \leqslant \alpha < \beta'\}$ est précalculé.

Symbole de Legendre / de Jacobi 2.4

2.4.1 p premier impair

Définition

Soit $a \in \mathbb{Z}$.

$$\begin{pmatrix} \frac{a}{p} \end{pmatrix} = \begin{cases} 1 & \bar{a} \in (\mathbb{F}_p^*)^2 \\ 0 & \bar{a} = 0 \\ -1 & \bar{a} \notin (\mathbb{F}_p^*)^2 \end{cases}$$

Lemme
$$\binom{a}{p} = a^{\frac{p-1}{2}} \mod p \text{ et } \left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \times \left(\frac{b}{p}\right).$$

 $\left(\frac{a}{p}\right)$ se calcule en $O(\log p)$ multiplications dans \mathbb{F}_p et si $0 \leqslant a < p$ en $\tilde{O}(\log_2 p)^2$ opérations élémentaires.

2.4.2 Symbole de Jacobi

$$\left(\frac{a}{2}\right) = \begin{cases}
0 & \text{si a est pair} \\
(-1)^{\frac{a^2-1}{8}} & \text{sinon} = \begin{cases}
1 & \text{si } a = \pm 1 \mod 8 \\
-1 & \text{si } a = \pm 3 \mod 8
\end{cases}$$

Soit $b = \prod_{i=1}^{k} p_i \ge 1$, un produit de nombres premiers (pas distincts à priori). On définit :

$$\left(\frac{a}{b}\right) = \prod_{i=1}^{k} \left(\frac{a}{p_i}\right)$$

Proprits

Si $a, b \in \mathbb{Z}$ sont tels que tous les symboles de Jacobi utilisés sont bien définis, on a :

1.
$$\left(\frac{ab}{c}\right) = \left(\frac{a}{c}\right) \left(\frac{b}{c}\right) \text{ et } \left(\frac{a}{bc}\right) = \left(\frac{a}{b}\right) \left(\frac{a}{c}\right)$$

2.
$$a \in ((\mathbb{Z}/b\mathbb{Z})^*)^2 \Rightarrow \left(\frac{a}{b}\right) = 1$$

Théorème

Si a, b impairs ≥ 1 :

1.
$$\left(\frac{-1}{b}\right) = (-1)^{\frac{b-1}{2}}$$

$$2. \left(\frac{2}{b}\right) = \left(\frac{b}{2}\right)$$

3.
$$\left(\frac{a}{b}\right) = \left(\frac{b}{a}\right) \times (-1)^{\frac{a-1}{2}\frac{b-1}{2}} = \begin{cases} -\left(\frac{b}{a}\right) & \text{si } a = b = 3 \mod 4\\ \left(\frac{b}{a}\right) & \text{sinon} \end{cases}$$

4.
$$\mathbb{Z} \to \{0, 1, -1\}$$
 $a \mapsto \left(\frac{a}{b}\right)$ est périodique de période b.

Remarque

Coût de
$$(-1)^x : O(1)$$
.

Théorème

On suppose que les entiers sont écrits dans une base qui est une puissance de 2. Alors cet algorithme utilise $O(\log(\max(|a|,|b|))^2)$ pour calculer $(\frac{a}{b})$.

Algorithme 14 Calcul du symbole de Jacobi

Entrées: $b \geqslant 1$ impair, $a \in \mathbb{Z}$ Sorties: $\left(\frac{a}{b}\right)$ symbole de Jacobi

- 2: Tant que $b \neq 0$ Faire

3:
$$s \leftarrow s \times \left(\frac{2}{b}\right)^{v_2(a)}$$
;
4: $a \leftarrow \frac{a}{2^{v_2(a)}}$;

- $s \leftarrow (-1)^{\frac{a-1}{2}\frac{b-1}{2}} \times s$:
- $(a,b) \leftarrow (b \mod a, a);$
- 7: Fin tant que
- 8: Si a = 1 Alors
- Retourner s;
- 10: **Sinon**
- Retourner 0;
- 12: **Fin si**

Application

Soit N = pq, p et q deux premiers distincts.

Je veux prouver que je connais p et q sans divulguer p ou q.

