Математические модели в естествознании и методы их исследования

Лабораторная работа. «Численное решение уравнения теплопроводности методом конечных разностей»

Цель работы

Получение навыков разработки и реализации программ на основе математической модели объекта.

Дана начально-граничная задача для неоднородного уравнения теплопроводности:

$$\frac{\partial u}{\partial t} = 4 \frac{\partial^2 u}{\partial x^2} + \ln(3x + te^{-t}), x \in [0, 1], t \in [0, T],$$

$$u(x, 0) = \varphi(x), u(0, t) = \alpha(t), u(1, t) = \beta(t),$$

где

B.1	$\varphi(x) = x - \sin 2\pi x$	$\alpha(t) = t$	$\beta(t) = 1 - t$
B.2	$\varphi(x) = x - \sqrt{x}$	$\alpha(t) = \arcsin \frac{t}{2}$	$\beta(t) = t$
		$\frac{a(t)}{2}$	
B.3	$\varphi(x) = -2x$	$\alpha(t) = \sin(t)$	$\beta(t) = -2cos(t)$
B.4	$\varphi(x) = -\sqrt{x}$	$\alpha(t) = 1 - e^{-t}$	$\beta(t) = -\sqrt{1+t}$
B.5	$\varphi(x) = -\sqrt{x} + x^2$	$\alpha(t) = 0$	$\beta(t) = 1 - \cos(t^2)$
B.6	$\varphi(x) = x^2 + e^{-x}$	$\alpha(t) = e^{-t}cos(t)$	$\beta(t) = 1 + e^{t-1}$
B.7	$\varphi(x) = x^2 + x$	$\alpha(t) = 1 - e^{-(t+t^2)}$	$\beta(t) = 2\cos(t) $
B.8	$\varphi(x) = e^{-x^2} + \sqrt{x}$	$\alpha(t) = \sqrt{e^{-t} + \sin^2(t)}$	$\beta(t) = 1 + e^{t-1}$
B.9	$\varphi(x) = x - \cos(2\pi x)$	$\alpha(t) = \sin(2t) - 1$	$R(t) = \frac{t}{t}$
			$\beta(t) = \frac{1}{1+t^2}$
B.10	$\varphi(x) = x^2 + e^{-2x}$	$\alpha(t) = 1$	$\beta(t)$
			$=1+e^{-2\cos{(t)}}$
B.11	$\varphi(x) = x^2 - \sqrt{x}$	$\alpha(t) = t^2$	$\beta(t) = e^{-\sqrt{t}}\sin(t)$
B.12	$\varphi(x) = x\sin(2x)$	$\alpha(t) = \sqrt{ sin(t) }$	$\beta(t) = \sin(t+1)$

Решить ее методом конечных разностей с помощью разработанной программы. Использовать явную двухслойную и неявную двухслойную схемы.