- $-\left(\frac{a}{N}\right)$ calculable.
- $-\left(\frac{a^2}{N}\right) = 1 \text{ si } PGCD(a, n) = 1.$
- a est un carré dans $(\mathbb{Z}/n\mathbb{Z})^*$ si et seulement si $\left(\frac{a}{p}\right) = \left(\frac{a}{q}\right) = 1$
- On suppose connu $g \in \mathbb{Z}/n\mathbb{Z}$ qui vérifie $\left(\frac{g}{p}\right) = \left(\frac{g}{q}\right) = -1$

Défi : On transmet $h = g^{\epsilon}u^2$ où $\epsilon \in \{0,1\}$ est tiré uniformément au hasard, et $u \in \mathbb{Z}/n\mathbb{Z}$. Est-ce un carré?

Réponse : $\epsilon = 0$ ou $\epsilon = 1$

 $\epsilon = 0$ si et seulement si $\left(\frac{h}{p}\right) = 1$

 $\epsilon = 1$ si et seulement si $\left(\frac{h}{n}\right) = -1$

2.5 Test de non-primalité sur $\mathbb Z$

Théorème

Soit N entier impair. Si N est premier et 0 < a < N, alors :

- 1. $a^{N-1} = 1 \mod N$
- $2. \ a^{\frac{N-1}{2}} = \left(\frac{a}{N}\right) \neq 0 \mod N$
- 3. Soit $N-1=2^eq$, q impair, alors :

$$\begin{cases} a^q = 1 \mod n \\ \exists 0 \leqslant i < e, a^{q^{2^i}} = -1 \end{cases}$$

Algorithme

On tire $a \in]0, N[$ uniformément au hasard. Il y a trois variantes :

- (a) Si 1) est faux OU
- (b) Si 2) est faux OU
- (c) Si (3) est faux

alors succès : N est composé.

Sinon échec. (a) Fermat, (b) Soloway-Strassen, (c) Rabin-Miller

Remarque

Si N est premier : ECHEC inéluctable.

Complexité

La condition 3) se vérifie en calculant $b = a^q \mod n$ puis par au plus e-1 mises au carré.

 $O(\log N)$ opérations dans $\mathbb{Z}/n\mathbb{Z}$

 $O(\log N)^2$ jacobi pour 2)

Théorème

Si un entier N impair vérifie 3) alors il vérifie 2) et inversement pour 0 < a < N. On peut construire des paires (N, a) telles que :

- 1) soit vérifié et pas 2)
- 1) soit vérifié et pas 3)

Théorème

Soit N impair composé. $\{a \in \mathbb{Z}/n\mathbb{Z} \text{ tel que } a^{\frac{N-1}{2}} = \left(\frac{a}{N}\right) \neq 0 \mod N \}$ est un sous groupe strict de $(\mathbb{Z}/n\mathbb{Z})^*$.

Théorème de Korselt

Soit N composé.

 $\{a \in \mathbb{Z}/n\mathbb{Z} \text{ tel que } a^{N-1} = 1 \mod N \}$ est un sous-groupe de $(\mathbb{Z}/n\mathbb{Z})^*$. Il est gal $(\mathbb{Z}/n\mathbb{Z})^*$ si et seulement si :

- N est sans facteur carré
- pour tout premier p|N, on a p-1|N-1 (*)

Définition

Un entier N composé tel que les deux candidats (*) sont vérifiés est dit de Carmichael.

Remarque

Il existe une infinité de tels nombres.

Corollaire

Soit N impair composé.

La probabilité qu'un a tel que 0 < a < N vérifie 2) est inférieure ou égale $\frac{1}{2}$. La probabilité qu'un a tel que 0 < a < N vérifie 3) est inférieure ou égale $\frac{1}{2}$.

Remarque

En fait, on démontre que la probabilité qu'un a tel que 0 < a < N vérifie 3) est inférieure ou égale $\frac{1}{4}$.

2.6 Test de primalité sur \mathbb{Z}

Théorème

N est premier $\Leftrightarrow (\mathbb{Z}/n\mathbb{Z})^*$ a N-1 éléments \Leftrightarrow il existe $g \in (\mathbb{Z}/n\mathbb{Z})^*$ d'ordre N-1.

Soit G un groupe et $\prod p^{e_p} = |G|$ la factorisation de son cardinal alors $g \in G$ est d'ordre n \Leftrightarrow $\begin{cases} g^n = 1 & \text{le neutre} \\ g^{\frac{n}{p}} \neq 1 & \forall p \text{ premier, p divisant n} \end{cases}$

Corollaire

On peut prouver que $g \in$ est bien d'ordre en utilisant $O(\log n)^2$ multiplications dans le groupe. Calculer $\{g^i, i < n\}$ réclame n multiplications.

Analyse

SI N est premier alors $(\mathbb{Z}/n\mathbb{Z})^*$ est cyclique et a N-1 éléments. Il a donc

Algorithme 15 Preuve de primalité

Entrées: N tel que tous les diviseurs premiers de N-1 soient connus.

Sorties: preuve de primalité de N ou échec.

- 1: Tirer 1 < a < N uniformément au hasard.
- 2: Si a est d'ordre N-1 dans $(\mathbb{Z}/n\mathbb{Z})^*$ Alors
- 3: **Retourner** succès
- 4: Sinon
- 5: **Retourner** échec
- 6: Fin si

 $\varphi(N-1)$ générateurs. La probabilité de succès est donc $\geqslant \frac{\varphi(n)}{n}$ où n=N-1

$$= \prod_{\substack{p \text{ premier} \\ p|n}} \left(1 - \frac{1}{p}\right) \gg \frac{1}{\log\log n}$$

2.7 Factorisation dans \mathbb{Z}

Définitions

Soit R un anneau.

- $R^* = \{ \text{units de R} \} = \{ x \in R, \exists y \in R, xy = 1 \}$
- $-x \in R$ est irréductible si :
 - $-x \notin R^*$
 - $-x = yz \Rightarrow y \in R^* \text{ ou } z \in R^*$
- $-x \in R$ est un diviseur de zéro si $x \neq 0$ et $\exists y \in R, y \neq 0, xy = 0$

Définition

R est factoriel si tout élément $x \in R \setminus \{0\}$ s'écrit

$$x = \epsilon \prod_{i=1}^{n} p_i$$

où $\epsilon \in \mathbb{R}^*$, p irréductible.

Convention: un quotient vide pour n=0 vaut 1. Et si $x=\epsilon'\prod_{i=1}^n p_i'$ est une autre décomposition alors n=n' et il existe $\sigma\in S_n$ tel que p_i et $p_{\sigma(i)}'$ sont associés pour tout i. (A et B sont associés si et seulement si $\exists u\in R^*,\ a=ub$).

Stratégie générale de factorisation si R est euclidien

Soit $x \in R$, si $\bar{a} \in R/(x)$ est un diviseur de zéro alors PGCD(a, x) est un

diviseur de x, ce n'est pas une unité et il n'est pas associé à $x. \Rightarrow x = d\frac{x}{d}$ où d = PGCD(a, x) est une factorisation non triviale.

Soit $N \in \mathbb{Z}$ que l'on veut factoriser. On cherche $\bar{a} \in \mathbb{Z}/n\mathbb{Z}$ un diviseur de zéro.

La variante la plus courante : on cherche $u, v \in \mathbb{Z}$ tels que $u^2 = v^2 \mod N(*) \Rightarrow$ $u = \pm v \mod N \Rightarrow a = u \pm v \text{ convient.}$

Supposons (*) avec u, v premiers à $N > 2 \Rightarrow \left(\frac{u}{v}\right)^2 = 1 \mod N$.

L'équation $x^2 = 1$ dans $(\mathbb{Z}/n\mathbb{Z})^*$ a exactement deux solutions

 $\iff (\mathbb{Z}/n\mathbb{Z})^*$ est cyclique.

 $\iff N=4 \text{ ou } N=p^k \text{ ou } N=2p^k \text{ avec } k \geqslant 1, p \text{ premier impair.}$

Remarque

Comment tester $N = q^k$? (et calculer q, k?)

$$k \leqslant \log_a N \leqslant \log_2 N$$

Il suffit de savoir tester si $N = q^k$ pour un k fixé et extraire une racine k-ème. On a deux méthodes d'analyse numérique pour produire q_n (calculable!) tel que $q_n \longrightarrow N^{\frac{1}{k}}$ dans R. Dès que $|q_n - N^{\frac{1}{k}}| < \frac{1}{2}$ il n'y a qu'une possibilité pour q:

$$q = \left| q_n + \frac{1}{k} \right| = \lfloor q_n \rceil$$

et il suffit de tester si $N = q^k$. Tout ceci se fait en temps $(\log N)^{O(1)}$.

Détails sur l'étape 2)

- Tirer $x \in \mathbb{Z}/n\mathbb{Z}$ uniformément au hasard et calculer $rem(x^2, N)$. S'il se factorise sur \mathcal{B} (division exhaustive) on a une relation sinon on recommence.
- Optimiser B tel que la recherche exhaustive + l'algèbre linéaire ne soient pas trop couteux mais tel qu'on ait beaucoup d'entiers de [0, N]B-friables $\Rightarrow B \approx e^{c(\log N \log \log N)^{\frac{1}{2}}}$
- Choisir J de façon à avoir plus d'inconnues que d'équations pour 3). Il faut juste que $|\mathcal{B}| < J$.

2.8Factorisation dans $\mathbb{F}_q(\alpha)$

Remarque préliminaire

Soit $T \in k[X]$ avec k un corps, T unitaire, un polynome à factoriser. On

Algorithme 16 Algorithme de Dixon

Entrées: N impair, pas une puissance pure, B une borne de "friabilité" Sorties: un facteur non trivial de N ou échec.

- 1: Soit $\mathcal{B} \leftarrow \{p \leqslant B, p \text{ premier}\}$
- 2: On "produit" des $x_j \in \mathbb{Z}$ avec $j \in J$ tel que $x_j^2 = \prod_{i \in \mathcal{B}} i^{e_{i,j}} \mod N$ avec $e_{i,j} \in \mathbb{Z}$.
- 3: Soit $(\bar{v_0})$ un élément du noyau de $(e_{i,j}) \in M_{|B| \times J}(\mathbb{F}_2)$ $\Leftrightarrow \sum_{i} e_{i,j} v_j = 0 \mod 2, \forall i.$
- 4: Alors $\left(\prod_{j\in J} x_j^{v_j}\right)^2 = \sum_{i\in \mathcal{B}} i^{\sum_j e_{i,j}v_j} \mod N$ on pose $\bar{u} = \prod_{j\in J} x_j^{v_j} \mod N$, $\bar{v} = \prod_j i^{\sum_j e_{i,j}v_j} \mod N$ et on a :

$$u^2 = v^2 \mod N$$

- 5: Si $u = \pm v$ Alors
- 6: **Retourner** échec
- 7: Sinon
- 8: Retourner PGCD(u-v, N)
- 9: Fin si

peut supposer que T est sans facteur carré (si k est parfait) \Rightarrow car k = 0 ou car k = p et $x \to x^p$ surjectif.

Théorème

Soit $\Delta = PGCD(T, T')$

- 1. $\Delta = 1 \Leftrightarrow T$ est sans facteur carré.
- 2. $\Delta = T \Leftrightarrow T' = 0 \Leftrightarrow T = t(X^p)$ où $t \in k[X]$ et $p = \operatorname{car} k \Leftrightarrow (\operatorname{si} k \operatorname{est} parfait)$ $T = \tau(X)^p$ où $\tau \in k[X]$.

$$\sum t_i X^{pi} = \left(\sum \tau_i X^i\right)^p \text{ vrai ssi } t_i = \tau_i^p, \ \forall i$$

3. Δ est un facteur strict de T. On peut étudier séparément Δ et $\frac{T}{\Delta}$ et $\frac{T}{\Delta}$ est sans facteur carré.

Algorithme de Berlekamp

Soit $T \in \mathbb{F}_q[X]$, unitaire sans facteur carré. On a $T = \prod_{i=1}^s T_i$ avec T_i

irréductibles unitaires.

$$A = \mathbb{F}_q[X]/(T) \simeq \prod_{i=1}^s \mathbb{F}_q[X]/(T_i) \simeq \prod_{i=1}^s \mathbb{F}_q \times \deg T_i$$
$$B = \operatorname{Ker} \left(\begin{array}{ccc} A & \longrightarrow & A \\ x & \mapsto & x^q - x \end{array} \right)$$

Corollaire

T irréductible $\Leftrightarrow \dim \mathbb{F}_q \times B = 1$

 $\dim B = \# \text{ facteurs carrés irréductibles distincts de } T.$ Soit $\phi: \begin{pmatrix} A & \longrightarrow & A \\ x & \longmapsto & x^q \end{pmatrix}$. On veut calculer ker $(\phi - Id)$. On écrit la matrice de

 ϕ dans la base $(\bar{1}, \bar{X}, \bar{X^2}, \dots, X^{(de\bar{g}T)-1})$.

 $\phi(\bar{X}_i) = \bar{X}^{qi} = (\bar{X}^i)^q$ par exponentiation binaire.

Mieux : $\phi(\bar{1}) = 1$, $\phi(\bar{X}) = \bar{X}^q$ par exponentiation binaire, $\phi(X^{i+1}) =$ $\phi(X^i)\phi(X)$: par tout a on peut écrire la matrice de $\phi-Id$.

Corollaire

On a un algorithme déterministe polynomiale en $\log q$ et T.

On cherche un diviseur de zéro dans B donc dans A. Soit $\bar{x} \in B$, $x \notin \mathbb{F}_q$. Il existe $\alpha \in \mathbb{F}_q$ tel que $x - \alpha$ soit diviseur de zéro.

Algorithme: Pour tout $\alpha \in \mathbb{F}_q$, tester si $PGCD(x - \alpha, T)$ est non-trivial. Maintenant q est impair.

Idée : $\bar{x} \in B$, $\bar{y} = \bar{x}^{\frac{q-1}{2}}$. Les composantes de y dans $\prod_{i=1}^{s} \mathbb{F}_q$ sont dans $\{-1,0,1\}$.

PGCD(y-1,T)?

Mauvais cas:

$$--\left(\frac{q-1}{2}\right)^s \text{ [tous les } y_i = 1]$$

$$--\left(\frac{q+1}{2}\right)^s \text{ [tous les } y_i \neq 1]$$

$$-\left(\frac{q+1}{2}\right)^s$$
 [tous les $y_i \neq 1$]

Chapitre 3

Systèmes polynomiaux

Motivation

Soit k un corps et $f_i \in k[X_1, \ldots, X_n]$

$$(S) \begin{cases} f_1(x_1, \dots, x_n) = 0 \\ \vdots \\ f_m(x_1, \dots, x_n) = 0 \end{cases}$$

 $x_i \in k$?

$$< f_1, \dots, f_m > \subseteq k[X_1, \dots, X_n]$$

$$I \subseteq k[X_1, \dots, X_n]$$

$$f \in I?$$

3.1 Ordres monomiaux sur $k[x_1, \ldots, x_n]$, k corps

Notation : $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n$ $X^{\alpha} = X_1^{\alpha_1} \dots X_n^{\alpha_n}$ est un monome.

Remarques

- 1. Les monomes sont en bijection avec \mathbb{N}^n
- 2. Tout ordre sur \mathbb{N}^n , $\alpha < \beta$ définit un ordre sur les monomes $X^{\alpha} < X^{\beta}$

Exemple: ordre lexicographique (strict) noté lex

 $(\alpha_i) < (\beta_i) \iff (\alpha_j < \beta_j \text{ si j est la première coordonnée où } (\alpha_i) \text{ et } (\beta_i) \text{ diffèrent.}$

Définition

Un ordre est monomial si:

- ordre total ($\alpha < \beta$ ou $\alpha > \beta$ ou $\alpha = \beta$)
- $-\alpha>\beta \text{ et } \gamma\in\mathbb{N}^n\Rightarrow\alpha+\gamma>\beta+\gamma$
- $-\alpha \in \mathbb{N}^n \Rightarrow \alpha \geqslant 0 = (0, \dots, 0)$

Théorème

lex est monomial.

On fixe un ordre pour la suite.

Définitions

Soit $f = \sum_{\alpha \in \mathbb{N}^n} a_{\alpha} X^{\alpha} \neq 0$ dans $k[x_1, \dots, x_n]$ avec $a_{\alpha} \in k$ et $a_{\alpha} = 0$ pour presque tout α .

- 1. deg $f = \max\{\alpha \in \mathbb{N}^n, \, a_{\alpha} \neq 0\}$ [multidegré de \mathbb{N}^n]
- 2. $cd(f) = a_{\deg f} \in k$
- 3. monome dominant : $X^{\deg f}$ noté md(f)
- 4. terme dominant : $a_{\deg f}X^{\deg f}$ noté td(f)

Lemme

Soient $f, g \neq 0$ (dans $k[x_1, ..., x_n]$). On a : $\deg(fg) = \deg f + \deg g$ (somme composante par composante) $\deg(f+g) \leq \max(\deg f, \deg g)$ si $f+g \neq 0$

3.2 Pseudo division euclidienne

Théorème

Soit
$$(f_1, \ldots, f_s) \in k[x_1, \ldots, x_n]$$

Tout $f \in k[x_1, \ldots, x_n]$ s'écrit :

$$f = \sum_{i=1}^{s} q_i f_i + r$$

où $r, q_i \in k[x_1, \ldots, x_n]$, avec r = 0 ou $r = \sum r_{\alpha} X^{\alpha}$ tel qu'aucun des monomes X^{α} $(r_{\alpha} \neq 0)$ ne soit divisible par l'un des $md(f_i)$.

Définition

r est un reste de la division de f par (f_1, \ldots, f_s)

Algorithme 17 Algorithme division euclidienne

```
Entrées: f, f_i
Sorties: q_i, r
 1: q_1 \leftarrow 0;
     q_s \leftarrow 0;
     r \leftarrow 0;
     p \leftarrow f;
 2: Tant que p \neq 0 Faire
         i \leftarrow 1; div \leftarrow faux;
 3:
         Tant que i \leqslant s et div = faux Faire
 4:
 5:
             Si md(f_i)|md(p) Alors
               q_{i} \leftarrow q_{i} + \frac{td(p)}{td(f_{i})};
p \leftarrow p - \frac{td(p)}{td(f_{i})}f_{i};
div \leftarrow vrai;
 6:
 7:
 8:
 9:
             Sinon
                i \leftarrow i + 1;
10:
             Fin si
11:
         Fin tant que
12:
         Si \ div = faux \ Alors
13:
             r \leftarrow r + td(p);
14:
15:
            p \leftarrow p - td(p);
         Fin si
16:
17: Fin tant que
18: Retourner q_i, r
```

3.3 Résultats, Applications

Notation

Soit $(g_{\lambda})_{{\lambda}\in E}$ est un ensemble de polynomes de $k[x_1,\ldots,x_n]$. On note $< g_{\lambda} >$ le plus petit idéal de $k[x_1,\ldots,x_n]$ contenant tous les g_{λ} .

Définition

Soit I un idéal de $k[x_1, \ldots, x_n]$. Un système (g_1, \ldots, g_s) de générateurs de I est une base de Grobner si et seulement si pour tout $f \in k[x_1, \ldots, x_n]$ le reste de la division euclidienne de f par (g_1, \ldots, g_s) est bien défini. Il existe un unique r tel que $f = \sum_{i=1}^{s} q_i g_i + r$.

Théorème

A partir d'un système fini de générateurs de I, il existe un algorithme qui calcule une base de Grobner de I.

Il y a une notion de base canonique, tout idéal I admet une unique base de Grobner "réduite".

Corollaire

Si $f \in k[x_1, ..., x_n]$, on a $f \in I \Leftrightarrow r = 0$ (reste de la division par base de Grobner)

Corollaire

On peut tester si I = J (\Leftrightarrow les bases de Grobner réduites sont égales).

Définition équivalente

 g_1,\dots,g_s est une base de Grobner de I \Leftrightarrow

$$< md(g_i) >_{i=1,...,s} = < md(g), g \in I >$$

3.4 Résoudre les systèmes d'équations polynomiales

Définition

Soit $I = \langle f_1, \dots, f_s \rangle \in k[x_1, \dots, x_n]$ Le l-ème idéal d'élimination I_l est l'idéal de $k[x_{l+1}, \dots, x_n]$:

$$I_l = I \cap k[X_{l+1}, \dots, X_n]$$

Théorème

Soit G une base de Grobner de I pour lex. Alors $G_l = G \cap k[X_{l+1}, \dots, X_n]$ est une base de Grobner de I_l .

Corollaire

Si
$$f_1(x_1, \dots, x_n) = \dots = f_s(x_1, \dots, x_n) = 0$$
 alors on a:
$$g_n(x_n) = 0$$

$$g_{n-1}(x_n, x_{n-1}) = 0$$

$$g_{n-2}(x_n, x_{n-1}, x_{n-2}) = 0$$

:

"forme triangulaire" pour des g_i calculables.

Corollaire

Si:

$$(E) \begin{cases} x_1 = f_1(t_1, \dots, t_m) \\ \vdots \\ x_n = f_n(t_1, \dots, t_m) \end{cases}$$

est un système d'équations paramétriques, on fixe $t_1 > t_2 > ... > t_m > x_1 > ... > x_n$. Alors I_m définit le plus petit ensemble (défini par des équations polynomiales) contenant (E).

Théorème

$$I = \langle f_1, \dots, f_s \rangle \subset \mathbb{C}[X_1, \dots, X_n]$$

1. Le système (S) $\begin{cases} f_1(x_1, \dots, x_n) = 0 \\ \vdots & \text{a une solution } (x_1, \dots, x_n) \in \mathbb{C}^n \\ f_s(x_1, \dots, x_n) = 0 \end{cases}$

si et seulement si la base de Grobner réduite de I est $\neq \{1\}$.

2. (S) a un nombre fini de solutions si et seulement si $\forall i \leq n$ une puissance de x_i est dans $< md(f), f \in I >$.